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Abstract

This article provides an algebraic study of the propositional system InqB of inquisitive
logic. We also investigate the wider class of DNA-logics, which are negative variants of
intermediate logics, and the corresponding algebraic structures, DNA-varieties. We prove
that the lattice of DNA-logics is dually isomorphic to the lattice of DNA-varieties. We
characterise maximal and minimal intermediate logics with the same negative variant,
and we prove a suitable version of Tarski’s and Birkhoff’s classic variety theorems. We
also introduce finite DNA-varieties and show that these varieties are axiomatised by the
analogues of Jankov formulas. Finally, we prove that the lattice of extensions of InqB
is dually isomorphic to the ordinal ω + 1 and give an axiomatisation of these logics
via Jankov DNA-formulas. This shows that these extensions coincide with the so-called
inquisitive hierarchy of Ciardelli (2009).1

1 Introduction

Inquisitive logic was introduced a decade ago as a formal framework to analyse questions.
More specifically, inquisitive semantics originates from the so-called “partition semantics” of
Groenendijk and Stokhof [24, 26] and was formally developed by Ciardelli, Groenendijk and
Roelofsen in [10–12, 14, 25]. In the last decade inquisitive semantics has been widely studied
both from the linguistics point of view as well as from the perspective of logic. In particular,
inquisitive propositional logic InqB has been thoroughly investigated in [10, 20, 37–39]. The
recent textbook [13] gives the state of the art in the field.

It is only recently, however, that an algebraic approach to inquisitive logic has been
developed. In [5] algebraic and topological semantics for InqB are introduced and investigated
(see also [41] for a different algebraic approach to inquisitive logic). Algebraic semantics plays
a crucial role in the study of intermediate, modal and other non-classical logics [6, 8, 19, 21].
A development of an algebraic semantics for inquisitive logic is thus an important milestone
for better understanding the mathematics behind inquisitive semantics.

In this article we continue the study started in [5] and develop a full algebraic apparatus for
inquisitive logic InqB and related systems. Using this machinery we give, among other things,
a full description of the lattice of extensions of InqB. Also using this algebraic semantics for
InqB we study the relation between inquisitive logic and intermediate logics.

While inquisitive logic is now widely known and recognized, the related class of DNA-logics
has not been well investigated yet. In this article we introduce DNA-logics as negative variants
of intermediate logics. A DNA-logic Λ is thus a set of propositional formulas such that, for
some intermediate logic L, ϕ ∈ Λ if and only if ϕ[¬p/p] ∈ L. The name DNA stands for double
negation atoms, since every DNA-logic Λ proves the formula ¬¬p→ p for every atomic formula
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p ∈ AT. The relation between InqB and negative variants of intermediate logics was already
pointed out in [10]. Also [36] establishes several properties of these systems. In this article
we provide a systematic study of DNA-logics and we investigate the corresponding classes of
Heyting algebras, which we call DNA-varieties.

The original contributions of this article are therefore twofold. On the one hand, we
develop a general algebraic semantics for DNA-logics and we prove some fundamental results
concerning DNA-logics and DNA-varieties. In particular, we show that the lattice of DNA-logics
is dually isomorphic to the lattice of DNA-varieties. We characterise maximal and minimal
intermediate logics with the same negative variant, and we prove a suitable version of Tarski’s
and Birkhoff’s classic variety theorems for DNA-varieties. We also introduce locally finite DNA-
varieties and show that these varieties are axiomatised by the analogues of Jankov formulas.

On the other hand, we apply this general algebraic setting to inquisitive logic: we study
the lattice of extensions of InqB and show that it forms a countable descending chain with an
extra bottom element dually isomorphic to the ordinal ω+ 1. We also give an axiomatisation
of these logics via the analogues of Jankov formulas. This shows that these extensions coincide
with the so-called inquisitive hierarchy considered in [10]. It thus follows from our results
that the inquisitive hierarchy comprises all the possible ways in which InqB can be extended
to other DNA-logics.

This article is structured as follows. In Section 2 we recall the preliminary notions about
varieties, Heyting algebras, intermediate logics and inquisitive semantics which we will make
use of in the course of this article. In Section 3 we introduce DNA-logics and their algebraic
semantics, and we prove that the lattice of DNA-logics is dually isomorphic to the lattice of
DNA-varieties. In Section 4 we employ this duality result to make the first steps in the study of
DNA-logics and DNA-varieties: we characterise maximal and minimal intermediate logics with
the same negative variant, we prove a suitable version of Tarski’s and Birkhoff’s theorems
about varieties and we introduce Jankov formulas to axiomatise locally finite DNA-varieties.
Finally, in Section 5, we continue the work done in [5] and we use the methods developed in
this article to show that the extensions of InqB form a countable descending chain with an
extra bottom element. Finally, we provide an axiomatisation of each of these logics and we
show that they coincide with the so-called inquisitive hierarchy considered in [10].

2 Preliminaries

In this section we briefly discuss some of the basic facts that will be used throughout the
article. We use [8] as our main references for the basic theory of intermediate logics. We also
use [7] for universal algebra, and [17] and [43] for Heyting and Boolean algebras, respectively.
Finally, we refer the reader to Ciardelli’s original presentation in [10] and [13] for more details
about inquisitive semantics and its applications in linguistics.

2.1 Universal Algebra

We write f : A � B if f is a surjective homomorphism between A and B and we say that
B is homomorphic image of A. We denote by B � A that B is a subalgebra of A and by∏
i∈I Ai the product of the family of algebras {Ai}i∈I . If I is finite, we also write A0× ...×An

for the product
∏
i∈I Ai. For every i ∈ I we also have a projection function πi :

∏
i∈I Ai → Ai

such that πi : α 7→ α(i). It is easy to show that every such projection function is a surjective
homomorphism. We introduce the following closure maps.

Definition 2.1. Let K be a set of algebras of the same similarity-type, we then define the
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following:

A ∈ I(K) iff A is isomorphic to some algebra in K
A ∈ S(K) iff A is a subalgebra of some algebra in K
A ∈ H(K) iff A is homomorphic image of some algebra in K
A ∈ P (K) iff A is product of a nonempty family of algebras in K.

The following proposition provides a characterisation of how the previous maps interact with
one another.

Proposition 2.2. Let K be an arbitrary class of algebras, we then have that SH(K) ⊆
HS(K), PS(K) ⊆ SP (K) and PH(K) ⊆ HP (K). Moreover, the operators I, S,H, P are all
idempotent, i.e. I2(K) = I(K), S2(K) = S(K), H2(K) = H(K) and P 2(K) = P (K).

A variety is defined as a class of algebras V of the same similarity type which is closed under
homomorphic images, subalgebras and products. If K is an arbitrary class of algebras of the
same similarity type, then we write V(K) for the variety generated by K, i.e. for the smallest
class of algebras containing K which is closed under subalgebras, homomorphic images and
products. An important theorem by Birkhoff establishes that varieties are exactly the classes
of algebras which are definable by equations [7, Thm. 11.9].

Finally, we recall the following important theorems, which provide an internal charac-
terisation of algebraic varieties. The first theorem, due to Tarski, characterizes the variety
generated by a set of algebras in terms of the closure maps defined above. The second theorem
is an important result by Birkhoff which shows that subdirectly irreducible algebras play an
important role as generators of varieties. We use VSI to denote the collection of subdirectly
irreducible algebras of a variety V. For a proof of these results see [7, Thms 9.5 and 9.7].

Theorem 2.3 (Tarski). Let K be a class of algebras of some similarity type, we then have
that V(K) = HSP (K).

Theorem 2.4 (Birkhoff). Varieties are generated by their subdirectly irreducible members,
i.e. for every variety V, we have V = V (VSI).

2.2 Heyting Algebras

A Heyting algebra is a bounded lattice H such that for every a, b ∈ H there is some element
a → b ∈ H such that for all c ∈ H we have that c ≤ a → b ⇔ c ∧ a ≤ b. Given an element
a ∈ H of a Heyting algebra, we define its pseudocomplement ¬a as ¬a = a → 0. In case for
all a ∈ H it is the case that a∧¬a = 0 and a∨¬a = 1 we say that H is a Boolean algebra. It
is well known that a Heyting algebra H is subdirectly irreducible iff H has a second greatest
element sH .

A power-set algebra is a Boolean algebra B = (℘(X),∪,∩, \, ∅, X), where the universe is a
power-set, the algebraic operations of join and meet are the set-theoretic operations of union
and intersection and complementation is the set-theoretic complement. We recall that every
finite Boolean algebra B is isomorphic to a power-set algebra, i.e. B ∼= ℘(X) for some finite
set X, see e.g., [16, Ch. 5]. Thus it follows that finite Boolean algebras are always equivalent
up to isomorphism to ℘(n) for some n ∈ N. Therefore, it is easy to show that if n ≤ m, then
℘(n) � ℘(m). Then, by identifying every ℘(n) by 2n, it follows that finite Boolean algebras
form an ordered chain of subalgebras:

20 � 21 � 22 � 23 � 24 � . . .
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2.3 Intermediate Logics

Intermediate logics are a well-studied class of logics with many applications in mathematics
and computer science. Fix a countable set AT of atomic propositional formulas, we define the
set of propositional formulas LP inductively as follows.

Definition 2.5. The language LP is defined as follows, where p ∈ AT:

ϕ ::= p | > | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ

Negation can be defined as ¬ϕ := ϕ→ ⊥. If ϕ is a formula, then we write ϕ(x) or ϕ(x0, ..., xn)
to specify that the atomic formulas in ϕ are among those of x or respectively of x0, ..., xn.
A substitution is a function η : AT → LP which naturally lifts by induction to formulas by
setting, for every connective �, the map (ψ � χ) 7→ η(ψ) � η(χ). If ϕ is a formula and q
occurs in ϕ, we write ϕ[p/q] for the formula obtained by the substitution η : q 7→ p. Similarly,
if q = q0, ..., qn are variables in ϕ, then we write ϕ[p/q] for the formula obtained by the
substitution η : qi 7→ pi for all i ≤ n.

We denote by IPC the intuitionistic propositional calculus and by CPC the classical propo-
sitional calculus. Now, given a propositional language LP , we say that a set of formulas
L ⊆ LP is a superintuitionistic logic if IPC ⊆ L and in addition L is closed under modus
ponens and uniform substitution. An intermediate logic is a superintuitionistic logic L which
is also consistent, namely ⊥ /∈ L.

It can be proven that CPC is the maximal intermediate logic and that intermediate logics
are all the logics L such that IPC ⊆ L ⊆ CPC. We denote by L + ϕ the closure under
substitution and modus ponens of the set of formulas L∪{ϕ} and by L+Γ the closure under
substitution and modus ponens of the set of formulas L ∪ Γ. If L is an intermediate logic
and ϕ ∈ L then we write `L ϕ or L ` ϕ. Moreover, if ϕ can be obtained by closing the set
L ∪ Γ under modus ponens, then we write Γ `L ϕ and we say that ϕ is derivable from Γ in
L. It is a well-know fact [8, Ch. 4.1] that intermediate logics form a bounded lattice IL with
IPC = ⊥ and CPC = > and where meet and join are defined as follows

L0 ∧ L1 = L0 ∩ L1

L0 ∨ L1 = L0 + L1.

We list here some intermediate logics that will be useful for us in this article:

KC = IPC + ¬p ∨ ¬¬p
KP = IPC + (¬p→ q ∨ r)→ (¬p→ q) ∨ (¬p→ r)
ND = IPC + {(¬p→

∨
i≤k ¬qi)→

∨
i≤k(¬p→ ¬qi) : k ≥ 2}.

The logic ND was introduced by Maksimova in [34]. The logic KP was introduced by Kreisel
and Putnam in [33]. The logic KC is also know as the logic of the weak excluded middle
and was introduced by Jankov in [29]. While the previous logics are defined in axiomatic
terms, one can also define logics by specifying the class of structures they correspond to.
The logic ML is the logic of so-called Medvedev frames and it was introduced by Medvedev
in [35]. A relational structure F is a Medvedev frame if F ∼= (℘0(W ),⊇), where W is a finite
set and ℘0(W ) = {X ⊆ W : X 6= ∅}. A Medvedev model is then defined as a relational
model over a Medvedev frame. Let C be the class of all Medvedev frames, then we have that
ML = {ϕ ∈ LP : C  ϕ}, i.e. ML is the set of formulas valid in all Medvedev frames (here we
assume the reader’s familiarity with the standard Kripke semantics of intuitionistic logic).

We will now briefly recall the algebraic semantics of intermediate logics.

4



Definition 2.6 (Algebraic Model). An algebraic model is a pair M = (H,V ) where H is a
Heyting algebra and V : AT → H is a valuation of propositional atoms over the elements of
H.

Given an algebraic model M = (H,V ), we define by induction the interpretation of any
formula ϕ ∈ LP .

Definition 2.7 (Interpretation of Arbitrary Formulas). Given an algebraic model M and a
formula ϕ ∈ L, its interpretation JϕKM is defined as follows:

JpKM = V (p) J>KM = 1H J⊥KM = 0H

Jϕ ∧ ψKM = JϕKM ∧H JψKM Jϕ ∨ ψKM = JϕKM ∨H JψKM Jϕ→ ψKM = JϕKM →H JψKM

When the valuation V is clear from the context, we simply write JϕKH for the interpretation
of ϕ in H under V . We say that a formula ϕ is true under V in H or true in the model
M = (H,V ) and write M � ϕ if JϕKM = 1. We say that ϕ is valid in H and write H � ϕ
if ϕ is true in every algebraic model M = (H,V ) over H. Given a class of Heyting algebras
C, we say that ϕ is valid in C and write C � ϕ if ϕ is valid in every Heyting algebra H ∈ C.
Finally, we say that ϕ is a validity if ϕ is valid in any Heyting algebra H.

Let HA be the lattice of Heyting algebras and IL the lattice of intermediate logics, we
then define the two maps V ar : IL→ HA and Log : HA→ IL as follows:

V ar : L 7→ {H ∈ HA : H � L};
Log : V 7→ {ϕ ∈ LP : V � ϕ}.

That the two former functions are well defined follows from V ar(L) being a variety of Heyting
algebras and Log(V) being an intermediate logic. Also, one can prove that both these maps
are order-reversing homomorphisms. We say that a variety of Heyting algebras V is defined
by a set of formulas Γ if V = V ar(Γ) and we say V is definable if there exists one such Γ. We
say that an intermediate logic L is algebraically complete with respect to a class of Heyting
algebras C if L = Log(C).

Theorem 2.8 (Definability Theorem). Every variety of Heyting algebras V is defined by its
validities, i.e. for every Heyting algebra H,

H ∈ V ⇔ H � Log(V).

Theorem 2.9 (Algebraic Completeness). Every intermediate logic L is complete with respect
to its corresponding variety of Heyting algebras, i.e. for every ϕ ∈ LP ,

ϕ ∈ L⇔ V ar(L) � ϕ.

We refer the reader to [8, Sec. 7] for a full proof of the aforementioned two results and
the related constructions. Here let us only remark that the first of these two results is an
immediate application of the fact that varieties and equational classes coincide. The second
result relies essentially on the free-algebra construction, namely on the Lindenbaum-Tarski
algebra of intermediate logics. These results together give us the following theorem.

Theorem 2.10 (Dual Isomorphism). The lattice of intermediate logics is dually isomorphic
to the lattice of varieties of Heyting algebras, i.e. IL ∼=op HA.

Here, the isomorphisms between IL and HA are the two maps Log and V ar. We sometimes
refer to the previous theorem as a duality result concerning IL and HA. Notice that we are
implicitly excluding from the lattice HA the trivial variety generated by a singleton set, for
it dually corresponds to the inconsistent logic containing all the formulas of LP .
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2.4 Inquisitive Semantics

In this section we recall the definition of inquisitive logic and its standard semantics. Though
sometimes inquisitive logic is introduced in a signature consisting of two different disjunc-
tions, here we follow [10] and present InqB in the same language LP of intermediate logics.
Inquisitive logic is defined as the logic of all evaluation states. Given a set of atomic formulas
in LP , a classical valuation (or simply valuation) is a function w : AT → {0, 1}. When the
set AT is fixed, we refer to the set 2AT of all classical valuations over AT as the evaluation
space over AT. An evaluation state (or simply state) is a set s of valuations s ∈ ℘(2AT). We
introduce as follows the notion of support in a state.

Definition 2.11 (Support at a State). Let ϕ be a formula of LP and s ∈ ℘(2AT) a state. We
say that s supports ϕ and we define s � ϕ inductively as follows:

s � p ⇐⇒ ∀w ∈ s (w(p) = 1)
s � > ⇐⇒ s ⊆ 2AT

s � ⊥ ⇐⇒ s = ∅
s � ψ ∧ χ ⇐⇒ s � ψ and s � χ
s � ψ ∨ χ ⇐⇒ s � ψ or s � χ
s � ψ → χ ⇐⇒ ∀t (if t ⊆ s and t � ψ then t � χ).

For p ∈ AT and a state s, we introduce the notation JpKs = {w ∈ s : w(p) = 1}, that is, JpKs is
the set of classical valuations in s that make p true. Since ¬ϕ = ϕ→ ⊥, the semantic clause
of negation is then the following:

s � ¬ϕ iff ∀t (if t ⊆ s then t 2 ϕ).

The system of inquisitive logic InqB is then defined semantically as follows.

Definition 2.12 (Inquisitive Logic). The valid formulas of inquisitive logic InqB are the
formulas ϕ ∈ LP which are supported in every evaluation state:

InqB = {ϕ ∈ LP : ∀s ∈ ℘(2AT), s � ϕ}.

Inquisitive logic can thus be seen as the logic of all evaluation states.

3 DNA-Logics and their Algebraic Semantics

In this section we introduce the class of DNA-logics and we show that these logics are complete
with respect to DNA-varieties, a suitably defined class of Heyting algebras.

3.1 DNA-Logics

We proceed by introducing the negative variant of an intermediate logic. Negative variants
were first introduced by Miglioli et al. in [36] and later employed by Ciardelli in [10]. If
ϕ ∈ LP is an arbitrary formula, we often say that the formula ϕ[¬p/p] obtained by replacing
all the atomic letters in ϕ with their negation is its negative variant.

Definition 3.1 (Negative Variant). For every intermediate logic L, its negative variant L¬

is defined as follows:
L¬ = {ϕ ∈ LP : ϕ[¬p/p] ∈ L}.
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A DNA-logic is then defined as the negative variant of some intermediate logic L. The name
DNA stands for double negation atoms, which refers to the fact that, as we shall see, DNA-logics
prove ¬¬p → p for all atomic formulas p ∈ AT. We will use the notation L¬ to refer to the
negative variant of an intermediate logic L. If not specified otherwise, we reserve uppercase
greek letters Γ and ∆ to denote arbitrary sets of formulas and Λ and Π to denote DNA-logics.
The following proposition provides us with an axiomatisation for every DNA-logic.

Proposition 3.2. Let Λ be a DNA-logic and L an intermediate logic with Λ = L¬. Then Λ is
the least set of formulas such that:

1. L ⊆ Λ;

2. For all atomic propositional formulas p ∈ AT we have that ¬¬p→ p ∈ Λ;

3. Λ is closed under the modus ponens rule: if ϕ ∈ Λ and ϕ→ ψ ∈ Λ, then ψ ∈ Λ.

Proof. It is trivial to show that Λ satisfies the three conditions; what remains to prove is
that Λ is the least such set. Suppose X also validates the three conditions above, we need
to show that Λ ⊆ X. Consider any ϕ ∈ Λ = L¬, then by the definition of negative variant,
ϕ[¬p/p] ∈ L. Therefore, by uniform substitution, ϕ[¬¬p/p] ∈ L and therefore since L ⊆ X also
ϕ[¬¬p/p] ∈ X. Finally, since for every p ∈ AT, ¬¬p→ p ∈ X, it follows that ϕ[¬¬p/p]→ ϕ ∈ X.
Given that X is closed under modus ponens we obtain that ϕ ∈ X. �

DNA-logics give rise to a lattice structure ordered by the set-theoretic inclusion. The meet
of two DNA-logics Λ0,Λ1 is just their intersection and their join is the closure of their union
under modus ponens. We will thus write Λ0 ∧ Λ1 := Λ0 ∩ Λ1 and Λ0 ∨ Λ1 := (Λ0 ∪ Λ1)

MP ,
where we denote by (Γ)MP the closure under modus ponens of a set Γ of formulas. If ϕ can
be obtained by closing the set Γ of formulas under modus ponens, then we have Γ ` ϕ, i.e.
ϕ is derivable from Γ. We prove the following proposition.

Proposition 3.3. Let Λ0 and Λ1 be two DNA-logics, then: (i) Λ0 ∧Λ1 is a DNA-logic and it is
the infimum of Λ0 and Λ1; (ii) Λ0 ∨ Λ1 is a DNA-logic and it is the supremum of Λ0 and Λ1.

Proof. Assume without the loss of generality that Λ0 = L¬0 and Λ1 = L¬1 . It is immediate
that Λ0∧Λ1 = Λ0∩Λ1 is the least set of formulas satisfying the conditions in Proposition 3.2
with respect to the intermediate logic L0 ∩ L1; and that Λ0 ∨ Λ1 = (Λ0 ∪ Λ1)

MP is the least
set of formulas satisfying the conditions in Proposition 3.2 with respect to the intermediate
logic L0 ∨ L1 := (L0 ∪ L1)

MP . �

We denote by DNAL the lattice of DNA-logics. Since intermediate logics also form a lattice
IL, we can then show that the map (−)¬ : IL → DNAL which assigns each intermediate
logic to its negative variant is a lattice homomorphism.

Proposition 3.4. The map (−)¬ : IL→ DNAL is a bounded lattice homomorphism.

Proof. Obviously (−)¬ sends ⊥IL to ⊥DNAL and >IL to >DNAL, so it suffices to check that
(−)¬ preserves meet and join.

(i) Consider two intermediate logics L0 and L1, then it is straightforward that:

(L0 ∧ L1)
¬ = (L0 ∩ L1)

¬

= {ϕ ∈ LP : ϕ[¬p/p] ∈ L0 ∩ L1}
= {ϕ ∈ LP : ϕ[¬p/p] ∈ L0} ∩ {ϕ ∈ LP : ϕ[¬p/p] ∈ L1}
= L¬0 ∩ L¬1
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= L¬0 ∧ L¬1 .

which shows that (−)¬ preserves the meet operator.
(ii) Consider two intermediate logics L0 and L1. We have by definition that (L0 ∨L1)

¬ =
((L0∪L1)

MP )¬ and L¬0 ∨L¬1 = (L¬0 ∪L¬1 )MP . It suffices to show that ((L0∪L1)
MP )¬ = (L¬0 ∪

L¬1 )MP . (⊆) Suppose ϕ ∈ ((L0∪L1)
MP )¬, then it follows that ϕ[¬p/p] ∈ (L0∪L1)

MP , hence for
some formulas ψ0, ..., ψn ∈ L0 ∪ L1 we have ψ0, ..., ψn ` ϕ[¬p/p]. We immediately obtain that
ψ0[¬p/p], ..., ψn[¬p/p] ` ϕ[¬¬p/p]. So, since for every p ∈ AT we have ¬¬p→ p ∈ L¬0 , L¬1 it follows
that ψ0[¬p/p], ..., ψn[¬p/p] ` ϕ and hence ϕ ∈ (L¬0 ∪ L¬1 )MP . (⊇) Suppose ϕ ∈ (L¬0 ∪ L¬1 )MP ,
then it follows that for some formulas ψ0, ..., ψn ∈ L¬0 ∪ L¬1 we have that ψ0, ..., ψn ` ϕ, that
is, there is a derivation of ϕ from ψ0, ..., ψn. Therefore, ψ0[¬p/p], ..., ψn[¬p/p] ∈ L0 ∪L1 and by
substituting each ψi with ψi[¬p/p] in the previous derivation, we obtain ψ0[¬p/p], ..., ψn[¬p/p] `
ϕ[¬p/p]. So ϕ[¬p/p] ∈ (L0 ∪ L1)

MP and consequently ϕ ∈ ((L0 ∪ L1)
MP )¬. Thus, (−)¬ also

preserves the join operator and is a lattice homomorphism. �

3.2 Algebraic Semantics for DNA-Logics

In the existing literature, negative variants have been considered from a syntactic point of
view [10, 36]. An algebraic semantics for inquisitive logic was introduced in [5]. Here we
extend this algebraic approach to DNA-logics.

Recall that, if H is a Heyting algebra, then we say that an element x ∈ H is regular if
x = ¬¬x. For any Heyting algebra H we then denote by H¬ the set:

H¬ = {x ∈ H : x = ¬¬x}.

So H¬ consists of all regular elements of the Heyting algebra H. Note that since in every
Heyting algebras we have that ¬x = ¬¬¬x, the set of regular elements of H can also be
specified as H¬ = {y ∈ H : ∃x ∈ H(y = ¬x)}. We define DNA-models as follows.

Definition 3.5 (DNA-Model). A DNA-model is a pair M = (H,µ) where H is a Heyting
algebra and µ : AT → H¬ is a valuation of propositional atoms over the regular elements of
H.

We then say that µ is a DNA-valuation over the Heyting algebra H. Given a DNA-model
M = (H,µ), we define by induction the interpretation of any formula ϕ ∈ LP .

Definition 3.6 (Interpretation of Arbitrary Formulas). Given a DNA-model M = (H,µ) and
a formula ϕ ∈ LP , its interpretation JϕKM is defined by the following recursive clauses:

JpKM = µ(p) J>KM = 1H J⊥KM = 0H

Jϕ ∧ ψKM = JϕKM ∧H JψKM Jϕ ∨ ψKM = JϕKM ∨H JψKM Jϕ→ ψKM = JϕKM →H JψKM

When the valuation µ is clear from the context, we simply write JϕKH for the interpretation
of ϕ in H under µ. From the former definitions it is straightforward to adapt the usual
definitions of truth at a model and validity. We say that a formula ϕ is true under µ in H
or true in the model M = (H,µ) and write M �¬ ϕ if JϕKM = 1. We say that ϕ is DNA-valid
in H and write H �¬ ϕ if ϕ is true in every model M = (H,µ) over H. Given a class C of
Heyting algebras, we say that ϕ is DNA-valid in C and write C �¬ ϕ if ϕ is DNA-valid in every
Heyting algebra H ∈ C. Finally, we say that ϕ is a DNA-validity if ϕ is valid in any Heyting
algebra H. When the context is clear, we drop the qualification DNA from the definitions
above and talk simply of validity.

DNA-validity and (standard) validity are closely intertwined. To see how, we first introduce
the notion of negative variant of a valuation.
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Definition 3.7 (Negative Variant of a Valuation). Let H be a Heyting algebra and V an
arbitrary valuation over H. Then we say that V ¬ is the negative variant of V if for all p ∈ AT

we have that V ¬(p) = ¬V (p).

The following lemma shows that the set of DNA-valuations and the set of negative variants of
standard valuations coincide.

Lemma 3.8. A valuation µ is a DNA-valuation if and only if it is the negative variant of
some valuation V .

By the previous lemma, a generic DNA-valuation is always of the form V ¬ for some valuation
V . We will henceforth write V ¬ for an arbitrary DNA-valuation. We can now prove the
following important lemma.

Lemma 3.9. For every Heyting algebra H, for every valuation V and any formula ϕ, we
have

JϕK(H,V
¬) = Jϕ[¬p/p]K(H,V ).

Proof. The prove goes by induction on the complexity of ϕ. The only non-trivial case is
ϕ = p ∈ AT:

JpK(H,V
¬) = V ¬(p) = ¬V (p) = ¬JpK(H,V ) = J¬pK(H,V ).

�

From this we can derive the following result.

Proposition 3.10. For any Heyting algebra H we have H �¬ ϕ iff H � ϕ[¬p/p].

Proof. We prove both directions by contraposition. (⇒) Suppose Jϕ[¬p/p]K(H,V ) 6= 1 for
some valuation V . Then, given V ¬ the negative variant of V , it follows by Lemma 3.9 that
JϕK(H,V ¬) 6= 1. (⇐) Suppose JϕK(H,V ¬) 6= 1 for some DNA-valuation V ¬. By Lemma 3.8,
there exists a valuation V whose negative variant is V . Then, by Lemma 3.9, we have that
JϕK(H,V ) 6= 1. �

Thus we end up with the following proposition: if a Heyting algebra validates an intermediate
logic, then it also validates its negative variant.

Corollary 3.11. Let H be a Heyting algebra and L an intermediate logic. Then we have
that H � L entails H �¬ L¬

Notice that the converse of the previous proposition does not hold in general. DNA-valuations
form a subclass of all valuation and it might very well be that a formula is true in a Heyting
algebra under all DNA-valuations but not under all valuations. However, the next proposition
is a weaker version of it which we will need later. Let 〈H¬〉 be the subalgebra of H generated
by H¬. First we prove the following lemma.

Lemma 3.12. For any Heyting algebra H we have that H �¬ ϕ iff 〈H¬〉 �¬ ϕ.

Proof. Clearly H¬ = 〈H¬〉¬. So we have that V ¬ is a DNA-valuation over H iff it is a DNA-
valuation over 〈H¬〉. Since 〈H¬〉 is a subalgebra of H, it readily follows that H �¬ ϕ iff
〈H¬〉 �¬ ϕ. �

This allows us to prove the following result.
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Proposition 3.13. Let H be a Heyting algebra and L an intermediate logic. Then we have
that H �¬ L¬ entails 〈H¬〉 � L.

Proof. Consider any Heyting algebra H, and suppose that 〈H¬〉 2 L, then there is some
formula ϕ ∈ L and some valuation V such that (〈H¬〉, V ) 2 ϕ. Now, since 〈H¬〉 is the
subalgebra generated by H¬, we can express every element x ∈ 〈H¬〉 as a polynomial δxH
of elements of H¬. We thus have x = δxH(y), where for each yi we have that yi ∈ H¬. By

writing p = p1, ..., pn for the variables contained in ϕ and δxH(y) for the polynomials of the

elements x1 = V (p1), ..., xn = V (pn), we get that Jϕ(p)K(〈H¬〉,V ) = ϕH(δxH(y)). Since all
the elements y in the polynomials δxH are regular elements, we can define a DNA-valuation
U¬ : AT → H¬ such that U¬ : qi 7→ yi for all i ≤ n. Then it follows immediately that
Jϕ[δx(q)/p]K(〈H¬〉,U¬) = ϕH(δxH(y)). But then, since we also had Jϕ(p)K(〈H¬〉,V ) = ϕH(δxH(y)),
it follows that Jϕ[δx(q)/p]K(〈H¬〉,U¬) = Jϕ(p)K(〈H¬〉,V ). So since (〈H¬〉, V ) 2 ϕ, we also get that
(〈H¬〉, U¬) 2¬ ϕ[δ(y)/p]. So it then follows by Lemma 3.12 that (H,U¬) 2¬ ϕ[δx(q)/p], hence
H 2¬ ϕ[δx(q)/p]. Now, since L is an intermediate logic, it admits free substitution and so,
since ϕ ∈ L, we also get that ϕ[δx(q)/p] ∈ L and therefore as L ⊆ L¬ also ϕ[δx(q)/p] ∈ L¬.
Finally, this means that H 2¬ L¬, thus proving our claim. �

3.3 DNA-Varieties

The algebraic semantics for DNA-logics that we have defined in the previous section motivates
the introduction of DNA-varieties. We define DNA-varieties as negative closures of varieties of
Heyting algebras.

Definition 3.14 (Negative Closure of a Variety). For every variety of Heyting algebras V,
its negative closure V↑ is defined as follows:

V↑ = {H : ∃A ∈ V such that A¬ = H¬ and A � H}.

A DNA-variety is the negative closure of some variety V of Heyting algebras. We use the
notation V↑ to refer to the negative variant of a variety V and we generally write X for
DNA-varieties. If not specified otherwise, we reserve C to denote arbitrary classes of Heyting
algebras, V or U to denote standard varieties and X or Y to denote DNA-varieties.

We will now show that DNA-varieties are also standard varieties, i.e., they are closed under
the usual operations of taking subalgebras, homomorphic images and products. Moreover,
we also show that they are closed under the following operation.

Definition 3.15. We say that a Heyting algebra K is a core superalgebra of H if H¬ = K¬
and H � K.

A core superalgebra K of a Heyting algebra H is thus a subalgebra of H such that K and H
share the same regular elements. The following proposition provides us with a characterisation
of DNA-varieties.

Proposition 3.16. A class of Heyting algebras C is a DNA-variety if and only if it is closed
under subalgebras, homomorphic images, products and core superalgebras.

Proof. (⇐) If a set of algebras C is closed under subalgebras, homomorphic images and
products then it is a variety. Moreover, since it is also closed under core superalgebras, it is
straightforward to see that C = C↑, so that we can see C as the negative variant of itself and
thus as a DNA-variety.
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(⇒) Consider now a DNA-variety X . By definition it is the negative variant of some
standard variety V, so we have X = V↑. We need to check that V↑ is closed under the above
four operations.

(1) We check closure under subalgebras. Suppose H ∈ V↑ and K � H. Then by definition
of DNA-variety it follows that there is some H ′ ∈ V such that H ′¬ = H¬ and H ′ � H. Now
consider K ′ = H ′ ∩ K, since K ′ is the intersection of two subalgebras of H, it will also
be closed under the Heyting algebra operations. Thus we have that K ′ is also a Heyting
algebra and K ′ � H ′ and K ′ � K. Therefore, by the fact that K ∈ V and V is closed under
subalgebras, it then follows that K ′ ∈ V. Moreover, since H ′¬ = H¬ ⊇ K¬, we have that
K ′¬ = H ′¬ ∩K¬ = K¬. Finally, we showed that for K ′ ∈ V we have K ′ � K and K ′¬ = K¬,
which entails K ∈ V↑.

(2) We check closure under homomorphic images. Suppose H ∈ V↑ and f : H � K, then
by the definition of DNA-variety we have that for some H ′ ∈ V that H ′¬ = H¬ and H ′ � H.
Consider K ′ = f [H ′]. Since homomorphic images preserve subalgebras, we have K ′ � K
and, by the closure of standard varieties under homomorphic images K ′ ∈ V. Moreover,
since by assumption H¬ = H ′¬, we have K¬ = f [H¬] = f [H ′¬] = K ′¬. Thus for K ′ ∈ V we
have K ′ � K and K ′¬ = K¬, which yields K ∈ V↑.

(3) We check closure under products. Suppose H i ∈ V↑ for all i ∈ I of some index-set I.
Then we need to check that

∏
i∈I H

i ∈ V↑. By the definition of DNA-variety it immediately
follows that there is, for every i ∈ I, a Heyting algebra Ki ∈ V such that H i

¬ = Ki
¬, and

Ki � H i. Then by the closure under products of V, we have that
∏
i∈I K

i ∈ V. Now, since
Ki � H i holds for every i ∈ I, it follows immediately that

∏
i∈I K

i �
∏
i∈I H

i. Similarly, we
have that: (∏

i∈I
H i
)
¬ =

∏
i∈I

H i
¬ =

∏
i∈I

Ki
¬ =

(∏
i∈I

Ki
)
¬

Hence, by the fact that
∏
i∈I K

i ∈ V and the definition of DNA-variety, it follows that∏
i∈I H

i ∈ V↑.
(4) We check closure under core superalgebras. Suppose H ∈ V↑ and for some K we have

that H¬ = K¬ and H � K. By the definition of DNA-varieties we have that there is some
H ′ � H such that H ′ ∈ V and H ′¬ = H¬. Since H ′ � H and H � K we then have H ′ � K
by the transitivity of subalgebra relation. Moreover, since H ′¬ = H¬ = K¬ and H ∈ V, it
finally follows that K ∈ V↑. �

As in the case of standard varieties, DNA-varieties give rise to a lattice structure ordered by
the set-theoretic inclusion. As it is customary doing, we implicitly exclude from the lattice of
DNA-varieties the trivial DNA-variety of one-element algebras. The meet of two DNA-varieties
X0,X1 is then just their intersection and their join is the smallest class containing their union
and closed under the DNA-variety operations.

For any class C of Heyting algebras we say that X is generated by the class C ⊆ X and we
write X = X (C) if X is the least class of Heyting algebras such that C ⊆ X and X is closed
under subalgebras, homomorphic images, products and core superalgebras. It is then clear
that X (C) is the smallest DNA-variety containing C and that X (C) = V(C)↑. We will thus
define X0 ∧ X1 := X0 ∩ X1 and X0 ∨ X1 := X (X0 ∪ X1). We proceed to prove the following
proposition.

Proposition 3.17. Let X0 and X1 be two DNA-varieties. Then: (i) X0 ∧ X1 is a DNA-variety
and it is the infimum of X0 and X1; (ii) X0 ∨ X1 is a DNA-variety and it is the supremum of
X0 and X1.

Proof. (i) By definition X0 ∧ X1 := X0 ∩ X1. That this is a DNA-variety follows immediately
from the fact that, since both X0 and X1 are closed under subalgebras, homomorphic images,
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products and core superalgebras, then also their intersection is closed under these operations.
Moreover, since X0 ∧ X1 := X0 ∩ X1, it follows that X0 ∧ X1 is the infimum of X0 and X1.

(ii) By definition X0 ∨ X1 = X (X0 ∪ X1) = V(X0 ∪ X1)
↑, which is a DNA-variety. Now

suppose Y is also a DNA-variety and X0 ∪ X1 ⊆ Y. Then since Y is also a variety it follows
that V(X0 ∪ X1) ⊆ Y and since Y is also closed under core superalgebras it follows that
V(X0 ∪X1)

↑ = X (X0 ∪X1) ⊆ Y and in turn gives us X (X0 ∪X1) = X0 ∨X1 is the supremum
of X0 and X1. �

We denote the lattice of DNA-varieties by DNAV. As varieties of Heyting algebras also form
a lattice HA, one can then show that the map (−)↑ : HA → DNAV which assigns every
variety of Heyting algebras to its negative closure is a lattice homomorphism.

Proposition 3.18. The map (−)↑ : HA→ DNAV is a bounded lattice homomorphism.

Proof. Obviously (−)↑ sends ⊥HA to ⊥DNAV and >HA to >DNAV, so it suffices to check
that ↑ preserves meets and joins.

(i) Consider two standard varieties V0 and V1, then we have:

(V0 ∧ V1)↑ = {H : ∃A ∈ V0 ∩ V1 such that A¬ = H¬ and A � H}
= {H : ∃A ∈ V0(A¬ = H¬, A � H)} ∩ {H : ∃A ∈ V1(A¬ = H¬, A � H)}

= V↑0 ∧ V
↑
1 .

which shows that (−)↑ preserves the meet operator.
(ii) Consider two standard varieties V0 and V1, then we have by definition that (V0∨V1)↑ =

(V(V0 ∪ V1))↑ and V↑0 ∨ V
↑
1 = X (V↑0 ∪ V

↑
1 ) = V(V↑0 ∪ V

↑
1 )↑. It thus suffices to show that

V(V0 ∪ V1)↑ = V(V↑0 ∪ V
↑
1 )↑.

(⊆) Let us suppose H ∈ (V(V0 ∪ V1))↑ which implies that there is some K ∈ V(V0 ∪ V1)
such that K¬ = H¬ and K � H. Then clearly K ∈ V(V↑0 ∪ V

↑
1 ) and thus H ∈ V(V↑0 ∪ V

↑
1 )↑.

(⊇) Suppose now H ∈ V(V↑0 ∪ V
↑
1 )↑, then for some K ∈ V(V↑0 ∪ V

↑
1 ) we have that K¬ = H¬

and K � H. In turn, this means that there exist a family of algebras {Ai : i ∈ I} ⊆ V↑0 ∪ V
↑
1

such that K ∈ V({Ai : i ∈ I}). Since each Ai is in V↑0 ∪ V
↑
1 , there exist algebras Bi ∈ V0 ∪ V1

such that Bi � Ai and Ai¬ = Bi
¬ for every i ≤ n. Consequently Ai ∈ V(V0 ∪ V1)↑ for every

i ≤ n; and K ∈ V({Ai : i ∈ I}) ⊆ V(V0 ∪ V1)↑. Since V(V0 ∪ V1)↑ is a DNA-variety and H is a
core superalgebra of K, we conclude that H ∈ V(V0 ∪ V1)↑. �

Let us remark that we have given to both DNA-logics and DNA-varieties a twofold char-
acterisation. On the one hand, we have introduced them in terms of negative variants of
some intermediate logics or in terms of negative closure of some variety of Heyting algebras.
On the other hand, we have also given an independent characterization of DNA-logics and
DNA-varieties, as sets of formulas closed under some conditions or as set of algebras closed
under some operations. We will often alternate between the two perspectives, i.e., consider
DNA-logics and DNA-varieties in terms of negative variants or consider them as sets satisfying
some closure properties.

3.4 The Maps Log¬ and V ar¬

There are two obvious ways to relate formulas and algebras. We define the map V ar¬ sending
sets of formulas to the class of Heyting algebras in which they are DNA-valid and the map
Log¬ sending classes of Heyting algebras to the set of their DNA-validities. We have:

V ar¬ : Γ 7→ {H ∈ HA : H �¬ Γ};

12



Log¬ : C 7→ {ϕ ∈ LP : C �¬ ϕ}.

We say that a DNA-variety of Heyting algebras X is DNA-defined by a set of formulas Γ if
X = V ar¬(Γ). A class of Heyting algebras C is DNA-definable if there is a set Γ of formulas
such that C = V ar¬(Γ). When the context is clear, we often drop the qualification DNA and
talk simply of definability. We say that a DNA-logic Λ is algebraically complete with respect to
a class of Heyting algebras C if Λ = Log¬(C). We shall prove in the next section a definability
theorem and an algebraic completeness theorem for DNA-logics. We shall thus establish that
every DNA-variety is defined by its validities and that every DNA-logic is complete with respect
to its corresponding DNA-variety.

We will next show that V ar¬(Γ) is always a DNA-variety and Log¬(C) is always a DNA-logic.
First we prove the following important lemma showing that the DNA-validity of a formula is
preserved by the key operations of a DNA-variety.

Lemma 3.19 (Preservation of DNA-Validity). The DNA-validity of a formula ϕ is preserved
by the operations of subalgebras, homomorphic images, products and core superalgebras, i.e:

(i) if H �¬ ϕ and K � H, then K �¬ ϕ;

(ii) if H �¬ ϕ and H � K, then K �¬ ϕ;

(iii) if Ai �¬ ϕ for all i ∈ I of a family {Ai}i∈I of algebras, then
∏
i∈I Ai �

¬ ϕ;

(iv) if H �¬ ϕ and for some K such that K¬ = H¬ we have that H � K, then K �¬ ϕ.

Proof. (i) By contraposition: If K,V ¬ 2¬ ϕ for some DNA-valuation V ¬, then H,V ¬ 2¬ ϕ.
(ii) Let f : H � K be a surjective morphism. By contraposition: If K 2¬ ϕ, then by

Proposition 3.10 it follows that K 2 ϕ[¬p/p]. Since validity is preserved by homomorphic
images, it follows that H 2 ϕ[¬p/p] and therefore, by Proposition 3.10, H 2¬ ϕ.

(iii) The claim follows readily by noticing
(∏

i∈I Ai
)
¬ =

∏
i∈I (Ai)¬, and so DNA-valuations

over
∏
i∈I Ai are all and only the functions of the form V ¬(p) = 〈V ¬i (p) : i ∈ I〉 where every

V ¬i is some DNA-valuation over Ai.
(iv) Suppose by reductio ad absurdum that K 2¬ ϕ. Then for some valuation V ¬ we

have (K,V ¬) 2¬ ϕ. Since H¬ = K¬ and H � K, V ¬ is a valuation over H and JϕK(H,V ¬) =
JϕK(K,V ¬) 6= 1. �

It follows immediately that for every set of formulas Γ the class of Heyting algebras V ar¬(Γ)
is a DNA-variety.

Proposition 3.20. The class of Heyting algebras V ar¬(Γ) is a DNA-variety.

Proof. Consider any set of formulas Γ, then by the previous Lemma 3.19 it follows that the
corresponding set V ar¬(Γ) is closed under the operations of taking subalgebras, homomorphic
images, products and core superalgebras. Therefore, it follows by Proposition 3.16 that it is
a DNA-variety. �

It is a straightforward consequence of Proposition 3.20 that every DNA-definable class of
Heyting algebras is also a DNA-variety. The next proposition shows that for every class C of
Heyting algebras its set of validities Log¬(C) is a DNA-logic.

Proposition 3.21. The class of formulas Log¬(C) is a DNA-logic.

13



Proof. We check that for any class C of Heyting algebras the corresponding set of formulas
Log¬(C) is a DNA-logic. In particular, we show that Log¬(C) = Log(C)¬. We have:

ϕ /∈ Log¬(C)⇔ ∃H ∈ C such that H 2¬ ϕ
⇔ ∃H ∈ C such that H 2 ϕ[¬p/p] (by Proposition 3.10)

⇔ ϕ[¬p/p] /∈ Log(C)
⇔ ϕ /∈ Log(C)¬.

This shows that Log¬(C) is the negative variant of Log(C). �

3.5 Duality between DNA-Logics and DNA-Varieties

We shall now prove our main result about DNA-logics and DNA-varieties, showing that their
lattices are dually isomorphic. Notice that, so far, we have considered V ar¬ as a map defined
over arbitrary classes of Heyting algebras and Log¬ as a map defined over arbitrary sets of
propositional formulas. Now we restrict our attention to the case in which the domain of
V ar¬ is the lattice of DNA-logics DNAL and the domain of Log¬ is the lattice of DNA-varieties
DNAV.

Since we have shown above that V ar¬(Γ) is always a DNA-variety and Log¬(C) is always
a DNA-logic it follows that we have two maps:

V ar¬ : DNAL→ DNAV;

Log¬ : DNAV→ DNAL.

We shall now prove that these two maps describe a dual isomorphism between the lattice
of DNA-logics and the lattice of DNA-varieties. Our proof essentially relies on the standard
isomorphism between the lattice of intermediate logics and the lattice of varieties of Heyting
algebras. An alternative proof, making use of Lindenbaum-Tarski algebras for DNA-logics,
was given in [40]. Let us introduce the following diagram:

IL DNAL

HA DNAV

¬

∼=op

↑

∼=op

where the four objects in the diagram are the following:

IL is the lattice of intermediate logics;

HA is the lattice of varieties of Heyting algebras;

DNAL is the lattice of DNA-logics;

DNAV is the lattice of DNA-varieties.

And the arrows are the following. Firstly, (−)¬ : IL → DNAL is the map we intro-
duced above that assigns to every intermediate logic L its negative variant L¬. Secondly,
(−)↑ : HA → DNAV is the map that assigns to each variety of Heyting algebras V its
negative closure V↑. The isomorphism IL ∼=op HA is given by the standard duality for
intermediate logics and varieties of Heyting algebras. The two maps of this bijection are
Log : HA → IL and V ar : IL → HA, which we have defined in the preliminaries. By
using the fact that IL ∼=op HA we show now that also DNAL ∼=op DNAV holds. We
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proceed as follows. First we show that the diagram that we have described commutes, then
we show that V ar¬ and Log¬ are inverse maps of each other and finally we prove they are
order-reversing homomorphisms between DNAL and DNAV. Thus we will obtain a dual
isomorphism DNAL ∼=op DNAV.

3.5.1 Commutativity of the Diagram

We first prove the two following propositions, thereby establishing that our diagram com-
mutes.

Proposition 3.22. For every intermediate logic L we have V ar¬(L¬) = V ar(L)↑.

IL DNAL

HA DNAV

V ar

¬

V ar¬

↑

Proof. (⊆) Consider any Heyting algebra H ∈ V ar¬(L¬). We have H �¬ L¬ and so by
Proposition 3.13 that 〈H¬〉 � L. So we have 〈H¬〉 ∈ V ar(L) and since 〈H¬〉¬ = H¬ and
〈H¬〉 � H also H ∈ V ar(L)↑. (⊇) Consider any Heyting algebra H ∈ V ar(L)↑, then there
is some K ∈ V ar(L) such that K � H and H¬ = K¬. Then K � L and by Lemma 3.11 we
obtain K �¬ L¬, which entails K ∈ V ar¬(L¬). Finally, since DNA-varieties are closed under
core superalgebra, it follows that H ∈ V ar¬(L¬). �

Proposition 3.23. For every variety V of Heyting algebras Log¬(V↑) = Log(V)¬.

IL DNAL

HA DNAV

¬

↑

Log Log¬

Proof. We prove both directions by contraposition. (⊆) Suppose ϕ /∈ Log(V)¬, then ϕ[¬p/p] /∈
Log(V), so there is some Heyting algebra H ∈ V such that H 2 ϕ[¬p/p]. By Proposition 3.10
this means that H 2¬ ϕ and so, since H ∈ V ⊆ V↑, we also have ϕ /∈ Log¬(V↑). (⊇) Suppose
ϕ /∈ Log¬(V↑). It follows that there is some Heyting algebra H ∈ V↑ such that H 2¬ ϕ, hence
by Lemma 3.12 we have that 〈H¬〉 2¬ ϕ. It follows by Proposition 3.10 that 〈H¬〉 2 ϕ[¬p/p].
Now, since H ∈ V↑, we have for some K ∈ V that K � H and K¬ = H¬. Therefore
〈H¬〉 � K and 〈H¬〉 ∈ V. Finally, since 〈H¬〉 2 ϕ[¬p/p] we get that ϕ[¬p/p] /∈ Log(V) and
hence ϕ /∈ Log(V)¬. �

In particular, when V is itself a DNA-variety we obtain the following corollary.

Corollary 3.24. For every DNA-variety X we have Log¬(X ) = Log(X )¬.

3.5.2 Definability Theorem and Algebraic Completeness

By relying on the commutativity result described above, we can now prove that the two maps
V ar¬ and Log¬ are inverse of one another. It is then easy to see that suitable versions of the
definability theorem and algebraic completeness follow from this result.

Proposition 3.25. V ar¬ ◦ Log¬ = 1DNAV.
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Proof. For any DNA-variety X we have:

V ar¬(Log¬(X )) = V ar¬(Log(X )¬) (by Corollary 3.24)

= V ar(Log(X ))↑ (by Proposition 3.22)

= X ↑ (by standard duality)

= X .

And thus V ar¬ ◦ Log¬ = 1DNAV. �

Theorem 3.26 (Definability Theorem). Every DNA-variety X is defined by its DNA-validities,
i.e. for every Heyting algebra H,

H ∈ X ⇔ H �¬ Log¬(X ).

We then have that every DNA-variety is DNA-definable. Moreover, by Proposition 3.20 we have
that every DNA-definable class is also a DNA-variety, the following corollary also follows.

Corollary 3.27 (Birkhoff Theorem for DNA-Varieties). A class of Heyting algebras C is a
DNA-variety if and only if it is DNA-definable by some set of formulas.

The algebraic completeness of DNA-logics is proved as follows.

Proposition 3.28. Log¬ ◦ V ar¬ = 1DNAL.

Proof. For any DNA-logic Λ such that Λ = L¬ we have:

Log¬(V ar¬(Λ)) = Log¬(V ar¬(L¬))

= Log¬(V ar(L)↑) (by Proposition 3.22)

= Log(V ar(L))¬ (by Proposition 3.23)

= L¬ (by standard duality)

= Λ.

And thus Log¬ ◦ V ar¬ = 1DNAL. �

Theorem 3.29 (Algebraic Completeness). Every DNA-logic Λ is complete with respect to its
corresponding DNA-variety, i.e. for every ϕ ∈ LP ,

ϕ ∈ Λ⇔ V ar¬(Λ) �¬ ϕ.

3.5.3 Dual Isomorphism

Finally, by relying on the standard dual isomorphism HA ∼=op IL and the commutative
square above, it is easy to show that V ar¬ and Log¬ are order-reversing homomorphisms
that invert the lattice structure of DNAL and DNAV.

Proposition 3.30. V ar¬ is an order-reversing homomorphism.

Proof. It suffices to check that V ar¬ inverts meet and join. Let Λ0,Λ1 be two DNA-logics such
that Λ0 = L¬0 and Λ1 = L¬1 . The case for ∧ is as follows:

V ar¬(Λ0 ∧ Λ1) = V ar¬(L¬0 ∧ L¬1 )

= V ar¬((L0 ∧ L1)
¬) (by Proposition 3.4)
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= V ar(L0 ∧ L1)
↑ (by Proposition 3.22)

= (V ar(L0) ∨ V ar(L1))
↑ (by standard duality)

= V ar(L0)
↑ ∨ V ar(L1)

↑ (by Proposition 3.18)

= V ar¬(L¬0 ) ∨ V ar¬(L¬1 ) (by Proposition 3.22)

= V ar¬(Λ0) ∨ V ar¬(Λ1).

The case for ∨ is analogous. �

Proposition 3.31. Log¬ is an order-reversing homomorphism.

Proof. It suffices to check that Log¬ inverts meet and join. Let X0,X1 be two DNA-varieties
such that X0 = V↑0 and X1 = V↑1 . The case for ∧ is as follows:

Log¬(X0 ∧ X0) = Log¬(V↑0 ∧ V
↑
1 )

= Log¬((V0 ∧ V1)↑) (by Proposition 3.18)

= Log(V0 ∧ V1)¬ (by Proposition 3.23)

= (Log(V0) ∨ Log(V1))¬ (by standard duality)

= Log(V0)¬ ∨ Log(V1)¬ (by Proposition 3.4)

= Log¬(V↑0 ) ∨ Log¬(V↑1 ) (by Proposition 3.23)

= Log¬(X0) ∨ Log¬(X1).

The case for ∨ is analogous. �

It is a consequence of the previous results that V ar¬ and Log¬ are two order-reversing
homomorphisms between DNAL and DNAV which are inverse of one another. The following
duality theorem follows.

Theorem 3.32 (Duality). The lattice of DNA-logics is dually isomorphic to the lattice of
DNA-varieties of Heyting algebras, i.e. DNAL ∼=op DNAV.

4 DNA-Varieties

In this section we prove some further results on DNA-varieties. Firstly, we investigate the
relation between DNA-logics and the intermediate logics they are a negative variant of, and
we characterize maximal and minimal elements in the sublattice of intermediate logics which
have the same negative variant. We introduce regularly generated Heyting algebras and we
use them to characterize the maximal logics with a negative variant. We prove for DNA-
varieties a suitable version of two key results of universal algebra, namely the Tarski and
Birkhoff variety theorems. We introduce a suitable notion of local finiteness for DNA-varieties
and of local tabularity for DNA-logics. Finally, we introduce Jankov DNA-formulas and we
prove a version of Jankov theorem for our setting.

4.1 Connections to Intermediate Logics

In the previous section we have introduced DNA-logics as negative variants of intermediate
logics under the map (−)¬ : IL → DNAL. Now we shall investigate the relation between
intermediate logics and DNA-logics in more detail. We will first show that the map (−)¬

which sends every intermediate logic to its negative variant is not injective. The following
proposition was proved by Ciardelli in [10, Lemma 5.2.20] and exemplifies how different
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intermediate logics can share the same negative variant. We recall that KC is the logic of the
weak excluded middle, i.e., KC = IPC + ¬ϕ ∨ ¬¬ϕ.

Lemma 4.1. Let L be any intermediate logic such that KC ⊆ L, then L¬ = CPC.

Proof. Suppose L is an intermediate logic such that KC ⊆ L. One can show that for every
formula ϕ we have ϕ∨¬ϕ ∈ L¬. We prove this by induction on the complexity of ϕ. For the
base case, suppose that p ∈ AT, then since KC ⊆ L we have for all p ∈ AT that ¬p ∨ ¬¬p ∈ L
and therefore that p∨¬p ∈ L¬. The induction steps follow easily by observing that for every
formulas ψ and χ we have

(ψ ∨ ¬ψ) ∧ (χ ∨ ¬χ)→ ((ψ � χ) ∨ ¬(ψ � χ)) ∈ IPC for � ∈ {∧,∨,→}.

This shows that L¬ = IPC + ϕ ∨ ¬ϕ = CPC. �

Therefore, for intermediate logics L0, L1 such that KC ⊆ L0, L1 and L0 6= L1 we have that
L¬0 = L¬1 = CPC, hence (−)¬ is clearly not injective. Every DNA-logic Λ thus determines a
subset of the lattice IL of those logics which have Λ as their negative variant. It is easy to see
that this subset is also a sublattice, since the map (−)¬ is a homomorphism. Similarly, since
also (−)↑ is a homomorphism, we can also consider the sublattice of all varieties V in HA
whose negative closure is X . We then define the preimage of a DNA-logic and the preimage of
a DNA-variety as follows.

Definition 4.2. Let Λ be a DNA-logic and X be a DNA-variety. The preimage of Λ is the
sublattice I(Λ) of all intermediate logics L such that L¬ = Λ. The preimage of X is the
sublattice I(X ) of all varieties V such that V↑ = X .

By the duality IL ∼=op HA and the fact that the square introduced in Section 3.5 commutes,
we then immediately have the following proposition.

Proposition 4.3. For every DNA-logic Λ and every DNA-variety X , we have that if X =
V ar¬(Λ) and Λ = Log¬(X ) then I(Λ) ∼=op I(X ).

The isomorphism I(Λ) ∼=op I(X ) above is the restriction of the dual isomorphism IL ∼= HA.
We will now use this duality to characterize the two lattices I(Λ) and I(X ).

First, we prove that the preimage I(Λ) of some DNA-logic Λ has a greatest element and
we provide a characterisation of it. The following notion of schematic fragment of a DNA-logic
was first introduced under the name of standardization in [36, Sec. 3] and later considered by
Ciardelli in [10, Sec. 3.4]. That this operation on DNA-logics provides a maximal intermediate
logic in I(Λ) was first proved in [36].

Definition 4.4 (Schematic Fragment). Let Λ be a DNA-logic, we define its schematic fragment
Schm(Λ) as:

Schm(Λ) = {ϕ ∈ Λ : ∀ψ ∈ LP , ϕ[ψ/p]}.

Schm(Λ) is the set of all schematic formulas in Λ, namely those formulas for which Λ is
closed under uniform substitution. One can easily check that Schm(Λ) is an intermediate
logic and that Schm(Λ)¬ = Λ. Moreover, the following proposition show that Schm(Λ) is
the maximal intermediate logic whose negative variant is Λ.

Proposition 4.5. Let Λ be any DNA-logic. Then, for every intermediate logic L such that
L¬ = Λ we have that L ⊆ Schm(Λ).
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Proof. Suppose that ϕ ∈ L. We denote by p = p0, ..., pn the atomic letters in ϕ. We need
to check that for any sequence of formulas χ = χ0(q), ..., χn(q) ∈ LP with atomic letters q,
it is the case that ϕχ = ϕ[χ/p] ∈ Λ. Now, since ϕ ∈ L, it follows by uniform substitution
that ϕχ ∈ L. Then, again by uniform substitution, we have that ϕχ[¬q/q] ∈ L and therefore
ϕχ ∈ Λ, which means that ϕ ∈ Schm(Λ) and thus proves our claim. �

The following theorem immediately follows by the previous propositions.

Theorem 4.6. Let Λ be a DNA-logic. The schematic fragment Schm(Λ) is the greatest inter-
mediate logic whose negative variant is Λ.

Therefore, the preimage I(Λ) of a DNA-logic Λ has always a greatest element. By Theorem
3.32 we also obtain a dual characterisation of the corresponding DNA-varieties. In fact, we
have that V ar(Schm(Λ)) is the least variety whose negative closure is V ar¬(Λ). We define
the map leastV : DNAV→ HA as follows:

leastV : X 7→ V ar(Schm(Log¬(X ))).

The following proposition follows easily.

Proposition 4.7. The following diagram commutes in both directions, i.e., V ar ◦ Schm =
leastV ◦ V ar¬ and Log ◦ leastV = Schm ◦ Log¬.

IL DNAL

HA DNAV

∼=op ∼=op

Schm

leastV

Proof. By the definition of leastV and the dual isomorphism DNAL ∼=op DNAV we have
leastV ◦ V ar¬ = V ar ◦ Schm ◦ Log¬ ◦ V ar¬ = V ar ◦ Schm and Log ◦ leastV = Log ◦ V ar ◦
Schm ◦ Log¬ = Schm ◦ Log¬. �

Therefore, for every DNA-logic Λ we have that Schm(Λ) is the greatest logic in I(Λ) and
leastV (V ar¬(Λ)) is the least variety in I(V ar¬(Λ)).

Similarly, one can show that the lattice I(Λ) has always a least element, which has so far
been neglected in the literature. That this holds follows directly from the fact that for every
DNA-variety X , there is a greatest variety whose negative closure is exactly X .

Proposition 4.8. For every DNA-variety X , there is a greatest variety V such that V↑ = X .

Proof. By Proposition 3.16 we have that DNA-varieties are also varieties and, moreover, X ↑ =
X for every DNA-variety X . Hence X is clearly the greatest variety V such that V↑ = X . �

The following theorem immediately follows by the previous propositions and DNA-duality.

Theorem 4.9. Let X be a DNA-variety. The logic Log(X ) is the least among the intermediate
logics whose negative variant is Log¬(X ).

We thus define a map leastL : DNAL→ IL as follows:

leastL : Λ 7→ Log(V ar¬(Λ)).

The following proposition follows easily.
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Proposition 4.10. The following diagram commutes in both directions, i.e., V ar ◦ leastL =
id ◦ V ar¬ and Log ◦ id = leastL ◦ Log¬.

IL DNAL

HA DNAV

∼=op ∼=op

leastL

id

Proof. By the definition of leastL and the dual isomorphism DNAL ∼=op DNAV we have
V ar ◦ leastL = V ar ◦ Log ◦ V ar¬ = id ◦ V ar¬ and leastL ◦ Log¬ = Log ◦ V ar¬ ◦ Log¬ =
Log ◦ id. �

Therefore, it is the case that for every DNA-logic Λ we have that leastL(Λ) is the smallest
logic in I(Λ) and V ar¬(Λ) is the greatest variety in I(V ar¬(Λ)).

By the former results above it thus follows that the sublattices I(Λ) and I(X ) are bounded
sublattices of IL and HA. We introduce the following definitions.

Definition 4.11 (DNA-maximality and DNA-minimality). Let L be an intermediate logic. (i)
We say that L is DNA-maximal if it is the greatest logic in I(L¬). (ii) We say that L is
DNA-minimal if it is the least logic in I(L¬).

In [36, Sec. 3] and [10, Sec. 5.2] intermediate logics L such that L = Schm(L¬) are called
stable. The following proposition thus establishes that a logic is DNA-maximal iff it is stable.
However, we will not use here this terminology, as the notion of stable logic has been employed
e.g., in [27] with a rather different meaning. The following proposition is an immediate
consequence of our definition and the previous results.

Proposition 4.12. Let L be an intermediate logic, then:

(i) L is DNA-maximal iff L = Schm(L¬);

(ii) L is DNA-minimal iff V ar(L) = V ar¬(L¬).

4.2 Regular Heyting Algebras

The previous characterisation of DNA-maximal and DNA-minimal logics is in a sense asymmet-
rical: we have a syntactic criterion for maximality and a semantic one for minimality. We
are now after a semantic criterion for maximality. To this sake, we shall now define regular
Heyting algebras, which also play a major role in the context of DNA-logics in general.

Definition 4.13 (Regular Heyting Algebras). A Heyting algebra H is regular if H = 〈H¬〉.

These algebras have been introduced in [5] to provide an algebraic semantics to propositional
inquisitive logic. A regular Heyting algebra is an algebra generated by its set H¬ of regular
elements. For this reason we call regular Heyting algebras also regularly generated. Already
in the previous section we have described some important properties of regular algebras in
Lemma 3.12 and Proposition 3.13. Now we prove two further results showing that varieties
V with the same negative closure X have the same collection of regular Heyting algebras. We
first show the following proposition.

Proposition 4.14. Let H be a regular Heyting algebra such that for some DNA-logic Λ we
have that H �¬ Λ. Then, for every intermediate logic L such that L¬ = Λ we have that
H � L.
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Proof. Suppose that H �¬ Λ, then since Λ = Schm(Λ)¬ it follows that H �¬ Schm(Λ)¬ and
so by Proposition 3.13 H � Schm(Λ). Finally, by Proposition 4.5 we have that L ⊆ Schm(Λ)
and thus H � L. �

By the dual isomorphism DNAL ∼=op DNAV we then obtain the following proposition.

Proposition 4.15. Let H be a regular Heyting algebra. If H ∈ X , then for every variety V
such that V↑ = X we have that H ∈ V.

Proof. Suppose H ∈ X , then H �¬ Log¬(X ). Then, since V↑ = X , it follows by Proposition
3.23 that Log(V)¬ = Log¬(X ). So H �¬ Log(V)¬ and by Proposition 4.14, H � Log(V),
which entails H ∈ V. �

We thereby have that all standard varieties whose negative closure is the same DNA-variety
contain exactly the same regularly generated Heyting algebras. Interestingly, by Proposition
4.15 in order to check whether a regular Heyting algebra H validates an intermediate logic
L, it is sufficient to check whether H DNA-validates L¬ (i.e., H validates L¬ under DNA-
valuations).

Finally, we can strengthen the previous results and show that regular Heyting algebras
provide a semantic characterisation of DNA-maximal logics. In [10, Sec. 5.2] a sufficient crite-
rion for DNA-maximality was given in the context of Kripke frames: Ciardelli established that
if L is the logic of a class of finite, everywhere branching trees, then it is DNA-maximal. We
propose here a criterion in terms of regular algebras which is both sufficient and necessary.

Theorem 4.16. An intermediate logic L is the logic of a class of regularly generated Heyting
algebras if and only if it is DNA-maximal.

Proof. (⇒) By the previous proposition this is equivalent to the statement that if an inter-
mediate logic L is such that L = Log(C), where C is a class of regularly generated Heyting
algebras, then L = Schm(L¬). So, suppose that C is a class of regularly generated Heyt-
ing algebras, we need to show that Log(C) = Schm(Log(C)¬). Since Schm(Log(C)¬) is
DNA-maximal it follows that Log(C) ⊆ Schm(Log(C)¬), so that we only need to show that
Schm(Log(C)¬) ⊆ Log(C). Now suppose by contraposition that ϕ /∈ Log(C), then we have
that for some H ∈ C and for some valuation V , we have that (H,V ) 2 ϕ. Now, since H

is regularly generated, every element xi ∈ H can be written out as a polynomial δi(yki ) of
regular elements of H. Then we define the DNA-valuation V ¬ : pki 7→ yki so that we then

get Jδi(pki )K
(H,V ¬) = δi(yki ), so that we have, for some appropriate choice of polynomials,

that JϕK(H,V ) = Jϕ[δi(pki )/q]K
(H,V ¬). We then immediately get that (H,V ¬) 2 ϕ[δi(pki )/q] and,

since H ∈ C ⊆ C↑, it follows ϕ[δi(pki )/q] /∈ Log¬(C↑) = Log(C)¬. Finally, since ϕ[δi(pki )/q] is a
substitution instance of ϕ, it follows that ϕ /∈ Schm(Log(C)¬).

(⇐) Suppose that L is a DNA-maximal logic and consider its corresponding variety V ar(L).
Then let V arR(L) be the subclass of V ar(L) consisting of regular Heyting algebras only and
let L′ = Log(V arR(L)), hence L′ is clearly the logic of a class of regular Heyting algebras.
Now, we have that V ar(L) ⊆ V arR(L)↑, since for every H ∈ V ar(L), we have that 〈H¬〉 ∈
V arR(L), hence H ∈ V arR(L)↑. As obviously V arR(L) ⊆ V ar(L), it immediately follows
that V ar(L)↑ = V arR(L)↑. Thus, by duality L = L′ = Log(V arR(L)), implying that L is
the logic of a class of regularly generated Heyting algebras. �

Hence we can restate Proposition 4.12 in purely semantical terms.

Proposition 4.17. Let L be an intermediate logic, then:

(i) L is DNA-maximal iff L = Log(C), for some class C of regular Heyting algebras;

(ii) L is DNA-minimal iff V ar(L) = V ar¬(L¬).
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4.3 DNA-Tarski and DNA-Birkhoff

The only characterisation that we have of DNA-varieties, so far, is that every DNA-variety X is
the negative closure of some standard variety V, i.e., X = V↑. Now we shall prove a version
of Tarski’s and Birkhoff’s theorems for DNA-varieties to show that they can be generated by
some suitable subclasses of Heyting algebras. Interestingly, another method to generate DNA-
varieties is by constructing the Lindenbaum-Tarski algebra of their corresponding DNA-logic,
see [40, Sec. 3.3.2].

Recall that if X is a DNA-variety, then we say that X is generated by the class C ⊆ X
if X = X (C) = V(C)↑. We can immediately adapt Tarski’s variety theorem to the case of
DNA-varieties.

Theorem 4.18 (DNA-Tarski). Let C be a class of Heyting algebras, then we have that X (C) =
HSP (C)↑.2

Proof. By definition we have that X (C) = V(C)↑ and by Tarski’s theorem 2.3 we have that
V(C) = HSP (C). Therefore X (C) = HSP (C)↑. �

We can then prove the following useful theorem.

Theorem 4.19. Let X be a DNA-variety, then X = X (C) iff Log¬(X ) = Log¬(C).

Proof. (⇒) Since C ⊆ X , the inclusion from right to left is straightforward. Suppose now that
X 2¬ ϕ then there is some Heyting algebra H ∈ X such that H 2¬ ϕ. Then since X = X (C),
it follow by Theorem 4.18 that H ∈ HSP (C)↑. Thus, since DNA-validities are preserved under
homomorphisms, subalgebras, products and core superalgebras, it follows that there is some
Heyting algebra A such that A 2¬ ϕ. (⇐) Suppose now that Log¬(X ) = Log¬(C). Then
by the Duality Theorem 3.32 it follows V ar¬(Log¬(X )) = V ar¬(Log¬(C)) and thus X =
V ar¬(Log¬(C)). Now, since Log¬(X (C)) = Log¬(C)) it follows by Proposition 3.19 and Dual-
ity that V ar¬(Log¬(C)) = V ar¬(Log¬(X (C))). Thus V ar¬(Log¬(X )) = V ar¬(Log¬(X (C))),
which by duality means X = X (C). �

Obtaining an analogue of Birkhoff’s theorem is more involved. A first approximation is
given by the following result, stating that every DNA-variety X is generated by its collection of
regular Heyting algebras. If X is a DNA-variety, then we denote by XR its subclass of regular
Heyting algebras.

Proposition 4.20. Every DNA-variety is generated by its collection of regular elements, i.e.,
X = X (XR).

Proof. Let X be a DNA-variety, then for any non-regular H ∈ X we have that 〈H¬〉 � H and
H¬ = 〈H¬〉¬. So since 〈H¬〉 ∈ XR it follows H ∈ X (XR). �

We thus have, by the standard version of Birkhoff’s theorem, that every DNA-variety is gen-
erated by its subdirectly irreducible elements and, by the previous proposition, that every
DNA-variety is generated by its regular elements. We can actually prove more, namely that
DNA-varieties are generated by their regular, subdirectly irreducible elements. Now if X is a
DNA-variety, we denote by XRSI its subset of regular subdirectly irreducible Heyting algebras.
We will thus show that for every DNA-variety we have X = X (XRSI). Let us first recall the
following result from the literature, originally due to Wronski [44].

2We consider the operator (−)↑ to have the least priority, that is, HSP (C)↑ stands for (HSP (C))↑.
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Lemma 4.21. Let B ∈ HA. Then if b 6= 1B there is a subdirectly irreducible algebra C and
a surjective homomorphism h : B � C such that f(b) = sC , where sC is the second greatest
element of C.

By using this fact we can prove Birkhoff theorem for DNA-varieties.

Theorem 4.22 (DNA-Birkhoff). Every DNA-variety is generated by its collection of regular
subdirectly irreducible elements: X = X (XRSI).

Proof. By the dual isomorphism between DNA-logics and DNA-varieties it suffices to show that
Log¬(X ) = Log¬(X (XRSI)), which is equivalent by Theorem 4.19 to Log¬(X ) = Log¬(XRSI).
The direction Log¬(X ) ⊆ Log¬(XRSI) follows immediately from the inclusion XRSI ⊆ X . It
thus suffices to show that Log¬(XRSI) ⊆ Log¬(X ).

Suppose by contraposition that ϕ /∈ Log¬(X ), then for some H ∈ X and some DNA-
valuation V ¬, we have that (H,V ¬) 2¬ ϕ and so by Proposition 3.10 that (〈H¬〉, V ¬) 2¬ ϕ.
Then, since x = JϕK(〈H¬〉,V ¬) 6= 1H it follows by Lemma 4.21 that there is a subdirectly
irreducible algebra C such that there is surjective homomorphism h : 〈H¬〉� C with h(x) =
sC . Then, since homomorphisms preserve regular elements, the valuation U¬ = h ◦ V ¬
is a DNA-valuation. Now let p0, .., pn be the variables in ϕ, it follows by the properties of
homomorphisms that:

Jϕ(p0, .., pn)K(C,U
¬) = ϕC [U¬(p0), ..., U

¬(pn)]

= ϕC [h(V ¬(p0)), ..., h(V ¬(pn))]

= hJϕ(p0, .., pn)K(〈H¬〉,V ¬)

= sC .

From which it immediately follows that (C,U¬) 2 ϕ and so that C 2 ϕ. Now, since H ∈ X ,
we have that 〈H¬〉 ∈ X and so since h : 〈H¬〉� C also that C ∈ X . Moreover, we have that
C is subdirectly irreducible and regular, as it is homomorphic image of 〈H¬〉. Finally, this
means that C ∈ XRSI and so that ϕ /∈ Log¬(XRSI), which proves our claim. �

4.4 Locally Tabular DNA-Logics and DNA-Varieties

The notions of local tabularity and local finiteness play an important role in the theory of
intermediate logics and in universal algebra at large. Here we introduce a suitable notion of
local finiteness for DNA-varieties and DNA-logics, which we will later employ in our study of
inquisitive logic.

We say that a Heyting algebra H is DNA-finitely generated if there are finitely many
elements x0, ..., xn ∈ H¬ such that 〈x0, ..., xn〉 = H. We then define locally finite DNA-varieties
and locally tabular DNA-logics.

Definition 4.23. A DNA-variety X is DNA-locally finite if every DNA-finitely generated H ∈ X
is also finite. A DNA-logic Λ is DNA-locally tabular if its corresponding DNA-variety V ar¬(Λ) is
locally finite.

When the context makes it clear we then drop the prefix DNA and talk simply of local finiteness
and local tabularity. If not specified otherwise, every time we talk of local finiteness of a DNA-
variety or local tabularity of a DNA-logic we actually refer to the property of DNA-local finiteness
and DNA-local tabularity . The following proposition follows straightforwardly and allows us
to relate the local finiteness of intermediate logics to the local finiteness of DNA-logics.

Proposition 4.24. Let L be any intermediate logic, if L is locally tabular, then L¬ is locally
tabular.
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Proof. If L is locally tabular, then every finitely generated H ∈ V ar(L) is also finite. Now
consider any H ∈ V ar¬(L¬) and suppose for some x0, ..., xn ∈ H¬ we have 〈x0, ..., xn〉 = H.
Then it follows that H = 〈H¬〉 and so that H is regular. Then, we have by Proposition 4.15
that H ∈ V ar(L) and so since H is finitely generated by x0, ..., xn it also follows that H is
finite. This shows that L¬ is locally tabular. �

A property of DNA-logics which is closely connected to local finiteness is the finite model
property (FMP). We introduce it as follows.

Definition 4.25 (Finite Model Property). A DNA-variety X has the DNA-finite model property
(FMP) if X = X (C), where C is a collection of finite Heyting algebras. A DNA-logic Λ has
the DNA-finite model property if its corresponding DNA-variety V ar¬(Λ) has the finite model
property.

When the context makes it clear we drop the prefix DNA and simply talk of finite model
property. If not specified otherwise, every time we talk of the finite model property of a DNA-
variety or a DNA-logic we actually refer to the DNA-finite model property. The finite model
property allows, for every formula ϕ /∈ Λ, to find a finite algebra H which validates Λ and
refutes ϕ. Similarly to the case of local finiteness, the finite model property of an intermediate
logic entails the finite model property of its negative variant.

Proposition 4.26. Let L be any intermediate logic, if L has the finite model property then
L¬ has the finite model property.

Proof. Suppose L has the finite model property, then V ar(L) = V(C) for some class C of
finite Heyting algebras. Then, we have that V ar¬(L¬) = V ar¬(L¬)↑ = V(C)↑ = X (C), which
shows that L¬ also has the finite model property. �

If a DNA-variety has the finite model property we can further refine our version of Birkhoff
theorem. We denote by XRFSI the collection of finite, regular, subdirectly irreducible ele-
ments in X .

Theorem 4.27. If a DNA-variety X has the finite model property, then it is generated by its
finite, regular subdirectly irreducible elements, i.e., X = X (XRFSI).

Proof. By Theorem 4.19 it suffices to check that Log¬(XRFSI) = Log¬(X (XRFSI)). The
direction Log¬(X ) ⊆ Log¬(XRFSI) is obvious, for if ϕ is true in every algebra in X it is also
true in XRFSI . Now, consider the direction Log¬(XRFSI) ⊆ Log¬(X ). First notice that if a
DNA-variety X has the finite model property, then for some class C of finite Heyting algebras,
we have that X = X (C). Suppose now by contradiction that ϕ /∈ Log¬(X ), then by Theorem
4.19 there is some finite H ∈ C such that H 2¬ ϕ. Therefore, it follows immediately by
Lemma 3.10 that 〈H¬〉 2¬ ϕ. Then, by the argument of the proof of DNA-Birkhoff Theorem
4.22, we obtain a regular subdirectly irreducible algebra C such that h : 〈H¬〉 � C and
C 2 ϕ. Moreover, by the fact that C is a homomorphic image of 〈H¬〉 it also follows that C
is finite. We thus obtain that C ∈ XRFSI and since C 2¬ ϕ that ϕ /∈ Log¬(XRFSI), which
finishes the proof of the theorem. �

Moreover, we can also show that if a DNA-variety X is locally finite, then it has the finite
model property. We denote by XF the subcollection of finite Heyting algebras in X .

Theorem 4.28. Let X be a DNA-variety. If X is locally finite, then it has the finite model
property.
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Proof. By Theorem 4.19 it suffices to show that Log¬(X ) = Log¬(XF ). The inclusion
Log¬(X ) ⊆ Log¬(XF ) is obvious, so we show that Log¬(XF ) ⊆ Log¬(X ). Suppose ϕ /∈
Log¬(X ), then there is some H ∈ X such that for some DNA-valuation V ¬ we have that
(H,V ¬) 2¬ ϕ. Now let Let p be the variables in ϕ and V ¬(p) their interpretation in H.
Then, since X is locally finite we have that the generated subalgebra 〈V ¬(p)〉 is also fi-
nite. Moreover, since (H,V ¬) 2 ϕ and by the fact that the interpretation of ϕ lies inside
〈V ¬(p)〉, it immediately follows that (〈V (p)〉, V ¬) 2 ϕ. So, since 〈V ¬(p)〉 ∈ XF , it follows
that ϕ /∈ Log¬(XF ), which finishes the proof of the theorem. �

One may wonder whether our definition trivializes or if it captures an interesting property
that DNA-varieties may, or may not, have. That this is the case follows from the fact that
one can find DNA-logics which have the finite model property but that are not locally tabular.
Hence, exactly as in the case of intermediate logics, the property of local tabularity is stronger
than that of the finite model property. In particular, since IPC has the finite model property,
it follows immediately from Proposition 4.26 that IPC¬ has the finite model property as well.
However, similarly to the case of IPC, we can show that IPC¬ is not locally tabular. This is
done by adapting the method of the Rieger-Nishimura ladder to the context of DNA-logics. A
proof of this result can be found in [40, Sec. 4.2.2].

4.5 Jankov Formulas for DNA-Models

Jankov formulas (or Jankov-de Jongh formulas) play an important role in the study of in-
termediate logics [4, 8]. These formulas are a sort of counterpart in algebraic logic of what
diagrams are in model theory, as they express in syntactic terms some key semantic prop-
erties of the corresponding algebra. Jankov introduced these formulas in [28, 30], where he
used them to show that the lattice of intermediate logic has the cardinality of the continuum.
Formulas having similar properties have also been introduced around the same time by de
Jongh [32] (see also [4, Sec. 3.3]) and later by Fine in the context of modal logics [18]. We
refer the interested reader to [2, 8, 15] for more information on Jankov formulas and their
history.

We introduce a version of Jankov formulas which suits our setting of DNA-logics and we
show how they can be used to axiomatise locally tabular DNA-logics. We adapt the approach
originally presented by Wronski in [44]. First, we show how to decorate a Heyting algebra
H ∈ HARFSI with what we call Jankov representatives. Consider any H ∈ HARFSI , then
we have that H = 〈H¬〉 and also that H¬ is finite. We can thus assume without loss of
generality that H is generated by a finite set of elements a0, ..., an and that every element
x ∈ H can be expressed as a polynomial δH(a0, ..., an) over the regular elements of H. We
then associate every element x ∈ H to a formula ψx called its Jankov representative.

Definition 4.29 (Jankov Representative). Let H ∈ HARFSI and x ∈ H, then the Jankov
representative of x is a formula ψx defined as follows:

(i) If x ∈ H¬, then ψx = px, where px ∈ AT;

(ii) If x = δX(a0, ..., an) with a0, ..., an ∈ H¬, then ψx = δ(pa0 , ..., pan).

Notice that when we decorate a Heyting algebra H with Jankov representatives we are making
a fundamental use of the fact that H is regular. Notice also that the Jankov representative
of an element x ∈ H is not unique, as there are different polynomials over regular elements
characterizing the same element of a regular Heyting algebra. The Jankov representative is
thus the formula corresponding to any of those polynomials. Once we have the notion of
Jankov representative, we can define Jankov formulas for the setting of DNA-logics as follows.
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Definition 4.30 (Jankov DNA-Formula). Let H ∈ HARFSI , let 0 be the least element of
H and s its second greatest element. Then the Jankov DNA-Formula χDNA(H) is defined as
follows:

χDNA(H) = α→ β,

where α and β are the following formulas:

α = (ψ0 ↔ ⊥) ∧
∧
{(ψa ∧ ψb)↔ ψa∧b : a, b ∈ H}∧∧
{(ψa ∨ ψb)↔ ψa∨b : a, b ∈ H}∧∧
{(ψa → ψb)↔ ψa→b : a, b ∈ H}

β = ψs.

When its clear from the context that we are working with Jankov DNA-formulas and not with
the standard Jankov formulas, we drop the superscript and write just χ(H) for the Jankov
DNA-formula of H. We now prove a lemma which plays an important role in the proof of our
Jankov theorem.

Lemma 4.31. Let H ∈ HARFSI , then H 2¬ χ(H).

Proof. Suppose H ∈ HARFSI and χ(H) is its DNA-Jankov formula. Then we define the
DNA-valuation V ¬ such that for all atomic Jankov representative we have that V : pa 7→
a, for all a ∈ H¬. Moreover, if an element x ∈ H \ H¬ is described by a polynomial
δH(a0, ..., an) over regular element of H, it follows by the definition of Jankov representative
that Jδ(pa, ..., pa)K(H,V

¬) = δH(a0, ..., an). We then have that for every element x ∈ H it is
the case that JψxK(H,V

¬) = x. But then it follows straightforwardly that for all a, b ∈ H and
for any connective � we have Jψa � ψbK(H,V

¬) = Jψa�bK(H,V
¬) so that the antecedent of the

DNA-Jankov formula is JαK(H,V ¬) = 1A and its consequent is JβK(H,V ¬) = JψxK(H,V
¬) = sc.

Therefore, we have that:

Jχ(H)K(H,V
¬) = Jα→ βK(H,V

¬) = JαK(H,V
¬) → JβK(H,V

¬) = 1A → sA = sA 6= 1A.

And, therefore, we have that (H,V ¬) 2¬ χ(H) and so that H 2¬ χ(H). �

If A and B are two Heyting algebras, then we define A ≤ B iff A ∈ HS(B). It is easy to
show that this is indeed a partial order. We now prove a suitable version of Jankov theorem
for our setting. We adapt to our setting a similar proof given in [2].

Theorem 4.32 (Jankov Theorem for DNA-Models). Let A ∈ HARFSI and B ∈ HA then:

B 2¬ χ(A) iff A ≤ B.

Proof. (⇒) Suppose that B 2¬ χ(A), then for some DNA-valuation V ¬ we have Jχ(A)K(B,V ¬) =
b 6= 1B. It follows from Lemma 4.21 that there is a subdirectly irreducible Heyting algebra
C and a surjective homomorphism f : B � C such that f(b) = sC . Hence, since f is
a homomorphism, it follows that U¬ = f ◦ V ¬ is a DNA-valuation. It thus follows that
Jχ(A)K(C,U¬) = Jα→ ψsK(C,U

¬) = f(b) = sC . In particular, since sC is the second-greatest
element, this implies that JαK(C,U¬) = 1C and JψsK(C,U

¬) = sC .
We now prove that the map h : A → C defined as h(x) = JψxK(C,U

¬) is an embedding
of A into C. First, we show that h is a homomorphism. Since JαK(C,U¬) = 1C it follows
immediately that Jψ0 ↔ ⊥K(C,U¬) = 1C and for every connective � and every elements
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a, b ∈ C, we have J(ψa � ψb) ↔ ψa�bK(C,U
¬) = 1C . From this we immediately get that

Jψ0K(C,U
¬) = 0C and Jψa�ψbK(C,U

¬) = Jψa�bK(C,U
¬). So we have the following two identities.

h(0A) = Jψ0K(C,U
¬) = 0C ;

h(a� b) = Jψa�bK(C,U
¬) = Jψa � ψbK(C,U

¬) = JψaK(C,U
¬) � JψbK(C,U

¬) = h(a)� h(b).

We now want to prove that h is injective. It suffices to show that, for a 6= b, we have
h(a)→ h(b) 6= 1C . Since under this hypothesis a→ b ≤ sA—where sA is the second greatest
element of A—and since JψsK(C,U

¬) = sC , we have that h(a→ b) ≤ h(sA). Therefore:

h(a)→ h(b) ≤ h(JψsK(A,V
¬)) = JψsK(C,U

¬) = sC

In particular h(a) � h(b), thus proving the injectivity of h.
Therefore, we have that h is an embedding and thus h[A] � C, showing that A is a

subalgebra of C up to isomorphism. Since B � C it follows that A ∈ SH(B) and, by
Proposition 2.2, that SH(B) ⊆ HS(B). Thus we obtain that A ∈ HS(B), that is, A ≤ B.

(⇐) Suppose that A ≤ B, namely that A ∈ HS(B), then we know there is some subal-
gebra B′ � B such that there is a surjective homomorphism h : B′ � A. Moreover, by the
previous Lemma 4.31 we have that A 2¬ χ(A). Then, since h : B′ � A it follows imme-
diately by the fact that the DNA-validity of a formula is preserved by homomorphic images
that B′ 2¬ χ(A). Moreover, since B′ � B it follows by the preservation of DNA-validity under
subalgebra that B 2¬ χ(A), which proves our claim. �

Once we have shown that Jankov theorem holds for our setting, we can use Jankov’s
machinery to characterize the lattice of subvarieties of locally finite DNA-varieties. We denote
by Λ¬(X ) the lattice of subvarieties of some DNA-variety X and we first prove the following
useful proposition.

Definition 4.33 (Hereditary FMP). We say that a DNA-variety X has the hereditary DNA-
finite model property if every DNA-variety Y ∈ Λ¬(X ) has the finite model property.

As we always do, when the context is clear we drop the prefix DNA and talk simply of the
hereditary finite model property.

Proposition 4.34. If a DNA-variety X is locally finite, then X has the hereditary finite model
property.

Proof. Suppose that X is locally finite and consider any subvariety Y ∈ Λ¬(X ). Since X is
locally finite we have that every DNA-finitely generated H ∈ X is also finite and thus since
Y ⊆ X also that DNA-finitely generated H ∈ XRSI is finite. Hence we have that Y is locally
finite and therefore, by Proposition 4.28 above, it follows that Y also has the finite model
property. �

We now prove the following theorem characterising the sublattice of locally finite DNA-
varieties. We denote by Dw(XRFSI) the downsets of XRFSI under the partial order ≤ defined
above.

Theorem 4.35. Let X be a DNA-variety which is locally finite. Then the lattice of negative
subvarieties of X is isomorphic to the lattice of downsets over XRFSI , i.e:

Λ¬(X ) ∼= Dw(XRFSI).
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Proof. Consider the map α : Y 7→ YRFSI which sends every subvariety Y ⊆ X to its subclass
of finite regular subdirectly irreducible elements. We claim that α is welldefined and also
it is an isomorphism between Λ¬(V) and Dw(XRFSI). (i) First, we show that YRFSI ∈
Dw(XRFSI). Suppose B ∈ YRFSI , A ∈ HS(B) and A ∈ XRFSI . As varieties are closed
under homomorphic image and subalgebra, we have that A ∈ Y and so since A ∈ XRFSI
also that A ∈ YRFSI . (ii) To show injectivity, consider two subvarieties Y,W ∈ Λ(V) such
that Y 6= W. By Proposition 4.34 we have that since X is DNA-locally finite then it has
the hereditary finite model property. Therefore, it follows from Theorem 4.27 that every
subvariety of X is generated by its finite regular subdirectly irreducible elements. So we
have that Y = YRFSI and W = WRFSI and so it follows that YRFSI 6= WRFSI . (iii)
For surjectivity, consider any downset D ∈ Dw(XRFSI). Then this defines a DNA-variety
Y = X (D). We now claim that D = YRFSI . For the left-to-right inclusion suppose A ∈ D,
then we also have that A ∈ XRFSI and A ∈ X (D) = Y, which together imply A ∈ YRFSI . For
the other direction, suppose that A ∈ YRFSI , then we have by Lemma 4.31 that A 2¬ χ¬(A).
Then since A ∈ Y = X (D) it follows that there is some B ∈ D such that B 2¬ χ¬(A).
Finally, it follows by the Jankov theorem for DNA-varieties 4.32 that A ≤ B and thus since D
is a downset that A ∈ D. �

Moreover, we can also show how one can use Jankov formulas to axiomatise subvarieties of
a DNA-variety X which is locally finite. To this end, we notice that for every proper subvariety
Y ∈ Λ¬(X ) we have that YRFSI is a downset and XRFSI \ YRFSI is a nonempty upset over
XRFSI . Now, since every algebra in H ∈ XRFSI \ YRFSI is finite, we cannot have infinite
descending chains of the form H0 ≥ H1 ≥ H2..., for |Hn| ≥ |Hn+1| and |Hn| is finite. It
follows that every set of the form XRFSI \ YRFSI has some minimal element. We thus define
the following notion of minimal counterexamples of a subvariety of X .

Definition 4.36 (Minimal Counterexample). Let Y ∈ Λ¬(X ) be a subvariety of X such that
Y 6= X . A minimal counterexample to Y is a Heyting algebra H ∈ X \ Y such that for all
K ≤ H, if K � H then K ∈ Y.

For every Y ∈ Λ¬(X ), we denote by min(X \Y) its collection of minimal counterexamples in
X . It follows from our previous reasoning that this collection is always nonempty when Y is
a proper subvariety of X . We prove the following theorem.

Theorem 4.37. Let X be a locally finite DNA-variety, then for every subvariety Y ∈ Λ¬(X )
such that Y 6= X we have that:

Y = X{H ∈ XRFSI : H �¬ χ(A) for all A ∈ min(XRFSI \ YRFSI)}.

Proof. It suffices to show that YRFSI = {H ∈ XRFSI : H �¬ χ(A) for all A ∈ min(XRFSI \
YRFSI)}. (⊆) Suppose H ∈ YRFSI , then since XRFSI \ YRFSI is a nonempty upset it follows
that min(XRFSI \ YRFSI) 6= ∅. But then, for all A ∈ min(XRFSI \ YRFSI) we have that
A � H. Therefore, it follows by Jankov theorem for DNA-varieties (Theorem 4.32) that
H �¬ χ(A) and so H ∈ {H ∈ XRFSI : H �¬ χ(A) for all A ∈ min(XRFSI \ YRFSI)}. (⊇)
Suppose now that H ∈ {H ∈ XRFSI : H �¬ χ(A) for all A ∈ min(XRFSI \ YRFSI)}, then for
all A ∈ min(XRFSI \YRFSI) it follows that H �¬ χ(A), hence by Theorem 4.32 we have that
A � H. But then, since min(XRFSI \YRFSI) is the set of minimal elements in XRFSI \YRFSI ,
it follows that H /∈ XRFSI \ YRFSI and so since H ∈ XRFSI that H ∈ YRFSI . �

The previous theorem provides a set of formulas which axiomatise the subvarieties of a locally
finite variety. By the dual isomorphism DNAL ∼=op DNAV we can extend the previous result
to the corresponding DNA-logics. We say that a DNA-logic Π is an extension of a DNA-logic
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Λ if Λ ⊆ Π. Theorem 4.37 thus immediately allows us to axiomatise the extensions of a
logic Λ which is locally tabular. We denote by V ar¬RFSI(Λ) the collection of finite, regular,
subdirectly irreducible elements of the DNA-variety V ar¬(Λ) and by Λ + Γ the closure under
modus ponens of the set of formulas Λ ∪ Γ.

Corollary 4.38. Let Λ be a locally tabular DNA-logic. Then every DNA-logic Π such that
Λ ⊆ Π can be axiomatised as follows:

Π = Λ + {χ(A) : A ∈ min(V ar¬RFSI(Λ) \ V ar¬RFSI(Π)}.

Proof. Since Λ is locally tabular we have that V ar¬(Λ) is locally finite. Moreover, since Λ ⊆ Π
it follows by DNA-duality that V ar¬(Π) ⊆ V ar¬(Λ). Let K = {H ∈ V ar¬RFSI(Λ) : H �¬

χ(A) for all A ∈ min(V ar¬RFSI(Λ) \ V ar¬RFSI(Π))}, then by Theorem 3.29 above it follows
that V ar¬(Π) = X (K). Moreover, we have by Theorem 4.19 that Log¬(X (K)) = Log¬(K).
By DNA-duality we then have:

Π = Log¬(V ar¬(Π)) = Log¬(X (K)) = Log¬(K).

Hence, since it is easy to see that Log¬(K) = Λ+{χ(A) : A ∈ min(V ar¬RFSI(Λ)\V ar¬RFSI(Π)},
we finally obtain that Π = Λ + {χ(A) : A ∈ min(V ar¬RFSI(Λ) \ V ar¬RFSI(Π)}, which proves
our claim �

We will apply Corollary 4.38 and the method of Jankov formulas in next section to axiomatize
the extensions of the system InqB of inquisitive logic.

5 Linearity of the Extensions of InqB

In this section we put to work the general theory of DNA-logics that we have developed in the
previous sections and we provide a characterisation of the extensions of the system InqB of
inquisitive logic. In particular, we use the algebraic semantics of DNA-logics to show that InqB
is locally tabular and it can therefore be studied by using the method of Jankov formulas.
We thus prove that the sublattice of DNA-logics which extend InqB is linearly ordered and
that it coincides with the inquisitive hierarchy considered by Ciardelli in [10].

5.1 Axiomatisation of InqB

It is a well-known fact since the early days of inquisitive semantics that InqB can be considered
as the negative variant of the intermediate logics ND, KP and ML. This result was originally
proved by Ciardelli in [10, Thm. 3.4.9] and it immediately entails that InqB is a DNA-logic.

Theorem 5.1. InqB = ND¬ = KP¬ = ML¬.

Corollary 5.2. InqB is a DNA-logic.

This result allows us to apply the general setting described in this article to study InqB.
Moreover, it allows to introduce an axiomatisation of InqB which makes use of the KP-axiom.

Theorem 5.3 (Axiomatisation of InqB). The following system of axioms and rules axioma-
tises InqB:

Axioms All tautologies of IPC

(¬ϕ→ ψ ∨ χ)→ (¬ϕ→ ψ) ∨ (¬ϕ→ χ) for all ϕ,ψ, χ ∈ LP
¬¬p→ p for all p ∈ AT

Rule ϕ,ϕ→ ψ ⇒ ψ.
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This proof system is presented in [5] and was first formulated in [10]. One may also wonder
what are greatest and least elements in the sublattice I(InqB). It was shown already in [10]
that ND is the least intermediate logic having InqB as its negative variant and ML the greatest
such logic. A different proof is given in [40], where it is shown that V ar(ND) = V ar¬(InqB).

5.2 The Method of ND-extensions

We introduce the ND-extension of a Boolean algebra, analogously as [5] defines it for KP-
extensions. Let B be any Boolean algebra and consider the term algebra T (B) over the
signature (∧̇, ∨̇, →̇, 1̇, 0̇). The algebra T (B) consists of all propositional formulas built over
the set of atomic letters B, that is, using the elements of B as propositional formulas:

T (B) = {ϕ(b0, ..., bn) : bi ∈ B and ϕ is a formula in (∧̇, ∨̇, →̇, 1̇, 0̇)}.

Since T (B) is a term algebra, we have that its algebraic operations are exactly the signature
operations, i.e., we have that ϕ∧T (B) ψ = ϕ∧̇ψ etc. We now quotient the term algebra T (B)
to obtain an ND-algebra. In order to do this, we define the congruence ≡eND.

Definition 5.4. Let B be an arbitrary Boolean algebra, then the congruence ≡eND is the
least congruence containing ≡ND and such that for all p, q ∈ B we have: 1B ≡eND 1̇, 0B ≡eND 0̇,
p ∧B q ≡eND p∧̇q, p→B q ≡eND p→̇q.

The ND-extension HND(B) of B is then defined as the quotient algebra T (B)/ ≡eND. Notice
that since ≡IPC⊆≡ND⊆≡eND we have that HND(B) validates all the validities of IPC and thus
is a Heyting algebra. KP-extensions are introduced analogously in [5] by using the equivalence
relation ≡KP instead of ≡ND.

Recall that a downset D over a poset (P,≤) is finitely generated if there is a nonempty,
finite set of elements x0, ..., xn such that D = ↓{x0, ..., xn}. We denote by Dwfg(B) the set
of finitely generated downsets over B and we leave to the reader to verify that this form a
Heyting algebra with the order induced by the set-theoretic inclusion. It was shown in [5]
that HKP(B) ∼= Dwfg(B) and in [40] that HND(B) ∼= Dwfg(B). Hence we have the following
result.

Theorem 5.5. Let B be a Boolean algebra, then H(B)ND ∼= H(B)KP ∼= Dwfg(B).

We will henceforth drop the superscript and denote the ND-extension of B just by H(B). We
now recall some important facts about ND-extensions. The proof of the following claims was
given in [5] for KP-extensions and in [40] for ND-extensions. The following proposition is an
important universal mapping property of such constructions.

Proposition 5.6 (Universal Mapping Property). Let B be a Boolean algebra and H(B) its
ND-extension, then for every Heyting algebra K such that K � ND and K¬ = B there is a
unique homomorphism h : H(B)→ K such that h � B = idB. Moreover, if K is regular then
h is also surjective.

The following proposition gives us a description of the structure of the ND-extension H(B) of
a Boolean algebra B. In particular, we show that every element of H(B) can be written in a
unique way as a disjunction of elements of B. Following [5] we say that every x ∈ H(B) has a
non-redundant representation. With a slight abuse of notation we henceforth drop the square
brackets and refer to elements of H(B) as formulas rather than equivalence classes thereof.
Also, since the algebra operations of H(B) agree with the connectives in (∧̇, ∨̇, →̇, 1̇, 0̇), we
drop the dots and use the same symbols both for connectives and operations. The proof
of the following two propositions was first given in [5] and later adapted to the context of
ND-extensions in [40].
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Proposition 5.7. For every x ∈ H(B) we have that x =
∨
i≤n ai where ai ∈ B for all i ≤ n

and ai � aj for i 6= j. Moreover a1, ..., an are uniquely determined.

Moreover H(B) is well-connected, i.e., we have that for any x, y ∈ H(B) it is the case that
x ∨ y = 1 entails x = 1 or y = 1.

Proposition 5.8. For any Boolean algebra B, its ND-extension H(B) is well-connected.

We now make a short digression on Medvedev frames, that is, frames of the form F ∼=
(℘0(W ),⊇), where W is a finite set. We recall the following two propositions on ML-frames.
The first connects the validity over a ML-frame F to the validity of its corresponding downset
algebra Dw(F) (see e.g., [40, Sec. 5.1]), and it follows readily from the correspondence be-
tween Kripke semantics and algebraic semantics for finite frames [8, 17]. The second connects
validity in ML-frames and validity in state models, and it was already pointed out in [10]. A
proof of both these results is contained in [40].

Proposition 5.9. For every Medvedev frame F we have that F  ϕ iff Dw(F) � ϕ.

Proposition 5.10. Let M = (℘0(W ),⊇, V ) be a Medvedev model, then for any formula
ϕ ∈ LP and any s ∈ ℘0(W ) we have that Xs � ϕ if and only if (s, V )  ϕ[¬p/p].

5.3 Characterisation of V ar¬(InqB)

We use the results that we recalled in the previous sections to characterise a set of generators
of V ar¬(InqB). First, we use the method of the ND-extension of a Boolean algebra to show
that InqB is locally tabular. The following theorem also follows as an easy corollary of [5,
Lemmas 4.1 and 4.3].

Theorem 5.11. InqB is locally tabular.

Proof. We need to show that every DNA-finitely generated InqB-algebra is finite. Consider
any H ∈ V ar¬(InqB) and suppose H is DNA-finitely generated, then there are elements
x0, ..., xn ∈ H¬ such that 〈x0, ..., xn〉 = H. In particular, H is regular. Moreover, by the fact
that ND = Log(V ar¬(InqB)) we also have that V ar¬(InqB) = V ar(ND) and so H ∈ V ar(ND).

Notice that H¬ is generated as a Boolean algebra by x0, . . . , xn and so in particular it is
finite. Moreover, by Theorem 5.5, H(H¬) ∼= Dwfg(H¬) is also finite. By Proposition 5.6,
f : H(H¬) � H. So it follows that H is finite, as wanted. �

Since InqB is locally tabular, we have by Theorem 4.27 that it is generated by its collection of
finite, regular, subdirectly irreducible elements. The next theorem provides a characterisation
of this class of InqB-algebras. Our proof adapts [5, Thm. 4.6].

Theorem 5.12. Let H be an Heyting algebra. Then H ∈ V ar¬RFSI(InqB) iff there is some
finite Boolean algebra B such that H ∼= H(B).

Proof. (⇐) Suppose H ∼= H(B) for some finite Boolean algebra B, then we need to show
that H is finite, regular and subdirectly irreducible. First, since H ∼= H(B) ∼= DWfg(B), it
follows that H is finite. Second, it by construction H(B) is regular and so H is regular as
well. Finally, by Proposition 5.8 H(B) is well-connected and so—since it is finite—it has a
second-greatest element, that is, it is a subdirectly irreducible algebra.

(⇒) Let H ∈ V ar¬RFSI(InqB), then since H is regular and V ar¬(InqB) = V ar(ND)↑,
it follows by Proposition 4.15 that H ∈ V ar(ND). From the universal mapping property
of Proposition 5.6 there is a surjective homomorphism h : H(H¬) � H, where H¬ is a
finite Boolean algebra. We prove now that this homomorphism is also injective. Consider
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x, y ∈ H such that h(x) = h(y), then it follows Proposition 5.7 that we have non-redundant
representations x =

∨
i≤n ai and y =

∨
j≤m bj . Since for all i ≤ n, j ≤ m we have ai, bj ∈ H¬,

it follows by Proposition 5.6 that h � H¬ = idH¬ and so that h(ai) = ai and h(bj) = bj , which
means that h(aj), h(bj) ∈ H¬. Now, since h(x) = h(y), we have that h(

∨
i≤n ai) ≤ h(

∨
j≤m bj)

and h(
∨
j≤m bj) ≤ h(

∨
i≤n ai). From the former of these claims we have:

h

∨
i≤n

ai

 ≤ h
∨
j≤m

bj


=⇒

∧
i≤n

h(ai)→
∨
j≤m

h(bj)

 = 1 (by properties of IPC)

=⇒
∧
i≤n

¬¬h(ai)→
∨
j≤m

h(bj)

 = 1 (since h(ai) ∈ H¬)

=⇒
∧
i≤n

∨
j≤m

[¬¬h(ai)→ h(bj)] = 1 (using axioms of ND)

=⇒
∧
i≤n

∨
j≤m

[h(ai)→ h(bj)] = 1 (since h(ai) ∈ H¬)

=⇒ ∀i ≤ n,∃j ≤ m such that h(ai) ≤ h(bi) (since H is well-connected)

=⇒ ∀i ≤ n,∃j ≤ m such that ai ≤ bi (since h � H¬ = idH¬)

=⇒ x ≤ y.

Similarly, starting from h(
∨
j≤m bj) ≤ h(

∨
i≤n ai) we then get that y ≤ x and so that x = y.

Finally, this means that the surjective homomorphism h : H(H¬) � H is also injective and
so that H ∼= H(H¬). �

5.4 Extensions of InqB

Finally, we can prove our main result concerning extensions of InqB. From the former theorem
it is easy to prove the following important lemma. We recall from Section 4.5 that if A and
B are two Heyting algebras, the order ≤ between them is defined as A ≤ B iff A ∈ HS(B).
The next lemma shows that under this ordering the collection of regular, finite, subdirectly
irreducible InqB-algebras is isomorphic to ω.

Lemma 5.13. Let V ar¬RFSI(InqB) be the collection of finite, regular, subdirectly irreducible
InqB-algebras. Then we have that

(V ar¬RFSI(InqB),≤) ∼= ω.

Proof. We show that V ar¬RFSI(InqB) is isomorphic to ω under the order A ≤ B iff A ∈
HS(B). First, consider any algebra H ∈ V ar¬RFSI(InqB), then it follows by Theorem 5.12
that there is some finite Boolean algebra B such that H = H(B). The representation theorem
of the finite Boolean algebras entails that finite Boolean algebras form the following chain of
length ω:

20 � 21 � 22 � 23 � 24 � . . .

Now, we have by the definition of the ND-extension of a Boolean Algebra 2n that H(2n) is
regular and H(2n) = 〈2n〉. Therefore, since we have that for all n ∈ N, 2n � 2n+1, it follows
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that H(2n) � H(2n+1). Finally, since every H ∈ V ar¬RFSI(InqB) is of the form H(2n) for
some n ∈ N, it follows that:

H(20) � H(21) � H(22) � H(23) � H(24) � . . .

is a chain of length ω ordered by A ≤ B ⇔ A ∈ HS(B) which contains every element
H ∈ V ar¬RFSI(InqB). Finally, this means that the poset (V ar¬RFSI(InqB),≤) is isomorphic
to ω. �

Once we have the previous lemma, we can use use the method of Jankov formulas for DNA-
logics developed in Section 4.5 to show that the lattice of extensions of the system of inquisitive
logic InqB is linearly ordered and dually isomorphic to ω + 1.

Theorem 5.14. Let Λ¬(InqB) be the lattice of extensions of InqB. Then there is a dual
isomorphism Λ¬(InqB) ∼=op ω + 1.

Proof. By the dual isomorphism DNAL ∼=op DNAV we immediately have that Λ¬(InqB) ∼=op

Λ¬(V ar¬(InqB)), where Λ¬(V ar¬(InqB)) is the lattice of subvarieties of V ar¬(InqB). There-
fore, to show that Λ¬(InqB) ∼=op ω+1 it suffices to show that Λ¬(V ar¬(InqB)) ∼= ω+1. Now,
by Proposition 5.11 we have that InqB is locally tabular and therefore it follows by Theorem
4.35 that Λ¬(V ar¬(InqB)) ∼= Dw(V ar¬RFSI(InqB)). But then, we have by Lemma 5.13 that
V ar¬RFSI(InqB) ∼= ω and therefore that Dw(V ar¬RFSI(InqB)) ∼= Dw(ω) = ω + 1. To sum up,
we have:

Λ¬(InqB) ∼=op Λ¬(V ar¬(InqB)) ∼= Dw(V ar¬RFSI(InqB)) ∼= Dw(ω) = ω + 1,

which proves our claim. �

The method of Jankov formulas allows us also to provide an axiomatisation for all the ex-
tensions Λ of InqB. Then by DNA-duality and Theorem 4.35 we have that Λ¬(InqB) ∼=op

Dw(V ar¬RFSI(InqB)). Therefore we have that extensions Λ of InqB are uniquely identified
by specifying a downset of elements of V ar¬RFSI(InqB). For any n ∈ N, we define by InqBn
the DNA-logic InqBn = Log¬(↓ H(2n)). We now prove the following proposition.

Proposition 5.15. Let Λ be a proper extension of InqB, i.e., Λ is a DNA-logic and InqB ( Λ.
Then there is some n ∈ N such that

Λ = InqBn = InqB + χ(H(2n+1)).

Proof. Suppose that Λ is a DNA-logic and InqB ( Λ, then it follows by Theorem 4.35 that
V ar¬(Λ) = X (D), where D ∈ Dw(V ar¬RFSI(InqB)). Now, since Λ 6= InqB, it follows that
D 6= V ar¬RFSI(InqB). Therefore, it follows immediately from Lemma 5.13 that D = ↓H(2n)
for some n ∈ N and hence Λ = InqBn. Moreover, it is easy to see that the only minimal
counterexample in V ar¬(InqB) \ V ar¬(InqBn) is H(2n+1). Therefore, we have by Theorem
4.38 that InqBn is equivalent to InqB + χ(H(2n+1)). �

The previous result allows us to introduce in an alternative way the inquisitive hierarchy
originally introduced by Ciardelli [10, Ch. 4]. We define, for every n ∈ N, the system InqLn
as follows:

InqLn = {ϕ ∈ LP : ∀s ∈ ℘(2AT), such that |s| ≤ n, s � ϕ}.
We can now show that the inquisitive hierarchy is exactly the sublattice of all the proper
extensions of InqB. Firstly, we say that a DNA-logic is tabular if it is the logic of a finite
regular Heyting algebra. Then, since for all H ∈↓ H(2n) we have that H � H(2n), it follows
immediately that InqBn = Log¬(↓ H(2n)) = Log¬(H(2n)), i.e. InqBn is the logic of H(2n)
and is thus tabular. Then we obtain the following theorem.
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Theorem 5.16. For any n ∈ N, we have that InqBn = InqLn.

Proof. For any n ∈ N, we have the following equalities:

InqBn = Log¬(↓ H(2n))

= Log¬(H(2n))

= Log(H(2n))¬ (by Proposition 3.23)

= Log(Dwfg(2
n))¬ (by Theorem 5.5)

= {ϕ ∈ LP : ℘0(n)  ϕ[¬p/p]} (by Proposition 5.9)

= {ϕ ∈ LP : n � ϕ} (by Proposition 5.10)

= {ϕ ∈ LP : ∀s ∈ ℘(2AT), such that |s| ≤ n, s � ϕ}
= InqLn.

Which proves our claim. �

Therefore, by defining for every n ∈ N the logic MLn as the set of formulas valid in all
Medvedev frames F whose cardinality is |F| ≤ n, it follows from the previous theorem that
(MLn)¬ = InqBn = InqLn. The following corollary follows directly from Theorem 5.14 and
Theorem 5.16 and is an extension of [10, Cor. 4.1.6].

Corollary 5.17.

InqB =
⋂
n∈N

InqBn =
⋂
n∈N

InqLn =
⋂
n∈N

(MLn)¬.

The results in this section thus provide a characterisation of the extensions of InqB and show
that they coincide precisely with the inquisitive hierarchy already studied in the literature.

6 Conclusion

In this article we developed algebraic semantics for DNA-logics and we applied this general
setting to inquisitive logic. This semantics allows to apply methods of universal algebra to
study DNA-logics and inquisitive logic from a novel perspective. Let us briefly summarize our
main results. In Section 3 we introduced DNA-logics and their algebraic semantics and we
proved the dual isomorphism DNAL ∼=op DNAV between DNA-logics and DNA-varieties. In
Section 4 we studied closer the relation between DNA-logics and intermediate logics and we
proved a suitable version of some classical results for the setting of DNA-varieties. In particular,
we showed that every DNA-variety is generated by its regular subdirectly irreducible members
and we introduced a suitable version of Jankov formulas in order to axiomatise locally finite
DNA-varieties. Finally, in Section 5 we used the algebraic semantics of DNA-logics to study the
inquisitive logic InqB. In particular, we showed that the sublattice of its extensions is dually
isomorphic to ω + 1 and that it actually coincides with the inquisitive hierarchy studied in
[10].

In addition to these results, in our view one of the main contributions of this article is
that it provides a new setting for the study of inquisitive logic. The system InqB had so
far been considered as the logic of the evaluation states or as the negative variant of the
logics between ND and ML – here we showed that one can also consider InqB as the logic of
a specific class of Heyting algebras, under a suitable semantics. This new perspective at the
propositional system of inquisitive logic allows us to raise new questions and consider new
issues.
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One direction for future study is to consider what happens if, instead of the negative
substitution p 7→ ¬p, we consider the substitution p 7→ χ(p) for an arbitrary polynomial
χ ∈ LP . In fact, it seems possible to extend at least part of the theory of DNA-logics to this
extended framework. In the case of negative variants we rely on the fact that in intuitionistic
logic ¬¬¬p = ¬p. This property however is shared in a more general form by every polynomial
χ. Ruitenberg’s Theorem [22, 42] states that for any polynomial χ we can find a number
n ∈ N such that χn = χn+2. This allows to introduce the χ-variant of an intermediate logic
L as Lχ = {ϕ ∈ LP : ϕ[χn(p)/p] ∈ L} and to generalize our study of DNA-logics to arbitrary
χ-variants. We refer the reader to the upcoming [23].

Similarly, the close connection between inquisitive logic and dependence logic that has
been studied e.g., in [9, 11] suggests that a similar semantics might be developed for the
system of propositional dependence logic [45]. This direction, originally hinted at in [1],
also raises the issue of possible connections between the present framework and the setting
of residuated lattices which is employed to give a semantics to separation logic and related
formalisms [31].

Finally, a last direction of further research should go towards a deeper understanding of
DNA-logics and DNA-varieties. For instance, a new topological semantics for InqB is introduced
in [5]. This raises a question whether it is possible to translate our framework in topological
terms and describe a suitable topological semantics for DNA-logics. Moreover, such semantics
could be used to give a characterisation of finite regular subdirectly irreducible Heyting
algebras. We know by Esakia duality that a finite subdirectly irreducible Heyting algebra is
the upset algebra of a finite rooted frame. Can we obtain a similar characterisation for regular
finite subdirectly irreducible Heyting algebras? What properties should a rooted frame satisfy
in order for its dual Heyting algebra to be regular? Finally, it also seems natural to generalize
Jankov formulas for DNA-models to canonical formulas, as it is the case both for intermediate
[2] and modal logics [3]. These questions are for the moment open problems to be addressed
in future investigations.
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[38] V. Punčochář. “Substructural Inquisitive Logics”. In: Review of Symbolic Logic 12.2
(2019), pp. 296–330.
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