INVESTIGATIONS ON THE INTUI TIONISTIC PROPOSITIONAL CALCULUS

D. H. J. De Jongh, 1968

PROPOSITIONAL CALCULUS

A thesis submitted to the Graduate School of the University of Wisconsin in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

by
Dick Herman Jacobus de Jongh

This thesis having been approved in respect to form and mechanical execution is referred to you for judgment upon its substantial merit.

Approved as satisfying in substance the
doctoral thesis requirement of the University of Wisconsin.

Date of Examination, 7 ruse 5 1968

INVESTIGATIONS ON THE INTUITIONISTIC
 PROPOSITIONAL CALCULUS

BY

DICK HERMAN JACOBUS de JONGH

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
(Mathematics)
at the

UNIVERSITY OF WISCONSIN

1968

ACKNOWLEDGEMENTS

I am indebted to E.W. Beth, who introduced me to logic as a science, and who first established the problems with which this thesis is concerned.

I am also indebted to A. Heyting, under whose tutelage I learned the principles of intuitionism.

Finally, I owe much to the patient endeavor of S.C. Kleene, who proposed one of the major problems of this thesis, and with whose help this thesis reached maturity.

Dedication

to the memory of my teachers
D.K. de Jongh and E.W. Beth

Chapter I.

Introduction

The first investigations in the field of semantics of intuitionistic logic were by Beth with the aid of his semantic tableaux [2], []. His completeness results for the predicate calculus were improved by Dyson and Kreisel [7]. Later Kripke [64$]$ built on this work, and with slightly changed semanifc tableaux and a different interpretation reached more easily completeness results closely related to the earlie: ones. Independently Beth in his last publications [3],['] and de Jongh [8] worked on these methods. Later Aczel [1] gave a Henkin-type completeness proof built on the same principles.

We will start out with a description of a completeness theorem for the propositional calculus which is silghtly different from but obviously equivalent to Kripke's.

In our propositional calculus we will study formulas $U, V, W, \ldots, U_{1}, U_{2}, \ldots, V_{1}, V_{2}, \ldots, W_{1}, W_{2}, \ldots$, built from atomic formulas A_{1}, A_{2}, \ldots, by means of the connectives $\&, v, \supset$ and 7 . For a system of axiom schemas
for the intuitionistic propositional calculus Pp , and for the classical propositional calculus $P C$, see e.g. [27].

Def. A P.O.G.-set is a partially ordered set with one maximal element (the greatest element).

We will write F for the set of all formulas.
Def. An I-valuation is a quadruple $\left\langle\mathrm{P}, \underline{,}, \mathrm{p}_{0}, \mathrm{w}\right\rangle$, where P is a P.O.G.-set with partial ordering \leq and maximal element p_{0}, and w is a function with domain $P \times F$ and range the set $\{0,1\}$ such that for all $p \in P$:
(1) For an atomic formula $A_{1}, w\left(p, A_{1}\right)=1$ iff, for all $p^{\prime} \leq p, w\left(p^{\prime}, A_{i}\right)=1$.
(11) $w(p, U \& V)=1$ iff $w(p, U)=1$ and $w(p, V)=1$.
(iii) $w(p, U v V)=1$ iff $w(p, U)=1$ or $w(p, V)=1$.
(iv) $w(p, U \supset V)=1$ iff, for all $p^{\prime} \leq p, w\left(p^{\prime}, U\right)=0$ or $w\left(p^{\prime}, V\right)=1$. (v) $w(p, \neg U)=1$ iff, for all $p^{\prime} \leq p, w\left(p^{\prime}, U\right)=0$.

Remark. (i) is assumed only for atomic formulas, but can be proven thence for all formulas by using (ii)-(v).
\therefore The following completeness theorem [14] can be proven by using semantic tableaux or from the theory of pseudo-Boolean algebras (see Chapter IV).

Th.i.l. For all formulas U, U is a theorem of Pp (1) iff, for all I-valuations for all P.O.G.-sets<P, \leq, $p_{0}>w\left(p_{0}, U\right)=1$, or (2) iff, for all I-valuations on finite P.O.G.-sets, $w\left(p_{0}, U\right)=1$.

In [14] Kripke also describes an intuitive interpretation of I-valuations. The P.O.G.-set is taken as a set of possible situations (stages), where the partial ordering plays the role of time, i.e. if $q \leq p$, then q is supposed to be a possible future situation as seen from p. Time is seen as discreet, one can move from an earlier stage to any possible later one, but one can stay at any stage for an unlimited amount of time. The stages can be represented by certain sets of axioms, certain methods of derivation or in a special application of ours in Chapter VI, by the computability of certain functions.

We can extend the concept of I-valuation to the predicate calculus. There an I-valuation is a sextuple $\left\langle P, \leq, p_{0}, d, D, w\right\rangle$, where P, \leq, p_{0} and whave the same meaning as before, D is a non-empty set (interpreted as a set of individuals) and d is a function from P into $P(D)$ (the power set of D) such that, if $p^{\prime} \leq p$, the $d(p) \subseteq d\left(p^{\prime}\right)$. The domain of w is now the set of couples $\langle p, U\rangle$, where U is a formula without free variables built from atoms A_{1}, $A_{j}(), A_{k}(),, \ldots(i, j, k=1, \ldots \infty)$, individual constants from $d(p)$, variables and quantifiers. And w has to fulfill the additional properties:
(vi) $w(p, \forall x U(x))=1$ iff for all $p^{\prime} \leq p$ and $u \in d\left(p^{\prime}\right) w\left(p^{\prime}, U(u)\right)=1$. (vii) $w(p, \exists x U(x))=1$ iff for some $u \varepsilon d(p) w(p, U(u))=1$:

Chapter II.

Connectives and Operators.

In this chapter we will try to develop a general concept of connective for Pp , with respect to the semantics described in Chapter I. Our work-model is of course, PC. There we have the following well-known situation.

A valuation for a set of formulas of PC is a function from this set into the set $\{0,1\}$. Then for any connective a for PC with respect to these semantics we want to have a procedure that enables us to extend a valuation for n formulas U_{1}, \ldots, U_{n} to a valuation for the formulas $U_{1}, \ldots, U_{n}, a\left(U_{1}, \ldots, U_{n}\right)$. The solution here is to represent any n-ary connective a by a function (n-ary I-operator) from $\{0,1\}^{n}$ into $\{0,1\}$. Vice-versa we can for any such operator introduce a connective that it represents. It can then be proven that all the connectives produced in this way can be defined in a natural way from the standard connectives $\&, v, \supset$ and $\neg, 1 . e .$, for any n-ary operator a there is a formula $U\left(A_{1}, \ldots, A_{n}\right)$, containing as connectives only \&,v, $>$ and \neg, such that for ail formulas V containg as connectives $\&, V, \supset, \neg$ and a, V and $V *$ have the same valuation for any valuation of their
atoms, where V^{*} is obtained from V by replacing all wellformed parts of V of the form $a\left(W_{1}, \ldots, W_{n}\right)$ by $U\left(W_{1}, \ldots, W_{n}\right)$. To be able to proceed in a similar way for Pp , we have to be able to talk about "P.O.G.-sets of n-tuples of 0's and l!s". Since there are no easy unique representations for P.O.G.-sets as there are for totally ordered sets (\{1,..., n\}), we go about this in the following way.

We take a countably infinite A, and we define B as the set of all finite P.O.G.-sets with elements in A. Now we define:

Def. An I-function f is a function with domain a P.O.G.-set $P \varepsilon B$ and range the set $\{0,1\}$ with the property: for all $p^{\prime}, p \varepsilon P$, if $p^{\prime} \leq p$ and $f(p)=1$, then $f\left(p^{\prime}\right)=1$.

Def. An I^{n}-function f is a function with domain a P.O.G.-set $P \in B$ and range the set $\{0,1\}^{n}$ with the property that the function f^{m} defined on P by $f(p)=(f(p))(m)$ (the m-th element of the sequence $f(p)$) is an I-function for all $m(1 \leq m \leq n)$.

So for any I^{n}-function f there is an n-tuple of I-functions (f^{l}, \ldots, f^{n}) with the same domain, and vice versa; sometimes we will write (f^{l}, \ldots, f^{n}) for f. We will write D_{f} for the domain of f, m_{f} for the maximum element of D_{f}. For the partial ordering of D_{f} we will often
write \leq_{f}; if it is obvious which I^{n}-function is meant we will just write \leqq. We write F^{n} for the set of all I^{n}-functions, F for F^{l}.

We restrict ourselves to finite P.O.G.-sets, since all the important properties of the standard connectives can be described with finite P.O.G.-sets, and there is no:iproblem in using intuitionistic methods. We will use these finite P.O.G.-sets in the Chapters II, III and the first part of Chapter V; in the last part of V we will study I^{n}-functions with infinite domains, but there we will not oe able to use intuitionistic methods. When in the Chapters II,III and the first part of V we use reasonings that are based on the law of the excluded middle, the properties in question are always decidable. We do not want the difference between two isomorphic P.O.G.-sets to play a role in the theory; for that reason we define an equivalenc relation on F^{n}.

Def. Two I^{n}-functions f and g are congruent by ϕ iff ϕ is an isomorphism from D_{f} onto D_{g} such that $f(p)=g(\phi(p))$ for all $p \in D_{f}$.

Def. f is congruent to g (in symbols $f \equiv g$) iff
f is congruent to g by ϕ for some ϕ.

It is obvious that \equiv is an equivalence relation. Further it is clear that for any other countably infinite set A we would get an exactly similar set of congruence classes.

To each I-valuation on a sequence of atomic formulas A_{1}, \ldots, A_{n} there corresponds naturally a congruence class of I^{n}-functions. Also, if we take the P.O.G.-sets for the I-valuations from B, then there is a l-1 correspondence between the I-valuations for A_{1}, \ldots, A_{n} and the I^{n}-functions.

To illustrate the following discussions we will use pictures of I^{n}-functions. The following is an example of a picture of an I^{3}-function:

(Similar pictures are common in lattice-theory, see e.g. [4].) Note that such pictures represent I^{n}-functions only up 'to congruence, and moreover that two different pictures can represent congruent I^{n}-functions, e.g.:

$\underset{(1,0,1)}{(1,0,1)}(1,1,1)$
Now we are ready to define n-ary operators in such a way that, if we have an I-valuation for formulas U_{1}, \ldots, U_{n},
we can extend it to an I-valuation for U_{1}, \ldots, U_{n}, $a\left(U_{1}, \ldots, U_{n}\right)$, if a is the connective that represents the operator a, keeping in mind that we want the result to be Independent of which particular P.O.G.-set we choose from a class of isomorphic ones for the I-valuation.

Def. An n-ary I-operator a is a function from F^{n} into F with the properties:
(i) $D_{a(f)}=D_{f}$ for all $f \varepsilon F^{n}$,
(ii) If $f \equiv g$ by ϕ, then $a(f) \equiv a(g)$ by ϕ.

Here the similarity with the case for PC changes, since the set of I-operators does not even come close to the set of I-operators that represent connectives definable from the standard connectives \&,v, and . We now look to our intuitive interpretation for help in restricting this class of I-operators. To begin with we will want the valuation of $a\left(U_{1}, \ldots, U_{n}\right)$ on $p \varepsilon P$ to be dependent only on the valuations of U_{1}, \ldots, U_{n} for $p^{\prime} \leq p$ in P, since a connective should in one way or other be a restriction on the possible future valuations of U_{1}, \ldots, U_{n}. To describe this proberty formally we will need some more definitions.

If $P_{\varepsilon} B$ and $p \in P$, we write $P(p)$ for the set $\left\{p^{\prime} \varepsilon P: p^{\prime} \leq p\right\}, P[p]$ for the set $\left\{p^{\prime} \varepsilon P: p^{\prime}<p\right\}$. If $f \in F^{n}$ and $p_{\varepsilon} D_{f}$, we write f_{p} for the restriction of f to $D_{f}(p) . f_{p}$ is obviously again an I^{n}-function.

Obvious properties are:
$D_{f_{p}}=D_{f}(p), \quad f_{m_{f}}=f . \quad\left(f_{p}\right)_{p}=f_{p}$. For all $p^{\prime} \leq p,\left(f_{p}\right)_{p}=f_{p}, \cdot$ If $g \equiv f_{p}$ for some $p \varepsilon D_{f}$, then we cail g a $s u b-I^{n}$-function of f, and we write $g \leq f$. It is obvious that \leq is transitive and reflexive (is a pseudo-ordering), and that $f \equiv g$ implies $f \leq g$, as well as that $f \leq g$ and $g \leq f$ together imply $f \equiv g$ 。

Examples.

$$
\text { If } f=(1, \underbrace{(1,0,1)}_{(1,1)} \underbrace{(1,1)}_{(1,1,1)}, g=\underset{(1,1,1)}{(1,0,1)} \text { with } D_{f}=p_{2}^{p_{1}})_{p_{4}}^{p_{1}}
$$

and $D_{g}=\int_{p_{4}}^{p_{3}}$, then $g=f_{p_{3}}$. If $h=(1,0,1)$ (1,1,1) with $D_{h}=\prod_{p_{6}}^{p_{5}}$, then $h \equiv g$ and so $h \leq f$.

We are now ready to define a smaller class of I-operators

Def. An ordered I-operator is an n-ary I-operator with the property:
(iii) for all $f \varepsilon F^{n}$, if $p \in D_{f}$, then $(a(f))(p)=\left(a\left(f_{p}\right)\right)(p)$.

For ordered I-operators we can derive the following stronger statements.

If $p^{\prime} \leqq_{f} p$, then $\left(a\left(f_{p}\right)\right)\left(p^{\prime}\right)=\left(a\left(\left(f_{p}\right)_{p}\right)\right)\left(p^{\prime}\right)=$ $\left(a\left(f_{p}\right)\right)\left(p^{\prime}\right)=(a(f))\left(p^{\prime}\right)$. This implies $a\left(f_{p}\right)=(a(f))_{p}$; and, if $q \in D_{g}$, and $f_{p} \equiv g_{q}$ by ϕ, then $(a(f))_{p} \equiv(a(g))_{q}$ by ϕ; and
at last as a particular case of this, if $g \leq f$, then for some $p \in D_{f}, a(g) \equiv(a(f))_{p}$.

As an example, if b is an I-operator that maps

then b is certainly not an ordered I-operator, since the congruence class of I^{3}-functions represented by the picture ($1,1,1$) has three of its elements as sub-I3_ functions of j, which by an ordered I-operator should be mapped onto three congruent I-functions, and such is not the case here. If the I-operator c maps j onto $j^{\prime \prime}=$
 then could be an orcered I-operator. The class of ordered I-operators still comes out to be too extensive. But before we restrict this class even more we will discuss a very important property of ordered I-operators.

Def. The characteristic set C_{a} of an ordered I-operator, a is the set of all $f E F^{n}$ such that $(a(f))\left(m_{f}\right)=1$. Th.2.1. A subset G of F^{n} is the characteristic set of some ordered I-operator a, which is then unique,
iff G has the property:
(*) for all $f, g \in F^{n}$, if $f \varepsilon G$ and $g \leq f$, then $g \varepsilon G$.
Proof. \Rightarrow If $f \varepsilon C_{a}$, then $(a(f))\left(m_{f}\right)=l$, so for all $p_{\varepsilon} D_{f}(a(f))(p)=1$. Now, if $g \leq f$, then according to the properties of ordered I-operators $(a(g))\left(m_{g}\right)=$ $\left(a(f)(p)\right.$ for some $p_{\varepsilon} D_{f}$, so $(a(g))\left(m_{g}\right)=1$ and $g \varepsilon C_{a}$. The uniqueness part of the theorem is obvious, since, if a is an ordered I-operator, $f \varepsilon F^{n}$ and $p \varepsilon D_{f}$, then $(a(f))(p)=\left(a\left(f_{p}\right)\right)\left(m_{f_{p}}\right)$, which is determined by the fact whether $f_{p} \varepsilon C_{a}$ or $f_{p \neq}^{\phi} C_{a}$.
\Leftarrow Suppose G has the property (*). Then define the I-operator a in the following way: for any $f_{\varepsilon} F^{n}$ and $p \in D_{f},(a(f))(p)=1$ iff $f_{p} \varepsilon G$ (of course take $D_{a(f)}^{\prime}=D_{f}$). To prove that a is indeed an ordered I-operator with $C_{a}=G$, we have to show:
(1) For all $f \in F^{n}$ and $p \varepsilon D_{f}$, if $(a(f))(p)=1$ and $p^{\prime} \leq_{f} p$, then $(a(f))\left(p^{\prime}\right)=1$.
(i1) For all $f, g \varepsilon F^{n}$, if $f=g$ by ϕ, then $a(f) \equiv a(g)$ by ϕ.
(ii1) For all $p \in D_{f},(a(f))(p)=\left(a\left(f_{p}\right)(p)\right.$.
(iv) For all $f_{\varepsilon} F_{\mathcal{G}}, f_{E G}$ iff $(a(f))\left(m_{f}\right)=1$.

Proofs:
(1) If $(a(f)(p)=1$, then, by the way we defined a, f_{p} G. If now $p^{\prime} \leq f$, then $f_{p} \leq_{f}$, so by (*) $f_{p \prime} \in G$, and $(a(f))\left(p^{\prime}\right)=1$.
(1i) If $f \equiv g$ by ϕ, then, for all $p \in D_{f}, f_{p} \equiv \mathcal{E}_{\phi(p)}$ by the restriction of ϕ to $D_{f}(p)$, and so $f_{p} \varepsilon G \operatorname{iff} E_{\phi(p)} \varepsilon^{\varepsilon G}$.

This in its turn implies $(a(f))(p)=(a(g))(\phi(p))$ for all $p \in D_{f}$, so that indeed $a(f) \equiv a(g)$ by $\phi \cdot$
(iii) $\left(a\left(f_{p}\right)\right)(p)=1$ inf $\left(f_{p}\right)_{p} \varepsilon$, and $(a(f))(p)=1$ if
$f_{p} \varepsilon G$. But $\left(f_{p}\right)_{p}=f_{p}$. So $\left(a\left(f_{p}\right)\right)(p)=(a(f))(p)$.
(iv) (af)) ($\left.m_{f}\right)=1$ inf $f_{m_{f}} \varepsilon G$. but $f_{m_{f}}=f$. so f εG if
$(a(f))\left(m_{f}\right)=1$.
In our last example, if c is an ordered I-operator,
then
$(1,0,1),(1,1,1)$ and $\underset{(1,1,1)}{(1,0,1)} \underbrace{}_{(1,0,1)} \quad C_{c} \quad$ and

Next come some definitions needed to restrict the class of ordered I-operators even more.

Def. The partially ordered set $\left\langle Q, \leq{ }_{Q}\right\rangle$ is an reduction of the partially ordered set $\langle\mathrm{P}, \leq>\mathrm{w} . \mathrm{r}$. (with respect) to r, r^{\prime} if $r, r^{\prime} \varepsilon P, P\left[r^{\prime}\right]=P(r)$ and $\left\langle Q \leq Q>=\left\langle P-\left\{r^{\prime}\right\}, \leq>\right.\right.$.

It is obvious that \leq_{Q} has to be a partial ordering again, since the restriction of any partial ordering is again a partial ordering.

Def. The partially ordered set $\left\langle Q, \leq_{Q}\right\rangle$ is a B-reduction w.r. to r, r^{\prime} of the partially ordered set $\left\langle P, \leq>\right.$ inf $r, r^{\prime} \varepsilon P, r \neq r^{\prime}, P[r]=P\left[r^{\prime}\right], Q=P-\left\{r^{\prime}\right\}$, and, for all $p, p^{\prime} £ R, p^{\prime} \leq Q^{p}$ ff $\left(p^{\prime} \leq p\right.$ or $\left(p^{\prime}=r\right.$ and $\left.r^{\prime} \leq p\right)$).
\leq will always be a partial ordering, if r and r^{\prime} fulfill the required properties in P. The reflexive and symmetric properties are immediately clear. For the transitive property, assume that $\mathrm{p}^{\prime \prime} \leq_{Q} \mathrm{p}^{\prime}$ and $\mathrm{p}^{\prime}{\underset{=}{2}} \mathrm{p}$. Then there are four possibilities:
(1) $p^{\prime} \leq p^{\prime}$ and $p^{\prime} \leq p$. Then $p^{\prime \prime} \leq p$ and so $p^{\prime \prime} \leq p_{Q} p$.
(2) $p^{\prime \prime} \leq p^{\prime}$ and $p^{\prime}=r$ and $r^{\prime} \leq p$. Then either $p^{\prime \prime}=p^{\prime}$, so $p^{\prime \prime}=r$ and $r^{\prime} \leq p$, so $p^{\prime \prime} \leq Q p$; or $p^{\prime \prime}<p^{\prime}=r$, so (by $P[r]=P\left[r^{\prime}\right]$) $\mathrm{p}^{\prime}<\mathrm{r}^{\prime}$ and $\mathrm{p}^{\prime} \leq \mathrm{p}$.
(3) p "ar and $r^{\prime} k p^{\prime} ;$ and $p^{\prime} \leq p$. Then $r!\leq p$, so $p^{n} \leq{ }^{n} p$.
(4) $p^{\prime \prime}=r$ and $r^{\prime} \leq n^{\prime}, p^{\prime}=r$ and $r^{\prime} \leq 0$. This is impossible since $\mathrm{r}^{\mathrm{k}} \mathrm{Er}$.

Def. The partially ordered set Q is a reduction (w.r. to r, r^{\prime}) of the partially ordered set P iff Q is an α - or β-reduction of P (w.r. to r, r^{\prime}).

Def. If $f, g \varepsilon F^{n}$, then g is a reduction (α-reduction, β-reduction) of f w.r. to r, r^{\prime} iff D_{g} is a reduction (α-reduction, β-reduction) of D_{f} w.r. to $r, r^{\prime}, f(r)=f\left(r^{\prime}\right)$ and for all $p \varepsilon D_{g}, f(p)=g(p)$.

Intuitively, what we do in a reduction of an In-function is to identify two elements of its domain. Our intuitive interpretation sees in a β-reduciion two points with the same valuation under f, all possible future states being the same for the two points.

Obviously there are intuitively no qualms about identifying two such points. In an a-reduction one of the two points is a future state as seen from the other, but, if we move from the "earlier" point to the "later", we do not change essentially, since we keep the same valuation under f, and we do not loose any future possibilities, since the "earlier" point has only one immediate predecessor. So, intuitively we can just as well identify these two points (or leave the "earlier" one of them out). We now want to construct a class of operators, the members of which do not differentiate in their treatment of an I^{n}-function and its reductions. For this purpose we will need some more definitions and a theorem.

Def. An I^{n}-function is irreducible iff, there is no I^{n}-function g that is a reduction of f.

Def. An I^{n}-function g is a normal form of the $I^{n}-$ function f if, g is irreducible and there is a sequence of I^{n}-functions $f_{0}, \ldots, f_{k}(k \geqslant 1)$ such that $f_{0}=f, f_{k}=g$, and for alk $i(2 \leq 1 \leq k) f_{i}$ is a reduction of f_{1-1}.

We now want to prove that the normal form of an I^{n}-function is unique up to congruence, and that congruent I^{n}-functions have congruent normal forms. This will be easier, when we use the strongly isotone functions studied in [g].

Def. A function ϕ from $\left\langle P, \leq_{1}\right\rangle$ onto $\left\langle Q, \leq_{2}\right\rangle$ is
strongly isotone iff,
(i) for all $p^{\prime}, p \in P$, if $p^{\prime} \leqq_{1} p$, then $\phi\left(p^{\prime}\right) \leqq_{2} \phi(p)$ (if fulfills (i), then we call ϕ isotone),
(ii) for all $p^{\prime}, p \varepsilon P$, if $\phi\left(p^{\prime}\right) \leq 2 \phi(p)$, then for some $p{ }^{\prime} \leq 1 p, \phi\left(p^{\prime \prime}\right)=\phi\left(p^{\prime}\right)$.

Def. A function from a partially ordered set P onto a partially ordered set Q is a reduction- (α-reduction-, B-reduction) function iff, for some $r, r^{\prime} \varepsilon P, Q$ is a reduction (α-reduction, β-reduction) of P w.r. to r, r^{\prime}, $\phi\left(r^{\prime}\right)=r$, and for all $p \varepsilon Q, \phi(p)=p$.

The next theorem establishes a connection between strongly isotone functions and reductions. This theorem was implicit in [9]. It follows from Th. 4.5 and Th. 4.6 of that article almost immediately, and a proof can also be destilled from Th. 4.7 of [g]. However, we will give a simple direct proof here.

Th.2.2. For any two finite partially ordered sets P and Q the following two statements are equivalent:
(l) there is a strongly isotone function from P onto Q, (2) there is a sequence of partially ordered sets $P_{1}, \ldots, P_{k}(k \geq 1)$ such that $P=P_{1}, Q=P_{k}$ and for all i $(2 \leq i \leq k), P_{i-1}$ is isomorphic to, or a reduction of P_{i}. Proof. (2) $\Rightarrow(1)$. We have to prove, (a) any isomorphism is strongly isotone, (b) any reduction-function is strongly isotone, (c) a composition of strongly isotone
functions is strongly isotone. The proof for a is trivial.
(b) Assume ϕ is a reduction-function from $\left\langle P, \leq_{1}\right\rangle$ onto $\left\langle Q, \leq_{2}\right\rangle\left(w . r\right.$. to $\left.r, r^{\prime}\right)$ and assume $p^{\prime} \leq_{1} p$. Then, if $p^{\prime} \neq r^{\prime}$ and $p \neq r^{\prime}$, then $\phi\left(p^{\prime}\right)=p^{\prime}$ and $\phi(p)=p$, so $\phi\left(p^{\prime}\right) \leq \leq_{2} \phi(p)$. If $p=r^{\prime}$, then $p^{\prime} \leq r^{\prime}$, and either $p^{\prime}=r^{\prime}$, so $\phi\left(p^{\prime}\right)=\phi(p)$, or $p^{\prime} \leqq_{1} r$, so $\phi\left(p^{\prime}\right) \leqq_{2} \phi(r)=\phi\left(r^{\prime}\right)=\phi(p)$. If $p^{\prime}=r^{\prime}$, then $p=\phi(p)$ and $r^{\prime} \leq p$, so according to the definition of reduction $\phi\left(p^{\prime}\right)=\phi\left(r^{\prime}\right)=r \leq{ }_{-2} p=\phi(p)$. To prove (i1), assume $\phi\left(p^{\prime}\right) \leq 2 \phi(p)$. Then either $\phi\left(p^{\prime}\right) \leq_{1} p$, or in a β-reduction $\phi\left(p^{\prime}\right)=r$ and $r^{\prime} \leq 1 p$, so $\phi\left(r^{\prime}\right)=\phi\left(p^{\prime}\right)$, or in an α-reduction $p^{\prime}=r^{\prime}$ and $p=r$, so $\phi(p)=\phi\left(p^{\prime}\right)=r$.
(c) That (i) carries over in composition, is trivial. To show the same for (11), assume ϕ from P onto Q and ψ from Q onto $<R, \leq 3>$ are strongly isotone, and assume $\psi(\phi(q)) \leq 3 \psi(\phi(p))$. Then for some $r \varepsilon Q, r \leq 2 \phi(p)$ and $\psi(r)=\psi(\phi(q))$. Now $r=\phi(s)$ for some $s \varepsilon P$, so for some $q^{\prime} \leq{ }_{=1} p$, $\psi\left(\phi\left(q^{\prime}\right)\right)=\psi(r)=\psi(\phi(q))$.
$(1) \Rightarrow(2)$. Let us write P_{ϕ} for the set of elements $p \varepsilon P$ such that $\phi(p)=\phi(q)$ for some $q \neq p$. First we will prove that, if $P_{\phi}=\phi$, then ϕ is an isomorphism from P onto Q. In that case, if $q \sum_{1} p$, then obviously $\phi(q) \lll 2(p)$; if $\phi(q)<\sum_{2} \phi(p)$, then for some $r \leq i p, \phi(q)=\phi(r)$, so $q=r$ and $q \leq_{1} p$, since P_{ϕ} is empty. Now assume P_{ϕ} contains at least two elements. We will prove that in that case there is a
partially ordered set R, a reduction-function ψ from P onto R, and a strongly isotone function X from R onto Q such that $X \psi=\phi$. Assume p is a minimal element of P_{ϕ}, and assume $\phi(q)=\phi(p), r \leq_{1} q$, and $r \in P_{\phi}$. Then $\phi(r) \varliminf_{2} \phi(q)=\phi(p)$. So, for some $s \leq_{1} p, \phi(s)=\phi(r)$. Since p is minimal in P_{ϕ}, $s=p$ and $\phi(r)=\phi(p)$. This implies that the set $S=$ $\{q \in P: \phi(q)=\phi(p)\}$ is M-closed in P_{ϕ}. There are now two possibilities. I. S has a minimal element $q \neq p$. Assume $r<p$. Then $\phi(r) \leq_{2} \phi(p)=\phi(q)$. So, for some $s \leq_{1} q, \phi(r)=\phi(s)$. Since p is minimal in P_{ϕ}, $s=r$. So $P[p] \subseteq P[q]$. By symmetric considerations $P[q] \leq P[q]$. So $P[p]=P[q]$. Then take for $\left\langle R,{\underset{\sim}{=}}_{3}\right\rangle$ the β-reduction w.r. to p, q. II. p is the only minimal element of S. Obviously there has to be an element $q \varepsilon S$ that is an immediate successor of p. Assume $r \leq q$. Then $\phi(r) \leq_{2} \phi(q)=\phi(p)$. So for some $s \leq_{1} p, \phi(r)=\phi(s)$. This means that either $r=p$, or $r=s$ and so $r \leq_{1} p$. So we have proved that $P[q]=P(p)$. Then take for $\left\langle R, \leq_{3}\right\rangle$ the α-reduction of P w.r. to p, q. In both cases we define ψ as thei reduction-function from P onto R. Then we define X by, for all $r \varepsilon R, \quad \chi(r)=\phi(r)$. This function is clearly onto. Now assume $s \leq_{3} r$. Then either $s \leq_{1} r$, so $\chi(s) \leq_{2} \chi(r)$, or (if R is an α-reduction of P) $s=q$ and $r=p$, so $x(s)=x(q)=$ $x(p)=x(r)$, or (if R is a β-reduction of P) $s=p$ and $Q \leq 1 r$, so $x(s)=x(p)=x(q) \leq 2 x(r)$. This means that x is isotone.

Now assume $X(s) \leq_{2} X(r)$. Then, for some $t \leq 1 r, \phi(t)=\phi(s)$. This implies that $\psi(t) \leq 3 r$ and $\chi(\psi(t))=\phi(\psi(t))=\phi(t)=\phi(s)=$ $X(s)$. So X is a strongly isotone function from R onto Q. R contains less elements than P, and, if we take $R=P_{1}$ and repeat the process for P_{1} and Q, etc., then we get a sequence P_{0}, \ldots, P_{k} as required.

Corollary 1. If $\mathrm{f}, \mathrm{g} \mathrm{\varepsilon} \mathrm{~F}^{\mathrm{n}}$, then the following statements are equivalent.
(1) There is a sequence $f_{1}, \ldots, f_{k}(k \geq 1)$ such that $f=f_{1}, E=f_{k}$ and, for all $1(2 \leq 1 \leq k), f_{i}$ is a reduction of $\mathrm{f}_{\text {1-1 }}$.
(2) There is a sequence $f_{1}, \ldots, f_{k}(k \geq 1)$. such that $f=f_{1}, g=f_{k}$ and, for all $1(2 \leq 1 \leq k) f_{i}$ is congruent to a reduction of f_{i-1}.
(3) There is a strongly isotone function ϕ from. D_{f} onto D_{g} such that, for all $p \varepsilon D_{f}, g(\phi(p))=f(p)$.

In these cases we will call g a reduced form of f (by ϕ).

Corollary 2. $f \varepsilon F^{n}$ is irreducible, iff all reduced forms of f are congruent to f.

Next we prove three lemmas on the way to the uniqueness theorem.

Lemma 2.1. If g is a reduced form of f by ϕ, then for all $p \in D_{f} g_{\phi(p)}$ is a reduced form of f_{p}.

Proof. It is immediately clear that $\phi\left(D_{f}(p)\right)=$
$D_{g}(\phi(p))$. Since the restriction of a strongly isotone function is strongly isotone, $g_{\phi(p)}$ is then a reduced form of f_{p} by the restriction of ϕ to $D_{f}(p)$.

Lemma 2.2. If g is a normal form of f by ϕ, then for all $p \in D_{f}, g_{\phi}(p)$ is a normal form of f_{p}.

Proof. According to lemma $2.1 \mathrm{~g}_{\phi(p)}$ is a reduced form of f_{p}. Assume h is a reduced form of $g_{\phi(p)}$ by ψ
$\left(D_{h} \cap D_{g}=\varnothing\right)$. Then we define an I^{n}-function k by $D_{k}=$ $\left(D_{g}-D_{g}(\phi(p))\right) U D_{h}$, and for all $r \varepsilon D_{g}-D_{g}(\phi(p)), k(r)=f(r)$, and for all $r \in D_{h}, k(r)=h(r)$, and for all $r^{\prime}, r \in D_{k} r^{\prime} \leq_{k} r$ iff $r^{\prime} \leq g^{r}$ or $r^{\prime} \leq{ }_{h} r$, or $r^{\prime} \varepsilon D_{h}$ and $r \geq g^{\phi}(p)$. Then k is a reduced form of g by x defined by, for all $q \varepsilon D_{g}, X(q)=q$ if
$q \varepsilon D_{g}-D_{g}(\phi(p)), \chi(q)=\psi(q)$ if $q_{\varepsilon} D_{g}(\phi(p))$. Then it is clear that x is strongly isotone. This means that h is congruent to $g_{\phi(p)}$, and so $g_{\phi(p)}$ is a normal form of f_{p}.

Corollary. If f is irreducible and $g \leq f$, then g is irreducible.

Lemma 2.3. If $f \in F^{n}, r, r^{\prime} \varepsilon D_{f}, r \neq r^{\prime}$, and $f_{r} \equiv f_{r}$, then f is not irreducible.

Proof. Assume f is irreducible, $r, r^{\prime} \varepsilon D_{f}, r \not F^{\prime}$ and $f_{r} \equiv f_{r}$, by ϕ. Without losing generality, we can
assume that r is a minimal element with this property, 1.e., there are no $s, s^{\prime} \varepsilon D_{f}(s<r)$ such that $s \neq s^{\prime}$ and $f_{S} \equiv f_{S}{ }^{\prime}$. Now assume $p \in D_{f}(r), p \neq r$; then $p=\phi(p)$, since, if $p \neq \phi(p)$, then $f_{p} \equiv f_{\phi(p)}$ by ϕ would be contrary to our assumption that r is minimal. This is also true for any $p \varepsilon D_{f}\left(r^{\prime}\right), p \not r^{\prime}$, since ϕ is onto. So actually we have $D_{f}[r]=D_{f}\left[r^{\prime}\right]$. But then the conditions for a β-reduction are fulfilled, and f cannot be irreducible.

After one more definition we are ready to prove our uniqueness theorem. Another proof of Thaz. will follow from Th. 5.14 .
Def. The depth of an I^{n}-function f is the maximal length of the chains w.r. to $<_{f}$ in D_{f}.

Th.2.3. If $f \equiv h, g$ is a normal form of f, and k is a normal form of h, then $g \equiv k$.

Proof. We proceed with induction on the deptin of f. (The depth of h is of course equal to the depth of f.)
(1) The depth of f is 1 . Then D_{f} and D_{h} consist of only one point, f and h are irreducible, and so the result is immediate.
(2) Assume the depth of f is m , and the theorem holds for I^{n}-functions with depth $<m$. According to lemma 2.2, there is a function ϕ from D_{f} onto D_{g} such that, for all $p \in D_{f}, g_{\phi(p)}$ is congruent to a normal form
of f_{p}, and a function ψ from D_{f} onto D_{k} such that for all $p_{\varepsilon} D_{f}, k_{\psi(p)}$ is congruent to a normal form of f_{p}.

We will now show that for all $p^{\prime}, p_{\varepsilon} D_{f}, \phi\left(p^{\prime}\right) \leq_{g} \phi(p)$ iff $\psi\left(p^{\prime}\right) \leq_{k} \psi(p)$.

In the first place, consider $p \prime, p<_{f} m_{f}$. If
$\phi\left(p^{\prime}\right) \leq g \phi(p)$, then $g_{\phi}\left(p^{\prime}\right) \leq g_{\phi}(p)$. By the induction hypothesis $k_{\psi\left(p^{\prime}\right)} \equiv g_{\phi\left(p^{\prime}\right)}$ and $k_{\psi(p)} \equiv g_{\phi(p)}$. So $k_{\psi\left(p^{\prime}\right)} \leq k_{\psi(p)}$. That means that there is an $r_{\leq_{k}} \psi(p)$ such that $k_{\psi\left(p^{\prime}\right)}{ }^{\equiv k_{r}}$. But then the irreducibility of k implies by lemma 2.3 that $\psi\left(p^{\prime}\right)=r$, and so $\psi\left(p^{\prime}\right) \leq_{k} \psi(p)$. Symmetric considerations give us the implication in the other direction. So indeed, (*) for all $p^{\prime}, p<{ }_{f} m_{f}, \phi\left(p^{\prime}\right) \leq_{g} \phi(p)$ iff $\psi\left(p^{\prime}\right) \leq_{k} \psi(p)$. Now we consider two possible cases.
(1). $\phi\left(D_{f}-\left\{m_{f}\right\}\right)$ has a greatest element $r_{l}=\phi\left(p_{1}\right)$. Then by (*) $\psi\left(D_{f}-\left\{m_{f}\right\}\right)$ also has a greatest element, namely $\psi\left(p_{1}\right)$. We consider two subcases. I. $f\left(m_{f}\right)=f\left(p_{1}\right)$. Then $\phi\left(m_{f}\right)=\phi\left(p_{1}\right)$; otherwise there would exist an a-reduction of g w.r. to $m_{g}=\phi\left(m_{f}\right), \phi\left(p_{l}\right)$, and g is irreducible. For the same reasons, $\psi\left(m_{f}\right)=\psi\left(p_{1}\right)$. II. $f\left(m_{f}\right) \neq f\left(p_{1}\right)$. Then for obvious reasons, $\phi\left(m_{f}\right) \neq \phi\left(p_{1}\right)$ and $\phi(p)<{ }_{g}\left(m_{f}\right)$ for all $p<_{f} m_{f}$. Also $\psi(p)<_{k} \psi\left(m_{f}\right)$ for all $p<_{f} m_{f}$.
(2). $\phi\left(D_{f}-\left\{m_{f}\right\}\right)$ has more than one maximal element. Then acain, for all $p<m_{f}, \phi(p)<{ }_{g} \phi\left(m_{f}\right)$. Otherwise D_{g} would have more than one maximal element. If $\phi\left(D_{f}-\left\{m_{f}\right\}\right)$ has more
than one maximal element, then so has $\left(D_{f}-\left\{m_{f}\right\}\right)$, so also $\psi(p)<_{k} \psi\left(m_{f}\right)$ for all $p<{ }_{f} m_{f}$.

In all these cases it is clear that for all $p^{\prime}, p \in D_{f}$, $\phi\left(p^{\prime}\right) \leq{ }_{=g} \phi(p)$ iff $\psi\left(p^{\prime}\right) \leq \leq_{k} \psi(p)$. This implies that for all $p^{\prime}, p_{\varepsilon} D_{f}, \phi\left(p^{\prime}\right)=\phi(p)$ iff $\psi\left(p^{\prime}\right)=\psi(p)$; also that $f(p)=g(\phi(p))=k(\psi(p))$ for all $p_{\varepsilon} D_{f}$. If we now define x from D_{g} onto D_{k} by, $\chi(q)=r$ iff for some $p \varepsilon D_{f}, \phi(p)=q$ and $\psi(p)=r$, then x is uniquely defined and $g \equiv k$ by x.

Def. Two I^{n}-functions f and g are equivalent (in symbols $\mathrm{f} \simeq \mathrm{g}$) iff they have congruent normal forms.

With the help of Th. 2.3 it is easy to see that \simeq is an equivalence relation, and that congruent I^{n}-functions are equivalent.

Def. A normal n-ary I-operator a is an ordered I-operator such that, if $f_{\varepsilon} C_{a}$ and $g \cong f$, then $g \varepsilon C_{a}$.

Def. The normalized characteristic set C_{a}^{*} of a normal n-ary I-operator a is the set of all irreducible I^{n} functions in C_{a}.

Def. A finite (infinite) normal I-operator is a normal I-operator with a normalized characteristic set consisting of a finite (infinite) number of congruence classes.

As an example, the ordered I-operator c of the example given on page 12 is not a normal I-operator,

Chapter III.

Definability of I-operators.

In this chapter we will investigate the relationship between the connectives \&,v, $, 7,7$, and the set of normal I-operators. We will show that these standard connectives are represented by normal I-operators, and that the set of normal I-operators definable in these I-operators is not the whole set of normal I-operators, but contains all the finite normal I-operators.

Of course we first have to exhibit the I-operators that represent the standard connectives, and define what we mean by definability in the set of I-operators.

Def. For all positive integers n, and all i (l<1<n), the n-ary I-operator u_{1}^{n} is defined thus: for all $f_{\varepsilon} F^{n}$, $u_{i}^{n}(f)=f^{i}$.

Def. The n-ary I-operator a is the composition of the n-ary I-operators b_{1}, \ldots, b_{m} by the m-ary I-operator c iff, for all $f_{\varepsilon} F^{n}, a(f)=c\left(b_{1}(f), \ldots, b_{m}(f)\right)$.

Def. An I-operator a is definable from a set S of I-operators iff, there is a sequence a_{1}, \ldots, a_{n} such that $a_{n} \times a$ and for each $m(1<m<n)$, either $a_{m} \varepsilon S$, or $a_{m}=u_{1}^{j}$ for some $1, j$, or a_{m} is the composition of $a_{k_{1}}, \ldots, a_{k_{s}}$ by
by $a_{k_{s+1}}$, where for all $t(1 \leq t \leq s+1), l \leq k_{t} \leq m$. Def. The closure of a set of I-operators is the set of all I-operators definable from S. A set of Ioperators is closed iff, it is equal to its closure.

The set of all I-operators is obviously closed. Th. 3.1 The set of ordered I-operators is closed. Proof. (a). u_{i}^{n} is ordered, since $\left(u_{i}^{n}\left(f_{p}\right)\right)(p)=$ $\left(\left(f_{p}\right)^{1}\right)(p)=f^{1}(p)=\left(u_{i}^{n}(f)\right)(p)$. (b). If a is the composition of b_{1}, \ldots, b_{m} by c, and b_{1}, \ldots, b_{m} and c are ordered, then a is an ordered I-operator, since $\left(a\left(f_{p}\right)\right)(p)=$ $\left(c\left(b_{1}\left(f_{p}\right), \ldots, b_{m}\left(f_{p}\right)\right)\right)(p)=\left(c\left(\left(b_{1}(f)\right)_{p}, \ldots,\left(b_{m}(f)\right)_{p}\right)\right)(p)=$ $\left(c\left(\left(b_{1}(f), \ldots, b_{m}(f)\right)_{p}\right)\right)(p)=(a(f))(p)$.

Th.3.2. The set of normal I-operators is closed. Proof. Because of Th.3.1 we only have to prove (a) and (b) as follows. (a). If $f \varepsilon C_{u n}$ and $g \simeq f$, then
 $f^{1}\left(m_{f}\right)=1$. If g is a reduction of f, then it is easy to see that $f\left(m_{f}\right)=g\left(m_{g}\right)$, so for all $1(1 \leq 1 \leq n), f^{1}\left(m_{f}\right)=g^{1}\left(m_{g}\right)$ and $f \varepsilon C_{u_{1}}$ if $g \varepsilon C_{u_{1}^{n}}$. Hence, by induction over the sequences of reductions from f and g to their normal forms, $f=g$ implies $f \in C_{u_{1}}$ if $g \varepsilon C_{u_{1}}$.
(b). If a is the composition of b_{1}, \ldots, b_{m} by c,
and b_{1}, \ldots, b_{m} and c are normal, then a is normal, i.e., if $f_{\varepsilon} C_{a}$ and $g \simeq f$, then $g \varepsilon C_{a}$. Again it will be sufficient to prove that, if g is a reduction of f, then $g \in C$ iff $f \in C_{a}$. Assume g is a reduction of f w.r. to r, r^{\prime}. Then for all $1(1 \leq 1 \leq m),\left(b_{1}(f)\right)(r)=\left(b_{1}(f)\right)\left(r^{\prime}\right)=\left(b_{1}(g)\right)(r)$, and for all $s \leq r,\left(b_{1}(f)\right)(s)=\left(b_{1}(g)\right)(s)$; also $D_{b_{1}(f)}=D_{f}$ and $D_{b_{1}(g)} D_{g}$, complete with their partial orderings. So, for all $1(1 \leq 1 \leq m), b_{i}(g)$ is a reduction of $b_{i}(f)$ w.r. to r, r^{\prime}. But then also the I^{m}-function $\left(b_{1}(g), \ldots, b_{m}(g)\right)$ is a reduction of $\left(b_{1}(f), \ldots, b_{m}(f)\right)$ w.r. to r, r^{\prime}. Then, since we assumed c to be normal $f \varepsilon C_{a}$ iff $g \varepsilon C_{a}$.

We present the I-operators representing the connectives $\&, v, \supset$ and 7 in accordance with the results in Chapter I. In each case we will use the same symbol for the connective and the representing I-operator. For all $f \varepsilon F^{2}, p \in D_{f}$:

$$
\begin{aligned}
& \left(f^{1} \& f^{2}\right)(p)=1 \text { iff, } f^{1}(p)=1 \text { and } f^{2}(p)=1 \\
& \left(f^{1} v f^{2}\right)(p)=1 \text { iff, } f^{1}(p)=1 \text { or } f^{2}(p)=1 \\
& \left(f^{1} \supset f^{2}\right)(p)=1 \text { iff, for all } p^{\prime} \leq_{f} p, f^{l}(p)=0 \text { or } f^{2}\left(p p^{\prime}\right)=1
\end{aligned}
$$

For all $f \in F, p \in D_{f}$:
$(\neg f)(p)=1$ iff, for all $p^{\prime} \leq p, f\left(p^{\prime}\right)=0$.
Lemma 3.1. For all $f \in F^{2}, p \in D_{f}$:
(a) $\left(f^{1} \& f^{2}\right)(p)=1$ iff, for all $p^{\prime} \leq_{f} p, f^{1}\left(p^{\prime}\right)=1$ and $f^{2}\left(p^{\prime}\right)=1,(b)\left(f^{1} v f^{2}\right)(p)=1$ iff, for all $p^{\prime} \leq_{f} p, f^{\prime}\left(p^{\prime}\right)=1$
or $f^{2}\left(p^{\prime}\right)=1$.
Proof. (a). $\Rightarrow\left(f^{1} \& f^{2}\right)(p)=1$ implies $f^{l}(p)=1$ and $f^{2}(p)=1$, by the definition of $\&$. Then by the definition of I-function, for all $p^{\prime} \leq_{f} p, f^{l}\left(p^{\prime}\right)=1$ and $f^{2}\left(p^{\prime}\right)=1$.
$\Leftarrow T r i v i a l$.
$(b) . \Rightarrow\left(f^{l} \vee f^{2}\right)(p)=1$ implies $f^{l}(p)=1$ or $f^{2}(p)=1$. If $f^{l}(p)=1$, then for all $p^{\prime} \leq f_{f}, f^{l}\left(p^{\prime}\right)=1$, so $\left(f^{l} v f^{2}\right)(p)=1$. Similarly, if $f^{2}(p)=1 . \Longleftarrow T r i v i a l$.

The definitions of the I-operators representing the standard connectives and lemma 3.1 immediately suggest the following definition.

Def. An I-operator a is pseudo-classical iff, there exists an operator a_{c} of PC (considered as a function from $\{0,1\}^{\mathrm{n}}$ into $\left.\{0,1\}\right)$, with the property: for all $\mathrm{f} \in \mathrm{F}^{\mathrm{n}}$ and $p_{\varepsilon D_{f}},(a(f))(p)=1$ iff, for all $p^{\prime} \leq f_{f} p, a_{c}\left(f\left(p^{\prime}\right)\right)=1$.

Th.3.3. \& and 7 are finite normal I-operators.
Proof. If $f \varepsilon C_{\&}$, then for all $p \leq D_{f}, f^{l}(p)=1$ and $f^{2}(p)=1$. Now define an I^{2}-function g with a domain consisting of a single element, and $g^{1}\left(m_{g}\right)=g^{2}\left(m_{g}\right)=1$. Then the function ϕ from D_{f} onto D_{g} defined by, for all $p \in D_{f}$, $\phi(p)=m_{g}$, is strongly isotone. So $g \approx f$, and $C_{d}^{*}=\{f: f \leq g\}$. The proof for $ᄀ$ is similar.

Th.3.4. \& ,v, $>$ and 7 are pseudo-classical I-operators. Proof. If $\&_{c}, v_{c}, D_{c}$ and τ_{c} are respectively the
symbols for the conjunction, disjunction, implication, and negation of $P C$, then, for all $f \varepsilon F^{2}$ and $p \in D_{f}$: $\left(f_{\&} f^{2}\right)(p)=1$ iff for all $p^{\prime} \leq_{f} p\left(f^{l}\left(p^{\prime}\right)\right) \&_{c}\left(f^{2}\left(p^{\prime}\right)\right)=1$. $\left(f^{l} v f^{2}\right)(p)=1$ iff for all $p^{\prime} \leq f_{f} p\left(f^{l}\left(p^{\prime}\right)\right) v_{c}\left(f^{2}\left(p^{\prime}\right)\right)=1$. $\left(f^{l}>f^{2}\right)(p)=1$ iff for all $p^{\prime} \leq_{f} p\left(f^{l}\left(p^{\prime}\right)\right)_{O_{c}}\left(f^{2}\left(p^{\prime}\right)\right)=1$. For all $f \varepsilon F$ and $p \varepsilon D_{f},(\neg f)(p)=1$ iff for all $p^{\prime} \leq_{f} p_{\neg_{c}}\left(f\left(p^{\prime}\right)\right)=1$.

Def. An I-operator is a standard I-operator, if a is definable from \& $v,>, \neg$.

We define iterated conjunction and disjunction in the natural way by induction, thus. If $f \in \mathrm{~F}^{\mathrm{n}}$, then $U(f)=\left(U U^{n}\left(u_{1}^{n}(f), \ldots, u_{n-1}^{n}(f)\right)\right) v u_{n}^{n}(f)$, and $\lambda_{(f)}^{n}=$ ($\left.\cap^{\prime}\left(u_{1}^{n}(f), \ldots, u_{n-1}^{n}(f)\right)\right) \& u_{n}^{n}(f)$. It is obvious then that U and \cap naturally represent the connectives U and \cap designating iterated conjunction and disjunction. Further \backslash is definable from v (actually from $\{v\}$); \cap is definable from \&. \bigcup and \bigcap are pseudo-classical I-operators corresponding to the classical iterated conjunction and disjunction \bigcup_{c} and \bigcap_{c}; i.e. $\left(U^{n}(f)\right)(p)=1$ iff for all $p^{\prime} \leq_{f} p \quad U_{c}^{n}\left(f\left(p^{\prime}\right)\right)=1 ;\left(n^{n}(f)\right)(p)=1$ iff for all $p^{\prime} \leq_{f} p \bigcap_{c}^{n}\left(f\left(p^{\prime}\right)\right)=1$. Also $\left(U^{n}(f)\right)(p)=1$ iff $\bigcup_{i=1}^{n} c\left(f^{1}(p)\right)=1$, and $(\hat{n}(f))(p)=1$ iff $\bigcap_{01}^{n} c\left(f^{1}(p)\right)=1$. We will also write $\bigcup_{\substack{i, 1}}^{n}\left(f^{1}\right)$ for $U^{n}(f), \bigcap_{i 1}^{n}\left(f^{1}\right)$ for $\hat{n}(f)$, and $\bigcup_{j \in J}\left(f^{j}\right)$ for $U^{k}\left(u_{j_{1}}^{n}(f), \ldots, u_{j_{k}}^{n}(f)\right)$ if $J=\left\{j_{1}, \ldots, j_{k}\right\}\left(1 \leq j_{l}, \ldots, j_{k} \leq n\right)$, etc. We will also write $a=\bigcup_{i, 1}^{k} a_{1}$ iff a is defined by:
for all $f_{\varepsilon} F^{n}, a(f)=\bigcup_{i=1}^{k}\left(a_{1}(f)\right)$, etc.
Th.3.5. All pseudo-classical I-operators are standard.

Proof. Assume a is a pseudo-classical I-operator, correspoding to a_{c} of $P C, 1 . e .(a(f))(p)=1$ ff, for all $p^{\prime} \leq_{f} p, a_{c}\left(f\left(p^{\prime}\right)\right)=1$. Bring a_{c} into the conjunctive normal form. Then for all $t \in\{0,1\}^{n}, a_{c}(t)=\bigcap_{i=1 c}^{N}\left(a_{c}^{1}(t)\right)(k \geq 1)$, where for each $1(1 \leq 1 \leq k), a_{c}^{1}\left(t^{1}, \ldots, t^{n}\right)=\left(\bigcup_{j \in J_{i}}\left(\neg_{c} t^{j}\right)\right) v_{c}\left(\bigcup_{m \in M_{i}^{c}} t^{m}\right)$ for some $J_{1}, M_{i} \subseteq(1, \ldots, n)$. For each $1(1 \leq 1 \leq k)$ there are three possible cases. (a). $J_{1} \neq \phi$ and $M_{1} \neq \phi$. Then $a_{c}^{1}(t)=$ $\left(\bigcap_{j \in J_{i}} t^{j}\right) \nu_{c}\left(\bigcup_{m \in M_{i}^{c}} t^{m}\right)$. (b). $J_{i}=\phi$. Then $a_{c}^{1}(t)=\bigcup_{m \in M_{i}}^{c}\left(t^{m}\right)$. (c). $M_{1}=\varnothing$. Then $a_{c}^{i}(t)=ᄀ_{c}\left(\bigcap_{j c} J_{i} c^{j} t^{j}\right)$. Now, if $a^{\prime}, \ldots, a^{k}$ are the pseudo-classical I-operators corresponding to $a_{c}^{1}, \ldots, a_{c}^{k}$, then $a=\bigcap_{i=1}^{k} a^{1}$, where the a^{1} in the respective cases are, (a) $a^{i}(f)=\left(\bigcap_{j} J_{i} r^{j}\right) \supset\left(\bigcup_{m \in M i} f^{m}\right)$, (b) $a^{i}(f)=\bigcup_{m \in M_{i}}\left(f^{m}\right)$, (c) $a^{1}(f)=\neg\left(\bigcup_{j \in J_{i}}\left(f^{j}\right)\right)$. This is easy to check with the help of the definitions of the I-operators \Rightarrow, \neg, U and \cap.

Th.3.6. All standard I-operators are normal.
Proof. Since we have already shown that the normal I-operators form a closed set.(Th.3.2), it is by Th. 3.4 sufficient to show that all pseudo-classical I-operators are normal. It is immediately clear from the definition of pseudo-classical I-operator that they are ordered. So assume a is a pseudo-classical I-operator corresponding to
a_{c} of $P C, f \in C_{a}$ and $g=f$. Then it is sufficient to show that $g \varepsilon C_{a}$. From $f \in C_{a}$ it follows that $a_{c}(f(p))=1$ for all $p \varepsilon D_{f}$. But $g \simeq f$ implies that for all $p \varepsilon D_{f}$ there is a $q \in D_{g}$ such that $f(p)=g(q)$. So also for all $q \in D_{g}, a_{c}(g(q))=1$, which means that $g \in C_{a}$.

As the main result in this Chapter we will prove that all finite normal I-operators are standard. This can be done indirectly by applying some results from [g].
(see Tr. 5.16), but we will give a direct proof here that gives us actually a definition for the normal I-operator. For this purpose we will need the following lemmas.

Lemma 3.2. (a). If $c_{a}=\bigcup_{i=1}^{n} c_{a_{i}}$, then $a=\bigcup_{i=1}^{n} a_{i}$. (b). If $c_{a}=\bigcap_{i=1}^{n} c_{a_{1}}$, then $a=\bigcap_{i=1}^{n} a_{1}$. If a is normal, then ($\left.c\right)_{n}$ if $C_{a}^{*}=\bigcup_{i=1}^{n} C_{a_{1}}^{*}$, then $a=\bigcup_{i=1}^{n} a_{1}$, (d) if $C_{a}^{*}=\bigcap_{i=1}^{n} C_{a_{1}}^{*}$, then $a=\bigcap_{i=1}^{n} a_{1}$.

Proof. (a). Assume $c_{a}=\bigcup_{i=1}^{n} c_{1}$, then $(a(f))(p)=1$ if, $f_{p} \varepsilon \bigcup_{i=1}^{n} C_{a_{1}}$, so $(a(f))(p)=1$ iffy, $\bigcup_{i=1 c}^{n}\left(\left(a_{1}(f)\right)(p)=1\right.$. So, indeed $a=\bigcup_{i=1}^{n} a_{1}$. (b) is proved in exactly the same way as (a). (c). If $C_{a}^{*}=\bigcup_{i=1}^{n} C_{a}^{*}$, then $C_{a}=\left\{f\right.$: (Eg) ($g \simeq f$ and $\left.\left.g \varepsilon C_{i}^{*}\right)\right\}=$ $\bigcup_{i=1}^{n}\left\{f:(E g)\left(g \approx f\right.\right.$ and $\left.\left.g \varepsilon C_{a_{1}}^{*}\right)\right\}=\bigcup_{i=1}^{n} C_{a_{1}}^{a}$. So, according to (a), $a=\bigcup_{i=1}^{n} a_{i}$. (d) is proved in the same way as (c).

Lemma 3.3. Let f and g be irreducible I^{n}-functions, and let q_{1}, \ldots, q_{k} be the direct predecessors of m_{g} in D_{g} w.r. to $<_{g}$. Then $f \leq g$ Af, for all $p \varepsilon D_{f}$, either there
exists an $1(1 \leq 1 \leq k)$ such that $f_{p} \leq \mathrm{g}_{1}$, or $\mathrm{f}(\mathrm{p})=\mathrm{g}\left(\mathrm{m}_{\mathrm{g}}\right)$ and for each $1(1 \leq 1 \leq k)$, there exists a $p^{\prime} \leq f p$ such that $f_{p}{ }^{\prime} g_{q_{i}}$.

Proof. $\dot{+}$ For $k=0$ the lemma is trivial. So assume $k>0$. There are two possible cases. (a) $f \equiv g_{q}$ by ϕ for some $\mathrm{q}<\mathrm{g}_{\mathrm{m}}$. Then for some $1(1 \leq 1 \leq k), \mathrm{q}_{\leq \mathrm{g}} \mathrm{q}_{1}$. So for all $p_{\varepsilon} D_{f}, \phi(p) \leq q_{1}$, and, since $f_{p} \equiv g_{\phi(p)}, f_{p} \leq g_{q_{1}}$. (b) $f \equiv g$ by ϕ. Then for each $p \varepsilon D_{f}$ there are two possible subcases. I. $p<_{f} m_{f}$. Then again for some $1, \phi(p) \leq g q_{1}$ and $f_{p} \leq g_{q_{1}}$. II. $p=m_{f}$. Then for each $1(1 \leq 1 \leq k), \phi^{-1}\left(q_{1}\right) \leq f p$ and

$1(1 \leq 1 \leq k), f_{p} \leq g_{q_{1}}$. For each $p \varepsilon P$ there is exactly one $q \varepsilon D_{g}$ such that $f_{p} \equiv g_{q}$ (lemma 2.3). This defines a function ϕ from P into $D_{g} \cdot \phi$ is an isomorphism, since $p^{\prime} \leq_{f} p$ implies $f_{p^{\prime}} \leq f_{p}$, so $g_{\phi\left(p^{\prime}\right)} \leq g(p)$, and so $\phi\left(p^{\prime}\right) \leq g(p)$, and inversely. Also, if $p \in P$ and $p^{\prime} \leq_{f} p$, then $p^{\prime} \varepsilon P$. If $q \in D_{f}-P$, then $f(q)=g\left(m_{g}\right)$ and for each $1(1 \leq 1 \leq k)$ there exists a $p^{\prime} \leq q$ such that $f_{p}, \equiv g_{q_{1}}$. So for each $q \varepsilon D_{f}-P$ and $p_{\varepsilon} \bar{P}_{j}: q_{\leq_{f}} p$. Now there are two possible cases. (1) $D_{f}-P$ has more than one minimal element. Assume s and s^{\prime} are minimal and $s \neq s^{\prime}$. Then there is a β-reduction of f w.r. to s, s ' contrary to the fact that f is irreducible $\left(D_{f}[s]=D_{f}\left[s^{\prime}\right]=P\right.$, $\left.f(s)=f\left(s^{\prime}\right)=g\left(m_{g}\right)\right)$. (2) $D_{f}-P$ has exactly one minimal
element s. Assume s^{\prime} is a direct successor of s w.r. to < f° Then s is the only immediate predecessor of s^{\prime} w.r. to $<_{f}$. For if $t<f_{f} s^{\prime}$, then either $t \varepsilon P$, so $t<f_{f}$, or $t \in D_{f}-P$, so $s \leq f \int_{f} s^{\prime}$, and so $s=t$. This means that there is an α-reduction of f w.r. to s, s^{\prime}, contrary to the hypothesis that f is irreducible. So $D_{f}-P$ contains only one element m_{f}, and we can extend ϕ to D_{f} by defining $\phi\left(m_{f}\right)=m_{g}$. Then $f \equiv g$ by ϕ, so $f \leq g$.

Lemma 3.4. Let $f, g \varepsilon F^{n}$, and let q_{1}, \ldots, q_{k} be the direct predecessors of m_{g} w.r. to $<_{g}$. Then $f \equiv g$ iff feg and for no $1(1 \leq 1 \leq k) f \leq g_{q_{i}}$.

Proof. Trivial.

Lemma 3.5. If f and g are irreducible I^{n}-functions, and q_{I}, \ldots, q_{k} are the direct predecessors of $m_{g} w . r$. to $<_{g}$, and for each $1(l \leq i<k), q_{11}, \ldots, q_{i k_{1}}\left(k_{i=0}\right)$ are the direct predecessors of $q_{i} w . r$. to $<_{g}$, then $f \leq g$ iff, for all $p \in D_{f}$, either there exists an $1(1 \leq i \leq k)$ such that $f_{p} \leq g_{q_{1}}$, or $f(p)=g\left(m_{g}\right)$ and for each $1(1<1 \leq k)$, there is a $p^{\prime} \leq_{f} p$ such that $f_{p^{\prime}} \leq g_{q_{i}}$, but for no $f\left(1 \leq j \leq k_{i}\right), f_{p} \leq g_{q_{1 j}}$. Proof. Immediate from Lemmas 3.3 and 3.4.

Th.3.7. All finite normal I-operators are standard.
Proof. A finite normal I-operator a has a normalized characteristic set $C_{a}^{*}=\left\{f: f \leq g_{1}\right\}$ for some sequence $\left(g_{1}, \ldots, g_{k}\right)(k \geq 0)$, where for each $1, j(1 \leq 1, j \leq k, 1 \neq j)$ not $g_{i} \leqslant g_{j}$, since there are only a finite number of maximal
congruence classes in C_{a}^{*} (w.r. to the relation \leq). If $k=0$, then C_{a}^{*} is empty and $a=u_{1}^{n} H_{1}^{n}$. If $k \geq 1$, then assume for all $1(1 \leq i \leq k), a_{1_{k}}$ is the normal I-operator with $C_{a_{1}}^{*}=$ \{ $\left.f: f \leq g_{i}\right\}$. Then $C_{a}^{*}=\bigcup_{i=1}^{k} C_{a_{i}}^{*}$, and by Lemma $3.2 a=\bigcup_{i=1}^{k} a_{i}$, so a is definable in the a_{1}. That means in the proof we can restrict ourselves to the case that $k=1$, i.e. we can assume $C_{a}^{*}:: x\{f: f \leq g\}$ for some irreducible $g \varepsilon F^{n}$.

Without loss of generality we can assume $g^{1}\left(m_{g}\right)=0$ for $1=1, \ldots, m(1 \leq m \leq n)$ and $g^{i}\left(m_{g}\right)=1$ for $1=m+1, \ldots, n$. Now let b be the m-ary normal I-operator with $C_{b}^{*}=$ $\left\{f \varepsilon F^{m}: f \leq\left(g^{l}, \ldots, g^{m}\right)\right\}$. $\left(g^{l}, \ldots, g^{m}\right)$ obviously is an irredu-. cible I^{m}-function, so b is again a finite normal I-operator. Now define the normal n-ary I-operator b_{I} by $b_{1}(f)=b\left(u_{1}^{n}(f), \ldots, u_{m}^{u}(f)\right)$. Then $C_{a}^{*}=C_{b}^{*} n \bigcap_{i=m+1}^{n} C_{u_{1}^{*}}^{n}$, so by Lemma $3.2 a=b_{1} \& \bigcap_{i=m+1}^{n} u_{1}^{n}$, which means that a is definable in b. So, in the proof we can restrict ourselves to the case that $g^{i}\left(m_{g}\right)=0$ for all $1(1 \leq 1 \leq n)$.

Since all standard I-operators are normal, we only have to investigate the behavior of a with respect to the irreducible I^{n}-functions; if we find a standard I-operator that agrees with a there, then a has to be standard.

We will now proceed to prove the theorem by induction on the depth of g.
(a) The depth of g is 1 . Then $D_{g}=\left\{m_{g}\right\}$, and $D_{f}=\left\{m_{f}\right\}$ for all $f \leq g$. Hence, for all irreducible $f \varepsilon F^{n}$ and $p_{\varepsilon} D_{f},(a(f))(p)=1$ iff $f_{p} \varepsilon C_{a}^{*}$, i.e. $(a(f))(p)=1$ iff $f_{p} \leq g$, so (since $D_{g}=\left\{m_{g}\right\}$) (a(f))(p)=1 iff, for all $p^{\prime} \varepsilon D_{f_{p}}, f\left(p^{\prime}\right)=g\left(m_{g}\right)=(0, \ldots, 0)$, and so $(a(f))(p)=1$ iff, for ail $p^{\prime} \leq f^{p}, \bigcap_{i=1}^{n} c c_{c} f^{i}\left(p^{\prime}\right)=1$. So $a(f)=\bigcap_{i=1}^{n}\left(\neg f^{1}\right)=\bigcap_{i \cdot 1}^{n}\left(\neg u_{i}^{n}(f)\right)$.
(b) The depth of g is $m>1$, and we assume that the theorem holds for all I^{n}-functions with depth<m. Assume further that m_{g} has k direct predecessors ($k \geq 1$) w.r. to $<_{g}$, and that for each $1(1 \leq 1 \leq k) q_{1}$ has k_{i} direct predecessors $q_{11}, \ldots, q_{1 k_{1}}\left(k_{1} \geq 0\right)$. Also assume that, for each 1 and $j\left(1 \leq 1 \leq k, 1 \leq j \leq k_{1}\right), a_{1}$ and $a_{1 j}$ are the normal I-operators with respective normalized characteristic sets $C_{a_{1}}^{*}=\left\{f: f \leq g_{q_{1}}\right\}$ and $C_{a_{1 j}}^{*}=\left\{f: f \leq g_{q_{1 j}}\right\}$. Then by the induction hypothesis we can assume that a_{1} and $a_{1 j}$ are standard I-operators, so we just have to prove that a is definable in the a_{i} and $a_{1 j}$. Now, for any irreducible $f \varepsilon F^{n}, p_{f} D_{f},(a(f))(p)=1$ iff $f_{p} \leq g$; i.e.(Lemma 3.5) $(a(f))(p)=1$ iff, for all $p^{\prime} \leq_{f} p$, either there exists an 1 $(1 \leq i \leq k)$ such that $f_{p^{\prime}} \leq g_{q_{1}}$, or $f^{\prime}\left(p^{\prime}\right)=g\left(m_{g}\right)=(0, \ldots, 0)$ and for each $1(1 \leq 1 \leq k)$ there is a $p " \leq f^{\prime} p^{\prime}$ such that $f_{p "} \leq g_{q_{1}}$ but for no $j\left(1 \leq j \leq k_{1}\right) f_{p "} \leq g_{q_{1 j}}$. From this it follows that $(a(f))(p)=1$ iff, for all $p^{\prime} \leq_{f} p$, either there is an

1 ($1 \leq 1 \leq k$) such that $f_{p} \leq g_{q_{1}}$, or for all 1 ($1 \leq 1 \leq n$), $f^{i}\left(p^{\prime}\right)=0$ and for each $i(1 \leq i \leq k)$ it is not true that (1) for all $p " \leq f^{\prime} p^{\prime}$ not $f_{p} \leq \leq g_{q_{1}}$ or for some $f\left(1 \leq j \leq k_{i}\right)$, $f_{p "} \leq g_{q_{1 j}}$. But (1) is equivalent, if $k_{1} \neq 0$, to (2) for some $p^{\prime \prime} \leqq_{f} p^{\prime},\left(a_{1}(f)\right)\left(p^{\prime \prime}\right)>_{c_{j=1}} \bigcup_{i}^{k_{i}}\left(\left(a_{1 j}(f)\right)\left(p^{\prime \prime}\right)\right)=1$ and, if $k_{1}=0$, to (2') for all $p^{\prime \prime} \leq_{f^{\prime}} p^{\prime}$, $\neg_{c}\left(\left(a_{1}(f)\right)\left(p^{\prime}\right)\right)=1$, which in turn are equivalent respectively to (3)
$\left(\left(a_{i}=\bigcup_{j=1}^{k_{i}} a_{i j}\right)(f)\right)\left(p^{\prime}\right)=1,\left(3^{\prime}\right) \quad\left(\left(\neg a_{i}\right)(f)\right)\left(p^{\prime}\right)=1$. Then $(a(f))(p)=1$ inf, for all $p_{k}^{\prime} \leqq_{f} p,\left(\left(\bigcup_{i=1}^{k} c_{1}\left(a_{i}(f)\right)\left(p^{\prime}\right)\right) v_{c}\right.$ $\left.:\left(\neg_{c}\left(!\bigcup_{i=1}^{n} c\left(u_{i}^{n}(f)\right)\left(p^{\prime}\right)\right) \&_{c} \tau_{c} \bigcup_{i=1}^{k}\left(\left(\left(a_{i} \sim j_{j=1}^{i=1} a_{i j}\right)(f)\right)\left(p^{\prime}\right)\right)\right)\right)=1$ (with $a_{i}>\sum_{j=1}^{i_{j}} a_{i j}$ replaced by $\mathcal{F} a_{i}$ if $k_{1}=0$). But then ($a(f)$) $(p)=1$ ff, for all $p^{\prime} \leq f_{f} p$,
$\left(\left(\left(\bigcup_{i=1}^{n} u_{1}^{n}\right) v \bigcup_{i=1}^{k}\left(a_{1} \int_{j=1}^{k_{i}} a_{i j}\right)\right)(f)\right)\left(p^{\prime}\right) ح_{c_{k i}}\left(\left(\bigcup_{k=1}^{k} a_{i}\right)(f)\right)\left(p^{\prime}\right)=1 . \quad$ But this means that $a=\left(\left(\bigcup_{i=1}^{n} u_{i}^{n}\right) v \bigcup_{i=1}^{k}\left(a_{i} \sum_{j=1}^{k} a_{i j}^{i=1}\right)\right) \bigcup_{i=1}^{k} a_{1}$, with $a_{1} \int_{j=1}^{k_{i}} a_{1 j}$ replaced by a_{i} if $k_{1}=0$.

Corollary to the proof of Th.3.7. For the special case that for each $m(1 \leq m \leq n)$ there is an $1(1 \leq 1 \leq k)$ such that $g^{m}\left(q_{1}\right)=0$, the formula obtained for a in the proof can be slightly simplified. Namely, in that case, from for each $1(1 \leq 1 \leq k)$ there is a $p " \leq_{f} p^{\prime}$ such that $f_{p}{ }^{\prime} \leq g_{q_{1}}$, it follows by the definition of I-function that $f^{m}\left(p^{\prime}\right)=0$ for all $m(1<m \leq n)$. So we can leave out the requirement that $f\left(p^{\prime}\right)=g\left(m_{g}\right)$, and we end up with $a=\bigcup_{i=1}^{k}\left(a_{1} \sum_{j=1}^{k_{i}} a_{1 j}\right) \bigcup_{i=1}^{k} a_{1}$ (with $a_{1} \sum_{j=1}^{k} a_{1 j}$ replaced by $\neg a_{1}$ if $k_{1}=0$).

We will continue our investigations on I-operators in Chapter V. In Chapter IV we will apply Th.3.7. to another problem.

Chapter IV.

A Characterization of the

Intuitionistic Propositional Calculus

In this chapter we will find a characterization of Pp from above, i.e. we will describe a property of Pp that no consistent propositional calculus stronger than Pp possesses. By a propositional calculus stronger than Pp we understand one in which all formulas provable in Pp are provable, and some others as well, and which is closed under substitution and modus ponens. (Closure under substitution is, of course, assured if no particular axioms are postulated, but only axiom schemata.) By a formula we understand a formula built up from atoms A_{1}, A_{2}, \ldots with the connectives $\&, v,>$ and \neg.

Lukasiewicz [15] proposed the conjecture that Pp can be characterized from above by the property: for any formulas U, V, if $t_{P p} U v V$, then $f_{P p} U$ or $t_{P p} V$. This conjecture was disproved by Kreisel and Putnam [13], who showed
 same property.

In [12] Kleene proved a stronger property of Pp , and he subsequently proposed to the author the
conjecture that this property characterizes Pp from above. First, one defines a notion $\left.K\right|_{T} U$ for any sequence K of formulas, any formula U, and any propositional calculus T, from the notion f_{T} of provability in T. Kleene states the definition in [12] in particular for the case T is P (see [12] §4), and he proves (among other things) that, for each U, V, W, if $\left.U\right|_{P p} U$ and $t_{P p} U \neg V V W$, then $t_{P p} U S V$ or $\vdash_{\mathrm{Pp}} \mathrm{U}, \mathrm{W}$. Kleene's conjecture, which we will confirm in this chapter is: if T is a propositional calculus at least as strong as Pp , possessing the property
(*) for each U, V, W, if $\left.U\right|_{T} U$ and $F_{T} U \supset V v W$ then $F_{T} U>V$ or $F_{T} U=W$, then T is Pp. Also we will give another characterization of Pp from above by replacing (*) by
(**) for each U, V if $\left.U\right|_{T} U, F_{T} U>V$ and $F_{T} V>U$ then $\left.V\right|_{T} V$.
Before we will be able to do this, we will fave to discuss pseudo-Boolean algebras and their connection with I-valuations. The duals of pseudo-Boolean algebras (Brouwerian algebras) and their connection with intuiticaistic logic were first discussed by McKinsey and Tarski [16], [17]. A pseudo-Boolean algebra is an abstract algebra with three binary operations u, n, \Rightarrow (relative pseudo-compiement), one unary operation-(pseudo-complement), and two constants 1 and 0 .. We will use as variables over elemen:s
of these algebras $\alpha, \beta, \gamma, \alpha_{1}, \alpha_{2}, \ldots, \beta_{1}, \beta_{2}, \ldots$. Terms are then defined in the usual way and if $U\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $V\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ are terms, then $U\left(\alpha_{1}, \ldots, \alpha_{n}\right)=V\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an equation. We say that this equation is valid in an algebra A, if for all $\alpha_{1}, \ldots, \alpha_{n} \in A, U\left(\alpha_{1}, \ldots, \alpha_{n}\right)=V\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. An equation is valid in a class of algebras, if it is valid in all algebras of the class. A set of equations defines the class of algebras in which all the equations are valid. The class of pseudo-Boolean algebras can be defined by a set of equations (see e.g. [20]).

A formula $U\left(\&, v, \supset, \neg, A_{1}, \ldots, A_{n}\right)$ is said to be valid in pseudo-Boolean algebra A, iff the equation $U^{*}\left(n, U, \rightarrow,-, \alpha_{1}, \ldots, \alpha_{n}\right)=1$ is valid in A, where U^{*} is formed from $\alpha_{1}, \ldots, \alpha_{n}$ by means of n, U, \Rightarrow and - , in exactly the same way as U from A_{1}, \ldots, A_{n} by means of $\&, v, \supset$ and \neg. McKinsey and Tarski [20] proved the following theorem.

Th.4.1. The propositional formula U is derivable in $\operatorname{Pp}(a)$ iff U is valid in every pseudo-Boolean algebra, and (b) iff U is valid in every finite pseudo-Boolean algebra.

Def. For any propositional calculus T stronger than Pp we say a pseudo-Boolean algebra A is a T-pseudoBoolean algebra iff, for each formula U such that $F_{T} U$, U is valid in A.

Th. 4.2. For every propositional calculus T stronger than $P p, f_{T} U$ iff, U is valid in each T-pseudoBoolean algebra.

Proof. \Rightarrow Trivial. \Longleftarrow Follows from a particular case of a theorem of Birkhoff [5] that says that in a class of algebras defined by equations an equation is valid iff it is derivable from the defining equations by means of the following four rules. (1) $U=U$. (ii) If $U * V$ then $V=U$. (iii) If $U=V$ and $V=W$, then $U=W$. (iv) If $U=V$ and $W=X$, and $U '$ results from U by replacing some occurrences of W by X, then $U^{\prime}=V$. It is easy to see that the rules (i),...,(iv) can be simulated in the logic, if we reallze that from $U=V$ we can derive $U \rightarrow V=1$ and $V \rightarrow U=1$ and conversely.

Another special case of a theorem of Birkhoff [5] we will use is:

Th.4.3. The class of all T-pseudo-Boolean algebras is closed under the formation of sub-algebras, homomorphisms and direct products.

Now we are ready to look at the relationship between pseudo-Boolean algebras and I-valuations (or Ifunctions). The following definitions are from [g] (see also [1g]).

If a partially ordered set $\langle V, \underline{\leq}>$ is a complete lattice, then $\alpha \varepsilon V$ is called join-irreducible iff $\alpha>\bigcup\{\beta: \beta<\alpha\}$. The set of all join-irreducible elements of V will be denoted by v^{0}.

Def. A lattice A is called join-representable, iff A is complete and completely distributive, and every $\alpha \in A$ can be written as $\alpha=\bigcup\left\{\beta: \beta \leq \alpha\right.$ and $\left.\beta \varepsilon A^{0}\right\}$.

Def. A subset F of $\langle P,\langle \rangle$ is called M-closed iff for all $p, q \varepsilon P, p \varepsilon F$ and $q<p$ implies $q \varepsilon F$.

The set of all M-closed subsets of a partially ordered set P will be denoted by \bar{P}, \bar{P} is then complete and completely distributive.

Th.4.4. ([g],[1g]). Every \therefore Join-representable lattice A is isomorphic to A.

Th.4.5. (e.g. [4]). A complete and completely
distributive lattice is a pseudo-Boolean algebra, if we define $\alpha \rightarrow \beta=\bigcup\{\gamma: \alpha \cap \gamma \leq \beta\}$.

Every finite distributive lattice is complete and completely distributive, and join-representable (e.g. [4]). So this theorem implies that every finite distributive lattice is a pseudo-Boolean algebra \bar{P} for some partially ordered set P. Since for every partially ordered set P, \bar{P} is a distributive lattice, there is therefore a l-1 correspondence between finite pseudoBoolean algebras and finite partially ordered sets.

Def. If P is a partially ordered set, then P 1s T-admissible iff \bar{P} is a T-pseudo-Boolean algebra.

Th.4.6. (essentially in [g]). If P is a P.O.G.set, then therels the following correspondence between any I-valuation $\langle P, w\rangle$ and the pseudo-Boolean algebra
$\overline{\bar{P}}$: for all formulas U and V, if $F_{1}\{p: w(p, U)=1\}$ and $F_{2}=\{p: w(p, V)=1\}$, then (i) $F_{1} \cap F_{2}=\{p: w(p, U \& V)=1\}$,
(1i) $F_{1} \cup F_{2}=\{p: w(p, U v V)=1\},(11 i) F_{1} \rightarrow F_{2}=\{p: w(p, U \supset V \nmid \exists 1\}$, (iv) $-F_{1}=\{p: w(p, \neg U)=1\}$.

Proof. F_{1} and F_{2} are M-closed, so $F_{1} \cap F_{2}$,
$F_{1} \cup F_{2}, F_{1} \Rightarrow F_{2}$ and $-F_{1}$ are well-defined.
(i) $F_{1} \cap F_{2}=\{p: w(p, U)=1\}$ and $w(p, V)=1=\{p: w(p, U \& V)=1\}$. (i1) $F_{1} \cup F_{2}=\{p: w(p, U)=1\}$ or $w(p, V)=1=\{p: w(p, U v V)=1\}$. (iii) $\mathrm{p}_{\varepsilon} \mathrm{F}_{1} \Rightarrow \mathrm{~F}_{2}$ iff $\mathrm{P}(\mathrm{p}) \subseteq \mathrm{F}_{1} \Rightarrow \mathrm{~F}_{2} . \quad \mathrm{P}(\mathrm{p}) \leqslant \mathrm{F}_{1} \neq \mathrm{F}_{2}$ iff $\mathrm{P}(\mathrm{p}) \cap \mathrm{F}_{1} \subseteq \mathrm{~F}_{2}$. $P(p) \cap F_{1} \leqslant F_{2}$ iff for all $p^{\prime} \leq p$ if $w(p, U)=1$ then $w(p, V)=1$, so ultimately $p \in F_{1} \Rightarrow F_{2}$ iff $w(p, U>V)=1$, and indeed $F_{1} \Rightarrow F_{2}=$ $\{p: w(p, U>V)=1\}$. (iv) Similar to (ii1).

Lemma 4.1. For any P.O.G.-set P with maximum element p_{0} and any formula $U\left(A_{1}, \ldots, A_{n}\right), w\left(p_{0}, U\right)=1$ for all I-valuations $\left\langle P, p_{0}\right.$, $w>$ iff $U^{*}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=P$ for all $\alpha_{1}, \ldots, \alpha_{n} \in \bar{P}$.

Proof. Immediate by induction on the result of Th.4.6.

Th.4.7. If P is a P.O.G.-set with maximum element p_{0}, then P is T-admissible iff, for all I-valuations $\langle\mathbb{Z}, W\rangle$, and all formulas U such that $F_{T} U, w\left(p_{0}, U\right)=1$. Proof. Immediate from the lemma, and the definition of T-admissible.

The main theorem of this chapter is a little bit stronger than we need to establish the results predicted
above. Probably the double negation of this theorem is valid intuitionistically. We have not checked this.

Th.4.8. If T is a consistent propositional calculus stronger than Pp , then for each integer $\mathrm{r} \mathrm{si}^{2}$ there is a formula $U \supset V_{1} v \ldots v V_{S}(s \geq r)$ such that $\left.U\right|_{T} U$ and $F_{T} U>V_{1} v \ldots v V_{s}$, but not $f_{T} U \supset V_{i_{1}} v \ldots V_{1_{k}}$ for any proper subsequence $\left(1_{1}, \ldots, 1_{k}\right)(k \geqslant 1)$ of ($1, \ldots, s$).

Proof. We will first construct a finite P.O.G.set $\left\langle P^{\prime}, \leq \sum_{0}, p_{0}\right\rangle$, having $p_{1}, \ldots, p_{k}(k \geq 1)$ as the immediate predecessors of p_{0}, such that P^{\prime} is not T-admissible, but for all $i(1 \leq 1 \leq k) P^{\prime}\left(p_{i}\right)$ is T-admissible. For this purpose we start with a formula X such that $t_{T} X$, but not $t_{P p} X$. There is an I-valuation $\left\langle P^{n}, p_{0}^{\prime}, w\right\rangle$ such that $w\left(p_{0}^{\prime}, X\right)=0$. If $p^{\prime \prime}$ has the desired properties, then take $P^{\prime}=P^{\prime \prime}$. Otherwise there is a $p \varepsilon P^{\prime \prime}$ such that $P^{\prime \prime}(p)$ has the desired properties. For, if q is a minimal element of $P^{\prime \prime}$, then $\overline{P^{\prime \prime}(q)}$ is a two-element Boclean algebra. So in that case $P^{\prime \prime}(q)$ is certainly T-admissable, since T is assumed to be consistent and therefore does not contain theorems that are not provable in PC. We take then $P^{\prime}=P^{\prime \prime}(p)$ for some $P^{\prime \prime}(p)$ with the desired properties. Since P^{\prime} is not T-admissable and therefore $P_{\text {Fis is not a }}$ Boolean algebra, P^{\prime} contains more than one element and $k \geq 1$.

Once we have constructed P^{\prime}, we construct anotier P.O.G.-set P. If $k \geq r$, then we take $P=P^{\prime}$, and in the proof we will take $s=k$. If $k<r$, then we take a natural number j such that $j k \geqslant r$, and we construct $j-1$ partially ordered sets $P_{i}(1 \leq 1 \leq j-1)$ (disjoint from P and from each other) that are isomorphic images of $P^{\prime}-\left\{p_{0}\right\}$ by ϕ_{i} and have partial orcierings \leq_{1}. Then we take $P=P^{\prime} \cup P_{1} \cup U_{j-1}$ and the partial ordering on P as for all $p^{\prime}, p \in P, p^{\prime} \leq p$ iff $p^{\prime} \leq \leq_{0} p$ or $p^{\prime} \leq_{i} p$ for some 1 ($1 \leq 1 \leq j-1$) or $p=p_{0}$. It is clear then that P is a P.O.G.-set with maximum element p_{0}. Also that for all $p<p_{0}, P(p)$ is T-admissible, since either $P(p)=P^{\prime}(p)$, or $P(p) \equiv P^{\prime}\left(\phi_{i}^{-1}(p)\right)$ for some $1(1 \leq 1 \leq j-1)$. But P is not T-admissible, as we prove in the following way. There is a formula Y and an I-valuation $\left\langle P^{\prime}, w\right\rangle$ such that $w\left(p_{0}, Y\right)=0$ while $f_{T} Y$. We now define an I-valuation $\left\langle P, W^{\prime}>\right.$ in the following way: for any atomic formula A_{i}, if $p \varepsilon P^{\prime}$, then $w!\left(p, A_{i}\right)=w\left(p, A_{i}\right)$, if $p \in P_{j}$, then $w^{\prime}\left(p, A_{i}\right)=w\left(\phi_{j}^{-1}\left(p, A_{i}\right)\right)$. Then we can prove that $w^{\prime}\left(p_{0}, U\right)=$ $w\left(p_{0}, U\right)$ for all formulas U, by induction on the length of $U . \therefore$ of course, for all $p_{\varepsilon} P_{i}$ and all $U, W^{\prime}(p, U)=W\left(\phi_{1}^{-1}(p), U\right)$. The statement to be proved is true for atomic formulas. If it is true for U and V, then it follows immediately for $U \& V, U V V, U \supset V$ and $\neg V$ by applying the definition of I-valuation. So $W^{\prime}\left(p_{0}, Y\right)=0$ and P is not T-admissible. he will take $s=j k$ in the proof in this case.

Assume P contains $n+1$ elements. Then we will construct an irreducible I^{n}-function g with $D_{g}=P$ such that for all $m(1<m<n) g^{m}(p)=0$ for some $p<p_{0}$. Assume p_{0}, \ldots, p_{n} is an enumeration of the elements of P, and assume p_{1}, \ldots, p_{s} are the direct predecessors of $p_{0}(s \geq r \geq 2)$. Then we define $g^{m}\left(p_{1}\right)=1$ iff $p_{1} \leq p_{m}$ for all $m(1 \leq m \leq n)$ and all 1 $(1 \leq 1 \leq n)$ and $g\left(p_{0}\right)=(0, \ldots, 0)$. Then obviously g is an I^{n}-function. g is irreducible, since for all $p, p \prime \varepsilon P$, if $p \neq p^{\prime}$, then $g(p) \neq g\left(p^{\prime}\right)$. Also for all $j(1 \leq j \leq n) g^{j}(p)=0$ for some $p<p_{0}$, namely if $2 \leq j \leq n$ then take $p=p_{1}$ and if $j=1$ then take $p=p_{2}$. All this implies that we can apply the corollary of Th. 3.7 to the I-operator with normalized characteristic set $\{f: f \leq g\}$.

Assume a, a_{1}, \ldots, a_{s} are the standard I-operators with normalized characteristic sets $\left\{f \in F^{n}: f \leq g\right\}$ and $\left\{f \in F^{n}: f^{\leq} g_{p_{1}}\right\}(1 \leq 1 \leq s)$, and assume that U, V_{1}, \ldots, V_{s} are the formulas corresponding to a, a_{1}, \ldots, a_{s} formed from the atoms A_{1}, \ldots, A_{n}. Now we will prove:
(a) $f_{T} U \sim V_{1} V \ldots v V_{S}$, (b) not $f_{T} U=V_{1_{1}} v \ldots v V_{1_{k}}$ for any proper subsequence ($i_{1}, \ldots, 1_{k}$) of ($1, \ldots, s$), (c) $\left.U\right|_{T} U$.
(a) The crucial point of the proof is that the class of T-pseudo-Boolean algebras does not contain a pseudo-Boolean algebra on which $U \nabla V_{1} v \ldots v V_{s}$ is not valid, a "counter-example" to this formula. More precisely, for
any pseudo-Boolean algebra A on which $U>V_{1} V^{v} \ldots V_{s}$ is not valid, the pseudo-Boolean algebra \bar{P} is isomorphic to a subalgebra of a homomorphism of A, and so Th .4 .3 implies that, since F is not a T-pseudo-Boolean algebra, A cannot be one, and therefore $f_{T} U \neg V_{1} v \ldots V_{S}$. We will now prove this assertion. Assume $U \geqslant V_{1} v \ldots V_{s}$ is not valid on A. Then there are elements $\alpha_{1}, \ldots, \alpha_{n} \varepsilon A$ such that $U^{*} \Rightarrow V^{*} U . . . V^{*}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq \mathbb{1}$. Now we take the relativization $A_{U *}$ of A with respect to U^{*} (see e.g. [20$]$), i.e. the sublattice of elements of $A \leq U^{*}$. With an appropriate relative pseudo-complement defined this is a pseudo-Boolean algebra and a homomorphic image of A. The $\mathbb{1}$-element of $A_{U^{*}}$ is U^{*} of A, and the homomrphism ϕ can be written in A as $\phi(\alpha)=\alpha \& U^{*}$. Now we write $\phi\left(\alpha_{1}\right)=\beta_{1}$ for all $1(1 \leq 1 \leq n)$; then $v_{1}^{*} \cup \ldots \cup V_{s}^{*}\left(\beta_{1}, \ldots, \beta_{n}\right)<U *\left(\beta_{1}, \ldots, \beta_{n}\right)=\mathbb{1}_{\text {in }} A_{U *}$.

Now we take the sub-algebra B of $A_{U *}$ generated by
$\beta_{1}, \ldots, \beta_{n}$. We claim that B is isomorphic to F. Take any element $W^{*}\left(\beta_{1}, \ldots, \beta_{n}\right)$ of $B ; W^{*}\left(\beta_{1}, \ldots, \beta_{n}\right)=$ ($\left.U^{*}{ }^{\prime} W^{*}\right)\left(\beta_{1}, \ldots, \beta_{n}\right)$. Now assume b is the standard I-operator corresponding to (U\&W) ($\left.A_{1}, \ldots, A_{n}\right)$. Then b is a normal I-operator with $C_{b}^{*} \leq C_{a}^{*}$. So b is also a finite normal I-operator. This means that any element of B corresponds tola finite normal I-operator b with $C_{b}^{*} s C_{a}^{*}$. Now assume W_{1}^{*} and W_{2}^{*} are two elements of B corresponding to the I-operators b_{1} and b_{2}. It is easy to see that, if $\mathrm{C}_{\mathrm{b}_{1}}^{*} s \mathrm{C}_{\mathrm{b}_{2}}^{*}$, then $\mathrm{F}_{\mathrm{pp}}\left(\mathrm{W}_{1} \supset \mathrm{~W}_{2}\right)$ $\left(A_{1}, \ldots, A_{n}\right)$, so $W_{1}^{*} \leq W_{2}^{*}$ in B. On the other hand, assume that
$W_{1}^{*} \leq W_{2}^{*}$. We will prove that then $C_{b_{1}}^{*} \subseteq C_{C_{2}}^{*}$. For that purpose
we assume that $C_{B}^{*} \not \overbrace{C_{B}^{*}}^{*}$, and deduce that $f_{P p}\left(\left(W_{1} \supset W_{2}\right)>\right.$ $\left(U_{\supset}\left(V_{1}, \ldots V V_{s}\right)\right)\left(A_{1}, \ldots, A_{n}\right)$. Assume this formula is not a theorem of Pp . Then there is an I-valuation $\left\langle Q,\left\langle{ }_{\Delta}{ }_{\Delta}, q_{0}, w\right\rangle\right.$ such that. $w\left(q_{0},\left(\left(W_{1} \supset W_{2}\right) \supset\left(U \supset\left(v_{1} v \ldots v V_{s}\right)\right)\right)=0\right.$. Then, for some $q \varepsilon Q, w\left(q, W_{1} \supset W_{2}\right)=1$. and $w\left(q, U \supset\left(V_{1} v \ldots v V_{s}\right)\right)=0$. Then again there is an $r \leq \Delta q$ such that $w\left(r, W_{1} \supset W_{2}\right)=w(r, U)=1$ and $w\left(r, v_{1} v \ldots v V_{s}\right)=0$, so $w\left(r, v_{1}\right)=0$ for all 1 ($\left.1 \leq 1 \leq s\right)$. Now take an irreducible I^{n}-function h corresponding to the restriction of the I-valuation to $Q(r)$, i.e. an irreducible I^{n}-function equivalent to the one corresponding to this restriction. Then $\left(\left(b_{1} \supset b_{2}\right)(h)\right)\left(m_{h}\right)=1$ and $(a(h))\left(m_{h}\right)=1$, so $h \varepsilon C_{a}^{*}$, and $\left(a_{i}(h)\right)\left(m_{h}\right)=0$, so $h \notin C_{a_{i}}^{*}$ for any $1(1 \leq i \leq s)$. But this implies that $h \equiv g$. But if $C_{b_{2}}^{*} \subseteq C_{b_{2}}^{*}$, then there is a peP such that $g_{p} \varepsilon C_{b_{1}}^{*}$ and $g_{p} t C_{b_{2}}^{*}$, so $\left(b_{1}(g)\right)(p)=1$ and $\left(b_{2}(g)\right)(p)=0$, and $\left(\left(b_{1} \supset b_{2}\right)(g)\right)\left(m_{g}\right)=0$, and we have a contradiction. So we have now proved that. $t_{\mathrm{Pp}}\left(W_{1}>W_{2}\right)>$. $\left(U>\left(V_{1} v \ldots V_{s}\right)\right)$. This implies that $W_{1}^{*} \neq W_{2}^{*} \leq U^{*} \Rightarrow\left(V_{1}^{*} U \ldots V_{s}^{*}\right)$ In B and $A_{U^{*}}$. But we had assumed that $W_{1}^{*} \leq W_{2}^{*}$, so $W_{1}^{*} \Rightarrow W_{2}^{*}=1$ and $U^{*} \Rightarrow\left(V_{1}^{*} U \ldots U V_{s}^{*}\right)=\mathbb{1}$ in $A_{U^{*}}$. But this again gives us a contradiction, and we have proved $\mathrm{C}_{\mathrm{b}_{1}}^{*} \subseteq \mathrm{C}_{\mathrm{b}_{2}}^{*}$.

The result we have reached now is that B is
isomorphic to the lattice of all normal I-operators b with normalized characteristic sets $C_{b}^{*} s C_{a}^{*}$. This lattice is isomorphic to \bar{P}, since for every M-closed subset R of

P there is exactily one such I-operator, namely the I-operator with normalized charcteristic set \{ $h \in F^{n}$: h irreducible and $h \leq g_{p}$ for some $\left.p \varepsilon R\right\}$. This concludes the proof that $U \supset V_{1} V \ldots V V_{S}$ is valid on every T-pseudoBoolean algebra, and so $\mathrm{F}_{\mathrm{T}} \mathrm{U}>\mathrm{V}_{1} \mathrm{v} \ldots \mathrm{v} \mathrm{V}_{\mathrm{S}}$.
(b) To prove that not $f_{T} U \neg V_{1_{1}} v \ldots V_{1_{k}}$, assume $t \in\left(1_{1}, \ldots, i_{k}\right)(1 \leq t \leq s)$. Then $g_{p_{t}} \varepsilon C_{a}^{*}$, so $(a(g))\left(p_{t}\right)=1$; but for all $j(1 \leq j \leq k) f_{p_{t}} \notin C_{a_{1}}^{*}$, so $\left(a_{i_{j}}(f)\right)\left(p_{t}\right)=0$ for all j ($1 \leqq \leq \leq k$). All this implies that ($\left.\left(a a_{1_{1}} v \ldots v a_{1_{k}}\right)(g)\right)\left(p_{t}\right)=0$, so $U \supset V_{1_{1}}, \ldots v V_{1_{k}}$ is not valid on $P\left(p_{t}\right)$; and, since $\overline{P\left(F_{t}\right)}$ is a T-pseudo-Boolean algebra, not $\vdash_{T}{ }^{U} V_{1_{1}} v \ldots V_{1_{k}}$.
(c) Here we rely on the corollary to the proof
of Th.3.7. Assume that for all $1(1 \leq 1 \leq s) p_{1}$ has $t_{1}\left(t_{1} \geq 0\right)$ 1mmediate predecessors $p_{11}, \ldots, p_{1 t_{1}}$ in P, and assume that for all $1, j\left(1 \leq i \leq s, 1 \leq j \leq t_{1}\right) a_{1 j}$ is the I-operator with normalized characteristic set $C_{a_{i j}}^{*}=\left\{h \in F^{n}: h \leq g_{p_{i j}}\right\}$ and that $V_{1 j}\left(A_{1}, \ldots, A_{n}\right)$ are the corresponding formulas. Then according to the corollary,
$a=\left(\left(a_{1} \supset\left(a_{11} v \ldots v a_{i t_{1}}\right) v \ldots v\left(a_{s \neq 1} \ldots v a_{s t_{s}}\right)\right)\right) \supset\left(a_{1} v \ldots v a_{s}\right)$ (in case $t_{1}=0$, use $\neg a_{1}$ instead of $a_{1}>\left(a_{11} v \ldots v a_{1 t_{1}}\right.$) for each $1(1<1<s))$. To show that $\left.U\right|_{T} U$ it is sufficient to show that not $\left.U\right|_{T}\left(V_{1} \supset V_{11} v \ldots v V_{1 t_{1}}\right) v \ldots v\left(V_{s} \supset V_{s 1} v \ldots v V_{s t_{s}}\right)$. To prove that it is sufficient to show that for no $1(1 \leq i \leq s)$ $U f_{T} V_{i} V_{11} v \ldots v V_{1 t}$ for any $1(1 \leq 1 \leq s)$. But this is immediate from the facts that $f_{p_{1}} \varepsilon C_{a}^{*}, f_{p_{1}} \varepsilon C_{a_{1}}^{*}$, but for no $f\left(1 \leq j \leq \sum_{1}\right)$ $f_{p_{i}} \varepsilon C_{a_{i j}}^{*}$ (or in the case $t_{i}=0, f_{p_{i}} \ell C_{a_{i}}^{*}$).

For the proof of our second characterization of Pp from above we will need another definition and a theorem.

Def. a is a connected I-operator iff a is ordered and for all $f, g \in C_{a}$ there exists an $h \in C_{a}$ such that $f \leq h$ and $g \leq h$.

It is obvious that a normal I-operator a is connected iff for all $f, g \varepsilon C_{a}^{*}$ there is an $h \varepsilon C_{a}^{*}$ such that $\mathrm{f} \leq \mathrm{h}$ and $\mathrm{g} \leq \mathrm{h}$. Also that a finite normal I-operator is connected iff there exists an I^{n}-function g such that $C_{a}^{*}=\left\{f \in F^{n}: f \leq g\right\}$.

Th.4.9. For any formula $U,\left.U\right|_{P p} U$ iff the standard I-operator corresponding to U is connected.

Proof. \Longrightarrow If $\left.U\right|_{P_{p}} U$, then according to [12], for any formulas V, W, if $f_{P p} U \supset V v W$, then $f_{P p} U S V$ or $f_{P p} U \sim W$. Now assume the normal I-operator c corresponds to U. Assume $f, g \varepsilon C_{c}^{*}$, and assume further that p_{1}, \ldots, p_{r} are the immediate predecessors of m_{f} w.r. to p_{f}, and that q_{1}, \ldots, q_{s} are the immediate predecessors of m_{g} w.r. to $<_{g}(r \geqslant 0, s \geq 0)$, and for all $1(1 \leq 1 \leq r) a_{1}$ is the normal I-operator with normalized characteristic set $\left\{k \varepsilon F^{n}: k \leq f_{p}\right\}$, and for all j ($1 \leq j \leq s$) bg is the normal I-operator with normalized characteristic set $\left\{k \in F^{n}: k \leq g_{q}\right\}$, and a and b are the normal I-operators with normalized characteristic sets $\left\{k \in F^{n}: k \leq f\right\}$ and $\left\{K \varepsilon F^{n}: k \leq g\right\}$. Also assume that $V_{0}, V_{1}, \ldots, V_{r}, W_{0}, W_{1}, \ldots, W_{s}$
are the corresponding formulas.
Then we have not $f_{p p} U \supset\left(V_{0} \supset V_{1} v \ldots v V_{r}\right)$ and not
 and $\left(\left(c o\left(b>b_{l} v \ldots v b_{s}\right)\right)(g)\right)\left(m_{g}\right)=0$. This implies that also not $r_{\mathrm{Pp}} U \rho\left(\left(\mathrm{~V}_{0} \partial \mathrm{~V}_{1} \mathrm{v} \ldots \mathrm{VV}_{\mathrm{r}}\right) \mathrm{v}\left(\mathrm{W}_{\mathrm{O}} \mathrm{W}_{1} \mathrm{v} \ldots \mathrm{VW} \mathrm{S}_{\mathrm{s}}\right)\right)$. Then for some irreducible $h \in F^{n},\left(\left(c>\left(\left(a>a_{1} v \ldots v a_{r}\right) v\left(b \rightarrow b_{1} v \ldots v b_{s}\right)\right)\right.\right.$
$(h))\left(m_{h}\right)=0$. Now for some $p \in D_{h},(c(h))(p)=1,\left(\left(a \operatorname{a} a_{1} v \ldots v a_{r}\right)\right.$ $(h))(p)=0$ and $\left(\left(b>b_{1} v \ldots v b_{s}\right)(h)\right)(p)=0$. Since h is irreducible, h_{p} is irreducible, and there are irreducible h^{\prime} and $h^{\prime \prime}$ such the $h^{\prime} \leq h_{p}, h^{\prime \prime} \leq h_{p},\left(a\left(h^{\prime}\right)\right)\left(m_{h},\right)=1$.
$\left(a\left(h^{\prime \prime}\right)\right)\left(m_{h \prime}\right)=1,\left(\left(a_{1} v \ldots v a_{r}\right)\left(h^{\prime}\right)\right)\left(m_{h}\right)=0$ and $\left(\left(b_{1} v \ldots v b_{s}\right)\left(h^{\prime \prime}\right)\right)\left(m_{h \prime}\right)=0$. So $h^{\prime} \varepsilon C_{a}^{*}, h^{\prime \prime} \varepsilon C_{b}^{*}$, for no 1 ($1 \leq 1 \leq k$), $h^{\prime} \varepsilon C_{a_{1}}^{*}$, for no 1 ($1 \leq 1 \leq s$), $h^{\prime} \varepsilon C_{\dot{b}_{1}}^{*}$. This implies that $h^{\prime} \equiv f$ and $h^{\prime \prime} \equiv g$. So $f \leq h p$ and $g \leq h p$, and we have completed the proof that c is connected.

Assume a corresponds to U, and a is connected.
Now assume not $\vdash_{P p} U \supset V$ and not $\vdash_{P p} U \sim W$, with the I-operators b and c corresponding to V and W. Then there is an $f \varepsilon C_{a}^{*}$, $f \& C_{b}^{*}$ and a $g \varepsilon C_{a}^{*}, g \notin C_{c}^{*}$. Since a is connected, there is an I^{n}-function $h \in C_{a}^{*}$ such that $f \leq h$ and $g \leq h$. This implies $h \notin C_{b}^{*}, h \notin C_{c}^{*}$ and $h \notin C_{b}^{*} \cup C_{c}^{*}$, so $h \notin C_{b}^{*}{ }_{c}$. This means that h\&C áabvc, so not $t_{P p} U \Delta V v W$. Now we have proved that for all V, W, if $\vdash_{P p} U \nabla V V W$, then $\vdash_{P_{p}} U \Delta V$ or $\vdash_{P p} U \nu W$. Then according to $[12],\left.U\right|_{P p} U$.

Th.4.10. If T is a consistent propositional calculus at least as strong as Pp , and (**) for each U, V, if $U \|_{T} U$, $f_{T} U \supset V$ and $f_{T} V \circ U$, then $\left.V\right|_{T} V$, then T is Pp .

Proof. To begin with, the property (**) holds for Pp , since if $\left.U\right|_{P p} U$, then the operator corresponding to U is connected, and this is of course a property that is invariant under logical equivalence. If T contains a theorem not contained in Pp , then we will again use the formulas U, V_{1}, \ldots, V_{s} used in the proof of Th.4.8. For these formulas, $\left.U\right|_{T} U, \vdash_{T} U \supset V_{1} v \ldots V_{s}$ and $f_{P p}\left(V_{1} v \ldots v V_{s}\right) \supset U$, so $f_{T}\left(V_{1} v \ldots v V_{S}\right)>U$, but not $\left.V_{1} v \ldots v V_{S}\right|_{T} V_{1} v_{l} \ldots v V_{S}$, since not $\left.V_{1} v \ldots V_{s}\right|_{T} V_{1}$. This means that if T is stronger than Pp, then T does not have the property (**) and our theorem is proved.

Chapter V.

More Results about Definability
of I-operators. Generalized I-operators.

The first part of this chapter will be devoted to some more results about the definability of I-operators, the most important result being that not all normal I-operators are standard. The last part will be devoted to a generalization of the concept of I^{n}-function to $I^{n}-$ functions with infinite domains and to the consequent generalization of the concepts of I-operators, characteristic sets, etc. Here we will reach a completeness theorem, but we will have to use classical methods.

The clearest method to prove that not all normal I-operators are standard uses I^{n}-functions on trees. As this is also an interesting subject in itself, we will start with an exposition on these I^{n}-functions.

Def. A tree is a P.O.G.-set such that for all $t \varepsilon T$ the set $\left\{t^{\prime} \varepsilon T: t \leq t^{\prime}\right\}$ is finite and linearly ordered. Def. If $f \varepsilon F^{n}$, then f is tree-irreducible if D_{f} is a tree, and for every $g \in F^{n}$, $1 f g$ is a reduced form of f, and D_{g} is a tree, then $g \equiv f$.

Lemma 5.1. If T is a tree, then, for all te T, $T(t)$ is a tree, and $T-T(t)$ is a tree.

Proof. Trivial.
Th.5.1. If f is tree-irreducible, then for all $p \in D_{f} f_{p}$ is tree-irreducible.

Proof. By the lemma $D_{f}(p)$ is again a tree. If there were a non-isomorphic reduced form g of f_{p} by ϕ, then we could construct a non-isomorphic reduced form h (by ψ) of f by defining $D_{h}=\left(D_{f}-D_{f}(p)\right) U D_{g}, q^{\prime} \leq_{h} q$ iff $q^{\prime} \leq_{f} q$ or $q^{\prime} \leq g_{g}$ or $\phi^{-1}\left(q^{\prime}\right) \leq f_{f} q$ for all $q^{\prime}, q \in D_{h}, h(q)=g(q)$ for all $q \varepsilon D_{g}, h(q)=f(q)$ for all $q \varepsilon D_{f}-D_{f}(p)$, and $\phi\left(p^{\prime}\right)=p^{\prime}$ for all $p^{\prime} \varepsilon D_{f}-D_{f}(p)$, and $\phi\left(p^{\prime}\right)=\psi\left(p^{\prime}\right)$ for all $p^{\prime} \varepsilon D_{f}(p)$.

Th.5.2. $f \varepsilon F^{n}$ is tree-irreducible iff D_{f} is a tree, : and (1) f allows no a-reduction, (2) there are no $\because, r^{\prime}, t \in D_{f}$, such that $r \neq r^{\prime}, r^{\prime}$ is an immediate predecessor of $t, r \leq f t$ and $f_{r} \equiv f_{r}$.

$$
\text { Proof. } \Rightarrow(1) \text { is obvious. }
$$

(2) Assume there are $r, r^{\prime} \in D_{f}$ such that r^{\prime} is an immediate predecessor of t and $r \leq f$, and $f_{r} \equiv f_{r}$ by ϕ. Then define g as the restriction of f to $D_{f}-D_{f}\left(r^{\prime}\right)$. By the lemma D_{g} is a tree. Now define ψ on D_{f} as follows: $\psi(p)=$ p iff $p \notin D_{f}\left(r^{\prime}\right), \psi(p)=\phi(p)$ iff $p \in D_{f}\left(r^{\prime}\right)$. To prove that ψ is strongly 1 sotone we have to prove the properties (1) and (ii) of the definition of strongly isotone. Property (i) is immediately obvious. To prove (i1), assume $\psi(q) \leq \psi(p)$.

Now there are three possibilities:
I. $\psi(q) \notin D_{f}(r), \psi(p) \notin D_{f}(r)$. Then $\psi(q)=q, \psi(p)=p$, so $q \leq p$. II. $\psi(q) \in D_{f}(r), \psi(p) E D_{f}(r)$. Then $\psi(p)=p$, so $\psi(q) \leq p$, and $\psi(\psi(q))=\psi(q)$.
III. $\psi(q) \in D_{f}(r), \psi(p) \varepsilon D_{f}(r)$. Then there are again two possibilities: (a) $\psi(p)=p$. Then $\psi(q) \leqslant \psi(p)=p$, and $\psi(\psi(q))=\psi(q)$. (b) $\psi(p) \neq p$, so $p=\phi(\psi(p))$ and $\phi(\psi(q)) \leq p$, and $\psi(\phi(\psi(q)))=\psi(q)$, since on $D_{f}(r) \phi$ is the inverse of ψ.
\Longleftarrow This we will prove by induction on the depth of f. For depth 1 the result is trivial. So assume the depth of f is m and the theorem is valid for depth <m, and assume (1) and (2). Obviously (1) and (2) also hold for the sub- I^{n}-functions of f. So, if we assume that $p_{1}, \ldots, p_{k}(k \geq 1)$ are the immediate predecessors of $m_{f} w . r$. to $<_{f}$, then the induction hypothesis assures us that $f_{p_{1}}, \ldots, f_{p_{k}}$ are tree-irreducible. Now there are two possibilities:
I. $k=1$. Now, if g is a reduced form of f by ϕ, then $\phi\left(D_{f}\left(p_{1}\right)\right)$ is siomorphic to $D_{f}\left(p_{1}\right)$, since according to the induction hypothesis $f_{p_{1}}$ is tree-irreducible. But also $\phi\left(m_{f}\right) \neq \phi\left(p_{1}\right)$, otherwise ϕ would be an α-reductionfunction, contrary to (1). This implies that $f \equiv g$ by ϕ, and f is tree-irreducible.
II. $k>1$. Again assume g is a reduced form of f by ϕ. Assume $r, r^{\prime} \varepsilon D_{f}, r \neq r^{\prime}$ and $\phi(r)=\phi\left(r^{\prime}\right)$. If we assume that $r^{\prime}=m_{f}$, thenfor some $m(1 \leq m \leq k) r \leq p_{m}$. But then
$\phi\left(p_{m}\right) \leq \phi\left(m_{f}\right)=\phi(r)$, and, since ϕ is strongly isotone, for some $s \leq r \phi(s)=\phi\left(p_{m}\right)$. This means that we can assume that $r \neq m_{f}$ and $r^{\prime} \neq m_{f}$. In that case forlexactly one 1 and exactly one $j(1 \leq j, 1 \leq k) r \leq D_{i}$ and $r^{\prime} \leq p_{j}$, since D_{f} is a tree. Also $i \neq j$, otherwise $g_{\phi\left(p_{1}\right)}$ would be a non-congruent reduced form of $f_{p_{1}}$ contrary to the induction hypothesis. But $\phi\left(p_{i}\right) \leq \phi\left(p_{j}\right)$ or $\phi\left(p_{j}\right) \leq \phi\left(p_{i}\right)$, otherwise D_{g} would not be a tree. Assume $\phi\left(p_{j}\right) \leq \phi\left(p_{1}\right)$. Then, since ϕ is strongly isotone, $\phi\left(p_{j}\right)=\phi(q)$ for some $q \leq p_{i}$. Since $f_{p_{j}}$ is treeirreducible, $\phi\left(D_{f}\left(p_{f}\right)\right)$ is isomorphic to $D_{f}\left(p_{j}\right)$, and for the same reason, $\phi\left(D_{f}(q)\right)$ is isomorphic to $D_{f}(q)$. Now, If $s \leq p_{j}$, then $\phi(s) \leq \phi(q)$. So for some $s^{\prime} \leq q \phi\left(s^{\prime}\right)=\phi(s)$. But the fact that $\phi\left(D_{f}(q)\right)$ is isomorphic to $D_{f}(q)$.then implies that this s^{\prime} is unique. The same thing holds inversely, so $\mathrm{f}_{\mathrm{p}_{j}} \equiv \mathrm{f}_{\mathrm{q}}$, and $\mathrm{q} \mathrm{m}_{\mathrm{f}}$, the immediate successor of p_{j}, contrary to (2). So for all $r, r^{\prime} \varepsilon D_{f}, r \not r^{\prime}$ implies $\phi(r) \neq \phi\left(r^{\prime}\right)$. The properties of strongly isotone functions then imply that ϕ is an isomorphism. So f is a treeirreducible $I^{\text {n }}$-function.

An example of an I^{2}-function that is tree-
irreducible, but not irreducible, is:

It allows a β-reduction to the irreducible I^{2}-function:

Th.5.3. If $f \varepsilon F^{n}, D_{f}$ is a tree, and p_{1} is the only
immediate predecessor of m_{f} w.r. to $<_{f}$, then f is treeirreducible iff, $f_{p_{1}}$ is tree-irreducible and $f\left(m_{f}\right) \neq f(p)$.

Proof. Immediate from Th.5.2.
Th.5.4. If $f \varepsilon F^{n}, D_{f}$ is a tree, and p_{1}, \ldots, p_{k}
$(k \geqslant 2)$ are the only immediate predecessors of m_{f} w.r. to< ${ }_{f}$,
then f is tree-irreducible iff, for all $1(1 \leq 1 \leq k) f_{p_{i}}$ is tree-irreducible and for no $1, j$ ($1 \leq 1, j \leq k, i \neq j$) $f_{p_{1} \leq f} f_{j}$.

Proof. \Rightarrow Immediate from Th.5.1 and Th.5.2.
\Longleftarrow Assume f not tree-irreducible, and apply
Th.5.2. As no α-reduction is possible, there must be $r, r^{\prime} \in D_{f}$ ($r \neq r^{\prime}$) such that $r_{r} \equiv f_{r}$, and $r \leq t, t$ being the direct successor of r^{\prime}. Obviously $r<m_{f}$ and $r^{\prime}<m_{f}$, so for some $1, j$ ($1 \leq 1, j \leq k$) $r \leq p_{1}$ and $r^{\prime} \leq p_{j}$. As p_{1} is tree-irreducible ipj. But then $t=m_{f}, r^{\prime}=p_{j}$ and $f_{p_{j}} \leq f_{p_{i}}$, contrary to hypthesis. So f is tree-irreducible.

We will now prove that in each equivalenceclass of I^{n}-functions there is a tree-irreducible I^{n}-function, unique up to congruence. The meaning of this theorem is that in our discussions in the Chapters II and III we could have restricted ourselves to I^{n}-functions on trees instead of P.O.G.-sets. The intuitive interpretation of Chapter I does not give grounds either for or against restricting ourselves to trees. Intuitively that means the choice between excluding or not excluding the possibility that two states incomparable in time both have the same possible future state in common.

Lemma 5.2. If P is a finite P.O.G.-set, and for all $p \in P$ p has at most one immediate successor, then P is a tree.

Proof. Take any peP.. Then define a sequence p_{0}, \ldots, p_{m} for some $m \geq 0$ in the following way: $p=p_{0}$; for all integers 1 , if p_{1-1} is the maximum element of P, then $1-l=m$. If p_{1-1} is smaller than this maximum element, then p_{1} is the unique immediate successor of p_{1-1}. The sequence thus obtained is the set $\left\{p^{\prime} \varepsilon P: p \leq p \prime\right\}$, and so this set is inearly ordered, and P is a tree.

Th.5.5. For any $h \in F^{n}$, there is an f such that $h \approx f$ and f is tree-irreducible. This f is unique up to congruence.

Proof. Assume $g \varepsilon F^{n}$, g irreducible and $g \cong h$. We will construct a tree-irreducible f such that $f=g$. If D_{g} is a tree, our problem is solved. So we assume that D_{g} is not a tree. By lemma 5.2 there is then an $r \in D_{g}$ such that r has more than one immediate successor. Let us assume that r is minimal with respect to this property, and that s_{1}, \ldots, s_{k} are the immediate successors of r. Then $D_{g}(r)$ is a tree, and, for all $r^{\prime} \varepsilon D_{g}(r)$, if $r^{\prime} \leq s$, then $s \leq r$ or $r \leq s$. Now we take $k-1$ trees from $A, T_{1}, \ldots, T_{k-1}$, disjoint from D_{g} and from each other, such that for all $1(1 \leq i \leq k-1)$; T_{1} is isomorphic to $D_{g}(r)$ by $\phi_{i_{k-1}}$ Then we define an I^{n} function g^{\prime} as follows: $D_{g^{\prime}}=D_{g^{\prime}} \bigcup_{l=1}^{k-1} T_{i}$; for all $p \in D_{g} g^{\prime}(p)=$ $g(p)$ and for all $p \in T_{1}(1 \leq 1 \leq k-1) g^{\prime}(p)=g\left(\phi_{1}(p)\right)$; and for all $p^{\prime}, p \varepsilon D_{g^{\prime}} p^{\prime} \leq_{g}{ }^{\prime} p$ iff, either $p^{\prime}, p \in D_{g}(r)$ and $p^{\prime} \leqslant g_{g} p$, or $p^{\prime}, p \in D_{g} D_{g}(r)$ and $p^{\prime} \underset{\sum_{g}}{ } p$, or for some $1(1<1<k-1) p^{\prime}, p \varepsilon T_{1}$ and $\phi_{1}\left(p^{\prime}\right) \leq \sum_{i}(p)$, or for some $1(1<1<k-1) p^{\prime} \varepsilon T_{1}$ and $s_{i \leq g} p$, or $p^{\prime} \varepsilon D_{g}(r)$ and $s_{k=g} \leqslant_{g} p$. Then the function ϕ from D_{g}, onto D_{g} defined by $\phi(p)=p$ for all $p \in D_{g}$ and" $\phi(p)=\phi_{1}(p)$ for $p \in T_{1}$, is strongly isotone. So g^{\prime} is equivalent to g. If D_{g} is not a tree, then we repeat the same procedure for g^{\prime} etc. . As the number of elements with more than one immediate successor deminishes each time, the process must end. The end product f has then a tree as domain. We will prove by induction on the depth of $g(m$ the depth of $f)$ that f is
tree-irreducible. For depth 1 this is trivial. So we now assume that the depth of g is m and that this process applied to any irreducible I^{n}-function of depth $<m$ delivers a tree-irreducible I^{n}-function. When we look at the construction of f above, we see that $m_{f} m_{g}$, and that the immediate predecessors p_{1}, \ldots, p_{k} of m_{g} w.r. to $<_{g}$ are also the immediate predecessors of m_{f} w.r. to s_{f}. We also see in that construction that the same process was applied to $g_{p_{i}}$ for all 1 ($1 \leq 1 \leq k$) with the function $f_{p_{1}}$ as outcome for all 1 ($1 \leq 1 \leq k$). The induction hypothesis then states that $f_{p_{1}}$ is tree-1rreducible for all 1 ($1 \leq 1<k)$. Now we study two cases. (1). $k=1$. Then $f\left(m_{f}\right)=g\left(m_{g}\right) \neq g\left(p_{1}\right)=f\left(p_{1}\right)$, and by Th.5.3 fis tree-irreducible. (2). $k>1$. Then for no $1, j$ ($1 \leq 1, j \leq k, i \neq j$) $f_{p_{i}} \leq f_{p_{j}}$, since that would imply $g_{p_{i}} \leq g_{p_{j}}$ (see lemma 2.2), which in its turn would imply that g is not irreducible(by lemma 2.3). Then Th.5.4 implies that f is irreducible.

Now we prove that f is unique, by induction on the depth of f. For depth 1 it is again trivial. If the depth of f is m, the we assume the theorem for I^{n}-functions with depth <m. Assume that p_{1}, \ldots, p_{k} are the immediate predecessors of m_{f} w.r. to $<_{f}$. Then according to the induction hypothesis $f_{p_{1}}, \ldots, f_{p_{k}}$ are uniquely determined. It is then very easy to see that f is also uniquely determined.

Lemma 5.3 If f, g are tree-irreducible, $f \approx h_{1}$, $g=h_{2}, h_{1}$ and h_{2} irreducible and $h_{1} \leq h_{2}$, then $f \leq g$. Proof. Clear from the construction in Th.5.5.

Th.5.6. A normal I-operator a is uniquely characterized set $C_{a}^{* *}$ of all tree-irreducible $f \varepsilon F^{n}$ in its characteristic set (the tree-characteristic set of a), and there is a function from C_{a}^{*} onto $C_{a}^{* *}$ that is an isomorphism w.r. \leq, and if it maps f onto g then $f \approx g$.

Proof. Immediate from Th.5.5 and lemma 5.3.
Th.5.7. For $n \geq 2$ not all normal n-ary I-operators are standard.

Proof. We will construct a sequence of I^{2}-functions $\left\{u_{1 j}\right\}_{i=1, \ldots, \ldots}$ as follows by induction on 1 (it is obvious how to do this in an exact way, but very tiresome, so we will do it with the help of pictures) $u_{11}=(1,1), u_{12}=(1,0)$, $u_{13}=(0,1), u_{1+1}=(0,0), u_{u_{11}} u_{12}=(0,0), \quad u_{1+3}=(0,0)$,
for all $1 \geq 1$. Then we can prove by induction on 1 (a) for all $1, j(1>1,1 \leq j \leq 3) u_{1 j}$ is tree-irreducible, and (b) for all $1 \leq 1$, if $j \neq k(1 \leq j, k<3) u_{1 j \neq u_{1 k}}$. For $1=1$ it is trivial and if (b) is true for $1=k$, then by $T h .5 .4$ (a) is true for $i=k+1$, and (b) follows immediately for $1=k+1$.

Now we construct a sequence $\left\{v_{1}\right\}$ of I^{2}-functions by induction on 1 from the sequence $\left\{u_{1, j}\right\} . \sim v_{1}=$ for all $1 \geq 1$.

Again it is obvious that for all $1(1 \leq 1<\infty) v_{1}$ is tree-irreducible, but also for all $1, j(1 \geq 1, j \geq 1)$ if ifj then $v_{1}\left\langle v_{j}\right.$. This is obvious if $1>j$, and if $1<j$, then $v_{1} \leq v_{j}$ would imply $v_{1} \equiv u_{k m}$, for some k and $m^{\prime}(1 \leq k \leq j, 1 \leq m \leq 3)$, and this is impossible since $D_{u_{k m}}$ is a binary tree, and $m_{v i}$ has three immediate predecessors. Now we can for any set of natural numbers $M \& N$ (N being the set of all natural numbers) define an operator a_{M}, by its tree-characteristic set, $f_{\varepsilon} C_{a_{M}^{*}}^{*}$ iff $f \leq v_{1}$ for some iعM. Now it is obvious from the fact that $1 \neq j$ then $v_{i} \in v_{j}$ that, if $M \neq L$, then $C_{a_{M}}^{* *} \neq C_{a_{L}}^{* *}$. This implies that there are non-denumerably many normal I-operators, and so they cannot all be standard.

Note that not even all primitive recursive normal I-operators are standard, since the logic is decidable. This is of course a negative theorem, and we will now prove that no I-operator like a_{M} with M infinite can be a standard Ioperator.

Def. A set $\left\{f_{1}, \ldots f_{m}\right\}^{F n}$ is independent, if for no $1, j(1 \leq 1, j \leq m, i \neq j) \quad f_{1} \leq f_{j}$.

Def. A normal n-ary I-operator a is weakly connected of degres m, if for any independent sequence $r_{1}, \ldots, f_{m+1} \varepsilon C_{a}^{* *}$ there exists a $g \varepsilon C_{a}^{* *}$ of the form $g\left(m_{g}\right)$ for some $1, j$ ($1 \leq 1$, $j \leq m, i \neq j$). (I.e. if there exists a $g \varepsilon C_{a}^{*}$, such that m_{g} has
two direct predecessors q_{1} and q_{2} in D_{g}, and $g_{q_{i}} \equiv f_{i}$ and $\left.g_{q_{2}} \equiv f_{f}\right)$.

Note that, if a is weakly connected of degree 1 ,
then a is connected. Not even for standard I-operators though are these concepts equivalent; e.g. the unary standard I-operator with tree-characteristic set $\left\{0^{0^{\prime}} 0,1,1,0\right\}$ is connected like all finite normal

I-operators of which the tree-characteristic (or normalized characteristic).set has only one maximal element, but for the I-functions 0 and l we cannot find an I-function g as required by the definition. On the other hand this I-operator is trivially weakly connected of degree 2, since there are no subsets of more than two elements of its tree-characteristic set that are independent.

Def. A normal I-operator is weakly connected, if it is weakly connected of degree m for some m. A normal I-operator is disconnected, if it is not weakly connected. From the remarks just made it is easy to conclude that all finite normal I-operators are weakly connected. Examples of disconnected I-operators are the binary I-operators a_{M} defined in the proof of $T h .5 .7$, in the cases that M is infinite. We will prove that all standard I-operators are weakly connected, but that not all weakly connected normal I-operators are standard. We wil prove
the last statement first.
Th.5.8. Not all binary weakly connected normal I-operators are standard.

Proof: We consider the I-operators a_{M} for subsets M of N constructed in the proof of Th .5 .7 . We define a binary operation C on the set of all independent couples from $\left(F^{2}\right)^{2}$ by, $C(f, g)=(0,0)$. Then we take for all
$M \subseteq N$ the closure S_{M} of $C_{a_{M}}^{* *}$ w.r. to C. The set S_{M} has all the properties required for a tree-characteristic set. Now define for all $M \leqslant N b_{M}$ as the normal I-operator with tree-characteristic set S_{M}. For all $M \subseteq N D_{M}$ is weakly connected of degree 1 , and for all $M, L s N$, if $M \neq L$, then $b_{M} \neq b_{L}$. This implies that there are nondenumerably many binary weakly connected normal I-operators, and not all of these can be standard.

The proof of this theorem shows that the sharpest characterization we have as yet been able to give, is by no means sharp enough. It seems that we need a more restrictive concept in the spirit of weakly connected. The set of n-ary weakly connected I-operators is not even a closed set, at least for $n \geq 3$. (for binary I-operators we have not been able to prove this, for unary I-operators the whole situation is special, as we will see later).

Th.5.9. The set of ternary weakly connected normal I-operators is not closed.

Proof. Since \& is a finite normal I-operator (Th.3.3), \& is weakly connected. In fact \& is weakly connected of degree 1 . We will now construct two ternary normal I-operators that are weakly connected of degree 1 of which the conjunction is disconnected. Define a_{N} as in the proof of Th.5.7. Then define the ternary I-operator a^{\prime} by, for all $f_{\varepsilon} F^{3}, f \varepsilon C_{a}^{* *}$ iff $\left(f^{1}, f^{2}\right) \varepsilon C_{a_{N}}^{* *}$ and for all $p \in D_{f}, f^{3}(p)=1$. And we define the binary operations C and C^{\prime} on the set of independent couples from $\left(F^{3}\right)^{2}$ by

take the closures S and S^{\prime} of $C_{a^{\prime}}^{* *} w . r$. to C and $C^{\prime} . S$ and S' again have all the properties required for treecharacteristic sets and $S S^{\prime}=C_{a}^{*}{ }^{*}$. This means that for the normal I-operators b^{\prime} and c^{\prime} defined by $C_{b}^{*} \underset{i}{*}=S$ and $C_{c}^{*}{ }_{c}^{*}=S^{\prime}, b^{\prime} \& c^{\prime}=a^{\prime}$. But is clear that b^{\prime} and c^{\prime} are weakly connected, while a^{\prime} is not weakly connected. This means that the set of ternary weakly connected normal I-operators is not closed.

As $\& b^{\prime}$ and c^{\prime} are connected and a^{\prime} is not, this proof also shows that the set of all connected normal I-operators is not closed. The proof shows too that we
cannot prove that all standard I-operators are weakly connected by a simple induction over the number of occurrences of the symbols \&,v, $>$ and \neg in the definition of the I-operator, since, if a and b are weakly connected, a\&b is not necessarily so.

Th.5.10. All standard I-operators are weakly connected.

Proof. By induction over the length of the definition of the I-operator a. If a has length l, then $a=u_{i}^{n}$ for some 1. u_{1}^{n} is weakly connected of degree 1 , since, if $f_{1}, f_{2} \varepsilon C_{u_{1}^{n}}^{* *}$ and f_{1}, f_{2} independent, then the g defined by, $g^{j}\left(m_{g}\right)=0$ for $j \neq 1 \quad(1 \leq j \leq n)$ and $g=$ properties.

Now we assume the theorem is valid for all standard I-operators with length $\leq k$, and we assume a has length $k+1$. We will treat a as $a \supset \neg\left(u_{1}^{n} \supset u_{1}^{n}\right)$. This means that we have to look at the cases $a=7\left(u_{1}^{n}>u_{1}^{n}\right), a=b v c, a=b>c$ and $a=b \& c$.
(1). $a=\neg\left(u_{1}^{n}>u_{1}^{n}\right)$. In that case $C_{a}^{* *}=\varnothing$, and a is trivially weakly connected of degree 1.
(1i). axbvc. By the induction hypothesis b and c are weakly connected, assume of degrees k and m. We will prove that then a is weakly connected of degree $k+m$. Assume f_{1}, \ldots, f_{k+m+1} independent and in $C_{a}^{* *}$, then, since
$\mathrm{C}_{\mathrm{a}}^{* *}=\mathrm{C}_{\mathrm{b}}^{* *} \mathrm{u}_{\mathrm{c}}^{\mathrm{C}_{\mathrm{c}}^{* *}}$, either if necessary after renumbering $f_{1}, \ldots, f_{k+1} \varepsilon_{b}^{C_{b}^{*}}$, or $f_{1}, \ldots, f_{m+1} \varepsilon_{c}^{* *}$. In both cases we find a g as required.
(iii) $a=b>c$. By the induction hypothesis c is weakly connected, assume of degree m. We will prove that a is weakly connected of degree m. Assume f_{1}, \ldots, f_{m+1} independent and in $C_{b}^{*}{ }^{*}$, , then there are two possibilities:
(1) for all $1(1 \leq 1 \leq m+1) f_{1} E C_{c}^{* *}$; then the g we find in $C_{c}^{* *}$ is also an element of $C_{b}^{* *}{ }_{c}^{*}$,
(2) for some $1(1 \leq 1 \leq m+1) f_{1} \not C_{c}^{*}$; then take $j \neq 1$ $(1 \leq j \leq m+1)$ and define $g=(0,0, \ldots, 0)$. Now $f_{1} \not \subset C_{c}^{* *}$ implies

$f_{i} \notin C_{b}^{* *}$, since $f_{i} \in C_{b}^{* *}$. But then also $g \notin C_{b}^{* *}$, $g \notin C_{c}^{* *}$. This implies that for all $p \varepsilon D_{g}$, if $g_{p} \varepsilon C_{b}^{* *}$, then $g_{p} \varepsilon C_{c}^{* *}$, so $g \varepsilon C_{b}^{* *} c$. (iv) $a=b \& c$. There are three subcases:
(1) $b=u_{i}^{n}, c=u_{j}^{n}$ for some $1, j<n$. Then a is weakly connected of degree 1. The proof is similar to the one for case (1).
(2) $b=b_{1} \mathrm{vb}_{2}$, or $c=c_{1} \vee c_{2}$. Then since $\left(b_{1} \mathrm{vb}_{2}\right) \& c=$ $\left(b_{1} \& c\right) v\left(b_{2} \& c\right)$ and $b \&\left(c_{1} v c_{2}\right)=\left(b \& c_{1}\right) v\left(b \& c_{2}\right)$ and $b_{1} \& c, b_{2} \& c$, $b \& c_{1}$ and $b \& c_{2}$ are weakly connected by the induction hypothesis, we can apply (11) again.
(3) Since we can write $\left(u_{1}^{n} \nu u_{1}^{n}\right) \partial u_{i}^{n}$ for u_{1}^{n}, the only case left to investigate is $a=\prod_{i=1}^{n}\left(a_{1} \supset b_{1}\right)$. We will give the proof for the case that $m=2$, it is easily seen that the
proof for the general case is similar. By the induction hypothesis b_{1}, b_{2} and $b_{1} \& b_{2}$ are weakly connected, assume of respective degrees p, q, r. Assume $s=\operatorname{Max}(p, q, r)$. Then we will prove that a is weakly connected of degree $3 s+1$.

Let us assume f_{1}, \ldots, f_{3+1} is an independent sequence in $C_{a}^{* *}$ Then (after renumbering if necessary) there are four possible cases.
I. $f_{1}, \ldots, f_{s+1} \varepsilon C_{b_{1}^{*}}^{*}, f_{1}, \ldots, f_{s+1} E_{b_{b}^{*}}^{* *}$. Then $f_{1}, \ldots, f_{s+1} \varepsilon C_{b_{1 \&}^{*} b_{2}}^{* *}$, so we can find a g with the required properties in $C_{b_{1}^{*}}^{*} \& b_{2} \cdot$ Then $g \varepsilon C_{a}^{* *}$, since $C_{b_{1} \& b_{2}^{*}}^{\varepsilon C_{a}^{* *}}$.
II. $f_{1}, \ldots, f_{s+1} \varepsilon C_{b_{1}}, f_{1}, \ldots, f_{s+1} \in C_{b_{2}^{*}}^{*}$. Then for some
 $\mathrm{f}_{1} t \mathrm{C}_{\mathrm{b}_{2}^{* *}}, \mathrm{f}_{1} t \mathrm{C}_{\mathrm{a}_{2}^{* *}}$, also $\mathrm{gEC}_{\mathrm{b}_{2}^{* *}}^{*}$ and $\mathrm{gt} \mathrm{C}_{\mathrm{a}_{2}^{* *}}$.
III. $f_{1}, \ldots, f_{s+1} \& C_{b_{1}^{*}}^{*}, f_{1}, \ldots, f_{s+1} \varepsilon C_{b_{2}^{*}}^{*}$. Proof similar to case II.
IV. $f_{1} t C_{b_{1}^{*}}^{* *}, f_{1} t C_{b_{2}^{*}}^{* *}$. Then take $g=\underbrace{(0,0, \ldots, 0)}_{\text {P }}$ and again $g \varepsilon C_{a}^{* *}$.

The unary normal I-operators take a very special place in the set of all I-operators. We are able to prove that all unary normal I-operators are standard, since the only infinite normal I-operator is $u_{1}^{1} p u_{1}^{l}$. This we will prove now in the following theorem.

Th.5.11. All unary normal I-operators are stancard.
Proof. We define a sequence of the irreducible I-functions $w_{i}(1=1, \ldots$,$) with the help of pictures in the$ following way: $w_{0}=1, w_{1}=0, w_{2}=\left.\right|_{1} ^{0}$, for all $1 \geq 3$

We will prove for all $i \geq 0$ that w_{i} is tree-irreducible and that for all $j \geq 0, w_{j \leq 1} \leq i_{1}$ iff $j=1$ or $j \leq i-2$, by induction on 1. The statement is clearly true for $1=0,1,2$. Let us assume $k \geq 3$ and the statement is valid for all $1<k$. $w_{k}=w_{k-2}^{0} w_{k-3}$. According to the induction hypothesis w_{k-2} and w_{k-3} are tree-irreducible and $w_{k-3}{ }^{k} w_{k-2}$. If $i>1$, then clearly $w_{j} \mathcal{N w}_{1}$, so $w_{k-8} \underline{x}_{k-3}$. Then according to Th.5.2 w_{k} is tree-irreducible. Now assume $j \leq k-2$, then there are three possible cases: (1) $j \leq k-4$, then $w_{j} \leq w_{k-2} \leq w_{k}$, by tie definition of $w_{k} \cdot(2) j=k-3$, then $w_{j} \leq w_{k}$ by the definition of w_{k}. (3) $j=k-2$, then $w_{j} \leq w_{k}$ by the definition of w_{k}. To conclude, not $w_{k-1} \leq w_{k}$, since not $w_{k-1} \leq w_{k-2}, w_{k-1} \leq w_{k-3}$, and not $w_{k-1}{ }^{-W_{k}}$.

Next we will prove that this sequence is complete In the sense that all I-functions are equivalent to w_{1} for some natural numbers. According to the Th. 5.5 it is sufficient to prove that all tree-irreducible I-functions are
congruent to w_{1} for some 1 . We will prove this for tree-irreducible I-functions f by induction on the depth of f .

If f has depth l, then f is clearly congruent to either w_{0} or w_{1}. It is also clear that for all $1 \geq 0$, w_{21-2} and w_{21-1} have depth 1 . Now assume f has depth $n>1$, and assume the statement we want to prove is valid for all I-functions with depth <n. Assume further m_{f} has immediate predecessors $p_{1}, \ldots, p_{k}(k \geq 1)$. Then for all $1(1 \leq 1 \leq k) f_{p_{1}}$ has depth <n, so according to the induction hypothesis $\mathrm{f}_{\mathrm{p}_{1} \leq \mathrm{w}_{\mathrm{j}}}$ for some $\mathrm{j}(0 \leq j \leq 2 n-1)$. There are now two possible cases: (1) k=1. Then $f\left(m_{f}\right)=0, f\left(p_{1}\right)=1$, otherwise there would exist an α-reduction of f w.r. to p_{1}, m_{f}. Then $f_{p_{1}} \equiv$ $l=w_{0}$, since, if not $f_{p_{1}} \equiv l$, then $f_{p_{i}}$ is not tree-irreducible and neither is $f(T h .5 .1)$. So $f=w_{2}$. (2) $k \geqslant 2$. Since for all $1, j$ if $j \leq 1-2$ then $w_{j} \leq W_{1}$, according to Th. $5.4 \mathrm{k}=2$. That the depth of f is n implies that $f \equiv$

$f \equiv$

Now we define a sequence $c_{i j}(1=1, \ldots \infty, j=1,2)$
of unary normal I-operators by their tree-characteristic
sets. $\quad C_{C_{01}^{* *}}^{*}=C_{C_{02}}^{* *}=\left\{W_{1}\right\}_{i=1, \ldots, \infty} \cdot C_{C_{12}}^{* *}=0$. For all $1 \geq 2$ $C_{C_{11}}^{* *}=\left\{f_{\varepsilon} F: f_{\leq 1-1}\right.$ or $\left.f_{\leq 1-2}\right\}=\left\{w_{0}, \ldots, w_{1-1}\right\} . \quad C_{C_{12}}^{* *}=\left\{f_{\varepsilon F}: f_{\leq w_{1}}\right\}=$ $\left\{w_{0}, \ldots, w_{1-2}, w_{1}\right\}$. It is clear that this sequence contains
all unary normal I-operators. All these I-operators are finite except c_{02}, and $c_{02}=u_{1}^{l}=u_{1}^{1}$, so all unary normal I-operators are standard according to Th.3.7.

But we will give here a simpler way of defining the $c_{1 j}$. We will prove that $c_{01}=\neg\left(u_{1}^{l} \supset u_{1}^{l}\right), c_{02}=u_{1}^{l} \leadsto u_{1}^{1}$, $c_{11}=u_{1}^{l} ; c_{12}=7, c_{21}=u_{1}^{l} \vee 7\left(u_{1}^{1}\right), c_{22}=77$, and for all $1 \geq 3$ $c_{i 1}=c_{1-1,2} \mathrm{v}_{1-2,2}, c_{12}=c_{1-1,2}>c_{1-2,1}$. This is evident for $c_{01}, c_{02}, c_{11}, c_{12}$ and c_{21}. f tree-irreducible and $f_{\varepsilon} C_{7}^{*}$, eff for no $g \leq f \quad g \varepsilon C_{7}^{*}$, ie. for no $g \leq f, g=0$. This is true only for w_{0}, w_{2}. And $\left\{w_{0}, w_{2}\right\}=C_{c_{22}}^{*}=C_{c_{22}^{*}}^{*}$, so indeed $C_{22}=7$. Now we prove the last part by induction on 1 . Assume $m \geq 3$ and assume the definitions are valid for all $1<m$. Then we have to prove $c_{m 1}=c_{m-1,2}{ }^{v c_{m-2,2}}$, which follows from $C_{C_{m l}}^{* *}=C_{C_{m-1,2}^{*}}^{*} C_{C_{m-2,2}^{* *}}^{*}=C_{C_{m-1,2}^{* *}}^{v_{m-2,2}}$ (reasoning like in lemma 3.1 (c)). And we have to prove $c_{m 2}=$ $c_{m-1,2^{\triangle}}{ }_{m-2,1}$. To prove this last statement it is sufficient to establish that $w_{m} \varepsilon C_{C_{m 2}}^{* *} \supset c_{m-1,1}, w_{m-1} \not C_{C_{m}}^{* *}>c_{m-1,1}$, since $C_{C_{m 2}}^{* *}=\left\{W_{0}, \ldots, w_{m-2} ; w_{m}\right\}$. According to the induction hypothesis $w_{m-1}{ }^{\varepsilon C_{C_{m-1,2}^{*}}^{* *}}, w_{m}, w_{m-2} \not C_{C_{m-1,2}^{* *}}^{*}, w_{m}, w_{m-1}, w_{m-2} C_{C_{m-2,1}}^{* *}$. In the first place this implies $w_{m-1} \not C_{C_{m 2}^{*}}^{*}=C_{m-1,1}$. Further ${ }^{W_{m}}{ }_{W_{m-2}} \sum_{W_{m-3}}^{0}$ and for all sub-I-functions $f \cdot{ }^{\circ} f_{m} \cdot{ }_{m-2}$ that

 indeed $W_{m} \in C_{C_{m-1,2}^{* *}}^{* c_{m-2, I}}$, since for all $p \varepsilon D_{W_{m}}$, if $\left(W_{m}\right)_{p} \varepsilon$

Now we are able to give a sequence of formulas that comprises all equivalence classes of formulas formed from a single atom A. The formulas here seem to have the shortest length possible. (See for a very similar result [18]).

In the last part of this chapter we will give a short description of how we can generalize our concepts to I^{n}-functions with infinite domains. We will restrict our attention to countable domains. The generalization to higher cardinalities is easy to make.

Let B^{\prime} be the set of all P.O.G.-sets from A.
Def. An IIf-function is a function with domain a P.O.G.-set $P_{\varepsilon} B^{\prime}$ and range the set $\{0,1\}$ with the property: for all $p, p^{\prime} \varepsilon P$, if $p^{\prime} \leq p$ and $f(p)=1$, then $f\left(p^{\prime}\right)=1$.

We can now define the concepts of $I I^{n}-f u n c t i o n$, congruence of $I I^{n}$-functions, II-operator, ordered IIoperator, and characteristic set of an II-operator in exactly the same way as in Chapter II. We write D_{f} for the domain of an $I I^{n}$-function f, I^{n} for the set of all $I I^{n}-f u n c t i o n s$, I for I^{l}. The generalization of the notions of normal form, equivalence and normal I-operator gives some difficulties. If we define normal form in the same way as for $I^{n}-$ functions, by means of reductions, then not all $I I^{n}-$ functions have a normal form. Th.2.2 is not valid for infinite partially ordered sets. E.g. take $<N, \leq_{I}>$ where for all $m, n \in N, m \leq n$ iff $n=0$, and the set $\{0,1\}$ with the normal ordering. Then there is a strongly isotone function from N onto $\{0,1\}$ (for all $n \phi(n+1)=0, \phi(0)=1)$, but $\{0,1\}$ cannot be reached from $\left\langle N, \leq_{1}\right\rangle$ by reductions. We succeed in
defining a normal form with the help of the strongly isotone functions. We can define the concept of reduced form in the same way as in Chapter II. We then give a definition suggested by Th.2.1. Cor.2. 1
Def. An $I I^{n}$-function is irreducible, if for any $\bar{g} \bar{E} I^{n}$, if g is a reduced form of f, then $g \equiv f$.

Def. An I^{n}-function g is a normal form of the $I I^{n}$ function f, if g is a reduced form of f, and g is irreducible.

We have not succeeded in giving a direct proof of an equivalent of the uniqueness theorem Th.2.3. But we can give an indirect proof based on Th. 4.6 of [g].

Th.5.12. (Th. 4.6 of [g].) If P and Q are partially ordered sets, then \bar{Q} is a complete subalgebra (i.e. a subalgebra w.r. to $u, n, \Rightarrow,-, U$ and \cap) of \bar{F} iff there exists a strongly isotone mapping from P onto Q. In fact, if ϕ is a strongly isotone function from P onto Q, then the subalgebra A of \bar{P} defined by, $A=\{\alpha \in \bar{P}$: for all $p, q \in P$ if $p \varepsilon \alpha$ and $\phi(p)=\phi(q)$ then $q \varepsilon \alpha$, is isomorphic to \bar{Q} and forms a complete subalgebra of \bar{P}.

Th.5.13. If $\mathrm{f}, \mathrm{g} \mathrm{\varepsilon} \mathrm{I}^{\mathrm{n}}$ and g is a reduced form of f , then $\overline{D_{g}}$ is isomorphic to a complete subalgebra of $\overline{D_{f}}$ that contains for all $i(1 \leq 1<n)$ the elements $\alpha_{1}=\left\{p \varepsilon D_{f}: f^{1}(p)=1\right\}$.

Proof. According to Th.5.12, if g is a reduced form of f by ϕ, then $\overline{\mathrm{D}}_{\mathrm{g}}$ is isomorphic to the complete subalgebra
of $\overline{D_{f}}$ formed by the set A of elements $\alpha \varepsilon \overline{D_{f}}$ with the property that for all $p_{\varepsilon \alpha}, q_{\varepsilon} D_{f}$, if $\phi(p)=\phi(q)$, then $q_{\varepsilon \alpha}$. Assume for some $1(1 \leq 1 \leq n) p_{\varepsilon} \alpha_{i}$ and $\phi(p)=\phi(q)$. Then $f(p)=g(\phi(p))=$ $g(\phi(q))=f(q)$. So, since $f^{i}(p)=1$, also $f^{1}(q)=1$, and $q \varepsilon \alpha_{i}$. So we have proved that for all $1(1 \leq i \leq n) \alpha_{1} \varepsilon A$.

The next theorem besides giving us the necessary apparatus to prove that the normal form is unique up to congruence, also gives us some more insight in the results of Chapters II and III.

Th.5.14. If $f, g \in I^{n}$, and g is a normal form of f, then $\overline{D_{g}}$ is isomorphic to the complete subalgebra of $\overline{D_{f}}$ generated by the elements $\alpha_{i}=\left\{p_{\varepsilon} D_{f}: f^{1}(p)=1\right\} \quad(1 \leq 1 \leq n)$ (i.e. the smallest complete subalgebra containing the α_{1}) and if ψ is the isomorphism then for all $r \varepsilon D_{g}, g^{1}(r)=1$ iff $r \varepsilon \psi^{-1}\left(\alpha_{1}\right)$. Proof. $\overline{D_{g}}$ is isomorphic to a complete subalgebra A of $\overline{D_{f}}$. If B is the complete subalgebra of $\overline{D_{f}}$ generated by the α_{1}, then BgA. Now, according to Th. 5.12 there is a strongly isotone function ϕ from D_{g} onto B^{0}. There is an II I^{n}-function h definable on B^{0} by, for all $\mathrm{r}_{\varepsilon} B^{0}, \mathrm{~h}(\mathrm{r})=\mathrm{g}(\mathrm{s})$, if s is such that $\phi(s)=r$. This is a proper definition, for assume $s, s^{\prime} \varepsilon_{g} D_{\phi}, \phi(s)=\phi\left(s^{\prime}\right)$, and assume $g^{1}(s)=1$ for some $1(1<1<n)$. Then $s \varepsilon \alpha_{1}$, and by Th. 5.12 applied to $\overline{D_{B}}$ and B, $s^{\prime} \varepsilon \alpha_{1}$, so $g^{1}\left(s^{\prime}\right)=1$. By the same reasoning, if $g^{1}\left(s^{\prime}\right)=1$ then $g^{1}(s)=1$, for all $1(1 \leq 1 \leq n)$. This means that we have proven
$g(s)=g\left(s^{\prime}\right)$. So h is properly defined and h is a reduced form of f. As g was assumed to be irreducible it follows that gh , and $\overline{\mathrm{D}}_{\mathrm{g}}$ is isomorphic to B. The last part of the theorem now follows immediately.

Th.5.15. If $f, g, h \in I^{n}$, and g and h are normal forms of f, then $g \equiv h$.

Proof. Immediate from the Th.5.14, since, in the first place, both $\overline{D_{g}}$ and $\overline{D_{h}}$ are isomorphic to the same subalgebra B of $\overline{D_{f}}$, so D_{g} and D_{h} are isomorphic (Th.4.4), and in the second place, both f and h are determined by the partial ordering of the α_{i} in B.

Th.5.15 enables us to define the concepts of equivalence, normal II-operator and normalized characteristic set in the same way as in Chapter II. Also, the concept of standard II-operator can be defined in the same way as in Chapter III.

Def. If J has cardinality k, and $\left\{a_{i}\right\}_{i c J}$ is a set of normal II-operators, then $\bigcup_{i \in J}\left(a_{i}\right) . \quad\left(\bigcap_{i \varepsilon J}\left(a_{i}\right)\right)$ is defined as the II-operator with normalized characteristic set $\bigcup_{i \in J}\left(C_{a_{i}}^{*}\right)$ $\left(\bigcap_{i \in J}\left(c_{a_{1}}^{*}\right)\right)$. We call these "generalized" II-operators the k-disjunction and k-conjunction.

Def. A quabi-standard II-operator is an II-operator the intersection of the sets G of II-operators such that (1) G contains all standard II-operators, (2) J'has car-
 …"
and $\bigcap_{i \in J}\left(a_{1}\right) \in G$.
Def. For any cardinal k therset of κ-pseudo-Boolean terms is the intersection of all sets T such that (l) α, β, $\gamma, \alpha_{1}, \alpha_{2}, \ldots, \beta_{1}, \beta_{2}, \ldots \varepsilon T$, (2) if U and V are in T, then $U_{V} V$, UnV, $U \Rightarrow V$ and- U are in T, (3) if J has cardinality $\leq x$ sand for all $i \varepsilon J, U_{i} \in T$, then $\bigcup_{i \varepsilon J} U_{i} \in T$ and $\bigcap_{i \varepsilon J} U_{i} \varepsilon T$.

Lemma 5.4. If the pseudo-Boolean algebra A has cardinality $2^{x_{0}}$ and A is generated by $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, then all elements of A can be written as $2^{k_{0}}$-pseudo-Boolean terms in $\alpha_{1}, \ldots, \alpha_{n}$.

Proof. We can define a function from the set of atomic terms onto the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then according to the recursion principle for terms (3.2.1 of [10) there is a homomorphism from the set of $2^{\kappa_{0}}$-pseudo-Boolean terms into A that.is an extension of this function. It is clear that the range of this mapping is a complete subalgebra of A containing $\alpha_{1}, \ldots, \alpha_{n}$. From this the lemma follows immediately.

Th.5.16. All normal II-operators are quasi-standard. Proof. If a is a normal II-operator, then a has some normalized characteristic set $\left\{g_{1}\right\}_{i \varepsilon J^{*}}\left\{g_{i}\right\}_{i \in J}=\bigcup_{i \in J}\left\{f \in I^{n}: f \leq g_{i}\right\}$, so, if for all $1 \varepsilon J a_{1}$ are the normal II-operators with $C_{a_{1}}^{*}=$ $\left\{f_{\varepsilon} I^{n}: f \leq g_{1}\right\}$, then $a_{i \in J} U_{1}\left(a_{1}\right)$. So we only have to consider the normal II-operators that have a normalized characteristic set with a greatest element. Let us assume then that
$C_{a}^{*}=\left\{f \varepsilon I^{n}: f_{\underline{L}}<\underline{q}\right\}$ for some irreducible g. Then \bar{D}_{g} is generate by the $a_{1}=\left\{q \varepsilon_{g}: g^{1}(q)=1\right\}(1 \leq 1 \leq n)$. This means that $\mathbb{I}_{D_{g}}=D_{g}=U\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some $2^{K_{0}^{-}}{ }_{-p s e u d o-B o o l e a n ~ t e r m ~} U$ in $\alpha_{1}, \ldots, a_{n}$, according to Lemma 5.4 , since \bar{D}_{g} cannot have more than $2^{K_{0}}$ elements. Assume that $\left\{U_{i}\right\}_{1 \varepsilon J}$ is the set of all pseudo-Boolean terms with this property. J then has at most cardinality $2^{\left(2^{k}\right)}$. Assume that, for all $1 \varepsilon J, a_{1}$ is the normal. II-operator corresponding to U_{1}. (It is obvious that all quasi-standard II-operators are normal by the same reasoning as in Th.3.6.) Then we will prove that $a=\bigcap_{i \varepsilon J^{\prime}} a^{\circ}$ If we write $V=U_{1}$, then we have to show that f gig if $V\left(\beta_{1}, \ldots, \beta_{n}\right)=D_{f}$ where, for all $1, \beta_{1}$ is defined as $\left\{p_{\varepsilon} D_{f}: f^{1}(p)=1\right\}$. First assume $f \leq g$. Without losing generally we can assume that $f=g_{q}$ for sore $q \varepsilon_{g}$. Then $D_{f}=D_{g}(q)$ and \bar{D}_{f} is a relativization of $\overline{D_{g}}$ (see $T h .3 .5$ of $[g]$). Then there is a complete homomorphism from $\overline{D_{g}}$ onto $\overline{D_{f}}$ ("complete" meaning a homomorphism also w.r. to the infinite operations) defined by, for all $\overline{D_{g}}, \phi(\alpha)=\alpha \cap D_{f}$. This implies, for all $1(1 \leq 1 \leq n)$, that, $\phi\left(\alpha_{1}\right)=\beta_{1}$. And, since ϕ is a complete homomrphism, $U\left(\beta_{1}, \ldots, \beta_{n}\right)=D_{f}$. Now assume fig. Then take an irreducible II-function h such that $\mathrm{f} \leftrightharpoons \mathrm{h}$ and g th. We again assume without losing generality that $f=h_{s}$ and $g=h_{t}$, for some $s, t \varepsilon D_{h}$. Let for
all $1(1 \leq 1 \leq n) \quad \gamma_{1}=\left\{r \varepsilon D_{h} ; h^{1}(r)=1\right\}$. Then by lemma 5.4 for some $2^{\varepsilon_{0}}$-pseudo-Boolean term $W, W\left(\gamma_{1}, \ldots, \gamma_{n}\right)=D_{g}$. But then in $\bar{D}_{g} W\left(\alpha_{1}, \ldots, \alpha_{n}\right)=D_{g}$. So for some $1 \in J, W=U_{1}$. But $\operatorname{in} \bar{D}_{f} W\left(\beta_{1}, \ldots, \beta_{n}\right) \neq D_{f}$. So also in $\bar{D}_{f}, V\left(\beta_{1}, \ldots, \beta_{n}\right) \neq D_{f}$.

Th.5.17. The unary normal II-operators consist of the standard I-operator, and the II-operator $\bigcup_{i=1}^{\infty} c_{12}$. \therefore Proof. It is easy to check that this system of II-operators is closed under the operations of \&,v, $, 7,7$, \cap, \cup.

BIBLIOGRAPHY

[1] Aczel, P. Saturated Intuitionistic Theories. To appear in the proceedings of the Hanover Colloquium, 1966. Contributions to the Mathematical Logic, Ed. K. Schltte to be published by North Holland.
[2] Beth, E.W. The Foundations of Mathematics. Amsterdam, 1959.
[3] Beth, E.W. Semantische Begründung der Derivaten Implikationslogik. Arch. f. Math. Log. u. Grundl. Forsch. 7, Heft 1/2, 23-28.
[4] Birkhoff, G. Lattice Theory. New York, 1948.
[5] Birkhoff, G. On the Structure of Abstract Algebras. Proc. Camb. Phil. Soc. 29 (1935) 433-54.
[6] Buchi, J.R. Representation of Complete Lattices by Sets. Portugaliae Math. 11, 151-167 (1952).
[7] Dyson, V.H. and Kreisel, G. Analysis of Beth's Semantic Construction of Intuitionistic Logic. Techn. Rep. no.3, Stanford Univ. Appl. Math. and Stat. Lab., Stanford, California.
[8] Jongh, D.H.J. de, Reserches sur les I-valuations, rapp. no. 17 Contr. Euratom 010-60-12, CETN, 1962.
[9] Jongh, D.H.J. de and Troelstra, A.S. On the Connection of Partially ordered Sets with some Pseudo-Boolean Algebras. Indag. Math., 28, no.3, 1966.
[10] Karp, C.R. Languages with Expressions of Infinite Length. North Holland Publishing Company. Amsterdam, 1964.
[11] Kleene, S.C. Introduction to Metamathematics. Amsterdam, 1952.
[12] Kleene, S.C. Disjunction and Existence under Implication in Elementary Intuitionistic Formalisms. J.S.L. 27 (1962) 11-18.
[13] Kreisel, G. and Putnam, H., Eine Unableitbarkeitbeweismethode f. den Intuitionistischen Aussagenkalkll. Arch. f. Math. Log. u. Grundl. Forsch. 3, no. 3-4, pp. 74-78.
[14] Kripke, S.A. Semantical Analysis of Intuitionistic Logic I; Formal Systems and Recursive Functions, Ed., J.N. Crossley and M.A.E. Dummett. Amsterdam, 1965. 92-130.
[15] Lukasiewicz, J. On the Intuitionistic Theory of Deduction, Indagationes Mathematical, vol. 14, 1952, pp. 202-212.
[16] McKinsey, J.C. and Tarski, A. On Closed Elements in Closure Algebras. Ann. of Math. 47, 1946, pp. 122-162.
[17] McKinsey, J.C. and Tarski, A. Some Theorems about the Sentential Calculi of Lewis and Heyting. J.S.L. 13, 1948, pp. 1-15.
[18] Nishimura, I. On Formulas of One Variable in Intuitionistic Propositional Calculus. J.S.L. Vol. 25, 1962, pp.327-331.

