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ABSTRACT
By a combination of well-known results in judgment aggregation,
it is essentially impossible to design an aggregation rule that simul-
taneously satisfies two crucial requirements: to always return an
outcome that is logically consistent, and to be immune to strategic
manipulation. To address this dilemma, we put forward a novel
notion of strategyproofness, which requires immunity to strategic
manipulation only in certain well-defined situations—namely when
either the truthful profile of individual judgments or the profile a
would-be manipulator is trying to reach are majority-consistent.
We argue that this constitutes an attractive compromise for ag-
gregation rules one may want to use in practice, and we prove
that several important rules are strategyproof in this sense. This
includes, in particular, all rules belonging to the family of additive
majority rules, such as the Kemeny rule and the Slater rule.
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1 INTRODUCTION
Judgment aggregation is a powerful framework for analysing multi-
agent decision making scenarios [21, 29]. In judgment aggregation
we model the views held by individual agents as sets of proposi-
tional formulas, and try to design rules for aggregating such judg-
ments into a single collective judgment that adequately represents
the views held by the group. It generalises preference aggregation
as traditionally studied in social choice theory [8] and is closely
related to belief merging as long studied in AI [17].

A well-known difficulty in judgment aggregation, closely re-
lated to classical impossibility theorems in other areas of social
choice theory [1, 20, 38], is the fact that it is essentially impossible
to design an aggregation rule that is immune to manipulation by
strategic agents while also ensuring that the rule will always return
an outcome that is logically consistent [10, 12, 29, 34]. In this pa-
per we propose—and study in detail—a weakening of the standard
notion of strategyproofness aimed at circumventing this difficulty.
This allows us to identify several judgment aggregation rules that
offer a good compromise between the conflicting requirements of
strategyproofness and guaranteed consistency. Before discussing
this idea, let us first illustrate the problem.
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Example 1.1. Suppose three agents need to arrive at a collective
decision regarding the four propositions p, q, p ∧ q, and p ↔ q.
Let us consider two aggregation rules they might use. First, they
could use the premise-based rule, which amounts to taking majority
decisions on the premises p and q and then inferring the truth
values for the conclusions p ∧ q and p ↔ q. Second, they could use
the majority rule and decide on all four propositions by majority.

p q p ∧ q p ↔ q

Agent 1 Yes Yes Yes Yes
Agent 2 Yes No No No
Agent 3 No Yes No No

Premise-based Yes Yes Yes Yes
Majority Yes Yes No No

Under the premise-based rule, the outcome agrees with agent 2 on
only a single proposition (p). Suppose agent 2 wants to maximise
the number of propositions on which the outcome agrees with her
own true judgment. Then she could manipulate and pretend that
she disagrees with p (and thus agrees with p ↔ q), in which case
the premise-based rule would agree with her true original judgment
on two propositions (p ∧ q and p ↔ q).

The majority rule does not suffer from this deficiency: if you
care about the number of propositions agreeing with your own
judgment, then it is always in your best interest to report your true
judgment [10]. But the majority rule suffers from another—arguably
even more debilitating—shortcoming: sometimes, as demonstrated
by our example, the outcome returned by the rule will be incon-
sistent. Indeed, the majority rule proposes to accept both p and q
but to reject their logical consequences p ∧ q and p ↔ q. This is an
instance of the infamous discursive dilemma [29]. △

Our proposal is to consider a carefully weakened notion of strate-
gyproofness, parametrised by some domain D of profiles of indi-
vidual judgments. Under this novel notion of strategyproofness we
require immunity to manipulation only in two situations: when the
truthful profile belongs to D or when the profile the manipulating
agent might deviate to belongs to D. While this notion is related
to the idea of imposing a restriction on the domain on which the
aggregation rule is defined [28], we do not actually impose any such
restriction in our work. We specifically focus on the domain M of
profiles that guarantee consistent outcomes under the majority rule.
A rule that is M-strategyproof will be immune to manipulation in
all those cases in which the (strategyproof) majority rule would
return a consistent outcome (and thus would be useable at all),
while also returning consistent outcomes for all other profiles.

Relatedwork. The study of strategic manipulation in judgment ag-
gregation was initiated by Dietrich and List [10], who showed that
only rules belonging to a very narrowly defined family are immune
to manipulation. These rules, however, are inadequate for many
applications, because they cannot guarantee the consistency of



outcomes [12, 29, 34]. Prior work aimed at addressing this dilemma
has focused on three approaches: (i) identifying restricted domains

of profiles of individual judgments for which better performance
of certain rules can be guaranteed [28]; (ii) analysing the computa-
tional complexity of the manipulation problem as a means of pro-
viding complexity barriers against unwanted behaviour [3, 15, 22];
and (iii) studying the extent to which limiting access to relevant
information may serve as an effective informational barrier against
manipulation [41]. The route we take in this paper—which is to of-
fer a more fine-grained analysis of the concept of strategyproofness
itself—is complementary to these approaches.

Related ideas on nonstandard variants of strategyproofness have
been explored outside of judgment aggregation, albeit to a limited
extent. Sato [36] considers the strategyproofness of voting rules
with respect to manipulations restricted to adjacent preferences.
Rules that are adjacency-strategyproof eliminate the possibility of
manipulations that do not require agents to make large changes
to their reported preference. The most closely related body of re-
search to our own work concerns the manipulation of social welfare
functions that map profiles of preference orders to collective prefer-
ence orders. Bossert and Storcken [6] were the first to study this
problem and suggested to model the preferences of agents over
alternative preference orders in terms of the Kendall-tau distance be-
tween orders. While guaranteeing strategyproofness in this model
is generally impossible [2, 6], Bossert and Sprumont [5] obtain pos-
itive results for a weak form of strategyproofness that considers
only manipulations which bring about an outcome that is between
an agent’s true preference order and the current outcome. They
find that several important rules, among them the Kemeny and
the Slater rule, are strategyproof in this sense. Sato [37] presents
several refinements of these results.

Contribution. We introduce the novel notion of domain-strategy-

proofness, together with its instantiation to majority-strategyproof-

ness, and we show that all aggregation rules belonging to the family
of additive majority rules [32] enjoy the latter property. This in-
cludes, in particular the well-known Kemeny, Slater, and Leximax
rules. We also identify two further rules, the Maximal Condorcet
rule and the Ranked Agenda rule, that satisfy the same property
under somewhat more restrictive assumptions on the preferences
of agents. To demonstrate that majority-strategyproofness is by no
means a universal property of judgment aggregation rules—and
not even of majority-preserving rules—we show that one further
well-known rule, the Dodgson rule, fails to satisfy this property.

Paper outline. The remainder of the paper is organised as follows.
After recalling relevant preliminaries from the judgment aggrega-
tion literature in Section 2, we define and discuss various notions
of strategyproofness in Section 3. We then present our technical
results for additive majority rules and further majority-preserving
rules in Sections 4 and 5, respectively. We conclude in Section 6.

2 PRELIMINARIES
In this section we introduce the model we will be using through-
out the paper. This is the standard set-based model of judgment
aggregation going back to the seminal work of List and Pettit [29].

2.1 Notation and Terminology
Let N = {1, . . . ,n} be a finite set of agents. We will assume that n is
odd to avoid having tomake tie-breaking decisionswhen computing
majorities. Each agent submits their judgments on a (nonempty) set
of formulas of propositional logic Φ = Φ+ ∪ Φ−, called the agenda,
where Φ+ is a set of nonnegated formulas, and Φ− = {¬φ | φ ∈ Φ+}.
A judgment J is a subset of Φ. We use J(Φ) ⊆ 2Φ to denote the set
of all judgments that are (logically) consistent as well as complete—in
the sense of including one of φ and ¬φ for every φ ∈ Φ+. Observe
that any consistent judgment will also be complement-free, meaning
that it cannot include both φ and ¬φ for any φ ∈ Φ+. Any element
of J(Φ) is a permissible judgment Ji for an agent i ∈ N . We write
J =φ J ′ to mean that judgments J and J ′ agree on formula φ.

The Hamming distance between two judgments J and J ′ in J(Φ)
is defined as H (J , J ′) := |J \ J ′ | = |J ′ \ J |. Thus, H (J , J ′) is the
number of elements in Φ+ on which J and J ′ disagree. We say that
judgment J ′ is between J and J ′′, if J ∩ J ′′ ⊆ J ′ ⊆ J ∪ J ′′. Observe
that J∩ J ′′ ⊆ J ′ if and only if J ′ ⊆ J∪ J ′′ in case all three judgments
are both complete and complement-free.

A profile J = (J1, . . . Jn ) ∈ J(Φ)n is a vector of individual judg-
ments, one for each agent in N . For any such profile J and any
φ ∈ Φ, the set N J

φ := {i ∈ N | φ ∈ Ji } is the set of supporters of
proposition φ, with n Jφ := |N

J
φ |. The majority judgment associated

with a given profile J is defined asm(J ) := {φ ∈ Φ | n
J
φ >

n
2 }. We

say that profiles J and J ′ are i-variants, and we write J =−i J
′, if

Jk = J ′k for all agents k , i (and possibly Ji , J ′i for agent i).
Intuitively, an aggregation rule is a function that maps any given

profile to a single judgment representing the collective judgment of
the group. In this paper, we restrict attention to aggregation rules
that, for any given profile of complete and consistent judgments,
will return a collective judgment that also is complete and con-
sistent. As we saw in the introduction, the majority rule—which
returnsm(J ) for any given profile J—does not meet this require-
ment. In practice, even for an odd number of agents most natural
rules are irresolute—meaning that they allow for the possibility of
ties between several collective judgments and thus require a tie-
breaking mechanism to settle on a single outcome. So, formally, an
aggregation rule is a function F : J(Φ)n → 2J(Φ) \ {∅}.

In this paper, we focus on majority-preserving rules. A rule F is
majority-preserving if F (J ) = {m(J )} for all profiles J such that
m(J ) is consistent. Majority-preserving rules constitute the bulk of
well-studied rules in judgment aggregation [26].

2.2 Induced Preferences
Since agents hold and submit judgments rather than rankings over
possible outcomes, we cannot directly reason about their prefer-
ences and incentives. Still, following Dietrich and List [10], we will
assume that an agent’s preferences over outcomes are related to
their truthfully held judgments and that we can glean at least some
information about their preferences by extrapolating from those
judgments. Specifically, we assume that an agent’s most preferred
outcome is their own truthful judgment. In many cases it makes
sense to also assume that agents like outcomes less the further
away they are from their true judgment, according to some notion
of distance. We write J ⪰i J ′ (J ≻i J ′), to mean that agent i weakly
(strictly) prefers judgment J to judgment J ′.



An agent i with true judgment Ji ∈ J(Φ) is said to have closeness-
respecting preferences if J ∩ Ji ⊇ J ′ ∩ Ji implies J ⪰i J ′ for all
J , J ′ ∈ J(Φ). We focus on a special case of closeness-respecting
preferences based on the Hamming distance: agent i has Hamming

preferences in case J ⪰i J ′ if and only if H (J , Ji ) ≤ H (J ′, Ji ). In this
paper, we will only consider agents with Hamming preferences
over judgments, unless otherwise stated.

Assuming that agents have Hamming preferences amounts to
assuming that they care equally about every proposition in the
agenda. This is a strong assumption that will not be justified in all
circumstances, but in the absence of domain-specific information
about preferences it is arguably the most natural way to proceed.
Hamming preferences have indeed been the dominant choice in
the literature on strategic behaviour in judgment aggregation to
date [3]. They have also been used to analyse strategic manipulation
of social welfare functions [2, 6].

Because the rules we examine are irresolute—meaning they do
not always return a single collective judgment—we need to extend
agent preferences over judgments to preferences over sets of judg-
ments to reason about manipulation of these rules. As at least one
of the sets in our comparisons will always turn out to be a singleton,
we do not need to explicitly specify the agents’ preferences beyond
these cases. Let ⪰i be the (weak) preference order of agent i over
judgments in J(Φ). Then ⪰̊i (with strict part ≻̊i ) is the correspond-
ing preference extension over sets of judgments. For all preference
extensions ⪰̊i we assume that a ⪰i b implies {a} ⪰̊i {b}.

For anyA and B in 2J(Φ) \ {∅}, where B = {b} is a singleton, and
⪰i is a preference order over judgments, we define the following
three classes of preference extensions:

• ⪰̊i is a cautious extension if the following holds:
▷ A ⪰̊i {b} if for all a ∈ A we have a ⪰i b.
▷ {b} ⪰̊i A if for all a ∈ A we have b ⪰i a.

• ⪰̊i is an optimistic extension if the following holds:
▷ A ⪰̊i {b} if there exists some a ∈ A such that a ⪰i b
▷ {b} ⪰̊i A if for all a ∈ A we have b ⪰i a.

• ⪰̊i is a pessimistic extension if the following holds:
▷ A ⪰̊i {b} if for all a ∈ A we have a ⪰i b
▷ {b} ⪰̊i A if there exists some a ∈ A such that b ⪰i a.

The preference extensions attributed to Kelly [23], Gärdenfors [19],
and Fishburn [18] are all cautious extensions in this sense.

We say an agent i is cautious if ⪰̊i is a cautious preference
extension. Similarly, an agent can be optimistic or pessimistic—we
call this the type of each agent. Furthermore, we say an agent is
minimally cautious if ⪰̊i is a cautious preference extension and
neither A ⪰̊i {b} nor {b} ⪰̊i A hold for any A and b not covered by
the conditions defining cautious extensions. Minimally optimistic
and minimally pessimistic agents are defined analogously.

3 NOTIONS OF STRATEGYPROOFNESS
Recall that our objective in this paper is to identify attractive judg-
ment aggregation rules that display a reasonable degree of immu-
nity to manipulation by strategic agents. We do so against a back-
drop of myriad well-known impossibility results across different
areas of social choice theory [10, 20, 31, 38]: designing strategyproof
aggregation rules is difficult and often impossible.

In this section we first recall the standard definition of strate-
gyproofness and review a well-known result showing that design-
ing rules of practical interest that are strategyproof in this sense is
essentially impossible. We then introduce a new, less demanding,
alternative, namelyD-strategyproofness for some given domainD

of profiles, and argue thatM-strategyproofness, for the domainM

of majority consistent profiles, is of particular interest.

3.1 Standard Strategyproofness
Let J be a profile such that Ji is agent i’s truthful judgment, inducing
her preference order ⪰i over judgments. Let ⪰̊i be i’s preference
order on sets of judgments. Then an irresolute aggregation rule F is
manipulable by agent i in profile J , if there exists a profile J ′ =−i J
such that F (J ′) ≻̊i F (J ). An aggregation rule is strategyproof for
a given type of agent if it is not manipulable by any agent of that
type in any profile J ∈ J(Φ)n .

The central result on strategyproofness in judgment aggregation
is due to Dietrich and List [10]. It applies to resolute rules F (with
|F (J )| = 1 for all profiles J ), meaning that the preference extension
chosen plays no active role in the definition of strategyproofness.

Theorem 3.1 (Dietrich and List, 2007). A resolute judgment

aggregation rule F is strategyproof for all closeness-respecting prefer-

ences if and only if F is independent and monotonic.

The axiom of independence requires that deciding whether F will
accept φ is possible by only considering how the individual agents
judge φ, while monotonicity requires that additional support for
an accepted proposition φ never gets φ rejected.

Formally, F is independent and monotonic if and only if N J
φ ⊆

N
J ′

φ implies φ ∈ J ⇒ φ ∈ J ′ for F (J ) = {J } and F (J ′) = {J ′}[7].
Both axioms feature prominently in impossibility theorems, which
essentially show that any rule that satisfies them is bound to return
inconsistent outcomes for some profiles [12, 29, 34]. Indeed, among
the standard aggregation rules, the only ones that satisfy both in-
dependence and monotonicity are the so-called quota rules [9], of
which the majority rule is an example (quota rules accept a given
proposition whenever a certain number of agents do). Although
this class of rules can guarantee strategyproofness for a large family
of preferences, they do not always return a consistent outcome and
thus, arguably, are of little practical interest. This is why Theo-
rem 3.1 must be interpreted as a negative result. Indeed, it suggests
that there are no attractive rules that are strategyproof.

A first natural approach to overcoming this negative result is to
restrict attention to strategyproofness for Hamming preferences
only, rather than strategyproofness for all closeness-respecting
preferences. But we will see in Section 4.2 that for the most well-
known majority-preserving rules this also is not attainable.

3.2 Domain-Strategyproofness
Our approach is to introduce a weaker notion of strategyproofness,
which we call domain-strategyproofness.

Consider an aggregation rule F : J(Φ)n → 2J(Φ) \ {∅} and let
D ⊆ J(Φ)n be a subset of the set of admissible profiles. Let J ∈

J(Φ)n be a profile, with Ji being agent i’s truthful judgment. Let ⪰i
be agent i’s preference order over judgments, and ⪰̊i her preference
order over sets of judgments. We say that F is D-manipulable



by agent i in J if there exists another profile J ′ =−i J such that
F (J ′) ≻̊i F (J ) and at least one of J and J ′ belong to D. If only J ′

belongs toD, we say agent i can manipulate toD. If only J belongs
to D, we say agent i can manipulate from D.

Definition 3.2. A rule is called D-strategyproof for agents of
a given type if it is not D-manipulable by any agent i ∈ N of that

type in any profile J ∈ J(Φ)n .

This new notion ofD-strategyproofness is particularly useful when
trying to improve upon aggregation rules that are known to be
(fully) strategyproof but that can guarantee consistent outcomes
only on a restricted domain D (as is the case for the majority rule).
In such a case, a rule that is guaranteed to always return consistent
outcomes and that is D-strategyproof is an attractive alternative.
Indeed, if a rule is strategyproof forD, this tells us two things. First,
if the truthful profile is in D, then no agent has an incentive to
manipulate. Second, if the profile that results after all judgments
have been submitted is inD, then we can be certain that the profile
reported cannot have been the result of strategic manipulation.
How does our notion of domain-strategyproofness relate to the use
of domain restrictions in the judgment aggregation literature [11]?
Domain restrictions have been a frequent source of positive results
in social choice, starting with the seminal work of Black [4] and
Sen [39]. They amount to restricting the input of an aggregation
rule to a set of well-behaved profiles. Domain-strategyproofness
similarly exploits the well-behavedness of a domain, but does so
without restricting the actual input domain of the aggregation rule.

3.3 Majority-Strategyproofness
Let M(Φ,n) ⊆ J(Φ)n be the domain of all profiles for a given
agenda and a given number of agents for which the majority out-
come is consistent:M(Φ,n) := {J | m(J ) ̸|= ⊥}. If Φ and n are clear
from context, we simply writeM. Themain notion of strategyproof-
ness we will investigate in this paper isM-strategyproofness.1

M-strategyproofness, ormajority-strategyproofness, of amajority-
preserving rule guarantees that the majority outcome will in fact
be preserved, even under the assumption that agents will manip-
ulate if they have an incentive to do so. Such a rule would also
guarantee that the number of manipulable profiles does not ex-
ceed the number of inconsistent outcomes given when using the
(strategyproof) majority rule, as any manipulation will be between
profiles where the majority rule would result in an inconsistent
outcome. Thus, there is a sense in which M-strategyproof rules
will minimise the regret of the mechanism designer; if we—as the
mechanism designer—care to a great extent about consistency and
non-manipulability, it will never be preferable to use the majority
rule over an M-strategyproof majority-preserving rule that can
guarantee consistency.

4 ADDITIVE MAJORITY RULES
In this section we prove that every judgment aggregation rule that
belongs to the large family of additive majority rules is majority-
strategyproof. This family includes some of the most important
aggregation rules discussed in the literature, notably the Kemeny
1Note that a rule being majority-preserving does not guarantee M-strategyproofness.
For example, a rule that outputs the majority judgment if consistent and otherwise
outputs a fixed judgment clearly is majority-preserving but not M-strategyproof.

and the Slater rule. We first define and review this family of rules in
some detail. We then show that its most prominent exponents are
not fully strategyproof, before proving that nevertheless all rules
in the family are majority-strategyproof.

4.1 Definition and Representative Rules
A judgment aggregation rule F is an additive majority rule (AMR)2
if there exists a non-decreasing gain function д : [0,n] → R with
д(k) < д(k ′) for any k < n

2 and k ′ ≥ n
2 such that, for any profile

J ∈ J(Φ)n , the following condition is satisfied:

F (J ) = argmax
J ∈J(Φ)

∑
φ ∈J

д(n
J
φ )

Additive majority rules are based on the weighted majoritarian set,
meaning that for each formula φ in the agenda the rule only looks
at how many agents have φ in their judgment. Rules within this
family differ only in how much they prioritise large majorities over
small ones. Nehring and Pivato [32] call this the elasticity of the
gain function. On one end of this spectrum lie rules for which the
size of the majority does not play a large (or even any) role; on the
other end, we find rules that prioritise large majorities over small
ones. Observe that the requirement of д(k) < д(k ′) for k < n

2 and
k ′ ≥ n

2 ensures that every AMR is majority-preserving.
The additive majority rules include three of the most studied

majority-preserving rules in judgment aggregation. The first is the
Kemeny rule FKem, defined by the simplest of gain functions:

д(x) = x

Thus, the Kemeny rule returns those consistent judgments that
maximise a score computed as the number of times an individual
agent agrees with the choice made for an individual proposition.
Equivalently, we may think of the Kemeny rule as returning those
judgments that minimise the average Hamming distance to the
judgments in the profile. This rule generalises the well-known
Kemeny rule for preference aggregation [24] and is also known
under a number of other names, notably distance-based rule [35],
median rule [33], and prototype rule [30].

The Slater rule FSla is defined by the following gain function:

д(x) =

{
0 if 0 ≤ x < n

2
1 if n

2 ≤ x ≤ n

Thus, FSla rule considers all formulas accepted by a majority of
agents as equal, and tries to respect as many of these majorities as
possible without violating consistency. In particular, it will not dis-
tinguish between a unanimously accepted formula and one accepted
by just ⌈n2 ⌉ agents. FSla generalises the Slater rule from preference
aggregation [40] and is also known under several other names, such
as endpoint rule [30] and maximum-cardinality subagenda rule [25].

A third AMR of some prominence in the literature is the Leximax

rule FLex [16, 32]. It gives maximal preference to stronger majorities,
meaning that it orders the formulas in the agenda in terms of the
number of agents supporting them and then tries to accept as many
formulas supported by a given number of agents as possible before
2The family of additive majority rules was first identified by Nehring and Pivato [32].
Here we have slightly adapted their original definition to our needs: on the one hand,
we only consider rules that weight all formulas equally, and on the other, we consider
a slightly larger family of gain functions д.



moving on to formulas with fewer supporters. It is a refinement
of another popular rule, the Ranked Agenda rule (see Section 5.2).
The Leximax rule is the AMR with the following gain function:

д(x) = |Φ|x

Leximax lands on the opposite side of the spectrum compared
to Slater; while Slater does not distinguish at all between small
majorities and large ones, FLex will never prioritise any number of
small majorities over a single large one. For example, it will choose
a single formula accepted by n agents, over |Φ| − 1 formulas each
accepted by n − 1 agents.

The class of additive majority rules includes many more rules
of practical interest. Let us highlight two further examples, charac-
terised by the following gain functions:

д(x) =
x∑

k=1

1
k

д(x) = x
x∑

k=0
ϵk for ϵ ≪ 0

The first rule falls somewhere between Slater and Kemeny in terms
of elasticity; like Kemeny, it distinguishes between small and large
majorities, but the “marginal returns” gained from additional sup-
port diminish as majorities grow larger. The second rule is very
close to the Kemeny rule, but will prioritise large majorities slightly
more. The rule can be seen as a way to break ties between Kemeny
outcomes; it gives extra importance to larger majorities only inso-
far as this can be helpful in differentiating between outcomes that
othewise would be considered equally appealing.

4.2 Failure of Full Strategyproofness
Theorem 3.1 excludes the possibility of Kemeny, Slater, or Lexi-
max being strategyproof for all closeness-respecting preferences. It
leaves open, however, the possibility that they are strategyproof for
Hamming preferences. Indeed Kemeny and Slater, whose standard
distance-based definitions are closely tied to the Hamming distance,
seem to be promising candidates for rules that are strategyproof
in this sense. We are now going to see that this is not the case,
and that all three rules are manipulable on the full domain for a
sufficiently large agenda.

Athanasoglou [2] shows for social welfare functions that both
Kemeny and Slater are manipulable for all preference extensions,
when the number of alternatives exceeds three. As any preference
profile can be embedded into judgment aggregation [14], and as
the outcomes of the Kemeny and Slater judgment aggregation rules
will agree with their social welfare function counterparts in the
preference aggregation domain, we obtain the following result.

Proposition 4.1 (Athanasoglou 2016). The Kemeny rule and

the Slater rule are manipulable for all preference extensions.

We now show that the same holds for the Leximax rule.

Proposition 4.2. The Leximax rule is manipulable for all prefer-

ence extensions.

Proof. Let J be the profile below, taken from recent work by
Lang et al. [26], with Φ+ = {p ∧ r ,p ∧ s,q,p ∧ q, t} and 16 agents,
including one distinguished agent i:

p ∧ r p ∧ s q p ∧ q t

6 agents Yes Yes Yes Yes Yes
7 agents No No Yes No No
2 agents Yes Yes No No Yes
Ji Yes Yes No No Yes

Maj Yes Yes Yes No Yes

We first note the support for the formulas in the agenda Φ:

n
J
q = 13 n

J

¬(p∧q) = 10 n
J
p∧r = n

J
p∧s = n

J
t = 9

It is clear then that FLex(J ) = J = {¬(p ∧ r ),¬(p ∧ s),q,¬(p ∧q), t}.
Let J ′ be an i-variant of J where J ′i = {p ∧ r ,p ∧ s,q,p ∧q, t}. Then:

n
J ′

¬(p∧q) = n
J ′

p∧r = n
J ′

p∧s = n
J ′

t = 9

Rejecting p ∧ q will therefore no longer maximise gain, and simple
calculation tells us FLex(J ′) = J ′i . As agent i has Hamming prefer-
ences, we know J ′i ≻i J , which implies FLex(J ′) ≻̊i FLex(J ). □

Thus, strategyproofness on the full domain is is too demanding a
property. It is unattainable for the salient additive majority rules,
even when we restrict attention to Hamming preferences and are
free to choose any preference extension.

4.3 Guaranteed Majority-Strategyproofness
While we cannot guarantee strategyproofness on the full domain,
it turns out thatM-strategyproofness is attainable for Hamming
preferences and a large class of preference extensions.

Before presenting our main result, we prove three technical
lemmas. The first establishes a relation between majority outcomes
in two profiles that are i-variants, and the second links the notion
of betweenness to the Hamming distance.

Lemma 4.3. For profiles J =−i J ′,m(J ) is between Ji andm(J ′).

Proof. As all judgments involved are complete and complement-
free, we simply need to showm(J ) ⊆ Ji ∪m(J ′). Take any φ ∈m(J ).
Suppose φ < Ji . If J ′i =φ Ji , then N

J ′
φ = N

J
φ , so φ ∈ m(J ′). But if

J ′i ,φ Ji , then φ ∈ J ′i and n
J ′
φ > n

J
φ , so again φ ∈m(J ′). □

The following is implicit in the work of Duddy and Piggins [13],
who prove the equivalent statement for preference orders. We give
a proof for the sake of completeness.

Lemma 4.4. If for complete and complement-free judgment sets

J , J ′, J ′′, it is the case that J ′ is between J and J ′′, then we have that

H (J , J ′′) = H (J , J ′) + H (J ′, J ′′).

Proof. By definition of betweenness, J ′ ⊆ J ∪ J ′′. To see that

H (J ′, J ) + H (J ′, J ′′) = |(J ′′ \ J ∪ J \ J ′′) ∩ J ′ |

note that for any φ ∈ J ′, there are three cases we need to consider:
either φ ∈ J \ J ′; or φ ∈ J ′ \ J ; or φ ∈ J ∩ J ′. If φ ∈ J ∩ J ′, this means
that considering φ does not add to the Hamming distance from J ′

to J nor to the Hamming distance from J to J ′′. Thus we only need
to consider the first two of three possible cases in order to find the
sum of the two Hamming distances. In other words, we can simply
count the number of times J and J ′′ disagree on formulas in J ′.

Since H (J ′, J ) + H (J ′, J ′′) is the Hamming distance between J
and J ′′ restricted only to the formulas present in J ′, this distance



cannot exceed H (J , J ′′), meaning it must be the case that H (J , J ′)+
H (J ′, J ′′) ≤ H (J , J ′′). This together with the triangle inequality
H (J , J ′′) ≤ H (J , J ′) + H (J ′, J ′′) proves the claim. □

Our final lemma establishes a relationship between majority out-
comes and the outcomes of an AMR, in terms of the Hamming
distance. By definition, the Slater rule satisfies the property in
Lemma 4.5. We show that the same is true for any AMR when
restricting our scope to i-variants. This will be useful for proving
M-strategyproofness for the class as a whole.

Lemma 4.5. Let F be an additive majority rule and let J and J ′ be
two profiles such that J =−i J

′
for some agent i , and such thatm(J ′)

is consistent. Then H (m(J ),m(J ′)) ≥ H (m(J ), J∗) for all J∗ ∈ F (J ).

Proof. Let д be the non-decreasing gain function defining F
and fix an arbitrary judgment set J∗ ∈ F (J ). Let k = H (m(J ),m(J ′))
and k ′ = H (m(J ), J∗). So we need to show that k ≥ k ′.

We first derive a constraint on k . Observe that agent i can change
the majority outcome for a formula φ under profile J only in case
n
J
φ is equal to either ⌊ n2 ⌋ or ⌈

n
2 ⌉. With this in mind, we can write

the total gain for formulas φ ∈m(J ′) under profile J as follows:∑
φ ∈m(J ′)

д(n
J
φ )

=
∑

φ ∈m(J )

д(n
J
φ ) +

∑
φ ∈m(J ′)\m(J )

д(n
J
φ ) −

∑
φ ∈m(J )\m(J ′)

д(n
J
φ )

=
∑

φ ∈m(J )

д(n
J
φ ) + k · д(⌊ n2 ⌋) − k · д(⌈n2 ⌉)

Next, we derive a similar constraint on k ′. Let us compute the total
gain for formulas φ ∈ J∗ under the same profile J :∑

φ ∈J ∗
д(n

J
φ )

=
∑

φ ∈m(J )

д(n
J
φ ) +

∑
φ ∈J ∗\m(J )

д(n
J
φ ) −

∑
φ ∈m(J )\J ∗

д(n
J
φ )

=
∑

φ ∈m(J )

д(n
J
φ ) +

∑
φ ∈J ∗\m(J )

д(n
J
φ ) −

∑
φ ∈J ∗\m(J )

д(n − n
J
φ )

=
∑

φ ∈m(J )

д(n
J
φ ) +

∑
φ ∈J ∗\m(J )

[
д(n

J
φ ) − д(n − n

J
φ )
]

Asд is a non-decreasing function,д(n Jφ )−д(n−n
J
φ ) is non-decreasing

in n Jφ . Hence, given that the maximal value that n Jφ can take for any
φ <m(J )—and thus for any φ ∈ J∗ \m(J )—is ⌊ n2 ⌋, the last sum in
the equation above is at most equal to k ′ ·

[
д(⌊ n2 ⌋) − д(n − ⌊ n2 ⌋)

]
=

k ′ ·
[
д(⌊ n2 ⌋) − д(⌈n2 ⌉)

]
. So we obtain:∑

φ ∈J ∗
д(n

J
φ ) ≤

∑
φ ∈m(J )

д(n
J
φ ) + k ′ ·

[
д(⌊ n2 ⌋) − д(⌈n2 ⌉)

]
Finally, let us combine the constraints on k and k ′ that we have
derived. Recall that, by assumption,m(J ′) is a consistent judgment
set. So it is available as a potential outcome under profile J . Thus,
the score of J∗, one of the actual outcomes under J , must be at least
as high as that ofm(J ′):∑

φ ∈J ∗
д(n

J
φ ) ≥

∑
φ ∈m(J ′)

д(n
J
φ )

Putting everything together, and keeping in mind that д(⌊ n2 ⌋) −
д(⌈n2 ⌉) < 0, we obtain k ≥ k ′ as claimed. □

We can now combine the three lemmas to get our main result.

Theorem 4.6. Additive majority rules are M-strategyproof for

cautious, optimistic, and pessimistic agents.

Proof. Let F be the AMR defined by the non-decreasing gain
function д, and let J and J ′ be two profiles such that J =−i J ′

for some agent i , and Ji is agent i’s truthful opinion. We need to
show that, ifm(J ) orm(J ′) is consistent, then it must be the case
that F (J ) ⪰̊i F (J ′) whenever agent i is cautious, pessimistic, or
optimistic. From Lemmas 4.3 and 4.4 together, we obtain:

H (Ji ,m(J ′)) = H (Ji ,m(J )) + H (m(J ),m(J ′)) (i)

Note that if bothm(J ) andm(J ′) are consistent, then as F is majority-
preserving, F (J ) = {m(J )} and F (J ′) = {m(J ′)}. Any possible ma-
nipulation between these profiles would therefore imply a possible
manipulation of the majority rule. However, Theorem 3.1 tells us
no manipulation of the majority rule is possible. Thus, we need
only consider the following two cases.
Case 1: For inconsistentm(J ) and consistentm(J ′), Lemma 4.5 says
that for any outcome J∗ ∈ F (J ), it is the case that H (m(J ), J∗) ≤
H (m(J ),m(J ′)). We need to show that H (Ji , J

∗) ≤ H (Ji ,m(J ′)).
Take an arbitrary judgment set J∗ ∈ F (J ). Combining the triangle

inequality with Lemma 4.5 and (i), we get (ii):

H (Ji , J
∗) ≤ H (Ji ,m(J )) + H (m(J ), J∗)

≤ H (Ji ,m(J )) + H (m(J ),m(J ′))

= H (Ji ,m(J ′)) (ii)

In other words, for any J∗ ∈ F (J ) and the unique J ′ =m(J ′) ∈ F (J ′),
we have that J∗ ⪰i J ′. So if agent i is cautious, optimistic, or
pessimistic, then F (J ) ⪰̊i F (J

′) as required.
Case 2: For consistent m(J ) and inconsistent m(J ′), we know by
Lemma 4.5 that H (m(J ′), J∗) ≤ H (m(J ),m(J ′)) for any J∗ ∈ F (J ′).
We now need to show that H (Ji , J

∗) ≥ H (Ji ,m(J )).
Take an arbitrary judgment set J∗ ∈ F (J ′). We again use the

triangle inequality, Lemma 4.5, and (i) to get (iii):

H (Ji , J
∗) ≥ H (Ji ,m(J ′)) − H (m(J ′), J∗)

≥ H (Ji ,m(J ′)) − H (m(J ),m(J ′))

= H (Ji ,m(J )) (iii)

In other words, for any J∗ ∈ F (J ′) and the unique J =m(J ) ∈ F (J ),
we have that J ⪰i J∗. Again, if agent i has cautious, optimistic, or
pessimistic preferences, then we get F (J ) ⪰̊i F (J ′). □

Inspection of our proof shows thatM-strategyproofness is guar-
anteed for every AMR under any preference extension for which,
first, a ≻i b for all a ∈ A implies A ≻̊i {b} and, second, a ≻i b for
all b ∈ B implies {a} ≻̊i B. The cautious, optimistic, and pessimistic
preference extensions mentioned in the statement of the theorem
are particularly natural exponents of this class of extensions.

Corollary 4.7. The Kemeny, Slater, and Leximax rules areM-

strategyproof for cautious, optimistic, and pessimistic agents.



Let us briefly review how our results relate to known domain re-
strictions that guartantee a consistent majority outcome, the most
prominent example of which is unidimensional alignment [28]. Let
U(Φ,n) be the domain of unidimensionally aligned profiles for Φ
and n. As U(Φ,n) ⊆ M(Φ,n) [28], we immediately obtain:

Corollary 4.8. Additive majority rules are U-strategyproof for

cautious, optimistic, and pessimistic agents.

Clearly, this holds for any domain restriction in judgment aggrega-
tion that guarantees a consistent majority.

Themajority-strategyproofness of additivemajority rules presents
a strong argument for their use in lieu of the majority rule. They
offer an alternative that guarantees consistency, and ensures that
the majority will be preserved in all cases. Importantly they also
offer a post-aggregation “check” for majority consistent outcomes,
meaning it is possible to recognise cases where no manipulation
can have occurred, thereby ensuring we can trust the outcome.

5 FURTHER AGGREGATION RULES
In this section we first examine two rules, the Maximal Condorcet
rule and the Ranked Agenda rule, that are related to the additive
majority rules in that they will always return a superset of the
outcome of some AMR. It turns out that this particular relationship
affords these rules a certain level of protection against manipula-
tion. We also present an example of a majority-preserving rule, the
Dodgson rule, that is highly susceptible to manipulation.

5.1 The Maximal Condorcet Rule
For a set of formulas S ⊆ Φ, a set S ′ ⊆ S is a maximally consistent

subset of S if and only if (i) S ′ is consistent and (ii) there is no consis-
tent set S ′′ such that S ′ ⊂ S ′′ ⊆ S . Let S+ = {J | J ∈ J(Φ) and J ⊇
S}. Let C(J ) denote the set of all maximally consistent subsets of
the judgment J . The Maximal Condorcet rule is defined as follows:

FMC(J ) = {J+ | J ∈ C(m(J ))}

FMC is also known as the (rule returning the) Condorcet (admissible)

set [33] and the maximal sub-agenda rule [27].
Observe that FSla is a refinement of FMC in that FSla(J ) ⊆ FMC(J )

for all profiles J . This is clear from the standard definition of FSla as
the rule that selects the maximal consistent subset of the majority in
terms of cardinality. The proximity of Maximal Condorcet to the ad-
ditive majority rules means that it retains some level of immunity
to manipulation. We are going to show that for minimally cau-
tious agents, FMC isM-strategyproof. We first state some weaker
strategyproofness results for minimally pessimistic and minimally
optimistic agents, although we show FMC is still manipulable to
and from M for pessimistic and optimistic agents, respectively.

Example 5.1 (Manipulation to Majority). Let J be the profile
below, where J1 is agent 1’s truthful opinion, and J ′ is a 1-variant
where J ′1 = {p,¬q,¬(p ∧ q),p ∧ r }.

p q p ∧ q p ∧ r

J1 Yes Yes Yes Yes
J2 Yes No No Yes
J3 No Yes No No

Maj Yes Yes No Yes

We can see that FMC(J ) = {{p,q,p ∧ q,p ∧ r }, {p,¬q,¬(p ∧

q),p ∧ r }, {¬p,q,¬(p ∧q),¬(p ∧ r )}}, and sincem(J ′) is consistent,
FMC(J

′) = {{p,¬q,¬(p ∧ q),p ∧ r }}. As {p,¬q,¬(p ∧ q),p ∧ r } ≻1
{¬p,q,¬(p∧q),¬(p∧r )}, agent 1 can successfully manipulate from
from J to J ′—meaning to the majority—if she is pessimistic. △

Due to the aforementioned relationship between Maximal Con-
dorcet and Slater, we get the following result.

Proposition 5.1. A minimally pessimistic agent cannot manipu-

late the Maximal Condorcet rule from majority.

Proof. Let J and J ′ be two profiles such that J =−i J ′ and
FMC(J ) = {m(J )}. Suppose for contradiction that there is a min-
imally pessimistic agent i , with truthful opinion Ji , who can ma-
nipulate from J to J ′. Then J ′ ≻i m(J ) for all J ′ ∈ FMC(J

′). As
FSla(J

′) ⊆ FMC(J
′), this would constitute a successful manipulation

of Slater by a pessimistic agent, which contradicts Corollary 4.7. □

Example 5.2 (Manipulation from Majority). Let J be the
profile below, and suppose J1 is agent 1’s truthful opinion. Let
J ′ =−1 J be the profile which differs only in that agent 1 submits
J ′1 = {a,b, c,¬d, (a ∧ ¬d) → (b ∧ c)}.

p q r s (p ∧ ¬s) → (q ∧ r )

J1 Yes Yes Yes Yes Yes
J2 Yes No No Yes Yes
J3 No No No No Yes

Maj Yes No No Yes Yes

Asm(J ) is consistent, FMC(J ) = {m(J )}. For J ′, themajority,m(J ′) =
{p,¬q,¬r ,¬s, (p ∧ ¬s) → (q ∧ r )}, is not consistent. It is simple
to confirm {p,¬s, (p ∧ ¬s) → (q ∧ r )} ∈ C(m(J ′)), and thus that
J∗ = {p,q, r ,¬s, (p ∧ ¬s) → (q ∧ r )} ∈ FMC(J

′). We calculate
the distances from J1 to find that J∗ ≻1 m(J ). As there exists some
strictly better outcome in FMC(J

′), agent 1 can manipulate Maximal
Condorcet from majority if she is an optimistic agent. △

Proposition 5.2. A minimally optimistic agent cannot manipu-

late the Maximal Condorcet rule to majority.

Proof. Let J and J ′ be two profiles such that J =−i J ′ and
FMC(J

′) = {m(J ′)}. Suppose for contradiction that there is a min-
imally optimistic agent i , with truthful opinion Ji , who can ma-
nipulate from J to J ′. Then m(J ′) ≻i J∗ for all J∗ ∈ FMC(J ). As
FSla(J ) ⊆ FMC(J ), this would constitute a successful manipulation
of Slater by an optimistic agent, which contradicts Corollary 4.7. □

Proposition 5.3. TheMaximal Condorcet rule isM-strategyproof

for minimally cautious agents.

Proof. By definition, if a minimally optimistic (pessimistic)
agent cannot manipulate a rule to (from) the majority, then a min-
imally cautious agent cannot either. This, together with Proposi-
tion 5.2, shows that minimally cautious agents cannot manipulate
FMC to (from) majority. This establishes M-strategyproofness of
Maximal Condorcet for minimally cautious agents. □

Thus, while a pessimistic or optimistic agent might manipulate
the Maximal Condorcet rule, the rule benefits from its relationship
with Slater in terms of M-strategyproofness for cautious agents.



Note however that, while Slater is M-strategyproof for any cau-
tious agent, Maximal Condorcet provides the same protection only
against those cautious agents who are minimally cautious.

5.2 The Ranked Agenda Rule
The Ranked Agenda rule FRA is a generalisation of the Ranked Pairs
voting rule [42]. We do not explicitly define the this rule here, but
refer to Lang et al. [26] for a precise definition. It is similar to
the Leximax rule in that it prioritises large majorities over small
ones, but it does not break ties by “looking ahead” to maximise
gain as Leximax does. While FRA is not itself an AMR, we have
FLex(J ) ⊆ FRA(J ) for all profiles J [26]. Exploiting this connection
to an AMR we have shown to beM-strategyproof before we obtain
the following results (using the same approach as in Section 5.1).

Proposition 5.4. A minimally pessimistic agent cannot manipu-

late the Ranked Agenda rule from majority.

Proposition 5.5. A minimally optimistic agent cannot manipu-

late the Ranked Agenda rule to majority.

Proposition 5.6. The Ranked Agenda rule is M-strategyproof

for minimally cautious agents.

5.3 The Dodgson Rule
We conclude our examination by straying even further afield from
the additive majority rules. In order to define the next rule, we first
define the Hamming distance between two profiles as HP (J , J

′) :=∑
i ∈N H (Ji , J

′
i ). The Dodgson rule (for odd n) is defined as follows:

FDod(J ) = {m(J ′) | argmin
J ′∈M(Φ,n)

HP (J , J
′) }

This rule is also known as the minimal-profile-change rule [26] and
as the “full” distance-based rule [30]. FDod chooses those judgments
that can be reached by making the smallest number of atomic
changes to the profile, where an atomic change consists in changing
the judgment of a single agent on a single formula. This is clearly
a majority-preserving rule, but it is not an AMR. Indeed, it also
lacks the strategyproofness properties of the previous majority-
preserving rules examined in this paper.

Proposition 5.7. Dodgson fails M-strategyproofness for all pref-

erence extensions.

Proof. LetΦ be an agendawith |Φ+ | = 10. Consider the profile J
below, with J1 being agent 1’s true judgment:

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

J1 No Yes Yes No No No No No No No
J2 No No No Yes No Yes Yes No Yes Yes
J3 No No No No Yes Yes Yes Yes Yes No

Maj No No No No No Yes Yes No Yes No

Suppose that—besides J1, J2, and J3 appearing J—the only other
judgments that are consistent are J4, J5, J6, and J7 shown below.3

3We note that, by a result of Dokow and Holzman [12], it is possible to construct an
agenda with these structural properties (and we can, conveniently, abstract away from
the specifics of Φ).

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

J4 No No No No No Yes Yes No Yes No
J5 Yes Yes No Yes No No No No No No
J6 No Yes No Yes No Yes Yes No Yes Yes
J7 No Yes No Yes No Yes Yes No No No

As the majority outcome is consistent, FDod(J ) = {m(J )} = {J4}.
Let J ′ be an i-variant of J with J ′1 = J5, making m(J ′) incon-

sistent. We see that the minimal number of atomic changes we
can make to the profile J ′—while ensuring all input judgments are
consistent—is 1, as H (J2, J6) = 1. For all other relevant pairwise
comparisons of admissible judgments, the Hamming distance be-
tween them is 2 or greater. Indeed, replacing J2 with J6 will result
in profile J ∗ = (J5, J6, J3), with a consistent majority outcome. Thus
FDod(J

′) = {m(J ∗)} = {J7}. As J7 ≻1 J4, it must be the case that
F (J ′) ≻̊1 F (J ), making this a successful manipulation from M. □

For cautious (and pessimistic) agents, the following example shows
manipulation is possible both to and fromM. Thus, for this type
of agent, Dodgson will also fail to provide the post-aggregation
guarantee that no manipulation has occurred.

Example 5.3. Let J be the profile below, where J1 is agent 1’s
true judgment, and suppose she is cautious. Let Φ be an agenda
such that J1, J2, and J3 are the only consistent judgments.

φ1 φ2 φ3 φ4 φ5 φ6

J1 No No No Yes No No
J2 No No Yes No Yes Yes
J3 Yes Yes Yes Yes Yes Yes

Maj No No Yes Yes Yes Yes

Note that the majority outcome is not consistent. It is easy to check
that F (J ) = {J2, J3}. Now let J ′ be an i-variant of J , where J ′1 = J2.
Then FDod(J

′) =m(J ′) = J2, as agent 1 prefers J2 over J3. As she is
a cautious agent, we have FDod(J ′) ≻̊1 FDod(J )which is a successful
manipulation to M. △

The case of the Dodgson rule thus presents a clear example showing
that by no means all majority-preserving rules are associated with
some level of M-strategyproofness.

6 CONCLUSION
We have introduced a novel weakening of strategyproofness, which
we called domain-strategyproofness. We have argued that in the
absence of full strategyproofness, domain-strategyproofness often
offers a sufficiently strong barrier against manipulation. We have
focused in particular on the majority-consistent domain, and ex-
amined majority-preserving aggregation rules, showing varying
levels of strategyproofness for several prominent rules from the
judgment aggregation literature. Our results make a strong case
for the use of additive majority rules, a class of rules that includes
both the Kemeny rule and the Slater rule.

As strategyproof rules are hard to come by in social choice in
general, we have argued that domain-strategyproofness offers an
attractive way out of this dilemma. While our results in judgment
aggregation also hold for social welfare functions in preference
aggregation, it still remains to be seen whether similar results can
be obtained for Condorcet extensions in voting—an arena where
finding attractive strategyproof rules is similarly challenging.
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