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Abstract

Goal-based voting is a new voting framework in which agents can submit propositional
formulae as their goals. We study iterated applications of the majorities and approval rules
in this framework. We introduce notions of satisfaction based on the Hamming distance
between an agent’s goal and the interpretations in the outcome under a given rule. The
contribution of this thesis is twofold: First, we analyze the convergence of the iteration.
We show that the Majority rules and the Approval rule for some satisfaction functions are
not guaranteed to terminate, while other cases of Approval voting do always converge.
Second, we study the quality of iteration. The first part of this analysis consists of theo-
retical results, showing that in cases where termination of Approval voting is guaranteed
we also have an improvement of the social welfare. The second part consists of an imple-
mentation of the iterative process in Python for the cases not covered by our theoretical
results, which gives us preliminary insights on the frequency and quality of iteration.
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1 | Introduction

Making decisions can be as easy as choosing a banana rather than an apple in the morning
or as hard as deciding which PhD offer to take. Every one of us has probably dealt
with some harder decisions before, collecting all the evidence needed to understand the
situation, imagining all the possible effects the result could have, trying to understand
one’s emotions towards the alternatives. While taking a decision alone can be challenging,
letting a group decide on a given issue at stake might lead to even more complicated
situations. What to do if there is no objective right or wrong and the opinions of a group
clash? How should we aggregate diverse preferences in order to reach a good result?
What does it even mean for a result to be good? Such questions, and many more, are
studied within the field of social choice theory.

While the question of how to make collective decision has been studied since ancient
times, Brandt et al. (2016) name Arrow’s Theorem as the starting point of modern social
choice theory. Arrow’s Theorem (Arrow, 1951) states that any voting rule satisfying a cer-
tain set of reasonable properties is a dictatorship. Following this result, many such impos-
sibility theorems as well as other characterizations of rules followed and established the
field of social choice theory as we know it today. Computational Social Choice (ComSoc)
builds on to this rich history and is additionally interested in the computational aspects of
collective decision-making. Allocation algorithms, matching mechanisms, computational
complexity results of related decision problems as well as more classical questions like
fairness or proportionality in voting are some of the topics which ComSoc researchers are
interested in.

One framework that recently won attention is judgment aggregation (Dietrich, 2007;
Endriss, 2016; List and Puppe, 2009). In particular, in binary aggregation framework
(Grandi and Endriss, 2011), the agents accept or reject binary issues in a given agenda.
Based on these votes, a given judgment aggregation rule will output for each issue whether
it should be accepted or not.

This thesis will analyze the iterated process of a fairly new framework, goal-based
voting, which was first introduced by Novaro et al. (2018). In the current chapter we will

1



Introduction

motivate iterative goal-based voting by giving a first example, give an overview on the
chapters to come and discussing related work.

Goal-based voting was first introduced by Novaro et al. (2018) as a multi-issue de-
cision making process in which agents can hold goals over the issues in a given agenda.
Similar to judgment aggregation (List and Puppe, 2009) or belief merging (Konieczny
and Pérez, 2011; Everaere et al., 2015), agents formulate their preferences as a formula in
propositional logic in which each variable represents one of the issues (for an introduction
to propositional logic see Gamut (1991)). In classical judgment aggregation, agents hold
complete conjunctions: hence, they either support an issue or reject it. In some extended
settings, agents might also be able to abstain from an issue which means that their ballot
consists of an incomplete conjunction. Goal-based voting allows more complex connec-
tions between issues (as for example implications) which lets the agents express richer
preferences than in judgment aggregation.

In belief merging, agents’ knowledge or beliefs can be as complex as goals in goal-
based voting, but since its aim is to merge propositions that are held by the agents (or
sources) into a unique belief or knowledge base, rather than narrowing down the options
in a collective decision, the focus is not on resoluteness.

The following example shows a situation where goal-based voting can be used, while
judgment aggregation would not be able to capture these complex preferences.

Example 1.1. Three friends, Ann, Betti and Clara, are searching for a shared flat. They

already settled for a certain budget, but they still have to decide on whether to have a

balcony (or a terrace, in case it is on the ground floor), whether they want to live on the

ground floor and whether they want to have a shared living area. These open questions

are binary issues and hence this decision can be modelled in goal-based voting. Assume

the three friends have the following preferences:

• Ann wants to have a balcony in case they are not living at the ground floor. She

does not like having a shared living area.

• Betti wants a balcony only in case there is no shared living area: she really likes to

have a room where they can spend time together. She does not care about living at

the ground floor.

• Clara does not want to live on the ground floor. She loves spending time in common

areas and would therefore love a shared living space as well as a balcony.

Assigning propositional variables b, f and ` to the issues balcony, ground floor and living

area respectively, we can express the friends’ preferences as shown in Table 1.1. In the
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models, b, f and ` are the first, second and third issue respectively. For example in the

model (101) b and ` are true, while f is false, hence it represents a flat with a balcony and

a shared living space, which is not on the ground floor. If these friends were to decide on

Agent Goal Models
Ann (¬f → b) ∧ ¬` {(100), (110), (010)}
Betti b↔ ¬` {(110), (100), (011), (001)}
Clara b ∧ ¬f ∧ ` {(101)}

Table 1.1: The goals of the three agents in Example 1.1. The first column represents the
agents’ names, the second their goals and the third colums the models of their goals.

these issues by using judgment aggregation, then only Clara would be able to express her

gaol, since Betti’s goal, for example, has multiple models and a rational judgment set (in

judgment aggregation) could represent only one of them.

Novaro et al. (2018) introduce different voting rules with which these goals could be
aggregated. For example the Approval rule outputs all the interpretations which have the
maximal support from the agents in the profile: in Example 1.1 the outcome would thus be
{(110), (100)}. While in this example the Approval rule narrows the decision, not being
resolute (meaning that it sometimes can return multiple tied alternatives as the outcome)
is indeed a downside of the Approval rule. Among the resolute rules, the EMaj has
been introduces as (one possible) generalization to goal-based voting of classical majority.
According to this rule every voter and every model of their goal are given equal weight
and an issue is accepted exactly if the support received by the agents in the profile is more
than half the number of agents. In Example 1.1 the EMaj would, for instance, lead to
{(011)} as the outcome, i.e., a flat which has no balcony, is on the ground floor and has a
common living area.

One might observe that the Approval results in the set {(110), (100)}: these interpre-
tations are models of Ann’s and Betti’s goals, but not of Clara’s. Thus, she might have
an incentive to alter her vote such that she reaches a more favourable outcome. How to
assess whether one outcome is more favourable than another is not a simple question. Sat-
isfaction functions are used to model the satisfaction of an agent for the current outcome,
given their truthful goal.

In this thesis we will work with two types of satisfaction functions: a dichotomous
type, where an agent’s satisfaction is solely based on whether a model of their goal is in
the outcome or not, and then functions based on the Hamming distance of their truthful
goal to the interpretations in the outcome. Considering the Hamming distance, one might
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see that in Example 1.1, given the two interpretations returned by the Approval rule,
Clara would prefer (100) over (110), since the former differs only on one issue to her
goal while the latter does on two. Therefore, Clara might have an incentive to alter her
vote to b ∧ ¬f ∧ ¬`, so that the new outcome yielded by the Approval rule is {(100)}
and hence closer to her truthful goal. Assuming that these friends use an online tool to
aggregate their preferences, in which anyone can come back, observe the vote of every
other agent and change her preference, it is reasonable to believe that this would actually
takes place.

Iterative voting studies exactly these scenarios. While in classical voting the agents
are assumed to vote only once, in iterative voting agents can revisit and change their vote
after observing the current result. This iterative process yields many other questions: Will
this voting process terminate? What gives an agent an incentive to change her vote? How
big is the computational effort to calculate a better vote? Is the final result better than the
initial one? The answers to all these questions depend highly on the set-up of the iteration.

In fact, the underlying rule as well as the rationality of the agents or restrictions on
the alterations are important variables. In classic approaches, agents are assumed to be
rational, which means that they only alter if it is in some sense better, and that they are
myopic, i.e., when choosing how to alter their vote, they only take into account the next
outcome and not any further iteration. Most often, if there are multiple agents that could
possibly improve the result in their favour, the altering agent is chosen randomly.

Reasonable voting rules have been shown to possibly yield circular iterations, this
means the agents’ end up voting for a profile they have been voting for before, hence pos-
sibly voting in a circle. In judgment aggregation, Terzopoulou and Endriss (2018) were
able to show that the plurality rule does not always terminate. Novaro (2019) shows that
in goal-based voting the Majority rules are in general manipulable, opening the question
about iterative voting.

In this work we will be laying the ground work for analyzing iterative goal-based
voting. Focusing on the EMaj , TrueMaj , 2sMaj and Approval rules, as defined by
Novaro et al. (2018), the aim of this study is to open the question of iteration to this new
voting framework. We will be analyzing the termination of these rules as well as the
quality of the iteration. We will also implement a program in which randomly chosen
profiles are iterated, to get a first impression on how likely and realistic the theoretical
results are.
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Introduction

1.1 Related Work

For an overview to the field of Computational Social Choice, we recommend the Hand-
book by Brandt et al. (2016). Relevant to this thesis are especially the introduction to
strategy-proofness (Chapter 17) and the discussion on the approval rule (in Chapter 2).

Novaro et al. (2018) introduced goal-based voting: in particular, they defined the
Approval and Majority rules which we study in this thesis. Novaro (2019) studied ax-
iomatic analysis of these voting rules and their computational complexity and initial re-
sults on the manipulability of the Majority rules, showing these to be manipulable. The
manipulability results naturally open the possibility to iterative voting, which was left as
a question for future work and which motivates the study in this thesis.

The work closest to ours is the study of iteration in judgment aggregation by Ter-
zopoulou and Endriss (2018), who analyzed the premise-based and plurality rules. They
found the former to always terminate in an iterative process, while the latter only does
so under certain restrictions. Some of these restrictions limit the knowledge the agents
have over the other voters’ ballots. Some of the results regarding the plurality rule can
be transferred to our setting (see Section 3.3). We direct the reader to Baumeister et al.
(2017) for an overview about strategic behaviour in judgment aggregation.

Another related field is that of belief merging, Everaere et al. (2017) compare judg-
ment aggregation with belief merging by defining a projection function between belief
bases and agendas, highlighting the similarities and differences between these two re-
search fields. An introduction to belief merging and an overview of the integrity con-
straints that are commonly used are described by Konieczny and Pérez (2002). Delgrande
et al. (2006) define a framework for iterated belief revision which differs from our ap-
proach in one key aspect: while we assume agents to keep a truthful goal during the
iteration process, trying to optimize according to it during the iteration, in iterated belief
revision the agents’ change their beliefs, knowledge or opinions through the iteration.

Iterative voting has been a popular research direction in Computational Social Choice.
Meir et al. (2010), Reyhani and Wilson (2012) and Brânzei et al. (2013) studied the con-
vergence and quality of iterative voting for different rules and settings. Meir et al. (2017)
give an introduction to iterative voting: most classic notions, as being myopic, truth-
biased or giving a best response, are explained there. Meir et al. (2010) analyze under
which conditions the plurality rule converges to an equilibrium in a game-theoretic frame-
work, showing that it depends on various assumptions (such as, for example, the chosen
tie-breaking rule). A similar analysis on the convergence of scoring rules was done by
Reyhani and Wilson (2012), who showed that the veto rule is guaranteed to terminate
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and established a new upper bound on the steps to convergence with the plurality rule.
Their results also include examples of circular iterations for other scoring rules, such as
the Borda rule. Obraztsova et al. (2015) provide two sufficient conditions for convergence
in iterative voting and study whether some classes of voting rules, such as scoring rules,
satisfy them.

Beside the convergence of iterative processes, the analysis of their quality also re-
ceived great attention in the literature. Brânzei et al. (2013) studied the price of anarchy
for some scoring rules, i.e., the ratio between the best possible outcome and the worst
possible outcome with iteration. They show that the plurality rule can benefit the vot-
ers in iteration under this notion. However, they also provide some negative results (for
example for the Borda rule).

Finally, a key element of defining iterative goal-based voting is the choice of the sat-
isfaction function for the agents, i.e., defining when an agent has an incentive to possibly
alter her vote. While Novaro (2019) defined dichotomous preferences, based on the mod-
els and non-models of the agents’ goals, we use other classical approaches of preference
extensions to define suitable satisfaction functions from the Hamming distance. Our ex-
tensions are based on MiniMax and MaxiMax by Packard (1979), who used those to
extend preferences on elements to preferences over sets of these elements. More work on
this topic has been done by Fishburn (1972) who defined the homonymous extension, in
which ties are assumed to be broken by an even-chance lottery. More extensions and their
axiomatic characterizations can also be found in Kelly (1977), Pattanaik and Peleg (1984)
and Bossert et al. (2000).

1.2 Overview

In Chapter 2 we define goal-based voting following Novaro et al. (2018), also giving
some examples and in particular, the EMaj , TrueMaj , 2sMaj and Approval rules. A
main part of the chapter will be about defining satisfaction functions, which lay the ground
of an agent’s alteration. While still including the dichotomous functions defined by No-
varo (2019) we will expand the notion of satisfaction to an approach based on the Ham-
ming distance, leading to three types of agents, which we will call Hamming-optimists,
Hamming-pessimists and Hamming-realists. The last section of this chapter summarizes
and completes the results about manipulation for the rules considered in this work.

Chapter 3 contains the main theoretical results of this work, in which the termination
of the EMaj , TrueMaj , 2sMaj and Approval rules are analyzed. The first section de-
scribes the iteration process: in particular, we define best responses, myopic agents, truth-
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bias and rationality. Then we show that the Majority rules are not guaranteed to terminate
if the agents are truth-biased, and that EMaj and TrueMaj might still yield circular it-
erations even without truth-bias. We also prove that whether the iterated Approval rule
terminates or not highly depends on which satisfaction function the agents use. We estab-
lish that iteration always terminates with Hamming-pessimists, while some restrictions
on the alterations are needed to achieve termination with H-optimists. For Hamming-
realists, however, these restrictions are not strong enough to guarantee termination with
the Approval rule.

In Chapter 4, we will introduce the notion of social welfare, based on which we
discuss the quality of the iteration. For the EMaj , TrueMaj and 2sMaj rules we show
that iteration is not guaranteed to yield a higher social welfare. For the Approval rule
we demonstrate that certain satisfaction functions improve the social welfare in iteration.
Then, we present our implementation of iterated Approval voting for three agents and
three issues, which leads us to formulate the hypothesis that iteration is rare and beneficial.

In the conclusion all results are summed up, discussed and further directions are
pointed out.

7



2 | Preliminaries

In this chapter, we will build the basic grounds needed to understand the following chap-
ters and results. We will first define the formal model of goal-based voting, followed by
a section discussing strategic voting in this setting. Since strategic behaviour of agents is
defined with respect to a given satsifaction function we will introduce in the second part
of the chapter the ones we will be studying. This includes satisfaction functions based on
the Hamming distance. Lastly, we will summarize and complete the existing results of
manipulation in goal-based voting. For a more detailed approach on strategic goal-based
voting and further examples, we refer to Novaro (2019).

2.1 Goal-Based Voting

In goal-based voting a finite set of agents N = {1, . . . , n}, which will also be called
voters, take part in a collective decision on some binary issues from a finite set I =

{1, . . . ,m}. The vote of agent i is expressed as a propositional formula γi, which is
consistent and in which each propositional variable corresponds to one of the issues in I.
The set of models of formula γi will be denoted by Mod(γi). These models v ∈ Mod(γi)

will be represented as vectors (v(1), . . . , v(m)) such that v(j) ∈ {0, 1} for any j ∈ I
describes whether the issue j is true (1) or false (0) in the model. A voting profile Γ =

(γ1, . . . , γn) is a vector of every agents’ goal. Let G be the set of possible goals, i.e., all
propositional formulae on the variables in I.

Then, a voting rule is a function for any n and m

F : (G)n → P({0, 1}m) \ {∅}

mapping voting profiles to a non empty subset of all interpretations. A rule is called
resolute, if it returns a singleton on every profile. Since we also consider irresolute rules,
the co-domain of a rule is defined to be the powerset of all vectors. For a resolute rule F ,
F (Γ) is a vector in {0, 1}m and thus, F (Γ)j denotes the jth entry of F (Γ).

8



2 Preliminaries

The following rules where introduced by Novaro et al. (2018). The Approval rule
coincides with the ∆Σ,d

µ -rule in the framework of belief merging by Konieczny and Pérez
(2011).

Definition 2.1 (Approval). For a profile Γ = (γ1, . . . , γn) of n agents and m issues, the

Approval rule is defined as:

Approval(Γ) = argmaxv∈Mod(
∨

i∈N γi)
|{i ∈ N|v ∈ Mod(γi)}|.

One can also define the Approval rule as maximizing the support of a model in the
given profile. The concept of support will be useful in the following chapters.

Definition 2.2 (Support). For a profile Γ = (γ1, . . . , γn) and an interpretation v ∈
{0, 1}m we call the number of agents voting for a goal satisfied by v the support of v,

denoted by suppΓ(v) := |{i ∈ N | v ∈ Mod(γi)}|.

So thenApproval can be restated asApproval(Γ) = argmaxv∈Mod(
∨

i∈N γi)
suppΓ(v).

The next rules are generalizations of the well-known Majority rule in voting and judg-
ment aggregation. These rules belong to the more general class of threshold rules, where
a threshold of acceptance (in this case, n

2
) is specified for each issue. We follow Novaro

et al. (2018) in defining mx
ij := |{v ∈ Mod(γi) | v(j) = x}| as the number of models

of agent i’s goal that assigns to issue j ∈ I the value x ∈ {0, 1}. The EMaj rule is a
resolute voting rule which an issue is accepted, if and only if it surpasses the threshold of
n
2

votes, where each agent and each model for an agent’s goal have equal voting weight.
The following definition describes the rule formally.

Definition 2.3 (EMaj ). For a profile Γ = (γ1, . . . , γn) with n agents and a finite set of m

issues, the EMaj rule is defined as:

EMaj (Γ)j = 1 iff
∑
i∈N

m1
ij

|Mod(γi)|
>
n

2
.

Note that the EMaj rule is resolute by definition, while Approval is not. Another
non-resolute rule is TrueMaj , which requires us to define a Majority rule M(Γ)j for each
issue j ∈ I:

M(Γ)j =


{x} if

∑
i∈N

mx
ij

|Mod(γi)| >
n
2

{0, 1} if
∑
i∈N

m1
ij

|Mod(γi)| = n
2

9



2 Preliminaries

We can then define TrueMaj as a Cartesian product of the majority outcomes over
all issues. That is, TrueMaj coincides with the EMaj in case the majorities are strict for
each issue. For every issue j on which the majority is not strict, the rule returns in the
outcome one interpretation where j has value 1, and one where it has value 0.

Definition 2.4 (TrueMaj ). For a profile Γ = (γ1, . . . , γn) with n agents and m issues,

the TrueMaj is defined as:

TrueMaj (Γ) =
∏
j∈I

M(Γ)j.

The 2sMaj first computes the EMaj over the set of each individual agent’s goal’s
models to then apply a majority function on these outcomes. We will thus first define
this majority function. Given a vector of vectors (v1, . . . , vn) we can define a majority
function such that

Maj (v1, . . . , vn)j =


1 if

∑
i∈{1,...,n}

vi(j) >
n
2

0 otherwise

The 2sMaj is thus defined as follows:

Definition 2.5 (2sMaj ). For a profile Γ = (γ1, . . . , γn) with n agents and m issues, the

2sMaj is defined as:

2sMaj (Γ) = {Maj (EMaj (γ1), . . . ,EMaj (γn))}.

We can now properly formulate our first example from the introduction.

Example 2.1. Ann, Betti and Clara are looking for an apartment. Remember that they

had three issues to decide on, the balcony (b), the ground floor (f) and whether or not

to have a shared living area (`). Thus, we have a set of three agents N = {1, 2, 3} and

a set of three issues I = {b, f, `}, we use b to denote the first issue, f for the second

and ` as the third instead of 1, 2 and 3 for ease of notation. Therefore the voting profile

Γ = (γ1, γ2, γ3) is such that:

γ1 = (¬f → b) ∧ ¬`, γ2 = b↔ ¬` and γ3 = b ∧ ¬f ∧ `.

The models of agent 1’s goal are Mod(γ1) = {(100), (110), (010)}, agent 2’s goal is

modelled by Mod(γ2) = {(110), (100), (011), (001)} and Mod(γ3) = {(101)}.

10



2 Preliminaries

Let us calculate the outcome of our rules defined above. First, the Approval rule

returns the interpretation with the maximal support. Since none of the interpretations

model all agents’ goals, the maximal support here is 2. We thus have: Approval(Γ) =

{(110), (100)}. For EMaj and TrueMaj it is enough to calculate
∑
i∈N

m1
ij

|Mod(γi)| for each

issue j ∈ I. Note that n
2

= 3
2
, so we get:

∑
i∈N

m1
ib

|Mod(γi)|
=

2

3
+

1

2
+ 1 =

13

6
>

3

2∑
i∈N

m1
if

|Mod(γi)|
=

2

3
+

1

2
+ 0 =

7

6
<

3

2∑
i∈N

m1
i`

|Mod(γi)|
= 0 +

1

2
+ 1 =

3

2
=

3

2

Since the first issue got a majority, the second did not and the third tied, and since

EMaj breaks ties against an issue, while TrueMaj keeps both variations, they result

in EMaj (Γ) = {(100)} and TrueMaj (Γ) = {(100), (101)}. Applying the EMaj first to

each agent’s goals, results in:

EMaj (γ1) = {(110)} EMaj (γ2) = {(000)} EMaj (γ3) = {(101)}.

Then, applying Maj , the 2sMaj returns {(100)}.

In further sections we will skip these calculations, it is left to the reader to check the
results. From now on we will represent the profiles and results as in Table 2.1. We hope
to increase readability in this way, since, even though our voting rules take the tuple of
goals as their input, they actually compute the result based on the goals’ models.

If the friends would choose to use EMaj or 2sMaj , they would end up searching for a
flat which has a balcony, is not on the ground floor and has no shared living area. If they
would have chosen the Approval or TrueMaj rule, they would have not gotten a definite
decision yet. The former leaves them to choose between a flat with a balcony, not on the
ground floor, with no shared living area and an apartment with a terrace on the ground
floor and no shared living area. The TrueMaj follows the EMaj in the first two issues but
leaves the decision on whether to have a shared living area open. While in this example
EMaj and 2sMaj coincide, Novaro (2019) has shown that this is not always the case.

11
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Γ

Mod(γ1) (100)

(110)

(010)

Mod(γ2) (110)

(100)

(011)

(001)

Mod(γ3) (101)

Approval (110)

(100)

EMaj / 2sMaj (100)

TrueMaj (100)

(101)

Table 2.1: Voting rules applied to the profile in Example 1.1.

2.2 Strategic Goal-Based Voting

A satisfaction function measures for each agent how content they are with the result of
a collective decision. Formally, it maps the tuple consisting of the agent’s goal and the
outcome, i.e., a propositional formula and a set of models, to a real number.

sat : G × P({0, 1}m)→ R.

Given an agent’s goal, a set of interpretations is said to be preferred by an agent i to
another set of interpretations if the satisfaction for the former is higher than for the latter.
In particular, given two profiles Γ and Γ′, agent i prefers the outcome F (Γ) of a rule F
over the outcome F (Γ′) if the following holds:

F (Γ) �i F (Γ′) iff sat(γi, F (Γ)) > sat(γi, F (Γ′)).

The following sections will introduce the examples of satisfaction functions which are
relevant for our work.

12
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2.2.1 Dichotomous Satisfaction Functions

The following satisfaction functions are dichotomous in the sense that the agents are only
concerned about the interpretations of the outcome being a model of their goal or not.
Novaro (2019) defined three different forms of this satisfaction. The opt function returns
1 if the intersection of an agent’s goal and the outcome is not empty and 0 otherwise. If an
agent wants all interpretations of the outcome to be a model of her goal, her satisfaction
coincides with pess. Lastly, for eum the proportion of the interpretations satisfying the
agent’s goal in the outcome corresponds to her satisfaction. These functions correspond
to the index functions idw, ids and ip used by Everaere et al. (2007) to study strategic
behaviour in belief merging.

Definition 2.6. For a profile Γ = (γ1, . . . , γn) of n agents and m issues, and a voting rule

F , the opt, pess and eum are defined as:

• opt(i, F (Γ)) =

1 if F (Γ) ∩Mod(γi) 6= ∅

0 otherwise

• pess(i, F (Γ)) =

1 if F (Γ) ⊆ Mod(γi)

0 otherwise

• eum(i, F (Γ)) = |Mod(γi)∩F (Γ)|
|F (Γ)|

The agents will be called optimists, pessimists and expected utility maximizers ac-
cordingly. While these functions induce a natural notion of satisfaction, it is not very
fine-grained, as illustrated by the following observation.

Suppose none of the interpretations in the outcome is a model of an agent’s goal:
according to all of these three notions of satisfaction the agent will be unsatisfied. But we
may want to be more specific in how unsatisfied the agent is with the resulting options in
the outcome. For example, consider two issues p, q and an agent whose goal is p ∧ q: the
only model satisfying the agent’s goal is (11). Now suppose that, on a given profile, one
voting rule outputs (00) and another rule results in (10). Do we really want to say that the
agent is equally unhappy about those?

Intuitively, the Hamming distance counts the number of issues on which two given
interpretations disagree. In the former example of issues p and q, the Hamming distance
from the agent’s model to the first outcome would be 2 while the distance to the second
outcome is only 1. Hence it gives us a way to distinguish satisfaction of non-models in
more detail. In the next section, we will see satisfaction functions based on the Hamming
distance, which capture this intuition.
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2.2.2 Hamming Distance Extensions

The Hamming distance is often used to compare models and induce satisfaction (Dietrich
and List, 2007b; Endriss et al., 2012) it is defined between two given vectors of a fixed
length m.

Definition 2.7 (Hamming Distance). Given two interpretations v, w ∈ {1, 0}m and a set

of issues I = {1, . . . ,m}, the Hamming distance is defined as

H(v, w) = |{j ∈ I | v(j) 6= w(j)}|.

The Hamming distance is often used in judgement aggregation to define a preference,
i.e., a linear order, over the possible outcomes (Baumeister et al., 2017). However, since
an agent’s goal might have multiple models and because we also consider irresolute voting
rules, we need to extend the notion of preference to sets of models.

Kelly (1977) was one of the first to extend preferences over objects to preferences over
sets of objects, introducing the so called Kelly extension. Intuitively speaking, one set is
Kelly-preferred over another if every element in the former is at least weakly preferred
over every element in the latter. However, there are many sets which are left incomparable
by this extension. For example, if an agent prefers elements a over b over c then the Kelly
extension cannot tell the agent whether outcome {a, c} is preferred to {b} or vice-versa,
given her initial preference over the elements.

Our approach is inspired by the Maxi-Max and Maxi-Min as well as the Averaging

extension as introduced by Packard (1979). These extensions are total; hence any two
given sets will be comparable. Given a certain preference over elements of a set, these
approaches try to maximize the minimum, the maximum or the average satisfaction, with
respect to a given order; see Definitions 2.8, 2.9 and 2.10.

Definition 2.8 (Maxi-Max). Given a preference order� on a set S and non-empty subsets

X, Y ⊆ S, let max(X) and max(Y ) be the maximal elements in X and Y according

to �. The MaxiMax extension is defined as:

X �maximax Y iff max(X) � max(Y ).

Definition 2.9 (Maxi-Min). Given a preference order� on a set S and non-empty subsets

X, Y ⊆ S, letmin(X) andmin(Y ) be the minimal elements inX and Y according to�.

The MaxiMin extension is defined as:

X �maximin Y iff min(X) � min(Y ).
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Definition 2.10 (Averaging). Given a set S, a function u : S → R and non-empty subsets

X, Y ⊆ S. The Averaging extension is defined as:

X �averaging Y iff
∑
x∈X

u(x)

|X|
>

∑
y∈Y

u(y)

|Y |
.

The function u can be seen as a utility function. We will be using the Hamming dis-
tance to implement these extensions as Barrot et al. (2017) did for Maxi-Max and Maxi-
Min in a setting of approval voting for committee elections (corresponding to a complete
conjunction in our setting). Following their example of calling the former Optimistic

and the latter Pessimistic, we will introduce three types of agents: Hamming-optimist,
Hamming-pessimist and Hamming-realist. Hamming-optimists and Hamming-pessimists
will only consider the minimal and maximal Hamming distance of a set of interpreta-
tions to their goal, as per Definitions 2.8 and 2.9. The Hamming-realist will consider the
average Hamming distance, such that the utility u in Definition 2.10 corresponds to the
negative of this distance (e.g. -2 if the distance is 2). Implementing these extensions in
our setting is not straightforward.

We not only have multiple interpretations in the outcome, but an agent’s goal might
also have multiple models. Here, there is no unique preference order induced by the
Hamming distance. Thus, there is not just one way to define the minimal, maximal or
average distance of an outcome compared to the models of an agent’s goal, as shown by
the following example.

Example 2.2. Assume agent i has the goal γi = (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ r) for three

given issues I = {p, q, r}. Thus the models of her goal are Mod(γi) = {(100), (001)}.
Now take O = {(111), (110)} to be an outcome of some voting rule. When comparing

the models of agent i’s goal to the elements of O, there are four Hamming distances we

could consider: namely, the ones between each v ∈ O and each w ∈ Mod(γi). These

distances are H((111), (100)) = 2, H((111), (001)) = 2, H((110), (100)) = 1 and

H((110), (001)) = 3.

Which one is the minimal or maximal element of O according to i’s goal in Exam-
ple 2.2? Given any interpretation in an outcome and its Hamming distance to each of the
models of the agent’s goal, we will always consider the lowest of these distances. That is,
in Example 2.2 the interpretation (111) has distance 2 to both models of i’s goal, and thus
the lowest distance is 2; while the lowest distance of (110) to the models of i’s goal is 1.
Thus we will consider (110) to be the minimal element in O according to i’s goal.

One could also choose the average over these distances to be the relevant factor of the
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comparison. These would be 2 for both interpretations in O and hence (111) and (110)

would be equally preferred. However, the following example motivates our choice.

Example 2.3. Suppose agent i has the goal γi = p ∧ (q ↔ r) for three given issues

I = {p, q, r}, hence Mod(γi) = {(111), (100)}. Consider two outcomes of a voting

rule, namely O = {(111)} and O′ = {(110)}. The interpretation in O is a model of

agent i’s goal, while the one in O′ is not. Looking at the Hamming distances, we get

H((111), (111)) = 0 and H((100), (111)) = 2 as well as H((111), (110)) = 1 and

H((100), (110)) = 1.

Intuitively, we want an agent to be satisfied if O ⊆ Mod(γi), since the agent’s goal
is guaranteed to be fulfilled in this case. The lowest distance as discussed above ensures
this for O in Example 2.3, since H((111), (111)) = 0. However, considering the average
distance the agent in Example 2.3 would be indifferent betweenO andO′, since both have
an average distance of 1, even though the interpretation in O′ does not satisfy her goal.
Following this argument we will define the lowest Hamming distance, which is analogous
to the minimal distance as Everaere et al. (2007) use it in belief merging. Based on
the lowest Hamming distance we will then define the satisfaction functions of Hamming-
optimist, Hamming-pessimist and Hamming-realist, which will be denoted by H-optimist,
H-pessimist and H-realist from now on.

Definition 2.11 (Lowest Hamming Distance). For a given set of vectorsM ∈ P({0, 1}m)

and a vector w ∈ {0, 1}m, the lowest Hamming distance is defined as the minimal Ham-

ming distance the vector w has to a model in M . Namely, we have

lowH(M,w) = min
v∈M

H(v, w).

Given an agent’s goal γi, the lowest Hamming distance induces a preference order �i
over all possible interpretations in an outcome. Namely,

v �i w iff lowH(Mod(γi), v) < lowH(Mod(γi), w).

This weak linear order is total and can be extended to a preference over sets.

Definition 2.12 (H-Optimist, H-Pessimist, H-Realist). Given a profile Γ = (γ1, . . . , γn)

and a voting rule F , the H-optimist, H-pessimist and H-realist satisfaction of the agents

are induced by the following distances:

optH(γi, F (Γ)) = min
w∈F (Γ)

lowH(Mod(γi), w)
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pessH(γi, F (Γ)) = max
w∈F (Γ)

lowH(Mod(γi), w)

realH(γi, F (Γ)) =

∑
w∈F (Γ)

lowH(Mod(γi), w)

|F (Γ)|

then for a given distance di ∈ {optH, pessH, realH} the satisfaction is defined as

satiγi, (F (Γ′)) = m− di.

In the following we will write lowH(γi, v) instead of lowH(Mod(γi), v) for ease of
notation and optH(γi, F (Γ)), pessH(γi, F (Γ))) as well as realH(γi, F (Γ))). Since the
distances optH , pessH and realH range between 0 and m, the former marking a more
satisfied agent, the satisfaction sati ranges between m and 0, respectively.

These preference is an instance of Definition 2.9, where the interpretation in the out-
come holding the distance optH , i.e., argminw∈F (Γ) lowH(γi, w), is the minimal element.
Similarly argmaxw∈F (Γ) lowH(γi, w) is the maximal element in line with Definition 2.8.
The preference of an H-realist coincides with Definition 2.10 when sati is taken to be the
utility function.

Barrot et al. (2017) used a similar approach when discussing Approval voting for
committee elections. They also assumed satisfaction to be based on Hamming distances
and defined the utility of one agent as the difference between the number of elected com-
mittee members and the distance to those. We follow this approach by defining the satis-
faction of an agent as the difference between the number of issues and her distance to a
given outcome under some rule.

Note that, if her satisfaction is induced by the distance in Definition 2.12, an agent
i will (strictly) prefer the outcome of a voting rule F on a profile Γ′ over the outcome
of F on the profile Γ if and only if according to her type the distance to the former is
(strictly) smaller than the distance to the latter. For an H-optimist i for example this
means: F (Γ′) �i F (Γ) iff optH(γi, F (Γ′)) < optH(γi, F (Γ)). The following ex-
ample will clarify these definitions.

Example 2.4. Consider three friends wanting to go out for dinner. They need to decide

if they want to have an appetizer (a), main dish (m) and dessert (d) at their night out.

The first friend wants to either have all or not go out at all, that is γ1 = a ↔ m ↔ d.

The second friend is on a diet and would prefer not to have a dessert, γ2 = a ∧m ∧ ¬d.

The third wants the whole experience and we therefore get γ3 = a ∧ m ∧ d. Assume

these friends use the TrueMaj rule to narrow down their decision. We get the profile as

presented in Table 2.2.
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Mod(γ1) (000)

(111)

Mod(γ2) (110)

Mod(γ3) (111)

TrueMaj (Γ) (111)

(110)

Table 2.2: Outcome of TrueMaj on the profile from Example 2.4

The lowest Hamming distance between the models of agent 1’s goal and the interpre-

tations in the outcome are:

lowH(γ1, (111)) = H((111), (111)) = 0 lowH(γ1, (110)) = H((110), (111)) = 1.

Thus this profile induces the optH , pessH and realH distances for agent 1 as below

optH(γ1,TrueMaj (Γ)) = min{lowH(γ1, (111)), lowH(γ1, (110))} = 0

pessH(γ1,TrueMaj (Γ)) = max{lowH(γ1, (111)), lowH(γ1, (110))} = 1

realH(γ1,TrueMaj (Γ)) =
lowH(γ1, (111)) + lowH(γ1, (110))

2
=

1

2
.

As an H-optimist, the first friend in Example 2.4 believes that they will have all three
courses and therefore is totally happy. As an H-pessimist or H-realist, she is more skep-
tical. As H-pessimist she is least satisfied because she would be convinced that only the
first two courses will be served. The H-realist on the other hand still believes both results
to be possible and holds an average satisfaction.

The different types of agents could therefore also be seen as risk-taking or risk-averse.
This interpretation is formalized by the uncertainty appeal and uncertainty aversion axiom
by Bossert et al. (2000) for preference extensions from elements to sets of elements.

Definition 2.13 (Simple Uncertainty Appeal). For any three elements x, y, z, if we have

x � y � z, then the extension is such that {x, z} � {y}.

Definition 2.14 (Simple Uncertainty Aversion). For any three elements x, y, z, if we have

x � y � z, then the extension is such that {y} � {x, z}.

Bossert et al. (2000) use these notions to characterize their Mini-Max and Maxi-Min
extensions, which are not to be confused with Maxi-Max and Maxi-Min from Packard
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(1979). While our notions only compare the minimal or maximal element respectively,
the Mini-Max and Maxi-Min first compare the minimal (maximal) element and then the
maximal (minimal), in case the former are equally preferred. Thus, these Maxi-Min and
Mini-Max extensions are even more fine grained. However, if the first elements which are
compared differ, the two approaches coincide. If the premise of simple uncertainty aver-
sion and appeal is satisfied, we know that the minimal and maximal element of the given
sets will differ. Thus, we can transfer the results from Bossert et al. (2000) that Maxi-Min
satisfies simple uncertainty appeal and Mini-Max satisfies uncertainty aversion.

Proposition 2.1. The optH function satisfies simple uncertainty appeal.

Proof. TakeN = {1, . . . , n} to be the set of agents, deciding over issues I = {1, . . . ,m}.
Assume u, v, w ∈ {0, 1}m and suppose the goal γi of agent i is such that lowH(γi, u) <

lowH(γi, v) < lowH(γi, w), i.e., the induced preference gives u �i v �i w.
For O = {u,w} and O′ = {v} we get

optH(γi, O) = min{lowH(γi, u), lowH(γi, w))} = lowH(γi, u) and

optH(γi, O
′) = lowH(γi, v).

By assumption we have lowH(γi, u) < lowH(γi, v), which gives us that the optimists
distance fromO′ is bigger, i.e., optH(γi, O) < optH(γi, O

′), and therefore agent i prefers
{u,w} over {v}.

Proposition 2.2. The pessH function satisfies simple uncertainty aversion.

The proof of this Proposition 2.2 is analogue to the one of Proposition 2.1. Our three
extensions collapse in case the outcome is a singleton, for example, if the voting rule is
resolute. This is the case because, given only one interpretation in the outcome, there
is also only one lowest Hamming distance to consider. Thus, the satisfaction for the
interpretation in the outcome is exactly lowH .

Proposition 2.3. If the voting profile Γ and the voting rule F are such that |F (Γ)| = 1,

then the realH , pessH and optH functions coincide.

Proof. Take F to be a voting rule and Γ = (γ1, . . . , γn) to be a voting profile on issues
I = {1, . . . ,m}, such that F (Γ) = {v} for some interpretation on I. Take any i ∈ N ,
then {lowH(γi, w) | w ∈ F (Γ)} has only one element, namely lowH(γi, v). Therefore,
since it is the case that |F (Γ)| = 1 we get

lowH(γi, v) = min{lowH(γi, w) | w ∈ F (Γ)}
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= max{lowH(γi, w) | w ∈ F (Γ)}

=

∑
w∈F (Γ)

lowH(γi, w)

|F (Γ)|
.

Hence the distances realH , pessH and optH coincide.

Corollary 2.1. If the voting rule is resolute, then the realH , pessH and optH functions

coincide.

However, none of these three notions implies another, i.e., one agent type preferring
a certain outcome over another does not imply that another agent type does as well. This
tells us that all three notions are actually different and have to be considered separately in
the remainder of this thesis.

Proposition 2.4. The satisfaction functions yielded by optH , pessH or realH differ.

Proof. In order to prove this proposition it suffices to show examples in which each sat-
isfaction function, H-optimist, H-pessimist and H-realist, disagrees with the others.

Take an agent with the goal γ = (p∧¬q∧¬r)∨ (p↔ q∧¬r)) for three issues. Then
the models of her goal are Mod(γ) = {(100), (000), (110)}. Let now O = {(111)} and
O′ = {(111), (011)} be some possible outcomes. The agent will have the satisfaction as
presented below:

optH(γ,O) = 1 = optH(γ,O′)

pessH(γ,O) = 1 < 2 = pessH(γ,O′)

realH(γ,O) = 1 <
3

2
= realH(γ,O′).

Hence an H-pessimist and H-realist prefer O′ over O, while an H-optimist does not.
Take an agent to have the goal γ = p∧ (q ↔ r) for three issues. So then the models of

her goal are Mod(γ) = {(100), (111)}. Let now O = {(101)} and O′ = {(101), (100)}
be some possible outcomes. The agent will have the satisfaction given by:

optH(γ,O) = 1 > 0 = optH(γ,O′)

pessH(γ,O) = 1 = pessH(γ,O′)

realH(γ,O) = 1 >
1

2
= realH(γ,O′).

Hence an H-optimist and H-realist prefers O′ over O, while a H-pessimist does not.
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The H-optimist and H-pessimist can be seen as a generalization of the notion of a
optimist and pessimist as defined in Section 2.2. The following propositions show that the
preference of an optimist (pessimist) implies a preference of an H-optimist (H-pessimist).

Proposition 2.5. If for some voting rule F and two profiles Γ and Γ′ it is the case that a

optimist prefers F (Γ) over F (Γ′), then the same holds for an H-optimist.

Proof. Take N = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues and
take F to be a voting rule. Let the profiles Γ and Γ′ be such that agent i ∈ N prefers F (Γ)

over F (Γ′) as an optimist, i.e., we have F (Γ) ∩Mod(γi) 6= ∅ and F (Γ′) ∩Mod(γi) =

∅. Hence there is v ∈ F (Γ) with v ∈ Mod(γi), thus lowH(γi, v) = 0 and therefore
optH(γi, F (Γ)) = 0. But we also get that for all v ∈ F (Γ′) we have that v /∈ Mod(γi),
therefore for all v ∈ F (Γ′) it holds that lowH(γi, v) > 0 and so optH(γi, F (Γ)) > 0.
This leads to optH(γi, F (Γ)) < optH(γi, F (Γ′)) and hence H-optimists prefer F (Γ)

over F (Γ′).

Proposition 2.6. If for some voting rule F and two profiles Γ and Γ′ it is the case that a

pessimist prefers F (Γ) over F (Γ′), then the same holds for an H-pessimist and H-realist.

Proof. Take N = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues
and assume F to be a voting rule. Let the profiles Γ and Γ′ be such that agent i ∈ N
prefers F (Γ) over F (Γ′) as a pessimist, i.e., we have F (Γ) ⊆ Mod(γi) and F (Γ′) *
Mod(γi). Hence we get lowH(γi, w) = 0 for all w ∈ F (Γ) and so pessH(γi, F (Γ)) =

realH(γi, F (Γ)) = 0. Additionally, there is at least one w ∈ F (Γ′), w /∈ Mod(γi) and
so lowH(γi, w) > 0. Thus we have pessH(γi, F (Γ′)) > 0 = pessH(γi, F (Γ)) and
realH(γi, F (Γ′)) > 0 = realH(γi, F (Γ)) and hence H-pessimists and H-realists prefer
F (Γ) over F (Γ′).

2.2.3 Manipulable Voting Rules

In this section we will be discussing strategic voting. We will be looking at results from
Novaro (2019) and extend them to the satisfaction functions based on Hamming distance
and the Approval rule. It is essential for iteration to understand under which conditions
manipulation is possible, since there cannot be an iteration if the rule is strategy-proof.

For any given profile Γ = (γ1, . . . , γn), (Γ−i, γ
′
i) will denote the profile in which γi

is substituted with γ′i and all the other goals are the same. A voting rule F is said to be
manipulable if there is a profile Γ and a formula γ′i such that F ((Γ−i, γ

′
i)) �i F (Γ); in

this case we say that agent i has an incentive to manipulate. If a rule is not manipulable,
it is called strategy-proof. Novaro (2019) has proven EMaj , TrueMaj and 2sMaj to be
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manipulable in general. Strategy-proofness, however, can be achieved by restricting the
manipulation as well as the language of goals. Given that F ((Γ−i, γ

′
i)) �i F (Γ) holds

for optimists or pessimists, we can apply Propositions 2.5 and 2.6 to derive the following
corollaries.

Corollary 2.2. If an optimist can manipulate a rule, so can an H-optimist.

Corollary 2.3. If a pessimist can manipulate a rule, so can an H-pessimist and H-realist.

Corollary 2.4. If a rule is strategy-proof for an H-optimist or H-pessimist, then it is for

an optimist or pessimist, respectively.

Novaro (2019) defined three different types of manipulation for an agent i in goal-
based voting, where γi represents the original goal and γ′i the manipulation:

• Erosion: Mod(γ′i) ⊆Mod(γi).

• Dilatation: Mod(γi) ⊆Mod(γ′i).

• Unrestricted: Mod(γ′i) 6= ∅.

The following results hold for optimists, pessimists or expected utility maximizers.

Proposition 2.7 (Novaro 2019). EMaj , TrueMaj and 2sMaj can be manipulated by both

erosion and dilatation.

This result also holds for H-optimists, H-pessimists and H-realists by Corollary 2.2
and 2.3. For dichotomous agents strategy-proofness can be secured by restricting the
language to conjunctions, as shown by Novaro (2019). The language only consisting of
conjunctions of positive and negative literals will be denoted by L∧.

Proposition 2.8 (Novaro 2019). For any profile Γ where γi ∈ L∧ for some i ∈ N , agent

i has no incentive to manipulate unrestrictedly the rules 2sMaj , EMaj and TrueMaj .

However, even with a restricted language (such as conjunctions) we still find manipu-
lable profiles for the Approval rule, also for agents basing their satisfaction on Hamming
distance. This can be derived from Terzopoulou and Endriss (2018) where it was shown
that agents can manipulate the voting process. They were able to show this for the plu-
rality rule, which is a resolute version of our Approval rule. Note that goal-based voting
coincides with classical judgment aggregation in case of goals being restricted to con-
junctions. In general, if the goals are (incomplete) conjunctions, goal-based voting can be
seen as a form of judgment aggregation with abstentions.
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Proposition 2.9. TheApproval rule can be manipulated by H-optimists, H-pessimist and

H-realists by unrestricted manipulation.

Proof. Table 2.3 shows a profile in which agent 1 can manipulate the outcome to be more
preferred by an H-optimist on the left and H-pessimist on the right, respectively. Both
alterations would also take place if agent 1 was an H-realist, since the average lowH
distance decreases in both examples.

Γ0 Γ1 Γ0 Γ1

Mod(γ1) (1111) (1111) Mod(γ1) (0001) (0000)

(1110) (1110)

(1100)

Mod(γ2) (0000) (0000) Mod(γ2) (0000) (0000)

(1000) (1000)

Mod(γ3) (0000) (0000) Mod(γ3) (0000) (0000)

(1000) (1000)

Mod(γ4) (1100) (1100)

Approval (0000) (0000) Approval (0000) (0000)

(1100) (1000)

Table 2.3: Manipulation example for Approval voting with optH , pessH and realH .

The Approval rule for optimists, pessimists and expected utility maximizers will be
shown to be strategy-proof in Proposition 2.10. This result is a special case of a result
by Everaere et al. (2007), since the Approval rule corresponds to the ∆Σ,d

µ rule in belief
merging where d is the drastic distance dD and the satisfaction functions opt, pess and
eum represents the indices idw, ids and ip as defined in their paper, respectively. They
first proved that strategy-proofness with ip implies the strategy-proofness of the other
satisfaction functions. Then they prove that ∆dD,f

µ is strategy-proof for the drastic distance
dD and any aggregation function f and constraint µ. Considering f = Σ and µ = > this
theorem coincides with Proposition 2.10.

Proposition 2.10 (Everaere et al., 2007). Approval rule is strategy-proof for optimists,

pessimists and expected utility maximizers.

Note that an agent who bases her satisfaction on a dichotomous function only has
an incentive to alter her goal if she can either further support some models of her truthful
goal to be in the outcome or eliminate some non-models of it from the outcome. However,
their truthful vote, in which they approve exactly the models of their goal, does exactly
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this: they support all models of their goals and none of the non-models. This is, intuitively
speaking, the reason why the result of Everaere et al. (2007) holds.

Given these manipulation results the question of iterated voting arises, since one might
ask what happens if changes are allowed and hence agents can alter their vote to reach a
more preferred outcome. In the following section we will define the iteration process and
analyze the termination for the majorities as well as Approval voting. Given the result of
Proposition 2.10 in this section our analysis of the iterated Approval rule can be limited
to H-optimists, H-pessimists and H-realists only.
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Iteration of a voting process can serve multiple purposes. Imagine an engaged couple and
their families, who uses the platform Doodle to decide on what to serve for dinner on the
wedding, with only the options to approve or disapprove a given list of courses. Now
assume everyone is entering their votes in a strategic way: when in doubt, they rather
disapprove. If by acting in such a way no dinner is found, the families might prefer to
reevaluate their vote before the dinner is chosen in another way. Usually in these cases an
approval rule is used, which outputs all meals with the highest support, from which then
the final course can be chosen. In case the votes for none of the options are overlapping,
the vote would just return the list of all meals and hence not helping the bride and groom
to plan their wedding dinner. This is just one example on how iterative voting can be
worthwhile to be analyzed.

The termination, complexity and quality of iterative processes, for voting and judg-
ment aggregation, has experienced a rise of interest in recent years (Meir et al., 2017;
Terzopoulou and Endriss, 2018). Some of the classic assumptions, e.g., the best response
dynamic and agents being myopic, will also be addressed here.

In this chapter we will first define the iteration process formally for the framework of
goal-based voting: fixing notation, assumptions and agents’ characteristics. Then, we will
analyze the Majority rules and the Approval rule, focusing on the question of whether or
not the iterated process of these rules is guaranteed to terminate.

3.1 The Iteration Process

An iteration is a repeated voting process at which in each step the result is computed by
a fixed rule, while the profile changes during the process. We define stages denoted by a
natural number t ∈ N, to count the number of iteration steps taken in one process. The
stage t = 0 describes the initial situation. Any further stage t > 0 describes the situation
after t alteration steps. At stage t, the goal of an agent i ∈ N is denoted by γti , and all the
agents’ goals build the current profile Γt. The initial profile Γ0 is assumed to contain the
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truthful goals of all agent.
In the following we will speak of an agent altering their vote rather than manipulating.

We choose this terminology to avoid the bad connotation associated to an agent changing
her vote: while agents act strategically when altering their vote, it should be understood as
them optimizing their vote according to their goal rather than manipulating the result. An
agent has an incentive to alter her vote if she has an incentive to manipulate as defined in
Section 2.2.3. According to a satisfaction function sat, this means that an agent has such
an incentive if sat(γ0

i , F (Γt)) < sat(γ0
i , F (Γt+1)) for the new profile Γt+1 = (Γt

−i, γ
′
i),

in which i′s goal is substituted by γ′i. Note that, for the satisfaction the outcome at each
stage will always be compared to the original goal γ0

i of an agent i. We will call the goals
which yield the best possible improvement at a certain stage best responses, as per the
following definition:

Definition 3.1 (Best Response). If agent i has an incentive to alter her vote, then a goal

γ′ is a best response at step t, if for any other goal γ it is the case that:

sat(γ0
i , F (Γt

−i, γ)) ≤ sat(γ0
i , F (Γt

−i, γ
′)).

Observe that at any stage t, there could be multiple possible improvements and multi-
ple best responses. An iteration from one stage (t) to another (t+ 1) will be taking place
if there is an agent who has an incentive to alter her vote. If multiple agents have such
an incentive, one will be chosen randomly. Each step only includes an alteration of one
agent. Thus, in principle multiple different iterations are possible from a given profile.
An iteration terminates if after a finite number of steps, no agent has an incentive to alter
her vote. Note that, if at some stage t it is Γt = Γs for a stage s < t, the iteration does not
terminate. An iteration in which this happens will be called circular.

We will assume agents to have certain characteristics in order to predict their be-
haviour in the iteration process. First, agents are myopic as defined by Meir et al. (2017),
i.e., they only think about the next step and are not able to predict what happens after
that. A best response is only defined for one further iteration steps. Second, agents are
improvement-driven, i.e., with a given satisfaction function an agent will always want to
alter her vote if she can. Note that any iteration step only allows one agent to change
their vote, so this assumptions says that, from all agents who have an incentive to vote, if
one agent is chosen to do so, she will. Last, agents are fully informed (Terzopoulou and
Endriss, 2018): they know about any other agent’s vote and how the voting rule works.
However, agents being myopic limits this information to only one further step of iteration.
These characteristics will be assumed for any agent from now on. Additionally, we will
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sometimes consider agents to be truth-biased, as per the following definition.

Definition 3.2 (Truth-Bias). An agent i is truth-biased if, in case she has no best response

as per Definition 3.1 under which the outcome is strictly better than the current one, and

the current outcome F (Γt) is equally satisfying as the outcome under the profile (Γt
−i, γ

0
i )

in which she votes for her initial goal, i.e., sat(γ0
i , F (Γt)) = sat(γ0

i , F (Γt
−i, γ

0
i )), she

then has an incentive to alter her vote to the truthful goal γ0
i .

Thus, these agents want to return to their truthful goal rather than keeping the altered
vote, if the former has no negative consequence according to the given satisfaction.

3.2 Iterated Majority Rule

The majority rule in voting has been shown to be the only anonymous, neutral, and mono-
tonic rule (May, 1952). The majority rule is a special instance of the quota rule with
threshold n

2
. An introduction to general quota rules or majority voting in judgment ag-

gregation can be found in Dietrich and List (2007a) and Endriss (2016). In the context
of goal-based voting, Novaro (2019) proved that TrueMaj is the only rule which satisfies
a list of axioms, including versions for goal-based voting of anonymity, neutrality, inde-
pendence and monotonicity. However, while the TrueMaj rule satisfies some desirable
axioms that might be argued to add to the fairness of voting, EMaj and 2sMaj could still
be preferred because of their resoluteness.

In goal-based voting the Majority rules have been shown to be manipulable (Novaro,
2019). In voting already, manipulability results gave rise to the analysis of iterated Major-
ity voting (Airiau and Endriss, 2009). One result by Novaro (2019) states that assuming
agents to be optimists, pessimists or expected utility maximizers, if the their goals are con-
junctions in L∧, then EMaj , TrueMaj and 2sMaj are strategy-proof, extending known
results in judgment aggregation. In some way, strategy-proofness can be seen as a strong
termination result, where the iteration terminates at t = 0. In this section we will show
that, assuming truth-biased agents and any type of satisfaction function, the iteration of
the Majority rules we consider, is not guaranteed to terminate.

Our first result, Proposition 3.1, proves precisely this: that there is a profile and fea-
sible alterations, such that any of the considered Majority rules yields a circular iteration.
This holds even for agents having dichotomous preferences, since through the alteration
a non-model changes to a model for each agent altering.

Proposition 3.1. Iterated EMaj , TrueMaj or 2sMaj voting does not always terminate

for truth-biased agents with satisfaction opt, pess, eum, optH , pessH and realH .
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Proof. Table 3.1 shows an initial profile Γ0 for three agents and three issues, where none
of the three Majority rules terminate for any of the satisfaction functions listed above.

Note that EMaj and TrueMaj coincide, since they yield a singleton under the consid-
ered profiles. By Proposition 2.3 the satisfaction of H-pessimist, H-optimist and H-realist
coincide in case of resoluteness.

To see that higher satisfactions are reached note that by altering from Γ0 to Γ1 agent
3 changes the outcome from an interpretation that is not a model of her goal (111) to
one that is (101). This means that the lowest Hamming distance strictly decreases from
lowH(γ3, (111)) = 1 to lowH(γ3, (101)) = 0. The same is the case for agent 1’s alter-
ation from Γ1 to Γ2. The last two alterations are due to the truth bias: since submitting
their truthful goal or the alteration leads to the same outcome for agent 3 and 1 in pro-
files Γ2 and Γ3, respectively, they choose to alter back to their truthful goals. Since Γ4 is
identical to the initial profile Γ0, the iteration does not terminate.

Γ0 Γ1 Γ2 Γ3 Γ4

Mod(γ1) (100) (100) (111) (111) (100)

(111) (111) (111)

Mod(γ2) (111) (111) (111) (111) (111)

(101) (101) (101) (101) (101)

(110) (110) (110) (110) (110)

Mod(γ3) (101) (101) (101) (101) (101)

(010) (010) (010)

(011) (011) (011)

E/True/2s −Maj (111) (101) (111) (111) (111)

Table 3.1: Example of non-terminating Majority rules with truth-biased agents.

This result shows that iterated Majority voting with truth-biased agents is not guaran-
teed to terminate. However, truth-bias is quite a strong assumption: it adds to the set of
possible alterations in the iterative process thus increasing the chance of returning to the
initial profile and creating a circular iteration. By lifting this assumption one might think
that termination is guaranteed. However, we can show that even when restricting the best
responses to alterations which strictly increase the satisfaction, i.e., lifting the truth-bias,
the EMaj and TrueMaj rules are still not guaranteed to terminate for any satisfaction
function, as shown in Proposition 3.2.

Proposition 3.2. Iterated EMaj and TrueMaj voting does not always terminate for the

satisfaction functions opt, pess, eum, optH , pessH and realH .
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Proof. Table 3.2 shows an initial profile Γ0 of truthful goals for four agents to which they
return after four iteration steps. The given alterations are best responses for agents with
any of the above mentioned satisfaction functions, since each alteration turns the outcome
from a non-model to a model for the altering agent’s goal.

Γ0 Γ1 Γ2 Γ3 Γ4

Mod(γ1) (100) (100) (100) (100) (100)

(001) (101) (101) (001) (001)

(111) (111)

(010) (010)

Mod(γ2) (101) (101) (101) (101) (101)

(110) (110) (111) (111) (110)

(000) (000) (001) (001) (000)

Mod(γ3) (101) (101) (101) (101) (101)

(010) (010) (010) (010) (010)

(000) (000) (000) (000) (000)

Mod(γ4) (101) (101) (101) (101) (101)

(010) (010) (010) (010) (010)

(000) (000) (000) (000) (000)

E/TrueMaj (000) (100) (101) (001) (000)

Table 3.2: Example of non-terminating EMaj and TrueMaj rules without truth-bias.

This cycle is only established since the alterations of both agent 1 and agent 2 are
such that once the latter agent altered, the alteration of the former is still effective but not
beneficial anymore and vice-versa. Then each agent profits from again altering back to
their initial goal. This is a quite specific situation and might have not happened if the
agents chose different best responses. If agent 2, for example, chose a goal supporting
(000) rather than (101) when altering from Γ1 to Γ2 by submitting for example, a goal
γ2

2 whose model is Mod(γ2
2) = {(000)}, she would have determined the rejection of all

issues together with agents 3 and 4. Then the same profile would have terminated with a
different outcome under the use of the EMaj and TrueMaj rules.

The example seen in Table 3.2 is not enough to prove an equivalent statement for
2sMaj . In fact, remember that 2sMaj first calculates EMaj on each agent’s goal and then
applies the strict Majority rule to those intermediate results. Applying EMaj to agent
3 and 4’s goals returns (000). Hence, these two agents already determine the outcome.
The 2sMaj rule will return (000) and neither agent 1 nor 2 will be able to alter. Hence,
an interesting and still open question is whether or not lifting restrictions are enough
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in order to guarantee termination for 2sMaj . The strategy-proofness results of Novaro
(2019) show that restricting the language to L∧ will lead to no iteration at all. A natural
conjecture would be that there are some restrictions building a middle ground, allowing
iteration while still guaranteeing termination.

The Majority rule, despite its popularity and wide-spread use, earns reasonable crit-
icism when defined in an issue-independent way, as done in judgment aggregation and
goal-based voting. Since the issues might not be independent they should not be decided
as such. For example, take an agent voting for a goal p ↔ ¬q where p and q are the
first and second issue, respectively. The Majority rules EMaj and TrueMaj assume the
agent to split in half her voting power between p and q. This suggests that the agent is
indifferent whether or not p or q are chosen. However, this is not the case: the agent only
wants one of them to be made true by the chosen interpretation and simply does not care
which one. For example, we could imagine some agents to decide on to whether to go
to Spain or Italy for their holiday and one agent submitting this goal due to her being
indifferent where to go, but she still wants to go to exactly one location. The issues are
not independent in this agent’s goal.

In case the issues are also subject to an external integrity constraint this might even
lead to inconsistent results, a problem known in the judgment aggregation literature as
the doctrinal paradox (Kornhauser and Sager, 1993) or as the discursive dilemma (Pettit,
2001). Dietrich and List (2007b) analyze under which conditions quota rules do not suffer
from the discursive dilemma. Botan and Endriss (2020) also address this dilemma and
forward a solution by defining a novel notion of strategy-proofness. For this reason the
Majority rule might not be the best choice for certain decision problems.

This dilemma yields one strong argument for the Approval rule over the issue-wise
Majority rules. As we shall see in the next section, the Approval rule is a reasonable
alternative for dependent issues, as it does not compute an outcome issue by issue, but
considers the goal’s models as one object, returning the interpretations with the maximal
amount of support.

3.3 Iterated Approval Rule

Laslier and Sanver (2010) give a nice overview on the history, axiomatization and experi-
mental findings of the approval rule in voting. The sincerity and strategy-proofness of the
approval rule has been studied by Endriss (2013) and Brams and Fishburn (1978). For
a definition, axiomatic characterization and analysis of strategy-proofness in judgment
aggregation the reader is referred to Terzopoulou (2021).
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In this section, we want to explore iterativeApproval voting in goal-based voting. Re-
call that in Definition 2.1, theApproval rule was defined in Section 2.1 asApproval(Γ) =

argmaxv∈Mod(
∨

i∈N γi)
suppΓ(v) for a profile Γ of n agents and m issues, where suppΓ(v)

is the number of supporters for interpretation v ∈
⋃
i∈N

Mod(γi).

For a given profile Γ, we denote as kΓ = suppΓ(v) for v ∈ Approval(Γt) the support
of the winning interpretations v ∈ Approvla(Γ). In the iterative setting, if the profile is
clear from context, we will write kt instead of kΓt . This notion will help to keep track of
the support throughout the process of iteration.

The Approval rule as defined in 2.1 is closely related to the plurality rule as defined
by Terzopoulou and Endriss (2018) for judgment aggregation. The plurality rule explored
in their setting chooses from all judgments the most reported one. Some of their results
will be shown to transfer to goal-based voting (see Proposition 3.3). First, we consider no
assumptions on the iteration process. Then we will introduce some restrictions restrictions
that will yield in some positive termination results.

3.3.1 Unrestricted Iteration

The Approval rule is strategy-proof (see Theorem 2.10), for optimists, pessimists and
expected utility maximizers and will therefore not admit iteration in those cases.

Corollary 3.1. Iterated Approval voting with optimists, pessimists or expected utility

maximizers terminates at t = 0.

Strategy-proofness cannot be established for agents whose satisfaction is based on
Hamming distance as shown by Proposition 2.9. However, for H-pessimists the iterated
Approval rule is guaranteed to terminate in finitely many steps without any further re-
strictions. This will be shown in Theorem 3.1, of which the proof essentially depends on
the following two lemmas.

Lemma 3.1. By considering H-pessimist agents only, no agent under the Approval rule

would alter her vote from stage t to t+ 1 if it would result in kt+1 < kt.

Proof. TakeN = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the initial voting profile.

Assume now that iteration is at a stage t and Approval(Γt) is the current outcome.
Suppose agent i can alter her goal such that kt+1 < kt. The only way kt+1 < kt can
hold is if all the interpretations in Approval(Γt) lose at least one agent’s support in
the iteration to stage t + 1. Since agent i is the only one altering her goal she has to
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withdraw support from every v ∈ Approval(Γt). Thus, for any v ∈ Approval(Γt) we
have suppΓt+1(v) = kt − 1. Since kt+1 < kt we get that this support is now the high-
est, so kt+1 = kt − 1 and therefore v ∈ Approval(Γt+1) for all v ∈ Approval(Γt).
But then all interpretations which were furthest in Hamming distance from i’s goal, i.e.,
w ∈ Approval(Γt) s.t. lowH(γi, w) = pessH(i, Approval(Γt)) are still in the outcome
of Approval(Γt+1). Thus as an H-pessimist the satisfaction of i would not increase, since
pessH(i, Approval(Γt+1)) ≤ lowH(γi, w) = pessH(i, Approval(Γt)).

Hence agent i would not alter her vote if it would result in kt+1 < kt.

Lemma 3.2. By considering H-pessimist agents only, no agent under the Approval rule

would alter her vote from stage t to t+ 1 if it would result in kt+1 = kt.

Proof. TakeN = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the voting profile.

Take stage t to be the first stage at which by an alteration of some agent i we have
kt+1 = kt. Note that since every agent is an H-pessimist, by Lemma 3.1 we get that
kr+1 > kr for any r < t. This means that and any interpretation v ∈ Approval(Γr)

for any r ≤ t was already in the initial outcome Approval(Γ0). This is so since the
support of the winning interpretations kr strictly increased in these alterations and the
support of any interpretation can only increase by one with one alteration. If for example
one interpretation v was such that it was missing only the support of one more agent
to be approved in the initial profile suppΓ0(v) = k0 − 1, then after an alteration step v
gained at most one support, but the support of the winning interpretations also increased
by one since kr+1 > kr, hence we would have suppΓ1(v) = k1 − 1. Thus, we get
Approval(Γr+1) ⊆ Approval(Γr) for any r < t.

Remember that since the agents are H-pessimists we have that for any i ∈ N :

Approval(Γt+1) �i Approval(Γt)⇔

pessH(γi, Approval(Γ
t+1)) < pessH(γi, Approval(Γ

t)).

Note that an H-pessimist does not prefer an outcomeApproval(Γt+1) if it is a superset
of Approval(Γt), since the interpretation with the lowest distance would still be in the
altered outcome. Thus as H-pessimist i would only alter her vote resulting in kt+1 = kt

if she can withdraw her support from the least preferred interpretations of the current
outcome {w0, . . . , wl} ⊆ Approval(Γt), i.e., those interpretations with lowH(γi, wj) =

pessH(i, Approval(Γt)) for any j ∈ {0, . . . , l}. This alteration will only increase her
satisfaction in two cases:
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(i) if for any other interpretation v ∈ Approval(Γt) \ {w0, . . . , wl} and any j ∈
{0, . . . , l} it is the case that lowH(γi, v) < lowH(γi, wj).

(ii) if {w0, . . . , wl} = Approval(Γt) and there is a v ∈ {0, 1}m with lowH(γi, v) <

lowH(γi, wj) for any j ∈ {0, . . . , l}, suppΓt(v) = kt − 1 and v /∈ Mod(γti), such
that agent i can then support v to be in Approval(Γt+1).

Either way this means that lowH(γi, wj) 6= 0 and hence wj /∈ Mod(γi) for any j ∈
{0, . . . , l}. This means that since these interpretationswj are not models of her initial goal
γ0
i and yet they are in Mod(γti), agent i must have altered her vote before at some stage
rj < t for every such j. These stages actually must have been the same for all wj , since
Approval(Γr+1) ⊆ Approval(Γr), i.e., anything that is in an outcome Approval(Γr)

must have been in the outcome of any earlier stage and hence gained support at each
iteration step, since the kr are strictly increasing. If the wj’s were added in different
stages, they could not all be in Γt, since agent i can only increase their support by one
and the support of the winning interpretations is strictly increasing with each stage.

Thus, take s to be the stage at which agent i altered in favour of all the wj . We will
now distinguish the two cases (i) and (ii) from above.

First, consider v ∈ Approval(Γt+1) \ {w0, . . . wl}: we know that v has also been part
of the outcome at stage s and agent i increased its support with the alteration at this stage.
But this means that the alteration from agent i at stage s was not a best response. It would
have been better if she chose to only increase the support of v ∈ Approval(Γt+1) and
none of the {w0, . . . , wl}. This is a contradiction to agent i altering to a best response.

Second, assume instead that the agent i withdraw the support from all interpretations
in Approval(Γt). This means that all v ∈ Approval(Γt+1) are such that v /∈ Mod(γti)

and suppΓt(v) = kt − 1, but then for similar reasons as seen before it must have been
that suppΓr(v) ≥ kr − 1 at any stage r ≤ t. Let si < t be the latest stage at which
agent i was altering her goal. Since suppΓr(v) ≥ kr − 1 at any stage r ≤ t we also have
suppΓsi (v) ≥ ksi − 1. If it was the case that suppΓsi (v) = ksi , then:

• either agent i did not hold them as models of γsii : but then supporting v instead of
the wj for {w0, . . . , wl} would have been a better response. This contradicts the
assumption that agents only alter to best responses.

• or agent i had them as models of γsii : but then since they are not in Mod(γti) we
know that she did not support them anymore after this alteration. Which means that
the support of v decreased to suppΓsi+1(v) = suppΓsi (v)−1 = ksi−1. Thus, since
the support of the winning interpretation strictly increases, we get ksi+1 = ksi + 1
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and suppΓsi+1(v) = ksi+1 − 2. This contradicts the fact that suppΓr(v) ≥ kr − 1 at
any stage r ≤ t.

Therefore we know that suppΓsi (v) = ksi − 1. And since agent i increased the support of
the winning interpretations but did not support any of these v’s, we have suppΓsi+1(v) ≤
ksi+1 − 2. However, this again contradicts the fact that suppΓr(v) ≤ kr − 1 at any stage
r ≤ t. Hence, no agent i can alter as it is presented by (ii).

In conclusion, there will never be such an alteration at stage t by an H-pessimist.

Theorem 3.1. IteratedApproval voting with H-pessimists terminates after at most |N |−
k0 rounds.

Proof. TakeN = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the voting profile.

By Lemma 3.1 and Lemma 3.2 we know that for any alteration of an H-pessimist from
any stage t to t + 1 it is the case that kt+1 > kt. Hence an agent can only add support
to interpretations already in the outcome. Since an interpretation can only have at most
|N | support and any v ∈ Approval(Γ0) has support k0, we get that there can be at most
|N | − k0 many alterations. Thus, the iteration is guaranteed to terminate.

So the iteration with H-pessimists is always guaranteed to terminate in at most as many
steps as there are agents disagreeing with the initial result. The picture looks different
when considering H-optimists.

Terzopoulou and Endriss (2018) could already prove that in judgment aggregation
the plurality rule with truth-biased agents, whose satisfaction is based on the Hamming
distance, is not guaranteed to terminate. Judgment aggregation coincides with goal-based
voting where goals are restricted to complete conjunctions. By adapting their Approval
rule to our irresolute version and by observing that a restriction of the language implies
the statement for the general language, their result implies the following proposition for
H-optimists and H-realists. Their counterexample included five agents, four issues and
four iteration steps until it circled back. Calculations show that even though they consider
a different type of satisfaction, once we extend the rule to the irresolute Approval rule
and check satisfactions, the alterations are still favourable for H-optimists and H-realists.

Proposition 3.3 (Terzopoulou and Endriss 2018). Iterated Approval voting with truth-

biased agents might not terminate with H-optimists or H-realists.

Truth-bias allows agents to have more possible responses in the iteration process. So
one might think that lifting this assumption would yield a positive result about termina-
tion of the iteration, as we have seen for H-pessimists. Surprisingly, this result that the
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Approval rule always terminates for H-pessimists cannot be extended to H-optimists nor
H-realists, as shown by Theorem 3.2.

Theorem 3.2. Iterated Approval voting might not terminate, if agents are H-optimists or

H-realists.

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Mod(γ1) (000000) (000000) (000000) (000000) (000000) (000000) (000000)

(110000) (110000) (100000) (100000) (110000) (110000)

(111110) (111110)

Mod(γ2) (111111) (111111) (111111) (111111) (111111) (111111) (111111)

(111100) (111100) (111110) (111110) (111100)

(100000) (100000) (100000)

Mod(γ3) (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(100000) (100000) (100000) (100000) (100000) (100000) (100000)

(110000) (110000) (110000) (110000) (110000) (110000) (110000)

Mod(γ4) (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(110000) (110000) (110000) (110000) (110000) (110000) (110000)

(111100) (111100) (111100) (111100) (111100) (111100) (111100)

Mod(γ5) (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(111100) (111100) (111100) (111100) (111100) (111100) (111100)

(111110) (111110) (111110) (111110) (111110) (111110) (111110)

Approval (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(110000) (110000) (100000) (111110) (110000) (110000)

(111100) (111100) (111100)

Table 3.3: Example of non-terminating Approval rule for H-optimists and H-realists.

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

optH(γ1, Approval(Γ
t)) 3 → 2 2 → 1 3 → 2 2

optH(γ2, Approval(Γ
t)) 3 3 → 2 2 → 1 3 → 2

realH(γ1, Approval(Γ
t)) 3 → 5

2
3 → 8

3
4 → 5

2
3

realH(γ2, Approval(Γ
t)) 3 7

2
→ 3 10

3
→ 2 7

2
→ 3

Table 3.4: Hamming distances of H-optimists and H-realists for the profile in Table 3.3.

Proof. Table 3.3 shows a profile in which at each stage one agent has an incentive to alter
her vote as an H-realist or H-optimist. Table 3.4 lists the optH and realH distances of
agent 1 and 2 proving that these agents have incentives to alter to the bold models. Since
we have Γ6 = Γ2, the iteration of the Approval rule will not terminate.
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Note that, since an iteration process where agents are truth-biased admits more alter-
ations than one without, Theorem 3.2 extends the result of Proposition 3.3 in which agents
are truth-biased.

In the light of these negative result it is natural to ask which restrictions are needed in
order to guarantee a termination. One might have noticed that the alterations in Table 3.3
are only possible because both agents 1 and 2 alter in a somewhat unexpected way. They
submit goals whose models are further in Hamming distance from their truthful goal. This
additional support for a model is the only reason why then the other agent can support this
model even further, such that it gets approved. Consider agent 2’s alteration from profile
Γ1 to Γ2. She not only included (111100) in her new goal, which is the model she wanted
to support such that it will be approved, but she also supports (100000). By doing so, she
is adding a model that is closer to the first agent’s goal than her own. The former agent
then withdraws her vote from the just approved interpretations and supports the model
that the second agent just added to her vote. This is how the iteration in Table 3.3 takes
place. In the following section we restrict alterations, excluding ones of this type.

3.3.2 Weakly Truth-Biased Agents and Minimal Alterations

We want agents to only alter their vote such that it is effective for the change they want
to create in the outcome, without further unnecessary alterations. We therefore define
three minimal alterations to capture the basic changes an agent can do in order to have
an effect on the outcome of the Approval rule. The restricted alterations are: adding
support to already winning alternatives, adding support to not yet winning alternatives
or withdrawing support from winning alternatives. These changes are special forms of
dilatation and erosion manipulation.

Definition 3.3 (Minimal Alteration). Given a voting profile Γ = (γ1, . . . , γn), an agent

i with an incentive to alter her vote performs a minimal alteration from stage t to stage

t+ 1 if one of the following three cases holds:

(1) Mod(γt+1
i ) = Mod(γti) ∪ {v1, . . . , vl} with vj /∈ Mod(γti) and it is the case that

vj ∈ Approval(Γt) for all j ∈ {1, . . . , l}.

(2) Mod(γt+1
i ) = Mod(γti) ∪ {v1, . . . , vl} with vj /∈ Mod(γti) and it is the case that

suppΓt(vj) = kt − 1 for all j ∈ {1, . . . , l}.

(3) Mod(γt+1
i ) = Mod(γti) \ {v1, . . . , vl} with {v1, . . . , vl} ⊆ Approval(Γt).

Assuming agents to only alter their vote in these ways, we restrict the iteration. This
restriction however can be argued to be rational and in line with the agents being myopic.
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In fact, since agents are only concerned about changing the current outcome to a better
one, minimal alterations only allow actions that have an effect on these outcomes. Any
effective change of an unrestricted best response can also be achieved through a best
response which is of the kind (1)-(3) from Definition 3.3 or a combination of those. We
do not allow additional changes that are ineffective at the time, but might have an effect on
the iteration later on. This conforms with myopic agents as they are assumed to not care
about changes further than the next iteration step. Considering minimal alterations only,
we can exactly predict the outcome of an iteration under the Approval rule, as shown by
the following proposition.

Proposition 3.4. Given a voting profile Γt, an agent i’s minimal alteration (as per Defi-

nition 3.3) of a given kind will result in the following outcome:

(i) (1) leads to Approval(Γt+1) = {v1, . . . , vl}.

(ii) (2) leads to Approval(Γt+1) = Approval(Γt) ∪ {v1, . . . , vl}.

(iii) (3) leads to

Approval(Γt+1) =



Approval(Γt) \ {v1, . . . , vl}

if {v1, . . . , vl} ⊂ Approval(Γt)

Approval(Γt) ∪ {v ∈ {0, 1}m | suppΓt(v) = kt − 1}

if {v1, . . . , vl} = Approval(Γt).

Proof. In the following we will prove that the minimal alterations of kinds (1)-(3) as
per Definition 3.3 will lead to the outcomes described by (i)-(iii). Recall that kt =

suppΓt(v) for v ∈ Approval(Γt) is the support of the winning interpretations.

(i) Assume a profile Γt = (γ1, . . . , γn) is such that agent i has an incentive to alter her
vote by (1). So then Γt+1 = (Γt

,−i, γ
′
i) s.t. Mod(γ′i) = Mod(γti) ∪ {v1, . . . , vl} for

vj /∈ Mod(γti) and vj ∈ Approval(Γt) for all j ∈ {1, . . . , l}.

For any interpretationw /∈ {v1, . . . , vl} it is the case that suppΓt+1(w) = suppΓt(w)

and suppΓt+1(vj) = suppΓt(vj) + 1 = kt + 1 for all j ∈ {1, . . . , l}. Hence there are
no other models with as much support as the vj and we have kt+1 = suppΓt+1(vj)

for all j ∈ {1, . . . , l}. So it is the case that Approval(Γt+1) = {v1, . . . , vl}.

(ii) Assume a profile Γt = (γ1, . . . , γn) is such that agent i has an incentive to alter her
vote by (2). So then Γt+1 = (Γt

,−i, γ
′
i) s.t. Mod(γt+1

i ) = Mod(γti) ∪ {v1, . . . , vl}
with vj /∈ Mod(γti) and suppΓt(vj) = kt − 1 for all j ∈ {1, . . . , l}.
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For any interpretationw /∈ {v1, . . . , vl} it is the case that suppΓt+1(w) = suppΓt(w)

and suppΓt+1(vj) = suppΓt(vj)+ 1 = kt for all j ∈ {1, . . . , l}. Thus kt+1 = kt, but
additionally to the models in Approval(Γ) also all vj for j ∈ {1, . . . , l} now have
this much support. Hence Approval(Γt+1) = Approval(Γt) ∪ {v1, . . . , vl}.

(iii) Assume a profile Γt = (γ1, . . . , γn) to be such that agent i has an incentive to
alter her vote by (3). This will lead to a profile Γt+1 = (Γt

,−i, γ
t+1
i ) such that

Mod(γt+1
i ) = (Mod(γti) \ {v1, . . . , vl}) with {v1, . . . , vl} ⊆ Approval(Γt).

For any interpretation w /∈ {v1, . . . , vl} we have suppΓt+1(w) = suppΓt(w) and
suppΓt+1(vj) = suppΓt(vj)− 1 = kt− 1 for all j ∈ {1, . . . , l}. We now distinguish
two cases:

– Assume {v1, . . . , vl} = Approval(Γt). Then, for all w ∈ {0, 1}m we have
suppΓt(w) < kt. Thus kt−1 is the maximal support and suppΓt+1(vj) = kt−1

for all j ∈ {1, . . . , l}. Therefore we have Approval(Γt+1) = Approval(Γt)∪
{v ∈ {0, 1}m | suppΓt(v) = kt − 1}.

– Now assume {v1, . . . , vl} is a proper subset of Approval(Γt). Then, we
have suppΓt+1(vj) = kt − 1 for all j ∈ {1, . . . , l} and there are still w ∈
{0, 1}m with suppΓt+1(w) = suppΓt(w) = kt. We have kt+1 = kt and thus
Approval(Γt+1) = Approval(Γt) \ {v1, . . . , vl}.

This finalizes the proof of the proposition.

Another restriction to ensure more realistic alterations will be called weak truth-bias.
With this restriction we will assume all agents to always support their truthful goal’s mod-
els. We call it a weak truth-bias since it could also be understood as agents always keep-
ing their truthful goal as a disjunct in any alternative goal. Nevertheless, while the classic
truth-bias (as per Definition 3.2) allows more possible alterations, the weak truth-bias is a
real restriction on the set of alterations. In that sense the bias is not so much towards the
truthful goal, as it is a bias on the choice within the set of best responses. In Approval
voting with H-optimists, H-pessimists or H-realists any set of best responses includes at
least one best response with a weak truth-bias, since still supporting her truthful goal will
have no effect on an agent’s alteration.

Definition 3.4 (Weak Truth-Bias). An agent i is weakly truth-biased, if for any stage t

and altered goal γti it is the case that Mod(γ0
i ) ⊆ Mod(γti).
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A minimal alteration with a weak truth-bias will be of the form as described in Defini-
tion 3.3 where Mod(γ0

i ) ⊆ Mod(γt+1
i ). This is not a restriction for alterations of kind (1)

and (2), since here the model of the previous stages are always included in the new goal’s
models. For type (3), on the other hand, it restricts the withdrawing of votes to interpreta-
tions which are not models of the agent’s truthful goal, i.e., v /∈ Mod(γ0

i ). Consequently,
type (3) alterations cannot take place at t = 0.

These restrictions are enough to ensure termination of iterated Approval voting with
H-optimists, as will be shown in Theorem 3.4. However, H-realists are still able to alter
their vote such that iteration can be circular.

Theorem 3.3. Iterated Approval voting might not terminate, if agents are H-realists,

even with minimal alterations and weak truth-bias.

Proof. Table 3.5 shows that there is a profile in which at each stage one of the agents has
an incentive to alter their vote as an H-realist. Since Γ13 = Γ1 we know that this profile
would not terminate for the Approval rule. The alterations are either adding interpreta-
tions to the outcome by an additional vote (alteration of kind (1) and (2)) or withdrawing
this vote again, such that the model disappears from the outcome, which corresponds to
an alteration of kind (3).

Note that agent 1 has an incentive to alter her vote from profile Γ0 to Γ1 since she can
turn realH(γ0

1 , Approval(Γ
0)) = 7

6
into realH(γ0

1 , Approval(Γ
1)) = 1, by an alteration

of kind (1), pushing the model of agent 2’s goal to be the only outcome. From then on the
same process repeats: another voter has now an incentive to push the model of the voter’s
goal (the one who just altered) into the outcome, so that there are two interpretations in
the result. The voter who just altered before has now an incentive to withdraw her vote
from the model she just added one stage earlier, so the outcome is a singleton again.
This process repeats until every agent altered to vote a model in and out of the Approval
outcome and we arrive back at Γ1.

This negative result for this type of agents can be explained by the fact that an H-
realist, since she is always taking all the interpretations in the outcome into account, has
more possibilities to alter in her interest. She has an incentive to push any interpretation
into the outcome which is closer to her goal or withdraw the support of any that is further
away than the current average result. The H-optimists (and H-pessimists) on the other
hand are always only concerned with the best (or worse) interpretation in the outcome.
They will get to a point at which there is no better interpretation to push into the outcome
or worse one to eliminate.
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Γ0 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 . . .

Mod(γ1) (0000) (0000) (0000) (0000) (0000) (0000) (0000)

(1000) (1000)

Mod(γ2) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

Mod(γ3) (1100) (1100) (1100) (1100) (1100) (1100) (1100)

Mod(γ4) (0100) (0100) (0100) (0100) (0100) (0100) (0100)

(0110)

Mod(γ5) (0110) (0110) (0110) (0110) (0110) (0110) (0110)

(0010) (0010) (0010)

Mod(γ6) (0010) (0010) (0010) (0010) (0010) (0010) (0010)

(0000) (0000) (0000)

Approval (0000) (1000) (1000) (0000) (0000) (0010) (0010)

(1000) (0000) (0010) (0110)

(1100)

(0100)

(0110)

(0010)

Γ6 Γ7 Γ8 Γ9 Γ10 Γ11 Γ12 Γ13

Mod(γ1) (0000) (0000) (0000) (0000) (0000) (0000) (0000) (0000)

(1000) (1000)

Mod(γ2) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

(1100) (1100) (1100)

Mod(γ3) (1100) (1100) (1100) (1100) (1100) (1100) (1100) (1100)

(0100) (0100) (0100)

Mod(γ4) (0100) (0100) (0100) (0100) (0100) (0100) (0100) (0100)

(0110) (0110) (0110)

Mod(γ5) (0110) (0110) (0110) (0110) (0110) (0110) (0110) (0110)

(0010)

Mod(γ6) (0010) (0010) (0010) (0010) (0010) (0010) (0010) (0010)

Approval (0010) (0110) (0110) (0100) (0100) (1100) (1100) (1000)

(0110) (0100) (1100) (1000)

Table 3.5: Example of non-terminating iterative Approval voting with weakly truth-
biased H-realists using minimal alterations.

40



3 Iterated Majorities and Approval

Lemma 3.3 shows that H-optimists only consider certain minimal alterations given
the weak truth-bias: an H-optimist only has an incentive to alter if she can ensure that
there will be a better interpretation in the new outcome, where better means a smaller
lowH distance to her goal. This causes an H-optimist to only consider an alteration
of kind (2), since, for example, an alteration of type (1) restricts the new outcome to a
subset of the old, which is not in favour of an H-optimist. This result will be used to prove
Theorem 3.4, which is the main result of this section, stating that iteratedApproval voting
always terminates if we assume weak truth-bias and minimal alterations for H-optimists.

Lemma 3.3. A weak truth-biased H-optimist using minimal alterations in iterated Ap-

proval voting, only considers alterations of kind (2) according to Definition 3.3.

Proof. TakeN = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the initial voting profile.

For an arbitrary i ∈ N take v ∈ Approval(Γ0) with optH(γi, Approval(Γ
0)) =

lowH(γi, v). By definition, as an H-optimist i would only alter her vote to

Approval(Γt+1) �i Approval(Γt)⇔

optH(γi, Approval(Γ
t+1)) < optH(γi, Approval(Γ

t))

⇔ ∃w ∈ Approval(Γt+1) s.t. lowH(γi, w) < lowH(γi, v)

⇒ ∃w ∈ Approval(Γt+1) s.t. w /∈ Approval(Γt)

since v is such that lowH(γi, v) is minimal.
Note that, an alteration to Γt+1 by (1) as defined in Definition 3.3 will always cause
Approval(Γt+1) ⊆ Approval(Γt), as proven by Proposition 3.4. So, there is no inter-
pretation w ∈ Approval(Γt+1) such that w /∈ Approval(Γt), therefore it is the case
that optH(γi, Approval(Γ

t+1)) ≥ optH(γi, Approval(Γ
t)). Hence an H-optimist would

never alter her vote by using alterations of type (1).
In case of an alteration type (3) we have to distinguish two scenarios:

(i) If agent i withdraws her support only from a proper subset of the outcome, i.e.,
{v1, . . . , vl} ⊂ Approval(Γt), by Proposition 3.4 we get that the new outcome is
Approval(Γt+1) = Approval(Γt) \ {v1, . . . , vl}. Then Approval(Γt+1) is a subset
of Approval(Γt), and thus the argument from case (1) applies.

(ii) The agent i withdraws her vote from all interpretations v ∈ Approval(Γt). Then
we get,Approval(Γt+1) = Approval(Γt)∪{w ∈ {0, 1}m | suppΓt+1(w) = kt−1},
i.e., the new result is a superset of the old, additionally containing the models which
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were short of one support in stage t. By the weak truth-bias we can assume no
agent withdraws her vote from her original goal’s models. Hence kt will always be
at least k0. Note also that via an alteration at stage t as described here, we have
kt+1 = kt − 1. For this alteration to be rational for an agent we therefore need
kt > k0. But only an alteration of type (1) causes kt to increase. However, no
H-optimist would alter by (1) as established above. So, for H-optimists we get
kt+1 = kt and hence kt = k0 for any stage t and so no H-optimist would alter her
vote as (3) suggests.

So since we have shown that a weak truth-biased H-optimist would not alter by (1) or (3),
we can conclude that she only considers alterations of type (2).

Lemma 3.3 shows that weak truth-biased H-optimists that choose minimal alterations
are very restricted. These restrictions enable us to directly show that the Approval rule
terminates for this type of agents.

Theorem 3.4. Iterated Approval voting with weakly truth-biased H-optimists using min-

imal alterations, terminates after at most |{w ∈ {0, 1}m | suppΓ0(w) = k0 − 1}| rounds.

Proof. TakeN = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the initial voting profile.

Let Wt = {w ∈ {0, 1}m | suppΓt(w) = kt − 1}, be the models that could possibly be
voted into the outcome of Approval by an alteration of type (2). By Lemma 3.3, this is
the only kind of alteration we have to consider.

Observe that for any stage t ∈ N at which an alteration of type (2) takes place we
get Wt+1 ⊂ Wt. This is so, since for any alteration of this kind at stage t, some models
{v1, . . . , vl} ⊆ Wt will get one additional support suppΓt+1(v) = suppΓt + 1(v). Thus
Wt+1 = Wt \ {v1, . . . , vl} and Approval(Γt+1) = Approval(Γt) ∪ {v1, . . . , vl}. Hence,
Wt properly decreases with each iteration step of Approval with only H-optimists. Note
that if Wt = ∅ no H-optimist has any incentive to alter anymore, therefore the iteration
process will terminate after at most |W0| rounds.

By Theorem 3.1 we already know that Approval voting with H-pessimist is guaran-
teed to terminate even without restrictions. Hence it is immediate that by restricting the
alterations, termination is still guaranteed.

Corollary 3.2. Iterated Approval voting with weakly truth-biased H-pessimists using

minimal alterations always terminates.
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However, one might still ask if the minimal alteration restriction has an effect on
the iteration of the Approval voting for H-pessimists. Lemmas 3.1 and 3.2 showed that
H-pessimists only consider alterations which will increase the support of the winning in-
terpretations. By Proposition 3.4 we can then see that H-pessimists would actually only
consider minimal alterations of kind (1), since alterations of type (2) and (3) either de-
crease or don’t change the support of the interpretations of the outcome. Restricting to
weakly truth-biased agents only considering minimal alterations would have no effect on
the iteration with H-pessimists. In fact, any unrestricted alteration is already a minimal al-
teration of kind (1) plus possibly some changes that have no effect on the process. Hence,
for any unrestricted alteration we can find a similar restricted one which has the same
effect on the iteration process. It also does not terminate in fewer steps with a restricted
iteration, since any alteration step can take place exactly as it does in the unrestricted case.
However, we have seen that this is not the case for the H-optimist (Theorem 3.4), since
the restrictions are enough to ensure termination, while iteration might be circular with
general alterations with the Approval rule for these agents (Theorem 3.3).

3.4 Discussion

In this chapter we explored the iterative voting process for different satisfaction functions
using Majority rules and the Approval rule. In Section 3.2 we have seen that the EMaj

and TrueMaj are generally not guaranteed to terminate, no matter which of the considered
functions underlie the agents’ satisfactions. On the other hand, the Approval rule gives a
more diverse picture.

EMaj TrueMaj 2sMaj

no truth-bias 7 7 ?
truth-bias 7 7 7

Approval

Hopt Hpess Hreal
no truth-bias 7 3 7

minimal alterations and weak truth-bias 3 3 7

Table 3.6: Overview of the results in Chapter 3.

Table 3.6 gives an overview of all results of this chapter. A guaranteed termination is
marked with a check (3), while a cross (7) indicates a possible circular iteration with the
respective satisfaction function, and a question mark (?) identifies an open problem. Note
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that there is no extra row dividing the Majority rules into the different satisfaction func-
tions, since all the results in Section 3.2 apply to any satisfaction function, also including
the dichotomous ones.

In Approval voting, termination of the iteration process highly depends on the satis-
faction function considered. We have seen that Approval voting with H-pessimists (The-
orem 3.1) is guaranteed to terminate, while we needed some minor restrictions on the
alterations to guarantee termination for the H-optimists (Theorem 3.4). The Approval
rule with H-realists, however, is still not guaranteed to terminate even with these restric-
tions (Theorem 3.3).

Endriss (2013) already showed the importance of the choice of satisfaction by analyz-
ing best responses in classic approval voting under different preference extensions. He
showed that the preference extension, which corresponds to our satisfaction functions, af-
fect the set of best responses in manipulation. Thus, it is not surprising that we also found
differences in the iteration procedure when considering different satisfactions. In our
work we have effectively defined two possible sets of best responses: alterations without
restrictions and minimal alterations with a weak truth-bias. Following Endriss’ approach,
it would be an interesting open problem to characterize what types of satisfaction func-
tions cause the iteration to terminate under these assumptions.

For the Majority rule we have observed no differences in the satisfaction functions,
since the voting rules themselves seem to admit large possibilities to alterations and thus
circular iterations. Note that TrueMaj and EMaj are quota rules, i.e., an issue gets re-
jected or accepted based on the ratio of approvals and disapprovals in the given profiles.
Considering a higher threshold might raise the bar for alteration and yield a more positive
result for iteration. Also, considering Novaro (2019) result about the strategy-proofness
of the Majority rules under different restrictions on the goals’ language, it is natural to
assume that some weaker restriction on the language will lead to a positive termination
result without hindering iteration completely.

In conclusion, we have seen in this chapter non-termination results that we labelled as
negative. However, one might ask how realistic these results are. In fact, most of these
are established by specific counterexamples, which were found by carefully selecting
and adapting profiles and even pushing them into absurd narratives. One question worth
asking is: How likely circular iterations are?

In the next Chapter we address this question, by implementing the iterative Approval
voting into a Python program. Based on the data collected from this implementation, we
will build first hypothesis on how likely circularity and iteration are in general. Addition-
ally, we will analyze the quality of the iteration, based on a notion of social welfare.
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In the first part of this chapter we will define a notion of social welfare and analyze the
quality of iteration for Approval voting and Majority voting in the light of it. The second
part contains an analysis of the data obtained by implementing iterative Approval voting,
with randomly chosen profiles. The goal of this chapter is to formulate some hypothesis
about how often iteration takes place and how beneficial it is for the agents involved.

4.1 Social Welfare in Iteration

Satisfaction measures based on different generalizations of the Hamming distance have
been defined and discussed in Section 2.2.2. In this section we want to establish a notion
of group satisfaction, based on the individual agents’ satisfaction. In the literature this is
referred to as social welfare.

Note that there are multiple notions of social welfare. While we are following an
utilitarian (additive) approach one could also consider the Nash (multiplicative) social
welfare as studied by DeMeyer and Plott (1971) and Kaneko and Nakamura (1979) or the
egalitarian social welfare as introduced by Rawls (1971). In the literature the utilitarian

social welfare is defined as the sum over all the agents’ utilities (Caragiannis and Procac-
cia, 2011; Barrot et al., 2017). Recall that, in Section 2.2 we have defined a notion of
satisfaction for an agent based on the distance functions optH , pessH and realH . The
social welfare will be defined as the sum over all satisfactions.

Definition 4.1 (Social Welfare). For a set of agents N = {1, . . . , n} and a set of issues

I = {1, . . . ,m}, the social welfare for a truthful profile Γ and the outcome of a voting

rule F : (G)n → P({0, 1}m) \ {∅} under a profile Γ′ is defined as:

sw(F (Γ′),Γ) =
∑
i∈N

sati(γi, F (Γ′))

We will call the social welfare of H-optimists, H-pessimists and H-realists swo, swp
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and swr respectively. Then for a truthful profile Γ = (γ1, . . . , γn) by Definition 4.1 we
get the following social welfare:

swo(F (Γ′),Γ) =
∑
i∈N

(m− optH(γi, F (Γ′)))

swp(F (Γ′),Γ) =
∑
i∈N

(m− pessH(γi, F (Γ′)))

swr(F (Γ′),Γ) =
∑
i∈N

(m− realH(γi, F (Γ′))) =
∑
i∈N

(m−
∑

w∈F (Γ′) lowH(γi, w)

|F (Γ′)|
)

Note the social welfare ranges between 0 and n ·m for any distance we consider. A
higher value of social welfare means a higher satisfaction for the group. Note that the
social welfare only equals n · m if every agent i has distance di = 0. In case of H-
optimists, this means that for each agent there is at least one interpretation in the outcome
that models her goal, while for H-pessimists and H-realists it means that all interpretations
in the outcome model all agents’ goals.

4.1.1 Optimality Results

In goal-based voting one might reasonably think that, if all agents’ goals have at least one
model in common, these interpretations build the best outcome. The following notion of
an outcome being optimal captures exactly this idea.

Definition 4.2 (Optimal). Given a truthful profile Γ = (γ1, . . . , γn) and a voting rule

F we call the outcome F (Γ′) under a profile Γ′ optimal if
⋂
i∈N

Mod(γi) 6= ∅ implies

F (Γ′) ⊆
⋂
i∈N

Mod(γi).

A rule is optimal if it always returns an optimal outcome if such exist.

Note the difference between this notion of optimality and being Pareto optimal. An
outcome is called Pareto optimal, if it is not dominated by any other outcome, where
an outcome o is dominated by o′, if there is an agent who strictly prefers o′ over o and
no agent prefers o over o′. An outcome being optimal as defined by Definition 4.2 is
stronger: it requires that no interpretation in the outcome is dominated, and thus is also
Pareto optimal, but additionally demands all interpretations to be a model of each agents’
goal. Therefore, if the optimal outcome exists it also is Pareto optimal. But in case the
intersection of all agents’ models is empty, there is no optimal, but there might still be a
Pareto optimal outcome. Additionally we will call an alteration or step in the iteration a
Pareto improvement, if none of the agents’ satisfaction decreased and at least one agent’s
satisfaction increased.
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A rule being optimal is closely related to the model unanimity axiom as defined by
Novaro (2019), stating that voting rules satisfying this axiom will return the optimal out-
come, which consists of exactly all interpretations in the intersection of all goal’s models
if they exist. Our notion of a rule being optimal coincides with one direction of model
unanimity, only requiring the outcome to be a subset of the set of these interpretations.
Since Novaro (2019) showed that the Approval rule satisfies model unanimity axiom, we
know that it guarantees to return an optimal outcome. For the Majority rules, however,
this may not be the case, as Example 4.1 shows.

Example 4.1. Consider three agents and three issues and let their voting profile be as

in Table 4.1. All the agents hold the same goal, which has two models. Note that any

outcome including only (010) or (101) is optimal.

Every agent gives a support of 1
2

towards each issue. Hence each issue j ∈ I ties

within one agent’s goal. Due to its tie-breaking rule, EMaj favours 0 over 1 and hence

will return (000) as the only interpretation in the outcome. The same is true for 2sMaj

since it computes EMaj for each agent’s goal. TrueMaj on the other hand, does not have

a tie-breaking rule and thus returns the whole set of interpretations. Only the Approval

rule chooses an optimal outcome.

Γ

Mod(γ1) (010)

(101)

Mod(γ2) (010)

(101)

Mod(γ3) (010)

(101)

E/2sMaj (000)

TrueMaj {0, 1}3

Approval (010)

(101)

Table 4.1: Example of the Majority rules not choosing the optimal result.

Observe that optimal results always yield the highest possible social welfare of n ·m,
since any interpretation in the outcome is a model of all agents’ goals and hence it has a
lowH distance of 0 to any agent. Therefore, the social welfare will be maximal for any
satisfaction function.

One might note that, in case the agents are H-optimists the result of the TrueMaj

still yields the best possible social welfare. This holds, since all interpretations are in the
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outcome, for every agent there is at least one interpretation which is a model of her goal.
Hence, this model will have lowest Hamming distance 0 and the social welfare for H-
optimists will be maximal. However, the result also includes many more interpretations
which are not models of the agent’s goal. While these additional interpretations often
build some kind of compromise, in this case they are redundant, as they are all dominated
by the models of the agents’ goals.

For all of these rules, agents basing their satisfaction on any of the dichotomous func-
tions, on the optH or realH (and for EMaj and 2sMaj also the pessH) have an incentive
to alter their vote. In fact, in Example 4.1, iteration would terminate with the optimal
outcome: if one of the agents alters to one of her goal’s models, any of the rules (except
the 2sMaj ) would return this instead and they would reach the maximal social welfare.
The good news is that iteration can help to reach the optimal result. Unfortunately, it is
not guaranteed to do so, as we will see in Example 4.2.

Example 4.2. Consider three agents and three issues with the profile as presented in

Table 4.2. None of the Majority rules would result in the optimal outcome (100). And

since agent 1 can alter to (110), the iteration terminates at another non-optimal outcome.

Γ0 Γ1

Mod(γ1) (101) (110)

(010)

(110)

(001)

Mod(γ2) (010) (010)

(101) (101)

Mod(γ3) (010) (010)

(101) (101)

EMaj (000) (110)

TrueMaj {0, 1}3 (110)

Table 4.2: Example of the EMaj and TrueMaj rules not terminating to the optimal result
after iteration.

This profile could have terminated in an optimal outcome, if either another agent
altered her vote or agent 1 decided to be more mindful of the other agents’ goals. This
example shows that this is nevertheless not guaranteed. Note that the 2sMaj would also
yield (000) as the outcome of profile Γ0; however, Example 4.2 is not enough to also
show that the 2sMaj would not terminate at the optimal outcome in case iteration starts,
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since here no agent has the power to change the outcome with an alteration. Whether or
not 2sMaj always terminates at the optimal outcome in iteration, is an open question.

4.1.2 Social Welfare with the Approval Rule

As we have seen in Section 4.1.1, the Approval rule is guaranteed to yield the optimal
outcome, if it exists. However, there are multiple profiles which do not have an optimal
outcome. In these cases, iteration might occur. In this section we will show that the so-
cial welfare will never decrease considering the iterative Approval rule with H-optimists
and H-pessimists. For H-realists, on the other hand, the picture is not as clear, as Propo-
sition 4.2 shows that the social welfare considering H-realists with the Approval rule,
might increase, decrease or stay constant in iteration.

Theorem 4.1. In the iteration of the Approval rule with H-pessimists, the social welfare

always increases.

Proof. We will prove this theorem by showing that any iteration step is a Pareto improve-
ment. Take N = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the initial profile.

By Lemmas 3.1 and 3.2 we know that for any iteration step with H-pessimists, we
have kt+1 > kt and hence Approval(Γt+1) ⊆ Approval(Γt) at any stage t. This directly
gives us that the interpretations with the maximal lowest Hamming distance (lowH) to
the goal of any given agent i are either still in the new outcome, or the distance de-
creased. This means we have pessH(i, Approval(Γt+1)) ≤ pessH(i, Approval(Γt)).

To see that this is the case, assume there is an agent i whose distance increased, so
we have pessH(i, Approval(Γt+1)) > pessH(i, Approval(Γt)). Then since it is the
case that Appoval(Γt+1) ⊆ Approval(Γt) the interpretation that holds the lowest dis-
tance pessH(i, Approval(Γt+1)) must have been in Approval(Γt) before and therefore
pessH(i, Approval(Γt)) was not the maximal distance, which contradicts the definition
of pessH (see Definition 2.12).

Additionally we know that the altering agent j changes her goal such that her satisfac-
tion strictly increases, i.e., pessH(j, Approval(Γt+1)) < pessH(j, Approval(Γt)). This
gives us that at any step t∑

i∈N

(m− pessH(i, Approval(Γt+1))) >
∑
i∈N

(m− pessH(i, Approval(Γt))).

Therefore, it is the case that swp(Approval(Γt+1),Γ0) > swp(Approval(Γ
t),Γ0) for any

stage t. This shows that any step is a Pareto improvement. Since by Theorem 3.1 the
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iteration with H-pessimists always terminates we know that the final stage will yield an
outcome that has a higher social welfare than the outcome under the initial profile.

Theorem 4.2. In case the iteration of the Approval rule with H-optimists terminates, the

social welfare does not decrease.

Proof. TakeN = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the initial profile whose outcome is Approval(Γ0). We show the
theorem by proving the following lemma:

Lemma 4.1. For H-optimists at any stage t we have Approval(Γ0) ⊆ Approval(Γt).

Assume this lemma to be true, then at any possible stage t for any agent i the lowest
possible satisfaction coincides with the highest possible optH(i, Approval(Γt)) which
will never drop below optH(i, Approval(Γ0)). This is so since the best interpretation in
the initial outcome is guaranteed to be included in any later outcome as well. Therefore we
have optH(i, Approval(Γt)) ≤ optH(i, Approval(Γ0)) for any agent i and any stage t.
This gives us that∑

i∈N

optH(i, Approval(Γt)) ≤
∑
i∈N

optH(i, Approval(Γ0)).

Therefore, by the definition of social welfare we get that any later stage yields a higher
satisfaction for the group, i.e., swo(Approval(Γt),Γ0) ≤ swo(Approval(Γ

0),Γ0) for any
stage t. Thus, in case the iteration terminates it will lead to an outcome with the same or
a higher social welfare. Hence, it suffices to prove Lemma 4.1.

Proof of Lemma 4.1. Note that any agent i who includes a winning interpretation in her
current goal, which also models her truthful goal, has no incentive to alter at this stage.
This is the case since H-optimists only consider the minimal lowH , which in this case
is 0 and hence cannot be decreased. This also gives us that the support of these models
will not decrease, i.e., suppΓt(v) ≥ suppΓ0(v) for any stage t and all interpretations
v ∈ Approval(Γ0).

Further, note that the support of the winning interpretations from one stage t to the
next will not increase, i.e., kt+1 ≤ kt. Suppose this would not be the case, so there is an
iteration step such that kt+1 > kt. Since support of interpretations can only be raised by 1
per step we have kt+1 = kt + 1. Hence, the new outcome must have been a subset of the
previousApproval(Γt+1) ⊆ Approval(Γt). We would have optH(i, Approval(Γt+1)) ≥
optH(i, Approval(Γt)), hence no H-optimist has an incentive to induce such a change,
because one of their closest interpretations is either still in the outcome, which makes no
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difference to them, or now a worse interpretation is their closest, which would make them
worse off. Therefore, the support of the winning interpretations from one stage t to the
next will not increase, i.e., kt+1 ≤ kt.

In conclusion, the initial winning interpretations will have a stable support of k0 and
the support of the winning interpretations kt does not increase during the iteration, i.e.,
kt = k0 for all stages t. Therefore, the interpretations v ∈ Approval(Γ0) will always hold
the maximal support. Hence Approval(Γ0) ⊆ Approval(Γt).

Thus, social welfare for H-optimists does not decrease in non-circular iteration.

Note that we only considered profiles which terminate, since a circular iteration, while
possibly yielding changes in social welfare, has no end profile whose social welfare can
be compared to the initial one. The following proposition shows that in case of weakly
truth-biased H-optimists who only consider minimal alterations, we get that each iteration
step is a Pareto improvement.

Proposition 4.1. The iterated Approval rule with weakly truth-biased H-optimists con-

sidering only minimal alterations, always yields an increase in social welfare.

Proof. We will prove this theorem by showing that any iteration step is a Pareto improve-
ment. Take N = {1, . . . , n} to be a set of voters and I = {1, . . . ,m} a set of issues. Let
Γ0 = (γ1, . . . , γn) be the voting profile.

An iteration with weakly truth-biased H-optimists who only consider minimal alter-
ations is known by Lemma 3.3 to only include alterations of kind (2) from Definition 3.3.
That is, any agent i will only alter such that Mod(γt+1

i ) = Mod(γti) ∪ {v1, . . . , vl} with
vj /∈ Mod(γti) and suppΓt(vj) = kt − 1 for all j ∈ {1, . . . , l}.

By Theorem 3.4 we know that this iteration will terminate and hence by Theorem 4.2
it will not yield a worse outcome. Additionally, we know that the altering agent’s satisfac-
tion strictly increases. This means that for any stage t, all agents are at least as satisfied as
before, which gives us optH(i, Approval(Γt+1)) ≤ optH(i, Approval(Γt)), and at least
for one the altering agent (j ∈ N ) the satisfaction increases: optH(j, Approval(Γt+1)) <

optH(j, Approval(Γt)). This is enough to see that any step is a Pareto improvement and
leads to:∑

i∈N

(m− optH(i, Approval(Γt+1))) >
∑
i∈N

(m− optH(i, Approval(Γt))).

Therefore, swo(Approval(Γt+1),Γ0) > swo(Approval(Γ
t),Γ0) at any stage t.
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These results cannot be extended to Approval voting with H-realists. The next propo-
sition shows that we can find examples for an increase, decrease and constant social wel-
fare through iteration.

Proposition 4.2. In case the iteration of the Approval rule with H-realists terminates,

the social welfare might increase, decrease or stay the same.

Proof. The following examples in Table 4.3 show that social welfare in iteratedApproval
rule with H-realists might increase, decrease or stay constant.

Γ0 Γ1 Γ′0 Γ′1 Γ′′0 Γ′′1

Mod(γ1) (000) (010) Mod(γ1) (010) (000) Mod(γ1) (000) (010)

Mod(γ2) (011) (011) Mod(γ2) (000) (000) Mod(γ2) (010) (010)

(010) (010) (111) (111) (111) (111)

Mod(γ3) (011) (011) Mod(γ3) (111) (111) Mod(γ3) (111) (111)

(010) (010)

Approval (011) (010) Approval (111) (111) Approval (111) (111)

(010) (000) (010)

Table 4.3: Example of social welfare increasing, decreasing and being constant for H-
realists under the Approval rule.

The social welfare of these H-realists from Table 4.3 are as follows: for the first table
we have swr(Approval(Γ0),Γ0) = 1.5 + 3 + 3 = 7, 5 for the first profile and a higher
social welfare of swr(Approval(Γ1),Γ0) = 2 + 3 + 3 = 8 for the second profile. The
profiles in the second table yield decreasing social welfare, swr(Approval(Γ′0),Γ′0) =

1 + 3 + 3 = 7 and swr(Approval(Γ′1),Γ′0) = 1.5 + 3 + 1.5 = 6. The last table gives
us a social welfare of swr(Approval(Γ′′0),Γ′′0) = 0 + 3 + 3 = 6 = 1 + 3 + 2 =

swr(Approval(Γ
′′1),Γ′′0). This concludes the proof, that iterative Approval voting can

yield a higher, lower or constant social welfare.

One could consider a result better for the group of agents engaged in the voting pro-
cess, if it yields a higher social welfare. In this sense we have seen that iteration with the
Approval rule with H-optimists and H-realists will lead to better outcomes while the Ma-
jority rules and the Approval rule with H-realists might not. In the next section, we want
to get a glimpse on how likely it is for an iteration to result in a worse outcome. Using an
implementation of the iterative Approval voting with H-realists, we will see that iteration
seem to be rare, but worth considering.
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4.2 Implementation of Iterative Approval Voting

A lot of results in this thesis showed that there are multiple instances in which the termi-
nation of an iterative goal-based voting process is not guaranteed. For example Approval
voting possibly yields circular iterations as shown in Theorem 3.2. However, the coun-
terexamples of these seemingly negative results often use very special profiles to construct
a circular iteration. Iterative voting might still be considered profitable to the agents if cir-
cularity occurs rarely and the social welfare increases regularly with iteration. In order to
shine some light on this question we implemented a program which iterates goal-based
voting and computes the social welfare for each visited profile.

The program is written in Python, and it is for the Approval rule with H-realists. This
satisfaction type seems to be the most interesting and least explored, since this is the only
satisfaction function for which no definite theoretical result could be reached, neither for
termination of the considered rules, nor for their social welfare in iteration. The iterations
are run for profiles chosen uniformly at random. One iteration step consists of computing
the set of agents which have an incentive to alter, by computing the agent’s satisfaction
under the current profile and comparing it to the satisfaction of outcomes under possible
variants. If the set of agents who benefit from alteration is non-empty, the program first
chooses one of these agents and then one of their best responses randomly. Like this we
ensure that there is no bias towards a specific agent or response. Since we ran the program
multiple times, one profile could have been visited multiple times. Note, however, that
since we chose the altering agents and their best response randomly, visiting the same
profile more often can still increase our insight, if then other agents or responses are
chosen in the iteration.

We ran the program with n = 3 agents and m = 3 issues. Although this is a re-
striction to a special case, we were forced to choose a minimal implementation due to
computational restrictions. If one were to add more issues, the exponent in the number of
models (2m) and so also in the goals (22m) would increase. In fact, observe that already
with these numbers of agents and issues we are faced with 28 − 2 = 254 goals and thus
2543 = 16.387.064 possible profiles (though if one were to implement more experiments,
a way to reduce the search space would be to remove symmetrical profiles). Note that
there are 8 possible models for 3 issues and that goals are either including or excluding
each of these models, so since we do not allow neither contradictions nor tautologies as
goals, the number of goals is calculated as above. While technically allowed by the frame-
work of goal-based voting, we decided to exclude tautologies from the set of goals, as in
Approval voting an agent who approves every model is basically absent from the vote.

53



4 Social Welfare

With this implementation we will observe the frequency as well as the quality of it-
erations. We have analyzed 500 randomly chosen profiles, which, while not significant
(considering the total number of possible profiles), gives us a first impression on the ques-
tion raised, in order to formulate some weak hypothesis and identify interesting further
research directions.

4.2.1 Frequency of Iteration

In this section we discuss how often iteration actually took place in the 500 sample profiles
of our implementation. We will also look at some examples of those to understand how
profiles that yield iterations commonly look like.

Figure 4.1: Number of profiles iterated with Approval rule and H-realists.

Figure 4.1 shows that only very few profiles actually started iteration. In our case only
26 out of 500 and thus 5.2% of the profiles did and all of these took exactly one step to
terminate, except for one profile which took two iteration steps.

Looking at these profiles carefully, one can recognize most of them to follow a similar
pattern: there are at least two interpretations in the outcome with support 2, hence two
agents agreeing on at least two interpretations, while the third agent’s goal has no com-
mon model with these two. Some of the interpretations are more preferred by this third
agent than the others. This causes the third agent to have an incentive to manipulate. An
example can be seen in Table 4.4.

Not all of the iterated profiles do look like this. One can also find profiles as the
one which took two iteration steps, presented in Table 4.5. Here, the support k0 for the
approved interpretations is only one. This means that the models of any two agents’ goals
are disjoint and therefore all of them will be in the outcome. In this case, an agent might
have an incentive to alter her vote, in case there are more undesirable interpretations in
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Γ0 Γ1

Mod(γ1) (101) (011)

(100)

Mod(γ2) (000) (000)

(100) (100)

(111) (111)

Mod(γ3) (000) (000)

(100) (100)

Approval(Γ) (000) (100)

(100)

Table 4.4: Example of iterated Approval voting with H-realists.

the outcome than there are ones she likes. Then, this agent can choose to support one of
the other agents’ models. This causes her own models to not be in the outcome anymore,
but since we are assuming H-realists, this might still yield a lower average distance for the
altering agent. In the second alteration agent 1 was able to support some interpretations
such that her average satisfaction will increase. This alteration coincides with a minimal
alteration of type (2) of Definition 3.3.

4.2.2 Quality of Iteration

In this section we inspect the social welfare in iteration. In order to analyze it, we have
computed the social welfare for each profile visited during the iteration process. The
following figures present the results of our implementation.

In Figure 4.2 we only consider the profiles which yield iteration. It shows that almost
70% of the iterated profiles were such that the social welfare increased with the iteration.
For about 15% of the profiles the social welfare decreased. Due to the low number of
inspected profiles, we cannot draw a definite conclusion. However, this is an indication
that iterations is beneficial, hence running more test iterations is worth exploring.

In Figure 4.3 one can see that none of the iterated profiles reached the maximal social
welfare of 9, while almost 70% of the initial profiles did. About 65% of the iterated
profiles reached social welfare of 8. The iterated profiles have another smaller peak at
social welfare 7 with roughly 25% of the profiles terminating at it. The initial profiles
also have one more value over 20% which is at social welfare 8. Any other value has
only been reached by less than 10% of the profiles considered. The average final social
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Γ0 Γ1 Γ2

Mod(γ1) (111) (111) (011)

(100)

(101)

(110)

Mod(γ2) (000) (000) (000)

(001) (001)

Mod(γ3) (001) (001) (001)

(010) (010) (010)

(011) (011) (011)

(101) (101) (101)

(110) (110) (110)

Approval(Γ) Mod(
∨
i∈N γi) (001) (001)

(011)

(101)

(110)

Table 4.5: Examples of iterated Approval voting with H-realists with two steps.

Figure 4.2: Change in social welfare for profiles where iteration took place withApproval
voting and H-realists.

welfare after iteration (including the social welfare of the profiles who did not iterate) was
8.619 while in the initial profile the average was 8.598. As one can tell, this difference is
very small. When only considering the profiles which did take an iteration step, the initial
average of the social welfare was 7.259 and the final one was 7.664.
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Figure 4.3: Social welfare for Approval voting with H-realists. The blue bars represent
social welfare for profiles with iteration, the green bars for profiles without iteration.

4.3 Discussion

In our implementation only very few profiles (5.2%) iterated and none of them were circu-
lar. This gives a first impression that termination might be very likely after all. However,
note that our dataset itself does not even cover close to 1% of the possible profiles due to
the double exponential number of profiles. One has to keep this in mind when analyzing
this data.

Figure 4.2 indicates that iteration might be beneficial for social welfare. Almost 70%

of the iterated profiles lead to an increase of the social welfare, although Figure 4.3 shows
that the average social welfare after iteration is close to the average initial one. Most of
the initial profiles hold the highest possible social welfare, while none of the iterated ones
do. One may conclude that, since iteration also yields some costs (computational, effort,
etc.) it might not be worth it.

However, Figure 4.2 might be misleading: since many of the initial profiles have such
a high social welfare to begin with, iteration does not appear often. If for example a
profile yields a maximal social welfare of 9, none of the agents has an incentive to alter
her vote, since all of them hold the highest utility. The reason why the differences of
averages (8.619 compared to 8.598) is small can be explained by the fact that the profiles
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which do iterate are such a small fraction of the number of all profiles. In order to study
this in more depth one needs to run more implementations of this form for more agents
and issues.

Note also that we built a deadline into our implementation which would have stopped
the iteration if it would have exceeded a certain number of stages. In our case the bound
was set to 10 steps and hence never triggered. Assuming such a bound on the iteration
steps seems natural since most decisions have a date by which they must be taken. This
has been considered before, for example, Airiau and Endriss (2009) study iterated Major-
ity voting with a bound.
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This thesis has laid the groundwork for iterative goal-based voting. Through defining
novel satisfaction functions, optH , pessH and realH , we extended the notion of strate-
gic behaviour beyond dichotomous functions to more complex reasoning. These diversi-
fied results for the Approval rule: while the strategy-proofness of this rule is limited to
agents who base their satisfaction on dichotomous functions (Proposition 2.10), our re-
sults demonstrated that iteration is possible for H-optimists, H-pessimists and H-realists,
showing the convergence of the iteration to be highly dependent on the satisfaction func-
tion being considered.

In particular, we proved that among H-pessimists, iterated Approval voting is guar-
anteed to terminate (Theorem 3.1). For H-optimists, we needed to restrict agents’ actions
to what we called minimal alterations with a weak truth-bias in order to guarantee con-
vergence (Theorem 3.4). Minimal alterations force an agent to alter only in such a way
that it is effective, that is, she shall not add any unnecessary changes to her alteration.

Minimal alterations and weak truth-bias restrict alterations in such a way that itera-
tive Approval voting terminates for H-optimists. This restriction is concerned with the
effectiveness of an alteration. Sincerity, as used by Endriss (2013) and first introduced by
Brams and Fishburn (1978) in the context of voting, might be an alternative approach to
this problem. Sincerity means that all models in an agent’s goal would have to be weakly
preferred to all models this agent does not approve. Note that even though all alterations
in the circular profile of Approval voting with H-realists (Table 3.5) are sincere, and thus,
this restriction would not be enough to ensure the termination for H-realists, it could be
sufficient for the H-optimists. How minimal alterations with weak truth-bias and sincerity
correlate is an interesting direction for future work.

In contrast, we did not find constraints for H-realists under which theApproval rule is
guaranteed to terminate (Theorem 3.3). One reason why we found profiles for which the
iterated Approval rule did not terminate, even when assuming minimal alterations and
weak truth-bias, is that an H-realist considers the average distance of all interpretations
to her goal. In other words, she does not restrict her interest to the best or worst inter-
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pretation. Therefore, she has more opportunities to alter her vote in favour of her truthful
goal. The question on how these different satisfaction functions yield different results in
iterative voting is also related to the more general question on strategic behaviour under
irresolute voting rules considering different preference extensions. A similar question was
studied for judgment aggregation by Botan et al. (2016) and Brandt and Brill (2011). One
could further analyze what influence an extensions property has on the iteration process.

In Chapter 4 we also showed that iteration yields increased (utilitarian) social welfare
for both H-pessimists and H-optimists and no agent’s individual satisfaction will suffer
from iteration (Theorems 4.1, 4.2, 4.1). The fact that termination with H-realists in iter-
ative Approval voting is not guaranteed should not be considered a negative result, yet.
The goal of Chapter 4 was to clear up how frequent iteration with H-realists actually is
and its impact on social welfare. One way of analyzing this is through the implementa-
tion. While the collected data is not enough to draw definite conclusions, our findings
suggest iteration to be rare. Out of 500 of the randomly chosen profiles with three agents
and three issues, only 5.2% iterated, almost all of them terminating after one step. Further
analysis is needed to conclude whether the restrictions to such a small number of agents
and issues are the reason for the rare iterations, rather than the nature of theApproval rule
and the realH function. Although most of the iterated profiles did increase social wel-
fare, we also observed that most initial profiles already had a high social welfare. More
simulations are needed in order to draw an accurate conclusion.

In Section 3.2 we showed that none of the Majority rules are guaranteed to terminate
under standard conditions (truth-bias or no assumptions, as seen in Theorem 3.1). This re-
sult holds for all types of satisfaction functions, including the dichotomous ones. Novaro
(2019) has shown that, assuming dichotomous satisfactions functions, the Majority rules
are strategy-proof for goals which are incomplete conjunctions. This suggests that there
is some middle ground, maybe some milder restriction on the language, for which iterated
Majority voting takes place and does terminate. Restricting the language is one of multi-
ple possibilities, like decreasing the set of best responses, as we have done with minimal
alterations and the weak truth-bias, or like not assuming agents to be fully informed.

Terzopoulou and Endriss (2018) followed this latter approach while analyzing iterated
judgment aggregation. They showed that restricting an agent’s information has a positive
effect on the termination of a given rule. Analyzing the iteration of goal-based voting
further, this would be a feasible approach to consider for the Majority rules as well as the
Approval rule with H-realists.

In conclusion iterative Approval voting yields desirable properties: first, iteration
is possible, second, it guarantees termination under mild constraints after a reasonable
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amount of steps and third, it is beneficial for each agent, always returning an optimal out-
come if one exists. Considering decision problems such as the one Ann, Betti and Clara
faced in Example 1.1, about finding a suitable flat, iterative Approval voting would be a
good procedure to use. It is fairly simple to let everyone vote for their truthful goal and
then let the agents sequentially alter, if they want to. We could imagine that the agent
with the largest distance (or a random agent if distances are tied) gets to alter her vote
first, even without knowing which function underlies the agents’ satisfaction.

Future Research. As this thesis lays the ground for iterative goal-based voting it also
opens a new area for diverse research questions. First, one could explore more termination
results, searching for restrictions under which given or novel rules terminate and in which
amount of time they do. There are many variables that one could adapt in order to reach
additional results. Some interesting approaches consist of adapting more rules to goal-
based voting and trying to reproduce our results or expanding the notion of satisfaction.
By testing more restrictions on how agents are allowed to formulate their goals or alter
those, we would expect more termination results to arise.

Second, one could follow an axiomatic approach, by analyzing and axiomatizing the
rules for which termination can be achieved, as well as the satisfaction functions which
yield iteration, as Obraztsova et al. (2015) have done for voting. This may result in im-
possibility results in the style of the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Sat-
terthwaite, 1975). Additionally, considering group manipulation as it has been done by
Botan et al. (2016) for judgment aggregation, would also yield an interesting direction.

Thirdly, in order to further analyze the quality of iteration, we would like to see an
application of the Dynamic Price of Anarchy as it has been analyzed for iterative voting
and judgment aggregation before (Terzopoulou and Endriss, 2018; Koutsoupias and Pa-
padimitriou, 2009; Andelman et al., 2009). Chapter 4 already gives rise to the believe that
iteration can be beneficial, however, we have not studied what the possible social costs of
iteration under a given rule might be.

Lastly, we would be interested in seeing further implementations. Since our dataset is
quite small, it would be sensible to expand the analysis to more agents and issues, as well
as to other rules. Taking the research one step further, one could design empirical studies
as for example those by Laslier and Sanver (2010) to determine whether and how people
actually vote strategically, which satisfaction function they are most likely to follow and
if iteration benefits the social welfare.
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