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Abstract

Recent developments in Dynamic Epistemic Logics of social networks formalise the relation
between epistemics and communication restricted by the existence of connections between
people situated in a social network. There are two key aspects to social networks: communi-
cation over a social networks is often mediated, the ability of a groups to communicate to
one another is determined by the existence, or non-existence of crucial positions; and social
networks are dynamic, they change form and shape as people form and lose friendships and
relations. Logical studies on epistemics and networks almost never treat these two aspects
of social networks to its fullest. We set out to analyse these two aspects and their relation
to epistemics from a logical perspective. We formalise a dynamic epistemic logic of full
and semi-public communication over a social network, Communication Logic, and provide
its sound and complete axiomatisation. Through Communication Logic, we identify and
study crucial positions in social networks that either enable or block the flow of knowledge
between groups. Moreover, we construct a game-theoretic framework of network formation
and change that treats network formation as something driven by the people inside the
social network itself. We formulate axioms that capture properties of such network forma-
tion games, and identify properties of network formation implicit in most socio-economic
studies of network formation. Finally, we sketch how to use coalition logic to talk about
coalitional ability in these network formation games, and hint towards a unified logic of full
communication over, and coalitional ability of a social network.
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Chapter 1

Introduction

Today, communication typically does not occur at a public forum, where someone talks
and everybody listens; rather it takes place in and between groups. The first is a mode of
(public) announcement, the second of private conversation. Private conversation is distinct
from announcement, not only by the temporal and spatial separation of conversation, but
also by its social separation. The social (dis)connection of people determines the scope and
the reach of private conversation. Once the general mode of communication is dominated
by private conversation, communication, in turn, is dominated by the social network. The
ability for people to share their knowledge with each-other is limited by the structure of
the social network — not only by who they are in direct relations with, but also who their
relations are related with and so on.

There are two fundamental, and equally important aspects of social networks that deter-
mine the extent of communication: crucial positions, concepts such as bridges, connectors,
hubs; and network dynamics, its formation and its change. The former determines, in large,
the propagation of information over the network. The latter directly determines who can
communicate to whom, and controls the formation, existence, and placement of the crucial
positions. We will embark on a study of the logic of these two aspects of social networks.

We attempt to formalise the logic of communication over a social network. In its simple
form, such communication is the exchange of knowledge between individuals, restricted by
the existence of social relations or communication channels. In its developed form, this
simple exchange implies a dynamic of knowledge exchange across a network. The separation
between these two forms is exactly the social network: a mediation of the direct exchange,
where, instead of two persons sharing with each other what they know, their knowledge is
exchanged via other people. We analyse this process of mediated communication — the
diffusion of knowledge over a social network.

With mediation comes dependency. Groups depend on external parties for communication.
We want to analyse these mediators of different epistemic processes of communication. What
are their network-structural preconditions, and in what ways do they relate to different
aspects of knowledge. Finally, we set out to analyse network formation, ultimately to analyse
how mediation behaves in a dynamic network.

The interplay between communication, social networks, and epistemics has been the
subject of studies of epistemic social network logics [17; 24; 27; 56; 58]. Crucial positions
have been studied from a more graph-theoretic, often quantitative, perspective [28; 38; 43],
or a sociological perspective, such as Gatekeeping Theory [18; 19]. Network dynamics are
often treated economically [21; 32; 38; 39; 51] or socially [23]. More relevant to us, logics
exist that combine network dynamics with epistemics and communication [52; 53; 55].

A study on epistemics, communication, and mediation requires a theory with certain
qualities: it must have a conception of knowledge and communication; it must treat
the social network as a “first-order” object of the theory; and its logic must be able to
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conceptualise intricate network formation dynamics. To our knowledge, there is no logic (or
combination of logics) that meets all these requirements. If studies of mediating positions
in social networks treat some form of diffusion over a network, they treat the diffusion of
information, properties, or opinions, not of knowledge. With respects to studies of dynamic
networks, dynamic epistemic logics with a dynamic social network exist, but they focus
on a different side of such dynamics: they give a descriptive study of network dynamic,
with logics that indicates what would (possibly or necessarily) happen after the network is
changed in a certain, often simple, ways.

In this thesis, we depart to construct a logic, partly from the aforementioned studies
and their logics, that pertains to all the required qualities: we study mediating positions of
epistemic processes of diffusion, and we formulate a network dynamic that treats network
formation as something driven by the people inside the social network itself. Instead of
possibility we focus on ability. However, formalising a total theory of epistemics, commu-
nication, and network change is a large project — too large for a single thesis. Network
formation, for example, is worthy of a thesis of its own. We therefore won’t construct this
theory in its entirety. Instead, we develop the groundwork to establish such a theory.

The topics of this thesis have a conceptual separation, that of communication and
network formation, whose parts have a formalisation inherent to two different theories. The
first is the material of Dynamic Epistemic Logic. The second is much more related to
game theory. Logic and game theory are by no means separated — modern dynamic logics
of game theory can capture many game theoretical concepts, and game theories of logic
sometimes give a better understanding of logical concepts (see van Benthem [60]). Still, the
two parts of this thesis are separated in their relation to logic: one, the epistemic, works
from a logic; the another, the game-theoretic, works towards a logic. Hence, we divide this
thesis in two parts that each develop their own theory. If so desired, these parts can be
read separately. But they are meant to be the groundwork for a unified theory, and are
therefore fundamentally interlinked. The communication part consists of Chapter 2 and 3;
the network formation part of Chapter 4.

The outline of this thesis follows the conceptual development of the topics sketched
earlier. In Chapter 2, we construct a logic of full communication: Communication Logic.
This logic is like resolution logic [3] and the logic of semi-public events [16], but it contains
a social network that dictates the reach of the knowledge resolution. We provide a sound
and complete axiomatisation of Communication Logic based on the reduction technique
often employed in dynamic epistemic logics. We develop Communication Logic alongside an
analysis of iterated communication and knowledge diffusion. Finally, we treat knowledge
resolution and its relation to full communication over a social network, and analyse some of
its more non-intuitive properties with respects to the communication of formulas.

In Chapter 3, we explore the relation between mediating positions, the network structure,
and knowledge resolution. In parts, this analysis runs parallel to the analysis of such
positions from a more sociological perspective: Gatekeeping Theory, and its formalisation in
the Master’s Thesis of Belardinelli [19]. On the other hand, our analysis diverges from the
social sciences in key aspects. The social sciences almost never treat communication as an
epistemic process in its full sense. Instead, we depart our analysis from epistemic logic, and
its form of communication as distributed knowledge resolution, constructed in Chapter 2.
Furthermore, many social studies conceptualise crucial network positions as categories of
the network in itself, whereas we treat these positions as mediators of communication and
the epistemic process of knowledge realisation.

In Chapter 4, we develop network dynamics from the perspective of game theory, also
using ideas from social choice theory. We conceptualise single-shot network formation games,
and formulate “axioms” that capture properties of such formation. Then, we expand the
single-shot games to an extensive form able to treat dynamics of social influence. In the last
section, we sketch a coalition logic that formalises ability of network formation games.
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We conclude our work in Chapter 5, where we tentatively hint towards a unification of
the two parts of this thesis, and the many questions that arise from it.

1.1 Preliminaries
First, a preliminary section, where we treat epistemic logics. We assume that the reader is
familiar with Kripke semantics for modal logic. See Blackburn, de Rijke, and Venema [20]
otherwise.

The most popular approach to epistemic logics is a modal logic with possible world
semantics: uncertainty about the state of the world is represented via indistinguishability
relations (or similarity relations). Developed most prominently in Hintikka [36] among
others.

In Epistemic Logic, knowledge of each agent a ∈ A is expressed as a modality Ka over
the indistinguishability relation ∼a. Fix a set of atomic propositions Prop, and a non-empty
and finite set of agents A.

Definition 1.1.1 (Syntax of LEL). The language of epistemic logic LEL is generated from
the following Backus-Naur Form (BNF):

φ ::= p | ¬φ | φ ∧ φ | Kaφ

with p ∈ Prop, and a ∈ A.

Material implication (→), material equivalence (↔) disjunction (∨), ⊥, and ⊤ are defined
in the standard way. Kaφ is read as “a knows that φ”. The language is interpreted on
epistemic models.

Definition 1.1.2 (Epistemic Model). An epistemic frame is a tuple F := (W, (∼a)a∈A).
where W is a set of worlds, and for any agent a ∈ A ∼a is the indistinguishability relation
over W . An epistemic model is an epistemic frame equipped with a valuation function:
M := (F, V ) where V : Prop → P(W ) is the valuation function assigning a set of worlds to
each proposition.

The knowledge modality Ka is interpreted as a standard 2-modality over ∼a.

Definition 1.1.3 (Semantics of Epistemic Logic).

M, w ⊩ p iff w ∈ V (p)
M, w ⊩ ¬φ iff M, w ̸⊩ φ

M, w ⊩ φ ∧ ψ iff M, w ⊩ φ and M, w ⊩ ψ

M, w ⊩ Kaφ iff if w ∼a v then M, v ⊩ φ

There are many modalities for group knowledge. The one we will use in this thesis is
distributed knowledge. For G ⊆ A, DGφ reads as “it is distributively known among G that
φ”. For G ⊆ A let ∼G:=

⋂
a∈G ∼a. DG is the 2-modality over the relation ∼G.

M, w ⊩ DGφ iff if w ∼G v then M, v ⊩ φ

Distributed knowledge among G represents the knowledge that follows from the combined
information of all agents in G.

3



Chapter 2

Communication Logic

In this chapter we will introduce a logic for reasoning about communication and the
propagation of knowledge in a social network. We construct a dynamic epistemic logic
with a modality for full communication. We provide an axiomatisation for the logic and
investigate some of its properties.

2.1 Social Network
The premise of this thesis is communication in a social setting. A social setting must be
understood as a setting dominated by a myriad of relations: friendship, like-mindedness,
kinship, common interest, frequency of interaction (in virology for example), etc. Despite the
myriad of relations, we will only consider a single relationship, albeit one that is influenced
by the many other relationships: the relationship of knowledge acquisition. We understand
the social network as relations of knowledge sources and flows: a has a social tie to b when
a “listens” to b and takes what b says as knowledge. It is important to be particular about
what is meant with a social relation from the start, since the type of relation dictates its
relational properties.

2.1.1 Symmetry
In many logical studies on social networks [25; 49; 55–58], the social network is assumed to
be symmetric. This makes sense; friendships (at least healthy ones) come from both sides,
the interaction between both parties of the relation is symmetric, and both parties face
each others as equals. Relations of like-mindedness, kinship, and common interest are also
symmetric because these are comparative notions. However, in the setting of knowledge
propagation and communication, relations are not necessarily symmetric. Sources such as
the newspaper, television, and personal websites lack most forms of mutual contact. And
even in social relations that are bidirectional, information flow sometimes is not: even if
a student and a teacher are engaged in a reciprocal friendship, the flow of information
between a student and a teacher in the setting of a lecture is most often from teacher to
student. Lastly, even in conversation, the information flow could be unidirectional: a party
of the conversation could simply not be listening, or someone might be sceptical of whatever
someone else says. This is why we don’t require the social network to be symmetric, like
many other logics that study social relation in a communicational or epistemic setting [17;
24; 45; 52–54; 71].
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2.1.2 Reflexivity
Although it does make sense to state that agents epistemically follow or listen to themselves,
we do not assume reflexivity of the social network. The method of obtaining knowledge
from oneself is distinct from that of obtaining knowledge from others (the relation regarded
here). Even though we won’t touch upon the former, this distinction is significant enough
to demand a separate and particular treatment of the latter: as a relation that is not
necessarily reflexive. Such a treatment is of importance in, for example, a setting of
unreliable information channels, where information that is communicated over a channel is
not guaranteed to reach its destination. It separates information whose source is another
agent, from information whose source is oneself. The former would be susceptible to
information loss, while the latter would not (at least for the ideal agents that epistemic logic
typically deals with).

We also will not assume irreflexivity. Agents are allowed to follow themselves just as
they would any other agent. Exemplary to the use of reflexivity is the opposite of above
example, where communication is reliable, but an agent’s recall is not. Then, agents have
all the reason to follow themselves (e.g. read their own notes).

2.1.3 Formal Definitions
A social network (A,F ) is a graph consisting of a finite set of agents (the vertices), A, and
a relation over these agents (the edges), F . Throughout this thesis, we fix a finite and non-
empty set of agents A. For ease of notation, define the follow function of F , F : A → P(A),
such that F(a) denotes the set of agents that a follows: F(a) := {x | a F x}. Also define
F+(a) := F(a) ∪ {a}, the set of agents that a follows, including a itself. We extend these
function to groups: for any G ⊆ A, F(G) :=

⋃
a∈G F(a), and F+(G) :=

⋃
a∈G F+(a).1

Note that, throughout this thesis, G is used to denote a subset of A instead of the customary
usage of G in graph theory as denoting a graph.

For G ⊆ A, we define the restriction of the follow function to a group G ⊆ A as
F|G(H) := F(H) ∩G (for any H ⊆ A); in this way, F|G(H) contains the elements of F(H)
that are also in G. Similarly, we define the inclusive restriction of the follow function to
a group G ⊆ A as F|+G(H) := F|G(H) ∪H; in this way, F|+G(H) contains the elements of
F(H) that are also in G and all the elements of H itself.

When the social network relation F is clear from the context we will not specify to what
social relation the follow function belongs.

Definition 2.1.1 (Walks and Paths). For n ≥ 1, we call a sequence P = (pi)n
i=0 in A a

walk from p0 to pn iff p0 F · · · F pn. For G ⊆ A, if p1, p2, . . . , pn−1 ∈ G then we say that
P is a walk in G, G-walk for short, from p0 to pn. Note that p0 and pn do not have to be
elements of G for P to be a G-walk. If furthermore p0, p1, . . . , pn are all distinct, then we
call P a path or G-path. The length of a walk or path is the number of edges in it, n for
P = (pi)n

i=0. We will denote that there is a G-path from x to y by x →G y, and denote
that there is a G-path of length n from x to y by x →n

G y. Finally, we will use the notation
x →⩽n

G y to denote that there is a G-path of length at most n from x to y, and x ̸→⩽n
G if

there is no G-path from x to y of length at most n.

Note that we do not consider sequences of length 0, e.g. (a), as walks or paths. This is a
stylistic choice, that is of use in the next chapter. As a result, there only is a path from
a to itself when a F a. It allows us to avoid requiring identity in our language to express
path-existence between two agents.

1Note that F+(G) = F(G) ∪ G.
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2.2 Communication: Sharing All You Know
With the social network established, we will now define a logic for reasoning about knowledge
and communication. In any setting about communication of knowledge between agents,
at least three things have to be discussed: the object, the extent, and the reach, of
communication.

With the object of communication we mean what is communicated between the agents.
In most epistemic logics with communication, the objects of communication are propositions
or formulas of a specific language. However, along with languages such as that described
in Ågotnes and Wáng [3] and Baltag and Smets [16], we will take indistinguishability
itself as the object of communication: agents communicate their knowledge about the
(in)distinguishability of worlds.

With the extent of communication we mean how much an agent discloses with a commu-
nication act. Here two approaches are often taken: either an agent discloses their knowledge
about a certain proposition or formula, as the [a : θ]-modality in Xiong et al. [71], the
[i : φ]-modality in Ruan and Thielscher [53], the [F !φ]-modality in Seligman, Liu, and Girard
[56], and the PDL-modality [sendF a(ψ)] in Seligman, Liu, and Girard [55]; or an agent
discloses all they know [3; 11, the !a-system; 16; 24, ch. 4].2 The interpretation of “all they
know” depends on the object of communication. Because we discuss the communication of
similarity relations, we will interpret “everything an agent knows” as meaning the informa-
tion contained in the entire similarity relation of that agent. This as opposed to the common
interpretation of “every formula the agent knows”. This distinction is important because, as
discussed in van der Hoek, van Linder, and Meyer [63], if communication is understood as
communicating all formulas one knows, then distributed knowledge of a proposition does
not always result in group knowledge of that proposition after full communication.3

With the reach of communication we mean both the reach of the object of communication
and the reach of the knowledge of whether communication has taken place.4 We will restrict
the former by the social network structure, and assume that the latter reaches the entire
social network — whether communication has taken place is publicly known. As such,
lending the term from Baltag and Smets [16], our approach to communication is semi-public:
all agents know that communication has taken place, they know who communicated to
whom, they know that these agents communicated everything they knew, but whether they
get to know the contents of the communication depends on the social network; only agents
that follow the communicating agent get to know what is communicated. What all of this
entails will become clear in some later examples.

2.2.1 Internal Communication
In line with Dynamic Epistemic Logic (DEL), we will model communication as a modality
that transforms the epistemic model to one that reflects that communication has taken
place. It is common to take an external approach to such communication modalities: logics
such as Public Announcement Logic [14] have modalities for announcements by an external
force. We will take an internal approach: communication is an act between agents inside
the social network. Who communicates to who is determined by the social relationship
between agents.

2Other approach: sharing all about certain issues, in [12; 24, ch. 5].
3An example of a situation in which group knowledge and knowledge after communication of propositions

does not align is given in Example 2.3.4.
4Of course, this is not all there is to communication. One could go into much more detail about the reach

of communication, such as what is allowed by the general action models (see Baltag, Moss, and Solecki [14]
and Baltag and Moss [13]) of Dynamic Epistemic Logic. These action models make it possible to specify in
much more detail the preconditions of sharing events, as well as the uncertainty that the agents have about
them. Such events allow for, for example, the formalization of higher order properties of communication
such as who should know that who knows that communication has taken place.
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Such an approach is also taken in Baltag and Smets [16]. However, whereas they explicitly
specify who communicates to whom in each communication update, this is implicit in our
communication modality: who communicates to whom is determined by the underlying
social network.

2.3 Communication Logic
Now we will construct a simple Dynamic Epistemic Logic for full communication: Commu-
nication Logic (CL). This logic has a distributed knowledge modality as well as a modality
for full communication that follows the interpretation discussed in the last section. It allows
us to reason about the situation after a group of agents communicate everything they know.
We thereby abstract away from the exact details of the communication — from what exactly
is said — and only model exchange of information in a perfect5 setting. After exhaustive
communication, what one is left with is what is called the communication core in van
Benthem [61, p. 249], limited to the bounds of communication by the social network.

This has many interpretations; for example as agents that read some database or entity
containing all information an agent possesses, as in Baltag and Smets [16], or as the
knowledge potential of agents after allowing exhaustive (unlimited) communication to take
place between other agents without going into detail about the exact conversations or
sentences uttered. Potential is an important detail here, since, as proven in van Benthem
[62], when communication is thought of as announcement of formulas (sentences) in a certain
order, this order matters for the resulting knowledge state, and limits its ability to reach
the “communication core”. Full communication abstracts away from such details.

2.3.1 Syntax
The language of Communication Logic LCL consists of propositions, Boolean connectives,
and distributed knowledge modalities. Additionally, it contains communication modalities
for each G ⊆ A, [!G], to be read as “if all agents in G communicate all they know to the
agents that follow them”.

The syntax of Communication Logic also includes a representation of the social relation
(this representation will be required for the axiomatisation). There are many approaches to
syntactically embedding such information about a network structure in a logic. The simplest
approach, taken in Baltag et al. [17], Carrington [24], Smets and Velázquez-Quesada [58],
Roelofsen [52, ch. 3]6, Christoff and Rendsvig [27], and Ruan and Thielscher [53], is to
embed the social network structure in the language as propositions — one for each possible
edge in the network. The truth value of these propositions reflect the existence of their
respective social relation.

A more complex (albeit more expressive, in the case of infinite networks) approach is
taken in Seligman, Liu, and Girard [56], Seligman, Liu, and Girard [55], and Sano and
Tojo [54]. Here they introduce a Kripke modality over the social relation reading ‘some of
my friends’ or ‘all of my friends’. This requires formulas to be evaluated on agents-world
pairs, as well as elements of hybrid logic [5] for expressing the existence of relations between
specific agents in a network.

A first-order approach to embedding the social network in the syntax is taken in Liberman
and Rendsvig [40], where the social relation is represented by a first-order predicate.

And finally, there are logics that do not embed the social relation in the syntax at
all. Rather they specify the existence of a social relation by other means. For example,
in the logic in Xiong et al. [71], the social following relation is expressed via belief and a

5 Perfect in the sense that agents are able to communicate all they know, regardless of the imperfections
of communication through a (formal) language.

6Here, communication channels are considered between sets of agents. As such, the propositions state
the existence of relations between sets of agents.
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communication modality (tweeting modality). A problem with such systems is that, most
often, no formula that exactly defines the social relation exists. This is related to the effect
that Xiong et al. [71] calls ghost followers: an agent might believe or know exactly what
another agent does, no matter how many agents communicate how many times, even though
that agent other does not socially follow the other agent.

For simplicity’s sake, we will take the propositional approach. The language has proposi-
tions, Fa,b for a, b ∈ A, that denote whether a follows b. Fa,b is to be read as “a (epistemically)
follows b”.

We define the language of Communication Logic, LCL, inductively. Let Prop be a
countable set of propositionals.

Definition 2.3.1 (Syntax of LCL). The language LCL is generated from the following
Backus-Naur Form (BNF):

φ ::= p | φ ∧ φ | ¬φ | [!G]φ | DGφ | Fa,b

with p ∈ Prop, a, b ∈ A, and G ⊆ A. Material implication (→), material equivalence (↔)
disjunction (∨), ⊥, and ⊤ are defined in the standard way.

DG is the distributed knowledge modality, to be read in the standard way. Note that
our language does not contain the knowledge modality K. Knowledge of an individual agent
i is represented by D{i}. For brevity’s sake, let Ki be shorthand for D{i}. There are other
modalities for group knowledge, of which common knowledge is probably the one whose
absence the reader has noticed. For our purposes however, distributed knowledge suffices.
We do however discuss one other notion of group knowledge, that we define in terms of
individual knowledge. Let EGφ denote that everyone in G knows φ:

Definition 2.3.2 (Everyone knows). For any G ⊆ A, let:

EG :=
∧

a∈G

Ka.

2.3.2 Semantics
Formulas of the language are evaluated on communication frames and models: epistemic
frames and models augmented with a social network.

Definition 2.3.3 (Communication frames and models). A communication frame is a tuple
F = (W,F , (∼a)a∈A), where W is a non-empty set of possible worlds. F ⊆ A × A is the
social follow relation. The follow relation F is not assumed to be reflexive or symmetric.
a F b intuitively reads as “a follows b” or “a listens to (receives) what b says”. For each
a ∈ A, ∼a ⊆ (W ×W ) is the indistinguishability relation for a over all possible worlds W .
We take the epistemic part of the model to be S5, this means that the indistinguishability
relation is symmetric, reflexive, and transitive; i.e. ∼a is an equivalence relation. For any
G ⊆ A, define ∼G :=

⋂
a∈G ∼a.

A communication model M = (F, V ) is a communication frame F with a valuation
function V : Prop → P(W ).

We assume that there is only one social network, i.e. that the social network is the same
in all possible worlds, and thereby that the structure of the network is common knowledge.

We define the semantics of the communication modality using a model update that
represents full communication of a set of agents G ⊆ A, using the interpretation we discussed
in the previous section. In the updated model, all agents acquire the knowledge of the
agents in G that they follow. After the communication update it is public knowledge that
communication took place. From the perspective of a single agent a, such semi-public
events can be represented by a restriction of their indistinguishability relation ∼a to the
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indistinguishability relations of the agents they follow which are part of G: F|G(a). Moreover,
we assume that in a communication update by G, when the agents in G communicate, all the
other agents do nothing but receive information. We also assume that agents have perfect
memory: any certainty about the state of the world they had before communication remains
after a communication update. Since our social network is not assumed to be reflexive, we
must therefore restrict the indistinguishability relation ∼a to that of ∼F|+

G
(a)=∼F|G(a) ∩ ∼a.

Definition 2.3.4 (Communication model updates). For any G ⊆ A, a communication
(model) update !G is a function that transforms a model into one that reflects the situation
after which all agents in G shared all they know with their followers, and all agents know
that G did this. We denote the application of !G to M with M!G. Define !G as follows:
M!G := (W,F , (∼!G

a )a∈A, V ), where for any i ∈ A:7 ∼!G
i :=

⋂
j∈F|+

G
(i) ∼j = ∼F|+

G
(i). For

convenience, we write !a for !{a}, for any a ∈ A.

Note that communication model updates are well-behaved, in that for any a ∈ A, G ⊆ A,
and indistinguishability relation ∼a: ∼!G

a is also an indistinguishability relation. This
holds trivially since ∼!G

a is an intersection of equivalence relations over W , and equivalence
relations are closed under intersection.

Formulas of communication logic are evaluated on worlds.

Definition 2.3.5 (Semantics). The semantics of CL are as follows;

M, w ⊩ p iff w ∈ V (p)
M, w ⊩ ¬φ iff M, w ̸⊩ φ

M, w ⊩ φ ∧ ψ iff M, w ⊩ φ and M, w ⊩ ψ

M, w ⊩ DGφ iff if w ∼G v then M, v ⊩ φ

M, w ⊩ [!G]φ iff M!G, w ⊩ φ

M, w ⊩Fa,b iff a F b

We write M ⊩ φ iff for all w ∈ W : M, w ⊩ φ; F, w ⊩ φ iff for all valuations V : (F, V ), w ⊩ φ;
F ⊩ φ iff for all w ∈ W : F, w ⊩ φ; and ⊩ φ iff for all frames F: F ⊩ φ, i.e. iff φ is a validity.

For a set of formulas Γ ⊆ LCL, we write M, w ⊩ Γ iff all formulas in Γ are true in w:
∀ψ ∈ Γ, M, w ⊩ ψ. The notation F, w ⊩ Γ, F ⊩ Γ, and ⊩ Γ are defined like their single
formula equivalent.

Finally, for a set of formulas Γ ⊆ LCL, and a formula φ ∈ LCL, we say that φ is
a semantic consequence of Γ, notation Γ ⊩ φ, iff for all models M and all worlds w: if
M, w ⊩ Γ, then M, w ⊩ φ.

Now we will regard some examples to clarify the exact implications of full communication
with (in)distinguishability as the object of communication. In all these examples, the circles
represent possible worlds, with their names displayed above. Inside the circle we will write
whether a proposition is true (p) or false (¬p) in the world. The real world (the world we
evaluate in) is denoted by a double circle. The indistinguishability relation is represented by
a squiggly line. We will omit the reflexive relations and display the relation without any
indication of direction due to its symmetry.

Social networks (and fragments thereof) have a slightly different presentation. We denote
agent (vertices) by squares. The names of the agents are displayed inside the square. An
arrow from a to b denotes that a follows b. All agents not displayed in such figures are
assumed to have no social connections.

7Note the use of F|+G instead of F|G. This reflects the perfect memory assumption made earlier: agents
always have access to their own knowledge when forming a new epistemic relation from what they have
learned of the communicating agents. This is akin to the assumption that agents have access to their own
database in Baltag and Smets [16].

9



Example 2.3.1. Consider three agents a, b, and c, and their social relations depicted below.

ba

c

Figure 2.1: The social environment of a, b, and c.

Let W = {w, v} and V (p) = {w}. Let the similarity relations be as depicted below in
Figure 2.2 on the left.

p

w

¬p
v

b

!a
p

w

¬p
v

Figure 2.2: (∼a)a∈A and (∼!a
a )a∈A.

a and c know p and know from each other that they know p. Furthermore, b does not
know p, but does know that a and c know whether p. After a communicates (i.e. in M!a)
the similarity relation is as shown on the right of Figure 2.2:

Before the communication update, c’s similarity relation was such that c knew that a
knew that p, hence after b’s similarity relation is restricted to that of a in M!G, c knows
that b knows p. This is one example of how, under full communication updates, the event
of communication is public — everybody knows that communication has taken place, and
that everybody communicated everything they know.

Example 2.3.2. Consider a similar situation as before, but let the similarity relation be as
shown in Figure 2.3 below on the left.

p

w

¬p
v

b, c

!a
p

w

¬p
v

c

Figure 2.3: (∼a)a∈A and (∼!a
a )a∈A.

Now, c, like b, only knows that a knows whether p — M, w ⊩ Kc(Kap ∨ Ka¬p) but
M, w ̸⊩ Kc(Kap) ∨Kc(Ka¬p). After a communicates, that is in M!a, the similarity relation
is as shown on the right of Figure 2.3. As in the example before, b knows that p. However,
now c only knows that b knows whether p. The content of the communication is not public.
It is only known to the agents that follow a. The other agents only know that a shared
everything they knew to the agents that follow a.

Example 2.3.3. A similar phenomenon occurs when c does not know that a and b know
whether p. Consider the situation with the same social network as before, and a similarity
relation as depicted in Figure 2.4 below on the left.
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¬p
v

p

w

¬p

v′

p

w′

b, c

a, b, c

b, c b, c !a

¬p
v

p

w

¬p

v′

p

w′

c

a, b, c

c c

Figure 2.4: (∼a)a∈A and (∼!a
a )a∈A.

a knows that p, but both b and c don’t know that a knows that p. After a communicates,
that is in M!a, the similarity relation is as shown on the right of Figure 2.4. Again, b knows
that p. But c does not know that a or b know whether p.

Example 2.3.4. Finally, we consider an example that clarifies the difference between
indistinguishability of worlds and knowledge about propositions as object of communication,
from the perspective of distributed knowledge resolution. This example is based on an
example in van der Hoek, van Linder, and Meyer [63]. Consider two agents, a and b, and
take a model M where a F b and b F a.

ba

Figure 2.5: The social relations of a and b.

Let (∼a)a∈A of M be as depicted below.

¬p
v

p

w

p

v′

¬p

w′

b

b

a a
!{a, b}

¬p
v

p

w

p

v′

¬p

w′

Figure 2.6: (∼a)a∈A and (∼!{a,b}
a )a∈A.

In M, {a, b} distributively knows p. However, neither a nor b knows that p. As
such, if propositions are the object of communication, and therefore the prerequisite for
communicating about p is knowledge of p, then distributed knowledge of p is not obtainable
through communication by either a or b. However, as we take similarity relations as the
object of communication, we do have that M!{a,b}, w ⊩ Kap ∧Kbp.
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S5D
n + KF

(A1) All tautologies of
propositional calculus

(KD) DGφ ∧DG(φ → ψ) → DGψ G ⊆ A (Distribution Axiom)
(TD) DGφ → φ G ⊆ A (Knowledge Axiom/Veridicality)
(4D) DGφ → DGDGφ G ⊆ A (Positive Introspection)
(5D) ¬DGφ → DG¬DGφ G ⊆ A (Negative Introspection)
(D2) DGφ → DG′φ if G ⊆ G′ G ⊆ A (Monotonicity)

(R1)
φ,φ → ψ

ψ (Modus Ponens)

(R2)
φ

DGφ G ⊆ A (Knowledge Generalisation)

(KF) Fa,b → EAFa,b a, b ∈ A (Commonly Known Network)

Table 2.1: Axiom system for of CL−

2.3.3 Axiomatisation
We will provide a sound and strongly complete axiomatisation of CL. We will prove its
completeness using the reduction technique8 from the field of Dynamic Epistemic Logic: we
define truth-preserving reduction axioms that push the communication modalities inwards,
finally eliminating them altogether at the atomic level of the formulas. This reduces the
completeness proof of our axiomatisation to the completeness proof of epistemic logic with
distributed knowledge and social network propositions.

The base logic to which we reduce Communication Logic is its non-dynamic fragment:
CL−. The language of this fragment LCL− contains everything but communication modalities:
propositions, boolean connectives, the distributed knowledge modalities, and the network
propositions.

Communication models have an indistinguishability relation that is reflexive, transitive
and symmetric. Thus, the axiomatisation of CL−, and consequently CL, is built upon the
standard axiomatisation of S5 extended to include distributed knowledge (i.e. an intersection
modality): S5D. Such an axiomatisation is given in Fagin et al. [29] and Halpern and Moses
[35] (here called S5

D
n ).

These systems axiomatise the normal modal logic S5 , extended to include the intersection
modality (of distributed knowledge) up to n agents, S5 D. For this, they include an
axiom schema connecting the (normal) knowledge modality to the distributed knowledge
(intersection) modality (Ki ↔ D{i}), as well as all standard axioms for S5 : K, D2, T, 4, 5,
and N. Since we don’t bother ourselves with Ki, we can leave these out. The remaining
axiom schemata of this system are included in Table 2.1.

We extend the logic of S5 D with the set of network propositions. Recall that these
propositions are distinct from Prop in that they are common knowledge in all models. For
this, we employ the axiom KF: Fa,b → EAFa,b. If we add KF to S5D

n we come to a complete
axiomatisation of CL−: S5D

n + KF. This system is shown in Table 2.1. Note that 4D is not
necessary, as it is derivable from A1,KD, TD, 5D, R1, and R2.9

Strong completeness of this system for Communication Models can be proven using
the standard technique of canonical model construction [20, ch. 4.2] with a “unraveling-
folding” method [68], and can be based entirely on the canonical model construction in the
completeness proof of S5D

n given in Fagin et al. [29] and Halpern and Moses [35], or the
8See Wang and Cao [67] for a thorough overview of this technique and its uses.
9From A1, TD, 5D, and R1: ⊢ DGφ → DG¬DG¬DGφ. Moreover, from 5D and some propositional reasoning:

⊢ ¬DG¬DGφ → DGφ. The rest is derivable from KD, R1, R2 and some propositional reasoning.
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simpler and more recent model construction in the strong completeness proof of Wáng and
Ågotnes [69] (here the axiom system is called Int(S5)). Because such a construction is quite
standard, we won’t go into its details.

Do note that, with the addition of the KF axiom, it is ensured that if Fa,b is true in a
world, then it is common knowledge in that world (maximally consistent set) of the canonical
model, as all instances of the KF axiom are included in all maximally CL−-consistent sets,

The reduction of CL to the base logic CL− requires an analysis of the interplay between
the distributed knowledge modality and the communication modalities. We do this in much
the same way as in Ågotnes and Wáng [3] and Baltag and Smets [16]. It will become
clear that these dynamics come down to a change in the set of agents that the distributed
knowledge modality operates on, like in Ågotnes and Wáng [3] and Baltag and Smets
[16]. Only here, the particular change of this set depends on the social network, as what
information the agents get depends on their follow relation. To show this, we first explore
the relation between the pre-updated and post-updated similarity relation:

Lemma 2.3.1. For any similarity relation (∼a)a∈A, and any G,H ⊆ A: w ∼!G
H v iff

w ∼F|+
G

(H) v.

Proof.

∼!G
H =

⋂
i∈H

∼!G
i =

⋂
i∈H

⋂
j∈F|+

G
(i)

∼j =
⋂

j∈
⋃

i∈H
F|+

G
(i)

∼j =
⋂

j∈F|+
G

(H)

∼j =∼F|+
G

(H)

The semantic result of Lemma 2.3.1 implies the following syntactic equivalences:

Theorem 2.3.2. For any model M, any G,H ⊆ A, φ ∈ LCL, and w ∈ W :

M, w ⊩ [!G]DHφ iff M, w ⊩ DF|+
G

(H)[!G]φ

Proof.

M, w ⊩ [!G]DHφ ⇐⇒ M!G, w ⊩ DHφ

⇐⇒ if w ∼!G
H v then M!G, v ⊩ φ

2.3.1⇐⇒ if w ∼F|+
G

(H) v then M!G, v ⊩ φ

⇐⇒ if w ∼F|+
G

(H) v then M, v ⊩ [!G]φ

⇐⇒ M, w ⊩ DF|+
G

(H)[!G]φ

The equivalence of Theorem 2.3.2 provides us with a basis for the reduction of CL to
CL−. However, this equivalence isn’t suitable as it is currently stated: the contents of
F|+G(H) depends on the state of the social network. An axiom that works for the entire class
of Communication Models, regardless of the social network of these models, must be stated
independent of the social network. We will construct such an axiom from Theorem 2.3.2 in
steps.

Given that we are dealing with S5, axiom D2 holds: if a set of agents distributively
knows φ, then any superset of that set will also distributively know φ. Therefore, [!G]DHφ
holds iff there is a subset of G which is contained in H’s follow sets, that, together with H,
distributively knows that [!G]φ. Therefore, if we can describe “H is contained in the follow
set of G” in terms of Communication Logic, then we can describe the validity we are after.
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Cn

(!G DH) [!G]DHφ ↔
∨

G′⊆G (Fol(H,G′) ∧DH∪G′ [!G]φ) G,H ⊆ A

(!G NEG) [!G]¬φ ↔ ¬[!G]φ G ⊆ A
(!G CON) [!G](φ ∧ ψ) ↔ [!G]φ ∧ [!G]ψ G ⊆ A
(!G ATOM) [!G]p ↔ p G ⊆ A

(RE)
φ ↔ χ

ψ ↔ ψ[φ/χ]

Table 2.2: Axiom schemas for communication in LCL. Here, p ∈ Prop ∪ {Fa,b| a, b ∈ A}.

A set H is contained in the follow set of G, H ⊆ F(G), when every agent in H is followed
by an agent in G; i.e. for all h ∈ H there is a g ∈ G such that g F h. Since A is finite, a
conjunction of disjunctions over Fa,b propositions suffices.

Fol(G,H) :=
{

⊤ G = ∅∧
h∈H

∨
g∈G Fg,h otherwise

As we did with F(a), this formula defines an expression that extends the notion of
following to groups. Such an extension entails that all the information G possesses is
accessible through communication by H. We will discuss variations of these extensions in
the next chapter, when we discuss connectors and directly connected sets.

Now, we have sufficient tools to formulate the validity.

Proposition 2.3.1. For any G ⊆ A:

⊩ [!G]DHφ ↔
∨

G′⊆G

(Fol(H,G′) ∧DH∪G′ [!G]φ)

Proof. Let M be an arbitrary model, and w ∈ W .
(⇒) Note that for arbitrary G,H ⊆ A, by definition of F|G(H) and Fol, Fol(H,F|G(H))

is a validity. Recall that F|G(H) ⊆ G. Then:

M,w ⊩ [!G]DHφ

⇐⇒M,w ⊩ DF|+
G

(H)[!G]φ (Theorem 2.3.2)

⇐⇒M,w ⊩ DH∪F|G(H)[!G]φ (Def. of F|+G)
⇐⇒M,w ⊩ Fol(H,F|G(H)) ∧DH∪F|G(H)[!G]φ

=⇒M,w ⊩
∨

G′⊆G

(Fol(H,G′) ∧DH∪G′ [!G]φ)

(⇐) Assume M,w ⊩
∨

G′⊆G(Fol(H,G′) ∧ DH∪G′ [!G]φ). If there is an G′ ⊆ G s.t.
M,w ⊩ Fol(H,G′) and M,w ⊩ DH∪G′ [!G]φ, then for any g ∈ G′ there exists a h ∈ H
such that h F g. This means that g ∈ F(H). Thus, G′ ⊆ F(H). Since G′ ⊆ G,
G′ ⊆ F|G(H) and thus H∪G′ ⊆ F|+G(H). By soundness of D2, and since M,w ⊩ DH∪F [!G]φ,
M,w ⊩ DF|+

G
(H)[!G]φ. By Theorem 2.3.2 M,w ⊩ [!G]DGφ.

We can now phrase the reduction schemata for the communication modalities. These
are shown in Table 2.2. As we will show, when read from left to right, Table 2.2 forms a
reduction system for LCL whose normal forms do not contain any communication update
modalities.

Therefore, these reduction rules bring about a translation from formulas of LCL to
formulas of LCL− . This translation is a function T : LCL → LCL− . We recursively define
this translation as follows:
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Definition 2.3.6 (LCL− translation). Let p ∈ Prop ∪ {Fa,b | a, b ∈ A}

T (p) = p T ([!G]p) = T (p)
T (¬φ) = ¬T (φ) T ([!G]¬φ) = T (¬[!G]φ)

T (φ ∧ ψ) = T (φ) ∧ T (ψ) T ([!G](φ ∧ ψ)) = T ([!G]φ ∧ [!G]ψ)

T (DGφ) = DGT (φ) T ([!G]DHφ) = T (
∨

F ⊆G

(Fol(H,F ) ∧DF ∪H [!G]φ))

T ([!G][!H]φ) = T ([!G]T ([!H]φ))

This translation recursively defines a function from formulas of LCL to their normal form
in the rewriting system displayed in Table 2.2. In the recursive definition of this translation,
the first (propositional) case in the left column is the terminating one; the next three are
pass-through rules, continuing the rewriting on a deeper level (on less complex subformulas).
The formulas in the right column are the actual rewriting rules. The last rule in the right
column “carries” the translation over the first communication modality of any occurrence
of at least two consecutive communication modalities. This postpones the rewriting and
elimination of the communication modalities to a deeper (or more inside) level. Hence, our
reduction is of what is called the “inside-out” style in Wang and Cao [67].

We can show that this rewriting system is terminating by assigning a fitting complexity
measure to formulas, such that the translation always reduces the complexity. Such a
complexity measure can easily be defined, since each rewriting rule always either eliminates
a communication modality or moves a communication modality inwards.

This reduction system has two crucial properties. First, the normal forms of this system
are part of the non-dynamic fragment of LCL, LCL− . This follows from the observation
that the rewriting system pushes the communication modalities inwards over all possible
symbols of the language, finally eliminating the modality all-together when it occurs just
above the propositional level (in a form [!G]p for G ⊆ A, p ∈ Prop ∪ {Fa,b | a, b ∈ A}).
Second, the translation the reduction system brings about is such that for any φ ∈ LCL:
M, w ⊩ φ iff M, w ⊩ T (φ).

Proposition 2.3.2. For any φ ∈ LCL, ⊢CL φ ↔ T (φ) and T (φ) ∈ LCL− .

Proof. We prove this by induction on the complexity of formulas. The base case of atomic
formulas as well as the induction steps of φ = ¬ψ, φ = ψ ∧ χ, and φ = DGψ are trivial.

The cases of φ = [!G]p, φ = [!G](ψ∧χ), φ = [!G]¬ψ, and φ = [!G]DHψ are easily proven
using !G ATOM, !G CON, !G NEG, and !G DH respectively.

Finally, for the case φ = [!G][!H]ψ, we must show that ⊢CL [!G][!H]ψ ↔ T ([!G]T ([!H]ψ)).
By the induction hypothesis, ⊢CL [!H]ψ ↔ T ([!H]ψ) and T ([!H]ψ) ∈ LCL− . Using RE:
⊢CL [!G][!H]ψ ↔ [!G]T ([!H]ψ). Hence, T ([!H]ψ) does not contain any communication
modalities. Therefore, ⊢CL [!G]T ([!H]ψ) ↔ T ([!G]T ([!H]ψ)) and T ([!G]T (!H]ψ)) ∈ LCL−

by one of the previous cases of the induction. By repeated application of Modus Ponens
therefore ⊢CL [!G][!H]ψ ↔ T ([!G]T ([!H]ψ)). The rest follows by Modus Ponens.

By this translation, CL is as expressive as CL−. Soundness of S5D
n + KF + Cn follows

from soundness of the individual axioms of this system with respect to communication
models.

Theorem 2.3.3 (Soundness). The axioms of S5D
n + KF + Cn are sound with respect to

communication models.

Proof. Soundness of S5D
n is provided in Fagin et al. [29]. Soundness of the KF axiom follows

from the observation that Fa,b is true in a world w iff it is true in all worlds. Soundness of
Cn amounts to showing the validity of its axioms. !G DH is valid by Proposition 2.3.1. For
the other axioms, let M be an arbitrary communication model, let w ∈ W be an arbitrary
world. Then:
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(i) (!G ATOM) M, w ⊩ [!G]p ↔ p since M!G differs from M only in (∼a)a∈A.

(ii) (!G NEG) M, w ⊩ [!G]¬φ ⇐⇒ M!G, w ⊩ ¬φ ⇐⇒ M!G, w ̸⊩ φ ⇐⇒ M, w ̸⊩ [!G]φ ⇐⇒
M, w ⊩ ¬[!G]φ.

(iii) (!G CON) M, w ⊩ [!G](φ ∧ ψ) ⇐⇒ M!G, w ⊩ φ ∧ ψ ⇐⇒ M!G, w ⊩ φ and M!G, w ⊩
ψ ⇐⇒ M, w ⊩ [!G]φ and M, w ⊩ [!G]ψ ⇐⇒ M, w ⊩ [!G]φ ∧ [!G]ψ.

(iv) (RE) Assume ⊩ φ ↔ χ. We will prove that ⊩ ψ ↔ ψ[φ/χ] by induction on the
complexity of ψ. The base case of ψ = p as well as the cases of ψ = ψ′ ∧ ψ′′, and
ψ = ¬ψ′ are trivial.
For the case of ψ = DGψ

′ we must show that for any M and w ∈ W : M, w ⊩
DGψ

′ ⇐⇒ M, w ⊩ (DGψ
′)[φ/χ]. If φ = DGψ

′ then this holds trivially, else we have
that (DGψ

′)[φ/χ] = DG(ψ′[φ/χ]). Furthermore, M, w ⊩ DGψ
′ ⇐⇒ if ∀v w ∼G

v then M, v ⊩ ψ
I.H.⇐⇒ if ∀v w ∼G v then M, v ⊩ ψ′[φ/χ] ⇐⇒ M, w ⊩ DG(ψ[φ/χ]).

Finally, for the case of ψ = [!G]ψ′ we must show that for any M and w ∈ W :
M, w ⊩ [!G]ψ′ ⇐⇒ M, w ⊩ ([!G]ψ′)[φ/χ]. If φ = [!G]ψ′ then this holds trivially,
else we have that ([!G]ψ′)[φ/χ] = [!G](ψ′[φ/χ]). Furthermore, M, w ⊩ [!G]ψ′ ⇐⇒
M!G, w ⊩ ψ′ I.H.⇐⇒ M!G, w ⊩ ψ′[φ/χ] ⇐⇒ M, w ⊩ [!G](ψ[φ/χ]).

Theorem 2.3.4 (Strong completeness). S5D
n + KF + Cn is strongly complete with respect

to communication frames: for any set of formulas Γ ⊆ LCL and formula φ ∈ LCL, if Γ ⊩ φ
then Γ ⊢ φ.

Proof. Strong completeness is obtained from the strong completeness proof of S5D
n + KF

w.r.t. communication frames for the logic CL− sketched above, and because the axioms
of Cn reduce LCL formulas to formulas of LCL− via the translation in Definition 2.3.6.
Assume Γ ⊩CL φ, we have to show that Γ ⊢CL φ. Let ΓT = {T (φ) | φ ∈ Γ}. By
Proposition 2.3.2 and soundness of S5D

n + Cn we can show that ⊩CL φ ↔ T (φ), and that
⊩CL Γ iff ⊩CL ΓT . Hence, ΓT ⊩CL T (φ). Since T (φ) ∈ LCL− , ΓT ⊆ LCL− , and the
semantics of CL− coincides with the semantics of CL: ΓT ⊩CL− T (φ). By completeness of
CL− for communication frames: ΓT ⊢CL− T (φ). Since the axiom system of CL includes the
system CL−: ΓT ⊢CL T (φ). Thus, by Proposition 2.3.2 and Modus Ponens (R1) ΓT ⊢CL φ.
Finally, by definition of ΓT Proposition 2.3.2, and Modus Ponens (R1): Γ ⊢CL ΓT . Hence,
Γ ⊢CL φ.

2.4 Iterated Communication and Fixed Points
In this section we explore properties of iterated communication updates. The most general
form of such an iteration is that of subsequent communication updates by n possibly distinct
sets of agents (Gi)n

i=0. Because such an iteration is quite involved, we will instead treat a
simpler variant of iterated communication that sufficiently serves the purposes of this thesis:
iterated communication by the same group G ⊆ A.

2.4.1 Iterated Communication by All
First, consider two consecutive communication updates by all the agents in the social network
A. On the first communication update of A, each agent in the network will have updated
their epistemic state with the knowledge of the agents that they follow (for agent i this
is F(i)). This happens globally, in the whole network. Thus, on the second update, all
agents will have updated their epistemic state not only with the knowledge of the agents
they follow, but also with the knowledge of the agents that are followed by the agents that
they follow. This is clear from the following example.
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Example 2.4.1. Consider a setting of four agents A = {1, 2, 3, 4}. Let the network be as
depicted in Figure 2.7. Here the vertices represent agents, the text of the vertices represent
the similarity relation of the respective agent, and edges represent the follow relation F .
After the first !A-update, ∼!A

2 = ∼2 ∩∼3 ∩∼4, ∼!A
1 = ∼1 ∩∼2, ∼!A

3 = ∼3, and ∼!A
4 = ∼3 ∩∼4.

After a second update ∼!A
1

!A = ∼!A
1 ∩ ∼!A

2 = ∼1 ∩ ∼2 ∩ ∼3 ∩ ∼4.

∼2

2

∼3

3
∼4

4

∼1

1

M

∼{2,3,4}

2

∼3

3
∼{3,4}

4

∼{1,2}

1

M!A

∼{2,3,4}

2

∼3

3
∼{3,4}

4

∼A

1

(
M!A)!A

Figure 2.7

What is finally reached, when all agents communicate enough times, is the “best”
epistemic state that the social network allows. It is the communication core restricted by the
social network. This is generally different from the “best epistemic state”, the communication
core proper, as described in van Benthem [61, p. 249], which is only ensured to be reached
after everybody communicates a sufficient number of times in a fully connected network.

2.4.2 Iterated Communication by Some
If we regard a more general setting of iterated communication by a subset of the agents in
the network G ⊆ A, something similar plays out. On the first communication update by G,
each agent in the network will have updated their epistemic state with the knowledge of
the agents that they follow who are part of G, for agent i this is F|G(i). On the second
update, all agents will have updated their epistemic state not only with these agents, but
also with knowledge of the agents in G that are followed by agents in G that they follow.
This is clear from the following example.

Example 2.4.2. We start from the model in Example 2.4.1. But now we update the model
with a communication update of {3, 4}. The situation after the first and second update is
shown in Figure 2.8. Again, the vertices represent agents, the text in the vertices represents
the similarity relation of the respective agent, and edges represent the follow relation F .

After the first !{3, 4}-update, ∼!{3,4}
1 = ∼1, ∼!{3,4}

2 = ∼2 ∩ ∼3 ∩ ∼4, ∼!{3,4}
3 = ∼3, and

∼!{3,4}
4 = ∼3 ∩ ∼4. Now, after a second update, still ∼!{3,4}

1
!{3,4}

= ∼1, since 1 does not
follow anyone in {3, 4}.

As we can see, if only agents in G communicate, information won’t reach the “best
epistemic state possible”, like it did with a communication update by all agents. Still
propagation takes place, only this time restricted to the social network we get when we remove
all edges that are not to an agent in G — the social network F |G = {(i, j) ∈ F | j ∈ G}.
This will be shown in a later proposition (when we present the characterisation of F|+·

n).
But first, we consider iterated communication by a group G more formally. Let ◦ be

functional composition. Then in general:

Proposition 2.4.1. For any i ∈ A and G ⊆ A,
(
∼!G

i

)!G =
⋂

j∈(F|+
G

◦F|+
G

)(i) ∼j
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M

∼2

2

∼3

3
∼4

4

∼1

1

M!{3,4}

∼{2,3,4}

2

∼3

3
∼{3,4}

4

∼1

1
∼{2,3,4}

2

∼3

3
∼{3,4}

4

∼1

1

(
M!{3,4})!{3,4}

Figure 2.8

Proof.(
∼!G

i

)!G =
⋂

j∈F|+
G

(i)

∼!G
k =

⋂
j∈F|+

G
(i)

⋂
k∈F|+

G
(j)

∼k =
⋂

k∈
⋃

j∈F|+
G

(i)
F|+

G
(j)

∼k =
⋂

k∈F|+
G

(F|+
G

(i))

∼i

We define the iterated application of a communication update !G, !G⊗ n, as follows.

Definition 2.4.1 (Iterated communication updates & notation). Let G ⊆ A, i ∈ A, and
F be a frame with similarity relation ∼ and n ∈ N. We write !G⊗ n as a shorthand for n
applications of !G to ∼i. Let:

∼!G⊗n
i :=

{
∼i if n = 0
(∼!G

i )!G⊗n−1 if n > 0

Similarly, for n applications of !G to F we write F!G⊗n. Let F!G⊗n := F, and for n > 0
F!G⊗n := (F!G)!G⊗n−1. For F|+G ◦ F|+G ◦ · · · ◦ F|+G︸ ︷︷ ︸

n

we write F|+G
n(i), where F|+G

0 is the

identity function (over P(A)). We will use the same notation for F and F|G.
Syntactically, we denote n ∈ N repeated communication modalities as [!G]n. To be

thorough, we will also use this notation for 0 applications of a communication modality.

The following proposition identifies the effect of repeated communication updates on the
indistinguishability relation of agents.

Proposition 2.4.2. For any i ∈ A, G ⊆ A, and n ∈ N: ∼!G⊗n
i = ∼F|+

G

n(i)

Proof. By induction on n. Recall that ∼F|+
G

n(i) =
⋂

j∈F|+
G

n(i) ∼j . Of course,

∼!G⊗1
i =

⋂
j∈F|+

G

1(i) ∼j . Furthermore: ∼!G⊗n
i =

(
∼!G⊗n−1

i

)!G =
⋂

j∈F|+
G

(i) ∼!G⊗n−1
j

IH=⋂
j∈F|+

G
(i)
⋂

k∈F|+
G

n−1(j) ∼k =
⋂

k∈
(⋃

j∈F|+
G

(i)
F|+

G

n−1(j)
)∼k =

⋂
k∈F|+

G

n−1(F|+
G

(j)) ∼k

This proposition shows that !G⊗ n transforms the indistinguishability relation of each
agent a ∈ A in a model to that of F|+G

n(a). Thus, to analyse the properties of repeated
communication updates, we must analyse the properties of F|+G

n.
First note that F|+G(H) is distributive over ∪:

Lemma 2.4.1 (F|+G is distributive over ∪). For any G ⊆ A and for any two sets X,Y ⊆ A:

F|+G(X ∪ Y ) = F|+G(X) ∪ F|+G(Y )
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Proof. Follows from associativity of ∪: F|+G(X ∪ Y ) =
⋃

x∈X∪Y F|+G(x) =
⋃

x∈X F|+G(x) ∪⋃
y∈Y F|+G(y) = F|+G(X) ∪ F|+G(Y )

As a direct result of this, repetition of F|+G
n on sets of agents (F|+G

n(H) for H ⊆ A)
behaves as a proper extension of repetition on individual agents (F|+G

n(h) for h ∈ A) in that
F|+G

n(H) is equal to
⋃

h∈H F|+G
n(h).

Proposition 2.4.3. F|+G
n(H) =

⋃
h∈H F|+G

n(h)

Proof. By a trivial induction over n using Proposition 2.4.1.

Also, as we would expect, F|+G
n(H) as a function of n is monotone:

Proposition 2.4.4 (Monotonicity of F|+G in n). For any G,H ⊆ A and any 1 < n:
F|+G

n+1(H) ⊇ F|+G
n(H)

Proof. By definition of F|+G(H), it holds that F|+G(H) ⊆ F|+G(H ′) for H ⊆ H ′. The rest
follows by induction over n.

Recall that F|+G(a) is the set of agents in G that a follows, together with a themselves.
F|+G

n(a) also has an intuitive graph-theoretic interpretation. To characterise F|+G
n, we will

first show that for any x ∈ A, F|+G applied to the set of agents reachable from x with a
G-path of at most length n− 1, extends it to the set of agents reachable from x by a G-path
with a length of at most n:

Lemma 2.4.2. F|+G({y | x →⩽n−1
G y and y ∈ G}) = {y | x →⩽n

G y and y ∈ G}

Proof. F|+G({y | x →⩽n−1
G y and y ∈ G}) = F|G({y | x →⩽n−1

G y and y ∈ G}) ∪ {y |
x →⩽n−1

G y and y ∈ G}. F|G({y | x →⩽n−1
G y and y ∈ G}) is the set of agents in G that

are followed by agents in G for which x has a G-path with a length of at most n− 1. This
is the set of agents in G for which x has a G-path with a length between 2 and n.

The characterisation of F|+·
n is rather intuitive: for G ⊆ A, F|+G

n(i) contains exactly
the subset of G that is reachable from i by a path in G of length at most n:

Proposition 2.4.5 (Characterisation of F|+·
n). For any G ⊆ A and n > 0: F|+G

n(x) =
{y | x →⩽n

G y and y ∈ G} ∪ {x}

Proof. By induction on n. The base case of n = 1 follows from the definition of F|+G:
F|+G

1(x) = F|+G(x) = (F(x) ∩G) ∪ {x}. For the induction step, note the following:

F|+G
n(x) = F|+G(F|+G

n−1(x))
= F|+G({y | x →⩽n−1

G y and y ∈ G} ∪ {x}) (I.H.)
= F|+G({y | x →⩽n−1

G y and y ∈ G}) ∪ F|+G(x) (Proposition 2.4.1)
= {y | x →⩽n

G y and y ∈ G} ∪ {x} (Lemma 2.4.2)

As a corollary, a similar result is obtained for F|+G
n extended to sets.

Corollary 2.4.3. F|+G
n(H) = {y | x ∈ H and x →≤n

G y and y ∈ G} ∪H

Therefore, the result of n communication updates by G relative to the social network F
is exactly the result of n full communication updates by A relative to the network containing
only the follow relations to members of G.
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2.4.3 Fixed Points
It remains to be shown that after some number of communication updates by all agents A,
the “best epistemic state”, or communicational core, relative to a social network is reached.
To show this, we will show that communication updates have a fixed point, that there is
a model Mf such that M!G

f = Mf . And moreover, that this model will be reachable by
iterated communication. I.e. that such a fixed point Mf can be calculated from any model
M by a repeated number of applications of !G. By Proposition 2.4.2, we can show this by
looking at the fixed points of F|+G

n.

The process of iterated communication updates by G is a process of continually removing
more connections from the similarity relations of agents. At the nth iteration of commu-
nication, for each agent i ∈ A, starting from X0 := {i}, i’s similarity relation becomes
such that it includes the information of (excludes the relations in) the similarity relations
of all the agents in Xn := F|+G(Xn−1), so that ∼!G⊗n

i =∼Xn
. This process of extending

the set Xn−1 to F|+G(Xn−1) stops exactly when Xn−1 is a fixed point of F|+G, i.e. when
F|+G(Xn−1) = Xn−1.

As F|+G(i) ⊆ A, A is a trivial such fixed point of F|+G. Also, recall that F|+G(X) =
(F(X) ∩G) ∪X ⊆ X ∪G. Therefore, any set X such that G ⊆ X is also a fixed point of
F|+G. In general, for any agent i and no matter the shape of the social network, we reach
such a fixed point at the latest in stage |G| — after |G| communication updates by G:
X|G| = F|+G

|G|(i) is a fixed point of F|+G.

Proposition 2.4.6 (Fixed points and iteration). For any G ⊆ A and any i ∈ A, F|+G
|G|(i)

is a fixed point of F|+G:
F|+G

|G|+1(i) = F|+G
|G|(i)

Proof. (⊇) follows trivially from Proposition 2.4.4
(⊆) Take any x ∈ F|+G

|G|(i). By Proposition 2.4.5, this holds iff either x = i, or
i →⩽|G|+1

G x and x ∈ G. In the former case, x ∈ F|+G
|G|+1(i) by definition of F|+G. Since any

element of a path cannot be equal to any other, the maximum length of the path in the
latter case must be |G|. Hence, i →⩽|G|

G x. Therefore, x ∈ F|+G
|G|(i).

Of course, for a fixed point X of F|+G it holds that F|+G
n(X) = X for any n > 0. Hence,

as a corollary to the previous identification of a fixed point for F|+G, we get that:

Corollary 2.4.4 (Fixed points and iteration). For any G ⊆ A and any n ≥ |G| > 0:

F|+G
n(i) = F|+G

|G|(i)

In terms of Communication Logic, this leads to the following:

Proposition 2.4.7. For any φ ∈ LCL, G ⊆ A, and n > |G|:

⊩ [!G]nφ ↔ [!G]n+1
φ ⊩ [!G]nφ ↔ [!G]|G|φ

Proof. By induction on the complexity of φ. Let F be an arbitrary communication frame.
Cases φ = p, φ = ¬ψ,φ = ψ ∨ ψ are trivial.

For case φ = DHψ: F ⊩ [!G]nDHψ ⇐⇒ F ⊩ DF|+
G

n(H)ψ by repeated application of
Theorem 2.3.2. By Corollary 2.4.4, this is equivalent to F ⊩ DF|+

G

|G|(H)[!G]nψ. By the I.H.
this is equivalent to F ⊩ DF|+

G

|G|(H)ψ.
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2.5 Communication and Knowledge
Communication as formalised in Communication Logic is a direct exchange of all knowledge
of an individual to their followers. Iterated communication, then, formalises the indirect
effects of such direct communication when agents repeatedly share all they know. In this
section, we will look at the effects such exchange has on the knowledge of agents. We will
keep this analysis to the former, more simple, direct communication. In the next chapter,
we will further develop this analysis towards iterated communication.

The result of directed communication from person to person is, possibly, that the latter
gets to know some formulas. For this, some knowledge among the two persons is required.
Distributed knowledge can help us formulate this requirement. Naively, if the person talking
(the sender, s) together with the person listening (the receiver, r) distributively know that
φ, then the listener gets to know φ after the person talking shares all they know. In this
way, the distributed knowledge among s and r of φ is realised in r. This follows the intuitive
interpretation of distributed knowledge: the knowledge that every individual in a group
will have if they somehow combine their knowledge — that distributed knowledge somehow
“pre-encodes” what a group gets to know after they share all they know with one another.
In this section we will analyse why this intuition is, for the most part, wrong. We will
formulate what the actual epistemic and network-structural preconditions are for an agent
to get to know a formula after communication, and identify a class of formulas for which
the above intuition does hold. But we start by reviewing distributed knowledge resolution
as discussed in Ågotnes and Wáng [3]. Firstly, because distributed knowledge resolution
is intrinsically linked with the full communication modality of Communication Logic, and
secondly, because of its relation to the movement from distributed knowledge to individual
knowledge.

2.5.1 Resolution Operators
Ågotnes and Wáng [3] describe a logic of distributed knowledge resolution. In their logic,
a resolution operator RG models the act of “resolving” the distributed knowledge of G,
of the members of a group G sharing all their information with one another. There is an
immediate connection between this distributed knowledge resolution and full communication
in Communication Logic: if all agents in G follow one other, and nobody else follows any of
them, then [!G] is exactly this resolution operator RG. The full communication modality
of Communication Logic models the resolution of distributed knowledge restricted by the
network.

Let us be precise about the resolution of distributed knowledge. What is resolved by full
communication is the similarity of worlds. The worlds that are distributively regarded as
distinguishable by a group, become distinguishable by all its members. In essence, resolution
removes the separation between the semantics of distributed knowledge of a group and of
(individual) knowledge of its members — letting the latter be equal to the former. In doing
so, the epistemic state of the world and the knowledge of the agents is changed. Because
formulas can refer to the epistemic state of the world, the resolution of distributed knowledge
does not imply that the formulas that are distributively known by a group G become known
by its members, This difference between the semantics of resolution and of distributed
knowledge is why the standard semantics of distributed knowledge do not align with the
intuition of distributed knowledge as that what is knowable by its members through infinite
and full communication [3].

2.5.2 Realisation of Distributed Knowledge
Now we will analyse the effects full communication has on knowledge in Communication
Logic. These effects are different from the resolution of distributed knowledge (which
considers the effects of a group sharing all they know with one another, and only one
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another) because in Communication Logic, the extent to which agents share all they know
with one another is restricted by the network. Therefore, we consider a weaker but more
general process of the aggregation of distributed knowledge. As to not confuse the resolution
of distributed knowledge and the effects of communication in Communication Logic, we call
this process the realisation of distributed knowledge.

Definition 2.5.1 (Distributed knowledge realisation). By distributed knowledge realisation
we describe the process (movement, concentration, or aggregation) through which a set of
agents share their individual knowledge, which intuitively (but not necessarily effectively, see
the discussion above and below) makes what is distributively known by them, individually
known by (some of) its members.

Full communication in Communication Logic only results in the realisation of distributed
knowledge when the network allows it. To what members the distributed knowledge is
realised also depends on the network structure. These network-structural requirements, and
the different kinds of distributed knowledge realisation that result from it will be discussed
in more detail in the next chapter. The “syntactic” side of this distributed knowledge
realisation, its effect, is that agents might “realise” formulas that were distributively known
by the communicating group. We will now discuss this effect of distributed knowledge
realisation more thoroughly.

First, we regard the simplest setting of distributed knowledge realisation and its effects
on knowledge: the realisation of distributed knowledge and its effect on the knowledge about
proposition γ ∈ Prop. Regard some group G ⊆ A that distributively knows γ. To resolve
the distributed knowledge of the group to an individual g ∈ G by direct communication,
that individual must follow all agents in G \ {g}.10 If G distributively knows γ , then after
G communicates all they know, g will know γ. This is clear from Theorem 2.3.2 and the
!G ATOM axiom. Expressed in Communication Logic we have that:

⊩

DGγ ∧
∧

g′∈G\{g}

Fg,g′

 → [!G]Kgγ

Naively, one might think that the same formula holds if we move to the effects of
realisation with respects to distributed knowledge about any formula φ ∈ LCL. However, if
we replace the proposition γ with any formula of Communication Logic, we stumble upon
a problem: the above will not hold in general. If, for example, we consider the formula
φ = p ∧ ¬Kgp (shaped somewhat like a Moore’s sentence), then:

̸⊩

DGφ ∧
∧

g′∈G\{g}

Fg,g′

 → [!G]Kgφ. (2.1)

Such sentences that don’t follow the intuition about communication, exist not because of
some issue with the framework, but because the basic epistemic language is “too expressive”.
The non-dynamic fragment of Communication Logic can articulate the epistemic state of
agents, and can therefore distinguish between a model pre-communication (M) and one
post-communication (M!G). It is exactly such formulas that touch the divide between the
semantics of distributed knowledge resolution operators and distributed knowledge itself:
distributed knowledge of a group is the combined knowledge they implicitly have now; the
knowledge that a member of the group has after distributed knowledge resolution is that
what they know when they have actually combined all their knowledge. Therefore, as we will
see in the next chapter, the effects of distributed knowledge realisation are that individuals

10Of course, it could well be that the individual g already knows γ, or needs less information than the
information of all agents in G to deduce that γ. However, in the general case g must follow all other agents
in G. Recall that an agent does not need to follow themselves because we assume that agents do not forget.
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get to know formulas that the distributively group knew to be true after communication: if
G distributively knows that φ will hold after G communicates, and g follows all agents in G,
then g will know that φ after communication by G. For any φ ∈ LCL, G ⊆ A, and g ∈ G:

⊩ DG[!G]φ ∧
∧

g′∈G

Fg,g′ → [!G]Kgφ. (2.2)

2.5.3 Successful Formulas and Model Update Invariance
The phenomenon of (2.1) is not particular to Communication Logic, but can be encountered
in all extensions of epistemic logic that include some form of modality which changes the
similarity relation. In Public Announcement Logic for example, the formula [!φ]φ is not
generally valid, and neither is [!φ]Kaφ. Regard the formula discussed in van Ditmarsch and
Kooi [64]: ψ = Ka(p ∧ ¬Kbp). This formula is true in some model M and world w such
that a knows p and knows that b does not know p. However, M, w ̸⊩PAL [ψ]ψ, as after the
announcement of ψ, b knows that p. Therefore, after the announcement of ψ, the truth value
of ψ changes. The same phenomenon occurs in a communication setting of full disclosure
that does not rely on social networks. For example, in Baltag and Smets [16], for every
a ∈ A, the formula DGφ → [!G]Kaφ, where [!G] is read as “all agents read the information
possessed by G”, is not valid. A counterexample is the Moore-like sentence similar to the
counterexample in Communication Logic, φ = (p ∧ ¬Kap). DGp implies that a will know p
after all agents read the information possessed by G. Therefore, [!G]Kaφ is false.

For Public Announcement Logic, if we restrict ourselves to formulas whose truth-value
is not affected by the public announcement operation — formulas φ such that ⊩ φ ↔ [φ]φ

— then we get validities equivalent to 2.1. Such formulas are called successful in Public
Announcement Logic: a formula φ is successful iff [φ]φ is a validity — iff the formula stays
true after it is truthfully announced. For a study on successful formulas see van Ditmarsch
and Kooi [64]. An analogous restriction to successful formulas can be made in the logic of
Baltag and Smets [16]: taking only φ such that φ ↔ [!G]φ is a validity.

We can formulate a similar class of successful formulas in Communication Logic —
formulas whose truth value is invariant over a communication update. A formula φ ∈ LCL
is model update invariant over !G, or !G-invariant, in a frame iff its truth-value does not
change after an !G update. A formula is !G-invariant (in general) when it is !G-invariant in
all frames.

Definition 2.5.2 (Model Update Invariance). A φ ∈ LCL is !G-invariant in a frame F iff
F ⊩ φ ↔ [!G]φ. φ is !G-invariant (in general) iff it is !G-invariant in all frames: ⊩ φ ↔ [!G]φ.

Returning to the setting of communication, distributed knowledge realisation, and its
effects on knowledge: when knowledge is realised from a group to an individual, that
individual gets to know all !G-invariant formulas that the group distributively knew. For
!G-invariant formulas φ, (2.1) will hold:

⊩ DGφ ∧
∧

g′∈G

Fg,g′ → [!G]Kgφ. (2.3)

Note that as this will hold for each g ∈ G, distributed knowledge is realised in a group G
when G shares all they know, and every agents in G follows one another.

We already discussed a class of model update invariant formulas when we analysed
fixed points of iterated communication. Recall that for n > |G|, ⊩ [!G]nφ ↔ [!G]|G|φ
(Proposition 2.4.7). Hereby, for n > |G|, the class of formulas of the form [!G]nψ is
!G-invariant.

Corollary 2.5.1. For n ≥ |G| formulas of the form [!G]nφ are !G-invariant.
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Recall that the reason that the formulas in Proposition 2.4.7 are valid is due to fixed
points of F|+G. In all frames, and for all H ⊆ A, F|+G

|G|(H) is a fixed point of F|+G. For
this reason also, formulas of the form [!G]nφ are !G-invariant. Using these fixed points, we
can identify a more general class of formulas that is !G-invariant in a frame. For G ⊆ A,
and for formulas of the non-dynamic fragment of Communication Logic φ ∈ LCL− , if for
all occurrences of the distributed knowledge modality DH in φ, H is a fixed point of the
inclusive restricted follow function F|+G of the social relation in the frame F, then φ is
!G-invariant in F.

Proposition 2.5.1. A formula φ of the non-dynamic fragment of LCL, LCL− , is !G-
invariant in a frame F if for every modality of the form DH that occurs in φ, we have that
H is a fixed point of F|+G.

Proof. By induction on the complexity of φ ∈ LCL− . The base case follows by validity of
!G ATOM: if φ = p for p ∈ Prop ∪ {Fa,b | a, b ∈ A}, then ⊢ p ↔ [!G]p. For the induction step,
distinguish the following cases:

1. φ = ψ ∧ χ. By validity of !G CON, ⊩ [!G](ψ ∧ χ) ↔ ([!G]ψ ∧ [!G]χ). By the I.H.
F ⊩ ψ ↔ [!G]ψ and F ⊩ χ ↔ [!G]χ. Therefore, F ⊩ φ ↔ [!G]φ.

2. φ = ¬ψ. By the I.H. and by validity of !G NEG, F ⊩ ¬ψ ↔ [!G]¬ψ.

3. φ = DHψ: By the I.H. F ⊩ ψ ↔ [!G]ψ. Therefore, F ⊩ DH(ψ ↔ [!G]ψ) and
hence F ⊩ DHψ ↔ DH [!G]ψ. By Theorem 2.3.2: F ⊩ DH [!G]ψ iff F ⊩ [!G]DH′φ
where H ′ is a set such that H = F|+G(H ′). By assumption F|+G(H) = H. Hence,
F ⊩ DHφ ↔ [!G]DHφ.

Corollary 2.5.2. Any φ of the propositional fragment of LCL (the fragment consisting of
propositions, network propositions, and Boolean connectives) is !G-invariant for any G ⊆ A.

By interpretation of F|+G, this means that all the agents in G that are followed by agents
in H are a subset of H itself. Note that this is not a strict identification of successful
LCL− formulas.11 By the translation of LCL to LCL− (Definition 2.3.6), this result can be
transferred to all formulas of Communication Logic, as a formula φ is !G-invariant if its
LCL− -translation is.

Proposition 2.5.2. For φ ∈ LCL and G ⊆ A: if T (φ) is !G-invariant, then so is φ.

Proof. Assume ⊩ T (φ) ↔ [!G]T (φ). By completeness, ⊢ T (φ) ↔ [!G]T (φ). By Propo-
sition 2.3.2, ⊢ φ ↔ T (φ). Therefore, by RE: ⊢ φ ↔ [!G]φ. Hence, by soundness,
⊩ φ ↔ [!G]φ.

Consequently, we can define a more general family of !G-invariant formulas in LCL.

Corollary 2.5.3. A formula φ ∈ LCL is !G-invariant in a frame F if for every modality of
the form DH that occurs in T (φ), H is a fixed point of F|+G.

We can further extend the notion of invariance over iterated communication updates.

Definition 2.5.3 (!G⊗n invariance). A formula φ is !G⊗n-invariant in F iff F ⊩ [!G]nφ ⇐⇒
F ⊩ φ.

A similar family of !G⊗ n invariant formulas can be identified by fixed points.

Proposition 2.5.3. For any n > 0, a formula φ ∈ LCL− is !G⊗ n-invariant in a frame F
if for any occurrence of DH , H is a fixed point of F|+G

n.
11A larger class of !G-invariant formulas can be specified by only requiring H to be a fixed point of F|+G

for only the DH that matter for the truth value of φ. This is beyond the scope of this thesis.
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Proof. This proof is similar to that of Proposition 2.5.1.

We can similarly extend this result to general formulas of Communication Logic by the
translation of LCL− to LCL.

Corollary 2.5.4. For any φ ∈ LCL, φ is !G⊗ n-invariant in a model M if any occurrence
of DH in T (φ): H is a fixed point for F|+G

n.

2.6 Summary
In this chapter we constructed an epistemic logic, Communication Logic, with distributed
knowledge and a modality for full communication — the act of agents communicating all
they know to their followers in a directed social network. We provided a sound and complete
axiomatisation of Communication Logic based on the reduction technique often used for
Dynamic Epistemic Logics. Then, we analysed the effects of repeated acts of communication
by a single group. Such repeated communication reaches a fixed point. The epistemic state
that is reached is the communication core restricted by the social network. Then, we looked
at the effects of full communication on the knowledge of agents. We investigated distributed
knowledge realisation, the process by which a group, through communication, makes what
is distributively known to them, individually known by some of its members. We found
that, given that an agent follows all members of a group G, that agent gets to know, not
all formulas that were distributively known by G, but all formulas that were distributively
known by G to be true after communication. We showed that this is not a phenomenon
particular to Communication Logic, but a common trait of dynamic extensions of epistemic
logic. We then introduced !G-invariant formulas, a class of formulas alike successful formulas
as discussed in van Ditmarsch and Kooi [64]. This is the class of formulas that, when
distributively known by a group, and given the right network, do become individually known
by members of the group through distributed knowledge realisation.

In the next chapter we will analyse communication and its relation to distributed
knowledge realisation in more detail. Specifically, we will explore the network-structural
and epistemic preconditions for distributed knowledge realisation driven by iterated full
communication, and the roles that the agents play in it.
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Chapter 3

Crucial Positions in
Communication

In the last chapter we constructed a logic of full communication in a social network. We
concluded the chapter with an analysis of the knowledge realisation, the concentration of that
what is distributively known by a group to some of its members through full communication
over a social network. We conjectured that such a realisation can come about under certain
structural network conditions, and that its effects with respects to knowledge about formulas
follow the intuition only for a specific class of formulas: model update invariant formulas.

In this chapter we will analyse the relation between distributed knowledge realisation,
the network structure, and its effects on knowledge about formulas more thoroughly. We will
define and examine network-structural notions crucial to processes of knowledge propagation
through the network, and examine their interplay via Communication Logic.

Social networks act as the structure for the propagation of many things, such as diseases,
beliefs, behaviour, or information. Often it is implicitly assumed that the propagation
concerns properties that are solely determined by the transmission of atomic units in
possession of the agents — units such as viruses, bits, opinions, or preferences. The axiom
of transmission in such propagation is “a will have p if x amount of a’s neighbours already
has p”. We call an account of propagation atomic when it abides by this axiom of atomic
transmission. In a way, such a perspective is also applicable here: through communication,
agents propagate their similarity relation through the network. And, from the perspective
of knowledge, agents propagate the property of “knowing φ” through the network. However,
the propagation of the latter does not behave like the propagation of a single unit. Knowing
(the truth value of) φ is not dependent on a single unit or object in possession of agents.
Rather it depends on the specific combination of units, the similarity relations, that they
possess. As such, in full communication, where the object of communication is similarity,
the axiom of atomic transmission is not applicable to the propagation of knowledge; it could
well be that a gets to know φ from its neighbours even if none of the neighbours know
φ themselves, simply because a has some combination of similarity relations crucial for
determining φ’s truth value that the neighbours of a do not. Furthermore, knowledge about
φ is not always possessed by a single agent, because it can be distributed between a set of
agents. And finally, even if agents have knowledge about a formula φ, they might not know
φ anymore after communication, as φ can become false.

We will analyse the processes of knowledge propagation while upholding an epistemic
account of communication, where the driving force of knowledge propagation through a
network is the realisation of distributed knowledge. We will iteratively develop structural
notions that are related to distributed knowledge realisation — specific types of realisation
of a more generic form than we have addressed in the previous chapter.
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In the following section, we discuss the network-structural requirements for the realisation
of distributed knowledge of a set of agents to all its members: groups. In Section 3.2, we work
towards structures that capture a more general, directed, analysis of distributed knowledge
realisation — one that is more suited for directed social networks, where information is
propagated from senders to receivers through a third party, connectors. Subsequently, we
investigate the negation of connectors, blocking sets, sets that can block the realisation
of distributed knowledge by not communicating. Finally, in Section 3.5 we discuss the
contributions that our work makes to the field of the social sciences. In particular, all
concepts defined in the this chapter are closely related to concepts defined in Belardinelli
[19]. The definitions that will follow, function as a generalisation of these concepts to a
directed setting.

3.1 Realising Distributed Knowledge
Recall the setting of communication discussed in Section 2.5, where, through knowledge
realisation, the distributed knowledge about a formula among a group of agents becomes
known by a member of that group. As conjectured in (2.3), this is possible only for model
update invariant formulas, and under certain network-structural conditions (that g follows
all other agents in G). We will prove a variant of this conjecture later in this chapter.

To keep things simple, we will not bother with model update invariance of formulas in
this chapter. Rather, we will work with formulas of distributed knowledge realisation like
those of conjecture (2.2). This conjecture is as follows:

⊩

DG[!G]φ ∧
∧

g′∈G\{g}

Fg,g′

 → [!G]Kgφ.

As this conjecture will hold for all members of G, we get that direct communication can
bring about knowledge realisation in a social network where all the agents of G follow one
another:

⊩

DG[!G]φ ∧
∧

g∈G

∧
g′∈G\{g}

Fg,g′

 → [!G]EGφ.

The conditions for knowledge realisation above are not at all minimal. Knowledge
realisation can just as well be brought about when agents are further apart in the social
network by iterated communication. This is where the connection between knowledge
realisation and knowledge propagation becomes apparent. We conjecture the following: if for
every agent g′ ∈ G, there is a G-path of length n from g to g′, and G distributively knows
that after G communicates n times, φ holds, then after G communicates n times, g will
know φ. To express this in Communication Logic requires a formula that states the existence
of a P -path from a set of agents to another, of a certain maximum length. Throughout this
chapter let

∨0
φ := ⊥,

∨
i∈∅ φ := ⊥,

∧0
φ := ⊤, and

∧
i∈∅ φ := ⊤, in accordance with ∨

and ∧ being the join and meet respectively. Recall that the length of a path is equal to the
number of edges in it. First define “Walk”, stating the existence of a P -walk from a ∈ A
to b ∈ A, of length n. Recall that a P -walk from x to y of length n is a sequence (Pi)n

i=0,
such that n ≥ 1, p0 F · · · F pn, p0 = x, pn = y, and p1, . . . pn−1 ∈ P . We do not consider
sequences of length 1, e.g. (a), as walks or paths. This avoids the requirement of identity in
our language to express that there exists a path between two agents.1

1 If we were to take (a) as a walk, then walks, and subsequently max-paths, (and connectors and blocking
sets) are only “expressible” in communication logic in the sense that there is a schema that expresses that
there is a walk from a to b in a model.
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Definition 3.1.1 (Walk formula). Let P ⊆ A, a, b ∈ A, and n ∈ N. Then:

Walk(P, a, b, n) :=
{

⊥ if n = 0
Fa,b ∨

∨
(p1,...,pn−1)∈P n−1

(
Fa,p1 ∧

∧n−2
i=1 Fpi,pi+1 ∧ Fpn−1,b

)
otherwise

Let the formula ≤Path(P, a, b, n) denote that there is a P -path of length ≤n from a to
b. As this formula is a statement about maximal paths, and there is a P -path of maximal
length n iff there is a P -walk of maximal length n, maximal P -paths are definable in terms
of the existence of P -walks:

Definition 3.1.2 (Maximum path formula). Let P ⊆ A, a, b ∈ A, and n ∈ N, then:

≤Path(P, a, b, n) =
n∨

i=0
Walk(P, a, b, n).

As a shorthand, let ≤Path(P, a, b) := ≤Path(P, a, b, |A| − 1).

Proposition 3.1.1 (Correctness of Walk and ≤Path). For any a, b ∈ A, P ⊆ A, and frame
F: there is a P -walk from a to b of length n in F iff F ⊩ Walk(P, a, b, n). Furthermore, there
is a P -path from a to b of length ≤n in F iff F ⊩ ≤Path(P, a, b, n).

Proof. There is a P -walk from a to b of length 1 iff a F b. There is a P -walk from a to b of
length n iff there are p1, . . . , pn−1 ∈ P such that a F p1 F · · · F pn−1 F b. This is exactly
what Walk(P, a, b, n) states. Furthermore, as any P -walk is always at least as long as a
P -path and any P -path is also a P -walk, there is a P -path of length at most n iff there is a
p-walk of length at most n. This is what ≤Path(P, a, b, n) states.

Using ≤Path, we can conjecture a formula that expresses the distributed knowledge
realisation of φ among a set G to one of its members through iterated communication:

⊩ DG[!G]nφ ∧
∧

g′∈G\{g}

≤Path(G, g, g′, n) → [!G]nKgφ. (3.1)

Finally, as this conjecture should hold for all agents in G, it has a collective variant that
represents distributed knowledge realisation in G to all its members:

⊩ DG[!G]nφ ∧
∧

g∈G

∧
g′∈G\{g}

≤Path(G, g, g′, n) → [!G]nEGφ. (3.2)

We will prove conjecture (3.2) in this section, and prove forms (3.1) and (2.2) in the
following section. Conjecture (3.2) has a relation to knowledge propagation though the
network as a result of communication. The set G described above has a particular ability to
bring about this propagation themselves: by communication, G can make whatever they
distributively know after communication, individually known by its members. Indirect,
iterated, communication by a group G is the general device for exactly this process: under
minimally allowing conditions for knowledge realisation, iterated communication by G
realises distributed knowledge of G to its members. In the remainder of this section we will
analyse such sets G, their structural requirements, and their epistemic-communicational
implications.

3.1.1 Groups
The set of agents G in the formula (3.2) is a set such that there is a G-path from any agent
in G to any other agent in G. We call such sets groups.2 We quantify groups according to

2We will discuss variations of groups in Section 3.2.7.
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Figure 3.1

their width or diameter : the length of the longest shortest path from any two agents in the
group. We call groups whose longest shortest path between any two distinct members has a
length of at most n: n-groups.To avoid ambiguity, from now on we will call any G ⊆ A a set
of agents, and only call G a group when it is a k-group for some k ∈ N.3 For completeness’
sake, we call singleton sets {a} ⊆ A: 0-groups.

Definition 3.1.3 (n-group). For G ⊆ A and frame F: any G ⊆ A such that |G| = 1 is a
0-group in F. For G ⊆ A such that |G| > 1, G is an n-group iff for any g, g′ ∈ G such that
g ̸= g′: g →⩽n

G g′, We call G a group in F iff it is an n-group in F from some n ∈ N.
We will omit in which frame G is a (n-)group when it is clear from the context, or the

particular frame is irrelevant.

Let the following example illustrate the definition and structure of groups.

Example 3.1.1. Consider the social network depicted in Figure 3.1, where an arrow-less
line indicates a bidirectional social connection. In this four-agent setting, there is no path
from 3 to 4 or from 3 to 2. As such, {1, 2, 3, 4} (or any other set S such that {1, 3} ⊆ S,
{2, 3} ⊆ S, or {3, 4} ⊆ S) is not a group. The shortest path from 1 to 4 has a length of
2, and all other possible shortest paths between the agents in {1, 2, 4} have a length of 1.
Therefore, {1, 2, 4} forms a 2-group, and {1, 2} forms a 1-group. Finally, the singleton sets
{1}, {2}, {3}, and {4} form 0-groups.

As n-groups are not required to be minimal over n, for m ≥ n any n-group is also an
m-group. Thus, {1, 2} is also a 2-group, and a 3-group etc.

As groups are defined in terms of the existence of maximal path, n-groups can be
expressed in Communication Logic using the previously constructed ≤Path formulas.

Definition 3.1.4 (Group formula). For any non-empty G ⊆ A, define Group as follows.

Group(G,n) :=
∧

g∈G

∧
g′∈G\{g}

≤Path(G, g, g′, n)

As an abbreviation, we write Group(G) for Group(G, |A| − 1), i.e. to state that G is a group
in general.

Correctness of the group formulas follow from the correctness of ≤Path.

Proposition 3.1.2 (Correctness of Group-formula). For non-empty G ⊆ A, n ∈ N, G is
an n-group in F iff F ⊩ Group(G,n).

Proof. This follows from the correctness of ≤Path (Proposition 3.1.1).

3.1.2 Groups and Knowledge Realisation
As conjectured in (3.2), k-groups are sets of agents that can realise distributed knowledge
to all its members by communicating k times. To show this, we will first consider the

3In the literature a k-group is also called a k-clan [41].
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semantic implications of communication by a group. If G = {g1, . . . , gm} is a k-group in a
frame F, then in the frame that results from n acts of communication F!G⊗n, each resulting
epistemic relation ∼!G⊗n

gi
is the intersection of all relations in {∼g1 , . . . ,∼gm}. Therefore,

after communication, all agents in a group can distinguish all the worlds that the entire
group could before communication. This entails that all agents know exactly as much as
what was distributively known by the entire group before communication, modulo the issue
with non-invariant formulas discussed in Section 2.5.

Proposition 3.1.3 (Semantic k-group knowledge realisation). For G ⊆ A, n ∈ N, and a
frame F, if G is an n-group in F, then:

∀g ∈ G ∼!G⊗n
g =∼G

Proof. For g, g′ ∈ G such that g ̸= g′, by Proposition 2.4.5 g →⩽n
G g′ ⇒ g′ ∈ F|+G

n(g),
Therefore if G is an n-group, then for all g, g′ ∈ G g′ ∈ F|+G

n(g) i.e. F|+G
n(g) = G. Thus, by

Proposition 2.4.2 ∼!G⊗n
g =∼F|+

G

n(g)=∼G.

This semantic result for groups implies the validity of (3.2). That is, if an n-group G dis-
tributively knows that after they communicate n times, φ holds, then after G communicates
n times, everyone in G individually knows that φ.

Proposition 3.1.4 (Syntactic k-group knowledge realisation). Let G ⊆ A, then:

⊩ (Group(G,n) ∧DG[!G]nφ) → [!G]nEGφ

Proof. Fix an arbitrary communication model M and w ∈ W . By Proposition 3.1.3, if G is
an n-group then ∀g ∈ G ∼!G⊗n

g =∼G. Therefore, DG[!G]n implies [!G]n
∧

g∈G Kgφ.

Groups, therefore, are a sufficient network-structural property to realise distributed
knowledge to individual knowledge among all its members.

3.1.3 Summary
In this section we have identified the topological prerequisites for the realisation of distributed
knowledge of G to individual knowledge among its members — namely for the set of agents
to form a group. A k-group can do this by communicating k times.

3.2 Directional Distributed Knowledge Realisation
The particular form of knowledge realisation discussed in the previous section, one that
realises the distributed knowledge of a group to all its members, does not cover all interesting
settings of knowledge propagation through a social network. Consider the following example.

Example 3.2.1. A set of construction workers is tasked with building a new building. The
specifics of how the building must be constructed are distributively known by the project
management team: the architects, engineers, and city planners. The knowledge of the
project managers, together with the actual knowledge of how to build buildings, is enough
to know exactly how to build the building.

In such a setting, it is distributively known by the management team together with the
construction workers how to build the building. The only thing in the way of the builders
to start construction is the realisation of this knowledge to every builder. However, the
interpretation of knowledge realisation we used in the previous section does not apply here:
it is not required, and often not desired, for the project managers to know exactly how the
building should be constructed. Only the construction workers must know.
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A more conventional interpretation of communication through a network, especially in a
directional network, is the transmission of information from some sending party to some
receiving party. In terms of knowledge realisation, this entails that distributed knowledge of
the senders and receivers becomes individual knowledge only among the receivers.4 In a
way, we have already regarded such a setting in conjecture (2.2 )and (3.1), where G is the
set of senders, and g is the receiver.

The simplest settings of directional knowledge realisation is one where a single agent
s ∈ A, the sender, communicates with another agent r ∈ A, the receiver. This realises the
distributed knowledge of {s, r} to r. Assume that s and r together distributively know
that after s communicates, φ is true. Furthermore, assume the most elementary topological
precondition for communication from the sender to the receiver: that r follows s. Then
after s communicates all they know, r will know φ. Expressed in Communication Logic:

⊩ D{s,r}[!s]φ ∧ Fr,s → [!s]Krφ.

In a more general setting, the receiving party is a set of agents R ⊆ A. Then, any
receiving agent r ∈ R together with the sending agent s must distributively know that φ is
true after s communicates. s must also follow every agent in R. If this is the case, then
after s communicates, every agent in R will know φ:

⊩
∧

r∈R

D{s,r}[!s]φ ∧
∧

r∈R

Fr,s → [!s]ERφ.

We can make the same generalisation with the sending party, taking a set of senders S
rather than an individual agent. Then the sets S together with any r must distributively
know that after S communicates, φ is true. Moreover, all the information of S must be
accessible by all agents in R. Ergo, all agents of S must be followed by all agents in R.
If this true, then after the agents in S communicate all they know, the agents in R will
individually know φ.

⊩
∧

r∈R

DS∪{r}[!S]φ ∧
∧
s∈S

∧
r∈R

Fr,s → [!S]ERφ. (3.3)

Knowledge can also be realised if the receivers do not directly follow the senders,
by repeated communication. Then, the structural requirements are that there exists an
S ∪ R-path from all agents in R to all agents in S. Now, information is propagated by
communication of both S and R, and n such communications must take place, where n is
the length of the longest shortest S ∪R-path from any agent in R to any agent in S:

⊩
∧

r∈R

DS∪{r}[!(S ∪R)]nφ ∧
∧
s∈S

∧
r∈R

≤Path(S ∪R, s, r, n) → [!(S ∪R)]nERφ. (3.4)

3.2.1 The Third Party in Communication
Knowledge can even be realised when no S ∪R-paths exist from R to S, if we include agents
outside S and R in the communication. Expanding on the previous example, the project
managers S might not directly inform the construction workers, but inform people tasked
with briefing the construction workers. Then, information is propagated through a third
party P ⊆ A. The formula for such a propagation is equivalent to (3.4), with all S ∪ R
replaced by S ∪ P ∪R:

⊩
∧

r∈R

DS∪{r}[!(S ∪ P ∪R)]nφ ∧
∧
s∈S

∧
r∈R

≤Path(S ∪ P ∪R, s, r, n) → [!(S ∪ P ∪R)]nERφ.

(3.5)
4Note that the previous setting is a specific case of this directional knowledge realisation where the

receiving party and the sending party are the same set. As such, groups can be formulated in terms of the
notions we will define in this section. We will show this in Section 3.2.7.
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Note that this formula assumes that the receivers communicate, and the senders commu-
nicate more than once. This is not always necessary, but keeps the formulas simple. We
expand on this in Section 3.2.6.

We will prove (3.5) and some of its variations later in this section. Validity of (3.3),
(3.4), and the other formulas in this subsection follow from the validity of (3.5).

3.2.2 Different Forms of Knowledge Realisation
The directional form of knowledge realisation brings other shortcomings of the definition of
knowledge realisation to light. Consider the following example.
Example 3.2.2. A set of detectives R is investigating a crime. They have investigated the
crime scene and collected evidence. As this evidence was inconclusive, they have collected a
set of witnesses S to solve the case. What these witnesses know, together with the evidence
that the detectives collected is enough to know who the killer is.

In such a setting, it is distributively known by the witnesses and the detectives who
the killer is. The only thing in the way of the detectives to know who the killer is, is the
realisation of this distributed knowledge. Again, the interpretation of knowledge realisation
we used in the previous section does not apply here: it is not required, and often not desired,
for the witnesses to know who the killer is. Only the detectives must know. Unlike the
previous example however, the detectives are not required to all know who the killer is. It is
enough for some detective to know. Sometimes, a sufficient required knowledge distribution
in R for the knowledge realisation to be regarded as successful is something weaker. We can
express this alternative result of knowledge realisation by the dual of “everybody knows
that” (ER): “somebody knows that” (SR), whose definition is as follows.
Definition 3.2.1 (SH). For any H ⊆ A and φ ∈ LCL, let: SHφ :=

∨
h∈H Khφ.

Moreover, if, for example, the detectives report their knowledge to their supervisors,
it is sufficient for the detectives to distributively know who the killer is. In this way, it is
only required for the distributed knowledge among the senders and receivers to be partially
realised in the receivers. This partially realised distributed knowledge can then be fully
realised to a form of individual knowledge among the supervisors by another process of
directional knowledge realisation developed before. It is important to treat this double,
split, process of knowledge realisation separately, because the third party that allows the
distributed knowledge to be realised could differ. For example, while police officers might
act as the third party for the realisation of distributed knowledge among the witnesses and
detectives to distributed knowledge among the detectives, a secretary might act as a third
party for the realisation of the distributed knowledge among the detectives to individual
knowledge among the heads of investigation.

We will consider precisely these three results of directed knowledge realisation: the
partial realisation of distributed knowledge among the receivers, and full realisation of
distributed knowledge to the “first-order” extensions of individual knowledge among the
receivers: individual knowledge among some or all receivers. We come to the following
definition of directed knowledge realisation.
Definition 3.2.2 (Directed knowledge realisation). By (directed) distributed knowledge
realisation we describe the process (movement, concentration, or aggregation) through which
agents in a group share their individual knowledge, which intuitively (but not necessarily
effectively) makes what is distributively known by the senders and receivers, some form of
knowledge by the receivers. We call the former the precondition of knowledge realisation,
and call the latter its result. We distinguish three specific forms of directed knowledge
realisation: directed knowledge realisation towards (1) distributed knowledge, (2) individual
knowledge by some, and (3) individual knowledge by all receivers. To keep things simple,
from here on we won’t emphasise that (1), the distributed knowledge realisation towards
distributed knowledge, is a form of partial knowledge realisation
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3.2.3 Connectors
We have seen that knowledge realisation is achieved when three requirements are met: a set
of sending agents together with a set of receiving agents distributively know some formula,
the structure of the network allows for knowledge flow from the sending set to a receiving
set through a propagator, and the sending set and propagator communicate a sufficient
number of times. We will call such propagators connectors.

A connector is a set that enables the realisation of distributed knowledge among the
senders and receivers to knowledge among the receivers. Furthermore, we have seen that
there are multiple types of knowledge realisation. As will become clear in this section,
different types of connector enable different types of knowledge realisation, from different
kinds of assumed knowledge distributions in the sending and receiving set, towards multiple
kinds of knowledge distributions in the receiving set.

There are two approaches to finding appropriate definitions of connectors: we can work
from the different forms of knowledge realisation towards topological properties that charac-
terize connectors which make these forms of knowledge realisation possible; or conversely, we
can conjecture topological properties for connectors and find their corresponding epistemic
implications with respect to knowledge realisation. We will take the latter approach, as there
is an intuitive common dividing characteristic on the network-structural side of connectors:
connectors, regardless of their particular definition, allow the information of agents in S
to reach agents in R. Otherwise communication from S to R would be impossible. Hence,
any connector must satisfy that: for s ∈ S and r ∈ R, r →S∪C∪R s. In extending this
relation to a stronger one, six qualitatively distinct definitions of connectors arise, derived
from the six5 possible first-order quantifications of the path relation →G over elements of
senders and receivers. We assign names to these variants of the form Qx

1Q
y
2, according to

their quantification over the sending and receiving set, where Q1 and Q2 are one of ∃,∀,
and x, y are one of s, r. We call Qx

1Q
y
2 the connector’s type, and denote the set of types by

T := {∀r∃s,∃s∃r,∀s∃r,∀s∀r,∃r∀s,∃s∀r}.

Definition 3.2.3 (Connector). Let S,R,C ⊆ A. Define:6

CS,R,C
∀r∃s := ∀r ∈ R∃s ∈ S r →S∪C∪R s CS,R,C

∃s∃r := ∃s ∈ S∃r ∈ R r →S∪C∪R s

CS,R,C
∀s∃r := ∀s ∈ S∃r ∈ R r →S∪C∪R s CS,R,C

∀s∀r := ∀s ∈ S∀r ∈ R r →S∪C∪R s

CS,R,C
∃r∀s := ∃r ∈ R∀s ∈ S r →S∪C∪R s CS,R,C

∃s∀r := ∃s ∈ S∀r ∈ R r →S∪C∪R s

For t ∈ T , the set C is a t-connector from S to R in F iff CS,R,C
t holds in F. We will

omit in which frame C is a connector when it is clear from the context, or if the particular
frame is irrelevant.

Recall that information travels in the reverse direction of the F relation: when a F b,
the information travels from b to a. Therefore, the direction of the connector is the reverse
of the direction of the F path it provides, so that the direction for the connector reflects the
direction of information flow.

It will become clear that the six types of connectors all correspond to particular forms of
knowledge realisation, with different assumed knowledge distributions pre-communication,
and different resulting forms of knowledge post-communication. We already developed one
form in (3.4), for ∀s∀r-connectors.

To clarify the network-structural shapes of the different connector types, consider the
following example.

5Six instead of eight because the order of quantification for a double ∃ or double ∀ does not matter.
6For overlapping S and R, the requirement of a path from agents in R to agents in S is a bit too strong

as no path is needed for s ∈ S, r ∈ R s.t. s = r. However, as Communication Logic cannot express identity
of agents, we won’t concern ourselves with such cases.
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Figure 3.2

Example 3.2.3. In Figure 3.2a, {a} is a ∃s∃r connector from S to R, {a, c} is a ∃s∃r and
a ∀s∃r connector from S to R, and {a, b} is a ∃s∃r, ∀s∃r, and ∃r∀s connector from S to R.

In Figure 3.2b, {a} is a ∃s∃r connector from S to R, {a, c} is a ∃s∃r and a ∀r∃s connector
from S to R, and {a, b} is a ∃s∃r, ∀r∃s, and ∃s∀r connector from S to R,

A connector is not required to be minimal, in that not necessarily all its elements are
essential for the set to function as a connector. We will discuss such minimal connectors
later. And, although it is the most intuitive setting, we don’t require connectors to be
disjoint from the sending and receiving set. However, a set is a connector iff its part disjoint
from the sending and receiving set is.

Proposition 3.2.1 (Disjoint connectors). For sets S,R ⊆ A and t ∈ T , the set C ⊆ A is a
t-connector from S to R iff C \ (S ∪R) is.

Proof. Follows trivially by the definition and since R ∪ C ∪ S = R ∪ (C \ (S ∪R)) ∪ S.

The existence of a connector depends on the existence of paths from receiving agents to
sending agents. Consequently, as the set of all agents A is finite, we can express connectors
in Communication Logic by conjunctions and disjunctions of ≤Path formulas.

Definition 3.2.4 (Connector formulas). Let C, S,R ⊆ A. Recall that ≤Path(C, S,R) :=
≤Path(C, S,R, |A| − 1). Define:

∀r∃s(C, S,R) :=
∧

r∈R

∨
s∈S

≤Path(G, r, s) ∃s∃r(C, S,R) :=
∨
s∈S

∨
r∈R

≤Path(G, r, s)

∀s∃r(C, S,R) :=
∧
s∈S

∨
r∈R

≤Path(G, r, s) ∀s∀r(C, S,R) :=
∧
s∈S

∧
r∈R

≤Path(G, r, s)

∃r∀s(C, S,R) :=
∨

r∈R

∧
s∈S

≤Path(G, r, s) ∃r∀s(C, S,R) :=
∨
s∈S

∧
r∈R

≤Path(G, r, s)

Correctness of these formulas follows from the correctness of ≤Path.

Proposition 3.2.2 (Connector formula correctness). For a frame F, sets S,R,C ⊆ A, and
t ∈ T : C is a t-connector in F iff F ⊩ t(C, S,R).

Proof. This follows from the correctness of ≤Path (Proposition 3.1.1).

As shown in Example 3.2.3, a connector can be of multiple types. The way the types of
the particular connectors in this example overlap is no coincidence. Given that the sending
and receiving set are non-empty, a ∀s∃r-connector always also is a ∃r∀s-connector, and
a ∃r∀s-connector also always is a ∃s∃r-connector. This because, for connectors between
non-empty sets, the connector types form a hierarchy that converges at the two extreme
connector types: ∀s∀r and ∃s∃r.
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Proposition 3.2.3 (Connector hierarchy). For non-empty sets S,R ⊆ A, and a set C ⊆ A:

⊩ ∀s∀r(C, S,R) → ∃r∀s(C, S,R) ⊩ ∃r∀s(C, S,R) → ∀s∃r(C, S,R)
⊩ ∀s∃r(C, S,R) → ∃s∃r(C, S,R)

⊩ ∀s∀r(C, S,R) → ∃s∀r(C, S,R) ⊩ ∃s∀r(C, S,R) → ∀r∃s(C, S,R)
⊩ ∀r∃s(C, S,R) → ∃s∃r(C, S,R).

Proof. This follows from the definition of connectors, as for non-empty sets S,R ⊆ A and
C ⊆ A ∀s ∈ S∀r ∈ R r →G s =⇒ ∃r ∈ R∀s ∈ S r →G s =⇒ ∀s ∈ S∃r ∈ R r →G s =⇒
∃r ∈ R∃s ∈ S r →G s and ∀s ∈ S∀r ∈ R r →G s =⇒ ∃s ∈ s∀r ∈ R r →G s =⇒ ∀r ∈ R∃s ∈
S r →G s =⇒ ∃r ∈ R∃s ∈ S r →G s.

If we regard connectors from a group to another group, the six types of connectors
become equivalent, in that the right direction of the above implications also holds.

Proposition 3.2.4 (Connector hierarchy over groups). For non-empty sets S,R ⊆ A, set
C ⊆ A, and t, t′ ∈ T :

⊩ Group(S) ∧ Group(R) → t(C, S,R) ↔ t′(C, S,R).

Proof. As groups are sets such that all agents have a path to each other, having a path to
some agent in a group is equivalent to having a path to all agents in that group. Similarly,
having a path from an agent in some group is equivalent to having a path from all agents in
that group.

3.2.4 Connector Latency
As with groups, we can identify how many times a sender, receiver and connector must
communicate before knowledge is realised. We call this the latency of a connector. Latency
is not only an interesting property of a connector, but as a sending and receiving set can
be connected by multiple connectors with the same type, it is also a quantitative way to
distinguish such connectors from each other. And although, in the case of connectors of the
same type, latency is only a quantitative difference between connectors that are qualitatively
equal, latency will play a dominant role in social networks where communication happens
scarcely.

For a connector from S to R, latency, of course, is a function of the length of the minimal
path from agents in R to agents in S. Hence, we can define latency in terms of r →⩽n

G s,
and consequently by quantification of the CS,R,C

t conditionals in Definition 3.2.3.

Definition 3.2.5 (Connector latency). Let S,R ⊆ A, n ∈ N+, and:

Cn,S,R,C
∀r∃s := ∀r ∈ R∃s ∈ S r →⩽n

S∪C∪R s Cn,S,R,C
∃s∃r := ∃s ∈ S∃r ∈ R r →⩽n

S∪C∪R s

Cn,S,R,C
∀s∃r := ∀s ∈ S∃r ∈ R r →⩽n

S∪C∪R s Cn,S,R,C
∀s∀r := ∀s ∈ S∀r ∈ R r →⩽n

S∪C∪R s

Cn,S,R,C
∃r∀s := ∃r ∈ R∀s ∈ S r →⩽n

S∪C∪R s Cn,S,R,C
∃s∀r := ∃s ∈ S∀r ∈ R r →⩽n

S∪C∪R s

For t ∈ T and a frame F, we say that a connector C ⊆ A from S to R is a t-n-connector
from S to R (in F) iff Cn,S,R,C

t holds (in F).

The following example illustrates connector latency, and how it can quantitatively
distinguish two connectors of the same type.

Example 3.2.4. Consider the network depicted in Figure 3.3. {c} and {d} both provide a
path from an agent in Gr to an agent in Gs of length 2. Furthermore, both Gs and Gr are
2-groups. As Gs and Gr are groups, both {c} and {d} are t-connectors from Gs to Gr for
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all t ∈ T . Yet, there are situations in which Gs or Gr could prefer c over d and vice versa.
c follows an agent that has a path of length 1 to every other agent in Gs, whereas d follows
an agent that does not. c therefore is quicker at collecting all the information of the agents
in Gs. d however is followed by an agent in Gr that is the only agent that is followed by
every other agent in Gr. Hence, d will distribute the information it receives from Gs quicker
through Gr.

This is reflected by the latencies of {c} and {d}. {d} is a ∃s∀r-n-connector for n ≥ 3, as
the longest shortest path from any agent in Gr to 3 through Gr ∪ {d} ∪ Gs has a length
of 3 (of course d therefore is a ∃s∀r-n-connector for all n ≥ 3). {c} however is not, as the
longest shortest Gs ∪ {c} ∪Gr-path from 7 to any agent in Gs has a length of 4. Instead, c
is a ∃s∀r-n-connector for n ≥ 4. Conversely, {c} is a ∀s∃r-n-connector for n ≥ 3, whereas
{d} is not a ∀s∃r-3-connector. Instead, d is a ∀s∃r-n-connector for n ≥ 4.

For any t-connector, we can find a number n such that the connector has a latency of n.

Proposition 3.2.5 (Quantitative and qualitative connectors). C is a t-connector from S
to R iff there is an n ≤ |A| − 1 such that C is a t-n-connector.

Proof. Because A is finite, the length of all minimal paths are finite as well. Therefore, for
an n ≤ |A| − 1 s →G r ⇔ s →n

G.

Recall that the part of a connector disjoint from the sending and receiving set forms a
connector of the same type (Proposition 3.2.1). The part of the connector disjoint from the
sending and receiving sets also forms a connector of the same latency.

Proposition 3.2.6 (Disjoint connector latency). For S,R ⊆ A, and t ∈ T , C ⊆ A is a
t-n-connector from S to R iff C \ (S ∩R) is.

Proof. For a connector C the definitions of latency all quantify over the binary relation
→⩽n

S∪C∪R, and S ∪ C ∪R = S ∪ (C \ (R ∪ S)) ∪R.

As with the qualitative notion of connectors, we can express that a set is a connector
with a certain latency in Communication Logic using ≤Path formulas.

Definition 3.2.6 (Connector latency formulas). For C, S,R ⊆ A, and n ∈ N+:

∀r∃s(C, n, S,R) :=
∧

r∈R

∨
s∈S

≤Path(G, r, s, n) ∃s∃r(C, n, S,R) :=
∨

r∈R

∨
s∈S

≤Path(G, r, s, n)

∀s∃r(C, n, S,R) :=
∧
s∈S

∨
r∈R

≤Path(G, r, s, n) ∀s∀r(C, n, S,R) :=
∧
s∈S

∧
r∈R

≤Path(G, r, s, n)

∃r∀s(C, n, S,R) :=
∨

r∈R

∧
s∈S

≤Path(G, r, s, n) ∃r∀s(C, n, S,R) :=
∨
s∈S

∧
r∈R

≤Path(G, r, s, n)

The connector latency formulas are correct by the correctness of the ≤Path formulas.
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{c} {d} {e, f, g, h} A

∀s∀r 5 5 4 4
∃r∀s 3 4 4 3
∀s∃r 3 4 3 3
∃s∀r 4 3 4 3
∀r∃s 4 3 3 3
∃s∃r 2 2 3 2

(b)

Figure 3.4: A table (on the right) of the latencies of connectors from Gs to Gr of the network
displayed on the left.

Proposition 3.2.7 (Connector latency formula correctness). For a frame F, non-empty
S,R ⊆ A, and for t ∈ T : C is a t-n-connector from S to R in F iff F ⊩ Qx

1Q
y
2(C, n, S,R).

Proof. C is a t-n-connector from S to R in F iff ∀s ∈ S∃r ∈ Rr →⩽n
G s. This is exactly

what ∀s∃r(C, n, S,R) states. Similarly for the other types of connectors.

The connector hierarchy also applies to quantitatively delineated connectors.

Proposition 3.2.8 (Connector latency hierarchy). Regard the non-empty sets S,R ⊆ A,
and the set B ⊆ A. Then:

⊩ ∀s∀r(C, n, S,R) → ∃r∀s(C, n, S,R) ⊩ ∃r∀s(C, n, S,R) → ∀s∃r(C, n, S,R)
⊩ ∀s∃r(C, n, S,R) → ∃s∃r(C, n, S,R)

⊩ ∀s∀r(C, n, S,R) → ∃s∀r(C, n, S,R) ⊩ ∃s∀r(C, n, S,R) → ∀r∃s(C, n, S,R)
⊩ ∀r∃s(C, n, S,R) → ∃s∃r(C, n, S,R).

Proof. This follows trivially because Proposition 3.2.2 extends to implications of the quanti-
fied versions of CS,R,C

t .

If the sending and receiving sets are groups, then the connector types become equivalent
in that any t-connector between that sender and receiver will also be a t′-connector of any
other type, as shown in Proposition 3.2.4. Even so, the typed latencies of the connectors
could be distinct from each other, in that if the sending and receiving sets are groups, then
a t-n-connector will, in general, not also be a t′-n-connector for another type t′.7 That is,
not all the right-to-left directions of the implications in Proposition 3.2.8 follow when S and
R groups. This holds for all six types of latency. We will show this by a more elaborate
example of connector latency based on Example 3.2.4.

Example 3.2.5. Consider the network shown in Figure 3.4a. In this network, Gs =
{1, 2, 3, 4} and Gr = {5, 6, 7, 8} form 2-groups Furthermore {c}, {d}. {c, d, e, f}, and
{c, d, e, f, g, h} form connectors (among others) from Gs to Gr. In Table 3.4b their latencies
are shown.

{c} and {d} are equal with respect to ∃s∃r and ∀s∀r-latency. However, as noted in
Example 3.2.4 {c} is quicker at collecting knowledge from all of Gs whereas {d} is better in
distributing the knowledge among Gs. This is reflected in the difference between {c} and
{d} with respect to ∀s∃r and ∀r∃s-latency — with respect to the former {c} is quicker than

7For any type t′, a t-n-connector will however be a t′-m-connector for some m possibly distinct from n.
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{d} and with respect to latter {d} is quicker. {e, f, g, h} connects all agents in Gr to an
agent in Gs by a path with a length of at most 3. Therefore, it has a ∀r∃s of 3. Similarly, it
has a ∀s∃r-latency of 3 and a ∃s∃r-latency of 3. The ∀s∀r-latency of {e, f, g, h} is 4 since
the path from 7 to 1 through Gs ∪ {e, f, g, h} ∪Gr has length of 4. Similarly, it has a ∃r∀s

and ∃s∀r-latency of 4 by for example the shortest path from 7 to 1.
Finally, {c, d, e, f, g, h} has the minimum latency in each respective category out of all

previous discussed connectors as it contains all these connectors.

If the sending and receiving sets are groups (as in example 3.2.4), the “widths” of the
sending and receiving groups form an upper bound on the differences between the latencies
of the different connector types.

Proposition 3.2.9 (Connector latency and groups). If R is an l-group in F then for m > l:

F ⊩ ∃s∃r(C, n, S,R) → ∀r∃s(C, n+ l, S,R) F ⊩ ∃s∃r(C, n, S,R) → ∃s∀r(C, n+ l, S,R)
F ⊩ ∃r∀s(C, n, S,R) → ∀s∀r(C, n+ l, S,R) F ⊩ ∀s∃r(C, n, S,R) → ∀s∀r(C, n+ l, S,R)

And, if S is a k-group in F then for n > k:

F ⊩ ∃s∃r(C, n, S,R) → ∀s∃r(C, n+ k, S,R) F ⊩ ∃s∃r(C, n, S,R) → ∃r∀s(C, n+ k, S,R)
F ⊩ ∃s∀r(C, n, S,R) → ∀s∀r(C, n+ k, S,R) F ⊩ ∀r∃s(C, n, S,R) → ∀s∀r(C, n+ k, S,R)

Proof. Let m = n + k and o = n + l. If S and R are a k-group and l-group respectively,
then by the defining property of groups we have that:

Cn,S,R,C
∃r∀s ⇒ Co,S,R,C

∀s∀r Cn,S,R,C
∀s∃r ⇒ Co,S,R,C

∀s∀r Cn,S,R,C
∃s∀r ⇒ Cm,S,R,C

∀s∀r Cn,S,R,C
∀r∃s ⇒ Cm,S,R,C

∀s∀r

Cn,S,R,C
∃s∃r ⇒ Co,S,R,C

∀r∃s Cn,S,R,C
∃s∃r ⇒ Co,S,R,C

∃s∀r Cn,S,R,C
∃s∃r ⇒ Cm,S,R,C

∃r∀s Cn,S,R,C
∃s∃r ⇒ Cm,S,R,C

∀s∃r

By Proposition 3.2.9, it could be tempting to assume that for connectors, some of the
six types of latency can be calculated from others by adding the “width” of the groups they
connect. This is not the case however, as there are examples where the right-to-left directions
of the implications in Proposition 3.2.9 do not hold. Again, Example 3.2.4 adequately shows
this: here Gs and Gr are both 2-groups, the connector {d} has a ∀r∃s-latency of 4 and a
∃s∃r-latency of 3. For the right-to-left direction between the other types, different connectors
in Example 3.2.4 serve as counter-examples.

3.2.5 Connectors and Knowledge Realisation
As conjectured in formula (3.5), connectors are sets of agents such that the senders, receivers
and the connector can realise distributed knowledge among the senders and receivers
to individual knowledge among the receivers. We will show that the specific type of
connector that allows exactly this is ∀s∀r. The other types correspond to different forms of
knowledge realisation, where the distribution of knowledge among the senders and receivers
pre-communication and the receivers post communication differ slightly. The resulting
knowledge distribution of these types of knowledge realisation are of a stronger form than
distributed knowledge. To show this conjecture, we first analyse the semantic implications
of connectors.

Without assuming a specific frame (or network topology), if C is a connector from S to R
with a latency of n, then after S, R, and C communicate n times, the similarity relations of
agents in R are restricted with the similarity relations of agents in S. The exact agents this
concerns depend on the type of connector. More formally, define the following propositions:
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Definition 3.2.7 (Type similarity inclusion). For non-empty sets S,R ⊆ A, a set C ⊆ A,
n ∈ N+, let G = S ∪ C ∪R, and define

⊆n,S,R,C
∀r∃s := ∀r ∈ R∃s ∈ S ∼!G⊗n

r ⊆∼s ⊆n,S,R,C
∃s∃r := ∃s ∈ S∃r ∈ R ∼!G⊗n

r ⊆∼s

⊆n,S,R,C
∀s∃r := ∀s ∈ S∃r ∈ R ∼!G⊗n

r ⊆∼s ⊆n,S,R,C
∀s∀r := ∀s ∈ S∀r ∈ R ∼!G⊗n

r ⊆∼s

⊆n,S,R,C
∃r∀s := ∃r ∈ R∀s ∈ S ∼!G⊗n

r ⊆∼s ⊆n,S,R,C
∃s∀r := ∃s ∈ S∀r ∈ R ∼!G⊗n

r ⊆∼s

Proposition 3.2.10 (Connector Semantic). For non-empty sets S,R ⊆ A a frame F, a set
C ⊆ A, n ∈ N+, and G = S ∪ C ∪R: if C is a t-connector from S to R with a latency of n
then ⊆n,S,R,C

t holds.

Proof. Let G = S ∪ R ∪ C. Recall that C has an t-latency of n iff Cn,S,R,C
t holds. Let

m ∈ N+, r ∈ R, and s ∈ S. By the definition of paths and ∼!G⊗m
r , and the characterisation

of F|+G
m (Proposition 2.4.5): r →⩽m

G s =⇒ s ∈ F|+G
m(r) =⇒∼!G⊗n

r ⊆∼s. This proves that
Cn,S,R,C

t =⇒⊆n,S,R,C
t .

Like the semantic results for groups, these semantic results for connectors have a syntactic
counterpart related to knowledge realisation. We will present these in the form of formulas
of Communication Logic. As conjectured in the beginning of this chapter, the formulas
take on the form (ξ ∧ χ) → µ, where ξ is the topological precondition, χ is the epistemic
precondition, and µ is the epistemic result of knowledge realisation.

The topological preconditions state the existence of a connector with a latency of n. For
knowledge to be realised, a combination of senders and receivers together must distributively
know some formula [!(S ∪ C ∪R)]nφ. This is the epistemic precondition χ. The epistemic
results are of the forms defined before, either knowledge realisation towards individual
knowledge by all in R, ER; individual knowledge by some in R, “somebody in R knows”,
SR; or distributed knowledge among R, DR. Consequently, µ in (ξ ∧ χ) → µ takes on the
form [!(C ∪R ∪ S)]m2Rφ, where 2 is a knowledge modality, one of D, E, or S.

We can deduce the knowledge realisation of formulas from the ⊆n,S,R,C
t conditions in

Proposition 3.2.10. This results from the following: if the similarity relation of a set X is
contained in the similarity relation of a set Y after Z iteratively communicates n times,
then if X ∪ Y distributively know that [!Z]nφ, then X will distributively know that φ after
Z communicates n times.

Lemma 3.2.1. For any frame F and X,Y, Z ⊆ A such that ∼!Z⊗n
X ⊆∼Y :

F ⊩ DX∪Y [!Z]nφ → [!Z]nDXφ

Proof. This follows from the semantics of communication and distributed knowledge, worked
out in the previous chapter.

Recall that the six connector types form a hierarchy. We will go through the six types of
connectors by order of type, listing their specific epistemic precondition ξ, and epistemic
post-condition µ. The hierarchy is shaped as two diverging branches from the weakest type
∃s∃r, converging again at the strongest type ∀s∀r. We start from ∃s∃r, first expanding
the ∃s∃r–∀s∃r–∃r∀s–∀s∀r branch, and then the leftover types ∀r∃s and ∃s∀r from the ∃s∃r–
∀r∃s–∃s∀r–∀s∀r branch. At each level of the hierarchy, from weakest to strongest type, the
connector types correspond to an increasing number of LCL-formulas. Formulas for ∀s∃r

also holds for ∃r∀s and ∀s∀r-connectors, but not for ∃s∃r connectors etc. At each stage of
this hierarchy, we therefore only develop the formulas that belong to this stage up. We do
not show that these formulas are not valid for the lower stages, but counterexamples do
arise out of Figure 3.2, when paired with appropriate similarity relations.

Connectors of the weakest type (∃s∃r) correspond to two forms of knowledge realisation:
towards distributed knowledge or towards individual knowledge by some. To come to dis-
tributed knowledge of φ in R, a particular s, together with all receivers R must distributively
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know that after s, R, and C communicate n times, φ holds. Because ∃s∃r-connectors
abstract away form the particular s they connect from or to, it must hold that for all s ∈ S,
D{s}∪R[!(S ∪R ∪ C)]nφ.8 To come to individual knowledge by some receiver, by similar
reasoning, it must hold that for all s ∈ S and r ∈ R, s and r together know that after S, C,
and R communicate n times, φ must hold.

Proposition 3.2.11. For non-empty sets S,R ⊆ A, a set C ⊆ A, n ∈ N+, and φ ∈ LCL:

⊩

(
∃s∃r(C, n, S,R) ∧

∧
s∈S

D{s}∪R[!(S ∪ C ∪R)]nφ
)

→ [!(S ∪ C ∪R)]nDRφ

⊩

(
∃s∃r(C, n, S,R) ∧

∧
s∈S

∧
r∈R

D{s,r}[!(S ∪ C ∪R)]nφ
)

→ [!(S ∪ C ∪R)]nSRφ

Proof. If C is a ∃s∃r-n-connector from S to R, then ⊆∃s∃r holds by Proposition 3.2.10.
Therefore, ∃s ∈ S∃r ∈ R ∼!(S∪C∪R)⊗n

r ⊆∼s.

(1) ∃s ∈ S∃r ∈ R ∼!(S∪C∪R)⊗n
r ⊆∼s implies ∃s ∈ S ∼!(S∪C∪R)⊗n

R ⊆∼s. Call this s: s⋆.
Assume that F ⊩

∧
s∈S D{s}∪R[!(S ∪ C ∪R)]nφ. We get that F ⊩ [!(S ∪ C ∪R)]DRφ,

by taking X = R, Y = {s⋆}, and Z = S ∪ C ∪R in Lemma 3.2.1.

(2) Call these s⋆ and r⋆ respectively. Assume that F ⊩
∧

s∈S

∧
r∈R D{s,r}[!(S ∪ C ∪R)]nφ.

Therefore, in particular, F ⊩ D{s⋆,r⋆}[!G]nφ. We get that F ⊩ [!(S ∪ C ∪R)]Kr⋆φ, by
taking X = {r⋆}, Y = {s⋆}, and Z = S ∪ C ∪R in Lemma 3.2.1.

Like ∃s∃r-connectors, ∀s∃r-connectors facilitate knowledge realisation towards DR and
SR. As ∀s∃r-connectors are stronger than ∃s∃r-connectors, the epistemic preconditions
for these forms of knowledge realisation are weaker than the preconditions above: ∀s∃r-
connectors are able to transfer the knowledge of all senders to some receiver. Hence, to
reach distributed knowledge in R, it is enough for S and R to distributively know that
[!(S ∪ C ∪R)]nφ. Likewise, to reach SR, some sender together with any receiver must
distributively know that [!(S ∪ C ∪R)]nφ.

Proposition 3.2.12. For non-empty sets S,R ⊆ A, a set C ⊆ A, n ∈ N+, and φ ∈ LCL:

⊩ (∀s∃r(C, n, S,R) ∧DS∪R[!(S ∪ C ∪R)]nφ) → [!(S ∪ C ∪R)]nDRφ

⊩

(
∀s∃r(C, n, S,R) ∧

∨
s∈S

∧
r∈R

D{s,r}[!(S ∪ C ∪R)]nφ
)

→ [!(S ∪ C ∪R)]nSRφ

Proof. If C is a ∀s∃r-n-connector from S to R, then ⊆∀s∃r holds by Proposition 3.2.10.
Therefore, ∀s ∈ S∃r ∈ R ∼!(S∪C∪R)⊗n

r ⊆∼s.

(1) Hence ∼!(S∪C∪R)⊗n
R ⊆∼S . Assume that F ⊩ DS∪R[!(S ∪ C ∪R)]nφ. We get that

F ⊩ [!(S ∪ C ∪R)]DRφ, by taking X = R, Y = S, and Z = S ∪C ∪R in Lemma 3.2.1.

(2) For each s ∈ S, call this r: rs. Assume that F ⊩
∨

s∈S

∧
r∈R D{s,r}[!(S ∪ C ∪R)]nφ.

Then, in particular, F ⊩
∨

s∈S D{s,rs}[!(S ∪ C ∪R)]nφ. Let s⋆ be an s that satisfies
this. We get that F ⊩ [!(S ∪ C ∪R)]SRφ, by taking X = {rs⋆}, Y = {s⋆}, and
Z = S ∪ C ∪R in Lemma 3.2.1.

Connectors of the stronger ∃r∀s type are able to transfer all knowledge of S to one
particular receiver (as opposed to possibly distinct individuals for ∀s∃r-connectors). For ∃r∀s-
connectors, therefore, the epistemic precondition for knowledge realisation towards SR is
even weaker: all receivers r together with S must distributively know that [!(S ∪ C ∪R)]nφ.

8Of course, we could “pull” this s inwards in the formula below, so that we get (
∨

s∈S
(
∨

r∈R
≤Path(S ∪

C ∪ R, r, s, n)) ∧ D{s}∪R[!(S ∪ C ∪ R)]nφ) → [!(S ∪ C ∪ R)]nDRφ.
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Proposition 3.2.13. For non-empty sets S,R ⊆ A, a set C ⊆ A, n ∈ N+, and φ ∈ LCL:

⊩

(
∃r∀s(C, n, S,R) ∧

∧
r∈R

DS∪{r}[!(S ∪ C ∪R)]nφ
)

→ [!(S ∪ C ∪R)]nSRφ

Proof. If C is a ∃r∀s-n-connector from S to R, then ⊆∃r∀s holds by Proposition 3.2.10.
Therefore, ∃r ∈ R∀s ∈ S ∼!(S∪C∪R)⊗n

r ⊆∼s. Hence, ∃r ∈ R ∼!(S∪C∪R)⊗n
r ⊆∼S . Call this r

r⋆. Assume that F ⊩
∧

r∈R DS∪{r}[!(S ∪ C ∪R)]nφ. We get that F ⊩ [!(S ∪ C ∪R)]Kr⋆φ,
by taking X = {r⋆}, Y = S, and Z = S ∪ C ∪R in Lemma 3.2.1.

Connectors of the strongest type, ∀s∀r, correspond to knowledge realisation towards
individual knowledge by some, or by all receivers. The epistemic preconditions for these
are respectively that some or all receiver together with all senders distributively know that
[!(S ∪ C ∪R)]nφ.

Proposition 3.2.14. For non-empty sets S,R ⊆ A, a set C ⊆ A, n ∈ N+, and φ ∈ LCL:

⊩

(
∀s∀r(C, n, S,R) ∧

∧
r∈R

DS∪{r}[!(S ∪ C ∪R)]nφ
)

→ [!(S ∪ C ∪R)]nERφ

⊩

(
∀s∀r(C, n, S,R) ∧

∨
r∈R

DS∪{r}[!(S ∪ C ∪R)]nφ
)

→ [!(S ∪ C ∪R)]nSRφ

Proof. If C is a ∀s∀r-n-connector from S to R, then ⊆∀s∀r holds by Proposition 3.2.10.
Therefore, ∀s ∈ S∀r ∈ R ∼!(S∪C∪R)⊗n

r ⊆∼s. Hence, ∼!(S∪C∪R)⊗n
r ⊆∼S .

(1) Assume that F ⊩
∧

r∈R DS∪{r}[!(S ∪ C ∪R)]nφ. For all r ∈ R we get that F ⊩
[!(S ∪ C ∪R)]Krφ, by taking X = {r}, Y = S, and Z = S ∪ C ∪R in Lemma 3.2.1.

(2) Assume that F ⊩
∨

r∈R DS∪{r}[!(S ∪ C ∪R)]nφ. Call an r that satisfies this r⋆. We
get that F ⊩ [!(S ∪ C ∪R)]Kr⋆φ, by taking X = {r⋆}, Y = S, and Z = S ∪ C ∪R in
Lemma 3.2.1.

This concludes the ∃s∃r–∀s∃r–∃r∀s–∀s∀r branch of connector types. For the other
branch, the remaining types to discuss are ∀r∃s and ∃s∀r; of which the former is the weakest.

∀r∃s-connectors correspond to knowledge realisation towards SR and ER. For the former,
it is required that for all senders, there is some receiver such that together they distributively
know that [!(S ∪ C ∪R)]nφ. For the latter, it is required that any sender and receiver
together distributively know that [!(S ∪ C ∪R)]nφ.

Proposition 3.2.15. For non-empty sets S,R ⊆ A, a set C ⊆ A, n ∈ N+, and φ ∈ LCL:

⊩ (∀r∃s(C, n, S,R) ∧
∧
s∈S

∧
r∈R

D{s,r}[!(S ∪ C ∪R)]nφ) → [!(S ∪ C ∪R)]nERφ

⊩ (∀r∃s(C, n, S,R) ∧
∧
s∈S

∨
r∈R

D{s,r}[!(S ∪ C ∪R)]nφ) → [!(S ∪ C ∪R)]nSRφ

Proof. If C is a ∀r∃s-n-connector from S to R, then ⊆∀r∃s holds by Proposition 3.2.10.
Therefore, ∀r ∈ R∃s ∈ S ∼!(S∪C∪R)⊗n

r ⊆∼s. Call the element of S that makes this statement
true for r ∈ R: sr.

(1) Assume that F ⊩
∧

s∈S

∧
r∈R D{s,r}[!(S ∪ C ∪R)]nφ, then in particular we have that∧

r∈R D{sr,r}[!(S ∪ C ∪R)]nφ. For all r ∈ R we get that F ⊩ [!(S ∪ C ∪R)]Krφ, by
taking X = {r}, Y = {sr}, and Z = S ∪ C ∪R in Lemma 3.2.1.
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(weakest) type epistemic precondition (ξ) result (µ) Proposition
∀s∀r

∧
r∈R DS∪{r}[!G]nφ [!G]nERφ 3.2.14∨
r∈R DS∪{r}[!G]nφ [!G]nSRφ

∃r∀s
∧

r∈R DS∪{r}[!G]nφ [!G]nSRφ 3.2.13
∀s∃r

∨
s∈S

∧
r∈R D{s,r}[!G]nφ [!G]nSRφ 3.2.12

DS∪R[!G]nφ [!G]nDRφ
∃s∃r

∧
s∈S

∧
r∈R D{s,r}[!G]nφ [!G]nSRφ 3.2.11∧

s∈S D{s}∪R[!G]nφ [!G]nDRφ

∀r∃s
∧

s∈S

∧
r∈R D{s,r}[!G]nφ [!G]nERφ 3.2.15∧

s∈S

∨
r∈R D{s,r}[!G]nφ [!G]nSRφ

Table 3.1: Summary of connector formulas

(2) Assume that F ⊩
∨

r∈R

∧
s∈S D{s,r}[!(S ∪ C ∪R)]nφ, then in particular we have that∨

r∈R D{sr,r}[!(S ∪ C ∪R)]nφ. Let r⋆ be an r ∈ R that satisfies this. We get that
F ⊩ [!(S ∪ C ∪R)]Kr⋆φ, by taking X = {r⋆}, Y = {sr⋆}, and Z = S ∪ C ∪ R in
Lemma 3.2.1.

Finally, there are no formulas representing knowledge realisation that hold for ∃s∀r-
connectors, that we have not already discussed.9 This because of the particular (first-order)
abstraction we consider in the precondition of knowledge realisation: that either all or
some senders together with all or some receivers distributively know something. For ∃s∀r-
connectors, the knowledge realisation formulas with these preconditions are already implied
by the formulas for the weaker type ∀r∃s. Moreover, the variant of knowledge realisation
for ∃s∀r-connectors that, for the senders, is not abstracted to sets, i.e. the variant whose
precondition states that a specific sender s together with any receiver know something,
has already (implicitly) been discussed: ∃s∀r(C, n, S,R) implies that for some particular
s, ∀s∀r(C, n, {s}, R) holds, and hence that the formulas in Proposition 3.2.14 hold when
S = {s}. This form of knowledge realisation is unique to connectors of the ∃s∀r type (and
the stronger ∀s∀r type), as it does not hold for ∀r∃s-connectors.

For a summary of the kinds of knowledge realisation made possible each connector type,
see Table 3.1. When moving down this table, the connector type necessary for the knowledge
realisation (of ξ to µ) becomes weaker. At the same time, either the epistemic result µ gets
weaker, or the epistemic precondition ξ gets stronger.

3.2.6 Less Chatty Communication
The particular forms of knowledge realisation we presented for connectors are very “chatty”:
the senders, receivers, and the connector all communicate n times. Most often however,
less communication is required. Only n small subsets of these agents have to communicate
subsequently for knowledge realisation to take place. As stated in Section 2.4, this has
been a matter of simplification for the sake of clarity and presentation. We will not make
an attempt to distill the actual, minimally required, communication from the formulas of
the last section, even though this should be an easy task given the simple structure of
connectors. We will, however, make two remarks on connector types that require iterative
communication by a smaller subset of agents, as this does not complicate things too much.

The formulas of connectors whose type has an existential quantification over the receivers
(∃s∃r, ∀s∃r, and ∃r∀s) will also hold if we replace the communication modalities [S ∪C ∪R]
with [S ∪ C]. For such connector types, the receivers do not have to communicate for the
respective knowledge realisation of these types to happen.

9As we will see in the next section, there are formulas that hold for the negation of ∃s∀r-connectors,
that do not hold for the negation of ∀r∃s-connectors.
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Proposition 3.2.16 (Silent receivers). For a connector of type t ∈ {∃s∃r,∀s∃r,∃r∀s},
Proposition 3.2.10, and subsequently the formulas of Proposition 3.2.11, 3.2.12, and 3.2.13
also hold if we replace [!(S ∪ C ∪R)]n with [!(S ∪ C)]n.

Proof. This follows from the proof of Proposition 3.2.10 and since if there is a path of length
n from some r ∈ R to some s through S ∪R∪C, then there also is a path from some r′ ∈ R
to that s through S ∪ C of length ≤n. Hence, ∃r ∈ R r →⩽n

S∪C∪R s ⇒ ∃r ∈ R r →⩽n
S∪C s ⇒

∃r ∈ R s ∈ F|+S∪C

n(r), by the characterisation of F|+S∪C

n (Proposition 2.4.5).

Something similar also holds for the senders under other connector types: the formulas
of connectors whose type has an existential quantification over the senders (∃s∃r, ∃s∀r,
∀r∃s) will also hold if we replace the iterated communication modalities [S ∪ C ∪R]n with
[S][C ∪ R]n−1. For such connector types, the senders only have to communicate once,
simultaneously, for the respective knowledge realisation of these types to happen.

Proposition 3.2.17 (Reserved senders). For a connector of a type t ∈ {∃s∃r,∃s∀r,∀r∃s}
Proposition 3.2.10, and subsequently the formulas of Proposition 3.2.11 and 3.2.15, also
hold if we replace [!(S ∪ C ∪R)]n with [!S][!(C ∪R)]n−1.

Proof. This follows from the proof of Proposition 3.2.10 and since if there is a path of length
n from some r ∈ R to some s through S ∪R ∪ C, then there also is a path from that r to
some s′ ∈ S through R ∪ C of length ≤n. Hence, ∃s ∈ S r →⩽n

S∪C∪R s ⇒ ∃x ∈ R ∪ C∃s ∈
S r →⩽n−1

R∪C x and x F s ⇒ ∃s ∈ S s ∈ F|+S (F|+R∪C

n−1(r)) by Proposition 2.4.5.

Finally, there is a specific case of connectors that is special, when knowledge can be
realised by communication of only the sending and receiving sets. In such cases, ∅ is a
t-connector from S to R. We call the sets R and S directly t-connected in these cases.

Definition 3.2.8 (Direct connectedness). For sets S,R ⊆ A, t ∈ T , and n ∈ N+ S is
directly t-connected to R iff ∅ is a t-connector from S to R. Furthermore, S is directly
t-n-connected to R iff ∅ is a t-n-connector from S to R.

Senders S and receivers R that are directly connected are able to realise distributed
knowledge of S ∪ R to knowledge of R by communication of S and R alone; because if
C = ∅, then S ∪ C ∪R = S ∪R in the realisation formulas. Direct connectedness is related
to the formula used in the axiomatisation of Communication Logic in the previous chapter.
Fol(G,H) states that H is directly ∀s∃r-1-connected to G.

3.2.7 Groups and Connectors
We have presented knowledge realisation two folded. In the previous section, we looked at
the most common interpretation, the realisation of distributed knowledge among a set of
agents to individual knowledge among its members. In this section, we presented a variant of
knowledge realisation that is more in line with the common interpretation of communication
over a directed network: the realisation of distributed knowledge among a set of senders and
receivers to knowledge among the receivers. We claimed that the latter is a generalisation
of the former. Now we will prove this. We will show that groups are also definable in terms
of connectors.

Proposition 3.2.18 (Equivalence of definitions). For n ∈ N, t ∈ T , and a frame F: G ⊆ A
is an n-group in F iff for all g ∈ G, G is a ∀s∀r-n-connector from G to {g} in F.

Moreover, for n ∈ N, t ∈ T , and a frame F whose social relation is reflexive: G ⊆ A is
an n-group in F iff G is a ∀s∀r-n-connector from G to G in F.

Proof. ∀g ∈ G : Cn,G\{g},{g},G
∀s∀r ⇐⇒ ∀g ∈ G ∀g′ ∈ G \ {g} g →≤n

G g′. This is the case iff G

is an n-group by the definition of n-groups. Cn,G,G\{g},G
∀s∀r = ∀g, g′ ∈ G g →≤n

G g′. If F is
reflexive, then this is the case iff G is an n-group.
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The reductions of groups to connectors are reflected in the semantic and syntactic results
of groups, as these results are specific cases of results for connectors. If for all g ∈ G,
G is a connector from Sg = G \ {g} to Rg = {g}, then

∧
g∈G φg implies the result in

Proposition 3.1.4, where φg is the knowledge realisation formula for G as a connector from
Sg to Rg obtained from Proposition 3.2.14. Similarly and less complicated: if we assume that
the network is reflexive, and assign S = R = C = G, then the formula in Proposition 3.2.14
is equivalent to the formula in Proposition 3.1.4.

This correspondence between groups and connectors not only shows that connectors and
their format of knowledge realisation are more general than groups, it also hints towards
extensions to the notion of groups and undirected knowledge realisation that we have not
discussed: notions of groups equivalent to sets that form a connector from themselves to
themselves of the other connector types, and their forms of knowledge realisation. Note that
we then get three extra (first-order) group types ∃∃, ∃∀, and ∀∃, besides the type ∀∀ which
we discussed in the previous section (under the generic name “group”).

Assuming reflexivity of the social network for simplicity’s sake, we can then understand,
for example, an ∃∀-group as a set G such that G is a ∃r∀s-connector (or equivalently a ∃s∀r-
connector) from G to G. This gives us a notion of a set that can realise distributed knowledge
among G to “someone in G knows”, SGφ. The formula for this knowledge realisation is
obtained by assigning S = R = C = G (or S = G\ {g}, R = {g}) in Proposition 3.2.13. The
results of other notions of groups, and their respective knowledge realisation, can similarly
be obtained form the other propositions: 3.2.11, 3.2.15, and 3.2.12.10

3.2.8 Summary
We have now developed directed knowledge realisation that realises distributed knowledge of
a set of senders and receivers to knowledge among only the receivers — either distributively,
individually by some, or by all receivers. We have explored six structural requirements
for such realisation: the six types of connectors, ∀r∃s, ∃s∃r, ∀s∃r, ∀s∀r, ∃r∀s, and ∃s∀r-
connectors. First, we developed the connector types qualitatively, distinguishing between
connectors by which receivers they connect to which senders. We have shown that the types,
when regarded qualitatively, become equivalent under the assumption that the sending
and receiving sets are groups. Then, we developed the types quantitatively, distinguishing
between connectors also by how long their connections are from the receivers to the senders,
using the notion of latency. We have shown that the quantitative and qualitative notions are
related by the notion of fixed points discussed in the previous section. We provided formulas
for the connector types, and have show that a connector of a certain type (and latency
n) can realise a certain distribution of knowledge among the senders and receivers pre-
communication to a certain distribution among the receivers post-communication, through
(at most n) iterated communications by the sender, connector, and receiver.

3.3 Blocking Information Flow
In this section we will study the negation of what we discussed in the previous section:
blocking communication from a sender to a receiver. We will investigate sets B ⊆ A, such
that if B does not communicate, information cannot be realised from S ∪R to R, no matter
what the other agents do. We call such B blocking sets. As our framework only formalised
the action of communicating, and not the action of not-communicating, we must investigate
such sets by what their complement cannot achieve through communication. That is, we
will investigate them as sets B ⊆ A, such that no matter how many times its complement

10Do note that some knowledge realisation formulas in the propositions for connectors will become
equivalent to others, or become tautologies, when we assume that S = R = C = G or S = G \ {g} and
R = {g}.
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B communicates, distributed knowledge of S ∪ R does not become some form of group
knowledge within R.

3.3.1 Blocking Sets
A set whose complement cannot bring about knowledge realisation through communication
is a set whose complement is not a connector. As we consider six connector types, we will
define blocking sets of the six types T = {∀r∃s,∃s∃r,∀s∃r,∀s∀r,∃r∀s,∃s∀r}, such that for
t ∈ T , a set is a t-blocking set only when its complement is not a t-connector.

Definition 3.3.1 (Blocking sets). For non-empty sets S,R ⊆ A and t ∈ T , B ⊆ A is a
t-blocking set from S to R (in F) iff B is not a t-connector from S to R (in F).

We don’t require blocking sets to be disjoint from the sending or receiving set. However,
a set B is a blocking set from S to R iff its part disjoint from S and R is.

Proposition 3.3.1 (Disjoint blocking sets). For non-empty sets S,R ⊆ A and t ∈ T , a set
B ⊆ A is a t-blocking set iff B \ (S ∪R) is.

Proof. B \ (S ∪R) = B ∪ S ∪R. The rest follows from Proposition 3.2.1.

When the sending and receiving sets are such that the senders directly follow the receivers,
no set B is a blocking set.

Proposition 3.3.2 (Blocking sets & direct connectedness). For all t ∈ T and non-empty
sets S,R ⊆ A such that S is directly t-connected to R, no B ⊆ A is a t-blocking set.

Proof. Let B ⊆ A be an arbitrary set. S is directly t-connector to R iff ∅ is a t-connector
from S to R. As being a connector is closed under supersets, B also is a t-connector.
Therefore, B is not a t-blocking set.

If there are no connectors from a set S to a set R, then all sets are blocking sets.

Proposition 3.3.3 (Blocking sets & no connectors). For non-empty sets S,R ⊆ A, if there
is no t-connector C ⊆ A from S to R, every B ⊆ A is a t-blocking set.

Proof. This follows from the definition of blocking sets.

Because connectors are expressible in Communication Logic, and the set of agents A is
finite, blocking sets are also expressible in Communication Logic.

Proposition 3.3.4 (Blocking set formula). For non-empty S,R ⊆ A, frame F, and Qx
1Q

y
2 ∈

T : B ⊆ A is a t-blocking set from S to R in F iff F ⊩ ¬t(B,S,R).

Proof. This follows from Proposition 3.3.1 and the correctness of the formula for Qx
1Q

y
2-

connectors.

As with connectors, blocking sets form a hierarchy. This hierarchy is inverse to the
connector hierarchy.

Corollary 3.3.1 (Blocking set hierarchy). For non-empty sets S,R ⊆ A, and a set B ⊆ A:

⊩ ¬∃s∃r(B,S,R) → ¬∀r∃s(B,S,R) ⊩ ¬∀r∃s(B,S,R) → ¬∃s∀r(B,S,R)
⊩ ¬∃s∀r(B,S,R) → ¬∀s∀r(B,S,R)

⊩ ¬∃s∃r(B,S,R) → ¬∀s∃r(B,S,R) ⊩ ¬∀s∃r(B,S,R) → ¬∃r∀s(B,S,R)
⊩ ¬∃r∀s(B,S,R) → ¬∀s∀r(B,S,R).

Furthermore, for blocking sets from a group S to a group R, the six types are equivalent.
Proposition 3.2.4 sufficiently shows this.
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3.3.2 Delaying Sets
As blocking sets are defined in terms of connectors, and we quantitatively distinguished
connectors using the notion of latency, we can also quantitatively distinguish blocking
sets from each other. Where a blocking set B should block knowledge realisation by not
communicating, given that the agents outside B iteratively communicate an unlimited
number of times, delaying sets have to block knowledge realisation if the agents outside
B iteratively communicate a limited number of times. Thereby, n-delaying sets are sets
that, when they don’t communicate, make sure that no other set can realise distributed
knowledge of S ∪R to R by communicating n times or less.

Definition 3.3.2 (Delaying sets). For non-empty sets S,R ⊆ A, n ∈ N+, and t ∈ T , the
set B ⊆ A is a t-n-delaying set from S to R iff B is not a t-n-connector.

Delaying sets are a proper quantification of blocking sets in that t-blocking sets are
equivalent to sets that are t-n-delaying for all n ∈ N+.

Proposition 3.3.5 (Delaying sets and blocking sets). B is a t-blocking set from S to R iff
B is a t-n-delaying set for all n ∈ N+.

Proof. This follows from Proposition 3.2.5 and the definition of blocking and delaying
sets.

By the fixed-point of communication discussed in the last chapter, B is a blocking set iff
it is a |A| − 1-delaying set.

Corollary 3.3.2. B is a t-blocking set from S to R iff B is a t-|A| − 1-delaying set for all.

The equivalence between blocking sets and blocking sets disjoint from the sending and
receiving set also holds for delaying sets.

Proposition 3.3.6 (Disjoint delaying sets). For non-empty sets S,R ⊆ A, t ∈ T , and
n ∈ N+ a set B ⊆ A is a t-n-delaying set iff B \ (S ∪R) is.

Proof. Similar to the proof of Proposition 3.3.1.

If there are no connectors from a set S to a set R with a latency of n, then all sets are
n-delaying sets.

Proposition 3.3.7 (Delaying sets & no connectors). For non-empty sets S,R ⊆ A, if there
is no t-n-connector C ⊆ A from S to R (i.e. if A is not a t-n-connector from S to R) every
B ⊆ A is a t-n-delaying set.

Proof. This follows from the definition of delaying sets.

In terms of network structure, an n-delaying set B is a set such that there is no B-path
of length ≤n from agents in R to agents in S. As such, every path of length ≤n from
agents in R to agents in S contains some agent in B, which can make these paths useless
for communication by not communicating. What particular agents in R and S this concerns
depends on the type of delaying set. Recall the path conditions defined in Definition 3.2.5,
then:

Proposition 3.3.8. For non-empty sets S,R ⊆ A, and n ∈ N+, B is a t-n-delaying set
from S to R iff Cn,S,R,B

t does not hold

As quantitatively distinguished connectors form a hierarchy, delaying sets also form a
hierarchy. This hierarchy is immediate from the connector latency hierarchy in Proposi-
tion 3.2.8.
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Corollary 3.3.3 (Delaying set hierarchy).

⊩ ¬∃s∃r(B,n, S,R) → ¬∀r∃s(B,n, S,R) ⊩ ¬∀r∃s(B,n, S,R) → ¬∃s∀r(B,n, S,R)
⊩ ¬∃s∀r(B,n, S,R) → ¬∀s∀r(B,n, S,R)

⊩ ¬∃s∃r(B,n, , R) → ¬∀s∃r(B,n, S,R) ⊩ ¬∀s∃r(B,n, S,R) → ¬∃r∀s(B,n, S,R)
⊩ ¬∃r∀s(B,n, S,R) → ¬∀s∀r(B,n, S,R).

3.3.3 Blocking Sets, Delaying Sets, and Knowledge Realisation
Now we will explore the communicational properties of delaying sets, and consequently
blocking sets, with respect to knowledge realisation. Again, we will first discuss the semantic
implications and thereafter the syntactic. By the definition of blocking sets and delaying
sets, an analysis of blocking and delaying sets is congruent to an analysis of the negation of
connectors.

If C is not a connector with a latency of n, then after the senders, receivers, and connector
communicate n times, the uncertainty of agents in R is at least as much as the agents in
S′ ∪R ∪ C for an S′ ⊂ S.

Definition 3.3.3 (Type similarity exclusion). For non-empty sets S,R ⊆ A, a set C ⊆ A,
and n ∈ N+, let G = S ∪ C ∪R. Define:

⊇n,S,R,C
∀r∃s := ∃r ∈ R ∼!G⊗n

r ⊇∼{r}∪(G\S)

⊇n,S,R,C
∃s∃r := ∀r ∈ R ∼!G⊗n

r ⊇∼{r}∪(G\S)

⊇n,S,R,C
∀s∃r := ∃s ∈ S∀r ∈ R ∼!G⊗n

r ⊇∼{r}∪(G\{s})

⊇n,S,R,C
∀s∀r := ∃s ∈ S∃r ∈ R ∼!G⊗n

r ⊇∼{r}∪(G\{s})

⊇n,S,R,C
∃r∀s := ∀r ∈ R∃s ∈ S ∼!G⊗n

r ⊇∼{r}∪(G\{s})

⊇n,S,R,C
∃s∀r := ∀s ∈ S∃r ∈ R ∼!G⊗n

r ⊇∼{r}∪(G\{s})

Proposition 3.3.9 (Non-connector semantics). For non-empty sets S,R ⊆ A a frame F,
a set C ⊆ A, n ∈ N+, and G = S ∪ C ∪ R: if C is not a t-connector from S to R with a
latency of n then ⊇n,S,R,C

t holds.

Proof. Let “not Cn,S,R,C
t ” be denoted by Cn,S,R,C

t . r ̸→⩽n
G s =⇒ (s ̸∈ F|+G

n(r) or s =
r) =⇒ F|+G

n(r) ⊆ {r}∪(G\{s}) =⇒∼F|+
G

n(r)⊇∼{r}∪(G\{s}). Therefore, Cn,S,R,C

t =⇒⊇n,S,R,C
t

in the cases of t ∈ {∀s∃r,∀s∀r,∃r∀s,∃s∀r}.
To prove this is the cases for t ∈ {∀r∃s,∃s∃r}, note that (∃r ∈ R∀s ∈ S s ̸∈

F|+G
n(r) or s = r) =⇒ ∃r ∈ R F|+G

n(r) ⊆ {r} ∪ (G \ S). Moreover, (∀s ∈ S∀r ∈ R s ̸∈
F|+G

n(r) or s = r) =⇒ ∀r ∈ R F|+G
n(r) ⊆ {r} ∪ (G \ S).

As an n-delaying set is such that B is not a connector with a latency of n, we obtain the
semantic implications of being a delaying set.

Corollary 3.3.4 (Delaying set semantic). For non-empty sets S,R ⊆ A, a set B ⊆ A,
n ∈ N+, and t ∈ T : if B is a t-n-delaying set from S to R in F then ⊇n,S,R,B

t holds.

Proof. This follows from Definition 3.3.2 and Proposition 3.3.9.

The ⊇n,S,R,B
t conditions imply syntactic results for a connector’s negation (sets that

are not a connector, i.e. non-connectors), blocking sets, and delaying sets. These results
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are of the form (ξ ∧ χ) → µ, Where ξ is the topological preconditions, χ is the epistemic
preconditions, and µ is the epistemic result.

The topological precondition ξ states the existence of an n-delaying set (the non-existence
of a connector with a latency of n).

A blocking set B from S to R is not necessarily also a blocking set from, for example,
B \ S to R. Even when B is a blocking set from S to R, knowledge about a formula can
still flow from B \ S to R when S ∪ B ∪ R communicates. Therefore, for R to not know
that φ after S ∪ B ∪ R communicate n times, we must state that B \ S does not know
[!S ∪B ∪R]φ. This is the epistemic precondition χ for blocking sets to act as blockers of
knowledge reolution.

As blocking sets prevent communication from senders to receives, one might expect
that the epistemic preconditions in the knowledge realisation formulas of delaying sets
also include a positive statement regarding knowledge: the epistemic preconditions of the
formulas for connectors presented in Section 3.2.5, formulas that state that some sending
agents together with some receiving agents distributively know that [!(S ∪B ∪R)]nφ. In
this way, the knowledge realisation formulas of delaying sets would explicitly state the actual
relation of delaying sets to knowledge realisation: that, even though some senders and
receivers distributively know that [!(S ∪B ∪R)]nφ, the receivers will not know it after n
communications by S ∪B ∪R. However, for the knowledge realisation formulas of delaying
set to imply this, it is not necessary to explicitly state that S ∪ R know [!(S ∪B ∪R)]nφ

— a simple consequence of validities: the knowledge realisation formulas below hold in all
models, and therefore also in the models where some senders together with some receivers
distributively know that [!(S ∪R ∪B)]nφ.

As with connectors, the epistemic results µ in (ξ ∧ χ) → µ take on three forms:
¬[!(B ∪R ∪ S)]n2Rφ where 2 is a knowledge modality, one of D, S, or E.

The formulas of the epistemic preconditions require some explanation, as their readings
are not immediately apparent. Essentially, all epistemic preconditions are statements “inverse”
to their positive (connector) counterpart. For connectors, the epistemic preconditions state
that certain pairs of senders and receivers have distributed knowledge about some formula.
The upcoming non-connector (delaying set) preconditions state that everybody involved in
the communication but certain senders have no knowledge about a formula. With “everybody
involved” we mean the senders, receivers, and the non-connector itself (in case of blocking
and delaying sets, the non-connector is B.) The formula can still be distributively known by
some senders together with some receivers, but only if certain sending agents are included.
However, this reading of the preconditions only comes about if we assume that S ∩R = ∅
(which we have not done for generalities’ sake). Note the following: for S,R,B ∈ A such
that S ∩R = ∅, G = S ∪R ∪B, and φ ∈ LCL

⊩
∧

r∈R

¬D(G\S)∪{r}φ ↔ ¬DG\Sφ ⊩ ¬D(G\S)∪Rφ ↔ ¬DG\Sφ

⊩
∧
s∈S

¬D(G\{s})∪Rφ ↔
∧
s∈S

¬DG\{s} ⊩
∧
s∈S

∧
r∈R

¬D(G\{s})∪{r}φ ↔
∧
s∈S

¬DG\{s}

⊩
∨

r∈R

∧
s∈S

¬D(G\{s})∪{r} ↔
∧
s∈S

¬DG\{s} ⊩
∨
s∈S

∧
r∈R

¬D(G\{s})∪{r}φ ↔
∨
s∈S

¬DG\{s}φ

Keep these validities in mind in the upcoming propositions. We will use the reading of the
simplified forms of epistemic preconditions, as these are more intuitive: “everybody except
all senders does not know that φ”, “for every sender, everybody without that sender does
not know φ”, and “for some sender, everybody without that sender does not know that φ”.

The syntactic results for delaying sets can be derived from the following syntactic
implications of similarity relation inclusion: if the similarity relation of a set Y is contained
in the similarity relation of a set X after a set Z communicates n times, and if Y does not
distributively know that [!Z]nφ, then X will not know φ after Z communicates n times.
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Lemma 3.3.5. For a frame F such that ∼!Z⊗n
X ⊇∼Y : F ⊩ ¬DY [!Z]nφ → [!Z]n¬DXφ.

Proof. Assume that ∼!Z⊗n
X ⊇∼Y . Then, ∼F|+

Z

n(X)⊇∼Y . Hence, F ⊩ ¬DY [!Z]nφ →
¬Dn

F|+
Z

(X)[!Z]nφ. Therefore, by Theorem 2.3.2, F ⊩ ¬DY [!Z]nφ → ¬[!Z]nDXφ.

Recall that the six delaying set types form a hierarchy shaped as two diverging branches
that converge again at the strongest type ∃s∃r. Because of this, the delaying set types
correspond to an increasing number of LCL-formulas that represent the ability to block
knowledge realisation. We will go through the six types of delaying sets by order of type,
listing their specific formulas, epistemic preconditions ξ, and epistemic post-conditions
µ. We start from ∀s∀r, first expanding the ∀s∀r–∃s∀r–∀r∃s–∃s∃r branch, and then the
leftover types ∃r∀s and ∀s∃r of the ∀s∀r–∃r∀s–∀s∃r–∃s∃r branch. At each step through
this hierarchy, we will develop the formulas belonging to the level of this hierarchy, so that
a developed formula for ∀s∃r also holds for ∃r∀s and ∃s∃r-connectors, but not for ∀s∀r

connectors etc. Note that we do not show that these formulas are not valid for delaying sets
of a lower type. But counterexamples do arise out of Figure 3.2, when paired with a proper
similarity relation.

The weakest type, ∀s∀r, blocks all agents in R of individually knowing a formula φ: even
if everybody involved (S ∪ B ∪ R) communicates n times, somebody still will not know
that φ. The epistemic precondition for this is that for all senders s, everybody involved in
communication except for s does not know that [!(S ∪B ∪R)]nφ. The full formula therefore
is as follows.

Proposition 3.3.10. For non-empty sets S,R ⊆ A, set B ⊆ A, let G = S ∪B ∪R. Then,
for φ ∈ LCL and n ∈ N+:

⊩

(
¬∀s∀r(B,n, S,R) ∧

∧
s∈S

∧
r∈R

¬D(G\{s})∪{r}[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nERφ

Proof. If B is a ∀s∀r-n-delaying set, then by Corollary 3.3.4, ⊇n,S,R,B
∀s∀r holds: ∃s ∈

S∃r ∈ R ∼!G⊗n
r ⊇∼(G\{s})∪{r}. Call these r and s, r⋆ and s⋆ respectively. If F ⊩∧

s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ, then in particular F ⊩ ¬D(G\{s⋆})∪{r⋆}[!G]nφ.

By Lemma 3.3.5, taking X = {r⋆}, Y = (G \ {s⋆}) ∪ {r⋆}, and Z = S ∪ B ∪ R,
F ⊩ ¬[!S ∪B ∪R]nKr⋆φ. Therefore, F ⊩ ¬[!S ∪B ∪R]nERφ.

∃r∀s-delaying sets can block two forms of knowledge: individual knowledge by all,
and by some receivers. Even if everybody involved (S ∪ B ∪ R) communicate n times
then, respectively, somebody or everybody in R still does not know that φ. For the
former, everybody involved in communication except for some sender s must not know that
[!(S ∪B ∪R)]nφ. For the latter, it must hold that for all senders s, everybody involved in
communication except for s does not know that [!(S ∪B ∪R)]nφ.

Proposition 3.3.11. For non-empty sets S,R ⊆ A, set B ⊆ A, let G = S ∪B ∪R. Then,
for φ ∈ LCL and n ∈ N+:

⊩

(
¬∃s∀r(B,n, S,R) ∧

∨
s∈S

∧
r∈R

¬D(G\{s})∪{r}[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nERφ

⊩

(
¬∃s∀r(B,n, S,R) ∧

∧
s∈S

∧
r∈R

¬D(G\{s})∪{r}[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nSRφ

Proof. If B is a ∃s∀r-n-delaying set, then by Corollary 3.3.4, ⊇n,S,R,B
∃s∀r holds: ∀s ∈ S∃r ∈

R ∼!G⊗n
r ⊇∼(G\{s})∪{r}. For each s ∈ S, call the r ∈ R that satisfies this: rs.
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(1) If F ⊩
∨

s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ, then for some s ∈ S: F ⊩ ¬D(G\{s})∪{rs}[!G]nφ.

By Lemma 3.3.5, taking X = {rs}, Y = (G \ {s}) ∪ {rs}, and Z = S ∪ B ∪ R,
F ⊩ ¬[!S ∪B ∪R]nKrs

φ. Therefore, F ⊩ ¬[!S ∪B ∪R]nERφ.

(2) If F ⊩
∧

s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ, then for all s ∈ S, by Lemma 3.3.5, taking

X = {rs}, Y = (G \ {s}) ∪ {rs}, and Z = S ∪ B ∪ R, F ⊩ ¬[!S ∪B ∪R]nKrs
φ.

Therefore, F ⊩ ¬[!S ∪B ∪R]nSRφ.

The stronger ∀r∃s-delaying sets, can already block individual knowledge by all re-
ceivers when everybody involved except all senders S don’t distributively know that
[!(S ∪B ∪R)]nφ.

Proposition 3.3.12. For non-empty sets S,R ⊆ A, set B ⊆ A, let G = S ∪B ∪R. Then,
for φ ∈ LCL and n ∈ N+:

⊩

(
¬∀r∃s(B,n, S,R) ∧

∧
r∈R

¬D(G\S)∪{r}[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nERφ

Proof. If B is a ∀r∃s-n-delaying set, then by Corollary 3.3.4, ⊇n,S,R,B
∀r∃s holds: ∃r ∈

R ∼!S∪B∪R⊗n
r ⊇∼(G\S)∪{r}. Call this r: r⋆. If

∧
r∈R ¬D(G\S)∪{r}[!S ∪B ∪R]nφ, then in

particular F ⊩ D(G\S)∪{r⋆}[!S ∪B ∪R]nφ. By Lemma 3.3.5, taking X = {r⋆}, Y = (G\S)∪
{r⋆}, and Z = S∪B∪R, F ⊩ ¬[!S ∪B ∪R]nKr⋆φ. Therefore, F ⊩ ¬[!S ∪B ∪R]nERφ.

The strongest type of delaying set, ∃s∃r, can stop distributed knowledge among the
receivers from happening. For this, everybody involved in communication except the senders
S must not know that [!(S ∪B ∪R)]nφ.

Proposition 3.3.13. For non-empty sets S,R ⊆ A, set B ⊆ A, let G = S ∪B ∪R. Then,
for φ ∈ LCL and n ∈ N+:

⊩
(
¬∃s∃r(B,n, S,R) ∧ ¬D(G\S)∪R[!S ∪B ∪R]nφ

)
→ ¬[!S ∪B ∪R]nDRφ

Proof. If B is an ∃s∃r-n-delaying set, then by Corollary 3.3.4, ⊇n,S,R,B
∃s∃r holds. Hence,

∀s ∈ S∀r ∈ R,∼!G⊗n
r ⊇∼(G\{s})∪{r}. Therefore, ∀r ∈ R,∼!G⊗n

r ⊇∼(G\S)∪{r}. Because
∼(G\S)∪{r}=∼r ∩ ∼G\S , we have ∼!G⊗n

R =
⋂

r∈R ∼!G⊗n
r ⊇

⋂
r∈R ∼r ∩ ∼G\S=∼(G\S)∪R.

Thus, if F ⊩ ¬D(G\S)∪R[!S ∪B ∪R]nφ, then by Lemma 3.3.5, taking X = R, Y = (G\S)∪R,
and Z = S ∪B ∪R, F ⊩ ¬[!S ∪B ∪R]n¬DRφ.

∃r∀s-delaying sets can block some R from knowing something, or all R from knowing
something. For these, everybody except any sender must not know that [!(S ∪B ∪R)]nφ.

Proposition 3.3.14. For non-empty sets S,R ⊆ A, set B ⊆ A, let G = S ∪B ∪R. Then,
for φ ∈ LCL and n ∈ N+:

⊩

(
¬∃r∀s(B,n, S,R) ∧

∧
s∈S

∧
r∈R

¬D(G\{s})∪{r}[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nSRφ

⊩

(
¬∃r∀s(B,n, S,R) ∧

∨
r∈R

∧
s∈S

¬D(G\{s})∪{r}[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nERφ

Proof. If B is a ∃r∀s-n-delaying set, then by Corollary 3.3.4, ⊇n,S,R,B
∃r∀s holds: ∀r ∈ R∃s ∈

S ∼!G⊗n
r ⊇∼(G\{s})∪{r}. For each r ∈ R, call the s ∈ S that satisfies this: sr.

(1) If F ⊩
∧

s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ, then also F ⊩

∧
r∈R ¬D(G\{sr})∪{r}[!G]nφ.

For any r ∈ R, by Lemma 3.3.5, taking X = {r}, Y = (G \ {sr}) ∪ {r}, and
Z = S ∪B ∪R, F ⊩ ¬[!S ∪B ∪R]nKrφ. Therefore, F ⊩ ¬[!S ∪B ∪R]nSRφ.
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(weakest) type epistemic precondition (ξ) result (µ) Proposition
¬∀s∀r

∧
s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ ¬[!G]nERφ 3.3.10

¬∃r∀s
∨

r∈R

∧
s∈S ¬D(G\{s})∪{r}[!G]nφ ¬[!G]nERφ 3.3.14∧

s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ ¬[!G]nSRφ

¬∀s∃r
∧

s∈S ¬D(G\{s})∪R[!G]nφ ¬[!G]nDRφ 3.3.15
¬∃s∃r ¬D(G\S)∪R[!G]nφ ¬[!G]nDRφ 3.3.13
¬∃s∀r

∧
s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ ¬[!G]nSRφ 3.3.11∨

s∈S

∧
r∈R ¬D(G\{s})∪{r}[!G]nφ ¬[!G]nERφ

¬∀r∃s
∧

r∈R ¬D(G\S)∪{r}[!G]nφ ¬[!G]nERφ 3.3.12

Table 3.2: Summary of delaying set formulas

(2) If F ⊩
∨

r∈R

∧
s∈S ¬D(G\{s})∪{r}[!G]nφ, then there is some r such that in particular

F ⊩ ¬D(G\{sr})∪{r}[!G]nφ. By Lemma 3.3.5, taking X = {r}, Y = (G \ {sr}) ∪ {r},
and Z = S ∪B ∪R, F ⊩ ¬[!S ∪B ∪R]nKrφ. Therefore, F ⊩ ¬[!S ∪B ∪R]nERφ.

And finally, ∀s∃r-delaying sets can block R from distributively knowing a formula. For
this, it must hold that for all senders s, everybody involved in communication except s do
not distributively know that [!(S ∪B ∪R)]nφ.

Proposition 3.3.15. For non-empty sets S,R ⊆ A, set B ⊆ A, let G = S ∪B ∪R. Then,
for φ ∈ LCL and n ∈ N+:

⊩

(
¬∀s∃r(B,n, S,R) ∧

∧
s∈S

¬D(G\{s})∪R[!S ∪B ∪R]nφ
)

→ ¬[!S ∪B ∪R]nDRφ

Proof. If B is a ∀s∃r-n-delaying set, then by Corollary 3.3.4, ⊇n,S,R,B
∀s∃r holds. Hence,

∃s ∈ S∀r ∈ R ∼!G⊗n
r ⊇∼(G\{s})∪{r}. As ∼(G\{s})∪{r}=∼r ∩ ∼G\{s}, ∃s ∈ S ∼!G⊗n

R =⋂
r∈R ∼!G⊗n

r ⊇
⋂

r∈R ∼r ∩ ∼G\{s}=∼(G\{s})∪R. Call this s: s⋆.
If F ⊩

∧
s∈S ¬D(G\{s})∪R[!S ∪B ∪R]nφ, then also F ⊩ ¬D(G\{s⋆})∪R[!S ∪B ∪R]nφ.

Thus, by Lemma 3.3.5, taking X = R, Y = (G \ {s⋆}) ∪ R, and Z = S ∪ B ∪ R, F ⊩
¬[!S ∪B ∪R]n¬DRφ.

Recall that by Proposition 3.3.5, B is a t-blocking set iff it is a t-(|A| − 1)-delaying set.
Therefore, the delaying set results also give us results for blocking sets.

A rephrasing of all the ⊇n,S,R,B
t conditions in terms of ∼R is possible. However, such

a rephrasing is only possible for two latency notions: ∃s∃r and ∀s∃r. In the case of ∃r∀s,
∃s ∈ S∀r ∈ R ∼!G⊗n

r ⊇∼{r}∪G\{s} does not imply ∃s ∈ S ∼R⊇∼R∪G\{s} as the s in
question are relative to each r and could therefore possibly be distinct. For the other types,
the quantification over R in the ⊇n,S,R,B

t condition is existential, and these conditions can
therefore also not be extended to results for ∼R. As a result, we get fewer results for
non-connectors, delaying sets, and blocking sets then we did for their positive counterpart,
connectors. The other four latency notions do correspond to weaker11 version of knowledge
realisation: either blocking knowledge realisation towards “everybody in R knows”, ER, or
knowledge realisation towards “somebody in R knows”, SR.

For a summary of the kinds of knowledge realisation made possible each connector type,
see Table 3.2. This table is sorted to correspond to the order of Table 3.1. Moving down
the table corresponds to a stronger delaying set type. Parallel, either the epistemic result
gets stronger, or the epistemic precondition gets weaker.

11These are weaker because both ̸⊩ ¬SRφ → ¬DRφ and ̸⊩ ¬ERφ → ¬DRφ.
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3.3.4 Summary
We now have a description of the negative counterpart to connectors: blocking sets and
delaying sets. Whereas connectors can realise distributed knowledge of a sending and a
receiving set to the receiving set by communication, blocking sets can stop this realisation
by not communicating. Equally, delaying sets can delay the realisation of knowledge to the
receiving set by a certain amount of communication updates. Parallel to the six connector
types, we have defined blocking and delaying sets of six types. We have shown that blocking
sets (and delaying sets) are sets such that their complements are not connectors of a specific
type (and latency). Therefore, we have analysed the capabilities of blocking and delaying
sets by showing what not being a connector of a specific type and latency implies both in
semantic and syntactic terms.

3.4 Minimality
Up until this point, we have discussed definitions of groups, connectors, and blocking sets,
that are sufficient for certain epistemic-communicational results. However, these definitions
are far from necessary for these epistemic-communicational results, . In this section we
will work towards necessary conditions. We will do this by discussing multiple minimality
notions of groups, connectors, and blocking sets. As connectors are the more general of
the three (groups and blocking sets are definable in terms of connectors), we will discuss
these minimality notions for connectors only. Minimality notions for blocking sets, delaying
sets, and groups naturally arise out of the minimality notions for connectors. First we will
discuss minimality with respect to latency, then we will discuss minimality with respect to
membership.

3.4.1 Exact Connector Latency
The semantic and syntactic results of connectors and non-connectors allow for a minimal
definition of t-n-connectors with respect to their latency n: sets of agents C ⊆ A such that
C is a t-n-connector and not a t-(n− 1)-connector. Such connectors are special in that their
latency n specifies the exact number of communication steps needed to realise knowledge
corresponding to the type t. Any n-connector is such an exact m-connector for some m ≤ n.
We call this number m its exact t-latency.

Definition 3.4.1 (Latency-minimality). We call a set C that is an t-n-connectors and not
a t-(n− 1)-connector latency-minimal (for n).

Note that any t-connector is latency-minimal for some n. We call this n the minimal
t-latency of a connector.

We can express that C is a latency-minimal t-n-connector as follows:

lmint(C, n, S,R) := t(C, n, S,R) ∧ ¬t(C, n− 1, S,R).

The syntactic implications of latency-minimal connectors can be derived from the
syntactic results of connectors and non-connectors by combining the two. We get exactly
what we’d expect: under certain epistemic preconditions, latency-minimal t-n-connectors
C are exactly those sets such that n communication acts by S ∪ C ∪R are necessary and
sufficient for R to know a formula, either distributively or individually by some or all receivers.
If we, for example, work out the formula for a latency-minimal ∀s∃r-n-connector C from S
to R, we get the following. Let G = S ∪ C ∪R be everybody involved in communication. If
G \S do not distributively know that φ after G communicates n− 1 or n times, any receiver
together with any sender together distributively know that φ after G communicates n− 1
or n times. Then, C is a latency-minimal ∀r∃s-n-connector from S to R iff some receiver
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does not yet know φ after G communicates n− 1 times, but after G communicates n times,
all receivers know that φ.

⊩
∧
s∈S

∧
r∈R

(
¬D(G\S)∪{r}[!G]n−1φ ∧ ¬D(G\S)∪{r}[!G]nφ ∧D{s,r}([!G]n−1φ ∧ [!G]nφ)

)
→ (lmin∀r∃s(C, n, S,R) ↔ ([!G]n−1¬ERφ ∧ [!G]nERφ)).

As such, n is the exact number of times that a latency-minimal n-connector has to commu-
nicate to make sure that distributed knowledge is realised.

3.4.2 Minimal Connectors
We can define another notion of minimality with respect to the members of a connector.
We define minimality of a connector relative to both its type, and to its type and latency.
That is, we call C a minimal t-connector from S to R when all its members are essential
for C to from a t-connector from S to R, and call C a minimal t-n-connector from S to R
when all its members are essential to form a t-n-connector.

Definition 3.4.2 (Minimal connectors). For S,R,C ⊆ A, t ∈ T , and n ∈ N+ we call C a
minimal t-connector from S to R iff for every c ∈ C, C \ {c} is not t-connector from S to R.

Furthermore, we call a C a minimal t-n-connector from S to R iff for every c ∈ C, C \{c}
is not t-n-connector from S to R.

We can express that C is a minimal t-n-connector as follows:

mint(C, n, S,R) := t(C, n, S,R) ∧
∧

c∈C

¬t(C \ {c}, n, S,R).

As we have provided formulas, and syntactic and semantic results for both forming and
not forming a connector, minimal connectors and the syntactic and semantic implications
of a minimal connector are obtainable using the tools provided in the previous subsection.
These results are of a similar form as those of latency-minimal connectors. But instead of
stating the minimally required number of iterated communications, these formulas state
the minimally required members of the connector that must be included in the iterated
communication updates for it to bring about knowledge of φ among the receivers. If we,
for example, work out the formula for a ∀r∃s-connector C ⊆ A, we get the following. For
any c ∈ C let G−c = S ∪ C \ {c} ∪ R. If for anyc ∈ C, G \ S and G−c \ S respectively do
not know that [!G]nφ and [!G−c]nφ, and any s and r together distributively know that φ
after G or G−c communicate n times, then C is a minimal ∀r∃s-n-connector from S to R
iff for every c ∈ C, some receiver does not know φ after G−c communicate n times, and all
receivers know that φ after G communicates n times.

⊩
∧

c∈C

∧
s∈S

∧
r∈R

(
¬D(G\S)∪{r}[!G]nφ ∧ ¬D(G−c\S)∪{r}[!G−c]nφ ∧D{s,r}([!G]nφ ∧ [!G−c]nφ

)
→

(
min∀r∃s(C, n, S,R) ↔

(∧
c∈C

[!G−c]n¬ERφ ∧ [!G]nERφ

))

As such, minimal connectors are connectors, such that any of its members is essential to
realise distributed knowledge.

Besides these results, there is a particular relation between the minimal latency of
∃s∃r-connectors and minimal ∃s∃r-connectors.

Proposition 3.4.1. For S,R,C ⊆ A, C is a minimal ∃s∃r-connector from S to R iff C
has a minimal ∃s∃r-latency of |C| + 1.
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Proof. For a sequence P = (pi)n
i=1 such that P forms an S ∪C ∪R-path from r to s, if there

is a pi for 1 < i < n such that pi ∈ S or pi ∈ R, then (pj)i
j=0 or (pj)n

j=i would form a path
from an agent in R to an agent in S. Therefore, we can always find a sequence P ′ = (pi)n′

i=m

where m is the highest number such that px ̸∈ S ∪R for 0 < x < m, pm ∈ R, n′ is the lowest
number such that px ̸∈ S ∪R for n′ < x < n, and pn′ ∈ S, i.e. P ′ forms a C-path from an
agent in R to an agent in S. Hereby, ∃s ∈ S∃r ∈ R r →S∪C∪R s ⇐⇒ ∃s ∈ S∃r ∈ R r →C s.

Moreover, as paths do not contain loops (and therefore do not visit an agent twice),
∃s ∈ S∃r ∈ R r →C s ⇐⇒ ∃s ∈ S∃r ∈ R r →≤|C|+1

C s; and ∃s ∈ S∃r ∈ R s →≤|C|
C r ⇐⇒

∃c ∈ C∃s ∈ S∃r ∈ R s →≤|C|
C\{c} r. Therefore, C is not a ∃s∃r-connector from S to R iff

∀c ∈ C∀s ∈ S∀r ∈ R s ̸→|C|
C\{c} r.

C is a minimal ∃s∃r-connector from S to R iff (i) C is a ∃s∃r-connector, and (ii) for all
c ∈ C, C \ {c} is not a ∃s∃r-connector from S to R. (i) ⇐⇒ ∃s ∈ S∃r ∈ R r →≤|C|+1

C ⇐⇒
C has a ∃s∃r-latency of |C| + 1. (ii) ⇐⇒ ∀c ∈ C∀s ∈ S∀r ∈ R r ̸→≤|C|

C\{c}⇐⇒ ∀s ∈
S∀r ∈ R r ̸→≤|C|

C ⇐⇒ C does not have a ∃s∃r-latency of |C|. Therefore, C is a minimal
∃s∃r-connector from S to R iff C has a minimal ∃s∃r-latency of |C| + 1.

Corollary 3.4.1. For two groups Gs, Gr ⊆ A and t ∈ T , C ⊆ A is a minimal t-n-connector
from Gs to Gr iff C \ (S ∪R) = ∅ and C has a ∃s∃r-latency of |C| + 1.

Proof. This follows from Proposition 3.2.4 and 3.4.1.

3.5 Relations To Other Theories
Structural importance and centrality within a network is the subject of many theories and
studies. In this section we will discuss our contributions to this field. We will discuss the
relation between the concepts defined in this chapter and studies on diffusion in social
networks, structural holes, and Gatekeeping Theory, and its formalisation in Belardinelli
[19]. As the last study is closest to our setting, we will give it a more in-depth discussion. In
particular, we will show that connectors and blocking sets are generalisations of structural
notions in Belardinelli’s work, adapted to a directed setting.

3.5.1 Diffusion in Social Network
There is a connection between the special abilities of blocking sets and what is discussed
and formalised in Christoff and Naumov [26]. They consider the logic of diffusion in social
network based on threshold models, an atomic perspective on the propagation of belief. Their
logic is based on the work of Azimipour and Naumov [9], a logical study on the lighthouse
principle of diffusion. Each agent has a threshold, a value denoting what percentage of
neighbours must have adopted something for that agent to adopt it themselves. Given a
network structure, these thresholds, and some early adopters, agents that have adopted
behaviour without any peer-pressure, what are the relations of influence and propagation
through peer-pressure in these threshold models from these early adopters to the rest of the
group. Azimipour and Naumov [9] formalise the logic of this relation, denoted by ▷, such
that S ▷ R iff if S were to adopt something without peer-pressure then R will eventually
adopt it as well through peer-pressure.

Christoff and Naumov [26] extend this logic to incorporate an external set of recalcitrant
agents: agents that are immune to influence. Recalcitrant agents are related to blocking
sets, as blocking sets can be interpreted as sets of agents that, when taken to be recalcitrant
to communication, make it impossible for one group to influence the knowledge of the other.
Though an important distinction between recalcitrant agents and blocking sets is that, where
recalcitrant agents do not adopt a given behaviour, agents in a blocking set could still adopt
the knowledge about a formula in communication, as they still receive knowledge through
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communication and update their epistemic state accordingly. Instead, blocking sets stop the
propagation of information by not communicating.

These studies abide by the axiom of atomic transmission: the propagation of belief is
assumed to be solely determined by the transmission of atomic units. Our study paves a
way for such behaviours to be studied in a non-atomic and epistemic setting. Connectors
specify the agents required for “early adopters” of some knowledge φ to spread to other
agents. Blocking sets, instead, specify agents that, when taken to be “recalcitrant” in
communication, can block the spread of knowledge about φ to other agents.

Moreover, our study bring to light the opposite character of information spread in
epistemics. When information spreads through a network, knowledge, rather, is concentrated
in a smaller set. Connectors make it possible for information to spread from a sending set
to a receiving set. And in doing so, they make it possible for information that is spread
among the senders and receivers to be concentrated in the receivers. Whereas Christoff and
Naumov [26] and Azimipour and Naumov [9] develop the logic of the former, we develop
the logic of the latter.

3.5.2 Structural Holes & Redundancy
Burt [23] gives an account of relations that provide “network benefit” to each other by
filling in a “structural hole” in the social network. Central to the theory of structural
holes is the notion of (non-)redundancy of connections: structural holes are “separations
between nonredundant contact”[23] in the social network. Here non-redundancy is indicated
by connectedness in the network. Two agents are redundant by cohesion when they are
connected by “a strong relationship”.12 Such agents are likely to share the same network
benefits, as information will be shared between the two frequently. Two agents are redundant
by structural equivalence when they both provide the same connections, and therefore have
access to the same benefit.

In this chapter we regarded a setting where benefit is epistemic. This benefit flows not
only through direct connections between agents, but also indirectly, through third parties
by iterated communication. The latter is really distinct from the former in exactly the
setting of directed knowledge realisation: when a set S together with a set R distributively
know that φ, and a connector C allows for this knowledge to be realised, the connector
together with the sender does not have to know that φ. The connector might not even
get to know anything new when realising the distributed knowledge of φ to R by iterated
communication. This chapter therefore can be a starting point for a formal account of
structural holes in an epistemic setting where benefit, and therefore redundancy, is epistemic;
and where connections between agents are not necessarily direct. Such an extension to
Burt’s work must start with the introduction of notions of redundant connectors. Here we
will only hint towards definitions of such notions.

We can define a cohesively redundant connector from S to R as a set C such that C is a
t-connector and S is directly t-connected to R (when ∅ is a connector from S to R). As we
regard connections from sets to sets through a third party as well, it makes sense to define a
stronger variant of cohesive redundancy: two sets are cohesively redundant when there is
a connector from the one to the other. A t-connector from S to R is a strong cohesively
redundant connector (up to n) iff it is not the only t-connector (with a latency ≤n) from S
to R; i.e., the connector is not also a t-blocking set (t-n-delaying set).

Recall that minimal connectors are connectors such that all their members are essential
for it to form a connector. Cohesively non-redundant connectors, instead, are connectors
that are essential for S and R to be connected at all. Because of this, a strong cohesively

12Contrary to our social networks, the network in Burt [23] is bi-relational and bidirectional, it consists of
weak and strong ties, so comparing Burt’s work to ours only goes so far. One way around this difference is
to assume that all connections are strong, as it is most likely that someone who someone shares all they
know with is in a strong relationship with them.
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non-redundant connector is necessarily also a minimal connector, but a minimal connector
is not necessarily strong-cohesively non-redundant: the other connector C ′ from S to R that
makes a connector C strong-cohesively redundant could contain agents outside C, C ′ ̸⊆ C;
it could even be entirely disjoint from C.

Structural redundancy is not about whether S and R are connected, but about the
overlap of the connections of S and R. We can define structural redundancy as follows: two
sets of agents are structurally redundant when the sending set S is connected to agents that
R is already connected to. A t-connector C is structurally redundant when there already is a
connector C ′ from R to the agents followed by S, Fn(S), and this C ′ is disjoint from C. Or,
when considering iterated communication and paths through the social network, a connector
is structurally redundant when there already is a connector from R to the agents followed
by S up to n social ties away (F+n(S)), for some n ∈ N+. Further restrictions could be
made to only regard overlapping agents whose information is reachable by a particular kind
communication. Then structural redundancy is about whether there already is a t-connector
from R to F|+G

n(S), for a particular n ∈ N+, G ⊆ A, and t ∈ T .
Finally, Burt relates redundancy to mutual benefit. Therefore, a natural variant of

structural and cohesive redundancy is epistemical redundancy. Senders S and receivers R are
epistemically redundant when S∪R knows no more than R. Connectors from S to R fill in a
structural hole with respect to epistemics when S and R are epistemically non-redundant. Of
relevance to such a definition of redundancy are the comparative knowledge relations defined
in van Ditmarsch, van der Hoek, and Kooi [65], and formalised in relation to communication
in Baltag and Smets [16].

3.5.3 Gatekeeping Theory
Related to the concept of structural holes is Gatekeeping theory. Gatekeeping theory is
concerned with social network positions, or agents, that have full control over the flow of
information between two groups. These agents are called gatekeepers, as they “gatekeep”
information between these groups. Gatekeeping as a concept has many interpretations.
Barzilai-Nahon [18] makes an attempt to formulate these into a single theory. A more formal,
and logical, attempt at this is undertaken in Belardinelli [19]. In it, several structurally
important positions in a bidirectional and connected social network are identified and defined,
characterisations of agents that enable information flow, block information flow, and have
full control of information flow. These concepts are defined under the assumption that the
social network is undirected (symmetric), irreflexive, and connected.

Gatekeepers are sets that have full control over the information flow between two groups.
Along with gatekeepers, several other structural notions are discussed and formalised, of
which we will focus on connectors and blocking sets.13 For connectors, Belardinelli gives the
following definitions. As the names of the concepts of Belardinelli and ours overlap, we will
prefix Belardinelli’s concepts with “bidirectional”.

Let G,G′ be two disconnected groups [G ∪ G′ is not a group]. We say that
[B ⊆ A] is a [bidirectional] connector between G,G′ iff G ∪G′ ∪ B is a group.
([19, p. 12])

The definition of bidirectional connectors closely resembles the definition of a redundant
connector provided in this chapter. Their differences are as follows: (1) a connector is defined
bidirectionally: a bidrectional connector is a connector between G and G′; (2) a bidirectional
connector is only defined between groups; and (3) a bidirectional connector must connect
two sets that are not directly connected to each-other. The first two reflect the two major

13The other notions defined in Belardinelli’s work are: bridges, bridging sets, C-local gatekeepers,
gatekeeping sets, gatekeeping bridges, and the grand gatekeeper. Bridges are sets C such that C is a
minimal ∃s∃r-connector from S to R and from R to S; bridging sets are defined in terms of bridges; C-local
gatekeepers are agents c ∈ C, such that c ∈ B for some bridge B ⊆ A; gatekeeping sets are bridging sets
that are also blocking sets; and the grand gatekeeper is a maximal bridging set.
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differences between Belardinelli’s social networks and ours: (1) reflects the assumption
of a symmetric network made in Belardinelli [19], while (2) reflects the assumption of
connectedness. Note that because of this difference, the definition of connectors is defined in
terms of groups, whereas our definitions are all reducible to (definable in terms of) connectors
(see Proposition 3.2.18, and 3.3.1).

For blocking sets, Belardinelli gives the following definition. We will take some liberty in
the exact phrasing and (mostly stylistic) details of this definition, as some of these details
do not match our definition.14

Let G,G′ be two disconnected groups [G ∪G′ is not a group] and consider some
[B ⊆ A] [. . . ]. We say that [B] is a [bidirectional] blocking set between G,G′ iff
every connector C between G,G′, contains an element of [B], i.e. for all [C ⊆ A],
if G ∪G′ ∪ C is a group, then C ∩ [B] ̸= ∅. ([19, p. 28])

To make the connection between bidirectional blocking sets and the definition of blocking
and delaying sets apparent, consider the following proposition.

Proposition 3.5.1. For non-empty sets S,R ⊆ A and t ∈ T , a set B ⊆ A is a t-blocking
set (t-n-delaying set) B ⊆ A in F iff for every t-connector (t-n-connector) C from S to R
in F, C ∩B ̸= ∅.

Proof. The right-to-left direction follows trivially as B ∩B = ∅. The left-to-right direction
follows from the fact that not being a t-connector, and t-n-connector is closed under
supersets.

The formal connections between these definitions become apparent when we consider
frames whose social network relation is symmetric. For G,G′ ⊆ A such that G ∪G′ does
not form a group, our definition of a connector coincide with that of Belardinelli [19]. The
same holds for blocking sets.

Proposition 3.5.2 (Equivalence of definitions). Let F be a frame whose social relation is
symmetric and let G,G′ ⊆ A be groups such that G ∪G′ is not a group, then:

(i) C is a bidirectional connector between G and G′ in F iff C is a t-connector from G to
G′ and from G′ to G in F, for any t ∈ T .

(ii) B is bidirectional blocking set between G and G′ in F iff B is a t-blocking set from G
to G′ and from G′ to G in F, for any t ∈ T .

Proof. Let F be a frame whose social relation is symmetric.

(i) As G and G′ are bidirectional groups, G ∪ C ∪ G′ is a bidirectional group iff there
is a bidirectional path in G ∪ C ∪ G′ from some agent in G and some agent in G′.
Furthermore, G ∪G′ is not a group iff there is no edge between some agents distinct
agents in G ∪G′. As connector types are equivalent when the sending and receiving
sets are groups (Proposition 3.2.4), G ∪ C ∪G′ is a bidirectional group and G ∪G′ is
not iff C is a t-connector from G to G′ and from G′ to G for any t ∈ T .

(ii) Follows from (i), the definition of bidirectional blocking sets given above, and Proposi-
tion 3.5.1.

14Belardinelli does not consider the entire set of agents A (or A in the case of Belardinelli) a blocking
set, while these are always blocking sets in our case. Likewise, Belardinelli does not consider blocking sets
that overlap with the two groups as blocking sets. In our case, we do. We have shown a correspondence
between overlapping and non-overlapping blocking sets in Proposition 3.3.1. As these differences therefore
seem mostly stylistic, we will ignore them.
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Belardinelli formalises their concepts in Network Logic. Network logic is an agent-
evaluated Propositional Dynamic Logic with elements of hybrid logic. The logic lacks any
competent epistemic notions. Instead, it employs an atomic account of information and
communication: information is represented as “bits” of data from a set D. For d ⊆ D, “d”
is to be read as “I am informed of d” or “I have the data bits d”. The logic formalises
communication by posting actions. Agents can post data to their friends only if they are
informed of said data. Sequences of posting actions model iterated communication actions.
The language has a modality ⟨⟨A⟩⟩ related to Coalition Logic [47] and STIT (“Seeing To It
That”) Logic [70]. ⟨⟨A⟩⟩φ denotes that A can bring about φ using some sequence of posting
actions by agents in A. Thereby, the logic abstracts away from the number of times agents
must communicate.

Characterisations in Network Logic are provided for all structural notions defined in
Belardinelli [19]. Further formulas are provided for the communicational properties of these
structural notions. We will only discuss the communicational formulas for connectors, as
the others are of a similar form. The communicational formula for connectors is:

(G1 → d) → ⟨⟨C⟩⟩∃(G2 ∧ 3d). (3.6)

G1 and G2 are group nominals, reading “I am part of G1/G2”; ∃ is the universal quantification
over all agents, to be read as “there is an agent such that”; 3 is the diamond modality over
the social relation, 3φ is read as “I have a neighbour such that φ”. Hence, the formula
must be read as follows: “if G1 has the information d (G1 → d); then, through iterated
communication, C can bring about (⟨⟨C⟩⟩) that there is an agent (∃) who is part of G2, and
who has a neighbour who is informed about d (G2 ∧ 3d).” It is proven that this formula is
true in a model only if, in that model, C forms a connector between the groups named G1
and G2, and these groups don’t form a group together.

The meaning and form of (3.6) is similar to our communicational formulas for connectors
in Proposition 3.2.11 to 3.2.15. It differs in that in (3.6): (i) it is not syntactically specified
that b1, . . . , bn form a bidirectional connector (even though formulas are provided for it);
(ii) after communication, an agent in G2 is not informed of b themselves, but they are socially
related to someone who is; (iii) because the object that is communicated is propositional,
the “epistemic” precondition (G1 → d) in (3.6) is simpler than the epistemic preconditions
in Proposition 3.2.11 to 3.2.15, that state the distribution of the knowledge about φ among
S and R; and (iv) the number of communication actions required is not stated, whereas
this is stated in Proposition 3.2.11 to 3.2.15; (i) and (ii) are mostly stylistic differences; (iii)
stems from the different approaches to information and epistemics in both logics; and (iv) is
a result of the abstraction of the number of communication actions required that in Network
Logic does.

To conclude, our work is related to Belardinelli’s, and contributed to the logical analysis
of Gatekeeping Theory, in two ways. Firstly, it functions as a generalisation of many of
the definitions of Belardinelli to a setting of directional social networks. Secondly, it is a
development of structural notions and their implications towards an epistemic account of
communication. Moreover, we introduced two properties of connectors not discussed in the
work of Belardinelli. We have developed a quantitative account of communication, taking
into account the number of communication actions required for connectors to be effective,
and we introduced quantitative distinctions between different types of communication and
their respective knowledge realisation. These extensions allow us to distinguish the commu-
nicational implications of structural notions that are not distinguishable in Belardinelli’s
work. For example, the communicational formulas of bridges and bidirectional connectors,
as defined by Belardinelli, are identical, whereas they are not in our case. Expressed
in connectors, a bridge C is a minimal ∃s∃r-connector. Hence, by Proposition 3.4.1, its
communicational properties differ from non-minimal connectors in that, for bridges, it only
takes |C| + 1 communication updates before distributed knowledge is realised.
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Chapter 4

Network formation and games

In the previous chapter we have discussed distributed knowledge resolution and its relation
to the structure of the social network: given a certain network structure N , a set of senders
S, and a set of receivers R that together distributively know something, we identified what
sets are able to bring about and block communication between S and R. In this chapter,
we will build a framework to reason about how these networks are formed and changed,
ultimately to reason about how the structural requirements of connectors and blocking sets
come about.

Most network logics formalise social network dynamics explicitly in their syntax. In
such logics, the network is formed and changed by syntactically specifying the edges to be
removed or the ones that survive, depending on the perspective. This as opposed to some
logics that only syntactically specify that an update takes place, but not what the update
entails. In such logics, the edges to be removed or added is determined by the semantics of
this update and the current model. Examples of the latter, implicit, approach are the logics
of network formation through threshold models in Smets and Velázquez-Quesada [57] and
Smets and Velázquez-Quesada [58], which employ modalities of threshold updates, where
edges are formed depending on how similar agents are w.r.t. certain properties. Examples
of logics of explicit social network dynamic are the logic with a basic edge deletion and
addition modalities in Seligman, Liu, and Girard [55], and the logic with follow and unfollow
modalities in Ruan and Thielscher [53]. These logics both modify the network by adding or
deleting edges by name. In Roelofsen [52], connections between groups of agents are added
or deleted based on the truth value of a precondition in a “reconfiguration event”.

Logics of explicit network dynamics are closely related to relational update logics such
as Sabotage Logic [7; 59], that introduces a modality for deleting “any edge” in a graph.1
For a general study and formalization of relation update logics, see Areces, Fervari, and
Hoffmann [6].

The common denominator of these logics is their outside perspective on the dynamics of
the network structure. Rather than being manipulated by agents, the network is changed
from the outside by modalities that induce a network change. The usual interpretation of
such modalities is that of possibility and necessity: it is possibly or necessarily so that, when
a social relation between a and b is added, a can know what b knows after communication,
and so on. As such, these logics are descriptive, only indicating what would (possibly or
necessarily) happen after an action takes place.

Instead, we take an inside perspective, where agents themselves form and change the
network structure. Therefore, instead of possibility we focus on ability. Hereby, we bring

1Most dynamic epistemic logics such as Public Announcement Logic, but also our Communication Logic
modify a relational structure in exactly such a way. These are not “designed to work” on social networks.
Rather they present implicit modalities that modify a relational (Kripke) structure in such a way that aligns
with their specific modal characteristics (often S45 or S5 knowledge).
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network dynamics to closer resemble what will actually happen. A natural mathematical
setting for this is strategic games.

In the upcoming section we develop a generic game-theoretic framework for network
formation, where agents actively decide on and shape their network structure in a single-shot
game. Then, in Section 4.2, we pose some reasonable restrictions on the class of games we
consider. In Section 4.3, we give an overview of the games that underlie most socio-economic
studies of network formation, and link these to the presented restrictions. Finally, in
Section 4.4, we move to a setting of network change, and model games of network formation
in a given social environment. We discuss variants of the restrictions for single-shot games,
for this extensive setting. In the next chapter, we will develop a formal language to reason
about ability in such games.

4.1 Games
In this section we will work towards a generic game-theoretic framework to reason about
network formation and change. We will do this from the perspective of strategic games
rather than cooperative2 games, as we are not concerned with what coalitions will form
under which “value distribution functions/rules”, but rather on the coalitional ability of
agents to shape the social network.

Game theory presents a dichotomy between simultaneous and non-simultaneous play.
In the former, players choose their actions all at once, independent of each other, without
regard of time; and thereby while not being informed of the actions of the others. In the
latter players take turns choosing actions, allowing them to revise their strategy based
on the moves played by the others before them. [44] In most social settings, relations are
made and broken coincidentally, with no regards of any particular temporal order over the
agents manipulating the network topology. For this reason, we take strategic games with
simultaneous play as the starting point of our investigation of the dynamics of network
formation.

4.1.1 Single-shot Games With Simultaneous Moves
We commence from single-shot games with simultaneous moves, typically called strategic
games.3 Strategic games are played by a set of players A. According to the standard
definition, each player a ∈ A is assigned a set of available actions Σa. A tuple containing a
single action for each player (each from their respective action set) is called an action profile.

Usually, the outcome of a game is represented by score: given an action profile, each
player is assigned a score by an utility function. It is assumed that players try to maximise
their utility. In this way the utility function formalises player incentive. However, as we
are interested in the process of network formation via game theory, and we are particularly
interested in whether agents are able to shape the network in order to reach certain network
positions, we let the outcome of a game to be a network topology. We will not assign agents
any preference order over these networks. Therefore, rather than games, what we discuss is
in actuality a game form. These game forms become a game when paired with a preference
order. We will refer to these game forms as games for the sake of convenience.

Our games are played by a non-empty and finite set of players A. Let n = |A| denote
the number of players of the game. Let S be a non-empty set of possible outcome states.
All players are asked to submit an action from their respective non-empty action or choice
set Σi.

2For an overview of cooperative games and network formation see Jackson [37].
3For an overview of strategic games see Peters [50], in particular Chapter 6, or Osborne et al. [44] Section

2.1.
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Definition 4.1.1 (Actions). For each player a ∈ A, associate a non-empty choice set
Σa. Let σA denote an n-tuple of choices, one for each player: σA = (σ1, σ2, . . . , σn) where
σ1 ∈ Σ1, σ2 ∈ Σ2, . . . , σn ∈ Σn. We call σA an action profile. For brevity’s sake, when the
set of all players A is clear from the context we will denote σA by σ.

For any C ⊆ A, let ΣC =
∏

i∈C Σi denote the set of all action profiles for C. We call
ΣC an action set or choice set for C. For any C ⊆ A we denote an action profile for C by
σC ∈ ΣC . If C = {x}, we write σ−x for σC .

Players submit their actions σa simultaneously. Accordingly, players cannot act on the
actions that the other players submit. Actions are aggregated into an outcome by the
outcome function o. Let S be a non-empty set of outcome states. The function o maps
action profiles for A to outcome states.

Definition 4.1.2 (Outcome function). For a set of players A, and an action set ΣA, an
outcome function o : ΣA → S maps each action profile to a state S.

Given a C ⊆ A, let o(σC , σC) = o(σA), where σA is the action profile on A induced by
σC an σC . For readability, we will omit the brackets in case of C = {x}; writing o(σx, σ−x)
for o((σx), σ−x).

A strategic game consists of a set of action profiles for A, a set of outcome states S, and
an outcome function that maps elements of ΣA to S.

Definition 4.1.3 (Strategic game). A strategic game G is a tuple

G = (A,ΣA, o, S)

where A is a non-empty set of agents, ΣA is the action set, o is the outcome function, and S
is a non-empty set of outcome states.

We model network formation as a strategic game as follows. Let FA = P(A×A) denote
the set of possible network structures on A. Each agent a is asked to submit a social network
σa from their respective choice set of social network Σa ⊆ FA. The outcome function then
produces an outcome network from the action profile of chosen social networks o(σA) ∈ FA

We interpret an agent’s choice σa as the agent making an attempt to shape the network
according to σa. We call these games network games.

Definition 4.1.4 (Network game). A strategic game G = (A,ΣA, o, S) is a network game
iff for all a ∈ A: Σa ⊆ FA, and S = FA.

4.1.2 Social Choice Theory
There is a clear connection to our game-theoretic framework and social choice theory4.
Social choice theory is concerned with the definition and properties of social choice functions:
functions that aggregate the preference orders of agents over a decision to a social preference,
much like how outcome functions “aggregate” the social networks proposed by agents to an
outcome social network.

There are two key differences between classic social choice theory and our setting. Firstly,
social choice theory is primarily concerned with preference, agents submit a preference order
over their choices. In our framework, agents only submit a single choice. This could be
interpreted as them submitting their most-preferred network. But this is rather deceiving
as we are not concerned with the category of preference to begin with. Secondly, within
classical social choice, it is assumed that the preference orders have a universal domain:
there might be restrictions over the type of preference orders allowed (e.g. total orders, total
preorders, single-peaked preferences), but these ordering are over all possible world states.

4For an overview of social choice theory see Fishburn [30] or Brandt et al. [22].
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Hereby, unlike our setting, no predetermined restriction can be made on what each agent is
allowed to change in the world.

There exists work on social choice theory that considers restrictions on the voting rights
(the choice sets) of agents, for example social choice theory of rights. Originally, social choice
theory of rights used similar models to classical social choice theory. However, as proposed
and popularised by Gärdenfors [33], social choice theory of rights is also studied in game
form, a framework similar to the strategic games we use.

Besides social choice theory of rights, our definition of a strategic game is also equal to
those used in social choice theory from the non-normative perspective [1], and to the games
typically used in Coalition Logic [47].

4.2 Axioms for Network Games
As it stands, network games are too general for them to represent network formation processes.
Not all network games are interesting or make sense. In particular, the interpretation we
gave to network games — that when an agent x submits a network σx, it means that x
makes an attempt to shape the social network topology according to σx — does not directly
follow from the definition of network games. Elements of ΣA represent abstract choices,
and only affect the possible games by limiting the number of choices an agent has. Their
interpretation as attempts to shape a social network to a particular topology only come
about by pairing them with particular outcome functions. We must therefore restrict the
network games that we consider.

Like axiomatic social choice theory [22, ch. 2], we will take an axiomatic approach to
identify these “sensible” network games. However, whereas the axiomatic approach in social
choice theory is mostly normative [22], searching for axioms that express various normative
properties of voting, our axioms are not to be interpreted in such a way. Instead, we take
the axioms as simple propositions about the process of network formation. We will list some
such axioms in the upcoming section. We do not intend for this list to be complete.

There are two crucial components of network games that we must discuss: properties of
choice sets, indicating which proposals each agent is allowed to submit, and properties of
outcome functions, indicating how these proposals lead to outcome networks.

Note that any restriction of the choice set is optional, in that such restrictions can be
“embedded” in the outcome function by sending all choice sets not included in a restricted
ΣA to some dummy outcome. However, laying restrictions on the choice set is an intuitive
way to come to certain network games, as we will see in the upcoming sections. Therefore,
we will discuss such restrictions.

4.2.1 Properties of the Choice Set
We postpone the discussion on the exact contents of the choice sets to the next section.
First we will regard their closure properties.

An important property of aggregation functions in social choice theory is anonymity.
Anonymity requires that the name of the person that submits a preference order over the
candidates does not matter. We can define a similar notion in network games. Because
of the differences between social choice theory and network formation games, a proper
anonymity condition requires some reconsideration. First we define agent permutations.

Definition 4.2.1 (Agent permutation). An agent permutation π on a social network (A,F )
is a bijection π : A → A. For the application of a permutation π on a relation F : A×A we
write π(F ) = {(π(i), π(j)) | (i, j) ∈F}. Recall that action profiles are tuples of networks.
For readability, we extend the notation for permutations to also work on such tuples: for
any action profile for G ⊆ A: σG, we write π(σA) for (π(σi))i∈A.
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With respect to choice sets, anonymity entails that whenever an agent can submit an
action, any other agent should also be able to submit it. In our particular setting, the
choices that agents have are made up of these same agents — the networks between which
the agents A have to choose are defined over A. Consequently, there is another requirement
for network formation games to be truly anonymous: that the particular choice sets are
not defined in terms of relations between particular individuals, i.e. that the choice sets
are closed under permutations over agents. We say that choice sets, and games defined
over these choice sets, satisfy pure anonymity of choice, when they satisfy both of these
anonymity conditions
Definition 4.2.2 (Pure anonymity of choice). A choice set ΣA is purely anonymous iff for
any agent a ∈ A, and for any permutation π

1. σ ∈ Σa ⇐⇒ σ ∈ Σπ(a) (i.e. for all b ∈ A: Σa = Σb), and

2. σ ∈ Σa ⇐⇒ π(σ) ∈ Σa.
A game satisfies pure anonymity of choice when its choice set is purely anonymous.
Condition (1.) states that if an agent can submit a certain network, then every agent

can. Condition (2.) states that an agent a should not be limited in their network choices
solely because of the names of the agents that are (dis)connected in them.

Pure anonymity of choice is a “literal” translation of the concept of anonymity of social
choice to the choice sets of network games. It, however, is often too strong for network
games. Consider the following example.
Example 4.2.1 (Star shaped network games). A star-shaped network is a social network
F ∈ FA for which there is an a ∈ A s.t. for all (i, j) ∈ F , j = a. Let the set of all star
shaped networks be denoted by F⋆

A ⊆ FA. Let the choice set ΣA be such that for all a ∈ A,
Σa = F⋆

A.
A star shaped network centered at a ∈ A is a network F such that for all (i, j) ∈ F ,

j = a. Let the set of star shaped networks centered at a be denoted by F⋆(a)
A ⊆ F⋆

A.
Consider the choice set Σ′

A where all agents a ∈ A can choose the star shaped networks
centered around a particular x ∈ A, i.e. for all a ∈ A, Σ′

a = FA
⋆(x). Next consider the

choice set Σ′′
A where all agents a ∈ A can choose the star shaped networks centered around

themselves, i.e. for all a ∈ A, Σ′′
a = F⋆(a)

A .
The choice set ΣA is purely anonymous, but neither Σ′

A nor ΣA′′ are. For Σ′
A, condition

(2.) fails — as it would impose on Σ′
A that any agent can choose all star shaped networks,

centered around any agent. For Σ′′
A, condition (1.) and (2.) fail: (2.) fails for the same

reason as for Σ′
A, and (1.) would impose that any agents can choose all star shaped networks

with any agent in the center.
Intuitively, Σ′

A is indeed not anonymous. However, Σ′′
A is anonymous in some sense: all

agents are treated equally regardless of their label or name, in the sense that any agent is
allowed to choose all star shaped networks with themselves in the center. A more natural
anonymity requirement for network games, therefore, is that when an agent a can choose a
network shape relative to a, then any other agent b should be able to choose that shape
relative to b. We introduce a different notion of anonymity to capture this intuition: pseudo-
anonymity. Pseudo-anonymity requires that a can choose σ when π(a) can choose π(σ) for
all permutations π.
Definition 4.2.3 (Pseudo-anonymity of choice). A choice set ΣA is pseudo-anonymous iff
for all permutations π:

σa ∈ Σa ⇐⇒ π(σa) ∈ Σπ(a).

A game satisfies pseudo-anonymity of choice when ΣA is pseudo-anonymous.
For the sake of clarity, we will give an overview of the definitions presented in this section.

For a summary of the definitions in this subsection, see Table 4.1.
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Name Description
Pure anonymity of choice Choice set not determined by agent name.
Pseudo-anonymity of choice Choice determined by name only in reference to self.

Table 4.1: Summary of game axiom definitions

4.2.2 Relations Between Choice Set and Outcome Function
To force network games to represent games where agents have choice in shaping the
network, an intuitive requirement is that no social relation in the network will come
about spontaneously: (i, j) should only be in the outcome of a game if at least some agent
had a choice in the matter. The simplest such requirement would be that if (i, j) ∈ o(σA)
then there is an agent x ∈ A such that (i, j) ∈ σx. Formally, a game G = (A,ΣA, o, S) must
be so that:

(i, j) ∈ o(σA) =⇒ ∃x ∈ A s.t. (i, j) ∈ σx.

This does not ensure that x actually had a choice in including (i, j) in their σx; the pair
(i, j) could be present in all choices of agent x (i.e., in all networks in Σx). Therefore, we
present a stricter version of such an axiom, that ensures that x could have chosen an action
that does not include (i, j). Weak positive choice reflects that when a social tie exists in the
outcome of a game, at least some agent made an attempt for the tie to be in the network
and that attempt was a choice for that player — they could have chosen not to make the
attempt.

Definition 4.2.4 (Weak positive choice). A network game G = (A,ΣA, o, S) satisfies weak
positive choice when:

(i, j) ∈ o(σA) =⇒ ∃x ∈ A s.t. (i, j) ∈ σx and ∃σ′
x ∈ Σx s.t. (i, j) ̸∈ σ′

x

Note that in weak positive choice, an agent has a choice in including (i, j) or not if they
can submit a network σ+

x and σ−
x such that (i, j) ∈ σ+

x and (i, j) ̸∈ σ−
x . However, this choice

is not pure in that the agent does not have a choice between a network σ including (i, j)
and that same network without (i, j): σ \ {(i, j)}. If they do, we say that the game has
strong positive choice.

Definition 4.2.5 (Strong positive choice). A network game G = (A,ΣA, o, S) satisfies
strong positive choice when:

(i, j) ∈ o(σA) =⇒ ∃x ∈ A s.t. (i, j) ∈ σx and σx \ {(i, j)} ∈ Σa

To illustrate the difference between weak and strong positive choice, regard the following
example.

Example 4.2.2 (Bidirectional game). For all a ∈ A: Σa = {F ∈ FA | (i, j) ∈ F iff (j, i) ∈
F}. Paired with the outcome function:

(i, j) ∈ o(σ) iff ∃x ∈ A s.t. (i, j) ∈ σx

The bidirectional game satisfies weak positive choice, but not strong positive choice:
when an agent x proposes a σx such that (i, j) ∈ σ, then (i, j) ∈ o(σ); however, x does not
have a pure choice between σx such that (i, j) ∈ σx and σx \ {(i, j)}.

Positive choice has a natural dual: negative choice. Again, we present a weak and a
strong version. Weak negative choice states that if a social tie is excluded from the outcome
of a game, then at least some agent made an attempt for the tie not to be in the network
and that attempt was a choice for that player — they could have chosen not to make it.
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Name Description
Weak positive choice Edge can exist only when an agent had a choice in the matter.
Strong positive choice Edge can exist only when an agent had a pure choice in the matter.
Weak negative choice Edge cannot exist only when an agent had a choice in the matter.
Strong negative choice Edge cannot exist only when an agent had a pure choice in the

matter.

Table 4.2: Summary of game axiom definitions

Definition 4.2.6 (Weak negative choice). A network game G = (A,ΣA, o, S) satisfies weak
negative choice when:

(i, j) ̸∈ o(σA) =⇒ ∃x s.t. (i, j) ̸∈ σx and ∃σ′
x ∈ Σx s.t. (i, j) ∈ σ′

x

As with strong positive choice, strong negative choice is the variant of weak negative
choice where “choice” is interpreted more drastically.

Definition 4.2.7 (Strong negative choice). A network game G = (A,ΣA, o, S) satisfies
strong negative choice when:

(i, j) ̸∈ o(σA) =⇒ ∃x s.t. (i, j) ̸∈ σx and σx ∪ {(i, j)} ∈ Σx

Negative choice is arguably less applicable to network formation games, as it could
well be that the formation of a link is limited by some outside factor. Negative choice
characterises settings in which such limitations are not present.

The game in Example 4.2.2 satisfies negative choice, but does not satisfy strong negative
choice: when no agent proposes a σx such that (i, j) ∈ σ, then (i, j) ̸∈ o(σ); however, no
agent has a pure choice between a σx such that (i, j) ̸∈ σx and σx ∪ {(i, j)}.

For a summary of the definitions introduced in this subsection, and their purposes, see
Table 4.2.

4.2.3 Properties of the Outcome Function
A natural requirement for outcome functions of network games is monotonicity with respect
to edge existence. A game satisfies positive monotonicity5 if more agents attempting to
form a network topology with (i, j) in it will not remove (i, j) from the outcome network.
That is, if the social relation (i, j) is in the outcome of a game with action profile σ, and if
a player x that submitted a network σx without (i, j) in it switches to σx ∪ {(i, j)}, then
(i, j) is still in the outcome of the game.

Definition 4.2.8 (Weak positive monotonicity). A network game G = (A,ΣA, o, S) satisfies
weak positive monotonicity when: for any x ∈ A, if (i, j) ∈ o(σ), (i, j) ̸∈ σx, and σx∪{(i, j)} ∈
Σx, then (i, j) ∈ o(σ−x, σx ∪ {(i, j)}).

To illustrate weak positive monotonicity, regard the following example.

Example 4.2.3 (Interval game). Consider the following game of intervals. Each player
can choose between any network: Σx = FA. In this game, the agents are shy and need a
certain number of agents to encourage them to form a social link. However, if too many
agents encourage them, the agent will be over-encouraged, and they will not form the social

5This is closely related to Maskin monotonicity in social choice theory: if x is a winner of a vote, and a
voter a switches to a ballot in favour of x, then x remains the winner [21]. Still, the concept of weak versus
strong monotonicity in social choice theory is distinct from ours.
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relation. The number of required encouragement must fall into a certain interval. Formally
this can be represented as follows:

(i, j) ∈ o(σ) iff l ≤ |{a ∈ A | (i, j) ∈ σa}| ≤ u.

This game is not weakly positive monotone: if exactly u agents submit a profile with (i, j)
and there is an agent x who did not submit (i, j), then when x does submit i, j, (i, j) will
not be included in the outcome.

The above formulation of positive monotonicity is weak in the following sense: given a
profile σ that produces an outcome o(σ) with (i, j) in it, weak positive monotonicity dictates
that (i, j) must be in the outcome o(σ′) for any σ′ that differs from σ in that only the choice
on (i, j) is changed in some agent’s choice set. Instead, we can require that (i, j) should be
in the outcome of o(σ′) for any profile σ′ that differs from σ in some agent’s choice set, such
that the agent now includes (i, j) in their choice, no matter what that agent submits for the
other edges. We call this requirement strong positive monotonicity.

Definition 4.2.9 (Strong Positive monotonicity). A network game G = (A,ΣA, o, S) satisfies
strong positive monotonicity when: For any x ∈ A, if (i, j) ∈ o(σ) and (i, j) ̸∈ σx then for
all σ′

x ∈ Σx such that (i, j) ∈ σ′
x, (i, j) ∈ o(σ−x, σ

′
x).

Note that strong positive monotonicity implies its weak variant, take σ′
x = σa ∪ {(i, j)}.

To illustrate strong positive monotonicity, regard the following example.

Example 4.2.4 (Triadic Closure). Consider a setting of mutual consent, where a social tie
(i, j) is formed only when both i and j include it in their submitted network choice. For
simplicity’s sake, let all agents be able to choose any network: for all a ∈ A Σa = FA. First,
regard an outcome function of mutual consent called m, where the outcome contains an
edge only if both parties agree.

(i, j) ∈ m(σA) iff (i, j) ∈ σi and (i, j) ∈ σj .

An empirical phenomenon observed in the shape of social networks is that of triadic
closure [28]. Often, this phenomenon is regarded in a bidirectional setting, but we can
translate triadic closure to a directional setting as follows: two agents a, b are more likely to
have a social tie with each other when they have a friend in common — the link a F b is
more likely to form when there is an agent c such that a F c and b F c. Consider the effects
of triadic closure, in its most extreme form, on the setting of mutual consent described
above. Define an outcome function o of the triadic closure of m:

(i, j) ∈ o(σA) iff (i, j) ∈ m(σA) or ∃x ∈ A s.t. (x, i) ∈ m(σA) and (x, j) ∈ m(σA)

For a submitted σ, o(σ) contains an edge (i, j) iff both agents agree to this, or there is an
agent x that mutually consents with i and j respectively to be reachable from i and j.

The game of triadic closure satisfies weak positive monotonicity, but not strong positive
monotonicity. Consider a set of players of three agents A = {a, b, c}. Let σa = {(a, c)},
σb = {(b, c)}, σc = {(c, a), (c, b)}. Then o(σA) = {(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}.
Furthermore, o is trivially weakly monotone: adding a single edge will never delete an edge
in the outcome. Finally, for σ′

A such that σ′
a = {(a, b)}, σ′

b = σb, and σ′
c = σc (a, b) ̸∈ o(σ′

A).
Therefore, o is not strongly positively monotone.

The dual of positive monotonicity is negative monotonicity: negative monotonicity
reflects that the outcome function acts monotone with respect to the attempts made against
the existence of a social tie.

Definition 4.2.10 (Weak negative monotonicity). A network game G = (A,ΣA, o, S)
satisfies weak negative monotonicity when: for any x ∈ A, if (i, j) ̸∈ o(σ), (i, j) ∈ σx, and
σx \ {(i, j)} ∈ Σx then, (i, j) ̸∈ o(σ−x, σx \ {(i, j)}).
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An example of an outcome function that is not weakly negatively monotone is the interval
game in Example 4.2.3. If ΣA is such that |{a ∈ A | (i, j) ∈ σa}| = u+ 1, then (i, j) ̸∈ o(σA).
Furthermore, for any agent such that (i, j) ∈ σi we have that (i, j) ∈ o(σ−x, σx \ {(i, j)}).

As with positive monotonicity, we can also define a stronger variant of negative mono-
tonicity.
Definition 4.2.11 (Strong negative monotonicity). A network game G = (A,ΣA, o, S)
satisfies weak positive monotonicity when: for any x ∈ A, if (i, j) ̸∈ o(σ) and (i, j) ∈ σx

then for all σ′
x ∈ Σx such that (i, j) ̸∈ σ′

x, (i, j) ̸∈ o(σ−x, σ
′
x).

An example of an outcome function that is not weakly negatively monotone is the example
of triadic closure in Example 4.2.4. If we consider the profiles σA, σ′

A from the example,
i.e. σa = {(a, c)}, σb = {(c, a), (c, b)}, σc = {(c, a), (c, b)}, and σ′

a = {(a, b)}, σ′
b = σb, and

σ′
c = σc, then (a, b) ̸∈ o(σ′

A) and (a, b) ∈ σ′
a. However, (a, b) ̸∈ σa and (a, b) ∈ o(σA).

Like anonymous choice sets, we can also regard anonymous outcome functions. Akin
to anonymity in social choice theory, we require the outcome function to not use the order
of the actions in the action profile to determine the outcome — o is anonymous when it is
symmetric w.r.t. the ordering of σA. First, we define permutations on the ordering of the
action profile.
Definition 4.2.12 (Agent order permutation). For an agent permutation π, let πR(σA)
denote the application of π on the ordering of the strategies: πR(σA) = (σπ(a))a∈A.

As we noted before, the choices and outcomes themselves are defined over the same
agents as those that play the game, and therefore also need to be taken into consideration
when defining anonymity. This entails that a permutation of the input networks will bring
about the same permutation on the output network. The full definition of pure anonymity
of outcome therefore is the following.
Definition 4.2.13 (Pure anonymity of outcome). An outcome function o is anonymous for
a purely anonymous ΣA if for any σA ∈ ΣA and any agent permutation π:

1. o(πR(σA)) = o(σA)

2. o(π(σA)) = π(o(σA))
A network game satisfies pure anonymity of outcome when its outcome function does.

Condition (1) states that the outcome function must not care for the name of the agent
that submitted each choice in the action profile. Condition (2) states that the outcome
function must not care for the name of the agents in each submitted network choice.

Again, this definition of anonymity represents a “literal” translation of the concept of
anonymity of social choice to network formation games. But this translation does not always
align with the intuitive expectations of anonymity in a network formation games. For
example, the game in Example 4.2.4 satisfies neither condition (1) nor (2) of pure anonymity,
even though all agents are treated equally in that they can all determine who they are
connected to modulo triadic closure (which again, treats all agents equally). Therefore, like
pseudo-anonymity of choice, we introduce pseudo-anonymity of outcome.

Pseudo-anonymity of outcome dictates that, given an outcome F = o(σA), if the order
of the action profiles of agents ΣA is changed according to a permutation π, and for each
agent the names of the agents in the submitted action profiles is changed respectively, then
the outcome must be equal to the outcome network whose names are respectively changed
as well: π(F ).6

6A similar notion of anonymity is discussed in Jackson [37], here in the context of allocation rules and
value functions. Additionally, in Galeotti et al. [31], a slighly diferent adaptation of anonymity to the context
of networks is discussed. In Jackson [38] such games are further developed, here called semi-anonymous
graphical games. Semi-anonymity in the context of graphical games implies that agents only care about
their neighbours, but in an anonymous way — they only care about how many of their neighbours take
certain actions.
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Definition 4.2.14 (Pseudo-anonymity of outcome). An outcome function o, defined over a
pseudo-anonymous ΣA, is pseudo-anonymous iff for any σA and any agent permutation π:

o(πR(π(σA)) = π(o(σA)).

A network game is pseudo-anonymous if ΣA is pseudo-anonymous and o is pseudo-anonymous
for ΣA.

Note that the set of outcomes (the image of the outcome function) of a pseudo-anonymous
game is closed under permutations. That is, F = o(σA) iff for some σ′

A ∈ ΣA: π(F ) = o(σ′
A).

The definition of pseudo-anonymity specifies a way to construct this σ′
A from σA (via πR ◦π).

Let the example games given above sketch some differences between pseudo-anonymity
and pure anonymity. The interval game in Example 4.2.3 is purely anonymous and pseudo-
anonymous: Σx = FA for all x, o is symmetric, and any application of a permutation to
the action profile is reflected in the outcome. The bidirectional game in Example 4.2.4 is
pseudo-anonymous and not purely anonymous: reordering the action profile changes the
outcome as the action profiles for agents a and b determine whether (a, b) ∈ o(σA). It is
pseudo-anonymous as if we change the names of the agents in the action profile in accordance
with the reordering, then the outcome changes accordingly: (i, j) ∈ σi ⇔ (π(i), π(j)) ∈ π(σi)
and hence (i, j) ∈ b(σA) iff (π(i), π(j)) ∈ π(σπ(i)).

The following is an example of a game that is purely anonymous and not pseudo-
anonymous.

Example 4.2.5 (Purely anonymous and not pseudo-anonymous game). An example of
such a rule is a game where the only two outcomes are the empty network or {(i, j)}, and
where the outcome is {(i, j)} only when an agent submitted {(i, j)}. Let Σa = FA for any
a ∈ A, and fix an i, j ∈ A. Then:

o(σ) =
{

{i, j} ∃a ∈ A : σa = {(i, j)}
∅ otherwise

This game is anonymous as the outcome of the game only depends on whether any agent
submitted {(i, j)}. However, this game is not pseudo-anonymous, as the outcome specifies a
specific network with a link from i to j instead of a structure containing a single link that
depends on the submitted action profile. Let σ be such that an agent submitted {(i, j)}. If
this game were to be pseudo-anonymous, then {(i, j)} = o(πR(π(σ))) = π(o(σ)) = π({(i, j)}).
This clearly does not hold for every permutation π: it does not for example hold for a
permutation associating i with k for k ̸= i.

Finally, there are of course games that are neither purely nor pseudo anonymous:

Example 4.2.6 (Non-pseudo-anonymous and not purely anonymous game). An example
of a non-pseudo-anonymous and not purely anonymous game is a dictatorial game. Let
Σa = FA for any a ∈ A. Fix some dictator k ∈ A. For any σ ∈ ΣA let o(σ) = σk.

Clearly this rule is not purely anonymous. Take a σ where for some i ∈ A σi ̸= σk.
Then for a π that associates k with i: σi = o(πR(σ)) ̸= o(σ) = σk. This rule is also not
pseudo-anonymous by similar reasoning as above, except taking a σ for which π(σi) ̸= π(σk)
and σi ̸= σk : π(σi)) = o(πR(π(σ))) ̸= π(o(σ)) = π(σk).

For a summary of the definitions introduced in this subsection, see Table 4.3.

4.2.4 Variability and Fairness
We conclude with an obvious and unequivocal requirement for any (noteworthy) network
game, that its outcome is mutable at all. We call such games variable. Formally, a game is
variable when there are two action profiles that each have a different outcome.
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Name Description
Pure anonymity of outcome Outcome not determined by agent name.
Pseudo-anonymity of outcome Outcome determined by name only in reference to self.
Weak positive monotonicity A pure positive variation towards edge existence will not

bring the edge out of existence.
Strong positive monotonicity Any positive variation towards edge existence will not

bring the edge out of existence.
Weak negative monotonicity A pure negative variation towards edge non-existence will

not bring the edge into existence.
Strong negative monotonicity Any negative variation towards edge non-existence will

not bring the edge into existence.

Table 4.3: Summary of game axiom definitions

Definition 4.2.15 (Variability). A game is variable iff there exists σ, σ′ ∈ ΣA such that
o(σ) ̸= o(σ′). We call a game constant when it is not variable.

Perhaps a more disputable requirement for a network game is that no edge in the network
is constant. In other words, for any pair of agents i, j there is an action profile σA such that
i follows j in o(σA), and a σ′

A such that i does not follow j in o(σ′
A). We call such games

fair.

Definition 4.2.16 (Fairness). A network game (A,ΣA, o) is fair when for every i, j ∈ A
there are σA, σ

′
A ∈ ΣA such that (i, j) ∈ o(σA) and (i, j) ̸∈ o(σ′

A).

While fairness is a stronger requirement, for pseudo-anonymous games it is equivalent to
variability.

Proposition 4.2.1. For pseudo anonymous games, a game G is fair iff it is variable.

Proof. Let G be a game that is pseudo-anonymous. Let ΣA be the choice set of this game
and o the outcome function. We will show that G is variable iff it is fair. The right-to-
left direction is trivial. For the left-to-right direction, assume G is variable. We will lay
out a method to construct σ† and σ‡ for any two a, b ∈ A such that (a, b) ∈ o(σ†) and
(a, b) ̸∈ o(σ‡).

Since G is variable there are σ, σ′ ∈ ΣA such that o(σ) ̸= o(σ′). Hence, there must be
some pair (i, j) that is connected in one of σ, σ′ and not connected in the other. Without
loss of generality, assume that (i, j) ∈ o(σ) and (i, j) ̸∈ o(σ′). Define a permutation
π that associated i with a and j with b where i ̸= a and j ̸= b, and maps all other
agents to themselves. Then (a, b) ∈ π(o(σ)) and (a, b) ̸∈ π(o(σ′)). Hence, by pseudo-
anonymity: (a, b) ∈ o(πR(π(σ))) and (a, b) ̸∈ o(πR(π(σ′))). Now let σ† = πR(π(σ)) and
σ‡ = πR(π(σ′)).

Moreover, any any game with at least two players is constant iff its outcome function is
such that all action profiles map to either the empty network or the fully connected network.
This holds in particular for pseudo-anonymous games, as their outcomes are closed under
permutation.

Proposition 4.2.2. A game with more than two players where the image of its outcome
function is closed under permutations is constant iff for all σ ∈ ΣA : o(σ) = ∅ or for all
σ ∈ ΣA: o(σ) = {(i, j) | i, j ∈ A}.

Proof. The right-to-left direction is trivial. For the left-to-right direction, we will show
the case where the image of o is {∅}, the proof goes similarly when the image of o is
{{(i, j) | i, j ∈ A}}. Let G = (A,ΣA, o, ) be a constant network game whose image is closed
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Name Description
Variability The game must have at least two distinct outcomes.
Fairness It is possible for every edge to be and not to be in the outcome.

Table 4.4: Summary of game axiom definitions

under permutation. Assume towards a contradiction that for all σ ∈ ΣA, o(σ) ̸= ∅ and
σ ∈ ΣA, o(σ) ̸= ∅. Then for all σ ∈ ΣA: o(σ) = F for some F ̸= ∅. There is at least some
(i, j) ∈ F , and (k, l) ̸∈ F . Let π be a permutation such that i becomes k and j becomes l,
and visa-versa. Then, since the image of o is closed under permutations, there must be a σ′

such that o(σ′) = π(F ). F ̸= π(F ), hence G is not constant. Contradiction, therefore or all
σ ∈ ΣA o(σ) = ∅.

To summarise, the definitions and their intuitive description of this subsection can be
found in Table 4.4.

4.3 Concrete Single Shot Network Formation Games
In this section we will discuss some concrete single-shot network formation games, driven
by the axioms defined in the last section. Again, this consists of two parts: determining
an actual choice set and an actual outcome function. In the previous section we mainly
discussed closure properties of ΣA. We have yet to determine the actual contents of ΣA. A
very simple way to define ΣA such that it satisfies any closure property is to allow agents
to choose any network. We have assumed such a maximal ΣA in all the example in the
previous section. Such games with universal domain, are games such that for all a ∈ A:

Σa = FA.

Network games with universal domain have many applications. For example, in an intercity
public transport network, the existence of a connection from a certain city to another can
have influence on the flow of passengers of the entire network. It is therefore reasonable
to allow every agent (a city’s public transport) to have influence on the global network
structure. However, the main characteristic of social network formation is that agents form
social ties between each-other (somewhat) autonomously. The most extreme of such a
setting is one where agents that make up a social relation have full control over whether
that relation exists or not. This perspective is taken by the vast majority of game-theoretic
studies on social network formation [51, p. 296]. For an overview of such studies see Jackson
and Zenou [39], and Bloch and Dutta [21].7 Goyal [32] poses two reasons for this: complexity
and tractability. They state:

One of the principal attractions of networks is that they are amenable to
subtle and quick transformations via local, and small-scale, linking and de-
linking activity. In line with this observation, it has been felt that invoking the
incentives, coordination, and agreements among large groups is not the “right”
way to approach a positive theory of network formation. Another important
reason is tractability; networks are complicated objects and even with single-
or two-person moves the analysis of network formation is quite intricate and
general characterisation results have been difficult to obtain. ([32, p. 144])

As such, we will mainly develop a local approach to network formation.
7Other major studies in this field that are particularly interesting include Jackson [38, ch. 11], Goyal [32],

and Ray [51].
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4.3.1 Games With a Local Domain
In the simplest and most extreme settings of local influence, the control of adding or
removing a relation between two agents a and b in a social network lays entirely with a
and b themselves — agents only have a say in whom they follow and who follows them.
Formally, this is reflected in both the outcome function and the choice set. With respect
to the outcome function, locality entails that the outcome function should only take into
account the proposed networks of the agents a and b when deciding on the existence of the
edge (a, b) in the outcome network. We call games that abide by this rule locally decided.
With respect to the choice set, locality requires that agents are allowed to only propose who
they follow or who will follow them: Σa ⊆ P{(i, j) ∈ A×A | i = a or j = a}. We call such
Σa local to a. The most obvious pseudo-anonymous local choice set is the maximal one,
where each agent can propose any network that is local to them. We call locally decided
games defined over such a maximally local choice: local games.

Definition 4.3.1 (Local games). A game is local when:

1. for every a ∈ A, Σa = P{(i, j) ∈ A×A | i = a or j = a} (local choice), and

2. for σ, σ′ ∈ ΣA such that σi = σ′
i and σj = σ′

j : (i, j) ∈ o(σ) iff (i, j) ∈ o(σ′) (local
decidedness).

Locally decided games do not fully determine when exactly an edge exists in the outcome
of an action profile, only that the outcome function should decide this based only on the
action profiles of the agents that the edge in question connects.

In addition to locality, common ground between all studies on social network formation
is that the outcome of a game should follow the decision of the players when they both agree
on the existence of an edge between them. We call such games strict majority following.8

Definition 4.3.2 (Strict majority following). A local network game G satisfies strict majority
following iff for any i, j ∈ A and any σ ∈ ΣA the following holds:

(i) if (i, j) ∈ σi and (i, j) ∈ σj then (i, j) ∈ o(σ), and

(ii) if (i, j) ̸∈ σi and (i, j) ̸∈ σj then (i, j) ̸∈ o(σ).

This implies that the agents are able to (not) form any edge between them and another
agent when the other agent tries to (not) form this edge as well. We can characterise
strict majority following games by the earlier introduced axioms: under a local setting, the
restrictions of weak choice and that of weak monotonicity and fairness are both equivalent
to the restrictions of strict majority following

Proposition 4.3.1. For a local network game G = (A,ΣA, o) the following are equivalent:

1. G satisfies strict majority following;

2. G satisfies weak positive and negative monotonicity, and fairness;

3. G satisfies weak positive and negative choice;

4. G satisfies weak positive and negative monotonicity, variability, and is pseudo-anonymous.
8Strict majority following has a connection to the Pareto Principle of social choice. We can understand

the local network formation game as an aggregate of elections on the existence of an edge, where the
candidates are “existence” and “non-existence”. Each agent can vote only on the election of edges they are
a part of. The Pareto Principle dictates that if both i and j (strictly) prefer (i, j) (not) in the outcome
network, then (i, j) must (not) be in the outcome network.
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Proof. We will prove that for local games, the second and third statement are equivalent
to the first. Thereby, we also prove that they are all equivalent to the fourth, as by
Proposition 4.2.1, variability and fairness are equivalent under pseudo-anonymous games.

(2. ⇒ 1.) We will show the contrapositive. Assume that G does not satisfy strict majority
following. Distinguish two cases:

(1) For some i, j ∈ A there is a σ ∈ ΣA such that: (i, j) ∈ σi, (i, j) ∈ σj , and (i, j) ̸∈ o(σ).
We will show that in this case weak negative monotonicity and local decidedness imply
non-fairness. Let σ′ be the same as σ except that (i, j) ̸∈ σ′

i, let σ′′ be the same
as σ except that (i, j) ̸∈ σ′′

j , and let σ′′′ be the same as σ expect that (i, j) ̸∈ σ′′′
i

and (i, j) ̸∈ σ′′′
j . By local choice σ′, σ′′, σ′′′ ∈ ΣA. By weak negative monotonicity:

(i, j) ̸∈ o(σ′), (i, j) ̸∈ o(σ′′), and (i, j) ̸∈ o(σ′′′). Finally, by local decidedness, any σ†

not equal to σ, σ′, σ′′, and σ′′′ must have the same outcome as one of σ, σ′, σ′′, or
σ′′′. Hence, (i, j) ̸∈ o(σ) for any σ ∈ ΣA.

(2) For some i, j ∈ A there is a σ such that: (i, j) ̸∈ σi, (i, j) ̸∈ σj , and (i, j) ∈ o(σ). By
a similar argument as (1.), weak positive monotonicity and local decidedness imply
non-fairness.

(1. ⇒ 2.) We will show the contrapositive: if G does not satisfy one of weak positive
monotonicity, weak negative monotonicity, or fairness, then it is not strict majority following.

1. If G does not satisfy weak positive monotonicity, then there are x, i, j ∈ A and
σ ∈ ΣA such that: (a) (i, j) ∈ o(σ), (b) (i, j) ̸∈ σx, (c) σx ∪ {(i, j)} ∈ Σx, and
(d) (i, j) ̸∈ o(σ−x, σx ∪ {(i, j)}). (c) together with local choice implies that x = i or
x = j. Without loss of generality, assume that x = i. There are two possibilities:
either (i, j) ̸∈ σj , or (i, j) ∈ σj . As by (b) (i, j) ̸∈ σi and by (a) (i, j) ∈ o(σ), if
(i, j) ̸∈ σj then G does not satisfy strict majority following. If (i, j) ∈ σj , then for σ′

such that σ′
−i = σ−i and σ′

i = σi ∪ {(i, j)}: (i, j) ∈ σ′
i and (i, j) ∈ σ′

j . By (c) σ′ ∈ ΣA,
and by (d) (i, j) ̸∈ o(σ′). Therefore, G does not satisfy strict majority following.

2. If G does not satisfy weak negative monotonicity, then we can repeat the argument
of (1.), this time assuming that (i, j) ̸∈ o(σ), (i, j) ∈ σx, σx \ {(i, j)} ∈ Σx, and
(i, j) ∈ o(σ−x, σx \ {(i, j)}).

3. If G does not satisfy fairness, then there are i, j ∈ A such that either for all σ ∈ ΣA:
(i, j) ∈ o(σ), or for all σ ∈ ΣA: (i, j) ̸∈ o(σ). By local choice there is a σ+ ∈ ΣA and
σ− ∈ ΣA such that (i, j) ∈ σ+

i , (i, j) ∈ σ+
j , (i, j) ̸∈ σ−

i , and (i, j) ̸∈ σ−
j . It must either

hold that (i, j) ̸∈ o(σ+) or (i, j) ∈ o(σ−). Therefore, G does not satisfy strict majority
following.

(3. ⇒ 1.) Assume towards a contradiction that there is local game that satisfies weak
positive and negative choice that is not strict majority following. Distinguish two cases:

(i) For some i, j ∈ A, there is a σ ∈ ΣA such that (i, j) ∈ σi, (i, j) ∈ σj , and (i, j) ̸∈ o(σ).
By weak negative choice, there is an x such that (i, j) ̸∈ σx and a σ′

x ∈ Σx such that
(i, j) ∈ σ′

x. By local choice, this x can only be i or j; hence (i, j) ̸∈ σi or (i, j) ̸∈ σj .
Contradiction, therefore the game does satisfy strict majority following.

(ii) For some i, j ∈ A, there is a σ ∈ ΣA such that (i, j) ̸∈ σi, (i, j) ̸∈ σj , and (i, j) ∈ o(σ).
By weak positive choice, there is an x such that (i, j) ∈ σx and a σ′

x ∈ Σx such that
(i, j) ̸∈ σ′

x. By local choice, this x can only be i or j; hence (i, j) ∈ σi or (i, j) ∈ σj .
Contradiction, therefore the game does satisfy strict majority following.

(1. ⇒ 3.) We will show the contrapositive. That is, if G does not satisfy either weak
positive or negative choice, then it is not strict majority following.
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1. If G does not satisfy weak negative choice, then there are i, j ∈ A and σ ∈ ΣA such
that (i, j) ̸∈ o(σ), and for every x ∈ A either (a) (i, j) ∈ σx, or (b) for all σ′

x ∈ Σx,
(i, j) ̸∈ σ′

x. By local choice (b), cannot hold for x = i or x = j. Hence, in these cases
(a) must hold. Hence, in particular: (i, j) ∈ σi and (i, j) ∈ σj . Recall that (i, j) ̸∈ o(σ).
Therefore, G does not satisfy strict majority following.

2. If G does not satisfy weak positive choice, then a similar argument to (1.) can be
made. This time assuming that there are i, j ∈ A and σ ∈ ΣA such that (i, j) ∈ o(σ),
and for every x ∈ A either (i, j) ∈ σx, or for all σ′

x ∈ Σx, (i, j) ̸∈ σ′
x.

The conditions of strict majority following still leave open what happens when the
sending and receiving party conflict in choice on whether there should be a link between
them. It is exactly here that the studies on social network formation diverge. We will discuss
some simple interpretations of majority following games and the contexts in which they are
reasonable.

In a context where agents can choose to listen to any communication that takes place
in the entire network, e.g. public communication or situations where agents are able to
maliciously listen in on communications of others, the receiving party decides whether they
listen to (or read) the information of the sending party. Examples of such situations are:
publications of papers, digital social network feeds, publications on blogs and websites, or
eavesdropping, among others. These cases call for a strict majority following game where
the receiving agent determines the existence of an edge from the sender to the receiver.
Formally, define an outcome function or such that:

(i, j) ∈ or(σ) iff (i, j) ∈ σi.

Such receiver-decided games are often the implicit assumption in studies on directed social
network formation [21]. For example, in the one-way flow setting in Bala and Goyal
[10] agents can choose agents to form edges to, obtaining their benefit (e.g. information,
opportunities in trade-networks etc.). Similar unilateral games are discussed in Goyal [32]
and Jackson [38, ch. 11.3].

In studies on bidirectional social relations it is the norm to require consent from both
parties involved in order to form a link [21]. For local games, this is exactly equal to the game
described in Myerson [42]. Similar games are also discussed in the bidirectional/bilateral
settings in Jackson [37], Jackson [38], and Goyal [32]. In such games, agents need permission
in order to create relations with other agents. Established social relations can be broken
by both parties individually. We call such games consensual following:9 let os∧r be the
outcome function such that:

(i, j) ∈ os∧r(σ) iff (i, j) ∈ σi and (i, j) ∈ σj .

Digital social network platforms, for example, implement such a rule by a request-and-
accept dynamic. Aumann and Myerson [8] formalises such a dynamic explicitly as an
extensive game; os∧r is its single-shot counterpart.

The outcome functions or and or∧s are the most common assumption in game-theoretic
studies on social networks. They have natural duals. os, the dual of or, is an outcome
function where agents can decide who they send information to. This is true for forms of
obtrusive communication, for example for direct messages on digital social networks, or
sending letters or emails. Formally, define the outcome function os, such that:

(i, j) ∈ os(σ) iff (i, j) ∈ σj .

9Related to what is called “obtainable via deviations” in Jackson [37], (p.28): g′ is obtainable from g′ by
C iff for any added link both parties are member of C and for any severed link one of them is in C.
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os∨r, the dual of os∧r, is an outcome function where both the sending and receiving
agent can decide to form an edge between each other. But only the sender and receiver
together can decide to not form this edge. Formally, define os∨r, such that:

(i, j) ∈ os∨r(σ) iff (i, j) ∈ σi or (i, j) ∈ σj .

These duals are not discussed by economic studies in a truly directed setting. The
reason for this most likely is that the underlying directed networks in economic studies
represent flow of benefit. Therefore, there is no real incentive for the party that “sends”
benefit to initiate a directed relation. Only in a setting with so called two-way flow of benefit,
where benefit is bidirectional (and cost is unilateral), do such games occur — that is, when
(i, j) ∈ o(σ) implies that i bears the cost of maintaining the edge, while both i and j obtain
benefit from it. For example in the two-way flow setting in Bala and Goyal [10] and Haller
and Sarangi [34] (a generalisation of the former).

In an epistemic setting of communication, where the underlying network is a relation of
epistemic following, benefit is more ambiguous. It doesn’t always flow in the same direction
as to the underlying social relation. Yet, a certain aspect of this flow is two-way: being able
to send and being able to receive information are both beneficial, albeit in a qualitatively
different way. This is distinct from the two-way flow in economic studies, where it implies
equal flow in both direction, both qualitatively and quantitatively, Therefore, games with
outcome function os or os∨r are of interest in an epistemic setting.

4.4 Social Influence and Extensive Network Formation
The local games of the last section depict network formation in its simplest and most
autonomous form. Because of this, they lack many of the intricacies involved in social
network formation. In reality, as many studies have shown , social relations are influenced
by the agent’s social environment, social norms, and other underlying processes of social
influence. In this section we will extend strategic games and network games to incorporate
social influence in its most general form: we let the outcome of a network game be dependent
on the current social network.

Moreover, in a social setting, networks are not formed at a certain moment, but are
continually changing. We will see that such continual games immediately follow from the
structure of the network games with social influence.

4.4.1 Game State
Formalizing any process of social influence already assumes that the agents find themselves
in a social environment or network. We can already implicitly take such a social environment
into account in single-shot games: assume a social relation F over the agents, and (implicitly)
define the outcome function and choice set over this F . A problem with such an implicit
approach is that, then, the axioms cannot take this network into account. This issue is
most prominent with the axiom of pseudo-anonymity. Pseudo-anonymity forbid any form
of social influence that is not global, i.e. that is restricted by the current social network:
an outcome function that treats an agent a different from b because of their placement in
F is not pseudo-anonymous. The first step in incorporating social influence, therefore, is
to make the social setting explicit. We will partake this explication first from the abstract.
Later, we will make this concrete as network games.

Abstractly, taking into account the social network in a network game entails that there is
a game state that determines some part of the game’s logic. Explicating the social network,
then, entails that we explicate the state over which the game is played. Denote this state
by s0. For social influence on network games, the game state s0 itself is exactly what is
modified by the players when playing the game — the outcome of a game is again a game
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state, s0 is an element of S. The outcome function o, then, takes the shape of a state
transition function that dictates how the agents can modify the state s0.

With the explication of the current game state, we can also explicate how game state
determines game logic. Instead of specifying a state and the state transition from this state,
we specify a transition function o for any state in S. We associate a transition game with
each state of S. We call such a structure a game frame.

Definition 4.4.1 (Game frame). Let ΓA
S denote the set of all possible strategic games

played by A with (outcome) states S. A game frame is a tuple GF := (γ,Σ, S), where S is
a non-empty set of possible game states and γ : S → ΓA

S is a function that associates any
game state with a strategic game.

To easily reference the logic of a game on state S, we use the following notation: let
Σγ

A(s) be the choice set of the game in state s, and let oγ(s) be the outcome function of the
game in state s.

4.4.2 Extensive Form Games With Simultaneous Play
A game frame becomes a game (form) when combined with a current state s0. Out of these
“pointed” game frames, extensive games (game forms) immediately follow: given a starting
state s0, for n ∈ N let σn ∈ Σγ

A(sn) and

sn+1 = oγ(sn)(σn).

When γ is a partial function, this structure is a state automaton, with alphabet Σ =⋃
s∈S ΣA

γ(s), states S, initial state s0, state transition function oγ , and terminating states
consisting of the states not in the domain of γ. Taking into account that ΣA are choices of
agents in a strategic game, such a structure is in essence what in Osborne et al. [44, Section
7.1] is called an extensive form game with simultaneous play.[47]10 Note that we also get
finite automata and extensive form games with total functions γ by assigning a dummy
game to terminating states, as noted in Pauly [47].

Normally, instead of actions, play in extensive games (with perfect information) is
analysed through a player’s strategy. Such strategy is a function that assigns a choice for
each history: a possible sequence of profiles and their states. We will not develop these
strategies here. Instead, we will present the outlines of a logic of ability (effectivity) for
these games in the next section.

4.4.3 Extensive Games of Network Modification
To make the game forms concrete as network games, we must associate a social network
with each game state. Let (γ, S) be a game frame such that for all s ∈ S, ΣA

γ(s) ⊆ FA.
Let ν : S → FA be a function that assigns a social network to each game state. A network
game frame is a tuple:

NF := (γ, S, ν).

If we care only about the networks associated with state and not the states themselves,
then we care only about the network games associated with each state by γ: the structure
(ν ◦ oγ ,Σγ

A,FA). Let this structure be denoted by γν(s). ν is an isomorphism between
10These games are different from repeating games: in repeating games, a player receives a payoff each

round of the game, whereas in extensive form games, a payoff is only given at a terminal node. Furthermore,
repeating games repeat the same game multiple times, whereas in an extensive form game, the actions and
results change each round [44, ch. 14]. Hence, game frames correspond to repeating games when ΣA and o
are constant over the domain of games ΓA

S .
Extensive form games with simultaneous play are a generalisation of the standard definition of extensive

form games, as these extensive form games without simultaneous play can be modeled as simultaneous ones
by a game with subsequent rounds where, at each round, a particular player has a choice set containing
more than one choice and the other players all have a choice set containing only one choice.[47]
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Figure 4.1

this structure and (oγ ,Σγ
A, S) iff it is a bijection from S to FA. We can then simplify the

structure of network games as follows:

Definition 4.4.2 (Bijective network game frame). Let NA be the set of all network games
with players A. A network game frame is a game frame where the set of states S = FA and
γ : S → NA.

Out of pointed network game frames, network games (game forms) follow. Subsequent
plays of such network games (game forms) bring about extensive network games. The use
of such subsequent plays is illustrated by the following example.

Example 4.4.1. Take a game generated from any of the local rules in the previous section,
say or. Add the middleman requirement: i can propose a network with (i, j) in it when i
follows someone who follows j. Likewise, j can propose a network with (i, j) in it when j
follows someone who follows i. Formally, for any a ∈ A, Σγ

a(F ) = {(a, i) | ∃x ∈ A s.t. a F
x F i} ∪ {(i, a) | ∃x ∈ A s.t. a F x F i}.

Let the initial network F0 be as depicted in Figure 4.1a. Assume that a wants a
connection to d. By the middleman requirement this is not directly possible. However, a
does have a strategy to make the connection (a, d) come about: first connect with c, for
which b is a middleman, and then connect with d through the middleman c. Let σA be such
that σa = {(a, c)}, σb = (b, c), σc = (c, d), and σd = ∅. Then F1 = o(F0)(σA) is as depicted
in Figure 4.1b. Then, let σ′

a = {(a, d)}, and let σ′
x = σx for x ∈ A \ {a}. The outcome of

o(F1)(σA) is depicted in Figure 4.1c.

4.4.4 Axioms
Besides uncovering an extensive form of network formation, network game frames allow us
to specify properties of the relation between game logic (i.e. outcome function and choice
set) game state, and network state. In particular, we can extend the axioms of single-shot
network games, introduced in the previous section, to also take into account these relations
between game state (the social network) and game logic (the games played on this social
network).

The choice axioms dictate that edges are formed by the choice of at least some agent. In
the extensive case of network modification, this implies that an edge changes state, i.e. flips
from existing to non-existing or visa versa, only when at least some agent made the choice
to do so. For positive choice this entails that if (i, j) is in the outcome, then an agent must
have chosen (i, j) to be in the outcome, but only when (i, j) was not already in the current
network. As before, the distinction between weak and strong positive choice come about by
different interpretations of whether an agent had a choice in including or excluding an edge.

Definition 4.4.3 (Weak positive choice). ∀s ∈ S, i, j ∈ A, σA ∈ Σγ
A(s): (i, j) ∈

oγ(s)(σA) and (i, j) ̸∈ ν(s) =⇒ ∃x ∈ A s.t. (i, j) ∈ σX and ∃σ′
x ∈ Σγ

x(s) s.t. (i, j) ̸∈ σx.

Definition 4.4.4 (Strong positive choice). ∀s ∈ S, i, j ∈ A, σA ∈ Σγ
A(s): (i, j) ∈

oγ(s)(σA) and (i, j) ̸∈ ν(s) =⇒ ∃x ∈ A s.t. (i, j) ∈ σX and σx \ {(i, j)} ∈ Σγ
x(s).
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Similarly for negative choice, if (i, j) is not in the outcome, then an agent must have
chosen (i, j) to not be in the outcome only when (i, j) was already in the current network.

Definition 4.4.5 (Weak negative choice). ∀s ∈ S, i, j ∈ A, σA ∈ Σγ
A(s): (i, j) ̸∈

oγ(s)(σA) and (i, j) ∈ ν(s) =⇒ ∃x ∈ A s.t. (i, j) ̸∈ σX and ∃σ′
x ∈ Σγ

x(s) s.t. (i, j) ∈ σx.

Definition 4.4.6 (Strong negative choice). ∀s ∈ S, i, j ∈ A, σA ∈ Σγ
A(s): (i, j) ̸∈

oγ(s)(σA) and (i, j) ∈ ν(s) =⇒ ∃x ∈ A s.t. (i, j) ̸∈ σX and σx ∪ {(i, j)} ∈ Σγ
x(s).

For extensive games, monotonicity should still hold for all rounds of the game: all games
γ(F ) for F ∈ FA should be monotone. Monotonicity should also hold relative to the current
network F : if agents can bring about (i, j) in a network, then submitting the same profile
on a network with (i, j) in it must also bring about a network with (i, j) in it. That is, if
an edge is in the outcome of a game on network F , where the agents have submitted a σA,
then if the agents can submit σA in the game on network F ∪ {(i, j)} as well, (i, j) must
also be in the outcome.

Definition 4.4.7 (Weak positive monotonicity). ∀s ∈ S:

1. ν ◦ oγ(s) is weakly positively monotone for Σγ
A(s), and

2. ∀σA ∈ Σγ
A(s), if (i, j) ∈ oγ(s)(σA) and (i, j) ̸∈ ν(s) then: ∀t ∈ S s.t. ν(t) =

F ∪ {(i, j)}: if σA ∈ Σγ
A(t) then (i, j) ∈ o(t)(σA).

Definition 4.4.8 (Strong positive monotonicity). ∀s ∈ S:

1. ν ◦ oγ(s) is strongly positively monotone for Σγ
A(s), and

2. ∀σA ∈ Σγ
A(s), if (i, j) ∈ oγ(s)(σA) and (i, j) ̸∈ ν(s) then for any t ∈ S s.t. (i, j) ∈ ν(t):

if σA ∈ Σγ
A(t) then (i, j) ∈ oγ(t)(σA).

Similarly, for the negative variants of monotonicity.

Definition 4.4.9 (Weak negative monotonicity). ∀s ∈ S:

1. ν ◦ oγ(s) is weakly negatively monotone for Σγ
A(s), and

2. ∀σA ∈ Σγ
A(s), if (i, j) ̸∈ oγ(s)(σA), and (i, j) ∈ ν(s) then: ∀t ∈ S s.t. ν(t) =

F \ {(i, j)}, if σA ∈ Σγ
A(t) then (i, j) ̸∈ oγ(t)(σA).

Definition 4.4.10 (Strong negative monotonicity). ∀s ∈ S:

1. ν ◦ oγ(s) is strongly negatively monotone for Σγ
A(s), and

2. ∀σA ∈ Σγ
A(s): if (i, j) ̸∈ oγ(s)(σA), and (i, j) ∈ ν(s) then for any t ∈ S s.t. (i, j) ̸∈ ν(t):

if σA ∈ Σγ
A(t) then (i, j) ̸∈ oγ(t)(σA).

Recall that pseudo-anonymity dictates that the names of the agents do not matter in
the formation of the social network. Hence, for any agent permutation π, if an agent a can
choose network σa in network F , then π(a) must be able to choose π(σa) in network π(F ).

Definition 4.4.11 (Pseudo-anonymity of choice). Σγ
A is pseudo-anonymous iff for all

permutations π and all s, t ∈ S s.t. ν(s) = π(ν(t)):

σa ∈ Σγ
A(s) ⇐⇒ π(σa) ∈ Σγ

π(A)(t)

Similarly, pseudo-anonymity of outcome should dictate that if Fi+1 is the outcome of
a network game on a state with network Fi where the players have submitted σA, then
π(Fi+1) should be the outcome of all games with a network π(Fi) where the players have
submitted π(σA).
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Definition 4.4.12 (Pseudo-anonymity of outcome). oγ is pseudo-anonymous for a pseudo-
anonymous choice set function Σγ

A iff: for all s, t ∈ S s.t. ν(s) = π(ν(t))

ν(oγ(t)(πR(π(σA)))) = π(ν(oγ(s)(σA))).

Note that if a game frame satisfies pseudo-anonymity of choice and pseudo-anonymity of
outcome, then in particular ν(s) = ν(t) ⇒ Σγ

A(s) = Σγ
A(t), and ν(s) = ν(t) ⇒ ν ◦ oγ(s) =

ν ◦ oγ(t). I.e. states with equal networks are associated with equal network games.11

The variability and fairness axioms can be extended to game frames by requiring the
single-shot conditions of all games associated with a state.

Definition 4.4.13 (Variability). For all s ∈ S, γν(s) is variable.

Definition 4.4.14 (Fairness). For all s ∈ S, γν(s) is fair.

4.5 Network Formation Logic
We have yet to touch upon any proper game theory, in that we have not given players any
incentive, and have not discussed solution concepts. In game theory, such incentives take
the form of orderings over outcome states. Often such an order is made concrete by score.
As the goal of the game-theoretic framework presented here is to reason about network
formation, and particularly to analyse agent’s ability, we do not present such incentive or
solution concepts.12 Instead, we will present the outlines of a logic to reason about ability
of agents in network formation games. A full study of such a logic is beyond the scope of a
thesis.

4.5.1 Coalition Logic
A natural candidate for logics of ability is Coalition Logic [47]. Even more so for the network
game frames of the last section, as Coalition Logic is the modal logic of coalitional ability, or
effectivity, in extensive form games with simultaneous play.13 We will review Coalition Logic
here, and adapt some of its syntax and semantics to better match network formation games.
Formally, effectivity is represented by a function E : P(A) → P(P(S)) that associates each
coalition C ⊆ A with a set of states. For X ⊆ A, if E(C) = X, then C is effective for X,
meaning that C has a strategy to always bring about a state inside X. In such cases, we
say that C can force the set of outcomes X.

Pauly [47] presents a connection between a certain class of effectivity functions and
strategic games, playable effectivity functions. These are effectivity functions E that satisfy
Liveness, Safety, A-maximality, Outcome monotonicity, and Superadditivity. A theorem of
effectivity functions is that they are playable iff they are the effectivity function of some
strategic game — if there is a strategic game G such that:

X ∈ EG(C) iff ∃σC∀σC o(σC , σC) ∈ X

By this connection between effectivity functions and strategic games, coalition logic can be
immediately employed as a logic of effectivity in network game frames.

The language of coalition logic then is generated from the following BNF. To better align
with games of network formation, we fix a set of network propositions instead of a set of
generic propositions,

φ ::= Fa,b | ¬φ | φ ∨ φ | [C]φ
11This does not mean that states associated with unequal networks are always associated with unequal

network games.
12A way to add incentive to our framework is to assign goals to agents, such as the strategic positions

described in the previous chapter. Agents can, for example, rank the set of states on whether they can block
information in it between specific sets. Maybe even ranking those worlds higher where they are a more
unique such connector or blocking set.

13More precisely, α-effectivity [1].
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As with Communication Logic, Fa,b denotes that a follows b. [C]φ indicates that a set
of agents C, when operating as a coalition, is effective for φ, meaning that C has a strategy
such that φ will be true no matter what other agents do. More precisely, if M, w ⊩ [C]φ
then C is effective for the set φM := {w ∈ W | M, w ⊩ φ}.

Coalition Logic is evaluated on effective models. If we interchange its evaluation function
with the network assignment function ν, we get the structure of the “effective model” of a
network game frame.

Definition 4.5.1 (Network Formation Model). A network model M is a tuple (S, ν,E),
where S is a set of states, ν is the network function that associates each state with a network
ν : S → FA, and E is a function that associates each state with a playable effectivity
function: E : S → P(A) → P(P(S)).

The interesting parts of the semantics of coalition logic are as follows, keeping in mind that
the “valuation function” of a network formation model is a network function ν, associating
states with a social network.

M, s ⊩Fa,b iff (a, b) ∈ ν(s)
M, s ⊩ [C]φ iff φM ∈ E(s)(C).

where φM = {s ∈ S | M, s ⊩ φ}. For an axiomatisation of this logic, see Pauly [47].

4.5.2 Towards Network Formation Logics
Coalition logic is the logic of effectivity of generic network formation games. As pointed out
before, however, not all network formation games make sense. We attempted to consolidate
the class of network formation games to consider, by presenting “axioms” of the process of
network formation. A natural next step is to phrase these axioms in Coalition Logic. Such
axioms, then, bring about logics of effectivity of, say, pseudo-anonymous network formation
games, positively monotone network formation games, and so on. These logics will give
more insight into the effects such axioms have on the ability of coalitions in shaping the
network in certain ways.

Recall the correspondence between effectivity functions and strategic games presented by
Pauly [47]; a playable effectivity function E of a game G — denoted by EG — is such that:

X ∈ EG(C) iff ∃σC∀σC o(σC , σC) ∈ X

Note that the effectivity function EG is not unique to the particular strategic game G; as the
coalitional ability between two different games can be the same, different strategic games can
share the same effectivity function. This is not explored in Pauly [47]. But this connection
between specific strategic games and their effectivity function is crucial in understanding
the relation between the axioms of network game frames and the behaviour of effectivity
functions. We will briefly go over this relation here.

Particular effectivity functions identify particular “effective-equivalence” classes of
single-shot games. And particular network formation models identify particular “effective-
equivalence” classes of extensive games with simultaneous play. Let the function Eγ :
S → P(A) → P(P(S)) be such that Eγ(s) is the effectivity function of the game γ(s):
Eγ(s) = Eγ(s).

Definition 4.5.2 (Effective-equivalence). We say that a game frame G = (S, ν, γ) is
effective-equivalent to a game frame G′ = (S′, ν′, γ′), notation G ≃E G′, iff Eγ = Eγ′ ,
S = S′, and ν = ν′. The effective-equivalence class of a game frame G is the class of game
frames that are effective-equivalent to G.

Note that two games G = (S, ν, γ) and G′ = (S′, ν′, γ′) can be effective-equivalent, even
if γ ̸= γ′. The “axioms” presented in the previous chapter are not necessarily closed under
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such effective-equivalent classes. Thus, it is impossible to identify a class of, say, pseudo-
anonymous effectivity functions that correspond to pseudo-anonymous games. Yet, we can
still formulate pseudo-anonymous properties of network formation models. If π(ν(s)) = ν(t),
and C is effective “for F”14 in s, then π(C) is effective “for π(F )” in t.

Definition 4.5.3 (Effectively pseudo-anonymous). A network formation model M =
(S, ν,E) satisfies pseudo-anonymity when, for any permutation π, s, t ∈ S s.t. ν(s) = π(ν(s′)),
network F ∈ FA, and coalition C ⊆ A:

φM
F ∈ E(s)(C) iff φM

π(F ) ∈ E(t)(π(C))

The axiom of Definition 4.5.3 identifies the class of pseudo-anonymous Network Formation
Models.

Proposition 4.5.1. If the game frame G = (S, γ, ν) is pseudo-anonymous, then the model
M = (S, ν,Eγ) is effectively pseudo-anonymity.

Proof. Assume that G is pseudo-anonymous. Take an arbitrary F ∈ FA, permutation π,
s, t ∈ S s.t. ν(s) = π(ν(t)), C ⊆ A. To show: φM

F ∈ E(s)(C) iff φM
π(F ) ∈ E(t)(π(C)).

We will show the left-to-right direction, the right-to-left direction follows similarly. φM
F ∈

E(s)(C) implies that ∃σC ∈ Σγ(s)∀σC ∈ Σγ(s)oγ(s)(σC , σC) ∈ φM
F , i.e. ν(oγ(s)(σC , σC)) =

F . Let σ denote the action profile where C chooses σC and C chooses C. Let σ′ =
πR(π(σ)). By pseudo-anonymity of G, ν(oγ(t)(σ′)) = π(F ), and σ′ ∈ Σγ

A(t). Thus, ∃σπ(C) ∈
Σγ

π(C)(t)∀σπ(C) ∈ Σγ

π(C)
oγ(t)(σπ(C), σπ(C)) ∈ φM

π(F ). Therefore, φM
π(F ) ∈ E(t)(π(C)).

The right-to-left direction of this proposition does not hold, as the axioms of pseudo-
anonymity in the previous chapter are not closed under effective-equivalence classes. This
proposition implies that, if the effective-equivalence class of a game G = (S, γ, ν) contains a
pseudo-anonymous game, then the model M = (S, ν,Eγ) is pseudo-anonymous. Whether
such effectivity functions also identify such classes, i.e. whether this also holds in the other
direction, is unknown.

We will not make any further attempt to phrase the axioms in the previous chapter
for network formation models, and we will not give an analysis of effective-equivalent
classes, as this is beyond the scope of this thesis. We will conclude by phrasing effective
pseudo-anonymity as a property of Network Formation Logic.

Proposition 4.5.2 (GP). Let the network formula of a network F ∈ FA be denoted by

φF :=
∧

a,b∈A

{
Fa,b if (a, b) ∈ F

¬Fa,b otherwise.

A model M is effectively pseudo-anonymous iff it satisfies GP: For all F, F ′ ∈ FA, and
C ⊆ A:

(GP) ⊩ φF → [C]φF ′ iff ⊩ φπ(F ) → [π(C)]φπ(F ′)

Proof. The left-to-right direction follows from the semantics of [C]. We will prove the
right-to-left direction by contrapositive. Assume that M is not pseudo-anonymous. Then
there are F ∈ FA, C ⊆ A, s, t ∈ S s.t. ν(s) = π(ν(t)) and either: 1. φM

F ∈ E(s)(C) but
φM

π(F ) ̸∈ E(t)(C); or 2. φM
F ̸∈ E(s)(C) but φM

π(F ) ∈ E(t)(C). (i) implies that M, s ⊩ [C]φF

and M, t ̸⊩ [C]. (ii) implies that M, s ̸⊩ [C]φF and M, t ⊩ [C]. As M, s ⊩ φν(s) and
M, t ⊩ φπ(ν(s)), (i) disproves the left-to-right direction of GP and (ii) disproves the right-to-
left direction of GP.

14Effective for states s such that ν(s) = F .
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Chapter 5

Conclusion

In this chapter we will summarize the contributions of this study to the field. We have
already discussed many such contributions, specifically in Section 3.5. We will go over the
broad lines again, and add some new perspectives on the contributions. After, we outline a
unification of the two frameworks presented in this thesis: the dynamic epistemic logic of
full communication in Chapter 2, Communication Logic, and the game-theoretic framework
of network dynamics in Chapter 4. Finally, we discuss other directions of future work.

5.1 Contributions
With Communication Logic, the study on communication as the process of knowledge
propagation and its mediating positions, and the formalisation of a game-theoretic framework
on network dynamics, we laid the groundwork for a further study on the interplay between
epistemics, communication, social networks, crucial positions, and network change.

Logics of information propagation through a network often regard the propagation of bits,
packets, or singular pieces of information. This passive and atomic form of exchange can by
no means be equated to the intricate process of the propagation of knowledge over a network.
Much more suited to such epistemic categories is the framework of distributed knowledge
and communication as its concentration, actualisation, or realisation. Our study gives such
an epistemic treatment of information propagation. With our directional treatment of
distributed knowledge realisation — the realisation of that what is distributively known by
the sender and receiver, to knowledge by the receiver — we gave an epistemic account of
the process of information propagation over a network.

Social network logics are, of course, not new. However, most such logics take formulas of
a language as the objects of communication, alike PAL. Communication Logic functions
as a full communication logic that treats communication, instead, as the transmission of
similarity of worlds; abstracting away from the specifics regarding the language in which the
knowledge is phrased, and the order in which formulas are announced.

The resolution of distributed knowledge, its actualisation, is the subject of full communi-
cation logics and resolution logics [3; 16]. Our contribution to this field is the formalisation
of a logic that restricts such resolution operators by a network, that is explicitly included in
the model. As such it further develops the reading map modalities of Baltag and Smets
[16], modalities that model restricted resolution by a reading map stated in the syntax of
the logic itself. Communication Logic, instead, treats the social network as an object of its
models: the logic is evaluated on a social network, and full communication modalities model
the resolution of distributed knowledge relative to this social network.

With social networks and their science come mediating positions. These positions are
crucial to the propagation of knowledge over the network. Belardinelli [19] gave a logical
study of these categories of the social sciences, specifically of Gatekeeping Theory. In
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Chapter 3, our work extended this direction of study. We showed that connectors enable
the resolution of knowledge among senders and receivers to knowledge among the receivers.
Their negation, blocking sets, blocks this resolution. Firstly, this chapter functions as a
generalisation of the work of Belardinelli [19] to a setting of directional network. Secondly,
it gives an epistemic account of the crucial positions and their implications for knowledge
propagation. Our work expresses these concepts in a logic that is arguably more standard
than that of Belardinelli [19], because of its possible world semantics.

In Chapter 4, we constructed a game-theoretic framework to reason about network
formation and change. The perspective often taken in logical studies of network formation
is to present a descriptive logic: “φ will be true after the network is changed in some way”.
Our study provides a different perspective to this field of qualitative network formation, one
where agents themselves form and change the network structure, one that focuses on ability
rather than possibility.

5.2 A Logic of Communication and Network Formation
A most evident further work is to bring the two parts of this thesis together into a single
logic. This requires two steps: presenting a logic of network games, and combining this logic
with Communication Logic. We outlined how to construct the former in Section 4.5. Here,
we will outline the latter.

5.2.1 Unifying Communication Logic and Network Formation Logic
A straightforward combination of the structure of coalition logic and communication logic
provides us with models containing a set of worlds, a valuation function, a similarity relation
between worlds, the network function ν : W → FA, and a function associating a playable
effectivity function with each world. By the nature of the effectivity function, any world can
result from a strategic game, also worlds that differ in, say, their evaluation of propositions.
It must therefore be ensured that playing a strategic game only changes the state of the
network. This can be done by, in each world, forcing the empty coalition to be effective for
the EL-equivalence class of the world.1 Particular care must also be given to the agent’s
knowledge about the network. In Communication Logic, we assumed that the network was
common knowledge. This can also be assumed here.2

In the unified logic, the communication model update of Communication Logic must
update the model relative to the social network of the current world. In order to give a
complete axiomatisation using the reduction method, something must be said about the
relation between this communication modality and the coalition modality. This is not
straightforward, as such a relation is not expressible for a communication modality that is
implicitly relative to the current network. One solution is to introduce a communication
modality that is explicitly relative to a network.3 Such a modality is related to the reading
map modalities in Baltag and Smets [16].4

Finally, the semantics of knowledge about effectivity must be worked out. Relevant here
is the Epistemic Coalition Logic in Ågotnes and Alechina [2], and its discussion on different

1If the EL-equivalence class of w is |w|EL, then the models must satisfy the following condition: NG ∀w ∈
W : |w|EL ∈ E(w)(∅). In the language of Network Formation Logic, this is expressible as follows; for any
φEL ∈ LEL: ⊩LNFL φEL → [∅]φEL.

2The models must satisfy the following; KF ∀w, v ∈ W and ∀a ∈ A : w ∼a v ⇒ ν(w) = ν(v), i.e.
⊩LNFL Fa,b → DGFa,b.

3Given a communication modality relative to a network F , [!G(F )], the communication modality relative
to the current network [!G] are related as follows: ⊩ [!G]φ ↔

∨
F ∈FA

(φF ∧ [!G(F )]φ). The truth value of
the right-hand-side of this equivalence is independent of the state of the current social network. As such,
this equivalence can properly function as a reduction axiom.

4Defined in terms of reading maps, a communication update relative to a network F , !G(F ), is defined
by (a : F|+G(a, F ))a∈A; where F|+G(a, F ) is set that a follows in G, in network F .
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forms of knowledge about effectivity.

5.2.2 Communication and Network Dynamics
A unified logic of coalitional ability and communication can help analyse the interplay
between network formation and communication. A question that must be answered in such
an analusis is how this interplay takes shape: is the network formed first, after which it stays
static and communication happens, or do network formation and communication alternate
each other in some way? For the former, one must identify, not connectors and blocking
sets themselves, but coalitions that are effective for these network-structural concepts. Such
an analysis has a temporal element, as players can be ineffective for something in the
current state, but effective for it in a later state. For the latter, notions of connectors and
blocking sets must be worked out that take into account the network dynamics. A simple
sufficient requirement for connectors, then, is that a set C not is a connector now, but C
stays a connector for some time — long enough for the information from the sender to
reach the receiver. The required length of such “stability” is related to the connector’s
latency. Their actual necessary requirements are more complex: when the network changes
as communication happens, connectors don’t have to form an entire path from the receiver
to the sender at any given time. Instead, they must be able to make sure that the right
parts of this path exist at the right time. In this way, their structural requirements can be
relaxed, and “streched over time”.

The coalitional modality for network change only represents one-step actions; single
plays of a network formation game. Any finite formula of in such a modal language can
only represent effectivity for finite plays of the network formation game. More complex
temporal statements of effectivity require more complex temporal modalities, such as the
“since” and “until” modalities of temporal logic. Fixed-point operators are needed to talk
about what can be achieved “in the long run”. Effectivity “in the long run” is discussed
in Pauly [46], where they formalise notions of effectivity for being able to make something
come about in all terminating states (partial effectivity), possibly combined with being able
to terminate the game (totally effective), and forcing something to be true over the whole
game frame (globally effective). Relevant also is Alternating Time Logic (ATL) [4], with
temporal modalities for “until”, “always”, and “next”. And because of the similarity between
automata and extensive games with simultaneous play: fixed-point logics, co-algebras, and
µ-calculi [66].

5.3 Other Future Work
As the fields of studies on social networks, communication, and epistemic are large, there
are a lot of other directions to go from here. In this section, we will hint towards topics that
we think are interesting to explore in the future. By no means are these the only directions
one could go from here.

Common Knowledge

Distributed knowledge was a sufficient tool to analyse the effects of full communication
on the knowledge of agents. It served as a sufficient preconditions for agents to know
certain things after communication. However, one might also be interested in the effects of
full communication on another important result of communication, its effects on common
knowledge within a group. Adding common knowledge to Communication Logic allows for
an analysis of a process of distributed knowledge realisation resulting in common knowledge
within a set of agents, In particular, one can formulate actions and preconditions required
for such knowledge realisation.
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Adding common knowledge to Communication Logic is interesting in itself, as axiomatisa-
tions of logics with common knowledge are more involved: a reduction of common knowledge
is not possible without extending the basic language. Relevant to such a project is the
axiomatisation of the logic of full communication (without an explicit social network) that
includes common knowledge presented in Baltag and Smets [16], because of the similarity
between the reading map modalities and the full communication modality of Communication
Logic.

Network Uncertainty

Throughout this thesis, we assumed that the social network is common knowledge. This is a
strong assumption. Dropping it lead to many interesting questions. For one, it brings to light
the question of the epistemic preconditions of communication: can an agent communicate
though a channel only if they know about its existence? This also has implications for
connectors and blocking sets. Particularly interesting are settings where agents have certainty
about a specific fragment of their network. The most obvious of which is the neighbourhood
of the agents, i.e. who they follow, and possibly, who follows them. Of relevance is the
concept of the “sphere of sight” in Baltag et al. [17].

More Social Relations

In this study we considered a social relation that is directional. Already, this is an added
complexity in comparison to many studies on the same subject. Still, we have assumed
that there is a single social relation, something that is not always a given in studies of
social networks. Agents interpret the information they receive from relations of different
types in different ways. For example, agents might not take for granted all that is said
by relations which are less reliable with respects to the truth, say non-academic relations.
Social networks typically represent “positive” relation. A concept of “negative” relations is
missing. Related to doxastics, such negative relations can influence your beliefs negatively:
after a negative relations says that p, you might start believing that not p.

Typed networks also influence network formation. Signed networks drive tendencies
towards balance: an enemy of an ones enemy tends to be ones friend etc. Networks of weak
and strong relationships influence the scope of tendencies of triadic closure, where strong
relations are triadically closed, whereas weak relations might not. A logical analysis of
tendencies such as balance, polarisation, and strong triadic closure is given in Pedersen [48].

Communication Sequences

We have made a simplification in our treatment of iterated communication. We only
considered iterated communication by a set G. A more general iteration is that of a sequence
(Gi)n

i=0 of possibly distinct sets. As mentioned in Chapter 3, the communicational formulas
of connectors are too chatty. For communication over an n-connector C from S to R n
communication by all of S ∪C ∪R are not required. This sequential iterated communication
would help formulate formulas that are more precise with respects to their required iterated
communication.

Compositionality of Connectors

Something not touched upon in this thesis, but something to note is the compositionality of
connectors. If C is a ∀s∃r-n-connector from S to R, and C ′ is a ∀s∃r-m-connector from R
to R′, then C ∪R ∪ C ′ is a ∀s∃r-n+m-connector from S to R′. This does not hold for all
types. For example, if C and C ′ are ∃s∃r-connectors then C ∪R ∪ C ′ is not necessarily a
∃s∃r-(m+ n)-connector. These relations between the concepts sketched out in Chapter 3
deserve a more thorough analysis.
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