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Abstract

We introduce a new approach for designing rules for partic-
ipatory budgeting (PB), the problem of deciding on the use
of public funds based directly on the views expressed by the
citizens concerned. The core idea is to embed instances of the
participatory budgeting problem into judgment aggregation, a
powerful general-purpose framework for modelling collective
decision making. Taking advantage of the possibilities offered
by judgment aggregation, we enrich the familiar setting of
participatory budgeting with additional constraints, namely
dependencies between projects and quotas regarding differ-
ent types of projects. We analyse the rules obtained in both
algorithmic and axiomatic terms.

1 Introduction
Participatory budgeting (PB) is an instrument intended to im-
prove the democratic process by allowing citizen to directly
express their views regarding the use of public funds (Ca-
bannes, 2004). Since its first use for municipal budget, PB
has now been adopted across the world (Shah, 2007). PB pro-
ceeds in two stages. First, citizens submit project proposals,
some of which are shortlisted. Then they vote on which of the
shortlisted projects to fund, given the limitations set by the
budget available. In this paper we introduce a new approach
for designing voting rules for this second stage. The central
idea is to embed PB into judgment aggregation (JA), a highly
expressive framework for collective decision making that has
been extensively studied in the field of (computational) social
choice (List and Pettit, 2002; Endriss, 2016).

Most existing formal work in social choice theory re-
garding PB views voting on projects as a generalisation of
approval-based multiwinner voting (see, e.g., Aziz, Lee, and
Talmon, 2018; Talmon and Faliszewski, 2019). While this
can provide useful intuitions regarding, for instance, the type
of normative desiderata we may wish to postulate for PB, it
does not allow for great flexibility, e.g., when it comes to
modelling expressive forms of PB that allow us to specify
dependencies between projects and the like. This is why we
take a complementary approach and study project selection
as a special case of the more general problem of JA.

While JA is very expressive—e.g., it naturally generalises
many forms of preference aggregation and voting (Dietrich
and List, 2007; Lang and Slavkovik, 2013; Endriss, 2018)—
computing outcomes for JA is typically computationally in-

tractable (Endriss, Grandi, and Porello, 2012). The central
challenge we address in this paper thus is to find ways of
implementing PB via JA in an efficient manner. To do so,
the core idea we explore is to look for tractable fragments of
JA, by further developing the approach of De Haan (2018) of
modelling JA problems using Boolean circuits in decompos-
able negation normal form (DNNF). This allows us to model
PB problems with multiple resources, dependencies between
projects, and quotas of different types of projects.

Of course, an expressive framework for modelling PB sce-
narios and a set of algorithmically efficient PB rules alone
are not sufficient. We also require a good understanding of
whether the rules we design are normatively adequate. We
therefore provide an axiomatic analysis of the rules we pro-
pose, focusing in particular on the notion of exhaustiveness
(ruling out any under-use of the budget) and the monotonicity
axioms proposed by Talmon and Faliszewski (2019).

Related work. According to the terminology of Aziz and
Shah (2020), we focus on combinatorial PB with binary
projects and approval ballots. For this framework, Aziz, Lee,
and Talmon (2018) and Talmon and Faliszewski (2019) anal-
ysed several rules in both axiomatic and algorithmic terms,
proposing greedy algorithms and dynamic programming tech-
niques. Using a different approach, Fain, Goel, and Muna-
gala (2016) and Freeman et al. (2019) instead studied PB
solutions as market equilibria, in the spirit of the public deci-
sion making setting of Conitzer, Freeman, and Shah (2017).
Particularly relevant to our work, Fain, Munagala, and Shah
(2018) considered a general setting of public decision making
with matroid, matching, and packing constraints, allowing
for great flexibility on what can be modelled. Jain, Sornat,
and Talmon (2020) studied the computational complexity of
PB when projects have types and utilities are defined over
the types. Lu and Boutilier (2011) considered yet another
extension of PB, where the cost of a project might depend on
the number of agents choosing it. Finally, De Haan (2018)
was the first to discuss the idea of embedding PB into JA.

Paper outline. We recall relevant definitions from PB and
JA in Section 2 and then introduce our central definition of
an embedding of PB into JA. Section 3 is devoted to the study
of efficient embeddings for basic PB and the extensions we
propose, Section 4 discusses exhaustiveness, and Section 5
contains the remainder of our axiomatic analysis.



2 Frameworks
In this section we recall basic definitions regarding the frame-
works of participatory budgeting (PB) and judgment aggre-
gation (JA). We also define the main concept of this paper,
namely embeddings of PB instances into JA.

2.1 Participatory Budgeting
We mainly adopt the notation of Aziz and Shah (2020).
PB is about selecting a set of projects to be funded, given
a (possibly multi-dimensional) budget limit. The set of
(binary) projects is denoted by P = {p1, . . . , pm}. Let
R = {r1, . . . , rd} be a set of resources and b = (b1, . . . , bd)
a budget limit vector, with bi ∈ R≥0 indicating the limit in
terms of resource ri. The costs of the projects are defined
by a cost function c : P ×R → R≥0, indicating for a given
project the cost in terms of the given resource. Slightly over-
loading notation, we use c(p) = (c(p, r1), . . . , c(p, rd)) to
denote the cost vector of project p. Moreover, for any subset
P ⊆ P , let c(P, r) =

∑
p∈P c(p, r) and c(P ) =

∑
p∈P c(p).

A problem instance I = 〈R, b,P, c〉 for PB consists of a set
of resources, a budget limit vector, a set of projects, and a
cost function. I is the set of all such instances.

A solution of a PB problem instance, called a budget allo-
cation, is a subset of projects A ⊆ P . A budget allocation A
is said to be feasible if c(A) ≤ b. For a given I ∈ I, the set
of all feasible budget allocations is denoted by A(I).

Before deciding which budget allocation to recommend,
we consult the agents belonging to a set N = {1, . . . , n}.
Each agent i ∈ N submits an approval ballot Ai ⊆ P ,
giving rise to a profile A = (A1, . . . , An). For any given
project p, its approval score under profile A is

∑
i∈N 1p∈Ai ,

the number of agents approving of p. W.l.o.g., we assume that
every project has an approval score of at least 1, as projects
with approval score 0 can be removed in a pre-processing step.
Finally, a PB rule is a function F : I × (2P)n → 22P \ {∅}
mapping any given instance I and profile A to a nonempty set
F (I,A) ⊆ A(I) of feasible budget allocations.1 Returning
a set allows us to model ties.

2.2 Judgment Aggregation
The JA framework we use is known as binary aggregation
with integrity constraints (Grandi and Endriss, 2011).2

Let LP be the set of propositional formulas over a given
set P of propositional atoms, using the usual connectives
¬, ∨, ∧, →, and logical constants ⊥ and >. Propositional
atoms and their negations are called literals. For any P ⊆ P ,
we write Lit(P ) = P ∪ {¬x | x ∈ P} for the set of literals
corresponding to P . We often use xi to denote atoms and `xi

to denote literals corresponding to xi, i.e., `xi ∈ {xi,¬xi}.
We say that `xi is positive if `xi = xi and negative if `xi =
¬xi. A truth assignment α : P → {0, 1} is a mapping
indicating for each atom its truth value. For `xi

∈ Lit(P ),
1Observe that A(I) is never empty as the empty set is always

feasible. This is not true for the extensions discussed in Section 3.
2While this framework is most convenient for our purposes, the

original framework of List and Pettit (2002) could be used as well,
given that it is known that the former can be efficiently embedded
into the latter (Endriss et al., 2016).

set α(`xi) = α(xi) if `xi is positive and α(`xi) = 1− α(xi)
otherwise. We write α |= ϕ whenever α is a model of ϕ.

In the context of JA, the atoms in P represent propositions
an agent may either accept or reject. A judgment J is a set
J ⊆ P , indicating which propositions are accepted. Let
ext(J) = J ∪ {¬x | x ∈ P \ J} for any given judgment J .
Observe that a judgment J can be equivalently described as
the truth assignment α such that α(x) = 1 if and only if
x ∈ J . In our examples, when we do not explicitly spec-
ify some propositions, it is assumed that we only consider
judgments (and truth assignments) for which the unspecified
propositions are rejected (mapped to 0).

An integrity constraint Γ ∈ LP is a formula used to con-
strain the range of admissible judgments. A judgment J
satisfies Γ (written J |= Γ), if J , interpreted as a truth assign-
ment, is a model of Γ. Let J(Γ) = {J ⊆ P | J |= Γ}. A
problem instance for JA is simply an integrity constraint Γ.

We again use N = {1, . . . , n} to denote the set of agents.
Each agent i ∈ N provides us with a judgment Ji, resulting
in a judgment profile J = (J1, . . . , Jn). For a profile J and
a literal ` ∈ Lit(P ), we write nJ` =

∑
i∈N 1`∈ext(Ji) for the

number of supporters of `. The majoritarian outcome for a
profile, denoted by m(·), is the set of literals supported by a
majority of agents: m(J) = {` ∈ Lit(P ) | nJ` > n

2 }.
A JA rule is a functionF : LP×(2P )n → 22P \{∅} taking

as input an integrity constraint Γ and a judgment profile J
and returning a nonempty set F (Γ,J) ⊆ J(Γ) of admissible
judgments. Observe that no assumption is made about the
profile. In particular, we do not require Ji |= Γ for any
i ∈ N .

Before reviewing a number of well-known concrete JA
rules, let us first introduce a very general class of such rules.
Definition 1 (Additive rules). A judgment aggregation rule
F is an additive rule if there exists a function f :

(
2P
)n ×

Lit(P )→ R such that, for every integrity constraint Γ and
every profile J ∈

(
2P
)n

, we have:

F (Γ,J) = argmax
J∈J(Γ)

∑
`∈ext(J)

f(J , `).

This class generalises both the scoring rules of Dietrich
(2014) and the additive majority rules (AMRs) defined by
Nehring and Pivato (2019). A scoring rule is associated
with a scoring function s : 2P × Lit(P ) → R and corre-
sponds to the additive rule with f(J , `) =

∑
i∈N s(Ji, `).

An AMR is associated with a non-decreasing gain function
g : {0, . . . , n} → R with g(k) < g(k′) for any k < n

2 ≤ k′

and is an additive rule with f(J , `) = g(nJ` ). Three additive
rules are of particular importance for our purposes:
• The Slater rule (Miller and Osherson, 2009; Lang et al.,

2011) selects the admissible outcome closest to the majori-
tarian outcome in terms of the number of propositions they
agree on. It is the AMR associated with the gain function g
with g(x) = 1 if x ≥ n

2 and g(x) = 0 otherwise.
• The Kemeny rule (Pigozzi, 2006; Miller and Osherson,

2009) selects the feasible outcome that is the closest to the
profile as a whole. It is both an AMR with g(x) = x and a
scoring rule with s(J, `) = 1`∈ext(J).
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Figure 1: Reduction from PB to JA

• The leximax rule (Everaere, Konieczny, and Marquis,
2014; Nehring and Pivato, 2019) favours the propositions
supported by the largest majorities. It is the AMR defined
by the gain function g(x) = |P |x.

Note that the three rules presented above are all majority-
consistent, meaning that whenever the majoritarian outcome
is admissible, it is the unique judgement returned by the rules.

2.3 Embedding PB into JA
The aim of this paper is to design rules to solve PB problems.
To this end, we want to embed PB into JA and then use JA
rules to compute budget allocations (see also Figure 1).

For a given PB instance, we introduce one proposition for
each project to obtain P . So we have a direct correspondence
between budget allocations A ⊆ P and judgments J ⊆ P ,
and thus also between PB profiles and JA profiles. Similarly,
any JA outcome can be translated back into the PB setting.
Definition 2 (Outcome translation). Let I = 〈R, b,P, c〉 be
a PB instance and let Γ ∈ LP be an integrity constraint
expressed over the atoms P = {xp | p ∈ P}. The outcome
translation τ : 2P → 2P maps any judgment J ∈ 2P to a
budget allocation A = τ(J) = {p ∈ P | xp ∈ J}.
We moreover extend the outcome translation to sets J ⊆ 2P

of judgments by stipulating that τ(J ) = {τ(J) | J ∈ J }.
An embedding is a function E : I → LP that takes a PB

instance as input and returns an integrity constraint (i.e., a
JA instance). Given an embedding, we can now translate any
input of a PB rule into an input for a JA rule, apply the JA rule,
and finally translate the result obtained into a set of budget
allocations (see Figure 1). However, to be meaningful, the
integrity constraint should express the budget constraint of
the PB instance. This is captured by the notion of correctness.
Definition 3 (Correct embedding). An embedding E : I →
LP is said to be correct if, for every PB instance I ∈ I, we
have τ(J(E(I))) = A(I).

3 Efficient Embeddings
In this section we present specific embeddings of enriched
PB instances into JA. Given that the problem of computing
outcomes for the JA rules defined in Section 2.2 is known
to be highly intractable (Lang and Slavkovik, 2014; Endriss
and De Haan, 2015), we need to ensure that PB instances
are mapped into JA instances that permit efficient outcome
determination. To this end, we first present a class of Boolean
functions (to encode integrity constraints) for which the out-
come determination can be solved efficiently.

3.1 Tractable Languages for JA
As shown by De Haan (2018), computing outcomes under
Kemeny and Slater can be done efficiently when the integrity
constraint is a Boolean circuit in decomposable negation
normal form (DNNF). We are going to extend this result to
all additive rules. But let us first recall the definition of a
DNNF circuit (Darwiche and Marquis, 2002).
Definition 4 (DNNF circuits). A circuit in negation normal
form (NNF) is a rooted directed acyclic graph whose leaves
are labelled with >,⊥, x or ¬x, for x ∈ P and whose inter-
nal nodes are labelled with ∧ or ∨. A DNNF circuit C is an
NNF circuit that is decomposable: for every conjunction in
C, no two conjuncts share a common propositional variable.
For a given JA rule F , we define the outcome determination
problem as the following decision problem:

OUTCOME(F )

Input: An integrity constraint Γ, a judgment profile J ,
and a subset of literals L ⊆ Lit(P ).

Question: Is there a J ∈ F (Γ,J) such that L ⊆ ext(J)?

We now show that for any additive JA rule F we can solve
OUTCOME(F ) efficiently when Γ is given as a DNNF circuit.
Theorem 1. Let F be an additive JA rule defined w.r.t. some
polynomial-time computable function f . Then OUTCOME(F )
is polynomial-time solvable if the integrity constraint Γ in
the input is represented as a DNNF circuit.

Proof. We show that when Γ is a DNNF circuit, we can
use the Algebraic Model Counting (AMC) problem to solve
OUTCOME(F ). Given a propositional formula ϕ ∈ LP , a
commutative semi-ring 〈A,⊕,⊗, e⊕, e⊗〉, and a labelling
function λ : Lit(P )→ A, the AMC problem is to compute:

AMC(ϕ) =
⊕

α: P→{0,1}
α|=ϕ

⊗
`∈Lit(P )
α(`)=1

λ(`).

The pair 〈⊕, λ〉 is called neutral if and only for every propo-
sitional atom x ∈ P , λ(x) ⊕ λ(¬x) = e⊗. Kimmig, Van
den Broeck, and De Raedt (2017) proved that when ϕ is a
DNNF circuit, ⊕ is idempotent, and 〈⊕, λ〉 is neutral, then
the AMC problem can be solved in polynomial time.

We now show that OUTCOME(F ) can be solved using
the AMC problem when F is an additive rule. Consider
the max-plus algebra—a commutative and idempotent semi-
ring (Akian, Bapat, and Gaubert, 2006)—defined by A =
R ∪ {−∞,∞}, e⊕ = −∞, and e⊗ = 0, where ⊕ and ⊗ are
the usual + and max over R ∪ {−∞,∞}. For 〈⊕, λ〉 to be
neutral, we require max(λ(x), λ(¬x)) = 0 for every x ∈ P .

Consider an additive JA rule F associated with f . For a
profile J we introduce a labelling function λJ (·) defined as
follows for every literal `x ∈ Lit(P ) of the atom x ∈ P :

λJ (`x) = f(J , `x)−max [f(J , x), f(J ,¬x)] .

For every such labelling function, we can show that
argmaxJ∈J(Γ)

∑
`x∈ext(J) λJ (`x) = F (Γ,J). This implies

that OUTCOME(F ) can be solved by solving the AMC prob-
lem twice: first for ϕ = Γ and then for ϕ = Γ′, where Γ′ is



obtained from Γ by fixing the value of the atoms as in L, the
subset of literals given as input to OUTCOME(F ).

Finally, observe that the pair 〈max, λ〉 is neutral. Thus,
AMC can be solved in polynomial time when ϕ is a DNNF
circuit. Hence, the OUTCOME(F ) problem can also be solved
in polynomial time when Γ is a DNNF circuit.

This general result immediately implies tractability of out-
come determination for the rules we are interested in here and
will allow us to use these rules to compute budget allocations
for PB instances embedded into JA.
Corollary 2. When the integrity constraint is represented
as a DNNF circuit, then the problem OUTCOME(F ) can be
solved in polynomial time when F is either the Kemeny, the
Slater, or the leximax rule.

3.2 DNNF Circuit Embeddings
We now move on to the description of embeddings returning
integrity constraints represented as DNNF circuits. In doing
so, we follow De Haan (2018) but use a slight generalisation
of his approach, allowing us to deal with PB instances with
multiple resources. The basic idea is that every ∨-node in the
DNNF circuit will represent the choice of selecting or not a
given project. At each of these nodes, we need to keep track
of the amount of resources already used to determine whether
a project can be selected without exceeding the budget.

For a project index j and a vector of used quantities per
resources v ∈ Rd≥0, we introduce the ∨-node N(j,v), corre-
sponding to the situation where we previously made a choice
on projects with indices 1 to j−1, and where for these choices
we used resources according to v. These nodes N(j,v) are
defined as follows.
> if j = m+ 1

∨
(
xpj ∧N(j + 1,v + c(pj))

)(
¬xpj ∧N(j + 1,v)

) if v + c(pj) ≤ b(
¬xpj ∧N(j + 1,v)

)
∨ (xpj ∧ ⊥) otherwise

For a PB instance I = 〈R, b,P, c〉, the tractable embedding
TE(I) returns the integrity constraint defined by N(1,0d),
where 0d denotes the vector of length d whose components
are all equal to 0.
Proposition 3. The tractable embedding TE is correct, and
for any given PB instance I = 〈R, b,P, c〉 returns an in-
tegrity constraint TE(I) represented as a DNNF circuit of
size in O(m× |{c(A) | A ⊆ A(I)}|).

Proof. Let I = 〈R, b,P, c〉 be a PB instance, and Γ an
integrity constraint such that Γ = TE(I).

We first show that Γ is represented as DNNF circuit. First,
observe that Γ is a Boolean circuit rooted in N(0,0d). Next,
observe that every ∨-node is of the form (x∧β1)∨(¬x∧β2),
where x ∈ P is a propositional atom and β1, β2 are either
∨-nodes, ⊥, or >. This implies that Γ is represented as an
NNF circuit. Because each project is only considered once,
the propositional atom corresponding to the project cannot
appear in two distinct conjuncts. Hence, Γ is a DNNF circuit.

Observe that there are at most m× |{c(A) | A ⊆ A(I)}|
∨-nodes in Γ—one for each N(j,v) for which the budget is

not exceeded—all of them having at most two child ∧-nodes.
There are moreover 2m + 2 leaves, one per literal and two
for ⊥ and >, hence the size of the DNNF circuit.

We now show that the tractable embedding is correct. Ob-
serve that a branch leading to the ⊥-leaf is chosen if and only
if a project pj exceeding the budget limit has been chosen.
Hence, finding an assignment that does not lead to a ⊥ leaf
in Γ can only be done by selecting feasible projects. The set
of such assignments defines the set of outcomes satisfying Γ,
so τ(E(I)) ⊆ A(I). Now, consider A ∈ A(I). Since A is
feasible, it is clear that there exists a branch in the DNNF cir-
cuit Γ along which the selected projects correspond exactly
to those that are in A. We thus have τ(E(I)) = A(I).

At this point, it should be noted that the exponential factor in
the size of the embedding, namely |{c(A) | A ⊆ A(I)}|, is
bounded from above by the sum of the budget limits for each
resource. Hence, the corresponding DNNF circuit is of size
in O(m ×

∑
r∈R br), making it pseudo-polynomial in the

size of the PB instance. The embeddings can thus be argued
to be efficient for realistic scenarios.

In the remainder of this section we investigate to what
extent this approach allows us to introduce additional distri-
butional constraints for PB.

3.3 Dependencies between Projects
We now consider the situation where some projects can only
be achieved if some others are also achieved.

Take a PB instance I = 〈R, b,P, c〉. We introduce a set
of implications, Imp ⊆ LP , linking projects together. A set
of implications is a set of propositional formulas of the form
`xp → `xp′ for p and p′ two projects in P with `xp and `xp′

being the corresponding literals. Note that this corresponds
to 2-CNF formulas. Such an implication indicates that if
`xp

is positive (resp. negative), p can be selected (resp. not
selected) only if p′ is selected (resp. not selected) if `xp′ is
positive (resp. negative). A budget allocation A satisfies the
set of implications Imp if and only if the previously described
semantics is satisfied. Moreover, we will write `xp

→∗ `xp′

if there is a chain of implication in Imp linking `xp to `xp′ .
First of all, we show that finding a feasible budget al-

location when there are implications between project is a
NP-complete problem.

Proposition 4. Let I = 〈R, b,P, c〉 be a PB instance and
Imp a set of implications over I . Deciding whether there
exists a feasible budget allocation for I satisfying Imp is NP-
complete, and NP-hardness holds even for a single resource.

Proof. It is straightforward to show that the problem of is in
NP. To show that the problem is NP-hard, we reduce from
the NP-complete problem 2-CNF MINIMAL MODEL (Ben-
Eliyahu and Dechter, 1996).

2-CNF MINIMAL MODEL

Input: A formula ϕ ∈ LP in conjunctive normal form
with exactly two literals per clauses and k ∈ N.

Question: Is there a model α such that α |= ϕ and
|{p ∈ P | α(p) = 1}| ≤ k ?



Take an instance 〈ϕ, k〉 of 2-CNF MINIMAL MODEL. We
construct the following participatory budgeting instance I .
The set of resources is R = {r} with budget limit br = k.
There is one project per propositional atom in ϕ, P = {px |
x ∈ P}, and c(p) = 1 for every p ∈ P . Finally, the set of
implications Imp is the set of clauses in ϕ.

We claim that there exists a model of ϕ setting no more
than k variables to true if and only if there exists a feasible
budget allocation for I that satisfies the set of implications
Imp. The proof is omitted for space reasons.

Based on this result, we cannot hope to find an embedding
into a DNNF ciruit of polynomial size. However, we can
still define an interesting parameterized embedding, in the
spirit of parameterized complexity (Downey and Fellows,
2013). To that end we introduce the interconnection graph
G = 〈P, E〉 of a set of implications Imp where there is an
edge (pi, pj) ∈ E between pi and pj if and only if there
exists an implication in Imp linking the two projects. We will
then look at the pathwidth of this graph (Bodlaender, 1998).

Theorem 5. Let I = 〈R, b,P, c〉 be a participatory bud-
geting instance and Imp a set of implications over I . There
exists a correct embedding from I and Imp to an integrity
constraint expressed as a DNNF circuit Γ whose size is in
O
(
m× |{c(A) | A ⊆ A(I)}| × 2k

)
, where k is the path-

width of the interconnection graph of Imp.

Proof. We will present our embedding and sketch the proof
idea. In the following, we assume that P = {xp | p ∈ P}.

Let G = 〈P, E〉 be the interconnection graph of Imp.
We order the projects according to the order in which they
are introduced in an optimal path decomposition of G.3
We introduce ∨-nodes N(j,v, L) where j is a project in-
dex, v ∈ Rd≥0 a vector of used quantities per resource
and L ⊆ Lit(P ) a subset of literals. Intuitively, the set L
specifies the literals that we selected and that we should
remember. If j = m + 1, then N(j,v, L) = >. If the
positive literal xpj is implied by some literal in L w.r.t. Imp,
thenN(j,v, L) = N(j+1,v+c(pj), L∪{xpj}). Similarly,
if the negative literal ¬xpj is implied by some literal in L
w.r.t. Imp, thenN(j,v, L) = N(j+1,v, L∪{¬xpj}). Other-
wise, if v+c(pj) ≤ b, thenN(j,v, L) = (xpj ∧N [j+1,v+
c(pj), L∪{xpj}])∨ (¬xpj ∧N [j+ 1,v, L∪{¬xpj}]), and
otherwise,N(j,v, L) = (xpj ∧⊥)∨(¬xpj ∧N [j+1,v, L∪
{¬xpj}]).

The tractable embedding with dependencies, writ-
ten TEdep(·), refers to the integrity constraint defined
by N(j,0m, ∅).

By naively taking all possible sets L ⊆ Lit(P ), the num-
ber of ∨-nodes is exponential in m. However, since we or-
dered the projects according to a path decomposition, in each
node N(j,v, L), we can “forget” all literals in L correspond-
ing to a project that will not be introduced after project j
in the path decomposition—thereby reducing the set L for
node N(j,v, L) to size at most k. Then, for each j and v,
there are at most 2k ∨-nodes N(j,v, L). We omit the de-
tailed proof that the resulting DNNF circuit Γ has the required

3This can be done in in O(2k) (Bodlaender and Kloks, 1996).

size, and that this embedding is correct—this proof is entirely
similar to the proof of Proposition 3.

We conclude with a small detour to the field of Knowledge
Compilation (see, e.g., Marquis, 2015). The question that
we consider is equivalent to asking whether the conjunction
of a 2-CNF formula with a DNNF circuit can be efficiently
encoded as a DNNF circuit of polynomial size. It turns out
to be impossible unless the Polynomial Hierarchy collapses.4

3.4 Quotas on Types of Projects
Another very natural constraint is to consider types and quo-
tas over the projects. The idea is that the projects belong to
various types (heath, education, environment to name a few)
and that some quotas over these types are to be respected by
the final budget allocation (at least two heath-related projects
for instance). We model this idea by defining a type system.

Formally, for a given PB instance I = 〈R, b,P, c〉, a type
system is a tuple 〈T ,Q, q, f〉where T ∈ 22P

is a set of types,
each type being a subset of projects; Q = 〈Q,+, 0,≤Q〉
is an ordered group over which the quotas are expressed;
q : T → Q2 is a quota function such that for any type t ∈ T ,
q(t) = (a, b) ∈ Q2 with a ≤Q b and f : T × A(I)→ Q is
a type aggregator.

For t ∈ T such that q(t) = (a, b), we write q(t)− = a and
q(t)+ = b, which indicate the lower and upper quota for type
t respectively. A budget allocation A is feasible if the quotas
are respected—that is, if and only if for every type t ∈ T , we
have q(t)− ≤Q f(t, A) ≤Q q(t)+.

The type aggregator f(·) can be defined in several different
ways. We provide two type aggregators that are very natural.

• Cardinality-type aggregator: the quotas express lower
and upper bounds on the number of projects selected for
each type. We have Q = N, ≤Q is the usual order on N,
and the type aggregator isf card(t, A) = |A ∩ t|.

• Cost-type aggregator: the quotas define lower bound and
upper bound on the total cost of the selected projects for
each type. Here Q = Rd≥0, ≤Q is the component-wise
order defined in the preliminaries, and the type aggregator
is f cost(t, A) =

∑
p∈A∩t c(p).

We first show that deciding whether there is a feasible budget
allocation with a given type system is NP-complete, for both
of the type aggregators.

Proposition 6. Let I = 〈R, b,P, c〉 be a PB instance and
〈T ,Q, q, f〉 a type system over I . Deciding whether there
exists a feasible budget allocation A is NP-complete when
f is either the cardinality or the cost-type aggregator, and
NP-hardness holds even for a single resource.

Proof. It is straightforward to show that the problem is in
NP. To show NP-hardness, we reduce from the NP-complete
problem SET SPLITTING (Garey and Johnson, 1979).

4Due to space constraints, the proof is omitted. In short, one
can prove that if 2-CNF formulas can be compiled into polynomial-
size DNNF circuits, then the NP-complete problem CLIQUE is in
P/poly, using similar techniques as Cadoli et al. (2002). This entails
the Polynomial Hierarchy collapsing (Karp and Lipton, 1980).



SET SPLITTING

Input: A collection C of subsets of a given set S.
Question: Are there two sets S1 and S2 partitioning S

such that ∀c ∈ C, c * S1 and c * S2?

Let 〈C, S〉 be an instance of SET SPLITTING. We construct
a participatory budgeting instance I = 〈R, b,P, c〉 such that
R = {r}, and br = |S|. There is one project per element in
S, P = {ps | s ∈ S}, and c(ps) = 1 for every s ∈ S. Thus,
the budget limit can never be exceeded. The corresponding
set of types is T = {{ps | s ∈ c} | c ∈ C} and for a given
t ∈ T , the quota is q(t) = (1, |t| − 1). With one resource
and projects whose costs are in {0, 1}, the cardinality-type
aggregator and the cost-type aggregator coincide.

We claim that 〈C, S〉 is a yes-instance of SET SPLITTING
if and only if there exists a feasible budget allocation in the
instance I with the previous type system. For a given partition
of S, (S1, S2), a suitable corresponding budget allocation is
A = S1 (or equivalently A = S2). We omit the full proof of
this claim.

Once again, this implies that no efficient embedding can be
defined for this extension. In the following we present a
parameterized embedding for PB with types and quotas.

The embedding works for any additive type aggregator
f : T × A(I) → Q, that is, any type aggregator f for
which there exists a score type function s that takes as input
a project p ∈ P and returns an element in Q such that for
every type t ∈ T and every allocation A ∈ A(I), f(t, A) =∑
p∈A s(p). The two type aggregators described above are

both additive, with scard(p) = 1 and scost(p) = c(p).
Let I be an instance and 〈T ,Q, q, f〉 a type system over I ,

the overlap graph of the type system is the graphG = 〈T , E〉,
where there is an edge {t, t′} in E if and only t ∩ t′ 6= ∅.
Theorem 7. Let I = 〈R, b,P, c〉 be a PB instance and
〈T ,Q, q, f〉 a type system where f is an additive type ag-
gregator defined w.r.t. the score type function s. There
exists a correct embedding for I and 〈T ,Q, q, f〉 that re-
turns an integrity constraint represented as a DNNF circuit
whose size is in O (m× |{c(A) | A ⊆ A(I)}| × k∗) where
k∗ = maxt∈T (|{f(t, A) | A ∈ A(I)}|)k+1 and where k is
the pathwidth of the overlap graph of 〈T ,Q, q, f〉.

Proof. We use a similar strategy as for Theorem 5. The
general idea is that because the type aggregator is additive,
we can keep track of the current value of the quotas, and then
we deciding whether a project can be selected or not we can
check the current quota value before making our choice.

We will define the ∨-nodesN(j,v, q), where j is a project
index, v ∈ Rd≥0 a vector of used resources and q ∈ Q|T |

is a vector of current quota value. If there is a type t ∈ T
such that qt >Q q(t)+, then N(j,v, q) = ⊥. If there is
a type t whose projects have all been considered and such
that q <Q q(t)−, then N(j,v, q) = ⊥. If j = m + 1 we
have N(j,v, q) = >. Otherwise, we define N(j,v, q) as
follows. Let Tpj = {t ∈ T | pj ∈ t}. Define q′ such
that q′t = qt for every t /∈ T , and such that q′t = qt + s(pj)
for every t ∈ Tpj . If v + c(pj) ≤ b, then N(j,v, q) =

(xpj ∧ N [j + 1,v + c(pj), q
′]) ∨

(
¬xpj ∧N [j + 1,v, q]

)
;

otherwise,N(j,v, q) = (xpj ∧⊥)∨ (¬xpj ∧N [j+1,v, q]).
The tractable embedding for types and quotas, written TEquo ,
refers to the integrity constraint defined by N(1,0m,0|T |).

Similarly to the proof of Theorem 5, we can order the
projects according to the ordering of types in a suitable path
decomposition of the overlap graph. By doing so, in each
node N(j,v, q), we can “forget” all types in q for which we
already considered all projects—thereby reducing the number
of nodes N(j,v, q) for each j and v.

The maxt∈T (|{f(t, A) | A ∈ A(I)}|)k+1 factor in the size
of the integrity constraint can be very high. However, for the
cardinality and the cost-type aggregators we have:

max
t∈T
|{f card(t, A) | A ∈ A(I)}| = max

t∈T
q(t)+ ≤ |P|,

max
t∈T
|{f cost(t, A) | A ∈ A(I)}| = max

t∈T
q(t)+ ≤

∏
r∈R

br.

Although in general the problem of finding a feasible budget
allocation satisfying the type system is hard, it is not when
types are not overlapping. This is a very natural case to
consider and in this case the pathwidth of the overlap graph
would be 0, so the embedding would be efficient.
Corollary 8. The tractable embedding for types and quo-
tas is efficient when the type aggregator is additive and the
overlap graph is the empty graph (types do not overlap).

4 Enforcing Exhaustiveness
Amongst the very basic requirements of a budget allocation
is that of exhaustiveness (Aziz, Lee, and Talmon, 2018), or
inclusion maximality (Talmon and Faliszewski, 2019). It
requires that the budget be used as much as possible.
Definition 5 (Exhaustiveness). Given a PB problem instance
I = 〈R, b,P, c〉, a budget allocation A ∈ A(I) is said to
be exhaustive if, for every project p ∈ P \A, there exists at
least one resource r ∈ R such that c(A ∪ {p}, r) > br.
For a given instance I , we denote by AEX(I) the set of
feasible and exhaustive budget allocations. An embedding
E : I → LP is said to be exhaustive if for every instance
I ∈ I, we have τ(J(E(I))) ⊆ AEX(I). A JA rule F is
said to be exhaustive if for every correct embedding E, ev-
ery instance I ∈ I and every profile A it is the case that
τ(F (E(I),A)) ⊆ AEX(I). Similarly, a PB rule is said
to be exhaustive if it only returns exhaustive budget allo-
cations. Finally, an exhaustive embedding E is correct if
AEX(I) = τ(J(E(I))), for every instance I .

Because the scenarios typically modelled using JA are
rather different from PB, the exhaustiveness axiom is not sat-
isfied by the main JA rules. This has to do with the semantics
of rejection (of a proposition) in the context of JA.
Proposition 9. No majority-consistent JA rule is exhaustive.

Proof. Consider a correct but not exhaustive embedding E
(for instance TE). As E is not exhaustive, there exists a
PB instance I such that there is at least one admissible JA
outcome J ∈ J(E(I)) with τ(J) /∈ AEX(I). Now consider
a profile A with n agents in which dn/2e + 1 agents only



approve of the projects in τ(J); the other agents are not
constrained. On the JA side, the majoritarian outcome will
be J . Since the majoritarian outcome is admissible, any
majority-consistent rule F must return {J} on E(I) and A,
which does not correspond to an exhaustive budget allocation.

This result is far-reaching, because most JA rules have been
specifically designed to be majority-consistent.5

To circumvent this problem and enforce exhaustiveness,
we will investigate two approaches: either encoding exhaus-
tiveness in the integrity constraint or designing new JA rules.

4.1 Exhaustive Embeddings
We introduce the exhaustive tractable embedding, which is
an adaptation of the tractable embedding to maintain exhaus-
tiveness when there is exactly one resource.

Consider a PB instance I = 〈R, b,P, c〉 with R = {r}.
Similarly to the previous embeddings, we define the ∨-
nodes of the integrity constraint as N(j, v, c∗), where j
is a project index, v is the budget used in terms of re-
source r, and c∗ is the cost of the cheapest non-selected
project. If j = m + 1, we have N(j, v, c∗) = > in
case c∗ > v and N(j, v, c∗) = ⊥ otherwise. If j ≤ m,
we have N(j, v, c∗) =

(
xpj ∧N [j + 1,v + c(pj), c

∗]
)
∨(

¬xpj ∧N [j + 1,v,min(c∗, c(pj))]
)

in case v+ c(pj) ≤ b

andN(j, v, c∗) =
(
¬xpj ∧N [j + 1,v, c∗]

)
∨ (xpj ∧⊥) oth-

erwise. The exhaustive tractable embedding ETE(·) returns
the integrity constraint defined by N(1, 0,maxp∈P c(p)).
Proposition 10. The exhaustive tractable embedding is cor-
rect and exhaustive, and returns an integrity constraint Γ
represented as a DNNF circuit of sizeO(m2×|{c(P ) | P ⊆
P}|) for any I = 〈R, b,P, c〉.
The proof is omitted but very similar to earlier proofs. Just
note that a budget allocation is exhaustive if and only if the
cheapest non-selected project does not fit in it.

This embedding is only defined for instances with a single
resource and, unfortunately, the idea does not generalise. The
reason is that, when there are several resources, then there
could be exponentially many “cheapest projects”.
Proposition 11. Let I = 〈R, b,P, c〉 be a PB instance with
|R| ≥ 2. Then I cannot be embedded in polynomial time into
an exhaustive DNNF circuit, unless the polynomial hierarchy
collapses to the second level.

Proof (sketch). The idea is that, if we were to find a DNNF
circuit encoding, then we would be able to check in polyno-
mial time whether an exhaustive budget allocation exists that
selects at least k projects. We would then be able to solve in
polynomial time any instance of size n of the NP-complete
problem of 3-DIMENSIONAL MATCHING (Karp, 1972) using
a single DNNF circuit of size polynomial in n. This would
imply that NP ⊆ P/poly, which means that the Polynomial
Hierarchy collapses (Karp and Lipton, 1980).

5Were it not for our assumption that every project must have at
least one supporter (which rules out certain profiles), Proposition 9
could be strengthened to say that no unanimous JA rule is exhaustive
(F is unanimous if F (J, . . . , J) = {J} for all judgments J).

Since exhaustive embeddings cannot be used efficiently
when there are multiple resources, we turn to another way to
enforce exhaustiveness: Asymmetric judgment aggregation.

4.2 Asymmetric Judgment Aggregation Rules
In the context of PB, when an agent does not include a project
in her approval ballot, this does not imply that she does not
want to see the project being funded, but rather that it is
not one of her top projects. Therefore, to implement PB
via JA we need to adapt the JA rules so that not selecting a
project (i.e., not accepting a proposition) is not interpreted
as a rejection. To this end we introduce the new family of
asymmetric JA rules. They avoid the symmetric treatment of
acceptance and rejection common in most standard JA rules.
Definition 6 (Asymmetric Additive Rules). Let F be an
additive JA rule associated with f : (2P )n×Lit(P )→ R≥0.
Then its asymmetric counterpart Fasy is the rule for which,
for every integrity constraint Γ and every profile J , we have:

Fasy(Γ,J) = argmax
J∈J(Γ)

∑
`∈ext(J)
` is positive

f(J , `) + ε.

Here ε is any positive constant that is smaller than 1
|P | of

min{f(J , `) 6= 0 | J ∈ (2P )n, ` ∈ ext(J), ` is positive}.
Importantly, this definition applies only if f is R≥0-valued.
The use of ε guarantees that accepting positive literals will
always be more appealing than accepting negative ones, while
being small enough so as to not impact the relative values of
positive literals. Note that ε = 1

|P |+1 is a suitable choice for
the three rules defined near the end of Section 2.2.
Proposition 12. Let F be an additive JA rule associated with
an R≥0-valued function f . Then the asymmetric counterpart
of F satisfies exhaustiveness.

Proof. Executing Fasy involves computing a score for every
admissible candidate outcome J . By definition, no negative
literal in J can contribute to its score, while every positive
literal makes a strictly positive contribution of at least ε. Thus,
flipping a negative literal always results in an increased score.
So Fasy only returns admissible judgments for which flipping
any negative literal would violate the integrity constraint.
This corresponds to exhaustiveness.

Observe that the asymmetric counterpart of any additive rule
is additive itself (and similarly for scoring rules, albeit not for
AMRs). Finally, it is interesting to note that the asymmetric
variant of the leximax rule is very similar to the well-known
greedy approval rule for PB (Aziz and Shah, 2020).6

5 Axiomatic Analysis
Axioms are means for encoding formal properties related
to the normative adequacy of mechanisms for collective
decision-making (Thomson, 2001). Exhaustiveness is an
example for such an axiom. In this section we investigate to

6This rule selects greedily projects based on their approval score
until the budget limit is reached. It actually corresponds to the
asymmetric variant of the ranked-agenda rule (Lang et al., 2011).



KEM SLAT LEXIMAX
sym asym sym asym sym asym

Exhaustiveness 7 3 7 3 7 3

Limit Mono. 7 7 7 7 7 7
Discount Mono. 3 3 3 3 3 3
Splitting Mono. 7 3 7 3 7 3
Merging Mono. 7 7 7 7 7 7

Table 1: Axiomatic results: “sym” denotes the usual rule and “asym”
its asymmetric counterpart.

what extent other important axioms proposed in the literature
on PB are satisfied by JA rules when used for the purpose of
PB. The results of this section are summarised in Table 1.

The literature on axioms for PB is still sparse. We focus
on the monotonicity axioms introduced by Talmon and Fal-
iszewski (2019), generalising their definitions to allow for
multiple resources and irresolute rules. Formally, for a given
PB axiom X, we say that the JA rule F satisfies X w.r.t. em-
bedding E if, for every PB instance I , the PB rule mapping
A to τ(F (E(I),A)) for any given profile A satisfies X.

Moreover, for a resolute rule F , the axioms of Talmon and
Faliszewski (2019) are usually stated as “when one moves
from an instance/profile pair (I,A) to another pair (I ′,A′),
then if F (I,A) satisfies a certain property, F (I ′,A′) should
satisfy a corresponding property.” We generalise these ax-
ioms to the irresolute case by requiring that, if every budget al-
location returned by our rule for (I,A) satisfies the property
in question, then every budget allocation for (I ′,A′) should
satisfy the corresponding property. Note that Baumeister,
Boes, and Seeger (2020) chose a different generalisation with
existential instead of universal quantifiers.

The first axiom is called limit monotonicity. It states that
after any increase in the budget limit that is not so substantial
as to make some previously unaffordable project affordable,
any funded project should continue to get funded. This ax-
iom is closely related to that of committee monotonicity for
multiwinner voting rules (Elkind et al., 2017).
Definition 7 (Limit monotonicity). A PB rule F is said to be
limit-monotonic if, for any two PB instances I = 〈R, b,P, c〉
and I ′ =

〈
R, b′,P, c

〉
with b ≤ b′ and c(p) ≤ b for all

projects p ∈ P , it is the case that
⋂
F (I,A) ⊆

⋂
F (I ′,A)

for all profiles A.
The following example shows that this axiom is not satisfied
by any of the JA rules of interest, even when |R| = 1.
Example 1. Consider the following three-agent profile for
PB instance I with one resource, b1 = 3, and three projects:

Project p1 p2 p3

Cost 2 2 1

Agents 1 and 2 3 3 7
Agent 3 7 7 3

The exhaustive allocations are {p1, p3} and {p2, p3}. Con-
sider the instance I ′ identical to I , except for the budget limit
of b′1 = 4. For I ′, every rule would return {{p1, p2}} when
used with a correct exhaustive embedding. Project p3 is then
a witness of the violation of limit monotonicity. M

We move on to discount monotonicity, an axiom stating that,
if the cost of a selected project is reduced, then that project
should continue to be selected.

Definition 8 (Discount monotonicity). A PB rule F is said
to be discount-monotonic if, for any two PB instances I =
〈R, b,P, c〉 and I ′ =

〈
R, b′,P, c

〉
with c(p) ≥ c′(p) and

c(p′) = c′(p′) for all p′ ∈ P \ {p} for some distinguished
project p ∈ P , it is the case that p ∈

⋂
F (I,A) implies

p ∈
⋂
F (I ′,A) for all profiles A.

To study how JA rules deal with discount monotonicity, we
introduce a new axiom for JA. This axiom is relevant for us,
since it is a sufficient condition for discount monotonicity.

Definition 9 (Constraint monotonicity). A JA rule F is said
to be constraint-monotonic if, for any two integrity con-
straints Γ,Γ′ ∈ LP with J(Γ) ⊆ J(Γ′) and any profile
J , it is the case that F (Γ′,J) \ F (Γ,J) ⊆ J(Γ′) \ J(Γ).

Lemma 13. Every constraint-monotonic JA rule is discount-
monotonic w.r.t. any correct embedding.

Proof. Let F be a JA rule that is constraint-monotonic.
Let E be a correct embedding. Consider the instances
I = 〈R, b,P, c〉 and I ′ = 〈R, b,P, c′〉, where a project
p ∈ P became cheaper from I to I ′ as in Definition 8.

Let A be an arbitrary profile with p ∈
⋂
τ(F (E(I),A)).

We need to show that p ∈
⋂
τ(F (E(I ′),A)). Observe

that A(I) ⊆ A(I ′). Because E is correct, we also have
J(E(I)) ⊆ J(E(I ′)). Moreover, for every A ∈ A(I ′) \
A(I), we have p ∈ A as only c′(p) changed in I ′. Hence, for
every outcome J ∈ J(E(I ′)) \ J(E(I)), we have p ∈ τ(J).
From constraint-monotonicity, we have that for every pro-
file A, F (E(I ′),A) ⊆ F (E(I),A) ∪ J(E(I ′)) \ J(E(I)).
Hence, for every J ∈ F (E(I ′),A), we have p ∈ τ(J).

Our axiom turns out to be satisfied by many JA rules.

Proposition 14. Every additive rule is constraint-monotonic.

Proof. Consider any additive rule F . Suppose, that F is
not constraint-monotonic. Then there exist two integrity
constraints Γ and Γ′ with J(Γ) ⊆ J(Γ′) and a profile J
for which there exists a J ∈ F (Γ′,J) \ F (Γ,J) with J ∈
J(Γ) \ J(Γ′). As J /∈ F (Γ,J), there exists some J ′ ∈ J(Γ)
with a higher total score than that of J . Moreover, since
J(Γ) ⊆ J(Γ′), this same J ′ would outperform J also under
Γ′. This implies that J /∈ F (Γ′,J), which is a contradiction,
so we are done.

Corollary 15. The Kemeny, Slater, and leximax rules as well
as their asymmetric counterparts are all discount-monotonic
w.r.t. any correct embedding.

The last two axioms we consider deal with situations where
projects are split into subprojects (and the dual operation of
merging projects). First, splitting monotonicity states that, if
a selected project is split into a set of projects approved by
the same agents, then some of these new projects should still
be selected. The axiom of merging monotonicity expresses a
similar condition when merging projects.

Given a PB instance I = 〈R, b,P, c〉 and a profile A, we
say that I ′ = 〈R, b,P ′, c′〉 and A′ are the result of splitting



project p ∈ P into P (with P∩P = ∅), ifP ′ = (P\{p})∪P ,
for all p′ ∈ P , c(p) 6= 0d, c′(P ) = c(p), c′(p′) = c(p′) for
all p′ ∈ P ′ \ P , A′i = Ai for all i ∈ N with p /∈ Ai, and
A′i = (Ai \ {p}) ∪ P for all other i ∈ N . We also say that I
and A are the result of merging P into p given I ′ and A′.

Definition 10 (Splitting monotonicity). A PB rule F is
said to be splitting-monotonic if, for any two PB instances
I = 〈R, b,P, c〉 and I ′ = 〈R, b,P ′, c′〉 with correspond-
ing profiles A and A′ such that I ′ and A′ are the result of
splitting project p into P given I and A, it is the case that if
p ∈

⋂
F (I ′,A) then A′ ∩ P 6= ∅ for all A′ ∈ F (I ′,A).

Definition 11 (Merging monotonicity). A PB rule F is
said to be merging-monotonic if, for any two PB instances
I = 〈R, b,P, c〉 and I ′ = 〈R, b,P ′, c′〉 with corresponding
profiles A and A′ such that I ′ and A′ are the result of merg-
ing project set P into project p given I and A, it is the case
that P ⊆

⋂
F (I,A) implies p ∈

⋂
F (I ′,A).

We first show that splitting monotonicity is satisfied by the
asymmetric counterpart of any AMR.

Proposition 16. Every asymmetric counterpart of an AMR
is splitting-monotonic.

Proof. Let F be the asymmetric counterpart of an AMR
and let E be a correct exhaustive embedding. Consider a
PB instance I = 〈R, b,P, c〉 and a profile A. Let I ′ =
〈R, b,P ′, c′〉 and A′ be the instance and profile resulting
from splitting p ∈

⋂
τ(F (E(I),A)) into P .

Consider any outcome J1 ∈ F (E(I),A). Note that for all
J ∈ J(E(I))∩J(E(I ′)), we have p /∈ τ(J) and τ(J)∩P =
∅. Because p ∈

⋂
τ(F (E(I),A)), this implies that J1 has a

higher total score than any J2 ∈ J(E(I)) ∩ J(E(I ′)).
Consider now a possible outcome J ′1 = (J1 \ {p}) ∪ {p′}

for some p′ ∈ P . Based on the definition of A′, it is clear
that nAx = nA

′

x for every x ∈ J1 \ {xp} and that nAxp
= nA

′

xp′
.

Hence, because F is the asymmetric counterpart of an AMR,
J1 and J2 have the same total score. Indeed, the total score
for an AMR only depends on the approval score of each
literal and because F is asymmetric we only consider positive
literals. This implies that J ′1 has a higher total score than any
J2 ∈ J(E(I))∩J(E(I ′)). Thus, J(E(I))∩F (E(I ′),A′) =
∅. As for every J ′ ∈ J(E(I ′)) \ J(E(I)) we have P ∩
τ(J ′) 6= ∅, every outcome returned by F would have a
nonempty intersection with P .

While this last result is promising, it unfortunately does not
extend to symmetric rules.

Example 2. Consider the following pairs of instances and
three-agent profiles: I and A on the left and I ′ and A′ on
the right. Both involve just one resource, with b1 = 4.
Project p1 p2 p3 p4 p1 {p1

2, p
2
2, p

3
2, p

4
2} p3 p4

Cost 2 2 1 1 2 0.5 1 1

Agents 1 and 2 3 7 7 7 3 7 7 7

Agent 3 7 3 3 3 7 3 3 3

Observe that I ′ and A′ are the result of splitting p2 into
{p1

2, p
2
2, p

3
2, p

4
2}, given I and A. We leave the relevant cal-

culations to the reader, but the Kemeny, the Slater, and the

leximax rules would all return {{p1, p2}} for (I,A) when
used with a correct exhaustive embedding. However, they
would return {{p1, p3, p4}} for (I ′,A′). Hence, p2 is a wit-
ness of a violation of splitting monotonicity. M

We finally investigate merging monotonicity. It turns out
that none of the rules we are considering in this paper satisfy
it. A simple counterexample is described in the following.
Consider an instance with one resource, a budget of 4, and
six projects: four of cost 1 and two of cost 2. Consider
now a profile with a single agent approving of every project.
Then all of our rules (Kemeny, Slater, and leximax) would
select the four projects of cost 1. Now, if the four projects
of cost 1 are merged into one project of cost 4, all our rules
would select the two projects of cost 2. This is a violation
of merging monotonicity as the newly created project is not
selected. As the only agent approves of every project, the
same hold for the asymmetric counterpart of the rules.

To conclude this section, we shortly discuss the overall
axiomatic picture for JA rules. The most striking results are
that none of our rules satisfy limit and merging monotonicity.
For limit monotonicity, it should be noted that no PB rule we
know of satisfies it (Talmon and Faliszewski, 2019). It seems
to be too strong a requirement. For merging monotonicity,
the situation is less clear-cut: Some PB rules satisfy it but
none that are widely used. Other axiomatic results are in
line with Talmon and Faliszewski (2019). Overall, JA rules
perform similarly to other PB rules in normative terms.

6 Conclusion
We have proposed an efficient way of solving PB problems
by means of JA rules. The richness of the JA framework
allowed us to develop embeddings for generalised forms of
PB. While the resulting problems are computationally hard
in general, we nevertheless were able to present useful pa-
rameterized embeddings for them. Regarding the axiomatic
properties of JA rules for PB, we observed that a naı̈ve way of
embedding PB into JA leads to rules that violate the crucial
exhaustiveness requirement of PB. We then suggested two
ways of enforcing exhaustiveness: Through exhaustive em-
beddings or by using asymmetric JA rules. We also analysed
some common JA rules and their asymmetric counterparts
in view of monotonicity axioms for PB and found that the
asymmetric rules fare better than the original rules.

In terms of future work, it would be interesting to study
more PB axioms, to allow us to better differentiate between
different JA rules. Indeed, for now, the Kemeny, Slater, and
leximax rule cannot be distinguished based on the axioms
we studied. A particularly exciting direction would be to
investigate proportionality axioms such as those introduced
by Aziz, Lee, and Talmon (2018) and Haret et al. (2020).

Beyond its immediate significance to the theory and prac-
tice of PB, we believe our work also highlights some im-
portant aspects of working with different frameworks for
collective decision making. The high expressive power of
JA permits us to encode many problems of practical interest
as well as properties and constraints. Finding efficient ways
of solving decision problems embedded into JA can be hard,
but once identified, these methods allow for great flexibility.
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