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When Being the Fifth Wheel Pays Off:
Wisdom of the Crowds with Costly Information

Matteo Michelini

Abstract

The Condorcet Jury Theorem (CJT) is considered one of the cornerstones of the
wisdom of the crowd, i.e. the idea that large groups of people are better at tracking
the truth than small ones. However, such a result is often criticized on the ground
that its assumptions are unrealistic. In this thesis, we provide a new perspective
on the truth-tracking potential of a group by introducing in the CJT setting a more
realistic point of view. In particular, we consider a group whose members are
interested in finding the right answer to a question, but where being competent
is costly. Consequently, agents can either acquire information by spending effort
and express a vote, or abstain. We model this scenario game-theoretically and
characterize its equilibria. In addition, we also look at the social welfare of the
game thus defined. We use our formal results to show that some of the claims
of the CJT do not hold under our proposed assumptions. For example, we prove
that larger groups do not necessarily produce better outcomes if the group size
surpasses a certain threshold.

Next, we extend this basic setting in three different directions. Firstly, we
study the possibility for agents of having different stakes in the matter, i.e. to be
less or more interested. We prove that a group can be as accurate as possible only
if the agents with the higher stakes vote, and similarly we show which groups are
more efficient in terms of social welfare. Secondly, we describe the game in the
case where agents may reach different levels of competence. In this scenario, we
study the pure equilibria, and we also introduce other possible ways of character-
izing this scenario further. We also discuss the notion of weight of a voter and the
possibility of delegating.

Lastly, we consider the possibility for the agents of being connected through a
network. We characterize equilibria on distinct classes of networks and we com-
ment these results. We integrate our analytical results with a computer simulation
of best response dynamics in those games.
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1 Introduction

1.1 Background and Motivation

The Right Decision. Making decisions can be as easy as choosing pasta rather
than rice for your lunch or as hard as deciding whether to marry or not. However,
sometimes there exists a good option and one (or more than one) bad option(s). In
the same way as there is a correct answer to certain questions, there are situations
in which a decision is correct and another is wrong, such that the case of a jury that
is called to judge a defendant. It should always be possible, at least in principle,
to tell if the defendant is guilty or not, if we were exactly aware of all the facts
that happened. This is the reason why the jury is usually provided with as much
evidence as possible and is then asked to take a decision: each piece of evidence is
supposed to bring the jurors closer to the truth. There are may situations in which
we, as a society, usually believe in the existence of a certain truth.1 Although we
are aware of the difficulties that we may encounter to find it, we also hope that, by
asking the ‘right people’, we can get closer to the truth. This is, for example, the
mission of the so-called Good Judgement Project, which aggregates the opinions
of many people and tries to make reliable predictions on geopolitical phenomena.2

Experts or Crowds? However, there has been much debate in science and
philosophy about how to form (and who to include in) the entities (institutions,
groups, individuals) dedicated to this task, i.e. to find the correct answer. For
example, Plato argued in favour of leaving this responsibility to philosophers
(Sharples, 1994). His main point was that since those are the people who study
the truth itself, there would be no point in asking anybody else. Still today, we ac-
knowledge the existence of many groups of experts, whose opinions are more rel-
evant when specific decisions are taken: pools of virologists, epidemiologists and
doctors are formed to settle the policies against COVID-19, groups of economists

1Of course, this is not always the case. Often decisions are also about values, and in that case,
we cannot say anything about ‘correctness’ of a decision.

2See the website https://goodjudgment.com/ and some articles (Schoemaker and Tet-
lock, 2016; Tetlock, 2009; Ungar et al., 2012).
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Introduction

and brokers are chosen to predict market trends. On the other hand, many others
(especially in most recent times) argued in favour of allowing bigger groups of
people to take decisions. This is the idea of the wisdom of the crowds, i.e. the
belief that the more people we involve in the decision the more likely they are
to find the right answer. One of the most iconic experiments that has been car-
ried out in this sense is the weighting of the ox. In such an experiment, Galton
(1907) reported the final outcome of a weight judging competition where every
participant was supposed to guess the weight of a fat ox in order to win a prize.
Galton’s collected data shows that the crowd was, on average, within 1 lb of the
true weight. After his experiment, many other researchers assessed the efficiency
of large crowds in many fields (Sunstein, 2006; Surowiecki, 2005). De Condorcet
(1785) was probably one of the first philosophers who tried to support the idea of
the wisdom of the crowds with a formal and theoretical argument.3 He believed
that politics was all about finding the correct answer to problems in the same way
Plato did. Yet, unlike him, he wanted to show that for this reason, it would have
been better to outsource these decisions to as many people as possible.

The Condorcet Jury Theorem (CJT). Condorcet proposed a simple formal
model that was meant to compare the individual performance with the collective
one (Grofman, Owen, and Scott L. Feld, 1983; Nitzan and Paroush, 2017). His
model consists of a group that is asked to find the right answer in a binary choice.
It assumes that each agent votes and aggregates the answers through majority
rule. Then, given that each agent has a probability of finding the right answer, the
model computes the overall probability of the group. Condorcet’s model makes
three important assumptions. First of all, it assumes that the agents are compe-
tent, i.e. each agent is more likely to find the right answer than the toss of a fair
coin. Secondly, it considers homogeneous agents, i.e. each agent has the same
probability of all others to find the correct answer. And, lastly, it assumes that the
agents choose independently one from each other. Thus, the following claims can
be shown through a formal proof.

(GBI) Groups are Better than Individuals: the group, as defined by the majority
opinion, is at least as accurate as each of the individual members.

(LIB) Larger is Better: accuracy of the group improves as its size grows.

(ASY) The accuracy of the group approaches 1 asymptotically.

Although the assumptions are quite strong and it may be debatable if such a
theorem really tells us something about reality, Condorcet’s work has had a huge

3See either Nitzan and Paroush (1982) or Grofman, Owen, and Scott L. Feld (1983) for a
modern formulation of Condorcet’s results.
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Introduction

impact on the literature about truth-tracking. In the formal literature it contributed
to the creation of a framework in which trying to answer questions concerning
expertise and group accuracy. Besides this, it also became one of cornerstone of
many contemporary philosophical political theories. For example, CJT directly
fuelled the idea of an epistemic justification of democracy.4

Competence Requires Effort Many researchers questioned the adequacy of the
three assumptions that Condorcet made.5 Here we want to focus on the assump-
tion about the competence of the agents. In particular, we question the idea that
the competence comes for free. In our model, competence is an endogenous vari-
able, obtained as the result of exerting effort. Indeed, it is demanding to find good
pieces of information and even if the agents were provided with reliable pieces
of evidence, the full understanding of them (and the translation into beliefs) still
costs them some effort. We experience such effort every day, for example, when
we try to make sense of the daily news, when we study or when we learn about
pros and cons of a new diet. It may be true that if individuals were able to gather
and learn information about the matter at stakes freely they would be also able to
select the right option with no doubt, but what happens if this is not the case? Is
still a crowd better than a bunch of experts? What if agents decide that learning
is not worth it? Or what if we witness the phenomenon of free-riding (Albanese
and Van Fleet, 1985)? Some members of the group may decide that the effort of
the others is already enough and that there is no reason for them to also ‘become
competent’. Such questions become even more pressing when direct democracy
is compared to other systems, which have among their advantages the possibility
of allowing citizens to spend less effort in a decision. Indeed, one of the many
strengths of representative systems is exactly this one: saving the majority of citi-
zens from acquiring competence about things (Blum and Zuber, 2016).

Buying a Fridge (in a Shared Flat). Consider a group of five flatmates that has
to decide what fridge to buy (as they broke their old one at a party). They decided
to choose between two models of two different brands, and to do so through a
majority vote. They may be aware of the fact that if they all put some effort in
studying the technical specifications of fridges and vote independently they will
be more likely to choose the most suited model, and still not do so. Instead, they
may publicly discuss what they want to do and it may happen that just one of
them, Adam, chooses to put effort in the decision and ‘expresses a vote’, whereas

4The epistemic justification consists of showing that the epistemic outcome of democracy is
better than the outcome of any other political system (Estlund, 2008). The CJT has always been
one of the most influential result backing up such an idea (Cohen, 1986; Goodin and Spiekermann,
2018).

5See the Section 1.3 for a good overview.
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the others ‘abstain’. They may not care much about fridges, or they may just be
super busy with other things. It is natural to model this scenario in terms of costs
and benefits. The participation of all the five flatmates in the decision would have
yielded a more accurate decision, but at the cost of a higher effort for each of
them. Why Adam, though? Adam could be extremely skilled at evaluating house
appliances. Or, he may have had a special interest in buying a good fridge, as he
always buys food for the next three weeks. We reckon that the degree of interest
that each flatmate has in the accuracy of the decision is indeed fundamental. And,
similarly, the level of competence that each of the flatmates can reach plays an
important role. Eventually, consider a situation in which the flatmates discuss the
choice between ‘learning and voting’ and ‘not learning and then not voting’ in
small groups. Adam and Bob may not be aware of the decisions of Charlie, Dun-
can and Elodie and viceversa. So, Elodie may decide she will learn information
about fridges and vote and Adam may do the same, although if Elodie had had
information about Adam’s choice she would have not done so. A final question
questions arises naturally: how does information about other agents shapes the
agent’s behaviour?

CJT May Not Work in Shared Flats if Information is Too Costly. In general,
although the Condorcet Jury Theorem would have predicted that a group con-
sisting of five members would have actually improved the quality of the decision
compared to a household composed by two members, this was not the case for the
fridge. Even if they were five they still reached the same accuracy that a single
person would have had. Indeed, not all the people contributed to the decision.
The aim of this thesis is exactly to investigate the behaviour of agents in situations
where the group has to take a decision and information is costly. Since we believe
that agents with different stakes in the matter may behave differently we also take
into account this possibility. Someone may care more than someone else. In a
similar fashion, we allow for heterogeneous competences among the agents, as
someone may be more skilled in finding the truth. Last but not least, we introduce
in our setting the possibility for agents to not be aware of all the other agents’
choices. Indeed, as we saw in the example, it can easily be that some decisions
are taken without knowing about other people’s actions.

1.2 Our Contributions

We explore the setting of the Condorcet Jury Theorem assuming that every agent
can acquire competence only by spending some effort. Such a competence cor-
responds to a probability of finding the right answer higher than the toss of a fair
coin. And, the effort stands for the combination of the cost of finding information

4
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with the cost of understanding information. To model this scenario we introduce
a game theoretical environment in which each agent can either decide to learn by
spending effort or not. Each agent spends the same effort to reach a certain accu-
racy and each agent is interested in finding the truth. Consistently, if the agents
learn information they also vote, whereas if they do not, they abstain.1 The votes
are aggregated through majority rule. Every agent makes her decision on the basis
of the behaviour of the other agents. We mainly aim at understanding what are the
pure Nash equilibria in such games and consequently, what is the accuracy that
we can expect every group to produce (Leyton-Brown and Shoham, 2008; Nash,
1950). Indeed, such concepts allow predicting the players’ choices, given that the
players are interdependent. In addition, we also study the social welfare of these
equilibria. We mainly study this game in four different settings.

1. Firstly, we consider the basic case in which all the agents may reach the
same competence by spending the same effort. All the agents have full
information about the behaviour of the other agents and they are also equally
interested in finding the truth. With this basic setting we prove quite strong
and fundamental results and, at the same time, we prepare the ground for
the following variations.

2. Secondly, we consider groups where agents have different stakes in the mat-
ter. This is the case, when, for example, two of the five flatmates of the
example above are more interested than the other three in finding a good
fridge. The other features remain as in the basic setting.

3. Thirdly, we study situations in which agents are able to reach different lev-
els of competences by spending the same effort. As we mentioned, Adam
may be extremely quick and efficient in learning about fridges (it takes him
the same effort to acquire way more confidence in the right decision, if
compared with the other flatmates).

4. Eventually, we consider the possibility for groups of not being completely
connected, i.e. we add an underlying network that describes which other
agents a specific agent can see. Consequently, not everybody may have full
information about everybody else. Indeed, Elodie may not be aware of the
decision of Adam.

1Indeed, the effort could contain the cost of the act of voting itself, as it is paid by
the agents if they decide to learn and vote. Indeed, there are often requirements that
must be fulfilled to vote. These may include having an ID, going to certain places, etc.
And, sometimes, voting even has an actual cost in terms of money. For example, this is
the case of the so-called open primaries in Italy (https://en.wikipedia.org/wiki/
2019_Democratic_Party_(Italy)_leadership_election#Nicola_Zingaretti).
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In the basic setting of the CJT with just the addition of the cost of voting, we
characterize both the pure Nash equilibria and the strong pure Nash equilibria. We
show that there exist many pure Nash equilibria, and that in general increasing
the size of the group beyond a certain threshold does not result in more agent
participating in the process, and thus the accuracy of the group does not increase.
We prove that this threshold depends on the effort. In addition, we describe the
equilibria in terms of social welfare, and we show that the larger the size of the
group the higher is the difference between the welfare of the equilibria and the
maximum welfare that can be reached by the group trough a profile. We show
that it is true that in an equilibrium the result (GBI) of CJT is respected, whereas
(LIB) and (ASY) do not hold anymore.

We do the same for groups where agents have different stakes in the matter.
We show how the maximal accuracy at an equilibrium can be computed and how
this is influenced by the different stakes. Again, we show how the social welfare
changes with respect to different stakes. Indeed, we prove that for the group
to reach its highest accuracy at an equilibrium the people with the highest stakes
should vote, and similarly, in order to reach the equilibrium with the highest social
welfare.

Then, we take into account groups where agents can reach different levels of
competences by spending the same amount of effort. Again, we characterize the
equilibria and we also discuss briefly the social welfare and some general features
of the model. We also discuss what could be the advantages of a delegative system
in such a framework.

Eventually, we introduce an underlying network connecting the agents to as-
sess what happens if each agent is just able to see the actions of a part of the other
members. We characterize equilibria on certain types of networks and then with
the help of computer simulations we investigate the general effects of a network
on the accuracy of the groups. We make use of the concept of Best-Response-
Dynamics. We show that the lower the number of the links the higher is the accu-
racy of the group. In addition, we show that also on networks, if there are agents
with different stakes, those with the highest ones are more likely to vote. Even-
tually, we look at the possibility of finding stability if we also allow coalitions to
move together (as in the case of Strong Nash Equilibrium).

Notably, we believe that our work lays the ground for a more detailed perspec-
tive on these types of games on networks, and consequently, for a full generaliza-
tion and characterization of equilibria.

6
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1.3 Related Literature

Our work has its roots in the vast body of literature that extends and refines the
results of the Condorcet Jury Theorem. Here, we present an overview of the most
fundamental works on the topic.1 Many of these works can be considered as
attempts of relaxing the strict assumptions of CJT and see what claims can still be
proven (Dietrich, 2008). After this, we focus more carefully on a series of works
with an approach closer to ours.

CJT in the Literature. A first group of researchers, following Condorcet’s con-
jectures, studied the effects of heterogeneous competences on Condorcet’s results.
Scott L Feld and Grofman (1984) discuss how the addition of new members im-
pacts the first two claims of CJT and Owen, Grofman, and Scott L. Feld (1989)
characterize the distribution of competences that maximizes (or minimizes) the
accuracy of a group majority. On the other hand, Paroush (1997) and Berend and
Paroush (1998) use their results to look at under which conditions the asymptotic
claim of CJT does not hold anymore. In a similar fashion, Kanazawa (1998) and
Fey (2003) generalize the impact of heterogeneous competences on that claim. In
addition, a similar line of investigation aims at figure out which is the best rule to
aggregate votes when competences are heterogeneous. Nitzan and Paroush (1982)
and Shapley and Grofman (1984) follow this approach, and they both show why a
weighted majority rule is to be preferred to a simple majority rule in such a case.

A second direction of research consists in discussing how correlation among
voters would impact CJT. Boland (1989), Ladha (1992) and Estlund (1994) study
how correlation can be related to opinion leaders, exchange of information or
communication. Likewise, Dietrich and List (2004) use bayesian nets to show
how misleading evidence can influence the entire group.

A third group of researchers, like Austen-Smith and Banks (1996), T. J. Fed-
dersen and Pesendorfer (1996) and McLennan (1998), aims at understanding how
strategic voting can undermine the results. It is usually assumed in such a frame-
work the possibility of people to prefer either one of the two options. Instead,
Ben-Yashar and Milchtaich (2007) take into account people with the same com-
mon interest but with different priors. Eventually List and Goodin (2001) gener-
alize the result with more than one option.

CJT and Costly Information. Besides these more general approaches there
exists a well affirmed branch in the economic literature that takes into account a
setting similar to ours. The basic idea is to look, through game theoretical notions,
at when voters in a group acquire information and how much information they

1See also (Nitzan and Paroush, 2017) for a good summary.
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acquire. We can divide this approach in two streams. Both these two directions
assume that the information gained depends on the amount of effort made, and
so agents can decide on the quantity of effort to make, i.e. competences are not
fixed. Such an assumption comes mainly from Radner and Stiglitz (1984)’s results
and similar works. Indeed, this is a first difference from our approach, as we
chose to fix the amount of effort spendable by each agent, in order to look at
other features of our system. The first stream is concerned with the design of
a small committee. Mukhopadhaya (2003) and Persico (2004) look at how to
choose the number of agents and how to select a voting rule in order to maximize
the social welfare and the accuracy of the group. Indeed, both these works are
explicitly directed at the problem of American juries. Similarly, Koriyama and
Szentes (2009) define the optimal threshold for the number of jurors and study
what happens if the committee surpasses that threshold. Eventually, Gershkov
and Szentes (2009) show that the best way to produce optimal results is to ask the
voters sequentially.

The second stream addresses the problem of information acquisition in large
elections. It moves from the so-called voting paradox (Aidt, 2000), i.e. the fact
that if voters were to behave rationally no information acquisition would happen
in big elections as the actual benefit voters could have would be too little to justify
an effort in terms of learning. Ghosal, Lockwood, et al. (2003) discuss the ef-
fect on voters of voluntary and compulsory participation. Martinelli (2006) shows
that if the marginal cost for the acquiring of information is near zero there is still
the possibility for rational voters to be well-informed. T. J. Feddersen (2004), T.
Feddersen, Sandroni, et al. (2006) and T. Feddersen and Sandroni (2006) justify
the actual behaviour of voters by introducing the notion of ethical voters, i.e. a
category of voters that act for the ‘good of the community’. They acquire informa-
tion and vote ‘consciously’ in order to compensate the possible votes of ignorant
agents but without having any information about them. Eventually, Tyson (2016)
looks at how different policies can affect the motivation of the voters of voting.
On a the same topic, there is also quite a good number of works from a more
experimental perspective. We limit ourselves to mention some of the most well-
known: Blais and Young (1999), Grosser and Seebauer (2016), and Levine and
Palfrey (2007).

Fixed Effort and Networks. Our work differs from these mainly for two rea-
sons. Firstly, we do not look at different amounts of effort, the cost that our agents
can pay is not gradual: they either make an effort e or they do not. However, we
allow for different levels of competences and for different stakes in the matter.
On the other hand, we take into account networks and graphs, which is indeed
something that the previous literature has not done. Nonetheless, in our basic set-
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ting (Chapter 2) the general takeaways are mostly in line with the results from
this Literature. For these reasons our approach is more similar to Bloembergen,
Grossi, and Lackner (2019)’s one. Such work, indeed, makes exactly the same
use we did of the notion of effort and studies a similar voting game on networks.
Although the focus is on the concept of opinion representation, i.e. the need of
voters of seeing their opinion expressed by someone, the structure is very similar:
voters either vote or delegate depending on how the agents around them behave.
Akin to our work, they also study through a computer simulation the process of
the iterated best response dynamics. Indeed, taking into account the possibility
of our agents of being placed on a networks moves our work closer to a more
computational perspective on voting theory.

Voting Theory and Networks. In the latest years, the field of Computational
Social Choice (Brandt et al., 2016) has become more and more interested in the
effects of networks in social choice mechanisms, mainly because of the many em-
pirical results about the impact of social networks (Abrams, Iversen, and Soskice,
2011; Kearns et al., 2009; Sokhey and McClurg, 2012; Yildiz et al., 2010). A
good overview of the main directions is provided by Grandi (2017). A first line
of research is, indeed, quite close to ours: it looks at how voters are influenced
by each other when provided with a noisy signal and asked to vote. Conitzer
(2013), A. D. Procaccia, Shah, and Sodomka (2015), Tsang, Doucette, and Hos-
seini (2015), Tsang (2018) and Doucette et al. (2019) all address this problem.
Nonetheless, they all differ from our work as they do not look at game-theoretical
interactions and at the possibility of not voting. A second line of research is that
of iterative voting (Tsang and Larson, 2016) and another one that of coalitional
games (Elkind, 2014). Eventually, lots of work has being done in delegative sys-
tems, where the underlying network is necessary to understand how the delegation
process works. Caragiannis and Micha (2019) and A. D. Procaccia, Shah, and
Sodomka (2015) look at the impacts of network and delegation in the system of
liquid democracy, i.e. a voting system in which each agent can delegate to any
other agent. They prove that liquid democracy may have a negative impact on the
accuracy of the group. In this sense, our brief section about delegation in Chapter
3 can also be considered a good answer to their perspectives, as it briefly shows
that if we take into account the effort of voting, i.e. the effort of learning, delega-
tion may help increase the social welfare of a group in a situation of equilibrium.
Escoffier, Gilbert, and Pass-Lanneau (2019) and Christoff and Grossi (2017) also
take into account the results on a network for liquid democracy.
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Introduction

1.4 Overview of the Thesis

We will now give a quick outline of the thesis chapters.

Chapter 2 introduces the reader to needed notions in our voting scenario and
defines important game theoretic notions. First of all, it states formally the Con-
dorcet Jury Theorem. Then, it describes the use of the effort, the utility of the
agents, their actions and the way in which social welfare and group accuracy are
computed. We formally characterize pure Nash equilibria and discuss the social
welfare. All the notions and the results we obtain here will then be used again in
the following chapters.

Chapter 3, 4 and 5 look at the three variations to our basic setting. In Chapter 3,
we introduce different stakes for each agent. In Chapter 4, we consider agents that
can reach different levels of competence, still by making the same effort. Lastly,
in Chapter 5, we formalize the introduction of a network. We then describe some
of the networks we work with and characterize pure Nash equilibria on them. In
the second part of Chapter 5, we describe our computer simulation and we show
some of the results that can be obtained through that. Remarkably, in all these
three chapters we build from the results of Chapter 2.

In the Conclusions we summarize our findings and we propose new directions
to follow.

10



2 Group Accuracy when Competence
is Costly

This chapter presents a basic scenario for group decisions when there is a right an-
swer, the agents may acquire competence in order to vote, i.e. a certain probability
of getting the right answer, and this competence is costly. We model this scenario
as a game where players’ payoffs depend on how good the group is at identifying
the right answer. In Section 2.1 we first present the Condorcet Jury Theorem for-
mally, then we extend that model to include the cost of acquiring competence and
explain how such a model can be considered a game. In Section 2.2, we prove
some results about pure Nash equilibria in this game. In Section 2.3, the concept
of social welfare is taken into account. Eventually, in Section 2.4 we discuss the
results and the model itself.

2.1 Preliminaries

In this section, we model the Condorcet Jury Theorem and expand that framework
to include the new notions we want to focus on, i.e. those related to the cost of
competence.

2.1.1 The Condorcet Jury Theorem

The Condorcet Jury Theorem is the starting point of our work (Grofman, Owen,
and Scott L. Feld, 1983; Nitzan and Paroush, 2017). In the introduction, we briefly
mentioned the general ideas of the theorem, here we state it explicitly.

Consider a set of alternatives Z = {z1, z2} where one z∗ ∈ Z is the true
alternative and a set of a voters N = {1, ..., n}where n is odd. Each voter submits
a vote vi ∈ Z and the votes, gathered in v = (v1, ..., vn) are aggregated through

11
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the majority rule maj(v):

maj(v) = z s.t. z ∈ Z and |{i ∈ N |vi = z}| ≥ |N |+ 1

2
. (2.1)

There is a probability P (vi = z∗) = pi that i gets it right, which is called i’s
competence. We model this with a random variable Xi such that:

Xi =

{
R if agent i gets it right, i.e. vi = z∗

W otherwise.
(2.2)

Now, we shall make the following assumptions.

(COM) Competence: pi > 1
2
.

(HOM) Homogeneity: pi = pj = p.

(IND) Independence: P (Xi = u,Xj = v) = P (Xi = u)P (Xj = v) for any two
agents i, j ∈ N and u, v ∈ {R,W}.

We call M(x, p) the function that given a competence level p for all the voters
and a number of voters x returns the probability of the group of getting the true
alternative w∗. Given our assumptions, M(x, p) is so defined:

M(x, p) =

n∑
i≥x+1

2

(
n

i

)
· pi · (1− p)n−i. (2.3)

Thus, the CJT consists in proving that (Grofman, Owen, and Scott L. Feld,
1983):

(GBI) Groups are Better than Individuals. If n > 1,M(n, p) > p.

(LIB) Larger is Better. If m > n, M(m, p) > M(n, p).

(ASY) Asymptotical Behaviour. If n→∞ then M(n, p)→ 1.

Notably, these are the results that we explained in natural language in the
introduction. Indeed, the first result asserts that any group is always better than
any single individual. The second one states that the larger the group the higher the
accuracy. Eventually, the third one says that if the group size becomes infinitely
large the overall accuracy of the group tends to 1.

12
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2.1.2 The Cost of Competence - Extension of the Model

We extend the scenario described earlier so to include the cost, in terms of effort,
that each agent pays in order to be competent, i.e. the cost of learning. No-
tably, we drop the notation that we do not consider necessary to not distract the
reader. We consider a decision structure D = 〈N, p, e〉 where a group of agents
N = {1, ..., n} with n ≥ 2 is faced with a binary decision. The decision is
taken through a vote. Since there exists a right answer (between the two possi-
ble options), every member of the group gets a reward if the group manages to
identify that answer. This time, each agent i ∈ N can either vote or abstain, i.e.
Ai = {0, 1} is the set of actions available to agent i (where ai = 0 means that
agent i decides to abstain and ai = 1 means that agent i decides to vote). When an
agent votes, she votes for the right option with a probability p ∈ (1

2
, 1). We call p

the competence level. However, voting with such a competence is costly. Indeed,
if an agent chooses the action 1, i.e. she votes, she pays a cost of e ∈ (0, 1

2
). This

effort represents the cost needed to learn information about the matter at stakes
(and vote with an accuracy higher than 1

2
). The final decision is made by majority

rule over the agents that vote. If there is a tie the choice is made by tossing a fair
coin. If nobody votes we also toss a fair coin.

Let {0, 1}n be the set of all possible action profiles. We consider only pure
strategies. In particular, let a be a profile and denote with |a| the number of
people voting in a certain profile, i.e. |a| = #{i ∈ N |ai = 1}.1 This notation
also allows us to speak, more or less precisely, about the size of a profile, or if
that profile is an equilibrium, of the size of an equilibrium. Notably, we talk about
‘voters’ to refer to the agents that decided to vote in a certain profile a. Instead,
we talk about ‘agents’ when we include all the group members.

Note that if |a| = |a′| for two profiles a and a′ then the two profiles are equiv-
alent, in the sense that they actually produce the same outcome under every aspect,
as the voters do not differ in anything. So, from now on we will characterize a
set of profiles just by talking about their number of voters, i.e. if a profile a with
|a| = j has a property q then each profile a′ with |a′| = j has that property q. In
addition, we denote with a′ = (a∗i ,a−i) the profile that is exactly like a, except
that agent i takes action a′i instead of action ai.

Again, we assume that every voter casts her vote independently from the oth-
ers, i.e. her probability of choosing an answer is independent from the probability
of any other agent’s choice. For integers x and k with x ≤ k, we denote by
m(p, x, k) the probability that exactly k of x agents are correct, when all x agents

1The inspiration for this notation comes from the cardinality of a set. But the same method is
also used to refer to the size of a bit-vector, e.g., |1011| = 3, with action profiles being kind of like
bit-vectors.
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vote and get the right answer with probability p. If agents vote independently, as
we assume here, we have that:

m(p, x, k) =

(
x

k

)
pk(1− p)x−k. (2.4)

We then define M(x, p), i.e. the overall probability of x voters with accuracy p to
select the option through majority rule:

M(x, p) =


∑x

k=x+1
2

m(p, x, k) + 1
2
m(p, x, x

2
) if x ≥ 0 and is even,∑x

k=x+1
2

m(p, x, k) if x ≥ 0 and is odd,

0 if x < 0.

(2.5)

Indeed, the overall accuracy consists of the sum of the probability of every
combination of votes where the right option wins. And, in the case of an even
number of votes, if there is a tie, the corresponding probability is multiplied by 1/2
to represent the tossing of the fair coin. The last condition is for purely technical
reasons, and will become apparent in Theorem 2.1. The utility for each agent is
defined as follows:2

ui(a) = M(|a|, p)− aie. (2.6)

Indeed, every agent gets an utility that consists of the accuracy of the group
M(|a|, p) minus the effort required to perform the taken action. Note that if the
agent votes her effort will be equal to e, whereas if she abstains the effort will be
equal to 0.

2.2 Basic Results and Pure Nash Equilibria

In this section we first have a look at some key features of our model. Then, we
introduce the concept of equilibrium and we characterize the Nash equilibria in
our model. We restrict ourselves to the concept of pure equilibrium.

2Note that this is not an actual utility but more an expected utility, as the actual utility would
have been:

ui(a) =

{
1− aie if the group makes the right choice
−aie if the group makes the wrong choice.
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2.2.1 Basic Results

The next proposition is just a direct consequence of how M(x, p) is structured
and is useful to get a feeling of the mathematical machinery behind our model.
We omit the proofs for point 2 and 3 of the proposition as they can be found in
other works regarding the Condorcet Jury Theorem, for example that carried out
by grofman1983thirteen.

Proposition 2.1. Let x, y be two odd integers s.t. x > y > 0. Then,

1. M(x, p) = M(x + 1, p),

2. M(x, p) > M(y, p) > M(0, p) and

3. M(1, p)−M(0, p) > M(y + 2, p)−M(y, p) > M(x + 2, p)−M(x, p).

Proof. As we mentioned, we only prove Statement 1. The other statements can
be found in (Grofman, Owen, and Scott L. Feld, 1983).

We introduce some notation. Let x = 2m − 1 and x + 1 = 2m for some
m ∈ N+. Call P (z, l = y) the probability of having an l number of votes in
favour of the right answer equal to y out of z. And let P (z, l ≥ y) the probability
of the event of getting a number l of votes in favour of the right answer out of
z higher or equal than y, i.e. P (z, l ≥ y) =

∑z
i=y P (z, l = y). Consequently,

P (z, l = k) = m(p, z, k) =
(
z
k

)
pk(1− p)z−k. And P (z, l ≥ z+1

2
) = M(z, p) if z

is odd.
Now, we shall consider our specific case. Fix the probability p. In particular,

we have that M(2m) can be computed from the probability M(2m − 1) in the
following way.

M(2m) = p · P (2m− 1, l ≥ m) + (1− p) · P (2m− 1, l > m)+

+
1

2
p · P (2m− 1, l = m− 1) +

1

2
(1− p) · P (2m− 1, l = m)

Now, we have that p·P (2m−1, l ≥ m) = p·P (2m−1, l > m)+p·P (2m−1, l =
m). In addition, p·P (2m−1, l > m)+(1−p)·P (2m−1, l > m) = P (2m−1, l >
m). Now, consider the following equality:

1

2
pP (2m− 1, l = m− 1) +

1

2
(1− p)P (2m− 1, l = m) =

=
1

2
[p

(
2m− 1

m− 1

)
p(m−1)(1− p)m] +

1

2
[(1− p)

(
2m− 1

m

)
pm(1− p)(m−1)] =

=
1

2

(
2m− 1

m

)
[2pm(1− p)m] =

= (1− p)P (2m− 1, l = m).
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Indeed,
(
2m−1
m−1

)
=
(
2m−1
m

)
. Thus, we can plug in our results in the initial equality.

M(2m) = p · P (2m− 1, l = m) + P (2m− 1, l > m) + (1− p)P (2m− 1, l = m) =

= P (2m− 1, l = m) + P (2m− 1, l > m) =

= P (2m− 1, l ≥ m)

Indeed, P (2m− 1, l ≥ m) = M(2m− 1). Thus, M(2m) = M(2m− 1).

Intuitively, the group accuracy increases monotonically as the size of the group
grows with a non zero jump when the size goes from x to x + 2, and the increase
from x to x + 2 also decreases monotonically. Indeed, the increase is the largest
possible when going from 0 voters to 1 voter, and then it decreases (Statement
2). Notably, M(0, p) = 0 and M(1, p) = p. In addition, the accuracy of an even
group of voters is the same as the accuracy of a group with size smaller than one.
This is a key of many of the next results.

Such a first result allows us to form an idea of how the accuracy of groups
changes.

Example 2.1. Consider a group N = {1, 2, 3, ..., 50}. Depending on the level
of competence (or just ‘competence’) p of the voters the function M(x, p) with
0 ≤ x ≤ n assumes different values. Although M(x, p) increases with the number
of voters (or stays the same if we are going from an odd to an even), it does so
with different slopes depending on the accuracy of the members. See Figure 5.11
for an illustration.

Figure 2.1: The accuracy of a group N = {1, 2, 3, ..., 50} for four different levels
of competences: p ∈ {0.6, 0.7, 0.8, 0.9}.
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This is exactly what the Condorcet Jury Theorem tells us: if p > 1
2

(as in all our
cases) the more people in the group the more accurate the group itself. However,
what happens in terms of behaviour if competence is costly and agents have the
option to abstain from voting? If learning information about a certain matter is
costly, then it may also be that not all the members of a group have an incentive
to vote. And consequently, we may ask: is it still true that adding more people to
a group will benefit the final decision? In order to answer this question, we start
by looking at the concept of pure Nash equilibrium in our setting (Leyton-Brown
and Shoham, 2008; Nash, 1950).

2.2.2 Pure Nash Equilibria

The concept of Nash equilibrium has been proposed in order to find the solution of
a non-cooperative game (Nash, 1950). It describes a situation in which no agent
would play differently. For many reason, it is often regarded as a good prediction
of how the players will behave. Here, we use this notion to analyze our game.
Being able to find the Nash equilibrium gives us insights about the most likely
outcomes of the game.

First of all, we characterize generally the pure Nash equilibria of the game
underlying a precise decision structure. Then, we look at how the equilibria can
change with respect to the effort. Indeed, this is the main focus of our work. Even-
tually, we look for the pure Nash equilibrium with the highest accuracy. Such a
solution represents the highest accuracy that can be reached by a certain decision
structure. And, it allows us to draw a comparison with the results about the overall
accuracy of the canonical situation of CJT, where there is no effort.

We start by defining formally a pure Nash equilibrium.

Definition 2.1. Let a be a profile. We say that the profile a is a Pure Nash Equi-
librium (PNE) if no player i wants to unilaterally deviate from her assigned action
ai: ui(a) ≥ ui(a

′
i,a−i) for any a′i.

We can now prove the following result.

Theorem 2.1. Let D = 〈N, e, p〉 be a decision structure and a ∈ {0, 1}n be an
action profile with |a| = k. The profile a is a PNE iff M(k + 1, p)−M(k, p) ≤
e ≤M(k, p)−M(k − 1, p).

Proof. A profile a is a PNE iff for no agent i ui(a) ≥ ui(a
′
i,a−i) by Definition

2.1. We proceed by first assuming that i is s.t. ai = 1 and then assuming i s.t.
ai = 0. We show that i does not deivate in neither of the cases iff M(k + 1, p)−
M(k, p) ≤ e ≤M(k, p)−M(k − 1, p).

17



Group Accuracy when Competence is Costly

Assume i s.t. ai = 1. Thus, ui(0,a−i) = M(|a| − 1, p) and ui(a) =
M(|a|, p)− e. Thus, agent i does not deviate iff M(|a|, p)− e ≥ M(|a| − 1, p),
i.e. iff M(|a|, p)−M(|a| − 1, p) ≥ e.

Now, assume i s.t. ai = 0. Thus, ui(1,a−i) = M(|a|+ 1, p)− e and ui(a) =
M(|a|, p). Thus, agent i does not deviate iff M(|a|, p) ≥ M(|a| + 1, p) − e, i.e.
iff M(|a|+ 1, p)−M(|a|, p) ≤ e.

Consequently, no agent i would deviate iff Mp(|a| + 1) − Mp(|a|) ≤ e ≤
Mp(|a|)−Mp(|a|−1). And this corresponds to saying that a is a PNE iff Mp(|a|+
1)−Mp(|a|) ≤ e ≤Mp(|a|)−Mp(|a| − 1).

This is already a full characterization of PNEs on our game. Notably, this
theorem makes use of the fact that M(x, p) = 0 if x < 0. Indeed, we needed such
an assumption to be able to generalize the reasoning to all the profiles. Of course,
it is completely harmless. It comes into play when we analyze the profile a of size
0, as in that case, we have to compute M(−1). By equating M(−1) to 0 we are
sure that M(0) −M(−1) ≥ 0. Indeed, no agent could deviate to go to a profile
where |a′| = −1, and so such a profile should not be considered.

In order to better understand such result (and why our assumption was harm-
less) we shall have a look at the following corollary. This helps us to complete
our first task of this section: understanding how PNEs change with respect to the
effort.

Corollary 2.1. Let D = 〈N, e, p〉 be a decision structure.

1. If e > p− 1
2

a profile a is a PNE iff |a| = 0.

2. If e = p− 1
2

a profile a is a PNE iff either |a| = 0 or |a| = 1.

3. If e < p − 1
2

a profile a is a PNE iff |a| is odd and M(|a|, p) ≥ M(|a| −
1, p) + e.

Proof. This is just a result of Theorem 2.1. The first and the second case are
quite straightforward. In the first case, we see that M(1, p) − M(0, p) ≤ e ≤
M(0, p) −M(−1, p). Notably, we make use of our assumption here, in the way
we just mentioned above. In the second case, we have the same for 0 and 1. The
third case is the less trivial. If |a| is odd, we have that a is a PNE iff M(k+1, p)−
M(k, p) ≤ e is true by Proposition 2.1. The rest follows.

This result is extremely interesting. Indeed, it provides us with a full under-
standing of the mechanism of equilibria. First of all, it proves that any decision
structure D = 〈N, e, p〉 produces a game with at least one PNE. Indeed, for any
value of e there exists a configuration that is stable. Secondly, it shows that if
e ≤ p − 1

2
there is more than one size for which a profile can be a PNE. For this
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reason, as we mentioned in the beginning, we may be interested in understanding
which of all these equilibria is the one with the highest overall accuracy. From
now on, we say that a profile a is an mPNE (a maximal Pure Nash Equilibrium) if
and only if for all a′ such that a′ is a PNE then M(|a|, p) ≥M(|a′|, p). Note that
in the present setting, there can be many profiles that are mPNEs, however all of
them must have the same amount of voters. We can elaborate on this a bit further
by making use of the following definitions.

Definition 2.2. Given p and e, let nthr = max{m ∈ N|M(m, p)−M(m−1, p) ≥
e and m is odd}. Given a decision structure D = 〈N, e, p〉, let neq = max{m ∈
N |M(m, p)−M(m− 1, p) ≥ e and m is odd}.

Indeed, nthr corresponds to the highest number of people voting in an equi-
librium if we assume that n → ∞. Instead, neq is the actual highest number of
people voting in an equilibrium given that n has a finite value. Clearly, we have
that neq ≤ nthr. However, every time n ≥ nthr, neq = nthr. The following obser-
vation is just a result of Proposition 2.1 and of the fact that M(neq, p) ≥M(|a|, p)
for any PNE a. These two elements allow us to characterize further the size of an
equilibrium.

Observation 2.1. Let D = 〈N, e, p〉 be a decision structure. If a is a PNE then
M(|a|, p) ≤M(neq, p).

Consequently, a profile a is an mPNE if and only if |a| = neq. Indeed, by
Proposition 2.1, the larger the size the higher the accuracy of a group of voters.
With this result, we could conclude this section. Indeed, we managed to charac-
terize the equilibria, to study how the effort e influences them and to find the one
with the highest accuracy, i.e. the one with more voters. However, before going on
we shall have a quick look at the concept of marginal utility. Although such a no-
tion is not explicitly used in our results, it may give the reader some more insights
about the agents’ behaviour. Indeed, it is also quite present in the economic lit-
erature about CJT and costly information (T. J. Feddersen and Pesendorfer, 1996;
Martinelli, 2006; Persico, 2004). The marginal utility for agent i of action ai wrt
a′i in a profile a is:

∆ui(a) = ui(a)− ui(a
′
i,a−i) (2.7)

where a′i 6= ai.
The marginal utility is what guides agents’ choices. If the marginal utility is

positive the agents will remain on the action they chose. In our case, the marginal
utility for a voter (with ai = 1 and a′i = 0) is the following:

∆ui(a) = M(|a|, p)−M(|a| − 1, p)− e. (2.8)

19



Group Accuracy when Competence is Costly

Theorem 2.1 relies on the concept of marginal utility. When does a voter want
to change her action? When M(p, |a|)−M(|a| − 1, p) is lower than e. The value
M(p, |a|) − M(|a| − 1, p) represents the contribution of a single agent to the
accuracy of the group.1 Such a value decreases as |a| grows, as shown in Figure
2.2.

Figure 2.2: The contribution of a single agent in the group of voters decreases
with the number of voters.

The individual contribution is 0 when the total number of people voting is even.
Indeed, there is no point for one agent to vote if the size of the group is even
(see, again Proposition 2.1). Yet, there is a positive contribution in all the other
cases. Both formally and theoretically speaking, this contribution corresponds to
what is usually referred to as pivotality of a voter in the literature (T. J. Feddersen
and Pesendorfer, 1996; Martinelli, 2006; Persico, 2004). However, when the
number of people gets quite high, this positive contribution gets very small. So,
let e = 0.025: the gain from voting is not significant enough if there are already
more than 8 other people voting. Consequently, all the groups with more than 7
people cannot be equilibria. The basic idea is that given a certain group of agents
with n and p the higher is e, the lower nthr becomes. We shall look at Figure 2.3
to get even a better grasp. Notably, the features of the equilibria depend only in
minimal part on the number of agents in the group. The threshold nthr depends
only on e and p. So, two groups with different numbers of people n′ and n (with
same p and e) will have the same equilibria if n′ and n are both greater or equal to

1We make extensive use of a similar notion later (namely in Chapter 3). However, for now we
leave this name just mentioned.
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Figure 2.3: The possible sizes of equilibria that a group (formed by agents with
level of competence p = 0.7) can reach depend on the effort. All the lines corre-
spond to the equilibria of the depicted size.

nthr. This is a major difference from the CJT. Increasing n in a decision structure
not always guarantees an increase in the overall accuracy. A clear consequence is
that if two groups have different levels of competence their overall accuracy can
be different at their mPNEs. We shall have a look at Figure 2.4. Competence is
highly relevant. And having lots of people with low competence does not always
produce the same accuracy as few people with high competence, which seems to
undermine another CJT result.2 Large numbers do not compensate for the little
competence of the individuals. However, notably, it is true that in case of lower
competences the increase in terms of accuracy from the worst equilibrium to the
best one is higher.

2.2.3 Strong Pure Nash Equilibria

As the agents are all members of the same group it seems quite interesting to also
look at the equilibria when coalitions are involved. Indeed, since every agent is
aware of other agents’ actions, they may decide to change their actions together.
These kind of equilibria are usually called strong equilibria (Aumann, 2016; Bern-
heim, Peleg, and Whinston, 1987). In this section, we characterize pure strong
equilibria, and in a similar fashion as before, we look at how the effort influences
such solutions. In particular, we also prove that there are cases in which an SPNE

2Look at the final section of this chapter for a full discussion of this hint.
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Figure 2.4: The red bars represent accuracy for the groups at the their mPNE,
the green bars the accuracy at the equilibria with the lowest accuracy. The four
different groups present the same number of voters, the same effort but different
levels of competence p ∈ {0.6, 0.7, 0.8, 0.9}.

does not exist. This is highly relevant, as it shows that if agents form coalitions
and take decisions together they may not be able to reach the stability.

We introduce some new definitions. We call a subset K = {k1, . . . , km} of
N = {1, ..., n} a coalition with size m ≤ n, and for each coalition we abbreviate
the sequence (ak1 , . . . , akm) of actions to aK and Ak1 × · · · × Akm to AK . Thus,
we denote with a′ = (aK ,aN\K) the profile that is exactly like a except that each
agent i ∈ K takes the action she is assigned in aK .

Definition 2.3. We call a profile a a Strong Pure Nash Equilibrium (SPNE) iff for
each coalition K ⊆ N there does not exist a′K ∈ AK such that ui(a

′
K ,aN\K) >

ui(a) for all i ∈ K.

In particular, we say that a coalition K ‘wants to deviate’ or ‘deviates’ from
a profile a iff ui(a

′
K ,aN\K) > ui(a) for all i ∈ K. From now on, we take into

account only cases s.t. a′K is completely different from aK , i.e. for all i ∈ K,
ai 6= a′i. Indeed, if there exists a coalition K that wants to deviate with a new
profile a′K that is partly similar to aK we can just look at the subset of K that has
a completely different one. Notably, as a coalition can be composed also by just
one agent, if a profile a is an SPNE, it is also a PNE. The idea is that a coalition
may move together to benefit all the agents. However, in order to find our Strong
Equilibria, we do not really need to check that all the possible coalitions do not
deviate.
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Lemma 2.1. Let D = 〈N, e, p〉 be a decision structure and let a be an action
profile. Let K ⊆ N be a coalition s.t. there exists i, j ∈ K with ai 6= aj . If K
wants to deviate from a, then there exists a coalition K ′ ⊆ N s.t. for all i, j ∈ K ′

ai = aj that wants to deviate as well.

Proof. Call |a| − |(a′K ,aN\K)| = l. If l = 0 then ui(a) = ui(a
′
K , aN\K) and so

K would not deviate. If l > 0 there must be in K at least l elements that chose
action 1 in a and action 0 in a′K . Build K ′ ⊆ {i ∈ K|ai = 1} s.t. |K ′| = l. Thus,
|a′K ,aN\K | = |a′K′ ,aN\K′ |. Consequently, ui(a

′
K ,aN\K) = ui(a

′
K′ ,aN\K′).

Thus, if K wants to deviate also K ′ wants to. If l < 0 let there must be in K at
least l elements that chose action 0 in a and action 1 in a′K . Build K ′ ⊆ {i ∈
K|ai = 0} s.t. |K ′| = l. Thus, |a′K ,aN\K | = |a′K′ ,aN\K′ |. Consequently,
ui(a

′
K ,aN\K) = ui(a

′
K′ ,aN\K′). Thus, if K wants to deviate also K ′ wants

to.

Lemma 2.2. Let D = 〈N, e, p〉 be a decision structure and let a be an action
profile. Consider K ⊆ {i ∈ N |ai = 1}. If K wants to deviate from a, then a
coalition K ′ ⊆ K with |K ′| = 1 wants to deviate too.

Proof. Consider i ∈ K. Thus, ui(a) = M(|a|, p) − e and ui(a
′
K ,aN\K) =

M(|a| − |K|, p). By Proposition 2.1, M(|a| − |K|, p) ≤M(|a| − 1, p). Thus, if
K deviates, M(|a|− |K|, p) > M(|a|, p)− e, which implies that for the coalition
K ′ = {i} with i ∈ K, we also have M(|a| − |K ′|, p) > M(|a|, p)− e.

Now, with the help of these two lemmas we prove our main result about SPNE.

Theorem 2.2. Let D = 〈N, e, p〉 be a decision structure and a ∈ {0, 1}n be an
action profile with |a| = k. The profile a is an SPNE iff M(n, p) −M(k, p) ≤
e ≤M(k, p)−M(k − 1, p).

Proof. Consider a profile a. Such a profile is an SPNE iff no coalition wants to
deviate. Let K be a coalition s.t. K ⊆ {i ∈ N |ai = 0} and a′K = (1, 1, ..., 1).
Consequently, ui(a

′
K ,aN\K) = M(|a| + |K|, p) − e ≤ M(n, p) − e. Thus, K

would not deviate iff M(n, p) − M(|a|, p) ≤ e. Now, let K be a coalition s.t.
K ⊆ {i ∈ N |ai = 1} and a′K = (0, 0, ..., 0). By Lemma 2.2, we have that it
does not deviate if a subset of size 1 does not. Thus, K would not deviate iff
M(|a|, p) −M(|a| − 1, p) ≥ e. By Lemma 2.1, if these two types of coalitions
do not deviate no coalition does so. Thus, a is SPNE iff M(n, p) −M(k, p) ≤
e ≤M(k, p)−M(k − 1, p).

The idea is that we need to be sure that just two types of coalitions do not
deviate: the biggest coalition possible of agents switching from 0 to 1 and the
one-agent coalition switching from 1 to 0. If those two do not deviate then no
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other else deviates. This is a result of the composition of Lemma 2.1 with Lemma
2.2 and another observation contained in the proof for Theorem 2.2. Lemma 2.1
tells us that no ‘mixed’ coalitions should be take into account, as if one of that
type deviates than also a ‘non-mixed’ one would do the same. So, we are left
with coalitions of non-voters and coalitions of voters. Lemma 2.1 states that if
a coalition of m voters deviates from a then also a coalition of 1 voter deviates.
And, similarly, we proved in the proof for Theorem 2.2 that if a coalition of m
non-voters deviates from a also the coalition of non-voters of size n − |a| devi-
ates. Thus, no coalition wants to deviate if the biggest coalition possible of agents
switching from 0 to 1 and the one-agent coalition switching from 1 to 0 do not
want to deviate. Notably, to block the deviation of the second type of coalition we
mentioned is enough to impose the condition we also used for PNEs. Indeed, the
characterization of an SPNE profile can be easily connected to that of mPNE.

Corollary 2.2. Let D = 〈N, e, p〉 be a decision structure. If a profile a is an
SPNE then it is also an mPNE.

Proof. Assume a is an SPNE s.t. |a| = y. Then assume that a′ with |a′| = x
is a PNE. Now, assume that a′ is an mPNE. Thus, M(x) ≥ M(y). In particular,
M(x) ≥M(x− 1) + e by Theorem 2.1. If y 6= x then M(x) > M(y) + e which
is contradiction with M(y) ≥M(n)− e. Thus, x = y.

The idea is that if there was an equilibria with size n+ and with higher accuracy
than the SPNE (with size n−), the coalition of non-voters in SPNE that would
have been required to reach n+ would have switched to 1, as we would have had
M(n+)−M(n−) ≥ e and n− would have not been an SPNE.

However, it is not always true that a profile a that is an mPNE, it is also an
SPNE. Indeed, it may happen that a certain decision structure does not have an
SPNE. The existence of an SPNE depends again on e, p and n. As we saw, to
have an SPNE there must exists x such that x ≤ n and M(n, p)−M(x, p) ≤ e ≤
M(x, p)−M(x−1, p). Notably, in the case for x = 0 the necessary and sufficient
condition becomes that e ≥M(n, p)− 1

2
.

We shall look at the following examples.

Example 2.2. Let e = 0.01, p = 0.6 and n = 100. Notably, there exists no SPNE.
Indeed, an mPNE a is s.t. |a| = 23 and M(23, 0.6) = 0.84. However, if every
non-voter decides to vote the accuracy is M(n, 0.6) = M(100, 0.6) = 0.98. Since
it does not hold that M(100, 0.6) −M(23, 0.6) ≤ 0.01 we have that there exists
no SPNE.

Example 2.3. Let e = 0.01, p = 0.9 and n = 100. Thus, every profile where a 5
people vote is an SPNE. Indeed, those profiles produce a group accuracy of 0.992
and M(100, 0.9) = 1.
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It is worth noting that if M(n, p) → 1, but the function M(x, p) increases
slowly, the decision structure is less likely to have an SPNE. Indeed, the value for
M(x, p) −M(x − 1, p) is quite low for each x and at the same time M(n, p) −
M(x, p) can be quite high.

The idea is that the lower the individual competence of each agent the higher
the impact of allowing for coalitions. Indeed, if each agent has already a compe-
tence of 0.9, even if she cooperates with others the potential increase in the actual
overall accuracy is not extremely higher than if she just votes alone. Instead, if an
agent has a competence of 0.6 moving in coalitions makes a huge difference for
her. If nobody is voting and she votes, the increase in overall accuracy is 0.1. If a
group of fifty people switches together from action 0 to action 1, the increase will
be around three times (or more). For this reason, the lower the competences of the
agents the less likely is for a decision structure to have a strong equilibrium.

2.3 Social Welfare with Pure Nash Equilibria

So far we just looked at the individual utilities of our agents. However, it is also
extremely interesting to take into account the collective perspective. An equilib-
rium is a situation which is considered ideal by every single agent (in the sense
that nobody has a better move). Is it also ideal at a collective level? The concept
of social welfare helps us to capture the idea of optimality for the collective per-
spective (Leyton-Brown and Shoham, 2008). Although this is not the only notion
that can be used to represent collective satisfaction, it is definitely among the most
common ones. If a certain profile maximizes the social welfare it represents the
best situation for the group. However, a pure Nash equilibrium may also not maxi-
mize the social welfare, and may even be quite distant from the maximal value for
it. In this section, we investigate our game from the perspective of the social wel-
fare. In particular, we first define the social welfare and characterize the profiles
that produce the maximal social welfare. Then, we describe in which decision
structure an equilibrium maximizes the social welfare. Eventually, we introduce
the concept of price of anarchy. This is a measure of how much the individual
behaviour damages the group (in terms of social welfare). Such a concept allows
us to draw a final perspective on the game.

The social welfare of the group with respect to a profile a is defined as:

sw(a) =
n∑

i=0

ui(a) = n ·M(|a|, p)− |a| · e. (2.9)

If we put aside n and e, sw(a) depends only on the number of the people voting.
For this reason, overloading notation sw we also talk about sw(x) for a number
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x ∈ N such that:

sw(x) =

{
n ·M(x, p)− x · e if 0 ≤ x ≤ n

0 otherwise.
(2.10)

Notably, the value for x < 0 is going to be used for technical reasons, in a
similar fashion of what we saw for M(x, p) in the previous section. Through the
definition of social welfare we are able to judge how ‘good’ are certain profiles.
We start by looking at how the function for social welfare behaves.

Proposition 2.2. Let D = 〈N, e, p〉 be a decision structure. Let 0 ≤ x < y ≤ n
such that x, y ∈ N:

1. sw(x + 1) < sw(x) if x is odd,

2. sw(x + 2)− sw(x) ≥ sw(y + 2)− sw(y),

3. if either x = 0 or x is odd, sw(x) ≥ sw(x + 1) and sw(x) ≥ sw(x + 2)
then sw(x) ≥ sw(y), and

4. if y is odd, sw(y + 2) ≥ sw(y) then sw(y + 2) ≥ sw(x).

Proof. We prove point by point.

1. If x is odd M(x, p) = M(x + 1, p) by Proposition 2.1. Thus, sw(x) −
sw(x + 1) = −e.

2. The marginal increase (sw(x + 2) − sw(x)) it is formed by two parts: n ·
(M(x, p) − M(x + 2, p) and 2e. By Proposition 2.1, we get that if x <
y then M(x + 2, p) − M(x, p) > M(y + 2, p) − M(y, p). Thus, since
(sw(x + 2)− sw(x))− (sw(y + 2)− sw(y)) = M(x, p)−M(x + 2, p)−
(M(y, p)−M(y + 2, p)), sw(x + 2)− sw(x) ≥ sw(y + 2)− sw(y).

3. We have two cases: either x is odd, or x is equal to 0. Assume x is odd.
Consider z s.t. z > x and z is odd. We have that sw(z) = sw(x, p) +
(sw(x+2, p)−sw(x, p))+ ...+(sw(i, p)−sw(i−2, p))+ ...+(sw(z, p)−
sw(z − 2, p)) = sw(x, p) +

∑z
i=x(sw(i, p)−M(i− 1, p)). Since sw(x +

2, p)− sw(x, p) ≤ 0, (sw(i, p)−M(i− 2, p)) ≤ 0 for all i, by Statement 2.
Consequently,

∑z
i=x(sw(i, p)−M(i− 1, p)) ≤ 0 and sw(x) ≥ sw(z). For

any y ≥ x, either y is odd (and then we just proved our result) or y is even
and then there exists z odd s.t. sw(z) > sw(y) and z > y. Assume x is 0.
Thus, sw(0) > sw(1) and consequently, sw(1) > sw(3) by Proposition 2.1.
We apply to 1 the same reasoning we applied in the first part of this point
and we have that sw(1) ≥ sw(y) for any y. Consequently, sw(0) ≥ sw(y)
for any y.
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4. The reasoning is similar to Statement 3. So, for any odd number z s.t.
z < y and z is odd we have that sw(y + 2) = sw(z, p) + (sw(z + 2, p) −
sw(z, p))+ ...+(sw(i+2, p)−sw(i, p))+ ...+(sw(y+2, p)−sw(y, p)) =
sw(z, p)+

∑y+2
i=z (sw(i+2, p)−M(i, p)). Since sw(y+2, p)−sw(y, p) ≥ 0

then (sw(i+2, p)−M(i, p)) ≥ sw(y+2)−sw(y) ≥ 0 for all i, by Statement
2. Consequently,

∑y+2
i=z (sw(i+2, p)−M(i, p)) ≥ 0 and sw(y+2) ≥ sw(z).

For any x < y + 2, either x is odd (and then we just proved our result) or x
is even and then there exists z odd s.t. sw(z) > sw(y) and z < y.

Interestingly, this corresponds to saying that if we consider the set of odd
numbers plus 0 as domain for the function sw, we have that a local maximum is
also a global maximum. So, if x is such that sw(x − 2) ≤ sw(x) ≥ sw(x + 2)
then x is a global maximum. We call an mSW a number x iff sw(a) ≥ sw(a′)
for all a′ such that |a| = x, i.e. if and only if x maximizes the social welfare.

Theorem 2.3. Let D = 〈N, e, p〉 be a decision structure. A profile a with |a| = k
maximizes the social welfare (is a mSW) iff sw(k) ≥ sw(k+2), sw(k) ≥ sw(k+
1) and sw(k) ≥ sw(k − 2).

Proof. Let x s.t. sw(x) ≥ sw(x+2), sw(x) ≥ sw(x+1) and sw(x) ≥ sw(x−2).
By Proposition 2.2, sw(x) ≥ sw(y) for all y > x. Similarly, sw(x) ≥ sw(y) for
all y < x.

This theorem gives us already some information about the maximum for the
social welfare. Notably, we made use here of the assumption that sw(x) = 0 if
x < 0 or x > n. Indeed, since a profile with size lower than 0 or greater than n
cannot exist, we want to be sure that every profile has a higher social welfare than
that. If e ≥ n(p − 1

2
) then 0 maximizes sw. Indeed, from that follows sw(0) >

sw(1). Since 1 is odd, then also sw(0) > sw(2). And, trivially, sw(0) > sw(−1).
Now, let nodd the highest odd number, i.e. nodd = max{x ≤ n|x is odd }. If
e ≤ n(M(y,p)−M(y−2,p))

2
, then nodd maximizes the social welfare. Eventually, we

can prove the following.

Corollary 2.3. If 0 < x < n− 1 then x is mSW iff it is odd and such that

n(M(x + 2, p)−M(x, p))

2
≤ e ≤ n(M(x, p)−M(x− 2, p))

2

Proof. Let x ∈ N such that M(x+2, p)−M(x, p) ≤ 2e
n
≤M(x, p)−M(x−2, p).

Since 2e
n
≤M(x, p)−M(x− 2, p), sw(x) ≥ sw(x− 2). Thus, by Proposition 3

we also know that since sw(x) is higher than sw(z) for all the z < x. Similarly,
by Proposition 2.2, since M(x + 2, p) −M(x, p) ≤ 2e

n
we know that sw(x) is
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higher than sw(z) for all the z > x. Thus, x maximizes the social welfare, i.e. x
is mSW.

Notably, there can be more than one number that maximizes the social welfare.
To have a clearer idea we can look at example and the corresponding Figure 2.5.

Example 2.4. We can look at the same four groups we introduced at the beginning.
Each group has 50 people, whose accuracy is, in turn, 0.6, 0.7, 0.8, 0.9. The
following graphs show the social welfare with different efforts.

Figure 2.5: The function for the social welfare with n = 50 and three different
values of effort: e ∈ {0.01, 0.1, 0.49}

As it can be seen in Figure 2.5, the higher is the effort, the lower is the number
of voters at which the function reaches its maximum. The same thing can be said
for the accuracy: the higher the accuracy the earlier is reached the maximum (this
is extremely explicit in e = 0.01).

So far, we managed to characterize and study the maxima for sw. However,
as we pointed out at the beginning of this section, our main aim is to evaluate the
quality of the equilibria in terms of social welfare. This will give us an idea of the
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efficiency of different decision structures. In order to do so, we will follow two
lines:

• we will show under which conditions a PNE maximizes the social welfare
and

• we will look at the price of anarchy of the game.

Interestingly enough, we already have some information about the first point. In-
deed, if x = 0 is a maximum for the social welfare it is also a PNE, namely an
mPNE. This follows immediately from the fact that if e ≥ n(p− 1

2
), we also have

that e > p− 1
2

(recall that n ≥ 2). More in general we show the following.

Corollary 2.4. Let D = 〈N, e, p〉 be a decision structure and let x be mSW. Thus,
x ≥ neq.

Proof. Consider neq. There are three cases. Case 1: e > p − 1
2
. Thus, neq = 0.

So, every x is s.t. x ≥ 0. Case 2: e = p− 1
2
. Thus, since we assume n ≥ 2 it must

be that e ≥ n(p − 1
2
). Thus, 0 is not a mSW. Consequently, for all x that can be

mSW x ≥ 1. Case 3: e < p− 1
2
. Thus, for neq holds M(neq, p)−M(neq− 1) ≥ e

and therefore, M(neq, p) −M(neq − 2, p) ≥ e. So, if n ≥ 2 (as we assume it
is), M(neq, p) −M(neq − 2, p) ≥ 2e/n. And, sw(neq) − sw(neq − 2) ≥ 0. By
Proposition 2.2, sw(neq) > sw(y) for all y < neq. So, x ≥ neq.

Such a result provides us with two insights. Firstly, the point of mSW is always
greater than the number of voters at any equilibrium. Secondly, it follows that if
there is more than one value k for which a profile a is PNE if |a| = k then only
the highest one can maximize social welfare. This allows us to draw a conclusion
about another ‘special case’. If neq = nodd, then neq also maximizes the social
welfare. Eventually we can introduce, composing the results from Theorem 2.1
and Theorem 2.3, a general observation.

Observation 2.2. Let D = 〈N, e, p〉 be a decision structure. A profile a with
0 < |a| < n− 1 is both a PNE and an mSW iff

M(|a|, p)−M(|a| − 1, p) ≥ e ≥ n[M(|a|+ 2, p)−M(|a|, p)]

2
.

Indeed, since n ≥ 2 we have that n[M(|a|+2,p)−M(|a|,p)]
2

≥ M(|a| + 1, p) −
M(|a|, p) and that n[M(|a|,p)−M(|a|−2,p)]

2
≥ M(|a|, p) −M(|a| − 1, p). Remark-

ably, the conditions for this observation are not that different from those of Strong
Equilibria. Indeed, the mechanism is quite similar.

We managed to describe under which conditions a PNE is also an mSW. We
conclude this part (before looking at the price of anarchy) by proving something
similar to a ‘limitation’ result.
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Corollary 2.5. Let D = 〈N, e, p〉 a decision structure. If n > 1
−p2+p

, and neq

maximizes the social welfare then neq = 0 or neq = nodd.

Proof. Assume n > 1
−p2+p

. By contraposition, assume 0 < neq < n − 1

s.t. neq is an mSW. By Proposition 2.1, M(neq, p) − M(neq − 1, p) ≥ e ≥
n(M(neq+2,p)−M(neq ,p)]

2
. This implies M(neq, p)−M(neq−1, p) ≥ n(M(neq+2,p)−M(neq ,p)]

2
.

Consequently, n ≤ M(neq ,p)−M(neq−1,p)
M(neq+2,p)−M(neq ,p)

. In addition, M(1,p)− 1
2

M(3,p)−M(1,p)
≥ M(neq ,p)−M(neq−1,p)

M(neq+2,p)−M(neq ,p)

by Proposition 2.1. Indeed, the ratio between M(neq, p) − M(neq − 1, p) and
M(neq + 2, p)−M(neq, p) is as big as possible in the lowest numbers. Thus, n ≤

M(1,p)− 1
2

M(3,p)−M(1,p)
. Furthermore, 2(M(1, p)− 1

2
) = 2p− 1 and (M(3, p)−M(1, p) =

(3p2+p3−p). Thus, M(neq, p)− 1
2
≥ n(M(3,p)−M(1,p))

2
iff 2p−1 ≥ n(3p2+p3−p)

iff 1 ≥ n(p2 + p), i.e. n ≤ 1
−p2+p

This result shows that if n is higher than a certain threshold, only a profile of
size nodd or 0 can be both a PNE and an mSW. Relevantly, the threshold for n is
surprisingly low.

In Figure 2.6 we give a visual illustration of this result. If p = 0.6 then as soon
as n ≥ 5, the only possible values that can be both PNE and mSW are 0 and nodd.

The main difference between the social welfare perspective and the ‘individ-
ual one’ is that in the collective perspective the effort of learning is valued more.
For this reason, as we saw in Corollary 2.4, the maximization of the social welfare
requires always an equal or greater number of voters than any equilibrium. The
gap between the ‘value’ of the effort for the single agent and the ‘value’ of the
effort for the community increases with the size of the community, as the value
for the community increases and that for the single agent remains fixed. Indeed,
as showed in Corollary 2.5, if n passes a certain threshold, then no equilibrium
can maximize sw, unless we are in a ‘trivial case’ like 0 or nodd.

Eventually, we look at the value for the price of anarchy (PoA). The price of
anarchy is usually a measure that gives an idea of how the efficiency of a system
degrades due to selfish behavior of its agents in the worst case. It represents an
opposite perspective with respect to what we did so far. So far, we looked at when
an mPNE could have maximized the social welfare. Now, we looked at the value
of social welfare for the equilibrium with the lowest one.

Definition 2.4. Let D = 〈N, e, p〉 be a decision structure. Let a be a PNE s.t. if
a′ is a PNE then sw(a) ≤ sw(a′). And let 0 ≤ x ≤ n be an mSW. Thus, PoA for
D is so defined:

PoA =
sw(|a|)
sw(x)

. (2.11)
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Figure 2.6: For each level of competence p ∈ {0.6, 0.7, 0.8, 0.9} we plot on the
y-axis what can be the size of an equilibrium that maximizes the social welfare
for groups of different sizes (on the x-axis).

As it stands, the price of anarchy measures the quality of the worst equilib-
rium. This means that if PoA is high the individual behaviour impacts harmfully
on the social welfare of the group, as the social welfare obtained at the equilib-
rium is quite low compared to the potential one. If PoA = 1, the interest of the
individuals exactly coincides with the interest of the group.

Proposition 2.3. Let D = 〈N, e, p〉 be a decision structure and x be an mSW.

• If e < p− 1
2
:

PoA =
M(x, p)− xe

n

p− e
n

.
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• If e ≥ p− 1
2

there are two cases:

– if e > n(p− 1
2
) then PoA = 1 and

– if e ≤ n(p− 1
2
) then PoA = 2(M(x, p)− xe

n
).

Proof. Assume e < p− 1
2
. Thus, by Corollary 2.1 and by Proposition 2.2 a profile

a with |a| = 1 is the PNE with the lowest social welfare. So, PoA =
M(x,p)−xe

n

p− e
n

.

If e ≥ p − 1
2

the profile a with |a| = 0 is the one with the lowest social
welfare. Indeed, by Proposition 2.2 and by Corollary 2.4, we know that sw has a
global maximum and that sw(1) > sw(0). Now, we look at the two statements. If
e > n(p − 1

2
) then 0 maximizes the social welfare and consequently PoA = 1. If

e ≤ n(p− 1
2
) then PoA = 2(M(x, p)− xe

n
), as sw(0) = n

2
.

Interestingly enough, the price of anarchy is equal to 1 only if e > n(p − 1
2
).

This comes at the cost of not producing any increase of accuracy whatsoever, and
it should not be a desirable outcome. Remarkably, this is also quite unlikely.1In all
the other situations the price of anarchy is always greater than 1. We may wonder
how it varies depending on n. The answer is in the last observation of this chapter
and in Figure 2.7.

Observation 2.3. For any decision structure D = 〈N, e, p〉, if e > n(p − 1
2
) the

maximum value that PoA can take is, when n → ∞: PoA → 1
p
. The minimum

value that it can take is when n→ 2: PoA→ 1.

To have a better understanding of how price of anarchy changes with respect
to the number of agents in a group we can have a look at Figure 2.7. In line with
Observation 2.3, the increase in the size of the group increases also the price of
anarchy. In addition, the price of anarchy grows relevantly more if the individual
competence is lower. Indeed, as we mentioned, if p = 0.9, the price of anarchy
reaches 1

0.9
at its maximum, whereas if p = 0.6, it reaches 1

6
.

2.4 Summary, Discussion and Takeaways

The results we obtained in this chapter are quite fundamental for the entire work.
They not only prepare the field for the results to come but also already address
quite satisfyingly some of the questions we asked in the introduction.

1For example, if p ≥ 0.75 this can never be the case. Indeed, e < n
4 .
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Figure 2.7: On the x-axis the number n and on the y-axis the value for PoA, given
that e < p− 1

2
.

Revisiting CJT results. We shall compare this perspective to the one of the
CJT. First, we must observe that statement (LIB) of the Condorcet Jury Theorem
(see Section 1.1) does not hold anymore. There exists a threshold nthr such that
adding more agents to the group does not modify the possible equilibria. And
consequently, it does not increase the group accuracy. Indeed, the agents that may
be added would just free-ride. A big group is not always better than a small one.

For a similar reason, statement (ASY) does not hold either. The only case in
which the overall accuracy tends to 1 with n→∞ is when e→ 0. For this reason,
the competence level of the agents is also quite relevant for the overall accuracy
of the group. If CJT were to be applied in a real scenario, we could have been sure
that if people were all sufficiently competent (but not experts), their large number
would have still produced the right answer with quite a high probability. Here,
instead, if all the people in a group are very little competent (e.g. p = 0.55), the
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group may never reach a ‘high’ probability (such as p = 0.9), no matter how many
people the group contains, as nthr may just be too low.

However, it is true that somehow, being in a group does not harm the individ-
ual. Indeed, if the individual considered voting already worth the effort if she was
alone, in the group she would also get an accuracy at least equal or higher than
being by herself. Interestingly, these results are in line with many of the other
works that approached a similar setting (T. J. Feddersen, 2004; Martinelli, 2006;
Persico, 2004). Of course, as our model frames the problem slightly differently
this is a proof of the robustness of these results.

Social Welfare and Strong Equilibria. The number of people in the group can
affect the group in terms of stability. Indeed, the higher n the less likely is an
SPNE to exist. On the other hand, results on social welfare highlight another
type of perspective which is extremely fundamental. They give us an idea of how
much individual behaviour is harmful for the system. We showed that the cases
in which an equilibrium can also produce a maximization of social welfare are
few. In the majority of cases, it is reasonable to assume that the maximization of
social welfare cannot be reached at an equilibrium. This is a clear example of how
phenomena of free-riding often coincide with poor efficiency. Our observations
about the price of anarchy tell us something about this matter too. Notably, if
n → ∞ the price of anarchy is maximum. Indeed, in that case the potential of
the group would be quite high, but the actual welfare at equilibria it produces is
relevantly lower.

Model features. Now, we shall briefly discuss the features of our model. First
of all, we must have a look at the idea of effort e. As we mentioned in Chapter
1, we introduced the effort to represent the cost of learning, i.e. of acquiring
competence. It may either stand for the cost of finding information or for the
cost of understanding information or for the combination of them. We explicitly
made the decision of not connoting it any further, as we wanted to leave many
possible interpretations open. Indeed, it could also represent the cost of the act
of voting itself, as we explained in Chapter 1, as it is paid by the agents if and
only if they decide to vote (action 1). The choice of assuming the effort to be a
constant and to be fixed for everybody allowed us to leave every possibility open.
Instead, in other works, for example that of Persico (2004), the effort is modeled to
better represent the cost of learning information and is described through a more
complex function. Keeping the effort fixed also enabled our analysis to focus more
effectively on other elements of the framework. Secondly, the reader may wonder
why we took into account only pure Nash equilibria. The answer is indeed very
simple. Although we believe that looking into mixed equilibria could represent an
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interesting expansion of the present work, we also think that looking at pure ones
was more than enough to get an idea of the agents’ behaviour in such a setting,
which was indeed our aim from the beginning.

Voting on many issues. Before concluding this chapter, we shall draw an in-
teresting comparison. Consider taking a certain group and asking it to vote on
different issues at different times. At every round, each agent should decide what
to do without knowing about what the other agents will do. And she can adjust
her strategy based on the outcomes of the previous votes. Interestingly, such a
setting would resemble closely the one described in the El Farol game (Arthur,
1994; Whitehead et al., 2008). In both the games, the group of player must divide
efficiently in two groups and if it fails to do so, the agents may not be satisfied.
On the other hand, there are also some differences. In the original game of El
Farol, if the number of people at the bar is too large they all get a negative pay-
off, whereas the people at home do not really get any negative or positive utility.
Instead, here, the people that do not vote have a reward that still depends on the
number of people voting. There seems to be a higher level of correlation between
the two groups in terms of utilities. We believed that investigating such a link
further may produce extremely interesting results.
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3 Those who Care and Those who
Do Not

In Chapter 2 we considered homogeneous groups, i.e. groups where all agents
have the same features. Yet, what if the group is heterogeneous? In this chapter,
we take into account a specific form of heterogeneity, namely heterogeneity in
stakes: every agent may have different stakes in the matter. The concept of stakes
captures the idea that certain decisions have higher impact on some people and
lower on others. This depends on the fact that not everybody has the same inter-
ests, values, and living situation as everybody else. Although it may seem hard
to exactly quantify these stakes, it is definitely possible to give a rough estimate
(sometimes also just based on few factors) of their value, as it is undeniable that
they play an important role in the motivation that moves a person to get involved
in a decision. Indeed, in a realistic scenario, not all the people of a group care
equally for the accuracy of the vote. Consider a group of people that has to decide
whether to build a garden or not in a certain area. Every member of this group
may have about the same level of expertise (the typical situation would be where
nobody has any special knowledge of gardens), and so the same level of compe-
tence, but some of them may be more interested in the matter than others as they
live closer to that area.

In Section 3.1 we give a formalization of this situation. In Section 3.2 we
take into account pure Nash equilibria and strong pure Nash equilibria in this new
framework. Notably we make use of many of the results we obtained in Chapter
2. In Section 3.3 we consider the social welfare of these equilibria. Eventually,
we briefly discuss our results.

3.1 Preliminaries

We start by generalising some of the notions we already have and add some new
definitions, that will turn out to be useful in this new setting.
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First of all, we shall start again from a group N = {1, ..., n} of agents. Then,
we introduce the variable bi ∈ R+ to represent the stakes of agent i, such that if
agent i cares more for a certain decision than agent j, we have that bi > bj . We use
the vector b = (b1, ..., bn) to collect the stakes of the agents in a group. Each agent
i ∈ N may choose between ‘vote’ and ‘abstain’ as before, i.e. ai = {0, 1}, and
again, if she chooses action 1 she incurs in a cost e and she votes with accuracy
p. The action profiles are defined as in Chapter 2. We generalise the notion of
decision structure which now becomes D = 〈N, p, e, b〉. In order to be able to
better work with vectors of stakes we also make use of the notation b1min(a) to
indicate the lowest value of the stakes among the voters in a, i.e.

b1min(a) =

{
min{bi|ai = 1} if |a| > 0

+∞ otherwise.
(3.1)

And, in a similar fashion, we denote with b0max(a) the highest value of the stakes
among the stakes of the non-voters in a, i.e.

b0max(a) =

{
max{bi|ai = 0} if|a| < n

0 otherwise.
(3.2)

Notably, the value for b1min(a) when |a| = 0 and the value for b0max(a) when
|a| = n were attributed for technical reasons, which will become apparent in
Theorem 3.1. Indeed, the concept itself of b1min(a) does not make sense if |a| = 0,
and similarly for b0max(a) if |a| = n. Eventually, we rewrite the formula for the
utility:

ui(a) = bi ·M(|a|, p)− aie. (3.3)

Indeed, the reward coming from the group being accurate scales with how much
the agent cares for the matter, i.e. it is multiplied by bi. So, for example, in the
scenario we proposed above if an agent i lives closer to the park than an agent
j, bi > bj and consequently, the accuracy of the choice benefits i more than j.
Notably, this formula generalizes Formula 2.6 (where bi can be assumed to be
equal to 1).

3.2 Basic Results and Pure Nash Equilibria

As we already mentioned, equilibria are the tools we use to predict the agents’
behaviour. We dedicate this section to describe them and explain the rationale
behind them. First, we give a full characterization of them; then, we look at the
equilibria where the group has the highest overall accuracy and eventually we
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also take into account strong equilibria. In order to do so, we employ many re-
sults from Chapter 2 and, in general, we compare the results obtained there with
what we prove here.

3.2.1 Pure Nash Equilibria

First of all, it is important to note that as far as the function M(x, p) is concerned
nothing changes from the previous chapter. Indeed, Proposition 2.1 is still valid
and the way the curve for M(x, p) behaves for a decision structure D = 〈N, p, e〉
is exactly the same as for a decision structure D′ = 〈N, p, e, b〉. Indeed, what is
fundamentally different is how people decide to vote or not. In order to account
for the differences with Chapter 2, but basically following the same structure, we
start by characterizing the equilibria.

Theorem 3.1. Let D = 〈N, e, p, b〉 be a decision structure and a ∈ {0, 1}n be an
action profile with |a| = k. The profile a is a PNE iff b0max(a)[M(k + 1, p) −
M(k, p)] ≤ e ≤ b1min(a)[M(k, p)−M(k − 1, p)].

Proof. A profile a is a PNE iff for no agent i ui(a) ≥ ui(a
′
i,a−i) by Definition

2.1. Assume i s.t. ai = 1. Thus, ui(0,a−i) = biM(|a| − 1, p) and ui(a) =
biM(|a|, p)−e. Thus, agent i would not deviate iff M(|a|, p)−e ≥M(|a|−1, p),
i.e. iff bi[M(|a|, p) −M(|a| − 1, p)] ≥ e. Since bi ≥ b1min(a) by definition (and
it can be that bi = b1min(a)), agent i would not deviate iff b1min(a)[M(|a|, p) −
M(|a| − 1, p)] ≥ e.

Now, assume i s.t. ai = 0. Thus, ui(1,a−i) = biM(|a|+1, p)−e and ui(a) =
biM(|a|, p). Thus, agent i would not deviate iff biM(|a|, p) ≥ biM(|a|+1, p)−e,
i.e. iff bi[M(|a|+1, p)−M(|a|, p)] ≤ e. Since bi ≤ b0max(a) by definition (and it
can be that bi = b0max(a)), agent i would not deviate iff b0max(a)[M(|a|+ 1, p)−
M(|a|, p)] ≤ e.

Consequently, no agent i would deviate iff b0max(a)[Mp(|a|+1)−Mp(|a|)] ≤
e ≤ b1min(a)[Mp(|a|) −Mp(|a| − 1)]. And this corresponds to saying that a is
a PNE iff b0max(a)[Mp(|a| + 1)−Mp(|a|)] ≤ e ≤ b1min(a)[Mp(|a|)−Mp(|a| −
1)].

This is a full characterization of PNEs in the game associated with our decision
structure. Notably, this theorem is very similar to Theorem 2.1. The only relevant
difference is indeed the use of the notion of stakes. The individual value that each
agent assigns to the possibility of changing her action is now dependent on the
stakes. Remarkably, to be sure that no one wants to deviate we have to be sure
that the voter with the lowest stakes does not want to abstain and the non-voter
with the highest stakes does not want to vote.
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The technical values we assigned to b1min(a) and b0max(a) are useful in this
theorem as they allow us to give a full characterization. Indeed, when looking
at a profile a such that |a| = 0, we want to be sure that it does not make sense
to switch to a profile a′ with |a′| = −1. And, for this reason, we assign to the
hypothetical voter (which clearly does not exist) in a the value of∞ so that she
does not want to go away (and so a profile with size −1 cannot even be taken
into consideration). A similar reasoning is also done when a profile a is such that
|a| = n. We assign to the hypothetical non-voter in a (which, again, does not
exist) stakes equal to 0 so that we are sure it does not make sense to go to a profile
with size n + 1.

Following the lines of Corollary 2.1, we can have a look further at how the
effort influences the game by changing the possible equilibria. Again, we can
distinguish three cases. Relevantly, they all depend on the value for the stakes
of the most interested person in the group. We denote with b+ this concept, i.e.
b+ = max{bi|i ∈ N}.

Corollary 3.1. Let D = 〈N, e, p, b〉 and let a be an action profile.

1. If e > b+(p− 1
2
) a profile a is a PNE iff |a| = 0.

2. If e = b+(p− 1
2
) a profile a is a PNE iff either |a| = 0 or |a| = 1 and ai = 1

for i s.t. bi = k.

3. If e < b+(p − 1
2
) a profile a is a PNE iff |a| is odd and M(|a|, p) ≥

M(|a| − 1, p) + e
b1min(a))

.

Proof. This is just a result of Theorem 3.1. The first and the second case are
quite straightforward. In the first case, we see that M(1, p) − M(0, p) ≤ e ≤
M(0, p)−M(−1, p). Notably, e ≤ b1min(a)M(0, p)−M(−1, p) is trivially true.
In the second case, we have the same for 0 and 1. The third case is the less trivial.
If |a| is odd, we have that a is a PNE iff M(k + 1, p) − M(k, p) ≤ e is true
by Proposition 2.1. In this case, we employed the fact that b0max((1, 1, 1, ..., 1)) is
zero, as we cannot have more than n voters. The rest follows.

Also here, if e is not too big, we have that the only profiles that can be PNEs
are those with an odd number of voters. The mechanism is exactly the same as in
Chapter 2. If |a| is odd b0max(a)[M(k+1, p)−M(k, p)] ≤ e always holds (except
for 0). Instead, if |a| is even e ≤ b1min(a)[M(k, p)−M(k−1, p)] never holds (ex-
cept for 0). Recall that this is a direct consequence of Proposition 2.1. However,
something changed compared to Corollary 2.1. In that case, who were the voters
did not matter: only the size of the profile was relevant. In this chapter things are
different under this aspect. Indeed, depending on who votes and who does not, the
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values for b1min(a) and b0max(a) change. However, we have to be careful in under-
standing where the change lies. Each agent still brings to the overall accuracy the
same contribution. So, the change is not in the increase of the overall accuracy.
Indeed, the change lies in how much agents value this contribution. Some value
it more, some less. Such a detail becomes extremely important given that we are
interested to characterize the profiles that yield the equilibria with the highest ac-
curacy (mPNE).

Now, in order to be able to characterize the mPNE, we need to introduce some
useful notions. Since they make use of the results we obtained in Chapter 2, we
comment and review them here. Notably, in Chapter 2 we did not mention the
stakes at all, but all the results that we got there can be easily considered to hold
for a decision structure D = 〈N, e, p, b〉 where bi = b, i.e. an homogeneous
decision structure. Indeed, the utility we considered in Chapter 2 (see Equation
2.6) was defined in terms of effort: ui(a) = M(|a|, p) − aie. However, we can
easily think the value for the effort e as a value for the term e

b
. For example,

Corollary 2.1 could say something like “if e
b
< p− 1

2
...”. So, the utility we use in

Chapter 1 can be rewritten:

ui(a) = M(|a|, p)− ai
e

b
. (3.4)

And, interestingly, for our purpose, this corresponds to

ui(a) = b ·M(|a|, p)− aie, (3.5)

as Equation 3.4 is the result of the normalization over b of Equation 3.5, i.e. they
are equivalent.1 Consequently, in order to know what happens in a homogeneous
decision structure with bi = b is enough to look at the results in Chapter 2 and
substituting the value for e

b
in the place of e. For this reason, from now on we

refer to an homogeneous decision structure either with D = 〈N, e, p〉 or with
D = 〈N, p, e, b〉. Relevantly, a decision structure D = 〈N, e, p〉 is equivalent to
D′ = 〈N, p, e′, b′〉 iff e = e′

b′
. With this in mind, we shall look at the following

definition.

Definition 3.1. Let D = 〈N, e, p, b〉 be a decision structure. We define the fol-
lowing notation.

• g : R 7→ P(N) is a function s.t. g(bj) = {i ∈ N |bi ≥ bj}, i.e. g(bj) is the
set of agents with stakes higher or equal than bi.

1The utility matters only for the equation ui(a)−ui(a
′) and in this case the multiplication for

b does not matter.
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• nhom : {b1, ..., bn} 7→ N is a function that takes a value bi and returns the
value neq for the homogeneous decision structure D′ = 〈{1, ..., |g(bi)|}, p, e, bi〉.
Indeed, recall that neq is the highest size that could be reached by a PNE in
D′.

• Let NH = {x ∈ N | there exists bi s.t. nhom(bi) = x} and let nh = maxNH

and bh the value that corresponds to the bi s.t. nhom(bi) = nh. The set NH

collects all the values for nhom and nh is the maximum among them.

For each x ∈ NH there can more than one value among the bi. We assign bh
to the lowest among them without loss of generality.

Theorem 3.2. Let D = 〈N, e, p, b〉 be a decision structure. A profile a is an
mPNE iff |a| = nh and if ai = 1 then i ∈ g(bh).

Proof. Consider the profile a such that |a| = nh and if ai = 1 then i ∈ g(bh).
We first prove that a is an equilibrium. All the voters have equal or greater stakes
than bh. In addition, since nhom(bh) = nh, a profile a would be an equilibrium in
a decision structure D′ = 〈N, p, e, bh〉. Thus, M(nh, p) −M(nh − 1, p) ≥ e

bh
≥

M(nh +1, p)−M(nh, p) by Theorem 2.1. Since b1min(a) = bh and b0max(a) ≤ bh,
we have that b1min(a)[M(nh, p)−M(nh − 1, p)] ≥ e ≥ b0max(a)[M(nh + 1, p)−
M(nh, p)]. Consequently, a is a PNE by Theorem 3.1.

Now, we prove that it is an mPNE. Towards a contradiction, assume there
exists a profile a′ that is an equilibrium with a higher accuracy, which would
imply an amount of voters nl s.t. nl > nh, by how M(n, p) is built. This means
that nl /∈ NH . Thus, there exists no bi s.t. nhom(bi) = nl. Thus, either nl is
even, or there exists no set K ⊆ N s.t. |K| = nl and nl ≤ nhom(bi) for all
i ∈ K. In the first case (nl is even) it cannot be an equilibrium as for each
agent j s.t. aj = 1, uj(0,a

′
−j) > ui(a

′) . The other case implies that for some
i s.t. a′i = 1 we have that nl > nhom(bi). This implies that a profile a with
nl = |a| would not be an equilibrium in the correspondent homogeneous group.
Thus, M(nl, p) −M(nl − 1, p) < e/bi. Consequently, i would deviate. This is a
contradiction.

It may be helpful for our understanding to repeat here how the process we
defined above works. We form different groups, each with a different lowest level
of stakes, i.e. the different sets g(bj). For each of these groups we look at what
is the biggest size of an equilibrium in that group. Since there are people with
different stakes in each group, to have an equilibrium we must make sure that
each agent i s.t. ai = 1 has a sufficiently high bi to vote. In order to do so, we
check that the voter with the lowest stakes wants to vote, i.e. the agent j in the
case for g(bj); in this way we are sure that all the agents in g(bj) would vote.
Thus, we just compare all these size values and we take the highest.
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We can have a look at an example.

Example 3.1. Consider a decision structure D = 〈N, e, p, b〉 with N = {1, 2, ...,
15}, the following vector of stakes b = (600, 600, 400, 400, 400, 200, 200, 100, 50, 50, 50,
50, 20, 20, 20) and p = 0.7. We assume that e = 0.49. Now, for each bi we look
at the amount of people that would vote in an homogeneous group with b = bi,
n = g(bi) (red line) and at the number of people at an mPNE for the decision
structure D′ = 〈N, p, e, bi〉, i.e. neq (blue line) in Figure 3.1.

Figure 3.1: For any bi we plot g(bi) (available voters) and nhom(bi). This allows
us to see how we can choose nh.

We highlighted the points that are in NH with a little black cross. As it can be
seen the highest is 7, i.e. nh = 7, with bh = 50.

This result is quite interesting as it exemplifies two main points. First of all,
it shows that the highest accuracy in an equilibrium is reached only if the people
with the highest stakes vote. Secondly, it makes clear that to have an idea of what
are the features of the equilibria (and first of all the accuracy that each equilibrium
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can produce) the only thing that matters is the value bh. Recall that bh is the
stakes value that would yield the highest nhom, as explained in Definition 3.1. It
does not matter how is b structured as soon as bh remains the same. This implies,
indeed, that the length of of b does not matter either, and that adding more agents
does not change anything, if it does not change bh. This may remind the reader
of the discussion in Chapter 2 about nthr and neq for the homogeneous case. If
adding voters did not change neq (and this was the case when n ≥ nthr), then
the size of an mPNE would have remained the same. Indeed, the value for nh in
this chapter is exactly corresponding to the value neq for Chapter 2: the size of
mPNEs. However, we prefer to keep them separated with the notation, as nh has
been defined for heterogeneous structure and neq for homogeneous ones. We shall
look at the following example.

Example 3.2. Consider a decision structure D = 〈N, e, p, b〉 with b = (2000,
2000, 1000, 1000, 300), p = 0.7 and e = 0.49. We have that bh = 600 and con-
sequently a = (1, 1, 1, 1, 1) is an equilibrium and produces the highest accuracy
possible, i.e. 0.837. Now, consider another decision structure D′ with the fol-
lowing features: b′ = {2000, 2000, 1000, 1000, 600, 40, 30, 24, 20}, p = 0.7 and
e′ = 0.49. We still get b′h = 600 and consequently n′h = nh remains the size of the
equilibrium with the highest accuracy possible. And the same thing happens if we
just change the values of the highest bs as soon as they remain higher than bh, for
example, in a vector b = {2000, 1000, 600, 600, 600, 40, 30, 24, 20}.

3.2.2 Strong Pure Nash Equilibria

We shall now have a look at strong equilibria. Looking at when coalitions deviate
was quite interesting in the previous chapter and we want to compare the results.
Notably Lemma 2.2 and Lemma 2.1 still hold, as they do not assume anything
about the homogeneity of the stakes of the agents. Recall that Lemma 2.2 states
that if a coalition of m non-voters deviates from a then also a coalition of one
non-voter deviates. The reason for this is that M(|a| − 1, p) ≥M(|a| − x, p) for
any x ≥ 1 and for any a. And, so if a group of agents benefits from leaving the
group of voters also a single one would do so. Instead, Lemma 2.1 states that if a
‘mixed’ coalition deviates then also a ‘non-mixed’ one deviates. With the help of
these two lemmas we can prove the following theorem.

Theorem 3.3. Let D = 〈N, e, p, b〉 be a decision structure with |N | = n and
a ∈ {0, 1}n be an action profile with |a| = s. The profile a is an SPNE iff for all
i s.t. ai = 0, bi[M(s + x, p) −M(s, p)] ≤ e ≤ b1min(a)[M(s, p) −M(s − 1, p)]
where x = |{j ∈ g(bi)|aj = 0}|.

Proof. Consider a profile a. Such a profile is an SPNE iff no coalition deviates.
Let K be a coalition s.t. K ⊆ {i ∈ N |ai = 0} and a′K = (1, 1, ..., 1). Conse-
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quently, K ⊆ {j ∈ g(bi)|aj = 0} for some i. Consequently, ui(a
′
K ,aN\K) >

ui(a) iff biM(|a| + |K|, p) − e = biM(s + x, p) − e > biM(s, p). Thus, K
would not deviate iff bi[M(s + x, p) − M(s, p)] ≤ e. Now, let K be a coali-
tion s.t. K ⊆ {i ∈ N |ai = 1} and a′K = (0). Since ui(a) = biM(s, p) − e
we have that ui(a) ≥ ui(a

′
K ,aN\K) iff M(s, p) − M(s − 1, p) ≥ e

bi
. Since

bi ≥ b1min(a) then ui(a) ≥ ui(a
′
K ,aN\K) iff M(s, p)−M(s− |K|, p) ≥ e

b1min(a)

for any possible K containing exactly one voter. Thus, K would not deviate iff
b1min(a)[M(|a|, p)−M(|a| − 1, p)] ≥ e. By Lemma 2.1 and Lemma 2.2, if these
two types of coalitions do not deviate no coalition does so. Thus, a is SPNE iff
M(n, p)−M(s, p) ≤ e ≤M(s, p)−M(s− 1, p).

It is worth to understand what changes between this theorem and that about
SPNE in the previous chapter (Theorem 2.2). In the previous chapter we could
be sure that if there was at least a coalition that wanted to switch – going from
not voting to voting –, then the biggest coalition possible (that containing all the
non-voters) would have also wanted to switch. This is not the case here, as the
different stakes make this process a bit more obscure. Indeed, in this case the
biggest coalition possible may contain an agent with a very low bi who would
never want to vote. So, we have to make sure that all the possible coalitions that
can be formed do not want to switch to action 1. And this is done, by checking
all the possible different stakes bi of people outside the group of voters. However,
we are still sure, as we were for Theorem 2.2, that if a profile is a pure Nash
equilibrium, then no coalition of non-voters may want to switch. Indeed, this is
exactly the result of Lemma 2.2 and it produces the following corollary.

Corollary 3.2. Let D = 〈N, e, p, b〉 be a decision structure. If a is an SPNE then
|a| = nh.

Proof. The proof proceeds similarly as the proof for Corollary 2.2. Since every a
with |a| = nh is an mPNE, every other a′ s.t. a′ is a PNE cannot be an SPNE,
because going from that to a is always advantageous for every coalition of non-
voters in a′ of size nh − |a′|.

This corollary consists in recognizing that a profile a to be an SPNE must also
be an mPNE. As in our basic setting, not all the groups have a strong equilibrium
and such existence depends on all the values that occur in vector b (and namely
on n) and not only on bh. Indeed, it is easy to find two groups were the values for
bh are the same, but since b′ and b are different in one group there exists an SPNE
and in the other there is not.

Example 3.3. Consider the same decision structure we saw before in Example 3.2
with the following b = {1000, 1000, 500, 500, 300} and p = 0.7. In this case, bh =
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300 and consequently a with |a| = 5 is an SPNE. Now, take into account another
decision structure with the following features: b = {1000, 1000, 500, 500, 300, 20, 20, 20, 20}
and p = 0.7. Although we have that a = (1, 1, 1, 1, 1, 0, 0, 0, 0) is still an mPNE,
in this case it is not an SPNE. Indeed, M(9, p) = 0.90 and M(5, p) = 0.837. We
have that M(9, p)−M(5, p) > 1

bi
for bi = 20. So that cannot be an SPNE.

3.3 Social Welfare

As we did in the Chapter 2, we now take into account the welfare of our decision
structure. Relevantly here, we decided to just characterize the equilibria in terms
of social welfare, without looking at the concept of price of anarchy. We will
discuss at the end of this section the reason why we did not consider this impor-
tant. The formula for the social welfare is the same as before (and consequently
Proposition 2.2 holds). Interestingly enough the value nh is not relevant when we
consider this perspective. Instead, what matters here is the average of the values
of b, which we will denote with b, i.e.

b =
n∑

i=1

bi. (3.6)

First of all, we shall prove the following result.

Theorem 3.4. In a decision structure D = 〈N, e, p, b〉, a strategy a maximizes
the social welfare iff |a| maximizes the social welfare of a homogeneous decision
structure D′ = 〈N, p, e, b〉.

Proof. Consider the formula for the social welfare (Equation 2.9). We have that

sw(|a|) =
n∑

i=0

ui(a) = M(|a|, p)
n∑

i=0

bi − |a| · e.

Consequently, sw(a) = M(|a|, p)nb − |a| · e. Indeed, this is the exact formula
for the setting we saw in Chapter 2. As a consequence, to find the number of
voters that maximize the social welfare ofD we shall look the number of voters
that maximizes the social welfare for D′.

Notably, this assimilates our heterogeneous decision structure to an homoge-
neous one. How do the equilibria, and in particular, the most accurate ones, in
terms of social welfare? A first insight is a direct consequence of Theorem 3.4.

Observation 3.1. Let D = 〈N, e, p, b〉 be a decision structure. If nh < nhom(b)
then nh does not maximize the social welfare.
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Indeed, in a decision structure D′ = 〈N ′, p′, e, b′〉 with p′ = p, n′ = n and
b′ = b we know that n′eq ≤ x′ with x′ being mSW for D′. Since the highest
number of people at the equilibrium for D is given by nh, then nh < n′eq ≤ x′.

This is why a group where bh is substantially smaller than b is not efficient
in terms of social welfare. Since b may vary without changing at all bh it may
be useful to visualize how does the maximum social welfare changes with b. We
shall have a look at Figure 3.2.

Figure 3.2: On the x-axis there is the value of b
e

and on the y-axis the respective
value of the number of voters at the maximum social welfare.

More in general, we can also prove the following result. Remember that we
proved with Theorem 3.2 that nh has the same role of what we denoted with neq

in the previous chapter.

Corollary 3.3. For any possible decision structure D = 〈N, e, p, b〉 such that x is
mSW, nh ≤ x.

Proof. Assume that there exists a group for which this is false. Let a be a profile
with |a| = nh. Let x be the number of voters that maximizes the social welfare
s.t. x < |a| toward a contradiction. Thus, we have that for a homogeneous group
D = 〈N, p, e, b′〉 with b′ = b, nb′M(x, p)− ex is the maximum and consequently,
nb′M(x, p)− ex is the maximum also for the initial decision structure. However,
by how we constructed nh out of a (Theorem 3.2 and Definition 3.1), there exists a
bi ∈ b s.t. bi(M(|a|, p)−M(|a|−1, p)) ≥ e and for all j s.t. aj = 1, bj ≥ bi. Thus,
M(|a|, p)−M(|a|−1, p) ≥ e

bj
. Consequently, M(|a|, p)−M(|a|−1, p) > e·y

bj ·|a|
where y = |a|−x, as y ≤ |a|. As a result, bi · |a| · (M(|a|, p)−M(|a|−1, p)) >
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e · y. In addition, nb′ ≥ |a|bi as there exists at least |a| = nh members of the
group whose stakes are equal or higher than bi and nb′ corresponds to the sum of
all the stakes. So,

nb′ · (M(|a|, p)−M(|a| − 1, p)) > e · (|a| − x)

. Yet, the consequence of this is the following:

nb′ ·M(|a|, p)− e|a| − (nb′M(|a| − 1, p)− ex) > 0

This is in contradiction with what we stated in the beginning as a has a higher
social welfare than a profile with x voters.

Such a result states that the number of voters that maximizes the social wel-
fare is either greater or equal than the number of voters for profiles that are PNEs.
Notably, from this result directly follows that for all a′ s.t. a′ is a PNE we have
that sw(nh) ≥ sw(a′). This means that the equilibria that present the highest
accuracy among all the possible equilibria are also those that present the highest
social welfare among them. Indeed, by Proposition 2.2 a local maximum is also a
global one. This is extremely interesting. Indeed, it shows that the ‘relationship’
between individual behaviour and social welfare is exactly the one we described
in Chapter 2. Again, the social welfare values more the effort made by the single
agent than the agent herself.

We decided to not delve more in the matter of social welfare as the results are
notihing different from what we saw in the basic setting. We do not look at when
an equilibrium maximizes the social welfare as it is again just the composition
of Theorem 3.4 and of Theorem 3.1. And similarly, we do not take into account
the notion of price of anarchy, as the results that we obtained in Chapter 2 can
be basically repeated here once we substituted the value for n with bn. Indeed,
the price of anarchy is concerned with the ‘worst equilibria’ and as we saw in the
discussion of Theorem 3.1, these are basically the same as in Chapter 2.

However, before concluding the chapter we want to introduce a comparison
between two decision structures that have the same values for n · b, same compe-
tence levels and effort but different values for nh.

Observation 3.2. Let D = 〈N, e, p, b〉 and D′ = 〈N ′, p′, e′, b〉 be two decision
structures with n · b = n′ · b′, p = p′, e = e′ and nh > n′h. Thus, the structure with
the highest nh produces a higher (or equal) social welfare in its highest equilibria.

The reasoning behind is straightforward. We know that sw(nh) ≥ sw(n′h)

as n · b = n′ · b′ . Indeed, the function for the social welfare is single peaked
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and we know that sw(x) = sw(x′) ≥ sw(nh) > sw(n′h) with x and x′ being
mSW respectively for D and D′. To get a clearer idea we shall have a look at an
example.

Example 3.4. Consider two decision structures D and D′. Let N = {1, 2, ..., 40}
with 15 people having b = 100 and other 25 people b = 10. Instead, N ′ =
{1, 2, ..., 40} with 30 people having b′ = 50 and 10 people having b′ = 25. Both
the structures have the level of competence at 0.7 and they have the same stakes
mean equal to 43.75. However, we have that nh = 15 with final accuracy equal
to 0.94 for D (and social welfare for it equal to 1647) and that n′h = 11 with final
accuracy for it equal to 0.92 and social welfare 1602 for D′.

There is an interesting reflection to make. Between two structures with around
the same total stakes involved in the question (indeed

∑n
i=1 bi = nb), the more

‘efficient’ (in terms of accuracy and social welfare) structure is not the one where
each agent has the same stakes involved in the matter as everybody else. Indeed,
it appears to be more efficient a group where there is a small amount (but not to
small) of people with high stakes and the rest of the stakes are low (this seems to
be the takeaway from Example 3.4 and Observation 3.2). This finding seems to
be quite relevant to many realistic situations. It could happen that a certain neigh-
bourhood has to express the opinion on two different matters. The first one may
concern all the citizens (for example the construction of a park) and the second
one concerns a smaller group (for example the construction of a boxing gym –
we are assuming that the majority of the inhabitants are not boxers). It seems to
be rational, based on the results we proved here, to expect a bigger participation
of the population in the second case. Indeed, in that case all the boxers would
take part in the decision (whereas just a small amount of citizen will actually join
actively in the first case).

3.4 Summary, Discussion and Takeaways

This chapter aimed at showing whether or not allowing for different stakes could
have changed the picture we described in Chapter 2. Indeed, throughout all the
chapter we put the focus on highlighting differences and similarities.

Comparing the results. In general, the results we obtained here are mainly in
line with what we saw in Chapter 2. We proved that adding more agents does
not increase the accuracy of the group unless it changes the value for bh (see
Definition 3.1 and Theorem 3.2). The reason for this is that the increase of n does
not necessarily increase the number of the voters at an equilibrium. As we have
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already seen, this is in contrast with the results of CJT (and in line with those of
Chapter 2). However, there is a difference that must be highlighted. In Chapter
2, each agent had the same interest in the matter, and so just by knowing p and
e we could have determined the limit nthr (see Definition 2.2). Consequently, if
n ≥ nthr adding any type of agents would have not changed the equilibria. In
the case for different stakes it may be that adding an agent with the same stakes of
those already in the group does not change nh (the size of the biggest equilibrium),
whereas adding one (or more) agent(s) with relevantly higher stakes may actually
increase nh and consequently the accuracy at the mPNE. This seems to capture
the fact that crowds may be more efficient than small groups, but only if they are
‘very interested’ crowds.

As far as the social welfare is concerned, we also acknowledged a similar
situation to the one we described in Chapter 2. The higher is the number of agents,
the greater the difference between the maximum for the social welfare and the
social welfare at the equilibria. Quite relevantly, the similarity of the results is
well shown by the fact that almost all the main theorems in this chapter rely on
results from the previous one.

Some novelties. This framework provides us with more insights about the phe-
nomenon too. Two are the lessons that can be drawn. First, we showed that an
mPNE can be reached only if people with stakes higher than a certain threshold
bh vote (Theorem 3.2). This means that any equilibrium where the most interested
agents are not voting is not ideal. Secondly, this framework allows us to draw a
comparison between two groups with very similar attributes in the ‘community
perspective’ (nb) and slightly different ones in the individual points of view (see
Observation 3.2). This is quite a success, and it seems to say that groups more
diverse (in terms of stakes) may produce more efficient equilibria than homoge-
neous ones under certain conditions. Indeed, a good direction of research may be
a deeper investigation of these cases and a more precise formalization of which
groups should be preferred to others, as more ‘efficient’.
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4 Experts and Amateurs

In this fourth chapter we introduce another modification to our model. So far we
only took into account situations in which each agent had the same level of com-
petence as all the others. What if agents by spending the same amount of effort
reach different levels of competence? Who is going to vote then? We dedicate
Section 4.1 to formalize this scenario and to understand how it works. In Sec-
tion 4.2, we characterize the pure Nash equilibria, and we introduce a conjecture
on these types of profiles that could yield interesting results. In Section 4.3, we
briefly discuss the social welfare of the game. Eventually, in Section 4.4 we take
into account the possibility of delegation without introducing any formal results,
but just showing through examples how and why the mechanism of delegation
could be taken into account.

4.1 Preliminaries

We start by redefining some of the notions we already have and by adding some
new definitions, which turn out useful in this new setting.

First of all, we add to a decision structure D a vector pN = (p1, ..., pn) that
collects the different levels of competence of the agents. Indeed, we say that pi is
the competence, or the level of competence of agent i. We assume b = 1 to be the
same for everybody, to not needlessly complicate our scenario.1 Consequently,
the decision structure we refer to in this chapter is the following: D = 〈N, e,pN〉.
We use in general the notation p to denote a vector of competences. In order to be
able to work and describe such vectors we introduce some new notions. We call
|p| the length of p and N(p) the set of the agents s.t. if i ∈ N(p) then pi occurs
in p. So, N(pN) = N . Now, we can redefine the formula for the accuracy of a
group of voters whose levels of competence are described by p. Indeed, the idea
is still the same as the one discussed in Chapter 1, but Equation 2.5 needs some
changes. In order to do so we call WC the set of winning coalitions for a vector
of voters p, i.e. WC = {S ⊆ N(p)||S| ≥ |p|+1

2
}. Similarly, we call TC the set of

1This is the assumption we already made in Chapter 2.
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tie coalitions, i.e. TC = {S ⊆ N(p)||S| = |p|
2
}. We take M(p) to represent the

probability that a majority among the voters with vector p gets the answer right
and we let M : (0, 1)n(p) → R be the following function:

M(p) =


∑

S∈WC

∏
i∈S pi

∏
i/∈S(1− pi) if |p| is odd∑

S∈WC

∏
i∈S pi

∏
i/∈S(1− pi)+

+1
2
·
∑

S∈TC

∏
i∈S pi

∏
i/∈S(1− pi) if |p| ≥ 0 and is even

1
2

if |p| = 0.

(4.1)

Indeed, first, we look at the coalitions of voters with size bigger than half of
the total of voters, i.e. the sets S ⊆ N(p), |S| ≥ |p|+1

2
. Then we compute the prob-

ability for each coalition to exactly describe the set of people voting for the right
answer. In case the total |p| is even, we add to that the probability that a coalition
with exactly half of the total voters gets the correct answer. Consequently, if p
is an empty vector, the probability is equal to 1

2
. To compute M(p) the order of

the elements in the vector does not matter. Consequently, from now on every time
we consider a vector p we assume that it is ordered in descending order.2 Thus,
p = p′ is true iff p and p′ have the same elements, i.e. for all i, pi = p′i. In
addition, we also use the notation p+ pi and p− pi to add and eliminate elements
from a vector. We define formally two operations.

p + pi = (p1, ..., pN) + pi = (p1, ..., pi, ..., pN) (4.2)

s.t. (p1, ..., pi, ..., pN) is still in descending order. And, similarly,

p− pi =

{
(p1, ...pi−1, pi+1, ..., pN) if pi occurs in p

(0) otherwise.
(4.3)

Notably, the second condition is for purely technical reasons, and will become
apparent in Theorem 4.1. The space of the actions is the same as in Chapter 1, i.e.
ai = {1, 0}. Thus, we have that a ∈ {0, 1}n. We call p(a) the vector of levels
of competence of the people voting in a profile a. So, |p(a)| = |a|. Notably,
two profiles a and a′ may turn out to have the same vector p(a) = p′(a′) even if
they do not have the same voters. This is indeed reasonable as these two profiles
do not differ in anything in terms of our analysis. In fact, as in the Chapter 1, if
p(a) = p(a′) then if a has a property also a′ has it. Clearly, this is due to the fact
that the accuracy of a profile a just depends on the corresponding vector p(a). In

2So, basically also pN is ordered, which implies that the agents are numbered such that pi ≥ pj
if i < j.
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a similar way to what we did in Chapter 3 we also denote with p1min(a) the value
of the competence of the least accurate agent among the voters, i.e.

p1min(a) =

{
min{pi|ai = 1} if |a| > 0

0 otherwise.
(4.4)

And, we denote with p0max(a) the value of the competence of the most accurate
agent among the non-voters, i.e.

p0max(a) =

{
max{pi|ai = 0} if |a| < n

0 otherwise.
(4.5)

Given the above equation for M we can now also redefine the utility of an agent
i:

ui(a) = M(p(a))− aie. (4.6)

On this basis, we shall now proceed to analyze the new game.

4.2 Basic Results and Pure Nash Equilibria

In this section, we have a look at how the mechanism is structured and at how
we can characterize pure Nash equilibria. Then, we introduce a conjecture about
the kinds of profiles we are studying now and we discuss what kinds of directions
could be taken if that is proven to be true.

4.2.1 Pure Nash Equilibria

First of all, we shall have a look at an example to better understand the new for-
mula for the accuracy of the majority.

Example 4.1. Let p = (p1, p2, p3). Our formula says that if they all vote the final
accuracy can be computed following these lines:

M(p) = p1p2p3 + p1p2(1− p3) + p1(1− p2)p3 + (1− p1)p2p3.

Notably, since the pis are different the function M(p) does not present all the
regularities of the function M(n, p) of Chapter 2. Indeed, it can be that adding
more voters decreases the general accuracy, and it can also be that going from an
odd number of voters x to x + 1 voters increases the accuracy . We will discuss
a method to regularize this function, by restricting its domain in Subsection 4.2.2.
We say that two vectors p and p′ are s.t. p � p′ if |p| = |p′| and for all 0 ≤ i ≤ |p|
we have that pi ≥ p′i. It is easy to see that the following result holds. Relevantly,
in our proof we make use of Lemma 1 in (Paroush, 1997).
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Proposition 4.1. If p,p′ are two vectors of competences p � p′ then M(p) ≥
M(p′).

Proof. The proposition can be shown through little changes. Let p = (p1, ..., pm)
be a vector. By Lemma 1 (Paroush, 1997), we know that if pm ≥ p′m then M(p) ≥
M(p′′) with p′′ = (p1, ..., p

′
m). We can repeat the same reasoning until we arrive

at building the vector p′. Thus, M(p) ≥M(p′).

The idea is very intuitive: if the voters are more competent, the overall accu-
racy will be higher. Now, as we did in the previous chapters we can characterize
the equilibria in this framework.

Theorem 4.1. Let D = 〈N, e,pN〉 be a decision structure and a ∈ {0, 1}n be
an action profile with p(a) = p. The profile a is a PNE iff M(p + p0max(a)) −
M(p) ≤ e ≤M(p)−M(p− p1min(a)).

Proof. A profile a is a PNE iff for any agent i ui(a) ≥ ui(a
′
i,a−i) by Definition

2.1. Assume i s.t. ai = 1. Thus, ui(0,a−i) = M(p− pi) and ui(a) = M(p)− e.
Thus, agent i does not deviate iff M(p) − e ≥ M(p − pi), i.e. iff M(p) −
M(p − pi) ≥ e. In addition, M(p − pi) ≥ M(p − p1min(a)) for all i with
ai = 1, by Proposition 4.1 and construction of p1min(a). Thus, for all i, s.t. ai = 1
ui(a) ≥ ui(a

′
i,a−i) iff e ≤M(p)−M(p− p1min(a)).

Now, assume i s.t. ai = 0. Thus, ui(1,a−i) = M(p + pi) − e and ui(a) =
M(p). Thus, agent i does not deviate iff M(p) ≥ M(p + pi)− e, i.e. iff M(p +
pi) − M(p) ≤ e. In addition, M(p + pi) ≤ M(p + p0max(a)) for all i with
ai = 0, by Proposition 4.1 and construction of p0max(a). Thus, for all i, s.t. ai = 0
ui(a) ≥ ui(a

′
i,a−i) iff M(p + p0max(a)−M(p) ≤ e.

Consequently, a is a PNE iff M(p+p0max(a)−M(p) ≤ e ≤M(p)−M(p−
p1min(a)).

Notably, the result is not so different from what we saw in the previous chap-
ters. In a similar fashion as before, we used here the technical assumptions we
made in the previous section, in order to have a general characterization. In fact,
by assuming that p− pi = (0) if pi does not occur in p we are sure that the profile
with size −1 is not taken into consideration as M((0)) = 0. The same happens
for the vector pN . If we try to add an element to it, we are sure that we are adding
an element with value 0, which makes sure that M(pN + 0)−M(pN) = 0 ≤ 0.1

However, here the contribution of each agent becomes more relevant than be-
fore. Indeed, working with different levels of competence implies that in a group

1This can be easily verifies by computing the value for M(pN + 0)−M(pN ).
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of voters the contribution of one of them may be different from the contribution
of the others. We can call weight2 of i the value M(p)−M(p− pi), i.e.

Wp(i) = M(p)−M(p− pi). (4.7)

This corresponds to what is usually referred to in the literature as the possibility
for i of being pivotal in the vote3. A voter can consider herself pivotal any time
the decision is entirely depending on her. Consequently, the probability of being
pivotal corresponds to the probability of the other voters of splitting equally be-
tween the two possible answers.4 This corresponds exactly to M(p)−M(p−pi).
In our case such a probability decreases with two factors: the increase in the level
of competence of the rest of the voters’ (the more competent they are the more
likely that they will not be voting for the wrong option) and the increase in the
number of people (the more people the less likely that they will exactly split in
half). And, of course, the higher is the competence of agent i the higher is her
contribution. Multiple levels of competence allow us to appreciate the importance
of this concept. However, we did mention in Section 2.2 the concept of contribu-
tion, which is, indeed, similar. In characterizing the equilibria we make sure that
the contribution of the least competent agent is high enough to justify her effort.
Indeed, this assures us that it will be the same for all the other voters. And, the
notation of M(p+p0max(a))−M(p) can be easily thought as the potential weight
of an agent in the case she joins the group of voters. Interestingly enough, Theo-
rem 4.1 allows us to look at how effort influences the equilibria. Again, as we did
in Chapter 2 and Chapter 3 we dedicate our next corollary to this.

Corollary 4.1. Let D = 〈N, e,pN〉 be a decision structure with p+ = max{pi|i ∈
N}.

1. If e > p+ − 1
2

a profile a is a PNE iff |a| = 0.

2. If e = p+ − 1
2

a profile a is a PNE iff either |a| = 0 or |a| = 1 and ai = 1
iff pi = p.

3. If e < p+ − 1
2

a profile a is a PNE iff M(p) ≥ M(p − p1min(a)) + e and
M(p) ≥M(p + p0max(a)− e.

Proof. The corollary is entirely dependent on Theorem 4.1. In the case for e >
p+− 1

2
, we can see that the conditions in Theorem 4.1 hold only for a with |a| = 0.

And they hold also for a with |a| = 1 if e = p+ − 1
2
. The case for e < p+ − 1

2
is

just a rewriting of Theorem 4.1 itself.
2Note that such a formula is not well defined for an empty vector p.
3The concept of pivotality is quite well known in voting theory. Some good articles that make

use of it are (Martinelli, 2006; Mukhopadhaya, 2003; Persico, 2004).
4This is the case if the number of voters is odd, if it is even, then it is slightly different.
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The general lesson, which is indeed similar to what we have seen for the pre-
vious chapters is that for a profile to be an equilibrium, the voter with the lowest
competence must still feel pivotal, i.e. must have a considerable weight and a pos-
sible new voter should not feel pivotal enough in the case she switched to 1. Note
however, that both in Chapter 2 and 3, the fact that the size of a profile was odd
allowed us to drop the condition making sure that no agent would have switched
from 0 to 1 (in this case: M(p + p0max(a))−M(p) ≤ e). Being odd implied that
that condition was true. Here it is not the case anymore. There can be profiles
with odd size and for which M(p) ≥M(p−p1min(a))+e holds that are not PNE.
We shall look at the following example.

Example 4.2. Let D = 〈N, e,pN〉with N = {1, 2, ..., 6}, pN = (0.9, 0.6, 0.6, 0.6,
0.6, 0.6) and e = 0.0004. If a = (0, 1, 1, 1, 1, 1) then agent 1 would want to
vote (even if |a| is odd), as M(p(a)) = 0.68 and M(p(a′)) = 0.79 where
a = (a−1, i). And, indeed, u1(a

′)− u1(a) = 0.11− 0.01 = 0.1.

Another consequence of Corollary 4.1 is that we also can be sure in this set-
ting that there exists always at least one profile which is an equilibrium. In-
deed, Corollary 4.1 shows clearly that for e ≥ max{pi|i ∈ N} − 1

2
a profile

a = (0, 0, ..., 0) is a PNE. And for e < max{pi|i ∈ N} − 1
2

we are sure that a
with p(a) = (max{pi|i ∈ N}) is a also a PNE.

For now, we cannot say anything more about the features of the equilibria.
Indeed, unlike in the previous chapters the size of a profile does not help us in this
case, i.e. there is not a one-to-one correspondence between the size of a profile
and a certain overall accuracy. Of course, thanks to Theorem 4.1, it is potentially
easy to compute all the equilibria, and look for the one with the highest accuracy.
However, it is hard to connote them further. Nonetheless, in the next subsection
we propose a conjecture that may give us some help in the study of this situation.
Indeed, there seems to be a link between the accuracy of a group of voters with
size 2k − 1 and the accuracy of a group with size 2k. We discuss there what ad-
vantages this conjecture could bring in terms of analysis of the equilibria.

Now, we shall turn our attention to strong pure Nash equilibria. Although
Lemma 2.2 still holds, we must acknowledge the fact that this is not the case for
Lemma 2.1. Indeed, recall that in Chapter 2, every agent had the same competence
and consequently, just the number of voters mattered. Here, instead the identity of
the voters is important. However, Theorem 4.2 is not so different from Theorem
2.2. Notably, as we did in Chapter 2 for each coalition K we check only the case
for which a′K is completely different from aK , i.e. for all i ∈ K ′, ai 6= a′i. By
doing so we are still sure that we can find a SPNE for the reasons discussed in
Section 2.2. We denote with pmax the vector of competences that produces the
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highest accuracy in a certain decision structure D = 〈N, e,pN〉, i.e. M(pmax) ≥
M(p) for all p. Then, we shall start by proving a quite straightforward lemma.

Lemma 4.1. Let D = 〈N, e,pN〉 be a decision structure and let a be an action
profile. Let K ⊆ N be a coalition s.t. there exists i ∈ K with ai = 0. If K wants
to deviate then a coalition K ′ s.t. p(a′K′ ,aN\K′) = pmax also wants to deviate.

Proof. Assume uj(a
′
K ,aN\K) > uj(a) for all j ∈ K. Consider i ∈ K s.t.

ai = 0. Thus, ui(a
′
K ,aN\K) = M(p(a′K ,aN\K))−e ≥ ui(a). Since M(pmax) ≥

M(p) for every vector p we get that M(pmax) − e ≥ M(p(a′K ,aN\K)) − e.
Now consider the coalition K ′ that produces pmax. If j ∈ K ′ s.t. aj = 0, then
uj(a

′
K′ ,aN\K′) = M(pmax) − e ≥ M(p(a′K ,aN\K)) − e > uj(a). If aj = 1,

then uj(aK′ ,aN\K′) = M(pmax) ≥ uj(a). Thus, the coalition K ′ wants to
change.

The idea is that if a coalition K that contains an agent that would go from
the action 0 to the action 1 deviates then also the coalition that would produce the
maximal accuracy deviates. Indeed, for that agent i would hold that M(p(a′K ,aN\K))−
e ≥ M(p(a)). Consequently, M(pmax) − e ≥ M(p(a)) for all the people that
would need to vote in pmax. So, regardless who are the agents that would join a
coalition producing the vector pmax if it is worth for one it is worth for everybody,
since the value that each agent gives to the accuracy is the same for everybody.
Now that we have this useful lemma we can proceed to our main result.

Theorem 4.2. Let D = 〈N, e,pN〉 be a decision structure. A profile a is an SPNE
iff M(pmax)−M(p(a)) ≤ e ≤M(p(a))−M(p(a)− p1min(a)).

Proof. A profile a is an SPNE iff no coalition K would deviate by Definition
2.3. There are two cases. Either there exists i ∈ K s.t. ai = 0 or there exists
not such i. By Lemma 2.2 we know that a coalition where there exists no i s.t.
ai = 0 would not deviate if the single agent j with aj = 1 would not deviate.
Similarly, by Lemma 4.1 we know that a coalition K where there exists i ∈ K
with ai = 0 would not deviate if the coalition K ′ that produces the vector pmax

does not deviate. So we need to check just these two cases. By Theorem 4.1 no
voter deviates iff e ≤M(p(a))−M(p(a)− p1min(a)). Now, consider a coalition
K ⊆ {i ∈ N |ai = 0} s.t. p(a′K ,aN\K) = pmax. Coalition K would not deviate
iff M(pmax)− e ≤M(p(a)), i.e. iff M(pmax)−M(p(a)) ≤ e. Thus, a profile a
is an SPNE iff M(pmax)−M(p(a)) ≤ e ≤M(p(a))−M(p(a)−p1min(a)).

Notably, there is only one difference between this theorem and Theorem 2.2,
which is a direct consequence of the framework: this theorem uses pmax instead
of using the accuracy of the vector pN (that would have corresponded to n voters
in Chapter 2). Of course, this is because M(pmax) ≥M(pN).
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A direct consequence of Definition 2.3 is that if a profile a is an SPNE it is
also a PNE. As in Chapter 2 and Chapter 3, we are not sure that an SPNE exists.
However, in this setting there is a more interesting detail. Remarkably, SPNEs
may have different sizes. In Chapter 2 and 3 we saw that to be an SPNE a certain
profile should have had only one size, if an SPNE existed. Here, instead, in the
same game there can be vectors with different sizes that are both SPNE. Consider
this scenario.

Example 4.3. Let D = 〈N, e,pN〉 with N = {1, ..., 7}, pN = (0.72, 0.72, 0.72,
0.72, 0.7, 0.7, 0.7) and e = 0.051. We have that pE = (0.72, 0.72, 0.72) yields a
PNE with M(pE) = 0.837. Similarly, a with p(a) = (0.72, 0.72, 0.7, 0.7, 0.7)
is also a PNE with M(p(a)) = 0.847. In addition, pmax = pN with M(pN) =
0.888. Thus, a profile a can be an SPNE both if p(a) = pE and if p(a) =
(0.72, 0.72, 0.7, 0.7, 0.7). Notably these two vectors have different sizes.

Indeed, this is a result of the fact that a certain accuracy can be reached through
different vectors (and different sizes). Instead, in Chapter 2 and 3 there was a one-
to-one correspondence between size of a profile and overall accuracy.

We can conclude here the study of PNE. We provided a full characterization
of PNEs and of SPNEs and we already discussed some of the salient features of
the framework. As we mentioned, we dedicate the next subsection to a conjecture,
and its consequences.

4.2.2 A conjecture

Recall that in Chapter 2 we proved that M(2m − 1, p) = M(2m, p) if m ∈ N
(Proposition 2.1). Such a result, although not extremely complicated, allowed us
to highlight the importance for a profile of being of an odd size (see Corollary 2.1
and 2.1 and Observation 2.1). We conjecture that something similar can be proven
also in the case for heterogeneous competences. To the best our knowledge no
proof of this conjecture can be found in the literature. Although the basic principle
seems to be exactly the same one as for Proposition 2.1 we have been unable to
prove it. Since such a conjecture, if proven to be true, may turn out to be important
for a work like ours, we state it here and we sketch a possible way to approach
the proof. Then, we briefly discuss which could be the consequences of such a
proposition in the context of our research.

Conjecture 4.1. Let p be a vector with |p| = 2m− 1 with m ∈ N. If p ≤ pi for
each pi that occurs in p then M(p) ≥M(p + p).

We sketch a possible way of proving the proposition. In general, the flavour is
very similar to the proof of Proposition 2.1. Given the vector p we shall consider
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the probability P (p, l), i.e. the probability for exactly l agents out of |p| to vote
for the right answer. Indeed, it is easy to prove that M(p + p) ≤M(p) iff

pP (p,
|p| − 1

2
) ≤ (1− p)P (p,

|p|+ 1

2
). (4.8)

Indeed, this is very similar to the proof of Proposition 2.1. However, although we
have proven Equation 4.8 for specific cases (for example for |p| = 3), it is still
unclear to us how it generalizes. For this reason, such a generalization is left for
future work.

Proving Conjecture 4.1 would allow us to draw two important consequences
out of it, which are quite similar to some of the consequences of Proposition 2.1
in Chapter 2. First of all, Conjecture 4.1 would have assured us that any profile a
with |a| > 0 which is a PNE is such that |a| is odd. This would actually resemble
the scenario we described in Corollary 2.1 and Corollary 3.1. Indeed, the weight
of the agent with the lowest competence in an even profile would be always equal
or lower than 0 and consequently also lower than e.

Secondly, Conjecture 4.1 would also help to find a correspondence between
the effort and the size of equilibria. This was, indeed, one of the most important
results in Chapters 2 and 3: the smaller the effort, the larger the size of the mPNEs
(see Figure 2.3 and Observation 2.1). However, even if we assumed Conjecture
4.1 to hold, the correspondence would not be immediately straightforward. We
shall discuss briefly here how to find it.

To find such a correspondence we should focus our attention on elite profiles,
i.e. profiles in which all the voters have a higher or equal competence than the non-
voters. We call elite vectors the vectors that produce elite profiles. Notably, we
make use of them also in the next section. Such profiles present some interesting
features. First of all, we could be sure that if an elite profile of size k is a PNE,
then all the elite profiles of size l ≤ k would also be PNEs, if l is odd. Indeed,
this is what happens with neq in Chapter 2 (see Figure 2.3). This would be a direct
consequence of Conjecture 4.1 and of the concept of weight. Relevantly, elite
profiles are built by ‘cutting the tail’ of the vector pN . If we need an elite vector
of length x we take the first x elements of pN . Thus, if the weight of the element x
in the vector p with size x is higher than e, then also the weight of the element y in
the vector p′ with size y < x is higher than e given that y is odd. This would bring
us closer to the correspondence we were talking about. Indeed, if we consider the
elite profile which is a PNE with the highest accuracy (we call it pE from now on),
we have that its size actually increases with the decrease of the effort in the same
way we saw in Chapter 2 (recall that we are still working under the assumption
that Conjecture 4.1 holds, although this is not proven). Consider the example.
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Example 4.4. Let D = 〈N, e,pN〉 a decision structure with N = {1, ..., 14},pN =
(0.87, 0.85, 0.85, 0.77, 0.76, 0.74, 0.74, 0.74, 0.7, 0.69, 0.65, 0.6, 0.6, 0.6). Depend-
ing on the values for e we may have different value for the highest accuracy that
can be reached by an elite profile which is an equilibrium. We shall have a look
at Figure 4.1. Just to give an idea to the reader, we mention that |pmax| = 11.

Figure 4.1: On the x-axis there are the different values for e and on the y-axis the
overall group accuracy. The red cross represents the accuracy for pE for different
values of e.

Notably, we would be sure that any profile with a size smaller than pE would
have a lower accuracy, for how elite profiles would be built. However, the profile
a which is an mPNE may also not be elite. And so, it may have a larger size and
a higher accuracy than pE .

In the end, being able to prove effectively Conjecture 4.1 may provide our
kind of research with two useful insights on the scenario, which would resemble
the results we proved in Chapter 2 and Chapter 3. And, a good way to exploit
such a scenario would be that of using elite vectors.

Now, we can put aside Conjecture 4.1, hoping to be able to prove it in future
work and we shall briefly consider the social welfare of this game.

4.3 Social Welfare

In the present setting the function for the social welfare is extremely irregular
and using elite profiles does not help enough. For this reason in this section we
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limit ourselves to define social welfare in this framework and discuss some of
its features, in particular those that make our analysis especially hard. In order
to consider the social welfare in this setting, we must, first of all, redefine its
formula. Given a certain decision structure D = 〈N, e,pN〉, for a profile a the
social welfare sw : A→ R is so defined:

sw(a) = n ·M(p(a))− |a| · e. (4.9)

Notably, the social welfare entirely depends on the underlying vector of a. So,
we can rewrite the social welfare such that

sw(p) = n ·M(p)− |p| · e. (4.10)

Now, in order to assess the quality of the equilibria we found, we would need
to be able to find and characterize the profiles (or the profile – if it is just one)
that produce the highest social welfare possible. A good step in this direction is
noting that the vector that maximizes the social welfare is an elite vector. Indeed,
an elite vector ‘makes the most’ out of the total effort spent. Recall, that an elite
vector p is such that for all p′ with |p′| = |p|, p � p′. And, consequently,
M(p) ≥ M(p′). For this reason, given a certain amount of effort, i.e. a number
of voters, the corresponding elite profile is the one with the highest accuracy.

However, this is not enough to find the vector that maximizes sw. Indeed, if
compared to the situation in Chapter 2 and Chapter 3 here we are provided with
less information. In the previous chapters the function for the social welfare was
such that, if constrained on profiles with odd size a local maximum would have
also be a global maximum for all the function. This allowed us to draw inferences
like Theorem 2.3 in the Chapter 2. In fact, if we managed to find a local maximum
we could have been sure that that would have been a global maximum. Here, this
is not the case. Consider the following example.

Example 4.5. Let D = 〈N, e,p〉 with pN = (0.9, 0.7, 0.7, 0.7, 0.7, 0.6, 0.6). Con-
sider the elite vectors:

• p0 = ()

• p1 = (0.9)

• p3 = (0.9, 0.7, 0.7)

• p5 = (0.9, 0.7, 0.7, 0.7, 0.7)

• p7 = (0.9, 0.7, 0.7, 0.7, 0.7, 0.6, 0.6)

And, consequently the corresponding accuracy is:
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• M(p0) = 0.5

• M(p1) = 0.9

• M(p3) = 0.87

• M(p5) = 0.89

• M(p7) = 0.88

As it may be noticed, size 1 is a local maximum and and size 5 is a local maximum.
At the same time, 1 is a global maximum, but 5 is not.

Unfortunately, this prevents us to be able to characterize effectively our max-
imum. And consequently, we are also not able to look at how much a certain
equilibrium is efficient. Indeed, since we do not have any ‘local’ information
about the social welfare, it is hard to compare it with our information about equi-
libria. The irregularities that we showed in Example 4.5 are such that we prefer
to stop our investigation here. Indeed, delving into the social welfare of such a
framework may have required more advanced tools and would have probably not
lead us to sufficiently interesting results. Instead, we dedicate the last part of this
chapter to look into the possibility of delegation.

4.4 What if Agents Delegate?

So far, we just took into account the possibility for agents to either vote or ab-
stain. This is indeed the most basic setting we could study. A natural expansion is
to consider the possibility for agents to delegate. Forms of voting of this type are
usually called proxy systems. These include the classical forms of representative
democracy and also new voting structure like liquid democracy, which has drawn
the attention of the political debate in the most recent years (Blum and Zuber,
2016; Brill, 2018; Paulin, 2020; Ramos, 2015). In particular, the basic idea of
liquid democracy is that each agent is allowed to abstain, vote or delegate to any
other agent. According to many researchers, such a proposal may at the same time
take the best of both representative democracy and direct democracy. Indeed, it
allows agents to express their vote when they think they are competent or to del-
egate and consequently not spend any effort in voting, if they do not care enough
for the matter at stake. So, looking at liquid democracy in our framework seems
quite a natural step.

However, we do not plan to give an account of what is the game-theoretic be-
havior of a structure in which agents are also allowed to delegate. Instead, our aim
in this brief section is just to suggest that such a this direction is worth studying,
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as it presents already some very nice features. In order to do so, we will show
some basic examples necessary to transmit our intuitions.

We shall briefly formalize the setting. We allow each agent to delegate to any
other agent, as we saw being the case for liquid democracy. Consider the same
decision structure as before D = 〈N, e,pN〉 and allow each agent i to be able to
perform the following actions: 1, 0, del(1), ..., del(n) where del(j) represents the
action of delegating to j. Indeed, if agent i delegates to agent j we have that the
power of i is now 0, and the power of j increases of 1. We call pow(i) the power
of i such that

pow(i) =

{
|{j ∈ N |del(j) = i}|+ 1 if ai = 1

0 otherwise.
(4.11)

Notably, here we do not take into account the possibility for delegation of be-
ing transitive, i.e. if agent i delegates to j and j delegates to k, the agent k still just
gets an increase of 1 in power and i’s delegation is ‘lost’. Now, in order to define
properly the function M(a) we denote with N(a) = {i|ai = 1} the group of
voters, with pow(C) for C ⊆ N(a) the power of a coalition, such that pow(C) =∑

i∈C pow(i). Eventually, let WC = {C ⊆ N |pow(C) ≥ pow(N(a))+1
2

} be the
set of winning coalitions and TC = {C ⊆ N |pow(C) = pow(N(a))

2
} the set of tie

coalitions. Thus, the function M : A→ (0, 1) is so defined:

M(a) =


∑

C∈WC

∏
i∈C pi

∏
i∈N(a)\C(1− pi) if pow(a) is odd∑

C∈WC

∏
i∈C pi

∏
i∈N(a)\C(1− pi)

+1
2
·
∑

C∈TC

∏
i∈C pi

∏
i∈N(a)\C(1− pi) if pow(a) is even.

(4.12)

Intuitively, this corresponds to looking at the coalitions of voters with power
greater than half of the total power of voters and compute the probability for each
coalition to exactly describe the set of people voting for the right answer if the
total power is odd. And, if the total power is even, we add to that the probability
that a coalition with power exactly equal to half of the total gets the correct answer
multiplied by 1

2
. Similarly, we can assume that preforming the action 1 still costs

an effort e and actions 0, del(1), ..., del(n) do not cost any effort. Consequently,
the utility is so defined:

ui(a) =

{
M(a)− e if ai = 1

M(a) otherwise.
(4.13)

Indeed, it seems rational to think of the delegation process as something that al-
lows a voter to save effort.
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4.4.1 Some Examples and Some Observations

Given this formal framework we can observe some features of the process. First
of all, delegation may allow a certain group to reach a higher value for the highest
accuracy.

Example 4.6 (Delegation increases the maximal accuracy if agents’ competences
are different). Consider the delegation structure D = 〈N, e,pN〉 s.t. N = {1, ..., 6},
pN = (0.9, 0.75, 0.75, 0.7, 0.7, 0.6) and e = 1. If we do not allow for delegation,
i.e. Ai = {1, 0} then the highest accuracy is reached when everybody votes but
agent 6. Indeed, the group accuracy is 0.910. Instead, if we allow for delegation
then we get that the highest accuracy is reached when everybody but agent 6 votes,
and agent 6 delegates to agent 1. Indeed, this produces and accuracy of 0.916.

Of course, this is not the case of every group. This can mostly happen when
the differences among the competences of the agents are quite large. In fact, when
the differences among the competences are small, delegation does not come into
play, as it can not increase the accuracy of a profile.

Example 4.7 (Delegation does not increase the accuracy if the competences are
similar). Consider a delegation structure D = 〈N, e,pN〉. If for all pi = p we
have that distributing different weights over a certain group of voters either de-
creases the accuracy of the group or leaves it the same. The idea is that distribut-
ing weights basically decrease the number of coalitions that can win. And, if it
does not increase the probability of every coalition of finding the truth that it is
not beneficial. Instead, in other cases it may become useful.

Although this seems quite a obvious result it represents an important step for
the understanding of when and why delegations should be allowed. This is also
why we introduced this part on the delegation here, since in order for delegation
to be effective (i.e. to enhance the accuracy of a certain group of voters) we need
the voters to have different levels of competence.

In addition, delegation may save effort and increase accuracy in maximal equi-
libria even if it does not produce a higher accuracy, as we can see in the next
example.

Example 4.8 (Delegation saves effort). Consider the same delegation structure
D = 〈N, e,pN〉 as in 4.6, s.t. N = {1, ..., 6}, pN = (0.9, 0.75, 0.75, 0.7, 0.7, 0.6)
and e = 0.01. If we do not allow for delegation, the profile a = {1, 1, 1, 1, 0}
is an equilibrium, as u5({1, 1, 1, 1, 0, 0}) = 0.886 < 0.910 − 0.01u5(a) and
u6({1, 1, 1, 1, 1, 1}) = 0.882 − 0.01 < 0.910 = u6(a). Indeed, the group ac-
curacy in a is 0.910 and the total effort 0.05. Instead, if we allow for delega-
tion a is not an equilibrium anymore, because agent 6 would deviate to del(1)
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(M({1, 1, 1, 1, del(1)}) = 0.916). Yet, similarly, {1, 1, 1, 1, del(1)} would also
not be an equilibrium, as agent 5 would deviate to 0. Indeed, the profile a′ =
{1, 1, 1, 1, 0, del(1)} is an equilibrium: it has an overall accuracy of 0.922 and
social welfare of 5.48 (total effort of 0.04). Relevantly, such a configuration has
higher accuracy and higher social welfare than a.

Apparently, delegation plays quite an important role in our type of games,
as it seems to be able to generate fairly new and interesting equilibria. At the
same time, it is not always the case that delegation can produce an mPNE with
a higher accuracy than if delegation was not allowed. Two things can happen in
this last case. First, it may simply be that delegating is not worth it for any of the
agents. This usually occurs when the competence levels are all quite similar one
to each other, as we mentioned. Secondly, it may happen that delegation creates
instability, which ends up in producing a lower accuracy in the mPNE. Delegation
increases the accuracy of a group of voters by privileging one of them, but then
the weight of the voter with the lowest p consequently decreases and it may not
be enough anymore for her to keep voting – because she would not be pivotal
anymore. We shall consider an example of this situation.

Example 4.9 (Delegation may also harm). Consider a structure D = 〈N, e,pN〉
with N = {1, ..., 6}, pN = (0.8, 0.75, 0.75, 0.7, 0.7, 0.6) and e = 0.01. Now,
suppose to look for equilibria. Consider the profile a = {1, 1, 1, 1, 1, 0}. If we do
not allow for delegation, this is an equilibrium, as u5({1, 1, 1, 1, 0, 0}) = 0.866 <
0.894− 0.02u5(a) and u6({1, 1, 1, 1, 1, 1}) = 0.872− 0.003 < 0.8940 = u6(a).
Indeed, the group accuracy in a is 0.894. Instead, if we allow for delegation
and we assume that the cost of delegation is 0 we have that a is still a legitimate
profile in the new framework but it is not an equilibrium anymore, as the pro-
file {1, 1, 1, 1, del(1), 0} is better for agent 5, indeed u5(a) = 0.894 − 0.02 <
0.889 = u5({1, 1, 1, 1, del(1), 0}). In fact, the profile {1, 1, 1, 1, del(1), 0} is the
equilibrium of this new game with delegation. However, the accuracy in this case
is lower than the one for the game with no delegation.

In a very similar vein, it may also be argued that delegation also brings up
a cost (maybe the cost of identifying the delegate), and so, it may become less
appealing.

4.4.2 Outlook

We believe that the previous examples and observations are enough to justify a
more detailed look into the possibility of delegating, in particular, for this type of
game. Indeed, as we pointed out delegation can increase the maximal accuracy
of a group (and consequently the accuracy of the mPNE), and at the same time
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it can save some effort, still reaching the same overall accuracy, if compared to a
situation where delegation is not allowed. However, at the same time it can also
be useless, if the agents’ levels of competence are all quite similar. Similarly, it
can even produce equilibria with lower accuracy, if compared to non-delegation
situation. In particular, the following questions seem to be highly relevant:

1. When is delegation useful and when it is not?1

2. How does the social welfare change if we allow for delegation?

3. What happens if also delegation has a cost?

Indeed, obtaining results about these kinds of games allows us to better under-
stand when proxy voting, like liquid democracy, may increase the efficiency of a
group in a setting where gathering information is costly. It has been proven that
delegation may not directly increase the accuracy in many situations (Caragiannis
and Micha, 2019; Kahng, Mackenzie, and A. Procaccia, 2021), but taking into ac-
count the effort may definitely turn the table in favour of it. So, although we will
not spend more space in this thesis to look into this kind of structures we hope it
will be addressed in the near future.

4.5 Summary, Discussion and Takeaways

The introduction of different levels of competence in the framework has a relevant
impact on the picture we described in Chapter 2 and Chapter 3.

Irregularities. First of all, we could not prove here results as strong as in the
previous chapters. The reason for this is that the function that computes the over-
all accuracy does not depend on the size of a profile, as we already mentioned.
However, we characterized the equilibria, and we showed some interesting ele-
ments: for example, the fact that there can exist SPNEs with different sizes. In
addition, we also discussed how Conjecture 4.1 may provide more insights on the
structure (Subsection 4.2.2).

A stepping stone. This chapter can be regarded as a valuable stepping stone
towards future research, as by proving these fundamental theorems we prepared
the ground for many possible future directions. A first direction consists in the
possibility of unifying this perspective and that of Chapter 3 in a new framework,
by considering agents with different stakes and different levels of competences.
The natural questions to answer would be: what kinds of agents would vote at the

1A good step in this direction has been done by (Zhang and Grossi, 2021).
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equilibria with the largest size possible? Those with high competence or those
with high stakes? If the agents with low competence have all high stakes would
the decision structure produce a low social welfare? A second direction is the
one we highlighted in Section 4.4. Delegation seems to be highly effective if we
take into account the perspective of the effort. Indeed, whereas it can be seen as
a process that reduces the overall accuracy, it also has the benefit of saving effort.
Consequently, a full study of delegation under this point of view is in order.
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5 Tracking Truth on Networks

So far we considered agents able to compute the final accuracy of the group and
then decide how to behave, i.e. which action to choose. This is the result of many
strong assumptions. First of all, we assumed that each agent is connected with
every other member of the group and, secondly, that she can see the accuracy and
the action profile of any agent whom she is connected with. In this chapter, we
relax the first assumption, i.e. we allow every agent to be connected just with a
portion of the rest of the group. To do so, we refer to an underlying network that
links the agents. We look at the behaviour of the agents as a result of introducing
such a network. This is an important step towards a realistic scenario. When
groups of people are asked to find some ground truth, they may only be aware of
the decisions of people in their immediate social circles. Consider, for example,
asking all academic researchers around the world whether or not conferences will
be in person next year. This is definitely a ground truth scenario. Each researcher
may either expresses a vote or abstain. Quite obviously no researcher will get to
know the choices of all the others. Often each person discusses the topic with no
more than two or three friends.

We use Section 5.1 to present the new framework and to introduce some new
notions. In Section 5.2 we look at some categories of graphs and in Section 5.3
we study the Nash equilibria there. Notably we do not take strong Nash equilibria
into account. In Section 5.4, we integrate the analytical results with computer
simulations that provide a more general overview of the game.

5.1 Preliminaries

We consider a group of agents N = {1, ..., n} and a level of competence p which
is equal for everybody. Again, every agent has the possibility of choosing between
two actions: 0 (abstain) and 1 (vote). Let e represent the effort that is required to
perform the action 1, i.e. ‘vote’; choosing the action 0 does not yield any cost. We
denote with ai ∈ {0, 1} the action of agent i and we call A = {0, 1}n the space of
all the possible action profiles. The accuracy of a group of x voters with accuracy
p is computed following Equation 2.5.
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In order to account for the fact that not every agents is able to see everybody
else, we introduce an undirected graph G = 〈N,E〉 over the set N where E is
the set of all the linked couples. If {x, y} ∈ E we say that x and y are neigh-
bors and that x sees y and viceversa. Note that {x, y} ∈ E is a set – so order
does not matter. We denote with D(x) the set of all the agents that x ‘sees’:
D(x) = {y ∈ N |{x, y} ∈ E}. And we call d(x) the size of D(x). In graph
theory, d(x) corresponds to the degree of connectedness of x (Jackson, 2010).
Consequently, we denote with D = 〈G, e, p〉 the decision structure we will use in
this chapter, where G = 〈N,E〉.

Clearly, our agents cannot decide which action to choose on the basis of the
accuracy of the entire group (as they do not know it). For this reason, they have
to use an heuristics, i.e. a local strategy that can help them in decide what to do
in the absence of full information. There exist in our configuration many possible
heuristics that can be chosen. We decided to use the one we describe here. In
order to state it explicitly, we denote with D1(a, x) the set of all the voters in a
profile a such that they are either x herself or they are neighbors of x: D1(a, x) =
{y ∈ N |ai = 1 and either y ∈ D(x) or y = x}. Similarly, d1(a, x) is the size of
D1(a, x). Every agent i has the following utility function:

ui(a) = M(d1(a, i), p)− aie. (5.1)

Intuitively, since an agent i is not able anymore to assess the quality of her choice
at the global level, she prefers to do it at the local level. This means that what is
important is that she feels pivotal at the local level. Imagine to assist to a con-
versation among researchers about answering (through the expression of a vote)
the question about conferences mentioned above. It is very likely that a person
may feel more obliged to vote if the people she is talking to decided not to do
so. This is the core of this utility function. Every agent is worried about whether
among the people she knows there will be enough voters. Indeed, there may be
a psychological correspondence that goes from the local perspective to the global
perspective. The agent assumes that if she makes sure her circle of acquaintances
has done its part, then she can also be confident that all the other groups did the
same.

5.2 Graphs

A general study of our game on every type of graph is at this point premature.
For this reason, we decided to work just with some specific categories of graphs,
in the hope of being able in future work to expand our discussion of the topic.

68



Tracking Truth on Networks

However, as you will see the graphs we selected here present some interesting
features already. For example, they allow for a comparison in terms of accuracy
(and number of voters) between a more centralized network (like a star) and a
more decentralized one (like a regular graph or a grid). We will analyze these
differences further in the final section of this chapter; for now, we limit ourselves
to introduce these types of graphs and define them formally. Although we just talk
about graphs in our formal results we use interchangeably the term ‘graph’ and
the term ‘network’ in the running text.

Definition 5.1. A graph G = 〈N,E〉 is a star with center n iff E = {{1, n}, ...,
{i, n}, ..., {n− 1, n}}.
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Figure 5.1: The first image is a star with n = 9. The second one a is ring, and the
third one is a wheel with n = 9.
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Definition 5.2. A graph G = 〈N,E〉 is a ring iff E = {{1, 2}, ..., {i−1, i}, {i, i+
1}, ..., {n− 1, n}, {n, 1}}.

Definition 5.3. A graph G = 〈N,E〉 is a wheel with center n iff E = {{1, 2}, ...,
{i− 1, i}, {i, i + 1}, ..., {n− 1, 1}} ∪ {{1, n}, ..., {i, n}, ..., {n− 1, n}}.

Indeed, a wheel is exactly the composition of a ring and a star. We shall have
a look at Figure 5.1, which collects these types of graphs. Notably, we assumed
that the element in the center of the wheel and of the star is always agent n. This
comes without loss of generality, and clearly our results apply to any possible star
and wheel with different order. Our assumption allows us to manipulate these
objects more efficiently. In addition, we also define formally grids and `-regular
graphs.

Definition 5.4. A graph G = 〈N,E〉 is a `-regular graph iff E is such that for all
i ∈ N , d(i) = `.

Notably, the following observation holds.

Observation 5.1. A 2-regular graph G = 〈N,E〉 is the union G = 〈
⋃

Ni,
⋃
Ei〈

of disjoint rings 〈N1, E1〉, ..., 〈Nm, Em〉 where {Ni}mi=1 is a partition of N and
{Ei}mi=1 is a partition of E.

A ring itself is a 2-regular graph. Notably, if G is a 2-regular graph and it is
connected then it corresponds to a ring.1 If it is not connected then it corresponds
to more than one ring. Notably, if in a 2-regular graph there is more than one ring,
we place the agents such that if the first ring has k nodes, it is occupied by agent
1, 2, ..., k, similarly for ring 2 with j nodes, which will be occupied by agent
k + 1, k + 2, ..., k + j and so on.’ Eventually, we define the grids.

Definition 5.5. A graph G is a n × m-grid iff their vertices correspond to the
points in the plane with integer coordinates, x-coordinates being in the range 1,...,
n, y-coordinates being in the range 1,..., m, and two vertices are connected by an
edge whenever the corresponding points are at distance 1.

As we mentioned, we chose these graphs as they are sufficiently easy to an-
alyze in our setting and at the same time they can already provide us with some
useful insights about our game. For this reason, our analytical results will all be
concerned about the above categories of graphs. And, in order to be coherent with
those, also our simulation study of the game will mainly be about those.

1A graph G = 〈N,E〉 is said to be connected if every pair of vertices in the graph is connected.
This means that there is a path between every pair of vertices.
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5.3 Equilibria on Graphs

The characterization of pure Nash equilibria in different setting is the core of this
work, as it provides us with good insights of agents’ behaviour. In this section we
characterize a pure Nash equilibrium on this new decision structure and we prove
some theorems about equilibria on the categories of graphs we defined before. We
also provide examples to explain more general intuitions about the game.

Notably, we can easily apply in this framework the results that we got about
PNEs in Chapter 2, as we saw that the formula for the accuracy did not change.
Indeed, the definition for a PNE is still Definition 2.1. We shall start with the
following theorem.

Theorem 5.1. Let D = 〈G, e, p〉 be a decision structure and a ∈ {0, 1}n be an
action profile. The profile a is a PNE iff for all i with d1(a, i) = ki, M(ki +
1, p)−M(ki, p) ≤ e ≤M(ki, p)−M(ki − 1, p).

Proof. A profile a is a PNE iff for no agent i ui(a) ≥ ui(a
′
i,a−i) by Definition

2.1. We proceed by first assuming that i is s.t. ai = 1 and then assuming i s.t.
ai = 0. We show that i does not deivate in neither of the cases iff M(k + 1, p)−
M(k, p) ≤ e ≤M(k, p)−M(k− 1, p). Notably the structure is exactly the same
as Theorem 2.1, Theorem 3.1 and Theorem 4.1.

Consider an agent i s.t. ai = 0. Such an agent would not deviate iff ui(a) ≥
ui(1,a0) by Definition 2.1. By construction ui(a) ≥ ui(1,a0) iff M(d1(a, i), p) ≥
M(d1(a, i)+1, p)−e, which is equivalent to M(d1(a, i)+1, p)−M(d1(a, i), p) ≤
e.

Now, consider an agent i s.t. ai = 1. Such an agent would not deviate
iff ui(a) ≥ ui(0,a0) by Definition 2.1. By construction ui(a) ≥ ui(1,a0) iff
M(d1(a, i), p)− e ≥M(d1(a, i)− 1, p), which is equivalent to M(d1(a, i), p)−
M(d1(a, i)− 1, p) ≥ e.

So, a profile a is a PNE iff M(d1(a, i) + 1, p) − M(d1(a, i), p) ≤ e ≤
M(d1(a, i), p)−M(d1(a, i)− 1, p) for all i ∈ N .

Relevantly, this is not different from what we saw in Theorem 2.1. And, indeed
the assumption that M(−1) = 0 is used in the same way (see the discussion of
Theorem 2.1). However, the presence of an underlying network introduces some
very interesting effects at a very general level. Indeed, for example, in this case
at an equilibrium there can be an agent i s.t. d1(a, i) 6= 0 and is even. Recall that
this was not the case for the basic setting (see Corollary 2.1). We proceed with a
very similar corollary to clarify the role of the effort in the game. This also helps
us in understanding the differences between the present framework and the one
we described in Chapter 2.

Corollary 5.1. Let D = 〈G, e, p〉 be a decision structure.
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1. If e > p− 1
2

a profile a is an equilibrium iff |a| = 0.

2. If e = p− 1
2

a profile a is an equilibrium iff |a| = 0 or a is such that for all
i, d1(a, i) = 0 or d1(a, i) = 1.

3. If e < p− 1
2

a profile a is an equilibrium iff for all i either:

• M(d1(a, i), p)−M(d1(a, i)− 1, p) ≥ e, or

• ai = 0 and M(d1(a, i) + 1, p)−M(d1(a, i), p) ≤ e.

Proof. The proof is a direct consequence of Theorem 5.1 and it proceeds in the
same way as we saw in Chapter 2 for the proof of Corollary 2.1. We have a quick
look at the case for e < p− 1

2
. If M(d1(a, i), p)−M(d1(a, i)−1, p) then d1(a, i)

is odd, which assures us that M(d1(a, i) + 1, p)−M(d1(a, i), p) ≤ e also holds.
If M(d1(a, i) + 1, p)−M(d1(a, i), p) ≤ e then agent i would not deviate from 0
to 1 and so by Theorem 5.1 a is an equilibrium.

The basic idea underlying this result is the same as in Chapter 2. An agent i
who is voting deviates if her contribution to the final accuracy is not high enough.
And similarly an agent who is not voting deviates if the contribution she would
produce by voting is higher than the effort. What changes is that, in this scenario,
the group that each agent considers is usually different from the group that another
agent considers. Thus, it can easily happen that an agent thinks that she should
vote because she sees in her neighborhood an even number of voters (and so with
her it becomes odd), and another agent thinks that she should not vote, as she sees
an odd number of voters around herself (and with her it would become even). We
shall look at an example. However, we will discuss again this feature later, after
we have seen some PNEs on graphs.

Example 5.1. Let D = 〈G, e, p〉 such that N = {1, 2, 3, 4}, p = 0.8, e = 0.01 and
G = 〈N,E〉 with E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} as depicted in Figure 5.2.
Clearly in this case neither a profile a = (1, 0, 1, 0) nor a profile a′ = (0, 1, 0, 1)
is a PNE. Indeed, in both the cases there would be an agent who is not voting
that sees in her neighbourhood an even number of voters (and so her contribution
would be 0). This would make her deviate as M(3, p) −M(2, p) ≥ e. Instead,
with a′′ = (1, 1, 1, 1) we have that all the agents that vote also see an even number
of other voters (see Figure 5.2) and so d1(a

′′, i) is odd for everybody.

Example 5.2. Let D = 〈G, e, p〉 such that N = {1, ..., 5}, p = 0.8, e = 0.01 and
G = 〈N,E〉 with E = {(1, 2), (2, 3), (3, 4), (4, 1), (3, 5}. In this case there exists
no profile a s.t. a is a PNE. Notably, d1(a, i) must be odd for everybody for a to
be a PNE. Indeed, this is the only way to produce a positive contribution for all
the voters. However, this is not possible in the graph.
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Figure 5.2: We use the red to indicate that the agent chooses the action 1. The first
two profiles are not equilibria. The last one is.

Once we have settled down this first result we can start having a closer look to
the different types of graphs. We characterize equilibria for cases where e < p− 1

2
.

This is because, as we saw, if e ≥ p− 1
2

there can be just two types of equilibria.
Neither of those are really relevant for us. Indeed, we are not really interested
in studying situation in which agents are satisfied with nobody voting. Notably,
these theorems are full characterization of equilibria on certain graphs. Indeed,
they state clearly the sufficient and necessary conditions for a profile a to be an
equilibrium.

Proposition 5.1. Let D = 〈G, e, p〉 be a decision structure such that e < p − 1
2

and G is a star. A profile a is a PNE iff either

1. a = (0, 0, ..., 0, 1), or

2. a = (1, 1, ..., 1, 0) and M(n, p)−M(n− 1, p) ≤ e.

Proof. From right to left. Assume Condition 1. We have that d1(a, i) is odd
and M(d1(a, i), p) − M(0, p) ≥ e for all i ∈ N . Thus, by Theorem 5.1, a is
a PNE. Assume Condition 2. We have that either d1(a, n) is odd, or it is even
and M(d1(a, i) + 1, p) −M(d1(a, i), p) ≤ e. So, by Theorem 5.1 n would not
deviate. For all i 6= n, d1(a, i) is odd and M(d1(a, i), p) −M(0, p) ≥ e. Thus,
by Theorem 5.1, a is a PNE.

From right to left. Any profile a s.t. aj 6= ak for j 6= n, k 6= n would either
produce d1(j) to be even or d1(k) to be even, as they both see n. So either j or k
would deviate. Similarly, if ai = 1 for all i ∈ N , then every element i 6= n would
deviate. If ai = 0 for all i then each agent would deviate. Eventually, if an = 0,
for all j 6= n aj = 1 and M(n, p)−M(n− 1, p) > e, n would deviate.

Intuitively, all the outside members should play the same action, otherwise
there must be someone who would deviate. And, indeed, the actions of the outside
members must be different from that of the inside one. Eventually, if an = 0 we
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must be sure that she does not deviate to 1 by imposing M(n, p)−M(n−1, p) ≤ e.
We prove now a similar result about wheels.

Proposition 5.2. Let D = 〈G, e, p〉 be a decision structure such that G is a wheel.
If p− 1

2
> e > M(3, p)−M(2, p) then a profile a is a PNE iff either

1. an = 1 and ai = 0 for all i 6= n, or

2. an = 0, a3m+1 = 0, a3m+2 = 0, a3m+3 = 1 for some m ∈ N+, or

3. an = 0, a2m = 0, a2m+1 = 1 for some m ∈ N+.

If M(3, p)−M(2, p) ≥ e then a is a PNE iff either:

1. an = 1 and ai = 0 for all i 6= n, or

2. an = 0, a3m+1 = 0, a3m+2 = 0, a3m+3 = 1 for some m ∈ N+ and
M(n−1/3 + 1, p)−M(n−1/3, p) ≤ e, or

3. an = 1, a3m+1 = 0, a3m+2 = 1, a3m+3 = 1 for some m ∈ N+ and
M((2n−1/3) + 1, p)−M((2n−1/3), p) ≤ e, or

4. an = 0 and ai = 1 for all i 6= n and M(n, p)−M(n− 1, p) ≤ e, or

5. an = 0, a2m = 0, a2m+1 = 1 for some m ∈ N+ and M(n−1
2

+ 1, p) −
M(n−1

2
, p) ≤ e.

Proof. The proof is somewhat tedious, but the core idea consists of applying The-
orem 5.1 and taking into account the different neighbors of each agent. We discuss
once more the general intuitions of it later on. We look at the two settings.

• First, assume M(1, p)−M(0, p) > e > M(3, p)−M(2, p). From right to
left.

1. Assume a is s.t. an = 1 and ai = 0 for all i 6= n. Thus, d1(n) = 0 and
so n does not deviate. And for all i we have that d1(i) = 1 and so they
also do not deviate.

2. Now, assume the second case. Note that for this to be possible n − 1
must be multiple of 3. For each ai = 0 we have that d1(a, i) = 1,
and for each aj = 1, d1(a, j) = 1, with i, j 6= n. For n we have
that d1(n,a) = n−1

3
. Thus, since M(n−1/3 + 1, p) −M(n−1/3, p) <

M(3, p)−M(2, p) ≤ e a is a PNE by Theorem 5.1.
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3. Now, assume the third case. Note that for this to be possible n−1 must
be multiple of 2. Agent n would not deviate since M(n−1/2 + 1, p) −
M(n−1/2, p) < M(3, p) −M(2, p) ≤ e. Any agent ai = 1 would not
deviate as d1(a, i) = 1. And, any agent ai = 0 would not deviate as
d1(a, i) = 2 and M(3, p)−M(2, p) ≤ e.

From left to right. We prove that any profile that is different from those
three is not a PNE.

(a) Any profile a s.t. ai = 1 for all i 6= n would result in all the outside
agents deviating, because d1(i,a) = 3 but M(3, p)−e < M(2, p) and
so by Theorem 5.1 this is not a PNE.

(b) Any profile a s.t. aj 6= ak for all j 6= n, k 6= j, n 6= k and {j, k} ∈ E
with an = 1 implies that d1(a, i) = 2 and ai = 1 for some i who
would deviate to 0.

(c) Any profile a s.t. an = 0 and aj = ak for some k 6= j and {j, k} ∈ E
would result in two cases. First case: case (a). Second case: there
exists i 6= n such that ai = 0. Thus, there must be an agent l such that
l is voting and sees just another voter. Thus, l would deviate.

(d) Any profile a s.t. an = 1 and aj = ak = 1 for some k 6= j and
{j, k} ∈ E would imply that d1(a, n) ≥ 3. Thus n would deviate.

(e) Any profile a with ai = 0 for all i ∈ N would force every agent to
deviate.

• Assume e < M(3, p)−M(2, p). From right to left.

1. The first case is the same as before.

2. The second case is also similar, but this time we need to assume M(n−1/3+
1, p) −M(n−1/3, p) as it is not granted anymore. Note that for this to
be possible n− 1 must be multiple of 3.

3. Assume the third case. Note that for this to be possible n− 1 must be
multiple of 3. If i 6= n and ai = 1 then d1(a, i) = 3. If ai = 0 then
d1(a, i) = 3. Thus, we have that d1(a, n) = 2n−1

3
. This is even and

from the assumption n would not deviate.

4. Assume the fourth case: a is s.t. an = 0 and ai = 1 for all i 6= n and
M(n, p)−M(n− 1, p) ≤ e. Indeed, d1(n) = n− 1 and d1(i) = 0 for
all i 6= n.

5. Assume the fifth case. Note that for this to be possible n − 1 must be
multiple of 2. For all i 6= n we have that d1(a, i) is odd. For n it is
even, but due to the assumption she would not deviate.
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From left to right. We prove that every profile that is different from those
three is not a PNE.

(a) Any profile a s.t. ai = 1 for all i would force any outside member to
deviate as M(4, p) = M(3, p) and d1(a, i) = 4.

(b) Any profile a s.t. ai = 0 for all i would force any outside member to
deviate as M(1, p)−M(0, p) > e and d1(a, i) = 0.

(c) Any profile a s.t. an = 1 and aj = ak = 1 for some k 6= j and
{j, k} ∈ E would have three cases. First case: there exists no i with
ai = 0, and then it is case (a). Second case: a3m+1 = 0, a3m+2 = 1,
a3m+3 = 1 for some m ∈ N+. If there is no condition on e, then
n would deviate, otherwise we proved it is a PNE. Third case: there
exists some i such that d1(a, i) = 2. And thus, she would deviate.

(d) Any profile a s.t. an = 0 and aj = ak = 1 for some k 6= j and
{j, k} ∈ E would have two cases. First case: there exists no outside
member with action 0. Then either we are in the last condition of the
Proposition, or n would deviate. Second case: there exists an outside
member with action 0. She would see 2 voters and then deviate.

(e) Any profile a s.t. an = 1 and aj = ak = 0 for some k 6= j and
{j, k} ∈ E would have three cases. First case: there exists no i with
ai = 1, and then it is the first Condition and we proved that it is a
PNE. Second case: we are in case (c). Third case: there exists an
outside member that sees just one voter n and she would deviate.

(f) Any profile a s.t. an = 0 and aj = ak = 0 for some k 6= j and {j, k} ∈
E would have four cases. First case: there exists no i with ai = 1, and
then it is case (a). Second case: an = 0, a3m+1 = 0, a3m+2 = 0,
a3m+3 = 1 for some m ∈ N+ and M(n−1/3 + 1, p)−M(n−1/3, p) > e
and n would deviate. Third case: there exists an outside member that
does not see any voter. It is not a PNE. Fourth case: there are two
oustide members that see each other and vote, and so it is case (d).

(g) Any profile a in a2m = 0, a2m+1 = 1 and an = 1. Thus, an outside
member that votes would deviate.

Notably, as it is explained in the proof of Proposition 5.2, a profile a s.t.
a3m+1 = 0, a3m+2 = 1, a3m+3 = 1 can be chosen only if the underlying graph
has a number of outside nodes that is a multiple of 3. And, we will see something
similar in Theorem 5.2.
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The proof we just saw can be summarized in few points. First of all, we must
take note of the fact that a profile may not be an equilibrium for many reasons.
To understand them better we must compute the value for nthr as in Chapter 2
(Corollary 2.1) for the pair of p, e. If nthr ≥ d(i) for all i then if a profile a does
not satisfy the odd-even dynamics, it cannot be a PNE. We call odd-even dynamics
the fact that for all i, d1(a, i) must be odd. If nthr < d(i) there can be profiles
that are equilibria even if they do not satisfy the odd-even dynamics for all their
agents. If d1(a, i) ≥ nthr and d1(a, i) is odd with ai = 0 a profile a can still
be an equilibrium. And viceversa an agent i s.t. d1(a, i) is odd, would deviate if
d1(a, i) > nthr. Such an ‘exception’ to the odd-even dynamics generates the need
to check many cases in the characterization of the PNEs, as we saw in Proposition
5.2. However, in the end, this is the only exception, so for example, if there exists
an i such that d1(a, i) is even and ai = 1, such a profile can never be an equilib-
rium. This is the case of the first graph of Figure 5.3. In the second situation, this
even-odd dynamics is respected, but there is some i for which d1(a, i) > nthr. In
this case the effort of i is just not worth it (second graph of Figure 5.3. As you can
see in proof of Proposition 5.2, the profiles that are not PNE when e is high may
be profile in cases where e is lower, but only if the reason for them to not be PNE
in the first place is not the un-satisfaction of the odd-even dynamics.
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Figure 5.3: Two different profiles. The one on the left is not a PNE for any e. The
one on the right is a PNE only if e is smaller than a certain value.

Now, we move on to the main result of the chapter, which provides us with
insights about a general type of regular graphs.

Theorem 5.2. Let D = 〈G, e, p〉 be a decision structure with G a 2-regular graph.
If M(3, p)−M(2, p) < e a profile a is a PNE iff:
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1. a3m+1 = 0, a3m+2 = 0, a3m+3 = 1 for some m ∈ N+.

If M(3, p)−M(2, p) > e a profile a is a PNE iff either:

1. a3m+1 = 0, a3m+2 = 0, a3m+3 = 1 for some m ∈ N+, or

2. ai = 1 for all i ∈ N .

Proof. Assume M(3, p) − M(2, p) < e. From right to left. Assume a is s.t.
a3m+1 = 1, a3m+2 = 0, a3m+3 = 0 for some m ∈ N+. Thus, for all a3m+1

we have that d1(a3m+1,a)) = 1 and for all a3m+2 and a3m+3, d1(a3m+2,a)) =
d1(a3m+3,a)) = 1. Notably, this implies that G is such that all the rings which it
is composed of have a number of nodes that is multiple of 3. From left to right:
we take into account the other possible profiles.

• If ai = 1 for all i then d1(a, i) = 3 and so i would deviate.

• If ai = ai+1 = 1 and ai+2 = 0 for some i then i + 1 would deviate.

• If ai = ai+1 = ai+2 = 0 for some i then d1(a, i+ 1) = 0 and so i+ 1 would
deviate.

• If ai = ai+2 = 1 and ai+i = 0 for some i then i + 1 would deviate.

If n 6= 3k then those above are the only possible options. If n = 3k then there is
the profile we already talked about.

Now assume M(3, p) −M(2, p) ≥ e. The PNE that we already proved are
given for granted. Assume ai = 1 for all i ∈ N . Thus, for all i we have that
d1(i,a) = 1. So, it is a PNE. Since nothing changed for all the other other
possible profiles, the proofs go through in the same way.

This result is a characterization of equilibria on graph with two links. Notably,
these kinds of regular graphs have always the same ‘shape’. We may wonder if the
features of regular graphs could allow us to just characterize equilibria on every
type of regular graph fully. Although there seems to be some kind of connection
between the two notions, an analytical result is left for future work. Indeed, it is
true that by having always the same number of links such networks seem more
easily to yield encouraging results in the odd-even dynamics. Yet, at the same
time the fact that there can exist many different shapes for each k-regular net-
work with k > 2 makes it difficult to be able to characterize equilibria generally.
The following example may give us some insights about which way to follow for
further research.
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Figure 5.4: These two graphs are both 3-regular graphs. However, they present
two different types of equilibria. In the first one the equilibria are many possible
combinations of four agents alternating two and two. In the second only the two
profiles of voters {2, 7} and {3, 6} are equilibria. Nonetheless, it is interesting to
see that in both the cases the agents that vote must be a vertex cover.

Example 5.3. Consider 3-regular graphs. In particular, consider the two graphs
in Figure 5.4.

The fact that in both the cases the equilibria are connected with the concept
of vertex cover seems a good starting point to understand a possible correlation
between regular graphs and equilibria. However, for now the problem is left open.

A last result on regular graphs is the following.

Proposition 5.3. Let D = 〈G, e, p〉 be a decision structure. Let G be an `-regular
graph. If ` is even and M(l + 1, p) − e > M(l, p) then a = (1, 1, 1, ..., 1) is an
equilibrium.

Proof. For each agent we have d1(i,a) = l + 1, and by Theorem 5.1, we know
that i would not deviate.

Eventually, we describe equilibria on grids. Notably, for a 3 × 3 we fully
characterize equilibria. The idea is, again, to provide some ground for further
research.

Proposition 5.4. Let D = 〈G, e, p〉 be a decision structure. Assume M(5, p) −
M(4, p) ≥ e. If G is a 3 × 3 grid (and we order the agents starting from the top
left wlog) a profile a is a PNE iff a2k+1 = 1 and a2k = 0 for k ∈ N.

79



Tracking Truth on Networks

1 2 3

4 5 6

7 8 9

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5.5: Profiles of Proposition 5.4.

Figure 5.5 illustrates the PNE.

Proof. As in Proposition 5.2 the proof just is just a rigorous application of The-
orem 5.1. Assume a = (1, 0, 1, 0, 1, 0, 1, 0, 1). Thus, every odd agent is voting
and sees an odd number of people voting around her and every agent who is not
voting sees an even number of people. Now, we prove that every other profile is
not a PNE.

• Assume a1 = 1. Thus, either a4 = a2 = 0 or a4 = a2 = 1.

– Assume a4 = a2 = 1. Thus, either a7 = a8 = 1 or a7 = a8 = 0.

* Assume a7 = a8 = 1. Thus, a5 = 1 and a6 = 1. Consequently,
a3 = a9 = 1. Thus, 6 would deviate.

* Assume a7 = a8 = 0. Thus, a5 = 0 and a9 = a3 = 1. So, a6 = 1.
But then a3 would deviate.

– Assume a4 = a2 = 0. Thus, either a8 = a7 = 1 or a8 = a7 = 0.

* Assume a7 = a8 = 1. Thus, a5 = 1 and a6 = 1. Consequently,
a3 = a9 = 1. Thus, 6 would deviate.

* Assume a7 = a8 = 0. Thus, a5 = 0 and a9 = a3 = 1. So, a6 = 1.
But then a3 would deviate.

• Assume a1 = 0. Thus, wlog a2 = 1 and a4 = 0. Consequently, either
a3 = 1 or a3 = 0.
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– Assume a3 = 1. So, a6 = 1. Thus, either a9 = a8 = 1 or a9 = a8 = 0.

* Assume a9 = a8 = 1. Thus, a5 = 0 and a7 = 0. Thus, a2 would
deviate.

* Assume a9 = a8 = 0. Thus, a5 = 1 and a7 = 1. Thus, 8 would
deviate.

– Assume a3 = 0. So, a6 = 0. Thus, either a9 = a8 = 1 or a9 = a8 = 0.

* Assume a9 = a8 = 1. Thus, a5 = 0 and a7 = 0. Thus, a2 would
deviate.

* Assume a9 = a8 = 0. Thus, a5 = 1 and a7 = 1. Thus, 8 would
deviate.

Our result for 3 × 3 grids is again just a starting point. A general characteri-
zation of PNEs on grids seems out of reach at the moment. However, we can also
have a look at other examples for bigger grids.

Example 5.4. Let D = 〈G, e, p〉 s.t. G is a 4 × 4-grid and assume M(5, p) −
M(4, p) ≥ e. Thus, the profile a = (1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1) is a
PNE (see again Figure 5.5. Now, let D = 〈G, e, p〉 s.t. G is a 5×5-grid and again
assume M(5, p)−M(4, p) ≥ e. Thus, the profile a = (1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1) is a PNE. These results are just obtained by apply-
ing Theorem 5.1.

Although our analysis is not exhaustive, it provides good insights about how
to proceed in order to find solutions for this type of games. First of all, it is more
than enough to grasp how the process of finding equilibria works. In addition, it
characterizes them on some very basic graphs, giving us already an idea of some
more general finding. For example, compare the type of equilibria that can be
reached on a star and on a 2-regular graph. Interestingly, in a star, which can be
considered a more centralized type of graph, either everybody (except the central
agent) votes or just one person votes. The two equilibria are quite extreme and
relevantly not depending on e as soon as e < p − 1

2
. Instead, in a 2-regular

graph the equilibria that can be found are more dependent on the effort and less
‘extreme’. The distribution of agents choosing action 1 should be more regular. In
order to complement these analytical results with a deeper analysis of the system
we also decided to look at the so-called iterated best-response dynamics.

5.4 Iterated Best-Response Dynamics

The framework and the utility we defined above are such that each agent can make
her choice based on the actions of her neighbors. Indeed, for every configuration
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that is not a PNE there exists an agent i that wants to deviate. However, if that
agent deviates (by updating her action) it may easily be that there is another agent,
who was satisfied in the beginning, who wants to change her action, and so on.
The process of updating a choice based on the actions of the other agents is called
best response dynamics. It can be iterated, following this process, which is called
iterated best response dynamics (IBRD):

1. we start from a configuration a,

2. at every turn, we ask the agents if they want to switch to another action and
we update a, and

3. the process finishes when no agent wants to deviate anymore.

Of course, IBRD can be a useful tool to find an equilibrium. When nobody wants
to update her position anymore, we can be sure that the situation that has been
reached is a PNE. Unfortunately, computing processes of IBRD may be extremely
long. For this reason we made use of a computer simulation. The program is
written so to allow the user to set different parameters and allow for different en-
vironments choices. The language we used is Python. Through such a simulation
we manage to study the IBRD of the initial game on networks of different types.
Notably, this process gives us two types of insights. The first one is about the
process itself. For example, looking at the simulation we can get an idea of how
much easy is for a certain group to reach an equilibrium through this mechanism.
As we show in Subsection 5.4.2 both the number of the links and the number of
agents impact the results in this case. The second insight is about the equilibria
that can be found. By employing a simulation we can more easily generalize some
of the results about the equilibria we had in the first section and expand them.

Subsection 5.4.1 is dedicated to study the simulation when we assume same
level of competence and same stakes for everybody. In this case, we just look
at the IBRD in terms of individuals. In Subsection 5.4.2, we look at when a
simulation reaches an equilibrium. Subsection 5.4.3 studies what happens if we
introduce agents with different stakes. In Subsection 5.4.4, we allow the agents to
update their actions in coalitions.

5.4.1 Simulating the Basic Setting

Each agent is described with the two features p, e, which are the same for every-
one, and is placed on a graph G. Thus, the program simulates a process of IBRD,
by following this schema.

• Every agent is assigned the action 1.
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• At each step, agents are asked to update their action.

• At a certain step (set in the initial simulation) the process interrupts.

The first thing that we consider important studying is the way in which agent
activate and are asked to update their choices. We can have three possible ways.

• Simultaneous Activation.

– In order, from agent 1 each agent evaluates which action to choose to
improve her situation.

– Thus, in order from agent 1, each agent updates her position.

• Ordered Activation.

– In order from agent 1.

– Agent i evaluates which action to choose to improve her situation.
Thus, she updates her position.

– Then, agent i + 1 does the same and so on...

• Random Activation

– At each turn, a sequence of numbers is created. Then agent activates
following that sequence.

– Agent i evaluates which action to choose to improve her situation.
Thus, she updates her position.

– Then, agent j does the same and so on...

Indeed, the activation process matters. We will focus more on it in the next sub-
section.

Before moving on we shall have a quick look at how the rest of the simulation
is built. Each simulation is assigned many parameters. First of all, we set the
number of agents n, the value for the effort e and the value for the competence
p. Thus, we also set the type of graph (or the graph itself) in which agents are
placed. As it can be seen in Subsection 5.4.4 there is also the possibility to change
the stakes of each agent (or to randomly generate the value for them between a
certain interval). If it is not said otherwise the value for the stakes is set to 1 for
everybody. This is indeed the equivalent of the basic setting. Eventually, there
is the possibility to allow agents to move together, i.e. in coalitions. This is not
permitted unless said otherwise (see Subsection 5.4.5). In addition, every run
has usually 100000 steps if not said otherwise. The reason for this will become
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apparent in Subsection 5.4.2. Eventually, when we have to extract a value out
of a certain configuration we run that same configuration 50 times and then we
make an average. Relevantly, the average is done taking into account only the
results coming from simulations that reached an equilibrium. As we will see in
Subsection 5.4.2 with certain parameters this happen almost all the times.

In addition, we briefly sketch how agents evaluate actions and update them.
Each agent i has two possible actions {1, 0} and can see the actions of her neigh-
bors. Let a−i be the profile describing the action of the rest of the agents. The
agent compares ui(1,a−i) and ui(0,a−i) and choose which one she prefers.

5.4.2 How To Reach an Equilibrium

We consider the three activation patterns: simultaneous, ordered and random. We
show that the best suited for our scope is the random one. We show that both the
simultaneous and the ordered one may be unable to find an equilibrium, and incur
in a periodical cycle even in very basic situations. Consider the example:

Example 5.5. Consider D = 〈G, e, p〉 with N = {1, 2}, E = {(1, 2)} and e <
M(1, p)− 1

2
. Assume we start from the configuration a = (0, 0). At the first step

both the agents would deviate to 1. We update simultaneously. Thus, a1 = (1, 1).
Consequently, they update again: a2 = (0, 0) and the cycle goes on. Indeed, in
this case our process would never be able to find the only two PNEs: a′ = (1, 0)
and a′′ = (1, 0).

However, the ordered activation can also incur in a similar pattern.

Example 5.6. Consider D = 〈G, e, p〉 with N = {1, 2, ..., 5}, E = {(1, 2),
(2, 3), (3, 4), (4, 5), (5, 6), (6, 2)} and e < M(3, p) −M(2, p). We shall have a
look at the dynamics starting from the configuration a0 = (1, 1, 1, 1, 1, 1).

1. a1 = (0, 0, 0, 0, 0, 1)

2. a2 = (1, 1, 0, 1, 1, 1)

3. a3 = (0, 0, 0, 0, 0, 1)

4. ...

Again, we incur in a periodical pattern that does not allow us to find the only
PNE, i.e. a = (0, 1, 1, 1, 1, 1). We represent the dynamics in Figure 5.6.

As it stands, the random activation seems the best option we have. Indeed, by
activating agents in a random order, it escapes loops and it can more easily find
an equilibrium. Consider the case of Example 5.6. Assume we are in the situation
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Figure 5.6: The ordered activation in this case produces a loop that goes through
the graphs represented here.

a = (1, 1, 0, 1, 1, 1). If we activate the agents in this order 3, 4, 5, 6, 1, 2 we obtain
the equilibrium. Of course, this is just a possibility over many others. So, the key
to obtain an equilibrium is to execute every round of activation as many times as
possible. We call, from now on, each round a step.

However, although in the basic cases the random activation is also able to find
an equilibrium if present, this is not true in all the cases. It is definitely interesting
to look at when this happens and when it does not. In order to do so, we take
into consideration a first sets of results from our simulation (see Figure 5.7). We
consider the following decision structure D = 〈G, e, p〉 with N = {1, 2, ..., 20},
p = 0.7, e = 0.02 and with different sets for E such that the graph is always an `-
regular graph with ` ∈ {3, 5, 7, 9, 11, 13, 15, 17}. And then we considered another
decision structure D = 〈G, e, p〉 with N = {1, 2, ..., k}, p = 0.7, e = 0.02 with G
being a 5-regular graph and with k varying among {10, 20, 30, 40, 50}. For each
of these different values we run 50 simulations of 100000 steps and count what
percentage of them landed on an equilibrium. As you can see in the first plot the
percentage goes relevantly down when the number of agents passes the value of
20. In the second plot the percentage goes slightly down when the number of links
passes 11.

When the number of agents increases the simulation is less likely to land on
an equilibrium simply because the number of possible configuration skyrockets.
This relevantly diminishes the chance of the program to find a ‘right one’. How-
ever, we cannot exclude the possibility that certain types of regular network just
do not have a equilibrium. Instead, with the number of links, the reason why the
percentage is lower is not entirely clear. A good guess seems to be the fact that
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Figure 5.7: Percentages of runs that reach an equilibrium with different number
of links in a regular graph on the left. And, percentages of runs that reach an
equilibrium with different number of agents in a 5-regular graph on the right.

having more links increases the interdependency between the nodes. Indeed, if
each node is just connected with 5 other nodes, if nothing changes in those 4 also
the action of the agent in that node remains the same, whereas if it is connected
to 15 it is more likely that a change in a node will make her change her choice.
Thus, it seems reasonable to consider highly inter-connected graphs quite more
instable. In addition, we can also have a closer look at how the internal dynamics
of a run is structured. We can say that the simulation spends ‘most of its time’ in
profiles where the number of voters stays always in a certain interval. See Figure
5.8 for an illustration.

Depending on the number of runs, we are either able to find an equilibrium or
not. Indeed, by increasing the length of the runs you can increase the likelihood
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Figure 5.8: On the above plot you can see how the number of voters at each step
changes. Clearly it has not reached the equilibrium yet. On the plot below you
can see the same simulation after 20000 steps. Around step number 7000 the
simulation reached an equilibrium.

of finding an equilibrium if the equilibrium is in a certain set of data (mainly that
in which the simulation ‘spends most of its time’).

At the same time, of course, the number of steps influences quite heavily the
computation time. For this reason, from now on we run every simulation for
100000 steps. By doing so, and by mainly employing simulations with a number
of agents around 20, we can be sure that almost always our runs land on an equi-
librium. From now on, every time we make an experiment with certain parameters
to assess a certain value, we run the same simulation 50 times, and we extract this
value by averaging on all the simulations that reached an equilibrium (almost all of
them everytime). Indeed, as we stated before, we are mainly interested in looking
at the results at the equilibria.
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To validate the results we obtain with our computer simulation we run some
initial simulations on complete networks and we compared our results with those
we obtained analytically. Indeed, our analytical results of the first three chapters
can be considered as if the graph was a complete network. The results matched.

5.4.3 More Connections Less Voters

As we mentioned, networks play a role in the size of the equilibria. We briefly
discussed this matter taking into account the analytical proofs. Yet, what about
more complex networks? We show by means of our simulation that the more the
links in a network the lower becomes the number of voters at the equilibrium.

In order to do so, we prepare a simulation with a decision structure with
N = {1, ..., 20}, p = 0.7, e = 0.1 on a regular graph with ` links, where
` ∈ {3, 5, 7, 9, 11, 13, 15, 17, 19}. In order to be sure that such result is not depen-
dent on the competence level, we repeat the same experiment for another structure
D = 〈〈N,E〉, 0.8, e〉. As you can see from Figure 5.9, the higher is the number
of links the lower the number of voters becomes. Such a mechanism has quite a
straightforward explanation. The basic concept depends indeed on Theorem 2.1
and Observation 2.1. For a decision structure D = 〈N, e, p〉 we have that the
maximal equilibrium (neq) is reached at 15 people voting. However, we also have
equilibria at n1 = 1, 3, ..., 13. Now imagine that there are only 5 people voting in
the entire graph. What is the chance that one of the agents that is not voting sees
one of them? The answer depends on the number of links. If the number of links
is high, then it is also likely that each agent of the graphs sees at least one voter.
And, that configuration is likely to be an equilibrium. If the number of links is
low, it is quite unlikely. Thus, in the second case 5 will not be an equilibrium,
as those who do not see any voter and are not voting themselves would want to
deviate. And, the same argument can be repeated for 7 voters, 9 voters and so on.
However, as it can be seen, the difference is mainly between 10 and 19 number of
links. Indeed, when the number of links is lower than ten the differences between
the numbers of voters are not so significant.

For a decision structure D = 〈N, e, p〉 like the one we just saw, the maximum
social welfare is reached at 19 voters, and as we know, the function for the social
welfare is convex.1 This means that the higher the number of voters the higher the
social welfare. And, consequently, the lower the number of links, the higher the
social welfare. And something similar can be said for D = 〈〈N,E〉, 0.8, e〉.

1See Chapter 2 for an explanation of this point.
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Figure 5.9: On the x-axis you can see the different number of links of each graph
and on the y-axis you can see the average final number of voters for simulations
with that number of links and two different levels of competences (p ∈ {0.7, 0.8}).

5.4.4 Those Who Care and Those Who Do not, in a Simulation

In Chapter 3, we introduced the possibility for agents to have different stakes at
play. We may wonder what happens if we introduce different stakes on network
games as well. We mainly try to answer the following questions.

1. If the average value for the stakes increases does also the number of voters
increase?

2. Are the people voting those with, generally, higher stakes than the average?

Indeed, these two were the important takeaways of Chapter 3. Not surpris-
ingly, the answer seems to be yes to both the questions. The way we test these
hypotheses is by assigning to each agent in the simulation a value for the stakes
that it is drawn from a normal distribution with center in a certain value b.

The simulation is built in the exact same way we saw in Subsection 5.4.1.
However this time each agent i is assigned with three different values p, e, bi, and,
consequently, the utility of each agent is so defined:

ui(a) = bi(M(d1(a, i), p))− aie. (5.2)

Thus, the action choice is computed starting from this formula.
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The More People Care the More People Vote. To test the answer to the first
question we set up simulations with 20 agents on a 7-regular graph, with b ∈
{10, 20, 30, 40, 50, 60} and e = 0.49. For each value of b we run 50 simulations
for 100000 steps and we extract a value for the final number of voters. Thus, for
each value b we average over the values for n1 of the simulations that reached an
equilibrium (almost all of them) and we obtain a precise value n1 for it. Again, we
repeat the experiment for p = 0.8. Quite interestingly, the higher is the value for
b, the higher is the value for n1, as it is shown in Figure 5.10. This is in line with
what we found about these kind of games in complete networks analytically. And,
of course, it is also quite in line with our intuitions about the process. Since the
agents have higher stakes, we expect them to be more inclined to vote and make
the effort.

Figure 5.10: On the x-axis there are the different values for b and on the y-axis the
average number of voters at the equilibrium for simulations with the respective bs.

The Voters Care. To test the answer to the second question we set up simu-
lations with 20 agents on an `-regular graph, with b = 50, e = 0.49 and with
` ∈ {7, 11, 15, 19}. For each value of ` we run 50 simulations for 100000 steps
and we extract a value for b1, i.e. the average stakes of the people that are voting,
for each of them. Thus, for each value ` we average over the values for b1 of the
simulations that reached an equilibrium and we obtain a precise value b1 for it.
Quite interestingly, these values were all higher than the mean (b = 50), as it is
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Figure 5.11: On the x-axis you can see the number of links of each network. On
the y-axis the average stakes of the voters (red) and of the agents in general (blue).

shown in Figure 5.10.
This seems to be in line with our intuitions and our analytical results. In fact,

it is reasonable to expect people with high stakes to vote. To get a better grasp of
the motivation for this we can look at the example.

Example 5.7. Assume that two agents i and j are both connected with the same
five other agents. Assume that ai = aj = 0 and that four out of the other five
agents vote. Let bi > bj such that bi(M(5, p) −M(4, p)) > e > bj(M(5, p) −
M(4, p)). Thus, we have that ai would deviate going for action 1, whereas aj
would not.

5.4.5 Let the Coalitions Move!

The structure of the simulation we used so far is such that each agent chooses
her best option and updates it by herself. This is the typical approach of a game
theoretic analysis that looks into pure Nash equilibrium. However, as we argued
in Chapter 2, looking at how coalitions may move is equally important for our set-
ting. Indeed, in Chapter 2 we found that the only possible SPNE are the profiles
that are mPNE, but it is not always the case that an SPNE profile exists. Here,
we extend our simulation to also include the possibility for coalitions to deviate
(see Chapter 2.2). The main aim of such an extension is to show that it is al-
most impossible to find a strong equilibrium for games on network through our
simulation. Consequently, the structure of the simulation becomes the following.

1. At an odd step, agents have the possibility of updating their choice individ-
ually in the same way we saw before (random activation).
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2. At an even step, coalitions are allowed to deviate, i.e. the agents in the
coalitions may update their actions at the same time.

(a) At random a certain coalition K of agents that are not voting is chosen,
and they evaluate if they would prefer to vote.

(b) Each agent i evaluates the function ui in a new profile defined follow-
ing the rules for Definition 2.3. This means that he compares ui(a)
and ui(aK ,aN\K), i.e. whether she would prefer to switch to 1 if also
all the other members switched to 1.

(c) If for all agents i ∈ K, ui(aK ,aN\K) > ui(a), all the agents in the
coalition switch to 1.

(d) Then another coalition K ′ is chosen...

Notably, our simulation does not take into account the possibility for coali-
tions that include non-voters to move. Indeed, this choice has been made for two
reasons. First of all, being able to restrict the set of possible coalitions allowed us
to speed up our simulation. Secondly, as we saw in Chapter 2, there is no reason
for a coalition formed only by voters in a to deviate together if nobody would de-
viate alone from a (Lemma 2.2). So, we do not consider coalitions of just voters,
as they are not needed to find an equilibrium. At the same time we can be sure
that if a coalition K that deviates is formed both by voters and by non-voters, then
there also exists a coalition K ′ formed just by voters that would want to deviate
(Lemma 2.1). And, so in order to find an equilibrium we can restrict our search to
coalitions of non-voters deviating to action 1.

Now, to get an idea of how such a simulation behaves we can have a look
at the plots in Figure 5.12. The decision structure that is taken into account is
D = 〈G, e, p〉 with N = {1, ..., 20}, p = 0.7, e = 0.01, and G being a 7-regular
graph. As you can see, when the agents update individually the resulting num-
ber of voters is always quite low (odd steps). Instead, when agents are allowed
to update together, the number of voters reaches 20 quite often. The underlying
mechanism is the following: if all the voters were to update in coalitions they
would all vote as they would all benefit, but then in the situation where they all
vote, everybody realizes that her contribution is not really needed and she ‘backs
off’. Indeed, such dynamics is continuously at work and it seems that such game
does not have an equilibrium. Although we cannot be sure completely of this re-
sult, as our tool is just computational, it is true that our simulation does not find
any stability and that the process seems to be quite periodical. We can compare
two long runs for the same decision structure, allowing agents to update in delega-
tions in the first case and not allowing it in the second in Figure 5.13. Remarkably,
in the case with coalitions no stability is reached.
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This result seems to be quite in line with what we proved in Theorem 2.2.
Although, it is easy for a group to find a PNE, it is not easy for a group to find
a SPNE as the conditions are more strict. Indeed, in any situation either single
agents may want to deviate from 1 to 0 (this is the case for odd steps in Figure
5.12) or the ‘big coalition’ is not satisfied (even steps in Figure 5.12).

Figure 5.12: A run of a simulation with coalitions allowed to move. On the x-axis
the steps and on the y-axis the number of voters at the end of each step.

5.5 Summary, Discussion and Takeaways

This chapter presents many interesting results and at the same time has a great
potential for an expansion.

Discussion of the Results. First of all, it gives an idea of what impact networks
could have on certain voting situations. Although quite a lot has been said about
how networks influence the social dynamics of groups, the literature about the in-
teraction between voting theory and networks is not so vast. Indeed, we discussed
some of the works that go in this direction in the section about related literature
in Chapter 1. In particular, in this case the impact of networks is quite relevant.
Thanks to our simulation, we showed how in regular graphs the higher is the num-
ber of links and the lower is the number of voters on average at an equilibrium.
This is extremely interesting as it a mechanism that is completely independent

93



Tracking Truth on Networks

from the value of the effort. Although our model is still quite idealistic, it pro-
vides us with an indication of what kinds of network are more efficient in terms
of accuracy. It seems quite reasonable to assume that groups that are poorly con-
nected will probably be quite accurate. This finding may even be regarded as a
possible explanation of the voter paradox (Aidt, 2000). A rational agent would
not vote if she had full information about the entire group. Instead, she may be
willing to vote (which is indeed what usually happens for a large part of citizens in
general elections, for example) if she did not have full information. At the same
time our analytical results warn us about another feature: centralized networks
may produce very different equilibria. This is what we saw in Proposition 5.1.
This is of course, extremely risky, because the overall accuracy at an equilibrium
may fluctuate quite relevantly. In addition, through our simulation we also made
sure that some of the results we proved in Chapter 3 still hold on networks. Indeed,
regardless of the number of links the people more interested are always those who
vote. Eventually, also looking at the coalition dynamics is highly rewarding, as it
exemplifies a mechanism that we just sketched in Chapter 2.

Future work. Eventually, we shall have a look at which are the possible direc-
tions of research that can be taken starting from the results of this chapter. A
natural step is, of course, to extend the results we obtained in the first section to
other types of graphs. A theorem taking into account a more general category of
graphs may definitely be useful for the field. And, for example, as we mentioned
in Section 5.3 the concept of vertex cover may be fundamental. On the other hand,
once the simulation is set, it is quite easy to assess the influence of different fac-
tors on the IBRD process. For example, allowing agents to delegate, following
the structure described in Chapter 4 may shed some light on how the creation of
equilibria goes in that case. Similarly, it may also be useful to look at other types
of networks to see if the general link between the connectedness of a graph and
the number of voters at an equilibrium holds also there.
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Figure 5.13: Two runs of the same decision structure with agents allowed to de-
viate in coalitions in the plot above and not allowed to do so in the plot below.
Notably, the number of the steps above is two times the number of steps in the
plot below as, like this, the number of ‘individual’ steps is the same. In the plot
above the simulation never reaches a stability, and you can see the number of vot-
ers keeps fluctuating. In the plot below the simulation reaches the stability after
around 7000 steps.
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6 Conclusions

In this thesis we presented a systematic approach to the problem of costly infor-
mation in group decision making. We started from de Condorcet’s framework and
by introducing the notion of effort we accounted for the fact that agents cannot
become competent without paying any cost.

Summary of the results. In Chapter 2, we characterized the (weak and strong)
equilibria of this game and we showed through our analytical results which claims
can be made about these kinds of situations. We proved that larger groups are not
always better at taking decisions (although they are never worse). And, similarly,
we proved that the level of competence that agents can reach is relevant for the
accuracy of the group, regardless of its size. Eventually, we also explained the
difference between the ‘individual perspective’ and the ’collective one’ and we
showed that a group is more efficient in terms of social welfare when it has fewer
members.

In Chapters 3 and 4 we generalized some of these initial results and we looked
at the impact of two possible variations on the theorems of Chapter 2: the possi-
bility for agents of having different stakes in the matter and of reaching different
levels of competences. In both the frameworks we characterized the equilibria and
we highlighted the effects of these generalizations on the results of Chapter 2. We
proved that in the case of different stakes the only way to reach a maximal PNE
is to have all the agents with the higher stakes voting. And, using similar formal
results we also laid the ground for a comparison in terms of social welfare of dif-
ferent allocations of stakes. In addition, we showed that in the case of different
competences there can exist strong equilibria with different sizes. Indeed, such
results can be considered an integration of those obtained in Chapter 2.

Eventually, in Chapter 5 we introduced the notion of social networks. We
used them to account for the possibility of agents of not being aware of other
people’s choices and we characterized our equilibria on some categories of graphs.
We showed that highly centralized types of graphs are likely to produce quite
‘extreme’ results in terms of number of voters, as either almost everybody votes
or just one agent does so. Instead, regular graphs seem to present more diverse
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equilibria. Again, we looked at how the effort influenced the agents’ behaviour.
Eventually, we complemented our analytical results on graphs with the study of
a simulation of best-response dynamics. With the help from that we consolidated
some of the results we obtained in Chapters 2, 3 and 4 on networks. In addition,
we also showed how the degree of connectivity on regular graph increases the
number of voters at equilibria and consequently the overall group accuracy.

Besides these more specific results, this thesis makes two main contributions.
First of all, it studied the truth tracking performance of groups where agents are
also allowed to completely abstain and free-ride. This gives the reader a clear
idea of the basic features of many situations of decision making in groups: equi-
libria, social welfare, price of anarchy. Our approach provides mostly normative
insights: following some of the results groups can be designed so to minimize
negative effects, e.g. a too high price of anarchy. In addition, our this also re-
vealed the importance of what we can call the odd-even dynamics, i.e. the fact
that being odd is often a requirement for the size of equilibria (see, for example,
Corollary 2.1 or Corollary 3.1). Indeed, ‘being the fifth wheel usually pays off’
(at least more than being the fourth one). Secondly, this thesis, in Chapter 5, puts
together our simple perspective on voting theory and a study of social networks.
As we mentioned in the introduction, this is a field which is quickly becoming
more and more important and we believe that with this work we made a little step
further. For example, the odd-even dynamics becomes even more interesting if
studied on a network (see, for example, Corollary 5.1).

Lastly, as we highlighted in many of the final sections of chapters, this thesis
has the virtue of opening up quite a good number of new possible directions of
research. In each of the chapters we already took into account the more specific
extensions for a certain setting: we dedicate the next paragraph to briefly discuss
the more general ones.

Future Work. There are many possible ways in which our framework can be
expanded and our results generalized. First of all, it seems natural to work a bit
more in order to find a complete proof for Conjecture 4.1. Indeed, we are quite
confident that such a proof exists and although we did not have enough time to
work on it properly, we believe it can be found. Then, once that is settled down
we may explore formally what are the consequences of it.

Secondly, it is reasonable not to assume that each agent has full information
of other agents’ choices and features. Each agent may be assigned a certain prob-
ability of knowing other people’s actions and similarly she may be able to see
other people’s levels of competence with a certain imprecision. This may lead,
for example, to an increase of the number of voters. Indeed, if an agent does not
know either the competences or the actions of the other agents with certainty, she
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may be more inclined to make an effort to do her part.
A second possible direction consists in extending the study on networks. This

can be done in two possible ways. One possibility is to follow the direction we
already sketched here and try to prove more general results on network and at
the same time make a more diffused use of simulations. As we mentioned in
Chapter 5 there are some intuitions that seem promising in the study of the odd-
even dynamics of graphs and that can be developed further in order to account for
more general cases. Instead, the second possible direction would require a little
change of perspective. Indeed, it would be extremely interesting to study what
would happen in case another type of heuristics would have been chosen. What
if agents follow other agents’ behaviour, instead of trying to counterbalance it in
the way we assumed here? A comparison between possible ways of coping with
imperfect information on a network represents a necessary step in this framework.

Eventually, a third line of research is that of unifying the three different varia-
tions we introduced in Chapter 3, 4 and 5 and, with the help of a simulation, look
at more complex interactions in this setting. In addition, such a framework would
be highly suited for an investigation of the role of delegation. As we highlighted
in Chapter 4, a system like liquid democracy has one of its strengths exactly in
the fact that it allows citizens to freely choose what to do at each vote. Indeed, the
agent may be willing to spend effort in a decision or not. And, consequently, to
evaluate the efficiency of such a system is very important to consider at the same
time the overall accuracy of a group and the effort that each agents makes.
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