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Abstract. We discuss some of Jankov’s contributions to the study of intermediate logics, includ-
ing the development of what have become known as Jankov formulas and a proof that there are
continuum many intermediate logics. We also discuss how to generalize Jankov’s technique to
develop axiomatization methods for all intermediate logics. These considerations result in what
we term subframe and stable canonical formulas. Subframe canonical formulas are obtained by
working with the disjunction-free reduct of Heyting algebras, and are the algebraic counterpart of
Zakharyaschev’s canonical formulas. On the other hand, stable canonical formulas are obtained by
working with the implication-free reduct of Heyting algebras, and are an alternative to subframe
canonical formulas. We explain how to develop the standard and selective filtration methods al-
gebraically to axiomatize intermediate logics by means of these formulas. Special cases of these
formulas give rise to the classes of subframe and stable intermediate logics, and the algebraic ac-
count of filtration techniques can be used to prove that they all posses the finite model property
(fmp). The fmp results about subframe and cofinal subframe logics yield algebraic proofs of the
results of Fine and Zakharyaschev. We conclude by discussing the operations of subframization
and stabilization of intermediate logics that this approach gives rise to.
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model property.
We are very happy to be able to contribute to this volume dedicated to V. A. Jankov. His work has been very

influential for many generations of logicians, initially in the former Soviet Union, but eventually also abroad. In
particular, it had a profound impact on our own research. While we have never met Professor Jankov in person,
we have heard lots of interesting stories about him from our advisor Leo Esakia. Jankov is not only an outstanding
logician, but also a role model citizen, who stood up against the Soviet regime. Because of this, he ended up in
the Soviet political camps. A well-known Georgian dissident and human rights activist Levan Berdzenishvili spent
several years there with Jankov. We refer to his memoirs [2] about the Soviet political camps of 1980s in general,
and about Jankov in particular. One chapter of the book “Vadim” (pp. 127–141) is dedicated to Jankov, in which
he is characterized as follows: “I can say with certainty that in our political prison, Vadim Yankov, omnipotent and
always ready to help, embodied in the pre-Internet era the combined capabilities of Google, Yahoo, and Wikipedia”.
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1. Introduction

Intermediate logics are the logics that are situated between the intuitionistic propositional calcu-
lus IPC and the classical propositional calculus CPC. The study of intermediate logics was pioneered
by Umezawa [77]. As was pointed out by Hosoi [48], such a study may be viewed as a study of the
classification of classically valid principles in terms of their interdeducibility in intuitionistic logic.

Jankov belongs to the first wave of researchers (alongside Dummett, Lemmon, Kuznetsov,
Medvedev, Hosoi, de Jongh, Troelstra, and others) who obtained fundamental results in the study of
intermediate logics. He is best known for developing algebra-based formulas, which he called char-
acteristic formulas, but are now commonly known as Jankov formulas. This allowed him to obtain
deep results about the complicated structure of the lattice of intermediate logics. His first paper
on these formulas dates back to 1963, and is one of the early jewels in the study of intermediate
logics [51].

From the modern perspective, Jankov formulas axiomatize splittings and their joins in the lattice
of intermediate logics. But this came to light later, after the fundamental work of McKenzie [62].
In 1980s Blok and Pigozzi [26] built on these results to develop a general theory of splittings in
varieties with EDPC (equationally definable principal congruences). It should be pointed out that
Jankov formulas were independently developed by de Jongh [37]. Because of this, Jankov formulas
are also known as Jankov-de Jongh formulas [19, Rem. 3.3.5]. We point out that Jankov’s technique
was algebraic, while de Jongh mostly worked with Kripke frames.

Jankov [52] utilized his formulas to develop a method for generating continuum many intermedi-
ate logics, thus refuting an earlier erroneous attempt of Troelstra [76] that there are only countably
many intermediate logics. Jankov’s method also allowed him to construct the first intermediate
logic without the finite model property (fmp). These results had major impact on the study of
lattices of intermediate and modal logics.

We can associate the Jankov formula J (A) to any finite subdirectly irreducible Heyting algebra
A. Then given an arbitrary Heyting algebra B, we can think of the validity of J (A) on B as
forbidding A to be isomorphic to a subalgebra of a homomorphic image of B. This approach was
adopted to modal logic by Rautenberg [70], and was further refined by Kracht [56] and Wolter [79].
An important result in this direction was obtained by Blok [25], who characterized splitting modal
logics and described the degree of Kripke completeness for extensions of the basic modal logic K.

Independently of Jankov, Fine [44] developed similar formulas for the modal logic S4 by utilizing
its Kripke semantics. He associated a formula with each finite rooted S4-frame F. The validity of
such a formula on an S4-frame G forbids that F is a p-morphic image of a generated subframe of
G. Because of this, these formulas are sometimes called Jankov-Fine formulas in the modal logic
literature (see [24, p. 143] and [28, p. 332]).
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In [45] Fine undertook a different approach by “forbidding” p-morphic images of arbitrary (not
necessarily generated) subframes. This has resulted in the theory of subframe logics, which was
further generalized by Zakharyaschev [83] to cofinal subframe logics. While Jankov and (cofinal)
subframe formulas axiomatize large classes of logics, not every logic is axiomatized by them. This
was addressed by Zakharyaschev [81, 82] who generalized these formulas to what he termed “canon-
ical formulas” and proved that each intermediate logic and each extension of the modal logic K4
is axiomatized by canonical formulas. Zakharyaschev’s approach followed the path of Fine’s and
mainly utilized Kripke semantics. An algebraic approach to subframe and cofinal subframe logics
via nuclei was developed for intermediate logics in [16], and was generalized to modal logics in [17].

In a series of papers [4, 5, 6], we developed an algebraic treatment of Zakharyaschev’s canonical
formulas, as well as of subframe and cofinal subframe formulas. This was done for intermediate
logics, as well as for extensions of K4 (and even for extensions of weak K4). A somewhat similar
approach was undertaken independently and slightly earlier by Tomaszewski [75]. The key idea of
this approach for intermediate logics is that the ∨-free reduct of each Heyting algebra is locally
finite. This is a consequence of a celebrated result of Diego [39] that the variety of (bounded)
implicative semilattices is locally finite. Note that Heyting algebras have another locally finite
reduct, which is even better known, namely the →-free reduct. Indeed, it is a classic result that
the variety of bounded distributive lattices is locally finite. Thus, it is possible to develop another
kind of canonical formulas that also axiomatize all intermediate logics. This was done in [8] and
generalized to modal logic in [11].1

To distinguish between these two types of canonical formulas, we call the algebraic counterpart
of Zakharyaschev’s canonical formulas subframe canonical formulas. This is motivated by the fact
that dually subframe canonical formulas forbid p-morphic images from subframes (see Section 5.1).
On the other hand, we call the other kind stable canonical formulas because they forbid stable
images of generated subframes (see Section 5.2). In special cases, both types of canonical formulas
yield Jankov formulas. An additional special case for subframe canonical formulas gives rise to
subframe and cofinal subframe formulas of Fine [45] and Zakharyaschev [81, 83]. A similar special
case for stable subframe formulas gives rise to new classes of stable and cofinal stable formulas
studied in [8, 12] for intermediate logics2 and in [11, 13] for modal logics. Our aim is to provide a
uniform account of this line of research.

In this paper we only concentrate on the theory of canonical formulas for intermediate logics,
which is closer to Jankov’s original motivation and interests. We plan to discuss the theory of
canonical formulas for modal logics elsewhere. As a rule of thumb, we supply sketches of proofs
only for several central results. For the rest, we provide relevant references, so that it is easy for
the interested reader to look up the details.

The paper is organized as follows. In Section 2 we recall the basic facts about intermediate
logics, their algebraic and Kripke semantics, and outline Esakia duality for Heyting algebras. In
Section 3 we overview the method of Jankov formulas and its main consequences, such as the
Splitting Theorem and the cardinality of the lattice of intermediate logics. In Section 4 we extend
the method of Jankov formulas to that of subframe and stable canonical formulas, and show that
these formulas axiomatize all intermediate logics. Section 5 provides a dual approach to subframe
and stable canonical formulas. In Section 6 we review the theory of subframe and cofinal subframe
logics, and in Section 7 that of stable and cofinal stable logics. Finally, in Section 8 we discuss the
operations of subframization and stabiliization for intermediate logics, and their characterization
via subframe and stable formulas.

1The results of [8] were obtained earlier than those in [11]. However, the latter appeared in print earlier than the
former.

2Again, the results of [8] were obtained earlier but appeared later than those in [12].
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2. Intermediate logics

In this preliminary section, to keep the paper self-contained, we briefly review intermediate logics
and their algebraic and relational semantics.

2.1. Intermediate logics. As we pointed out in the Introduction, a propositional logic L (in the
language of IPC) is an intermediate logic if IPC ⊆ L ⊆ CPC. Intermediate logics are also called
superintuitionistic logics (Kuznetsov’s terminology). To be more precise, a propositional logic L
is a superintuitionistic logic (or si-logic for short) if IPC ⊆ L. Since CPC is the largest consistent
si-logic, we have that intermediate logics are precisely the consistent si-logics.

We identify each intermediate logic L with the set of theorems of L. It is well known that the
collection of all intermediate logics, ordered by inclusion, is a complete lattice, which we denote by
Λ. The meet in Λ is set-theoretic intersection, while the join

∨
{Li | i ∈ I} is the least intermediate

logic containing
⋃
{Li | i ∈ I}. Clearly IPC is the least element and CPC the largest element of Λ.

For an intermediate logic L and a formula ϕ, we denote by L + ϕ the least intermediate logic
containing L ∪ {ϕ}. As usual, if ϕ is provable in L, we write L ` ϕ. For L,M ∈ Λ, if L ⊆ M, then
we say that M is an extension of L.

As we pointed out in the Introduction, Jankov [52] proved that the cardinality of Λ is that of
the continuum. Below we give a list of some well known intermediate logics (see, e.g., [28, p. 112,
Table 4.1]).

(1) KC = IPC + (¬p ∨ ¬¬p) — the logic of the weak excluded middle.
(2) LC = IPC + (p→ q) ∨ (q → p) — the Gödel-Dummett logic.
(3) KP = IPC + (¬p→ q ∨ r)→ (¬p→ q) ∨ (¬p→ r) — the Kreisel-Putnam logic.
(4) Tn = IPC + tn (n ≥ 1) — the Gabbay-de Jongh logics — where

tn =
n∧
i=0

(
(pi →

∨
i 6=j

pj)→
∨
i 6=j

pj)→
n∨
i=0

pi
)
.

(5) BDn = IPC + bdn (n ≥ 1), where

bd1 = p1 ∨ ¬p1,
bdn+1 = pn+1 ∨ (pn+1 → bdn).

(6) LCn = LC + bdn (n ≥ 1) — the n-valued Gödel-Dummett logic.
(7) BWn = IPC + bwn (n ≥ 1), where

bwn =

n∨
i=0

(pi →
∨
j 6=i

pj).

(8) BTWn = IPC + btwn (n ≥ 1), where

btwn =

n∧
0≤i<j≤n

¬(¬pi ∧ ¬pj)→
n∨
i=0

(
¬pi →

∨
j 6=i
¬pj
)
.

(9) BCn = IPC + bcn (n ≥ 1), where

bcn = p0 ∨ (p0 → p1) ∨ · · · ∨ (p0 ∧ · · · ∧ pn−1 → pn).

(10) NDn = IPC + (¬p→
∨

1≤i≤n
¬qi)→

∨
1≤i≤n

(¬p→ ¬qi) (n ≥ 2) — Maksimova’s logics.
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2.2. Heyting algebras. We next recall the algebraic semantics of intermediate logics. A Heyting
algebra is a bounded distributive lattice A with an additional binary operation → satisfying

a ∧ x ≤ b iff x ≤ a→ b

for all a, b, x ∈ A. It is well known (see, e.g., [69, p. 124]) that the class of Heyting algebras is
equationally definable. For Heyting algebras A and B, a Heyting homomorphism is a bounded
lattice homomorphism h : A→ B such that h(a→ b) = h(a)→ h(b) for a, b ∈ A.

Definition 2.1. Let Heyt be the category (and the corresponding equational class) of Heyting
algebras and Heyting homomorphisms.

A valuation v on a Heyting algebra A is a map from the set of propositional variables to A. It
is extended to all formulas in an obvious way. A formula ϕ is valid on A if v(ϕ) = 1 for every
valuation v on A. If ϕ is valid on A we write A |= ϕ. For a class K of Heyting algebras we write
K |= ϕ if A |= ϕ for each A ∈ K.

For a Heyting algebra A and a class K of Heyting algebras, let

L(A) = {ϕ | A |= ϕ} and L(K) =
⋂
{L(A) | A ∈ K}.

It is well known that if A is a nontrivial Heyting algebra and K is a nonempty class of nontrivial
Heyting algebras, then L(A) and L(K) are intermediate logics. We call L(A) the logic of A, and
L(K) the logic of K.

Definition 2.2. We say that an intermediate logic L is sound and complete with respect to a class
K of Heyting algebras if L = L(K); that is, L ` ϕ iff K |= ϕ.

For a class K of Heyting algebras, we let H(K), S(K), P(K), and I(K) be the classes of homomor-
phic images, subalgebras, products, and isomorphic copies of algebras from K. A variety is a class
of algebras closed under H,S, and P. By Birkoff’s celebrated theorem (see, e.g., [27, Thm. 11.9]),
varieties are precisely the equationally definable classes of algebras.

By the celebrated Lindenbaum algebra construction (see, e.g., [69, Ch. VI]), each intermediate
logic is sound and complete with respect to the variety of Heyting algebras

V(L) := {A ∈ Heyt | A |= L}.
This variety is often called the variety corresponding to L. We call A ∈ V(L) an L-algebra.

We recall that a Heyting algebra A is subdirectly irreducible if it has a least nontrivial congruence.
It is well known (see, e.g., [1, p. 179, Thm. 5]) that A is subdirectly irreducible iff A \ {1} has the
largest element s, called the second largest element of A.

Remark 2.3. This result also originates with Jankov, who referred to these algebras as Gödelean
(see [51]).

A Heyting algebra A is finitely subdirectly irreducible or well-connected if

a ∨ b = 1⇒ a = 1 or b = 1

for each a, b ∈ A. Obviously each subdirectly irreducible Heyting algebra is well-connected, but
there exist infinite well-connected Heyting algebras that are not subdirectly irreducible. On the
other hand, a finite Heyting algebra is subdirectly irreducible iff it is well-connected.

By another celebrated result of Birkhoff (see, e.g., [27, Thm. 8.6]), each variety V is generated
by subdirectly irreducible members of V. Thus, each intermediate logic is complete with respect to
the class of subdirectly irreducible algebras in V(L).

The next definition and theorem are well known, and go back to Kuznetsov.

Definition 2.4. Let L be an intermediate logic.

(1) Two formulas ϕ,ψ are L-equivalent if L ` ϕ↔ ψ.
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(2) L is locally tabular if for each natural number n, there are only finitely many non-L-equivalent
formulas in n-variables.

(3) L is tabular if L is the logic of a finite Heyting algebra.
(4) L has the finite model property (fmp for short) if L 6` ϕ implies that there is a finite Heyting

algebra A such that A |= L and A 6|= ϕ.
(5) L has the hereditary finite model property (hfmp for short) if L and all its extensions have

the fmp.

Theorem 2.5.
(1) L is locally tabular iff V(L) is locally finite (each finitely generated V(L)-algebra is finite).
(2) L is tabular iff V(L) is generated by a finite algebra.
(3) L has the fmp iff V(L) is generated by the class of finite V(L)-algebras.
(4) L has the hfmp iff each subvariety of V(L) is generated by the class of its finite algebras.

The next definition goes back to Kuznetsov [57].

Definition 2.6.
(1) Let Λt be the subclass of Λ consisting of tabular intermediate logics.
(2) Let Λlt be the subclass of Λ consisting of locally tabular intermediate logics.
(3) Let Λfmp be the subclass of Λ consisting of intermediate logics with the fmp.
(4) Let Λhfmp be the subclass of Λ consisting of intermediate logics with the hfmp.

We then have the following hierarchy of Kuznetsov [57]:

Λt ( Λlt ( Λhfmp ( Λfmp ( Λ.

2.3. Kripke frames and Esakia spaces. We now turn to Kripke semantics for intermediate
logics. In this case Kripke frames are simply posets (partially ordered sets). We denote the partial
order of a poset P by ≤. For S ⊆ P , the downset of S is the set

↓S = {x ∈ P | ∃s ∈ S with x ≤ s}.

The upset of S is defined dually and is denoted by ↑S. If S is a singleton set {x}, then we write
↓x and ↑x instead of ↓{x} and ↑{x}.

We call U ⊆ P an upset if ↑U = U (that is, x ∈ U and x ≤ y imply y ∈ U). A downset of P is
defined dually. Also, we let max(U) and min(U) be the sets of maximal and minimal points of U .

Let Up(P ) and Do(P ) be the sets of upsets and downsets of X, respectively. It is well known
that (Up(P ),∩,∪,→,∅, P ) is a Heyting algebra, where for each U, V ∈ Up(X), we have:

U → V = {x ∈ P | ↑x ∩ U ⊆ V } = P \ ↓(U \ V ).

Similarly, (Do(P ),∩,∪,→,∅, P ) is a Heyting algebra, but we will mainly work with the Heyting
algebra of upsets of X.

Each Heyting algebra A is isomorphic to a subalgebra of the Heyting algbera of upsets of some
poset. We call this representation the Kripke representation of Heyting algebras. Let XA be the
set of prime filters of A, ordered by inclusion. Then XA is a poset, known as the spectrum of A.
Define the Stone map ζ : A→ Up(XA) by

ζ(a) = {x ∈ XA | a ∈ x}.

Then ζ is a Heyting algebra embedding, and we arrive at the following well-known theorem.

Theorem 2.7 (Kripke representation). Each Heyting algebra is isomorphic to a subalgebra of
Up(XA).
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To recover the image of A in Up(XA), we need to introduce a topology on XA. We recall that a
subset of a topological space X is clopen if it is both closed and open, and that X is zero-dimensional
if clopen sets form a basis for X. A Stone space is a compact, Hausdorff, zero-dimensional space. By
the celebrated Stone duality [74], the category of Boolean algebras and Boolean homomorphisms is
dually equivalent to the category of Stone spaces and continuous maps. In particular, each Boolean
algebra A is represented as the Boolean algebra of clopens of a Stone space (namely, of the prime
spectrum of A) which is unique up to homeomorphism.

Stone duality for Boolean algebras was generalized to Heyting algebras by Esakia [40] (see also
[42]).

Definition 2.8. An Esakia space is a Stone space X which in addition is a poset and the partial
order ≤ is continuous, meaning that the following two conditions are satisfied:

(1) ↑x is a closed set for each x ∈ X.
(2) U clopen implies that ↓U is clopen.

We recall that a map f : P → Q between two posets is a p-morphism if ↑f(x) = f [↑x] for each
x ∈ P . For Esakia spaces X and Y , a map f : X → Y is an Esakia morphism if it is a continuous
p-morphism.

Definition 2.9. Let Esa be the category of Esakia spaces and Esakia morphisms.

Theorem 2.10 (Esakia duality). Heyt is dually equivalent to Esa.

In particular, each Heyting algebra A is represented as the Heyting algebra of clopen upsets of
the prime spectrum XA of A, where the topology on XA is defined by the basis

{ζ(a) \ ζ(b) | a, b ∈ A}.

We refer to this representation as the Esakia representation of Heyting algebras.
If we restrict Esakia duality to the finite case, we obtain that the category of finite Heyting

algebras is dually equivalent to the category of finite posets. In particular, each finite Heyting
algebra A is isomorphic to Up(XA). We refer to this duality as finite Esakia duality (but point out
that this finite duality has been known before Esakia; see e.g., [38]).

It follows from Esakia duality that onto Heyting homomorphisms dually correspond to one-to-
one Esakia morphisms, and one-to-one Heyting homomorphisms to onto Esakia morphisms. In
particular, homomorphic images of a Heyting algebra A correspond to closed upsets of XA, while
subalgebras of A to special quotients of XA known as Esakia quotients (see, e.g., [10]).

Definition 2.11. Let X be an Esakia space.

(1) We call X rooted if there is x ∈ X, called the root of X, such that X = ↑x.
(2) We call X strongly rooted if X is rooted and the singleton {x} is clopen.

It is well known (see, e.g., [41] or [3]) that a Heyting algebra A is well-connected iff XA is rooted,
and that A is subdirectly irreducible iff XA is strongly rooted.

We evaluate formulas in a poset P by evaluating them in the Heyting algebra Up(P ), and we
evaluate formulas in an Esakia space X by evaluating them in the Heyting algebra of clopen upsets
of X. These clopen upsets are known as definable upsets of X, so such valuations are called definable
valuations.

Since each intermediate logic L is complete with respect to Heyting algebras, it follows from
Esakia duality that L is complete with respect to Esakia spaces (but not necessarily with respect
to posets as it is known [73] that there exist Kripke incomplete intermediate logics).

For a class K of posets or Esakia spaces, let K∗ be the corresponding class of Heyting algebras
(of all upsets or definable upsets of members of K). We then say that an intermediate logic L is
the logic of K if L is the logic of K∗.
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Definition 2.12. Let P be a finite poset and n ≥ 1.

(1) The length of a chain in P is its cardinality.
(2) The depth of P is ≤ n, denoted d(P ) ≤ n, if all chains in P have length ≤ n.
(3) The width of x ∈ P is ≤ n if the length of antichains in ↑x is ≤ n.
(4) The cofinal width (or top width) of x ∈ P is ≤ n if |max(↑x)| ≤ n.
(5) The width of P is ≤ n, denoted w(P ) ≤ n, if the width of each x ∈ P is ≤ n.
(6) The cofinal width (or top width) of P is ≤ n, denoted wc(P ) ≤ n, if the cofinal width of

each x ∈ P is ≤ n.
(7) The branching of P is ≤ n, denoted b(P ) ≤ n, if each x ∈ P has at most n distinct

immediate successors.
(8) The divergence of P is ≤ n, denoted div(P ) ≤ n, if for each x ∈ P and Q ⊆ ↑x ∩max(P )

satisfying |Q| ≤ n, there is y ≥ x with max(↑y) = Q.

The next theorem is well known (see, e.g., [28]).

Theorem 2.13. Let n ≥ 1.

(1) KC is the logic of all finite rooted posets that have a largest element.
(2) LC is the logic of all finite chains.
(3) KP is the logic of all finite rooted posets satisfying(

∀x∀y∀z
(
xRy ∧ xRz ∧ ¬(yRz) ∧ ¬(zRy)→ ∃u((xRu ∧ uRy ∧ uRz)∧

∀v(uRv → ∃w(vRw ∧ (yRw ∨ zRw)))
))
.

(4) Tn is the logic of all finite rooted posets of branching ≤ n.
(5) BDn is the logic of all finite rooted posets of depth ≤ n.
(6) LCn is the logic of the chain of length n.
(7) BWn is the logic of all finite rooted posets of width ≤ n.
(8) BTWn is the logic of all finite rooted posets of cofinal width ≤ n.
(9) BCn is the logic of all finite rooted posets of cardinality ≤ n.

(10) NDn is the logic of all finite rooted posets of divergence ≤ n.

Thus, each of these logics has the fmp. In fact, LC as well as each BDn is locally tabular, and each
LCn as well as each BCn is tabular.

3. Jankov formulas

As we pointed out in the Introduction, Jankov first introduced his formulas in the 1963 paper
[51] under the name of characteristic formulas. They have since become a major tool in the study of
intermediate and modal logics and are often referred to as Jankov formulas [28, p. 332], Jankov-de
Jongh formulas [19, p. 59], or Jankov-Fine formulas [24, p. 143]. In this paper we will refer to
them as Jankov formulas. First results about Jankov formulas were announced in [51]. Proofs of
these results together with further properties of Jankov formulas were given in [53]. In [52] Jankov
utilized his formulas to prove that there are continuum many intermediate logics (thus refuting an
earlier erroneous claim of Troelstra [76] that there are only countably many intermediate logics).
He also gave the first example of an intermediate logic without the fmp.

3.1. Jankov Lemma. The basic idea of Jankov formulas is closely related to the method of di-
agrams in model theory (see, e.g., [29, pp. 68–69]). Let A be a finite Heyting algebra.3 We can
encode the structure of A in our propositional language by describing what is true and what is false
in A. This way we obtain two finite sets of formulas, Γ and ∆, where pa is a new variable for each

3While the assumption that A is finite is not essential, it suffices for our purposes.
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a ∈ A:

Γ = {pa∧b ↔ pa ∧ pb | a, b ∈ A}∪
{pa∨b ↔ pa ∨ pb | a, b ∈ A}∪
{pa→b ↔ pa → pb | a, b ∈ A}∪
{p¬a ↔ ¬pa | a ∈ A}

and
∆ = {pa ↔ pb | a, b ∈ A with a 6= b}.

Thus, Γ describes what is true and ∆ what is false in A. We can then work with the multiple-
conclusion rule Γ/∆ and prove that this rule is characteristic for A in the following sense:

Lemma 3.1. [12] Let A be a finite Heyting algebra and B an arbitrary Heyting algebra. Then

B 6|= Γ/∆ iff A ∈ IS(B).4

However, at the time of Jankov, it was unusual to work with multiple-conclusion rules. Instead
Jankov assumed that A is subdirectly irreducible. Then A has the second largest element s.
Therefore, ∆ can be replaced with ps since everything that is falsified in A ends up underneath s.
Thus, we arrive at the following notion of the Jankov formula of A:

Definition 3.2. Let A be a finite subdirectly irreducible Heyting algebra with the second largest
element s. Then the Jankov formula of A is the formula

J (A) =
∧

Γ→ ps.

The defining property of Jankov formulas is presented in the following lemma, which we will refer
to as the Jankov Lemma. Comparing the Jankov Lemma to Lemma 3.1, we see that the switch
from the multiple-conclusion rule Γ/∆ to the formula J (A) requires on the one hand to assume
that A is subdirectly irreducible, and on the other hand to also work with homomorphic images
and not only with isomorphic copies of subalgebras of B as in Lemma 3.1.

Lemma 3.3 (Jankov Lemma). Let A be a finite subdirectly irreducible Heyting algebra and B an
arbitrary Heyting algebra. Then

B 6|= J (A) iff A ∈ ISH(B).

Proof. (Sketch). First suppose that A ∈ ISH(B). By evaluating each pa as a, it is easy to see that
A refutes J (A). Therefore, since A ∈ ISH(B), we also have that B 6|= J (A).

Conversely, suppose that B 6|= J (A). By [80, Lem. 1], there is a subdrectly irreducible homo-
morphic image C of B such that C 6|= J (A). Since C is subdrectly irreducible, the valuation v on
C refuting J (A) must be such that v(

∧
Γ) = 1C and v(ps) = sC , where sC is the second largest

element of C. Define h : A → C by setting h(a) = v(pa). That v(
∧

Γ) = 1C implies that h is a
Heyting homomorphism, and that h(ps) = sC yields that h is one-to-one. Thus, A ∈ ISH(B). �

Remark 3.4. Since the variety of Heyting algebras has the congruence extension property, we have
A ∈ ISH(B) iff A ∈ HS(B). Therefore, the conclusion of the Jankov Lemma is often formulated
as follows:

B 6|= J (A) iff A ∈ HS(B).

Since A is a finite subdirectly irreducible Heyting algebra, by Esakia duality, A is isomorphic to
the algebra P ∗ of upsets of a finite rooted poset P . To simplify notation, instead of J (A) we will
often write J (P ). Thus, we obtain the following dual reading of the Jankov Lemma.

Lemma 3.5. Let P be a finite rooted poset and X an Esakia space. Then X 6|= J (P ) iff P is
isomorphic to an Esakia quotient of a closed upset of X.

4This lemma is closely related to [29, Prop. 2.1.8].
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3.2. Splitting Theorem. A very useful feature of Jankov formulas is that they axiomatize split-
tings in the lattice of intermediate logics. We recall that a pair (s, t) of elements of a lattice L splits
L if L is the disjoint union of ↑s and ↓t.

Definition 3.6. [28, Sec. 10.5] An intermediate logic L is a splitting logic if there is an intermediate
logic M such that (L,M) split the lattice Λ of intermediate logics.

The next theorem is due to Jankov [51, 53], although not in the language of splitting logics.

Theorem 3.7 (Splitting Theorem). Let L be an intermediate logic. Then L is a splitting logic iff
L = IPC + J (A) for some finite subdirectly irreducible Heyting algebra A.

Proof. (Sketch). First suppose that L is a splitting logic. Then there is an intermediate logic M
such that (L,M) splits Λ. Since the variety Heyt of Heting algebras is congruence-distributive and
is generated by its finite members, a result of McKenzie [62, Thm. 4.3] yields that M is the logic
of a finite subdirectly irreducible Heyting algebra A. But then for an arbitrary Heyting algebra B
we have B |= J (A) iff B |= L. Thus, L = IPC + J (A).

For the converse, suppose that L = IPC + J (A) for some finite subdirectly irreducible Heyting
algebra A. Let M = L(A). We claim that (L,M) splits Λ. To see this, first note that as A 6|= J (A),
we have J (A) /∈ M. Therefore, L 6= M. Next let N be an intermediate logic such that L 6⊆ N. Then
J (A) /∈ N. Thus, there is a Heyting algebra B such that B |= N and B 6|= J (A). By the Jankov
Lemma, A ∈ ISH(B). Therefore, A |= N, and hence N ⊆ M. �

The Splitting Theorem was generalized to varieties with EDPC by Blok and Pigozzi [26].

Definition 3.8. Let L be an intermediate logic.

(1) L is a join-splitting logic if L is a join in Λ of splitting logics.
(2) L is axiomatizable by Jankov formulas if there is a set Ω of finite subdirectly irreducible

Heyting algebras such that L = IPC + {J (A) | A ∈ Ω}.

As an immediate consequence of the Splitting Theorem we obtain:

Theorem 3.9. An intermediate logic L is a join-splitting logic iff L is axiomatizable by Jankov
formulas.

To give examples of intermediate logics that are join-splitting, for each n ≥ 1, let Fn be the
n-fork, Dn the n-diamond, and Cn the n-chain.

v1 vn

Fn

n-fork

Dn

n-diamond

Cn

n-chain

n

Figure 1

The next theorem is well-known (although finding an exact reference is a challenge).

Theorem 3.10.
(1) CPC = IPC + J (C2), so CPC is a splitting logic.
(2) KC = IPC + J (F2), so KC is a splitting logic.
(3) BDn = IPC + J (Cn+1), so each BDn is a splitting logic.
(4) LC = IPC + J (F2) + J (D2), so LC is a join-splitting logic.
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(5) LCn = LC + J (Cn+1), so each LCn is a join-splitting logic.

This theorem shows that many well-known intermediate logics are indeed axiomatizable by
Jankov formulas. However, not every intermediate logic is axiomatizable by Jankov formulas.

Theorem 3.11. [28, Prop. 9.50] BTW3 is not axiomatizable by Jankov formulas.

We next give a criterion describing when an intermediate logic is axiomatizable by Jankov for-
mulas. Define the following relation between Heyting algebras:

A ≤ B iff A ∈ ISH(B).

Remark 3.12. As follows from Remark 3.4, A ≤ B iff A ∈ HS(B).

If A is finite and subdirectly irreducible, then by the Jankov Lemma, A ≤ B iff B 6|= J (A). It
was noted already by Jankov [53] that ≤ is a quasi-order and that if A,B are finite and subdirectly
irreducible, then A ≤ B and B ≤ A imply that A is isomorphic to B. Since the variety of
Heyting algebras is congruence-distributive, this is also a consequence of Jónsson’s Lemma [55].
The following result giving a criterion for an intermediate logic to be axiomatizable my Jankov
formulas is well known. For a proof see, e.g., [19, Cor. 3.4.14].

Theorem 3.13 (Criterion of axiomatizability by Jankov formulas). Let L and M be intermediate
logics such that L ⊆ M. Then M is axiomatizable over L by Jankov formulas iff for every Heyting
algebra B such that B |= L and B 6|= M there is a finite Heyting algebra A such that A ≤ B, A |= L,
and A 6|= M.

As a consequence of this criterion, we obtain the following result about axiomatizability for
extensions of a locally tabular intermediate logic.

Theorem 3.14. Let L be a locally tabular intermediate logic. Then every extension of L is axiom-
atizable by Jankov formulas over L.

Proof. Let M be an extension of L and B a Heyting algebra such that B |= L and B 6|= M. Then
there is ϕ(p1, . . . , pn) ∈ M such that B 6|= ϕ(p1, . . . , pn). Therefore, there is a valuation v on B
refuting ϕ. Let A be the subalgebra of B generated by {v(p1), . . . , v(pn)}. Then A ≤ B and A is
finite since L is locally tabular. In addition, A |= L as A is a subalgebra of B and A 6|= ϕ because
B 6|= ϕ. Thus, A 6|= M. By Theorem 3.13, M is axiomatizable over L by Jankov formulas. �

Theorem 3.14 can be generalized in two directions. Firstly we have that every locally tabular
intermediate logic is axiomatizable by Jankov formulas, and that every tabular intermediate logic
is axiomatizable by finitely many Jankov formulas; see [19, Thms. 3.4.24 and 3.4.27] (and also [32]
and [75]).

Theorem 3.15.

(1) Every locally tabular intermediate logic is axiomatizable by Jankov formulas.
(2) Every tabular intermediate logic is finitely axiomatizable by Jankov formulas.

Secondly the assumption in Theorem 3.14 that L is locally tabular can be weakened to L having
the hereditary finite model property.

Theorem 3.16. Let L be an intermediate logic with the hereditary fmp. Then every extension of
L is axiomatizable over L by Jankov formulas.

Proof. (Sketch). Let M be an extension of L. We let X be the set of all finite non-isomorphic
subdirectly irreducible L-algebras A such that A 6|= M and consider

N = L + {J (A) | A ∈ X}.
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Let B be a finite subdirectly irreducible Heyting algebra such that B |= L. By definition of X ,

B |= N iff B |= J (A) for each A ∈ X iff B |= M.

Since L has the hereditary fmp, both M and N have the fmp. Thus, M = N, and hence every
extension of L is axiomatizable over L by Jankov formulas. �

3.3. Cardinality of the lattice of intermediate logics. Jankov formulas are also instrumen-
tal in determining cardinalities of different classes of intermediate logics. We call a set Ω of ≤-
incomparable Heyting algebras an ≤-antichain. The next theorem is well known (see [52] or [19,
Thm. 3.4.18]).

Theorem 3.17. Let Ω be a countably infinite ≤-antichain of finite subdirectly irreducible Heyting
algebras. Then for Ω1,Ω2 ⊆ Ω with Ω1 6= Ω2, we have

(1) IPC + {J (A) | A ∈ Ω1} 6= IPC + {J (A) | A ∈ Ω2}.
(2) L(Ω1) 6= L(Ω2).

Proof. (1). Without loss of generality we may assume that Ω1 * Ω2. Therefore, there is B ∈ Ω1

with B /∈ Ω2. Since B 6|= J (B), by the Jankov Lemma, B 6|= IPC+ {J (A) | A ∈ Ω1}. On the other
hand, if B 6|= IPC+{J (A) | A ∈ Ω2}, then there is A ∈ Ω2 with B 6|= J (A). By the Jankov Lemma,
A ≤ B. However, since A,B ∈ Ω, this contradicts the assumption that Ω is an ≤-antichain. Thus,
B |= IPC + {J (A) | A ∈ Ω2}, and hence IPC + {J (A) | A ∈ Ω1} 6= IPC + {J (A) | A ∈ Ω2}.

(2). This is proved similarly to (1). �

To construct countable ≤-antichains, it is more convenient to use finite Esakia duality and work
with finite rooted posets. For this it is convenient to dualize the definition of ≤. Let P and Q be
finite posets. We set

P ≤ Q iff P is isomorphic to an Esakia quotient of an upset of Q.

The following lemma is an immediate consequence of finite Esakia duality.

Lemma 3.18. Let P and Q be finite posets. Then

P ≤ Q iff P ∗ ≤ Q∗.

In the next lemma we describe two infinite ≤-antichains of finite rooted posets. The antichain
Ω1 is the dual version of Jankov’s original antichain [52] of finite subdirectly irreducible Heyting
algebras, while the antichain Ω2 goes back to Kuznetsov [57].

Lemma 3.19. There exist countably infinite ≤-antichains of finite rooted posets.

Proof. (Sketch). We consider two countably infinite sets Ω1 and Ω2 of finite rooted posets. The set
Ω1 has infinite depth but width 3, while the set Ω2 has infinite width but depth 3.

•

• • •

•

• • •

• • •

•

• • •

• • •

• • •

. . .

The antichain Ω1
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•

• • •

•

• • •

• • ••

•

• • • •

• • • •

. . .

The antichain Ω2

It is a tedious calculation to show that Ω1 and Ω2 are indeed ≤-antichains. �

As an immediate consequence of Theorem 3.17 and Lemma 3.19 we obtain the cardinality bound
for the lattice of intermediate logics.

Theorem 3.20. [52] There are continuum many intermediate logics.

In fact, Lemma 3.19 implies a stronger result that the cardinality of intermediate logics of width
3 is that of the continuum, and that the cardinality of intermediate logics of depth 3 is that of the
continuum.

Remark 3.21. We conclude this section by mentioning several more applications of Jankov for-
mulas.

(1) Jankov formulas play an important role for obtaining intermediate logics that lack the
fmp and are Kripke incomplete. First intermediate logic without the fmp was constructed
by Jankov himself in [52]. Further examples of intermediate logics without the fmp were
given by Kuznetsov and Gerčiu [58]. In fact, there are continuum many intermediate logics
without the fmp (see, e.g., [28, Thm. 6,3] and [9, Cor. 5.41]). In [60] Litak used Jankov
formulas to construct continuum many Kripke incomplete intermediate logics.

(2) In [80] Wronski utilized Jankov formulas to construct continuum many intermediate logics
with the disjunction property. (We recall that an intermediate logic L has the disjunction
property if L ` ϕ ∨ ψ implies L ` ϕ or L ` ψ.)

(3) Jankov formulas are essential in the study of HSC logics (hereditarily structurally complete
intermediate logics). As was shown by Citkin [31, 33], there is a least HSC logic which is
axiomatized by the Jankov formulas of five finite subdirectly irreducible Heyting algebras
(see [23] for a proof using Esakia duality). This was extended to extensions of K4 by
Rybakov [72].

(4) A recent result [15] shows that there is a largest variety V of Heyting algebras in which every
profinite algebra is isomorphic to the profinite completion of some algebra in V. Again, V is
axiomatized by the Jankov formulas of four finite subdirectly irreducible Heyting algebras.

(5) Jankov formulas are instrumental in the study of the refutation systems of [35] (these are
formalisms that carry the information about what is not valid in a given logic).

4. Canonical formulas

As follows from Theorem 3.11, Jankov formulas do not axiomatize all intermediate logics. How-
ever, by Theorem 3.15(1), they do axiomatize every locally tabular intermediate logic. By Theo-
rem 2.5(1), these correspond to locally finite varieties of Heyting algebras. Although the variety
Heyt of all Heyting algebras is not locally finite, both the ∨-free and →-free reducts of Heyt gen-
erate locally finite varieties. Indeed, the ∨-free reducts of Heyt generate the variety of bounded
implicative semilattices, which is locally finite by Diego’s theorem [39]. Also, the →-free reducts of
Heyt generate the variety of bounded distributive lattices, which is well known to be locally finite
(see, e.g., [47, p. 68, Thm. 1]). On the one hand, these locally finite reducts can be used to prove
the fmp of IPC and many other intermediate logics. On the other hand, they allow to develop
powerful methods of uniform axiomatization of all intermediate logics.
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The key idea is to refine further the Jankov method discussed in the previous section. As we
pointed out, the Jankov formula of a finite subdirectly irreducible Heyting algebra A encodes the
structure of A in the full signature of Heyting algebras. The refinement of the method consists of
encoding fully only the structure of locally finite reduct of A. Then the embedding of A into a
homomorphic image of B discussed in the proof of the Jankov Lemma only preserves the operations
of the reduct. Yet, the embedding may preserve the remaining operation (∨ or → depending on
which locally finite reduct we work with) only on some elements of A. These constitute what
we call the “closed domain” of A. Thus, this new “generalized Jankov formula,” which following
Zakharyaschev [81, 82, 28] we call the “canonical formula” of A, encodes fully the locally finite
reduct of A that we work with, plus the remaining operation only partially, on the closed domain
of A. Since we will mainly be working with two locally finite reducts of Heyting algebras, the
∨-free and →-free reducts, we obtain two different types of canonical formulas. Based on the
dual description of the homomorphisms involved (see Section 5), we call the canonical formulas
associated with the ∨-free reduct “subframe canonical formulas,” and the ones associated with the
→-free reduct “stable canonical formulas.”

4.1. Subframe canonical formulas. In this section we survey the theory of subframe canonical
formulas developed in [4] (under the name of (∧,→, 0)-canonical formulas). For this we will work
with bounded implicative semilattices.

In Section 3, with each finite subdirectly irreducible Heyting algebra A we associated the Jankov
formula J (A) of A which encodes the structure of A in the full signature of Heyting algebras. The
subframe canonical formula of A encodes the bounded implicative semilattice structure of A fully,
but the behavior of ∨ only partially on some specified subset D ⊆ A2.

Definition 4.1. Let A be a finite subdirectly irreducible Heyting algebra, s the second largest
element of A, and D a subset of A2. For each a ∈ A we introduce a new variable pa and define the
subframe canonical formula α(A,D) associated with A and D as

α(A,D) =
(∧
{pa∧b ↔ pa ∧ pb | a, b ∈ A}∧∧
{pa→b ↔ pa → pb | a, b ∈ A}∧∧
{p¬a ↔ ¬pa | a ∈ A}∧∧
{pa∨b ↔ pa ∨ pb | (a, b) ∈ D}

)
→ ps

Remark 4.2. If D = A2, then α(A,D) = J (A).

Let A and B be Heyting algebras. We recall that a map h : A→ B is an implicative semilattice
homomorphism if

h(a ∧ b) = h(a) ∧ h(b) and h(a→ b) = h(a)→ h(b)

for each a, b ∈ A. It is easy to see that implicative semilattice homomorphisms preserve the top
element, but they may not preserve the bottom element. Thus, we call h bounded if h(0) = 0.

Definition 4.3. Let A,B be Heyting algebras, D ⊆ A2, and h : A → B a bounded implicative
semilattice homomorphism. We call D a ∨-closed domain of A and say that h satisfies the ∨-closed
domain condition for D if h(a ∨ b) = h(a) ∨ h(b) for (a, b) ∈ D.

To simplify notation, we abbreviate the ∨-closed domain condition by CDC∨. An appropriate
modification of the Jankov Lemma yields:

Lemma 4.4 (Subframe Jankov Lemma). [4, Thm. 5.3] Let A be a finite subdirectly irreducible
Heyting algebra, D ⊆ A2, and B an arbitrary Heyting algebra. Then B 6|= α(A,D) iff there is a
homomorphic image C of B and a bounded implicative semilattice embedding h : A� C satisfying
CDC∨ for D.
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Our second key tool for the desired uniform axiomatization of intermediate logics is what we call
the Selective Filtration Lemma. The name is motivated by the fact that it provides an algebraic
account of the Fine-Zakharyaschev method of selective filtration for intermediate logics (see, e.g.,
[28, Thm. 9.34]). For a detailed comparison of the algebraic and frame-theoretic methods of selective
filtration we refer to [7]. To formulate the Selective Filtration Lemma we require the following
definition.

Definition 4.5. Let A,B be Heyting algebras with A ⊆ B. We say that A is a (∧,→)-subalgebra
of B if A is closed under ∧ and →, and we say that A is a (∧,→, 0)-subalgebra of B if in addition
0 ∈ A.

Lemma 4.6 (Selective Filtration Lemma). Let B be a Heyting algebra such that B 6|= ϕ. Then
there is a finite Heyting algebra A such that A is a (∧,→, 0)-subalgebra of B and A 6|= ϕ. In
addition, if B is subdirectly irreducible, then A can be chosen to be subdirectly irreducible as well.

Proof. Since B 6|= ϕ, there is a valuation v on B such that v(ϕ) 6= 1B. Let Sub(ϕ) be the set
of subformulas of ϕ and let A be the (∧,→, 0)-subalgebra of B generated by v[Sub(ϕ)]. If B
is subdirectly irreducible, then it has the second largest element s, and we generate A by {s} ∪
v[Sub(ϕ)]. By Diego’s theorem, A is finite. Therefore, A is a finite Heyting algebra, where

a ∨A b =
∧
{c ∈ A | a, b ≤ c}

for each a, b ∈ A. It is easy to see that a ∨ b ≤ a ∨A b and that a ∨A b = a ∨ b whenever a ∨ b ∈ A.
Since for a, b ∈ v[Sub(ϕ)], if a ∨ b ∈ v[Sub(ϕ)], then a ∨A b = a ∨ b, we see that the value of ϕ in
A is the same as the value of ϕ in B. As v(ϕ) 6= 1B, we conclude that v(ϕ) 6= 1A. Thus, A is a
finite Heyting algebra that is a (∧,→, 0)-subalgebra of B and refutes ϕ. Finally, if B is subdirectly
irreducible, then s is also the second largest element of A, so A is subdirectly irreducible as well. �

Now suppose that IPC 6` ϕ and n = |Sub(ϕ)|. Since the variety of bounded implicative semi-
lattices is locally finite, there is a bound c(ϕ) on the number of n-generated bounded implicative
semilattices. Let A1, . . . , Am(n) be the list of finite subdirectly irreducible Heyting algebras such
that |Ai| ≤ c(ϕ) and Ai 6|= ϕ.

For an algebra A refuting ϕ via a valuation v, let Θ = v[Sub(ϕ)] and let

D∨ = {(a, b) ∈ Θ2 | a ∨ b ∈ Θ}.
Consider a new list (A1, D

∨
1 ), . . . , (Ak(n), D

∨
k(n)), and note that in general k(n) can be greater

than m(n) since each Ai may refute ϕ via different valuations.
We have the following characterization of refutability:

Theorem 4.7. [4, Thm. 5.7 and Cor. 5.10] Let B be a Heyting algebra.

(1) B 6|= ϕ iff there is i ≤ k(n), a homomorphic image C of B, and a bounded implicative
semilattice embedding h : Ai � C satisfying CDC∨ for D∨i .

(2) B |= ϕ iff B |=
k(n)∧
i=1

α(Ai, D
∨
i ).

Proof. Since (2) follows from (1) and the Subframe Jankov Lemma, we only sketch the proof of
(1). The right to left implication of (1) is straightforward. For the left to right implication, let
B 6|= ϕ. By the Selective Filtration Lemma, there is a finite Heyting algebra A such that A 6|= ϕ
and A is a (∧,→, 0)-subalgebra of B. If v is a valuation on B refuting ϕ, then as follows from
the proof of the Selective Filtration Lemma, v restricts to a valuation on A refuting ϕ. Since
by Birkhoff’s theorem (see, e.g., [27, Thm. 8.6]) A is isomorphic to a subdirect product of its
subdirectly irreducible homomorphic images, there is a subdirectly irreducible homomorphic image
A′ of A such that A′ 6|= ϕ. The valuation refuting ϕ on A′ can be taken to be the composition
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π ◦ v where π : A→ A′ is the onto homomorphism. Because homomorphic images are determined
by filters, A′ is the quotient A/F by some filter F ⊆ A. Let G be the filter of B generated by F
and let C be the quotient B/G. Then we have the following commutative diagram, and a direct
verification shows that the embedding A′ � C satisfies CDC∨ for D∨.

A // //

����

B

����
A′ // // C

From this we conclude that the pair (A′, D∨) is one of the (Ai, D
∨
i ) from the list, and the

embedding of A′ into a homomorphic image C of B satisfies CDC∨ for D∨i . �

Remark 4.8. The above sketch of the proof of Theorem 4.7(1) is simpler than the original proof
given in [4, Thm. 5.7], where free algebras were used to obtain the list (A1, D

∨
1 ), . . . , (Ak(n), D

∨
k(n)).

As an immediate consequence, we arrive at the following uniform axiomatization of all interme-
diate logics by subframe canonical formulas.

Theorem 4.9. [4, Cor. 5.13] Each intermediate logic L is axiomatizable by subframe canonical
formulas. Moreover, if L is finitely axiomatizable, then L is axiomatizable by finitely many subframe
canonical formulas.

Proof. Let L = IPC + {ϕi | i ∈ I}. Then IPC 6` ϕi for each i ∈ I. By Theorem 4.7, for each

i ∈ I, there are (Ai1, D
∨
i1), . . . , (Aiki , D

∨
iki

) such that IPC + ϕi = IPC +
∧ki
i=1 α(Ai, D

∨
i ). Thus,

L = IPC +
{∧ki

i=1 α(Ai, D
∨
i ) | i ∈ I

}
. �

Remark 4.10.
(1) As we pointed out in the Introduction, canonical formulas were first introduced by Za-

kharyaschev [81] where Theorem 4.9 was proved using relational semantics.
(2) The notion of subframe canonical formulas can be generalized to that of multiple-conclusion

subframe canonical rules along the lines of Lemma 3.1. This was done by Jeřábek [54] whose
approach was similar to that of Zakharyaschev [81]. In particular, Jeřábek proved that
every intuitionistic multiple-conclusion consequence relation is axiomatizable by canonical
rules. Jeřábek also gave an alternative proof of obtaining bases of admissible rules via these
canonical rules, and gave an alternative proof of Rybakov’s decidability of the admissibility
problem in IPC [71].

(3) An alternate approach to canonical formulas and rules using partial algebras was undertaken
by Citkin [34, 36].

4.2. Negation-free subframe canonical formulas.

Definition 4.11. We call a propositional formula ϕ negation-free if ϕ does not contain ¬.

For those intermediate logics that are axiomatized by negation-free formulas, we can simplify
subframe canonical formulas by dropping the conjunct∧

{p¬a ↔ ¬pa | a ∈ A}

in the antecedent. The resulting formulas we call negation-free subframe canonical formulas:

Definition 4.12. Let A be a finite subdirectly irreducible Heyting algebra, s the second largest
element of A, and D ⊆ A2 a ∨-closed domain of A. For each a ∈ A we introduce a new variable pa
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and define the negation-free subframe canonical formula β(A,D) associated with A and D by

β(A,D) =
(∧
{pa∧b ↔ pa ∧ pb | a, b ∈ A}∧∧
{pa→b ↔ pa → pb | a, b ∈ A}∧∧
{pa∨b ↔ pa ∨ pb | (a, b) ∈ D}

)
→ ps

We can then prove analogs of the results obtained in Section 4.1 and axiomatize each interme-
diate logic that is axiomatized by negation-free formulas by negation-free canonical formulas. The
difference is that everywhere in Theorems 4.4–4.7 “bounded” needs to be dropped and we need to
work with not necessarily bounded implicative semilattice embeddings. Because of this, we only
state the results without proofs.

Theorem 4.13. [4, Cor. 5.16 and 5.17] Let ϕ be a negation-free formula such that IPC 6` ϕ and n =
|Sub(ϕ)|. Then there is a list (A1, D

∨
1 ), . . . , (Ak(n), D

∨
k(n)) such that each Ai is a finite subdirectly

irreducible Heyting algebra, Di ⊆ A2
i is a ∨-closed domain of Ai, and for an arbitrary Heyting

algebra B we have:

(1) B 6|= ϕ iff there is i ≤ k(n), a homomorphic image C of B, and an implicative semilattice
embedding h : Ai � C satisfying CDC∨ for D∨i .

(2) B |= ϕ iff B |=
k(n)∧
i=1

β(Ai, D
∨
i ).

As a corollary, we obtain that each intermediate logic L that is axiomatized by negation-free
formulas is axiomatizable by negation-free canonical formulas.

Corollary 4.14. [4, Cor. 5.19] Each intermediate logic L that is axiomatized by negation-free for-
mulas is axiomatizable by negation-free canonical formulas. Moreover, if L is axiomatized by finitely
many negation-free formulas, then L is axiomatizable by finitely many negation-free canonical for-
mulas.

Remark 4.15.
(1) Negation-free canonical formulas were first introduced by Zakharyaschev [81] where Theo-

rem 4.14 was proved using relational semantics.
(2) The notion of negation-free subframe canonical formulas can be generalized to that of

negation-free multiple-conclusion subframe canonical rules. This was done by Jeřábek [54]
who showed that every intuitionistic negation-free multiple-conclusion consequence relation
is axiomatizable by negation-free multiple-conclusion canonical rules. Jeřábek’s approach
was similar to that of Zakharyaschev [81].

4.3. Stable canonical formulas. In this section we survey the theory of stable canonical formulas
of [8] (where they were called (∧,∨)-canonical formulas). The theory is developed along the same
lines as the theory of subframe canonical formulas, with the difference that stable canonical formulas
require to work with the→-free reduct of Heyting algebras instead of the ∨-free reduct. We outline
the similarities and differences between these two approaches.

We start by the following simple observation which will be useful throughout. Let A and B be
Heyting algebras. If B is subdirectly irreducible and A is a subalgebra of B, then A does not have
to be subdirectly irreducible. However, it is elementary to see that if B is well-connected and A
is a bounded sublattice of B, then A is also well-connected. In particular, since a finite Heyting
algebra is subdirectly irreducible iff it is well-connected, if B is well-connected and A is a finite
bounded sublattice of B, then A is subdirectly irreducible.
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We next define the stable canonical formula associated with a finite subdirectly irreducible Heyt-
ing algebra A and a subset D of A2. This formula encodes the bounded lattice structure of A fully
and the behavior of → partially, only on the elements of D.

Definition 4.16. Let A be a finite subdirectly irreducible Heyting algebra, s the second largest
element of A, and D ⊆ A2. For each a ∈ A introduce a new variable pa and set

Γ = {p0 ↔ ⊥} ∪ {p1 ↔ >}∪
{pa∧b ↔ pa ∧ pb | a, b ∈ A}∪
{pa∨b ↔ pa ∨ pb | a, b ∈ A}∪
{pa→b ↔ pa → pb | a, b ∈ D}

and

∆ = {pa ↔ pb | a, b ∈ A with a 6= b}.
Then define the stable canonical formula γ(A,D) associated with A and D as

γ(A,D) =
∧

Γ→
∨

∆.

Remark 4.17. In [8, Def. 3.1] ∆ is defined as {pa → pb | a, b ∈ A with a 6≤ b}.

Remark 4.18. Comparing γ(A,D) and α(A,D), we see that the antecedent of γ(A,D) encodes
the bounded lattice structure of A and the implications in D, while the antecedent of α(A,D)
encodes the bounded implicative semilattice structure of A and the joins in D.

The consequent of γ(A,D) is more complicated than that of α(A,D). The intention in both cases
is that the canonical formula is “pre-true” on the algebra. For α(A,D), since the formula encodes
implications of entire A, this can simply be expressed by introducing a variable for the second
largest element s of A. For γ(A,D) however we need a more complicated consequent because the
formula encodes implications only from the designated subset D of A2.

Remark 4.19. If D = A2, then γ(A,D) is equivalent to J (A) (see [8, Thm. 5.1]).

Definition 4.20. Let A,B be Heyting algebras, D ⊆ A2, and h : A → B a bounded lattice
homomorphism. We call D a →-closed domain of A and say that h satisfies the →-closed domain
condition for D if h(a→ b) = h(a)→ h(b) for all (a, b) ∈ D.

We abbreviate the →-closed domain condition by CDC→. The next lemma is a version of the
Jankov Lemma for stable canonical formulas.

Lemma 4.21 (Stable Jankov Lemma). [8, Thm. 3.4] Let A be a finite subdirectly irreducible Heyting
algebra, D ⊆ A2 a →-closed domain of A, and B a Heyting algebra. Then B 6|= γ(A,D) iff there is
a subdirectly irreducible homomorphic image C of B and a bounded lattice embedding h : A � C
satisfying CDC→ for D.

Remark 4.22. The Stable Jankov Lemma plays the same role in the theory of stable canonical
formulas as the Subframe Jankov Lemma in the theory of subframe canonical formulas, but it is
weaker in that the C in the lemma is required to be subdirectly irreducible, while in the Subframe
Jankov Lemma it is not. As is shown in [8, Rem. 3.5], this assumption is necessary.

The second main ingredient for obtaining uniform axiomatization of intermediate logics by means
of stable canonical formulas is the following Filtration Lemma, which goes back to [65] (and for
modal logics even further back to [63, 64]). The name is motivated by the fact that it provides
an algebraic account of the method of standard filtration for intermediate logics (see, e.g., [28,
Sec. 5.3]). For a detailed comparison of the algebraic and frame-theoretic methods of standard
filtration we refer to [7].
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Lemma 4.23 (Filtration Lemma). Let B be a Heyting algebra such that B 6|= ϕ. Then there is a
finite Heyting algebra A such that A is a bounded sublattice of B and A 6|= ϕ. In addition, if B is
well-connected, then A is subdirectly irreducible.

Proof. Since B 6|= ϕ, there is a valuation v on B such that v(ϕ) 6= 1B. Let A be the bounded
sublattice of B generated by v[Sub(ϕ)]. Since the variety of bounded distributive lattices is locally
finite, A is finite. Therefore, A is a finite Heyting algebra, where

a→A b =
∨
{c ∈ A | a ∧ c ≤ b}

for each a, b ∈ A. As a → b =
∨
{d ∈ B | a ∧ d ≤ b}, it is easy to see that a →A b ≤ a → b and

that a →A b = a → b whenever a → b ∈ A. Since for ψ, χ ∈ Sub(ϕ), if ψ → χ ∈ Sub(ϕ), then
v(ψ)→A v(χ) = v(ψ)→ v(χ), we see that the value of ϕ in A is the same as the value of ϕ in B.
As ϕ is refuted on B, we conclude that ϕ is refuted on A. Thus, A is a finite Heyting algebra that
is a bounded sublattice of B and refutes ϕ. Finally, if B is well-connected, then so is A, and as A
is finite, A is subdirectly irreducible. �

Now suppose that IPC 6` ϕ and n = |Sub(ϕ)|. Since the variety of bounded distributive lattices is
locally finite, there is a bound c(ϕ) on the number of n-generated bounded distributive lattices. Let
A1, . . . , Am(n) be the list of all finite subdirectly irreducible Heyting algebras such that |Ai| ≤ c(ϕ)
and Ai 6|= ϕ.

For an algebra A refuting ϕ via a valuation v, let Θ = v[Sub(ϕ)] and let

D→ = {(a, b) ∈ Θ2 | a→ b ∈ Θ}.
Consider a new list (A1, D

→
1 ), . . . , (Ak(n), D

→
k(n)), and note that in general k(n) can be greater

than m(n) since each Ai may refute ϕ via different valuations.
The next theorem provides an alternate characterization of refutability to that given in The-

orem 4.7. The proof is along similar lines of the proof of Theorem 4.7, but with appropriate
adjustments since here we work with a different reduct of Heyting algebras.

Theorem 4.24. [8, Thm 3.7 and Cor. 3.9] Let B be a subdirectly irreducible Heyting algebra.

(1) The following conditions are equivalent:
(a) B 6|= ϕ.
(b) There is i ≤ k(n) and a bounded lattice embedding h : Ai � C satisfying CDC→ for

D→i .
(c) There is i ≤ k(n), a subdirectly irreducible homomorphic image C of B, and a bounded

lattice embedding h : Ai � C satisfying CDC→ for D→i .

(2) B |= ϕ iff B |=
k(n)∧
i=1

γ(Ai, D
→
i ).

Proof. Since (2) follows from (1) and the Stable Jankov Lemma, we only sketch the proof of (1). The
implications (1b)⇒(1c)⇒(1a) are straightforward. We prove the implication (1a)⇒(1b). Suppose
that B 6|= ϕ. As B is subdirectly irreducible, it is well-connected. By the Filtration Lemma, there
is a finite subdirectly irreducible Heyting algebra A such that A 6|= ϕ and A is a bounded sublattice
of B. Moreover, it follows from the proof of the Filtration Lemma that for each a, b ∈ B such that
a → b ∈ v[Sub(ϕ)] we have a →A b = a → b. From this we conclude that the pair (A,D→) is one
of the (Ai, D

→
i ) from the list and the embedding of A into B satisfies CDC→ for D→i . �

Remark 4.25. The above sketch of the proof of Theorem 4.24(1) is simpler than the original proof
given in [8, Thm. 3.7], where free algebras were used to obtain the list (A1, D

→
1 ), . . . (Ak(n), D

→
k(n)).

Remark 4.26. Theorem 4.24 plays the same role in the theory of stable canonical formulas as
Theorem 4.7 in the theory of subframe canonical formulas, but it is weaker in that the B in the
theorem is required to be subdirectly irreducible, while in Theorem 4.7 it is arbitrary.
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As a consequence, we arrive at the following axiomatization of intermediate logics by means of
stable canonical formulas, which is an alternative to Theorem 4.9. The proof is along the same lines
as that of Theorem 4.9, the only difference being that we have to work with subdirectly irreducible
Heyting algebras instead of arbitrary Heyting algebras. Since each variety of Heyting algebras is
generated by its subdirectly irreducible members, the end result is the same.

Theorem 4.27. [8, Cor. 3.10] Each intermediate logic L is axiomatizable by stable canonical for-
mulas. Moreover, if L is finitely axiomatizable, then L is axiomatizable by finitely many stable
canonical formulas.

Remark 4.28.
(1) The same way subsframe canonical formulas can be generalized to subframe canonical rules

(see Remark 4.10(2)), in [12] stable canonical formulas were generalized to stable canonical
rules and it was shown that every intuitionistic multiple-conclusion consequence relation is
axiomatizable by stable canonical rules. These rules were used in [21] to give an alternative
proof of the existence of bases of admissible rules and the decidability of the admissibility
problem for IPC, thus providing an analogue of Jeřábek’s result [54] via stable canonical
rules.

(2) Stable canonical formulas were generalized to substructural logics in [22].

5. Canonical formulas dually

In this section we discuss the dual reading of both subframe and stable canonical formulas. For
subframe canonical formulas this requires a dual description of bounded implicative semilattice
homomorphisms, and for stable canonical formulas a dual description of bounded lattice homomor-
phisms. For the former we will work with the generalized Esakia duality of [4], and for the latter
with Priestley duality for bounded distributive lattices [66, 67].

5.1. Subframe canonical formulas dually. As was shown in [4], implicative semilattice homo-
morphisms are dually described by means of special partial maps between Esakia spaces.

Definition 5.1. Let X and Y be Esakia spaces, f : X → Y a partial map, and dom(f) the domain
of f . We call f a partial Esakia morphism if the following conditions are satisfied:

(1) If x, z ∈ dom(f) and x ≤ z, then f(x) ≤ f(z).
(2) If x ∈ dom(f), y ∈ Y , and f(x) ≤ y, then there is z ∈ dom(f) such that x ≤ z and f(z) = y.
(3) x ∈ dom(f) iff there is y ∈ Y such that f [↑x] = ↑y.
(4) f [↑x] is closed for each x ∈ X.
(5) If U is a clopen upset of Y , then X \ ↓f−1(Y \ U) is a clopen upset of X.

Remark 5.2. If dom(f) = X and hence the partial Esakia morphism f : X → Y is total, then f
is an Esakia morphism (see Lemma 5.4(2)).

The next result describes the topological properties of the domain of a partial Esakia morphism
that will be used subsequently.

Lemma 5.3. Let f : X → Y be a partial Esakia morphism.

(1) dom(f) is a closed subset of X.
(2) If Y is finite, then dom(f) is a clopen subset of X.

Proof. For a proof of (1) see [4, Lem. 3.7]. For (2), in view of (1), it is sufficient to show that
dom(f) is open. Let x ∈ dom(f). We set

D1 = Y \ ↑f(x),

D2 = Y \ (↑f(x) \ {f(x)}),
U = ↓f−1(D2) \ ↓f−1(D1).
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Since Y is finite and D1, D2 are downsets of Y , Definition 5.1(5) yields that ↓f−1(D2) and ↓f−1(D1)
are clopen downsets of X. Therefore, U is clopen in X. Since f(x) ∈ D2, we have x ∈ ↓f−1(D2).
Also, f(x) /∈ D1 and D1 a downset of Y implies that f−1(D1) is a downset of dom(f) by Defini-
tion 5.1(1). Thus, x /∈ ↓f−1(D1), and so x ∈ U . Therefore, it is sufficient to show that U ⊆ dom(f).
Let y ∈ U . Then there is z ∈ dom(f) such that y ≤ z, f(z) /∈ (↑f(x) \ {f(x)}), and f(z) ∈ ↑f(x).
Thus, f(z) = f(x). Since y ≤ z and z ∈ dom(f), we have

↑f(x) = ↑f(z) = f [↑z] ⊆ f [↑y],

where the second equality follows from Definition 5.1(1,2). For the reverse inclusion, let u ∈ dom(f)
and y ≤ u. Since y /∈ ↓f−1(D1), we have that f(u) ∈ ↑f(x). Therefore, f [↑y] = ↑f(x), and we
conclude by Definition 5.1(3) that y ∈ dom(f). Thus, U ⊆ dom(f), and hence dom(f) is clopen in
X. �

Lemma 5.4. Let X,Y be Esakia spaces with Y finite and let f : X → Y be a partial Esakia
morphism.

(1) dom(f) is an Esakia space in the induced topology and order.
(2) f restricted to dom(f) is an Esakia morphism.

Proof. (1). It is well known (see, e.g., [42, Thm. 3.2.6]) that a clopen subset of an Esakia space is an
Esakia space in the induced topology and order. Thus, the result is immediate from Lemma 5.3(2).

(2). That f is a p-morphism follows from Definition 5.1(1,2) and that f is continuous is proved
in [4, Lem. 3.9]. �

Let A,B be Heyting algebras and XA, XB their Esakia spaces. Given an implicative semilattice
homomorphism h : A→ B, define h∗ : B∗ → A∗ by setting

dom(h∗) = {x ∈ B∗ | h−1(x) ∈ A∗}
and for x ∈ dom(h∗) by putting h∗(x) = h−1(x).

Lemma 5.5. [4, Thm. 3.14] h∗ : XB → XA is a partial Esakia morphism.

Conversely, let X,Y be Esakia spaces and f : X → Y a partial Esakia morphism. Let X∗, Y ∗

be the Heyting algebras of clopen upsets of X,Y and define f∗ : Y ∗ → X∗ by

f∗(U) = X \ ↓f−1(Y \ U)

for each U ∈ Y ∗.

Lemma 5.6. [4, Thm. 3.15] f∗ : Y ∗ → X∗ is an implicative semilattice homomorphism.

As was shown in [4, Thm. 3.27], this correspondence extends to a categorical duality between
the category of Heyting algebras and implicative semilattice homomorphisms and the category of
Esakia spaces and partial Esakia morphisms.

Definition 5.7. [4, Def. 3.30] Let X and Y be Esakia spaces. We call a partial Esakia morphism
f : X → Y cofinal if for each x ∈ X there is z ∈ dom(f) such that x ≤ z.5

By [4, Sec. 3.5], bounded implicative semilattice homomorphisms h : A → B dually correspond
to cofinal partial Esakia morphisms f : XB → XA.

We next connect the ∨-closed domain condition we discussed in Section 4.1 with Zakharyaschev’s
closed domain condition, which is one of the main tools in Zakharyaschev’s frame-theoretic devel-
opment of canonical formulas [81].

Let X,Y be Esakia spaces and f : X → Y a partial Esakia morphism. For x ∈ X let min f [↑x] be
the set of minimal elements of f [↑x]. Since f [↑x] is closed, f [↑x] ⊆ ↑min f [↑x] (see [42, Thm. 3.2.1]).

5In [4, Def. 3.30] these morphisms were called well partial Esakia morphisms.
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Definition 5.8. Let X,Y be Esakia spaces, f : X → Y a partial Esakia morphism, and D a
(possibly empty) set of antichains in Y . We say that f satisfies Zakharyaschev’s closed domain
condition (ZCDC for short) for D if x /∈ dom(f) implies min f [↑x] /∈ D.

Let A,B be Heyting algebras, h : A → B an implicative semilattice homomorphism, and a, b ∈
A. Let also XA, XB be the Esakia spaces of A,B, f : XB → XA the partial Esakia morphism
corresponding to h, and ζ(a), ζ(b) the clopen upsets of XA corresponding to a, b. We let

Dζ(a),ζ(b) = {antichains d in ζ(a) ∪ ζ(b) | d ∩ (ζ(a) \ ζ(b)) 6= ∅ and d ∩ (ζ(b) \ ζ(a)) 6= ∅}.

Lemma 5.9. [4, Lem. 3.40] Let A,B be Heyting algebras, h : A → B an implicative semilattice
homomorphism, and a, b ∈ A. Let also XA, XB be the Esakia spaces of A,B and f : XB → XA the
partial Esakia morphism corresponding to h. Then h(a ∨ b) = h(a) ∨ h(b) iff f satisfies ZCDC for
Dζ(a),ζ(b).

Proof. Using duality, it is sufficient to prove that for any clopen upsets U, V we have f∗(U ∪ V ) =
f∗(U) ∪ f∗(V ) iff f satisfies ZCDC for DU,V .
⇒: Let x /∈ dom(f). If minf [↑x] ∈ DU,V , then f [↑x] = ↑minf [↑x] ⊆ U ∪ V , but neither

f [↑x] ⊆ U nor f [↑x] ⊆ V . Therefore, x ∈ f∗(U ∪ V ), but x /∈ f∗(U) and x /∈ f∗(V ). This
contradicts f∗(U ∪ V ) = f∗(U) ∪ f∗(V ). Consequently, minf [↑x] /∈ DU,V , and so f satisfies ZCDC
for DU,V .
⇐: It is sufficient to show that f∗(U ∪V ) ⊆ f∗(U)∪f∗(V ) since the other inclusion always holds.

Let x ∈ f∗(U ∪V ). Then f [↑x] ⊆ U ∪V . We have that x ∈ dom(f) or x /∈ dom(f). If x ∈ dom(f),
then f [↑x] = ↑f(x). Therefore, f [↑x] ⊆ U ∪V implies ↑f(x) ⊆ U ∪V , hence ↑f(x) ⊆ U or ↑f(x) ⊆
V . Thus, x ∈ f∗(U) or x ∈ f∗(V ), and so x ∈ f∗(U) ∪ f∗(V ). On the other hand, if x /∈ dom(f),
then as f satisfies ZCDC for DU,V , we obtain that minf [↑x] /∈ DU,V . Therefore, minf [↑x] ⊆ U
or minf [↑x] ⊆ V . Thus, f [↑x] ⊆ ↑minf [↑x] ⊆ U or f [↑x] ⊆ ↑minf [↑x] ⊆ V , which yields that
x ∈ f∗(U) or x ∈ f∗(V ). Consequently, x ∈ f∗(U)∪f∗(V ), and so f∗(U ∪V ) ⊆ f∗(U)∪f∗(V ). �

We are ready to give the dual reading of subframe canonical formulas of Section 4.1. Let A
be a finite subdirectly irreducible Heyting algebra. By finite Esakia duality, its dual is a finite
rooted poset P . Let D ⊆ A2. We call the set D = {Dζ(a),ζ(b) | (a, b) ∈ D} the set of antichains
of P associated with D. The following theorem is a consequence of the Subframe Jankov Lemma,
Lemma 5.9, and generalized Esakia duality.

Theorem 5.10. [4, Cor. 5.5] Let A be a finite subdirectly irreducible Heyting algebra and P its dual
finite rooted poset. Let D ⊆ A2 and D be the set of antichains of P associated with D. Then for
each Esakia space X, we have X 6|= α(A,D) iff there is a closed upset Y of X and an onto cofinal
partial Esakia morphism f : Y � P such that f satisfies ZCDC for D.

From this we derive the following dual reading of Theorem 4.7.

Theorem 5.11. [4, Cor. 5.9 and 5.11] Suppose IPC 6` ϕ and (A1, D
∨
1 ), . . . , (Ak(n), D

∨
k(n)) is the

corresponding list of finite refutation patterns of ϕ. For each i ≤ k(n) let Pi be the dual finite
rooted poset of Ai and Di the set of antichains of Pi associated with D∨i . Then for an arbitrary
Esakia space X, we have:

(1) X 6|= ϕ iff there is i ≤ k(n), a closed upset Y of X, and an onto cofinal partial Esakia
morphism f : Y → Pi satisfying ZCDC for Di.

(2) X |= ϕ iff X |=
k(n)∧
i=1

α(Ai, D
∨
i ).

We have a parallel situation with negation-free canonical formulas, the main difference being that
“cofinal” has to be dropped from the consideration. We thus arrive at the following negation-free
analogue of Theorem 5.11.
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Theorem 5.12. [4, Cor. 5.16 and 5.17] Suppose ϕ is a negation-free formula, IPC 6` ϕ, and
(A1, D

∨
1 ), . . . , (Ak(n), D

∨
k(n)) is the corresponding list of finite refutation patterns of ϕ. For each

i ≤ k(n) let Pi be the dual finite rooted poset of Ai and Di the set of antichains of Pi associated
with D∨i . Then for an arbitrary Esakia space X, we have:

(1) X 6|= ϕ iff there is i ≤ k(n), a closed upset Y of X, and an onto partial Esakia morphism
f : Y → Pi satisfying ZCDC for Di.

(2) X |= ϕ iff X |=
k(n)∧
i=1

β(Ai, D
∨
i ).

Remark 5.13. Zakharyschev’s canonical formulas [81, 28] are different but equivalent to subframe
canonical formulas (see [4, Rem. 5.6]).

5.2. Stable canonical formulas dually. Let A,B be Heyting algebras. We recall that a map
h : A→ B is a lattice homomorphism if

h(a ∧ b) = h(a) ∧ h(b) and h(a ∨ b) = h(a) ∨ h(b)

for each a, b ∈ A. A lattice homomorphism h : A → B is bounded if h(0) = 0 and h(1) = 1. It
is a consequence of Priestley duality for bounded distributive lattices [66, 67] that bounded lattice
homomorphisms h : A→ B dually correspond to continuous order-preserving maps f : XB → XA.

Definition 5.14. Let X,Y be Esakia spaces. We call a map f : X → Y a stable morphism if f is
continuous and order-preserving.

Remark 5.15. The name “stable morphism” comes from modal logic, where it is used for contin-
uous maps that preserve relation (see [11, 13, 50]). In Priestley duality for bounded distributive
lattices these maps are known as Priestley morphisms.

Definition 5.16. [8, Def. 4.1] Let X,Y be Esakia spaces and f : X → Y a stable morphism.

(1) Let D be a clopen subset of Y . We say that f satisfies the stable domain condition (SDC
for short) for D if

↑f(x) ∩D 6= ∅⇒ f [↑x] ∩D 6= ∅.
(2) Let D be a collection of clopen subsets of Y . We say that f : X → Y satisfies the stable

domain condition (SDC for short) for D if f satisfies SDC for each D ∈ D.

Lemma 5.17. [8, Lem. 4.3] Let A,B be Heyting algebras, h : A → B a bounded lattice homo-
morphism, and a, b ∈ A. Let also XA, XB be the Esakia spaces of A,B, f : XB → XA the stable
morphism corresponding to h, and Dζ(a),ζ(b) = ζ(a) \ ζ(b). Then h(a → b) = h(a) → h(b) iff f
satisfies SDC for Dζ(a),ζ(b).

Proof. Using duality it is sufficient to show that for any clopen upsets U, V we have f−1(U) →
f−1(V ) = f−1(U → V ) iff f satisfies SDC for DU,V .
⇒: Suppose that ↑f(x) ∩ DU,V 6= ∅. Then ↑f(x) ∩ U 6⊆ V . Therefore, f(x) /∈ U → V , so

x /∈ f−1(U → V ). Thus, x /∈ f−1(U) → f−1(V ), and so ↑x ∩ f−1(U) 6⊆ f−1(V ). This implies
f [↑x] ∩ U 6⊆ V , and hence f [↑x] ∩DU,V 6= ∅. Consequently, f satisfies SDC for DU,V .
⇐: It is sufficient to show that f−1(U)→ f−1(V ) ⊆ f−1(U → V ) since the other inclusion always

holds. Suppose that x /∈ f−1(U → V ). Then f(x) /∈ U → V . Therefore, ↑f(x) ∩ U 6⊆ V , which
means that ↑f(x)∩DU,V 6= ∅. Thus, f [↑x]∩DU,V 6= ∅. This means that ↑x∩(f−1(U)\f−1(V )) 6= ∅.
Consequently, ↑x ∩ f−1(U) 6⊆ f−1(V ), implying that x /∈ f−1(U)→ f−1(V ). �

We recall from Section 2.3 that the Esakia dual of a subdirectly irreducible Heyting algebra is
a strongly rooted Esakia space, the Esakia dual of a finite subdirectly irreducible Heyting algebra
is a finite rooted poset, and the Esakia dual of a subdirectly irreducible homomorphic image of a
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Heyting algebra A is a strongly rooted closed upset of the Esakia dual of A. We also recall [66,
Thm. 3] that bounded sublattices of A dually correspond to onto stable morphisms from the Esakia
dual of A. Thus, Lemma 5.17 yields the following dual reading of the Stable Jankov Lemma and
Theorem 4.24.

Theorem 5.18. [8, Thm. 4.4]

(1) Let A be a finite subdirectly irreducible Heyting algebra and P its dual finite rooted poset.
For D ⊆ A2, let D = {Dζ(a),ζ(b) | (a, b) ∈ D}. Then for each Esakia space X, we have
X 6|= γ(A,D) iff there is a strongly rooted closed upset Y of X and an onto stable morphism
f : Y � P such that f satisfies SDC for D.

(2) Suppose IPC 6` ϕ and (A1, D
→
1 ), . . . , (Ak(n), D

→
k(n)) is the corresponding list of finite refu-

tation patterns of ϕ. For each i ≤ k(n), let Pi be the dual finite rooted poset of Ai and
Di = {Dζ(a),ζ(b) | (a, b) ∈ D→i }. Then for each strongly rooted Esakia space X, the follow-
ing conditions are equivalent:
(a) X 6|= ϕ.
(b) There is i ≤ k(n) and an onto stable morphism f : Y � Pi such that f satisfies SDC

for Di.
(c) There is i ≤ k(n), a strongly rooted closed upset Y of X, and an onto stable morphism

f : Y � Pi such that f satisfies SDC for Di.

(3) For each strongly rooted Esakia space X, we have X |= ϕ iff X |=
k(n)∧
i=1

γ(Ai, D
→
i ).

Remark 5.19. When comparing the dual approaches to these two types of canonical formulas, we
see that in the case of subframe canonical formulas we work with cofinal partial Esakia morphisms
whose duals are bounded implicative semilattice homomorphisms, and Zakharyaschev’s closed do-
main condition ZCDC provides means for the dual to also preserve ∨. On the other hand, in the
case of stable canonical formulas we work with stable morphisms whose duals are bounded lattice
homomorphisms, and the stable domain condition SDC provides means for the dual to also preserve
→. In the end, both approaches provide the same result, that all intermediate logics are axioma-
tizable either by subframe canonical formulas or by stable canonical formulas. However, both the
algebra and geometry of the two approaches are different.

6. Subframe and cofinal subframe formulas

As we saw in Remark 4.2, when the closed domain D of a subframe canonical formula α(A,D)
is the entire A2, then α(A,D) coincides with the Jankov formula J (A). Another extreme case is
when D = ∅. In this case, we simply drop D and write α(A) or β(A) depending on whether we
work with α(A,D) (in the full signature of subframe canonical formulas) or with β(A,D) (in the
negation-free signature). As a result, we arrive at subframe formulas (when working with β(A)) or
cofinal subframe formulas (when working with α(A)), and the corresponding subframe and cofinal
subframe logics. We briefly recall that subframe logics were first studied by Fine [45] and cofinal
subframe logics by Zakharyaschev [83] for extensions of K4. The study of subframe and cofinal
subframe intermediate logics was initiated by Zakharyaschev [81]. Both Fine and Zakharyaschev
utilized relational semantics. In this section we survey the theory of these logics utilizing algebraic
semantics.

Definition 6.1. Let A be a finite subdirectly irreducible Heyting algebra and D = ∅.

(1) We call α(A,D) the cofinal subframe formula of A and denote it by α(A).
(2) We call β(A,D) the subframe formula of A and denote it by β(A).

The names “subframe formula” and “cofinal subframe formula” are justified by their connection
to subframes and cofinal subframes of Esakia spaces discussed below (see Theorems 6.15 and 6.16).
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Let A,B be Heyting algebras with A finite and subdirectly irreducible. As an immediate con-
sequence of the Subframe Jankov Lemma we obtain that B 6|= α(A) iff there is a homomorphic
image C of B and a bounded implicative semilattice embedding h : A� C, and similarly for β(A).
However, this result can be improved by dropping homomorphic images from the consideration.
For this we require the following lemma.

Lemma 6.2. Let A,B,C be finite Heyting algebras and h : B � C an onto Heyting homomorphism.

(1) If e : A� C is an implicative semilattice embedding, then there is an implicative semilattice
embedding k : A� B such that h ◦ k = e.

(2) If in addition e is bounded, then so is k.
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Proof. (1). Let XA, XB, and XC be the dual finite posets of A, B, and C. We identify A with the
upsets of XA, B with the upsets of XB, and C with the upsets of XC . Since C is a homomorphic
image of B, we have that XC is (isomorphic to) an upset of XB. Also, since e : A → C is an
implicative lattice embedding, there is an onto partial Esakia morphism f : XC → XA (see [4,
Lem. 3.29]). Viewing f also as a partial map f : XB → XA, it is straightforward that f satisfies
conditions (1), (2), and (5) of Definition 5.1. Therefore, by [28, Thm. 9.7], f∗ : Up(XA)→ Up(XB)
is an implicative semilattice embedding, and it is clear that h ◦ f∗ = e.

(2). Suppose in addition that e is bounded. Then f : XC → XA is cofinal, so max(XC) ⊆ dom(f).
Let y ∈ max(XA) and define a partial map g : XB → XA by setting dom(g) = dom(f) ∪max(XB)
and for x ∈ dom(g) letting

g(x) =

{
f(x) if x ∈ dom(f)

y if x ∈ max(XB) \ dom(f)

It is then straightforward that g satisfies conditions (1), (2), and (5) of Definition 5.1. Therefore,
g∗ : Up(XA)→ Up(XB) is an implicative semilattice embedding. It follows from the definition of g
that ↓dom(g) = XB and g|XC

= f . Thus, g∗ is bounded (see [4, Lem. 3.32]) and h ◦ g∗ = f∗. �

Theorem 6.3.
(1) Let A be a finite subdirectly irreducible Heyting algebra and B an arbitrary Heyting algebra.

(a) B 6|= β(A) iff there is an implicative semilattice embedding h : A� B.
(b) B 6|= α(A) iff there is a bounded implicative semilattice embedding h : A� B.

(2) Let A be a finite subdirectly irreducible Heyting algebra, P its dual finite rooted poset, and
X an arbitrary Esakia space.
(a) X 6|= β(A) iff there is an onto partial Esakia morphism f : X � P .
(b) X 6|= α(A) iff there is an onto cofinal partial Esakia morphism f : X � P .

Proof. Since (2) is the dual statement of (1), it is sufficient to prove (1). The right to left implication
is obvious. For the left to right implication, suppose B 6|= β(A). By the Selective Filtration Lemma,
there is a finite (∧,→)-subalgebra D of B such that D 6|= β(A). By the Subframe Jankov Lemma,
there is a homomorphic image C of D and an implicative semilattice embedding of A into C. By
Lemma 6.2(1), there is an implicative semilattice embedding of A into D, and hence there is an
implicative semilattice embedding of A into B. �

Remark 6.4. Theorem 6.3 improves [4, Cor. 5.24] in that B 6|= β(A) is equivalent to the existence
of an implicative semilattice embedding of A directly into B, rather than a homomorphic image of
B (and the same for α(A)).
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Definition 6.5. Let L be an intermediate logic.

(1) We call L a subframe logic if there is a family {Ai | i ∈ I} of finite subdirectly irreducible
Heyting algebras such that L = IPC + {β(Ai) | i ∈ I}.

(2) We call L a cofinal subframe logic if there is a family {Ai | i ∈ I} of finite subdirectly
irreducible Heyting algebras such that L = IPC + {α(Ai) | i ∈ I}.

(3) Let ΛSubf be the set of subframe logics and ΛCSubf the set of cofinal subframe logics.

Theorem 6.6. [28, Sec. 11.3]

(1) ΛSubf is a complete sublattice of ΛCSubf and ΛCSubf is a complete sublattice of Λ.
(2) The cardinalities of both ΛSubf and ΛCSubf \ ΛSubf are that of the continuum.

Definition 6.7. Let ϕ be a propositional formula.

(1) Call ϕ a DN-free formula if ϕ does not contain disjunction and negation.
(2) Call ϕ a disjunction-free formula if ϕ does not contain disjunction.

Since α(A) encodes the bounded implicative semilattice structure and β(A) the implicative semi-
lattice structure of A, one would expect that subframe logics are exactly those intermediate logics
that are axiomatizable by DN-free formulas and cofinal subframe logics are those that are ax-
iomatizable by disjunction-free formulas. This indeed turns out to be the case, as was shown by
Zakharyaschev [81] using relational semantics. To give an algebraic proof and obtain other equiv-
alent conditions for an intermediate logic to be a subframe or cofinal subframe logic, we introduce
the following notation.

Definition 6.8.
(1) Let A,B be Heyting algebras with A ⊆ B. We say that A is a (∧,→)-subalgebra of B if

A is closed under ∧ and →, and we say that A is a (∧,→, 0)-subalgebra of B if in addition
0 ∈ A.

(2) We say that a class K of Heyting algebras is closed under (∧,→)-subalgebras if from B ∈ K
and A being isomorphic to a (∧,→)-subalgebra of B it follows that A ∈ K.

(3) We say that a class K of Heyting algebras is closed under (∧,→, 0)-subalgebras if from
B ∈ K and A being isomorphic to a (∧,→, 0)-subalgebra of B it follows that A ∈ K.

Theorem 6.9. For an intermediate logic L, the following conditions are equivalent.

(1) L is a subframe logic.
(2) L is axiomatizable by DN-free formulas.
(3) The variety V(L) is closed under (∧,→)-subalgebras.
(4) There is a class K of L-algebras closed under (∧,→)-subalgebras that generates V(L).

Proof. (1)⇒(2). If L is a subframe logic, then L is axiomatizable by subframe formulas. But sub-
frame formulas are DN-free formulas by definition. Thus, L is axiomatizable by DN-free formulas.

(2)⇒(3). Suppose L = IPC + {ϕi | i ∈ I} where each ϕi is a DN-formula. Let A,B be Heyting
algebras with B ∈ V(L) and A isomorphic to a (∧,→)-subalgebra of B. From B ∈ V(L) it follows
that each ϕi is valid on B. Since A is isomorphic to a (∧,→)-subalgebra of B, each ϕi is also valid
on A. Thus, A ∈ V(L).

(3)⇒(4). This is obvious.
(4)⇒(1). Let X be the set of all finite non-isomorphic subdirectly irreducible Heyting algebras

such that A 6|= L, and let
M = IPC + {β(A) | A ∈ X}.

It is sufficient to show that L = M. Let B be a subdirectly irreducible Heyting algebra. It is
enough to prove that B |= L iff B |= M. First suppose that B 6|= L. Then there is ϕ ∈ L such
that B 6|= ϕ. By the Selective Filtration Lemma, there is a finite subdirectly irreducible Heyting
algebra A such that A 6|= ϕ and A is a (∧,→)-subalgebra of B. By Theorem 6.3(1a), B 6|= β(A).
Therefore, B 6|= M. Thus, L ⊆ M.
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For the reverse inclusion, since L is the logic of K, it is sufficient to show that if B ∈ K, then
B |= M. If B 6|= M, then B 6|= β(A) for some A ∈ X . By Theorem 6.3(1a), A is isomorphic to
a (∧,→)-subalgebra of B. Since B ∈ K and K is closed under (∧,→)-subalgebras, A ∈ K. Thus,
A |= L, a contradiction. Consequently, B |= M, finishing the proof. �

Theorem 6.9 directly generalizes to cofinal subframe logics.

Theorem 6.10. For an intermediate logic L, the following conditions are equivalent.

(1) L is a cofinal subframe logic.
(2) L is axiomatizable by disjunction-free formulas.
(3) The variety V(L) is closed under (∧,→, 0)-subalgebras.
(4) There is a class K of L-algebras closed under (∧,→, 0)-subalgebras that generates V(L).

Theorems 6.9 and 6.10 allow us to give a simple proof that each subframe and cofinal subframe
logic has the fmp. This result for subframe modal logics above K4 was first established by Fine
[45], for cofinal subframe intermediate logics by Zakharyaschev [81], and for cofinal subframe modal
logics above K4 by Zakharyaschev [83]. Both Fine and Zakharyaschev used relational semantics.
We will instead prove this result by utilizing the Selective Filtration Lemma. This is closely related
to the work of McKay [61].

Theorem 6.11.

(1) Each subframe logic has the fmp.
(2) Each cofinal subframe logic has the fmp.

Proof. Since ΛSubf ⊆ ΛCSubf , it is sufficient to prove (2). Let L be a cofinal subframe logic. By
Theorem 6.10, L is axiomatized by a set of disjunction-free formulas {χi | i ∈ I}. Suppose L 6` ϕ.
By algebraic completeness, there is an L-algebra B such that B 6|= ϕ. By the Selective Filtration
Lemma, there is a finite (∧,→, 0)-subalgebra A of B such that A 6|= ϕ. Since each χi is disjunction-
free, we have that B |= χi implies A |= χi for each i ∈ I. Thus, A is an L-algebra, and hence L has
the fmp. �

We next justify the name “subframe logic” by connecting these logics to subframes of Esakia
spaces.

Definition 6.12. [28, p. 289] Let X be an Esakia space. We call Y ⊆ X a subframe of X if Y is
an Esakia space in the induced topology and order and the partial identity map X → Y satisfies
conditions (1), (2), and (5) of Definition 5.1.

The following is a convenient characterization of subframes of Esakia spaces.

Theorem 6.13. [16, Lem. 2] Let X be an Esakia space. Then Y ⊆ X is a subframe of X iff Y is
a closed subset of X and U a clopen subset of Y (in the induced topology) implies ↓U is a clopen
subset of X.

We call a subframe Y of X cofinal if ↓Y = X. In [28, p. 295] a weaker notion of cofinality
was used, that ↑Y ⊆ ↓Y . Recall that Esakia spaces X, Y are isomorphic in Esa if they are
homeomorphic and order-isomorphic.

Definition 6.14. Let K be a class of Esakia spaces and X,Y Esakia spaces.

(1) We call K closed under subframes if from X ∈ K and Y being isomorphic to a subframe of
X it follows that Y ∈ K.

(2) We call K closed under cofinal subframes if from X ∈ K and Y being isomorphic to a cofinal
subframe of X it follows that Y ∈ K.

Dualizing Theorem 6.9 we obtain:
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Theorem 6.15. For an intermediate logic L, the following conditions are equivalent.

(1) L is a subframe logic.
(2) L is axiomatizable by DN-free formulas.
(3) The class of all Esakia spaces validating L is closed under subframes.
(4) L is sound and complete with respect to a class K of Esakia spaces that is closed under

subframes.

Proof. (1)⇒(2). This is proved in Theorem 6.9.
(2)⇒(3). Let X |= L and Y be isomorphic to a subframe of X. Then X∗ |= L and Y ∗ is

isomorphic to a (∧,→)-subalgebra of X∗. By Theorem 6.9, Y ∗ |= L, and hence Y |= L.
(3)⇒(4). This is straightforward.
(4)⇒(1). Let K∗ = {X∗ | X ∈ K}. We proceed as in the proof of Theorem 6.9 by showing that

L = IPC + {β(A) | A ∈ X} (where we recall from the proof of Theorem 6.9 that X is the set of
all finite non-isomorphic subdirectly irreducible Heyting algebras A such that A 6|= L). Let B be a
subdirectly irreducible Heyting algebra. That B 6|= L implies B 6|= {β(A) | A ∈ X} is proved as in
Theorem 6.9. For the converse, since L is the logic of K, it is sufficient to assume that B = X∗ for
some X ∈ K. If B 6|= β(A) for some A ∈ X , then by Theorem 6.3(1a), A is isomorphic to a (∧,→)-
subalgebra of B. Therefore, there is an onto partial Esakia morphism f : X → XA. Since XA is
finite, dom(f) is a clopen subset of X by Lemma 5.3(2). Therefore, it follows from Theorem 6.13
that dom(f) is a subframe of X. Thus, dom(f) ∈ K, so dom(f) |= L. But f : dom(f) → XA is
an onto Esakia morphism by Lemma 5.4(2). Therefore, XA |= L, and hence A |= L. The obtained
contradiction proves that B |= {β(A) | A ∈ X}, finishing the proof. �

We also have the following dual version of Theorem 6.10, the proof of which is analogous to that
of Theorem 6.15 and we skip it.

Theorem 6.16. For an intermediate logic L, the following conditions are equivalent.

(1) L is a cofinal subframe logic.
(2) L is axiomatizable by disjunction-free formulas.
(3) The class of all Esakia spaces validating L is closed under cofinal subframes.
(4) L is sound and complete with respect to a class K of Esakia spaces that is closed under

cofinal subframes.

Remark 6.17. There are several other interesting characterizations of subframe and cofinal sub-
frame logics.

(1) In [16] it is shown that subframes of Esakia spaces correspond to nuclei on Heyting algebras,
and that cofinal subframes to dense nuclei. From this it follows that an intermediate logic
L is a subframe logic iff its corresponding variety V(L) is a nuclear variety, and that L is a
cofinal subframe logic iff V(L) is a dense nuclear variety.

(2) A different description of subframe and cofinal subframe formulas is given in [19, Sec. 3.3.3]
and [20] (see also [50]), where it is shown that subframe formulas are equivalent to the
NNIL-formulas of [78].

(3) Many important properties of logics (such as, e.g., canonicity and strong Kripke complete-
ness) coincide for subframe and cofinal suframe logics (see, e.g., [28, Thms. 11.26 and
11.28]).

We finish this section with some examples of subframe and cofinal subframe logics. To simplify
notation, we write β(F) instead of β(F∗) and α(F) instead of α(F∗). Then, recalling Figure 1, we
have:

Theorem 6.18. [28, p. 317, Table 9.7]

(1) CPC = LC + β(C2), hence CPC is a subframe logic.
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(2) LC = IPC + β(F2), hence LC is a subframe logic.
(3) BDn = IPC + β(Cn+1), hence BDn is a subframe logic.
(4) LCn = LC + β(Cn+1), hence LCn is a subframe logic.
(5) BWn = IPC + β(Fn+1), hence BWn is a subframe logic.
(6) KC = IPC + α(F2), hence KC is a cofinal subframe logic.
(7) BTWn = IPC + α(Fn+1), hence BTWn is a cofinal subframe logic.

On the other hand, there exist intermediate logics that are not subframe (e.g., KC) and also ones
that are not cofinal subframe (e.g., KP).

7. Stable formulas

We can develop the theory of stable formulas which is parallel to that of subframe formulas. As
we pointed out in Remark 4.19, if D = A2, then γ(A,D) is equivalent to the Jankov formula J (A).
As with subframe formulas, we can consider the second extreme case when D = ∅. We call the
resulting formulas stable formulas and denote them by γ(A). Then the theory of cofinal subframe
formulas can be developed in parallel to the theory of cofinal subframe formulas. In Section 7.1
we survey the theory of stable formulas and the resulting stable logics, and in Section 7.2 that of
cofinal stable formulas and the resulting cofinal stable logics. We also compare these new classes
of logics to subframe and cofinal subframe logics.

7.1. Stable formulas.

Definition 7.1. Let A be a finite subdirectly irreducible Heyting algebra and D = ∅. We call
γ(A,D) the stable formula of A and denote it by γ(A).

Let A,B be Heyting algebras with A finite and subdirectly irreducible. As an immediate con-
sequence of the Stable Jankov Lemma we have B 6|= γ(A) iff there is a subdirectly irreducible
homomorphic image C of B and a bounded lattice embedding h : A � C. In analogy with what
happened in Section 6, we can improve this by dropping homomorphic images from the considera-
tion. For this we require the following lemma, which is an analogue of Lemma 6.2.

Lemma 7.2. [8, Lem. 6.2] Let A,B,C be finite Heyting algebras with A subdirectly irreducible,
h : B � C an onto Heyting homomorphism, and e : A � C a bounded lattice embedding. Then
there is a bounded lattice embedding k : A� B such that h ◦ k = e.
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Proof. Let XA, XB, and XC be the dual finite posets of A,B, and C. We identify A,B, and C
with the upsets of XA, XB, and XC . Since A is subdirectly irreducible, XA is rooted. As C is
a homomorphic image of B, we have that XC is (isomorphic to) an upset of XB, and because
e : A→ C is a bounded lattice embedding, there is an onto stable map f : XC � XA.

Let x be the root of XA. Define g : XB → XA by

g(y) =

{
f(y) if y ∈ XC

x otherwise

Clearly g is a well-defined map extending f , and it is onto since f is onto. To see that g is stable,
let y, z ∈ XB with y ≤ z. First suppose that y ∈ XC . Then z ∈ XC as XC is an upset of XB.
Since f is stable, f(y) ≤ f(z). Therefore, by the definition of g, we have g(y) ≤ g(z). On the other
hand, if y ∈ XB \ XC , then g(y) = x. As x is the root of XA, we have x ≤ u for each u ∈ XA.
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Thus, x ≤ g(z) for each z ∈ XB, which implies that g(y) ≤ g(z). Consequently, g is an onto stable
map extending f .

From this we conclude that g−1 : Up(XA)→ Up(XB) is a bounded lattice embedding such that
h ◦ g−1 = f−1. �

Theorem 7.3. [8, Thm. 6.3] Let A,B be subdirectly irreducible Heyting algebras with A finite.
Then B 6|= γ(A) iff there is a bounded lattice embedding of A into B.

Proof. The right to left implication follows directly from the Stable Jankov Lemma. For the left to
right implication, suppose B 6|= γ(A). By the Filtration Lemma, there is a finite bounded sublattice
D of B such that D 6|= γ(A). By the Stable Jankov Lemma, there is a subdirectly irreducible
homomorphic image C of D and a bounded lattice embedding of A into C. By Lemma 7.2, there is
a bounded lattice embedding of A into D, and hence a bounded lattice embedding of A into B. �

The dual reading of Theorem 7.3 is as follows.

Theorem 7.4. [8, Thm. 6.5] Let A be a finite subdirectly irreducible Heyting algebra and P its dual
finite rooted poset. For a strongly rooted Esakia space X, we have X 6|= γ(A) iff there is an onto
stable morphism f : X � P .

Definition 7.5.

(1) We call an intermediate logic L stable if there is a family {Ai | i ∈ I} of finite subdirectly
irreducible algebras such that L = IPC + {γ(Ai) | i ∈ I}.

(2) We say that a class K of subdirectly irreducible Heyting algebras is closed under bounded
sublattices if for any subdirectly irreducible Heyting algebras A,B from B ∈ K and A being
isomorphic to a bounded sublattice of B it follows that A ∈ K.

In the next theorem, the equivalence of (1) and (2) is given in [8, Thm. 6.11]. For further
equivalent conditions for an intermediate logic to be stable see [12, Thm. 5.3].

Theorem 7.6. For an intermediate logic L, the following conditions are equivalent.

(1) L is a stable logic.
(2) The class V(L)si of subdirectly irreducible L-algebras is closed under bounded sublattices.
(3) There is a class K of subdirectly irreducible L-algebras that is closed under bounded sublat-

tices and generates V(L).

Proof. (1)⇒(2). Let A,B be subdirectly irreducible Heyting algebras such that B is an L-algebra
and A is isomorphic to a bounded sublattice of B. Suppose that A is not an L-algebra. Since L is
stable, there is a finite subdirectly irreducible Heyting algebra C such that γ(C) ∈ L and A 6|= γ(C).
By Theorem 7.3, C is isomorphic to a bounded sublattice of A, and hence to a bounded sublattice
of B. Therefore, B 6|= γ(C), a contradiction. Thus, A is an L-algebra.

(2)⇒(3). This is obvious.
(3)⇒(1). Let X be the set of finite non-isomorphic subdirectly irreducible Heyting algebras A

such that A 6|= L. Let

M = IPC + {γ(A) | A ∈ X}.
It is sufficient to show that L = M. Let B be a subdirectly irreducible Heyting algebra. First
suppose that B 6|= L. Then there is ϕ ∈ L such that B 6|= ϕ. By the Filtration Lemma, there is a
finite subdirectly irreducible Heyting algebra A such that A 6|= ϕ and A is a bounded sublattice of
B. By Theorem 7.3, B 6|= γ(A). Therefore, B 6|= M. Thus, L ⊆ M.

For the reverse inclusion, since L is the logic of K, it is sufficient to show that if B ∈ K, then
B |= M. If B 6|= M, then B 6|= γ(A) for some A ∈ X . By Theorem 7.3, A is isomorphic to a bounded
sublattice of B. Since B ∈ K and K is closed under bounded sublattices, A ∈ K. Thus, A |= L, a
contradiction. Consequently, B |= M, finishing the proof. �
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Remark 7.7. In [20] a new class of formulas, called ONNILLI, was described syntactically. It was
shown that each formula in this class is preserved under stable images of posets, and that for a
finite subdirectly irreducible Heyting algebra A, the formula γ(A) is equivalent to a formula in
ONNILLI. This provides another description of stable formulas.

Remark 7.8. Various subclasses of stable logics that are closed under MacNeille completions
were studied in [18]. In [59] a subclass of stable logics was identified and it was shown that an
intermediate logic is axiomatizable by P3-formulas of the substructural hierarchy of Cibattoni,
Galatos, and Terui [30] iff it belongs to this subclass.

Definition 7.9. We say that a class K of strongly rooted Esakia spaces is closed under stable
images if for any strongly rooted Esakia spaces X,Y from X ∈ K and Y being an onto stable image
of X it follows that Y ∈ K.

For a class K of Esakis spaces, let K∗ = {X∗ | X ∈ K}. It is easy to see that K∗ is closed under
bounded sublattices iff K is closed under stable images. Thus, as an immediate consequence of
Theorem 7.6, we obtain:

Theorem 7.10. For an intermediate logic L the following conditions are equivalent.

(1) L is stable.
(2) The class of strongly rooted Esakia spaces of L is closed under stable images.
(3) L is sound and complete with respect to a class K of strongly rooted Esakia spaces that is

closed under stable images.

Theorem 7.10 can be thought of as a motivation for the name “stable logic.” We next show
that all stable logics have the fmp. This is an easy consequence of Theorem 7.6 and the Filtration
Lemma.

Theorem 7.11. Each stable logic has the fmp.

Proof. Let L be a stable logic and let L 6` ϕ. Then there is a subdirectly irreducible Heyting algebra
B such that B |= L and B 6|= ϕ. By the Filtration Lemma, there is a finite Heyting algebra A such
that A is a bounded sublattice of B and A 6|= ϕ. Since B is subdirectly irreducible, so is A. As L
is stable and B |= L, it follows from Theorem 7.6 that A |= L. Because A is finite and A 6|= ϕ, we
conclude that L has the fmp. �

Definition 7.12. Let ΛStab be the set of all stable logics.

Theorem 7.13.
(1) [14, Thm. 3.7] ΛStab is a complete sublattice of Λ.
(2) [8, Thm. 6.13] The cardinality of ΛStab is that of the continuum.

We conclude with some examples of stable logics. Recall that Fn,Dn, and Cn denote the n-fork,
n-diamond, and n-chain (see Figure 1). For a rooted poset P we abbreviate γ(P ∗) with γ(P ).

Theorem 7.14. [8, Thm.7.5]

(1) CPC = LC + γ(C2).
(2) KC = IPC + γ(F2).
(3) LC = IPC + γ(F2) + γ(D2).
(4) LCn = LC + γ(Cn+1).
(5) BWn = IPC + γ(Fn+1) + γ(Dn+1).
(6) BTWn = IPC + γ(Fn+1).

On the other hand, there are intermediate logics that are not stable; e.g., BDn for n ≥ 2 (see [8,
Thm 7.4]).
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7.2. Cofinal stable rules and formulas. As we have seen, cofinal subframe logics are axiom-
atizable by formulas of the form α(A), while subframe logics by formulas of the form β(A). In
analogy, stable logics are axiomatizable by formulas of the form γ(A). These can be thought of to
be parallel to β(A) because both β(A) and γ(A) do not encode the behavior of negation. On the
other hand, α(A) does encode it. It is natural to seek a stable analogue of α(A).

For this we need to work with the pseudocomplemented lattice reduct of Heyting algebras, instead
of just the bounded lattice reduct like in the case of stable logics. Fortunately, the corresponding
variety of pseudocomplemented distributive lattices remains locally finite (see e..g., [12, Thm. 6.1]),
and hence the algebraic approach is applicable. This allows us to develop the theory of cofinal
stable logics, which generalizes the theory of stable logics. However, there is a key difference, which
is due to the fact that an analogue of Lemma 7.2 fails for the pseudocomplemented lattice reduct
(see [12, Exmp. 7.5]). This, in particular, forces us to work with cofinal stable rules, rather than
formulas.

Definition 7.15. Let A be a finite Heyting algebra, and for a ∈ A let pa be a new variable.

(1) The cofinal stable rule of A is the multiple-conclusion rule σ(A) = Γ/∆, where

Γ = {p0 ↔ 0}∪
{pa∨b ↔ pa ∨ pb | a, b ∈ A}∪
{pa∧b ↔ pa ∧ pb | a, b ∈ A}∪
{p¬a ↔ ¬pa | a ∈ A}

and

∆ = {pa ↔ pb | a, b ∈ A with a 6= b}.
(2) If in addition A is subdirectly irreducible, then the cofinal stable formula of A is

δ(A) =
∧

Γ→
∨

∆.

Remark 7.16. There is no need to add p1 ↔ 1 to Γ because p¬0 ↔ ¬0 is contained in {p¬a ↔
¬pa | a ∈ A}.

We then have the following generalization of the Stable Jankov Lemma.

Theorem 7.17 (Cofinal Stable Jankov Lemma). [12, Prop. 6.4 and 7.1] Let A,B be Heyting
algebras with A finite.

(1) B 6|= σ(A) iff A is isomorphic to a pseudocomplemented sublattice of B.
(2) If A is subdirectly irreducible, then B 6|= δ(A) iff there is a subdirectly irreducible homo-

morphic image C of B such that A is isomorphic to a pseudocomplemented sublattice of
C.

Similarly, we have the following generalization of the Filtration Lemma.

Lemma 7.18 (Cofinal Filtration Lemma). Let B be a Heyting algebra such that B 6|= ϕ. Then
there is a finite Heyting algebra A such that A is a pseudocomplemented sublattice of B and A 6|= ϕ.
In addition, if B is well-connected, then A is subdirectly irreducible.

However, we no longer have an analogue of Theorem 7.6. To see why, we need the following
definition.

Definition 7.19. We say that a class K of subdirectly irreducible Heyting algebras is closed under
pseudocomplemented sublattices if for any subdirectly irreducible Heyting algebras A,B from B ∈ K
and A being isomorphic to a pseudocomplemented sublattice of B it follows that A ∈ K.
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As follows from [12, Exmp. 7.9] it is no longer the case that an intermediate logic L is axioma-
tizable by cofinal stable formulas iff the class V(L)si of subdirectly irreducible L-algebras is closed
under pseudocomplemented sublattices. Because of this we define cofinal subframe logics as those
intermediate logics that are axiomatizable by stable canonical rules. We recall that an intermediate
logic L is axiomatizable by a set R of multiple-conclusion rules if L ` ϕ iff the rule /ϕ is derivable
from R. For more details about multiple-conclusion consequence relations we refer to [54, 49].

Definition 7.20. An intermediate logic L is a cofinal subframe logic if it is axiomatizable by cofinal
subframe rules.

We can utilize the Cofinal Stable Jankov Lemma and the Cofinal Filtration Lemma to prove the
following analogue of Theorem 7.6.

Theorem 7.21. For an intermediate logic L the following are equivalent.

(1) L is a cofinal stable logic.
(2) V(L)si is closed under pseudocomplemented sublattices.
(3) There is a class K of subdirectly ireducible Heyting algebras that is closed under pseudocom-

plemented sublattices and generates V(L).

Further characterizations of cofinal stable logics can be found in [12, Thm. 7.11].

Definition 7.22. Let ΛCStab be the set of cofinal stable logics.

Clearly ΛStab ⊆ ΛCStab ⊆ Λ.

Theorem 7.23.
(1) [12, Rem. 7.8] Each cofinal stable logic has the fmp.
(2) [12, Prop. 8.3] The cardinality of ΛCStab \ ΛStab is that of the continuum.

In particular, the Maksimova logics NDn, for n ≥ 2, are examples of cofinal stable logics that are
not stable logics (see [12, Lem. 9.4 and 9.5]).

As follows from [12, Prop. 7.7], each cofinal stable logic is axiomatizable by cofinal stable for-
mulas. However, as we have already pointed out, the converse is not true in general. As far as we
know, the problem mentioned in [12, Rem. 7.10]—whether all intermediate logics that are axioma-
tizable by cofinal stable formulas have the fmp—remains open, as does the problem of a convenient
characterization of this class of intermediate logics.

Dual spaces of pseudocomplemented distributive lattices were described by Priestley [68]. Since
pseudocomplemented distributive lattices are situated between bounded distributive lattices and
Heyting algebras, their dual spaces are situated between Esakia spaces and Priestley spaces. Of
interest to our considerations is the dual description of pseudocomplemented lattice homomophisms
between Esakia spaces. These are special stable maps f : X → Y that in addition satisfy the
following cofinality condition:

max ↑f(x) = f (max ↑x) .

for each x ∈ X. Utilizing this, cofinal stable logics can be characterized as those intermediate logics
for which the class of strongly rooted Esakia spaces is closed under cofinal stable images (meaning
that, if X,Y are strongly rooted Esakia spaces such that X |= L and Y is a cofinal stable image of
Y , then Y |= L). We skip the details and refer the interested reader to [12].

8. Subframization and stabilization

As we pointed out in Theorems 6.6(1) and 7.13(1), the lattices of subframe and stable logics form
complete sublattices of the lattice of all intermediate logics. Therefore, for each intermdiate logic L,
there is a greatest subframe logic contained in L and a least subframe logic containing L, called the
downward and upward subframizations of L. Similarly, there is a greatest stable logic contained in
L and a least stable logic containing L, called the downward and upward stabilizations of L. These
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are closest subframe and stable “neighbors” of L, and were studied in [14], where connections with
the Lax Logic and the intuitionistic S4 were also explored. The operation of subframization in
modal logic was first studied by Wolter [79].

8.1. Subframization.

Definition 8.1. For an intermediate logic L, define the downward subframization of L as

Subf↓(L) =
∨
{M ∈ ΛSubf | M ⊆ L}

and the upward subframization of L as

Subf↑(L) =
∧
{M ∈ ΛSubf | L ⊆ M}.

Lemma 8.2. [14, Lem. 4.2] Subf↓ is an interior operator and Subf↑ a closure operator on Λ.

A semantic characterization of the downward and upward subframizations was given in [14,
Prop. 4.3]. We next use subframe canonical formulas to give a syntactic characterization. For this
we require the following lemma.

Lemma 8.3. Let A,B be finite Heyting algebras with A subdirectly irreducible and D ⊆ A2. If
B |= β(A), then B |= α(A,D).

Proof. Suppose B 6|= α(A,D). By the Subframe Jankov Lemma, there is a homomorphic image C
of B and a bounded implicative semilattice embedding h : A→ C satisfying CDC∨ for D. Since B
is finite, Lemma 6.2 yields an implicative semilattice embedding of A into B. Therefore, B 6|= β(A)
by Theorem 6.3(1). �

Let L be an intermediate logic. By Theorem 4.9, there are suframe canonical formulas α(Ai, Di),
i ∈ I, such that L = IPC + {α(Ai, Di) | i ∈ I}.

Theorem 8.4. [14, Thm. 4.4] Let L = IPC+ {α(Ai, Di) | i ∈ I} be an arbitrary intermediate logic.

(1) Subf↓(L) = IPC + {β(A) | L ` β(A)}.
(2) Subf↑(L) = IPC + {β(Ai) | i ∈ I)}.

Proof. (1). By Definition 6.5(1), every subframe logic is axiomatizable by subframe formulas.
Therefore, every subframe logic contained in L is axiomatizable by a set of subframe formulas that
are provable in L. Thus, IPC + {β(A) | L ` β(A)} is the largest subframe logic contained in L.

(2). Let M = IPC + {β(Ai) | i ∈ I}. Then M is a subframe logic by definition. Let B be a finite
Heyting algebra. If B |= M, then B |= β(Ai) for all i ∈ I. By Lemma 8.3, B |= β(Ai, Di) for all
i ∈ I. Thus, B |= L, and so L ⊆ M because M has the fmp (see Theorem 6.11). It remains to
show that M is the least subframe logic containing L. If not, then there is a subframe logic N ⊇ L
and a Heyting algebra B such that B |= N and B 6|= M. Therefore, B 6|= β(Ai) for some i ∈ I.
By Theorem 6.3(1), Ai is isomorphic to a (∧,→)-subalgebra of B. Since N is a subframe logic,
Ai |= N by Theorem 6.9. But Ai 6|= β(Ai, Di). Consequently, Ai 6|= L, which is a contradiction since
N ⊇ L. �

Remark 8.5.

(1) The above proof of Theorem 8.4(2) is different form the one given in [14].
(2) As was pointed out in [14, Rem. 4.6], Theorem 8.4 can also be derived from the theory of

describable operations of Wolter [79].

In the next theorem we axiomatize the downward and upward subframizations for many well-
known intermediate logics.

Theorem 8.6. [14, Prop. 4.7]

(1) Subf↓(KC) = IPC and Subf↑(KC) = LC.
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(2) Subf↓(KP) = IPC and Subf↑(KP) = BW2.
(3) Subf↓(Tn) = IPC and Subf↑(Tn) = BWn for every n ≥ 2.
(4) Subf↓(BTWn) = IPC and Subf↑(BTWn) = BWn for every n ≥ 2.
(5) Subf↓(NDn) = IPC and Subf↑(NDn) = BW2 for every n ≥ 2.

Remark 8.7. Since subframes are closely related to nuclei [16], they are also connected to the
propositional lax logic PLL [43, 46], which is an intuitionistic modal logic whose algebraic models
are nuclear Heyting algebras. There is a nucleic Gödel-Gentzen translation of IPC into PLL which
is extended to an embedding of the lattice of intermediate logics into the lattice of extensions of
PLL. This yields a new characterization of subframe logics in terms of the propositional lax logic.
We refer to [14, Sec. 6] for details.

8.2. Stabilization. In this section we obtain similar results for the downward and upward stabi-
lizations.

Definition 8.8. For an intermediate logic L, define the downward stabilization of L as

Stab↓(L) =
∨
{M ∈ ΛStab | M ⊆ L}

and the upward stabilization of L as

Stab↑(L) =
∧
{M ∈ ΛStab | L ⊆ M}.

Lemma 8.9. [14, Lem. 7.2] Stab↓ is an interior operator and Stab↑ a closure operator on Λ.

A semantic characterization of the downward and upward stabilizations was given in [14, Prop. 7.3].
We use stable canonical formulas to give a syntactic characterization, which requires the following
lemma.

Lemma 8.10. Let A,B be finite subdirectly irreducible Heyting algebras and D ⊆ A2. If B |= γ(A),
then B |= γ(A,D).

Proof. Suppose B 6|= γ(A,D). By the Stable Jankov Lemma, there is a subdirectly irreducible
homomorphic image C of B and a bounded lattice embedding h : A→ C satisfying CDC→ for D.
Since B is finite, Lemma 7.2 yields a bounded lattice embedding of A into B. Therefore, B 6|= γ(A)
by Theorem 7.3. �

Let L be an intermediate logic. By Theorem 4.27, there are stable canonical formulas γ(Ai, Di),
i ∈ I, such that L = IPC + {γ(Ai, Di) | i ∈ I}.

Theorem 8.11. [14, Thm. 7.4] Let L = IPC+{γ(Ai, Di) | i ∈ I} be an arbitrary intermediate logic.

(1) Stab↓(L) = IPC + {γ(A) | L ` γ(A)}.
(2) Stab↑(L) = IPC + {γ(Ai) | i ∈ I}.

Proof. (1). By Definition 7.5, IPC+ {γ(A) | L ` γ(A)} is a stable logic, and clearly it is the largest
stable logic contained in L. Therefore, Stab↓(L) = IPC + {γ(A) | L ` γ(A)}.

(2). Let M = IPC + {γ(Ai) | i ∈ I}. Then M is a stabe logic by definition. Let B be a finite
subdirectly irreducible Heyting algebra such that B |= M. Then B |= γ(Ai) for all i ∈ I. By
Lemma 8.10, B |= γ(Ai, Di) for all i ∈ I. Thus, B |= L, and so L ⊆ M since M has the finite model
property (see Theorem 7.11). Suppose N is a stable extension of L, and B is a subdirectly irreducible
Heyting algebra such that B |= N. If B 6|= γ(Ai) for some i ∈ I, then Ai is isomorphic to a bounded
sublattice of B by Theorem 7.3. Therefore, Ai |= N by Theorem 7.6. But Ai 6|= γ(A1, Di). So
Ai 6|= L, which contradicts N being an extension of L. Thus, B |= γ(Ai) for all i ∈ I, and so M ⊆ N.
Consequently, M is the least stable extension of L, and hence Stab↑(L) = M. �

Remark 8.12.

(1) The above proof of Theorem 8.11(2) is different form the one given in [14].
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(2) As was pointed out in [14, Rem. 7.6], an alternate proof of Theorem 8.11 can be obtained
using Wolter’s describable operations.

The next theorem axiomatizes the downward and upward stabilizations of several intermediate
logics.

Theorem 8.13. [14, Prop. 7.7]

(1) Stab↓(BDn) = IPC and Stab↑(BDn) = BCn for all n ≥ 2.
(2) Stab↓(Tn) = IPC and Stab↑(Tn) = BWn for all n ≥ 2.
(3) If L has the disjunction property, then Stab↓(L) = IPC.

Remark 8.14. In [14, Sec. 8] the Gödel translation was utilized to embed the lattice of intermediate
logics into the lattice of multiple-conclusion consequence relations over the intuitionistic S4, and it
was shown that this provides a new characterization of stable logics.
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[39] A. Diego. Sur les Algèbres de Hilbert. Translated from the Spanish by Luisa Iturrioz. Collection de Logique
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