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Abstract

In this thesis we investigate the proof theory of the fragment Σµ
1∪Πµ

1 of the modal mu-calculus.
This fragment consists of formulas which have syntactic �xed point alternation depth of at
most one. Σµ

1 ∪ Πµ
1 contains the building blocks for interesting concepts such as common

knowledge. Moreover, it is computationally important in view of applications in database
theory. We de�ne a circular proof system and a circular tableaux system for Σµ

1 ∪ Πµ
1 and

prove soundness and completeness. We then use these systems to establish key properties of
Σµ

1 ∪ Πµ
1 , such as the �nite model property and Craig interpolation. Furthermore, we de�ne

in�nitary proof systems for the whole modal mu-calculus and show that they are sound and
complete. The main contribution of the thesis is an axiomatization of Σµ

1 ∪Πµ
1 as well as novel

proofs of the �nite model property and Craig interpolation.
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Chapter 1

Introduction

The logical system investigated in this thesis is the modal mu-calculus, introduced by Kozen
in 1983 [12]. The modal mu-calculus is an extension of propositional modal logic with �xed
point operators, namely the least �xed point operator µ and the greatest �xed point oper-
ator ν. The resulting system is not only very expressive, but enjoys many desirable logical
properties and has important applications in computer science. An important concept in the
theory of the modal mu-calculus is the notion of �xed point alternation, which counts the
number of alternations of least and greatest �xed point operators in a formula. Fixed point
alternation substantially increases the expressive power of the modal mu-calculus but also
the di�culty of its mathematical theory [5]. Our interest concerns a speci�c fragment of the
modal mu-calculus which is called the �rst level of the alternation depth hierarchy, denoted
by Σµ

1 ∪Πµ
1 . This fragment consists of formulas that contain syntactic �xed point alternation

of at most one. The interest in this fragment is motivated by two main reasons. First, the
fragment contains the building blocks of interesting concepts such as common knowledge, a
concept which is extensively used in epistemic logic. Moreover, Σµ

1 ∪ Πµ
1 can be regarded

as the starting point for an investigation of the alternation free fragment of the modal mu-
calculus. Second, the mathematical theory of this fragment has not yet been studied and
little is known about its logical properties. We aim to contribute to the investigation of this
fragment by constructing circular proof systems for Σµ

1 ∪ Πµ
1 and use them to establish that

the fragment enjoys both the �nite model property and Craig interpolation. While these re-
sults have already been established for the whole modal mu-calculus (see [17] and [7]), we
hope to provide much simpler proofs for the �rst level of the alternation depth hierarchy and
thereby deepen our understanding of it. Moreover, we study in�nitary Gentzen style proof
systems and provide soundness and completeness results. These in�nitary systems are used to
obtain circular proof systems for Σµ

1∪Πµ
1 and build in that sense the basis of our investigations.

There are two standard approaches to in�nitary Gentzen style proof systems for the modal
mu-calculus [18], that di�er in the type of rules which are used for �xed point operators. The
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Chapter 1. Introduction

�rst approach is characterized by in�nite unfolding of �xed point formulas, which results in
pre-proofs being �nite branching trees containing in�nite branches. Whether a pre-proof is a
proof is then decided by checking certain conditions imposed on in�nite branches. The �rst
such system was proposed by Niwi«ski and Walukiewicz in 1996 [16] in form of a tableaux
system. The second type was developed by Jäger, Kretz and Studer [10] in 2008 and is char-
acterised by approximating �xed points. Instead of unfolding �xed point formulas in�nitely
often, one derives in�nitely many approximations of the �xed point and then uses a so-called
ω-rule which takes all of the in�nitely many approximations as premises and infers the �xed
point formula. This implies that proofs in this setting are in�nite branching trees. As each
approximation is itself �nite, every branch of such a proof-tree is �nite. For an overview of the
connection between these two types of systems, we refer to [18]. The proof systems developed
in this thesis are of the �rst type and use �xed point unfolding rules. We construct in total
three di�erent but closely related in�nitary sequent calculi which are sound and complete.
The starting point of the construction is thereby the in�nitary tableaux system developed by
Niwi«ski and Walukiewicz in [16], which we dualize in a �rst step into a Gentzen style sequent
calculus. This dualized proof system builds the foundation of the other two systems.

Circular proof systems for the modal mu-calculus were introduced by Jungteerapanich [11] in
2009 and more recently by Afshari and Leigh in [1]. Circular proofs have a close connection
to regular in�nitary proofs. An in�nitary proof in our setting is a �nite branching tree that
contains in�nite branches. Such a tree is called regular if it is the unfolding of a �nite tree.
Given a �nite tree that unfolds into a regular tree, this �nite tree is turned into a circular
proof tree by adding loops to some of its leafs (hence the name 'circular'). That is, circular
proof trees are essentially �nite trees that unfold into in�nite regular trees over their loops.
In order to ensure that a circular proof system is sound, one imposes conditions on the �nite
proof trees that ensure that their unravelling is indeed an in�nite proof. Proving the existence
of circular proofs coincides with �nding appropriate �nite structures in in�nite proof trees,
which can be unfolded into regular trees. In the presence of arbitrary �xed point alternation,
such a task is tricky, as the �xed point alternation makes it di�cult to impose conditions on
circular proofs that ensure that the system is sound. In the presence of syntactic �xed point
alternation of at most one however, we show that �nding appropriate �nite structures is much
easier. That is, we show how to de�ne sound and complete circular proof systems for the
fragment Σµ

1 ∪ Πµ
1 . As derivations in a circular proof system are �nite, we show how to use

such systems to establish both the �nite model property and Craig interpolation.

1.1 Contributions

The main contribution of the thesis is the construction of a circular tableaux system and a
circular proof system for the fragment Σµ

1 ∪ Πµ
1 . With these systems we provide - as far as

we know - the �rst axiomatization of this fragment. Moreover, the systems are essential for

2



Chapter 1. Introduction

establishing the �nite model property and Craig interpolation. While these two properties are
already known for the whole modal mu-calculus, we provide novel proofs for Σµ

1 ∪ Πµ
1 which

are much simpler than the proofs for the whole calculus. In doing so we hope to provide
new insights into the fragment. Apart from circular systems, our second contribution is the
discussion of in�nitary Gentzen style sequent calculi for the whole modal mu-calculus. The
in�nitary systems presented are not essentially new (indeed other authors have used similar
systems, see for example [18]), but we do provide novel soundness and completeness proofs by
using the connection between the in�nitary proof systems and the in�nitary tableaux system
from [16]. These proofs also provide new insights into the connection between tableaux and
proof systems.

1.2 Outline of the thesis

The next two chapters lay the foundations for the rest of the thesis. They present standard
results and de�nitions of the modal mu-calculus. The remaining parts from chapter 4 on
consist of the research contributions of this thesis.

. Chapter 2 consists of a brief introduction to the modal mu-calculus. We introduce its
syntax and semantics and de�ne the alternation depth hierarchy.

. Chaper 3 introduces the tableaux system T developed by Niwi«ski and Walukiewicz in
[16]. Moreover, model checking games are introduced and the soundness proof of T is
discussed.

. Chapter 4 introduces the circular tableaux system CT, establishes its soundness and
completeness with respect to Σµ

1 ∪Πµ
1 and derives as a corollary the �nite model property

for Σµ
1 ∪Πµ

1 .

. Chapter 5 de�nes and discusses the three in�nitary sequent calculi DT,DT′ and 2DT.
The chapter also consists of soundness and completeness proofs for all three systems.

. Chapter 6 introduces the circular sequent calculus C2DT, establishes its soundness
and completeness with respect to Σµ

1 ∪ Πµ
1 and then establishes the Craig interpolation

property for Σµ
1 ∪Πµ

1 . The last part of this chapter is devoted to discuss the optimization
of the constructed interpolant.

. Chapter 7 consists of a short discussion of the established results and poses several
remaining open questions which might be tackled in further research.

3



Chapter 2

The modal mu-calculus

2.1 Introduction

The propositional modal mu-calculus was introduced by Kozen in 1983 [12]. It is an extension
of propositional modal logic with a least and a greatest �xed point operator. This creates a
logical system that far exceeds the expressive power of modal logic. The modal operator �
used in modal logic provides quanti�cation over neighbours of the current state. The formula
�P expresses that the condition P holds in every state which is reachable from the current
state over a single transition step. Adding �xed point operators introduces concepts such as
path-quanti�cation. For instance, one can express the following statement:

�The condition P holds in every state reachable over an arbitrary number of transition steps.�

Here, the quanti�cation is no longer local but ranges over every path through the transition
system starting in the current state. While path quanti�cation is a much stronger form of
quanti�cation than what is provided in modal logic, it is only a weak concept compared to
what is expressible in the modal mu-calculus. Apart from its expressive power, the modal
mu-calculus enjoys many desirable logical properties such as decidability [5], a property which
is lost in other expressive systems such as �rst-order logic. For a discussion why modal log-
ics in general and the modal mu-calculus in particular are robustly decidable, we refer to
[9]. Another interesting result states that the modal mu-calculus is the bisimulation invari-
ant fragment of second-order logic, similar to modal logic, which is the bisimulation invariant
fragment of �rst-order logic [5]. It is hence a system of considerable mathematical interest.
The main application of the mu-calculus is in computer science. In the past decades, �xed
point logics in general have gained a lot of attention in computer science, as they are used
to specify properties of programs in the �eld of software veri�cation [5]. Famous �xed point
logics include Propositional Dynamic Logic (PDL), Linear Time Logic (LTL) and Computa-
tional Tree Logic (CTL), all of which are fragments of the modal mu-calculus. Indeed, many
�xed point logics turn out to be included in the modal mu-calculus [5], which makes it an
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Chapter 2. The modal mu-calculus

interesting system to study as a meta-theory. The least and greatest �xed point operators of
the modal mu-calculus are not only responsible for the expressive power of the system, but also
substantially increase the di�culty of its theory. Moreover, due to these operators, formulas
of the modal mu-calculus are hard to grasp. In contrast to handier �xed point logics such
as LTL, one requires experience and good intuition to understand what property a formula
expresses. It is therefore important to obtain a good understanding of the modal mu-calculus
before delving into the theory presented later on. This chapter contributes to that aim by
introducing the modal mu-calculus formally. First and foremost, the syntax of the modal
mu-calculus is de�ned in section 2.2. The subsequent section 2.3 introduces the semantics of
the modal mu-calculus in terms of transition systems. The last section 2.4 of this chapter is
devoted to introduce and discuss the alternation depth hierarchy and to de�ne the fragment
Σµ

1 ∪Πµ
1 .

For a more detailed introduction to the modal mu-calculus, we refer to the excellent overview
by Brad�eld and Stirling in [5] and the detailed introduction by Demri, Goranko and Lange
in [8]. The presentation of this chapter closely follows the lecture notes of the course Logic,
Games and Automata [2] taught by Afshari at the University of Amsterdam in the spring
semester 2020.

2.2 Syntax

De�ning the syntax of a logic starts by providing the language which is used. Throughout the
thesis, we denote the language of the modal mu-calculus by Lµ.

De�nition 2.2.1. The language Lµ of the modal mu-calculus consists of the following prim-
itive symbols:

. A countable set of atomic propositions Prop. Atoms in Prop are denoted by P and Q,
possibly with sub- or superscript.

. A countable set of variables V ar. Variables in V ar are denoted by X,Y or Z, possibly
with sub- or superscript.

. The logical connectives ¬ (negation), ∧ (conjunction) and ∨ (disjunction).

. The modal operators � (box ) and ♦ (diamond).

. The �xed point operators ν (called the greatest �xed point operator) and µ (called the
least �xed point operator).

When it comes to applications, it is standard to add a �nite set of agent symbols A to the
language of the modal mu-calculus and, instead of having a single box and diamond operator,
there are modal operators for each agent a ∈ A, usually written as [a] and 〈a〉. In this

5



Chapter 2. The modal mu-calculus

thesis, we deal with a single box and diamond operator, as we are interested in proof theoretic
aspects of the modal mu-calculus rather than applications. The set of literals is de�ned to be
Prop ∪ {¬P |P ∈ Prop} and is denoted by Lit.

De�nition 2.2.2. Lµ-formulas are de�ned inductively as follows:

1. If P ∈ Prop, then P and ¬P are Lµ-formulas.

2. If Z ∈ V ar, then Z and ¬Z are Lµ-formulas.

3. If ϕ and ψ are Lµ-formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, �ϕ and ♦ϕ.

4. If ϕ is a Lµ-formula, then νZ.ϕ and µZ.ϕ are Lµ-formulas, provided that Z does not
occur negated in ϕ.

Observe that negation is only applied to atoms and variables. It is more standard to present
formulas of Lµ by allowing to apply negation to arbitrary formulas. Formulas as de�ned
here are sometimes called formulas in positive form [2]. It is a well-known result that every
formula of Lµ is equivalent to a formula in positive form, which justi�es the de�nition presented
above. If every occurrence of the variable Z in a formula ϕ occurs non-negated, then Z is
called positive in ϕ. Given a formula of the form νZ.ϕ, we call the occurrences of Z in ϕ
bounded. Occurrences of variables which are not bounded are called free. It follows from the
de�nition of the semantics in the next section that if ϕ does not contain the variable Z, then
ϕ is equivalent to σZ.ϕ for σ ∈ {µ, ν}. We assume from now on that whenever we deal with a
formula of the form σZ.ϕ, that Z occurs in ϕ. We write ϕ(Z) to denote that Z occurs freely
in ϕ. Given a formula σZ.ϕ(Z), the variable Z is called a µ-variable if σ = µ and it is called
a ν-variable if σ = ν. We stipulate that �xed point operators have higher precedence than
the Boolean connectives ∧ and ∨ which in turn have higher precedence than modal operators.
That is, the formula νY.Y ∧ P is read as νY.(Y ∧ P ) and the formula �P ∨ Q is read as
(�P ) ∨Q.

Convention 2.2.3. Given a formula ϕ(Z) with Z occurring freely in ϕ and a formula ψ, then
ϕ(ψ) denotes the formula ϕ(Z) where each free occurrence of Z is substituted by ψ.

In later chapters, we restrict our attention to Lµ-formulas that are closed and in guarded
normal form.

De�nition 2.2.4. Let ϕ be a Lµ-formula.

. ϕ is closed if it contains no free variables.

. ϕ is in normal form if all variables occurring in ϕ that are bound by di�erent occurrences
of �xed point operators are pairwise distinct.

. A variable Z is guarded in ϕ if every bound occurrence of Z in ϕ occurs in the scope of
a modal operator. A formula ϕ is guarded, if every variable in ϕ is guarded.

6



Chapter 2. The modal mu-calculus

Observe that every variable in a closed formula occurs positive.

De�nition 2.2.5. Let ϕ be a Lµ-formula. The set of subformulas of ϕ, written Sub(ϕ), is
de�ned by induction on ϕ:

1. If ϕ = P for P ∈ Prop, then Sub(ϕ) := {P}.

2. If ϕ = ¬P for P ∈ Prop, then Sub(ϕ) := {¬P}.

3. If ϕ = Z for Z ∈ V ar, then Sub(ϕ) := {Z}.

4. If ϕ = ¬Z for Z ∈ V ar, then Sub(ϕ) = {¬Z}.

5. If ϕ = ψ1 ◦ ψ2 for ◦ ∈ {∧,∨}, then Sub(ϕ) := Sub(ψ1) ∪ Sub(ψ2) ∪ {ψ1 ◦ ψ2}.

6. If ϕ = •ψ for • ∈ {�,♦}, then Sub(ϕ) := Sub(ψ) ∪ {•ψ}.

7. If ϕ = σZ.ψ(Z) for σ ∈ {µ, ν}, then Sub(ϕ) := Sub(ψ(Z)) ∪ {σZ.ψ(Z)}.

If ψ ∈ Sub(ϕ), then ψ is called a subformula of ϕ.

2.3 Semantics

Given a set S, its power set is denoted by P(S). Formulas of the modal mu-calculus are
evaluated in transition systems.

De�nition 2.3.1. A transition system is a triple T = (S,→, ρ) where

. S is a non-empty set; an element s ∈ S is called a state

. →⊆ S × S is a binary transition relation; we write s→ t for (s, t) ∈→

. ρ : Prop −→ P(S) is a function that maps atomic propositions to subsets of S

Transition systems are also known as Kripke models. Given a transition system T = (S,→, ρ),
a function V : V ar −→ P(S) that maps variables onto subsets of S is called a valuation. Given
a transition system T = (S,→, ρ) and a valuation V : V ar −→ P(S), we assign to each formula
ϕ a set of states JϕKTV ⊆ S, called the truth set of ϕ, with the intended meaning that ϕ holds
at every state in JϕKTV . The de�nition of the truth set for an atom coincides with the set of
states assigned to the atom by the function ρ. Similarly, the truth set of a variable coincides
with the set of states assigned to it by the valuation V . The de�nition of the truth sets for the
Boolean connectives and the modal operators are standard. For the de�nition of the truth sets
for �xed point formulas, suppose that some formula ϕ(Z) contains a free variable Z. Then
ϕ(Z) induces a function fϕ : P(S) −→ P(S) de�ned as follows:

fϕ(U) := Jϕ(Z)KTV [Z 7→U ]

7



Chapter 2. The modal mu-calculus

where V [Z 7→ U ] is de�ned by

V [Z 7→ U ](X) :=

{
U if X = Z

V (X) otherwise

We call a set U ⊆ S such that fϕ(U) = U a �xed point of fϕ. Moreover, U is called the
greatest �xed point of fϕ, if U is a �xed point and for every other �xed point V of fϕ it
holds that V ⊆ U . Similarly, U is called the least �xed point of fϕ, if U is a �xed point and
for every other �xed point V of fϕ it holds that U ⊆ V . If U ⊆ fϕ(U), then U is called a
post-�xed point of fϕ and if fϕ(U) ⊆ U , then U is called a pre-�xed point of fϕ. The least
and greatest �xed point operators are interpreted as the least and greatest �xed points of such
functions. That is, the truth set assigned to the formula νZ.ϕ(Z) is the greatest �xed point
of the function fϕ. As fϕ is monotone in Z on P(S) due to the restriction that the variable
Z only occurs non-negated, the Knaster-Tarski-Theorem [19] establishes that fϕ has a �xed
point. Moreover, it is a well-known result that for such functions there exists a unique least
�xed point which coincides with the intersection over all the pre-�xed points of the function
and a unique greatest �xed point which coincides with the union over all its post-�xed points.

De�nition 2.3.2. Let T = (S,→, ρ) be a transition system and V : V ar −→ P(S) a valuation.
The truth set JϕKTV ⊆ S is de�ned by induction on ϕ as follows:

JP KTV := ρ(P )
J¬P KTV := S − ρ(P )

JZKTV := V (Z)
J¬ZKTV := S − V (Z)

Jϕ ∧ ψKTV := JϕKTV ∩ JψKTV
Jϕ ∨ ψKTV := JϕKTV ∪ JψKTV

J�ϕKTV := {s ∈ S| for all t ∈ S, if s→ t, then t ∈ JϕKTV }
J♦ϕKTV := {s ∈ S| there exists t ∈ S with s→ t and t ∈ JϕKTV }

JνZ.ϕ(Z)KTV :=
⋃
{U ⊆ S|U ⊆ Jϕ(Z)KTV [Z 7→U ]}

JµZ.ϕ(Z)KTV :=
⋂
{U ⊆ S|Jϕ(Z)KTV [Z 7→U ] ⊆ U}

If s ∈ JϕKTV , we say that ϕ holds or equivalently is true at the state s of the transition system
T = (V,→, ρ) under the valuation V and we call T a model for ϕ. We also write T, V, s |= ϕ
instead of s ∈ JϕKTV .

Observe that the truth set of a greatest �xed point formula νZ.ϕ is exactly the union over all
post-�xed points of the function induced by ϕ and the truth set of a least �xed point formula
is the intersection over all pre-�xed points.

De�nition 2.3.3. Let ϕ be a formula of Lµ.

. ϕ is satis�able if there exists a transition system T = (S,→, ρ), a valuation V : V ar −→
P(S) and a state s ∈ S, such that s ∈ JϕKTV .

8
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. ϕ is unsatis�able if it is not satis�able.

. ϕ is valid if for every transition system T = (S,→, ρ) and every valuation V it holds
that JϕKTV = S.

. Two Lµ-formulas ϕ and ψ are called equivalent - written ϕ ≡ ψ - if for every transition
system T = (S,→, ρ) and every valuation V : V ar −→ P(S) it holds that JϕKTV = JψKTV .

We �nish this section by stating two well-known results about the modal mu-calculus which are
of importance for the thesis. The �rst result justi�es the restriction towards guarded formulas
in normal form.

Proposition 2.3.4. Every Lµ-formula ϕ is equivalent to a guarded formula in normal form.

It is therefore safe to assume that whenever we consider an arbitrary Lµ-formula ϕ, that ϕ
is guarded and in normal form. The second result is a standard equivalence which is used
throughout the thesis without further mentioning.

Proposition 2.3.5. For a formula σX.ϕ(X) where σ ∈ {µ, ν} the following holds:

σX.ϕ(X) ≡ ϕ(σX.ϕ(X))

The proof is based on the de�nition of the truth set of σX.ϕ(X) being a �xed point of the
function induced by ϕ. This equivalence is of importance for the proof systems we discuss
later on. Indeed it is this equivalence that motivates the rules for �xed point operators.

2.4 The alternation depth hierarchy

The expressive power of the modal mu-calculus mainly stems from �xed point alternation
[5]. This alternation is de�ned in terms of the alternation depth hierarchy, a strictly ordered
hierarchy of classes of formulas. The general idea to determine the alternation depth of a
formula is to count the alternations of least and greatest �xed point operators which are in
the scope of each other. However, the proper de�nition of �xed point alternation is a bit
more involved than simply counting syntactic �xed point alternation. To see why, consider
the formula always eventually versus the formula in�nitely often (this example is from [5]).
The formula always eventually is given as follows:

νY.(µZ.P ∨ ♦Z) ∧ ♦Y

The syntactic �xed point alternation depth is 2. However, computing whether this formula
holds in a state of a given structure is not harder than computing two disjoint �xed points.
This is because the inner �xed point is independent from the outer one and for computing
the whole formula, one only has to compute the inner �xed point once. The formula in�nitely
often is given by

νY.µZ.(P ∨ ♦Z) ∧ ♦Y

9



Chapter 2. The modal mu-calculus

Computing this formula leads to much higher complexity, as the inner �xed point now depends
on the outer one.1 Therefore, it does not su�ce to simply count syntactic alternations of �xed
point operators. In this section, we present the �xed point alternation depth hierarchy in the
way Niwi«ski presented it in [15], which takes the above phenomena into account. For a more
detailed introduction to the �xed point alternation hierarchy and its relevance for the modal
mu-calculus, we refer to [15] and [5].

A Lµ-formula ϕ belongs to the class Σµ
0 = Πµ

0 if and only if it contains no �xed point operators.
The class Σµ

n+1 is de�ned to be the closure of Σµ
n ∪Πµ

n under the following rules:

1. If ϕ,ψ ∈ Σµ
n+1, then ϕ ∧ ψ,ϕ ∨ ψ,�ϕ,♦ϕ ∈ Σµ

n+1.

2. If ϕ ∈ Σµ
n+1 and X occurs freely and positive in ϕ, then µX.ϕ ∈ Σµ

n+1.

3. If ϕ(X), ψ ∈ Σµ
n+1, then ϕ(ψ) ∈ Σµ

n+1, provided that no free variable of ψ becomes
bound by a �xed point operator in ϕ.

The class Πµ
n+1 is de�ned to be the closure of Σµ

n ∪Πµ
n under the following rules:

1. If ϕ,ψ ∈ Πµ
n+1, then ϕ ∧ ψ,ϕ ∨ ψ,�ϕ,♦ϕ ∈ Πµ

n+1.

2. If ϕ ∈ Πµ
n+1 and X occurs freely and positive in ϕ, then νX.ϕ ∈ Πµ

n+1.

3. If ϕ(X), ψ ∈ Πµ
n+1, then ϕ(ψ) ∈ Πµ

n+1, provided that no free variable of ψ becomes
bound by a �xed point operator in ϕ.

De�nition 2.4.1. The alternation depth of a formula ϕ is the least natural number n such
that ϕ ∈ Σµ

n+1 ∩Πµ
n+1.

The formula always eventually belongs to Σµ
2 ∩Πµ

2 and has therefore alternation depth 1. The
formula in�nitely often belongs to Σµ

3 ∩ Πµ
3 , which implies that its alternation depth is 2.

The fragment Σµ
2 ∩ Πµ

2 is called the alternation free fragment of the modal mu-calculus. The
alternation depth hierarchy consists of the classes Σµ

n and Πµ
n for all n ∈ ω ordered by the

subset relation. The picture below shows the alternation depth hierarchy, where the arrows
represent the subset relation. For example Σµ

1 −→ Σµ
2 encodes that Σµ

1 ⊆ Σµ
2 .

1This becomes more clear when one considers what is called �xed point approximations. By computing the
�xed point approximation of the always eventually formula, one has to compute two independent �xed point
approximations, the inner and the outer one. In the in�nitely often formula however, one has to compute the
inner approximations in each step of the outer approximations, resulting in much higher complexity. For an
introduction to �xed point approximations we refer to [5].
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Σµ
0 = Πµ

0

Σµ
1

Πµ
1

Σµ
2

Πµ
2

Σµ
3

Πµ
3

. . .

. . .

Σµ
k

Πµ
k

Σµ
k+1

Πµ
k+1

. . .

. . .

The alternation depth hierarchy is sometimes also called the Niwi«ski hierarchy and was shown
to be strict by Brad�eld in 1996 [4].

Theorem 2.4.2 (Brad�eld 1996). For every natural number n > 0, there exists a formula
ϕ ∈ Σµ

n which is not equivalent to any formula in Πµ
n.

As mentioned in the introduction, much of the later work is focused on the �rst level of the
alternation depth hierarchy.

De�nition 2.4.3. The �rst level of the alternation depth hierarchy is de�ned to be Σµ
1 ∪Πµ

1 .

Observe that by de�nition Σµ
1 ∪ Πµ

1 consists only of formulas that have syntactic �xed point
alternation depth of at most one, that is modal formulas as well as formulas that only contain
least �xed point operators or only contain greatest �xed point operators. The �rst level of the
alternation depth hierarchy is not identical with the alternation free fragment. The former is
Σµ

1 ∪Πµ
1 and is strictly contained in the latter which is Σµ

2 ∩Πµ
2 [14].
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Chapter 3

Tableaux, proof systems and model

checking games

3.1 Introduction

The starting point of our proof theoretic investigation of the modal mu-calculus is the tableaux
system T, which was introduced by Niwi«ski and Walukiewicz [16] in 1996.1 A tableaux
system is used to check whether formulas are satis�able. It is called sound, if every formula
that has a derivation in the system is satis�able and complete, if the converse holds, namely
if every formula which is satis�able has a derivation. Derivations in a tableaux system are
called tableaux. A tableau is a tree where every node is labelled by a set of formulas. In
the tableaux system T, tableaux are in general �nite branching trees which allow for in�nite
branches. These in�nite branches are generated by the unfolding and regenerating of �xed
point formulas. For example, for the greatest �xed point operator ν, there are two rules:

Z
νZ.ϕ(Z)

(ν)
ϕ(Z)

Z
(Z)

The rules are read bottom up. The left rule decomposes the �xed point formula νZ.ϕ(Z) into
the variable Z. The right rule then allows a regeneration of the body ϕ(Z) of the �xed point
formula. By applying rules for the Boolean connectives and the modal operators, we can then
decompose the formula ϕ(Z) until we reach a node labelled by Z higher up in the tableau. At
this node we can regenerate the body again and so on. This leads to in�nite branches. The
tableaux system T is the foundation of the Gentzen-style proof systems presented in chapter
5 and the circular tableaux system in chapter 4. We therefore devote this chapter to properly
introduce the system T and prove its soundness. Soundness and completeness of T was estab-
lished by Niwi«ski and Walukiewicz [16] by using the close connection of tableaux and model

1The system that was introduced in [16] di�ers a bit in presentation from the tableaux system T in this
chapter. The two systems are however equivalent.
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checking games. We follow their approach in proving soundness. We �rst introduce model
checking games in the next section 3.2 and afterwards the tableaux system T in section 3.3.
The last section 3.4 consists of a detailed discussion of the soundness proof.

The presentation of this chapter closely follows the lecture notes of the course Logic, Games
and Automata [2] as well as Niwi«ski's and Walukiewicz's original paper [16].

3.2 Model checking games

From now on and for the rest of the thesis we assume formulas to be in guarded normal form.
In this section we introduce model checking games. These are in�nitary two player games
which are used to answer the model checking problem.

The model checking problem: Given a transition system T , a state s, a valuation V and
a Lµ-formula ϕ, does s ∈ JϕKTV hold?

Recall the de�nition of a directed graph.

De�nition 3.2.1. A directed graph is a tuple 〈V, E〉 where V is a set of vertices and E ⊆ V×V
is an ordered set of vertices. Given u, v ∈ V such that (u, v) ∈ E, we say that there is an edge
from u to v, written u→ v.

Let ϕ be a Lµ-formula and �x a transition system T = (S,→, ρ), a state s ∈ S and a valuation
V . The model checking game GTV (s, ϕ) with respect to the system T , valuation V , state s and
formula ϕ consists of two players:

. The Veri�er, whose goal is to show that T, V, s |= ϕ.

. The Refuter, whose goal is to show that T, V, s 6|= ϕ.

The game is played on a directed graph which is called the arena of GTV (s, ϕ).

. Vertices of the arena are pairs (t, ψ) where t ∈ S and ψ ∈ Sub(ϕ);

. The existence of edges between vertices depends on the shape of the subformulas of the
vertices.

� Boolean subformulas: For each t ∈ S and each subformula of ϕ of the form ψ1 ∧ψ2

or ψ1 ∨ ψ2 there are the following edges:

(t, ψ1 ∧ ψ2) −→ (t, ψi) (t, ψ1 ∨ ψ2) −→ (t, ψi)

for i ∈ {1, 2}.
� Modal subformulas: For each t ∈ S and each u ∈ S such that t → u and each
subformula of ϕ of the form �ψ or ♦ψ there are the following edges:

13
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(t,�ψ) −→ (u, ψ) (t,♦ψ) −→ (u, ψ)

� Fixed point subformulas: For each t ∈ S and each subformula of ϕ of the form
σZ.ψ where σ ∈ {µ, ν} there are the following edges:

(t, σZ.ψ) −→ (t, Z) (t, Z) −→ (t, ψ)

Given a vertex (t, ψ), there are no outgoing edges just if ψ = P or ψ = ¬P for P ∈ Prop
or if ψ = Z or ψ = ¬Z where Z ∈ V ar is a free variable in ϕ. Every vertex of the arena
is labelled by either Veri�er or Refuter. This labelling indicates to which player the vertex
belongs. If a vertex (t, ψ) is labelled by Veri�er, then it is Veri�er's turn to play when the
game is in position (t, ψ) and similarly if the vertex is labelled by Refuter, then it is Refuter's
turn to play. Playing means choosing the next vertex: If the current position of the game
is (t, ψ), labelled by Player ∈ {Veri�er, Refuter} and there are vertices (u1, ψ1), ..., (uk, ψk)
such that for all 1 ≤ i ≤ k it holds that (t, ψ) −→ (ui, ψi), then Player plays by choosing to
move the game to the next vertex (uj , ψj) where j ∈ {1, ..., k}. It is only allowed to choose
vertices which are connected by an edge from the current position. Such vertices are also
called successor vertices. In case there is only one successor vertex, Player has to choose that
one. In case there are no successor vertices, the game ends. Obviously, it is only important to
know whose turn it is in case the current vertex has out-degree larger than 1. For conciseness,
we only assign players to vertices where the out-degree is possibly larger than 1 and assume
that every other vertex with out-degree ≤ 1 is labelled by some player (which one does not
matter). The tabular below indicates which (relevant) vertices belong to which player:

Veri�er Refuter

(t, ψ1 ∨ ψ2) (t, ψ1 ∧ ψ2)
(t,♦ψ) (t,�ψ)

De�nition 3.2.2. A play of GTV (s, ϕ) is a sequence of vertices (s0, ϕ0), (s1, ϕ1), (s2, ϕ2), ...
such that s0 = s, ϕ0 = ϕ and the following two conditions hold for all i ∈ ω:

1. If (si, ϕi) has out-going edges, then (si, ϕi) −→ (si+1, ϕi+1). Otherwise the play ends.

2. If (si, ϕi) is labelled by Veri�er (respectively Refuter), then Veri�er (respectively Refuter)
chooses (si+1, ϕi+1).

Let us consider an example.

Example 3.2.3. Let ϕ = νZ.P∨♦Z and consider the following transition system T , consisting
of two states s and t such that s→ t and t→ s where ρ(P ) = {s}:

s t

The arena of the model model checking game GT∅ (s, ϕ) is depicted below.
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(s, νZ.P ∨ ♦Z)

(s, Z)

(s, P ∨ ♦Z) V

(s, P ) (s,♦Z)V

(t, Z)

(t, P ∨ ♦Z)V

(t, P ) (t,♦Z)V

Observe that every relevant vertex of the arena is labelled by Veri�er, abbreviated by V.
When a play reaches the node (s, P ∨ ♦Z), Veri�er gets to choose whether to move left or
right. In case he moves left, the game ends as (s, P ) is a dead end. If he moves right, the
game continues. There is exactly one possible in�nite play in this arena, namely when Veri�er
decides at each relevant node with out-degree larger than one to always go right.

Next, we formulate winning conditions for both Veri�er and Refuter for a given play, for which
we need the following concept.

De�nition 3.2.4. Let ϕ be a Lµ-formula and let σ1X1.ψ1 and σ2X2.ψ2 be two subformulas
of ϕ. The variable X1 subsumes X2 if and only if σ2X2.ψ2 ∈ Sub(σ1X1.ψ1).

As an example, in the formula (µZ.♦(Z ∨ νY.�(Q ∧ Y ))) ∨ νX.�X the variable Z subsumes
Y while the variable X neither subsumes Z or Y nor Z or Y subsume X. The following
proposition is a standard result.

Proposition 3.2.5. If (s0, ϕ0), (s1, ϕ1), . . .(sn, ϕn), . . . is an in�nite play in the model checking
game GTV (s0, ϕ0), then there is a unique variable X such that

1. X occurs in�nitely often in the play and

2. if Y also occurs in�nitely often, then X subsumes Y .

The variableX occurring in�nitely often in a play means that there are in�nitely many vertices
in the play whose second component is the variable X.

De�nition 3.2.6. Let GTV (s0, ϕ0) be the model checking game for some transition system T ,
state s0, valuation V and formula ϕ0.

1. Veri�er wins a play if
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(a) the play (s0, ϕ0), ...(sn, ϕn) is �nite and

i. ϕn = P and sn ∈ ρ(P ) or ϕn = ¬P and sn 6∈ ρ(P )

ii. ϕn = Z for Z free in ϕ0 and sn ∈ V (Z) or ϕn = ¬Z for Z free in ϕ0 and
sn 6∈ V (Z)

iii. ϕn = �ψ and {t ∈ S|sn → t} = ∅
(b) the play is in�nite and the unique variable X that occurs in�nitely often in the play

and subsumes all other in�nitely often occurring variables is a ν-variable.

2. Refuter wins a play if

(a) the play (s0, ϕ0), ...(sn, ϕn) is �nite and

i. ϕn = P and sn 6∈ ρ(P ) or ϕn = ¬P and sn ∈ ρ(P )

ii. ϕn = Z for Z free in ϕ0 and sn 6∈ V (Z) or ϕn = ¬Z for Z free in ϕ0 and
sn ∈ V (Z)

iii. ϕn = ♦ψ and {t ∈ S|sn → t} = ∅
(b) or the play is in�nite and the unique variable X that occurs in�nitely often in the

play and subsumes all other in�nitely often occurring variables is a µ-variable.

Notice that every play is won by exactly one player. If the play is �nite, then the last position
(sn, ϕn) is such that ϕn is either a literal or a (possibly negated) free variable or a modal
formula where one of the players cannot extend the play. All six cases correspond to either
Veri�er or Refuter winning. If the play is in�nite, then by proposition 3.2.5 there exists a
unique variable that occurs in�nitely often and subsumes every other variable that occurs
in�nitely often. Thus if this unique variable is a ν-variable, then Veri�er wins and otherwise
Refuter wins. Having de�ned winning conditions on speci�c plays, let us now de�ne strategies.
Intuitively, a strategy for a player is a set of rules that tells the player how to play in speci�c
positions. A strategy is called memoryless, if the rules only depend on the current position
of the game and not on previous moves and positions. Formally, memoryless strategies are
de�ned as follows:

De�nition 3.2.7. Let GTV (s0, ϕ0) be a model checking game and let Player ∈ {Veri�er,Refuter}.
A memoryless strategy for Player is a function Str that maps every vertex (s, ϕ) of GTV (s0, ϕ0)
labelled by Player to one of its successor vertices or to a distinguished token ⊥ in case there
are no successor vertices.

Given a strategy Str for Player ∈ {Veri�er,Refuter}, we say that Player uses Str if whenever
the play is in a position (s, ϕ) labelled by Player, he chooses to move to the vertex Str((s, ϕ)),
that is, he plays according to the strategy.

De�nition 3.2.8. A memoryless strategy Str for Player ∈ {Veri�er,Refuter} is winning, if
Player wins every play in which he uses Str.
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In case some player has a winning strategy, it follows from our previous observation that the
other player does not have a winning strategy. The following theorem shows that winning
strategies always exist.

Theorem 3.2.9. Given a model checking game GTV (s0, ϕ0), exactly one of Veri�er and Refuter
has a memoryless winning strategy.

The theorem is a corollary of Martin's result in 1975 that every Borel game is determined
(which means that exactly one of the two players has a winning strategy) and the fact that
model checking games as de�ned here are Borel games. We skip the proof of this result and
refer the reader to Martin's original paper, namely [13].

Example 3.2.10. Recall the model checking game from example 3.2.3. Veri�er wins a play
in this game, if the play is �nite and ends in node (s, P ) or if the play is in�nite (notice that
there is only a single in�nite play), because the unique variable occurring in the in�nite play
is a ν-variable. Therefore, the strategy that tells Veri�er to go left at node (s, P ∨ ♦Z) is
winning. Moreover the strategy de�ned by

. At node (s, P ∨ ♦Z) go to (s,♦Z)

. At node (t, P ∨ ♦Z) go to (t,♦Z)

is a winning strategy as well. Observe that both strategies are memoryless. Notice that
Refuter can win a play, namely if Veri�er chooses to go to the left at node (t, P ∨ ♦Z) but he
does not have a winning strategy.

We �nish this section by stating the Fundamental Semantic Theorem, which establishes the
connection between truth of a formula in a given state of a transition and the existence of
memoryless winning strategies for Veri�er in the associated model checking game.

Theorem 3.2.11 (Fundamental Semantic Theorem; Streett and Emerson 1989). Let T =
(V,→, ρ) be a transition system, s ∈ S a state, V a valuation and ϕ a Lµ-formula.

T, V, s |= ϕ ⇔ Veri�er has a memoryless winning strategy for GTV (s, ϕ)

For the proof we refer the reader to Streett and Emerson's original paper [17].

3.3 The tableaux system T

This section introduces the tableaux system T. We already assumed formulas to be in guarded
normal form in the last section. From now on we also assume that every formula is closed.
The tableaux system T operates on sequents.

De�nition 3.3.1. A sequent is a �nite set of Lµ-formulas.
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Sequents are denoted by the capital Greek letters Γ,∆,Σ,Π,Ω,Φ and Θ, where we add sub- or
superscripts when needed. Given a sequent Γ = {ϕ1, ..., ϕn}, its interpretation I(Γ) is de�ned
to be the conjunction over all formulas that belong to Γ:

I(Γ) :=
∧

Γ = ϕ1 ∧ (ϕ2 ∧ (... ∧ ϕn)...)

We call a sequent Γ satis�able, if I(Γ) is satis�able, that is if there exists a transition system
T = (S,→, ρ) and a state s ∈ S, such that every formula ϕ ∈ Γ is true in that state. Notice
that we do not need to consider valuations as every formula is assumed to be closed. A set
U ⊆ Lit of literals is called inconsistent, if P,¬P ∈ U for some P ∈ Prop and consistent
otherwise. Given a sequent Γ, let �Γ := {�ϕ|ϕ ∈ Γ} and let ♦Γ := {♦ϕ|ϕ ∈ Γ}. Moreover,
writing Γ, ϕ is short for Γ ∪ {ϕ} and Γ,∆ for Γ ∪∆.

Table 3.1: The tableaux system T

Γ, ϕ0, ϕ1

Γ, ϕ0 ∧ ϕ1
(∧)

Γ, ϕ0

Γ, ϕ0 ∨ ϕ1
(∨)0

Γ, ϕ1

Γ, ϕ0 ∨ ϕ1
(∨)1

Γ, Z

Γ, µZ.ϕ(Z)
(µ)

Γ, Z

Γ, νZ.ϕ(Z)
(ν)

Γ, ϕ(Z)

Γ, Z
(Z)

Γ, ϕ1 ... Γ, ϕn
�Γ,♦ϕ1, ...,♦ϕn,Θ

(mod)
(Θ ⊆ Lit consistent)

De�nition 3.3.2. The tableaux system T consists of the following inference rules:

1. the Boolean rules (∧), (∨)0 and (∨)1

2. the modality rule (mod)

3. the �xed point rules (µ), (ν) and (Z)

and is depicted in table 3.1.

In the rule (Z) it is assumed that the variable Z identi�es the formula ϕ(Z) and that this
identi�cation is unique.2 In the rule (mod) the set Γ is allowed to be empty, but at least one
diamond formula is required to apply the rule. Also notice that the side sequent of literals
Θ is required to be consistent. Thus if Θ is inconsistent, the rule cannot be applied. Notice
that in such a situation no rule can be applied any more. The notion of a pre-tableau and
a tableau depends on the notion of a labelled tree. Recall that a partial order is a re�exive,

2In the sense that in a given sequent every variable only identi�es one formula. Thus σZ.ϕ(Z) 6= σ′Y.ϕ′(Y )
implies that X 6= Y .
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transitive and antisymmetric binary relation and a linear order is a binary relation which is
transitive, antisymmetric and connex.

De�nition 3.3.3. A tree is a tuple 〈V,→〉 where V is a set and → is a partial order on V
such that:

1. There exists an element x ∈ V , which is called the root, such that for all y ∈ V : x→ y

2. 〈{y ∈ V | y → y′},→〉 is linearly ordered for all y′ ∈ V

The following notation is used:

. Each y ∈ V is called a node.

. If y ∈ V such that there exists no x ∈ V with y → x and y 6= x, then y is called a leaf.

. A node x is a child of a parent node y if y 6= x, y → x and for all z such that z 6= y and
z 6= x, if y → z, then z 6→ x.

A labelled tree (with respect to a set A) is a triple t = (V,→, λ) where (V,→) is a tree and
λ : V −→ A is a labelling function that assigns each node of t an element in A.

De�nition 3.3.4. A pre-tableau for a sequent Γ is a labelled tree t = (V,→, λ) with respect
to P(Γ) generated by the tableaux rules of T such that

1. λ(rt) = Γ where rt denotes the root of t and

2. every leaf of t is labelled by a sequent of the form �∆,♦Π,Θ where Θ ⊆ Lit and either

- Π = ∅ or
- Θ is inconsistent

Pre-tableaux are read bottom-up. Every rule in T with the exception of (mod) operates on a
single formula. In the case of (∧), this formula is a conjunction and the rule decomposes it into
the two conjuncts. In the case of (∨)0 this formula is a disjunction and the rule decomposes it
into the left disjunct and so on. We call these relevant formulas in the conclusion and premise
of a rule the distinguished formulas of the rule. In the (mod)-rule we consider every formula as
distinguished. For each rule the distinguished formula(s) in the lower sequent is (are) called
principal and the distinguished formula(s) in the upper sequent is (are) called residual. The
other formulas are called side-formulas. For example in the rule

Γ, ϕ0, ϕ1

Γ, ϕ0 ∧ ϕ1
(∧)
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the formula ϕ0 ∧ ϕ1 is the principal formula and ϕ0 and ϕ1 are the residual formulas, while
the formulas in Γ are side-formulas.

The notion of pre-tableau �xes the kind of in�nite trees which are considered. Observe that
a pre-tableau is a �nite branching tree: Branching only occurs when a (mod)-rule is applied
and since there are only �nitely many premises for each instance of (mod), the branching is
�nite. The �xed point regeneration rule (Z) allows for in�nite branches, as we can regenerate
the formula which is identi�ed by the variable Z and then continue to apply other rules to
decompose that formula until we are back with the formula Z, which then can be regenerated
again and so on.

Example 3.3.5. Consider the formula ϕ = νZ.♦(Z∨(P∧¬P )). The following is a pre-tableau
for ϕ:

etc.
Z (∨)0

Z ∨ (P ∧ ¬P )
(mod)

♦(Z ∨ (P ∧ ¬P ))
(Z)

Z (∨)0
Z ∨ (P ∧ ¬P )

(mod)
♦(Z ∨ (P ∧ ¬P ))

(Z)
Z (ν)

νZ.♦(Z ∨ (P ∧ ¬P ))

The uppermost label etc. denotes that we keep extending the branch by choosing the variable
Z at the disjunction Z ∨ (P ∧¬P ). Therefore the pre-tableau is in�nite. Notice that there are
several di�erent pre-tableaux for ϕ. For example, the following is a �nite pre-tableau:

P,¬P
(∧)

P ∧ ¬P (∨)1
Z ∨ (P ∧ ¬P )

(mod)
♦(Z ∨ (P ∧ ¬P ))

(Z)
Z (ν)

νZ.♦(Z ∨ (P ∧ ¬P ))

By following the variable Z for �nitely many steps and then ending the branch by going
through P ∧ ¬P one obtains �nite pre-tableaux for ϕ which are di�erent to the one shown
above. Indeed it is easy to see that there are in�nitely many �nite pre-tableaux and exactly
one in�nite pre-tableau for ϕ.

The conditions imposed on a pre-tableau in order to be a tableau depend on the notion of a
trace trough a path. We start by de�ning the notion of a path through a pre-tableau.
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De�nition 3.3.6. Let t = (V,→, λ) be a pre-tableau with root rt. A path through t is a
(possibly in�nite) sequence of nodes P = P(0)P(1)P(2)... in V such that P(0) = rt and for all
i ∈ ω for which P(i) exists it holds that:

1. If P(i) is not a leaf, then P(i)→ P(i+ 1).

2. If P(i) is a leaf, then P = P(0)P(1)...P(i) (that is, the path ends at P(i)).

Notice that �nite paths have to end in a leaf. Given that the last node in a �nite path is
P(n), we say that the length of P is n+ 1 (written lth(P) = n+ 1). The following proposition
is a well-known result about the connection of in�nite paths to the (mod)-rule; the proof is
standard and omitted.

Proposition 3.3.7. Every in�nite path in a pre-tableau passes through a (mod)-rule in�nitely
often.

Given a sequence a = a0, a1, a2, ... an initial segment of a is a �nite sequence b0, ..., bk such
that for all 0 ≤ i ≤ k it holds that bi = ai.

De�nition 3.3.8. Let t = (V,→, λ) be a pre-tableau for some sequent Γ and let P be a path
through t. A �nite sequence of formulas ϕ0, ϕ1, ..., ϕn is a �nite trace through P, if

1. ϕi ∈ λ(P(i)) for all 0 ≤ i ≤ n and

2. if ϕi is not principal in the rule from P(i) to P(i+1), then ϕi = ϕi+1 and otherwise ϕi+1

is (one of) the residual subformula(s) of ϕi.

An in�nite sequence of formulas ϕ0, ϕ1, ...ϕn, ... is an in�nite trace, if every initial segment of
the sequence is a �nite trace.

Lemma 3.3.9. For every in�nite trace there exists a unique variable that occurs in�nitely
often and subsumes every other variable that occurs in�nitely often.

The proof is standard and we omit it. An in�nite trace is called a µ-trace, if the unique
variable identi�ed by the lemma is a µ-variable and it is called a ν-trace, if this variable is a
ν-variable.

De�nition 3.3.10. A tableau for Γ is a pre-tableau t = (V,→, λ) for Γ such that

1. every leaf of t is labelled by a sequent of the form �∆,Θ where Θ ⊆ Lit is consistent

2. every in�nite trace is a ν-trace.

Recall the two pre-tableaux displayed in example 3.3.5. The �rst pre-tableau is a tableau, as
there are no leafs and the only in�nite trace is a ν-trace. The second pre-tableau however is not
a tableau, as there is a leaf which is labelled by inconsistent literals. We draw two important
conclusions from that example. First, pre-tableaux (and also tableaux) are not unique. A
sequent can have several and even in�nitely many di�erent pre-tableaux. Second, a sequent
having a tableau does not imply that every pre-tableau for that sequent is a tableau. Indeed
in example 3.3.5, the formula ϕ has in�nitely many pre-tableaux of which only a single one is
a tableau.
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3.4 Soundness of T

This section establishes the soundness of the tableaux system T. That is, we show that if a
sequent Γ has a tableau, then Γ is satis�able. As the proof technique for obtaining soundness is
used in later chapters, we provide a detailed proof in this section. Soundness and completeness
of T was proven by Niwi«ski and Walukiewicz in [16]. Notice that the tableaux system used
by Niwi«ski and Walukiewicz di�ers in presentation. However, their approach can easily
be adjusted for our system. While we give a detailed soundness proof, we only state the
completeness result and refer for its proof to Niwi«ski and Walukiewicz original paper [16].

Theorem 3.4.1 (Completeness of T, Niwi«ski and Walukiewicz 1996). If a sequent Γ is
satis�able, then it has a tableau.

In order to prove that T is sound, we use the model checking games introduced in section
3.2. Given a tableau for Γ, we show how to build a transition system T = (S,→, ρ) and a
state s ∈ S and then provide a memoryless winning strategy for Veri�er in the model checking
game GT∅ (s, ϕ) for any ϕ ∈ Γ. The winning strategy for Veri�er is thereby based on the
close connection between tableaux and model checking games. We show that if Veri�er plays
according to the provided strategy, every play corresponds to a trace in the tableau, from
which we deduce that Veri�er wins every play. The Fundamental Semantic Theorem then
implies that every ϕ holds at state s in the system T which in turn implies that

∧
Γ holds at

state s and so that Γ is satis�able. In order to show that Veri�er wins �nite plays, we require
the following lemma.

Lemma 3.4.2. Let t = (V,→, λ) be a tableau and let v ∈ V . For all P ∈ Prop it holds that
{P,¬P} 6⊆ λ(v).

The proof of the lemma is based on the observation that the only rule which applies weakening
is (mod) and (mod) can only be applied when the side-sequent of literals is consistent. That is,
if a node was labelled by inconsistent literals, then neither at this node nor at any later node
the (mod)-rule could be applied, which implies that every path through that node is �nite and
leads to a leaf labelled by inconsistent literals. Therefore no tableau can have a node labelled
by inconsistent literals.

Theorem 3.4.3 (Soundness of T, Niwi«ski and Walukiewicz 1996). If a sequent Γ has a
tableau, then Γ is satis�able.

Proof. Suppose Γ is a sequent and t = (V,→t, λ) is a tableau for Γ with root rt. We de�ne a
transition system T = (S,→T , ρ) and a map τ : V −→ S using the tableau t, such that the
following conditions hold:

. τ(rt) = s0 for s0 ∈ S.

. Suppose u→t v. If the rule applied at u is (mod), then τ(u) 6= τ(v) and τ(u)→T τ(v),
otherwise τ(u) = τ(v).
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. s ∈ ρ(P ) if and only if there exists v ∈ V such that τ(v) = s and P ∈ λ(v).

Observe that T is a well-de�ned transition system: It consists of a non-empty set of states
S (non-empty because we stipulated that s0 ∈ S) and →T is a binary relation de�ned on S.
Moreover ρ : Prop −→ P(S) is clearly well-de�ned. Notice that T is itself a tree where each
node corresponds to (several) nodes in t and there is a transition between two nodes s1 and s2

if and only if the uppermost corresponding vertex u of s1 in t has an edge to the lower-most
corresponding vertex v of s2 and moreover the rule applied at u is (mod). The root of the tree
T is the distinguished state s0. We claim that T, ∅, s0 |= ϕ for all ϕ ∈ Γ. Let ϕ be an arbitrary
formula of Γ and consider the model checking game GT∅ (s0, ϕ). We show that Veri�er has a
memoryless winning strategy and in particular that every play corresponds to a trace through
t. Notice that every play starts in position (s0, ϕ0) where ϕ0 = ϕ. We only consider those
traces in t that start in ϕ0. We say that the initial segment (s0, ϕ0) of every play corresponds
to the initial segment ϕ0 of every (relevant) trace. Now suppose we have an initial segment of
a play

(s0, ϕ0), (s1, ϕ1), ...(sn, ϕn)

which corresponds to the initial segment of a trace

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn

such that ϕn 6∈ Lit. We show how the play and the trace can be extended:

Case 1: It is Veri�er's move. This implies that ϕn is either ψ0 ∨ ψ1 or ♦ψ.

. Suppose ϕn = ψ0 ∨ ψ1. Therefore Veri�er can choose to move to (sn, ψ0) or to (sn, ψ1).
Suppose the lowermost associated node (by τ) to sn is v. Since t is a tableau, there
exists a node u reachable from v at which the rule (∨)i is applied to ϕn for i ∈ {0, 1}
decomposing ψ0 ∨ψ1 into ψi. Suppose there are k− 1 ≥ 0 steps between v and u. Then
we extend the trace to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where ϕn+1 = ψi. We let Veri�er extend the play to

(s0, ϕ0), (s1, ϕ1), ...(sn, ϕn), (sn+1, ϕn+1)

where sn+1 = sn and ϕn+1 = ψi.

. Suppose ϕn = ♦ψ and the lowermost associated node to sn is v. Since t is a tableau
there exists a node u reachable from v which is also labelled by ♦ψ and at which the rule
applied is (mod) splitting the branch into l branches where one immediate successor of
u, say w, is labelled by ψ. Suppose there are k − 1 ≥ 0 vertices between v and u. Then
we can extend the trace to
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ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where ϕn+1 = ψ. Notice that by construction of T each vertex between v and u is
associated to sn. Moreover sn 6= τ(w) and sn →T τ(w). Thus in the game there exists
a position (τ(w), ψ) which Veri�er can choose. We let Veri�er extend the play to

(s0, ϕ0), (s1, ϕ1), ...(sn, ϕn), (sn+1, ϕn+1)

where sn+1 = w and ϕn+1 = ψ.

Case 2: It is Refuter's move. This implies that ϕn is either ψ0 ∧ ψ1 or �ψ. We show that no
matter what choice Refuter takes to extend the play, we can extend the trace accordingly.

. Suppose ϕn = ψ0 ∧ ψ1. Thus Refuter can choose to extend the play by moving to
(sn, ψ0) or to (sn, ψ1). Suppose he chooses to move to (sn, ψi) for i ∈ {0, 1}. Let v be
the lowermost associated node of sn. By assumption v is labelled by ψ0 ∧ ψ1. Since t is
a tableau there exists a node u reachable from v in k − 1 ≥ 0 steps which is labelled by
ψ0 ∧ ψ1 and the rule applied at u is (∧) such that the successor of u, say w, is labelled
by ψ0, ψ1. Notice that each node between v and u as well as w are associated to sn.
Therefore we extend the trace to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where ϕn+1 = ψi. Notice that since both ψ0 and ψ1 are present at w, whatever choice
Refuter takes we can choose the same formula to extend the trace. By construction the
extended trace and play are still corresponding.

. Suppose ϕn = �ψ and let v be the lowermost vertex that is associated to sn. So sn is
labelled by �ψ. We assume that Refuter can extend the play (otherwise Veri�er wins).
Therefore there exists a vertex u reachable from v in k−1 steps such that the rule applied
at u is (mod) and there are l ≥ 1 children of u, say u1, ..., ul, which are all labelled by ψ.
Notice that each of the vertices between v and u is associated by τ to sn. Moreover u is
associated to sn as well and sn has exactly l successors, namely τ(u1), ..., τ(ul). Suppose
Refuter chooses to move to (τ(ui), ψ). Then the trace can be extended to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where ϕn+1 = ψ labels the node ui.
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Case 3: It is a neutral move. This implies that ϕn is either µZ.ψ(Z), or νZ.ψ(Z) or Z. It
follows immediately that in all three cases both the play and the trace can be extended. We
omit the details.

In case 1 we provided a strategy for Veri�er by following the current trace through t. Notice
that the strategy provided is memoryless. Furthermore, we have shown that if Veri�er plays
that strategy, then every play corresponds to some trace. This does not depend on how Re-
futer plays (indeed di�erent choices by Refuter only impact which trace we follow). It remains
to show that the strategy for Veri�er is winning. For that, �rst suppose that we have a �nite
play (s0, ϕ0), (s1, ϕ1), ...(sn, ϕn) where Veri�er uses the described strategy. The formula ϕn is
thus either a literal or it is a boxed formula, where Refuter could not extend the play or it
is a diamond formula where Veri�er could not extend the play. Let ϕ0, ..., ϕ0, ..., ϕn be the
corresponding trace to the play and v the associated vertex of sn. We distinguish three cases:

1. Suppose ϕn ∈ Lit. First suppose ϕn = P . Then P ∈ λ(v) and since τ(v) = sn, we
have by de�nition that sn ∈ ρ(P ). Second suppose ϕn = ¬P . Again this implies that
¬P ∈ λ(v) and so by lemma 3.4.2 it follows that P 6∈ λ(v). Suppose that sn ∈ ρ(P ).
Then there must exist a vertex u after v such that τ(u) = sn and P ∈ λ(u). But
τ(u) = sn implies that there is no application of (mod) between v and u, which implies
that ¬P ∈ λ(u), thus contradicting lemma 3.4.2. Hence sn 6∈ ρ(P ). In both cases Veri�er
wins.

2. Suppose ϕn = �ψ and Refuter could not extend the play. This directly implies that
Veri�er wins.

3. Suppose ϕn = ♦ψ and Veri�er could not extend the play. If this was the case, the
corresponding trace ends in the formula ♦ψ. Now suppose it is possible to extend the
trace to ψ. In that case Veri�er could have extended the play according to the strategy,
as extending the trace implies that there exists a successor node of sn in the transition
system. Hence the trace cannot be extended, which implies that there is some leaf
labelled by ♦ψ, contradicting our assumption that t is a tableau. Therefore this case
cannot occur.

Hence, Veri�er wins every �nite play. Now suppose we have an in�nite play (s0, ϕ0), (s1, ϕ1), ...
corresponding to the in�nite trace ϕ0, ...ϕ0, ϕ1, ...ϕ1, ... in t. Since t is a tableau every in�nite
trace is a ν-trace, which means that the variable that occurs in�nitely often in the trace and
subsumes all other in�nitely often occurring variables is a ν-variable. This directly implies
that the variable that occurs in�nitely often in the play and subsumes all other in�nitely often
occurring variables is a ν-variable as well. Therefore Veri�er wins every in�nite play. Together
we conclude that Veri�er wins every play in GT∅ (s0, ϕ), if he plays according to the strategy.
Thus there is a memoryless winning strategy for Veri�er. The Fundamental Semantic Theorem
implies that the formula ϕ is true at state s0 of the transition system T . As ϕ was an arbitrary
formula in Γ, we conclude that T, ∅, s0 |=

∧
Γ and so that Γ is satis�able.
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Chapter 4

Finite model property

4.1 Introduction

This chapter provides our �rst contribution towards investigating the mathematical theory of
the �rst level of the alternation hierarchy. We establish that the fragment Σµ

1 ∪ Πµ
1 enjoys

the �nite model property. This property states that if a sequent Γ is satis�able, then it is
satis�able in a �nite model. Our proof strategy is based on the notion of a regular tableau.1

De�nition 4.1.1. A tree is called regular if it contains only �nitely many subtrees (up to
isomorphisms) or equivalently, if the tree is the unfolding of a �nite tree.

We call a tableau regular, if the underlying tree of a tableau is regular. For instance, the in�nite
tableau in example 3.3.5 is regular. It has only four distinct subtrees up to isomorphisms. We
can also view the tableau as the unfolding of the following �nite tree,

Z (∨)0
Z ∨ (P ∧ ¬P )

(mod)
♦(Z ∨ (P ∧ ¬P ))

(Z)
Z (ν)

νZ.♦(Z ∨ (P ∧ ¬P ))

where we identify the two nodes labelled by Z. To obtain the original in�nite tableau, we
unfold the �nite tree over the two identi�ed nodes. Regular tableaux are extraordinary well-
behaved. Despite their in�nite size they only carry a �nite amount of information which is
memorized in the �nite structure that unfolds into the tableau. Suppose we have a regular
tableau for some sequent Γ. By following the construction of the model in the soundness proof
of T, we build a model for Γ, whose underlying frame is a tree. As the tableau is regular,

1Notice that the standard method to establish the �nite model property for modal logics is the �ltration
technique. Unfortunately, �ltration does not work for the modal mu-calculus, see [5].
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the underlying frame is indeed a regular tree. Therefore we can prune the model at the leafs
of the �nite tree that unravels into the model and add loops from the leaves to earlier states
to obtain an �nite model for Γ. Therefore, the question whether the fragment Σµ

1 ∪ Πµ
1 has

the �nite model property reduces to the question whether every satis�able sequent in that
fragment has a regular tableau. We give a positive answer to that question by introducing
a circular tableaux system for Σµ

1 ∪ Πµ
1 . A circular tableau is thereby a �nite tree generated

by the tableaux rules of T, such that some leafs contain loops back to earlier nodes in the
tree. We show that such circular tableaux unfold into in�nitary regular tableaux. That is,
the circular tableaux are exactly the �nite trees in the de�nition of regular trees. By proving
soundness and completeness of the circular tableaux system we establish that every satis�able
sequent in Σµ

1 ∪Πµ
1 has a regular tableau. The �nite model property follows directly from the

constructed model in the soundness proof.

The construction of the circular tableaux system depends on the lack of �xed point alternation
in the formulas of the fragment Σµ

1 ∪Πµ
1 . As soon as we leave this fragment, our system is no

longer sound. The �nite model property was established for the whole modal mu-calculus by
Emerson and Streett [17] in 1989. Their approach aims at showing that every satis�able for-
mula has a regular tree model. As Emerson and Streett work in the whole modal mu-calculus
with arbitrary �xed point alternation, they use more sophisticated methods from advanced
automata theory to �nd regular structures.

Before we de�ne the above mentioned circular tableaux system, we brie�y discuss why the
fragment Σµ

1 enjoys the �nite model property in section 4.2. This discussion sheds some light
onto the technical details of the de�nition of circular tableaux in section 4.3. Apart from the
de�nition of the system, section 4.3 also consists of a brief discussion why the restriction to
the �rst level of the alternation hierarchy is relevant for the soundness of the system. The last
section 4.4 establishes the soundness and completeness of the circular tableaux system and
thereby the �nite model property of Σµ

1 ∪Πµ
1 .

4.2 Finite model property for Σµ
1

This section establishes that the fragment Σµ
1 enjoys the �nite model property. Σµ

1 is the
class of formulas consisting of modal formulas and formulas containing only least �xed point
operators. This implies that every in�nite trace that starts in Σµ

1 -formula is by de�nition a
µ-trace. Recall that in a tableau every in�nite trace is a ν-trace. Therefore, every trace in
a tableau for a sequent of Σµ

1 -formulas is �nite. We prove that this implies that every such
tableau is �nite. For that we require König's Lemma. A labelled tree t = (V,→, λ) is in�nite
if and only if the set V is in�nite.

Theorem 4.2.1 (König's Lemma, König 1936). Let t = (V,→, λ) be an in�nite labelled tree
that is �nite branching. Then t has an in�nite path.
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Proof. Suppose t = (V,→, λ) is an in�nite labelled tree that is �nite branching. First of all,
notice that every node in V belongs to some path. Suppose there are only �nitely many paths
through t. Since t is in�nite, this directly implies that there is an in�nite path through t.
Next, suppose that there are in�nitely many paths through t. We show how to construct an
in�nite path. Recall that→ is re�exive and transitive. For u ∈ V let Up(u) := {v ∈ V |u→ v}
be the up-set of u. Let u0 ∈ V be the lower-most node at which branching occurs and suppose
that u0 has k > 1 children which we denote by v0

1, ..., v
0
k. Since u0 is the �rst node at which

branching occurs, every path in t passes through u0. That is, there are in�nitely many paths
passing through u0. Since u0 has only �nitely many children, there exists a child v0

i0
of u0 for

1 ≤ i0 ≤ k such that in�nitely many paths in t pass through v0
i0
. Let u1 be the lower-most

node of Up(v0
i0

) at which branching occurs. Then since in�nitely many paths pass through
v0
i0
and u1 is the �rst node above v0

i0
where branching occurs, there are in�nitely many paths

passing through u1. So by the same argument as before there exists a child v1
i1

of u1 such
that in�nitely many paths pass through v1

i1
. By iterating this argument we obtain an in�nite

sequence of natural numbers (in)n∈ω such that for each n ∈ ω the following holds:

1. vnin ∈ V

2. vnin → vn+1
in+1

Therefore let P be the path which satis�es the property that for all n ∈ ω there exists j ∈ ω
such that P(j) = vnin . By construction P is an in�nite path through t.

Corollary 4.2.2. Let t = (V,→, λ) be an in�nite tableau. Then t has an in�nite path.

Next, we prove a similar result that states that whenever there are in�nitely many traces
through a path, then there exists an in�nite trace through that path. Notice that this is not
a corollary of König's Lemma, as the set of traces through a path is not a tree. Nevertheless,
the proof of the lemma is very similar.

Lemma 4.2.3. Let t = (V,→, λ) be a tableau for Γ and let P be a path through t. If there
are in�nitely many traces through P, then there is an in�nite trace through P.

Proof. Let t = (V,→, λ) be a tableau for Γ and let P be a path through t such that there are
in�nitely many traces through P. Since every trace starts in a formula in Γ and Γ is �nite,
there exists a formula ϕ ∈ Γ from which in�nitely many traces through P start. Notice that
for any n ∈ ω there are only �nitely many possibilities to build di�erent traces through P
starting in ϕ in n steps. Therefore, there are in�nitely many traces starting in ϕ whose length
is greater that n for any n ∈ ω. This implies that P is an in�nite path. Given two traces
that are identical in the �rst n steps and longer than n, observe that the only case in which
these traces might di�er from each other in the n + 1-th step is when the n-th formula is of
the form ψ0 ∧ψ1 and the rule applied is (∧) such that the next node is labelled by ψ0 and ψ1.
Let T be the set of all traces through P that start in ϕ. Suppose tr = tr(0)tr(1)tr(2)... is a
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trace in T . We call tr(0)tr(1)...tr(n) the n-th initial segment of tr (assuming that the length
of tr is greater than n). By assumption tr(0) = ϕ for all traces tr ∈ T . Let i0 be the least
natural number such that the i0-th initial segment of every trace in T which is longer than i0
is identical but some traces di�er in the i0 + 1-th component. Thus the rule applied at the
node P(i0) is (∧) which decomposes tr(i0) in two formulas, say in ϕ0

0 and ϕ1
0. Since there are

in�nitely many traces starting in ϕ which are longer than i0, there are in�nitely many traces
tr in T which pass through ϕj00 for j0 ∈ {0, 1}. Let T0 be the set of all these traces. Now let
i1 > i0 be the least natural number such that the i1-th initial segment of every trace in T0

which is longer than i1 is identical but some traces di�er in the i1 + 1-th component. By the
same argument we �nd a formula ϕj11 such that there are in�nitely many traces tr in T0 which

are identical in the i1 + 1-th initial segment and tr(i1 + 1) = ϕj11 . By iterating this argument
we therefore obtain an in�nite sequence of tuples

〈in, ϕjnn 〉n∈ω
where (in)n∈ω is an in�nite sequence of natural numbers such that in < in+1 for all n ∈ ω and
(ϕjnn )n∈ω is an in�nite sequence of subformulas of ϕ. Let tr be the trace which satis�es the
following properties:

1. tr(0) = ϕ

2. For all n ∈ ω it holds that tr(in + 1) = ϕjnn .

Observe that tr is a well-de�ned trace through P and in�nite.

As an immediate corollary of König's Lemma and its close cousin we obtain the following
result:

Proposition 4.2.4. Every tableau t = (V,→, λ) for Γ ⊆ Σµ
1 is �nite.

Proof. Suppose t = (V,→, λ) is a tableau for Γ ⊆ Σµ
1 and let P be a path through t. According

to our observation at the beginning of the section every trace through P is �nite, as every trace
is starting in a Σµ

1 -formula. So by lemma 4.2.3 there are only �nitely many traces through P.
Since each of these traces is �nite, the path P is �nite as well. As P was arbitrary, we conclude
that every path through t is �nite. By König's Lemma the tableau t is �nite.

Theorem 4.2.5 (Finite model property for Σµ
1 ). If Γ ⊆ Σµ

1 is satis�able, then it is satis�able
in a �nite model.

Proof. Suppose Γ ⊆ Σµ
1 is satis�able. By Theorem 3.4.1 (stating that T is complete) Γ has a

tableau t = (S,→, λ) which is �nite according to the previous proposition. Hence, by following
the construction of the model in the soundness proof for T, we obtain a �nite tree model in
which every formula of Γ is satis�ed at the root. Therefore Γ is satis�able in a �nite model.

29



Chapter 4. Finite model property

4.3 Circular tableaux for Σµ
1 ∪ Πµ

1

From now on, sequents are assumed to be �nite subsets of Σµ
1 ∪Πµ

1 . As mentioned in the intro-
duction, circular tableaux are �nite labelled trees that unfold into in�nitary regular tableaux.
These trees are generated by the rules of the system T. The main di�erence to tableaux is that
instead of building in�nitary branches by unfolding �xed point formulas, we are allowed to
end such branches after �nitely many steps when we reach a suitable repetition. A repetition
is thereby a pair of nodes 〈u′, u〉 in the same branch such that u′ and u satisfy certain proper-
ties, that ensure that the unfolding of the tree is a tableaux. In this section we introduce the
circular tableaux system CT. Moreover, we consider some examples and discuss the relevance
of the restriction to Σµ

1 ∪Πµ
1 for the soundness of CT.

Table 4.1: The circular tableaux system CT

Γ, ϕ0, ϕ1

Γ, ϕ0 ∧ ϕ1
(∧)

Γ, ϕ0

Γ, ϕ0 ∨ ϕ1
(∨)0

Γ, ϕ1

Γ, ϕ0 ∨ ϕ1
(∨)1

Γ, Z

Γ, µZ.ϕ(Z)
(µ)

Γ, Z

Γ, νZ.ϕ(Z)
(ν)

Γ, ϕ(Z)

Γ, Z
(Z)

Γ, ϕ1 ... Γ, ϕn
�Γ,♦ϕ1, ...,♦ϕn,Θ

(mod)
(Θ ⊆ Lit consistent)

De�nition 4.3.1. The circular tableaux system CT consists of the same rules as the tableaux
system T and is depicted in table 4.1.

Principal and residual formulas of a rule are de�ned as for tableaux, see section 3.3.

De�nition 4.3.2. A circular pre-tableau for Γ ⊆ Σµ
1 ∪ Πµ

1 is a �nite tree t = (V,→, λ) with
root rt which is generated by the rules in table 4.1 such that:

1. λ(rt) = Γ

2. every leaf u ∈ V is labelled either by a sequent of the form �∆,♦Λ,Θ where Θ ⊆ Lit
and

(a) Λ = ∅ or
(b) Θ is inconsistent

or by a sequent Ω such that there exists a distinguished node u′ ∈ V from which u is
reachable and λ(u′) = λ(u). We call u′ the associated node of u.
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We call a leaf which is labelled by a sequent of the form �∆,♦Λ,Θ a leaf of type 1 and a leaf
which is not of type 1 a leaf of type 2.

Next, we de�ne the notion of a path in such a way, that a path which reaches a leaf of type 2
can be continued at its associated node. This allows paths to be in�nite, despite the �niteness
of a circular pre-tableau.

De�nition 4.3.3. Let t = (V,→, λ) be a circular pre-tableau with root rt. A path P through
t is a (possibly in�nite) sequence of nodes P(0)P(1)P(2)... with P(0) = rt such that for all
i ∈ ω:

1. If P(i) is not a leaf, then P(i)→ P(i+ 1).

2. If P(i) is a leaf of type 1, then the path ends at P(i).

3. If P(i) is a leaf of type 2 and j < i such that P(j) is the associated node of P(i), then
P(j)→ P(i+ 1).

De�nition 4.3.4. Let t = (V,→, λ) be a circular pre-tableau for Γ ⊆ Σµ
1 ∪Πµ

1 and let P be a
path through t. A �nite sequence of formulas ϕ0, ϕ1, ..., ϕn is a �nite trace through P if

1. ϕi ∈ λ(P(i)) for each i ≤ n

2. ϕi+1 = ϕi if ϕi is not principal in the rule from P(i) to P(i+ 1), otherwise ϕi+1 is (one
of) the residual(s) of the rule.

An in�nite sequence of formulas ϕ0, ϕ1, ... is an in�nite trace if every initial segment of the
sequence is a �nite trace.

Notice that a formula labelling a leaf of type 2 can belong to several di�erent traces, as there
might exist a node between the associated node of the leaf and the leaf at which the trace
splits. However, each trace to which the formula belongs to starts in the same formula at the
root.

De�nition 4.3.5. A circular tableau for Γ ⊆ Σµ
1 ∪ Πµ

1 is a circular pre-tableau t = (V,→, λ)
for Γ where the following holds:

1. Every leaf of type 1 is labelled by �∆,Θ where Θ ⊆ Lit is consistent.

2. Every leaf u of type 2 has the following two properties:

(a) The leaf u is labelled by Ω where each ψ ∈ Ω belongs to a trace starting in a
Πµ

1 -formula labelling the root.

(b) There is an application of the rule (mod) between u′ and u.
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Leafs of type 1 that are labelled by �∆,Θ for Θ ⊆ Lit consistent are called axiomatic leafs and
leafs of type 2 which ful�l the requirements above are called non-axiomatic leafs. Notice that
if an in�nite trace starts in a Πµ

1 -formula, it is automatically a ν-trace. A circular tableaux is
therefore a �nite tree, where each leaf is either axiomatic or can be identi�ed with an earlier
node in such a way, that every formula labelling the non-axiomatic leaf belongs to a ν-trace
and the path passes through a (mod)-rule between the associated node and the leaf. The
requirement to pass through a (mod)-rule ensures that there is some progress between the two
repetitions (instead of just having a 'silly' repetition). The requirement that every formula
that labels the non-axiomatic leaf belongs to a ν-trace ensures that when unfolding the circular
tableaux into an in�nitary pre-tableau, every in�nite trace is a ν-trace.

Example 4.3.6. The following is a circular tableau for the formula νY.♦Y ∧ ♦(P ∨Q):

Y
P (∨)0P ∨Q

(mod)
♦Y,♦(P ∨Q)

(∧)
♦Y ∧ ♦(P ∨Q)

(Y )
Y (ν)

νY.♦Y ∧ ♦(P ∨Q)

The left leaf labelled by Y is non-axiomatic with its associated node being the second node
from the bottom upwards. Notice that there is an application of (mod) between the associated
node and the leaf. The right leaf is axiomatic, as it is labelled by consistent literals only. By
unfolding the circular tableau over the non-axiomatic leaf we obtain the following in�nite
pre-tableau:

etc.
Y

P (∨)0P ∨Q
(mod)

♦Y,♦(P ∨Q)
(∧)

♦Y ∧ ♦(P ∨Q)
(Y )

Y
P (∨)0P ∨Q

(mod)
♦Y,♦(P ∨Q)

(∧)
♦Y ∧ ♦(P ∨Q)

(Y )
Y (ν)

νY.♦Y ∧ ♦(P ∨Q)

Observe that this is a tableaux. There are in�nitely many leafs which are all labelled by
consistent literals. Furthermore, there is a single in�nite path that contains a single in�nite
trace which passes through the ν-variable Y in�nitely often. As there are no other variables
present, the in�nite trace is a ν-trace. The example illustrates the idea of unfolding circular
tableaux into in�nitary tableaux. Notice also that the underlying tree of this in�nitary tableau
is regular.

32



Chapter 4. Finite model property

Observe that it is not required to choose the �rst suitable repetition in a branch to be identi-
�ed as non-axiomatic leaf and associated node. For instance, if we take the in�nite tableau in
the example above and prune it at the third occurrence of Y (directly below etc.), we obtain
a di�erent circular tableaux. This implies that a sequent can have in�nitely many di�erent
circular pre-tableaux.

We �nish this section with a brief discussion why the the restriction to Σµ
1 ∪ Πµ

1 is relevant.
The main reason concerns the unfolding of circular tableaux. We require formulas which
label non-axiomatic leafs to belong to traces starting in Πµ

1 -formulas. This implies that in the
unravelled tree, every in�nite trace is a ν-trace. When we have �xed point alternation however,
such an easy characterization of non-axiomatic leafs is not possible. The main problem is best
illustrated by the following example. Consider the formula ϕ = νY.µZ.♦Y ∨ ♦Z. Below is a
tableaux for ϕ:

etc.
Y (mod)
♦Y

(∨)0♦Y ∨ ♦Z
(Z)

Z (mod)
♦Z

(∨)1♦Y ∨ ♦Z
(Z)

Z (µ)
µZ.♦Y ∨ ♦Z

(Y )
Y (ν)

νY.µZ.♦Y ∨ ♦Z

In this tableau we keep alternating between unfolding and regenerating the least �xed point
variable Z and the greatest �xed point variable Y . That is, the only in�nite trace passes
through both Y and Z in�nitely often. Since Y subsumes Z, the trace is a ν-trace and the
pre-tableau a tableau. If we want to turn this tableau into a circular tableau, we have to choose
at which repetition we prune the branch. Previously, it did not matter which repetition we
choose as long as the distinguished node is only labelled by formulas belonging to traces that
start in Πµ

1 -formulas. Here, it does. If we decide to prune the tableau at the node labelled by
the second occurrence of Z, we create a circular pre-tableau which when unfolded turns into
an in�nitary pre-tableau that contains an in�nite µ-trace. If we choose the second occurrence
of Y , then the circular pre-tableau which is generated is unfolded into the in�nitary tableau
above. Thus, for formulas containing proper �xed point alternation, we require more re�ned
conditions when a repetition can be used as a non-axiomatic leaf. Afshari and Leigh solved this
problem by turning towards proof systems using annotated sequents [1]. As we only consider
the fragment Σµ

1 ∪Πµ
1 , our de�nition su�ces.
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4.4 Finite model property for Σµ
1 ∪ Πµ

1

In this section we establish the �nite model property for the fragment Σµ
1 ∪ Πµ

1 . We �rst
prove that the system CT is sound and complete with respect to Σµ

1 ∪ Πµ
1 . For soundness

we proceed as in the soundness proof for T. From a circular tableau for Γ, we show how to
de�ne a model and then prove, using model checking games, that Γ is satis�able in some state.
As the circular tableau is �nite, we are able to de�ne a �nite model. Notice that we could
establish soundness as well by showing that every circular tableaux unravels into an in�nitary
tableaux. This would be much easier, but we could not extract the �nite model property out
of the proof. For completeness, we show how to prune an in�nitary tableau into a circular
one. Completeness together with soundness then gives us the �nite model property, as every
satis�able sequent has a circular tableau by completeness, which then implies that it has a
�nite model by soundness.

Theorem 4.4.1 (Soundness of CT with respect to Σµ
1 ∪Πµ

1 ). Suppose Γ ⊆ Σµ
1 ∪Πµ

1 . If Γ has
a circular tableau, then Γ is satis�able.

For the proof of the soundness theorem we require the following lemma.

Lemma 4.4.2. Suppose t = (V,→, λ) is a circular tableau for Γ ⊆ Σµ
1 ∪ Πµ

1 and v is a non-
axiomatic leaf with associated node u. Then each formula ψ ∈ λ(u) which is not a literal or a
variable is decomposed in the steps between node u and v. Additionally, each literal in λ(u)
is eliminated and each variable in λ(u) is regenerated at some step between u and v.

Proof. (of the lemma) Suppose t = (V,→, λ) is a circular tableau for Γ ⊆ Σµ
1 ∪ Πµ

1 and v is a
non-axiomatic leaf with corresponding node u. By de�nition there is an application of (mod)
between the nodes u and v. Let ψ ∈ λ(u) be a formula which is not a literal or a variable.
If ψ = �ψ0 or ψ = ♦ψ0, then ψ is decomposed when the rule (mod) is applied. In case
ψ = ψ0 ∨ ψ1 or ψ = ψ0 ∧ ψ1 or ψ = σY.ψ0 for σ ∈ {µ, ν}, then there must be an application
of (∨), (∧) or (σ) between u and v as otherwise the rule (mod) cannot be applied. Therefore
each formula is decomposed between u and v. With the same argument, if ψ is a literal, then
ψ is eliminated when the rule (mod) is applied and if ψ is a variable Y , there must be an
application of the rule (Y ) before the application of (mod) thus regenerating Y .

Proof. (of the theorem) Let Γ ⊆ Σµ
1 ∪ Πµ

1 and let t = (V,→t, λ) be a circular tableau for Γ
with root rt. We de�ne a transition system T = (S,→T , ρ) and a map τ : V −→ S, such that
the following holds:

. τ(rt) = s0 for s0 ∈ S.

. Suppose v →t u. If the rule applied at node v was (mod), then τ(v) 6= τ(u) and
τ(v)→T τ(u), Otherwise, τ(v) = τ(u).

. If v is a non-axiomatic leaf and u is its corresponding node, then for all s ∈ S, if
τ(u)→T s, then τ(v)→T s.
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. s ∈ ρ(P ) if and only if there exists v ∈ V , such that τ(v) = s and one of the following
holds:

� P ∈ λ(v) or

� v is a non-axiomatic leaf with associated node u, such that τ(u) ∈ ρ(P )

The second requirement for the function ρ is necessary due to the fact that a path can loop
back from a non-axiomatic leaf to its associated node. When we de�ne corresponding traces
and plays, it might therefore happen that the constructed trace has passed through a non-
axiomatic leaf and then ends before reaching the �rst application of (mod). In that case,
the current state of the play does not correspond to the current node in the tree. With the
additional requirement we ensure that �nite plays of this form are still won by Veri�er.

Observe that the function ρ is well-de�ned. That is, there exists no node s ∈ S such that
both P and ¬P hold in s. Therefore, T is a well-de�ned transition system. Notice that since
the circular tableau t is �nite, the transition system T is �nite as well. Let ϕ be an arbitrary
formula in Γ and consider the model checking game GT∅ (s0, ϕ). We show that Veri�er has a
memoryless winning strategy, which is de�ned by using information from t. In particular, we
show that every play in the game corresponds to a trace through the circular tableau. Recall
that every play of GT∅ (s0, ϕ) starts in position (s0, ϕ0) where ϕ0 = ϕ. We restrict our attention
to traces that start in ϕ0 = ϕ. Then the initial segment (s0, ϕ0) of every play corresponds to
the initial segment ϕ0 of every trace considered. Suppose we have an initial segment of a play

(s0, ϕ0), (s1, ϕ1), ..., (sn, ϕn)

which corresponds to the initial segment of a trace

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn

such that ϕn 6∈ Lit. We show how to extend the play and the trace:

Case 1: It is Veri�er's move. This implies that ϕn is either ψ0 ∨ ψ1 or ♦ψ.

. Suppose ϕn = ψ0∨ψ1 labels the node v. There are two cases: In the �rst case τ(v) = sn
while in the second τ(v) 6= sn. Let us consider the �rst case: Recall that by the
previous lemma every formula that labels a non-axiomatic leaf and its associated node is
decomposed in the steps in between. Therefore, since t is a circular tableau, the formula
ψ0 ∨ ψ1 is either decomposed at some node after v or at some node before v (namely,
in case v belongs to a branch leading to a non-axiomatic leaf, such that there is no
application of (∨)i to ψ0 ∨ ψ1 after v). The �rst case is identical to the soundness proof
for tableaux. Therefore we only consider the second case. Suppose that there exists no
node after v at which ψ0 ∨ ψ1 is decomposed. This implies that the path to which v
belongs leads to a non-axiomatic leaf w with associated node w′ occurring earlier than v
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such that ψ0 ∨ ψ1 is decomposed at some node u between w′ and v where u's child u′ is
labelled by ψi for i ∈ {0, 1}. By de�nition of paths and traces through circular tableaux
we can therefore extend the trace to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ... ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where k = l+ j + 1 where l is the number of steps between v and w, j is the number of
steps between w′ and u and ϕn+1 = ψi. Meanwhile, the play can be extended to

(s0, ϕ0), (s1, ϕ1), ..., (sn, ϕn), (sn+1, ϕn+1)

where (sn+1, ϕn+1) = (sn, ψi). Notice that in this case the node u′ which is labelled by
ψi is not mapped to sn. Therefore, this is exactly the second case we have to consider:
If τ(v) 6= sn, then v occurs between the associated node w′ and the �rst application of
(mod) after w′, where the trace has already passed through the non-axiomatic leaf w at
least once. But in that case we can still extend the trace and the play in the same way
as before. The only reason why we have to keep track of nodes and their corresponding
states with respect to τ is when the current formula of the play is a diamond- or box-
formula: In that case one of the players has to choose the next position which requires
that the current state sn sees a successor. The existence of a successor is guaranteed by
the correspondence between the node in the tableau and the current state: If τ(v) = sn,
the current formula is ♦ψ and some steps later there is the node u at which the rule
(mod) is applied, then there exists a child node u′ labelled by ψ and the de�nition of
the transition system ensures that sn →T τ(u′) and so that Veri�er can extend the play.
In the situation that τ(v) 6= sn, we know that sn = τ(w) where w is the non-axiomatic
leaf and v occurs between the associated node w′ and the �rst application of (mod)
above w′ at node u. So when (mod) is applied one of the players has to extend the
play. But by construction of the transition system, τ(w) = sn has a transition to every
state τ(w′) = τ(u) has a transition to and so there exists a state which can be used to
extend the play. In the following case distinctions we omit this special case, as the same
argument as just given su�ces.

. Suppose ϕn = ♦ψ where ϕn labels node v which is mapped to sn by τ . We only consider
the case where there is no node after v at which the rule (mod) is applied. Since t is a
circular tableau, v therefore belongs to a path leading to a non-axiomatic leaf w with
associated node w′ occurring below v. Thus ♦ψ labels every node between v and w as
well as w and w′ and is decomposed at some node u between w′ and v. This implies
that the rule applied at u is (mod) and there exists a child u′ of u labelled by ψ. By
de�nition of paths and traces we can therefore extend the trace to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1
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where k = l + j + 1 where l is the number of steps between v and w, j is the number
of steps between w′ and u and ϕn+1 = ψi. Notice that since there is no application of
(mod) between v and w, we have that τ(v) = τ(w) = sn. Moreover, there is also no
application of (mod) between w′ and u (as otherwise ♦ψ would be decomposed before
u) which implies that τ(w′) = τ(u). By construction we have that τ(u)→T τ(u′) and so
also τ(w′)→T τ(u′). But then by construction of the transition system T we also have
that τ(w)→T τ(u′) and so that sn →T τ(u′). We therefore extend the play to

(s0, ϕ0), (s1, ϕ1), ..., (sn, ϕn), (sn+1, ϕn+1)

where (sn+1, ϕn+1) = (τ(u′), ψ).

Case 2: It is Refuter's move. Then ϕn is either ψ0 ∧ψ1 or �ψ. We show that no matter what
choices Refuter takes, the trace and play can be extended accordingly. As in case 1, in both
cases we have two distinguish whether the current node v is mapped to the current state sn
and if so, whether the respective formula of the case is decomposed before reaching a leaf or
not. Once again we only consider the case where τ(v) = sn and the respective formula is not
decomposed above v.

. Suppose ϕn = ψ0 ∧ ψ1 and suppose Refuter chooses to extend the play to

(s0, ϕ0), (s1, ϕ1), ..., (sn, ϕn), (sn+1, ϕn+1)

where (sn+1, ϕn+1) = (sn, ψi) for i ∈ {0, 1}. Suppose that ϕn labels the node v which
is mapped to sn by τ such that ψ0 ∧ ψ1 is not decomposed in any node above v. This
implies that v belongs to a path leading to a non-axiomatic leaf w with associated node
w′, both labelled by ψ0∧ψ1, and ψ0∧ψ1 is decomposed at some node u between w′ and
v. Notice that the child u′ of u is labelled by ψ0 and ψ1. Thus by de�nition of paths
and traces through circular tableaux we can extend the trace to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where k = l+ j + 1 where l is the number of steps between v and w, j is the number of
steps between w′ and u and ϕn+1 = ψi.

. Suppose ϕn = �ψ and ϕn labels the node v which is mapped to sn by τ . Moreover
suppose that �ψ is not decomposed above v. We assume Refuter can extend the play
(otherwise Veri�er trivially wins). So there exists a state s in the transition system T
such that sn →T s and Refuter chooses to extend the play to

(s0, ϕ0), (s1, ϕ1), ..., (sn, ϕn), (sn+1, ϕn+1)

where (sn+1, ϕn+1) = (s, ψ). The construction of the transition system T implies that v
belongs to a path leading to a non-axiomatic leaf w with associated node w′ and �ψ is
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decomposed at some node u between w′ and v (otherwise Refuter could not extend the
play). The rule applied at u is therefore (mod) and every child of u is labelled by ψ.
In particular there exists a child u′ of u such that τ(u′) = s. As u′ is labelled by ψ, we
extend the trace to

ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ..., ϕn, ..., ϕn︸ ︷︷ ︸
k−times

, ϕn+1

where k = l+ j + 1 where l is the number of steps between v and w, j is the number of
steps between w′ and u and ϕn+1 = ψ.

Case 3: It is a neutral move. This implies that ϕn is either µZ.ψ(Z), νZ.ψ(Z) or Z. In all
three cases it follows directly that both the play and the trace can be extended accordingly.

In case 1 we provided a memoryless strategy for Veri�er by following some trace through
t. In case 2 we showed that no matter what choices Refuter takes to extend the play, the
trace can always be extended in such a way, that the play and the trace are corresponding.
Therefore, if Veri�er plays according to the strategy speci�ed in case 1, every play corresponds
to some trace through t. We show that case 1 de�nes a winning strategy for Veri�er. Suppose
we have a �nite play (s0, ϕ0), ..., (sn, ϕn) where Veri�er uses the above described strategy. Let
ϕ0, ..., ϕ0, ..., ϕn be the corresponding trace and v the node of the circular tableau labelled by
ϕn at which the trace ends. By de�nition ϕn is either a literal, a boxed formula where Refuter
could not extend the play or a diamond formula where Veri�er could not extend the play.

1. Suppose ϕn ∈ Lit. We distinguish two cases. First, suppose that τ(v) = sn. If ϕn = P ,
then P ∈ λ(v) and so sn ∈ ρ(P ). If ϕn = ¬P , then by lemma 3.4.2 it follows that
P 6∈ λ(v), which in turn implies that sn 6∈ ρ(P ) (by a similar argument as in the
soundness proof for T). Second, suppose that τ(v) 6= sn. Then there exists a node u such
that τ(u) = sn which is a non-axiomatic leaf with associated node u′ and τ(u′) = τ(v).
If ϕn = P , then P ∈ λ(v) and since τ(u′) = τ(v) it follows that τ(u′) ∈ ρ(P ). Therefore
by de�nition of the function ρ we have that sn ∈ ρ(P ). The case for ϕn = ¬P is similar.
We conclude that in all cases Veri�er wins.

2. Suppose ϕn = �ψ and Refuter could not extend the play. This directly implies that
Veri�er wins.

3. Suppose ϕn = ♦ψ and Veri�er could not extend the play. If this was the case, the
corresponding trace ends in the formula ♦ψ. Now suppose it is possible to extend the
trace to ψ. In that case Veri�er could have extended the play according to the strategy,
as extending the trace implies that there exists a successor node of sn in the transition
system labelled by ψ. Hence the trace cannot be extended, which implies that there
is some leaf of type 1 labelled by ♦ψ, contradicting our assumption that t is a circular
tableau. Therefore this case cannot occur.
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Thus whenever we have a �nite play in GT∅ (s0, ϕ), Veri�er wins. Now suppose we have an
in�nite play (s0, ϕ0), (s1, ϕ1), ... corresponding to the in�nite trace tr = ϕ0, ..., ϕ0, ϕ1, ..., ϕ1, ...
trough an in�nite path P in t. Since t is a �nite tree, a path can only be in�nite if it passes
through some non-axiomatic leafs in�nitely often and every time loops back to its associated
node. Recall that we de�ned non-axiomatic leafs to be labelled by formulas belonging to
traces starting in Πµ

1 -formulas only. That is, every in�nite trace has to start in a Πµ
1 -formula.

Therefore every in�nite trace through t is a ν-trace and so in particular tr is a ν-trace. Hence
the unique variable that occurs in�nitely often in tr and which subsumes every other in�nitely
often occurring variable is a ν-variable. Since the trace corresponds to the play, we have that
unique variable occurring in�nitely often in the play and subsuming every other in�nitely often
occurring variable is a ν-variable as well and so the play is won by Veri�er. Hence Veri�er
wins every in�nite play as well. Together we conclude that the strategy provided in case 1 is
a memoryless winning strategy for Veri�er. The Fundamental Semantic Theorem thus implies
that s0 ∈ JϕKT∅ . As we chose ϕ to be an arbitrary formula in Γ, we have that s0 ∈ J

∧
ΓKT∅

and so that Γ is satis�able. We conclude that the circular system CT is sound with respect
to Σµ

1 ∪Πµ
1 .

The next goal is to prove completeness of CT. Our proof strategy is to show how to prune
in�nitary tableaux to obtain circular tableaux. For this, we �rst have to establish that every
in�nite branch of a tableau contains a suitable repetition. We use the following notation. Let
t = (V,→, λ) be a tableau and P = P(0)P(1)P(2)... a path through t. We say that the node
P(n) is labelled by a Πµ

1 -formula if there exists a formula ψ ∈ λ(P(n)), such that ψ belongs
to a trace starting in ψ̃ and ψ̃ ∈ Πµ

1 .

Lemma 4.4.3. Let Γ ⊆ Σµ
1 ∪ Πµ

1 and suppose that t = (V,→, λ) is a tableau for Γ. Let
P = P(0)P(1)P(2)... be an in�nite path through t. There exists n ∈ ω such that for all m > n
every formula labelling the node P(m) is a Πµ

1 -formula.

Proof. First of all, if Γ ⊆ Πµ
1 , then the lemma is trivially true. Similarly, if Γ ⊆ Σµ

1 , then
by proposition 4.2.4, there are no in�nite paths through the tableau t. So suppose Γ =
{ϕ1, ..., ϕk, ψ1, ..., ψl} where ϕ1, ..., ϕk ∈ Σµ

1 and ψ1, ..., ψl ∈ Πµ
1 − Σµ

0 and suppose that t =
(V,→, λ) is a tableau for Γ. Let P = P(0)P(1)P(2)... be an in�nite path through t. Consider
ϕi ∈ Γ. Suppose there are in�nitely many traces through P starting in ϕi. Then by lemma
4.2.3 there is an in�nite trace starting in ϕi. As this trace is a µ-trace we conclude that t is
not a tableau, which is a contradiction. Therefore there are only �nitely many traces starting
in ϕi for all 1 ≤ i ≤ k. Since each of these traces is �nite, there exists a longest trace, which
has length say n. Finally notice that every formula labelling some node of P belongs to a
trace. So since the longest trace starting from a Σµ

1 -formula in Γ has length n, all nodes P(m)
for m > n are labelled by Πµ

1 -formulas only.

Lemma 4.4.4. Let t = (V,→, λ) be a tableau for Γ ⊆ Σµ
1 ∪Πµ

1 and P = P(0)P(1)... an in�nite
path through t. Let n ∈ ω be an arbitrary natural number. There exist a pair 〈i, j〉 of natural
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numbers such that n < i < j, λ(P(i)) = λ(P(j)) and there is an application of (mod) between
P(i) and P(j).

Proof. Let P = P(0)P(1)P(2)... be an in�nite path through t = (V,→, λ) where t is a tableau
for Γ ⊆ Σµ

1 ∪ Πµ
1 and �x a natural number n. By proposition 3.3.7 every in�nite path passes

through a (mod)-rule in�nitely often. So there are in�nitely many nodes P(i0),P(i1), ... where
the rule applied at P(il) is (mod). In particular, there are in�nitely many such nodes with
il > n. Next, since the root of t is labelled by Γ, each node P(m) in the path is labelled by
some �nite set ∆ ⊆ Sub(Γ). Suppose |Sub(Γ)|= k. Then there are 2k di�erent subsets of
Sub(Γ). Hence there must be some ∆ ⊆ Sub(Γ) that labels in�nitely many nodes in the path
P. In particular, ∆ labels in�nitely many nodes P(i) with i > n. Suppose P(i) is the �rst node
that is labelled by ∆ such that i > n. Then since there are in�nitely many nodes P(il) where
the (mod)-rule is applied, there exists l ∈ ω such that i < il. Since there are also in�nitely
many nodes labelled by ∆, there exists j ∈ ω such that il < j and λ(P(j)) = ∆. Therefore
there exists a pair 〈i, j〉 of natural numbers such that n < i < j, λ(P(i)) = λ(P(j)) and there
is an application of (mod) between P(i) and P(j).

Theorem 4.4.5 (Completeness of CT with respect to Σµ
1 ∪ Πµ

1 ). Let Γ ⊆ Σµ
1 ∪ Πµ

1 . If Γ is
satis�able, then Γ has a circular tableau.

Remark 4.4.6. Recall that we de�ned in�nite paths and traces through a circular tableau,
by allowing a path which goes through a leaf of type 2 to be continued at its associated node.
In the following proof we understand paths and traces in the original sense, namely a path
ends in a leaf and there are no loops back to corresponding nodes.

Proof. Let Γ ⊆ Σµ
1 ∪ Πµ

1 be satis�able. By theorem 3.4.1 (stating that the tableaux system
T is complete) Γ has a tableau t = (V,→, λ). We show how to turn t into a circular tableau
t′ = (V ′,→′, λ′). First of all, if t is a �nite tableau, then t is also a circular tableau. Thus
suppose that t is in�nite. This implies (by König's Lemma) that t has an in�nite path. By
lemma 4.4.3 for each in�nite path P there exists a natural number n such that every node
after P(n) is labelled by Πµ

1 -formulas only. Lemma 4.4.4 implies that there exists a suitable
repetition in P above P(n). That is, there exist i, j ∈ ω such that n < i < j, λ(P(i)) = λ(P(j))
and there is an application of (mod) between P(i) and P(j). As natural numbers are well-
founded, there exists a �rst such repetition. So given t, we prune every in�nite path at its
�rst repetition of this form. This gives us a tree t′ which has only �nite paths. We claim that
t′ is a circular tableau for Γ:

1. Since t is a tableau, t′ is generated by the rules from table 4.1.

2. By construction every path in t′ is �nite. Since t′ is �nite branching, König's Lemma
implies that t′ is a �nite tree.

3. The root of t′ is labelled by Γ.
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4. Suppose u is a leaf of t′. There are two possibilities:

(a) The leaf u is also a leaf of t. Then since t is a tableau, u is labelled by �∆,Θ where
Θ ⊆ Lit is consistent.

(b) The leaf u was generated by pruning an in�nite path. Then by construction there
exists an associated node u′ earlier in the path leading to u which is labelled by
the same sequent as u and there is an application of the rule (mod) in between.
Moreover, u is only labelled by Πµ

1 -formulas.

Therefore, t′ is a circular tableau. We conclude that every satis�able sequent Γ ⊆ Σµ
1 ∪ Πµ

1

has a circular tableau, which implies that CT is complete.

As a corollary of the soundness and completeness theorem, we obtain the desired �nite model
property for Σµ

1 ∪Πµ
1 .

Theorem 4.4.7 (Finite model property for Σµ
1 ∪ Πµ

1 ). If Γ ⊆ Σµ
1 ∪ Πµ

1 is satis�able, then it
satis�able in a �nite model.

Proof. Suppose Γ ⊆ Σµ
1 ∪Πµ

1 is satis�able. By the completeness theorem 4.4.5 Γ has a circular
tableau t = (V,→, λ). Following the proof of the soundness theorem 4.4.1 we construct a �nite
transition system T = (S,→, ρ) and a state s0 ∈ S such that Γ holds at s0. Therefore Γ is
satis�able in a �nite model.
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Chapter 5

In�nitary proof systems for the modal

mu-calculus

5.1 Introduction

This chapter is devoted to introduce and discuss three di�erent but closely related in�nitary
proof systems for the modal mu-calculus. All three systems are Gentzen style sequent calculi,
where proofs are (possibly) in�nite labelled trees that are �nite branching. The �rst system
is a sequent calculus called DT which is a dualized version of the system T. The name DT
stands for Dualized Tableaux. The second proof system is a slight variation of DT and is called
DT′. It consists of the same axioms and rules as DT with the exception of the modality rule,
where the rather unusual modality rule of DT is replaced by a more standard rule which is
common to use in proof systems for the modal mu-calculus; see for example [18]. The third
proof system turns DT′ into a two-sided sequent calculus, which is a proof system that works
on two-sided sequents instead of the one-sided sequents considered so far. A two-sided sequent
is an ordered pair of �nite sets of formulas, written Γ ⇒ ∆. The change towards two-sided
sequents is motivated by the later goal to establish Craig interpolation, for which two-sided
sequents are more natural to work with. Apart from introducing these three proof systems,
this chapter also consists of soundness and completeness proofs for each of them. For the �rst
system DT, soundness and completeness is established by using the close connection to the
tableaux system T and the already established result of T's soundness and completeness. No-
tice that T as a tableaux system is sound and complete with respect to satis�ability, meaning
that a sequent is satis�able if and only if it has a tableau. Proof systems are sound and com-
plete with respect to validity, meaning that a sequent is valid if and only if it has a proof. The
soundness and completeness of the remaining two systems is then derived from the soundness
and completeness results established for DT.

The next two sections 5.2 and 5.3 are devoted to introduce the sequent calculus DT and
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establish its soundness and completeness. The sections 5.4 and 5.5 realize the same for DT′

and the sections 5.6 and 5.7 for 2DT.

5.2 The sequent calculus DT

We introduce the sequent calculus DT. This is a Gentzen style proof system for the modal
mu-calculus where proofs are �nite branching in�nite trees. The system operates on sequents.
As before, a sequent is a �nite set of Lµ-formulas. Recall that the interpretation of a sequent
Γ in the context of the tableaux system T is the conjunction over all formulas in Γ. In the
presence of proof systems, the interpretation of sequent is the disjunction over its formulas.

De�nition 5.2.1. The interpretation of a sequent Γ is given by

I(Γ) :=
∨

Γ

A sequent Γ is called valid if and only if I(Γ) is valid and invalid otherwise.

Table 5.1: The sequent calculus DT

Γ, P,¬P (A)
Γ, ϕ0 Γ, ϕ1

Γ, ϕ0 ∧ ϕ1
(∧)

Γ, ϕ0, ϕ1

Γ, ϕ0 ∨ ϕ1
(∨)

Γ, Z

Γ, µZ.ϕ(Z)
(µ)

Γ, Z

Γ, νZ.ϕ(Z)
(ν)

Γ, ϕ(Z)

Γ, Z
(Z)

Γ, ϕi
♦Γ,�ϕ1, ...,�ϕn,Θ

(�)
for Θ ⊆ Lit consistent

De�nition 5.2.2. The proof system DT consists of

1. the axiom (A) and the rules

2. (∧),(∨),(�),(µ),(ν) and (Z)

and is depicted in table 5.1.

Similar to the modality rule in T the (�)-rule can only be applied when there is at least
one boxed formula in the sequent and Θ ⊆ Lit is consistent. The set Γ however is allowed
to be empty. For the (Z)-rule it is once again assumed that Z identi�es ϕ(Z) and that this
identi�cation is unique. The notions of principal and residual formulas are de�ned as before.
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De�nition 5.2.3. A pre-proof for Γ is a (possibly in�nite) tree t = (V,→, λ) whose root is
labelled by Γ and which is built according to the rules depicted in table 5.1, such that every
leaf is labelled by an axiom or by a sequent of the form ♦∆,Θ for Θ ⊆ Lit.

The condition on leafs ensures that pre-proofs are maximal. A path can only end when it
reaches an axiom or a node labelled by a sequent, for which no rule can be applied any more.
The de�nition of a path through a pre-proof and of a trace through a path are identical to
the de�nitions of path and trace for pre-tableaux. We refer to de�nition 3.3.6 and de�nition
3.3.8. Observe that branching in a pre-proof only occurs when the rule (∧) is applied. This is
di�erent to the tableaux system T where branching is caused by the (mod)-rule.

De�nition 5.2.4. A proof for Γ is a pre-proof t = (V,→, λ) for Γ such that every leaf is
labelled by an axiom and every in�nite path contains an in�nite ν-trace.

We write DT ` Γ if and only if there exists a proof for Γ. Leafs which are labelled by axioms
are called axiomatic leafs.

5.3 Soundness and completeness of DT

This section establishes the soundness and completeness of DT. In doing so we also establish
the connection between DT and T which justi�es thinking of DT as a dualized version of T.
The section consists of three subsections. In the �rst we establish some preliminaries needed
throughout the rest of the section. The last two subsections are then devoted to establish
soundness and completeness of DT.

5.3.1 Preliminaries

In order to connect the system DT with the tableaux system T, we require to reason about
negated formulas. As negation only occurs on propositional level, we introduce a translation
D which maps a formula ϕ onto the formula D(ϕ), such that ¬ϕ ≡ D(ϕ).

De�nition 5.3.1. Let ϕ be an Lµ-formula. The translationD is de�ned inductively as follows:

D(P ) := ¬P for all P ∈ Prop
D(¬P ) := P for all P ∈ Prop
D(Z) := ¬Z for all Z ∈ V ar
D(¬Z) := Z for all Z ∈ V ar
D(ϕ ∧ ψ) := D(ϕ) ∨D(ψ)
D(ϕ ∨ ψ) := D(ϕ) ∧D(ψ)
D(�ϕ) := ♦D(ϕ)
D(♦ϕ) := �D(ϕ)
D(µZ.ϕ(Z)) := νZ.D(ϕ(¬Z))
D(νZ.ϕ(Z)) := µZ.D(ϕ(¬Z))

44



Chapter 5. In�nitary proof systems for the modal mu-calculus

Observe that the additional negation of the variable Z in the clauses for the �xed point
operators ensures that Z occurs positively in ϕ.

Lemma 5.3.2. For any Lµ-formula ϕ, any transition system T = (S,→, ρ) and any valuation
V : V ar −→ P(S) it holds that JD(ϕ)KTV = S − JϕKTV .

Proof. Let T = (S,→, ρ) be an arbitrary transition system and V : V ar −→ P(S) an arbitrary
valuation. We show that JD(ϕ)KTV = S − JϕKTV by induction on ϕ.

. Base case:

� Suppose ϕ = P . Then JD(P )KTV
def

= J¬P KTV = S − JP KTV . The case for ϕ = Z is
similar.

� Suppose ϕ = ¬P . Then JD(¬P )KTV
def

= JP KTV = S − (S − JP KTV ) = S − J¬P KTV . The
case for ϕ = ¬Z is similar.

. Induction step:

� Suppose ϕ = ψ1 ∧ ψ2. Then we have that

JD(ψ1 ∧ ψ2)KTV
def

= JD(ψ1) ∨D(ψ2)KTV
= JD(ψ1)KTV ∪ JD(ψ2)KTV
IH.

= (S − Jψ1KTV ) ∪ (S − Jψ2KTV )

= S − (Jψ1KTV ∩ Jψ2KTV )

= S − Jψ1 ∧ ψ2KTV

The case for ϕ = ψ1 ∨ ψ2 is similar.

� Suppose ϕ = �ψ. Then we have that

JD(�ψ)KTV
def

= J♦D(ψ)KTV
= {s ∈ S|∃t ∈ S(s→ t ∧ t ∈ JD(ψ)KTV )}
IH.

= {s ∈ S|∃t ∈ S(s→ t ∧ t ∈ (S − JψKTV )}
= {s ∈ S|∃t ∈ S(s→ t ∧ t 6∈ JψKTV )}
= {s ∈ S|s 6∈ J�ψKTV )}
= S − J�ψKTV

The case for ϕ = ♦ψ is similar.

45



Chapter 5. In�nitary proof systems for the modal mu-calculus

� Suppose ϕ = µZ.ψ(Z). Then we have that

s ∈ JD(µZ.ψ(Z))KTV
def⇔ s ∈ JνZ.D(ψ(¬Z))KTV
⇔ s ∈

⋃
{U ⊆ S|U ⊆ JD(ψ(¬Z))KTV [Z 7→U ]}

⇔ ∃U ⊆ JD(ψ(¬Z))KTV [Z 7→U ] and s ∈ U
IH.⇔ ∃U ⊆ S − Jψ(¬Z)KTV [Z 7→U ] and s ∈ U

⇔∗ ∃U ′ ⊆ S such that Jψ(Z))KTV [Z 7→U ′] ⊆ U
′ and s 6∈ U ′

⇔ s 6∈
⋂
{U ′ ⊆ S|Jψ(Z))KTV [Z 7→U ′] ⊆ U

′}

⇔ s 6∈ JµZ.ψ(Z)KTV
⇔ s ∈ (S − JµZ.ψ(Z)KTV )

Notice that the induction hypothesis can be used as it ranges over arbitrary val-
uations. Moreover, the step also includes an application of the substitution prin-
ciple (which is needed as the induction hypothesis does technically not range over
ψ(¬Z)). For the equivalence labelled by ∗ consider the set U ′ = S − U where
U is the witness of the statement one line above. The case for ϕ = νZ.ψ(Z) is
similar.

In the rest of the subsection we de�ne some useful notation which simpli�es later proofs.

De�nition 5.3.3. Let t = (V,→, λ) be a pre-proof and P = P(0)P(1)P(2)... a (possibly
in�nite) path through t. P is called a valid path if and only if one of the following two
conditions holds:

1. P is a �nite path and ends in a axiomatic leaf.

2. P is an in�nite path and there is a ν-trace through P.

A path which is not valid is called invalid.

Lemma 5.3.4. A pre-proof t = (V,→, λ) is a proof if and only if every path through t is
valid.

Proof. Trivial.

Notice that the contraposition of this lemma states that a pre-proof t is not a proof if and
only if there exists an invalid path through t.

Corollary 5.3.5. If Γ is not DT-provable, then every pre-proof for Γ has an invalid path.

We introduce a corresponding notion of a satisfying path through a pre-tableau:
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De�nition 5.3.6. Let t = (V,→, λ) be a pre-tableau and P = P(0)P(1)P(2)... a (possibly
in�nite) path through t. P is called a satisfying path if and only if one of the following
conditions hold:

1. P is a �nite path which ends in a leaf labelled by �∆,Θ where Θ ⊆ Lit is consistent.

2. P is an in�nite path and every in�nite trace through P is a ν-trace.

A path which is not satisfying is called unsatisfying.

Lemma 5.3.7. A pre-tableau t = (V,→, λ) is a tableau if and only if every path through t is
satisfying.

Proof. Suppose t = (V,→, λ) is a tableau and P an arbitrary path through t. First suppose
P is a �nite path. Then since t is a tableau, the path P ends in a leaf of t which is labelled
by �∆,Θ for Θ ⊆ Lit consistent. This implies that P is satisfying. If P is an in�nite path,
then since every in�nite trace is a ν-trace, in particular every in�nite trace through P is a
ν-trace, which implies that P is satisfying. Therefore every path is satisfying. For the other
direction suppose t = (V,→, λ) is a pre-tableau such that every path P through t is satisfying.
Suppose u ∈ V is a leaf. Then the path P starting at the root of t and ending at u is �nite
and therefore u is labelled by �∆,Θ for Θ ⊆ Lit consistent. Suppose tr is an in�nite trace in
t. As traces are de�ned relative to paths, tr is an in�nite trace through some path P, which
implies that P is in�nite. This in turn implies that tr is a ν-trace. Together we conclude that
t is a tableau.

The next concept introduced is that of corresponding paths which links paths through pre-
proofs with paths through pre-tableaux. We �rst need the following de�nition:

De�nition 5.3.8. Let ϕ be an Lµ-formula. The formula ϕ is de�ned to be ϕ where each
negated occurrence of a �xed point variable ¬Y in ϕ is replaced by Y .

Given a sequent Γ = {ϕ1, ..., ϕn} we denote by Γ the set {ϕ1, ..., ϕn}.

De�nition 5.3.9. Let t = (V,→, λ) be a pre-proof and t′ = (V ′,→′, λ′) be a pre-tableau. Let
P be a path through t and P′ a path through t′. We call P and P′ corresponding paths if and
only if the following two conditions hold:

1. Either both P and P′ are in�nite paths or they are both �nite and have the same length.

2. For any i ∈ ω such that P(i) and P′(i) exist:

D(λ(P(i))) = λ′(P′(i))

A few comments about this de�nition:
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. As we are only considering pre-proofs and pre-tableaux for closed formulas, notice that
the root of such a tree is labelled by Γ such that Γ = Γ.

. The general intuition is that if two paths are corresponding, they are identical modulo
dualism. This means that if they are �nite, they have the same length and whenever on
one path a rule (∗) is applied to a formula ϕ, then on the other path its dual tableaux
rule is applied to D(ϕ). The dual rules are thereby given according to the translation
D. That is, the dual tableaux rules of (∧) are (∨)i, the dual rule of (∨) is (∧), the dual
rule of (�) is (mod) and so on.

. The additional translation given by the over-line that replaces negated variables by non-
negated variables is necessary due to the formulation of the �xed point rules. Given a
formula σZ.ϕ(Z), after applying the �xed point rule (σ), the variable Z occurs freely in
the rest of the prooftree and D would map Z onto its negation whenever it occurs as
a subformula. This is clearly not the intended meaning, as such variables should still
be considered to be bound and so we delete the negation in such occurrences. Another
solution would be to replace the �xed point rules by the following rule used for example
in [18]

Γ, ϕ(σZ.ϕ(Z))
(σ)

Γ, σZ.ϕ(Z)

where σ ∈ {µ, ν}. This rule combines our �xed point rule with our variable rule. Using
this rule implies that no free variables occur in the prooftree. The rule above and our
�xed point rules are equivalent.

Example 5.3.10. Let ϕ = νY.♦Y ∧ �(¬P ∨ ¬Q) and D(ϕ) = µY.�Y ∨ ♦(P ∧ Q). The
following is a pre-proof for ϕ:

♦Y

¬P,¬Q
(∨)¬P ∨ ¬Q

(�)
�(¬P ∨ ¬Q)

(∧)
♦Y ∧�(¬P ∨ ¬Q)

(Y )
Y (ν)

νY.♦Y ∧�(¬P ∨ ¬Q)

Below is a tableau for D(ϕ):

P,Q
(∧)

P ∧Q
(mod)

♦(P ∧Q)
(∨)

�Y ∨ ♦(P ∧Q)
(Y)

Y (µ)
µY.�Y ∨ ♦(P ∧Q)
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The pre-proof contains two �nite branches both leading to a leaf which is not axiomatic. The
tableau has only a single �nite branch. Notice that the right branch of the pre-proof and the
branch of the tableau are corresponding; they have the same length and whenever a node in
the right branch of the pre-proof is labelled by Γ, then its corresponding node in the tableau is
labelled by D(Γ). If we choose the left disjunct �Y at the rule (∨) in the tableau, we obtain a
di�erent tableau for D(ϕ) whose only branch corresponds to the left branch of the pre-proof.

Lemma 5.3.11. Let t = (V,→, λ) be a pre-proof for Γ and t′ = (V ′,→′, λ′) a pre-tableau for
Γ′. Let P be a path through t and P′ a path through t′ such that P and P′ are corresponding.
Then P is invalid if and only if P′ is satisfying.

Proof. Suppose P is invalid. We distinguish two cases:

1. Suppose P = P(0)P(1)...P(n) is a �nite path. Since P is invalid, the leaf P(n) is not
axiomatic, which implies that λ(P(n)) = ♦Σ,Θ where Θ ⊆ Lit is consistent. Since P
and P′ are corresponding we have that P′ = P′(0)P′(1)...P′(n) and

λ(P′(n)) = D(λ(P(n)) = �D(Σ), D(Θ)

Notice that since Θ ⊆ Lit is consistent alsoD(Θ) = D(Θ) ⊆ Lit is consistent. Therefore,
P′(n) is labelled by boxed formulas and consistent literals, which implies that P′ is
satisfying.

2. Suppose P is an in�nite path. Then P′ is in�nite as well. Since P is invalid, there is no
in�nite ν-trace through P. By Lemma 4.2.3 every in�nite path contains an in�nite trace.
Hence there exists an in�nite trace through P and every such in�nite trace through P
is a µ-trace. By de�nition of the translation D(·) every in�nite trace through P′ is a
therefore a ν-trace, which implies that P′ is satisfying.

For the other direction suppose that P′ is satisfying. Again we distinguish two cases:

1. Suppose P′ = P′(0)P′(1)...P′(n) is a �nite path. Since P′ is satisfying, the leaf P′(n) is
labelled by �D(∆), D(Θ) where D(Θ) ⊆ Lit is consistent. Since P and P′ are corre-
sponding we have that P = P(0)P(1)...P(n) and

λ(P(n)) = ♦∆,Θ

where Θ ⊆ Lit is consistent. Therefore P(n) is not an axiomatic leaf, which implies that
P is invalid.

2. Suppose P′ is an in�nite path. Then P is in�nite as well. Furthermore since P′ is satisfying
every in�nite trace through P′ is a ν-trace. This implies that every trace through P is a
µ-trace and so that there is no in�nite ν-trace through P. Thus P is invalid.
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5.3.2 Completeness of DT

For completeness of DT we establish the following connection between DT and T:

If a sequent Γ does not have a DT-proof, then D(Γ) has a tableau. (5.1)

Completeness of DT is then derived from this result and soundness of T. In order to prove
(5.1), we show how to build a tableau for D(Γ) using only the information that Γ has no proof.
Starting from an arbitrary pre-proof for Γ, the tableau is built in such a way, that every path
corresponds to a path through the pre-proof. The only di�culty is the existence of the rule
(mod). Suppose we reach a node in the tableau labelled by

�D(ϕ1), ...,�D(ϕn),♦D(ψ1), ...,♦D(ψk), D(Θ)

for D(Θ) ⊆ Lit consistent. Applying the rule (mod) to such a node generates k children each
of them labelled by D(ϕ1), ..., D(ϕn), D(ψi) for some 1 ≤ i ≤ k. The corresponding node in
the pre-proof is labelled by

♦ϕ1, ...,♦ϕn,�ψ1, ...,�ψk,Θ

where Θ ⊆ Lit is consistent. Applying the dual rule (�) only generates one child labelled by
ϕ1, ..., ϕn, ψi for some 1 ≤ i ≤ k as we have to choose which boxed formula survives. Hence,
only one of the k-paths generated by the application of (mod) corresponds to the path in
the pre-proof. Having only a single pre-proof at hand does therefore not su�ce to build the
tableau. Luckily, since Γ has no proof, we can use every possible pre-proof to build the tableau.
However, we are only interested in those pre-proofs that are identical to the chosen pre-proof
up to the node where the box-rule is applied.

De�nition 5.3.12. Suppose t = (V,→, λ) is a pre-proof and P is a path through t where for
some n ∈ ω the node P(n) is labelled by ♦∆,�ϕ1, ...,�ϕk,Θ for Θ ⊆ Lit consistent, k ≥ 2
and P(n + 1) is labelled by ∆, ϕi. A pre-proof t′ = (V ′,→′, λ′) is called quasi-identical to t
with respect to P, if t′ is everywhere identical to t but in the subtree given by Up(P(n)).

That is, two pre-proofs are quasi-identical if they only di�er in one path, where di�erent boxed
formulas are chosen to survive a (�)-rule. Notice that in the de�nition the pre-proof t and
the path P are �xed, but not the speci�c node P(n). That is, if there are two suitable nodes
P(n) and P(m) for m 6= n, then there exist quasi-identical pre-proofs to t with respect to P
which di�er from t at node P(n) and others which di�er at node P(m). They are both counted
as quasi-identical. In case no suitable node in P exist, we say that t has no quasi-identical
pre-proofs with respect to P. In order to build the tableau for D(Γ), it su�ces to look at an
arbitrary pre-proof for Γ and every quasi-identical pre-proof with respect to a speci�c path.
The speci�c path is required to be completely invalid.

De�nition 5.3.13. Let t = (V,→, λ) be a pre-proof for Γ and P a path through t. The path
P is completely invalid if and only if P is invalid and if t′ = (V ′,→′, λ′) is a quasi-identical
pre-proof to t with respect to P which di�ers at node P(n), then there exists a path P′ through
t′ such that P′(0)...P′(n) = P(0)...P(n) and P′ is invalid.
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Notice that in case there are no quasi-identical pre-proofs to t with respect to P, then P is
completely invalid if and only if P is invalid. We prove two lemmas about completely invalid
paths. First, we show that given a sequent which is not provable, every pre-proof for that
sequent contains a completely invalid path. Second, we show that the invalid path P′ through
the quasi-identical pre-proof is itself completely invalid.

Lemma 5.3.14. Let Γ be a sequent and suppose that Γ does not have a proof. Then every
pre-proof for Γ has a completely invalid path.

Proof. Suppose that Γ does not have a proof. By corollary 5.3.5 every pre-proof of Γ has an
invalid path. Suppose towards a contradiction that there exists a pre-proof t = (V,→, λ) for
Γ which does not have a completely invalid path. Thus for every invalid path P there is a
quasi-identical pre-proof t′ to t with respect to P which di�ers at node (say) P(n) such that
every path through t′ which is identical to P up to the node P(n) is valid. We then replace
the sub-tree of t rooted in P(n) by the sub-tree of t′ rooted in P(n) (i.e. we turn t into t′)
and so eliminate the invalid path P without creating any new invalid paths. By iterating
the procedure we eliminate one by one every invalid path through t until we are left with a
pre-proof tP for Γ in which every path is valid. By lemma 5.3.4 this implies that tP is a proof
contradicting our assumption that Γ does not have a proof. We conclude that every pre-proof
for Γ has a completely invalid path.

Lemma 5.3.15. Suppose t = (V,→, λ) is a pre-proof for Γ and P is a completely invalid path
through t. Let t′ = (V ′,→′, λ′) be a quasi-identical pre-proof to t with respect to P which
di�ers at P(n). There exists a completely invalid path in t′ which passes through the node
P(n).

Proof. Suppose towards a contradiction that there is no completely invalid path in t′ which
passes through P(n). Let P′ be an invalid path in t′ passing through P(n). As P′ is not
completely invalid, there exists a quasi-identical pre-proof t′′ to t′ with respect to P′ which
di�ers at P′(m) such that every path in t′′ passing through P′(m) is valid. Notice that m > n
as otherwise it would contradict the assumption of P being completely invalid. We replace
the sub-tree of t′ rooted at P′(m) by the sub-tree of t′′ rooted at P′(m) and so eliminate one
invalid path passing through P(n) without introducing new invalid paths. By iterating the
procedure we therefore replace step by step every invalid path in t′ passing through P(n) by
valid paths until we are left with a pre-proof tP which is a quasi-identical to t with respect
to P and every path in tP passing through P(n) is valid, contradicting the assumption that
P is completely invalid. We conclude that there exists a completely invalid path in t passing
through P(n).

We are now ready to prove the main theorem of this subsection.

Theorem 5.3.16. Let Γ be a sequent. If Γ does not have a proof, then D(Γ) has a tableau.
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Proof. Suppose Γ does not have a proof. Let t1 = (V1,→1, λ1) be a pre-proof for Γ. By lemma
5.3.14 t1 has a completely invalid path P1. Let {ti|i ∈ I} be the collection of quasi-identical
pre-proofs to t1 with respect to P1. The set I is some index set which might be the singleton
{1} in case the completely invalid path of t1 does not have any occurrences of the (�)-rule
with more than one boxed formula to be chosen. By lemma 5.3.15 each pre-proof ti for i ∈ I
has a completely invalid path Pi which is identical to P1 up to some node P1(ni) where the
(�)-rule is applied.

We show how to construct a pre-tableau t = (V,→, λ) for D(Γ).

. Let the root rt of t be labelled by D(Γ). Notice that Pi(0) = rit and P(0) = rt are
corresponding initial segments of paths for each i ∈ I, where rit is the root of the pre-
proof ti.

. Suppose we have constructed t up to the node u where u = P(n) for some initial segment
of a path P and P(0)...P(n) corresponds to the initial segment Pi(0)...Pi(n) of some
completely invalid path Pi. We show how to extend the pre-tableau t:

� Suppose Pi(n) is labelled by ∆, ϕ where ϕ = ϕ1 ∨ ϕ2 and the rule applied is (∨)
which generates the node Pi(n+1) labelled by ∆, ϕ1, ϕ2. As the two initial segments
are corresponding, P(n) is labelled by D(∆), D(ϕ) where D(ϕ) = D(ϕ1) ∧D(ϕ2).
Therefore we apply the rule (∧) to generate the node P(n+ 1) which is labelled by
D(∆), D(ϕ1), D(ϕ2). By construction the initial segments P(0)...P(n)P(n+ 1) and
Pi(0)...Pi(n)Pi(n+ 1) are corresponding.

� Suppose Pi(n) is labelled by ∆, ϕ where ϕ = ϕ1 ∧ ϕ2 and the rule applied is (∧)
to generate the nodes v and w labelled by ∆, ϕ1 and ∆, ϕ2 respectively. Suppose
without loss of generality that Pi(n + 1) = v. By assumption P(n) is labelled
by D(∆), D(ϕ), where D(ϕ) = D(ϕ1) ∨ D(ϕ2). Then we apply the rule (∨) to
generate the node P(n + 1) labelled by D(∆), D(ϕ1). Observe that the initial
segments P(0)...P(n)P(n+ 1) and Pi(0)...Pi(n)Pi(n+ 1) are corresponding.

� Suppose Pi(n) is labelled by ♦∆,�ϕ1, ...,�ϕk,Θ where Θ ⊆ Lit is consistent, k ≥ 1
and the rule applied is (�) which generates the node Pi(n+ 1) which is labelled by
∆, ϕi for some 1 ≤ i ≤ k. By assumption the node P(n) is labelled by

D(♦∆), D(�ϕ1), ..., D(�ϕk), D(Θ)

which is
�D(∆),♦D(ϕ1), ...,♦D(ϕk), D(Θ)

Notice that D(Θ) = D(Θ) ⊆ Lit is consistent. Therefore we apply the rule (mod)
to generate nodes v1, ..., vk labelled by D(∆), D(ϕi) for 1 ≤ i ≤ k respectively.
First of all notice that the initial segments P(0)...P(n)vi and Pi(0)...Pi(n)Pi(n+ 1)
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are corresponding. Next let j 6= i. Consider a pre-proof t′ for Γ which is quasi-
identical to ti with respect to Pi and di�ers above the node Pi(n), where at the
application of (�) at node Pi(n) the successor is labelled by the sequent ∆, ϕj . If
ti = t1, then t

′ is quasi-identical to t1 with respect to P1. If ti 6= t1, then since ti
is quasi-identical to t1 with respect to P1 the path Pi is identical to P1 in the �rst
m steps and m < n (otherwise ti can be considered to be t1). This implies that
the path through t′ is also identical to the path P1 in the �rst m steps and t′ is
therefore also quasi-identical to t1 with respect to P1. Thus in both cases t′ = tl
for some l ∈ I. Moreover, the sequence Pi(0)...Pi(n)v of nodes in tl where v is the
successor of Pi(n) is an initial segment of the completely invalid path Pl. Lastly,
Pl(0)...Pl(n)Pl(n+ 1) corresponds to P(0)...P(n)vj . As j 6= i was arbitrary we have
that each of v1, ..., vk extends a path corresponding to a completely invalid path.

� Suppose Pi(n) is labelled by ∆, µZ.ϕ(Z) or ∆, νZ.ϕ(Z) and the rule applied is (µ) or
(ν) respectively and generates the node Pi(n+1) which is labelled by Z. By assump-
tion P(n) is labelled by D(∆), D(µZ.ϕ(Z)) where D(µZ.ϕ(Z)) = νZ.D(ϕ(¬Z)) or
by D(∆), D(νZ.ϕ(Z)) where D(νZ.ϕ(Z)) = µZ.D(ϕ(¬Z)). Then we apply the
rule (ν) or (µ) respectively to generate the node P(n + 1) labelled by D(∆), Z.
Notice that D(Z) = ¬Z and thus D(Z) = Z. Hence the initial segments of paths
Pi(0)...Pi(n)Pi(n+ 1) and P(0)...P(n)P(n+ 1) are corresponding.

� Suppose Pi(n) is labelled by ∆, Z where Z identi�es ϕ(Z) and the rule applied
is (Z) generating the node Pi(n + 1) labelled by ∆, ϕ(Z). By assumption P(n) is
labelled by D(∆), Z where Z identi�es D(ϕ(Z)). Thus we apply the rule (Z) to
generate the node P(n+1) labelled by D(∆), D(ϕ(Z)) and thus the initial segments
Pi(0)...Pi(n)Pi(n+ 1) and P(0)...P(n)P(n+ 1) are corresponding.

This �nishes the construction of the tree t. Notice that t is a �nite branching tree whose root
is labelled by D(Γ) and which is generated by the tableaux-rules. Moreover, by construction
every path in t corresponds to a completely invalid path in a pre-proof of Γ. Since every
completely invalid path is also invalid, lemma 5.3.11 implies that every path through t is
satisfying. Therefore lemma 5.3.7 implies that t is a tableau for D(Γ).

Theorem 5.3.17 (Completeness of DT). If a sequent Γ is valid, then DT ` Γ.

Proof. We proceed by contraposition. Suppose a sequent Γ does not have a DT-proof. By
the previous theorem D(Γ) has a tableau. The soundness result for T implies that

∧
D(Γ)

is satis�able, which by basic propositional reasoning and lemma 5.3.2 implies that
∨

Γ is not
valid. We conclude that DT is complete.

We have therefore established that DT is complete. We move on to prove soundness.
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5.3.3 Soundness of DT

For establishing soundness of DT, we prove the converse of (5.1):

If D(Γ) has a tableau, then Γ does not have a proof (5.2)

Soundness of DT is then derived from (5.2) and completeness of T. In order to prove (5.2),
we show that given a tableau for D(Γ), every pre-proof of Γ has an invalid path. For that, we
again use the notion of corresponding paths introduced in the previous subsection. It su�ces
to show that every pre-proof of Γ contains a path that is corresponding to some path in the
tableau for D(Γ). Unfortunately, this is in general not true. There are simply too many
possibilities of pre-proofs for Γ, as that every single one of them has such a path. However, it
is true if we restrict to a speci�c form of tableaux and proofs, namely those in normal form.

De�nition 5.3.18. Let Γ be a sequent and let Sub(Γ) be the set of all subformulas of formulas
in Γ. Suppose |Sub(Γ)| = k. Let e : Sub(Γ) −→ {1, ..., k} be an enumeration of Sub(Γ).

. A pre-tableau in normal form with respect to e for Γ is a pre-tableau t = (V,→, λ) for Γ
such that whenever there is a node u ∈ V labelled by ∆ ⊆ Sub(Γ), the rule (∗) applied
at u is applied to the least formula ϕ ∈ ∆ in the enumeration for which a rule can be
applied. A tableau in normal form with respect to e is a tableau which is a pre-tableau
in normal form with respect to e.

. Let u be a node in a tableau and let ϕ be the least formula labelling u to which a rule can
be applied. If the rule (∗) applied at u is not applied to ϕ, then u is called a non-normal
node.

A formula to which no rule can be applied is either a literal or it is a box- or diamond-formula,
such that the sequent labelling the current node is not suitable for an application of (mod).
Pre-tableaux for Γ in normal form are de�ned relative to an enumeration of the subformulas
of Γ. The enumeration dictates exactly which rules have to be applied in what order to which
formulas. However, pre-tableaux in normal form with respect to an enumeration e are not
unique. Observe that applying a rule to a formula such as ϕ1 ∨ ϕ2 in a normal form tableau
does not imply that we have to choose the smaller one of ϕ1 and ϕ2 with respect to e. Indeed
we are allowed to choose the larger formula as well, as long as the rule applied is always
applied to the least formula according to e to which a formula can be applied. That is, there
might exits di�erent pre-tableaux in normal form with respect to e for a given sequent. In
case some node is labelled by �Γ,♦{ϕ1, ..., ϕn},Θ for Θ ⊆ Lit consistent, the only rule that
can be applied is (mod) and (mod) is considered to be applied to every formula labelling the
node. Therefore such a node is trivially normal.

Lemma 5.3.19. Let Γ be a sequent and e an arbitrary enumeration of Sub(Γ). If Γ has a
tableau, then Γ has a tableau in normal form with respect to e.
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Using an arbitrary enumeration encodes the idea that it does not matter in what order rules
are applied to formulas in tableaux between two applications of (mod).

Proof. Suppose t = (V,→, λ) is a tableau for Γ which is not in normal form with respect to the
enumeration e. Let u be the lowermost non-normal node in t; that is, u ∈ V is such that the
branch up to u is in normal form, but at u the rule applied is not applied to the least formula
according to the enumeration. Suppose that u is labelled by ϕ1, ..., ϕn and without loss of
generality that e(ϕ1) < e(ϕ2) < ... < e(ϕn). Moreover suppose without loss of generality that
a rule can be applied to ϕ1. First of all notice that there exists a node v in the tableau above
u at which a rule is applied to ϕ1, as otherwise t would not be a tableau. We assume that v
is the �rst node after u at which a rule is applied to ϕ1. Let (∗)1, ..., (∗)k be the rules applied
between the nodes u and v to formulas other than ϕ1. Notice that none of these rules can
be an instance of (mod), as this would contradict the assumption that the rule is not applied
to ϕ1. Therefore there is no branching in the path between u and v. Furthermore, the rule
(∗) applied at node v to generate its successor node w cannot be (mod) either, as this would
imply that either u was already labelled by diamond- and boxed-formulas and literals only,
contradicting the assumption that there was a rule applied at u to some other formula than
ϕ1, or it was not possible to apply a rule to ϕ1 at node u, contradicting this exact assumption.
Therefore by �rst applying the rule (∗) at node u to ϕ1 and then the rules (∗)1, ..., (∗)k we
obtain the same successor node w of v labelled by the same formulas as in the tableau t. Thus
we have demonstrated that we can eliminate the lowermost non-normal node in t without
damaging t being a tableau. Therefore by working from the root of the tableau t upwards we
can one by one eliminate every non-normal node. Notice that while eliminating a non-normal
node might create a new non-normal node, this newly created non-normal node occurs higher
up in the tableau and is thus not problematic, as it will be eliminated just a few steps later.
Therefore we can turn t into a tableau in normal form with respect to e.

We introduce a similar notion for pre-proofs.

De�nition 5.3.20. Let Γ be a sequent and e an enumeration of Sub(Γ). A pre-proof in
normal form with respect to e for Γ is a pre-proof t = (V,→, λ) for Γ such that whenever there
is a node u ∈ V which is labelled by ∆ ⊆ Sub(Γ), the rule (∗) applied at u is applied to the
least formula in ∆ according to the enumeration e, for which a rule can be applied. A proof
in normal form with respect to e is a proof which is a pre-proof in normal form with respect
to e.

Lemma 5.3.21. Let Γ be a sequent and e an arbitrary enumeration of Sub(Γ). If Γ has a
proof, then Γ has a proof in normal form with respect to e.

Proof. Suppose t = (V,→, λ) is a proof for Γ which is not in normal form with respect to the
enumeration e. Let u be the lowermost non-normal node in a branch of t. That is, u ∈ V is
such that the branch up to u is in normal form, but the rule applied at node u is not applied
to the least formula labelling u according to e for which a rule could be applied. Suppose
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that u is labelled by ϕ1, ..., ϕn and without loss of generality e(ϕ1) < e(ϕ2) < ... < e(ϕn).
Furthermore, suppose without loss of generality that a rule (∗) can be applied to ϕ1. We
distinguish two cases:

. Suppose no rule is applied to ϕ1 at any higher node than u. This implies that every
path going through u is �nite (as an in�nite path can only occur when the rule (�) is
applied as every formula is guarded, which implies that there is a node above u where a
rule is applied to ϕ1). Since t is a proof, every path through u ends in an axiomatic leaf
labelled by Σ, P,¬P for some P ∈ Prop. Notice that ϕ1 does not have a modal operator
as main connective, as this would contradict either the assumption that a rule can be
applied to ϕ1 at u or the assumption that the rule applied at u is not applied to ϕ1.
Therefore we can apply the rule (∗) to ϕ1 at node u and then apply the same rules to
the same formulas in the same order as before which implies that every path through u
still ends in an axiomatic leaf, now labelled by ∆,Σ, P,¬P where ∆ ⊆ Sub(ϕ1). Notice
that in case the main connective of ϕ1 is a conjunction and the rule applied is (∧), every
path which previously passed through u splits into two paths which both lead into an
axiomatic leaf.

. Suppose there exists a later node where the rule (∗) is applied to ϕ1. By the previous
point we can assume without loss of generality that whenever t branches above u in
each branch there occurs an application of (∗) to ϕ1 eventually. So suppose there exist
v1, ..., vk above u such that in each of these nodes the rule (∗) is applied to ϕ1 (notice
that there exists only one rule which can be applied to ϕ1, namely the rule that works
on ϕ1's main connective). Once again the main connective of ϕ1 cannot be a modal
operator, as this contradicts either the assumption that a rule could be applied to ϕ1 at
u or the assumption that no rule is applied to ϕ1 at u. Consequently there is no instance
of (�) among the rules applied in each branch between u and vi. Similarly, the rule (∗)
applied to ϕ1 at the nodes v1, ..., vk is not (�). Therefore by �rst applying the rule (∗)
at node u and then for each of the previous branches the same rules in the same order
leads to the successor nodes w1, ..., wk′ for k

′ ≥ k of v1, ..., vk and each of the successor
nodes is labelled by the same formulas as previously in the proof. So we can once again
eliminate this non-normal node without damaging t of being a proof.

Hence by working from the root upwards we can one by one eliminate every non-normal node
in t. While eliminating a non-normal node might create a new non-normal node (or even
several), this newly created non-normal nodes occur higher up in the proof and are thus not
problematic, as they are eliminated just a few steps later. Therefore Γ has a proof in normal
form with respect to e.

Let Γ be a sequent and let e be an enumeration of Sub(Γ). Let ê denote the enumeration for
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Sub(D(Γ))1 such that for every ϕ ∈ Γ:

e(ϕ) = n ⇔ ê(D(ϕ)) = n

Let us now prove the property (5.2) restricted to tableaux and pre-proofs in normal form.

Theorem 5.3.22. Let Γ be a sequent and e an arbitrary enumeration of Sub(Γ). If D(Γ) has
a tableau in normal form with respect to the enumeration ê, then Γ does not have a proof in
normal form with respect to e.

Proof. Let Γ be a sequent, e an arbitrary enumeration of Sub(Γ) and t′ = (V ′,→′, λ′) a tableau
for D(Γ) in normal form with respect to the enumeration ê of Sub(D(Γ)). Let t = (V,→, λ)
be an arbitrary pre-proof for Γ in normal form with respect to e. We �rst show that there
exists a path P through t and a path P′ through t′ which are corresponding, by simultaneously
constructing both P and P′.

. Let P(0) = rt and P′(0) = r′t. Notice that these initial segments of paths are correspond-
ing.

. Suppose we have constructed P(0)P(1)...P(n) and P′(0)P′(1)...P′(n) which are corre-
sponding. We show how to extend both paths (assuming that they can be extended):

� Suppose P(n) is labelled by ∆ where the least formula in ∆ according to the enu-
meration e and for which a rule can be applied is ϕ0 ∨ ϕ1. Since t is a pre-proof
for Γ in normal form the rule applied at P(n) is (∨) which generates a new node u
labelled by

(∆− {ϕ0 ∨ ϕ1}), ϕ0, ϕ1

By assumption P′(n) is labelled by D(∆) and D(ϕ0 ∨ ϕ1) = D(ϕ0) ∧D(ϕ1) is the
least formula with respect to ê. So since t′ is a tableau in normal form the rule
applied at P′(n) is (∧) which generates the node u′ labelled by

(D(∆)− {D(ϕ0 ∨ ϕ1)}), D(ϕ0), D(ϕ1)

Therefore let P(n+ 1) = u and P′(n+ 1) = u′. By construction P(0)...P(n)P(n+ 1)
and P′(0)...P′(n)P′(n+ 1) are corresponding.

� Suppose P(n) is labelled by ∆ where the least formula in ∆ according to e is ϕ0∧ϕ1.
Then the rule applied at P(n) is (∧) which generates two new nodes u0 and u1

which are labelled by ∆′, ϕ0 and ∆′, ϕ1 respectively, where ∆′ = ∆ − {ϕ0 ∧ ϕ1}.
By assumption P′(n) is labelled by D(∆) and the least formula according to ê is
D(ϕ0 ∧ ϕ1) = D(ϕ0) ∨ D(ϕ1). The rule applied at P′(n) is therefore (∨)i and
generates a new node u′ which is labelled by D(∆′), D(ϕi) for i ∈ {0, 1}. Let
P(n + 1) = ui and let P′(n + 1) = u′. By construction P(0)...P(n)P(n + 1) and
P′(0)...P′(n)P′(n+ 1) are corresponding.

1Recall that by the de�nition of subformulas negated atoms are considered to be atomic, which means that
they do not have any other subformulas but themselves. Consequently |Sub(Γ)| = |Sub(D(Γ))|.
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� Suppose P(n) is labelled by ♦∆,�ϕ1, ...,�ϕk,Θ where Θ ⊆ Lit is consistent and
k ≥ 1. The rule applied at P(n) is (�) which generates a node u labelled by ∆, ϕi for
1 ≤ i ≤ k. By assumption P′(n) is labelled by D(♦∆), D(�ϕ1), ..., D(�ϕk), D(Θ)
which is

�D(∆),♦D(ϕ1), ...,♦D(ϕk), D(Θ)

Observe that D(Θ) ⊆ Lit is consistent. So the rule applied at P′(n) is (mod) which
generates k nodes u′1, ..., u

′
k labelled by D(∆), D(ϕj) for 1 ≤ j ≤ k respectively.

Let P(n+ 1) = u and let P′(n+ 1) = u′i. By construction P(0)...P(n)P(n+ 1) and
P′(0)...P′(n)P′(n+ 1) are corresponding.

� Suppose P(n) is labelled by ∆ where the least formula in ∆ according to e to which
a rule can be applied is a �xed-point variable Z identifying the formula ϕ(Z).
The rule applied at P(n) is therefore (Z) which generates a node u labelled by
∆′, ϕ(Z) where ∆′ = ∆ − {Z}. By assumption P′(n) is labelled by D(∆) and the
least formula in D(∆) according to ê to which a rule can be applied is Z where Z
identi�es D(ϕ(Z)). So the rule applied at P′(n) is (Z) which generates a node u′

labelled by D(∆′), D(ϕ). Let P(n + 1) = u and P′(n + 1) = u′. By construction
P(0)...P(n)P(n+ 1) and P′(0)...P′(n)P′(n+ 1) are corresponding.

� Suppose P(n) is labelled by ∆ where the least formula in ∆ according to e to which
a rule can be applied is µZ.ϕ(Z) or νZ.ϕ(Z). The rule applied at P(n) is thus (µ) or
(ν) which generates a new node u labelled by ∆′, Z where ∆′ = ∆−{µZ.ϕ(Z)} (or
νZ.ϕ(Z)). By assumption P′(n) is labelled by D(∆) and the least formula in D(∆)
according to ê to which a rule can be applied is D(µZ.ϕ(Z)) = νZ.D(ϕ(¬Z))
or D(νZ.ϕ(Z)) = µZ.D(ϕ(¬Z)). Thus the rule applied at P′(n) is (ν) or (µ)
respectively which generates the node u′ labelled by D(∆′), Z. Let P(n + 1) = u
and P′(n+ 1) = u′. By construction P(0)...P(n)P(n+ 1) and P′(0)...P′(n)P′(n+ 1)
are corresponding.

Therefore the path P corresponds to the path P′. Since t was an arbitrary pre-proof for Γ (in
normal form) we conclude that every pre-proof for Γ in normal form with respect to e has a
path that corresponds to some path through t′. Recall that t′ is a tableau for D(Γ). Thus by
lemma 5.3.7 every path - and in particular P′ - through t′ is satisfying. So by lemma 5.3.11
the path P is invalid. Hence every pre-proof for Γ in normal form with respect to e has an
invalid path, which implies that Γ does not have a proof in normal form with respect to e by
lemma 5.3.4.

Corollary 5.3.23. If D(Γ) has a tableau, then Γ does not have a proof.

Proof. Suppose D(Γ) has a tableau. Let e be an arbitrary enumeration for Sub(Γ). Then ê is
an enumeration for D(Γ). By lemma 5.3.19 D(Γ) has a tableau in normal form with respect
to ê. So by the previous theorem Γ does not have a proof in normal form with respect to e.
The contraposition of lemma 5.3.21 thus implies that Γ does not have a proof.
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Theorem 5.3.24 (Soundness of DT). If Γ is a sequent and DT ` Γ, then Γ is valid.

Proof. We proceed by contraposition. Suppose Γ is not valid. Thus D(Γ) is satis�able. The
completeness theorem for T implies that D(Γ) has a tableau. By the previous corollary we
conclude that Γ does not have a proof and so DT 6` Γ.

5.4 The sequent calculus DT′

In this section we introduce the sequent calculus DT′ which is a slight variation of DT. Recall
the modality rule of DT:

Γ, ϕi (�)
♦Γ,�ϕ1, ...,�ϕn,Θ

This rule essentially combines two rules into one:

1. A modality rule which given as premises a sequent Γ (possibly empty) and a formula ϕ
introduces box-distribution: Formulas in Γ are bound by a diamond operator and ϕ is
bound by a box operator.

Γ, ϕ

♦Γ,�ϕ

2. A weakening rule which given an arbitrary sequent Γ introduces an arbitrary �nite
number of boxed formulas as well as an arbitrary �nite set of consistent literals:

Γ
Γ,�ψ1, ...,�ψn,Θ

While it is quite standard to combine modality rules with weakening rules, our version of
weakening is rather unusual. It is much more common to allow weakening with arbitrary
�nite sets of formulas instead of weakening only with formulas of a very speci�c form. The
choice of this version of the (�)-rule in DT was motivated by its close connection to the
(mod)-rule of the tableaux system T. In this section, we replace the rule (�) by a more
standard rule combining modality distribution with weakening by arbitrary side sequents. Let
(�′) be the following rule:

Γ, ϕ
(�′)

♦Γ,�ϕ,Σ

where Σ is a �nite set of (arbitrary) Lµ-formulas. Clearly this rule is stronger than our previous
rule (�). Indeed (�) is a special case of (�′) where Σ consists of boxed formulas and consistent
literals only. Replacing (�) in DT by (�′) results in the sequent calculus DT′.
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Table 5.2: The sequent calculus DT′

Γ, P,¬P (A)
Γ, ϕ0 Γ, ϕ1

Γ, ϕ0 ∧ ϕ1
(∧)

Γ, ϕ0, ϕ1

Γ, ϕ0 ∨ ϕ1
(∨)

Γ, Z

Γ, µZ.ϕ(Z)
(µ)

Γ, Z

Γ, νZ.ϕ(Z)
(ν)

Γ, ϕ(Z)

Γ, Z
(Z)

Γ, ϕ

♦Γ,�ϕ,Σ
(�′)

De�nition 5.4.1. The sequent calculus DT′ consists of the following axioms and rules:

1. The axiom (A) and the rules

2. (∧), (∨), (�′), (µ), (ν) and (Z)

and is depicted in table 5.2.

DT′-pre-proofs, paths, traces and DT′-proofs are de�ned as for DT, see section 5.2. We write
DT′ ` Γ if and only if Γ has a DT′-proof.

5.5 Soundness and completeness of DT′

This section establishes the soundness and completeness of DT′ by using the soundness and
completeness results established for DT. As mentioned above, the rule (�) is a special case
of the rule (�′). Therefore every DT-derivation is also a DT′-derivation. This directly yields
that DT′ is complete.

Theorem 5.5.1 (Completeness of DT′). If Γ is valid, then DT′ ` Γ.

Soundness is established by showing that every sequent which is DT′-provable is also provable
in DT. To do so we use once again a suitable notion of corresponding paths in DT′- and
DT-proofs. The only tricky case occurs when the (�′)-rule is applied. The �rst problem is
that the rule can be applied when a single box-formula is present at the sequent while for
the rule (�) every formula in the sequent has to be decomposed �rst until only formulas in
the scope of a modal operator and consistent literals remain. Thus when we have a node in
a DT′-proof where the box-rule is applied, we �rst have to decompose every formula in the
corresponding node in the DT-proof before we can apply the box-rule there. The second and
bigger problem is that we can eliminate diamond-formulas by applying (�′) while this is not
possible when applying (�). Suppose some node where (�′) is applied is labelled by ♦Γ,�ϕ,Σ
where Σ contains some formula ♦ψ. Thus in the corresponding proof, after decomposing every
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formula in Σ and then applying (�) we are left with a sequent of the form Γ, ϕ, ψ instead of
just Γ, ϕ. Finally, we also have to take into account that it is possible to apply the rule (�′)
even when the current node is labelled by inconsistent literals, while in the corresponding
DT-proof the corresponding path has to end in that node. We start by introducing a re�ned
notion of corresponding paths.

De�nition 5.5.2. Suppose t = (V,→, λ) is a DT′-pre-proof for Γ and t′ = (V ′,→′, λ′) is a
DT-pre-proof for Γ.

. Let u ∈ V and u′ ∈ V ′. The nodes u and u′ are corresponding if λ(u) ⊆ λ′(u′).

. Let P be a path through t and P′ a path through t′. The paths P and P′ are corresponding,
if all of the following conditions hold:

1. Either both P and P′ are �nite or both P and P′ are in�nite.
2. For each i ∈ ω there exists j ≥ i such that P(i) corresponds to P′(j) (assuming that

P(i) exists).

3. If P(i) corresponds to P′(j) and P(n) corresponds to P′(m) where i < n, then j < m.

4. If P and P′ are �nite and P ends in P(n) which corresponds to P′(m), then P′ ends
in P′(m).

Observe that if a path P in t corresponds to a path P′ in t′, then we require that each node
in P corresponds to some node in P′. However, we do not require that the converse holds as
well. Thus it is possible that some nodes in P′ do not correspond to any nodes in P. Moreover,
point 3. ensures that the correspondence relation is monotone. Point 4. is strictly speaking
not necessary for the proof, as we de�ne the corresponding paths in such a way that point 4.
is always ful�lled anyway. We add the restriction to the de�nition to prevent confusion.

Theorem 5.5.3. Let Γ be a sequent. If DT′ ` Γ, then DT ` Γ.

Proof. Suppose t = (V,→, λ) is a DT′-proof of Γ. We show how to construct a DT-proof
t′ = (V ′,→′, λ′) of Γ.

. The root rt′ of t
′ is labelled by Γ. Notice that rt corresponds to rt′ .

. Suppose we have constructed P′(0)...P′(j) where P′(0) = rt′ which corresponds to the
initial segment P(0)...P(i) of some path P through t where i ≤ j. Moreover we assume
that P′(j) corresponds to P(i). We distinguish two cases:

� Suppose the rule applied at P(i) is (∗) for ∗ ∈ {∧,∨, Z, µ, ν}. Then we apply
the same rule to the same formula labelling P′(j) to generate the node P′(j + 1)
which corresponds to P(i + 1). Notice that P′(0)...P′(j)P′(j + 1) corresponds to
P(0)...P(i)P(i+ 1).
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� Suppose P(i) is labelled by ♦Π,�ϕ1, ...,�ϕk,Σ where k ≥ 1 and Σ is an arbitrary
sequent and the rule applied is (�′) which generates the node P(i+ 1) labelled by
Π, ϕd for d ≤ k:

Π, ϕd (�′)
♦Π,�ϕ1, ...,�ϕk,Σ

By assumption P(i) corresponds to P′(j), which implies that P′(j) is labelled by
♦Π,�ϕ1, ...,�ϕk,Σ,Ω where Ω is some side-sequent. We �rst apply rules to decom-
pose each formula in Σ,Ω until we are left with boxed formulas, diamond formulas
and literals only. Notice that decomposing these formulas might split up the branch
in case we have to apply the rule (∧). Thus after decomposing these formulas we
have constructed nodes u1, ..., un where ul for 1 ≤ l ≤ n is labelled by

♦Π,�ϕ1, ...,�ϕk,♦∆l,Θl

where ∆l ⊆ {ψ|♦ψ ∈ Sub(Σ) ∪ Sub(Ω)} and Θl ⊆ Lit(Σ) ∪Lit(Ω) where Lit(Σ) is
the set of all literals that occur as subformulas in Σ. Suppose that there are sl steps
between P′(j) and ul. Suppose without loss of generality that we have extended P′
for sl-steps such that P′(j+sl) = ul (the case where the path goes through another
node ul′ is identical). Then we distinguish two cases:

1. Suppose the literals in Θl are inconsistent. Then the path P′ ends in ul and we
call P′ a non-corresponding path.

2. Suppose the literals in Θl are consistent. Then apply the rule (�) to generate
the node P′(j + sl + 1) which is labelled by Π, ϕd,∆l. Notice that P(i + 1)
corresponds to P′(j+sl+1) and moreover the initial segment P(0)...P(i)P(i+1)
corresponds to P′(0)...P′(j)...P′(j + sl)P′(j + sl + 1).

Therefore we have shown how to construct the tree t′. First of all, notice that t′ is generated
by the rules of DT and is therefore a �nite branching tree. The root of t′ is labelled by
Γ. Furthermore, every path through t′ is either non-corresponding or corresponds to a path
through t (observe that several paths in t′ might correspond to the same path in t). We now
show that every path P′ through t′ is valid:

1. Suppose P′ is non-corresponding. Thus P′ is a �nite path that ends in a leaf which is
labelled by inconsistent literals. This implies that the leaf is axiomatic. Therefore P′ is
valid.

2. Suppose P′ corresponds to a �nite path P. Then P′ is �nite itself and the leaf P(i) of P
corresponds to the leaf P′(j) of P′. Therefore λ(P(i)) ⊆ λ′(P′(j)). Since t is a proof we
have that P(i) is labelled by inconsistent literals and thus so is P′(j), which implies that
P′(j) is an axiomatic leaf. Therefore P′ is valid.
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3. Suppose P′ corresponds to an in�nite path P. Thus P′ is an in�nite path itself. Since t
is a proof there exists an in�nite ν-trace through P and since P corresponds to P′, for
each i there exists j ≥ i such that λ(P(i)) ⊆ λ′(P′(j)). Therefore there exists an in�nite
ν-trace through P′ as well, which implies that P′ is valid.

All together we conclude that t′ is a DT-proof of Γ.

Theorem 5.5.4 (Soundness of DT′). If DT′ ` Γ, then Γ is valid.

Proof. Suppose Γ is a sequent and DT′ ` Γ. Theorem 5.5.3 implies that DT ` Γ. The
soundness theorem 5.3.24 for DT then implies that Γ is valid.

5.6 The two-sided sequent calculus 2DT

The last part of this chapter is devoted to introduce the system 2DT, a sequent calculus that
operates on two-sided sequents instead of the one-sided sequents considered so far.

De�nition 5.6.1. A two-sided sequent is an ordered pair Γ⇒ ∆ where Γ,∆ are �nite sets of
Lµ-formulas.

The switch from one-sided sequents to two-sided sequents is motivated by the goal to establish
Craig-interpolation for Σµ

1 ∪ Πµ
1 in the next chapter, where two-sided sequents are a natural

framework to represent interpolation. For the rest of this chapter we refer to two-sided sequents
just as sequents. In a sequent Γ⇒ ∆ it is allowed for Γ or ∆ to be empty. The interpretation
of a two-sided sequent is given in terms of classical implication → de�ned by

ϕ→ ψ := D(ϕ) ∨ ψ

De�nition 5.6.2. The interpretation I of a sequent Γ⇒ ∆ is given by:

I(Γ⇒ ∆) :=
∧

Γ→
∨

∆

where
∧
∅ := > and

∨
∅ := ⊥. We call a sequent Γ ⇒ ∆ valid if and only if I(Γ ⇒ ∆) is

valid.

Observe that the completely empty sequent ⇒ is unsatis�able, as I(⇒) = > → ⊥ ≡ ⊥. By
de�nition of the translation D the following holds:

Γ⇒ ∆ is valid ⇔ I(Γ⇒ ∆) is valid

⇔
∧

Γ→
∨

∆ is valid

⇔
∨
D(Γ) ∨

∨
∆ is valid

The sequent calculus 2DT consists of left-side and right-side rules for each operator and
connective. Furthermore, it consists of a total of four axioms, where we consider a sequent
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to be an axiom if either P,¬P occurs on the left or the right side for arbitrary P ∈ Prop or
a literal occurs on both sides. It follows directly from the de�nition of the interpretation of
a sequent that all four axioms are valid. If P,¬P occurs on the right, then the right side is
equivalent to > as it is interpreted as a disjunction. Since ϕ→ > is valid for any ϕ, the axiom
is valid. If P,¬P occurs on the left side, then the left side is equivalent to ⊥ as it is interpreted
as a conjunction and ⊥ → ϕ is once again valid for any formula ϕ. Finally, if a literal occurs
on both sides, then since P → P and ¬P → ¬P are both valid, so are the axioms. Apart
from adding more rules and axioms to deal with formulas on both sides of the sequent arrow,
we also formulate new requirements for in�nite paths to be valid. The basic slogan is that
an in�nite ν-trace occurring on the right side is su�cient for a path to be valid and so is an
in�nite µ-trace on the left.

Table 5.3: The sequent calculus 2DT

Γ, P ⇒ P,∆
(Ax)1 Γ⇒ P,¬P,∆ (Ax)2

Γ,¬P ⇒ ¬P,∆ (Ax)3 Γ, P,¬P ⇒ ∆
(Ax)4

Γ, ϕ0, ϕ1 ⇒ ∆

Γ, ϕ0 ∧ ϕ1 ⇒ ∆
(∧)L

Γ⇒ ϕ0,∆ Γ⇒ ϕ1,∆

Γ⇒ ϕ0 ∧ ϕ1,∆
(∧)R

Γ, ϕ0 ⇒ ∆ Γ, ϕ1 ⇒ ∆

Γ, ϕ0 ∨ ϕ1 ⇒ ∆
(∨)L

Γ⇒ ϕ0, ϕ1,∆

Γ⇒ ϕ0 ∨ ϕ1,∆
(∨)R

Γ, ϕ⇒ ∆

Θ,�Γ,♦ϕ⇒ ♦∆,Σ
(�)L

Γ⇒ ϕ,∆

Θ,�Γ⇒ �ϕ,♦∆,Σ
(�)R

Γ, Z ⇒ ∆

Γ, µZ.ϕ(Z)⇒ ∆
(µ)L

Γ⇒ Z,∆

Γ⇒ µZ.ϕ(Z),∆
(µ)R

Γ, Z ⇒ ∆

Γ, νZ.ϕ(Z)⇒ ∆
(ν)L

Γ⇒ Z,∆

Γ⇒ νZ.ϕ(Z),∆
(ν)R

Γ, ϕ(Z)⇒ ∆

Γ, Z ⇒ ∆
(Z)L

Γ⇒ ϕ(Z),∆

Γ⇒ Z,∆
(Z)R

De�nition 5.6.3. The sequent calculus 2DT consists of the following axioms and rules:

1. The axioms (Ax)1, (Ax)2, (Ax)3 and (Ax)4
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2. Left and right side rules for the Boolean connectives ∧ and ∨

3. Left and right side modality rules

4. Left and right side rules for �xed-point operators and �xed point variables

and is depicted in table 5.3.

As usual, every side-sequent occurring in a rule is allowed to be empty. Moreover, in the rule
(�)L only the formula ♦ϕ on the left-side is required to apply the rule. Similarly, in the rule
(�)R the only formula required is �ϕ occurring on the right. The side-sequents Θ and Σ
are arbitrary �nite sets of Lµ-formulas in both rules. As before, every variable occurring in a
sequent is assumed to identify a unique formula.

De�nition 5.6.4. A pre-proof for Γ⇒ ∆ is a (possibly in�nite) tree t = (V,→, λ) whose root
is labelled by Γ⇒ ∆ and which is built according to the rules depicted in table 5.3, such that
every leaf is labelled by an axiom or by a sequent of the form Θ,�Γ⇒ ♦∆,Σ, where Θ ⊆ Lit
and Σ ⊆ Lit.

The requirement for leafs ensures that pre-proofs are maximal. Every �nite path either ends
in an axiom or in a leaf where no more formula can be applied. Paths and traces are de�ned
as for DT; we refer to section 5.2. Notice that 2DT contains no rules that push formulas
from one side of the arrow to the other. That implies that a trace starting on one side of
the sequent arrow stays on that side. This simpli�es the requirements that are put on in�nite
paths in order to be valid, as we do not have to deal with in�nite traces passing both through
the left and the right side. Observe that the (∧)R-rule is dual to the (∨)L-rule in the sense
that they both generate branching of degree 2. Similarly, the (∨)R-rule is dual to (∧)L. The
modality rules introduce weakening on both sides as well as box distribution. Notice that it
is allowed to weaken with arbitrary side-sequents. The �xed point rules are straightforward
generalizations of the �xed point rules in DT′ on both sides.

De�nition 5.6.5. A proof for Γ ⇒ ∆ is a pre-proof t = (V,→, λ) for Γ ⇒ ∆ for which the
following holds:

1. Every leaf of t is labelled by an axiom.

2. Every in�nite path through t contains an in�nite µ-trace on the left or an in�nite ν-trace
on the right.

We write 2DT ` Γ⇒ ∆ if and only if there exists a 2DT-proof for Γ⇒ ∆. For a Lµ-formula
ϕ, we say that ϕ is provable if and only if 2DT ` ⇒ ϕ. Similarly, a one-sided sequent Γ
is said to be provable if and only if 2DT `⇒ Γ. As for tableaux, we introduce the notion
of principal and residual formulas. Each 2DT-rule which is not a modality rule works on a
single formula in the lower sequent which is decomposed or regenerated. We call these relevant
formulas in the premise and the conclusion the distinguished formulas of the rule. For every
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rule apart from the modality rules, the distinguished formula in the lower sequent is called
principal and the distinguished formula(s) in the upper sequent is (are) called residual. In
case of the rules (�)L and (�)R, only the formulas in the lower sequent which survive the rule
are principal (that is, the formulas in �Γ,♦∆ and •ϕ for • ∈ {�,♦}) and every formula in
the upper sequent is residual. For example in the rule

Γ⇒ ϕ0,∆ Γ⇒ ϕ1,∆ (∧)RΓ⇒ ϕ0 ∧ ϕ1,∆

the principal formula is ϕ0∧ϕ1 and the residual formulas are ϕ0 and ϕ1 in the upper sequents.

5.7 Soundness and completeness of 2DT

In order to prove soundness and completeness of 2DT, we use the close connection between
2DT and DT′ as well as the already established result that DT′ is sound and complete. The
correspondence between 2DT and DT′ is given by the following theorem:

Theorem 5.7.1. A one-sided sequent Γ is 2DT-provable if and only if Γ is DT′-provable.

Proof. Recall that there exists no rule in 2DT which pushes a formula from one side of
the sequent arrow to the other and that a one-sided sequent Γ is 2DT-provable means that
2DT `⇒ Γ. If there is a proof of ⇒ Γ, the only rules applied in this proof are therefore rules
for the right side of the sequent arrow and (Ax)2. Moreover, throughout the proof, the left-side
is always empty. Observe that if the left-side of a sequent is empty, then every right-side rule
in 2DT coincides with the same rule in DT′; that is, (∧)R coincides with (∧), (∨)R coincides
with (∨), (�)R coincides with (�′) and so on. Thus, given a 2DT-proof of ⇒ Γ, one obtains
a DT′-proof of Γ by simply removing every sequent arrow in the tree. For the other direction,
given a DT′-proof of Γ, one obtains a 2DT-proof for ⇒ Γ by simply adding a sequent arrow
to the left of each sequent labelling a node in the proof tree.

Observe that theorem 5.7.1, despite establishing a useful connection between 2DT andDT′, is
not quite enough to prove soundness and completeness. Using theorem 5.7.1 and the soundness
and completeness of DT′, we can deduce that ⇒ Γ is 2DT-provable if and only if ⇒ Γ is
valid. Our goal, however, is to prove that Γ ⇒ ∆ is 2DT-provable if and only if Γ ⇒ ∆ is
valid. What we require is a bridge theorem that establishes that a sequent Γ⇒ ∆ is provable
if and only if ⇒ D(Γ),∆ is provable. We start by proving one direction.

Remark 5.7.2. Recall that ϕ denotes the formula ϕ, where every negated formula ¬Z in ϕ
is replaced by Z. For the remainder of this section we denote the set D(Γ) simply by D(Γ) in
order to obtain a more concise presentation.

Theorem 5.7.3. Let Γ⇒ ∆ be a sequent. If 2DT `⇒ D(Γ),∆, then 2DT ` Γ⇒ ∆.
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The main di�culty in proving the theorem is that there might be some formula ϕ ∈ Γ such that
D(ϕ) ∈ ∆. In that case there is some information lost in the sequent ⇒ D(Γ),∆ compared to
Γ⇒ ∆, as the formula ϕ occurs in Γ⇒ ∆ on the left and its dual D(ϕ) on the right, while in
⇒ D(Γ),∆ the formula D(ϕ) only occurs once. For solving this problem we introduce a new
notion of corresponding paths in 2DT-proofs.

De�nition 5.7.4. Let t = (V,→, λ) be a 2DT-pre-proof for Γ ⇒ ∆ and t′ = (V ′,→′, λ′) a
2DT-pre-proof for ⇒ D(Γ),∆. Let u ∈ V and u′ ∈ V ′. We say that u and u′ are corresponding
- written u! u′ - if and only if

λ(u) = (Γ′,Π⇒ ∆′) and λ′(u′) = (⇒ D(Γ′),∆′)

where Π is an arbitrary �nite set of formulas. We call two paths P through t and P′ through
t′ corresponding - written P! P′ - if and only if

1. both P and P′ are �nite, have the same length and P(n)! P′(n) for all n ≤ lth(P) or

2. both P and P′ are in�nite and P(n)! P′(n) for all n ∈ ω.

The general proof strategy is based on the slogan that if a formula ϕ occurs on the left and its
dual D(ϕ) on the right, then only information from one of these two formulas is needed. We
decide to use in such cases only information from the right, ignoring the formula on the left.
That is, we show how to construct a proof t for Γ⇒ ∆ from the proof t′ for⇒ D(Γ),∆, where
whenever a rule in t′ is applied to a formula D(ϕ), such that on the corresponding node in t
the formula ϕ occurs on the left and D(ϕ) on the right, then we only apply the corresponding
rule on the right, ignoring the formula ϕ on the left. Thus, in the next node we consider ϕ to
belong to Π. We show that this procedure still leads to a proof for Γ ⇒ ∆, despite ignoring
information on the left. From now on when given a sequent Γ⇒ ∆, we write this sequent as
Γ1,Σ ⇒ D(Σ),∆1 where we assume that D(Γ1) ∩∆1 = ∅. If there is no formula ϕ ∈ Γ such
that D(ϕ) ∈ ∆, then the sets Σ and D(Σ) are empty.

Proof. (of theorem 5.7.3) Let Γ,Σ ⇒ D(Σ),∆ be a sequent where D(Γ) ∩ ∆ = ∅. Suppose
t′ = (V ′,→′, λ′) is a proof for ⇒ D(Γ), D(Σ),∆. We construct a proof t = (V,→, λ) for
Γ,Σ⇒ D(Σ),∆ as follows:

. The root rt of t is labelled by Γ,Σ ⇒ D(Σ),∆. Notice that rt ! rt′ where rt′ is the
root of t′.

. Suppose we have constructed P(0)P(1)...P(n) which corresponds to the initial segment
of a path P′(0)P′(1)...P′(n) through t′. We show how to extend the path:

� Suppose P′(n) is labelled by ⇒ D(Γ′), D(Σ′),∆′, ϕ ∨ ψ. The rule applied at P′(n)
is (∨)R and P′(n+ 1) is labelled by ⇒ D(Γ′), D(Σ′),∆′, ϕ, ψ. We distinguish three
cases:

67



Chapter 5. In�nitary proof systems for the modal mu-calculus

1. Suppose ϕ ∨ ψ ∈ D(Γ′). Since P(n) ! P′(n), the node P(n) is labelled by
Γ′, D(ϕ ∨ ψ),Σ′,Π ⇒ D(Σ′),∆′ where D(Γ′) ∩ ∆′ = ∅ and Π is some set of
side-formulas. Notice that D(ϕ ∨ ψ) = D(ϕ) ∧D(ψ). Apply the rule (∧)L to
generate a new node u labelled by Γ′, D(ϕ), D(ψ),Σ′,Π ⇒ D(Σ′),∆′ and let
P(n+ 1) = u. Notice that P(n+ 1)! P′(n+ 1).

2. Suppose ϕ∨ψ ∈ ∆′. Then P(n) is labelled by Γ′,Σ′,Π⇒ D(Σ′),∆′, ϕ∨ψ. Ap-
ply the rule (∨)R to generate the node u labelled by Γ′,Σ′,Π⇒ D(Σ′),∆′, ϕ, ψ
and let P(n+ 1) = u. Notice that P(n+ 1)! P′(n+ 1).

3. Suppose ϕ ∨ ψ ∈ D(Σ′). Then P(n) is labelled by

Γ′,Σ′, D(ϕ) ∧D(ψ),Π⇒ D(Σ′), ϕ ∨ ψ,∆′

Apply the rule (∨)R to generate the node u labelled by

Γ′,Σ′, D(ϕ) ∧D(ψ),Π⇒ D(Σ′), ϕ, ψ,∆′

and let P(n + 1) = u. Notice that P(n + 1) ! P′(n + 1) as D(ϕ) ∧ D(ψ) is
now considered to belong to Π.

� Suppose P′(n) is labelled by⇒ D(Γ′), D(Σ′),∆′, ϕ∧ψ. The rule applied at P′(n) is
(∧)R and P′(n+ 1) is without loss of generality labelled by ⇒ D(Γ′), D(Σ′),∆′, ϕ.
Again we distinguish three cases:

1. Suppose ϕ ∧ ψ ∈ D(Γ′). Then P(n) is labelled by

Γ′, D(ϕ) ∨D(ψ),Σ′,Π⇒ D(Σ′),∆′

Apply the rule (∨)L to generate two new nodes u and v labelled by Γ′, D(ϕ),Σ′,Π⇒
D(Σ′),∆′ and Γ′, D(ψ),Σ′,Π⇒ D(Σ′),∆′ respectively. Let P(n+ 1) = u. No-
tice that P(n+ 1)! P′(n+ 1).

2. Suppose ϕ ∧ ψ ∈ ∆′. Then P(n) is labelled by

Γ′,Σ′,Π⇒ D(Σ′),∆′, ϕ ∧ ψ

Apply the rule (∧)R to generate two new nodes u and v labelled by Γ′,Σ′,Π⇒
D(Σ′),∆′, ϕ and Γ′,Σ′,Π⇒ D(Σ′),∆′, ψ respectively. Let P(n+1) = u. Notice
that P(n+ 1)! P′(n+ 1).

3. Suppose ϕ ∧ ψ ∈ D(Σ′). Therefore P(n) is labelled by

Γ′,Σ′, D(ϕ) ∨D(ψ),Π⇒ D(Σ′), ϕ ∧ ψ,∆′

Apply the rule (∧)R to generate two new nodes u and v which are labelled by
Γ′,Σ′, D(ϕ)∨D(ψ),Π⇒ D(Σ′), ϕ,∆′ and Γ′,Σ′, D(ϕ)∨D(ψ),Π⇒ D(Σ′), ψ,∆′

respectively. Let P(n+ 1) = u. Notice that P(n+ 1)! P′(n+ 1).
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� The cases where P′(n) is labelled by a formula σZ.ϕ(Z) for σ ∈ {µ, ν} or by Z
where Z identi�es ϕ(Z) are similar to the �rst case; depending on whether the
formulas are in D(Γ′), D(Σ) or ∆′ we apply the corresponding rule on the left or
right and extend the path accordingly.

� Suppose P′(n) is labelled by⇒ D(Γ′), D(Σ′),∆′,�ϕ whereD(Γ′) = ♦D(Γ1), D(Γ2),
D(Σ′) = ♦D(Σ1), D(Σ2) and ∆′ = ♦∆1,∆2. The rule applied is (�)R and P′(n+1)
is labelled by ⇒ D(Γ1), D(Σ1),∆1, ϕ. We distinguish three cases:

1. Suppose �ϕ ∈ D(Γ). This implies that �ϕ ∈ D(Γ2) and so P(n) is labelled by

�Γ1,Γ2,♦D(ϕ),�Σ1,Σ2,Π⇒ ♦D(Σ1), D(Σ2),♦∆1,∆2

Apply the rule (�)L to generate the node u labelled by Γ1, D(ϕ),Σ1 ⇒ D(Σ1),∆1

and let P(n+ 1) = u. Notice that P(n+ 1)! P′(n+ 1).

2. Suppose �ϕ ∈ ∆. This implies that �ϕ ∈ ∆2 and so that P(n) is labelled by

�Γ1,Γ2,�Σ1,Σ2,Π⇒ ♦D(Σ1), D(Σ2),♦∆1,∆2,�ϕ

Then apply the rule (�)R to generate the node u labelled by Γ1,Σ1 ⇒ D(Σ)1,∆1, ϕ
and let P(n+ 1) = u. Notice that P(n+ 1)! P′(n+ 1).

3. Suppose �ϕ ∈ D(Σ). This implies that �ϕ ∈ D(Σ2) and therefore P(n) is
labelled by

�Γ1,Γ2,�Σ1,Σ2,♦D(ϕ),Π⇒ ♦D(Σ1), D(Σ2),�ϕ,♦∆1,∆2

Apply the rule (�)R to generate the node u labelled by Γ1,Σ1 ⇒ D(Σ1),∆1, ϕ
and let P(n+ 1) = u. Notice that P(n+ 1)! P′(n+ 1).

We have shown how to construct the tree t from t′ such that every path in t corresponds to a
path in t′. Notice that the root of t is labelled by Γ,Σ ⇒ D(Σ),∆ and the tree is generated
by applying the rules of 2DT. Suppose u is a leaf of t and P(0)...P(n) = u is the �nite path
leading to u. Let P′(0)...P′(n) be its corresponding path. By de�nition of a corresponding
path we have that P′(n) is a leaf of t′. Moreover it is an axiomatic leaf as t′ is a proof. Hence
P′(n) is labelled by ⇒ D(Γ′), D(Σ′),∆′, P,¬P . Since P(n)! P′(n) this implies that P(n) is
an axiomatic leaf as well, namely either (Ax)1, (Ax)2, (Ax)3 or (Ax)4 depending on whether
P and ¬P belong to D(Γ′) or to D(Σ′) or to ∆′ or any combination of those. We conclude
that every leaf of t is axiomatic, which implies further that t is a pre-proof. Next suppose P
is an in�nite path through t. Again there exists a corresponding path P′ through t′. Since
t′ is a proof we have that P′ contains an in�nite ν-trace on the right. Since P ! P′ this
in�nite ν-trace corresponds to an in�nite ν-trace on the right or an in�nite µ-trace on the left
through P. The only problematic case that might occur is when the in�nite ν-trace on the
right through P′ starts in a D(Γ)-formula but switches to a D(Σ)-formula after a couple of
steps. In this case we would start building the corresponding trace through P on the left but
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as soon as the trace switches to D(Σ) we would continue the trace on the right. However, such
a switch is only possible if the unravelled �xed point formula which originally belongs to D(Γ)
is a subformula of a formula in D(Σ) or ∆. Otherwise, there is no possibility to introduce it
on the right side. This implies that there is an in�nite ν-trace on the right. Therefore every
in�nite branch of t has an in�nite µ-trace on the left or an in�nite ν-trace on the right. We
conclude that t is a proof for Γ,Σ⇒ D(Σ),∆.

We have established that whenever there is a proof for ⇒ D(Γ),∆, there is also a proof for
Γ⇒ ∆. For the converse direction we cannot proceed in the exact same way. Suppose we have
a proof t for Γ⇒ ∆ and we want to construct a proof t′ for ⇒ D(Γ),∆. The main problem is
again that there might be some formula ϕ ∈ Γ such that D(ϕ) ∈ ∆. As we consider the proof
t we must take care of situations where at some point in t there is rule applied to ϕ on the
left and several steps later there is a rule applied to D(ϕ) on the right or vice versa. As the
formula D(ϕ) occurs in ⇒ D(Γ),∆ only once, we have to decide whether we want to apply a
rule to D(ϕ) when the corresponding rule is applied to ϕ in t or when it is applied to D(ϕ) in
t. We decide to always apply a rule to D(ϕ) in t′ when the �rst time a rule is applied to one
of ϕ or D(ϕ) in t. The second time ignore the application of the rule and we do not not apply
any rule. However, for that we need a way to keep track whether for some formula its dual
formula on the other side has already been decomposed. Moreover, it can also happen that for
some subformula of a formula there is a dual formula on the other side of the sequent arrow.
Thus we also have to keep track of situations, where the subformula is freed and then has its
dual on the other side. We will do this by introducing a marking on proofs that keeps track of
these situations. Finally, we also have to slightly change the notion of a corresponding path,
as it is now possible that when there is a step in a path through t, that nothing happens on
its corresponding path through t′.

De�nition 5.7.5. Let t = (V,→, λ) be a proof for Γ ⇒ ∆. We de�ne a marking on t as
follows:

. The root rt of t which is labelled by Γ⇒ ∆ has every formula in Γ ∪∆ unmarked.

. Suppose P(0)...P(n) is an initial segment of a path P through t and we have marked P
up to P(n). Moreover suppose λ(P(n)) = Γn ⇒ ∆n and the rule applied at P(n) is (∗)
where (∗) is not (�)L or (�)R. We assume that (∗) is applied to the formula ϕ in Γn or
∆n and generates P(n+ 1), where (one of) the residual(s) is ϕ∗. Then we mark P(n+ 1)
in two steps:

1. Marking the residual formula and the dual of the principal formula:

� If ϕ is unmarked in P(n) and the dual D(ϕ) occurs on the other side of the
sequent arrow in P(n), then we mark D(ϕ) in P(n+ 1).

� If ϕ is marked in P(n), ϕ∗ does not occur unmarked on the same side as ϕ
in P(n) and D(ϕ∗) does not occur unmarked on the other side of the sequent
arrow in P(n), then we mark ϕ∗ in P(n+ 1).
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2. Marking side-formulas:

� If ψ occurs on the same side as ϕ such that ψ 6= ϕ∗ and ψ is marked, then we
mark the occurrence of ψ in P(n+ 1).

� If ψ occurs on the other side as ϕ such that ψ 6= D(ϕ) and ψ is marked, then
we mark the occurrence of ψ in P(n+ 1).

. If the rule applied at P(n) is (�)L or (�)R we do not mark any formula labelling P(n+1).

. No other formulas are marked.

We call such a proof a marked proof for Γ⇒ ∆.

Example 5.7.6. Consider the sequent P ∧Q, (R∧¬P )∨ (R∧¬Q)⇒ ¬R∨P,¬R∨Q. Below
is a proof for this sequent. We show how to step-wise mark the proof-tree. At the beginning,
we have an unmarked proof t:

P,Q,R,¬P ⇒ ¬R,P,¬R ∨Q
(∧)LP ∧Q,R,¬P ⇒ ¬R,P,¬R ∨Q
(∨)RP ∧Q,R,¬P ⇒ ¬R ∨ P,¬R ∨Q
(∧)LP ∧Q,R ∧ ¬P ⇒ ¬R ∨ P,¬R ∨Q

P,Q,R ∧ ¬Q⇒ ¬R ∨ P,¬R,Q
(∧)LP ∧Q,R ∧ ¬Q⇒ ¬R ∨ P,¬R,Q
(∨)RP ∧Q,R ∧ ¬Q⇒ ¬R ∨ P,¬R ∨Q
(∨)L

P ∧Q, (R ∧ ¬P ) ∨ (R ∧ ¬Q)⇒ ¬R ∨ P,¬R ∨Q

In the �rst step we mark the root which implies that we do not add any marks to t. Let us
focus on the left branch P �rst. The principal formula in P(0) is (R ∧ ¬P ) ∨ (R ∧ ¬Q) which
is unmarked and its dual does not occur on the right. Thus we do not mark any formula in
P(1). Next, the principal formula of P(1) is R ∧ ¬P which is unmarked, but its dual ¬R ∨ P
occurs on the right. Hence we mark ¬R ∨ P in P(2). Next, the principal formula of P(2) is
¬R ∨ P which is marked. Notice that for both residuals of the application of (∨)R, namely
¬R and P , their respective dual occurs unmarked on the left and so no formula is marked in
P(3). Finally, the last step does not introduce any markings. Afterwards we also mark the
right branch P′. Here, the formula R ∧ ¬Q is marked in P′(2) and its marking is not removed
for the rest of the path. Thus we obtain the following marked proof:

P,Q,R,¬P ⇒ ¬R,P,¬R ∨Q
(∧)LP ∧Q,R,¬P ⇒ ¬R,P,¬R ∨Q
(∨)RP ∧Q,R,¬P ⇒ ¬R ∨P,¬R ∨Q
(∧)LP ∧Q,R ∧ ¬P ⇒ ¬R ∨ P,¬R ∨Q

P,Q,R ∧ ¬Q⇒ ¬R ∨ P,¬R,Q
(∧)LP ∧Q,R ∧ ¬Q⇒ ¬R ∨ P,¬R,Q
(∨)RP ∧Q,R ∧ ¬Q⇒ ¬R ∨ P,¬R ∨Q
(∨)L

P ∧Q, (R ∧ ¬P ) ∨ (R ∧ ¬Q)⇒ ¬R ∨ P,¬R ∨Q

Having de�ned marked proofs, we now move on to de�ne corresponding paths. Afterwards we
give an example that illustrates what e�ect the marking has in building suitable proofs.
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De�nition 5.7.7. Let t = (V,→, λ) be a marked proof for Γ⇒ ∆ and let t′ = (V ′,→′, λ′) be
a pre-proof of ⇒ D(Γ),∆. Let u ∈ V and u′ ∈ V ′ be nodes such that λ(u) = (Σ ⇒ Π) and
λ′(u′) = (⇒ Ω). We call u and u′ corresponding - written u! u′ - if and only if

D(Σ− {ϕ ∈ Σ|ϕ is marked }) ∪ (Π− {ϕ ∈ Π|ϕ is marked }) = Ω

Let P be a path through t and P′ a path through t′. We call P and P′ corresponding - written
P! P′ - if and only if the following conditions hold:

1. Either both paths are �nite or both paths are in�nite.

2. Every node in P corresponds to exactly one node in P′ and conversely every node in P′
corresponds to at least one node in P.

3. If P(n)! P′(m), then n ≥ m.

4. If P(n)! P′(m) and P(k)! P′(l) where n < k, then m ≤ l.

Example 5.7.8. Recall the marked proof for P ∧Q, (R∧¬P )∨ (R∧¬Q)⇒ ¬R∨P,¬R∨Q
from the previous example. We use this proof to build a proof for

⇒ D(P ∧Q), D((R ∧ ¬P ) ∨ (R ∧ ¬Q)),¬R ∨ P,¬R ∨Q

where each path corresponds to a path in the marked proof above. We do this by applying the
same (or the dual) rules to the same (or the dual) formulas in the same order, where whenever
the principal formula is marked, we ignore that step. Thus we obtain the following prooftree:

⇒ ¬P,¬Q,¬R,P,¬R ∨Q
(∨)R⇒ ¬P ∨ ¬Q,¬R,P,¬R ∨Q
(∨)R⇒ ¬P ∨ ¬Q,¬R ∨ P,¬R ∨Q

⇒ ¬P,¬Q,¬R ∨ P,¬R,Q
(∨)R⇒ ¬P ∨ ¬Q,¬R ∨ P,¬R,Q,
(∨)R⇒ ¬P ∨ ¬Q,¬R ∨ P,¬R ∨Q
(∧)R⇒ ¬P ∨ ¬Q, (¬R ∨ P ) ∧ (¬R ∨Q),¬R ∨ P,¬R ∨Q

Notice that the left path corresponds to the left path of the marked proof and the right
path corresponds to the right path of the marked proof. Moreover, notice that we can build
this prooftree entirely syntactical, given that we already have the marked proof. There is no
reasoning involved, but only applying an algorithm that tells us which rules to apply to which
formulas on the basis of the marked prooftree. This example can be generalized to arbitrary
prooftrees which establishes the converse of theorem 5.7.3.

Theorem 5.7.9. Let Γ⇒ ∆ be a sequent. If 2DT ` Γ⇒ ∆, then 2DT `⇒ D(Γ),∆.

Proof. Let Γ⇒ ∆ be a sequent and let t = (V,→, λ) be a marked proof for Γ⇒ ∆. We show
how to construct a proof t′ = (V ′,→′, λ′) for ⇒ D(Γ),∆.

. The root rt′ of t
′ is labelled by ⇒ D(Γ),∆. Notice that rt! rt′ .
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. Suppose we have constructed the path P′(0)...P′(m) which corresponds to the initial
segment of the path P(0)...P(n) through t where m ≤ n. In particular we assume that
P(n)! P′(m). We show how to extend P′:

� Suppose λ(P(n)) = (Γn, ϕ∧ψ ⇒ ∆n), the rule applied at P(n) is (∧)L and P(n+1)
is labelled by Γn, ϕ, ψ ⇒ ∆n. We distinguish two cases:

1. Suppose ϕ∧ψ is marked. So there has been an application of (∨)R in an earlier
node of P to D(ϕ∧ψ) on the right, where ϕ∧ψ was already present on the left.
If ϕ occurs unmarked on the left in P(n + 1), then the formula D(ϕ) occurs
unmarked on the right side of P(n) or ϕ occurs unmarked on the left side of
P(n). In both cases, since P(n)! P′(m), we have that D(ϕ) labels the right
side of P′(m). The case where ψ is unmarked in P(n + 1) is identical. If ϕ
occurs marked in P(n + 1), then either D(ϕ) does not occur on the right side
of P(n) or D(ϕ) occurs marked on the right side of P(n) and ϕ does not occur
unmarked on the left side of P(n). Since P(n)! P′(m), the right side of P′(m)
is not labelled by D(ϕ) and therefore P(n+ 1)! P′(m). The case where ψ is
marked is identical. Thus in all cases P(n+ 1)! P′(m) and we do not apply
any rules to P′(m). Notice that P(0)...P(n)P(n+ 1)! P′(0)...P′(m).

2. Suppose ϕ ∧ ψ is unmarked . Then both ϕ and ψ labelling P(n + 1) on the
left side are unmarked as well. Moreover D(ϕ) ∨D(ψ) labels the right side of
P′(m). Apply the rule (∨)R to generate a new node u labelled by D(ϕ) and by
D(ψ) on the right and let P′(m + 1) = u. Notice that P(n + 1)! P′(m + 1)
and P(0)...P(n)P(n+ 1)! P′(0)...P′(m)P′(m+ 1).

� Suppose λ(P(n)) = (Γn ⇒ ϕ ∧ ψ,∆n), the rule applied is (∧)R which generates
two new nodes u and v labelled by Γn ⇒ ϕ,∆n and Γn ⇒ ψ,∆n respectively. We
distinguish two cases:

1. Suppose ϕ ∧ ψ is marked. Then there has been an earlier application in P of
the (∨)L-rule to D(ϕ) ∨D(ψ) on the left, where ϕ ∧ ψ was already present on
the right which split up the path in two. Suppose without loss of generality
that we chose D(ϕ). Then we assume that P(n + 1) = u (if not, we simply
consider the path which goes through u and which is identical to P up to the
node P(n)). In case the occurrence of ϕ that labels the right side of P(n + 1)
is unmarked, we have that the formula D(ϕ) occurs unmarked on the left side
of P(n) or ϕ occurs unmarked on the right side of P(n). In both cases, since
P(n) ! P′(m), we have that ϕ occurs on the right of P′(m) and therefore
P(n + 1) ! P′(m). If ϕ is marked, then ϕ does not occur unmarked on the
right side of P(n) and D(ϕ) does not occur unmarked on the left of P(n). Thus,
since P(n)! P′(m), we have that ϕ does not occur on the right side of P′(m)
and so P(n+ 1)! P′(m). Therefore we do not apply any rules to P′(m) and
we notice that P(0)...P(n)P(n+ 1)! P′(0)...P′(m).
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2. Suppose ϕ ∧ ψ is unmarked and without loss of generality P(n + 1) = u.
Then ϕ ∧ ψ labels the right side of λ′(P′(m)) and we apply the rule (∧)R to
generate two nodes u and v labelled on the right by ϕ and ψ respectively. Let
P′(m+ 1) = u. Notice that P(n+ 1)! P′(m+ 1) and P(0)...P(n)P(n+ 1)!
P′(0)...P′(m)P′(m+ 1).

� Suppose λ(P(n)) = (Γn, ϕ∨ψ ⇒ ∆n) and the rule applied is (∨)L which generates
two nodes u and v labelled by Γn, ϕ⇒ ∆n and Γn, ψ ⇒ ∆n respectively. This case
is symmetric to the previous one.

� Suppose λ(P(n)) = (Γn ⇒ ϕ ∨ ψ,∆n), the rule applied is (∨)R and P(n + 1) is
labelled by Γn ⇒ ϕ,ψ,∆n. This case is symmetric to the �rst one.

� Suppose λ(P(n)) = Σ,�Γn,♦ϕ⇒ ♦∆n,Ω, the rule applied is (�)L and P(n+ 1) is
labelled by Γn, ϕ⇒ ∆n. We distinguish two cases:

1. Suppose some formula ψ ∈ �Γn ∪ {♦ϕ} ∪ ♦∆n is marked. This implies that
there has been an earlier node in the path which was labelled by both ψ on
one side and its dual D(ψ) on the other side, and the rule applied to that
node decomposed D(ψ). But this rule can only have been (�)L or (�)R, which
implies that also ψ has been decomposed in that step, which is a contradiction.
Therefore this case cannot happen.

2. Suppose every formula in �Γn ∪ {♦ϕ} ∪ ♦∆n is unmarked. Then

λ′(P′(m)) = (⇒ ♦D(Γn),�D(ϕ),♦∆n,Θ, D(Φ))

for some set of formulas Θ ⊆ Ω and some set of formulas Φ ⊆ Σ. We apply the
rule (�)R to generate a new node u which is labelled by⇒ D(Γn), D(ϕ),∆n and
let P′(m+1) = u. Notice that P(n+1)! P′(m+1) and P(0)...P(n)P(n+1)!
P′(0)...P′(m)P′(m+ 1).

� Suppose λ(P(n)) = Σ,�Γn ⇒ �ϕ,♦∆n,Ω, the rule applied is (�)R and P(n + 1)
is labelled by Γn ⇒ ϕ,∆n. This case is symmetric to the previous one.

� Suppose λ(P(n)) = (Γn, σZ.ϕ(Z) ⇒ ∆n) for σ ∈ {µ, ν}, the rule applied is (σ)L
and P(n+ 1) is labelled by Γn, Z ⇒ ∆n. Again we distinguish two cases:

1. Suppose σZ.ϕ(Z) is marked. Then by similar reasoning as in the �rst step we
have that P(n+ 1)! P′(m) and we do not extend P′.

2. Suppose σZ.ϕ(Z) is unmarked. Then D(σZ.ϕ(Z)) occurs on the right side of
the sequent which labels P′(m) and we apply the dual rule of (σ)L to extend
P′. Notice that P(n+ 1)! P′(m+ 1).

� The cases where λ(P(n)) is labelled by σZ.ϕ(Z) on the right or by Z on the left or
on the right are similar to the case before.

We have now shown how to construct t′. First of all, notice that t′ is a �nite branching tree
and its root is labelled by⇒ D(Γ),∆. Moreover, the tree is generated by 2DT-rules. We have
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shown that each path through t′ corresponds to a path through t (notice that the converse is
not true in general). Now suppose u is a leaf of t′. Let P′ = P′(0)...P′(m) = u be the �nite
path that leads to u. There exists a corresponding path P = P(0)...P(n) through t where
n ≥ m and P(n) is a leaf as well. Moreover P(n) ! P′(m). Since P(n) is a leaf and t a
proof we have that P(n) is an axiomatic leaf. Finally notice that literals are always unmarked.
This directly implies that u is an axiomatic leaf as well. Now suppose that P′ is an in�nite
path through t′ and let P be its corresponding in�nite path through t. Since t is a proof we
have that P contains an in�nite µ-trace on the left or an in�nite ν-trace on the right which we
denote by tr. Let tr′ denote its corresponding ν-trace on the right in P′. Suppose towards a
contradiction that tr′ is �nite. This is only possible, if from some node on the trace tr in P is
always marked. Recall that every formula is guarded. Hence we have that every in�nite path
passes through a box-rule in�nitely often and we have already seen that the formulas surviving
a box-rule are always unmarked. Thus, as soon as we reach the node in P from where on tr is
always marked, the trace tr will end at the next application of a box-rule, which contradicts
the assumption that tr is in�nite. Therefore tr′ is in�nite and so P′ has an in�nite ν-trace on
the right. We conclude that t′ is a proof for ⇒ D(Γ),∆.

Combining theorem 5.7.3 and theorem 5.7.9 yields the following corollary:

Corollary 5.7.10. Let Γ⇒ ∆ be a sequent. Then the following holds:

2DT ` Γ⇒ ∆ ⇔ 2DT `⇒ D(Γ),∆

Theorem 5.7.11 (Soundness and completeness of 2DT). Let Γ ⇒ ∆ be a sequent. Then
the following holds:

2DT ` Γ⇒ ∆ if and only if Γ⇒ ∆ is valid.

Proof. Let Γ⇒ ∆ be a sequent. Then we have that

2DT ` Γ⇒ ∆ ⇔ 2DT `⇒ D(Γ),∆ (Corollary 5.7.10)
⇔ DT′ ` D(Γ),∆ (Theorem 5.7.1)
⇔ D(Γ),∆ is valid (Theorem 5.5.4 and Theorem 5.5.1)
⇔

∨
D(Γ) ∨

∨
∆ is valid (by de�nition)

⇔
∧

Γ→
∨

∆ is valid (by propositional reasoning)
⇔ Γ⇒ ∆ is valid (by de�nition)
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Chapter 6

Craig interpolation

6.1 Introduction

A logic L is said to have Craig interpolation, if whenever an L-implication ϕ→ ψ is valid, there
exists a formula γ which uses only non-logical symbols that occur in both ϕ and ψ, such that
ϕ→ γ and γ → ψ are valid. The formula γ is called an interpolant for ϕ→ ψ. Craig interpo-
lation was �rst stated and proved for classical �rst-order logic by Craig in 1957. Interpolation
results have been established for many di�erent non-classical logical systems ever since. For a
concise overview we refer to [6] by D'Agostino. There are many reasons why it is interesting
to study Craig interpolation. As a start, Craig interpolation is used as a tool to prove results
in mathematical logic such as the Beth Theorem or the �os-Tarski-Theorem. Moreover, inter-
polation is applied to computer science in areas such as software design, database theory and
model checking. While many non-classical logics enjoy Craig interpolation, it is not a com-
mon property among �xed point logics. Famous systems such as LTL, CTL or CTL∗ all fail
to have interpolation [6]. However, interpolation results have been established for the modal
mu-calculus. Uniform interpolation was established by D'Agostino and Hollenberg in 2000
[7]. Most recently, Afshari and Leigh established Lyndon interpolation [3]. Both uniform and
Lyndon interpolation are stronger interpolation properties than Craig interpolation. As this
chapter deals with Craig interpolation, we mean by interpolation for the rest of the chapter
always Craig interpolation. There are di�erent approaches for establishing that a logic enjoys
interpolation. Interpolation for intuitionistic logic for instance can be established using alge-
braic methods. Instead of proving Craig interpolation directly, one establishes it by proving
that the variety of Heyting algebras enjoys amalgamation, which is the algebraic counterpart
of interpolation. There are also model theoretic approaches which use Robinson's consistency
theorem. Another approach uses methods from proof theory. Given a cut-free sequent calculus
and a derivation of ϕ→ ψ, one constructs an interpolant for ϕ→ ψ by starting to interpolate
the leafs of the derivation tree. Afterwards, one shows how to construct interpolants for the
conclusion of a rule, given that interpolants for its premises have already been constructed.
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The proof theoretic approach therefore results in a constructive proof of Craig interpolation.
In this chapter we establish that the fragment Σµ

1 ∪Πµ
1 enjoys interpolation, by following the

proof theoretic approach. That is, we show how to construct interpolants from given proofs.
The main problem is that every proof system for the modal mu-calculus which we have consid-
ered so far allows in�nite proof trees. The proof theoretic approach however does not work on
an in�nite tree, as it relies on starting the construction of the interpolant in the leafs. Afshari
and Leigh provided a solution to this problem by turning towards circular proof systems for
the modal mu-calculus [3]. As a circular proof is �nite, one can build interpolants using the
standard proof-theoretic approach. We take a similar route and de�ne a circular proof system
for Σµ

1 ∪ Πµ
1 . As we restrict to the �rst level of the alternation depth hierarchy, we do not

have to deal with syntactic �xed point alternation of degree higher than 1, which implies that
the circular calculus turns out to be much simpler than what is needed for the whole modal
mu-calculus. This is due to similar reasons as were explained in chapter 4 when we introduced
circular tableaux. The system we work with is obtained from the two-sided calculus 2DT by
pruning the in�nitary proof trees at suitable nodes. The sequent arrow⇒ is thereby a natural
candidate to interpret the implication → in the de�nition of Craig interpolation. After we
de�ne this circular calculus and proof its soundness and completeness with respect to Σµ

1 ∪Πµ
1

in section 6.2, we show how to use it to establish Craig interpolation. We �rst show that
the fragments Σµ

1 and Πµ
1 enjoy Craig interpolation in section 6.3. The constructed Craig

interpolant for these two fragments turns out to be optimal, in the sense that the interpolant
constructed in the proof for Σµ

1 belongs itself to Σµ
1 , while the interpolant constructed for Πµ

1

belongs to Πµ
1 . We then establish that Σµ

1 ∪ Πµ
1 enjoys Craig interpolation by combining the

previous results in section 6.4. The constructed interpolant however does in general not lie in
Σµ

1 ∪ Πµ
1 , but has arbitrary �xed point alternation depth. We show in the last section 6.5 of

this chapter how and to what extent this result can be optimized.

6.2 The circular sequent calculus C2DT

This section introduces the circular and two-sided sequent calculusC2DT for Σµ
1∪Πµ

1 . Similar
to circular tableaux introduced in chapter 4, a circular proof is a �nite tree with loops that
unravels into an in�nitary and regular proof. As we consider two-sided sequents, the circular
proofs unravel into in�nitary 2DT-proofs. We �rst de�ne the circular sequent calculusC2DT.
Afterwards we prove its soundness and completeness with respect to the fragment Σµ

1 ∪ Πµ
1 .

As for circular tableaux, the de�nition of a circular proof as presented here is not sound for
formulas which are in a higher level of the alternation hierarchy. Indeed, our de�nition relies
on the lack of �xed point alternation. From now on, given a sequent Γ⇒ ∆, we assume that
both Γ and ∆ are subsets of Σµ

1 ∪Πµ
1 .

De�nition 6.2.1. The circular sequent calculus C2DT consists of the same axioms and rules
as the two-sided sequent calculus 2DT and is depicted in Table 6.1.
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Table 6.1: The circular sequent calculus C2DT

Γ, P ⇒ P,∆
(Ax)1 Γ⇒ P,¬P,∆ (Ax)2

Γ,¬P ⇒ ¬P,∆ (Ax)3 Γ, P,¬P ⇒ ∆
(Ax)4

Γ, ϕ0, ϕ1 ⇒ ∆

Γ, ϕ0 ∧ ϕ1 ⇒ ∆
(∧)L

Γ⇒ ϕ0,∆ Γ⇒ ϕ1,∆

Γ⇒ ϕ0 ∧ ϕ1,∆
(∧)R

Γ, ϕ0 ⇒ ∆ Γ, ϕ1 ⇒ ∆

Γ, ϕ0 ∨ ϕ1 ⇒ ∆
(∨)L

Γ⇒ ϕ0, ϕ1,∆

Γ⇒ ϕ0 ∨ ϕ1,∆
(∨)R

Γ, ϕ⇒ ∆

Θ,�Γ,♦ϕ⇒ ♦∆,Σ
(�)L

Γ⇒ ϕ,∆

Θ,�Γ⇒ �ϕ,♦∆,Σ
(�)R

Γ, Z ⇒ ∆

Γ, µZ.ϕ(Z)⇒ ∆
(µ)L

Γ⇒ Z,∆

Γ⇒ µZ.ϕ(Z),∆
(µ)R

Γ, Z ⇒ ∆

Γ, νZ.ϕ(Z)⇒ ∆
(ν)L

Γ⇒ Z,∆

Γ⇒ νZ.ϕ(Z),∆
(ν)R

Γ, ϕ(Z)⇒ ∆

Γ, Z ⇒ ∆
(Z)L

Γ⇒ ϕ(Z),∆

Γ⇒ Z,∆
(Z)R

De�nition 6.2.2. A circular pre-proof for Γ ⇒ ∆ is a �nite tree t = (V,→, λ) with root rt
which is generated by the rules of C2DT such that:

1. λ(rt) = Γ⇒ ∆

2. every leaf u ∈ V is either labelled by an axiom or by a sequent of the form Θ,�Γ⇒ ♦∆,Σ
where Θ ⊆ Lit and Σ ⊆ Lit or by a sequent Π⇒ Ω, such that there exists a distinguished
node u′ ∈ V from which u is reachable and λ(u′) = λ(u). We call u′ the associated node
of u.

Observe that circular pre-proofs are �nite trees. The second condition ensures that pre-proofs
are maximal. If u is a leaf, then there are three possibilities:

1. The leaf u is an axiom

2. The leaf u is a node where no more rules can be applied
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3. The leaf u has an associated node u′ that occurs earlier in the branch leading to u such
that u can be identi�ed with u′.

As for circular tableaux, leafs in the third case are used to introduce loops into the prooftree.
Leafs in case one and two are called leafs of type 1 and leafs in case three are called leafs of
type 2. We de�ne a path through a pre-proof as follows:

De�nition 6.2.3. Let t = (V,→, λ) be a circular pre-proof. A path P through t is a (possibly
in�nite) sequence of nodes P(0)P(1)P(2)... with P(0) = rt such that for all i ∈ ω:

1. If P(i) is not a leaf, then P(i)→ P(i+ 1).

2. If P(i) is a leaf of type 1, then the path ends at P(i).

3. If P(i) is a leaf of type 2 and j < i such that P(j) is the associated node of P(i), then
P(j)→ P(i+ 1).

Traces through a path are de�ned as in de�nition 3.3.8.

De�nition 6.2.4. A circular proof for Γ⇒ ∆ is a circular pre-proof t = (V,→, λ) for Γ⇒ ∆,
such that every leaf of type 1 is labelled by an axiom and for every leaf u of type 2 labelled
by Π⇒ Ω with associated node u′ the following holds:

1. between u′ and u there is an application of the rule (�)L or (�)R and

2. there exists a formula ϕ ∈ Π which belongs to a trace that starts in a Σµ
1 -formula or

there exists a formula ϕ ∈ Ω which belongs to a trace that starts in a Πµ
1 -formula. The

formula ϕ is called the distinguished formula of u.

We write C2DT ` Γ⇒ ∆ if and only if there exists a C2DT-proof for Γ⇒ ∆. Leafs of type
1 which are labelled by an axiom are called axiomatic leafs. Leafs of type 2 that ful�l the two
conditions above are called non-axiomatic leafs.

Remark 6.2.5. We assume without loss of generality that the distinguished formula ϕ of a
non-axiomatic leaf u belongs to the same trace as the occurrence of ϕ in the associated node
u′. If this is not the case, then the occurrence of ϕ labelling u is a sub-formula of some formula
ψ, which labels both u′ and u and which is decomposed and regenerated between u′ and u,
such that ϕ is freed in the process. However, this implies that both occurrences of ψ belong to
the same trace. Moreover, since we only consider the fragment Σµ

1 ∪Πµ
1 and ϕ is a subformula

of ψ, the formula ψ belongs to a trace that starts in a Σµ
1 -formula on the left or a Πµ

1 -formula
on the right. Therefore we can simply choose the distinguished formula to be ψ.

Observe that circular pre-proofs for a sequent are not unique. There are no restrictions on
which suitable repetition should be chosen to serve as non-axiomatic leaf. Therefore it is
possible for a sequent to have in�nitely many di�erent circular pre-proofs. Recall the discussion
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in chapter 4 about why the restriction to the fragment Σµ
1 ∪ Πµ

1 matters for the soundness of
the circular tableaux system. Given a circular tableaux for a sequent that contains formulas
with a greater alternation depth, we noticed that we need more re�ned conditions for non-
axiomatic leafs to ensure that unfolding the circular tableau leads to a tableau. The same
goes for circular proofs. The restriction to the fragment Σµ

1 ∪ Πµ
1 is essential for the system's

soundness.

6.2.1 Soundness and completeness of C2DT

In order to establish that C2DT is sound and complete with respect to the fragment Σµ
1 ∪Πµ

1 ,
we use the soundness and completeness of 2DT. For soundness, we unravel a circular proof
into a 2DT-proof. For completeness, we �rst show that given a 2DT-proof t, every in�nite
path through t contains a repetition of a suitable form and then we show how to prune a
2DT-proof into a circular proof.

Theorem 6.2.6 (Soundness of C2DT with respect to Σµ
1 ∪ Πµ

1 ). Let Γ ⇒ ∆ be a sequent
such that Γ,∆ ⊆ Σµ

1 ∪Πµ
1 . If C2DT ` Γ⇒ ∆, then Γ⇒ ∆ is valid.

Proof. Suppose that Γ,∆ ⊆ Σµ
1 ∪ Πµ

1 and t = (V,→, λ) is a circular proof of Γ⇒ ∆. First of
all, notice that if every leaf of t is axiomatic, then t is also a 2DT-proof of Γ⇒ ∆. Soundness
of 2DT then implies that Γ⇒ ∆ is valid. Thus, suppose that there are n ≥ 1 non-axiomatic
leafs in t. The idea is to unravel t over its non-axiomatic leafs into an in�nite tree t′. That
is, we de�ne t′ in stages, where t′0 = t and t′s+1 is t′s where for each leaf of t′s corresponding to
a non-axiomatic leaf u of t we plug the sub-tree of t rooted at the successor of u's associated
node on top of it. The tree t′ is then de�ned to be the limit of this construction. Notice that
t′ is an in�nite tree generated by the rules of 2DT and whose root is labelled by Γ ⇒ ∆.
By construction every leaf of t′ corresponds to an axiomatic leaf of t and is thus axiomatic
itself. Moreover, every in�nite path P′ through t′ corresponds to an in�nite path through t.
It therefore su�ces to show that every in�nite path through t has an in�nite µ-trace on the
left or an in�nite ν-trace on the right. Every in�nite path through t passes through some non-
axiomatic leaf u with associated node u′ in�nitely often. Suppose without loss of generality
that the distinguished formula ϕ of u occurs on the left. By de�nition ϕ belongs to a trace
that starts in a Σµ

1 -formula. Hence, there are in�nitely many nodes of P that are labelled
by Σµ

1 -formulas on the left. This implies that every node of P is labelled by Σµ
1 -formulas on

the left. If this was not the case, then there would exist n ∈ ω such that P(n) was labelled
by Πµ

1 -formulas on the left only. But since we are working in the fragment Σµ
1 ∪ Πµ

1 , there
is no way to reintroduce Σµ

1 -formulas on the left. Therefore for each m > n, the node P(m)
would also be labelled by Πµ

1 -formulas on the left only. This contradicts the assumption that
there are in�nitely many nodes labelled by ϕ on the left. Since P is in�nite and each node
of P is labelled by Σµ

1 -formulas on the left, there exists - by lemma 4.2.3 - an in�nite trace
on the left, which is a µ-trace. The case where the distinguished formula of u occurs on the
right is identical. Therefore, every in�nite path through t has an in�nite µ-trace on the left
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or an in�nite ν-trace on the right and so does every path through t′ which implies that t′ is
a 2DT-proof of Γ ⇒ ∆. Finally, since 2DT is sound, we conclude that Γ ⇒ ∆ is valid and
thus that C2DT is sound.

For proving completeness, we use the completeness of 2DT. Suppose Γ ⇒ ∆ is valid. Then
it has a 2DT-proof t = (V,→, λ). We search each in�nite branch of t for suitable repetitions
and prune it there to obtain a �nite tree, which serves as the circular proof. For that we �rst
have to establish that suitable repetitions exist in each in�nite branch, for which in turn we
require the following proposition:

Proposition 6.2.7. Every in�nite path in a 2DT-proof passes through a modality rule in-
�nitely often.

The proof is a easy generalization of the proof of proposition 3.3.7.

Lemma 6.2.8. Let t = (V,→, λ) be a 2DT-proof for Γ ⇒ ∆ where Γ,∆ ⊆ Σµ
1 ∪ Πµ

1 and let
P be an in�nite path through t. There exist j < i such that λ(P (j)) = λ(P (i)), there is an
application of (�)L or (�)R between P(j) and P(i) and there exists ϕ ∈ λ(P(i)) which either
occurs on the left and belongs to a trace starting in a Σµ

1 -formula or occurs on the right and
belongs to a trace starting in a Πµ

1 -formula.

Proof. The root of t is by assumption labelled by Γ ⇒ ∆. Therefore every sequent Π ⇒ Ω
labelling some node P(n) has the property that Π ⊆ Sub(Γ) and Ω ⊆ Sub(∆). Hence, there
are only �nitely many di�erent sequents that can label nodes in P. Since P is in�nite, this
implies that there exists a sequent Π ⇒ Ω that labels in�nitely many nodes in P. Since P
passes through a modality rule in�nitely often, there exists j < i, such that λ(P(j)) = λ(P(i))
and there is an application of a modality rule in between. Finally, since t is a proof we have
that P has an in�nite ν-trace on the right or an in�nite µ-trace on the left. So there exists a
formula ϕ labelling the left or the right side of P(i) which belongs to a µ- or a ν-trace. Since
we are only considering the fragment Σµ

1 ∪ Πµ
1 , this implies that ϕ belongs to a trace that

starts in a Σµ
1 -formula or in a Πµ

1 -formula.

Theorem 6.2.9 (Completeness of C2DT with respect to Σµ
1 ∪Πµ

1 ). Let Γ⇒ ∆ be a sequent
such that Γ,∆ ⊆ Σµ

1 ∪Πµ
1 . If Γ⇒ ∆ is valid, then C2DT ` Γ⇒ ∆.

Proof. Suppose Γ,∆ ⊆ Σµ
1 ∪ Πµ

1 such that Γ ⇒ ∆ is valid. By completeness of 2DT there
exists a proof t = (V,→, λ) of Γ ⇒ ∆. First of all notice that if t is �nite, then t is also
a C2DT-proof. So suppose t is in�nite and let P be an in�nite path through t. By lemma
6.2.8 there exists j < i, such that λ(P(j)) = λ(P(i)), there is an application of a modality
rule in between and there exists ϕ ∈ λ(P(i)) which occurs on the left and belongs to a trace
starting in a Σµ

1 -formula or which occurs on the right and belongs to a trace starting in a
Πµ

1 -formula. Prune the path P at this node. The pruned path is �nite and P(i) is by de�nition
a non-axiomatic leaf with associated node P(j). Thus, after pruning each in�nite path of
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t at a suitable repetition, we are left with a tree t′ = (V ′,→′, λ′) consisting of �nite paths
only. König's Lemma implies that t′ is �nite. Moreover each leaf is either axiomatic or non-
axiomatic. As the root of t′ is labelled by Γ ⇒ ∆ and t′ is generated by C2DT-rules, we
conclude that t′ is a C2DT-proof of Γ ⇒ ∆. Therefore C2DT is complete with respect to
Σµ

1 ∪Πµ
1 .

6.3 Craig interpolation for Σµ
1 and Πµ

1

This section establishes the Craig interpolation property for Σµ
1 - and Πµ

1 -implications, using
the circular sequent calculus C2DT. Recall that Sub(ϕ) is the set of all subformulas of the
formula ϕ and given a �nite set of Lµ-formulas Γ, Sub(Γ) =

⋃
ϕ∈Γ Sub(ϕ). Let

At(Γ) := {P ∈ Prop|P ∈ Sub(Γ) or ¬P ∈ Sub(Γ)}

De�nition 6.3.1. Let Γ,∆ be �nite sets of Lµ-formulas. The common language L(Γ)∩L(∆)
of Γ and ∆ is the sub-language of Lµ consisting of the same set of variables, the same logical
connectives and the same modal and �xed point operators as Lµ, as well as the set of atomic
propositions At(Γ) ∩At(∆) ⊆ Prop.

Formulas of L(Γ) ∩ L(∆) in guarded normal form are de�ned as for Lµ. Observe that every
L(Γ) ∩ L(∆)-formula is therefore a Lµ-formula. If At(Γ) ∩ At(∆) = ∅, we say that that the
common language of Γ and ∆ is empty, written L(Γ) ∩ L(∆) = ∅.

Theorem 6.3.2 (Craig interpolation for Σµ
1 ). Let Γ,∆ ⊆ Σµ

1 . If Γ ⇒ ∆ is valid and L(Γ) ∩
L(∆) 6= ∅, then there exists an L(Γ)∩L(∆)-formula γ such that Γ⇒ γ and γ ⇒ ∆ are valid.

As mentioned in the introduction of this chapter, we follow the proof theoretic approach to
establish Craig interpolation, using the circular sequent calculus C2DT. Suppose Γ ⇒ ∆ is
valid and their common language non-empty. By theorem 6.2.9 there exists a circular proof
t = (V,→, λ) of Γ⇒ ∆. The interpolant for Γ⇒ ∆ is built by induction on t. In the base case
the leaves of t are interpolated. This is done by de�ning a formula γ0 for each leaf (axiomatic
and non-axiomatic) which belongs to the common language of Γ and ∆ and is called a pre-
interpolant. In the case of an axiomatic leaf u labelled by Π ⇒ Ω, the pre-interpolant γ0 is
constructed in such a way, that

C2DT ` Π⇒ γ0 and C2DT ` γ0 ⇒ Ω (6.1)

which implies that γ0 is almost an interpolant for the leaf u, only the condition that γ0 is
a L(Π) ∩ L(Ω)-formula might fail. Non-axiomatic leafs are interpolated by free variables,
which become bound as soon as the construction reaches the associated node of the leaf in
the induction step. In the induction step, the pre-interpolant for the conclusion of a rule is
built from the already constructed pre-interpolants for its premises. That is, we show how
to construct a pre-interpolant for the root of t by starting at the leaves and step by step
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working through the proof tree. We then show that the constructed pre-interpolant is indeed
an interpolant for Γ⇒ ∆. Throughout the proof of the Craig interpolation theorem we write
` Π⇒ Ω for C2DT ` Π⇒ Ω.

Proof. (of theorem 6.3.2) Suppose that Γ ⇒ ∆ is valid for Γ,∆ ⊆ Σµ
1 and L(Γ) ∩ L(∆) 6= ∅.

By theorem 6.2.9 there exists a circular proof t = (V,→, λ) for Γ ⇒ ∆. We construct an
interpolant for Γ⇒ ∆ by induction on t.

Base case: We show how to obtain pre-interpolants for the leafs of t. We distinguish two
cases:

. Suppose u ∈ V is an axiomatic leaf. Then we distinguish four cases:

1. Suppose u is labelled by Π, P,¬P ⇒ Ω. Let Q ∈ At(Γ)∩At(∆) (recall that this set
is non-empty by assumption) and de�ne γ0 := Q ∧ ¬Q. First of all notice that γ0

is a L(Γ) ∩ L(∆)-formula. Moreover, ` Π, P,¬P ⇒ Q ∧ ¬Q as this is an instance
of (Ax)4 and ` Q ∧ ¬Q⇒ Ω as the following derivation shows:

(Ax)4Q,¬Q⇒ Ω
(∧)LQ ∧ ¬Q⇒ Ω

2. Suppose u is labelled by Π ⇒ P,¬P,Ω. Let Q ∈ At(Γ) ∩ At(∆) and de�ne γ0 :=
Q ∨ ¬Q. Clearly, γ0 is a L(Γ) ∩ L(∆)-formula and ` Π⇒ Q ∨ ¬Q as the following
derivation shows:

(Ax)2Π⇒ Q,¬Q
(∨)RΠ⇒ Q ∨ ¬Q

Finally, ` Q ∨ ¬Q⇒ P,¬P,Ω as this is an instance of (Ax)2.

3. Suppose u is labelled by Π, P ⇒ P,Ω. Notice that this implies that P ∈ At(Γ) ∩
At(∆), as each formula labelling some node of t is a subformula of some formula
labelling the root of t. Hence let γ0 := P . Again γ0 is a L(Γ) ∩ L(∆)-formula and
` Π, P ⇒ P and ` P ⇒ P,Ω as these are both instances of (Ax)1.

4. Suppose u is labelled by Π,¬P ⇒ ¬P,Ω. Then using the same argument as in the
previous case we de�ne the pre-interpolant to be γ0 := ¬P .

. Suppose u ∈ V is a non-axiomatic leaf with associated node u′. In case there exists
another non-axiomatic leaf v ∈ V which has the same associated node u′ and we have
already constructed a pre-interpolant1 γ0 for v, we de�ne the pre-interpolant for u to be
γ0 as well. Otherwise, let X be a fresh variable and de�ne γ0 := X.2

1We assume without loss of generality that if u and v are non-axiomatic leafs which have the same associated
node, then they also have the same distinguished formula.

2The variable X is fresh if and only if X 6∈ Sub(Γ) ∪ Sub(∆).
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Induction step: Let v be a node in t and assume that we have already constructed pre-
interpolants for v's children. We show how to de�ne a pre-interpolant γ for v. For that we
distinguish the following cases:

1. Suppose v is labelled by Π, ϕ0 ∧ ϕ1 ⇒ Ω and the last rule applied was (∧)L:

Π, ϕ0, ϕ1 ⇒ Ω
(∧)LΠ, ϕ0 ∧ ϕ1 ⇒ Ω

By induction hypothesis we have a pre-interpolant γ0 for the child of v. In case v is
not an associated node, let γ := γ0. Otherwise, v is the associated node of some non-
axiomatic leaf u which has pre-interpolant X. Notice that every non-axiomatic leaf
has its distinguished formula on the left, as we are only considering Σµ

1 -formulas. Let
γ := µX.γ0.

2. Suppose v is labelled by Π⇒ ϕ0 ∧ ϕ1,Ω and the last rule applied was (∧)R:

Π⇒ ϕ0,Ω Π⇒ ϕ1,Ω (∧)RΠ⇒ ϕ0 ∧ ϕ1,Ω

By induction hypothesis we have a pre-interpolant γ0 for the left child of v and a pre-
interpolant γ1 for the right child of v. In case v is not an associated node, let γ := γ0∧γ1.
Otherwise let γ := µX.(γ0 ∧ γ1) where X is the pre-interpolant of the leaf to which v is
associated.

3. Suppose v is labelled by Π, ϕ0 ∨ ϕ1 ⇒ Ω and the last rule applied is (∨)L:

Π, ϕ0 ⇒ Ω Π, ϕ1 ⇒ Ω
(∨)LΠ, ϕ0 ∨ ϕ1 ⇒ Ω

By induction hypothesis we have pre-interpolants γ0 and γ1 for the left and right child
of v respectively. In case v is not an associated node, let γ := γ0 ∨ γ1, otherwise let
γ := µX.(γ0 ∨ γ1) where X is the pre-interpolant of the leaf to which v is associated.

4. The cases where the last rule applied (∨)R, (Z)L, (Z)R, (µ)L or (µ)R are all identical to
the �rst case. That is, if v is not an associated node, then we let the pre-interpolant for
v be the same as for its child. Otherwise, we bind the pre-interpolant of the child by a
µ-operator.

5. Suppose v is labelled by Σ,�Π,♦ϕ⇒ ♦Ω,Θ and the last rule applied is (�)L:

Π, ϕ⇒ Ω
(�)LΣ,�Π,♦ϕ⇒ ♦Ω,Θ
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By induction hypothesis we have a pre-interpolant γ0 for the child of v. In case v is
not an associated node, let γ := ♦γ0. Otherwise, let γ := µX.♦γ0 where X is the
pre-interpolant of the leaf to which v is associated.

6. Suppose v is labelled by Σ,�Π⇒ �ϕ,♦Ω,Θ and the last rule applied is (�)R:

Π⇒ ϕ,Ω
(�)RΣ,�Π⇒ �ϕ,♦Ω,Θ

By induction hypothesis we have a pre-interpolant γ0 for the child of v. In case v is
not an associated node, let γ := �γ0. Otherwise, let γ := µX.�γ0 where X is the
pre-interpolant of the leaf to which v is associated.

Following this construction we obtain a pre-interpolant γ for the sequent Γ⇒ ∆ labelling the
root. We show that γ is indeed an interpolant for Γ⇒ ∆.

First of all, notice that all pre-interpolants for the leafs of t are formulas in the common
language of Γ and ∆. Therefore, the pre-interpolant γ for the root is by construction a
L(Γ)∩L(∆)-formula. We show that Γ⇒ γ is valid by constructing a circular proof for Γ⇒ γ
using t = (V,→, λ). Given a circular pre-proof t′ = (V ′,→′, λ′) for Γ ⇒ γ and nodes u ∈ V
and u′ ∈ V ′, we say that u and u′ are corresponding - written u! u′ - if u is labelled by
Π ⇒ Ω and u′ by Π ⇒ Θ, such that the pre-interpolant γu which is assigned to u belongs to
Θ. Therefore, two nodes u and u′ are corresponding if they are labelled by the same formulas
on the left and the pre-interpolant of u labels the right side of u′. Recall that paths in circular
proofs are allowed to pass through non-axiomatic leafs and therefore be in�nite. For this proof
we assume that paths are �nite and end in axiomatic or non-axiomatic leafs. Given two such
�nite paths P = P(0)...P(n) through t and P′ = P′(0)...P′(m) through t′, we say that P and
P′ are corresponding - written P! P′ - if for every 0 ≤ i ≤ n there exists j ≤ m such that
P(i)! P′(j) and if i ≤ i′, then given that j and j′ index the corresponding nodes of P(i) and
P(i′), we have that j ≤ j′. Notice that we allow the case that several nodes in P correspond
to the same node in P′ and also that there are some nodes in P′ which do not correspond to
any nodes in P. We now show how to construct t′ = (V ′,→′, λ′):

. The root rt′ of t
′ is labelled by Γ⇒ γ. Notice that rt! rt′ .

. Suppose we have constructed P′(0)...P′(m) where P′(0) = rt′ which corresponds to the
initial segment P(0)...P(n) of a path P through t, where P(n) is not a leaf. Moreover we
assume that P(n)! P′(m). We show how to extend P′:

� Suppose P(n) is labelled by Π, ϕ0∧ϕ1 ⇒ Ω and the rule applied is (∧)L to generate
the node P(n + 1) which is labelled by Π, ϕ0, ϕ1 ⇒ Ω. Since P(n) ! P′(m) we
have that P′(m) is labelled by Π, ϕ0 ∧ ϕ1 ⇒ γn,Θ where γn is the pre-interpolant
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assigned to P(n). If P(n) is not an associated node, apply the rule (∧)L to generate
P′(m+1) which is labelled by Π, ϕ0, ϕ1 ⇒ γn,Θ. Notice that P(n+1)! P′(m+1)
as by construction the pre-interpolant of P(n + 1) is γn. If P(n) is an associated
node to the leaf u, then γn = µX.γn+1 where X is the pre-interpolant of u and
γn+1 is the pre-interpolant of P(n + 1). Apply the rule (µ)R, then the rule (X)R
to decompose and regenerate the body of the �xed point formula γn+1 and then
the rule (∧)L to generate P′(m + 3) labelled by Γ, ϕ0, ϕ1 ⇒ γn+1,Θ. Notice that
P(n+1)! P′(m+3) and so also P(0)...P(n)P(n+1)! P′(0)...P′(m)...P′(m+3). In
the following paragraphs we do no longer mention that the paths are corresponding.

� Suppose P(n) is labelled by Π ⇒ ϕ0 ∧ ϕ1,Ω and the rule applied is (∧)R which
generates two nodes P(n + 1) and v where without loss of generality P(n + 1) is
labelled by Π⇒ ϕ0,Ω and v is labelled by Π⇒ ϕ1,Ω. First assume that P(n) is not
an associated node. By assumption P′(m) is labelled by Π⇒ γn,Θ. Notice that by
construction γn is of the form γn+1∧γv where γn+1 is the pre-interpolant of P(n+1)
and γv is the pre-interpolant of v. Thus apply the rule (∧)R to generate two nodes
u′ and v′ labelled by Π⇒ γn+1,Θ and Π⇒ γv,Θ respectively. Let P′(m+ 1) = u′

and notice that P(n+ 1)! P′(m+ 1). Second, assume that P(n) is an associated
node to the non-axiomatic leaf u. Then γn is of the form µX.γn+1 ∧ γv. Thus �rst
apply the rule (µ)R, then (X)R and then (∧)R to generate two new nodes u′ and v′

labelled as before and let P′(m+3) = u′. Again we have that P(n+1)! P′(m+3).

� Suppose P(n) is labelled by Π, ϕ0 ∨ ϕ1 ⇒ Ω and the rule applied is (∨)L which
generates two nodes P(n + 1) and v which are labelled without loss of generality
by Π, ϕ0 ⇒ Ω and Π, ϕ1 ⇒ Ω respectively. By assumption P′(m) is labelled by
Π, ϕ0 ∨ ϕ1 ⇒ γn,Θ. First suppose P(n) is not an associated node. Then γn is
by construction of the form γn+1 ∨ γv. Thus �rst apply the rule (∨)R to generate
the node P′(m + 1) labelled by Π, ϕ0 ∨ ϕ1 ⇒ γn+1, γv,Θ and then apply the rule
(∨)L to generate two new nodes u′ and v′ labelled by Π, ϕ0 ⇒ γn+1, γv,Θ and
Π, ϕ1 ⇒ γn+1, γv,Θ respectively. Let P′(m + 2) = u′. Notice that P(n + 1) !
P′(m+ 2). Second suppose that P(n) is an associated node. Then γn is of the form
µX.γn+1 ∨ γv and we �rst apply the rule (µ)R, then (X)R, then (∨)R and �nally
(∨)L which generates two nodes u′ and v′ labelled as before. Then let P′(m+4) = u′

and notice that P(n+ 1)! P′(m+ 4).

� Suppose P(n) is labelled by Π⇒ ϕ0∨ϕ1,Ω and the rule applied is (∨)R to generate
the node P(n + 1) labelled by Π ⇒ ϕ0, ϕ1,Ω. By assumption P′(m) is labelled by
Π ⇒ γn,Θ. If P(n) is not an associated node, then γn = γn+1 by de�nition and
so we do not apply any rule and observe that P(n + 1) ! P′(m). Otherwise,
γn = µX.γn+1 and we apply the rules (µ)R and then (X)R to generate P′(m + 2)
and notice that P(n+ 1)! P′(m+ 2).

� Suppose P(n) is labelled by Σ,�Π,♦ϕ ⇒ ♦Ω,Ψ and the rule applied is (�)L to
generate the node P(n+ 1) labelled by Π, ϕ⇒ Ω. By assumption P′(m) is labelled
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by Σ,�Π,♦ϕ ⇒ γn,Θ. If P(n) is not an associated node, then γn = ♦γn+1.
Therefore apply the rule (�)L to generate the node P′(m+ 1) which is labelled by
Π, ϕ ⇒ γn+1. Notice that P(n + 1) ! P′(m + 1). Otherwise γn is of the form
µX.♦γn+1 and we �rst apply (µ)R, (X)R and then (�)L to generate P′(m + 3)
labelled by Π, ϕ⇒ γn+1 and P(n+ 1)! P′(m+ 3).

� Suppose P(n) is labelled by Σ,�Π ⇒ �ϕ,♦Ω,Ψ and the rule applied is (�)R to
generate the node P(n+ 1) labelled by Π⇒ ϕ,Ω. By assumption P′(m) is labelled
by Σ,�Π⇒ γn,Θ. If P(n) is not an associated node, then γn = �γn+1. Apply the
rule (�)R to generate the node P′(m + 1) labelled by Π ⇒ γn+1 and observe that
P(n+ 1)! P′(m+ 1). Otherwise γn = µX.�γn+1 and we �rst apply (µ)R, (X)R
and then (�)R to generate P′(m+ 3), where P(n+ 1)! P′(m+ 3).

� Suppose P(n) is labelled by Π, Z ⇒ Ω and the rule applied is (Z)L to generate
P(n + 1) labelled by Π, ϕ(Z) ⇒ Ω. By assumption P′(m) is labelled by Π, Z ⇒
γn,Θ. If P(n) is not an associated node, then γn = γn+1 and so we apply the rule
(Z)L to generate the node P′(m+ 1) labelled by Π, ϕ(Z) ⇒ γn,Θ and notice that
P(n + 1) ! P′(m + 1). Otherwise γn = µX.γn+1 and we apply �rst (µ)R, (X)R
and then (Z)L to generate P′(m + 3) labelled by Π, ϕ(Z) ⇒ γn+1,Θ. Notice that
P(n+ 1)! P′(m+ 3).

� Suppose P(n) is labelled by Π ⇒ Z,Ω and the rule applied is (Z)R to generate
the node P(n + 1) labelled by Π ⇒ ϕ(Z),Ω. By assumption P′(m) is labelled by
Π ⇒ γn,Θ. If P(n) is not an associated node, then γn = γn+1. Therefore we
do not apply any rule as P(n + 1) ! P′(m). Otherwise γn = µX.γn+1 and we
apply (µ)R and (X)R to generate P′(m+ 2) labelled by Π⇒ γn+1,Θ. Notice that
P(n+ 1)! P′(m+ 2).

� Suppose P(n) is labelled by Π, µZ.ϕ(Z)⇒ Ω and the rule applied is (µ)L to generate
the node P(n + 1) labelled by Π, Z ⇒ Ω. By assumption P′(m) is labelled by
Π, µZ.ϕ(Z) ⇒ γn,Θ. If P(n) is not an associated node, then γn = γn+1. Thus
apply the rule (µ)L to generate the node P′(m + 1) labelled by Π, Z ⇒ γn+1,Θ
and notice that P(n + 1) ! P′(m + 1). Otherwise γn = µX.γn+1 and we apply
(µ)R , then (X)R and then (µ)L to generate P′(m+ 3) labelled by Π, Z ⇒ γn+1,Θ.
Observe that P(n+ 1)! P′(m+ 3).

� Suppose P(n) is labelled by Π⇒ µZ.ϕ(Z),Ω and the rule applied is (µ)R to generate
the node P(n+ 1) labelled by Π⇒ Z,Ω. By assumption P′(m) is labelled by Π⇒
γn,Θ. If P(n) is not an associated node, then γn = γn+1 and we do not apply any
rule as P(n+ 1)! P′(m). Otherwise, γn = µX.γn+1 and we apply (µ)R and (X)R
to generate P′(m+ 2) labelled by Π⇒ γn+1,Θ. Notice that P(n+ 1)! P′(m+ 2).

When the construction reaches the leaves of the circular proof t, we have built a �nite tree t′0
whose root is labelled by Γ⇒ γ and which is built by the rules of C2DT. Furthermore it has
the property that every path through t′0 corresponds to a path through t. However, t′0 is not
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yet a circular proof. Observe that leafs of t′0 which correspond to non-axiomatic leafs in t are
not (in general) non-axiomatic themselves. This is because the �rst node after the associated
node might be labelled by a di�erent side sequent on the right than the leaf. Moreover, leafs
corresponding to axiomatic leafs labelled by (Ax)2 are not yet axiomatic leafs either. We show
how to �nish the construction and simultaneously prove that the constructed tree is a circular
proof. We do this in two steps:

1. Suppose u′ is a leaf of t′0 which corresponds to an axiomatic leaf u of t. If u is labelled
by (Ax)1, (Ax)3 or (Ax)4, then u′ is labelled by (Ax)1, (Ax)3 or (Ax)4 as well. So in
all three cases u′ is an axiomatic leaf and we do not extend the tree. If u is labelled by
(Ax)2, namely Π ⇒ P,¬P,Ω, then u′ is labelled by Π ⇒ Q ∨ ¬Q,Θ. In that case we
extend the tree by applying the rule (∨)R to the formula Q ∨ ¬Q to generate u′′ which
is labelled by Π⇒ Q,¬Q,Θ and which is therefore an axiomatic leaf.

2. Suppose u′ is a leaf of t′0 which corresponds to a non-axiomatic leaf u of t. Let v be
the associated node of u and suppose that u is labelled by Π, ϕ ⇒ Ω where ϕ is the
distinguished formula. Since u and u′ are corresponding we have that u′ is labelled by
Π, ϕ ⇒ X,Θ where the corresponding node of v, say v′, is labelled by Π, ϕ ⇒ γv,Θ

′

where γv = µX.γv+1 and v+ 1 is the successor of v. Notice that the successor node of v′

is labelled by Π, ϕ⇒ X,Θ′. This means that u′ is almost a non-axiomatic leaf with the
successor of v′ as its associated node. The only shortcoming is that the side sequents Θ
and Θ′ might be di�erent. However, every rule applied between the successor of v′ and
u′ is applied either to a formula on the left or to a pre-interpolant on the right. This
means that the side sequent Θ′ is irrelevant for building the steps between these two
nodes. We assume that there are n steps between the successor of v′ and u′. Therefore,
we can continue to extend the branch that leads to u′ by applying the same rules in the
same order to the same formulas as between the successor of v′ and u′. In doing so, we
�nd a repetition, say at node u′′ with associated node v′′, in at most n steps. Notice
that the trace which passes through ϕ both at node v′ and u′ is extended up to the node
u′′. Therefore the formula labelling u′′ on the left which belongs to that trace is the
distinguished formula of u′′. Notice that this formula belongs to a trace that starts in a
Σµ

1 -formula on the left. Hence, u′′ is a non-axiomatic leaf and we extend the branch up
to u′′.

Therefore we can extend t′0 into the �nite tree t
′, such that each leaf of t′ is either axiomatic or

non-axiomatic. This implies that t′ is a circular proof for Γ⇒ γ and therefore, by soundness
of C2DT, that Γ⇒ γ is valid.

In order to show that γ ⇒ Ω is valid, we build a prooftree in the same way as above, where
two nodes u and u′ are now called corresponding if and only if u is labelled by Π ⇒ Ω and
u′ is labelled by Θ, γu ⇒ Ω. Each step of the construction is symmetric to the construction
above. Notice that for non-axiomatic leafs, as the distinguished formula always occurs on the
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left, the constructed pre-interpolant serves as the distinguished formula. This gives us valid
non-axiomatic leafs, since we constructed the pre-interpolant using µ-operators. We do not
provide details of that direction and simply conclude that ` γ ⇒ Ω and therefore that γ ⇒ Ω
is valid. Together we conclude that γ is indeed a Craig interpolant for Γ⇒ ∆.

Observe that the constructed interpolant belongs itself to the fragment Σµ
1 . That is, we �nd

optimal interpolants belonging to the the same fragment as the formulas in the sequent.

Establishing Craig interpolation for Πµ
1 is essentially the same argument as for Σµ

1 . The only
step that is changed is the binding of free variable in associated nodes. Previously, we bound
the variable by a µ-operator, as every distinguished formula of a non-axiomatic leaf occurs
on the left. In circular proofs for Πµ

1 -sequents it is the other way around. The distinguished
formula always occurs on the right and so we bind the variable by a ν-operator. Apart from
this small change, the proof is completely symmetric. We therefore omit the details and simply
state the theorem.

Theorem 6.3.3 (Craig interpolation for Πµ
1 ). Let Γ,∆ ⊆ Πµ

1 . If Γ ⇒ ∆ is valid and L(Γ) ∩
L(∆) 6= ∅, then there exists γ ∈ L(Γ) ∩ L(∆) such that Γ⇒ γ and γ ⇒ ∆ are valid.

Observe that the constructed interpolant for Πµ
1 -sequents belongs to Πµ

1 , which implies that
the construction is once again optimal.

6.4 Craig interpolation for Σµ
1 ∪ Πµ

1

In this section we combine theorem 6.3.2 and theorem 6.3.3 into a result that the �rst level
of the alternation hierarchy Σµ

1 ∪ Πµ
1 enjoys Craig interpolation. There is one problem: If

sequents contain formulas from both Σµ
1 and Πµ

1 , then circular proofs for such sequents have
non-axiomatic leafs where the distinguished formula occurs on the left and others where it
occurs on the right. Whenever the distinguished formula occurs on the left, we bind the pre-
interpolant by a µ-operator and whenever it occurs on the right, by a ν-operator. Therefore,
we create an interpolant γ which in general does not belong to the fragment Σµ

1 ∪ Πµ
1 , as it

might contain �xed point alternation. The alternation is introduced into the interpolant when
two non-axiomatic leafs with distinguished formulas on opposite sides have their associated
nodes in the same branch. We show in the next section, that the interpolant can be optimized
to a certain degree. Namely, we �nd interpolants that belong to the alternation-free fragment
Σµ

2 ∩ Πµ
2 , by analysing the structure in which non-axiomatic leafs occur in a circular proof.

For now, we ignore this issue and construct interpolants with �xed point alternation. Another
problem that arises from having �xed point alternation in the interpolant, is that we can no
longer use the circular sequent calculus C2DT to show that Γ ⇒ γ and γ ⇒ ∆ is valid, as
C2DT is only sound with respect to Σµ

1 ∪ Πµ
1 . We solve this by turning towards the system

2DT for proving that Γ⇒ γ and γ ⇒ ∆ are valid (while we still use the circular calculus to
construct the interpolant).
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Theorem 6.4.1 (Craig interpolation for Σµ
1 ∪ Πµ

1 ). Let Γ,∆ ⊆ Σµ
1 ∪ Πµ

1 . If Γ ⇒ ∆ is valid
and L(Γ)∩L(∆) 6= ∅, then there exists a L(Γ)∩L(∆)-formula γ such that Γ⇒ γ is valid and
γ ⇒ ∆ is valid.

Proof. Suppose that Γ ⇒ ∆ is valid. This implies that there is a C2DT-proof t = (V,→, λ)
of Γ⇒ ∆. We construct an interpolant for Γ⇒ ∆ by induction on t.

Base case: The base case is identical to the base case of the construction of the interpolant
in theorem 6.3.2.

Induction step: Let v be a node in t and suppose we have already constructed pre-interpolants
for v's children. We then construct a pre-interpolant for v in the same way as in the induc-
tion step of the construction of the interpolant in theorem 6.3.2 and theorem 6.3.3 with the
following di�erence: If v is an associated node to the non-axiomatic leaf u, then we bind the
pre-interpolant for v by a µ-operator just in case the distinguished formula of u occurs on the
left and by a ν-operator otherwise.

Let γ be the pre-interpolant for Γ⇒ ∆ which is constructed in the above described way. We
show that γ is an interpolant. First of all, observe that γ belongs to the common language of Γ
and ∆ by construction. We show that Γ⇒ γ is valid, by proving that Γ⇒ γ is 2DT-derivable.
Recall that t is the circular proof for Γ⇒ ∆. We build the �nite tree t′0 = (V ′0 ,→′0, λ′0) in the
same way as in the proof of theorem 6.3.2. So t′0 has the following properties:

1. The root of t′0 is labelled by Γ⇒ γ.

2. t′0 is generated by the rules from C2DT (which are the rules of 2DT).

3. Every leaf of t′0 either corresponds to an axiomatic leaf of t or it corresponds to a non-
axiomatic leaf of t.

As we observed in the proof of Craig interpolation for Σµ
1 , the tree t

′
0 is almost a circular proof

for Γ ⇒ γ. The only shortcomings of t′0 were those leafs which correspond to non-axiomatic
leafs of t, as they were not yet non-axiomatic themselves, as well as those corresponding to
axiomatic leafs labelled by (Ax)2. However, we also observed that this is not an issue, as we
can extend the relevant branches to turn t′0 into a circular proof. Notice that each leaf of t′0
which does not correspond to an axiomatic leaf is labelled by some fresh variable X on the
right side, where X is the pre-interpolant of the corresponding non-axiomatic leaf of t. In
the following paragraph we call those leafs of t′0 which correspond to non-axiomatic leafs of t
non-axiomatic as well. Moreover, given a non-axiomatic leaf u of t′0 corresponding to v, we
call the node that corresponds to the associated node of v the associated node of u. We show
how to extend t′0 into a suitable prooftree.
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First of all, if the constructed pre-interpolant γ belongs to Σµ
1 ∪ Πµ

1 , then t
′
0 can be extended

into a circular proof t′ for Γ⇒ γ in the same way as in the proof of theorem 6.3.2. Therefore
suppose γ does not belong to Σµ

1 ∪ Πµ
1 . We unravel t′0 over its non-axiomatic leafs and their

corresponding nodes into an in�nitary 2DT-pre-proof t̂ as described in the soundness proof
of C2DT. Notice that every leaf of t̂ corresponds to an axiomatic leaf of t, which implies
that every leaf of t̂ is itself axiomatic (or can be turned into an axiomatic leaf in one step).
Therefore we only have to show that every in�nite path through t̂ contains an in�nite trace of
the right form. So suppose P is an in�nite path through t̂. Since t̂ is the unravelling of t′0, the
path P passes through some non-axiomatic leaf of t′0 in�nitely often. Now given that t′0 is a
�nite tree and has therefore only �nitely many non-axiomatic leafs, P passes through at most
�nitely many non-axiomatic leafs v1, ..., vk in�nitely often. Recall that each of these leafs is
labelled by some variable X1, ..., Xk on the right, where without loss of generality Xi 6= Xj for
each 1 ≤ i < j ≤ k. Let u1, ..., uk be the associated nodes of v1, ..., vk. As P passes through all
these leafs in�nitely often, there exists one leaf vi whose associated node ui occurs below every
associated node uj of vj for j 6= i. The construction of the interpolant γ therefore implies that
the variable Xi subsumes the variables Xj for all j 6= i. From this it follows that P contains an
in�nite trace of the right form. We distinguishing two cases: First, suppose the distinguished
formula ϕ of the non-axiomatic leaf of t which corresponds to vi occurs on the left. This
implies that vi is labelled by Π, ϕ ⇒ Xi,Θ. By de�nition ϕ belongs to a trace that starts in
a Σµ

1 -formula. Since P passes through vi in�nitely often there exists an in�nite trace tr that
passes through ϕ in�nitely often, which implies that tr passes through a µ-variable in�nitely
often. Since the left side of each node is labelled by Σµ

1 ∪ Πµ
1 -formulas only, the trace tr is a

µ-trace and so P has an in�nite µ-trace on the left. Second, suppose that the distinguished
formula ϕ of the non-axiomatic leaf of t which corresponds to vi occurs on the right. This
implies that Xi is a ν-variable. Consider the trace tr through P that starts on the right side
with the formula γ and follows the pre-interpolants, passing through Xi in�nitely often. Every
variable that occurs in�nitely often in tr is of the form Xj for 1 ≤ j ≤ k. As Xi subsumes
all these variables, we conclude that tr is an in�nite ν-trace. Therefore every in�nite path of
t̂ has an in�nite µ-trace on the left or an in�nite ν-trace on the right. This yields that t̂ is a
2DT-proof of Γ⇒ γ. From soundness of 2DT it follows that Γ⇒ γ is valid.

As in the proof of theorem 6.3.2, we omit the argument that γ ⇒ ∆ is valid. The proof
strategy for it is identical to the proof strategy above and each step in the construction is
symmetric. We conclude that the constructed formula γ is an interpolant for Γ⇒ ∆.

6.5 Optimizing Craig interpolation

The interpolant constructed in the proof of Craig interpolation for Σµ
1 ∪ Πµ

1 belongs to an
arbitrary high level of the �xed point alternation depth hierarchy, depending on the structure
of the speci�c circular proof which is used. In this section we discuss how to optimize the
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interpolant in terms of �xed point alternation.

Let us start by considering how �xed point alternation is introduced into the constructed
interpolant. Suppose we are given a circular proof t = (V,→, λ) for some sequent Γ ⇒ ∆.
The introduction of �xed point alternation into the interpolant for Γ ⇒ ∆ stems from non-
axiomatic leafs in the proof tree, such that the associated node of one non-axiomatic leaf occurs
below the associated nodes of the other non-axiomatic leafs. That is, �xed point alternation
stems from situations that look as follows:

v u

u'

where v and u are non-axiomatic leafs and the associated node of v occurs above u′. Now
suppose that the distinguished formula of u occurs on the left and the distinguished formula of
v occurs on the right. When the construction of the interpolant reaches the node u′, the pre-
interpolant constructed so far contains a ν-operator which was introduced at the associated
node of v. Since u′ is the associated node of u, we have to bind the pre-interpolant by a µ-
operator, which therefore introduces �xed point alternation into the interpolant. Observe that
we can reduce the �xed point alternation depth in the interpolant by choosing the distinguished
formulas of the non-axiomatic leafs more wisely. For example, if the leaf u is also labelled by a
Πµ

1 -formula on the right, we can rede�ne the distinguished formula of u, such that it occurs on
the right. When we build the interpolant, we then no longer introduce �xed point alternation
at u′. This observation raises the question whether it is possible to get rid of any �xed point
alternation by rede�ning the distinguished formulas in the non-axiomatic leafs? In order to
answer this question, let us take a closer look at the possible positions of the associated node
v′ of v.

1. Suppose v′ occurs in the branch between u′ and u. We are therefore in the following
situation:

v u

v'

u'
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Suppose that the distinguished formula of u occurs on the left and the distinguished
formula of v occurs on the right, which implies that �xed point alternation is introduced
into the interpolant. However, observe that in this case the leaf u must be labelled by a
Πµ

1 -formula on the right as well. If this was not the case, then u′ would not be labelled
by a Πµ

1 -formula on the right either, which would imply that v′ and thus also v is not
labelled by Πµ

1 -formulas on the right, contradicting our assumption. Therefore we let
the distinguished formula of u be the said Πµ

1 -formula on the right, which implies that
we do no longer introduce �xed point alternation of degree higher than 1 in this case.

2. Suppose v′ does not occur on the branch between u′ and u. Hence, we are in the following
situation:

v u

v'

u'

We can use a similar argument as in case 1. If the distinguished formula of u occurs
without loss of generality on the left and the distinguished formula of v on the right,
then again we �nd a suitable formula labelling u on the right. Unfortunately, problems
arise when there are (at least) two branches branching o� the path leading to u, such
that both lead into non-axiomatic leafs whose associated nodes do not occur between u′

and u:

v u

w
v'

u'

w'

Suppose the distinguished formula of u occurs on the left, the distinguished formula of v
on the right and the one of w on the left again. In case v and w are labelled by formulas
on both sides, we can iterate the previous argument. However, if both v and w are only
labelled by formulas on one side, it is no longer possible to build the interpolant without
introducing �xed point alternation, as the following example illustrates.

Example 6.5.1. We consider the following circular proof for the sequent

µX.♦(((µY.♦Y ) ∨X) ∧ P )⇒ P ∨ νZ.�(Z ∧ νV.�V )
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Chapter 6. Craig interpolation

Notice that this sequent lies in Σµ
1 ∪Πµ

1 and its common language is based on {P}.

Y ⇒ (�)L♦Y ⇒
(Y )LY ⇒ (�)L♦Y, P ⇒ Z

(Y )LY, P ⇒ Z
(µ)LµY.♦Y, P ⇒ Z

((µY.♦Y ) ∨X) ∧ P ⇒ Z ∧ νV.�V
(�)L♦(((µY.♦Y ) ∨X) ∧ P ), P ⇒ �(Z ∧ νV.�V )
(X)L

X,P ⇒ �(Z ∧ νV.�V )
(Z)RX,P ⇒ Z

(∨)L
(µY.♦Y ) ∨X,P ⇒ Z

⇒ V (�)R⇒ �V (V )R⇒ V (�)R
(µY.♦Y ) ∨X,P ⇒ �V

(V )R
(µY.♦Y ) ∨X,P ⇒ V

(ν)R
(µY.♦Y ) ∨X,P ⇒ νV.�V

(∧)R
(µY.♦Y ) ∨X,P ⇒ Z ∧ νV.�V

(∧)L
((µY.♦Y ) ∨X) ∧ P ⇒ Z ∧ νV.�V

(�)L♦(((µY.♦Y ) ∨X) ∧ P )⇒ P,�(Z ∧ νV.�V )
(X)L

X ⇒ P,�(Z ∧ νV.�V )
(µ)L

µX.♦(((µY.♦Y ) ∨X) ∧ P )⇒ P,�(Z ∧ νV.�V )
(Z)R

µX.♦(((µY.♦Y ) ∨X) ∧ P )⇒ P,Z
(ν)R

µX.♦(((µY.♦Y ) ∨X) ∧ P )⇒ P, νZ.�(Z ∧ νV.�V )
(∨)R

µX.♦(((µY.♦Y ) ∨X) ∧ P )⇒ P ∨ νZ.�(Z ∧ νV.�V )

The prooftree consists of three branches which all lead to non-axiomatic leafs. The left-most
leaf has as its distinguished formula the µ-variable Y on the left. The middle leaf has both a
Σµ

1 -formula on the left and a Πν
1-formula on the right. Finally, the right leaf has a ν-variable

as its distinguished formula on the right. Notice that this is exactly the previously described
situation. In particular, both branches that branch o� the middle path lead to non-axiomatic
leafs that are only labelled on one side and their associated nodes occur above the associated
node of the middle leaf. Now if we want to build an interpolant, we have to bind the variable
interpolating the left leaf by a µ-operator and the variable interpolating the right leaf by a
ν-operator. For the variable interpolating the middle leaf, we can choose whether we want to
bind it by a µ- or a ν-operator. However, since the associated node of the middle leaf appears
below the associated nodes of the outer leafs, the �xed point operator which we choose to bind
the variable interpolating the middle leaf has both �xed point operators for the outer leafs in
its scope. Thus no matter whether we choose to bind the variable interpolating the middle
leaf by a µ-operator or a ν-operator, we create �xed point alternation.

We have demonstrated that we cannot cannot construct an interpolant in the closure of Σµ
1∪Πµ

1

under Boolean connectives for every circular proof. However, observe that there exist di�erent
circular proofs for the sequent above, where the constructed interpolant does not have �xed
point alternation. For example, when �rst applying the rule (�)L, we could entirely delete
the right side, which results in a circular proof for which the constructed interpolant only
contains least �xed point operators. This raises the question whether every valid sequent has
a circular proof of such a form, that the constructed interpolant belongs to the closure of
Σµ

1 ∪ Πµ
1 under Boolean connectives or whether there are sequents for which it is impossible

to build such optimal interpolants? This remains an open question which we hope to answer
in future research. For now, we content ourselves with the result that not every circular proof
gives raise to an optimal interpolant. However, we can still establish a solid upper bound of
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the alternation degree for interpolants constructed with respect to arbitrary circular proofs.

Theorem 6.5.2. If Γ,∆ ⊆ Σµ
1 ∪ Πµ

1 , Γ⇒ ∆ is valid and their common language non-empty,
then there exists an interpolant for Γ⇒ ∆ that lies in Σµ

2 ∩Πµ
2 .

Proof. We �rst show that we �nd an interpolant for Γ ⇒ ∆ in Σµ
2 ∪ Πµ

2 . Let t = (V,→, λ)
be a circular proof for Γ ⇒ ∆ where Γ,∆ ⊆ Σµ

1 ∪ Πµ
1 and the common language of Γ and ∆

is non-empty. We consider the two cases, where �xed point alternation is introduced into the
interpolant in the standard construction.

Case 1: Suppose u ∈ V is a non-axiomatic leaf with associated node u′, such that there
is branching between u′ and u into non-axiomatic leafs v1, ..., vk, such that their associated
nodes v′1, ..., v

′
k occur in the branch between u′ and u. We show that the distinguished formulas

in all k non-axiomatic leafs can be chosen on the same side by induction on k.

. k = 1: There exists a non-axiomatic leaf v with associated node v′ such that v′ occurs
in the branch between u′ and u. We are therefore in the following situation:

v u

v'

u'

This case is already solved above.

. k  k + 1 : Suppose there are k + 1 non-axiomatic leafs v1, ..., vk+1 such that their
associated nodes v′1, ..., v

′
k+1 occur in the branch between u′ and u:

v1.
.
.

vk+1

u

v′1

v′k+1

u'
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Observe that in the tree above the associated nodes occur below the �rst branching point.
This is obviously not necessarily the case, but it is depicted like this for simplicity. It does
not matter for our argument in what order associated nodes and branching occurs. We
assume without loss of generality that u′ → v′k+1 → v′k → ... → v′1 → u. By induction
hypothesis the distinguished formulas of the non-axiomatic leafs u, v1, ..., vk all occur on
the same side, say without loss of generality on the left. Consider the last non-axiomatic
leaf vk+1. Suppose towards a contradiction that vk+1 is not labelled by a Σµ

1 -formula
on the left. This implies that its associated node v′k+1 is not labelled by a Σµ

1 -formula
on the left. Since v′k+1 → v′k this implies that v′k is not labelled by a Σµ

1 -formula on the
left and so neither is vk, contradicting the assumption. Therefore, vk+1 is labelled by
a Σµ

1 -formula on the left, which we can choose to be the distinguished formula of vk+1.
Hence, every non-axiomatic leaf has its distinguished formula on the same side.

Therefore, in this situation we can choose the distinguished formulas in such a way that in the
construction of the interpolant no �xed point alternation is introduced.

Case 2: Suppose u ∈ V is a non-axiomatic leaf with associated node u′, such that there is
branching between u′ and u into non-axiomatic leafs v1, ..., vk, such that their associated nodes
v′1, ..., v

′
k do not occur on the branch between u′ and u or below u′. This is is the following

situation:

v1 u

w1

v′1

u'

.

.

.
vk+1

v′k+1
wk+1

If all leafs v1, ...vk are labelled by formulas on both sides, we can use a similar argument as
in case 1 to show that we can choose every distinguished formula to occur on the same side
and we therefore do not introduce �xed point alternation. Fixed point alternation is only
introduced when there are at least two nodes vi and vj which are labelled only on one side,
such that vi is labelled without loss of generality on the left and vj on the right. Let σXi.γi
be the pre-interpolant for the associated node v′i of such a non-axiomatic leaf vi. Observe that
σXi.γi has syntactic alternation depth 1, as vi is only labelled on one side. Observe that the
associated nodes of vi and vj do not occur in the same branch. Thus, when the construction
of the interpolant has reached the node u′, it holds that σXi.γi 6∈ Sub(σXj .γj) and vice versa.
Therefore, when we bind the pre-interpolant at node u′ by a �xed point operator, we introduce
at most syntactic �xed point alternation of depth 2.
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Now suppose we have a mix of these two situations. That is, there exists a non-axiomatic leaf
u with associated node u′ such that between u′ and u there is both

. branching into non-axiomatic leafs v1, ..., vk such that their associated nodes v′1, ..., v
′
k

occur in the branch between u′ and u and

. branching into non-axiomatic leafs w1, ..., wl such that their associated nodes w′1, ..., w
′
l

do not occur in the branch between u′ and u or below u′.

By case 1 we can �rst choose the distinguished formulas of u and v1, ..., vk in such a way that
they all occur on the same side. Let us assume they occur without loss of generality on the
left. Moreover, for every leaf of w1, ..., wl which is labelled on both sides we can also choose
the distinguished formula on the left side. Then when we build the interpolant, by case 2
every greatest �xed point operator occurs in the scope of a �nite string of least �xed point
operators, which implies that we introduce syntactic �xed point alternation of at most depth
2. Therefore the interpolant belongs to the fragment Σµ

2 ∪Πµ
2 .

Let us now show that the constructed interpolant indeed lies in Σµ
2 ∩ Πµ

2 .
3 Let γ be the

interpolant for Γ ⇒ ∆ and let γ0 ∈ Sub(γ) be a subformula of γ that contains syntactic
�xed point alternation of depth 2. Therefore γ0 stems from a subtree of t of the form as in
case 2. As we observed, the subformulas of γ0 which correspond to the non-axiomatic leafs
which are labelled on one side only, are of the form σZ.ϕ(Z) where σ ∈ {µ, ν}. Moreover,
σZ.ϕ(Z) contains no syntactic �xed point alternation. Let γ′0 be the formula γ0 where each
such subformula is replaced by a fresh variable Y . Notice that γ′0 ∈ Σµ

1 or γ′0 ∈ Πµ
1 . Therefore

γ′0 ∈ Σµ
2∩Πµ

2 and contains s ≥ 2 free variables. Moreover each subformula of the form σZ.ϕ(Z)
which is replaced by a variable in γ′0 belongs to Σµ

1 ∪Πµ
1 as there is only syntactic �xed point

alternation of depth 1. Thus each of these formulas also belongs to Σµ
2 ∩ Πµ

2 . Together we
have that both γ′0 and each σZ.ϕ(Z) belongs to Σµ

2 and so

γ′0(Y1/σZ1.ϕ1(Z1))...(Ys/σZs.ϕs(Zs)) ∈ Σµ
2

By the same argument

γ′0(Y1/σZ1.ϕ1(Z1))...(Ys/σZs.ϕs(Zs) ∈ Πµ
2

and hence γ0 ∈ Σµ
2 ∩ Πµ

2 . As γ is a Boolean combination of formulas like γ0 and formulas
that have no syntactic �xed point alternation, we conclude that γ ∈ Σµ

2 ∩ Πµ
2 . Therefore the

constructed interpolant lies in the alternation free fragment of the modal mu-calculus.

3Notice that so far we talked about syntactic �xed point alternation depth, which is not the same as the
de�ned alternation depth in chapter 2. If a formula has syntactic �xed point alternation 2, it belongs to Σµ2 ∪Πµ

2

and can therefore also belong to Σµ2 ∩ Πµ
2 . If a formula has alternation depth 2, then it belongs to Σµ3 ∩ Πµ

3

and can therefore not belong to Σµ2 ∩ Πµ
2 , as the alternation depth hierarchy is strict.
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Discussion and further research

This thesis contributes to our proof theoretic understanding of the modal mu-calculus, in
particular of the �rst level of the alternation depth hierarchy. The main contribution is the
construction of a circular tableaux and a circular proof system for Σµ

1 ∪ Πµ
1 . With these two

systems we do not only provide a proper axiomatization of Σµ
1 ∪ Πµ

1 , but we also establish
that this fragment enjoys both the �nite model property and Craig interpolation. The circular
systems rely on the lack of proper �xed point alternation in formulas belonging to Σµ

1 ∪ Πµ
1 .

For sequents containing such formulas it is relatively straightforward to identify regular struc-
tures in in�nitary proof trees or tableaux. For example, in order to identify non-axiomatic
leafs of a circular proof, it su�ces to build a respective branch of a proof tree up to the �rst
repetition containing a Πµ

1 -formula on the right or a Σµ
1 -formula on the left. The existence of

a circular proof system for the �rst level of the alternation hierarchy yields the question how
to extend our work to obtain circular systems for the alternation free fragment? We suspect
that this extension is relatively straightforward, as the alternation free fragment contains no
formulas with proper �xed point alternation. Closely related to this is the question how to
extend our work to obtain circular proof systems for modal logics with common knowledge?
Both questions remain open for now, but we hope to answer them in the near future.

The fact that the �rst level of the alternation depth hierarchy enjoys the �nite model property
does not come as a surprise. Emerson and Streett [17] already established in 1989 that the
whole modal mu-calculus enjoys the �nite model property. Our result is in that sense a
corollary of the general case. However, we do provide a novel proof of it using circular tableaux,
instead of the automata theoretic approach of Emerson and Streett. Moreover, our proof is
considerably easier than the proof for the whole mu-calculus and we hope that it provides
new insight into the fact that formulas from the fragment Σµ

1 ∪ Πµ
1 which are satis�able, do

have a �nite model. Furthermore, our proof provides a relatively easy way to obtain such
a �nite model. Given a satis�able formula, we build a circular tableaux for it and directly
read of the �nite model for the formula. The constructed circular tableaux system in chapter
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4 also provide us with a decision procedure for checking satis�ability. Let us quickly sketch
this procedure. A proper treatment is left for future research. Recall the de�nition of a
tableaux in normal form. This notion is easily adjusted to circular tableaux in normal form,
where we require to identify the �rst possible repetition to be an non-axiomatic leaf. Given a
formula ϕ ∈ Σµ

1 ∪Πµ
1 , a circular pre-tableau in normal form for ϕ with respect to an arbitrary

enumeration of the subformulas of ϕ is determined up to disjunctions. If ϕ does not contain a
disjunction, then there is only a single circular pre-tableau for ϕ which is normal with respect
to the enumeration. If ϕ contains n disjunction symbols, then there are at most 2n di�erent
circular pre-tableaux in normal form. Moreover, recall that we require branches through
circular pre-tableaux in normal form to end as soon as they reach the �rst suitable repetition
for a non-axiomatic leaf. That is, every branch ends after at most 2|Sub(ϕ)|-many nodes. Thus,
when building a circular pre-tableaux, we can stop the construction of each branch, if after
2|Sub(ϕ)|-many nodes no suitable axiomatic or non-axiomatic leaf has been reached. Finally,
the result that a formula which has tableau, has a tableau in normal form with respect to an
arbitrary enumeration can be established for circular tableaux as well. Therefore, in order to
check whether ϕ is satis�able, we can �x an arbitrary enumeration of the subformulas of ϕ
and then algorithmically check every possible circular pre-tableaux for ϕ with respect to the
enumeration. As the number of such pre-tableaux is exponential in the number of disjunctions
occurring in ϕ, this algorithm always terminates. This gives us the result that the satis�ability
problem for Σµ

1 ∪Πµ
1

Given a closed formula ϕ ∈ Σµ
1 ∪Πµ

1 , is it satis�able?

is decidable. Unfortunately, the complexity of the algorithm is clearly atleast EXPTIME,
which is not a progress compared to the satis�ability problem for the whole modal mu-calculus,
which is EXPTIME-complete. An open question is therefore whether this upper bound can
be optimized and if yes, how to do so?

Similar to the �nite model property, Craig interpolation has also already been established for
the whole modal mu-calculus by D'Agostino and Hollenberg [7] in 2000. Our main contri-
bution is a novel proof for the fragment Σµ

1 ∪ Πµ
1 using a circular proof system. Particularly

interesting is the negative result, stating that given an arbitrary circular proof for a sequent
Γ⇒ ∆, the constructed Craig interpolant does in general belong to the alternation free frag-
ment of the modal mu-calculus and is therefore not optimal. This is caused by circular proof
trees that include branching into at least three branches such that two of them are only la-
belled by formulas on one side. Moreover, the labelled sides are opposite of each other. The
circular proof in example 6.5.1 shows such a case. However, we also noticed that the sequent
in example 6.5.1 has another circular proof for which the constructed interpolant belongs to
the closure of Σµ

1 ∪ Πµ
1 . This illustrates that the proof tree at hand has a crucial impact on

the complexity of the constructed interpolant. It remains an open question whether every
valid sequent has a circular proof, such that no syntactic �xed point alternation is introduced
into the interpolant. In case this question has a negative answer, it remains to show to what
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degree this phenomena would be caused by the speci�c proof system at hand? We leave these
questions for further research.

Apart from circular proof systems we also provide in�nitary sequent calculi, of which the
calculus DT′ and the calculus 2DT are the most natural. The calculus DT′ is essentially
the sequent calculus T preµ discussed by Studer in [18]. The only di�erence are the �xed point
rules. The �xed point rules of T preµ is a combination of the rule (σ) where σ ∈ {µ, ν} and Z
of DT′ into the following rule:

Γ, ϕ(σZ.ϕ(Z))
(σ)preµ

Γ, σZ.ϕ(Z)

It is straightforward to show that replacing our �xed point rules with this rule results in an
equivalent sequent calculus. The rule (σ)preµ enjoys the advantage that it generates no formulas
that contain free variables. Using the rules (σ) and (Z) results in formulas that label the nodes
of a proof tree and do indeed have free variables. Clearly, these free variables are interpreted to
be bound, but technically they occur free. This causes problems for example in the soundness
proof of DT, where we have to replace every negated variable by a non-negated variable in
the translation D(·). The advantage of our rules is that they result in a nicer presentation
of proof trees. Given a long formula of the form σZ.ϕ(Z), the formula ϕ(σZ.ϕ(Z)) can be
become incredibly nasty. The in�nitary sequent calculi discussed in this thesis are therefore
not essentially new. However, we do provide novel soundness and completeness proofs by
using the method of translation from the in�nitary tableaux system T. The soundness and
completeness proof of DT moreover provides insight into the connections between tableaux
systems and proof systems.
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