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Abstract

In this thesis, we define two new left-sequential connectives `NAND and `XOR that prescribe a
short-circuit evaluation strategy, in which the second argument is evaluated only if the first argument
does not suffice to determine the value of an expression, and a full evaluation strategy, in which each
argument is evaluated, respectively. First, we define and axiomatize free left-sequential nand logic
(FLNL) to investigate which logical laws axiomatize short-circuit evaluation of terms with `NAND
in a setting where repeated occurrences of the same atomic proposition can yield different Boolean
values, that is, modulo free valuation congruence. Then, we define and axiomatize free left-sequential
xor logic (FLXL) to investigate which logical laws axiomatize full evaluation of terms with `XOR in
the same setting. Finally, we investigate expressiveness modulo free valuation congruence of terms
with (combinations of) `NAND, `XOR, left-sequential short-circuit conjunction and disjunction (the
primitive connectives of short-circuit logic) and Hoare’s conditional (the primitive connective of
proposition algebra).
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Chapter 1

Introduction

Most programming languages have logical and bitwise conjunction and disjunction operators, whose
operands are evaluated from left to right. These different types of operators prescribe different
left-sequential evaluation strategies, namely short-circuit (left-sequential) evaluation and full (left-
sequential) evaluation. Using the following block of Python code, we discuss these evaluation
strategies.

def print_and_return(value):
print(str(value) + " is evaluated")
return value

print("The outcome of True and False is: " +
str(print_and_return(True) and print_and_return(False)))

print("The outcome of False and True is: " +
str(print_and_return(False) and print_and_return(True)))

print("The outcome of False & True is: " +
str(print_and_return(False) & print_and_return(True)))

The function print_and_return() simply prints and returns its input. It allows us to check
which operands of the three expressions at stake are evaluated when computing their outcomes.
The expression True and False has outcome False and both Boolean values are evaluated. The
expression False and True has outcome False and only the first Boolean value False is evaluated.
Irrespective of the value of the second operand, this expression will always evaluate to False because
the first operand evaluates to False. The evaluation strategy prescribed by the and-operator, in which
the second operand is evaluated only if the first operand does not suffice to determine the value of the
expression, is called short-circuit evaluation. Note that the evaluation of True and False cannot
be short-circuited. Finally, False & True also has outcome False, but now both operands are
evaluated. The evaluation strategy prescribed by &, in which each operand is evaluated, is called full
evaluation.

Furthermore, the and-operator is not commutative. When we initialize the variable var = 2, the
expression

var += 1 and var == 2, (1)
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in which var is first incremented by one and then tested for equality to 2, evaluates to False, whereas
the expression

var == 2 and var += 1, (2)

in which the order of evaluation is switched, evaluates to True.

We say that the atomic proposition var += 1 yields an atomic side effect because it affects the
state of the execution environment. In (1) this side effect affects the evaluation result, while it does
not in (2). In the following we will refer to atomic propositions as atoms.

In [BPS13] the question is raised which logical laws axiomatize short-circuit evaluation. This
question can be answered using short-circuit logics (SCL). A generic definition of SCL is given
in [BP12] in terms of PropositionAlgebra [BP11], using the connectives¬,∧qa and∨qa . The connectives
∧qa and ∨qa represent short-circuit left-sequential versions of conjunction and disjunction respectively.
The notation stems from [BBR95]. The position of the circle indicates which argument is evaluated
first. Furthermore, an empty circle prescribes a short-circuit evaluation strategy and a filled circle
prescribes a full evaluation strategy, e.g. ∧r is the full left-sequential version of ∧. Because negation
is a unary connective it prescribes only one evaluation strategy, so ¬ has no circle.

An answer to the above-mentioned question depends on assumptions about (the possiblity of)
atomic side effects and commutativity of the connectives. In [BP11] several valuation congruences are
defined by means of these assumptions. A valuation congruence can be interpreted as a congruence
relation between closed terms that yield the same evaluation result. Different valuation congruences
lead to different short-circuit logics on which we will elaborate next.

Free SCL (FSCL) is the least identifying SCL. It characterizes free valuation congruence, where
each atom can yield an atomic side effect during the sequential evaluation of a propositional statement,
so different Boolean values may be returned for repeated occurrences of the same atom. In [PS18]
an equational axiomatization of FSCL is given for closed terms. All the results in this thesis will be
modulo free valuation congruence.

Memorizing SCL (MSCL) characterizes the setting where no atomic side effects are allowed.
Static SCL, the variant of MSCL with commutative connectives, defines a left-sequential version of
propositional logic and is the most identifying SCL. Both logics are axiomatized for closed terms
in [BPS18]. In repetition-proof SCL subsequent equal atoms yield the same atomic evaluation result.
Some axioms are given in [BP12] and a semantics is defined in [BP15]. Lastly, axiomatizations for
contractive SCL, which characterizes the setting where subsequent equal atoms are contracted, are
discussed in [vW16].

Taking the above concepts as a point of departure, we will consider the new connectives `NAND
and `XOR, short-circuit left-sequential NAND and full left-sequential XOR respectively.

NAND, written as |, designates the truth-functional operator ‘not and’. Other names for NAND
are the Sheffer stroke (first mentioned in [She13] and first called thus in [Nic17]) and alternative
denial. In propositional logic we can write

x | y = ¬(x ∧ y).

XOR, written as ⊕, designates the truth-functional operator ‘either . . . or’. An alternative name
for XOR is exclusive disjunction. In propositional logic we can write

x⊕ y = (x ∧ ¬y) ∨ (¬x ∧ y).
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Observe that the evaluation of XOR cannot be short-circuited. To evaluate x ⊕ y, we must always
evaluate y.

We will define `NAND and `XOR using Hoare’s conditional [Hoa85], the ternary connective
y / x . z that can be read as “if x then y else z”. We will investigate which logical laws axiomatize
short-circuit evaluation of terms with `NAND and which logical laws axiomatize full evaluation of
terms with `XOR, under the assumption that each atom can yield an atomic side effect during the
sequential evaluation of a propositional statement. To this end, we will define free left-sequential
nand logic (FLNL) and free left-sequential xor logic (FLXL). In Chapters 3 and 4 we will provide
equational axiomatizations of these logics for closed terms.

In Chapter 5 we will investigate the expressive power modulo free valuation congruence of closed
terms over signatures with the SCL-connectives, with `XOR, with Hoare’s conditional and with the
SCL-connectives and `XOR.

The further content of this thesis is structured as follows: In Chapter 2 we lay the groundwork for
this thesis by introducing results mainly from [PS18]. In Chapter 3 we define `NAND and FLNL and
we provide an equational axiomatization of FLNL for closed terms. In Chapter 4 we define `XOR
and FLXL and we provide an equational axiomatization of FLXL for closed terms. In Chapter 5 we
investigate the expressive power modulo free valuation congruence of terms over the signatures that
were previously mentioned. In Chapter 6 we make some concluding remarks. Finally, in Appendices
A, B and C we provide some proofs that were omitted in Chapters 3, 4 and 5 respectively to enhance
readability.
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Chapter 2

Preliminaries

In this chapter we lay out the framework that will serve as the foundation of this thesis. The vast
part of this chapter’s content is a summary of the relevant results from [PS18]. In Section 2.1
we recall the definition of evaluation trees and leaf replacements. In Section 2.2 we introduce the
ternary connective y / x . z. Most connectives that will be considered in this thesis are defined using
this ternary connective. Furthermore, we provide the most basic set of equational axioms (CP) for
Proposition Algebra, and axioms and inferential rules of equational logic. In Section 2.3 we describe
the syntax and semantics for short-circuit logics (SCL). In Section 2.4 we recall the definition of
free short-circuit logic (FSCL) in terms of SCL, provide an equational axiomatization (EqFSCL) of
this logic and state the result that EqFSCL axiomatizes FSCL for closed terms, which will be used
in Chapter 3. In Section 2.5 we introduce the SCL Normal Form (SNF) and in Section 2.6 we recall
a function that inverts evaluation trees to terms in SNF, using unique decompositions of evaluation
trees. The last two sections will be used in Chapter 5.

2.1 Evaluation trees

Except for the last remark, the content in this section about evaluation trees and leaf replacements
comes from [PS18]. The concepts introduced in this section are used to define the semantics of
propositional statements.

From now on we let A be a non-empty countable set of atoms (atomic propositions that return
a Boolean value upon evaluation) and we use constants T and F for the truth values true and false
respectively.

Definition 2.1.1. LetA be a set of atoms. The set TA of evaluation trees overA with leaves in {T,F}
is defined inductively by

T ∈ TA, F ∈ TA, (Y E aD Z) ∈ TA for any Y,Z ∈ TA and a ∈ A.

The operator _E aD _ is called tree composition over a. In the evaluation treeX = (Y E aD Z),
the root is represented by a, the left branch by Y and the right branch by Z. The height h(X) is
defined by

h(T) = h(F) = 0 and h((Y E aD Z)) = 1 + max(h(Y ), h(Z)).
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The leaves of an evaluation tree represent evaluation results. Next to the formal notation for
evaluation trees we also use a more pictorial representation. For example, the tree

(FE bD (TE aD F))

can be depicted as Tree 1, where E yields a left branch, and D a right branch.

b

F a

T F

(Tree 1)

We now define the leaf replacement-operator on trees in TA.

Definition 2.1.2. For X,Y, Z ∈ TA, the leaf replacement on X of T with Y and F with Z, denoted
by

X[T 7→ Y,F 7→ Z]

is defined recursively by

T[T 7→ Y,F 7→ Z] = Y, (3)
F[T 7→ Y,F 7→ Z] = Z, (4)

(X1 E aDX2)[T 7→ Y,F 7→ Z] = (X1[T 7→ Y,F 7→ Z]E aDX2[T 7→ Y,F 7→ Z]). (5)

We note that the order in which the replacements of leaves of X is listed is irrelevant and adopt the
convention of not listing identities inside the brackets, e.g.,

X[F 7→ Z] = X[T 7→ T,F 7→ Z]. (6)

For X,Y1, Y2, Z1, Z2 ∈ TA, repeated replacements on X satisfy

X[T 7→ Y1,F 7→ Z1][T 7→ Y2,F 7→ Z2] = (7)
X
[
T 7→ Y1[T 7→ Y2,F 7→ Z2], F 7→ Z1[T 7→ Y2,F 7→ Z2]

]
.

Note that an evaluation tree is in fact a rooted, labeled, full binary tree. That is, a rooted binary
tree in which each internal node is labeled from A, has two child nodes and in which each leaf node
is labeled from {T,F}. So we can use terminology on binary trees to reason about evaluation trees,
see [CLRS01, Section B.5.3]. We call a leaf node with label T (or F) a T-leaf (or a F-leaf) and we
will often refer to nodes by their labels. Finally, we define the depth of a node in an evaluation tree.

Definition 2.1.3. Let X = (Y E aD Z) in TA and let Px be the parent node of a node x in X that
is not the root. The depth dx(X) of a node x in X is defined by

dx(X) =

{
0 if x is the root of X ,
1 + dPx(X) otherwise.
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2.2 CP and equational logic

The ternary connective conditional disjunction, notation [y, x, z], is defined in 1956 byChurch [Chu56,
pp.129-132]. Church proposes an oral reading of this disjunction by “y or z, according as x or not
x”. In 1985, Hoare introduces the conditional [Hoa85], notation y / x . z, which is interpreted as
follows:

y / x . z =

{
y if x is true,
z otherwise.

Because we only consider truth values true and false in this thesis, the second clause can be read as
“if x is false”.

In [BP11] Proposition Algebra is introduced as a general setting in which expressions over the
signature ΣCP(A) = {a,T,F, _ / _ . _ | a ∈ A} can be studied. There is a constant a in ΣCP(A) for
each atom a ∈ A and there are constants T and F for true and false. The abbreviation CP stands for
conditional propositions.

Definition 2.2.1. The set TACP of closed terms over A is generated by the following grammar, where
a ∈ A:

t ::= a | T | F | t / t . t.

We interpret propositional statements in TACP as evaluation trees by a function ce (abbreviating
conditional evaluation) [Sta12].

Definition 2.2.2. The unary conditional evaluation function ce : TACP → TA is defined as follows,
where a ∈ A:

ce(T) = T, ce(a) = (TE aD F),

ce(F) = F, ce(s / t . u) = ce(t)[T 7→ se(s),F 7→ se(u)].

The overloading of the symbol T in ce(T) = T is harmless (and similarly for F).

x / T . y = x (CP1)
x / F . y = y (CP2)
T / x . F = x (CP3)

x / (y / z . u) . v = (x / y . v) / z . (x / u . v) (CP4)

Table 2.1: CP, a set of equational axioms for Proposition Algebra

The most basic set of equational axioms for Proposition Algebra is given in Table 2.1 [BP11] and
is called CP. New equations can be derived from these equational axioms using equational logic.
Equational logic is a first-order logic in which only quantifier-free terms are considered and in which
the only predicate symbol is ‘=’. The axioms and inferential rules of equational logic for axiom set
E are listed in Table 2.2 (cf. [BS12, pp.99-108]). We write σ(t) for the application of substitution σ
to term t.
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Axioms: t = u for all equations t = u in E (E)
t = t for every term t (Reflexivity)

Rules:
t = u

u = t
(Symmetry)

t = s, s = u

t = u
(Transitivity)

t1 = u1, . . . , tn = un
f(t1, . . . , tn) = f(u1, . . . un)

for every n-ary f (Congruence)

t = u

σ(t) = σ(u)
for σ a substitution (Substitution)

Table 2.2: Axioms and inferential rules of the equational logic E

We now state how the derivation system in Table 2.2 [BS12, Def.14.18] is used. If t, u are terms
over a signature Σ, we say that t = u is an equation over Σ.

Definition 2.2.3. Let E be a set of equational axioms over a signature Σ. The equation t = u over
Σ is derivable from E, notation

E ` t = u,

if there is a sequence of equations

t1 = u1, . . . , tn = un

over Σ such that each ti = ui belongs to E, is of the form t = t or is a result of applying one of the
inferential rules in Table 2.2, and that the last equation tn = un is equal to t = u. We refer to n as
the length of the derivation. Lastly, we say that t and u are derivably equal.

In [BP11] it is proved that CP establishes a complete axiomatization for closed-term equations
over ΣCP(A) with respect to free valuation congruence. In [BP15] it is shown that free valuation
congruence can be defined as equality of ce-evaluation trees.

Definition 2.2.4. Free valuation congruence (FVC), notation =ce, is defined on TACP as follows:

t =ce u ⇐⇒ ce(t) = ce(u).

We recall that FVC is a congruence relation on TACP and repeat the completeness result of CP
from [BP15].

Theorem 2.2.5. For all t, u ∈ TACP,

CP ` t = u ⇐⇒ t =ce u.
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2.3 SCL-connectives, syntax and se-evaluation trees

Negation and short-circuit left-sequential conjunction (notation ∧qa ) are defined using Hoare’s condi-
tional and the constants T and F [BPS13]. Short-circuit left-sequential disjunction (notation ∨qa ) is
defined in terms of ¬ and ∧qa [BBR95].

Definition 2.3.1. The connectives ¬, ∧qa and ∨qa are defined by

¬x = F / x . T, (8)
x ∧qa y = y / x . F, (9)
x ∨qa y = ¬(¬x ∧qa ¬y). (10)

In [PS18] it is proved that the equation

x ∨qa y = T / x . y (11)

is derivable from CP ∪ {(8), (9)}.

Definition 2.3.2. The set TASCL of closed terms over A is generated by the following grammar, where
a ∈ A:

t ::= a | T | F | ¬t | t ∧qa t | t ∨qa t.

Its underlying signature is

ΣSCL(A) = {T,F, a,¬, ∧qa , ∨qa | a ∈ A}.
The abbreviation SCL stands for short-circuit logic. This notion will be defined in the following

section. We interpret terms inTASCL as evaluation trees using the function se (abbreviating short-circuit
evaluation) [PS18].

Definition 2.3.3. The unary short-circuit evaluation function se : TASCL → TA is defined as follows,
where a ∈ A:

se(T) = T, se(¬t) = se(t)[T 7→ F,F 7→ T],

se(F) = F, se(t ∧qa u) = se(t)[T 7→ se(u)],

se(a) = (TE aD F), se(t ∨qa u) = se(t)[F 7→ se(u)].

The evaluation tree se(t) of a term t ∈ TASCL represents short-circuit evaluation in a way that
can be compared to the notion of a truth table for propositional logic because it represents each
possible evaluation of t. However, there are some important differences with truth tables. In se(t),
the sequentiality of t’s evaluation is represented, and the same atom may occur multiple times in
se(t).

Example 2.3.4. We derive the evaluation tree of ¬b ∧qa a.

se(¬b ∧qa a) = se(¬b)[T 7→ se(a)] = (FE bD T)[T 7→ se(a)] = (FE bD (TE aD F)),

which can be visualized as Tree 1 on page 10. Also, se(¬(b ∨qa ¬a)) = (FE bD (TE aD F)).

Definition 2.3.5. The binary relation se-congruence, notation =se, is defined on TASCL as follows:

t =se u ⇐⇒ se(t) = se(u).

It easily follows that =se is a congruence relation on TASCL.
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2.4 FSCL and EqFSCL-axioms

In this section we recall the definition of free short-circuit logic (FSCL) and we provide a set of
equational axioms (EqFSCL) for this logic. First we need to recall the definition of a short-circuit
logic [BP12]. This definition uses CP, equations

¬x = F / x . T, (8)
x ∧qa y = y / x . F, (9)

and the export-operator � of module algebra [BHK90]. In module algebra Σ �X is the operation
that exports the signature Σ from module X , while declaring other signature elements hidden.

Definition 2.4.1. A short-circuit logic is a logic that implies the consequences of the module
expression

SCL = {T,¬, ∧qa } � (CP ∪ {(8), (9)}).

The constant F and the connective ∨qa do not occur in the exported signature of SCL, but can easily
be added because CP ∪ {(8), (9)} ` ¬T (8)

= F / T . T
(CP1)
= F and by equation (11).

FSCL is defined as the least identifying short-circuit logic in [BP12].

Definition 2.4.2. Free short-circuit logic (FSCL) is the short-circuit logic that implies no other
consequences than those of the module expression SCL.

For all terms t, u over ΣSCL(A) we write

FSCL ` t = u

if CP ∪ {(8), (9)} ` t = u.

We recall two results on FSCL from [PS18] for closed terms over ΣSCL(A). The first result states
that FSCL is characterized by se-congruence, i.e. for all closed terms t, u ∈ TASCL,

FSCL ` t = u ⇐⇒ t =se u. (12)

This characterization is used in [PS18] to show that EqFSCL, the set of equations listed in Table 2.3,
constitutes an independent, equational axiomatization of FSCL for closed terms.

Theorem 2.4.3. For all t, u ∈ TASCL,

EqFSCL ` t = u ⇐⇒ FSCL ` t = u.

In [PS18] a more extensive, non-independent set of axioms is given, that also contains the axioms
F = ¬T and ¬¬x = x (in the paper these are axioms (F1) and (F3) respectively). In [PS18,
Prop.2.1.8] it is shown that {(A1), . . . , (A5)} ` F = ¬T and {(A1), . . . , (A5), (A7)} ` ¬¬x = x.
Therefore, we will refer to these equations as auxiliary results.

F = ¬T, (Aux1)
¬¬x = x. (Aux2)
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x ∨qa y = ¬(¬x ∧qa ¬y) (A1)
T ∧qa x = x (A2)
x ∨qa F = x (A3)
F ∧qa x = F (A4)

(x ∧qa y) ∧qa z = x ∧qa (y ∧qa z) (A5)
¬x ∧qa F = x ∧qa F (A6)

(x ∧qa F) ∨qa y = (x ∨qa T) ∧qa y (A7)
(x ∧qa y) ∨qa (z ∧qa F) = (x ∨qa (z ∧qa F)) ∧qa (y ∨qa (z ∧qa F)) (A8)

Table 2.3: EqFSCL, a set of equational axioms for FSCL

In Section 5.1 we will give an alternative derivation of (Aux2), without using axiom (A7). We recall
three more equations that are also derivable from {(A1), . . . , (A5)} by [PS18, Prop.2.1.8]. These
auxiliary results will be used in Section 3.3 and in Section 5.1.

¬F = T, (Aux3)
¬(¬x ∧qa ¬F) = x, (Aux4)
¬¬x ∧qa ¬F = x. (Aux5)

We finish this section by recalling the definition of the dual of terms in TASCL and stating the duality
principle for equations over ΣSCL(A) [PS18].

Definition 2.4.4. The dual of a closed term t ∈ TASCL, notation tdl, is defined by

Tdl = F, adl = a, (t ∧qa u)dl = tdl ∨qa udl,

Fdl = T, (¬t)dl = ¬t, (t ∨qa u)dl = tdl ∧qa udl.

In [PS18] is argued that (A1), (Aux1) and (Aux2) imply left-sequential versions of De Morgan’s
laws. Since these equations are derivable from EqFSCL, we find that EqFSCL satisfies the duality
principle, i.e. setting the dual of a variable by xdl = x we find that for all terms s, t over ΣSCL(A),

EqFSCL ` s = t ⇐⇒ EqFSCL ` sdl = tdl.
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2.5 SCL Normal Form

We recall the definition of the SCL Normal Form [PS18], a normal form for terms in TASCL.

Definition 2.5.1. A term P ∈ TASCL is said to be in SCL Normal Form (SNF) if it is generated by
the following grammar:

P ::= PT | P F | PT ∧qa P ∗ (SNF-terms)
PT ::= T | (a ∧qa PT) ∨qa PT (T-terms)
P F ::= F | (a ∧qa P F) ∨qa P F (F-terms)
P ∗ ::= P c | P d (∗-terms)
P c ::= P ` | P ∗ ∧qa P d

P d ::= P ` | P ∗ ∨qa P c

P ` := (a ∧qa PT) ∨qa P F | (¬a ∧qa PT) ∨qa P F (`-terms)

for a ∈ A. We refer to PT-forms as T-terms, to P F-forms as F-terms, to P `-forms as `-terms (the
name refers to literal terms) and to P ∗-forms as ∗-terms. Finally, a term of the form PT ∧qa P ∗ is
referred to as a T-∗-term.

Although we usually use lower case letters s, t, u, . . . to denote closed terms in this thesis, we
chose to stick to the original notation presented in [PS18]. This particularly enhances readability of
the proof of Theorem 5.6.3.

Note that the evaluation trees of T-terms (F-terms) have only T-leaves (F-leaves), that ∗-terms
are left-associative and that `-terms (literal terms) are considered ‘basic’ in such terms. Moreover,
`-terms are the smallest grammatical units that generate se-images that have both T- and F-leaves. In
the image of an `-term, there is always a branch with only T-leaves, and a branch with only F-leaves.

A normalisation function f : TASCL → SNF is defined in [PS18]. We omit the exact definition
because it is not necessary for the purpose of this thesis. However, we will mention one important
theorem about this normalisation function. The function f maps any term in TASCL to a derivably
equal term in SNF.

Theorem 2.5.2. For any t ∈ TASCL, f(t) ∈ SNF and

EqFSCL ` f(t) = t.

Corollary 2.5.3. For any t ∈ TASCL,
se(t) = se(f(t)).

Proof. By Theorem 2.5.2 we have EqFSCL ` f(t) = t. By Theorem 2.4.3 we have FSCL ` f(t) =
t. We find that se(f(t)) = se(t) by equation (12) and by definition of se-congruence.
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2.6 Tree decompositions and inverse function

The following section is a summary of Section 3 in [PS18]. Evaluation trees in se[TASCL] can be
uniquely decomposed in such a way that the constituents of each decomposition correspond to
evaluation trees in se[SNF]. First we elaborate on such decompositions, then we define an inverse
function g of se.

In addition to se[TASCL] ⊆ TA we will also consider the set TA,∆, the set of evaluation trees over
A with leaves in {T,F,∆}. The triangle is used as a placeholder when composing or decomposing
trees. Replacement of the leaves of trees in TA,∆ by trees in TA or TA,∆ is defined analogous to
replacement for trees in TA, adopting the same notational conventions.

We start with a simple example of decomposing evaluation trees and we recall the lemma of
non-decomposition.

Example 2.6.1. For a ∗-term P ∧qa Q, the evaluation tree X = se(P ∧qa Q) can be decomposed as

X = se(P )[T 7→ ∆][∆ 7→ Q].

Lemma 2.6.2. There is no ∗-term P ∗ such thatX = se(P ∗) can be decomposed asX = Y [∆ 7→ Z]
with Y ∈ TA,∆ and Z ∈ TA, where Y 6= ∆ and Y contains ∆, but not T or F.

Next, we recall the definition of candidate conjunction decompositions and candidate disjunction
decompositions for evaluation trees of ∗-terms.

Definition 2.6.3.

1. The pair 〈Y,Z〉 ∈ TA,∆ × TA is a candidate conjunction decomposition (ccd) of X ∈ TA, if
(a) X = Y [∆ 7→ Z],

(b) Y contains ∆,
(c) Y contains F, but not T, and
(d) Z contains both T and F.

2. The pair 〈Y,Z〉 is a candidate disjunction decomposition (cdd) of X ∈ TA, if
(a) X = Y [∆ 7→ Z],

(b) Y contains ∆,
(c) Y contains T, but not F, and
(d) Z contains both T and F.

By definition of SNF we know that the constituents of ∗-terms must be ∗-terms themselves.
Because ccd’s and cdd’s exist whose constituents are no evaluation trees corresponding to ∗-terms,
ccd’s and cdd’s are not necessarily the decompositions we are looking for. We now give an example
of a ‘good’ and a ‘wrong’ decomposition.

Example 2.6.4. The two pairs 〈Y,Z〉 depicted below are both ccd’s of the same evaluation tree
se(P ` ∧qa Q`), with P ` = (a ∧qa ((b ∧qa T) ∨qa T)) ∨qa ((c ∨qa F) ∧qa F) and Q` = (d ∧qa T) ∨qa F. The
constituents of the first ccd are both evaluation trees corresponding to ∗-terms (upon replacing the
∆-leaves by T). The second constituent of the second ccd is not. It is an evaluation tree of the
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T-∗-term ((b ∧qa T) ∨qa T) ∧qa ((d ∧qa T) ∨qa F). So the first decomposition yields the appropriate
constituents of se(P ` ∧qa Q`) and the second does not.〈

a

b

∆ ∆

c

F F

,
d

T F

〉
and

〈
a

∆ c

F F

,

b

d

T F

d

T F

〉
The conjunction decomposition and the disjunction decomposition are defined in such a way that

the constituents of the decomposition are always evaluation trees corresponding to ∗-terms (upon
replacing the ∆-leaves by T and F respectively).

Definition 2.6.5.

1. The pair 〈Y,Z〉 ∈ TA,∆ × TA is a conjunction decomposition (cd) of X ∈ TA, if it is a ccd
of X and there is no other ccd 〈Y ′, Z ′〉 of X where the height of Z ′ is smaller than that of Z.

2. The pair 〈Y, Z〉 ∈ TA,∆ × TA is a disjunction decomposition (dd) ofX ∈ TA, if it is a cdd of
X and there is no other cdd 〈Y ′, Z ′〉 of X where the height of Z ′ is smaller than that of Z.

Theorem 2.6.6.

1. For any ∗-term P ∧qa Q, i.e. with P ∈ P ∗ and Q ∈ P d, se(P ∧qa Q) has no dd and its unique
cd is

〈se(P )[T 7→ ∆], se(Q)〉.

2. For any ∗-term P ∨qa Q, i.e. with P ∈ P ∗ and Q ∈ P c, se(P ∨qa Q) has no cd and its unique
dd is

〈se(P )[F 7→ ∆], se(Q)〉.

Using this theorem we find that the decomposition in Example 2.6.1 and the first decomposition
in Example 2.6.4 are the unique conjunction decompositions of the evaluation trees that were under
consideration.

To be able to decompose evaluation trees of T-∗-terms, we now recall the definition of candidate
T-∗-decompositions and the definition of the T-∗-decomposition.

Definition 2.6.7. The pair 〈Y, Z〉 ∈ TA,∆×TA is a candidate T-∗-decomposition (ctsd) ofX ∈ TA
if

(a) X = Y [∆ 7→ Z],

(b) Y does not contain T or F, and

(c) Z contains both T and F,

and there is no decomposition 〈U, V 〉 ∈ TA,∆ × TA of Z such that

(a) Z = U [∆ 7→ V ],

(b) U contains ∆,
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(c) U 6= ∆, and

(d) U contains neither T nor F.

Definition 2.6.8. The pair 〈Y, Z〉 ∈ TA,∆ × TA is a T-∗-decomposition (tsd) of X ∈ TA, if it is a
ctsd of X and there is no other ctsd 〈Y ′, Z ′〉 of X where the height of Z ′ is smaller than that of Z.

Theorem 2.6.9. For any T-term P and ∗-term Q, the unique tsd of se(P ∧qa Q) is

〈se(P )[T 7→ ∆], se(Q)〉.

Using Theorem 2.6.6 and Theorem 2.6.9, we know that the evaluation tree of a T-∗-term is
uniquely decomposable into a tsd 〈Y, Z〉 such that Z is uniquely decomposable into cd’s and dd’s.

In the following we recall the definition of an inverse function g of se. We need three auxiliary
functions that aid in defining g.

Definition 2.6.10. The function cd : TA −→ TA,∆ × TA returns the conjunction decomposition of
its argument and is defined by

X 7−→ 〈cd1(X), cd2(X)〉,
where 〈cd1(X), cd2(X)〉 is the pair 〈Y, Z〉 from Theorem 2.6.6.1. cd is undefined when its argument
does not have a conjunction decomposition. The functions dd (returning the disjunction decom-
position of its argument) and tsd (returning the T-∗-decomposition of its argument) are defined
similarly.

Definition 2.6.11. We define g : TA → SNF using the functions gT, gF, g` and g∗ that each have the
same domain and codomain for inverting trees in the image of T-terms, F-terms,`-terms and ∗-terms
respectively. These functions are defined by

gT(X) =

{
T if X = T,

(a ∧qa gT(Y )) ∨qa gT(Z) if X = (Y E aD Z).

gF(X) =

{
F if X = F,

(a ∧qa gF(Y )) ∨qa gF(Z) if X = (Y E aD Z).

g`(X) =

{
(a ∧qa gT(Y )) ∨qa gF(Z) if X = (Y E aD Z) and Y only has T-leaves,
(¬a ∧qa gT(Z)) ∨qa gF(Y ) if X = (Y E aD Z) and Z only has T-leaves.

g∗(X) =


g∗(cd1(X)[∆ 7→ T]) ∧qa g∗(cd2(X)) if X has a cd,
g∗(dd1(X)[∆ 7→ F]) ∧qa g∗(dd2(X)) if X has a dd,
g`(X) otherwise.

g(X) =


gT(X) if X has only T-leaves,
gF(X) if X has only F-leaves,
gT(tsd1(X)[∆ 7→ T]) ∧qa g∗(tsd2(X)) otherwise.

We use the symbol ≡ to denote ‘syntactic equivalence’. Finally, in [PS18] the following theorem
about g is proved.

Theorem 2.6.12. For any P in SNF,
g(se(P )) ≡ P.
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Chapter 3

`NAND and FLNL

In this chapter we consider `NAND, short-circuit left-sequential NAND, and provide an equational
axiomatization of free left-sequential nand logic (FLNL). In Section 3.1 we define `NAND, notation
|qa , define a semantics for closed terms with |qa using a function nse that assigns evaluation trees, and we
define nse-congruence that characterizes this semantics. In Section 3.2 we define FLNL and provide
a set of equational axioms (EqFLNL) for this logic. In Section 3.3 we prove that EqFLNL and
EqFSCL are ‘translationally equivalent’. Finally, in Section 3.4 we show that EqFLNL axiomatizes
FLNL for closed terms.

3.1 `NAND, syntax and nse-trees

We define the connective `NAND, short-circuit left-sequential NAND, using Hoare’s conditional
and the constants T and F.

Definition 3.1.1. The connective `NAND, written as |qa , is defined by

x |qa y = (F / y . T) / x . T. (13)

Proposition 3.1.2. The connective |qa is expressible in terms of ¬ and ∧qa :
x |qa y = ¬(x ∧qa y). (14)

Proof.

x |qa y = (F / y . T) / x . T by (13)
= (F / y . T) / x . (F / F . T) by (CP2)
= F / (y / x . F) . T by (CP4)
= ¬(x ∧qa y) by (8) and (9)
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Proposition 3.1.3. The connectives ¬, ∧qa and ∨qa are expressible in terms of |qa and T:

¬x = x |qa T = T |qa x, (15)
x ∧qa y = (x |qa y) |qa T, (16)
x ∨qa y = (x |qa T) |qa (y |qa T). (17)

Proof.
Proof of (15):

x |qa T = ¬(x ∧qa T) by (14)
= ¬x by (A3)dl

and

T |qa x = ¬(T ∧qa x) by (14)
= ¬x by (A2)

Proof of (16):

(x |qa y) |qa T = ¬(¬(x ∧qa y) ∧qa T) by (14)
= ¬¬(x ∧qa y) by (A3)dl

= x ∧qa y by (Aux2)

Proof of (17):

(x |qa T) |qa (y |qa T) = ¬(¬(x ∧qa T) ∧qa ¬(y ∧qa T)) by (14)
= ¬(¬x ∧qa ¬y) by (A3)dl

= x ∨qa y by (10)

Definition 3.1.4. The set TALNL of closed terms over A is generated by the following grammar, where
a ∈ A:

t ::= a | T | F | t |qa t.
Its underlying signature is

ΣLNL(A) = {T,F, a, |qa | a ∈ A}.
The abbreviation LNL stands for left-sequential nand logic. We will elaborate on LNL in the

next section. We interpret propositional statements in TALNL as evaluation trees using the function nse
(abbreviating nand short-circuit evaluation).

Definition 3.1.5. The unary nand short-circuit evaluation function nse : TALNL → TA is defined as
follows, where a ∈ A:

nse(T) = T, nse(a) = (TE aD F),

nse(F) = F, nse(t |qa u) = nse(t)
[
T 7→ nse(u)[T 7→ F,F 7→ T],F 7→ T

]
.
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Note that nse indeed prescribes a short-circuit evaluation strategy because in nse(t |qa u), nse(u)
is not evaluated if nse(t) yields F. We will shortly discuss full left-sequential NAND (notation |r ) in
Chapter 6.

We now argue that equality of nse-trees defines a congruence relation on TALNL.

Definition 3.1.6. The binary relation nse-congruence, notation =nse, is defined on TALNL as follows:

t =nse u ⇐⇒ nse(t) = nse(u).

Lemma 3.1.7. The relation =nse is a congruence relation on TALNL.

Proof. Because reflexivity, symmetry and transitivity hold, =nse is an equivalence relation. Fur-
thermore, it follows from Definition 3.1.5 that if nse(t1) = nse(u1) and nse(t2) = nse(u2), then
nse(t1 |qa t2) = nse(u1 |qa u2).

3.2 FLNL and equational axioms

In this section we define free left-sequential nand logic (FLNL) and we provide a set of equational
axioms (EqFLNL) for this logic.

In Section 2.4 we recalled the generic definition of a short-circuit logic and the definition of free
short-circuit logic from [BP12]. Following this line of reasoning, we will give a generic definition
of a left-sequential nand logic (LNL) using equation

x |qa y = (F / y . T) / x . T, (13)

and we define free left-sequential nand logic (FLNL) as the least identifying LNL.

Definition 3.2.1. A left-sequential nand logic is a logic that implies the consequences of the module
expression

LNL = {T, |qa } � (CP ∪ {(13)}).

Although the constant F does not occur in the exported signature of LNL, it can easily be added
because CP ∪ {(13)} ` T |qa T (13)

= (F / T . T) / T . T
(CP1)
= F.

Definition 3.2.2. Free left-sequential nand logic (FLNL) is the left-sequential nand logic that
implies no other consequences than those of the module expression LNL.

If CP ∪ {(13)} ` t = u for terms t, u over ΣLNL(A), we write

FLNL ` t = u.

We will show that FLNL is characterized by nse-congruence for closed terms in TALNL. To this
end, we define the combined signature ΣCP+LNL(A) = ΣCP(A) ∪ { |qa } and TCP+LNL(A), the set of
closed terms over ΣCP+LNL(A). We now extend the evaluation function ce.

Definition 3.2.3. The evaluation function cense : TCP+LNL(A) 7→ TA extends ce as follows:

cense(t |qa u) = cense(t)
[
T 7→ cense(u)[T 7→ F,F 7→ T],F 7→ T

]
.
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Note that cense satisfies equation (13), i.e. cense(t |qa u) = cense(t)
[
T 7→ cense(u)[T 7→ F,F 7→

T],F 7→ T
]

= cense((F / u . T) / t . T). Using Definition 2.2.4 and the completeness result from
Theorem 2.2.5, we find for all t, u ∈ TALNL,

CP ∪ {(13)} ` t = u ⇐⇒ cense(t) = cense(u). (18)

Lemma 3.2.4. The evaluation function cense is equal to nse when restricted to terms in TALNL, i.e. for
any t ∈ TALNL,

cense(t) = nse(t).

Proof. The proof follows by induction on the complexity of closed terms. The base case is trivial.
For the inductive step, assume that s, u ∈ TALNL are such that cense(s) = nse(s) and cense(u) = nse(u)
(IH) and that t is of the form s |qa u. We find that cense(s |qa u) = cense(s)

[
T 7→ cense(u)[T 7→ F,F 7→

T],F 7→ T
] IH

= nse(s)
[
T 7→ nse(u)[T 7→ F,F 7→ T],F 7→ T

]
= nse(s |qa u).

Using equation (18), we find by the previous lemma and by definition of nse-congruence that for
all closed terms t, u ∈ TALNL,

FLNL ` t = u ⇐⇒ t =nse u. (19)

In Table 3.1 we list a set of equational axioms for FLNL, called EqFLNL. We will show that
EqFLNL constitutes an independent, equational axiomatization of FLNL for closed terms.

(T |qa x) |qa T = x (N1)
F |qa x = T (N2)

((x |qa y) |qa T) |qa z = x |qa ((y |qa z) |qa T) (N3)
(x |qa T) |qa F = x |qa F (N4)

(x |qa F) |qa (y |qa T) = ((x |qa F) |qa y) |qa T (N5)
((x |qa y) |qa (z |qa F)) |qa T = ((x |qa T) |qa (z |qa F)) |qa ((y |qa T) |qa (z |qa F)) (N6)

Table 3.1: EqFLNL, a set of equational axioms for FLNL

We first elaborate on the axioms of EqFLNL. Axiom (N1) is the EqFLNL-version of double
negation. Axiom (N2) is a simple identity. Axiom (N3) defines an adapted form of associativity.
Axiom (N4) always evaluates to T, and it does not matter for the evaluation result whether t or t |qa T
is evaluated before the evaluation of F. In axiom (N5) the evaluation of (t |qa F) always yields T. So
u will always be evaluated. For the evaluation result it does not matter whether (u |qa T), or first u
and then T is evaluated next. In axiom (N6) we see a variation of right-distributivity of |qa over itself.
It only holds for z |qa F instead of any z and the negation of the ‘non-distributed’ expression (by |qa T)
transfers to x and y in the ‘distributed’ expression.

We derive two auxiliary results that will be used in the proofs of Lemma 3.3.3 and Theorem 3.3.6.

Proposition 3.2.5. The following equations are derivable from EqFLNL:

T |qa T = F, (Aux6)
(x |qa T) |qa T = x. (Aux7)
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Proof. All proofs are distilled from output of the theorem prover Prover9 [McC08].

Proof of (Aux6):

T |qa T = (F |qa F) |qa T by (N2)
= ((F |qa T) |qa F) |qa T by (N4)
= (T |qa F) |qa T by (N2)
= F by (N1)

Proof of (Aux7):

(x |qa T) |qa T = (((T |qa x) |qa T) |qa T) |qa T by (N1)
= (T |qa x) |qa ((T |qa T) |qa T) by (N3)
= (T |qa x) |qa T by (N1)
= x by (N1)

To conclude this section we will show that the axioms of EqFLNL are independent when |A| ≥ 2.
Wewill show for each axiom (Ni) in EqFLNL that EqFLNL\{(Ni)} 0 (Ni) by giving an independence
model for each axiom (Ni), a model that satisfies the axioms of EqFLNL\{(Ni)} while it does not
satisfy (Ni).

First we state when a model satisfies a set of equations [BS12, Def.11.1].
Definition 3.2.6. A Σ-algebraA satisfies an equation t(x1, . . . , xn) = u(x1, . . . , xn) over Σ, where
x1, . . . xn are variables, notation

A � t = u,

if for every choice of elements a1, . . . , an in the domain of A

Jt(a1, . . . , an)KA = Ju(a1, . . . , an)KA.

Furthermore, A satisfies a set of equations E over Σ (notation A � E) if A satisfies every equation
in E. We say that A is a model for t = u and for E respectively.

Theorem 3.2.7. The axioms of EqFLNL are independent if A contains at least two atoms.

Proof. All independencemodels areΣLNL(A)-algebras andwere foundwith the toolMace4 [McC08].
We show independence of axiom (N6) here and for the remaining cases we refer to Appendix A.

Assume that {a, b} ⊆ A and consider the model M for EqFLNL \ {(N6)} with domain D =
{0, 1, 2, 3}, where the constants are interpreted by

JTKM = 1, JFKM = 0, JaKM = 2, JbKM = 3,

and where |qa is interpreted as follows:
|qa 0 1 2 3

0 1 1 1 1
1 1 0 2 3
2 1 2 0 3
3 3 3 3 3

We find that J((a |qa a) |qa (b |qa F)) |qa TKM = 0 and J((a |qa T) |qa (b |qa F)) |qa ((a |qa T) |qa (b |qa F))KM = 3,
so axiom (N6) is not satisfied by M.
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3.3 Translational equivalence

In this section we will show that EqFLNL and EqFSCL are translationally equivalent [Pel84].
In [PU03] it is shown that the notion of translationally equivalent logics is equivalent to the notion of
synonymous logics from [Len79]. Intuitively, two logics are translationally equivalent if it is possible
to translate one logic into the other, preserving theoremhood. That is, theorems are translated
to theorems and non-theorems to non-theorems. We repeat the formal definition of translational
equivalence that is given in [PU03], adapted to our framework.

Definition 3.3.1. Two equational logics S1 and S2 with languages L1 and L2 are translationally
equivalent if there are translation functions f, g such that

1. both f and g are sound (for equations t = u ∈ L1 the translation f(t) = f(u) is a theorem
of S2 whenever t = u is a theorem of S1, and vice-versa), and

2. for any term t ∈ L1, g(f(t)) = t is a theorem of S1, and for any term t ∈ L2, f(g(t)) = t is
a theorem of L2.

Let TA,χSCL and TA,χLNL denote the sets of all terms over ΣSCL(A) and ΣLNL(A) with variables in χ
respectively. In the following we take S1 to be EqFSCL, we take S2 to be EqFLNL, we take L1 to be
the union of TA,χSCL and the set of all equations between terms in TA,χSCL and we take L2 to be the union
of TA,χLNL and the set of all equations between terms in TA,χLNL.

We now define two translation functions between TA,χSCL and TA,χLNL and we will show that these
translation functions satisfy the conditions for translational equivalence from Definition 3.3.1.

Definition 3.3.2.
For terms t, u ∈ TA,χSCL , we define f : TA,χSCL → TA,χLNL by

f(t) = t for t ∈ {T,F} ∪A ∪ χ, f(t ∧qa u) = (f(t) |qa f(u)) |qa T,
f(¬t) = f(t) |qa T, f(t ∨qa u) = (f(t) |qa T) |qa (f(u) |qa T).

For terms t, u ∈ TA,χLNL, we define g : TA,χLNL → TA,χSCL by

g(t) = t for t ∈ {T,F} ∪A ∪ χ, g(t |qa u) = ¬(g(t) ∧qa g(u)).

The definitions of the translation functions f and g are direct consequences of Proposition 3.1.3 and
Proposition 3.1.2 respectively.

We will show that the translation functions f and g are sound. Before we do this, we need to show
that the translated axioms of EqFSCL, listed in Table 3.2, are derivable from EqFLNL and that the
translated axioms of EqFLNL, listed in Table 3.3, are derivable from EqFSCL. We write f(S) for
{f(s) = f(t) | s = t ∈ S}, and similar for g.

Lemma 3.3.3. EqFLNL` f (EqFSCL).

Proof. All proofs are distilled from output of the theorem prover Prover9 [McC08].

f (A1) is an instance of (Aux7). f (A2) is equal to axiom (N1). f (A3) is derived by replacing the
last occurrence of T in (Aux7) by (F |qa T). This inference is valid by axiom (N2). f (A4) is derived
from axiom (N2) by adding |qa T to both sides and by (Aux6). Note that adding |qa T to both sides
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is a valid inference by congruence. f (A5) is derived from axiom (N3) by adding |qa T to both sides.
f (A6) is derived from axiom (N4) by adding |qa T to both sides. f (A7) is derived as follows:

(((x |qa F) |qa T) |qa T) |qa (y |qa T) = (x |qa F) |qa (y |qa T) by (Aux7)
= ((x |qa F) |qa y) |qa T by (N5)
= (((x |qa T) |qa F) |qa y) |qa T by (N4)
= (((x |qa T) |qa (T |qa T) |qa y) |qa T by (Aux6)

Finally, f (A8) is derived from axiom (N6) by adding |qa T to both sides and using (Aux7) five
times.

(x |qa T) |qa (y |qa T) = (((x |qa T) |qa (y |qa T)) |qa T) |qa T f (A1)
(T |qa x) |qa T = x f (A2)

(x |qa T) |qa (F |qa T) = x f (A3)
(F |qa x) |qa T = F f (A4)

(((x |qa y) |qa T) |qa z) |qa T = (x |qa ((y |qa z) |qa T)) |qa T f (A5)
((x |qa T) |qa F) |qa T = (x |qa F) |qa T f (A6)

(((x |qa F) |qa T) |qa T) |qa (y |qa T) = (((x |qa T) |qa (T |qa T)) |qa y) |qa T f (A7)
(((x |qa y) |qa T) |qa T) |qa (((z |qa F) |qa T) |qa T) = f (A8)[

((x |qa T) |qa (((z |qa F) |qa T) |qa T)) |qa ((y |qa T) |qa (((z |qa F) |qa T) |qa T))
]
|qa T

Table 3.2: f (EqFSCL), the translated axioms of EqFSCL

Lemma 3.3.4. EqFSCL ` g(EqFLNL).

Proof. All proofs are distilled from output of the theorem prover Prover9 [McC08]. Here we show
that EqFSCL ` g(N1). The proofs for the other translated axioms can be found in Appendix A.

¬(¬(T ∧qa x) ∧qa T) = ¬(¬x ∧qa T) by (A2)
= ¬(¬x ∧qa ¬F) by (Aux3)
= x by (Aux4)

Using Lemma 3.3.3 and Lemma 3.3.4, we can show that f and g are sound.

¬(¬(T ∧qa x) ∧qa T) = x g(N1)
¬(F ∧qa x) = T g(N2)

¬(¬(¬(x ∧qa y) ∧qa T) ∧qa z) = ¬(x ∧qa ¬(¬(y ∧qa z) ∧qa T)) g(N3)
¬(¬(x ∧qa T) ∧qa F) = ¬(x ∧qa F) g(N4)

¬(¬(x ∧qa F) ∧qa ¬(y ∧qa T)) = ¬(¬(¬(x ∧qa F) ∧qa y) ∧qa T) g(N5)
¬(¬(¬(x ∧qa y) ∧qa ¬(z ∧qa F)) ∧qa T) = ¬(¬(¬(x ∧qa T) ∧qa ¬(z ∧qa F)) ∧qa ¬(¬(y ∧qa T) ∧qa ¬(z ∧qa F))) g(N6)

Table 3.3: g(EqFLNL), the translated axioms of EqFLNL
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Theorem 3.3.5.

1. The translation function f is sound, i.e. for all terms t, u ∈ TA,χSCL ,

EqFSCL ` t = u =⇒ EqFLNL ` f(t) = f(u).

2. The translation function g is sound, i.e. for all terms t, u ∈ TA,χLNL,

EqFLNL ` t = u =⇒ EqFSCL ` g(t) = g(u).
Proof.

Statement 1:

Proof by induction on n, the length of the derivation.

Base case: Assume that the derivation EqFSCL ` t = u has length one. If t = u is derived using
reflexivity, the result follows trivially. Otherwise t = u is an axiom of EqFSCL and the result follows
by Lemma 3.3.3.

Inductive step: Consider a derivation of length n > 1. We assume that the result holds for each
derivation of lesser length (IH). If EqFSCL ` t = u is derived using symmetry or transitivity, the
result follows trivially by IH. Assume that

EqFSCL ` t1 = u1,EqFSCL ` t2 = u2

EqFSCL ` t1 ∧qa u1 = t2 ∧qa u2

is derived using congruence, with t1, t2, u1, u2 ∈ TALNL. By IH we have EqFLNL ` f(t1) = f(u1)
and EqFLNL ` f(t2) = f(u2). So by congruence we also have EqFLNL ` (f(t1) |qa f(u1)) |qa T =
(f(t2) |qa f(u2)) |qa T, which is equivalent to EqFLNL ` f(t1 ∧qa u1) = f(t2 ∧qa u2) by Definition 3.3.2.
The cases for ¬ and ∨qa follow similarly.

Finally, assume that we have a derivation

EqFSCL ` t = u

EqFSCL ` σ(t) = σ(u)

using substitution, for t, u ∈ TASCL. Assume WLOG that σ replaces every occurrence of the variable
x in t and u by some expression v over ΣSCL(A). By IH we have EqFLNL ` f(t) = f(u).
By substitution it follows that EqFLNL ` f(σ)f(t) = f(σ)f(u), where f(σ) replaces every
occurrence of x in f(t) and f(u) by f(v). Because f(x) = x, we find that f(σ)f(t) = f(σ(t)) and
f(σ)f(u) = f(σ(u)). So EqFLNL ` f(σ(t)) = f(σ(u)) follows.

The proof of Statement 2 follows similarly.

We now show that translating a term t back and forth between TA,χSCL and TA,χLNL (or vice-versa)
provides us with a derivably equal term.

Theorem 3.3.6.

1. For any t ∈ TA,χLNL,
EqFLNL ` f(g(t)) = t.

2. For any t ∈ TA,χSCL ,
EqFSCL ` g(f(t)) = t.
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Proof.

Statement 1.

Proof by induction on the complexity of terms in TA,χLNL.

Base case: Let t ∈ {T,F} ∪ A ∪ χ. Then f(g(t)) = t, by Definition 3.3.2. So also EqFLNL `
f(g(t)) = t.

Inductive step: Assume that s, u ∈ TA,χLNL are such that EqFLNL ` f(g(s)) = s and EqFLNL `
f(g(u)) = u (IH). Furthermore assume that t is of the form s |qa u. Using Definition 3.3.2, we
compute

f(g(s |qa u)) = f(¬(g(s) ∧qa g(u)))

= f(g(s) ∧qa g(u)) |qa T
= ((f(g(s)) |qa f(g(u))) |qa T) |qa T

Using the axioms of EqFLNL, we derive

f(g(s |qa u)) = ((f(g(s)) |qa f(g(u))) |qa T) |qa T by the above
= ((s |qa u) |qa T) |qa T by IH
= s |qa u by (Aux7)

For the proof of Statement 2 we refer to Appendix A.

By Theorem 3.3.5 and Theorem 3.3.6 we find that EqFLNL and EqFSCL satisfy the requirements
of being translationally equivalent.

3.4 An equational axiomatization of FLNL

Before we show that EqFLNL axiomatizes FLNL for closed terms, we need two more lemmas, the
first of which concerns evaluation trees.

Lemma 3.4.1. For any closed term t ∈ TALNL,

nse(t) = se(g(t)).

Proof. Proof by induction on the complexity of closed terms.

Base case: Let t ∈ {T,F} ∪A. We find that nse(t) = se(g(t)) by Definition 3.3.2.

Inductive step: Assume that s, u ∈ TALNL are such that nse(s) = se(g(s)) and nse(u) = se(g(u))
(IH). If t is of the form s |qa u, we find that

nse(s |qa u) = nse(s)
[
T 7→ nse(u)[T 7→ F,F 7→ T],F 7→ T

]
by Definition 3.1.5

= nse(s)
[
T 7→ nse(u)[T 7→ F,F 7→ T],F 7→ F[T 7→ F,F 7→ T]

]
by (4)

= nse(s)
[
T 7→ nse(u)

][
T 7→ F,F 7→ T

]
by (6) and (7)

= se(g(s))
[
T 7→ se(g(u))

][
T 7→ F,F 7→ T

]
by IH

= se(g(s) ∧qa g(u))
[
T 7→ F,F 7→ T

]
by Definition 2.3.3
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= se(¬(g(s) ∧qa g(u))) by Definition 2.3.3
= se(g(s |qa u)) by Definition 3.3.2

As a consequence of Theorem 3.3.6 and Lemma 3.4.1 we find that se[TASCL] is equal to nse[TALNL].

Corollary 3.4.2. se[TASCL] = nse[TALNL].

Proof. By Lemma 3.4.1 it suffices to show that se(t) = nse(f(t)) for any closed term t ∈ TASCL. Let
t ∈ TASCL. By Theorem 3.3.6.2 we know that EqFSCL ` g(f(t)) = t. Because EqFSCL axiomatizes
FSCL for closed terms and by equation (12) we find that g(f(t)) =se t. By definition of se-
congruence we have se(t) = se(g(f(t))). Since f(t) ∈ TALNL we know that se(g(f(t))) = nse(f(t))
by Lemma 3.4.1 and the result follows.

Lemma 3.4.3. For any t, u ∈ TA,χLNL,

EqFSCL ` g(t) = g(u) =⇒ EqFLNL ` t = u.

Proof.

EqFSCL ` g(t) = g(u) =⇒ EqFLNL ` f(g(t)) = f(g(u)) by Theorem 3.3.5.1
=⇒ EqFLNL ` t = u by Theorem 3.3.6.1

We now show that EqFLNL constitutes an equational axiomatization of FLNL for closed terms,
which by equation (19) immediately yields a completeness result.

Theorem 3.4.4. For all t, u ∈ TALNL,

EqFLNL ` t = u ⇐⇒ FLNL ` t = u.

Proof.

EqFLNL ` t = u ⇐⇒ EqFSCL ` g(t) = g(u) by Theorem 3.3.5.2 and Lemma 3.4.3
⇐⇒ FSCL ` g(t) = g(u) by Theorem 2.4.3
⇐⇒ g(t) =se g(u) by (12)
⇐⇒ se(g(t)) = se(g(u)) by Definition 2.3.5
⇐⇒ nse(t) = nse(u) by Lemma 3.4.1
⇐⇒ t =nse u by Definition 3.1.6
⇐⇒ FLNL ` t = u by (19)

Corollary 3.4.5. For all t, u ∈ TALNL,

EqFLNL ` t = u ⇐⇒ t =nse u.
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Chapter 4

`XOR and FLXL

In this chapter we consider `XOR, full left-sequential XOR, and provide an equational axiomatization
of free left-sequential xor logic (FLXL) for closed terms. In Section 4.1 we define `XOR, notation
⊕r , define a semantics for closed terms with ⊕r using a function xe that assigns evaluation trees,
and we define xe-congruence that characterizes this semantics. In Section 4.2 we define FLXL,
provide a set of equational axioms (EqFLXL) for this logic and show that any closed-term equation
that is derivable from EqFLXL is also derivable from FLXL. In Section 4.3 we define `IFF, full
left-sequential biconditional, notation r↔, and show that the duality principle holds for equations
with ⊕r and r↔. In Section 4.4 we discuss basic forms as a preferred notation for closed terms with
⊕r and in Section 4.5 we discuss properties of xe-trees. Finally, in Section 4.6 we define a function
that inverts xe-trees and show that EqFLXL axiomatizes FLXL for closed terms.

4.1 `XOR, syntax and xe-trees

Wedefine the connective `XOR, full left-sequential XOR, usingHoare’s conditional and the constants
T and F.
Definition 4.1.1. The connective `XOR, written as ⊕r , is defined by

x ⊕r y = (F / y . T) / x . y. (20)

Observe that it is not possible to define a short-circuit version of XOR. Irrespective of the value
of the first argument, the second argument must always be evaluated.
Definition 4.1.2. The set TALXL of closed terms over A is generated by the following grammar, where
a ∈ A:

t ::= a | T | F | t ⊕r t.
Its underlying signature is

ΣLXL(A) = {T,F, a, ⊕r | a ∈ A}.
The abbreviation LXL stands for left-sequential xor logic. We will elaborate on LXL in the next

section. We interpret closed terms over ΣLXL(A) as evaluation trees by a function xe (abbreviating
xor evaluation).
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Definition 4.1.3. The unary xor evaluation function xe : TALXL → TA is defined a follows, where
a ∈ A:

xe(T) = T, xe(a) = (TE aD F),

xe(F) = F, xe(t ⊕r u) = xe(t)
[
T 7→ xe(u)[T 7→ F,F 7→ T],F 7→ xe(u)

]
.

Like equality of nse-trees, equality of xe-trees defines a congruence relation on TALXL.

Definition 4.1.4. The binary relation xe-congruence, notation =xe, is defined on TALXL as follows:

t =xe u ⇐⇒ xe(t) = xe(u).

Lemma 4.1.5. The relation =xe is a congruence relation on TALXL.

Proof. Because reflexivity, symmetry and transitivity hold, =xe is an equivalence relation. Further-
more, if xe(t1) = xe(u1) and xe(t2) = xe(u2), then xe(t1 ⊕r t2) = xe(u1 ⊕r u2). This follows
immediately from Definition 4.1.3.

4.2 FLXL and equational axioms

In this section we will define free left-sequential xor logic (FLXL) and we will provide a set of
equational axioms (EqFLXL) for this logic.

As in the previous chapter, we will give a generic definition of a left-sequential xor logic (LXL)
using equation

x ⊕r y = (F / y . T) / x . y, (20)

and we define free left-sequential xor logic (FLXL) as the least identifying LXL.

Definition 4.2.1. A left-sequential xor logic is a logic that implies the consequences of the module
expression

LXL = {T, ⊕r } � (CP ∪ {(20)}).

The constant F does not occur in the exported signature of LXL, but can easily be added because
CP ∪ {(20)} ` T ⊕r T

(20)
= (F / T . T) / T . T

(CP1)
= F.

Definition 4.2.2. Free left-sequential xor logic (FLXL) is the left-sequential xor logic that implies
no other consequences than those of the module expression LXL.

For all terms t, u over ΣLXL(A) we write

FLXL ` t = u

if CP ∪ {(20)} ` t = u.

In the following we argue that FLXL is characterized by xe-congruence for closed terms over
ΣLXL(A). First we define the combined signature ΣCP+LXL(A) = ΣCP(A) ∪ {⊕r } and TCP+LXL(A),
the set of closed terms over ΣCP+LXL(A). We now extend the evaluation function ce.
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Definition 4.2.3. The evaluation function cexe : TCP+LXL(A) 7→ TA extends ce as follows:

cexe(t ⊕r u) = cexe(t)
[
T 7→ cexe(u)[T 7→ F,F 7→ T],F 7→ cexe(u)

]
.

Note that equation (20) is satisfied by cexe, i.e. cexe(t ⊕r u) = cexe(t)
[
T 7→ cexe(u)[T 7→ F,F 7→

T],F 7→ cexe(u)
]

= cexe((F / u . T) / t . u). Using Definition 2.2.4 and the completeness result
from Theorem 2.2.5, we find for all t, u ∈ TALXL,

CP ∪ {(20)} ` t = u ⇐⇒ cexe(t) = cexe(u). (21)

Lemma 4.2.4. The evaluation function cexe is equal to xe when restricted to terms in TALXL, i.e. for
any t ∈ TALXL,

cexe(t) = xe(t).

Proof. The proof follows by induction on the complexity of closed terms. The base case is trivial.
For the inductive step, assume that s, u ∈ TALXL are such that cexe(s) = xe(s) and cexe(u) = xe(u)
(IH) and that t is of the form s ⊕r u. We find that cexe(s ⊕r u) = cexe(s)

[
T 7→ cexe(u)[T 7→ F,F 7→

T],F 7→ cexe(u)
] IH

= xe(s)
[
T 7→ xe(u)[T 7→ F,F 7→ T],F 7→ xe(u)

]
= xe(s ⊕r u).

Using equation (21), we find by the previous lemma and by definition of xe-congruence that for
all closed terms t, u ∈ TALXL,

FLXL ` t = u ⇐⇒ t =xe u. (22)

In Table 4.1 we provide a set of equational axioms for FLXL, called EqFLXL. We will show that
EqFLXL axiomatizes FLXL for closed terms.

T ⊕r T = F (X1)
(x ⊕r y) ⊕r z = x ⊕r (y ⊕r z) (X2)

x ⊕r T = T ⊕r x (X3)
x ⊕r F = x (X4)

Table 4.1: EqFLXL, a set of equational axioms for FLXL

We first elaborate on this set of axioms. Axiom (X1) is a simple identity that describes a relation
between the constants. Axiom (X2) defines associativity. Axiom (X3) tells us that it does not matter
for the evaluation result whether T is evaluated first or second. Finally, in axiom (X4) we see that the
evaluation result of the first argument is preserved if the second argument is F.

We now derive two auxiliary results that will be used in the remainder of this thesis.

Proposition 4.2.5. The following equations are derivable from EqFLXL:

(x ⊕r T) ⊕r T = x, (Aux8)
F ⊕r x = x ⊕r F, (Aux9)
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Proof. The equations are checked by the theorem prover Prover9 [McC08].

Proof of (Aux8):

(x ⊕r T) ⊕r T = x ⊕r (T ⊕r T) by (X2)
= x ⊕r F by (X1)
= x by (X4)

Proof of (Aux9):

F ⊕r x = (T ⊕r T) ⊕r x by (X1)
= T ⊕r (T ⊕r x) by (X2)
= T ⊕r (x ⊕r T) by (X3)
= (T ⊕r x) ⊕r T by (X2)
= (x ⊕r T) ⊕r T) by (X3)
= x ⊕r (T ⊕r T) by (X2)
= x ⊕r F by (X1)

We will show that if the equation t = u is derivable from EqFLXL for t, u ∈ TALXL, then t = u
is also derivable from FLXL. To this end, we first establish a model M for EqFLXL and show that
EqFLXL is sound for M.

Definition 4.2.6. Let M be the ΣLXL(A)-algebra with domain D = {xe(t) | t ∈ TALXL} in which the
interpretation of the constants is defined by

JTKM = T, JFKM = F, JaKM = (TE aD F),

where a ∈ A, and in which the interpretation of the connective ⊕r is defined by

Jt ⊕r uKM = JtKM
[
T 7→ JuKM[T 7→ F,F 7→ T],F 7→ JuKM

]
.

Lemma 4.2.7. For all terms t, u over ΣLXL(A),

EqFLXL ` t = u =⇒ M � t = u.

Proof. Proof by induction on n, the length of the derivation.

Base case: Assume that the derivation EqFLXL ` t = u has length one. If t = u is derived using
reflexivity, the result follows trivially. Otherwise t = u is an axiom of EqFLXL. Here we show that
M satisfies (X3) and for the proofs of (X1), (X2) and (X4) we refer to Appendix B. Fix an arbitrary
interpretation i of variables. Then,

Jx ⊕r TKM,i = JxKM,i
[
T 7→ JTKM[T 7→ F,F 7→ T],F 7→ JTKM

]
by 4.2.6

= JxKM,i
[
T 7→ F,F 7→ T

]
by (3)

= JTKM
[
T 7→ JxKM,i[T 7→ F,F 7→ T],F 7→ JxKM,i

]
by (3)

= JT ⊕r xKM,i. by 4.2.6

Because i was chosen arbitrarily, we have M � (X3).
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Inductive step: Consider a derivation of length n > 1. We assume that the result holds for each
derivation of lesser length (IH). If EqFLXL ` t = u is derived using symmetry or transitivity, the
result follows trivially by IH. Assume that we have a derivation

EqFLXL ` t1 = u1,EqFLXL ` t2 = u2

EqFLXL ` t1 ⊕r t2 = u1 ⊕r u2

using congruence, with t1, t2, u1, u2 over ΣLXL(A). By IH we haveM � t1 = u1 andM � t2 = u2,
so we also have Jt1KM,i = Ju1KM,i and Jt2KM,i = Ju2KM,i for each interpretation i of variables. Fix
such an interpretation i arbitrarily. We find that

Jt1 ⊕r t2KM,i = Jt1KM,i[T 7→ Jt2KM,i,F 7→ Jt2KM,i[T 7→ F,F 7→ T]] by 4.2.6
= Ju1KM,i[T 7→ Ju2KM,i,F 7→ Ju2KM,i[T 7→ F,F 7→ T]] by IH
= Ju1 ⊕r u2KM,i, by 4.2.6

so M � t1 ⊕r t2 = u1 ⊕r u2 because i was chosen arbitrarily.

Finally, assume we have a derivation

EqFLXL ` t = u

EqFLXL ` σ(t) = σ(u)

using substitution, for t, u over ΣLXL(A). Assume WLOG that σ replaces every occurrence of the
variable x in t and u by some expression v over ΣLXL(A). Let i be an arbitrary interpretation of the
variables in σ(t) and σ(u). Observe that there is an interpretation i′ of variables in t and u such that
Jσ(t)KM,i = JtKM,i

′ and Jσ(u)KM,i = JuKM,i
′ . By IH we have M � t = u, hence also M, i′ � t = u.

Then M, i � σ(t) = σ(u) holds as well, and the result follows.

Theorem 4.2.8. For t, u ∈ TALXL,

EqFLXL ` t = u =⇒ FLXL ` t = u.

Proof. By Lemma 4.2.7 and equation (22) it suffices to show that M � t = u ⇐⇒ t =xe u. Note
that we have JtKM = xe(t) for any t ∈ TALXL (this follows easily by structural induction). Therefore,
M � t = u holds if and only if JtKM = JuKM, if and only if xe(t) = xe(u), if and only if t =xe u by
Definition 4.1.4.

4.3 `IFF and duality

In this section we extend ΣLXL(A) to ΣLXL+(A) with `IFF, full left-sequential biconditional, and
EqFLXL to EqFLXL+ with an extra axiom. We define the dual of closed terms over ΣLXL+(A) and
show that EqFLXL+ satisfies the duality principle for all equations over ΣLXL+(A).

First we define the connective `IFF, full left-sequential biconditional, using Hoare’s conditional
and the constants T and F.

Definition 4.3.1. The connective `IFF, written as r↔, is defined by

x r↔y = y / x . (F / y . T). (23)
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As with XOR, it is not possible to define a short-circuit version of the biconditional.

Proposition 4.3.2. The connective r↔ is expressible in terms of ⊕r and T:

x r↔y = (x ⊕r y) ⊕r T. (24)

Proof.

(x ⊕r y) ⊕r T = (F / T . T) / ((F / y . T) / x . y) . T by (20)
= (F / (F / y . T) . T) / x . (F / y . T) by (CP1) and (CP4)
= ((F / F . T) / y . (F / T . T)) / x . (F / y . T) by (CP4)
= (T / y . F) / x . (F / y . T) by (CP1) and (CP2)
= y / x . (F / y . T) by (CP3)
= x r↔ y by (23)

In the remainder of this section we will consider the set of closed terms TALXL+ over the extended
signature

ΣLXL+(A) = ΣLXL(A) ∪ { r↔}.
We also extend EqFLXL to

EqFLXL+ = EqFLXL ∪ {(24)}.

We now define the dual of a term t ∈ TALXL+ and we prove that the duality mapping is an involution.

Definition 4.3.3. The dual of a term t ∈ TALXL+ , notation tdl, is defined by

Tdl = F, adl = a, (t r↔u)dl = tdl ⊕r udl.
Fdl = T, (t ⊕r u)dl = tdl r↔udl,

Lemma 4.3.4. ( )dl : TALXL+ → TALXL+ is an involution, i.e. (tdl)dl = t.

Proof. Proof by induction on the complexity of closed terms.

Base case: The result for t ∈ {T,F} ∪A follows trivially.

Inductive step: Assume that t, u ∈ TALXL+ are such that (tdl)dl = t and (udl)dl = u (IH). Then
((t ⊕r u)dl)dl = (tdl r↔udl)dl = (tdl)dl ⊕r (udl)dl = t ⊕r u, where the last equality holds by IH and the
others by Definition 4.3.3. The case for ((t r↔ u)dl)dl follows similarly.

Setting the dual of a variable by xdl = x, we show that EqFSCL satisfies the duality principle for
equations over ΣLXL+(A).
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Theorem 4.3.5. For all t, u over ΣLXL+(A),

EqFLXL+ ` t = u ⇐⇒ EqFLXL+ ` tdl = udl.

Proof.
‘=⇒’
Proof by induction on n, the length of the derivation.

Base case: Assume that the derivation EqFLXL+ ` t = u has length one. If t = u is derived using
reflexivity, the result follows trivially. Otherwise t = u is an axiom of EqFLXL+. We show that the
dual of each axiom is also derivable from EqFLXL+. The dual axioms of EqFLXL+ can be found
in Table 4.2. Below we show that EqFLXL+ ` (X1)dl. The proofs for the remaining dual axioms
can be found in Appendix B.

F r↔ F = (F ⊕r F) ⊕r T by (24)
= T ⊕r (F ⊕r F) by (X3)
= (T ⊕r F) ⊕r F by (X2)
= T by (X4)

Inductive step: Consider a derivation of length n > 1. We assume that the result holds for each
derivation of lesser length (IH). If EqFLXL+ ` t = u is derived using symmetry or transitivity, the
result follows trivially by IH. Assume that we have a derivation

EqFLXL+ ` t1 = u1,EqFLXL+ ` t2 = u2

EqFLXL+ ` t1 ⊕r t2 = u1 ⊕r u2

using congruence, with t1, t2, u1, u2 over ΣLXL+(A). The case for r↔ follows similarly. By IH
we find that EqFLXL+ ` tdl1 = udl1 and that EqFLXL+ ` tdl2 = udl2 . So by congruence we have
EqFLXL+ ` tdl1 r↔ tdl2 = udl1

r↔ udl2 . Then EqFLXL+ ` (t1 ⊕r t2)dl = (u1 ⊕r u2)dl follows by
Definition 4.3.3.

Finally, assume we have a derivation

EqFLXL+ ` t = u

EqFLXL+ ` σ(t) = σ(u)

using substitution, for t, u over ΣLXL+(A). Assume WLOG that σ replaces every occurrence of the
variable x in t and u by some expression v over ΣLXL+(A). By IH we have EqFLXL+ ` tdl = udl.
By substitution it follows that EqFLXL+ ` σdl(tdl) = σdl(udl), where σdl replaces every occurrence
of x in tdl and udl by vdl. Because xdl = x, we find that σdl(tdl) = (σ(t))dl and σdl(udl) = (σ(u))dl.
So EqFLXL+ ` (σ(t))dl = (σ(u))dl follows.

‘⇐=’
By the above we find that EqFLXL+ ` tdl = udl =⇒ EqFLXL+ ` (tdl)dl = (udl)dl. The result
follows by Lemma 4.3.4.

36



F r↔ F = T (X1)dl

(x r↔ y) r↔ z = x r↔ (y r↔ z) (X2)dl

x r↔ F = F r↔ x (X3)dl

x r↔T = x (X4)dl

x ⊕r y = (x r↔ y) r↔ F (24)dl

Table 4.2: (EqFLXL+)dl, the dual axioms of EqFLXL+

4.4 Basic Form

In this section we define a basic form for terms in TALXL and a function that maps any term in TALXL to
a derivably equal term in basic form.

Definition 4.4.1. A term t ∈ TALXL is said to be in Basic Form (BF) if it is generated by the following
grammar:

t ::= tB | t? ⊕r tB (BF-terms)

tB ::= T | F (Boolean constants)
t? ::= a | t? ⊕r a (?-terms)

for a ∈ A. We refer to tB-forms as Boolean constants, to t?-forms as ?-terms and to t? ⊕r tB-forms
as ?-B-terms.

Note that each BF-term is of the form (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB for some n ≥ 0.

Definition 4.4.2. We define f : TALXL → BF recursively using the auxiliary function fx by

f(T) = T, f(a) = a ⊕r F,

f(F) = F, f(t ⊕r u) = fx(f(t), f(u)).

We define fx : BF× BF→ BF recursively by a case distinction on the first argument. We start with
the Boolean constants. If the first argument is T, we make a case distinction on the second argument.

fx(T,T) = F, fx(T, t? ⊕r tB) = t? ⊕r fx(T, tB),

fx(T,F) = T, fx(F, t) = t.

If the first argument is of the form t? ⊕r tB , we make a case distinction on the second argument again.
If the second argument is of the form u? ⊕r uB , we need the auxiliary function fx1 .

fx(t? ⊕r tB , uB) = t? ⊕r fx(tB , uB),

fx(t? ⊕r tB , u? ⊕r uB) = fx1 (t?, u?) ⊕r fx(tB , uB).

Finally, we define the function fx1 that takes two ?-terms as arguments and returns another ?-term
by a case distinction on the second argument.

fx1 (t?, a) = t? ⊕r a,
fx1 (t?, u? ⊕r a) = fx1 (t?, u?) ⊕r a.
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Before we can show that the function f maps any term in TALXL to a derivably equal term in BF,
we need two results on the auxiliary functions that were used to define f .

Lemma 4.4.3. For all ?-terms t?, u?, fx1 (t?, u?) is a ?-term and

EqFLXL ` fx1 (t?, u?) = t? ⊕r u?.
Proof. Proof by induction on n, the number of atoms in the second argument of fx1 .

Base case: If u? is an atom the result follows trivially.

Inductive step: Assume that the result holds if the second argument of fx1 has n atoms (IH). Consider
the ?-term u? having n + 1 atoms. u? is of the form s? ⊕r an+1 for some ?-term s? with n atoms.
We derive that

fx1 (t?, u?) = fx1 (t?, s? ⊕r an+1) by Definition 4.4.2
= fx1 (t?, s?) ⊕r an+1 by Definition 4.4.2
= (t? ⊕r s?) ⊕r an+1, by IH

By IH we know that fx1 (t?, s?) is a ?-term, so also fx1 (t?, u?) = fx1 (t?, s?) ⊕r an+1 is a ?-term.

Lemma 4.4.4. For all t, u in BF, fx(t, u) is a BF-term and

EqFLXL ` fx(t, u) = t ⊕r u.
Proof. If t is F and u is a BF-term, we find that fx(F, u) = u is a BF-term as well and we derive
that fx(F, u) = u

(X4)
= u ⊕r F

(Aux9)
= F ⊕r u.

If t isT and u ∈ {T,F}, we find that fx(T, u) ∈ {T,F} is a BF-term. By (X1) and (X4) it follows
easily that EqFLXL ` fx(T, u) = T⊕r u. If u is of the form u? ⊕r uB , we find that fx(T, u? ⊕r uB) =
u∗ ⊕r fx(T, uB) is a BF-term because u? is a ?-term and because fx(T, uB) ∈ {T,F}. We derive

fx(T, u? ⊕r uB) = u? ⊕r fx(T, uB)

= u? ⊕r (T ⊕r uB) by the above
= (u? ⊕r T) ⊕r uB by (X2)
= (T ⊕r u?) ⊕r uB by (X3)
= T ⊕r (u? ⊕r uB) by (X2)

If t is of the form t? ⊕r tB and u is a Boolean constant, the result is derived similarly. If u is of
the form u? ⊕r u, we find that fx(t? ⊕r tB , u? ⊕r uB) = fx1 (t?, u?) ⊕r fx(tB , uB) is a BF-term by
Lemma 4.4.3 and because fx(tB , uB) ∈ {T,F}. We derive that

fx(t? ⊕r tB , u? ⊕r uB) = fx1 (t?, u?) ⊕r fx(tB , uB)

= (t? ⊕r u?) ⊕r (tB ⊕r uB) by Lemma 4.4.3 and the above
= (t? ⊕r (u? ⊕r tB)) ⊕r uB by (X2)
= (t? ⊕r (tB ⊕r u?)) ⊕r uB by (X3) or (Aux9)
= (t? ⊕r tB) ⊕r (u? ⊕r uB) by (X2)
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Theorem 4.4.5. For any t ∈ TALXL, f(t) is a BF-term and

EqFLXL ` f(t) = t.

Proof. Proof by induction on the complexity of closed terms.

Base case: If t ∈ {T,F} the result is trivial. If t is an atom the result follows by axiom (X4).

Inductive step: Assume that s, u ∈ TALXL are such that EqFLXL ` f(s) = s and EqFLXL ` f(u) =
u and that f(s) and f(u) are BF-terms (IH). If t is of the form s ⊕r u, f(s ⊕r u) = fx(f(s), f(u)) is
a BF-term by Lemma 4.4.4 and we derive that

fx(f(s), f(u)) = f(s) ⊕r f(u) by Lemma 4.4.4
= s ⊕r u by IH

Corollary 4.4.6. For any t ∈ TALXL,
xe(f(t)) = xe(t).

Proof. By Theorem 4.4.5 we have EqFLXL ` f(t) = t. By Theorem 4.2.8 and equation (22) we
find that f(t) =xe t. The result follows by definition of xe-congruence.

4.5 Properties of xe-trees

In this section we will prove some properties of xe-trees. By Corollary 4.4.6 it suffices to only
consider xe-trees of BF-terms. Consider a BF-term t with n atoms. We will show that xe(t) is a
complete binary tree of height n, that is, every internal node in xe(t) has two child nodes and all
leaves occur at the same depth. Furthermore, we will show that the internal nodes at the same depth
are labeled with the same atom and that there exactly two ways to label the leaves with T and F.

Lemma 4.5.1. Let t = ((((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r an+1) ⊕r tB be a BF-term with n + 1 atoms.
Then

xe(t) = xe(t′)[T 7→ (FE an+1 D T),F 7→ (TE an+1 D F)], (25)

with t′ = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB .
Proof. We show that EqFLXL ` t = t′ ⊕r an+1. The result follows by Theorem 4.2.8, equation (22)
and the definition of xe-congruence. We derive that

t = ((((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r an+1) ⊕r tB
= ((((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r (an+1 ⊕r tB) by (X2)
= ((((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r (tB ⊕r an+1) by (X3) or (Aux9)
= ((((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB) ⊕r an+1 by (X2)
= t′ ⊕r an+1
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Lemma 4.5.2. Let t = (((a1 ⊕r a2)⊕r . . .)⊕r an)⊕r tB be a BF-term with n atoms. The height of xe(t)
is n. In xe(t) each internal node has two child nodes, there are 2i nodes at depth i ∈ {0, 1, . . . , n−1}
that are all labeled with atom ai+1 and there are 2n leaves at depth n labeled with T and F.

Proof. Proof by induction on n, the number of atoms in t.

Base case: If n = 1, the evaluation tree of t is either (T E a1 D F) or (F E a1 D T). The result
follows trivially.

Inductive step: Assume that the result holds for the xe-tree of any BF-term with n atoms (IH).
Consider a BF-term t = ((((a1 ⊕r a2)⊕r . . .)⊕r an)⊕r an+1)⊕r tB with n+1 atoms. By Lemma 4.5.1
we can use equation (25), with t′ = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB .

Observe that xe(t′) is a tree of height n by IH. So xe(t) is a tree of height n+ 1 by equation (25).
Let i ∈ {0, 1, . . . , n − 1}. By IH we know that the result holds for the nodes at depth i in xe(t′).
Because level i of xe(t) is exactly level i of xe(t′), the result follows for the nodes at depth i in xe(t).
We know by IH that there are 2n leaves at depth n in xe(t′), with labels T or F. By equation (25)
we know that all these leaves are replaced by (FE an+1 D T) or (TE an+1 D F) in xe(t). So there
are 2n nodes with two child nodes and label an+1 at depth n in xe(t) and 2 · 2n = 2n+1 leaves with
values T and F at depth n+ 1 in xe(t).

The following corollary will be useful in Section 5.7.

Corollary 4.5.3. Let t be a BF-term with n atoms. Each internal node at depth n − 1 in xe(t) has
a child node with label T and a child node with label F. No other internal node in xe(t) has child
nodes with labels T or F.

Let t be a BF-term with n atoms. By the previous lemma, all the 2n leaves of xe(t) are at depth
n in xe(t) and can therefore be unambiguously ordered from left to right. The following lemma is
about the labels of the leaves of xe(t).

Lemma 4.5.4. Let t = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB be a BF-term with n atoms and let Lk be the
kth leaf from the left in xe(t), for k ∈ {1, 2, . . . , 2n}. For every i, j with i ∈ {0, 1, . . . , n− 1} and
j ∈ {1, 2, . . . , 2i}, the labels of Lj and Lj + 2i have opposite values.

Proof. Proof by induction on n, the number of atoms in t.

Base case: If n = 1, the evaluation tree of t is either (TE a1 D F) or (FE a1 D T). We easily find
that the result holds for i = 0 and j = 1, because the labels of L1 and L2 have opposite values.

Inductive step: Assume that the result holds for any BF-term with n atoms (IH). Consider a BF-term
t = ((((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r an+1) ⊕r tB with n+ 1 atoms. Again we use equation (25), with
t′ = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB .

LetMk1 be the kth1 leaf from the left in xe(t′), for k1 ∈ {1, 2, . . . , 2n}, and let Lk2 be the kth2 leaf
from the left in xe(t), for k2 ∈ {1, 2, . . . , 2n+1}. The result is trivial if i = 0 and j = 1, because
each node with label an+1 branches to a T-leaf and to a F-leaf.

Now pick i ∈ {1, . . . , n} and j ∈ {1, . . . , 2i} arbitrarily. The node that branches to Lj replaced
leaf M⌈ j

2

⌉ and the node that branches to Lj + 2i replaced leaf M⌈ 2i+j
2

⌉ = M
(
⌈
j
2

⌉
+ 2i−1)

by
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equation (25). Because i− 1 ≤ n− 1 and
⌈
j
2

⌉
≤ 2i−1, we know by IH that the labels ofM⌈ j

2

⌉ and
M

(
⌈
j
2

⌉
+ 2i−1)

in xe(t′) have opposite values. So by equation (25) one of these leaves is replaced

by (TE an+1 D F) and the other one by (FE an+1 DT). Because Lj and Lj + 2i are either both a
left branch (if j is odd) or a right branch (if j is even), we conclude that the labels of Lj and Lj + 2i

in xe(t) have opposite values.

By the previous lemma we find that the label of every leaf is known if the label of one of the leaves
is known. In the next lemma we show that we can easily determine the label of the leftmost leaf in
xe(t).

Lemma 4.5.5. Let t = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB be a BF-term with n atoms and let lef(xe(t))
be the label of the leftmost leaf in xe(t). Then,

lef(xe(t)) =


F if n is odd and tB = T,
T if n is odd and tB = F,
tB if n is even.

Proof. Proof by induction on n, the number of atoms in t.

Base case: Let n = 1. If tB = T, we find that lef(xe(a1 ⊕r T)) = lef((FE a1DT)) = F. The result
for tB = F follows similarly.

Inductive step: Assume that the result holds for any BF-term with n atoms (IH). Let t = ((((a1 ⊕r
a2) ⊕r . . .) ⊕r an) ⊕r an+1) ⊕r tB be a BF-term with n+ 1 atoms. Again we use equation (25), with
t′ = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB .

If n is odd (so n + 1 is even) and tB = T, we find that lef(xe(t′)) = F by IH. By equation (25)
we know that each F-leaf of xe(t′) is replaced by (TE an+1 D F) in xe(t), so lef(xe(t)) = T = tB .
The cases where tB = F and n is even follow similarly.

4.6 An equational axiomatization of FLXL

Before we show that EqFLXL axiomatizes FLXL for closed terms, we define a function that maps
any tree in xe[TALXL] to a BF-term.

Definition 4.6.1. We define g : TA → BF by

g(X) =


T if X = T,
F if X = F,
(((b1 ⊕r b2) ⊕r . . .) ⊕r bn) ⊕r g(xe(lef(X) ⊕r T)) if n is odd,
(((b1 ⊕r b2) ⊕r . . .) ⊕r bn) ⊕r g(xe(lef(X))) if n is even,

where n ≥ 1 is the height of X and bi is the label of the 2i−1 nodes at depth i− 1 in X .
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We now show that g inverts evaluation trees of terms in BF correctly.

Theorem 4.6.2. For all t in BF,
g(xe(t)) ≡ t.

Proof. If t ∈ {T,F}, then xe(t) = t and g(xe(t)) ≡ t follows trivially. Assume that t is of the form
(((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB for some odd n ≥ 1. The case where n is even follows similarly.

First notice that the atom ai in t is the label of all the 2i−1 nodes at depth i − 1 in xe(t) by
Lemma 4.5.2, for i ∈ {1, 2, . . . , n}. So by definition of g we find that the atom bi in g(xe(t)) is equal
to the atom ai in t.

We now argue that xe(lef(xe(t)) ⊕r T) = xe(tB). If tB = T, we find by Lemma 4.5.5 that
lef(xe(t)) = F. Then xe(F ⊕r T) = xe(T) follows because F ⊕r T

(X3)
=xe T ⊕r F

(X4)
=xe T and by definition

of xe-congruence. The case for tB = F follows similarly by axiom (X1).

Finally, we find that

g(xe(t)) ≡ (((b1 ⊕r b2) ⊕r . . .) ⊕r bn) ⊕r g(xe(lef(xe(t)) ⊕r T))

≡ (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r g(xe(tB)) by the above
≡ (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB

Using the results from Theorem 4.4.5 and Theorem 4.6.2, we show that EqFLXL constitutes an
equational axiomatization of FLXL for closed terms.

Theorem 4.6.3. For all t, u ∈ TALXL,

EqFLXL ` t = u ⇐⇒ FLXL ` t = u.

Proof.
‘=⇒’:
Follows by Theorem 4.2.8.

‘⇐=’:
Assume that FLXL ` t = u. Then t =xe u by equation (22). By Theorem 4.4.5 we find that
EqFLXL ` f(t) = t and EqFLXL ` u = f(u). By ‘=⇒’ and equation (22) we have f(t) =xe t
and f(u) =xe u, so also f(t) =xe f(u) by transitivity. So xe(f(t)) = xe(f(u)) by definition of
xe-congruence. By Theorem 4.6.2 it follows that f(t) ≡ g(xe(f(t)) = g(xe(f(u)) ≡ f(u). So f(t)
and f(u) are syntactically equivalent and thus EqFLXL ` f(t) = f(u). By transitivity it follows
that EqFLXL ` t = u.

By equation (22) this yields the following completeness result.

Corollary 4.6.4. For all t, u ∈ TALXL,

EqFLXL ` t = u ⇐⇒ t =xe u.
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Chapter 5

Expressiveness of `XOR and
SCL-connectives modulo FVC

In this chapter we investigate the expressiveness modulo free valuation congruence (FVC) of terms
over the signatures Σi(A) we considered so far (for i ∈ {CP,SCL,LNL,LXL}) and the new
combined signature ΣLXSCL(A) = {T,F, a,¬, ∧qa , ∨qa , ⊕r | a ∈ A}. We will use the shorter phrase
“expressible over Σi(A)” to abbreviate “expressible over Σi(A) modulo FVC”.
In Section 5.1 we provide a set of equational axioms for terms over ΣLXSCL(A). In Section 5.2 we
discuss evaluation-unanimous terms. In Section 5.3 and Section 5.4 we discuss expressibility of
subtrees in se[TASCL] and other matters. In Section 5.5 we characterize which terms over ΣLXL(A) are
expressible over ΣSCL(A), in Section 5.6 which terms over ΣLXSCL(A) are expressible over ΣSCL(A)
and in Section 5.7 which terms over ΣLXSCL(A) are expressible over ΣLXL(A). Finally, in Section 5.8
we show that the term b / a . a ∈ TACP is not expressible over ΣLXSCL(A).

The sets of evaluation trees corresponding to closed terms over the different signatures are related
as depicted in the Venn diagram in Figure 5.1.

nse
[
TALNL

]se
[
TASCL

]
se
[
TALXSCL

]

xe
[
TALXL

]

ce
[
TACP
]

Figure 5.1: Venn diagram of sets of evaluation trees
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5.1 FLXSCL and equational axioms

In the following we will not distinguish between the different evaluation functions ce, se, nse and xe.
Instead, we refer to the evaluation tree of a closed term t over any signature by se(t). Let TALXSCL be
the set of closed terms over ΣLXSCL(A). Terms in TALXSCL are interpreted as se-trees by combining the
original definition of se with the definition of xe. The abbreviation LXSCL stands for left-sequential
xor and short-circuit logic, and FLXSCL stands for free LXSCL.

We redefine se-congruence on TALXSCL and use this congruence relation to define expressibility
modulo FVC.

Definition 5.1.1. The binary relation se-congruence, notation =se, is defined on TALXSCL as follows:

t =se u ⇐⇒ se(t) = se(u)

Definition 5.1.2. A closed term t is expressible modulo free valuation congruence over a signature
Σi(A) if there is a closed term u over Σi(A) such that t =se u. We say that t is expressible by u.

Sometimes we use the equivalent fact that se(t) = se(u) to argue that t is expressible by u.

To investigate expressiveness of terms over ΣLXSCL(A), we need to be able to show that a closed
term over ΣLXSCL(A) is se-congruent to a closed term over ΣSCL(A) or ΣLXL(A), or not. To this end,
we first provide a basic set of axioms, named EqFLXSCL, for equations over ΣLXSCL(A) in Table 5.1.
Then we list a set of equations over ΣLXSCL(A) in Table 5.2 and give their EqFLXSCL-derivations.
Finally, we show that EqFLXSCL is sound with respect to se-congruence for closed-term equations
over ΣLXSCL(A).

x ∨qa y = ¬(¬x ∧qa ¬y) (A1)
T ∧qa x = x (A2)
x ∨qa F = x (A3)
F ∧qa x = F (A4)

(x ∧qa y) ∧qa z = x ∧qa (y ∧qa z) (A5)
(x ∧qa y) ∨qa (z ∧qa F) = (x ∨qa (z ∧qa F)) ∧qa (y ∨qa (z ∧qa F)) (A8)

(x ⊕r y) ⊕r z = x ⊕r (y ⊕r z) (X2)
x ⊕r T = T ⊕r x (X3)

¬x = x ⊕r T (AX1)
((x ∨qa T) ∧qa y) ⊕r z = (x ∨qa T) ∧qa (y ⊕r z) (AX2)

x ⊕r (y ∧qa F) = (x ∧qa (y ∨qa T)) ∨qa (y ∧qa F) (AX3)

Table 5.1: EqFLXSCL, a set of equational axioms over ΣLXSCL(A)

Note that the name of EqFLXSCL suggests that it is also a set of axioms for FLXSCL, the equational
theory that is axiomatized by the union of the axioms of FSCL and FLXL, thus by CP ∪ {¬x =
F / x . T, x ∧qa y = y / x . F, x ⊕r y = (F / y . T) / x . y}.
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We now elaborate on the axioms of EqFLXSCL. This set of axioms is a combination of EqFSCL-
axioms, EqFLXL-axioms and new axioms for equations with connectives in each of ΣSCL(A) and
ΣLXL(A). Axiom (AX1) characterizes negation over ΣLXL(A). In axiom (AX2) the left-hand side
requires evaluation of (s∨qa T)∧qa t and the evaluation result is determined by u, while in the right-hand
side the evaluation result is determined by t ⊕r u after evaluating s ∨qa T. Axiom (AX3) states that if
the second argument of ⊕r always evaluates to F, then the expression s ⊕r (u ∧qa F) is expressible in
terms of s, u and constants and connectives in ΣSCL(A).

Before we show that the equations in Table 5.2 are derivable from EqFLXSCL, we argue that
EqFLXSCL satisfies the duality principle for equations overΣSCL(A). Following the line of reasoning
from Section 2.4, it suffices to show that (A1), (Aux1) and (Aux2) are derivable from EqFLXSCL.

In Section 2.4 we mentioned the result from [PS18, Prop.2.1.8] that (Aux1), (Aux3), (Aux4) and
(Aux5) are derivable from {(A1), . . . , (A5)} and that (Aux2) is derivable from {(A1), . . . , (A5), (A7)}.
We now sharpen this result by showing that (Aux2) is derivable from {(A1), . . . , (A5)}.

Proposition 5.1.3. {(A1), . . . , (A5)} ` (Aux2).

Proof. The proof is distilled from output of the theorem prover Prover9 [McC08].

¬¬x = ¬(¬¬¬x ∧qa ¬F) by (Aux4)
= ¬(¬¬¬x ∧qa T) by (Aux3)
= ¬(¬¬¬x ∧qa (T ∧qa T)) by (A2)
= ¬((¬¬¬x ∧qa T) ∧qa T) by (A5)
= ¬((¬¬¬x ∧qa ¬F) ∧qa ¬F) by (Aux3)
= ¬(¬x ∧qa ¬F) by (Aux5)
= x by (Aux4)

By the above and because {(A1), . . . , (A5)} ⊆ EqFLXSCL, we find that (A1), (Aux1) and
(Aux2) are derivable from EqFLXSCL. So EqFLXSCL satisfies the duality principle for equations
over ΣSCL(A).

Proposition 5.1.4. The equations in Table 5.2 are derivable from EqFLXSCL.

Proof. All proofs are distilled from output of the theorem prover Prover9 [McC08]. Here we show
that axiom (A6) is derivable from EqFLXSCL, for the remaining proofs we refer to Appendix C.

¬x ∧qa F = ¬¬(¬x ∧qa ¬T) by (Aux1) and (Aux2)
= ¬(x ∨qa T) by (A1)
= ¬(x ∨qa (T ∨qa (x ∧qa F))) by (A4)dl

= ¬((x ∨qa T) ∨qa (x ∧qa F)) by (A5)dl

= ¬((T ∧qa (x ∨qa T)) ∨qa (x ∧qa F)) by (A2)
= ¬(T ⊕r (x ∧qa F)) by (AX3)
= ¬((x ∧qa F) ⊕r T) by (X3)
= ¬¬(x ∧qa F) by (AX1)
= x ∧qa F by (Aux2)
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¬x ∧qa F = x ∧qa F (A6)
(x ∧qa F) ∨qa y = (x ∨qa T) ∧qa y (A7)

T ⊕r T = F (X1)
x ⊕r F = x (X4)

(x ∨qa T) ⊕r y = (x ∨qa T) ∧qa ¬y (Eq1)
(x ∧qa F) ⊕r y = (x ∧qa F) ∨qa y (Eq2)
x ⊕r (y ∨qa T) = (¬x ∧qa (y ∨qa T)) ∨qa (y ∧qa F) (Eq3)
x ⊕r (y ∨qa T) = ¬(x ⊕r (y ∧qa F)) (Eq4)

Table 5.2: Equations that are derivable from EqFLXSCL

We turn to the last result of this section. We will show that EqFLXSCL is sound with respect to
se-congruence for closed terms. First we provide a modelM′ for EqFLXSCL that expands the model
M for EqFLXL from Definition 4.2.6 and show that EqFLXSCL is sound for M′.

Definition 5.1.5. Let M′ be the ΣLXSCL(A)-algebra with domain D′ = {se(t) | t ∈ TALXSCL},
expanding the model M from Definition 4.2.6, in which the connectives ¬, ∧qa and ∨qa are interpreted
by

J¬tKM
′

= JtKM
′[
T 7→ F,F 7→ T

]
,

Jt ∧qa uKM
′

= JtKM
′[
T 7→ JuKM

′]
,

Jt ∨qa uKM
′

= JtKM
′[
F 7→ JuKM

′]
.

Lemma 5.1.6. For all terms t, u over ΣLXSCL(A),

EqFLXSCL ` t = u =⇒ M′ � t = u.

Proof. Proof by induction on n, the length of the derivation.

Base case: Assume that we have a derivation EqFLXSCL ` t = u of length one. If t = u is derived
using reflexivity, the result follows trivially. Otherwise t = u is an axiom of EqFLXSCL. We
now argue that M′ satisfies all the axioms of EqFLXSCL. For the axioms that are also in EqFSCL
we refer to [PS18, Thm.2.1.4]. For the axioms that are also in EqFLXL we refer to the proof of
Lemma 4.2.7. Below we show that M′ satisfies (AX1). The proofs for (AX2) and (AX3) can be
found in Appendix C. Fix an interpretation i of variables. Then,

J¬xKM
′,i = JxKM

′,i
[
T 7→ F,F 7→ T

]
by 5.1.5

= JxKM
′,i
[
T 7→ JTKM

′
[T 7→ F,F 7→ T],F 7→ JTKM

′]
by (3)

= Jx ⊕r TKM
′,i. by 4.2.6

Because i was chosen arbitrarily, we have M′ � (AX1).
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Inductive step: Consider a derivation of length n > 1. If EqFLXSCL ` t = u is derived using
symmetry, transitivity, congruence with ⊕r or substitution, we refer to the proof of Lemma 4.2.7. For
derivations using congruence with ¬, ∧qa and ∨qa , we refer to [PS18, Thm.2.1.4].

Using the previous lemma, soundness of EqFLXSCL with respect to se-congruence follows easily.

Theorem 5.1.7. For any t, u ∈ TALXSCL,

EqFLXSCL ` t = u =⇒ t =se u.

Proof. By Lemma 5.1.6 it suffices to show that M′ � t = u ⇐⇒ t =se u. Note that we have
JtKM

′
= se(t) for any t ∈ TALXSCL (this follows easily by structural induction). Therefore,M′ � t = u

holds if and only if JtKM′
= JuKM

′ , if and only if se(t) = se(u), if and only if t =se u by
Definition 5.1.1.

5.2 Evaluation-unanimous terms

Many expressibility results that will be proved in this chapter deal with closed terms whose evaluation
trees have only T-leaves or only F-leaves. We now introduce some terminology for this property.
Definition 5.2.1. Consider a closed term t over any signature.

1. If se(t) has only T-leaves, then t is called T-unanimous.

2. If se(t) has only F-leaves, then t is called F-unanimous.

3. If t is T-unanimous or F-unanimous, then t is called evaluation-unanimous.

Lemma 5.2.2. If a closed term t is T-unanimous, then t =se t ∨qa T. If t is F-unanimous, then
t =se t ∧qa F.

Proof. If t is T-unanimous, then se(t) has only T-leaves. So se(t ∨qa T) = se(t)[F 7→ T] = se(t)
because there are no F-leaves in se(t). The case where t is F-unanimous follows similarly.

Lemma 5.2.3. A closed term t = s ⊕r u in TALXSCL is evaluation-unanimous if and only if s and u
are evaluation-unanimous.

Proof.
‘=⇒’
Assume that s and u are evaluation-unanimous. Recall from Definition 4.1.3 that

se(s ⊕r u) = se(s)[T 7→ se(u)[T 7→ F,F 7→ T],F 7→ se(u)]. (26)

If the leaves of se(s) are all labeled with tB1 and the leaves of se(u) with tB2 , for tB1 , tB2 ∈ {T,F},
then the leaves of se(s ⊕r u) are all labeled with F if tB1 = tB2 and with T otherwise. So s ⊕r u is also
evaluation-unanimous.
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‘⇐=’
If s is not evaluation-unanimous, se(s) has T- and F-leaves. By equation (26) both se(u) and
se(u)[T 7→ F,F 7→ T] are subtrees of se(s ⊕r u). Irrespective of whether u is evaluation-unanimous
or not, se(s ⊕r u) has T- and F-leaves, so s ⊕r u is not evaluation-unanimous.

If u is not evaluation-unanimous, both se(u) and se(u)[T 7→ F,F 7→ T] have T- and F-leaves.
Because at least one of se(u) or se(u)[T 7→ F,F 7→ T] is a subtree of se(s ⊕r u), also se(s ⊕r u) has
T- and F-leaves. So se(s ⊕r u) is not evaluation-unanimous.

We now show that every evaluation-unanimous term is expressible over ΣSCL(A). We show this
using the SCL Normal Form that was defined in Definition 2.5.1.

Lemma 5.2.4.

1. For an evaluation tree X ∈ TA that has only T-leaves, there exists a T-term PT in SNF such
that se(PT) = X .

2. For an evaluation tree X ∈ TA that has only F-leaves, there exists a F-term P F in SNF such
that se(P F) = X .

Proof.

Statement 1:

Proof by induction on n, the height of X .

Base case: Ifn = 0, thenX = T. The result follows becauseT is aT-term in SNF byDefinition 2.5.1.

Inductive step: Assume that the result holds for any evaluation tree of height ≤ n that has only
T-leaves (IH). Further assume that X = (Y E a D Z) is an evaluation tree of height n + 1 that
has only T-leaves, for some a ∈ A. Clearly Y and Z are of height ≤ n and have only T-
leaves. So by IH we have Y = se(PT) and Z = se(QT) for T-terms PT, QT in SNF. The
result follows because (a ∧qa PT) ∨qa QT is a T-term in SNF by Definition 2.5.1 and because
se((a ∧qa PT) ∨qa QT) = se(a)[T 7→ se(PT)][F 7→ se(QT)] = se(a)[T 7→ Y ][F 7→ Z] = X ,
where the last equality holds because Y has no F-leaves.

The proof of Statement 2 follows similarly.

5.3 Expressibility of SCL-subtrees

We will show that each subtree of an evaluation tree in se[TASCL] is also in se[TASCL]. To this end,
we first define a function fr that takes a term t ∈ TASCL as input and returns a term u ∈ TASCL such
that se(u) is equal to the subtree of se(t) whose root is labeled with r, for some r ∈ A. If r occurs
multiple times in t, we can number each occurrence of r to establish uniqueness. So we assume
WLOG that the atom r is unique in t.
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Definition 5.3.1. Let r ∈ A. We define fr : TASCL → TASCL by

fr(t) = t if r is the root of se(t),

otherwise

fr(¬t) = ¬fr(t).

fr(t ∧qa u) =

{
fr(t) ∧qa u if r in t,
fr(u) if r in u.

fr(t ∨
qa
u) =

{
fr(t) ∨qa u if r in t,
fr(u) if r in u.

We now show that the function fr works correctly.

Lemma 5.3.2. Let X = se(t) for some t ∈ TASCL. For every subtree X ′ of X with root r ∈ A,

se(fr(t)) = X ′.

Proof. Proof by induction on the complexity of evaluation trees in se[TASCL].

Base case: If se(t) = (TE r D F) we find that se(t) is the only subtree of se(t) of which the root is
an atom. Because r is the root of se(t), we have se(fr(t)) = se(t).

Inductive step: Let Y = se(s) and Z = se(u) be evaluation trees of s, u ∈ TASCL and assume that
the result holds for every subtree Y ′ of Y and every subtree Z ′ of Z (IH).

Let X = se(¬s) = Y [T 7→ F,F 7→ T] and consider an arbitrary subtree X ′ of X with root r.
Note that X ′ = Y ′[T 7→ F,F 7→ T], where Y ′ is the subtree of Y with root r. We find that

X ′ = Y ′[T 7→ F,F 7→ T]

= se(fr(s))[T 7→ F,F 7→ T] by IH
= se(¬fr(s)) by Definition 2.3.3
= se(fr(¬s)) by Definition 5.3.1

Let X = se(s ∧qa u) = Y [T 7→ Z] and consider an arbitrary subtree X ′ of X with root r. There
are two options. If X ′ is a subtree of Z, we find that

X ′ = se(fr(u)) by IH
= se(fr(s ∧qa u)) by Definition 5.3.1

Otherwise the root of X is a node in Y . Then X ′ = Y ′[T 7→ Z], where Y ′ is the subtree of Y with
root r, and

X ′ = Y ′[T 7→ Z]

= se(fr(s))[T 7→ se(u)] by IH
= se(fr(s) ∧qa u) by Definition 2.3.3
= se(fr(s ∧qa u)) by Definition 5.3.1

The case where X = se(s ∨qa u) = Y [F 7→ Z] follows similarly.
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Theorem 5.3.3. Let t, u ∈ TALXSCL such that se(u) is a subtree of se(t). If t is expressible over
ΣSCL(A), then u is also expressible over ΣSCL(A).

Proof. Because t is expressible over ΣSCL(A) there is a term t′ ∈ TASCL such that se(t) = se(t′).
Let r be the label of the root of se(u). By Lemma 5.3.2 we have se(u) = se(fr(t′)). Because
fr(t

′) ∈ TASCL we find that u is expressible over ΣSCL(A).

The contrapositive of this theorem is very important in the remainder of this chapter. We will
illustrate it with a simple example.

Example 5.3.4. Consider the terms a ∨qa (b ⊕r c) and b ⊕r c in TALXSCL and assume that b ⊕r c is not
expressible over ΣSCL(A). Because se(b ⊕r c) is a subtree of se(a ∨qa (b ⊕r c)) (depicted by Tree 2),
we find that a ∨qa (b ⊕r c) is not expressible over ΣSCL(A) by the contrapositive of Theorem 5.3.3.

a

T b

c

F T

c

T F

(Tree 2)

5.4 Special atom

If a closed term t is not evaluation-unanimous, the evaluation tree se(t) has T- and F-leaves. Clearly
there is an atom in t such that there are T- and F-leaves below a node in se(t) that is labeled with this
atom (take for instance the label of the root of se(t)). There is one such atom in t that will be very
useful in the remainder of this chapter, which we will call the special atom of t.

Definition 5.4.1. Let t ∈ TALXSCL such that t is not evaluation-unanimous. The special atom of t is
the rightmost atom in t that is the label of the root of a subtree of se(t) with T- and F-leaves.

Note that the special atom is unique by definition. Let a be the special atom of a term t ∈ TALXSCL
that is not evaluation-unanimous. If a occurs multiple times in t, we can number each occurrence of
a to establish uniqueness. We will reason about the special atom of a term t and the special node of
an evaluation tree se(t). We refer to the special atom by the unique occurrence of the atom in t and
we refer to the special node by any node in se(t) that is labeled with the special atom.

In what follows, we will give an example to illustrate these notions and we show two properties
of evaluation trees that are rooted at a special node.

Example 5.4.2. Consider the term t = a ∨qa (b ⊕r c) in TALXSCL. The special atom of t is c and the
special node occurs twice in se(t) (depicted as Tree 2 on page 50). Let u = a ⊕r (a ∧qa (a ∨qa T)) in
TALXSCL. The special atom of u is (the second occurrence of) a. Because a occurs multiple times in
u, we number each occurrence of a to establish uniqueness. We find that a2 is the special atom of
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u = a1 ⊕r (a2 ∧qa (a3 ∨qa T)) and that the special node occurs twice in se(u) (depicted as Tree 3).

a1

a2

a3

F F

T

a2

a3

T T

F

(Tree 3)

Lemma 5.4.3. Let t ∈ TALXSCL and let X be a subtree of se(t) that is rooted at a special node of
se(t). Then X has a branch with only T-leaves and a branch with only F-leaves.

Proof. Proof by contraposition. Assume that the root ofX is labeled with a. IfX has only T-leaves
or only F-leaves, a is not the special atom of t by Definition 5.4.1. If X has a branch with T- and
F-leaves, thenX has a proper subtree with T- and F-leaves of which the root is labeled with a′ 6= a.
Because the node with label a′ is a descendant of the node with label a in se(t), we know that a′
occurs more to the right in t than a. Since there are T- and F-leaves below the node with label a′ in
se(t), a is not the special atom of t by Definition 5.4.1. In both cases we find that the node with label
a is not a special node of se(t).

Lemma 5.4.4. Let t ∈ TALXSCL and let X = (Y E a D Z) be a subtree of se(t) that is rooted at a
special node of se(t). Then there is a literal term P ` in SNF such that X = se(P `).

Proof. By Lemma 5.4.3 we find that X has a branch with only T-leaves and a branch with only
F-leaves. Assume that Y is the branch of X that has only T-leaves. The proof for Z follows
similarly. By Lemma 5.2.4.1 we know that there is a T-term PT in SNF such that se(PT) = Y
and by Lemma 5.2.4.2 we know that there is a F-term P F in SNF such that se(P F) = Z. The
result follows because (a ∧qa PT) ∨qa P F is a literal term in SNF by Definition 2.5.1 and because
se((a ∧qa PT) ∨qa P F) = se(a)[T 7→ se(PT)][F 7→ se(P F)] = se(a)[T 7→ Y ][F 7→ Z] = X , where the
last equality holds because Y has no F-leaves.

In the following we prove three more results that will be used in the remainder of this chapter.

Lemma 5.4.5. LetP ` be a literal term in SNF, letPT∧qa P ∗ be aT-∗-term in SNF and letX = se(P `)
be a subtree of se(PT ∧qa P ∗). Then the root of X is not a node in se(PT).

Proof. Suppose for contradiction that the root of X is a node in se(PT) and let Y be the subtree of
se(PT) that is rooted at this node. Observe that Y has height ≥ 1 and that Y has only T-leaves.
If we replace the T-leaves of Y by ∆, we find that X = Y [∆ 7→ se(P ∗)], where Y 6= ∆ and Y
has only ∆-leaves. Because a literal term is also a ∗-term, the existence of this decomposition of X
contradicts Lemma 2.6.2.

Lemma 5.4.6. Let t ∈ TASCL be a term that is not evaluation-unanimous and let X be a subtree of
se(t) that is rooted at a special node. Then X is a subtree of se(t) and X[T 7→ F,F 7→ T] is not.

Proof. By Corollary 2.5.3 and because t is not evaluation-unanimous we find that se(t) = se(PT ∧qa
P ∗) for a T-∗-term in SNF. We argue that it suffices to show the result for se(P ∗). By Lemma 5.4.4
we find thatX = se(P `) for a literal term P ` in SNF. Then alsoX[T 7→ F,F 7→ T] is the evaluation
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tree of a literal term. By Lemma 5.4.5 it follows that X and X[T 7→ F,F 7→ T] are subtrees of
se(P ∗) if they are subtrees of se(t).

We prove the result by induction on the number of `-terms in P ∗.

Base case: If P ∗ = P `, the special node of se(P ∗) is its root. SoX = se(P ∗) and the result follows
trivially.

Inductive step: Assume that the result holds for a P d-form (IH) and consider the ∗-term P ∗ ∧qa P d.
The case for a P c-form and the ∗-term P ∗ ∨qa P c follows similarly. By IH, X is a subtree of se(P d)
and X[T 7→ F,F 7→ T] is not. Clearly X is a subtree of se(P ∗ ∧qa P d). We now argue that
X[T 7→ F,F 7→ T] is not a subtree of se(P ∗ ∧qa P d). Suppose it is. Then its root must be a node in
se(P ∗). Either only F-leaves occur below the root ofX[T 7→ F,F 7→ T] in se(P ∗ ∧qa P ∗), or se(P d),
hence also X , is a subtree of X[T 7→ F,F 7→ T]. Both cases lead to a contradiction.

Corollary 5.4.7. Let t = s ⊕r u in TALXSCL such that s and u are not evaluation-unanimous and
u ∈ TASCL. Let X,Y be subtrees of se(t) such that X is rooted at a special node of se(u) and Y is
rooted at a special node of se(s). ThenX is only a subtree of the left branch of Y or only of the right
branch of Y .

Proof. Let Y ′ be the subtree of se(s) that has the same root as Y in se(s ⊕r u). We know that Y ′
has a branch with only T-leaves and a branch with only F-leaves by Lemma 5.4.3. By equation (26)
we find that Y is obtained from Y ′ by replacing the F-leaves of Y ′ with se(u), and the T-leaves of
se(s) with se(u)[T 7→ F,F 7→ T]. By Lemma 5.4.6 we know that X is a subtree of se(u) and that
X[T 7→ F,F 7→ T] is not. By Lemma 5.4.6 we also know that X[T 7→ F,F 7→ T] is a subtree of
se(u)[T 7→ F,F 7→ T] and thatX[T 7→ F,F 7→ T][T 7→ F,F 7→ T] = X is not. SoX is a subtree of
the branch of Y in which F-leaves were replaced and not of the branch of Y in which T-leaves were
replaced.

5.5 FLXL and FSCL

In this section we will characterize which closed terms t over ΣLXL(A) are expressible over ΣSCL(A).
In Lemma 5.5.6 we will first show exactly which closed terms of the form s ⊕r u in TALXSCL are
expressible over ΣSCL(A). The proof of Lemma 5.5.6 has several cases that will be covered in
Lemma 5.5.5. For the proof of Lemma 5.5.5.2 we need to knowwhen the evaluation treeX = se(PT)
of a T-term PT in SNF is a subtree of the evaluation tree Y = se(P ∗) of a ∗-term P ∗ in SNF. In
Corollary 5.5.3 we will show when this is the case. This corollary combines the results of the
following two lemmas.

Lemma 5.5.1. Let X = se(PT) be the evaluation tree of a T-term PT in SNF and let Y = se(P `)
be the evaluation tree of a literal term P ` in SNF. Then X is a subtree of Y if gT(X) is a subterm
of g`(Y ).

Proof. Let Y = (Z E a D Z ′) for some a ∈ A and assume that Z has only T-leaves. The case
where Z ′ has only T-leaves follows similarly. Note that X is a subtree of Y if and only if X is a
subtree of Z and that gT(X) is a subterm of g`(Y ) = (a ∧qa gT(Z)) ∨qa gF(Z ′) if and only if gT(X) is
a subterm of gT(Z). So it suffices to show that X is a subtree of Z if gT(X) is a subterm of gT(Z).
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Proof by induction on the complexity of gT(Z).

Base case: If gT(Z) = T, the result follows trivially.

Inductive step: Let gT(Z) = (b ∧qa gT(Z1)) ∨qa gT(Z2) and assume that the result holds for gT(Z1)
and gT(Z2) (IH). Consider a subterm gT(X) of gT(Z). If gT(X) = gT(Z), the result is trivial. If
gT(X) is a subterm of gT(Z1) or gT(Z2), we find by IH thatX is a subtree of Z1 or of Z2, hence of
Z = (Z1 E bD Z2).

Lemma 5.5.2. LetX = se(P `) be the evaluation tree of a literal termP ` in SNF and let Y = se(P ∗)
be the evaluation tree of a ∗-term P ∗ in SNF. The branch of X with T-leaves is a subtree of Y if

1. g`(X) is a subterm of g∗(Y ), and

2. there is no evaluation tree X ′ such that
(a) g∗(cd1(X ′)[∆ 7→ T]) ∧qa g∗(cd2(X ′)) is a subterm of g∗(Y ), and
(b) g`(X) is a subterm of g∗(cd1(X ′)[∆ 7→ T]).

Proof. Proof by induction on the complexity of g∗(Y ).

Base case: Assume that g∗(Y ) = g`(Y ). If g`(X) is a subterm of g∗(Y ) we find that g`(X) =
g`(Y ). So X is equal to Y and the branch of X with T-leaves is a subtree of Y .

Inductive step: Assume that the result holds for g∗(dd1(Y )[∆ 7→ F]), g∗(dd2(Y )) and g∗(cd2(Y ))
(IH). Assume that g∗(Y ) = g∗(dd1(Y )[∆ 7→ F]) ∨qa g∗(dd2(Y )) and that clauses 1 and 2 hold for
g∗(dd1(Y )[∆ 7→ F]). The case for g∗(dd2(Y )) follows similarly. By IH, the branch of X with
T-leaves is a subtree of dd1(Y )[∆ 7→ F]. Observe that Y = dd1(Y )[∆ 7→ dd2(Y )] = dd1(Y )[∆ 7→
F][F 7→ dd2(Y )], where the first equality holds by Theorem 2.6.6.2 and by Definition 2.6.10 and
where the second equality holds because dd1(Y ) has no F-leaves. So the branch ofX with T-leaves
in dd1(Y )[∆ 7→ F] is preserved in Y , so it is also a subtree of Y .

Assume that g∗(Y ) = g∗(cd1(Y )[∆ 7→ T]) ∧qa g∗(cd2(Y )). We find that clauses 1 and 2 cannot
hold for g∗(cd1(Y )[∆ 7→ T]) simultaneously. The proof where clauses 1 and 2 hold for g∗(cd2(Y ))
follows similar to the proof for g∗(dd2(Y )).

Corollary 5.5.3. LetX = se(PT) be the evaluation tree of a T-term PT in SNF and let Y = se(P ∗)
be the evaluation tree of a ∗-term P ∗ in SNF. Then X is a subtree of Y if

1. gT(X) is a subterm of g∗(Y ), and

2. there is no evaluation tree X ′ such that
(a) g∗(cd1(X ′)[∆ 7→ T]) ∧qa g∗(cd2(X ′)) is a subterm of g∗(Y ), and
(b) gT(X) is a subterm of g∗(cd1(X ′)[∆ 7→ T]).

Proof. Note that X is a subtree of Y if there is an evaluation tree Z = se(P `) for some literal term
P ` in SNF such that X is a subtree of Z and the branch of Z with T-leaves is a subtree of Y . The
result follows by Lemma 5.5.1 and Lemma 5.5.2.

Next, we give an example of Corollary 5.5.3.
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Example 5.5.4. Consider the T-term PT = (c ∧qa T) ∨qa T in SNF and the ∗-term P ∗ =
(
(a ∧qa T) ∨qa

F
)
∧qa ((¬b ∧qa ((c ∧qa T) ∨qa T)) ∨qa F

)
in SNF. Let X = se(PT) and Y = se(P ∗). Observe that

g∗(Y ) = g∗(cd1(Y )[∆ 7→ T]) ∧qa g∗(cd2(Y ))

=
(
(a ∧qa T) ∨qa F

)
∧qa ((¬b ∧qa ((c ∧qa T) ∨qa T)) ∨qa F

)
.

As we can see, gT(X) = PT is a subterm of g∗(Y ) and not a subterm of g∗(cd1(Y )[∆ 7→ T]). So
X is a subtree of Y by Corollary 5.5.3.

g∗



a

b

F c

T T

F


= g∗

 a

T F

 ∧qa g∗


b

F c

T T



Lemma 5.5.5. Consider a closed term t = s ⊕r u in TALXSCL.

1. If s and u are not evaluation-unanimous and u is expressible over ΣSCL(A), then t = s ⊕r u is
not expressible over ΣSCL(A).

2. If s is not expressible over ΣSCL(A) and u is T-unanimous, then t = s ∧qa u is not expressible
over ΣSCL(A).

3. If s is not expressible over ΣSCL(A) and u is F-unanimous, then t = s ⊕r u is not expressible
over ΣSCL(A).

4. If s is not expressible over ΣSCL(A) and u is T-unanimous, then t = s ⊕r u is not expressible
over ΣSCL(A).

Proof.

Statement 1:

Suppose for contradiction that t = s ⊕r u is expressible over ΣSCL(A). Then se(s ⊕r u) = se(P )
for some P in SNF by Corollary 2.5.3. By Lemma 5.2.3 we know that s ⊕r u is not evaluation-
unanimous. Therefore, P is a T-∗-term of the form PT ∧qa P ∗. So se(s ⊕r u) = se(PT ∧qa P ∗) has a
T-∗-decomposition 〈tsd1(se(s ⊕r u)), tsd2(se(s ⊕r u)〉 by Theorem 2.6.9, and

g(se(s ⊕r u)) = gT(tsd1(se(s ⊕r u))[∆ 7→ T]) ∧qa g∗(tsd2(se(s ⊕r u)))

by Definition 2.6.11. We will reach a contradiction by showing that g∗(tsd2(se(s ⊕r u))), hence also
g(se(s ⊕r u)), is undefined.

We will argue that tsd2(se(s ⊕r u)) has no cd. The proof that tsd2(se(s ⊕r u)) has no dd
follows similarly. Suppose for contradiction that tsd2(se(s ⊕r u)) has a ccd 〈Y, Z〉 such that
tsd2(se(s ⊕r u)) = Y [∆ 7→ Z], where Y has ∆- and F-leaves but no T-leaves, and where Z has both
T- and F-leaves. Before we reach a contradiction, we will prove three facts.

First of all, we show that there is no special node of se(s) in tsd1(se(s ⊕r u)). Suppose there
is. Then there are ∆-leaves in both the left branch and the right branch below this special node in
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tsd1(se(s⊕r u)). LetX be a subtree of se(u) that is rooted at a special node of se(u), soX is a subtree
of se(s ⊕r u). Then X = se(P `) for a literal term P ` in SNF by Lemma 5.4.4. By Lemma 5.4.5 we
know that the root of X cannot be a node in tsd1(se(s ⊕r u)), so X is a subtree of tsd2(se(s ⊕r u)).
Then X is a subtree of both the left branch and the right branch below the special node of se(s) in
se(s ⊕r u) = tsd1(se(s ⊕r u))[∆ 7→ tsd2(se(s ⊕r u))], which violates Corollary 5.4.7.

Secondly, there must be a root of se(u) in Y . Because no special node of se(s) occurs in
tsd1(se(s ⊕r u)) there is no root of se(u) in tsd1(se(s ⊕r u)). Suppose there is neither a root of se(u)
in Y . Then there is a F-leaf that is not below a root of se(u) in tsd2(se(s ⊕r u)) = Y [∆ 7→ Z] by
definition of Y , hence in se(s ⊕r u) = tsd1(se(s ⊕r u))[∆ 7→ tsd2(se(s ⊕r u))]. Because all the leaves
in se(s ⊕r u) are below a root of se(u) this cannot be the case.

Thirdly, special nodes of se(u) occur only in Z. Because no special node of se(s) occurs in
tsd1(se(s ⊕r u)), there is also no special node of se(u) in tsd1(se(s ⊕r u)). Suppose there is a special
node of se(u) in Y , and consider the subtree Y ′ of Y [∆ 7→ Z] that is rooted at this special node.
Then Y ′ either has Z as a proper subtree or it has only F-leaves. Both cases violate the result from
Lemma 5.4.3 that Y ′ has a branch with only T-leaves and a branch with only F-leaves.

We now have enough information to reach the first contradiction. Consider a root of se(u) in
Y . By Lemma 5.4.6 and equation (26) we know that only one of X and X[T 7→ F,F 7→ T] is a
subtree below this particular root in se(s ⊕r u), hence in tsd2(se(s ⊕r u)) = Y [∆ 7→ Z]. Because a
special node of se(u) occurs only in Z, this implies that only one of X and X[T 7→ F,F 7→ T] is a
subtree of Z. So we find that X and X[T 7→ F,F 7→ T] are not both a subtree of tsd2(se(s ⊕r u)),
hence not of se(s ⊕r u) = tsd1(se(s ⊕r u))[∆ 7→ tsd2(se(s ⊕r u))]. This contradicts the fact that
X and X[T 7→ F,F 7→ T] are both a subtree of se(s ⊕r u) by Lemma 5.4.6 and equation (26). So
tsd2(se(s ⊕r u)) has no cdd, hence no cd.

Since tsd2(se(s⊕r u)) has no cd and no dd, we compute g∗(tsd2(se(s⊕r u))) = g`(tsd2(se(s⊕r u)))
by Definition 2.6.11. The function g` is only defined for evaluation trees with a branch that has only
T-leaves and a branch that has only F-leaves. Because tsd2(se(s ⊕r u)) has a special node of se(s)
and because u is not evaluation-unanimous, we find that tsd2(se(s ⊕r u)) is not such a tree. So
g∗(tsd2(se(s ⊕r u)), hence also g(se(s ⊕r u)), is undefined. This contradicts our assumption that
s ⊕r u is expressible over ΣSCL(A).

Statement 2:

Because u is T-unanimous, u =se u ∨qa T by Lemma 5.2.2. Because =se is a congruence relation on
TALXSCL, we have s ∧qa u =se s ∧qa (u ∨qa T). Suppose for contradiction that s ∧qa (u ∨qa T) is expressible
over ΣSCL(A). We will reach a contradiction by showing that s is expressible over ΣSCL(A).

Since s ∧qa (u ∨qa T) is expressible over ΣSCL(A), we find that se(s ∧qa (u ∨qa T)) = se(P ) for some P
in SNF by Corollary 2.5.3. Because s is not expressible over ΣSCL(A), it is not evaluation-unanimous
by Lemma 5.2.4. So neither s ∧qa (u ∨qa T) is evaluation-unanimous. Therefore, P is a T-∗-term
of the form PT ∧qa P ∗. By Theorem 2.6.9 we find that se(s ∧qa (u ∨qa T)) = se(PT ∧qa P ∗) has a
T-∗-decomposition 〈tsd1(se(s ∧qa (u ∨qa T))), tsd2(se(s ∧qa (u ∨qa T)))〉, and by Definition 2.6.11 we
have

g(se(s ∧qa (u ∨qa T))) = gT(tsd1(se(s ∧qa (u ∨qa T)))[∆ 7→ T]) ∧qa g∗(tsd2(se(s ∧qa (u ∨qa T)))).

We argue that no root of se(u ∨qa T) is in tsd1(se(s ∧qa (u ∨qa T))). Suppose it is. Because
tsd2(se(s ∧qa (u ∨qa T))) has T- and F-leaves by Definition 2.6.8, there are T- and F-leaves below this
root in se(s ∧qa (u ∨qa T)) = tsd1(se(s ∧qa (u ∨qa T)))[∆ 7→ tsd2(se(s ∧qa (u ∨qa T)))], which contradicts
the fact that u ∨qa T is T-unanimous.
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By the above we find that se(u∨qa T) is a subtree of se(s∧qa (u∨qa T))) = tsd1(se(s∧qa (u∨qa T)))[∆ 7→
tsd2(s∧qa (u∨qa T)))] if and only if it is a subtree of tsd2(se(s∧qa (u∨qa T))). Note that se(u∨qa T) = se(QT)
for aT-termQT in SNF by Lemma 5.2.4 and that tsd2(se(s∧qa (u∨qa T))) = se(P ∗) by Theorem 2.6.9.
So by Corollary 5.5.3 we know when se(u ∨qa T) is a subtree of tsd2(se(s ∧qa (u ∨qa T))), hence of
se(s ∧qa (u ∨qa T)). If we replace all the subterms gT(se(u ∨qa T)) of g∗(tsd2(se(s ∧qa (u ∨qa T)))) that
meet the demands of Corollary 5.5.3 by T, we get a term s′ ∈ TASCL such that se(s) = se(s′). This
contradicts the fact that s is not expressible over ΣSCL(A). So s ∧qa (u ∨qa T) is not expressible over
ΣSCL(A).

Statement 3:

Because u is F-unanimous, u =se u ∧qa F by Lemma 5.2.2. Because =se is a congruence relation on
TALXSCL, we have s ⊕r u =se s ⊕r (u ∧qa F). Finally, by axiom (AX3) and Theorem 5.1.7 we find that
s ⊕r (u ∧qa F) =se (s ∧qa (u ∨qa T)) ∨qa (u ∧qa F). So it suffices to show that (s ∧qa (u ∨qa T)) ∨qa (u ∧qa F) is
not expressible over ΣSCL(A).

Suppose for contradiction that (s ∧qa (u ∨qa T)) ∨qa (u ∧qa F) is expressible over ΣSCL(A). Then its
negation ¬((s ∧qa (u ∨qa T)) ∨qa (u ∧qa F))

(A1)
=se ¬¬(¬(s ∧qa (u ∨qa T)) ∧qa ¬¬(¬u ∨qa ¬F))

(Aux2),(Aux3)
=se

¬(s ∧qa (u ∨qa T)) ∧qa (¬u ∨qa T) is also expressible over ΣSCL(A). By Lemma 5.5.5.2 we know that
s ∧qa (u ∨qa T) is not expressible over ΣSCL(A), so neither ¬(s ∧qa (u ∨qa T)) is. Then it follows by
Lemma 5.5.5.2 that also ¬(s ∧qa (u ∨qa T)) ∧qa (¬u ∨qa T) is not expressible over ΣSCL(A), which leads
to a contradiction.

Statement 4:

Because u is T-unanimous, u =se u ∨qa T and s ⊕r u =se s ⊕r (u ∨qa T). Suppose that s ⊕r (u ∨qa T) is
expressible over ΣSCL(A). Then also ¬(s ⊕r (u ∨qa T))

(Eq4)
=se ¬¬(s ⊕r (u ∧qa F))

(Aux2)
=se s ⊕r (u ∧qa F) is

expressible over ΣSCL(A), which violates the result from Lemma 5.5.5.3.

We now show exactly which closed terms of the form s ⊕r u are expressible over ΣSCL(A). Then
we will characterize which terms t ∈ TALXL are expressible over ΣSCL(A).

Lemma 5.5.6. A closed term t = s ⊕r u in TALXSCL is expressible over ΣSCL(A) if and only if s or u
is evaluation-unanimous and s and u are expressible over ΣSCL(A).

Proof.
‘⇐=’
We will show that t = s ⊕r u is expressible by a term t′ containing only s, u and SCL-connectives
if s or u is evaluation-unanimous. The result follows by the assumption that s and u are expressible
over ΣSCL(A).

If s is T-unanimous, then s =se s ∨qa T by Lemma 5.2.2. We find that s ⊕r u =se (s ∨qa T) ⊕r u (Eq1)
=se

(s ∨qa T) ∧qa ¬u, where the first equality holds because =se is a congruence relation on TALXSCL and
the second by Theorem 5.1.7. If s is F-unanimous, then s =se s ∧qa F and s ⊕r u =se (s ∧qa F) ⊕r u (Eq2)

=se
(s ∧qa F) ∨qa u.

Similarly, if u is T-unanimous, then s ⊕r u =se s ⊕r (u ∨qa T)
(Eq3)
=se (¬s ∧qa (u ∨qa T) ∨qa (u ∧qa F)). If

u is F-unanimous, then s ⊕r u =se s ⊕r (u ∧qa F)
(AX3)
=se (s ∧qa (u ∨qa T)) ∨qa (u ∧qa F).
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‘=⇒’
Proof by contraposition. First assume that s and u are not evaluation-unanimous. If u is expressible
over ΣSCL(A), then t = s ⊕r u is not expressible over ΣSCL(A) by Lemma 5.5.5.1. If u is not
expressible over ΣSCL(A), the result follows by the contrapositive of Theorem 5.3.3 because se(u) is
a subtree of se(s ⊕r u) by equation (26).

Assume that s is not expressible over ΣSCL(A). The case where u is not evaluation-unanimous
is already covered because s is not evaluation-unanimous by Lemma 5.2.4. The cases where u is
F-unanimous and T-unanimous are covered by Lemma 5.5.5.3 and Lemma 5.5.5.4 respectively.

Finally, assume that u is not expressible over ΣSCL(A). The case where s is not evaluation-
unanimous is already covered. By equation (26), se(u) is a subtree of se(s ⊕r u) if s if F-unanimous
and se(¬u) is a subtree of se(s⊕r u) if s is T-unanimous. Because u is not expressible over ΣSCL(A),
neither ¬u is. In both cases the result follows by the contrapositive of Theorem 5.3.3.

Theorem 5.5.7. A closed term t ∈ TALXL is expressible over ΣSCL(A) if and only if the BF-term f(t)
has at most one atom.

Proof.
‘⇐=’
If f(t) has zero atoms, then f(t) ∈ {T,F} and the result is trivial. If f(t) has one atom, then f(t)
is expressible over ΣSCL(A) because a ⊕r F =se a by axiom (X4) and because a ⊕r T =se ¬a by
axiom (AX1).

‘=⇒’
Assume that f(t) = (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r tB has n ≥ 2 atoms. We show by induction on n
that ((a1 ⊕r a2) ⊕r . . .) ⊕r an is not expressible over ΣSCL(A). The result follows by Lemma 5.5.6.

Base case: Because a1 and a2 are not evaluation-unanimous, a1⊕r a2 is not expressible overΣSCL(A)
by Lemma 5.5.6.

Inductive step: Assume that ((a1 ⊕r a2) ⊕r . . .) ⊕r an is not expressible over ΣSCL(A) for some
n ≥ 2 (IH). By Lemma 5.5.6 we find that neither (((a1 ⊕r a2) ⊕r . . .) ⊕r an) ⊕r an+1 is expressible
over ΣSCL(A) .

Using this result, we can easily determine which terms t ∈ TALXSCL are expressible over ΣSCL(A)
and ΣLXL(A).

Corollary 5.5.8. The intersection se[TASCL] ∩ se[TALXL] is equal to {T,F, (TE aD F), (FE aD T) |
a ∈ A}.

Proof. Let t ∈ TALXL, so se(t) ∈ se[TALXL]. By Theorem 5.5.7 we know that se(t) ∈ se[TASCL] if and
only if theBF-term f(t) has atmost one atom, if and only if se(f(t)) ∈ {T,F, (TEaDF), (FEaDT) |
a ∈ A}.
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5.6 FLXSCL and FSCL

In this section we will characterize which closed terms t over ΣLXSCL(A) are expressible over
ΣSCL(A). First we introduce notation for T-unanimous and F-unanimous terms.

Definition 5.6.1. We refer to any T-unanimous term in TALXSCL as
∼
T. Similarly, we refer to any

F-unanimous term in TALXSCL as
∼
F.

To present the proof of Theorem 5.6.3 more clearly, we cover one case separately below.

Lemma 5.6.2. Let z ∈ TALXSCL such that z is not expressible over ΣSCL(A) and let v be a T-∗-term
in SNF of the form PT ∧qa P d. Then t = z ∧qa v is not expressible over ΣSCL(A).

Proof. Suppose for contradiction that z∧qa v =se z∧qa (PT∧qa P d) is expressible overΣSCL(A). We will
reach a contradiction by showing that z∧qa PT is expressible overΣSCL(A). Because z∧qa v is expressible
over ΣSCL(A), we find that se(z ∧qa v) = se(Q) for some Q in SNF by Corollary 2.5.3. Because z
and v are not evaluation-unanimous (because z is not expressible over ΣSCL(A), z is not evaluation-
unanimous by Lemma 5.2.4), neither z ∧qa v is evaluation-unanimous. SoQ is a T-∗-term of the form
QT ∧qa Q∗. So se(z ∧qa v) = se(QT ∧qa Q∗) has a T-∗-decomposition 〈tsd1(se(z ∧qa v)), tsd2(se(z ∧qa v)〉
by Theorem 2.6.9.

We argue that there is no special node of se(z) in tsd1(se(z ∧qa v)). If there is a special node of
se(z) in tsd1(se(z ∧qa v)), there will be T- and F-leaves in the left branch and the right branch below
this node in se(z ∧qa v) = tsd1(se(z ∧qa v))[∆ 7→ tsd2(se(z ∧qa v))] because tsd2(se(z ∧qa v)) has T- and
F-leaves. This cannot be the case because there is a branch with only F-leaves below each special
node of se(z) in se(z ∧qa v).

Because no special node of se(z) occurs in tsd1(se(z∧qa v)), se(P d) is a subtree of tsd2(se(z∧qa v)).
We write tsd2(se(z ∧qa v))[se(P d) 7→ ∆] for the evaluation tree tsd2(se(z ∧qa v)) in which each subtree
se(P d) is replaced by ∆. We will show that

〈Y, Z〉 = 〈tsd2(se(z ∧qa v))[se(P d) 7→ ∆], se(P d)〉

is the conjunction decomposition of tsd2(se(z ∧qa v)). First we argue that 〈Y,Z〉 is a candidate
conjunction decomposition. Obviously, tsd2(se(z ∧qa v)) = Y [∆ 7→ Z]. Furthermore, Y has ∆-
leaves, F-leaves because there is a branch with F-leaves below the special node of se(z), but no
T-leaves because all the T-leaves in tsd2(se(z ∧qa v)) are T-leaves of se(P d). Finally, Z = se(P d)
has both T- and F-leaves.

We now show that there is no other ccd 〈Y ′, Z ′〉 of tsd2(se(z ∧qa v)), where the height of Z ′ is
smaller than the height of Z = se(P d). We show this by a case distinction on the complexity of P d.

Let P d be a literal term. Then Z = se(P d) has a branch with only T-leaves and a branch with
only F-leaves. Since each T-leaf of tsd2(se(z ∧qa v)) = tsd2(se(z ∧qa (PT ∧qa P d))) is below a root of
se(P d), we find that each subtree of tsd2(se(z ∧qa v)) with T- and F-leaves is equal to se(P d) or has
se(P d) as a proper subtree. So there is no Z ′ with T- and F-leaves with a smaller height than Z.

LetP d be of the formP ∗∨qa P c. Suppose for contradiction that 〈Y ′, Z ′〉 is a ccd of tsd2(se(z∧qa v)),
where Z ′ has a smaller height than se(P d). Because Z ′ has a smaller height than se(P d), the root
of se(P d) is in Y ′. Let Y ′′ be the subtree of Y ′ that is rooted at the root of se(P d). Then
se(P d) = Y ′′[∆ 7→ Z ′]. By definition of Y ′ there is no T-leaf in Y ′′. There must be a ∆-leaf in Y ′′,
otherwise there are onlyF-leaves below the root of se(P d) in tsd2(se(z∧qa v)) = Y ′[∆ 7→ Z ′]. Finally,
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there must be a F-leaf in Y ′′, otherwise the existence of the decomposition se(P d) = Y ′′[∆ 7→ Z ′]
contradicts Lemma 2.6.2. By the above, we find that 〈Y ′′, Z ′〉 is a ccd of se(P d). Because se(P d)
has no conjunction decomposition by Theorem 2.6.6.2, hence no ccd, we reached a contradiction.

So 〈tsd2(se(z ∧qa v))[se(P d) 7→ ∆], se(P d)〉 is the conjunction decomposition of tsd2(se(z ∧qa v)).
By Definition 2.6.11 we find that

g(se(z ∧qa v)) = gT(tsd1(se(z ∧qa v))[∆ 7→ T]) ∧qa g∗(tsd2(se(z ∧qa v)))

= gT(tsd1(se(z ∧qa v))[∆ 7→ T]) ∧qa (g∗(tsd2(se(z ∧qa v))[se(P d) 7→ T]) ∧qa g∗(se(P d))
)

=
(
gT(tsd1(se(z ∧qa v))[∆ 7→ T]) ∧qa g∗(tsd2(se(z ∧qa v))[se(P d) 7→ T])

)
∧qa g∗(se(P d)),

where the last equality holds by axiom (A5). Note that gT(tsd1(se(z∧qa v))[∆ 7→ T])∧qa g∗(tsd2(se(z∧qa
v))[se(P d) 7→ T]) is a term in TASCL for z ∧qa PT. Because z is not expressible over ΣSCL(A), we
know by Lemma 5.5.5.2 that z ∧qa PT is not expressible over ΣSCL(A). We reached a contradiction,
so z ∧qa v is not expressible over ΣSCL(A).

Theorem 5.6.3. A closed term t ∈ TALXSCL is expressible overΣSCL(A) if and only if for each subterm
s ⊕r u of t either

1. s ⊕r u is expressible over ΣSCL(A), or

2. s ⊕r u is a subterm of some term z such that
(a) z is an evaluation-unanimous subterm of t, or
(b)

∼
T ∨qa z or

∼
F ∧qa z is a subterm of t.

Proof.
‘⇐=’
Assume that for any subterm s ⊕r u of t at least one of clause 1, 2a or 2b holds. Consider an arbitrary
such subterm. We will argue that we can replace s ⊕r u or a subterm of t of which s ⊕r u is a subterm
by a term v ∈ TASCL, while preserving the evaluation tree se(t). Because this can be done for every
subterm s ⊕r u of t, we find that t is expressible over ΣSCL(A).

If s ⊕r u is expressible over ΣSCL(A), there is a term v ∈ TASCL such that se(v) = se(s ⊕r u) and
we can replace s ⊕r u by v in t, while preserving the evaluation tree se(t).

If s ⊕r u is a subterm of some term z such that z is an evaluation-unanimous subterm of t, then z
is expressible over ΣSCL(A) by Lemma 5.2.4. So there is a term v ∈ TASCL such that se(v) = se(z)
and we can replace z by v in t.

Finally, consider the case where s ⊕r u is a subterm of a term z such that
∼
T ∨qa z is a subterm of t.

The case for
∼
F ∧qa z follows similarly. By Lemma 5.2.4 we know that there is a term v ∈ TASCL such

that se(v) = se(
∼
T) = se(

∼
T ∨qa z), where the last equality holds because se(

∼
T) has only T-leaves. So

we can replace
∼
T ∨qa z by v in t.

‘=⇒’
Assume that there is a subterm s ⊕r u of t that does not meet clauses 1, 2a and 2b. We pick the
last such subterm of t, so we can assume that no ⊕r occurs after s ⊕r u in t. We show that t is not
expressible over ΣSCL(A) by induction on the complexity of closed terms.

Base case: If t = s⊕r u, we know that t does not satisfy the first clause, hence that t is not expressible
over ΣSCL(A).
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Inductive step: Consider an arbitrary term z ∈ TALXSCL of which s ⊕r u is a subterm and assume that
z is not expressible over ΣSCL(A) (IH). Furthermore, take v ∈ TALXSCL arbitrarily.

Let t be of the form ¬z. Suppose for contradiction that t is expressible over ΣSCL(A), so there is
a term t′ ∈ TASCL such that t′ =se ¬z. Then ¬t′ =se ¬¬z

(Aux2)
= se z. Since ¬t′ ∈ TASCL it follows that

z is expressible over ΣSCL(A), which contradicts the IH.

Let t be of the form z ∧qa v. We assume that v is a term in TASCL because no ⊕r occurs after z in t.
Because s ⊕r u does not satisfy clause 2a we know that v is not F-unanimous. The case where v is
T-unanimous follows directly because z ∧qa v =se z ∧qa (v ∨qa T) and by Lemma 5.5.5.2.

If v is not evaluation-unanimous, there is a T-∗-term of the form PT ∧qa P ∗ in SNF such that
v =se P

T ∧qa P ∗. Suppose that P ∗ is of the form Q∗ ∧qa Qd. Then we can consider the shorter term
z ∧qa (PT ∧qa Q∗) because z ∧qa v =se z ∧qa (PT ∧qa (Q∗ ∧qa Qd))

(A5)
= se (z ∧qa (PT ∧qa Q∗)) ∧qa Qd. So we

let v be a T-∗-term in SNF of the form PT ∧qa P d. The result follows by Lemma 5.6.2

Let t be of the form z ∨qa v. Like before, we assume that v ∈ TASCL. Because s ⊕r u does not satisfy
clause 2a, we find that v is not T-unanimous. Note that z ∨qa v (A1)

=se ¬(¬z ∧qa ¬v). Because ¬v ∈ TASCL
is not F-unanimous, the result follows by the inductive steps for ¬z and z ∧qa v.

Let t be of the form v ∧qa z. Because s ⊕r u does not satisfy clause 2b, we know that v is not
F-unanimous. So se(z) is a subtree of se(v ∧qa z). Because z is not expressible over ΣSCL(A) by IH,
the result follows by the contrapositive of Theorem 5.3.3. The case for v ∨qa z follows similarly.

Finally, bet t be of the form v ⊕r z. If v is not T-unanimous, then se(z) is a subtree of se(v ⊕r z).
If v is T-unanimous, se(z)[T 7→ F,F 7→ T] = se(¬z) is a subtree of se(v ⊕r z). Because z and ¬z
are not expressible over ΣSCL(A) by IH and the inductive step for ¬z, the result follows in both cases
by the contrapositive of Theorem 5.3.3. Because we assumed that the connective ⊕r does not come
after s ⊕r u in t, we do not consider the case where t is of the form z ⊕r v.
Example 5.6.4. Consider the term t = (((a ⊕r b) ∨qa T) ⊕r c) ∧qa d. First note that z = (a ⊕r b) ∨qa T is
a T-unanimous subterm of t, so z is expressible over ΣSCL(A) by Lemma 5.2.4. Because z and c are
expressible over ΣSCL(A) and z is T-unanimous, the subterm z ⊕r c of t is expressible over ΣSCL(A)
by Lemma 5.5.6. So t is expressible over ΣSCL(A) by Theorem 5.6.3.
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5.7 FLXSCL and FLXL

In this section we will characterize which closed terms t over ΣLXSCL(A) are expressible over
ΣLXL(A). First we recall some results fromChapter 4. By Corollary 4.4.6 we find that t is expressible
over ΣLXL(A) if se(t) = se(t′) for some BF-term t′. By Lemma 4.5.2 we know that the evaluation
tree of a BF-term t′ with n atoms has height n, has 2i nodes at depth i ∈ {0, 1, . . . , n−1} that are all
labeled with the same atom and has 2n leaves at depth n. By Corollary 4.5.3 we know that any node
at depth n−1 in se(t′) has aT-leaf and a F-leaf as child nodes. Lemma 4.5.4 specifies how the leaves
of se(t′) are labeled. Namely, if Lk is the kth leaf from the left in se(t′), for k ∈ {1, 2, . . . , 2n},
then the labels of Lj and Lj + 2i have opposite values for every i, j with i ∈ {0, 1, . . . , n− 1} and
j ∈ {1, 2, . . . , 2i}. It follows that t is expressible over ΣLXL(A) if Lemma 4.5.2 holds for the nodes
of se(t) and if Lemma 4.5.4 holds for the leaves of se(t).

We introduced notation
∼
T and

∼
F for terms that are T-unanimous and F-unanimous in the previous

section. We now introduce notation for terms of which the evaluation tree is a single leaf.

Definition 5.7.1. We refer to any term t ∈ TALXSCL of which se(t) = T as T̂. Similarly, we refer to
any term t ∈ TALXSCL of which se(t) = F as F̂.

Before we turn to the main result of this section, we prove two lemmas about expressibility of
closed terms of the form s ∧qa u and s ∨qa u.

Lemma 5.7.2. Let s, u ∈ TALXSCL such that se(s) and se(u) have depth ≥ 1. If Lemma 4.5.2 does
not hold for the nodes of se(s) and se(u), then t = s ∧qa u and t = s ∨qa u are not expressible over
ΣLXL(A).

Proof. We show the result for t = s ∧qa u. The proof for t = s ∨qa u follows similarly.

Assume that Lemma 4.5.2 does not hold for the nodes of se(s) because there are nodes at the
same depth in se(s) with different labels. This will also be the case in se(s ∧qa u), so the result follows
by Lemma 4.5.2.

Assume that Lemma 4.5.2 does not hold for the nodes of se(s) because there are less than 2i

nodes at depth i in se(s), for some i ∈ {0, 1, . . . , n− 1}. Let n be the height of se(s) and let m be
the height of se(u). If there are still less than 2i nodes at depth i in se(s ∧qa u), the result follows by
Lemma 4.5.2. If there are 2i nodes at depth i in se(s ∧qa u) for every i ∈ {0, 1, . . . , n − 1}, there
are two options. If the height of se(s ∧qa u) is n + m, there are leaves at depth i + m. Because
i+m < n+m, we find that there are leaves in se(s ∧qa u) that are not at depth n+m and the result
follows by Lemma 4.5.2. If the height of se(s ∧qa u) is< n+m, there are nodes in se(s ∧qa u) at depth
n− 1 that have only F-leaves as children, which violates Corollary 4.5.3.

Finally, assume that Lemma 4.5.2 holds for the nodes of se(s) and not for the nodes of se(u). The
result follows trivially.

Lemma 5.7.3. A closed term t = s ∧qa u in TALXSCL (or t = s ∨qa u) is expressible over ΣLXL(A) if
and only if either

1. s is expressible over ΣLXL(A) and u = T̂ (or u = F̂), or

2. s = T̂ (or s = F̂) and u is expressible over ΣLXL(A), or

3. s = F̂ (or s = T̂).
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Proof. We show the result for t = s ∧qa u. The proof for t = s ∨qa u follows similarly.
‘⇐=’
If s is expressible over ΣLXL(A) and u = T̂, then s ∧qa u is expressible over ΣLXL(A) because
s ∧qa u =se s ∧qa T =se s by (A3)dl. Similarly, if s = T̂ and u is expressible over ΣLXL(A) the result
follows because s ∧qa u =se T ∧qa u

(A2)
=se u and if s = F̂ because s ∧qa u =se F ∧qa u

(A4)
=se F.

‘=⇒’
We will first show that s ∧qa u is not expressible over ΣLXL(A) if se(s) has height n ≥ 1, except
for the case where s is not evaluation-unanimous and u = T̂. Then we will show the result by
contraposition.

Assume that s is T-unanimous. If u is evaluation-unanimous, there is a node in se(s ∧qa u) that
has only T-leaves or only F-leaves. Then s ∧qa u is not expressible over ΣLXL(A) by Corollary 4.5.3.
If u is not evaluation-unanimous, se(u) has height m ≥ 1. We assume that Lemma 4.5.2 holds for
the nodes of se(s) and se(u), otherwise the result follows by Lemma 5.7.2. So there are 2m leaves
at depthm in se(u) and 2m+n leaves at depthm+ n in se(s ∧qa u). Let Lk be the kth leaf from the
left in se(s ∧qa u). Because se(s) has only T-leaves, we know that the label of L1 is equal to the label
of L1 + 2m . The result follows because Lemma 4.5.4 does not hold for the leaves of se(s ∧qa u).

If s is F-unanimous, there are only F-leaves below every node in se(s). This implies that
se(s ∧qa u) = se(s), so we find by Corollary 4.5.3 that s ∧qa u is not expressible over ΣLXL(A).

For the case where s is not evaluation-unanimous and u 6= T̂, we consider a F-leaf of se(s) and
the parent node of this leaf in se(s). The other child node of this parent node in se(s ∧qa u) cannot
be a T-leaf because all the T-leaves of se(s) are replaced by se(u) in se(s ∧qa u) and because u 6= T̂.
The result follows by Corollary 4.5.3.

We now give the actual proof by contraposition. Assume that s is not expressible over ΣLXL(A).
Then se(s) has height ≥ 1. If u = T̂, then s ∧qa u is not expressible over ΣLXL(A) because
s ∧qa u =se s ∧qa T =se s by (A3)dl. The other cases are covered by the proof above. Assume that
u 6= T̂, s 6= T̂ and s 6= F̂. Then s has height ≥ 1 and the result follows by the proof above. Finally,
assume that u 6= T̂ is not expressible over ΣLXL(A) and that s 6= F̂. If se(s) has height≥ 1, the result
follows by the above. If s = T̂, the result follows because s∧qa u =se T∧qa u =se u by axiom (A2).

Theorem 5.7.4. A term t ∈ TALXSCL is expressible over ΣLXL(A) if and only if for each subterm s ∧qa u
(or s ∨qa u) of t either

1. s ∧qa u (or s ∨qa u) is expressible over ΣLXL(A), or

2. s ∧qa u (or s ∨qa u) is a subterm of some term z such that T̂ ∨qa z or F̂ ∧qa z is a subterm of t.

Proof. First note that axiom (AX1) and soundness of EqFLXSCL with respect to se-congruence
allow us to replace each subterm ¬s of t by s ⊕r T, while preserving the evaluation tree se(t). So we
assume that the connective ¬ does not occur in t.

‘⇐=’
Assume that for any subterm s ∧qa u of t at least one of clause 1 or 2 holds. Consider an arbitrary
such subterm. The case for s ∨qa u follows similarly. We will argue that we can replace s ∧qa u or a
subterm of t of which s ∧qa u is a subterm by a term v ∈ TALXL, while preserving the evaluation tree
se(t). Because this can be done for every subterm s ∧qa u and s ∨qa u of t, we find that t is expressible
over ΣLXL(A).
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If s ∧qa u is expressible over ΣLXL(A), there is a term v ∈ TALXL such that se(v) = se(s ∧qa u). So
we can replace s ∧qa u by v in t, while preserving the evaluation tree se(t).

Consider the case where s ∧qa u is a subterm of a term z such that T̂ ∨qa z is a subterm of t. The
case for F̂ ∧qa z follows similarly. Then se(T̂ ∨qa z) = se(T) and we can replace T̂ ∨qa z by T in t.

‘=⇒’
Assume that there is a subterm s ∧qa u of t that does not satisfy clauses 1 and 2. The case for s ∨qa u
follows similarly. We show that t is not expressible over ΣLXL(A) by induction on the complexity of
terms.

Base case: If t = s ∧qa u, we know that t is not expressible over ΣLXL(A) by the first clause.

Inductive step: Consider an arbitrary term z ∈ TALXSCL of which s ∧qa u is a subterm and assume that
z is not expressible over ΣLXL(A) (IH). Furthermore, take v ∈ TALXSCL arbitrarily.

Let t be of the form z ∧qa v. Because z is not expressible over ΣLXL(A), we know that z 6= T̂ and
z 6= F̂. So z ∧qa v is not expressible over ΣLXL(A) by Lemma 5.7.3. The case where t is of the form
z ∨qa v follows similarly.

Let t be of the form v ∧qa z. Because z is not expressible over ΣLXL(A), z 6= T̂. Because s∧qa u does
not satisfy clause 2, v 6= F̂. So we know that v ∧qa z is not expressible over ΣSCL(A) by Lemma 5.7.3.
The case where t is of the form v ∨qa z follows similarly.

Let t be of the form z ⊕r v. We assume that Lemma 4.5.2 holds for the nodes of se(z) and se(v),
otherwise the result follows by Lemma 5.7.2. Let n be the height of se(z), let m be the height of
se(v), let Mk1 be the kth1 leaf from the left in se(z) for k1 ∈ {1, 2, . . . , 2n} and let Lk2 be the kth2
leaf from the left in se(z ⊕r v) for k2 ∈ {1, 2, . . . , 2m+n}.
Because z is not expressible over ΣLXL(A) by IH and because Lemma 4.5.2 holds for the nodes
of se(z), we find that Lemma 4.5.4 does not hold for the leaves of se(z). So there are indices i ∈
{0, 1, . . . , n−1} and j ∈ {1, 2, . . . , 2i} such that the labels ofMj andMj + 2i are equal. Consider
the leaves Lj · 2m and L(j + 2i) · 2m in se(z ⊕r v), which are the rightmost leaves of the subtrees
of se(z ⊕r v) that replaced the leavesMj andMj + 2i in se(z) respectively. Because the labels of
Mj andMj + 2i are equal, also the labels of Lj · 2m and L(j + 2i) · 2m = L(j · 2m + 2m+i) are.
Note thatm+ i ∈ {0, . . . ,m+n− 1} and that j · 2m ∈ {1, . . . , 2m+i} (because i ∈ {0, . . . , n− 1}
and j ∈ {1, . . . , 2i}). Then the leaves of se(z ⊕r v) are not labeled as described in Lemma 4.5.4. So
z ⊕r v is not expressible over ΣLXL(A).

Finally, let t be of the form v ⊕r z. Again we assume that Lemma 4.5.2 holds for the nodes of
se(z) and se(v) and that Lemma 4.5.4 does not hold for the leaves of se(z). So there are indices
i ∈ {0, . . . , n− 1} and j ∈ {1, . . . , 2i} such that the labels ofMj andMj + 2i in se(z) are equal.
Because the labels of the first 2n leftmost leaves of se(v ⊕r z) are the same as the labels of the leaves
of se(z) or as the negation of these labels, we know that the labels of Lj and Lj + 2i in se(v ⊕r z)

are equal. So the leaves of se(v ⊕r z) are not labeled as described in Lemma 4.5.4, so v ⊕r z is not
expressible over ΣLXL(A).
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5.8 CP and FLXSCL

In [BP11] it is shown that Hoare’s conditional _ / _ . _ cannot be replaced by any collection of unary
and binary connectives that are definable in ΣCP(A) modulo FVC if |A| > 2. We will show that
terms over ΣLXSCL(A) are less expressive modulo FVC than terms over ΣCP(A) if |A| > 1. In fact,
it is surprisingly easy to find terms in TACP that are not expressible over ΣLXSCL(A). As an example,
we show this for the term b / a . a, with a, b ∈ A.

Proposition 5.8.1. The term b / a . a ∈ TACP is not expressible over ΣLXSCL(A).

Proof. Suppose that t ∈ TALXSCL is a minimal expression of b / a . a.

Suppose that t ≡ s ⊕r u. We first argue that s, u /∈ {T̂, F̂}. If not, then t is not minimal because
T ⊕r u (X3)

= u ⊕r T
(AX1)
= ¬u and because F ⊕r u (Aux9)

= u ⊕r F
(X4)
= u. So s and u both evaluate atoms. If

one of s and u evaluates more than two atoms, at least three atoms are evaluated in t = s ⊕r u since
s and u are always evaluated. This is not the case in b / a . a. So s and u both evaluate exactly one
atom. The second atom that is evaluated in b / a . a depends on the outcome of the first evaluation
of a, whereas the second atom that is evaluated in s ⊕r u is always the same (namely the atom that is
evaluated in u). So b / a . a is not expressible by t ≡ s ⊕r u.

Now suppose that t ≡ s ∧qa u. The case where t ≡ s ∨qa u follows similarly. Again we argue that
s, u /∈ {T̂, F̂}. If s or u is F̂, then t always yields F, which is not the case in b / a . a. If s or u is T̂,
then t is not minimal by axiom (A2) or by (A3)dl, respectively. So s and u both evaluate atoms.

We prove two facts about the evaluation of s. First, s can only yield T after exactly one evaluation
of an atom. Note that s cannot yield T without evaluating an atom, because s must evaluate at least
one atom by the above. If s cannot yield T, it is F-unanimous. Then t is not minimal because
(s ∧qa F) ∧qa u

(A5)
= s ∧qa (F ∧qa u)

(A4)
= s ∧qa F. If s yields T after (more than) two evaluations of an atom,

then (more than) three atoms are evaluated in t = s ∧qa u, which is not the case in b / a . a.

Secondly, s can only yield F after exactly two evaluations of an atom. If s cannot yield F, it will
always yield T after evaluating exactly one atom in s. Then the second atom that is evaluated in t
(the first atom that is evaluated in u) will always be the same, independent of the evaluation of the
first atom. In b / a . a this is not the case. If s yields F after evaluating one atom or after evaluating
(more than) three atoms, the evaluation of t is finished. This cannot be the case because in b / a . a
always two atoms are evaluated.

Combining these two facts, we find that s = a∨qa (x∧qa F) = T/a.(F/x.F) or s = ¬a∨qa (x∧qa F) =
(F / x . F) / a .T, for x ∈ {a, b}. This means that for a certain evaluation result of a (if a evaluates
to F in the first case, and if a evaluates to T in the second case), the evaluation result of s is F. Then
the evaluation result of t is also F, and it is independent of the evaluation result of the second atom.
For b / a . a this is not the case, so b / a . a is not expressible by t ≡ s ∧qa u.

So there is no term t ∈ TALXSCL such that b / a . a is expressible by t.

In [BP11, Prop.12.1] it is proved in a similar way that a / a . ¬a is not expressible over ΣSCL(A)
modulo FVC. Note that this term is expressible over ΣLXSCL(A) by ¬(a ⊕r a).
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Chapter 6

Concluding remarks
In this chapter we first recall the main results of this thesis. Then we will discuss some topics that
arose in the process of writing this thesis, but that were not included. Finally, we will provide some
directions for future research.

6.1 Main results

We defined new connectives `NAND, `XOR and `IFF using Hoare’s conditional [Hoa85] as a
primitive, following the definitions of ¬ and ∧qa in [BPS13]. Defining the connectives this way
allowed us to reason about the connectives using CP [BP11]. We found that Hoare’s conditional is
equal to Church’s conditional disjunction that was defined three decades earlier [Chu56].

In Chapter 3 we defined `NAND, left-sequential short-circuit NAND, and we defined free left-
sequential nand logic (FLNL) to investigate which logical laws axiomatize short-circuit evaluation
of terms with `NAND modulo free valuation congruence. We showed that EqFLNL constitutes an
independent, equational axiomatization of FLNL for closed terms. The proof of this result relies
on the facts that EqFLNL and EqFSCL are translationally equivalent [PU03] and that EqFSCL
axiomatizes FSCL for closed terms [PS18].

In Chapter 4 we defined `XOR, left-sequential full XOR, and we defined free left-sequential xor
logic (FLXL) to investigate which laws axiomatize full evaluation of terms with `XORmodulo FVC.
By defining a basic form for terms in TALXL and fully describing how xe-trees of BF-terms are formed,
we proved that EqFLXL constitutes an equational axiomatization of FLXL for closed terms. We also
showed that `XOR and `IFF, left-sequential full biconditional, are dual.

Finally, in Chapter 5 we investigated the expressive power modulo FVC of terms over Σi(A), for
i ∈ {CP,SCL,LNL,LXL,LXSCL}. Proposition 5.1.3 sharpens the result from [PS18, Prop.2.1.8].
We proved that TASCL and TALNL are equally expressive in Corollary 3.4.2 and we showed which
terms are expressible over both ΣSCL(A) and ΣLNL(A) in Corollary 5.5.8. In Theorem 5.6.3 and
Theorem 5.7.4 we characterized which terms in TALXSCL are expressible by terms over ΣSCL(A) and
ΣLXL(A) respectively. Lastly, in Proposition 5.8.1 we showed that there are terms in TACP that are not
expressible over ΣLXSCL(A).
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To illustrate the results from Chapter 5, we once more show the Venn diagram that depicts how
the sets of evaluation trees corresponding to closed terms over the different signatures are related in
Figure 6.1.

nse
[
TALNL

]se
[
TASCL

]
se
[
TALXSCL

]

xe
[
TALXL

]

ce
[
TACP
]

Figure 6.1: Venn diagram of sets of evaluation trees

6.2 Digression

We now discuss some topics that are outside the scope of the present work, but that are nevertheless
quite interesting.

Functional completeness. In propositional logic we call a set of logical connectives functionally
complete if every truth table can be expressed by a well-formed formula with connectives from this
set. In [Chu56] it is shown that the signature {_ / _ . _,T,F} is functionally complete. Also {|} and
{�| } are functionally complete, as well as {¬, ∨qa }, {¬, ∧qa } and less well known {T, ∧qa ,⊕} [Wer42].

Note that the functional completeness of {|} and {�| } transfers to integrated circuit technology.
NAND-gates and NOR-gates are universal gates with which every Boolean function can be im-
plemented [MK14, pp.83-87]. For instance, the Apollo Guidance Computer guided the first lunar
missions and was built using only NOR-gates [JPC14, p.2].

In the setting of left-sequential logics, the notion of a truth table is replaced by an evaluation
tree. Each possible evaluation of a term t determines a path from the root of se(t) to a leaf. So
an evaluation tree covers both an evaluation strategy and all possible evaluation results. It might
be interesting to develop a notion of functional completeness in the setting of left-sequential logics.
This definition will be different when terms are evaluated modulo different valuation congruences.

It is reasonable to say that a signature Σi(A) is functionally complete modulo FVC if for each
X ∈ TA there is a term t ∈ TAi such that X = se(t). Using this definition it is clear that ΣCP(A)
is functionally complete modulo FVC and that none of ΣLNL(A), ΣSCL(A) and ΣLXSCL(A) are,
although their propositional counterparts are in propositional logic.

We now discuss a possible definition of functional completeness modulo memorizing valuation
congruence (MVC). In this setting the following axiom is added to CP [BP11]:

x / y . (z / u . (v / y . w)) = x / y . (z / u . w) (CPmem)
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This axiom implies that once an atom has been evaluated, each subsequent evaluation of the same
atom yields the same truth value. So we can say that Σi(A) is functionally complete if for each
X ∈ TA in which each atom occurs at most once on a path from the root to a leaf there is a term
t ∈ TAi such that X = se(t). Then we find that ΣCP(A), ΣSCL(A) and ΣLNL(A) are functionally
complete, because it is proved in [BP11] that

y / x . z = (x ∧qa y) ∨qa (¬x ∧qa z).

is derivable from CP ∪ {(CPmem)}.

Left-sequential full NAND.We investigated left-sequential short-circuit NAND, but we could have
also considered left-sequential full NAND, notation |r . This connective can be defined using Hoare’s
conditional, T and F:

x |r y = (F / y . T) / x . (T / y . T).

Using CP, we find that |r is expressible in terms of |qa ,T and F:

x |r y = ((x |qa T) |qa (y |qa F)) |qa (y |qa T).

So full evaluation of NAND can be seen as a special case of short-circuit evaluation of NAND.

In [Sta12], free fully evaluated logic (FFEL) is defined and axiomatized by EqFFEL for closed
terms with ¬, ∧r and ∨r , where the latter two connectives are full versions of ∧qa and ∨qa respectively.
To investigate which logical laws axiomatize full evaluation of terms with |r modulo FVC, a similar
approach as in Chapter 3 is possible, using EqFFEL and the identities

¬x = x |r T,
x ∧r y = (x |r y) |r T,
x ∨r y = ((x |r T) |r (y |r T)) |r T,

and

x |r y = ¬(x ∧r y).

`NOR, the dual of `NAND. In Section 4.3 we showed that `XOR and `IFF are dual. Similarly,
we could have shown that `NOR, left-sequential short-circuit NOR, is the dual of `NAND. We can
define `NOR, notation �|qa , by

x �|qa y = F / x . (F / y . T).

Using CP, we find that �|qa is expressible in terms of |qa ,T and F:

x �|qa y = ((x |qa T) |qa (y |qa T)) |qa T.
Independence of EqFLXL and EqFLXSCL. We showed that EqFLNL is an independent axiom-
atization. Because EqFLNL ` f(EqFSCL) by Lemma 3.3.3, it follows that EqFSCL is derivable
from EqFLNL+ = EqFLNL∪{¬x = x |qa T, x ∧qa y = (x |qa y) |qa T, x ∨qa y = ¬(¬x ∧qa ¬y)}. Because
EqFSCL is an independent axiomatization as well, independence of EqFLNL is relevant. By the tool
Mace4 [McC08] we know that the axioms of EqFLXL and EqFLXSCL are also independent, but we
chose not to discuss this to keep the thesis compact. For EqFLXL the result is not crucial and for
EqFLXSCL it does not make sense to prove independence because we only introduced this set of
axioms as a means to show that closed terms over ΣLXSCL(A) are se-congruent. Moreover, we know
that EqFLXSCL is not complete with respect to se-congruence. For example, the equation

(x ⊕r y) ∨qa (z ∨qa T) = (x ∧qa (¬y ∨qa (z ∨qa T))) ∨qa (y ∨qa (z ∨qa T)) (AX4)

is sound but not derivable from EqFLXSCL by Mace4 [McC08].
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6.3 Future work

Finally, we pose some directions for future research.

FLNLas away to solve open questions about FSCL from [PS18]. It is doubtful whether EqFLNL+

is an easier axiomatization than EqFSCL. There is an extra connective, an extra axiom and reasoning
with the SCL-connectives is more intuitive than reasoning with |qa . On the other hand, proofs by
induction on the complexity of closed terms are shorter for terms in TALNL than in TASCL.

Also, the results from Chapter 3 might be used to give an answer to the open question from [PS18]
whether there is a simpler proof of se(P ) = se(Q) =⇒ EqFSCL ` P = Q for P,Q ∈ TASCL. The
current proof of this result relies on the SCL Normal Form that has seven grammatical categories and
on three decomposition theorems about evaluation trees in se[TASCL], as discussed in Section 2.5 and
Section 2.6 respectively. Because there is only one connective in ΣLNL(A) instead of three, a similar
approach might yield a more simple proof of nse(f(P )) = nse(f(Q)) =⇒ EqFLNL ` f(P ) =
f(Q), hence of the mentioned result in [PS18].

Investigation of the research questions modulo other valuation congruences. It is interesting
to investigate which logical laws axiomatize short-circuit evaluation of terms with `NAND and full
evaluation of terms with `XOR modulo other valuation congruences. Variants of FLNL and FLXL
can be defined, using the generic definitions of a left-sequential nand logic (LNL) and a left-sequential
xor logic (LXL). Possible variants include memorizing, static, repetition-proof or contractive LNL
or LXL.

Also expressiveness can be investigatedmodulo other valuation congruences. For the case modulo
MVC we can show that

x ⊕r y = (x ∧qa ¬y) ∨qa (¬x ∧qa y)

is derivable from CP∪ {(CPmem)} and all defining equations of these connectives. Then each term
in TALXL and TALXSCL is expressible over ΣSCL(A) modulo MVC, so the Venn diagram from Figure 6.1
will look different.

A complete axiomatization of se-congruence as defined on TALXSCL. We already argued that
EqFLXSCL is not complete with respect to se-congruence, because (AX4) is sound but not derivable
from EqFLXSCL. As EqFLNL and EqFLXL are complete with respect to nse-congruence and
xe-congruence by Corollary 3.4.5 and Corollary 4.6.4 respectively, it is interesting to find a complete
axiomatization of se-congruence. We think that this will be tough because we did not find normal
forms (or even basic forms) for terms in TALXSCL. If we take the SCL Normal Form as starting point,
we need at least two other grammatical categories. One for terms of the form P ⊕r Q and one for
terms of the form (P ⊕r Q) ∧qa (R ∨qa T). Terms in the last grammatical category are not composed
by `-terms, but by `-terms and T-terms.
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Appendices

A Appendix Chapter 3

We continue the proof of Theorem 3.2.7 on page 24.

Theorem 3.2.7. The axioms of EqFLNL are independent if A contains at least two atoms.

Proof. We present five independence models that are all ΣLNL(A)-algebras. All models were found
with the tool Mace4 [McC08]. In each model M that follows, JTKM = 1 and JFKM = 0.

Recall that |A| ≥ 2. For the independence of axioms (N1) and (N2) no atoms are required. For
the independence of axioms (N3), (N4) and (N5) one atom a is used. The independence of axiom
(N6) is proved on page 24. Two atoms a, b were needed for this proof.

Independence of axiom (N1): Consider the model M for EqFLNL \ {(N1)} with domain D =
{0, 1}, where |qa is interpreted as follows:

|qa 0 1

0 1 1
1 1 1

We find that J(T |qa F) |qa TKM = 1 and JFKM = 0, so axiom (N1) is not satisfied by M.

Independence of axiom (N2): Consider the model M for EqFLNL \ {(N2)} with domain D =
{0, 1}, where |qa is interpreted as follows:

|qa 0 1

0 0 0
1 0 1

We find that JF |qa FKM = 0 and JTKM = 1, so axiom (N2) is not satisfied by M.

Independence of axiom (N3): Consider the model M for EqFLNL \ {(N3)} with domain D =
{0, 1, 2, 3}, in which JaKM = 2 for some a ∈ A and where |qa is interpreted as follows:

|qa 0 1 2 3

0 1 1 1 1
1 1 0 2 3
2 3 2 1 3
3 3 3 2 3
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We find that J((a |qa F) |qa T) |qa aKM = 2 and Ja |qa ((F |qa a) |qa T)KM = 3, so axiom (N3) is not satisfied
by M.

Independence of axiom (N4): Consider the model M for EqFLNL \ {(N4)} with domain D =
{0, 1, 2, 3, 4}, in which JaKM = 2 for some a ∈ A and where |qa is interpreted as follows:

|qa 0 1 2 3 4

0 1 1 1 1 1
1 1 0 3 2 4
2 1 3 1 1 1
3 4 2 4 2 4
4 4 4 4 4 4

We find that J(a |qa T) |qa FKM = 4 and Ja |qa FKM = 1, so axiom (N4) is not satisfied by M.

Independence of axiom (N5): Consider the model M for EqFLNL \ {(N5)} with domain D =
{0, 1, 2, 3, 4}, in which JaKM = 2 for some a ∈ A and where |qa is interpreted as follows:

|qa 0 1 2 3 4

0 1 1 1 1 1
1 1 0 2 4 3
2 3 2 2 2 3
3 3 4 4 4 3
4 3 3 3 3 3

We find that J(a |qa F) |qa (a |qa T)KM = 4 and J((a |qa F) |qa a) |qa TKM = 3, so axiom (N5) is not satisfied
by M.

We finish the proof of Lemma 3.3.4 on page 26.

Lemma 3.3.4. EqFSCL ` g(EqFLNL).

Proof. All proofs are distilled from output of the theorem prover Prover9 [McC08].

Proof of EqFSCL ` g(N2):
¬(F ∧qa x) = ¬F by (A4)

= T by (Aux3)

Proof of EqFSCL ` g(N3):

¬(¬(¬(x ∧qa y) ∧qa T) ∧qa z) = ¬(¬(¬(x ∧qa y) ∧qa ¬F) ∧qa z) by (Aux3)
= ¬((x ∧qa y) ∧qa z) by (Aux4)
= ¬(x ∧qa (y ∧qa z)) by (A5)
= ¬(x ∧qa ¬(¬(y ∧qa z) ∧qa ¬F)) by (Aux4)
= ¬(x ∧qa ¬(¬(y ∧qa z) ∧qa T)) by (Aux3)

Proof of EqFSCL ` g(N4):

¬(¬(x ∧qa T) ∧qa F) = ¬(¬x ∧qa F) by (A3)dl

= ¬(x ∧qa F) by (A6)
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Proof of EqFSCL ` g(N5):

¬(¬(x ∧qa F) ∧qa ¬(y ∧qa T)) = ¬(¬(x ∧qa F) ∧qa ¬y) by (A3)dl

= (x ∧qa F) ∨qa y by (A1)
= (x ∨qa T) ∧qa y by (A7)
= ¬(¬x ∧qa ¬T) ∧qa y by (A1)
= ¬(¬x ∧qa F) ∧qa y by (Aux1)
= ¬(x ∧qa F) ∧qa y by (A6)
= ¬¬(¬(x ∧qa F) ∧qa y) by (Aux2)
= ¬(¬(¬(x ∧qa F) ∧qa y) ∧qa T) by (A3)dl

Finally, we show that EqFSCL ` g(N6):

¬(¬(¬(x ∧qa y) ∧qa ¬(z ∧qa F)) ∧qa T) = ¬(((x ∧qa y) ∨qa (z ∧qa F)) ∧qa T) by (A1)
= ¬((x ∧qa y) ∨qa (z ∧qa F)) by (A3)dl

= ¬((x ∨qa (z ∧qa F)) ∧qa (y ∨qa (z ∧qa F))) by (A8)
= ¬(((x ∧qa T) ∨qa (z ∧qa F)) ∧qa ((y ∧qa T) ∨qa (z ∧qa F))) by (A3)dl

= ¬(¬(¬(x ∧qa T) ∧qa ¬(z ∧qa F)) ∧qa ¬(¬(y ∧qa T) ∧qa ¬(z ∧qa F))) by (A1)

We now prove the second statement of Theorem 3.3.6 on page 27.

Theorem 3.3.6.

1. For any t ∈ TA,χLNL,
EqFLNL ` f(g(t)) = t.

2. For any t ∈ TA,χSCL ,
EqFSCL ` g(f(t)) = t.

Proof. Recall the functions f and g that were defined in Definition 3.3.2.

Statement 2:

Proof by induction on the complexity of terms in TA,χSCL .

Base case: Let t ∈ {T,F} ∪ A ∪ χ. Then g(f(t)) = t by Definition 3.3.2. So also EqFSCL `
g(f(t)) = t.

Inductive step: Assume that s, u ∈ TA,χSCL are such that EqFSCL ` g(f(s)) = s and EqFSCL `
g(f(u)) = u (IH). Furthermore assume that t is of the form ¬s. Using Definition 3.3.2 we compute

g(f(¬s)) = g(f(s) |qa T)

= ¬(g(f(s)) ∧qa g(T))

= ¬(g(f(s)) ∧qa T)
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Using the axioms of EqFSCL, we derive that

EqFSCL ` g(f(¬s)) = ¬(g(f(s)) ∧qa T) by the above
= ¬(s ∧qa T) by IH
= ¬s by (A3)dl

Assume that t is of the form s ∧qa u. Using Definition 3.3.2, we compute

g(f(s ∧qa u)) = g((f(s) |qa f(u)) |qa T)

= ¬(g(f(s) |qa f(u)) ∧qa g(T))

= ¬(¬(g(f(s)) ∧qa g(f(u))) ∧qa T)

Using the axioms of EqFSCL, we derive that

g(f(s ∧qa u)) = ¬(¬(g(f(s)) ∧qa g(f(u))) ∧qa T) by the above
= ¬(¬(s ∧qa u) ∧qa T) by IH
= ¬¬(s ∧qa u) by (A3)dl

= s ∧qa u by (Aux2)

If t is of the form s ∨qa u we know that g(f(s ∨qa u)) = g(f(¬(¬s ∧qa ¬u))) by axiom (A1). The result
follows by the previous results for ¬ and ∧qa .

B Appendix Chapter 4

We continue the proof of Lemma 4.2.7 on page 33.

Lemma 4.2.7. For all terms t, u over ΣLXL(A),

EqFLXL ` t = u =⇒ M � t = u.

Proof. We show that the model M that was defined in Definition 4.2.6 satisfies axioms (X1), (X2)
and (X4). Fix an arbitrary interpretation i of variables.

Proof of M, i � (X1):

JT ⊕r TKM = JTKM
[
T 7→ JTKM[T 7→ F,F 7→ T],F 7→ JTKM

]
by 4.2.6

= JTKM
[
T 7→ F,F 7→ T

]
by (3)

= JFKM by (3)

Proof of M, i � (X2):

J(x ⊕r y) ⊕r zKM,i
= JxKM,i

[
T 7→ JyKM,i[T 7→ F,F 7→ T],F 7→ JyKM,i

][
T 7→ JzKM,i[T 7→ F,F 7→ T],F 7→ JzKM,i

]
by 4.2.6
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= JxKM,i
[
T 7→ JyKM,i

[
T 7→ F,F 7→ T

][
T 7→ JzKM,i[T 7→ F,F 7→ T],F 7→

JzKM,i
]
,F 7→ JyKM,i

[
T 7→ JzKM,i[T 7→ F,F 7→ T],F 7→ JzKM,i

]]
by (7)

= JxKM,i
[
T 7→ JyKM,i

[
T 7→ F,F 7→ T

][
T 7→ JzKM,i[T 7→ F,F 7→ T],F 7→

JzKM,i
]
,F 7→ Jy ⊕r zKM,i] by 4.2.6

= JxKM,i
[
T 7→ JyKM,i

[
T 7→ JzKM,i,F 7→ JzKM,i[T 7→ F,F 7→ T]

]
,

F 7→ Jy ⊕r zKM,i] by (3), (4), (7)

= JxKM,i
[
T 7→ JyKM,i

[
T 7→ JzKM,i[T 7→ F,F 7→ T][T 7→ F,F 7→ T],

F 7→ JzKM,i[T 7→ F,F 7→ T]
]
,F 7→ Jy ⊕r zKM,i] by (3), (4), (6), (7)

= JxKM,i
[
T 7→ JyKM,i

[
T 7→ JzKM,i[T 7→ F,F 7→ T],F 7→ JzKM,i

][
T 7→ F,

F 7→ T
]
,F 7→ Jy ⊕r zKM,i] by (7)

= JxKM,i
[
T 7→ Jy ⊕r zKM,i[T 7→ F,F 7→ T],F 7→ Jy ⊕r zKM,i] by 4.2.6

= Jx ⊕r (y ⊕r z)KM,i by 4.2.6

Proof ofM, i � (X4):

Jx ⊕r FKM,i = JxKM,i
[
T 7→ JFKM[T 7→ F,F 7→ T],F 7→ JFKM

]
by 4.2.6

= JxKM,i
[
T 7→ T,F 7→ F

]
by (4)

= JxKM,i by (6)

Because i was chosen arbitrarily, it follows that (X1), (X2) and (X4) are satisfied by M.

We finish the proof of Theorem 4.3.5 on page 36.

Theorem 4.3.5. For all t, u over ΣLXL+(A),

EqFLXL+ ` t = u ⇐⇒ EqFLXL+ ` tdl = udl.

Proof.

Proof of EqFLXL+ ` (X2)dl:

(x r↔ y) r↔ z = (((x ⊕r y) ⊕r T) ⊕r z) ⊕r T by (24)
= (x ⊕r (y ⊕r (T ⊕r z))) ⊕r T by (X2)
= (x ⊕r (y ⊕r (z ⊕r T))) ⊕r T by (X3)
= (x ⊕r ((y ⊕r z) ⊕r T)) ⊕r T by (X2)
= x r↔ (y r↔ z) by (24)
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Proof of EqFLXL+ ` (X3)dl:

x r↔ F = (x ⊕r F) ⊕r T by (24)
= (F ⊕r x) ⊕r T by (Aux9)
= F r↔ x by (24)

Proof of EqFLXL+ ` (X4)dl:

x r↔T = (x ⊕r T) ⊕r T by (24)
= x by (Aux8)

Proof of EqFLXL+ ` (24)dl:

x r↔ y = (x ⊕r y) ⊕r T by (24)
= ((x ⊕r y) ⊕r F) ⊕r T by (X4)
= (x ⊕r y) r↔ F by (24)

C Appendix Chapter 5

We continue the proof of Proposition 5.1.4 on page 45.

Proposition 5.1.4. The equations in Table 5.2 are derivable from EqFLXSCL.

Proof. All proofs are distilled from output of the theorem prover Prover9 [McC08].

Proof of EqFLXSCL ` (A7):

(x ∧qa F) ∨qa y = (¬x ∧qa F) ∨qa y by (A6)
= (¬x ∧qa ¬T) ∨qa y) by (Aux1)
= ¬(¬(¬x ∧qa ¬T) ∧qa ¬y) by (A1)
= ¬((x ∨qa T) ∧qa ¬y) by (A1)
= ¬((x ∨qa T) ∧qa (y ⊕r T)) by (AX1)
= ¬(((x ∨qa T) ∧qa y) ⊕r T) by (AX2)
= ¬¬((x ∨qa T) ∧qa y) by (AX1)
= (x ∨qa T) ∧qa y by (Aux2)

Proof of EqFLXSCL ` (X1):

T ⊕r T = ¬T by (AX1)
= F by (Aux1)
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Proof of EqFLXSCL ` (X4):

x ⊕r F = x ⊕r (T ⊕r T) by (X1)
= (x ⊕r T) ⊕r T by (X2)
= ¬¬x by (AX1)
= x by (Aux2)

We now have EqFLXSCL ` EqFLXL. So we can use the auxiliary result (Aux9) which is derivable
from EqFLXL. We continue with the proof of EqFLXSCL ` (Eq1):

(x ∨qa T) ⊕r y = ((x ∨qa T) ∧qa T) ⊕r y by (A3)dl

= (x ∨qa T) ∧qa (T ⊕r y) by (AX2)
= (x ∨qa T) ∧qa (y ⊕r T) by (X3)
= (x ∨qa T) ∧qa ¬y by (AX1)

Proof of EqFLXSCL ` (Eq2):

(x ∧qa F) ⊕r y = ((x ∧qa F) ∨qa F) ⊕r y by (A3)
= ((x ∨qa T) ∧qa F) ⊕r y by (A7)
= (x ∨qa T) ∧qa (F ⊕r y) by (AX2)
= (x ∨qa T) ∧qa (y ⊕r F) by (Aux9)
= (x ∨qa T) ∧qa y by (X4)
= (x ∧qa F) ∨qa y by (A7)

Proof of EqFLXSCL ` (Eq3):

x ⊕r (y ∨qa T) = x ⊕r ¬(¬y ∧qa ¬T) by (A1)
= x ⊕r ¬(¬y ∧qa F) by (Aux1)
= x ⊕r ¬(y ∧qa F) by (A6)
= x ⊕r ((y ∧qa F) ⊕r T) by (AX1)
= x ⊕r (T ⊕r (y ∧qa F)) by (X3)
= (x ⊕r T) ⊕r (y ∧qa F) by (X2)
= ¬x ⊕r (y ∧qa F) by (AX1)
= (¬x ∧qa (y ∨qa T)) ∨qa (y ∧qa F) by (AX3)

Proof of EqFLXSCL ` (Eq4):

x ⊕r (y ∨qa T) = x ⊕r ((y ∧qa F) ⊕r T) by the proof of (Eq3)
= (x ⊕r (y ∧qa F)) ⊕r T by (X2)
= ¬(x ⊕r (y ∧qa F)) by (AX1)
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Finally, we finish the proof of Lemma 5.1.6 on page 46.

Lemma 5.1.6. For all terms t, u over ΣLXSCL(A),

EqFLXSCL ` t = u =⇒ M′ � t = u.

Proof. We show that the model M′ that was defined in Definition 5.1.5 satisfies axioms (AX2) and
(AX3). Fix an arbitrary interpretation i of variables.

Proof ofM′, i � (AX2):

J((x ∨qa T) ∧qa y) ⊕r zKM′,i

= Jx ∨qa TKM
′,i
[
T 7→ JyKM

′,i
][
T 7→ JzKM

′,i[T 7→ F,F 7→ T],F 7→ JzKM
′,i
]

by 5.1.5

= Jx ∨qa TKM
′,i
[
T 7→ JyKM

′,i
[
T 7→ JzKM

′,i[T 7→ F,F 7→ T],F 7→ JzKM
′,i
]
,

F 7→ F
[
T 7→ JzKM

′,i[T 7→ F,F 7→ T],F 7→ JzKM
′,i
]]

by (6), (7)

= Jx ∨qa TKM
′,i
[
T 7→ Jy ⊕r zKM′,i,F 7→ JzKM

′,i
]

by 5.1.5, (4)

= Jx ∨qa TKM
′,i
[
T 7→ Jy ⊕r zKM′,i

]
because Jx ∨qa TKM

′,i has no F-leaves,

= J(x ∨qa T) ∧qa (y ⊕r z)KM′,i by 5.1.5

Proof ofM′, i � (AX3):

Jx ⊕r (y ∧qa F)KM
′,i

= JxKM
′,i
[
T 7→ JyKM

′,i[T 7→ JFKM
′
][T 7→ F,F 7→ T],F 7→ Jy ∧qa FKM

′,i
]

by 5.1.5

= JxKM
′,i
[
T 7→ JyKM

′,i[T 7→ F,F 7→ F][T 7→ F,F 7→ T],F 7→ Jy ∧qa FKM
′,i
]

by (6)

= JxKM
′,i
[
T 7→ JyKM

′,i[T 7→ T,F 7→ T],F 7→ Jy ∧qa FKM
′,i
]

by (3), (4), (7)

= JxKM
′,i
[
T 7→ JyKM

′,i[F 7→ T][F 7→ Jy ∧qa FKM
′,i],F 7→ F[F 7→ Jy ∧qa FKM

′,i]
]

because JyKM′,i[T 7→ T,F 7→ T] has only T-leaves and by (4) and (6),

= JxKM
′,i
[
T 7→ JyKM

′,i[F 7→ T],F 7→ F
][
F 7→ Jy ∧qa FKM

′,i
]

by (7)

= J(x ∧qa (y ∨qa T)) ∨qa (y ∧qa F)KM
′,i by 5.1.5, (6)

Because i was chosen arbitrarily, it follows that M′ satisfies (AX2) and (AX3).
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