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Abstract

We propose novel protocols for verifiable, classically instructed remote state
preparation. Our “Shell Game” protocols require constantly many rounds of
communication to prepare an arbitrary number of qubits, and the prepared
qubits can optionally be authenticated using a trap code. In the Shell Game,
a classical client and quantum server use a new cryptographic resource called
a “magic box” to perform secret CNOT and SWAP operations that encode,
permute, and encrypt a quantum state held by the server. The keys to this en-
coding/encryption are private to the client. The client tests the server’s honesty
by asking the server to measure some of the prepared state and evaluating the
consistency of the outcomes against the honest state. The remaining, unmea-
sured state is the quantum output of the protocol.

We give a practical construction of magic boxes using Mahadev’s secret-
CNOT gadget [Mah18a] in the quantum honest-but-curious setting. We prove
the Shell Game protocols secure against adversaries in this limited setting. We
include a case study on the security of magic boxes against adversaries as a first
step toward proving security of the Shell Game against active adversaries.
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Chapter 1

Introduction

Consider the following scenario. Alice needs to prepare a particular quantum
state, but she does not have direct access to a quantum device. What she
does have is a (non-quantum) telephone and Bob, a friend with his own private
quantum computer. Alice calls Bob to describe the quantum state she needs,
and Bob prepares it for her. Alice and Bob have just performed a task called
(classically instructed) remote (quantum) state preparation. In protocols for
remote state preparation, we typically refer to Alice as the classical “client”
and to Bob as the quantum “server”.

Now imagine that, although Bob still offers to prepare the state on Alice’s
behalf, Alice and Bob are not friends, and Alice cannot fully trust Bob. Alice
wants to conceal as much information as possible about the prepared state
from Bob, and she wants some assurance that Bob has actually followed her
instructions honestly. What Alice needs now is a secure, verifiable protocol for
remote state preparation.

At face value, it seems unlikely that any protocol could enable a classi-
cal client to instruct a much more computationally powerful quantum server
to prepare a quantum state without the server learning everything about the
prepared state. Indeed, the existence of remote state preparation protocols
that are both information theoretically secure and leak almost no information
about the prepared state have been shown to be implausible [ACGK17].1 How-
ever, astonishingly, computationally blind protocols for remote preparation of
single random qubits are known [DK16][CCKW18]. More recently, two proto-
cols for secure, authenticated remote state preparation have been independently
proposed [CCKW19][GV19]. These protocols are based on noisy/lossy injec-
tive trapdoor claw-free function families2 (or similar 2-regular collision-resistant

1Specifically, information theoretically secure blind delegated quantum computation with a
strictly classical client implies inclusions of computational complexity classes that are consid-
ered implausible by many computer scientists; information theoretically secure remote state
preparation with a classical client implies information theoretically secure blind delegated
quantum computation with a classical client.

2Informally, a trapdoor claw-free function pair (f0, f1) is a pair of injective functions with
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function families),3 which can be constructed based on the computational as-
sumption that the learning with errors problem with superpolynomial noise is
hard [Reg05][PW08]. In this thesis, we present a third protocol also based on
trapdoor claw-free functions. Our protocol is distinguished from others in that
the number of rounds of communication required between the client and server
is independent of the number of qubits prepared.

1.1 Background: Delegated Quantum Compu-
tation and the Role of Remote State Prepa-
ration

Regardless of how optimistic their predictions for the near-term development of
quantum computers might be, few experts expect average consumers to have
quantum personal computers on their desks any time soon. Instead, most users
will probably interact with quantum computers by delegation: A few entities
will invest in developing and maintaining large quantum servers, and clients will
buy server time on the occasions when they need to run quantum algorithms.
This model is justified for two reasons. First, even current small-scale quantum
computers are expensive and physically quite large; there is no reason to sus-
pect near-term quantum computers will be small and affordable enough to find
one in every home. Secondly, although quantum algorithms for certain inter-
esting tasks, such as factoring large primes and simulating quantum systems,
offer an exponential speedup over the best known classical algorithms, the quan-
tum advantage is known to be much more modest for most tasks. Additionally,
consumers are already quite accustomed to delegation in the realm of classi-
cal computing, buying server time on classical supercomputers or “clouds” of
graphics processing units to train deep neural models on large data sets. Since
2016, IBM Q has allowed users to test limited quantum algorithms on three of
their small (5- to 16-qubits, as of 2019) quantum processors, so one might say
that the era of delegated quantum computation has already begun.

Given that most of us will not be performing our own quantum computa-
tions but will instead delegate them to (possibly untrusted or insecure) outside
entities, cryptographic protocols are necessary to protect our delegated com-
putations from eavesdropping and tampering. Protocols for verifiable, infor-
mation theoretically blind4 delegated quantum computation (BQC) have been
known for over a decade, although existing protocols require clients to have
at least some quantum capability [Chi05][BFK09] [GMMR13][MPDF13][HM15]

equal domains and equal images. These functions are easy to compute but difficult to invert
without some extra information called a “trapdoor”. Additionally, it is difficult to find a pair
of elements (x0, x1) (called a “claw”) such that f0(x0) = f1(x1).

3Informally, a 2-regular collision-resistant function f maps exactly two elements of its
domain to each element of its image, and finding a pair of elements with the same image
under f is difficult. As with trapdoor claw-free functions, computing the function is easy, but
inverting it is hard without a trapdoor.

4“Blind” here means private but for leaking an upper bound on the size of the computation.
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[ABOEM17] [FK17]. (The minimal quantum capability required of clients is
the ability to prepare and transmit single qubits or the ability to receive and
measure single qubits.) A verifiable and semantically secure scheme for the re-
lated task of quantum fully homomorphic encryption (FHE) is also known; this
protocol also requires some “quantumness” on the part of the client whenever
the initial and final states of the delegated computation are not both classical
[ADSS17]. A great many other protocols exist for delegated quantum computa-
tion, although none are simultaneously blind, verifiable, suitable for evaluating
arbitrary quantum circuits (i.e., universal), and strictly classical on the client’s
side [AS06][MDK10][DKL12][MF12][BJ15][Lia15][Mah18a][Bra18][Mah18b].

Until recently, the question of how much the necessary quantumness of the
client in a secure, verifiable protocol for delegated quantum computation can be
theoretically reduced has been an open question. In particular, cryptographers
have hoped to prove secure verifiable delegation possible for strictly classical
clients. This is a question of practical importance for the future of quantum
computing. If at least some quantumness is necessary for secure, verifiable
delegation, then quantum cloud computing depends not only on the continuing
development of quantum computers, but also on the development of large-scale
and reliable quantum internet infrastructure.

One way to reduce the quantumness required for delegated quantum com-
putation is to examine the quantum requirements placed on clients by existing
protocols and to find ways to offload these requirements to the server. In partic-
ular, Fitzsimons and Kashefi give a BQC protocol that only requires the client
to be able to prepare a small, fixed number of single-qubit quantum states and
transmit them to the server [FK17]. Therefore, BQC with a fully classical client
reduces to classically instructed remote quantum state preparation—in partic-
ular, the ability of a classical client to delegate the preparation of the qubits
required for Fitzsimons’ and Kashefi’s BQC protocol to the quantum server.
The existence of the computationally blind and verifiable protocols for remote
state preparation presented below thus guarantees that universal and verifiable
BQC is indeed possible with strictly classical clients, contingent on the compu-
tational assumptions of the remote state preparation protocols.

1.2 Current Approaches to Remote State Prepa-
ration

1.2.1 QFactory

The QFactory family of protocols was introduced in [CCKW19].5 The basic
QFactory protocol produces a single random qubit from the set {|0〉 , |1〉 , |+〉 , |−〉}
(known in the quantum cryptography literature as the BB84 states). The blind-
ness guarantee given for the basic protocol is that, under computational assump-

5The authors previously published a similar but distinct “delegated pseudo-secret random
qubit generator” also called QFactory in [CCKW18], although this protocol was not verifiable,
and its security was not proven against fully malicious adversaries.
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tions (in particular, the hardness of learning with errors), a quantum server
has negligble advantage in guessing the basis of the output qubit. The ba-
sic protocol can be extended to produce a single random qubit from the set
|+θ〉 := 1√

2
(|0〉 + eiθ |1〉) for θ ∈ {0, π4 , . . . ,

7π
4 } (precisely those needed for the

Fitzsimons and Kashefi protocol); this is accomplished by running the basic
protocol twice (once in a slightly rotated basis) and “merging” the two out-
put qubits using a particular gadget. This 8-state QFactory also satisfies basis
blindness.

Either version of QFactory can be made verifiable using a protocol the au-
thors call “blind self-testing”, named by analogy to self-testing protocols for
entanglement. Essentially, the client remotely prepares a large number of ran-
dom qubits using QFactory and then asks the server to measure a random subset
of those qubits, measuring each qubit in a basis chosen uniformly at random
(from set of possible preparation bases). The client aborts if the reported mea-
surement outcomes are too unlikely with respect to the measurement statistics
of the honest state. Dishonestly producing a passing transcript of measurement
outcomes is presumed to be difficult due to the server’s basis blindness for each
qubit. An honest server passes blind self-testing with all but negligible proba-
bility. The authors prove that, in a restricted adversarial context, an adversary
that passes blind self-testing with high probability must hold a state close (up
to an efficient isometry) to the honest state, possibly including some side infor-
mation that does not depend on the actual bases of the prepared qubits. The
authors conjecture, but do not prove, that a similar guarantee holds for blind
self-testing against general adversaries. The communication complexity of the
QFactory protocol with verification scales with the total number of qubits pro-
duced before testing, although it may be possible to reduce this complexity if
the total number of qubits to prepare is known in advance.

For interested readers, a simplified overview of the basic QFactory protocol
follows. This protocol is based on a family G = {gk : {0, 1}n−1 → {0, 1}m}k
of injective trapdoor functions with the homomorphic property that for each k
and all z, z′ ∈ {0, 1}n−1

gk(z ⊕ z′) = gk(z)⊕ gk(z′)

together with a predicate h : {0, 1}n−1 → {0, 1}, hardcore with respect to any
gk,6 with the homomorphic property

h(z ⊕ z′) = h(z)⊕ h(z′).

From G, Cojocaru et al. construct a 2-regular, collision resistant trapdoor
function family F = {fk : {0, 1}n → {0, 1}m}k by choosing a random z? ∈
{0, 1}n−1/{0n−1} and taking

fk(z‖c) =

{
gk(z), if c = 0,

gk(z)⊕ y?, if c = 1

6Informally, this means that for a random z, h(z) is hard to compute on average given
gk(z) but easy given z itself.
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for each k, z ∈ {0, 1}n−1, and c ∈ {0, 1}, with y? := gk(z?). Note that, by the
homomorphic property of gk,

fk(z‖1) = gk(z)⊕ gk(z?) = gk(z ⊕ z?),

so every collision in fk is of the form (z‖0, (z ⊕ z?)‖1).
The client randomly samples a key and trapdoor (k, tk) as well as z? at the

beginning of the protocol. The client sends (k, y?) to the server in order to
classically instruct the preparation of the state

1√
2n

∑
z‖c∈{0,1}n

|h(z)〉A |z‖c〉B |fk(z‖c)〉C .

The server measures the C register in the computational basis, observing an
outcome y before discarding the measured qubits. This updates the state to

1√
2

(
|h(z0)〉A |z0‖0〉B + |h(z1)〉A |z1‖1〉B

)
(1.1)

for fk(z0, 0) = fk(z1, 1) = y. The server then measures the B register in the
Hadamard basis,7 observing an outcome d. This updates the state to

HB1XB2 |0〉 ,

for bits B1 and B2 which can be computed from z0‖0, z1‖1, and d. In particular,

B1 = h(z0)⊕ h(z1) = h(z0 ⊕ z1) = h(z0 ⊕ (z0 ⊕ z?)) = h(z?).

The server forwards the measurement outcomes y and d to the client, who can
then compute B2 using their trapdoor information.8 The one-way property of
gk and fk prevents the server from efficiently inverting y and y? to compute B1

and B2. The collision-resistance of fk prevents the server from choosing their
own collision and counterfeiting the state from 1.1. The hardcore property of h
with respect to gk ensures that y? does not give the server advantage in guessing
B1.

1.2.2 Buffered Remote State Preparation

The buffered remote state preparation protocol (BRSP) was introduced by Ghe-
orgiu and Vidick in [GV19]. The protocol has its theoretical roots in an earlier
application of trapdoor claw-free functions as a “cryptographic test of quan-
tumness” for untrusted devices [BCM+18], as well as earlier work using trap-
door claw-free functions for quantum FHE by Mahadev [Mah18a][Mah18b] and

7In the “rotated” QFactory employed as a subroutine of the 8-states protocol, these mea-
surements are performed in the |±π

2
〉 basis instead.

8A closed formula for B2 is complicated and unintuitive, but essentially if h(z?) = 0, then
B2 = h(z0), and if h(z?) = 1, then B2 = d · (z0‖0 ⊕ z1‖1). Observe that the client actually
knows the basis of the qubit prepared by the honest protocol as soon as z? is sampled. When
the basis is the computational basis, the server knows precisely which basis state is prepared
as well.
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optimality results for 2 7→ 1 quantum random-access codes [ALMO08]. The
protocol consists of repeatedly instructing a server to prepare a particular kind
of quantum state and testing the server’s compliance by performing a random
test (chosen from a small, fixed set of tests). If the server passes a high propor-
tion of the tests, the client instructs the server to distill a single random qubit
from either the set {|b〉}b∈{0,1} or the set {|+θ〉}θ∈{0,π4 ,..., 7π4 } from the quantum

state instead of testing it.9 Importantly, the server does not know how many
test rounds will occur, and the distillation process looks the same as a test
from the server’s perspective until the final step. The tests are constructed such
that a server that can pass each test with high probability must have held a
state close to the honest one, without side information that confers advantage in
guessing b or θ (under computational assumptions). The protocol can be made
ε-indistinguishable (up to isometry) from an ideal functionality for remote qubit
preparation10 using O(1/ε3) rounds of communication. BRSP is able to make
strong blindness and verification claims about its output; however, this security
comes at the cost of high communication complexity per qubit prepared.

Again, a simplified overview of the underlying theory of the BRSP protocol
follows for interested readers. The test of quantumness from [BCM+18] relies
on a family F = {fk,b : {0, 1}n → {0, 1}m}k of injective trapdoor functions such
that each pair (fk,0, fk,1) is claw-free and fk,0 and fk,1 have identical images.
The client classically instructs the server to prepare the state

1√
2

(|0〉A |x0〉B + |1〉A |x1〉B) (1.2)

such that (x0, x1) is a random claw of a random function pair (i.e., fk,0(x0) =
fk,1(x1) = y for some random k and y). By computational assumptions, this
claw can be computed efficiently by the client (using the trapdoor) but not by
the server. The server is then asked to perform one of two tests, which consist
of measuring the state in some basis and sending the outcomes to the client. In
the “preimage test”, the server measures the entire state in the computational
basis and returns a pair (b, xb) ∈ {0, 1}×{0, 1}n to the server; the server passes
only if fb(xb) = y. In the “equation test”, the server measures the entire state
in the Hadamard basis and returns a pair (b, d) ∈ {0, 1} × {0, 1}n; the server
passes only if b = d · (x0 ⊕ x1). The authors of [BCM+18] demonstrate that a
server can pass these tests with high probability only by preparing a state close
to the state 1.2. Each round of BRSP also begins by preparing a state with this
form, and variations of both of aforementioned tests are included in the test
rounds of BRSP.

When {0, 1}n is reinterpreted as Zn/38 , the server can measure the B register

of the state 1.2 in the Z8 Fourier basis with outcome d ∈ Zn/38 to update the

9The client can choose the set, but the qubit prepared from that set is random.
10The ideal functionality is a black box that assigns a random qubit (from the set of possible

qubits) to the server and a classical description of that qubit to the client whenever the server
is honest and aborts otherwise.
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state to
1√
2
e

2iπ
8 d·x0

(
|0〉A + e

2iπ
8 d·(x0+x1) |1〉A

)
, (1.3)

where addition and inner product are taken modulo 8. This state is equivalent
to a state from {|+θ〉}θ∈{0,π4 ,..., 7π4 } (with θ = 2iπ

8 d · (x0 + x1)) up to a global

phase. During the final round of BRSP, this state is the output of the protocol.11

Gheorgiu and Vidick also observe that when θ ∈ {0, π2 , π,
3π
2 } this state can also

be interpreted as an optimal 2 7→ 1 quantum random-access code for some pair
of bits (b1, b2). Thus BRSP includes an additional kind of test distilling the
state 1.3 from 1.2, treating it as a quantum random-access code (when valid),
and requesting one of the encoded bits uniformly at random. The server passes
this test with near-optimal probability only by producing a state close to 1.3
(up to isometry).

1.3 Our Contributions

We present a new protocol for quantum remote state preparation which we call
the Shell Game protocol. This protocol relies on a new primitive called a Magic
SWAP Box which acts as a trusted third party between the client and server.
The magic box takes as input two qubits from the server and a secret control bit
s from the client. The qubits are swapped if and only if s = 1. The qubits are
returned to the server encrypted with a quantum one-time pad, and the client
receives the encryption keys. The protocol proceeds by instructing the server to
prepare a large quantum state consisting of many |0〉 and |+〉 qubits and using
the magic box many times to privately permute and encrypt this state. The
client then attempts to verify the preparation by asking the server to measure
some of the prepared qubits in random bases, aborting if the outcomes are
physically inconsistent with the honest state. The remaining state after testing
consists of a number of qubits (chosen by the client at the start of the protocol
as a security parameter) in random BB84 states. A variation of the protocol can
be used to encode the output qubits in the trap code authentication scheme from
[BGS13]. The number of rounds of communication required by either variation
of the protocol is constant and independent of the number of qubits produced;
one round is used during the “commitment phase” to permute the initial state,
and one round is used in the “test phase” to test the committed state. We give
a construction of computationally secure magic boxes in the quantum honest-
but-curious setting from trapdoor claw-free function families. We give a full
analysis of the security of the Shell Game in the quantum honest-but-curious
setting, demonstrating that such adversaries cannot learn the permutation or
quantum one-time pad applied to the prepared state. Ideally, we would like to

11To prepare a |0〉 or |1〉 instead, the client uses a family of injective trapdoor function pairs
G instead of F to instruct the preparation of the output state. Function pairs from G have
disjoint (rather than identical) images. The server should not be able to distinguish pairs
sampled from F from pairs sampled from G.
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prove security against stronger adversaries. To this end, we include a small case
study of the security of the magic box resource against active adversaries.

1.4 Organization of This Thesis

The thesis is organized as follows. Chapter 2 gives brief overview of notation
and basic concepts employed throughout this work. Chapter 3 describes magic
boxes in detail and describes how to construct computationally secure magic
boxes in the quantum honest-but-curious setting using a secret-CNOT gadget
(itself based on trapdoor claw-free function families) first described by Mahadev.
Chapter 4 describes the Shell Game protocol in detail and analyzes its security
against quantum honest-but-curious adversaries. Chapter 5 begins addressing
the security of the Shell Game against fully malicious servers, including ways
secret-CNOT gadgets may fail to implement magic boxes against active ad-
versaries. Chapter 6 discusses possible improvements to the Shell Game and
directions for future research.
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Chapter 2

Notation and Preliminaries

2.1 Notation

2.1.1 Quantum States

We use standard notation for quantum information theory and assume familiar-
ity with the subject equivalent to a first course in quantum computation.1 We
use bra-ket notation for pure states. An arbitrary pure, normalized quantum
state is represented by |ψ〉, and its adjoint (conjugate transpose) is represented

by |ψ〉† := 〈ψ|. We denote the single-qubit states

|0〉 :=

(
1
0

)
and

|1〉 :=

(
0
1

)
and refer to the orthonormal basis for C2 defined by these states as the compu-
tational basis or Z basis. We also define

|+〉 :=
1√
2

(|0〉+ |1〉)

and

|−〉 :=
1√
2

(|0〉 − |1〉)

1The first two chapters of Ronald de Wolf’s publicly available lecture notes should provide
sufficient background [dW19].
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and refer to the basis defined by them as the Hadamard or X basis. We denote
the two-qubit entangled states known as the Bell states by

|Φ+〉 =
1√
2

(|00〉+ |11〉),

|Φ−〉 =
1√
2

(|00〉 − |11〉),

|Ψ+〉 =
1√
2

(|01〉+ |10〉), and

|Ψ−〉 =
1√
2

(|01〉 − |10〉),

and we refer to the basis on C4 defined by them as the Bell basis. We also
sometimes refer to |Φ+〉 as an EPR pair.

When a quantum state exists on particular registers of a quantum server’s
workspace, we may add the name of the registers to the quantum state as a
subscript, as in |0〉A or |ψ〉AB . When we speak of mixed quantum states, we
usually denote them by ρ. We use Tr[ρ] to denote the linear algebraic trace
of ρ. We use TrB [ρAB ] refer to the partial trace of ρAB “tracing out” the B
subsystem. We sometimes abuse this notation slightly, writing TrB [|ψ〉AB ] to
refer to the remaining state after discarding the B register of the pure state
|ψ〉AB .

When we discuss the distance between two quantum states ρ and σ, we use
the trace distance, defined as

T (ρ, σ) =
1

2
||ρ− σ||1,

i.e., the half the 1-norm (or Schatten norm) of the matrix ρ − σ. This is a
measure of the distinguishability of ρ from σ by measurement. If T (ρ, σ) = 0,
then the two states are physically identical and cannot be distinguished by any
measurement. If T (ρ, σ) = 1, then the two states are orthogonal and can be
distinguished perfectly by some measurement. We will often be interested in
showing that two states are “close” in the sense of having small trace distance.

2.1.2 Unitary Matrices and Quantum Logic Gates

We denote the unitary Pauli matrices (or quantum logic gates implementing
them) by

X = |+〉 〈+| − |−〉 〈−| =
(

0 1
1 0

)
,

Z = |0〉 〈0| − |1〉 〈1| =
(

1 0
0 −1

)
, and

Y = −iZX = iXZ =

(
0 −i
i 0

)
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When a pure quantum state can be written as Z~zX~x |ψ〉, where ψ is composed
of n qubits, Z~z = Zz1 ⊗ . . . ⊗ Zzn , and X~x = Xx1 ⊗ . . . ⊗ Xxn , we refer to
Z~zX~x as the “Pauli Padding” of |ψ〉 and (~x, ~z) as the “Pauli keys”. When the
exponents ~x and ~z are chosen uniformly at random, the Pauli padding is called
a quantum one-time pad (QOTP) by analogy with a classical one-time pad. As
a classical one-time pad provides information theoretically secure encryption, a
QOTP provides information theoretically secure encryption of a quantum state.

Other important single-qubit matrices/gates we refer to include the identity
matrix

I =

(
1 0
0 1

)
and the Hadamard gate for switching between the computational and Hadamard
bases

H =
1√
2

(
1 1
1 −1

)
.

Important two-qubit gates include the CNOTAB gate, which implements an X
on the qubit in the B register if and only if the qubit in the A register is the state
|1〉, and the SWAPAB gate, which swaps the qubits in the A and B registers.
Our Shell Game protocol implements a secret permutation of a state held by
the quantum server by SWAPing two qubits at a time. We also note that

SWAPAB = CNOTABCNOTBACNOTAB .

To see that this so, consider an arbitrary two-qubit state

|ψ〉AB =
∑

(a,b)∈{0,1}2
αab |a〉A |b〉B .

Then, using the fact that CNOTAB |a〉A |b〉B = |a〉A |a⊕ b〉B ,

CNOTABCNOTBACNOTAB |ψ〉AB = CNOTABCNOTBA
∑

αab |a〉A |a⊕ b〉B
= CNOTAB

∑
αab |a⊕ (a⊕ b)〉A |a⊕ b〉B

= CNOTAB
∑

αab |b〉A |a⊕ b〉B
=
∑

αab |b〉A |b⊕ (a⊕ b)〉B
=
∑

αab |b〉A |a〉B
= SWAPAB |ψ〉AB .

2.2 Trapdoor Claw-Free Functions

A family of trapdoor claw-free function (TCF) pairs is a function family F =
{fk,b : X → Y} such that each function is indexed by a key k and a bit b ∈ {0, 1}.
All functions in F are injective, and pairs fk,0, fk,1 have equal images. Each
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function fk,b in the family is “one-way” in the sense that, given x ∈ X , fk,b can
be computed efficiently, but inverting random y ∈ Y is inefficient without extra
information. The trapdoor property guarantees that there exists such a piece
of extra information tk (called a “trapdoor”) for each pair fk,0, fk,1 that allows
efficient inversion when it is known. For any TCF pair, a pair (x0, x1) ∈ X ×X
such that fk,0(x0) = fk,1(x1) is called a claw; the claw-free property guarantees
that it is difficult to find such claws. In this work, X = {0, 1}n and Y = {0, 1}m
for some positive integers n and m. We will also typically drop the k subscript
whenever possible and speak only of TCF pairs f0 and f1.

TCFs have become popular in quantum cryptography for two reasons. The
first is that, when the trapdoor information is known to a classical client but
hidden from a quantum server, the client can efficiently compute a claw of preim-
ages (x0, x1) given an image y, but the server cannot. Clients can leverage this
asymmetry of information in order to interact with much more computationally
powerful servers on more equal footing during cryptographic protocols involving
TCFs. The second reason is that the claw structure of TCFs can be exploited
in the quantum setting to develop novel cryptographic protocols. In particular,
a classical client can direct a quantum server to produce a superposition over a
random claw of a TCF pair: ∑

a∈{0,1}

|a〉 |xa〉 .

Subsection 3.2.1 explains the details of preparing this superposition, as well as
how to use it to build a secret-CNOT gadget (due to Mahadev [Mah18a]) for
use in our Shell Game protocol.

2.3 Steane Quantum Error Correcting Code

The Steane code is a [[7, 1, 3]] quantum error correcting code, encoding a single
qubit into a seven-qubit quantum code word, also called a “logical qubit”. This
quantum error correcting code is able to correct arbitrary errors (or attacks by
adversaries) that affect only a single qubit of the quantum code word. A circuit
for implementing the Steane encoding is given in Figure 2.1

The theoretical basis for the Steane code and the details of how it is used to
correct errors are not directly relevant to our Shell Game. (The interested reader
can find those details in Steane’s original paper [Ste96].) What is important is
that when a server holds a surplus of |0〉 and |+〉 qubits to use as ancilla, the
Steane encoding can be implemented using only CNOT gates. This means that
the same secret-CNOT operations a client uses to secretly permute a server’s
state can also be used to secretly encode part of the server’s state.

Note that, in the Steane encoding circuit, operations of the form CNOTAB
and CNOTAC (i.e., two CNOTs controlled on the same qubit but targeting
different qubits) commute, as do operations of the form CNOTAC and CNOTBC
(i.e., two CNOTs controlled by different qubits but targeting the same qubit).
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d: |ψ〉 •

a1: |0〉

a2: |0〉

a3: |0〉

a4: |0〉 H •

a5: |0〉 H •

a6: |0〉 H •

Figure 2.1: A circuit for encoding a single data qubit |ψ〉 (labeled d) into a single
logical qubit |ψ̃〉 using six |0〉 ancilla qubits (labeled a1 through a6). Filled dots
represent controls for CNOT gates; ⊕s represent targets of those gates.

To see this, consider an arbitrary state

|ψ〉ABC =
∑

(a,b,c)∈{0,1}3
αabc |a〉A |b〉B |c〉C .

Then

CNOTABCNOTAC |ψ〉ABC =
∑

αabc |a〉A |a⊕ b〉B |a⊕ c〉C
= CNOTACCNOTAB |ψ〉ABC

and

CNOTACCNOTBC |ψ〉ABC =
∑

αabc |a〉A |b〉B |a⊕ b⊕ c〉C
= CNOTBCCNOTAC |ψ〉ABC

On the other hand, operations of the form CNOTAB and CNOTBC do not
commute in general, since in general

CNOTABCNOTBC |ψ〉ABC =
∑

αabc |a〉A |a⊕ b〉B |b⊕ c〉C
6=
∑

αabc |a〉A |a⊕ b〉B |(a⊕ b)⊕ c〉C
= CNOTBCCNOTAB |ψ〉ABC

Thus, when we implement the Steane encoding during our Shell Game protocol,
it is important that all CNOTs controlled on the data qubit occur before all
CNOTs that target the data qubit, but otherwise the order of the CNOTs in
the encoding circuit is not important.

2.4 Trap Code Authentication

Trap encoding is an authentication scheme based on error-correcting codes in-
troduced in [BGS13]. Given a [[n, 1, d]] quantum error correcting code, one can
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implement a family E of (3n)! distinct [[3n, 1, d]] trap codes. The trap encoding
of a single data qubit |ψ〉 proceeds as follows:

1. |ψ〉 is encoded as an n-qubit logical qubit |ψ̃〉 using an error correcting
code.

2. |ψ̃〉 is adjoined with n |0〉 and n |+〉 ancillary qubits. These qubits are
referred to as “trap” qubits.

3. A permutation π chosen uniformly at random from S3n is applied to the
entire 3n qubit state. Each different permutation implements a different
trap encoding in the family E .

The entire trap encoded state should then be encrypted with a quantum one-
time pad. Authentication is performed by measuring and verifying the trap
qubits.

Such a family E of trap codes is said to be (2/3)d/2-secure against Pauli
attacks. This means that the probability (over a uniform choice over the per-
mutation π) that an arbitrary Pauli attack has a nontrivial effect on the data
|ψ〉 yet is undetectable is at most (2/3)d/2. Any Pauli attack that cannot be de-
tected by the underlying [[n, 1, d]] error correcting code must have Pauli weight
at least d and so must apply an X to at least d/2 of the encoded qubits or a
Z to at least d/2 of the encoded qubits. Each qubit an adversary attacks is a
trap qubit with probability 2/3; |0〉 traps detect X attacts, and |+〉 traps detect
Z-attcks. Furthermore, any attack is equivalent to a mixture of Pauli attacks
when the trap encoded state is also quantum one-time padded. For more details
about trap code authentication schemes, see [BGS13] and [DS18].

Our Shell Game protocol can be used to remotely prepare trap code authen-
ticated qubits using the Steane encoding. More broadly, trap authentication
schemes were one of the primary inspirations for the Shell Game, which works
by applying a secret permutation to a large quantum state of |0〉 and |+〉 qubits
and attempts to catch cheating by measuring most of the state.

2.5 Adversaries

Since some versions of our Shell Game protocol rely on Mahadev’s secret-CNOT
gadget, which itself relies on the security of TCFs, the security of these versions
of the Shell Game relies on the same computational assumptions required to
make TCFs secure. Thus we cannot prove information theoretic security against
computationally unbounded adversaries. Instead, we assume adversaries are
bounded-error quantum polynomial time (BQP) servers.

Although we are ultimately interested in proving security against active,
fully malicious adversaries (and we make some attempt to address them in
chapter 5), we mostly focus on 0-specious adversaries, which we will refer to as
quantum honest-but-curious (QHBC) adversaries. This captures the quantum
generalization of classical honest-but-curious adversaries, who follow protocols
honestly but attempt to learn more than they should.
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Specious adversaries are a restricted class of adversaries that may deviate
from a protocol, but any step, they must be able to reconstruct a state “close”
to the honest state. 0-specious adversaries must be able to reconstruct the
honest state exactly. This means that our QHBC adversaries are restricted to
follow protocols honestly, except that they may (1) remember any classical in-
formation they learn, (2) arbitrarily purify the honest state, and (3) perform
measurements which they know will be nondestructive. For a fully formal de-
scription of speciousness, see [DNS10].
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Chapter 3

Magic Boxes

In this chapter, we define several kinds of cryptographic magic boxes that will
be the building blocks for our Shell Game protocol. We also describe how
gadgets similar to magic boxes can be constructed using a secret CNOT gadget
developed by Mahadev and discuss the security of such gadgets against QHBC
adversaries.

3.1 Ideal Magic Boxes

An ideal magic box is essentially a trusted third party between the classical
client and quantum server. The box takes some input from each party, performs
some operation on the input, and returns output to each party. Neither party’s
input or output is explicitly revealed to the other party. Essentially, a magic
box allows a client to direct a server to perform some operation on its quantum
state while withholding some information about the operation from the server.
A few examples of relevant magic boxes are given below.

3.1.1 Magic QOTP Box

x←$ {0, 1}
z←$ {0, 1}

QOTP BoxClient
ε

x, z

Server
|φ〉A

ZzXx |φ〉A

Figure 3.1: Magic QOTP Box functionality. The client’s input ε is the empty
string.

The simplest magic box we consider is a Magic Quantum One-Time Pad
(QOTP) Box. This box takes as input a single qubit from the server and
nothing (represented by the empty string ε in Figure 3.1) from the client. The
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box applies a QOTP to the input before returning the padded state to the
server and the QOTP Pauli keys to the client. This box essentially allows a
classical client to quantum one-time pad a qubit held by the server without
having to share the keys with the server. Although the Magic QOTP Box is not
used directly in our shell game protocols and we do not attempt to construct a
gadget for it, this box plays an essential role in our security analysis of larger
boxes in chapter 5.

3.1.2 Magic CNOT Box

x←$ {0, 1}
z←$ {0, 1}

CNOT BoxClient
s

x, z

Server
|φ〉AB

ZzA ⊗Xx
BCNOTsAB |φ〉AB

Figure 3.2: Magic CNOT Box functionality, with s a secret bit chosen by the
client.

The next magic box we consider is a Magic CNOT Box, illustrated in Fig-
ure 3.2. This box takes a secret bit s from the client and a two-qubit quantum
state |φ〉AB from the server. The box returns the state ZzA⊗Xx

BCNOTsAB |φ〉AB
to the quantum server (with x and z generated uniformly at random) and returns
x and z to the client. This box allows a classical client to direct a quantum server
to perform a “secret” CNOT operation: the client knows whether a CNOT was
actually performed on the server’s qubits, but the server itself does not (i.e.,
the server does not learn s). This magic box is an ideal version of the secret
CNOT gadget developed by Mahadev, which we describe in subsection 3.2.1
and analyze in section 3.3.

Note that the Zz⊗Xx Pauli padding on the output is necessary to keep the
client’s secret bit s private from adversarial QHBC servers. To see why, con-
sider what happens when the server’s quantum input is, for example, |1〉 |0〉. If
this padding were not present, the server could learn s by measuring the second
qubit in the computational basis. However, with the X padding, the outcome
of that measurement is x⊕ s (rather than simply s). Since x is uniformly ran-
dom, the outcome of the measurement is also uniformly random and therefore
totally uncorrelated. (Similarly, without the Z padding, the server could learn
s on input |+〉 |−〉 by measuring the first output qubit in the Hadamard basis.)
There is no nondestructive measurement the QHBC server can perform on any
input that will reveal s. Indeed, even a computationally unbounded, fully mali-
cious server would have no advantage in guessing s. The following proposition
formalizes this idea.

Proposition 1. Regardless of the state the server inputs to the Magic CNOT
Box, the server’s output when s = 0 is indistinguishable from the server’s output
when s = 1.

21



Proof. Let the server’s initial state be

|φ〉ABC =
∑

(a,b)∈{0,1}2,c∈{0,1}|C|

αabc |a〉A |b〉B |c〉C ,

where the A and B subsystems are the two qubits entered into the magic box
and the C subsystem is an arbitrary number of qubits as side information. Also
let

ρABC = |φ〉 〈φ|ABC
=

∑
(a,b,a′,b′)∈{0,1}4,(c,c′)∈{0,1}2|C|

αabcα
∗
a′b′c′ |a〉 〈a′|A ⊗ |b〉 〈b

′|B ⊗ |c〉 〈c
′|C .

Recall that the exponents of the Pauli padding applied by the box are chosen
uniformly at random and that these exponents are not explicitly output to
the server. For s=0, the output of the box from the server’s informational
perspective is

ρs=0 =
1

4

(
ρABC + (IA ⊗XB)ρABC(IA ⊗XB)

+ (ZA ⊗ IB)ρABC(ZA ⊗ IB) + (ZA ⊗XB)ρABC(ZA ⊗XB)
)

=
1

4

(∑
αabcα

∗
a′b′c′ |a〉 〈a′|A ⊗ |b〉 〈b

′|B ⊗ |c〉 〈c
′|C

+
∑

αabcα
∗
a′b′c′ |a〉 〈a′|A ⊗ |1− b〉 〈1− b

′|B ⊗ |c〉 〈c
′|C

+
∑

(−1)a⊕a
′
αabcα

∗
a′b′c′ |a〉 〈a′|A ⊗ |b〉 〈b

′|B ⊗ |c〉 〈c
′|C

+
∑

(−1)a⊕a
′
αabcα

∗
a′b′c′ |a〉 〈a′|A ⊗ |1− b〉 〈1− b

′|B ⊗ |c〉 〈c
′|C
)

Observe that when we add the first and third sum and the second and fourth
sum, terms with a 6= a′ cancel out.

=
1

2

(∑
αabcα

∗
ab′c′ |a〉 〈a|A ⊗ |b〉 〈b

′|B ⊗ |c〉 〈c
′|C

+
∑

αabcα
∗
ab′c′ |a〉 〈a|A ⊗ |1− b〉 〈1− b

′|B ⊗ |c〉 〈c
′|C
)

Finally, we combine like terms in the two remaining sums.

=
∑

αabcα
∗
ab′c′ |a〉 〈a|A ⊗

(1

2
|b〉 〈b′|+ 1

2
|1− b〉 〈1− b′|

)
B
⊗ |c〉 〈c′|C .
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In the case that s = 1, the server’s box output is

ρs=1 =
1

4

(
CNOTABρABCCNOTAB

+ (IA ⊗XB)CNOTABρABCCNOTAB(IA ⊗XB)

+ (ZA ⊗ IB)CNOTABρABCCNOTAB(ZA ⊗ IB)

+ (ZA ⊗XB)CNOTABρABCCNOTAB(ZA ⊗XB)
)

=
1

4

(∑
αabcα

∗
a′b′c′ |a〉 〈a′|A ⊗ |b⊕ a〉 〈b

′ ⊕ a′|B ⊗ |c〉 〈c
′|C

+
∑

αabcα
∗
a′b′c′ |a〉 〈a′|A ⊗ |b⊕ (1− a)〉 〈b′ ⊕ (1− a′)|B ⊗ |c〉 〈c

′|C
+
∑

(−1)a⊕a
′
αabcα

∗
a′b′c′ |a〉 〈a′|A ⊗ |b⊕ a〉 〈b

′ ⊕ b′|B ⊗ |c〉 〈c
′|C

+
∑

(−1)a⊕a
′
αabcα

∗
a′b′c′ |a〉 〈a′|A ⊗ |b⊕ (1− a)〉 〈b′ ⊕ (1− a′)|B ⊗ |c〉 〈c

′|C
)

Again, we can add the first and third sums and second and fourth sums, using
the (−1)a⊕a

′
phase to cancel terms with a 6= a′.

=
1

2

(∑
αabcα

∗
ab′c′ |a〉 〈a|A ⊗ |b⊕ a〉 〈b

′ ⊕ a|B ⊗ |c〉 〈c
′|C

+
∑

αabcα
∗
ab′c′ |a〉 〈a|A ⊗ |b⊕ (1− a)〉 〈b′ ⊕ (1− a)|B ⊗ |c〉 〈c

′|C
)

We can also add like terms in this case.

=
∑

αabcα
∗
ab′c′ |a〉 〈a|A ⊗

(1

2
|b⊕ a〉 〈b′ ⊕ a|+ 1

2
|b⊕ (1− a)〉 〈b′ ⊕ (1− a)|

)
B
⊗ |c〉 〈c′|C

Now observe that regardless of the value of a, the B subsystem of each term
can be expressed as 1

2 |b〉 〈b
′|+ 1

2 |1− b〉 〈1− b
′|.

=
∑

αabcα
∗
ab′c′ |a〉 〈a|A ⊗

(1

2
|b〉 〈b′|+ 1

2
|1− b〉 〈1− b′|

)
B
⊗ |c〉 〈c′|C

This is precisely the state we computed for ρs=0.

=ρs=0.

Thus the two cases are indistinguishable from the perspective of the server.

Note also that the client’s output (i.e., the Pauli keys) is not always entirely
private from a QHBC server. For example, if the server’s quantum input is
|+〉 |+〉, a QHBC server can learn z simply by measuring the first qubit of the
box output in the Hadamard basis, although it will still have no advantage in
guessing either x or s in that case.
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x0←$ {0, 1}
z0←$ {0, 1}
x1←$ {0, 1}
z1←$ {0, 1}

SWAP BoxClient
s

x0, x1

z0, z1

Server
|φ〉AB

Zz0Xx0

A ⊗ Zz1X
x1

B SWAPsAB |φ〉AB

Figure 3.3: Magic SWAP Box functionality.

3.1.3 Magic SWAP Boxes

The Magic SWAP Box, illustrated in Figure 3.3, is similar to a Magic CNOT
box in that it takes a secret bit s from the client and a two-qubit quantum
state |φ〉AB from the server. The box generates a QOTP uniformly at random,
returns the one-time padded state

Zz0Xx0

A ⊗ Z
z1Xx1

B SWAPsAB |φ〉AB

to the server, and returns the QOTP Pauli keys to the client. Our shell game
protocol uses boxes like these to secretly permute and encrypt a quantum state
held by the server.

Observe that, even if a Magic SWAP Box is unavailable, the client and server
could achieve a similar effect by “chaining” three Magic CNOT Boxes, using the
fact that

CNOTABCNOTBACNOTAB = SWAPAB .

First, the client and server input s and |φ〉 into a Magic CNOTAB Box. Then,
the server feeds the ouput of that box into a Magic CNOTBA Box, into which
the client inputs the same s. Finally, the server feeds the output of the second
box to a Magic CNOTAB Box, into which the client inputs the same s. The final
quantum state held by the server is a quantum one-time padded SWAPsAB |φ〉AB .
The client can compute the QOTP Pauli keys from the output received from
the three Magic CNOT Boxes. (See section 3.3 for details.)

The weakness of performing a secret-SWAP in this way, rather than with
a Magic SWAP Box, is that an adversarial server has more opportunity to
deviate from an honest protocol (e.g., by inputting some quantum state besides
the output of the previous box into the next box). The strength is that a client
can also be more flexible; that is, the client need not choose the same s for
every Magic CNOT Box. Depending on the choice of s1, s2, s3 input to the
three Magic CNOT Boxes, the client could alter the secret operation delegated
by the protocol to be SWAPAB ,CNOTAB ,CNOTBA, or IA ⊗ IB . This is the
inspiration for the modified Magic SWAP Box in Figure 3.4, which is used in
one version of our shell game protocol to secretly permute, encrypt, and encode
a quantum state held by the server with an error correcting code. The ability
to simultaneously secretly encode the server’s state while secretly permuting it
allows the client to remotely prepare a trap-encoded quantum state using our
Shell Game protocol.
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x0←$ {0, 1}
z0←$ {0, 1}
x1←$ {0, 1}
z1←$ {0, 1}

SWAP Box 2Client
U

x0, x1

z0, z1

Server
|φ〉AB

Zz0Xx0

A ⊗ Zz1X
x1

B U |φ〉AB

Figure 3.4: Modified Magic SWAP Box functionality. U is a classical description
of a unitary chosen from the set {SWAPAB ,CNOTAB ,CNOTBA, IA ⊗ IB}.

3.2 Mahadev’s Secret CNOT Gadget

In this section, we describe the construction of a secret-CNOT gadget first pub-
lished by Mahadev in [Mah18a]. We relate this gadget to the magic boxes
described in the previous section. In the following section, we analyze the se-
curity of the gadget against bounded-error quantum polynomial time (BQP)
QHBC adversaries.1

3.2.1 Gadget Description

Mahadev’s gadget assumes the existence of quantum-safe TCF pairs2. In the
first step, the client generates an encryption of the secret bit s as a trapdoor
claw-free function pair Enc(s) = (f0, f1), together with a trapdoor for inverting
each function. The function pairs have the form fb : {0, 1}n → {0, 1}m for
b ∈ {0, 1} and must satisfy the additional restriction that if f0(x0) = f1(x1),
then x0 = µ0‖r0 and x1 = µ1‖r1 such that µ0 ⊕ µ1 = s. (In other words, the
XOR of the initial bits of any claw is always s.) The client then sends some
classical description of Enc(s) to the server, which we will refer to as a public key
k. This public key allows the server to implement the following (1+n+m)-qubit
controlled unitary ÛEnc(s):

ÛEnc(s) |a〉A |x〉X |y〉Y = |a〉A |x〉X |y ⊕ fa(x)〉Y ,

for a ∈ {0, 1}, x ∈ {0, 1}n, and y ∈ {0, 1}m. The client retains the trapdoor
information privately so that she can efficiently invert the functions and find
claws, but the polytime-bounded quantum server cannot.

Suppose the server’s initial state on which the secret-CNOT is to be per-
formed is |φ〉AB =

∑
a,b∈{0,1} αab |a〉A |b〉B . The server first prepares n + m

ancillary registers in the all-zero state.

|φ〉AB |~0〉X |~0〉Y
1BQP is the complexity class of decision problems efficiently solvable by quantum comput-

ers as defined in [BV97]. Refer to section 2.5 for the definition of QHBC.
2Of course, the existence of true families of TCFs, as with all one-way function families,

is conjectural. However, Mahadev also gives a construction of a family that behaves similarly
to a family of TCF pairs using the Learning with Errors (LWE) problem. This family is
quantum-safe assuming the hardness of LWE. For details, see [Mah18a]
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The server then applies a Hadamard transform H⊗nX to the X register to produce
a uniform superposition over all strings in {0, 1}n, the domain of Enc(s).

1√
2n

∑
x∈{0,1}n

|φ〉AB |x〉X |~0〉Y

Next, the server applies ÛEnc(s), controlled on the A and X registers and tar-
geting the Y register.

1√
2n

∑
a,b,x

αab |a〉A |b〉B |x〉X |fa(x)〉Y

Note that at this point, the Y register is entangled with the A and X registers.
The server then measures the Y register in the computational basis and reports
the outcome y to the client. The server’s remaining state collapses to∑

a,b

αab |a〉A |b〉B |xa〉X ,

with f0(x0) = f1(x1) = y a claw of Enc(s). Under the assumption that Enc(s)
is quantum-safe and without the trapdoor, the server cannot compute this claw
efficiently.3

To leverage our additional restriction on the structure of claws of Enc(s), we
can also relabel the server’s X register as |x〉X = |µ, r〉X .∑

a,b

αab |a〉A |b〉B |µa, ra〉X

Since µ0⊕µ1 = s, we have µa = (a · s)⊕µ0. The server now performs a CNOT
controlled by the first bit of the X register (containing µ) and targeting the B
register. Since CNOT |b1〉 |b2〉 = |b1〉 |b2 ⊕ b1〉, the server’s state becomes∑

a,b

αab |a〉A |b⊕ ((a · s)⊕ µ0)〉B |µa, ra〉X .

Since Xµ |b〉 = |b⊕ µ〉 and CNOTs |a〉 |b〉 = |a〉 |b⊕ (a · s)〉, we can rewrite this
state as

(IA ⊗Xµ0 ⊗ IX)CNOTsAB
∑
a,b

αab |a〉A |b〉B |xa〉X .

Next, the server performs another Hadamard transform H⊗nX on the X reg-
ister, changing the state to

(IA ⊗Xµ0 ⊗ IX)CNOTsAB
∑
a,b

αab |a〉A |b〉B
( 1√

2n

∑
d∈{0,1}n

(−1)d·xa |d〉X
)
.

3Claw-freeness also guarantees that a dishonest server cannot efficiently counterfeit this
state by choosing the claw themselves.
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Finally, the server measures the X register in the computational basis and re-
ports the outcome d to the client. The server’s remaining quantum state col-
lapses to

(IA ⊗Xµ0)CNOTsAB
∑
a,b

(−1)d·xaαab |a〉 |b〉 ,

or equivalently, up to an irrelevant global phase,

(Z
(d·x0)⊕(d·x1)
A ⊗Xµ0

B )CNOTsAB |φ〉 .

(Note that a Hadamard transform followed by a computational basis measure-
ment is equivalent to a Hadamard basis measurement.)

Both the Pauli exponents (d · x0)⊕ (d · x1) (equivalently, d · (x0 ⊕ x1), and
hereafter assigned the symbol d̄) and µ0 can be efficiently computed by the
client after learning y and d, since the client retains the trapdoor information
that allows inversion of the TCF pair.

3.2.2 Secret-CNOT Gadget vs. Magic CNOT Box

Certain similarities between the Secret-CNOT gadget and the Magic CNOT Box
are obvious. They both require a secret bit s from the client and a bipartite
quantum state |ψ〉 from the server, and they both result in the server holding a
state of the form Zz ⊗XxCNOTsAB |φ〉 such that the client knows the values of
the exponents x and z. But dissimilarities are equally obvious. The gadget has
no trusted third party; the server is in charge of manipulating its own quantum
state and reporting outcomes to the client, and so there is more opportunity
for an adversarial server to cheat in a protocol built from secret-CNOT gadgets
than in one built from Magic CNOT Boxes. Furthermore, the exponents of the
Pauli padding of the gadget are not truly generated uniformly at random, and
the server is prevented from computing them only by the hardness of inverting
one-way functions and finding claws.

However, in the QHBC setting we focus on, having extra opportunities for
dishonest behavior is not much of a problem, since adversaries are so restricted.
Furthermore, since we consider servers which are computationally bounded, our
servers are unable to distinguish the exponents of the Pauli padding gener-
ated by the secret-CNOT gadget from truly random bits except with negligible
probability (as we shall prove in section 3.3). Thus, in our particular setting,
secret-CNOT gadgets are “almost as good” as true magic boxes. Furthermore,
we can use secret-CNOT gadgets to build secret-SWAP gadgets that are almost
as good as true Magic SWAP boxes.

3.2.3 Secret-SWAP from Secret-CNOT

In the same way that we can approximate a Magic Swap Box using three Magic
CNOT Boxes, we can construct a secret-SWAP Gadget using three secret-CNOT
gadgets. After applying three secret-CNOT gadgets (reversing the control and
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target for the second secret-CNOT) on an initial bipartite state |ψ〉, the state
becomes

(Z d̄
(3)

⊗Xµ
(3)
0 )CNOTs

(3)

AB (Xµ
(2)
0 ⊗ Z d̄

(2)

)CNOTs
(2)

BA (Z d̄
(1)

⊗Xµ
(1)
0 )CNOTs

(1)

AB |ψ〉 ,

where each superscript (i) is a reminder of which of the three secret-CNOTs a
particular variable is associated with. Note that the client is free to choose a
different s for each secret-CNOT, and even if the same s is reused every time,
then a different encryption (that is, a different TCF pair) should be used for
each secret-CNOT. Furthermore, the exponents µ0 and d̄ generated by each
gadget will not in general be the same, even if the same secret and encryption
were reused, because the measurement outcomes y and d that generate them
are uniformly distributed each time.

We can move the secret CNOTs to the inside using the following rules:

CNOTs(X ⊗ I) = (X ⊗Xs)CNOTs

CNOTs(I ⊗X) = (I ⊗X)CNOTs

CNOTs(Z ⊗ I) = (Z ⊗ I)CNOTs

CNOTs(I ⊗ Z) = (Zs ⊗ Z)CNOTs

We can also re-arrange the accumulated Pauli operators into the form ZzXx

using anticommutativity,

XxZz = (−1)x·zZzXx,

though we can effectively disregard the (−1)x·z phase as it is global.
Thus the final state (up to global phase) without Pauli padding is

CNOTs
(3)

ABCNOTs
(2)

BACNOTs
(1)

AB |ψ〉 ,

which is equal to SWAPAB |ψ〉, CNOTAB |ψ〉, CNOTBA |ψ〉, or (I ⊗ I) |ψ〉 de-
pending on how the client chose the secret bits for the three secret-CNOT gad-
gets. (Compare to the Modified Magic SWAP Box in Figure 3.4.) If the client
restricts its choices such that s(1) = s(2) = s(3) = s, then the unpadded state is
SWAPsAB |ψ〉. (Compare with the unmodified Magic SWAP Box in Figure 3.3.)

In either case, the Pauli padding on top of this state is

Z d̄
(3)⊕(d̄(1)⊕((d̄(2)⊕(d̄(1)·s(2)))·s(3)))Xµ

(2)
0 ⊕(µ

(1)
0 ·s

(2))

⊗Z d̄
(2)⊕(d̄(1)·s(2))Xµ

(3)
0 ⊕(µ

(1)
0 ⊕(µ

(2)
0 ⊕(µ

(1)
0 ·s

(2)))·s3).

We can further rewrite the exponents in a more intuitive form. Note that
for bits a and b we have (a ⊕ (b · s(i))) · s(j) = (a · s(j)) ⊕ (b · s(i)s(j)) and
b⊕ (b · s(i)s(j)) = b · (1− s(i)s(j)). Thus the Pauli padding is

Z d̄
(3)⊕(d̄(2)·s(2))⊕(d̄(1)·(1−s(2)s(3)))Xµ

(2)
0 ⊕(µ

(1)
0 ·s

(2))

⊗Z d̄
(2)⊕(d̄(1)·s(2))Xµ

(3)
0 ⊕(µ

(2)
0 ·s

(3))⊕(µ
(1)
0 ·(1−s

(2)s(3))).
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If the client is restricted to choosing s(1) = s(2) = s(3) = s, then the padding
becomes

Z d̄
(3)⊕(d̄(2)·s)⊕(d̄(1)·(1−s))Xµ

(2)
0 ⊕(µ

(1)
0 ·s) ⊗ Z d̄

(2)⊕(d̄(1)·s)Xµ
(3)
0 ⊕(µ

(2)
0 ·s)⊕(µ

(1)
0 ·(1−s)).

If these exponents appear random to the server (which, by computational
assumptions, cannot determine s), then the state is effectively quantum one-
time padded on top of the secret-SWAP. This is a weaker (computationally
secure) version of the true (information theoretically secure) QOTP applied by
the Magic SWAP Box.

3.3 Gadget Security

We must now confirm that exponents of the Pauli padding really do appear
random to a computationally bounded QHBC server. We begin with a few
informal observations and conclude with proofs of specific claims. First, note
that when the server behaves honestly, the outcomes y and d that generate
the exponents result from measuring an equal superposition over all possible
outcomes. Thus, these measurement outcomes are truly random if anything in
the universe is.

Next, note that, by construction, µ0 is a uniformly random bit when the
server honestly measures a random y. A computationally bounded server cannot
learn µ0 by inverting y. A QHBC server cannot learn µ0 by measurement except
in the degenerate case that server knows the control qubit was in the state |0〉,
as in this case the X register never contains a superposition over claws, but
merely the separable state |x0〉, which can be nondestructively measured. Of
course, performing a secret-CNOT is pointless in this case, and we can always
avoid this situation in our Shell Game protocol. Furthermore, if a server were
able to learn an x0 generated by a truly random outcome y, then assuming our
families of TCF pairs used to encrypt s have the adaptive hardcore bit property,
the server would have negligible advantage in computing d̄.

It is perhaps a bit more difficult to form strong intuitions about why it
should be difficult to guess d̄. We can say something about d̄ given a few specific
outcomes d: For example, when d = ~0, then necessarily d̄ = 0; when d = 1‖~0,
the server knows d̄ = s, even if the server cannot be sure of the value of s.
However, the chances of observing these particular outcomes is negligible in n,
the length of strings in the domain of our TCFs. We shall see in Theorem 4 that
d̄ is a hardcore bit over a uniform choice of d by a version of the Goldreich-Levin
(GL) argument.

3.3.1 Security of the Secret CNOT Against QHBC Ad-
versaries

In our Shell Game protocol, the server is initially asked to prepare a multipartite
quantum state composed of many |0〉s and |+〉s. Because, as we have seen,
degenerate secret-CNOT operations may leak information by allowing a curious
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server to make measurements it knows will be nondestructive, we will never use
a secret-CNOT gadget controlled by a qubit the server knows is in the |0〉 state
or targeting a qubit the server knows is in the |+〉 state. If our permutations
and encodings are done secretly, the only time the honest-but-curious server will
know the state of the control and target qubit with certainty is at the beginning
of the protocol, when control qubits are in the |+〉 state and target qubits are
in the |0〉 state. We focus on this scenario.

Theorem 2. A polytime-bounded quantum honest-but-curious (QHBC) server
has negligible advantage in guessing d̄, µ0, or their parity by running the secret
CNOT protocol on the initial state |+〉 |0〉.

Proof. The QHBC server is allowed to remember any classical data it can learn
“for free”. This information can be communicated to the server by the client,
the outcomes of measurements made by the server in the course of the honest
execution of the protocol, or the outcomes of extraneous measurements the
server knows will not be destructive. In the case of the secret CNOT protocol
with initial state |+〉 |0〉, the classical information available to the server is:

• k (some public key used to point to the pair of TCFs used to encrypt s),

• y (the outcome of the measurement of the codomain register Y , effectively
drawn from a uniformly random distribution over the codomain of f0 and
f1), and

• d (the outcome of the Hadamard measurement on the domain register X,
effectively chosen uniformly at random from the set of binary strings the
length of the register).

We do not know much about k in the abstract, but we will assume it is chosen
in some sensible way and that our family of TCF pairs is large enough that keys
are unlikely to be repeated.

It is sufficient to show that the server has no advantage in guessing (i.e.,
cannot “approximate”) the bits d̄, µ0, or their parity. To show that a QHBC
server cannot approximate these bits, consider ways the server could efficiently
approximate s (against our assumption that the encryption of s is secure) that
would be possible if a QHBC server could approximate those bits.

Guessing d̄: If a QHBC server could approximate d̄, it would be possible
for a dishonest server to hold the state Z d̄Xµ0CNOTs |+〉 |0〉 while knowing a
guess d̄′ for d̄ which is correct with probability nonnegligibly greater than 1/2.
The server could apply the unitary Z d̄

′⊗I to the state and measure both qubits
in the Bell basis. If the outcome of the measurement is Φ− or Ψ−, guess s = 0.
Otherwise, guess s = 1.

Analysis: Suppose s = 0. This attack will guess s correctly with probability
1/2. (Note that it does not matter whether the guess d̄′ is correct in this case;
either way, the measurement outcome is uniformly random.) If s = 1, then if
the guess d̄′ = d̄ (which happens with advantage), the server will definitely guess
s correctly, as the state is either |Φ+〉 or |Ψ+〉 (depending on µ0). If d̄′ 6= d̄,
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the server will definitely guess s incorrectly, since the state is either |Φ−〉 or
|Ψ−〉. Thus the server has an inverse polynomial advantage in detecting s = 1,
and so it also has an inverse polynomial advantage in guessing s over a uniform
distribution on s.

Guessing µ0: If a QHBC server could approximate µ0, it would be possible
for a dishonest server to hold the state Z d̄Xµ0CNOTs |+〉 |0〉 while knowing a
guess µ′0 for µ0 which is correct with probability nonnegligibly greater than 1/2.
The server could apply the unitary I⊗Xµ′

0 to the state and measure both qubits
in the Bell basis. If the outcome of the measurement is Ψ+ or Ψ−, guess s = 0.
Otherwise, guess s = 1.

Analysis: Suppose s = 0. This attack will guess s correctly with probability
1/2. (Again, it does not matter whether the guess µ′0 is correct in this case
because the outcome is uniformly random.) If s = 1, then if the guess µ′0 = µ0

(which happens with advantage), the server will definitely guess s correctly, as
the state is either |Φ+〉 or |Φ−〉 (depending on d̄). If µ′0 6== µ0, the server will
definitely guess s incorrectly, since the state is either |Ψ+〉 or |Ψ−〉. Thus the
server has an inverse polynomial advantage in detecting s = 1, and so it also
has an inverse polynomial advantage in guessing s over a uniform distribution
on s.

Guessing parity: If a QHBC server could approximate d̄⊕ µ0, the server
could hold the same state as before while knowing a guess p for d̄⊕µ0. If p = 1,
the server applies the unitary X ⊗ I. In either case, the server measures in the
Bell basis. If the outcome is Φ− or Ψ+, the server guesses s = 0. Otherwise,
the server guesses s = 1.

Analysis: Again, the server’s measurement outcome is uniformly random if
s = 0 and the server’s winning probability in that case is only 1/2. But if s = 1,
the server’s guess for s is correct if and only if its guess p = d̄ ⊕ µ0, so again
the server has inverse polynomial advantage in this case and over a uniform
distribution on s.

Observe that all three attacks described here are specific instances of a more
general attack that is possible whenever the server’s Bayesian prior on the joint
distribution of (d̄, µ0) is non negligibly far from uniform.

Additionally, note that we can make an argument that the server cannot
learn d̄ by adapting classical arguments about hardcore bits. This argument
holds even without assuming the server is merely QHBC or that its input state
is |+〉 |0〉 (though computational assumptions are still necessary). The following
two propositions sketch the argument.

Proposition 3. The quantum server has negligible advantage in guessing x̃ =
x0 ⊕ x1 given y = f0(x0) = f1(x1) for trapdoor claw-free function pairs f0, f1.

Proof. Suppose the server could guess the XOR with non-negligible advantage
using an algorithm A. Then this gives an algorithm for computing claws with
non-negligible advantage: Given x0, efficiently compute f0(x0). Use A to effi-
ciently compute x0⊕x1 such that f0(x0) = f1(x1) with non-negligible advantage.
Compute (x0 ⊕ x1) ⊕ x0 to obtain x1. But since f0, f1 is a claw-free pair, an

31



efficient algorithm for computing claws with non-negligible advantage must not
exist, a contradiction.

Proposition 4. Each d̄ term is hard to compute on average over a uniform
distribution over measurement outcomes d.

Proof. Follows from an argument similar to the Goldreich-Levin (GL) hardcore
predicate proof [GL89]; if the server could compute with nonnegligible advantage
(over a uniform distribution of measurement outcomes d) the XOR of a random
nonempty subset (induced by d) of x0 ⊕ x1 given y and d, the server could
efficiently approximate x0 ⊕ x1, contradicting Proposition 3.

The original GL proof does not quite apply, but a version given in Appendix
B of [CCKW18] does. In the original GL proof, the ability to compute 〈x, r〉
given f(x), r (efficiently and with advantage) leads to a “sampling” algorithm
which returns a polynomial number of guesses {x′} for x such that at least one
is correct with probability negligibly far from 1, contradicting the hardness of
inverting f(x). In our case, the algorithm instead returns a polynomial number
of guesses {x̃′} for x̃ = x0 ⊕ x1, contradicting the hardness of computing claws
by way of Proposition 3.

We will find these additional guarantees on the hardness of guessing d̄ useful
in the following section, in which we must address correlations arising from
chaining multiple secret-CNOT gadgets into a secret-SWAP gadget.

3.3.2 Security of the Secret SWAP Against QHBC Ad-
versaries

We have seen that the exponents of the Pauli padding generated by Mahadev’s
secret-CNOT gadget appear close to uniformly random to a computationally
bounded QHBC server in the sense that such a server has no advantage in
guessing those exponents on average. We have also seen that the exponents
of the Pauli padding after performing a secret-SWAP are XORs of the expo-
nents generated by each of its constituent secrect-CNOTs. Thus when there
is no correlation among the exponents generated by each secret-CNOT gadget,
as is the case when the choice of secret bit for each gadget is unrestricted, the
padding generated by the secret-SWAP also appears random to a computation-
ally bounded server. Thus we may think of this padding as a “computational”
QOTP.

When the server is restricted to always choose the same secret bit s for each
secret-CNOT gadget used in the same secret-SWAP, we must be a little more
careful. In this case, there is a correlation among the secret-CNOT exponents
that allows more information to leak from their XOR than from each exponent
individually in certain situations. In particular, in the (negligibly probable) case
that d(1) = d(2) = d(3) = 1‖~0, the exponent of the Pauli Z applied to the A
register becomes

s⊕ (s · s)⊕ (s · (1− s)) = s⊕ s = 0.
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However, this extra information leak occurs only with negligible probability.
Note that there is potential for extra information leak only when all three d(i)

measurement outcomes have 1 as their initial bit, which occurs with probability
1/8. In this case, the exponent of the Pauli Z on the A subsystem is the XOR
of two bits, each of which is generated by taking the XOR of a random subset
of bits of r0 ⊕ r1 for some claw (µ0‖r0, µ1‖r1).

There is no apparent correlation between any two randomly chosen claws

(µ
(i)
0 ‖r

(i)
0 , µ

(i)
1 ‖r

(i)
1 ) and (µ

(j)
0 ‖r

(j)
0 , µ

(j)
1 ‖r

(j)
1 ) for any two randomly chosen TCF

pairs in our family with the same secret s besides that

µ
(i)
0 ⊕ µ

(i)
1 = µ

(j)
0 ⊕ µ

(j)
1 = s.

By a GL argument, the XOR of a random subset of bits of r
(i)
0 ⊕r

(i)
1 (or r

(j)
0 ⊕r

(j)
1 )

is a hardcore bit such that a computationally bounded server’s advantage in

guessing is negligible in n − 1. Since there is no correlation between (r
(i)
0 , r

(i)
1 )

and (r
(j)
0 , r

(j)
1 ), the XOR of these hardcore bits is also hard to compute on

average. Thus we may treat the Pauli padding as a “computational” QOTP in
this case as well.
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Chapter 4

Shell Game

We now have all the cryptographic machinery necessary to describe our Shell
Game protocol for remote state preparation in detail and analyze it in the QHBC
context. Our protocol is named for a sleight-of-hand trick using one pea, two
players, and three walnut shells. Let the players be our familiar friends Alice
and Bob. The game begins with Alice hiding the pea under one of the walnut
shells in full view of Bob. Alice then rapidly shuffles the shells before allowing
Bob to guess which shell the pea is under. Bob wins if he guesses correctly,
and Alice wins if he fails. Alice has the best chance of winning (and the game
is most interesting) when she has mastered the art of shuffling the shells in a
sneaky or misleading way.

At a high level, our Shell Game protocol reflects its namesake, only using
qubits and magic boxes instead of peas and walnut shells. We give two proto-
cols, one permutation-only protocol for remotely preparing `′ |0〉 and (` − `′)
|+〉 qubits (for some integer ` chosen by the client and random `′ ≤ `) and
one permute-and-encode protocol for remotely preparing ` trap encoded qubits.
The ideal functionalities these protocols are intended to implement are given in
Figure 4.1 and Figure 4.2, respectively.

π←$S`
`′ ← {0, . . . `}
~x←$ {0, 1}`
~z←$ {0, 1}`

IF: RSPClient
`

π, `′, ~x, ~z

Server
`

Z~zX~xπ(|0〉⊗`
′
|+〉⊗(`−`′)

)

Figure 4.1: Ideal Functionality for Remote State Preparation (IF: RSP). This
functionality prepares `′ |0〉 and (` − `′) |+〉 qubits, permuted and encrypted
with a QOTP, on the server’s workspace. `′ is sampled from a distribution with

probability mass function p(`′) =
(
`2

`′

)(
`2

`−`′
)
/
(

2`2

`

)
.
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π←$S21`

`′ ← {0, . . . `}
~x←$ {0, 1}21`

~z←$ {0, 1}21`

IF: RSP 2Client
`

π, `′, ~x, ~z,

Server
`

Z~zX~xπ(|0̄〉⊗`
′
|+̄〉⊗(`−`′) |0〉⊗7` |+〉⊗7`

)

Figure 4.2: Ideal Functionality for Remote Authenticated State Preparation
(IF: RSPA). This functionality prepares `′ trap encoded |0〉 and (` − `′) |+〉
qubits encrypted with a QOTP on the server’s workspace. Here |ψ̄〉 rep-
resents a Steane logical qubit (encoded across 7 physical qubits) with data
|ψ〉. `′ is sampled from a distribution with probability mass function p(`′) =(

21`2

`′

)(
21`2

`−`′
)
/
(

42`2

`

)
.

Each protocol consists of a commitment phase, in which a client and server
interact to prepare a particular quantum state. The server prepares an initial
state of many |+〉 and |0〉 qubits (in particular, |+〉⊗k |0〉⊗k, for a value of k that
we shall specify later), and the client and server shuffle the initial state using
magic boxes. We call this the commitment phase because at its conclusion, the
server is committed to holding a particular state (i.e., a particular permutation
and encryption of the initial state) by information sent back to the client by
magic boxes, from which the client computes the exponents of the Pauli padding
an honest server’s state should have. If we were only interested in QHBC servers,
our protocol could stop here: At this point, the client can be sure the honest
server is holding an encrypted quantum state, and the honest server does not
know the keys to decrypt the state. Since we are ultimately interested in being
able to authenticate states prepared by potentially more adversarial servers, we
include a second phase during which the client tests the server.

During this test phase, the client asks the server to measure the entire pre-
pared state except for ` of the qubits. (In permute-and-encode protocols, these
are actually ` trap-encoded logical qubits, encoded as 21` qubits.) Each qubit
is measured in either the computational Z basis or the Hadamard X basis uni-
formly at random. After measuring all the qubits, the server reports the list of
measurement outcomes to the client. The client assesses the consistency of the
outcomes in the following sense: If a qubit committed in the previous phase to
a particular basis state is measured in its corresponding basis, and the measure-
ment outcome is not the expected one, then the outcome is inconsistent. For
example, if the server committed the first qubit to be in the state |1〉, then it
would be inconsistent for the outcome of a computational basis test measure-
ment of the first qubit to be 0. (Note that no outcome is inconsistent if the
committed basis and measurement basis are mismatched.) If any reported out-
comes are inconsistent, the client rejects and aborts the protocol. Otherwise,
the client accepts that it has remotely prepared a particular encrypted state of
` (logical) qubits. The number of rounds of communication required by this
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protocol is constant and independent of the number of qubits produced. These
qubits can be fed forward into some new computation or protocol that requires
the secret preparation of qubits, such as a blind quantum computation (BQC)
protocol.

The following chapter proceeds by describing in detail how the client can
use magic boxes to secretly permute and encode a quantum state prepared
by an honest server. We then present the Shell Game protocols in full and
analyze their security in the QHBC setting, analogous to the case in the pea-
and-walnut shell game in which Bob plays along dutifully but tries his best to
learn the trick of the game. We assume clients and servers have access to a shared
magic box resource, which may be implemented by secret-SWAP gadgets in this
setting with computational assumptions. In chapter 5, we will begin addressing
security against more active adversaries, although our analysis is by no means
fully comprehensive.

4.1 Efficiently Generating Permutations

In order for our shell game to be viable, it must be possible for the client
to direct the server to implement an arbitrary permutation of the initial state
efficiently. The fact that an arbitrary permutation on n objects can be generated
using polynomially many transpositions is implied by the fact that the Bubble
Sort algorithm can sort any arbitrarily permuted list of n objects using O(n2)

adjacent transpositions. In particular, we can use the list of
∑n−1
k=1 k = n(n−1)

2
transpositions

Lperm(n) := [(1 2), . . . , (1 n), (2 3), . . . , (2 n), . . . , ((n− 1) n)]

to generate any permutation using secret-SWAPs. That is, first we either swap
the first two elements or do not, then we either swap the first and third element
or do not, and so on. This list allows us to code any permutation of n objects
as a string of length O(n2).

Proposition 5. Any permutation of n elements can be generated using at most
n transpositions of the form (i j) for 1 ≤ i < j ≤ n, such that each integer in
[n] appears as the first index in a transposition at most once, and if for a pair of
transpositions (i j) and (i′ j′) we have i < i′, then the transposition (i j) occurs
before the transposition (i′ j′).

Proof. By induction on the number of elements to permute.
Basis: For a single element, there is only one permutation, generated by

performing no transpositions.
Induction: Suppose any permutation of n− 1 elements can be generated as

described in the proposition. For an n-element list, begin by either performing
at most one transposition of the form (1 j) for 1 < j ≤ n. There are n unique
ways to do this. Then perform an arbitrary permutation on the last n − 1
elements (indices 2 to n), which by inductive hypothesis can be done using at
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most n − 1 transpositions of the form (i j) for 2 ≤ i < j ≤ n such that each
integer in [2, n] appears as the first index in a transposition at most once, and
where the transpositions have the right kind of order. There are (n−1)! unique
ways to do this. The overall process is of the form described in the proposition,
and it generates n · (n − 1)! = n! unique permutations, which exhausts all
possibilities.

We can start the commitment phase of the shell game by separating the
state into a “block” of k |+〉 qubits followed by a block of k |0〉 qubits (i.e.,

|+〉⊕k |0〉⊕k). This is the initial state prepared by an honest server. For 1 ≤
i ≤ k, secret SWAP the ith |+〉 with the ith |0〉. This corresponds to a list of
possible “inter-block” transpositions of the form

Lblock(k) := [(1 (k + 1)), (2 (k + 2)), . . . , (k 2k)].

At this point, there is no qubit for which the server (or an adversary) knows
the basis with certainty. Then apply a random permutation for 2k qubits by
performing a secret SWAP for each transposition in the list Lperm(2k) described
above. In fact, we will actually run through Lperm(2k) four times during the
permute-and-encode variation of our Shell Game protocol instead of just once,
since this will help with implementing a quantum error correcting code. (See
subsection 4.1.2 for details.)

This ordered list of possible transpositions—one round of inter-block trans-
positions Lblock(k) followed by one or four rounds through Lperm(2k)—is public.
It should be common knowledge among all parties and need not be communi-
cated explicitly during a Shell Game protocol. Since the “wiring” of the magic
boxes or gadgets (i.e., the number and ordering of secret-SWAPs in the proto-
col) is fixed by the size of the initial state, the client can begin the protocol by
sending (1) a security parameter that determines the initial size to the client
and (2) an “instruction” string to the magic box resource representing the per-
mutation to be performed. We describe in precise detail how the client should
generate these instruction strings in the following subsections before introducing
the full Shell Game protocols in section 4.2.

4.1.1 Instruction Strings for Permutations Only

Consider a protocol in which the client attempts to permute but not encode the
server’s state. In these protocols, we will use our original Magic SWAP Boxes.
We also use the public list Lblock(k) + Lperm(2k) (i.e., Lblock(k) concatenated
with Lperm(2k)) for a value of k determined by the client’s security parameter.
The ith bit of the instruction string is the secret bit s used as the clients input
to the Magic SWAP Box for the ith transposition in the public list. (Recall that
the box SWAPs the qubits input by the server if and only if s = 1.)

The client begins by choosing a security parameter `. This parameter deter-
mines the size of the honest server’s quantum state, with the block size k = `2.
The first |Lblock(k)| bits of the instruction string, corresponding to the initial
inter-block transpositions, are chosen uniformly at random. The inter-block
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transpositions induce some permutation σ of the initial state. The client then
chooses a permutation τ uniformly at random from S2k. The client computes a
decomposition of τ into transpositions of the form in Proposition 5. For the next
(and last) |Lperm(2k)| bits of the instruction string, the bit is set to 1 if and only
if the corresponding transposition in the public list occurs in the decomposition
of τ . 1 The permutations σ and τ induce a permutation π = τ ◦ σ. In our
notation, we identify an instruction string with the permutation π it induces in
the honest protocol. We denote the process described above for generating an
instruction string given a security parameter Genperm(`).

4.1.2 Instruction Strings for Permutations with Encoding

Consider a protocol in which the client attempts to simultaneously permute
and encode the server’s state using a trap code based on the Steane quantum
error-correction code (see section 2.3 and section 2.4). In these protocols, we
use modified Magic SWAP Boxes. We use the public list Lblock(k)+4Lperm(2k)
(i.e., Lblock(k) concatenated with four copies of Lperm(2k).) Running through
Lperm(2k) four times helps us implement the trap encoding on a pre-selected
subset of the server’s qubits while permuting the entire state. For these proto-
cols, the instruction string is not a string of secret bits, but rather a string of
|Lblock(k)|+ 4|Lperm(2k)| classical descriptions of unitaries in the set

{Ii ⊗ Ij ,SWAPij ,CNOTij ,CNOTji}.

(Each description could be, for example, a two-bit index into the set of possible
unitaries.)

As in the permutation-only protocol, the client begins by choosing a security
parameter `. In the permute-and-encode protocol, an honest server will prepare
a state with block size k = 21`2. The client also randomly chooses 10` distinct
indicies from [k] (corresponding to |+〉 qubits in the state prepared by an honest
server), 10` distinct indices from [k + 1, 2k] (corresponding to |0〉 qubits), and
` more distinct inidices from [2k]. The client labels the 21` selected qubits as
follows:

• Each of the ` indices chosen from [2k] (labeled d1, . . . , d`) will be data
qubits encoded using a Steane encoding.

• Three |0〉 qubits (labeled aq,1, . . . , aq,3, for q ∈ [`]) and three |+〉 qubits (la-
beled aq,4, . . . aq,6) will be used as ancilla for Steane encoding each logical
qubit.

• Seven |0〉 qubits (labeled tq,1, . . . , tq,7) and seven |+〉 qubits (labeled tq,8,
. . . , tq,14) will be used as trap qubits for the trap encoding of each logical

1Instead of choosing the permutation τ uniformly at random, decomposing it into transpo-
sitions, and preparing instructions accordingly, the client could simply prepare an instruction
with s chosen uniformly at random for each possible transposition in the public list. However,
the permutation generated by such a list would not be uniformly random.
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qubit.2

Call this assignment of labels A. (The reader may find it helpful to refer back
to the labels of Figure 2.1.)

Next, analogously to the permutation-only protocol, the first |Lblock(k)| uni-
taries are chosen uniformly at random from {Ii⊗Ij ,SWAPij}, thus inducing an
inter-block permutation σ on 42`2 qubits. For the next 4|Lperm(2k)| unitaries,
corresponding to four passes through the Lperm(2k) list, the client chooses as
follows:

First pass: The client chooses a permutation τ1 uniformly at random from
S2k. The client computes a decomposition of τ1 into transpositions of the form
in Proposition 5. For the next |Lperm(2k)| unitaries, the client chooses SWAPij
if the corresponding transposition in the public list occurs in the decomposition
of τ and chooses Ii ⊗ Ij otherwise.

Second pass: For each (i j) in Lperm(2k), let i′ := σ−1(τ−1
1 (i)) and j′ :=

σ−1(τ−1
1 (j)). If i′ and j′ are both unlabeled, the client chooses the corresponding

unitary in the instruction string to SWAPij or Ii ⊗ Ij uniformly at random.
This induces a permutation τ2 on top of τ1◦σ. If i′ and j′ have the labels (in any
order) dq and aq,1 or dq and aq,2, the client prepares an instruction according to
CNOTqpap,2 . This implements the first part of the Steane encoding, entangling
each data qubit with two of its |0〉 ancilla. (Refer to Figure 2.1.) If i′ and j′

have any other combination of labels, the client chooses Ii⊗ Ij , leaving them in
place.

Third pass: For each (i j) in Lperm(2k), let i′ := σ−1(τ−1
1 (τ−1

2 (i))) and
j′ := σ−1(τ−1

1 (τ−1
2 (j))). If i′ and j′ are both unlabeled, the client chooses

the corresponding unitary in the instruction string to be SWAPij or Ii ⊗ Ij
uniformly at random. This induces a permutation τ3 on top of τ2 ◦ τ1 ◦ σ. If i′

and j′ have the labels (in any order)

• aq,6 and (aq3 , aq,1, or dq), or

• aq,5 and (aq,3, aq,2, or dq), or

• aq,4 and (aq,3, aq,2, or aq,1),

the client chooses the unitary CNOTqpap,2 . This completes the Steane encoding
of the pre-selected qubits; we shall refer to the encoding induced by the assign-
ment of labels A as EA. If i′ and j′ have any other combination of labels, the
client chooses the corresponding unitary in the instruction string to be Ii ⊗ Ij ,
leaving them in place.

Fourth pass: The client chooses another permutation τ4 uniformly at ran-
dom from S2k and chooses the |Lperm(2k)| unitaries implementing it as in the
first pass.

2The precise labels applied to traps are not actually important so long as 7` |0〉 qubits and
7` |+〉 qubits are chosen as traps. However, labels are necessary to keep track of which ancilla
belong to which data qubit and what role each ancilla plays in the encoding circuit for its
data.
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This process chooses one unitary corresponding to each possible transposi-
tion in the public list Lblock(k) + 4Lperm(2k). It also induces an encoding EA
and a permutation

π = τ4 ◦ τ3 ◦ τ2 ◦ τ1 ◦ σ.

As in the permutation-only variation, we identify an instruction string with the
permutation and encoding π ◦ EA it induces. We will denote the process for
generating such an instruction string given a security parameter by Genencode(`).

4.2 Protocol Descriptions

We are now ready to describe our protocols in full. The full details of the
permute-only version of the protocol are given in Figure 4.3, and the permute-
and-encode version are detailed in Figure 4.4.

Each protocol begins with a commitment phase, in which the client chooses
a parameter ` determining the number of qubits to prepare and sends it to the
server. The client generates a list of magic box instructions in the way described
in the previous section.3 The server prepares the quantum state |+〉⊗k |0〉⊗k,
where k is determined by ` and the variation of the Shell Game being performed.
The server uses the public list associated with the Shell Game variation to choose
which qubits to input to the Magic SWAP Box in which order. This induces
a secret permutation, encryption, and possibly encoding on the initial state,
which the client can compute using their instructions and classical magic box
output.4

After the commitment phase comes the test phase. In the permutation-only
protocol, the client chooses a list M of 2`2 − ` qubits uniformly at random
to be tested. In the permute-and-encode protocol, the client chooses Ā, the
list of all qubits not assigned a label by A and therefore not used in the trap
encoding induced by A.5 In either case, the list of qubits to be measured is
sent to the server, together with a list of measurement bases for each qubit to
be tested, with each basis chosen randomly from {X,Z}. The server performs
the measurements and returns the list of outcomes to the client. The client
aborts if the measurement outcomes are physically inconsistent with the honest
committed state.

3We have assumed a magic box resource is available to the server and client throughout
this chapter. It is worth noting that, if the boxes are implemented with secret gadgets, the
client should send the instructions for all the secret gadgets along with ` in their first message
to the server.

4If magic boxes are implemented with secret gadgets, the server should send a single mes-
sage containing all gadget measurement outcomes to the client after following the instructions.

5Note that A picked out indices in the initial honest state, but Ā should pick its indices
from the honest committed state instead.
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Shell Game Protocol 1: Permutation-Only Version

Client Server

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Commitment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 : Choose `

2 : π←$ Genperm(`)

3 : Input π to magic box

4 : `

5 : Prepare |+〉⊗`2 |0〉⊗`2

6 : for (i j) ∈ [Lblock(`2) + Lperm(2`2)] do

Input qubits i, j to box

Honest state: Z~zX~xπ(|+〉⊗`2 |0〉⊗`2)

7 : Get all box output

8 : Compute ~x and ~z from box output

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 : M ←$FM (`), random list

of 2`2 − ` registers to measure

10 : Θ←$ {X,Z}|M|

11 : (M,Θ)

12 : for (m, θ) ∈ zip(M,Θ) do

Measure qubit m in basis θ

for outcome o

Call list of outcomes O

Honest state: TrM [Z~zX~xπ(|+〉⊗`2 |0〉⊗`2)]

13 : O

14 : Assess consistency of O

with respect to Z~zX~xπ(|+〉⊗`2 |0〉⊗`2)

15 : Accept if O is consistent;

Otherwise, reject

Figure 4.3: Permutation-only Shell Game protocol to remotely prepare ` qubits.
M is a list of 2`2−` distinct registers to measure. FM (`) is the family of all such
lists. The function zip takes two ordered lists [xi]i∈I and [yi]i∈I and returns an
ordered list of pairs [(xi, yi)]i∈I .
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Shell Game Protocol 2: Permutate-and-Encode Version

Client Server

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Commitment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 : Choose `

2 : π ◦ EA ← Genencode(`)

3 : Input π ◦ EA to magic box

4 : `

5 : Prepare |+〉⊗21`2 |0〉⊗21`2

6 : for (i j) ∈ [Lblock(`2) + 4Lperm(2`2)] do

Input qubits i, j to box

Honest state: Z~zX~xπ(EA(|+〉⊗21`2 |0〉⊗21`2))

7 : Get all box output

8 : Compute ~x and ~z from box output

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Test Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 : Let Ā be the list of 42`2 − 21`

indices of honest state unlabeled by A

10 : Θ←$ {X,Z}|Ā|

11 : (Ā,Θ)

12 : for (a, θ) ∈ zip(Ā,Θ) do

Measure qubit a in basis θ

for outcome o

Call list of outcomes O

Honest state:

TrĀ[Z~zX~xπ(EA(|+〉⊗21`2 |0〉⊗21`2))]

13 : O

14 : Assess consistency of O

W.R.T. Z~zX~xπ(EA(|+〉⊗21`2 |0〉⊗21`2))

15 : Accept if O is consistent;

Otherwise, reject

Figure 4.4: Shell Game protocol to prepare ` trap-encoded qubits. Ā is a list
of registers of the honest committed state containing qubits not used in the
encoding A.
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4.3 Protocol Security: Quantum Honest-But-
Curious Adversaries

We are now ready to formalize the correctness and security of the Shell Game
protocols in the QHBC setting.

Theorem 6. In the QHBC setting, Shell Game Protocol 1 (Figure 4.3) imple-
ments Ideal Functionality for Remote State Preparation(Figure 4.1), and Shell
Game Protocol 2 (Figure 4.4) implements Ideal Functionality for Remote Au-
thenticated State Preparation (Figure 4.2).

Proof. In the QHBC setting, the theorem follows if the Shell Game protocols
are correct, i.e. if (1) a server produces the state

TrM [Z~zX~xπ(|+〉`
2

|0〉`
2

)]

by following a permute-only protocol honestly and produces the state

TrĀ[Z~zX~xπ(EA(|+〉`
2

|0〉`
2

))]

by following a permute-and-encode protocol, and (2) the client can compute ~x
and ~z from the magic box output. Then we need only show that

TrM [Z~zX~xπ(|+〉`
2

|0〉`
2

)] = Z
~z′X

~x′
π′(|0〉⊗`

′
|+〉⊗(`−`′)

)

for some z′←$ {0, 1}`, x′←$ {0, 1}`, π′←$S`, and `′←$ {0, . . . , `} , and similarly

TrĀ[Z~zX~xπ(EA(|+〉`
2

|0〉`
2

))] = Z
~z′X

~x′
π′(|0̄〉⊗`

′
|+̄〉⊗(`−`′) |0〉⊗7` |+〉⊗7`

)

for some z′←$ {0, 1}21`, x′←$ {0, 1}21`, π′←$S21`, and `′←$ {0, . . . , `}.
That the server really does produce the correct states follows from the con-

struction of instruction strings in section 4.1. That the client can compute the
Pauli exponents follows from the fact that the client chooses the unitary imple-
mented by each use of the magic box and learns the QOTP applied by each use
of the magic box.

We see that by construction both protocols leave the right kind of remaining
state after test measurements: ` qubits in Protocol 1 and ` Steane-encoded
qubits with 7` trap |0〉 qubits and 7` trap |+〉 qubits in Protocol 2. Note that
in both protocols, each bit of ~z and ~x are generated uniformly random by the
magic box. ~z′ and ~x′ are derived from ~z and ~x discarding the bits of ~z and ~x
associated with qubits measured in the test phase. Since M and A are chosen
uniformly at random, the subsets of measured qubits are also uniformly random
and in particular have no dependence on ~z or ~x. Thus each bit of ~z′ and ~x′ is
also uniformly random in both protocols. Furthermore, since π, M , and A are
chosen uniformly at random, π′ is uniformly random, and `′ is sampled from
the kind of distribution described in the ideal functionalities.
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Theorem 7. In the QHBC setting, the server has no advantage in guessing the
Pauli keys (~x, ~z) or the permutation π applied during either Shell Game protocol
at the end of the commitment phase.

Proof. By construction, each use of the magic box applies a QOTP with uni-
formly random exponents, and each qubit is entered into the box and is padded
at least once. Thus (~x, ~z) is uniformly random. The permutation π is also
constructed as a composition of multiple permutations, at least one of which
is chosen uniformly at random from S2k. Thus π is also uniformly random.
Thus the server has advantage in guessing the keys and permutation only if
information about them is leaked by the protocol.

QHBC servers must prepare the correct initial state, must enter the correct
pair of qubits into the magic box at each step, and may not perform any ex-
traneous measurements unless they are certain (from the server’s informational
perspective) to be nondestructive. The inter-block secret transpositions per-
formed at the beginning of each protocol ensure that the server never knows
(and in fact has no advantage in guessing) the basis of either qubit output by
the magic box at any step in the protocol. Thus the server never has an oppor-
tunity to perform a nondestructive measurement on box output in order to learn
some of the exponents of the Pauli padding. Furthermore, since the box output
is quantum one-time padded, the outcome of any measurement (nondestruc-
tive or otherwise) is uncorrelated with the unitary applied by the box. Thus
no information about the keys or permutation leaks during the commitment
phase.

At the start of the test phase, the client reveals to the server which qubits will
be measured and hence also which qubits will be untested (i.e., which qubits will
be the quantum output of the protocol). This revelation may leak information
about π to the server. For example, after learning Ā, the server knows that
π maps at least 10` of the first 21`2 qubits and 10` of the last 21`2 qubits of
the initial state outside of Ā. (However, since A was chosen at random, this is
all the honest server learns from Ā.) The set of possible permutations is still
large,6 but it is no longer S2k. Thus, at least for protocol 2, we cannot hope
for the server to have no advantage in guessing π ∈ S2k after the test phase has
begun. Instead, we show that the remaining state still looks very “mixed up”
to the server in the sense that the server has no advantage in guessing π′.

Theorem 8. In the QHBC setting, the server has no advantage in guessing the
Pauli keys (~x, ~z) or π′ (the permutation of the honest output) at the end of the
test phase of either protocol.

Proof. By the previous theorem, nothing about the keys or permutation leak
during the commitment phase. The measurements performed during the test
phase are also not correlated with the QOTP keys, since the measurement basis
is chosen uniformly at random and independently of the measured qubit.

6The cardinality is precisely
(21`2

10`

)2
·
(42`2−20`

`

)
· 21`!, although many permutations will

map to equivalent quantum output.
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In protocol 1, since M is chosen uniformly at random from all possible lists
of 2`2 − ` distinct registers, it is in particular independent of π. Thus nothing
about π is revealed when the server learns M , and so nothing is revealed about
π′ or `′ either.

In protocol 2, information about π always leaks when Ā is revealed to the
server in protocol 2. However, since π is uniformly random and A is chosen at
random, nothing is revealed about π′ without measuring part of the untested
state.

Since the server is QHBC, the server can only measure an untested qubit
when it knows the basis. The server only knows the basis of an untested qubit
either when it knows all the untested qubits are in the computational basis or
when it knows all the untested qubits are in the Hadamard basis. This is never
possible in protocol 2 (for which the untested state must contain trap qubits in
both bases), and it is also not possible in protocol 1 when M is chosen uniformly
at random. Thus the server cannot measure untested qubits in either protocol.

Since the QHBC server has no advantage in guessing (~x, ~z) or π at the
beginning of the test phase, learns nothing about the Pauli keys from performing
test measurements, and cannot measure untested qubits to distinguish between
candidate permutations in S` or S21`, the server has no advantage in guessing
(~x, ~z) or π′ at the end of the test phase.

Here we make a comment about choosing M and A. Clients would probably
prefer to choose M and A freely, since M and A determine the combination of
(possibly encoded) |0〉 and |+〉 qubits prepared by the Shell Game protocols.
Choosing M and A uniformly at random is not strictly necessary for the proto-
cols to be secure in the QHBC setting, but we have enforced random selection
anyway to prevent the client from choosing in particularly insecure ways. For
example, in Protocol 1, if the client always chooses M in such a way that `
encrypted |0〉 qubits are prepared, then the protocol is totally insecure. After
learning M , the server knows all untested qubits are in the computational basis,
and so a QHBC server can nondestructively measure all untested qubits in the
computational basis. In protocol 2, if A is chosen in some deterministic and
public way, then an actively malicious server can freely manipulate the data
qubits at the start of the protocol without being caught during the test phase.
Furthermore, choosing M and A uniformly at random is not as big a drawback
as it may initially appear. If the client needs a particular combination of |0〉 and
|+〉 qubits, the client should just prepare more qubits than strictly necessary in
order to obtain a probabilistic guarantee that a subset of them will be in the
desired combination of bases.
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Chapter 5

Active Security

In this chapter, we begin exploring the security of the shell game and its con-
stituent parts (magic boxes, TCF-based secret gadgets, and trap code authenti-
cation schemes) against more actively malicious adversaries. Two observations
are worth making immediately. The first is that in permute-only protocols, the
client is only able to detect dishonest behavior by evaluating the consistency
of test measurement outcomes. This means that an adversarial server could
behave honestly until it learns (M,Θ) from the client. At that point, it knows
precisely which qubits will be tested and which will remain unmeasured. The
adversarial server can then perform an arbitrary attack that affects only unmea-
sured qubits. As long as the server performs and reports the test measurements
honestly, the client will accept without detecting the server’s deviation from
the protocol. (In permute-and-encode protocols, the trap encoding on reserved
qubits provides additional opportunities for authentication after the protocol
has ended.)

We note, however, that a similar problem exists for competing remote state
preparation protocols as well (and indeed even for our ideal remote state prepa-
ration functionalities): At the end of any protocol, when the server knows it will
not be tested further, the server can always deviate arbitrarily with no imme-
diate consequence. Since the qubits prepared by these protocols are typically
intended to be fed forward into other protocols, it is possible that deviation
during remote state preparation will be detected during later protocols if the
prepared state differs too much from the honest state. In any case, we will focus
our active security analysis on the relationship between the probability that the
adversary passes the test phase and the “closeness” between the actual state
held by the server at the end of the commitment phase and the honest state.

The second observation is that there exist attacks that pass the test phase
with probability 1−poly(`) such that the trace distance between the actual state
held by the server at the end of the commitment phase and the honest state is 1.
For example, the server can prepare the honest initial state and choose one qubit
to flip (from |0〉 to |1〉 or from |+〉 to |−〉). The server then behaves honestly
for the remainder of the protocol. At the end of the commitment phase, the
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flipped qubit causes the trace distance between the actual and honest states to
be 1. With probability 1

2` , the flipped qubit is not selected for testing and so
not detected. Ideally, we would like to guarantee that our protocol can detect
attacks that cause the actual state held in the commitment phase to be so far
from the honest state to be detected with all but negligible probability, but this
is unfortunately not possible.

We begin our formal analysis of active security by returning to our magic
box primitives from chapter 3. We explore a miniature version of the Shell
Game test phase as a self-testing game played between a classical verifier (in
the role of the client) and a quantum prover (in the role of the server) using
magic boxes. We argue that the prover is unlikely to win these games unless the
quantum state input to the box is “close” to the honest state. Next, we explore
the ways in which secret-SWAP gadgets fail to implement Magic SWAP Boxes
as a black box when the server is actively malicious. Finally, we address ways
to strengthen the trap code authentication used in Shell Game protocol 2.

5.1 Magic QOTP Box Game

Recall the Magic QOTP Box first introduced in subsection 3.1.1. We reproduce
Figure 3.1 depicting the Magic QOTP Box below, using slightly different nota-
tion to emphasize that the qubit entered into the box by the prover need not
be in any pure state. We use the QOTP Box to play the following self-testing
game between a verifier V and a prover P .

x←$ {0, 1}
z←$ {0, 1}

QOTP BoxVerifier
ε

x, z

Prover
ρA

ZzXxρAX
xZz

Figure 5.1: Magic QOTP Box functionality. The verifier’s input ε is the empty
string.

Magic QOTP Box Game

1 : V chooses whether she will ask P to guess x or z and notifies P of her choice.

2 : P prepares some quantum state ρAB of his choice.

3 : P inputs the single qubit ρA = TrB [ρAB ] into the Magic QOTP Box.

4 : V and P receive their respective box output.

5 : P performs measurement of his choice.

6 : P guesses the exponent chosen by V and announces his guess to V .

7 : P wins if his guess is correct; else, V wins.
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Theorem 9. If a prover P wins the magic QOTP box guess-x game with prob-
ability 1− ε using a state

|φ〉AB =
∑
i

√
λi |ei〉A |fi〉B ,

then there exists a diagonal density matrix

σA = p |0〉 〈0|+ (1− p) |1〉 〈1|

with 0 ≤ p ≤ 1 such that

T (ρA, σA) ≤
√
ε(1− ε),

where ρA is the reduced density matrix of |φ〉, and T (·, ·) is the trace distance
(see section 2.1).

Similarly, if P wins the guess-z game with probability 1− ε using |φ〉, there
exists a density matrix

σA = p |+〉 〈+|+ (1− p) |−〉 〈−|

with 0 ≤ p ≤ 1 such that

T (ρA, σA) ≤
√
ε(1− ε).

Proof. Begin by considering the guess-x game. Define the following density
matrices, corresponding to the output of the magic box conditioned on the
value of x:

ρx=0 :=
1

2

∑
i,j,z

√
λiλjZ

z |ei〉 〈ej |A Z
z ⊗ |fi〉 〈fj |B

and

ρx=1 :=
1

2

∑
i,j,z

√
λiλjZ

zX |ei〉 〈ej |AXZ
z ⊗ |fi〉 〈fj |B

From the prover’s informational perspective, the box outputs ρx=0 or ρx=1 with
probability 1/2 each, and the prover’s ability to win the game depends on his
ability to distinguish between these two states. The probability of distinguishing
them is bounded above by 1

2 (1+T (ρx=0, ρx=1)). Recalling that T (ρx=0, ρx=1) =
1
2 ||ρx=0 − ρx=1||1, we have

1− ε ≤ 1

2
(1 + T (ρx=0, ρx=1)) =

1

2
(1 +

1

2
||ρx=0 − ρx=1||1) =

1

2
+

1

4

4∑
i=1

|ξi|

where {ξi}i∈[4] is the set of eigenvalues of ρx=0 − ρx=1. The above inequality
implies (by algebraic manipulation)

1− 2ε ≤ 1

2

4∑
i=1

|ξi|,
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which we shall find more convenient to work with.
Fix the Schmidt decomposition of the prover’s quantum state |φ〉AB as |e0〉 =(

a
b

)
and |e1〉 = eiφ

(
b∗

−a∗
)

(for arbitrary complex amplitudes a and b such that

|a|2 + |b|2 = 1 and 0 ≤ φ < 2π) with |f0〉 = |0〉 and |f1〉 = |1〉.1 Observe that the
{|ei〉} basis is completely general. Since trace distance is invariant under unitary
transformations, there is no harm in fixing the {|fi〉} basis as the computational
basis.

With this choice of bases, the four eigenvalues of ρx=0 − ρx=1 are of the
form2

(±(|a|2 − |b|2)(λ0 − λ1)±
√

1− 4|a|2|b|2(λ0 − λ1)2)/2.

Note that
(|a|2 − |b|2)(λ0 − λ1) ≤

√
1− 4|a|2|b|2(λ0 − λ1)2,

so we can identify two eigenvalues that are necessarily nonnegative and two that
are necessarily nonpositive:

(±(|a|2 − |b|2)(λ0 − λ1) +
√

1− 4|a|2|b|2(λ0 − λ1)2)/2 ≥ 0

and

(±(|a|2 − |b|2)(λ0 − λ1)−
√

1− 4|a|2|b|2(λ0 − λ1)2)/2 ≤ 0

Then

1− 2ε ≤ 1

2

4∑
i=1

|ξi| =
√

1− 4|a|2|b|2(λ0 − λ1)2.

Squaring both (nonnegative) sides of the inequality gives

1− 4ε+ 4ε2 ≤ 1− 4|a|2|b|2(λ0 − λ1)2,

which implies by basic algebra

ε(1− ε) ≥ |a|2|b|2(λ0 − λ1)2.

Now consider the reduced density matrix of the subsystem the prover inputs
to the magic box

ρA = λ0 |e0〉 〈e0|+ λ1 |e1〉 〈e1| =
(
λ0|a|2 + λ1|b|2 (λ0 − λ1)ab∗

(λ0 − λ1)a∗b λ0|b|2 + λ1|a|2
)
.

Now define

σA := (λ0|a|2 + λ1|b|2) |0〉 〈0|+ (λ0|b|2 + λ1|a|2) |1〉 〈1| .
1More precisely, if the B subsystem consists of n qubits, choose |f0〉 = |0n〉 and |f1〉 =

|10n−1〉. The nonzero eigenvalues are the same as in the 1-qubit case.
2See the Mathematica notebook approx-qotp-game.nb on the GitHub repository

https://github.com/huntermcknight/mol-thesis.
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Taking the 2-norm of ρA − σA, we find

||ρA − σA||2 =
√

2|a|2|b|2(λ0 − λ1)2 ≤
√

2ε(1− ε).

By Cauchy-Schwartz,

||ρA − σA||1 ≤
√

2||ρA − σA||2 ≤ 2
√
ε(1− ε),

and so

T (ρA, σA) =
1

2
||ρA − σA||1 ≤

√
ε(1− ε).

The argument for the guess-z game is analogous.

Setting ε = 0 in the above theorem leads to the following corollary.

Corollary 10. A prover P wins the Magic QOTP Box guess-x game with
probability 1 only if the qubit input to the box is a mixture of computational
basis states; likewise, P wins the guess-z game with probability 1 only if the
qubit input to the box is a mixture of Hadamard basis states.

5.2 Magic Swap Box Game

Now recall our Magic SWAP Box, reprinted for convenience in Figure 5.2. The
prover and the verifier play the following game with the box.

x0←$ {0, 1}
z0←$ {0, 1}
x1←$ {0, 1}
z1←$ {0, 1}

SWAP BoxVerifier
s

x0, x1

z0, z1

Prover
ρAB

UBox(ρAB)U†Box

UBox = (Zz0Xx0

A ⊗ Z
z1Xx1

B )SWAPsAB

Figure 5.2: Magic SWAP Box functionality.

Magic SWAP Box Game

1 : V inputs s ∈ {0, 1} to Magic SWAP Box.

2 : V asks P to prepare and input |0〉A |+〉B to the Box.

3 : P prepares a state ρABC of his choice and inputs it.

4 : V samples observables θ1, θ2 ←$ {X,Z}2

5 : V asks P to measure θ0 of A and θ1 of B.

6 : P performs measurements of his choice and reports outcomes to V .

7 : P wins if outcomes are consistent with honest measurements of UBox |0〉 |+〉.
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Theorem 11. If a prover P wins the magic SWAP box game with probability 1,
then the A subsystem of the quantum input must be a mixture of computational
basis states (i.e., its reduced density matrix is ρA = p |0〉 〈0|+ (1− p) |1〉 〈1| for
some 0 ≤ p ≤ 1), and the B subsystem must be a mixture of Hadamard basis
states (i.e., ρB = q |+〉 〈+|+ (1− q) |−〉 〈−| for some 0 ≤ q ≤ 1).

Proof. If P wins the game with certainty, then in particular P wins with cer-
tainty whenever s = 0, θ0 = Z, and θ1 = X. Winning in this case requires
guessing x0 and z1. Thus any strategy (i.e., choice of input and choice of mea-
surement) that succeeds in this case would also succeed in playing a guess-x
magic QOTP box game on the A subsystem in parallel with a guess-z magic
QOTP box game on the B subsystem. The result then follows from Corollary
9.

If we want to use magic boxes to build protocols for remote state preparation,
then we need to be able to say something about the quantum state that remains
if we only measure some of the box output. Consider a variation on the above
magic SWAP box game. In this variation, everything proceeds as before until
both players receive their output from the box. Then, the verifier samples an
observable θ←$ {X,Z} and asks the prover to measure the A subsystem in the
θ basis. The prover performs some (not necessarily honest) measurement and
reports the outcome to the verifier. If the outcome is physically consistent with
performing the honest θ measurement on the A subsystem of

(Zz0Xx0

A ⊗ Z
z1Xx1

B )SWAPsAB |0〉A |+〉B ,

then the verifier accepts and the prover wins the game. The following theorem
gives a guarantee on the state of the B subsystem at the moment it is output
by the box.

Theorem 12. If a prover P wins the variant magic SWAP box game with
probability 1, then the B subsystem output by the box is a mixture of Hadamard
basis states if s = 0 or else a mixture of computational basis states if s = 1.

Proof. The crucial fact is that the prover does not know s, so the prover’s
perfectly winning strategy must be independent of s. If the prover wins with
probability 1, then in particular he wins when s = 0 and θ = Z, and so by the
argument in the proof theorem 11, the A subsystem must be in a mixture of
Z-axis basis states when it is input to the box. Similarly, the prover must always
win when s = 1 and θ = X, which requires the prover to guess z0. A strategy
that wins in this case will also win the guess-z magic QOTP box game played
on the B subsystem, and so by theorem 9, the B system must be in a mixture of
X-axis basis states when it is input into the box. Thus, if s = 0, the subsystems
are not swapped by the box, and the output B subsystem remains in a mixture
of X-axis basis states. When s = 1, the box swaps the A and B subsystems,
and the B subsystem output is in a mixture of Z-axis basis states.
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5.3 Secret Gadgets with Active Adversaries

We have already mentioned that a secret-SWAP gadget fails to implement a
Magic SWAP Box against active adversaries in the sense that a gadget has
more points of failure. For a magic box, the prover chooses only the input
to the box and nothing more; for a secret gadget, there are many steps at
which an adversarial prover could deviate from the honest implementation. In
this section, we discuss a few of these possible deviations and their security
implications.

5.3.1 Fabricated Gadget Measurement Outcomes

A malicious prover can apply a secret-CNOT gadget honestly but report fabri-
cated outcomes ŷ and d̂ to the verifier. This may cause the verifier to compute
the exponents of the Pauli padding on the affected qubits incorrectly, but (un-
der the security assumptions of TCFs) confers no advantage to the prover in
computing the exponents of the padding induced by either the honest outcomes
or the fabricated ones.3 We can model this attack as the prover performing
the gadget honestly and reporting the honest outcomes, but then applying a
probabilistic mixture of Pauli attacks. In particular, the prover applies Z to
the control qubit with probabiliy 1/2 and applies X to the control qubit with
probability 1/2. If the server deviates in this way many times, the overall effect
of the attack can be modelled as some probabilistic mixture of Pauli attacks on
the committed state.

If the total weight of a Pauli attack is w, it must apply X to at least w/2
qubits or Z to at least w/2 qubits. In Protocol 1 (Figure 4.3), a single X applied
to a random qubit of the commited state escapes detection whenever it is not
applied to a computational basis qubit selected to be tested in the computational
basis. This happens with probability 3

4 + 1
8` . We can thus upper-bound the

probability that an attack applying X to at least w/2 qubits is undetected
during the test phase by ( 3

4 + 1
8` )

w/2; the analysis for Z is analogous. In Protocol
2 (Figure 4.4), a pauli attack must have weight at least 3 to have a nontrivial
effect on Steane-encoded data.

The prover can also report fabricated outcomes to trick the verifier into
thinking a secret-CNOT gadget has been applied when the server has actually
done nothing at all. If a prover fabricates all gadget measurement outcomes
during a Shell Game protocol without ever actually applying a gadget, then
the server will also have to fabricate test measurement outcomes. This kind of
deviation is detected during the test phase with probability 1− (1/4)T , where T
is the number of test measurements performed (2`2−` in Protocol 1 or 42`2−21`
in Protocol 2).

3Strictly speaking, this is only true if the verifier aborts when the prover reports that d
is the all-zero string too often. If the prover is allowed to always (falsely) report that d is
all-zero, then the prover knows the Z exponent induced by the fabricated outcome is always
0.
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5.3.2 Re-Running a Gadget

A prover cannot re-use a magic box without the verifier’s knowledge, since the
box outputs are sent to the verifier from the box itself. However, it is possible to
use a public key to re-run secret-CNOT gadgets an arbitrary number of times.
That is, once a prover knows how to implement ÛEnc(s), a prover can use this
unitary to run the secret-CNOT gadget induced by that encryption of s as many
times as they want later in the protocol.4 For example, if a prover is instructed
to use ÛEnc(s) to run a secret-CNOT gadget on a pair of qubits, the prover could
instead run the gadget on the pair twice (reporting the outcomes only once)
to undo the secret-CNOT and change the Pauli padding. Although it is not
immediately obvious how an adversary could gain advantage in the Shell Game
by doing this, the fact that it is possible prevents us from treating secret-SWAP
gadgets as a black box directly.

5.3.3 Implementing Other Secret Unitaries

At a certain point in the honest implementation of a secret-CNOT gadget (see
subsection 3.2.1), the prover holds the state∑

a,b

αab |a〉A |b〉B |µa, ra〉X .

The honest prover then performs a CNOT controlled by the first bit of the X
register (call it the M register) and targeting the B register. The promise that
µ0 ⊕ µ1 = s ensures that this is equivalent to performing IA ⊗ Xµ0

B CNOTsAB .
However, if a prover is dishonest, they could implement some other secret uni-
tary at this step. For example, by performing a cZMB (controlled Z) instead of
CNOTMB , the prover would effectively implement the unitary IA ⊗ Zµ0

B cZsAB .
More generally, for a Hermitian single-qubit unitary U with an associated two-
qubit controlled unitary cU , a prover can use cUMB instead of CNOTMB to
produce the state

Z d̄A ⊗ U
µ0

B cUsAB |φ〉AB
on an initial state |φ〉AB . These secret-U gadgets are interesting and potentially
useful in cryptographic protocols; for example, one could implement a secret
basis-flip on the qubit in the B register by using an ancillary |1〉 in register
A and applying a controlled Hadamard cH at the crucial step.5 However, the
ability to implement secret unitaries other than CNOT using the gadget further
complicates the analysis of Magic SWAP Boxes built from secret-SWAP gadgets.

4In a Shell Game implemented using secret-SWAP gadgets for magic boxes, the verifier
would sample a new TCF pair for each secret-CNOT.

5This “secret” basis-flip isn’t quite secret as described, since a QHBC prover knows that
the M register contains the pure state |µ1〉 and can just measure it to determine whether the
flip will be performed. Some refinement is required.
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5.4 More Secure Authentication Schemes

In the Shell Game as explained in chapter 4, the Steane code was chosen for
use in Protocol 2 mostly as a proof of concept. After all, authenticated output
is not of high value in a world without noise, where all adversaries are merely
too curious but not particularly malicious. However, against active adversaries,
authentication is vital, and security of a trap code based on the Steane code with
distance d = 3 may not be sufficient for all purposes. Thankfully, we can achieve
arbitrary security against Pauli attacks by concatenating the Steane code with
itself many times. Since the Steane code can be implemented using only (secret)
CNOTs (given enough extra |0〉 and |+〉 qubits), so can any concatenated Steane
code. The only extra requirements to concatenate the Steane code c times are

a larger initial quantum state |+〉⊗3·7c`2 |0〉⊗3·7c`2
and 2c additional rounds of

secret transpositions (2 rounds for each Steane encoding circuit).
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Chapter 6

Conclusion and Future
Work

We have presented a novel protocol for verifiable remote state preparation in the
Shell Game. We have demonstrated that in the QHBC setting the magic box
resources necessary to preform the Shell Game protocol can be implemented
from TCFs, and we have proved the security of the protocol in this setting.
The Shell Game distinguishes itself from state-of-the-art protocols for verifiable
remote state preparation QFactory and BRSP in that the Shell Game requires
only constantly many rounds of communication to prepare an arbitrary number
of qubits and can optionally prepare authenticated qubits. However, in order to
fairly compare the Shell Game with QFactory and BSRP—indeed, for the Shell
Game to be of practical use for remote state preparation—it is necessary to
demonstrate security of the Shell Game against active adversaries. This thesis
has unfortunately not accomplished this task, although it has begun addressing
it. Two major gaps remain: First, we must explicitly relate the magic box
games presented in chapter 5 to the test phase of the Shell Game in order to
derive a guarantees about the state prepared by an adversarial server in the
commitment phase. Second, we must find a way to implement magic boxes
in the active security setting, or else replace magic boxes in the Shell Game
protocol with some other resource that can be implemented in that setting.
Future research on the Shell Game must address these gaps.

Other improvements to the Shell Game can also be addressed in future work.
The Shell Game as presented in this thesis is not particularly fault-tolerant, in
the sense that a single physically inconsistent measurement outcome will always
cause the client to abort during the test phase. One possible solution is to
change the test protocol to more closely resemble the blind self-testing intro-
duced with QFactory [CCKW19], which evaluates test measurement outcomes
in terms of something like physical “plausibility” (within some tolerance) than
physical consistency. The disadvantage in this kind of testing is that its security
is also conjectural at this time.
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An additional improvement would be to enlarge the set of states that can
be randomly prepared by the Shell Game. The Shell Game protocols prepare
random BB84 states. BB84 states are useful for many quantum cryptographic
protocols, but they aren’t sufficient for verifiable blind quantum computation
(i.e., the original motivation for developing verifiable remote state preparation).
Thus future work with the Shell Game should explicitly address secure prepa-
ration of a suitable set of states, e.g., those used in the Fitzsimons and Kashefi
BQC protocol [FK17].
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