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Abstract

Epistemic Multilateral Logic (EML) is a natural deduction system for multi-
lateral modal logic. It has the notable feature that its valid inference patterns
on the level of formulae seem to allign with those of classical logic, yet it intu-
itively invalidates certain classically valid metarules. This raises the issue of
the extent to which EML can be thought of as classical. However, it is unclear
precisely in which sense EML preserves classical logic on the inferential level
and departs from it on the metalevel, as the idiosyncracies of the multilateral
language prevent a straightforward comparison. We fix the situation by de-
veloping a systematic method for the comparison of multilateral to unilateral
logics, and applying it to provide a detailed overview of the different ways in
which EML conforms with, departs from and approaches classical logic. Along
the way, we contribute to the general literature on higher level inferences by
clarifying which notions of higher level validity are available, and how they
relate to each other along various dimensions. The final results confirm that
EML behaves classically only up to the basic inferential level, but also al-
low us to prove that this is as close to classicality as one can get within the
multilateral framework.
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Introduction

Epistemic Multilateral Logic (EML) is a natural deduction system for multi-
lateral modal logic, recently developed by Incurvati and Schlöder (2019, 2020).
Since Frege (1919), logic has traditionally been presented ‘unilaterally’: only
explicitly treating derivations between assertions, as rejections are reduced
to assertions of negations. On the other hand, bilateral approaches hold the
speech act of rejection as primitive alongside assertion (Rumfitt, 2000; Smi-
ley, 1996). The multilateral framework goes a step further and considers the
speech act of weak assertion, as opposed to the usual ‘strong’ assertion, to be
primitive as well. Formally, EML’s multilaterality means that it treats infer-
ences between signed modal formulae. These are formulae from the standard
modal language, prefixed by one of three force markers: +, ⊕ and 	, for strong
assertion, weak assertion and weak rejection respectively.

EML has the notable feature that its valid inference patterns on the level of
formulae seem to allign with those of classical logic, yet it intuitively invalidates
certain classically valid metarules. This raises the issue of whether, or to what
extent, EML can be thought of as classical. Two broad questions are at play
here: (i) which (meta-)logical properties does EML have in common with
classical logic, and (ii) to what extent do these warrant regarding EML as
classical? The main purpose of this thesis is to answer question (i), through
a technical study of EML, and occasionally of Classical Propositional Logic
(CPL) (though the latter is of course much better understood already). The
final aim is a detailed overview of the ways in which EML approaches, conforms
with, or departs from classical logic. To guide the research, it will often be
important to critically consider which of EML’s properties can be deemed
relevant to its classicality. But no stance will ultimately be taken on the
application criteria of the ‘classical’ label, so as to answer question (ii).

Fortunately, we need not undertake the task from scratch, for EML’s situ-
ation is reminiscent of that of Strict-Tolerant (ST) and Supervaluationist (SV)
logic. These unilateral logics are known to behave classically on the inferential
level, but not on the level of metainferences, and have thus sparked debates
around their supposed classicality (see e.g. (Williams, 2008) on supervalua-
tionism or (Scambler, 2020) on ST and its relatives). This is especially true of
ST, which was discovered only in the previous decade (Van Rooij, 2012; Co-
breros, Egré, Ripley, & van Rooij, 2012), but has since become the subject of
an extensive ongoing investigation, with many authors putting forth different
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methods and metrics for measuring the degree of similarity between ST and
CPL. Although it is generally agreed upon that logics are similar to the extent
that they validate the same inferences, and that this is the way to compare
ST to classical logic, there is room for interpretation along two dimensions.
First of all in the different levels of inference which may be taken into consid-
eration, and secondly in what it is taken to mean for a higher level inference
to be valid, as there are several natural alternatives. When it comes to de-
termining a criterion of validity for higher level inferences, our methodology
draws significant inspiration from the ST literature. We will examine the va-
lidity notions that have been considered in the context of ST, offer some novel
generalizations and results on their relative strength, and motivate a choice
for the most appropriate approach with respect to EML and its classicality.

Once we are clear on what it means for a meta- or higher level inference
to be valid, the question remains how this can be applied to compare EML
and CPL. Whereas ST, SV and CPL are all unilateral, allowing for direct
comparisons via their common syntax, EML is multilateral. Although the
presence of modal operators (or unconventional constants in the cases of ST
and SV) can be handled by using schemas rather than individual inferences,
the non-embeddable force markers are less easily dealt with. To illustrate,
consider the earlier claims that EML’s valid inferences seem to allign with
classical logic, yet it intuitively invalidates certain classically valid metarules.
The phrasing is imprecise because they are informal observations, and there
is no straightforward way of formally understanding them, even given some
notion of validity. EML intuitively invalidates classicaly valid metarules like
Classical Reductio

A,¬B ` ⊥
A ` B

because multilateral modal instances such as

⊕p,+¬p ` ⊥
⊕p ` +p

are EML-invalid. We recognize the latter as an instance of the former, hence
its EML-invalidity seemingly represents a failure of reductio ad absurdum, and
a departure from classical logic. But strictly speaking, it is not a substitution
instance of Classical Reductio, since there is no uniform substitution of B.
Below the inference line, B is replaced by +p, but above it, ¬B is replaced
by +¬p. For a uniform substitution, ¬B would have to be replaced by ¬+ p.
Yet this would be ungrammatical, as the non-embeddable + cannot be placed
after the negation. This is but one instance of a general issue plaguing the
comparison between uni- and multilateral logics. Thus a key intermediate
goal of the project will be to construct a general formal method for cross-
identifying inference rules of different levels, between unilateral logics like CPL
and multilateral ones like EML.

Structurally, the thesis’ main body is divided into four chapters. Chapter
1 takes care of some preliminaries, by motivating and presenting EML and
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the issue of its classicality, and drawing the comparison with the situations
of ST and SV. Chapter 2 studies the different notions of validity we ought to
consider, and proves some general results about their relations and behaviour.
Chapter 3 is concerned with constructing the cross-identification method that
overcomes the comparison problem, and reassessing how the validity criteria fit
given this solution. Chapter 4 is comprised of the main technical results. This
is where we apply the accumulated methods to EML, so as to determine its
agreements and disagreements with classical logic, and furthermore investigate
if and how EML can be strengthened so as to behave more classically given
our metrics. This provides the overview of results that constitutes our central
objective.
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Chapter 1

Background

1.1 Logical Inferentialism and Multilateralism

Epistemic Multilateral Logic (Incurvati & Schlöder, 2019, 2020) is, as the name
suggests, epistemic and multilateral. The former simply means that its syntax
includes a ♦ operator, which is interpreted as an epistemic ‘might’: ♦A is read
as ‘it might be the case that A’. The dual � is accordingly read as ‘it must be
the case that’. Multilateralism, on the other hand, is a bit more involved. It is
a formal framework, motivated by a more general position in the philosophy of
language and logic known as logical inferentialism. To understand the meaning
of and motivation for EML, we must first briefly familiarize ourselves with
logical inferentialism, and the place of multilateralism within it. This will be
taken up in the present section, before EML itself is introduced in the next.

Inferentialism is an umbrella term for positions centered around the idea
that the content/meaning of a linguistic expression is determined/explained by
the rules governing its proper use within inferences.1 By contrast, other theo-
ries of content may for instance point to the reference of a term as constituting
its meaning, which is in turn taken to determine the conceptually secondary
inferential roles. The inferentialist claim may be made regarding language in
general (e.g. Brandom, 1994; Horwich, 1998), or restricted to some specific
class of expressions.

Logical inferentialism is an especially natural variety of the latter type,
according to which at least the meaning of logical terms (connectives, opera-
tors, quantifiers etc.) lies with their legitimate inferential patterns (as opposed
to e.g. their Tarskian truth conditions). The rules governing the inferential
behaviour of a term can be naturally split up into two sorts: those that tell
us when we may derive expressions featuring the term, and those that mark
which consequences we are licensed to derive from such expressions. When it
comes to logical vocabulary, these correspond quite nicely to introduction and

1Precisely what the notion of content or meaning, and the relation of determination or
explanation, amounts to in this context depends on the specific subschool of inferentialism.
See (Murzi & Steinberger, 2017) for an overview of the main options.
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elimination rules (I- and E-rules) in natural deduction. Thus logical inferen-
tialism typically takes shape as the thesis that a logical expression receives its
meaning from its I- and E-rules in an appropriate natural deduction system.
So to understand what ‘and’ or ‘∧’ means, for instance, is just to master the
use of

A B
(∧I)

A ∧B
and

A ∧B
(∧E)

A

A ∧B
B

.

It may seem that if logical connectives derive their meaning from their I-
and E-rules, rather than the other way around, then any pair of such rules is
correct, if only in virtue of itself. For there is no constraint that they must
conform to a previously given meaning of the connective. The rules themselves
define the content of the connective they govern, and are thus self-justifying.
This leads to the most well known challenge for logical inferentialists, due
to Prior (1960). Namely, if any pair of I- and E-rules is correct by its own
definition, then we have no grounds for excluding the connective ‘tonk’ from
our proof theories, where tonk is defined by the following rules.

A
(tonk I)

AtonkB

AtonkB
(tonk E)

B

But of course adding tonk immediately trivializes a system, as any B follows
from any A by successive application of (tonk I) and (tonk E).

The standard reply is to require rule pairs to be in harmony, in the sense
that the E-rule allows one to derive no less and no more from an instance of
the connective than what is required by the I-rule to derive the instance itself.
Harmony can be spelled out in various ways (Dummett, 1991; Prawitz, 1974;
Tennant, 1997), such that it disallows problematic connectives like tonk. How-
ever, it has been contented (most notably by Dummett (1991)) that in doing
so it also disqualifies classical logic, as the standard natural deduction formula-
tions feature apparently disharmonious rules for negation.2 Intuitionistic logic
on the other hand is fully harmonious, and thus logcal inferentialism commits
one to rejecting classicality in favour of intuitionism, or so the argument goes.

This conclusion has been resisted on the grounds that classical logic only
appears disharmonious because, following Frege (1919), it is standardly pre-
sented unilaterally : only specifying rules for inference between assertions, since
denials or rejections are understood as nothing but assertions of a negation.
But one might also take a bilateral approach: taking rejection to be primitive
alongside assertion, rather than reducible to it (Incurvati & Schlöder, 2017;
Incurvati & Smith, 2010; Rumfitt, 2000; Smiley, 1996). Assertion and rejec-
tion of a sentence are speech acts, respectively expressing the attitudes of as-
sent/acceptance and dissent/refusal towards the sentence. Inferences between
speech acts may be taken as valid if the attitudes expressed by the premises
jointly commit one to the attitude expressed by the conclusion (Incurvati &

2Though Read (2000) maintains that this assessment rests on a flawed understanding of
harmony.
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Schlöder, 2017, 2019, 2020).3 For the bilateral inferentialist, then, the mean-
ing of a logical operator lies not just with the inferential rules governing its
assertions, but just as much with those governing its rejections.

The relevance of this is that in a bilateral natural deduction system, where
the I- and E-rules for rejections of a given logical form are provided alongside
the rules for its assertions, classical logic can be presented harmoniously. The
trick is usually that the I- and E-rules for negation specify that assertion (re-
jection) of ¬A is both derivable from and allows one to derive the rejection
(assertion) of A, thus respecting harmony (Rumfitt, 2000; Smiley, 1996). But
this means that, though rejection is not reducible to assertion of negation,
the two are still logically equivalent. Yet linguistic evidence suggests that the
speech act of rejection is often weaker than assertion of the corresponding
negation (Dickie, 2010). Refusal to accept A may be based merely on the
absence of evidence for it, rather than the presence of evidence to the con-
trary, which would be required for assent to ¬A. Hence (Incurvati & Schlöder,
2017) introduces a bilateral logic treating assertion and weak rejection, which
is the speech act expressing the attitude of refusal to accept. However, under-
standing rejection weakly comes at the cost of giving up the above mentioned
harmonious I- and E-rules for negation.

This is where multilateralism finally comes in. In the multilateral approach,
besides weak rejection and the usual (strong) assertion, we consider a third
primitive speech act: weak assertion, which expresses the attitude of refus-
ing to accept the negative (Incurvati & Schlöder, 2019, 2020). The benefits
are three-fold. First of all it allows harmony to be recovered, as the I- and
E-rules for negation now dictate that a weak assertion (rejection) of ¬A is
interderivable with a weak rejection (assertion) of A. Moreover, weak asser-
tion is independently motivated on the basis of linguistic data, in particular
as corresponding to the force modifier ‘perhaps’ in natural language. Finally,
it allows the logical inferentialist to give an account of the epistemic ‘might’,
by providing harmonious I- and E-rules for it, as is done in EML. This is
significant because, whilst the Boolean connectives tend to be relatively easy
cases for inferentialism, explicating the inferential roles of logical operators
beyond this has traditionally proven difficult.4 Let us move on to see how
EML achieves these feats.

1.2 Epistemic Multilateral Logic

EML is formulated in the language LMML of multilateral modal logic. Its
well-formed formulae are signed modal formulae, i.e. formulae from the stan-

3Though see for instance (Smiley, 1996) or (Restall, 2013) for other bilateralist concep-
tions of validity.

4Incurvati and Schlöder (2021) have furthermore applied the multilateral framework to
provide a proof theory for supervaluationist logic, including harmonious rules for the ‘defi-
nitely’ operator, but this is less relevant to the present context.
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dard language LML of modal logic, prefixed by one of the three force-markers
+, ⊕, 	 for strong assertion, weak assertion and weak rejection respectively.
To be precise: we obtain FOR(LPL) by closing a countably infinite set of
propositional letters Prop = {p, q, ...} under the operations ¬ and ∧, and
FOR(LML) by closing Prop under ¬, ∧ and ♦.5 Then FOR(LMML) :=
{+A|A ∈ FOR(LML)} ∪ {⊕A|A ∈ FOR(LML)} ∪ {	A|A ∈ FOR(LML)} ∪
{⊥}.6

We use ‘A’, ‘B’, . . . to denote elements of FOR(LPL) or FOR(LML), which
in the context of multilateral logic are called sentences, and ‘ϕ’, ‘ψ’, . . . for
elements of FOR(LMML), which are called signed formulae. A multilateral
modal logic (MML) is a natural deduction system for deductions between
elements of FOR(LMML). Logics in LPL are called unilateral propositional
logics (UPL’s).

The rules defining EML can be divided into the I- and E-rules for the con-
nectives, and a few coordination principles governing the interaction between
the different speech acts. We start with the former, and in particular with
∧. Strongly asserting a conjunction is, as expected, inferentially equivalent
to (meaning it involves the same commitments as) strongly asserting both
conjuncts.

+A +B
(+∧I)

+A ∧B
+A ∧B

(+∧E)
+A

+A ∧B
+B

As promised, for ¬ we can make use of weak assertion and rejection to provide
harmonious I- and E-rules. Since weakly asserting ¬A expresses a refusal to
assert A, it is equivalent to weakly rejecting A. Similarly, weak rejection of
¬A is equivalent to weak assertion of A.

	A
(⊕¬I)

⊕¬A
⊕¬A

(⊕¬E)
	A

⊕A
(	¬I)

	¬A
	¬A

(	¬E)
⊕A

Furthermore, weak assertion allows for harmonious rules treating the epis-
temic ♦. For strongly asserting ‘it might be that A’ is inferentially equivalent
to stating ‘perhaps A’, which amounts to weakly asserting A. Furthermore,
‘perhaps it might be that A’ just expresses a refusal to commit to ¬A, and is
thus equivalent to simply ‘perhaps A’.

5The operators ∨,→,↔ and � are defined in terms of ¬,∧ and ♦ as usual.
6We may also see ⊥ appearing in sentence positions (i.e. embedded under a force marker

or connective), in which case we use it simply as a shorthand for some arbitrary contradictory
sentence such as p∧¬p. But its inclusion in FOR(LMML) is furthermore necessary to justify
its appearance in signed formula positions. In these cases, ⊥ may be interpreted as denoting
that an inferential dead end has been reached through incompatible commitments (Incurvati
& Schlöder, 2017, 2019, 2020).
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⊕A
(+♦I)

+♦A

+♦A
(+♦E)

⊕A

⊕A
(⊕♦I)

⊕♦A
⊕♦A

(⊕♦E)
⊕A

As for the coordination principles, the following express that it is incoher-
ent to strongly assert A and weakly reject A, and furthermore that if strong
assertion (weak rejection) of A is incompatible with ones other commitments,
this commits one to weakly rejecting (strongly asserting) A.7

+A 	A
(Rejection)

⊥

[+A]
...
⊥

(SR1)
	A

[	A]
...
⊥

(SR2)
+A

Two coordination rules remain. The first of which, (Assertion), merely ensures
that a strong assertion commits one to everything that the corresponding weak
assertion does. The other, (Weak Inference), is a bit more complex. We mark
a (sub)derivation with ε if it is evidence preserving : it does not use (+♦E) or
(⊕♦E), and all open premises or undischarged hypotheses are signed by +.

+A
(Assertion)

⊕A
⊕A

[+A]
.... ε

+B
(Weak Inference)

⊕B

(Weak Inference) serves to capture that if the available evidence does not rule
out A, and furthermore suffices to derive that B is the case from the supposi-
tion that A is the case, then it also does not rule out B. The restrictions on the
derivation from +A to +B are necessary to ensure that commitment to assent
to B is actually derivable from the available evidence, plus the supposition of
evidence for A, rather than from any lack of evidence. An appeal to lack of
certain evidence during a subderivation is witnessed either by the presence of
weakly rejected/asserted open premises, as these force-markers indicate lack
of evidence for/against the sentence they prefix, or by the application of ♦
elimination rules, since ‘it might be the case that’ also indicates a mere lack of
evidence to the contrary. We disallow lack of evidence from playing a part be-
cause, for instance, if besides being committed to ⊕A, we are also committed
to 	A, then the temporary supposition that we are committed to +A imme-
diately leads to incoherent commitments. When supposing that we have more
evidence than we might actually have, we must suspend those of our existing
commitments which are based on lack of evidence.

7SR stands for Smileian Reductio, as the proof rules thus labeled are due to Smiley
(1996).
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EML, then, is the MML defined by the above listed rules. Given Γ ⊆
FOR(LMML) and ψ ∈ FOR(LMML), we write Γ `EML ψ if there exists a
derivation of ψ from Γ in EML. We report without proof a few of the key
results of Incurvati and Schlöder (2019, 2020) regarding EML, starting with a
model theory. Define a translation function τ : FOR(LMML) → FOR(LML)
as follows:

τ(ϕ) =


�A if ϕ = +A

♦A if ϕ = ⊕A
♦¬A if ϕ = 	A.

Under this translation, EML embeds into S5.

Theorem 1.1 (Incurvati & Schlöder, 2020). Take arbitrary Γ ⊆ FOR(LMML)
and ψ ∈ FOR(LMML). Then Γ `EML ψ iff τ [Γ] �S5 τ(ψ).

It should be stressed that this embedding does not constitute an interpretation
of EML; it is merely a useful technical result. The meaning of the logical terms
is conferred on them by the proof rules themselves.

Incurvati and Schlöder (2020) furthermore claim that the strongly asserted
fragment of EML ‘extends classical logic’. This is of particular importance,
because bi- and multilateralism are partially motivated by the intention to
provide a harmonious presentation of classical logic, so as to render inferen-
tialism compatible with classicality. In support they provide the following two
theorems relating EML to CPL, which they label ‘Classicality’ and ‘Supra-
Classicality’ respectively.

Theorem 1.2 (Incurvati & Schlöder, 2020). Take arbitrary Γ ⊆ FOR(LPL)
and A ∈ FOR(LPL). Then Γ �CPL A iff {+γ | γ ∈ Γ} `EML +A.

Theorem 1.3 (Incurvati & Schlöder, 2020). Take arbitrary Γ ⊆ FOR(LPL)
and A ∈ FOR(LPL), and η : Prop → FOR(LML). If Γ �CPL A then {+η[γ]
| γ ∈ Γ} `EML +η[A].

These provide a good starting point when it comes to the comparison
between EML and CPL. But they are far from the full story. First of all,
both are limited to the strongly asserted fragment. This is admittedly the
part of EML that allows for the most direct comparison with CPL, since from
the multilateral perspective, the latter is just a logic of strong assertion. Yet
EML’s behaviour more broadly might still be meaningfully compared to that
of CPL. For instance, we might be interested in the structural properties of
`EML, such as reflexivity or monotonicity, which are understood to apply to
content in general, regardless of force. Such properties of EML would thus be
partially determined by its treatment of sentences signed by ⊕ and 	. So in
order to assess EML’s structural classicality, we will need to find a way to take
into account the entirety of the multilateral language.
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Furthermore, both of these results only compare EML and CPL on the
basic inferential level. However, much is revealed about a logic by consider-
ing its valid metainferences. The concept of a metainference and its validity
criteria will be made precise in sections 2.1 and 2.2 respectively. As we will
see, the correct notion of validity for metainferences is an especially contro-
versial issue. But let it suffice for now that a metainference is an inference
whose premises and conclusion are themselves regular inferences, and that it
is considered valid if one can in some sense conclude the latter given the for-
mer. The valid metainferences can thereby capture significant aspects of the
nature of validity/derivability in a given logic. For instance, logics may be
said to license Cut, Conditional Proof or Contraposition when they validate
all metainferences of the following forms respectively:

Γ ` A Γ, A ` B
Γ ` B

A ` B
` A→ B

A ` B
¬B ` ¬A

It seems that if two logics disagree on the level of metainferences, then
their accounts of deductive reasoning differ wildly, and so they can not be
identified with one another, even if they agree on the standard level inferences
in some defined sense. Hence if EML disagrees with CPL on the validity of
certain metainferences, this marks a departure from classicality on its part.
Moreover, this seems to be the case. Consider the metainferential form of
Classical Reductio, the CPL (and classical first order) validity of which is
typically taken to capture that classical logic supports reductio ad absurdum
arguments:

A,¬B ` ⊥
A ` B

EML apparently does not validate all metainferences of this shape. There are
three broad types of counterexamples to it, utilizing a ♦, ⊕, or 	, as in the
following respective cases.

+♦p,+¬p ` ⊥
+♦p ` +p

⊕p,+¬p ` ⊥
⊕p ` +p

	¬p,+¬p ` ⊥
	¬p ` +p

In each of these, the premise inference is EML derivable whilst the conclusion
inference is not. For example it is incoherent to strongly assert both ‘not p’
and ‘it might be that p’, but the latter is clearly weaker than strongly asserting
p. However, besides it being unclear at this point precisely what it means for
one of these metainferences to be invalid, it is also unclear in which sense
they are instances of the general form of Classical Reductio. We recognize
each of them as witnessing that unlike classical logic, EML does not generally
support reductio ad absurdum. But none of them are uniform substitution
instances of Classical Reductio. For in each case, B is replaced by +p below
the inference line, but above the inference line ¬B is replaced by +¬p. For a
uniform substitution, ¬B would have to be replaced by ¬+p. Yet this would be
ungrammatical, as the non-embeddable + cannot be placed after the negation.
In fact, Classical Reductio as such has no uniform substitution instances for
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multilateral modal logic at all, nor do most other non-trivial schemas one can
formulate for unilateral logic. The result is that even given a specific level of
inference and corresponding notion of validity, it is far from clear how one can
compare between unilateral and multilateral logics.

All of these problems need to be solved or circumvented in order to come
to a complete picture of the supposed classicality of EML. It will be helpful in
this regard that some related questions have been debated when it comes to
the classicality of SV and ST. In particular, the question of validity for higher
level inferences has been extensively discussed in the literature surrounding
ST. Since SV and ST are both unilateral, they furthermore offer a context
where this issue can be isolated and considered without interference from the
additional complications posed by the multilateral setting of EML. So we will
briefly introduce these logics, and their metainferential deviation from CPL,
in the following section.

1.3 Supervaluationist and Strict-Tolerant Logic

Both SV and ST are three-valued propositional logics,8 (partially) motivated
by the problems surrounding vagueness and the Sorites paradox, which might
be taken to arise as a result of assigning every sentence a definite truth-value
1 or 0 (Hyde, 2011). They are thus defined in terms of Strong-Kleene (SK)
valuations, which incorporate an ‘intermediate’ truth-value 1

2
. An SK valu-

ation is a function sk : FOR(LPL) → {0, 1
2
, 1} which respects the following

Strong-Kleene truth-tables.

¬
1 0
1
2

1
2

0 1

∧ 1 1
2

0
1 1 1

2
0

1
2

1
2

1
2

0
0 0 0 0

Note that a Boolean valuation is just an SK valuation with a range of {0, 1}.
Supervaluationist logic (Van Fraassen, 1966) is based on the idea that each

SK valuation specifies a set of Boolean valuations, determined by the different
ways that one can assign bivalent truth-values 1 and 0 to all sentences with
value 1

2
, and that something is true on an SK valuation if it is true on each of

these Boolean valuations. That is, given an SK valuation sk, a precisification
of sk is a Boolean valuation v such that, for all A ∈ FOR(LPL) with sk(A) ∈
{0, 1}, v(A) = sk(A). Then A ∈ FOR(LPL) is said to be supertrue on sk if
v(A) = 1 for each precisification v of sk. The supervaluationist motto is that
truth properly understood is supertruth, and so inferential validity is cashed
out as preservation of supertruth. Given Γ ⊆ FOR(LPL) and A ∈ FOR(LPL),
we say that Γ entails A in SV (Γ �SV A) just in case A is supertrue in every
SK valuation where each γ ∈ Γ is supertrue.

8Though they also admit of first-order formulations, these will not be of concern to us.
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It turns out that SV preserves classical logic on the inferential level, in
the sense that Γ �SV A iff Γ �CPL A (Fine, 1975). But this is not the end
of the story. Since supertruth is a central concept to the supervaluationist
framework, we would want to be able to speak of it in the object language.
This can be done by adding a unary ‘definitely’ operator D to the syntax.
So we let FOR(LDPL) be the closure of Prop under ¬, ∧ and D, and add a
semantic clause specifying that DA is true on a precisification of sk just in
case A is supertrue on sk. Then DA is supertrue just in case A is supertrue,
and ¬DA is supertrue just when A is not supertrue. However, the behaviour
of SV no longer appears to be all that classical on the metainferential level.

Recall for instance the classically legitimate metainferential patterns of
Conditional Proof and Contraposition.

A ` B
` A→ B

A ` B
¬B ` ¬A

Now consider their following respective instances in FOR(LDPL).

p ` Dp
` p→ Dp

p ` Dp
¬Dp ` ¬p

Though again, we have yet to provide precise criteria for metainferential valid-
ity, both of these examples seem to be invalidated by SV. Since Dp is supertrue
just when p is, it follows that p �SV Dp. However, there are SK valuations
such that sk(p) = 1

2
. Then there are precisifications where p is false, so ¬Dp is

supertrue on sk. But there are also precisifications v where p is true, in which
case p→ Dp is false, hence 6�SV p→ Dp. Furthermore, ¬p is false in v, so not
supertrue on sk, despite ¬Dp being supertrue on sk. Therefore ¬Dp 6�SV ¬p.9

Note that the examples in this case, unlike EML’s counterexamples to Clas-
sical Reductio, are actually direct substitution instances of the corresponding
schemas. So SV in the extended language refuses several classically acceptable
forms of argument. And indeed, these and similar observations have led to a
widespread discussion on the extent to which the SV approach to vagueness
rests on a revision of classical logic (Incurvati & Schlöder, 2021; Keefe, 2000a,
2000b; Machina, 1976; Williams, 2008; Williamson, 1994).

Strict-Tolerant Logic (Van Rooij, 2012; Cobreros et al., 2012) is in much
the same situation, though it takes a different interpretation of SK valuations.
An inference is ST valid if whenever all the premises have truth-value 1, the
conclusion has truth-value at least 1

2
. That is to say, given Γ ⊆ FOR(LPL) and

A ∈ FOR(LPL), Γ entails A in ST (Γ �ST A) when for every SK valuation sk,
if sk(γ) = 1 for each γ ∈ Γ, then sk(A) ∈ {1

2
, 1}. The idea is that inferences

may still be valid even if they slightly ‘lessen’ the truth-value from premises to
conclusion. This allows one to resist the steps leading to the Sorites paradox,

9In terms that will be defined only in the next chapter, what we have just shown is
that these instances are globally invalid, which also entails that they are locally invalid. SV
already locally invalidates Conditional Proof and Contraposition even without the presence
of D, but globally invalidates them only after D is added.
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and even to extend the language with a transparent truth-predicate without
falling prey to the Liar or other such paradox (Cobreros et al., 2012; Cobreros,
Egré, Ripley, & Van Rooij, 2013). And all of this is seemingly accomplished
without giving up classical logic, for just as with SV, we have Γ �ST A iff
Γ �CPL A for propositional Γ and A (Ripley, 2012).

However, allowing the truth-value to be weakened from premises to con-
clusion comes at the cost of giving up several classically valid forms of metain-
ferential reasoning. Recall for example the Cut rule.

Γ ` A Γ, A ` B
Γ ` B

It may be that some SK valuation assigns 1 to every element of Γ, 1
2

to A, and
0 to B. In these cases Γ ` A and Γ, A ` B are both ST-satisfied, but Γ ` B is
not. Furthermore, suppose the language is expanded with a constant λ for the
truth-value 1

2
(this automatically happens when a transparent truth-predicate

is added, for in this case the Liar sentence can be formulated, which must
always take value 1

2
to avoid contradiction). Then substituting λ for A, every

γ ∈ Γ for a tautology and B for a contradiction results in an instance of Cut
where the premise inferences are both ST valid but the conclusion is not.10

Again, note that like the examples for SV but unlike those for EML, these
arguments concern straightforward substitution instances of the schema Cut.
For similar reasons, ST invalidates classically legitimate modes of inference
such as Transitivity

A ` B B ` C
A ` C

as well as certain metaformulations of Modus Ponens, Modus Tollens, Explo-
sion and Disjunctive Syllogism. All of this might be and indeed has been
considered quite a departure from classical logic, leading to an extensive de-
bate on the supposed classicality of ST (Barrio, Pailos, & Szmuc, 2020; Barrio,
Rosenblatt, & Tajer, 2015; Ripley, 2021; Scambler, 2020).

Before we can begin to investigate such questions for the case of EML,
we will first need to clarify how an MML can be compared to classical logic.
The next chapter will take the first step towards this end, by illuminating the
concepts of inference and validity for levels higher than the standard.

10In the terminology of the next chapter, these arguments respectively show that Cut
is locally invalid in ST in the regular language, and furthermore globally invalid in the
language with λ.

13



Chapter 2

Classicality by Inferences

2.1 Levels of Inference

We have seen several examples of logics that strongly deviate from the clas-
sical account of reasoning, despite full agreement with CPL on the basic in-
ferential level. This establishes that when assessing a logic’s classicality, we
should not only look at ground level sequents, but also at those of a higher
order. It does not suffice to restrict ourselves to the levels of inferences and
metainferences, however; we should just as well consider metametainferences,
metametametainferences and so on, where each higher order inference deduces
a single conclusion inference (of the previous order) from a set of premise in-
ferences (also of the previous order).11 Such a broad approach is required
because, as Barrio et al. (2020) have shown, it is possible for logics to behave
identically on the basic and meta-levels whilst diverging on the metametalevel,
or more generally to agree on the first n levels despite disagreement on some
or all higher levels.

Formally, we study the following infinite hierarchy.

Definition 2.1. If LX is a logical language, the set SEQn
X of level n inferences

in LX is defined recursively for n > 0:

SEQ1
X := {(Γ, ψ) | Γ ∪ {ψ} ⊆ FOR(LX)}.

11We restrict our attention to single-conclusion inferences throughout this thesis. This
choice is often made for the sake of simplicity when nothing hinges on it. However, there
are more substantial motivations for it in the present context. As a natural deduction
system, EML does not directly treat multi-conclusion inferences. Moreover, due to the non-
embeddable nature of the force markers, one cannot simply reinterpret a sequent of the form
Γ⇒1 ∆ as Γ⇒1

∨
∆. We can of course interpret multi-conclusion sequents in terms of their

satisfaction conditions, but dependence on a model-theoretic interpretation of inferences
conflicts with inferentialism as well as EML’s identification as a proof system. Aside from
this, there has been some debate on whether inferentialism is compatible with a mutli-
conclusion treatment of inferences even in principal (e.g. Dicher (2020) and Steinberger
(2011) argue ‘yes’ and ‘no’ respectively), but I do not intend to take a stance on this
question here.
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SEQn+1
X := {(Θ,Π) | Θ ∪ {Π} ⊆ SEQn

X}.

We will denote (Θ,Π) ∈ SEQn
X either as Θ⇒n Π or as

θ1, ..., θm
n

Π

where {θi | 1 ≤ i ≤ m} = Θ. The order specifying n is often left out if the
inferential level is clear from context.12 To illustrate, consider the case of LPL.
The following are examples of ((meta-)meta-)inferences from SEQ1

PL, SEQ2
PL

and SEQ3
PL respectively.

p ∨ q,¬q ⇒1 p
¬p ∧ q ⇒ r q ⇒ ¬r

2¬p⇒ r

p ∨ q ⇒ p
2

∅ ⇒ r

¬q ⇒ r
2

p⇒ ¬r
3

p ∨ q ⇒ p ∅ ⇒ p
2

∅ ⇒ ¬r

Two logics K1 and K2 in the same language LX are said to agree on level
n if they agree on the validity of every member of SEQn

X (given some chosen
notion of validity for level n inferences). A UPL is said to be classical on level
n if it agrees with CPL on level n. There is of course a sense in which two
logics are more similar if they agree up to a higher level. And so the higher
the level up to which some UPL K is classical, given a notion of validity, the
more classical K is. This principle lies at the core of the argument that ST
and SV are not fully classical because they depart from CPL at level 2 and
beyond.

It is important to note why it makes sense to speak of agreement with
classical logic up to a certain inferential level. The reason is that on all rel-
evant notions of validity, the validities at the higher inferential levels fully
determine those at the lower ones. Hence full agreement with classical logic
on level n entails full agreement on all levels below, and disagreement on n
entails disagreement on all levels above. This observation has two relevant
consequences. First of all it means that, when studying the classicality of
some logic, one typically need not consider inferences higher than the first
level at which it deviates from CPL. As a result, literature on ST and SV does
not standardly treat inferences or validity criteria of levels n > 2.13 Yet for
the purposes of section 4.2, where we will investigate whether EML can be
adapted so as to behave more classically, we need to venture beyond level 2.
Furthermore, it means that if a UPL K1 agrees with classical logic on some
inferential level where K2 deviates from it, then the set of levels on which K1

12When referring to inferential levels, we will use n,m, ... to denote arbitrary elements
of the positive integers, rather than the full natural numbers, since we do not have an
inferential level 0.

13Notable exceptions are (Barrio et al., 2020; Fitting, 2021; Pailos, 2020; Ripley, 2021;
Scambler, 2020), which include many relatives of ST that display classical behaviour up to
various levels (for various ways of understanding of validity).
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behaves classically is strictly bigger than that of K2, which justifies the claim
that K1 is strictly more classical than K2 - at least given that criterion of
validity.

So every notion of validity for inferences of arbitrary level n provides its
own measure of classicality for UPL’s, for it allows us to ask up to which level
a given UPL behaves classically. The next step is thus to survey the different
validity criteria available.

2.2 Local and Global Validity

We should to prefix our coverage of ‘validity notions’ by clarifying our usage
of the expression. We understand it broadly, as designating any criterion
intended to capture what it means for an inference of some level to be justified
or in good standing according to a logic. Our conception of the term ‘logic’
is similarly unspecific. For now it is more fruitful not to limit ourselves to
stances on what logics are or how they should be primarily understood (e.g.
semantically, as natural deduction systems, sequent calculi, equivalence classes
of proof systems, and so on). We will typically present validity notions model-
theoretically, and comment on if and how they can be characterized in terms
of different types of proof systems. We do for the time being restrict ourselves
to notions of validity for individual inferences, whereas the next chapter will
cover inference schemas expressing general rules.

For ground level inferences, there is of course a single standard criterion
of validity. It might receive different characterizations, e.g. as derivability in
a proof system or as satisfaction at every model, but these at least pick out
the same validities (assuming soundness and completeness). For higher levels
of inference, however, several natural but non-equivalent notions of validity
present themselves.

These complications first appear at level 2, for which we find two alternative
validity criteria in the ST literature: local and global.14 To define them in some
generality, assume for the remainder that we are working with logics K in LX
such that the ground level validities can be defined as those Γ⇒1 ψ ∈ SEQ1

X

that meet some satisfaction condition with respect to every model M ∈ M,
for some class of structures M.15 We write M �K Γ ⇒1 ψ to denote that
Γ ⇒1 ψ satisfies this property for M ∈ M. For CPL, M is of course the
class of Boolean valuations v, and the satisfaction condition is that either

14Local validity was the notion of choice in e.g. (Barrio et al., 2020; Cobreros, La Rosa,
& Tranchini, 2020; Dicher & Paoli, 2019; Golan, 2021a; Pailos, 2019, 2020). The global
criterion is employed in (Barrio et al., 2015; Cobreros et al., 2013; Cobreros, Egré, Ripley,
& van Rooij, 2020) amongst others.

15Far from every conceivable logic fulfills these assumptions. Many UPL’s that do not are
featured in (Barrio et al., 2020; Fitting, 2021; Pailos, 2019, 2020; Ripley, 2021; Scambler,
2020). But defining the validity notions more generally would be cumbersome, and more
importantly uncalled-for, since the logics considered in this thesis (ST, SV, CPL, EML and
EML∗) all fit the limits of our mode of presentation.
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v(γ) = 0 for some γ ∈ Γ or v(ψ) = 1. In case of EML, we may temporarily
assume that the S5 embedding provides its canonical semantics. ThenM is the
class of pointed Kripke models with equivalence relations, and the satisfaction
condition for (M,w) ∈ M is that either (M,w) 6� τ(γ) for some γ ∈ Γ or
(M,w) � τ(ψ), where � signifies truth at a world.

We first generalize satisfaction per model to higher level inferences, which
then allows us to define global and local validity.16

Definition 2.2 (General satisfaction). Take M ∈ M and Θ⇒n Π ∈ SEQn
X .

K-satisfaction of Θ ⇒n Π by M (written as M �K Θ ⇒n Π) is defined recur-
sively for n > 1: M �K Θ⇒n Π iffDef

either M 6�K θ for some θ ∈ Θ, or M �K Π.

Definition 2.3 (Level 2 local validity). K locally validates Θ⇒2 Π ∈ SEQ2
X

(�LK Θ⇒2 Π) iffDef

M �K Θ⇒2 Π for every M ∈M.

Definition 2.4 (Level 2 global validity). K globally validates Θ ⇒2 Π ∈
SEQ2

X (�GCPL Θ⇒2 Π) iffDef

either M 6�K θ for some θ ∈ Θ and M ∈M, or M �K Π for every M ∈M.

When spelled out, the criterion for local validity reads: for every M ∈M,
if M �K θ for every θ ∈ Θ, then M �K Π. Moreover, the global definition can
be rewritten as: if for every M ∈ M, M �K θ for every θ ∈ Θ, then also for
every M ∈ M, M �K Π. So the difference between the two lies in quantifier
scope; the local condition is of the form ∀x(Px → Qx), whereas the global
criterion demands that (∀xPx) → (∀xQx). Thus it is easy to see that local
entails global validity at level 2, for every logic. The other direction does not
generally hold, as for example

∅ ⇒ p
2

∅ ⇒ q

is globally but not locally valid in CPL.
Note also how global validity at level 2 simply amounts to preservation

of validity from the premise inferences to the conclusion inference; if all the
premise inferences are valid, so is the conclusion. This is significant for two
reasons. First, given some sound and complete proof system, validity at level 1
can itself be characterized entirely proof-theoretically. Therefore so can global
validity at level 2: it is preservation of derivability. Thus global validity can
be defined for a proof system itself, even if no model theory is available, or
multiple distinct ones are. In contrast, local validity can only be defined in

16These should not be confused for the independent notions of local and global conse-
quence for level 1 inferences, which appears in the context of Kripke semantics for modal
logic (see section 1.5 of (Blackburn, De Rijke, & Venema, 2002)), or super- and subvalua-
tionism (see section 5.3 of (Williamson, 1994)).
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relation to some specific model theory. If two model theories are both sound
and complete for level 1 with respect to the same proof system, and hence
with respect to each other, this does not guarantee that they produce the same
local validities. This is another lesson that can be drawn from ST and SV.
For in their basic propositional formulations, their respective model theories
produce the same level 1 validities as CPL, and are hence sound and complete
with respect to standard CPL proof systems. Nevertheless, their level 2 local
validities are altogether different from those generated by CPL’s usual Boolean
model theory, as well as from each other.17

So it does not strictly speaking make sense to speak of the local validities
of some proof system, unless something can be identified as the model theory
for the system.18 This point has naturally escaped the attention of the ST
literature. ST’s semantic definition is the original and canonical one, the
name ‘Strict-Tolerant logic’ being a direct reference to it. Several sound and
complete proof systems have been developed (see e.g. those in (Barrio et al.,
2015) or (Cobreros et al., 2012)), but there is no particular reason to prefer
purely syntactic methods when comparing ST to CPL. The case of EML is
of course quite different in this respect. Given its inferentialist underpinning,
EML should only be identified with the natural deduction system itself. The
S5 embedding is a technical tool: useful for studying EML’s properties, but not
an interpretation of its meaning, certainly not any more so than any alternative
model theory (and corresponding set of local validities). Thus when it comes
to EML, we must ultimately give preference to validity notions that can be
defined by referring purely to the natural deduction system.

Another consequence of global validity being preservation of validity is that,
if we want to extend it to levels n > 2, we are faced with more choices. The
local validity criterion has an obvious generalization to arbitrary inferential
levels: satisfaction at every model. But if global validity at level 2 is preser-
vation of level 1 validity, then global validity at level 3 would be preservation
of level 2 validity. The question then arises what we mean by level 2 validity
here, since there are two distinct options. Therefore global validity itself splits

17Another example of this phenomenon can be extracted from Carnap’s (1943) categoricity
problem. Consider the valuation v† : FOR(LPL)→ {1, 0} such that v†(A) = 1 iff �CPL A.
Carnap pointed out that if we were to expand the class of Boolean valuations with v†,
and kept the satisfaction condition the same, we would get the same set of valid level 1
inferences. So this alternative model theory would be sound and complete with respect to
CPL proof systems. However, the local level 2 validities would be different. For instance,
because the following metainference is not satisfied in v† despite being satisfied in every
Boolean valuation.

p ⇒ q ¬p⇒ q
2

p ∨¬p⇒ q

18We will sometimes speak of the local (or globalL, to be introduced below) validities of
an arbitrary MML or other natural deduction system, for which no model theory has been
identified at all. In these cases, what is said should be understood as pertaining to any
sound and complete model theory that may be specified for that proof system.
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into two notions on level 3: we can define global1 validity of Θ⇒3 Π as preser-
vation of local validity from the θ ∈ Θ to Π, and global2 validity of Θ ⇒3 Π
as preservation of global validity from the θ ∈ Θ to Π. Combined with the
generalization of local validity, this means there are a total of three notions of
validity for level 3 inferences. But if global validity is extended to level 4 as
preservation of level 3 validities, and there are three notions of level 3 validity,
then there are three notions of level 4 global validity. Iterating this process,
we see that for every inferential level n, there are n many distinct notions of
validity: local validity, plus n − 1 types of global validity. The increase in
global validity criteria at higher levels has apparently not come up in the ST
literature either. We mentioned earlier that since ST already departs from
classical logic at level 2, validity notions at higher levels are not often con-
sidered in that context. The exceptions fall in two categories: (Barrio et al.,
2020; Fitting, 2021; Pailos, 2020) merely treat local validity.19 On the other
hand, (Ripley, 2021; Scambler, 2020) work in more general settings, where
they have abstracted away from particular validity notions (in our usage of
the term ‘validity notion’, which is different from Scambler’s) determining the
higher level inferences.20 Global validity at levels 3 and up has seemingly not
been studied before. Yet given the point about proof-theoretic definability, we
have reason to do so in some depth.

So far, we have been considering criteria of validity defined per individual level.
Recall, however, that we are looking for a validity notion to give substance to
the principle that two logics are more similar when they agree on validities up
to a higher inferential level. For this purpose we are ultimately interested in
general definitions; ones that cover all levels. We could simply pick out for each
individual level one of the validity conditions available there, and staple them
together to construct a general definition. But this would lead to arbitrary
mishmashes, posing radically diverging criteria for different inferential levels.
We require a uniform definition, at least on levels n > 1, so that we can
rightfully call it a general notion of inferential validity.

As I take it, there are three general validity notions of sufficient uniformity.

Definition 2.5 (General local validity). K locally validates Θ⇒n Π ∈ SEQn
X

(�LK Θ⇒n Π) iffDef

M �K Θ⇒n Π for every M ∈M.

Definition 2.6 (General globalL validity). K globallyL validates Θ ⇒n Π ∈
SEQn

X (�GLK Θ⇒n Π) iffDef either of the following obtains:

19Fitting does at points speak of ‘global validity’ for arbitrary levels n, but only with
respect to consequence relations that are defined directly at level n− 1 (thus not fitting in
our assumptions about K), so that global validity at level n is just taken to mean preservation
of this consequence relation.

20Although Ripley’s C(ŜT ) and C(ĈL) are equivalent to what we will call the general local
validities of ST and CPL respectively, the former of which is also equivalent to Scambler’s
T1.
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• n = 1 and M �K Θ⇒n Π for every M ∈M.

• n > 1 and either M 6�K θ for some θ ∈ Θ and M ∈ M, or M �K Π for
every M ∈M.

Definition 2.7 (General globalG validity). K globalG validity of Θ ⇒n Π ∈
SEQn

X (�GGK Θ⇒n Π) is defined recursively for n > 0:

• �GGK Θ⇒1 Π iffDef

M �K Θ⇒1 Π for every M ∈M.

• �GGK Θ⇒n+1 Π iffDef

either 6�GGK θ for some θ ∈ Θ, or �GGK Π.

We will henceforth use ‘local/globalL/globalG validity’ to refer to these
general versions, unless otherwise specified. So what are their virtues? To
start, observe that globalL validity at higher levels just amounts to preservation
of local validity. That is, for n > 1, �GLK Θ ⇒n Π just means that if �LK θ for
all θ ∈ Θ, then also �LK Π. We noted earlier that for every inferential level n,
there are n many notions of validity - the local one, plus n − 1 many global
variants - and criteria of n + 1 global validity pick one of these to preserve.
The uniformity of general globalL validity lies in that it universally selects
local validity for level n to preserve at level n+ 1.

GlobalG validity, on the other hand, is uniform because at every level n+1,
it picks preservation of itself for level n, allowing for a recursive definition. It
moves from ground level validity, to preservation of ground level validity, to
preservation of preservation of ground level validity, and so on. This also means
that the definability of ground level validity in purely proof-theoretic terms
carries over to the full generality of globalG validity. This property is unique
to globalG within the space of general validity definitions laid out above. We
have already discussed how proof-theoretic definability is a crucial advantage
when it comes to studying EML, and so globalG stands out prominently as the
most appropriate criterion under consideration in this section. The other two
are strictly speaking irrelevant to the classicality of EML proper. Nevertheless,
we will have much to say about them in what remains. Partly because I take
it they are interesting in their own right, independently from application to
EML, and specifically to those studying ST.21 But uncovering its relations to
these neighbouring notions will also help to illuminate globalG validity itself.

Local validity is in a sense the most uniform among the three. It can be
defined with a single clause, because it simply takes the idea of satisfaction at
every model from level 1 inferences and applies it across the board. Indeed,
Barrio et al. (2020) raise this point as a benefit of local as opposed to global

21Cf. footnote 8 of (Cobreros, Egré, et al., 2020).

20



validity for level 2. Against this, Golan (2021b) argues that we need not pre-
sume from the outset that uniformity is better when it comes to generalizing
validity, and points out that no specific reason why it is so has been offered.
I take it that presumptions in favour of symmetrical accounts are typically
justified, but only to the extent that we lack a good explanation for the irreg-
ularity in the alternatives. In the case of local versus global validity, I maintain
that the latter’s asymmetry between the ground- and metalevels is perfectly
acceptable, if not desirable. For some asymmetry between levels 1 and higher
is present already in the inferential notions themselves. Only the former have
formulae for their premises and conclusions, whereas all the higher levels have
inferences of some sort in those places. Formulae and inferences are rather
different beasts, so it should be far from surprising that an inference between
formulae has different success criteria from an inference between inferences.

In particular, when considering an inference (as opposed to a formula) from
a logical perspective, we do not particularly care about whether it is satisfied
in some specific model, but rather about whether it is generally valid, for this
is what can logically justify the inference. In fact, inferential validity is not
just the main concept of interest as far as inferences go, but arguably the
central object of study in logic altogether. When it comes to formulae we
often concern ourselves with their satisfaction per model, rather than their
general validity, but only precisely because the former allows us to in turn
define inferential validity (at level 1). We may generalize model satisfaction to
apply to inferences as well, and the resulting notion is interesting enough, but
it would be a mistake to think of this as the primary property of inferences
for logic to examine. Then, given that validity rather than satisfaction is
the main inference property of interest, it seems natural that an inference
between inferences is held in good standing when it preserves validity rather
than satisfaction. This warrants the asymmetry in the global notions.

A few more comments are in order. Recall our earlier claim that we can
measure agreement with classical logic up to a certain inferential level, because
the set of validities at some level fully determines the sets at all lower levels.
We can now see that this indeed follows immediately from the definitions. For
local validity, Barrio et al. (2020) amongst others have already observed that
level n inferences can simply be thought of as n + 1 order inferences without
premises:

Observation 2.8. Take Θ⇒n Π ∈ SEQn
X .

�LK Θ⇒n Π iff �LK ∅ ⇒n+1 (Θ⇒n Π).

The same thing happens to be true for globalG validity:

Observation 2.9. Take Θ⇒n Π ∈ SEQn
X .

�GGK Θ⇒n Π iff �GGK ∅ ⇒n+1 (Θ⇒n Π).

However, the exact globalL analogue only holds between levels 1 and 2.
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Observation 2.10. Take Γ⇒1 ψ ∈ SEQ1
X .

�GLK Γ⇒1 ψ iff �GLK ∅ ⇒2 (Γ⇒1 ψ).

At higher levels it fails. For instance, (∅ ⇒1 p)⇒2 (∅ ⇒1 q) is globallyL valid
for CPL. But it is not locally valid. Therefore

∅
3

(∅ ⇒1 p)⇒2 (∅ ⇒1 q)

is not globallyL valid. Nevertheless, the globalL validities at a level n > 1 are
determined by those at n+ 1, in a more roundabout manner:

Observation 2.11. Take Θ⇒n Π ∈ SEQn
X with n > 1.

�GLK Θ⇒n Π iff �GLK {∅ ⇒n θ | θ ∈ Θ} ⇒n+1 (∅ ⇒n Π).

It will turn out helpful that the analogue of observation 2.11 does also hold
for local and globalG.

Observation 2.12. Take Θ⇒n Π ∈ SEQn
X with n > 1.

(i) �LK Θ⇒n Π iff �LK {∅ ⇒n θ | θ ∈ Θ} ⇒n+1 (∅ ⇒n Π).

(ii) �GGK Θ⇒n Π iff �GGK {∅ ⇒n θ | θ ∈ Θ} ⇒n+1 (∅ ⇒n Π).

At n = 1, this also holds for local validity, but not for globalL and globalG.
For examply in CPL, p ⇒1 q is not globally valid yet (∅ ⇒1 p) ⇒2 (∅ ⇒1 q)
is. But the important point is that for each of the validity criteria and each
inferential level n, the validities at n are fully determined by those at n+ 1 in
at least one of these ways.

Finally, the question remains how strong the three criteria are with respect
to each other at the different levels. This partially depends on the specific
logic, but a few relations hold universally. Namely, all three are of course
equivalent at the ground level, where they pick out the common notion of
validity. GlobalL and globalG are furthermore equivalent at level 2, where
their criterion amounts to standard global validity as per definition 2.4. Local
is at least as strong as globalL validity on all levels, as the difference in their
definitions is still merely quantifier scope. These last two facts also mean that
local is at least as strong as globalG at level 2.

Further results on relative strength of the criteria can hold for individual
logics. In a trivial logic such that every ground level inference is satisfied at
every model, the three criteria are equivalent for all n. But no entailments
between the notions hold universally, besides those listed in the previous para-
graph. In fact, CPL alone offers a counterexample to every other possible
entailment. That is to say: for CPL, local validity is strictly stronger than
globalL at all levels n > 1 (hence strictly stronger than globalG at level 2).

Proposition 2.13. For every n > 1, there exists Θ ⇒n Π ∈ SEQn
PL such

that �GLCPL Θ⇒n Π but 6�LCPL Θ⇒n Π.
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Proof. For n = 2, the witness is (∅ ⇒1 p) ⇒2 (∅ ⇒1 q). This generates
witnesses for all higher levels due to observations 2.11 and 2.12 (i).

Furthermore, globalG is CPL incomparable to (i.e. neither stronger nor weaker
than) either of the others at n > 2:

Proposition 2.14. For every n > 2, there exists Θ ⇒n Π ∈ SEQn
PL such

that �GGCPL Θ⇒n Π but 6�LCPL Θ⇒n Π and 6�GLCPL Θ⇒n Π.

Proof. For n = 3, the witness is

∅
3

(∅ ⇒1 p)⇒2 (∅ ⇒1 q)

which generates witnesses for all higher levels due to observations 2.11 and
2.12.

Proposition 2.15. For every n > 2, there exists Θ ⇒n Π ∈ SEQn
PL such

that �LCPL Θ⇒n Π and �GLCPL Θ⇒n Π but 6�GGCPL Θ⇒n Π.

Proof. For n = 3, the witness is

(∅ ⇒1 p)⇒2 (∅ ⇒1 q)
3

∅ ⇒2 (p⇒1 q)

which generates witnesses for all higher levels due to observations 2.11 and
2.12.

This gives us a complete overview of the notions’ relative strength when applied
to CPL: globalL and globalG are equivalent on levels 1 and 2, after which they
are incomparable. GlobalL and local are equivalent on level 1, after which
local is strictly stronger. GlobalG and local are equivalent on level 1, local is
strictly stronger on level 2, and after this they are incomparable.

As it happens, the exact same strength relations hold for the criteria when
applied to EML, and for parrallel reasons.

Proposition 2.16. For every n > 1, there exists Θ ⇒n Π ∈ SEQn
MML such

that �GLEML Θ⇒n Π but 6�LEML Θ⇒n Π.

Proof. For n = 2, the witness is (∅ ⇒1 +p) ⇒2 (∅ ⇒1 +q). This generates
witnesses for all higher levels due to observations 2.11 and 2.12 (i).

Proposition 2.17. For every n > 2, there exists Θ ⇒n Π ∈ SEQn
MML such

that �GGEML Θ⇒n Π but 6�LMML Θ⇒n Π and 6�GLEML Θ⇒n Π.

Proof. For n = 3, the witness is

∅
3

(∅ ⇒1 +p)⇒2 (∅ ⇒1 +q)

which generates witnesses for all higher levels due to observations 2.11 and
2.12.
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Proposition 2.18. For every n > 2, there exists Θ ⇒n Π ∈ SEQn
MML such

that �LEML Θ⇒n Π and �GLEML Θ⇒n Π but 6�GGEML Θ⇒n Π.

Proof. For n = 3, the witness is

(∅ ⇒1 +p)⇒2 (∅ ⇒1 +q)
3

∅ ⇒2 (+p⇒1 +q)

which generates witnesses for all higher levels due to observations 2.11 and
2.12.

This concludes our study of the validity notions for individual inferences. Be-
fore closing the chapter, let us mention a few notions of metainferential validity
which we choose not to cover in depth, despite some prominence in the liter-
ature. To start, given a sequent calculus treating derivations between ground
level inferences, a metainference Θ ⇒2 Π is said to be externally valid if Π is
derivable in the system after adding every θ ∈ Θ as an axiom (Barrio et al.,
2015; Cobreros, Egré, et al., 2020). Although its proof-theoretic nature may
seem like a benefit, there are several reasons for omitting external validity.

First of all, EML is not a sequent calculus. While it is not too difficult to
define a sequent calculus which is sound and complete at level 1, in the sense
that it derives Γ ⇒1 ψ just in case Γ `EML ψ, it is hard to see the relevance
of the external validities on such a system.22 The relation between this set of
validities and EML proper would be weak. Many different sequent calculi can
be sound and complete at level 1, and their respective external validities might
be wildly different, as demonstrated by Dicher and Paoli (2019) for ST. Since
there is no motivation for taking one particular such system as the canonical
EML sequent calculus, there is no non-arbitrary way to identify the set of
external EML validities. One might argue that a specific sequent calculus is
canonical because its external logic is sound and complete also on level 2, in
the sense that the external validities are precisely the globally or locally valid
ones. But in that case, comparing the external validities of EML to those of
CPL just amounts to comparing their global or local validities, so it brings
nothing new to the table.

Moreover, it is unclear how external validity should be generalized to levels
n > 2. We could recursively define globalE validity for n > 2 as preservation
of external validity at 3, preservation of preservation of external validity at
4 and so on. However, this involves a significant and unfounded asymmetry
between the levels up to 2 and the higher ones. Alternatively, we can imagine
higher and higher level proof systems for MML’s, treating derivations between
level 2 inferences, then level 3 inferences and so on, as (Da Ré & Pailos, 2021;
Golan, 2021a) do for several ST-related logics. But then at every step we

22A calculus with this property was constructed in the early stages of research on this
project, but left out of the thesis because of its inapplicability as argued for here.
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are faced anew with the problem of identifying a canonical such system, and
accompanying set of external validities, if this is not done in reference to sound-
and completeness for the global or local validities at the corresponding level.

In (Da Ré, Szmuc, & Teijeiro, 2021; Humberstone, 1996; Teijeiro, 2019) it
is explored how external validity (which they call ‘derivability’) for a sequent
calculus can be related to a model-theoretic level 2 notion dubbed ‘absolute
global validity’. Perhaps absolute global validity could be adapted to apply
to EML’s S5 embedding, and even generalized to higher levels. However,
as Da Ré, Szmuc and Teijeiro admit, it enjoys no independent motivation
as a condition for the logical justification of metainferences; it is contrived
purely to demonstrate how external validity can (under certain conditions) be
characterized semantically. Hence the irrelevance of external validity to our
present purposes carries over to absolute global validity.

We have also opted to leave out negative notions of validity, i.e. criteria
capturing how an inference can be in bad standing according to a logic. For
instance, Scambler (2020) argues that anti-validity can serve as a significant
measure of similarity between logics. Anti-validity is most easily understood
as a counterpart to local validity. Whereas an inference of some level is locally
valid if it is satisfied in every model, it is anti-valid if it is satisfied in no model
whatsoever. It is not discussed in depth because, like local and globalL validity,
it can only be defined in terms of a specific model theory, but unlike these
positive validity notions, anti-validity is not an alternative to globalG validity,
and so there is not much insight to be gained from contrasting them.23

With our selection of validity criteria made, it remains to be seen how they
might be applied to the comparison between uni- and multilateral logics. This
will be the topic of the next chapter.

23Nevertheless, for those interested, but in terms that will only be introduced later: when
it comes to anti-validity, EML is classical up to level 2 and strictly subclassical beyond that,
whilst EML∗ is classical on every level. These are relatively easy consequences of corollary
4.13 and theorem 4.21 respectively, because an inference schema Λ⇒n Ω is anti-valid iff Ω
is anti-valid whilst every λ ∈ Λ is locally valid.
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Chapter 3

Classicality by Rules

3.1 The Comparison Problem

The developments of the previous chapter allow one to compare two logics in
the same language, by comparing the validities they accord particular infer-
ences in that language at various levels for various notions of validity. But
as we have noted, the language of MML’s is rather different from that of any
classical logic. The differences are such that there are no individual inferences
which can be formulated in both: SEQn

PL ∩ SEQn
MML = ∅ for each n, and

so no individual inferences of any level are available to check for agreement
between e.g. EML and CPL.24

A natural move is to instead compare the logics by whether they validate
the same general inference rules at different levels. Inference rules are condi-
tions specifying that every individual inference of a certain logical type is valid,
and logics can agree (or disagree) on such rules even if they are formulated
in different languages, because this just means different specific inferences will
fall under that type. Depending on ones preferred account of logic, the rules
satisfied by some K may be taken to capture how K treats derivation, truth,
or commitment, for content of various logical forms. General rules can be
expressed by schemas, containing formula variables which can range over the
formulae of different languages when the schema is assessed for different log-
ics. Schemas do not always receive a formal definition, as we intuitively know
how to identify and read them. But since we will need to quantify over them,
to assess agreement with classical logic at different levels, we require some
precision. A general treatment can be set up as follows.25

24Although this section is formulated specifically in relation to multilateral modal logic, I
take it most if not all of what is said applies in parallel to other bi- or multilateral languages.

25Defining schemas as independent syntactic objects, as done here, rather than as sets of
inferences, means that many intuitively identical schemas strictly speaking turn out distinct,
e.g. A1 ⇒ A1 and A2 ⇒ A2. However, we will henceforth treat schemas as identical if they
can be obtained from one another through uniform substitution of (fresh) variables, i.e.
if they have precisely the same instances, since in this case they are for all intends and
purposes the same. So we speak of schemas as of the equivalence classes they represent,
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Definition 3.1 (Boolean schemas). Take a countably infinite set of formula
variables A = {A1, A2, A3, ...}, and let A∗ be the closure of A under the
Boolean operations ¬ and ∧. The set BSCn of level n Boolean schemas is
defined recursively for n > 0:

BSC1 := {(∆, χ) | ∆ ∪ {χ} ⊆ A∗}.

BSCn+1 := {(Λ,Ω) | Λ ∪ {Ω} ⊆ BSCn}.

As before, we will usually denote (Λ,Ω) ∈ BSCn as Λ⇒n Ω or

λ1, ..., λm
n

Ω

where {λi | 1 ≤ i ≤ m} = Λ, and occassionally refer to schemas of arbitrary
level as simply ‘schemas’, to level 1 schemas as ‘ground level schemas’, to level
2 schemas as ‘metaschemas’ and so on.

A Boolean schema can be assessed for validity (given some notion of validity
for individual inferences) with respect to logics in any language LX , as long as
FOR(LX) is closed under the Boolean operations, by reference to substitution
functions σ : A → FOR(LX). For such functions, if χ ∈ A∗ we write σ[χ]
to denote χ[σ(A)/A]A∈A, if ∆ is a set such that σ[−] is defined for all its
elements we write σ[∆] to denote {σ[δ] | δ ∈ ∆}, and if Λ ⇒n Ω ∈ BSCn

we write σ[Λ ⇒n Ω] to denote σ[Λ] ⇒n σ[Ω]. In this case σ[Λ ⇒n Ω] is
called an instance of Λ ⇒n Ω. The point is of course that if FOR(LX) is
closed under Boolean operations, then σ[Λ ⇒n Ω] ∈ SEQn

X , allowing for the
following definition:

Definition 3.2 (Boolean schema validity). Let K be a logic in LX such that
FOR(LX) is closed under Boolean operations, let s be a notion of validity for
n level inferences, and take Λ⇒n Ω ∈ BSCn. K s-validates Λ⇒n Ω (written
as �sK Λ⇒n Ω) iffDef

�sK σ[Λ⇒n Ω] for every σ : A → FOR(LX).

So a level n schema is globalG valid for CPL, for example, when all of
its instances are. Thus we can take agreement on the validity of all Boolean
schemas (on a given inferential level and notion of inferential validity) as a
measure of similarity between logics. In particular, we can use agreement with
CPL on the validity of Boolean schemas of increasingly high level as a measure
of classicality, even for logics formulated in a language other than LPL, as long
as the well-formed formulae are closed under Boolean operations. This is what
allows us to identify the non-classicality of intuitionistic logics in all manner
of languages, for example, by their failure to validate the Boolean schema
∅ ⇒1 A ∨ ¬A.

under the equivalence relation determined by uniform substitution/sameness of instances.
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Note that this is a proper extension of the approach discussed in the previ-
ous sections - whereby logics are compared according to the validity of individ-
ual inferences - in the sense that for two logics formulated in the same language
LX , agreement on all of SEQn

X entails agreement on all of BSCn (though not
necessarily vice-versa). Moreover, this extension is particularly appropriate
for the purpose of evaluating classicality. The two quintessential examples
of classical logic, CPL and Classical First-Order Logic (CFOL), are equiva-
lent in terms of Boolean schemas. Furthermore, Boolean schemas promise to
provide the strongest schematic method for capturing the agreement between
them, giving expression to every existing commonality in their general infer-
ence rules. For the full grammar of LPL is included in the definition of the
schemas themselves, so that any more encompassing framework will include
schemas that cannot be assessed with respect to CPL. Thus we can identify
the classically valid inference rules as: those Boolean schemas validated by
CPL (or equivalently CFOL). Consequently, agreement with CPL/CFOL up
to higher level Boolean schemas on some validity notion can serve as a measure
of classicality extended to alternative languages.26 The behaviour of schemas
with respect to our different notions of inferential validity will be examined in
the next section, but another problem requires our attention first.

In the case of MML’s, the condition on Boolean schema assessment - that
the well-formed formulae of the language must be closed under Boolean op-
erations - presents a serious obstacle. For although the sentences of LMML

are thus closed, the well-formed formulae FOR(LMML) consist in the signed
formulae, as it is inferences between signed formulae that MML’s are ulti-
mately concerned with. But since force markers can not be embedded under
connectives, the set of signed formulae lacks the required closure properties.
Consider for instance the classical Boolean schema of Conjunction Elimination
(CE): A1 ∧ A2 ⇒1 A1. If we indeed interpret A1, A2 as variables ranging over
signed formulae, the schema’s EML-validity depends on the EML-validity of
inferences like (⊕p) ∧ (⊕q) ⇒1 ⊕p. But force markers cannot be embedded
under conjunction, thus (⊕p) ∧ (⊕q) is ungrammatical. In general, it is not
the case that σ[Λ⇒n Ω] ∈ SEQn

MML if σ : A → FOR(LMML).
So we may need some creativity to apply Boolean schemas to MML’s. We

might, for instance, try to let the A’s range over sentences (meaning elements of
FOR(LML)) instead. Yet in that case the EML-validity of CE depends on that
of e.g. p ∧ q ⇒1 p. This is an inference between unsigned formulae, therefore
multilateral logics have nothing to say on its validity as such. Substituting an
element of BSCn with unsigned sentences for the Ai results in an element of
SEQn

ML, not SEQn
MML. We could try to prefix force markers to all sentences

after substitution has taken place, thereby moving from SEQn
ML to SEQn

MML,
and use the resulting inferences to determine Boolean schema validity. But
there are many ways to assign force markers to a given unsigned inference, e.g.

26Given this schematic equivalence between CPL and CFOL, we will measure classicality
in reference only to the former, for reasons of simplicity.
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three markers and two sentences means six possible assignments for p∧q ⇒1 p,
so the question arises which such ‘signings’ of any substitution instance are
relevant to the validity of the schema. There are several possible answers to
consider. All of them fail, but it is illustrative to explore why, as this will help
us design our eventual alternative.

First of all, we might simply require that all signings of all substitution
instances of a Boolean schema must be valid, in order for the schema itself to be
valid. So e.g. an MML would validate CE iff it validates ◦1(σ(A1)∧σ(A2))⇒1

◦2σ(A1) for every σ : A → FOR(LML) and every ◦1, ◦2 ∈ {+,⊕,	}. But this
leads to unreasonable results. For instance, it means that EML invalidates the
Boolean schema of Reflexivity, A⇒1 A, because it invalidates +p⇒1 	p. But
we seek to measure whether a given MML validates the same general rules as
CPL, and this counterexample doesn’t constitute a violation of the rule that
Reflexivity expresses for CPL, namely (from the inferentialist perspective) that
one is committed to the things one is committed to, or (proof-theoretically)
that every zero-step derivation is permitted. This rule does hold for EML. It
is clear that if we adopt the method of considering all signings relevant, then
Boolean schemas like Reflexivity place demands for their validity on MML’s
which are no longer analogous to the demands they place on classical logic.
So it is not well suited for evaluating the classicality of MML’s.

The Reflexivity example suggests that perhaps we should only consider
‘egalitarian’ signings: those obtained by prefixing the same force marker to
every sentence in the inference. Then a Boolean schema, when assessed for
MML validity, essentially generates three different subschemas to be validated:
one for each force marker. So an MML would validate Reflexivity iff it validates
+σ(A)⇒1 +σ(A), ⊕σ(A)⇒1 ⊕σ(A) and 	σ(A)⇒1 	σ(A) for each σ : A →
FOR(LML). Thus inferences like +p ⇒1 	p would no longer be relevant.
Yet this approach has its own problems: it is simultaneously too inclusive
and too limited. It is too inclusive because while e.g. CE no longer requires
that an MML validate inferences like +(p ∧ q) ⇒1 	p, it would still require
validation of 	(p ∧ q) ⇒1 	p. In EML, of course, rejecting a conjunction
does not commit one to rejecting the first conjunct in particular; it may be
merely the second conjunct that is doubted. But again, it doesn’t seem right
to call this a departure from classicality. In a sense, rejecting p ∧ q turns out
weaker than rejecting p precisely because EML agrees with classical logic that
a conjunction need not be entailed by its first conjunct. This does not violate
the rule that Conjunction Elimination expresses for CPL, namely that the
converse entailment does hold.

This may suggest that we should only consider the strongly assered sub-
schema. Such an approach would capture the similarities and dissimilarities
between an MML and CPL to essentially the same extent that Incurvati and
Schlöder (2020) compare EML and CPL on the inferential level in theorems
1.2 and 1.3, although generalized to higher levels. However, taking this as
the full story would imply that for example 	p⇒1 	p no longer needs to be
valid in order for Reflexivity to be satisfied. Yet if an MML fails 	p ⇒1 	p,
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then unlike classical logic its derivation relation simply is not reflexive. So this
approach cannot capture all of an MML’s potential deviations from classicality.

In fact, for similar reasons even the more general egalitarian signings ap-
proach is too limited in some cases. Consider the classical metaschema Tran-
sitivity:

A1 ⇒ A2 A2 ⇒ A3
2

A1 ⇒ A3

Like Reflexivity, Transitivity expresses a rule that should hold under weak
assertions and rejections just as well as under strong assertions. In line with
this observation, we indeed recognize that the three subschemas generated by
egalitarian signing should all be valid if Transitivity is to hold for an MML. So
egalitarian signings aren’t asking too much here. But instead it seems we are
asking too little, as Transitivity then does not require that e.g. the subschema

+A1 ⇒ 	A2 	A2 ⇒ ⊕A3
2

+A1 ⇒ ⊕A3

is valid. An MML failing this subschema is clearly violating the general
metarule expressed by Transitivity, but could still validate the Boolean schema
of Transitivity if we adopt the egalitarian signings approach.

It is worth a small aside to consider in detail why it is that the subschema
	(A1 ∧ A2) ⇒1 	A1 should not be relevant to the validity of Conjunction
Elimination, whilst 	A⇒1 	A and

+A1 ⇒ 	A2 	A2 ⇒ ⊕A3
2

+A1 ⇒ ⊕A3

are clearly required for the validity of Reflexivity and Transitivity. The for-
mer fact is explained by the observation that, in general, it is not a sensible
demand of classicality for MML’s that connectives should display their clas-
sical behaviour with respect to every force marker. Under strong assertion
they should, for from the multilateral perspective, classical logic is just a logic
of strong assertion. Hence a schema expressing a rule about how operators
behave in classical logic is really expressing a rule about how the operators
behave under strong assertion, and so if a schema is to express the analo-
gous rule for MML, it should only concern strongly asserted signings. That
CPL is a logic of strong assertion also means that the other force markers, in
sheer virtue of being distinct from +, are bound to treat content differently
from classical logic, manifested in a different interaction with the connectives.
Reflexivity and Transitivity, on the other hand, do not express a rule about
the treatment of content of any particular logical form, as witnessed by the
absence of operator application/alleviation over the course of these schemas.
Hence the fact that different force markers treat particular types of content
differently from strong assertion does not lead us to expect that they fail Re-
flexivity or Transitivity. These schemas instead state rules about the structure
of commitment preservation in general, and so should be respected by all force
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markers equally, if classicality is to be maintained. The takeaway of this de-
tour is that Boolean schemas (or more precisely those specific parts of them)
in which operators interact with sentences through application or alleviation
over the course of the schema should not be required to hold under the scope
of force markers other than +, but Boolean schemas (or those parts of them)
where this does not occur should.

The situation is as follows: we need a way to assess an MML’s agreement
with the classically valid inference rules of different levels. Boolean schemas
capture the notion of a classically valid inference rule. But attempts to directly
evaluate Boolean schemas for validity with respect to MML’s all result in
grave distortions of the demands that the schemas originally expressed. It
seems we would do better to formulate an independent schematic framework
to capture the notion of an MML valid inference rule, so that it is well-suited
to accommodate the quirks of multilateralism. If we can furthermore find a
systematic way to pair these schemas with Boolean ones expressing the same
rule, we will be in position to compare MML’s to classical logic. This is what
we will undertake in the remainder of this section.

One can easily set up schemas for modal logics by simply taking a set of
formulae variables, closing it under Boolean and modal operators, and pro-
ceeding as in the Boolean case. But for MML’s, there is the question of force
markers. The preceding discussion brought to light how certain inference rules
in MML can and should hold only with respect to specific speech acts. We
wish to be general in our framework, so it should allow for the specification
of force markers where necessary, to express these rules. On the other hand
there are structural rules like Reflexivity and Transitivity, where the interest
is precisely in their holding across all speech acts. So it should be possible
to leave force markers out of the schemas in some places. But where force
markers are specified, the variables must range over sentences, and where they
are not, they must range over signed formula. Therefore we require schemas
defined with two different types of variables. So we arrive at the following set
up.

Definition 3.3 (Multilateral schemas). Take countably infinite sets of signed
formula variables Φ = {ϕ1, ϕ2, ...}, and sentence variables A = {A1, A2, ...}.
Let A# be the closure of A under the operators ¬, ∧ and ♦. Let A◦ be the set
of A# elements prefixed with +,⊕ or 	. The set MSCn of level n multilateral
schemas is defined recursively for n > 0:

MSC1 := {(∆, χ) | ∆ ∪ {χ} ⊆ Φ ∪ A◦}.

MSCn+1 := {(Λ,Ω) | Λ ∪ {Ω} ⊆MSCn}.

Definition 3.4 (Multilateral schema validity). Let K be an MML, let s be
a notion of validity for n level inferences, and take (Λ ⇒n Ω) ∈ MSCn. K
s-validates Λ⇒n Ω (written as �sK Λ⇒n Ω) iffDef
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�sK µ[Θ⇒n Π] for every µ = µΦ ∪ µA with µΦ : Φ→ FOR(LMML) and
µA : A → FOR(LML).

Note that we henceforth use ‘ϕ’ only for signed formula variables (elements of
Φ). We use ‘χ’ to denote schematic formulae/sentences; the objects appearing
in formula or sentence position in schemas, i.e. the elements of A∗,A#, A◦
or their unions with Φ. We will reserve ‘ψ’ for signed formulae themselves
(elements of FOR(LMML)).

Multilateral schemas are able to express general rules like Reflexivity as
ϕ ⇒1 ϕ, but also rules about interactions between particular force markers
and operators, as in 	A1 → A2 ⇒1 +♦(A1 ∧ ¬A2). Furthermore, we can
express rules which combine the two, describing the interaction of a particular
force marker with some operator, but dictating that it should hold in the
context of any type of speech act. For instance, Multilateral Reductio (MR)

ϕ,+¬A⇒ ⊥
2

ϕ⇒ +A

expresses that if strong assertion of ¬A is incoherent given some other attitude,
that attitude commits one to strongly asserting A. This schema allows us to
finally capture in formal terms one of the observations motivating this project:
that EML fails reductio ad absurdum, due to metainferences such as

⊕p,+¬p⇒ ⊥
2

⊕p⇒ +p

being EML invalid (both locally and globally). Because this is an instance of
MR, namely for µΦ(ϕ) = ⊕p and µA(A) = p.

To furthermore make precise why this marks a departure from classical-
ity, however, we need to relate MR to a Boolean schema expressing reductio.
When it comes to the cross-identification of rules expressed by Boolean and
Multilateral schemas, we should observe that many Multilateral schemas state
rules which cannot be interpreted by Boolean schemas at all. This includes
all those containing modal operators, like the EML valid +♦♦A ⇒ +♦A.
This is not a defect, however; the question whether the rule expressed by this
schema is valid for CPL or CFOL simply does not make sense, and so we
cannot hope to compare MML’s to classical logic on these types of inference
rules. A similar point applies to Multilateral schemas with built-in ⊕ or 	
signs. No Boolean schema can express anything analogous to 	¬A1 ⇒1 ⊕A1.
But this is because as we have noted, CPL is just a logic of strong assertion,
and therefore doesn’t have anything to say about how ⊕ and 	 interact with
connectives, each other, or even with +. This means that all of these schemas
can and should be ignored when comparing an MML to classical logic. We are
left with the following.

Definition 3.5 (Classical expressibility). Take countably infinite sets of signed
formula variables Φ = {ϕ1, ϕ2, ...}, and sentence variables A = {A1, A2, ...}.
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Let A∗ be the closure of A under the operators ¬ and ∧. Let A+ be the set of
A∗ elements prefixed with +. The set CSCn of level n classically expressible
multilateral schemas is defined recursively for n > 0:

CSC1 := {(∆, χ) | ∆ ∪ {χ} ⊆ Φ ∪ A+}.

CSCn+1 := {(Λ,Ω) | Λ ∪ {Ω} ⊆ CSCn}.

Clearly CSCn ⊆ MSCn, so the definition of validity for general multilateral
schemas carries over.

Since unilateral logic is logic of strong assertion, we can obtain a Boolean
schema expressing the same rule as some classically expressible schema by
simply removing the +’s and the distinction between the two variable types.

Definition 3.6 (Unilateralization). Given Λ ⇒n Ω ∈ CSCn, let U(+χ) be
χ for every +χ ∈ A+ appearing in Λ ⇒n Ω, and pick fresh and distinct
U(ϕ) ∈ A for every signed formulae variable ϕ ∈ Φ appearing in Λ ⇒n Ω.
The unilateralization of Λ⇒n Ω is U [Λ⇒n Ω].

The result of unilateralization is a Boolean schema that expresses a unilateral
analogue of what the multilateral schema expressed. For example, MR is
classically expressible, and its unilateralization is Classical Reductio:

A1,¬A2 ⇒ ⊥
2

A1 ⇒ A2

The fact that EML fails MR whilst CPL validates its unilateralization thus
marks a difference between the metainferential rules validated by the logics.27

Note that every Boolean schema is the unilateralization of at least some clas-
sically expressible multilateral one, usually of multiple distinct ones. That is
to say, if we think of U as a function from CSCn to BSCn, it is total and
surjective, but not injective. Therefore, to formulate what it means for an
MML to validate more/less/the same inference rules as CPL at some level n,
we can do so by quantifying over CSCn.

Definition 3.7 (MML Subclassicality). Let K be an MML and s a notion of
validity. K is subclassical on level n given s iffDef

27Note that we need not rely on the appearance of signed formula variables to demonstrate
EML’s invalidation of reductio, for as mentioned above, the diaprity already occurs within
the strongly asserted fragment. The multilateral schema

+A1,+¬A2 ⇒ ⊥
2

+A1 ⇒ +A2

also unilateralizes to Classical Reductio, and it too fails validity in EML, due to instances
like

+♦p,+¬p⇒ ⊥
2

+♦p⇒ +p

being (globally and locally) invalid. But the earlier schema MR captures in more generality
the ways in which EML fails reductio.
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If �sK Λ⇒n Ω for some Λ⇒n Ω ∈ CSCn, then �sCPL U [Λ⇒n Ω].

Definition 3.8 (MML Superclassicality). Let K be an MML and s a notion
of validity. K is superclassical on level n given s iffDef

If �sCPL U [Λ⇒n Ω] for some Λ⇒n Ω ∈ CSCn, then �sK Λ⇒n Ω.

Definition 3.9 (MML Classicality). Let K be an MML and s a notion of
validity.

• K is classical on level n given s iffDef K is subclassical and superclassical
on level n given s.

• K is strictly subclassical on level n given s iffDef K is subclassical but not
superclassical on level n given s.

• K is strictly superclassical on level n given s iffDef K is superclassical but
not subclassical on level n given s.

• K is incomparable to classical logic on level n given s iffDef K is neither
subclassical nor superclassical on level n given s.

One might object that, since multiple non-equivalent multilateral schemas
can unilateralize to the same Boolean schema, then this Boolean schema can
not express a rule that is equivalent to all of the original multilateral schemas.
For example,

ϕ1 ⇒ ϕ2 ϕ2 ⇒ ϕ3
2

ϕ1 ⇒ ϕ3

expresses general transitivity, whilst

+A1 ⇒ +A2 +A2 ⇒ +A3
2

+A1 ⇒ +A3

only demands transitivity for strong assertion. Meanwhile

ϕ1 ⇒ +A +A⇒ ϕ2
2

ϕ1 ⇒ ϕ2

expresses something in between. But the unilateralization of all three is just
Transitivity:

A1 ⇒ A2 A2 ⇒ A3
2

A1 ⇒ A3

However, all such cases are of the same sort, which is such that it does not un-
dermine our approach. These cases only occur because ϕ’s and non-embedded
+A’s both become non-embedded A’s after unilateralization. So take arbitrary
Ω ∈ BSCn and consider C = {Ω′ ∈ CSCn | U [Ω′] = Ω}. Any two elements of
C can be obtained from each other by uniformly substituting appearances of
ϕi ∈ Φ for non-embedded appearances of +Ai for fresh Ai ∈ A, and/or vice-
versa. C has a particular element C in which no non-embedded +A’s appear,
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as all these positions are taken up by ϕ’s. This is the proper multilateral ana-
logue of Ω. For as argued above, when some Ai appears only non-embedded
in a Boolean schema, its behaviour according to the rule expressed by the
schema does not concern the interaction of strong assertion with content of a
particular form, but rather a structural property of commitment altogether.
Hence our identification of

ϕ1 ⇒ ϕ2 ϕ2 ⇒ ϕ3
2

ϕ1 ⇒ ϕ3

as the multilateral expression of Transitivity.
But putting a fresh ϕ in place of a +A can only make the demands of the

schema stronger, as it strictly enlarges the set of instances. Hence C is also
the strongest element of C. Therefore, the fact that other elements of C also
happen to unilateralize to Ω does not interfere with the conditions for (sub- or
super)classicality at level n, as per definitions 3.7 to 3.9, because C is s-valid
for K iff every element of C is.

3.2 Schematic Validity

Chapter 2 demonstrated some important aspects of the behaviour of the vari-
ous validity notions for individual inferences, with respect to each other and at
different levels. Section 3.1 discussed how we must rely on inference schemas
instead of individual inferences, and how validity notions can be lifted to apply
to schemas. Thus the question arises how the validity notions behave when
interpreted as notions of schematic validity. Three issues are of recurring in-
terest: which of the notions are proof-theoretically characterizable, (how) do
the validities at a given level determine those at all lower levels per notion,
and how strong are the criteria with respect to each other at different levels
for different logics? The present section will deal with these in turn.

The first is rather straightforward. Since a schematic validity criterion is
defined purely in terms of the corresponding notion of validity for individual
instances, the former is proof-theoretically definable if and only if the latter is.
Hence only globalG schematic validity is definable in solely syntactic terms.

The answer to the second question is not too surprising either: per validity
notion, the validities of level n schemas are determined by those at the higher
levels in precisely the same ways as for individual inferences. To be precise,
the following are direct consequences of the corresponding observations 2.8 to
2.12.

Observation 3.10. Take Λ ⇒n Ω ∈ BSCn and let K be a logic in language
LX closed under Boolean operations. Alternatively, take Λ ⇒n Ω ∈ MSCn

and let K be an MML. Either way the following hold:

(i) �LK Λ⇒n Ω iff �LK ∅ ⇒n+1 (Λ⇒n Ω) iff �LK {∅ ⇒n λ | λ ∈ Λ} ⇒n+1

(∅ ⇒n Ω).
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(ii) (a) If n = 1, then �GLK Λ⇒n Ω iff �GLK ∅ ⇒n+1 (Λ⇒n Ω).

(b) If n > 1, then �GLK Λ⇒n Ω iff �GLK {∅ ⇒n λ | λ ∈ Λ} ⇒n+1 (∅ ⇒n

Ω).

(iii) (a) �GGK Λ⇒n Ω iff �GGK ∅ ⇒n+1 (Λ⇒n Ω).

(b) If n > 1, then �GGK Λ⇒n Ω iff �GGK {∅ ⇒n λ | λ ∈ Λ} ⇒n+1 (∅ ⇒n

Ω).

Note also that Λ ⇒n Ω ∈ CSCn iff ∅ ⇒n+1 (Λ ⇒n Ω) ∈ CSCn+1 iff {∅ ⇒n λ
| λ ∈ Λ} ⇒n+1 (∅ ⇒n Ω) ∈ CSCn+1. All of this has the convenient effect that
for MML’s, we can still speak of classicality up to a certain level.

Proposition 3.11. Let K be an MML, such that K is locally/globalllyL/globallyG
subclassical (superclassical) on level n+1. Then K is locally/globalllyL/globallyG
subclassical (superclassical) on level n.

Proof. We give the argument for globalL subclassicality, where a case distinc-
tion is required.

• Suppose n = 1. Take arbitrary ∆⇒1 χ ∈ CSC1.
If �GLK ∆⇒1 χ
then �GLK ∅ ⇒2 (∆⇒1 χ)
then �GLCPL U [∅ ⇒2 (∆⇒1 χ)]
then �GLCPL ∅ ⇒2 U [∆⇒1 χ]
then �GLCPL U [∆⇒1 χ].

• Suppose n > 1. Take arbitrary Λ⇒n Ω ∈ CSCn.
If �GLK Λ⇒n Ω
then �GLK {∅ ⇒n λ | λ ∈ Λ} ⇒n+1 (∅ ⇒n Ω)
then �GLCPL U [{∅ ⇒n λ | λ ∈ Λ} ⇒n+1 (∅ ⇒n Ω)]
then �GLCPL {∅ ⇒n U [λ] | λ ∈ Λ} ⇒n+1 (∅ ⇒n U [Ω])
then �GLCPL {U [λ] | λ ∈ Λ} ⇒n U [Ω]
then �GLCPL U [Λ⇒n Ω].

The proofs for local and globalG subclassicality are analogous (although no case
distinctions are necessary). The arguments for superclassicality are obtained
by reversing the direction of all the “if-then” statements in the corresponding
subclassicality proofs.

Corollary 3.12. Let K be an MML, such that K is locally/globalllyL/globallyG
classical on level n+1. Then K is locally/globalllyL/globallyG classical on level
n.

More wondrous are the results on relative strength. For individual infer-
ences, we showed that the following hold with respect to both CPL and EML:
globalL and globalG are equivalent on levels 1 and 2, after which they are in-
comparable. GlobalL and local are equivalent on level 1, after which local is
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strictly stronger. GlobalG and local are equivalent on level 1, local is strictly
stronger on level 2, and after this they are incomparable.

Matters are rather different for schemas. Per logic, every entailment that
holds for individual inferences does thereby automatically hold for schemas as
well. But some further entailments may hold only schematically. In (Da Ré
et al., 2021) and (Teijeiro, 2019) it is shown how besides local entailing global
validity at level 2 as it did for individual inferences, schematically the converse
entailment also holds, at least for a certain class of logics including CPL and
ST. We adopt their basic strategy, apply it specifically to CPL, and generalize
the result to all levels for both globalL and globalG validity. The idea is that
given any σ : A → FOR(LPL) and Boolean valuation v, we can ‘hard-code’ the
values that v assingns to σ substitutions of schematic formulae (i.e. elements
of A∗) into a new substitution function σv : A → FOR(LPL), defined as

σv(A)=

{
> if v(σ(A)) = 1

⊥ if v(σ(A)) = 0.

Lemma 3.13. Take arbitrary σ : A → FOR(LPL), χ ∈ A∗ and Boolean
valuations v and v′. Then v′(σv[χ]) = v(σ[χ]).

Proof. By induction on the complexity of χ.

Since v′ is completely arbitrary and unrelated to σ and v in the previous lemma,
it has the following effect: whether the σ instance of a schema is satisfied at
v fully determines whether the schema’s σv instance is valid, both locally and
globallyG. This is explicated in the following two propositions respectively.

Proposition 3.14. Take arbitrary σ : A → FOR(LPL), Boolean valuation v
and Λ⇒n Ω ∈ BSCn. Then v �CPL σ[Λ⇒n Ω] iff �LCPL σ

v[Λ⇒n Ω].

Proof. We take arbitrary Boolean valuation v′ and show that v �CPL σ[Λ⇒n

Ω] iff v′ �CPL σv[Λ⇒n Ω]. We proceed by induction over n.

• The base case (n = 1) follows from the previous lemma.

• Assume as induction hypothesis that the claim holds for all of BSCn−1.
v �CPL σ[Λ⇒n Ω] iff
v 6�CPL σ[λ] for some λ ∈ Λ or v �CPL σ[Ω] iff
v′ 6�CPL σv[λ] for some λ ∈ Λ or v′ �CPL σv[Ω] iff
v′ �CPL σv[Λ⇒n Ω].

Proposition 3.15. Take arbitrary σ : A → FOR(LPL), Boolean valuation v
and Λ⇒n Ω ∈ BSCn. Then v �CPL σ[Λ⇒n Ω] iff �GGCPL σ

v[Λ⇒n Ω].

Proof. We prove by induction over n.

• The base case is equivalent to that of proposition 3.14.
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• Assume as induction hypothesis that the proposition holds for n− 1.
v �CPL σ[Λ⇒n Ω] iff
v 6�CPL σ[λ] for some λ ∈ Λ or v �CPL σ[Ω] iff
6�GGCPL σv[λ] for some λ ∈ Λ or �GGCPL σ

v[Ω] iff
�GGCPL σ

v[Λ⇒n Ω].

As it turns out, this means that if σ and v together constitute a counterexample
to the local validity of some Boolean schema, then σv is a counterexample to
the globalL and globalG validity of that same schema. Hence if a schema is
globalL or globalG valid, it must be locally valid as well. This is worked out
in turn in the following two propositions.

Proposition 3.16. Take arbitrary Λ ⇒n Ω ∈ BSCn. If �GLCPL Λ ⇒n Ω, then
�LCPL Λ⇒n Ω.

Proof. Suppose for contraposition that 6�LCPL Λ ⇒n Ω. Then there is some
σ : A → FOR(LPL) and Boolean valuation v such that v 6�CPL σ[Λ ⇒n Ω].
This means v �CPL σ[λ] for all λ ∈ Λ and v 6�CPL σ[Ω]. Hence by proposition
3.14, �LCPL σ

v[λ] for all λ ∈ Λ but 6�LCPL σv[Ω]. Therefore 6�GLCPL σv[Λ ⇒n Ω]
and hence 6�GLCPL Λ⇒n Ω.

Proposition 3.17. Take arbitrary Λ ⇒n Ω ∈ BSCn. If �GGCPL Λ ⇒n Ω, then
�LCPL Λ⇒n Ω.

Proof. Suppose for contraposition that 6�LCPL Λ ⇒n Ω. Then there is some
σ : A → FOR(LPL) and Boolean valuation v such that v 6�CPL σ[Λ ⇒n Ω].
Hence by proposition 3.15, 6�GGCPL σv[Λ⇒n Ω]. Therefore 6�GGCPL Λ⇒n Ω.

So both globalL and globalG entail local validity for CPL schemas. Of
course local still entails globalL for schemas, as it did for individual inferences.
However, it does not entail globalG.

Proposition 3.18. For every n > 2, there exists Λ⇒n Ω ∈ BSCn such that
�LCPL Λ⇒n Ω and �GLCPL Λ⇒n Ω but 6�GGCPL Λ⇒n Ω.

Proof. For n = 3, the witness is

(∅ ⇒1 A1)⇒2 (∅ ⇒1 A2)
3

∅ ⇒2 (A1 ⇒1 A2)

which generates witnesses for all higher levels due to observation 3.10.

This is quite the turn of events. In the ST literature, a recurring objection
against global as opposed to local validity at level 2 is that it is too weak a
criterion (see e.g. (Barrio et al., 2020; Dicher & Paoli, 2019)). This is partly
what prompts Teijeiro (2019) to demonstrate that moving to schemas induces
equivalence at level 2. Now we have seen that this equivalence remains if we
generalize to higher levels via the globalL route, whereas if we opt for globalG
we even get a strictly stronger criterion, at least with respect to CPL.
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While on the subject, let us take a detour to discuss another objection to
global validity which, although not pertaining to the strength of the criteria,
also loses its force when considered for schemas. According to Golan (2021b),
global validity is inappropriate as a notion for (level 2) validity because it is
not preserved under substitution. Some individual metainferences are globally
valid, but do not remain so if we uniformly substitute each propositional letter
for a formula. For instance (∅ ⇒1 p) ⇒2 (∅ ⇒1 q) is globally valid (in CPL)
because its premise inference is not valid, yet if we substitute p for a tautology
and q for itself, the result is globally invalid. But logic should be formal, Golan
argues, and a necessary requirement for this formality is that “the principles
of logic hold under uniform substitution” (Golan, 2021b, p. 5). So global
validity is rejected on the grounds that it compromises the formality, and
hence logicality, of metainferences.

Golan does not exactly specify what is meant by ‘principles’ or ‘matters’
of logic, so as to outline the application range of the formality condition.
Many notions commonly used in logic, and of a distinctly logical character,
are not preserved under substitution. For instance: satisfiability, consistency,
or invalidity. But let us suppose that Golan intends to demand this type of
formality specifically of positive validity notions, as this seems a reasonable ask.
It should suffice to point out that schematic global validity does remain under
substitution. If we take a schema and uniformly substitute appearances of
variables A ∈ A for schematic formulae (meaning elements of A∗ for Boolean
or A# for multilateral schemas), any instance of the resulting schema is an
instance of the original, so validity is preserved.

Besides this, I take it Golan’s overall objection fails even as applied to in-
dividual inferences. The titular central claim of (Golan, 2021b) is that there
is no tenable notion of global validity. The standard formulation fails substi-
tution, and no successful fixes are available. However, the argument overlooks
the option of adding substitution preservation directly to the definition. We
might call an individual level 2 inference global-substitutionally valid iff every
uniform substitution instance preserves validity from premisses to conclusion.
This way of cashing out global validity has already been employed in e.g.
(Barrio et al., 2015; Cobreros, Egré, et al., 2020). Given that formality is
a core tenet of logicality, it seems plausible to represent this in validity con-
ditions. Then the only difference between global and local/level 1 validity is
that for the latter we do not need to explicitly add substitution preservation to
the definition, because it already follows from the simpler definitions usually
given. Hence Golan’s objection reduces to a point about simplicity of defini-
tions, which can hardly serve as a defeating blow against global validity.28

28Given this defense of the global-substitutional interpretation, the reader may wonder
why it was not discussed as an option for individual inference validity in section 2.2. The
reason is that in reading individual inferences substitutionally, one is really treating them
as schemas, and thereby blurring the line between the two object types. Our eventual leap
to schemas already accomplished everything that reading individual inferences substitution-
ally would have, since every instance of a schema is global-substitutionally valid iff every
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But let us return now to the relative strength of our schematic validity
criteria, as we have yet to compare them with respect to EML. It turns out
the above proof strategy does not apply in this case. The schematic local-
global collapse does not occur for EML even at level 2. In fact the relative
strength of all three notions with respect to EML is exactly the same for
schemas as it is for individual inferences.

Proposition 3.19. For every n > 1, there exists Λ⇒n Ω ∈MSCn such that
�GLEML Λ⇒n Ω and �GGEML Λ⇒n Ω but 6�LEML Λ⇒n Ω.

Proof. For n = 2, the witness is

+A⇒ ⊥ +¬A⇒ ⊥
2

∅ ⇒ ⊥
which generates witnesses for all higher levels due to observation 3.10. The
witness at n = 2 is locally invalid because there are S5 models which satisfy
neither �p nor �¬p for some p, hence satisfy both premise inferences for
substitution µ(A) = p, yet clearly these do not satisfy the conclusion sequent.
However, it is globally valid because there exists no µ(A) ∈ FOR(LML) such
that both +µ(A) and +¬µ(A) are incoherent. If it did, soundness would entail
that ¬�µ(A) and ¬�¬µ(A) are both S5 theorems. But this is impossible
because S5 has single-world models, in which either �µ(A) or �¬µ(A) must
be true depending on whether µ(A) itself is true, by reflexivity.

Furthermore, globalG is incomparable to either of the others at n > 2:

Proposition 3.20. For every n > 2, there exists Λ⇒n Ω ∈MSCn such that
�GGEML Λ⇒n Ω but 6�GLEML Λ⇒n Ω and 6�LEML Λ⇒n Ω.

Proof. For n = 3, the witness is

∅
3

+A⇒ ⊥ +¬A⇒ ⊥
2

∅ ⇒ ⊥
which generates witnesses for all higher levels due to observation 3.10.

Proposition 3.21. For every n > 2, there exists Λ⇒n Ω ∈MSCn such that
�LEML Λ⇒n Ω and �GLEML Λ⇒n Ω but 6�GGEML Λ⇒n Ω.

Proof. For n = 3, the witness is

(∅ ⇒1 +A1)⇒2 (∅ ⇒1 +A2)
3

∅ ⇒2 (+A1 ⇒1 +A2)

which generates witnesses for all higher levels due to observation 3.10.

instance is globally valid simpliciter, and in fact more, through the addition of signed for-
mula variables to multilateral schemas. To facilitate a clear discussion of the comparison
problem in section 3.1, it was moreover conductive to keep inferences and schemas sharply
distinct.
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Hence for EML, the following still hold after moving to schemas: globalL and
globalG are equivalent on levels 1 and 2, after which they are incomparable.
GlobalL and local are equivalent on level 1, after which local is strictly stronger.
GlobalG and local are equivalent on level 1, local is strictly stronger on level
2, and after this they are incomparable. Note also that the strength relations
are the same if we restrict attention to the classically expressible schemas,
since the witnesses provided for the last three propositions all fall within this
category.

To close, let us highlight two more helpful effects of the preceding results:
that for MML’s, globalL subclassicality entails local subclassicality, whilst on
the other hand local superclassicality entails globalL superclassicalty. These
follow in particular from proposition 3.16, and the fact that schematically local
still entails globalL validity for every logic.

Proposition 3.22. Let K be an MML and n an inferential level.

(i) If K is globallyL subclassical at n, then it is locally subclassical at n.

(ii) If K is locally superclassical at n, then it is globallyL superclassical at n.

Proof.

(i) Take arbitrary Λ ⇒n Ω ∈ CSCn such that �LK Λ ⇒n Ω. Then �GLK
Λ ⇒n Ω since local entails globalL validity. Therefore �GLCPL U [Λ ⇒n Ω]
by globalL subclassicality. Hence �LCPL U [Λ⇒n Ω] by proposition 3.16.

(ii) Take arbitrary Λ ⇒n Ω ∈ CSCn such that �GLCPL U [Λ ⇒n Ω]. Then
�LCPL U [Λ ⇒n Ω] by proposition 3.16. Therefore �LK Λ ⇒n Ω by local
superclassicality. Hence �LK Λ ⇒n Ω since local entails globalL validity.
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Chapter 4

Classicality Applied

4.1 The Classicality of Epistemic Multilateral

Logic

The work of the preceding chapters has finally put us in position to formally
study the classicality of EML. We will utilize two results of (Incurvati &
Schlöder, 2020), which we mentioned in chapter 1.2 but reiterate here for
convenience.

Theorem 4.1 (Incurvati & Schlöder, 2020). Take arbitrary Γ⇒1 B ∈ SEQ1
PL.

Then �CPL Γ⇒1 B iff �EML {+γ | γ ∈ Γ} ⇒1 +B.

Theorem 4.2 (Incurvati & Schlöder, 2020). Take arbitrary Γ⇒1 B ∈ SEQ1
PL

and η : Prop→ FOR(LML). If �CPL Γ⇒1 B then �EML {+η[γ] | γ ∈ Γ} ⇒1

+η[B].

These provide some handle on the relation between EML and CPL at the
ground level. We also require the following lemma about µσA : A → FOR(LML),
which is defined given some σ : A → FOR(LPL) as simply µσA(A) = σ(A).

Lemma 4.3. Take arbitrary σ : A → FOR(LPL) and Λ ⇒n Ω ∈ CSCn

such that no signed formulae variables from Φ appear in Λ ⇒n Ω. Then
�GGEML µ

σ
A[Λ⇒n Ω] iff �GGCPL σ[U [Λ⇒n Ω]].

Proof. We prove by induction over n.

• For the base case, observe that µσA[Λ ⇒1 Ω] = {+λ | λ ∈ σ[U [Λ]]} ⇒1

+σ[U [Ω]]. Thus the result follows by theorem 4.1.

• Induction step: by the recursive definition of globalG validity.

Combining these results allows us to determine for which inferential levels
EML is (globallyG) subclassical and/or superclassical, giving us the next three
theorems.

Theorem 4.4. EML is globallyG subclassical at every level n.
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Proof. We take arbitrary Λ ⇒n Ω ∈ CSCn such that �GGEML Λ ⇒n Ω, and
show that �GGCPL U [Λ ⇒n Ω]. We make a case distinction based on whether
any signed formula variables from Φ appear in Λ⇒n Ω.

(i) Suppose none do. Take arbitrary σ : A → FOR(LPL). �GGEML Λ ⇒n Ω
means �GGEML µσA[Λ ⇒n Ω]. Hence �GGCPL σ[U [Λ ⇒n Ω]] by lemma 4.3.
Therefore �GGCPL U [Λ⇒n Ω] since σ was arbitrary.

(ii) Suppose some do. Pick fresh and distinct Aϕ ∈ A for every ϕ ∈ Φ
appearing in Λ ⇒n Ω. Let Λ′ ⇒n Ω′ be the schema obtained from
Λ⇒n Ω by replacing every occurrence of every ϕ ∈ Φ with +Aϕ. Every
instance of ∆′ ⇒1 χ′ is an instance of Λ ⇒n Ω, so �GGEML Λ ⇒n Ω
entails �GGEML Λ′ ⇒n Ω′. Therefore �GGCPL U [Λ′ ⇒n Ω′] by case (i). But
U [Λ′ ⇒n Ω′] = U [Λ⇒n Ω], so �GGCPL U [Λ⇒n Ω].

Theorem 4.5. EML is superclassical at level 1.

Proof. Take arbitrary ∆ ⇒1 χ ∈ CSC1 such that �CPL U [∆ ⇒1 χ]. Take
arbitrary µ = µA∪µΦ with µA : A → FOR(LML) and µΦ : Φ→ FOR(LMML).
Given any σ : A → FOR(LPL) and η : Prop → FOR(LML), successively
applying them to U [∆⇒1 χ] and signing every sentence with + will result in
an inference which is EML-valid, by theorem 4.2 and the assumption that �CPL
U [∆⇒1 χ]. Thus the idea is to prove that �EML µ[∆⇒1 χ] by defining σ and
η such that the aforementioned inference must be EML-equivalent to µ[∆⇒1

χ], i.e. such that the following diagram commutes up to EML-equivalence.

CSC1 BSC1

SEQ1
MML SEQ1

PL

U [−]

µ[−] σ[−]

+η[−]

To this end, take any injective σ : A → Prop. Define η : Prop →
FOR(LML) such that η(σ(A)) = µA(A) for every A ∈ A, and η(σ(U(ϕ))) =
τ(µΦ(ϕ)) for any ϕ ∈ Φ. By assumption, �CPL σ[U [∆ ⇒1 χ]]. Hence by
theorem 4.2, �EML {+η[σ[U(δ)]] | δ ∈ ∆} ⇒1 +η[σ[U(χ)]].

It remains to show that this is equivalent to just �EML µ[∆ ⇒1 χ]. To
this end it suffices to point out that +η[σ[U(δ)]] is EML-interderivable with
µ[δ] for every δ ∈ ∆ ∪ {χ}. For every δ ∈ ∆ ∪ {χ}, either δ ∈ A+ or
δ ∈ Φ. In the former case, +η[σ[U(δ)]] = +µA[δ] = µ[δ]. In the second case,
+η[σ[U(δ)]] = +τ(µΦ(δ)) = +τ(µ[δ]) with µ[δ] ∈ FOR(LMML), and +τ(ψ) is
interderivable with ψ for every ψ ∈ FOR(LMML).

Therefore �EML {+η[σ[U(δ)]] | δ ∈ ∆} ⇒1 +η[σ[U(χ)]] entails �EML

µ[∆⇒1 χ]. Hence �EML ∆⇒1 χ since µ was arbitrary.

Theorem 4.6. EML is not globallyG superclassical at any level n > 1.
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Proof. At n = 2,
ϕ,+¬A⇒ ⊥

2
ϕ⇒ +A

is not globally EML valid due to instances like

⊕p,+¬p⇒ ⊥
2

⊕p⇒ +p

but its unilateralization
A1,¬A2 ⇒ ⊥

2
A1 ⇒ A2

is globally CPL valid. From this the higher levels follow by proposition 3.11.

Putting the pieces together, the full story is thus:

Corollary 4.7. Given globalG validity, EML is classical at level 1 and strictly
subclassical at every level n > 1.

We’ve argued above how globalG validity is the most appropriate criterion for
comparing EML to classical logic, since it is the only one that can be defined
in terms of the natural deduction system we call ‘EML’. Hence corollary 4.7 is
the key result of this section, and the vindication of the introduction’s informal
observation that EML behaves classically on the inferential level but weaker
than classical logic on higher levels.

However, seeing as we have come all this way with the local and globalL
validities of EML’s S5 embedding, we may as well go the distance and see how
they compare to classical logic, even though they are not strictly speaking the
local/globalL validities of EML itself. As it turns out, whether we assume
globalG, local or globalL validity does not matter for the classicality of EML:
given the latter two, EML is also classical at level 1 and strictly subclassical
beyond this. To demonstrate local and globalL subclassicality we make use of
another construction: given Boolean valuation v and σ : A → FOR(LPL), we
define µσ

v

A : A → FOR(LML) as

µσ
v

A (A) =

{
p ∨ ¬p if v(σ(A)) = 1

p ∧ ¬p if v(σ(A)) = 0.

This ‘hard-codes’ into a modal substitution the values that v assigns to σ sub-
stitutions of formulae. Hence truth in v of a σ substitution of some schematic
formula determines theoremhood of the corresponding µσ

v

A substitution, in the
sense of lemma 4.8.

Lemma 4.8. Take arbitrary σ : A → FOR(LPL), Boolean valuation v, and
pointed S5 model (M,w). Then M,w � τ(µσ

v

A [χ]) iff v �CPL σ[U(χ)] for every
χ ∈ A+.
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Proof. It is easy to show by induction on the complexity of B that �S5 µ
σv

A [B]
iff v �CPL σ[B] for any B ∈ A∗. But �S5 µ

σv

A [B] iff �S5 �µσ
v

A [B], therefore
�S5 �µσ

v

A [B] iff v �CPL σ[B]. Furthermore, every χ ∈ A+ is +B for some
B ∈ A∗, hence B = U(χ) and �µσ

v

A [B] = τ(µσ
v

A [χ]). So �S5 τ(µσ
v

A [χ]) iff
v �CPL σ[U(χ)] and �S5 ¬τ(µσ

v

A [χ]) iff v �CPL ¬σ[U(χ)]. Thus for arbitrary
(M,w) we have M,w � τ(µσ

v

A [χ]) iff v �CPL σ[U(χ)] .

Moreover, this link between truth of a σ substitution in v and theoremhood
in EML extends to link satisfaction in v of a σ substitution of a schema
with (local) validity of the corresponding µσ

v

A substitution, as in the following
lemma.

Lemma 4.9. Take arbitrary σ : A → FOR(LPL), Boolean valuation v and
Λ ⇒n Ω ∈ CSCn such that no signed formulae variables from Φ appear in
Λ⇒n Ω. Then �LEML µ

σ
A[Λ⇒n Ω] iff v �CPL σ[U [Λ⇒n Ω]].

Proof. We take arbitrary pointed S5 model (M,w) and show by induction on
n that M,w �EML µ

σ
A[Λ⇒n Ω] iff v �CPL σ[U [Λ⇒n Ω]].

• For the base case:
M,w �EML µ

σ
A[Λ⇒1 Ω] iff

M,w 6� τ(µσ
v

A [λ]) for some λ ∈ Λ or M,w � τ(µσ
v

A [Ω]) iff (by lemma 4.8)
v 6�CPL σ[U(λ)] for some λ ∈ Λ or v �CPL σ[U(Ω)] iff
v �CPL σ[U [Λ⇒1 Ω]].

• Induction step: by the recursive definition of satisfaction.

The result is that given any σ and v representing a counterexample to a rule
being locally or globallyL valid in CPL (recall that these are equivalent by
proposition 3.16), µσ

v

A provides a counterexample to the rule being locally or
globallyL valid in EML, leading to the next two theorems.

Theorem 4.10. EML is globallyL subclassical at every level n.

Proof. We take arbitrary Λ ⇒n Ω ∈ CSCn such that �GLEML Λ ⇒n Ω, and
show that �GLCPL U [Λ ⇒n Ω]. We make a case distinction based on whether
any signed formula variables from Φ appear in Λ⇒n Ω.

(i) Suppose none do. Take arbitrary σ : A → FOR(LPL) and Boolean
valuation v. �GLEML Λ ⇒n Ω means �GLEML µσA[Λ ⇒n Ω]. Therefore
either 6�LEML µσA[λ] for some λ ∈ Λ or �LEML µσA[Ω]. Hence by lemma
4.9 either v 6�CPL σ[U [λ]] for some λ ∈ Λ or v �CPL σ[U [Ω]]. Therefore
v �CPL σ[U [Λ ⇒n Ω]]. Hence �LCPL U [Λ ⇒n Ω]] since σ and v were
arbitrary. Therefore �GLCPL U [Λ⇒n Ω]] since local entails globalL validity.

(ii) As case (ii) of theorem 4.4.

Theorem 4.11. EML is locally subclassical at every level n.
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Proof. By theorem 4.10 and proposition 3.22 (i).

When it comes to superclassicality, local as well as globalL fare the same
as globalG validity, and for essentially the same reason.

Theorem 4.12. EML is not locally or globallyL superclassical at any level
n > 1.

Proof. At n = 2, the counterexamples are the same as for theorem 4.6, and
the higher levels follow by proposition 3.11.

Combining these leads to the following overview, precisely mirroring corollary
4.7 on globalG validity.

Corollary 4.13. Given local or globalL validity, EML is classical at level 1
and strictly subclassical at every level n > 1.

This completes the application of the three schematic validity notions to
EML and its S5 embedding, as compared to CPL. On each, EML is classical
on level 1 but weaker on all higher levels. Given these results, it is natural to
wonder whether we can do any better. Barrio et al. (2020) have demonstrated
how, starting from ST, it is possible to construct an infinite sequence of logics
that behaves classically up to higher and higher levels. That is, for every
inferential level, they define a logic which is locally classical precisely up to
that level, and strictly subclassical beyond. So perhaps EML too can be
strengthened to match classical logic up to levels beyond the first. If it can,
how much must be added to EML to get classicality up to level 2, up to level 3,
..., or even at every level? This is relevant to the classicality of EML itself too,
for it may serve as a measure of the distance between EML and classical logic.
The next section will address these questions, and demonstrate the sense in
which EML is only one rule away from full classicality.

4.2 EML∗

We are in search of variants of EML that behave classically up to higher levels,
ideally every level. The obvious initial strategy is to consider those classically
valid level 2 rules that fail in EML, and seeing what might be added to validate
them, in the hopes of attaining classicality at least up to level 2. But it is
not obvious that this approach can get us very far at all. It might be that
EML’s failures towards superclassicality at level 2 are of such a complexity
and/or variety that they can not be easily fixed by adding a few inference
rules to the proof theory. Moreover, although we have proven EML’s non-
superclassicality at levels n > 2 by proving it at 2, from which the higher
levels could then be inferred, it does not follow that fixing the disparity at
level 2 thereby also fixes it at any n > 2. Yet if we have to keep manually
adding rules for every level we wish to climb, we can never hope to reach
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general superclassicality. Finally, there is always the worry that by adding
rules in pursuit of superclassicality at some level, we strengthen the system
in such a way that we wind up losing subclassicality, at that same level or
lower down, which would defeat the purpose entirely. We can even conceive
that level n superclassicality, when combined with the inference rules of EML
itself, entails non-subclassicality for some level n or lower.

However, we will find that none of these obstacles arise, and the path from
EML to full classicality is remarkably short. By adding a single rule to the
natural deduction system, addressing the specific example we have focused
on for EML’s superclassicality failure at level 2, we immediately arrive at an
MML that is classical at every inferential level. This example, recall, was
that of reductio: EML fails to globally (or locally) validate the schema of
Multilateral Reductio

ϕ,+¬A⇒ ⊥
2

ϕ⇒ +A

because instances such as
⊕p,+¬p⇒ ⊥

2
⊕p⇒ +p

are globally (and locally) invalid. But the unilateralization of this schema is
Classical Reductio

A1,¬A2 ⇒ ⊥
2

A1 ⇒ A2

which is globally (and locally) CPL valid. The global validity of Multilateral
Reductio corresponds directly to the presence or derivability of the following
natural deduction rule.

[+¬A]
...
⊥

(+¬E)
+A

So we let EML∗ be the system obtained by supplementing EML with (+¬E).
EML∗ is locally, globallyL and most importantly globallyG classical at every

inferential level. To demonstrate this, it will be useful that EML∗ can be
alternatively characterized by strengthening an existing rule of EML, instead of
adding a new one. Namely, we can remove the restrictions on (Weak Inference).
Let EML∗∗ be the natural deduction system obtained from EML by replacing
(Weak Inference) with the following:

⊕A

[+A]
...

+B
(Weak Inference∗)

⊕B
EML∗ and EML∗∗ are equally strong, since in the presence of EML’s other in-
ference rules, (Weak Inference∗) entails (+¬E) and vice-versa. That is, (+¬E)
is derivable in EML∗∗ via this proof tree:
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[+A]1
...
⊥

[	¬A]2
(	¬E)

⊕A
(Weak Inference∗)1

⊥
(SR2)2

+¬A

On the other hand, EML∗ derives (Weak Inference∗) as follows:

⊕A
(	¬I)

	¬A [+¬A]1
(Rejection)

⊥
(+¬E)1

+A
...

+B
(Assertion)

⊕B

I will henceforth use ‘EML∗’ to refer indiscriminately to either one of these
systems, for in the remainder we will be concerned with the set of derivable
inferences they produce, rather than the particular rules they use to do so.
But it is convenient that we no longer have to worry about restrictions on the
use of ♦E rules within larger derivations.

Observe how our proof that (+¬E) derives (Weak Inference∗) works by
deriving +A from ⊕A. This gives a preview of the way in which EML∗ achieves
full classicality, namely through a complete lateral and modal collapse: ⊕A
and +♦A are EML∗-equivalent to simply +A, and 	A to simply +¬A. Thus
every signed formula is equivalent to a strongly asserted propositional formula,
which behave highly classically already in EML (cf. theorem 4.1). That they
behave fully classically in EML∗, however, now remains to be proven.

We start by providing a semantics. Given the same τ translation as in the
model theory of EML, EML∗ is sound and complete for the class of reflexive
single world Kripke models; those of the form (W = {w}, R = {(w,w)}, V ).
We will refer to these as T1 models, and write �T1 for their semantic conse-
quence relation.

Theorem 4.14 (EML∗ Soundness). Take arbitrary Γ ⇒1 ψ ∈ SEQ1
LMLL

. If
Γ `EML∗ ϕ then τ [Γ] �T1 τ(ψ).

Proof. By induction on the length of derivations. The steps for rules present
in EML follows from EML’s soundness for S5, because all T1 models are S5
models. It remains to show either (Weak Inference∗) or (+¬E), and we opt
for the former.

For (Weak Inference∗), suppose that τ [Γ],�A �T1 �B and τ [Γ] �T1 ♦A.
On T1 models, ♦A and �A are both true just in case A is. So τ [Γ] �T1 ♦A
means τ [Γ] �T1 �A. Therefore τ [Γ],�A �T1 �B means τ [Γ] �T1 �B, which
means τ [Γ] �T1 ♦B as desired.
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For completeness we require some facts:

Lemma 4.15. Let Γ ⊆ FOR(LMLL) be a maximally `EML∗ consistent set.

(i) +¬A ∈ Γ iff +A 6∈ Γ

(ii) +♦A ∈ Γ iff +A ∈ Γ

Proof.

(i) (Left-to-right) is obvious because +A,+¬A `EML∗ ⊥, which was already
derivable for EML.
(Right-to-left) follows directly from the fact that Γ,+A `EML∗ ⊥ entails
Γ `EML∗ +¬A, which is shown by the following deduction:

[+A]1
...
⊥

[	¬A]2
(	¬E)

⊕A
(Weak Inference∗)1

⊥
(SR2)2

+¬A

(ii) (Left-to-right) follows from +♦A `EML∗ +A, which is derived as follows:

[+A]1[	A]2
(Rejection)

⊥
+♦A

(+♦E)
⊕A

(Weak Inference∗)1

⊥
(SR2)2

+A

(Right-to-left) follows from +A `EML∗ +♦A, which was already deriv-
able for EML.

Using these we can prove completeness by constructing a model for every
consistent set:

Theorem 4.16 (EML∗ Completeness). Let Γ⇒1 ϕ ∈ SEQ1
LMLL

. If τ [Γ] �T1

τ(ϕ) then Γ `EML∗ ϕ.

Proof. Let Γ be an `EML∗ consistent set, and construct a maximally consistent
superset Γ′ by the usual procedure. Consider the T1 model M with valuation
V (w) = {p ∈ Prop | +p ∈ Γ′}. We prove that M � A iff +A ∈ Γ′, by
induction over the complexity of A.

• Base case and ∧ are trivial.

• For ¬, by Lemma 4.15 (i) we have +¬A ∈ Γ′ iff +A 6∈ Γ′ iff M 6� A iff
M � ¬A.

• For ♦, by Lemma 4.15 (ii) we have +♦A ∈ Γ′ iff +A ∈ Γ′ iff M � A iff
M � ♦A.
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So M � A for all +A ∈ Γ. Therefore M � �A hence M � τ(+A) for all
+A ∈ Γ. Since every formula is EML∗-equivalent to a strongly asserted one,
we can assume without loss of generality that Γ is fully strongly asserted.
Hence M � τ [Γ].

Given this model theory, it should be expected that EML∗ turns out very
close to classical logic. T1 models are fully determined by their valuation
V (w), so in a sense they are just Boolean valuations with some extra fluff that
only serves to determine that ♦A and �A are true just in case A is true. Let
us work this out in detail.

Given Boolean valuation v, let M v be the TI model ({w}, {(w,w)}, V ) with
V (w) = {p ∈ Prop | v(p) = 1}. Note that this construction is conversible:
given T1 model M = ({w}, {(w,w)}, V ), let vM be the Boolean valuation such
that vM(p) = 1 iff p ∈ V (w). Then M vM = M and vM

v
= v. Furthermore,

let ∇ : LML → LPL simply remove all modal operators. It is easily shown
(by induction on complexity of A) that M v � A iff v(∇(A)) = 1 for any A ∈
FOR(LML). This gets us the following correspondence between satisfaction in
M v and v of certain pairs of individual inferences from SEQn

LMML
and SEQn

LPL

respectively.

Lemma 4.17. Take arbitrary Θ⇒n Π ∈ SEQn
LMLL

and Boolean valuation v.
Then M v �EML∗ Θ⇒n Π iff v �CPL ∇[τ [Θ⇒n Π]].

Proof. By induction on n.

• Base case: M v �EML∗ Θ⇒1 Π iff
M v 6� τ(θ) for some θ ∈ Θ or M v � τ(Π) iff
v 6� ∇(τ(θ)) for some θ ∈ Θ or v � ∇(τ(Π)) iff
v �CPL ∇[τ [Θ⇒1 Π]].

• Induction step: by the recursive definition of satisfaction.

The preceding lemma also induces a correspondence in the globalG, globalL
and local validity of these inference pairs according to EML∗ and CPL.

Lemma 4.18. Take arbitrary Θ ⇒n Π ∈ SEQn
LMLL

. Then �GGEML∗ Θ ⇒n Π
iff �GGCPL ∇[τ [Θ⇒n Π]].

Proof. By induction over n.

• Base case: by the base case of lemma 4.17.

• Induction step: by the recursive definition of globalG validity.

Lemma 4.19. Take arbitrary Θ ⇒n Π ∈ SEQn
LMLL

. Then �GLEML∗ Θ ⇒n Π
iff �GLCPL ∇[τ [Θ⇒n Π]].

Proof. By lemma 4.17.
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Lemma 4.20. Take arbitrary Θ ⇒n Π ∈ SEQn
LMLL

. Then �LEML∗ Θ ⇒n Π
iff �LCPL ∇[τ [Θ⇒n Π]].

Proof. By lemma 4.17.

Finally, this forces agreement on the validities of rules between EML∗ and
CPL, because for any Λ ⇒n Ω ∈ CSCn and its unilateralization U [Λ ⇒n Ω],
every instance of the one is paired with some instance of the other, under the
pairing of individual inferences we have been discussing. Namely, given any
σ : A → FOR(LPL), we define µσ = µΦ ∪ µA with µΦ : Φ → FOR(LMML)
and µA : A → FOR(LML) such that µΦ(ϕ) = +σ(U(ϕ)) and µA(A) = σ(A).
Then ∇[τ [µσ[Λ⇒n Ω]]] = σ[U [Λ⇒n Ω]].

On the other hand, given any µ = µΦ ∪ µA with µΦ : Φ → FOR(LMML)
and µA : A → FOR(LML), we define a partial σµ : A → FOR(LPL) such that
for all A ∈ A appearing in U [Λ⇒n Ω],

σµ(A) :=

{
∇(τ(µΦ(ϕ))) if A = U(ϕ) for ϕ ∈ Φ appearing in Λ⇒n Ω

∇(µA(A)) if A itself appears in Λ⇒n Ω.

Then σµ[U [Λ⇒n Ω]] = ∇[τ [µ[Λ⇒n Ω]]].
Thus counterexamples to the EML∗-validity of a rule correspond one-to-one

with counterexamples to the CPL-validity of the same rule, given any validity
criterion.

Theorem 4.21. EML∗ is globallyG/globallyL/locally classical at every infer-
ential level n.

Proof. We do the proof for globalG validity, as the others are analogous. We
take arbitrary Λ⇒n Ω ∈ CSCn and show �GGEML∗ Λ⇒n Ω iff �GGCPL U [Λ⇒n Ω].

(Left-to-right) Suppose for contraposition that 6�GGCPL U [Λ ⇒n Ω]. Then
6�GGCPL σ[U [Λ ⇒n Ω]] for some σ : A → FOR(LPL). Hence 6�GGCPL
∇[τ [µσ[Λ⇒n Ω]]]. Therefore 6�GGEML∗ µσ[Λ⇒n Ω] by lemma 4.18. Hence
6�GGEML∗ Λ⇒n Ω.

(Right-to-left) Similar, though using σµ where µ is the counterexample
to �GGEML∗ Λ⇒n Ω.

This establishes the central claim of this final section: that EML is but one
metarule away from full classicality. However, there is an additional reason
why these results are significant, namely the special place EML∗ takes up in
the space of EML strengthenings.

First of all, EML∗ is the minimal superclassicality extension of EML. By
a superclassicality extension of EML we mean an MML which is (i) as strong
as EML and (ii) locally, globallyL or globallyG superclassical up to a higher
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level than EML.29 EML∗ is the minimal element of this class, in the sense
that any MML with properties (i) and (ii) is at least as strong as EML∗. In
other words, if we wish to strengthen EML to perform ‘better’ on any one
of the superclassicality measures, we must strengthen it to at least EML∗.
That EML∗ meets (i) follows immediately from its definition. Property (ii)
has been demonstrated by theorem 4.21. To see that it is minimal, observe
that if any MML K meets condition (ii), then K must be either globally or
locally superclassical at level 2. The latter entails the former by proposition
3.22, so we may assume K is globally superclassical at level 2. This means K
must globally validate Multilateral Reductio, and more generally the schema

ϕ1, ..., ϕm,+¬A⇒ ⊥
2

ϕ1, ..., ϕm ⇒ +A

for any m ∈ N. Hence (+¬E) is derivable in K. If K furthermore meets (i),
then it derives every inference rule in the definition of EML∗, and so must be
at least as strong.30

This also means that EML∗ is the minimal classicality extension of EML,
in the sense that any MML which is as strong as EML, and classical (locally,
globallyL or globallyG) up to a strictly higher level than EML, must be at
least as strong as EML∗. For being classical on a higher level than EML
requires being superclassical on level 2. So we have added only the absolute
minimum in derivational strength that must be added in order to increase
(super)classicality on any one of the validity notions by even a single level.

Furthermore, EML∗ is even the only classicality extension of EML, if we
restrict attention to logics whose level 1 validities are closed under uniform
substitution. As mentioned before, it is a plausible criterion of formality for
logics that if an inference is valid, then the result of uniformly substituting its

29For the sake of precision: a natural deduction system is said to be as strong as another
in the same language if for any derivation in the latter, there exists a derivation in the
former with the same premises and conclusion.

30It might be that whilst K globally validates all instances of

ϕ1, ..., ϕm,+¬A⇒ ⊥
2

ϕ1, ..., ϕm ⇒ +A

and hence effectively derives (+¬E), some instance of the schema is only globally K valid
because ϕ1, ..., ϕm ⇒ +A is derivable using ♦E rules, whilst the corresponding instance of
ϕ1, ..., ϕm,+¬A ⇒ ⊥ is derivable without them. In this case the assumption that K is as
strong as EML apparently does not license the conclusion that K derives (Weak Inference)
as stated, but only a version of Weak Inference with an additional constraint disallowing the
use of (+¬E) in that part of the preceding derivation where ♦E rules are disallowed. Since
we did not put such a constraint on (Weak Inference) in the definition of EML∗, it might
seem mistaken to conclude that K must be at least as strong as EML∗. However, as we
have seen, (+¬E) along with some rules of EML - crucially not inclding (Weak Inference) -
allows for the derivation of (Weak Inference∗), which has no resitrictions on the use of ♦E
rules at all. Hence such uses of Weak Inference are permitted in EML∗ and any other K
meeting (i) and (ii).
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propositional letters for sentences should also be valid. If this were not the
case even for level 1 inferences, then the logic would determine validity based
on matters other than logical form alone. So let a formal classicality extension
of EML be any MML such that (i) it is as least as strong as EML, (ii) it is
(locally, globallyL or globallyG) classical up to a higher level than EML and
(iii) its level 1 validities are closed under uniform substitution.

Theorem 4.22. Any formal classicality extension of EML is precisely as
strong as EML∗.

Proof. Suppose K is a formal classicality extension of EML. By properties (i)
and (ii), K is at least as strong as EML∗.

Suppose for contradiction that K is strictly stronger. Then there exists
Γ ⇒1 ψ ∈ SEQ1

MML such that �K Γ ⇒1 ψ but 6�EML∗ Γ ⇒1 ψ. Any element
of FOR(LMML) is EML∗- and hence K-interderivable with a strongly asserted
propositional sentence (in particular any ψ is interderivable with +∇[τ(ψ)]).
So we can assume without loss of generality that Γ ⊆ {+A|A ∈ FOR(LPL)}
and ψ ∈ {+A|A ∈ FOR(LPL)}.

Now let ∆ ⇒1 χ ∈ CSC1 be the result of uniformly substituting every
propositional letter in Γ ⇒1 ψ with a distinct A ∈ A. Then �K ∆ ⇒1 χ by
property (iii), because �K Γ⇒1 ψ and every instance of ∆⇒1 χ is a uniform
substitution instance of Γ ⇒1 ψ. However, 6�EML∗ Γ ⇒1 ψ and therefore
6�EML∗ ∆ ⇒1 χ. Hence 6�CPL U [∆ ⇒1 χ] by theorem 4.21. But then we have
both �K ∆ ⇒1 χ and 6�CPL U [∆ ⇒1 χ], so K is not subclassical at level 1,
which contradicts property (ii).

So starting from EML, if we want to increase (super)classicality by any
level on any of the validity notions, we have to go at least to the strength of
EML∗, and furthermore, we cannot go a bit beyond this without immediately
losing (sub)classicality at level 1. So EML∗ is really the only game in town
when it comes to strengthening EML to increase classicality.

It should also be noted, however, that EML∗ is rather unsatisfying as a
multilateral modal logic. All the distinction between strong and weak assertion
is lost, since +A is interderivable with ⊕A, as is all the difference between
rejecting a sentence and asserting its negation, since 	A is interderivable with
+¬A. Finally, the epistemc ‘might’ has lost all meaning, as the ♦ is completely
transparent. EML∗ is both harmonious - if presented via the strengthening of
(Weak Inference) rather than the addition of (+¬E) - and fully classical, but
so are previously known bilateral systems (Rumfitt, 2000; Smiley, 1996). The
advantages of the multilateral approach, namely to give a harmonious account
of weak rejection and the epistemic ‘might’, have all been forfeited.
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Conclusion

The research in this thesis was motivated by the observations that, in providing
a harmonious treatment of weak assertion and the epistemic ♦, EML seemingly
manages to preserve classicality for standard inferences, but not for the higher
inferential levels. However, it was unclear precisely in which sense this is the
case. Our main purpose was to fix this situation, by providing an overview
of formal results detailing how EML conforms with or departs from classical
logic at different inferential levels.

In order to achieve this, we first needed to get clear on what it means for
an inference of level n > 1 to be valid in the first place, either in CPL or EML.
The ST literature offered two ways of understanding validity at level 2, namely
local and global validity. The former has an obvious known generalization to
higher levels. We demonstrated how the latter can be generalized in various
ways, and assessed the strength of these options compared to each other and
the local variant, with respect to various logics. We argued that the globalG
variant is the most appropriate criterion when it comes to MML’s, due to its
proof-theoretic characterizability, and diffused the existing objections to the
plausibility of global validity notions. Specifically, the charges are that global
validity is (i) not sufficiently uniform in its treatment of the different inferential
levels, (ii) too weak a criterion, causing it to overgenerate validities and (iii) not
closed under uniform substitutions. The first of these was met by establishing
a justification for the asymmetry, whilst the other two disappear upon moving
to schemas (or once we read individual inferences substitutionally).

The move to schemas was necessitated by the fact that EML and CPL are
formulated in different languages. However, we encountered the impossibility
of defining a single type of schema that can be properly assessed for validity
with respect to both multi- and unilateral logics. In order to overcome this ob-
stacle, we developed and motivated a systematic method for cross-identifying
the inference rules expressed by multilateral schemas and unilateral Boolean
schemas. After doing so, we were finally in position to formally study the
similarities and differences between EML and classical logic. The result was a
precise expression of the sense in which EML is classical on the basic inferential
level, but weaker than classical logic beyond this.

It also turned out, though, that the only way to make EML more classical
is through giving up all of its virtues, by inducing the complete multilateral
and modal collapse that characterizes EML∗. This tells us that all of EML’s
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departures from classicality are direct consequences of the mere choice to read
rejection weakly, and include weak assertion and epistemic ♦. The takeaway is
that whilst EML is not entirely classical, it is as close to classical as is possible
within the multilateral framework. If one wishes to treat 	, ⊕ and ♦, and
wishes to keep them in character, EML is as classical as it gets.

As for future research, there are a few promising avenues suggested by our
developments. First of all is the application of the novel globalL and globalG
validity criteria to logics other than CPL and EML. For example we may won-
der how strong the notions are with respect to each other and local validity
at different logics, such as ST and SV. Though their application to the clas-
sicality of these logics is very straightforward. For both SV and ST, in the
standard propositional language their classicality on the inferential level im-
plies full globalG classicality. The difference in local validity at level 2 means
ST and SV will be globallyL classical precisely up to level 2. If we consider SV
and ST in the languages supplemented with the operator D or the constant λ
respectively, for a schematic comparison with CPL, then they will be globally
classical only up to level 1. But when it comes to logics whose classical be-
haviour seems to extend to higher levels, such as many of those discussed in
(Barrio et al., 2020; Fitting, 2021; Pailos, 2020; Ripley, 2021; Scambler, 2020),
globalL and globalG validity may prove to be useful tools for explicating the
higher level differences and similarities.

Furthermore, the general idea of unilateralization may serve as a method
for comparison between unilateral and bi- or multilateral logics well beyond
our applications of it here. In particular, it lends itself to the assessment
of classicality for logics other than EML. One very natural candidate in this
regard would be Supervaluationist Multilateral Logic (SML), an alternative
application of the multilateral framework, developed in (Incurvati & Schlöder,
2021). It is formulated in a language different from LMML, and we certainly
cannot expect to assess multilateral schemas as we have defined them here
for SML validity. But it would be routine to set up an analogous notion of
supervaluationist multilateral schemas, and corresponding method of unilat-
eralization, at which point one could apply globalG validity (or some other
preferred criterion) to work out in detail the relation between SML and clas-
sical logic.

Finally, even within the more narrow topic of EML’s comparison to classical
logic, there are still some options left unexplored. We have motivated the
choice to leave out alternative validity notions, such as absolute global validity
and antivalidity, usually on the basis that they can only be defined in terms of
a specific model theory rather than the natural deduction system itself. This
is a solid justification to the extent that we are interested in EML only for its
inferentialist purposes. But there may well be other reasons to consider EML,
or properly speaking, its S5 embedding, in which case multilateral schemas
and their unilateralization may also be applied to investigate classicality via
these criteria.
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Another potential approach, which we have not mentioned at all thus far, is
to consider what we may call the contravalidity of schemas. Given a notion of
validity for individual inferenes, a schema is contravalid if none of its instances
are valid. This presents a schematic level analogue to antivalidity. The spe-
cific notion of globalG contravalidity would be of particular interest to EML’s
classicality, as like globalG validity itself, it can be characterized entirely in
terms of the proof system EML. Thus a comparison of EML and CPL on their
globallyG contravalid schemas might reveal connections or disparities that can
be genuinely attributed to EML itself, rather than merely to its model theory.
If one wishes to compare EML and CPL also in terms of a negative notion of
validity, this would certainly be the first place to look.

Contravalidity need not be the only option in this regard though. Another
might be simply to consider invalidtities. Rosenblatt (2021) argues that bilat-
eralists should treat invalidity independently of and as on a par with validity
itself. The obvious argument for not explicitly including invalidities when com-
paring different logics is that doing so does not grant any insight, beyond what
is already gained by comparing their validities. For two logics in the same lan-
guage agree on all validities of a given level n iff they agree on all invalidities
at n. Similarly, an MML validates the same inference rules as CPL at some
level iff it invalidates the same inference rules as CPL. In general, since the
set of invalidities of a logic at some level for some notion of validity is merely
the complement of the corresponding set of validities, any difference between
the invalidities of two logics corresponds to a difference in their validities and
vice-versa.

This line of reasoning does presume, however, that the set of invalidities of
a logic is indeed the complement of the set of validities, as there are neither
gluts nor gaps between validity and invalidity. Rosenblatt maintains that
such gluts and gaps can not be excluded on the bilateral framework. Though
his arguments are aimed specifically at a particular brand of bilateralism,
attributed to Restall (2013) and Ripley (2013). On these accounts, inference
takes place between sentences, rather than signed formulae, but validity itself
is cashed out in terms of bilateral attitudes. Namely, an inference is valid
(invalid) if accepting the premises is incoherent (coherent) with rejecting the
conclusion. Rosenblatt’s arguments, then, are to the effect that in some cases
it might be both coherent and incoherent, or neither coherent nor incoherent,
to accept the premises whilst resisting the conclusion. Thus the bilateralist
should provide seperate proof rules for deduction between invalidities.

The multilateral approach is rather different from this particular strain
of bilateralism, in that the attitudes are incorporated directly into the lan-
guage and by extension into the inferences, whilst validity is understood as
commitment preservation between these attitudes. Nevertheless, it might be
worth exploring the extent to which the force of Rosenblatt’s arguments carries
over to multilateralism, and what the proof rules for EML’s invalidities would
look like. Then multilateral schemas and their unilateralization can again be
applied to compare the invalidities to those of CPL.
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Incurvati, L., & Schlöder, J. J. (2020). Epistemic multilateral logic. The

Review of Symbolic Logic, Advance online publication. Retrieved from
https://doi.org/10.1017/S1755020320000313
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online publication. Retrieved from https://www.researchgate.net/

publication/335003955

Tennant, N. (1997). The taming of the true. Oxford University Press.
Van Fraassen, B. C. (1966). Singular terms, truth-value gaps, and free logic.

The journal of Philosophy , 63 (17), 481–495.
Van Rooij, R. (2012). Vagueness, tolerance, and non-transitive entailment.

In Reasoning under vagueness: Logical, philosophical, and linguistic per-
spectives (pp. 205–223). College Publications.

Williams, J. R. G. (2008). Supervaluationism and logical revisionism. The
Journal of philosophy , 105 (4), 192–212.

Williamson, T. (1994). Vagueness. London: Routledge.

59

https://doi.org/10.1007/s10992-021-09615-7
https://doi.org/10.1007/s10992-021-09615-7
https://www.researchgate.net/publication/335003955
https://www.researchgate.net/publication/335003955

	Introduction
	Background
	Logical Inferentialism and Multilateralism
	Epistemic Multilateral Logic
	Supervaluationist and Strict-Tolerant Logic

	Classicality by Inferences
	Levels of Inference
	Local and Global Validity

	Classicality by Rules
	The Comparison Problem
	Schematic Validity

	Classicality Applied
	The Classicality of Epistemic Multilateral Logic
	EML*

	Conclusion
	References

