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Abstract

We examine modal logics employing state-based semantics. In this
type of semantics, formulas are interpreted with respect to sets of
possible worlds.

The logics studied extend classical modal logic with a special non-
emptiness atom ne and with the inquisitive disjunction. We make
use of two distinct state-based notions of modality which are equiva-
lent when applied to classical formulas but which come apart in our
non-classical setting.

We obtain sound and complete natural deduction systems for three
state-based modal logics, and show that each of the logics is expres-
sively complete for the set of state properties invariant under state
k-bisimulation for some finite k.

One of the logics studied extends Aloni’s [1, 3] bilateral state-based
modal logic (BSML) with the inquisitive disjunction. This logic is
bilateral: in addition to the positive support relation between states
and formulas, a negative anti-support relation is used. The logic
can be used to account for free choice (fc) inferences as Aloni does
using BSML. The non-emptiness atom ne allows for the representa-
tion of a “pragmatic enrichment” of formulas by the principle “avoid
stating a contradiction”. Narrow-scope fc inferences are derived as
entailments involving pragmatically enriched formulas. The bilat-
eralism is associated with a negation which tracks the anti-support
clauses; this is used to model the interactions between natural lan-
guage negation and fc inferences. Wide-scope fc inferences and
epistemic contradictions are captured in states possessing specific
properties; we define these properties using inference rules.
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Chapter 1

Introduction

In natural language, a sentence such as “You may A or B” often appears
to license an inference of “You may A and you may B”:

You may go to the beach or go to the cinema.
⇝ You may go the beach and you may go to the cinema.

A standard formalization of this inference in deontic logic would be:

◇(b ∨ c)→ (◇b ∧◇c)

This is not derivable classically. One straightforward way of accounting
for these inferences would be to adopt some axiom that entails the above:

◇(b ∨ c)→◇b

This is problematic, however: ◇b → ◇(b ∨ c) is a validity in classical
modal logic, so the above would allow one to derive ◇b → (◇b ∧ ◇c) and
hence ◇b → ◇c for any b and c. Following von Wright [32], this apparent
conflict between our linguistic intuitions and the precepts of logic has been
called the paradox of free choice permission or simply the paradox of free
choice; we will accordingly call inferences on the model of the above Free
Choice inferences and the inference licensing phenomenon as a whole Free
Choice (fc).1

Aloni, in her [1] and [3], proposes to employ a bilateral state-based
modal logic (BSML) to account for fc and related linguistic phenomena.
In state-based semantics, formulas are interpreted with respect to sets of
possible worlds (these sets can be thought of as information states, hence

1This presentation of fc follows [1], which in turn follows [21].
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2 CHAPTER 1. INTRODUCTION

“state-based”) rather than the individual worlds used in classical Kripke
semantics—in place of the classical

M,w ( ϕ ϕ is true at world w ∈W in model M = (W,R,V )

the following is a fundamental semantic notion:

M,s ( ϕ ϕ is supported by state s ⊆W in model M = (W,R,V )

Aloni’s logic is also bilateral: assertability and rejectability are treated on a
par, and each is associated with a primitive semantic notion. So in addition
to support, representing assertability, we have:

M,s ) ϕ ϕ is anti-supported by state s ⊆W in model M = (W,R,V )

which represents rejectability of ϕ in s. The bilateralism is associated with
a negation ⨼ (⨼ϕ is assertable just in case ϕ is rejectable) and is used to
account for how fc interacts with negation.

This thesis presents a sound and complete natural deduction system for
a conservative extension of BSML—bilateral state-based modal logic with
global disjunction (BSML⩔).2 We also axiomatize two related systems:
state-based modal logic with global disjunction (SML⩔), a unilateral vari-
ant in which the bilateral negation ⨼ is replaced with a negation ¬ that only
applies to the classical fragment of the logic; and state-based globally modal
logic with global disjunction (SGML⩔), which similarly uses ¬ in place of
⨼, but also makes use of modalities (� and ⧈, the global modalities) which
are distinct from those employed by the other two logics (◇ and ◻, the flat
modalities). Our axiomatizations are based on pre-existing systems for log-
ics which make use of ¬ and the global modalities. Considering SML⩔ and
SGML⩔ helps us bridge the gap between the logics in the literature and
BSML⩔; their axiomatizations may be thought of as intermediate steps on
the path towards axiomatizing BSML⩔.

Let us briefly discuss these existing systems, as well as the origins of the
model-theoretic ideas in BSML. Refer to Table 1.1 below for a list of the
atoms and connectives in the logics we axiomatize and in the logics whose
systems our axiomatizations are based on.

2The global disjunction ⩔ is also commonly known as the intuitionistic disjunction,
and as the inquisitive disjunction. We discuss the rationale for axiomatizing the extension
with ⩔ rather than the original BSML below.
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Aloni’s account of fc relies on combining the following ingredients: the
tensor disjunction ∨, a generalization of the classical disjunction for state-
based semantics; the special non-emptiness atom ne which is supported
by a state just in case the state is non-empty; the flat modality ◇; and
the bilateralism with its associated negation ⨼. The negation functions
somewhat independently from the other components and, as noted above,
is used to model the special case of fc licensing phenomena interacting with
(natural language) negation. The crux of Aloni’s explanation rests on the
interaction between ∨, ne and ◇; this is the feature of BSML that is most
crucial and most novel.

Both ∨ and ne originate in dependence/team logic. The semantics
standardly used for these logics is called team semantics. Team semantics
for first-order logic was introduced by Väänänen in [27] on the basis of
Hodges’ [18] semantics for independence friendly logic [17]. In the first-
order setting, team semantics involves interpreting formulas with respect
to sets of assignments (teams) as opposed to the single assignments used
in classical semantics. Transposing this idea to the propositional/modal
context gives us interpretation with respect to sets of valuations or worlds as
explained above—that is, team semantics for propositional or modal logic is
essentially state-based semantics, and the teams used for interpretation are
states. Propositional/modal team semantics was introduced by Väänänen
in his work on modal dependence logic in [28].

In the dependence/team logic context, the tensor disjunction was al-
ready present in Hodges’ [18]. It has also been independently proposed in
assertability logic—see [12]. ne was introduced by Yang in [36] and Väänä-
nen in [29]. In [38], Yang and Väänänen axiomatize propositional logics
featuring both ∨ and ne. One of these is strong propositional team logic
(PT+); our SML⩔ and SGML⩔ are modal versions of PT+, and the PT+

axiomatization forms the basis for all our systems.
Aloni developed the modality ◇ for her work in formal semantics; es-

sentially the same notion is used in possibility semantics3 [20] and it has
been employed by Ciardelli for his inquisitive Kripke modal logics [5].4
This modality is distinct from that used in modal dependence/team logics,

3In the context of possibility semantics and the Kripke semantics for intuitionistic
logic (which we mention below in connection with ⩔), formulas are interpreted with
respect to points in a partially ordered set. Since the power set of a set is a type
of partially ordered set and state-based semantics is interpreted with respect to the
elements of a power set, state-based semantics is a particular case of poset semantics.

4Ciardelli considers two distinct types of modal logics which are inquisitive in some
sense—inquisitive Kripke modal logics such as InqBK, which are interpreted in Kripke
models and use the flat modalities; and inquisitive modal logics such as InqBM which
are interpreted in a different type of structure and use a different type of modality. We
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Väänänen’s [28] dependence logic modality � (the corresponding necessity-
type modalities, ◻ and ⧈, are likewise distinct). For reasons that will
become clear when we define their semantics, we call ◇ and ◻ the flat
modalities, and � and ⧈ the global modalities.

The bilateralism and ⨼ in BSML were inspired by truthmaker seman-
tics [8]. There have also been other attempts to account for fc by making
use of bilateralism—see [30]. Interestingly, the dual negation (and associ-
ated bilateralism) employed in the original formulations of dependence logic
in [18] and [27] is essentially the same notion as ⨼. In the dependence logic
context this bilateralism was motivated by considerations in game-theoretic
semantics (Hodges came to his notion of negation by adapting Hintikka’s
[15, 16] game-theoretic negation to his setting).

Yang and Väänänen’s system for PT+ provides us with most of the
rules we need for the interaction between ∨, ne, and the other connectives
we utilize, but this system is not modal. Most components of BSML⩔

have been employed in modal logics which have been axiomatized; ne,
however, is a relatively recent innovation and we only have PT+ to draw
from. Our main challenge, then, consists in accounting for how ne interacts
with the modalities, and how it interacts with the other connectives in
modal contexts.

Modal logics which have commonalities with BSML⩔ (but which do not
make use of ne) include Ciardelli’s inquisitive Kripke modal logic InqBK
[5] and Yang’s modal dependence logic with intuitionistic disjunction (MD⩔)
[35]. InqBK uses ◇ but not ∨; Ciardelli does axiomatize an extension of
non-modal inquisitive logic with ∨, but he does not consider such an exten-
sion of the modal logic. MD⩔ makes use of ∨ and the global modalities. Our
SGML⩔ is essentially5 MD⩔ supplemented with ne. We get the modal
rules for SGML⩔ by building on Yang’s MD⩔-rules; some modifications
then give us the modal rules for SML⩔ and BSML⩔.

On the modifications required for BSML⩔: the anti-support clauses
in BSML are defined in a way that ensures that De Morgan’s laws and
double negation elimination remain sound for ⨼, and we define the anti-
support clause for ⩔ in BSML⩔ in accordance with this philosophy. These
laws are then essentially all that is required to account for the behaviour of
⨼ (we also use ⨼-analogues of some ¬-rules from PT+).

Our systems, then, are based on those for PT+ and MD⩔; before mov-

only discuss the first type here.
5MD⩔, being a dependence logic, also makes use of dependence atoms. Our

SGML⩔ does not feature these, but they are uniformly definable in it.
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ing on, however, we should also mention modal team logic (MTL), first
introduced in [26]. MTL is modal as per the name, and has been axioma-
tized by Lück in [25]. ∨ and ne are uniformly definable in MTL. MTL is,
moreover, by an analogue of the van Benthem characterization theorem for
the state-based setting, expressively complete for the set of all first-order de-
finable state properties invariant under state bisimulation [23], where state
bisimulation is a natural adaptation of the classical notion to the state-
based setting. MTL makes use of the global modalities, however, and it is
not clear whether it can uniformly define ◇. It is therefore similarly unclear
how much insight Lück’s rules can provide about the interaction between
◇, ne, and the other connectives. We note furthermore that MTL attains
its great expressive power by employing the Boolean negation ∼:

M,s (∼ ϕ if and only if not M,s ( ϕ

which is not present in BSML; Lück’s axiomatization also relies on this
connective. In view of the intended applications of BSML, an axiomati-
zation mainly in terms of the simpler atoms and connectives which Aloni’s
account makes essential use of would be preferable to an axiomatization
featuring ∼.

Logic Atoms Connectives
Strong propositional

p, ne ∧, ∨, ⩔, ¬team logic (PT+)
Modal dependence logic

p, ne, = (α1, . . . , αn, β) ∧, ∨, ⩔, ¬, �, ⧈with ⩔ (MD⩔)
State-based modal logic

p, ne ∧, ∨, ⩔, ¬, ◇, ◻with ⩔ (SML⩔)
State-based globally modal

p, ne ∧, ∨, ⩔, ¬, �, ⧈logic with ⩔ (SGML⩔)
Bilateral state-based

p, ne ∧, ∨, ⩔, ⨼, ◇, ◻modal logic (BSML)
BSML with ⩔

p, ne ∧, ∨, ⩔, ⨼, ◇, ◻(BSML⩔)

Table 1.1: Atoms and connectives in logics considered

We conclude our discussion of different systems. Table 1.1 lists the
atoms and connectives of the logics we axiomatize, BSML, and the two
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logics on whose axiomatizations our systems are based: PT+ and MD⩔.6,7

In addition to providing axiomatizations, we prove characterization the-
orems for our logics. We show, adapting a similar result in [14], that each of
our logics characterizes the set of all state properties invariant under state
k-bisimulation for some k ∈ N. It is proved in [23] that a state property
is invariant under state k-bisimulation for some k ∈ N if and only if it is
first-order definable and invariant under state bisimulation; therefore, the
analogue of the van Benthem theorem for MTL also holds for each of our
logics, and each has the same expressive power as MTL.

We note in passing a simple but interesting consequence of this result.
As we will see, the ne- and ⩔-free fragment of each of our logics is essentially
classical modal logic; similarly, the ∼-free fragment of MTL is classical
modal logic.8 So given our result, classical modal logic supplemented with
⩔ and ne is equal in expressive power to classical modal logic supplemented
with ∼. This is the modal analogue of a fact Yang and Väänänen point
out in [38]: PT+ (classical propositional logic with ne and ⩔) is equal in
expressive power to classical propositional logic with ∼.

Let us briefly discuss the global disjunction ⩔ in connection with ex-
pressive power. (As mentioned above, ⩔ is also called the intuitionistic
disjunction due to its use in intuitionistic logic, as well as the inquisitive
disjunction—in inquisitive semantics [5, 6] it is used to model the meanings
of questions.) Regular BSML is closed under unions: if a (non-empty)
collection of states supports a formula in the language of BSML, the state
formed by the union of the collection will also support the formula. This
also means that BSML cannot define properties which are not union closed.
⩔ can be used to define such properties; therefore, the logics we axioma-
tize (which all make use of ⩔) are strictly more expressive than BSML.
As noted, we moreover prove they are expressively complete. This is one
advantage of BSML⩔ over BSML: some potentially useful properties and
connectives may only be definable in the former. The primary reason we
axiomatize this extension rather than Aloni’s original logic, however, is that

6The semantics for most symbols in the table will be defined in Chapter 2. For the
semantics of the dependence atoms of MD⩔, see [35].

7Note that the table omits the � atom of PT+ and MD⩔ for readability. This is
definable in terms of the other atoms and connectives listed.

We have also made a slight modification. The original, published version of PT+ in [38]
does not feature the negation ¬ which in this thesis applies to all classical formulas—only
proposition symbols may be negated in the original version of the system. The modified
version in [34] which we also make use of does include ¬.

8The claim above holds for MTL as presented in [23]. It does not hold if the syntax
is as in [25].
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proving completeness is more straightforward with ⩔ in the syntax—we dis-
cuss this below. It may also be possible to use ⩔ to model the meanings of
questions in BSML⩔ as in inquisitive semantics.

With regard to expressive power, ne plays a role similar to that played
by ⩔, but in the opposite direction. ne allows us to construct formulas (and
hence properties) which are not downward closed. A formula is downward
closed if whenever it is supported by a state, it must also be supported by
all substates (subsets) of that state. The ne-free fragments of our logics are
downward closed, meaning that these fragments are incapable of defining
properties which are not downward closed.

It is shown by Hella et al. in [14] that classical modal logic (using the
global modalities) extended with ⩔ (i.e. the ne-free fragment of SGML⩔)
is expressively complete for the set of all downward-closed state properties
invariant under state k-bisimulation for some k ∈ N. It may be possible
to establish an analogue of this result for the ⩔-free fragment of one or all
of our logics—i.e. to show, for instance, that BSML is expressively com-
plete for the set of all union-closed state properties invariant under state
k-bisimulation for some k ∈ N. We leave this for future work.

Moving on from expressive power, we briefly describe our strategy for
proving completeness before concluding.

Each of our natural deduction systems is based on that for PT+. Yang
and Väänänen, in [38], prove the completeness of this logic by a method
involving disjunctive normal forms. We adapt this strategy to the modal
setting. We first show that for every model M , each state s, and each
k ∈ N, there is a formula that precisely characterizes the pair (M,s) up to
k-bisimulation. We then prove that every formula is provably equivalent
to some formula in a normal form defined in terms of these characteristic
formulas and ⩔. (These normal-form formulas are also what we use to
prove the characterization theorems.) Completeness then follows from the
semantic properties of the characteristic formulas and the rules for ⩔. This
is why we axiomatize the extension BSML⩔ rather than BSML. Yang
and Väänänen have also devised a method for adapting this strategy for
logics which do not make use of ⩔. They use this to axiomatize the ⩔-free
fragment of PT+. We hypothesize that excluding the rules involving ⩔
from our BSML⩔ axiomatization and adding rules similar to those added
by Yang and Väänänen for the ⩔-free fragment of PT+ would produce an
axiomatization of BSML, and that adapting the proof in this thesis using
the aforementioned method would then suffice for proving the completeness
of the resulting system. This is also left for future work.
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The thesis is structured as follows:

Chapter 2 presents the preliminaries. We define the syntax and semantics
for the logics to be axiomatized. We discuss some state-semantic properties
of formulas and use these properties to determine entailment relations be-
tween the flat modalities and the global ones. This allows us to show that
each of our logics is a conservative extension of classical modal logic. We
demonstrate how BSML and BSML⩔ can account for fc, and why SML⩔

and SGML⩔ fail to do so. Finally, we list some results from classical modal
logic we make use of in later chapters. These concern the standard notion
of bisimulation and the characteristic formulas of classical modal logic—
Hintikka formulas.

In Chapter 3 we prove the characterization theorems. We first show how
to adapt the standard notion of bisimulation to the state-based setting
and prove a state bisimulation invariance theorem for all of our logics. We
then define characteristic formulas for states, and a disjunctive normal form
for formulas. These enable us to prove the characterization theorems. In
the second part of the chapter, we introduce a variant of fc—wide-scope
Free Choice—and another linguistic phenomenon involving modalities—
epistemic contradictions—and examine how Aloni proposes to account for
these using BSML. Aloni’s predictions only hold in states possessing cer-
tain properties; we make use of the characteristic formulas in showing how
these properties can be defined using inference rules. We also point out
here that our logics are not closed under uniform substitution.

Chapter 4 presents the natural deduction systems and soundness proofs.

In Chapter 5, we first prove weak completeness for each of the three logics
as outlined above. For strong completeness, we make use of Lück’s ax-
iomatization of MTL [25]: this axiomatization is strongly complete, which
implies that MTL is compact. As we noted above, MTL has the same
expressive power as our logics. These facts together imply that our logics
are also compact; strong completeness then follows from compactness and
weak completeness.



Chapter 2

Preliminaries

In Section 2.1, we define the syntax and semantics for the logics to be
axiomatized. We additionally define the syntax and a state-based semantics
for classical modal logic—the other logics are all conservative extensions of
classical modal logic, and we make extensive use of results that apply only
to this fragment.

In Section 2.2, we define a few key state-semantic properties of formulas
and use these to examine the semantics in more detail. We show how
these properties tally with the syntax of the formulas. These results then
allow us to establish some facts about the relationships between the logics
required for the sequel: all of the logics extend classical modal logic, as
noted above, and the state-based semantics for classical modal logic are in
a sense reducible to the classical world-based semantics.

In Section 2.3, we show how BSML⩔ can account for fc, and demon-
strate why both the flat modality ◇ and the bilateral negation ⨼ are nec-
essary to procure the full range of Aloni’s predictions.

In Section 2.4, we list the results we require from classical modal logic:
we define Hintikka formulas and bisimulation, recall the relationship be-
tween the two, and show that there are only a finite number of Hintikka
formulas of a given modal depth.

2.1 Syntax and Semantics
We assume throughout that Φ is a finite set of proposition symbols. Mention
of Φ will for the most part be suppressed for brevity. Note, however, that
some results will depend on the precise contents of Φ or the fact that Φ
is finite; we make reference to Φ explicit when discussing these results to
highlight this dependence.

9
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Definition 2.1.1. (Syntax of ML, SML⩔, SGML⩔, BSML⩔) In all of
the following, p ∈ Φ.

• The set of formulas of classical modal logic ML(Φ) is generated as
follows:

α ∶∶= p ∣ ¬α ∣ (α ∧ α) ∣ (α ∨ α) ∣ ◇ α

• The set of formulas of state-based modal logic with global disjunction
SML⩔(Φ) is generated as follows:

ϕ ∶∶= p ∣ ¬α ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ (ϕ⩔ ϕ) ∣ ◇ ϕ ∣ ◻ ϕ ∣ ne

where α ∈ML(Φ).

• The set of formulas of state-based globally modal logic with global
disjunction SGML⩔(Φ) is generated as follows:

ϕ ∶∶= p ∣ ¬α ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ (ϕ⩔ ϕ) ∣ � ϕ ∣ ⧈ ϕ ∣ ne

where α ∈ML�(Φ), with ML�(Φ) generated as follows:

α ∶∶= p ∣ ¬α ∣ (α ∧ α) ∣ (α ∨ α) ∣ � α

• The set of formulas of bilateral state-based modal logic with global
disjunction BSML⩔(Φ) is generated as follows:

ϕ ∶∶= p ∣ ⨼ϕ ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ (ϕ⩔ ϕ) ∣ ◇ ϕ ∣ ne

We make use of the abbreviation L(Φ) to refer to the set of formulas
which are in SML⩔(Φ), in SGML⩔(Φ) or in BSML⩔(Φ), i.e. L(Φ) =
⋃{SML⩔(Φ),SGML⩔(Φ),BSML⩔(Φ)}. As mentioned above, we will
frequently omit Φ and write simply ML, ML�, SML⩔, SGML⩔, BSML⩔

and L.
ML�, the negatable fragment of SGML⩔, consists of the formulas of

ML with � in place ◇, and so the only difference between SGML⩔ and
SML⩔ is the modality. We will show in the next section that � and ◇ are
equivalent over classical formulas, and we could therefore have defined ML
using � instead of ◇.

Adhering to a convention already put into practice above, we will use
ϕ, ψ, χ, γ, ν, η and ζ to refer to arbitrary formulas in the entirety of
L, whereas α, β and δ are used exclusively to refer to arbitrary classical
formulas (formulas in ML, ML�, or the classical fragment of BSML⩔).

Models are standard Kripke models:



2.1. SYNTAX AND SEMANTICS 11

Definition 2.1.2. (Models and states) A model M over Φ is a triple
M = (W,R,V ) where M is a set of possible worlds, R ⊆ W × W is an
accessibility relation and V ∶ Φ → ℘(W ) is a valuation. Subsets of W are
called states on M .

When referring to an arbitrary model M , we will assume its compo-
nents are named W , R and V without explicitly stating this (similarly, an
arbitrary model M ′ is assumed to be (W ′,R′, V ′), and so on)—for instance:

Definition 2.1.3. Let M be a model. For any state s on M , let

R[s] ∶= {v ∈W ∣ ∃w ∈ s ∶ wRv} and
R−1[s] ∶= {w ∈W ∣ ∃v ∈ s ∶ wRv}

For any w ∈W , let R[w] ∶= R[{w}] and R−1[w] ∶= R−1[{w}].

To define the semantics of the global modality �, we make use of the
notion of successor states:

Definition 2.1.4. (Successor states) Let M be a model. For any states
s and t on M , t is a successor state of s, written sRt, if t ⊆ R[s] and
s ⊆ R−1[t].

Note that equivalently sRt if and only if t ⊆ R[s] and for each w ∈ s ∶
t∩R[w] ≠ ∅; i.e. every world in t has a predecessor in s, and every world in
s has a successor in t. Note also that if sRt, then s = ∅ if and only if t = ∅.

Definition 2.1.5. (Semantics of ML,SML⩔,SGML⩔, BSML⩔) For a
model M over Φ, a state s on M , and ϕ ∈ L, the notion of ϕ being supported
by s in M , written M,s ( ϕ (or s ( ϕ when M is clear from the context),
is defined recursively as follows:

M,s ( p iff ∀w ∈ s ∶ w ∈ V (p)
M,s ( ¬α iff ∀w ∈ s ∶M,{w} * α (α ∈ML ∪ML�)
M,s ( ⨼ϕ iff M,s ) ϕ
M,s ( ϕ ∧ ψ iff M,s ( ϕ and M,s ( ψ
M,s ( ϕ ∨ ψ iff ∃t, t′ ∶ t∪t′ = s and M, t ( ϕ and M, t′ ( ψ
M,s ( ϕ⩔ ψ iff M,s ( ϕ or M,s ( ψ
M,s ( ◇ϕ iff ∀w ∈ s ∶ ∃t ⊆ R[w] ∶ t ≠ ∅ and M, t ( ϕ
M,s ( ◻ϕ iff ∀w ∈ s ∶M,R[w] ( ϕ
M,s ( �ϕ iff ∃t ∶ sRt and M, t ( ϕ
M,s ( ⧈ϕ iff M,R[s] ( ϕ
M,s ( ne iff s ≠ ∅
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where p ∈ Φ.
For ϕ ∈ BSML⩔, the notion of ϕ being anti-supported by s in M , written

M,s ) ϕ (or s ) ϕ), is defined recursively as follows:

M,s ) p iff ∀w ∈ s ∶ w ∉ V (p)
M,s ) ⨼ϕ iff M,s ( ϕ
M,s ) ϕ ∧ ψ iff ∃t, t′ ∶ t∪t′ = s and M, t ) ϕ and M, t′ ) ψ
M,s ) ϕ ∨ ψ iff M,s ) ϕ and M,s ) ψ
M,s ) ϕ⩔ ψ iff M,s ) ϕ and M,s ) ψ
M,s ) ◇ϕ iff ∀w ∈ s ∶M,R[w] ) ϕ
M,s ) ne iff s = ∅

where p ∈ Φ.
We write M,s * ϕ (or s * ϕ) if M,s ( ϕ is not the case, and M,s + ϕ

(or s + ϕ) if M,s ) ϕ is not the case.

We define the following abbreviations:

ML
� ∶= p ∧ ¬p ã∶= p ∨ ¬p

◻ϕ ∶= ¬◇¬ϕ
SML⩔

⊺ ∶= ne á∶= � ∧ neSGML⩔

BSML⩔ � ∶= p ∧ ⨼p ã∶= p ∨ ⨼p ◻ϕ ∶= ⨼◇⨼ϕ

for some fixed p ∈ Φ. Here � is the weak contradiction, supported only by the
empty state; á, the strong contradiction, on the other hand, is supported
by no state whatsoever. Analogously, ⊺, the weak tautology, is supported
by all non-empty states; ã, the strong tautology, by all states.

We define the empty disjunctions for each of our logics in terms of these
abbreviations:

⋁∅ ∶= � ⩔∅ ∶=á

Definition 2.1.6. (Semantic entailment, equivalence and validity)
For any set of formulas Γ ∪ {ϕ,ψ} ∈ L, we say that:

• ψ is a semantic consequence of Γ, or Γ semantically entails ψ, written
Γ ( ψ, if for all models M and all states s on M ∶ if M,s ( γ for all
γ ∈ Γ, then M,s ( ψ. If {ϕ} ( ψ, we also write ϕ ( ψ.

• ϕ and ψ are semantically equivalent, written ϕ ” ψ, if ϕ ( ψ and
ψ ( ϕ.

• ϕ is semantically valid, written ( ϕ, if the empty set of formulas
entails ϕ, i.e. ∅ ( ϕ.
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We write ϕ * ψ if ϕ ( ψ is not the case; ϕ ı ψ if ϕ ” ψ is not the case;
Γ * ϕ if Γ ( ϕ is not the case, and * ϕ if ( ϕ is not the case.

Note that in the above definitions, the symbol ( is being used ambigu-
ously both with regard to which particular support relation it ultimately
pertains to (i.e. to (ML, (SML⩔ , (SGML⩔ , or (BSML⩔), and with regard
to whether its referent is the support relation or one of the auxiliary seman-
tic notions. The syntax has been chosen so that if ϕ is a formula in two
of the logics—ϕ ∈ L1 ∩ L2—then for any model M and any state s on M ,
M,s (L1 ϕ if and only if M,s (L2 ϕ.9 We may therefore also think of the
semantics as being defined for the entirety of L; we will occasionally use (

in this manner (for instance, we may write ϕ ( ψ with ϕ and ψ formulas of
different logics).

2.2 State-semantic Properties
In order to examine the semantics and the relationships between the logics in
an effective manner, we make use of some commonly known state-semantic
properties of formulas. These can be found in, for instance, [38]. For
the most part the results in this section concerning these properties are
adaptations of commonly-known results to the current setting; Proposition
2.2.10, which concerns the relationship between the modalities, is a new
result.

Definition 2.2.1. Let ϕ ∈ L.

• ϕ has the downward closure property (or ϕ is downward closed) if for
any model M , if M,s ( ϕ and t ⊆ s, then M, t ( ϕ.

• ϕ has the union closure property (or ϕ is union closed) if for any model
M and any non-empty set of states S on M , if M,s ( ϕ for all s ∈ S,
then M,⋃S ( ϕ.

• ϕ has the empty state property if for any model M we have M,∅ ( ϕ.

• ϕ has the flatness property (or ϕ is flat) if for any model M we have
M,s ( ϕ if and only if M,{w} ( ϕ for all w ∈W .

Note the following relationship between the properties:
9The symbols that are given distinct definitions in different logics, and hence the

symbols for which differences in support may arise, are ◻, � and ã. It is easy to see
that for any logic L, M,s (L � if and only if s = ∅; M,s (Lã is always the case; and
M,s ( ◻ϕ if and only if for all w ∈ s, M,R[w] ( ϕ.
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Proposition 2.2.2. Let ϕ ∈ L. Then ϕ has the flatness property if and only
if ϕ has the downward closure, union closure and empty state properties.

Proof. .
⇒: Assume that ϕ has the flatness property.

• ϕ is downward closed: Let M be some model, and s be a state on M .
Assume M,s ( ϕ and let t ⊆ s. By flatness, M,{w} ( ϕ for all w ∈ s
and therefore M,{w} ( ϕ for all w ∈ t, so that by flatness M, t ( ϕ.

• ϕ is union closed: Assume that for some model M and some non-
empty set of states S on M , we have M,s ( ϕ for all s ∈ S. By
flatness, we have M,{w} ( ϕ for all w ∈ ⋃S, so that by flatness,
M,⋃S ( ϕ.

• ϕ has the empty state property: Let M be some model. It is vacuously
the case that for all w ∈ ∅, M,{w} ( ϕ, so that by flatness, M,∅ ( ϕ.

⇐: Assume that ϕ has the downward closure, union closure and empty
state properties. Let M be some model, and s be a state on M .

Assume M,s ( ϕ. If s ≠ ∅, we have by downward closure that M,{w} (

ϕ for all w ∈ s; if s = ∅, this is vacuously true. Either way, then, M,{w} ( ϕ
for all w ∈ s.

Conversely, assume M,{w} ( ϕ for all w ∈ s. If s = ∅, then M,s ( ϕ by
the empty state property. If s ≠ ∅, then M,s ( ϕ by union closure. Either
way, then, M,s ( ϕ.

So we have M,s ( ϕ if and only if M,{w} ( ϕ for all w ∈ s.

We now take a closer look at the semantics for each of the logics.

ML

Note that most of our state-semantical clauses for classical modal logic
(those for p, ¬ and ◇) express conditions pertaining to what obtains indi-
vidually at each world in the state (i.e. the conditions are of the form: “for
each world in the state, X is the case”); see Figure 2.1 for some examples.10

10In all figures throughout the thesis, the circled area indicates the state s, and the
name of each world shows which proposition symbols are supported by the singleton set
containing that world (e.g. {wpq} ( p and {wpq} ( q). The R-relation is indicated using
arrows.



2.2. STATE-SEMANTIC PROPERTIES 15

wpq wq

wp w∅

(a) s ( p ∧ ¬q

wpq wq

wp w∅

(b) s * p and
s * ¬p

wpq wq

wp w∅

(c) s ( ◇p and
s * ◻p

wpq wq

wp w∅

(d) s * ◇p and
s ( ◻q

Figure 2.1: Examples of ML semantics

The sole exceptions are the conjunction and the tensor disjunction, but
in the context of semantics for ML only, these clauses could in fact be
equivalently expressed as:

M,s ( α ∧ β iff ∀w ∈ s ∶M,{w} ( α and M,{w} ( β
M,s ( α ∨ β iff ∀w ∈ s ∶M,{w} ( α or M,{w} ( β

So in this classical setting, all support conditions are equivalent to con-
ditions of the form: for all worlds in the state, something obtains. This
implies that all formulas in ML are flat and hence that they also have the
downward closure, union closure and empty set properties; we prove this in
Corollary 2.2.9. It is for this reason, as well as the fact that the support con-
ditions at a singleton state coincide with the classical truth conditions for
the world in that state, that the state-based semantics for classical formulas
is reducible to the classical semantics—support in states reduces to truth
in worlds. We will formalize this observation later (Proposition 2.2.16).

SML⩔

State-based modal logic with global disjunction (SML⩔) is ML extended
with ne and ⩔. When the clause for ne is added, the clauses for the con-
junction and the tensor disjunction may no longer be rephrased as described
above, and their “non-flat”, genuinely state-based behaviour becomes ap-
parent.

The tensor disjunction is supported by a state if the state can be split
into two (possibly non-disjoint) substates, each of which supports one of
the disjuncts. In Figure 2.2(a), since {wpq} ( p ∧ ne and {wq} ( q ∧ ne,
we have s ( (p ∧ ne) ∨ (q ∧ ne), but it is not the case that for all w ∈ s,
{w} ( (p ∧ ne) ∨ (q ∧ ne) since this fails for wq—this is an example of
a formula that is not downward closed. It also clearly does not have the
empty state property. (Note that all of this also applies to the conjunction
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wpq wq

wp w∅

(a) s ( (p ∧ ne) ∨
(q ∧ ne)

wpq wq

wp w∅

(b) s * (p ∧ ne) ∨
(q ∧ ne)

wpq wq

wp w∅

(c) s ( p⩔ q

wpq wq

wp w∅

(d) s * p⩔ q

Figure 2.2: Examples of SML⩔ semantics

of this formula with itself, so that both disjunction and conjunction are now
genuinely state-based.)

Figures 2.2(c) and 2.2(d) illustrate the global disjunction. Note that in
2.2(d), we do have {w} ( p ⩔ q for each w ∈ s—this is an example of a
formula that is not union closed.

For SML⩔, the semantics for ◻ is given explicitly, whereas for ML, ◻
is the ¬-dual of ◇ (i.e. ◻ϕ ∶= ¬ ◇ ¬ϕ). Given that ¬ may at present only
precede classical formulas, one would have to extend the semantics for it in
order to procure duality again. The most natural generalization would not
function in the way intended given the presence of ne—see the discussion
concerning the SGML⩔-modalities below.

SGML⩔

State-based globally modal logic with global disjunction (SGML⩔) is SML⩔

with the global modalities � and ⧈ in place of the flat modalities ◇ and ◻.
The following demonstrates the differences between the two sets of modal-
ities:

wpq wq

wp w∅

(a) �((p ∧ ne) ∨ (q ∧
ne)) *

◇((p∧ne)∨ (q ∧ne))

wpq wq

wp w∅

(b) ◇(p ⩔ ¬p) *

�(p⩔¬p)

Figure 2.3: Non-equivalence of the modalities
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In Figure 2.3(a), we have:

• s ( �((p∧ne)∨(q∧ne)): Clearly sRs and M,s ( (p∧ne)∨(q∧ne).

• s * ◇((p ∧ ne) ∨ (q ∧ ne)): The only non-empty subset of R[wq]
is {wq}, and since {wq} * (p ∧ ne) ∨ (q ∧ ne), there are no non-
empty subsets t of R[wq] such that t ( (p∧ne)∨ (q ∧ne). Therefore
s * ◇((p ∧ ne) ∨ (q ∧ ne)).

Note that we also have s ( ⧈((p∧ne)∨(q∧ne)) but s * ◻((p∧ne)∨(q∧ne)).
In Figure 2.3(b), we have:

• s ( ◇(p⩔¬p): Note that {wp} ⊆ R[wp] is non-empty and that since
{wp} ( p we have {wp} ( p ⩔ ¬p. Similarly {w∅} ⊆ R[w∅] is non-
empty and since {w∅} ( ¬p, we have {w∅} ( p ⩔ ¬p. So for each
u ∈ s there is a non-empty t ⊆ R[u] such that t ( p⩔ ¬p; therefore
s ( ◇(p⩔¬p).

• s * �(p⩔¬p): Let t be such that sRt. Then clearly t = s = {wp,w∅}.
Since {wp} ( p and {w∅} * p, we have t * (p ⩔ ¬p). Therefore
s * �(p⩔¬p).

Again, we also have s ( ◻(p⩔¬p) but s * ⧈(p⩔¬p).
We can now also see the rationale for our names of the modalities: ◇ is

flat in that for any s, we have s ( ◇ϕ if and only if for all w ∈ s ∶ {w} ( ◇ϕ,
and similarly for ◻. The global modalities are global in that the above does
not hold and for �ϕ or ⧈ϕ to be supported in a state s, the state as a
whole must bear a relationship to some other state (a successor state or
R[s]) which in turn supports ϕ. (The clause for the global disjunction ⩔
similarly looks at the state as whole.)

As with SML⩔, the modalities in SGML⩔ are defined separately. In
her [35], Yang discusses some logics which contain the global modalities,
lack ne, and are capable of expressing the intuitionistic negation

M,s ( ¬∅ϕ iff ∀t ⊆ s ∶ if M, t ( ϕ, then t = ∅

In these systems, ⧈ϕ is equivalent to ¬∅�¬∅ϕ, and the intuitionistic notion
generalizes the classical ¬-notion in the sense that in these systems, s ( ¬α
if and only if s ( ¬∅α for all classical α. So ⧈ is the ¬∅-dual of �, with ¬∅
a natural generalization of ¬. But in the presence of ne, ¬∅ would not work
as intended: for instance, we would have ∅ ( ¬∅ϕ for all ϕ, but ∅ * ⧈ne,
so that ⧈ne ı ¬∅�¬∅ne. Variations of the notion such as

M,s ( ¬áϕ iff ∀t ⊆ s ∶M, t * ϕ
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are equally problematic (note that ¬á does not generalize ¬). Figure 2.3(a)
also shows why notions along these lines will not do for duality. We have
s ( ⧈((p ∧ ne) ∨ (q ∧ ne)), but since {wq} * (p ∧ ne) ∨ (q ∧ ne) and
∅ * (p∧ne)∨(q∧ne), we have {wq} ( ¬i((p∧ne)∨(q∧ne)) for i ∈ {∅,á}.
Then since {wq}R{wq}, we have {wq} ( �¬i((p ∧ ne) ∨ (q ∧ ne)), so s *

¬i�¬i((p∧ne)∨ (q ∧ne)). Similar considerations apply for the modalities
in SML⩔.

BSML⩔

Bilateral state-based modal logic with global disjunction is SML⩔ with the
bilateral negation ⨼ replacing ¬. Below are some examples of the semantics
for ⨼:

wpq wq

wp w∅

(a) s ( ⨼q

wpq wq

wp w∅

(b) s ( ⨼(p ∨ q)
and s ( ⨼(p⩔ q)

wpq wq

wp w∅

(c) s ( ⨼(p∧q) and
s ( ⨼((p∨⨼ne)∧(q∨
⨼ne))

wpq wq

wp w∅

(d) s ( ⨼◇ q

Figure 2.4: Examples of semantics for ⨼

We will show below that for all classical formulas α we have ¬α ” ⨼α;
here we note some other interesting properties of the negation.

As Aloni [3] notes, there is a failure of replacement of equivalent formulas
under negation:11,12

Fact 2.2.3. For BSML⩔:
11Failure of replacement also holds for the dual negation of dependence logic as pointed

out in, for instance, [22].
12Aloni defines her weak contradiction as �A ∶= ⨼ne and her strong contradiction as

áA∶= ne∧⨼ne. She can then express Fact 2.2.3 by saying, first, that negating the strong
contradiction yields the weak tautology: ⨼ áA” ⊺; but negating the weak tautology gives
us the weak contradiction rather than the strong contradiction again: áA” ⨼⨼ áAı

⨼⊺ ” �A. And similarly, negating the strong tautology yields the weak contradiction:
⨼ ã” �A; but negating the weak contradiction gives the weak tautology rather than the
strong tautology: ã” ⨼⨼ ãı ⨼�A ” ⊺.

Note that �A and áA cannot be defined in SML⩔ or SGML⩔. We have chosen to
define � and á in a uniform manner in all logics to simplify the presentation; this means
our contradictions are different from Aloni’s.
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• ⨼(ne ∧ ⨼ne) ” ne but ⨼⨼(ne ∧ ⨼ne) ı ⨼ne:

⨼(ne ∧ ⨼ne) ” ⨼ne ∨ ⨼⨼ne ” ⨼ne ∨ ne ” ne ” ⊺
⨼⨼(ne ∧ ⨼ne) ” (ne ∧ ⨼ne) ” á ı ⨼ne ” �

• ⨼ ã” ⨼ne but ⨼⨼ ãı ⨼⨼ne:

⨼ ã ” � ” ⨼ne
⨼⨼ ã ” ã ı ⨼⨼ne ” ne ” ⊺

It is easy to see from the semantic clauses that other types of replace-
ment of equivalents may be carried out safely:

Fact 2.2.4. For any ϕ,ψ,χ ∈ BSML⩔ such that ϕ ” ψ, we have ϕ ∧ χ ”

ψ ∧ χ; ϕ ∨ χ ” ψ ∨ χ; ϕ⩔ χ ” ψ⩔ χ; ◇ϕ ” ◇ψ; and ◻ϕ ” ◻ψ.

The following will be crucial for the axiomatization:

Fact 2.2.5. (Double negation elimination and De Morgan’s laws
for BSML⩔) For any ϕ,ψ ∈ BSML⩔:

• ⨼⨼ϕ ” ϕ

• ⨼(ϕ ∨ ψ) ” ⨼(ϕ⩔ ψ) ” ⨼ϕ ∧ ⨼ψ

• ⨼(ϕ ∧ ψ) ” ⨼ϕ ∨ ⨼ψ

Given that the above holds, BSML⩔ formulas can be arranged into
negation normal form, which will simplify our proofs by induction on the
syntax.

Fact 2.2.6. (Negation normal form for BSML⩔) For any ϕ ∈ BSML⩔,
there is a formula ψ ∈ BSML⩔ such that ϕ ” ψ and in ψ, all occurrences of
⨼ either precede atomic formulas (p ∈ Φ or ne) or form part of an occurrence
of the sequence ⨼◇⨼ (i.e. a part of ◻).

Proof. By induction on the complexity of ϕ.

• ϕ = p or ϕ = ne. ϕ is already in negation normal form.

• ϕ = ψ ∧ χ, ϕ = ψ ∨ χ, ϕ = ψ ⩔ χ, or ϕ = ◇ψ. These cases follow
immediately from the induction hypothesis applied to ψ and χ and
Fact 2.2.4.

• ϕ = ⨼ψ. We consider different cases:
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– ϕ = ⨼p or ϕ = ⨼ne. ϕ is already in negation normal form.
– ϕ = ⨼⨼χ. We have ⨼⨼χ ” χ, and then the conclusion follows by

the induction hypothesis applied to χ.
– ϕ = ⨼(χ∧η), ϕ = ⨼(χ∨η), or ϕ = ⨼(χ⩔η). The conclusion follows

by De Morgan’s Laws for BSML⩔, the induction hypothesis
applied to ⨼χ and ⨼η, and Fact 2.2.4.

– ϕ = ⨼◇ χ. Note that ⨼◇ χ ” ◻⨼χ:

M,s ( ⨼◇ χ ⇐⇒ M,R[s] ) χ

⇐⇒ M,R[s] ( ⨼χ ⇐⇒ M,R[s] ) ⨼⨼χ
⇐⇒ M,s ( ⨼◇⨼⨼χ ⇐⇒ M,s ( ◻⨼χ

By the induction hypothesis, we have ⨼χ ” η for some η in
negation normal form. The conclusion then follows from Fact
2.2.4.

We note in passing here that the same holds for the other logics; that
this is the case follows from the negation normal form for classical modal
logic, the fact that SML⩔ and SGML⩔ extend ML (Proposition 2.2.13),
and the correspondence between state semantics and classical semantics for
ML (Proposition 2.2.16).

Fact 2.2.7. (Negation normal form for ML,SML⩔,SGML⩔) For any
ϕ ∈ ML,SML⩔ or SGML⩔, there is a formula ψ in the same logic such
that ϕ ” ψ and in ψ, all occurrences of ¬ either precede proposition symbols
(p ∈ Φ) or form part of an occurrence of a sequence ¬ ◇ ¬α or a sequence
¬�¬α (i.e. a part of ◻α or ⧈α), where α ∈ML ∪ML�.

(Note that while in general ◻ is not defined as ¬◇ ¬ in SML⩔, and ⧈
not as ¬� ¬ in SGML⩔, these sequences do play the part of the boxes in
the classical fragments of the logics (ML and ML�). So a formula in one
of these logics is in negation normal form when all occurrences of ¬ either
precede proposition symbols or form part of a box-sequence in the classical
fragment of the logic.)

The following will not be proved until Chapter 3, but we include it here
to help illuminate the nature of the bilateralism in BSML⩔:

Proposition 3.3.9. For any formula ϕ ∈ BSML⩔, any model M and any
state s on M , if M,s ( ϕ, then for any state t on M , if M, t ) ϕ, then
s ∩ t = ∅ (and in particular, if M,s ( ϕ and M,s ) ϕ, then s = ∅).
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Extending classical modal logic
We now link the properties with the syntax and show that all our logics
extend ML.

Proposition 2.2.8. For any formula ϕ ∈ L:

• If ϕ does not contain ne, ϕ has the downward closure property and
the empty state property.

• If ϕ does not contain ⩔, ϕ has the union closure property.

Proof. By induction on the complexity of ϕ. This is easy to see and a
commonly known result for most of L, so we show only a few cases and
remark that since by Fact 2.2.6 any ϕ ∈ BSML⩔ may be assumed to be in
negation normal form, the only cases involving ⨼ or bilateralism we need to
consider are the negated atomic ones (and similarly for ¬ by Fact 2.2.7).

• ϕ = p. For all models M and states s on M , M,s ( p if and only if
w ∈ V (p) for all w ∈ s if and only if M,{w} ( p for all w ∈ s. So ϕ is
flat, and therefore by Proposition 2.2.2 it has the downward closure,
union closure and empty state properties.

• ϕ = ¬p or ϕ = ⨼p. This case is analogous to that for ϕ = p.

• ϕ = ne. If for some model M and non-empty collection of states S on
M we have M,s ( ne for all s ∈ S, then for each s ∈ S, s ≠ ∅, and
therefore ⋃S ≠ ∅ so that M,⋃S ( ne.

• ϕ = ⨼ne. If for some model M and non-empty collection of states S
on M we have M,s ( ⨼ne for all s ∈ S, then for each s ∈ S, s = ∅,
and therefore ⋃S = ∅ so that M,⋃S ( ⨼ne.

• ϕ =�ψ.

– Downward closure: If �ψ does not contain ne, then by the
induction hypothesis, ψ is downward closed. Assume thatM,s (

�ψ and let t ⊆ s. By M,s ( �ψ there is some s′ such that sRs′
and M,s′ ( ψ; fix such an s′. Then note:

∗ R[t] ⊆ R[t].
∗ t ⊆ R−1[R[t]]: If t = ∅, this is trivially the case. Otherwise

let w ∈ t. Since sRs′, we have s ⊆ R−1[s′], so that since
w ∈ t ⊆ s, there is some v ∈ s′ such that wRv. Since w ∈ t,
we have v ∈ R[t], and therefore w ∈ R−1[R[t]]. Since w was
arbitrary, t ⊆ R−1[R[t]].
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∗ M,R[t] ( ψ: Since sRs′ we have R[s] ⊆ s′ so that R[t] ⊆ s′.
Then by downward closure, M,R[t] ( ψ.

So tR(R[t]) and M,R[t] ( ψ; therefore M, t ( �ψ.
– Empty state property: If �ψ does not contain ne, then by the

induction hypothesis, ψ has the empty state property. Let M be
a model. By the empty state property, M,∅ ( ψ. Clearly ∅R∅,
so M,∅ ( �ψ.

– Union closure: If �ψ does not contain ⩔, then by the induction
hypothesis, ψ is union closed. Assume that for some model M
and non-empty collection of states S on M we have M,s ( �ψ
for all s ∈ S. Then for each s ∈ S, there is some s′ such that sRs′
and M,s′ ( ψ; fix such an s′ for each s ∈ S. Let u ∶= ⋃s∈S s′.
Then:

∗ u ⊆ R[⋃S]: If u = ∅, this is trivially the case. Otherwise let
w ∈ u. Then for some s ∈ S we have w ∈ s′, so w ∈ R[s] and
therefore w ∈ R[⋃S]. w was arbitrary, so u ⊆ R[⋃S].

∗ ⋃S ⊆ R−1[u]: If ⋃S = ∅, this is trivially the case. Otherwise
let w ∈ ⋃S. Then for some s ∈ S we have w ∈ s, so w ∈
R−1[s′]. Clearly R−1[s′] ⊆ R−1[u], so w ∈ R−1[u]. Since w
was arbitrary, ⋃S ⊆ R−1[u].

∗ M,u ( ψ: We have it that S′ = {s′ ∣ s ∈ S} is a non-empty
collection of states such that for all s′ ∈ S′ ∶ M,s′ ( ψ.
Therefore, by union closure and noting that u = ⋃S′, we
have M,u ( ψ.

So (⋃S)Ru and M,u ( ψ; therefore M,⋃S ( �ψ.

By Propositions 2.2.2 and 2.2.8, we have now shown that all classical
formulas are flat:

Corollary 2.2.9. For any α ∈ML∪ML�, α has the union closure, down-
ward closure, empty state and flatness properties.

For the modalities we have:

Proposition 2.2.10. Let ϕ ∈ L. Then:

1. If ϕ is downward closed, then:

a) �ϕ ( ◇ϕ and
b) ⧈ϕ ( ◻ϕ.
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2. If ϕ is union closed and has the empty state property, then:

a) ◇ϕ ( �ϕ and
b) ◻ϕ ( ⧈ϕ.

So if ϕ has all three properties, then ◇ϕ ” �ϕ and ◻ϕ ” ⧈ϕ.

Proof. 1. a) Let M,s ( �ϕ (note that if ϕ =á, ϕ is downward closed
but M,s ( � á can never be the case, so �ϕ ( ◇ϕ holds
trivially). Then there is a t such that sRt and M, t ( ϕ.
Case 1: s ≠ ∅. Fix some w ∈ s. Since s ⊆ R−1[t], there is
some v ∈ t such that wRv. By downward closure, M,{v} ( ϕ;
note that clearly {v} is non-empty. Since w was arbitrary, we
therefore have M,s ( ◇ϕ.
Case 2: s = ∅. Then trivially M,s ( ◇ϕ.
In either case, then, M,s ( ◇ϕ.

b) Let M,s ( ⧈ϕ (as above, the case in which ϕ =á holds trivially).
Then M,R[s] ( ϕ.
Case 1: s ≠ ∅. Fix some w ∈ s. By downward closure, M,R[w] (

ϕ. Since w was arbitrary, we have M,s ( ◻ϕ.
Case 2: s = ∅. Then trivially M,s ( ◻ϕ.
In either case, then, M,s ( ◻ϕ.

2. a) Let M,s ( ◇ϕ.
Case 1: s ≠ ∅. Since M,s ( ◇ϕ, for each w ∈ s there is a non-
empty tw ⊆ R[w] such that M, tw ( ϕ; fix such a tw for each
w ∈ s. Let t ∶= ⋃w∈s tw. Then:

• t ⊆ R[s].
• s ⊆ R−1[t]: Since s ≠ ∅, we can fix some w ∈ s. Then there

is a non-empty tw ⊆ R[w] such that tw ⊆ t, and so there is
some v ∈ t such that wRv. w was arbitrary, so s ⊆ R−1[t].

• M, t ( ϕ: Since s is non-empty, {tw ∣ w ∈ s} is non-empty,
so that by union closure and noting that t = ⋃{tw ∣ w ∈ s},
we have M, t ( ϕ.

So sRt and M, t ( ϕ; therefore M,s ( �ϕ.
Case 2: s = ∅. Then clearly sR∅. Since ϕ has the empty state
property, M,∅ ( ϕ, and so M,s ( �ϕ.
In either case, then, M,s ( �ϕ.
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b) Let M,s ( ◻ϕ.
Case 1: s ≠ ∅. We have it that for all w ∈ s ∶M,R[w] ( ϕ. Since
s is non-empty, {R[w] ∣ w ∈ s} is non-empty, so by union closure
and noting that R[s] = ⋃{R[w] ∣ w ∈ s}, we have M,R[s] ( ϕ.
Therefore M,s ( ⧈ϕ.
Case 2: s = ∅. Then R[s] = ∅. Since ϕ has the empty state
property, M,∅ ( ϕ, and so M,s ( ⧈ϕ.
In either case, then, M,s ( ⧈ϕ.

It now follows that SGML⩔ extends ML. First, by Propositions 2.2.8
and 2.2.10:

Corollary 2.2.11. For any ϕ ∈ L:

1. If ϕ does not contain ne, then �ϕ ( ◇ϕ and ⧈ϕ ( ◻ϕ.

2. If ϕ does not contain ⩔, then ◇ϕ ( �ϕ and ◻ϕ ( ⧈ϕ.

Therefore, if ϕ does not contain ne or ⩔, and in particular if ϕ ∈ML∪ML�,
then ◇ϕ ” �ϕ and ◻ϕ ” ⧈ϕ.

Definition 2.2.12. Define a map ∗ ∶ML →ML� by ◇ ↦ � (i.e. ∗(α) is
α with each ◇ replaced by a �).

We will also write α∗ for ∗(α), and we write A∗ for {α∗ ∣ α ∈ A} (where
A ⊆ ML). Note again that while ⧈ is not in general the ¬-dual of � in
SGML⩔, this is the case in the ML�-fragment. Therefore ∗ is a one-to-
one map between ML and ML�, and given Corollary 2.2.11:

Proposition 2.2.13. (SGML⩔ is a conservative extension of ML)
For any α ∈ML ∶ α ” α∗.

Similarly, ⨼ and ¬ are equivalent when applied to classical formulas, and
therefore BSML⩔ also extends ML:

Definition 2.2.14. Define a map ∗∗ ∶ML→ BSML⩔ by ¬↦ ⨼ (i.e. ∗∗(α)
is α with each ¬ replaced by a ⨼).

We again write α∗∗ for ∗ ∗ (α) and A∗∗ for {α∗∗ ∣ α ∈ A}. This is a
one-to-one map between ML and the ne- and ⩔-free fragment of BSML⩔

(call this fragment ML∗∗), and:

Proposition 2.2.15. (BSML⩔ is a conservative extension of ML)
For any α ∈ML, we have α ” α∗∗.
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Proof. By induction on the complexity of α (note that we may assume that
α is in negation normal form):

• α = p. p∗∗ = p. The ML and BSML⩔ semantic clauses for p are
identical so α ” α∗∗.

• α = ¬p. (¬p)∗∗ = ⨼p. We have M,s ( ¬p if and only if for all
w ∈ s ∶ w ∉ V (p) if and only if M,s ) p if and only M,s ( ⨼p, so
α ” α∗∗.

• α = β ∧ δ, α = β ∨ δ or α = ◇β. Clearly (β ∧ δ)∗∗ = β∗∗ ∧ δ∗∗, (β ∨
δ)∗∗ = β∗∗ ∨ δ∗∗ and (◇β)∗∗ =◇β∗∗. The result then follows from the
induction hypothesis and the fact that for each of ∧, ∨ and ◇, the
ML and BSML⩔ semantic clauses are identical.

• α = ◻β. We have:

M,s ( ◻β
⇐⇒M,s ( ¬◇¬β
⇐⇒ ∀w ∈ s ∶M,{w} * ◇¬β
⇐⇒ ∀w ∈ s ∶/∃ t ⊆ R[w] ∶ t ≠ ∅ and M, t ( ¬β
⇐⇒ ∀w ∈ s ∶/∃ t ⊆ R[w] ∶ t ≠ ∅ and ∀v ∈ t ∶M,{v} * β

⇐⇒ ∀w ∈ s ∶ ∀t ⊆ R[w] ∶ t = ∅ or ∃v ∈ t ∶M,{v} ( β

⇐⇒ ∀w ∈ s ∶ ∀v ∈ R[w] ∶M,{v} ( β

⇐⇒ ∀w ∈ s ∶M,R[w] ( β Corollary 2.2.9
⇐⇒ ∀w ∈ s ∶M,R[w] ( β∗∗ hypothesis
⇐⇒ ∀w ∈ s ∶M,R[w] ) ⨼β∗∗

⇐⇒M,s ) ◇⨼β∗∗

⇐⇒M,s ( ⨼◇⨼β∗∗

⇐⇒M,s ( (¬◇¬β)∗∗

⇐⇒M,s ( α∗∗

Given that SML⩔ clearly extends ML in this manner, we have now
shown that all of the logics do so. We will call all members of CML(Φ) ∶=
ML(Φ)∪ML�(Φ)∪ML(Φ)∗∗ classical formulas. Note that Corollary 2.2.9
applies also to ML∗∗—all formulas in this set have the union closure, down-
ward closure, empty state and flatness properties.

In order for us to make use of the classical results to be introduced
in Section 2.4, it remains to link the state-based semantics for classical
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modal logic with the classical semantics. Given Corollary 2.2.9, we get the
following simply by noting that the state-based clauses for a singleton state
match exactly with the classical clauses for a world:

Proposition 2.2.16. For any model M and any α ∈CML, we have:

M,s ( α ⇐⇒ M,w ( α for all w ∈ s

(where ( on the left is the state-based support relation, and ( on the right
is the truth relation from classical modal logic.)
In particular, for any w ∈W ∶M,{w} ( α ⇐⇒ M,w ( α.

We then also have it that for classical formulas, entailment and equiv-
alence as classically defined coincide with our state-semantic definitions:

Fact 2.2.17. For any B ∪ {α,β} ⊆CML ∶

B ( α ⇐⇒ B (C α, and therefore α ” β ⇐⇒ α ”C β

Where

B (C α ∶⇐⇒ ∀(M,w) ∶ (∀β ∈ B ∶M,w ( β)⇒M,w ( α

α ”C β ∶⇐⇒ α (C β and β (C α

Proof. ⇒: Assume B ( α. Fix some (M,w) and assume M,w ( β for each
β ∈ B. By Proposition 2.2.16, M,{w} ( β for each β ∈ B. Then by B ( α
we have M,{w} ( α, so that by Proposition 2.2.16, M,w ( α.
⇐: Assume B (C α. Fix some (M,s) and assume M,s ( β for each

β ∈ B. By Proposition 2.2.16, M,w ( β for each β ∈ B. By B (C α we have
M,w ( α for each w ∈ s, so that by Proposition 2.2.16, M,s ( α.

We may therefore speak simply of entailment and equivalence and may
always omit the C-subscripts.

2.3 Accounting for fc
Aloni [3] hypothesizes that in certain situations, the effects of pragmatic
principles on semantics can be modelled by a systematic “intrusion” of these
principles into the process of meaning composition, and that fc inferences
are the result of such an intrusion. She proposes that the intruding principle
in the case of fc is “avoid stating a contradiction”, (derivable, for instance,
from the Gricean maxim of Quality [11]), and that this could be formalized
in BSML (or BSML⩔) as ne (i.e. as ⨼�A; see footnote 11).
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In situations in which an intrusion of “avoid stating a contradiction” is
triggered, the usual formalizations of natural language expressions become
“pragmatically enriched” by the intrusion. For a formula ϕ in the ne-free
fragment of BSML⩔, the formula ϕ+ ∈ BSML⩔ pragmatically enriched by
an intrusion of the principle is defined recursively as follows:

p+ ∶= p ∧ ne
(⨼ϕ)+ ∶= ⨼ϕ+ ∧ ne
(ϕ ∧ ψ)+ ∶= (ϕ+ ∧ ne) ∧ (ψ+ ∧ ne)
(ϕ ∨ ψ)+ ∶= (ϕ+ ∧ ne) ∨ (ψ+ ∧ ne)
(ϕ⩔ ψ)+ ∶= (ϕ+ ∧ ne)⩔ (ψ+ ∧ ne)
(◇ϕ)+ ∶= ◇ ϕ+ ∧ ne

Aloni then claims that fc inferences are justified in the sense that the
following holds for all ϕ,ψ ∈ BSML⩔ ∶ (◇(ϕ ∨ ψ))+ ( ◇ϕ ∧ ◇ψ. For let
M,s ( (◇(ϕ ∨ ψ))+, i.e. M,s ( ◇((ϕ ∧ ne) ∨ (ψ ∧ ne)) ∧ ne. Let w ∈ s.
Then since M,s ( ◇((ϕ∧ne)∨(ψ∧ne)), there is some non-empty t ⊆ R[w]
such that M, t ( (ϕ ∧ ne) ∨ (ψ ∧ ne). Therefore there are some t1, t2 such
that t = t1 ∪ t2; M, t1 ( ϕ ∧ ne; and M, t2 ( ψ ∧ ne. Then t1 ≠ ∅ and
M, t1 ( ϕ; and t2 ≠ ∅ and M, t2 ( ψ; and note also that t1 ⊆ R[w] and
t2 ⊆ R[w]. Since w was arbitrary, this is the case for all w ∈ s, and therefore
M,s ( ◇ϕ ∧◇ψ.13

Let us examine an example.

wbc wb

wc w∅

(a) s ( ◇(b ∨ c)
s * (◇(b ∨ c))+

wbc wb

wc w∅

(b) s ( (◇(b ∨ c))+

wbc wb

wc w∅

(c) s ( (�(b∨c))+
s * �b ∧�c

wbc wb

wc w∅

(d) ∀(t ≠ ∅) ⊆ s ∶
t * ◇(b ∨ c)+ and
s * ¬◇ b ∧ ¬◇ c

Figure 2.5: fc example and failure of fc for � and ¬

I tell you “You may go to beach or go to the cinema” (with going to the
beach represented by b and going to the cinema represented by c). If the

13Note that fc inferences are not predicted to be licensed for the global disjunction in
the current system. Accounts of fc (specifically narrow-scope fc, which we are presently
discussing—see Section 3.3 for wide-scope fc) using the global disjunction and a notion
of modality distinct from ours can be found in [2] and [5].
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situation is as in Figure 2.5(a), then while s ( ◇(b∨ c) does hold and so in
the classical logician’s sense you may go to the beach or go to the cinema,
there is no permissible world in which you may go to the cinema. Recall
that the tensor disjunction is supported in a state if the state can be split
into two substates, with each substate supporting one of the disjuncts. The
disjunction b ∨ c is only permissible in s in the sense that the permissible
scenario {wb} of going to the beach may be thought to consist of {wb} and
the impossible scenario ∅ which vacuously supports c. On the other hand
in Figure 2.5(b) we have s ( (◇(b ∨ c))+ and hence s ( ◇b ∧ ◇c. Both
options are realized in permissible states.

Figure 2.5(c) demonstrates why � fails to model fc in the manner ◇
does: we have that s ( (�(b ∨ c))+ (assuming that (�(b ∨ c))+ is defined
in the expected way), but since the only successor state of s is s itself and
since s * c, we have s * �c, and therefore s * �b ∧�c.

In order to understand why the bilateral negation is required, we con-
sider the following:

You may not go to the beach or go to the cinema.
⇝ You may not go the beach and you may not go to the cinema.

¬◇ (b ∨ c)→ (¬◇ b ∧ ¬◇ c)

As with our original example of fc, this inference usually appears to be
licensed in natural language.

Aloni’s account predicts this by noting that (⨼◇(ϕ∨ψ))+ ( ⨼◇ϕ∧⨼◇ψ.
For let M,s ( (⨼◇(ϕ∨ψ))+, i.e. M,s ( ⨼(◇((ϕ∧ne)∨(ψ∧ne))∧ne)∧ne.
It is easy to see that then M,s ( ⨼◇((ϕ∧ne)∨(ψ∧ne)), so M,s ) ◇((ϕ∧
ne)∨(ψ∧ne)), so that for all w ∈ s we have M,R[w] ) (ϕ∧ne)∨(ψ∧ne).
Let w ∈ s. Then by the above, M,R[w] ) ϕ∧ne and M,R[w] ) ψ ∧ne, so
that M,R[w] ) ϕ and M,R[w] ) ψ. Since w was arbitrary, we then have
both M,s ( ⨼◇ ϕ and M,s ( ⨼◇ ψ, so M,s ( ⨼◇ ϕ ∧ ⨼◇ ψ.

For SML⩔, which lacks the bilateral negation, the pragmatically en-
riched formula (¬◇ (ϕ ∨ ψ))+ cannot be defined since ¬ may only precede
classical formulas. Figure 2.5(d) additionally demonstrates that no obvious
generalization of ¬ can account for cases like this in the manner BSML⩔

does. We have (assuming that ◇(b ∨ c)+ is defined in the expected way)
that:

• For each non-empty t ⊆ s we have t * ◇(b∨c)+: Clearly {wb} * (b∨c)+
so that since R[wc] = {wb}, there are no non-empty subsets t of R[wc]
such that t ( (b ∨ c)+. Therefore {wc} * ◇(b ∨ c)+. Since s = {wc},
we have it that for each non-empty t ⊆ s, t * ◇(b ∨ c)+.
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• s * ¬◇b∧¬◇c: Since {wb} ( b so that {wc} ( ◇b, we have s * ¬◇b,
and therefore s * ¬◇ b ∧ ¬◇ c.

2.4 Bisimulation and Hintikka Formulas
The bisimulation relation between pointed models captures what is essential
for classical modal equivalence14, and Hintikka formulas are a syntactic
characterization of the same. In the next chapter we use these notions
to define state-based analogues of them; here we simply list the required
definitions and theorems. These are all either standard classical results
found, for instance, in [10], or straightforward consequences of such.

Note that we formulate many definitions and results in this section in
terms of the language of ML, but in light of the equivalence of the formu-
las in these fragments we could equally well have done so in terms of the
language of ML� or that of ML∗∗.

Definition 2.4.1. (Pointed models) A pointed model over Φ is a pair
(M,w) where M is a model over Φ and w ∈W .

Definition 2.4.2. (Modal depth) The modal depth md(ϕ) of a formula
of ϕ ∈ L is defined recursively as follows:

• md(p) =md(ne) = 0 for p ∈ Φ

• md(¬α) =md(α)

• md(⨼ψ) =md(ψ)

• md(ψ ∧ χ) =md(ψ ∨ χ) =md(ψ⩔ χ) =max{md(ψ),md(χ)}

• md(◇ψ) =md(◻ψ) =md(�ψ) =md(⧈ψ) =md(ψ) + 1

Definition 2.4.3. (Classical modal equivalence) Let (M,w) and
(M ′,w′) be pointed models.

• Let k ∈ N. (M,w) and (M ′,w′) are k-equivalent, written M,w ”k

M ′,w′, if for all α ∈ML with md(α) ≤ k: M,w ( α ⇐⇒ M ′,w′ ( α.

• (M,w) and (M ′,w′) are ML-equivalent, written M,w ”ML M ′,w′,
if M,w ”k M ′,w′ for all k ∈ N.

14The relation we make use of is also called finite bisimulation in the literature to
distinguish it from a stronger relation which can capture equivalence in infinitary modal
logic [10]. The distinction does not matter for our purposes, so we speak simply of
bisimulation.



30 CHAPTER 2. PRELIMINARIES

We write M,w ık M ′,w′ if M,w ”k M ′,w′ is not the case, and M,w ıML

M ′,w′ if M,w ”ML M ′,w′ is not the case.

Note that ( in the above (and below) is the truth relation from classical
modal logic. Note also that M,w ”ML M ′,w′ iff for all α ∈ML ∶ M,w (

α ⇐⇒ M ′,w′ ( α.

Definition 2.4.4. (Bisimilarity) Let k ∈ N, and let (M,w) and (M ′,w′)
be pointed models over Φ. The k-bisimilarity relation—we write M,w -k

M ′,w′ and say (M,w) and (M ′,w′) are k-bisimilar if the relation holds—is
defined recursively as follows:

• M,w -0 M,w iff for all p ∈ Φ we have M,w ( p ⇐⇒ M ′,w′ ( p.

• M,w -k+1 M ′,w′ iff M,w -0 M ′,w′ and

– for all v ∈ R[w] there is a v′ ∈ R′[w′] such that M,v -k M ′, v′

– for all v′ ∈ R′[w′] there is a v ∈ R[w] such that M,v -k M ′, v′

(M,w) and (M ′,w′) are bisimilar, writtenM,w -M ′,w′, ifM,w -k M ′,w′

for all k ∈ N.
We write M,w /-k M

′,w′ if M,w -k M ′,w′ is not the case, and M,w /-
M ′,w′ if M,w -M ′,w′ is not the case.

When (M,w) and (M ′,w′) are bisimilar, we also say that w and w′ are
bisimilar if the models are clear from the context.

The definition of Hintikka formulas makes use of the fact that Φ is finite:

Definition 2.4.5. (Hintikka formulas) Let k ∈ N and let (M,w) be a
pointed model over Φ. We define the k-th Hintikka formula of (M,w),
denoted by χk

M,w, recursively as follows:15

χ0
M,w ∶= ⋀{p ∣ p ∈ Φ,w ∈ V (p)} ∧⋀{¬p ∣ p ∈ Φ,w ∉ V (p)}
χk+1
M,w ∶= χk

M,w ∧ ⋀
v∈R[w]

◇ χk
M,v ∧ ◻ ⋁

v∈R[w]
χk
M,v

We will also call χk
M,w a Hintikka formula of degree k.

We will write χk
w in place of χk

M,w when M is clear from the context.
15A note on notation: when a large connective such as ⋁ is followed by a formula inside

a pair of parentheses, as in ⋁(ϕ), the parentheses delimit the scope of the connective.
If there are no parentheses, the scope of the connective is limited to what immediately
follows the connective. So in ⋁i∈I ϕi∧ψ, only the ϕi is inside the scope of the disjunction.
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Intuitively, the first conjunct χ0
w of a Hintikka formula provides a com-

plete description of what is the case at w; the conjunct ⋀v∈R[w]◇χk
v of a

formula of degree k + 1 lists all things of modal depth k which are possible
in w; and the conjunct ◻⋁v∈R[w] χk

v states that nothing else of modal depth
k is possible.

We list some straightforward consequences of the definition:

Fact 2.4.6. Let k ∈ N and let (M,w) be a pointed model. Then md(χk
w) ≤

k.

Securing the following fact requires Φ to be finite; we quantify over sets
of proposition symbols here to make the more general claim explicit:

Fact 2.4.7. For any finite set of proposition symbols Φ and any k ∈ N, there
are only finitely many non-equivalent k-th Hintikka formulas of pointed
models over Φ.

Proof. By induction on k ∈ N:

• k = 0. It is easy to see from the definition that there are 2∣Φ∣ non-
equivalent 0-th Hintikka formulas of pointed models over Φ.

• k + 1. By the induction hypothesis there are only finitely many non-
equivalent k-th Hintikka formulas of pointed models over Φ, say n-
many.
Since any α,β ∈ ML are equivalent iff ◇α and ◇β are equivalent,
there are also n-many non-equivalent formulas of the form ◇χk

M,v,
where M is a model over Φ. If ϕ,ψ ∈ML are equivalent, then their
conjunction is equivalent to both of them; therefore there are at most
2n-many non-equivalent formulas of the form ⋀(M,v)∈P◇χk

M,v, where
P is a set of pointed models over Φ (for each of the n equivalence
types, the conjunction either includes formula(s) of that type or it
does not).
Similarly there are at most 2n-many non-equivalent formulas of the
form ◻⋁(M,v)∈P χ

k
M,v, where P is a set of pointed models over Φ.

Clearly, then, there are less than n ⋅ 22n formulas of the form

χk
M,w ∧ ⋀

v∈R[w]
◇ χk

M,v ∧ ◻ ⋁
v∈R[w]

χk
M,v

where M is a pointed model over Φ; and hence only finitely many
k + 1-th Hintikka formulas of pointed models over Φ.
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The key result concerning Hintikka formulas and bisimulation is the
following—k-bisimilarity and Hintikka formulas of degree k encapsulate k-
equivalence, and bisimilarity encapsulates modal equivalence (securing the
entirety of this proposition also requires Φ to be finite):

Proposition 2.4.8. Let k ∈ N and let (M,w) and (M,w′) be pointed
models over Φ. Then:

M,w ”k M
′,w′ ⇐⇒ M,w -k M

′,w′ ⇐⇒ M ′,w′ ( χk
w

M,w ”ML M ′,w′ ⇐⇒ M,w -M ′,w′ ⇐⇒ ∀n ∈ N ∶M ′,w′ ( χn
w

There are certain useful methods of using known models to construct
new ones in such a way that the new models have worlds that are bisimilar
to worlds in the old ones and hence make true the same formulas. We make
use of the following method (see, for instance [4]):

Definition 2.4.9. (Disjoint unions) A collection MI = {Mi =
(Wi,Ri, Vi) ∣ i ∈ I} of models over Φ is disjoint if ⋂i∈IWi = ∅.

The disjoint union of a disjoint collection MI of models over Φ is the
model ⊎MI = (W,R,V ), where W = ⋃i∈IWi, R = ⋃i∈I Ri and V (p) =
⋃i∈I Vi(p) for each p ∈ Φ.

The disjoint union of a collection MI of models that is not disjoint is
formed by indexing the domains of the models in MI to make the col-
lection disjoint (and modifying the accessibility relations and valuations
accordingly), and then proceeding as above.

Note that for simplicity we refer to the worlds in the domain of a disjoint
union ⊎MI = (W,R,V ) of a non-disjoint collectionMI as though they were
the original unindexed worlds—that is, we speak as though W were simply
⋃i∈IWi (and similarly for R and V ).

We then have the following:16

Proposition 2.4.10. For any collection MI = {Mi = (Wi,Ri, Vi) ∣ i ∈ I},
for every i ∈ I and every w ∈Wi:

• for all n ∈ N ∶ χn
Mi,w
= χn

⊎MI ,w
; and so

• Mi,w - ⊎MI ,w and

• Mi,w ”ML ⊎MI ,w.

16Note that [4] includes the claims about bisimulation and equivalence. We have
added the slightly stronger claim concerning identity of Hintikka formulas; that it holds
is easy to see by a simple induction.



Chapter 3

Characterization Theorems

In Section 3.1 we adapt bisimulation to our state-based setting and prove
a state bisimulation invariance theorem for all of our logics. The notion
of state bisimilarity we examine was introduced in [14] and [24]. (See also
[7] for a discussion of notions of state-based bisimulation in the context of
inquisitive logic.)

In Section 3.2 we define state-based analogues of Hintikka formulas,
and prove that these formulas precisely characterize states up to state k-
bisimulation for finite k. We use these formulas to define the normal forms
required for the completeness proof, and use the normal forms to prove
that each of our logics characterizes the set of state properties closed17

under state k-bisimulation for some k ∈ N.
The first two sections closely follow [14], in which it is proved that ML�

with ⩔ characterizes the set of state properties which are downward closed
as well as being closed under state k-bisimulation for some k ∈ N. We also
draw on [13] for the structure of the characteristic formulas.

In Section 3.3, we introduce wide-scope Free Choice inferences and epis-
temic contradictions and explain how Aloni proposes to account for these
using BSML. Her explanation relies on certain state properties; we make
use of the characteristic formulas defined in Section 3.2 to show how these
properties can be defined in terms of inference rules in BSML⩔. We also
point out in this section that our logics are not closed under uniform sub-
stitution.

17Note that following Hella et al. [14] we will speak in terms of closure of properties
under bisimulation rather than the invariance of properties, as in the introduction. These
are the same notion.

33
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3.1 Bisimulation Invariance
The goal of this section is to prove that if two pointed state models are
state bisimilar, then they support the same L-formulas—that is, they are
L-equivalent.

Definition 3.1.1. (Pointed state models and state properties) A
pointed state model (over Φ) is a pair (M,s) where M is a model over Φ
and s is a state on M . We writeM(Φ) (or simplyM when Φ is clear from
the context) for the class of all pointed state models over Φ and we call
subsets of M state properties.

Definition 3.1.2. (Equivalence of pointed state models) Let
(M,s), (M ′, s′) ∈M, and let L be some logic.

• Let k ∈ N. (M,s) and (M ′, s′) are k-equivalent in L, written M,s ”L
k

M ′, s′, if for all ϕ ∈ L with md(ϕ) ≤ k: M,s ( ϕ ⇐⇒ M ′, s′ ( ϕ.

• (M,s) and (M ′, s′) are L-equivalent, written M,s ”L M ′, s′, if
M,s ”L

k M
′, s′ for all k ∈ N.

We write M,s ıL
k M

′, s′ if M,s ”L
k M

′, s′ is not the case, and M,s ıL M ′, s′

if M,s ”L M ′, s′ is not the case.

We omit the L from the notation when it is clear from the context. Note
that M,s ”L M ′, s′ iff for all ϕ ∈ L ∶M,s ( ϕ ⇐⇒ M ′, s′ ( ϕ.

We will treat the entirety of L as a single logic in this section: our
bisimulation invariance theorem will pertain to k-equivalence in L, which
clearly entails k-equivalence in each of our logics. Using the results in the
next section we will be able to show that two pointed state models are
k-equivalent in one of our logics if and only if they are k-equivalent in all
(Corollary 3.2.10).

State bisimilarity is a natural generalization of world-based bisimilarity:

Definition 3.1.3. (State bisimilarity) Let k ∈ N, and (M,s), (M ′, s′) ∈
M. (M,s) and (M ′, s′) are state k-bisimilar, written M,s -k M ′, s′, if

• for each w ∈ s there is some w′ ∈ s′ such that M,w -k M ′,w′ and

• for each w′ ∈ s′ there is some w ∈ s such that M,w -k M ′,w′.

(M,s) and (M ′, s′) are state bisimilar, written M,s - M ′, s′, if M,s -k

M ′, s′ for all k ∈ N.
We write M,s /-k M

′, s′ if M,s -k M ′, s′ is not the case, and M,s /-
M ′, s′ if M,s -M ′, s′ is not the case.
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When (M,s) and (M ′, s′) are state bisimilar, we also say simply that
they are bisimilar. If the models are clear from the context, we also say
that s and s′ are bisimilar.

We now list some properties of state bisimulation we will require. The
following is a straightforward consequence of the definition:

Fact 3.1.4. .

• For any k ∈ N, -k is an equivalence relation on M.

• - is an equivalence relation on M.

The following two results are from [14]. Proposition 3.1.5 follows from
the fact that for the classical k-bisimilarity relation, M,w -k M ′,w′ implies
M,w -n M ′,w′ for all n < k. For the proof of Proposition 3.1.6, see [14].

Proposition 3.1.5. Let k ∈ N, and (M,s), (M ′, s′) ∈M. If M,s -k M ′, s′,
then M,s -n M ′, s′ for all n < k.

Proposition 3.1.6. Let k ∈ N, and let (M,s), (M ′, s′) ∈M be such that
M,s -k+1 M ′, s′. Then:

(i) for each t such that sRt there is a t′ such that s′R′t′ andM, t -k M ′, t′;

(ii) for each t′ such that s′Rt′, there is a t such that sRt andM, t -k M ′, t′;

(iii) M,R[s] -k M ′,R′[s′];

(iv) for all s1, s2 ⊆ s such that s = s1 ∪ s2 there are s′1, s′2 ⊆ s′ such that
s′ = s′1 ∪ s′2; M,s1 -k+1 M ′, s′1; and M,s2 -k+1 M ′, s′2.

We also have:

Proposition 3.1.7. Let k ∈ N, and (M,s), (M ′, s′) ∈ M. Then M,s -k

M ′, s′ iff

(i) for each t ⊆ s, there is a t′ ⊆ s′ such that M, t -k M ′, t′ and

(ii) for each t′ ⊆ s′, there is a t ⊆ s such that M, t -k M ′, t′.

Proof. ⇒: Assume M,s -k M ′, s′ and let t ⊆ s. Let

t′ = {w′ ∈ s′ ∣ ∃w ∈ s ∶M,w -k M,w′}

We show that M, t -k M ′, t′. Clearly for every w′ ∈ t′ there is some w ∈ t
such that M,w -k M ′,w′. Conversely, let w ∈ t ⊆ s. Since M,s -k M ′, s′,
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by the definition of k-bisimulation there is, for every w ∈ s, a w′ ∈ s′ such
that M,w -k M ′,w′; therefore, fix a w′ ∈ s′ such that M,w -k M ′,w′.
Then by the definition of t′, we have w′ ∈ t′. Since w was arbitrary, we have
it that for every w ∈ t, there is a w′ ∈ t′ such that M,w -k M ′,w′. Therefore
M, t -k M ′, t′. Since t was arbitrary, there is for each t ⊆ s some t′ ⊆ s′ such
that M, t -k M ′, t′. The proof of (ii) is similar.
⇐: Assume that (i) and (ii) hold. Then in particular, there is a t′ ⊆ s′

such that M,s -k M ′, t′, and a t ⊆ s such that M, t -k M ′, s′; fix such a t′
and t. Then for every w ∈ s, there is a w′ ∈ t′ ⊆ s such that M,w -k M ′,w′,
and for every w′ ∈ s′, there is a w ∈ t ⊆ s such that M,w -k M ′,w′; therefore
M,s -k M ′, s′.

We can now prove our theorem—support for formulas in L is invariant
under state bisimulation:

Theorem 3.1.8. (Bisimulation invariance) For any (M,s), (M ′, s′) ∈
M and any k ∈ N, if M,s -k M ′, s′, then M,s ”L

k M ′, s′, and therefore
M,s ”L

k M
′, s′ for L ∈ {SML⩔,SGML⩔,BSML⩔}.

Proof. Fix (M,s), (M ′, s′) ∈M. We show that for any ϕ ∈ L, if M,s -k

M ′, s′ for k = md(ϕ), then M,s ( ϕ if and only if M ′, s′ ( ϕ; the conclu-
sion then clearly follows. We show this by induction on the complexity of
ϕ, noting that we may assume that ϕ is in the negation normal form for
whichever logic it belongs to.

• ϕ = p. We have it that md(ϕ) = 0 so assume that M,s -0 M ′, s′.
Assume that M,s ( p. Then for all w ∈ s we have M,w ( p. Since
M,s -0 M ′, s′, we have it that for each w′ ∈ s′ there is a w ∈ s such
that M,w -0 M ′,w′. Therefore, for all w′ ∈ s′ we have M ′,w′ ( p,
and therefore M ′, s′ ( p. The other direction is similar, so M,s ( p
if and only if M ′, s′ ( p.

• ϕ = ¬p or ϕ = ⨼p. This case is analogous to that for ϕ = p.

• ϕ = ne. md(ϕ) = 0 so assume M,s -0 M ′, s′. Assume M,s ( ne.
Then s ≠ ∅; fix some w ∈ s. By M,s -0 M ′, s′, there is some w′ ∈ s′
such that M,s -0 M ′, s′. Therefore s′ ≠ ∅ so that M ′, s′ ( ne. The
other direction is similar, so M,s ( ne if and only if M ′, s′ ( ne.

• ϕ = ⨼ne. md(ϕ) = 0 so assume M,s -0 M ′, s′. Assume M,s ( ⨼ne.
Then s = ∅. By M,s -0 M ′, s′ we have s′ = ∅ so that M ′, s′ ( ⨼ne.
The other direction is similar, so M,s ( ⨼ne if and only if M ′, s′ (

⨼ne.
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• ϕ = ψ ∧ χ. Assume that M,s -k M ′, s′ for k = md(ψ ∧ χ) =
max{md(ψ),md(χ)}. Assume M,s ( ψ ∧ χ. Then M,s ( ψ and
M,s ( χ. By Proposition 3.1.5, M,s -m M ′, s′ for m = md(ψ) and
M,s -n M ′, s′ for n =md(χ). Therefore by the induction hypothesis,
M ′, s′ ( ψ and M ′, s′ ( χ, so that M ′, s′ ( ψ∧χ. The other direction
is similar, so M,s ( ψ ∧ χ if and only if M ′, s′ ( ψ ∧ χ.

• ϕ = ψ ∨ χ. Assume that M,s -k M ′, s′ for k = md(ψ ∨ χ) =
max{md(ψ),md(χ)}. Assume M,s ( ψ ∨χ. Then for some s1, s2 ⊆ s
we have M,s1 ( ψ, M,s2 ( χ and s = s1 ∪ s2.
By Proposition 3.1.6 (iv), there are s′1, s′2 ⊆ s′ such that s′ = s′1 ∪ s′2,
M,s1 -k M ′, s′1, and M,s2 -k M ′, s′2. Therefore by Proposition 3.1.5
we have M,s1 -m M ′, s′1 for m = md(ψ) and M,s2 -n M ′, s′2 for
n =md(χ). By the induction hypothesis, M ′, s′1 ( ψ and M ′, s′2 ( χ,
so that M ′, s′ ( ψ ∨χ. The other direction is similar, so M,s ( ψ ∨χ
if and only if M ′, s′ ( ψ ∨ χ.

• ϕ = ψ⩔ χ. Analogous to the case for ϕ = ψ ∧ χ.

• ϕ = ◇ψ. Assume that M,s -k M ′, s′ for k = md(◇ψ) = md(ψ) + 1.
AssumeM,s ( ◇ψ. Fix some w′ ∈ s′. ByM,s -k M ′, s′, there is some
w ∈ s such that M,w -k M ′,w′; fix such a w. Since M,s ( ◇ψ, there
is a non-empty t ⊆ R[w] such that M, t ( ψ; fix such a t. By M,w -k

M ′,w′ we have M,{w} -k M ′,{w′} so that by Proposition 3.1.6 (iii)
applied to M,{w} and M ′,{w′}, we get M,R[w] -k−1 M ′,R′[w′].
Then by Proposition 3.1.7 there is some t′ ⊆ R′[w′] such thatM, t -k−1
M ′, t′. By the induction hypothesis, M ′, t′ ( ψ. Since t ≠ ∅ and
M, t -k−1 M ′, t′, we have t′ ≠ ∅. Since w′ was arbitrary we therefore
have that M ′, s′ ( ◇ψ. The other direction is similar, so M,s ( ◇ψ
if and only if M ′, s′ ( ◇ψ.

• ϕ = ◻ψ. Assume that M,s -k M ′, s′ for k = md(◻ψ) = md(ψ) + 1.
Assume M,s ( ◻ψ. Fix some w′ ∈ s′. Since M,s -k M ′, s′, there is
a w ∈ s such that M,w -k M ′,w′; fix such a w. Since M,s ( ◻ψ, we
have M,R[w] ( ψ. By M,w -k M ′,w′ we have M,{w} -k M ′,{w′}
so that by Proposition 3.1.6 (iii) applied to M,{w} and M ′,{w′},
we get M,R[w] -k−1 M ′,R′[w′]. Then by the induction hypothesis,
M ′,R′[w′] ( ψ. Since w′ was arbitrary, M ′, s′ ( ◻ψ. The other
direction is similar, so M,s ( ◻ψ if and only if M ′, s′ ( ◻ψ.

• ϕ = �ψ. Assume that M,s -k M ′, s′ for k = md(�ψ) = md(ψ) + 1.
Assume M,s ( �ψ. Then there is some t such that sRt and M, t ( ψ;
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fix such a t. Since M,s -k M ′, s′, by Proposition 3.1.6 (i), there is a
t′ such that s′Rt′ and M, t -k−1 M ′, t′. By the induction hypothesis,
M ′, t′ ( ψ, so that M ′, s′ ( �ψ. The other direction is similar, so
M,s ( �ψ if and only if M ′, s′ ( �ψ.

• ϕ = ⧈ψ. Assume that M,s -k M ′, s′ for k = md(⧈ψ) = md(ψ) + 1.
Assume M,s ( ⧈ψ. Then M,R[s] ( ψ. Since M,s -k M ′, s′, by
Proposition 3.1.6 (iii), M,R[s] -k−1 M ′,R′[s′]. By the induction
hypothesis, M ′,R′[s′] ( ψ, so that M ′, s′ ( ⧈ψ. The other direction
is similar, so M,s ( ⧈ψ if and only if M ′, s′ ( ⧈ψ.

Corollary 3.1.9. For any (M,s), (M ′, s′) ∈ M, if M,s - M ′, s′, then
M,s ”L M ′, s′, and therefore M,s ”L M ′, s′, where L is SML⩔, SGML⩔

or BSML⩔.

We will prove the converse of Theorem 3.1.8 and that of Corollary 3.1.9
in Corollary 3.2.9.

3.2 Characterization Theorems
Let us first make precise the notion of characterization of sets of properties
for our setting.

Definition 3.2.1. A formula ϕ ∈ L defines a property P ⊆M if

P = ∣∣ϕ∣∣ ∶= {(M,s) ∈M ∣M,s ( ϕ}

A property P ⊆ M is definable (by a formula) in a logic L if there is a
formula ϕ in the language of L such that P = ∣∣ϕ∣∣.

Definition 3.2.2. (Characterization) Let P be a set of state properties.
A logic L characterizes P if P is the set of state properties definable in L,
i.e. if

P = {∣∣ϕ∣∣ ⊆M ∣ ϕ is a formula in the language of L}.
If L characterizes a set P of state properties, we also say that L is expres-
sively complete for P.

Our goal is to show that each of our logics characterizes the set of all
state properties that are closed under k-bisimulation for some k ∈ N.

Definition 3.2.3. (Closure under k-bisimulation) Let k ∈ N. A state
property P ⊆M is closed under k-bisimulation if (M,s) ∈ P and M,s -k

M ′, s′ together imply (M ′, s′) ∈ P.
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We also define closure under full bisimulation; we make use of this in
Section 3.3.

Definition 3.2.4. (Closure under bisimulation) A state property P ⊆
M is closed under bisimulation if (M,s) ∈ P and M,s - M ′, s′ together
imply (M ′, s′) ∈ P.

In order to show the characterization results, we first need to define
characteristic formulas for states. These are the state-based counterparts
to the standard Hintikka formulas.

Definition 3.2.5. (Characteristic formulas) For any (M,s) ∈ M(Φ)
and any k ∈ N, define the k-th characteristic formulas Θk

M,s ∈ SML⩔,
(Θk

M,s)∗ ∈ SGML⩔ and (Θk
M,s)∗∗ ∈ BSML⩔ of (M,s) as follows:

• If s ≠ ∅, let

Θk
M,s ∶= ⋁

w∈s
(χk

w ∧ ne)

(Θk
M,s)∗ ∶= ⋁

w∈s
((χk

w)∗ ∧ ne)

(Θk
M,s)∗∗ ∶= ⋁

w∈s
((χk

w)∗∗ ∧ ne)

• If s = ∅, let Θk
M,s = (Θk

M,s)∗ = (Θk
M,s)∗∗ ∶= � (i.e. Θk

M,s = (Θk
M,s)∗ ∶=

p ∧ ¬p and (Θk
M,s)∗∗ ∶= p ∧ ⨼p).

We also call Θk
M,s, (Θk

M,s)∗ and (Θk
M,s)∗∗ characteristic formulas of degree

k.

Recall that ∗ and ∗∗ are the maps we used to show that SGML⩔

and BSML⩔ are conservative extensions of ML. Clearly it follows from
Propositions 2.2.13 and 2.2.15 that Θk

M,s ” (Θk
M,s)∗ ” (Θk

M,s)∗∗. We will
sometimes use Θk

M,s to refer to any one of these three formulas. When
results are framed this way, these results are such that they then follow
for all three formulas due to the equivalence described above. When the
precise syntax is important, we disambiguate. We also sometimes abuse the
notation for Hintikka formulas in this fashion: χk

w may also refer to (χk
w)∗

and (χk
w)∗∗. We will write Θk

s when M is clear from the context. Note that
this definition relies on the fact that Φ is finite (since Φ is finite, there are
only finitely many non-equivalent Hintikka formulas of pointed models over
Φ (Fact 2.4.7), and hence we may take the disjunction in Θk

s to be finite
even when s is infinite).

It is easy to see from Facts 2.4.6 and 2.4.7 that we get state-based
analogues:
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Fact 3.2.6. Let k ∈ N and (M,s) ∈ M. Then md(Θk
s) = md((Θk

s)∗) =
md((Θk

s)∗∗) ≤ k.

Fact 3.2.7. For any finite set of proposition symbols Φ and any k ∈ N,
there are only finitely many non-equivalent k-th characteristic formulas of
pointed state models over Φ.

Proof. By Fact 2.4.7, there are only finitely many non-equivalent k-th Hin-
tikka formulas of pointed models over Φ, say n-many. If χk

w ” χk
w′ , then

(χk
w ∧ ne) ∨ (χk

w′ ∧ ne) ” χk
w ∧ ne ” χk

w′ ∧ ne. Therefore there are at most
2n-many non-equivalent formulas of the form ⋁(M,w)∈P(χk

w ∧ ne), where P
is a set of pointed models over Φ. Clearly, then, there are only finitely
many non-equivalent k-th characteristic formulas of pointed state models
over Φ.

Characteristic formulas of degree k precisely characterize pointed state
models up to k-bisimulation:

Proposition 3.2.8. For any (M,s) ∈M and any k ∈ N, we have it that
M ′, s′ ( Θk

s iff M ′, s′ ( (Θk
s)∗ iff M ′, s′ ( (Θk

s)∗∗ iff M,s -k M ′, s′.

Proof. We prove M ′, s′ ( Θk
s iff M,s -k M ′, s′. The conclusion then follows

since Θk
M,s ” (Θk

M,s)∗ ” (Θk
M,s)∗∗.

Case 1 : s = ∅. Then M,s -k M ′, s′ ⇐⇒ s′ = ∅ ⇐⇒ M ′, s′ ( �.
Case 2: s ≠ ∅.

• ⇐: Fix some M ′, s′ such that M,s -k M ′, s′. Let w ∈ s. Fix some
w′ ∈ s′ such that M,w -k M ′,w′. By Proposition 2.4.8, M ′,w′ ( χk

w.
Then by Proposition 2.2.16 we have M ′,{w′} ( χk

w and therefore
M ′,{w′} ( χk

w ∧ ne. Since w was arbitrary, we have it that for each
w ∈ s (and hence for each χk

w ∈ {χk
v ∣ v ∈ s}), there is a {w′} ⊆ s′

such that M ′,{w′} ( χk
w ∧ ne; we can similarly show that for each

{w′} ⊆ s′ there is a w ∈ s (and hence a χk
w ∈ {χk

v ∣ v ∈ s) such that
M ′,{w′} ( χk

w ∧ ne. Together these imply M ′, s′ ( Θk
s .

• ⇒: Fix some M ′, s′ such that M ′, s′ ( Θk
s . Then there are subsets

s′w ⊆ s′ (where w ∈ s) such that M ′, s′w ( χk
w ∧ ne and s′ = ⋃w∈s s′w.

Fix some v′ ∈ s′. Then there is some w ∈ s such that v′ ∈ s′w. Since
M ′, s′w ( χk

w ∧ne, we have M ′, s′w ( χk
w so that by Proposition 2.2.16,

M ′, v′ ( χk
w. Then by Proposition 2.4.8, M,w -k M ′, v′. Since v′ was

arbitrary, we have it that for any v′ ∈ s′, there is a w ∈ s such that
M,w -k M ′, v′.
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Let w ∈ s. Then there is some s′w ⊆ s′ such that M ′, s′w ( χk
w ∧ ne.

Then M ′, s′w ( ne, so there is some v′ ∈ s′w. By Proposition 2.2.16,
M ′, v′ ( χk

w, so that by Proposition 2.4.8, M,w -k M ′, v′. So for any
w ∈ s, there is a v′ ∈ s′ such that M,w -k M ′, v′.
Combining these two points, we get M,s -k M ′, s′.

We now get a full state-based counterpart to Proposition 2.4.8 (this
depends on Φ being finite):

Corollary 3.2.9. Let k ∈ N, let (M,s), (M ′, s′) ∈ M(Φ), and let L ∈
{SML⩔,SGML⩔,BSML⩔}. Then:

M,s ”L
k M

′, s′ ⇐⇒ M,s -k M
′, s′ ⇐⇒ M ′, s′ ( Θk

s

M,s ”L M ′, s′ ⇐⇒ M,s -M ′, s′

Proof. By Proposition 3.2.8, M,s -k M ′, s′ ⇐⇒ M ′, s′ ( Θk
s . By Theorem

3.1.8, M,s ”L
k M

′, s′ Ô⇒ M,s -k M ′, s′.
If M,s ”L

k M
′, s′, then since M,s ( Θk

s (by Fact 3.1.4 and Proposition
3.2.8) and since md(Θk

s) ≤ k (by Fact 3.2.6), we have M ′, s′ ( Θk
s . Then

by M,s -k M ′, s′ ⇐⇒ M ′, s′ ( Θk
s we have M,s -k M ′, s′. So M,s ”L

k

M ′, s′ Ô⇒ M,s -k M ′, s′.
Then also M,s ”L M ′, s′ ⇐⇒ ∀k ∈ N ∶ M,s ”L

k M
′, s′ ⇐⇒ ∀k ∈ N ∶

M,s -k M ′, s′ ⇐⇒ M,s -M ′, s′.

Corollary 3.2.10. Let k ∈ N and let (M,s), (M ′, s′) ∈M(Φ). Then:

M,s ”SML⩔

k M ′, s′ ⇔ M,s ”SGML⩔

k M ′, s′ ⇔ M,s ”BSML⩔

k M ′, s′

M,s ”SML⩔ M ′, s′ ⇔ M,s ”SGML⩔ M ′, s′ ⇔ M,s ”BSML⩔ M ′, s′

Given the above, we may now simply write M,s ”k M ′, s′ and M,s ”

M ′, s′.
We define the normal-form formulas used in the completeness proof

and in the characterization theorems using the characteric formulas and
the global disjunction. These formulas characterize sets of pointed state
models (state properties) in essentially the same way that characteristic
formulas characterize single pointed state models.

Definition 3.2.11. (Normal form) We say that a formula in the language
of SML⩔, of SGML⩔, or of BSML⩔ is in normal form when it is in the
form

⩔
(M,s)∈F

Θk
s

where F is a finite subset ofM. We call formulas of this form normal-form
formulas of degree k.
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We now use formulas of this type to prove the characterization theorems
(these again depend on Φ being finite):

Proposition 3.2.12. For any P ⊆M(Φ), if P is closed under k-bisimulation
for some k ∈ N, then P is definable SML⩔(Φ), in SGML⩔(Φ) and in
BSML⩔(Φ).

Proof. Fix P. By Fact 3.2.7, there are only finitely many non-equivalent
characteristic formulas of degree k. Therefore we can find a finite subset
F of P such that for each (M,s) ∈ P, there is some (M ′, s′) ∈ F such that
Θk

M,s ” Θk
M ′,s′ . Let ϕ ∶=⩔(M,s)∈F Θ

k
M,s ∈ L.

• Let (M,s) ∈ P. Then M,s ( Θk
s by Proposition 3.2.8. Fix some

(M ′, s′) ∈ F such that Θk
M,s ” Θk

M ′,s′ . Then M,s ( Θk
M ′,s′ so that

M,s ( ϕ. Therefore P ⊆ ∣∣ϕ∣∣.

• Let (M,s) be such that M,s ( ϕ. Then there is some (M ′, s′) ∈ F ⊆ P
such that M,s ( Θk

s′ . By Proposition 3.2.8, M,s -k M ′, s′, so that
(M,s) ∈ P by closure under k-bisimulation. Therefore ∣∣ϕ∣∣ ⊆ P.

Theorem 3.2.13. (Characterization theorems) SML⩔(Φ),
SGML⩔(Φ) and BSML⩔(Φ) each characterizes the set

B ∶= {P ⊆M(Φ) ∣ P is closed under k-bisimulation for some k ∈ N}.

Proof. We want to prove B = {∣∣ϕ∣∣ ∣ ϕ is a formula in the language of L},
for each of our logics L. The right-to-left inclusions follow from Theorem
3.1.8. The left-to-right inclusions follow from Proposition 3.2.12.

We note in passing that as a consequence of the van Benthem characteri-
zation theorem (see, for instance, [4]), classical modal logic characterizes the
set of pointed model properties which are closed under k-bisimulation for
some k ∈ N (where characterization, pointed model properties, and closure
under k-bisimulation are defined analogously to our state-based notions.)
Due to this, we get the following for state-based classical modal logic (es-
sentially this fact is pointed out in, for instance [35]):

Definition 3.2.14. A state property P ⊆M is flat if (M,s) ∈ P if and only
if for all w ∈ s ∶ (M,{w}) ∈ P.

Proposition 3.2.15. ML(Φ), ML�(Φ) and ML(Φ)∗∗ each characterizes
the set

F ∶= {P ⊆M(Φ) ∣ P is flat & closed under k-bisimulation for some k ∈ N}.
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Proof. We show the result for ML; the other results then follow by Propo-
sitions 2.2.13 and 2.2.15. We want to prove F = {∣∣α∣∣ ∣ α ∈ ML}. The
right-to-left inclusion follows from Theorem 3.1.8 and Corollary 2.2.9.

Let P ∈ F, and fix k ∈ N such that P is closed under k-bisimulation. Let
P ′ ∶= {(M,w) ∣ ∃(M,s) ∈ P ∶ w ∈ s}. Let (M ′,w′) be such that M,w -k

M ′,w′. By flatness we have (M,{w}) ∈ P, and by M,w -k M ′,w′ we have
M,{w} -k M ′,{w′}; therefore (M ′,{w′}) ∈ P. But then (M ′,w′) ∈ P ′.
So P ′ is closed under k-bisimulation. Then by the consequence of the van
Benthem characterization theorem noted above, there is a formula ϕ ∈ML
such that (M,w) ∈ P ′ if and only if M,w ( α.

Then (M,s) ∈ P iff ∀w ∈ s ∶ (M,w) ∈ P ′ iff ∀w ∈ s ∶ M,w ( α iff
(by Proposition 2.2.16) M,s ( α. So P = ∣∣α∣∣. Therefore F ⊆ {∣∣α∣∣ ∣ α ∈
ML}.

3.3 Wide-scope fc and Epistemic
Contradictions

We are now in a position to discuss two further linguistic phenomena which
Aloni [1] proposes to account for using BSML.18 The first is wide-scope
Free Choice (first conceptualized as a variant of fc by Zimmermann in
[39])19:

You may go to the beach or you may go to the cinema.
⇝ You may go the beach and you may go to the cinema.
(◇b ∨◇c)→ (◇b ∧◇c)

As with our original example (an instance of narrow-scope fc), the in-
ference above appears to be licensed in at least some situations, and the
corresponding formalization does not follow from classical deontic logic.

The second issue is that of epistemic contradictions. The term is Yalcin’s
[33]; the issue was first discussed by Wittgenstein [31].

#It is not raining but it might be raining.

The above is clearly infelicitous, and appears to be a contradiction in some
sense, so we may want something like the following to be in force (here ◇

18Many of the results in this section apply to all of our logics, but since our present
purpose is to examine linguistic applications which are most relevant for BSML⩔, we
will frame most results in terms of BSML⩔ only.

19See also [12] for an account of wide-scope fc using ∨ and a modality distinct from
ours.
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is the epistemic “might”-modality):

(¬r ∧◇r)→ �

The challenge in accounting for epistemic contradictions is to obtain some-
thing like the above without endorsing the following as a validity:

◇r → r

Aloni defines two state properties:

• R is indisputable in (M,s) if and only if for all w, v ∈ s ∶ R[w] = R[v].

• R is state-based in (M,s) if and only if for all w ∈ s ∶ R[w] = s.

If R is indisputable in (M,s), we will also say that (M,s) is indisputable for
short, and similarly for state-basedness. Note that state-basedness implies
indisputability.

Wide-scope fc can then be accounted for in BSML by noting that
for all indisputable (M,s), we have it that M,s ( (◇ϕ ∨ ◇ψ)+ implies
M,s ( ◇ϕ ∧◇ψ—so wide-scope fc inferences are predicted to be licensed
in indisputable pointed state models.

If one thinks of the distinguished state s in a pointed state model as
representing the information state of the speaker that is being modelled,
one may conceive of indisputability as representing this speaker being fully
informed about the accessibility relation in the state. For instance, if the
relation represents permissibility and obligation as in deontic logic, if what is
permissible is the same in every world in the speaker’s information state (i.e.
if R[w] = R[v] for all w, v ∈ s), then the speaker is fully informed about what
is permissible (and what is obligatory). In line with this, Aloni conjectures
that for the deontic modality, R is indisputable precisely when the speaker is
taken to be knowledgeable concerning what is permissible, and she therefore
predicts that wide-scope deontic fc inferences are only drawn when this is
the case. This prediction is supported by some preliminary experimental
data—see [19].

For an example of speaker ignorance cancelling fc effects, consider the
following adaptation of an example by Zimmermann [39]:

You may go to the beach or go to the cinema, but I forget which.
/⇝ You may go the beach and you may go to the cinema.

Note that while this may appear to be a case of narrow-choice fc, and hence
not cancellable by speaker ignorance as per Aloni’s predictions, it has been
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been argued [9] that the sluice in the above (the ellipsis effectuated by the
“which”) is only compatible with an interpretation in which the disjunction
has scope over “may”. If this is the case, the sluice (presumably “I forget
which (you may go to)”) forces the wide-scope interpretation “(You may go
to the beach) or (you may go the cinema)”.

As for epistemic contradictions, we have it that for all state-based
(M,s), M,s ( ⨼ϕ ∧ ◇ϕ implies M,s ( �; and M,s ( ◇ϕ does not im-
ply M,s ( ϕ even if (M,s) is state-based.

Aloni assumes that for the epistemic “might”-modality, R should be
taken to be state-based (and hence indisputable), and she therefore predicts
both that wide-scope fc-inferences are always drawn for this modality, and
that epistemic contradictions are accounted for as above.

As Aloni points out, a state-based accessibility relation is appropriate
for representing epistemic modalities at least in the sense that it leads to
the satisfaction of the S5 axioms, along with their traditional epistemic
interpretations—if (M,s) is state-based, then (noting that ◻ here is the
epistemic “must”-modality):

• M,s ( ◻ϕ implies M,s ( ϕ

• M,s ( ◻ϕ implies M,s ( ◻ ◻ ϕ

• M,s ( ⨼ ◻ ϕ implies M,s ( ◻⨼ ◻ ϕ

Note that these all hold because they follow from the fact that if (M,s) is
state-based, then M,s ( ϕ if and only if M,s ( ◻ϕ. Recalling that support
represents assertability in BSML, the equivalence of ϕ and ◻ϕ in state-
based states might be thought of as representing “‘It must be the case that
ϕ’ is assertible if and only if ‘ϕ’ is assertible”.

In the remainder of this section we will define the classes of indisputable
and state-based pointed state models in terms of inference rules. Or, rather,
we define classes which serve the same purpose as Aloni intends the indis-
putable and state-based classes to serve. The issue with the properties as
defined above is that they are not closed under bisimulation and hence
are not modally definable—consider the example in Figure 3.1 (modified
from an example by Del Valle-Inclán (see [3]) to make it suitable for our
non-union-closed setting).

In the figure, each of (M,s1) and (M,s2) is both state-based and indis-
putable; (M,s3) is neither.

If we assume that M,w1 -M,w2, then M,s1 -M,s2. Then it is easy to
see that also M,s1 -M,s3 (and M,s2 -M,s3) so that M,s1 ” M,s3 (and
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w1 w2

w3 w4

(a) (M,s1)

w1 w2

w3 w4

(b) (M,s2)

w1 w2

w3 w4

(c) (M,s3)

Figure 3.1: Indisputability and state-basedness are not definable

M,s2 ” M,s3). If there were a formula ϕ such that for any (M,s) ∈M,
M,s ( ϕ if and only if (M,s) were indisputable, then we would haveM,s1 (

ϕ, so that by M,s1 ” M,s3 also M,s3 ( ϕ, which would imply that (M,s3)
were indisputable, a contradiction. Similarly for state-basedness, so neither
is definable (in any language that is invariant under state bisimulation).
Note that this example also shows that the properties are not definable
using inference rules (in the sense to be explained below).

In order to correct for this issue we therefore make use of the following
variant concepts instead—these are also due to Aloni (personal communi-
cation) and will do equally well for her purposes.

Definition 3.3.1. (Indisputability and state-basedness) Let (M,s) ∈
M.

• R is indisputable in (M,s) iff ∀w, v ∈ s ∶M,R[w] -M,R[v].

• R is state-based in (M,s) iff ∀w ∈ s ∶M,R[w] -M,s.

If R is indisputable / state-based in (M,s), we also say that (M,s) is
indisputable / state-based.

Again, state-basedness implies indisputability.
Now note that clearly:

Proposition 3.3.2. .

• {(M,s) ∈M ∣ (M,s) is indisputable} is closed under bisimulation.

• {(M,s) ∈M ∣ (M,s) is state-based} is closed under bisimulation.

And it is also easy to see that:

Proposition 3.3.3. For any k ∈ N:
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• {(M,s) ∈ M ∣ (M,s) is indisputable} is not closed under k-
bisimulation.

• {(M,s) ∈ M ∣ (M,s) is state-based} is not closed under k-
bisimulation.

Proof. We prove the results in parallel; assume for contradiction (i) that
{(M,s) ∈ M ∣ (M,s) is indisputable} is closed under k-bisimulation for
some k ∈ N and (ii) that {(M,s) ∈M ∣ (M,s) is state-based} is also closed
under k-bisimulation (we may assume without loss of generality that both
are closed for the same k).

Let

W ∶= ⋃
n∈N
{wn, vn}

R ∶= {(wi,wi+1) ∣ i ∈ N} ∪ {(vi, vi+1) ∣ i ∈ N}

and let V be such that for all q ∈ Φ/{p} ∶ V (q) = ∅; and V (p) = {vk+1}. Let
M ∶= (W,R,V ).

Then clearly (M,{w0}) is state-based and indisputable. It is also easy
to see that M,{w0} -k M,{w0, v0}.

By assumption (i), (M,{w0, v0}) is indisputable. Therefore M,R[w0] -
M,R[v0], and so M,R[w0] -k M,R[v0]. Then by Theorem 3.1.8,
M,R[w0] ”k M,R[v0]. But we also have

M,R[v0] (

k
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
◇ . . .◇p and M,R[w0] *

k
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
◇ . . .◇p

contradicting M,R[w0] ”k M,R[v0].
By assumption (ii), (M,{w0, v0}) is state-based. Therefore M,R[w0] -

M,{w0, v0} and M,R[v0] - M,{w0, v0} so that by Fact 3.1.4 we have
M,R[w0] -M,R[v0], and then we have a contradiction as above.

Therefore:

Corollary 3.3.4. There is no formula ϕ ∈ BSML⩔(Φ) such that

• ∣∣ϕ∣∣ = {(M,s) ∈M ∣ (M,s) is indisputable}; or such that

• ∣∣ϕ∣∣ = {(M,s) ∈M ∣ (M,s) is state-based}.

Proof. By Theorem 3.2.13 and Proposition 3.3.3.

So no specific formula can define the desired properties. However, this
does not imply that the properties are undefinable by axioms:
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Definition 3.3.5. An axiom A(p1, . . . , pn) in the language of a logic L
defines a property P ⊆M if

P = {(M,s) ∈M ∣ for all substitution instances A(ϕ1/p1, . . . , ϕn/pn) ∈ L
(where ϕ1, . . . , ϕn ∈ L) of A ∶M,s ( A(ϕ1/p1, . . . , ϕn/pn)}

A property P ⊆ M is definable (by an axiom) in a logic L if there is an
axiom A in the language of L such that A defines P.

As noted above, we will make use of inference rules. Using rules of the
form:

A(p1, . . . , pn)
B(p1 . . . , pn)

allows us, in effect, to also express axioms that utilize the material
implication—for any (M,s) ∈M:

• the inference rule above is sound in (M,s) for all substitution in-
stances of formulas ϕ1, . . . , ϕn ∈ L if and only if

• for all ϕ1, . . . , ϕn ∈ L: M,s ( A(ϕ1/p1, . . . , ϕn/pn) implies M,s (

B(ϕ1/p1, . . . , ϕn/pn) if and only if

• for all ϕ1, . . . , ϕn ∈ L:

M,s ( A(ϕ1/p1, . . . , ϕn/pn)→ B(ϕ1/p1, . . . , ϕn/pn)

(where M,s ( χ→ ν iff M,s ( χ implies M,s ( ν).

We may also be able to find axioms in the language of BSML⩔ to
define the properties. The premises and conclusions used in our inference
rules are formulated using the language of BSML⩔20. Therefore, if the
material implication is uniformly definable in BSML⩔21, each of our rules
is definable using axioms. Even if this is not the case, particular rules may
be definable using axioms.

20We do not make use of ⩔, so in fact the rules can also be formulated in BSML.
Our proofs in this section also do not rely on ⩔ (we require the characteristic formulas
but not the normal forms), so the properties are also definable using inference rules
formulated in BSML.

21I.e. if there is some ϕ(p1, p2) ∈ BSML⩔ such that for all (M,s) ∈ M and all
ψ1, ψ2 ∈ BSML⩔ ∶M,s ( ψ1 → ψ2 iff M,s ( ϕ(ψ1/p1, ψ2/p2).
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Note that by Theorem 3.1.822, each substitution instance of an ax-
iom A(p1, . . . , pn) → B(p1, . . . , pn) (where A and B are in the language
of BSML⩔) with ϕ1, . . . , ϕn ∈ BSML⩔ defines a property

∣∣A(ϕ1/p1, . . . , ϕn/pn)→ B(ϕ1/p1, . . . , ϕn/pn)∣∣

which is invariant under k-bisimulation for some k ∈ N. By Theorem 3.2.13
there is then some formula χ ∈ BSML⩔ such that

∣∣χ∣∣ = ∣∣A(ϕ1/p1, . . . , ϕn/pn)→ B(ϕ1/p1, . . . , ϕn/pn)∣∣

i.e. this substitution instance property is definable in BSML⩔ by a specific
formula.

That for a given substitution instance

A(ϕ1/p1, . . . , ϕn/pn)→ B(ϕ1/p1, . . . , ϕn/pn)

we find some χ(ϕ1, . . . , ϕn) ∈ BSML⩔ such that

M,s ( χ(ϕ1, . . . , ϕn) iff M,s ( A(ϕ1/p1, . . . , ϕn/pn)→ B(ϕ1/p1, . . . , ϕn/pn)

does not imply that → is uniformly definable because BSML⩔ is not closed
under uniform substitution. We should note here that this holds for all
our logics (as well as PT+ [38], for which we also provide a proof system);
this means that none of the deduction systems in Chapter 4 will admit a
uniform substitution rule.

Fact 3.3.6. For L ∈ {PT+,SML⩔,SGML⩔,BSML⩔}, L is not closed
under uniform substitution: there are formulas ϕ(p1, . . . , pn), ψ(p1, . . . , pn),
χ1, . . . , χn in the language of L such that

ϕ(p1, . . . , pn) ( ψ(p1, . . . , pn) but ϕ(χ1/p1, . . . , χn/pn) * ψ(χ1/p1, . . . , χn/pn).

Consider, for instance:

p ∨ p ( p but (p⩔⨼p) ∨ (p⩔⨼p) * (p⩔⨼p)

This example is from [38] (note that it clearly also holds with ¬ in place
of ⨼); see [38] also for a precise definition of uniform substitution and
more discussion on the failure of closure under uniform substitution in
team/state-based semantics.

We now define the properties. We will use the following fact, which
follows from the properties of characteristic formulas:

22As well as the fact that support for → is invariant under k-bisimulation in the same
manner as support for the other connectives: if M,s -k M

′, s′ and M,s ( ϕ→ ψ, where
k =md(ϕ→ ψ) =max{md(ϕ),md(ψ)}, then M ′, s′ ( ϕ→ ψ.
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Proposition 3.3.7. For any (M,s), (M ′, s′) ∈ M, if M,s /- M ′, s′, then
there is a formula ϕ ∈ BSML⩔ such that M,s ( ϕ and M ′, s′ * ϕ.

Proof. If (M,s) and (M ′, s′) are as specified, then since M,s /-M ′, s′, there
is some k ∈ N such that M,s /-k M

′, s′; fix such a k. Then by Proposition
3.2.8, M,s ( Θk

s and M ′, s′ * Θk
s , so Θk

s is as required.

We get that the following inference rules correspond to indisputability
and state-basedness:

Proposition 3.3.8. For any (M,s) ∈M(Φ):

(i) R is indisputable in (M,s)

a) iff for all formulas ϕ ∈ BSML⩔, the following inference is sound
in (M,s):

(◻ϕ ∧ ne)∨ ã
◻ϕ

(i.e. if and only if for all formulas ϕ ∈ BSML⩔, M,s ( (◻ϕ ∧
ne)∨ ã implies M,s ( ◻ϕ.)

b) iff for all formulas ϕ ∈ BSML⩔, the following inference is sound
in (M,s):

(◇ϕ ∧ ne)∨ ã
◇ϕ

(ii) R is state-based in (M,s)

a) iff for all formulas ϕ ∈ BSML⩔, the following inference is sound
in (M,s):

ϕ

◻ϕ
b) iff for all formulas ϕ ∈ BSML⩔, the following inference is sound

in (M,s):

(◻ϕ ∧ ne)∨ ã
ϕ

Proof. (i) a) ⇒: Assume that R is indisputable in (M,s). Fix ϕ ∈
BSML⩔.
Assume M,s ( (◻ϕ ∧ ne)∨ ã. If s = ∅, then M,s ( ◻ϕ. If
s ≠ ∅, fix some w ∈ s. Since M,s ( (◻ϕ ∧ ne)∨ ã, there are t
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and t′ such that s = t ∪ t′; M, t ( ◻ϕ ∧ ne; and M, t′ (ã. Then
M, t ( ne so we can fix some v ∈ t ⊆ s. Then since M, t ( ◻ϕ,
we have M,R[v] ( ϕ. By indisputability, M,R[w] - M,R[v],
so by Corollary 3.1.9, M,R[w] ( ϕ. Since w was arbitrary, we
have M,s ( ◻ϕ. So either way we have M,s ( ◻ϕ.
⇐: Assume that R is not indisputable in (M,s). We show
that there is some formula χ such that M,s ( (◻χ∧ne)∨ ã and
M,s * ◻χ; the desired conclusion then follows by contraposition.
By our assumption there are some w, v ∈ s such that M,R[w] /-
M,R[v]. By Proposition 3.3.7, there is some ϕ ∈ BSML⩔ such
that M,R[w] ( ϕ and M,R[v] * ϕ.
We then have it that M,{w} ( ◻ϕ ∧ ne and M,s/{w} (ã, and
therefore M,s ( (◻ϕ ∧ ne)∨ ã. Since M,R[v] * ϕ we have
M,s * ◻ϕ, so ϕ is a formula as desired.

b) ⇒: Assume that R is indisputable in (M,s). Fix ϕ ∈ BSML⩔.
Assume M,s ( (◇ϕ∧ne)∨ ã. If s = ∅, then M,s ( ◇ϕ. If s ≠ ∅,
fix some w ∈ s. Since M,s ( (◇ϕ∧ne)∨ ã, there are t and t′ such
that s = t ∪ t′; M, t ( ◇ϕ ∧ ne; and M, t′ (ã. Since M, t ( ne,
we can fix some v ∈ t ⊆ s. Then since M, t ( ◇ϕ, there is some
non-empty u ⊆ R[v] such that M,u ( ϕ. By indisputability,
M,R[w] - M,R[v], and therefore M,R[w] -k M,R[v] for k =
md(ϕ). Then by Proposition 3.1.7, there is a u′ ⊆ R[w] such
that M,u -k M,u′. Then by Theorem 3.1.8, M,u′ ( ϕ. Since
u is non-empty and M,u -k M,u′, we have it that u′ is non-
empty. So since w was arbitrary, we have M,s ( ◇ϕ. So either
way M,s ( ◇ϕ.
⇐: Assume that R is not indisputable in (M,s). We show that
there is some formula χ such that M,s ( (◇χ ∧ ne)∨ ã; and
M,s * ◇χ; the result then follows by contraposition.
By our assumption there are some w, v ∈ s such that M,R[w] /-
M,R[v]. Then there is some k ∈ N such that M,R[w] /-k

M,R[v]; fix such a k. By Proposition 3.1.7, there is either some
t ⊆ R[w] such that for all t′ ⊆ R[v] ∶ M, t /-k M, t′, or some
t′ ⊆ R[v] such that for all t ⊆ R[w] ∶M, t /-k M, t′. Assume the
former with no loss of generality. Then by Proposition 3.2.8,
M, t ( Θk

t and for all t′ ⊆ R[v] ∶M, t′ * Θk
t .

Note that if t = ∅, then M, t -k M,∅ with ∅ ⊆ R[v], a con-
tradiction. So t ≠ ∅. Therefore M,{w} ( ◇Θk

t ∧ ne so that
since M,s/{w} (ã, we have M,s ( (◇Θk

t ∧ ne)∨ ã. Since for
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all t′ ⊆ R[v] ∶ M, t′ * Θk
t , we also have M,s * ◇Θk

t , so Θk
t is a

formula as desired.

(ii) a) ⇒: Assume that R is state-based in (M,s). Fix ϕ ∈ BSML⩔.
Assume M,s ( ϕ. If s = ∅, then M,s ( ◻ϕ. If s ≠ ∅, fix some
w ∈ s. By state-basedness, M,R[w] - M,s, so by Corollary
3.1.9, M,R[w] ( ϕ. w was arbitrary, so M,s ( ◻ϕ. So either
way we have M,s ( ◻ϕ.
⇐: Assume that R is not state-based in (M,s). We show that
there is some formula χ such that M,s ( χ and M,s * ◻χ; the
result then follows by contraposition.
By our assumption there is some w ∈ s such that M,R[w] /-
M,s. By Proposition 3.3.7, there is some ϕ ∈ BSML⩔ such that
M,s ( ϕ and M,R[w] * ϕ.
Then M,s * ◻ϕ, and so ϕ is a formula as desired.

b) ⇒: Assume that R is state-based in (M,s). Fix ϕ ∈ BSML⩔.
Assume M,s ( (◻ϕ∧ne)∨ ã. Then there are t and t′ such that
s = t∪ t′; M, t ( ◻ϕ∧ne; and M, t′ (ã. Since M, t ( ne, we can
fix some w ∈ t ⊆ s. Since M, t ( ◻ϕ, we have M,R[w] ( ϕ. By
state-basedness, M,R[w] - M,s, so by Corollary 3.1.9, M,s (

ϕ.
⇐: Assume that R is not state-based in (M,s). We show that
there is some formula χ such that M,s ( (◻χ ∧ ne)∨ ã and
M,s * χ; the result then follows by contraposition.
By our assumption there is some w ∈ s such that M,R[w] /-
M,s. By Proposition 3.3.7, there is some ϕ ∈ BSML⩔ such that
M,R[w] ( ϕ and M,s * ϕ.
Then M,{w} ( ◻ϕ ∧ ne and M,s/{w} (ã, so M,s ( (◻ϕ ∧
ne)∨ ã, and therefore ϕ is as desired.

The second rule given for indisputability clearly allows us to derive wide-
scope fc inferences in the way Aloni intends. The first rule relates to what
Aloni calls Zimmermann’s problem (it first arose for Zimmermann in [39])—
for indisputable (M,s), we have it that M,s ( ◻(ϕ∧ne)∨◻(ψ∧ne) implies
M,s ( ◻ϕ ∧ ◻ψ. Consider:

You must go to the beach or you must go to the cinema.
/⇝ You must go the beach and you must go to the cinema.

This does not appear to be an inference which is licensed. Aloni’s system is
forced to predict, therefore, that either the first statement in the above has
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to be interpreted with the modality having scope over the disjunction (as
◻(ϕ∨ψ)), or as felicitous only if the speaker is taken not to be knowledgeable
about what is permissible (and hence only if the state is not indisputable).
By what we showed above, indisputable states are precisely the states in
which wide-scope fc is accounted for as Aloni intends (the states in which
the second rule for indisputability is sound), and also precisely the states in
which Zimmermann’s problem arises (the states in which the first rule for
indisputability is sound). So if one is to account for wide-scope fc as Aloni
does, one cannot, in this setting, avoid Zimmermann’s problem by finding
another type of state in which the wide-scope fc rule is sound.

We lastly show that epistemic contradictions are modelled in state-based
states (given the new definition of state-basedness) in the way Aloni in-
tends. We make use of the following relationship between support and
anti-support:

Proposition 3.3.9. For any formula ϕ ∈ BSML⩔ and any (M,s) ∈M(Φ),
if M,s ( ϕ, then for any state t ⊆ W , if M, t ) ϕ, then s ∩ t = ∅ (and in
particular, if M,s ( ϕ and M,s ) ϕ, then s = ∅).

Proof. By induction on the complexity of ϕ (noting that we may assume
that ϕ is in negation normal form):

• ϕ = p. If M,s ( p and M, t ) p for some state t, then for all w ∈ s
we have w ∈ V (p) and for all and w ∈ t we have v ∉ V (p), so clearly
s ∩ t = ∅.

• ϕ = ⨼p. This case is analogous to that for ϕ = p.

• ϕ = ne. If M,s ( ne and M, t ) ne for some state t, then t = ∅ so
s ∩ t = ∅.

• ϕ = ⨼ne. If M,s ( ⨼ne and M, t ) ⨼ne for some state t, then s = ∅
so s ∩ t = ∅.

• ϕ = ψ ∧ χ. If M,s ( ψ ∧ χ, then M,s ( ψ and M,s ( χ. If for
some state t we have M, t ) ψ ∧ χ, then there are u,u′ ⊆ t such that
t = u ∪ u′, M,u ) ψ and M,u′ ) χ. By the induction hypothesis,
s ∩ u = s ∩ u′ = ∅, and therefore s ∩ (u ∪ u′) = s ∩ t = ∅.

• ϕ = ψ ∨χ. If M,s ( ψ ∨χ, then there are u,u′ ⊆ s such that s = u∪u′,
M,u ( ψ and M,u′ ( χ. If for some state t we have M, t ) ϕ ∨ ψ,
then M, t ) ψ and M, t ) χ. Then by the induction hypothesis,
u ∩ t = u′ ∩ t = ∅, so s ∩ t = (u ∪ u′) ∩ t = ∅.
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• ϕ = ψ ⩔ χ. If M,s ( ψ ⩔ χ, then M,s ( ψ or M,s ( χ. If for some
state t we have M, t ) ϕ⩔ ψ, then M, t ) ψ and M, t ) χ. Then by
the induction hypothesis, s∩ t = ∅ or s∩ t = ∅, so either way s∩ t = ∅.

• ϕ = ◇ψ. If M,s ( ◇ψ, then for each w ∈ s, there is some non-empty
u ⊆ R[w] such that M,u ( ψ. If for some state t we have M, t ) ◇ψ,
then for each w ∈ t, M,R[w] ) ψ. Assume for contradiction that
s ∩ t ≠ ∅ and fix some w ∈ s ∩ t. By the above M,R[w] ) ψ, and we
can fix some non-empty u ⊆ R[w] such that M,u ( ψ. Then by the
induction hypothesis, u ∩R[w] = u = ∅, a contradiction. So s ∩ t = ∅.

• ϕ = ◻ψ. If M,s ( ◻ψ, then for each w ∈ s we have M,R[w] ( ψ. If
for some state t we have M, t ) ◻ψ, then for each w ∈ t, there is a
non-empty u ⊆ R[w] such that M,u ) ψ. Assume for contradiction
that s ∩ t ≠ ∅ and fix some w ∈ s ∩ t. By the above M,R[w] ( ψ,
and we can fix some non-empty u ⊆ R[w] such that M,u ) ψ. Then
by the induction hypothesis, u ∩ R[w] = u = ∅, a contradiction. So
s ∩ t = ∅.

Then:

Proposition 3.3.10. For any (M,s) ∈ M, if R is state-based in (M,s),
then for all ϕ ∈ BSML⩔, the following inference is sound in (M,s):

◇ϕ ∧ ⨼ϕ
�

Proof. Assume that R is state-based in (M,s). Fix ϕ ∈ BSML⩔.
Assume M,s ( ◇ϕ ∧ ⨼ϕ. Assume for contradiction that s ≠ ∅. Fix

some w ∈ s. Since M,s ( ◇ϕ, there is some non-empty t ⊆ R[w] such that
M, t ( ϕ. By state-basedness, M,R[w] - M,s, and therefore M,R[w] -k

M,s for k = md(ϕ). By Proposition 3.1.7, there is some t′ ⊆ s such that
M, t -k M, t′. By Theorem 3.1.8, M, t′ ( ϕ. Then since M,s ( ⨼ϕ and
M, t′ ) ⨼ϕ, we have by Proposition 3.3.9 that s∩ t′ = t′ = ∅. But since t ≠ ∅
and M, t -k M, t′ we have t′ ≠ ∅, a contradiction. So s = ∅, and therefore
M,s ( �.

And clearly M,s ( ◇ϕ does not imply M,s ( ϕ even if (M,s) is state-
based.



Chapter 4

Axiomatizations

This chapter presents the natural deduction systems and soundness proofs.
Each of our systems makes use of Yang and Väänänen’s axiomatization

of PT+ (recall that this is the non-modal fragment of SML⩔ and SGML⩔);
we first introduce this shared subsystem and use it prove some useful results
which will then hold for each of our systems.

Recall Fact 3.3.6: none of the logics considered here is closed under
uniform substitution. Therefore, our systems will not admit the uniform
substitution rule

ϕ(p1, . . . , pn)
Sub

ϕ(ψ1/p1, . . . , ψn/pn)

Note in particular that occurrences of α and β in the rules refer, as before,
exclusively to arbitrary classical formulas (formulas in ML, ML� or ML∗∗,
depending on the system), and so they may not be substituted by non-
classical formulas.

4.1 PT+

The rules used here have been adapted from [34]; for a published version,
more details and discussion, see [38].

Definition 4.1.1. (Natural deduction system for PT+) The following
rules comprise a natural deduction system for PT+. We also call the
system PT+.

55
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Rules for ¬:

¬ introduction Reductio ad absurdum ¬ elimination

[α]
D∗

� ¬I(∗)¬α

[¬α]
D∗

� RAA(∗)α

D1

α
D2

¬α ¬E
β

(∗) The undischarged assumptions in D∗ do not contain ne.

Rules for ∧:

∧ introduction ∧ elimination

D1

ϕ

D2

ψ
∧I

ϕ ∧ ψ

D
ϕ ∧ ψ

∧E
ϕ

D
ϕ ∧ ψ

∧E
ψ

Rules for ⩔:

⩔ introduction ⩔ elimination

D
ϕ

⩔I
ϕ⩔ ψ

D
ψ

⩔I
ϕ⩔ ψ

D
ϕ⩔ ψ

[ϕ]
D1

χ

[ψ]
D2

χ
⩔Eχ

Rules for ∨:

∨ weak introduction ∨ weakening
D
ϕ ∨I(∗∗)

ϕ ∨ ψ

D
ϕ

∨W
ϕ ∨ ϕ

∨ weak elimination ∨ weak substitution

D
ϕ ∨ ψ

[ϕ]
D∗1
α

[ψ]
D∗2
α ∨E(∗)α

D
ϕ ∨ ψ

[ψ]
D∗1
χ ∨Sub(∗)

ϕ ∨ χ
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∨ commutativity ∨ associativity

D
ϕ ∨ ψ

Com∨
ψ ∨ ϕ

D
(ϕ ∨ ψ) ∨ χ

Ass∨
ϕ ∨ (ψ ∨ χ)

(∗) The undischarged assumptions in D∗1 ,D
∗
2 do not contain ne.

(∗∗) Where ψ does not contain ne.

∨⩔ Distributivity:

D
ϕ ∨ (ψ⩔ χ)

Distr ∨⩔(ϕ ∨ ψ)⩔ (ϕ ∨ χ)

� Elimination:

D
ϕ ∨ �

�E
ϕ

Rules for á:

á elimination á contraction

D
á á E
ϕ

D
á ∨ϕ

á Ctr
ψ

Rules for ne:

ne introduction ne contraction

neI�⩔ ne
D

ne ∨ ne neCtrne

∨ne elimination

D
ϕ ∨ ψ

[ϕ]
D1

χ

[ψ]
D2

χ

[(ϕ ∧ ne) ∨ (ψ ∧ ne)]
D3

χ
∨neEχ

We give a general definition of the notion of provability ⊢S for a proof
system S:
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Definition 4.1.2. For any set of formulas Γ∪ {ϕ,ϕ1, . . . , ϕn, ψ} in the lan-
guage of a logic L with a proof system S:

• If ψ is derivable from the elements of Γ in S, we write Γ ⊢S ψ. If
{ϕ} ⊢S ψ, we also write ϕ ⊢S ψ. If {ϕ1, . . . , ϕn} ⊢S ψ, we also write
ϕ1, . . . , ϕn ⊢S ψ.

• ϕ and ψ are provably equivalent (in S), written ϕ ⊣⊢S ψ if ϕ ⊢S ψ and
ψ ⊢S ϕ.

• We write ⊢S ϕ if ϕ can be derived from the empty set of formulas, i.e.
∅ ⊢S ϕ.

We will drop the subscript S whenever it is clear from context which
system is being applied. We also say informally that a derivation of ϕ from
Γ is a derivation of Γ ⊢ ϕ.

Given the importance of this system for PT+ for our axiomatizations
and the fact that the rules we have given are different from those for the
published system, we include a soundness proof here.

Theorem 4.1.3. (Soundness of PT+ rules) For any Γ∪{ϕ} ∈ L, we have
Γ ⊢PT+ ϕ⇒ Γ ( ϕ.

Proof. By induction on the length of possible derivations D = (R1, . . . ,Rk)
of Γ ⊢ ϕ.

• Base case: k = 1. This implies ϕ ∈ Γ, in which case Γ ( ϕ; or ϕ = �⩔ne,
in which case ( �⩔ ne and so again Γ ( ϕ.

• Inductive case. Assume the result holds for all derivations of length
≤ k. We consider different possibilities of the final rule used in the
derivation of Γ ⊢ ϕ:

– ∧I, ∧E, ⩔I, ⩔E, ∨W, Com∨, Ass∨, Distr ∨⩔, �E, á E, á Ctr, neI,
neCtr: For each of these rules, the conclusion follows immedi-
ately from the relevant support conditions.

– ¬I: Assume D∗ is a derivation of Γ, α ⊢ � of length ≤ k such that
for all γ ∈ Γ, γ does not contain ne. By the induction hypothesis,
Γ ∪ {α} ( �. We show Γ ( ¬α.
Assume that for all γ ∈ Γ we have M,s ( γ.

∗ If s = ∅, then clearly M,s ( ¬α.
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∗ If s ≠ ∅, then fix some w ∈ s. Since each γ ∈ Γ does not
contain ne, each such γ is downward closed by Proposi-
tion 2.2.8 and therefore we also have M,{w} ( Γ. Clearly
either M,{w} ( α or M,{w} ( ¬α. If the former, then
M,{w} ( Γ∪{α}, and therefore, by hypothesis, M,{w} ( �,
a contradiction since {w} ≠ ∅. So M,{w} ( ¬α. Since w
was arbitrary, we have for all w ∈ s, M,{w} ( ¬α. Since
α is classical, it is union closed by Corollary 2.2.9 and so
M,s ( ¬α.

Either way then, M,s ( ¬α.
– RAA: analogous to the case for ¬I.
– ¬E: Assume that D1 and D2 are derivations of length ≤ k of

Γ1 ⊢ α and Γ2 ⊢ ¬α, respectively. By the induction hypothesis,
Γ1 ( α and Γ2 ( ¬α. We show that Γ1 ∪ Γ2 ( β.
Assume that for all γ ∈ Γ1 ∪ Γ2, M,s ( γ. Then M,s ( α and
M,s ( ¬α. Since α is classical, it is flat by Corollary 2.2.9, and
so for all w ∈ s ∶ M,{w} ( α. By M,s ( ¬α, we also have that
for all w ∈ s ∶ M,{w} * α; therefore s = ∅. Since β is classical,
it has the empty state property by Corollary 2.2.9, so M,s ( β.

– ∨I: Assume that D is a derivation of Γ ⊢ ϕ. By the induction
hypothesis, Γ ( ϕ. We show Γ ( ϕ∨ψ, where ψ does not contain
ne.
Assume M,s ( ϕ. Since ψ does not contain ne, it has the empty
state property by Proposition 2.2.8, and so we have M,∅ ( ψ.
Then s = s ∪ ∅; M,s ( ϕ; and M,∅ ( ψ, so M,s ( ϕ ∨ ψ.

– ∨E: Assume D, D∗1 , and D∗2 are derivations of length ≤ k of
Γ ⊢ ϕ∨ψ; Γ1, ϕ ⊢ α; and Γ2, ψ ⊢ α, respectively, such that for all
γ ∈ Γ1 ∪Γ2, γ does not contain ne. By the induction hypothesis,
Γ ( ϕ∨ψ, Γ1∪{ϕ} ( α and Γ2∪{ψ} ( α. We show Γ∪Γ1∪Γ2 ( α.
Assume that for all γ ∈ Γ ∪ Γ1 ∪ Γ2 we have M,s ( γ. Then
M,s ( ϕ∨ψ, so there are some t, u such that s = t∪u; M, t ( ϕ;
and M,u ( ψ. Since each γ ∈ Γ1 ∪ Γ2 does not contain ne, each
such γ is downward closed by Proposition 2.2.8, and we therefore
have that for all γ1 ∈ Γ1: M, t ( γ1, and for all γ2 ∈ Γ2: M,u ( γ2.
Therefore M, t ( α and M,u ( α. Since α is classical, it is union
closed by Corollary 2.2.9, and so M,s ( α.

– ∨Sub: Assume D and D∗1 are derivations of length ≤ k of Γ ⊢ ϕ∨ψ
and Γ1, ψ ⊢ χ, respectively, such that for all γ ∈ Γ1, γ does
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not contain ne. By the induction hypothesis, Γ ( ϕ ∨ ψ and
Γ1 ∪ {ψ} ( χ. We show Γ ∪ Γ1 ( ϕ ∨ χ.

Assume that for all γ ∈ Γ ∪ Γ1 we have M,s ( γ. Then M,s (

ϕ ∨ ψ, so there are some t, u such that s = t ∪ u; M, t ( ϕ; and
M,u ( ψ. Since each γ ∈ Γ1 does not contain ne, each such
γ is downward closed by Proposition 2.2.8, and so M,u ( γ.
Therefore M,u ( χ. So s = t ∪ u; M,s ( ϕ; and M,u ( χ;
therefore M,s ( ϕ ∨ χ.

– ∨neE: Assume D, D1, D2 and D3 are derivations of length ≤ k
of Γ ⊢ ϕ∨ψ; Γ1, ϕ ⊢ χ; Γ2, ψ ⊢ χ; and Γ3, (ϕ∧ne)∨ (ψ ∧ne) ⊢ χ
respectively. By the induction hypothesis, Γ ( ϕ∨ψ, Γ1 ∪ {ϕ} (

χ, Γ2 ∪ {ψ} ( χ and Γ3 ∪ {(ϕ ∧ ne) ∨ (ψ ∧ ne)} ( χ. We show
Γ ∪ Γ1 ∪ Γ2 ∪ Γ3 ( χ.

Assume that for all γ ∈ Γ ∪ Γ1 ∪ Γ2 ∪ Γ3 we have M,s ( γ. By
Γ ( ϕ∨ψ we have M,s ( ϕ∨ψ, so there are some t, u such that
s = t ∪ u; M, t ( ϕ; and M,u ( ψ.

∗ If u = ∅, then s = t. Then M,s ( ϕ, and therefore (since
Γ1 ∪ {ϕ} ( χ) M,s ( χ.

∗ If t = ∅, then s = u. Then M,s ( ψ, and therefore (since
Γ2 ∪ {ψ} ( χ) M,s ( χ.

∗ If t ≠ ∅ and u ≠ ∅, then M, t ( ϕ ∧ ne and M,u ( ψ ∧ ne.
Therefore M,s ( (ϕ∧ne)∨(ψ∧ne), and so (since Γ3∪{(ϕ∧
ne) ∨ (ψ ∧ ne)} ( χ) M,s ( χ.

In any case, then, M,s ( χ.

We now list some useful derivable rules.
The following proposition lists the commutativity, associativity and dis-

tributivity laws provable in the system. These are easy to derive; see [38]
for some of the derivations. Note that ∨ commutativity and associativity
are included as basic rules of the system and are not listed below. The ⊢
direction of Distr∨⩔ is also a basic rule but it is listed below together with
⊣ to prevent confusion.
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Proposition 4.1.4. The following are derivable with the rules for PT +:

ϕ ∧ ψ ⊣⊢ ψ ∧ ϕ (Com∧)
ϕ⩔ ψ ⊣⊢ ψ⩔ ϕ (Com⩔)
ϕ ∧ (ψ ∧ χ) ⊣⊢ (ϕ ∧ ψ) ∧ χ (Ass∧)
ϕ⩔ (ψ⩔ χ) ⊣⊢ (ϕ⩔ ψ)⩔ χ (Ass⩔)
ϕ ∧ (ψ⩔ χ) ⊣⊢ (ϕ ∧ ψ)⩔ (ϕ ∧ χ) (Distr ∧⩔)
ϕ⩔ (ψ ∧ χ) ⊣⊢ (ϕ⩔ ψ) ∧ (ϕ⩔ χ) (Distr⩔∧)
α ∧ (ψ ∨ χ) ⊣⊢ (α ∧ ψ) ∨ (α ∧ χ) (Distr∗ ∧ ∨)
ϕ ∨ (ψ ∧ χ) ⊢ (ϕ ∨ ψ) ∧ (ϕ ∨ χ) (Distr ∨ ∧)
ϕ⩔ (ψ ∨ χ) ⊢ (ϕ⩔ ψ) ∨ (ϕ⩔ χ) (Distr⩔∨)
ϕ ∨ (ψ⩔ χ) ⊣⊢ (ϕ ∨ ψ)⩔ (ϕ ∨ χ) (Distr ∨⩔)

Some more useful derivable rules:

Proposition 4.1.5. The following are derivable with the rules for PT +:

(i) ϕ ∨ (ψ ∧ ne) ⊣⊢ (ϕ ∨ (ψ ∧ ne)) ∧ ne

(ii) ne,⋁
i∈I
ϕi ⊢ ⩔

∅≠J⊆I
⋁
j∈J
(ϕj ∧ ne)

(iii) ne ∧⋁
i∈I
αi ⊣⊢ ⩔

∅≠J⊆I
⋁
j∈J
(αj ∧ ne)

(iv) ⋁
i∈I
ϕi ⊢⩔

J⊆I
⋁
j∈J
(ϕj ∧ ne)

(v) ⋁
i∈I
αi ⊣⊢⩔

J⊆I
⋁
j∈J
(αj ∧ ne)

(vi) (α ∧ ne) ∨ ϕ,¬α ⊢á
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Proof. (i) ⊣ follows by ∧E. For ⊢:23

ϕ ∨ (ψ ∧ ne)
⊢ (ϕ ∨ (ψ ∧ ne)) ∧ (�⩔ ne)) neI
⊢ ((ϕ ∨ (ψ ∧ ne)) ∧ �)⩔ ((ϕ ∨ (ψ ∧ ne)) ∧ ne) Distr ∧⩔
⊢ ((ϕ ∧ �) ∨ ((ψ ∧ ne) ∧ �))⩔ ((ϕ ∨ (ψ ∧ ne)) ∧ ne)) Distr∗ ∧ ∨
⊢ ((ϕ ∧ �) ∨ (ψ∧ á))⩔ ((ϕ ∨ (ψ ∧ ne)) ∧ ne)
⊢ ((ϕ ∨ (ψ ∧ ne)) ∧ ne)⩔ ((ϕ ∨ (ψ ∧ ne)) ∧ ne) á Ctr

⊢ (ϕ ∨ (ψ ∧ ne)) ∧ ne

(ii) By induction on the size k of I.

• k = 0. ⋁∅ = �, and by á E we have ne ∧ � ⊢ ψ for any ψ.

• k = 1. We have ⋁{ϕ} = ϕ. ϕ,ne ⊢ ϕ ∧ ne by ∧I, and ⩔{⋁{ϕ ∧
ne}} = ϕ ∧ ne.

• k = 2. Denote χ ∶= (ϕ ∧ ne)⩔ (ψ ∧ ne)⩔ ((ϕ ∧ ne) ∨ (ψ ∧ ne)).

ϕ ∨ ψ

[ϕ] ne
∧I

ϕ ∧ ne
⩔Iχ

[ψ] ne
∧I

ψ ∧ ne
⩔Iχ

[(ϕ ∧ ne) ∨ (ψ ∧ ne)]
⩔Iχ

∨neEχ

• k + 1. By the induction hypothesis,

(†) ne, ⋁
i∈(I/{x})

ϕi ⊢ ⩔
∅≠J⊆(I/{x})

⋁
j∈J
(ϕj ∧ ne)

23For readibility we will only note the most notable rules/derivable rules used for each
step in the natural deduction proofs; it should be easy to see which other rules are being
used.
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where x ∈ I. Then:

ne,⋁
i∈I
ϕi

⊢ ne ∧ ( ⋁
i∈(I/{x})

(ϕi) ∨ ϕx)

⊢ ( ⋁
i∈(I/{x})

(ϕi) ∧ ne)⩔ (ϕx ∧ ne)⩔

(( ⋁
i∈(I/{x})

(ϕi) ∧ ne) ∨ (ϕx ∧ ne)) Case k = 2

⊢ ( ⩔
∅≠J⊆(I/{x})

⋁
j∈J
(ϕj ∧ ne))⩔ (ϕx ∧ ne)⩔

(( ⩔
∅≠J⊆(I/{x})

⋁
j∈J
(ϕj ∧ ne)) ∨ (ϕx ∧ ne)) †

⊢ ( ⩔
∅≠J⊆(I/{x})

⋁
j∈J
(ϕj ∧ ne))⩔ (ϕx ∧ ne)⩔

( ⩔
∅≠J⊆(I/{x})

⋁
j∈J
(ϕj ∧ ne) ∨ (ϕx ∧ ne)) Distr ∨⩔

⊢ ⩔
∅≠J⊆I

⋁
j∈J
(ϕj ∧ ne)

(iii) ⊢ follows from (ii).

For ⊣, note that for any non-empty J ⊆ I, we have ⋁j∈J(αj ∧ne) ⊢ ne
by (i) and ∧E (if ∣J ∣ > 1) or simply by ∧E (if ∣J ∣ = 1).

For any such J we also have that for any j ∈ J , αj ∧ ne ⊢ ⋁i∈I αi by
∧E and ∨I. Therefore ⋁j∈J(αj ∧ ne) ⊢ ⋁i∈I αi by ∨E.

Since both of these are the case for any such J , we have
⩔∅≠J⊆I ⋁j∈J(αj ∧ ne) ⊢ ne ∧⋁i∈I αi by ⩔E.

(iv)

⋁
i∈I
ϕi

⊢ (�⩔ ne) ∧⋁
i∈I
ϕi neI

⊢ (� ∧⋁
i∈I
ϕi)⩔ (ne ∧⋁

i∈I
ϕi) Distr ∧⩔

⊢ �⩔ ⩔
∅≠J⊆I

⋁
j∈J
(ϕj ∧ ne) (ii)

⊢ ⩔
J⊆I
⋁
j∈J
(ϕj ∧ ne) ⋁∅ = �



64 CHAPTER 4. AXIOMATIZATIONS

(v) ⊢ follows from (iv). For ⊣:

⩔
J⊆I
⋁
j∈J
(αj ∧ ne) ⊢ �⩔ ⩔

∅≠J⊆I
⋁
j∈J
(αj ∧ ne)

⊢ �⩔ (ne ∧⋁
i∈I
αi) (iii)

⊢ ⋁
i∈I
αi ⩔E,¬E

(vi)

((α ∧ ne) ∨ ϕ) ∧ ¬α
⊢ ((α ∧ ne) ∧ ¬α) ∨ (ϕ ∧ ¬α) Distr∗ ∧ ∨
⊢ (� ∧ ne) ∨ (ϕ ∧ ¬α) ¬E
⊢ á á Ctr

4.2 SML⩔ and BSML⩔

For SML⩔, we extend the system for PT+ with some of the rules concern-
ing modalities from MD⩔ (with the flat modalities in place of the global
modalities used in that system), and new rules for the interaction of the
connectives and ne:

Definition 4.2.1. (Natural deduction system for SML⩔) The
following rules comprise a natural deduction system for SML⩔. We also
call the system SML⩔.

1. The rules for PT+.

2. The following modality rules:

◇ monotonicity ◻ monotonicity

[ϕ]
D′

ψ
D
◇ϕ ◇Mon(∗)◇ψ

[ϕ1] . . . [ϕn]
D′

ψ

D1

◻ϕ1 . . .

Dn

◻ϕn ◻Mon(∗)◻ψ



4.2. SML⩔ AND BSML⩔ 65

◻◇ interaction

D
¬ ◻ α

Inter ◻◇◇¬α

(∗) D′ does not contain undischarged assumptions.

n may be 0 in ◻Mon, in which case it functions as the necessitation rule.
3. The following rules governing the interaction of the connectives
and ne:

◇⩔∨ conversion ◻⩔∨ conversion

D
◇(ϕ⩔ ψ)

Conv◇⩔∨◇ϕ ∨◇ψ

D
◻(ϕ⩔ ψ)

Conv ◻⩔∨◻ϕ ∨ ◻ψ

◇ separation ◇ join

D
◇(ϕ ∨ (ψ ∧ ne)) ◇Sep◇ψ

D1

◇ϕ
D2

◇ψ ◇Join◇(ϕ ∨ ψ)

◇ne introduction ◻ instantiation

D
◇ϕ ◇neI◇(ϕ ∧ ne)

D
◻(ϕ ∧ ne)

◻Inst◇ϕ

◻◇ join

D1

◻(ϕ ∨ ψ)
D2

◇ψ
◻◇ Join◻(ϕ ∨ (ψ ∧ ne))

The disjunction conversion rules Conv◇⩔∨ and Conv◻⩔∨ are similar to
a rule in Ciardelli’s axiomatization of InqBK [5] whereby ◻(ϕ⩔ψ) implies
◻ϕ∨C ◻ψ, where ∨C is the classical disjunction defined in terms of conjunc-
tion and intuitionistic negation: ϕ ∨C ψ ∶= ¬∅(¬∅ϕ ∧ ¬∅ψ) (see Section 2.2
for the definition of ¬∅). ∨ and ∨C are equivalent on classical formulas, and
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since ◻ϕ clearly defines a flat state property for any given ϕ, any instance
of the formula is equivalent to a classical formula by Proposition 3.2.15.
We therefore have that ◻ϕ ∨ ◻ψ ” ◻ϕ ∨C ◻ψ, and so our Conv ◻ ⩔∨ and
Ciardelli’s rule are essentially capturing the same semantic phenomenon.

◇Sep clearly reflects the fact that fc inferences may be drawn in the
way explained in Section 2.3.

Conceptually, given Aloni’s pragmatic enrichment procedure, the neces-
sity instantiation rule ◻Inst may be thought of as expressing a version of
the Kantian “ought implies can” maxim for pragmatically enriched deontic
necessities (◻ϕ)+. Similarly if the modalities are taken to be epistemic: a
pragmatically enhanced assertion of “it must be the case that ϕ” will imply
“it might be the case that ϕ”.

Theorem 4.2.2. (Soundness of SML⩔ rules) For any Γ ∪ {ϕ} ∈ L, we
have Γ ⊢SML⩔ ϕ⇒ Γ ( ϕ.

Proof. By induction on the length of possible derivations D = (R1, . . . ,Rk)
of Γ ⊢ ϕ.

• Base case: k = 1. As in the proof of Theorem 4.1.3.

• Inductive case. Assume the result holds for all derivations of length
≤ k. We consider different possibilities of the final rule used in the
derivation of Γ ⊢ ϕ. Most cases are as in the proof of Theorem 4.1.3;
we show the remaining cases:

– ◇Mon: Assume D and D′ are derivations of length ≤ k of Γ ⊢◇ϕ
and ϕ ⊢ ψ, respectively. By the induction hypothesis, Γ ( ◇ϕ
and ϕ ( ψ. We show Γ ( ◇ψ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( ◇ϕ.

∗ If s = ∅, then clearly M,s ( ◇ψ.
∗ If s ≠ ∅, let w ∈ s. Then by M,s ( ◇ϕ there is some t ⊆ R[s]

such that t ≠ ∅ and M, t ( ϕ. Therefore M, t ( ψ, and so,
since w was arbitrary, M,s ( ◇ψ.

– ◻Mon: Assume D1, . . ., Dn and D′ are derivations of length
≤ k of Γ1 ⊢ ◻ϕ1, . . ., Γn ⊢ ◻ϕn and ϕ1, . . . , ϕn ⊢ ψ respec-
tively. By the induction hypothesis, Γ1 ( ◻ϕ1, . . ., Γn ( ◻ϕn

and {ϕ1, . . . , ϕn} ( ψ. We show Γ1 ∪ . . . ∪ Γn ( ◻ψ.
Assume that for all γ ∈ Γ1 ∪ . . . ∪ Γn we have M,s ( γ. Then
M,s ( ◻ϕ1, . . ., M,s ( ◻ϕn.

∗ If s = ∅, then clearly M,s ( ◻ψ.
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∗ If s ≠ ∅, let w ∈ s. Then for all i ∈ {1, . . . n} we have
M,R[w] ( ϕi. Therefore M,R[w] ( ψ, and so, since w
was arbitrary, M,s ( ◻ψ.

– Inter ◻◇:
⇓: Assume D is a derivation of length ≤ k of Γ ⊢ ¬ ◻ α. By the
induction hypothesis, Γ ( ¬ ◻ α. We show Γ ( ◇¬α.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( ¬ ◻α.

∗ If s = ∅, then clearly M,s ( ◇¬α.
∗ If s ≠ ∅, fix w ∈ s. Then M,{w} * ◻α so M,R[w] * α. α is

classical and is therefore flat by Corollary 2.2.9. Assume for
contradiction that for all v ∈ R[w]: M,{v} ( α (note that
this holds also if R[w] = ∅). Then by flatness M,R[w] ( α,
contradicting M,R[w] * α. So there must be some v ∈ R[w]
such that M,{v} * α; fix such a v. Then M,{v} ( ¬α, so
there is a non-empty t ⊆ R[w] such that M, t ( ¬α. Since
w was arbitrary, we have M,s ( ◇¬α.

⇑: Assume D is a derivation of length ≤ k of Γ ⊢ ◇¬α. By the
induction hypothesis, Γ ( ◇¬α. We show Γ ( ¬ ◻ α.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( ◇¬α.

∗ If s = ∅, then clearly M,s ( ¬ ◻ α.
∗ If s ≠ ∅, fix w ∈ s. Then there is a non-empty t ⊆ R[w] such

that M, t ( ¬α. Assume for contradiction that M,{w} (

◻α. Then M,R[w] ( α, and since α is downward closed by
Corollary 2.2.9, M,{v} ( α for all v ∈ R[v]. By M, t ( ¬α
we have that for all v ∈ t ∶M,{v} * α. Then since t ⊆ R[v],
we have t = ∅, a contradiction. So M,{w} * ◻α. Since w
was arbitrary, we have M,s ( ¬ ◻ α.

– Conv◇⩔∨:
⇓: Assume D is a derivation of length ≤ k of Γ ⊢ ◇(ϕ⩔ ψ). By
the induction hypothesis, Γ ( ◇(ϕ⩔ψ). We show Γ ( ◇ϕ∨◇ψ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s (

◇(ϕ⩔ ψ).

∗ If s = ∅, then clearly M,s ( ◇ϕ ∨◇ψ.
∗ If s ≠ ∅, fix some w ∈ s. Then there is a non-empty t ⊆ R[w]

such that M, t ( ϕ⩔ψ—i.e. such that M, t ( ϕ or M, t ( ψ.
Since w was arbitrary, this is the case for all w ∈ s, so that
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letting

s1 ∶= {w ∈ s ∣ ∃t ⊆ R[w] ∶ t ≠ ∅ and M, t ( ϕ}
s2 ∶= {w ∈ s ∣ ∃t ⊆ R[w] ∶ t ≠ ∅ and M, t ( ψ}

we have s = s1 ∪ s2. Clearly M,s1 ( ◇ϕ and M,s2 ( ◇ψ, so
M,s ( ◇ϕ ∨◇ψ.

⇑: Assume D is a derivation of length ≤ k of Γ ⊢ ◇ϕ ∨◇ψ. By
the induction hypothesis, Γ ( ◇ϕ∨◇ψ. We show Γ ( ◇(ϕ⩔ψ).
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( ◇ϕ ∨
◇ψ, so there are some s1, s2 such that s = s1 ∪ s2; M,s1 ( ◇ϕ;
and M,s2 ( ◇ψ.

∗ If s = ∅, then clearly M,s ( ◇(ϕ⩔ ψ).
∗ If s ≠ ∅, fix some w ∈ s. If w ∈ s1, then there is a non-

empty t ⊆ R[w] such that M, t ( ϕ. Then also M, t ( ϕ⩔ψ.
If w ∈ s2, then there is a non-empty t ⊆ R[w] such that
M, t ( ψ. Again M, t ( ϕ⩔ψ. In either case, then, there is
a non-empty t ⊆ R[w] such that M, t ( ϕ⩔ ψ. Since w was
arbitrary, M,s ( ◇(ϕ⩔ ψ).

– Conv ◻⩔∨: Analogous to the case for Conv◇⩔∨.
– ◇Sep: Assume D is a derivation of length ≤ k of Γ ⊢◇(ϕ∨ (ψ ∧

ne)). By the induction hypothesis, Γ ( ◇(ϕ ∨ (ψ ∧ ne)). We
show Γ ( ◇ψ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s (

◇(ϕ ∨ (ψ ∧ ne)).
∗ If s = ∅, then clearly M,s ( ◇ψ.
∗ If s ≠ ∅, fix some w ∈ s. Then there is a non-empty t ⊆ R[w]

such that M, t ( ϕ ∨ (ψ ∧ ne). Therefore, there are some
t1, t2 such that t = t1 ∪ t2; M, t1 ( ϕ; and M, t2 ( ψ ∧ ne.
Then t2 ≠ ∅ and M, t2 ( ψ, and note t2 ⊆ R[w]. Since w
was arbitrary, we have M,s ( ◇ψ.

– ◇Join: Assume D1 and D2 are derivations of length ≤ k of Γ1 ⊢
◇ϕ and Γ2 ⊢ ◇ψ, respectively. By the induction hypothesis,
Γ1 ( ◇ϕ and Γ2 ( ◇ψ. We show Γ1 ∪ Γ2 ( ◇(ϕ ∨ ψ).
Assume that for all γ ∈ Γ1 ∪ Γ2 we have M,s ( γ. Then M,s (

◇ϕ and M,s ( ◇ψ.
∗ If s = ∅, then clearly M,s ( ◇(ϕ ∨ ψ).
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∗ If s ≠ ∅, fix some w ∈ s. Since M,s ( ◇ϕ and M,s ( ◇ψ,
there are non-empty t1, t2 ⊆ R[w] such that M, t1 ( ϕ and
M, t2 ( ψ. Therefore t1 ∪ t2 ( ϕ ∨ ψ. Clearly t1 ∪ t2 is
non-empty and t1 ∪ t2 ⊆ R[w]; w was arbitrary, so M,s (

◇(ϕ ∨ ψ).
– ◇neI: The result follows given that for any (M,s) ∈M:

M,s ( ◇ϕ ⇐⇒ ∀w ∈ s ∶ ∃t ⊆ R[w] ∶ t ≠ ∅ & M, t ( ϕ

⇐⇒ ∀w ∈ s ∶ ∃t ⊆ R[w] ∶ t ≠ ∅ & M, t ( ϕ ∧ ne
⇐⇒ M,s ( ◇(ϕ ∧ ne)

– ◻Inst: Assume D is a derivation of length ≤ k of Γ ⊢ ◻(ϕ ∧ ne).
By the induction hypothesis, Γ ( ◻(ϕ ∧ ne). We show Γ ( ◇ϕ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s (

◻(ϕ ∧ ne).
∗ If s = ∅, then clearly M,s ( ◇ϕ.
∗ If s ≠ ∅, fix some w ∈ s. Then M,R[w] ( ϕ ∧ ne, so R[w] ≠
∅ and M,R[w] ( ϕ. Since w was arbitrary, this gives us
M,s ( ◇ϕ.

– ◻ ◇ Join: Assume D1 and D2 are derivations of length ≤ k of
Γ1 ⊢ ◻(ϕ ∨ ψ) and Γ2 ⊢ ◇ψ, respectively. By the induction
hypothesis, Γ1 ( ◻(ϕ ∨ ψ) and Γ2 ( ◇ψ. We show Γ1 ∪ Γ2 (

◻(ϕ ∨ (ψ ∧ ne)).
Assume that for all γ ∈ Γ1 ∪ Γ2 we have M,s ( γ. Then M,s (

◻(ϕ ∨ ψ) and M,s ( ◇ψ.
∗ If s = ∅, then clearly M,s ( ◻(ϕ ∨ (ψ ∧ ne)).
∗ If s ≠ ∅, fix some w ∈ s. Then since M,s ( ◻(ϕ∨ψ), we have
M,R[w] ( ϕ ∨ ψ, so that there are r1, r2 such that R[w] =
r1 ∪ r2; M,r1 ( ϕ; and M,r2 ( ψ. And since M,s ( ◇ψ,
there is some non-empty t ⊆ R[w] such that M, t ( ψ.
· If r2 ≠ ∅, then M,r1 ( ϕ and M,r2 ( ψ ∧ ne, and so
M,R[w] ( ϕ ∨ (ψ ∧ ne).

· If r2 = ∅ and r1 ≠ ∅, then R[w] = r1 and t ⊆ r1. Then
since M,r1 ( ϕ; M, t ( ψ ∧ ne; and R[w] = r1 = r1 ∪ t,
we have M,R[w] ( ϕ ∨ (ψ ∧ ne).

· The case in which r1 = r2 = ∅ is not possible since this
implies R[w] = ∅, contradicting the fact that t ≠ ∅ and
t ⊆ R[w].
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In any case, then, M,R[w] ( ϕ ∨ (ψ ∧ ne). Since w was
arbitrary, M,s ( ◻(ϕ ∨ (ψ ∧ ne)).

For BSML⩔, we use ⨼ in place of ¬; generalize the rule relating ◻ and
◇ (note that we also switch the modalities around); and add a rules relating
⨼ne and � as well as rules for De Morgan’s Laws (as set out in Fact 2.2.5)
and double negation.

Definition 4.2.3. (Natural deduction system for BSML⩔)
The following rules comprise a natural deduction system for BSML⩔.

We also call the system BSML⩔.
1. The rules for PT+ (with ⨼ in place of ¬, and excluding RAA).

2. ◇Mon, ◻Mon and

◇◻ interaction

D
⨼◇ ϕ

Inter◇◻◻⨼ϕ

3. Conv◇⩔∨, Conv ◻⩔∨, ◇Sep, ◇Join, ◇neI, ◻Inst, and ◻◇ Join.

4. The following rules for ⨼:

⨼ne elimination Double ⨼ elimination

D
⨼ne ⨼neE�

D
⨼⨼ϕ

DN
ϕ

De Morgan 1 De Morgan 2 De Morgan 3
D

⨼(ϕ ∧ ψ)
DM1⨼ϕ ∨ ⨼ψ

D
⨼(ϕ ∨ ψ)

DM2⨼ϕ ∧ ⨼ψ

D
⨼(ϕ⩔ ψ)

DM3⨼ϕ ∧ ⨼ψ

Theorem 4.2.4. (Soundness of BSML⩔ rules) For any Γ∪{ϕ} ∈ L, we
have Γ ⊢BSML⩔ ϕ⇒ Γ ( ϕ.

Proof. By induction on the length of possible derivations D = (R1, . . . ,Rk)
of Γ ⊢ ϕ.

• Base case: k = 1. As in the proof of Theorem 4.1.3.
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• Inductive case. Assume the result holds for all derivations of length
≤ k. We consider different possibilities of the final rule used in the
derivation of Γ ⊢ ϕ. Most cases are as in the proofs of Theorems 4.1.3
and 4.2.2 or follow from those cases and Proposition 2.2.15; we show
the remaining cases:

– Inter◇◻: The result follows given that for any (M,s) ∈M (as
in the proof of Fact 2.2.6):

M,s ( ⨼◇ ϕ ⇐⇒ M,R[s] ) ϕ

⇐⇒ M,R[s] ( ⨼ϕ ⇐⇒ M,R[s] ) ⨼⨼ϕ
⇐⇒ M,s ( ⨼◇⨼⨼ϕ ⇐⇒ M,s ( ◻⨼ϕ

– ⨼neE: The result follows given that for any (M,s) ∈M:

M,s ( ⨼ne ⇐⇒ M,s ) ne ⇐⇒ s = ∅ ⇐⇒ M,s ( �

– DN,DM1,DM2,DM3: The result follows from Fact 2.2.5.

We will use the ne-connective interaction rules to derive some equiva-
lence laws whose form resembles that of free choice inferences.24 We make
use of these in the completeness proof.

Proposition 4.2.5. The following are derivable with the rules for SML⩔

and with the rules for BSML⩔:

◇ ((ϕ ∧ ne) ∨ (ψ ∧ ne)) ⊣⊢ ◇ ϕ ∧◇ψ FC

◻ (ϕ ∨ (ψ ∧ ne)) ⊣⊢ ◻ (ϕ ∨ ψ) ∧◇ψ ◻ FC

Proof. FC: For ⊢, we have:

◇ ((ϕ ∧ ne) ∨ (ψ ∧ ne))
⊢ ◇ ((ϕ ∧ ne) ∨ ψ) ∧◇ψ ◇Sep

⊢ ◇ ϕ ∧◇ψ ◇Sep

For ⊣:

◇ ϕ ∧◇ψ
⊢ ◇ (ϕ ∧ ne) ∧◇(ψ ∧ ne) ◇neI
⊢ ◇ ((ϕ ∧ ne) ∨ (ψ ∧ ne)) ◇Join

24Note that the added rules for ◇ which do not involve ⩔ (◇Sep, ◇neI and ◇Join)
may be thought of as expressions of different aspects of the FC-equivalence, and similarly
for ◻. Since (ignoring ⩔) these are all the rules required above and beyond the classical
modality rules, this fc-type functioning may be thought of as encapsulating the modal
behaviour of the logics, and so it is also in this sense that these are “logics of free choice”.



72 CHAPTER 4. AXIOMATIZATIONS

◻FC: For ⊢:

◻ (ϕ ∨ (ψ ∧ ne))
⊢ ◻ (ϕ ∨ ψ) ∧ ◻(ϕ ∨ (ψ ∧ ne)) ∧I,∨Sub,◻Mon

⊢ ◻ (ϕ ∨ ψ) ∧ ◻((ϕ ∨ (ψ ∧ ne)) ∧ ne) Prop 4.1.5 (i),◻Mon

⊢ ◻ (ϕ ∨ ψ) ∧◇(ϕ ∨ (ψ ∧ ne)) ◻Inst
⊢ ◻ (ϕ ∨ ψ) ∧◇ψ ◇Sep

We get ⊣ immediately from ◻◇ Join.

4.3 SGML⩔

For SGML⩔, we use the full set of rules concerning modalities from MD⩔

[35], and a different set of rules for the interactions between ne and the
connectives.

Definition 4.3.1. (Natural deduction system for SGML⩔) The
following rules comprise a natural deduction system for SGML⩔. We also
call the system SGML⩔.

1. The rules for PT+.

2. �Mon, ⧈Mon and Inter ⧈�.
(◇Mon, ◻Mon and Inter ◻◇ with � in place of ◇ and ⧈ in place of ◻.)

3. The following rules governing the interaction of the connectives
and ne: (where Distr�⩔ and Distr ⧈⩔ are from MD⩔)

�⩔ distributivity ⧈⩔ distributivity

D
�(ϕ⩔ ψ)

Distr�⩔�ϕ⩔�ψ

D
⧈(ϕ⩔ ψ)

Distr ⧈⩔⧈ϕ⩔⧈ψ

�∨ distributivity ne� distributivity

D
�(ϕ ∨ ψ)

Distr�∨�ϕ ∨�ψ

D
�ϕ ∧ ne

Distrne�
�(ϕ ∧ ne)
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⧈ instantiation ⧈� join

D
⧈ϕ

⧈Inst�ϕ ∨ ⧈�

D1

⧈(ϕ ∨ ψ)
D2

(�ψ ∧ ne) ∨ χ
⧈� Join⧈(ϕ ∨ (ψ ∧ ne))

For the ⧈-analogue of Distr� ∨, we note that ⧈ϕ ∨ ⧈ψ ( ⧈(ϕ ∨ ψ) (so
this direction is derivable in our complete system), but ⧈(ϕ∨ψ) * ⧈ϕ∨⧈ψ.

Similarly, for the ⧈-analogue of Distrne�, we have ⧈(ϕ∧ne) ( ⧈ϕ∧ne,
but ⧈ϕ ∧ ne * ⧈(ϕ ∧ ne).

Theorem 4.3.2. (Soundness of SGML⩔ rules) For any Γ∪{ϕ} ∈ L, we
have Γ ⊢SGML⩔ ϕ⇒ Γ ( ϕ.

Proof. By induction on the length of possible derivations D = (R1, . . . ,Rk)
of Γ ⊢ ϕ.

• Base case: k = 1. As in the proof of Theorem 4.1.3.

• Inductive case. Assume the result holds for all derivations of length
≤ k. We consider different possibilities of the final rule used in the
derivation of Γ ⊢ ϕ. Most cases are as in the proof of Theorem 4.1.3;
we show the remaining cases:

– �Mon: Assume D and D′ are derivations of length ≤ k of Γ ⊢�ϕ
and ϕ ⊢ ψ, respectively. By the induction hypothesis, Γ ( �ϕ
and ϕ ( ψ. We show Γ ( �ψ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( �ϕ,
so there is some t such that sRt and M, t ( ϕ. Then by ϕ ( ψ
we have M, t ( ψ, and therefore M,s ( �ψ.

– ⧈Mon: Assume D1, . . . ,Dn and D′ are derivations of length ≤ k
of Γ1 ⊢ ⧈ϕ1, . . ., Γn ⊢ ⧈ϕn and ϕ1, . . . , ϕn ⊢ ψ, respectively.
By the induction hypothesis, Γ1 ( ⧈ϕ1, . . ., Γn ( ⧈ϕn and
{ϕ1, . . . , ϕn} ( ψ. We show Γ1 ∪ . . . ∪ Γn ( ⧈ψ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s (

⧈ϕ1, . . . ,M, s ( ⧈ϕn. Therefore M,R[s] ( ϕ1, . . . ,M,R[s] ( ϕn.
By {ϕ1, . . . , ϕn} ( ψ, then, M,R[s] ( ψ. Therefore M,s ( ⧈ψ.

– Inter ⧈ �: The result follows from the soundness of Inter ◻ ◇
(Theorem 4.2.2) and Proposition 2.2.13.
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– Distr�⩔: The result follows given that for any (M,s) ∈M we
have:

M,s ( �(ϕ⩔ ψ)
⇐⇒ ∃t ∶ sRt and M, t ( ϕ⩔ ψ

⇐⇒ ∃t ∶ sRt and (M, t ( ϕ or M, t ( ψ)
⇐⇒ ∃t1 ∶ sRt1 and M, t1 ( ϕ or ∃t2 ∶ sRt2 and M, t2 ( ϕ

⇐⇒M,s ( �ϕ or M,s ( �ψ
⇐⇒M,s ( �ϕ⩔�ψ

– Distr ⧈⩔: Analogous to the case for Distr�⩔.
– Distr�∨:
⇓: Assume D is a derivation of length ≤ k of Γ ⊢ �(ϕ ∨ ψ). By
the induction hypothesis, Γ ( �(ϕ∨ψ). We show Γ ( �ϕ∨�ψ.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s (

�(ϕ ∨ ψ), so there is some t such that sRt and M, t ( ϕ ∨ ψ.
Then there are some t1, t2 such that t = t1 ∪ t2; M, t1 ( ϕ; and
M, t2 ( ψ.
Let s1 ∶= {w ∈ s ∣ ∃v ∈ t1 ∶ wRv} = R−1[t1] ∩ s and s2 ∶= {w ∈
s ∣ ∃v ∈ t2 ∶ wRv} = R−1[t2] ∩ s. Then:

∗ s1Rt1:
· t1 ⊆ R[s1]: Let v ∈ t1. Since t1 ⊆ t ⊆ R[s], there is some
w ∈ s such that wRv. Then w ∈ s1, and so v ∈ R[s1].

· s1 ⊆ R−1[t1]: s1 = R−1[t1] ∩ s ⊆ R−1[t1].
∗ Similarly s2Rt2.
∗ M,s1 ( �ϕ: Immediate from s1Rt1 and M, t1 ( ϕ.
∗ M,s2 ( �ψ: Immediate from s2Rt2 and M, t2 ( ψ.
∗ s = s1 ∪ s2: Let w ∈ s. Since s ⊆ R−1[t], there is some v ∈ t

such that wRv. Then v ∈ t1 or v ∈ t2 (or both); if v ∈ t1,
then w ∈ s1, and if v ∈ t2, then w ∈ s2. So w ∈ s1 ∪ s2. w was
arbitrary, so s ⊆ s1 ∪ s2. Clearly s1 ∪ s2 ⊆ s, so s = s1 ∪ s2.

Given all of the above, then, M,s ( �ϕ ∨�ψ.
⇑: Assume D is a derivation of length ≤ k of Γ ⊢ �ϕ ∨�ψ. By
the induction hypothesis, Γ ( �ϕ∨�ψ. We show Γ ( �(ϕ∨ψ).
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( �ϕ ∨
�ψ, so there are some s1, s2 such that s = s1 ∪ s2; M,s1 ( �ϕ;
and M,s2 ( �ψ. So there are t1, t2 such that s1Rt1; M, t1 ( ϕ;
s2Rt2; and M, t2 ( ψ.
Then:
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∗ sR(t1 ∪ t2):
· t1 ∪ t2 ⊆ R[s]: Let v ∈ t1 ∪ t2. If v ∈ t1, then since
t1 ⊆ R[s1], there is some w ∈ s1 such that wRv. Since
s1 ⊆ s, we have w ∈ s, so v ∈ R[s]. The case in which
v ∈ t2 is similar, giving v ∈ R[s].

· s ⊆ R−1[t1 ∪ t2]. Let w ∈ s. If w ∈ s1, then since s1 ⊆
R−1[t1], there is some v ∈ t1 ⊆ t1 ∪ t2 such that wRv, so
w ∈ R−1[t1 ∪ t2]. If w ∈ s2, we get w ∈ R−1[t1 ∪ t2] in a
similar way.

∗ M, t1 ∪ t2 ( ϕ ∨ ψ.
Therefore, M,s ( �(ϕ ∨ ψ).

– Distrne�: The result follows given that for any (M,s) ∈M:

M,s ( �ϕ ∧ ne ⇔ s ≠ ∅ & ∃t ∶ sRt & M, t ( ϕ

⇔ ∃t ≠ ∅ ∶ sRt & M, t ( ϕ ⇔ ∃t ∶ sRt & M, t ( ϕ ∧ ne
⇔ M,s ( �(ϕ ∧ ne)

– ⧈Inst: Assume D is a derivation of length ≤ k of Γ ⊢ ⧈ϕ. By the
induction hypothesis, Γ ( ⧈ϕ. We show Γ ( �ϕ ∨ ⧈�.
Assume that for all γ ∈ Γ we have M,s ( γ. Then M,s ( ⧈ϕ.
Therefore M,R[s] ( ϕ.
Let t ∶= {w ∈ s ∣ ∃v ∶ wRv}. Then:

∗ tR(R[s]): R[s] = R[t] and clearly tR(R[t]).
∗ M,s/t ( ⧈�: Let w ∈ s/t. Then there is no v such that wRv.
w was arbitrary, so R[s/t] = ∅. Therefore M,R[s/t] ( �, so
M,s/t ( ⧈�.

∗ s = t ∪ (s/t).
Given tR(R[s]) and M,R[s] ( ϕ, we get M, t ( �ϕ. Then given
M,s/t ( ⧈� and s = t ∪ (s/t) we have M,s ( �ϕ ∨ ⧈�.

– ⧈ � Join: Assume D1 and D2 are derivations of length ≤ k of
Γ1 ⊢ ⧈(ϕ ∨ ψ) and Γ2 ⊢ (�ψ ∧ ne) ∨ χ, respectively. By the
induction hypothesis, Γ1 ( ⧈(ϕ ∨ ψ) and Γ2 ( (�ψ ∧ ne) ∨ χ.
We show Γ1 ∪ Γ2 ( ⧈(ϕ ∨ (ψ ∧ ne)).
Assume that for all γ ∈ Γ1 ∪ Γ2 we have M,s ( γ.
By Γ1 ( ⧈(ϕ∨ψ), we have M,s ( ⧈(ϕ∨ψ). Therefore M,R[s] (

ϕ∨ψ, so there are some r1, r2 such that R[s] = r1∪r2; M,r1 ( ϕ;
and M,r2 ( ψ.
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By Γ2 ( (�ψ ∧ne) ∨χ, we have M,s ( (�ψ ∧ne) ∨χ, so there
are some s1, s2 such that s = s1 ∪ s2; M,s1 ( �ψ ∧ ne; and
M,s2 ( χ. By M,s1 ( �ψ ∧ ne there is some t such that s1Rt
and M, t ( ψ. We also have M,s1 ( ne, so s1 ≠ ∅ and therefore
(by s1Rt) t ≠ ∅ so that M, t ( ne. So M, t ( ψ ∧ ne. Note also
that clearly t ⊆ R[s].
We can now show that M,R[s] ( ϕ ∨ (ψ ∧ ne):

∗ If r2 ≠ ∅, then M,r1 ( ϕ and M,r2 ( ψ ∧ ne, and so
M,R[s] ( ϕ ∨ (ψ ∧ ne).

∗ If r2 = ∅ and r1 ≠ ∅, then R[s] = r1 and t ⊆ r1. Then since
M,r1 ( ϕ; M, t ( ψ ∧ ne; and R[s] = r1 = r1 ∪ t, we have
M,R[s] ( ϕ ∨ (ψ ∧ ne)

∗ The case in which r1 = r2 = ∅ is not possible since this
implies R[s] = ∅, contradicting the fact that t ≠ ∅ and
t ⊆ R[s].

In any case, then, M,R[s] ( ϕ ∨ (ψ ∧ ne). Therefore M,s (

⧈(ϕ ∨ (ψ ∧ ne)).

As we did for SML⩔ and BSML⩔, we prove some equivalences involving
∨, ne and the modalities. Note that the �C-rule shows how � behaves in
a situation in which ◇ allows us to draw fc inferences.

Proposition 4.3.3. The following are derivable with the rules for SGML⩔:

� ((ϕ ∧ ne) ∨ (ψ ∧ ne)) ⊣⊢ (�ϕ ∧ ne) ∨ (�ψ ∧ ne) � C

⧈ (ϕ ∨ (ψ ∧ ne)) ⊣⊢ ⧈ (ϕ ∨ ψ) ∧ (�ϕ ∨ (�ψ ∧ ne) ∨ ⧈�) ⧈ C

Proof. �C:

� ((ϕ ∧ ne) ∨ (ψ ∧ ne))
⊣⊢ � (ϕ ∧ ne) ∨�(ψ ∧ ne) Distr�∨
⊣⊢ (�ϕ ∧ ne) ∨ (�ψ ∧ ne) Distrne�

⧈C: For ⊢:

⧈ (ϕ ∨ (ψ ∧ ne))
⊢ ⧈ (ϕ ∨ ψ) ∧ ⧈(ϕ ∨ (ψ ∧ ne)) ∧I,∨Sub,⧈Mon

⊢ ⧈ (ϕ ∨ ψ) ∧ (�(ϕ ∨ (ψ ∧ ne)) ∨ ⧈�) ⧈Inst
⊢ ⧈ (ϕ ∨ ψ) ∧ ((�ϕ ∨�(ψ ∧ ne)) ∨ ⧈�) Distr�∨
⊢ ⧈ (ϕ ∨ ψ) ∧ (�ϕ ∨ (�ψ ∧ ne) ∨ ⧈�) Distrne�

⊣ is immediate by ⧈� Join.



Chapter 5

Completeness

To show the weak completeness of a natural deduction system for logic L,
we prove that any L-formula is provably equivalent in the system to an L-
formula in normal form, with completeness then following from the semantic
properties of formulas in normal form and the rules for ⩔. Establishing
provable equivalence is the longest and most detailed part of this process; we
first simply assume that this equivalence holds and examine the other parts
of the proof so as to provide the reader with a clear understanding of how
the entire argument functions before delving into the details. Accordingly,
Section 5.1 presents the bulk of the proof, and the provable equivalence
results are shown in Section 5.2.

The proof here is essentially that given for PT+ in [38] and [34] adapted
to the modal setting.

In Section 5.3, we prove strong completeness. This follows from weak
completeness and compactness; with compactness following from the strong
completeness of Lück’s system for modal team logic (MTL) (which implies
that MTL is compact) and the fact that MTL and our logics have the
same expressive power.

5.1 Weak Completeness
Throughout this chapter, many of our results will apply to all logics and all
natural deduction systems; we will specify when this is not the case. We
use ⊢ and ⊣⊢ to refer to provability in all systems.

The key semantic fact about formulas in normal form is the following:

Proposition 5.1.1. For any finite non-empty state properties F ,G ⊆ M
and any k ∈ N, the following are equivalent:

77
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(i) ⩔
(M,s)∈F

Θk
s ( ⩔

(M ′,s′)∈G
Θk

s′

(ii) For each (M,s) ∈ F , there is some (M ′, s′) ∈ G such that M,s -k

M ′, s′.

Proof. (i) ⇒ (ii): Fix some (M,s) ∈ F . By Proposition 3.2.8 (and M,s -k

M,s), we have M,s ( Θk
s and therefore M,s ( ⩔(M,s)∈F Θk

s . By (i) we
have M,s ( ⩔(M ′,s′)∈GΘ

k
s′ . Then M,s ( Θk

s′ for some (M ′, s′) ∈ G, so by
Proposition 3.2.8, M,s -k M ′, s′.

(ii) ⇒ (i): Fix some (N, t) ∈ M such that N, t ( ⩔(M,s)∈F Θk
s . Then

N, t ( Θk
s for some (M,s) ∈ F . By Proposition 3.2.8, we have N, t -k M,s.

By (ii), there is some (M ′, s′) ∈ G such that M,s -k M ′, s′. By Fact 3.1.4,
N, t -k M,s and M,s -k M ′, s′ imply N, t -k M ′, s′. By Proposition
3.2.8, N, t ( Θk

s′ so that N, t ( ⩔(M ′,s′)∈GΘ
k
s′ . (N, t) was arbitrary, so

⩔(M,s)∈F Θk
s (⩔(M ′,s′)∈GΘ

k
s′ .

We next want to show the following about our characteristic formulas:

Proposition 5.1.2. For any (M,s), (M ′, s′) ∈M and any k ∈ N, if M,s -k

M ′, s′, then Θk
s ⊣⊢ Θk

s′ .

In order to do this, we note that our systems are complete for classical
modal logic. That this is the case is easy to see and is shown by Yang for her
system for MD⩔ in [35]. This system is essentially our system for SGML⩔

without the rules concerning ne, and since Yang’s result only concerns
the restriction of her system to classical (ML�) formulas, the same result
follows for SGML⩔. Then given that the restrictions of each of our systems
to their respective classical fragments prove the same formulas modulo the
classical-equivalence-invariant mappings ∗ and ∗∗, the result follows for all
of our systems. We now make these claims somewhat more explicit, but for
more details see [35].

Yang uses the Hilbert-style system of classical modal logic K as a proxy
for classical provability. Recall that:25

25These details are not our focus here, but note that K (defined for the language of
ML here) has the following axioms:

1. The axioms of classical propositional logic

2. ◻(p→ q)→ (◻p→ ◻q)

3. ◇p↔ ¬ ◻ ¬p

and the following rules:

1. Modus Ponens: α,α → β ⇒ β
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Theorem 5.1.3. (Classical completeness of K) For any B∪{α} ⊆ML ∶
B ( α ⇐⇒ B ⊢K α.

(Recall also Fact 2.2.17: for classical formulas, entailment as classically
defined coincides with our notion of entailment.)

Adapting Yang’s result for MD⩔ gives us:

Proposition 5.1.4. For any B ∪ {α} ⊆ML ∶

B ⊢K α ⇐⇒ B ⊢SML⩔ α ⇐⇒ B∗ ⊢SGML⩔ α
∗ ⇐⇒ B∗∗ ⊢BSML⩔ α

∗∗

The proof of the above is the same as Yang’s proof of her Lemma
2.12 [35], where she shows that her system for MD⩔ restricted to classical
(ML�) formulas admits of all the axioms and rules of K (defined for ML�).
The system for MD⩔ restricted to classical formulas is essentially26 our sys-
tem for SGML⩔ restricted to classical formulas. This again is essentially
the same as SML⩔ and BSML⩔ restricted to classical formulas (formulas
in ML and formulas in ML∗∗) modulo the change in notation mediated by
the maps ∗ and ∗∗.27 Showing that the systems restricted to classical for-
mulas admit of the axioms and rules of K gives us the implication(s) from
provability in K to provability in any of our systems. Provability in any of
our systems implies provability in K by the soundness of our systems, Fact
2.2.17 and the completeness of K; all of the implications in the proposition
then follow.

Given the above and the classical completeness of K, we have:

2. Necessitation: α⇒ ◻α

3. Uniform Substitution: α(p) ⇒ α(β/p) (each occurrence of p in α is replaced by
an occurrence of β)

26There are two rules in the classical fragment of Yang’s system for MD⩔ not present
in SGML⩔:

¬¬α
DNα

�
Ex falso

ϕ
These are clearly derivable for the classical fragment of SGML⩔. RAA is not present
in the system for MD⩔; this, similarly, is derivable in MD⩔.

27To see why this is the case for BSML⩔, note that we can derive DN and De Morgan’s
laws for classical formulas as they are usually derived in SML⩔ and SGML⩔. The only
rule in the classical fragments of these two systems whose analogue is not present in the
classical fragment of BSML⩔ is RAA; the ⨼-analogue of RAA is clearly derivable using
⨼I and DN.
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Proposition 5.1.5. (Classical completeness of SML⩔, SGML⩔,
BSML⩔) For any B ∪ {α} ⊆ML:

B ( α ⇐⇒ B ⊢SML⩔ α

⇐⇒ B∗ ( α∗ ⇐⇒ B∗ ⊢SGML⩔ α
∗

⇐⇒ B∗∗ ( α∗∗ ⇐⇒ B∗∗ ⊢BSML⩔ α
∗∗

We now have what is required. First note:28

Proposition 5.1.6. For any (M,w), (M ′,w′) and any k ∈ N, if M,w -k

M ′,w′, then χk
w ⊣⊢ χk

w′ .

Proof. We show that if M,w -k M ′,w′, then χk
w ” χk

w′ ; the conclusion then
follows from Proposition 5.1.5.

Fix some (M,s) ∈ M and assume M,s ( χk
w. By Proposition 2.2.16,

M,v ( χk
w for all v ∈ s. By M,w -k M ′,w′ and Proposition 2.4.8, M,v (

χk
w′ for all v ∈ s, so that by Proposition 2.2.16, M,s ( χk

w′ . (M,s) was
arbitrary, so χk

w ( χk
w′ . The other direction is similar, so χk

w ” χk
w′ .

We can now show the analogous result for the characteristic formulas of
states:

Proof of Proposition 5.1.2. Assume M,s -k M ′, s′.
If s = ∅, then clearly s′ = ∅, so that Θk

s = Θk
s′ = � and so Θk

s ⊣⊢ Θk
s′ .

If s ≠ ∅, then by M,s -k M ′, s′ and Proposition 2.4.8 we have that for
each w ∈ s there is a w′ ∈ s′ such that M,w -k M ′,w′, and for each w′ ∈ s′
there is a w ∈ s such that M,w -k M ′,w′. So by Proposition 5.1.6, we have
that (†) for each w ∈ s there is a w′ ∈ s′ such that χk

w ⊣⊢ χk
w′ , and for each

w′ ∈ s′ there is a w ∈ s such that χk
w ⊣⊢ χk

w′ .
Note that (‡) if α ⊣⊢ β, then α ∧ ne ⊣⊢ β ∧ ne by ∧E and ∧I.
We now prove the following similar claim: (††) if α ⊣⊢ β, then α∧ne ⊣⊢

(β ∧ ne) ∨ (β ∧ ne).
For α ∧ ne ⊢ (β ∧ ne) ∨ (β ∧ ne):

α ∧ ne
⊢ β ∧ ne ∧ E, α ⊢ β,∧I
⊢ (β ∧ ne) ∨ (β ∧ ne) ∨W

28We now suppress mention of the maps ∗ and ∗∗ and the difference in notation
of classical formulas. By what we have shown, our results apply to all variants of the
relevant formulas.
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For (β ∧ ne) ∨ (β ∧ ne) ⊢ α ∧ ne:

(β ∧ ne) ∨ (β ∧ ne)
⊢ ((β ∧ ne) ∨ (β ∧ ne)) ∧ ne Prop 4.1.5 (i)
⊢ α ∧ ne ∧ E,∨E, β ⊢ α

Given this, we now have:

Θk
s = ⋁

w∈s
(χk

w ∧ ne)

⊣⊢ ⋁
w′∈s′
(χk

w′ ∧ ne) = Θk
s′ ∨ Sub, †, ‡, ††

If s and s′ are of the same size, we use only † and ‡. If s and s′ are of
different sizes, we use †, ‡ and ††.

The final remaining component required for weak completeness is the
provable equivalence result. As noted above, we simply assume this for
now:

Proposition 5.1.7. (Normal form provable equivalence) For each
ϕ ∈ L(Φ) and each n ≥md(ϕ), there is some finite F ⊆M(Φ) such that

ϕ ⊣⊢ ⩔
(M,s)∈F

Θn
s .

Then:

Theorem 5.1.8. (Weak completeness of SML⩔, SGML⩔, BSML⩔)
For any ϕ,ψ ∈ L where L is SML⩔(Φ), SGML⩔(Φ) or BSML⩔(Φ), we
have ϕ ( ψ⇒ ϕ ⊢ ψ. In particular, ( ϕ⇒⊢ ϕ.

Proof. Assume ϕ ( ψ. Let m ∶=max{md(ϕ),md(ψ)}.
By Proposition 5.1.7, we have:

(†) ϕ ⊣⊢ ⩔
(M,s)∈F

Θm
M,s and ψ ⊣⊢ ⩔

(M ′,s′)∈G
Θm

M ′,s′

for some finite F ,G ⊆M .
By †, by ϕ ( ψ, and by the relevant soundness theorem (Theorem 4.2.2,

4.2.4 or 4.3.2), we have:

(‡) ⩔
(M,s)∈F

Θm
M,s ( ⩔

(M ′,s′)∈G
Θm

M ′,s′

Then:
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• If F = ∅, then by † (recall that ⩔∅ =á) ϕ ⊣⊢á. Then ϕ ⊢ ψ by á E.

• If G = ∅, then ψ ⊣⊢á. By soundness and ‡, we have ⩔(M,s)∈F Θm
s (á.

This implies that F = ∅, so that again ϕ ⊣⊢á and therefore ϕ ⊢ ψ.

• If F ,G ≠ ∅, fix some (M,s) ∈ F . By ‡ and Proposition 5.1.1 there
is some (M ′, s′) ∈ G such that M,s -m M ′, s′. By Proposition 5.1.2,
Θm

s ⊣⊢ Θm
s′ , and so by ⩔I we have Θm

s ⊢⩔(M ′,s′)∈GΘ
m
s′ . Repeating this

argument for each (M,s) ∈ F , we get ⩔(M,s)∈F Θm
s ⊢⩔(M ′,s′)∈F Θ

m
s′ by

⩔E, and therefore ϕ ⊢ ψ.

5.2 Normal Form Provable Equivalence
We first show that all classical formulas are provably equivalent to normal
form formulas. In order to do this, we note the following simple fact:

Fact 5.2.1. For any n ∈ N and any finite set of n-th Hintikka formulas
{χn

Mi,wi
∣ i ∈ I}, there is some (M,s) ∈M such that Θn

M,s = ⋁i∈I(χn
wi
∧ ne).

Proof. Let M ∶= ⊎{Mi ∣ i ∈ I} (see Definition 2.4.9) and s ∶= {wi ∣ i ∈ I}.
Then (M,s) is as required by Proposition 2.4.10.

Proposition 5.2.2. (Normal form provable equivalence for classical
formulas) For each α ∈CML(Φ) and each n ≥md(α), there is some finite
F ⊆M(Φ) such that

α ⊣⊢ ⩔
(M,s)∈F

Θn
s .

Proof. Let n ≥ md(α) and A ∶= {χn
M,w ∣ M,w ( α}. By Fact 2.4.7, we can

find some finite Xα ⊆ A such that for each χn
w ∈ A, there is some χn

w′ ∈ Xα

such that χn
w ” χn

w′ .
We show that α ” ⋁Xα.
First assume M,s ( α. If s = ∅, then M,s ( ⋁Xα because ⋁Xα

has the empty state property by Corollary 2.2.9. If s ≠ ∅, fix w ∈ s. By
Proposition 2.2.16, we have M,w ( α. Then there is a χn

w′ ∈ Xα such that
χn
w ” χn

w′ . By Proposition 2.4.8 (and M,w -k M,w) we have M,w ( χn
w

and so M,w ( χn
w′ . w was arbitrary, so for each w ∈ s, we can find a

χn
w′ ∈ χα such that M,w ( χn

w′—this implies M,s ( ⋁Xα.29 So either way
M,s ( ⋁Xα; therefore α ( ⋁Xα.

29To see why this implication holds, it may be helpful to note that each formula in
Xα has the empty state property.
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Conversely, assume M,s ( ⋁Xα. Then there are t1, . . . , tm ⊆ s such
that s = t1 ∪ . . . ∪ tm; M, t1 ( χn

M1,w1
, . . . ,M, tm ( χn

Mm,wm
; and Xα =

{χn
w1
, . . . , χn

wm
}. If s = ∅, then M,s ( α because α has the empty state

property by Corollary 2.2.9. If s ≠ ∅, fix some w ∈ s. Then there is some
i ∈ {1, . . . ,m} such that w ∈ ti. Since M, ti ( χn

wi
we have by Proposition

2.2.16 that M,w ( χn
wi

. Then by Proposition 2.4.8, M,w ”n Mi,wi. Since
χn
wi
∈ Xα ⊆ A, we have Mi,wi ( α. Then by n ≥md(α) and M,w ”n Mi,wi,

we have M,w ( α. Since w was arbitrary, we have M,s ( α by Proposition
2.2.16. So either way, M,s ( α; therefore ⋁Xα ( α.

And so α ” ⋁Xα, and therefore by Proposition 5.1.5, α ⊣⊢ ⋁Xα.
Then by Proposition 4.1.5 (v):30

α ⊣⊢⋁Xα ⊣⊢ ⩔
J⊆Xα

⋁
χn
w∈J
(χn

w ∧ ne)

By Fact 5.2.1, we can find for each J ⊆ Xα some (MJ , sJ) ∈M such that
Θk

sJ
= ⋁χn

w∈J(χn
w ∧ ne) so that:

α ⊣⊢⋁Xα ⊣⊢ ⩔
J⊆Xα

Θn
sJ

By the foregoing, if we are able to show that some given formula ϕ ∈ L
is provably equivalent to a classical formula, then it is provably equivalent
to a formula in normal form. We use this below.

We prove one more lemma before moving on to the main results.

Proposition 5.2.3. For any k ∈ N and any (M,s), (M ′, s′) ∈M, if M,s /-k

M ′, s′, then Θk
s ,Θ

k
s′ ⊢á.

Proof. If M,s /-k M
′, s′, then either there is a w ∈ s such that for all w′ ∈ s′ ∶

M,w /-k M
′,w′, or there is a w′ ∈ s′ such that for all w ∈ s ∶M,w /-k M

′,w′.
Assume the former with no loss of generality, and fix such a w.

We now show that ⋁w′∈s′ χ
k
w′ ( ¬χk

w. Assume that N, t ( ⋁w′∈s′ χ
k
w′ . If

t = ∅, then N, t ( ¬χk
w. If t ≠ ∅, let v ∈ t, and assume for contradiction that

N,v ( χk
w. By N, t ( ⋁w′∈s′ χ

k
w′ , there is some w′ ∈ s′ and some u ⊆ t such

that N,u ( χk
w′ and v ∈ u. Then by Proposition 2.2.16, N,v ( χk

w′ . By
Proposition 2.4.8, N,v ( χk

w gives us N,v -k M,w, and N,v ( χk
w′ gives us

N,v -k M ′,w′. Then by Fact 3.1.4, M,w -k M ′,w′, a contradiction. So
30Note that in the special case in which α ” �, we have A = ∅ so ⋁Xα = ⋁∅ = � and

⩔J⊆Xα ⋁χn
w∈J(χ

n
w ∧ ne) =⩔{⋁∅} =⩔{�} = �.
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N,v * χk
w. Since v was arbitrary, we have N, t ( ¬χk

w. Either way, then,
N, t ( ¬χk

w, and so ⋁w′∈s′ χ
k
w′ ( ¬χk

w.31

Therefore by Proposition 5.1.5, ⋁w′∈s′ χ
k
w′ ⊢ ¬χk

w (†). And so:

Θk
s ∧Θk

s′ = Θk
s ∧ ⋁

w′∈s′
(χk

w′ ∧ ne)

⊢ Θk
s ∧ ⋁

w′∈s′
χk
w′

⊢ Θk
s ∧ ¬χk

w †
⊢ ((χk

w ∧ ne) ∨Θk
s/{w}) ∧ ¬χk

w

⊢ á Prop 4.1.5 (vi)

Then:32

Proposition 5.2.4. For each ϕ ∈ SML⩔(Φ) and each n ≥ md(ϕ), there is
some finite F ⊆M(Φ) such that

ϕ ⊣⊢SML⩔ ⩔
(M,s)∈F

Θn
s .

Proof. We prove the result by induction on the complexity of ϕ. Let n ≥
md(ϕ). Note that in the non-modal cases we only make use of the rules of
PT+ and Proposition 5.1.5.

• ϕ = p. The result follows from Proposition 5.2.2.

• ϕ = ne.

ne ⊣⊢ ne ∧ (p ∨ ¬p) Prop 5.1.5
⊣⊢ ne ∧ ⩔

(M,s)∈F
Θn

s Prop 5.2.2

⊣⊢ ne ∧ (�⩔ ⩔
(M,s)∈G⊆F

Θn
s ) †

⊣⊢ (ne ∧ �)⩔ ⩔
(M,s)∈G

Θn
s Distr ∧⩔

⊣⊢ ⩔
(M,s)∈G

Θn
s á E,⩔E,⩔I

For † in the above, G = F/{(M,s) ∈ F ∣ s = ∅}. Note that clearly
G ≠ ∅, since ã= p ∨ ¬p ”⩔(M,s)∈F Θn

s .
31Note that the proof of this claim used the semantics of ¬, but the claim now also

implies (⋁w′∈s′ χ
k
w′)∗∗ ( ⨼(χk

w)∗∗ by what we have proved before.
32We make use of the derivable distributivity laws in these proofs. Recall that these

can be found in Proposition 4.1.4.
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• ϕ = ¬α. The result follows from Proposition 5.2.2.

For the induction cases involving subformulas ψ and χ of ϕ, since n ≥
md(ϕ) ≥md(ψ),md(χ), we have by the induction hypothesis that there are
some finite H,I ⊆M such that ψ ⊣⊢⩔(M,s)∈HΘn

s and χ ⊣⊢⩔(M ′,s′)∈I Θ
n
s′ .

• ϕ = ψ ∧ χ. We have:

ψ ∧ χ ⊣⊢ ⩔
(M,s)∈H

Θn
s ∧ ⩔

(M ′,s′)∈I
Θn

s′

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

(Θn
s ∧Θn

s′) Distr ∧⩔

⊣⊢ ⩔
(M,s)∈H∩I

Θn
s ⩔ ⩔

(M,s)∈(H∪I)/(H∩I)
á Prop 5.2.3,á E

⊣⊢ ⩔
(M,s)∈H∩I

Θn
s ⩔E,á E,⩔I

Note here that if H∩I = ∅, then ψ∧χ ⊣⊢⩔∅ =á; á is also a formula
in normal form.

• ϕ = ψ ∨ χ. We have:

ψ ∨ χ
⊣⊢ ⩔

(M,s)∈H
Θn

s ∨ ⩔
(M ′,s′)∈I

Θn
s′

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

(Θn
s ∨Θn

s′) Distr ∨⩔

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

(⋁
w∗∈t
(χn

w∗ ∧ ne) ∨ ⋁
w∗∈u
(χn

w∗ ∧ ne) ∨ ⋁
w∗∈u
(χn

w∗ ∧ ne)) †

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

(⋁
w∗∈t
(χn

w∗ ∧ ne) ∨ ⋁
w∗∈u
((χn

w∗ ∧ ne) ∨ (χn
w∗ ∧ ne)))

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

(⋁
w∗∈t
(χn

w∗ ∧ ne) ∨ ⋁
w∗∈u
(χn

w∗ ∧ (ne ∨ ne))) Distr∗ ∧ ∨

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

(⋁
w∗∈t
(χn

w∗ ∧ ne) ∨ ⋁
w∗∈u
(χn

w∗ ∧ ne)) neCtr,∨W

⊣⊢ ⩔
(M,s)∈H

⩔
(M ′,s′)∈I

⋁
w∗∈t∪u

(χn
w∗ ∧ ne)

For †: u = {w∗ ∈ s ∩ s′ ∣ (M,w∗) = (M ′,w∗)} and t = (s ∪ s′)/u.
By Fact 5.2.1, for each (M,s) ∈ H and each (M ′, s′) ∈ I, there is some
(M∗, s∗) ∈M such that Θn

s∗ = ⋁w∗∈t∪u(χn
w∗ ∧ ne), so we are done.

• ϕ = ψ⩔ χ. We are immediately done by the induction hypothesis.
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For the induction cases where ϕ = ◇ψ or ϕ = ◻ψ, since n − 1 ≥ md(ϕ) −
1 ≥ md(ψ) + 1 − 1 = md(ψ), by the induction hypothesis there is some
finite F ⊆ M such that ψ ⊣⊢ ⩔(M,s)∈F Θn−1

s . Denote k = n − 1 so that
ψ ⊣⊢⩔(M,s)∈F Θk

s .

• ϕ =◇ψ.

◇ ψ ⊣⊢ ◇ ⩔
(M,s)∈F

Θk
s

⊣⊢ ⋁
(M,s)∈F

◇Θk
s Conv◇⩔∨

⊣⊢ ⋁
(M,s)∈F/J

◇Θk
s ∨⋁

J
◇� †

⊣⊢ ⋁
(M,s)∈F/J

⋀
w∈s

◇ χk
w ∨⋁

J
◇� ‡

For †, J = {(M,s) ∈ F ∣ s = ∅}.
The final formula is classical and its modal depth is ≤ k + 1 = n, so if
we show ‡, we are done by Proposition 5.2.2 (applied with respect to
n).
For ‡, it suffices to show

◇Θk
s ⊣⊢ ⋀

w∈s
◇χk

w

for each (M,s) ∈M (where s ≠ ∅). We do so by induction on the size
m of s.

– m = 1. Let s = {v}. Then ⋀w∈s◇χk
w =◇χk

v and we have:

◇Θk
s = ◇ (χk

v ∧ ne)
⊢ ◇ ((χk

v ∧ ne) ∨ �) ∨I,◇Mon

⊢ ◇ χk
v ◇Sep

and ◇χk
v ⊢◇(χk

v ∧ ne) =◇Θk
s by ◇neI.

– m + 1. By the induction hypothesis we can choose some v ∈ s
such that

(††) ◇Θk
s/{v} ⊣⊢ ⋀

w∈s/{v}
◇ χk

w
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so

◇Θk
s

⊣⊢ ◇ ( ⋁
w∈s/{v}

(χk
w ∧ ne) ∨ (χk

v ∧ ne))

⊣⊢ ◇ (( ⋁
w∈s/{v}

(χk
w ∧ ne) ∧ ne) ∨ (χk

v ∧ ne)) Prop 4.1.5 (i)

⊣⊢ ◇ ⋁
w∈s/{v}

(χk
w ∧ ne) ∧◇χk

v FC

⊣⊢ ⋀
w∈s/{v}

◇ χk
w ∧◇χk

v ††

⊣⊢ ⋀
w∈s

◇ χk
w

• ϕ = ◻ψ.

◻ ψ ⊣⊢ ◻ ⩔
(M,s)∈F

Θk
s

⊣⊢ ⋁
(M,s)∈F

◻Θk
s Conv ◻⩔∨

⊣⊢ ⋁
(M,s)∈F/J

◻Θk
s ∨⋁

J
◻ � †

⊣⊢ ⋁
(M,s)∈F/J

(◻⋁
w∈s
χk
w ∧ ⋀

w∈s
◇ χk

w) ∨⋁
J
◻ � ‡

For †, J = {(M,s) ∈ F ∣ s = ∅}.
The final formula is classical and its modal depth is ≤ k + 1 = n, so if
we show ‡, we are done by Proposition 5.2.2.
For ‡, it suffices to show

◻Θk
s ⊣⊢ ◻⋁

w∈s
χk
w ∧ ⋀

w∈s
◇χk

w

for each (M,s) ∈M (where s ≠ ∅).
If s is of size 1, let s = {v}. Then

◻⋁
w∈s

χk
w ∧ ⋀

w∈s
◇χk

w = ◻χk
v ∧◇χk

v .

We have:

◻Θk
s = ◻ (χk

v ∧ ne)
⊣⊢ ◻ (� ∨ (χk

v ∧ ne)) ∨I,�E,◻Mon

⊣⊢ ◻ (� ∨ χk
v) ∧◇χk

v ◻FC
⊣⊢ ◻ χk

v ∧◇χk
v ∨I,�E,◻Mon
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Otherwise, let Θk
s = (χk

w1
∧ ne) ∨ . . . ∨ (χk

wm
∧ ne) where m ≥ 2. We

have:

◻Θk
s

= ◻ ⋁
w∈s
(χk

w ∧ ne)

⊣⊢ ◻ (
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
) ∧◇χk

wm
◻FC

⊣⊢ ◻ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ (χk

wm−1 ∧ ne)) ∧◇χk
wm

∨Com

⊣⊢ ◻ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ χk

wm−1) ∧◇χ
k
wm−1 ∧◇χ

k
wm

◻FC

⋮
⊣⊢ ◻ ((χk

w1
∧ ne) ∨ ⋁

w∈s/{w1}
χk
w) ∧ ⋀

w∈s/{w1}
◇ χk

w ◻FC

⊣⊢ ◻ ⋁
w∈s

χk
w ∧ ⋀

w∈s
◇χk

w ◻FC

Proposition 5.2.5. For each ϕ ∈ SGML⩔(Φ) and each n ≥ md(ϕ), there
is some finite F ⊆M(Φ) such that

ϕ ⊣⊢SGML⩔ ⩔
(M,s)∈F

Θn
s .

Proof. By induction on the complexity of ϕ. Let n ≥md(ϕ). Most cases are
exactly as in the proof of Proposition 5.2.4. We show the remaining cases.

These are the cases ϕ = �ψ and ϕ = ⧈ψ. Since n − 1 ≥ md(ϕ) − 1 ≥
md(ψ) + 1 − 1 = md(ψ), by the induction hypothesis there is some
finite F ⊆ M such that ψ ⊣⊢ ⩔(M,s)∈F Θn−1

s . Denote k = n − 1 so that
ψ ⊣⊢⩔(M,s)∈F Θk

s .

First consider the case in which ϕ =�ψ. We have:

� ψ ⊣⊢ � ⩔
(M,s)∈F

⋁
w∈s
(χk ∧ ne)

⊣⊢ ⩔
(M,s)∈F

� ⋁
w∈s
(χk ∧ ne) Distr�⩔

⊣⊢ ⩔
(M,s)∈F

⋁
w∈s

� (χk
w ∧ ne) Distr�∨

⊣⊢ ⩔
(M,s)∈F

⋁
w∈s
(�χk

w ∧ ne) Distrne�
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We now fix a (M,s) ∈ F and show that ⋁w∈s(�χk
w ∧ne) is provably equiva-

lent to a normal form formula of degree k+1. If this is the case, the formula
above is provably equivalent to a normal form formula of degree k + 1 = n
by the induction case for ⩔.

⋁
w∈s
(�χk

w ∧ ne)

⊣⊢ ⋁
w∈s
( ⩔
(M ′,s′)∈Aw

Θk+1
s′ ∧ ne) Prop 5.2.2

⊣⊢ ⋁
w∈s
(( ⩔
(M ′,s′)∈Aw/Dw

Θk+1
s′ ⩔⩔

Dw

�) ∧ ne) †

⊣⊢ ⋁
w∈s
( ⩔
(M ′,s′)∈Aw/Dw

(Θk+1
s′ ∧ ne)⩔⩔

Dw

á) Distr ∧⩔

⊣⊢ ⋁
w∈s
( ⩔
(M ′,s′)∈Aw/Dw

Θk+1
s′ ⩔⩔

Dw

á) Prop 4.1.5 (i),á E

For †, Dw = {(M ′, s′) ∈ Aw ∣ s = ∅}.
By the induction cases for ⩔ and ∨, this is provably equivalent to a

normal form formula of degree k + 1 (recall that á is in normal form).

Now consider the case in which ϕ = ⧈ψ. We have:

⧈ ψ
⊣⊢ ⧈ ⩔

(M,s)∈F
Θk

s

⊣⊢ ⩔
(M,s)∈F

⧈Θk
s Distr ⧈⩔

⊣⊢ ⩔
(M,s)∈F

(⧈⋁
w∈s
χk
s ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)) †

⊣⊢ ⩔
(M,s)∈F

( ⩔
(M ′,s′)∈As

Θk+1
s′ ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⩔
(M ′,s′)∈B

Θ1
s′)) Prop 5.2.2

By what we showed in the induction case for �, for every (M,s) ∈ F the
formula ⋁w∈s(�χk

w ∧ ne) is provably equivalent to a normal form formula
of degree k + 1. The final formula above is therefore provably equivalent to
a normal form formula of degree k + 1 by the induction cases for ∧, ∨ and
⩔.

For †, it suffices to show that for each (M,s) ∈M:

⧈Θk
s ⊣⊢ ⧈⋁

w∈s
χk
w ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)
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If s is of size 0, then:

⧈ ⋁
w∈s

χk
w ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

= ⧈⋁∅ ∧ (⋁∅ ∨ ⧈�)
= ⧈ � ∧ (� ∨ ⧈�)
⊣⊢ ⧈ � ∨I,�E
= ⧈Θk

s

If s is of size 1, let s = {v}. Then:

⧈Θk
s = ⧈ (χk

v ∧ ne)
⊣⊢ ⧈ ((χk

v ∧ ne) ∨ �) ∨I,�E,⧈Mon

⊣⊢ ⧈ (χk
v ∨ �) ∧ ((�χk

v ∧ ne) ∨�� ∨ ⧈�) ⧈C
⊣⊢ ⧈ (χk

v ∨ �) ∧ ((�χk
v ∧ ne) ∨ � ∨ ⧈�) Prop 5.1.5

⊣⊢ ⧈ χk
v ∧ ((�χk

v ∧ ne) ∨ ⧈�) ∨I,�E,⧈Mon

= ⧈ ⋁
w∈s

χk
w ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

Otherwise, let Θk
s = (χk

w1
∧ ne) ∨ . . . ∨ (χk

wm
∧ ne) where m ≥ 2. We have:

⧈Θk
s

= ⧈ ⋁
w∈s
(χk

w ∧ ne)

⊣⊢ ⧈
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
)∧

((�χk
wm

∧ ne) ∨�
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ ⧈�) ⧈C

⊣⊢ ⧈ (
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
)∧

((�χk
wm

∧ ne) ∨
m−1
⋁
i=1
(�χk

wi
∧ ne) ∨ ⧈�) ‡

⊣⊢ ⧈ (
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
) ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

‡ follows by Distr�∨ and Distrne� (see the induction case for �).
Taking the first conjunct of the formula in the last line above, we have
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(††):

⧈ (
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
)

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ (χk

wm−1 ∧ ne) ∨ χk
wm
)

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ (χk

wm−1 ∧ ne)) Com∨

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ χk

wm−1) ∧ ((�χ
k
wm−1 ∧ ne)∨

� (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
) ∨ ⧈�) ⧈C

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ χk

wm−1) ∧ ((�χ
k
wm−1 ∧ ne)∨

�
m−2
⋁
i=1
(χk

wi
∧ ne) ∨�χk

wm
∨ ⧈�) Distr�∨

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ χk

wm−1) ∧ ((�χ
k
wm−1 ∧ ne)∨

m−2
⋁
i=1
(�χk

wi
∧ ne) ∨�χk

wm
∨ ⧈�) ‡

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
∨ χk

wm−1)∧

(
m−1
⋁
i=1
(�χk

wi
∧ ne) ∨�χk

wm
∨ ⧈�)

‡ again follows by Distr�∨ and Distrne� (see the induction case for �).

Now note that (‡‡)

⋁
w∈s
(�χk

w ∧ ne) ∨ ⧈� ⊢
m−1
⋁
i=1
(�χk

wi
∧ ne) ∨�χk

wm
∨ ⧈�

by ∨Sub and ∧E.
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Therefore, returning to what is provably equivalent to ⧈Θk
s , we have:

⧈ (
m−1
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm
) ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm−1 ∨ χ
k
wm
) ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

∧ (
m−1
⋁
i=1
(�χk

wi
∧ ne) ∨�χk

wm
∨ ⧈�) ††

⊣⊢ ⧈ (
m−2
⋁
i=1
(χk

wi
∧ ne) ∨ χk

wm−1 ∨ χ
k
wm
) ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�) ∧E, ‡‡

Iterating this process, we finally get that the following is provably equiv-
alent to ⧈Θk

s :

⧈ ((χk
w1
∧ ne) ∨ ⋁

w∈s/{w1}
χk
w) ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

⊣⊢ ⧈ ⋁
w∈s
χk
w ∧ ((�χk

w1
∧ ne) ∨� ⋁

w∈s/{w1}
χk
w ∨ ⧈�)

∧ (⋁
w∈s
(�χk

w ∧ ne) ∨ ⧈�) ⧈C

⊣⊢ ⧈ ⋁
w∈s
χk
w ∧ (⋁

w∈s
(�χk

w ∧ ne) ∨ ⧈�)

(For the final step we again perform part of the iteration—as with ‡‡ we
have

⋁
w∈s
(�χk

w ∧ ne) ∨ ⧈� ⊢ (�χk
w1
∧ ne) ∨� ⋁

w∈s/{w1}
χk
w ∨ ⧈�

and then the final line follows analogously to how we used ‡‡.)
We now have what was required for †, so we are done.

For BSML⩔, the result follows by the proof of Proposition 5.2.4 once
we show that any formula is provably equivalent to a formula in negation
normal form (see Fact 2.2.6).

Proposition 5.2.6. Each ϕ ∈ BSML⩔(Φ) is provably equivalent to a for-
mula in negation normal form for BSML⩔.

Proof. By induction on the complexity of ϕ.

• ϕ = p or ϕ = ne. ϕ is already in negation normal form.

• ϕ = ψ ∧ χ. The result follows by the induction hypothesis applied to
ψ and χ, and ∧E and ∧I.
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• ϕ = ψ ∨ χ. The result follows by the induction hypothesis applied to
ψ and χ, and ∨Sub.

• ϕ = ψ ⩔ χ. The result follows by the induction hypothesis applied to
ψ and χ, and ⩔E and ⩔I.

• ϕ =◇ψ. The result follows by the induction hypothesis applied to ψ,
and ◇Mon.

• ϕ = ⨼ψ. We consider different cases:

– ϕ = ⨼p or ϕ = ⨼ne. ϕ is already in negation normal form.
– ϕ = ⨼⨼ψ. We have ϕ ⊣⊢ ψ by DN, and so the result follows by

the induction hypothesis applied to ψ.
– ϕ = ⨼(ψ ∧ χ). We have ϕ ⊣⊢ ⨼ψ ∨ ⨼χ by DM1, and so the result

follows by the induction hypothesis applied to ⨼ψ and ⨼χ, and
∨Sub.

– ϕ = ⨼(ψ ∨ χ) or ϕ = ⨼(ψ ⩔ χ). We have ϕ ⊣⊢ ⨼ψ ∧ ⨼χ by DM2

or DM3, and so the result follows by the induction hypothesis
applied to ⨼ψ and ⨼χ, and ∧E and ∧I.

– ϕ = ⨼ ◇ ψ. We have ϕ ⊣⊢ ◻⨼ψ by Inter◇ ◻. By the induction
hypothesis applied to ⨼ψ, there is some χ in negation normal
form such that ⨼ψ ⊣⊢ χ. We then have that ϕ ⊣⊢ ◻χ by ◻Mon,
and ◻χ is in negation normal form.

Proposition 5.2.7. For each ϕ ∈ BSML⩔(Φ) and each n ≥ md(ϕ), there
is some finite F ⊆M(Φ) such that

ϕ ⊣⊢BSML⩔ ⩔
(M,s)∈F

Θn
s .

Proof. By induction on the complexity of ϕ. Let n ≥md(ϕ). By Proposition
5.2.6 we may assume that ϕ is in negation normal form. Most cases are
exactly as in the proof of Proposition 5.2.4. We show the remaining cases.

• ϕ = ⨼p: The result follows from Proposition 5.2.2.

• ϕ = ⨼ne: ⨼ne ⊣⊢ � by ⨼neE, and then the result follows from Propo-
sition 5.2.2.

And so now we have:

Proof of Proposition 5.1.7. By Propositions 5.2.4, 5.2.5 and 5.2.7.
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5.3 Strong Completeness
The strong completeness of our logics follows from weak completeness and
the fact that the logics are compact. Compactness in turn follows from
the compactness of modal team logic (MTL) [25], and the fact that MTL
and our logics have the same expressive power. The compactness of MTL
follows from the fact that MTL is strongly complete. We do not make use
of the details of MTL, so we will simply list the results required. First
(from [25]):

Theorem 5.3.1. (Strong completeness of MTL) There is a system
MTL such that for any set of formulas Γ ∪ {ϕ} in the language of MTL,
Γ (MTL ϕ ⇐⇒ Γ ⊢MTL ϕ.

So that:

Corollary 5.3.2. (Compactness of MTL) For any set of formulas Γ∪ϕ
in the language of MTL, if Γ (MTL ϕ, then there is a finite Ψ ⊆ Γ such
that Ψ (MTL ϕ.

Proof. Assume that for all finite Ψ ⊆ Γ we have Ψ *MTL ϕ. By soundness
(Theorem 5.3.1) we have that Ψ ⊬MTL ϕ for all such Ψ. Therefore, by the
fact that derivations are finite, Γ ⊬MTL ϕ, so that by strong completeness
(Theorem 5.3.1), Γ *MTL ϕ. The result follows by contraposition.

And ([23]):33

Theorem 5.3.3. (Characterization theorem for MTL) MTL charac-
terizes the set

B = {P ⊆M(Φ) ∣ P is closed under k-bisimulation for some k ∈ N}.

Then:

Corollary 5.3.4. (Compactness of SML⩔, SGML⩔, BSML⩔) For any
Γ ∪ {ϕ} ⊆ L, where L is SML⩔(Φ), SGML⩔(Φ) or BSML⩔(Φ), if Γ ( ϕ,
then there is a finite Ψ ⊆ Γ such that Ψ ( ϕ.

Proof. By Theorems 3.2.13 and 5.3.3, we have (using L and MTL to refer
to the set of formulas of L and MTL, respectively):

{P ⊆M ∣ P = {(M,s) ∈M ∣M,s ( ϕ} & ϕ ∈ L}
={P ⊆M ∣ P = {(M,s) ∈M ∣M,s (MTL ϕ} & ϕ ∈MTL}

33This could now also be proved using our characterization result for SGML⩔; the
atoms and connectives of SGML⩔ are easy to define in MTL.
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So we can define a one-to-one map ○ ∶ L →MTL such that for all (M,s) ∈
M ∶M,s ( ϕ iff M,s (MTL ϕ○. For Γ ⊆ L we denote Γ○ ∶= {γ○ ∣ γ ∈ Γ}.

Assume Γ ( ϕ. Then clearly Γ○ (MTL ϕ○, so by Corollary 5.3.2 there is
a finite Ψ○ ⊆ Γ○ such that Ψ○ (MTL ϕ○. Then Ψ ( ϕ.

Theorem 5.3.5. (Strong completeness of SML⩔, SGML⩔, BSML⩔)
For any Γ ∪ {ϕ} ⊆ L where L is SML⩔(Φ), SGML⩔(Φ) or BSML⩔(Φ),
we have Γ ( ϕ⇒ Γ ⊢ ϕ.

Proof. Assume Γ ( ϕ. Then by Corollary 5.3.4 there is a finite Ψ ⊆ Γ such
that Ψ ( ϕ. Then by Theorem 5.1.8 we have ⋀Ψ ⊢ ϕ. Therefore Ψ ⊢ ϕ by
∧I and since Ψ ⊆ Γ we have Γ ⊢ ϕ.
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Conclusion

We studied three state-based modal logics with the non-emptiness atom ne
and the global disjunction ⩔:

• state-based modal logic with ⩔ (SML⩔), which employs the flat
modalities ◇ and ◻;

• globally state-based modal logic with ⩔ (SGML⩔), which employs
the global modalities � and ⧈; and

• bilateral state-based modal logic with ⩔ (BSML⩔), which employs
the flat modalities ◇ and ◻ and the bilateral negation ⨼.

We established entailment relationships between the modalities contin-
gent on the type of formula within their scope (Proposition 2.2.10), and
showed that all three logics are conservative extensions of classical modal
logic (Propositions 2.2.13 and 2.2.15).

We proved that each of the logics is expressively complete for the set
of state properties closed under k-bisimulation for some k ∈ N (Theorem
3.2.13).

Building on the systems for PT+ [38] and MD⩔ [35], we provided sound
and complete natural deduction systems for each of our logics (soundness
was proved in Theorems 4.2.2, 4.2.4 and 4.3.2). Our weak completeness
proof adapted the completeness-via-normal-forms strategy employed in [38]
to the modal setting (Sections 5.1 and 5.2). Strong completeness followed
from weak completeness and compactness. Compactness followed from the
compactness of MTL and the fact that our logics and MTL have the same
expressive power (Section 5.3).

We confirmed that both the flat modality ◇ and the bilateral negation
⨼ are required to account for fc in the way Aloni [1, 3] outlines (Section
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2.3). We characterized the properties of indisputability and state-basedness
using inference rules and demonstrated that Aloni’s analysis of wide-scope
fc and epistemic contradictions functions as intended with the revised
definitions of these notions (Section 3.3).

Let us conclude with some suggestions for further work.
The rules for the axiomatizations were chosen with the completeness

proof and its provable equivalence lemma in mind—it may be possible to
find rules which are simpler or otherwise more elegant. Relatedly, some of
our rules may be derivable from other rules in the system and hence not
necessary to include as basic.

We proved strong completeness via an indirect argument making use
of compactness and weak completeness. We similarly proved compactness
indirectly by making use of the compactness of MTL and the fact that
MTL and our logics have the same expressive power. Finding a direct
proof of strong completeness (one which does not rely on compactness and
weak completeness) and a direct proof of compactness (one which does not
rely on MTL) would provide us a better understanding of these logics and
proof systems.

As mentioned in the introduction, Yang and Väänänen [38] have devised
a method for adapting their completeness proof involving characteristic for-
mulas and ⩔ to a logic which does not make use of ⩔. We might be able to
apply this strategy to the proof in this thesis to axiomatize BSML. The
adaptation would involve conceptualizing finite sets of characteristic formu-
las {Θk

M,s ∣ (M,s) ∈ F} (rather than global disjunctions over such sets) as a
“weak” normal form for formulas and adding rules which simulate the rules
for ⩔. Note that this strategy, since it involves simulating the behaviour
of ⩔, is indeed best thought of as an adaptation of a proof involving ⩔.
Now that we have provided the proof involving ⩔, at least some of the
conceptual work required for a possible ⩔-free proof has already been done.

As also mentioned in the introduction, it would be interesting to examine
the expressive power of BSML and the other ⩔-free fragments of our logics.
If these are not expressively complete for the set of all union-closed state
properties closed under k-bisimulation, investigating how the logics need to
be extended to attain this might yield some interesting connectives.

Finally, we do not know whether in our logics the flat modalities are
uniformly definable in terms of the global ones or vice versa. (Ciardelli [5]
conjectures that ◻ is not uniformly definable in ML� with ⩔.) Nor do
we know whether they are interdefinable in MTL (i.e. in the presence of
the Boolean negation ∼). It may be possible to find some such definition,
or to show that no such definition is possible (Yang proves some negative
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uniform definability results for propositional dependence logic in [37]; we
may be able to adapt this approach.)
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