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Abstract

In [2], Bagaria and Väänänen developed a framework for studying the
large cardinal strength of downwards Löwenheim-Skolem theorems and
related set theoretic reflection properties. The main tool was the notion
of symbiosis, originally introduced by the third author in [12, 13].

Symbiosis provides a way of relating model theoretic properties of
strong logics to definability in set theory. In this paper we continue the
systematic investigation of symbiosis and apply it to upwards Löwenheim-
Skolem theorems and reflection principles. To achieve this, we need to
adapt the notion of symbiosis to a new form, called bounded symbiosis.
As one easy application, we obtain upper and lower bounds for the large
cardinal strength of upwards Löwenheim-Skolem-type principles for sec-
ond order logic.

1 Introduction

Mathematicians have two ways of characterizing a class C of mathematical struc-
tures: definining the class in set theory, or axiomatizing the class by sentences
in logic. Symbolically:

1. Φ(A), where Φ is a formula in the language of set theory, vs.

2. A |= ϕ, where ϕ is a sentence in some logic.

In general, set theory is much more powerful than first order logic.
However, by restricting the allowed complexity of Φ on one hand, while

considering extensions of first-order logic on the other hand, one gets a more in-
teresting picture. Symbiosis aims to capture an equivalence in strength between
set-theoretic definability and model-theoretic axiomatisability. One application
of this is connecting properties of some strong logic L∗ to specific set-theoretic
principles (often expressed in terms of large cardinals). Symbiosis was first
introduced by the third author in [13], and studied further in [9, 1, 2].
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If A is a structure and φ a first-order formula, then the statement “A |= φ”
is ∆1 in set theory. Therefore every first-order axiomatizable class of structures,
i.e., every class of the form Mod(φ) = {A : A |= φ}, is ∆1-definable.

The converse does not hold: for example, the class of all well-ordered struc-
tures is easily seen to be ∆1-definable but not first-order axiomatizable. So it is
natural to look for a logic L∗ extending first order logic, with the property that
every ∆1-definable class would be axiomatizable by an L∗-sentence

Consider the logic LI = Lωω(I) obtained from first order logic Lωω by adding
the Härtig quantifier I, defined by

A |= Ixy φ(x)ψ(y) iff |{a ∈ A : A |= φ[a]}| = |{b ∈ A : A |= ψ[b]}|

and consider its closure under the so-called ∆-operator (Definition 3.1).1 We
then obtain a logic, which we will call ∆(LI), such that every ∆1-definable class,
if closed under isomorphisms, is ∆(LI)-axiomatisable (see Proposition 3.5 or [13,
Example 2.3]).

However, ∆(LI)-axiomatisability is now too strong to be “symbiotic” with
∆1-definability: the class

{(A,P ) : |{x ∈ A : P (x)}| = |{x ∈ A : ¬P (x)}|}

is not ∆1 (it is not absolute), but it is axiomatisable in LI by the sentence

Ixy(P (x))(¬P (y)).

One can observe that all ∆(LI)-axiomatisable classes are ∆2-definable, but
once more, there are ∆2-definable classes that are not ∆(LI)-axiomatisable (see
Figure 1).
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Figure 1: Set-theoretic definability vs. axiomatization in a logic

Interesting symbiosis relationships take place for complexity levels ∆1(R),
for fixed predicates R. In this paper, we will focus on Π1 predicates R, so the
complexity levels will lie below ∆2. Many such relations have been established

1Usually the symbol used here is a simple ∆, but in this paper we choose the symbol
∆, and similarly Σ, in order to easily distinguish the model-theoretic notions from the Lévy
complexity of formulas in the language of set theory, i.e., Σn and ∆n formulas.
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in [13, 2]. To name some prominent examples, let L2 be second order logic
with full semantics, and let LWF be the logic obtained from Lωω by adding the
generalized quantifier WF defined by

A |= WFxy φ(x, y) iff {(x, y) ∈ A×A : A |= φ(x, y)} is well-founded.

Furthermore, let Cd(x) be the Π1 predicate “x is a cardinal”, and let PwSt(x, y)
be the Π1 predicate “y = ℘(x)”. Then we have the symbiosis relationships
depicted in Figure 2 (see Propositions 3.4, 3.5 and 3.6).

∆1(PwSt)

OO

∆(L2)

OO

∆1(Cd) ∆(LI)

∆1 ∆(LWF)

Lωω

Set Theory Logic

Figure 2: Symbiosis relations

As an application of symbiosis, Bagaria and Väänänen [2] considered the
following principles:

Definition 1.1. The downward Löwenheim-Skolem-Tarski number LST(L∗) is
the smallest cardinal κ such that for all φ ∈ L∗, if A |=L∗ φ then there exists a
substructure B ⊆ A such that |B| ≤ κ and B |=L∗ φ. If such a κ does not exist,
LST(L∗) is undefined.

Definition 1.2. Let R be a predicate in the language of set theory. The struc-
tural reflection number SR(R) is the smallest cardinal κ such that for every
Σ1(R)-definable class K of models in a fixed vocabulary, for every A ∈ K there
exists B ∈ K with |B| ≤ κ and a first-order elementary embedding e : B 4 A.
If such a κ does not exists, SR(R) is undefined.

Theorem 1.3 (Bagaria & Väänänen [2]). Suppose L∗ and R are symbiotic.
Then LST(L∗) = κ if and only if SR(R) = κ.

Proof. See [2, Theorem 6].

Theorem 1.3 links a meta-logical property of a strong logic to a reflection
principle in set theory. Depending on the predicate R, the principle SR(R) has a
varying degree of large cardinal strength. In fact, Definition 1.2 may be regarded
as a kind of Vopěnka principle, restricted to classes of limited complexity.2

2See [1, Sections 3, 4] for more on the connection between SR(R) and Vopěnka-type
principles.
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Indeed, in [2] Theorem 1.3 was used to compute the large cardinal strength of
SR(R) and LST(L∗) for various symbiotic pairs.

In this paper we continue the work of Bagaria and Väänänen by developing a
framework for the study of upward Löwenheim-Skolem and reflection principles.
These principles are also interesting because they are closely related to the
compactness of the strong logic, although the two notions are not equivalent, and
in this paper we do not consider compactness explicitly. The main innovation of
the current work is that, in order to deal with upwards rather than downwards
reflection, we need to adapt the notion of symbiosis.

The paper is organized as follows: in Section 2 we introduce the necessary
terminology and some background and in Section 3 we present the notion of
symbiosis. In Section 4 we introduce bounded symbiosis. Section 5 is devoted to
examples of bounded symbiosis, and in Section 6 we prove the main theorem,
showing that under appropriate conditions the upward Löwenheim-Skolem num-
ber corresponds to a suitable upwards set-theoretic reflection principle. Finally,
in Section 7 we apply our results to compute upper and lower bounds for the
upward Löwenheim-Skolem number of second order logic and the corresponding
reflection principle, noting that this also provides an upper bound for all other
Π1 predicates.

This paper contains research carried out by the first author as part of his
PhD Dissertation. Some details have been left out of the paper for the sake of
easier readability and navigation. The interested reader may find these details
in [5, Chapter 6].

2 Abstract Logics

We assume that the reader is familiar with standard set theoretic and model
theoretic notation and terminology. We will consider abstract logics L∗, without
providing a precise definition for what counts as a “logic”. Typical examples
are infinitary logics Lκλ, full second-order logic L2, and various extensions of
first-order logic by generalized quantifiers. For a more detailed analysis we refer
the reader to [5, Chapter 6] and [3]. Here we only want to stress two important
points.

First, we will generally work with many-sorted languages, using the symbols
s0, s1, . . . to denote sorts. In this setting, a domain may be a collection of
domains (one for each sort), and all constant, relation and function symbols
must have their sort specified in advance. This is a matter of convenience,
since many-sorted logic can be simulated by standard single-sorted logic by
introducing additional predicate symbols. The following definition is essential
for what follows.

Definition 2.1. Suppose that τ ⊆ τ ′ are many-sorted vocabularies and that
M is a τ ′-structure. The reduct (or projection) of M to τ , denoted by M�τ , is
the structure whose domains are those domains in the sorts available in τ , and
the interpretations of all symbols not in τ are ignored.
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So a reductM�τ can have a smaller domain, and a smaller cardinality, than
the original model M.

Secondly, we should note that one needs to be careful with the syntax of a
given logic, because an unrestricted use of syntax may give rise to some unde-
sirable effects. Consider, for example, an arbitrary set X ⊆ ω, and a vocabulary
τ which has ω-many relation symbols {Ri : i < ω}, such that the arity of Ri
is 1 if i ∈ X and 2 if i /∈ X. The information about arities of relation symbols
must be encoded in the vocabulary τ . Therefore, the set X can be computed
from τ .

In infinitary logic, we can encode a set X ⊆ ω even with finite vocabularies.
Let φ0, φ1, . . . be a recursive enumeration of Lωω-sentences in some fixed τ , and
consider the Lω1ω-sentence Φ :=

∧
n∈X φn. Then X can be computed from Φ.

Definition 2.2. Let L∗ be a logic. The dependence number of L∗, dep(L∗), is
the least λ such that for any vocabulary τ and any L∗-formula φ in τ , there is
a sub-vocabulary σ ⊆ τ such that |σ| < λ and φ only uses symbols in σ. If such
a number does not exist, dep(L∗) is undefined.

Definition 2.3. We say that a logic L∗ has ∆0-definable syntax if every L∗-
formula is ∆0-definable in set theory (as a syntactic object), possibly with the
vocabulary of φ as parameter.

In our main Theorem 6.3, we will restrict attention to logics with a ∆0-
definable syntax and dep(L∗) = ω. Note that this includes all finitary logics
obtained by adding finitely many generalized quantifiers to first- or second-order
logic.

We end this section by defining a version of the upward Löwenheim-Skolem
number for abstract logics.

Definition 2.4 (Upward Löwenheim-Skolem number). Let L∗ be a logic.

1. The upward Löwenheim-Skolem number of L∗ for <λ-vocabularies, de-
noted by ULSTλ(L∗), is the smallest cardinal κ such that

for every vocabulary τ with |τ | < λ and every φ in L∗[τ ], if there
is a model A |= φ with |A| ≥ κ, then for every κ′ > κ, there is
a model B |= φ such that |B| ≥ κ′ and A is a substructure of B.

As usual, if there is no such cardinal then ULSTλ(L∗) is undefined.

2. The upward Löwenheim-Skolem number of L∗, denoted by ULST∞(L∗)
is the smallest cardinal κ such that ULSTλ(L∗) ≤ κ for all cardinals λ.
Again, if there is no such cardinal then ULST∞(L∗) is undefined.

Notice that when dep(L∗) = λ, then ULSTλ(L∗) = κ implies ULST∞(L∗) =
κ. In general, ULST∞(L∗) may fail to be defined even if all ULSTλ(L∗) = κ are
defined.

Recall also that the Hanf-number of a logic is defined analogously to Def-
inition 2.4 but without the assumption that A is a substructure of B. This
additional assumption is rather crucial: it is easy to see that if the dependence
number of a logic is defined, then the Hanf number is also defined (see [3, The-
orem 6.4.1]). However, as we shall see in Section 7, the existence of upward
Löwenheim-Skolem numbers in the sense of Definition 2.4, even for logics with
dependence number ω, implies the existence of large cardinals.
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3 Symbiosis

Symbiosis was introduced by the third author in [13]. To motivate its definition,
let L∗ be a logic and R a predicate in set theory. The aim is to establish an equal-
ity in strength between L∗-axiomatizability and ∆1(R)-definability. One direc-
tion should be the statement “the satisfaction relation |=L∗ is ∆1(R)-definable”,
or, equivalently, “every L∗-axiomatizable class of structures is ∆1(R)-definable.”

The converse direction should say, roughly speaking, that every ∆1(R)-
definable class is L∗-axiomatizable. This cannot literally work, because L∗-
model classes are closed under isomorphisms whereas this is not necessarily
true for arbitrary ∆1(R) classes. Therefore we try the approach “every ∆1(R)-
definable class closed under isomorphisms is L∗-axiomatizable.”

Unfortunately, this does not always work: symbiosis can only be estab-
lished for logics that are closed under the ∆-operation. This operation closes
the logic under operations which are in a sense “simple” but not as simple as
mere conjunction, negation, and whatever operations the logic has. In order
to define the property of a structure A being in a model class based merely on
the knowledge that the class is ∆1(R), the only way seems to be to use the
means of the logic to build a piece of the set theoretic universe around A, and
work in the small universe. The ∆-operation is then used to eliminate the extra
symbols used to build the small universe. See [2, 13, 11] for more details on the
∆-operation and its use.

Definition 3.1. Let L∗ be a logic and let τ a fixed vocabulary. A class K of τ -
structures is Σ(L∗)-axiomatisable if there exists φ in some extended vocabulary
τ ′ ⊇ τ such that

K = {A : ∃B (B |= φ and A = B�τ)}.

We say that K is the projection of the class Mod(φ) to τ .

A class K is Π(L∗)-axiomatisable if the complement of K (i.e., the class of τ -
structures not in K) is Σ(L∗)-axiomatizable, and ∆(L∗)-axiomatizable if it is
both Σ(L∗) and Π(L∗)-axiomatizable.

Note that, if τ ′ has more sorts than τ , then the structures B can be larger
than their reducts A = B�τ .

Since ∆(L∗)-axiomatizable classes are closed under unions, intersections,
complements and projections, one could consider ∆(L∗) itself as an abstract
logic, whose model classes are exactly the ∆(L∗)-axiomatizable classes. In gen-
eral, ∆(L∗) is a non-trivial extension of L∗. However, for first-order logic, and
in general any logic satisfying the the Craig Interpolation Theorem, two notions
coincide, see [11, Lemma 2.7].

Definition 3.2 (Symbiosis). Let L∗ be a logic and R a predicate in the lan-
guage of set theory. Then we say that L∗ and R are symbiotic if:

(1) the relation |=L∗ is ∆1(R)-definable, and

(2) for every finite vocabulary τ , every ∆1(R)-definable class of τ -structures
closed under isomorphisms is ∆(L∗)-axiomatisable.
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In [2], symbiosis was established for many logic-predicate pairs, among them
the ones mentioned in the introduction.

In practice, there is an equivalent condition to (2) which is easier to both
verify and to apply. Let R be an n-ary predicate in the language of set the-
ory. We say that a transitive model of set theory M is R-correct if for all
m1, . . . ,mn ∈M we have M |= R(m1, . . . ,mn) iff R(m1, . . . ,mn).

Lemma 3.3 (Väänänen [13]). For any predicate R and logic L∗, the following
are equivalent:

(a) For every finite τ , every ∆1(R) class of τ -structures closed under isomor-
phisms is ∆(L∗)-axiomatisable.

(b) The class QR := {A : A is isomorphic to a transitive R-correct ∈-model}
is ∆(L∗)-axiomatisable.

Proof. See [13], or a simpler version of Theorem 4.9.

For completeness, and to illustrate how proofs of symbiosis typically work
in view of the results in the next section, we will now sketch proofs of some
paradigmatic examples (see Section 1 for the definitions). ZFC−∗ refers to a
sufficiently large fragment of ZFC−Power Set.

Proposition 3.4 (Väänänen [13]). LWF and ∅ (no predicates) are symbiotic.

Proof. (1) Since the statement “(A,E) is well-founded” for sets A is ∆1 and
therefore absolute for transitive models, “A |=LWF

φ” is also absolute for
transitive models. Then A |=LWF

φ

iff ∃M (M transitive ∧ M |= ZFC−∗ ∧ A ∈M ∧ M |= (A |=LWF
φ))

iff ∀M ((M transitive ∧ M |= ZFC−∗ ∧ A ∈M) → M |= (A |=LWF
φ)).

This gives a ∆1-definition.

(2) There are no predicates so Q∅ = {(A,E) : (A,E) is isomorphic to a tran-
sitive ∈-model}. But (A,E) is isomorphic to a transitive ∈-model iff E is
well-founded and extensional. Therefore (A,E) ∈ Q∅ iff

(A,E) |= Ext ∧ WFxy(xEy)

which is an LWF-sentence. Thus Q∅ is LWF-axiomatizable and therefore
also ∆(LWF)-axiomatizable.

Proposition 3.5 (Väänänen [13]). LI and Cd are symbiotic.

Proof.

(1) It is easy to see that “A |=LI φ” is absolute for models of set theory which
are Cd-correct. Therefore A |=LI

φ

iff ∃M (M trans. and Cd-correct ∧ M |= ZFC−∗ ∧ A ∈ M ∧ M |=
(A |=LI

φ))

iff ∀M ((M trans. and Cd-correct ∧M |= ZFC−∗ ∧ A ∈M) →
M |= (A |=LI φ))

Note that “M is Cd-correct” is the statement ∀x ∈ M ((M |= Cd(x)) ↔
Cd(x)) which is ∆1(Cd). Thus the above is a ∆1(Cd) formula.
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(2) We need to check that QCd = {(A,E) : (A,E) is isomorphic to a transitive
Cd-correct ∈-model} is ∆(LI). We have:

(A,E) ∈ QCd iff

(a) E is wellfounded

(b) (A,E) |= Ext

(c) (A,E) |=LI
“∀α (Cd(α)→ ∀x ∈ α¬Iyz(y ∈ x)(y ∈ α))” (written in E

instead of ∈).

Conditions (b) and (c) are LI-sentences, so it remains to show that (a) is
∆(LI).

First, we add a new unary predicate symbol P and consider the sentence
“P has no E-least element”, i.e.,

φ ≡ ∀x(P (x)→ ∃y(P (y) ∧ yEx)).

Clearly the class of all models (A,E) such that E is not well-founded is the
projection of Mod(φ) to {E}. Therefore (a) is Π(LI).

To show that (a) is also Σ(LI) we use a trick due to Per Lindström [7]:
(A,E) is well-founded if and only if we can associate sets Xa to every a ∈ A
in such a way that aEb → |Xa| < |Xb|. Let the original sort be called
s0, extend the language with a second sort s1, add a new binary relation
symbol R from s0 to s1, and consider the sentence

φ ≡ ∀0a ∀0b (aEb → (∀1x(R(a, x)→ R(b, x)) ∧ ¬IyzR(a, y)R(b, z)))

where we have used ∀0 and ∀1 to denote quantification over the two sorts.

Now we can easily see that if A = (A,X,EA, RA) |= φ, then the sets
Xa := {x ∈ X : RA(a, x)} are exactly as required, hence EM is well-
founded. Conversely, if (A,EA) is well-founded, let rkE : A → Ord be
the rank function induced by EA, let X := ℵsupa∈A{rkE(a)+1}, and define

RA ⊆ A×X by RA(a, α) ⇔ α < ℵrkE(a). Then (A,X,EA, RA) |= φ.

Thus we conclude that the class of well-founded structures is the projection
of Mod(φ) to s0, completing the proof.

Proposition 3.6 (Väänänen [13]). L2 and PwSt are symbiotic.

Proof. (1) As before, note that the statement “ A |=L2 φ” is absolute for tran-
sitive models which are PwSt-correct, so we have A |=L2 φ

iff ∃M (M trans. and PwSt-correct ∧ M |= ZFC−∗ ∧ A ∈M ∧ M |=
(A |=LI

φ))

iff ∀M ((M trans. and PwSt-correct ∧ M |= ZFC−∗ ∧ A ∈ M) →
M |= (A |=LI

φ))
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(2) Consider QPwSt = {(A,E) : (A,E) is isomorphic to a PwSt-correct ∈-
model}. We have (A,E) ∈ QPwSt iff E is wellfounded and extensional
and (A,E) |=L2 (y = ℘(x) ↔ Φ(x, y)) where Φ(x, y) is the L2-formula
expressing that y is the true power set of x, written using E instead of ∈.3

All of this is expressible in L2.

4 Bounded Symbiosis

Although symbiosis is stated as a property of L∗, it is really a property of
∆(L∗). For many applications, this is irrelevant: for example, the downwards
Löwenheim-Skolem principles are all preserved by the ∆-operation. However, in
[14, Theorem 4.1] it was shown that the Hanf-number may not be preserved, and
the bounded ∆-operation was introduced as a closely related operation which
still fulfills most of the properties but, in addition, preserves Hanf-numbers. The
bounded ∆ coincides with the original ∆ in many but not all cases, see [14].

If we want to apply symbiosis to upwards Löwenheim-Skolem principles, we
need to accommodate this bounded version of the ∆-operation. Unfortunately,
this also requires adapting the set-theoretic complexity classes to bounded ver-
sions. This section is devoted to the definition of these concepts. We start with
the model-theoretic side. The following definition generalizes Definition 3.1 and
was first introduced in [14, p. 45].

Definition 4.1. A class K of τ -structures is ΣB(L∗)-axiomatisable if there
exists φ in an extended vocabulary τ ′ ⊇ τ such that

K = {A : ∃B (B |= φ and A = B�τ)},

and for all A there exists a cardinal λA, such that for any τ ′-structure B: if
B |= φ and A = B�τ then |B| ≤ λA.

We say that K is a bounded projection of Mod(φ). K is ∆B(L∗)-axiomatisable
if both K and its complement are ΣB(L∗)-axiomatisable.

In other words, K is a bounded projection of Mod(φ) if it is a projection
and, in addition, every structure B ∈ Mod(φ) is bounded in its cardinality by
a function that depends on the respective reduct B�τ . Note that this definition
really only plays a role when the extended vocabulary has additional sorts, since
otherwise the cardinalities of B�τ and B are the same.

Typical examples of bounded projection will be seen, e.g., in Propositions
5.1, 5.2 and 5.6.

It will be useful to define a bound given by a function from ordinals to
ordinals rather than models to ordinals.

3If we use superscripts 0 and 1 to denote first- and second-order quantification, and the re-
lation symbols ∈00 and ∈01 to denote sets-in-sets membership and sets-in-classes membership,
respectively, the sentence Φ(x, y) can be written as follows:

∀1Z(∃0v(v ∈00 y ∧ ∀0w (w ∈00 v ↔ w ∈01 Z)) ↔ ∀0v(v ∈01 Z → v ∈00 y))
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Lemma 4.2. Suppose K is ΣB(L∗)-axiomatisable. Then there exists φ in an
extended vocabulary τ ′ ⊇ τ , and a non-decreasing function h : Ord→ Ord such
that

K = {A : ∃B (B |= φ and A = B�τ)}
and

∀B(B |= φ → |B| ≤ h(|B�τ |)).
Proof. Define h by h(λ) := sup{λA : |A| ≤ λ} where each λA is as in Definitions
4.1. Since there are only set-many non-isomorphic models of any cardinality, h
is well-defined.

Now we move to the set-theoretic side of things, which is more involved. In
particular, we may no longer refer to arbitrary Σ1-formulas, since the witness in
such formula may be unbounded, making it impossible to establish a symbiotic
relationship for bounded projective classes. So we would like to restrict attention
to formulas φ(x) of the form ∃y ψ(x, y) but where, in addition, the (hereditary)
size of at least one witness y is bounded by a function of the (hereditary) size
of x, and this function itself can be “captured” by first-order logic. Note that a
similar concept was introduced by the third author in [13, Definition 3.1].

We first need to introduce the concept of “being captured by first-order
logic”.

Definition 4.3. A non-decreasing class function F : Card → Card is called
definably bounding if the class of structures

K := {(A,B) : |B| ≤ F (|A|)}
(in the vocabulary with two sorts and no symbols) is ΣB(Lωω)-axiomatisable.

The intuition here is that the size of |B| (the “witness”) may be larger than
|A|, but not by too much — and by exactly how much is determined by F . For
example, the identity function F = id is definably bounding since we can always
extend the language with a new function symbol f between the two sorts and
express “f is a surjection” in Lωω. A more interesting example is the following:

Example 4.4. The function F (κ) = 2κ is definably bounding.

Proof. Consider the class K := {(A,B) : |B| ≤ 2|A|}. Extend the vocabu-
lary with a new relation symbol E between the two sorts in reverse order, and
consider the first-order formula

φ ≡ ∀Bb, b′(∀Aa(aEb↔ aEb′)→ b = b′),

where we used the notation ∀A and ∀B to informally refer to quantification
over the sorts. It is easy to see that if M = (A,B,EM) |= φ then the map
i : B → ℘(A) given by i(b) := {a ∈ A : aEMb} is injective, so |B| ≤ |℘(A)|. It
follows that K is the projection of Mod(φ). The “bounded” part is immediate
since we have not added new sorts.

By an additional argument (see [5, Lemma 6.23]), it is not hard to prove
that if F is definably bounding, then so is any iteration Fn. In particular, if we
define the cardinal function in for infinite cardinals λ by setting i0(λ) := 2λ

and in+1(λ) := 2in(λ), then each such in is also definably bounding. This is
typically strong enough for most interesting applications.
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Definition 4.5.

1. For a set x, the H-rank of x, denoted by ρH(x), is the least infinite κ such
that x ∈ Hκ+ (i.e., ρH(κ) = min(ℵ0, |trcl(x)|)).

2. Let F be a definably bounding function. A set-theoretic formula φ(x) is
ΣF1 if there exists a ∆0 formula ψ(x, y) such that

(a) ∀x (φ(x) ↔ ∃y ψ(x, y)), and

(b) ∀x (φ(x)→ ∃y′(ρH(y′) ≤ F (ρH(x)) ∧ ψ(x, y′))

A formula is ΠF
1 if its negation is ΣF1 , and ∆F

1 if it is equivalent to both
a ΣF1 - and a ΠF

1 -formula.

3. Let R be a predicate in the language of set theory. All of the above can
be generalized to ΣF1 (R), ΠF

1 (R) and ∆F
1 (R) in the obvious way.

So, a ΣF1 formula is a Σ1 formula such that, in addition, at least one “witness”
y is not too far up in terms of H-rank in relation to x itself, where by “not too far
up” we mean “bounded by the definably bounding function F”. An important
example is the satisfaction relation of first-order logic:

Remark 4.6. The satisfaction relation |=Lωω is ∆id
1 (see [4]).

This leads us to introduce a new notion of symbiosis. A similar idea already
appeared in [13, Definition 3.3].

Definition 4.7 (Bounded Symbiosis). Let L∗ be a logic and R a set theoretic
predicate. We say that L∗ and R are boundedly symbiotic if

(1) The relation |=L∗ is ∆F
1 (R)-definable for some definably bounding F .

(2) Every ∆F
1 (R)-definable class of τ -structures closed under isomorphisms is

∆B(L∗)-axiomatizable (for every definably bounding F ).

Just as before, condition (2) of bounded symbiosis has an equivalent form
which is usually easier to verify and to apply. A side effect will be that in (2), we
may assume that F = id without loss of generality. First, we need the following:

Lemma 4.8. Let R be a Π1 predicate in set theory.

1. Every Hκ is R-correct.

2. Let φ be a ΣF1 (R)-formula. Then for every x and every κ > F (ρH(x)),
φ(x) is absolute (upwards and downwards) for Hκ.

Proof. 1 is a classical result of of Lèvy [6] (see also [5, Lemma 6.27]). From this,
it follows that ∆0(R)-formulas are absolute for Hκ.

For 2, it suffices to prove downwards absoluteness. Let x be arbitrary and
suppose φ(x) holds. Then there exists y such that ρH(y) ≤ F (ρH(x)) < κ
and ψ(x, y) holds, where ψ(x, y) is the corresponding ∆0(R)-formula. But then
y ∈ Hκ and Hκ |= ψ(x, y) by the above. It follows that Hκ |= φ(x).

Lemma 4.9. Let L∗ be a logic and R be a Π1 predicate. Then the following
are equivalent:
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(a) Every ∆F
1 (R) class of τ -structures closed under isomorphisms is ∆B(L∗)-

axiomatisable (for every definably bounding F ).

(b) Every ∆id
1 (R) class of τ -structures closed under isomorphisms is ∆B(L∗)-

axiomatisable.

(c) The class QR := {A : A is isomorphic to a transitive R-correct ∈-model}
is ∆B(L∗)-axiomatisable.

Proof. (a) ⇒ (b) is immediate. For (b) ⇒ (c), it is enough to prove that QR
itself is ∆id

1 (R)-definable. We have A ∈ QR iff ∃M ∃f such that

1. ρH(M) ≤ ρH(A)

2. ρH(f) ≤ ρH(A)

3. M is transitive

4. f : A = (A,E) ∼= (M,∈) is an isomorphism

5. ∀x1 . . . xn ∈M (M |= R(x1, . . . , xn) ↔ R(x1, . . . , xn))

Since clauses 3–5 are ∆1(R), this gives a Σid
1 (R) statement. Similarly, A /∈ QR

iff (A,E) is not well-founded or ∃M ∃f such that

1. ρH(M) ≤ ρH(A)

2. ρH(f) ≤ ρH(A)

3. M is transitive

4. f : A = (A,E) ∼= (M,∈) is an isomorphism

5. ¬∀x1 . . . xn ∈M (M |= R(x1, . . . , xn) ↔ R(x1, . . . , xn))

It is easy to see that being ill-founded is Σid
1 , so the conjunction is again a

Σid
1 (R) statement.

Now we look at (c) ⇒ (a). Let K be a ∆F
1 (R)-definable class over a fixed

vocabulary τ which is closed under isomorphisms. Let Φ(x) be the ΣF1 (R)
formula defining K. For simplicity, assume that τ consists only of one binary
predicate P and only one sort.

Let τ ′ be a language in two sorts s0 and s1, with E a binary relation symbol of
sort s0, G a function symbol from s1 to s0, c a constant symbol of sort s0, and
P a unary predicate symbol in s1 (i.e., s1 is the original sort of τ , while s0 adds
a “model of set theory” on the side).

Let K′ be the class of all τ ′-structures

M :=
(
M,A,EM, cM, GM, PM

)
satisfying the following conditions:

1. (M,EM) ∈ QR, i.e., (M,EM) is isomorphic to a transitive R-correct
model

12



2. (M,EM) |= ZFC−∗

3. M |= Φ(c)

4. |M | ≤ 22F (|A|)

5. M |= “c = (a, b) and b ⊆ a× a” (written using E instead of ∈)

6. M |= “G is an isomorphism between (A,P ) and (a, b)(M,E)”. In this
sentence, (a, b)(M,E) refers to the domain and binary relation on it which
is described by a and b when interpreting ∈ by EM (e.g., the domain is
really {x ∈M : xEMa} etc. )

Now we can see that conditions 2, 3, 5 and 6 are directly expressible in Lωω,
while 1 is ∆B(L∗)-axiomatisable, and hence ΣB(L∗)-axiomatisable, by assump-
tion. Moreover, 4 is also ΣB(L∗)-axiomatisable: this follows by the definition of
“definably bounding”, by Example 4.4, and the discussion following it.

It remains to prove that K is a bounded projection of K′ to τ . Note that the
“bounded” part is immediate due to 4.

• First suppose M =
(
M,A,EM, cM, GM, PM

)
∈ K′. We want to show

that (A,PM) ∈ K. By 1 (M,EM) is isomorphic to a transitive model

(M,∈) which is R-correct. Let cM be the image of cM under this iso-

morphism. Then (M,∈) |= Φ(cM). Moreover, since M is R-correct and

Φ is Σ1(R), by upwards absoluteness we have Φ(cM), i.e. cM ∈ K. By 6

we have cM ∼= “(a, b)(M,E)” ∼= (A,PM). Since K is closed under isomor-
phism, it follows that (A,PM) ∈ K.

• Conversely, let A = (A,PA) ∈ K, i.e., Φ(A) holds. We want to find a
structure M∈ K′ such that A =M�τ .

The first idea would be to find an Hθ which is sufficiently large to reflect
Φ(A) while still being small enough to satisfy condition (4). In general,
however, the transitive closure of A might be significantly larger than |A|.
So we first find a model Ā which is isomorphic to A but whose domain is
some cardinal µ. Since K is closed under isomorphisms, Ā is also in K,
i.e. Φ(Ā) also holds.

Note that in this case P Ā ⊆ µ×µ, in particular, trcl(Ā) = trcl((µ, P Ā)) ⊆
µ, so ρH(Ā) = µ.4 Let θ := F (µ)+. By Lemma 4.8 (2) Hθ |= Φ(Ā).

Now letM = (Hθ, A,∈, Ā, g, PA), where g is the isomorphism between A
and Ā. Now it is not hard to verify that all 6 conditions in the definition
of K′ are satisfied. In particular, 1 holds because of Lemma 4.8 (1) and 4
because

|Hθ| ≤ 2θ = 2F (µ)+ ≤ 22F (µ)

= 22F (|A|)
.

Thus M∈ K′ as we wanted.

This shows that K is a bounded projection of K′ and therefore K is ΣB(L∗).
Since K is also ∆F

1 (R), the same proof works for the complement of K, showing
that K is ∆B(L∗).

4Even though we made an assumption to only consider the language τ with one binary
relation symbol for the sake of clarity, the same holds for any number of predicate or function
symbols on a model with domain µ.
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5 Examples of Bounded Symbiosis

In general, all the pairs that are proved to be symbiotic in [2, Proposition 4]
are also bounded symbiotic. For completeness, we now show how the proofs of
Propositions 3.4, 3.5 and 3.6 can be strengthened to prove bounded symbio-
sis. In particular, Proposition 5.2 is a non-trivial result since by [14, § 4] it is
consistent that ∆(LI) 6= ∆B(LI).

Proposition 5.1. The pairs LWF and ∅ are bounded symbiotic.

Proof. The same proof as Proposition 3.4 works. For (1), note that we may
always use reflection to find M such that |M | = |trcl(A)|. This implies that
|=LWF

is ∆id
1 . For part (2), QWF is actually LWF-definable, hence ∆B(LWF)-

definable.

Proposition 5.2. The pairs LI and Cd are bounded symbiotic.

Proof. Again we look at the proof of Proposition 3.5. For (1), we have the
stronger equivalence: A |=LI φ

iff ∃M (ρH(M) ≤ 22ρH(A) ∧ M transitive and Cd-correct ∧ M |= ZFC−∗

∧ A ∈M ∧ M |= (A |=LI
φ))

iff ∀M (((ρH(M) ≤ 22ρH(A) ∧ M transitive and Cd-correct
∧M |= ZFC−∗ ∧ A ∈M) → M |= (A |=LI

φ))

As in the proof of Lemma 4.9, we know that for any A we can let θ = |trcl(A)|+,
so that

|Hθ| ≤ 2θ = 2ρH(A)+ ≤ 22ρH(A)

and Hθ is Cd-correct by Lemma 4.8 (1). Thus, the relation |=LI
is ∆F

1 (Cd) for
the definably bounding function F (α) = 22α .

Now we check (2) of bounded symbiosis. Again, looking at the proof of Proposi-
tion 3.5, we see that clauses (b) and (c) are LI-sentences, and (a) is ΠB(LI) since
we do not need to add new sorts. The only issue, then, is to prove that “(A,E)
is well-founded” is ΣB(LI), which is less trivial because the method described
previously does not yield an upper bound on the size of the second sort. So we
need to adapt this method. The idea is to add a new linear ordering (B,<) to
the structure (A,E), and a function f : A → B, such that B plays the role of
the appropriate cardinals ℵα.

Suppose (B,<) is a linear order. For b ∈ B let b↓ = {b′ ∈ B : b′ < b} denote
the set of <-predecessors of b. We say that b is cardinal-like if for every b′ < b
we have |b′↓| < |b↓|, and the set B itself is cardinal-like if for every b ∈ B we
have |b↓| < |B|.

Consider the language with two sorts s0 and s1, a binary relation symbol E in
s0, a binary relation < in s1, and a function symbol f from s0 to s1. In the
following proof, we will informally refer to the domains of the respective sorts
by A and B.

First define the following abbreviations:

Inf(b) ≡ ∀Bx < b Iyz(y < b ∧ y 6= x)(z < b)
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i.e., b has infinitely many <-predecessors.

Like(b) ≡ ∀Bb′ < b ¬Iyz(y < b)(z < b′)),

i.e., b is cardinal-like. Let Φ be the conjunction of the following LI-formulas:

(i) < is a linear order;

(ii) ∀Bb ¬Ixy(x < b)(y = y)

i.e., “B is cardinal-like”;

(iii) ∀Bb(Inf(b)→ ∃Bb′ ≤ b(Ixy(x < b)(y < b′) ∧ Like(b′)))

i.e., “no infinite cardinals are skipped”;

(iv) ∀Aa∀Aa′ (aEa′ → f(a) < f(a′))

i.e., “f is order-preserving”;

(v) ∀Aa(Inf(f(a)) ∧ Like(f(a)))

i.e., “every f(a) is infinite and cardinal-like”;

(vi) ∀Aa ∀Bb (b < f(a) → ∃Aa′ (a′Ea ∧ b ≤ f(a′))

i.e., “every |f(a)↓| is the least cardinal higher than |f(a′)↓| for all a′Ea”;

(vii) ∀Bb ∃Aa (b ≤ f(a))

i.e., “the range of f is cofinal in B”.

Now we prove several claims, which together imply that “(A,E) is well-founded”
is ΣB(LI). For ease of notation we will identify the symbols E,< and f with
their respective interpretations.

Claim 5.3. (A,E) is well-founded iff (A,B,E,<, f) |=LI
Φ for some B,< and

f .

Proof. First, suppose (A,E) is well-founded. Let rkE be the rank function
induced by E, let B = ℵrkE(A), and let f(a) = ℵrkE(a). Then it is easy to verify
that (A,B,E,<, f) |=LI Φ. Conversely, suppose (A,B,E,<, f) |= Φ. Then for
every aEa′ we have |f(a)↓| < |f(a′)↓|, as follows easily from the fact that < is
transitive, that f is order-preserving, and that every f(a) is cardinal-like. But
then E must be well-founded. (Claim 5.3)

Claim 5.4. Suppose (A,B,E,<, f) |=LI Φ. Then

1. For all b ∈ B and all λ < |b↓|, there exists c < b such that λ ≤ |c↓| < |b↓|.

2. For all b ∈ B and all λ < |b↓|, there exists d < b such that |d↓| = λ.

3. For all λ < |B|, there exists d such that |d↓| = λ.

Proof.
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1. Let b ∈ B and λ < |b↓|. By (iii) there is a b′ < b such |b′↓| = |b↓| and b′ is
cardinal-like. We claim that there is c < b′ such that λ ≤ |c↓|. Towards
contradiction, suppose this is false. Let {cα : α < |b′↓|} enumerate b′↓
and consider the initial λ-sequence of this enumeration, i.e., {cα : α <
λ}. This sequence cannot be <-cofinal in b′, otherwise we would have
|b′↓| = |

⋃
α<λ(cα↓)| ≤ λ × λ = λ, which is a contradiction. Therefore,

there is c < b′ such that {cα : α < λ} ⊆ c↓. But then λ ≤ |c↓|, also a
contradiction.

2. First apply (1) to find c0 < b such that λ ≤ |c0↓| < |b↓|. Apply again to
find c1 < c0 such that λ ≤ |c1↓| < |c0↓|, etc. By well-foundedness, this
process will stop after finitely many steps and we will find d < b such that
λ = |d↓|.

3. By an analogous argument as in (1) above, and using (ii), we first find
b ∈ B such that λ ≤ |b↓| < |B|. Then proceed as in (2). (Claim 5.4).

Claim 5.5. Suppose (A,B,E,<, f) |=LI
Φ. Then |A ∪B| ≤ ℵrkE(A).

Proof. We prove, by induction on E, that for all a ∈ A :

|f(a)↓| ≤ ℵrkE(a).

Suppose the above holds for all a′Ea. Towards contradiction suppose |f(a)↓| >
ℵrkE(a). By Claim 5.4 (2), we can find d < f(a) such that |d↓| = ℵrkE(a). By
(vi), there exists a′Ea such that d ≤ f(a′). But this means that

ℵrkE(a) = |d↓| ≤ |f(a′)↓| = ℵrkE(a′)

which is a contradiction since rkE(a′) < rkE(a). This competes the induction.

Completing the proof requires repeating the above argument once more: if
|B| > ℵrkE(A), then by Claim 5.4 (3) there is d ∈ B such that |d↓| = ℵrkE(A),
and by (vii) there is a ∈ A with d ≤ f(a), implying

ℵrkE(A) = |d↓| ≤ |f(a)↓| = ℵrkE(a)

which is a contradiction since by definition rkE(a) < rkE(A). It follows that
|A ∪B| = |B| ≤ ℵrkE(A). (Claim 5.5)

Proposition 5.6. The pairs L2 and PwSt are bounded symbiotic.

Proof. A straightforward adaptation of the proof of Proposition 3.6 works. Us-
ing the same trick as above, in (1) we see that |=L2 is ∆F

1 (PwSt) for F (α) = 22α .
For (2), we do not need to change anything since the class QPwSt is already L2-
axiomatisable.

16



6 The Upwards Structural Reflection principle

Now we consider a reflection number analogous to the one in Definition 1.2
which, as in [2], will allow us to connect the strength of existence of upward
Löwenheim-Skolem numbers for strong logics to large cardinals.

Definition 6.1. Let R be a Π1 predicate in the language of set theory. The
bounded upwards structural reflection number USR(R) is the least κ such that:

For every definably bounding function F , and every ΣF1 (R)-definable
class of τ -structures in a fixed vocabulary τ closed under isomor-
phisms:

If there is A ∈ K with |A| ≥ κ, then for every κ′ > κ there is a
B ∈ K with |B| ≥ κ′ and an elementary embedding e : A 4Lωω B.

If there is no such cardinal, USR(R) is undefined.

Remark 6.2. In this definition, we are assuming that K is definable by a
ΣF1 (R)-formula without parameters. In particular, the definition presupposes
that τ , as a vocabulary, is itself ΣF1 (R)-definable (e.g., finite). Notice that if
arbitrary τ were allowed, USR(R) would never be defined: for any κ, we could
take a vocabulary τ with κ-many constant symbols and let K be the class of
τ -structures such that every element is the interpretation of a constant symbol,
which is ∆id

1 in τ . One could avoid this problem by considering classes defined
with parameters of a limited H-rank; but then, to prove results like the ones
in this section, one would need to extend the corresponding logic in such a way
that the parameter can be defined. For the current paper, the parameter-free
version will be sufficient.

Our main theorem below is proved for logics which have ∆0-definable syntax
and dependence number ω. This is necessary if we want to avoid parameters—
recall the discussion in Section 2. All logics obtained by adding finitely many
quantifiers to first- or second-order logic, such as LWF,LI,L2 and the examples
in [2, Proposition 4], are covered by this theorem. For the ULST-principle, see
Definition 2.4 and recall that since we are assuming dep(L∗) = ω, ULSTω(L∗) =
ULST∞(L∗).

Theorem 6.3 (Main Theorem). Let L∗ be a logic with ∆0-definable syntax and
dep(L∗) = ω, and let R be a Π1 predicate. Assume that L∗ and R are boundedly
symbiotic. Then the following are equivalent:

(1) ULST∞(L∗) = κ,

(2) USR(R) = κ.

Proof. (2) ⇒ (1). Suppose USR(R) = κ. Let φ be an L∗-formula, and let
A |=L∗ φ with |A| ≥ κ. Letting κ′ be any cardinal above κ, the goal is to find
a super-structure B of A such that B |=L∗ φ and |B| ≥ κ′.

Consider the class K = Mod(φ). By condition (1) of bounded symbiosis, K is
∆F

1 (R)-definable, hence ΣF1 (R), with parameter φ. However, since dep(L∗) = ω,
we may assume that the vocabulary of φ is finite. Moreover, L∗ has a ∆0-
definable syntax, so φ is ∆0-definable, therefore K is in fact ΣF1 (R)-definable
without parameters. It is also clearly closed under isomorphisms.
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Applying USR(R) we find a B′ ∈ K, such that |B′| ≥ κ′ and there is e :
A 4Lωω B′. We can also easily find B ∼= B′ such that A is a substructure of B,
and this is what we need.

(1) ⇒ (2). Now assume ULST∞(L∗) = κ, and let K be a ΣF1 (R)-definable
transitive class of τ -structures, with Φ(x) the defining ΣF1 (R)-formula.

Since the USR-principle involves elementary embeddings whereas ULST does
not, the proof must proceed indirectly. The intuition is that we first embed a
given structure A ∈ K in a larger structure that includes a model of set theory
Hθ and includes Skolem functions for first-order existential sentences; then we
apply ULST to (a further extension of) this larger structure. To make sure that
enlarging the set-theoretic structure also yields an enlargement of the original
structure, we must carefully keep track of the relations between cardinalities
given by the various bounds in the definition of bounded symbiosis. See Figure
3.

ℳ

ℳ
𝒩

𝒩 (N, ∈)

1

1

𝜋

proj. to 𝜏ʹ

⊆

𝒜 𝒜ʹ
𝜃H {x : x E  c   }𝒩 𝒩

proj. to 𝜏ʹ

Figure 3: Structure of the proof.

Assume that τ is in one sort (a similar proof works in the general case). Similarly
to the proof of Lemma 4.9, define a vocabulary τ ′ with two sorts: s0 and s1, with
all of the symbols occurring in τ written in sort s1. Let E be a binary relation
symbol in sort s0, G a function symbol from s1 to s0, and c a constant symbol in
sort s0. In addition, for every quantifier-free first-order formula ψ(x, y1, . . . , yn)
in the language E, c, add an n-ary function symbol fψ of sort s0.

Let K∗ be the class of all structures M :=
(
M,A,EM, GM, cM, {fMψ }

)
such

that
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1. (M,EM) |= ZFC−∗,

2. (M,EM) ∈ QR, i.e., it is isomorphic to a transitive R-correct model,

3. |M | ≤ 22F (|A|)
,

4. M |= Φ(c), written with E instead of ∈,

5. M |= ∀z̄ (∃xψ(x, z̄)→ ψ(fψ(z̄), z̄)) for every quantifier-free ψ.

6. M |= G is a bijection between A and {x : x E c}.

Conditions 1, 4 and 6 are in first-order logic, whereas 2 is ∆B(L∗)-axiomatizable
by the equivalent condition (2) of bounded symbiosis. Moreover, 3 is ΣB(L∗)-
axiomatisable by the definition of “definably bounding” (Definition 4.3), by
Example 4.4, and the discussion following it. Finally, while 5 might look like
an infinite set of sentences (and we are not assuming that L∗ is infinitary), it is
still true that, since |= is ∆id

1 , the entire condition 5 can be expressed in a ∆id
1

way in set theory. By condition (2) of bounded symbiosis, the class of models
satisfying 5 is ∆B(L∗). Therefore, K∗ is ΣB(L∗).
Let A be a structure in K with |A| ≥ κ, and let κ′ > κ be any cardinal. Since K
is closed under isomorphisms, we may assume wlog. that A is transitive. Our
goal is to find A′ ∈ K such that |A′| ≥ κ′ and A4Lωω A′.
Let θ := F (ρH(A))+ = F (|A|)+, choose Skolem functions fHθ

ψ : Hn
θ → Hθ, and

consider the structure

M := (Hθ, A,∈, id,A, {f
Hψ

ψ })

ClearlyM satisfies 1, 5 and 6 of the definition of K∗. Moreover, due to Lemma
4.8 (1), Hθ is R-correct and Φ(A) is absolute for Hθ. Hence, 2 and 4 are satisfied
as well. Finally, 3 holds because

|Hθ| ≤ 2θ = 2F (|A|)+ ≤ 22F (|A|)
.

Therefore M∈ K∗.
Let χ be an L∗-sentence in an extended vocabulary τ ′′ such that K∗ is a
“bounded projection” of Mod(χ). Let h : Ord → Ord be the function as in
Lemma 4.2.

Let M1 = (M, . . . ) be such that M1 |= χ and M1�τ ′ = M. Since |M1| ≥
|M| ≥ |A| ≥ κ, we can apply ULST∞(L∗) = κ to find N1 such that N1 |= χ

and |N1| > h
(

22F (κ′)
)

, and M1 ⊆ N1 (i.e., M1 is a substructure of N1). Let

N = N1�τ ′. We write N = (N,B,EN , GN , cN , {fNψ }) for this structure.

Let (N̄ ,∈) be the transitive collapse of (N,EN ), and cN be the image of cN

under this collapse. We claim that A′ := cN is the model we are looking for.

Claim 6.4. A′ ∈ K.

Proof. Since N ∈ K∗, we know that (N,EN ) |= Φ(c) (written in E), and
therefore N̄ |= Φ(c̄) (written in ∈). Also, since (N,EN ) ∈ QR, we know that
N̄ is R-correct, in particular, Σ1(R) formulas are upwards absolute. Therefore
Φ(A′) is true, so A′ ∈ K.
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Claim 6.5. κ′ < |A′|.

Proof. By the definition of the function h as in Lemma 4.2, we know that
|N1| ≤ h(|N |). Thus we have

h
(

22F (κ′)
)
< |N1| ≤ h(|N |)

and since h is order-preserving, 22F (κ′)
< |N |. By condition 3 of the definition

of K∗, we have |N | ≤ 22F (|B|)
. Therefore 22F (κ′)

< |N | ≤ 22F (|B|)
, from which

it follows that κ′ < |B|. Finally, by condition 6 we get that |B| = |{x ∈ N :
xEN cN | = |A′|.

Claim 6.6. There is an Lωω-elementary embedding from A to A′.

Proof. By condition 5, both models M1 and N1 satisfy the axioms for Skolem
functions concerning first-order quantifier-free formulas in {E, c}. In addition,
sinceM1 is a substructure of N1, the interpretations of fψ coincide between the

models, i.e., fN1

ψ �Hθ = fHθ

ψ for every ψ. Thus, if N1 |= ∃xψ(x, z̄) and z̄ ∈ Hθ,
then N1 |= ψ(fψ(z̄), z̄), so (Hθ,∈,A) |= ψ(fψ(z̄), z̄). It follows that N1 and
(Hθ,∈,A) satisfy the same Σ1-formulas in {E, c}.

Let π : N → N̄ be the collapsing map. Since the first-order satisfaction relation
is ∆1, for every first-order φ and for every ā = a1, . . . an ∈ A we have

A |= φ(ā)

⇔ Hθ |= (A |= φ(ā))

⇔ N1 |= (c |= φ(ā))

⇔ (N̄ ,∈,A′) |= (c |= φ(π(ā)))

⇔ A′ |= φ(π(ā))).

Hence π� A : A 4Lωω A′ as required.5

7 The predicate PwSt and second order logic

In this section we apply our results to determine upper and lower bounds for the
large cardinal strength of USR(PwSt) and ULST∞(L2), which will also yield
upper bounds for other symbiotic pairs L∗ and R. The main point is that PwSt
can be seen as an upper bound for all Π1 predicates. The following is not hard
to verify (see [5, Section 6.5] for the details).

Fact 7.1. The function α 7→ Vα is ΣF1 (PwSt)-definable (for suitable F ). Also,
the function H that maps every infinite successor cardinal θ to Hθ is ΣF1 (PwSt)-
definable.

Lemma 7.2. For every Π1 predicate R, if φ is ΣF1 (R) then it is ΣF1 (PwSt).

5In this proof we have occasionally identified the syntax and semantics of first-order logic
for ease of readability.

20



Proof. Suppose φ is ΣF1 (R). Then for every a we have

φ(a) ⇔ ∃Hθ

(
ρH(Hθ) < 22F (ρH(a))

∧ Hθ |= φ(a)
)
.

By the previous fact, “being Hθ” is ΣF
′

1 (PwSt)-definable (possibly another F ′).
In conjunction with the upper bound, the whole expression is also ΣF

′′

1 (PwSt)-

definable (for F ′′ being the maximum of F ′ and α 7→ 22F (α)

). To see that the

equivalence holds, let θ = F (ρH(a))+. Then ρH(Hθ) ≤ 2θ ≤ 22F (ρH(a))

, and
moreover φ(a) is absolute for Hθ by Lemma 4.8 (2).

Corollary 7.3.

1. For every Π1 predicate R we have USR(R) ≤ USR(PwSt). In particular,
if USR(PwSt) is defined then USR(R) is also defined.

2. If L∗ is any logic which is boundedly symbiotic to some Π1-predicate R,
has ∆0-definable syntax and dep(L∗) = ω, then ULST∞(L∗) ≤ ULST∞(L2).
In particular, if ULST∞(L2) is defined, then so is ULST∞(L∗).

A famous result of Magidor [8] shows that the least cardinal κ for which L2

satisfies a κ-version of compactness, is the least extendible cardinal. One can
show that this version of compactness implies ULST∞(L2) = κ. Therefore an
extendible cardinal provides an upper bound for ULST∞(L2) and USR(PwSt),
as well as other pairs L∗ and R satisfying bounded symbiosis and the conditions
of Theorem 6.3. For completeness, we include a short proof of this fact.

Theorem 7.4 (Magidor [8]). If κ is an extendible cardinal, then

USR(PwSt) = ULST(L2) ≤ κ.

Moreover, USR(R) ≤ κ for every Π1 predicate R, and ULST∞(L∗) ≤ κ for
any L∗ which is boundedly symbiotic with some Π1 predicate, and which has
∆0-definable syntax and dep(L∗) = ω.

Proof. Let κ be extendible, and we will prove that USR(PwSt) ≤ κ. The other
statements follow by Theorem 6.3 and Corollary 7.3.

Let K be a ΣF1 (PwSt)-definable class of τ -structures closed under isomorphisms.
Fix some A ∈ K with |A| ≥ κ. Let κ′ > κ be arbitrary. Let η > κ′ be such that
A ∈ Vη and Vη |= Φ(A) ∧ (|A| ≥ κ). Then there is an elementary embedding
J : Vη 4 Vθ for some θ, and J(κ) > η > κ′. But then by elementarity we have
Vθ |= Φ(J(A)) ∧ |J(A)| ≥ J(κ). Since Vθ is PwSt-correct, Φ(J(A)) holds, so
J(A) ∈ K. Moreover, since θ is sufficiently large, we have |A| ≥ J(κ) > η >
κ′. Finally, A 4Lωω J(A) holds by elementarity and first-order definability of
“A |= φ”.

Now we look at how much large cardinal strength we can obtain from
USR(PwSt).

Theorem 7.5. If USR(PwSt) is defined, then there exists an n-extendible
cardinal for every natural number n > 0.
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Proof. Assume that USR(PwSt) = κ. Let K to be the class of all structures
which are isomorphic to (Vα+n,∈, α), in the language {E, a}.

By Fact 7.1, being a structure of the form (Vα+n,∈, α) is ΣF1 (PwSt)-definable.
Then (M,a,E) ∈ K iff ∃(Vα+n,∈, α) and ∃f : (M,a,E) ∼= (Vα+n,∈, α). Notice
that also ρH(Vα+n) ≤ ρH(M). Thus, K is ΣF1 (PwSt)-definable.

Take any µ ≥ κ. Since (Vµ+n, µ,∈) ∈ K, by USR(PwSt) there exists an
elementary embedding

J : (Vµ+n, µ,∈) 4Lωω (Vβ+n, β,∈)

for some β > µ, which maps µ to β. Let λ be the critical point of J , which is
≤ µ. But then J�Vλ+n : Vλ+n 4 VJ(λ)+n (this includes the case λ = µ), since:

Vλ+n |= ϕ(x1, . . . , xn)⇔ Vµ+n |= (Vλ+n |= ϕ(x1, . . . , xn))

⇔ Vβ+n |= (J(Vλ+n) |= ϕ(J(x1), . . . , J(xn)))

⇔ Vβ+n |= (VJ(λ)+n |= ϕ(J(x1), . . . , J(xn)))

⇔ VJ(λ)+n |= ϕ(J(x1), . . . , J(xn))

Since n < J(λ), it follows that λ is n-extendible.

Corollary 7.6. If ULST∞(L2) is defined then there exists an n-extendible car-
dinal for every n.

Notice that the only reason that the proof works for n < ω and not arbitrary
α, is because the class K needs to be definable. It is easy to adapt the proof
to show that there exists a γ-extendible cardinal for any ΣF1 (PwSt)-definable
ordinal γ. In fact, we conjecture that the consistency strength is exactly an
extendible.

Conjecture 7.7. USR(PwSt) and ULST∞(L2) are defined if and only if there
exists and extendible cardinal.

8 Questions and concluding remarks

The biggest question left open in this paper is the exact consistency strength of
USR(PwSt) and ULST∞(L2), i.e., Conjecture 7.7.

Other questions that we have not investigated involve a similar analysis of
the large cardinal strength for other symbiotic pairs L∗ and R.

Question 8.1. What is the large cardinal strength (or, at least, lower and
upper bounds), for the principles USR(R) and ULST∞(L∗), for other boundedly
symbiotic pairs R and L∗, such as the ones in [2, Proposition 4]?

Another important issue, which we have not investigated in this paper, is
the study of various compactness properties of strong logics.

Definition 8.2. A logic L∗ is (κ, γ)-compact if for every set T of sentences of
size γ, if every < κ-sized subset of T has a model, then T has a model. A logic
L∗ is (κ,∞)-compact if it is (κ, γ)-compact for every γ. Classical compactness
is (ω,∞)-compactness.
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Most strong logics are not (ω,∞)-compact but may be (κ,∞)-compact for
some κ. Often such a κ will exhibit large cardinal properties, e.g., Magidor’s
result on L2 [8]. As we mentioned in the previous section, it is easy to see that:

If L∗ is (κ,∞)-compact then ULST∞(L∗) ≤ κ.

We do not know whether the converse holds. The following questions seem
interesting and worth investigating:

Question 8.3. Assume that κ is a regular cardinal. For which logics does
ULST∞(L∗) ≤ κ imply (κ,∞)-compactness?

One can try to look for a set-theoretic principle involving ∆1(R) definable
classes of structures, which would correspond to (κ,∞)-compactness in a similar
way as in Theorem 6.3.

Question 8.4. Is there a set-theoretic principle P (R), for classes definable
using a Π1-parameter R, such that if R and L∗ are (bounded) symbiotic, then
P (R) = κ if and only if L∗ is (κ,∞)-compact?

Answering the last question could involve extensions of partial orders within
a fixed ∆1(R)-class, using ideas from [10]. Notice, however, that when dealing
with compactness, large vocabularies are essential, so the corresponding princi-
ples will require the use of parameters, which will restrict the class of logics L∗
to which it can apply.

Acknowledgements: We would like to thank Soroush Rafiee Rad and Robert
Passmann for initiating this research and providing valuable input.

References

[1] Joan Bagaria. C(n)-cardinals. Arch. Math. Logic, 51(3-4):213–240, 2012.

[2] Joan Bagaria and Jouko Väänänen. On the symbiosis between model-
theoretic and set-theoretic properties of large cardinals. J. Symb. Log.,
81(2):584–604, 2016.

[3] J. Barwise and S. Feferman, editors. Model-theoretic logics. Perspectives in
Logic. Association for Symbolic Logic, Ithaca, NY; Cambridge University
Press, Cambridge, 2016. For the first (1988) edition see [ MR0819531].

[4] Jon Barwise. Admissible Sets and Structures. Perspectives in Logic. Cam-
bridge University Press, 2017.

[5] Lorenzo Galeotti. The theory of generalised real numbers and other topics
in logic. PhD thesis, Hamburg University, 2019. ILLC Dissertation Series
DS-2019-04.
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