Intuitionistic General Topology

A.S. Troelstra

INTUITIONISTIC GENERAL TOPOLOGY

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE UNIVERSITEIT VAN AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS MR. J. VAN DER HOEVEN, HOOGLERAAR IN DE FACULTEIT DER RECHTSGELEERDHEID, IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT (TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411, HOEK SPUI), OP WOENSDAG 15 JUNI 1966, DES NAMIDDAGS TE 4 UUR

DOOR

ANNE SJERP TROELSTRA GEBOREN TE MAARTENSDIJK

PROMOTOR: PROF. DR. A. HEYTING

Aan mijn ouders,
Aan mijn vrouw.

VOORWOORD

Op deze plaats wil ik allen dank zeggen die op directe of indirecte wijze mij tot steun geweest zijn in mijn studie en bij het schrijven van dit proefschrift.

Allen te vermelden zou niet doenlijk zijn; enkelen wil ik hier in het bijzonder noemen.

Mijn promotor, Prof.Dr. A.Heyting ben ik dankbaar voor de vrijheid, die hij mij bij de bewerking van mijn onderwerp heeft gelaten, en voor zijn milde kritiek, die er veel toe heeft bijgedragen de presentatie te verhelderen en de essentiële punten duidelijker naar voren te laten treden.

Ik beschouw het als een voorrecht de afgelopen jaren onder zijn leiding te hebben mogen werken.

Prof.Dr. J.de Groot was bereid als coreferent op te treden; hem wil ik danken voor zijn constructieve aanmerkingen en voor de stimulerende discussies, die in belangrijke mate de definitieve richting van het onderzoek hebben bepaald.

Ik wil ook de gelegenheid niet voorbij laten gaan, hier mijn grote erkentelijkheid te betuigen jegens mijn andere leermeester op het gebied van het wiskundig grondslagenonderzoek, wijlen Prof.Dr. E.W.Beth.

Mijn collega Dr.J.M.Aarts was steeds bereid mij te helpen met mijn vragen betreffende de klassieke topologie.

Mejuffrouw E.A.Bedijs wil ik danken voor haar gewetensvolle controle van mijn taalgebruik.

In de formulering van dit voorwoord heb ik platgetreden paden bewandeld; moge dat het geloof in mijn oprechtheid niet verhinderen.

LIST OF NOTATIONS AND CONVENTIONS

1. References are given by indicating chapter, paragraph and section; e.g. 4.3.2 refers to the fourth chapter, third paragraph, second section. In referring to the same chapter, the first number is omitted.

A name (in capitals) followed by a year, and a capital if necessary (e.g. BROUWER 1926 A) refers to the bibliography.
2. Logical symbols: \&, $\vee, \leftrightarrow, \rightarrow, \neg, \wedge, \vee$. Quantified variables k, l, m, n, i, j, t always run through the natural numbers; quantified variables ε, δ always run through positive real numbers.
Set theoretic symbols: \cap, U, X (cartesian product), ${ }^{C}$ (complementation, 1.2.2), -.
$\left\{X_{1}, X_{2}, \ldots\right\},\left\{X_{i}: i \in I\right\}$ etc. are notations for species. Finite sequences are written as $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ or $\left\langle X_{i}\right\rangle{ }_{i=1}^{n}$; denumerably infinite sequences X_{1}, X_{2}, \ldots are written as $\left\langle X_{i}\right\rangle_{i=1}^{\infty}$ or $\left\langle X_{n}\right\rangle_{n}$.
Functions or mappings with different domains of definition are considered to be different.
The restriction of a mapping f with domain D to $D^{\prime} \subset D$ is denoted by $f \mid D^{\prime}$. If f is a mapping of D into E, and $F \subset E$, then $f^{-1} F=\{x: f x \in F\}$ is called the counterimage of F. 3. Postulates (alphabetical).

C1-4 3.3.2; C5 3.3.4; D,F 4.1.2; I1-2 3.1.4; I3 3.1.6; I4 3.1.9; I5 3.1.10; I6 3.1.31; K 4.1.2; L1-2 4.2.2; N1-8, N8 (B) 3.2.1; N9 3.3.2; P 3.3.8; R1-5 3.2.10; S1-2 1.1.5; T 4.1.2; T1-3 1.2.2; T4 1.2.3; T5 1.2.4.
4. Groups of symbols, indexed if necessary, for special purposes.
Γ, Δ, \ldots topological spaces $\quad \rho, \rho^{\prime}$ metrics
$\mathfrak{T}, \mathbb{I}^{\prime}$ topologies
$\theta, \theta^{\prime} \quad$ spread laws
$\boldsymbol{\vartheta}, \boldsymbol{\vartheta}^{\prime}$ complementary laws $\mathrm{p}, \mathrm{q}, \mathrm{r}$ points (3.1.13)
\#, \#' apartness relations $\mathrm{U}, \mathrm{V}, \mathrm{W}$ pointspecies (3.1.13)
5. Notations and symbols with a fixed meaning. For symbols of the following list combined with greek capitals for topological spaces Γ, Δ etc. (e.g. $\varphi_{\Gamma}, \Pi(\Delta)$) see 3.1 .28 . a) Greek letters (alphabetical).
$\alpha(\mathrm{n}), \quad \bar{\alpha}(\mathrm{n}), \quad \alpha_{\sigma} 1.1 .3 ; \quad \gamma, \gamma^{\prime} 3.1 .2 ; \boldsymbol{v}^{*}, \overline{\boldsymbol{v}} 3.2 .2 ;$ 个 3.1.4; $\rho(\mathrm{p}, \mathrm{V}) 1.3 .12 ; \prod_{\mathrm{i}=1} \mathrm{P}_{\mathrm{i}}=\Pi\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}$ 3.1.3; Π 3.1.9; $\Pi^{0} 3.1 .13 ; \Pi^{*} 3.1 .35 ; \pi_{i} 3.4 .1 ; \sum_{i=1} P_{i}=\Sigma\left\{P_{1}, \ldots, P_{n}\right\} 3.1 .3$; Σ 3.1.9; $\left\langle P_{n}\right\rangle_{n} \omega Q$ 3.1.11; $\left\langle P_{n}\right\rangle{ }_{n}^{*} \omega Q, p \omega Q$ 3.1.14.
b) German letters.
$\mathfrak{A}, \mathfrak{B}$ 3.1.2; $\mathfrak{A}_{\mathrm{i}}$ 3.3.2; \mathfrak{A}_{π} 3.4.1.
c) Symbols for special spaces.

d) Various symbols and notations.

1.2.2
$\leq \mathrm{V}_{\mathrm{O}}, \mathfrak{T}, \#>$
1.2.3
1.2. 16
1.2. 18
$\mathrm{U}_{\varepsilon}(\mathrm{p}), \mathrm{U}(\varepsilon, \mathrm{p}), \mathrm{U}_{\varepsilon}(\mathrm{V}), \mathrm{U}(\varepsilon, \mathrm{V})$
3.1. 21
$\left\langle V_{0}, \mathcal{T}(\rho)\right\rangle$
1.3.2

Z(.)
1.3.3

+ ,
$P \subset Q$
2.1. 7
$\mathrm{P} \subset \mathrm{Q}$
$\mathrm{P} \subset \mathrm{V}, \mathrm{V} \subset \mathrm{P}$
3.1. 2
3.1. 6
~
$\left\langle P_{n}\right\rangle_{n} \in Q$
$Q,\left\langle P_{n}\right\rangle_{n}^{*} \in Q$
3.1. 16
3.1. 6
3.1. 10
3.1. 14
$\left.\frac{\epsilon, \epsilon^{\prime}}{\left\langle P_{n}\right.}\right\rangle_{n} \underline{\epsilon}^{\prime \prime} \#\left\langle Q_{n}\right\rangle_{n}$
3.1. 21
p \# q
3.1.11, 4.1.13
\simeq
$\left\langle P_{n}\right\rangle_{n}^{*}$
3.1.11, 4.1.13
$\mathfrak{C}, \mathbb{C}^{\prime}, \mathbb{C}^{\prime \prime}$
3.1.13, 4.1.13
3.1.16
$\stackrel{C}{p}^{\mathbb{C}_{p}}$
©
$\langle 0, \Pi\rangle$
$\boldsymbol{v}^{*}, \vec{v}$
3.1. 18
3.1. 29
4.1. 4
3.1. 25
3.2. 2

LIST OF NOTIONS

For a number of intuitionistic notions see the references in 1.1.1.
abstract CIN-space 3.3.2

- DFTK-space 4.1.15
- I-space 3.1 .25
- intersection space $\quad 3.1 .25$
- IR-space
- LDFTK-space
- locally DFTK-space
3.2. 11
4.2. 2
- PIN-space
4.2.2
adequate metric

3. 3.8
apartness relation
4. 3.4
basic (point) species
1.1.5
basis
2.1.1

- of a representation
1.2. 9
bi-unique
centered system
2.2.2
1.1.6

CIN-basis
3.1. 8

- -covering system
3.3. 2
- -space
3.3.2
closed

3. 3.2
closure
4. 2.16

- operator
1.2. 16
- point

1. 2.16
compact
2. 2.15
ω-compact
2.3.3
complement
2.3.3
complete
1.2.2

- located system
1.3.8
- metric space
1.4. 14
- -ness
1.3.8
continuous

1. 3.8
convergence
1.2. 5
covering
decidable point
1.2.25, 3.1.37
defining pair
1.1.2, 3.2.2
degree
4.1. 7
dense
1.2.16
denumerably infinite
1.1.8

DFTK-basis
4.1. 29

- -point generator
4.1.10
- -space
4.1.15
diameter

1. 3.12
discrete
1.1 .5
distributivity
1.1 .14
enumerable
enumeration principle
euclidean space
fan theorem
finite
free distributive lattice
fundamental sequence
generator
Hausdorff criterion
homeomorphism
I-basis
inclusion property
inessential extension
inhabitated
interior

- point
intersection space
IR-basis
- -space
isometric
- embedding
isometrism
I-space
join
K-function
lattice
- basis
- element

L-covering
LC-space
LDFTK-basis

- -space
limit
Lindelöf's theorem
L-neighbourhood
locally DFTK-space
located
- compact space
- sequence
- system

LQ-covering
meet
membership relation
metric

- -ally located
1.1.8
1.1.11
2.1.3
1.1.12
1.1.8
1.1.14

1. 3.7
1.1.14
2. 2.10
1.2.6
3.1. 26
3.2.5
3.2.7
1.1.4
3. 2.18
1.2.18
3.1. 25
3.2.11
3.2.11
1.3.9
1.3.9
1.3.9
3.1. 25
3.1.2
4.1.2
1.1.14
3.1.2
3.1. 2
4.1.6
4. 3.5
4.2.4
4.2.2
1.3.7
5. 2.6
4.1.8
4.2.2
1.4.2
2.3.5
1.4.14
1.4 .14
4.1.6
3.1. 2
3.1.10
1.3.1
1.4.1

metric locally DFTK-space		4.2.1
- located compact space		2.3.1
- space		1.3.1
MLC-space		2.3.1
neighbourhood		1.2. 11
ε-net		2.3.2
normal representation		3.2 .2
one-to-one		1.1.6
open	1.2.2,	3.1. 21
©-, © ${ }^{\prime}$-, © ${ }^{\prime \prime}$-open		3.1 .21
open covering		1.2. 25
- neighbourhood		1.2.11
perfect representation		3.2 .4
piece		4.1.8
PIN-basis		3.3.8
- -space		3.3.8
point	1.2.2,	3.1 .13
- generator		3.1 .9
- representation		2.2.2
- species		1.2.2
positively irrational numbers		3.5 .11
pre-apartness relation		1.1.5
product		3.4 .1
quasi-finite		1.1.8
rational polygonal function		2.1.5
rationals of \underline{H}		2.1.4
- of \underline{R}^{∞}		2.1.3
refinement		1.2.25
relatively located		1.4 .6
relative topology		1.2.13
representation	2.2.2,	3.2.2
©-representation		3.2 .6
\mathfrak{c}^{*}-representation		4.1.18
secured		1.1.4
separable		2.1.1
splitting axiom		3.1.9
- condition		3.1 .9
- system		3.1 .9
spread law	1.1.1,	1.1.2
- representation		3.2.2
standard mapping		3.1. 26
star-finite	1.2.25,	3.1.37
- refinement		1.2.25
strong inclusion		3.1.18
- - representation		3.2.6
strongly bi-unique		1.1.7
subcovering		1.2 .25

subspace [P]	3.1 .29
subspread	1.1 .2
topological completeness	1.3 .8
- embedding	1.2 .14
- notion	1.2 .6
- product	1.2 .24
- space	1.2 .2
topology	1.2 .2
- with apartness relation	1.2 .3
transformation	3.1 .33
uniformly continuous	2.3 .13
uniform point representation	2.2 .4
weak closure point	1.2 .15
weakly continuous	1.2 .22
- located	1.4 .2

BI BLIOGRAPHY

G. BIRKHOFF 1948, Lattice theory, Providence, Rh. I (1964). L.E.J.BROUWER 1919, Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil. Verhandelingen Akad. Amsterdam 12, NO 7.

- 1920, Besitzt jede reelle Zahl eine Dezimalbruchentwickelung? Proc. Akad. Amsterdam 23, p 955-964.
- 1924, Beweis, dass jede volle Funktion gleichmässig stetig ist. Proc. Akad. Amsterdam 27, p 189-193.
- 1924A, Bemerkungen zum Beweise der gleichmässigen Stetigkeit voller Funktionen. Proc.Akad. Amsterdam 27, p 644-646.
- 1926, Ueber Definitionsbereiche von Funktionen. Math. Annalen 97, p 60-76.
- 1926A, Intuitionistische Einführung des Dimensionsbegriffes. Proc.Akad.Amsterdam 29, p 855-864.
- 1926B, Die intuitionistische Form des Heine-Borelschen Theorems. Proc. Akad. Amsterdam 29, p 866-867.
- 1954, Points and spaces. Canadian J. Math. 6, p 1-17. D. van DALEN 1965, Seminar on Intuitionistic Mathematics, spring semester 1965. Mass.Institute of Technology. Mimeographed.
J.G.DIJKMAN 1952, Convergentie en divergentie in de intuitionistische wiskunde, Thesis. Amsterdam.
W. FRANZ 1960, Topologie I, Allgemeine Topologie. Berlin. H. FRE UDENTHAL 1936, Zum intuitionistischen Raumbegriff. Compositio Math. 4, p 82-111.
Z.FROLÍK 1960, Generalizations of the G8-property of complete metric spaces. Czechoslovak Math.J. 10 (85), p 359-379.
- 1962, Relations of completeness. Czechoslovak Math.J. 12 (87), p 375-381.
A. HEYTING 1956, Intuitionism, an introduction. Amsterdam.
S.C.KLEENE \& R. VESLEY 1965, The foundations of intuitionistic mathematics. Amsterdam.
C.KURATOWSKI, 1958, Topologie I, fourth edition. Warszawa.
K. MENGER 1940, Topology without Points. Rice Inst. Pamphlet 27, N^{O}, p 80-107.
R. L. MOORE 1935, A set of axioms for plane analysis situs. Fund. Math. 25, p 13-28.
K. SCHULTZ 1965, Zum Aufbau der intuitionistischen Topologie. Diplomarbeit (unpublished).
H. de VRIES 1958, Algemene topologie. (Elaborated lecture
notes after lectures by J. de Groot.) Amsterdam. Mimeographed.
A. WALD 1932, Ergebnisse eines Math. Kolloquiums, herausgegeben von K. Menger. Vienna 1932, Heft 3, p 6. (only known by reference).

INTRODUCTORY SURVEY

This survey must be understood as a rough draft of the plan of this thesis. Hence we do not aim at careful definitions, but we shall often use classical terminology to deal with intuitionistic notions; in this way it will be easier to grasp for a mathematician unexperienced in intuitionism what we are doing "classically spoken". Even in the formal definitions in this survey some subtleties will be disregarded.

Throughout this thesis we use the notation $\left\langle V_{n}\right\rangle_{n}$ as an abbreviation for a denumerably infinite sequence V_{1}, V_{2}, \ldots

The first chapter is mainly introductory; many topological notions are defined, often by definitions literally taken from classical topology. This is a tedious job, but it cannot be avoided, since many classically equivalent definitions represent different notions from an intuitionistic point of view, so we have to stipulate which definition we want to use. E.g. we define a topology by the family of open sets; but we have no reason to assume this definition to be equivalent to a definition by the family of closed sets. For an elucidating example see 2.1.8.

The last paragraph of the first chapter is devoted to the notions "(weakly)located pointset", "relatively located pointsets", and "located system".

These notions are only of importance with respect to closed pointsets; classically, every pointset is located, and every pair of closed pointsets is relatively located, but not so intuitionistically.

Consequently these notions present a typically intuitionistic element in the theory. The notion of a located pointset for example, is introduced to select from all possible pointsets certain pointsets with some constructive features which make them more manageable.

If \underline{U} is an operation defined by $V_{1} \underline{U} \quad V_{2}=\left(\begin{array}{llll}V_{1} & U & V_{2}\end{array}\right)^{-}$, a complete located system $\left\langle V_{n}\right\rangle_{n}$ can be defined as a family of sets, closed with respect to \cap, \underline{U}, such that every element is located, and every pair of elements is relatively located. The most striking property of a located system is the following:
(I) $\quad V_{n_{1}} \cap V_{n_{2}} \cap \ldots \cap V_{n_{k}}=\emptyset \vee V_{n_{1}} \cap \ldots \cap V_{n_{k}} \neq \emptyset$
can be decided constructively.
The second chapter treats separable metric spaces, and, like the first, contains mainly preliminary matters. An
analogue of Lindelöf's theorem is obtained by intuitionistic methods.

A metric definition of compacta is given, and some theorems which will be used in the fourth chapter are proved, using the existence of a metric. It is especially important to note that the theorem of Heine-Borel can be proved intuitionistically for these spaces, a result already obtained by Brouwer (BROUWER 1926B).

In the third chapter we start with an axiomatic treatment of topology by introducing so-called intersection spaces (Ispaces).

To describe an I-space, we use a located system $\left\langle V_{n}\right\rangle_{n}=\mathbb{C}$, and a set Π of so-called point generators. An element of Π is a centered system (a system with the finite intersection property) $\left\langle W_{n}\right\rangle_{n}, \wedge n\left(W_{n} \in \mathbb{C}\right)$, such that $\bigcap_{n=1}^{k} W_{n}$ "converges" to a point of the space with increasing k. This method of describing points is analogous to the introduction of real numbers by means of sequences of nested intervals.

Two point generators $\left\langle W_{n}\right\rangle_{n},\left\langle W_{n}^{\prime}\right\rangle_{n}$ are said to coincide (notation \simeq) if

$$
\begin{equation*}
\wedge n\left(W_{1} \cap \ldots \cap W_{n} \cap W_{1}^{\prime} \cap \ldots \cap W_{n}^{\prime} \neq \emptyset\right) \tag{II}
\end{equation*}
$$

The points of the space can be identified with the equivalence classes of coinciding point generators.

This method of primarily considering point generators instead of points conforms naturally to the intuitionistic point of view. A point is looked upon as an at any moment unfinished construction; in other words, at any given moment, a point is only known with a certain degree of accuracy (given by an initial segment of a point generator).

A relation V © W between pointsets V, W (analogous to the classical relation $\mathrm{V}^{-} \subset$ Interior W) is defined by:
(III) $\wedge\left\langle\mathrm{W}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi \vee \mathrm{m}\left(\mathrm{W}_{1} \cap \ldots \cap \mathrm{~W}_{\mathrm{m}} \cap \mathrm{V}=\emptyset \vee \mathrm{W}_{1} \cap\right.$ $\left.\ldots \cap W_{m} \subset W\right)$.

A topology is introduced by defining \in and "open set" as follows:
(IV) $\mathrm{p} \in \mathrm{V}$ iff for every point generator $\left\langle\mathrm{W}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ which represents p , for a certain $\nu \mathrm{W}_{1} \cap \ldots \cap \mathrm{~W}_{v} \Subset \mathrm{~V} . \mathrm{V}$ is called open if $V=\{p: p \in V\}$.

In the second paragraph of the third chapter a number of postulates is introduced, among others
(V) $\mathrm{V}, \mathrm{W} \in \mathbb{C}, \mathrm{V} \mathbb{C} \mathrm{W} \rightarrow \mathrm{V} \mathrm{U} \in \mathbb{C}(\mathrm{V} \mathbb{C} \mathbb{C} \mathrm{W})$.
(VI) $\mathrm{V}, \mathrm{W} \in \mathbb{C}, \mathrm{V} \cap \mathrm{W}=\emptyset \rightarrow V \mathrm{~V}^{\prime} \in \mathbb{C} \vee \mathrm{W}^{\prime} \in \mathbb{C}\left(\mathrm{V} \Subset \mathrm{V}^{\prime} \& W \Subset \mathrm{~W}^{\prime} \&\right.$ $\mathrm{V}^{\prime} \cap \mathrm{W}^{\prime}=\emptyset$).
(VII) Every point can be represented by a point generator $\left\langle W_{n}\right\rangle_{n}$ such that $\wedge n\left(W_{n+1} \Subset W_{n}\right)$.

Since \mathbb{C} is not necessarily closed with respect to complementation followed by closure, (V) and (VI) are in general not equivalent.

We could have required (s to be closed with respect to complementation followed by closure, but since the complement of a located species is not always located, this is a strengthening of our assumptions. We have preferred not to introduce postulates about complementation in this thesis.

I-spaces which satisfy VII are called IR-spaces. By the introduction of (VII) many simple properties can be proved, e.g. : $\{p\} \Subset V \leftrightarrow p \in V$; the interiors of the elements of (c) constitute a basis for the space.

The postulates of the I-spaces were only just sufficient to introduce a topology; but the introduction of (VII) simplifies the theory considerably. V © W is now classically equivalent to V^{-}© Interior W , and the IR-spaces are classically equivalent to regular spaces with a countable base.

Other postulates, studied in this paragraph, are the socalled representation postulates.

The notion of a spread is typically intuitionistic. It can be considered as a strongly constructive version of the notion of a set.

An I-space is said to possess a spread representation, if there is a spread with point generators as elements, such that to every point generator of the space a coinciding point generator of the spread can be found.

For spreads very strong methods of proof are available; this accounts for the great importance of postulates concerning the existence of spread representations of certain kinds for I-spaces. The consequences of (VI)-(VII) and the representation postulates are amply discussed in the second paragraph; the results of this study are applied later on, especially in the third paragraph.

In the third paragraph, two axiom systems are introduced. The first system, defining the so-called CIN-spaces, is designed such that:

1) Classically the CIN-spaces coincide with the separable, completely metrizable spaces.
2) All the important results of the second paragraph can be applied to CIN-spaces.
3) A number of very important examples of metrizable spaces can be proved to be CIN-spaces, e.g.
a) The separable hilbertspace,
b) The space of all continuous functions on the closed interval, with the topology induced by the metric

$$
\rho(f, g)=\sup \{|f(x)-g(x)|: x \in[0,1]\}
$$

c) Almostall trees (sets of denumerably infinite sequences of natural numbers) with a certain "natural" metric (see 2.1.6), e.g. the topological product of a denumerably infinite sequence of copies of the natural numbers.
d) All locally compact, metrizable, separable spaces.
e) The topological product of a denumerable infinity of copies of the real line.
CIN-spaces are defined by means of a sequence of coverings $\left\langle\mathfrak{A}_{i}\right\rangle_{i}$, such that $\mathfrak{A}_{i+1} \subset \mathfrak{A}_{i} \subset \mathbb{C}$ for all i, $\mathfrak{X}_{i}=\left\langle V_{i, n}\right\rangle_{n}$, and which satisfy some further postulates.
Point generators are sequences $\left\langle V_{i, n(i)}\right\rangle_{i}$, which are centered systems (possess the finite intersection property).

If Γ is a separable metric space, and the sequence of points $\left\langle p_{i}\right\rangle_{i}$ is dense in Γ, then classically one could take \mathscr{A}_{i} to be the set of all closed neighbourhoods $\mathrm{U}_{\mathrm{r}}\left(\mathrm{p}_{\mathrm{j}}\right)^{-}, \mathrm{r}$ rational, $\mathrm{r}<\mathrm{i}^{-1}$. A few of the most interesting properties of CIN-spaces are:
(VIII) If $\left\langle\mathrm{V}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ is a covering, then <Interior $\left.\mathrm{V}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ is a covering too.
(IX) $\quad \mathrm{V} \Subset \mathrm{W} \leftrightarrow \wedge \mathrm{p}(\mathrm{p} \notin \mathrm{V} \vee \mathrm{p} \in \mathrm{W})$.

Since the right hand side of this equivalence is classically equivalent to $\mathrm{V} \subset \mathrm{W}$, this is a remarkable property.
(X) Every mapping defined on a CIN-space into a separable, metric space is continuous.
(XI) A CIN-space is separable and metrizable.

The other axiom system introduced in the third paragraph defines the PIN-spaces, a specialization of the CIN-spaces. Now point generators can be defined explicitly, so Π can be eliminated as a primitive notion of the axiomatic theory. Π is defined by

> (XII) $\left\langle W_{n}>_{n} \in \Pi \leftrightarrow \wedge n\left(W_{1} \cap \ldots n W_{n} \neq \emptyset\right) \&\right.$ $\wedge \mathrm{V} \in \mathbb{C} \wedge \mathrm{V}^{\prime} \in \mathbb{C}\left(\mathrm{V} \cap \mathrm{V}^{\prime}=\emptyset \rightarrow \operatorname{Vn}\left(\mathrm{W}_{1} \cap \ldots \cap\right.\right.$ $\left.\mathrm{W}_{\mathrm{n}} \cap \mathrm{V}=\emptyset \mathrm{v} \mathrm{W}_{1} \cap \ldots \cap \mathrm{~W}_{\mathrm{n}} \cap \mathrm{V}^{\prime}=\emptyset\right)$).

Furthermore (V), (VI) are supposed to hold for PIN-spaces. The resulting axiom system is very strong, but natural. The examples mentioned for CIN-spaces sub (3) c-e are even PIN-spaces.

The fourth paragraph explicitly describes the construction as an I-space of the topological product of a denumerable infinity or a finite set of I-spaces. The most important result is that the topological product of a finite or denumerably infinite sequence of CIN-spaces is again a CIN-space.

The fifth paragraph treats the examples a-c, mentioned before; further, the set of rational numbers with the usual topology is proved to be an IR-space, while (IX) does not hold in this space. Thus the set of rational numbers is an example of an IR-space which is not a CIN-space.

The fourth chapter deals with locally compact, separable metrizable spaces (called LDFTK-spaces).
The first paragraph contains a summary of results from FREUDENTHAL 1936. Furthermore many lemmas and additional theorems are proved, in order to be able to link the theory of the third chapter to the results of Freudenthal, and to prepare the ground for the sequel. Two theorems in this paragraph are of special importance:
(XIII) Every DFTK -space as defined by Freudenthal (the intuitionistic analogue of a compactum) is a PIN-space.
(XIV) If $\left\{\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$ is a covering of a DFTK-space, then a covering $\left\{V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right\}, V_{i}^{\prime} \in \mathbb{C}, V_{i}^{\prime} \Subset V_{i}$ for $1 \leqslant i \leqslant n$ can be found.
(XIV) can be looked upon as a specialization of (VIII) to DFTK-spaces, but a separate proof is given.

In the second paragraph the equivalence between a metric characterization and a "purely topological" characterization for LDFTK-spaces is proved. The topological definition characterizes these spaces as PIN-spaces which satisfy special conditions. Let V be the set of all points of an LDFTK-space Γ.
Then Γ is a PIN-space such that
(XV) $\mathrm{V}^{\prime} \in \mathbb{C} \rightarrow \mathrm{V}^{\prime}=\mathrm{V}$ or V^{\prime} is a DFTK-space.
(XVI) If $\mathrm{V}^{\prime} \in \mathbb{C}$ is a DFTK-space, a $\mathrm{V}^{\prime \prime} \epsilon \mathbb{C}$ can be found such that $\mathrm{V}^{\prime} \Subset \mathrm{V}^{\prime \prime}, \mathrm{V}^{\prime \prime}$ again a DFTK-space.
The third paragraph contains a number of covering theorems for LDFTK-spaces. If we agree to call a covering $\left\langle W_{n}\right\rangle_{n}$ star-finite if $\left\{W_{i}: W_{i} \cap W_{\nu} \neq \emptyset\right\}$ is finite for every ν, then the most important results can be formulated thus:
(XVII) Every open covering has a star-finite refinement consisting of elements of ©.
(XVIII) If $\left\langle W_{n}\right\rangle_{n}$ is a covering of $\Gamma, \wedge n\left(W_{n} \in \mathbb{C}\right)$, then there exists a star-finite refinement $\left\langle W_{n}^{\prime}\right\rangle_{n}, \wedge n\left(W_{n}^{\prime} \in \mathbb{C}\right)$,
such that $\wedge \mathrm{n} \vee \mathrm{m}\left(\mathrm{W}_{\mathrm{n}}^{\prime} \Subset \mathrm{W}_{\mathrm{m}}\right)$.
The fourth paragraph contains a proof of the following theorem: (XIX) Every LDFTK-space can be metrized by a metric ρ such that every located pointset V of the space has a distance function, i.e. $\rho(\mathrm{p}, \mathrm{V})$ is defined for every point p of the space. Γ is also metrically complete with respect to ρ.
It must be remarked that every pointset with a distance function in an arbitrary metric is located in the topology corresponding to this metric, but the converse implication does not hold good (see 2.1.9).

The fifth paragraph treats the topological product of a denumerably infinite sequence of LDFTK-spaces. The final result is:
(XX) If the defining located system $\left\langle V_{n}\right\rangle_{n}$ for every factor Γ (V is the set of points of Γ) can be chosen in such a way that
$\wedge n\left(V_{\mathrm{n}}=\mathrm{V} v \vee \mathrm{~m}\left(\mathrm{~V}_{\mathrm{n}} \cap \mathrm{V}_{\mathrm{m}}=\emptyset \& \mathrm{~V}_{\mathrm{m}} \neq \emptyset\right)\right)$,
then the product is a PIN-space.
In classical mathematics, one can more or less distinguish set theory in its most general form from topology as a specialization of general set theory. (We are aware, however, of the absence of a sharp borderline.)

In intuitionism, it is much more difficult to make such a distinction; predicates which might be considered as to belong to set theory in its most general form from a classical point of view can be used to describe "typically topological" properties in intuitionism.
(IX) and (X) present striking examples; the intuitionistic theory of connectedness (not treated in this thesis) presents another example.

The contents of this thesis roughly correspond in classical topology to the contents of the first two chapters of de VRIES 1958.

CHAPTER I

TOPOLOGICAL SPACES

1. Intuitionistic notions.
1.1. The following notions due to Brouwer, are defined in HEYTING 1956: species 3.2.1; subspecies 3.2.4; congruency between species, 3.2.4, def.1; detachable, 3.2.4, def.2; infinitely proceeding sequence (ips) 3.1.1; spread, spread law, complementary law, (immediate) descendant, (immediate) ascendant 3.1.2; finitary spread or fan, 3.4.1; for the theory of real numbers see 2.2. The notion of an equivalence relation is defined as usual.
1.2. Definition. A spread X with a spread law θ and a complementary law \boldsymbol{v} is said to have a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$. The spread law is identified with the species of admissible finite sequences of natural numbers (cf. HEYTING 1956 3.1.2) A subspread Y of a spread X, defined by $\langle\theta, \boldsymbol{v}\rangle$, is a spread $\left\langle\theta^{\prime}, \boldsymbol{\vartheta}^{\prime}\right\rangle$ such that θ^{\prime} is a detachable subspecies of θ, and $\boldsymbol{v}^{\prime}=\boldsymbol{v} \mid \boldsymbol{\theta}^{\prime}$.
1.3. Definition. If α is an ips, then the $n^{\text {th }}$ component of α is denoted by $\alpha(\mathrm{n})$. The sequence $\langle\alpha(1), \ldots, \alpha(\mathrm{n})\rangle$ is written $\bar{\alpha}(\mathrm{n})$.
Let X be a spread with a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$, and let $\sigma \epsilon \theta$, σ a sequence of length n. We suppose $\boldsymbol{ง}$ to be the identity. We define a spread element α_{σ} inductively as follows: $\bar{\alpha}_{\sigma}(\mathrm{n})=\sigma$; for $\mathrm{k} \geqslant 1, \alpha_{\sigma}(\mathrm{n}+\mathrm{k})$ is the least number m , such that $\left\langle\alpha_{\sigma}(1), \ldots, \alpha_{\sigma}(\mathrm{n}+\mathrm{k}-1), \mathrm{m}\right\rangle \epsilon \theta$.
1.4. Definition. A species X is called secured or inhabitated if $V x(x \in X)$.
1.5. Definition. A binary relation \# is called a pre-apartness relation in a species V, iff for all $a, b, c \in V$:

S1. ᄀa \# a
S2. a \# b \rightarrow a \# c v b \# c.
It is easy to see that
(a) a \# b \rightarrow b \# a.
(b) If $=^{\prime}$ is defined by $\mathrm{a}=1 \mathrm{~b} \leftrightarrow \neg \mathrm{a} \# \mathrm{~b}$, then $=^{\prime}$ is an equivalence relation.
If $a=1 b \leftrightarrow a=b$ for every $a, b \in V$, then $\#$ is called an
apartness relation in V. (HEYTING 1956 4.1.1). V is called discrete if $\wedge p \in V \wedge q \in V(p=q \vee p \# q)$.
1.6. Definition. If a mapping ψ from a species X into a species Y satisfies $\psi x=\psi y \leftrightarrow x=y$, then ψ is called a a bi-unique or one-to-one mapping.
Remark. If in a species X an apartness relation \# is defined, and if ψ is a one-to-one mapping of X into Y , then in $\psi \mathrm{X}$ an apartness relation \#' can be defined by

$$
\psi \mathrm{x} \#{ }^{\prime} \psi \mathrm{y} \leftrightarrow \mathrm{x} \# \mathrm{y} .
$$

1.7. Definition. If ψ is a mapping from a species X into a species Y, and \#, \#' are apartness relations on X, Y respectively, then ψ is called strongly bi-unique (with respect to \#, \#') if

$$
\mathrm{x} \# \mathrm{y} \leftrightarrow \psi \mathrm{x} \#{ }^{\prime} \psi \mathrm{y} .
$$

1.8. Definition. The notions of finite and denumerably infinite species are defined in HEYTING 1956, 3.2.5. A species X is called quasi-finite if a finite species can be mapped onto X . A species X is called enumerable, if the natural numbers can be mapped onto X.
1.9. Let X be a spread consisting of infinitely proceeding sequences of natural numbers, and let \equiv be an equivalence relation on X . The species of all equivalence classes of X with respect to \equiv can be mapped bi-uniquely onto a species Y by a mapping ψ.
Z is a denumerably infinite species, let us say for the sake of convenience $Z=\underline{N}$, the species of natural numbers. Let P be a property such that

$$
\wedge \mathrm{y} \in \mathrm{Y} \operatorname{Vn}(\mathrm{P}(\mathrm{y}, \mathrm{n}))
$$

Intuitionistically this implies the existence (since Y is entirely determined by X and \equiv) of a mapping ψ^{\prime} from X into $\underline{\mathrm{N}}$, such that

$$
\wedge \mathrm{y} \in \mathrm{Y} \wedge \mathrm{x}\left(\mathrm{x} \in \psi^{-1} \mathrm{y} \rightarrow \mathrm{P}\left(\mathrm{y}, \psi^{\prime} \mathrm{x}\right)\right) .
$$

1.10. The following principle (stated e.g. in BROUWER 1924, 1924A, BROUWER 1926, called Brouwer's principle in KLEENE \& VESLEY 1965, I, $\$ 7$) will be much used in the sequel. It can be stated thus:

If X is a spread with a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$, $\boldsymbol{\vartheta}$ the identity,
ψ a mapping of X into a denumerably infinite species Y , then there exists a mapping ψ ' of θ into $\{0,1\}$, such that for every $\alpha \in \mathrm{X}$ there is exactly one natural number n such that $\psi^{\prime} \bar{\alpha}(\mathrm{n})=1$, and $\wedge \alpha \in \mathrm{X} \wedge \beta \in \mathrm{X} \wedge \mathrm{n}\left(\psi^{\prime} \bar{\alpha}(\mathrm{n})=1 \& \bar{\alpha}(\mathrm{n})=\right.$ $\bar{\beta}(\mathrm{n}) \rightarrow \psi \alpha=\psi \beta$) or in a more informal manner:

There exists a method of computation which for every $\sigma \in \theta\left(\sigma=\left\langle i_{1}, \ldots, i_{k}\right\rangle\right)$ indicates whether $\psi \alpha$ can be determined from $\bar{\alpha}(\mathrm{k})$ if $\bar{\alpha}(\mathrm{k})=\sigma$, or not.
Remark. This principle is of ten used only in a weaker form:
If X is a spread with a defining pair $\langle\theta, \vartheta\rangle$, and ψ is a mapping of X into a denumerably infinite species Y , then

$$
\wedge \alpha \in \mathrm{X} \vee \mathrm{n} \wedge \beta \in \mathrm{X}(\bar{\alpha}(\mathrm{n})=\bar{\beta}(\mathrm{n}) \rightarrow \psi \alpha=\psi \beta) .
$$

1.11. Corollary to 1.10 (enumeration principle).

If X is a spread, and ψ a mapping of X into a denumerably infinite species Y , then $\psi \mathrm{X}$ is enumerable. Proof. This follows from the fact that (in the notation of 1.10) $Z=\left\{\sigma: \sigma \in \theta \& \psi^{\prime} \sigma=1\right\}$ is detachable and contains at least one element. Therefore Z is enumerable, hence $\psi \mathrm{X}$ too.
1.12. Theorem. (Fan theorem). If ψ is a mapping of a finitary spread X into the natural numbers, then there is a natural number n, such that for every $\alpha \in X \quad \psi \alpha$ is known from $\bar{\alpha}(\mathrm{n})$.
Proof in HEYTING 1956, 3.4.2 (or in BROUWER 1924, 1924A, 1926, 1954).
1.13. One of the most important consequences of the fan theorem is:
Theorem. A function which is defined everywhere on a closed interval of the real line, has a least upper bound and a greatest lower bound on the interval, and is uniformly continuous. If a function is defined and is positive everywhere on a closed interval, then the greatest lower bound of the function on the interval is positive. (see e.g. HEYTING 1956 3.4.3).
1.14. The intuitionistic notions of a lattice, distributivity, generators, free distributive lattice can be taken from BIRKHOFF 1948. See II, theorem 1; IX, 1; IX, 10.
2. Topological spaces.
2.1. Our intention is to describe in this paragraph a "frame"
of fundamental notions, in order to decide what should be called topology.

We try to choose our notions so that they resemble the classical notions as ćlosely as possible (otherwise there would be no reason to call it topology) and at the same time possess a reasonable amount of constructive content.
2.2. Definition. If V_{o} is a species, and \mathfrak{I} a certain species of subspecies of V_{o} such that

T1. $\emptyset, \mathrm{V}_{\mathrm{o}} \in \mathbb{I}$,
T2. V, $\mathrm{W} \in \mathbb{I} \rightarrow \mathrm{V} \cap \mathrm{W} \in \mathbb{T}$,
T3. The - union of an arbitrary species of elements of \mathfrak{I} again belongs to \mathfrak{I},
then $\left\langle\mathrm{V}_{0}, \mathfrak{T}\right\rangle$ is called a topological space. \mathfrak{T} is called the topology on V_{0}; the elements of \mathbb{T} are called the open species (with respect to \mathfrak{I}, or in \mathfrak{I}) of V_{0}. The elements of V_{0} are called the points of the space; subspecies of V_{0} are called pointspecies. Speaking about a certain space, V^{c} denotes $\mathrm{V}_{\mathrm{o}}-\mathrm{V} . \mathrm{V}^{\mathrm{c}}$ is called the complement of V (with respect to V_{o} If

If no confusion is likely to arise, we can also speak of V_{o} as a topological space.

We indicate topological spaces by greek capitals Γ, Δ, indexed if necessary.
2.3. Definition. If V_{o} is a species with an apartness relation \#, then a topological space $\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle$ which satisfies

T4. $p \in V \in \mathbb{T} \& q \in V^{c} \rightarrow p \# q$
is called a "topological space with apartness relation", and is indicated by $\left\langle\mathrm{V}_{0}, \mathfrak{I}, \#\right\rangle$, if we want to refer explicitly to the apartness relation.
2.4. Remark. We could have defined a topological space by means of the well known axioms of Kuratowski, but a relation between the topology and the apartness relation is most easily expressed in terms of open species. If a topological space with apartness relation satisfies

T5. $p, q \in V_{o} \& p \# q \rightarrow V W(W) \in \mathbb{T} \&((p \in W \&$ $q \notin W) v(p \notin W \& q \in W)))$
then \# can be characterized entirely in terms of open species.
2.5. Definition. A mapping ξ of a space $\left\langle V_{0}\right.$, $\left.\mathfrak{T}\right\rangle$ into a space $\left\langle V_{0}^{\prime}, \mathscr{I}^{\prime}\right\rangle$ is called continuous if

$$
V^{\prime} \in \mathfrak{I}^{\prime} \rightarrow \xi^{-1} V^{\prime} \in \mathbb{I} .
$$

2.6. Definition. A homeomorphism ξ of a topological space
$\left\langle\mathrm{V}_{0}, \boldsymbol{T}\right\rangle$ onto $\left\langle\mathrm{V}_{\mathrm{o}}^{\prime}, \mathfrak{T}^{\prime}\right\rangle$ is a bi-unique mapping of V_{0} onto V_{0}^{\prime}, such that ξ, ξ^{-1} are continuous.
A notion is called a topological notion if it is invariant with respect to homeomorphisms, or to state it more precisely: If R is a predicate for species with n places, R is called a topological notion if for any topological spaces $\left\langle V_{0}, \mathfrak{T}\right\rangle$, $\left\langle\mathrm{V}_{0}^{\prime}, \mathfrak{I}^{\prime}\right\rangle$ which are homeomorphic by a homeomorphism ξ, and for any sequence $\left\langle V_{1}, \ldots, V_{n}\right\rangle, V_{i} \subset V_{0}$ for $1 \leqslant i \leqslant n$,

$$
R\left(V_{1}, \ldots, V_{n}\right) \rightarrow R\left(\xi V_{1}, \ldots, \xi V_{n}\right)
$$

2. 7. Theorem. If ξ is a bi-unique mapping of a space $\Gamma=$ $\left\langle V_{0}, T, \#\right\rangle^{\prime}$ onto a space $\Gamma^{\prime}=\left\langle V_{0}^{\prime}, \mathbb{I}^{\prime}, \#^{\prime}\right\rangle$, and ξ^{-1} is continuous, Γ satisfies T1-5, Γ^{\prime} satisfies $\mathrm{T} 1-4$, then ξ satisfies $\mathrm{x} \# \mathrm{y} \rightarrow \boldsymbol{\mathrm { x }} \mathrm{\#}^{\prime} \boldsymbol{\xi} \mathrm{y}$.
Proof. Let $p, q \in V_{0}, p \# q . A V \in \mathbb{I}$ can be found such that $p \in V, q \notin V ; \xi \mathrm{V} \in \mathbb{I}^{\prime}, \xi \mathrm{p} \in \xi \mathrm{V}, \boldsymbol{\xi} \mathrm{q} \notin \mathrm{V}$; hence $\boldsymbol{\xi} \mathrm{p} \#^{\prime} \boldsymbol{\xi} \mathrm{q}$.
2.8. Corollary to 2.7. If ξ is a homeomorphism from a space Γ into a space Γ^{\prime}, and Γ, Γ^{\prime} satisfy $\mathrm{T} 1-5$, then ξ is strongly bi-unique.
2.9. Definition. A subspecies $\subseteq \subset \mathbb{T}$ is called a basis for a topological space $\left\langle\mathrm{V}_{0}\right.$, $\left.\mathbb{I}\right\rangle$, if

$$
\mathrm{V} \in \mathbb{I} \rightarrow \mathrm{~V}=\mathrm{U}\{\mathrm{~W}: \mathrm{W} \in \mathbb{N} \& \mathrm{~W} \subset \mathrm{~V}\}
$$

2.10. Theorem.
a) A species © of subspecies of V_{0} is a basis for a topology on V_{0} iff 1) $U\{W \dot{W} \in \mathbb{C}\}=V_{0}$,
2) $\mathrm{W}^{\prime}, \mathrm{W}^{\prime \prime} \in \mathbb{C} \rightarrow \mathrm{W}^{\prime} \mathrm{O}^{\prime} \mathrm{W}^{\prime \prime}=\mathrm{U}\{\mathrm{W}: \mathrm{W} \in \mathbb{C}$ \& $\left.\mathrm{W} \subset \mathrm{W}^{\prime} \cap \mathrm{W}^{\prime \prime}\right\}$.
b) If $\mathbb{c}^{\prime}, \mathbb{C}^{\prime \prime}$ are two species, satisfying (1), (2) sub (a), then they determine the same topology iff

$$
\begin{aligned}
& p \in W \in \mathbb{C}^{\prime} \rightarrow V W^{\prime}\left(W^{\prime} \in \mathbb{C}^{\prime \prime} \& p \in \in W^{\prime} \subset W\right) \& \\
& p \in W \in W^{\prime \prime}\left(W^{\prime} \in \mathbb{S}^{\prime} \& p \in W^{\prime} \subset W\right) \\
& \text { (Hausdorff criterion) }
\end{aligned}
$$

2.11. Definition. If $\left\langle V_{0}, \mathfrak{I}\right\rangle$ is a topological space, $p \in U$, and $V W(W \in \mathbb{T} \& p \in W \subset U)$, then U is called a neighbourhood of p. If $U \in \mathbb{T}$, then U is called an open neighbourhood of p .
2. 12. Theorem. A mapping ξ from $\Gamma=\left\langle\mathrm{V}_{0}, \mathbb{T}\right\rangle$ into $\Gamma^{\prime}=$ $\left\langle V_{o}^{\prime}, \mathbb{T}^{\prime}\right\rangle$ is continuous iff
$\mathrm{p} \in \mathrm{V}_{0} \& \boldsymbol{\xi} \mathrm{p} \in \mathrm{W}^{\prime} \in \mathbb{I}^{\prime} \rightarrow \mathrm{VW}\left(\mathrm{p} \in \mathrm{W} \in \mathbb{I} \& \boldsymbol{\xi} \mathrm{~W} \subset \mathrm{~W}^{\prime}\right)$.
2.13. Definition. If $\left\langle\mathrm{V}_{\mathrm{O}}, \mathfrak{T}\right\rangle$ is a topological space, $\mathrm{W}_{\mathrm{o}} \subset \mathrm{V}_{0}$, then $\mathbb{T}^{\prime}=\left\{\mathrm{V} \cap \mathrm{W}_{\mathrm{o}}: \mathrm{V} \in \mathbb{I}\right\}$ is called the relative topology on W_{0}.
2.14. Definition. A topological space $\left\langle\mathrm{V}_{0}, \mathfrak{T}\right\rangle$ is said to be topologically embedded in a topological space $\left\langle\mathrm{V}_{0}^{\prime}, \mathfrak{I}^{\prime}\right\rangle$, if there is a bi-unique mapping ξ from V_{0} into V_{0}^{\prime} such that $\xi \mathrm{V}_{0}$ provided with the relative topology is homeomorphic to $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{R}\right\rangle$ by ξ.
2.15. Definition. p is a closure point of a pointspecies V if every neighbourhood of p contains a point of V.
p is a weak closure point of V if the intersection of every neighbourhood of p with V cannot be empty.
2.16. Definition. If V is a pointspecies, then V^{-}is the species of all closure points of $\mathrm{V} ; \mathrm{V}^{-}$is called the closure of V (with respect to, or in , the given topology). V is closed (in the given topology) if $\mathrm{V}^{-}=\mathrm{V}$. ${ }^{-}$is called the closure operator of the topological space. Sometimes we shall write $V \underline{\cup} W$ for (V $\cup W$).
A pointspecies $\overline{\mathrm{V}}$ is dense in a space $\Gamma=\left\langle\mathrm{V}_{0}, \mathbb{I}\right\rangle$ if $\mathrm{V}^{-} \nu \mathrm{V}_{0}$.
2.17. Theorem. In every topological space $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{I}\right\rangle$ the following assertions are true for all $\mathrm{V}, \mathrm{V}_{1}, \mathrm{~V}_{2} \subset \mathrm{~V}_{0}$:
$\phi^{-}=\varnothing ; \mathrm{V}_{-}^{-}=\mathrm{V}_{0} ; \mathrm{V} \subset \mathrm{V}^{-} ; \mathrm{V}^{--}=\mathrm{V}^{-} ; \mathrm{V}_{1} \subset \mathrm{~V}_{2} \rightarrow \mathrm{~V}_{1}^{-} \subset \mathrm{V}_{2}^{-} ;$ $\left(V_{1}^{-} \cup V_{2}^{-}\right)^{-}=\left(V_{1} \cup V_{2}\right)^{-} ;\left(\begin{array}{lll}V_{1} \cap V_{2}\end{array}\right)^{-} \subset \mathrm{V}_{1}^{-} \cap \mathrm{V}_{2}^{-}$.
2.18. Definition. p is an interior point of a pointspecies V of a topological space, if V is a neighbourhood of p. Int V is the species of interior points of V . (Int V is called the interior of V).
2.19. Remark. V is open iff Int $\mathrm{V}=\mathrm{V}$.
2.20. Theorem. In every topological space $\left\langle V_{0}, \mathfrak{T}\right\rangle$ the following assertions are true: Int $\phi=\varnothing$; Int $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{0}$; Int $\mathrm{V} \subset \mathrm{V}$; Int $V=$ Int Int $V ; V_{1} \subset V_{2} \rightarrow \operatorname{Int} V_{1} \subset \operatorname{Int} V_{2} ; \operatorname{Int}\left(V_{1} \cap V_{2}\right)=$ Int $V_{1} \cap$ Int V_{2}.
2.21. Theorem. If $\left\langle\mathrm{V}_{0}, \mathbb{I}\right\rangle$ is a topological space, then $\mathrm{V} \in \mathfrak{I} \rightarrow\left(\mathrm{V}^{\mathrm{c}}\right)^{-}=\mathrm{V}^{\mathrm{c}}$.
2.22. Definition. A mapping $\boldsymbol{\xi}$ of a space $\Gamma=\left\langle\mathrm{V}_{0}, \mathfrak{I}_{1}\right\rangle$ into a space $\Delta=\left\langle W_{0}, \mathfrak{I}_{2}\right\rangle$ is called weakly continuous if

$$
\mathrm{V} \subset \mathrm{~V}_{\mathrm{o}} \rightarrow \xi\left(\mathrm{~V}^{-}\right) \subset\left(\xi \mathrm{V}^{-} .\right.
$$

2.23. Theorem. a) A mapping ξ of a space Γ into a space Δ is weakly continuous iff the counterimage of a closed set of Δ is always a closed set of Γ.
(b) A continuous mapping is weakly continuous.

Proof. (a) See FRANZ 1960, 5.4.
(b) Let $\Gamma=\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle, \Delta=\left\langle\mathrm{V}_{0}^{1}, \mathfrak{T}^{\prime}\right\rangle, \xi$ a continuous mapping from Γ into Δ. Let $\mathrm{V}^{\prime} \subset \mathrm{V}_{0}^{\prime}$, V^{\prime} closed in Δ. If p is a closure point of $\xi^{-1} \mathrm{~V}^{\prime}$, then $\xi \mathrm{p}$ is a closure point of V^{\prime}; for if $\xi p \in W^{\prime} \epsilon \mathbb{I}^{\prime}, p \in \xi^{-1} W^{\prime} \in \mathfrak{I}$; hence there is a q such that $q \in \xi^{-1} \mathrm{~W}^{\prime} \cap \xi^{-1} \mathrm{~V}^{\prime}$; therefore $\xi \mathrm{q} \in \mathrm{W}^{\prime} \cap \mathrm{V}^{\prime}$. We conclude that $\xi p \in V^{\prime}$, hence $p \in \xi^{-1} V^{\prime}$. The counterimage of a closed set is closed, hence by (a) ξ is weakly continuous.
Remark. In 2.1.8 a counter example is given to the inverse assertion of (b). This is a new argument in favour of the use of open sets to define a topology.
2.24. Definition. Let $\Gamma_{1}, \Gamma_{2}, \ldots$ be a finite or denumerably infinite sequence of topological spaces. $\Gamma_{i}=\left\langle V_{o}^{i}, \mathbb{T}_{i}\right\rangle$.
We define a topology \mathbb{T} on the cartesian product $\mathrm{V}_{o}^{1} \times \mathrm{V}_{o}^{2} \times$ $\ldots .=V_{o}$ as follows. Let © be the species of subspecies $\mathrm{V}^{\mathrm{i}} \subset \mathrm{V}_{0}$, such that $\mathrm{V}=\mathrm{V}^{1} \times \mathrm{V}^{2} \ldots \mathrm{~V}^{\mathrm{i}} \in \mathfrak{T}_{\mathrm{i}}$, almost all V^{i} equal to $\mathrm{V}_{0}^{\mathrm{i}}$. \mathbb{C} is a basis for $\mathfrak{T} ;\left\langle\mathrm{V}_{0}, \mathfrak{T}\right\rangle$ is called the topological product of the Γ_{i}.
Remark. That © satisfies (1), (2) of 2.10 is proved as usual.
2.25. Definition. Let X be an arbitrary species. If $\left\{X_{i}: i \in I\right\}$ is a family of species such that $U\left\{X_{i}: i \in I\right\} \supset X$, then $\left\{X_{i}: i \in I\right\}$ is called a covering of X.
If $\left\{X_{i}: i \in I\right\}$ is a covering of X, then every covering $\left\{X_{i}: i \in J\right\}, J \subset I$ of X is called a subcovering of $\left\{X_{i}: i \in I\right\}$. If $\left\{X_{i}: i \in I\right\},\left\{Y_{j}: j \in J\right\}$ are coverings of X, such that

$$
\wedge j\left(j \in J \rightarrow V i\left(i \in I \& Y_{j} \subset X_{i}\right)\right),
$$

then $\left\{Y_{j}: j \in J\right\}$ is called a refinement of $\left\{X_{i}: i \in I\right\}$. If $\left\{X_{i}: i \in I\right\}$ is a covering of X, and if $\left\{X_{i}: X_{i} \cap X_{k} \neq \varnothing\right\}$ is a quasi-finite species for every k, then the covering is called star-finite. A refinement of a covering which is a star-finite covering is called a star-finite refinement of the original covering.
A covering of a topological space by open sets is called an open covering of the space.
3. Metric spaces.
3.1. Definition. A metric space is a pair $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ of a species
V_{o} and a non-negative function ρ from $\mathrm{V}_{\mathrm{o}} \times \mathrm{V}_{\mathrm{o}}$ into the real numbers, such that for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{V}_{\mathrm{o}}$:
a) $\rho(\mathrm{x}, \mathrm{y})=0 \leftrightarrow \mathrm{x}=\mathrm{y}$.
b) $\rho(\mathrm{x}, \mathrm{y})=\rho(\mathrm{y}, \mathrm{x})$.
c) $\rho(\mathrm{x}, \mathrm{z}) \ngtr \rho(\mathrm{x}, \mathrm{y})+\rho(\mathrm{y}, \mathrm{z})$.
ρ is called a metric on V_{0}.
Remark. In a metric space $\left\langle V_{0}, \rho\right\rangle$ an apartness relation can be introduced by

$$
\mathrm{x} \# \mathrm{y} \leftrightarrow \rho(\mathrm{x}, \mathrm{y})>0 .
$$

This relation is called the apartness relation of the space.
3.2. Definition. If $\left\langle\mathrm{V}_{\mathrm{O}}, \rho\right\rangle$ is a metric space, $\mathrm{V} \subset \mathrm{V}_{\mathrm{O}}$, $\varepsilon>0$, then $U_{\varepsilon}(V)=U(\varepsilon, V)=\left\{q: q \in V_{o} \& V p(p \in V\right.$ \& $\rho(p, q)<\varepsilon)\} ; U_{\varepsilon}(p)=U_{\varepsilon}(\{p\})=U(\varepsilon, p)$.
3.3. Theorem. With every metric space $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ a special topological space $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{T}(\rho)\right\rangle$ is associated, which satisfies T1-5, and for which $\left\{U\left(n^{-1}, p\right): p \in V_{0}, n\right.$ a natural number \} is a basis. The relative topology on a species $V \subset V_{0}$ corresponds to the restriction of ρ to $\mathrm{V} \times \mathrm{V}$.
3.4. Definition. A topological space $\left\langle\mathrm{V}_{\mathrm{o}}\right.$, $\left.\mathfrak{T}\right\rangle$ is called metrizable if there is a metric space $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ such that $\mathfrak{I}=\mathfrak{I}(\rho)$. ρ is called a metric (or an adequate metric) for $\left\langle V_{0}, \mathfrak{T}\right\rangle$.
3.5. Remark. As no confusion is to be expected, we shall sometimes identify $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ and $\left\langle\mathrm{V}_{0}, \mathfrak{T}(\rho)\right\rangle$ in our notation.
3.6. Theorem. If $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle,\left\langle\mathrm{V}_{0}^{\prime}, \rho^{\prime}\right\rangle$ are metric spaces, a mapping ξ from V_{0} into V_{0}^{\prime} is continuous with respect to $\left\langle\mathrm{V}_{0}, \mathfrak{T}(\rho)\right\rangle$ and $\left\langle\mathrm{V}_{0}^{\prime}, \mathfrak{T}\left(\rho^{\prime}\right)\right\rangle$ iff

$$
\wedge \mathrm{y} \wedge \varepsilon\left(\mathrm{y} \in \mathrm{~V}_{\mathrm{o}} \rightarrow \vee \delta\left(\xi \mathrm{U}_{\delta}(\mathrm{y}) \subset \mathrm{U}(\xi(\mathrm{y}))\right)\right.
$$

3.7. Definition. A sequence $\left\langle\mathrm{p}_{\mathrm{i}}\right\rangle_{\mathrm{i}} \subset \mathrm{V}_{0}$ is a fundamental sequence of a metric space $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ if

$$
\wedge \mathrm{k} \vee 1 \wedge \mathrm{n} \wedge \mathrm{~m}\left(\mathrm{n}, \mathrm{~m}>1 \rightarrow \rho\left(\mathrm{p}_{\mathrm{n}}, \mathrm{p}_{\mathrm{m}}\right)<2^{-\mathrm{k}}\right)
$$

$\left\langle p_{i}\right\rangle_{i}$ is said to converge to $p \in V_{o}$ if
$\wedge k \vee 1 \wedge n\left(n>1 \rightarrow \rho\left(p, p_{n}\right)<2^{-k}\right)$. p is the limit of the sequence.
3.8. Definition. A metric space is called complete, if every fundamental sequence converges to a limit.
A metrizable topological space $\left\langle V_{0}, \mathfrak{I}\right\rangle$ is called topologically
complete, if for a certain metric ρ such that $\mathfrak{T}=\mathbb{T}(\rho)$, $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$ is complete.
3.9. Definition. A metric space $\left\langle\mathrm{V}_{\mathrm{O}}, \rho\right\rangle$ is embedded isometrically in a metric space $\left\langle V_{0}^{\prime}, \rho^{\prime}\right\rangle$ if there is a bi-unique mapping ξ of V_{o} into $\mathrm{V}_{\mathrm{o}}^{\prime}$ such that $\rho(\mathrm{x}, \mathrm{y})=\rho^{\prime}(\xi \mathrm{x}, \xi \mathrm{y})$.
ξ is called an isometrism. If ξ is a mapping onto V_{0}^{\prime}, we say that $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$ and $\left\langle\mathrm{V}_{0}^{\prime}, \rho^{\prime}\right\rangle$ are isometric.
3.10. Theorem. Every metric space $\left\langle V_{0}, \rho\right\rangle$ can be embedded isometrically in a complete metric space $\left\langle\mathrm{V}_{0}^{\prime}, \rho^{\prime}\right\rangle$ such that $\mathrm{V}_{\mathrm{o}}^{-}=\mathrm{V}_{0}^{\prime}$ in $\left\langle\mathrm{V}_{0}^{\prime}, \mathfrak{T}\left(\rho^{\prime}\right)\right\rangle$.
3.11. Theorem. If ξ is a mapping of a metric space $\left\langle V_{0}, \rho\right\rangle$ into a metric space $\left\langle\mathrm{V}_{0}^{\prime}, \rho^{\prime}\right\rangle$ such that for every sequence $\left\langle\mathrm{p}_{\mathrm{i}}\right\rangle_{\mathrm{i}} \subset \mathrm{V}_{\mathrm{o}}$

$$
\lim _{i \rightarrow \infty} p_{i}=p \rightarrow \lim _{i \rightarrow \infty} \xi\left(p_{i}\right)=\xi(p)
$$

then $\boldsymbol{\xi}$ is a weakly continuous mapping from $\left\langle\mathrm{V}_{0}, \mathbb{T}(\rho)\right\rangle$ into $\left\langle\mathrm{V}_{\mathrm{o}}^{\prime}, \mathfrak{T}\left(\rho^{\prime}\right)\right\rangle$ 。
3.12. Definition. Let $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ be a metric space; if $\mathrm{V} \subset \mathrm{V}_{0}$, $p \in V_{0}$, we say that the distance $\rho(\mathrm{V}, \mathrm{p})$ is defined if there exists a real number d such that
a) $q \in V \rightarrow \rho(\mathrm{p}, \mathrm{q}) \nless \mathrm{d}$.
b) For every natural number k there is a $q \in V$ such that $\rho(p, q)<d+2^{-k}$.
d is denoted by $\rho(\mathrm{p}, \mathrm{V})$ and is called the distance between p, V. Diameter V , if it exists, is equal to $\sup \{\rho(p, q): p, q \in V\}$.
3.13. Remark. If $\left\langle V_{0}, \rho\right\rangle$ is a metric space, then the closure operator ${ }^{-}$. in $\left\langle\mathrm{V}_{0}, \mathbb{T}(\rho)\right\rangle$ is given by $\mathrm{V}^{-}=\{\mathrm{p}: \rho(\mathrm{p}, \mathrm{V})=0\}$.
3.14. Theorem. The topological product of a finite or denumerably infinite sequence of metrizable spaces Γ_{i} i $=$ $1,2, \ldots$ is again metrizable.
Proof. We suppose $\Gamma_{i}=\left\langle V_{0}^{i}, \dot{\mathfrak{I}}_{i}\right\rangle=\left\langle V_{0}^{i}, \boldsymbol{I}\left(\rho_{i}\right)\right\rangle$. If we define $\bar{\rho}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})=\inf \left\{\rho_{\mathrm{i}}(\mathrm{x}, \mathrm{y}), 1\right\}, \bar{\rho}_{\mathrm{i}}$ is a metric such that $\mathbb{T}\left(\rho_{\mathrm{i}}\right)=$ $\boldsymbol{T}\left(\bar{\rho}_{\mathrm{i}}\right)$. Then the topological product Γ of $\Gamma_{1}, \Gamma_{2}, \ldots$ can be metrized by $\rho(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=1}^{\infty} 2^{-\mathrm{i}} \bar{\rho}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{x}, \mathrm{y} \in \mathrm{V}_{\mathrm{o}}^{1} \times \mathrm{V}_{\mathrm{o}}^{2} \times \ldots$, $x=\left\langle x_{i}\right\rangle_{i} \quad y=\left\langle y_{i}\right\rangle_{i}$.
4. Located pointspecies.
4.1. Definition. A subspecies $V \subset V_{0}$ of a metric space $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$ is called metrically located, if $\rho(\mathrm{p}, \mathrm{V})$ is defined for every $p \in V_{o}$.
4.2. A subspecies $\mathrm{V} \subset \mathrm{V}_{\mathrm{o}}$ is weakly located in a topological space $\left\langle\mathrm{V}_{0}\right.$, $\left.\mathfrak{T}\right\rangle$ if
$\wedge p \wedge W\left(p \in W \in \mathbb{I} \rightarrow\left(V q(q \in W \cap V) \vee V^{\prime}\left(W^{\prime} \in \mathbb{I} \& p \in W^{\prime} \subset W \&\right.\right.\right.$

$$
\left.\left.\left.W^{\prime} \cap \mathrm{V}=\emptyset\right)\right)\right)
$$

If V is either secured or empty, then V is called located (in, or with respect to $\left\langle\mathrm{V}_{0}, \mathfrak{T}\right\rangle$).
Remark. VAN DALEN 1965, p. 39 gives an analogous definition of "located" for the DFTK-spaces (there called Fspaces) introduced in FREUDENTHAL 1936. In view of a different approach to topology, definition 28 (\$6) in SCHULTZ 1965 is also analogous to our definition. Since these definitions are conceived independently of each other, it seems to be a very natural generalization of BROUWER's definitions. See e.g. BROUWER 1919, p.13; BROUWER 1926A.
4.3. Remarks. a) "weakly located" and "located" are topological notions.
b) For technical reasons, "located" is defined for arbitrary species, but in applications the notion is used for closed pointspecies only. Classically, every pointspecies is located.
4.4. Theorem. If \mathbb{C} is a basis for the topological space $\left\langle\mathrm{V}_{\mathrm{o}}, \mathbb{T}\right\rangle$, then $\mathrm{V} \subset \mathrm{V}_{0}$ is weakly located iff
$\wedge p \wedge W\left(p \in W \in \mathbb{C} \rightarrow V q(q \in W \cap V) v V^{\prime}\left(W^{\prime} \in \mathbb{C} \& p \in W^{\prime} \subset W \&\right.\right.$ $W^{\prime} \cap \mathrm{V}=\varnothing$) .

Proof. Trivial.
4.5. Corollaries. a) If $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$ is a metric space, $\mathrm{V} \subset \mathrm{V}_{\mathrm{o}}$ is located in $\left\langle\mathrm{V}_{0}, \mathfrak{T}(\rho)\right\rangle$ iff

$$
\wedge p \wedge \varepsilon\left(\vee q\left(q \in U_{\varepsilon}(p) \cap V\right) \vee \vee \delta\left(U_{\delta}(p) \cap W=\emptyset\right)\right)
$$

b) If $V \subset V_{o}$ is metrically located in a metric space $\left\langle V_{0}, \rho\right\rangle$, then V is located in $\left\langle\mathrm{V}_{0}, \mathfrak{T}(\rho)\right\rangle$.
4.6. Definition. Let $\mathrm{V}_{1} \subset \mathrm{~V}_{0}, \mathrm{~V}_{2} \subset \mathrm{~V}_{0} ; \mathrm{V}_{1}, \mathrm{~V}_{2}$ are weakly
located in $\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle . \mathrm{V}_{1}, \mathrm{~V}_{2}$ are called relatively located (with respect to each other) if
$\wedge p \wedge W\left(p \in W \in \mathbb{I} \rightarrow V U\left(p \in U \in \mathbb{I} \&\left(\mathrm{Vp}_{1}\left(p_{1} \in V_{1} \cap U\right) \&\right.\right.\right.$ $\left.\left.\mathrm{Vp}_{2}\left(\mathrm{p}_{2} \in \mathrm{~V}_{2} \cap \mathrm{U}\right)\right) \rightarrow \mathrm{Vp}_{3}\left(\mathrm{p}_{3} \in \mathrm{~W} \cap \mathrm{~V}_{1} \cap \mathrm{~V}_{2}\right)\right)$).
4.7. Remarks. a) "relatively located" is a topological notion. b) For technical reasons "relatively located" is defined with respect to arbitrary species, but in applications the notion is used for closed pointspecies only. Classically, every pair of closed pointspecies is relatively located.
4.8. Theorem. $\mathrm{V}_{1}, \mathrm{~V}_{2} \subset \mathrm{~V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}$ weakly located in the topological space $\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle$; \mathbb{C} a basis for $\mathfrak{T} . \mathrm{V}_{1}, \mathrm{~V}_{2}$ are relatively located iff
$\wedge p \wedge W\left(p \in W \in \mathbb{C} \rightarrow V U\left(p \in U \in \mathbb{C} \&\left(\mathrm{Vp}_{1}\left(\mathrm{p}_{1} \in \mathrm{U} \cap \mathrm{V}_{1}\right) \&\right.\right.\right.$ $\left.\mathrm{Vp}_{2}\left(\mathrm{p}_{2} \in \mathrm{U} \cap \mathrm{V}_{2}\right) \rightarrow \mathrm{Vp}_{3}\left(\mathrm{p}_{3} \in \mathrm{~W} \cap \mathrm{~V}_{1} \cap \mathrm{~V}_{2}\right)\right)$).

Proof. Trivial.
4.9. Corollary to 4.8. $\mathrm{V}_{1} \subset \mathrm{~V}_{0}, \mathrm{~V}_{2} \subset \mathrm{~V}_{\mathrm{o}}, \mathrm{V}_{1}, \mathrm{~V}_{2}$ weakly located in the topological space $\left\langle V_{0}, \mathfrak{I}(\rho)\right\rangle$, corresponding to the metric space $\left\langle\mathrm{V}_{0}, \rho\right\rangle . \mathrm{V}_{1}, \mathrm{~V}_{2}$ are relatively located iff
$\wedge p \wedge \varepsilon \vee \delta\left(\mathrm{pp}_{1}\left(\mathrm{p}_{1} \in \mathrm{~V}_{1} \cap \mathrm{U}_{\delta}(\mathrm{p})\right) \& \mathrm{Vp}_{2}\left(\mathrm{p}_{2} \in \mathrm{~V}_{2} \cap \mathrm{U}_{\delta}(\mathrm{p})\right) \rightarrow\right.$ $\left.\mathrm{Vp}_{3}\left(\mathrm{p}_{3} \in \mathrm{U}_{\varepsilon}(\mathrm{p}) \cap \mathrm{V}_{1} \cap \mathrm{~V}_{2}\right)\right)$.

Remark. This characterization can be considered to be derived from FREUDENTHAL 1936, 7.11, by transformation into a local property. (Compare also BROUWER 1919, p 18).
4.10. Theorem. If $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are weakly located and relatively located in the topological space $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{T}\right\rangle$, then $\mathrm{V}_{1} \cap \mathrm{~V}_{2}$ is also weakly located in $\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle$. (In FREUDENTHAL 1936 7.12 a special case is proved).

Proof. Let $p \in W \in \mathbb{I}$. There is a $U \in \mathbb{T}$ such that if $\mathrm{U} \cap \mathrm{V}_{1}, \mathrm{U} \cap \mathrm{V}_{2}$ are secured, then also $\mathrm{W} \cap \mathrm{V}_{1} \cap \mathrm{~V}_{2}$ is secured.
On the other hand

Hence
$\left(\mathrm{Vp}_{1}\left(\mathrm{p}_{1} \in \mathrm{U} \cap \mathrm{V}_{1}\right) \& \mathrm{Vp}_{2}\left(\mathrm{p}_{2} \in \mathrm{U} \cap \mathrm{V}_{2}\right)\right) \vee \vee \mathrm{U}_{1}\left(\mathrm{p} \in \mathrm{U}_{1} \in \mathfrak{I} \&\right.$ $\left.U_{1} \cap V_{1}=\emptyset\right) \vee \vee U_{2}\left(p \in U_{2} \in \mathbb{I} \& U_{2} \cap V_{2}=\emptyset\right)$.

We obtain therefore:
$\mathrm{Vp}\left(\mathrm{p} \in \mathrm{W} \cap \mathrm{V}_{1} \cap \mathrm{~V}_{2}\right) \vee \vee \mathrm{U}_{1}\left(\mathrm{p} \in \mathrm{U}_{1} \in \mathbb{I} \& \mathrm{U}_{1} \cap \mathrm{~W} \cap \mathrm{~V}_{1}=\emptyset\right)$ $\vee \mathrm{VU}_{2}\left(\mathrm{p} \in \mathrm{U}_{2} \in \mathfrak{I} \& \mathrm{U}_{2} \cap \mathrm{~W} \cap \mathrm{~V}_{2}=\emptyset\right)$

Thus
$\mathrm{Vp}\left(\mathrm{p} \in \mathrm{W} \cap \mathrm{V}_{1} \cap \mathrm{~V}_{2}\right) \vee \mathrm{VU}\left(\mathrm{p} \epsilon \mathrm{U} \in \mathbb{I} \& \mathrm{U} \subset \mathrm{W} \& \mathrm{U} \cap \mathrm{V}_{1} \cap\right.$ $\left.V_{2}=\emptyset\right)$.
4.11. Theorem. a) The union of a quasi-finite species of (metrically) located pointspecies is again (metrically) located.
b) If $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ are weakly located in a topological space $\left\langle\mathrm{V}_{0}, \mathfrak{T}\right\rangle$, and $\mathrm{V}_{1}, \mathrm{~V}_{2} ; \mathrm{V}_{1}, \mathrm{~V}_{3}$ are relatively located, then $\mathrm{V}_{1}, \mathrm{~V}_{2} \cup \mathrm{~V}_{3}$ are relatively located.
Proof. (a) trivial.
(b) Let $\mathrm{p} \in \mathrm{W} \in \mathbb{T}$. There are $\mathrm{W}^{\prime}, \mathrm{W}^{\prime \prime}$ such that
$V^{\prime}\left(p^{\prime} \in W^{\prime} \cap V_{1}\right) \& p^{\prime \prime}\left(p^{\prime \prime} \in W^{\prime} \cap V_{2}\right) \rightarrow V p^{\prime \prime \prime \prime}\left(p^{\prime \prime \prime \prime} \in W \cap V_{1} \cap V_{2}\right)$ $\vee p^{\prime}\left(p^{\prime} \in W^{\prime \prime} \cap V_{1}\right) \& V p^{\prime \prime}\left(p^{\prime \prime} \in W^{\prime \prime} \cap V_{3}\right) \rightarrow V p^{\prime \prime \prime}\left(p^{\prime \prime \prime} \in W \cap V_{1} \cap V_{3}\right)$.

We put $\mathrm{W}^{\prime \prime \prime}=\mathrm{W}^{\prime} \mathrm{n} \mathrm{W}^{\prime}$.
$V^{\prime}\left(p^{\prime} \in W^{\prime \prime \prime} \cap V_{1}\right) \& V p^{\prime \prime}\left(p^{\prime \prime} \in W^{\prime \prime \prime} \cap\left(V_{2} u V_{3}\right)\right) \rightarrow$
$\mathrm{Vp}^{\prime}\left(\mathrm{p}^{\prime} \in \mathrm{W}^{\prime \prime \prime} \cap \mathrm{V}_{1}\right) \& \mathrm{Vp}^{\prime \prime}\left(\mathrm{p}^{\prime \prime} \epsilon \mathrm{W}^{\prime \prime \prime} \cap \mathrm{V}_{2} \vee \mathrm{p}^{\prime \prime} \in \mathrm{W}^{\prime \prime}{ }^{\prime} \cap \mathrm{V}_{3}\right)$
Hence $V p^{\prime \prime \prime}\left(p^{\prime \prime \prime} \epsilon W \cap\left(V_{2} \cup V_{3}\right)\right.$).
4.12. Theorem. Let $\left\langle V_{n}\right\rangle_{n}$ be a sequence of metrically located pointspecies in a metric space $\left\langle V_{0}, \rho\right\rangle$, such that $\wedge_{i}\left(V_{i} \subset V_{i+1} \subset U\left(\varepsilon_{i}, V_{i}\right)\right)$ and $\sum_{i=1}^{\infty} \varepsilon_{i}<\infty$. Then $V=\bigcup_{i=1}^{\infty} V_{i}$ is again a metrically located pointspecies.
Proof. We must prove for an arbitrary $p \in \mathrm{~V}_{\mathrm{o}}$ the existence of $\rho(\mathrm{p}, \mathrm{V})$. If $\rho(\mathrm{p}, \mathrm{V})$ exists, then $\lim \rho\left(\mathrm{p}, \mathrm{V}_{\mathrm{n}}\right)$ exists, and conversely. $\lim _{\mathrm{n} \rightarrow \infty} \rho\left(\mathrm{p}, \mathrm{V}_{\mathrm{n}}\right)=\rho(\mathrm{p}, \mathrm{V})$. Suppose $\rho\left(\mathrm{p}, \mathrm{V}_{\mathrm{v}}\right)=\mathrm{d}$, and let $\sum_{i=v}^{\infty} \varepsilon_{i}<\varepsilon_{\text {. If }}^{n \rightarrow \infty} q \in V_{\mu}, \mu \leqslant \nu$, then $\rho(p, q) \nless d$; if $\mu>\nu$, then there are $q_{v}, q_{v+1}, \ldots, q_{\mu}=q$, such that $q_{i} \in V_{i}$, $\rho\left(q_{i+1}, q_{i}\right)<\varepsilon_{i}$ for $\nu \leqslant i<\mu$.

Hence $\rho\left(q_{\mu}, q_{\nu}\right) \ngtr \rho\left(q_{\mu}, q_{\mu-1}\right)+\rho\left(q_{\mu-1}, q_{\mu-2}\right)+\ldots+\rho\left(q_{\nu+1}, q_{\nu}\right)$ $<\sum_{i=v}^{\mu-1} \varepsilon_{i}<\sum_{i=v}^{\infty} \varepsilon_{i}<\varepsilon$.
Hence $\left|\rho(\mathrm{p}, \mathrm{q})-\rho\left(\mathrm{p}, \mathrm{q}_{\mathrm{v}}\right)\right|<\varepsilon$; we conclude to:
$\rho\left(\mathrm{p}, \mathrm{V}_{\mathrm{v}}\right)-\rho\left(\mathrm{p}, \mathrm{V}_{\mu}\right)<\varepsilon$. Therefore $\lim \rho\left(\mathrm{p}, \mathrm{V}_{\mathrm{n}}\right)$ exists.
4.13. Remark. a) If V is metrically located in a metric space $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$, then V^{-}is metrically located.
If V is (weakly) located in a topological space $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{I}\right\rangle$, then V^{-}is (weakly) located, since if $p \in W \in \mathbb{I}, q \in W \cap V$, then $q \in W \cap \mathrm{~V}^{-}$; and if $\mathrm{p} \in \mathrm{W} \in \mathbb{I}, \mathrm{W} \cap \mathrm{V}=\emptyset$, then $\mathrm{W} \cap \mathrm{V}^{-}=\emptyset$. (For if $\mathrm{q} \in \mathrm{W} \cap \mathrm{V}^{-}$, then there would be a $\mathrm{q}^{\prime} \epsilon \mathrm{W} \cap \mathrm{V}$, because W is a neighbourhood for q.)
b) If $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are weakly located and relatively located, then $\mathrm{V}_{1}^{-}, \mathrm{V}_{2}^{-} ; \mathrm{V}_{1}^{-}, \mathrm{V}_{2} ; \mathrm{V}_{1}, \mathrm{~V}_{2}^{-}$are relatively located. (This is seen by the same kind of reasoning as for (a)).
4.14. Definition. A system (species) © of subspecies of V_{o} is called a located system with respect to a topological space $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{T}\right\rangle$, if every finite intersection of elements of \mathbb{C} is again located, and if any two finite intersections W_{1}, W_{2} of elements of © are relatively located. A sequence which is a located system is called a located sequence. A located system, closed with respect to \cap, \underline{U} is called a complete located system.
4.15. Lemma. $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{I}\right\rangle$ is a topological space. $\mathrm{V}, \mathrm{V}^{\prime}, \mathrm{V}^{\prime \prime}$ are weakly located. $\mathrm{V}, \mathrm{V}^{\prime \prime}$ and $\mathrm{V}^{\prime}, \mathrm{V}^{\prime \prime}$ are relatively located, $\mathrm{V}^{\prime \prime}$ is closed. Then ($\left.V \cup V^{\prime}\right)^{-} \cap V^{\prime \prime}=\left(\left(V \cap V^{\prime \prime}\right) U\left(V^{\prime} \cap V^{\prime \prime}\right)\right)^{-}$. Proof. Suppose $p \in W \in \mathbb{I}, p \in\left(V \cup V^{\prime}\right)^{-} \cap V^{\prime \prime}$. Then there are $W^{\prime}, W^{\prime \prime} \in \mathbb{I}, p \in W^{\prime} \cap W^{\prime \prime}$ such that
$\mathrm{Vq}\left(\mathrm{q} \in \mathrm{W}^{\prime} \cap \mathrm{V}\right) \& \mathrm{Vq}^{\prime}\left(\mathrm{q}^{\prime} \in \mathrm{W}^{\prime} \cap \mathrm{V}^{\prime \prime}\right) \rightarrow \mathrm{Vq} \mathrm{q}^{\prime \prime}\left(\mathrm{q}^{\prime \prime} \in \mathrm{W} \cap \mathrm{V} \cap \mathrm{V}^{\prime \prime}\right)$ $v q\left(q \in W^{\prime \prime} \cap V^{\prime}\right) \& v q^{\prime}\left(q^{\prime} \in W^{\prime \prime} \cap V^{\prime \prime}\right) \rightarrow \vee q^{\prime \prime}\left(q^{\prime \prime} \in W \cap V^{\prime} \cap V^{\prime \prime}\right)$.

We put $\mathrm{W}^{\prime \prime \prime}=\mathrm{W}^{\prime \prime} \cap \mathrm{W}^{\prime}$.
Then there exists a $q \in\left(V V^{\prime}\right) \cap W^{\prime \prime}$ ', hence $q \in V \cap$ $\mathrm{W}^{\prime \prime}$ v $q \in \mathrm{~V}^{\prime} \cap \mathrm{W}^{\prime \prime \prime} ; \mathrm{p} \in \mathrm{V}^{\prime \prime} \cap \mathrm{W}^{\prime \prime}$.
Therefore an $r \in W$ can be found, such that $r \in V \cap V^{\prime \prime} v$ $r \in V^{\prime} \cap V^{\prime \prime}$.
Hence $r \in W \cap\left(\left(V \cap V^{\prime \prime}\right) U\left(V^{\prime} \cap V^{\prime \prime}\right)\right)$. Therefore $p \in((V \cap$ $\left.\left.\mathrm{V}^{\prime \prime}\right) \cup\left(\mathrm{V}^{\prime} \cap \mathrm{V}^{\prime \prime}\right)\right)^{-}$. Conversely, we suppose $\mathrm{p} \in\left(\left(\mathrm{V} \cap \mathrm{V}^{\prime \prime}\right) \mathrm{U}\right.$ $\left.\left(V^{\prime} \cap V^{\prime \prime}\right)\right)^{-}, p \in W \in \mathbb{T}$.
Then there is a $q, q \in W \cap V \cap V^{\prime \prime} v q \in W \cap V^{\prime} \cap V^{\prime} ;$ so $p \in\left(V \cup V^{\prime}\right)^{-}, p \in\left(V^{\prime \prime}\right)^{-}=V^{\prime \prime}$.
4. 16. Lemma. $\left\langle\mathrm{V}_{0}, \mathbb{T}\right\rangle$ is a topological space. $\mathrm{V}, \mathrm{V}^{\prime}, \mathrm{V}^{\prime \prime} \subset \mathrm{V}_{0}$, $\mathrm{V}^{\prime}, \mathrm{V}$ weakly located and relatively located. Then

$$
\left(\left(v \cap V^{\prime}\right) \cup V^{\prime \prime}\right)^{-}=\left(v u v^{\prime \prime}\right)^{-} \cap\left(V^{\prime} u V^{\prime \prime}\right)^{-}
$$

Proof. We apply the rule $\left(\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right)^{-} \subset \mathrm{V}_{1}^{-} \cap \mathrm{V}_{2}^{-}$from 2.17.
((V U $\left.\left.\mathrm{V}^{\prime \prime}\right) \cap\left(\mathrm{V}^{\prime} \cup \mathrm{V}^{\prime \prime}\right)\right)^{-}=\left(\left(\mathrm{V} \cap \mathrm{V}^{\prime}\right) \mathrm{U} \mathrm{V}^{\prime \prime}\right)^{-} \subset\left(\mathrm{V} U \mathrm{~V}^{\prime \prime}\right)^{-} \cap$ ($\left.V^{\prime} u V^{\prime \prime}\right)^{-}$.

Let $\mathrm{p} \in \mathrm{W} \in \mathbb{I}, \mathrm{p} \in\left(\mathrm{V} \cup \mathrm{V}^{\prime \prime}\right)^{-} \mathrm{n}\left(\mathrm{V}^{\prime} \cup \mathrm{V}^{\prime \prime}\right)^{-}$.
There is a $W^{\prime} \in \mathbb{I}, p \in W^{\prime}, W^{\prime} \subset W$ such that
$\mathrm{Vq}\left(\mathrm{q} \in \mathrm{W}^{\prime} \cap \mathrm{V}\right) \& \mathrm{Vq}^{\prime}\left(\mathrm{q}^{\prime} \in \mathrm{W}^{\prime} \cap \mathrm{V}^{\prime}\right) \rightarrow \mathrm{Vq}^{\prime \prime}\left(\mathrm{q}^{\prime \prime} \in \mathrm{W} \cap \mathrm{V} \cap \mathrm{V}^{\prime}\right)$.
Now there are $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{1} \in \mathrm{~W}^{\prime} \cap\left(\mathrm{V} \cup \mathrm{V}^{\prime \prime}\right), \mathrm{q}_{2} \in \mathrm{~W}^{\prime} \cap\left(\mathrm{V}^{\prime} \cup \mathrm{V}^{\prime \prime}\right)$. Consequently there is a $q, q \in W^{\prime} \cap V^{\prime \prime} v q \in W \cap V^{\prime} \cap V$, so $p \in\left(V^{\prime \prime} \cup\left(V^{\prime} \cap V\right)\right)^{-}$.
4.17. Theorem. If $\left\langle V_{n}\right\rangle_{\mathrm{n}}$ is a located sequence of closed pointspecies, then the system of pointspecies, obtained by closure of $\left\langle V_{n}\right\rangle_{n}$ with respect to n, \underline{U} is again a located system.
Proof. We call the closure ©. Lemmas 4.15, 4.16 imply
 These are the distributive laws with respect to \cap, \underline{U}; any element $W \in \mathbb{C}$ can therefore be written as $W_{1} \underline{\cup} W_{2} \underline{U} \ldots \underline{U}$ W_{n}, where the W_{i} are finite intersections of elements of $\left\langle V_{n}\right\rangle_{\mathrm{n}}$. Every $\mathrm{W} \in \mathbb{C}$ is therefore located (using 4.11 (a), 4.13 (a)), and if $\mathrm{W}, \mathrm{W}^{\prime} \in \mathbb{C}$ then $\mathrm{W} \cap \mathrm{W}^{\prime}$ is located too. If $\mathrm{W}, \mathrm{W}^{\prime}, \mathrm{W}^{\prime \prime}$ are located, and $\mathrm{W}, \mathrm{W}^{\prime} ; \mathrm{W}, \mathrm{W}^{\prime \prime}$ are relatively located, then $\mathrm{W}, \mathrm{W}^{\prime} \underline{\mathrm{U}} \mathrm{W}^{\prime \prime}$ are relatively located by 4.11 (b), 4.13 (b). In this way we can prove inductively, that every pair $W, W^{\prime} \in \mathbb{C}$ is relatively located.

CHAPTER II

SEPARABLE METRIC SPACES

1. Definitions and examples.
1.1. Definition. A topological space $\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle$ is called separable, if there is an enumerable sequence of points $\left\langle p_{i}\right\rangle_{i}$ which is dense in the space.
A metric space $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ is separable if $\left\langle\mathrm{V}_{0}, \mathfrak{I}(\rho)\right\rangle$ is separable. $\left\langle p_{i}\right\rangle_{i}$ is called a basic pointspecies or basic species.
1.2. In this paragraph we introduce some special separable metric spaces: $R, R^{n}, R^{\infty}, N, Q, F, H, D(\theta)$, I.
The corresponding topological spaces will be indicated by the same symbols; from the context it will be clear which meaning is intended.
1.3. Definition of $R, R^{n}, R^{\infty}, N, Q, I$.
R is the real line, with the usual metric $\rho(x, y)=|x-y|$. $\bar{R}^{1}=R$; R^{n} is the euclidean n-dimensional space, defined às usual, \bar{m} etrized by $\rho(\mathrm{x}, \mathrm{y})=\sup \left\{\left|\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right|: 1 \leqslant \mathrm{i} \leqslant \mathrm{n}\right\}$, or by $\rho(\mathrm{x}, \mathrm{y})=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right)^{2}\right)^{1 / 2}$.
\underline{R}^{∞} consists of all denumerably infinite sequences of real numbers, metrized by $\rho(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=1}^{\infty} 2^{-\mathrm{i}} \rho_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \rho_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=$ $\inf \left\{1,\left|x_{i}-y_{i}\right|\right\}, x=\left\langle x_{i}\right\rangle_{i}, y=\left\langle y_{i}\right\rangle_{i}$. By 1.3.14, the topological space R^{∞} is the topological product of a denumerably infinite sequence of spaces homeomorphic to R. The rationals of R^{∞} are all infinite sequences with all elements rational, and almost all elements zero. The species of rationals of R^{∞} is a basic pointspecies.
N is the species of natural numbers, Q the species of rational numbers, $I=[0,1]$ the closed interval; their metrics are obtained by restriction of the metric of \underline{R}.
1.4. Definition of H .
\underline{H} consists of all denumerably infinite sequences of real numbers $\left\langle x_{i}\right\rangle_{i}$ such that $\sum_{i=1}^{\infty} x_{i}^{2}<\infty$.
The rationals of H are the same as the rationals of R^{∞}, and form a basic pointspecies for \underline{H}. \underline{H} is metrized by:

$$
\rho(\mathrm{x}, \mathrm{y})=\left(\sum_{\mathrm{i}=1}^{\infty}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right)^{2}\right)^{1 / 2} ; \mathrm{x}=\left\langle\mathrm{x}_{\mathrm{i}}\right\rangle_{\mathrm{i}}, \mathrm{y}=\left\langle\mathrm{y}_{\mathrm{i}}\right\rangle_{\mathrm{i}} .
$$

1.5. Definition of F.

The points of $\underset{F}{ }$ are the functions from \underline{I} into $\underline{R} ; \underline{F}$ is metrized by

$$
\rho(f, g)=\sup \{|f(x)-g(x)|: x \in[0,1]\}
$$

A function $f \in F$ is called a rational polygonal function, if there exists a finīte species of rational numbers $\left\{r_{1}, \ldots, r_{n}\right\}$, $0=r_{1}<r_{2}<\ldots<r_{n}=1$, such that
$x \in\left[r_{i}, r_{i+1}\right] \rightarrow f(x)=a_{i} x+b_{i}, a_{i}, b_{i} \in \underline{Q}, 1 \leqslant i \leqslant n$, $a_{i} r_{i+1}+b_{i}=a_{i+1} r_{i+1}+b_{i+1}, 1 \leqslant i \leqslant n$.

The species of rational polygonal functions will be denoted by $\mathrm{F}^{0} . \mathrm{F}^{\circ}$ is a basic pointspecies for F .
1.6. Definition of $D(\theta)$.

Suppose θ to be a spread law, v a complementary law which is the identity. The spread $\mathrm{D}(\theta)$ with a defining pair $\langle\theta, \boldsymbol{v}\rangle$ is supposed to be metrized by the following well-known metric: $\alpha, \beta \in \underline{D}(\theta) \rightarrow \rho(\alpha, \beta)=\lim _{\mathrm{n} \rightarrow \infty}(\mu(\bar{\alpha}(\mathrm{n}), \bar{\beta}(\mathrm{n}))+1)^{-1}$, where $\mu_{-}(\bar{\alpha}(\mathrm{n}), \bar{\beta}(\mathrm{n}))$ is the least number $\mathrm{m} \leqslant \mathrm{n}$ such that $\bar{\alpha}(\mathrm{m})=\bar{\beta}(\mathrm{m}) \& \mathrm{~m}+1 \leqslant \mathrm{n} \rightarrow \alpha(\mathrm{m}+1) \neq \beta(\mathrm{m}+1)$.

The species $\left\{\alpha_{\sigma}: \sigma \epsilon \theta\right\}$ is a basic pointspecies for $\underline{D}(\theta)$.
1.7. Definition. We define a special predicate Z.
$\mathrm{Z}(\mathrm{n})$ holds iff n is the number of the last decimal of the first sequence of ten consecutive numerals 7 in the decimal representation of π.
1.8. Example.

We define a mapping ξ from N into Q by:
$\neg \mathrm{Z}(\mathrm{n}) \rightarrow \boldsymbol{\xi}(\mathrm{n})=\mathrm{n} ; \mathrm{Z}(\mathrm{n}) \rightarrow \boldsymbol{\xi}(\mathrm{n})=-1+\mathrm{n}^{-1}$.
We remark:
A) ξ is strongly bi-unique, as is readily seen.
B) $\boldsymbol{\xi}$ is continuous, since every subspecies of N is open.
C) ξ^{-1} is weakly continuous, since every $V \subset \xi \mathbb{N}$ is closed (as can be proved by showing $p \in V^{-} \subset \xi N^{-} \rightarrow p \in V$).
D) ξ^{-1} cannot be proved to be continuous. For if we define $\neg Z(n) \rightarrow p_{n}=1, Z(n) \rightarrow p_{n}=1+n^{-1}$, then $\left\langle p_{n}\right\rangle_{n}$ converges but we cannot prove the same for $\left\langle\xi^{-1} p_{n}\right\rangle_{n}$.
1.9. Example.

We construct another mapping ξ from \underline{N} into \underline{N} :

$$
\neg Z(\mathrm{n}) \rightarrow \xi(\mathrm{n})=\mathrm{n}+1 ; \mathrm{Z}(\mathrm{n}) \rightarrow \xi(\mathrm{n})=1 .
$$

$\boldsymbol{\xi}$ is easily verified to be strongly bi-unique, ξ, ξ^{-1} are both continuous.
$\mathrm{V}=\{\mathrm{m}: \mathrm{m} \in \mathrm{N} \& \mathrm{~m}>2\}$ is a metrically located subspecies of $\mathrm{N} . \overline{\mathrm{\xi}} \mathrm{~V}$ is not any longer metrically located in $\xi \mathrm{N}$, for
$2 \epsilon \xi \mathrm{~N}, \neg \mathrm{Vn}(\mathrm{Z}(\mathrm{n})) \rightarrow \rho(2, \xi \mathrm{~V})=2, \mathrm{Vn}(\mathrm{Z}(\mathrm{n})) \rightarrow \rho(2, \xi \mathrm{~V})=1 ;$ therefore $\rho(2, \xi \mathrm{~V})$ cannot be calculated.

The property of being metrically located therefore depends on the metric.
1.10. Some other counterexamples to analogues of classical theorems can be found for example in HEYTING 1956:
5.1.3, after definition 4; 5.1.4, remark after theorem 1; 5.2.1, example.
2. Basic pointspecies and point representations.
2.1. Theorem. If $\left\langle p_{i}\right\rangle_{i}$ is a basic pointspecies for a metric space $\left\langle V_{0}, \rho\right\rangle$, then a basic pointspecies $\left\langle p_{i}^{\prime}\right\rangle_{i} \subset\left\langle p_{i}\right\rangle_{i}$ can be found which is discrete.
Proof. We construct a sequence $\left\langle i_{n}\right\rangle_{n}$ (which may contain repetitions) such that $p_{i_{n}}=p_{n}^{\prime}$ for every n.

We put $i_{1}=1$, and construct the sequence $\left\langle i_{n}\right\rangle_{n}$ by steps. First step. We choose $i_{2}=1$ or $i_{2}=2$, such that the conditions (a_{1}) and (b_{1}) are met:
$\left(\mathrm{a}_{1}\right) \rho\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)<2^{-2} \rightarrow \mathrm{i}_{2}=1$.
$\left(\mathrm{b}_{1}\right) \quad \rho\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right) \nmid 2^{-1} \rightarrow \mathrm{i}_{2}=2$.
$k^{\text {th }}$ step. We suppose to have constructed $i_{1}, i_{2}, \ldots, i_{n(k-1)}$ after the $(k-1)^{\text {th }}$ step; $\left\{i_{1}, \ldots, i_{n(k-1)}\right\} \subset\{1,2, \ldots, k-1\}$. We order the different natural numbers occurring in $\left\{\mathrm{i}_{1}\right.$, $\ldots, \mathrm{i}_{\mathrm{n}(\mathrm{k}-1)}$ \} according to increasing magnitude, and call them in this order j_{1}, \ldots, j_{q} (hence $s<t \rightarrow j_{s}<j_{t}$); $q<k$. We order $\{1,2, \ldots, k\}-\left\{j_{1}, \ldots, j_{q}\right\}$ after increasing magnitude, and call them $\mathrm{j}_{\mathrm{q}+1}, \ldots, \mathrm{j}_{\mathrm{k}}$. $\left(\mathrm{j}_{\mathrm{k}}=\mathrm{k}\right)$.

From $\left\langle j_{1}, \ldots, j_{k}\right\rangle$ we construct a sequence $\left\langle j_{1}^{\prime}, \ldots, j_{k}^{\prime}\right\rangle$ such that $j_{i}^{\prime}=j_{i}$ for $i \leqslant q$; after the choice of $j_{1}^{\prime}, \ldots, j_{r-1}^{\prime}$, we choose for $j_{r}, r>q$, either j_{r-1}^{\prime} or j_{r}, such that conditions $\left(a_{k}\right)$, (b_{k}) are met:
(a_{k}) If there exists a $t \leqslant r-1$, such that $\rho\left(p_{j_{t}^{\prime}}, p_{j_{r}}\right)<2^{-k-1}$ then $j_{r}^{\prime}=j_{r-1}^{\prime}$.
$\left(b_{k}\right)$ If for every $t \leqslant r-1 \rho\left(p_{j_{j}^{\prime}}, p_{j_{r}}\right) \nleftarrow 2^{-k}$ then $j_{r}^{\prime}=j_{r}$. Then we take $i_{n(k-1)+t}=j_{q+t}^{\prime}$ for $1 \leqslant t \leqslant k-q$. We see that $\mathrm{n}(\mathrm{k})=\mathrm{n}(\mathrm{k}-1)+(\mathrm{k}-\mathrm{q})$.

Now we prove the discreteness of $\left\langle\mathrm{p}_{\mathrm{i}_{\mathrm{n}}}\right\rangle_{\mathrm{n}}$ by proving the discreteness of $\left\langle p_{i_{1}}, \ldots, p_{i_{n(k)}}\right\rangle$ for every k.

Suppose already proved the discreteness of $\left\langle p_{i_{1}}, \ldots, p_{i_{n(k-1)}}\right\rangle$.

By conditions $\left(a_{k}\right),\left(b_{k}\right)$ it is clear that $j_{r}, j_{r} \notin\left\{j_{1}^{\prime}, \ldots, j_{r-1}^{\prime}\right\}$, is included only in $\left\{j_{1}^{\prime}, \ldots, j_{k}^{\prime}\right\}$ if $p_{j_{r}}$ lies apart from every element of $\left\{p_{j_{1}}, \ldots, p_{j_{k}}\right\}$. Therefore $\left\{p_{i_{1}}, \ldots, p_{i_{n(k)}}\right\}$ is also discrete.

There remains to be proved that $\left\langle\mathrm{p}_{\mathrm{i}_{\mathrm{n}}}\right\rangle_{\mathrm{n}}$ is a basic pointspecies. To see this we remark that for every p_{1} with $1<k$ either $p_{1} \in\left\{p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{n(k)}}\right\}$ or there exists an $i_{t}(1 \leqslant t \leqslant$ $n(k)$), such that $\rho\left(p_{1}, p_{i_{t}}\right)<2^{-k+1}$ (for if $1 \notin<j_{1}, \ldots, j_{q}>$ at the $k^{\text {th }}$ step, there ${ }^{\text {t }}$ is $a j_{r}$ such that $1=j_{r}(r>q)$; $\mathrm{j}_{\mathrm{r}} \notin<\mathrm{j}_{1}^{\prime}, \ldots, \mathrm{j}_{\mathrm{k}}^{\prime}>$ implies $\rho\left(\mathrm{p}_{\mathrm{j}_{\mathrm{r}}}, \mathrm{p}_{\mathrm{j}_{\mathrm{t}}^{\prime}}\right)<2^{-k+1}(\mathrm{t}<\mathrm{r})$). Therefore, if we put $p_{i_{n}}=p_{n}^{1}$, and $\left\langle p_{i}^{\prime \prime}\right\rangle_{i}$ is a converging sequence, $\left\langle p_{i}^{\prime \prime}\right\rangle_{i} \subset\left\langle p_{i}\right\rangle_{i}$, then we are able to find a sequence $\left\langle p_{i}^{\prime \prime \prime}\right\rangle_{i},\left\langle p_{i}^{\prime \prime \prime}\right\rangle_{i} \subset\left\langle p_{i}^{\prime}\right\rangle_{i}$, such that for every i $\rho\left(p_{i}^{\prime \prime \prime}, p_{i}^{\prime \prime}\right)<2^{-i}$. (We only have to take, if $p_{j}^{\prime \prime}=p_{1}$, a k such that $1<k$, and to apply the preceding considerations.)
2.2. Definition. Let $\left\langle V_{0}, \rho\right\rangle$ be a metric space. We say that $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ has a point representation if there is a sequence $\left\langle\mathrm{p}_{\mathrm{i}}\right\rangle_{\mathrm{i}} \subset \mathrm{V}_{\mathrm{o}}$ (the basis of the representation) and a spread with a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$ such that
a) $\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta \rightarrow v\left\langle i_{1}, \ldots, i_{k}\right\rangle=\left\langle p_{i_{1}}, \ldots, p_{i_{k}}\right\rangle$.
b) Every spread element converges to a point of V_{0}.
c) For every $p \in V_{0}$ there exists a spread element converging to p.
2.3. Remark. (a) If X is a point representation of a metric space $\left\langle V_{0}, \rho\right\rangle$, with a defining pair $\langle\theta, \vartheta\rangle$, and basis $\left\langle p_{i}\right\rangle_{i}$, and if $\left\langle\mathrm{p}_{\mathrm{i}_{\mathrm{n}}}\right\rangle_{\mathrm{n}} \in \mathrm{X}$, there is for every k a sequence $\left\langle i_{1}, \ldots, i_{v}\right\rangle \epsilon^{n} \theta$, such that $\left\langle i_{1}, \ldots, i_{v}, j_{v+1}, \ldots, j_{n}\right\rangle \in \theta \longrightarrow$ $\rho\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}_{\mathrm{n}}}\right)<2^{-\mathrm{k}}$. (Since 2.2(b) implies that it must be possible to calculate for every $\left\langle\mathrm{p}_{\mathrm{i}_{n}}\right\rangle_{\mathrm{n}} \in \mathrm{X}$ a number m such that for $\mathrm{s}, \mathrm{t} \geqslant m \rho\left(\mathrm{p}_{\mathrm{i}_{\mathrm{s}}}, \mathrm{p}_{\mathrm{i}_{\mathrm{t}}}\right)<2^{-\mathrm{k}}$, where m is already known from an initial segment of finite length $\left\langle p_{i_{1}}, \ldots, p_{i_{r}}\right\rangle$, we may suppose $r \geqslant m$.)
(b) If $\left\langle\mathrm{V}_{0}, \rho\right\rangle,\left\langle\mathrm{V}_{0}, \rho^{\prime}\right\rangle$ are metric spaces, $\left\langle\mathrm{V}_{0}, \mathfrak{I}(\rho)\right\rangle=$ $\left\langle\mathrm{V}_{0}, \mathfrak{T}\left(\rho^{\prime}\right)\right\rangle$, and $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ possesses a point representation, then $\left\langle V_{0}\right.$, $\left.\rho^{\prime}\right\rangle$ too.
2.4. Definition. A point representation X with a defining pair $\langle\theta, \vartheta\rangle$, and a basis $\left\langle p_{i}\right\rangle_{i}$ is called uniform if for every k there exists an n such that

$$
m>n \&<i_{1}, \ldots, i_{m}>\epsilon \theta \rightarrow \rho\left(p_{i_{n}}, p_{i_{m}}\right)<2^{-k}
$$

2.5. Theorem. a) Every metric space with a point representation is separable.
b) Every complete separable metric space possesses a uni-
form point representation.
Proof. (a) is immediate from 2.3(a), since (in the same notation) if $\left\langle\mathrm{p}_{\mathrm{in}_{\mathrm{n}}}\right\rangle_{\mathrm{n}}$ converges to p , then $\rho\left(\mathrm{p}, \mathrm{p}_{\mathrm{i}_{\mathrm{v}}}\right) \not 2^{-\mathrm{k}}$. Hence $\left\langle p_{i}\right\rangle_{i}$ is a basic pointspecies.
(b) Let $\left\langle p_{i}\right\rangle_{i}$ be a basic pointspecies for a metric space $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$. We construct a spread X with a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$ such that
A) $\langle\emptyset\rangle \in \theta$; i $\in \underline{N} \rightarrow\langle i\rangle \in \theta$.
B) $\left\langle i_{1}, \ldots, i_{k+1}>-\epsilon \quad \theta \rightarrow \rho\left(p_{i_{k+1}}, p_{i_{k}}\right)<3.2^{-k}\right.$.
C) $\left\langle i_{1}, \ldots, i_{k}\right\rangle \epsilon \theta \& \rho\left(p_{j}, p_{i_{k}}\right)<2^{-k+1} \rightarrow\left\langle i_{1}, \ldots, i_{k}, j\right\rangle \epsilon \theta$.
D) $v\left\langle i_{1}, \ldots, i_{k}\right\rangle=\left\langle p_{i_{1}}, \ldots, p_{i_{k}}\right\rangle$.

This spread is a representation, since if $p \in V_{0}$, there is a sequence $\left.<\mathrm{p}_{\mathrm{i}_{\mathrm{n}}}\right\rangle_{\mathrm{n}}$ such that $\rho\left(\mathrm{p}_{\mathrm{i}_{\mathrm{n}}}, \mathrm{p}\right)<2^{-\mathrm{n}}$; hence $\rho\left(\mathrm{p}_{\mathrm{i}_{\mathrm{n}}}, \mathrm{p}_{\mathrm{i}_{\mathrm{n}+1}}\right) \neq$ $\rho\left(\mathrm{p}, \mathrm{p}_{\mathrm{i}_{\mathrm{n}}}\right)+\rho\left(\mathrm{p}, \mathrm{p}_{\mathrm{i}_{\mathrm{n}}+1}\right)<2^{-\mathrm{n}}+2^{-\mathrm{n}-1}<2^{-\mathrm{n}+1}$. Therefore, by (C), $\left\langle\mathrm{p}_{\left.\mathrm{i}_{\mathrm{n}}\right\rangle_{\mathrm{n}}} \in \mathrm{X}\right.$. The uniformity is a consequence of (B).
2.6. Theorem. (Intuitionistic analogue of Lindelof's theorem).

If $\left\langle V_{0}, \rho\right\rangle$ is a metric space with a point representation, then every open covering of $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{I}(\rho)\right\rangle$ possesses an enumerable subcovering.
Proof. Let $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ be represented by a spread X with a defining pair $\langle\theta, \boldsymbol{v}\rangle$, basis $\left\langle p_{i}\right\rangle_{i}$, and let $\left\{W_{i}: i \in I\right\}$ be an open covering of $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{T}(\rho)\right\rangle$.

To every point p of V_{o} natural numbers m, k and an element of the covering, W_{i}, can be found such that $\mathrm{p} \in \mathrm{U}\left(2^{-\mathrm{m}}, \mathrm{p}_{\mathrm{k}}\right) \subset \mathrm{W}_{\mathrm{i}}$. Hence there are functions ψ_{1}, ψ_{2} from X into N , and a mapping ψ_{3} from $\left\{\left\langle\psi_{1} \alpha, \psi_{2} \alpha\right\rangle: \alpha \in \mathrm{X}\right\}$ into I , such that if $\alpha \in \mathrm{X}$ converges to $\mathrm{p} \in \mathrm{V}_{0}$, then

$$
\mathrm{p} \in \mathrm{U}\left(2^{-\psi_{1}(\alpha)}, \mathrm{p}_{\psi_{2}(\alpha)}\right) \subset \mathrm{W}_{\psi_{3}\left(\psi_{1}(\alpha), \psi_{2}(\alpha)\right)}
$$

Since $\{<m, k>: m, k \in N\}$ is a denumerably infinite species, $\left\{\left\langle\psi_{1}(\alpha), \psi_{2}(\alpha)\right\rangle: \alpha \epsilon^{-} X\right\}$ is enumerable, as follows from the application of the enumeration principle to ψ, defined by $\psi(\alpha)=\left\langle\psi_{1}(\alpha), \psi_{2}(\alpha)\right\rangle$.
Hence $\left\{W_{\psi_{3}}\left(\psi_{1}(\alpha), \psi_{2}(\alpha)\right): \alpha \in X\right\}$ is an enumerable subcovering of $\left\{W_{i}\right.$: $\left.i \underset{\epsilon}{ }{ }^{\prime}\right\}$.

3. Located compact spaces.

3.1. Definition. A complete metric space is called a metric located compact space (MLC-space) if it has a point representation by means of a finitary spread.
3.2. Definition. An ε-net for a metric space $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ is a
quasi-finite pointspecies $V_{\varepsilon}=\left\{p_{1}, \ldots, p_{n}\right\} \subset V_{0}$ such that $\rho\left(\mathrm{p}, \mathrm{V}_{\varepsilon}\right)<\varepsilon$ for every $\mathrm{p} \in \mathrm{V}_{\mathrm{o}}$.
3.3. Definition. A topological space is called compact, if every open covering includes a quasi-finite subcovering. A space is called ω-compact, if every enumerable covering (not necessarily open) possesses a quasi-finite subcovering.
3.4. Theorem. The following properties are equivalent. a) $\left\langle V_{0}, \rho\right\rangle$ is an MLC-space.
b) $\left\langle V_{0}, \rho\right\rangle$ is a complete metric space with a point representation by means of a finitary spread with a discrete basis.
c) $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$ is a complete metric space and possesses an $\varepsilon-$ net for every $\varepsilon>0$.
d) $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ is a complete metric space and $\left\langle\mathrm{V}_{0}, \mathfrak{I}(\rho)\right\rangle$ is compact.
e) $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ is a complete separable metric space and $\left\langle\mathrm{V}_{0}, \mathfrak{T}(\rho)\right\rangle$ is ω-compact.
Proof. Our proof follows the scheme: $(\mathrm{a}) \rightarrow(\mathrm{d}) \rightarrow(\mathrm{c}) \rightarrow(\mathrm{b}) \rightarrow(\mathrm{a})$; (a) \rightarrow (e) \rightarrow (c).
(a) \rightarrow (d) was proved in BROUWER 1926B, with a slightly different definition of MLC-space (there called "katalogisiert kompakte Raume"); but the method, which is analogous to the proof of 2.6 (with an application of the fan theorem instead of the enumeration principle) can be transferred without difficulty. (cf. also HEYTING 1956 5.2.2)
(d) \rightarrow (c). $\left\{U_{\varepsilon}(p): p \in V_{0}\right\}$ is an open covering of $\left\langle V_{0}, \mathfrak{T}(\rho)\right\rangle$. Hence there is a quasi-finite subcovering $\left\{U_{\varepsilon}\left(p_{1}\right), \ldots, U_{\varepsilon}\left(p_{n}\right)\right\}$ 。 $\left\{p_{1}, \ldots, p_{n}\right\} \subset V_{0}$. Therefore $\left\{p_{1}, \ldots, p_{n}\right\}$ is an ε-net for $\left\langle\mathrm{V}_{0}, \rho\right\rangle$.
$(c) \rightarrow$ (b). Let, for every $k,\left\{q_{1}^{k}, \ldots, q_{n(k)}^{k}\right\}$ be a 2^{-k-1}-net. We consider the sequence:
$q_{1}^{1}, q_{2}^{1}, \ldots, q_{n(1)}^{1}, q_{1}^{2}, \ldots, q_{n(2)}^{2}, q_{1}^{3}, \ldots, q_{1}^{k}, \ldots, q_{n(k)}^{k}, \ldots$
We denote the $i^{\text {th }}$ member of this sequence by $p_{i}^{\prime} \cdot\left\langle p_{i}^{\prime}>_{i}\right.$ is dense in $\left\langle\mathrm{V}_{0}, \mathfrak{T}(\rho)\right\rangle$. We select according to theorem 2.1 a subsequence $\left\langle\mathrm{p}_{\mathrm{i}}\right\rangle_{\mathrm{i}} C\left\langle\mathrm{p}_{\mathrm{i}}^{\prime}\right\rangle_{\mathrm{i}}$ which is discrete; $\left\langle\mathrm{p}_{\mathrm{i}}\right\rangle_{\mathrm{i}}$ is again dense in $\left\langle\mathrm{V}_{0}, \mathbb{T}(\rho)\right\rangle$. As is seen from the definition of $\left\langle\mathrm{p}_{\mathrm{i}}\right\rangle_{\mathrm{i}}$, to every k a ν_{k} can be found such that $\left\{p_{1}^{\prime}, \ldots, p_{v_{k}}^{\prime}\right\}$ is a 2^{-k-1}-net; we may suppose $\nu_{\mathrm{k}}<\nu_{\mathrm{k}+1}$ for every k . To every $p_{i}^{\prime}, 1 \leqslant i \leqslant \nu_{k}$, a $p_{s(i)}$ can be found, such that $\rho\left(\mathrm{p}_{\mathrm{i}}^{\prime}, \mathrm{p}_{\mathrm{s}(\mathrm{i})}\right)<2^{-\mathrm{k}-1}$. Hence $\left\{p_{s(1)}, \ldots, p_{s\left(v_{k}\right)}\right\}$ is a 2^{-k}-net.

If we put $\mu_{k}=\sup \left\{s(i): 1 \leqslant i \leqslant \nu_{k}\right\},\left\{p_{1}, \ldots, p_{\mu_{k}}\right\}$ is a. $2^{-\mathrm{k}}$-net. Let $\lambda_{\mathrm{k}}=\sup \left\{\mu_{\mathrm{k}}, \mu_{\mathrm{k}-1}+1\right\} ;\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\lambda_{\mathrm{k}}}\right\}$ is then also a $2^{-\mathrm{k}}$-net, and $\lambda_{\mathrm{n}-1}<\lambda_{\mathrm{n}}$ for every n .

Now we construct a finitary point representation by a modification of the proof of $2.5(\mathrm{~b})$; we retain stipulations
(A), (B), (D), but change (C) into (E):
(E) $\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta \& \rho\left(p_{j}, p_{i_{k}}\right)<2^{-k+1} \& 1 \leqslant j \leqslant \lambda_{k} \rightarrow$ $\left\langle i_{1}, \ldots, i_{k}, j\right\rangle \in \theta$.

If $p \in V_{0}$, there is a sequence $\left\langle p_{i_{n}}\right\rangle_{n} \subset\left\langle p_{i}\right\rangle_{i}$, such that $1 \leqslant i_{n} \leqslant \lambda_{n}, \rho\left(p_{i_{n}}, p\right)<2^{-n}$. Then $\left\langle p_{i_{n}}\right\rangle_{n}$ is an element of the constructed spread.
(b) \rightarrow (a) is trivial.
(a) \rightarrow (e) is a straightforward application of the fan theorem. For suppose $\left\langle V_{0}, \rho\right\rangle$ to be represented by a finitary spread X, and let $\left\langle W_{n}\right\rangle_{n}$ be an enumerable covering of V_{0}. There exists a function ψ such that if $\alpha \in X$ represents p, then $p \in W_{\psi(\alpha)}$. By the fan theorem ψX is finite, therefore $\left\langle W_{n}\right\rangle_{n}$ has a quasi-finite subcovering.
(e) $\rightarrow(c) .\left\{U_{\varepsilon}(p): p \in V_{0}\right\}$ is an open covering of $\left\langle V_{o}, T(\rho)\right\rangle$. By 2.5(b), 2. 6 there is an enumerable subcovering $\left\langle U_{\varepsilon}\left(p_{i}\right)\right\rangle_{i}$, $\left\langle p_{i}\right\rangle_{i} \subset V_{o}$. Hence there is a quasi-finite subcovering $\left\{U_{\varepsilon}\left(p_{j_{1}}\right), \ldots, U_{\varepsilon}\left(p_{j_{k}}\right)\right\} ;\left\{p_{j_{1}}, \ldots, p_{j_{k}}\right\}$ is therefore an ε-net for $\left\langle V_{0}, \rho\right\rangle$.
3.5. Definition. If $\left\langle\mathrm{V}_{\mathrm{O}}, \mathbb{T}\right\rangle$ is a topological space such that for a certain metric ρ on $\mathrm{V}_{0},\left\langle\mathrm{~V}_{0}, \mathbb{T}(\rho)\right\rangle=\left\langle\mathrm{V}_{0}, \mathbb{I}\right\rangle$, and $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ is an MLC-space, then $\left\langle\mathrm{V}_{0}, \mathfrak{T}\right\rangle$ is called a located compact (LC-) space.
3.6. Remark. a) If $\left\langle V_{0}, \mathbb{T}(\rho)\right\rangle$ is an LC-space, then $\left\langle V_{0}, \rho\right\rangle$ is an MLC-space.
b) An LC-space corresponds closely to the definition of "located compact topological space" in BROUWER 1954, as will be clear from comparison of the definition given there with $3.1,3.4(\mathrm{~b})$; an LC-space is always homeomorphic to a located compact topological space in the sense of BROUWER 1954.
3.7. Theorem. Let $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$ be an MLC-space. $\mathrm{V} \subset \mathrm{V}_{0}$ is located in $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{T}(\rho)\right\rangle$ iff V is metrically located in $\left\langle\mathrm{V}_{\mathrm{o}}, \rho\right\rangle$. Proof. In one direction the implication follows from 1.4.5(b). Let V be weakly located. To every $p . \epsilon V_{o}$ a natural number $k>\nu$ can be found such that $F(k, p)$ holds, where

$$
F(k, p) \leftrightarrow\left(U\left(2^{-k}, p\right) \cap V=\emptyset \quad v \vee q\left(q \in U\left(2^{-k}, p\right) \cap V\right)\right)
$$

$\mathbb{C}=\left\{U\left(2^{-k}, p\right): p \in V_{0} \& F(k, p)\right\}$ is an open covering of V_{o}, hence by $3.4(\mathrm{~d})$ there is a quasi-finite subcovering $\left\{\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mu}\right\} ; \mathrm{U}_{\mathrm{i}} \in \mathbb{C}$ for $1 \leqslant \mathrm{i} \leqslant \mu$.
Suppose $U_{i} \cap V=\emptyset$ for $\lambda<i \leqslant \mu, q \in U_{i} \cap V$ for $1 \leqslant i \leqslant \lambda$.
$\left\{q_{1}, \ldots, q_{\lambda}\right\}$ is a 2^{-v}-net for $\langle V, \rho\rangle$ since $V \subset{ }_{i=1}^{\lambda} U_{i}$.
Hence if $p \in V_{0}, q \in V$, then $\rho(p, q) \nless$
$\inf \left\{\rho\left(p, q_{i}\right): 1 \leqslant i \leqslant \lambda\right\}-2^{-v}$, therefore $\rho(p, V)$ is defined.
3.8. Remark. From the proof of 3.7 follows: if $\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle$ is an LC-space, then $\mathrm{V} \subset \mathrm{V}_{\mathrm{o}}$ is located iff V is weakly located.
3.9. Remark. From the proof of 3.7 and from 3.4(c) it is clear that if $\mathrm{V} \subset \mathrm{V}_{\mathrm{o}}$ is closed, located, then V (with the relative topology) is an MLC-space, and conversely (Cf. BROUWER 1926A, FREUDENTHAL 1936,7.5,7.7).
3.10. Theorem. Let $\left\langle\mathrm{V}_{\mathrm{O}}, \rho\right\rangle$ be a MLC-space; $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are two located subspecies of V_{o}. Then the following assertions are equivalent:
a) V_{1}, V_{2} are relatively located.
b) $\wedge \varepsilon \vee \delta\left(\vee p \vee q\left(\rho(\mathrm{p}, \mathrm{q})<\delta \& \mathrm{p} \in \mathrm{V}_{1} \& \mathrm{q} \in \mathrm{V}_{2}\right) \rightarrow\right.$ $\left.\operatorname{vr}\left(\mathrm{r} \in \mathrm{V}_{1} \cap \mathrm{~V}_{2} \& \rho(\mathrm{p}, \mathrm{r})<\varepsilon\right)\right)$.
c) $\wedge \varepsilon \vee \delta\left(U_{\delta}\left(\mathrm{V}_{1}\right) \cap \mathrm{U}_{\delta}\left(\mathrm{V}_{2}\right) \subset \mathrm{U}_{\varepsilon}\left(\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right)\right)$.

Proof. (a) \rightarrow (c). Let ε be a fixed real number greater than zero.
To every $p \in V_{o}$ a $\delta<\varepsilon .2^{-1}$ can be found such that $F(p, \delta)$ holds, where $\mathrm{F}(\mathrm{p}, \delta) \leftrightarrow$
$\left\{\vee p\left(p \in V_{1} \cap U_{\delta}(p)\right) \& \vee q\left(q \in V_{2} \cap U_{\delta}(p)\right) \rightarrow \operatorname{vr}\left(r \in U\left(2^{-1} \varepsilon, p\right) \cap\right.\right.$ $\left.\left.\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right)\right\}$.
The species $\left\{U\left(2^{-1} \delta, p\right): p \in V_{o} \& F(p, \delta)\right\}$ is an open covering of V_{0}.
By 3.4(d), there exists a finite subcovering $\left\{\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mu}\right\}$; let $U_{i}=U\left(2^{-1} \delta\left(p_{i}\right), p_{i}\right), 1 \leqslant i \leqslant \mu$. We put $\delta=\inf \left\{2^{-1} \delta\left(p_{i}\right)\right.$: $1 \leqslant \mathrm{i} \leqslant \mu\}$. Suppose $\mathrm{q}_{1} \in \mathrm{~V}_{1} \cap \mathrm{U}_{\delta}(\mathrm{p}), \mathrm{q}_{2} \in \mathrm{~V}_{2} \cap \mathrm{U}_{\delta}(\mathrm{p})$. Then for a certain $\lambda, 1 \leqslant \lambda \leqslant \mu, p \in U\left(2^{-1} \delta\left(p_{\lambda}\right), p_{\lambda}\right)$.

$$
\begin{aligned}
& \rho\left(\mathrm{q}_{1}, \mathrm{p}_{\lambda}\right)<2^{-1} \delta\left(\mathrm{p}_{\lambda}\right)+\delta \ngtr \delta\left(\mathrm{p}_{\lambda}\right), \\
& \rho\left(\mathrm{q}_{2}, \mathrm{p}_{\lambda}\right)<2^{-1} \delta\left(\mathrm{p}_{\lambda}\right)+\delta \ngtr \delta\left(\mathrm{p}_{\lambda}\right) .
\end{aligned}
$$

Hence there exists a $q_{3} \in U\left(2^{-1} \varepsilon, p_{\lambda}\right) \cap V_{1} \cap V_{2}$.

$$
\rho\left(\mathrm{q}_{3}, \mathrm{p}\right) \ngtr \rho\left(\mathrm{q}_{3}, \mathrm{p}_{\lambda}\right)+\rho\left(\mathrm{p}_{\lambda}, \mathrm{p}\right)<2^{-1} \varepsilon+2^{-1} \delta\left(\mathrm{p}_{\lambda}\right) \ngtr \varepsilon .
$$

Hence $\mathrm{U}_{\boldsymbol{\delta}}\left(\mathrm{V}_{1}\right) \cap \mathrm{U}_{\delta}\left(\mathrm{V}_{2}\right) \subset \mathrm{U}_{\varepsilon}\left(\mathrm{V}_{1} \cap \mathrm{~V}_{2}\right)$.
(c) \rightarrow (b)

Suppose for a certain $\delta, \varepsilon: U_{\delta}\left(V_{1}\right) \cap U_{\delta}\left(V_{2}\right) \subset U_{\varepsilon}\left(V_{1} \cap V_{2}\right)$. If $p_{1} \in V_{1}, p_{2} \in V_{2}, \rho\left(p_{1}, p_{2}\right)<\delta$, then $p_{1}, p_{2} \in U_{\delta}\left(V_{1}\right) \cap U_{\delta}\left(V_{2}\right)$ $\subset U_{\varepsilon}\left(V_{1} \cap V_{2}\right)$. Hence there is a $p_{3} \in V_{1} \cap V_{2}$ such that $\rho\left(\mathrm{p}_{1}, \mathrm{p}_{3}\right)<\varepsilon, \quad \rho\left(\mathrm{p}_{2}, \mathrm{p}_{3}\right)<\varepsilon$.
(b) \rightarrow (a) is trivial from 1.4.9.

Remark. (b) was given in FREUDENTHAL 1936, 7.11.
3.11. The following theorem is borrowed from FREUDENTHAL 1936.
Theorem. Let $\left\langle V_{0}, \rho\right\rangle$ be an MLC-space.
a) If $\mathrm{V} \subset \mathrm{V}_{0}$ is metrically located in $\left\langle\mathrm{V}_{0}, \rho\right\rangle$, and $\delta, \varepsilon \in \mathrm{R}_{\text {, }}$ $0<\delta<\varepsilon$, there exists a metrically located V^{\prime} such that $\mathrm{U}_{8}(\mathrm{~V}) \subset \mathrm{V}^{\prime} \subset \mathrm{U}_{\varepsilon}(\mathrm{V})$. (FREUDENTHAL 1936 7.10)
b) If $\mathrm{W}, \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ are metrically located, $\varepsilon>0$, then there is a metrically located $W^{\prime}, W \subset W^{\prime} \subset U_{\varepsilon}(W)$, such that W^{\prime} is relatively located with respect to each of V_{1}, \ldots, V_{k}. (FREUDENTHAL 1936, 7.14)
c) If W, V_{1}, \ldots, V_{k} are metrically located, and pairwise relatively located, and if $\left\{V_{1}, \ldots, V_{k}\right\}$ is closed with respect to intersections, then all intersections constructed from $\mathrm{W}, \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ are pairwise relatively located. (FREUDENTHAL 1936, 7.15)
Proof. FREUDENTHAL 1936 presupposes another definition for the MLC-space. This does not present any difficulties for the proof of (b), (c), since if (a) is proved, the proofs for (b), (c) in FREUDENTHAL 1936 hold for our definition as well.

For our definition of an MLC-space, (a) is proved thus. Let X be the spread of a point representation as constructed in the proof of (c) \rightarrow (b) from 3.4. If X has a defining pair $\langle\theta, \boldsymbol{v}\rangle$, then we construct an X^{\prime} with a defining pair $\left\langle\theta^{\prime}, v^{\prime}\right\rangle$ as follows.
Let $3^{-1}(\varepsilon-\delta)=\varepsilon^{\prime}, 3.2^{-k+1}<\inf \left\{\varepsilon^{\prime}, \delta\right\}$.
$\left\{p_{1}, \ldots, p_{\lambda_{k}}\right\}$ is a 2^{-k}-net. We divide $\left\{p_{1}, \ldots, p_{\lambda_{k}}\right\}$ into two disjoint parts Y, Z such that

$$
\begin{aligned}
& p_{i} \in Y \rightarrow \rho\left(p_{i}, V\right)<\varepsilon-\varepsilon^{\prime} . \\
& p_{i} \in Z \rightarrow \rho\left(p_{i}, V\right)>\delta+\varepsilon^{\prime} .
\end{aligned}
$$

We define $\theta^{\prime} \subset \theta$ as follows.

$$
\theta_{k}^{\prime}=\left\{\left\langle i_{1}, \ldots, i_{k}\right\rangle:\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta \& p_{i_{k}} \in Y\right\} .
$$

θ^{\prime} consists of all descendants and ascendants of elements of $\theta_{\mathrm{k}}^{\prime}, \boldsymbol{v}^{\prime}$ is the restriction of \boldsymbol{v} to θ^{\prime}.

If $\lim _{n \rightarrow \infty} \rho\left(p_{i_{n}}, p\right)=0,\left\langle p_{i_{n}}>_{n} \in X^{\prime}\right.$, then $\rho\left(p_{i_{k}}, p\right)<3.2^{-k+1}<\varepsilon^{\prime}$,
hence if X^{\prime} represents a subspecies W of V_{0}, then $W \subset U_{\varepsilon}(V)$. If $\rho(p, V)<\delta$, then for a certain $i, 1 \leqslant i \leqslant \lambda_{k}, \rho\left(p, p_{i}\right)<2^{-k}<\varepsilon^{\prime}$, hence $\rho\left(p_{i}, V\right)<\delta+\varepsilon^{\prime}$, therefore $p_{i} \in Y$; there is a sequence $\left\langle p_{j_{n}}>n, p_{j_{k}}=p_{i}, \rho\left(p_{j_{n}}, p\right) \rightarrow 0\right.$. Hence $U_{\delta}(V) \subset W$. Comparing $3.9,3.1,2.5(\mathrm{a}), 2.5(\mathrm{~b})$ we see that $\mathrm{W}^{-}=\mathrm{V}^{\prime}$ satisfies all requirements.
3.12. Lemma. We consider pointspecies in an MLC-space. Let $\left\langle\mathrm{U}_{\mathrm{i}}\right\rangle_{\mathrm{i}},\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle_{\mathrm{i}}$ be located systems of closed pointspecies, and let $\left\langle\delta_{i}\right\rangle_{i}$ be a sequence of real numbers greater then zero.
Then it is possible to construct a sequence of (closed) pointspecies, $\left\langle W_{i}\right\rangle_{i}$, such that $\left\langle W_{i}\right\rangle_{i} U\left\langle V_{i}\right\rangle_{i}$ is a located system, and

$$
\wedge i\left(\mathrm{U}_{\mathrm{i}} \subset \mathrm{~W}_{\mathrm{i}} \subset \mathrm{U}\left(\delta_{\mathrm{i}}, \mathrm{U}_{\mathrm{i}}\right)\right)
$$

Proof. We proof the assertion by induction.
Suppose already constructed $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{k}-1}$, such that $\left\langle W_{i}\right\rangle_{i=1}^{k-1} U\left\langle V_{j}\right\rangle_{j}$ is a located system, and $U_{i} \subset W_{i} \subset U\left(\delta_{i}, U_{i}\right)$ for $1 \leqslant i \leqslant k-1$. Now we construct W_{k}. We write $\left\langle W_{i}\right\rangle_{i=1}^{k-1} U$ $\left\langle\mathrm{V}_{\mathrm{j}}\right\rangle_{\mathrm{j}}$ as $\left\langle\mathrm{V}_{\mathrm{j}}^{\prime}\right\rangle_{\mathrm{j}}$, with $\mathrm{V}_{\mathrm{i}}^{\prime}=\mathrm{W}_{\mathrm{i}}$ for $1 \leqslant \mathrm{i}\left\langle\mathrm{k}, \mathrm{V}_{\mathrm{i}}^{\prime}=\mathrm{V}_{\mathrm{i}-\mathrm{k}+1}\right.$ for $i \geqslant k$.
We construct a sequence $\left\langle\mathrm{W}_{\mathrm{k}, \mathrm{i}}\right\rangle_{\mathrm{i}}$ as follows.
$\mathrm{W}_{\mathrm{k}, 1}=\mathrm{U}_{\mathrm{k}}$.
$\mathrm{W}_{\mathrm{k}, 2}$ is a pointspecies, located and relatively located with respect to $\mathrm{V}_{1}^{\prime} . \mathrm{W}_{\mathrm{k}, 1} \subset \mathrm{~W}_{\mathrm{k}, 2} \subset \mathrm{U}\left(2^{-2} \delta_{\mathrm{k}}, \mathrm{W}_{\mathrm{k}, 1}\right)$.
$\mathrm{W}_{\mathrm{k}, \mathrm{m}+1}$ is a located pointspecies, located with respect to every element of $\mathfrak{C}_{\mathrm{m}}$, the species of all finite intersections of elements from $\left\{\mathrm{V}_{1}^{\prime}, \ldots, \mathrm{V}_{\mathrm{m}}^{\prime}\right\}$, and such that $W_{k, m} \subset W_{k, m+1} \subset U\left(\varepsilon(m), W_{k, m}\right)$ (using 3.11(b)). $\varepsilon(\mathrm{m})$ is determined thus:
If $\mathrm{V} \in \mathbb{C}_{\mathrm{m}-1}$, then $\mathrm{V}, \mathrm{W}_{\mathrm{k}, \mathrm{m}}$ are relatively located. Hence there is a δv such that (3.10(c)):
$\mathrm{U}\left(\delta^{\mathrm{V}}, \mathrm{V}\right) \cap \mathrm{U}\left(\delta^{\mathrm{V}}, \mathrm{W}_{\mathrm{k}, \mathrm{m}}\right) \subset \mathrm{U}\left(2^{-\mathrm{m}}, \mathrm{V} \mathrm{n} \mathrm{W}_{\mathrm{k}, \mathrm{m}}\right) . \varepsilon^{\mathrm{m}}=$ $\inf \left\{\delta^{V}: V \in \mathbb{C}_{m-1}\right\}, \varepsilon(\mathrm{m})=\inf \left\{2^{-2} \varepsilon^{\mathrm{m}}, 2^{-1} \varepsilon(\mathrm{~m}-1)\right.$, $\left.\delta_{\mathrm{k}} 2^{-\mathrm{m}-1}\right\}$.
We put $W_{k}=\left(\bigcup_{i=1}^{\infty} W_{k, i}\right)^{-} . W_{k}$ is located, by 1.4.12 and 1.4.13(a).

Since $W_{k, m} \subset W_{k, m+1} \subset U\left(\delta_{k} 2^{-m-1}, W_{k, m}\right)$ and $\sum_{n=2}^{\infty} 2^{-n} \delta_{k}=$ $2^{-1} \delta_{k}$, it follows that $\bigcup_{i=1}^{\infty} W_{k, i} \subset U\left(2^{-1} \delta_{k}, U_{k}\right)$, hence $W_{k} \subset$ $\mathrm{U}\left(\delta_{\mathrm{k}}, \mathrm{U}_{\mathrm{k}}\right)$.

Finally, we have to show that $\mathrm{W}_{\mathrm{k}} \mathrm{U}\left\langle\mathrm{V}_{\mathrm{j}}^{\prime}\right\rangle_{\mathrm{j}}$ is a located system.
To prove this, it is sufficient to prove that W_{k} is relatively located with respect to any finite intersection of elements of $\left\langle V_{j}^{\prime}\right\rangle_{j}$ (as follows from 3.11(c)).

Suppose V is a finite intersection of elements of $\left\langle V_{j}^{\prime}\right\rangle_{j}$, so $\mathrm{V} \in \mathbb{C}_{\mathrm{n}}$ for a certain n . Let $\mathrm{n}<\mathrm{m}, 2^{-\mathrm{m}}<\varepsilon$. We remark: $\varepsilon(\mathrm{m}+1)<2^{-1} \varepsilon(\mathrm{~m}) ; \varepsilon(\mathrm{m}+\mathrm{k})<2^{-1} \varepsilon(\mathrm{~m}+\mathrm{k}-1)$; hence $\sum_{\mathrm{k}=0}^{\infty} \varepsilon(\mathrm{m}+\mathrm{k})<2 \varepsilon(\mathrm{~m})<2^{-1} \varepsilon^{\mathrm{m}}$ 。

Therefore, $\mathrm{W}_{\mathrm{k}} \subset \mathrm{U}\left(2^{-1} \varepsilon^{\mathrm{m}}, \mathrm{W}_{\mathrm{k}, \mathrm{m}}\right)$.
We obtain
$\mathrm{U}(\varepsilon(\mathrm{m}), \mathrm{V}) \cap \mathrm{U}\left(\varepsilon(\mathrm{m}), \mathrm{W}_{\mathrm{k}}\right) \subset \mathrm{U}\left(\varepsilon^{\mathrm{m}}, \mathrm{V}\right) \cap \mathrm{U}\left(2^{-2} \varepsilon^{\mathrm{m}}, \mathrm{U}\left(2^{-1} \varepsilon^{\mathrm{m}}, \mathrm{W}_{\mathrm{k}, \mathrm{m}}\right)\right) \subset$ $\mathrm{U}\left(\varepsilon^{\mathrm{m}}, \mathrm{V}\right) \cap \mathrm{U}\left(\varepsilon^{\mathrm{m}}, \mathrm{W}_{\mathrm{k}, \mathrm{m}}\right) \subset \mathrm{U}\left(2^{-\mathrm{m}}, \mathrm{V} \cap \mathrm{W}_{\mathrm{k}, \mathrm{m}}\right) \subset \mathrm{U}\left(2^{-\mathrm{m}}, \mathrm{V} \cap \mathrm{W}_{\mathrm{k}}\right) \subset$ $\mathrm{U}\left(\varepsilon, \mathrm{V} \cap \mathrm{W}_{\mathrm{k}}\right)$.
Hence by $3.10(c), W_{k}, V$ are relatively located.
3.13. Theorem. (BROUWER 1954, p.17). Every mapping ξ of an LC-space into an LC-space is uniformly continuous. Expressed metrically:

$$
\wedge \varepsilon \vee \delta \wedge y\left(\xi \mathrm{U}_{\delta}(\mathrm{y}) \subset \mathrm{U}_{\varepsilon}(\xi \mathrm{y})\right)
$$

CHAPTER III

INTERSECTION SPACES

1. Definition of intersection spaces.

1.1. In this chapter we want to give an axiomatic treatment of a certain kind of topological spaces, which will be called intersection spaces. The most important feature of this treatment is the characterization of these spaces by means of a species of closed pointspecies with decidable intersection relations, (The pointspecies $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$ have the intersection relation if their intersection contains a point) in the same manner as in FREUDENTHAL 1936.

In this paragraph we shall restrict ourselves to I-spaces, defined by means of a set of postulates, strong enough to ascertain the existence of a topology, but not much more.

In the second paragraph we shall introduce stronger postulates, some of them rather complicated, which are used as tools in proving the theorems about spaces defined in a more graceful manner in the third paragraph.

By this procedure one gets a clearer insight in the import of the different postulates than by starting from the strongest suppositions at once. In this way there are also more possibilities to incorporate a part of the theory in the development of other postulate systems.
1.2. Definitions. We start with a denumerably infinite sequence of formal objects, A_{1}, A_{2}, \ldots. This sequence is indicated by \mathfrak{A}. We construct the free distributive lattice \mathfrak{B} with \mathfrak{X} as a denumerably infinite species of generators, and with a zero-element A_{0} and an all-element A_{∞}; the lattice-operators, join and meet, are written + , •, respectively; often the dot "." will be omitted, so in this case the meet is denoted by a simple juxtaposition.
\mathscr{P} is called the lattice basis. If in the sequel we speak of lattice elements without further specification, elements of \mathfrak{B} are meant. Arbitrary elements of \mathfrak{P} will be marked by capitals P, Q, R, S, T, indexed if necessary.
γ indicates a fixed bi-unique mapping of N onto $\mathfrak{F} ; \gamma^{-1}=\gamma^{\prime}$.
1.3. We remark that for every two expressions constructed from elements of \mathscr{A} by means of + , it can be decided whether they represent the same element of \mathfrak{P} or not.
(See BIRKHOFF 1948, p. 145). We use the following notations for meet and join of a finite number of lattice elements:

$$
\begin{aligned}
& \sum_{i=1}^{n} P_{i}=\Sigma\left\{P_{1}, \ldots, P_{n}\right\}=P_{1}+\ldots+P_{n} \\
& \prod_{i=1}^{n} P_{i}=\Pi\left\{P_{1}, \ldots, P_{n}\right\}=P_{1} \cdot P_{2} \ldots \ldots \cdot P_{n}=P_{1} \ldots P_{n}
\end{aligned}
$$

Every element of \mathfrak{P} can be represented as:

$$
\begin{equation*}
\sum_{\sigma_{i} \varepsilon \tau}\left(\prod_{j \in \sigma_{i}} A_{j}\right) \quad(\tau \text { finite }) \tag{*}
\end{equation*}
$$

If we require $\left\langle\sigma_{n}\right\rangle_{n}$ to be an enumeration of all finite species (ordered in natural order) of natural numbers, without repetitions, and if

$$
i \neq j ; i, j \in \tau \rightarrow \neg \sigma_{i} \subset \sigma_{j} \& \neg \sigma_{j} \subset \sigma_{i}
$$

this representation is unique, i.e. different expressions represent different elements of \mathfrak{P}.
1.4. We introduce a mapping φ from $\mathfrak{A} \cup\left\{A_{0}, A_{\infty}\right\}$ into $\{0,1\}$, which fulfils the following conditions:

I 1. $\wedge \mathrm{n}\left(\varphi \cdot \mathrm{A}_{\mathrm{n}}=1\right), \varphi A_{0}=0, \varphi A_{\infty}=1$
I 2. $\varphi_{i} A_{n_{1}} A_{n_{2}} \ldots A_{n_{s}}=1 \&\left\{m_{1}, \ldots, m_{t}\right\} \subset\left\{n_{1}, \ldots, n_{s}\right\} \rightarrow$ $\varphi A_{m_{1}} A_{m_{2}} \ldots A_{m_{t}}=1$.
φ can be extended to \mathfrak{B} by stipulating:

$$
\varphi\left(P_{1}+\ldots+P_{n}\right)=1 \leftrightarrow V i\left(1 \leqslant i \leqslant n \& \rho P_{i}=1\right)
$$

Such an extension is possible in a unique way, as follows from the possibility of representing the lattice elements in a unique way by expressions such as (*) in 1.3.
1.5. Remark. $\wedge n\left(\varphi A_{n} A_{\infty}=1\right), \wedge n\left(\varphi A_{n} A_{0}=0\right)$.
1.6. Definition. $\quad \mathrm{P} \subset_{\varphi} \mathrm{Q} \leftrightarrow \wedge \mathrm{n}\left(\varphi P A_{n}=1 \rightarrow \varphi Q A_{n}=1\right)$.

Remark. Here and in the sequel we define relations and operations with respect to φ; but in the notation, as long as no confusion can arise, we omit the explicit reference to φ, so we write $P \subset Q$ instead of $P \subset_{\varphi} Q$, etc..
We postulate:
I 3. $P \subset Q \rightarrow P R \subset Q R$, for all P, Q, R.
1.7. A number of very elementary properties of ρ and the derived relations \subset, \sim are combined in the following theorem. Theorem. For all $P, Q, R, P^{\prime}, Q^{\prime}$:
a) $\varphi P=1 \leftrightarrow \vee n\left(\varphi P_{n}=1\right) ; \wedge n\left(\varphi P_{n}=0\right) \leftrightarrow \varphi P=0$; $P \sim Q \rightarrow(\varphi P=1 \leftrightarrow \varphi Q=1)$.
b) $\varphi \mathrm{PQ}=1 \rightarrow \varphi \mathrm{P}=1 ; \varphi \mathrm{P}=0 \rightarrow \varphi \mathrm{PQ}=0$. More general:

Q $P_{1} \ldots P_{n}=1 \&\left\{m_{1}, \ldots, m_{\mathfrak{t}}\right\} \subset\{1, \ldots, n\} \rightarrow$
$0 P_{m_{1}} \ldots P_{m_{t}}=1$.
c) $P \subset Q \& Q \subset R \rightarrow P \subset R ; P \subset P$.
d) \sim is an equivalence relation.
e) $\mathrm{P} \subset \mathrm{Q} \rightarrow \mathrm{P}+\mathrm{R} \subset \mathrm{Q}+\mathrm{R}$.
f) $P \sim Q \rightarrow P+R \sim Q+R \& P R \sim Q R$.
g) $\varphi P=0 \leftrightarrow P \sim A_{0} ; \wedge n\left(\varphi P A_{n}=1\right) \leftrightarrow P \sim A_{\infty}$.
h) $P \sim P^{\prime} \& Q \sim Q^{\prime} \& P \subset Q \rightarrow P^{\prime} \subset Q^{\prime}$.
i) $\mathrm{P} \subset \mathrm{Q} \leftrightarrow \mathrm{PQ} \sim \mathrm{P} \leftrightarrow \mathrm{P}+\mathrm{Q} \sim \mathrm{Q} ; \mathrm{P} \subset \mathrm{Q} \& \varphi \mathrm{P}=1 \rightarrow$ $\varphi Q=1$.
j) $\mathrm{P} \subset \mathrm{Q} \rightarrow \mathrm{PR} \subset \mathrm{Q} \& \mathrm{P} \subset \mathrm{Q}+\mathrm{R} ; \mathrm{PR} \subset \mathrm{P} ; \mathrm{P} \subset \mathrm{P}+\mathrm{R}$.
k) $P \subset Q \& P \subset R \rightarrow P \subset Q R$.

1) $P \subset R \& Q \subset R \rightarrow P+Q \subset R$.
m) $P \subset Q+R \& \varphi P R=0 \rightarrow P \subset Q$.

Proof: Most of the assertions are trivial consequences of the definitions.
(a) By 1.3 (*) $P={\underset{\sigma}{i} \in \tau}_{\sum}\left(\prod_{j \in \sigma_{i}} A_{j}\right) ; \varphi P=1$ implies that for a certain $\sigma_{\mu} \varphi\left(\prod_{\mathrm{j} \varepsilon \varepsilon_{\mu}} A_{j}\right)=1$; hence for a certain $\nu \epsilon \sigma_{\mu}, \emptyset \mathrm{A}_{\nu} \mathrm{P}=1$.

 $\lambda \in \sigma_{\mu}$, then $\varphi A_{v} A_{\lambda}=1$.
So $\mathrm{Vn}\left(\varphi \mathrm{PA}_{\mathrm{n}}=1\right)$. The second assertion of (a) follows from the first by negating both sides. The third assertion is immediate from 1.6, the second and the first assertion.
(b) The second and the third assertion follow from the first. Let $\rho P Q=1, P=P_{1}+\ldots+P_{v}, Q=Q_{1}+\ldots+Q_{\mu}, P_{1}, \ldots, P_{v}$, Q_{1}, \ldots, Q_{μ} meets of elements of \mathfrak{Q}. $\varphi P Q=1 \rightarrow V i \quad V j\left(\varphi P_{i} Q_{j}=1\right)$. Suppose $\varphi P_{\lambda} Q_{\sigma}=1$.
By application of $I 2$ we obtain $\varphi P_{\lambda}=1$; hence also $\varphi P=1$. (c),(d), (e), (f) are easily verified.
(g) $\varphi \mathrm{P}=0 \leftrightarrow \wedge \mathrm{n}\left(\varphi \mathrm{PA}_{\mathrm{n}}=0\right.$) (by (a)).
$\wedge \mathrm{n}\left(\varphi \mathrm{PA}_{\mathrm{n}}=0\right) \& \wedge \mathrm{n}\left(\varphi \mathrm{A}_{0} \mathrm{~A}_{\mathrm{n}}=0\right) \leftrightarrow \wedge \mathrm{n}\left(\varphi \mathrm{PA}_{\mathrm{n}}=0 \leftrightarrow\right.$ $\left.\varphi A_{0} A_{n}=0\right) \leftrightarrow P \sim A_{0}$.
$P \underset{\sim}{\sim} A_{\infty} \leftrightarrow \Lambda_{n}\left(\varphi P A_{n}=1 \leftrightarrow \rho A_{\infty} A_{n}=1\right) \leftrightarrow \Lambda_{n}\left(\varphi P A_{n}=1\right)$.
(h) is trivial.
(i) If $P Q \sim P \& \varphi P A_{v}=1$, then $\varphi P Q_{v}=1$, hence by (b) $\varphi \mathrm{QA}_{\nu}=1$. So $P \subset \mathrm{Q}$.

If $P \subset Q_{s}$ and $\varphi P Q_{v}=1$, we have obtained also $\varphi P A_{v}=1$. So $\mathrm{PQ} \subset \mathrm{P}$. By I $3: \mathrm{P} \subset \mathrm{Q} \rightarrow \mathrm{PP} \subset \mathrm{QP}$, so $\mathrm{PQ} \sim \mathrm{P}$. If $P+Q \sim Q_{,} \varphi P A_{v}=1$, we obtain $\varphi(P+Q) A_{v}=1$, and therefore $\varphi \mathrm{QA}_{v}=1$, hence $\mathrm{P} \subset \mathrm{Q} . \mathrm{P} \subset \mathrm{Q} \& \varphi \mathrm{PA}_{v}=1 \rightarrow$ $\varphi \mathrm{QA}_{v}=1$, and so we have $\varphi(\mathrm{P}+\mathrm{Q}) \mathrm{A}_{v}=1 \rightarrow \varphi \mathrm{QA}_{v}=1$. Hence $P+Q \sim Q$, since $\varphi \mathrm{QA}_{v}=1 \rightarrow \varphi(\mathrm{P}+\mathrm{Q}) \mathrm{A}_{v}=1$ holds trivially for every ν. The second part follows from the first and (b).
(j), (k), (l) are proved by simple verification.
$(\mathrm{m}) \mathrm{P} \subset \mathrm{Q}+\mathrm{R} \rightarrow \mathrm{P}(\mathrm{Q}+\mathrm{R}) \sim \mathrm{P}$, so $\mathrm{PQ}+\mathrm{PR} \sim \mathrm{P}$. $\varphi P R=0$, hence $P R \sim A_{0}$. By (f) $P Q+P R \sim P Q+A_{0}=P Q$; by (d) $\mathrm{PQ} \sim \mathrm{P}$, and by (i) $\mathrm{P} \subset \mathrm{Q}$.
1.8. Definition. A sequence of lattice elements $\left\langle P_{n}\right\rangle_{n}$ is called a centered system if $\wedge n\left(\varphi P_{1} \ldots P_{n}=1\right)$.
1.9. We introduce a certain species Π of centered systems, the species of point generators. Π is, just like φ, a primitive notion in our axiomatic theory (i.e. a notion, not defined by means of other notions). If we specialize φ, Π in describing special kinds of topological spaces, Π can be defined explicitly sometimes. We require (splitting axiom):

I 4. $\varphi R Q=0 \&\left\langle P_{n}\right\rangle_{\mathrm{n}} \in \Pi \rightarrow V n\left(\varphi P_{1} \ldots P_{n} R=0 \mathrm{v}\right.$ $\varphi P_{1} \ldots P_{n} Q=0$) for all R, Q and $\left\langle P_{n}\right\rangle_{n} \in \Pi$.
The condition $\rho R Q=0 \rightarrow \vee n\left(\varphi P_{1} \ldots P_{n} R=0 \vee \varphi P_{1} \ldots P_{n} Q=0\right)$ for a centered system will be called the splitting condition with respect to R,Q.

The species of all centered systems which fulfil the splitting condition with respect to every pair R,Q and which contain atleast one lattice element not equal to A_{∞} (splitting systems) will be indicated by Σ.
1.10. Definition. We define a membership relation between a point generator $\left\langle P_{n}\right\rangle_{n}$ and a lattice element Q by:

$$
\left\langle P_{n}\right\rangle_{n} \in Q \leftrightarrow \wedge m\left(\varphi P_{1} \ldots P_{m} Q=1\right)
$$

We require
I 5. For every $P, \varphi P=1 \rightarrow V\left\langle R_{n}\right\rangle_{n} \in \Pi\left(\left\langle R_{n}\right\rangle_{n} \in P\right)$.
1.11. Definition. $\left\langle P_{n}\right\rangle_{n},\left\langle Q_{n}\right\rangle_{n} \in$ n.
$\left\langle P_{n}\right\rangle_{n} \#\left\langle Q_{n}\right\rangle_{\mathrm{n}} \leftrightarrow V \mathrm{~m}\left(9 P_{1} \ldots P_{m} Q_{1} \ldots Q_{m}=0\right)$ $\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n} \leftrightarrow \wedge m\left(\rho P_{1} \ldots P_{m} Q_{1} \ldots Q_{m}=1\right)$ $\left\langle P_{n}\right\rangle_{n} \omega R \leftrightarrow V m\left(\varphi P_{1} \ldots P_{m} R=0\right)$

1. 12. Theorem. For all $\left\langle P_{n}\right\rangle_{n},\left\langle Q_{n}\right\rangle_{n},\left\langle R_{n}\right\rangle_{n} \in \Pi$, and all Q, R:
a) \# is a pre-apartness relation.
b) $\neg\left\langle P_{n}\right\rangle_{n} \#\left\langle Q_{n}\right\rangle_{n} \rightarrow\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n}$
c) $\left\langle P_{n}\right\rangle_{n} \omega Q \& Q \sim R \rightarrow\left\langle P_{n}\right\rangle_{n} \omega R$
d) $\neg\left\langle P_{n}\right\rangle_{n} \omega Q \leftrightarrow\left\langle P_{n}\right\rangle_{n} \in Q ; \neg \neg\left\langle P_{n}\right\rangle_{n} \in Q \rightarrow\left\langle P_{n}\right\rangle_{n} \in Q$.
e) $\left\langle P_{n}\right\rangle_{n} \omega Q \&\left\langle R_{n}\right\rangle_{n} \in Q \rightarrow\left\langle P_{n}\right\rangle_{n} \#\left\langle R_{n}\right\rangle_{n}$; $\left\langle P_{n}\right\rangle_{n} \simeq\left\langle R_{n}\right\rangle_{n} \&\left\langle P_{n}\right\rangle_{n} \omega Q \rightarrow\left\langle R_{n}\right\rangle_{n} \omega Q$.
f) $\left\langle P_{n}\right\rangle_{n} \omega R \& Q \subset R \rightarrow\left\langle P_{n}\right\rangle_{n} \omega Q ;\left\langle P_{n}\right\rangle_{n} \omega Q \rightarrow\left\langle P_{n}\right\rangle_{n} \omega Q R$.
g) $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \omega \mathrm{Q} \&\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \omega \mathrm{R} \leftrightarrow\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \omega(\mathrm{Q}+\mathrm{R})$.

Proof. (a) The symmetry is immediate. $\left\langle P_{n}\right\rangle_{n} \#\left\langle Q_{n}\right\rangle_{n}$ implies:
for a certain $\nu \quad Q P_{1} \ldots P_{v} Q_{1} \ldots Q_{v}=0$. By I 4 there exists a μ such that $\varphi P_{1} \ldots P_{v} R_{1} \ldots R_{\mu}=0 \vee \varphi Q_{1} \ldots Q_{\nu} R_{1} \ldots R_{\mu}=0$. If we take $\lambda=\sup \{\nu, \mu\}$, we obtain:

$$
\varphi P_{1} \ldots P_{\lambda} R_{1} \ldots R_{\lambda}=0 \vee \varphi Q_{1} \ldots Q_{\lambda} R_{1} \ldots R_{\lambda}=0
$$

hence $\left\langle P_{n}\right\rangle_{n} \#\left\langle R_{n}\right\rangle_{n} v\left\langle Q_{n}\right\rangle_{n} \#\left\langle R_{n}\right\rangle_{n}$.
(b) is immediate from 1.11, (c) is trivial, (d) is immediate from 1.10,1.11.
(e) For a certain $\nu \quad P_{1} \ldots P_{v} Q=0$; there exists (by I 4) a μ such that $\varphi P_{1} \ldots P_{\nu} R_{1} \ldots R_{\mu}=0 \vee \varphi R_{1} \ldots R_{\mu} Q=0$. The second possibility is excluded, since $\left\langle R_{n}\right\rangle_{n} \in Q$. If $\lambda=\sup \{\nu, \mu\}$, we obtain $\varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\lambda} \mathrm{R}_{1} \ldots \mathrm{R}_{\lambda}=0$, so $\left\langle P_{n}\right\rangle_{n} \#\left\langle R_{n}\right\rangle_{n}$. The second assertion is proved in the same manner.
(f) For a certain $\nu \quad \varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{v}} \mathrm{R}=0 . \mathrm{QR} \sim \mathrm{Q} \leftrightarrow \mathrm{Q} \subset \mathrm{R}(1.7(\mathrm{i}))$; i $P_{1} \ldots P_{v} Q R=0 . Q R \sim Q \rightarrow P_{1} \ldots P_{v} Q R \sim P_{1} \ldots P_{v} Q$ (1.7(f)), hence $\varphi P_{1} \ldots P_{v} Q=0$ (1.7(a)). The second assertion is immediate from the first.
(g) Let $\varphi P_{1} \ldots P_{\nu} Q=0 \& \varphi P_{1} \ldots P_{\mu} R=0, \lambda=\sup (\nu, \mu)$. Then we obtain: $\rho P_{1} \ldots P_{\lambda}(Q+R)=0$, hence $\left\langle P_{n}\right\rangle_{n} \omega$ $(Q+R)$.
1.13. Definition. By $1.12(\mathrm{~b}), \simeq$ is an equivalence relation. The species of equivalence classes of ΠI will be indicated by Π°; the elements of Π° are called points. The equivalence class corresponding to a certain $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi$ will be written as $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle$ 䓝.

Lower case letters p,q,r (indexed if necessary) will be used to mark elements of Π°. Capitals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ (indexed if necessary) will be used to mark pointspecies; other capitals or lower case letters will be introduced occasionally for these purposes.
1.14. Definition. $p, q \in \Pi^{0}$.
$p \# q \leftrightarrow \Lambda\left\langle P_{n}\right\rangle_{n} \in p \Lambda\left\langle Q_{n}\right\rangle_{n} \in q\left(\left\langle P_{n}\right\rangle_{n} \#\left\langle Q_{n}\right\rangle_{n}\right)$.
$\mathrm{p} \omega \mathrm{Q} \leftrightarrow \Lambda\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{p}\left(\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \omega \cdot \mathrm{Q}\right) ; \mathrm{p} \epsilon \mathrm{Q} \leftrightarrow \neg \mathrm{p} \omega \mathrm{Q}$.
1.15. Theorem. For all p, q, Q, R :
a) $\left.V\left\langle P_{n}\right\rangle_{n} \in \mathrm{p} V<\mathrm{Q}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{q}\left(\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \#\left\langle\mathrm{Q}_{\mathrm{n}}\right\rangle_{\mathrm{n}}\right) \rightarrow \mathrm{p} \# \mathrm{q}$.
b) $V\left\langle P_{n}>_{n} \in p\left(\left\langle P_{n}\right\rangle_{n} \omega Q\right) \rightarrow p \omega\right.$.
b) \# is an apartness relation between points.
c) $p \in Q \leftrightarrow \Lambda\left\langle P_{n}\right\rangle_{n} \in p\left(\left\langle P_{n}\right\rangle_{n} \in Q\right) \leftrightarrow V\left\langle P_{n}\right\rangle_{n} \in p\left(\left\langle P_{n}\right\rangle_{n} \in Q\right)$; $\neg \neg p \in Q \leftrightarrow p \in Q$.
d) $p \omega R \& Q \subset R \rightarrow p \omega Q ; p \omega Q \rightarrow p \omega Q R$; $p \omega Q \& p \omega R \rightarrow p \omega(Q+R)$.

Proof. (a) follows from: $\left\langle P_{n}\right\rangle_{n} \#\left\langle Q_{n}\right\rangle_{n} \&\left\langle P_{n}\right\rangle_{n} \simeq\left\langle P_{n}^{\prime}\right\rangle_{n}$ \& $\left\langle Q_{n}\right\rangle_{n} \simeq\left\langle Q_{n}^{\prime}\right\rangle_{n} \rightarrow\left\langle P_{n}^{\prime}\right\rangle_{n} \#\left\langle Q_{n}^{\prime}\right\rangle_{n}$ (by 1.12(a), (b), and from 1.12(e)).
(b) is immediate from 1.12(a), (b).
(c) $\mathrm{p} \in \mathrm{Q} \leftrightarrow \neg \mathrm{p} \omega \mathrm{Q} \leftrightarrow \neg \wedge\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{p}\left(\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \omega \mathrm{Q}\right) \leftrightarrow$
$\neg V\left\langle P_{n}\right\rangle_{n} \in p\left(\left\langle P_{n}\right\rangle_{n} \omega Q\right)$ (by a)) $\leftrightarrow \wedge\left\langle P_{n}\right\rangle_{n} \in p \rightarrow\left(\left\langle P_{n}\right\rangle_{n} \omega\right.$ Q)
$\leftrightarrow \Lambda\left\langle P_{n}\right\rangle_{n} \in p\left(\left\langle P_{n}\right\rangle_{n} \in Q\right) \leftrightarrow V\left\langle P_{n}\right\rangle_{n} \in p\left(\left\langle P_{n}\right\rangle_{n} \in Q\right.$) (by
contraposition from the second assertion of 1.12(e)).
$\neg \neg \mathrm{p} \in \mathrm{Q} \leftrightarrow \mathrm{p} \in \mathrm{Q}$ is immediate from 1.14.
(d) follows from 1.12(f), (g).
1.16. Definition. $[P]=\left\{p: p \in \Pi^{\circ} \& p \in P\right\}$.

After proving theorem 1.17(a) we shall be justified in writing $P \subset V, V \subset P$ instead of $[P] \subset V, V \subset[P]$, since no ambiguity is possible.
1.17. Theorem.
a) For all $P, Q: P \subset Q \leftrightarrow[P] \subset[Q]$.
b) For all $P, Q:[P Q]=[P] \cap[Q]$.
c) For all finite species $\left\{Q_{1, \ldots}, \ldots Q_{\mu}\right\}$:

$$
\left[Q_{1}+\ldots+Q_{\mu}\right] \text { congruent }\left[Q_{1}\right] \cup \ldots \cup\left[Q_{\mu}\right]
$$

Proof. (a) By contraposition from 1.12(f), first assertion: $\left\langle R_{n}\right\rangle_{n} \in P \& P \subset Q \rightarrow\left\langle R_{n}\right\rangle_{n} \in Q$, hence [P] $\subset[Q]$. Conversely, we suppose $[P] \subset[Q]$. Let for a certain $\nu \quad{ }_{\rho} P A_{v}=1$. By I 5 an $\left\langle R_{n}\right\rangle_{n} \in \Pi,\left\langle R_{n}\right\rangle_{n} \in P A_{v}$ can be found. $P A_{v} \subset A_{v}$ by $1.7(j)$; hence $\left[P A_{v}\right] \subset\left[A_{v}\right]$, therefore $\left\langle R_{n}\right\rangle_{n} \in A_{v}$. Suppose $\varphi Q A_{v}=0$. By I 4 there exists a μ such that

$$
\varphi R_{1} \ldots R_{\mu} Q=0 \vee \vartheta R_{1} \ldots R_{\mu} A_{v}=0
$$

The second possibility is excluded, hence o $R_{1} \ldots R_{\mu} Q=0$; but this contradicts $\left\langle R_{n}\right\rangle_{n} \in Q$, so $\varphi Q A_{v}=1$. We have therefore proved by this argument: $P \subset Q$.
(b) By 1.7(j): PQ $\subset P \& P Q \subset Q . P Q \subset P \& P Q \subset Q \rightarrow$ $[P Q] \subset[P] \&[P Q] \subset[Q]$ (by (a)), hence
$[P Q] \subset[P] \cap[Q]$.
Let $r \in[P] \cap[Q],\left\langle R_{n}\right\rangle_{n} \in r_{\text {, }}$ then $\wedge_{n}\left(\varphi R_{1} \ldots R_{n} P=1 \&\right.$ $\vartheta R_{1} \ldots R_{n} Q=1$). Suppose for a certain $\nu \geqslant R_{1} \ldots R_{v} P Q=0$. $\varphi R_{1} \ldots R_{v} P Q=0 \rightarrow \varphi\left(R_{1} \ldots R_{v} P\right)\left(R_{1} \ldots R_{v} Q\right)=0$.
By I 4 there exists a μ such that
$\varphi\left(R_{1} \ldots R_{\mu}\right)\left(R_{1} \ldots R_{v} P\right)=0 \vee \rho\left(R_{1} \ldots R_{\mu}\right)\left(R_{1} \ldots R_{v} Q\right)=0$. Take $\lambda=\sup \{\mu, \nu\}$. We obtain the disjunction $\varphi R_{1} \ldots R_{\lambda} P=0 v$ $\varphi R_{1} \ldots R_{\lambda} Q=0$, which contradicts our initial assumptions. Therefore $\wedge \mathrm{n}\left(\varphi \mathrm{R}_{1} \ldots \mathrm{R}_{\mathrm{n}} \mathrm{PQ}=1\right)$, so $\left\langle\mathrm{R}_{\mathrm{n}}>_{\mathrm{n}} \in \mathrm{PQ}\right.$; this implies $r \in[P Q]$. Thus we have proved [P] $\cap[Q] \subset[P Q]$.
(c) $Q_{i} \subset Q_{1}+\ldots+Q_{\mu}, 1 \leqslant i \leqslant \mu(1.7(j))$. By (a) we have the result $\left[Q_{i}\right] \subset\left[Q_{1}+\ldots+Q_{\mu}\right]$ for $1 \leqslant i \leqslant \mu$, and consequently $\left[Q_{1}\right] \cup \ldots \cup\left[Q_{\mu}\right] \subset\left[Q_{1}+\ldots+Q_{\mu}\right]$.

By induction we obtain from $1.12(\mathrm{~g})$, if $\left\langle R_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi$:
$\left\langle R_{n}\right\rangle_{n} \omega Q_{1} \& \ldots \&\left\langle R_{n}\right\rangle_{n} \omega Q_{\mu} \leftrightarrow\left\langle R_{n}\right\rangle_{n} \omega\left(Q_{1}+\ldots+Q_{\mu}\right)$ We have further
$\neg\left(\underset{1 \leqslant i \leqslant \mu}{\hat{1}}\left(\left\langle R_{n}\right\rangle_{n} \omega Q_{i}\right)\right) \leftrightarrow \neg \neg{ }_{1 \leqslant i \leqslant \mu}^{V}\left(\left\langle R_{n}\right\rangle_{n} \in Q_{i}\right)$.
Hence $\underset{r}{r} \in\left[Q_{1}+\ldots+Q_{\mu}\right] \rightarrow \neg \neg r \in\left[Q_{1}\right] \cup\left[Q_{2}\right] \cup$ $\ldots \cup\left[Q_{\mu}\right]$.
1.18. Definitions.
$\mathrm{V} \mathbb{C} \mathrm{W} \leftrightarrow \Lambda\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi \operatorname{Vm}\left(\left[\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}}\right] \cap \mathrm{V}=\emptyset \mathrm{V}, \begin{array}{l}\mathrm{V} \\ \left.\left[\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}}\right] \subset \mathrm{W}\right)\end{array}\right.$
$\mathrm{V} \mathbb{C}^{\prime} \mathrm{W} \leftrightarrow \wedge \mathrm{p}(\mathrm{p} \notin \mathrm{V} v \mathrm{p} \in \mathrm{W})$.
$\mathrm{V} \mathbb{E}^{\prime \prime} \mathrm{W} \leftrightarrow \wedge\left\langle\mathrm{P}_{\mathrm{n}_{1}}\right\rangle_{\mathrm{n}} \in \Pi\left(\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{* *} \epsilon \mathrm{~V} \rightarrow \mathrm{Vn}\left(\left[\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}\right] \subset \mathrm{W}\right)\right)$. Remark. © \mathbb{C} " ${ }^{\prime \prime}$ are relations depending on φ, Π; explicit reference to φ, Π will be omitted generally. (See also 1.28). \mathbb{C} is called the relation of strong inclusion.
For lattice elements we define relations $\chi, \chi=\mathbb{C}, \mathbb{C}^{\prime}, \mathbb{C}^{\prime \prime}$ by $P \times Q \rightarrow[P] \times[Q]$.
1.19. Remarks. (a) By the foregoing definition, $P \Subset Q$ can be defined as $P \mathbb{C} Q \leftrightarrow \wedge\left\langle R_{n}\right\rangle_{n} \in \Pi \vee m\left(\varphi R_{1} \ldots R_{m} P=0 \vee\right.$ $R_{1} \ldots R_{m} \subset$ Q).
b) $V \mathbb{C}^{\prime} \mathrm{W}$ is classically equivalent to $V \subset W$.

Some elementary properties of the relations © © © , ©' are collected in the following theorem.
1.20. Theorem.
a) $\mathrm{V} \Subset \mathrm{W} \rightarrow \mathrm{V}$ © ${ }^{\prime} \mathrm{W}$
b) V © $W \rightarrow V \mathbb{C}^{\prime \prime} W$.

The following assertions hold for $\chi=\mathbb{\Subset}, \mathbb{C}^{\prime}, \mathbb{C}^{\prime \prime}$:
c) $\mathrm{V} \nsim \mathrm{W} \rightarrow \mathrm{V} \subset \mathrm{W}$.
d) $\mathrm{U} \chi \mathrm{V} \& \mathrm{~V} \subset \mathrm{~W} \rightarrow \mathrm{U} \chi \mathrm{W}$; $\mathrm{U} \subset \mathrm{V} \& \mathrm{~V} x \mathrm{~W} \rightarrow \mathrm{U} \chi \mathrm{W}$.
e) $\mathrm{U} \chi \mathrm{V} \& \mathrm{U} \chi \mathrm{W} \rightarrow \mathrm{U} \chi(\mathrm{V} \cap \mathrm{W})$.
f) $\mathrm{U} \times \mathrm{V} \rightarrow \mathrm{U} \times(\mathrm{V} \cup \mathrm{W})$.
g) $\mathrm{U} \times \mathrm{V} \rightarrow(\mathrm{U} \cap \mathrm{W}) \times \mathrm{V}$.
h) $P \chi(Q+R) \& \varphi P R=0 \rightarrow P \chi Q$.

The following assertions are also valid:
i) $\mathrm{P} \Subset \mathrm{Q} \& \mathrm{R} \Subset \mathrm{Q} \rightarrow(\mathrm{P}+\mathrm{R}) \mathbb{C} \mathrm{Q}$.
j) $P \Subset Q \& p \in P \& q \notin Q \rightarrow p \# q$.

Proof. (a), (b), (c) are trivial; (d) is proved bystraightforward verification.
(e) is trivial for © \mathbb{C}^{\prime}. Let $U \mathbb{C} V$ \& $U \mathbb{C} W,\left\langle P_{n}\right\rangle_{n} \in \Pi$. There exist ν, μ such that $\left[P_{1} \ldots P_{v}\right] \cap U=\phi \vee\left[P_{1} \ldots P_{v}\right] \subset V$ and $\left[P_{1} \ldots P_{\mu}\right] \cap U=\emptyset v\left[P_{1} \ldots P_{\mu}\right] \subset W$. Let $\lambda=\sup \{\nu, \mu\}$. Since $\left[P_{1} \ldots P_{\lambda}\right]=\left[P_{1} \ldots P_{v}\right] \cap\left[P_{1} \ldots P_{\mu}\right]$ (1.17(b)) we obtain $\left[P_{1} \ldots P_{\lambda}\right] \cap U=\phi \vee\left[P_{1} \ldots P_{\lambda}\right] \subset(V \cap W)$. Likewise for
$(\mathrm{f}),(\mathrm{g})$ are immediate consequences of (d).
(h). Let $P \Subset Q+R, \varphi P R=0,\left\langle S_{n}\right\rangle_{n} \in \Pi$. For certain ν, μ we have $\varphi S_{1} \ldots S_{v} P=0 \vee S_{1} \ldots S_{v} \subset Q+R, \vartheta S_{1} \ldots S_{\mu} P=0 \vee$ $\varphi S_{1} \ldots S_{\mu} R=0$. Take $\lambda=\sup \{\nu, \mu\}$. Then $\varphi S_{1} \ldots S_{\lambda} P=0 v$ $\left(S_{1} \ldots S_{\lambda} \subset Q+R \& \% S_{1} \ldots S_{\lambda} R=0\right)$. Therefore $S_{1} \ldots S_{\lambda} P=0 v$ $S_{1} \ldots S_{\lambda} \subset Q(1.7(\mathrm{~m}))$. Likewise for $\mathbb{C}^{\prime \prime}$.
Let $P \mathbb{c}^{\prime} Q+R, \varphi P R=0, s=\left\langle S_{n}\right\rangle_{n}^{*} \in \Pi^{\circ}$. Then $s \notin[P] v$ $s \in[Q+R]$. There exists a ν such that $\varphi S_{1} \ldots S_{v} P=0 v$ Q $S_{1} \ldots S_{v} R=0$; hence $s \notin[P] v(s \in[Q+R] \&$
$\phi S_{1} \ldots S_{v} R=0$). Since $s \in[Q+R] \& s \notin[R] \rightarrow s \in[Q]$ (1.17(c), $1.15(c))$ we conclude that $s \notin[P] v s \in[Q]$. (i). Let $P \Subset Q \& R \Subset Q,\left\langle S_{n}\right\rangle_{n} \in \Pi$. There exist ν, μ such that $\varphi S_{1} \ldots S_{v} P=0 \vee S_{1} \ldots S_{v} \subset Q$, $\varphi S_{1} \ldots S_{\mu} R=0 v$ $S_{1} \ldots S_{\mu} \subset Q$.

We take again $\lambda=\sup \{\nu, \mu\}$ and obtain $\varphi S_{1} \ldots S_{\lambda}(P+R)=0 v$ $S_{1} \ldots S_{\lambda} \subset Q$.
(j). Let $P \Subset Q,\left\langle R_{n}\right\rangle_{n} \in P,\left\langle S_{n}\right\rangle_{n} \notin Q,\left\langle R_{n}\right\rangle_{n},\left\langle S_{n}\right\rangle_{n} \in \Pi$. There is a ν such that $\phi S_{1} \ldots S_{v} P=0 \vee S_{1} \ldots S_{v} \subset Q$. $S_{1} \ldots S_{\nu} \subset Q$ is impossible, therefore $\varphi S_{1} \ldots S_{v} P=0$. As a consequence $\left\langle S_{n}\right\rangle_{n} \omega P$, so $\left\langle R_{n}\right\rangle_{n} \#\left\langle S_{n}\right\rangle_{n}$ (1.12(e)).
1.21. Definition.

$$
\begin{aligned}
& r \in P \leftrightarrow \Lambda\left\langle R_{n}\right\rangle_{n} \in r \vee m\left(R_{1} \ldots R_{m} \Subset P\right) \\
& r \underline{\epsilon} \mathrm{~V} \leftrightarrow \mathrm{VR}(\mathrm{r} \in \mathrm{E} \subset \mathrm{~V})
\end{aligned}
$$

Int $* V=\{r: r \in \bar{V}\} ; V$ is called open, if $V=\{p: p \in V\}$. The notions $r \underline{\epsilon}^{\prime} P, r \underline{\epsilon}^{\prime \prime} P, r \underline{\epsilon}^{\prime} V, r \underline{\epsilon}^{\prime \prime} V, \mathbb{C}^{\prime}$-open, $\mathbb{E}^{\prime \prime}$-open are defined analogously.
1.22. Theorem. For all r, V, W :
$r \in V$ \& $r \in W \rightarrow r \in V \cap W$
and likewise for ϵ^{\prime}. $\underline{\epsilon}^{\prime \prime}$.
Proof. Let $\left\langle R_{n}\right\rangle{ }_{n}^{*}=\bar{r}$. There are S_{1}, S_{2}, ν, μ such that $R_{1} \ldots R_{\nu} \Subset S_{1} \subset V \& R_{1} \ldots R_{\mu} \Subset S_{2} \Subset W$.
If $\lambda=\sup \{\nu, \mu\}$, the following assertion is also true (by 1.20(e), 1.7(k)).
$R_{1} \ldots R_{\lambda} \Subset S_{1} S_{2} \subset V \cap W$.
Hence $r \underline{\epsilon} V \cap \mathrm{~W}$. Analogously for $\underline{\epsilon}^{\prime}, \underline{\epsilon}^{\prime \prime}$.
1.23. Theorem.
a) The open subspecies of Π° constitute a topology with apartness relation on $\left[A_{\infty}\right]=\Pi^{\circ}$.
b) The $\mathbb{C}^{\prime}-$ open ($\mathbb{C}^{\prime \prime}$-open) subspecies of Π^{0} constitute a topology on $\Pi^{\circ}=\left[A_{\infty}\right]$.
Proof. The union of a species of open ($\mathbb{C}^{\prime}-, \mathbb{C}^{\prime \prime}$-open) pointspecies is again open ($\mathbb{C}^{\prime}-, \mathbb{C}^{\prime \prime}$-open). This is trivial. Let $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mu}$ be open pointspecies. $\mathrm{V}=\mathrm{V}_{1} \cap \mathrm{~V}_{2} \cap \ldots \ldots \mathrm{~V}_{\mu}$. If $p \in V$, we have also $p \in V_{i}, 1 \leqslant i \leqslant \mu$. Since V_{i} is open, $p \in V_{i}$ for $1 \leqslant i \leqslant \mu$. Therefore R_{1}, \ldots, R_{μ} can be found
such that $p \in R_{i} \subset V_{i}, 1 \leqslant i \leqslant \mu$. By 1.22 we obtain $\mathrm{p} \in \mathrm{R}_{1} \ldots \mathrm{R}_{\mu} \subset \mathrm{V}$. Hence V is open too. ϕ and Π° are open in a trivial way.
If we replace $\underline{\epsilon}$ by $\underline{\epsilon}^{\prime}$ or $\underline{\epsilon}^{\prime \prime}$, the argument can be repeated without changes.
To see that condition T4 is fulfilled for open sets, we may argue as follows. Let $p \in \mathrm{~V}, \mathrm{q} \notin \mathrm{V}, \mathrm{V}$ open. $\mathrm{p} \in \mathrm{V}$, so there exists an R such that $p \in R \subset V$. Let $\left\langle P_{n}\right\rangle_{n} \in p$. For a certain $\nu, \mathrm{P}_{1} \ldots \mathrm{P}_{v} \mathbb{C}$. $\mathrm{p} \in \mathrm{P}_{1} \ldots \mathrm{P}_{v}, \mathrm{q} \notin \mathrm{R}$, hence by $1.20(\mathrm{j}) \mathrm{p} \# \mathrm{q}$.
1.24. Remark. If no further specification is given, in the sequel the topology associated with a pair $\langle\theta, \Pi\rangle$ as introduced before will always be supposed to be the topology of the open species in the sense of definition 1.21.
1.25. Definition. A topological space which has been defined by means of a pair $\langle\varphi, \Pi\rangle$ such that the postulates I1-5 hold (with the notion of open according to 1.21) is called an abstract intersection space (in short: abstract I-space).

Any space homeomorphic to an abstract I-space is called an intersection space (I-space).

The expression "the (abstract) I-space 〈 $\varphi, \Pi\rangle$ " means the abstract I-space, defined by a function 9 (with a domain of definition \mathfrak{P}) and a species $I I$ such that I1-5 are satisfied.

The empty species will also be called an I-space.
In the proofs of theorems on I-spaces we suppose the I-space to be abstract in most cases. This can be done without losing generality. The trivial case of the empty space will be disregarded in proofs.

In many statements the qualification "abstract" is omitted, if it is sufficiently clear from the statement itself whether it is about abstract I-spaces (namely if the statement refers to notions defined for abstract I-spaces only, such as lattice elements).

The same convention applies to the notions "abstract IRspace", "abstract PIN-space" etc., to be introduced in the sequel.
1.26. Definition. Let $\Gamma=\langle V, \mathfrak{I}\rangle$ be a topological space, and $\left\langle V_{n}\right\rangle_{\mathrm{n}}$ a located system of pointspecies of $\Gamma_{\text {, }}$ with at least one $\mathrm{V}_{\mathrm{n}} \neq \emptyset$. Suppose $\mathrm{V}_{\nu} \neq \emptyset .\left\langle\mathrm{V}_{\mathrm{n}}^{\prime}\right\rangle_{\mathrm{n}}$ is defined by: $\mathrm{V}_{\mathrm{k}}^{\prime}=\mathrm{V}_{\mathrm{k}}$ if $\mathrm{V}_{\mathrm{k}} \neq \emptyset, \mathrm{V}_{\mathrm{k}}^{\prime}=\mathrm{V}_{\mathrm{v}}$ if $\mathrm{V}_{\mathrm{k}}=\emptyset$.

A mapping ψ is defined on a free distributive lattice \mathfrak{B} with $\mathfrak{N}=\left\langle A_{n}\right\rangle_{n}$ as a set of generators by:

$$
\left\{\begin{array}{l}
\psi \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}}, \psi \mathrm{~A}_{o}=\emptyset, \psi \mathrm{A}_{\infty}=\mathrm{V}, \\
\psi(\mathrm{P}+\mathrm{Q})=\psi \mathrm{P} \underline{\mathrm{U}} \psi \mathrm{Q}, \psi \mathrm{PQ}=\psi \mathrm{P} \cap \psi \mathrm{Q} .
\end{array}\right.
$$

ψ is called a standard mapping (with respect to the located system $\left\langle\mathrm{V}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$).
If we define φ on \mathfrak{B} by $\varphi P=1 \leftrightarrow \psi P \neq \emptyset$, then φ is said to be defined from ψ.

If φ satisfies I1-3 and a species Π of centered systems can be found such that I4-5 are satisfied, and $\langle\varphi, \Pi\rangle$ is homeomorphic to Γ by a mapping ξ which satisfies

$$
\left\langle P_{n}\right\rangle_{n} \in \Pi \& \xi\left\langle P_{n}\right\rangle_{n}^{*}=q \rightarrow \bigcap_{n=1}^{\infty} \psi P_{n}=\{q\}
$$

then $\left\langle V_{n}\right\rangle_{n}$ is said to constitute an I-basis for Γ.
1.27. Remark. The translation of statements about abstract I-spaces (IR-spaces, PIN-spaces etc.) into statements about I-spaces (IR-spaces, PIN-spaces etc.) can be effectuated by means of the preceding definition without difficulty.
1.28. If for the sake of clarity we want to discern various notions for different spaces Γ, Δ, \ldots we use notations such as $\varphi, \varphi_{\Delta}, \Subset_{\Gamma}, \gamma_{\Gamma},{ }^{*} \Gamma, \mathfrak{B}(\Gamma), \mathscr{U}(\Gamma), \Pi(\Gamma)$ etc.
1.29. Remark. Let $\Gamma=\langle\varphi, \Pi\rangle$ be an I-space. To every pointspecies [P] Π° corresponds in a natural way an Ispace Δ^{\prime}, if [P$]$ is provided with the relative topology. If $\mathfrak{A}(\Gamma)=\left\langle A_{n}\right\rangle_{n}$, then $\left\langle\left[A_{n} P\right]\right\rangle_{n}$ is an I-basis for Δ^{\prime}. Let ψ be a standard mapping with respect to the located system $\left\langle\left[P A_{n}\right]\right\rangle_{n}$, and let φ_{Δ} be defined from $\psi . \Pi(\Delta)$ can be defined by:
$\left\langle P_{n}\right\rangle_{n} \in \Pi(\Delta) \leftrightarrow V\left\langle R_{n}\right\rangle_{n} \in \Pi \wedge n\left(\left[P R_{n}\right]=\psi P_{n} \&\left\langle R_{n}\right\rangle_{n} \in P\right)$. Then Δ is homeomorphic to Δ^{\prime}.
Therefore Δ^{\prime} can be dealt with by considering $\{P Q: Q \in \mathbb{B}\}$, $\left\{\left\langle P R_{n}\right\rangle_{n}:\left\langle R_{n}\right\rangle_{n} \in \Pi\right.$ \& $\left.\left\langle R_{n}\right\rangle_{n} \in P\right\}$ instead of $\mathfrak{P}(\Delta)$, $\Pi(\Delta)$.

Speaking about the subspace [P], P $\in \mathfrak{P}(\Gamma)$ we always mean [P], provided with the relative topology. Likewise we use notations such as \mathbb{C}_{P}, to indicate strong inclusion in the subspace [P].

We see that for all $P, Q, R \in \mathfrak{P}(\Gamma)$:
$\mathrm{P} \Subset_{\Gamma} \mathrm{Q} \rightarrow \mathrm{PR} \mathbb{C}_{\mathrm{R}} \mathrm{QR}$.
1.30. Lemma. In an I-space the following assertions are valid for all P, Q, R, S :
a) $P \Subset_{S} Q \Subset R \& P, Q, R \subset S \rightarrow P \Subset Q$;
b) $P \mathbb{C}_{Q} R \& P \mathbb{C} \rightarrow P \Subset R$.

Proof. (a) The I-space is supposed to be defined by $\langle\varphi, \Pi\rangle$.
Let $\left\langle\mathrm{T}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi$. There exist μ, ν such that
© $\mathrm{T}_{1} \ldots \mathrm{~T}_{\mu} \mathrm{Q}=0 \vee \mathrm{~T}_{1} \ldots \mathrm{~T}_{\mu} \subset \mathrm{R}$
$\varphi \mathrm{T}_{1} \ldots \mathrm{~T}_{v} \mathrm{SP}=0 \vee \mathrm{~T}_{1} \ldots \mathrm{~T}_{v} \mathrm{~S} \subset \mathrm{Q}$.
Take $\lambda=\sup \{\mu, \nu\}$.

Then $\varphi T_{1} \ldots T_{\lambda} Q=0 \vee T_{1} \ldots T_{\lambda} \subset R$
${ }^{\varphi} T_{1} \ldots T_{\lambda} S P=0 \vee T_{1} \ldots T_{\lambda} S \subset Q$.
$P \subset S$, hence $T_{1} \ldots T_{\lambda} S P \sim T_{1} \ldots T_{\lambda} P . P \Subset R$, therefore ${ }^{\circ} \mathrm{T}_{1} \ldots \mathrm{~T}_{\lambda} \mathrm{P}=0 \vee \mathrm{~T}_{1} \ldots \mathrm{~T}_{\lambda} \subset \mathrm{R}$. If $\mathrm{T}_{1} \ldots \mathrm{~T}_{\lambda} \subset \mathrm{R}$, then $\mathrm{T}_{1} \ldots \mathrm{~T}_{\lambda} \mathrm{S} \sim \mathrm{T}_{1} \ldots \mathrm{~T}_{\lambda}$. Thus we obtain $\varphi \mathrm{T}_{1} \ldots \mathrm{~T}_{\lambda} \mathrm{P}=0 \mathrm{v}$ $\mathrm{T}_{1} \ldots \mathrm{~T}_{\lambda} \subset \mathrm{Q}$, and we have proved $\mathrm{P} \Subset Q$.
(b) is proved by analogous methods.
1.31. There are many possibilities for introducing a topology on a species Π°, defined with respect to $9, \Pi$, if $\mathrm{I} 1-5$ hold. We mention a few of them, besides the possibilities already contained in the substitution of $\mathbb{C}, \mathbb{C}^{\prime \prime}$ for \mathbb{C}.
We assume \mathbb{C} to be defined in the sense of definition 1.18. Three possibilities of defining ϵ are:
a) Definition 1.21
b) $r \in R \leftrightarrow V<P_{n}>_{n} \in r \vee m\left(P_{1} \ldots P_{m} \in R\right)$; $r \underline{\epsilon} V \leftrightarrow V R(r \in R \subset V)$.
c) $r \underline{\epsilon} V \leftrightarrow\{r\} \mathbb{C} V ; r \in R \leftrightarrow\{r\} \mathbb{C}[R]$.

Two possibilities of defining the notion of an open species are:
d) V is open if $\mathrm{V}=\{\mathrm{p}: \mathrm{p} \in \mathrm{V}\}$.
e) $\operatorname{Int}^{* *} V=\{p: p \in V\}$. The species Int [P] constitute a basis for the open sets.
By combination we obtain six possible ways of introducing a topology: $a-d, a-e, b-d, b-e, c-d, c-e$. The combinations $a-d$, $a-e, c-d, c-e$ produce a topology without any difficulty; the combinations $\mathrm{b}-\mathrm{d}, \mathrm{b}-\mathrm{e}$ produce a topology if we add the postulate

I 6. $\left.\left\langle P_{n}\right\rangle_{n} \in \Pi \&<P_{n}\right\rangle_{n} \in Q \rightarrow V\left\langle R_{n}>_{n} \in \Pi\left(\wedge n\left(R_{n+1}=P_{n}\right) \&\right.\right.$
$\left.R_{1}=Q\right)$, for all $\left\langle P_{n}>_{n}, Q\right.$.
1.32. Theorem. Suppose Γ, Δ to be abstract I-spaces with the same lattice \mathfrak{B} and defining function φ, defined by pairs $\langle\varphi, \Pi(\Gamma)\rangle,\langle\varphi, \Pi(\Delta)\rangle$ respectively.
If a) $\Pi(\Gamma) \subset \Pi(\Delta)$
b) $\Lambda\left\langle P_{n}\right\rangle_{n} \in \Pi(\Delta) \quad V\left\langle Q_{n}\right\rangle_{n} \in \Pi(\Gamma)\left(\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n} \quad \&\right.$ $\left.\wedge \mathrm{k} \vee 1\left(\mathrm{P}_{1} \ldots \mathrm{P}_{1} \subset \mathrm{Q}_{1} \ldots \mathrm{Q}_{\mathrm{k}}\right)\right)$
then Γ and Δ are homeomorphic, and $P \mathbb{C}_{\Gamma} Q \leftrightarrow P \mathbb{C}_{\Delta} Q$. Proof. $\Pi^{\circ}(\Gamma)$ can be mapped bi-uniquely in a natural way onto $\Pi^{\circ}(\Delta)$, as is seen from supposition (b); for if $\left\langle P_{n}\right\rangle_{n}^{* T} \in \Pi^{\circ}(\Gamma)$, we can define a mapping ψ by:

$$
\psi\left\langle P_{n}\right\rangle_{n}^{*} \Gamma=\left\langle P_{n}\right\rangle_{n}^{* \Delta} .
$$

$P \Subset_{\Delta} Q \rightarrow P \Subset_{\Gamma} Q$ is trivial. Let $P \mathbb{C}_{\Gamma} Q$. If $\left\langle R_{n}\right\rangle_{n} \in \Pi(\Delta)$, there exists a $\left\langle S_{n}\right\rangle_{n} \in \Pi(\Gamma)$, such that $\left\langle R_{n}\right\rangle_{n} \simeq\left\langle S_{n}\right\rangle_{n}$ and $\wedge k \operatorname{kl}\left(R_{1} \ldots R_{1} \subset S_{1} \ldots S_{k}\right)$.

There is a μ such that $\varphi \mathrm{PS}_{1} \ldots \mathrm{~S}_{\mu}=0 \vee \mathrm{~S}_{1} \ldots \mathrm{~S}_{\mu} \subset \mathrm{Q}$, and there is a ν such that $R_{1} \ldots R_{v} \subset S_{1} \ldots S_{\mu}$. Hence $\rho P R_{1} \ldots R_{v}=0 v$ $R_{1} \ldots R_{\nu} \subset Q$. So $P \mathbb{C}_{\Delta} Q$.
If $r \epsilon_{\Delta} P$, then also $r \epsilon_{\Gamma} P$. Let us suppose $r \epsilon_{\Gamma} P$. If we take $\left\langle R_{n}\right\rangle_{n},\left\langle S_{n}\right\rangle_{n}$ to $\overline{b e}$ the same as before, there are ν, μ such that $S_{1} \ldots S_{v} \mathbb{C}_{\Gamma} P, R_{1} \ldots R_{\mu} \subset S_{1} \ldots S_{v}$. So $R_{1} \ldots R_{\mu} \Subset_{\Gamma} P$, hence $R_{1} \ldots R_{\mu} \Subset_{\Delta} P$. Thus we have proved: $\mathrm{r} \underline{\epsilon}_{\Gamma} \mathrm{P} \rightarrow \mathrm{r} \underline{\epsilon}_{\Delta} \mathrm{P}$. Therefore Γ, Δ must be homeomorphic.
1.33. Definition. We introduce three types of transformations of elements of Σ. Transformations of one of these types are marked by symbols $\phi, \phi_{1}, \ldots, \phi_{v}, \ldots$
a) $\left\langle P_{n}\right\rangle_{n} \in \Sigma$. Φ is a transformation of $\left\langle P_{n}\right\rangle_{n}$ of the first type if $\phi\left\langle P_{n}\right\rangle_{n}=\left\langle Q_{n}\right\rangle_{n}, \wedge n\left(Q_{n}=P_{m_{n}+1} P_{m_{n}+2} \ldots P_{m_{n+1}}\right)$, $\wedge i\left(m_{i+1}>m_{i}\right), m_{1}=0$.
b) $\left\langle P_{n}\right\rangle_{n} \in \Sigma$. Φ is a transformation of $\left\langle P_{n}\right\rangle_{n}$ of the second type if $\phi\left\langle P_{n}\right\rangle_{n}=\left\langle Q_{n}\right\rangle_{n}, Q_{n}=P_{f(n)}$, f a bi-unique mapping of the natural numbers onto the natural numbers.
c) $\left\langle P_{n}\right\rangle_{n} \in \Sigma$. Φ is a transformation of $\left\langle P_{n}\right\rangle_{n}$ of the third type if $\phi\left\langle P_{n}\right\rangle_{n}=\left\langle Q_{n}\right\rangle_{n}$, and if there exists a sequence $\left\langle R_{i}\right\rangle_{i}$, such that $\Lambda_{i} \wedge_{n}\left(\varphi P_{1} \ldots P_{n} R_{i}=1\right)$, and a sequence of nonnegative integers $\left.\left\langle m_{i}\right\rangle_{i}, \wedge n \vee i\left(m_{i}\right\rangle n\right)$, and such that for all $\mathrm{i}, \mathrm{m}_{\mathrm{i}}+\mathrm{i}<\mathrm{n} \leqslant \mathrm{m}_{\mathrm{i}+1}+\mathrm{i} \rightarrow \mathrm{Q}_{\mathrm{n}}=\mathrm{P}_{\mathrm{n}-\mathrm{i}}, \mathrm{n} \leqslant \mathrm{m}_{1} \rightarrow \mathrm{Q}_{\mathrm{n}}=P_{\mathrm{n}}$, $n=m_{i}+i \rightarrow Q_{n}=R_{i}$. Less precise: $\left\langle Q_{n}\right\rangle_{n}=\left\langle P_{1}, \ldots, P_{m_{1}}\right.$, $\left.R_{1}, P_{m_{1}+1}, \ldots, P_{m_{2}}, R_{2}, P_{m_{2}+1}, \ldots, P_{m_{3}}, R_{3}, \ldots\right\rangle$.
1.34. Remark. For transformations of the first and second kind it is immediately clear that the transformed sequence again belongs to Σ. For transformations of the third kind we may argue as follows. Suppose already proved $\wedge n\left(\varphi P_{1} \ldots P_{n} R_{1} \ldots R_{v}\right)=1$ and suppose for a certain μ $P_{1} \ldots P_{\mu} R_{1} \ldots R_{\nu} R_{v+1}=0$. By I 4 there is a λ such that $\varphi\left(P_{1} \ldots P_{\lambda}\right)\left(P_{1} \ldots P_{\mu} R_{1} \ldots R_{v}\right)=0 \vee \varphi\left(P_{1} \ldots P_{\lambda}\right) R_{v+1}=0$. Both possibilities are excluded, therefore
${ }_{\varphi} P_{1} \ldots P_{\mu}^{\prime} R_{1} \ldots R_{v+1}=1$.
Hence $\wedge i{ }^{\mu} \wedge n\left(\rho P_{1} \ldots P_{n} R_{1} \ldots R_{i}=1\right)$.
1.35. Definition. If Γ is an I-space, defined by $\langle\varphi, \Pi\rangle$, we indicate by Π^{*} the subspecies of $\Sigma(\Gamma)$, obtained by closure from Π with respect to transformations of the first, second, and third kind.
1.36. Corollary to 1.32. If Γ is an I-space with a defining pair $\langle\varphi, \Pi\rangle$, then every Δ, defined by $\langle\varphi, \Pi(\Delta)\rangle$ such that $\Pi \subset \Pi(\Delta) \subset \Pi^{*}$, is homeomorphic to Γ.
Proof. It is immediate from 1.33 that the conditions of 1.32 are fulfilled.
1.37. Definition and remark. $\left\{P_{i}: i \in I\right\}$ is called a covering of an abstract I-space Γ, if $\left\{\left[P_{i}\right]: i \in I\right\}$ covers Γ. If $\left\langle P_{n}\right\rangle_{n}$ is a star-finite covering, it is always possible to construct a covering $\left\langle Q_{n}\right\rangle_{n}$ such that $\Lambda n\left(Q_{n} \sim P_{n}\right)$, and such that for every $\nu\left\{Q_{i}: \varphi Q_{i} Q_{\nu}=1\right\}$ is a finite species. (This fact is easily verified, and since it is somewhat laborious to write down the proof is omitted.)
1.38. Theorem. Let Γ be an I-space. If $P_{i} \Subset Q_{i}$ for $1 \leqslant i \leqslant n$, then $\left\{Q_{1}, \ldots, Q_{n}\right\}$ covers $P_{1}+\ldots+P_{n}$.
Proof. Let $\left\langle R_{n}\right\rangle_{n} \in P_{1}+\ldots+P_{n}$. A ν can be found such that $\rho P_{i} R_{1} \ldots R_{v}=1 \rightarrow R_{1} \ldots R_{v} \subset Q_{i}$ for $1 \leqslant i \leqslant n$. Since for a certain $\lambda, 1 \leqslant \lambda \leqslant n$, $\varphi P_{\lambda} R_{1 . \ldots} . R_{v}=1$, we conclude that $R_{1} \ldots R_{\nu} \subset Q_{\lambda}$, therefore $\left\langle R_{n}\right\rangle_{n}^{*} \in Q_{\lambda}$.
2. Representation and separation postulates.
2.1. In this paragraph we consider some representation and separation postulates and their implications for I-spaces.

To begin with, we list some of the possibilities most natural for separation postulates. They are numbered with a letter N, from "normality", since the strongest conditions N6, N8 could be considered as normality postulates.

N1. $\wedge p \wedge q(p \# q \rightarrow V R(p \in R \& q \omega R))$.
N2. $\wedge p \wedge q(p \# q \rightarrow \vee R \vee \bar{S}(p \in R \& q \in S \& \varphi R S=0))$.
N3. $\wedge p \wedge Q\left(p \omega Q \rightarrow \vee R\left(p \in R^{-} \& \rho R Q \equiv 0\right)\right)$.
N4. $\wedge p \wedge Q(p \omega Q \rightarrow V R(p \bar{\omega} R \& Q \Subset R)$.
N5. $\wedge p \wedge Q(p \omega Q \rightarrow V R \vee S(p \in R \& Q \in S \& \rho R S=0))$.
N6. $\wedge \mathrm{P} \wedge \mathrm{Q}\left(\varphi \mathrm{PQ}=0 \rightarrow \vee \mathrm{P}^{\prime} \vee \mathrm{V}^{\prime}\left(\varphi \mathrm{P}^{\prime} \mathrm{Q}^{\prime}=0 \& P \mathbb{C} \mathrm{P}^{\prime} \&\right.\right.$ Q © $\left.\mathrm{Q}^{\prime}\right)$).
N7. $\wedge p \wedge Q(p \in Q \rightarrow V R(p \in R \in Q))$.
$\mathrm{NB}(\mathfrak{B}) . \wedge P \in \mathfrak{B} \wedge Q \in \mathfrak{B}(P \mathbb{C} Q \rightarrow V R \in \mathfrak{B}(P \in R \Subset Q)$.
$\mathrm{N} 8=\mathrm{N} 8(\mathfrak{P})$.
N6 and N8(B) will play the most important role.
The following implications are trivial: $\mathrm{N} 6 \rightarrow \mathrm{~N} 5 \rightarrow(\mathrm{~N} 4 \& \mathrm{~N} 3) \rightarrow$ $\mathrm{N} 2 \rightarrow \mathrm{~N} 1$; (N4 $\vee \mathrm{N} 3$) $\rightarrow \mathrm{N} 1$; N8 $\rightarrow \mathrm{N} 7$ 。
2.2. Definition. Let Π be the species of point generators of an I-space Γ. A subspecies $\Pi_{1} \subset \Pi$ is called a spread representation of Γ, if the following conditions are fulfilled: a) There exists a spread with a defining pair $\langle\theta, \vartheta\rangle$, and with Π_{1} as the species of spread elements. $\langle\theta, \vartheta\rangle$ is called the defining pair of the representation.
b) \checkmark^{*} is a mapping of θ into \mathfrak{P} such that
$\boldsymbol{v}\left\langle i_{1}, \ldots, i_{k}\right\rangle=\left\langle\boldsymbol{v}^{*}\left\langle i_{1}\right\rangle, \boldsymbol{v}^{*}\left\langle i_{1}, i_{2}\right\rangle, \ldots, v^{*}\left\langle i_{1}, \ldots, i_{k}\right\rangle\right.$; we put $\boldsymbol{\vartheta}\left\langle i_{1}, \ldots, i_{k}\right\rangle=\boldsymbol{v}^{*}\left\langle i_{1}\right\rangle \boldsymbol{\vartheta} *\left\langle i_{1}, i_{2}\right\rangle \ldots \boldsymbol{v}^{*}\left\langle i_{1}, \ldots, i_{k}\right\rangle$.

If $\vartheta^{*}\left\langle i_{1}, \ldots, i_{k}\right\rangle=\gamma i_{k}, \Pi_{1}$ is called a normal representation. c) $\Lambda\left\langle P_{n}\right\rangle_{n} \in \Pi V\left\langle Q_{n}\right\rangle_{n} \in \Pi_{1}\left(\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n}\right)$.
2.3. Remarks. a) A normal representation has a property which is very convenient in formulation:

$$
\left\langle\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}\right\rangle \in \vartheta \theta \leftrightarrow\left\langle\gamma \mathrm{i}_{1}, \ldots, \gamma \mathrm{i}_{\mathrm{k}}\right\rangle \in \theta,
$$

hence $\left\langle P_{1}, \ldots, P_{k}\right\rangle \epsilon \vartheta \theta$ is a decidable property.
b) A normal representation is entirely determined by Π_{1}; a spread representation in general, strictly spoken, not (different pairs $\langle\theta, \boldsymbol{v}\rangle$ may produce the same species Π_{1}), but since in our applications no confusion is to be expected, we shall neglect this subtlety in the sequel.
c) A finitary spread representation may always be supposed to be normal, since $\boldsymbol{v} \theta$ contains only finitely many sequences of a given length.
2.4. Definition. A spread representation Π_{1} of an I-space $\langle\varphi, \Pi\rangle$ is called perfect if the defining pair $\langle\theta, \vartheta\rangle$ of the representation satisfies the following condition:
$\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta \&\left\langle Q_{n}\right\rangle_{n} \in \Pi \&\left\langle Q_{n}\right\rangle_{n} \in \overline{\mathcal{V}}\left\langle i_{1}, \ldots, i_{k}\right\rangle \rightarrow$ $\vee\left\langle j_{n}\right\rangle_{n} \vee\left\langle R_{n}\right\rangle_{n} \in \Pi_{1} \wedge m\left(\vartheta^{*} *\left\langle j_{1}, \ldots, j_{m}\right\rangle=R_{m} \&\left\langle j_{1}, \ldots, j_{k}\right\rangle=\right.$ $\left.\left\langle i_{1}, \ldots, i_{k}\right\rangle \&\left\langle Q_{n}\right\rangle_{n} \simeq\left\langle R_{n}\right\rangle_{n}\right)$.
If Π_{1} is normal we obtain a simpler formulation:
$\left\langle P_{1}, \ldots . P_{k}\right\rangle \in \vartheta \theta \&\left\langle Q_{n}\right\rangle_{n} \in \Pi \&\left\langle Q_{n}\right\rangle_{n} \in P_{1} \ldots P_{k} \rightarrow$ $V\left\langle R_{n}\right\rangle_{n} \in \Pi_{1}\left(\left\langle R_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n} \&\left\langle P_{1}, \ldots, P_{k}\right\rangle=\left\langle R_{1}, \ldots, R_{k}\right\rangle\right)$.
2.5. Definition. We say that a subspecies Π_{1} of Π possesses the inclusion property if
$\wedge\left\langle P_{n}\right\rangle_{n} \in \Pi_{1} V\left\langle Q_{n}\right\rangle_{n} \in \Pi_{1}\left(\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n} \& \wedge n\left(P_{1} \ldots P_{n} \Subset\right.\right.$ $\left.Q_{1} \ldots Q_{n}\right)$).
2.6. Definition. A spread representation Π_{1} of an I-space $\langle\varphi, \Pi\rangle$ with a defining pair $\langle\theta, v\rangle$ is called a strong inclusion representation (in short ©-representation) if the following assertion is true:
$\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta \rightarrow \overline{\boldsymbol{v}}\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \overline{\mathcal{V}}\left\langle i_{1}, \ldots, i_{k-1}\right\rangle$, for all $\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta, k>1$.
2.7. Definition. Let $\Gamma=\langle\varphi, \Pi\rangle$ be an I-space. An I-space Δ is called an inessential extension of Γ, if $\mathscr{R}(\Gamma)=\left\langle A_{n}\right\rangle_{n}$, $\mathscr{H}(\Delta)=\left\langle A_{n}\right\rangle_{n} U\left\langle B_{n}\right\rangle_{n},\left\langle A_{n}\right\rangle_{n},\left\langle B_{n}\right\rangle_{n}$ disjoint sequences of different elements and if
a) $A n \vee P \in \mathfrak{P}(\Gamma)\left(B_{n} \sim \Delta P\right)$,
b) $\left\langle R_{n}\right\rangle_{n} \in \Pi(\Delta) \leftrightarrow V<R_{n}^{\prime}>_{n} \in \Pi(\Gamma) \wedge n\left(R_{n} \sim \Delta R_{n}^{\prime}\right)$.
Δ is homeomorphic to Γ, as is trivially seen; it can also be deduced from 1.32.
2.8. Lemma. To an I-space $\boldsymbol{\Gamma}$ with a spread representation Π_{1} always an inessential extension Δ can be found with a normal representation Π_{2} such that
a) Π_{1} is perfect iff Π_{2} is perfect.
b) Π_{1} possesses the inclusion property iff Π_{2} possesses the inclusion property.
c) Π_{1} is a ©-representation iff Π_{2} is a ©-representation. Proof. Let Π_{1} be given by a defining pair $\langle\theta, \vartheta\rangle$, and let $\left\langle\sigma_{i}\right\rangle_{i}$ be an enumeration of θ without repetitions. We put $\mathscr{R}(\Delta)=\left\langle A_{n}\right\rangle_{n} U\left\langle B_{n}\right\rangle_{n},\left\langle A_{n}\right\rangle_{n}=\mathscr{N}(\Gamma), \quad \wedge_{n}\left(B_{n} \sim \vartheta^{*} \sigma_{n}\right)$.
Now we construct Π_{2} with a defining pair $\left\langle\theta^{\prime}, \vartheta^{\prime}\right\rangle$ such that $\left\langle j_{1}, \ldots, j_{k}\right\rangle \epsilon \theta^{\prime} \leftrightarrow\left\langle\gamma_{\Delta} j_{1}, \ldots, \gamma_{\Delta} j_{k}\right\rangle=\left\langle B_{i_{1}}, \ldots, B_{i_{k}}\right\rangle \&$ $\sigma_{i_{1}}=\left\langle 1_{1}\right\rangle \& \sigma_{i_{2}}=\left\langle 1_{1}, 1_{2}\right\rangle \& \ldots \& \sigma_{\mathrm{i}_{\mathrm{k}}}=\left\langle 1_{1}, \ldots, 1_{\mathrm{k}}\right\rangle^{\mathrm{l}} \in \quad \theta$; $v^{\prime}\left\langle j_{1}, \ldots, j_{k}\right\rangle=\left\langle\gamma_{\Delta} j_{1}, \ldots, \gamma_{\Delta} j_{k}\right\rangle$.
(b), (c) are trivial.
(a) is proved by a verification somewhat lengthy but very straightforward; hence the proof is omitted.
2.9. Remark. In many cases, if we want to prove a topological property (e.g. metrizability) for a space Γ, using the existence of certain representations, we can use a normal representation instead, with properties analogous to the properties of the original representation, for an inessential extension of Γ.

Conversely, the existence of a spread representation in general for a special type of spaces (or for a special example) is in most cases more easily demonstrated than the existence of a normal representation; lemma 2.8 makes an easy transition possible.
2.10. Some of the most natural representation postulates are:

R1. There exists a spread representation $\Pi_{1} \subset \Pi$.
R2. There exists a perfect representation $\Pi_{1} \subset \Pi$.
R3. There exists a perfect representation $\Pi_{1} \subset \Pi$ which possesses the inclusion property.
R4. There exists a ©-representation $\Pi_{1} \subset \Pi$.
R5. $\left.\Lambda\left\langle P_{n}\right\rangle_{n} \in \Pi V<Q_{n}\right\rangle_{n} \in \Pi\left(\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n}\right.$ \& $\left.\wedge n\left(Q_{n+1} \Subset Q_{n}\right)\right)$.
The following implications are trivial: $\mathrm{R} 3 \rightarrow \mathrm{R} 2 \rightarrow \mathrm{R} 1 ; \mathrm{R} 4 \rightarrow \mathrm{R} 5$. The postulates R5, R3, R4 will prove of special importance. In this paragraph we want to develop the properties of spaces which satisfy some representation and normality postulates. Because of their complication the postulates R1-R4 cannot be called elegant; therefore most theorems about spaces satisfying one or more of these postulates must be considered as tools destined for application to more naturally defined spaces.
2.11. Definition. An abstract I-space in which R5 holds is called an abstract IR-space. Any space homeomorphic to an abstract IR-space is called an IR-space.
IR-spaces are classically equivalent to regular spaces with a countable basis. An IR-basis is defined in the same manner as an I-basis (3.1.26).
Remark. A subspace [P] of an IR-space is again an IRspace, for if $\left\langle Q_{n}\right\rangle_{n} \in P$ \& $\wedge n\left(Q_{n+1} \Subset Q_{n}\right)$, then also $\wedge \mathrm{n}\left(\mathrm{PQ}_{\mathrm{n}+1} \quad \mathbb{C}_{\mathrm{P}} \mathrm{PQ}_{\mathrm{n}}\right)(1.29)$.
2.12. Theorem. Let Γ, Δ be two I-spaces such that the conditions (a).(b) of 1.32 are fulfilled, and let a postulate "Ax" hold in Γ. If " $A x$ " is one of the postulates $\mathrm{N} 1-8, \mathrm{R} 1-5$, "Ax" is also valid for Δ. Especially this is true for Δ_{1}, defined by $\left\langle\varphi, \Pi^{*}(\Gamma)\right\rangle$.
The proof is trivial in all cases.
2.13. Theorem. In an IR-space the following assertions hold for all p, R, V, W.
a) N3.
b) N7.
c) $\{p\} \Subset V \leftrightarrow p \in \mathrm{~V}$.
d) Int*V $=$ Int V.
e) $V\left\langle P_{n}\right\rangle_{n} \in p V m\left(P_{1} \ldots P_{m} \Subset R\right) \rightarrow p \in R$.
f) $V \Subset^{\prime \prime} W \leftrightarrow V \subset$ Int W.

Proof. (a) Let $\left\langle P_{n}\right\rangle_{n} \omega R,\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n} \& \wedge_{n}\left(Q_{n+1} \Subset Q_{n}\right)$. $\left\langle Q_{n}\right\rangle_{n} \omega R$, so there exists a ν such that $o Q_{1} \ldots Q_{v} R=0$. $Q_{1} \ldots Q_{v+2} \Subset Q_{1} \ldots Q_{v+1} \Subset Q_{1} \ldots Q_{v}$.
Since $\left\langle P_{n}\right\rangle_{n} \in Q_{1} \ldots Q_{\nu+2}$ there exists a μ such that $P_{1} \ldots P_{\mu} \subset$ $Q_{1} \ldots Q_{\nu+1}$; so $P_{1} \ldots P_{\mu} \Subset Q_{1} \ldots Q_{v}$. Hence $\left\langle P_{n}\right\rangle_{n}^{*} \in Q_{1} \ldots Q_{v}$ \& $\varphi Q_{1} \ldots Q_{v} R=0$.
(b) There exists $a\left\langle Q_{n}\right\rangle_{n} \in p$ such that $\Lambda n\left(Q_{n+1} \Subset Q_{n}\right)$. For a certain $\nu Q_{1} \ldots Q_{\nu} \Subset R . Q_{1} \ldots Q_{v+2} \Subset Q_{1 \ldots} \ldots Q_{v+1} \Subset Q_{1} \ldots Q_{\nu}$; it follows that if $\left\langle P_{n}\right\rangle_{n} \epsilon p, a \mu$ can be found such that $P_{1} \ldots P_{\mu} \subset Q_{1} \ldots Q_{v+1}$, and hence $P_{1} \ldots P_{\mu} \subseteq Q_{1} \ldots Q_{v}$. Thus we may take Q_{V} for the S in the assertion $N 7$.
(c) If $\{p\} \Subset V$ there exists $a\left\langle Q_{n}\right\rangle_{n} \in p$, such that $\wedge n\left(Q_{n+1} \Subset Q_{n}\right)$, and a μ can be found such that $Q_{1} \ldots Q_{\mu} \subset V$. It follows that $p \in Q_{1} \ldots Q_{\mu+1} \Subset Q_{1} \ldots Q_{\mu} \subset V^{\prime}$ so $p \in V$.

If $p \underline{\epsilon} V,\left\langle P_{n}\right\rangle_{n}^{*}=p, a \mu$ and $a Q$ can be found such that $P_{1} \ldots P_{\mu} \subseteq \mathbb{Q} \subset V$. If $\left\langle R_{n}\right\rangle_{n} \in \Pi$, there exists a ν such that

$$
\varphi P_{1} \ldots P_{\mu} R_{1} \ldots R_{v}=0 \vee R_{1} \ldots R_{v} \subset Q \subset V
$$

Hence $\left\langle R_{n}\right\rangle_{n}^{*} \# p \vee \vee n\left(R_{1} \ldots R_{n} \subset V\right)$.
(d) $p \in$ Int*V $\rightarrow p \in V$. So an R can be found such that $p \in R \subset V$. There exist S_{1}, S_{2}, such that $p \in S_{1} \Subset S_{2} \Subset$ $R \subset V$, as follows from (b).

Let $\left\langle Q_{n}\right\rangle_{n} \in S_{1}$. For a certain $\mu, Q_{1} \ldots Q_{\mu} \subset S_{2}$, so $\mathrm{Q}_{1} \ldots \mathrm{Q}_{\mu}$ © R. $\mathrm{S}_{1} \subset$ Int*[R] ᄃ Int*V. For this reason $\mathrm{p} \in$ Int $* \mathrm{~V}$, therefore Int $* \mathrm{~V}$ is open.

Int V is the species of interior points of V. If $p \in$ Int V, an open species W can be found such that $p \in W \subset V$. So an R can be found such that $p \in R \subset V$, hence $p \in \operatorname{Int} * V$. Since Int*V \subset Int V is trivial, we have proved Int*V = Int V. (e) Let $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}},\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{p}, \mathrm{P}_{1} \ldots \mathrm{P}_{\mu} \Subset R,\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \simeq\left\langle\mathrm{Q}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$, $\wedge n\left(Q_{n+1} \mathbb{C} Q_{n}\right)$. A ν can be found such that $Q_{1} \ldots Q_{v} \subset R$. As before, we have $Q_{1} \ldots Q_{v+2} \Subset Q_{1} \ldots Q_{v+1} \Subset Q_{1} \ldots Q_{v}$. For a certain $\lambda S_{1} \ldots S_{\lambda} \subset Q_{1} \ldots Q_{v+1} \Subset Q_{1} \ldots Q_{\nu} \subset R$ (since $\left.\left\langle S_{n}\right\rangle_{n} \in Q_{1} \ldots Q_{v+2}\right)$, therefore $p \in R$.
(f) Let $V \mathbb{๔}^{\prime \prime} \mathrm{W}, \mathrm{p}=\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*} \in \mathrm{~V}, \overline{\mathrm{~N}} \mathrm{n}\left(\mathrm{P}_{\mathrm{n}+1} \Subset \mathrm{P}_{\mathrm{n}}\right)$. A ν can be found such that $P_{1} \ldots P_{v+1} \Subset P_{1} \ldots P_{v} \subset W$; hence $p \in W$, so $\mathrm{V} \subset$ Int W . Conversely, let $V \subset$ Int W. If $p=\left\langle P_{n}\right\rangle_{n}^{*} \epsilon V$, then for a certain ν and a certain $R P_{1} \ldots P_{v} \subset R \subset V$. Hence $\left[P_{1} \ldots P_{v}\right] \subset W$, so $V \mathbb{C l}^{\prime \prime} W$.
2.14. Corollary to 2.13(c). In an IR-space, the species <Int $[\gamma \mathrm{n}]\rangle_{\mathrm{n}}$ is a basis for the open sets.
Proof trivial.
2.15. Remark. As a consequence of 2.13 , all ways of introducing a topology, mentioned in 1.31, turn out to be equivalent if R5 is satisfied.
2.16. Theorem. The following assertions are true in an IRspace.
a) A point p is a closure point of a species V, iff $\wedge R(p \in R \rightarrow V q(q \in[R] \cap V))$.
A point p is a weak closure point of a species V, iff $\wedge R(p \in R \rightarrow[R] \cap V \neq \emptyset)$.
b) [R] is, a closed pointspecies for every R.
c) $\left(\left[P_{1}\right] \cup\left[P_{2}\right] \cup \ldots \cup\left[P_{\mu}\right]\right)^{-}=\left[P_{1}+\ldots+P_{\mu}\right]$ for every species $\left\{P_{1}, \ldots, P_{\mu}\right\}$.
Proof. (a) Let p be a closure point of $V . p \in R \rightarrow p \in \operatorname{Int}[R]$. $\mathrm{Vq}(\mathrm{q} \in \operatorname{Int}[\mathrm{R}] \cap \mathrm{V})$, hence also $\mathrm{Vq}(\mathrm{q} \in[\overline{\mathrm{R}}] \cap \mathrm{V})$.
Suppose $\wedge R(p \in R \rightarrow V q(q \in[R] \cap V))$. If $p \in W$, W open, then there is a Q such that $p \in Q \subset W$, and from $\mathrm{Vq}(\mathrm{q} \in[\mathrm{Q}] \cap \mathrm{V})$ it follows that $\mathrm{Vq}(\mathrm{q} \in \mathrm{W} \cap \mathrm{V})$.
The proof in the case of weak closure points is analogous.
(b) Let $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*}$ be a closure point of R , and let $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \omega$. Then there exists a ν such that $\varphi P_{1} \ldots P_{\nu} R=0$. By 2.13(a), a Q can be found such that $\left\langle P_{n}\right\rangle_{n}^{*} \in Q \& \varphi Q R=0$. Also $\rho Q R=1$, since $\left\langle P_{n}\right\rangle_{n}$ is a closure point of R. $\left\langle\left\langle R_{n}\right\rangle_{n} \in Q R \rightarrow\right.$ $\left.\varphi R_{1} Q R=1 ; \varphi R_{1} Q R=1 \rightarrow \varphi Q R=1\right)$. In this way a con-
tradiction is obtained, hence $\neg\left\langle P_{n}\right\rangle_{n} \omega R$, so $\left\langle P_{n}\right\rangle_{n} \in R$. (c) Let $\left\langle Q_{n}\right\rangle_{n} \in P_{1}+\ldots+P_{\mu},\left\langle Q_{n}\right\rangle_{n} \in \mathbb{R}$. For a certain $\nu, Q_{1} \ldots Q_{\nu} \Subset R . \quad Q Q_{1} \ldots Q_{v}\left(P_{1}+\ldots+P_{\mu}\right)=1 \rightarrow$ $\operatorname{Vi}\left(\varphi Q_{1} \ldots Q_{v} P_{i}=1\right)$.
Let $\varphi Q_{1} \ldots Q_{V} P_{\lambda}=1$;
then $\vee q\left(q \in\left[Q_{1} \ldots Q_{\nu}\right] \cap\left(\left[P_{1}\right] \cup \ldots U\left[P_{\mu}\right]\right)\right.$).
Therefore $\vee q\left(q \epsilon[R] \cap\left(\left[P_{1}\right] \cup \ldots \cup\left[P_{\mu}\right]\right)\right)$, and
$\left[P_{1}+\ldots+P_{\mu}\right] \subset\left(\left[P_{1}\right] \cup \ldots \cup\left[P_{\mu}\right]^{-}(\right.$by $(a))$.
On the other side, $\left[P_{i}\right] \subset\left[P_{1}+\ldots+P_{\mu}\right]$ for $1 \leqslant i \leqslant \mu$.
So $\left[P_{1}\right] \cup \ldots \cup\left[P_{\mu}\right] \subset\left[P_{1}+\ldots+P_{\mu}\right]$. By (b), we obtain (1.2.17) $\left(\left[P_{1}\right] \cup \ldots \cup\left[P_{\mu}\right]\right) \subset\left[P_{1}+\ldots+P_{\mu}\right]$.
2.17. Theorem. In every IR-space the following implications hold:
a) V © $\mathrm{W} \rightarrow \mathrm{V}^{-} \mathbb{C} \mathrm{W}$; b) V © $\mathrm{W} \rightarrow \mathrm{V}^{-}$© Int W .

Proof. (a) Let $p=\left\langle P_{n}\right\rangle_{n}^{*}=\left\langle Q_{n}\right\rangle_{n}^{*}, \wedge n\left(Q_{n+1} \Subset Q_{n}\right)$. There is a ν such that $\left[\mathrm{Q}_{1} \ldots \mathrm{Q}_{v}\right] \cap \mathrm{V}=\varnothing \vee \mathrm{Q}_{1} \ldots \mathrm{Q}_{v} \subset \mathrm{~W}$. Hence $\left[Q_{1} \ldots Q_{v+1}\right] \cap \mathrm{V}^{-}=\emptyset v Q_{1} \ldots Q_{v+1} \subset W$.
A μ can be found such that $P_{1} \ldots P_{\mu} \subset Q_{1} \ldots Q_{v+1}$, therefore $\left[P_{1} \ldots P_{\mu}\right] \cap V^{-}=\emptyset \vee P_{1} \ldots P_{\mu} \subset W$; thus we have shown that V^{-}© W .
(b) $\mathrm{V} \Subset \mathrm{W} \rightarrow \mathrm{V}^{-} \Subset \mathrm{W}(\mathrm{a}) ; \mathrm{V}^{-} \Subset \mathrm{W} \rightarrow \mathrm{V}^{-} \Subset^{\prime \prime} \mathrm{W}$ (1.20(b)); hence (2.13(f)) $\mathrm{V}^{-} \subset$ Int W.
2.18. Theorem. In an IR-space we can characterize the notions "continuous mapping' and "weakly located subspecies" in the following manner:
a) A mapping δ from an IR-space Γ_{1} into an IR-space Γ_{2} is a continuous mapping iff for all p, S :
$p \in \Pi^{\circ}\left(\Gamma_{1}\right) \& \delta p \in \Gamma_{2} S \& S \in \mathfrak{B}\left(\Gamma_{2}\right) \rightarrow$
$\vee R \in \mathfrak{P}\left(\Gamma_{1}\right)\left(p \epsilon_{\Gamma_{1}} R^{2} \& \delta[R]_{\Gamma_{2}} \subset[S]_{\Gamma_{2}}\right)$.
b) A subspecies V of Π°, Π^{2} the species of points of an IR-space, is weakly located iff
$\wedge p \wedge R(p \in R \rightarrow(V q(q \in[R] \cap V) v \operatorname{VS}(p \in S \subset R \&$
[S] $\cap \mathrm{V} \equiv \emptyset)$).
Proof. Trivial.
2.19. Theorem. If Γ, Δ are IR-spaces, and ξ is a homeomorphism from Γ onto Δ, then $\mathrm{V} \mathbb{C}_{\Gamma} \mathrm{W} \leftrightarrow \xi \mathrm{V} \mathbb{C}_{\Delta} \boldsymbol{\xi} \mathrm{W}$. Likewise for ©', ©'.
Proof. For \mathbb{C}^{\prime}, $\Subset^{\prime \prime}$ the result is a trivial consequence of 2.13(f), 1.18. Let $p=\left\langle P_{n}\right\rangle_{n}^{*} \in \Pi^{\circ}(\Delta)$, and suppose $V \mathbb{C}_{\Gamma} W$. $\xi^{-1} p=\left\langle Q_{n}\right\rangle_{n}^{*} \in \Pi^{\circ}(\Gamma), \quad \wedge n\left(Q_{n+1} \mathbb{C}_{\Gamma} Q_{n}\right)$. For a certain ν $\left[Q_{1} \ldots Q_{v}\right]_{\Gamma} \cap \mathrm{V}=\emptyset \vee \mathrm{Q}_{1} \ldots \mathrm{Q}_{\nu} \subset \mathrm{W}$.
$\xi^{-1} p \in_{\Gamma} Q_{1} \ldots Q_{V}$, hence there is an $R \in \mathfrak{P}(\Delta)$ such that $\left.\mathrm{p} \epsilon_{\mathrm{r}} \mathrm{R} \subset \xi_{[} \mathrm{Q}_{1} \ldots \mathrm{Q}_{\mathrm{V}}\right]_{\mathrm{r}}$ (2.18(a)). For a certain μ we ob$\operatorname{tain} P_{1} \ldots P_{\mu} \mathbb{C}_{\Delta} R \subset \xi\left[Q_{1} \ldots Q_{\nu}\right]_{\Gamma}$. Therefore $\left[P_{1} \ldots P_{\mu}\right] \cap$
$\xi \mathrm{V}=\emptyset \vee \mathrm{P}_{1} \ldots \mathrm{P}_{\mu} \subset \xi \mathrm{W}$. This proves $\xi \mathrm{V} \mathbb{C}_{\Delta} \xi \mathrm{W}$. The implication in the reverse direction is proved likewise.
2.20. Theorem. If Γ is an IR-space in which R 1 holds, then $R 4$ holds in Γ.
Proof. Let Π_{1} be a spread representation for Γ; we may suppose Π_{1} to be normal, with a defining pair $\langle\theta, \vartheta\rangle$.
To every point generator $\left\langle P_{n}\right\rangle_{\mathrm{n}} \in \Pi_{1}$ a point generator $\left\langle Q_{n}\right\rangle_{n}$ can be found such that $\wedge n\left(Q_{n+1} \Subset Q_{n}\right)$.
Therefore there exists a sequence of mappings $\left\langle\psi_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ from Π_{1} into $\mathfrak{P}(\Gamma)$, such that $\wedge \mathrm{n} \wedge\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}} \in \Pi_{1}\left(\psi_{\mathrm{n}+1}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}} \mathbb{C}\right.$ $\left.\psi_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}\right)$, and $\Lambda\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}\left(\left\langle\psi_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}\right\rangle_{\mathrm{n}} \simeq\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}\right)$.

As a consequence of Brouwers principle, there is also a sequence of mappings $\left\langle\eta_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ from Π_{1} into $\boldsymbol{v} \theta$, such that for every $\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}} \in \Pi_{1} \psi_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}$ can be calculated from an initial segment $\left\langle\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{t}}\right\rangle=\eta_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}$.

We may suppose that for all $\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}} \in \Pi_{1}$ and for every $\mathrm{n} \eta_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}$ is an initial segment of $\eta_{\mathrm{n}+1}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}$. We define mappings $\psi_{\mathrm{n}}^{\prime}$ from $\eta_{\mathrm{n}} \Pi_{1}$ into $v \theta$ by

$$
\psi_{\mathrm{n}}^{\prime} \eta_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}>_{\mathrm{m}}=\psi_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}>_{\mathrm{m}} .\right.\right.
$$

The species of segments $\eta_{\mathrm{n}+1}\left\langle\mathrm{P}_{\mathrm{m}}^{\prime}\right\rangle_{\mathrm{m}}$ such that $\eta_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}$ is an initial segment of $\eta_{n+1}\left\langle P_{m}^{\prime}\right\rangle_{m}\left(\left\langle P_{m}\right\rangle_{m}\right.$ fixed) can be enumerated (as a consequence of the enumeration principle).

Let $\eta_{1} \Pi_{1}$ be enumerated as $\left\langle\mathrm{X}_{\mathrm{i}}\right\rangle_{\mathrm{i}}$. If a certain element of $\eta_{\mathrm{n}} \Pi_{1}$, say $\eta_{\mathrm{n}}<\mathrm{P}_{\mathrm{m}}>_{\mathrm{m}}$ is denoted by $\mathrm{X}_{\mathrm{i}_{1}, \ldots, \mathrm{in}_{\mathrm{n}}}$, the species of $\eta_{\mathrm{n}+1}<\mathrm{P}_{\mathrm{m}}^{\prime}>_{\mathrm{m}}$ such that $\eta_{\mathrm{n}}\left\langle\mathrm{P}_{\mathrm{m}}\right\rangle_{\mathrm{m}}$ is an initial segment of $\eta_{\mathrm{n}+1}\left\langle\mathrm{P}_{\mathrm{m}}^{\prime}\right\rangle_{\mathrm{m}}$ can be enumerated as $\left\langle\mathrm{X}_{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{n}}, \mathrm{k}}\right\rangle_{\mathrm{k}}$. Hence we obtain inductively a sequence $X_{i_{1}}, \ldots, i_{n}$ for every finite sequence $\left\langle i_{1}, \ldots, i_{n}\right\rangle$.

Now a ๔-representation Π_{2} with a defining pair 〈 $\left.\theta^{\prime}, v^{\prime}\right\rangle$ can be constructed for Γ. θ^{\prime} is the species of all finite sequences of natural numbers, and we put $\boldsymbol{v}^{\prime *}\left\langle i_{1}, \ldots, i_{n}\right\rangle=$ $\psi_{\mathrm{n}}^{\prime} \mathrm{X}_{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{n}}}$.
2.21. Theorem. Let Γ be an IR-space in which R3 holds, and let $\left\{V_{i}: i \in I\right\}$, $I \subset N$, be a covering of Γ. Then $\left\{\right.$ Int V_{i} : i ϵI \} is also a covering of Γ.
Proof. Suppose p to be an arbitrary point of Γ, and let Π_{1} be a normal perfect representation of Γ with the inclusion property. There exist $\left\langle\mathrm{P}_{\mathrm{n}}^{\prime}\right\rangle_{\mathrm{q}},\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi_{1}$, such that $\mathrm{p}=$ $\left.\left\langle P_{n}^{\prime}\right\rangle\right\rangle_{n}^{*}=\left\langle P_{n}\right\rangle_{n}^{*}, ~ \wedge n\left(P_{1}^{\prime} \ldots P_{n}^{4} \Subset P_{1} \ldots P_{n}\right)$. A function ψ associates with every element $\left\langle Q_{n}\right\rangle_{n} \in \Pi_{1}$ a natural number m such that $\left\langle Q_{n}\right\rangle_{n}^{*} \in V_{m} . m$ is known from an initial segment of finite length, $\left\langle\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{k}}\right\rangle$. Let $\psi\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}=\mu$, μ known from P_{1}, \ldots, P_{v}. Since the representation is perfect, we
may reason as follows.
If $\left\langle R_{n}\right\rangle_{n} \in P_{1} \ldots P_{v}$, there is a $\left\langle P_{n}^{\prime \prime}\right\rangle_{n} \in \Pi_{1}$ with $P_{i}=P_{i}^{\prime \prime}$ for $1 \leqslant i \leqslant \nu_{0}\left\langle P_{n}^{\prime \prime}\right\rangle_{n} \simeq\left\langle R_{n}\right\rangle_{n} . \psi\left\langle P_{n}^{\prime \prime}\right\rangle_{n}=\mu$, so $\left\langle P_{n}^{\prime \prime}\right\rangle_{n}^{*} \stackrel{i}{=}$ $\left\langle\mathrm{R}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*} \in \mathrm{~V}_{\mu}$
Therefore $P_{1} \ldots F_{v} \subset V_{\mu} . P_{1}^{\prime} \ldots P_{v}^{\prime} \subseteq P_{1} \ldots P_{v}$, hence $\mathrm{p} \in \mathrm{P}_{1} \ldots \mathrm{P}_{\nu} \subset \mathrm{V}_{\mu}$, so $\mathrm{p} \epsilon$ Int V_{μ}.
2.22. Remark to 2.21. Let Γ be an I-space in which R3 holds, and let $\left\{V_{i}: i \in I\right\}, I \subset N$, be a covering of Γ. Then $\wedge p \vee P \vee m\left(p \in P \subset V_{m}\right)$.
(this follows from the proof of 2.21.)
2.23. Theorem. Let Γ be an I-space in which R1 and the conclusion of theorem 2.21 holds. Then every mapping δ of Γ into a separable metric space Δ with metric ρ is a continuous mapping.
Proof. Let $\left\langle p_{i}\right\rangle_{i}$ be a basic pointspecies for Δ. To every n and every $q \in \Gamma$ a p_{i} can be found such that $\rho\left(\delta q, p_{i}\right)<2^{-n}$. There is a function ψ_{v} and a spread representation $\Pi_{1} \subset \Pi=$ $\Pi(\Gamma)$ such that for $a\left\langle P_{n}\right\rangle_{n} \in \Pi_{1}, \psi_{v}\left\langle P_{n}\right\rangle_{n}$ is a natural number m for which $\rho\left(\delta\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*}, \mathrm{p}_{\mathrm{m}}\right)<2^{-v}$.
$I_{v}=\left\{i: v\left\langle P_{n}\right\rangle_{n} \in \Pi_{1}\left(\psi_{\nu}\left\langle P_{n}\right\rangle_{n}=i\right)\right\}$. We put:
$V_{i, v}=\left\{q: q \in \Pi^{0}(\Gamma) \& \rho\left(\delta q, p_{i}\right)<2^{-v}\right\}$
for every $i \in I_{v}\left\{V_{i, v}: i \in I_{v}\right\}$ is a covering, therefore $\left\{\right.$ Int $\left.V_{i, v}: i \in I_{v}\right\}$ is a covering too. If $q \in \Gamma, q \in$ Int $V_{\mu, v}$ we obtain:
$\Lambda \mathrm{r} \in \operatorname{Int} \mathrm{V}_{\mu, v}\left(\rho(\delta \mathrm{q}, \delta \mathrm{r})<2^{-\mathrm{v}+1}\right)$.
therefore δ is continuous.
2.24. Theorem. In an I-space $\boldsymbol{\Gamma}$ in which R 3 holds, we are able to prove:

$$
\mathrm{V} \Subset^{\prime} \mathrm{W} \leftrightarrow \mathrm{~V} \Subset \mathrm{~W} .
$$

Proof. Let $V \mathbb{C}^{\prime} \mathrm{W},\left\langle\mathrm{P}_{\mathrm{n}}^{\prime \prime}\right\rangle_{\mathrm{n}} \in \Pi$, and let Π_{1} be a normal perfect representation of Γ with the inclusion property. There exist $\left\langle P_{n}^{\prime}\right\rangle_{n},\left\langle P_{n}\right\rangle_{n} \in \Pi_{1}$ such that $\left\langle P_{n}^{\prime}\right\rangle_{n} \simeq\left\langle P_{n}^{\prime}\right\rangle_{n} \simeq$ $\left\langle P_{n}\right\rangle_{n}, \wedge n\left(P_{1}^{\prime} \ldots P_{n}^{\prime} \Subset P_{1} \ldots P_{n}\right)$.
A mapping ψ from Π_{1} into $\{0,1\}$ is defined, such that

$$
\psi\left\langle S_{n}\right\rangle_{n}=0 \rightarrow\left\langle S_{n}\right\rangle_{n}^{*_{n}^{*}} \notin V, \psi\left\langle S_{n}\right\rangle_{n}=1 \rightarrow\left\langle S_{n}\right\rangle_{n}^{*} \in W .
$$

For every $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi_{1}, \psi\left\langle\mathrm{~S}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ is determined by an initial segment of finite length; suppose $\psi\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ to be determined by $\left\langle\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mu}\right\rangle$.
Since Π_{1} is perfect, to every point generator $\left\langle T_{n}\right\rangle_{n} \in P_{1} \ldots P_{\mu}$ $a\left\langle T_{n}^{\prime}\right\rangle_{n} \epsilon \Pi_{1},\left\langle T_{n}\right\rangle_{n} \simeq\left\langle T_{n}^{\prime}\right\rangle_{n}$, can be found, such that $T_{i}^{\prime}=P_{i}$ for $1 \leqslant i \leqslant \mu$. We put
$\Pi_{2}=\left\{\left\langle S_{n}\right\rangle_{n}: \wedge i\left(1 \leqslant i \leqslant \mu \rightarrow S_{i}=P_{i}\right) \&\left\langle S_{n}\right\rangle_{n} \in \Pi_{1}\right\}$.

We remark that $\psi \Pi_{2}=0 \vee \psi \Pi_{2}=1$. In the first case $V \cap\left[P_{1} \ldots P_{\mu}\right]=\emptyset$, in the second case $P_{1} \ldots P_{\mu} \subset W$. $P_{1}^{\prime} \ldots P_{\mu}^{\prime \prime} \Subset P_{1}^{\mu} \ldots P_{\mu}$. On that account, there exists a λ such that $\varphi P_{1}^{\prime \prime} \ldots P_{\lambda}^{\prime \prime} P_{1}^{i} \ldots P_{\mu}^{\prime}=0 \vee P_{1}^{\prime \prime} \ldots P_{\lambda}^{\prime \prime} \subset P_{1} \ldots{ }_{i, i} P_{\mu}$. The first is impossible. We conclude that $\left[P_{1}^{\prime \prime} \ldots P_{\lambda}^{\prime \prime}\right] \cap \mathrm{V}=\emptyset \mathrm{v}$ $\mathrm{P}_{1}^{\prime \prime} \ldots \mathrm{P}_{\lambda}^{\prime \prime} \subset \mathrm{W}$, and our theorem is proved.
2.25. Theorem. If Γ is an IR-space in which $R 3$ holds, then for every representation Π_{1} of Γ :
$\hat{\wedge}\left\langle\mathrm{P}_{\mathrm{n}}>_{\mathrm{n}} \in \Pi_{1} \vee \mathrm{~m}\left(\left[\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}}\right] \cap \mathrm{V}=\emptyset \vee \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}} \subset \mathrm{W}\right) \leftrightarrow\right.$ $\mathrm{V} \in \mathrm{E}$.
Proof. The implication from the right to the left is trivial. Let $\mathrm{p} \in \Pi^{\circ}$. There is a $\left\langle P_{n}\right\rangle_{\mathrm{n}} \in \Pi_{1}$ such that $\mathrm{p}=\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$, and we see that the left condition implies (by application to $\left.\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}\right) \mathrm{p} \notin \mathrm{V} \vee \mathrm{p} \in \mathrm{W}$, hence $\mathrm{V} \mathbb{C}^{\prime} \mathrm{W}$. Then also $\mathrm{V} \Subset \mathrm{W}$ (2.24).
2.26. Theorem. If Γ is an I-space, and Π_{1} a \Subset-representation for Γ, then
$\wedge \mathrm{n}\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi_{1} \vee \mathrm{~m}\left(\varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}} \mathrm{Q}=0 \vee \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}} \subset \mathrm{R}\right) \leftrightarrow$ $\mathrm{Q} \subset \mathrm{R}$.
Proof. Trivial.
2.27. Lemma. Suppose Γ to be an IR-space in which N8(B) holds, $\mathfrak{B} \subset \mathfrak{P}(\Gamma)$. Let $\mathrm{T}_{0}, \mathrm{~T}_{1} \in \mathfrak{B}, \mathrm{~T}_{1} \mathbb{C} \mathrm{~T}_{0}$. Then there is a continuous mapping from Π^{0} into R , such that for any p :

$$
p \in T_{1} \rightarrow f(p)=1 ; p \notin T_{0} \rightarrow f(p) \stackrel{1}{=} 0 ; 0 \ngtr f(p) \ngtr 1 .
$$

Proof. We construct a species of lattice elements $T_{\alpha} \in \mathfrak{B}$, $\alpha=m 2^{-n}, \mathrm{n}=0,1,2,3, \ldots, \mathrm{~m}=0,1, \ldots 2^{\mathrm{n}}$, such that

$$
\alpha>\beta \leftrightarrow \mathrm{T}_{\alpha} \Subset \mathrm{T}_{\beta} .
$$

This construction can be carried out inductively. For suppose that all $\mathrm{T}_{\mathrm{k} 2}-v, 0 \leqslant \mathrm{k} \leqslant 2^{-\nu}$ already have been constructed, in agreement with the conditions mentioned before. We construct $\mathrm{T}_{(2 \mu+1) 2^{-v-1}} \in \mathfrak{B}$, by applying $\mathrm{N} 8(\mathfrak{B})$ to

$$
\mathrm{T}_{(2 \mu+2) 2^{-v-1}} \Subset \mathrm{~T}_{2 \mu 2^{-v-1}}
$$

Thus we obtain:

$$
\mathrm{T}_{(2 \mu+2) 2^{-v-1}} \Subset \mathrm{~T}_{(2 \mu+1) 2^{-v-1}} \Subset \mathrm{~T}_{2 \mu 2^{-v-1}}
$$

Let $\left\langle P_{n}\right\rangle_{n} \in \Pi$. We define:

$$
\begin{aligned}
& \psi^{P}(\mathrm{n}, \mathrm{k})=\psi(\mathrm{n}, \mathrm{k})=\sup \left\{\mathrm{m} 2^{-\mathrm{n}}: \varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{k}} \mathrm{~T}_{\mathrm{m} 2^{-n}}=1 \mathrm{v}\right. \\
& \mathrm{m}=0\} .
\end{aligned}
$$

We have

$$
\begin{equation*}
k \geqslant k^{\prime} \rightarrow \psi(n, k) \leqslant \psi\left(n, k^{\prime}\right) \text { for all } n, k, k^{\prime} \tag{1}
\end{equation*}
$$

For every n there exist $t(m, n), m=1, \ldots, 2^{n}$, such that

$$
\underset{T_{(m-1) 2^{-n}}}{\underset{P_{1}}{ } \ldots P_{t(m, n)} T_{m 2^{-n}}=0 \vee P_{1} \ldots P_{t(m, n)} \subset T_{m 2^{-n}-2^{-n}-1} \Subset}
$$

$t^{P}(n)=t(n)$ is a monotonously increasing function which satisfies:

```
t(n)}\geqslant\operatorname{sup}{t(m,n):1\leqslantm\leqslant\mp@subsup{2}{}{n}}
```

For example, we may take:

$$
t(n)=\sup \left\{t(m, n), t(n-1)+1: 1 \leqslant m \leqslant 2^{n}\right\} .
$$

Therefore for arbitrary but fixed ν, μ :

$$
\begin{align*}
& \underset{1}{\stackrel{P}{P_{1}}} \underset{\mu}{\leqslant} \ldots \mathrm{P}_{\mathrm{t}(\nu)} \mathrm{T}_{\mu 2^{-v}}=0 \vee \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{t}(\nu)} \Subset \mathrm{T}_{(\mu-1) 2^{-v}}, \tag{2}
\end{align*}
$$

If $\mathrm{k}, \mathrm{k}^{\prime} \geqslant \mathrm{t}(\nu), \mathrm{k} \geqslant \mathrm{k}^{\prime}$, there are two possibilities, $\psi\left(\nu, \mathrm{k}^{\prime}\right)=0$ or $\psi\left(\nu, k^{\prime}\right)>0$.

$$
\begin{align*}
& \psi\left(\nu, \mathrm{k}^{\prime}\right)=0 \rightarrow \psi(\nu, \mathrm{k})=0(\mathrm{by}(1)) \tag{3}\\
& \psi\left(\nu, \mathrm{k}^{\prime}\right)>0 \rightarrow \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{k}^{\prime}} \Subset \mathrm{T}_{\psi\left(\nu, \mathrm{k}^{\prime}\right)-2^{-v}} \tag{4}
\end{align*}
$$

since from (2) it follows that:

$$
\varphi P_{1} \ldots P_{k^{\prime}} T_{\psi\left(v, k^{\prime}\right)}=0 \vee P_{1} \ldots P_{k^{\prime}} \Subset T_{\psi\left(v, k^{\prime}\right)-2^{-v}}
$$

(4), combined with $k \geqslant k^{\prime}$ leads to:

$$
\begin{equation*}
\psi\left(\nu, k^{\prime}\right)>0 \rightarrow P_{1} \ldots P_{k} \Subset T_{\psi\left(\nu, k^{\prime}\right)-2^{-v}} \tag{5}
\end{equation*}
$$

We conclude:

$$
\begin{equation*}
\psi\left(\nu, \mathrm{k}^{\prime}\right)>0 \rightarrow \psi(\nu, \mathrm{k}) \geqslant \psi\left(\nu, \mathrm{k}^{\prime}\right)-2^{-\nu} \tag{6}
\end{equation*}
$$

(1). (3) and (6) together learn us that
$\left|\psi(\nu, \mathrm{k})-\psi\left(\nu, \mathrm{k}^{\prime}\right)\right| \leqslant 2^{-\nu}$.
Therefore:
$\wedge \mathrm{n} \wedge \mathrm{k} \wedge \mathrm{k}^{\prime}\left(\mathrm{k}^{\prime}, \mathrm{k} \geqslant \mathrm{t}(\mathrm{n}) \rightarrow\left|\psi\left(\mathrm{n}, \mathrm{k}^{\prime}\right)-\psi(\mathrm{n}, \mathrm{k})\right| \leqslant 2^{-\mathrm{n}}\right)$
If $\psi(\nu, \lambda)=1$, then for all $\mathrm{n} \geqslant \nu \psi(\mathrm{n}, \lambda)=1$.
If $\psi(\nu, \lambda)<1, \varphi P_{1} \ldots P_{\lambda} T_{\psi(\nu, \lambda)+2^{-\nu}}=0$.
Combining both cases, we obtain:

$$
\begin{equation*}
\wedge \mathrm{n} \wedge \mathrm{n}^{\prime} \wedge \mathrm{k}\left(\mathrm{n} \geqslant \mathrm{n}^{\prime} \rightarrow \psi(\mathrm{n}, \mathrm{k}) \leqslant \psi\left(\mathrm{n}^{\prime}, \mathrm{k}\right) \leqslant \psi(\mathrm{n}, \mathrm{k})+2^{-\mathrm{n}}\right) \tag{8}
\end{equation*}
$$

From (7), (8) we are able to deduce that $\lim _{n \rightarrow \infty} \psi(t(n))$ exists.
For let $n \leqslant n^{\prime}$. Then $\left|\psi(n, t(n))-\psi\left(n^{\prime}, t\left(n^{\prime}\right)\right)\right| \leqslant$
$\left|\psi(n, t(n))-\psi\left(n, t\left(n^{\prime}\right)\right)\right|+\left|\psi\left(n, t\left(n^{\prime}\right)\right)-\psi\left(n^{\prime}, t\left(n^{\prime}\right)\right)\right| \leqslant$
$2^{-\mathrm{n}}+2^{-\mathrm{n}}=2^{-\mathrm{n}+1}$.
Moreover, the value of this limit is independent of the particular function $t(n)$ chosen. For let $t^{\prime}(n)$ be another monotonously increasing function which satisfies

$$
\wedge n \wedge k^{\prime} \wedge k\left(k^{\prime}, k \geqslant t^{\prime}(n) \rightarrow\left|\psi\left(n, k^{\prime}\right)-\psi(n, k)\right|<2^{-n}\right),
$$

then either $t(n) \geqslant t^{\prime}(n)$ or $t^{\prime}(n) \geqslant t(n)$, hence

$$
\left|\psi(n, t(n))-\psi\left(n, t^{\prime}(n)\right)\right| \leqslant 2^{-n} .
$$

On that account we are justified in defining a function F on Π by: $F\left\langle P_{n}\right\rangle_{n}=\lim _{n \rightarrow \infty} \psi(n, t(n))$. Next we prove:

$$
\begin{equation*}
\Lambda\left\langle Q_{n}\right\rangle_{n} \in \Pi \Lambda\left\langle R_{n}\right\rangle_{n} \in \Pi\left(\left\langle Q_{n}\right\rangle_{n} \simeq\left\langle R_{n}\right\rangle_{n} \rightarrow F\left\langle Q_{n}\right\rangle_{n}=F\left\langle R_{n}\right\rangle_{n}\right) \tag{10}
\end{equation*}
$$

We suppose $\Pi(\Gamma)=\Pi^{*}(\boldsymbol{\Gamma})$; this may be done without losing generality, since we have proved 2.12.
Thus, together with $\left\langle Q_{n}\right\rangle_{n},\left\langle R_{n}\right\rangle_{n},\left\langle S_{n}\right\rangle_{n}$ with $S_{n}=R_{n} Q_{n}$ is also a member of $\Pi(\Gamma)$. We prove (10) by demonstrating

$$
F\left\langle Q_{n}\right\rangle_{n}=F\left\langle S_{n}\right\rangle_{n}, F\left\langle R_{n}\right\rangle_{n}=F\left\langle S_{n}\right\rangle_{n} .
$$

First we define functions $\psi^{Q}, \psi^{R}, \psi^{s}, t^{Q}, t^{R}$ analogous to the functions $\psi^{\mathrm{P}}, \mathrm{t}^{\mathrm{P}}$ in the foregoing part of the proof. We obtain immediately from the definition:

$$
\begin{equation*}
\psi^{s}(n, k) \leqslant \psi^{Q}(n, k) \text { for all } n, k . \tag{11}
\end{equation*}
$$

From a careful consideration of (2) it will be clear that a function t^{s}, analogous to t^{p}, may be taken to be equal to t^{R} or equal to t^{Q}.
Take a fixed number ν. Then

$$
\begin{equation*}
\psi^{\mathrm{Q}}\left(\nu, \mathrm{t}^{\mathrm{Q}}(\nu)\right)=0 \rightarrow \psi^{\mathrm{S}}\left(\nu, \mathrm{t}^{\mathrm{Q}}(\nu)\right)=0 \tag{12}
\end{equation*}
$$

We have further

$$
\begin{align*}
& \psi^{\mathrm{Q}}\left(\nu, \mathrm{t}^{\mathrm{Q}}(\nu)\right)>0 \rightarrow \mathrm{Q}_{1} \ldots \mathrm{Q}_{\mathrm{t}^{Q}(v)} \Subset \mathrm{T}_{\psi^{\mathrm{Q}}\left(v, \mathrm{t}^{\mathrm{Q}}(v)\right)^{-2^{-v}}} \\
& \rightarrow \mathrm{Q}_{1} \mathrm{R}_{1} \mathrm{Q}_{2} \mathrm{R}_{2} \ldots \mathrm{Q}_{\mathrm{t}^{\mathrm{Q}}(v)} \mathrm{R}_{\mathrm{t}^{\mathrm{Q}}(v)} \Subset \mathrm{T}_{\psi{ }^{\mathrm{Q}\left(v, \mathrm{t}^{\mathrm{Q}}(v)\right)-^{-v}}} \tag{13}\\
& \text { In both cases, (12) and (13), we obtain }
\end{align*}
$$

$$
\begin{equation*}
\psi^{\mathrm{Q}}\left(\nu, \mathrm{t}^{\mathrm{Q}}(\nu)\right)-2^{-\nu} \leqslant \psi^{\mathrm{s}}\left(\nu, \mathrm{t}^{\mathrm{Q}}(\nu)\right) \tag{14}
\end{equation*}
$$

Combining (11), (14) we draw the conclusion that

$$
\wedge n\left(\left|\psi^{Q}\left(n, t^{Q}(n)\right)-\psi^{s}\left(n, t^{Q}(n)\right)\right| \leqslant 2^{-n}\right)
$$

Hence $F\left\langle S_{n}\right\rangle_{n}=F\left\langle Q_{n}\right\rangle_{n}$.
Likewise $F\left\langle S_{n}\right\rangle_{n}=F\left\langle R_{n}\right\rangle_{n}$. We are now justified in defining f by: $f\left(\left\langle P_{n}\right\rangle_{n}^{*}\right)=F\left\langle P_{n}\right\rangle_{n}$.
It remains to be shown that f satisfies the conditions mentioned in the lemma.
Let $\left\langle P_{n}\right\rangle_{\mathrm{n}} \in \mathrm{T}_{\alpha}$, then $\wedge_{\mathrm{m}}\left(\varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}} \mathrm{T}_{\alpha}=1\right)$; so
$\wedge_{\mathrm{n}} \wedge \mathrm{k}(\psi(\mathrm{n}, \mathrm{k})>\alpha)$; hence $\mathrm{F}\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \nless \alpha$. We have proved:

$$
\begin{equation*}
\wedge p\left(p \in T_{\alpha} \rightarrow f(p) \nless \alpha\right) . \tag{15}
\end{equation*}
$$

Let $\neg\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{T}_{\alpha}$. It follows from (2) that

$$
\varphi P_{1} \ldots P_{t(v)} T_{\alpha+2^{-v}}=0 \vee P_{1} \ldots P_{t(v)} \Subset T_{\alpha}
$$

The second possibility is excluded, therefore

$$
\varphi P_{1} \ldots P_{t(v)} T_{\alpha+2^{-v}}=0
$$

Hence $\psi(\nu, t(\nu))<\alpha+2^{-v}$.
From $\wedge \mathrm{n}\left(\psi(\mathrm{n}, \mathrm{t}(\mathrm{n}))<\alpha+2^{-\mathrm{n}}\right)$ we see that $\mathrm{F}\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \ngtr \alpha$. We have thus proved:

$$
\begin{equation*}
\wedge p\left(p \notin T_{\alpha} \rightarrow f(p) \ngtr \alpha\right) \tag{16}
\end{equation*}
$$

From (15) we deduce: $p \in T_{1} \rightarrow f(p)=1$, and from (16) we obtain: $p \notin \mathrm{~T}_{0} \rightarrow \mathrm{f}(\mathrm{p})=0$.
Finally f has to be proved continuous.
Let $q=\left\langle Q_{n}\right\rangle_{n}$ be an arbitrary point of Γ. We shall prove

$$
\begin{equation*}
\wedge q \wedge \varepsilon \vee R \wedge r \in R(|f(r)-f(q)|<\varepsilon \& q \in R) \tag{17}
\end{equation*}
$$

Let $\left\langle Q_{n}\right\rangle_{n}^{*}=\left\langle P_{n}\right\rangle_{n}^{*}, \Lambda_{n}\left(P_{n+1} \Subset P_{n}\right)$, and let $\psi=\psi^{P}, t=t^{P}$ be the functions defined before. Take a fixed $\nu ;\left\langle R_{n}\right\rangle_{n}$ arbitrary.

$$
\begin{align*}
& \psi(\nu, \mathrm{t}(\nu))=0 \rightarrow \stackrel{\mathrm{P}_{1}}{\ldots} \mathrm{P}_{\mathrm{t}(\nu)} \mathrm{T}_{2^{-v}}=0 ; \\
& \psi(\nu, \mathrm{t}(\nu))=0 \&\left\langle\mathrm{R}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{t}(\nu)} \rightarrow\left\langle\mathrm{R}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \notin \mathrm{~T}_{2^{-v}} \tag{18}\\
& \psi(\nu, \mathrm{t}(\nu))=1 \rightarrow \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{t}(\nu)} \mathbb{C} \mathrm{T}_{1-2^{-v}} ; \\
& \psi(\nu, \mathrm{t}(\nu))=1 \&\left\langle\mathrm{R}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{t}(\nu)} \rightarrow\left\langle\mathrm{R}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{~T}_{1-2^{-\nu}} . \tag{19}\\
& \begin{aligned}
& 0<\psi(\nu, t(\nu))< 1 \rightarrow \\
& \& \mathrm{P}_{1} \ldots \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{t}(v)} \underset{\mathrm{t}(v)}{\mathbb{C}} \mathrm{T}_{\psi(v, \mathrm{t}(v))+2^{-v}}=0 \\
& \mathrm{~T}_{\psi(v, t(v))-2^{-v ;}}
\end{aligned} \\
& 0<\psi(\nu, \mathrm{t}(\nu))<1 \&\left\langle\mathrm{R}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{t}(\nu)} \rightarrow \\
& \neg\left\langle R_{n}\right\rangle_{n} \in T_{\psi(v, t(v))+2^{-v}} \&\left\langle R_{n}\right\rangle_{n} \in T_{\psi(v, t(v))-2^{-v}}^{t(v)} \tag{20}
\end{align*}
$$

From (15), (16), (18), (19), (20) we see that:

$$
\left\{\begin{array}{l}
\wedge m \wedge\left\langle R_{n}\right\rangle_{n} \in \text { II }\left(\left\langle R_{n}\right\rangle_{n} \in P_{1} \ldots P_{t(m)} \rightarrow\right. \tag{21}\\
\left.\left|F\left\langle R_{n}\right\rangle_{n}-\psi(m, t(m))\right| \not 2^{-m}\right) \\
q \in P_{1} \ldots P_{t(v)} \cdot
\end{array}\right.
$$

Combining (21) and (9) we see that

$$
\wedge\left\langle R_{n}\right\rangle_{n} \in \Pi\left(\left\langle R_{n}\right\rangle_{n} \in P_{1} \ldots P_{t(v)} \rightarrow\left|F\left\langle P_{n}\right\rangle_{n}-F\left\langle R_{n}\right\rangle_{n}\right|<4.2^{-v}\right)
$$

since $\left|F\left\langle R_{n}\right\rangle_{n}-F\left\langle P_{n}\right\rangle_{n}\right| \nmid\left|F<P_{n}\right\rangle_{n}-\psi(\nu, t(\nu)) \mid+$

$$
\left|\mathrm{F}<\mathrm{R}_{\mathrm{n}}>_{\mathrm{n}}-\psi(\nu, \mathrm{t}(\nu))\right| \ngtr 2^{-v+1}+2^{-v}<4.2^{-v} .
$$

If we take ν so large that $4.2^{-v}<\varepsilon$, we have proved (17).
2.28. Lemma. Let Γ be an I-space in which $R 4$ holds; let Π_{1} be a ©-representation for Γ with a defining pair $\langle\theta, \boldsymbol{v}\rangle$.

$$
\left.\mathfrak{c}=\left\{\bar{v}<i_{1}, \ldots, i_{k}\right\rangle:\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta\right\} .
$$

Suppose $\mathbb{C} \subset \mathfrak{B}, \mathrm{N} 8(\mathfrak{B})$ holds for Γ. Then Γ is metrizable. Proof. We enumerate all pairs
$\left\langle\bar{v}\left\langle i_{1}, \ldots, i_{k+1}\right\rangle, \bar{v}\left\langle i_{1}, \ldots, i_{k}\right\rangle\right.$ such that $\left\langle i_{1}, \ldots, i_{k}, i_{k+1}\right\rangle \in \theta$, in an enumeration $\left.《 Q_{i}, Q_{i}^{\prime}\right\rangle_{i}$. To every pair $\left\langle Q_{i}, Q_{i}^{\prime}\right\rangle$ of the enumeration a continuous function f_{i} can be constructed, according to lemma 2.27, such that for any $p, p \in Q_{i} \rightarrow f_{i}(p)=1$, $p \notin Q_{i}^{\prime} \rightarrow f_{i}(p)=0$.
We define

$$
\rho(p, q)=\sum_{i=1}^{\infty} 2^{-i}\left|f_{i}(p)-f_{i}(q)\right| .
$$

We must show that ρ represents a metrization of Γ. To achieve this we must prove for every p, q, r :

$$
\begin{align*}
& \rho(\mathrm{p}, \mathrm{q})=\rho(\mathrm{q}, \mathrm{p}) \tag{1}\\
& \rho(\mathrm{p}, \mathrm{q}) \nless 0 \&(\mathrm{p} \# \mathrm{q} \leftrightarrow \rho(\mathrm{p}, \mathrm{q})>0) \tag{2}\\
& \rho(\mathrm{p}, \mathrm{q}) \ngtr \rho(\mathrm{p}, \mathrm{r})+\rho(\mathrm{r}, \mathrm{q}) \tag{3}\\
& \wedge \varepsilon \mathrm{V}\left(\mathrm{p} \in \mathrm{~T} \in \mathrm{~T} \subset \mathrm{U}_{\varepsilon}(\mathrm{p})\right) \tag{4}\\
& \wedge R\left(\mathrm{p} \in \mathrm{R} \rightarrow \vee \varepsilon\left(\mathrm{U}_{\varepsilon}(\mathrm{p}) \subset \mathrm{R}\right)\right) \tag{5}
\end{align*}
$$

(1) and the first part of (2) are trivial. The second part of (2) is demonstrated as follows. Let $r \# s, r=\left\langle R_{n}\right\rangle_{n}^{*}$, $s=\left\langle S_{n}\right\rangle_{n}^{*},\left\langle R_{n}\right\rangle_{n},\left\langle S_{n}\right\rangle_{n} \in \Pi_{1}$. For a certain ν, $\varphi R \ldots R_{v} S_{1} \ldots S_{v}=0$.
There is a μ such that $\left\langle R_{1} \ldots R_{v+1}, R_{1} \ldots R_{\nu}\right\rangle=\left\langle Q_{\mu}, Q_{\mu}^{\prime}\right\rangle$.

$$
r \in R_{1} \ldots R_{v+1} \rightarrow f_{\mu}(r)=1 ; s \notin R_{1} \ldots R_{v} \rightarrow f_{\mu}(s)=0
$$

Hence $\rho(r, s) \nless 2^{-\mu}$, and $\rho(r, s)>0$.
(3) follows from

$$
\Lambda i\left(\left|f_{i}(p)-f_{i}(q)\right| \ngtr\left|f_{i}(p)-f_{i}(r)\right|+\left|f_{i}(q)-f_{i}(r)\right|\right) .
$$

Proof of (4). Let p be an arbitrary point. Choose a natural number ν, such that $\sum_{i=v+1}^{\infty} 2^{-i}=2^{-v}<\varepsilon 2^{-1}$. f_{1}, \ldots, f_{v} are continuous functions, so there exist $T_{1}, \ldots T_{v}$ such that

$$
\begin{equation*}
\wedge q\left(q \in T_{i} \rightarrow\left|f_{i}(q)-f_{i}(p)\right|<\frac{2^{i-1} \varepsilon}{\nu}\right), \text { for } p \in T_{i}, 1 \leqslant i \leqslant \nu \tag{6}
\end{equation*}
$$ If $T=T_{1} \ldots T_{v}$, we deduce from (6) for any $q \in T$:

$$
\begin{aligned}
\rho(p, q)= & \sum_{i=1}^{\infty}\left|f_{i}(p)-f_{i}(q)\right| 2^{-i}<\varepsilon 2^{-1}+\sum_{i=1}^{v} 2^{-i}\left|f_{i}(p)-f_{i}(q)\right| \\
& <\varepsilon 2^{-1}+\varepsilon 2^{-1}=\varepsilon .
\end{aligned}
$$

Proof of (5). Let $p \in R, p, R$ arbitrary, $\left\langle P_{n}\right\rangle_{n} \in p,\left\langle P_{n}\right\rangle_{n} \in \Pi_{1}$. A ν can be found such that $P_{1} \ldots P_{v} \in R$, and there exists a μ such that $\left\langle P_{1} \ldots P_{v} P_{v+1}, P_{1} \ldots P_{v}\right\rangle=\left\langle Q_{\mu}, Q_{\mu}^{\prime}\right\rangle$. By definition of $f_{\mu}, f_{\mu}(p)=1$. Let q be an arbitrary point.

$$
\begin{aligned}
\mathrm{q} \in \mathrm{U}_{2^{-\mu}}(\mathrm{p}) & \rightarrow \rho(\mathrm{p}, \mathrm{q})<2^{-\mu} \\
& \rightarrow\left|\mathrm{f}_{\mu}(\mathrm{p})-\mathrm{f}_{\mu}(\mathrm{q})\right| 2^{-\mu}<2^{-\mu} \\
& \rightarrow\left|\mathrm{f}_{\mu}(\mathrm{p})-\mathrm{f}_{\mu}(\mathrm{q})\right|<1 \\
& \rightarrow \mathrm{f}_{\mu}(\mathrm{q})>0 \\
& \rightarrow \mathrm{q} \in \mathrm{q} \in \mathrm{P}_{1} \ldots \mathrm{P}_{\nu} \\
& \rightarrow \mathrm{q} \in \mathrm{P}_{1} \ldots \mathrm{P}_{\nu} \mathbb{C} \mathrm{R} \in \mathrm{R}^{2} .
\end{aligned}
$$

2.29. Corollary to 2.28. If Γ is a space which satisfies the requirements of 2.28 , then Γ can be embedded topologically in the hilbert cube by a mapping g :

$$
g(p)=\left\langle f_{i}(p)\right\rangle_{i} .
$$

2.30. Theorem. If R1 holds in a metrizable IR-space $\boldsymbol{\Gamma}=\left\langle\mathrm{V}_{0}, \mathfrak{I}\right\rangle$, and ρ is a metric on V_{o} such that $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{T}(\rho)\right\rangle=$ $\left\langle V_{0}, \mathbb{T}\right\rangle$, then $\left\langle V_{0}, \rho\right\rangle$ has a point representation.
Proof. By I5, a point $\mathrm{p}(\mathrm{Q})$ can be associated with every lattice element Q such that $\varphi Q=1$. Let $\langle\theta, \vartheta\rangle$ be the defining pair of a spread Π_{1} which represents Γ.

If $\left\langle Q_{n}\right\rangle_{n} \in \Pi_{1}$, then $\left\langle p\left(Q_{1} \ldots Q_{n}\right)\right\rangle_{n}$ converges with respect to ρ to $\left\langle Q_{n}>_{n}^{*}=q\right.$; for since $q \in U_{\varepsilon}(q)$, it follows that for a certain $R q \in R \subset U_{\varepsilon}(q)$; then for a certain $\nu Q_{1} \ldots Q_{\nu} \Subset R$, so $p\left(Q_{1} \ldots Q_{\nu}\right) \in R .\{p(Q): Q \in \overline{\mathcal{v}} \theta\}$ is a basic pointspecies for Γ.

3. CIN - and PIN-spaces.

3.1. In this paragraph we treat some special cases of IRspaces, in which Π, the species of point generators, can be eliminated as an undefined object. Thus, in a sense, we obtain a "pointless" topology. The expression "topology without points" was first coined in MENGER 1940. From the various theories discussed there, the theory of MOORE 1935 somewhat resembles the approach of the CIN-spaces; the theory of WALD 1932 on the other hand is more related to the PIN-spaces. One of the main differences between our approach and these theories is that the notion of strong inclusion is not a primitive one in our system.
3.2. Definition. An abstract CIN-space is defined as an abstract I-space, such that the following postulates are fulfilled.

C1. There exists a sequence of species of lattice elements, $\left\langle\mathfrak{A}_{i}\right\rangle_{i}, \mathfrak{X}_{i}=\left\langle A_{i, j}\right\rangle_{j}$, such that $\mathfrak{A} \subset \mathfrak{A}_{1}, \wedge i\left(\mathfrak{X}_{i+1} \subset \mathfrak{X}_{i}\right)$, $\wedge \mathrm{n} \wedge \mathrm{m} \wedge \mathrm{i} \wedge \mathrm{j}\left(\varphi \mathrm{A}_{\mathrm{n}, \mathrm{i}} \mathrm{A}_{\mathrm{m}, \mathrm{j}}=1 \rightarrow \mathrm{~A}_{\mathrm{n}, \mathrm{i}} \mathrm{A}_{\mathrm{m}, \mathrm{j}} \in \mathscr{A}_{\mathrm{n}}\right)$.
C2. $\% A_{1, i(1)} \ldots A_{n, i(n)}=1 \rightarrow V k\left(\varphi A_{1, i(1)} \ldots A_{n, i(n)} A_{n+1, k}=1\right)$.
C3. $\wedge i \wedge j \vee k\left(A_{i, j} \Subset A_{i, k}\right), \wedge_{i} \wedge j\left(\varphi A_{i, j}=1\right)$.
C4. $\wedge\left\langle P_{n}\right\rangle_{n}\left(\left\langle P_{n}\right\rangle_{n} \in \Pi \leftrightarrow \wedge n \vee j\left(P_{n}=A_{n, j} \& \varphi P_{1} \ldots P_{n}=1\right)\right)$. N6.
$N 9 . \wedge i \wedge j \wedge k\left(A_{i, j} \mathbb{C} A_{i, k} \rightarrow V 1\left(A_{i, j} \in A_{i, 1} \Subset A_{i, k}\right)\right)$.
A CIN-space is a topological space homeomorphic to an abstract CIN-space. The species $\left\langle A_{i, j}\right\rangle_{i, j}$ is called a CINcovering system. A CIN-basis is defined in the same manner as an I-basis in 3.1.26. The letter " C " is derived from "covering".
3.3. Theorem. In a CIN-space
a) postulate $I 5$ is derivable from the other postulates, and b) N8(\mathfrak{z}_{1}) holds.

Proof. (a). Let $\varphi P=1$. $P=Q_{1}+\ldots+Q_{v}, Q_{i}(1 \leqslant i \leqslant \nu)$ a meet of elements of \mathfrak{A}. Since $\mathscr{A} \subset \mathfrak{A}_{1}$, there is a Q_{μ}, $1 \leqslant \mu \leqslant \nu, Q_{\mu} \in \mathscr{H}_{1}, \phi Q_{\mu}=1$. Let $Q_{\mu}=A_{1, i(1)}$. By means of repeated application of $C 2$ we prove inductively the exist ence of a sequence $\left\langle A_{n, i(n)}\right\rangle_{n}$ such that $\wedge_{n}\left(\rho A_{1, i(1)} \ldots A_{n, i(n)}=1\right)$. By C4, $\left\langle A_{n, i(n)}\right\rangle_{n} \in \Pi_{1}$, hence $\left\langle A_{n, i(n)}\right\rangle_{n}^{*} \in P$.
(b) Immediate by N9.
3.4. Remark. a) Elements of a CIN-covering system with different indices are not necessarily different.
b) Π can be eliminated completely from the postulates, if we combine I 4 and C 4 to

C5. $\wedge\left\langle P_{n}\right\rangle_{n}\left(\wedge n \vee j\left(P_{n}=A_{n, j}\right) \& \wedge n\left(\rho P_{1} \ldots P_{n}=1\right) \rightarrow\right.$ $\left.\left\langle P_{n}\right\rangle_{n} \in \Sigma\right)$.
and afterwards define Π by:

$$
\left\langle P_{n}\right\rangle_{n} \in \Pi \leftrightarrow \Lambda n \operatorname{Vj}\left(P_{n}=A_{n, j}\right) \&\left\langle P_{n}\right\rangle_{n} \in \Sigma
$$

c) The family of CIN-spaces coincides classically with the family of separable complete metric spaces.
The proof follows from FROLÍK 1962, theorem 3.1 (proved in FROLÍK 1960 2.8, 2.14) and the observations

1) Every CIN-space is completely regular, since it is metrizable.
2) $<$ Int $\left.\left.A_{i, n}\right\rangle_{n}\right\rangle_{i}=\left\langle\mathscr{X}_{i}\right\rangle_{i}$ satisfies the conditions of FROLÍK 1962, theorem 3.
3.5. Theorem. In a CIN-space R3 and R4 hold.

Proof. We show that Π is a normal perfect representation with a defining pair $\langle\theta, \boldsymbol{v}\rangle$,
$\left\langle P_{1}, \ldots, P_{n}\right\rangle \epsilon \vartheta \theta \leftrightarrow \Lambda t\left(1 \leqslant t \leqslant n \rightarrow P_{t} \in \mathscr{A}_{t}\right) \& \varphi P_{1} \ldots P_{n}=1$. C2 guarantees us that θ is in fact a spread law. We prove Π to be perfect as follows. Let $\left\langle A_{n, i(n)}\right\rangle_{n} \in \Pi$,
$\left\langle A_{n, i(n)}\right\rangle_{n} \in A_{1, j(1)} \ldots A_{v, j(v)}$. We define $\left\langle A_{n, k(n)}\right\rangle_{n}$ by:
$1 \leqslant n \leqslant \nu \rightarrow k(n)=j(n)$
$n>\nu \quad \rightarrow k(n)=i(n)$
$\left\langle A_{n, k(n)}\right\rangle_{n} \in$ II by C4. $\left\langle A_{n, k(n)}\right\rangle_{n} \simeq\left\langle A_{n, i(n)}\right\rangle_{n}$, hence our representation is perfect.

We can construct to every $\left\langle A_{n, i(n)}\right\rangle_{n} \in \Pi$ an $\left\langle A_{n, j(n)}\right\rangle_{n} \in \Pi$, such that $\left\langle A_{n, i(n)}\right\rangle_{n} \simeq\left\langle A_{n, j(n)}\right\rangle_{n}$, and

$$
\begin{aligned}
& \wedge_{n}\left(A_{1, i(1)} \ldots A_{n, i(n)} \Subset A_{1, j(1)} \ldots A_{n, j(n)}\right) \\
& \wedge n\left(A_{1, j(1)} \ldots A_{n+1, j(n+1)} \Subset A_{1, j(1)} \ldots A_{n, j(n)}\right)
\end{aligned}
$$

This construction is carried out by induction. By C3, there
is an $A_{1, \mathrm{j}(1)}$ such that $A_{1, i(1)} \mathbb{C} A_{1, \mathrm{j}(1)}$. To $A_{2, i(2)}$ we can find an $A_{2, k}$ such that $A_{2, i}(2) \Subset A_{2, k}$. Thus we obtain $A_{1, i(1)} A_{2, i(2)} \Subset A_{1, j(1)} A_{2, k}$. By N9, there is an $A_{2, j(2)}$ such that $A_{1, i(1)} A_{2, i(2)} \Subset A_{2, j(2)} \Subset A_{1, j(1)} A_{2, k}$. Hence $A_{1, i(1)} A_{2, i(2)}$ $\Subset A_{1, j(1)} A_{2, j(2)} \Subset A_{1, j(1)}$.
Suppose $A_{1, j(1)}, \ldots, A_{v, j(v)}$ to be already constructed. To $A_{v+1, i(v+1)}$ an $A_{v+1, k}$ with $A_{v+1, i(v+1)} \in A_{v+1, k}$ can be found. It follows that
$A_{1, i(1)} \ldots A_{v+1, i(v+1)} \Subset A_{1, j(1)} \ldots A_{v, j(v)} A_{v+1, k}$.
We construct (by an application of N 9) an $A_{v+1, j(v+1)}$ such that $A_{1, i(1)} \ldots A_{v+1, i(v+1)} \Subset A_{v+1, j(v+1)} \Subset A_{1, j(1)} \ldots A_{v, j(v)} A_{v+1, k} \cdot$ We conclude that
$A_{1, i(1)} \ldots A_{v+1, i(v+1)} \Subset A_{1, j(1)} \ldots A_{v+1, j(v+1)} \Subset A_{1, j(1)} \ldots A_{v, j(v)}$. As a consequence, II possesses the inclusion property.
Further, if we replace every $\left\langle A_{n, i(n)}\right\rangle_{n} \in \Pi$ by the corresponding $\left\langle A_{n, j(n)}\right\rangle_{n}$, constructed as indicated before, we obtain a ©-representation.
3.6. Corollary to 3.5 .
a) A CIN-space is metrizable.
b) In a CIN-space for all $V, W: V \mathbb{C} W \rightarrow V \mathbb{W}$.
c) Every mapping of a CIN-space into a separable metric space is continuous.
d) Every one-to-one mapping of a CIN-space Γ onto a CINspace Γ^{\prime} is a homeomorphism between Γ and Γ^{\prime}.
Proof. (a) follows from 2.28, (b) from 2.25,(c) from 2.23, and (d) is an immediate consequence of (c), 2.30,(a), 2.2.5.
3.7. Theorem. If Γ is a CIN-space, V a closed weakly located pointspecies of Γ, then $V \Subset \prime W \rightarrow V \Subset W$ for any pointspecies W . If V is weakly located, then $\mathrm{V} \Subset \mathrm{W} \leftrightarrow \mathrm{V}^{-} \subset$ Int W.
Proof. Let $\left\langle P_{n}\right\rangle_{n} \in \Pi_{b}\left\langle P_{n}\right\rangle_{n}$ arbitrary. We can find a $\left\langle Q_{n}\right\rangle_{n}$, such that $\left\langle Q_{n}\right\rangle_{n} \simeq\left\langle P_{n}\right\rangle_{n},{ }^{n} \Lambda n\left(Q_{n+1} \Subset Q_{n}\right),\left\langle Q_{n}\right\rangle_{n} \in \Pi$. Since V is weakly located, we have
$\wedge n\left(V q\left(q \in\left[Q_{n}\right] \cap V\right) \vee \vee m\left(m>n \&\left[Q_{m}\right] \cap V=\emptyset\right)\right)$
(For if there is an R such that $\left\langle P_{n}\right\rangle_{n}^{*} \in R \subset Q_{n},[R] \cap V=\phi$, there is also a $Q_{m} \Subset R \subset Q_{n}$). We can select from $\left\langle Q_{n}\right\rangle_{n}$ a subsequence $\left\langle Q_{n}^{\prime}\right\rangle_{n}, \Lambda n\left(Q_{n+1}^{\prime} \Subset Q_{n}^{\prime}\right)$, such that for a certain sequence of points $\left\langle q_{n}\right\rangle_{n}, q_{n}=\left\langle S_{m}^{n}\right\rangle{ }_{m}^{*}$, the following assertion holds:

$$
\begin{equation*}
\wedge n\left(\left[Q_{n}^{\prime}\right] \cap \vee=\emptyset \vee q_{n} \in\left[Q_{n}^{\prime}\right] \cap V\right) \tag{2}
\end{equation*}
$$

For if $Q_{n}^{\prime}=Q_{k p}$ we take $Q_{n+1}^{\prime}=Q_{k+1}$ if we know that $\mathrm{Vq}\left(\mathrm{q} \in\left[\mathrm{Q}_{\mathrm{k}+1}\right] \cap \mathrm{V}\right)$, and $\mathrm{Q}_{\mathrm{n}+1}^{\prime}=\mathrm{Q}_{\mathrm{m}}, \mathrm{m}>\mathrm{n}+1$, if we know that $\left[Q_{\mathrm{m}}\right] \cap \mathrm{V}=\emptyset$, depending on the decision which can be made according to (1).

If $\left[Q_{1}^{\prime}\right] \cap V=\emptyset$, we remark that $\left\langle P_{n}\right\rangle_{n}^{*} \in Q_{1}^{\prime}$, so there is a ν such that $P_{1} \ldots P_{v} \Subset Q_{1}^{\prime} ;\left[P_{1} \ldots P_{v}\right] \cap V=\emptyset$. If $q_{1} \in\left[Q_{1}^{\prime}\right] \cap \mathrm{V}$, we construct a finitary spread Π_{1} with a defining pair $\langle\theta, \vartheta\rangle$, such that $\vartheta\left\langle\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\rangle=\left\langle\gamma \mathrm{i}_{1}, \ldots, \gamma \mathrm{i}_{\mathrm{k}}\right\rangle$ as follows.
$\left\langle R_{1}, \ldots, R_{n}\right\rangle \in \vartheta \theta \leftrightarrow V k\left(1 \leqslant k \leqslant n \&\left\langle R_{1}, \ldots, R_{k}\right\rangle=\left\langle Q_{1}^{\prime}, \ldots, Q_{k}^{\prime}\right\rangle\right.$ $\left.\& \mathrm{q}_{\mathrm{k}} \in\left[\mathrm{Q}_{\mathrm{k}}^{\mathrm{n}}\right] \cap \mathrm{V} \& \wedge \mathrm{t}\left(\mathrm{k}+\mathrm{t} \leqslant \mathrm{n} \rightarrow \mathrm{R}_{\mathrm{k}+\mathrm{t}}=\mathrm{Q}_{\mathrm{k}}^{\prime} \mathrm{S}_{1}^{\mathrm{k}} \ldots \mathrm{S}_{\mathrm{k}+\mathrm{t}}^{\mathrm{k}}\right)\right)$
Every spread element is a point generator and represents a point of V , and satisfies $\Lambda\left\langle T_{n}\right\rangle_{n}\left(\left\langle T_{n}\right\rangle_{n} \in \Pi_{1} \rightarrow \Lambda m\left(T_{m+1} \subset T_{m}\right)\right.$). Because of V ©" W, we have

$$
\wedge\left\langle T_{n}\right\rangle_{n} \in \Pi_{1} \vee i\left(T_{i} \subset W\right) .
$$

Π_{1} is finitary, therefore a natural number ν must exist (1.1.12) such that $T_{v} \subset W$ for every $\left\langle T_{n}\right\rangle_{n} \in \Pi_{1}$. We have

$$
\begin{aligned}
& \left\langle Q_{1}^{\prime}, \ldots, Q_{v}^{\prime}\right\rangle \in v \theta \rightarrow Q_{v}^{\prime} \subset W . \\
& \left\langle Q_{1}^{\prime}, \ldots, Q_{v}^{\prime}\right\rangle \notin v \theta \rightarrow\left[Q_{v}^{\prime}\right] \cap V=\emptyset .
\end{aligned}
$$

A natural number μ can be found such that $P_{1} \ldots P_{\mu} \subset Q_{v}^{\prime}$, hence in the first case $P_{1} \ldots P_{v} \subset W$, in the second case $\left[P_{1} \ldots P_{v}\right] \cap \mathrm{V}=\emptyset$. Q.e.d. The second part follows easily with 3.2.17.
3.8. Definition. An abstract PIN-space is an abstract I-space such that N6, N8 hold, and for which Π can be described by the following postulate P (from "point"):

$$
\text { P. } \Sigma=\Pi .
$$

A PIN-space is a topological space which is homeomorphic to an abstract PIN-space. A PIN-basis is defined in the same manner as an I-basis (3.1.26).
Remark. A PIN-space is therefore a space which satisfies I1-3,N6,N8. Π is defined in terms of φ.
3.9. Theorem. Every PIN-space is a CIN-space. Proof. Let $\left\langle P_{n}\right\rangle_{n}$ be a fixed enumeration of the lattice elements of a PIN-space Γ, such that $\Lambda n\left(n>1 \rightarrow \varphi P_{n}=1\right)$, $P_{1}=A_{0}$. From this enumeration we construct an enumeration $\left.《 Q_{i}, Q_{i}^{\prime}\right\rangle_{i}$ of all pairs $\left\langle Q_{i}, Q_{i}^{\prime}\right\rangle$ with $Q_{i}, Q_{i}^{\prime} \in \mathfrak{P}(\Gamma), \varphi Q_{i} Q_{i}^{\prime}=$ $0, Q_{1}=A_{0} \vee Q_{1}^{\prime}=A_{0}, \wedge i\left(\varphi Q_{i}=1 \vee \varphi Q_{i}^{\prime}=1\right)$, if necessary with repetitions to grant a denumerably infinite sequence. We define:
$\mathscr{X}_{i}=\left\{P: \varphi P=1 \& \wedge j\left(j \leqslant i \rightarrow \varphi P Q_{j}=0 \vee \varphi P Q_{j}^{\prime}=0\right)\right\}$. We see that $\mathscr{A} \subset \mathscr{A}_{1}$, since $\wedge n\left(\varphi A_{n} Q_{n}=0 \vee \varphi A_{n} Q_{1}^{\prime}=0\right)$; $\wedge i\left(\mathfrak{R}_{\mathrm{i}+1} \subset \mathfrak{A}_{\mathrm{i}}\right) ; \wedge \mathrm{i} \wedge \mathrm{P} \wedge \mathrm{Q}\left(\mathrm{P} \in \mathfrak{A}_{\mathrm{i}} \& \varphi \mathrm{PQ}=1 \rightarrow \mathrm{PQ}, \epsilon \mathfrak{X}_{\mathrm{i}}\right)$. C 1 is therefore satisfied.

If $\rho P_{1} \ldots P_{n}=1, \wedge i\left(1 \leqslant i \leqslant n \rightarrow P_{i} \in \mathscr{A}_{i}\right)$, then there is a $P_{n+1} \in \mathscr{A}_{n+1}$ such that $\varphi P_{1} \ldots P_{n} P_{n+1}=1$, for if
$\varphi P_{1} \ldots P_{n} Q_{n+1}=1$, we take $P_{n+1}=P_{1} \ldots P_{n} Q_{n+1}$, and if $\rho P_{1} \ldots P_{n} Q_{n+1}=0$, we take $P_{n+1}=P_{1} \ldots P_{n}$. So we have proved C2.
C3 follows from N6, for if $P \in \mathscr{A}_{i}, \wedge j\left(j \leqslant i \rightarrow \varphi P Q_{j}=0 \vee\right.$ $\varphi P Q_{j}^{\prime}=0$), there exist according to $N 6, R_{j}$ for every $j \leqslant i$, such that $P \Subset R_{j} \&\left(\varphi R_{j} Q_{j}=0 \vee \varphi R_{j} Q_{j}=0\right)$; and if we take $R=R_{1} \ldots R_{i}$ then $P \mathbb{C} R \& R \in \mathbb{A}_{i}$. N9 is an immediate consequence of N8. To obtain a CIN-space, we must afterwards restrict Π to Π^{\prime} consisting of all point generators $\left\langle R_{n}\right\rangle_{n}$ such that

$$
\wedge m\left(m \leqslant n \rightarrow \varphi R_{n} Q_{m}=0 \vee \vartheta R_{n} Q_{m}^{\prime}=0\right)
$$

We remark that the two spaces $\left\langle\varphi, \Pi^{\prime}\right\rangle$ and $\langle\varphi, \Pi\rangle$ satisfy the conditions of 1.32 ; on that account they define the same topology, and their notions of strong inclusion coincide.
3.10. Definition. A point p of an abstract I-space Γ is called decidable, if

$$
\wedge P(p \in P \vee p \omega P)
$$

3.11. Every PIN-space possesses an enumerable set of decidable points, dense in the space.
Proof. We show that every $Q \in \mathfrak{F}$ with $\varphi Q=1$ contains a decidable point. To a certain Q with $\varphi Q=1$ we can find an enumeration $\left\langle P_{n}\right\rangle_{n}$ of all lattice elements P such that $\phi \mathrm{P}=1$, with $\mathrm{P}_{1}=\mathrm{Q}$.

We define $\left\langle R_{n}\right\rangle_{n} \in \Pi$ as follows.
$R_{1}=P_{1}$; if $R_{1, \ldots}, \ldots, R_{v}$ already have been defined, we define $R_{v+1}=P_{v+1}$ if $\varphi R_{1} \ldots R_{v} P_{v+1}=1, R_{v+1}=R_{v}$ if $\varphi R_{1} \ldots R_{v} P_{v+1}=0$.
If $\varphi S T=0, \varphi S=1, \varphi T=1$, there exist μ, ν such that $\mathrm{S}=\mathrm{P}_{\nu}, \mathrm{T}=\mathrm{P}_{\mu}$. Suppose $\mu<\nu$. Then $\varphi \mathrm{R}_{1} \ldots \mathrm{R}_{\mu-1} \mathrm{P}_{\mu}=0 \vee$ $\vartheta R_{1} \ldots R_{\mu} P_{\mu}=1$. If $\vartheta R_{1} \ldots R_{\mu} P_{\mu}=1, R_{\mu}=P_{\mu}$, and thus ${ }_{\rho} R_{1} \ldots R_{\mu} R_{v}=0$.
Hence if $\lambda=\sup \{\mu, \nu\}$, then $\varphi R_{1} \ldots R_{\lambda} S=0 \vee \varphi R_{1} \ldots R_{\lambda} T=0$. So $\left\langle R_{n}\right\rangle_{n} \in I$.
$\left\langle R_{n}\right\rangle_{n}$ is decidable, for if $\varphi S=1, S=P_{v}$ for a certain ν, then either $R_{v}=P_{v}$, and in this case $\left\langle R_{n}\right\rangle_{n} \in P_{v}$, or $\rho R_{1} \ldots R_{v-1} P_{v}=0$, hence $\left\langle R_{n}\right\rangle_{n} \omega P_{v}$.
If we associate with every Q with $\varphi Q=1$ an enumeration as indicated in the beginning of the proof, we obtain an enumerable set of decidable points. This species is dense in the space, for if $\left.q \in R, q=\left\langle Q_{n}\right\rangle\right\rangle_{n}^{*}, \wedge n\left(Q_{n+1} \Subset Q_{n}\right)$, there is a ν such that $q \in Q_{\nu} \Subset R$; and hence there is a decidable $p \in Q_{v} \subset \operatorname{Int}[R]$.
4. Topological products.
4.1. Definition. Let $\Gamma_{i}, i=1,2, \ldots$ be a finite or a denumerably infinite sequence of I-spaces. $\because\left(\Gamma_{i}\right)=\mathfrak{X}_{i}, \mathfrak{X}\left(\Gamma_{i}\right)=\mathfrak{P}_{i}$, $\varphi_{\Gamma_{i}}=\varphi_{i}$. Arbitrary elements of \mathfrak{P}_{i} are denoted by capitals with upper index i (and indexed below if necessary): P^{i}, Q^{i}, R^{i}, S^{i}, T^{i}. Now we define a product space Γ as follows. $\mathscr{U}(\Gamma)=\mathfrak{N}=\left\{\left\langle\mathrm{P}^{\mathrm{i}}\right\rangle_{\mathrm{i}}: V \mathrm{Vn} \wedge \mathrm{m}\left(\mathrm{P}_{\mathrm{m}} \mathrm{P}^{\mathrm{m}}=1 \&\left(\mathrm{~m}>\mathrm{n} \rightarrow \mathrm{P}^{\mathrm{m}}=\mathrm{A}_{\infty}^{\mathrm{m}}\right)\right)\right\}$. $\mathscr{A}_{\pi}=\left\{\left\langle P^{i}\right\rangle_{i}: \vee n \wedge m\left(m>n \rightarrow P^{m}=A_{\infty}^{m}\right)\right\}$.
We define functions π_{j} from \mathscr{A}_{π} into \mathscr{A}_{j} :
$\left\langle\mathrm{P}^{\mathrm{i}}\right\rangle_{i} \in \boldsymbol{q}_{\pi} \rightarrow \pi_{j}\left\langle\mathrm{P}^{\mathrm{i}}\right\rangle_{i}=\mathrm{P}^{\mathrm{j}}$.
$\mathfrak{P}=\mathfrak{P}(\boldsymbol{\Gamma})$ is the free distributive lattice with the elements of \mathfrak{U} as generators, with a zero-element A_{0}, an all-element A_{∞}, and operators + , . Arbitrary elements of \Re are denoted by capitals P, Q, R, S, T, with indexes below if necessary.
A defining function $\varphi=\varphi_{T}$ is declared on \mathscr{A}_{π} by:
$\varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}=1 \leftrightarrow \wedge \mathrm{i}\left(\varphi_{\mathrm{i}} \pi_{\mathrm{i}} \mathrm{P}_{1} \ldots \pi_{\mathrm{i}} \mathrm{P}_{\mathrm{n}}=1\right),\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}} \in \mathscr{A}_{\pi}\right)$.
We put $\varphi A_{0}=0$. φ satisfies I1, 12 with respect to \mathscr{Q} and can therefore be extended to \mathfrak{P}. Elements of \mathscr{A}_{π} will sometimes, somewhat less formal, be written as sequences ($\mathrm{P}^{1}, \mathrm{P}^{2}, \ldots$) instead of being written as $\left\langle\mathrm{P}^{\mathrm{i}}\right\rangle_{\mathrm{i}}$. If we define $\mathcal{\sim}=\mathcal{\sim}_{\Gamma}$ with respect to elements of \mathfrak{P} and \mathscr{A}_{π} as in 1.6 , we remark that: a) Every finite meet of elements of \mathfrak{N} is equivalent to an element of \mathfrak{a}_{π} : $\left\langle P_{1}^{i}\right\rangle_{i}\left\langle P_{2}^{i}\right\rangle_{i} \ldots\left\langle P_{n}^{i}\right\rangle_{i} \sim\left\langle P_{1}^{i} \ldots P_{n}^{i}\right\rangle_{i}$. Hence we treat an element of \mathfrak{P} in the sequel always as a join of elements of \mathscr{A}_{π}.
b) $A_{0} \sim\left\langle A_{0}^{i}\right\rangle_{i}^{\pi} ; A_{\infty} \sim\left\langle A_{\infty}^{i}\right\rangle_{i}$.
c) $\left(P^{1}, \ldots, P^{i-1}, Q^{i}, P^{i+1}, \ldots\right)+\left(P^{1}, \ldots, P^{i-1}, R^{i}, P^{i+1}, \ldots\right)$ $\underset{\sim}{\sim}\left(P^{1}, \ldots, P^{i-1}, Q^{i}+R^{i}, P^{i+1}, \ldots\right)$
Finally we define:
$\Pi(\Gamma)=\Pi=\left\{\left\langle P_{n}\right\rangle_{n}: \wedge n\left(P_{n} \in \mathscr{A}_{\pi}\right) \& \wedge i\left(<\pi_{i} P_{n}>_{n} \in \Pi^{*}\left(\Gamma_{i}\right)\right)\right\}$. π_{j} can be extended to Π, Π^{0} by stipulating:

$$
\left\langle P_{n}\right\rangle_{n} \in \Pi \rightarrow \pi_{j}\left\langle P_{n}\right\rangle_{n}=\left\langle\pi_{j} P_{n}\right\rangle{ }_{n}{ }_{n}
$$

In the sequel we formulate a number of theorems for the product of a finite or denumerably infinite sequence of Ispaces, but in the proof we restrict ourselves to the denumerably infinite case, since the finite case is proved easily by omitting some details of the proof for the infinite case.
4.2. Theorem. Let $\Gamma_{i}, i=1,2, \ldots$ be a finite or a denumerably infinite sequence of I-spaces. The product Γ of this sequence if again an I-space.
Proof. I1, I2 are already valid by definition 4.1. I3 follows from remark (a) in 4.1. Since

$$
\begin{aligned}
& \phi\left(P_{1}+\ldots+P_{\mu}\right)\left(Q_{1}+\ldots+Q_{\nu}\right)=0 \leftrightarrow \\
& \wedge i \wedge j\left(1 \leqslant i \leqslant \mu \& 1 \leqslant j \leqslant \nu \rightarrow \varphi P_{i} Q_{j}=0\right) \text {, }
\end{aligned}
$$

the requirement for an element of Π to satisfy the splitting condition for all pairs of lattice elements P,Q such that $\rho P Q=0$, is equivalent with the validity of the splitting condition with respect to all pairs $P, Q \in \mathcal{A}$ such that $\varphi P Q=0$. If $\varphi\left\langle\mathrm{P}^{\mathrm{i}}\right\rangle_{\mathrm{i}}\left\langle\mathrm{Q}^{\mathrm{i}}\right\rangle_{\mathrm{i}}=0$, there is a ν such that $\varphi_{v} \mathrm{P}^{v} \mathrm{Q}^{\nu}=0$. If $\left\langle R_{n}\right\rangle_{n} \in \Pi_{\text {, }}$, then $\left\langle R_{n}^{v}\right\rangle_{n} \in \Pi^{*}\left(\Gamma_{v}\right)$, if $\pi_{v} R_{n}=R_{n}^{v}$. There is a μ such that

$$
\varphi_{\nu} \mathrm{R}_{1}^{\nu} \ldots \mathrm{R}_{\mu}^{\nu} \mathrm{P}^{\nu}=0 \vee \varphi_{\nu} \mathrm{R}_{1}^{\nu} \ldots \mathrm{R}_{\mu}^{\vee} \mathrm{Q}^{v}=0 .
$$

Hence $\varphi R_{1} \ldots R_{\mu}\left\langle P^{i}\right\rangle_{i}=0 \vee \varphi R_{1} \ldots R_{\mu}\left\langle Q^{i}\right\rangle_{i}=0$.
I5 is satisfied, since if $\varphi P=1$, we can find $a\left\langle R_{n}^{i}\right\rangle_{n} \in \pi_{i} P$ for every i. Then if $\left\langle R_{n}\right\rangle_{n}$ is defined by $\pi_{i} R_{n}=R_{n-i+1}^{i}$ for $n \geqslant i, \pi_{i} R_{n}=A_{\infty}^{i}$ for $n<i$, it follows that $\left\langle R_{n}\right\rangle_{n} \in P$.
4.3. Remark. Since the symbols for elements of the species $\mathfrak{P}_{i}, \mathfrak{P}$ are taken from disjoint species, in most cases we can use one symbol for the notions $\mathbb{C}, \mathbb{C}, \in \in, \notin, \simeq, *$, without ambiguity.
4.4. Lemma. Γ is the product of a finite or denumerably infinite sequence of Γ_{i}. With notations as in 4.1, 4.3, we have:
a) $\mathrm{P} \subset \mathrm{Q} \leftrightarrow \wedge \mathrm{i}\left(\pi_{\mathrm{i}} \mathrm{P} \subset \pi_{\mathrm{i}} \mathrm{Q}\right)$ for all $\mathrm{P}, \mathrm{Q} \in \mathscr{A}$.
b) For all $\left\langle P_{n}\right\rangle_{n},\left\langle Q_{n}\right\rangle_{n} \in \Pi$: $\left\langle P_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n} \leftrightarrow$ $\left.\wedge \mathrm{m}\left(\left\langle\pi_{\mathrm{m}} \mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \simeq<\pi_{\mathrm{m}} \mathrm{Q}_{\mathrm{n}}\right\rangle_{\mathrm{n}}\right)$.
c) For all $\left\langle P_{n}\right\rangle_{n},\left\langle Q_{n}\right\rangle_{n} \in \Pi$,

$$
\left\langle\mathrm{P}_{\mathrm{n}}>_{\mathrm{n}} \#<\mathrm{Q}_{\mathrm{n}}>_{\mathrm{n}} \leftrightarrow \operatorname{Vm}\left(\left\langle\pi_{\mathrm{m}} \mathrm{P}_{\mathrm{n}}>_{\mathrm{n}} \#<\pi_{\mathrm{m}} \mathrm{Q}_{\mathrm{n}}>_{\mathrm{n}}\right)\right. \text {. }\right.
$$

d) For all $\left\langle P_{n}\right\rangle_{n} \in \Pi, Q \in \mathscr{A}:\left\langle P_{n}\right\rangle_{n} \in Q \leftrightarrow \Lambda i\left(\left\langle\pi_{i} P_{n}\right\rangle_{n} \in \pi_{i} Q\right)$.
e) For all $P, Q \in \mathscr{A}: P \mathbb{P} \leftrightarrow \wedge i\left(\pi_{i} P \Subset \pi_{i} Q\right)$.
f) For all $\left\langle P_{n}\right\rangle_{n} \in \Pi$, and all $Q \in \mathscr{A}$:
$\left\langle P_{n}\right\rangle_{n}^{*} \epsilon Q \leftrightarrow \wedge i\left(\left\langle\pi_{i} P_{n}\right\rangle_{n}^{*} \in \pi_{i} Q\right)$.
Proof. (a) Let $\pi_{i} P=P^{i}, \pi_{i} Q=Q^{i}, R=\left\langle R^{i}\right\rangle_{i} \in \mathscr{R}$. Suppose $\wedge i\left(P^{i} \subset Q^{i}\right) . \varphi P R=1 \rightarrow \wedge i\left(\varphi_{i} P^{i} R^{i}=1\right)$

$$
\begin{aligned}
& \rightarrow \Lambda i\left(\phi_{i} Q^{i} R^{i}=1\right) \\
& \rightarrow Q Q R=1 .
\end{aligned}
$$

Conversely, suppose $P \subset Q$, $\varphi P^{\mu} R^{\mu}=1$. It follows that

This implies in turn $\varphi_{\mu} \mathrm{Q}^{\mu} \mathrm{R}^{\mu}=1$; so $\mathrm{P}^{\mu} \subset \mathrm{Q}^{\mu}$.
(b), (c), (d) are trivial.
(e) We suppose (P, Q as before) $\wedge i\left(P^{i} \Subset Q^{i}\right)$. Let $\left\langle R_{n}\right\rangle_{n} \in \Pi$, $\pi_{i} R_{n}=R_{n}^{i}$. Then $\left\langle R_{n}^{i}\right\rangle_{n} \in \Pi^{*}\left(\Gamma_{i}\right)$.
There exists a ν such that $\Lambda i\left(i>\nu \rightarrow P^{i}=Q^{i}=A_{\infty}^{i}\right)$. Thus

$$
\begin{equation*}
\wedge i \wedge n\left(i>\nu \rightarrow R_{1}^{i} \ldots R_{n}^{i} \subset Q^{i}\right) . \tag{1}
\end{equation*}
$$

There exist $\mu_{1}, \mu_{2}, \ldots, \mu_{v}$ such that

$$
\wedge_{i}\left(1 \leqslant i \leqslant \nu \rightarrow \varphi_{i} R_{1}^{i} \ldots R_{\mu_{i}}^{i} P^{i}=0 \vee R_{1}^{i} \ldots R_{\mu_{i}}^{i} \subset Q^{i}\right) .
$$

Take $\mu=\sup \left\{\mu_{i}: 1 \leqslant i \leqslant \nu\right\}$. Then
$1 \leqslant i \leqslant \nu\left(\varphi_{i} R_{1}^{i} \ldots R_{\mu}^{i} P^{i}=0\right) \vee \hat{1 \leqslant i \leqslant \nu}\left(R_{1}^{i} \ldots R_{\mu}^{i} \subset Q^{i}\right)$.
By (a), combined with (1) we obtain
$\varphi R_{1} \ldots R_{\mu} P=0 \vee R_{1} \ldots R_{\mu} \subset Q$.
Conversely, we suppose: $P \Subset Q$. Let $\left\langle R_{n}^{\mu}\right\rangle_{n} \in \Pi\left(\Gamma_{\mu}\right)$. We construct $\left\langle R_{n}\right\rangle_{n} \in \Pi$ in the following manner. Let $\left\langle R_{n}^{i}\right\rangle_{n} \in \Pi\left(\Gamma_{i}\right)$, $\left\langle\mathrm{R}_{\mathrm{n}}^{\mathrm{i}}\right\rangle_{\mathrm{n}} \in \mathrm{P}^{\mathrm{i}}$ for every $\mathrm{i} \neq \mu$. Now we put:
$\wedge n \wedge i\left(\left(i \leqslant \mu \rightarrow \pi_{i} R_{n}=R_{n}^{i}\right) \&\left(i>\mu \& n \geqslant i \rightarrow \pi_{i} R_{n}=R_{n-i+1}^{i}\right) \&\right.$ ($\mathrm{i}>\mu \& \mathrm{n}<\mathrm{i} \rightarrow \pi_{\mathrm{i}} \mathrm{R}_{\mathrm{n}}=\mathrm{A}_{\infty}^{\mathrm{i}}$)).
A ν can be found such that $\varphi R_{1} \ldots R_{v} P=0 \vee R_{1} \ldots R_{v} \subset Q$.

$$
\wedge i\left(i \neq \mu \rightarrow \varphi_{i} R_{1}^{i} \ldots R_{v}^{i} P^{i}=1\right) .
$$

Therefore

$$
\begin{aligned}
\varphi_{\mu} R_{1}^{\mu} \ldots R_{v}^{\mu} P^{\mu}=1 & \rightarrow R_{1} \ldots R_{v} \subset Q_{.} . \\
& \rightarrow R_{1}^{\mu} \ldots R_{v}^{\mu} \subset Q^{\mu} .
\end{aligned}
$$

So we have proved for an arbitrary $\mu: \mathrm{P}^{\mu} \Subset \mathrm{Q}^{\mu}$.
(f) is easily derived from (e) as follows:

If $\left\langle R_{n}\right\rangle * \in P$, there is a μ such that $R_{1} \ldots R_{\mu} \Subset P$. We conclude $\wedge \mathrm{n}\left(\pi_{\mathrm{n}} \mathrm{R}_{1} \ldots \pi_{\mathrm{n}} \mathrm{R}_{\mu} \Subset \pi_{\mathrm{n}} \mathrm{P}\right.$) (by (e)), therefore $\wedge \mathrm{m}\left(<\pi_{\mathrm{m}} \mathrm{R}_{\mathrm{n}}>_{\mathrm{n}}^{*} \in \pi_{\mathrm{m}} \mathrm{P}\right)$. Conversely, if $\wedge_{\mathrm{m}}\left(<\pi_{m} R_{\mathrm{n}}>_{\mathrm{n}}^{*} \in \pi_{\mathrm{m}} \mathrm{P}\right)$, there are $\nu, \overline{\mu_{1}}, \mu_{2}, \ldots, \mu_{\nu}$ such that $\wedge \mathrm{i}\left(\mathrm{i}>\nu \rightarrow \pi_{\mathrm{i}} \mathrm{P}=\mathrm{A}_{\infty}^{\mathrm{i}}\right)$, $\wedge \mathrm{i}\left(1 \leqslant \mathrm{i} \leqslant \nu \rightarrow \pi_{\mathrm{i}} \mathrm{R}_{1} \ldots \pi_{\mathrm{i}} \mathrm{R}_{\mu_{\mathrm{i}}} \Subset \pi_{\mathrm{i}} \mathrm{P}\right)$.
If $\mu_{*}=\sup \left\{\mu_{\mathrm{i}}: 1 \leqslant \mathrm{i} \leqslant \nu\right\}$, then $\mathrm{R}_{1} \ldots \mathrm{R}_{\mu} \Subset \mathrm{P}$, hence $\left\langle R_{n}\right\rangle_{n}^{*} \in P$.
4.5. Theorem. If in every Γ_{i} of a finite or denumerably infinite sequence of I-spaces "Ax" holds, "Ax" one of the postulates N1-6, R5, then "Ax" holds in Γ (the product of the Γ_{i}) too.
If in every Γ_{i} N8 holds, then $\mathrm{N} 8(\mathfrak{A})$ (\mathfrak{A} defined as in 4.1) holds in Γ.
Proof. (a) $A x=N 6$. Let $P=\left\langle P^{i}\right\rangle_{i} \in \mathscr{A}, Q=\left\langle Q^{i}\right\rangle_{i} \in \mathbb{N}$, $\varphi \mathrm{PQ}=0$. There is a μ such that $\varphi_{\mu} \mathrm{P}^{\mu} \mathrm{Q}^{\mu}=0$. By the validity of N6 for every Γ_{i}, there are P_{1}^{μ}, Q_{1}^{μ}, such that $P^{\mu} \Subset P_{1}^{\mu}$, $Q^{\mu} \Subset Q_{1}^{\mu}, \emptyset P_{1}^{\mu} Q_{1}^{\mu}=0$. Then $P \Subset\left(A_{\infty}^{1}, \ldots, A_{\infty}^{\mu-1}, P_{1}^{\mu}, A_{\infty}^{\mu+1}, \ldots\right)=P_{1}^{1}$, $\mathrm{Q} \Subset\left(\mathrm{A}_{\infty}^{1}, \ldots, \mathrm{~A}_{\infty}^{\mu-1}, \mathrm{Q}_{1}^{\mu}, \mathrm{A}_{\infty}^{\mu+1}, \ldots\right)=\mathrm{Q}_{1}$, while $\varphi \mathrm{P}_{1} \mathrm{Q}_{1}=0$.
(b) $A x=N 1-5$ is treated quite analogously.
(c) Suppose $N 8$ is valid in every Γ_{i}. If $P_{i}=\left\langle P^{i}\right\rangle_{i} \in M$, $Q=\left\langle Q^{i}\right\rangle_{i} \in \mathbb{R}$, then $P \Subset Q \leftrightarrow \wedge i\left(P^{i} \Subset Q^{i}\right)$. If we construct for every i an R^{i} such that $P^{i} \Subset R^{i} \Subset Q^{i}$, it follows that if $R=\left\langle R^{i}\right\rangle_{i}, P \Subset R \Subset Q$.
Hence N8(श्A) holds in Γ.
(d) $A x=R 5$. Let $\left\langle P_{n}\right\rangle_{n} \in \Pi(\Gamma), P_{n}=\left\langle P_{n}^{i}\right\rangle_{i},\left\langle P_{m}^{i}\right\rangle_{m} \in \Pi^{*}\left(\Gamma_{i}\right)$.

For every i a $\left\langle Q_{n}^{i}\right\rangle_{n} \in \Pi\left(\Gamma_{i}\right)$ can be found such that $\wedge n\left(Q_{n+1}^{i} \Subset Q_{n}^{i}\right),\left\langle Q_{n}^{i}\right\rangle \xlongequal{i}\left\langle P_{n}^{i}\right\rangle$. If we define $\left\langle S_{n}\right\rangle_{n}$ by $\pi_{j} S_{n}=$ Q_{n-j+1}^{j} for $n \geqslant j$, $\pi_{j} S_{n}=A A_{\infty}^{j}$ for $n<j$, then $\left\langle S_{n}\right\rangle_{n} \simeq\left\langle Q_{n}\right\rangle_{n}$ (4.4(b)) and $\wedge n\left(S_{n+1}\right.$ © $\left.S_{n}\right)(4.4(e))$.
4.6. Theorem. The product Γ of a finite or denumerably infinite sequence of IR-spaces $\boldsymbol{\Gamma}_{i}$ is homeomorphic to the topological product of the Γ_{i} (and may therefore be written as $\prod_{i=1}^{\infty} \Gamma_{i}$).
Proof. The proof can be given by simple verification, using the fact that Γ is again an IR-space (a consequence of the previous lemma).
4.7. Theorem. The topological product of a finite or denumerably infinite sequence of CIN-spaces Γ_{i} is homeomorphic to a CIN-space Γ^{\prime}.
Proof. Let Γ be the product of the $\Gamma_{i} . \Gamma=\langle\varphi, \Pi\rangle$; now we construct a CIN-space $\Gamma^{\prime}=\left\langle\varphi, \Pi^{+}\right\rangle$which is homeomorphic to Γ. Let $\mathfrak{A}_{\mathrm{j}}\left(\Gamma_{\mathrm{i}}\right)=\left\langle A_{\mathrm{j}, \mathrm{k}}^{\mathrm{i}}\right\rangle_{\mathrm{k}} \cdot \mathfrak{A}_{1}=\mathfrak{A}$. $\mathfrak{A}_{\mathrm{i}+1}$ consists of all sequences of the following form:
$\left(A_{i, j(1)}^{1}, A_{i-1, j(2)}^{2}, \ldots, A_{1, j(i)}^{i}, P^{i+1}, \ldots, P^{i+p}, A_{\infty}^{i+p+1}, A_{\infty}^{i+p+2}, \ldots\right)$ with $\varphi_{i+k} P^{i+k}=1$ for $1 \leqslant k \leqslant p . p=0$ or $p>0$.
By this definition C1 is automatically satisfied. C 2 is trivial if we realize that, if $\mathfrak{A}_{\mathrm{i}}=\left\langle\mathrm{A}_{\mathrm{i}, \mathrm{j}}\right\rangle_{\mathrm{j}}$, then $\mathrm{A}_{1, \mathrm{i}(1)} \ldots \mathrm{A}_{\mathrm{n}, \mathrm{i}(\mathrm{n})} \in \mathfrak{A}_{\mathrm{n}}$. C3 is proved as follows.
Let $A_{i, j}=\left(A_{i-1, j(1)}^{1}, \ldots, A_{1, j(i-1)}^{i-1}, P^{i}, \ldots, P^{i+p}, A_{\infty}^{i+p+1}, \ldots\right)$ We construct $A_{i, k}$ as follows.
For every $\mathrm{t}, 1 \leqslant \mathrm{t} \leqslant \mathrm{i}-1$, we choose an $A_{\mathrm{t}, \mathrm{k}(\mathrm{i}-\mathrm{t})}^{\mathrm{i}-\mathrm{t}}$ such that $A_{\mathrm{t}, \mathrm{j}(\mathrm{i}-\mathrm{t})}^{\mathrm{i}-\mathrm{t}} \Subset A_{\mathrm{t}, \mathrm{k}(\mathrm{i}-\mathrm{t})}^{\mathrm{i})}$.
If $A_{i, k}=\left(A_{i-1, k(1)}^{1}, \ldots, A_{1, k(i-1)}^{i-1}, A_{\infty}^{i}, A_{\infty}^{i+1}, \ldots\right)$ then $A_{i, j} \Subset A_{i, k}$. N 9 is proved quite analogously.
N6 follows from 4.5.
We define Π^{+}:
$\left.\left.\left\langle P_{n}\right\rangle_{n} \in \Pi^{+} \leftrightarrow \wedge i\left(<\pi_{i} P_{n+i}\right\rangle_{n} \in \Pi\left(\Gamma_{i}\right) \&<\pi_{i} P_{n}\right\rangle_{n} \in \Pi^{*}\left(\Gamma_{i}\right)\right)$.
Let $\left\langle P_{n}\right\rangle_{n} \in \Pi$. $\pi_{i} P_{n}=P_{n}^{i}$. There exist $\left\langle Q_{n}^{i}\right\rangle_{n} \in \Pi\left(\Gamma_{i}\right)$ with
$\left\langle Q_{n}^{i}\right\rangle_{n} \simeq\left\langle P_{n}^{i}\right\rangle_{n}$, and a function $m(k, i)$ such that

$$
\begin{equation*}
\wedge k \wedge i\left(P_{1}^{i} \ldots P_{m(k, i)}^{i} \subset Q_{1}^{i} \ldots Q_{k}^{i}\right) \tag{*}
\end{equation*}
$$

We put $m(k)=\sup \{m(i, k): 1 \leqslant i \leqslant k\}$. Hence
$P_{1}^{i} \ldots P_{m(k)}^{i} \subset Q_{1}^{i} \ldots Q_{k}^{i}, 1 \leqslant i \leqslant k$.
We construct $\left\langle R_{n}\right\rangle_{n} \in \Pi^{+}, \pi_{i} R_{n}=R_{n}^{i}$, such that

$$
\wedge i \wedge n\left(R_{n+i-1}^{i}=Q_{n}^{i}\right) \& \wedge n\left(n<i \rightarrow R_{n}^{i}=A_{\infty}^{i}\right) .
$$

We see from (*):

$$
P_{1}^{i} \ldots P_{m(k)}^{i} \subset R_{1}^{i} \ldots R_{k}^{i}, 1 \leqslant i \leqslant k
$$

Hence $P_{1} \ldots P_{m(k)} \subset R_{1} \ldots R_{k}$.
If we restrict the pointgenerators to Π^{+}, the resulting space is again an I-space; by 1.32 the spaces $\langle\varphi, \Pi\rangle$ and $\left\langle\varphi, \Pi^{+}\right\rangle$ are homeomorphic, and their relations of strong inclusion coincide.

5. Examples.

5.1. In this paragraph we want to treat various examples of topological spaces.

Let Γ be a certain metrizable space, with a metric ρ, and let ψ be a standard mapping from a lattice \mathfrak{P} onto a located system (closed with respect to \cap, U) of closed pointspecies of Γ, and let ρ be defined from ψ. Then I1-2 are automatically satisfied. Let Π be a species of sequences of elements of \mathfrak{B}. We suppose

$$
\begin{align*}
& \{\text { Int } \psi \mathrm{P}: \mathrm{P} \in \mathfrak{P}\} \text { is a basis for } \Gamma \text {. } \tag{1}\\
& \psi P \cap \psi Q=\emptyset \rightarrow V \varepsilon\left(U_{\varepsilon}(\psi P) \cap U_{\varepsilon}(\psi Q)=\emptyset\right) \tag{2}\\
& \left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi \rightarrow \text { diameter } \psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}} \text { converges to zero, } \\
& \wedge \mathrm{n}\left(\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}} \neq \emptyset\right)
\end{align*}
$$

In order to prove I3 it is sufficient to prove that

$$
\begin{equation*}
\mathrm{P} \subset \mathrm{Q} \leftrightarrow \psi \mathrm{P} \subset \psi \mathrm{Q} \tag{4}
\end{equation*}
$$

The implication from the left to the right is proved thus. Let $P \subset Q, r \in \psi P, U_{\varepsilon}(r) \cap \psi Q=\emptyset$ for a certain $\varepsilon>0$. Since (1) holds, there is an R such that $\psi R \cap \psi Q=\emptyset, r \in \psi R$. Then $\varphi P R=1, \varphi Q R=0 . P \subset Q \& \varphi P R=1 \rightarrow \varphi Q R=1$ can be proved from I1-2 only; $Q Q R=0$ therefore contradicts $P \subset Q$, hence $U_{\varepsilon}(r) \cap \psi Q \neq \emptyset$.
Since ψQ is located, either $\operatorname{Vp}\left(p \in U_{\varepsilon}(r) \cap \psi Q\right)$, or for a $\delta<\varepsilon U_{\delta}(r) \cap \psi Q=\emptyset$. Since we can prove $U_{\delta}(r) \cap \psi Q \neq \emptyset$ the latter possibility is excluded, therefore $\operatorname{Vp}\left(p \in U_{\varepsilon}(r) \cap \psi Q\right)$. This holds for every ε, hence $r \in(\psi Q)^{-}=\psi Q$. This proves (4), since the implication in the reverse direction is trivial. (The proof can be simplified if we suppose ψQ to be metrically located.)
(2) and (3) imply the validity of I4. I5 can be satisfied by taking a sufficiently big species for Π.

Now we suppose that we have proved $\Delta=\langle\varphi, \Pi\rangle$ to be an I-space.
If we define ξ by:

$$
\begin{equation*}
\left\langle P_{n}\right\rangle_{n} \in \Pi \rightarrow \xi\left\langle P_{n}\right\rangle_{n}^{*} \in \bigcap_{n=1}^{\infty} \psi P_{n} \tag{5}
\end{equation*}
$$

then ξ is a bi-unique mapping from Δ onto Γ.
If Δ is an IR-space, ξ is continuous. For let $U_{\varepsilon}(p) \subset V, V$ a pointspecies of Γ. If $\left\langle P_{n}\right\rangle_{n} \in \Pi_{\text {, }}$ we conclude from (3) that for a certain $\nu \mathrm{p} \& \psi \mathrm{P}_{1} \ldots \mathrm{P}_{v} \vee \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{v}} \subset \mathrm{V}$, so $\xi^{-1} \mathrm{p} \Subset \xi^{-1} \mathrm{~V}$, hence ξ is continuous.
Finally we remark that

$$
\begin{align*}
& \mathrm{U}(\varepsilon, \psi \mathrm{P}) \cap \mathrm{U}\left(\varepsilon,(\psi \mathrm{Q})^{c}\right)=\emptyset \rightarrow \mathrm{P} \Subset \mathrm{Q} \\
& \mathrm{U}(\varepsilon, \psi \mathrm{P}) \subset \psi \mathrm{Q} \rightarrow \mathrm{P} \Subset \mathrm{Q} . \tag{6}
\end{align*}
$$

5.2. Theorem. \underline{Q} is an IR-space; © and ©' are different relations in Q.
Proof. We put $\left[r, r^{\prime}\right]_{\underline{Q}}=\left\{r^{\prime \prime}: r^{\prime \prime} \in \underline{Q} \& r \leqslant r^{\prime \prime} \leqslant r^{\prime}\right\}$. $\left\{\left[r, r^{\prime}\right] Q: r \leqslant r^{\prime} \& r^{\prime} r^{\prime} \in \underline{Q}\right\}$ is a located system. After closure with respect to U we can define a standard mapping ψ and a mapping φ defined from ψ. II is defined by:
$\left\langle P_{n}\right\rangle_{n} \in \Pi \leftrightarrow \vee r \vee r^{\prime} \vee r^{\prime \prime}\left(r, r^{\prime}, r^{\prime \prime} \in Q \& r^{\prime} \leqslant r \leqslant r^{\prime \prime} \&\right.$ $\wedge \mathrm{n}\left(\psi \mathrm{P}_{\mathrm{n}}=\left[\mathrm{r}^{\prime}, \mathrm{r}^{\prime}\right]_{\mathrm{Q}} \cap\left[\mathrm{r}-2^{-\mathrm{n}}, \mathrm{r}+2^{-\mathrm{n}}\right] \mathrm{Q}\right)$.
I1-5 are now valid according to 5.1. R5 is also trivially fulfilled. There remains to be proved that ξ, defined as in 5.1 (5) is a homeomorphism.

If $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*} \in \mathrm{~V}$, there is a ν such that $\mathrm{P}_{1} \ldots \mathrm{P}_{\boldsymbol{v}} \mathbb{C}$ V. Let $\psi P_{1} \ldots P_{v}=\left[r, r^{\prime}\right] Q, \quad \psi Q_{n}=\left[r-2^{-n}, r+2^{-n}\right] Q, \psi R_{n}=$ $\left[r^{\prime}-2^{-n}, r^{\prime}+2^{-n}\right]_{Q}$ for every n; then $\left\langle Q_{n}\right\rangle_{n},\left\langle R_{n}\right\rangle_{n} \in I I$, and there is a μ such that $R_{1} \ldots R_{\mu} \subset V, Q_{1} \ldots Q_{\mu} \subset V$. Therefore $\left[r-2^{-\mu}, r^{\prime}+2^{-\mu}\right]_{Q} \subset V$. Hence ξV is a neighbourhood of $\left.\xi<\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*} . \xi$ is proved to be continuous after the argument of 5.1.

Thus we have constructed an abstract IR-space Δ, homeomorphic to Γ. In Δ the following equivalence holds for any P, Q:

$$
P \Subset^{\prime} Q \leftrightarrow P \subset Q
$$

This can be seen as follows: $A_{i} \Subset^{\prime} A_{j} \leftrightarrow A_{i} \subset A_{j}$ for any i, j, since for all $r, r^{\prime}, r^{\prime \prime} \in \underline{Q} r \in\left[r^{\prime}, r^{\prime r}\right] Q \vee r \notin\left[r^{\prime}, r^{\prime \prime}\right] Q$. If $P \sim P_{1}+\ldots+P_{v}, P_{1}, \ldots, P_{v} \in 9, i \neq j \rightarrow \varphi P_{i} P_{j}=0$, then $P_{1}+\ldots+P_{v} \mathbb{C}^{\prime} P_{1}+\ldots+P_{v}$, hence also $P \mathbb{C}^{\prime} P$; we conclude that $P \subset Q \rightarrow P \subset \mathbb{C}^{\prime} Q$. This proves \mathbb{C} and \mathbb{C}^{\prime} to be different.
5. 3. Corollaries. a) \mathbb{Q} does not possess a perfect representation with inclusion property. (Cf. 2.25)
b) Q is an IR-space which is not a CIN-space. (3.5,2.25)
5.4. We want to prove that H is a CIN-space; we begin with some notations and definitions. ρ is the metric in H as defined in 2.1.4. $\underline{H}^{(n)}$ denotes the following subspace of \underline{H} : $\left\{x: x \in \underline{H} \& \wedge \bar{j}\left(j>n \rightarrow x_{j}=0\right)\right\}$.
$\mathrm{H}^{(\mathrm{n})}$ is homeomorphic to R^{n}.
Let $\left\langle p_{i}\right\rangle_{i}$ be an enumeration of the rational points of H, and $\left\langle r_{i}\right\rangle_{i}$ an enumeration of the rational numbers. We define:

$$
B_{i, j}=\left\{x: \rho\left(x, p_{i}\right)<r_{j}\right\}
$$

Arbitrary intersections of a finite number of $B_{i, j}$ are marked by B, B',... .
$A B_{i, j}$ can be described as a species $\{x: f(x) \ngtr 0\}$ with f, defined on H, given by:
$f(x)=\sum_{j=1}^{\infty} x_{j}^{2}+\sum_{j=1}^{n} b_{j} x_{j}+a, b_{j}$, a rational numbers, while n is such that $p_{i} \in \underline{H}^{(n)}$.
5.5. Lemma. It can be decided whether an intersection B of a finite sequence $B_{i_{1}, j_{1}}, \ldots, B_{i_{v}, j_{v}}$ is secured or not. Proof. Without loss of generality we may suppose:

$$
\rightarrow \underset{1 \leqslant n \leqslant v}{v} \underset{1 \leqslant m \leqslant v}{v}\left(B_{i_{n}, j_{n}} \subset B_{i_{m}, j_{m}} \& n \neq m\right)
$$

Let $\mathrm{p}_{\mathrm{i}_{\mathrm{k}}} \in \mathrm{H}^{(\sigma)}$, for $1 \leqslant \mathrm{k} \leqslant \nu$.
We remark that B is secured iff $B \cap \underline{H}^{(\sigma)}$ is secured. For let $\mathrm{B}_{\mathrm{i}_{\mathrm{k}}, \mathrm{j}_{\mathrm{k}}}=\left\{\mathrm{x}: \mathrm{f}_{\mathrm{k}}(\mathrm{x}) \ngtr 0\right\}$ for $1 \leqslant \mathrm{k} \leqslant \nu$.
If $q=\left(q_{1}, q_{2}, \ldots, q_{\sigma}, q_{\sigma+1}, \ldots\right)$, and we put $q^{\prime}=\left(q_{1}, \ldots, q_{\sigma}, 0,0, \ldots\right)$ then $f_{k}(q) \ngtr 0 \rightarrow f_{k}\left(q^{\prime}\right) \ngtr 0$ for $1 \leqslant k \leqslant \nu$.
So if $q \in B$, then $q^{\prime} \in B \cap \underline{H}^{(\sigma)}$.

$$
f_{k}(x)=\sum_{i=1}^{\infty} x_{i}^{2}+\sum_{i=1}^{a} b_{k, i} x_{i}+a_{k}=0,1 \leqslant k \leqslant \nu
$$

$a_{k}, b_{k, i}$ rational numbers.
$B \cap \underline{H}^{(\sigma)}$ is secured iff the following system of equations

$$
\begin{equation*}
\overline{\mathrm{f}}_{\mathrm{k}}(\mathrm{x})=\sum_{\mathrm{i}=1}^{\sigma} \mathrm{x}_{\mathrm{i}}^{2}+\sum_{\mathrm{i}=1}^{\sigma} \mathrm{b}_{\mathrm{k}, \mathrm{i}} \mathrm{x}_{\mathrm{i}}+\mathrm{a}_{\mathrm{k}}=0,1 \leqslant \mathrm{k} \leqslant \nu \tag{*}
\end{equation*}
$$

has a real solution.
If we subtract $\bar{f}_{1}(x)=0$ from the other equations, we obtain $\nu-1$ linear equations in σ unknowns. If there is no solution for them, then B is empty. If there are λ independent solutions, such that for example $x_{1}, \ldots, x_{\lambda}$ can be chosen independently, we obtain a quadratic expression in λ unknowns, by substituting the general solution in $\bar{f}_{1}(x)=0$. If the hyperconic in \underline{R}^{λ}, represented by this equation has no real part, then $B \bar{n}^{-}{ }^{(\sigma)}$ is empty, and then B is also empty. The manipulation of these equations does not present any difficulties from an intuitionistic point of view, since all coefficients are rational numbers.
5.6. Lemma. Let B, B^{\prime} be constructed as non-empty intersections of a finite number of $B_{i, j}$, taken from the sequence $\mathrm{B}_{\mathrm{i}_{1}, \mathrm{j}_{1}}, \ldots, \mathrm{~B}_{\mathrm{i}_{\mathrm{v},} \mathrm{j}_{v}}$, and $\operatorname{suppose} \mathrm{p}_{\mathrm{i}_{\mathrm{k}}} \in \underline{H}^{(\sigma)}$ for $1 \leqslant \mathrm{k} \leqslant \nu$.

Then $\rho\left(\mathrm{B}, \mathrm{B}^{\prime}\right)=\rho\left(\mathrm{B} \cap \underline{H}^{(\sigma)}, \mathrm{B}^{\prime} \cap \underline{H}^{(\sigma)}\right)$.
Proof. $\rho\left(B_{,} B^{\prime}\right)$, if defīned, certainly satisfies:

$$
\rho\left(\mathrm{B}, \mathrm{~B}^{\prime}\right) \ngtr \rho\left(\mathrm{B} \cap \underline{\mathrm{H}}^{(\sigma)}, \mathrm{B}^{\prime} \cap \underline{\mathrm{H}}^{(\sigma)}\right) .
$$

Now let us suppose $\bar{q} \in B, q^{\prime} \bar{\epsilon} B^{\prime}, q=\left\langle q_{i}\right\rangle_{i}, q^{\prime}=\left\langle q_{i}^{\prime}\right\rangle_{i}$. We put $q^{\prime \prime}=\left(q_{1}, \ldots, q_{\sigma}, 0,0,0, \ldots\right) ; q^{\prime \prime \prime}=\left(q_{1}^{\prime}, \ldots, q_{\sigma}^{\prime}, 0,0, \ldots\right)$. We suppose B, B^{\prime} to be defined by:

$$
\left.\begin{array}{l}
\mathrm{B}=\left\{\mathrm{x}: \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \ngtr 0,1 \leqslant \mathrm{i} \leqslant \lambda\right\} \\
\mathrm{B}^{\prime}=\left\{\mathrm{x}: \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \neq 0, \lambda+1 \leqslant \mathrm{i} \leqslant \nu\right\} . \tag{1}
\end{array}\right\}
$$

If $q \in B$, then also $q^{\prime \prime} \in B$; if $q^{\prime} \in B^{\prime}$, then also $q^{\prime \prime \prime} \in B^{\prime}$, as follows immediately from (1). Further $\rho\left(q^{\prime \prime}, q^{\prime \prime \prime}\right) \ngtr \rho\left(q, q^{\prime}\right)$. Hence $\rho\left(\mathrm{B} \cap \underline{\mathrm{H}}^{(\sigma)}, \mathrm{B}^{\prime} \cap \underline{\mathrm{H}}^{(\sigma)}\right) \ngtr \rho\left(\mathrm{B}, \mathrm{B}^{\prime}\right)$.
5.7. Lemma. Let B, B^{\prime} be defined as in 5.6. If $B^{\prime \prime}$ denotes the complement of B^{\prime}, we have:

$$
\rho\left(B, B^{\prime}\right)=\rho\left(B \cap \underline{H}(\sigma+1), B^{\prime} C \cap H^{(\sigma+1)}\right) .
$$

Proof. As before, we conclude: if $\rho\left(\mathrm{B}, \mathrm{B}^{\mathrm{C}}\right)$ is defined, then $\rho\left(B, B^{\prime C}\right) \ngtr \rho\left(B \cap \underline{H}^{(\sigma+1)}, B^{\prime C} \cap \underline{H}^{(\sigma+1)}\right)$.
Now let $q \in B, q^{\prime} \in B^{\prime c} . \quad \sum_{i=\sigma+1}^{\infty} q_{i}^{2}=s^{2}, \quad \sum_{i=\sigma+1}^{\infty} q_{i}^{\prime 2}=t^{2}$, $s_{s} t \neq 0 ; q^{\prime}=\left\langle q_{i}\right\rangle_{i}, q^{\prime}=\left\langle q_{i}^{\prime}\right\rangle_{i}$ 。
We put $q^{\prime \prime}=\left(q_{1}, \ldots, q_{\sigma}, s, 0,0, \ldots\right) ; q^{\prime \prime \prime}=\left(q_{1}^{\prime}, \ldots, q_{\sigma}^{\prime}, t, 0,0, \ldots\right)$. If we consider (1) in the proof of 5.6 , we see that $q^{\prime \prime} \epsilon B$, $q^{\prime \prime \prime} \in B^{\prime C}$.

$$
\begin{aligned}
& \rho\left(q^{\prime \prime}, q^{\prime \prime}\right)=\sum_{i=1}^{\infty}\left(q_{i}-q_{i}^{\prime}\right)^{2}+(s-t)^{2} ; \rho\left(q, q^{\prime}\right)=\sum_{i=1}^{\infty}\left(q_{i}-q_{i}^{\prime}\right)^{2} . \\
& \rho\left(q^{\prime \prime}, q^{\prime \prime \prime}\right)-\rho\left(q, q^{\prime}\right)= \\
& s^{2}+t^{2}-2 s t-\sum_{i=\sigma+1}^{\infty} q_{i}^{2}-\sum_{i=\sigma+1}^{\infty} q_{i}^{\prime 2}+2 \sum_{i=\sigma+1}^{\infty} q_{i} q_{i}^{\prime}= \\
& -2\left(\sum_{i=\sigma+1}^{\infty} q_{i}^{2}\right)^{-1}\left(\sum_{i=\sigma+1}^{\infty} q_{i}^{\prime 2}\right)^{2^{-1}}+2 \sum_{i=\sigma+1}^{\infty} q_{i}^{\prime} .
\end{aligned}
$$

It follows from the Cauchy-Schwarz inequality, that $\rho\left(\mathrm{q}, \mathrm{q}^{\prime}\right)-\rho\left(\mathrm{q}^{\prime \prime}, \mathrm{q}^{\prime \prime \prime}\right) \nless 0$. Therefore $\rho\left(\mathrm{B} \cap \underline{\mathrm{H}}^{(\sigma+1)}, \mathrm{B}^{\prime \mathrm{C}} \cap \underline{\mathrm{H}}^{(\sigma+1)}\right) \ngtr \rho\left(\mathrm{B}, \mathrm{B}^{\mathrm{C}}\right)$.
5.8. Theorem. H is a CIN-space.

Proof. We construct an abstract I-space Δ homeomorphic to H , using a standard mapping ψ defined on a located system obtained from the $B_{i, j}$ by closure with respect to \cap, \underline{U}. φ is defined from ψ. The $B_{i, j}$ with their intersections constitute a located system as a consequence of $5.5,5.6,5.7$.
\mathscr{U}_{k} is the species of all finite meets $A_{n_{1}} \ldots A_{n_{s}}, \varphi A_{n_{1}} \ldots A_{n_{s}}=1$, such that for a certain $t_{,} 1 \leqslant t \leqslant s, A_{n_{t}}=B_{i, j}$ with $r_{j}>k^{-1}$. $\Pi(\Delta)$ is given by the following definition:

$$
\begin{equation*}
\left\langle P_{n}\right\rangle_{n} \in \Pi(\Delta) \leftrightarrow \wedge n\left(P_{n} \in \mathscr{A}_{n} \& \varphi P_{1} \ldots P_{n}=1\right) \tag{4}
\end{equation*}
$$

Now I1-5 are satisfied.

From lemma 5.7 and 5.1 (6) we draw the conclusion that for any $P, Q \in \mathfrak{A}_{1}$:

$$
\begin{equation*}
\mathrm{P} \Subset \mathrm{Q} \leftrightarrow \rho\left(\psi \mathrm{P},(\psi \mathrm{Q})^{\mathrm{c}}\right)>0 . \tag{5}
\end{equation*}
$$

For let $\psi \mathrm{P}=\mathrm{B}, \psi \mathrm{Q}=\mathrm{B}^{\prime}$ and let $\underline{\mathrm{H}}^{(\sigma+1)}$ be defined as in lemma 5.7.
 $\mathrm{B}^{\prime} \cap \underline{\mathrm{H}}^{(\sigma+1)}{ }^{(\sigma+1)}$.
$\left\{\psi \mathrm{P} \tilde{n}^{-}{ }^{(\sigma+1)^{\circ}}: P \in \mathfrak{P}\right\}$ is a located system in $\underline{H}^{(\sigma+1)}$.
Anticipating properties of LDFTK-and DFTK-spaces, treated in chapter IV (see especially 4.1.30) we obtain
$\rho\left(\psi \mathrm{P} \cap \underline{\mathrm{H}}^{(\sigma+1)},(\psi \mathrm{Q})^{\mathrm{c}} \cap \underline{\mathrm{H}}^{(\sigma+1)}\right)>0$
hence we conclude to (5).
$\mathrm{C} 1, \mathrm{C} 4$ are valid as a consequence of our definitions. C 2 is easily verified. C3 is proved thus: let $A_{n_{1}} \ldots A_{n_{V}} \in \mathscr{A}_{\mu}$. So $\sigma, i, j, \epsilon \mathbb{N}$ can be found, such that $\psi A_{n_{\sigma}}=B_{i, j} \& r_{i}<\mu^{-1}$. There exists an r_{k} such that $r_{i}<r_{k}<\mu^{-1}$; therefore $A_{n_{1}} \ldots A_{n_{v}} \mathbb{C} A_{m}$ if $\psi A_{m}=B_{k, j}$.
N6 and N9 follow from lemma 5.6, 5.7 and the fact that the proportions of a finite intersection of $B_{i, j}$ are continuous functions of the r_{i}. Consider for example $B=B_{i 1}, j_{1}, \ldots$ n
 $\rho\left(\mathrm{B}, \mathrm{B}^{\prime}\right)>0$. We can find $\mathrm{k}_{\mathrm{n}}, 1 \leqslant \mathrm{n} \leqslant \nu$, such that for every
 greater than $r_{j_{n}}$, , while $B^{\prime \prime} \cap B^{\prime \prime \prime}=\emptyset$ for $B^{\prime \prime}=B_{i_{1}, k 1} \cap$ $\ldots \cap B_{i_{\mu}, k_{\mu}}, B^{\prime \prime}=B_{i_{\mu+1}, k_{\mu+1}} \cap \ldots \cap B_{i_{v}, k_{v}}$. Likewise in the case of N 9 .

Thus we have proved Δ to be a CIN-space.
ξ is defined as in 5.1 . ξ is continuous according to 5.1 ; ξ^{-1} is easily proved to be continuous using (5).
5.9. Theorem. F is a CIN-space.

Proof. We construct an abstract CIN-space Δ which will be proved homeomorphic to $\mathrm{F} \cdot \boldsymbol{\{}=\mathfrak{A}(\Delta), \Pi=\Pi(\Delta), \varphi=\varphi \Delta$ etc. The metric of F will be denoted by ρ; we recall that the species of rational polygonal functions on $[0,1]$ was denoted by F°. We define for $\mathrm{f}, \mathrm{g} \in \mathrm{F}$:
$\left.\begin{array}{l}f<g \leftrightarrow \Lambda x(x \in[0,1] \rightarrow f(x)<g(x)) \\ f>g \leftrightarrow g<f \\ f \leqslant g \leftrightarrow \Lambda x(x \in[0,1] \rightarrow f(x) \ngtr g(x)) \\ f \geqslant g \leftrightarrow g \leqslant f \\ f \circ g \leftrightarrow \neg f \leqslant g \& \neg f \geqslant g .\end{array}\right\}$
$\sup (f, g), \inf (f, g)$ are defined by:
$(\sup (f, g))(r)=\sup \{f(r), g(r)\}, \quad(\inf (f, g))(r)=\inf \{f(r), g(r)\}$. We remark that

We define $[f, g]=\left\{f^{\prime}: f^{\prime} \in F \& f \leqslant f^{\prime} \leqslant g\right\}$.
The species $[f, g]$ with $f, g \in \bar{F}^{0}, f \leqslant g$ constitute a species F* which is denumerably infinite. We remark that for arbitrary $\left[f_{1}, g_{1}\right],\left[f_{2}, g_{2}\right] \in F^{*}$:

$$
\begin{equation*}
\left.\left.\left[\mathrm{f}_{1}, \mathrm{~g}_{1}\right] \cap\left[\mathrm{f}_{2}, \mathrm{~g}_{2}\right]=\emptyset \vee \underset{\left[\mathrm{sup}_{1}, \mathrm{~g}_{1}\right]}{ } \mathrm{s}_{1}, \mathrm{f}_{2}\right), \inf \left(\mathrm{~g}_{1}, \mathrm{~g}_{2}\right)\right] \underset{\in \mathrm{F} *}{ } \cap\left[\mathrm{f}_{2}, \mathrm{~g}_{2}\right]= \tag{3}
\end{equation*}
$$

$$
\left[\mathrm{f}_{1}, \mathrm{~g}_{1}\right] \subset\left[\mathrm{f}_{2}, \mathrm{~g}_{2}\right] \leftrightarrow \mathrm{f}_{2} \leqslant \mathrm{f}_{1} \& \mathrm{~g}_{1} \leqslant \mathrm{~g}_{2}
$$

Let ψ be a standardmapping defined for \mathfrak{F}, such that $\mathscr{R}=\left\langle A_{n}\right\rangle_{n}$ is mapped onto $F *$. φ is defined from ψ.

We remark that for any species $\left\{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}\right\}$ such that $\varphi A_{n_{1}} \ldots A_{n_{k}}=1$

$$
\begin{equation*}
\operatorname{vi}\left(A_{n_{1}} \ldots A_{n_{k}} \sim A_{i}\right) \tag{5}
\end{equation*}
$$

\mathfrak{n}_{k} is defined as the species of all finite meets $A_{n_{1}} \ldots A_{n_{m}}$ with $\varphi A_{n_{1}} \ldots A_{n_{m}}=1$, such that, if $\varphi A_{n_{1}} \ldots A_{n_{m}}=[f, g]$, then $\rho(\mathrm{f}, \mathrm{g})<\mathrm{k}^{-1}$.
We define Π according to C 4 :

$$
\begin{equation*}
\left\langle P_{n}\right\rangle_{n} \in \Pi \leftrightarrow \wedge n\left(\varphi P_{1} \ldots P_{n}=1 \& P_{n} \in \mathscr{A}_{n}\right) \tag{6}
\end{equation*}
$$

I1-5 are now easily proved if we use the reasoning in 5.1. Thus we have defined an I-space Δ. We want to show Δ to be a CIN-space. C1, C2 do not present any difficulties.

Let $\psi A_{i}=\left[f_{1}, f_{1}^{\prime}\right], \psi A_{j}=\left[f_{2}, f_{2}^{\prime}\right]$. Then it is not difficult to prove

$$
\begin{equation*}
A_{\mathrm{i}} \Subset \mathrm{~A}_{\mathrm{j}} \leftrightarrow \mathrm{f}_{2}<\mathrm{f}_{1} \leqslant \mathrm{f}_{1}^{\prime}<\mathbf{f}_{2}^{\prime} . \tag{7}
\end{equation*}
$$

(To prove the implication from the left to the right, consider $\left\langle P_{n}\right\rangle_{\mathrm{n}} \in \Pi$ such that $\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}=\left[\mathrm{f}_{1}-(3 n)^{-1}, \mathrm{f}_{1}+(3 n)^{-1}\right]$.) Keeping in mind (5), we see that for any meets $A_{n_{1}} \ldots A_{n_{t}}$, $A_{m_{1}} \ldots A_{m_{s}}$ such that $\psi A_{n_{1}} \ldots A_{n_{t}}=\left[f_{1}, f_{1}^{\prime}\right], \psi A_{m_{1}} \ldots A_{m_{s}}=$ $\left[\mathrm{f}_{2}, \mathrm{f}_{2}^{\prime}\right]:$

$$
\begin{equation*}
A_{n_{1}} \ldots A_{n_{t}} \Subset A_{m_{1}} \ldots A_{m_{s}} \leftrightarrow f_{2}<f_{1} \leqslant f_{1}^{\prime}<f_{2}^{\prime} \tag{8}
\end{equation*}
$$

Now C3 is verified by remarking that for any [f,g] $\in \mathrm{F}^{*}$ $\rho(\mathrm{f}, \mathrm{g})<\mathrm{k}^{-1} \rightarrow \operatorname{Vn}\left(\rho\left(\mathrm{f}-\mathrm{n}^{-1}, \mathrm{~g}+\mathrm{n}^{-1}\right)<\mathrm{k}^{-1}\right)$.
If $P=P_{1}+\ldots+P_{v}, Q=Q_{1}+\ldots+Q_{\mu}, \varphi P Q=0, P_{i} \in P_{i, j}$, $Q_{j} \Subset Q_{i, j}, \varphi P_{i, j} Q_{i, j}=0$ for $1 \leqslant i \leqslant \nu, 1 \leqslant j \leqslant \mu$, then

$$
\begin{equation*}
P \Subset \sum_{i=1}^{v} \prod_{j=1}^{\mu} P_{i, j}=P^{\prime}, Q \Subset \sum_{j=1}^{\mu} \prod_{i=1}^{v} Q_{i, j}=Q^{\prime}, \varphi P^{\prime} Q^{\prime}=0 . \tag{9}
\end{equation*}
$$

It follows from (9) that it suffices to verify N6 in the case $\psi P=\left[f_{1}, f_{1}^{\prime}\right], \psi Q=\left[f_{2}, f_{2}^{\prime}\right]$.
$\psi P \cap \psi Q=\emptyset \rightarrow \neg \sup \left(f_{1}, f_{2}\right) \leqslant \inf \left(f_{1}^{\prime}, f_{l}\right)$. Let for an $r \in Q$ $\sup \left\{\mathrm{f}_{1}(\mathrm{r}), \mathrm{f}_{2}(\mathrm{r})\right\}-\inf \left\{\mathrm{f}_{1}^{\prime}(\mathrm{r}), \mathrm{f}_{2}^{\prime}(\mathrm{r})\right\}>2 \lambda^{-1}$. Then $\left[\mathrm{f}_{1}-\lambda^{-1}, \mathrm{f}^{\prime}+\lambda^{-1}\right] \Pi$
$\left[f_{2}-\lambda^{-1}, \mathrm{f}_{2}^{\prime}+\lambda^{-1}\right]=\emptyset$. Thus we obtain $P \Subset P^{\prime}, Q \Subset Q^{\prime}, \varphi P^{\prime} Q^{\prime}=0$, if $\psi \mathrm{P}^{\prime}=\left[\mathrm{f}_{1}-\lambda^{-1}, \mathrm{f}_{1}^{\prime}+\lambda^{-1}\right], \psi \mathrm{Q}^{\prime}=\left[\mathrm{f}_{2}-\lambda^{-1}, \mathrm{f}_{2}^{\prime}+\lambda^{-1}\right]$.
N9 follows immediately from (8) and:
$\mathrm{f}_{2}<\mathrm{f}_{1} \leqslant \mathrm{f}_{1}^{\prime}<\mathrm{f}_{2}^{\prime} \rightarrow \mathrm{f}_{2}<2^{-1}\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)<\mathrm{f}_{1} \leqslant \mathrm{f}_{1}^{\prime}<2^{-1}\left(\mathrm{f}_{1}^{\prime}+\mathrm{f}_{2}^{\prime}\right)<\mathrm{f}_{2}^{\prime}$. Δ is therefore a CIN-space. ξ is defined according to 5.1, and ξ, ξ^{-1} are readily proved to be continuous.
5.10. Theorem. If θ is a spread law which satisfies the following condition:
(*) If $\sigma \in \theta$, then either σ has only one immediate descendant or σ has at least two different descendants of equal length.
Then $\underline{D}(\theta)$ is a PIN-space.
Proof. We construct a PIN-space Δ, defined by $\langle\varphi, \Pi\rangle$, homeomorphic to $\underline{D}(\theta)$. If $\tau=\left\langle i_{1}, \ldots, i_{k}\right\rangle \epsilon \theta$, we put:

$$
V_{\tau}=\left\{\alpha: \alpha \in D(\bar{\theta}) \& \bar{\alpha}(\mathrm{k})=\left\langle\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\rangle\right\}^{\mathrm{K}}
$$

The species $\left\{V_{\tau}\right\}_{\tau \in \theta, \tau \neq \emptyset}$ can be enumerated. We remark that $\wedge \tau \wedge \sigma\left(\tau, \sigma \in \theta \rightarrow \mathrm{V}_{\tau} \subset \mathrm{V}_{\sigma} \vee \mathrm{V}_{\boldsymbol{\sigma}} \subset \mathrm{V}_{\tau} \vee \mathrm{V}_{\tau} \cap \mathrm{V}_{\boldsymbol{\sigma}}=\emptyset\right)$.
f is a bi-unique mapping of \underline{N} onto θ.
ψ is a standard mapping with respect to the located system $\left\{V_{\tau}: \tau \in \theta\right\} ; \psi$ is defined on $\mathfrak{P}(\Delta)$, such that if $\mathfrak{A}(\Delta)=\left\langle A_{n}\right\rangle_{n}$ then $\psi \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{f}(\mathrm{n})}$.
φ is defined from $\psi ; \Pi(\Delta)=\Sigma(\Delta)$. I1-3 are proved as indicated in 5.1. To prove $I 4$ we show that if $\alpha \in \underline{D}(\theta)$, then $\left\langle\mathrm{A}_{\mathrm{f}^{-1}} \bar{\alpha}(\mathrm{n})\right\rangle_{\mathrm{n}} \in \Pi(\Delta)$.
We remark that

$$
\begin{equation*}
\varphi A_{n_{1}} \ldots A_{n_{t}}=1 \rightarrow \operatorname{Vm}\left(A_{n_{1}} \ldots A_{n_{t}} \sim_{\Delta} A_{m}\right) \tag{2}
\end{equation*}
$$

It is sufficient to prove that $\left\langle A_{f^{-1}(\bar{\alpha}(n))}\right\rangle_{n}$ separates all pairs A_{s}, A_{t} such that $\varphi A_{s} A_{t}=0$. This follows from (2). Take an arbitrary pair A_{σ}, A_{τ} with $\varphi \mathrm{A}_{\boldsymbol{\sigma}} \mathrm{A}_{\tau}=0$. Then $\mathrm{V}_{\mathrm{f}(\sigma)} \cap \mathrm{V}_{\mathrm{f}(\tau)}=\phi$; let $f(\sigma)=\left\langle i_{1}, \ldots, i_{\mu}\right\rangle, f(\tau)=\left\langle j_{1}, \ldots, j_{\nu}\right\rangle, \mu \leqslant \nu$. It follows that $\left\langle i_{1}, \ldots, i_{\mu}\right\rangle \neq\left\langle j_{1}, \ldots, j_{\mu}\right\rangle$.
Then also $\bar{\alpha}(\mu) \neq\left\langle i_{1}, \ldots, i_{\mu}\right\rangle \vee \bar{\alpha}(\mu) \neq\left\langle j_{1}, \ldots, j_{\mu}\right\rangle$, hence $\mathrm{V}_{\bar{\alpha}(\mu)} \cap \mathrm{V}_{\mathrm{f}(\sigma)}=\emptyset \vee \mathrm{V}_{\bar{\alpha}(\mu)} \cap \mathrm{V}_{\mathrm{f}(\boldsymbol{\tau})}=\emptyset$, and therefore $\varphi \mathrm{A}_{\mathrm{f}^{-1}(\bar{\alpha}(\mu))} \mathrm{A}_{\sigma}=0 \vee \varphi \mathrm{~A}_{\mathrm{f}^{-1}(\bar{\alpha}(\mu))} \mathrm{A}_{\tau}=0$.
I5 is immediate.
Next we prove:
To every $\left\langle P_{n}\right\rangle_{n} \in \Pi$ a monotonously increasing sequence $\left\langle n_{i}\right\rangle_{i}$ can be found such that for some $\alpha \in \underline{D}(\theta)$
$\wedge i\left(\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}_{\mathrm{i}}} \subset \mathrm{V}_{\bar{\alpha}(\mathrm{i})}\right)$ holds.
Suppose already proved for a certain $\nu: \psi P_{1} \ldots P_{n_{\nu}} \subset V_{\sigma}$. We must prove the existence of a descendant τ of σ and a number $n_{v+1} \in N_{,} n_{v+1}>n_{v}$, such that $P_{1} \ldots P_{n_{v+1}} \subset V_{\tau}$. There are the following possibilities.
a) σ has only one immediate descendant σ_{1}. We may take $\tau=\sigma_{1}, n_{v+1}=n_{v}+1$.
b) σ has at least two different descendants of equal length, $\sigma_{1}, \sigma_{2} ; V_{\sigma_{1}} \cap V_{\sigma_{2}}=\emptyset$.
Hence there exists a μ such that $\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mu} \cap \mathrm{V}_{\mathrm{ol}_{1}}=\emptyset \mathrm{v}$ $\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mu} \cap \mathrm{V}_{\sigma_{2}}=\emptyset$. Let $\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mu}=\mathrm{V}_{\boldsymbol{\tau}_{1}} \mathrm{U} \ldots \mathrm{U} \mathrm{V}_{\tau_{\lambda}}$, $V_{\tau_{i}} \cap V_{\tau_{j}}^{\mu}=\emptyset$ for $i \neq j$. There exists a $\mu_{1} \geqslant \mu$ such that: $\wedge_{i} \wedge j\left(i \neq j \& 1 \leqslant i, j \leqslant \lambda \rightarrow V_{\tau_{i}} \cap \psi P_{1} \ldots P_{\mu_{1}}=\emptyset \vee\right.$
$\left.\mathrm{V}_{\boldsymbol{\tau}_{j}} \cap \psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mu_{1}}=\emptyset\right)$.
On this account a $\mathrm{V}_{\tau_{\eta}}, 1 \leqslant \eta \leqslant \lambda$ must exist, such that $\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mu_{1}} \subset \mathrm{~V}_{\tau \eta}$. Now we can take $\mathrm{n}_{v+1}=\mu_{1}, \tau$ the immediate descendant of σ such that $\mathrm{V}_{\tau_{\eta}} \subset \mathrm{V}_{\tau} \subset \mathrm{V}_{\sigma}$. Now we are able to prove:

$$
\wedge i \wedge j\left(A_{i} \Subset A_{j} \leftrightarrow A_{i} \subset A_{j}\right)
$$

The implication from the left to the right is trivial. Suppose for certain $\nu, \mu \quad A_{\nu} \subset A_{\mu}$. Let $\left\langle P_{n}\right\rangle_{n} \in \Pi$. $\left\langle n_{i}\right\rangle_{i}$ is a strictly monotonously increasing sequence such that $\psi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}_{\mathrm{i}}} \subset \mathrm{V}_{\bar{\alpha}(\mathrm{i})}$ for a certain $\alpha \in \underline{D}(\theta)$. Let $\mathrm{f}(\nu)$ be a sequence of length λ. Then either $\bar{\alpha}(\lambda)=f(\nu)$, or $\bar{\alpha}(\lambda) \neq \mathrm{f}(\nu)$. In the first case $\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n} \lambda} \subset \mathrm{A}_{v} ;$ in the second case $\varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}_{\lambda}} \mathrm{A}_{v}=0$. Therefore $A_{\nu} \Subset A_{\mu}$, hence also $A_{v} \subset A_{\mu}$.
Let $V_{\sigma_{\sigma_{1}}}{ }^{n} \ldots V_{\tau_{i}} \cap V_{\sigma_{1}} \subset V_{\sigma_{1}} \subset V_{\tau_{1}} \cap \ldots n V_{\tau_{\nu}} ; i \neq j \rightarrow V_{\sigma_{i}} \cap$ Then $\wedge i \vee j\left(1 \leqslant i \leqslant \mu \& 1 \leqslant j \leqslant \nu \rightarrow V_{\sigma_{i}} \subset V_{\tau_{j}}\right)$.
Hence if $\psi \mathrm{P}=\mathrm{V}_{\boldsymbol{\sigma}_{1}} \mathrm{U} \ldots \mathrm{U} \mathrm{V}_{\boldsymbol{\sigma}_{\mu}}, \psi \mathrm{Q}=\mathrm{V}_{\boldsymbol{\tau}_{1}} \cup \ldots \mathrm{U} \mathrm{V} \mathrm{V}_{\boldsymbol{\tau}_{v}}$, it follows that $P \mathbb{E}^{1} Q$. Thus we have proved

$$
\wedge P \wedge Q(P \Subset Q \leftrightarrow P \subset Q) .
$$

Now N6, N8 are trivial.
$\boldsymbol{\xi}$ is defined as in $5.1 ; \boldsymbol{\xi}, \boldsymbol{\xi}^{-1}$ are proved to be continuous without difficulty, as in previous examples.
5.11. Remark. The topological product of a denumerable infinity of copies of N can be considered as a space $\underline{D}(\theta)$, θ consisting of all finite sequences of natural numbers.

The positively irrational numbers >0 (i.e. positive real numbers which lie apart from every rational number) are exactly those positive real numbers which possess a unique development in a non-terminating continued fraction. (See BROUWER 1920, p.959, DIJKMAN 1952, p.52).

Therefore, according to a well-known argument (e.g. KURATOWSKI 1958, $\S 14 \mathrm{~V}$), they are homeomorphic to the topological product of a denumerable infinity of copies of N .
5.12. Remark. The construction of a located system depends in the examples treated in an essential way on the individual properties of the spaces considered.
We showed without great difficulty that any CIN-space is
metrizable, but theorems in the reverse direction are not so easy to prove. (compare FREUDENTHAL 1936, 7.16, and 4.2.3 in this thesis).

This is a consequence of the difficulties encountered in proving the existence of suitable located systems for a whole class of metric spaces.

CHAPTER IV

LDFTK-SPACES

1. DFTK-spaces.
1.1. In this paragraph the reference "FREUDENTHAL 1936" will be shortened to "FR".

DFTK-spaces were introduced in FR. In this paragraph we want to prove every DFTK-space to be a PIN-space. Further a number of theorems and lemmas which will be useful later on will be proved.

To start with, we resume a number of definitions and theorems from FR with only inessential changes in terminology. The notion of a DFTK-space will be slightly widened; every DF TK-space in our sense is homeomorphic to a DFTKspace in the sense of FR.
1.2. Definitions. $\mathscr{A}=\left\langle A_{n}\right\rangle_{n}, \mathfrak{P}$ is constructed from \mathscr{A} as usual. A function φ is defined on \mathfrak{P} as in 3.1.2; φ satisfies I1, I2. We introduce the following postulates for φ :
F. $\varphi A_{n_{1}} \ldots A_{n_{k}}=1 \rightarrow \wedge n \vee m\left(m>n \& Q_{i} A_{n_{1}} \ldots A_{n_{k}} A_{m}=1\right)$.
T. $\quad A_{n_{1}} \ldots A_{n_{s}}=1 \& \& A_{m_{1}} \ldots A_{m_{t}}=1 \&$

$$
\text { i } A_{n_{1}} \ldots A_{n_{s}} A_{m_{1}} \ldots . A_{m_{t}}=0 \rightarrow \vee n \wedge m(m \geqslant n \longrightarrow
$$

$$
\left.i A_{n_{1}} \ldots A_{n_{s}} A_{m}=0 \vee \varphi A_{m_{1}} \ldots A_{m_{t}} A_{m}=0\right)
$$

K. $\wedge_{k} \vee 1 \wedge_{n}\left(\varphi\left(A_{k}+A_{k+1}+\ldots+A_{k+1}\right) A_{n}=1\right)$.

If r is a function from \underline{N} into \underline{N} such that
$\wedge \mathrm{k} \wedge \mathrm{n}\left(\dot{\varphi}\left(\mathrm{A}_{\mathrm{k}}+\mathrm{A}_{\mathrm{k}+1}+\ldots+\mathrm{A}_{\mathrm{k}+\mathrm{r}(\mathrm{k})}\right) \overline{\mathrm{A}}_{\mathrm{n}}=1\right)$, then r is called a K-function.
1.3. Theorem. (FR 2.2) If 9 is a function on the lattice \mathfrak{P} which satisfies I1, I2, F, T, K, then also the following assertions are valid:
a) $\varphi P=1 \rightarrow \wedge n \vee m\left(m>n \& \rho A_{m}=1\right)$.
b) $\varphi P=1 \& \varphi Q=1 \& \varphi P Q=0 \rightarrow \vee n \wedge m\left(m \geqslant n \rightarrow \varphi A_{m} P=0 \underline{v}\right.$ ${ }_{\rho} \mathrm{A}_{\mathrm{m}} \mathrm{Q}=0$).
c) $\varphi P=1 \& r$ is a K-function $\rightarrow \wedge k\left(\varphi P\left(A_{k}+\ldots+A_{k+r(k)}\right)=1\right)$.
1.4. Definition. \subset, \sim are defined as in 3.1.6. (FR 2.6).
$P \Subset * Q \leftrightarrow V n \wedge m\left(m \geqslant n \& \varphi A_{m} P=1 \longrightarrow A_{m} \subset Q\right)$. (FR 2.6).
1.5. Theorem. φ satisfies $\mathrm{I} 1-2, \mathrm{~F}, \mathrm{~T}, \mathrm{~K}$. Then
a) I3 holds for \subset (FR 2.11).
b) Theorem 3.1.7 is valid for \subset, \sim.
c) $P \mathbb{C}^{*} \mathrm{Q} \& \mathrm{P} \mathbb{C}^{*} \mathrm{R} \rightarrow \mathrm{P} \mathbb{C}^{*} \mathrm{QR}(\mathrm{FR} 2.12) ; \mathrm{P} \mathbb{C}^{*} \mathrm{Q} \&$ R ©* $\mathrm{Q} \rightarrow \mathrm{P}+\mathrm{R}$ ©* $\mathrm{Q}(\mathrm{FR}$ 2.12); P ©* Q \& $\mathrm{Q} \subset \mathrm{R} \longrightarrow$ $P \mathbb{E}^{*} R, P \subset Q \& Q \mathbb{C}^{*} R \longrightarrow P \mathbb{C}^{*} R$. (FR 2.8); $P \mathbb{C}^{*} \mathrm{Q} \longrightarrow$ $P \subset Q(F R 2.10)$.
Proof. 3.1.7 is proved on assumption of Il-3 only, hence (b) is a consequence of (a).
1.6. Definition. A species of lattice elements $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{v}}\right\}$ is called an LQ-covering (lattice quasi-covering) if $\wedge \mathrm{m}\left(\rho \mathrm{A}_{\mathrm{m}}\left(\mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{v}}\right)=1\right) .\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{v}}\right\}$ is called an L-covering (lattice covering) if $\vee n \wedge \mathrm{~m} v \mathrm{k}\left(\mathrm{m} \geqslant \mathrm{n} \rightarrow \mathrm{A}_{\mathrm{m}} \mathbb{E}^{*} \mathrm{P}_{\mathrm{k}}\right.$ \& $1 \leqslant k \leqslant \nu$). (cf. FR 3.2).

1. 7. Definition. A_{m} is of degree n means $m \geqslant n . A_{m_{1}} \ldots A_{m_{t}}$
is of degree n means: for some $i \leqslant i \leqslant t) A_{m}$ is of degree n. An LQ-covering is of degree n if every element of the covering is of degree n.
Remark: the degree of an LQ-covering is defined only for LQ-coverings whose elements are meets of elements of \mathfrak{A}. (cf. FR 3.1, 3.2).
1.8. Definition. P^{\prime} is an L-neighbourhood of degree n of P, if $P \Subset^{*} P^{\prime}, P^{\prime}=P_{1}+\ldots+P_{k}, \quad P P_{m}=1$ for $1 \leqslant m \leqslant k$, and P_{m} of degree n for $1 \leqslant m \leqslant k$.

A piece of degree n is an L-neighbourhood of degree n of a meet of elements of \mathscr{U} of degree n. (Fr 3.3).
1.9. Theorem. o satisfies I1-2, F, T, K. Then
a) If $\left\{P_{1}, \ldots, P_{n}\right\}$ is an LQ-covering, then for any P : $P \mathbb{C}^{*} P^{*}=\Sigma\left\{P_{i}: 1 \leqslant i \leqslant n \& \varphi P_{i} P=1\right\}(F R$ 3.6).
b) $\varphi P Q=0 \rightarrow V P^{*} V Q^{*}\left(P \mathbb{C}^{*} P^{*} \& Q^{*} \mathbb{C}^{*} \& \varphi P^{*} Q^{*}=0\right)$ (FR 3.8).
c) $P \mathbb{C}^{*} \mathrm{Q} \rightarrow \mathrm{VR}\left(\mathrm{P} \mathbb{C}^{*} R \mathbb{C}^{*} \mathrm{Q}\right)(\mathrm{FR} 3.9)$.
d) $P \mathbb{C}^{*} \mathrm{Q} \rightarrow \vee \mathrm{k} \wedge_{\mathrm{n}}\left(\mathrm{n} \geqslant \mathrm{k} \& \varphi \mathrm{~A}_{\mathrm{n}} \mathrm{P}=1 \rightarrow \mathrm{~A}_{\mathrm{n}} \mathbb{C}^{*} \mathrm{Q}\right.$) (FR 3.10).
e) If $P \mathbb{C}^{*} Q$, a $\nu \in \underline{N}$ can be found such that for every piece S of degree $n \geqslant \nu \varphi P S=1 \rightarrow S \mathbb{C}^{*} \mathrm{Q}$.
f) If $\varphi P Q=0$, a $\nu \in \underline{N}$ can be found such that for every piece S of degree $n \geqslant \nu \varphi P S=0 \vee \varphi Q S=0$.
g) If $\left\{P_{1}, \ldots, P_{n}\right\}$ is an $L Q$-covering, and $P_{i} \subset P_{i}^{\prime}$ for $1 \leqslant i \leqslant n$, then $\left\{P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right\}$ is an $L Q$-covering. Likewise for $L-$ coverings.
Proof. (e), (f) could be proved by means of FR 3.11-15, but since proofs are omitted there, it is simpler to give a straightforward demonstration.
(e). From (d) it follows that for every lattice element R of degree $\mathrm{n} \geqslant \nu$ we have $\varphi P R=1 \rightarrow R \mathbb{C}^{*} \mathrm{Q}$, since R can be
written as $A_{m} R^{\prime}, m \geqslant n \geqslant \nu$, hence $\varphi P R=1 \rightarrow \varphi P A_{m}=1$; $\wp_{P A}=1 \rightarrow A_{m} \mathbb{C}^{*} \mathrm{Q}(\mathrm{d}) ; \mathrm{A}_{\mathrm{m}} \mathbb{C}^{*} \mathrm{Q} \rightarrow \mathrm{R}^{\prime} \mathrm{A}_{\mathrm{m}} \mathbb{C}^{*} \mathrm{Q}(1.5(\mathrm{~b}),(\mathrm{c}))$. If $P_{1} \mathbb{C}^{*} \mathrm{P}_{4}$, we are able to construct $\mathrm{P}_{2}, \mathrm{P}_{3}$ such that P_{1} c* $^{*} \mathrm{P}_{2}$ c* $^{*} \mathrm{P}_{3} \mathbb{C}^{*} \mathrm{P}_{4}$.

There exist $\nu_{1}, \quad \nu_{2}, \nu_{3}$ such that for any lattice element R of degree $n \geqslant \nu_{i} \quad{ }_{i} P_{i} R=1 \longrightarrow R \mathbb{C}^{*} P_{i+1}$ for $i=1,2,3$. We put $\nu=\sup \left\{\nu_{1}, \nu_{2}, \nu_{3}\right\}$. Let S be a piece of degree $\mathrm{n} \geqslant \nu, \mathrm{S}=\mathrm{T}_{1}+\ldots+\mathrm{T}_{\mu}, \mathrm{S}$ a neighbourhood of $\mathrm{T} ; \mathrm{T}, \mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mu}$ lattice elements of degree n. Suppose $\varphi P_{1} S=1$. For a certain $\lambda, 1 \leqslant \lambda \leqslant \mu, \quad \varphi P_{1} T_{\lambda}=1$. Hence $\mathrm{T}_{\lambda} \mathbb{C}^{*} \mathrm{P}_{2}$, therefore $\mathrm{T}_{\lambda} \subset \mathrm{P}_{2}$ (1.5(c)). If $1 \leqslant \mathrm{i} \leqslant \mu, \varphi \mathrm{T}_{\lambda} \mathrm{T}=1$, $\varphi T \mathrm{~T}_{\mathrm{i}}=1$. Hence it follows that $\varphi \mathrm{P}_{2} \mathrm{~T}=1$, consequently $\mathrm{T} \mathbb{C}^{*} \mathrm{P}_{3}$, so $\mathrm{T} \subset \mathrm{P}_{3}$; we conclude that $\stackrel{P_{3}}{ } \mathrm{~T}_{\mathrm{i}}=1$, therefore $\mathrm{T}_{\mathrm{i}} \mathbb{C}^{*} \mathrm{P}_{4}$.
This holds for every $\mathrm{i}, 1 \leqslant \mathrm{i} \leqslant \mu$, hence $\mathrm{S}^{4}{ }^{*} \mathrm{P}_{4}$ by 1.5(c). (f) Let $\wp P Q=0$. We construct $P *, Q^{*}$ such that P ©* $P *$, $Q \Subset * Q^{*}, Q P * Q^{*}=0$ (using (c)).
There is a ν such that for a piece S of degree $\mathrm{n} \geqslant \nu$:

$\varphi S P=1 \& \varphi S Q=1 \rightarrow S \Subset * P *$

$$
\rightarrow S \subset P^{*}
$$

$S \subset P * \& \varphi S Q=1 \rightarrow \varphi P * Q=1$

$$
\rightarrow \varphi P * Q^{*}=1: \text { contradiction }
$$

Hence $\varphi S P=0 \vee \varphi S Q=0$.
(g) is trivial.
1.10. Definition. A centered system $\left\langle P_{n}\right\rangle_{n}, V m\left(P_{m} \neq A_{\infty}\right)$, is called a DFTK-point generator, if to every P_{n} a piece S_{n} of degree m_{n} can be found, such that $P_{n} \subset S_{n}$, and where $\left\langle m_{n}\right\rangle_{n}$ is a sequence increasing beyond all bounds. $\left\langle P_{n}\right\rangle_{n} \in Q$ is defined just as in 3.1.10 (see also FR 4.1, 4.2).
1.11. Lemma. A DFTK-point generator satisfies the splitting condition with respect to every pair T_{1}, T_{2} such that $\varphi T_{1} T_{2}=0$. Proof. Suppose for every piece of degree $n \geqslant v(1.9(f))$ $\varphi \mathrm{T}_{1} \mathrm{~S}=0 \vee \varphi \mathrm{~T}_{2} \mathrm{~S}=0$.
Let $\left\langle R_{n}\right\rangle_{n}$ be a DFTK-point generator. There is a μ such that $R_{\mu} \subset S, S$ a piece of degree $n \geqslant \nu$. Then $\varphi T_{1} S=0 v$ $\varphi T_{2} S=0$. Then also $\varphi R_{\mu} T_{1}=0 \vee \varphi R_{\mu} T_{2}=0$, hence certainly $\varphi R_{1} \ldots R_{\mu} T_{1}=0 \vee \varphi R_{1} \ldots R_{\mu} T_{2}=0$.

1. 12. Lemma. If $\varphi P=1$ there exists a $D F T K$-point generator $\left\langle Q_{n}\right\rangle_{n}\left\langle Q_{n}\right\rangle_{n} \in P$.
Proof. $P=P_{1}+\ldots+P_{v}, P_{1}, \ldots, P_{v}$ meets of elements of $\mathfrak{A} ;\left\langle Q_{n}\right\rangle_{n} \in P_{\lambda}$ for $1 \leqslant \lambda \leqslant \nu$ implies $\left\langle Q_{n}\right\rangle_{n} \in P$. Hence we may restrict ourselves to a P which is a meet of elements of \mathscr{A}. Applying postulate F we prove inductively the existence
of a centered sequence $\left\langle\mathrm{Q}_{\mathrm{n}}\right\rangle_{\mathrm{n}}, \mathrm{Q}_{\mathrm{n}}$ of degree n , $\wedge n\left(\varphi Q_{1} \ldots Q_{n} P=1\right)$. (FR 2.3).
$\left\langle Q_{n}\right\rangle_{n}$ is a DFTK-point generator, since $Q_{n} \subset S_{n}$, where $\mathrm{S}_{\mathrm{n}}=\Sigma\left\{\mathrm{A}_{\mathrm{i}}: \varphi \mathrm{A}_{\mathrm{i}} \mathrm{Q}_{\mathrm{n}}=1 \& \mathrm{n} \leqslant \mathrm{i} \leqslant \mathrm{n}+\mathrm{r}(\mathrm{n})\right\}$ (r is a K-function, and we use 1.9(a), 1.5(c)).
S_{n} is a piece of degree n.
1.13. Definition. Between DFTK-point generators a relation \simeq and a relation \# can be introduced, as in 3.1.11. \# is a pre-apartness relation, according to the proof of 3.1 .12 , using 1.11. The equivalence class with respect to \simeq which contains $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ will be denote by $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle{ }_{\mathrm{n}}$.
1.14. Theorem. If φ is a function on \mathfrak{P} which satisfies I1-2, F, T, K, then φ and the corresponding species of DFTKpoint generators $I I$ define an I-space $\langle\varphi, \Pi\rangle$.
Proof. Immediate by 1.2, 1.5(a), 1.11, 1.12.
1.15. Definition. The I-space defined in 1.14 is called an abstract DFTK-space; every topological space homeomorphic to an abstract DFTK-space is called a DFTK-space.
1.16. Lemma. If $\left\langle P_{n}\right\rangle_{n} \in \Sigma$, then $\left\langle P_{1} \ldots P_{n}\right\rangle_{n}$ is a DFTKpoint generator.
Proof. Let $\left.\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Sigma ;\left\{\mathrm{A}_{v}, \mathrm{~A}_{v+1}, \ldots, \mathrm{~A}_{v+(\mathrm{v}}\right)\right\}$ (r a K-function) is an LQ-covering.

A number μ can be found such that for every pair $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{j}}$, $\nu \leqslant \mathrm{i} \leqslant \mathrm{j} \leqslant \nu+\mathrm{r}(\nu), \varphi \mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}=0$, the following assertion is true:

$$
\begin{equation*}
\varphi \mathrm{A}_{\mathbf{i}} \mathrm{P}_{1} \ldots \mathrm{P}_{\mu}=0 \vee \varphi \mathrm{~A}_{\mathbf{j}} \mathrm{P}_{1} \ldots \mathrm{P}_{\mu}=0 \tag{1}
\end{equation*}
$$

There exists a certain $A_{\lambda}, \nu \leqslant \lambda \leqslant \nu+r(\nu)$, such that ${ }_{\varphi} A_{\lambda} P_{1} \ldots P_{\mu}=1$ (using 1.3(c)).
We define $\mathrm{Q}_{\nu}=\Sigma\left\{\mathrm{A}_{\mathrm{i}}: \nu \leqslant \mathrm{i} \leqslant \nu+\mathrm{r}(\nu) \& \varphi \mathrm{~A}_{\mathrm{i}} \mathrm{A}_{\lambda}=1\right\}$. We remark that as a consequence of (1)

$$
\begin{equation*}
\nu \leqslant \mathrm{i} \leqslant \nu+\mathrm{r}(\nu) \& \varphi \mathrm{~A}_{\mathrm{i}} \mathrm{P}_{1} \ldots \mathrm{P}_{\mu}=1 \rightarrow \varphi \mathrm{~A}_{\mathrm{i}} \mathrm{~A}_{\lambda}=1 \tag{2}
\end{equation*}
$$

Therefore, if $Q_{\nu}^{\prime}=\Sigma\left\{\mathrm{A}_{\mathrm{i}}: \nu \leqslant \mathrm{i} \leqslant \nu+\mathrm{r}(\nu) \& \varphi \mathrm{~A}_{\mathrm{i}} \mathrm{P}_{1} \ldots \mathrm{P}_{\mu}=1\right\}$, then $P_{1} \ldots P_{\mu} \mathbb{C} * Q_{\nu}^{\prime}$ (by 1.9(a)), and $Q_{\nu}^{\prime} \subset Q_{V}$ (by 1.5(b), (2)). Hence (by $1.5(c)) P_{1} \ldots P_{\mu} \subset Q_{v} ; Q_{\nu}$ is a piece of degree ν, since $A_{\lambda} \mathbb{C}^{*} Q_{\nu}$ (by 1.9(a)). This proves our assertion.
1.17. Theorem. (FR 5.3). Every DFTK-space possesses a finitary perfect representation, with a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$; for every k, the finite species $\mathbb{C}_{k}=\left\{\gamma_{i_{k}}:\left\langle i_{1}, \ldots, i_{k}\right\rangle \in \theta\right\}$ is an L-covering by pieces of degree k, which are joins of elements of \mathfrak{A}.
1.18. Definition. If a DFTK-space can be represented by a spread Π_{1} such that $\wedge\left\langle P_{n}\right\rangle_{n} \in \Pi_{1} \wedge_{n}\left(P_{n+1} \mathbb{C} * P_{n}\right)$, then Π_{1} is called a © ${ }^{*}$-representation for the space. (cf. FR 5.5)
1.19. Theorem. Every DFTK-space possesses a ©*-representation. (FR 5.6, without proof).
Proof. Let Π_{0} be a normal finitary perfect representation, with a defining pair $\langle\theta, \boldsymbol{\vartheta}\rangle$, for a DFTK-space Γ, according to 1.17 . The species \mathbb{C}_{k} are defined as in 1.17 . We suppose $\boldsymbol{a}_{n}=\left\{P_{1}^{n}, \ldots, P_{k(n)}^{n}\right\}$. Every P_{t}^{n} is a piece of degree n.

$$
Q_{t}=\left\{A_{i}: 1 \leqslant i \leqslant 1+r(1) \& \varphi P_{t}^{1} A_{i}=1\right\}
$$

(r is a K -function).
We conclude (1.9(a)) that $\mathrm{P}_{\mathrm{t}}^{1} \Subset * \mathrm{Q}_{\mathrm{t}}$.
Now we construct, by induction, to every $\left\langle P_{s_{1}}^{1}, \ldots, P_{s_{k}}^{k}\right\rangle \in \boldsymbol{v} \theta$ a lattice element $Q_{s_{1}}, \ldots, s_{k}$ such that $P_{s_{1}}^{1} \ldots P_{s_{k}}^{k} \Subset * Q_{s_{1}}, \ldots, s_{k}$ ©* $\mathrm{Q}_{\mathrm{s}_{1}}, \ldots, s_{k-1}$, in the following manner.
We suppose the $Q_{s 1}, \ldots, s_{n}$ to be already constructed for all $\mathrm{n} \leqslant \nu$; let $\mathrm{t}_{1}, \ldots, \mathrm{t}_{v}$ be a sequence such that $\mathrm{t}_{1}<\mathrm{t}_{2}<\ldots<\mathrm{t}_{v}$ and such that for every $\mathrm{k}, 1 \leqslant \mathrm{k} \leqslant \nu$ the following assertion holds:

$$
\begin{aligned}
t & \geqslant t_{k} \&\left\langle P_{s_{1}}^{1}, \ldots, P_{s_{k}}^{k}\right\rangle \epsilon \quad \theta \& \varphi A_{t} P_{s_{1}}^{1} \ldots P_{s_{k}}^{k}=1 \\
& \rightarrow A_{t} \Subset * Q_{s_{1}}, \ldots, s_{k}
\end{aligned}
$$

The existence of this sequence follows from our induction hypothesis and 1.9(d).

Let $\left\langle\mathrm{P}_{\mathrm{s}_{1}}^{1}, \ldots, \mathrm{P}_{\mathrm{s}_{v+1}}^{v+1}\right\rangle \in \boldsymbol{v} \theta$. We define
$Q_{s 1}, \ldots, s_{v+1}=\left\{A_{i}: t_{v} \leqslant i \leqslant t_{v}+r\left(t_{v}\right) \& \varphi A_{i} P_{s_{1}}^{1} \ldots P_{s_{v+1}}^{v+1}=1\right\}$ hence

$$
P_{s_{1}}^{1} \ldots P_{s_{v+1}}^{v+1} \Subset * Q_{s_{1}, \ldots, s_{v+1}} \Subset * Q_{s_{1}, \ldots, s_{v}}
$$

A $t_{v+1}>t_{v}$ can be found such that (1) holds for $k=\nu+1$. Next we want to prove that for any $\left\langle\mathrm{P}_{s_{i}}^{1}\right\rangle_{i} \in \Pi_{0}$ the corresponding sequence $\left\langle Q_{s 1}, \ldots, s_{i}\right\rangle_{i}$ is a splitting system.

Let $\varphi S T=0, \varphi S=1, \varphi T=1$. For a certain ν (by 1.11)

$$
\varphi P_{s_{1}}^{1} \ldots P_{s_{v}}^{v} S=0 \vee \varphi_{s_{1}}^{1} \ldots P_{s_{v}}^{v} T=0
$$

A μ can be found such that for all $m \geqslant \mu$ (1.3(b))

$$
\begin{aligned}
& \varphi P_{s_{1}}^{1} \ldots P_{s_{v}}^{v} S=0 \rightarrow \varphi A_{m} S=0 \vee \varphi A_{m} P_{s_{1}}^{1} \ldots P_{s_{v}}^{v}=0 \\
& \varphi P_{s_{1}}^{1} \ldots P_{s_{v}}^{v} T=0 \rightarrow \varphi A_{m} T=0 \vee \varphi A_{m} P_{s_{1}}^{1} \ldots P_{s_{v}}^{v}=0 .
\end{aligned}
$$

Hence for all $\mathrm{n} \geqslant \nu, \mathrm{m} \geqslant \mu$

$$
\begin{aligned}
& \varphi P_{s_{1}}^{1} \ldots P_{s_{n}}^{n} S=0 \rightarrow \varphi A_{m} S=0 \vee \phi A_{m} P_{s_{1}}^{1} \ldots P_{s_{n}}^{n}=0 \\
& \varphi P_{s_{1}}^{1} \ldots P_{s_{n}}^{n} T=0 \rightarrow \varphi A_{m} T=0 \vee \phi A_{m} P_{s_{1}}^{1} \ldots P_{s_{n}}^{n}=0 .
\end{aligned}
$$

Therefore for all $\mathrm{n} \geqslant \nu, \mathrm{m} \geqslant \mu$

$$
\varphi \mathrm{A}_{\mathrm{m}} \mathrm{~S}=0 \vee \varphi \mathrm{~A}_{\mathrm{m}} \mathrm{~T}=0 \vee \varphi \mathrm{~A}_{\mathrm{m}} P_{s_{1}}^{1} \ldots \mathrm{P}_{s_{\mathrm{n}}}^{\mathrm{n}}=0
$$

If we choose $t_{\lambda} \geqslant \mu, \lambda \geqslant \nu$, we see that
$\wedge_{i}\left(t_{\lambda} \leqslant i \leqslant r\left(t_{\lambda}\right)+t_{\lambda} \& \varphi A_{i} P_{s_{1}}^{1} \ldots P_{s_{n}}^{n}=1 \rightarrow \varphi A_{i} S=0\right) v$ $\Lambda i\left(t_{\lambda} \leqslant i \leqslant r\left(t_{\lambda}\right)+t_{\lambda} \& \varphi A_{i} P_{s_{1}}^{1} \ldots P_{s_{n}}^{n}=1 \rightarrow \varphi A_{i} T=0\right)$.
We conclude that

$$
\varphi Q_{s_{1}, \ldots, s_{\lambda+1}} S=0 \vee \varphi Q_{s_{1}, \ldots, s_{\lambda+1}} T=0 .
$$

Therefore it will be clear how a © \mathbb{E}-representation can be constructed from the $\mathrm{Q}_{\mathrm{s}_{1}}, \ldots, s_{\mathrm{k}}$.
1.20. Theorem. In a DFTK-space $P \Subset Q \leftrightarrow P \Subset * Q$.

Proof. $P \Subset * Q \rightarrow P \Subset Q$ is proved thus. Let $\left\langle R_{n}\right\rangle_{n} \in \Sigma$. Then $\left\langle R_{1} \ldots R_{n}\right\rangle_{n}$ is a DFTK-point generator by 1.16. Let $\left\langle S_{n}\right\rangle_{n}$ be a DFTK-point generator such that S_{n} is a piece of degree $n, \Lambda_{n} \vee m\left(R_{1} \ldots R_{m} \subset S_{n}\right)$. ($\left\langle S_{n}\right\rangle_{n}$ exists as a consequence of the definition of a DFTK-point generator). A ν can be found such that for $n \geqslant \nu \varphi P S_{n}=1 \rightarrow S_{n} \subset Q$. Further a μ can be found such that $R_{1} \ldots R_{\mu} \subset S_{v}$, hence $\varphi \mathrm{PR}_{1} \ldots \mathrm{R}_{\mu}=1 \rightarrow \varphi \mathrm{PS}_{v}=1$

$$
\begin{aligned}
& \rightarrow \dot{S}_{v} \subset \mathrm{Q} \\
& \rightarrow \mathrm{R}_{1} \ldots \mathrm{R}_{\mu} \subset \mathrm{Q} \text {, hence } \mathrm{P} \subseteq \mathrm{Q} .
\end{aligned}
$$

Conversely, let $P \mathbb{C} Q$. Let Π_{1} be a ©*-representation with a defining pair $\langle\boldsymbol{\theta}, \boldsymbol{\vartheta}\rangle$ as described in 1.19. There exists a function ψ from Π_{1} into \underline{N} such that
$\left\langle R_{n}\right\rangle_{n} \in \Pi_{1} \& \psi\left\langle R_{n}\right\rangle_{n}=m \& \varphi R_{1} \ldots R_{m} P=1 \rightarrow R_{1} \ldots R_{m} \subset Q$.
m is known from a finite initial segment $\left\langle R_{1}, \ldots, R_{s}\right\rangle$; we may always suppose $s \geqslant m$. Since Π_{1} is finitary, there exists a $\nu \in \underline{N}$ such that $\psi\left\langle R_{n}\right\rangle_{n}$ is known from $\left\langle R_{1}, \ldots, R_{v}\right\rangle$ for any $\left\langle R_{n}\right\rangle_{n} \in \Pi_{1}$ (using the fan theorem), while $\psi\left\langle R_{n}\right\rangle_{n} \leqslant \nu$. Now we remark (using 1.9(a), (g))

$$
\begin{aligned}
& P \mathbb{C} \boldsymbol{\Sigma}\left\{\overline{\mathbf{j}}\left\langle i_{1}, \ldots, i_{v}\right\rangle ;\left\langle i_{1}, \ldots, i_{v}\right\rangle \in \theta\right. \text { \& } \\
& \left.\varphi P \overline{\vec{V}}\left\langle i_{1}, \ldots, i_{v}\right\rangle=1\right\} \subset Q \text {. }
\end{aligned}
$$

Hence by $1.5(\mathrm{c}): \mathrm{P}$ ©* Q .
1.21. Theorem. Every DFTK-space is a PIN-space.

Proof. This follows from 1.9(b), (c), 1.11 and 1.16; for if Π denotes the set of DFTK-point generators, and φ is the function which satisfies I1-2,F,T,K, then $\langle\varphi, \Pi\rangle,\langle\varphi, \Sigma\rangle$ define homeomorphic spaces, since the conditions of 3.1 .30 are satisfied.
1.22. Lemma. If $\left\{Q_{1}, \ldots, Q_{n}\right\}$ is an L-covering of a DFTKspace, an L-covering $\left\{Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}\right\}$ can be found such that $Q_{i}^{\prime} \Subset Q_{i}$ for $1 \leqslant i \leqslant n$.
Proof. There exist a ν and a function ψ such that for all $n \geqslant \nu$

$$
\psi A_{n}=k \rightarrow A_{n} \Subset Q_{k} \& 1 \leqslant k \leqslant n .
$$

We put $Q_{k}^{\prime \prime}=\left\{A_{i}: \nu \leqslant i \leqslant r(\nu)+\nu \& \psi A_{i}=k\right\}$ (r is a Kfunction.) Then by $1.5(\mathrm{c}) \mathrm{Q}_{\mathrm{k}}^{\prime \prime} \mathbb{C} \mathrm{Q}_{\mathrm{k}}$ for $1 \leqslant \mathrm{k} \leqslant \mathrm{n}$. We construct $Q_{k}^{\prime}(1.9(c))$ such that $Q_{k}^{\prime \prime} \Subset Q_{k}^{\prime} \Subset Q_{k}$ for $1 \leqslant k \leqslant n$. $\left\{Q_{1}^{\prime}, \ldots, Q_{n}^{1}\right\}$ is an L-covering since there exists a μ such that for all $m \geqslant \mu, 1 \leqslant i \leqslant n, \varphi Q_{i}^{\prime \prime} A_{n}=1 \rightarrow A_{n} \in Q_{i}^{\prime}(1.9(d))$.
1.23. Lemma. If $\left\{P_{1}^{i}, \ldots, P_{f(i)}^{i}\right\}$ is an L-covering for $1 \leqslant i \leqslant n$, then $\left\{P_{j_{1}}^{1} P_{j_{2}}^{2} \ldots P_{j_{n}}^{n}: \wedge k\left(1 \leqslant k \leqslant n \rightarrow 1 \leqslant j_{k} \leqslant f(k)\right\}\right.$ is also an L-covering.
Proof. There exist $\nu_{1}, \nu_{2}, \ldots, \nu_{\mathrm{n}}$ such that we have

$$
m \geqslant \nu_{i} \& 1 \leqslant i \leqslant n \rightarrow V k\left(A_{m} \Subset P_{k}^{i} \& 1 \leqslant k \leqslant f(i)\right) .
$$

Hence if $\nu=\sup \left\{\nu_{1}, \ldots, \nu_{\mathrm{n}}\right\}_{k}$ then for $m \geqslant \nu$ there are j_{1}, \ldots, j_{n} such that $A_{m} \Subset P_{j_{k}}$ for $1 \leqslant k \leqslant n$. Therefore $(1.5(c)){ }^{n} A_{m} \Subset P_{j_{1}}^{1} \ldots P_{j_{n}}^{m}$.
1.24. Lemma. If $\left\{\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$ is a covering of a DFTKspace, then an L-covering $\left\{R_{1}, \ldots, R_{n}\right\}$ can be found such that $R_{i} \subset V_{i}$ for $1 \leqslant i \leqslant n$.
Proof. We suppose Π_{0} to be the finitary perfect representation with a defining pair $\langle\theta, \vartheta\rangle$, and \mathbb{C}_{n} the species, introduced in $1.17, \mathbb{C}_{\mathrm{n}}=\left\{\mathrm{P}_{1}^{n}, \ldots, P_{\mathrm{k}(\mathrm{n})}^{\mathrm{n}}\right\} .\left\{\mathrm{P}_{1}^{\mathrm{n}}, \ldots, \mathrm{P}_{\mathrm{k}(\mathrm{n})}^{\mathrm{n}}\right\}$ is an L-covering for every n. A function ψ of Π_{o} into $\{1, \ldots, n\}$ exists, such that

$$
\left\langle P_{s_{n}}^{n}\right\rangle_{n} \in \Pi_{o} \& \psi\left\langle P_{s_{n}}^{n}\right\rangle_{n}=m \rightarrow\left\langle P_{s_{n}}^{n}\right\rangle_{n}^{*} \in V_{m} .
$$

m is known from an initial segment of length $t,\left\langle P_{s_{1}}^{1}, \ldots, P_{s_{t}}^{t}\right\rangle$. Since the representation is perfect, $P_{s_{1}}^{1} \ldots P_{s_{t}}^{t} \subset V_{m}$.
Π_{o} is finitary, therefore a ν can be found such that $\psi\left\langle\mathrm{P}_{\mathrm{s}_{\mathrm{n}}}^{\mathrm{n}}\right\rangle_{\mathrm{n}}$ is known from $\left\langle\mathrm{P}_{s_{1}}^{1}, \ldots, \mathrm{P}_{s_{v}}^{v}\right\rangle$, for every $\left\langle\mathrm{P}_{s_{n}}^{n}\right\rangle{ }_{n} \in \Pi_{0}$. Thus a function ψ^{\prime} can be found such that

$$
\psi^{\prime}\left\langle\mathrm{P}_{s_{1}}^{1}, \ldots, \mathrm{P}_{s_{v}}^{v}\right\rangle=m \longrightarrow P_{s_{1}}^{1} \ldots P_{s_{v}}^{v} \subset V_{m} .
$$

The species $\left\{\bar{\jmath}\left\langle i_{1}, \ldots, i_{v}\right\rangle:\left\langle i_{1}, \ldots, i_{v}\right\rangle \epsilon \theta\right\}$ (ν fixed) is an L-covering (1.23).
Hence if we put
$R_{m}=\Sigma\left\{\bar{\jmath}\left\langle i_{1}, \ldots, i_{v}\right\rangle:\left\langle i_{1}, \ldots, i_{v}\right\rangle \in \theta \& \psi^{\prime}\left\langle\gamma i_{1}, \ldots, \gamma i_{v}\right\rangle=m\right\}$
then $\left\{R_{1}, \ldots, R_{m}\right\}$ is an L-covering, and $R_{i} \subset V_{i}$ for $1 \leqslant i \leqslant n$.
1.25. Theorem. $\left\{Q_{1}, \ldots, Q_{n}\right\}$ is an L-covering of a DFTKspace iff $\left\{Q_{1}, \ldots, Q_{n}\right\}$ is a covering.
Proof. Let $\left\{Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}\right\}, Q_{i}^{\prime} \mathbb{C} Q_{i}$ for $1 \leqslant i \leqslant n$, be an Lcovering constructed according to 1.22 .
There is a $\nu \in \mathbb{N}$ such that for all pieces S of degree $m \geqslant \nu$ the following assertion is valid: $\varphi Q_{i}^{\prime} S=1 \rightarrow S \Subset Q_{i}$ (for $1 \leqslant i \leqslant n)(1.9(e))$. To every DFTK-point generator $\left\langle P_{n}\right\rangle_{n}$ a piece S of degree ν, and a μ can be found such that $P_{\mu} \subset S$. On this account there exists a λ such that $P_{\mu} \subset Q_{\lambda}$, therefore $\left\langle P_{n}\right\rangle_{n} \in Q_{\lambda}$. If $\left\{Q_{1}, \ldots, Q_{n}\right\}$ is a covering, there exists (1.24) an L-covering $\left\{R_{1}, \ldots, R_{n}\right\}, R_{i} \subset Q_{i}$ for $1 \leqslant i \leqslant n$, hence $\left\{Q_{1}, \ldots, Q_{n}\right\}$ is also an L-covering (1.9(g)).
1.26. Theorem. If $\left\{\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$ is a covering of a DFTKspace, then there exists a covering $\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}$ such that $\left[\mathrm{P}_{\mathrm{i}}\right] \mathbb{C} \mathrm{V}_{\mathrm{i}}$ for $1 \leqslant \mathrm{i} \leqslant \mathrm{n}$.
Proof. By 1.22, 1.24, 1.25.
Remark. This theorem could also have been obtained as a consequence of 3.2.21, but then we should have to prove 1.25 separately.
1.27. Theorem. Every DFTK-space is an LC-space and conversely (FR 7.17).
Remark. From now on we shall use the existence of an adequate metric for a DFTK-space without further comment in our proofs.
1.28. Theorem. Let $\Gamma=\langle\varphi, \Pi\rangle$ be a DFTK-space, $\varepsilon>0$, $\mathfrak{A}(\Gamma)=\left\langle A_{n}\right\rangle_{n}$. Then
a) diameter $\left[A_{n}\right]$ converges to zero with increasing n (FR 6.5).
b) The diameter of a piece of degree n is smaller than ε for almost all n .
Proof. (b) is an immediate consequence of (a).
1.29. Definition. A DFTK-basis is defined quite analogously to an I-basis.
Remark. Let $\left\langle\mathrm{V}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ be a located system of non-empty species of an LC-space $\left\langle V_{0}\right.$, $\left.\mathbb{T}\right\rangle$. Let \mathfrak{B} be defined as usual from $\mathfrak{A}=\left\langle\mathrm{A}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$, and let ψ be a standard mapping defined on \mathfrak{B} such that $\psi \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}}$, and suppose φ to be defined from ψ. Then $\left\langle V_{n}\right\rangle_{n}$ is a DFTK-basis for $\left\langle V_{0}, \mathbb{T}\right\rangle$ iff φ satisfies I1-2, F, T, K, and $\prod_{n=1}^{\infty} \psi P_{n}$ contains exactly one point for every $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \boldsymbol{\Sigma}$.
1.30. Lemma. Let $\boldsymbol{\Gamma}$ be a DFTK-space, and let V be a
located pointspecies of $\Gamma . V \mathbb{C}_{\Gamma} W \longleftrightarrow V \varepsilon(\varepsilon>0 \& U(\varepsilon, V) \subset W)$. Proof. In 3.3.7 was proved: $V \mathbb{C}_{\mathrm{r}} \mathrm{W} \longleftrightarrow \mathrm{V} \subset$ Int W , for located V. If for some positive $\varepsilon, \mathrm{U}(\varepsilon, \mathrm{V}) \subset \mathrm{W}$, then $\mathrm{V}^{-} \subset$ Int W.
Suppose $\mathrm{V}^{-} \subseteq$ Int $\mathrm{W} . \mathrm{V}^{-}$is an LC-space (2.3.9). Hence to every $\mathrm{p} \epsilon \mathrm{V}^{-}$a $\delta>0$ can be found such that $\mathrm{U}(2 \delta, \mathrm{p}) \subset \mathrm{W}$. The species of the $\mathrm{U}(\delta, \mathrm{p})$ is an open covering of V^{-}; as a consequence there exists (2.3.4(d)) a quasi-finite subcovering $\left\{U_{1}, \ldots, U_{n}\right\}, U_{i}=U\left(\delta_{i}, p_{i}\right)$ for $1 \leqslant i \leqslant n . \delta=\inf \left\{\delta_{i}: 1 \leqslant i \leqslant n\right\}$. Hence $U(\delta, V) \subset U\left(\delta, \bigcup_{i=1}^{n} U_{i}\right) \subset \bigcup_{i=1}^{n} U\left(\delta_{i}+\delta, p_{i}\right) \subset \bigcup_{i=1}^{n} U\left(2 \delta_{i}, p_{i}\right) \subset W$.
1.31. Lemma. Let V, W be located and relatively located pointspecies of a DFTK-space Γ. Then
a) $V \mathbb{C} W \rightarrow V P V P^{\prime}\left(V \subset P \Subset P^{\prime} \subset W\right)$.
b) $\mathrm{V} \cap \mathrm{W}=\emptyset \rightarrow \mathrm{VP} \mathrm{VQ}(\mathrm{V} \simeq \mathrm{P} \& \mathrm{~W} \subset \mathrm{Q} \& \mathrm{P} \mathrm{PQ}=0)$.

Proof. (a) $V \in W \rightarrow V \in C^{\prime} W$. This implies that $\left\{W, V^{c}\right\}$ covers Γ. Hence by $1.25,1.24$, there exist P^{\prime}, Q^{\prime} such that $P^{\prime} \subset W, Q^{\prime} \subset V^{c} ;\left\{P^{\prime}, Q^{\prime}\right\}$ covers Γ. By 1.26, there exist P, Q such that P © $P^{\prime}, Q \in Q^{\prime},\{P, Q\}$ covers Γ. $\mathrm{p} \in \mathrm{V} \rightarrow \mathrm{p} \notin \mathrm{V}^{\mathrm{c}} ; \mathrm{p} \notin \mathrm{V}^{\mathrm{c}} \rightarrow \mathrm{p} \notin \mathrm{Q} ; \mathrm{p} \notin \mathrm{Q} \rightarrow \mathrm{p} \in \mathrm{P}$. Hence $V \subset P \in P^{\prime} \subset W$.
(b) It follows from the fact that V, W are relatively located, and from 2.3.10(c) that for a certain $\delta>0, U(\delta, V) \cap$ $\mathrm{U}(\delta, \mathrm{W})=\emptyset$. We construct located pointspecies $\mathrm{V}^{\prime}, \mathrm{W}^{\prime}$ such that $\mathrm{U}\left(4^{-1} \delta, \mathrm{~V}\right) \subset \mathrm{V}^{\prime} \subset \mathrm{U}\left(2^{-1} \delta, \mathrm{~V}\right), \mathrm{U}\left(4^{-1} \delta, \mathrm{~W}\right) \subset \mathrm{W}^{\prime} \subset$ $\mathrm{U}\left(2^{-1} \delta, \mathrm{~W}\right)(2.3 .11(\mathrm{a})) ; \mathrm{U}\left(2^{-1} \delta, \mathrm{~V}^{\prime}\right) \cap \mathrm{U}\left(2^{-1} \delta, \mathrm{~W}^{\prime}\right)=\varnothing$. V © $\mathrm{V}^{\prime} \&$ W © W' (1.30).
Applying (a) we construct P, Q such that $V \subset P \subset V^{\prime}, W \subset$ $\mathrm{Q} \subset \mathrm{W}^{\prime}, 甲 \mathrm{PQ}=0$.
1.32. Lemma. Let Γ be a DFTK-space and $\left\langle V_{n}\right\rangle_{n}$ a DFTKbasis for $\left.\Gamma .<W_{n}\right\rangle_{n}$ is a sequence of pointspecies such that $\left\langle V_{n}\right\rangle_{n} U\left\langle W_{n}\right\rangle_{n}$ is a located system. Then $\left\langle V_{n}\right\rangle_{n} U\left\langle W_{n}\right\rangle_{n}$ is a PIN-basis for Γ.
Proof. We suppose $\Lambda_{n}\left(V_{n} \neq \emptyset\right)$, $\Lambda_{n}\left(W_{n} \neq \emptyset\right)$. (This can be done according to the definition of a PIN-basis.)
We define an I-space $\Delta=\langle\varphi, \Pi\rangle$ by $\mathscr{A}(\Delta)=\left\langle A_{n}\right\rangle_{n} U\left\langle B_{n}\right\rangle_{n}$, $\Pi(\Delta)=\Sigma(\Delta) . \psi$ is defined on $\mathfrak{P}(\Delta)$ as a standard mapping which satisfies $\psi \mathrm{A}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n}}, \psi \mathrm{B}_{\mathrm{n}}=\mathrm{W}_{\mathrm{n}} ; \varphi_{\Delta}=\varphi$ is defined from ψ.
Let Γ_{1} be defined by $\mathfrak{X}\left(\Gamma_{1}\right)=\left\langle A_{n}\right\rangle_{n} \quad i \Gamma_{1}=\varphi_{\Delta} \mid \Re\left(\Gamma_{1}\right)$, $\Pi\left(\Gamma_{1}\right)=\Sigma\left(\Gamma_{1}\right) . \Gamma_{1}$ is an abstract DFTK-space, homeomorphic to Γ. We put $\Gamma_{2}=\left\langle\varphi_{\Delta}, \Pi\left(\Gamma_{1}\right)\right\rangle$.

We prove successively that Γ_{1} is homeomorphic to Γ_{2}, and that Γ_{2} is homeomorphic to Δ.
In Γ_{2}, I1, 2, 5 are satisfied. I3, 4 can be proved for Γ_{2} by the methods described in 3.5.1.
$\Pi^{\circ}\left(\Gamma_{1}\right)=\Pi^{0}\left(\Gamma_{2}\right) ;$ on this account $V \mathbb{C}_{\Gamma_{1}} W \leftrightarrow V \mathbb{C}_{\Gamma_{2}} W$. Therefore Γ_{2} has to be an IR-space, since Γ_{1} is an IRspace. We obtain (3.2.13(c)) $\mathrm{p} \epsilon_{\mathrm{r}_{2}} \mathrm{~V} \leftrightarrow\{\mathrm{p}\} \mathbb{C}_{\Gamma_{2}} \mathrm{~V} \leftrightarrow$ $\{p\} \mathbb{C}_{\Gamma_{1}} V \leftrightarrow p \in \Gamma_{1} \mathrm{~V}$, and this implies in turn that Γ_{1}, Γ_{2} are homeomorphic.

Let $\left\langle R_{n}\right\rangle_{n} \in \Sigma(\Delta)$, and let $\left\langle Q_{i}, Q_{i}^{\prime}\right\rangle_{i}$ be an enumeration of all pairs $\left\langle Q_{i}, Q_{i}^{\prime}\right\rangle$ such that $\phi Q_{i} Q_{i}^{\prime}=0$.
There exists a sequence $\left.\left\langle n_{i}\right\rangle_{i}, \wedge \wedge\left(n_{i+1}\right\rangle n_{i}\right)$ such that $\wedge_{i} \wedge_{j}\left(1 \leqslant j \leqslant i \rightarrow \varphi R_{1} \ldots R_{n_{i}} Q_{j}=0 \vee \varphi R_{1} \ldots R_{n_{i}} Q_{j}^{\prime}=0\right)$. As a consequence of 1.31 (b) we are able to construct $P_{i} \in \mathfrak{B}\left(\Gamma_{1}\right)$ such that $\wedge_{i}\left(R_{1} \ldots R_{n_{i}} \subset_{\Delta} P_{i} \& \wedge j(1 \leqslant j \leqslant i \rightarrow\right.$ $\left.\varphi P_{i} Q_{j}=0 \vee \varphi P_{i} Q_{j}^{\prime}=0\right)$). Hence $\wedge k \vee m\left(R_{1} \ldots R_{m} \subset_{\Delta} P_{1} \ldots P_{k}\right)$. We conclude that (3.1.32) Γ_{2}, Δ are homeomorphic, and $\mathbb{C}_{\Gamma_{2}}=\mathbb{C}_{\Delta}$.

As a consequence of 1.31 , in $\Delta \mathrm{N} 6, \mathrm{~N} 8$ also hold, as will be proved now.
Suppose Δ to be homeomorphic to Γ_{1} by a homenmorphism ξ. If $P \mathbb{C}_{\Delta} Q$, then $\xi P \mathbb{C}_{\Gamma_{1}} \xi Q, \xi P, \xi Q$ located in Γ_{1}. Then $P^{\prime}, Q^{\prime}, R^{\prime}$ can be found such that $\xi P \subset P^{\prime} \mathbb{C}_{\Gamma_{1}} R^{\prime} \mathbb{C}^{\Gamma_{1}}$ $Q^{\prime} \subset \xi Q$, hence $P \subset_{\Delta} P^{\prime} \mathbb{C}_{\Delta} R^{\prime} \mathbb{C}_{\Delta} Q^{\prime} \subset Q$. N8 is proved like wise.
1.33. Remark. If Γ, Δ are defined as in 1.32, the following theorems remain valid for Δ (as a consequence of 1.32, 1.31) if we interprete P, Q etc. as to belong to $\mathfrak{P}(\Delta)$, but $\left\langle A_{n}\right\rangle_{n}=\mathscr{A}\left(\Gamma_{1}\right): 1.3,1.9,1.17,1.19,1.20,1.22,1.24$, $1.25,1.26$.

2. LDFTK-spaces.

2.1. Definition. A metric locally DFTK-space is a metric space with a point representation, such that to every point a closed neighbourhood can be found, which is an LC-space (equivalently DFTK-space) in the relative topology.
2.2. Definition. An abstract PIN-space which satisfies the following two postulates
L1. $\wedge P \vee<Q_{n}>_{n}\left(P=A_{\infty} \vee<\left[Q_{n}\right]\right\rangle_{n}$ is a DFTK-basis for [P]). L2. $\wedge P \vee Q\left(P \neq A_{\infty} \rightarrow P \Subset Q \& Q \neq A_{\infty}\right)$.
is called an abstract locally DFTK-space (abstract LFDTKspace). A space which is homeomorphic to an abstract LDFTK-space is called a locally DFTK-space (LDF TK-space).
2.3. Theorem. If $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ is a metric locally DFTK-space, then $\left\langle\mathrm{V}_{\mathrm{o}}, \mathfrak{Z}(\rho)\right\rangle$ is an LDFTK-space and conversely.
Proof. Let $\left\langle\mathrm{V}_{0}, \rho\right\rangle$ be a metric locally DFTK-space. We
put $\left\langle\mathrm{V}_{0}, \boldsymbol{I}(\rho)\right\rangle=\boldsymbol{\Gamma} \quad$ To every point $\mathrm{p} \boldsymbol{\epsilon} \mathrm{V}_{\mathrm{o}}$ a real number $\varepsilon>0$ and $B, C \subset V_{o}$ can be found, such that $F(p, \varepsilon, B, C)$ holds, where $F(p, \varepsilon, B, C)$ is defined by
$F(p, \varepsilon, B, C) \leftrightarrow U\left(2^{-2} \varepsilon, p\right) \subset B \subset U\left(2^{-1} \varepsilon, p\right) \subset U(\varepsilon, p) \subset C$ and B,C LC-spaces in the relative topology.
We remark that
$\left\{\right.$ Int $B: \vee p \vee \varepsilon \vee C\left(p \in V_{0} \& \varepsilon>0 \& F(p, \varepsilon, B, C)\right\}$
is an open covering of Γ.
Using the intuitionistic analogue of Lindelöf's theorem (2.2.6) we obtain sequences $\left\langle B_{n}\right\rangle_{n},\left\langle C_{n}\right\rangle_{n}\left\langle\varepsilon_{n}\right\rangle_{n},\left\langle p_{n}\right\rangle_{n}$, such that $\left\langle B_{n}\right\rangle_{n}$ is a covering of Γ, and $\wedge n\left(F\left(p_{n}, \varepsilon_{n}, B_{n}, C_{n}\right)\right.$).

Next we construct sequences $\left\langle\mathrm{B}_{\mathrm{n}, \mathrm{m}}\right\rangle_{\mathrm{m}}$ for every n , such that $B_{n, m}$ is an LC-space in the relative topology for all n, m, and such that (using 2.3.11(a))

$$
\begin{align*}
B_{\mathrm{n}}= & \mathrm{B}_{\mathrm{n}, 1} \& \wedge \mathrm{~m}\left(\mathrm{U}\left(2^{-\mathrm{k}-2} \varepsilon_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}, \mathrm{~m}}\right) \subset \mathrm{B}_{\mathrm{n}, \mathrm{~m}+1} \subset\right. \\
& \left.\mathrm{U}\left(2^{-\mathrm{k}-1} \varepsilon_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}, \mathrm{~m}}\right)\right) \tag{2}
\end{align*}
$$

We see that $\wedge_{n} \wedge_{m}\left(B_{n, m} \subset C_{n}\right)$. We re-enumerate $\left\langle B_{n, m}\right\rangle_{n, m}$ as $\left\langle D_{n}\right\rangle_{n}$ by putting $D_{t(n, m)}=B_{n, m}$ where t is a bi-unique mapping from $\mathrm{N} \times \underline{\mathrm{N}}$ onto N , and r,s are mappings such that $\operatorname{rt}(\mathrm{n}, \mathrm{m})=\bar{n}, \operatorname{st}(\bar{n}, m)=\bar{m}$. We put

$$
E_{1}=D_{1}, E_{n+1}=E_{n} \underline{U} D_{n} .
$$

We see that $\Lambda_{n}\left(E_{n} \subset E_{n+1}\right) ; E_{n}$ is an LC-space in the relative topology, therefore $\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ is a located system.
Let f be a mapping from $\underline{\mathrm{N}}$ into $\underline{\mathrm{N}}$ defined by

$$
f(n)=\sup \{t(r(k), s(k)+1): 1 \leqslant k \leqslant n\}
$$

It follows that a sequence $\left\langle\delta_{n}\right\rangle_{n}$ can be found such that

$$
\mathrm{U}\left(\delta_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}\right) \subset \mathrm{E}_{\mathrm{f}(\mathrm{n})}
$$

since $D_{t(n, m)} \subset U\left(\varepsilon, D_{t(n, m)}\right) \subset B_{n, m+1}$ for a certain ε. If we put

$$
g(1)=1, g(n+1)=f g(n), \quad F_{n}=E_{g(n)}
$$

then $\left\langle F_{n}\right\rangle_{n}$ is a located system of LC-spaces. Defining η_{n} as $\delta_{g(n)}$ we obtain

$$
\begin{equation*}
\mathrm{U}\left(\eta_{\mathrm{n}}, \mathrm{~F}_{\mathrm{n}}\right) \subset \mathrm{F}_{\mathrm{n}+1} . \tag{3}
\end{equation*}
$$

Now we construct a DFTK-basis $\left\langle\mathrm{G}_{2, \mathrm{n}}\right\rangle_{\mathrm{n}}$ for F_{2}, such that $\left\langle\mathrm{G}_{2, \mathrm{n}}\right\rangle_{\mathrm{n}} \cup\left\{\mathrm{F}_{1}\right\}$ is a located system in F_{2}. (This is possible by 2.3.12; to see this we remark that if $\left\langle U_{i}\right\rangle_{i}$ in 2.3.12 is a DFTK-basis, then $\left\langle W_{i}\right\rangle_{i}$ is also a DFTK-basis, as a consequence of 1.29 , remark.)

If we put $\mathrm{H}_{1, \mathrm{n}}=\mathrm{G}_{2, \mathrm{n}} \cap \mathrm{F}_{1}$, then $\left\langle\mathrm{H}_{1, \mathrm{n}}\right\rangle_{\mathrm{n}}$ is a located system, and a DFTK-basis for F_{1}.
For let \mathbb{C} be the system obtained by closing $\left\langle G_{2, n}\right\rangle_{n}$ with respect to \cap, and let $V, W \in \mathbb{C}$. If $U\left(\delta, V \cap F_{1}\right) \cap$
$\mathrm{U}\left(\delta, \mathrm{W} \cap \mathrm{F}_{1}\right) \cap \mathrm{F}_{2} \subset \mathrm{U}\left(\varepsilon, \mathrm{V} \cap \mathrm{W} \cap \mathrm{F}_{1}\right)$, and if we put $\delta^{\prime}=\inf \left(\eta_{1}, \delta\right)$, we obtain $U\left(\delta^{\prime}, V \cap F_{1}\right) \cap \mathrm{U}\left(\delta^{\prime}, \mathrm{W} \cap \mathrm{F}_{1}\right) \subset$ $\mathrm{U}\left(\delta^{\prime}, \mathrm{V} \cap \mathrm{F}_{1}\right) \cap \mathrm{U}\left(\delta^{\prime}, \mathrm{W} \cap \mathrm{F}_{1}\right) \cap \mathrm{F}_{2} \subset \mathrm{U}\left(\varepsilon, \mathrm{V} \cap \mathrm{W} \cap \mathrm{F}_{1}\right)$. Therefore $\left\langle\mathrm{H}_{1, \mathrm{n}}\right\rangle_{\mathrm{n}}$ is a located system.
Let $\left\langle G_{3, n}\right\rangle_{n}$ be a DFTK-basis for F_{3}, such that $\left\langle H_{1, n}\right\rangle_{n}$ o $<\mathrm{G}_{3, \mathrm{n}}>_{\mathrm{n}} \mathrm{U}\left\{\mathrm{F}_{2}\right\}$ is a located system in F_{3}. We put $\mathrm{H}_{2, \mathrm{n}}=$ $\mathrm{G}_{3, \mathrm{n}} \mathrm{n}_{\mathrm{F}_{2} .}\left\langle\mathrm{H}_{1, \mathrm{n}}>_{\mathrm{n}} \mathrm{U}\left\langle\mathrm{H}_{2, \mathrm{n}}>_{\mathrm{n}}\right.\right.$ is a located system, $\left\langle\mathrm{H}_{2, \mathrm{n}}\right\rangle_{\mathrm{n}}$ is a DFTK-basis for F_{2}.
We proceed by induction. Let us suppose that we have already proved that $\left\langle\mathrm{H}_{1, \mathrm{n}}\right\rangle_{\mathrm{n}} \cup\left\langle\mathrm{H}_{2, \mathrm{n}}\right\rangle_{\mathrm{n}} \mathrm{U} \ldots \mathrm{U}\left\langle\mathrm{H}_{\mathrm{k}-1, \mathrm{n}}\right\rangle_{\mathrm{n}}$ is a located system, and $\left\langle H_{i, n}\right\rangle_{n}$ is a DFTK-basis for F_{i}, $1 \leqslant \mathrm{i} \leqslant \mathrm{k}-1$.

We construct a DFTK-basis $\left\langle G_{k+1, n}\right\rangle_{n}$ for F_{n+1}, such that $\left\langle\mathrm{H}_{1, \mathrm{n}}\right\rangle_{\mathrm{n}} \cup \ldots \mathrm{U}\left\langle\mathrm{H}_{\mathrm{k}-1, \mathrm{n}}\right\rangle_{\mathrm{n}} \mathrm{U}\left\langle\mathrm{G}_{\mathrm{k}+1, \mathrm{n}}\right\rangle_{\mathrm{n}} \mathrm{U}\left\{\mathrm{F}_{\mathrm{k}}\right\}$ is a located system in $\mathrm{F}_{\mathrm{n}+1}$ (2.3.12).

If we put $G_{k+1, n} \cap F_{k}=H_{k, n}$, then $\left\langle H_{k, n}\right\rangle_{n}$ is a DFTKbasis for F_{n}, and $\left\langle\mathrm{H}_{1, \mathrm{n}}\right\rangle_{\mathrm{n}} \mathrm{U} \ldots \mathrm{U}\left\langle\mathrm{H}_{\mathrm{k}, \mathrm{n}}\right\rangle_{\mathrm{n}}$ is a located system.
For let © be the system obtained by closure of $\left\langle\mathrm{H}_{1, \mathrm{n}}\right\rangle_{\mathrm{n}} U \ldots$. $\mathrm{U}\left\langle\mathrm{H}_{\mathrm{k}-1, \mathrm{n}}\right\rangle_{\mathrm{n}} \mathrm{U}<\mathrm{G}_{\mathrm{k}+1, \mathrm{n}}>_{\mathrm{n}}$ with respect to n , and let $\mathrm{V}, \mathrm{W} \in \mathbb{C}$. If $U\left(\delta, V \cap F_{k}\right) \cap U\left(\delta, W \cap F_{k}\right) \cap F_{k+1} \subset U\left(\varepsilon, V \cap W \cap F_{k}\right)$, and if we put $\delta^{\prime}=\inf \left(\eta_{k}, \delta\right)$, then
$U\left(\delta^{\prime}, V \cap F_{k}\right) \cap U\left(\delta^{\prime}, W \cap F_{k}\right)=U\left(\delta^{\prime}, V \cap F_{k}\right) \cap U\left(\delta^{\prime}, W \cap F_{k}\right) \subset$ $\mathrm{F}_{\mathrm{k}+1} \subset \mathrm{U}\left(\varepsilon, \mathrm{V} \cap \mathrm{W} \cap \mathrm{F}_{\mathrm{k}}\right)$.
In this way we obtain a system $\left\langle\mathrm{H}_{\mathrm{n}, \mathrm{m}}>_{\mathrm{n}, \mathrm{m}}\right.$ which will be proved to be a PIN-basis for a PIN-space Δ which satisfies L1-2.

We put $K_{t(n, m)}=H_{n, m}, \nu=\inf \left\{n: K_{n} \neq \emptyset\right\} .\left\langle L_{n}\right\rangle_{n}$ is defined by stipulating $L_{i}=L_{v}=K_{v}$ for $1 \leqslant i \leqslant \nu ; n>\nu \rightarrow$ $L_{n}=K_{n}$ if $K_{n} \neq \emptyset, L_{n}=L_{v}$ if $K_{n}=\varnothing$.

We construct Δ by means of a standard mapping ψ such that $\psi A_{n}=L_{n}, \mathscr{Y}(\Delta)=\left\langle A_{n}\right\rangle_{n} \cdot \varphi \Delta=\varphi$ is defined from ψ. As a consequence of $1.29,1.32<\psi \mathrm{P} \cap \mathrm{L}_{\mathrm{n}}>_{\mathrm{n}}$ is a PIN-basis for every $P \neq A_{\infty}$. If $\psi P \subset F_{n}$, then $\left\langle\psi P \cap H_{n, m}\right\rangle_{m}$ is a PIN-basis for $\psi \mathrm{P}$.
I1-2 are automatically satisfied. We prove $P \subset Q \leftrightarrow \psi P \subset \psi Q$ in the usual way, as described in 3.5.1. This proves 13. Next we prove for a separating system $\left\langle T_{n}\right\rangle_{n}$: $\prod_{n=1}^{\infty} \psi R_{n}$ contains exactly one point, and the diameter of $\psi \mathrm{R}_{1} \ldots \mathrm{R}_{\mathrm{k}}$ tends to zero with increasing k .
There exist a ν and a $\mu, \nu, \mu \in \underline{N}$, such that $\psi R_{1} \ldots R_{v} \subset F_{\mu}$.
$\psi R_{1} \ldots R_{v}$ is a PIN-space with a PIN-basis $<\psi R_{1} \ldots R_{v} \cap L_{n}>_{n}$. Therefore $<R_{1} \ldots R_{\nu} R_{n}>_{n}$ must fulfil the splitting condition with respect to all pairs $\left\langle R_{1} \ldots R_{v} P, R_{1} \ldots R_{v} Q\right\rangle$ such that $\rho R_{1} \ldots R_{v} P Q=0$; hence $\bigcap_{n=1}^{\infty} \psi R_{n}$ contains exactly one point of ψR_{v}, and the diameter of $\psi R_{1} \ldots R_{v} R_{n}$ tends to zero with increasing n.
Conversely, if $\mathrm{p} \in \Gamma$, there is a ν such that $p \in \mathrm{~F}_{\boldsymbol{v}}$. $\left\langle F_{v} \cap L_{n}>_{n}\right.$ is a PIN-basis for F_{v}, therefore a splitting system $\left\langle R_{n}>_{n}\right.$ can be found such that $\bigcap_{n=1}^{\infty} \psi R_{n}=\{p\}$. If we put $\Sigma(\Delta)=\Pi(\Delta)$, it follows from the preceding considerations that I4, I5 are satisfied. N6, N8 remain to be proved. Let $P, Q \in \mathfrak{P}$. From the construction of the F_{n} it is seen that a. ν can be found such that $\psi P, \psi Q \subset F_{v}$. If $\left\langle S_{n}\right\rangle_{n}$ is a sequence such that $\Lambda_{\mathrm{n}}\left(\psi \mathrm{S}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}}\right)$, it is a consequence of (3) that

$$
\wedge_{\mathrm{n}}\left(\mathrm{~S}_{\mathrm{n}} \mathbb{C}_{\Delta} \quad \mathrm{S}_{\mathrm{n}+1}\right)
$$

$P, Q \subset S_{v} \Subset_{\Delta} S_{\nu+1} \Subset_{\Delta} S_{\nu+2}$. If $\varphi P Q=0$ we construct P^{\prime}, Q^{\prime} such that $P \Subset_{S_{v+2}} P^{\prime} \& Q \mathbb{C}_{s_{v+2}} Q^{\prime} \& \wp P^{\prime} Q^{\prime}=0$. It follows that $P \Subset_{S_{v+2}} P^{\prime} S_{v+1} \& Q \mathbb{C}_{S_{v+2}} Q^{\prime} S_{v+1} \& \varphi P^{\prime} Q^{\prime} S_{v+1}=0$. Using lemma 3.1.28 we draw the conclusion that

$$
P \Subset_{\Delta} P^{\prime} S_{v+1} \& Q \Subset_{\Delta} Q^{\prime} S_{v+1} \& \phi P^{\prime} Q^{\prime} S_{v+1}=0 .
$$

This proves N6.
If $P \Subset_{\Delta} Q$, we construct an R such that $P \Subset_{S_{v+1}} R \Subset_{S_{v+1}}$ $\mathrm{Q} \mathbb{C}_{\Delta} \mathrm{S}_{v+1}$. Hence we obtain (3.1.30) $\mathrm{P} \mathbb{C}_{\Delta} R \mathbb{C}_{\Delta} \mathrm{Q}$, and this proves N8; Δ is therefore a PIN-space.

Finally we must construct a homeomorphism ξ from Δ onto Γ. We put (as in 3.1.26, 3.5.1)

$$
\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \Pi(\Delta) \longrightarrow \xi\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}^{*} \in \bigcap_{\mathrm{n}=1}^{\infty} \psi \mathrm{P}_{\mathrm{n}} .
$$

It is readily verified that ξ is bi-unique. ξ is continuous, since Δ is a PIN-space. ξ^{-1} is continuous, since in Γ every point has a neighbourhood which is an LC-space; as a consequence of $1.27,1.21,3.3 .9,3.3 .6, \xi^{-1}$ is continuous on such a neighbourhood, therefore ξ^{-1} is continuous on Γ. Now we prove this theorem in the reverse direction. An LDFTK-space is a PIN-space, and therefore metrizable; as a consequence of $3.3 .9,3.3 .5$, and 3.2 .30 it has a point representation.

It follows from L1, L2 that to every point a neighbourhood can be found which is an LC-space, for if $\left\langle P_{n}\right\rangle_{n} \in \Pi$, $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \in \mathrm{Q}, \mathrm{Q} \neq \mathrm{A}_{\infty}$, there is an R (L2) such that $\mathrm{Q} \Subset R$, $R \neq A_{\infty}$, so $\left\langle P_{n}\right\rangle_{n}^{*} \in$ Int $R . R$ is a neighbourhood which is an LC-space in the relative topology.

2．4．Definition．An LDFTK－basis is defined analogous to an I－basis．

2．5．Example．$\underline{R}^{\mathrm{n}}$ possesses an LDFTK－basis consisting of all species $\left\{\left(x_{1}, \ldots, x_{n}\right): \wedge i\left(1 \leqslant i \leqslant n \rightarrow x_{i} \in\left[k_{i} 2^{-\mathrm{m}},\left(k_{i}+1\right) 2^{-\mathrm{m}}\right]\right\}\right.$ ， $\left|k_{i}\right|, m \in \mathbb{N}$ ．

3．Covering theorems．
3．1．Theorem．Let $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ be a star－finite covering（cf． 3．1．37）of an LDFTK－space．Then there exists a star－finite covering $\left\langle P_{n}^{*}\right\rangle_{n}$ such that $\wedge_{n}\left(P_{n} \Subset P_{n}^{*}\right)$ and $\Lambda i \wedge j\left(\varphi P_{i}^{*} P_{j}^{*}=1 \leftrightarrow\right.$ $\varphi P_{i} P_{j}=1$ ）．
Proof．Suppose $\left\langle Q_{n}\right\rangle_{n}$ to be an arbitrary star－finite cover－ ing．We shall construct a star－finite covering $\left\langle Q_{n}^{\prime}\right\rangle_{n}$ such that for a certain $\nu, Q_{\nu} \mathbb{C} Q_{v}^{\prime}, \quad \Lambda_{n}\left(n \neq \nu \rightarrow Q_{n}^{n_{n}^{\prime}}={ }^{n} Q_{n}\right)$ ， $\wedge \mathrm{n}\left(\varphi Q_{\nu}^{\prime} Q_{\mathrm{n}}=1 \leftrightarrow \varphi Q_{\nu} Q_{\mathrm{n}}=1\right)$ ；the construction is described below．

We put $\Sigma\left\{Q_{j}: \rho Q_{j} Q_{V}=1\right\}=Q_{V}^{\prime}$

$$
\Sigma\left\{Q_{\mathrm{j}}: \varphi Q_{j Q_{V}^{\prime \prime}}=1\right\}=Q_{V}^{\prime \prime} .
$$

If $\left\langle R_{n}\right\rangle_{n} \in \Pi$ ，there exists a Q_{μ} such that $<R_{n}>_{\text {漛 }} \in Q_{\mu}$ （3．3．9，3．3．5，3．2．21）hence for a certain $\lambda, R_{1} \ldots R_{\lambda} \Subset Q_{\mu}$ ． $\varphi Q_{\nu} Q_{\mu}=0$ implies $\varphi R_{1} \ldots R_{\lambda} Q_{\nu}=0$ ．$\varphi Q_{\nu} Q_{\mu}=1$ implies $Q_{\mu} \subset Q_{\nu}^{\prime}$ ，so $R_{1} \ldots R_{\lambda} \subset Q_{v}^{\prime \prime}$ ．Therefore $Q_{v} \mathbb{C}^{〔} Q_{v}^{\prime \prime}$ ；likewise we prove $Q_{v}^{\prime \prime} \Subset Q_{v}^{\prime \prime \prime}$ ．Now we take $R_{v}^{\prime \prime}$ to be
$R_{V}^{\prime \prime}=\Sigma\left\{Q_{j}: \varphi Q_{j} Q_{V}=1 \& \varphi Q_{j} Q_{V}=0\right\}$.
$Q_{V}^{\prime \prime \prime}=R_{V}^{\prime \prime}+Q_{V}^{\prime \prime} ; \quad R V_{V}^{\prime} Q_{V}=0$.
We construct a Q_{v}^{*} such that $Q_{V} \Subset Q_{v}^{*} \& Q_{V}^{*} R_{V}^{\prime}=0$ and we put $Q_{v}^{\prime}=Q_{v}^{*} Q_{v}^{\prime \prime}$ ．It follows that $Q_{v} \Subset Q_{v}^{\prime}, ~ \varphi Q_{v}^{\prime} R_{v}^{\prime \prime}=0$ ．

Suppose $\varphi Q_{\nu} Q_{n}=0 \& \varphi Q_{\nu}^{\prime} Q_{n}=1$ ．$\varphi Q_{n} Q_{V}^{\prime}=0$ contradicts $\varphi Q_{\nu}^{\prime} Q_{n}=1 ; \varphi Q_{n} Q_{\nu}^{\prime \prime}=1$ implies $Q_{n} \subset R V\left(\right.$ since $\left.\varphi Q_{\nu} Q_{n}=0\right)$ ， hence $\varphi Q_{n} Q_{\nu}^{\prime}=0$ which contradicts $\varphi Q_{V}^{\prime} Q_{n}=1$ ．
Therefore $\wedge n\left(\varphi Q_{\nu}^{\prime} Q_{n}=1 \longleftrightarrow \varphi Q_{\nu} Q_{n}=1\right)$ ．
Now we apply this construction to $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ ．At the first step $\left\langle P_{n}\right\rangle_{n}$ is changed into $\left\langle P_{1}^{\text {光 }}, P_{2}, P_{3}, \ldots\right\rangle, P_{1} \Subset P$ 关．We repeat this construction；at the $\mathrm{k}^{\text {th }}$ step $<\mathrm{P}_{1}^{*}, \ldots, \mathrm{P}_{\mathrm{k}-1}^{*}, \mathrm{P}_{\mathrm{k}}$ ， $\left.P_{k+1}, \ldots\right\rangle$ is changed into $\left\langle P_{1}^{*}, \ldots, P_{1}^{*}, P_{k+1}, P_{k+2}, \ldots\right\rangle$ ， $P_{k} \Subset P_{k}^{*}$ ．By this method a sequence $\left\langle P_{n}^{*}\right\rangle_{n}$ is constructed such that $\wedge_{n}\left(P_{n} \Subset P_{n}^{*}\right)$ ．We must prove

$$
\begin{equation*}
\wedge_{i} \wedge j\left(\varphi P_{i}^{*} P_{j}^{*}=1 \leftrightarrow \varphi P_{i} P_{j}=1\right) \tag{1}
\end{equation*}
$$

In our construction $\varphi P_{v}=0$ implies $\varphi P_{v}^{*}=0$ ．Hence $\varphi P_{v} P_{v}=1 \leftrightarrow$ $\varphi P_{V}^{*} P_{V}^{*}=1$ is trivial．
Suppose $\nu<\mu$ ．At the ν th step we constructed from $\left\langle P_{1}^{*}, \ldots, P_{v-1}^{*}, P_{v}, \ldots\right\rangle\left\langle P_{1}^{*}, \ldots, P_{v}^{*}, P_{v+1}, \ldots\right\rangle$ such that

$$
\begin{equation*}
\phi P_{\mu} P_{\nu}=1 \longleftrightarrow \varphi P_{\mu} P_{\nu}^{*}=1 \tag{2}
\end{equation*}
$$

At the $\mu^{\text {th }}$ step we constructed from $\left\langle\mathrm{P}_{1}^{*}, \ldots, \mathrm{P}_{\mu-1}^{*} \cdot \mathrm{P}_{\mu}, \ldots\right\rangle$ $\left\langle\mathrm{P}_{1}^{*}, \ldots, \mathrm{P}_{\mu}^{*}, \mathrm{P}_{\mu+1}, \ldots\right\rangle$ such that

$$
\begin{equation*}
\vartheta P_{\mu} P_{v}^{*}=1 \leftrightarrow \emptyset P_{\mu}^{*} P_{V}^{*}=1 \tag{3}
\end{equation*}
$$

It follows from (2), (3) that

$$
\begin{equation*}
\varphi P_{v}^{*} P_{\mu}^{*}=1 \leftrightarrow \varphi P_{v} P_{\mu}=1 . \tag{4}
\end{equation*}
$$

This proves (1).
3.2. Theorem. Let $\left\langle Q_{n}\right\rangle_{\mathrm{n}}$ be a covering of an LDFTK-space Γ. Then there exists a covering $\left\langle Q_{n}^{*}\right\rangle_{n}$ of Γ, such that $\wedge n\left(Q_{n}^{*} \in Q_{n}\right)$.
Proof. Let us suppose first $\wedge_{n}\left(Q_{n} \neq A_{\infty}\right)$.
We construct an R_{1} such that $Q_{1} \Subset R_{1}, R_{1} \neq A_{\infty}(L 2) . R_{1}$ is a DFTK-space, therefore a natural number $n(1)$ can be found such that $\left\{Q_{1}, \ldots, Q_{n(1)}\right\}$ is a covering of R_{1}. We put $Q_{1}=S_{1}, Q_{1}+\ldots+Q_{n(1)}=S_{2}$. Using L2 we construct an R_{2} such that $S_{2} \mathbb{C} R_{2}, R_{2} \neq A_{\infty}$. Then we can find a natural number $n(2)>n(1)$ such that $\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{n}(2)}\right\}$ covers R_{2}.

Carrying on inductively we obtain sequences $\left\langle\mathrm{R}_{\mathrm{i}}\right\rangle_{\mathrm{i}},\left\langle\mathrm{S}_{\mathrm{i}}\right\rangle_{\mathrm{i}}$, $\left\langle n(i)>_{i}\right.$ such that $n(i)<n(i+1),\left\{Q_{1}, \ldots, Q_{n(i)}\right\}$ a covering of $R_{i}, R_{i} \neq A_{\infty}, Q_{1}+\ldots+Q_{n(i-1)}=S_{i} \Subset R_{i}$ for every i.

Our next step is the construction of a sequence $\left\langle R_{i}^{\prime}\right\rangle_{i}$ such that $\wedge_{i}\left(S_{i} \Subset R_{i}^{\prime} \Subset R_{i}\right)(N 8) .1 .26$ implies the existence of $Q_{1}^{\prime}, \ldots, Q_{R(1)}^{\prime}$ which cover R_{1} such that $Q_{i}^{\prime} \mathbb{C}_{R_{1}} Q_{i}$ for $1 \leqslant \mathrm{i} \leqslant \mathrm{n}(1)$. Since $\mathrm{Q}_{1} \in \mathrm{R}_{1}$, we obtain $\mathrm{Q}_{1} \Subset \mathrm{Q}_{1}^{1}$ (lemma 3.1.30). We put $Q_{1}^{*}=Q_{1}^{\prime}$. Defining $Q_{i}^{\prime \prime}=Q_{1}^{\prime} R_{1}^{1}$, we see that $Q_{1}^{\prime \prime} \sim Q_{1}^{\prime}, \cdot Q_{i}^{\prime \prime} \Subset Q_{i}$ for $1 \leqslant i \leqslant n(1)(3.1 .28),\left\{Q_{1}^{\prime \prime}, \ldots, Q_{n(1)}^{\prime \prime}\right\}$ covers $R_{1}^{\prime} \cdot\left\{Q_{1}^{*}, Q_{2}, \ldots, Q_{n(2)}\right\}$ covers R_{2}; this is seen as follows: $p \in R_{2} \rightarrow p \in Q_{j}, 1 \leqslant j \leqslant n(2)$. $j=1 \rightarrow p \in R_{1}$. R_{1} is covered by $\left\{Q_{1}^{*}, Q_{2}, \ldots, Q_{n(1)}\right\}$, hence $p \in Q_{1}^{\text {舀 }} v\left(p \in Q_{j}\right.$ \& $2 \leqslant \mathrm{j} \leqslant \mathrm{n}(1)$). This proves our assertion.

We conclude to the existence of a covering $\left\{Q_{1}^{*}, Q_{2}^{* *}, \ldots ., Q_{n(1)}^{* *}, Q_{n(1)+1}^{\prime}, \ldots, Q_{n(2)}^{\prime}\right\}$ of R_{2}, such that for $2 \leqslant i \leqslant n(1) Q_{i}^{* *} \mathcal{E}_{R_{2}} Q_{i}$, and for $n(1)<j \leqslant n(2) Q_{j}^{\prime} \mathbb{C}_{R_{2}} Q_{j}$ (1.26).

Since $\mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(1)}=\mathrm{S}_{2} \Subset \mathrm{R}_{2}$, it follows that $\mathrm{Q}_{1}^{* *} \Subset \mathrm{Q}_{\mathrm{i}}$ for $1<i \leqslant n(1)$. We put $Q_{i}^{*}=Q_{i}^{* *}+Q_{i}^{\prime \prime}$ for $1 \leqslant i \leqslant n(1)$. $\left\{Q_{1}^{*}, \ldots, Q_{n}^{*}(1)\right\}$ covers R_{1}^{\prime}. We define $Q_{j}^{\prime \prime}=Q_{j}^{\prime} R_{2}^{\prime}, n(1)<j \leqslant$ $\mathrm{n}(2) ; Q_{\mathrm{j}}^{\prime \prime} \Subset Q_{\mathrm{j}}$ for $\mathrm{n}(1)<\mathrm{j} \leqslant \mathrm{n}(2)$ (3.1.30).

We proceed inductively. Suppose already constructed $\left\{Q_{1}^{*}, \ldots, Q_{p(i)}^{*}, Q_{n(i)+1}^{\prime}, \ldots, Q_{n(i+1)}^{\prime}\right\}$ such that $Q_{k} \in Q^{*}$ for $1 \leqslant k \leqslant n(i),\left\{Q_{1}^{*}, \cdots, Q_{n(k)}^{*}\right\}$ covers R_{k}^{\prime} for $k \leqslant i,\left\{Q_{1}^{*}, \ldots\right.$, $\left.Q_{n(i)}^{*} Q_{n(i)+1}^{1}, \ldots, Q_{n(i+1)}^{1}\right\} \quad$ covers $R_{i+1}, Q_{j}^{\prime} \quad \mathbb{C}_{R_{i+1}} \quad Q_{j}$ for $n(i)<$ $j \leqslant n(i+1)$.

Then $\left\{Q_{1}^{*}, \ldots, Q_{n(i)}^{*}, Q_{n(i)+1}, \ldots, Q_{n(i+2)}\right\}$ covers R_{i+2}, since $p \in R_{i+2} \rightarrow\left(p \in Q_{j} \& j>n(i)\right) \vee\left(p \in Q_{j} \& j \leqslant n(i)\right) ; p \in Q_{j} \&$ $j \leqslant n(i) \longrightarrow p \in R_{i+1} ; p \in R_{i+1} \rightarrow\left(p \in Q_{j}^{*} \& 1 \leqslant j \leqslant n(i)\right) v$ ($p \in Q_{j} \& n(i)<j \leqslant n(i+1)$).

This enables us to construct a covering $\left\{Q_{1}^{*}, \ldots, Q_{n(i)}^{*}\right.$, $\left.Q_{n(i)+1}^{*}, \ldots, Q_{n(j+1)}^{* *}, Q_{n(i+1)+1}^{\prime}, \ldots, Q_{n(i+2)}^{\prime}\right\}$ of R_{i+2} such that $Q_{j}^{* *}$ $\mathbb{C}_{R_{i+2}} Q_{j}$ for $n(i)<j \leqslant n(i+1), Q_{j}^{1} \Subset_{R_{i+2}} Q_{j}$ for $n(i+1)<j \leqslant n(i+2)$.
$S_{i+2}=Q_{1}+\ldots+Q_{n(i+1)} \Subset R_{i+2}$, hence $Q_{j}^{* *} \Subset Q_{j}$ for $\mathrm{n}(\mathrm{i})<\mathrm{j} \leqslant \mathrm{n}(\mathrm{i}+1)$.
We put $Q_{j}^{\prime \prime}=Q_{j}^{\prime} R_{i+1}^{\prime}$ for $n(i)<j \leqslant n(i+1)$. Then $Q_{j}^{\prime \prime} \Subset Q_{j}$ for $n(i)<j \leqslant n(i+1)$. If we put $Q_{j,}^{*}=Q_{j}^{* *}+Q_{j}^{\prime \prime}, n(i)<j \leqslant n(i+1)$, we obtain a covering $\left\{Q_{1}^{*}, \ldots, Q_{n(i+1)}^{*}, Q_{n(i+1)+1}^{\prime}, \ldots, Q_{n(i+2)}^{\prime}\right\}$ of R_{i+2}, such that $Q_{1}^{*}, \ldots, Q_{n(i+1)}^{*}$ cover $R_{i+1}, Q_{j}^{\prime} \mathbb{C}_{R_{i+2}} Q_{j}$ for $n(i+1)<j \leqslant n(i+2)$.
There remains to be proved that $\left\langle Q_{n}^{*}\right\rangle_{n}$ is a covering.
$p \in Q_{j} \& j \leqslant n(k) \rightarrow p \in Q_{1}+\ldots+Q_{n(k)} \Subset R_{k+1}^{\prime}$. If $p \in R_{k+1}^{\prime}$ it follows that $\mathrm{p} \in \mathrm{Q}_{\mu}^{*}$ for a certain $\mu, 1 \leqslant \mu \leqslant \mathrm{n}(\mathrm{k}+1)$.

Finally, we remove the restriction $\Lambda_{n}\left(Q_{n} \neq A_{\infty}\right)$. In the construction described before, $\left\{Q_{1}^{*}, \ldots, Q_{n(i)}^{*}\right\}$ could be constructed from $\left\{Q_{1}, \ldots, Q_{n(i+1)}\right\}$.
If $Q_{j}=A_{\infty}$ for a j such that $n(i+1)<j \leqslant n(i+2)$ we put $Q_{j}^{*}=A_{\infty}$, $Q_{k}^{*}=A_{o}$ for $n(i)<k \& k \neq j$. If there is no such $j, n(i+1)<$ $j \leqslant n(i+2)$, we proceed with our construction as before.
3.3. Theorem. Let $\left\langle P_{n}\right\rangle_{n}$ be a covering of an LDFTK-space Γ. Then there exists a star-finite refinement $\left\langle Q_{n}\right\rangle_{n}$ of $\left\langle\mathrm{P}_{\mathrm{n}}>_{\mathrm{n}}\right.$. If $\Lambda_{\mathrm{n}}\left(\mathrm{P}_{\mathrm{n}} \neq \mathrm{A}_{\infty}\right)$ we may suppose $\Lambda_{\mathrm{n}}\left(\mathrm{Q}_{\mathrm{n}} \Subset \mathrm{P}_{\mathrm{n}}\right)$. Proof. We suppose first $\Lambda_{\mathrm{n}}\left(\mathrm{P}_{\mathrm{n}} \neq \mathrm{A}_{\infty}\right)$.
We make use of theorem 3.2. There exists a covering $\left\langle P_{n}^{\prime \prime}\right\rangle_{n}$ such that $\Lambda_{n}\left(P_{n}^{\prime \prime} \Subset P_{n}\right)$. Now we shall construct sequences $\left\langle Q_{n}^{\prime \prime}\right\rangle_{n},\left\langle Q_{n}^{\prime}\right\rangle_{n},\left\langle Q_{n}\right\rangle_{n}$, such that $\wedge_{n}\left(Q_{n}^{\prime \prime} \Subset Q_{n}^{\prime} \Subset\right.$ $\left.Q_{n} \& Q_{n}^{\prime \prime} \subset P_{n}^{\prime \prime} \& Q_{n} \Subset P_{n}\right)$. The construction of these sequences is carried out by means of induction, but the regularity of the construction will only become apparent after two steps.

We begin with the construction of a sequence $\langle\mathrm{n}(\mathrm{i})\rangle_{\mathrm{i}}, \mathrm{n}(1)=1$, $\wedge n(n(i)<n(i+1))$, such that $\left\{P_{1}^{\prime \prime}, \ldots, P_{n(i+1)}^{\prime \prime}\right\}$ is a covering of $P_{1}+\ldots+P_{n(i)}$ for every i.

We put $P_{i}^{\prime \prime}=Q_{i}^{\prime \prime}$ for $1 \leqslant i \leqslant n(2)$, and we shall construct $Q_{i}^{\prime}, Q_{i} 1 \leqslant i \leqslant n(2)$ such that $Q_{i}^{\prime \prime} \Subset Q_{i}^{\prime} \Subset Q_{i} \Subset P_{i}$. Then we construct $Q_{j}^{\prime \prime}, n(2)<j \leqslant n(3)$, such that $\varphi_{1} Q_{1} Q_{j}^{\prime \prime}=0, Q_{1}^{\prime}+\ldots$ $+Q_{n(2)}^{\prime}+Q_{j}^{\prime \prime} \sim Q_{1}^{\prime}+\ldots+Q_{n(2)}^{\prime}+P_{j}^{\prime \prime}, Q_{j}^{\prime \prime} \subset P_{j}^{\prime \prime}$. (The details of this construction will be described afterwards).
We remark: $P_{1}^{\prime \prime}+\ldots+P_{n(3)}^{\prime \prime} \sim Q_{1}^{\prime}+\ldots+Q_{n(2)}^{\prime}+P_{n(2)+1}^{\prime \prime}+$ $\ldots+P_{n(3)}^{\prime \prime} \sim Q_{1}^{\prime}+\ldots+Q_{n(2)}+Q_{n(2)+1}^{\prime \prime}+\ldots+Q_{n(3)}^{\prime \prime}$ (using
$\mathrm{Q}_{1}^{\prime}+\ldots+\mathrm{Q}_{\mathrm{n}(2)}^{\prime} \subset \mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(2)} \subset \mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{n}(2)} \subset$ $\left.P_{1}^{\prime \prime}+\ldots+P_{n(3)}^{\prime \prime}\right)$.
If we construct Q_{j}^{\prime}, Q_{j} for $n(2)<j \leqslant n(3)$, such that $Q_{j}^{\prime \prime} \Subset$ $Q_{j}^{\prime} \Subset Q_{j}, \varphi Q_{j} Q_{1}=0, Q_{j} \Subset P_{j}$, then $\left\{Q_{1}, \ldots, Q_{n(3)}\right\}$ is a covering of $P_{1}^{\prime \prime}+\ldots+P_{n(3)}^{\prime \prime}$ (by 3.1.38)

Suppose now that $Q_{j}^{\prime \prime}, Q_{j}^{\prime}, Q_{j}$ have already been constructed for $n(1) \leqslant j \leqslant n(k)$, such that
a) $Q_{j}^{\prime \prime} \Subset Q_{j}^{\prime} \Subset Q_{j}, Q_{j}^{\prime \prime} \subset P_{j}^{\prime \prime}, Q_{j} \Subset P_{j}$ for $1 \leqslant j \leqslant n(k)$.
b) $\left\{\left(Q_{1}, \ldots, Q_{n(i)}\right\}\right.$ is a covering of $P_{1}^{\prime \prime}+\ldots+P_{n(i)}^{\prime \prime}$ for $i \leqslant k$.
c) $\varphi\left(Q_{1}+\ldots+Q_{n(i)}\right)\left(Q_{n(i+1)+1}+\ldots+Q_{\mathrm{n}(i+2)}\right)=0$ for $1 \leqslant$ $i \leqslant k-2$.
d) $\left(Q_{1}^{\prime}+\ldots+Q_{n(i)}^{\prime}\right)+Q_{j}^{\prime \prime} \sim\left(Q_{1}^{\prime}+\ldots+Q_{n(i)}^{\prime}\right)+P_{j}^{\prime \prime}$ for $\mathrm{n}(\mathrm{i})<\mathrm{j} \leqslant \mathrm{n}(\mathrm{i}+1), \mathrm{i}<\mathrm{k}$.
e) $P_{1}^{\prime \prime}+\ldots+P_{n(i)}^{\prime \prime} \subset Q_{1}^{\prime}+\ldots+Q_{n(i)}^{\prime}$ for $1 \leqslant i \leqslant k$.

It follows that $Q_{1}+\ldots+Q_{n(i-1)} \Subset P_{1}+\ldots+P_{n(i-1)} \subset$ $\left.P_{1}^{\prime \prime}+\ldots+P_{n(i)}^{\prime \prime} \subset Q_{1}^{\prime}\right\lrcorner \ldots+Q_{n(i)}^{\prime}$.
We construct $Q_{j}^{\prime \prime}, Q_{j}, Q_{j}$ for $n(k)<j \leqslant n(k+1)$ as follows. We begin with constructing the $Q_{j}^{\prime \prime}$ such that
$\varphi\left(Q_{1}+\ldots+Q_{n(k-1)}\right) Q_{\mathrm{j}_{1}^{\prime \prime}}^{\prime \prime}=0$,
$\left(Q_{1}^{\prime}+\ldots+Q_{n(k)}^{\prime}\right)+Q_{j}^{\prime \prime} \sim\left(Q_{1}^{\prime}+\ldots+Q_{n(k)}^{\prime}\right)+P_{j}^{\prime \prime}, Q_{j}^{\prime \prime} \Subset P_{j}^{\prime} ;$ the details of this construction will be given afterwards.

We construct the Q_{j}^{\prime}, Q_{j} such that $Q_{j}^{\prime \prime} \Subset Q_{j} \Subset Q_{j} \Subset P_{j}$, $\varphi\left(Q_{1}+\ldots+Q_{n(k-1)}\right) Q_{j}=0$. We remark that
$\mathrm{Q}_{1}^{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k})}^{\prime} \subset \mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k})} \subset \mathrm{P}_{1}+\ldots+\mathrm{P}_{\mathrm{n}(\mathrm{k})} \subset$
$\mathrm{P}_{1}^{1}+\ldots+\mathrm{P}_{\mathrm{n}(\mathrm{k}+1)}$,
hence $\mathrm{P}_{1}^{\prime \prime}+\ldots+\mathrm{P}_{\mathrm{n}(\mathrm{k}+1)}^{\prime \prime} \sim \mathrm{P}_{1}^{\prime \prime}+\ldots+\mathrm{P}_{\mathrm{n}(\mathrm{k}+1)}^{\prime \prime}+\mathrm{Q}_{1}^{1}+\ldots+$ $Q_{n(k)}^{\prime} \sim P_{1}^{\prime \prime}+\ldots+P_{n(k)}^{\prime \prime}+Q_{1}^{1}+\ldots+Q_{n(k)}^{\prime}+P_{n(k)+1}^{n(1)}+\ldots$ $+\mathrm{P}_{\mathrm{n}(\mathrm{k}+1)}^{\prime \prime} \sim \mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k})}^{\prime}+\mathrm{P}_{\mathrm{n}(\mathrm{k})+1}^{\prime \prime}+\ldots \mathrm{P}_{\mathrm{n}(\mathrm{k}+1)}^{\prime \prime} \sim \mathrm{Q}_{1}^{\prime}+$ $\ldots+Q_{n(k)}^{\prime}+Q_{n(k)+1}^{\prime \prime}+\ldots+Q_{n(k+1)}^{\prime \prime}(1)$.
Therefore (3.1.38) $\left\{Q_{1}, \ldots, Q_{\mathrm{n}(\mathrm{k}+1)}\right\}$ is a covering of $\mathrm{P}_{1}^{\prime \prime}+\ldots+\mathrm{P}_{\mathrm{n}(\mathrm{k}+1)}^{\prime \prime}$.
We remark: $P_{1}^{\prime 1}+\ldots+P_{n(k+1)}^{\prime \prime} \subset Q_{1}^{\prime}+\ldots+Q_{n(k+1)}^{\prime}$.
So the conditions (a)-(e) are also satisfied for $k+1$ instead of k .

Finally we describe the construction of the $Q_{j}^{\prime \prime}, n(k)<j \leqslant$ $n(k+1)$ in detail. $Q_{1}^{\prime}+\ldots+Q_{n(k)}^{\prime}+P_{j}^{\prime \prime}$ is a DFTK-space with a DFTK-basis $\left\langle\left[T_{n}\right]\right\rangle_{n}$. There is a μ such that

$$
\begin{aligned}
& m \geqslant \mu \&{ }_{l}\left(\mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k}-1)}\right) \mathrm{T}_{\mathrm{m}}=1 \longrightarrow \\
& \mathrm{~T}_{\mathrm{m}} \subset \mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k})} .
\end{aligned}
$$

We put $(\mathrm{n}(\mathrm{k})<\mathrm{j} \leqslant \mathrm{n}(\mathrm{k}+1), \mathrm{k}>1)$
$\mathrm{Q}_{\mathrm{j}}^{\prime \prime}=\Sigma\left\{\mathrm{T}_{\mathrm{m}} \mathrm{P}_{\mathrm{j}}^{\prime \prime}: \varphi \mathrm{T}_{\mathrm{m}}\left(\mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k}-1)}\right)=0 \& \mu \leqslant \mathrm{~m} \leqslant \mu+\mathrm{r}(\mu)\right\}$
$R_{j}^{\prime \prime}=\Sigma\left\{\mathrm{T}_{\mathrm{m}} \mathrm{P}_{\mathrm{j}}^{\prime \prime}: \varphi \mathrm{T}_{\mathrm{m}}\left(\mathrm{Q}_{1}+\ldots+\mathrm{Q}_{\mathrm{n}(\mathrm{k}-1)}\right)=1 \& \mu \leqslant \mathrm{~m} \leqslant \mu+\mathrm{r}(\mu)\right\}$
where r is a K -function as introduced in 1.2.

From (a), (b), (c) we see that $\left\langle Q_{n}\right\rangle_{n}$ is a star-finite refinement of $\left\langle\mathrm{P}_{\mathrm{n}}>_{\mathrm{n}}\right.$.

If we do not know if $\wedge_{n}\left(P_{\mathrm{n}} \neq \mathrm{A}_{\infty}\right)$ holds, we can apply our construction to $\left\langle R_{n}\right\rangle_{n}$, obtained as follows:
$\rightarrow v m\left(m \leqslant n \& P_{m}=A_{\infty}\right) \rightarrow R_{n}=P_{n}$.
$\operatorname{Vm}\left(m \leqslant n \& P_{m}=A_{\infty}\right) \rightarrow\left(R_{n}=A_{n-k+1} \& k=\inf \left\{m: P_{m}=A_{\infty}\right\}\right)$.
3.4. Corollary to 3.3,3.2. Let $\left\langle Q_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ be a covering of an LDFTK-space Γ. Then there exists a star-finite covering $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ of Γ such that $\wedge_{\mathrm{n}} \operatorname{Vm}\left(\mathrm{P}_{\mathrm{n}} \Subset \mathrm{Q}_{\mathrm{m}}\right)$.
3.5. Theorem. Let Γ be an LDFTK-space.
a) Every open or enumerable covering of $\boldsymbol{\Gamma}$ possesses a refinement consisting of an enumerable sequence of lattice elements.
b) Every open or enumerable covering possesses a starfinite enumerable refinement consisting of lattice elements.
Proof. (a). We use the enumeration principle. Γ has a perfect representation Π_{1}. To every $\left\langle R_{n}\right\rangle_{n} \in \Pi_{1}$ a natural number m can be assigned by a function ψ such that $\left.\psi<R_{n}\right\rangle_{n}=m$ implies: $\left\langle\mathrm{R}_{\mathrm{n}}>{ }_{\mathrm{I}}^{\mathrm{K}} \in \boldsymbol{\epsilon} \mathrm{m}\right.$ and $[\gamma \mathrm{m}]$ is contained in an element of the covering (cf. 2.2.6). $\psi \Pi_{1}$ can be enumerated, and this proves (a).
(b) is an immediate consequence of (a) and 3.3.
4. Located pointspecies and completeness.
4.1. Theorem. Let $\boldsymbol{\Gamma}$ be an LDFTK-space. Γ can be metrized by a metric ρ such that
a) Every located non-empty pointspecies of Γ is metrically located with respect to ρ.
b) $\left\langle\Pi^{\circ}(\Gamma), \rho\right\rangle$ is metrically complete.

Proof. Let $\left\langle\mathrm{P}_{\mathrm{n}}\right\rangle_{\mathrm{n}}$ be a star-finite covering of $\Gamma, \wedge_{\mathrm{n}}\left(\mathrm{P}_{\mathrm{n}} \neq \mathrm{A}_{\infty}\right)$, and suppose $\left\langle Q_{n}\right\rangle_{n}$ to be constructed according to 3.1 , so $\wedge n\left(P_{n} \Subset Q_{n} \& Q_{n} \neq A_{\infty}\right), \wedge i \wedge j\left(\varphi P_{i} P_{j}=1 \leftrightarrow \varphi Q_{i} Q_{j}=1\right)$. Let $\left\langle R_{i}, R_{i}{ }^{1}\right\rangle{ }_{i=2}^{\infty}$ be an enumeration of all pairs $\left\langle R_{i}, R_{i}^{i}\right\rangle$ such that $\varphi R_{i} R_{i}^{1}={ }^{1}=2$.
The species $\left\{P_{n}: \varphi P_{n}=1\right\}$ can be enumerated as $\left\langle P_{n}^{\prime}\right\rangle_{n}$ with repetitions if necessary. There is a mapping g from \underline{N} into \underline{N} such that $P_{n}^{\prime}=P_{g(n)}$. $\left\langle Q_{n}^{\prime}\right\rangle_{n}$ is defined by $Q_{n}^{\prime}=Q_{g(n)}$.

We consider an inessential extension Δ of Γ, defined as
follows. $\left.\mathscr{A}(\Delta)=\mathscr{R}(\Gamma) \quad \cup<B_{n}\right\rangle_{n} U\left\langle C_{n}\right\rangle_{n}, \mathscr{A}(\Gamma)=\left\langle A_{n}\right\rangle_{n}$; $\left.\left.\left\langle A_{n}\right\rangle_{n}<B_{n}\right\rangle_{n}<C_{n}\right\rangle_{n}$ are disjoint sequences of different elements. $\varphi_{\Gamma}=\varphi_{\Delta} \mid \Re(\Gamma)$.
We put $B_{n} \sim \Delta P_{n}^{\prime}, C_{n} \sim \Delta Q_{n}^{\prime}$. In the sequel we omit subscripts Δ systematically. Γ is extended to Δ in order to be able to construct a normal perfect representation Π_{1} for Δ in accordance with definition 3.2.2. Π_{1} is defined by a pair $\langle\theta, v\rangle .\langle\emptyset\rangle \epsilon \theta,\left\langle B_{n}\right\rangle \epsilon \boldsymbol{v} \theta$ for every $n . B_{n}$ is a DFTKspace; therefore a finitary normal perfect representation for B_{n} can be constructed according to 1.17 .

If we define for a fixed $\nu\left\langle\theta_{v}, \vartheta_{v}\right\rangle$ by

$$
\theta_{v}=\left\{\left\langle\nu, i_{1}, \ldots, i_{k}\right\rangle:\left\langle\nu, i_{1}, \ldots, i_{k}\right\rangle \in \theta\right\}, \nabla_{v}=v \mid \theta_{v},
$$

we can suppose $\left\langle\theta_{v}, \nabla_{v}\right\rangle$ to define a finitary normal perfect representation for $\gamma \nu$.

In this way a perfect representation $\langle\theta, v\rangle$ is obtained for Δ. We construct a mapping f into \mathfrak{F}, defined on $\boldsymbol{ง} \theta-\{\emptyset\}$. $\mathrm{f}\left\langle\mathrm{B}_{v}\right\rangle=\mathrm{C}_{\mathrm{v}}$. If $\left\langle\mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle \in \boldsymbol{\vartheta}$, then $\mathrm{f}\left\langle\mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle$ is chosen such that

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{P}_{2} \Subset \mathrm{f}\left\langle\mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle \in \mathrm{f}\left\langle\mathrm{P}_{1}\right\rangle \text {, } \\
& \varphi \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{R}_{2}=0 \rightarrow \varphi \mathrm{f}<\mathrm{P}_{1}, \mathrm{P}_{2}>\mathrm{R}_{2}=0 \text {, } \\
& \varphi \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{R}_{2}^{2}=0 \rightarrow \varphi \mathrm{f}\left\langle\mathrm{P}_{1}, \mathrm{P}_{2}\right\rangle \mathrm{R}_{2}=0 \text {. }
\end{aligned}
$$

Suppose $\left.f<P_{1}>, f<P_{1}, P_{2}\right\rangle, \ldots, f<P_{1}, \ldots, P_{n}>$ to be defined already, and let $\left\langle P_{1}, \ldots, P_{n+1}\right\rangle \in \vartheta \theta$. We construct $f\left\langle P_{1}, \ldots, P_{n+1}\right\rangle$ such that $\left.P_{1} \ldots P_{n+1} \Subset f<P_{1}, \ldots, P_{n+1}\right\rangle \Subset$ $f<P_{1}, \ldots, P_{n}>$, and

$$
\begin{aligned}
& \varphi P_{1} \ldots P_{n+1} R_{n+1}=0 \rightarrow \varphi f<P_{1}, \ldots, P_{n+1}>R_{n+1}=0, \\
& \varphi P_{1} \ldots P_{n+1} R_{n+1}^{n}=0 \rightarrow \varphi f<P_{1}, \ldots, P_{n+1}>R_{n+1}^{1}=0 .
\end{aligned}
$$

Then we define a normal ©-representation for Δ with a defining pair $\left\langle\theta^{\prime}, \boldsymbol{\vartheta}^{\prime}\right\rangle,\langle\phi\rangle \epsilon \theta^{\prime}$, putting
$\left\langle Q_{1} \ldots Q_{n}\right\rangle \epsilon \nabla^{\prime} \theta^{\prime} \leftrightarrow\left\langle Q_{1}, \ldots, Q_{n}\right\rangle=\left\langle f\left\langle P_{1}\right\rangle, f<P_{1}, P_{2}\right\rangle, \ldots$, $\left.f<P_{1}, \ldots, P_{n}\right\rangle \&<P_{1}, \ldots, P_{n}>\in \boldsymbol{*} \theta$.

We enumerate all pairs 《 $\left.k_{1}, \ldots, k_{n+1}\right\rangle,\left\langle k_{1}, \ldots, k_{n}\right.$ 》 for which $\left\langle\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{n}+1}\right\rangle \epsilon \theta^{\prime}$ in a sequence $\left\langle\sigma_{\mathrm{i}}, \sigma_{\mathrm{i}}^{\prime}\right\rangle_{\mathrm{i}}$ without repetitions, and we put $\boldsymbol{\vartheta}^{\prime *} \sigma_{i}=S_{i}, \boldsymbol{\vartheta}^{\prime *} \sigma_{i}^{\prime}=S_{i}^{\prime}$. We define a function w from N into $\{0,1\}$:
$\mathrm{w}(\mathrm{i})=1 \leftrightarrow \sigma_{\mathrm{i}}=\left\langle\mathrm{k}_{1}, \mathrm{k}_{2}\right\rangle \epsilon \theta^{\prime}$ for certain $\mathrm{k}_{1}, \mathrm{k}_{2}$ and $\mathrm{h}\left(\mathrm{k}_{1}\right)=1$, where h is an auxiliary function defined by

$$
\begin{aligned}
& \mathrm{h}(\mathrm{k})=1 \text { iff } \gamma \mathrm{k}=\mathrm{C}_{1} \& \mathrm{~g}(1) \notin\{\mathrm{g}(1), \mathrm{g}(2), \ldots, \mathrm{g}(\mathrm{l}-1)\}, \\
& \mathrm{h}(\mathrm{k})=0 \text { in all other cases. }
\end{aligned}
$$

To every pair $\left\langle S_{i}, S_{i}^{\prime}\right\rangle$ a continuous function $f_{i}(p)$ can be defined (3.2.27) such that

$$
p \in S_{i} \longrightarrow f_{i}(p)=1, p \notin S_{i}^{\prime} \rightarrow f_{i}(p)=0,0 \ngtr f(p) \ngtr 1 .
$$

Δ (hence also Γ) can be metrized by
$\rho^{\prime}(p, q)=\sum_{i=1}^{\infty}\left\{\left|f_{i}(p)-f_{i}(q)\right| 2^{-i}(1-w(i))+\left|f_{i}(p)-f_{i}(q)\right| w(i)\right\}(*)$.
We must prove ρ^{\prime} to be an adequate metric for Δ. This proof closely parallels the proof of the corresponding fact in 3.2.28. Here too we have to prove (1)-(5). (1)-(3) do not present any difficulties. Since the identical mapping of Π° onto itself can be considered as a mapping of Δ onto $\left\langle\Pi^{0}, \rho^{\prime}\right\rangle$, this mapping is continuous by 3.2 .22 , and this proves (4). The proof of (5) in 3.2.28 remains valid (with small adaptations) in this case; only we have to consider the possibilities $\mathrm{w}(\mu)=1$ and $\mathrm{w}(\mu)=0$ separately.

Let $\mathrm{f}_{\mathrm{i}}(\mathrm{p}) \# 0, \mathrm{f}_{\mathrm{j}}(\mathrm{p}) \# 0, \mathrm{w}(\mathrm{i})=\mathrm{w}(\mathrm{j})=1$, $\mathrm{i} \neq \mathrm{j}$. $\mathrm{f}_{\mathrm{i}}(\mathrm{p}) \# 0 \longrightarrow \mathrm{p} \in \mathrm{S}_{\mathrm{i}}=\mathrm{C}_{\mathrm{v}}$ for a certain ν.
$\mathrm{f}_{\mathrm{j}}(\mathrm{p}) \# 0 \longrightarrow \mathrm{p} \in \mathrm{S}_{\mathrm{j}}=\mathrm{C} \mu$ for a certain μ.
Hence $\varphi C_{v} C_{\mu}=1 . \quad C_{\mu} \sim Q_{\mu}^{\prime}=Q_{g}(\mu), \quad C_{v} \sim Q_{v}^{\prime}=Q_{g}(v)$. $\mathrm{w}(\mathrm{i})=1 \longrightarrow \mathrm{~g}(\nu) \notin\{\mathrm{g}(1), \ldots, \mathrm{g}(\nu-1)\}$,
$\mathrm{w}(\mathrm{j})=1 \longrightarrow \mathrm{~g}(\mu) \notin\{\mathrm{g}(1), \ldots, \mathrm{g}(\mu-1)\}$, therefore $\mathrm{g}(\nu) \neq \mathrm{g}(\mu)$. $\left\{Q_{i}: \varphi Q_{i} Q_{j}=1\right\}$ is a finite species for every fixed j. (3.1.37). Therefore the species $\left\{\mathrm{i}: \mathrm{f}_{\mathrm{i}}(\mathrm{p}) \# 0 \& \mathrm{w}(\mathrm{i})=1\right\}$ is contained in a finite species.
If $\left|f_{i}(p)-f_{i}(q)\right| w(i) \# 0$, then $w(i)=1 \&\left(f_{i}(p) \# 0 \vee f_{i}(q) \# 0\right)$. Hence $\left|f_{i}(p)-f_{i}(q)\right| w(i)=0$ for almost all i $\epsilon \mathbb{N}$.
This actually proves that the right hand side of ($*$) converges.
Finally we put $\rho(\mathrm{p}, \mathrm{q})=\inf \left\{\rho^{\prime}(\mathrm{p}, \mathrm{q}), 1\right\} . \rho$ satisfies our requirements, as will be proved now.

Suppose V to be a non-empty located pointspecies of Δ, and let $p \in \Pi^{\circ}(\Delta), p$ arbitrary.
A $P_{g(n)}$ can be found such that $p \in P_{g(n)}$. We take the least number m such that $\mathrm{P}_{\mathrm{g}(\mathrm{n})}=\mathrm{P}_{\mathrm{g}(\mathrm{m})}$, and call it μ. It follows that if $\gamma^{\prime} \mathrm{C}_{\mu}=\nu$, then $\mathrm{h}(\nu)=1$.

A pair $\left\langle\mathrm{B}_{\mu}, \mathrm{P}\right\rangle \epsilon \boldsymbol{\vartheta} \theta$ can be found (since Π_{1} is a perfect representation) such that $B_{\mu} \sim P_{g(n)}, p \in B_{\mu} P$. Hence $\mathrm{p} \in \mathrm{f}<\mathrm{B}_{\mu}, \mathrm{P}>\mathbb{\in} \mathrm{C}_{\mu}$.
$\left\langle\mathrm{f}\left\langle\mathrm{B}_{\mu}, \mathrm{P}\right\rangle, \mathrm{f}\left\langle\mathrm{B}_{\mu}\right\rangle=\left\langle\mathrm{S}_{\mathrm{j}}, \mathrm{S}_{\mathrm{j}}^{\prime}\right\rangle\right.$ for a certain j . We conclude that $w(j)=1, p \in S_{j}, S_{j}^{\prime}=C_{\mu}$. Therefore $f_{j}(p)=1$. $\rho(p, q)<1 \rightarrow \rho^{\prime}(p, q)<1$; this implies in turn $\left|f_{j}(p)-f_{j}(q)\right| w(j)<1$. Hence $f_{j}(q)>0$, so $q \in C_{\mu} . C_{\mu}$ is a DFTK-space.

Now we can duplicate the reasoning of 2.3 .7 very closely. As a result we see that either C_{μ} does not contain a point of V (in this case we may take $\rho(\mathrm{p}, \mathrm{V})=1$) or there is a finite sequence $\left\langle q_{1}, \ldots, q_{\lambda}\right\rangle \subset V$ such that if $q \in V \cap C_{\mu}$, there must be q_{i} such that $\rho\left(q_{i}, q\right)<2^{-v}$. Hence $\rho(p, V)$ is approximated within 2^{-V} by $\inf \left\{1, \rho\left(q_{i}, p\right): 1 \leqslant i \leqslant \lambda\right\}$. This proves the existence of the distance function.

Finally we prove (b). Let $\left\langle r_{n}\right\rangle_{\mathrm{n}}$ be a fundamental sequence with respect to ρ. To every $\mu \geqslant 1$ a ν can be found such that

$$
\wedge i \wedge j\left(i, j \geqslant \nu \rightarrow \rho\left(r_{i}, r_{j}\right)<2^{-\mu-1}\right)
$$

We take p to be r_{v} in our previous considerations, and we construct a λ such that $\rho\left(\mathrm{r}_{\nu}, \mathrm{q}\right)<1 \longrightarrow \mathrm{q} \in \mathrm{C}_{\lambda}$.
Therefore $U_{1}\left(r_{v}\right) \subset C_{\lambda}$, so $\wedge i\left(i \geqslant \nu \longrightarrow r_{i} \in C_{\lambda}\right)$.
We conclude that $\left\langle r_{n}\right\rangle_{n=v}^{\infty}$ is a fundamental sequence in C_{λ}, and converges therefore to a point $r \in C_{\lambda}$.
4.2. Corollary to 4.1. A metric locally DFTK-space is a complete separable metric space such that to every point a neighbourhood can be found, which is an LC-space in the relative topology; conversely, a space which satisfies these requirements is a metric locally DFTK-space.
Proof. The corollary is an immediate consequence of 4.1 and 2.3.
4.3. Remark. By an argument quite similar to the proof of 2.3.7, and the reasoning in 4.1, we see that the usual metric of \underline{R}^{n} satisfies condition (a) of 4.1 .

5. Topological products.

5.1. In this paragraph we shall demonstrate that the topological product of a denumerably infinite sequence of LDFTKspaces which satisfy certain requirements, is a PIN-space. The most interesting consequence of this theorem is that \underline{R}^{∞} is a PIN-space.
5.2. Lemma. If Γ is the product of a finite or denumerably infinite sequence of PIN-spaces $\left\langle\Gamma_{1}, \Gamma_{2}, \ldots\right\rangle$, each of which contains at least two points which lie apart, we can assert, using the notation of 3.4 .1 , that $\Gamma^{\prime}=\langle\varphi, \Sigma\rangle$ and $\Gamma=\langle\varphi, \Pi\rangle$ are homeomorphic.
Proof. It is immediate that Γ^{\prime} is also an I-space. Let $\left\langle P_{n}\right\rangle_{n} \in \Sigma(\Gamma)=\Pi\left(\Gamma^{\prime}\right)$. Now we shall construct a $\left\langle Q_{n}\right\rangle_{n} \in \Pi(\Gamma)$ such that $\wedge n\left(P_{1} \ldots P_{n} \subset Q_{n}\right)$. Let $P_{1} \ldots P_{n}=P_{n, 1}+\ldots+P_{n, k(n)}$; $\mathrm{P}_{\mathrm{n}, 1}, \ldots, \mathrm{P}_{\mathrm{n}, \mathrm{k}(\mathrm{n})} \in \stackrel{\mathfrak{A}}{ }$.
If $P_{n, i}=\left\langle P_{n, i}^{m}\right\rangle_{m}$ for every n, i, then we can put

$$
Q_{n}^{m}=P_{n, 1}^{m}+\ldots+P_{n, k(n)}^{m}, \quad Q_{n}=\left\langle Q_{n}^{m}\right\rangle_{m}
$$

$\left\langle Q_{n}\right\rangle_{n_{1}}$ satisfies our requirements. To see this we consider: $R=\left\langle A_{\infty}^{1}, \ldots, A_{\infty}^{\mu-1}, R^{\mu}, A_{\infty}^{\mu+1}, \ldots\right\rangle, S=\left\langle A_{\infty}^{1}, \ldots, A_{\infty}^{\mu-1}, S^{\mu}, A_{\infty}^{\mu+1}, \ldots\right\rangle$, $\varphi_{\mu} R^{\mu} S^{\mu}=0$ (hence $\varphi R S=0$).
There exists a ν such that $\rho P_{1} \ldots P_{v} R=0 \vee \rho P_{1} \ldots P_{v} S=0$; suppose e.g. $\rho P_{1} \ldots P_{v} R=0 . P_{1} \ldots P_{v}=P_{v, 1}+\ldots+P_{v, k(v)}$. $\varphi\left(P_{v, 1}+\ldots+P_{v, k(v)}\right) R=0 \leftrightarrow \Lambda i\left(1 \leqslant i \leqslant k(\nu) \longrightarrow \varphi P_{v, i} R=0\right) \leftrightarrow$
$\wedge \mathrm{i}\left(1 \leqslant \mathrm{i} \leqslant \mathrm{k}(\nu) \longrightarrow \varphi \mathrm{P}_{v, \mathrm{i}}^{\mu} \mathrm{R}^{\mu}=0\right) \leftrightarrows \varphi\left(\mathrm{P}_{v, \mathrm{i}}^{\mu}+\ldots+\mathrm{P}_{v, \mathrm{k}(v)}^{\mu}\right) \mathrm{R}^{\mu}=0 \leftrightarrow$ $\varphi Q_{v}^{\mu} R^{\mu}=0$.
This proves $\left\langle Q_{n}^{\mu}\right\rangle_{n}$ to be a point of Γ_{μ} (since Γ_{μ} contains at least two different points). Hence $\left\langle Q_{n}\right\rangle_{n}$ is by definition a point of Γ. Finally we can apply 3.1.32, therefore $\langle\varphi, \Sigma\rangle$, <, П $>$ are homeomorphic.
5.3. Remark to 5.2. If the $\boldsymbol{\Gamma}_{\mathrm{i}}$ are DFTK-spaces, then the condition that every space contains at least two different points can be omitted, since this condition is used only to ascertain that $\left\langle Q_{n}\right\rangle_{n}$ really belongs to Σ, i.e. $Q_{\mu} \neq A_{\infty}$ for a certain μ. If the Γ_{i} are DFTK-spaces, A_{∞}^{i} can always be replaced by a $P^{i} \neq A_{\infty}^{i}, P^{i} \sim A_{\infty}^{i}$, and the construction of $\left\langle Q_{n}\right\rangle_{n}$ can be modified correspondingly.
5.4. Lemma. Let $\left\langle\Gamma_{1}, \ldots, \Gamma_{\mathrm{n}}\right\rangle$ be a finite sequence of DFTKspaces. We adopt the notation of 3.4.1. The product Γ of $\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle$ is a DFTK-space with a DFTK-basis $\left\langle\left[B_{n}\right]\right\rangle_{n}$, where $\left\langle\mathrm{B}_{\mathrm{n}}\right\rangle_{\mathrm{n}} \subset \mathfrak{P}$.
Proof. Let r_{1}, \ldots, r_{n} be K-functions for $\boldsymbol{\Gamma}_{1}, \ldots, \boldsymbol{\Gamma}_{\mathrm{n}}$ respectively. We put $\mathfrak{B}^{k}=\left\{\left\langle A_{m_{1}}^{1}, \ldots, A_{m_{n}}^{n}\right\rangle \& \wedge i(1 \leqslant i \leqslant n \longrightarrow\right.$ $\left.\mathrm{k} \leqslant \mathrm{m}_{\mathrm{i}} \leqslant \mathrm{k}+\mathrm{r}_{\mathrm{i}}(\mathrm{k})\right)$.
We suppose \mathfrak{B} to be an enumeration of $\bigcup_{n=1}^{\infty} \mathfrak{B}^{n}$ such that all elements of \mathfrak{B}^{k} precede all elements of $\mathfrak{B}^{k+1}-\mathfrak{B}^{k} . \mathfrak{B}=\left\langle B_{n}\right\rangle_{n}$. The verification of D, F, T, K and the proof that $\left\langle\left[B_{n}\right]\right\rangle_{n}$ induces the topology of Γ is straightforward; we only have to remark: if $\mathfrak{P} \%$ is the distributive lattice constructed from \mathfrak{B}, then $\wedge P \vee Q \in \mathfrak{P} *(P \sim Q)$, and to apply remark 5.3.
5.5. Lemma. We use again the notation of 3.4.1. Let Γ be the product of a finite sequence $\left\langle\Gamma_{1}, \ldots, \Gamma_{\mathrm{n}}\right\rangle$ of LDFTKspaces. Let $P=\left\langle P^{1}, \ldots, P^{n}\right\rangle, P^{i} \neq A_{\infty}^{1}$ for $1 \leqslant i \leqslant n$. Then if $P \Subset Q$, an R can be found such that $P \Subset R \Subset Q$.
Proof. Let $Q=Q_{1}+\ldots+Q_{m}, Q_{i} \in \mathscr{Q}$ for $1 \leqslant i \leqslant m$. For every Q_{j}^{i} such that $Q_{j}^{i}=A_{\infty}^{i}$, we take a $T_{j}^{i} \neq A_{\infty}^{i}, P^{i} \Subset T_{j}^{i}$. We define T_{j} by
$\Lambda_{i}\left(1 \leqslant i \leqslant n \rightarrow\left(Q_{j}^{i}=A_{\infty}^{i} \rightarrow \pi_{i} T_{j}=T_{j}^{i}\right) \&\left(Q_{j}^{i} \neq A_{\infty}^{i} \longrightarrow \pi_{i} T_{j}=A_{\infty}^{i}\right)\right)$.
We remark that $P \Subset T_{j}(1 \leqslant j \leqslant m)$, hence $P \Subset T_{1} \ldots T_{m}=T$. Hence also P © TQ.
If we put $T=\left\langle T^{1}, \ldots, T^{n}\right\rangle$, we see that $T^{j} Q_{i}^{j} \neq A_{j}^{j}$ for $1 \leqslant j \leqslant n, 1 \leqslant i \leqslant m$. Therefore $S_{i}^{j}, S_{i}^{j} \neq A_{\infty}^{j}, T^{j} Q_{i}^{j} \Subset$. S_{i}^{j} can be found. Putting $S=\left\langle\sum_{i=1}^{m} S_{i}^{1}, \ldots, \sum_{i=1}^{m} S_{i}^{n}\right\rangle$, we see that $P \Subset T Q \Subset S$. It follows from 5.4 that S is a DFTK-space with a DFTK-basis $\left\langle\left[B_{n}\right]\right\rangle_{n},\left\langle B_{n}\right\rangle_{n} \subset \mathfrak{F}$. On this account
an R can be constructed such that $P \mathbb{C}_{s} R \mathbb{C}_{s} T Q \Subset S$, hence $P \Subset R \Subset Q T \subset Q$. (3.1.30).
5.6. Theorem. Let $\left\langle\Gamma_{n}\right\rangle_{n}$ be a sequence of LDFTK-spaces (each of which contains at least two points which lie apart). Using the notations of 3.4 .1 we postulate:
$\wedge P^{i}\left(P^{i} \sim A_{\infty}^{i} v V Q^{i}\left(\varphi_{i} Q^{i} P^{i}=0 \& \varphi_{i} Q^{i}=1\right)\right.$) for every i. Then the product of $\left\langle\Gamma_{n}\right\rangle_{n}$ is a PIN-space.
Proof. $\Gamma^{\prime}=\langle\varphi, \Sigma\rangle ; \Gamma=\langle\varphi, \Pi\rangle$. By lemma 5.2, $\Gamma^{\prime}, \Gamma^{\prime}$ are homeomorphic. N6 holds in Γ as a consequence of 3.4.5, hence N 6 also holds in Γ^{\prime}. We begin by proving the following assertion.

P © R .
If $R \sim R_{1}+\ldots+R_{m}$, (1) is trivial. In all other cases we may suppose $\varphi_{\mu} Q^{\mu}=1$. Let $\left\langle P_{n}\right\rangle_{n} \in \Pi(\Gamma)$.
$\neg \mathrm{Q}^{\mu} \sim \mathrm{A}_{\infty}^{\mu}$, hence there exists an $\mathrm{S}^{\mu}, \varphi_{\mu} \mathrm{Q}^{\mu} \mathrm{S}^{\mu}=0, \varphi_{\mu} \mathrm{S}^{\mu}=1$. Let $\left\langle S_{n}^{\mu}\right\rangle_{n}^{\infty} \in \Pi\left(\Gamma_{\mu}\right), \wedge_{n}\left(S_{n}^{\mu} \subset S^{\mu}\right)$.
Then we construct a point generator $\left\langle T_{n}\right\rangle_{n} \in \Pi(\Gamma)$, such that for all $n\left(i \neq \mu \rightarrow T_{n}^{i}=P_{n}^{i}\right) \& T_{n}^{\mu}=S_{n}^{\mu}$.
Then a ν can be calculated such that

$$
\varphi T_{1} \ldots T_{v} P=0 \vee T_{1} \ldots T_{v} \subset R_{1}+\ldots+R_{m} .
$$

Since $\varphi_{\mu} S_{1}^{\mu} \ldots S_{v}^{\mu} Q^{\mu}=0$, it follows that $T_{1} \ldots T_{v} \subset R \vee$ $\varphi \mathrm{T}_{1} \ldots \mathrm{~T}_{\mathrm{v}} \mathrm{P}=0$, hence also: $\varphi \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{v}} \mathrm{P}=1 \longrightarrow \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{v}} \subset \mathrm{R}$. Using this construction repeatedly, we are able to construct from R_{1}, \ldots, R_{m} an $R^{\prime}=R_{i}+\ldots+R_{k}^{\prime}$, such that $P \in R^{\prime} \subset$ $R_{1}+\ldots+R_{m}, P_{\infty}^{\mathrm{n}}=A_{\infty}^{\mathrm{n}} \rightarrow R_{j}^{\mathrm{n}}=A_{\infty}^{\mathrm{n}}$ for $1 \leqslant j \leqslant k$.

Now we turn to the task of proving N8 for r . Since $P^{\prime}+P^{\prime \prime} \Subset R \leftrightarrow P^{\prime} \Subset R \& P^{\prime \prime} \Subset R$, we may restrict ourselves to the case $P \in \mathscr{A}$.
If $P \Subset R_{1}+\ldots+R_{m}$, we can apply the reduction to R^{\prime}, described before.
We define $I=\left\{i: P^{i} \neq A_{\infty}^{i}\right\}=\left\langle i_{1}, \ldots, i_{n}\right\rangle$ ordered according to increasing magnitude. $\Gamma^{\prime \prime}=\prod_{i \in I} \Gamma_{i}$.

To simplify our descriptions we suppose $\left\langle i_{1}, \ldots, i_{n}\right\rangle=$ $\langle 1,2, \ldots, n\rangle$. A bi-unique mapping ψ from a species $\mathfrak{B} \subset \mathfrak{B}$ onto $\mathscr{\ell}\left(\Gamma^{\prime \prime}\right)$ is defined by $S \in \mathfrak{B} \rightarrow \psi S=\left\langle\pi_{1} S, \ldots, \pi_{n} S\right\rangle$, where $\mathfrak{B}=\left\{P: P \in \mathscr{A} \& \wedge i\left(i>n \rightarrow \pi_{i} P=A_{\infty}^{i}\right)\right\}$.
ψ can be extended to joins of elements of \mathfrak{B} such that $\psi\left(S_{1}+S_{2}\right)=\psi S_{1}+\psi S_{2}$. We remark (3.4.4(e))

$$
\mathrm{S}_{1}, \mathrm{~S}_{2} \in \mathfrak{B} \& \mathrm{~S}_{1} \Subset \mathrm{~S}_{2} \leftrightarrows \psi \mathrm{~S}_{1} \Subset_{\Gamma "} \psi \mathrm{~S}_{2}
$$

We have already proved $P, R_{1}^{\prime}, \ldots, R_{k}^{\prime}$ to belong to \mathfrak{F}, hence

$$
\psi P \Subset_{\Gamma^{\prime \prime}} \psi\left(R_{1}^{\prime}+\ldots+R_{k}^{\prime}\right)=\psi R^{\prime}
$$

As a consequence of 5.5 we are able to construct an $R^{\prime \prime} \epsilon \mathscr{F}\left(\Gamma^{\prime \prime}\right)$ ($R^{\prime \prime}$ a join of elements of $\mathscr{A}\left(\Gamma^{\prime \prime}\right)$) such that

$$
\psi \mathrm{P} \Subset_{\Gamma "} \mathrm{R}^{\prime \prime} \Subset_{\Gamma "} \psi \mathrm{R}^{\prime}
$$

hence P © $\psi^{-1} \mathrm{R}^{\prime \prime} \Subset \mathrm{R}^{\prime}$.
Therefore $N 8$ holds in Γ, hence in Γ^{\prime}. This proves our theorem.
5.7. The most interesting application of the previous theorem is furnished by \underline{R}^{∞}; \underline{R} satisfies the requirements of 5.6 , so \underline{R}^{∞} is a PIN-space.

In hoofdstuk I wordt het begrip topologische ruimte gedefiniëerd en worden vele begrippen en stellingen uit de klassieke topologie, die in de intuitionistische theorie zonder of met geringe wijzigingen kunnen worden overgenomen, opgesomd, veelal zonder bewijs.

In de vierde paragraaf worden de begrippen "metrisch gelocaliseerde puntsoort", "relatief gelocaliseerde puntsoorten", "gelocaliseerde puntsoort" en "gelocaliseerd systeem" ingevoerd.

In hoofdstuk II wordt het begrip metrische ruimte voor het separabele geval besproken; in het bijzonder wordt een intuitionistisch equivalent van de stelling van Lindelöf afgeleid. In de laatsie paragraaf van dit hoofdstuk worden de gelocaliseerd compacte ruimten (de "katalogisiert kompakte Raume" uit BROUWER 1926, of de 'located compact topological spaces" uit BROUWER 1954) besproken, enkele bekende eigenschappen van deze ruimten opgesomd en enige nieuwe bewezen, die als hulpmiddel optreden in hoofdstuk IV. De behandeling is in hoofdstuk II echter geheel "metrisch".

In hoofdstuk III wordt begonnen met de opbouw van een axiomatische theorie. In $\$ 1$ worden de I-ruimten geintroduceerd. In $\$ 2$ worden de zgn. scheidings- en representa-tie-postulaten en hun consequenties behandeld; de IR-ruimten (analoog aan de klassieke reguliere ruimten met aftelbare basis) worden ingevoerd. \$3 bevat de definities van PIN- en CIN-ruimten. Een aantal belangrijke stellingen voor CIN-ruimten (zie 3.3.6) gelden als gevolg van de resultaten in $\$ 2$. CIN-ruimten zijn, klassiek gesproken, volledig metrizeerbare separabele ruimten. Het topologisch product wordt in $\$ 4$ behandeld, en een aantal belangrijke voorbeelden in $\$ 5$.

Hoofdstuk IV is gewijd aan de LDFTK-ruimten (analoog aan locaal compacte, separabele metrizeerbare ruimten). In $\$ 1$ wordt de verbinding tussen de theorie van FREUDENTHAL 1936 (DFTK-ruimten, analoog aan compacta) en de theorie van hoofdstuk III gelegd. $\$ 2$ bevat een bewijs van de equivalentie van een metrische en een zuiver topologische karakterisering van LDFTK-ruimten. §3 bevat een aantal stellingen over overdekkingen; met behulp van deze stellingen wordt in paragraaf 4 het bestaan van een metriek voor een LDFTK-ruimte bewezen, ten opzichte waarvan elke niet lege gelocaliseerde puntsoort ook metrisch gelocaliseerd is. $\$ 5$ behandelt het topologisch product van aftelbaar oneindig veel LDFTK-ruimten. Zo blijkt, dat $\underline{\mathrm{R}}^{\infty}$ een PINruimte is.

STELLINGEN

I

Het begrip "c-Ueberdeckung", door Freudenthal ingevoerd, is geen topologisch begrip.
H. Freudenthal, Zum intuitionistischen Raumbegriff, Compositio Math. 4 (1936) blz. 83.

II

Als A een begrensde gelocaliseerde puntsoort in de euclidische n -dimensionale ruimte is, en het complement van A is eveneens gelocaliseerd, dan heeft A een gelocaliseerde rand.

III

Lat F, F^{\prime} twee lineair recurrente rijen zijn, met resp. $\psi(x)=0, \psi^{\prime}(x)=0$ als karakteristieke vergelijkingen van minimale graad. Dan is $\psi^{\prime}(x) \psi(x)=0$ een karakteristieke vergelijking voor het Cauchy-product $F^{\prime \prime}$ van F en F^{\prime}. Is a m-, resp. n -voudige wortel van $\psi(\mathrm{x})=0$, resp. $\psi^{\prime}(\mathrm{x})=0(\mathrm{~m}, \mathrm{n}>0)$ dan is a $(\mathrm{m}+\mathrm{n})$-voudige wortel van een karakteristieke vergelijking van minimale graad voor $\mathrm{F}^{\prime \prime}$.

IV

De uitspraak van Rasiowa en Sikorski:
"It is difficult for mathematicians to understand exactly the ideas of intuitionists since the degree of precision in the formulation of intuitionistic ideas is far from the degree of precision to which mathematicians are accustomed in their daily work" doet het intuitionisme geen recht wedervaren.
H.Rasiowa and R.Sikorski, The mathematics of metamathematics, Warszawa 1963, blz. 378.

V

Het voorbeeld dat G. Kreisel geeft om aan te tonen dat voor toepassingen een constructief bewijs niet relevant is, een constructief resultaat wel, is geen goede illustratie van zijn bewering.
G. Kreisel. Interpretation of analysis by means of constructive functionals of finite types, in: Constructivity in mathematics, Amsterdam 1959, blz. 101.

VI

Laat R een commutatieve ring met eenheidselement zijn, en lat $R^{\prime} \subset R\left[x_{1}, \ldots, x_{n}\right]$ bestaan uit polynomen, invariant t.o.v. even permutaties van de variabelen. Dan vormen de elementair-symmetrische functies tezamen met $\Sigma \mathrm{x}_{1}^{0} \mathrm{x}_{2}^{1} \mathrm{x}_{3}^{2}, \ldots \mathrm{x}_{\mathrm{n}}^{\mathrm{n}-1}$ (sommatie over alle termen die door een even permutatie van de indices uit $x_{1}^{0} x_{2}^{1} \ldots x_{n}^{n-1}$ ontstaan) een integriteitsbasis voor R'.
E.Noether, Körper und Systeme rationaler Funktionen, Math: Annalen 76 (1915), blz. 183.

VII

Laat R een commutatieve ring met eenheidsselement zijn, en laat $R^{\prime} \subset R\left[x_{1}, \ldots, x_{n}\right]$ eveneens een ring met eenheidselement zijn. We definiëren een minimale homogene integriteitsbasis als een integriteitsbasis, bestaande uit homogene polynomen, die niet verkleind kan worden. Het aantal polynomen van elke graad in een minimale homogene integriteitsbasis voor R^{\prime} ligt eenduidig vast.
E.Noether, Körper und Systeme rationaler Funktionen, Math. Annalen 76 (1915), blz. 183.

VIII

De vier polynomen die Masuda aangeeft voor een algebraisch onafhankelijke basis voor L_{4} over het grondlichaam k vormen in tegenstelling tot zijn bewering geen integriteitsbasis voor $L_{4} \cap \mathrm{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{4}\right]$.
K. Masuda, On a problem of Chevalley, Nagoya Math.J. 8 (1955), blz. 63.

IX

Het probleem door G. Birkhoff opgeworpen in de zin:
"It would seem worthwhile to construct propositional calculi based on non-distributive lattices of truth-values" is een schijnprobleem.

$$
\text { G.Birkhoff, Lattice theory, Providence, Rh. I. , 1948, blz. } 197 .
$$

X

Bij de behandeling van de lineaire algebra verdient een meer specifieke term zoals bijv. 'lineaire afbeelding" de voorkeur boven het algemene "morfisme".

XI
Als we definiëren: "Een DFTK-ruimte heeft dimensie $\leqslant n$, als er voor elke ε een eindige ε-overdekking met orde $\mathrm{n}+1$ bestaat", dan geldt intuitionistisch de volgende stelling: Een DFTK-ruimte met dimensie $\leqslant n$ kan homeomorf in de euclidische $(2 n+1)$-dimensionale ruimte ingebed worden.

XII

Intuitionistisch geldt: zijn de elementen van een eindige of aftelbaar oneindige overdekking van een volledige metrische ruimte paarsgewijs disjunct, dan zijn ze gesloten.

XIII

Voor DFTK-ruimten zijn de volgende eigenschappen equivalent.
(A) Elke eindige overdekking door soorten die elk minstens een punt bevatten kan in een keten gerangschikt worden.
(B) De enige afsplitsbare deelsoorten van de ruimte zijn de lege soort en de gehele ruimte.

XIV

Het verdient aanbeveling in nog sterkere mate dan thans het geval is, voor de doctoraalstudie wiskunde tentamens te vervangen door zelfstandig literatuuronderzoek, het maken van kleine scripties, het houden van korte voordrachten en het oplossen van eenvoudige research-problemen.

> XV
"Floravervalsing" in botanische reservaten is niet altijd verwerpelijk.

$$
\text { A.S. Troelstra, } 15 \text { juni } 1966 .
$$

