
Intuitionistic General Topology

A.S. Troelstra





INTUITIONISTIC GENERAL TOPOLOGY

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
WISKUNDE EN NATUURWETENSCHAPPEN AAN DE UNI
VERSITEIT VAN AMSTERDAM, OP GEZAG VAN DE RECTOR
MAGNIFICUS MR. J. VAN DER HOEVEN, HOOGLERAAR IN
DE FACULTEIT DER RECHTSGELEERDHEID, IN HET OPEN
BAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT

(TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411,
HOEK SPUI), OP WOENSDAG 15 JUNI 1966.

DES NAMIDDAGS TE 4 UUR

DOOR

ANNE SJERP TROELSTRA
GEBOREN TE MAARTENSDIJK

Druk. V.R.B., Kleine der A 3-4 Groningen
1966



PROMOTOR: PROF. DR. A. HEYTING



Aan mijn ouders,
Aan mijn vrouw.





VOOR WOORD

Op deze plaats wil ik allen dank zeggen die op’directe of
indirevctewijze mij tot steun geweest zijn in mijn studie en
bij het sch'rz'jven~van dit proefschrift.

Allen te vermelden zou niet doenlijk zijn; enkelen wil ik
hier in het bijzonder noemen.

Mijn promoter, P1*0f.Dr. A.Heyting bent ik dankbaar voor
‘de vrijheid, die hij mij bij de bewerking van mijn onder
werp heeft gelaten, en voor zijn milde kritiek, die er veel
toe heeft bijgedragen de presentatie te verhelderen en de
essentz'°e'lepunten duidelijker naar voren te laten treden.

Ik beschouw het als. een voowecht de afgelopen jaren an
der zijn leiding te hebben mogen werken.

Pr0f.tDr. J. de Groot was bereid als coreferent op te tre
den; hem wil ik danken voo'r zijn constmctieve aanmerkingen
en voor de stimulerende discussies, die in belangvijke mate
de definitieve richting van het onderzoek hebben bepaald.

Ik wil 0012de gelegenheid niet voorbij laten gaan, hier
mijn grate erkentelijkheid te betuigen jegens mijn andere
leermeester op het gebiedvan het wiskundiggr0ndslagen
onderzoek, wijlen Prof.Dr. E. W.Beth.

Mijn collega Dr. J. M.Aa'rts was steeds bereid mij te hel
pen met mijn vragen betreffende de klassieke topologie.

MejuffrouwE.A. Bedijs wil ik danken voor haar gewetens
volle controle; van mijn taalgebvuik. -.

In de formulering van dit voorwoordnheb ik platgetreden
paden bewandeld; moge dat het geloof in mijn 0pre_chthez'dniet verhinderen.





LIST OF NOTATIONS AND CONVENTIONS

1. References are given by indicating chapter, paragraph
and section; e.g. 4. 3.2 refers to the fourth chapter, third
paragraph, second section. In referring to the same chapter,
the first number is omitted.

A name (in capitals) followed by a year, and a capital
if necessary (e.g. BROUWER1926A) refers to the bibliog
raphy.
2. Logical symbols: &, v, 4-+, _—v, —;, A, V_.
Quantified vari_ables k,l,m,n,i,j,t always run through the
natural numbers; quantified variables 2, 6 always run through
positive real numbers.
Set theoretic symbols: H, U, X (cartesian product), 0 (com
plementation, 1.2.2), -.
{X1,X2,...}, {Xi : i 6 1} etc. are notations for species.
Finite sequences are written as <X1,...,Xn> or <Xi>i’=’1;
denumerably infinite sequences X1,X2,... are written as
<X;>i°=°1 or <Xn>n.
Functions or mappings with different domains of definition
are considered to be different.
The restriction of a mapping f with domain D to D‘ C D is
denoted by f|D'. Iff is a mapping of D into E, and F C E,
then f'1F = {x :, fx 6 F} is called the counterimage of F.
3. Postulates (alphabetical).
C1—43.3.2; C5 3.3.4; D,F 4.1.2; I1-2 3.1.4; I3 3.1
14 3.1.9; I5 3. 1. 10; I6 3. 1.31; K 4.1.2; L1-2 4.2.2; N1
N8 (23)3.2. 1; N9 3.3.2; P 3.3.8; R1-5 3.2. 10; S1-2 1. 1
T 4.1.2; T1-3 1.2.2; T4 1.2.3; T5 1.2.4.
4. Groups of symbols, indexed if necessary, for special
purposes.

. 6;
-3,
. 5;

I‘, A, . . . topological spaces 10.P’ metrics
‘$.52’ topologies A0,A,,,A,,,... 3. 1.2
9, 8' spread laws P, Q, R,S,T 3. 1.2
-3,a)‘ complementary laws p, q, r points (3. 1. 13)
#, #' apartness relations U, V, W pointspecies (3. 1. 13)
5. Notations and symbols with a fixed meaning. For symbols
of the following list combined with greek capitals for topo
logical spaces I‘,A etc. (e.g. «pr, 11(A)) see 3.1.28.
a) Greek letters (alphabetical). .’ _
oz(n), ar(n), as 1.11.3; 7,7‘ 3.1.2; 0"‘, 9 3.2.2; 9 3.1.4;
p (p,V) 1.3.12; 113113;= II{P1,n...,Pn} 3.1.3; II 3.1.9;
11° 3.1.13; n* 3.1.35; 7r; 3.4.1; i?__-?1Pi=z:{1>1,...,P,,} 3.1.3;
2 3.1.9; <Pn>n to Q 3.1.11; <Pn>;‘;w Q.p to Q 3.1.14.



b) German letters.
91, SB 3.1.2; 211 3.3.2"; 91,, 3.4.1.
o) Symbols for special spaces.
3, _B_“, _f_{_°°,_1§_T,Q, 1 2.1.3; E-2.1.4; E, _E° 2.1.5; 12(6)2.1.6.
d) Various symbols and notations.
<vo,s:> 1.2.2
<V0,SZ,#> 1.2.3
',V',y_ 1.2.16
Int_’V 1.2. 18
Int"‘v 3. 1. 21
U3(p), U(e, p), Ue(V), U(e-, V) 1. 3. 2
<V0, ‘£(p)> 1. 3. 3
Z(.) 2.1.7
+,o 3.1.2
P c: Q 3.1.6PcV,Vc:P 3.1.16
~ 3.1.6
‘<Pn>n 6 Q k 3. 1. 10
p 6 Q,<Pn>; 6 Q 3.1.14
g,§_',_" 3.1.21
< “>11# <Qn>n 3. 1. 11, 4. 1. 13
p # q 3. 1. 14
:.~. 3. 1. 11, 4. 1. 13
(Pa): 3.1.13, 4.1.13
[P] 3.1.16
@,CcZ',@" -3.1.18
C9 3.1.29
@* 4.1.4
<9,1;I> 3.1.25
o*.~& 3.2.2
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INTRODUCTORY SURVEY

This survey must be understood as a rough draft of the
plan of this thesis. Hence we do not aim at careful defini
tions, but we shall often use classical terminology to deal
with intuitionistic notions; in this way it will be easier to
grasp for a mathematician unexperienced in intuitionism
what we are doing "classically spoken". Even in the formal
definitions in this survey some subtleties will be disregarded.

Throughout this thesis we use the notation.<Vn>n as an
abbreviation for a denumerably infinite sequence V1, V2, . . .

The first chapter is mainly introductory; many topological
notions are defined, often by definitions literally taken from
classical topology. This is a tedious job, but it cannot be
avoided, since many classically equivalent definitions re
present different notions from an intuitionistic point of view,
so we have to stipulate which definition we want to use.
E.g. we define a topology by the_family of open sets; but
we have no reason to assume this definition to be equivalent
to a definition by the family of closed sets. For an elucidating
example see 2.1.8. .

The last paragraph of the first chapter is devoted to the
notions "(weakly)located pointset", "relatively located point
sets", and "located system".

These notions are only of importance with respect to
closed pointsets; classically, every pointset is located, and
every pair of closed pointsets is relatively located, but not
so intuitionistically.

Consequently these notions present a typically intuitionistic
element in the theory. The notion of a located pointset for
example, is introduced to select from all possible pointsets
certain pointsets with some constructive features which make
them more manageable.

If _u is an operation defined by V1 Q V2 = (V1 U V2)‘,
a complete located system. <Vn>ncan be defined as a family
of sets, closed with respect to n, t_J,such that every element
is located, and every pair of elements is relatively located.
The most striking property of a located system is the follow
1ng:

(I)Vn1nV,,2 n...nV,,k=¢vv,,1n...nv,,k 7!¢
can be decided ‘constructively.

The second chapter treats separable metric spaces, and,
like the first, contains mainly preliminary matters. An
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analogue of Lindelof's theorem is obtained by "intuitionistic
methods.

A metric definition of compacta is given, and some
theorems whichwill be used in the fourth chapter are proved,
using the existence of a metric. It is especially important
to note that the theorem of Heine-Borel can be proved in
tuitionistically for these spaces, a result already obtained
by Brouwer (BROUWER 1926B).

In the third chapter we start with an axiomatic treatment
of topology by introducing so-called intersection spaces (I
spacesy

To describe anl-space, we use a located system <Vn>n= (S,
and a set II of so-called point generators. An element of II
is a centered system (a system with thekfinite intersection
property) <Wn>,,. /\n(Wn 6 6), such that £1
to a point of the space with increasing k. This method of
describing points is analogous to the introduction of real
numbers by means of sequences of nested intervals.

Two point generators <Wn>n, <W,'1>inare said to coincide
(notation 2) if

Wn "converges"

(11) An(W1fl...flWnflW'1-fl...flW},#(D).

The points of the space can be identified with the equivalence
classes of coinciding point generators.

This method of primarily considering point generators in
stead of points conforms naturally to the intuitionistic point
of view. A point is looked upon as an at any moment un
finished construction; in other words, at any given moment,
a point is only known with a certain degree of accuracy
(given by an initial segment of a point generator).

A relation V C W between pointsets V,W (analogous to
the classical relation V’ C: Interior W) is defined by:

(III) /\<w,,>,,e II Vm(W1 n nwm n V - 96v W1 n000
A topology is introduced by defining g_and "open set" as
follows:

(IV) p€_V iff for every point generator <Wn>,,which represents
P. for a certain 1/ W1 0 F1W, C V. V is called
open if V = {p : p§_V].

In the second paragraph of the third chapter a number of
postulates is introduced, among others
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(V) V,W€(‘3,VCcZW—»VU€(»S(VC<:UC<'SW).

(VI) V,We(S,VnW=¢—+VV'eQ§VW'eGS(VC§V'&WCc§W'&
V‘ nW' = (2)).

(VII) Every point can be represented by a point generator
<Wn>n such that /\n(Wn+1 (C Wu).

Since 6 is not necessarily closed with respect to comple
mentation followed by closure, (V) and (VI) are in general
not equivalent.

We could have required (5 to be closed with respect to
complementation followed by closure, but since the comple
ment of a located species is not always located, this is a
strengthening of our assumptions. We have preferred not to
introduce postulates about complementation in this thesis.

I-spaces which satisfy VII are called IR-spaces. By the
introduction of (VII)many simple properties can be proved,
e.g. : {p} (<3V4-» p g V; the interiors of the elements of
£5 constitute 31basis for the space.

The postulates of the I-spaces were only just sufficient
to introduce atopology; but the introduction of (VII) simplifies
the theory considerably. V C"W is now classically equivalent
to V" CC:Interior W, and the IR-spaces are classically equi
valent to regular spaces with a countable base.

Other postulates, studied in this paragraph, are the so
called representation postulates.

The notion of a spread is typically intuitionistic. It can be
considered as a strongly constructive version of the notion
of a ‘set.

An I-space is said to possess a spread representation,
if there is a spread with point generators as elements, such
that to every point generator of the space a coinciding point
generator of the spread can be found.

For spreads very strong methods of proof are available;
this accounts for the great importance of postulates concern
ing the existence of spread representations of certain kinds
for I-spaces. The consequences of (VI)-(VII) and the re
presentation postulates are amply discussed in the second
paragraph; the results of this study are applied later on,
especially in the third paragraph.

In the third paragraph, two axiom systems are introduced.
The first system, defining the so-called CIN-spaces, is
designed such that:
1) Classically the CIN-spaces coincide with the separable,

completely metrizable spaces.
2) All the important results of the second paragraph can be

applied to CIN-spaces.
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3) Anumber ofvery important examples of metrizable spaces
can be proved to be CIN-spaces, e.g.
a) The separable hilbertspace,
b) The space of all continuous functions on the closed.

interval, with the topology induced by the metric

o(f.g) = sup {lf(x)-g(x)l : x 6 [0.1]}.

c) Almost all trees (sets of denumerably infinite sequences
of natural numbers) with a certain "natural" metric
(see 2. 1. 6), e. g. the topological product of a denumer
ably infinite sequence of copies of the natural numbers.

(1)All locally compact, metrizable, separable spaces.
e) The topological product of a denumerable infinity of

copies of the real line.
CIN-spaces are defined by means of a sequence of coverings
09(1),, such that 2[i+1 C 911 C GS for all i, 911 = (Vi,n>n,
and which satisfy some further postulates.
Point generators are sequences <Vi.n(i)>1,which are centered
systems (possess the finite intersection property).

If I‘ is a separable metric space, and the sequence of
points <pi)i is dense in I‘,- then classically one could take
Qli to be the set of all closed neighbourhoods U,(pj)", r
rational, r < i'1. A few of the most interesting properties
of CIN-spaces are:

(VIII) If <Vn>n is a covering, then (Interior Vn>n is a
covering too.

(IX) V C=W+-»/\p(pt7’Vvp€W).

Since the right hand side of this equivalence is classically
equivalent to V C W, this is a remarkable property.

(X) Every mapping defined on a CIN-space into a separable,
metric space is continuous.

(XI) A CIN-space is separable and metrizable.

The other axiom system introduced in the third paragraph
defines the PIN-spaces, a specialization of the CIN-spaces.
Now point generators can be defined explicitly, so II can be
eliminated as a primitive notion of the axiomatic theory.
II is defined by

(XII)<Wn>,,eII-->/\n(W1fl n ,,;é¢)&Avecs/\v'ets(vnV=¢..vn(1n...n
WnflV=¢vW1fl.. nW,,nv'=¢)).
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Furthermore (V), (VI)are supposed to hold for PIN-spaces.
The resulting axiom. system is very strong, but natural.
The examples mentioned for CIN-spaces sub (3) c-e are
even PIN-spaces.

The fourth paragraph explicitly describes the construction
as an I-space of the topological product of a denumerable
infinity or a finite set of I-spaces. The most important
result is that the topological product of a finite or denumer
ably infinite sequence of CIN-spaces is again a CIN-space.

The fifth paragraph treats the examples a-c, mentioned
before; further, the set of rational numbers with the usual
topology is proved to be an IR-space, while (IX) does not hold
in this space. Thus the set of rational numbers is an example
of an IR-space which is not a CIN-space. I

The fourth chapter deals with locally compact, separable
metrizable spaces (called LDFTK-spaces).
The first paragraph contains a summary of results from
FREUDENTHAL 1936. Furthermore many lemmas and ad
ditional theorems are proved, in order to be able to link
the theory of the third chapter to the results of Freuden
thal, and to prepare the ground for the sequel. Two theorems
in this paragraph are of special importance:
(XIII) Every DFTK-space as defined by Freudenthal (the in

tuitionistic analogue of a compactum) is a PIN-space.
(XIV) If {V1,. . .,V,,} is a covering of a DFTK-space, then

a covering {V1',...,VI'1}, V; € GS, V; (C?Vi for 1 < i g n
can be found.

(XIV) can be looked upon as a specialization of (VIII) to
DFTK-spaces, but a separate proof is given.

In the second paragraph the equivalence between a metric
characterization and a "purely topological" characterization
for LDFTK-spaces is proved. The topological definition
characterizes these spaces as PIN-spaces which satisfy
special conditions. Let V be the set of all points of an
LDFTK-‘space I‘.
Then I‘ is a PIN-space such that
(XV) V‘ e (S - V‘ = V or V‘ is a DFTK-space.
(XVI) If V‘ 6 6 is a DFTK-space, a V" 6 (S can be found

such that V‘ @ V", V" again a DFTK-space.
The third paragraph contains a number of covering theorems
for LDFTK-spaces. If we agree to call a covering <Wn>n
star-finite if {W1 :Wi F1W, 75(D! is finite for every 1/, then
the most important results can be formulated thus:
(XVII)Every open covering has a star-finite refinement con

sisting of elements of GE.
(XVIII) If <Wn>n is a covering of I‘, /\n(Wn 6 (53), then there

exists a star-finite refinement <WI‘1>n,/\n(W[', 6 (S),
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.3‘

such that An VI.n(W,', cc: Wm).
The fourth paragraph contains aproof of the following theorem:
(XIX) Every LDFTK-space can be metrized by a metric p

such that every located pointset V of the space has
a distance function, i.e. p(p, V) is defined for every
point p of the space.’ I‘ is also metrically complete
with respect to p‘.

It must be remarked that every pointset with a distance
function in an arbitrary metric is located in the topology
corresponding to this metric, but the converse implication
does not hold good (see 2.1.9).

The fifth paragraph treats the topologicalproduct of a
denumerably infinite sequence of‘LDFTK-spaces. The final
result is:
(XX) If the defining located system <Vn>,,for every factor

I‘ (V is the set of points of I‘) can be chosen in such
a way that

’\n(Vn = V V Vm(Vn n Vm : ¢ 8‘ Vm #

then the product is a PIN-space.
In classical mathematics, one can more or less distinguish

set theory in its most general form from topology as a
specialization of general set theory. (We are aware, how
ever, of the absence of a sharp borderline.)

In intuitionism, it is much more. difficult to make such
a distinction; predicates which might be considered as to
belong to set theory in its most general form from a clas
sical point of view can be used to describe "typically topolog
ical" properties in intuitionism.

(IX) and (X) present striking examples; the intuitionistic
theory of connectedness (not treated in this thesis) presents
another example. _

The contents of this thesis roughly correspond in classical
topology to the contents of the first two chapters of de VRIES
1958. ‘



CHAPTER I

TOPOLOGICAL SPACES

1. Intuitionistic notions.

1. 1. The following notions due to Brouwer, are defined in
HEYTING 1956: species 3. 2._1;subspecies 3. 2.4; congruency
between species, 3.2.4, def. 1; detachable, 3.2.4, def.2;
infinitely proceeding sequence (ips) 3.1.1; spread, spread
law, complementarylaw, (immediate) descendant, (immediate)
ascendant 3. 1. 2; finitary spread or fan, 3. 4. 1; for the theory
of real numbers see 2. 2. The notion of an equivalence relation
is defined as usual.

1.2. Definition. A spread X with a spread law 8 and a
complementary law a-is said to have a defining pair <9,0>.
The spread law is identified with the species of admissible
finite sequences ofnatural numbers (of. HEYTING 1956 3. 1. 2)
A subspread Y of a spread X, defined by <9,o>, is a spread
<9',a'J'> such that 9' is a detachable subspecies of 9, and
0' = 3 I9‘. '

1.3. Definition. If ozis an ips, then the nth component of
gis denoted by a(n). The sequence <a/(1-),. . . , a/(n)> is written
a(n).
Let X be a spread with a defining pair <6,3), and let 0 € 9,
oa sequence of length n. We suppose O to be the identity.
We_define a spread element a, inductively as follows:

aI.,(n) = o; for k 2 1, a/,,(n+k) is the least number m, such
that <a,,(1), . . . _,a»,(n+k-1),m > 6 6.

1. 4. Definition. A species X is called secured or inhabitated
if Vx(x 6 X).

1. 5. Definition. A binary relation # is called a pre-apartness
relation ina species V, iff for all a, b,c E V:

S1. -H 8. # 3.S2.a#b_.a# cvb#c.
It is easy to see that
(a) a # b —-b # a.
(b) If =' is defined by a =' be->——.a # b, then =' is an

equivalence relation.
If a =' b<-va=b for every a,b E V, then # is called an
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apartness relation in V. (HEYTING 1956 4. 1. 1). V is calleddiscreteif/\peV/\.qeV(p=qVp#q).
1.6. Definition. If a mapping (Lfrom a species X into a
species Y satisfies chx = g[/y<—-x = y, then w is called a
a bi-unique or one-to-one mapping.
Remark. If in a species X an apartness relation # is defined,
and if 90 is a one-to—one mapping of X into Y, then in «pX
an apartness relation #' can be defined by

wx#'¢y~x#y
1.7. Definition. If n0is a mapping from a species X into a
species Y, and e#, #' are apartness relations on X,Y res
pectively,_ then w is called strongly bi-unique (with respect
to #, #') if

X #y<->¢x#' (by.

1. 8. Definition. The notions of finite and denumerably infinite
species are defined in HEYTING 1956, 3.2.5. A species X
is called quasi-finite if a finite species can be mapped onto
X. A species X is called enumerable, if the natural numbers
can be mapped onto X.

1.9. Let X be a spread consisting of infinitely proceeding
sequences of natural numbers, and let 5 be an equivalence
relation on X. The species of all equivalence classes of X
with respect to E can be mapped bi-uniquely onto a species
Y by a mapping (.0.
Z is a denumerably infinite species, let us say for the sake
of convenience Z = _l§_I,the species of natural numbers. Let
P be a property such that

A Y 5 Y Vn(P(Yan))

Intuitionistically this implies the existence (since Y is entirely
determined by X and E) of a mapping W from X into l_\_I,
such that

A y 5 Y Ax(x e g0"1y —»P(y,w'x)).

1.10. The following principle (stated e.g. in BROUWER
1924, 1924A, BROUWER 1926, called Brouwer's principle
in KLEENE & VESLEY 1965,I, §7) will be much used in the
sequel. It can be stated thus:

If X is a spread with a defining pair <9, 0), «'1the identity,
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«.0a mapping of X into a denumerably infinite species Y,
then there exists a mapping 90'of 9 into (0, 1!, such that
for every a 6X there is exactly one natural number n such
that r,b'c7(n)= 1, and A a 6 X A B 6 X /\n(¢'E(n) = 1 & E(n) =
B(n) —+wa= ([13)or in a more informal manner:

There exists a method of computation which for every
0 6 9 (O = <i1,.. .,ik>) indicates whether (barcan be deter
mined from 5(k) if c?(k) = 0, or not.
Remark. This principle is often used only in a weaker form:

If X is a spread with a defining pair <9, 9), and 90is a
mapping of X into a denumerably infinite species Y, then

A oz 6 X V n//\ B 6 X (&(n) = §(n) —>¢a = (PB).

1. 11. Corollary to 1. 10 (enumeration principle).
If X is a spread, and (0a mapping of X into a denumerably

infinite species Y, then 90X is enumerable.
Proof. This follows from the fact that (in the notation of
1. 10) Z = {o: o 6 9 *&t.\_¢'o= 1} is detachable and contains
at least one element. Therefore Z is enumerable, hence
sl/X too.

1.12. Theorem. (Fan theorem). If «p is a mapping of a
finitary spread X into the natural numbers, then there is
a natural number n, such that for every ar 6 X Waris known
from ar(n).
ProofinHEYTING 1956, 3.4. 2 (or in BROUWER 1924, 1924A,
1926, 1954).

1. 13. One of the most important consequences of the fan
theorem is:
Theorem. Afunction which is defined everywhere on a closed
interval of the real line, has a least upper bound and a
greatest lower bound on the interval, and is uniformly con
tinuous. If a function is defined and is positive everywhere
on a closed interval, then the greatest lower bound of the
function on the interval is positive. (see e.g. HEYTING
1956 3.4. 3).

1. 14. The intuitionistic notions of a lattice, distributivity,
generators, free distributive lattice can be taken from
BIRKHOFF 1948. See II, theorem 1; IX, 1; IX, 10.

2. Topological spaces.

2. 1. Our intention is to describe in this paragraph a "frame"
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of fundamental notions, in order to decide what should be
called topology.

We try to choose our notions so that they resemble the
classical notions as élosely as possible (otherwise there
would be no reason to call it topology) and at the same
time possess a reasonable amount of constructive content.

2.2. Definition. If V0 is a species, and SEa certain species
of subspecies of V such that

T1. ¢,V0 e 51:,
T2. V,We‘I.—>VnWe5E,
T3. The—union of an arbitrary species of elements of SE

again belongs to 55,,
then <V0,$> is called a topological space. ‘I is called the
topology"on V0; the elements of it are called the open species
(with respect to Si, or in SE)of V0. The elements of V0 are
called the points of the space; subspecies of V0 are ‘called
pointspecies. Speaking about a certain space, V° denotes
V0-V. V° is called the complement of V (with respect to
V ).

Olf no confusion is likely to arise, we can also speak of
V0 as a topological space. 0

‘We indicate topological spaces by greek capitals I‘, A,
indexed if necessary...

0

2. 3. Definition. If V0 is a species with an apartness relation
#, then a topological space <V0,S'£>which satisfies

T4. peVe‘.E.’&qeV°—.p#q
is called a "topological space with apartness relation", and
is indicated by <V0,1', #>, if wewant to refer explicitly to
the apartness relation.

2.4. Remark. We could have defined a topological space
by means of the well known axioms of Kuratowski, but a
relation between the topology and the apartness relation is
most easily expressed in terms of open species. If a topo
logical space with apartness relation satisfies

T5. p,q€ V0 &p #q:—»VW(W 6% 8: ((p €W&
<1?’ W)‘/(P 7-’W 8: q 6 W)))

then # can be ‘characterized entirely in terms of open species.

2. 5. Definition. A mapping 5 of a space <V0, SE>into a space
<V'O,‘.éI'>is called continuous if

V'€ ‘E’ —>E'1V' e E.

2.6. Definition. A homeomorphism E of a topological space
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<Vo, SE)onto <vg,, ‘3£'>is a bi-unique mapping .of V0 onto V0,
such that E,5'1 are continuous.
A notion is called a topological notion if it is invariant with
respect to homeomorphisms, or to state it more precisely:
If R is a predicate for species With 1}places, R is called
a topological notion if for any topological spaces <V0,E>,
<V0,‘I£'.'>which are homeomorphic by a homeomorphism E,
and for any sequence <V1, . . . ,1-Vn>, Vi C V0 for 1 g i 4 n,

R(V1,...,V0)-—>R(£V1,...,EVn).

2.7. Theorem. If E is a bi-unique mapping of a space I‘ =
<V0.,SZ,#>.' onto a space I" = <V0,‘£',#'>, and E,'1 is con
tinuous, 1‘satisfies T1-5, I" satisfies T1—4,then 5 satisfies
X # y e» E X #' E y.
Proof. Let p,q € V0, pthatp€V, q¢V; EVEp#'€q.

q. A V E‘ 52'.can be found such
‘E’, E p E EV, E qe/ V; hence

2.8. Corollary to 2.7. If E is a homeomorphism from a
space F into a space I-"‘, and I‘, I" satisfy T1-5, then E is
strongly bi-unique.

2.9. Definition. A subspecies 6 c ‘I, is called a basis for
a topological space <'V0,‘£>, if

V63-V=U{W:W€(~S&WcV}.
2.10. Theorem.
a) A species GSof subspecies of V
on V0 iffl) U{W : W 6 6} = V0,2)W'.W"e(~S-W'r'1W"= uiw : wees &

W C W‘ n W"}.
b) If GS‘, <5" are two species, satisfying (1), (2) sub (a),
then they determine the same topology iff

p 6W €€§'—>VW'(W' 66" &.p 6W‘ CW) 8:
p 6W €€S"—->vW'(W'66' &p 6W‘ c:W)

(Hausdorff criterion)

0 is a basis for a topology

2. 11. Definition. If <V0,I> is a topological space, p 6 U,
and VW(W 6 ‘Z & p E W C U), the-n U is called a neigh
bourhood of p. If U E E, then U is called an open neigh
bourhood of p.

2.12. Theorem._ A mapping E from I‘ = <V0,$> into I” =
<V0,‘I.'> is continuous iff

p€V0 8: Ep€W'e55'-»vW(p€W6$&EWcW').
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2. 13. Definition. If <V0, E) is a topological space, W0 C V0,
then 5!‘ = {V n W0 : V 6 E} is called the relative topology
on W0 . '

2. 141. Definition. A topological space <V0,$',> is said to be
topologically embedded in a topological space <V0,i'.'>, if
there is a bi-unique mapping E‘from V0 into V0 such that
EV0provided with the relative topology is homeomorphic to
<V0,E>~by E.

2. 15. Definition. p is a closure point of a pointspecies V
if every neighbourhood of p. contains a point of V.
p is a weak closure point of V if the intersection of every
neighbourhood of p with V cannot be empty.

2.16. Definition. If V is a pointspecies, then V’ is the
species of all closure points of V; V‘ is called the closure
of V (with respect to, or in, the given topology). V is
closed (in the given topology) if V’ = V. ' is called the
closure operator of the topological space. Sometimes we
shall Write V L_JW for (V U W)‘.
A pointspecies V is dense in a space I‘ = <Vo, 55>if V" 3 V0.

2. 17. Theorem. In every topological space <V0,‘l'> the fol
lo_wingassertions are true for all V, V1,V2 C V0:
¢_= (D; V_0__=V0; V C. V_; V" = V';_V1 C_V2—>Vf C V2";
(V1 U V2) ’' (V1 U V2) 3 (V1 ” V2) C V1 ” V5

2. 18. Definition. p is an interior point of a pointspecies V
of a topological space, if V is a neighbourhood of p. Int V
is the species of interior points of V. (Int V is called the
interior of V).

2. 19. Remark. V is open iff Int v = V.

2. 20. Theorem. In every topological space <Vo,55>the fol
lowing assertions are true: Int (5= Q);Int V0 = V0; Int V C V;
Int V = Int Int V; V1 C V2 -vlnt V1 C Int V2; Int(V1 0 V2) =
Int V1 (1 Int V2.

2.21. Theorem. If <V0,S£> is a topological space, then
V 6 ‘E ->(V°)" = V°.

2.22. Definition. A mappingi of a space I‘ = <Vo,‘£1> into
a space A = <W0,"£2> is called weakly continuous if

v c v0 _> s(v‘) c (E V)".
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2.23. Theorem. a) A mapping 5 of a space 1‘ into a space
A is weakly continuous .iff the counterimage of a closed set
of A is always a closed set of I‘.
(b) A continuous mapping is weakly continuous.
Proof. (a) See FRANZ 1960, 5.4.
(b) Let I‘ = <Vo,"£>, A = <Vg,$'>, E a continuous mapping
from I‘ into A. Let V‘ C V3, V‘ closed in A. If p is a
closure point of 2'1 V‘, then Ep is a closure point of V‘;
for if Ep 6 W’ 6 55', p 6 £'1W' 6 ‘E; hence there is a q
such that q 6 E'1W' n E'1V'; therefore Eq 6 W‘ D V‘.
We conclude that Ep 6 V‘, hence p 6 E'1V'. The counter
image of a closed set is closed, hence by (a) E is weakly
continuous.
Remark. In 2. 1. 8 a counter example is given to the inverse
assertion of (b). This is a new argument in favour of the
use of open sets to define a topology.

2. 24. Definition. Let P1, P2, .. . be a finite or denumerably
infinite sequence of topological spaces. 1‘, = <V},,"£i).
We define a topology 55,’on the cartesian product V}, x V2 x

= V0 as follows. Let G be the species of subspecies
v_ c V0, such that V = V1 x V2 V16 ‘£1, almost all
V‘ equal to V3. (53is a basis for E; <Vo,Sl',>is called the
topological product of the Pi.
Remark. That («Ssatisfies (1), (2) of 2. 10 is proved as usual.

2. 25. Definition. Let X be an arbitrary species. If {Xi: i 6 I}
is a family of species such that U{Xi: i 6 I} D X, then
{Xi: i 6 I} is called a covering of X.
If {Xi: i 6 I} is a covering of X, then every covering
(Xi: i 6 J}, J c I of X is called a subcovering of §Xi: i 6 I}.
If {Xi: i 6 I}, {Y1-:1j 6 J} are coverings of X, such that

6 J—>Vi(i 6 I & Yj C Xi)),

then {Yj : j 6 J} is called a refinement of {Xi : i 6 I}. If
{Xi : i 6 I} is a covering of X, and if {Xi : Xi n Xk 15
is a quasi-finite species for every k, then the covering is
called star-finite. A refinement of a covering which is a
star—finitecovering is called a star-finite refinement of the
original covering.
A covering of a topological space by open sets is called an
open covering of the space.

3. Metric spaces.

3. 1. Definition. A metric space is a pair <Vo, p) of a species
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V0 and a non-negative function p from V0 x V0 into the real
numbers, such that for any x,y,z 6 V0:

a) p(X.y) = 0 ~—~x = y
19) P(X»y) = P(y»X)
C) p(XaZ) 1’ p(X:y) + p(ya Z)

p is called a metric on V0.
Remark. In a metric space <V0,p> an apartness relation
can be introduced by

X # ya->p(x,y) > O.

This relation is called the apartness relation of the space.

3.2. Definition. If <V0,p> is a metric space, V c: V0,
e > 0, then U€(V) U(e,V) = {q : q E V0 & Vp(p 6 V &
0(p.q) < 6)}: Ue(P) UL.-,({p})= U(e.p).

3. 3. Theorem. With every metric space <V0, p> a special
topological space <V0,‘£(p)>is associated, which satisfies
T1-5, and for which {U(n'1 ,p) : p 6 V0, n a natural number}
is a basis. The relative topology on a species V C V0 cor
responds to the restriction of p to V x V.

3.4. Definition. A topological space <V0,E> is called me
trizable if there is a metric space <V0,p> such that ‘£= 5Z(p).
p is called a metric (or an adequate metric) for <V0, 55>.

3.5. Remark. As no confusion is to be expected, we shall
sometimes identify <V0,p> and <V0,i'.(p)> in our notation.

3.6. Theorem. If <V0,p>, <V0,p'> are metric spaces, a
mapping 5 from V0 into V0 is continuous With respect to
<V0,‘J£(p)>and <V0,$(p')> iff

/Vy my 6 V, -> v es (2 U3<y> c U (a<y>>>.

3.7. Definition. A sequence <pi>i C V0 is a fundamental
sequence of a metric space <V0,p > if

/\k v1 An /\m(n,m > 1 —->p(pn,pm) < 2-R).

(pin is said to converge to p 6 V0 if
/\k V1An(n > 1 —>p(p,pn) < 2'1‘). pis the limit of the sequence.

3. 8. Definition. A metric space is called complete, if every
fundamental sequence converges to a limit. _
A metrizable topological space <V0, 53'.> is called topologically
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complete, if for a certain metric p such that St = SI.'(p),
<V0, p> is complete.

3.9. Definition. A metric space (V0, p> is embedded iso
metrically in a metric space <V'0,p'> if there is a _bi-unique
mapping 3;’of V0 into V0 such that p(x, y) = p'(F,x,Ey).
5 is called an isometrism. If 5 is a mapping onto V0, we
say that <V0, D> and <V0, D'> are isometric.

3. 10. Theorem. Every metric space <V0,p> can be embedded
isometrically in a complete metric space <V0, p'> such that
V0 = V0 in <V0,SZ(P')>.

3. 11. Theorem. If Eis a mapping of a metric space <V0, p>
into a metric space <VC',,p'>-such that for every sequence
<pi>i C V0

lim pi = p —-lim E(p,) = €(p)

then E is a Weakly continuous mapping from (V0 ,‘£(p)> into
<V; , 5Z(P')>.

3.12. Definition. Let <V0,p> be a metric space; if V C. V0,
p 6 V0, we say that the distance p(V,p) is defined if there
exists a real number d such. that

a) q 6 V-+P(p.q) ‘Kd
b) For every natural number k there is a q 6 V such that

p(p.q) < d + 2'k
d is denoted by p(p, V) and is called the distance between
p, V. Diameter V, if it exists, is equal to
sup {P(p.q)= p.q 6 V!

3. 13. Remark. If <Vo, P>is a metric space, then the closure
operator ‘I in <V0,5E(p)> is given by V" = {p : p(p, V) = 0}.

3. 14. Theorem. The topological product of a finite or de
numerably infinite sequence of metrizable spaces Pi, i =
1,2,. .. is again metrizable. _ _
Proof. We suppose I‘i=<V0,‘.'£i>= <V0,5E(pi)>. If we define
bi(x, y) = inf {pi(x,y),1§, p", is a metric such that ‘£(pi) =
SE(k')i).Then the topological product I‘ of P1, P2,... can be

metrizedby P(x, y) = $1 2'i Z)i(Xi,yi), X, y 6 V; x V?) x . . .,18
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4. Located pointspec.ies.

4.1. Definition. A subspecies V C V0 of a metric space
<Vo,p) is called metrically located, if p(p, V) is defined for
every p 6 V0.

4.2. A subspecies V C V0 is weakly located in a topological
space <Vo, E > if

Ap /\W(p€We‘£ ->(Vq(q€Wn V) v VW'(W'eE & pe W’ C W&
W‘ ” V = ¢)))

If V is either secured or empty, then V is called located
(in, or with respect to <V0,$>).
Remark. VANDALEN 1965, p. 39 gives an analogous defini
tion of "located" for the DFTK-spaces (there called F
spaces) introduced in FREUDENTHAL 1936. In View of a
different approach to topology, definition 28 (§6) in SCHULTZ
1965 is also analogous to our definition. Since these defini
tions are conceived independently of each other, it seems
to be a very natural generalization of BROUWER'sdefinitions.
See e.g. BROUWER 1919, p.13; BROUWER 1926A.

4. 3. Remarks. a) "Weaklylocated" and "located" are topolog
ical notions.
b) For technical reasons, "located" is defined for arbitrary
species, but in applications the notion is used for closed
pointspecies only. Classically, every pointspecies is located.

4.4. Theorem. If (S is a basis for the topological space
<Vo,Sl’.>, then V C V0 is Weakly located iff

Ap/\W(peWe(S —~>Vq(qeWfl V)v VW'(W' 6 £5& pe W‘ CW &

W‘ n v = 16)).

Proof. Trivial.

4.5. Corollaries. a) If <Vo,p> is a metric space, V C V0
is located in <Vo,‘1’.(p)> iff

Ap /\e(Vq(q 6 Ue(P) 0 V) v V5(Us(p)fi W = 95))

b) If V C V0 is metrically located in a metric space (V0, p),
then V is located in <V0,E(p)>.

4.6. Definition. Let V1 C V0, V2 C V0; V1,V2 are weakly
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located in (V0 , 55>._V1, V2.are called relatively located (with
respect to each other) if '

Ap/~W<p e W e E —-)vU(p e U 6 9: & (vp1<p1 6 V1 0 U) &

Vp2_(p25 V2 n "’Vp3(p3 6 W n V1 0 V2»)

4. 7. Remarks. a) "relatively located" is a topological notion.
b) For technical reasons "relatively located" is defined with
respect to arbitrary species, but in applications the notion
is used for closed pointspecies only. Classically, every pair
of closed pointspecies is relatively located.

4.8-. Theorem. V1,V2 C Vo,V1,V2 Weakly located in the
topological space <Vo',‘£>; (S a basis for i. V1,V2 are
relatively located iff

/\.pAW(p 6 W 6 (S -+VU(p 6 U 6 6 & (Vp1.(p1 6 U (1 V1) 8:

vp,(p, e U n v,..,)—-»vp3<p3 6 W 0 V1 0 V2»).

Proof. Trivial.

4.9. Corollary to 4.8. V1 c V0, V2 C V0,V1,V2 weakly
located in the topological space <Vo,‘£(p)>, corresponding
to the metric space (V0, p>.V1, V2 are relatively located iff

Ap/\eV5(Vp1(p1 6 V1 0 Us(p)) & Vp2(p2 6 V2 0 Us(p))->

Vp3(p36 n V1 n V2))°
Remark. This characterization can be considered to be
derived from FREUDENTHAL 1936, 7..11, by transforma
tion into a local property. (Compare also BROUWER 1919,
p 18).

4. 10. Theorem. If V1,V2 are weakly located and relatively
located in the topological space <Vo,SZ>,’ then V1 0 V2 is
also Weakly located in <V0,‘£>. (In FREUDENTHAL 1936
7. 12 a special case is proved).
Proof. Let p 6 W 6 ‘E. There is a U 6 ‘I such that if
U 0 V1, U 0 V2 are secured, then also W n V1 0 V2 is
secured.
On the other hand

(U 0 V1 is secured) v VU1(p 6 U1 6 SI & U1 0 V1
(U fl V2 is secured) v vU2(p 6 U2 6 ‘E & U2 n V2 IIII

‘$~ \./

Hence
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(Vp1(p1 6 U flV1)& Vp2(p2 6 U flV2)) v VU1(p 6 U1 6 SE &
U1 nvl =¢)v VU2(p6 U26 3£&U2 HV2 =¢).
We obtain therefore:

Vp(p6WnV1nV2)vVU1(p6U16‘E&U1nWnV1=¢)
vVU2(p€U2€5E&U2fiWflV2=¢)
Thus

Vp(p6WFlV1flV2)vVU(p6U6‘£&UcW&UflV1 n
V2=¢)

4.11. Theorem. a) The union of a quasi-finite species of
(metrically) located pointspecies is again (metrically) located.
b) If V1,V2,V3 are Weakly located in _atopological space
<Vo,‘£>, and V1,V2; V1,V3 are relatively located, then
V ,V U V3 are relatively located.
Plrootg. (a) trivial.
(b) Let p 6 W 6 ‘I. There are W',W" such that

Vp'(p'€ W_',”V1)& Vp::(p::€W',“V2) - Vpj::(p:::€ W “V1 ”V2)
Vp'(p'€ W “V1)& Vp (p 6 W’ “Va) -evp (p 6 W”V1 ”V3)

We put w"' = w' n W".

Vpl(pl 6 WINn & vpH(pH6. WIN n U __>
Vp[(p[ 6 will n & vpH(pH6 WIN n V pl! 6 WIN n

Hence vp'”(p"' 6 W n (V2 u V3)).

4.12. Theorem. Let <Vn>n be a sequence of metrically
located pointspecies in a metric space <V°,_p>, such that

/\i(v, c V1.1 c U(e,,v,)) and .21 e, < co. Then V = iU1 V,1= "
is again a metrically located pointspecies.
Proof. We must prove for an arbitrary p 6 V0 the existence
of p(p,V). If p(p, V) exists, then lim p(p,Vn) exists, and

I1-poo

conversely. lim p(p,Vn) = p(p, V). Suppose P(P»Vv) = d, and
11-900

let 6, < e. If q 6 V“, p $2/, then p(p,q) <1:d; if u > V,1

then there are qv,qv+1....,q‘,, = q, such that qi 6 Vi,
p(qi+1,qi) < ei for V g i < /.2.
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Henge 0(q,t_.q,,) 4»p(q,,.q,,-1) + p(q,.-1 . q,.-2) + . . . + p(qv+1.q..)
< ,2 ei<,E 61 < e.

1=v 1-’-V

Hence |p(p,q) - p(p,q‘,)| < e; we conclude to:
p(p,V,,) - p(p,V“) < 8. Therefore lim p(p’,Vn) exists.

1'1-voo

4. 13. Remark. a) If V is metrically located in a metric
space <V0, p>, then V‘ is metrically located.
If V is (weakly) located in a topological space <Vo,‘I£>, then
V’ is (weakly) located, since if p 6 W 6 1’, q 6 'W fl V,
then q6 W fl V"; and if p6 W6 35, W fl V= (25, then
W fl V" = (For if q 6 W fl V’, then there would be a
q‘ 6 W fl V, because W is a neighbourhood for q.)
b) If V1,V2 are Weakly located and relatively located, then
V1”,V§;V1',V2; V1,V§ are relatively located. (This is seen
by the same kind of reasoning as for (a)).

4.14. Definition. A system (species) («Sof subspecies of V0
is called a located system with respect to a topological space
(V0, 55>, if every finite intersection of elements of G is again
located, and if any two finite intersections W1,W2 of elements
of (S are relatively located. A sequence which is a located
system is called a located sequence. A located system,
closed with respect to fl,U is called a complete located
system. —

4.15. Lemma. <VO,S2'.>is a topological space. V, V',V" are
Weaklylocated. V, V" and V',V" are relatively located, V"
is closed. Then (v u V')' n V" = ((V n V") u (V' n v"))‘.
Proof. Suppose p 6W6 353,p 6 (V U V')' fl V". Then there
are W',W" '6 551,p 6 W‘ fl W" such that

Vq(q6 W" n V) & vq'(q' 6 w' n v") —+Vq"(q" e W n V n v")
vq(q 6 W" fl V‘) & Vq'(q' 6 W" 0 V") —>Vq"(q" 6 W fl V‘ fl V")

We put W"' = W" n W‘.
Then there exists a q 6 (V U V‘) fl W"', hence q 6 V fl
Wu! V q E V, n Wlll; p 6 VI! n WM.
Therefore an r 6 W can be found, such that r 6 V fl V" v
r e v' n v".
Hence r 6 W fl ((V fl V") U (V' fl V")). Therefore p 6 ((V fl
V") U (V' fl V"))‘. Conversely, we suppose p 6 ((V fl V‘) U
(V' n V"))', p 6 W e 5:.Thenthere is a q, q6WflVflV"vq6WflV'flV";
so p 6 (V U V')', p 6 (V")' = V".
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4. 16. Lemma. <Vo,S'!..>is atopological space. V, V',V" c: V0,
V',V weakly located and relatively located. Then

((V n V‘) u V")' = (V u V")' n (V' u V")‘.

Proof. We apply the rule (V1 (1 V2)’ C V'1' fl V; from 2. 17.

((V u V") n (V' u V"))" = ((V n V‘) u V")' c (V u V")‘ 0
(V' u V")’.

Let p 6 W 6 ‘IS, p 6 (V U V'')' H (V' U V")'.
There is a W‘ 6 S51,p 6 W‘, W‘ C W such that

Vq(q e w' n V) & Vq'(q' e w' n V‘) —>Vq"(q" e W n V n V‘).

Nowthere are q1,q2,.q1€ W‘ H (V U V")',' q2i_€W‘ fl (V' UV").
Consequently there 1s a q,q 6 W‘ fl V v q 6 W n V‘ n V,
so p 6 (V" U (V' 0 V))'.

4.17. Theorem. If 4Vn>n is a located sequence of closed
pointspecies, then the system of pointspecies, obtained by
closure of. <Vn>n with respect to D, _t_Jis again a located_
system.
Proof. We call the closure (5. Lemmas 4.15, 4.16 imply
that f01“any Vi.V,-.Vk= (V1! Vj) T‘Vk =(V1“ Vk)LJ. (V; WV1.)

(Vi ” Vj») L5.Vk = (V: L1Vk) U(Vj Q Vk)
These are the distributive laws with respect to n, y_,-any
element W 6 6 can therefore be Written as W1 U W2 L_J. . . l_J
W“, where the W1 are finite intersections of elements of
_<Vn>,,. Every W 6 G is therefore located (using 4.11 (a),
4.13 (a)), and if W, W‘ 6 (S then W 0 W‘ is located too.
If W,W',W" are located, and W,W'; W,W" are relatively
located, then W,W' l__JW" are relatively located by 4. 11 (b),
4. 13 (b). In this way we can prove inductively, that every
pair W,W' 6 (E is relatively located. '



CHAPTER II

SEPARABLE METRIC SPACES

1. Definitions and examples.

1. 1. Definition. A topological space <V0,E> is called sep
arable, if there is an enumerable sequence of points <pi>i
which is dense in the space.
A metric space <VoaD) is separable if <VO,‘£(p)>is sep
arable. <ppi is called a basic pointspecies or basic species.

1.2. In this paragraph we introduce some special separable
metric spaces: R, R", R”, N, Q, F, H, D(9), I.
The- correspiondfng —topo1'ogic§l s'pac—es'v?ril1—beindicated by
the same symbols; from the context it will be clear which
meaning is intended.

1.3. Definition of R, R“, R", N, Q, I.
R is the real line',' with tHe u§'ual_m<?;ric p(x, y) = Ix-yl.
R1 = R; R“ is the euclidean n-dimensional space, defined
as usual, metrized by D(x,y) = sup{|xi-yil : 1 g i g n}, or

1'], .

by p<x.y) = (331 (Xi"yi)2)1/2
_l_?_.°°consists of all denumerably infinite sequences of real

numbers, metrized by p(x, y) = 31 2'1 pi(xi,yi), pi(Xi,yi) =
inf{1, lxi-yi I}, x = <xi>i, y =<yi>i. Byl. 3. 14, the topological
space R“ is the topological product of a denumerably infinite
sequence of spaces homeomorphic to R. The rationals of R”
are all infinite sequences with all _elements rational, a'r'1d
almost all elements zero. The species of rationals of R“ is
a basic pointspecies. '
N is the species of natural numbers, Q the species of
rational numbers, I = [0,1] the closed interval; their
metrics are obtained by restriction of the metric of

1.4. Definition of El.
E1 consists of all denumerably infinite sequences of real
numbers <xi>i such that xi2< 00.1:
The rationals of _}_Iare the same as the. rationals of R”,
and form a basic pointspecies for l_l. _I_-_Iis metrized'by:

p<x.y> = (51 (Xi"yi)2)1/23 x = <x,>,. y = <y, ,.
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1.5. Definition of F.
The points of F are"the' functions from _I_into _I_{;F is met
rized by -' '

P(f.g) = Sup{|f(X) - g(X)l= X '5 [0.1]}.

A function f e F is called a rational polygonal function, if
there exists afinite species of rational numbers irl, . . . , rm},
0 = r1 < r2 < <rn = 1, such that

x €[1"i,1"i+1:'—->f(X) = aix + bi, a bi 6 Q, 1< i<n,1-’ _.

3iI'1+1 + bi = 31+1T1+1 1' b1+1a 1 <1 < “

The species of rational polygonal functions will be denoted
by _1i‘°.§‘° is a basic pointspecies for

1. 6. Definition of D(6).
Suppose 6 to be a sfiread law, 0 a complementary law which
is the identity. The spread D(6) with a defining pair <9,0>
is supposed to be. metrized by the following well-known
metric: a,B e 13(9) .3. p(a,B) = lim (/.z(a7(n), B(n)) + 1)-1,

1'1-boo

where u_(&(n), E(n)) is the least number m < n such that
&(m) = B(m) & m + 1 < n ->a'(m+1) 75B(m+1).

The species {acz Ge 6} is a basic pointspecies for 12(9).

1.7. Definition. We define a special predicate Z.
Z(n) holds iff n is the number of the last decimal of the
first sequence of ten consecutive numerals 7 in the decimal
representation of 1r.

1.8. Example.
We‘ define a mapping 5 from N into Q by:

—oZ_(n) —. €(n) = n; Z(n) —->E(n) =—1 + n‘1.
We remark:
A) E is strongly bi—unique, as is readily seen.
B) E is continuous, since every subspecies of N is open.
C) 5'1 is weakly continuous, since every V C E N_is closed

(as can be proved by showing p e V‘ c: 5 N'...p e V),
D) 5'1 cannot be proved to be continuous. For if we define

-1 Z(n) -ppn = 1, Z(n) —>pn = 1 + n'1, then <pn>n con
verges but we cannot prove the same for <E'1pn>n.

1.9. Example.
We construct another mapping E,from N into N:

‘-1Z(n) —..?,(n) = n + 1; Z(n) _>E(n) = 1.
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E is easily verified to be strongly bi-unique, E. 5'1 are
both continuous.
V = {m : In 6 N & "m > 2} is a metrically located sub
species of N. EV is not any longer metrically located in
E_l\_T, for —
2 6 E N, -1 Vn(Z(n)) —>p(2,EV) = 2, Vn(Z(n)) ->p(2, EV) = 1;
therefore p(2,£V) cannot be calculated.

The property of being metrically located therefore depends
on the metric.

1. 10. Some other counterexamples to analogues of classical
theorems can be found for example in HEYTING 1956:
5. 1.3, after definition 4; 5.1.4, remark after theorem 1;
5.2.1, example.

2. Basic pointspecies and point representations.

2. 1. Theorem. If <pi>i is a basic pointspecies for a metric
space <V , p>, then a basic pointspecies <p3>. c <p.>. can
be found (izvhich is discrete. 1 I I 1
Proof. We construct a sequence <in>n (which may contain
repetitions) such that p— = p'n for every n.

We put i1 = 1, and construct the sequence <i,,>n by steps.
First step. We choose i2 = 1 or 12 = 2, such that the con
ditions (a1) and (b1) are met:

(an o<p1.p2) < 2‘: - 12 = 1.
(b1) P(P1aP2) ‘'5 2' ->12 = 2

kth step. We suppose to have constructed i1,i2,...,in(k_1)after the (k-1)‘ step; {11,...,1n(k_1)§ c {1,2,...,k-17;,
We order the different natural numbers occurring in {i1,
.. .,in(k-1)} according to increasing magnitude, and call
them in this order j1,...,jq (hence s < t —>js< jt); q < k.
Weorder {1,2,...,k} - {j1,...,-jq}.after increasing mag
nitude, and call them jq.,1,....jk. (Jk = k).

Flroiln <j'1,...,fjk> We confstrucltl a :equenc1~;e'<j'1,...',jL>suc tat j.= j. or i sq; ater t e c oice 0 j ,...,j_ ,
we chooselfor 1j,,r > q, either j;_1 or jr, suc that Edn
ditions (ak), (bk) are met:

(a )If there exists a t g r-1, such that p(p..,p. ) < 2'k'1
k j! = j’ 1 Jt JrI r- ‘ - . .

(bk) If for every t < r-1 p(pJ.£,pJ.r) <l£2 k then yr -.- Jr
Then we take in(k-1)+t = j'q+t for 1 < t S k-q. We see that
n(k) = n(k-1) + (k-q).

Now we prove the discreteness of <pin>nby proving the
discreteness of <p- , . . . ,p1n k)>for every k.

Suppose already proved the iscreteness of<pi1,. . . , p in(k_1)>.
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By conditions (ak),(b1f) it is clear that jr,j, 9.‘ , . . . , j',_-1).
is included only in. {j1. .'. . .jk} if pjr lies apart from every
element of {pJ.-, . . . ,pj- Therefore {pi . . . . ,pi } is alsodiscrete. 1 ‘k 1 “W

There remains to be proved that <p- >n is a basic point
species. To see this we remark that for every p with 1 < k
either p16{pi1,pi2, . . . ,pin(k)} or there exists an it (1 g t g
n(k)), such that p(p1,pit) < 2*k+1(for if 1 ¢< j1,...,jq> at
the k‘ ‘step, ‘there is a j, such that 1 = j, (r > q);
jl? ¢ <j1aoo‘:aJ.k>lrnplles < 2"-k+1_(t< 1-0))’ .
Therefore, we put pi = pm, and <pi>i 1s a converging
sequence, (p 1), C (pi>i, hen we are able to find a sequence
<p"i'>i, <p';'>i c <pi>i, such ‘that for every i p(p'{',p'i') < 2‘1.
(We only have to take, if pj = pl, a k such that l < k, and
to apply the preceding considerations.)

2.2. Definition. Let <VO,p> be a metric space. We say that
<VO,p> has a point representation if there is a sequence
<pi>i c V0 (the basis of the representation) and a spread
with a defining p-air <9,~')> such that

3.) <i1,...,ik> 6 9 —>13<i1,...,ik> = <pi1,...,pi .
b) Every spread element converges to a point of J)/0.
c) For every p 6 V0 there exists a spread element con

verging to p.

2. 3. Remark. (a) IfX is a point representation of a metric
space <Vo. P>. with a defining pair <9, «':>, and basis <pi >1,
and if (p. >n 6 X, there is for every k a sequence
<i1,...,iv> 6 9, such that <i1,...,iv,jv_,_1 ,...,jn> € 9 —>
p(pi,,p,-H) < 2-“. (Since 2.2(b) implies that it must be pos
sible to calculate for every <pin>n 6 X a number m such
that for s, t 2 m p(piS,pit) < 2'1‘, where m is already known
from an initial segment of finite length (pi ,. . .,pi ) , we
may suppose r 2 m.) 1 I
(b) If <V0,p>, <Vo,p'> are metric spaces, <V0,E(p)> =
<Vo, SS'.(p')>,and <V0, p> possesses a point representation,
then <Vo, p'> too.

2.4. Definition. A point representation X with a defining
pair <e,o>, and a basis <pi>i is called uniform if for everyk there exists an n such that

m >n 8: <i1,...,im> 6 9—>p(pin,pim) < 2'1‘.

2.5. Theorem. a) Every metric space with a point repres
entation is separable.
b) Every complete separable metric space possesses a uni
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form point representation.
Proof. (a) is immediate from 2.3(a), since (in the same
notation) if <pin>n converges to p, then p(p,pi ) if 2'1‘.
Hence <pi>i is a basic pointspecies. V
(b) Let <pi>i be a basic pointspecies for a metric space
<V0,p>. We construct a spread X with a defining pair <6,fi>
such that

A) <¢> 6 9; i 6 N—»<i> 6 9.
B) <11»---.ik+1>_€ 9 -> P(Pik.,1.101) < 3-2.1‘
C) (11,. . . ,ik> 6 9 8LP(pJ-,pik) < k2'k+1-'(j.1, . . .,ik,j> 5 9.
D) °<i1a---.ik'> = <Pi1.---.Pik>-.

This spread is a representation, since if p 6 V0, there is
asequence <pin>n such that p(pin ,p) < 2'“; hence p(pin,pin+1) :1»
p(p_,pin)+p(p,pin+1) < 2'“ + 2'"'1 < 2‘“*1. Therefore, by
(C), <pin>n 6 X. The uniformity is a consequence of (B).

2. 6. Theorem. (Intuitionistic analogue ofLinde16f's theorem).
If <Vo,p>is a metric space with a point representation,

then every open covering of <Vo,SZ(P)>possesses an enum
erable subcovering.
Proof. Let <Vo,p> be represented by a spread X with a de
fining pair <9,a)>, basis <pi>.i, and let {Wi: i 6 I; be an open
covering of <Vo, SZ(p)>.

To every point p of V0 natural numbers m, k and an
element of the covering, W1, can be found such that
p 6 U(2 'm,pk-) c W1. Hence there are functions W1, (02 from
X into N, and a mapping (03 from {<tD1cr, 9020) : ar 6 X} into
I, such‘ that if 016 X converges to p 6 V0, then

- )
p E U(2 ‘hm ’ p¢2(a)) C WS'I3(%'-'1(°‘)-¢2(°‘))°

Since {<m,k>: m,k 6 N} is a denumerably infinite species,
{<«,b1(a), t.D2(o.r)>: cr €—X§ is enumerable, as follows from
the application of the enumeration principle to 90,defined
by ma) = <w1(a>. w2<a)>. , ,
Hence {\_}V¢,3(._I,(a)_4,2(a)) : a 6X} 1s an enumerable subcover1ng
of {VVi: 1 e 1}.

3. Located compact spaces.

3. 1. Definition. A complete metric space is called a metric
located compact space (MLC-space) if it has a point rep
resentation by means of a finitary spread.

3. 2. Definition. An r:-net for a metric space <Vo, p> is a
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quasi-finite pointspecies V5 = {p1,...,p0§ C V0 such that
p(p,Ve) < e for every p 6 V0.

3.3. Definition. A topological space is called compact, if
every open covering includes a quasi-finite subcovering.
A space is called co-compact, if every enumerable covering
(not necessarily open) possesses» a quasi-finite subcovering.

3.4. Theorem. The following properties are equivalent.
a) <V0,p> is an MLC-space.
b) <V0,p> is a complete metric space with a point rep
resentation by means of a finitary spread with a discrete
basis.
c) <V0,P> is a complete metric space and possesses an a
net for every 2 > 0. 2
d) <V0,p> is a complete metric space and (V0, E(p)> is
compact.
e) <V0, p> is a complete separable metric space and (V0, 1(9))
is w-compact.
Proof. Our prooffollows the scheme: (a) -. (d) —-(c) —>(b) -(a);
(8) - (8) -(<=)
(a)-» (d) was proved in BROUWER 1926B, with a slightly
different definition of MLC-space (there called "katalogisiert
kompakte Raume"); but the method, which is analogous to
the proof of 2. 6 (with an application of the fan theorem in
stead ofthe enumeration principle) can be transferred without
difficulty. (cf. also HEYTING 1956 5.2.2)
(d) ...(c), {U0(p) : p 6 V0} is an open covering of <V0,‘£(p)>.
Hence there is a quasi-finite subcovering {Ug(p1),. . . , Ue(p0)},

{p/1,. .>.,p0‘} c: V0. Therefore {p1,. . .,p0} is an e-net for<' .9 p 0

(Q)°,, (b). Let, for every k, {q11‘,. . . ,qI1§00?, be a 2 -k-1 _net.We consider the sequence:
qiaq;aoo-'aq]I'l(1)aq%ao--aq:(2)aq?_aoo-:q‘]f:oooaqfiuoaooo
We denote the it“ member of this sequence ‘by p{.<p'i>i is
dense in <V ,‘£(p)>. We select according to theorem 2.1
a subsequencoe <pi>i C <p'i>iwhich is discrete; <pi>i is a ain
dense in <V0,SE(p)>.As is seen from the definition of <pi>i,t k‘ b f d h th t , '
20~k-e1V.erfeY’c;W: rgilaycséulppcfseoi/1:1 <81:/1:1 foir égéry k.,pvo?5 evzr;
p'i, 1< i< vk, a pm) can be found, such that p(p'i,ps(i) )<2 'k‘1.
Hence {ps(1), . . . ,ps(vk)} 1s a 2 ‘k -net.

llf we put “R = sup{s(i):1<i<z/1,},{p1,...,p“k} is 2.
2' -net. Let Ak = sup {uh/.¢k_1 + 1}; {p’1,...,p,\k§ 1s then
also a 2'1‘-net, and An-1< An for every n.

Now we construct a "finitary point representation by a
modification of the proof of 2.5(b); we retain stipulations
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(A), (B), (D), but change (C) into (E):

(E) <j-la-o-aj-k> 6 6 8‘ p(pjap1k)<2-k+1 & 1$j<A-k """
<l.1,...,j.k,j> 5 9.

If p 6 V0, there is a sequence <p1n>n c <pi>i, such that
1 <in< An, p(pin,p) < 2‘“ . Then <pin>n is an element of theconstructed spread.
(b) —>(a) is trivial.
(a) -9 (e) is a straightforward application of the fan theorem.
For suppose <Vo, p> to be represented by a finitary spread
X, and let <Wn>n be an enumerable covering of V0. There
exists a function 90 such that if cr 6 X represents p, then

p e Wwa) . B};the fan theorem WXis finite, therefore <Wn>nhas a quasi- inite subcovering.
(e) »(c). {Ug(p) : p 6.Vol; is an open covering of <Vo, ‘E(p)>.
By 2. 5(b), 2. 6 there 1s an enumerable subcovermg <Ue(pi)?i,
<pi>i C V0. Hence there is a quasi-finite subcovering
{)Ue(pj1). . . . , U£(pJ-k)}; {pl-1, . . . , pjk} 1S therefore an s-net
for <Vo , p>.

3.5. Definition. If <V0,S'£>_is a topological space such that
for a certain metric p on V0,<Vo,‘£(p)> = <Vo,$>, and
<Vo,p> is an MLC-space, then <Vo,i’.> is called a located
compact (LC-) space.

3. 6. Remark. a) If <Vo,‘1'.(D)>is an LC-space, then-<V0, p>
is an MLC-space. ,
b) An LC-space corresponds closely to the definition of
"located compact topological space" in BROUWER 1954, as
will be clear from comparison of the definition given there
with 3. l, 3.4(b); an LC-space is always homeomorphic to a
located compact topological space in the sense of BROUWER
1954.

3.7. Theorem. Let <V0,p> be an MLC-space. V c: V0 is
located in <Vo, E(p)> iff V is metrically located in <V0, p>.
Proof. In one direction the implication follows from 1. 4. 5(b).
Let V be weakly located. To every p.e V0 a natural number
k>v can be found such that F(k, p) holds, where

F(k,p) ++<U<2"‘.p> n V = 521 v vq<q e U<2“‘.p> n V»

(S = {U(2'k.P) 1 p 6 V0 & F(k,p)} is an open covering of
V0, hence by 3.4(d) there is a quasi-finite subcovering

Suppose U1 n V = Q)for >t<i</4, q E U_,-n V for 1<i<?t.
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. - . 1
{q1,....q,‘; 1s a 2 ".-net for <V,p> since V C it__J1U1.
Hence if p 6 Vo,q 6 V, then p(p,q)<|:
inf {p(p,qi) : 1< i < M-2'”, therefore p(p, V) is defined.

3..8.- Remark. From the proof. of 3. 7 follows: if <Vo,‘£> is
an LC-space, then V C V0 is located iff V is weakly located.

3.9. Remark. From the proof of 3.7 and from 3.4(c) it is
clear that if V C V0 is closed, located, then V (with the
relative topology) is an MLC-space, and conversely (Cf.
BROUWER 1926A, FREUDENTHAL 1936,7.5,7.7).

3.10. Theorem. Let <V0,p> be a MLC-space; V1,V2 are
two located subspecies of V . Then the following assertions
are equivalent:
a) V1,V2 are relatively located.
b) A6 V5 (Vp vq(n(p.q)<6 8: p 6 V1 & q 6 V2) -2

V1“(I‘€ V1 “ V2 & P(p.I')<€))
0) A6 V6 (Us(V1) “ Us(V2) C Ue(V1 “ V2))
Proof. (a) —.(c). Let 5 be a fixed real number greater than
zero.
To every p 6 V0 a 6 < e.2‘1 can be found such that F(p, 6)
holds, where F(p, 6) ._.
lvp(p 6 V1 “ Us(p)) 8: vq(q 6 V2 F‘ Us(p)) -—~Vr(r€U(2'1e.p)n
V1 V‘ V2)}- 1
The species {U(2' 6,.p) : p 6 V0 & F(p,6)} is an open cover
ing of V0.
By 3.4(d), there exists a finite subcovering {U1,...,U,,l;
let U1 = U(2'1<5(pi).p,-L). 1<i<#. We put 6 = inf{2‘16(pi) :
lgiéu}. Suppose ql 6 V1 0 U3(p), q2 6 V2 0 U3(p). Then
for a certain A, 1<}t</.2, p 6 U(2’1<S(pA),p'A).

p(q1ap}\) <24 6(p}\) + ‘S*6(p)\)a

n(q2.p,.) < 2"16<p.). + 6 mp1).

Hence there exists a q3 6 U(2‘1 e,pX) n V1 fl V2.

o(q3.p>:>o(q3.p.> + p(px.p)<2'1e + 2'16(p1>:»e.

Hence U8(V1) “ U8(V2) C Ue(V1 “ V2)
(C) - (b)
Suppose for a certain 6,3 : U3(V1) fl U3(V2) C Ue(V1 n V2),
If P1€V1a P2€V2o P(P1aP2) < 5» then'P1»P2 6 U8(V1) “ U8(V2)
C Ug(V1 fl V2). Hence there is a p3 6 V1 0 V2 such that
0(p1.p3) < 8. P(p2.p3) < B
(b) —.(a) is trivial from 1.4.. 9.
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Remark. (b) was given in FREUDENTHAL 1936, 7.11.

3. 11. The following theorem is borrowed from FREUDEN
THAL 1936. '
Theorem. Let <Vo,p> be an MLC-space.
a) If V C V0 is metrically located in <Vo,p>, and 6, e 6 l_%,
0‘<6 < e, there exists a metrically located V‘ such that
U3(V) C V’ C Ue(V). (FREUDENTHAL 1936 7’.10)
b) If W,-V1.. . . , Vk are metrically located, :2>0, then there
is a metrically located W’, W C W‘ C U€(W), such that W‘
is relatively located with respect to each of V1,..._,Vk.
(FREUDENTHAL 1936, 7.14)
c) If W,V1,.-.,Vk are metrically located, and pairwise
relatively located, and if {V1, . . ._. Vk} is closed with respect
to intersections, then all intersections constructed from
W,V1,....Vk are pairwise relatively located. (FREUDEN
THAL 1936, 7.15)
Proof. FREUDENTHAL1936 presupposes another definition
for the MLC-space. This does not present any difficulties
for the proof of (b),(c), since if (a) is proved, the proofs
for (b),(c) in FREUDENTHAL 1936 hold for our definition
as well.

For our definition of an MLC-space, (a) is proved thus.
Let X be the spread of a point representation as constructed
in the proof of (c) —»(b) from 3.4. If X has a defining pair
<e.o>, thentwe construct an X‘ with a defining pair <9','3'>
as follows.
Let 3‘1(e-<5)<=5.‘, 3.2'k*1<inf{e',5}.
{p1,...,p;\k} is a 2-k-net. We divide {_p1,...,pAk?, into twodisjoint parts Y,Z such that

p16 Y —>p(pi,V) <2-: - e‘.

We -define 6' C 6 as follows.

9L-7{<j.1,....,ik> :<.j.1,...,ik> E & 6 Y‘,
6‘ consists of all descendants and ascendants of elements
of 61.. .3‘ is the restriction of 0 to 6'.

If lim p(pin,p) = o, <pin>n.€ X3 then’:p(pik,p) < 3.2-k+1 < 5',
11 —b on

hence ifX' represents a subspecies W of V0, then W C Ug(V).
If P(P.V)< 6, then for a certain i, 1g igkk, p(p,pi) < 2"‘<e',
hence p(pi,V) < 6 + 6', therefore pi 6 Y; there is a sequence
(pj )n, pjk = pi, p(pjn,p) ->0. Hence U3(V) C W. Comparing
3.25‘, 3.1 2.5(a), 2.5(b) we see that W‘ = V’ satisfies all
requirements .
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3. 12. Lemma. We consider pointspecies in an MLC-space.
Let <Ui>i, <Vi>i be located systems of closed pointspecies,
and let (6,), be a sequence of real numbers greater then
zero.
Then it is possible to construct a sequence of (closed) point
species, <Wi>i, such that <Wi>i U <Vi>i is a located system,
and

Ai(U1 C W1 C U(‘51.Ui))

Proof. We proof the assertion by induction.
Suppose already constructed W1, ..., Wk_1, such that

<Wi>li‘;11 U <VJ->1»is a located system, and U, C W, C U(<5i,U1)

for l<i<k-1. Now we construct Wk. We write <Wi>l.1‘_._.'11U

<V,->,-as <V;>,~, with V; = w, for lg 1< k, V; = v,_,,,, for
i>k.
We construct a sequence <Wk.i>i as. follows.
Wk.1 = Uk.
Wk.2 is a pointspecies, located and relatively located with

respect to Vi. Wk,1 C Wk.2 C U(2‘2 6k,Wk,1).
Wk,m.,1is a located pointspecies, located with respect to

every element of Gm, the species of all finite inter
sections of elements from {Vi,...,V;n1, and such
that Wk,m C Wk,m+1 C U(e(m), Wk.m ) (using 3.11(b)).
e(m) is determined thus:
If V 6 (~Sm-1, then V, W;,__mare relatively located.
Hence there is a 6V such that (3.10(c)):
U(6V,V) n U(<SV,Wk.m) c U(2'm, V n w1.,m). em =
inf{6V : V 6 QSm-i}, z-:(m) = inf {2'28m,2'1 t-:(m-1),
<Sk2'm'1}.

We put wk = (I3 wki)‘. wk is located, by 1.4.12 and
1.4.13(a). F1 ' ,,
Since wkm c wk,m.1 c U(ak2"“'1,wk,m) and R232 2‘“ 61, =
2'1 6k, it follows that _U Wki C U(2'1 6k.Uk), hence Wk C
U(5kaUk)- 1:1 ’ «»

Finally, we have to show that Wk U <V}>J~is alocated
system.
To prove this, .it is sufficient to prove that Wk is relatively
located with respect to any finite intersection of elements
of <V}>j (as follows from 3.11(c)).

Suppose V is a finite intersection of elements of <V3>J.,
so V 6 CE.“for a certain n. Let n<m, 2*“ < e.
We remark: e(m+1) < 2 '1 e(m); e(m+k) < 2'1 e(m+k-1); hence

k}:_'30e(m+k) < 2e(m) < 2'1 e m.
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Therefore, Wk C U(2"1em,Wk.m ).
We obtain
U(e(m),V) n U(t-:(m),Wk) c'U(em,V) n U(2‘2 em,U(2’1em,Wk_m)) c
U(em,V) n U(em,Wk.m )cU(2'm ,V n Wk’m) c: U(2’m ,V n Wk) c
U(€,V n Wk).
Hence by 3.l0(c), Wk,V are relatively located.

3.13. Theorem. (BROUWER 1954, p.17). Every mapping 5
of an LC-space into an LC-space is uniformly continuous.
Expressed metrically:

A5 V5 "Y(EUs(y) C Ue(5Y))



CHAPTER III

INTERSE CTION SPACES

“1. Definition of intersection spaces.

1. 1’. In this chapter we want to give an axiomatic treatment
of a certain kind of topological spaces, which will be called
intersection spaces. The‘ most important feature of this
treatment is the characterization of these spaces by means
of a species of closed pointspecies withdecidable intersection.
relations, (The pointspecies V1,V2,...,Vn have the inter
section relation if their intersection contains a point) in the
same manner as in FREUDENTHAL 1936.

In this paragraph we shall restrict ourselves to I-spaces,
defined by means of a set of postulates, strong enough to
ascertain the existence of a topology, but not much more.

In the second paragraph we shall introduce stronger pos
tulates, some of them rather complicated, which are used
as tools in proving the theorems about spaces defined in a
more graceful manner in the third paragraph.

By this procedure one-gets a clearer insight in the import
of the different postulates than by starting from the strongest
suppositions at once. In this way there are also more pos
sibilities to incorporate a part of the theory in the develop
ment of other postulate systems.

1.2. Definitions. We start with a denumerably infinite se
quence of formal objects, A1,A2,... .- This sequence is
indicated by 2!. We construct. the free distributive lattice
SBwith 91as a denumerably infinite species of generators,
and with a zero-element A0 and an all-element A,.;. the
lattice-operators, join and meet, are written +, o, respec
tively; often the dot "-" will be omitted, so in this case
the meet is denoted by a simple juxtaposition.

fl is called the lattice basis. If in the sequel We speak
of lattice elements without further specification, elements
of as are meant. Arbitrary elements of 913will be marked
by capitals’ P,Q, R, S, T, indexed if necessary.

7 indicates a fixed bi-unique mapping of N onto SB;7'1 =7'.

1. 3. We remark that for every two expressions constructed
from elements of 21 by means of +, - it can be decided
whether they represent the same element of EBor not.
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(See BIRKHOFF 1948, p. 145). We use the following notations
for meet and join of a finite number of lattice elements:

11

P. = 2sP1.....m = P. + + 12..
I1

1131Pi = II£P1"’_”Pn} "’ P1'P2' ‘Pa = P1”: n
Every element of ‘.13can be represented as:

E (_II Aj) (7 finite) (*)
0']-.81’ Jeqi

If we require <O'n)nto be an enumeration of all finite species
(ordered in natural order) of natural numbers, without rep
etitions, and if

i§£j;i,j€T—*‘1Qi‘CUj&'fiUjCO'i,
this representation is unique, i.e. different expressions
represent different elements "of ‘.13.

1. 4. We introduce a mapping cpfrom-2! U {A0,Ai,,} into {O, 13,
which fulfils the following conditions: '

I 1. /\n(qo-An = 1), 9A0 = 0, 9A,, = 1
I 2. 9An1A[j2oooAnS = 1 {mlgoooymt} C {n'13ooo9ns}‘—-)

(PAm1Am2 . .'.Amt 7'' 1.
cpcan be extended to 91;by stipulating:

_ <,9(P1+...+Pn)=l<—>Vi(1<i<n&9B=1).
Such an extension is possible in a unique way, as follows
from the possibility of representing the lattice elements in
a unique way by expressions such as (*) in 1.3.

1.5. Remark. /\n(q>-AHA“ = 1), /\n(c,9ADAO = O).

1.6. Definition. P cg, Q4-+/\n(<p PAH = 1 —->9 QA,, = 1).
P~9Q4—»P<:q,Q&Q :9, P.

Remark. "Here and in the sequel we define relations and
operations with respect to 9; but in the notation, as long
as no confusion can arise, we omit the explicit reference
to cp, so we write P c Q instead of P :9 Q, etc..
We postulate:

I 3. P c Q ->PR c QR, for all P,Q,R.

1.7. A number of very elementary properties of q: and the
derived relations C, ~ are combined in the following theorem.
Theorem. For all P,Q,R,P',Q':
a) <pP = 1<-—>‘Vn(c,oPAH = 1); /\1’1(cpPAn = 0) 4-» cp P= 0;

P~Q—>(<pP = l<—>9Q = 1).
b) <pPQ=l—><pP=l; <pP=O—»<pPQ = 0. More general:



9P1...Pn = 1 &{m1,. .,mt} <:{1, ..,n}—>
9Pm1...Pmt = 1.c)PcQ&Qc:R—>PcR;PcP

d) ~ is an equivalence relation.€)PCQ—>P+RCQ+R
f)P~Q—..P+R~Q+R&PR~QR
g)9P= 4->P~A0;/\n(9PAn =1)«-—>P~A~.h)P~P’&Q~Q' ,Pr:Q-—>P'r:Q'.
i)P:Q4—»PQ~P4—»P+Q~Q,Pc:Q&9P =1-—»

<PQ=1. .j)PCQ-->PRCQ&PcQ+R;PRcP;PcP+R.
k)PcQ&PcR—>PcQR.
1)PCR&QC.R—->P-I-QCR.
m)PcQ+R& PR=O—->PcQ.‘P

Proof: Most of the assertions are trivial consequences of
the definitions.
(a) By 1.3 (*) P = 6%? (J_eI£_Aj): 9°P = 1 implies that for
a certain on 9(_II Aj) =11;henée foracertain 1/eon, 9 AVP = 1.J66

Conversely, supfipose 9 PA, = 1. PA, = ‘);,1_(Av_l'I.Aj).
9 PA, = 1 implies that for some /.4, 9 A\,(.II A1.) = 1; ifJ86
Rea“, then 9 AvAk = 1. H
So Vn(9 PA“ = 1). The second assertion of (a) follows from
the first by negating both sides. The third assertion is im
mediate from 1.6, the second and the first assertion.
(b) The second and the third assertion follow from the first.

1,Pt: Qf=g[Q1+ooo+Qu,gooogpyg1,..., meeso eemenso .
9PQ = 1 -—>Vi Vj(<pPiQJ- = 1). Suppose 9 P,‘Q,, = 1.
By application of I 2 we obtain 9 PA = 1; hence also 9 P =‘ 1.
(c),(d),(e),(f) are easily verified.
(g) <9P =.0<-+’\.n(<9 PA. = 0) (by (8))

/\1X9APAn 3) 0) P8: l\X(9 AOAH = 0) 4-H->l\n(9 PA”? = 4-) f\.o 0.
P 3 A’...-» I\n(9 PA” = 1 +—»9 AQAH = 1)... /\n(9 PAH = 1).
(h) is trivial.

E?) If QPAQ~ P 8% 9PPA,,Q= 1, then 9 PQA, = 1, hence by9 = . 0 c .
If P c Q,vand 9 PQA, = 1, we have obtained also 9 PA‘, = 1.
SoPQCP. ByI3:PcQ—->PPc:QP, soPQ~P.
If P+Q~Q, .9 ‘PA, = 1, we obtain 9(P + Q)Av = 1., an

therefore 9QA, = 1, hence P c: Q. P C Q & 9 PA, = 1 T

O 4--)

CL

9QA,, = 1, and so we have 9 (P + Q)A,, = 1.->9 QA,
Hence P + Q ~ Q, since 9 QA, = 1 ->9(P + Q)A, 1
holds trivially for every V. The second part follows from
the first and (b).
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(j),(k),(l) are proved by simple verification.
(m)PcQ+R—>P(Q+R)~P, soPQ+PR~ P. <9PR = 0,
hence PR ~ A0. By (f) PQ + PR ~ PQ + A0 = PQ; by (d)
PQ~P, andby (i) P CQ.

1.8. Definition. A sequence of lattice elements <Pn>n is
called a centered system if /\n(<pP ...Pn = 1).

1. 9. We introduce a certain species H of centered systems,
the species of point generators. II is, just like 9, a primitive
notion in our axiomatic theory (i.e. a notion, not defined
by means of other notions). If we specialize <9, II in de
scribing special kinds of topological spaces, 11can be defined
explicitly sometimes. We require (splitting axiom):

I 4. cp RQ = 0 & <Pn>n 6 II —>Vn(<pP1...PnR = 0 v
99P1...PnQ = O) for all R,Q and <Pn>n 6 II.

Thecondition <pRQ=O->Vn(<pP1...PnR=O v cpP1...PnQ = O)
for a centered system will be called the splitting condition
with respect to R,Q.

The species ofall centered systems which fulfil the splitting
condition with respect to every pair R,Q and which contain
at least one lattice element not equal to A, (splitting systems)
will be indicated by E.

1.10. Definition. We define a membership relation between
a point generator <Pn>n and a lattice element Q by:

<Pn>n 6 Q 4-»/\m(cpP1...PmQ = 1).

We require _
I 5. For every P, cp P = 1 —>V<Rn>n vs II (<Rn>n 6 P).

1. 11. Definition. <P >n, <Qn>
<Pn>n # <Qn>n "" Vnl11(9P1°°°PnmQ1--°Qm = 0)
<Pn>n ='<Qn>n “’Am(‘? P1°°°PmQ1°°'Qm = 1)
<Pn>n wR<—>Vm (C?P1...PmR= 0)

1.12. Theorem. For all <Pn>n, <Qn>n, <Rn>n 6 II, and all
Q. R:
a) # is a pre-apartness relation.
b) -.<Pn>n # <Q,,>n—-><Pn>n 2 <Q,,>n
c) <Pn>,, co Q & Q ~ R—><P,,>n to R
d) -1(Pn>n to Q «-»<Pn>,, 6 Q; —-a—..<P,,>n s Q —+<Pn>,, 6 Q.
e) <Pn>n to Q & <Rn>n 6 Q —><Pn>n # <Rn>n;

<Pn>n 2 <Rn>n & <Pn>n L.)Q —><Rn>n (,3Q.
1‘) <Pn>n to R & Q c R —><Pn>,, to Q; <Pn>n to Q —><Pn>n w QR.
g) <Pn>n to Q & <Pn>n to R <—><Pn>n to (Q + R).
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Proof. (a-) The symmetry is immediate. <Pn>n # <Qn>n
implies:
for a certain 12 9 P1. . . PVQ1. . .Q\. = 0. By I 4 there exists
a u such that 9 P1...PvR1...R,,= 0 v 9 Q1...QvR1...R“ = 0.
If we take A = sup {_z/,u}, we obtain:

? P1oooPXR1oodRx = O V 9 Q1oooQXR1oooRX : 0,

hence <Pn>n # <Rn>n v <Qn>n # <Rn>n.
(b) is immediate from 1.11, (c) is trivial, (d) is immediate
from 1.10,l.ll.
(e) For a certain 12 9 P1...P,Q = 0; there exists (by I4)
a Atsuch ‘that 9 P1...P,,R1...Rp = 0 v 9 R1...R“Q = O.
The second possibility is excluded, since <Rn>n 6 Q.
If A = sup{1/.,;.¢},. we obtain cpP1...P,\R1...R;\= 0, so
<Pn>n # <Rn>n. The second assertion is proved in the same
manner.
(f) For a certain V 9 P1. . . PVR = 0. QR ~Q<—>Q C R(1.7(i).);
9 P1...P,QR = 0. QR ~ Q -+ P1.,..P',QR ~ P1... PVQ
(1.7(f)), hence 9 P1...P,,Q = O (l.7(a)). The second as
sertion is immediate from the .first.
(g)'Let9P1°°°PvQ = O & ‘P-P1---PuR = O: A = Sup“/9/J)‘
Th-en we obtain: 9 P1...P,\ (Q + R) = 0, hence <Pn>n w
(Q’+ R).

1.13.. Definition. By 1. 12(b), 2 is an equivalence relation.
The species of equivalence classes of II will be indicated
by 11°; the elements of II° are called points. The equivalence
class corresponding to a certain <Pn>n 6 II will be written
as <Pn>I’1“.

Lower case letters p, q,r (indexed if necessary) will be
used to mark elements of 11°. Capitals U, V,W (indexed if
necessary) will be used to mark pointspecies; other capitals
or lower case letters will be introducedoccasionally for
these purposes.

1.14. Definition. p,q 6 11°.
p # q "’ A<Pn>n 5 p A<Qn>n 6 q(<Pn>n # <Qn>n)
p w Q4»-/\<Pn>n 6 p(<Pn>n to. Q); p 6 Qe->—a p to Q

1.15. Theorem. For all p, q,Q, R:
3) V<Pn>n 6 p V<Qn‘>n 5 q(<Pn>n # <Qn>n)i"’p # qo
b) V<Pn>n 6 .p(<Pn>n to Q) —>p to Q.
b) # is an apartness relation between points.
0) p 6 Q 4-»/\<Pn>n 6 p(<Pn>n 6 Q) 4-»V<Pn>n 6-p(<Pn>n 6 Q);

"I -1 p 6 Q 4-p 6 Q.
d) pwR&Q<:R->pw Q; pw Q—>pw QR;

pwQ& pw R—>pw (Q+R).
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Proof. (a) follows from: <Pn>P #<Q11>,, & <Pn>n 2».<P;,>n &
<Q,1>n 2=<Q11>n-—><Pn>n # <Qn>n- (by 1.12(a),(b), and from
1. 12(e)).
(b) is immediate from 1.12(a), (b).
(C) p .6 Q 4->—1p O)Q 4'-‘V-1/\<Pn>n 6 p(<P11>11
"1 V<Pn>n 6 P(<Pn>n w (by 3-))""A<Pn>n€ P "I (<Pn>n ‘*9
«-9 /\<Pn_>n..6 p(<Pn>n 6 Q) <—>V<Pn>n.€ p((Pn>n 6 Q) (by

COl’1tI‘apOSJ$1OI‘1fromQ the secongl. iSS§I"|21OI‘11Ofi-41.12(e)).-1-1p€ <—>p€ 1s1mme1ae rom . .
(d) follows from 1.12(f),(g).

1.16. Definition. [P] = {-p : p e 11° & p e P}.
After proving theorem 1. 17(a) we shall be justified in writing
P C V, V C P instead of [P] C V, V C [P], since no
ambiguity is possible.

1. 17. Theorem.
a) For all P.,Q : P c Q<—>[P] c [Q].
b) For all P,Q : [PQ] = [P] n [Q].
c) For all finite species {Q1,...,Q,,}:

[Q1 + + Q11]congruent [Q1] U U[Q11].
Proof. (a) By contrapos-ition from 1.12(f), first assertion:
<Rn>n 6 P & P C Q —><R.n>n6 Q, hence [P] .C Con
versely, we suppose [P] C [Q]. Letforacertain V (9PA, =_1.
Byl 5 an <R,1>n6 II,.<Rn>n 6 PA, can be found. PA, C A,
by 1.7(j); hence [PAV] _C [Av], therefore <R,1>,, 6 Av.
Suppose <pQA, = 0. By I 4 there exists a u such that

9 R1...R1,Q = 0 v <9R1..-.R11Av = 0.

Thesecond possibility is excluded, hence. «,9R1.
but this contradicts <Rn>,1 6 Q, so 9 QA, = h
therefore proved by this argument: P C Q.

Eb)By 1.7(j):PQ CP&PQCQ. PQ CP& PQ CQ—->1PQ] C [P] & [PQ] C [Q] (by (a)), hence
[PQ] C [P] 0) [Q].
Let r e [P] n [Q], <R,,>n e r, then /\n(cpR1...R,,P = 1 3.
cpR1. ..RnQ = 1). Suppose fora certain 12 9 R1. . .R,,PQ = 0
qoR1...R,PQ = 0 —><p(R1...R,P) (R1...RvQ) = 0.‘
By I 4 there exists a /4 such that
<p(R1...R11) (R1...R,P) = 0 v <p(R1...RJ1) (R1...R,Q) = 0.
Take A = Sup{u,V}. We obtain the disjunction <pR1.. .R,\P= 0 v
cpgR1. ..R;\Q = 0, which contradicts our initial assumptions.
Therefore /\n(<pR1. . .R,1PQ= 1), so <Rn>n 6 PQ; this implies
r 6 [PQ]. Thus we have proved [P] 0 [Q] C [PQ].
(c)Q1CQ1+ + Q“, 1 < ig ;.¢(1.7(j)). By (a) we have
the result [Q1] C [Q1 + + Q11]for 1 g i< /.z, and con
sequently [Q1] U U [Q11] C [Q1 4- + Q11].
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By induction we obtain from 1.12(g), if (Rn>n 6 II:<Rn>nwQ1&... (L) +000
We have further

A . .

-1 (law (<Rn>n to Q1)) 4-» -u -1 My“ (<Rn>n 6 Q1).

U[Qu].
1.18. Definitions.
V c W4->/\<Pn>n e H Vm([P1...Pm] n V = 525v

[P1...Pm] c W).
V C93.‘W+—>/\p(p¢V vp€ W).
V c" W... A.<P,,>,, e H (<P,,>,:“e v —>Vn([P1...Pn] c: w)).
Remark. C, @" are relations depending on 9, H; explicit
reference to cp,II will be omitted generally. (See also 1. 28).
@is called the relation of strong inclusion.
For lattice elements we define relations 1, x = C, C2‘, C6?"
by P x Q->[P] 1 [Q].

an1. 19. Remarks. (a).By the foregoing definition, c
0 v

P C‘

be defined as P (<2:Q <—>/\<Rn>ne H Vm(9 R1...RmP
R . . . R c Q).
b)1V C§'mWis classically equivalent to V c: W.
Some elementary properties of the relations CC‘,C‘, @" are
collected in the following theorem.

1.20. Theorem.
a)VCcIW—>V@'W b)V@W
The following assertions hold for x =
C) V X W ->V C W.d)UxV&Vc:-W->UxW;Ur:V& xW-+UxW.
e)UxV&UxW—>Ux(VflW).
f) UxV—>Ux(VuW).
g) U 7, V—>(U 0W) x V.
h)P.X(Q+R)&<pPR=0—>P1Q.
The following assertions are also valid:
1) P@Q&R€:Q—>(P+R)C<I=Q.
J) P@Q&p€P&q¢Q—>p# q.
Proof. (a), (b), (c) are trivial; (d) is proved bystraightforward
verification.
(e) is trivial for C‘. Let U C V 8: U @ W, <Pn>n 6 II.
There exist 1/,usuchthat [P1...P,] F)U = $0v [P1...P,] CV
and [P ...P“]fl U = 9}v [P ...P] C W. Letk = sup {mu}.
Since P1...P,\] [P1...Pv fl[i51....P] (1.17(b))we obtain
EI'3'1...Px] n U {Dv [P1...Px] C (V9n W). Likewise forC o

(f),(g) are immediate consequences of (d).
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(h). Let PC Q+R, 9 PR = 0, <Sn>n 6 II. For certain V
we have 9.S1...S\,P = 0 v S1...S\, C Q + R, 9 S1...SpP = 0
9S1...SuR = 0. Take)\ = sup{1/,;.¢}. Then 9 S1...S,\P = 0
(S1...S>\CQ+R& 9 S1...S,\R = 0). Therefore S1...SAP = 0
S1...S,\ C Q (1.7(m)). Likewise for C".
LetPC'Q+R, 9PR= 0, s=<s,,>;‘ 6 11°. Then s ¢ [P]
s 6 [Q + R]. There exists a u such that 9 S1...S,,P = 0

<<<<‘$:

<

9 S1...S,R = 0; hence s gt‘ v (s 6 [Q + R]&9S1... ,,R=O).Sinces6[Q+R]&s¢‘[R]—>s6[Q]
(1.17(c), 1.15(c)) we conclude that s 9.‘[P] v s 6
(i). LetP C 8: R C Q, <Sn>n 6 11. There exist U,/.¢ such
that 9 S1...S,P = 0 v S1...Sv C Q, 9 S1...SpR = 0 v
S1...S“ c: Q.

We take again A= sup{V,u‘§ and obtain 9 S1. . .S,\(P + R) = 0 v
S ...S}\ C Q.
(jl). Let P CQ, <Rn>n 6 P, <Sn>n 9.‘Q, <Rn>n, <Sn>n 6 1'1.
There is a 1/ such that 9 S1...SvP = 0 v S1...S,, C Q.
S1...S, C Q is impossible, therefore 9 S1...S\,P = 0. As
a consequence <Sn>n w P, so <Rn>n # (Sn>n (1.12(e)).

1. 21. Definition.
r _gP .—+/\<Rn>n6 rVm(R1...Rm C P)
r g V<—->V'R(r _6__R C V)
Int*V = {r : r _6_V} ; V is called open, if V = {p : p -_6_V}.

The notions r _6_‘P, r 6" P, r g_'V, r 6_"V, C‘-open, C"-open
are defined analogously.

1.22. Theorem. For all r,V,W:
r_6_V&r§W—->r_6_Vf‘IW

and likewise for g‘ _6_".
Proof. Let <Rn>;‘{ r. There are S1,S2,v,u such that

R1..._R,, C S C V & R1...R“ C S2 C W.
If A = sup {I/,/J1}, the following assertion is also true (by
1.20(e), 1.7(k)).

R1...R}\ C S182 C V Fl W.
Hence r 5 V n W. Analogously for _6_‘,_6_".

1.23. Theorem.
a) The open subspecies of 11° constitute a topology with
apartness relation on [Am] = I'I°.
b) The C‘-open (C"-open) subspecies of 11° constitute a
topology on H0 = [A,.].
Proof. The union of a species of open (C'-,C"-open) point
species is again open (C'-,C"-open). This is trivial. Let
V1,...,V“ be open pointspecies. V = V1 n V2 n fl V“.
If p 6 V, we have also p 6 Vi, l 4 i < /4. Since Vi is open,
p 5 V1 for 1 C iéu. Therefore R1,...,Rp can be found
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such that p 5 R, C V1, 1 < i < /J." By 1.22 we obtain
p _E_R1...R,, c V. Hence V is open too.
95and H0 are open in a trivial Way.
If we replace 6 by 5' or _6_",the argument can be repeated
Without changes.
To see that condition T4 is fulfilled for open sets, we may
argue as follows. Let p 6 V, q ¢ V, V open. .p _6_V, so
there exists an R such that p R C:V. Let <Pn>n 6 p.
Foracertain I/,P1...Pv C:R. p ~P1...Pv, q 6’R, hence
by 1.200) p # q.

1. 24. Remark. If no further specification is given, in the
sequel the topology associated with a pair <o,II> as intro
duced before will always be supposed to be the topology of
the open species in the sense of definition 1.21.

S
6

1. 25. Definition. A topological space which has been defined
by means of a pair <<p,II>such that the postulates I1-5 hold
(with the notion of open according to 1.21) is called an
abstract intersection space (in short: abstract I-space).

Any space homeomorphic to an abstract I-space is called
an intersection space (I-space)”.

The expression "the (abstract) I-space <<p,II>"means the
abstract I-space, defined by a function :9 (vvith_a domain of
definition 9.13)and a species 1'1such that I1-5 are satisfied.

The empty species will also be called an I-space.
In the proofs of theorems on I-spaces we suppose the I-space
to be abstract in most cases. This can be done without losing
generality. The trivial case of the empty space will be dis
regarded in proofs.

In many statements the qualification "abstract" is omitted,
if it is sufficiently clear from the statement itself whether
it is about abstract I-spaces (namely if the statement refers
to notions defined for abstract I-spaces only, such as lattice
elements). .

The same convention applies to the notions "abstract IR
space", "abstract PIN-space" etc., to be introduced in the
sequel.

1. 26. Definition.- Let I‘ = <V,‘3£>be a topological space, and
<Vn>,,a located system of pointspecies of I‘, with at least
one V“ 7‘ . Suppose V, 7‘ <Vl'1>n is defined by: V; = Vkirvkyé , v;,=v,,1fvk =¢.

A mapping gb is defined on a free distributive lattice $13
with 9! = <Aq>,, as a set of generators by:

wAn = V119 = ¢'a (WAN: Va
¢(P+Q) = WP Ll ¢Q. wPQ = «VP 0 we.
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c//is called a standard mapping (with respect to the located
system <Vn>n).
If we define 9 on 913by «pP = 14->t,uP 75 (5, then 9 is said
to be defined from «,0.

If cp satisfies I1-3 and a species 11 of centered systems
can be found such that I4-5 are satisfied, and <q>,H>is
homeomorphic to P by-a mapping‘ E which satisfies

<Pn>.n e 11 2;. E<Pn>;f = q _.n?':_1 w Pn = {q},
then <Vn>n is said to constitute an I-basis for I‘.

1.27. Remark. The translation of statements about abstract
I74.-spaces(IR-spaces, PIN-spaces etc.) into statements about
I-spaces (IR-spaces, PIN-spaces etc.) can be effectuated by
means of the preceding definition without difficulty.

1.28. If for the sake of clarity we want to discern various
notions for different spaces I‘, A, . . . we use notations such
as <9. ‘PA’ Cr» 7:» *1‘. am‘). arm. Ha‘) etc.

1.29. Remark. _Let P = '<cp,'1-.[>be an I-space. To every
pointspecies [P] 6 H0 corresponds in a natural way an 1
space A‘, if [P] is provided with the relative topology. If
%I(l") = <An>n, then <[AnP]>n is an I-basis for A‘. Let «p
be a standard mapping with respect to the located system
<[PA ,1]>11,and_let 9A be defined from «.0.]1(A) can be defined
by:

<Pn>n_ e 1'I(_A)<—>v<R,,>n E II /\n([PRn] = wPn & <R,,>n e P).
Then A is homeomorphic to A‘.
Therefore A‘ can be dealt with by considering {PQ : Q 6 EB},
{<PRn>n : <Rn>n 6 II & <Rn>n 6 P} instead of 5B(A), lI(A).

Speaking about the subspace [P], P 6 €B(I‘)we always mean
[P], provided with the relative topology. Likewise we use
notations such as Cép, to indicate strong inclusion in the
subspace [P].

We see that for all P,Q,R 6 $B(I‘):
P @'['-Q @RQR.

1. 30. Lemma. In an I-space the following assertions are
valid for all P,Q,R,S:
a)P'@SQ@R&P,Q,Rc:S—-—>P@Q;
b)PCC:QR&P@Q-—>PCC:R.
Proof. (a) The I-space is supposed to be defined by <9,II>.
Let <Tn>n 6 II. There exist /.¢,v such that

9 T1...T“Q = 0 v T1...T,, C R
9 T1...T,SP = 0 v T1...T,S C Q.

Takek = sup{/4,2/},



-56..

Then cpT‘1...T;\Q = 0 v T1...T;\ C R
9 T1...TxSP '-'-'0, v T1...T;\S C Q.

P c S, hence T1...T,\SP ~ T1...T;\P. P C R, therefore
? T1...T;\P = 0 V T1...T)\ C R. If T1...TA C R, then
T1...T,\S ~ T1...T.;\. Thus we obtain cpT1...T,\P = 0 v
T1...T;, C Q, and we have proved P C Q.
(b) is proved by analogous methods.

1. 31. There are many possibilities for introducing a topology
on a species II°, defined with respect to <p,II, if I1-5 hold.
We mention a few of them, besides the possibilities already
contained in the substitution of @', Er" for C.
We assume CC:to be defined in the sense of definition 1. 18.
Three possibilities of defining _6_are:
a) Definition 1.21
b) r g_R«—>v<Pn>n 6 r \/m(P1...P

r §_V<—>VR(1" _6_R c V).
c) r g V...{r1cc: V; r _§_R<-—..{r}6 [R].
Two possibilities of defining the notion of an open species
are:
d)Vis openifV={p:p_§_V}.
e) Int"‘V = {p : p _E_V}. The species Int [P] constitute a

basis for the open sets.
By combination we obtain six possible ways of introducing
a topology:a-d, a-e,b-d, b-e, c-d, c-e. The combinations a-d,
a-e,c-d,c-e produce a topology without any difficulty; the
combinations b-d,b-e produce a topology if we add the pos
tulate

I 6. <Pn>n 6 II & <Pn>n 6 Q —.v<R,,>,, 6 ll (/\n(Rn,1 = P“) &
R1 = Q), for all <Pn>n,Q.

C R);In

1.32. Theorem. Suppose I‘,A to be abstract I-spaces with
the same lattice SBand defining function 9, defined by pairs
<9, II(I‘)>, <9, II(A)> respectively.
If a) nu‘) c mm)

b) /\<Pn>n e l'I(A) V<Q,,>n 6 mt‘) (<Pn>n «_~—_<Qn>,, &
/‘k.V1(P1---P1 C Q1...Qk))

then I‘ and A are homeomorphic, and P ©1- Q <->P CA Q.
Proof. 1'I°(I‘) can be mapped bi-uniquely in a natural way
onto . II°(A), as is seen from supposition (b); for if
(Pu);-fr 6 H°(I‘), we can define a mapping (0 by:

¢<Pn>;fI‘ = <Pn>;fA.

P CIAQ —>P @1"Q is trivial. Let P Cr Q. If <Rn>n 6 l'I(A),
there exists a <Sn>n 6 I'I(I‘), such that <Rn>n 2: <Sn>n andAk CS]_oooSk)o
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There is a usuch that 9 PS1...S“ = 0 v S1...S,, C Q, and
thereisaz/suchthatR1...RvCS1...S“.Hence<pPR1...R,=0v
R1...Rv CQ. S0 P @AQ.
If r _e_AP, then also r _€_I-P. Let us suppose r gp P. If
we take <Rn>n, <Sn>n to be the same as before, there are
1/,u such that S1...S,, (if P, R1...R,, C S1...'Sv. So
R1...R“ Cr P, hence R1...R“ C21;P. Thus we have proved:
r gr P —»r _€_AP. Therefore I‘,A must be homeomorphic.

1. 33. Definition. Weintroduce three types of transformations
of elements of E. Transformations of one of these types are
marked by symbols 55,g€1,...,gS,,,...
a) <Pn>n 6 E. 95is a transformation of <Pn>n of the first
type if 9§<Pn)n = <Qn>n0 An(Qn = Pmn+1 .Prnn-I-2°°°Pmn+1 )9
Ai(mi+1 > mi): m1 = 0o
b) <Pn> e 23. 93is a transformation of <Pn>n of the second
type if <Pn>n = <Qn>n, Q“ = Pan) , f a bi-unique mapping
of the natural numbers onto the natural numbers.
c) <Pn> E 23. 93is a transformation of <Pn>n of the third
type if <Pn>n = <Qn>n, and if there exists a sequence <Ri>i,
such that Ai ./\n(<pP1...PnRi = 1), and a sequence of non
negative integers <mi>i, An Vi(mi > n), and such that for
all i,mi+i < n < mi,1+i —>Qn= Pn-i , n < m11—>Qn = Pu,
n = mi+i —>Qn= R1. Less precise: <Qn>n = <P1,...,Pm1 ,
R1,Pm1+1 gooogpl-n2 aR29Pm2+1 gooogpma ,R3;ooo>o

1.34. Remark. For transformations of the first and second
kind it is immediately clear that the transformed sequence
again belongs to E. For transformations of the third kind
we may argue as follows. Suppose already proved
/\n(cpP1...PnR1...R,,) = 1 and suppose for a certain u
P1...PpR1...R,R,+1 = 0. By I4 there is a A such that

cp(P1...P}\) (P1...PpR1...Rv.) = 0 v q>(P1...PA)R,,+1 = 0.
Both possibilities are excluded, therefore
? P1...PL,R1.o.Rv+1 -7 1.
Hence /\i /\n(<pP1...PnR1...Ri = 1).

1.35. Definition. If I‘ is an I-space, defined by <<p,l'I>, we
indicate by II’-‘the subspecies of E(I‘), obtained by closure
from II with respect to transformations of the first, second,
and third kind.

1.36. Corollary to 1.32. If I‘ is an I-space with a defining
pair <<p,l'I>, then every A, defined by <<p,II(A)> such that
H C II(A) C 11*, is homeomorphic to 1".
Proof. It is immediate from 1. 33 that the conditions of 1. 32
are fulfilled.



-53

1. 37. Definition and remark. {Pi : i 6 I} is called a cover
ing of an abstract I"-space 1", if {[Pi] : i 6 It covers I‘.
If <Pn>n is a star-finite covering, it is always possible to
construct a covering <Q,,>,, such that /\n(Q,, ~ PH), and such
that for every 1/ {Q1 : 9 QiQ, = 1} is a finite species. (This
fact is easily verified, and since it is somewhat laborious
to write down the proof i_s omitted.)

1. 38. Theorem. Let I‘ be an I-space. If Pi Cc:Q1 for 1 < ig n,
then {Q1,...,Qn} covers P1 + + Pu.
Proof. Let <R-n>,,6 P1 + + Pn. A 1/ can befound such
that 9 PiR1...R, = 1 —>R1...Ry C Q1 for 1 < i < n. Since
for a certain X, 1 < A < n, 9 P R1....R, = 1, we conclude
that R1...Rv C QA, therefore <Rn>’l';6 Q)‘.

2. Representation and separation postulates.

2. 1. In this paragraph we consider some representation and
separation postulates and their implications for I-spaces.

To begin with, we list some of the possibilities most
natural for separation postulates. They are numbered with
a letter N, from "normality", since the strongest conditions
N6,N8 could be considered as normality postulates.

N1. /\p /\q(p # q->VR(p 5 R & q to R)).
N2. Ap /\q(p# q—>VR VS(p_6_R 8:’ q_6_S & «.9RS -1'-'0)).
N3. /\p /\Q(p (0 Q—>VR(P S R 28: 9 RQ = 0))
N4. Ap AQ(p ca Q—»VR(p to R & Q (CZR)).
N5. /\p /\Q(p(.«)Q—>VR vS(p 6 R & QCCS & cp RS = 0)).
N6. AP AQ(9 PQ = 0 —»VP' VQ'(<p P'Q' = O & P C P‘ "&

Q @ Q'))- I
N7. /\p /\Q(p 5 Q ->VR(p 5. R C Q))
N8($). /\P6?B/\Q 623 (P C: Q—>vR6 28 (P C R C Q)).
N8 = N8(23).

N6 and N8(B) will play the most important role.
The following implications are trivial: N6 —>N5 _>.(N4& N3) —>
N2 —+N1; (N4 v N3) —>N1; N8 ->N7.

2.2. Definition. Let H be the species of point generators of
an I-_space I‘. A subspecies H1 C 1'1is called a spread rep
resentation of I", if the following conditions are fulfilled:
a)- There exists a spread with a ‘defining pair (9,0), and
with 1'11as the species of spread elements. <e,o> is called
the defining-pair of the representation.
b) M“ is a mapping of 6 into ‘B such that
o<i1, . . . , ik> = <o*<i1>,a*<i1', 12>, . . . , ~a*<i1, . . . ,ik>>; we
put 3<i1, . . . , ik> = o*<i1>o*<i1, i2> . . . 3*<i1, . . . , ik>.
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If a*<i1, . . . , ik> =yik, H1 is called a normal representation.
c) /\<Pn>n 6 II V<Qn>n- 6 II1(<Pn>n- 2».<Qn>,,).

2. 3. Remarks. a) A normal representation has a property
which is very convenient in formulation:

<P1,...,Pk> 6 0 64-><yi1,....,~yik>6 9,

hence <P1,...,Pk> 6 9 9 is a decidable property.
b) A normal representation is entirely determined by l'I1;
a spread representation in general, strictly spoken, not
(different pairs <6,«':>may produce the same species II1),
but since in our applications no confusion is to be expected,
we shall neglect this subtlety in the sequel.
c) A finitary spread representation may always be supposed
to be normal, since 39 contains only finitely many sequences
of a given length.

2.4. Definition. A spread representation III of an I-space
<q>,II>is called perfect if the defining pair <9,«)> of the rep
resentation satisfies the following condition;
<i1,...,ik> 6 9 & <Qn>n 6 II 8: <Qn>n 6 9 <i1,...,ik>—>
V<jn>n V<Rn>n € H1 /\I1’1('3’:‘<j'1,..._.jm>=Rm 8: <j1,...,jk> =
<11:---:ik> 8'3<Qn>n 2 <Rn>n)- _
If III is normal we obtain a simpler formulation:
(P-_]_',...,Pk>€ '3 9 & <Qn>n € II 8L <Qn>n € P1...Pk-—->
V<—Rn>n€II1(<Rn>n =<Qn>n 8: <P1, . ,Pk> = (R1, . . . ,Rk>).

2. 5. Definition. We say that a subspecies 111of II possesses
the inclusion property if
/\<Pn> 6 I11 v<Qn>n 6 lI1(<Pn>n -_~_<Qn.>n & /\n(P1...Pn '@
Q1...&n)).

2.6. Definition. A spread representation H1 of an .I-space
<qo,II>,with'a defining pair <9,0> is called a strong inclusion
representation (in short C‘-representation) if the following
assertion is true: _ _
(i1,...,ik> .6 9 -—>13<l.1,...«,]..k>C w3<i1,...,j.k-1 >, f0I‘
<i1,...,ik> 6 6, k > 1.

2.7. Definition. Let I‘ = <9,I'I> be an I-space. An I-space
A is called an inessential extension of-I‘, if 9I~(l.")= <An>n,
2I(A) =<A,',>n U <B,,>n, <An>n, <Bn>n disjoint sequences of
different elements and if
a) An VP 6 9J3(I‘) (Bn ~13 P),
b) <R,,>,, e Il(A) +—»v<R},>,,e II(I‘) /\n(Rn .~A R;,).
A is homeomorphic to I‘, as is trivially seen; it can also
be deduced from 1. 32.
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2.8. Lemma. To an I-space I‘ with a spread representation
II1 always an inessential extension A can be found with a
normal representation II2 such that
a) I11 is perfect iff 1'12is perfect.
b) Ill possesses the inclusion property iff I12 possesses the

inclusion property.
c) 1'11is a C-representation iff H2 is a @-representation.
Proof. Let Ill be given by a defining pair <6,0>, and let
<oi>i be an enumeration of 6 without repetitions. We put
QHA) = <An>n U <Bn>na <An>n : 91”‘): /\n(Bn ~ ‘3.*°'n)
Now we construct 1'12with a defining pair <e',o'> such that
(j1,...,jk> E 9' <—><'YAj1,...,'YAjk) '5 (B; ,..., Bik> 8:
0'11 "'3<11) 81 0'12 -'3<11,-12> 8: 000 8: O'ik = <].1,ooo,].k> € 9;
\"<j1, . . .~;jk> = <'YAj1, . . . , ’YAjR).
(b),(c) are trivial.
(a) is proved by a verification somewhat lengthy but very
straightforward; hence the proof is omitted.

2. 9. Remark. In many cases, if we want to prove a topo
logical property (e.g. metrizability) for a space I‘, using
the existence of certain representations, we can use a normal
representation instead, with properties analogous to the
properties of the original representation, for an inessential
extension of 1‘.

Conversely, the existence of a spread representation in
general foraspecial type of spaces (or for a special example)
is in most cases more easily demonstrated than the existence
of a normal representation; lemma 2. 8 makes an easy tran
sition possible.

2.10. Some of the most natural representation postulates
are:

R1. There exists a spread representation 111 C 11.
R2. There exists a perfect representation II1 C II.
R3. There exists a perfect representation Ill C II which

possesses the inclusion property.
R4. There exists a @-representation Ill C II.
R5. /\<Pn>n 6 1T V<Qn>,, 6 II (<Pn>,, :2: <Qn>n 8:

An(Qn+1; @ Qn)).
The followingimplications are trivial: R3 ->R2 -‘->R1;R4 ->R5.
The postulates .R5,R3,R4 will prove of special importance.
In this paragraph we want to develop the properties of spaces
which satisfy some representation and normality postulates.
Because of their complication the postulates R1-R4 cannot
be called elegant; therefore most theorems about spaces
satisfying one or more of these postulates mustbe considered
as tools destined for application to more naturally defined
spaces.
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2. 11. Definition. An abstract I-space in which R5 holds is
called an abstract IR-space. Any space homeomorphic to
an abstract IR-space is called an IR-space.
IR-spaces are classically equivalent to regular spaces with
a countable basis. An IR-basis is defined in the same manner
as an I-basis (3.1.26).
Remark. A subspace [P] of an IR-space is again an IR
space, for if <Qn>n 6 P & /\n(Qn+1 C Qn), then also
An(PQn+1 CF PQ11) (L29)

2.12. Theorem. Let l‘,A be two I-spaces such that the
conditions (a),(b) of 1.32 are fulfilled, and let a postulate
"Ax" hold in I‘. If "Ax" is one of the postulates N1-8,R1-5,
"Ax" is also valid for A. Especially this is true for'A1,
defined by <c,o,II*(I‘)>.
The proof is trivial in all cases.

2. 13. Theorem. In an IR-space the following assertions hold
for all p, R, V, W.
a) N3.
b) N7.
C) {P} C V4->p §_ V.
d) Int*V = Int V.
e) v<P,,>.. e p Vm(P1°°°Pm C R) —»p e_ R.f) v C w._»v c:lnt W.
Proof. (a) Let <Pn>n w R, <Pn>n :2 <Qn>n & /\n(Qn+1 C
<Qn>nw B, so there exists a 1/ such that soQ1...Q,R
Q1...Qy+2 C Q1...Q,.,.1 C3Q1...Qy.
Since <Pn>n6 Q1. . . QH2 there exists a /.1such that P1. . . P“ c

Qn)
: O.

‘Q1'oooQv+1; Plooopu@Q1oooQvo S Q1oooQV
& ?Q]_oooQvR = 00
(b) There exists a <Qn>n 6 p such that /\n(Qn+1 C Qn). For
3. V Q10 0oQy C Ra Q10 0oQ.v+2 C Q10 0oQy+1 C Q10 0OQV;
it follows that if <Pn>n 6 p, a u can be found such that
P1. . . P“ C'Q1. . .Qv+1, and hence P1. . .P# C:Q1. . .Q\,. Thus
we may take Q, for the S in the assertion N7.
(c) If {p} C Vthere exists a <Q,,>n6 p, suchthat An(Q n+1C Qn).
and a u can be found such that Q1. . .Qn c: V. It follows that
p 6 Q1000Qp+1 C" Q1oooQp C V) p V0

If pg V, <Pn>}'l‘= p, a u and a Q can be found such that
1...P (C:Q CV. If<Rn>n 6 II, there exists a 1/ such thatP H

9 P1...P“R1...R\, = 0 v R1...R,, CQ c: V.

Hence <Rn>"§ # p v‘ Vn(R1...Rn C V).
(d) p 6 Int*V—>p g_ V. So an R can be found such that

%_6_CRVc:-_V.f'l‘1here fexist(tS)1,S2, such that p 6'_S1 cc: S2 C:, as o ows rom .
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Let <Qn>n 6 S1. For a certain u, Q1...QP CS2, so
Q1...Q,, C R". S1 C Int* [R] C Int*V. For this reason
p _6_Int*V, therefore Int*V is open.

Int V is the species of interior points of V. If p 6 Int V,
an open species W can be found such that p 6 W C V. So
an R can be found such that p 6_R C V, hence p 6 Int*V.
Since Int*V C Int V is trivial, we have proved Int*V = Int V.
(e) Let <Pn>n, <Sn>n 6 p, P1...Pp C R, <Pn>n 2 <Qn>n,
/\_n(Qn+1 C Qn). A 1/ can be found such that Q1...Q,, C R.
As before, we have Q1...Q,,,2 C Q1...Q,,,1 C Q1...Q,,.
For a certain RS1. . .S;\ C Q1. . .Q,,.,1 C Q1. . .Q,, C R (since
<Sn>n 6 Q1...Q,,+2), therefore p _6_R.
(t) Let V C" W, p =-(Pu): e V, /\n(Pn.,1 C Pn). A u can
be found such that P1,‘. . PHI C P1 . . .1P, C W; hence p 6 W,
so V C Int W. '
Conversely, let V C Int W. If p = <Pn>,’f 6 V‘, then for a
certain’ 12 and a certain R P1...P,, C R C V. Hence
[P1...Pv] C W, so V C" W.

2.14. Corollary to 2.13(c). In an IR-space, the species
(Int. [7n]>,, is a basis for the open sets.
Proof trivial.

2. 15. Remark. Asa consequence of 2. 13, all ways of intro
ducingatopology, mentioned in 1. 31, turn out to be equivalent
if R5 is satisfied.

2. 16. Theorem. The following assertions are true in an‘ IR
space.
a) A point p is a closure point of a species V, iff

/\R(p 2 R ->Vq(q 6 [R] 0 V))
A point p is a weak closure point of a species V, iff

AR§p_e_R—.[R]nV;£¢).—b) [R is_a closed pointspecies for every R.
C) ([131] U [P2] U U [Pp])- '‘ [P1 + + Pp] f01“

"everyspecies {P1,...,P }.
Proof. (a) Let p be a closure point of V. p _6_R->p 6 Int [R].
vq(q 6 Int[R] 0 V), hence also Vq(q-6 [R] n V).
Suppose l\R(p _6_R ->Vq(q 6 [R] n V)). If p 6 W, W open,
then there is a Q such that p g Q C W, and from
Vq(,q c [Q] n V) it follows that Vq(q e W n V).
The proof in the case of weak closure points is analogous.
(b) Let <Pn>’,‘§be a closure point of R, and let <Pn>n to R.
Then there exists a 1/such that icpPL. . . PVR = 0. By 2. 13(a),
a Q can be found such that <Pn>",§ 6__Q & 9 QR = 0, Also
goQR =_1, since <P,,>n is a closure point of R. (<Rn>n 6 QR—>
<pR1QR = 1; 9 RIQR = 1—> q: QR = 1). In this way a con
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‘tradiction is obtained, hence -t<Pn>n to R, so <Pn>n e R.
(c) Let <Qn>,, e P1 + _+ Pp’ <Qn>’;';_e_R. For a certain
V, Q1...Qv C R. cp Q1...Qv (P1 + + P“) = 1-->
Vl(9 Q1...Q\,Pi = 1).
Let ‘PQ1...QvP}\ = 1;
then vq(q e [Q1...Qv] “( 1] U U[Pu])
Therefore vq(q e [R] fl ([P1] U U[Pp])), and
[P1 + + Pu] c: ([P1] u u[P,1])- (by (a)).

On the other side, [Pi] C P1 + + Pp] for 1 <-i < /J.
So [P1] u u [Pu] c [P1 + + Pu]. By (b), we obtain
(1.2.17) ([131]U u [P,,])‘ c [P1 + + Pu].

).

2. 17. Theorem. In every IR-space the following implications
hold:
a) V CW—->V' CW; b) V CW->V‘ Clnt W.
Proof. (a) Let p = <Pn>}‘,‘= <Q,,>*, /\n(Qn+1 C Qn). There
is a Vsuch that [Q1...Q,] n V = % v Q1...Q, c W. Hence
[Q1--oQv+1] n V- = V Q1”-.Qv+1 C W
A u can be found such that P1 . . . P“ C Q1, , , QH1 , therefore
[P1...P,,] 0 V" = (25v P1...Pu C W; thus we have shown
that V’ C W.
(b) V C W ——>V"C W (a); -V" C W -'—>V' C" W (1.20(b));
hence (2.13(f)) V’ C Int W.

2.18. Theorem. In an IR-space we can characterizethe
notions "continuous mapping" and "weakly located subspecies"
in the following manner: L
a) A mapping 6 from an IR-space P1 into an IR-space P2
is a continuous mapping iff for all p,S:
Hp e II°(l"1)& 6p €1"2 s 8!‘.S e s.13(I*2)_.
vR e 9.[3(I‘1) (p §_r1 R & <S[R]1~2 C [S]r2). %
b) A subspecies V of II°, 11° the species of points of an
IR-space, is. weakly located iff
Ap AR(p _€_R—>(Vq(q €[R] n V) v VS(p €_S C R &
[S] 0 V == 925)».
Proof. Trivial.

2.19. Theorem. If I‘,A are IR‘-spaces, and E,is a homeo
morphism from 1‘ onto A, then V Cp W<—>E,V CA 5 W.
Likewise for C‘, C".
Proof. For C‘, C" the result is a trivial consequence of
2.13(f), 1.18.. Letp = <P.n>’,'§eII°(A), and suppose V Cr W.
E'1p = <Q,,>=;;6 l'I°(I‘), /\,n(Qn+1 Cr Qn). For a certain 12
[Q1...Qv]I' n V = ,2)V Q1...Qv C We
E'1p _e_1-Q1...Q‘,, hence there is an R e 9B(A) such that
p gr R C E[Q1...Q,,]r- (2.18(a)). For a certain /.1we ob
tain P1...P“ CAR C5[Q1...Q‘,]p. Therefore [P1...P“] Fl
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5V = ¢ v P1...Pp c: EW. This proves EV CA EW. The
implication in the reverse direction is proved likewise.

2.20. Theorem. If I‘ is an IR-space in which R1 holds,
then R4 holds in I‘.
Proof. Let I'll be a spread representation for I‘; we may
suppose I11 to be normal, with a defining pair <9,~&>.
To every point generator <Pn>n e 111 a point generator
<Qn>n can be found such that /\n(Qn+1 C: Qn).
Therefore there exists a sequence of mappings <gbn>nfrom
I11 into ‘.B(I"), such that An /\<Pm>m 6 I11 (c//“+1 <.Pm>m C‘
gDn<Pm>m), and /\<Pm>m (<gbn<Pm>m>n :<Pm>m).

As a consequence of Brouwers principle, there is also a
sequence of mappings <nn>nfrom Ill into 39, such that for
every <Pm>me ll; «pn<Pm>mcan be calculated from an
initial segment <P1,...,Pt> = nn<Pm>m.

We may suppose that for all <Pm>m 6 I11 and for every
n nn<Pm >m is an initial segment of nn+1<Pm>m.
We define mappings wt‘,from nnlll into O9 by

¢I'1nn<:PIIl>m = wn<Pm>m‘

The speccief of segineiits n,,.,i)'<I:'m>,(nIs)u<;h that d1)7n<Pm>bm1S an 1n1 1a segmen o n 1 < < 1xe can e
enumerated (as a consequernlbe ofH11:henenunI1nernationprinciple).

Let n1II1 be enumerated as <X->-. If a certain element
of nnlll, say nn<Pm>m is denotedlbly Xi1,___,in,the species
of nn.,1<P,'n>m such that nn<Pm>m is an initial segment of
n +1<P' > can be enumerated as <X- ,k>k. Hence we
obtain rilndnuctively a sequence Xi1,___:-:1folrgevery finite se
quence <i1 ... i >.

Now a Cé-reprresentation 1'12with a defining pair <e',a'>
can be constructed for I‘. 9' is the species of all finite
sequences of natural numbers, and we put ~3'*<i1,... ,in> =
¢jI'1Xi1....,in °

2.21. Theorem. Let I‘ be an IR-space in which R3 holds,
and let {Viz ie I}, I c _1j, be a covering of I‘. Then
{Int V1: :1 e I} is also a covering of I‘.
Proof. Suppose p to be an arbitrary point of I‘, and let 1'11
be a normal perfect representation of I‘ with the inclusion
property. There exist <P,'1>q, <Pn>n 6 I11, such that p =
<P;,>;=; = <P,,>;;<, /\n(P'1...Pn cc: P1...Pn). A function w
associates with every element <Qn>~,,€ [[1 a natural number
m such that <Qn>fie Vm. m is known from an initial segment
of finite length, <Q1,...,Qk>. Let tD<Pn>n= /4, if known
from P1, . . . ,P, . Since the representation is perfect, we
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may reason as follows. N
If <R,,>,, e P1...P...- there is a <Pn3n e 111 with P1 H: 'P'.'
for l"<i <1/, <P;1'>n av.<Rn>n. w<Pn>n = /.1, so <Pn
<Rn>’fi 6 V“.
Therefore P1...P,, C V“. P'1...P:, C -P1...P
p §_P1...Pv C V”, so p 6 Int V“.

V!

2.22. Remark to 2.21, Let I‘ be an I-space in which R3
holds, and let {Viz i 6 I}, I C l_\_I,be a covering of I‘. Then
Ap VP Vm(p §_P C Vm).
(this follows from the proof of 2.21,)

2.23. Theorem. Let 1" be an I-space in which R1 and the
conclusion of theorem 2.21 holds. Then every mapping 6
of I‘ into a separable metric space A with metric p is a
continuous mapping.
Proof. Let <pi>i be a basic pointspecies for A. To every
n and every q 6 I‘ a pi can be found such that p(6q,pi) < 2'" .
There is a function (byand a spread representation I11 C II =
II(I‘) suchpthat for a <Pn>n 6 H1, gbv<P,,>nis a natural
number m for which p(6<Pn>§‘, pm) < 2“.
Iv = {i: v<Pn>n 6 II1(wv<Pn>n = i)§. We put:

Vi,v = {q : q 6 I1°(I‘) &*o(5q.p,) < 2"’s
for every i 6 Iv. {Viv ° i 6 Iv} is a covering, therefore
{Int V1,‘, :i 6 Iv} is ét covering too.
If q 6 I‘, q 6- Int V,,,y we obtain:

Ar e Int VM (p(6q,6r) < 2*”).
therefore 6 is continuous.

2.24. Theorem. In an I-space I‘ in which.R3 holds, we are
able to prove:

VCC3'W<->V@W.

Proof. Let V e‘ W, <P;{>,, e 11, and let II1 be a normal
perfect representation of I‘ with the inclusion property.
There exist <P,'l>n, <Pn>n e II1 such that <P;,‘>n 2 <P}1>n 2
<Pn>,,, /\n(P'1...P;, cc:P1..,Pn).
A mapping allfrom II1 into {O,1} is defined, such that

w<s,,>,, = 0 ——><s,,>’;;,2‘ V, w<sn>,, = 1 —+<s,,>’:, e W.
For every <Sn>n 6 I11, tD<Sn>nis determined by an initial
segment of finite length; suppose g0<Pn>nto be determined
by <P1;ooo;Pp_ >.
Since II1is perfect, to every point generator <Tn>n6 P1. . . P“
a <T;1>n 6 H1, <Tn>n 2 <T'n>n, can be found, such that
T'i = Pi for 1 <i</1. We put

H2 = {<Sn>n: /\i(1 g i < u —->Si = Pi) 8: <Sn>n 6 I11}.
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We remark that 1,0112? ‘0 v $112 =. 1. In the first case
V n [P = Q},in the second case P ...P C W.
Pi. . . PL11C Pf. ...P“ .2On that account, there eigists A‘A such
that <pP'1'...P',:P'1... ,1: 0 v P1...P" c P1...P,,. The first
is‘ impossible. We conclude that P'1'...P'):] H V = {D v
P1...P;\ C W, and our theorem is proved.

2.25. Theorem. If I‘ is an IR-space in which R3 holds,
then for every representation II1 of I‘:

C_<1C3:n‘>A,/16 H1 vm([P1...Pm] 0 V = Q5v P1...Pc: , .

Proof. The implication from the right to the left is trivial.
Let p 6 11°. There is a <Pn>n 6 111 such that p = <Pn>f1“,
and wesee that the left condition implies (by application to
<Pn>n) p ¢ V v p e W, hence V C’ W. Then also V C W
(2.24).

m CW)<—>

2. 26. Theorem. If I‘ is anI-space, and Ill a C-representation
for P, then

/\n<Pn>n 6 “I11 Vm(<pP1...PmQ = 0 v P1...P
Q C R.

Proof". Trivial.

mC'.R)<-->

2.27. Lemma. Suppose I‘ to be an IR-space in which N8(§B)
holds, Q3C 9.B(I‘). Let T0,T1 *6 98, T1 C To. Then there is
a continuous mapping f from II° into E, such that for any p:

p 6 T1 —>f(p) = 1; p 6’ T0.—> f(p) = 0: 0 1’ f(p) 4» 1.
Proof. We construct a species of la-ttice elements Ta 6 Q,
Cr= m2'“, n = 0,1,2,3,..., m = O,1,....2”, such that

ar>B<.—->Ta CTB.
This construction can be carried out inductively. For suppose
that all Tkg-v, 0 C k C 2'” already have been constructed,
in agreement with the conditions mentioned before.. We con
struct T(2“+1)'2-,-1 E 58, by applying N8(§B) to

T(2u+2)2""1 C T2u 2""1'
Thus we obtain:

T(2p+2)2""1 CC:T(2u+1).2'V’1 C Tzu 2“"1’
Let <Pn>n e H. We define:

gbP(n,k§ =-tp(n,k) = sup{m2‘“: cpP1...PkTm2-n = 1 vm = 0 .

We‘ have

k > k‘ _..-.tp.(n,k) < tb(n,k') for all n,k,k' (1)
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For every n there exist t(m,n), m = 1,...,2n, such that
‘PP1 - - - Pt(m,11) Tm2'n = 0 V P1 - - °Pt(rn,n) C Tm2'n-2-H-1 @
T(m-1)2'n

tP(n) = t(n) is a monotonously increasing function which
satisfies:

t(n) 9 s_up{t(m,n): 1 < m < 2”}.
For example, we may take:

t(n) = sup{t(m,n), t(n-1) + 1: 1 < _m< 2”}.
Therefore for arbitrary but fixed V,/J:

T12 ./~.z':t$‘:))T“2'v : 0 V P1"°Pt<v) C Tm-1>2"" (2)

If k,k' > t(v), k > k‘, there are two possibilities, (M1/,k')= 0
or w(1/,k') > 0.

«((1/.k')‘ = 0 —->c0(v.k) = 0 (by (1)) (3)

w(v,k') > 0 ——>P1...Pk. c TW_k.,_2-v (4)
since from (2) it follows that:

...PkoT¢(v.k.) ‘-3O V Plooopkt C T¢(v.ko)_2-y.
(4), combined with k 2 k‘ leads to:

cp(v,k') > 0 —>P1...Pk C T¢(v’k.)_2-,, (5)
We conclude:

qD(z/,k') > O —=>gD(V,k); gD(V,k') - 2" (6)

(1),(3) and (6) together learn us that
|¢p(1/,k) - gD(-v,k')| Q 2'”.
Therefore:

An /\k /§k'(k',k >, t(n) —->|¢(n,k') —g&(n,k)_|< 2'“) (7)
If gb(1/,}\) = 1, then for all n ; 1/ ¢p(n,)L) = 1."
If (,U(V,X)< 1, 9P1...P}\T"l,(y’;\)+2'V = 0
Combining both cases, we obtain:

An/\n' Ak(n > n‘ —>c,0(n,k) 4 w(n',k) g (Z/(n,k) + 2'“) (8)

From (7), (8) We are able to deduce that lim gD(t(n))exists.
11-900

For let n g n‘. Then |«,0(n,t(n)) - «,b(n',t(n'_))|<
|W(n»t(n)) - (n»t(n'))l + |¢(n»t(n')) - W(n'.t(n'))l<
2-n + 2-“ = 2'n*1 . (9)

Moreover, the value of this limit is independent of the
particular function t(n) chosen. For let t'(n) be another
monotonously increasing function which satisfies



-53

An /\k' /\k(k',k 2 t'(n) —.]w(n,k') - r,0(n,k)[ < 2'“),
then either t(n) ,>,t'(n) or t'(n) 3 t(n), hence

l¢/(n»t(n)) - Mn-t'(n))! < 2'"
On that account we are justified in defining a function F on
H by: F<Pn>n = lim ¢(n,t(n)). Next we prove:11-500

A <Q,,>ne II /\<R,,>,, e II(<Q,,>,, 2».<R,,>,, —>F<Q,,>,, = F<R,,>,,)
(10)

We suppose 1'I(I‘) = l'I*(I‘); this may be done without losing
generality, since we have proved 2.12.
Thus, together with <Qn>n, <Rn>n, <Sn>n with Sn = RDQH
is also a member of II(I‘). We prove (10) by demonstrating

F<Qn>n = F<Sn>n, F<Rn>n = F<Sn>,,.
First we define functions $0, «,bR,gl/S, tQ, tR analogous to
the functions W’, t9 in the foregoing part of the proof.
We obtain immediately from the definition:

I//S(n,k) < wQ(n,k) for all n,k. (11)
From a careful consideration of (2) it will be clear that a
function ts, analogous to tp , may be taken to be equal to
tR or equal to tQ.
Take a fixed number 1/. Then

w°<v.tQ<v)> = 0 -» wS(u.t°(v>) = 0 (12)
We have further

Q Q __,
W (I/,t > O Q1...QtQ(v) C T¢Q(v’tQ(v))_2-y

—->Q1R1Q 2R2. . . QIQW) RtQ(v) C T¢Q(v’tQ(v))-2_v (13)
In both cases, (12) and (13), we obtain

w°<v.t°<,u>> - 2'” < ;o*°’(v.t"(v>> (14)
Combining (11),(14) we draw the conclusion that

Anuw°<n.t°<n>> - wS<n.t°<nm 4 2”‘)
Hence F<Sn>n = F<Qn>no
Likewise F<$n>n = F<Rn>,,. We are now justified in defining
f by: f(<Pn>,’;‘) = F<Pn>,,.
It remains to be shown that f satisfies the conditions men
tioned in the lemma.
Let <Pn>n 6 Ta, then /\m(<pP1...PmTa = 1); so
An /\k(¢(n, k) > a); hence F<Pn>n 4: oz. We have proved:

/\.p(p 6 Ta -* f(p) <1:01). (15)

Let -1<Pn>n € Ta. It follows from (2) that
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QP1...Pt(v)Ta+2‘V ‘'30 V P1o..Pt(v) C Ta.
The second possibility is excluded, therefore

'?P1 - - - Pm) Ta+2'V = 0
Hence w(z/,t(z/)) < a + 2'” .
From An(t,b(n,t(n)) <cr + 2"“) we see that F(Pn>n :|>a.
We have thus proved:

/\p(p *7 Ta -*f(P) =I>0)- (16)

From (15) we deduce: p 6 T1» f(p) = 1, and from (16) we
obtain: p q! To —»f(p) = 0.
Finally f has to be proved continuous.
Let q = <Qn>,, be an arbitrary point of I‘. We shall prove

/.\q/\e VR/\r E R(|f(r) - f(q)| <e & q f_ R) (17)
Let <Q,,>>,=;= <P,,>,*.;, /\n(Pn+1 cc: Pu), and let to = W, 1; = H’
be the functions defined before. Take a fixed 1/; <Rn>n
arbitrary.

¢(1/,t(v)) = 0 —>'cpP1...Pt(l(9T2-v =_O;W(l/,t(1/))= 0 8: <Rn>n 5 1...Pt(v) —><Rn>n¢ T2-V

¢(U»’€(V)) = 1 "’ P1- - 'Pt(_v£)© T1-2-v3qb(1/,t(z/)) = 1 8: <Rn>n e 1,,,PtM .—.(Rn>n€ T1-2-v_\ (19)

O < WU/, < 1 "9 QPI. ..Pt_(v) T¢(v’t(v))+2-V= 0
& P1 . 0. Pt“) C T¢(v.t(v))_2-V;

0 < ¢(z/,t(v)) < 1 & <Rn>n e P1...PtM—>
‘|<Rn>n 5 Tt,'¢(v,t(v))+2"’& <Rn>n 5 Tq,(v,t(v))-2'” (20)

From (15),(16),(18),(19),(20) we see that:
Am /\<Rn>n 6 ll (<Rn>n 6 P1 ...Pt(m)—>

{ IF<Rn>n' ll‘2-m)q S P100opt“) o
Combining (21) and (9) we see that

/\<Rn>neII(<Rn>n€P1...Pt(,)-»lF<Pn>n -F<R,,>,,l <4.2"')
since lF<Rn>n - F<Pn>n| §l>lF<Pn> - w(v,t(v))I +

lF<Rn>n - z,b(z/,t(v))| :1. 2-V+ + 2'‘! < 4.2"’.
If We take 1/ so large that 4.2”” < e, we have proved (17).

2.28. Lemma. Let I‘ be an I-space in which R4 holds; let
I11 be a @-representation for I‘ with a defining pair <6,«)>,

(.5-=(3 < i1,...,ik>:<i1,...,ik> e 9}.
Suppose 6 C 58, N8($) holds for I‘. Then I‘ is metrizable.
Proof. We enumerate all pai-rs
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<25 <11, . . . , 1.k,1>,3 <11, . . . ,1k» suchthat<i1, . . . , ik, 1k,1>e e,
in an enumeration «Qi,'Q{» 1. To every pair (Q,-,,Qi'>of the
enumeration a continuous function f1can be constructed, ac
cordingto lemma 2. 27, such that for any p, p 6 Q1 —>f,(p)= 1,
P 7-‘Q} —*f1(P) "' 0
We define

0(p.q) = 3312’i|f1(p)-f:(q)|
We must show that p represents a metrization of I‘.
To achieve this we must prove for every p, q, r:

p(p.q) = p(q.p) (1)
p(p.q) ‘F 0 & (13# q<—-p(p.q) > 0) (3)
p(p.q) 1>p(p. 1‘) + p(r.q) (3)
()6 VT(p S T & T C Ue(P)) (4)
/\R(p 5:"R —>Ve(Ue(p) C R)) (5)

(1) and the first part of (2) are trivial. The second part of
(2) is demonstrated as follows. Let r # s, r = <Rn>’,’;,
s = <Sn->’}‘,,<Rn>n, <Sn>n 6 I11. For a certain V,
?R«oooRmS1oo.Sy = 0.
There is a it such that <R1...R,,1 , R1...R,> = <Q“,Q'p>.

r e R1...R,,1 —>fu(r) =1; s 9.‘R1...R(,—->f“(s) = 0.
Hence p(r,s) <1:2'“, and p(r,s) > O.
(3) follows from

A-i(|f1(P)‘f1(q)| 3|>|f1(P)"fi(1")| + |f1(C1)‘f1(I')|)

Proof of (4). Let p be an arbitrary point. Choose a natural

number 7/, such that _)°3°12* = 2" < a 2'1. f1,...,f'v are1=V+

continuous functions, so there exist T1,...T,, such that
21-1. .

’\q(q 6 T1-*|f1(C1)‘fi(P)|< V E): for P §.T1a 1 < 1 < V (6)
If T = T1.,..T,,, we deduce from (6) for any q 6 T:

no . V .

p(p.q) = i§1|fi(p)-f:(q)l2" < a2‘ + ggl21|fi_(P) -f:(q)l
< 52‘) + 22" = 6.

Proof of (5). Let p _€_R,p,Rarbitrary, <Pn>n.€ p, <Pn>n 6 I11.
A Ucan be found such that P1 .. .P(, C R, and there exists
a u such that <P1. . . P‘,PHI ,P1 . . .P,> =.<Q“,Q;,>. By de
finition of f“, fp(p) = 1. Let q be an arbitrary point.

q 6 U2-u (p) —+0(p.q) < 2'“ _“ _p->(f,)(p) -f..(q)l2 < 2
—+|fp(p) - f,.(q)| < 1
—->fp(q) >0
"’—I "1 q 5 P1...Pv
-—)q 6 Plooopv C R
—>q SR
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2.29. Corollary to 2.28. If I‘ is a space which satisfies
the requirements of 2. 28, then I‘ can be embedded topologic
ally in the hilbert cube by a mapping g:

g(P) '’ <fi(P)>i

2. 30. Theorem. If R1 holds in a metrizable IR-space
I‘ = (V0, E>, and p is a metric on V0 such that <Vo,5E(p)> =
<V0,S2',>,then <Vo,p> has a point representation.
Proof. By I5, a point p(Q) can be associated with every
lattice element Q such that cpQ= 1. Let <6, 43>be the defining
pair of a spread 1'11which represents 1‘.

If <Qn>n e Ill, then <p(Q1.. .Qn)>n converges with respect
to p to <Qn>’,'§= q; for since q 6 Ue(q), it follows that for
a certain R q §_R c: Ue(q); then f_or a certain 1/Q1. . .Q, C?R,
so p(Q1...Qv) e R.{p(Q) : Q 6 «'39} is a basic pointspecies
for I‘.

3. CIN- and PIN-spaces.

3.1. In this paragraph we treat some special cases of IR
spaces, in which II, the species of point generators, can
be eliminated as an undefined object. Thus, in a sense, we
obtain a "pointless" topology. The expression "topology
without points" was first coined in MENGER 1940. From
the various theories discussed there, the theory of MOORE
1935 somewhat resembles the approach of the CIN-spaces;
the theory of WALD 1932 on the other hand is more related
to the PIN-spaces. One of the main differences between our
approach and these theories is that the noti_onof strong in
clusion is not a primitive one in our system.

3. 2. Definition. An abstract CIN-space is defined as an
abstract I-space, such that the following postulates are ful
filled.

C1. There exists asequence of species of lattice elements,
<%[i>i, gt]:= <Ai.j)j, such that gt C gtl, Ai(9Ii+1 C fli),
An Am A1 Aj(‘?An,i Am,j = 1 " An.i Am,j 6 an)?

C2. <pA1’i(1). . .An.i(n) = 1 -> Vk(<?A1_1(1).. .An,i(n)An+1,k = 1).
C3. All/\j Vk(A 1.)‘ CC?Ahk), Al Aj(9Ai.j 7- 1).
C4. /\(Pn)n(<Pn>n 6 Her An Vj(Pn = An.j & QP1. . .Pn 7-
N6.
N9. Al. Aj /\k(Ai.j C A1.k-->V].(A1,j C: AL1 C Ai.k)).

A CIN-space is a topological space homeomorphic to an
abstract CIN-space. The species <Ai,J->i,J-is called a CIN
covering system. A CIN-basis is defined in the same manner
as an I-basis in 3.1.26. The letter "C" is derived from
"covering".
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3.3. Theorem. In a CIN-space
a) postulate I5 is derivable from the other postulates, and
b) N8(2I1) holds.
Proof. (a). Let<pP= 1. P = Q1 + + Qv, Q1 (1 <i< 1/)
a meet of elements of QI. Since 91 c 911, there is a Q“,
1 < /4 < 1/. Q“ 6 911. 962,. = 1- Let Q“ = A1,i(1) . By means
of repeated application of C2 we prove inductively the exist 
ence ofasequence <A,,_i(n)>nsuch that An(9A1'i(1). . .An.i(n)=1).
By C4, <An.i(n)>n€ II, hence <An.i(n)>>:I(1€ P.
(b) Immediate by N9.

3.4. Remark. a) Elements of a CIN-covering system with
different indices are not necessarily different.
b) H can be eliminated completely from the postulates, if
we combine I4 and C4 to

C5. /\<Pn>n (An Vj(Pn = And-) 8: /\n(q>P1...Pn = 1)-r
<Pn>n e E).

and afterwards define 11 by:

<Pn>n e Ila->/\n vj(1=>n= Am.) &.<Pn>n 6 E.
c) The family of CIN-spaces coincides classically with the
family of separable complete,metric spaces.
T-heproof follows from FROLIK 1962, theorem 3. 1 (proved
in FROLIK 1960 2.8, 2.14) and the observations
1) Every CIN-space is completely regular, since it is met

rizable. ,
2) « Int Ai.n>n>i = <9Ii>i satisfies the conditions of FROLIK

1962, theorem 3.

3.5. Theorem. In a CIN-space R3 and R4 hold.
Proof. We show that II is a normal perfect representation
with a defining pair <9, 4)),
<P1,...,Pn>€ O 64.»/\t(1<t<n-—»Pt € 2[,) & cpP1...Pn = 1.
C2 guarantees us that 9 is in fact a spread law. We prove
H to be perfect as follows. Let <An_i(n>n€ II,
<An.‘i(n)>n € A1.j(1) . . . Av.j(V) . We de ine <An.k(n))n by:

1 < n < v —+k(n) j(n)
n > 1/ _..k(n) i(n)

<An_k(n)>n6 II by C4. <An_k(n)>n2 <An.i(n)>n, hence our rep
resentation is perfect.

We can construct to every <A,,.i(n)>,,6 11 an <An_j(n)>n6 11,
such that <An.i(n)>nz (Arm-(n)>n, and

"n(A1.1(1)- - °An,i(n) @ A1,A(1)- - °An,j(n) )."“(A1.j<1) n+1.J'(n+1)C; 1.j<1>--- n’.j<n>
This construction is carried out by induction. By C3, there
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is an AL]-(1) such that Am“) C A1’,-(1). To A2.i(2) we
can find an A2_k such. that A2_'i2 (C A2‘), . Thus we obtain

A1.-i(2A2.i(2CC: A2.k. W9, there an A2.)-(2)Suchthat 1.i(1 2.:(2> C 2.j<2> C‘?A1.j<1)A2.k- Heme A1.i(1)A2.i(2)
@ A1.j<1> 2.5(2> @ 1.j<1>
Suppose A1,,-(1),....A,,_jM to be already constructed. To
‘AV-I-1,iV-I-1) an Av-I-1.k Wlth Av-r1,i(v+1) @ Av+1.k can be found‘It fol ows that

' ' °'AV+1,i(V'|'1) @ A-1-9. . ° °AV.j(V)AV+1.1<°
We construct (by an application of N9) an Av+1.j(,,+1)such that

€=V1éi((i)C);l;i1fiivét1,[irg1»{1)C‘? Av+1,j(v+1) (‘-7 A1,j(1)°°° v,j(v)Av+1,k'

A1,i(1) - - °Av+1,i(v+1) C‘:A1,j(1) - - °Av+1,j(v_+1) 5‘ _A1,j(1)° « °Av.j(V) As a consequence, II possesses the inclusion property.
Further, if we replace every <An_i(n>n 6 H by the corre
sponding <An.j(,,)>,,,constructed as indicated before, we ob
tain a @-representation.

3.6. Corollary to 3.5.
a) A CIN-space is metrizable.
b) In a CIN-space for all V,W: V C‘ W —>V (C3W.
o) Every mapping of a ‘CIN-space into a separable metric
space is continuous.
d) Every one-to-one mapping of a CIN-space I‘ onto a CIN
space F‘ is a homeomorphism between I‘ and I".
Proof. (a) follows from 2.28,(b) from 2.25,(c) from 2.23,
and (d) is an immediate consequence of (c), 2. 30, (a), 2. 2. 5.

3.7. Theorem. If I‘ is a CIN-space, V a closed weakly
located pointspecies of I‘, then V Cci"W —>V C‘ W for any
pointspecies W. If V is weakly located, then V C W 4-—>V'c
Int W.
Proof. Let <Pn>,, 6 II, <Pn>n arbitrary. We can find a <Qn>n,
such that <Qn>n -.2 <Pn>n, /.\n(Qn+1 cc: Qn), <Qn>n 6 1'1,
Since V is weakly located, we have
/\n(Vq(q 6 [Qn] F1 V) v Vm(m 7 n & [Qm] 0 V = (25)) (1)

(For if there is an R such that <Pn>;j‘_§_R c Qn, [R] n V = ya,

there) is also a<3',.n> C ’I\1(cC_"Q'Qn).CVQV'e)can rsetlgcttffrom <Qtn>.na su sequence , n 1 c , sue a or a cer a1n

sequoencel pg p0inI}cSn<qn>n,n+qn = <%fn>;:, the following asser 1on o s:

/\n([QL] 0 V = {I5v qn 6 [QL] 0 V) (2)

For if Q'n = QR, we take Q1,“ = QR“ if we know that
Vq(q 6 [Qk,1] 0 V), and QLH1 = Qm,m > n+1, if we know
that [Qm] D V = (0, depending on the decision which can be
made‘ according to (1).
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If n V = 91, we remark that <Pn>§"_6_Q'1, so there
is a 1/such that P1...P,, 6 Q1; [P1...P,] n V = 125.
If ql 6 HV, we construct a finitary spread II1 with a
defining pair <9,a')>, such that w3<i1,...,ik> =<~yi1,...,yik>
as follows.
<R1,...,Rn> 6094-vk(1< k < n&<R1,...,Rk> =<kQ'1,...,Qf,>
& qk c [Q,;] n V 8. /\.t(k+t 4 n .—.R,,,, = Q'kS11‘...Sk+t )) (3)
Every spread element is a point generator and represents a
point of V, and satisfies /\<T,,>n (<T n>n6 111—»/\m(Tm+1cTm )).
Because of V C" W, we have

A<Tn>n e 111 Vi(Ti c: w).

H1 is finitary, therefore a natural number 1/ must exist
(1.1.12) such that T‘, C W for every <Tn>n 6 1'11. We have

<Q5,...,Q;> 608->Q{, cw.
<Q',.....Q:. > it 4: 9—>[Q{,] 0 V = 93.

A natural number /4 can be found such that P1...Pp C:Q'\,,
hence in the first case P1...Pv c‘W, in the second case
[P1...Pv] n V = Q.e.d. The second part follows easily
with 3. 2. 17.

3. 8. Definition. Anabstract PIN-space is an abstract I-space
such that N6,N8 hold, and for which II can be described by
the following postulate P (from "point"):

P.E=1'I.
A PIN-space is a topological space which is homeomorphic
to an abstract PIN-space. A PIN-basis is defined in the same
manner as an I-basis (3.1.26).
Remark. A PIN-space is therefore a space which satisfies
I1-3,N6,N8. II is defined in terms of cp.

3.9. Theorem. Every PIN-space is a CIN-space.
Proof. Let <Pn>n be a fixed enumeration -of the lattice
elements of a PIN-space I‘, such that /\n(n > 1 —>q>Pn = 1),
P1 = A0. From this enumeration weconstruct an enumeration
«Qi,Q;»i of all pairs <Qi,Q;> with Qi,Q'i 6 9.B(I‘),cpQiQ{=
0,Q1 = A0 v Q'1 = A0, /\.i(<pQi = 1 v 9Q; = 1), if necessary
with repetitions to grant a denumerably infinite sequence.
We define:
2!‘, = {P: 9P = 1 & /\j(j <i—>q:PQJ- = 0 v <pPQ} = 0)}.
We see that 91 C: fll, since /\n(cpAnQn = 0 v <pAnQ1' = O);
/\.i_(%[j_+1C 211); € 911 QPQ7-1 .€ fli).
C1 is therefore satisfied.

If 9P1...-Pu = 1, Ai(1 <31 < n-—.Pi 6 911), then there is
a Pml 6 Qlml such that cpP1...PnPn+1 = 1,. for if
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rpP1...PnQn+1 1, we take PM1 = P1...PnQn+1, and if
<pP1...PnQn+1 O, we take Pa” = P1...Pn. So we have
proved ‘C2. 
C3 follows from N6, for if P 6 911, /\j(j < i—><pPQj = 0 v
<pPQ!= 0), there exist according to N6, R1 for every j 4 i,
such that PC: Rj & (QR)-Qj = 0 v q>RjQ} = 0); and if we take
R = R1...Ri then P CR 8: R 6 11. N9 is an immediate
consequence of N8. To obtain a CIN-space, we must after
wards restrict I'.['to II‘ consisting of all point generators
<Rn>n such that

/\m(m Q n ->cpRnQm = 0 v ~','>RnQ'm= 0)

We remark that the two spaces <<p,Il‘> and <<p,II>satisfy
the conditions of 1. 32; on that account they define the same
topology, and their notions of strong inclusion coincide.

3. 10. Definition. A point p of an abstract I-space I‘ is called
decidable, if

/\P(pePvpwP).
3.11. Every PIN-space possesses an enumerable set of
decidable points, dense in the space.
Proof. We show that every Q 6 EBwith qaQ = 1 contains a
decidable point. To a certain Q with 9Q = 1 we can find
an enumeration <Pn>n of all lattice elements P such that
?P = 1, P1 = Q.

We define <Rn>n 6 11 as follows.
R1 = P1; if "R1.. . . .R,, already have been defined, we define
Rv+1 '7 PV+1 q9R1...RvPv+1 = 1, Rv+1 = R‘,
C?R1o.oRvPv+1 = 0.
If 9ST =- 0, 98 = 1, q>T = 1, there exist /.2, V such that
S = P T = P“. Suppose u < 1/. Then q3R1...R”_1P“ = 0 v
goR1...RpP,, = 1. If 9R1...R,,P“ = 1, R“ = P“, and thus
9R1...R“Rv = 0.
Hence if A = sup{u,1/g, then 9R1. . .R,\S = 0 v <pR1.. .R,\T = 0.
So <Rn>n 6 II."
(R n>n is decidable, for if (:33= 1, S = P, for a certain 12,
then either R, = PV, and‘ in this case <Rn->n vs Pv, or
<pR1...R,,_,1P., i= 0, hence <Rn>n LuP,. _
If we associate with every Q with <pQ= 1 an enumeration
as indicated in the beginning of the proof, we obtain an
enumerable set of decidable points. This species is dense
in the space, -for if q _e_-R, q = <Qn>’,‘§, /\n(Qn+1 (C Qn), there
is a 2/such that q1gQ., (<3R; and hence there is a decidable
p s Q, c Int[R].
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4. Topological products.

4.1. Definition. Let Pi, i = 1,2,... be a finite or a de

numerablyp:;Lnft')i.r11:itesequence ocfl-sépgces. %I(dI‘i)=t2[di,;B( I‘ 1) =U‘;Bi1,<pp-= 9-. r 1 rary e emen s o - are eno e y cap_1as
with upper index i (and indexed bellow if necessary): P1,Q1,
R‘,S1,T‘. Now_we define a product space 1‘ as follows.
?I(l‘) = SI = {<P:>i: Vn/\m(<pmPm = 1 & (m >n —»Pm =AT°))}.

.2I,,={<P}1:Vn/\m(m > n --P”‘ =Af:)§.

XS/Pei;i‘e1.:€1n$§1rf1i1>1c7:r’cj1<0II31iS>i7’j:‘fgcim 9% lnto 91 j:1 .

‘B = ‘.B(I‘)is the free distributive lattice with the elements
of QIas generators, with a zero-element A0, an all-element
Am, and operators + , ' . Arbitrary elements of 23are
denoted by capitals P, Q, R, S,T, with indexes below if nec
essary.
A defining function «,9= 91. is declared on %[,,by:

%VP1”tPln0.: =.:2,~<P1=~:-gar::«>~epu 9 0 = . 9 sa 1s 1es . w1 respec o an can
therefore be extended to ‘B.Elements of 2!, will sometimes,
somewhat less formal, be written as sequences (P1,P‘3, . . .)
instead of being written as <P1>i. If we define ~ = ~I- with
respect to elements of 9.13and 21,,as in 1. 6, we remark that:
a) Every finite meet of elements of 91 is_equivalent to an
element of 2!“: (Pi),-L<P‘2>i...<P},>i ~ <P’1...P§1>i. Hence
we treat an element of $13in the sequel always as a join of
elements of ,9! . _
b) A0 ~ <A:,>,';' A,,_ ~'<A;,>,. U _ O
c) (P1,...,Pi‘1,Q1,l?1*1.,....)1+(P1,...,P1’1,R1,P1*1,...)"’(P1.....Pi‘1.Q1+R‘.P‘* .-.-)
Finally we define:
H(1‘) = H = {<Pn>n= /\n(Pn 60911:) 85 /‘i(<_7r:Pn>n 6 1'I*(1‘:))l
vrj can be extended to 11, 1'1 by st1pu1at1ng:

<Pn>n6 H—> : lgniqz
In the sequel we fonrmulate Ja nnulmber of theorems for the
product of a finite or denumerably infinite sequence of 1
spaces, but in the proof we restrict ourselves to the de
numerably infinite case, since the finite case is proved
easily by omitting some details of the proof for the infinite
case.

4.2. Theorem. Let Pi, i = 1,2,... be a finite or a de
numerably infinite sequence of I-spaces. The product I‘ of
this sequence if again an I—space.
Proof. I1,I2 are already valid by definition 4.1. I3 follows
from remark (a) in 4. 1. Since
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q>(~P1+ + P“) (Q1 + + Q.) = 0<—>
Ai /\j(1<i<u& lgjél/—>goPiQj= O),

the requirement for an element of II to satisfy the splitting
condition for all pairs of lattice elements P,Q such that
QPQ = O, is equivalent with the validity of the splitting con
dition vvith respect to all pairs P,Q 6 2! such that q>'PQ= 0.
If <.9<P1>i<Q1>i = 0, there is a 1/ such that <pvP"Q" = 0.
If <R,,>,, e 11, then <R;;>,, e n>==(r,), if 7r,R,, = R}',. There
is a 1.: such that

<p,R"...R;;P" = 0 v q:vR}...R;Q" = 0.
Hence cpR1...Ru<Pi>i = 0 v <pR1...R“<Q1>i = O. ,
I5 is satisfied, since if q>P = 1, we can find a <R},>n 6 1riP
for every i. Then if <Rn>n is defined by 7r1R,, = R,i1i_i_,1for
n > i, 1riRn = A}, for n < i, it follows that <Rn>n 6 P.

4. 3. Remark. Since the symbols for elements of the species
‘Bi,‘Bare taken from disjoint species, in most cases we can
use one symbol for the notions C, c, _§_,6, #, 2, >3‘,without
ambiguity.

4.4. Lemma. I‘ is the-product of a finite or denumerably
infinite sequence of P1. With notations as in 4.1, 4. 3, we
have:
a) P : Q<—>Ai(1riP C. 1riQ) for all P,Q 6 2!.
b) For all <Pn>n, <Qn>n 6 ll: <Pn>n 2 <Qn>n 4-»

Am(<7rmPn>n 2 <7rmQn>n),
c) For all <Pn>n, <Qn>n 6 II,

<Pn>n '# <Qn>n <—>Vm(<7rmPn>n # <7rn3Qn>n).

di E” a1fi‘§“é“ 6 $3’3 2% ‘P2’? €pQc"’“E§§"‘P“>“6 W"e ora ,6: C +—>17r-c7r~.
r) For all <pn>,, e II, and all Q slat: 1

<Pn>3‘ _g_Q <->/\i_(<7riPn>}-1‘ g 1riQ),
Proof. (a) ‘Let 7riP = P1, 1r1Q = Q1,_ R
/\i(P’ c: Q‘). q>PR = 1 —>/\i(<piP§R{ =

-’ Ai(9"iQ1R1 =
—><PQR = 1..

Conversely, suppose P c Q, 9PuRu =
on0{Ag-13 R“; goo0

hence <pQ(A}.,...,A!_1_‘1, Ru, AE,”
This implies in turn <p“Q“R“ = 1; so P“ c Q“.
(b),(c),(d) are trivial. _ _

(egwe supposf<;(P,<QRas befo§e2I<\§(P1 c: Q1). Let <Rn>n 6 II,7r- = . en > 6 < - . _
Tlhelre exists a 1/ such1 that Ai(i l> 1/ -> Pi = Q1 = A3,). Thus

/\i /\.n(i > 1/ -—>Ri...Rfl c Q1). (1)

<Ri>i 6 9!. Suppose

. It follows that
1.
1.
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There exist pl,/.z2,.._.,/4,, such that _ _ _
/\i(1 < 1 < v -.cpiR11'...R:,iP1 = 0 v R‘...Ri,i c: Q‘).

Take u = sup{ui : 1 g i <1/§. Then

1<}’<,(qa,R‘1...Rf,P‘ = 0) V 1<’,‘<,(R‘1...R; c: Q‘).
By (a), combined with (1) we obtain

?R1oooR“P = 0 V R1oooR“ C Q.
Conversely, we suppose: P C: Q. Let <Rfi>n 6 _1'I(I‘p). We
construct {R ,,>,,6 II in the following manner. Let <R,‘1>n6 II(1"i),
<R,‘,>n 6 P1 for every 1 75u. Now we put: ,
An/\i((i < -1-‘."’77iRn = R111)8‘ (.1 > /J 8‘ n >1.-""7TiRn : :1-1+1) &
(i > u & n < i ->7riRn' = A;,)).
A 12can be found such that <pR1...R,,P = 0 v R1...R, c: Q.

/\i(i 71,, ...9,Ri...R§,Pi = 1).
Therefore

<ppR“...R’$P“ =1—>R-1...

So we have proved for an arbitrary u: P“ C:Q“.
(f) is -easily derived from (e) as follows:
If <Rn>fi g_P, there is a Lt such that R1...Ru C P. We
conclude /\n(7rnR1...7rnRp @ rrnP) (by (e)), therefore
/\m(<7rmRn>§‘f _6_71mP). Conversely, if /\m(<7rmRn>’,’§ §_ vrmP),
there are 1/,u1,u2,....,;.¢,, such that /\i(i > v —>1riP= A1,),
/\i(1 < i< U -—>7riR1...7riR“i Ci:7riP).
If u’: sup(/41: 1 <1 6 1/}, then R1...R,, C P, hence
<Rn>",‘, _6_P.

4.5. Theorem. If in every P1 of a finite or denumerably
infinite sequence of I-spaces "Ax"_holds, "Ax" one of the
postulates N1-6, R5, ‘then "Ax" holds in I‘ (the product of
the Pi) too.
If in every Pi N8 holds, then N8(9I) (91 defined as in 4.1)
holds in I‘. . _
Proof. (a) Ax = N6. Let P = <P‘>i 6 91, Q = <Q‘>i 6 2!,
QPQ = 0. There is all such that 9,,P“Q“ = 0. By the validity
of N6 for every Pi, there are P‘{,Q*{, such that P“ C P‘{,
Q“(cI?Q‘i,<pP‘{Q‘{=0.ThenPc(A},,...,Ay;1,P§‘,Ay,*1,_...)=P1,
Q cc:(A.1.......At‘.'1.Q*i.A*:.*1....) =Q1. while «me, = 0.
(b) Ax = N1-5 is treated quite analogously. _
(c) Suppose N8 is valid in every_I‘i. If Pi= <P‘>i 6 91,
Q =<Qi>i 6 2!, then P C Q<—>/\_i(P‘(C Q‘). If we construct
for every.i an R’ such that P1 C R‘ (CQ‘, it follows thatifR=<R1>i,
Hence N8(%I) holds in I‘. _ ,
(d) Ax=R5. Let <Pn>n 6 II(I‘), P“ = <Pri>i. <Pfn>m 6 II*(l‘i).



-79

For every i_ a <Qfl>n e_1'I(l‘i) can be found such that
/\r;(Q;+1 cc:Q3), <Q§,>2<P,f,>. If we define <s,,>,, by 1:,-Sn=
Q1’?-+1 for n 33', 7r]-Sn‘= A}, for n < 3', then <Sn>n 2 <Qn>n
(4.i(b>> and An(s...1 c S.) <4.4<e>).

4.6. Theorem. The product 1'‘of a finite or denumerably
infinite sequence of IR-spaces Pi is homeomorphic to the
topological product of the Pi (and may therefore be written

as i1:[1 I‘-1).
Proof. The proof can be given by simple verification, using
the fact that I‘ is again an IR-space (a consequence of the
previous lemma).

4.7. Theorem. The topological product of a finite or de
numerably infinite sequence of CIN-spaces Pi is homeo
morphic to a CIN-space I".
Proof. Let I‘.be the product of the P1. 1‘ = <q:,II>; now we
construct a CIN-space _I" = <<p,1'I+>which is homeomorphic
to I‘. Let 2!,-(Pi) = <A}k>k . ill = QI. %[i+1consists of all
sequences of the following form:
(Ai.j<1>-A?-1.j<2)»----A§.j<i>=Pi+1 »----Pi+P»A£:p+1»A£:P+2-'--)
with 9i,,kPi*k = 1 for 1 gkgp. p = 0 orp >0.
By this definition C1 is automatically satisfied. C2 is trivial
if we realize that, if 911= <Ai’J->1-,then A1,i(1) . . .An_i(n) e fin.
C3 is proved as follows.

= gooo,.Aji..%(i-1),Pi,¢..,Pi+p,Aj:p+1,...)
We construct Am. as follows. ._
For every t,1 < t < i-1, we choose an A{,f.(i-t) such that
Ai.'§(i-t> (-5 Ai.'i<<i-r>

If Ai,k =(A1i-1,k(1) » o - - »A 11:l<(i-1)»A.1--sA:1 » - - -_) then Am‘ C‘?Ai,k

N9 is proved quite analogously.
N6 follows from 4.5.
We define H"':
<Pn>n 5 H+"" A].-(<7riPn+i>n € II(Pi) 8‘ <7riPn>n E H*(Pi))
Let <Pn>n 6.11. 7riPn = P3,. There exist <Q}l>n e II(I‘i) with
<Q,11>n=2 <.P,‘,>,,,. and a fun_ction_m(k, i) such that

AkAi(PioooP]m(k’i) C Q:1l..oQi) .
We _put m(k) = sup_{m(i,_k) : 1 < i < k}. Hence

Pi...P%.r](k)'CQ11oooQia1 (*)
We construct <Rn>,, 6 11+, 7riRn = R111,such that

AiAn<R%..i-1 = Q3) an /\n(n < i —~R:. = A2,).
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We see from (*):Riiooo.R:]l.:'()
P1oooPn](k)C.R1oooRko .

If we restrict the pointgenerators to 11+, the resulting space
is again an I-space; by 1. 32 the spaces <<p,II> and <<p,l'I"’>
are homeomorphic, and their relations of strong inclusion
coincide.

5. Examples.

5. 1. In this paragraph we want to treat various examples
of topological spaces.

Let 1"be a certain metrizable space, with a metric P, and
let (0be a standard mapping from a lattice $ onto a located
system (closed with respect to F1, U) of closed pointspecies
of I‘, and let 9 be defined from 90.Then I1-2 are automatically
satisfied. Let II;be a species of sequences of elements of
‘B. We suppose '

{Int (WP: P 6 2B} is a basis for P. (1)
$1’ ” IWQ = 95 - V6(Ue(¢P) V‘ Ue(¢Q) = (3) (2)
<Pn>n 6 II —>diameter (DP1...Pn converges to zero,
/\n(<DP1...Pn 75¢) (3)

In order to prove 13 it is sufficient to prove that
P-cQ<->wPc¢Q (4)

The implication from the left to the right is proved thus.
Let P c Q, r 6 wP, Ue(r) fl $62 = (25for a certain e > 0.
Since (1) holds, there is an R such that 90R Fl :,DQ= Q5, r 6 (&R.
ThenqoPR= 1, QQR = 0. P CQ & <pPR = 1—>9QR = 1 can
be proved from 11-2 only; 9QR = 0 therefore contradicts
P c: Q, hence Ue(r) I1 z,bQ7!
Since gbQ is located, either vp(p e U..;(r) Fl ,¢pQ),or for a
6 < e: U3(r) fl «pQ = Since we can prove U3(r) 0 (bQ Q)
the latterpossibilityis excluded, therefore Vp(pe UE(r) Fl«pQ).
This holds for every 1:, hence r e (c0Q)' = wQ. This proves
(4), since the implication in the reverse direction is trivial.
(The proof can be simplified if we suppose gbQto be metrically
located.)
(2) and (3) imply the validity of I4. I5 can be satisfied by
taking a sufficiently big species for II.

Now we suppose that we have proved A = <<p,II> to be an
I-space.
If we define E by:

<Pn>n e II .. g <Pn>§ e H91gap“ (5)
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then 5 is a bi-unique mapping from A onto I‘.
If A is an IR-space, -8is continuous. For let Ug(p) C: V,V a
pointspecies of I‘. If <Pn>n € 1'1, we conclude from (3) that
for a certain Vp g2’wP1. . .P v P1. . .P,, c: V, so E‘1p @ E'1'V,
hence E is continuous.
Finally we remark that

U(e,¢P) n U(e,(t,DQ)°) = ¢->P c: Q
U(€.£0P) C WQ‘*1? C Q-

‘V

5.2. Theorem. Q is an IR-space; C and C‘ are different
relations in Q.
Proof. We put [1",1"']g = {1"": 1"" 6 Q & r g r" g 1"},
{[r,r']g r g r‘ 8: r, r‘ 6 Q} is a located system. After
closure with respect to ._l_Jwe can define_a standard mapping
W and a mapping 9 defined"from !,0."II is defined by: "

<Pn>n 6 1'1<——>_Vr"Vr'Vr (r,r',r E 8: r’ g r .< r &
An((bPn = -[r',.r ]g fl [r-2'“,r+2 "]Q). . O .

I1-5 are now valid ‘according to 5.1. R5 is also trivially
fulfilled. There remains to be proved that 5, defined as in
5.1 (5) is a homeomorphism.
If <Pn>j‘1‘§_V, there is a 1/ such that P1...P, C V. Let
§bP1o..Pv 7' [I',1"']Q, WQ11': [P-2'", r+2-n]Q , WRH :
[r'-2'“ ,r'+2 '“]g for every n; then <Qn>n, <Rn>n 6 1'1, and
there is au such that R1...Rp c V, Q1...Q,, c V. There
fore [r-2 ‘“,r'+2'“]Q C V. Hence EV is a neighbourhood of
E<Pn>:‘1‘.E is proved to be continuous after the argument of
5. 1.

Thus we have constructed an abstract IR-space A, homeo
morphic to I‘. In A the following equivalence holds for any
P,Q:

P ‘C’ Q<-—>P C Q.

This can be seen as follows: A1. C‘ A- <—>AiC. Aj for any
i,j, since for all r,r',r" 6 Q r 6'[r',r' ]9 v r g! [r',r"] Q.
IfP~P1 + + P,,, P1,...,P, e 91,‘17%j—>q>PiPj= 0,
then P1 +,,, +P,, Cc"P1 + + Pv, hence also P C‘ P;
we conclude that P c Q _.P Cc?‘Q. This proves (E and C‘
to be different.

5. 3. Qorollaries. a) Q does not possess a perfect represen
tation with inclusion property. (Cf. 2.25)
b) Q is an IR-space which is not a CIN-space. (3.5,2.25)

5.4. We want to prove thatl-_Iis a CIN-space; we begin with
some notations and definitions. p is the metric in L1as
defined in 2.144. I_-_I(“)denotes the following subspace of I_1:

{X : X6 I_l& /\j(j >n—>xj = 0)}.
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30“) is homeomorphic_ to lg".
Let (ppi be an enumeration of the rational points of I},
and <ri>i an enumeration of the rational numbers.
We define:

31,5 = {X I p(XaPi) < 133

Arbitrary intersections of a finite number of BM are marked
Ky be described as a species {X: f(x) :1»0} with
f, defined on _}_I,given by:

f(x) = 152:1xi? + )2 bjxj + a, b
n is such that pi 6 gm).

1-, a rational numbers, while

5. 5. Lemma. It can be decided whether an intersection B
of a finite sequence B11,“ gooo;Biv'jv is secured or not.
Proof. Without loss of generality we may suppose:

is);/sv 1<r\1/1<v(Birvjn C Birrvjm & n 7‘ m)
Let pik € _I-_I("),for 1 < k < 1/.
We remark that B is secured iff B Fl 30” is secured.
For le-t Bikd-k = {X : fk(x) O} for 1 < k < V.
Ifq':(q1aq2:o 0 o :qqoqa+]_ : w0 0): and We putq‘= (C110° ' ° 3qt!’ 0909 ° ° °)
then fk(q) :1»0 -»fk(q') If 0 for 1 s k < 1/.
So if q 6 B, then q‘ 6 B H I_{(°).

°° 0'

fk(X) = 151 X? + igl bk.j_Xi + ak -7 O, 1 <
P?‘ <12,

ak, bk; rational numbers.
B F] gt‘) is securgd iff the following system of equations_ O’

fk(x) = 1231x? + 331 bk.ixi + ak = 0, 1 g k < v (>==)
has a real sol_ution.
If we subtract f1(x) = 0 from the other equations, we obtain
z/-1 linear equations in o unknowns. If there is no solution
for them, then B is empty. If there are A independent solu
tions, such that for example x1,...,x;, can be chosen in
dependently, we obtain a quadratic expression in Aunknowns,
by substituting the general solution in f1(x) = 0. If the hyper
conic in 3*, represented by this equation has no real part,
then B F1 I_{(‘’)is empty, and then B is also empty. The
manipulation of these equations does not present any diffi
culties from an intuitionistic point of view, since all coef
ficients are rational numbers.

5.6. Lemma. Let B, B‘ be constructed as non-empty inter
sections of a finite number of Bi.)-, taken from the sequence
Bild-1,..., Biw-V, and suppose pik e gas) for 1 g k < V.
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Then p(B, B‘) = p(B n _}_1<°),13' n _1g<°’).
Proof. p(B,B'), if defined, certainly satisfies:

p(B, B‘) 21>p(B n _}_1<°>, B‘ n 1_1<°’).
Now let us suppose q 6 B, q‘ 6 B‘, q = <qi>i, q‘ = <q{>i.
Weputq"=(q1.....qe.0.0.0....); q"'=(q'1.....ql,.0.0....).
We suppose B, B‘ to be defined by:

B {x:fi(x):I>0,l<i<}Us % (1)13' {x:fi(x):|>0,A+1<i<1/lg.
If q 6 B, then also q" 6 B; if q' 6 B‘, then also q"' 6 B‘,
as follows immediately from (1). Further p(q", q''') :}p(q,q‘).
Hence p(B n gm, B‘ n g<°>) 4» p(B, 13').

5.7. Lemma. Let B, B‘ be defined as in 5.6. If B'° denotes
the complement of B‘, we-have:

D(B,B'°) = p(B n }_1<°+1>,B'° n H<°+1>).
Proof. As before, we conclude: if"p(B B'°) is defined, then

p(B, Blc) z’, p(B n I-__I(a_+1)’Brcn E(o'+l’))_

Now let q 6 B, q' 6 B'°. ,__§+1qzi = s2, ‘)3 q'.2 = t2,1"‘ .S,t* q= q‘:
W€putq"=(q1,...,q¢,S,0, 03000); q =(q:'|_;000;q'qa1::0.!93000)‘:
If we consider (1) in the proof of 5.6, we see that q 6 B,
qlll 6 B|C.

HI

p<q".q"'> = (q,-qpz + (S-'02; p(q.q'> = §,5_1<q,-q;)2.
p(q".q"') - p(q.q') =

S2 + :2 - 28.’:‘ ‘Ii 5 .9‘? + 2 ‘W =
-2 ( 1--§+1 q2i)2 ( i=§+1 q|i2)2- + 2 1=§+1qiq'i'

It follows from the Cauchy-Schwarz inequality, that
p(q,q') - p(q",q"') <I:0. Therefore
p(B n _I;I(O'+1)’BtC ni I__I(O'+l))1, p(B’ BIC).

5.8. Theorem. £1 is a CIN-space.
Proof. We construct an abstract I-space A homeomorphic
to H, using a standard mapping wdefined on a located system
obtained from the BM by closure with respect to F1, l_J. cp is
defined from (D.The BM with their intersections constitute
a located system as a consequence of 5.5, 5.6, 5.7.
Qlkis the species of all finite meets Anl. . .Ans , qoAn1.. .Ans = 1,
such that for a certain t, 1 < t < S, An, = B 1,; with rj > k’1 .
I'I(A) is given by the following definition:

<Pn>n € II(A)“'An(Pn 6 an 8‘ 9°P1°°°Pn : 1) (4)
Now I1-5 are satisfied.
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From lemma 5.7 and 5. 1 ‘(6) we draw the conclusion that
for any P,Q '6 QI1:

P c Q <-+p((0P, (1//Q)°) > 0. (5)

For let wP = B, wQ = B‘ and let l_{(°*1)be defined as in
lemma 5.7.
Then P c:: Q implies: /\<Rn>,, e II(A) vm(;_1‘°*1’ n ¢R1 n

1

n c05,,1,)n B = ¢ v ¢/R1 n n wRm n _Ij(°*> cB‘ fl H * . .
{c//P fl—l_i(°"?) : P 6 $13}is a located system in I;I(°*1).
Anticipatingproperties of LDFTK- and DFTK-spaces, treated
in chapter 1)] lsee especial(1y1;l.1. 30) we obtainP(¢P ‘‘ H“ a(c0Q)°-” .3“ )> 0
hence we conclude to (5).
C1,C4 are valid as a consequence of our definitions. C2 is
easily verified. C3 is proved thus: let An1...Anv e 9I,ll.
§‘(;10',i,j,esljtcan be found, tthatwAno = BM-1& < lg‘ .ere ex1s s an rk sue a r- < rk<u- ; ere ore
A,,1...A,,,, @ Am if «,0Am = Bk_,-. )1
N6 and N9 follow from lemma 5.6, 5.7 and the fact that
the proportions of ‘afinite intersection of B i.j are continuous

f;é.1nCt]°.OnS:é'0ftl]13eri. Consri]der for] e]>3camp1e }i3,f=BB(111,E‘ .ti1e:|li ,j 9 = i 1. j 1 o o o ' ,' o ‘

p(fi,‘]13') > O. W:+cari1+f'indkm, 11 g n léjzg, such that for every
n, '1 < n < u, 9&4Bin,jn.@- z//3 B1,,,1{','1'(by tak1ng"rkn slightly
greater than I‘jq')',_while B nnB =n¢ for B = Bi1_k1 0
l4.i1.<ewis]:1“i'rli“ theB cas-e 1:1 +l1\T.£l9(“+1 . . . Biwkv.

Thus we have proved A to be a CIN-space.
E is defined as in 5.1. E iscontinuous according to 5.1;
5'1 is easily proved to be continuous using (5).

5.9. Theorem. _F_‘is a CIN-space.
Proof. We construct an abstract CIN-space A which will be
proved homeomorphic to _lj_‘.E = %I(A), II = 1'I(A), <9= cm etc.
The metric of E will be denoted by p; we recall that the
species of rational polygonal functions on [0, 1] was denoted
by §‘_°. We define for f,g e _F_‘:

f < g <->I\x(x 6 [0»1]->f(x) < g(x))
f > g<—>g <
fg g<—»/\x(x 6 [0,1] —>f(x) :|> g(x)) (1)

fogc->—uf<g&—uf>g.
sup(f,g), inf(f,g) are defined by:
(Sup(f.g))(I') = Sup{f(1").g(r)§. (inf(f.g))(1“) ‘-' inf{f(I').g(1”)’s
We remark that



/\.f/\g(f,g€]F_‘°&f<g—+f<gv-1f<g)} 2/\f/\g(f,ge_E_°_»f.<gvggfvfog) ()
We define [f,g] =t{f‘ f‘ F & fs f'< g}.: e

The species [f, g] with f,g e _1f°, f g g constitute a species
F* which is denumerably infinite. We remark that for
arbitrary [f1:81]» [f2,g2] 6 F*:

[f1ag1:l n f2:g2] = ¢ V Eflagl] n l:f2ag2] :
i[SuP( 1:1‘-'2)»inf(81»82)] 6 F* (3)

[f1ag1] C [f2ag2]‘—*f2 < f1 & 81 < 82- (4)
Let 90be a standard mapping defined for SB,such that 91= <A,1)“
is mapped onto F*. 9 is defined from «.0.

We remark that for any species {n1,...,nk} such that
<pAn1 . . .Ank = 1

v1(A,,1 .. .A,,k ~ A1) (5)
91kis defined as the species of all finite meets Anl . . . An
with 9A,,1...Anm =. 1, such that, if q>An1...Anm = [£,g]“,"
then p(f, g) < k"1 .
We define H according to C4:

<P,,>,, e ].'I<->/\n(<pP1...Pn = 1 812Pu e Sin) (6)

11-5 are now easily proved if We use the reasoning in 5. 1.
Thus we have ‘defined an I-space A. We want to show A to
be a CIN-space. C1,C2 do not present any difficulties.

Let ¢Ai = [r1,r'1] , ¢Aj = [f2,f§]. Then it is not difficult
to prove

AieAj.+£2<r1<£1<£'. (7)
(To prove the implication from the left to the right, consider
<Pn>n 6 II such that wP1...P,, = [fl-(3n)‘1 , f1+(3n)‘1].)
Keeping in mind (5), we see that for any meets Anl . . .A,,t,
Ami. . .Ams such that wAn1. . .Ant = [f1,f'1] , 1//Ami. . .Ams =
[f2af'2]3 '

An1...A,,t cc:Am1...Ams<->f2 <f1<f'1<f'2. (8)
Now C3 is verified by remarking that for any [f, g] 6 F*

p(f.g) < k'1 —~Vn(p(f-n‘1.g+n‘1)t< k1‘)
IfP=P1 +00’ +PVi Q=Q1+.oo +Qua ?PQ= 0: Pi@Pi,ja
Qj C Q“, 9PM-Qi.j = 0 for 1 < i g 1/, 1 g jg u, then

I-1 F1 V

Pcr: 35 HP-,-=P'.Q@.E .1'I1Q:,j=Q‘.9>P'Q'=0. (9)1=i=1 j=1 1- J31

It follows from (9) that it suffices to verify N6 in the case‘
lpp = [f1:f'1]a ¢Q = [f2af'2]°
$130 ¢Q = (Z)-> -1 sup(f1,f2) < inf(f',f§). Let for an r 6 Q
Sup{f1(r),f2(r)} -inf{,f'1(r), > 2)L"1.Then [fl -}(‘1,f'+)L'1]f'|
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[£2->t"1,£§+A'1J = (23.Thus we obtain P c: P‘, Q cc:Q‘, <pP'Q' = 0,
if top‘ = [£1->v1,r1+>t-1]‘, ¢Q' = [£2-A-1,r'2+A-1].
N9 follows immediately from (8) and:

£2 < £1 g f'1< 1"._. £2 < 2'1(f1+f2) < flg £5 < 2'1(f'1+f'2) < f' ,
A is therefore a CIN-space. .3 is defined according to 5. 1,
and E,, 5'1 are readily proved to be continuous.

5.10. Theorem. If 9 is a spread law which satisfies the
following condition:
(*) If 0 E 6, then either 0 has only one immediate descendant

or 0 has at least two different descendants of equal length.
Then _I3(9)is a PIN-space.
Proof. We construct a PIN-space A, defined by <qo,II>,
homeomorphic to Q(6)._If 7' = <i1,...,ik> 6 6, we put:

V.,_.= {ozz ar 6 12(6) & a(k) = <i1,...,ik>}. , 
The species {V1,} can be enumerated. We remark that1’€9.'r#¢

A-r /\o('r,o€6 ._.v._. c V, v Va c V, v V, n V, = ¢). (1)
f is a bi-unique mapping of l_\_Ionto 6.
(/1is a standard mapping with respect to the located system
{V.,: 7-e 9}; zpis defined on ‘.B(A), such that if ‘9I(A) = <A,,>,,
then ([/An = Van).
9 is defined from «,0;Il(A) = E(A). I1-3 are proved as indi
cated in 5.1. To prove 14 we show that if a 6 _I_)(6),then
<Af-1a(n)>n5 iWe remark that

?An1¢oo-Ant: 1 —>VIn(An1....Ant‘VA
It is sufficient to prove that <Af-1(a(n))>,,separates all pairs
As,At such that <pAsAt= 0. This follows from (2). Take -an
arbitrary pair AMA... with cpAaA.,= 0. Then V,-0,) fl V“, = Q);
let f(o) = <i1,...,i“>,) f('r) = <j1,...,j(,>, /4< 2/. It follows
that <i1,...,i,.> 74<j1,...,j,,>.
Then also 50.1) 74<i1,...,i,,> v 3(;.¢)7l<j1,...,j),>, hence
Vam fl Vflo.) = ¢ v V501) fl Vfm = (D, and therefore

9Af-1(&0)))Ao = 0 V 9Af-1(a01))A1 "'3 0.
I5 is immediate.
Next we prove:

To every <Pn>n 6 II a monotonously increasing sequence
<ni>i can be found such that for some cr 6 _]1_)(9)
/\i(&DP1...Pni C V-55(1))holds.
Suppose already proved for a certain V: c0P1...P,,‘, c: V6.
We must prove the existence of a descendant 7-of o and a
number nv.,1 e _l§I,n,+1 > n,, such that P1...P,,v+1 c: V...
There are the following possibilities.
a) 0 has only one immediate descendant 01. We may take

7': 0'1‘, nV+1 = n‘. + 1.
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b) ohas at least two different descendants of equal length,
O19 02; V61 V62 : ‘5

Hence there exists a 11 such that cDP1...Pu 0 Vol = Q5v
‘Z/Plooopun : ¢o wplooopu= U 090U
V._.i n V1-j = {Dfor i 7‘ j. There exists a ul 2 /4 such that:
A1 /\j(175 J 3. 1 < 1,3 < A—>V.,i n ¢P1...P,,1 = ¢ v
Vfj n (pl/Ploooppl : ¢)o
On this account a V1. , lg n < A must exist, such that
gDP1...P,,1 C V, . Now we can take n,+1= pl, 7- the im
mediate descendant of osuch that V—;-.,‘c: V1. c Va. Now weare able to prove:

/\i /\j(Ai cs:Ajé->Ai c A]-)
The implication from the left to the right is trivial. Suppose
for certain 11,11 A, c: A“. Let <Pn>n 6 II. <ni>i is a strictly
monotonously increasing sequence such that wP1. . . Pni C Van
for a certain a 6 12(9). Let f(1/) be a sequence of length It.
Then either c‘r(>t)= f(v), or ?&()t) 71f(v). In the first case
P1...Pn>\c: Av; in the second case <pP1...Pn>\Av = 0.
Therefore A, C A , hence also A, "c A“.

Let val n WV, c: v.1 n n V“; i #j—»v,i n
V.) =95. Veinv. =13.
Then /\iVj(1< i.<,‘/48: 1<j<u—.V,,i c:V.,J.).
Hence if90P= V61 U U V‘, , tflQ = V1-1U U V“, it
follows that P C Q. Thus we“have proved

/\P /\Q(P cc:Q<—»P c: Q).

Now N6,N8 are trivial.
£is defined as in 5. 1; E, E‘'1 are proved to be continuous
without difficulty, as in previous examples.

5.11. Remark. The topological product of a denumerable
infinity of copies of N can be considered as a space 12(6),
6 consisting of all finite sequences of natural numbers.

The positively irrational numbers > O (i.e. positive real
numbers which lie apart from every rational number) are
exactly those positive real numbers which possess a unique
development in a non-terminating continued fraction. (See
BROUWER 1920, p.959, DIJKMAN 1952, p.52).

Therefore, according to a well-known argument (e.g.
KURATOWSKI1958, § 14 V), they are homeomorphic to the
topological product of a denumerable infinity of copies of lj.

5. 12. Remark. The construction of a located system depends
in the examples treated in an essential way on the individual
properties of the spaces considered.
We showed without great difficulty that any CIN-space is



-33

metrizable, but theorems in the reverse direction are not
so easy to prove. (compare FREUDENTHAL 1936, 7. 16, and
4.2.3 in this thesis).
This is a consequence of the difficulties encountered in
proving the existence of suitable located systems for a
whole class of metric spaces.



CHAPTER IV

LDFTK-SPACES

1. DFTK-spaces.

1. 1. In this paragraph the reference" "FREUDENTHAL 1936"
will be shortened to "FR".

DFTK-spaces were introduced in FR. In this paragraph
we want to prove every DFTK-space to be a PIN-space.
Further a number of theorems and lemmas which will be
useful later on will be proved. ‘

To start with,_ we resume a number of definitions and
theorems from FR with only inessential changes in termi
nology. The notion of a DFTK-space will be slightly widened;
every DFTK-space in our sense is homeomorphic to a DFTK
space in the sense of FR.

1.2. Definitions. 91 = <An>n, (SEis constructed from 91 as
usual. A function 9 is defined on EBas in 3.1.2; cpsatisfies
I1,I2. We introduce the following postulates for cp:

F. 9.An1...Ank = Vm(m> I1& QAn1...AnkAm=1).
T. Q An1....Ans '7’ 1 &. Q Am1...Amt = 1 81.

<9An1...AnsAm1.....Amt = 0->'Vn ./\.m(m 3 n——>
Q Anl. ...Ans Am = 0 V 9 Aml. . .Amt.Am =

K. /\k V]. /\n(<p(Ak + Ak+1 + . . . + Ak+1)An 7- 1).
If r is a function from E into E such that
/\k /\n(q5(Ak +.Ak+1 + . . . + Ak+,(k))An = 1), then r is called
a K-function.

1.3. Theorem. (FR 2.2) If <9is a function on the lattice Y6
which satisfies I1, 12,F, T, K, then also the following asser
tions are valid:
a) cpP = 1->/\n Vm(m > n & <pPAm = 1).
b) 9P = 1 &<pQ= 1 &9PQ = O->Vn/\m(m;n-—>¢AmP = 0 ‘v

:pAmQ = 0). ~
C) (pp = 1 & I‘ 1S a K-function-> /\k((9P(Ak + . . . + Ak+r(k)) =' 1).

1.4. Definition. C, ~ are defined as in 3.1.6. (FR 2.6).
P C§*Q<—>Vn/\m(m>n & cp~AmP= 1—->Am C Q). (FR 2.6).

1.5. Theorem. 9 satisfies I1-2,F, T, K. Then
a) 13 holds for C (FR 2.11).
b) Theorem 3.1. 7 is valid for C, ~.



-90

c) P c* Q 3. P c* R—->P c* QR (FR 2.12); P c* Q 3.
R cc:==<Q-—>P+R c=== Q (FR 2.12); P @* Q 3. Q c: R-—>
P cc;-*R, P c Q 3. Q cc::===R——>Pc:* R. (FR 2.8); P c* Q->
P C: Q (FR 2 10)

Proof. 3.1. 7 is proved on assumption of 11-3 only, hence
(b) is a consequence of (a).

1. 6. Definition. A species of lattice elements {P1, . . . , Pv}
is called an LQ-covering (lattice quasi-covering) if
/\m(9Am(P1 + + ‘P,,) = 1). {P1,...,P,,} is called an
L-covering (lattice covering) if Vn./\mVk(m ). n-—>AmC‘*Pk 8:
1 $ k g 1/). (Cf. FR 3.2).

1. 7. Definition. Am is of degree n means In >,-n. Am1.. .Amt
is of degree n means: for some i (1 s i < t) Ami is of
degree n. An LQ-covering is of degree n if every element
of the covering is of degree n.
Remark: the degree of an LQ-covering is defined only for
LQ-coverings whose elements are meets of elements of 91.
(cf. FR 3.1, 3.2).

1.8. Definition. P’ is an L-neighbourhood of degree n of
P, ifP@*P', P’ =P1.+... +Pk, cpPPm=1 for l é In $k,
and Pm of degree n for 1 s m s k.

A piece of degree n is an L-neighbourhood of degree n
of a meet of elements of 9! of degree n. (Fr 3.3).

1.9. Theorem. <9satisfies I1-2,F, T, K. Then
a) If [P1, . ..,Pn} is an LQ-covering, then for any P:

P c-* P* = Z2[Pi 1 s 1 s n & cpPiP = 1] (FR 3.6).
b) q>PQ = 0->'VP* VQ*(P cc::* P* 3. Q 6*‘ Q* 3; 9P==<Q==<= 0)

(FR 3.8).
P @* Q—->v'R(P @::===R @* Q) (FR 3.9).
P c* Q—-vk /\n(n >1: & QAHP = 1 —+A,, cc::===Q) (FR 3.10).
If P CC..'?*Q, a V e _l§Ican be found such that for every
piece S of degree n > 1/icpPS = 1-->S CCj*Q.

f) If ¢pPQ = O, a 1/ e _l\jcan be found such that for every
piece S of degree n >,- 1/ q)PS = 0 v <pQS = 0.

g) If {P1, . . . , PR}is an LQ-covering, and Pi c: P} for 1 < i s n,
then {P'1,...,PI'1] is an LQ—covering. Likewise for L
coverings. .

Proof. (e),(f) could be proved by means of FR 3.11-15, but
since proofs are omitted there, it is simpler to give a
straightforward demonstration.
(e). From (d) it follows that for every lattice element R of
degree n .>»1/ we have QPR = 1->R @* Q, since R can be

(DQ..O
%/§/é
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written as AmR', m g n ; 1/, hence q>PR = 1—><pPAm = 1;
<pPAm = 1-—>Am @* Q (d); Am (<§*Q—->R'Am (§* Q (1. 5(b), (c)).
If P1 €:* P4, we are able to construct P2,P3 such that
P1 C :3 P2 C :}<P3 7}: P4 .

There exist V1, 222, 113such that for any lattice element
R of degree n > vi cpPiR =1—>R @* Pi“ for i = 1,2,3.
We put 1/ = sup {I/1, 1/2, 1/3}. Let S be a piece of degree
ngv, S= T1+ +T,,, Saneighbourhoodof T; T,T1,...,T,,
lattice elements of degree n. Suppose cpP1S= 1. For a certain
A, 1 <1 gu, q>P1T;\= 1. Hence T}, @* P2, therefore T;\ C P2
(1.5(c)). If 14 i 4% <PT;\T= 1, <pTTi = 1. Hence it follows
that ¢.pP2T= 1, consequently T @* P3, so T C P3; we con
clude that cpP3Ti = 1, therefore Ti @* P4.
This holds for every i, 1 £ i 4 y, hence S @* P4 by 1.5(c).
(f) Let q;PQ = 0. We construct P*,Q* such that P @* P*,
Q C* Q*, q>P*Q* = 0 (using (c)).
There is a V such that for a piece S of degree n ) 1/:

<pSP = 1-> S @* P*,' ¢pSQ = 1-> S @* Q*.
cpSP = 1 & q>SQ = 1->S C_5*P*

—->S C P*
S C P* & <pSQ = 1-—><pP*Q = l

—vq>P*Q*= 1: contradiction.
Hence <pSP = 0 v <pSQ = 0.
(g) is trivial.

1.10. Definition. A centered system <Pn>n, Vm(Pm 75A”),
is called a DFTK-point generator, if to every Pn a piece
Sn of degree mu can be found, such that P“ C Sn, and
where <mn>,, is a sequence increasing beyond all bounds.
(Pu) n 6 Q is defined just as in 3.1.10 (see also FR 4.1,
4. 2).

1.11. Lemma. A DFTK-point generator satisfies the splitting
condition with respect to every pair T1, T2 such that q>T1T2= 0.
Proof. Suppose for every piece of degree n 21/ (1.9(f))

q>T1S = 0 v <pT2S = 0.
Let <Rn>,, be a DFTK-point generator. There is a /4 such
that R9, C S, S a piece of degree n ; 1/. Then q>T1S = 0 v
cpT2S = 0. Then also cpRuT1 = 0 v 9RpT2 = 0, hence certainly
9R1...RuT1 = 0 V 9R1...R“T2 = O.

1. 12. Lemma. If <pP= 1 there exists a DFTK-point generator
<Qn>n.o <Qn> n5 P
Proof. P = P1 + + P,, P1, . . .,P, meets of elements
of 2!; <Qn>n e P,‘ for 1 $ K s 1/ implies <Qn>n 6 P. Hence
we may restrict ourselves to a P which is a meet of elements
of 2!. Applying postulate F we prove inductively the existence
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of a centered sequence <Qn>,,, Q“ of degree n,
/\n(cpQ1...QnP = 1). (FR 2.3).
<Qn>n is a DFTK-point generator, since Qn 6.:Sn, where
Sn = Z3[Ai: q)AiQn = 1 & n 41 $ n + r(n)} (r is a K—func
tion, and we use 1..9(a), 1.5(c)).
Sn is a piece of degree n.

1. 13. Definition. Between DFTK-point generators a relation
2: and a relation # can be introduced, as in 3.1.11. # is a
pre-apartness relation, according to the proof of 3.1.12,
using 1.11. The equivalence class with.respect to 2 which
contains <Pn> n will be denote by <Pn>’fi.

1.14. Theorem. If (p is a function on SBwhich satisfies
I1-2, F, T, K, then cpand the corresponding species of DFTK
point generators 11 define an I—space <q>,II>.
Proof. Immediate by 1.2, 1.5(a), 1.11, 1.12.

1.15. Definition. The I-space defined in 1.14 is called an
abstract DFTK-space; every topological space homeomorphic
to an abstract DFTK-space is called a DFTK-space.

1.16. Lemma. If <Pn>n 6 23, then <P1...Pn>n is a DFTK
point generator.
Proof. Let <Pn>n E E; {A,,Av,,1, . . .,Av+r(v)} (r a K-function)
is an LQ-covering.

A number /4can be found such that for every pair APA
V s i $ j $ 12+ r(v), <pAiAj = 0, the following assertion is
true:

9AiP1...Pp =0V9AjP1...Pp =0. (1)
There exists a certain Ax, V é 7L$ 1/ + r(v), such that
QAXP1. . .P“ = 1 (using 1.3(c))..
We define Q, = ;:{A, ; 1/ 2 1 $12 + r(1/) & <pAiA,\ = 1}.
We remark that as a consequence of (1

1241 $2; + r(1/) & Q-A.iP1o.aPp = 1—>eA,A, = 1. (2)

Therefore, if Q; = z:(A, ; u 41 $22 + I'(V) 3. <pAiP1. . .1?“ = 1},
then P1...P c<:=:<Q, (by 1.9(a)), and Q; c: Q, (by 1.5(b),
(2)). Hence (by 1. 5(c)) P1 . . .P c: Q,; Q, is a piece of degree
1/, since A), C3’?Q, (by 1.9(a)$l. This proves our assertion.

1.17. Theorem. (FR 5.3). Every DFTK-space possesses a
finitary perfect representation, with a defining pair <9,s?>;
for every k, the finite species (SR = {wk : <i1, . . .,ik> 6 9}
is an L-covering by pieces of degree k, which are joins
of elements of 91.
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1.18. Definition. If a DFTK-space can be represented by
a spread II1 such that’. /\<Pn> ,1 6 I11 /\n(Pn+1 @* Pu). then
I11 is called a (cI?*-representation for the space. (of. FR 5. 5)

1.19. Theorem. Every DFTK-space possesses a @*-rep
resentation. (FR 5.6, without proof).
Proof. Let 1'10be a normal finitary perfect representation,
with a defining pair <9,~)>, for a DFTK-space I‘, according
tol. 17. The species (Ekare defined as in 1.17. We suppose
6,1 = [Pr1’,...,Pfi(n)}. Every P? is a piece of degree n.

Q,={A,;1<i<1+r(1)&q,P,1Ai =1}.
(r is a K-function).

We conclude (1. 9(a)) that PI1 CC_'=*Qt.
Now we construct, by induction, to every <13}, . . ., P1s‘k>6 «S9
alattice element Q51, . ,3}, such that P931. . . Psk @* Q51, . . .,sk
C<§*Q51, . . . ,sk_1 , in the following manner.
We suppose the Q51,. . . ,sn to be already constructed for all
n s 1/; let t1, . . . ,t\, be a sequence such that t1 < t2< . . .<t\,
and such that for every k, 1 < k < 11the following assertion
holds:

t ztk & <Ps11,.
'-’At @* Qs1,....sk°

The existence of this sequence follows from our induction
hypothesis and 1.9(d1).

Let <P§1, . , P5” > e .3 6.We definev+1

Q31,. . .,,\,,1 = (A1: t,< 1 st‘, + r(tv) & cpAiP31...P,"*1 = 1‘;v+1

..,P;<k>e o 9 &cpA,P,1...P§‘k = 1

hence
1 V"'1 >{< :3

PS1. ' ' Psv-fl C Qs]_gooo.sv+]_C Q31.....Sy'
A t,+1 >tv can be found such that (1) holds for k = 1/+1.
Next we want to prove that for any <P§ii>i 6 1'10the corre
sponding sequence <Qs1,. . .,si >i is a splitting system.

Let 9ST = O, 98 = 1, QT = 1. For a certain V (by 1.11)

q>P_.}1...P;’vS = 0 v 9P§l1...P_2,’vT = 0.

A [,1can be found such that for all m 2 /.1(1.3(b))

¢Pg1...P;;s = o—»q.Ams 0 v 9AmP,11...P;'v
.pP,11... s"vT = 0-><pAmT 0 V q.AmP}1...P;'v

Hence for all n > V, m 7/1;

9P§1...P‘;nsa = 0-><pAmS 0 V 9AmP§1...P_£}n

<pP31...P§nT= 0-—>cpAmT= 0 v q>AmPg‘1...P§1n II
CD
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Therefore for all n ; 1/, m 2 )1

.,A,,,s = 0 v cpA,,,T = 0 V 9AmP}1...P;1n = 0.
If we choose t1 >11, A > v, we see that

/\i(t1 <1 ex-(t1) + «:1 & 9A1P}1...P§’n = 1-><pA1S = 0) v

/\i(t1< 1 .4:-(1:1) + t1 3. ¢A,P}1...P§‘n = 1—+q>A1T = 0).
We conclude that

?QS1.....SA'+]_ S = 0 V S]_.....SA+1T = 0'
Therefore it will be clear how a Cc§*-representation can be
constructed from the Q31,. . . ,sk.

1.20. Theorem. In a DFTK-space P (<2:Q4->P @* Q.
Proof. P C’? Q—+P C: Q is proved thus. Let <Rn>n 6 23.
Then (R1. . .Rn>n is a DFTK-point generator by 1.16. Let
(Sn) n be a DFTK-point generator such that Sn is a piece
of degree n, /\n Vm(R1...Rm c Sn). (<Sn>,, exists as a
consequence of the definition of a DFTK-point generator).
A 1/ can be found such that for n >11! q>PSn = 1->Sn C‘.Q.
Further a ,u can be found such that R1. . .R1, C S,,, hence
<pPR1...Rp = 1—><pPS-, = 1.

—"Sy C Q
—->R1...R1, c: Q, hence P C Q.

Conversely, let P C Q. Let 111 be a C<_?*-representation
with a defining pair <6,a‘!>as described in 1.19. There
exists a function ab from I11 into E such that

<Rn>n€1-.[]_&.Kl/<R.n>1-1:In &.?R]_.. = . C
m is known from a finite initial segment (R1, . . .,Rs>; we
may always suppose s ; m. Since H1 is finitary, there
exists a V e E such that w<Rn>nis known from (R1,. . .,R,>
for any <R,,>ne II1 (using the fan theorem), while w<Rn>ns 1/.
Now we remark (using 1. 9(a),(g))

P c=:=__z:{3<11,...,1,>; <11,...,1,> e e &
9Po<i1,...,1,> = 1} c: Q.

Hence by 1.5(c): P @* Q.

1.21. Theorem. Every DFTK-space is a PIN-space.
Proof. This follows from 1.9(b), (c), 1.11 and 1.16; for if
II denotes the set of DFTK-point generators, and 9 is the
function which satisfies I1-2,F, T, K, then <«p,I'I>, <<p,E>
define homeomorphic spaces, since the conditions of 3.1. 30
are satisfied.
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1. 22. Lemma. If {Q1, . . . , Qn} is an L-covering of a DFTK
space, an L—covering {Q'1,. . .,Q;l} can be found such that
Q; C Qi for 1 .£_ i S n.
Proof. There exist a V and a function «,0such that for all
n 3 v

(DAR-'-‘k->AnCQk&1Sk$n.
WeputQ'}:={Ai:1/<i$r(1/)+v&«.0Ai =k$ (r isaK
function.) Then by l.5(c) Q'k'C QR for 1 6 k- $ n. We con
struct Q’k (1.9(c)) such that Q‘; C Q'k C Qk for 1 s k sn.
{Q'1,. ..,Q;} is an L-coVering_ since there exists a ,u such
that for all m );,¢, 1 Q i gn, 9Q'i'An = 1—>An C Q} (1.9(d)).

1.23. Lemgna. Ifn{P1i,. . . , Pg“); is an L-covering for 1 $ is n,
then {P}1Pj2...PJ-D: /\k(1 g k Sn-—>1 4 jk 4 f(k)} is also an
L-covering.
Proof. There exist 1/1,1/2,. . .,1/D such that we have

m >,1/1 & 1 5 1 s-n__.vk(A,,, c P}, & 1 s k sr(1)).
Hence if 1/ = sup 1/1,...,z/,1 , then for m 2 1/ there are
.l1....,jn such that Am C i-‘kfor '1 s k s 11. Therefore
(l.5(c)) Am c P]-11...P;‘n

1.24. Lemma. If {V1,. ..,V,,} is a covering of a DFTK
space, then an L-covering {R1, . . .,R,,] can be found suchthatRi CV1for 1$i$n.
Proof. We suppose 1'10to be the finitary perfect representa
tion with a defining pair <9,0>, and (5,, the species, intro
duced in 1.17, 6,, = {P‘1‘,...,P‘,:(,,,}. {P‘1‘,...,P“,,; is an
L-covering for every n. A function :11of Ho into Kg, . . .,n}exists, such that

<P§’n>,, 5 I10 & w<P‘,‘n> ,, = m-> <P§‘n>’,‘; e Vm.

m is known from an initial segment of length t, (PE,-11,. , P§t>.
Since the representation is perfect, P511.. .PEt 6: Vm.
H0 is finitary, therefore a 1/can be found such that cp<P§‘n>n
is known from (P51 , . . . , P;'v >, for every (.P§‘n>',, 5 I10.
Thus a function ‘,0’can be found such that

g0'<P§1,...,P§'v> = m——>P,11...P,‘; c: Vm.
The species [3-<i1,...,i,> : <i1,...,iv> 5 9} (12fixed) is
an L-covering (1.23).
Hence if we put
Rm = 2:{3<11,...,1,>: <i1,...,i,,>e 9 &t,D'<'yi1,...,7i,> = m}
then {R1,. . . ,Rm] is an L-covering, and R1 C:V1 for lg i gn.
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1.25. Theorem. {Q1,.. ..,Q11} is an L-covering of a DFTK
space iff IQ1, . . . , Q11}is a covering.
Proof. Let {Q'1,...,Q'n}, Q'1@ Q1 for 1 $1 $n, be an L
covering constructed according to 1.22.
There is a Ve_lfl such that for all pieces S of degree In 3 1/
the following assertion is valid: q>Q1S = 1—>S C Q1 (for
1 S i < n) (1.9(e)). To every DFTK-point generator <Pn>n
a piece S of degree V, and a /1 can be found such that P1, C S.
On this account there exists a A such that P1, C 'Q;1, there
fore <P11>116 Q1. If {Q1, . . .,Q,1} is a covering, there exists
(1.24) an L-covering {R1, . ..,R11}, R1 c Q1 for 1 $ i $ 11,
hence {Q1, . . . , Qn} is also an L-covering (1. 9(g)).

1.26. Theorem. If {v1,...,v,1} is a covering of a DFTK
space, then there exists a covering [P1, . . .,Pn} such that
[P1] cc:V1 for 1 $1 sn.
Proof. By 1.22, 1.24, 1.25.
Remark._ This theorem could also have been obtained as a
consequence of 3.2.21, but then We should have to prove
1.25 separately.

1.27. Theorem. Every DFTK-space is an LC-space and
conversely (FR 7.17).
Remark. From now on we shall use the existence of an
adequate metric for a DFTK-space without further comment
in our proofs.

1.28. Theorem. Let I‘ = <<p,II>-be a DFTK-space, e > O,
%I(I‘) = <A,1> . Then ’
a) diameter TA11]converges to zero with increasing n (FR

6.5).
b) The diameter of a piece of degree n is smaller than a

for almost all n.
Proof. (b) is an immediate consequence of (a).

1. 29. Definition. A DFTK-basis is defined quite analogously
to an I-basis.
Remark. Let <V11>11be a located system of non-empty species
of an LC-space <Vo,SZ>. Let _‘.Bbe defined as usual from
fl = .<A11>n, and let ab be a standard mapping defined on SE
such that wA11= V11, and suppose 9 to be defined from «P.
Then <V,1>,1is a DFTK-basis for <Vo,S£> iff 9 satisfies

I1-2,F, T, K, and H131wP11 contains exactly one point for
every <Pn>n e E.

1.30. Lemma. Let I‘ be a DFTK-space, and let V be a
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locatedpointspecies of I‘. V Cr We-->Ve(e > O & U(e,V) C W).
Proof. In 3.3.7 was proved: V Cr W<-'>V C Int W, for
located V. If for some positive 6., U(e,V) C W, then V‘ C
Ir1t W.
Suppose V- C Int W. V‘ is an LC-space (2. 3. 9). Hence to
everype V‘ a 6 > O can be found such that U(26,p) C W.
The species of the U(6,p) is an open covering of V"; as a
consequence there exists (2. 3. 4(d)) a quasi-finite subcovering
‘U1, . . .,‘Un}, U1 = U(6i,pi) for 1 Q i Sn. 6 =innf[6i : 1 < i énf.H II

Hence U(6. V) <:U(6. 121U1) cigl U(<51+6.p:) cigl U(251. Pi) c W.

1.31. Lemma. Let V,W be located and relatively located
pointspecies of a DFTK-space I‘. Then
a) V C W—->VP VP'(V C P C: P’ C W).
b)VnW=¢-->VP. VQ(V':P-&WCQ&<pPQ=0).
Proof. (a) V (<5W->V C‘ W. This implies that [W,VC}
covers I‘. Hence by 1.25, 1.24, there exist P',Q' such that
P‘ CW, Q‘ C V°; {P',Q'} covers I‘. By 1.26, there exist
P,Q such that P C:P‘, Q C Q’, [P,Q] covers I‘.
pe V-’p¢ V°;p¢V°->py.‘ Q;P¢Q“"'P€ P
Hence V C P (<3.P‘ C W.
(b) It follows from the fact that V,W are relativelylocated,
and from 2.3.10(c) that for a certain 5 > O, U(6, V) 0
U(5,W) = We construct located pointspecies V',W' such
that U(4-1 .s.v) c v' C‘ U(2'1 5, V), U(4"1 a,w) c w' :
U(2-15,w) (2. 3. 11(a)); U(2'15,V') 0 U(2'1 5,w') = ¢. V cc:V‘ &
W (CEW‘ (1.30).
Applying (a) we construct P,Q such that V C P C V‘, W c:
Q c: W’, _q>PQ = 0.

1. 32. Lemma. Let I‘ be a DFTK-space and <Vn>n a DFTK
basis for I‘. <Wn>n is a sequence of poi.ntspecies such that
<Vn7,, U <Wn>n is a located system. Then <Vn>n U <Wn>n
is a PIN-basis for 1‘.
Proof. We suppose /\n(Vn 7‘ ¢), /\n(Wn 7‘ $25).(This can be
done according to the definition of a PIN-basis.)
We define an I-space A = <9, II> by %[(A) = <An> n U <Bn>n,
II(A) = .):;(A). 90 is defined on ‘J3(A)as a standard mapping
which satisfies r,bAn = Vn, ¢,0Bn = Wu; q>A = 9: is defined
fr.om (0.
Let P1 be defined by sum) = <An>,,, eel = <pA|$B(I‘1_).
II(I‘1) -‘-E(I‘1). P1 is an abstract DFTK-space, homeomor
phic to I‘. We put P2 = <q>A,II(I‘1)7.

We prove successively that P1 is homeomorphic to P2,
and that P2 is homeomorphic to A.
In P2, I1,2,5 are satisfied. 13,4 can be proved for P2 by
the methods described in 3.5.1.



-93

].'I°(I‘1) = II°(I‘2); on this account V C51-1 W4-—v-V@p2 W.
Therefore P2 has to be an IR-space, since F1 is an IR
space. We obtain (3.2.13(c)) p gt-2 V‘->[p} Cpz V<-—>
{p} (C31-1V45->p gr-1 V, and this implies in turn ‘that P1,
P2 are homeomorphic.

Let <Rn>n e )3(A), and let «Q1,Q}>>ibe an enumeration
of all pairs <Qi,Q{> such that <pQiQ{= 0.
There exists a sequence <ni>i, /\i(ni+1 > ni) such that
Ai /\j(1 s j s i-->9R1...RniQj = 0 v q>R1...RniQ} = 0).
As a consequence of l.3l(b) we are able to construct
Pi E !B(I‘1) such that /\l(R1...Rni CA P1 & /\j(1 £3’ < i—>
9PiQj ‘'5OV = -Hence/\kVlTl(R.1.. .R.mCAP1. .
We conclude that (3.l.32) I‘2,A are homeomorphic, and
Cirz = CA.

As a consequence of 1. 31, in A N6, N8 also hold, as will
be proved now.
Suppose A to be homeomorphic to F1 by a homeomorphism
5. If P CA Q, then EP (Cpl fiQ, EP, EQ located in P1.
Then P',Q',R' can be found such that "E,PC P’ Cpl R‘ C1-'1
Q‘ C EQ, hence P CA P‘ (CIAR’ CA Q‘ C Q. N8 is provedlikewise.

1.33. Remark. If I‘,A are defined as in 1.32, the following
theorems remain valid for A (as a consequence of 1.32,
1.31) if we interprete P,Q etc. as to belong to SB(A),but
<An>n= 9I(I‘1): 1.3, 1.9, 1.17, 1.19, 1.20, 1.22, 1.24,
1.25, 1.126.

2. LDFTK-spaces.

2.1. Definition. A metric locally DFTK-space is a metric
space with a point representation, such that to every point
a closed neighbourhood can be found, which is an LC-space
(equivalently DFTK-space) in the relative topology.

2.2. Definition. An abstract PIN—space which satisfies the
following two postulates
L1,. AP"V<Qn>n(P = A, v"<[Q,,]>,, is a DFTK-basis for [P]).
L2. AP VQ(P'f A.,—->P c Q & Q 74A,,).
is called an abstract locally DFTK-space (abstract LFDTK
space). A space which is homeomorphic to an abstract
LDFTK- space is called a locally DFTK-space (LDFTK-space).

2. 3. Theorem. If <Vo,p> is a metric ‘locally DFTK-space,
then <Vo,$(p)> is an LDFTK-space and conversely.
Proof. Let <Vo,p‘7 be a metric locally DFTK-space. We
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put <Vo, 53.'(p)>= I‘ To every point p 6 V0 a real number
s > O and B,C C V0 can be found, such that F(p,e~,B,.C)
holds, where F(p, e,B,C) is defined by
F(p,£,B,C)<->U-(2’2e,p) c B c U(2"1e,p) c U(e,p) c C

and B,C LC-spaces in the relative topology. (1)
We remark that

{Int B : Vp vs VC(p .2 V0 & e > 0 & F(p,e,B,C)}
is an open covering of I‘.

Using the intuitionistic analogue of Lindel<'5f's theorem
(2. 2. 6) we obtain sequences <Bn>n,4Cn>n_.<En>n,<pn>n, such
that <Bn>n- is a covering of I‘, and /\n(F(pn,€n,Bn,Cn)).

Next We construct sequences <Bn.m>mfor every n-, such
that Bmm is an LC-space in the relative topology for all
n,m, ‘and such that (using 2. 3. 1l(a))

Bu = Bn,1 81 AH1(U(2-R-zen.-Bn,_m) C Bn_,m+1 C
U(2-k-"1911: Bn,m)) (2)

We see that /\n /\m(Bn,m C Cn). We re-enumerate <Bn_m>n,m
as <Dn>n by putting Dt(n,m) = Bn,m where t is a bi-unique
mapping from E x E onto E, and r,s are mappings such
that r't(n,m) = n, st(n,m) = m. We put

E1 = D1,En+1: En Q Dn.

We see that /\n(En C En”); En is an LC-space in the rel
ative topology, therefore <En>n is a located system.
Let f be "a mapping from E into E defined by

f(n) = sup{t(r(k), s(k) + 1) ; 1 4 k 4 n}.
It. follows that a sequence <<5n>ncan be found such that

U(5n.»En) C Ef(n)

since Dt(n.m) C U(€,Dt(n’m)) C Bn,m+1 for a certain 22. If we
put '

g(1) = l,g(n+l) = fg(n), Fn = Ego.)
then <Fn> n is a located system of LC-spaces. Defining nn
as 630,) we obtain .

U(n..Fn> c: Fn+1- (3)

Now We construct a DFTK-basis <Gg_n>nfor F2, such that
<G2_n>nU {F1} is a located system in F2. (This is possible
by'2.3.l2; to see this we remark that if <Ui>i in 2.3.12
is a DFTK-basis, then <Wi>i is also a DFTK-basis, as a
consequence of 1.29, remark.)
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If we put H1.“ = G2,“ fl F1, then 4H1_n>n is a located
system, and a DFTK-basis for F1.
For let S be the system obtained by closing 4G2’n>n with
respect to fl, and let V,W e (E. If U(6,V fl F1) fl
U(6,W fl F1) fl F2 C U(£,V fl W fl F1), and if we put
6' = inf(n1,6), we obtain U(6',V 0 F1) fl U(6',W fl F1) C
U(6',V fl F1) fl U(6',W 0 F1) fl F2 C U(e,V fl W fl F1).
Therefore <H1’n>nis a located system.
Let <G3,n7n be a DFTK-basis for F3, such that <H1.n>n U
<G3’,,>n U {F2} is a located system in F3. We put H2_n =
G3,“ fl F2. <H1.n>,,- U <H2.n>n is a located system, <H2’n7n
is a DFTK-basis for F2.
We proceed by induction. Let us suppose that we have al
ready proved that <H1,n7n U <H2_n>n U U <Hk_1n>n is
a located system, and <Hi,n>n is a DFTK-basis for F1,
1 4 i é k—1.

We construct a DFTK-basis <Gk+1,n>nfor Fn+1, such that
<H1’n>n U . . . U <I'.'lk__1.n>nU <Gk+1'n>n U j.S 3 located
system in Fn+1 (2. 3. 12).

If we put Gk+1,n fl Fk = Hk.n, then <Hk.n>n is a DFTK
basis for Fn, and <H1,n>n U U <Hk.n>n is a located
system.
For let (5 be the system obtained by closure of <H1 11>“U . . .
u <Hk_1,,>,, U <Gk.,1 ,,>,, with respect to n, and let 'v,w .5 (5.
If U(a,v n Fk) n U(5,w n FR) n Fm c U(e,v n w n Fk),
and if we put 6' = inf(nk, 5), then
U(5',VnFk). fl U(5',W n FR) = U(5',V fl Fk) fl U((5',W fl FR)

Fk+1C U(€,V n W n
In this way we obtain a.system <Hn_m>n,mwhich will be
proved to be a PIN-basis for a PIN—spaceA which satisfies
L1-2.

We put K.(,,,,,,, = H,,_m, u = inffnz Kn 7%M. <L.,,>,, is
defined byfistipulating L1 = L, = K, for 1 4 i 4 1/; n > 1/->
Ln =KnifKn7‘¢, Ln=Lv ifKn=¢.

We construct A by means of a standard mapping (,0such
that 90A,, = Ln, 2I(A) = <An> n. (PA = 9 is defined from ch.
As a consequence of 1.29, 1. 32 <¢P fl Ln>nis a PIN-basis
for every P f A... If ¢pP C Fn, then <¢P fl Hn_m>m is a
PIN-basis for WP.
Il-2 are automatically satisfied. We prove P C Q <—>r,DPC IPQ
in the usual way, as described in 3.5.1. This proves I3.

Next we prove’ for a separating system <Tn>n: nf_l1cpRn
contains exactly one point, and the diameter of (DB1.. .Rk
tends to zero with increasing k.
There exist a v and a p, 1/, /4 e _1\_I,such that r.0R1.. .R‘, C F“.
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QDR1.. .R\. is a PIN-space with a P[N—basis <cpR1.. . R, ‘n L,,>n.
Therefore <R1. . .R,,Rn_>nmust fulfil the splitting condition
with respect to all pairs <R1. . .R‘,P, R1. . .R‘,Q> such that

q>R1.. .R,PQ = 0; hence F11wRn contains exactly one point['12

of WRV,and the diameter of 9!/R1.. .RvRn tends to zero with
increasing n.
Conversely, if p E I‘, there is a 1/ such that p 5 F».
<Fv F1Ln>nis a PIN—basis for Fv, therefore a splitting

system <Rn>ncan be found such that 1.11c//Rn= If weI ,1:

put 23(A)= II(A), it follows from the preceding considerations
that I4,I5 are satisfied. N6,N8 remain to be proved. Let
P,Q e 9.13.From the construction of the Fn it is seen that
a- U can be found such that gbP, g0Q C Fv. If <Sn>n is a
sequence such that /\n(wSn = Fn), it is a consequence of
(3) that

An( Sn CA Sn-I-1)

P,Q c S‘, CA SW1 CA SW2. If QPQ = O we construct P',Q'
such that P CSWZP’ & Q CSW2Q‘ & cpP'Q' = 0. It follows
that P C'§Sv+2P'Sv+1_& Q @S,+2 Q'Sv+1 8‘ ?P'Q'S.v+1 ‘: 0
Using lemma 3.1.28 we draw the conclusion that

P @A P'S\.+1 & Q @,,q Q's,.,1 & oP'Q's,.,1 = 0.
This proves N6.
If P CA Q, we construct an R such that P @3v+1R Cswl
Q CA SW1. Hence we obtain (3.1.30) P CA R CA Q, and
this proves N8; A is therefore a PIN-space.

Finally we must construct a homeomorphism E from A
onto I‘. We"put (as in 3.1.26, 3.5.1) 00

<Pn>n e 1I(A)—->a<Pn>",'j e ngl ¢pPn.
It is readily verified that E is bi-unique. 5 is continuous,
since A is a PIN-space. E‘1 is continuous, since in I‘ every
point has a neighbourhood which is an LC-space; as a con
sequence of 1.27, 1.21, 3.3. 9, 3.3.6, E‘1is continuous on
such a neighbourhood, therefore 5-1 is continuous on I‘.
Now we prove this theorem in the reverse direction. An
LDFTK-space is a PIN-space, and therefore metrizable; as
a consequence of 3.3.9, 3.3.5, and 3.2.30 it has a point
representation. '

It follows from L1, L2 that to every point a neighbourhood
can be found which is an LC-space, for if <Pn>n E II,
<Pn>n 6 Q, Q ;‘‘_’A,,,,there is an R (L2) such that Q C R,
R ;éA,,,, so <19,>;; e Int R. R is a neighbourhood which is
an LC-space in the relative topology.
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2.4. Definition. An LDFTK-basis is defined analogous to an
I-basis. '

2.5. Example. 3” possesses an LDFTK-basis consisting of
all species [(x1, . . ., xn) : /\i(1< i < n—=>xie [ki2'm, (ki+1)2'"‘]l,,II1€

3. Covering theorems.

3.1. Theorem. Let <P,,>n be a star-finite covering (cf.
3. 1.37) of an LDFTK-space. Then there exists a star-finite
covering <P;'l‘> such that /\n(Pn CC:P3‘) and A1 /\j(¢pPf‘P’J5‘= 1-—>
¢pP-P- = 1).
Prloojf.Suppose <Qn>nto be an arbitrary star-finite cover
ing. We shall construct a star-finite covering <Q;l>n such
that for a certain U, Q‘, C Q{,, /\.n(n f_v—..Qr =.Qn)’
/\.n(q>Q{,Qn= 1+->9QyQn = 1); the construction is escribed
below.

We put EtQJ' 3 9QjQv 1) 'v'
EtQi = 9QiQ" = 1) - ‘J'

If <Rn>n 6 11, there ‘exists a Q‘, such that <Rn>§‘,‘g_ Q“
(3. 3. 9, 3. 3. 5, 3. 2.21) hence for a certain A, R1. . .R;\ C .
<pQ,Q“ = 0 implies 9R1..(.R,‘Q, = 0. 9Q,Qp = 1 implies

Q“ c Q{,, so R1Q.".'R;\Nc'. Q'J. ;I‘k11{er<ef{orf6%., CI Q3; likewiseweproveQ\,CCI,. owweae voe
R3 = >:{Q,- : q»Q,~Q. = 1 & <?Q,-Qv = 0}.

‘J’ = R3 + Qt‘; <?R'v'Qv = 0. v
We construct ‘a such that Q‘, (<3Q1: & 9Q'.';R'J = 0 and

we put Q; = Q'gQ'{,. It follows that Q‘. ©"Q‘,, q>Q{,R‘,}=.O.
Suppose <pQ,,Qn = 0 8: <pQ;,Qn = 1. <pQnQy = 0 contradicts

=Q1$Q‘?QnQ(')v'=h]-. Enplies 311 C RQ'v'(S1.-11091‘?QvQn = 0):ence <9 ,1, ‘V = w ic contra icts 9 {,Q,, =
Therefore /\n(<pQ'Q = 1<-—>qaQQn = 1).

Now we applyv tlilis construction to <Pn>n. At the first
step <Pn>n is changed into <Pi‘,P2 ,P3 , . . .>, ‘P1 CC: We
repeat this construction; at the _k‘hstep .<P’§,. . ., Pjf_1,Pk,
Pk 1 , . . .> is changed into <P"1‘,. . . , Pfi‘, Pkil , Pk.,2 , . . .>,
Pk+C§ By this method a sequence <P§1“>nisconstructed
such that ./\.n(PnCE we must prove

A1 Aj(<pP;“P;5‘ = l<—>¢PPiPJ_ = 1) (1)

Inour construction q>P,=0 implies 9P2,"= 0. Hence q:P,P, = 1‘->
9P=5P;=; = 1 is trivial. g
Suppose 1/ < ,u. At the W11 step we constructed from
<P’."l‘,...,P"’ Pv,...> <P’i",...,P’§,Pv+1,...> such that‘v-1 ’

I1
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9P1, P, = 1<-—><pP11P§‘,‘= 1. (2)

At ythe um step we constructed from <P"1‘,. . . , P;"‘_1.P“, . . .>
<P 1, . . ., P3‘, P1111, . . .> such that

9P“ P’: = 1o—>¢1=>;==P=j;= 1. (3)

It follows from (2), (3) that
= 1. (4)<pP:‘P:i‘ = 1*—><pPv P“

This proves (1).

3. 2. Theorem. Let <Qn>nbe a covering of an LDFTK-space
P. Then there exists a covering <Q’f1>nof I‘, such that
/\n(Q’r‘: C Q“).
Proof. Let us suppose first /\n(Q,, f A..).
We construct an R1 such that -Q1 C R1, R1 7‘ A... (L2). R1
is a DFTK-space, therefore a natural number n(1) can be
found such that {Q1,...,Qn(1)} is a covering of R1. We
put Q1 =-S1, Q1 + + Q,1(1)= S2. Using L2 we construct
an R2 such that S2 C. R2, R2 75A... Then we can finda

rfiatural number n(2) > n(1) such that (Q1, . ..,Qn(2)] covers2.
Carrying on inductively we obtain sequences <R1>1,<S1>1,

(n(i)): such that n(i) < n(i+1), IQ1, . . .,Qn(1)} a covering of
R1, R1 7‘ A,,, Q1 -1- + Q,1(1-1) '-' S1 C R1 for every i.

Ournext step is the construction of a sequence <R{>1such
that A.i(S1 C R'1 C R1) (N8). 1.26 implies the existence of
Q'1,...,Q'1) which cover R1 such that Q'1 CR1 Q1 for
1 4 i < n(.l). Since Q1 CR1, we obtain Q'1 C Q1 (lemma
3.1.30)._ We put = Q'1. Defining Q'1‘= Q}R1, We see that
Q'1‘~ Q'1‘cc:Qifor 1 <1 < n(1) (3.1.28), {Q'1',_.. .,Q{1'(1)}
covers R'1. [Q"1‘,Q2,...,Qn(2) covers R2; this is seen as
follows: p E R2—>p 6 Q1, 1 <j<_,n(2). j = 1-Dp 6 R1.
R1 is covered by {Q’1‘,Q2, . . ., Qn(1)}, hence p 5 Q"1‘v (p 6 Q1 &
2 < j < n(1)). This proves our assertion.

We conclude to the existence of a covering

)Q’1“,Q§"*, . . ., , Q‘ 1111,. . . , Q1112)?of R2, such that for
(2l<22él;><n(1) Q’f* @112 $1, and for n 1) <j g n(2) Q'j @112 Q1?““i%12. =$25 £03928or“, 1'n . epu ’i‘= "i“+ ior <i\n.
{Q"‘, . . .,Q’f‘11)} covers R'1. We define Q'1’ = QER2, n(1) < js
n(2); Q3‘ C (221for n(1) <j é n(2) (3.1.30).

We proceed inductively. Suppose already constructed
{Q=;,...,Q===1), Q,'1(1)+1,.'..,Q'n(1+1){ such that Q1. cc: for
1 k g (i)‘f ; . . ,Q’I';(k)}covers R{<'for k é i, {Q'1}. . . ,
Q"I‘l(i),Qn(l1+1,...,Qn(1+1)} covers R1+1,Qj CR1“ Qj for n(i)<J g n(1+
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Then . . . , Q:'1"(i),QM.T}, . . . , Qn(i+2) covers RH2, sinceP€R1+2""(P€Qj&J>I11)v(P 6 Q; &,_,.l< n(i)); p 662- 8:
j< n<:>—+p e R1+1; p e R..1—><p e Q3‘ & 1 <3 <n<i>5 v
(P 6 Q; & n(i) <1’ < n(i+l)).

This enables us to construct a covering . . .,Q",'§(!-‘R.’
Q;f(’f)+1, . . . , Q"[;("?t), Q;l.(i+1)+1,.. . . , Q'n(i+2)l of RH2 such that Q}“"‘
(c:Ri+2Qj for nzil <3 S n(1+l), Q} CRH2 Qj for
n(i+l) < j 4 n(i+2).

32:3.3 21...:.;):-* @“W W C Q1‘
We put Q3’'= Q3. {+1for n(i) $' n(i+l);' Then C: Q1 for
n(i) < J S n(i+1). If We put Qjfij= 3“ Q,» 9(1) < J < n('1+l).
we obtain a covering {Q"1‘, . , Q};(i+1),Qn(i+1)+1,'.. . , Qn(i+2)}
of R32, such that Q1,...,Qi‘1‘(1+1) cover R1+1,Qj @Ri+2Qj
for n(i+1) < _jg n(i+2).
There remains to be proved that <Q"['1‘>nis a covering.

pt€fQlJ-1&3 .gtkrl1(t{) —a-p gQWQ1f+ . . . + Egmk) CC:R1k+1. If p ?kRf.511 oows ape Zoraceralnu, <u<n+.
Finally, we remove the restriction /\n(Q 75A..). In the

construction described before, {Q*, . . . , Q*. }ncould be con1 11(1)

structed from {Q1, . . . , Qn(i+1)}.
If 'Qj = A... for a 3' such that n(-i+1) <j < n(i+2) we put Q"3‘= A,.,
Q’1:=A0 for n(i) < k & k 7‘ j. If there is no_ such j,n(i+1)<
j g n(i+2), we proceed with our construction as before.

3. 3. Theorem. Let <Pn>n be a covering of an LDFTK-space
I‘. Then there exists a star-finite refinement <Qn>nof
<Pn>n. If /\n(Pn 75A...) we may suppose /\.n(Qn (C:P“).
Proof. We suppose first /\n(Pn 75A..).
We make use of theorem 3.2. There exists a covering
<P,','>n such that /\n(P},' (CI:PR). Now we shall construct
sequences <Q;l'>n,<QI'1>n,<Qn>n, such that /\n(Q'n' C Q}, (C?
Q“ 8: Q}; C Pi,’ & Qn (CIPa). The construction of these
sequences-is carried out by means of induction, but the
regularity of the construction will only become apparent
after two steps.

We begin with the COnStI‘11Cl'.Il0I{‘.lOI'f'8.seque;-'r1ce}<n(i)>i, n(1) = 1,/\n(n(i) < n(i+1)), such that P1,...,P i+1 is a covering
of P1 + + PR“) for every i. n( )

We put P'i' = Qt‘ for 1 s i s n(2), and we shall construct
Qg, Q1 1 < i s n(2) such that Q'i' C Q; C Q1 C: Pi. Then we
construct Q'.',n(2) < j < n(3), such that q>Q1Q3'= O, Q'1 + . .
+ Qr'1(2)+ Q‘)! ~ Q11 + . . . + Qhm) + P‘,-', Q3’ c P5’. (The detailsof this construction will be described afterwards).
We remark: P'1' + + P33 ~ Q'1 + + Q,',(2)+ P,','2)+1++P" ~Q'+...+n +Q" +...+Q" lusing

n(3) 1 11(2) n(2)+1 n(3)
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]?i' + +P;Q";1()2)C Q1 + + Qn(2) C P1 + + 1311(2)C'1 + . . . '1' 3) .

If we construcrzl Q. for n(2) < j s n(3), such that Q’; C
Q; c:: Q], 9Q}-Q1 of 9. cc:Pj, then {Q1,...,Qn(3)} is acovering of P1‘ + + P '3 (by 3.1.38)

Suppose now that Q’-', Q’ - have already been constructed
for n(l) 4 j 3 n(k), suchythat

!

J’.

a) Q‘-' C Q} C Q]-, c: P31’, Qj C Pj for 1 C j s n(1f).
b) ..,Qn(i)} 1S a covering of 1 + + Pa“) for1 \ .

c) (_p(31k+2 + Qnm) (Qn(1+1,.1+ + Q,,(i.,2,) = 0 for 141 \ - .

d) (C8! + (+ 1Q%;1<i>):kQ'i'“’ (Q3 + ‘' Qh(i>) ‘' 133'W‘ni < j C n i+ , _i .
e) P'1'+ + P,{('i)c Q'1+ + Q;,”) for 1 éiék.

It follows that Q1 + + Qn(i_1)‘C P1 + + Pn(i_1)c:P1‘ + + ‘,1. c Q5 4- + Qnw.
.. (5? ~We construct Q]-, -,Qj for n(k) <3 < n(k+l) as follows. We

begin with constructing the Q3’ such that
(“Q1 + + lQn(k-l))Qjll: O’ I I H II II
(Q1+ + Qn(}1:))+ Qj “’ (Q1 + + Qn(k))+Pj:Qj E-‘P3’;the details of t is construction will be given afterwards.

We construct the Q3,Q- such that Q‘)-'C Q]! C Q3 C Pj,
<p(Q1-+ + Qn(k_1))QJ-= We remark that

Pi‘ 1' + Pi1(k+1)’

h€'I’1C€’E)3:_'P: . + "'+P'1"‘S’ ‘:P['1:(k+1)++ + . +
QnS;1>q' 1 . . . k) ' Q1 H. . . Qn(k) "n(k)+1 .'. .

+ n(k+1&"" Q'1G'2*”--- + Qn(k) + Pn(k)+1 + + Pn(k+1) “’ Q1 ++ + + +n ) 1 . . .- - - k + QH(k+1) - _ .

Therefore (3.1. 8) {Q1, . ..,Qn(k+1)} 1S a covering of
P'1' + + P"k+1).
We remark: P'1 + + P},'(k.,1)c: Q'1 + + Q},M1).
So the conditions (a)-(e) are also satisfied for +1 instead
of k.

Finally we describe the construction of the Q}', n(k) < js
n(k+l) in detail. Q'1 + + Q'n(k)+ P3‘ is a DFTK-space
with a DFTK-basis <[Tn]>n. There is a n such that

m>Ll& +.. . + =1-1->
Tm C Q11" + Qii(k)

We put (n(k) <j < n(k+l), k >1)

Q3 = ElTmP"' : <?Tm(Q1 + --. + Qn(k-1)) = & M4 In <14 + I“(u)i
R1’: 2{TmPJ"3 ‘?Tm(Q1 "' --- 1' Qn(k-1))= 8‘ “< m $1” + rm)‘
where r is a K-function as introduced in 1.2.
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Q$._;rQRs;~ P3’; RQ?c: (cg; + Qs(t;>P'~'s
a! 1+ 1 Il(‘|lf-1))QI_t-‘~° Q‘ + + Q' + Qt! + RI‘! ~

1Q'1'+"...+‘E$“’ +;’>=.' 1 ““" ’ ’J.
From (a), (b), (c) we see that <Qn>nis a star-finite refine
ment of<P > .

If we J5 got know if /\n(Pn 75A,.) holds, we can apply
our construction to <Rn>n, obtained as follows:
-1 vm(m< n & Pm =A..i)——>Rn = Pn.
Vm(m 4 n 3. Pm = A..)—-(Rn = A,,-k..1 &. k = infimzpm = A..} ).

3.4. Corollary to 3. 3, 3.2. Let <Qn>,, be a covering of an
LDFTK-space I‘. Then there exists a star-finite covering
<Pn>n of I‘ such that An Vm(Pn C Qm).

3.5. Theorem. Let 1" be an LDFTK-space.
a) Every open or enumerable covering of I‘ possesses a

refinement consisting of an enumerable sequence of lat
tice elements.

b) Every open or enumerable covering possesses a star
finite enumerable refinement consisting oflattice elements.

Proof. (a). Weuse the enumeration principle. I‘ has a perfect
representation H1. To every <Rn>n 5 111a natural number
m can be assigned by a function W such that I//<Rn>n = m
implies: <R,,>;f §_ym and [ym] is contained in an element
of the covering (cf. 2.2.6). r,DII1can be enumerated, and
this proves (a).
(b) is an immediate consequence of (a) and 3.3.

4. Located pointspecies and completeness.

4. 1. Theorem. Let I‘ be an LDFTK-space. I‘ can be metrized
by a metric p such that
a) Every located non-empty pointspecies of 1"‘is metrically

located with respect to D.
b) <II°(I‘), p> is metrically complete.
Proof. Let <Pn>nbe a star-finite covering of 1", /\n(Pn )5A”),
and suppose <Qn>nto be constructed according to 3.1, so
/\n(P,, C Qn & Qn 7‘ As), /\i Aj(?PiPj = 1‘—’<9QiQj = 1).
Let «R1, R§>>i‘_’_:2be an enumeration of all pairs <Ri, R§> such
that <pR1R'1 = 0.‘
The species {Pu : cpPn = 1} can be enumerated as <P,',_>n,
with repetitions if necessary. There is a mapping g from lj
into 111such that Pf, = Pgm). <Q,'17n is defined by Q}, = Qgm).

We consider an inessential extension A of I‘, defined as
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follows. fl(A) = fi(I‘) U <Bn>nU <Cn>n, %l(l‘) = <An> n;
<An>,,,<B,,>n,<C,,>nare disjoint sequences of different ele
ments. 91.. = 4% I230‘).
We put Bu ~A P,',, Cn ~_AQ,',. In the sequelwe omit sub
scripts A systematically. I‘ is extended to A in order to
be able to construct a normal perfect representation I11 for
A‘ in accordance with definition 3.2.2. 111 is defined by a
pair <9,9>. 4-5376 6, <Bn> 6 § 9 for every 11. Bin is a DFTK
space; therefore a finitary normal perfect representation for
Ba can be constructed according to 1._17.

If we define for a fixed 1/ <9,, a,> by
9,, = {.<v,i1,...,ik>:<1/,i1,...,ik>6 9}, o. = o|9,,,

we can suppose <9,,,~3,> to define a finitary normal perfect
representation for 71/.

In this way a perfect representation <9,§> is obtained for
A. We construct a mapping f into :3, defined on as - {¢}.
f<By> = C». If <P1,P2_> 6 -3 6, then f<P1,P2> is chosen
such that

P1132 C f<P1,P27 C f<P1>,
9P1P2R? 0"’9f<P1,P2>R 0,
9P1 P2 R2 0*’ ?f<P1 , P2>R2 0.

Suppose f<P1> , f<P1 , P2>, . . . , f<P1 , . . ., Pn> to be defined
already, and let <P1 , . . ., Pn+1> 6 a 6. We construct
f<P1 , . . . , Pn+1> such that P1...P,,+1 C: f<P1 , . . .,Pn+1> Ci
f<P1 , . . . , Pn>, and

QPI. . . Pn+1Rn+1 , . . .., Pn+1>Rn+1 O,
. . .Pn+1Rh+1 , . . . , Pn+17R['l+10.

Then we define a normal @-representation for A with a
defining pair <9',3'>,4¢>6 9', putting
<Q1...Q,,>€ o'e'+-»<Q1,...,Q,,> = <f<.P1>,f<P1,P2>,...,
f<P1,...,.Pn>> & <P1,...,Pn> e .59.

We enumerate all pairs «.k1, . . . , kn+1>,<k1, . . . , kn » for
which <k1, . . .,kn.,.1>€ 6' in a sequence «opoi» 1 without
repetitions, and we put O'*cri = Si, a'*o{ = S}.
We define a function w from l\I_into {O,1}:

-‘-1‘—>O'i‘-'<k1,k2> 6 9' for certain k1,k2 and h(k1) -"31,
where h is an auxiliary function defined by

h(k) 1 iff 7k = C1 & gm ¢ {g(1.>.g<2).....g<1-1>f.
h(k) 0 in all other cases.

To every pair <Si,Si'>a continuous function fi(p) can be
defined (3.2.27) such that

p e Si—>fi(p) = 1, p¢ Sf-*f1(p) =-0. 0 1’ f(p) IP61.
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A (hence also I‘) can be metrized by

P'(p. q) = 331 {|r.<p) - f.-.<q>|2‘i<1 - wan + |f.<p> - f1(q)IW(i)}(*).
We must prove p‘ to be an adequate metric for A. This
proof closely parallels the proof of the corresponding fact
in 3.2.28. Here too we have to prove (1)-(5). (1)-(3) do
not present any difficulties. Since the identical mapping of
H° onto itself can be considered as a mapping of -A onto
<II°,p'>, this mapping is continuous by 3.2.22, and this
proves (4). The proof of (5) in 3.2.28 remains valid (with
small adaptations) in this case; only we have to consider the
possibilities w(/.1) =- 1 and w(/.1) = 0 separately.

Let mp) # 0, f,~(p) # 0, w(i) = w(;i) = 1. i 7*J.
fi(p) # O-->p 6 S = CV for a certain 12.
fl-(p) # O-—->p6 S = Cu for a certain pa.

¢

1.

1
I.

J

Hence q)CyCu l. C ~ Q}, = Qgw), Cy ~ Q{, = Q3“) .
wm = 1->g(v> {gut ..g<v-1)}.
w(j) = l—->g(u) ¢ {g(1), . ..,g(,u-1)}, therefore g(V) ié g(l-I).
{Q1 : cpQiQj = 1} is a finite species for every fixed j.
(3.1.37). Therefore the species )1 : f1(p) # 0 & w(i) = 1}
is contained in a finite species.
If If1(p) —fi(q)Iw(i) # 0, then, w(i) = 1 & (f1(p) #0 v f1(q) # 0).
Hence |fi(p) - fi(q)|w(i) = 0 for almost all i 6 N.
This actually proves that the right hand side of (*) converges.

Finally we put p(p, q) = inf)p'(p,q),1(. p satisfies our
requirements, as will be proved now.

Suppose V to be a non—empty located pointspecies of A,
and let p 6 1'I°(A), p arbitrary. _
A Pgm) can be found such that p 6 Pg(n). We take the
least number m such that Pgm) = Pg(m), and call it M. It
follows that if y'C“ = 1/, then h(z/) = 1.

A pair <Bp,P>€ 3 9 can be found (since H1 is a perfect
representation) such that B“ ~ Pg(n),p 6 B“P. Hence
p 6 f<B“,-P> C Cu.

4f<B,1,P>‘, f<Bp>> = <Sj,S'j> for a certain 3'. We conclude
that w(j) = 1, p 6 SJ-, S]! = C”. Therefore fl-(p) = 1.
p(p_,q)<1->p'(p, q) <1; this implies in turn |fJ-(p)-fj(q)|w(j) <1.
Hence fj(q) > 0, so q 6 C“. C“ is a DFTK—space.

Now we can duplicate the reasoning of 2. 3. 7 very closely.
As a result we see that either C“ does not contain a point
of V (in this case we may take p(p, V) = 1) or there is a
finite sequence 4q1,...,q;\> c: V such that if q 6 V H C“,
there must be qi such that p(qi, q) < 2'”. Hence p(p, V) is
approximated within 2'” by inf{1, p(qi,p-): 1 s i < A}.
This proves the existence of the distance function.

Finally we prove (b). [Let <rn>n be a fundamental sequence
with respect to p. To every u 21 a 12can be found such that
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/\i /\j(i,j 2 I/—->p(I‘i_,1"j)<2'""1).
We take p to be r, infiour previous considerations, and we
construct a A such that p(r,,q) < l——>q6 C)“
Therefore U1(r..,) C CA, so /\i(i 3 I/-—>ri 6 CA).
We conclude that <r,,>,,°-_‘-K.is a fundamental sequence in CA,
and converges therefore to a point r 6 C)‘.

4.2. Corollary to 4.1. A metric locally DFTK-space is a
complete separable metric space such that to_every point
a neighbourhood can be found, which is an LC—space in the
relative topology; conversely, a space which satisfies these
requirements is a metric locally DFTK-space.
Proof. The corollary‘ is an iinmediate consequence of 4.1
and 2.3.

4. 3. Remark. By an argument quite similar to the proof of
2. 3. 7, and the reasoning in 4. 1, we see that the usual metric
of Bf‘ satisfies condition (a) -of 4.1.

5. Topological products.

5. 1. In this paragraph we shall demonstrate that the topolog
ical product of a denumerably infinite sequence of LDFTK
spaces which satisfy certain requirements, is a PIN-space.
The most interesting consequence of this theorem is that
f_{°°is a PIN-space.

5.2. Lemma. If I‘ is the product of a finite or denumerably
infinite sequence of PIN-spaces <l"1, P2, . . .>, each of which
contains at least two points which lie apart, we can assert,
using the notation of 3.4.1, that I" = <9, 23>and I‘ = <9, H7
are homeomorphic.
Proof. It‘ is immediate that I" is also an I-space. Let
<P,,>,, 6 EU‘) = 1'I(I"). Now we shall construct a <Qn>,, 6 II(I‘)
suchthat I\n(P1. . .Pn c Qn). Let P1. . .Pn = PH 1 + . .. + Pmkm);
P,,,,,...,P,,,,.(.,, e 21. ’
If Pmi = <Pg‘_i>mfor every n, i, then we can put

Qzrln= P;r1n,1+ + P$k(n)» Qn =<QrI1n>m°

<Qn>,,1satisfies our re uirements. To see this we consider:
R =<A.., . . . ,At‘,’1, R“, A“...1, . . .>, s =<A},, . . .,A{:;1, st‘, A*:::1,. . .>,
q>,,R“S“ = 0 (hence <pRS = 0).
There exists a U such that 9P1. . .P,,R = 0 v QP1. . .P,S = 0;
suppose e.g. <pP1.. .P\.R = O. P1...P, = P,,_1+ . .. + P,,_k(,).
<p(Pv_1+ . . . + Pwkm )R = O<—>/\i(l S i Q k(v)—->¢pP,.iR = O)‘->
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Ai(1 éi$k(1/)-—->q>P{,‘.iR“ = 0)<—><p(Pg1+ . . . + Pg k(,,)R# = 0+»
<pQ§‘,R“ = 0. ' . ' '
This proves <Qfi>n to be a point of P,, (since 1",, contains at
least two different points). Hence <Q,,>nis by definition a
point of I‘.. Finally we can apply 3.1. 32, therefore <qa,E>,
<q>,II> are homeomorphic.

5.3. Remark to 5.2. If the P1 are DFTK-spaces, then the
condition that every space contains at least two different
points can be omitted, since this condition is used only to
ascertain that <Qn>nreally belongs to E, i._e. Q“ A... for
a certain u. If the P1 are D‘FTK-spaces, AL,can always be
replaced by a P1 if A3,, P1 ~ A3,, and the construction of
<Q,,>ncan be modified correspondingly.

5.4. Lemma. Let <1‘1, . . . , I‘n> be a finite sequence of DFTK
spaces. We adopt the notation of 3.4.1. The product I‘ of
<1‘1, . . . , I*,,> is a DFTK-space with a DFTK-basis <[B..]>n,
where <Bn>n C EB.

Proof. Let r1, . . . , rn be K-lfunctions for -P1, . . ., Pu respectively. We put $81‘ = <A ,...,A“ 7 & /\i(1 .<. is n—->
k é mi S k+ri(k))f . ml mu
We suppose 93to be an enumeration of E1 23“ such that all
elements of $1‘precede all elements of %k*1- $81‘.8 = <Bn>n.
The verification of D, F, T, K and the proof that <[Bn]>n in
duces the topology of I‘ is straightforward; we only have to
remark: if 33* is the distributive lattice constructed from
98, then /\.P VQ e 213*(P ‘V Q). and to apply remark 5.3.

5.5. Lemma. We use again the notation of 3.4.1. Let I"
be the product of a finite sequence <I‘1, . . . , P117 of LDFTK
spaces. Let P = <P1, . . . ,P“>, P1fA.1, for 1 s i s n. Then
if‘ P C: Q, an R can be found such that P @.R C Q.
Proof. Let Q = Q1 + +_Qm,Qi E 2! for 1 g ‘i g m. For
every Q}such that Q} = A3,, we take a T1. 75A3,, Pi cc: T1,.
We define T, by ’ ’

/\i(1 <14 n—»(Q;'. = AL,——>7riTj = T13) & (Q1? ;éA§.—+ 7riTj = A.§.)i).

We remark that P (C:Tj (1 s j$ m), hence P C:T1. . . Tm = T’.
Hence also P @ TQ.
If we put T = <T1,...,T“>, we_ see that T5.Q{fA_§,for
1 gj 4 n, 1 4 i < 111. Therefore S{,S{ 7‘ A3,, T3Q{ (<3-Sf can

In .

be found. Putting S ="~i}_;1S11,..., S?>, we see that
P (C TQ C S. It follows from 5.4 that S is a -DFTK—space
with a DFTK-basis <[Bn]>n, <Bn>n C2913.On this account
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an R can be constructed such that P C5 R CS TQ C S,
hence P C R C QT <:'Q. (3.l.30).

5.6. Theorem. Let <I‘n>nbe a sequence of LDFTK-spaces
(each of which contains at least two points -which lie apart).
Usingthe notations of 3.4.1 we postulate:
/\P1(P1 ~ A}. v VQ1(<piQ1P1 = O & cp1Q1 = 1)) for every i.
Then the. product of <I‘n>n is a PIN-space.
Proof. I" -'-‘<<p,)3>; I‘ = <cp,l'.[>. By lemma 5.2, I‘,I" are
homeomorphic. N6 holds in I‘ as a consequence of 3.4.5,
hence N6 also holds in 1"‘. We begin by proving the follow
ing assertion.
P=<Pi>i &P“ =A
PC<:R1+...+Rm& .
%)Q“C=1:)_;,)R§‘:——.R§*~A+; 1 <3‘ gm} 8!.C 0

IfR ~R1 + + Rm, (1) is trivial. In all other cases we
may _suppose <p,,Q“ = 1. Let <Pn>n e_l'l(I‘).
--1Q“ ~A£,, hence there exists an S“, <puQ“S“= 0, W8“ = 1.
Let <sf{>n e l'I(I‘,,), /\n(s‘.‘, c: S“).
Then we construct a point generator <Tn>n e II(l‘), such
that for all n (1 74 u——>T}. = Pfi) 84'.Tfi = sg.
Then a 1/ can be calculated such that

<9T1...TvP = 0 V T1... T, CR1 + + Rm.
Since tp,,s§‘...s‘.‘,Q“ = 0, it follows that T1...Tv C R v
<,oT1...T P =0, hence also: <pP1...P P = 1——>P1...P c: R.
Using this construction repeatedly, vtreare able to cohstruct
fromR1,...,Rm anR' =R'1+ +R'k, such that P C R’ c:
R1 + + Rm, P2, = A2,—-vR}“= A2, for ls 3' 4k.

Now we turn to the task of proving N8 for I‘. Since
P’ + P" C R<-->P' C R & P" C R, we may restrict our
selves to the case P 6 91.
If P C R1 + + Rm, we can apply the reduction to R‘,
described before.
We define I = {i: P1 75A3,} = <11, . . ., in) ordered accordingt’ ' 'td..l""=II I‘
0 increasing magni u e i 6 I i

To simplify our descriptions we suppose <i1,...,i,,> =

<lE2,a.(.P.',‘)I1.>.cflfbi-1:inti)qu§ mgppinfszp fiorrg a speciSe>s ?Bhc: $3ono 1S eine y 6 —> =_7r1,...,1rn ,were
Q3= {P: P e at & /\i(i> n—>7riP = A;,).}.
tb can be extended to joins of elements of $ such thatW(S1+S2)= + Weremark

S1,S2 6 3 8: S1 C S2‘-*(,DS1 CI-" $32.

We have already proved P,R' , . . ., R'k to belong to $, hence
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(DP c<:,... -w(R'1 + + R'k) = wR'.
As aconsequence of 5..5 we are able to construct an R" 6 ¥8(l"')
(R" a join of elements of ?I(l"")) such that

¢/P cc: R" c ;&R'r"' 1""

hence P c':: c,0.’1R" c: R‘.
Therefore N8 holds in 1‘, hence in I”. This proves our
theorem.

5. 7. The most interesting application of the previous theorem
is furnished by 3”; 5 satisfies the requirements of 5. 6, so
3” is a PIN-space.



SAMENVATTING

In hoofdstuk I wordt het begrip topologische ruimte ge
definiéerd en Worden Vele begrippen en stellingen uit de
klassieke topologie, die in de intuitionistische theorie zon
der of met geringe wijzigingen kunnen Worden overgeno
men, opgesomd, Veelal zonder bewijs.

In de vierde_ paragraaf Worden de begrippen "metrisch
gelocaliseerde puntsoort", "relatief gelocaliseerde punt
soorten", "gelocaliseerde puntsoort" en "gelocaliseerd sys
teem" ingevoerd.

In hoofdstuk II wordt het begrip metrische ruimte Voor
het separabele geval besproken; in het bijzonder wordt een
intuitionistisch equivalent van d.e stelling van Lindelof afge
leid. In de laatste paragraaf van dit hoofdstuk worden de
gelocaliseerd compacte ruimten (de "katalogisiert kompakte
Raume" uit BROUWER 1926, of de "located compact topolog
ical spaces" uit BROUWER1954) besproken, enkele bekende
eigenschappen Van deze ruimten opgesomd en enige nieu_ we
bewezen, die als hulpmiddel optreden in hoofdstuk IV. ‘De
behandeling is in hoofdstuk II echter geheel "metrisch".

In hoofdstuk III wordt begonnen met de opbouw Van een
axiomatische theorie. In §1 Worden de I-ruimten geintro
duceerd. In §2 Worden de zgn. scheidings- en representa
tie-postulaten en hun consequenties behandeld; de IR—ruim
ten (analoog aan de klassieke reguliere ruimten met aftel
bare'basis) Worden ingevoerd-. §3 bevat de definities van
PIN- en CIN-ruimten. Een aantal belangrijke stellingen Voor
CIN-ruimten (zie 3. 3. 6) gelden als gevolg Van de resultaten
in §2. CIN-ruimten zijn, klassiek gesproken, volledig me
trizeerbare separabele ruimten. Het topologisch product
wordt in §4 behandeld, en een aantal belangrijke Voorbee1
den in §5.

Hoofdstuk IV is gewijd aan de LDFTK-ruimte_n (analoog
aan locaal compacte, separabele metrizeerbare ruimten).
In §1 wordt de verbinding tussen de theorie van FREUDEN
THAL 1936 (DFTK-ruimten, analoog aan compacta) en de
theorie van hoofdstuk III gelegd. §2 bevat een bewijs~van
de equivalentie van een metrische en een zuiver topologische
karakterisering van LDFTK-ruirnten. §3 bevat een aantal
stellingen over overdekkingen; met behulp van deze stel
lingen wordt in paragraaf 4 het bestaan van een metriek
voor een LDFTK-ruimte bewezen, ten opzichte waarvan elke
niet lege gelocaliseerde puntsoort ook metrisch gelocaliseerd
is. §5 behandelt het topologisch product van aftelbaar on
eindig veel LDFTK-ruirnten. Zo blijkt, dat _]E§°°een PIN
ruimte is.





STELLINGEN

I

Het begrip "r:—Ueberdeckung", door Freudenthal ingevoerd,
is geen topologisch begrip.

H. Freudenthal , Zum intuitionistischen Raurnbegriff, Compositio Math. 4 (1936)
blz. 83.

II

Als A een begrensde gelocaliseerde puntsoort in de eucli
dische n-dimensionale ruimte is, en het complement van A
is eveneens gelocaliseerd, danheeft Aeen gelocaliseerde rand.

III

Laat F,F' twee lineair recurrente’ rijen zijn, met resp.
gb(x)=0, r,b'(x)=0als karakteristieke Vergelijkingen van mini
male graad. Dan is w'(x) gD(x)=Oeen karakteristieke verge
lijking Voor het Cauchy-product F" van F en F‘. Is a m-,
resp. n-voudige wortel van t//(x)=O, resp. cD'(x)=O(m,n > 0)
dan is a (m+n)-voudige wortel van een karakteristieke ver
gelijking van minimale graad Voor F".

IV

De uitspraak van Rasiowa en Sikorski:
"It is difficult for mathematicians to understand exactly the
ideas of intuitionists since the degree of precision in the
formulation of intuitionistic ideas is far from the degree of
precision to which mathematicians are accustomed in their
daily work" doet het intuitionisme geen recht wedervaren.

H.Rasiowa and R.Sikorski, The mathematics of metamathematics. Warszawa
1963, b1z.3'78.

V

Het Voorbeeld dat G.Kreisel geeft om aan te tonen dat Voor
toepassingeneenconstructiefbewijs niet relevant is, een con
structief resultaat wel, is geen goede illustratie van zijn
bewering.

G.Kreise1, Interpretation of analysis by means of constructive functionals
of finite types. in: Constructivity in mathematics. Amsterdam 1959, blz. 101.



VI

Laat R een commutatieve ring met eenheidselement zijn,
en‘laat R’ C R [x1, . . . , xn] bestaan uit polynomen, invariant
t. O.V. even permutaties van de Variabelen. Dan vormen de
elementair-symmetrische functies tezamen met Exgxéxg,. . X3-1
(sommatie over alle termen die door een even permutatie
Vande indices uit xgxé. . . xfi'1 ontstaan) een integriteitsbasis
voor R‘.

E.Noether, Kfirper und Systeme rationaler Funktionen, Math; Annalen '76
(1915), blz. 183.

VII

Laat R een commutatieve ring met eenheidsselement zijn,
en laat R‘ C:R[x1, . . ., xn] eveneens een ring met eenheids
element zijn. We definiéren een minimale homogene integri
teitsbasis als een integriteitsbasis, bestaande uit homogene
polynomen, die niet verkleind kan Worden. Het aantal poly
nomenvan elke graad in een minimale homogene integriteits
basis voor R’ ligt eenduidig vast.

E.Noether, K6rper und Systerne rationale: Funktionen, Math. Annal-en '76
(1915). blz. 183.

VIII

De vier polynomen die Masuda aangeeft voor een algebraisch
onafhankelijke basis voor L4 over het gron-dlichaam k vor
men in tegenstelling tot zijn bewering geen integriteitsbasis
voor L4 n k[x1, . . . ,x4].

K-.Masuda, On a problem of Chevalley, Nagoya Math.J.8 (1955), blz. 63.

IX

Het probleem door G.Birkhoff opgeworpen in de zin:
"It would seem worthwhile to construct propositional calculi
based on non-distributive lattices of truth-values" is een
schijnprobleem.

G.Birkhoff, Lattice theory, Providence, Rh.I.. 1948, b1z.197.

X

Bij de behandeling van de lineaire algebra verdient een meer
specifieke term zoals bijv. "lineaire afbeelding" de voor
keur. bove-nhet algemene "'morfisme".



XI

Als we definiéren: "Een DFTK—ruimte heeft dimensie sn,
als er voor elke e een eindige e-overdekking met orde
n+1 bestaat", dan_geldt intuitionistisch de volgende stellingz
Een DFTK-ruimte met dimensie gn kan homeomorf in de
euclidische (2n+l)-dimensionale ruimte ingebed worden.

XII

Intuitionistisch geldtz zijn de elementen Van een eindige of
aftelbaar oneindige overdekking van een Volledige metrische
ruimte paarsgewijs disjunct, dan zijn ze gesloten.

XIII

Voor DFTK-ruimten zijn de Volgende eigenschappen equiva
lent.
(A) Elke eindige overdekking door soorten die elk minstens

een punt bevatten kan in een keten gerangschikt Worden.
(B) De enig-eafsplitsbare deelsoorten van de ruimte zijn de

lege soort en de gehele ruimte.

XIV

Het verdient aanbeveling in nog sterkere mate dan thans het
geval is, voor de doctoraalstudie wiskunde tentamens te ver
vangen door zelfstandig literatuuronderzoek, het maken van
kleine scripfties, het houden van korte vo-ordrachten en het
oplossen van eenvoudige research-problemen.

XV

"Floravervalsing" inbotanische reservaten is niet altijd ver
werpelijk.

A.S.‘Troe1stra, 15 juni 1966.


