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Preface.

This thesis has a long history. It began in 1971at Philips Electrologica in
Apeldoorn when Herman Schweigmann suggested to me that I investigate
the idea of developing a Natural Language Question Answering System with
an ordinary data base as its knowledge base. In response to this suggestion, I
developed the concept of a question answering program which would
gradually transform the logical representation of a natural language query
into a data base query by applying a series of ”translation rules”. Between
1972and 1979a system of this kind, called PHLIQA1, was actually
developed at Philips Research Laboratories in Eindhoven.

Wim Bronnenberg, I-IarryBunt, Jan Landsbergen, Piet Medema, Wijnand
Schoenmakers, Eric van Utteren and myselfwere the participants in the first
phase of this process which ended with the implementation of a Question­
Answering System in 1975. Although the system incorporated many new
ideas and displayed an interesting structure, its theoretical underpinnings
were less than completely satisfactory. Occasionally, this would also show up
in incorrect answers or otherwise undesirable responses.

Therefore, in the period from 1976-1978,important aspects of our
approach were rethought. The system was redesigned at that time by Wim
Bronnenberg, Jan Landsbergen, Wijnand Schoenmakers, Eric van Utteren
and myself. In 19791 wrote an elaborate description of the new program
(Bronnenberg et al. , 1980)while Bronnenberg, Landsbergen, Schoenmakers
and Van Utteren implemented it (within a few months) and debugged it
(within a week). The system was successfullydemonstrated for an extensive
period without displaying any unexpected behavior.

This thesis may be viewed as a theoretical complement to PHLIQA1. It
expands on some important ideas underlying this system and compares them
to possible alternatives. The issues focussed on here are some of those I feel
particularly responsible for in the development of PHLIQA1: the over-all
design and the semantics of questions, answers and data.

I wish to thank my former colleagues on the PHLIQA1 Project for
everything which they have indirectly contributed to these pages.
Particularly, I wish to thank Jan Landsbergen for years of stimulating
cooperation, and to acknowledge his share in many aspects of the design of
PHLIQA1. His crucial contributions to the development of the method of
Translation Specifications, discussed in Chaper V, should be mentioned
especially.

In writing this book, I have borrowed freely from some papers which I
wrote some time ago, especially Bronnenberg et al. (1980) which forms the
basis of Chapter III and Scha (1982) which is incorporated in large part in



Chapter V. The content of Chapter II was developed in a series of talks I
have given at the Philosophy Departments of the Universities of Amsterdam,
Groningen and Nijmegen.

I would like to thank both of my promoters, Professor Joyce Friedman and
Professor Frank Heny, for their thorough and far-reaching comments on
both content and form of my earlier drafts. If the present book is readable at
all, that is largely due to their efforts and to the extremely active editorial
assistance I have received from Dr. Livia Polanyi.



Chapter I. Methodological Preliminaries.

1. Introduction.

This book explores some general issues related to the design of question
answering systems; the logical representation of the contents of questions
and answers, the logical analysis of data bases, and other issues concerning
knowledge representation. It explores all these matters from one coherent
perspective: the perspective of logical model theory.

Employing Tarski’s (1936) idea of representing a state of the world by
means of an interpretation of a logical language, precise definitions may be
given of the meanings of the various data structures which play a role in
question answering programs: representations of the contents of questions
and answers, as well as data bases and other forms of ”knowledge”. This is
demonstrated in some detail in the chapters of this book.

Chapter II criticizes existing proposals concerning the model-theoretic
semantics of questions and answers, and puts forward an alternative.

The representation of knowledge in a way which dovetails with the logical
representation of the contents of questions and answers is addressed later in
the book. The goal of providing an interface with an ”ordinary data base”
will be focussed on particularly. The knowledge representation problem is
therefore broken up into two parts. In Chapter IV data bases are construed
as well defined objects within the framework of logical model theory, while in
Chapter V a proposal is made for how to bridge the semantic gap between
the natural language formulation of a query and the notions contained in the
data base. '

A question answering system which embodies the main ideas developed in
this book is described in Chapter III. This system, PHLIQA1, distinguishes
itself favourably from other efforts in the field of computational linguistics
because of its unusually refined modular structure, featuring explicitly
defined interface languages between the modules and precise definitions of
their tasks.

In the present introductory chapter, the model-theoretic perspective which
constitutes the framework of this book is briefly contrasted with some
alternative methodologies which have been brought to bear on similar
problems: the Artificial Intelligence (A.I.) paradigm (whose adherents might
take issue with our very goals of reliability and consistency), the idea of
Procedural Semantics (which proclaims to be a superior alternative to model­
theoretic semantics), and the use of Predicate Calculus (which is promoted by
a research tradition which is focussed on a particular body of deductive
techniques rather than on the use of well-defined meaning representations in
general).



2. Artificial Intelligence.

The design of natural language question answering programs is often
viewed as belonging to the general realm of Artificial Intelligence. The
discussion in this book, however, will touch only tangentially on A.I. work on
natural language and knowledge representation. This is because much of this
work proposes knowledge representation data structures without specifying
their semantics with any precision. Much A.I. work shows no interest in
developing modular program structures with well-defined interface
languages and thus sheds no light on the problem area concentrated upon
here.

The difference between the A.I. approach and the one I wish to advocate
is not a mere difference of opinion on how to attack a technical problem, but
a much more fundamental disagreement about the nature of the enterprise
one is engaged in.

A.I. research attempts to design working computer programs for tasks
which seem intrinsically to involve the higher intellectual faculties. Natural
language processing is often taken to be a paradigm example of this kind of
task. In A.I. , the goal of designing computer programs capable of performing
tasks of this sort efficiently and correctly is taken to be somehow equivalent
to the goal of modelling central aspects of human cognition. In my view,
however, these enterprises are entirely different and there can be no virtue in
confusing them. Let me expand on this somewhat.

Afifundamental difference between the two activities is that they have
different goals which overlap only slightly. Humans have many
characteristics, for example, which one would just as soon do without in a
computer program. We are often sloppy and unreliable, frequently forgetful
and uncooperative. Therefore, if one could make a question answering
system equalling human question answering performance, one should try to
make a system which exceeds it. If the goals of question answering, automatic
translation, expert systems and the like are contrued as ”cognitive
modelling”, then one is, in fact, undercutting the potential which electronic
computers may have for such tasks.

Whether implemented computer programs can be expected to be
structurally similar in any way to human mental processes is also open to
serious doubt. The basic underlying hardware processes are so different in
both cases that it is by no means self-evident that corresponding structures
can be used to implement corresponding tasks.

Those working within hardcore A.I. tend to avoid facing the choice
between doing A.I. as applied computer science or as theoretical psychology.
By failing to deal clearly with the goals and purposes of the A.I. activity,
practitioners need demonstrate neither correctness and efficiencyin their



programs nor psychological validity. Comparisons with the human mind can
be freely invoked to justify a lack of interest in the correctness, consistency
and modularity of a program while the extent to which the program
constitutes a model for human mental processing structures is left
unspecified. ” In light of this, it is best to view A.I. not as a scientific or
technological discipline in the way in which these notions are normally
considered but to see it rather as the experimental branch of computer
science where new programming concepts are tried out without much
concern for their theoretical underpinnings and unfettered by the constraints
imposed by well-defined requirements of any sort.

This explains why one would not expect to deal in depth with A.I. work in
natural language understanding in a discussion which is involved in
evaluating different, well-described means for achieving the same (or similar)
well-defined goals. This is why, in the rest of this book, references to A.I.
work are made only where they are specifically relevant to the matter under
discussion.

3. Model-Theoretic Semantics vs. Procedural Semantics.

An important goal of the discussion in this book is to give definitions of
notions such as the content of a question, the content of an answer, and
knowledge about a subject domain in such a way that precise requirements
for the correct operation of a question-answering program may be
formulated. Elsewhere in the discussion, it will be shown that the notions of
logical model-theory can be used very well for this purpose. In the present
section, the virtues of model theory will be compared briefly with the
properties ofprocedural semantics, a rather different formulation of
semantics which developed out of Computational Linguistics and Artificial
Intelligence.”

Model-theoretic semantics can be used as a tool to define the meaning of
data structures independently of the programs which access them and to
define the task of program modules independent of their implementation.
A model-theoretic description of the content of a question specifieswhat
answers would be correct in terms of a precisely defined notion of state of the

‘l A rather extreme position on this matter, which I would not want to ascribe to the A.l.
Community as a whole, dismisses altogether the notion of a model as having an explicitly
specified structural correspondence to the phenomenon it is supposed to model. Instead, it is
simply stipulated that object A is a model for phenomenon B if people can be led to mistake A
for B. This decision to declare mimesis to be the highest goal of the cognitive sciences is often
credited to a philosophical essay by Turing (1950) which proposes a kind of ”mimetic
reductionism” of mentalistic notions. The work done by Colby constitutes the most explicit
exemplification of this point of view. See, for instance, Colby et al. (1972) and Colby (1975).

2) See Woods (1968, 1981); Woods et al. (1972); Winograd (1972).



world. How the answers will be computed is left open by this specification.
Similarly, a model-theoretic description of the meaning of a piece of data
shows how it constrains the states of the world which are considered possible,
without specifying how this information is to be brought to bear on the
queries. Thus, model-theoretic semantics may be used to introduce a
considerable measure of precision into the discourse surrounding the
structure and operation of a question-answering system without complicating
matters with purely algorithmic considerations.

In procedural semantics, on the other hand, the meaning of a question is
said to be a procedure for computing the answer.

One problem arises because this procedure is assumed to be formulated in
terms of certain primitive procedures which need not be further analyzed.
But for the ”primitive procedures” which yield factual knowledge concerning
contingent states of affairs in the world, this view is not justified. Their values
may not be known at the moment of the design of the system; it must be
possible to change them if the state of affairs in the world changes.
Therefore, we do not want to view these procedures as unanalyzed entities;
they must be viewed as either containing or accessing data structures of some
sort, and the meanings of these data structures must be described precisely.

Another problem with procedural semantics as it has been defined until
very recently,” is that it is too specific. Because the meaning of an expression
encompasses its evaluation method there is no room for logical equivalence
transformations such as those which turn an expression into an equivalent but
more efficiently evaluable one. The general criticism which should thus be
made about this framework, from the point of view of model-theoretic
semantics, is that it is conceptually too poor.

4. Limitations of Predicate Calculus.

When methods from formal logic are used in knowledge representation and
natural language analysis, the formalism used is often the first-order
predicate calculus. In fact, the notions of ”logic” and ”first—orderpredicate
calculus” are all but interchangeable in the work of certain authors. (See, for
example, the papers collected in Gallaire and Minker, 1978.)

Most syntactically and semantically well-defined languages used in
computational systems for semantic representation derive more or less
directly from first-order predicate calculus. (Woods, 1968;Green, 1969;
Petrick, 1973). Proposals about semantic nets often pertain to pictorial
representations of first-order predicate calculus expressions as well
(Schubert, 1976).

3) Woods, the foremost exponent of procedural semantics, has kept redefining it, to the extent
that it is now indistinguishable from model-theoretic semantics. Sentences are now analyzed
as ”abstract partial procedures”. (Woods, 1981)



It must be emphasized, therefore, that the approach taken in this book
does not embody any preconceptions about the syntactic form of the logical
representation languages used. What has been of overriding concern,
however, is that the expressions in the languages used be precisely defined
and that their semantics (in the model-theoretic sense) be precisely defined
as well. The first-order predicate calculus was rejected as a possible logical
formalism for the general task of natural language modelling, because the
semantic phenomena involved can not be accommodated within the
limitations of this framework. For example, ”collective quantification”
requires functions or predicates on sets of individuals while ”cumulative
quantification” requires variables ranging over Cartesian products (i.e. over
sets of n-tuples) and selection-operations on n-tuples. (Scha, 1981)
Comparatives result as well in quantificational structures not expressible in
the minimal extensions of first order logicwhich are normally made.“ ”Bags”
are necessary for dealing with the ”exclusive-or” operator (Borowski, 1976)
and with certain noun phrase denotations.” In addition, lambda-abstraction
is necessary for using the technique of ”translation specification”, a most
important possibilityexploited here for knowledge representation.“

Therefore, a richer formal language than first-order predicate calculus was
necessary to do the tasks we had in mind adequately: the languages
introduced below as EFL (English-oriented Formal Language), DBL (Data
Base Language) and WML (World Model Language) have the power needed
to accomplish them. Appendix A specifies the syntax and semantics of these
languages.

5. Conclusion.

To be able to design a reliably operating question-answering system with a
modular structure, it is necessary to define notions of questions, answers and
knowledge which are suited for a computationally effective treatment. These
notions must be based on an explicit semantics, moreover, which makes it
possible to formulate explicit correctness requirements for the algorithms
employed in the system. In sections 2 and 3, above, the A.I. and procedural
semantics approaches to question-answering system development were
rejected because they are unequipped to deal with constraints of this sort. In
section 4 the first-order predicate calculus was also rejected as a suitable
framework because it lacks the richness and power needed to deal with
linguistic complexities adequately. Let us now go on to tackle the main

4) Akzo bought more computers than Philips sold.

5’ What is the sum of the prices of Akzo’s computers?

6’ See Chapter V.
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subject areas we shall be dealing with: the semantic and computational
aspects of the representation of questions, answers and knowledge. Because
it is basic to the entire issue we address here, we will begin with the semantic
analysis of questions and answers.



Chapter II. Questions and Answers.

1. Introduction.

The English language possesses specific sentence categories whose primary
function is to express a request for information. 1)Sentences belonging to
these categories are called ”interrogative sentences” or ”questions”.
According to the rules of English discourse, a question asked by one
discourse participant to another creates a positive obligation on the part of
the addressee either to provide the requested information (i.e. give an
”answer”), or to explain why he doesn’t (give a ”reply” in a more general
sense). This chapter contains a discussion of formal methods for representing
the contents of questions and the contents of answers, which make it possible
to account for semantic relations between questions and answers - most
importantly, for the correctness of a given answer with content A in response
to a question with content Q.

We should like to characterize the content of a question (”what it is that a
question asks”) and the content of an answer (”what it is that an answer
describes”) in such a way that a precise account can be given of how the
correctness of an answer depends on the state of the world. Whereas the
contents of ”isolated assertions” have received much attention in studies
concerning philosophical logic and formal semantics (where they are
analysed as ”propositions” , i.e. as functions from interpretations or possible
worlds to truthvalues), there is not yet much agreement about the proper
semantic analysis of questions and answers. It should be pointed out here,
that answers cannot be equated with ”isolated assertions”. Answers are not
”stand-alone” utterances: they depend on context for proper interpretation.

The syntactic forms of answers come in such a wide variety of forms, that
one may doubt whether they should all be treated as expressing the same
kind of semantic object. The examples (1)-(15) give an impression of the
variety of possible answers of the same question.

Did John go to the movies yesterday? (1)
may be answered by

Yes. (2)
Yes, he did. (3)
That’s what he did. (4)
He went to the movies yesterday. (5)
He finally went. (6)

" Secondary functions of questions have been widely recognized. Discussions of such secondary
uses of questions (e. g. Churchill, 1978; Goody, 1978) indicate that they may always be
analysed as ”parasitic” on the primary use of requesting information.



No, Susan’s out oftown. (7)
Susan ’sout of town. (8)

The range of possible answers to a wh-question is just as wide.
Which girls did you like at Bill’sparty? (9)

may be answered by
Jane and Mary (10)
The girls we almost ran into in the hallway (11)
None. (12)
I liked Jane and Mary. (13)
Jane and Mary are the ones I liked. (14)
Well, the only friend of Bill’sthat I can barely stand at all
is Susan, and she’s out oftown you know. (15)

This variety of examples also suggests that it would be attractive to treat
certain forms of answers as semantically ”basic”, and to explain other forms
as somehow ”derived”; but what kinds of answers to pick out for the
privileged status of ”semantically basic” is still a matter of debate, as we shall
see.

The next section will sketch and criticize some proposals which analyse
questions and answers in terms of propositions (Hamblin (1973), Karttunen
(1977), Groenendijk and Stokhof (1981)). Proposals of this sort assume that
answers may be analysed independently of the question, as expressing
propositions. This assumption is challenged in section 3. Section 4 discusses a
proposal by Hausser (1980) which, for wh-questions, focusses on answers
which are noun phrases rather than full sentences. Undesirable features of
his treatment are pointed out.

Section 5 presents my own proposal, which also focusses on ”short
answers”. This proposal, which provides the theoretical background for the
treatment of questions and answers in the question-answering system
PHLIQA1 (Medema et al. , 1975; Bronnenberg et al. , 1978), is closer in spirit
to Whately (1826) and Tichy (1978) than to Hausser.

One of the points which will emerge from the discussion in this chapter, is
that semantic correctness is only one of the conditions that an adequate
answer must fulfill. A computer program for question answering must also
embody pragmatic strategies which determine what kind of a correct answer
it wants to give. This issue is discussed in the final section of the present
chapter.



2. Characterizing the Content of a Question in Terms of its Propositional
Answers.

2.1. Hamblin: Questions as Sets of Possible Answers.

Hamblin’s (1973) extension of Montague’s ”English as a Formal
Language” (1970) treats questions and answers. Answers are implicitly
equated with isolated assertions, and analysed as propositions.” Questions
are analysed as sets of propositions: the propositions expressed by possible
answers to the question. A correct answer can then simply be defined as a
proposition which is true and is included in the proposition set expressed by
the question.

The possible propositional answers to a yes/no question in Hamblin’s
analysis are, plausibly enough, the assertion corresponding to the question,
and the negation of that assertion. A yes/no question is therefore analysed as
a set which contains a proposition and its negation. For instance,

Does John walk? (1)

would be analysed as

{ ”wALK(JoHN), ‘-1 wALK(JoHN)} (2)

Besides yes/no questions, Hamblin treats singular wh-questions, like

What dog walks? (3)

which are interpreted as ”mention-one” questions; e.g. , (3) is read as a
request to assert about some entity that it is a walking dog. The possible
answers to (3) that Hamblin considers are sentences like

Fido is a dog and he walks. (4)
Fido is a dog which walks. (5)
Fido is a walking dog. (6)

which express propositions which can be represented by formulas of the form

WALK(a) & DOG(a) (7)

2’ Strictly speaking, Hamblin analyses assertions as sets of propositions. But unlike most
questions, they are singleton sets.
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where a is a logical proper name. Question (3) is therefore analysed as the set
of propositions

{P I 3 x: P = “ (WALK(x) & DoG(x))} (8)

Hamblin focusses on ”mention-one” readings of wh-questions, but this is
not because of any essential properties of his approach. For example,

Which dogs walk? (9)

may be read as a ”mention-all’ question, requesting its addressee to assert
about some set that its elements are all the dogs that walk. In Hamblin’s
spirit, this question (i.e., its possible answers) would be represented by the
formula

{Pl 3 X: P = “ (X = {x I DoG(x) &wALK(x)})} (10)

Hamblin’s representation of the content of a question means that, at the
logical level, answering a question with content Q would consist in finding an
”explicit” formula (i.e. , one which does not quantify over propositions)
which denotes a proposition A e Q such that "A. For yes/no questions this
would amount to finding out which one of the two possible answers denotes
TRUE.For wh-questions, where the set of possible answers is defined by a
formula of the form

{PI 3 x.'P="R(x)}, (11)

finding the logical representation of an answer would consist in finding a
logical proper name i such that R(i).

2.2. Karttunen: Questions as Properties of True Answers.

Karttunen’s (1977) proposal for dealing with the semantics of questions
derives from Hamblin’s but differs from it on some points. He describes an
extension of Montague’s ”Proper Treatment of Quantification in Ordinary
English” (Montague, 1973)which accommodates indirect questions
(embedded whether- and which-clauses). The analyses of whether- and
which-clauses are intended to carry over directly to yes/no questions and
which-questions, respectively.”

3’ Karttunen proposes to do this by equating questions with assertions of the form ”I ask you to
tell me...” I do not see how this could have any advantages above assuming the usual speech
act analysis which distinguishes different illocutionary forces such as questioning, asserting,
etc. Nothing hinges on this aspect of Karttunen’s proposal, however. What I call ”the content
of the question”, i.e. the semantic object of the ”question-operator”, would correspond to the
direct object of the relation representing the verb ”tell” in Karttunen’s treatment.
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Karttunen views answers as propositions. These answer-propositions are
not to be equated with isolated assertions, however, but must be ”processed”
in the ”context” of the question they answer. A question is analysed as the
property of those propositions which correspond to true answers. A (full
sentence) answer with content A in response to a question with content Q can
then be defined to be correct simply iff 'Q(A).

Possible answers to yes/no questions are defined just as in Hamblin’s
treatment. Wh-questions are again viewed as mention-one questions, but
they are treated in a slightly different way. For instance, the possible answers
to

Which girl sleeps? (1)
which are considered, are not the answers of the form

Mary is a girl who sleeps. (2)
but the answers of the form

Mary sleeps. (3)
The possible answers in Karttunen’s treatment are the answers expressing
propositions which can be represented by formulas of the form

Sleep (i) (4)
such that i is a logical proper name and GIRL(i) is true. Question (1) is
therefore analysed as the propositional concept

“{}.P: VP & 3 x: GIRL(x) & P = ‘ sLEEP(x)} (5)

Analysing the content of a question as the property of its true answers, as
Karttunen does, rather than the set of its possible answers, as Hamblin
proposed, does not lead to essentially different consequences. The same class
of answers is accounted for, in an equally simple way. Because of this, one
might prefer the Hamblin treatment, since the content of a question is a
”simpler” object in this treatment; Karttunen assignsa higher level of
intensionality to the content of a question than Hamblin does.

2.3. Answer-Propositions in Context.

The present subsection discusses a departure from Hamblin’s ideas, made
by Karttunen’s treatment, concerning the decision as to what to take as a
paradigmatic propositional answer to a mention-one question. This decision
has immediate consequences for the role which the meaning of the ”wh­
nounphrase” plays in the content of a question. Consider question (1) again,

Which girl sleeps? (1)
with its two answers (2) and (3).

Mary is a girl who sleeps. (2)
Mary sleeps. (3)



12

If (1) is answered by (3), this utterance of (3) ”implicitly states” (as
Hamblin puts it) that Mary is a girl. The propositions which Hamblin counts
as answers are therefore analyses of sentences like (2) rather than (3), which
means that answers like (3) have to be treated as somehow elliptical.

Karttunen’s answers have the form (3) rather than (2); this amendment
suggests a different kind of account of the situation, which has attractive
features. There is some plausibility in the idea that an answer should not be
treated as an isolated assertion, but should be processed in the context
created by the question instead. In this case, what an answer communicates
does not necessarily coincide with the assertion of the truth of the expressed
proposition; instead, it communicates the (possibly more specific) fact that
this proposition constitutes a true answer to the preceding question. What an
answer with content A communicates in the context of a question with
content Q is the information that 'A & (A 6 Q). For instance, in the context
of a question with content

{P| 3 x: GiRL(x) & P=”sLEEP(x)} (4)

(i.e. , assuming the Karttunen amendment of Hamblin’s proposal as far as the
placement of the predicate GIRLis concerned), an answer with content

‘SLEEP (MARY) (5)

communicates the information that

SLEEP(MARY)& ("SLEEP (MARY)e {P | 3 x: GIRL(x) & P = “ sLEEP(x)} (6)

which is logically equivalent to

SLEEP (MARY) & GIRL (MARY) (7)

Thus what is ”implicitly stated” by (3) is exactly the difference between
what it communicates as an isolated assertion (i.e. , the proposition it
expresses) and what it communicates in the context of the question.

A problem with Karttunen’s variant arises, however, when readings of wh­
questions which require exhaustive answers are considered. If

Which girls sleep? (8)

is read as requesting the assertion of a proposition which indicates the
extension of the set of sleeping girls, the set of its possible answers may be
represented as
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{Pl 3 X:P=”({x |G1RL(x)&sL1-:1-:P(x)}=X)} (9)

There seems to be no way of avoiding that the predicate GIRLis involved in
the answer propositions, if these are required to be exhaustive.

2.4. Groenendijk and Stokhof: Exhaustiveness.

Groenendijk and Stokhof (1981, 1982)propose an alternative extension of
Montague’s (1973) ”Proper Treatment of Quantification in Ordinary
English”, in which they try to accommodate embedded wh-clauses. They
mention the possibility that their analyses might carry over to direct question
sentences, although they express strong reservations as to whether this is in
fact the case. Groenendijk and Stokhof’s proposal differs from Karttunen’s
PTQ-extension in two important ways. One is, that they treat ”mention-all”
readings of wh-clauses, rather than ”mention-one” readings. The second
difference is, that they describe the propositional concepts which constitute
the contents of questions in a different way than Karttunen.

To handle certain complications concerning the interaction between wh­
noun-phrases and ”ordinary” quantifiers, Groenendijk and Stokhof
introduce nested abstractions over possible worlds —something which cannot
be expressed in Montague’s intensional logic IL. Groenendijk and Stokhof
therefore adopt TY2 (Gallin, 1975) - a variant of IL which has variables
ranging over possible worlds, and can therefore express intension- and
extension-operators by lambda-abstraction and function-application
respectively. Groenendijk and Stokhof’s treatment, applied to direct
questions, would analyse the content of a wh-question as a property of
propositions (a ”propositional concept”) —the property of being a true
answer to the question. For instance:

Who walks? (1)

expresses the propositional concept

(kw: (M: ext, (WALK) = extW‘(WALK))) (2)

(Notation: w and 1'range over possible worlds; extj (F) is a mnemonic
notation for F (1'),that I use when 1'is of the type ”possible world”, standing
for ”the extension of F inj”.)

Assuming this treatment, an answer with content A given in reply to a
question with content Q is correct iff 'Q = A.

The possibility of accounting for the mention-all reading of wh-questions is
clearly important for a computer system providing automatic question­



14

answering services. In such situations, mention-all readings often are more
plausible than mention-one readings. I also find some plausibility in
Groenendijk and Stokhof’s suggestion that the mention-all reading is needed
in the semantics of wh-clauses embedded under ”know”. Nevertheless, wh­
questions can under certain circumstances be adequately answered by giving
partial information. In section 5.4 I shall come back to this and present a
treatment which covers both cases.

2.5. Problems with Rigid Designators.

In the present section I shall take a closer look at the kinds of answers
which are accounted for by the treatments of questions and answers in the
previous subsections. Consider, for instance, the content of the question

Who walks? (1)

which Hamblin’s treatment analyses as

(AP: 3 x: P = “WALK(x)) (2)

According to this treatment, a valid answer to this question would be any
sentence asserting a true proposition which can be expressed by a formula of
the form

“wALK(b) (3)

where b is a rigid designator. As examples of such assertions, sentences like

Mary walks. (4)

are usually cited.
Answers of this kind are problematic at two levels. It is problematic

whether they ought to be expressible in the logical language, and it is
problematic whether they are expressible in natural language. I shall now
discuss both these problems.

There are intrinsic problems with the assumption that an intensional
logical language contains a logical proper name for every individual.” It
implies that the number of individuals in the domain is denumerable, and the
same for all possible worlds. This severely constrains the descriptive power of
the language. (See Potts, 1976.)

4’ In an extensional language this is less problematic. See footnote in Chapter IV, Section 2.
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One curious consequence of the assumption of a fixed set of rigid
designators is demonstrated by Groenendijk and Stokhof’s system, in which

Who walks? (1)

would be analysed as

(kw: (Xi: ext, (WALK) = extw (WALK))) (5)

thus requiring a correct answer to specify the complete extension of the
predicate WALK,i.e. to specify for every individual in the domain whether it
walks or doesn’t. As Karttunen (1977) noticed in rejecting a different
treatment with this property, this seems to be asking too much. The question
(1) asks for a specification of those who do walk, not of those who do not. A
correct answer to (1) is not expected to give the same information as a correct
answer to

Who doesn’t walk? (6)

It might seem easy to devise a variant of Groenendijk and Stokhof’s
treatment which is less overdemanding: analyse (1) not as (5), but as

(kw: (M: ext, ({x | wALK(x)}) = extw ({x | WALK(x)}))) (7)

However, in a language with rigid designators for all individuals, (7) is
equivalent to (5).

Another problem with the propositions in terms of logicalproper names is
that they usually cannot be expressed in natural language. The English words
for the integers may be viewed as corresponding to rigid designators. The
case of proper names for people is already more complicated; and for most
things, natural languages provide no proper names, nor other means of
rigidly referring to them.

Besides answers in terms of proper names, other kinds of answers must
therefore be accounted for: answers which identify an individual in terms of
contingent properties, as in

The hungriest dog in the neighbourhood walks. (8)
and answers which do not uniquely identify any individuals at all, as in

Some dog walks. (9)
It should also be noted that answers of the form (8) or (9) may sometimes

be more interesting for the questioner than an answer in terms of proper
names. This matter is taken up again in section 6.
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3. Against the Primacy of Full-Sentence Answers.

The treatment of questions and answers that will be developed in section 5
of this chapter comes from a rather different perspective than the treatments
discussed so far. One important difference concerns the decision as to what
kinds of answers to treat as ”basic”. In the treatment presented here, answers
which have the form of a noun phrase are viewed as the basic ones, whereas
the proposals in the Hamblin tradition assume that an answer has the form of
a complete sentence expressing a proposition. The present section compares
the merits of these alternative views.

The decision to treat sentences rather than noun phrases as ”basic
answers” is defended explicitly by Belnap and Steel (1976). As an example
they discuss the question

What is thefreezing point of water, in degrees Fahrenheit,
under standard conditions? (1)

They write:

Suppose the respondent replies to (1'),not with thefull sentence
”Thefreezing point of water under standard conditions is32°F”,
but merely with the noun ”32”. Obviously, its status as an answer,
indeed, its very meaning, depends upon the context of its
utterance. So, since weare now preparing the wayfor a formal
analysis in which weshall not want any assertoric meanings to be
dependent on context, weshall not count ”32” as a direct answer
to (1). Rather, weshall treat it as merely an abbreviated way of
saying ”Thefreezing point of water under standard conditions is
32°F”, and weshall call it (after Hamblin I 958) a coded answer.
Coded answers, including gestures and nods as wellas words, are,
because of their efficiency, of enormous importance in
communication, but they must always be codefor complete and
unabbreviated sentences. (p. 14)

Belnap and Steel express in an explicit way an idea which is implicit in
many other treatments of questions: the assumption that a declarative
sentence which is uttered in answer to a question may be viewed as
independently expressing a proposition, in the same way as the contextless
isolated assertions which have so far been the main topic of study of
philosophical logic and formal semantics. This assumption, however, is false.
One phenomenon demonstrating this relates to an often observed ambiguity
which is exhibited by declarative sentences when they are taken out of
context. For instance,
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John went out with Mary yesterday. (2)

may express various things, such as:

What happened yesterday is that John went out with Mary. (3)
Mary is the one that John went out withyesterday. (4)
John is the one who went out with Mary yesterday. (5)
Yesterday is when John went out with Mary. (6)
It is the case that John went out with Mary yesterday. (7)

As Whately noted as early as 1826,” precisely this ambiguity disappears in
the context of a question —the topics in the answers depend on the
”questioned” elements in the questions. For instance, the sentences (3) - (7)
above would be appropriate paraphrases of answer (2) in the context of the
following questions:

What happened yesterday? (8) for (3)
Who did John go out withyesterday? (9) for (4)
Who went out with Mary yesterday? (10) for (5)
When did John go out with Mary? (11) for (6)
Did John go out with Mary? (12) for (7)

From this we may infer that any answer to a question must be interpreted
in the context of the question it answers. This holds for full-sentence answers
just as well as for ”minimal answers” in the form of noun phrases. There is
thus no reason, from this point of view, to give one or the other a privileged
status.

Before presenting our own treatment of questions and answers, which
takes minimal answers as ”basic”, in section 5, another treatment which
shares this feature is discussed in section 4. The comparison between the full­
sentence answer and the minimal answer approaches will be taken up again
in section 5.5.

4. Hausser: Answers as Noun Phrases.

Hausser (1980) presents a PTQ extension dealing with questions and
answers which, unlike the Montague-style treatments discussed before,
focusses on ”minimal” answers. Wh-questions are assumed to be answered
by noun phrases.

Hausser’s treatment of wh-questions is rather limited. It does not treat
questions involving noun phrases with ”which”, for example, but only wh­

5’ See Prior and Prior (1955).
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questions of the form ”who + verb phrase” or ”what + verb phrase” - i.e.,
the case where the range of the ”querification” does not have to be explicitly
described in the expression representing the question, but where this range
may be assumed to be a semantic type of the logical language.
Hausser analyses the content of a question as a property of NP-denotations.
For instance

Who walks? (1)

is analysed as

(X P: P(WALK)). (2)

The content of a minimal answer is analysed as an NP-denotation, where
an NP-denotation is construed like in Montague (1973), as a function from
one-place predicates to truthvalues.
For instance, the minimal answer

A boy. (3)

is analysed as

(K F: 3 x 6 BOYS:F(x)). (4)

An answer with content A in response to a question with content Q is
correct iff Q (A). This correctness criterion is too tolerant, since it accepts as
a correct answer any noun phrase which, combined with the question, yields a
true sentence. For instance, if those who walk are the boys John, Peter and
Harry, all of the following answers to question (1) are treated as correct:

John, Peter and Harry. (5)
John (6)
No girls (7)

Let us now see how Hausser’s approach works if it is applied to questions
involving ”which-nounphrases”. Mention-one readings of such questions can
be brought under the scope of Hausser’s treatment without much difficulty.
For instance ,

Which boys walk? (8)

when viewed as a paraphrase of
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Who is one of the boys that walk? (9)

may be represented as

(A P: P((k x: x e {y 6 BOYS| WALK(y)}))) (10)

There is a problem, however, with mention-all readings of which­
questions. Consider, for instance, the mention-all reading of (8), which may
be paraphrased as

Who are the boys that walk? (11)

A representation like

(AP: P ((1.X: X = {y 6 BOYS| WALK(y)}))) (12)

would lead to the acceptance of answers which are, to say the least, quite
misleading. For instance, in any state of affairs where at least one happy boy
walks, the answer

No sad boys (13)

represented, for instance, as

(kF.'—.3y e P* ({z 6 BOYSIsAD(z)}): F(y))} (14)

would count as correct.“
An advantage of Hausser’s ”tolerance”, however, is that it can account

effortlessly for certain question/answer pairs which are problematic in
treatments which implement more specific requirements concerning the
question/answer relationship.
Consider, for instance, the question

Who does every man love? (15)

with the answer

A woman (16)

in the reading where a different man may love a different woman. Within

6) Notation: P‘ (X) = d,,{Y|Y X& Y 4=Q5}
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Hausser’s approach, there is no problem in giving one of the readings of
(15) the representation

(KP: Vx e MEN:P (Ky: Lovl-:(x,y))) (17)

while the answer (16) would be represented as

(XF: 3 z e WOMEN:F(z)) (18)

which, in combination with the representation of the question, would yield
the proposition

Vx e MEN: 3 z e WOMEN:LOVE(x,Z) (19)

5. The PHLIQA1 Treatment: Questions and Answers as Describing Sets of
Individuals-.

5.1. Introduction.
The previous sections reviewed some recent proposals which try to give an

explicit semantic analysis of the contents of questions and answers. Section 2
discussed treatments which analyse the contents of questions in terms of their
propositional answers, and indicated serious problems with these treatments
(section 2.5). Section 3 showed that there is in fact no basis for a privileged
status of propositional answers. Section 4 therefore turned to Hausser’s
proposal, which treats short answers as semantically basic, but found his
treatment to the question-to-answer relationship too ”tolerant” for our
purposes.

The present section presents an extended version of the theory underlying
the treatment of questions by the question answering system PHLIQA1
(Medema et al. , 1975; Bronnenberg et al. , 1980). This theory, like Hausser’s,
treats short answers as basic; in its semantic properties it differs considerably
from both Hausser’s treatment and the propositional treatments. Subsection
5.2 of the present section discusses the analysis of questions. Subsection 5.3
discusses the analysis of answers and the question-to-answer relationship for
a limited version of the theory, which only deals with definite answers.
Section 5.4 discusses a revised version, which deals with indefinite answers as
well. Section 5.5 discusses full-sentence answers from the perspective of our
theory.
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5.2. Questions.

The perspective on questions which is embodied in the theory presented
here may be formulated as follows.7)Ayes/no question presents a proposition
(a function from states of affairs to truthvalues), and requests its addressee to
indicate which value this function has for the actually obtaining state of
affairs. Similarly, a wh-question presents a function from states of affairs to
sets of individuals, and requests the addressee to indicate what value this
function has for the actually obtaining state.

Thus, every question is viewed as describing an object: a set of individuals
in the case of a wh-question, a truthvalue in the case of a yes/no question.
The answer to a question must then give a different identification of that
same object. The answer to a yes/no question must specify whether the
truthvalue is TRUE(”Yes”) or FALSE(”No”), while the answer to a wh­
question may name all the designated individuals. It is not difficult to decide
how a theory embodying this perspective will represent the content of a
question: this content is represented by an expression which denotes the
object which the question describes. For instance,

Which boys walk? (1)

is represented as

{x 6 BOYS|wALK(x)} (2)

while

Does John walk? (3)

is represented as

WALK(JOHN). (4)

Multiple wh-questions

Multiple wh-questions can be treated by extending the treatment of simple
wh-questions in a straightforward way. Such questions describe a set of n­
tuples rather than a set of individuals.

7’ The view put forward here has a long history. Whately (1826) expressed ideas which clearly
went in this direction (see Prior and Prior, 1955). He emphasizes particularly the uniformity
between wh-questions and yes/no questions which is, at the semantic level, achieved by this
perspective. Tichy (1978a) formulates it in terms that I find sympathetic as well. His
distinction between empirical and mathematical questions, however, seems to be difficult to
maintain as linguistically valid. (See section 7.1, note 1, for further discussion of this point.)
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Which boys love which girls? (5)

is thus represented as

{u 6 BOYS ><GIRLS I LovE(u)} (6)

(Notation: the variable u ranges over ordered pairs; the operator X forms the
Cartesian product of two sets; n-place relations are rendered as predicates on
n-tuples, so LOVEis a predicate on pairs. Thus, (6) denotes the set of ordered
pairs containing a boy and a girl such that the boy loves the girl.)3)

5.3. Answers.

Among the wide range of possible answers to questions, the treatment
presented here focusses on the shortest possible forms: the so-called
”minimal answers”. In Section 5.5 below, I shall indicate how more elaborate
formulations may be accounted for in terms of this treatment of minimal
answers and present further arguments showing that this perspective
compares favorably with the more usual procedure of treating the shorter
forms as elliptical forms of full sentences.

A minimal answer to a yes/no question is either ”yes” or ”no” while a
, noun phrase identifying or describing the set of individuals belonging to the
set described by the question is a minimal answer to a wh-question.
For instance:

Which girls at Susan ’sparty did you like? (1)
has all of the following responses among its possible minimal answers:

Jane and Mary. (2)
The girls that we almost ran into in the hallway. (3)
None. (4)
Some of the girls that Bill brought. (5)

3’ Quantification over Cartesian products is independently motivated. It is needed to represent
readings of sentences which exhibit the phenomenon of ”cumulative quantification”. An
example of this may be observed in the sentence

600 Dutch firms have 5000 American computers.
when we read it as being equivalent to

The number of Dutch firms which have American computers is 600, and the number of
American computers possessed by Dutch firms is 5000.

Elsewhere I have shown how such readings may be systematically generated by allowing noun
phrases to combine into quantifiers which have Cartesian products (e.g. , in this case, the
product of the set of Dutch firms and the set of American computers) as their range (see Scha,
1981).Therefore, this manner of rendering multiple wh-questions is more attractive and less
ad hoc than it may first appear.
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Among these answers, definite and indefinite answers should be
distinguished. A definite answer has a form which shows that if it is
felicitously used at all, it uniquely defines one set of individuals (whether it
succesfully identifies this set to the questioner is another matter; we shall
come back to that). Answers (2), (3) and (4) above are examples of this. An
indefinite answer has a form which allows (and even suggests) that there are
different sets satisfying the description it presents. Answer (5) above is an
example of this. We shall focus first on definite answers. Indefinite answers
will be dealt with in the next sub-section.

If it is correct, a definite minimal answer to a question describes the same
object as the question. Therefore it may be represented by a logical
expression which denotes the same object as the expression representing the
content of the question. Here are some examples of questions and minimal
definite answers with their corresponding logical expressions.

Q: Does John Walk? (6a)
WALK(JOHN) (6b)

A1: Yes. (7a)
TRUE (7b)

A2: No. (8a)
FALSE (8b)

Q: Who walks? (9a)
{x IwALK(x)} (9b)

A1: The boys. (10a)
BOYS (10b)

A2: John and Peter (11a)
{JoHN, PETER} (11b)

Note that neither in the case of a yes/no-question, nor in the case of a wh­
question, does a minimal answer independently express a proposition.
Although in the case of a yes/no-question a minimal definite answer describes
a truthvalue, it must do so by means of a logical constant; in the case of a wh­
question a minimal definite answer describes a set of entities. In both cases,
the proposition expressed by a minimal definite answer with content A is
constructed by taking into account the question with content Q which
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provided the context for it: it is the proposition Q = A .9)For instance,
proposition expressed by (7) as an answer to (6) is

WALK(JOHN) = TRUE,

the proposition expressed by (8) as an answer to (6) is

WALK(JOHN) = FALSE,

the proposition expressed by (10) as an answer to (9) is

{x | WALK(x)} = BOYS,

the proposition expressed by (11) as an answer to (9) is

{x | WALK(x)} = {JoHN, PETER}.

the

(12)

(13)

(14)

(15)

An answer with content A may now be defined to be correct if it is given in
answer to a question with content Q, and Q = A is true in the interpretation
of the logical language corresponding to the actual world.

It is clear from the above examples that an answer is only counted as
correct if it is complete. For instance, if, in addition to John and Peter,
Harry walks as Well, (11) is counted as a false answer to (9). This means
that the treatment of wh-questions presented so far treats only complete
answers to ”mention-all” readings. In the next section, partial answers to
wh-questions will be introduced.

9) For the case of negative questions, the negation is treated as part of the illocutionary force of
such questions instead of having it inside their propositional content. For instance, assuming
the illocutionary force operator NEGATIVE-QUESTIONfor negated questions and ANSWERfor
minimal answers, analyses of the following form result:

Q: Doesn't John walk?
NEGATIVE-QUESTION(WALK(JOHN))

A1: Yes (he does)
ANSWER (TRUE)

A2 No (he doesn’t)
ANSWER (FALSE)

If ANSwER’Sin the context of NEGATIVE-QUEsnoN’sare now treated the Same way as in the
context of regular QUEsT1oN’S,the answer ”YeS” results in the proposition WALK(JOHN)=
TRUE,While the answer ”No” results in the proposition WALK(JOHN)= FALSE.
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5.4. Indefinite Answers.

The previous subsection only treated definite answers. There are also
allowable answers, however, which lack definite reference.
A question like

Who did you bring? (1)

may be correctly (and informatively) answered by

Two Hungarian linguists (2)

without further identifying the individual items that were brought.
The treatment of the previous section can be modified so as to

accommodate answers of this kind, in the following way. Indefinite answers
are represented as sets. For instance, (2) is represented as

P2 ({x e LINGUISTSI HUNGARIAN(x)}) (3)

(Notation: P,, (A) stands for the set of subsets of A which have cardinality
n.) To put definite answers on the same level, they are represented as
singleton sets. For instance, (4) is rendered as (5):

John and Peter (4)
{ {JoHN, PETER}} (5)

Thus, an answer to a wh-question identifies a set of objects and expresses
that the object described by the question is one of these. The proposition
expressed by an answer with content A given in reply to a question with
content Q is defined as: Q e A. The definition of correctness is modified
accordingly: a question with content Q is correctly answered by an answer
with content A iff Q E A.

Multiple noun phrase answers.

Answers consisting of multiple noun phrases fit the same treatment.
Disjunction between noun phrases is naturally rendered by the union
operation. For instance:

John or two of his girlfriends. (6a)
U ({JoHN} , P2 (GIRLFRIENDS(JOHN))) (6b)
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Conjunction between noun phrases is rendered by means of the Cartesian
product. For instance:

Two dogs, three girls and John. (7a)
(for: (P2 (DOGS)x P3 (GIRLS)X {JoHN}), apply: (Au: set (u)) (7b)

where X is the operator which forms the Cartesian product, and set is an
operator which, applied to an n-tuple, yields the set consisting of the
elements of the n-tuple.

Definite noun phrases as partial answers.

Wh-questions such as:

Who walks? (8)

may sometimes be answered by

John and Peter (9)

when the answer is not intended to be an exhaustive list. This phenomenon
can be described by introducing a second interpretation of definite noun
phrases. In addition to the reading

{{JoHN, PETER}} (10)

(9) may also be assigned the reading

{X | {JoHN, PETER}QX} (11)

Similarly, an indefinite noun phrase may express a partial answer:

Two Hungarian linguists
(12)

is then not only rendered as

P2 ({x e LINGUISTSI HUNGARIAN(x)}) (13)

(in the exhaustive reading), but also as

{X| 3Y e P2({x e LINGUISTS|HUNGAR1AN(x)}):YSX} (14)
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In this way, the fact that the same wh-question may be correctly answered
by complete answers and by partial answers may be accounted for.1°)In this
approach, wh-questions are always viewed as asking for exhaustive answers
(except in the case of ”quantifying in” - see section 6 below).

5.5. Full-Sentence Answers.

In the treatment just sketched, the content of a minimal answer can be
determined directly without any kind of reference to the syntactic/semantic
structure of the question. The proposition expressed by the minimal answer
in the context of the question is then constructed in a completely
compositional way by combining the content of the answer with the content
of the question.

With full-sentence answers, on the other hand, the situation is a little more
complicated. Full-sentence answers often present a minimal answer
embedded in a partial repetition of the question. Our treatment would
involve ”extracting” the minimal answer out of such questions.

Consider, for instance, the question

Which back-end processors did Akzo buy? (1)

which is represented as

{x e BEPS I BUY(AKZO, x)} (2)

The answer

Akzo bought six INTEL chips. (3)

is represented as“)

P6 (INTEL-CHIPS) (4)

‘°’ Answers may be ambiguous between a complete and an incomplete reading. In spoken
language, disambiguation seems to be often accomplished by intonation: a final falling
intonation contour indicating a closed (i.e. complete) answer and the definite absence of
closing markers indicating an open (i.e. incomplete) answer.

11 a Analysing a full-sentence answer thus involves assessing how its syntactic structure and its
constituents match those of the question-sentence, so that the minimal answer which is
embedded within the answer-sentence may be ”extracted”. Since semantic rather than
syntactic matters are focussed on throughout this book, no proposals about the precise details
of this correspondence between question-sentences and answer-sentences willbe given.
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Combining the answer-expression (4) with the question-expression (2) in
the usual way, yields the following expression for the proposition
communicated by answer (3) in the context of question (1):

{x e maps | BUY(AKZO, x)} 6 P6 (INTEL-CHIPS) (5)

It is not possible to construct (5) as a reading of sentence (3) without taking
the question-context into account. To view answers as isolated propositions is
therefore not a viable strategy.

To take another example: the answer to the question

Who stole my bicycle? (6)

may not only be

John. (7)

but also, correctly but less helpfully:
Thepeople who stole your bicycle. (8)

or the rather bizarre sentence
Thepeople who stole your bicycle stole your bicyle. (9)

which, though even more conspicuously uncooperative, can still function as
an answer to (6). If we were to treat (9) as a proposition in its own right,
however, it would be logically equivalent to:

Every dog which doesn’t like cats doesn’t like cats. (10)
(10), however, is clearly a non-sequitur to (6) while (9) is not. This fact can
not be explained from the more proposition-oriented perspectives. It offers
no problems to the perspective presented here.

6. Quantifying into Questions.

6.1. Introduction.

In all examples discussed so far, the illocutionary act of asking a question
could be represented as AsK(C),where ASKis the operator indicating the
illocutionary force, and C is an expression representing the semantic content
of the question (a proposition in the case of yes/no questions, a function from
states of the world to sets of individuals in the case of wh-questions). The
illocutionary force operator was ”bracketed out” during most of the
discussion so far, since this discussion focussed entirely on the contents of
questions.
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Though it is often assumed that this ”division of labor” between
illocutionary force and semantics is generally valid, there exist counter­
examples which complicate the situation. In the present section these shall be
dealt with.

Wh-questions display a kind of quantifier scope ambiguity which does not
seem to arise for assertions and which cannot be accounted for in the above

scheme. An example of this is shown by the question
What is the price of each of Akzo’s computers? (1)

if we consider the reading which requests for each of Akzo’s computers a
specification of its price.

6.2. The ”Compound Speech Act” Analysis.

It has been suggested before, that the speech act of ”asking” need not be
viewed as an elementary action, but may be analysed in terms of the
illocutionary force of ”requesting” and a predicate which describes what the
addressee of the question is expected to do with the question content.
Applying suchan analysis creates the ”space” which is necessary to express
the quantifier scope ambiguity in questions like (1) above”)

The ASK-operatorabove may thus be split into two parts: an operator
BRING-ABOUT,applicable to expressions of the logical language, and a
predicate IDENTIFIEDwhich is true for an individual iff it is being identified.
Instead of ASK(C) we now get BRING-ABOUT(AIDENTIFIED(vC)).For instance

Which boys walk? (2)

is represented not as

ASK(A{x 6 BOYS | WALK(x) }) (3)

but as

BRING-ABOUT(AIDENTIFIED({x 6 BOYS | WALK(x) })) (4)

The compound structure of the illocutionary force operator now creates
the possibility to represent the quantifier scope ambiguity that seems to be
present in question sentences like (1). Sentence (1) above may now be
assigned two readings: the implausible one which assumes that all Akzo’s
computers have the same price is rendered as

'2’ Grosz (1982) suggests applying this idea to an analysis of ”asking” proposed by Cohen and
Perrault (1979).
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BRING-ABOUT(AIDENTIFIED

([Ly | Vx e AKZO-COMPUTERS: y = PRICE(x)])) (5)

and the more plausible one which asks for a list of prices is rendered as

BRING-ABOUT (AVx e AKZO-COMPUTERS:

IDENTIFIED(PRICE(x))) (6)

The sentences which led Belnap to include the ”size-specification” feature
in the question-operator of his erotetic system ( Belnap and Steel, 1976,
section 1.31) display a special case of the phenomenon treated this way.
Formulated most unambiguously, these questions take the form ”What’s an
example of a. ..”, ”What are some of the. ..”, ”What are at least three. ..”,
etc.

These cases can be dealt with along the same lines as (1) above. For
instance,

What is -theprice of two of Akz0’s computers? (7)

has two readings, which can be rendered in a way which is exactly analogous
to (5)-(6) above:

BRING-ABOUT (AIDENIIEIED

([Iy | 32x 6 AKZO-COMPUTERS:y = PRICE(x)])) (8)

BRING-ABOUT( 32 x e AKZO-COMPUTERS:

IDENTIFIED(PRICE(x))) (9)

6.3. A Proposal by Groenendijk and Stokhof.

An ingeneous treatment along different lines was put forward in
Groenendijk and Stokhof’s (1981) proposal for the semantics of embedded
wh-clauses, that we discussed in section 2.4 of this chapter, in which question
(1) is analyzed as

(kw: (xi: Vx e AKZO-COMPUTERS:

ext, (PRICE(x)) = ext,.,(PR1cE(x)))) (10)

(Notation: w and i range over possible worlds; ext, (F), where f has the type
”possible world”, stands for F(j), and yields the extension of F in j).
To understand that this is in fact correct, it may help to realize that, as
Groenendijk and Stokhof point out, the universal quantification can be seen
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as an abbreviation for a conjunction. (10) is then equivalent to

(Aw: (Ki: ext, (PRICE (C1)) = ext,., (PRICE (C1)) &

ext, (PRICE(C2)) = extw (PRICE(C2)) &
.......................................... .. &

ext, (PRICE(C,,)) = extw (PRICE(C,,)))), (11)

where C,, ..., C" are the proper names of all Akzo’s computers.
This treatment works only for the case of ”each” however, because it

exploits a particular property of universal quantification which does not
apply to other quantifiers. For instance, if one would try to treat

What is the price of one of Akz0’s computers? (12)

along the same lines, one would get

(kw: (Xi: 3x e AKZO-COMPUTERS:ext, (PRICE(x)) = extw (PRICE(x))))

(13)

Since the existential quantifier can be viewed as an abbreviation for a
disjunction, (13) is equivalent to

(Aw: (Xi: ext, (PRICE(C,)) = extw (PRICE(C,)) V

ext, (PRICE (C2)) = ext,,, (PRICE (C2)) V
......................................... .. V
ext, (PRICE(C,,)) = extw (PRICE(C,,)))) (14)

Thus, Groenendijk and Stokhof’s proposal lacks the generality that one
should hope for.

6.4. The PHLIQA1 Treatment.

The present subsection present an alternative treatment of the problem
described in section 6.1. This treatment, which has attractive computational
properties, was employed in the PHLIQA1 system. It embodies a different
analysis of the speech act of asking than the one presented in subsection 6.2.

As a point of departure, let us consider again the analysisof the contents of
questions that was presented so far: the content of a yes/no question is a
function from possible worlds to truthvalues, and the content of a wh­
question is a function from possible worlds to sets of individuals. Questions
are now viewed as displaying pragmatic objects, to be called ”kernel
questions”, which have a one-to-one correspondence with their contents as
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just described. The function QC assigns to any function cpthe kernel question
QC (cp)which has cpas its content.

This view is not incompatible with the speech act perspective on discourse.
An illocutionary force operator DISPLAYmay be assumed which operates on
the question object as just described. 13)Thus,

Which boys walk? (15)

is analysed as

DISPLAY(Qc ({x e BOYS| wALK(x)})) (16)

Example (1) above is now dealt with by allowing one question sentence to
display not only a single kernel-question, but a set of kernel questions as well.
Thus, (1) is analysed as

DISPLAY(for: AKZO-COMPUTERS,

apply: (Ax: QC(A{PRICE(x)}))) (17)

Note that nothing has to change in the account of the question-to-answer
relationship as it was described before: it simply applies separately to all
kernel questions in the ”display set” and their answers.

There is an important difference, however, between answering to a
question-sentence displaying a set of kernel questions and answering to a
question-sentence displaying a single kernel question: in the former case, the
short form of the answer may be less informative than the full-sentence form.
For questions about prices, for instance, the short form of the answer may be
simply the value of the question content.

What is the price of the Illiac? (18)

analysed as

D1sPLAY(QC(A{PRICE (ILL1AC)})) (19)

is answered by the value of

{PRICE (ILLIAC) } , (20)

‘3’Technical reformulations of results of speech act theory would be necessary, however. Many
different kinds of utterances could be brought together under the common denominator of
one illocutionary force called DISPLAY.What current speech act analyses account for in terms
of the differences between illocutionary forces, would then be accounted for in terms of the
differences between the kinds of objects displayed.
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for instance

4.000.000 $ (21)

If (1) is answered in this way, the answer is a list like

512.000 $, 56.000 $, 110.000 $ (22)

It would be more informative to give answers in full-sentence form in this
case. If for every element 1'in the extension of AKZO-COMPUTERS,the
proposition expressed by

{I>RIcE(i)} = V, (23)

where V is the value of PRIcE(i),would be formulated in English, the
questioner would not only be informed of all the prices which occur among
the prices of Akzo’s computers, but would also find out which computer has
which price.

In order to give the same information without having to resort to full­
sentence answers, PHLIQA1 does not analyse (1) as (17), but as a slightly
different expression, which also asks for an identification of the elements of
the question-content which are ”quantified in”:

DISPLAY(f0r.' AKZO-COMPUTERS,

apply: (Ax: QC(A<x, {PRICE(x)}>))) (24)

PHLIQA1 answers every kernel-question by applying a function called
IDENTIFICATIONto the extension of its contents. Answering (24) is conveying
the value of

(for: AKZO-COMPUTERS,

apply: (Ax: IDENTIFICATION(<x, {PRICI-:(x)}>))) (25)

As shown in detail in section 7.2, this results in a answer-expression like

{<<1BM,360/20, 65 KBYTE>,$95ooo>,
<<I>HII.II>s,P1800, 24o KBYTE>,$ 312000),

«PHILIPS, P800, 16 KBYTE>,$ 56ooo>>} (26)

which identifies every computer by its brand name, type number and core
size, and every price by its numerical value in dollars.

”Quantifying in” by means of indefinite quantifiers may be brought under



34

the scope of this treatment, if ”indefinite sets of kernel questions”
(represented as sets of sets of kernel questions) are allowed to be expressed
by an interrogative sentence. For instance,

What is the price of two of Akzo’s computers? (27)

is, in the reading we are interested in now, analysed as

DISPLAY(for: P2 (AKZO-COMPUTERS),

apply: (KY: (for: Y,
apply: (M: QC(“On {PRICI-1(x)}>)))) (28)

The argument of DISPLAYhere denotes a set of sets of kernel questions. In
displayingsuch a set, the questioner requests that an arbitrary element of it
be answered. (If this extension is adopted, the treatment of ”quantifying in”
with ”each” must be adapted, as displaying a singleton set with as its element
a set of kernel questions.)

7. The Pragmatics of Answering.

7.1. Categories of Answers.

It is possible and desirable to make distinctions between different kinds of
complete correct answers, as the three answers (2), (3), (4) to question (1)
show.

Q: Whichnumbers did John writeon the blackboard? (la)

{X IIW0B(x)} (lb)

A1: The numbers that John wrote on the blackboard. (2a)

{{x IJW0B(x)}} (2b)

A2: The numbers that Mary wrote in the notebook. (3a)

{{x I MWIN(x)}} (319)

A3: Five and seventeen. (4a)

{{5,17}} (4b)
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While answer A1 is certainly correct, it is certainly never the desired
answer. This may be explained by pointing out that it is uninformative —an
answer with content A in reply to a question with content Q may be defined
to be uninformative iff Q e A is logically equivalent to TRUE”)

A2 and A3 are both informative answers, according to this definition.
Which one is preferred, depends on the context in which the question is
asked. Though A3 is in a sense more explicit, A2 may sometimes be more
interesting.

A3 has a special property which is worth considering: it identifies the set of
individuals the question asked about, without relying on any non-linguistic
knowledge on the part of the heater. Expression (4b) is an L-determinate
expression (Carnap, 1947): an expression which has the same denotation for
all interpretations of the language. The natural language formulation of this
answer used the logical proper names which the English language contains
for the individuals involved: ”five” and ”seventeen”. For individuals

belonging to a non-mathematical type, however, natural languages usually do
not have logical proper names. L-determinate answers are therefore not
always possible. The general case is, that an answer must rely on a certain
amount of knowledge concerning contingent facts on the part of the
questioner, in order to identify to him the individuals he asked about.

It may be observed that an adequate answer must give information about
the identity or the properties of the individuals in the set described by the
question. New information which only says something about the set as a
whole is not enough. If (5) is answered by (6) or (7), for instance, a feeling of
somewhat evasive behaviour on the part of the answerer results.

Which IBM computers did you buy last year? (5)
Some computers. (6)
Three IBM computers. (7)

“’ This looks as if correct answers to mathematical inquiries are necessarily uninformative. This
need not be the case, however, if the mathematical terms of natural language are translated
into descriptive expressions, rather than logicalones. The mathematical metalanguage used
to describe the semantics of English must be kept ”inaccessible” for its objects: natural
language expressions cannot refer to the notions underlying the formalism that is used for
explicating their meaning. Therefore, for instance, in

Does twoplus two equal four?
”two”, ”four”, ”plus” and ”equal” must be analysed as expressions with descriptive types.
The definitions of mathematical notions must be introduced as contingent truths, and the
”necessary truth” of mathematical propositions be explicated by quantifying over a subset of
the possible worlds.
A treatment along these lines may avoid the separation between mathematical and empirical
propositions we find in Tichy (1978ab).
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7.2. Pragmatic Strategies.

From this discussion, it should be clear that semantic considerations alone do
not determine what an adequate answer to a given question is. Semantic
considerations do impose important boundary conditions: an answer must at
least be correct and informative. Whether a wh-question asks for an
identification of separate individuals or for a characteristic property of a set,
however, is a different matter which cannot be decided by considering the
linguistic form of the question only but depends on the non-verbal context in
which the question is asked. If an identification of individuals is what is
desired, a model of the epistemic state of the questioner is needed if one is to
guarantee that the identification will be succesful.

For a computer question answering system, a complete model of the
epistemic state of the questioner is obviously not available. But a system
which does not answer isolated questions but conducts longer ”dialogues”
may gather useful information about the questioner’s knowledge and
interests from the ”history” of the dialogue. The dimensions of the subject
domain that are used to describe the objects in questions are probably
different ones than those that should be used in the answers. Follow-up
questions triggered by a similar previous question indicate what the
dimensions are that the questioner is interested in. So far, succesfully
implemented systems do not use dialogue history in this way, however. They
use a different strategy: relying on plausible general assumptions.

For instance, a system which answers ”exam questions” about its model of
a visual scene which at the same time is displayed on a screen may identify
objects in this scene by means of definite descriptions in terms of the
properties displayed on the screen. The answers given by the SHRDLU
system (Winograd, 1972)belong to this category. The problem of
constructing the appropriate definite descriptions was studied more
thoroughly in the context of the HAM-RPM system (Wahlster et al. , 1978).

For a system like HAM-RPM, two phases can be clearly distinguished
within the process of answering a wh-question about the objects in a visual
scene. The first involves finding the objects described by the question, i.e.
constructing an internal representation of this set of objects in terms of
logical proper names. In the second phase it is decided how to identify these
objects to the questioner, in terms of the visual features of the scene, in a way
which is informative and maximally efficient.
For the practice of question—answering,indefinite answers are important

because very often the objects that a question asks about cannot be uniquely
identified. In that case, it may nevertheless be possible to give a satisfying
indefinite answer.

The fact that the information which would uniquely identify an object is
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lacking in a data base is not always an accident. Often, those who query a
data base about certain kinds of objects are not so much interested in the
identity of these objects, as in certain of their properties. Two examples of
data bases where this situation is quite common are the REL data base about
ships and their cargo, and the PHLIQA1 data base, about computers and
their users. ‘5)

REL gives for certain kinds of objects no property that could possibly
identify it, but only its category. For instance, the question

What is on the upper vehicle storage area of the USS Ogden? (1)
receives the answer

torpedoes
torpedoes
torpedoes
torpedoes
torpedoes
torpedoes
torpedoes
torpedoes
torpedoes
torpedoes (2)

whichmeans ”ten torpedoes”.
In the PHLIQA1 program, some salient attributes are distinguished for

every kind of object. As an answer to a question about objects of a given
kind, the values of these attributes are given for every object in the answer­
set. For instance, the question

Which computers did Akzo buy? (3)

would be represented as something like

{x e COMPUTERS| BUY (AKZO, x)} (4)

For a given data base, the evaluation of (4) (i.e. its transformation into a
simplest equivalent expression in terms of logicalproper names; see Chapter
IV, section 2) may yield

{C107C12:C48}

where C10,C12and C43are logical proper names for individual computers.
These logical proper names have no natural language equivalents —and if

‘S’RELis described in Henisz-Thompson and Thompson (1978). The above example is from a
”live” session I conducted with the system on August 17, 1979.
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they had, this would not be what the questioner would be interested in.
Therefore, the PHLIQA1 system does not directly evaluate the expression
which represents the question content. First, the function IDENTIFICATIONis
applied to it. This function expresses how different kinds of entities may be
described to the questioner. Depending on the type of its argument, it is
further translated into an expression which indicates in detail how the
elements of the ”question-set” will be described. For instance, (4) is first
transformed into

(for: {x e COMPUTERS| BUY(AKZO, x)},

apply: IDENTIFICATION) (6)

and when the type of the arguments of the application of IDENTIFICATIONis
taken into account, this is further translated into

(for: {x e COMPUTERSI BUY(AKZO, x)},

apply: (Ky: <I3RAND(y),
TYPE(y),

COREsIzE(y)>)) (7)

which is, for the data base just considered, equivalent to

U0"-' {C10, C12, C43}

apply: (Ky: <BRAND(y),
TYPE(y),

COREsIzE(v)>)) (8)

andto

{<BRAND(C10), TYPE(C,0), CORESIZE(C10)>,

<BRAND(C12), 'I'YPE(C12), CORESIZE(C12)>,

<BRAND(C43), TYPE(C43), CORESIZE(C48)>} (9)

Thus, if instead of (4), (7) is evaluated, the result might be:

{<IBM, 360/20, 65 KBY'I‘E>,

<PHILIPs, P1800, 24o I<BYTE>,

(PHILIPS, P800, 16 KBYTE>} (10)

Note that the simple way in which PHLIQA1 gives its indefinite answers is
only applicable within certain limitations. The comprehensibility of the
answer relies on the fact that the questioner can often infer from a value
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(such as ”IBM”, ”360/20”, ”65 kbyte”), which aspect of a computer this
value describes (i.e. brand, type, coresize). This is not necessarily always the
case. A more generally applicable method would also indicate in the answer
the identification function that was used in obtaining the values. Such an
answer might then be rendered in English as ”an IBM of type 360/20with 65
kbytes of core, a Philips of type P1800 with 240 kbytes of core and a Philips of _
type P800 with 16kbytes of core”.

8. Conclusion.

Interrogatives are natural candidates for serving as an interface medium
between people and computer systems which provide information on
request. An automatic data base access system with suitable deductive
capabilities is designed to fulfill exactly the expectations a natural language
user may have when he asks a question to a conversation partner who is
obedient and conscientious, although unimaginative and literal-minded.
Natural language question-answering systems of this sort are the subject of
this book. '

In a question-answering system with a modular structure, it is useful to
make use of separate modules for understanding the incoming question and
for answering it on the basis of the information in the knowledge base of the
system. The question understanding module must communicate to the
answer computation model the ”content” of the question; a precise
specification of what the desired information is. Formulating the content of
questions in a precise way so that it is possible to give a model-theoretic
account of the connection between the content of a question and the equally
precisely described content of a correct answer is a necessary precondition, in
my opinion, of performing the question answering task satisfactorily. The
present chapter reviewed the literature on this topic and presented an
original proposal for dealing with many of the more difficult problems in an
adequate way. This approach was in large part implemented in the
PHLIQA1 question-answering system. The structure and operation of this
system are described in the following chapter.
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Chapter III. The PHLIQA1 Question-Answering
System

1. Introduction.

The PHLIQA1 question—answeringsystem represents questions and
answers as logical expressions in the fashion described in the previous
chapter. In the present chapter, the structure of the PHLIQA1 system willbe
described while the knowledge representation methods used in the system
are the topics of discussion in Chapter IV and V. Before going on with
detailed descriptions of the system, the question answering task PHLIQA1
was designed to carry out will be sketched along with the structure of the
CODASYL data base about which the queries were asked.

2. External Requirements for a Question-Answering System.

The present section specifies the task that the PHLIQA1 question­
answering system was designed to perform. In short, the system is required to
answer isolated English language questions typed in by a single user through
an alphanumeric terminal. The questions inquire about the state of affairs in
a limited subject domain, represented in some conventional data base. The
data base is assumed to be given prior to the design of the question—answering
system. It may use arbitrary kinds of storage structures. The user is not aware
of the structure of the data base; he is only given an informal characterization
of the subject domain that he can ask questions about. He may only ask
genuine questions, in a rather strict sense of the word: requests for
information, formulated in a direct and literal way, which have the syntactic
form of a question. He cannot add new information, introduce temporary
hypotheses, etc.

The system may give curt answers. For instance, a yes/no question may be
simply answered by ”yes” or ”no”, a ”how-many”-question may be
answered by a number, a ”which”-question may be answered by a list of
names. To get a more concrete feeling for what is involved in the design of
such a system, let us consider a more or less realistic CODASYL data base
and the natural language questions that can be asked about it.

The data base we shall consider contains the kind of data that might be
used by the marketing department of a computer manufacturer in Holland:
information about the computer installations in use in the countries of the
European Common Market, and about the companies where they are
installed.

The structure of the data base is depicted infig. 1. The boxes stand for
record types, indicated in capitals. The data base contains a number of
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records of every record type. Records correspond to real or imaginary
objects. For example, every record of the type CONFIGURATIONcorresponds to
a computer used by a European Company. The two most important ways of
storing information about such objects in a CODASYL data base are:
1. By means of attribute values in the record itself. For example, the

attribute date-installed is defined for records of type CONFIGURATION.The
value of this attribute represents the month and the year in which the
computer was installed at its current user. Values of attributes are always
strings of symbols, such as names or numbers.

2. By means of link-sets. These are indicated by arrows in fig. 1. Each arrow
indicates a link-set type, defined between two record types. The record
type located at the tail of the arrow is called the owner record type and the
record type located at the head is called the member record type. For each
Occurenceof the owner record type there is an occurrence of the link-set
which relates the occurrence of the Ownerrecord type to zero or more
occurrences of the member record type. In fig. 1, for example, each
occurrence of the link-set type COUNTRY-SITESrelates a COUNTRYrecord
and a number of SITErecords. This is intended to represent the relation
between a country and the sites in this country where computers are
installed.

In this way, the data base represents information about computer
configurations, such as
—the SITEwhere the computer is installed, and the CORPORATIONto which a

SITEbelongs,
—the model and the manufacturer of the central processing unit (CPU­

MODEL),

- the peripheral equipment (PERIPHERAL-GROUP).
Some complications displayed by this data base are:
—Countries are represented as records, but cities are only indirectly

represented by the attribute city-name in the record type SITE.
—Peripherals are represented by a record of type PERIPHERAL-GROUPfor each

group of peripherals of the same model belonging to the same computer
configuration. The attribute quantity specifies the number of peripherals in
such a group. Of course, a human interrogator of PHLIQA1 need not be
aware of this and may use freely the words ”peripherals”, ”cities” and
’’countries”.

—We do not assume that the attribute whose values identify the different
records within a record type always has some intrinsic meaning. For
reasons of storage and retrieval there are unique keys for each record;
although such keys may sometimes coincide with values of attributes that
are of interest to the user (for example, the attribute ”name” in the record
type CPU-MODEL),in general this need not be the case. In order to formulate
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an answer to a question, the system may therefore have to choose an
appropriate way of identifying the object represented by a record.

Let us now look at some questions which one might ask about the subject
domain which has its state of affairs represented by the data base of fig. 1.‘)

1. How many computers are there in the Netherlands?
What is the number of IBM computers in Germany?
What computers in Eindhoven were installed before 1970?
In what month in 1972did Shell buy a computer from IBM?
Does each computer in Eindhoven have a cpu made by Philips?
What companies have a computer with a cpu that costs more than
100.000 dollars?

What is the price of the most expensive configuration of Unilever?
How many bytes of core memory does Akzo’s Arnhem computer have?

9. Are there companies with several IBM computers that have peripherals
not made by IBM?

10. Which of the companies that possess more than 2 configurations bought
a cpu before May ’68?

Question 1 is one of the simplest questions that can be imagined. But even
this question raises problems if we try to answer it on the basis of the
information in the data base. The question asks for a number: the number of
computers in the Netherlands. This number is not explicitlypresent in the
data base. Assuming that records of type CONFIGURATIONcorrespond to
computers, the system will have to count the records which stand for
computers in the Netherlands. However, CONFIGURATIONrecords do not
directly contain information about the country where the computer is.
PHLIQA1 must use the fact that this is the country of the site where the
computer is located. , _ .

Other problems are raised by words like ”month”, ”cpu”, and
”companies” in questions 4, 5 and 6. Neither months not cpus are
represented in the data base, but there are codings for month and year
together, and there is a record for the cpu model of every configuration.
Companies are represented in the data base in two different ways: computers
users as CORPORATION,computer manufacturers as MANUFACTURER.

A company which is both is represented twice. Another problematic aspect
of the natural language questions consists in the various kinds of ambiguity
which they allow; for example, in their syntactic structure (see example
questions 6 and 9) and in the meanings of their words.

These fairly arbitrary examples show a large gap between the English
formulation of the questions and the manner in which the relevant
information is stored in the data base.

9°.“S3‘$".‘*‘5*’!\’

" All these questions are actually answered by the PHLIQA1 Program.
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How to bridge this gap in a reliable and computationally effective way is an
important design issue in the construction of a question-answering system.

3. The Top Level Design of PHLIQA1.

Constructing a logical representation of the content of a question is a
useful intermediary step in the complicated process of computing an answer
to a question formulated in ordinary English. Such a representation shows in
a simple and unambiguous way what information the questioner wants
without, however, becoming involved with the details of how to compute it.
In Chapter II it was already discussed how the contents of questions as well as
the contents of answers may be represented so that the correctness of an
answer to a question can be accounted for. It should be clear, then, that the
question answering function may be decomposed into three parts:
—the function which assigns to an input-question the logical representations

of its readings.
—the function which assigns to every formal query expressed by a logical

formula an adequate answer expression
—the function which assigns to an answer, represented as a logical formula, a

natural language formulation.
Distinguishing between the three component functions is important, because
the entire question-to-answer mapping is too complicated a function to
describe in one stroke. In order to implement the mapping in an efficient and
reliable manner it is necessary to break it down into as many separate
components as possible. We must therefore take advantage of any
conceptual distinctions which may lead us to distinguish well-defined sub­
components.

For the sake of simplicity, in this treatment of PHLIQA1 a rather trivial
version of the last function which translates a logical formulation of an
answer into an answer in natural language will be assumed. The possibility
for further subdivision of the first two functions will be considered in some
detail, however.

What a logical representation of a reading of a question amounts to
depends on the semantic primitives which are assumed in the logical language
which is used. We shall argue that several different levels may be used in
succession: an English-oriented Formal Language (EFL), a formal language
which contains one descriptive constant for every descriptive lexical item of
English; a World Model Language (WML) whose constants correspond to
the concepts which constitute the subject domain; and the Data Base
Language (DBL) whose constants are determined by the structure of the
data base of the system. Assuming that these three levels are reasonable and
sufficient intermediate steps between a question and its answer, the question­
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to-answer function would be seen as the composition of:
—the function which assigns to any question its EFL representations.
—the function which assigns to any EFL expression its WML

representations.
—the function which assigns to any WML expression its DBL

representations.
—the function which assigns to any DBL expression the values it may have

according to the data base.
—the function which assigns to a value expression a natural language answer

formulating it.
(Seefig. 2.) The three languages, EFL, WML and DBL will now be discussed
in more detail.

4. An English-Oriented Level of Meaning Representation.

The EFL representation of an input question expresses only the aspects of
its meaning that do not depend on the subject domain. These aspects include
the semantic consequences of the syntactic structure of the sentence, the
meaning of ”function words” (such as ”the”, ”each”, ”and”, ”than”, etc.),
and the semantic consequences of the internal structure of descriptive words
(e.g. analysing ”computers” as the plural of ”computer”, and ”biggest” as
the superlative of ”big”).

Without taking the subject-domain into account, however, the referential
aspects of word meaning (such as the notion ”computer” or the notion ”big”)
cannot be analysed. Relations betweenmeanings of different words never
hold completely generally, but always depend on the domain of discourse to
which the words are applied.

The semantic analyses which are put forward in the context of formal
linguistics and philisophical logic are usually subject-domain independent in
this way (see, e.g. , Montague (1970, 1973) and related work). They assume
one semantically primitive descriptive constant in the logical language for
every descriptive lexical item of the natural language. However, if we want to
allow the natural language words to be ambiguous, this method must allow
more than one lexical entry for one word or morpheme. And the question:
”how many entries do we need?” cannot be assessed independently of the
subject domain to be addressed. Landsbergen and Scha (1977) conclude
therefore that a truly subject-domain-independent meaning representation
can only be formulated in terms of a logical language which is ambiguous.”

2’ It is not possible to account for the different meanings of a constant by the fact that it can have
different denotations under different interpretations. This is most clearly seen when we
consider a sentence which contains one word used in two meanings, such as ”The pen is in the
pen”. If we have only one constant representing ”pen”, and an interpretation of the language
assigning one denotation to every constant, we preclude the possibility that the two
occurrences refer to different objects. See Landsbergen and Scha (1977, section 4.5), and
Bennett’s (1978, note 4) comments on Montague (1970, pp. 209/210).
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Fig. 2. A global diagram of the PHLIQAI system
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The model theory of such a ”super-language” is more complicated than the
model theory for an ordinary logical language. We cannot consider directly
the denotation of an expression under an interpretation of the language, but
we must use two steps: first defining the unambiguous instances of the super­
language expressions, and then assigning an interpretation to the ”instance
language”. Put somewhat more formally, the semantics of the language is
defined as follows:

1. An Instance Language is defined, which is syntactically identical to the
superlanguage except for its (unambiguous) constants.

2. A Constant Instantiation CI is defined: a function assigning to every
constant c of the super-language a set of constants CI(c) of the Instance
Language. This defines for every super-language expression e a set of
instance expressions EI(e): exactly all those instance language expressions
which could be generated by replacing every ambiguous constant c in e by
an element of CI(c).3)

3. The Instance Language is interpreted in the usual way. This interpretation
defines for every instance language expression a denotation, and for every
super-language expression a set of denotations: the denotations of their
instance expressions.

Logical equivalence and similar notions may be defined for the super­
language in a rather self-evident way. EFL expressions A and B are logically
equivalent if for any instantiation function EI:

Vxe EI(A): 3y e EI(B)IxEy &
Vy e E1(B):_3x e E1(A):x sy.

where we use 2 for logical equivalence between expressions of the instance
language.

Using EFL as an intermediate level of representation has an important
practical advantage: a well-defined meaning representation can be
constructed in parallel with the syntactic parse of the input question, while
the treatment of semantic word-ambiguities is postponed until after that
phase. Because many words turn out to be manifold ambiguous when their
meaning is analysed in a precise logical framework, this set-up is more
efficient than one which puts the word-ambiguities in the lexicon.

3) Compared to the definition actually employed in the PHLIQA1 system, this is a little
simplified. See Bronnenberg et al. (1980, section 6.1) for details of this definition. The
unpleasant complexities of these details follow from the desire to avoid semantically
anomalous instance expressions. (See Appendix for definition of semantic anomaly.) It might
be preferable to allow semantically anomalous expressions and to simplify the definition
accordingly.
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The descriptive atomic types and descriptive constants of EFL.

In EFL we do not subdivide the domain of ”real world” individuals into

distinct categories. There is only one descriptive atomic type: entity.
For every descriptive word of English there is one constant. Homonyms with
identical syntactic properties are thus represented by one constant. As we
shall see below, the semantic type of the constant only depends on the
syntactic category of the corresponding word.
For every proper name there is a constant of type entity, e.g. EINDHOVENfor
the word ”Eindhoven”, HOLLANDfor the word ”Holland”.
For every noun there is a constant of type S(entity), e.g.

CPUSfor the words ”cpu” and ”cpus”,
CONFIGURATIONSfor the words ”configuration” and ”configurations”,
COMPUTERSfor the words ”computer” and ”computers”,
CITIESfor the words ”city” and ”cities”,
PI4OOSfor the words ”P1400” and ”P1400s”.

For every preposition there is a constant of type
(<entity, entity) —>truthvalue),

e.g. IN for the word ”in”,
OF for the word ”of”.

For every verb there is a constant with a type of the form
(<entity, ..., entity) —>truthvalue),

depening on the number of arguments that the verb takes.
For instance:
for ”to exist”, Ex1sTwith type (<entity)-9 truthvalue),
for the main verb ”to be”, BEwith type

(<entity, entity) —->truthvalue),
for the main verb ”to have”, HAVEwith type

(<entity, entity) —>truthvalue),
for ”to possess”, POSSESSwith type

(<entity, entity) —>truthvalue).
For every adjective there is a constant of type
(entity ——>truthvalue), e. g. DUTCHfor ”Dutch”.

5. The World Model Language.

The World Model Language is a formal language whose constants
correspond to concepts which form a set which characterizes PHLIQA1’s
subject domain. Its expressions have different ”semantic types”; they can
denote truth values, various other kinds of individual objects (e.g. cpus or
integers), collections (e.g. sets or lists), functions, etc.
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A set of concepts is defined as characterizing a certain subject domain, if it
has the following properties:
—If one knows the extension of each of the concepts, one is completely

informed about the state of affairs in the subject domain.
—The extension of each of the concepts is independent of the extensions of

all the other concepts.”
The first property establishes that a ”characterizing set” includes enough
concepts to cover all aspects of the subject domain. The second property
establishes that this happens in a parsimonous way: the set does not include
unnecessarily many concepts. In particular, it does not include concepts
which are definable in terms of other concepts which are included. For
example, a subject domain may involve the relation between a site and the
city where it is located, as well as the relation between a city and its country.
In that case the ”characterizing set” does not include the relation between a
site and its country, since this relation is definable in terms of the other
relations.

For the subject domain of PHLIQA1, the descriptive atomic types and
descriptive constants of WML are indicated below.

Descriptive atomic types:

company, site, country, city, conf (for configuration), cpu, cpumodel, periph
(for peripheral), per-model (for peripheral model), per-type (for kind of
peripheral), cmem (for core memory), calmonth (for calender month),
calyear (for calendar year), mem-unit (for memory unit), money-unit, dur­
unit (for duration unit).

Descriptive constants.

For some of the atomic types there are descriptive constants. We shall not list
these, but only give some examples.
For type company: PHILIPS,IBM,AKZO.
For type country: NETHERLANDS,BELGIUM,FRANCE.

For type city: EINDHOVEN,AMSTERDAM,PARIS.

For type calmonth: JANUARY,FEBRUARY.
For type calyear: YI960, YI96I.
For type cpumodel: P1400.

4’ In data base terminology, a World Model Language as defined here is a completely normalized
data model withoutfunctional dependencies. It may not always be possible to formulate such a
data model for any given subject domain in a given logical language. Dependencies must then
be formulated explicitly by means of axioms. See Van Griethuysen, 1982.
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For every atomic type (1there is a constant of type S(a) which denotes, under
every interpretation, the domain of (1.This constant is written as: GSG.For
instance: GSc,,,,,,,,,,,y,GSS,-,e,etc.
The other descriptive constants are functions:

Function

F-CY-NAME

F-COUNTRY-NAME

F-CITY-NAME

F-CPUMODEL-NAME

F-PERMODEL-NAME

F-PERTYPE-NAME

F-CALMONTH-NAME

F-SITE-ADDRESS

F-SITE-CITY

F-SITE-COMPANY

F-CITY-COUNTRY

F-CPUMODEL-SITE

F-PERMODEL-SITE
F-CONF-SITE

F-CMEM-SIZE

F-CMEM-CONF

F-CPU-CONF

F-PERIPH-CONF

F-CPU-MONTH-INST

F-CPU-YEAR-INST

F-PERIPH-MONTH-INST

F-PERIPH-YEAR-INST

F-CPU-CPUMODEL

F-PERIPH-PERMODEL

F-PERMODEL-PRICE

F-CPUMODEL-PRICE

F-PERMODEL-PERTYPE

F-CALMONTH-NR

F-CALYEAR-NR

F-CMEM-PRICE

Type

(company —->string)
(country ——>string)

(city —>string)
(cpumodel —>string)
(per-model —>string)
(per-type —>string)
(calmonth —>string)
(site —>string)
(site —>city)

(site —>company)
(city-9 country)
(cpumodel —>site)
(per-model ——>site)

(conf——>site)

(cmem-9 AMT (mem-unit))
(cmem —>conf)
(cpu —>conf)
(periph —>conf)
(cpu —->calmonth)
(cpu —>calyear)
(periph —>calmonth)
(periph —->calyear)
(cpu —>cpumodel)
(periph —>permodel)
(permodel ——>AMT (money-unit))
(cpumodel —>AMT (money-unit))
(permodel —>pertype)
(calmonth —>integer)
(calyear —>integer)
(cmem —>AMT (money-unit))

The functions that have a type of the form ((1—>B), where Bis a type other
than string, are shown infig. 3. The boxes represent types, and an arrow
pointing from a box labelled a to a box labelled [3represents a function of
type (on—>B).
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6. The Data-Base Language.

Just like the English-to-WML translation, the computation of an answer on
the basis of a WML expression is divided into two distinct steps: The WML
expression is translated into an expression of a language called the Data Base
Language (DBL), and the answer is computed by evaluating the DBL
expression.

DBL has constants which correspond to the data base primitives, i.e. to the
various record types, attributes, etc. (see section 2). A DBL expression
shows explicitly how the answer to the question depends on the information
in the data base.

Although the subject domain is largely determined by the data base, the
primitive notions that characterize the subject domain will generally not
coincide with the data base primitives, which are chosen with an eye to the
efficiencyof storage and retrieval of information. Therefore, the WML and
DBL languages are different. For instance ”cpu”, ”city” and ”year” are
among the concepts that belong to the subject domain of PHLIQA1 without
corresponding to data base primitives.

A CODASYL data base is a specification of the extensions of record­
types, attributes and link-sets. This can easily be translated into standard
mathematical terminology.”

A record type is a set of individuals.
An attribute is a function which has one of the record types as its domain of

application, and which has as its range a subset of the strings or the integers.
A link-set is a function which has a record type as its domain, and another

record type as its range. (The CODASYLimplementation of the specification of
the extension of this function also makes the extension of its inverse
immediately available).

In the PHLIQA1 data base, for instance, the link-set COUNTRY-SITES

specifies a function F-SITE-COUNTRY,from site records to country records (and
its inverse F-COUNTRY-SITES,from country records to sets of site records). For
each site record S there is a link-set occurrence of the link-set COUNTRY-SITES

which has S as a MEMBER;the country record G which is the OWNERof this link­
set occurrence is the value of the function F-SITE-COUNTRYfor the argument 5.
(Similarly, for any given country record G, there is a link-set occurrence
which has G as its OWNER;the set of MEMBERSof this link-set occurrence is the

value of F-COUNTRY-SITESfor the argument G). It is clear that, given a
CODASYL data base, the descriptive atomic types and the descriptive
constants of a corresponding Data Base Language can be derived in a
systematic way: For every record type R we have a descriptive atomic type (1,;

5’ See Chapter IV, section 4, for a more detailed discussion.
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(and, as always, we have for every referential atomic type 1:a constant GS,
denoting its domain).

For every attribute of record type R, we have a function constant of type
((1,;—>string) or ((1,;—>integer), depending on the kind of values of the
attribute. For every link-set that has R as its OWNERrecord type and M as its
MEMBERrecord type, we have a function of type (aM—>aR), and its inverse, a
function of type ((1,;—->S(aM)).

In this way we derive the types and constants of DBL from the CODASYL
declaration of the PHLIQA1 data base, described in section 2 (fig. 1).
This results in the following types and constants:

Descriptive atomic types:

corporationp, siteD,configurationg, cpu-modelp, countryp, manufacturerp,
peripheral-groupD, peripheral-modelp, peripheral-typeD.

Descriptiveconstants (apart from the generic constants for the descriptive
atomic types):

F-CORP-NAMEDwith type (corporationD—> string)
F-COUNTRY-NAMEDwith type (countryD —>string)

F-SITE-STREETADDRESSDwith type (siteD —>string)

F-SITE-CITYNAMEDwith type (siteD —>string)

F-CONF-DATEINSTDwith type (confD —>integer)

F-CONF-CORESIZEDwith type (confD —>integer)

F-PERGROUP-QUANTITYDwith type (peripheral-groupD —>integer)

F-PERMODEL-NAMEDwith type (peripheral-modelD —>string)
F-PERMODEL-PRICEDwith type (peripheral-modelp -—>integer)
F-PERTYPE-NAMEDwith type (peripheral-typeD —->string)
F-CPUMODEL-NAMEDwith type (cpu-model], —>string)
F-CPUMODEL-PRICEDwith type (cpu-model], —>integer)
F-MANUFACTURER-NAMEDwith type .(manufacturerD —>string)

F-SITE-CORPDwith type (siteD -—>_corporationp)

F-SITE-COUNTRYDwith type (siteD —>countryp)

F-CONF-SITEDwith type (configurationn —>siteD)
F-CONF-CPUMODELDwith type (configuration!) —>cpumodelp)
F-PERGROUP-CONFDwith type (peripheral-groupD —>configurationp)
F-PERGROUP-PERMODELDwith type (peripheral-groupD —>peripheral-modeln)
F-PERMODEL-PERTYPEDwith type (peripheral-model], —>peripheral-typeD)
F-PERMODEL-MANUFDwith type (peripheral-model], —>manufacturerp)
F-CPUMODEL-MANUFDwith type (cpu-model], —>manufacturern)
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For each function F-ALFA-BETADwith a type ((1—>B) where B is not string or
integer, the inverse function F-BETA-ALFASDwith type (B —>S(a)) is also part of
DBL.

Those functions which have a type (a —>B)where Bis a descriptive type of
DBL are shown infig. 4. The boxes represent types. An arrow pointing from
a box labelled a to a box labelled Brepresents a function constant with type
((1—>B) and its inverse,.with type (B —>S(a)).

corporation D country D
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SIICD
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’)’PeD

Fig. 4. DBL function constants and the types of their domains and ranges
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7. Translation.

The relation between the languages EFL, WML and DBL is probably clear
from their descriptions in the sections 4, 5 and 6 above: they are formal
languages which are very similar in that they employ the same semantic
operations and express them by the same syntactic structures. They differ,
however, in the descriptive constants they contain. In the case of EFL these
are chosen to match the descriptive words of English, whereas in the case of
DBL they are chosen to match the data base primitives. WML constitutes an
intermediate level which is independent of the input language as well as the
data base structure. Thus, EFL, WML and DBL constitute successively
”deeper” levels of analysis —they correspond to three successive steps on the
path from an English question to its answer. The PHLIQA1 program may
therefore be viewed as consisting of the following series of modules (see fig.
2, p. 46):

English-to-EFL translation.
EFL-to-WML translation.
WML-to-DBL translation.
DBL evaluation.

The question-answering program is thus split up into four distinct modules
each carrying out a separate task. This has the important advantage that the
correctness of each module can be assessed independently of the other ones.

Another advantage is, that changes in the choice of the data base, the
subject domain or the input language do not affect the whole system, as can
be seen by considering each of the modules:
—The English-to-EFL translation draws the semantic consequences of the

syntactic structure of the sentence, the function words, and the formal
aspects of the other words. The referential aspects of the English words are
not analysed. Therefore, this module is independent of the subject domain
(apart from the choice of the words included in the lexicon), and a possibly
useful component in an otherwise quite different system.

—The EFL-to-WML translation applies rules which replace EFL constants
by WML expressions, i.e. they relate words of English to the semantic
primitives of the subject domain. This translation depends on the lexicon
of the input language and on the subject domain, but is independent of the
particular structure of the data base.

—The WML-to-DBL translation relates the subject domain primitives to
data base primitives. To handle another data base about the same subject
matter, only this part of the translation from English into DBL would have
to be modified. Note that this module is independent of the input
language; it could be exactly the same in a question-answering system for
Dutch or Japanese.
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More intermediate steps

The global design just discussed may be refined further. When these
refinements are taken into account, the path from English question to answer
consists of the following sequence of operations:

English-to-EFL translation
EFL-to-EFL‘ translation

Simplification
EFL‘-to-WML translation
Simplification
WML-to-DBL* translation

Simplification
DBL*-to-DBL translation
Evaluation
Answer-formulation.

—At most of the levels a simplification module is called, which converts an
expression of a PHLIQA1 language into a logicallyequivalent, but simpler
expression of the same language.

—Between the EFL level and the WML level, there is a level where the
question is represented as an expression of a language called EFL‘. At this
level, the subject domain concepts represented by English words are taken
as primitive: there is one constant for every word meaning. In EFL there is
one constant for every word, and in WML there is an expression for every
word meaning, analysing it in terms of a limited number of primitives.
Therefore EFL‘ is a convenient intermediate step between EFL and
WML.

—Between the WML level and the DBL level, there is a level where the
question is represented as an expression of DBL*. DBL* is a language
which is derived from DBL: DBL* is DBL ”enriched” in such a way that
any WML constant can be translated into it. (See Chapter V, section 6 for
details). Not every WML constant can be translated into DBL itself. The
translation of a WML expression may ”block” at the DBL* level, because
certain DBL* constants cannot be translated into DBL. (See Chapter V,
section 6, however, for an interesting alternative strategy which may be
applied in this case.)

Each translation module performs a task which is precisely defined. For
every two successive formal languages there is a set of translation rules which
determines for any source language expression what target language
expressions would be correct translations. The program accesses these
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translation rules to generate, for any incoming source language expression, a
corresponding target language expression.

Examples of PHLIQA1 translation rules for the EFL‘-to-WML
translation, the WML-to-DBL* translation and the DBL*-to-DBL
translation are given in Bronnenberg et al. (1980). In Chapter V below, I
shall give a detailed discussion of the use of translation rules for knowledge
representation.

8. The Control Structure of the PHLIQA1 Program.

We have already mentioned the most important components of the
PHLIQA1 program. Now we shall indicate how they cooperate to produce
the over-all behaviour of the system. The flow of control in the PHLIQA1
program can best be shown by describing the algorithm in a hopefully self­
explaining kind of pseudo-algol.

The description of the algorithm“ assumes the followingprimitive
procedures:
READ,which has no arguments, and which delivers the string last typed in by
the user.
ENGLISH-TO-EFL,which takes a string as its argument, and delivers a (possibly
empty) array containing its EFL translations.
EFL-TO-EFL-,which takes an EFL expression as its argument, and delivers a
(possibly empty) array containing its EFL‘ instances.
EFL‘-To-WML,which takes an EFL‘ expression as its argument, and delivers its
WML translation.
WML-To-DBL*, which takes a WML expression as its argument, and delivers its
DBL* translation.

SIMPLIFY,which takes an expression of an unambiguous PHLIQA1 language
as its argument, and delivers an equivalent (simplified) expression of the
same language.
EVAL,which takes a DBL expression as its argument, and delivers a value­
expression which represents the answer.
ASTERISK,which takes a DBL* expression as its argument, and delivers TRUEif

6’ Compared to the actual program, this algorithm contains some simplifications. For instance:
—the actual program need not be called separately for every single question,
—it offers the possibility to correct words in the input question which do not occur in

PHLIQA1’s lexicon (e.g. because they are misspelled).
—the actual system contains facilities for testing it (e. g. the possibility to print out

intermediate results).
—in the actual program, the testing of presuppositions is combined with the evaluation of the

DBL expression (this is more efficient than the algorithm we give here).
All these and other refinements, which obscure a clear view of the most essential aspects of
the algorithm, are left out here.
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the expression does not belong to DBL, and FALSEif the expression does
belong to DBL.
PRESUP-EXPREStakes an expression as its argument, and delivers the
presupposition-expressions of the expression.”
ANSWERtakes a value-expression as its argument, and delivers a string.
PRINTtakes a string as its argument, and displays it on the terminal.
The program uses the following variables:
X1, X3,X3, X5 (whose values are PHLIQA1 expressions),
buftext (whose values are strings),
buflevel (whose values are integers), and
false-presups (whose values are truthvalues).
In terms of the above procedures and variables, a simplified version of the
PHLIQA1 program can be specified as follows:

begin
buflevel := O;buftext := ”your question is considered ungrammatical”;
for X1 through ENGLISH-T0-EFL(READ)do
(if buflevel < 1 then (buflevel := 1;

' buftext := ”your question is meaningless in the subject
domain”);

for X3 through EFL-To-EFL‘(X1)
do (
X3: = SIMPLIFY(wML-To-DBL* (SIMPLIFY(EFL‘-To-wML(S1MPL1FY(X3)))));

if ASTERISK(X3)

then (if buflevel < 2
then (buflevel := 2;

buftext: = ”the database does not contain the information which
is needed to answer your question”))

else (false-presups := FALSE;
for X5 through PRESUP-EXPRES(X3) do

(if EVAL(X5) = FALSEthen false-presups := TRUE);
iffalse-presups
then (if buflevel < 3 then (buflevel := 3;

buftext := ”your question contains a false presuppoSition”))
else (PRINT(ANSWER(EVAL(X3)));

buflevel := 4; buftext := ” ”;
PRINT(”Do you want a search for another interpretation of your

question?“);
if READ= ”no” then exit)) ));

PRINT(buftext)
end

7) See Bronnenberg et al. (1980), section 5.5, for the representation of presuppositions in
PHLIQA1-expressions.
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9. The Behaviour of the PHLIQAI System.

A translation module does not necessarily translate an incoming
expression into one expression at the next lower level: the expression may
also have no translation at all (the expression is ”blocked”), or more than
one translation (it is ”ambiguous”).

The system can provide all answers to an ambiguous question, but because
it does not contain a module which translates from, for instance, WML into
English, it cannot indicate to the user which answer belongs to which
interpretation of the question. Two kinds of ambiguity may occur:

—Syntactic ambiguities, which arise during the translation from English into
EFL, when a question can be parsed in more than one way. An example is
the question ”What companies have a configuration with a cpu that costs
more than 100.000dollars?”, where the relative clause ”that costs more
than 100.000dollars” can be combined with the nominal phrase ”cpu” or
with the nominal phrase ”configuration with a cpu”.

- Semantic ambiguities, which arise during the translation from EFL into
EFL‘, when an EFL term (corresponding to an English word) can be
translated in more than one way into EFL‘. For instance, the EFL
predicate ”have” can either mean ”have-as-part” (as in ”Does Akzo’s
configuration have two card readers?”) or ”possess” (As in: ”Does Akzo
have two card readers?”).

When there is an ambiguity, the system investigates one of the possibilities,
until it either blocks at a certain level or leads to an answer. After an answer
has been given, the user is asked whether he wants the system to investigate
other analyses of the input question. If he does, and also in the case of
blocking, the system backs up to the last point where there was an alternative
possibility. It then starts working on this alternative —and so on, until the
user is no longer interested in other analyses or until no other analyses are
found any more.

If there is no analysis that leads to an answer, the system considers the
analysis that reached the ”lowest” level to be the most plausible one, and a
message indicating the reason for the blocking at that level is presented to the
user. The possibility of using this mechanism (described more precisely in
section 8 above) is one of the beneficial consequences of the distinction
between different semantic levels.

Let us now take a closer look at the reasons why blocking may occur at the
different levels.
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A question may contain words which do not occur in the lexicon that is
used for the English-to-EFL translation. In such a case the system indicates
these words; the user of the system can then substitute other words for
them, or reformulate the question altogether.
It may be impossible to translate a question into EFL, although it only
contains ”legitimate” words: the system considers it to be
”ungrammatical”. This happens when a haphazard sequence of words is
typed in (”The of computers are what?”), or when there is a departure
from standard English syntax (”What computers is there in Germany?”);
but a sentence may also be rejected because the syntax of the system is
more limited than we would like it to be. (”What companies possess more
computers than Shell?” is rejected because the syntax has no rules for
elliptic comparative clauses). In all these cases, the system states that it
considers the sentence to be ungrammatical.
An EFL analysis of a question may be not translatable into EFL‘. This
means that it may make sense in some context, but not in the context of
PHLIQA1’s subject domain. This would occur if the expression contained
a constant corresponding to an English word that had no meaning in the
context of this specific subject domain. That does not happen in practice,
however, because such words were not put in the dictionary. As a more
interesting example, let us consider the question ”What is the price of
Germany?” Although the notion ”price” as well as the notion ”Germany”
are represented in the EFL‘ language, the EFL analysis of this question
does not lead to a semantically well-formed EFL‘ expression, because the
EFL‘ function ”price” is not applicable to the elements of the EFL‘-set
”countries”; in the subject domain of PHLIQA1, countries don’t have a
price. If no EFL analysis of a question leads to a semantically well-formed
EFL‘ expression, the reason for this is reported to the user of the system.
A DBL* analysis of a question may be not translatable into DBL, because
DBL lacks the constants that would be needed to represent it. This means
that certain information is consistently lacking in the data base. For
example, let’s consider the question ”When were Akzo’s card readers
installed?” The data base contains the installation dates of configurations,
i.e. of the cpu with the peripherals it has then; other peripherals may have
been added later, but their installation dates are not stored, which means
that the installation dates of individual card readers are not known. The
system considers questions about them as meaningful however, so they get
a WML analysis, but the factual knowledge to answer them is lacking.
Therefore, a message is displayed which indicates why the translation into
DBL did not succeed.

A question may get a DBL analysis that denotes an answer which is in fact
not the most appropriate response, because the question made undue
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presuppositions about the actual state of affairs in the subject domain. The
system checks the presuppositions that a question makes. As an example
we may consider the question ”How expensive is the computer owned by
Shell?” The system takes this as presupposing that Shell owns exactly one
computer.” If such a presupposition fails to hold, the system points that
out instead of giving an answer.

Summarizing, we may say that the multilevel structure of the PHLIQA1
system offers many possibilities for flexible and cooperative system replies to
user queries. Some of these possibilities have already been implemented in
the existing PHLIQA1 system, but many others remain to be explored in the
future.

The next chapters are devoted to a discussion of the theoretical issues
involved in some important design decisions that PHLIQA1 was built on:
the assessment in terms of logical model theory of the way in which an
”ordinary” data base may be said to represent knowledge (Chapter IV), and
the development of knowledge representation by means of translation rules,
in order to bridge the ”semantic gap” between English and the data base
(Chapter V).

3) Since every question is treated separately, the system ignores the possibility that the class of
computers that should be taken into consideration is constrained by the foregoing part of the
discourse.
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Chapter IV. Data Bases as Value Specifications.

1. Introduction.

In real-world, non-experimental computer programs which answer queries
about the state of affairs in a subject domain, the state of affairs is normally
represented by a data base —a formatted collection of data stored on
magnetic disk or in another form of mass memory.

Many question answering systems (including PHLIQA1) are, in fact,
”natural-language data base interfaces” which are meant to function as the
front end of a query evaluation system which employs an existing data base
management system. Therefore, a satisfyingaccount of operations on data
bases is an important component of a theory of computational question
answering.

In the treatment of questions and answers developed in Chapter II, both
questions and answers were represented as expressions in a logical language
and the connection between such expressions and states of affairs in the
subject domain was constructed through logical model theory. To enable an
account of the way in which a data base may be used to answer questions, the
meaning of a data base must be described in terms of the same basic semantic
notions that were used earlier to account for the meaning of questions and
answers. We must therefore establish a connection between the content of a
data base and the possible interpretations of a logical language.

The main thesis of this chapter is that this connection is, in fact, quite
simple. We shall argue that any data base schema should be considered as
specifying the descriptive constants of a logical language, while any particular
data base within a schema specifies an interpretation of that logical language.
The notion of a ”value specification” —a formal object which induces an
interpretation on a logical query language —will figure prominently in the
discussion. This perspective is being advanced as an alternative to the rather
widespread idea that data bases should be analyzed as collections of first
order axioms. (See section 6, below). An important argument in its favour is
that it accounts in a very direct way for the correctness of recursive query
evaluation procedures.

The viability of the perspective on data bases advocated here has been
pointed out before. (Scha, 1977;Nicolas and Gallaire, 1978;Bronnenberg et.
al., 1980; Konolige, 1981. Important connections with Codd’s work (1970)
will be considered specifically in section 4 below). However, no
comprehensive formal articulation of this way of conceptualizing data bases
has been presented previously.
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2. Value Specifications.

We have argued earlier that a subject domain may be characterized by a
definition of the descriptive constants of a logical language and their intuitive
meanings. The state of affairs in a subject domain could then be
characterized by an interpretation of this language, which specifies the
denotation of every descriptive constant. In the present chapter, we shall
show that specifying a formal object which indicates the denotation of every
constant in the query language —i.e. the extension of the interpretion
function —is a way of specifying the state of affairs in the subject domain
which ties in directly with the definition of the semantics of the query
language.

To be able to construct such a formal object, we assume that there is a
”value language” corresponding to the query language, which has a ”logical
proper name” for every individual in the domain. This language has exactly
the same syntactic constructions and the same semantics as the query
language as well as exactly the same type system, but it contains no
descriptive constants. The value language is syntactically defined as a logical
language with only ”individual” constants (i.e. the type of every constant is
an atomic type). The semantics of a value language is defined in the usual
way with two extra constraints on the interpretations of the language”:
1. Every individual constant denotes a distinct entity
2. Every entity in the domain of a descriptive atomic type is denoted by an

individual constant.
A value specification may now be defined as a collection of pairs <c,e>which
specifies the extension of a function which assigns to every descriptive
constant c of the logical language an expression e of the value language. Since
the value language expressions have the same denotation for every
interpretation of that language, this function induces the one interpretation

” This way of adapting the definition of interpretations is not as ad hoc or far-fetched as it may
seem. Logical systems in which individual constants were given this special role have a
venerable history (e.g. Wittgenstein (1922), Carnap (1947) and Reiter (1977)). A difficulty
with this approach is that the language fixes the number of individuals in the domain, although
for data bases about a fragment of the real world, the individuals in the domain are not usually
fixed. (Pott, 1976).There are at least three alternative ways of dealing with this problem:
1. Adopt a ”loose ontology” by assuming a fixed, infinitely large domain of possible

individuals. The set of actual individuals is then defined as the union of the domains of the
atomic types, constituting a subset of the possible individuals.

2. Abstain from defining one particular value language. Instead define the set of all possible
value-languages where these languages differ from each other in having different sets of
individual constants.

3. Formulate the queries so that they do not refer to real world entities. (Questions which ask
about real world entities may be transformed into questions which ask about their names
and other ”formal” properties (Chapter II, section 7). The technique of ”identification­
translations” may be used to identify real world entities in terms of their names (Chapter
V, section 4).)
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on the logical language which assigns to every descriptive constant the
denotation of the expression assigned to it by the value specification.

There is an extremely simple algorithm which, given a value-specification,
could be used to turn any query expression into an expression which satisfies
many of the requirements of an adequate answer-expression. Simplyby
substituting values for constants according to the value specification, an L­
determinate expression is generated which has the same denotation as the
query expression. However, this expression is, in general, unnecessarily
complicated. Instead, a recursive evaluation algorithm is therefore used to
turn a query expression into a canonical value expression which can be used
as an answer.” Exactly how such an algorithm functions will be discussed
after describing the nature of canonical value-expressions.

Canonical value-expressions

For every finite denotation of the value language expressions, we define
one canonical value expression with that denotation.

If a data base implements a value-specification, a query-expression may be
evaluated by means of a collection of recursive procedures which correspond
closely to the recursive definition of the semantics of the language. These
procedures operate on canonical representations of the values of various
types.

The canonical representations of values may be defined as the expressions
of a canonical value-language:
1. Every individual constant is a canonical value-expression.
2. If A1, ..., A,, are canonical value-expressions of types (11,..., on, then:

set(<A1, ..., A,,>)is a canonical value-expression of type S( U((11,..., a,,)),
bag(<A1, ..., A,,>)is a canonical value-expression of type
B(U ((11, ..., ot,,)),
list(<A1, ..., A,,>)is a canonical value-expression of type L( U((11,..., a,,)),
fiIe(<A1, ..., A,,>) is a canonical value-expression of type F( U((11,..., a,,)).

3. If A1, ..., An are canonical value-expressions of type (11, on, then
<A1,..., A,,>is a canonical value-expression of type <a1, ..., an)

4. If<A1, B1), ..., <A,,,B“) are value-expressions of type <a1, B1), ..., <a,,, B"),
resp. , then function (<<A1,B1), ..., <A,,, B,,>>)
is a value-expression of type ( ((11, ..., an) ——>([31, ..., B,,))

5. If N is a canonical value-expression of type integer or real and E is a
canonical value-expression of type 8, then (num: N, unit: E) is a canonical
value-expression of type AMT (8).

2’ This is also the case in PHLIQA1. In Bronnenberg et al. (1980) the PHLIQA1 program was
described misleadingly as using the substitution algorithm.



65

6. If A is a canonical value-expression of type (1then, for any integer i, id, (A)
is a canonical value-expression of type ID, (a).

A normalized value specification assigns to every descriptive constant of a
logical language a canonical expression of the corresponding value language.
Canonical values may be used, therefore, to formalize the definition of the
semantics of a logical language by correlating every syntactic rule which
forms an expression out of sub-expressions with a semantic rule which
defines the denotation of the expression in terms of the denotations of the
sub-expressions.” Together, these semantic rules define the denotation of
any expression in terms of the denotation of the constants occurring in it. If
canonical values have been defined, we may define formal correlates of the
semantic rules for the case of finite denotations as functions which define the

value of an expression in terms of the value of its sub-expressions.” These
functions, taken together, define the value of any expression in terms of the
values of its constants.

Given a formalization of the semantic definition of a logical language, we
may construct an algorithmic definition. Every function which defines the
value of a certain kind of expression in terms of the values of its sub­
expressions, may be implemented by an effective procedure which computes
the value of the expression on the basis of the values of its subexpressions.
Together, these procedures constitute an effective recursive algorithm for
computing the value of an expression on the basis of the values of the
constants occurring in it. Thus, a value specification of the normalized variety
makes it possible to compute the answer to a query which is formulated in the
appropriate logical language, by means of a simple recursive evaluation
procedure.

More refined versions can be easily imagined. For instance, the PHLIQA1
procedures which compute the values of quantification-, selection- and
iteration-expressions do not always evaluate both their sub-expressions.
They have two sub-expressions, one denoting a set, the other denoting a
function. If the function-expression is a lambda-expression, its whole
extension is not computed. Instead, the value of the set-expression is used as
the range of the lambda-variable, and only the values of the relevant
instances of the body of the lambda-expression are computed.

It is clear that value-specifications may be implemented as data bases of
some sort. The descriptive constants of the logical language may then be

3’ For the sake of simplicity of expression, the notion ”denotation of sub-expressions” is taken to
encompass the domains of the types of (binding occurrences of) variables.

" This means that we must restrict our attention to expressions not containing formal constants
with infinite denotations. Variables ranging over infinite formal domains are thus also
excluded.
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viewed as defining data base schemata. All value-specifications for these
constants may be stored as homogeneous collections of data according to a
format which is determined by the type of the constant. Conversely, the most
important data models underlying existing data base management systems
can be seen as implementations of value-specifications. In the next sections,
we shall show how this is the case in the Relational Model and the

CODASYL Model, and argue that other ”abstract data models” can be
formalized in this way as well.

4. Relational Data Bases viewed as Value Specifications.

Codd (1970) defined relational data bases as collections of tables, where a
table is a set of n-tuples of individuals. The elements within every n-tuple
may be identified by the integers 1....n or by n names called attributes. An n­
tuple within a table is identified by the keys of the table, a subset of the
attributes. The relational terminology and query languages like Relational
Algebra suggest that data bases be viewed as specifying the values of
constants denoting sets of n-tuples. The fact that certain elements identify the
n-tuple in which they occur, however, leads to a different perspective.

Instead of saying that a table specifies the extension of an n-ary relation,
we say that it specifies the extension of a partial function from k-tuples to
n—k-tuples,if k elements of a tuple constitute the primary key together. This
means that a table is read as a translation rule of the form

F => function (<tuple2 (tuplek (B11, ..., B, k), tuple,,_k(Bum, ..., B1,,)),
tupplez (tuplek (Bml, ..., Bmk), tupIe,,_k(Bm H1, ..., Bmn))>)

where F is a query-language constant of type
((0.1, ..., (X.k>—)<CX.k+1,..., (1,1))

The types (1,, ..., on are, in relational terminology, the domains of the
relation A: they indicate the set of values that may occur in the
corresponding ”slot” in the n-tuple. This domain must either be specified in
the data base (by occurring as the domain of a single key of a relation) or it
must be known independently of the data base (in our terminology: it is a
formal type, such as integer or string).

Consider, for example, the relation S in Date (1975). This table represents
information about suppliers, identified by a code which is the value of the
attribute S#. The table gives the name, the status and the city of every
supplier:
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S S# NAME STATUS CITY

S1 Smith 20 London
S2 Jones 10 Paris
S3 Blake 30 Paris
S4 Clark 20 London
S5 Adams 30 Athens

The table can be read as the translation rule (2)

F5 => function (<
<<S1>,<”Smith”, 20, ”London”>>
<<S2>,<”Jones”, 10, ”Paris”>>
<<S3>,<”Blake”, 30, ”Paris”>>
<<S4>,<”Clark”, 20, ”London”>>
<<S5>,<”Adams”, 30, ”Athens”>>>) (3)

We are arguing that this view of relational data bases has advantages over
the more strictly relational view which would consider a table in a data base
as a translation rule of the form

A 3 Set(<tuple,, (B11,..., B1“),
tuplen (Bml, .. . , Bmn)>),

where A is a query-language constant of type S (<a1, ..., a,,>).
The relation S above would then be analyzed as

S => set (<tuple4(S1, ”Smith”, 20, ”London”),
tuple4 (S2, ”Jones”, 10, ”Paris”),
tuple4 (S3, ”Blake”, 30, ”Paris”),
tuple4 (S4, ”Clark”, 20. ”London”),
tuple4 (S5, ”Adams”, 30, ”Athens”)>) (5)

If the data base is analyzed as (5), there would be a problem justifying that
a formula such as

tuple4 (”S1”, ”Jones”, 30, ”London”) E S (6)

can be evaluated as FALSEon the basis of (2) by only inspecting the first entry.
What would be needed to account for this would be an axiom like



68

Va, x1, x2, y,, yz, 2,, 22: ((tuple4 (u, x,, y,, 2,) e S &
WPIC4 (14:x2» Y2»Z2) 5 S) 3 (X1 = X2&Y1= Y2& Z1: 22))

Evaluation procedures actually used in data bases, however, do not make
use of such axioms. Their operations can be accounted for by an analysis such
as (3). In terms of that perspective on data bases, (6) would be formulated as

F5 (<S1>) = <”Jones”, 30, ”London”> (7)

By consulting value-specification (3), this can be equated to

<”Smith”, 20, ”London”> = <”Jones”, 30, ”London”> (8)

and further to

FALSE (9)

As another example of the data base analysis we propose, consider the
relation SP from Date (1975), represented by the following table:

SP _§_4g_ _1>_ggé_ QTY

31 P1 3
31 P2 2
s1 P3 4
s1 P4 2
51 P5 1

s1 P6 1,
32 P1 3
s2 P2 4
s3 P3 4
s3 P5 2
34 P2 2
54 P4 3
54 P5 4
s5 P5 5

(10)

The combination of the values of the attributes S# (supplier-identification)
and P# (part-identification) identifies a row in this table. The table can be
read as representing the following rule:
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Fsp => function (<
<<S1, P2>, <3>>,

<<S1, P2>, <2>>,

<<S1, P3), <4>>,

<<S1, P4), <2>>,

<<S1, P5), <1>>,

<<S1, P6), <1>>,

<<S2, P1>, <3>>,

<<S2, P2>, <4>>,

<<S3, P3), <4>>,

<<S3, P5), <2>>,

<<S4, P2>, <2>>,

<<S4, P4>, <3>>,

<<S4, P5), <4>>,

<<S5, P5>, <5>>>) (11)

5. CODASYL Data Bases viewed as Value Specifications.

A CODASYL system (CODASYLDBTG,1971) can be used to implement
many different kinds of abstract data models (e.g. relational data bases —see
Lacroix (1977)). But a CODASYL data description may also be considered
as an abstract data model in its own right. It is sufficiently well-structured for
that, and the efficiency of an implementation may be enhanced if there is a
direct correspondence between the query language and the data base as
implemented, without intermediate models. We shall now discuss how the
constants of a query-language may be derived from a CODASYL data base
which only uses the most important CODASYL concepts.

Described in CODASYL tenninology, a CODASYL data base is a
specification of the extensions of record types, attributes and link-sets.” This
can easily be translated into standard mathematical terminology.

A record type is a set of individuals.
An attribute is a function which has one of the record types as its domain of

application, and which has as its range a subset of the strings or the integers.
The record types and attributes of CODASYL may be treated just as the
relations and their ”slots” in a relational data base as discussed above with
the difference that CODASYL allows record types without identifying
external keys. In that case the data base keys which are used to identify the
records of that type must be constants of the value language; but they need
not be part of the query-language and they cannot be mentioned in queries
although they can occur as values of query expressions.

5)For the sake of simplicity we ignore some less central CODASYLconcepts: the possibility of using
”aggregate attributes” and of sorting the records of a given record-type.
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A link-set (or, in CODASYL terminology, simply and misleadingly called a
set) represents a function which has the individuals corresponding to a record
type as its range and the individuals corresponding to another record type as
its domain. A CODASYL data base management system stores the
extension of such a function F in such a way that not only the result of the
application of F to an argument is more or less directly available, but also the
result of the application of its inverse F’ to an argument.

In the PHLIQA1 data base, for instance, the link set COUNTRY-SITES

specifies a function F-SITE-COUNTRY,from site records to country records and
its inverse, F-SITE-COUNTRY”, from country records to sets of site records. For
each site record S there is an occurrence of the link-set COUNTRY-SITESwhich

has 5 as a MEMBERand the country record G which is the OWNERof this link-set
occurrence is the value of the function F-SITE-COUNTRYfor the argument S.6)

It is clear that, given a CODASYL data base, the descriptive atomic types
and the descriptive constants of a corresponding Data Base Language can be
derived in a systematic way: for every record type R we have a descriptive
atomic type (IR7)and for every attribute of record type R, we have a function
constant of type ((1,;—>string) or ((1,;—>integer), depending on the kind of
values of the attribute. For every link-set that has R as its OWNERrecord type
and S as its MEMBERrecord type, we have a function of type (as —>aR), and its
inverse, a function of type ((1,;—>S((15)).

An illustration of this way of deriving the constants of a logical query­
language from a CODASYL specification of a data base can be found in
Chapter III, section 6, where this method is applied to the PHLIQA1 data
base.

Conclusion

Our discussion of the Relational Model and CODASYL indicates that the
idea of viewing data bases as value specifications has considerable generality.
It is not limited in any way to one particular data model —instead, it provides
a general method for analysing data bases which is equally applicable to all
well-defined data models. The differences between different data models
simply appear as differences in the structure of the semantic types of the
descriptive constants in the corresponding logical languages. The Functional
Dependency Model” , to mention one other example, yields to the same

°’ Similarly, for any given country record G, there is a link-set occurrence which has G as its
OWNER.The set of MEMBERSof this link-set occurrence is the value of F-SITE-COUNTRY‘!for the

argument G.

7’ And, therefore, the corresponding constant GSaR denoting the domain of (IR.

3’ See Housel et al., 1979.
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treatment without difficulty, while leading to different types of function
constants than the models discussed above.

Note that in all these cases the value specification analysis of a data base
captures the completeness of the files of records, and the fact that one entity
has only one value for a given attribute”. This is an important advantage
compared to the ”axiom set” analysis of data bases, that we discuss in the
next section.

5. Data Bases as Axiom Sets.

When notations of formal logicare brought to bear on data base matters,
data bases are usually analysed as sets of first-order axioms.‘°)We shall now
briefly discuss why we have not chosen this alternative.

The axiomatic analysis is usually applied to relational data bases. A
relational data base P, consisting of n-tuples of the form <x1,..., x,,>is then
analysed as a set of ground literals of the form P(x,, ..., x,J. For instance, the
relation S discussed in section 4 above would be seen as specifying the
axioms:

S(S1,”Smith”, 20, ”London”),
S(S2,”Jones”, 10, ”Paris”),
S(S3,”Blake”, 30, ”Paris”),
S(S4,”Clark”, 20, ”London”,
S(S5,”Adams”, 30, ”Athens”)

The direct connection with recursive evaluation procedures, which exists in
the case of value-specifications, is lost when a data is viewed as an axiom set.
An axiom set, as a syntactic/semantic object, stipulates the truth of individual
formulas. A first-order axiom set does not make the extensions of predicates
or functions directly available to a query evaluation algorithm.

Some additional complications are worth mentioning. If a file is assumed
to be complete —a common enough case - a set of axioms having the form of
negative literals must be assumed to be specified implicitly by the data base.
This may be done in different ways. One may assume a simple kind of
abbrevation mechnism: every literal which does not occur in the data base is
known to be false“) One may also adopt the more complex ”Closed World

9’ Elegant techniques for dealing with incompleteness exist as complements to the value
specification analysis. See Chapter V, section 6.

1°’See, for instance, the papers in Gallaire and Minker (1978).
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Assumption” (Reiter, 1978a;see Chapter VI, section 5 below). In both cases,
the data base does not present the axiom set it stands for in a direct way. The
axiom set which describes the data base content is a ”virtual” object —it is not
the actual syntactic object that the query evaluation procedure interacts with.

As a last point we may mention that within the axiomatic approach one
often uses first-order logic without function constants. As we discussed in
section 3 above, this leaves important properties of a data base unaccounted
for. 12)

Summarizing, we find that the properties of a relational data base are
accounted for in a more satisfying way in the value specification approach
than in the axiom set approach. On top of that, the value specification
approach is trivially generalizable to other data models, whereas the situation
with axiom sets is less clear in this respect. We conclude that value
specifications are not only a possible alternative to the usual axiom set
analysis of data bases, but that this alternative is in fact the preferable one.

‘” See Wittgenstein’s (1922) notion of a ”picture of the world”. Carnap’s (1947) notion of a
”state description” requires a specification of positive and negative literals. If the individuals
of the universe are fixed in advance, a state description can be indicated by only specifying the
positive literals. (See Biller and Neuhold, 1978.)

‘Z’See Stenius (1960), for an interesting attempt at refining Wittgenstein’s notion of a ”picture
of the world” without introducing function-constants in the logical language. The reader may
compare his proposal with our alternative analysis in section 3 above.
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Chapter V. Translation Specifications: a Technique
for Representing the Conceptual
Information of a Question Answering
System

1. Conceptual Information: the Bridge between Different Levelsof Meaning
Representation.

As I showed in the previous chapter, a data base represents information
concerning the state of the world, by specifying the extensions of concepts.
To be able to use a data base to answer natural language questions, a
question answering system must also possess a different kind of knowledge
concerning the concepts involved: knowledge about the relation between the
”data base concepts” and the concepts which the natural input-language
provides for talking about the subject of the data base. Various methods may
be employed for representing and using such knowledge concerning the
relations between concepts.

In the design of a question answering program, how to incorporate this
”conceptual information” in the system is an important decision. In this
decision, one must try to strike an optimal balance between the generality of
the knowledge representation formalism employed, and the effectiveness of
the procedures by means of which the knowledge so represented is brought
to bear on the questions the system tries to answer.

In the present dissertation, I want to discuss those methods for
representing conceptual knowledge that I find reasonably well-defined. The
present chapter introduces the method of ”translation specifications” which I
developed jointly with Jan Landsbergen, and which was implemented in the
PHLIQA1 system. In the next chapter, I discuss other techniques with an
equally firm model-theoretic basis.

As described in detail in Chapter III, the PHLIQA1 system uses a
sequence of levels. At each level a different logical language is used to
represent the content of a question. The system translates the content of an
incoming query from one level to another in succession until it finally reaches
the data base level where it forms the input to a component which actually
computes the answer.

The present chapter deals with the knowledge representation method
underlying the PHLIQA1 algorithm although the details of the algorithm
itself are not dealt with. In illustrating the use of the knowledge
representation method, the intermediate levels used in the system willbe
ignored; only two levels of representation will be assumed. An English­
oriented Formal Language EFL’ which corresponds closely to the English
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formulation for questions is the highest of these levels. A Data Base
Language DBL which corresponds closely to a relational data base is used at
the lower level.

An English-oriented levelof meaning representation.

At the highest level of meaning representation that we want to consider,
the meaning of a question is represented by an expression of a logical
language (i.e. a formal language with an unambiguously defined model­
theoretic semantics) in a way which is as close as possible to the semantic
structure of the English formulation, and as independent as possible of
specific features of the subject domain that the question refers to. The logical
language EFL’ that may be used for this purpose, is a language which
contains a descriptive constant for every descriptive lexical item of the input
language. Since distinctions between different kinds of objects in the subject­
domain cannot be made independently of the subject-domain, there is only
one descriptive atomic type at this level, which I will call entity.1)Therefore,
the semantic types of the descriptive constants may be systematically related
to the syntactic categories of the corresponding lexical items (as in Montague
(1973)).

For example, in the illustrations I shall use in the next sections of this
chapter, I shall assume for every noun a constant with type S(entity),
denoting the set of individuals which fall under the description of this noun:
corresponding to ”employee” and ”employees” there is a constant EMPLOYEES
denoting the set of all employees. Corresponding to an n-place verb there is an
n-place predicate, i.e. a constant of type (<entity, ..., entity> --->truthvalue).
For instance, the verb ”have” corresponds to the 2-place predicate HAVE—a
constant of type (<entity, entity> --->truthvalue).

Thus, the input analysis component of a question answering system may
translate the question.

’’Howmany departments have more than 100 employees?” (1)
into

Count ({x e DEPARTMENTSI

Count ({y e EMPLOYEES| HAVE(x,y)}) > 100)) (2)

where both x and y have the type entity.”

" Thus, EFL’ shares features with EFL and with EFL‘, as they are defined in Chapter III. Like
EFL‘, EFL’ has unambiguous constants. But like EFL, it only has one descriptive atomic type.

2’ If the input analysis component operates in a compositional fashion, i.e. constructs the
meaning of the sentence by means of a recursive procedure which constructs the meaning of a
constituent out of the meanings of its subconstituents, this component would not produce (2)
directly. Instead, it would produce a more complicated equivalent expression, which could be
automatically simplified by a procedure performing simple equivalence-transformations such
as B-reduction. The output of that procedure could then be an expression like (2) above.
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A data base oriented level of meaning representation.

A data base specifies an interpretation of a logical language by specifying
the values of its descriptive constants. What these constants are, follows
directly from the structure of the data base. To illustrate this, we shall use a
simple relational data base. (In Chapter III, in discussingPHLIQA1, a
CODASYL data base was used as an example.) Assume that a data base has
a file with records which represent the employees of a firm, and that this file
has an attribute indicating the department of each employee. A file is also
present with records which represent the departments of the firm. This part
of the data base may be viewed as specifying the extension of a constant EMPS
of type S(entity) standing for the set of employees,” of a constant DEPTSof
type S(entity) standing for all departments and of a function F-EMP-DEPTof
type (entity --->entity) assigning to every employee a department.
In terms of such a data base structure, question (1) may be formulated as (3):

How many departments have more than 100 employees? (1)

Count ({x e DEPTS| Count ({y e EMPSI F-EMP-DEPT(y)= x})
> 100}) (3)

Thus, we have two alternative formulations for the query —formulation
(2), in terms of an ”English-oriented Formal Language” EFL’, and
formulation (3), in terms of a ”Data Base Language” DBL.

The connection between EFL’ and DBL.

EFL’ and DBL are two different logical languages with different constants
which can nevertheless ”talk about the same subject domain”. A question is
represented initially as an EFL’ expression, while the state of affairs in the
world is specified by a DBL interpretation. The conceptual information of
the system represents the connection between EFL’ and DBL. Given a DBL
interpretation, it defines the set of EFL’ interpretations compatible with it.
The set of possible answers to an EFL’ query, therefore, is the set of possible
answers allowed by the conceptual information given the state of the world as
represented by the data base.

There are different kinds of possible relationships between EFL’ and
DBL, which may vary in their degree of complexity. The discussion of this
chapter begins with one simple but important case. This will provide a

3’ This analysis of a relational data base is somewhat simpler than the one proposed in Chapter
III where a many-sorted type system was used. The many-sortedness will be reintroduced in
section 3 of the present chapter.
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starting point for the gradual development of more sophisticated methods
later on.

2. Conceptual Information in the Form of Translation Rules.

2.1. Translation Rules.

Consider the situation that all the concepts represented by the constants of
EFL’ can also be represented by expressions of DBL. In this case, the
relation between the two languages can be described by specifying for any
EFL’ constant a ”synonymous” DBL expression. Thus, the conceptual
knowledge of the system is represented as a constant-translation: the
specification of the extension of a function CT which maps the descriptive
constants of a source language (i.e. EFL’) into the expressions of a target
language (i.e. DBL). The intention is that CT defines constant c as being
equivalent to expression CT(c) in all interpretations of source language and
target language which are compatible with each other. Or, put slightly
differently, given an interpretation of the target language, a constant­
translation defines at most one interpretation of the source language as being
compatible with it: the interpretation which assigns to every descriptive
constant c the denotation of CT(c). (To formal constants it assigns the same
entities as the target language interpretation.)

If the type systems of source language and target language are identical,
the translation algorithm complementing this method of knowledge
representation is trivial: it inspects the source language expression and
substitutes for every constant c the target language expression CT(c) that
defines it. As Leibniz (1686) put it: ”. .. it does not seem to me that there is
need for any other kind of proof than one which depends on the subsitution
of equivalents” (cf. Ishiguro, 1977, p. 17).

As an example application of this method, consider the example data base
of the previous section. The data base language considered has the
descriptive constants EMPS,with type S(entity), DEPTS,with type S(entity), and
F-EMP-DEPT,with type (entity --->entity).
The EFL-to-DBL translation is now defined by the rules

DEPARTMENTS => DEPTS

EMPLOYEES ==> EMPS

HAVE => (xu,v: F-EMP-DEP1‘(V)= u)

These rules can be directly applied to the formula (2) which represents
question (1). Substitution of the right hand expressions for the left hand
constants in (2) yields (4), which is equivalent to (3) above.
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How many departments have more than 100 employees? (1)

Count({x e DEPARTMENTSI Count({ y E EMPLOYEES| HAvE(x,y)})
>100» (2)

Count({x e DEPTS| Count({ y e EMPSI (fun: (Xu,v: F-EMP-DEPT(v)= u),
arg: <x,y>)})>100}) (4)

Notice that this method requires a certain ”richness” of the logical
language. If the language does not have K-abstraction, one can not say, for
example

HAVE =5 (X u,v: F-EMP-DEP'1‘(v)= u).

Instead, one would have had to say something like

HAvE(u,v) ==> F-EMP-DEPT(v)= u.

This means that instead of a local substitution rule there would be a

schema of global rules, Thus, an inherently more complex framework would
be employed, which brings its own problems.”

2.2. Type constraints.

The definition of the logical language used in the PHLIQA1 system (see Appendix A) does
not allow arbitrary combinations of constants, variables and formal operators as language
expressions. Since many combinations would in fact be meaningless, the language definition
explicitlyconstrains the possible combinations of elements to the meaningful ones. The type
system which accomplishes this task may be used in a similar way to constrain the allowable
translation rules.

In order to guarantee that the result of the translation procedure indicated in the previous
subsection is a semantically well-formed expression of the target language, as defined in
Appendix A, section 5, we impose conditions on the constant-translation concerning the
semantic type of the source language constants and the semantic types of their target language
translations. We require, therefore, that for any constant c,

TvPE(Cl“(c)) % m»a(c).

The relation % between two types a and Bwhich is defined in Appendix A, section 5, implies
that for every interpretation of the language the domain of a is a subset of the domain of B.

‘) Global rules are used, for instance, in TQA (Petrick, 1982)and EUFID (Burger, 1977). When
global rules are a little more complicated than the example above, they raise a completeness
problem. It is difficult to know if the rules cover all the cases that can arise. Local rules make
completeness issues much more tractable. The rest of this chapter demonstrates that global
rules can be avoided more consistently than one might think. In Chapter VI, section 2 I shall
take up the issue of local vs. global translation rules again.
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To prove that this indeed guarantees the legitimacy of any target language expression resulting
from the translation of a legitimate source language expression, the following property which
holds for all branching categories of the logical language is needed: if a branching category which

constructs an expression of type Bout of expressions of type a, an is applied to expressions
of type y,, .6 y,,such that y, T (1,, yn% on, then the resulting expression has a type 6
such that 6 T B.

Because of this property of the branching categories, the property of source language
expressions e that ET(e) is a legitimate target language expression and TYPE(ET(e)) % TYPI-2(8),
required for constants and trivially fulfilled for variables, carries over to arbitrary expressions.

To summarize: If a source language SL and a target language TL have identical type systems
and have identical branching categories which are ”transparent for the type-inclusion relation”,
a constant-translation from SL to TL is defined as a function CT from the descriptive constants
of SL into the expressions of TL such that for every descriptive constant c of SL:

TvPE(CT (c)) (T:TYPE(C).

Such a constant-translation CT induces a function ET on expressions which replaces every
constant c in the expression by its constant-translation CT(c). ET assigns to any SL-expression e
a TL-expression such that

TYPE(ET(e)) % TYPE(e).

3. Translation between Languages with different Type Systems.

In working out the idea of a synonymy-translation just above, it was
assumed that the type systems of the source language and the target language
were identical. This is a case which actually may occur —for instance, if both
languages have only one descriptive type (the type entity in the example in
the previous section). The case that the type systems of source language and
target language are different will now be considered.

If the language used for representing the meanings of questions in a
question-answering system has a many-sorted type system, important
simplification transformations are possible (see Chapter V, section 5), the
efficiency of proof procedures may be improved (Minker, 1978), and it will
be possible to test for ”semantic anomaly” (Appendix A, section 5).

To take full advantage of the possibilities of many-sorted languages, the
type system of the English-oriented formal language and the type system of
the data base language must be allowed to be different. At the highest
domain-independent level a refined many-sorted type system cannot be used
because any assignment of refined types to constants of the language would
impose constraints on those constants which are domain-dependent. At the
data base level, on the other hand, there are constraints that should be
expressed by the type system —e.g. what the domains of applicability of the
functions corresponding to the attributes of the data base are.

Because of this discrepancy between the type systems at the highest and
the lowest level of the system, it is worthwhile to define synonymy­
translations between languages which not only differ in the descriptive
constants they contain, but also in the descriptive atomic types they have.
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The translation specification as introduced in the previous section can also
be used for this case. A list which specifies for every source language constant
a synonymous target language expression defines, given a target language
interpretation, at most one source language interpretation as being
compatible with it: the interpretation which assigns to every descriptive
constant of the source language SL the denotation of the corresponding
expression of the target language TL, and to every atomic type onof SL the
denotation of the TL expression which corresponds to the SL constant GSa.5)
(To every formal constant or type, the SL interpretation assigns the same
entity as the TL interpretation.)

It is not very difficult to define a conversion function H which assigns to
any expression E of the source language SL an expression H(E) of the target
language TL, in such a way that both expressions have the same denotation
under compatible interpretations of both languages. To take care of the
ranges of the variables in the expressions, the definition of H is less trivial
than the corresponding definition (of the function ET) in the previous
section. To assign types to the variables in the target language expression
which ”translate” variables of the source language expression, the definition
uses a correspondence between the type systems of the two languages which
is induced by the constant-translation. Given a constant-translation CT, we
define the corresponding atomic-type-translation AT as the function which
assigns to any atomic type a of SL the type TYPE(CT(GSa))of TL.

Given an atomic-type-translation AT, the corresponding type-translation
TI‘ is defined as the function which assigns to any type 1:of SL the type of TL
which is obtained by substituting for every atomic type a in ‘IIthe type AT(a).

H is recursively defined as follows:

H(e) = def

if e is a constant then CT(e)
else if e is a variable then VT(e)
else if e has the form (Xx:D)

then (Ky: (if: y E A, then: D’)),
where y 5 VT(x)

A 2 H(GENSE'I‘('l'YPE(x))

D’ E H(D)
else [e has the form b(sel,: e1, ..., sel,,: e,,)]

b(sel,: e1’, ..., sel,,: en’)
where e,’ 5 H(e1), ..., en’5 H(e,,).

5’ We assume that the source-language contains for every atomic type a a constant GSOdenoting
the domain of (1.
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In the definition of H, two functions were used which have not been
introduced before: VT and GENSET.

VT may be any function which assigns to any variable v of SL a distinct
variable a of TL, such that TYPE(u)= TT(TYPE(v)).

The function GENSETassigns to any type an expression which denotes the
domain of that type under any interpretation of the language. It is defined as
follows:

GENSET ((1) = def

if (1is an atomic type then GSQ
else if (1has the form S((1’) then power (GENSET((1'))
else if (1has the form B((1’) then bags (GENSET((1'))
else if (1has the form F(o(') then files (GENSET((1'))
else if (1has the form L((1’) then lists (GENSET((1'))
else if (1has the form <(11,..., (1,,>

then cartesian-product (GENSET((11), ..., GENSET((1,,))
else if (1has the form (aa —>(1,)

then functions, (domain: GENSET((1,), range: GENSET((1v))
else if (1has the form ((1, --->av)

then functionsp (domain: GENSET((1,),
range: GENSET((1v))

else if(1 has the form ((11,..., an)
then union (GENSET((11), ..., GENSET((1,,))

else if (1has the form AMT([3)
then bag-to-set (

(for: cartesian-product (union ((}S,-,,,,_,g,,,,GS,,,,,,), GENSET(B)),
apply: (itx: (num: x [1], unit: x [2]))))
where x has the type <U (integer, real), (3)

else if (1has the form ID, (6)
then bag-to-set ((for: GENSET([3), apply: (Ky: id, (y))))

where y has the type B.

(The semantics of the branching categories ”power”, ”bags”, ”files”,
”lists”, ”cartesian-product”, ”functionst”, ”functionsp”, ”union” and ”bag­
to-set” is given in Appendix A.)

In the definition of H, the translation of expressions of the form (itx: D)
may be refined by giving separate consideration to the case that

H(GENSET((1)) 5 GENSET(TT((1)), where (1is the type of x.
In this case, the simpler expression (Ky:D’) may be used instead of the

translation
(Ky: (if: y e A , then: D’)),

because the condition y e A necessarily has the value TRUE.
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To guarantee that, for any expression E, H(E) is a legitimate expression of TL, we require that
for any constant c

mi=.(Cr(c)) % 'rr(m»a(c)).
That this condition has the desired effect follows by the same line of reasoning that was

indicated for the corresponding condition in the previous section.” It is reasonable to add the
following two requirements because they enforce a good ”style” of designing translation
specifications:
—For any atomic type a of SL holds that all elements of coMPoNEN'rs(AT(a))are atomic types of

TL.”
—For any two different atomic types a and Bof SL holds:

coMi>oNENrs(AT(a)) fl coMPoNENrs(AT(B)) = Q.
These requirements guarantee that types which are considered disjoint at the SL level are not

mapped onto identical or overlapping types at the TL level. The background of the first
requirement is the fact that atomic types are considered to be disjoint with all compound types;
the background of the second requirement is that distinct atomic types are mutually disjoint.
These properties of the type system are useful because, for instance, they make it possible to
simplifyexpressions containing unwieldy ”function-choices” (see Bronnenberg et al. (1980),
section 13, for a simple example).

As an example, reconsider the data base in section 1, analysed according to
the method discussed in Chapter IV, section 3. The data base is then viewed
as specifying the extensions of the following DBL constants:
- GS,_.,,,,,of type S(emp) representing the set of all employees
—GSd,,p,of type S(dept) representing the set of all departments
— F-EMP-DEVI‘,of type (emp —>dept) assigning to every employee a

department

We can now describe the relation between EFL and DBL by the following
rules”:

6’ Notice that this requirement on the translation rules can be effectively checked. This makes it
possible to do a ”syntactic correctness test” on every new set of translation rules that is
entered into a system which is under development. Such a test mode makes it possible to
detect mistakes in the formulation of translation rules during the development of the system,
rather than during test runs of a finished version. This idea, which parallels the idea of
compile-time type checks in high-level programming languages, has greatly diminished the
amount of debugging effort involved in realizing a faultless implementation of the PHLIOA1
program.

7’ The function COMPONENTSis defined in Appendix A.

3) Because of the type constraints on translation rules mentioned above, the rule for HAVEas
formulated here would not have been allowed in the PHLIOA1 framework. Instead, it would
have been formulated as:

HAVE => (Au, v: u = (fun: function-choice (F-EMP-DEPT,(Xp: FALSI-3)),
arg: v))

where u and v range over the domain of emp U dept, and p ranges over the
domain of dept.

In this way it is avoided that a function is translated into a function with a smaller range, which
can lead to semantically anomalous expressions. The final result is the same, however, as in the
formulation above.
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DEPARTMENTS =» GSd,_,,,,

EMPLOYEES => GSe,,,p
HAVE = (}tu,v: E-EMP-DEPr(v)= u)

where u ranges over the domain of dept and v
ranges over the domain of emp

Gsentity 1;’ U (Gsempa Gsdept)

Consider example question (1), rendered in EFL as (2).

How many departments have more than 100 employees? (1)

Count ({x e DEPARTMENTSI Count ({y e EMPLOYEES| HAVE(x,y)})
>100» (2)

where x and y range over the domain of entity.

Application of the above rules to (2) yields, after A-reduction:

Count ({x’ e GSd,,,,, Count ({y' 6 GS,,,,,,, | E-EMP-DEPT(y’)= x’})
> 100» (3)

where both x’ and y’ range over the domain of dept Uemp.

The expression (3) may be further simplified into a formula with the same
appearance, except that x’ is replaced by u’, with the type dept, and y’ is
replaced by v’, with the type emp.

Allowing differences between the type systems of source language and
target language was only one step in the development of the full generality of
the translation specification method. In the next section the translation
between languages which correspond to each other in a still ”looser” way will
be discussed.

4. Identification Translations.

4.1. The Problem of Compound Attributes.

If a target language does not have for every constant of the source
language an expression considered synonymous to it, the relation between
both languages cannot be defined by a synonymy translation. But it is
nevertheless possible that in such a case a weaker, but interesting and useful
relation exists between the languages. It may be possible to define an
identification translation from the source language into the target language, in
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which a translation assigns to every constant of the source language an
expression of the target language which represents a concept that can ”do
duty” for the concept that the constant represents, without necessarily being
the same concept. (If it is the same concept in every case, the identification
translation is in fact a Synonymytranslation.)

As an example of a situation where this technique is needed, consider
a data base which has a file of DEPARTMENTS,and which has

NUMBER-OF-EMPLOYEESas an attribute of this file. This data base specifies an

interpretation of a logical language which contains the set-constant GS,,,,,,,
and the function #EMP(from departments to integers) as its descriptive
constants.

This data base contains sufficient information to answer question (1)
rendered in EFL as (2).

’’How many departments have more than 100 employees?” (1)

Count ({x e DEPARTMENTS|

Count ({y e EMPLOYEES| HAVE(x,y)}) > 100}). (2)
(Both x and y range over type entity.)

In terms of the new data base just introduced, the query expressed by (1)
would be:

Count ({x e GSdep,I #EMP (x) > 100}). (3)

In describing the relation between EFL’ and DBL for this case, a new
difficulty arises. The DBL constants do not allow the construction of DBL
expressions whose denotations involve employees. So the EFL’ constant
EMPLOYEEScannot be translated into an equivalent DBL expression —nor can
the relation HAVE,for lack of a suitable domain. This may seem to require
giving up local translation for certain cases: instead, one would have to use an
algorithm which looks out for sub-expressions of the form
(Ky: Count ({x e EMPLOYEES| HAVE(x,y) })), where y is ranging over
DEPARTMENTS,and then translates this whole expression into: #EMP. This
would not be attractive —it could only work if EFL’ expressions would be
first transformed so as to always contain this expression in exactly this form,
or if a large number of corresponding transformations for differently
structured expressions would be specified. Happily, the ”identification
translation” provides another solution.

Although in DBL terms one cannot talk about employees, one can talk
about objects which stand in a one-to-one correspondence to the employees:
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the pairs consisting of a department d and a positive integer i such that i is not
larger than the value of #EMPfor d (see fig. 1.).

DEPT A DEPT B

#EMP: 3 #EM1>:4

R <A,1> R <B,1>

R <A,2> R <B,2>

W <A,3> W <B,3>

Ix <3...

Therefore, employees may be ”represented” by such pairs. The most
straightforward way to implement this idea would be to translate constants
denoting sets of employees into constants denoting sets of pairs (department,
integer), and functions on employees into functions on such pairs. For the
example we are considering, this would lead to the following translation
rules:

EMPLOYEES => U (for: GSd,,p,, apply: (Xx: {x} X Ints (#EMP (x)))

DEPARTMENTS => GS,,,,,,,
HAVE => ()tu,v: u = v [1])

GS,_,,,,,-,y 1 U (GSdep,, U(_f07'.'GSdep,,
apply: (Xx: {x} x Ints (#EM1>(x)))))

(Ints is a function which assigns to any integer i the set of those integers j such
that O< j S i.)

Application of these rules to (2) yields, after K-reduction:

Count ({z e GSdep, I
Count ({y e U(for: GSdep,,

apply: (M: {x} X Ints (#EMP(x))) ly [1] = 2})
> 100}) (4)

This expression can in fact be shown to be equivalent to (3) above. In this
case, this method yields a correct result. There are problems with the method
nevertheless.
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Notice that EFL’ individuals are translated into compound DBL entities.
This means that in EFL’ it would be necessary to give up the idea that atomic
types and compound types have disjoint domains. This may cause technical
problems, in that the applicability conditions of some important
simplification transformations have to be reconsidered. Another, more
serious problem is the fact that the correctness of the method just illustrated
depends on global properties of the formula that it is applied to, properties
which have not been made explicit. This method therefore can not be
guaranteed to work in every case. If the source language formula, for
instance, would contain a condition to the effect that a certain employee
would equal a certain pair <department, integer) (a condition which would be
logicallyequivalent to FALSE), then this condition would be translated into
one which for some data bases would come out TRUE.

A more complicated version of the same idea was developed which fares
better in dealing with problems of this kind. Instead of representing
employees directly by pairs <department, integer>,they are represented by
objects which have a one-to-one correspondence with these pairs —these
objects must be disjoint with the domains of all other (atomic or compound)
semantic types which are introduced by translation rules not dealing with the
source language type employee. After introducing this refinement, the
translation rules for the example are as follows.

EMPLOYEES => (for: U(for: GS,,,,,,,,
apply: (Xx: {x} X Ints (#EMP (x))),

apply: (Ky: idemp(y)))
DEPARTMENTS => Gsdep,
HAVE => ()tu,v: u = rid(v) [1])

GS,,,,,,-,y =*~ U (GSdep,, (for: U(for: GSdep,,
apply: (Xx: {x} X Ints (#EMP (x))),

apply: (Ky: idemp(y))))

idempis a function which establishes a one-to-one correspondence between
its domain and its range (its range is disjoint with all other semantic types);
rid is the inverse of id,_.,,,p.

Application of these rules to (2) yields (5) which is logically equivalent to
(3) above.

Count ({z e GSd,,,,,|
Count ({y e (for: DEPTS,

apply: (xx: {x} X Ints (#EMP(x)))),
lrid (y) [1] = 2})

> 100}) (5)
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where x, y and 2 range over U (dept, ID,_,,,,p(<dept, integer>)).
(This is demonstrated in detail in section 5).

4.2. More Complex Examples.

The technique just described is not an ad hoc way of treating one specific
example but is rather generally applicable. The technique was developed to
deal with some quirks of the PHLIQA1 data base, while the example we just
went through comes from Moore (1982) who posed the question of how to
allow different ways of assessing the cardinalities of sets at the data base
level, while treating ”how many”-questions in a unified way.

The following example is also from Moore. Consider again the question
How many departments have more than 100 exployees? (1)

but this time with yet another data base which contains not only a file of
departments but also a file of offices with attributes indicating the
department and the number of employees of each office. Thus, the data base
specifies an interpretation of a query-language which contains the set­
constants OFFS‘and DEPTS,and the function-constant F-OFF-DEPT(with type
(off —>dept) and #EMP (with type (off —>integer)).9)

In this case, DBL proxies for employees may be constructed out of pairs
consisting of an office and an integer. This leads to these EFL’-to-DBL
translation rules:

EMPLOYEES => U(f0r.' OFFS

apply: (Ax: (for: Ints (#EMP(x)),
apply: (Ky: idem]?(<x,y>)))))

DEPARTMENTS => DEPTS

ENTI'I'IES => U(DEPTS,
HAVE =» (A u,v: F-OFF-DEPT(rid (v) [1]) = u)

When these rules are applied to the EFL representation of (1), i.e. (2), and
a simplification process similar to the one described in section 5 is applied
next, the final result is (3).

Count ({x e DEPARTMENTSI Count ({ y e EMPLOYEES| HAVE(x,y)})

> 100}) (2)

Count ({z e DEPTS| Sum (for: {x e OFFS| F-OFF-DEPT(x) = 2},
apply: #EMP) > 100}) (3)

9’ OI-‘FSE GS,” and DEPTS5 GS,,,,,,.
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Thus, this example yields a more complicated DBL expression, where the
, values of the #EMP attribute for the different officesof one department are

added up.
It may be noted that the treatment of this example is exactly parallel to the

treatment in the previous subsection: in both cases, one specific DBL
identification has been constructed for every employee. By the way this
identification was constructed, the fact that these sets of employees of
departments or offices are disjoint has also been captured.

For instance, in the treatment of the data base of section 4.1, it was
implicitly assumed that any employee can only be in one department at once.
On the basis of that treatment it is also possible to answer

How many employees do the departments have together? (4)
where the disjointness of the sets of employees of the departments is needed
to be able to compute this number. In EFL’, (4) might be represented as

Count (U (for: DEPARTMENTS,

apply: (Ax: {y e EMPLOYEESI HAVE(x,y)}))) (5)

Application of the rules of subsection 4.1, followed by appropriate
simplifications, yields DBL expression

Sum (for: DEPTS,apply: #EMP) (6)

One may, however, imagine situations which are partially similar but
where the assumption that different departments have different sets of
employees does not hold. Then, the treatment just sketched would not apply,
though still the answer to question (1) could be obtained from the data base,
since the question would still be equivalent to DBL expression (3).

To deal with this situation an essentially wider framework is needed. (See
Chapter VI, section 2).

4.3. The Definition of Identification Translations.

A more formal description of the notion of an identification translation
that was introduced in subsection 4.1 will now be presented. An
identification translation from source language SL into target language TL is
defined by specifying
—an atomic-type-translation AT, assigning a type of TL to any atomic type

of SL, and
—a constant-translation CT, assigning a TL expression to any SL constant.

To capture the relation between the meanings of the constants and types of
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SL and TL, AT and CT must fulfill the following intuitive requirements:
1. In every state of affairs of the subject domain, for every atomic type a

there is a one-to-one function fa which maps the extension of the concept
represented by (1onto a subset of the extension of the concept represented
by AT(a). (In a particularly important special case, fa is simply the
identity function). The idea behind this is that at the TL level elements of
the domain of AT(a) are used as ”proxies” for the elements of the domain
of (1.

2. Either constant C and expression CT(C) represent the same concept, or C
has a descriptive type”) and C and CT(C) represent ”corresponding”
concepts: concepts such that replacing every individual X (belonging to
the domain of atomic type (1)in the extension of C byfa (X) necessarily
yields the extension of CT(C).

To include identification translations, the formal specification of the requirements for a
constant-translation CT + atomic-type-translation AT (see section 3) must be modified to read
as follows:

1. a. For any atomic type cpof SL:
X E COMPONENTS(AT(cp)): (X is an atomic type V

X has the form ID, (y)).
b. For any two distinct atomic types q)and 1pof SL:

COMPONENTS(AT (q))) 0 COMPONENTS AT (1p)) = @ V

—-1 i x E COMPONENTS (AT (cp)) y E COMPONENTS (AT(1J,)))

373 6: x E ID,-(Y) & y E ID,-(6).
c. For any formal atomic type q)of SL: AT(cp) E cp.

2. a. For any constant C of SL:
TYPE(CT (C)) % TI‘(TYPE(C)),
where the type translation function TT is the function which assigns to any type 13of SL a
type of TL by replacing in 1:every occurrence of any atomic type a by AT(a).

b. For any formal constant F of SL, CT(F) E F.

When the relation between a source language SL and a target language TL
is described by an identification translation, the compatible interpretations of
SL and TL are defined as follows.

An interpretation 1of TL and an interpretation J of SL are compatible iff“)
—For every atomic type a of SL there is a one-to-one function fa mapping the

elements of DOM, ((1)onto the elements of D, (CT(GSa)).
(D, (CT(GSa)) may be equal to DOM, (AT(a)), but it may also be a
proper subset of it.)

—For every constant C of SL, replacing every individual X (belonging to the
domain of atomic type (1)in DJ (C) byfa (X) yields D, (CT(C)).

‘°’ A descriptive type is a type which contains one or more descriptive atomic types.

‘” We use the notation ”DOM,(a)” for ”the domain of type a under interpretation 1", and
”D,(e)” for ”the denotation of expression e under interpretation 1”.



89

The definition of the conversion function H remains the same as in the

previous section, except for a precaution about the use of the id,--branchings:

H(e) = def

if e is a constant then CT(e)
else if e is a variable then VT(e)
else if e has the form (Xx:D)

then (Ky: (if: y e A, then: D’)),
where y 5 VT(x),

A 5 H(GENSET(TYPE(x)),
D’ 5 H(D)

else [e has the form b(sel,: el, ..., sel,,: e,,)]
if—‘13 i: (b 5 id,-&

there is a type in the range of AT which has the form ID, ((1))
then b(sel,: e1’, ..., sel,,: en’),

where e1’: H(e1), ..., en’2 H(e,,).

H is now a partial function: if an expression E already contains an id,­
branching which is also used in the translation”), H(E) is not defined. In
practice this is not a limitation; it is easy to ensure that the convertors used at
the different levels all introduce different id, branchings (if any). Therefore,
H can for all practical purposes be considered as a total function. (The
functions AT and CT, which occur in the definition of H, are total functions.)

Perhaps more important is a relaxation in the definition of the correctness
of a conversion that is needed now. Since expressions with descriptive types
may now be translated into non-equivalent expressions, all we can still
require is that the conversion function H assigns to any closed SL-expression
E witha formal type a closed TL expression H(E) with a formal type such
that E and H(E) alwayshave identical denotations under compatible
interpretations of SL and TL. This requirement is sufficient because the
EFL’ representation of a question is always a closed expression with a formal
type. The function H as well as the simplification convertor translate closed
expressions into closed expressions, and expressions with a formal type into
expressions with a formal type. Therefore, the representation of the question
at any level is a closed expression with a formal type.

To the presupposition-expressions which may be part of the representation
of a question and whose value must be preserved as well, the same reasoning
applies.

‘2’This is the case if a type of the form ID,-(a), for this particular i, occurs in the range of AT.
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5. Simplification Transformations.

A set of local substitution transformations usually turns its argument
expression into a considerably bigger expression: it replaces constants by
expressions which are often larger.

A translation algorithm which implements an identification conversion
function in a direct way generally produces very unwieldy expressions which
in fact allow for much simpler paraphrases. To avoid unnecessarily long
evaluation times for the DBL query, the EFL-to-DBL translation must be
followed by processing step which applies logical equivalence
transformations so as to achieve the simplest possible formulation of the
DBL query.

Sometimes a DBL expression is not only unnecessarily large, and
unnecessarily time consuming when evaluated —an expression may be
actually impossible to evaluate as it stands, because it contains constants
which have an infinite extension. It is worth trying to design the translation
rules in such a way that introducing such constants is avoided, if possible. As
an example, consider the rule for translating EMPLOYEESused above in section
4.1:

EMPLOYEES=> (for: U(for: DEPTS,apply: (Xx: {x} X Ints (#EMP (x))),

apply: (Ky: idemp(y)))

This rule is to be preferred to the alternative formulation

EMPLOYEES=> (for: {x e DEPTSx INTEGERSI 0 < x [2] S #EMP (x[1])},

apply: (Ky: idemp(y)))

although the latter formulation may be deemed conceptually simpler. The
former formulation avoids the introduction of the unevaluable constant
INTEGERSin the expression. Instead, the integers which play a role in the
denotation of the expression are generated by the function Ints, whose value
can be effectively computed for any argument.

To give an impression of the kinds of simplification transformations that
can be usefully applied, let us now return to example (1)

How many departments have more than 100 employees? (1)

This question may be rendered in EFL’ as

Count ({x e DEPARTMENTS| Count ({ y e EMPLOYEES| HAVE(x,y)})
> 100}) (2)

where x and y have type entity.
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Applying the identification translation as specified in section 4.1 yields

Count ({z e DEPTSI

Count ({y e (for: u (for: DEPTS,
apply: (xx: {x} x Ints (#1-:M1>(x)))),

apply: (kw: idemp(w))
Ifid (Y)[1] = Z})>100})

where x, y, z, w have type U(dept, IDe,,,p(<dept, integer>)) (3)

This expression can be considerably simplified. I shall now show this step by
step.
Applying to (3) the rule

{y e (f0r:A, apply: B) IC} => (for: {z e A I (fun: (ky:C), arg: B(z))},
apply: B) '

plus constraining the types of the variables in a self-evident way, yields

Count ({z e DEPTSI
Count ({(for: {u e U(for: DEPTS,

apply: (Ax: {x} X Ints (#EM1>(x))),

I rid (idemp(“ll [1] = Z},
apply I idemp)

> 100}) (4)

where x and z range over dept, and u ranges over <dept, integer).
idempis an abbreviation for (Aw: idemp(w)) , where w has the type
<dept, integer).

Applying to (4) the rules

rid (ida (x)) =2 x

and

{ue U(f0r.'A, apply: B I C(u)}
=> U(f0r:A, apply: (Xx.'{z E B(x) IC(z)}))
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yields

Count({z E DEPTSI
Count ((for: u (for: DEPTS,

apply: (Xx: {q e {x} X Ints (#EMP(x)) I
q [1] = z})),

apply: idemp))
> 100}) (5)

Applying to (5) the rule

{qe AXBIq[1]=C} =¢~({C}n A)xB

yields

Count ({z e DEPTSI
Count ((for: U(for: DEPTS,

apply-' (XX:({2} V‘{x}) X 1ntS(#EMP(x)))),
apply: idemp))

> 100}) (6)

Applying to (6) the rule:

(for:A, apply: (Xx:({x} n B) X C))
=> (for:A n B, apply: (Xx:{x} X C))

yields:

Count ({z e: DEPTS|

Count ((for: U(for: DEPTS0 {z},
apply: (lac: {x} X Ints (#EMP(x)))),

apply: idemp))
> 100}) (7)

Applying to (7) the rule

A 0 {x} 2 {x}
ifx has type a andA is GSQ,
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yields:

Count ({z e DEPTS|
Count ((f0r: U(f0r: {2}

apply: (Xx: {x} X Ints (#1-:MP(x)))),

apply: idemp))
> 100}) (8)

Applying to (8) the rule

(far: {Z}: apply: F) =?’ {F(z)}

yields:

Count ({z e DEPTSI

Count (for: U({{z} X Ints (#EMP(z))}),
apply: idemp)

> 100}) (9)

Applying to (9) the rule

U({A }) => A

yields:

Count ({z e DEPTSICount (for: {z} X Ints (#EMP(z)),

apply: idem‘,
> 100}) (10)

Applying to (10) the rule

Count (for: A , apply: ida) => Count(A)

yields:

Count ({z e DEPTSICount ({2} X Ints (#EMP(z)))
>1o0}) (11)

Applying to (11) the rule

Count ({2} XA) =>Count (A)
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yields

Count ({z e DEPTSICount (Ints (#EMP(z)))
> 100}) (12)

Applying to (12) the rule

Count (Ints (A)) =:> A

yields

Count ({z e DEPTSI #EMP (z) > 100}) (13)

Expression (13) is identical to expression (3) in section 4.1. above.

The last version of the PHLIQA1 simplification module, designed and
implemented by W.J .H.J . Bronnenberg, contained about 100simplification
rules which can be compared in complexity to the rules just demonstrated.
The algorithm which attempts to simplify a PHLIQA1 expression by
applying these rules is rather complex. Two important problems giving raise
to these complexities should be mentioned here.

First of all, some useful ”simplification rules” make an expression bigger
rather than smaller (for instance, the rule which goes from (3) to (4) above).
A cumulative counterproductive effect of such rules should be avoided.
Secondly, many rules are not valid if applied to expressions which are
possibly denotationless. (For instance, (fun: (Xx:A), arg: B), with A not
containing x, cannot be reduced to A if B is denotationless under certain
interpretations. Establishing that an expression necessarily has a denotation
is therefore often a prerequisite to the application of simplification rules.

6. Extending the Data Base Language.

Question (1), rendered in EFL as (2), has been used as a standard example
in the present chapter.

How many departments have more than 100 employees? (1)
Count ({x e DEPARTMENTSI

Count ({ y e EMPLOYEES| HAVE(x, y) }) > 100}) (2)

Consider now a slight variation on (1):

How many departments have more than 100people? (3)
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which is represented in EFL as

Count ({x e DEPARTMENTSI
Count({y e PEOPLE IHAVE(x,y)}) > 100}) (4)

In certain contexts, it may be justifiable to treat the notion ”person” as
coreferential with the notion ”employee”, and process (3) accordingly, as
described in the previous sections. But let us consider the case that the
subject-domain which provides the background for the interpretation of the
question is somewhat broader than the actual data base, so that ”person” and
”employee” should be treated as non-synonymous which is needed to be
able to answer the questions ”Are all employees 61. ‘loyedby a
department?” with ”Yes”, but ”Are all people empi ‘edby a department?”
with ”I don’t know”. Also in this case, (3) can be seen >be synonymous with
(5), and can thus be given a definite answer on the basis of the data base of
section 1.

Count ({x e GSdep, | Count ({y e GSe,,,p I E-EMP-DEPT(y)= x}) > 100}) (5)

In order to account for the translation from (4) into (5) a refinement of our
translation method is needed because the method described so far has a

problem with this example; although the answer to (3) is determined by the
data base, the question as formulated refers to entities which are not
represented in the data base, cannot be constructed out of such entities, and
do not stand in a one-to-one correspondence with entities which can be so
constructed. In order to be able to construct a DBL translation of (4) by
means of local substitution rules of the kind previously illustrated, an
extended version of DBL is defined called DBL*.

DBL* contains exactly the same constants as DBL, plus a constant
NoNEMPs,denoting the set of people who are not employees. By means of the
semantic type system of the formal language it can be guaranteed that for
every interpretation of the language the denotation of NONEMPSis disjoint
with the denotation of the DBL-expression EMPLOYEES.

The rules for the EFL-to-DBL* translation are:

DEPARTMENTS => (for: GS,,,,,,,, apply: F-EMP-DEPT)

EMPLOYEES => GSe,,,p

PEOPLE => U(GSe,,,,,, GS,,0,,,,,,,,,)

HAVE => ()ty,x: (ifsx E GSe,,,p, then: E-EMP-DEPr(x)= y,
else: 1=ALsE))

where y ranges over the domain of dept, and x ranges
over the domain of U(emp, nonemp)

Gsentity ==> U (Gsdepta Gsempa Gsnonemp)
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Application of these rules to (4) yields an expression which can be seen to
be equivalent to (5).

It should be noted that for a question like (3) the simplification component
of the program plays a different role than for a question like (1): the EFL-to­
DBL* translation applied to (4) yields an expression containing the
unevaluable constant NONEMPS.In order to give a definite answer, the system
must eliminate this constant from the expression. (In the case of question (1),
the simplification only serves more efficient evaluation.) If the elimination
does not succeed, the system may still give a meaningful ”conditional
answer”, however: it translates NONEMPSto Q and prefaces the answer with
”if there are no persons other than employees...”

In the next chapter, alternatives to the knowledge representation
techniques used in PHLIQA1 are reviewed and an attempt willbe made to
draw conclusions about the approach presented here.
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Chapter VI. Alternative Knowledge Representation
Techniques.

1. Introduction.

The previous two chapters discussed the knowledge representation
methods employed in PHLIQA1: formatted data bases and translation
specifications. The present chapter pays some attention to alternative
techniques. The discussion in this chapter will be focussed on knowledge
representation techniques which can be used in a well-structured system —
i.e., which make it possible to asses what knowledge is possessed by a
knowledge representation component of the system independently of the
algorithmic structure of this component or the.components that interface
with it. The less well-defined proposals which have come out of the work in
Artificial Intelligence will thus not be dealt with here, but some of the more
formal kinds of techniques will be focussed on in the differen sections of this
chapter.

Most closely connected to the discussions in the previous chapter, is a
consideration of some variations on the ”translation specifications” method.
Section 2 discusses the use of ”global rules”, which translate compound
expressions rather than constants. This method is less reliable than the more
restricted ”constant-translation method” developed in the previous chapter.
It is more powerful however, and there are cases where this power is needed.

Section 3 discusses another generalization of the ”translation
specification” method: the use of recursive translation rules. This method
necessitates a different algorithm for treating ”high-level queries”: the
translation must be interwoven with the evaluation of the translation results.

Section 4 treats an important knowledge representation technique which
assumes the employment of a theorem-proving algorithm rather than a
translation algorithm: the method of using collections of axioms. Section 5
treats an interesting variant of this method, characterized by the ”Closed
World Assumption”.

Section 6 treats a particularly interesting group of systems, whose designers
have attempted to fuse the two approaches that I so far treated as disjoint:
systems which use an axiomatic knowledge representation (possibly with the
Closed World Assumption) but which make a distinction within their axiom
collection which parallels the distinction between conceptual and factual
information which is at the heart of the PHLIQA1 approach. Because of this
relationship to the PHLIQA1 work, this approach is discussed in somewhat
more detail than other ones.

The final section of this chapter summarizes the conclusions which may be
drawn from the discussions in the other sections.
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2. Rule Schemes.

2.1. Introduction.

The method of translation specifications, discussed in Chapter V, only used
translations of constants and atomic types to specify the translation of the
expressions of a source language into expressions of a target language. The
present section discusses more general translation methods which allow
global rules (translating compound expressions) and rule schemes (which
specify translations of sets of compound expressions which satisfy a certain
structural description). Since rule schemes necessarily are ”global”, and since
the use of global rules usually entails the use of rule schemes, these
extensions will be discussed together. However, two different cases of using
global rules and rule schemes will be distinguished, since they have
significantlydifferent properties.

If a particularly restricted kind of logical language is used, such as the first­
order predicate calculus, global rule schemes may be used as an alternative
”notation” for the ”local translation rule method” we expounded in section 2
of the previous chapter. We briefly discuss this variant in the next subsection,
and then go on, in section 2.3, to discuss the use of global rules in less
constrained situations.

2.2. Rule Schemes for First-order Languages.

Consider the situation that a translation is to be specified between a source
language and a target language which have the same syntatic constructions
and the same type systems, but different constants. If the languages contain
neither lambda-abstraction nor a rich repertoire of functional operators (for
example, if they are first—orderlanguages), it is usually not possible to specify
the translation by means of local rules operating on constants only, in the
manner indicated in Chapter V, section 2. It would in general not be possible,

- for instance, to formulate a target language expression equivalent to a source
language function constant, since one can not construct compound
expressions denoting functions. Rule schemes operating on compound
expressions must therefore be used instead.

In the case of first-order languages it is nevertheless possible to specify
translations in a way which corresponds closely to the purely local method
proposed in Chapter V, section 2. It is a characteristic property of a first­
order language that predicates and other function-constants (if allowed) only
occur in one specific position in one specific syntactic construction: they are
alwaysapplied to arguments. Therefore, definitions of predicates and other
functions can be formulated without loss of generality as rule schemes
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operating on compound expressions consisting of a predicate or other
function and its arguments. Such rule schemes involve an implicit iteration
over all the possible arguments of the function.

Where in the local ”constant-translation method” one would have had the
rule

P => (M1, ..., x,,: Q),

now the rule scheme

P(x,, ..., x,,) => Q

is used, in which Q stands for an expression which has no other free variables
than possibly x,, ..., x,,.
An effective translation algorithm applying such rules could have the form 1):

TRANSLATE(A) =def

if A has the form P(a1, ..., an) and there exists a rule scheme RS for
P(x,, ..., x,,)
then RIGHT-HAND-SIDE(RS) [x, := a1, ..., x,, := an]
else if A is an individual constant or a variable then A

else ifA has the form be (A,, ..., A,,)
then MAKE-BC(TRANSLATE(A ,), ..., TRANSLATE(A,,)).

The procedure MAKE-BC,applied to expressions e,, ..., e,,, creates an
expression with branching category be and sub-expressions e,, ..., e,,.This
algorithm assumes that at most one rule scheme is applicable to any
expression A, and that source language and target language have distinct (not
necessarily disjoint) sets of n-place predicates and function symbols, while
sharing all individual constants and variables. The variants of the algorithm
which are needed under other assumptions can be easily constructed.

Thus, any rule scheme of the kind described above, containing exactly one
predicate constant or function constant on the left hand side, can be used by
an effective algorithm to eliminate these constants. The rule schemes operate
almost locally, involving only the predicate or function constant which is to
be eliminated, and its unanalysed sub-expressions.

The step to an essentially global method is made when a rule or rule
scheme is used to define more complex source language expressions in terms
of target language expressions. The next subsection gives an example of a
situation where this step seems to be calles for.

" Notation: A[x, := a,, ...,x,, := a,,]stands for the expression A in which variable x, has been
replaced thourghout by expression a,, variable x,,has been replaced throughout by
expression a,,.
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2.3. An Example of the Use of Global Rule Schemes.

Section 4.1 of Chapter V discussed the problem which is raised for natural
language data base interfaces by the occurrence of ”compound attributes” in
the data base. As an example it used a data base containing a DEPARTMENTS­
file with an attribute NUMBER-OF-EMPLOYEES.If one tries to specify the
translation between high-level, ”English-like” representations of queries and
low-level ”data base oriented” formulations of queries by means of local
rules operating on constants only, a situation like this constitutes an obvious
challenge: an attribute like ”number of employees” corresponds to a
compound expression at the English-oriented level, but not to any constants
at that level. In Chapter V, section 4, it was shown how, under certain
assumptions, this example and other cases of its kind may be dealt with by
local rules, albeit local rules of some complexity.

Now the same example will be discussed under slightly different
assumptions. Global rules will now turn out to be difficult to avoid. The
example question (1), discussed in Chapter V, section 4, and rendered in
EFL’ as (2), will again be used as a point of departure.

How many departments have more than 100 employees? (1)

Count ({x e DEPARTMENTSI Count ({ y e EMPLOYEESI HAVE(x, y)})

>100}) (2)

We try to answer this question using the data base of Chapter V,
section 4.1, which has a file of DEPARTMENTSand which has

NUMBER-OF-EMPLOYEESas an attribute of that file. This data base thus specifies
an interpretation of a logical language which contains a set-constant DEPTS
and the function #EMP(from departments to integers) as its descriptive
constants.

We now abolish the assumption, made in Chapter V, that all departments
have disjoint sets of employees. Without this assumption, certain answers
which could be given before cease to be valid. For instance, the question

What is the total number of employees of all departments? (3)

does not have a definite answer any more, though upper and lower bounds
are still determined by the data base.

Question (1) above, however, still has a definite answer. Also without the
disjointness assumption, (2) is equivalent to (4), which is an evaluable DBL
expression.
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Count ({x e DEPTSI #EMP (x) >100}) (4)

The problem now is to generate (4), or another evaluable DBL expression,
on the basis of EFL expression (2). The translation rules of Chapter V must
be replaced by rules which do not incorporate the disjointness assumption.

To this effect, the following strategy may be used. Employees are
represented at the DBL level by means of the denotations of expressions of
the form id,,,,,p(i), where i is an integer. To be able to perform the translation,
the intermediate level DBL* is introduced, which has the same constants as
DBL, plus an additional function DIDS,which assigns to any department the
identification numbers of its employees. Note that the extension of DIDSis
unknown. For an expression to be evaluable, DIDSmust be eliminated. Two
properties of DIDSare important:
—For two distinct departments a and b, DIDS(a) and DIDS(b) are not

necessarily disjoint.
—For any department d, Count (DIDs(d)) = #EM1>(d).
The EFL-to-DBL* translation rules now read as follows:

EMPLOYEES=> U(f0r: DEPTS,apply: DIDS)

DEPARTMENTS => DEPTS

HAVE=> (Au,v: v e DIDS(u))

GSe,,,,-,y=> U(DEPI‘S, u(for: DEPTS,apply: D1Ds))

Applying these rules to (2) yields:

Count ({x e DEI’l‘SI Count ({y e (for: DEP'I‘S,apply: mos) I
y e DIDS(x) }) >100})

which is equivalent to:

Count ({x e DEPTSICount ({y e DIDS(x)}) >100})

which is equivalent to:

Count ({ x e DEPTSICount (DIDS(x)) >100})

which is equivalent to:

Count ({x € DEPTSI #EMP (x) >100})
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Note that the last simplification, where Count (DIDS(x)) was transformed
into #EMP(x), was not a logical equivalence transformation, but involved a
descriptive global rule scheme:

Count (DIDS(x)) => #EMP (x)

2.4. Theoretical and Practical Aspects of the Use of Global Rule Schemes.

To formulate the meaning expressed by a set of global rule schemes, every
rule scheme is reformulated as a single rule. This can always be done by using
lambda-abstraction; if lambda-abstraction is not already part of the language
under consideration, it can be allowed as part of an extended language for
formulating translation rules. For instance, the rule mentioned in the
previous subsection,

Count (DIDS(x)) =;> #EMP (x) ,

is rewritten, by abstracting over the free variables, as

(Xx: Count (DIDS(x)) => (Ax: #EMP (x)).

If all rule schemes are reformulated in this fashion, the translation
specification is a set of rules, each of which defines a source language
expression as synonymous to a target language expression. In model­
theoretic terms, the meaning of such a set of rules can be stated as follows: an
interpretation 1of the source language SL is compatible with an
interpretation J of the target language TL, iff for every translation rule
A => B the denotation of SL-expression A under I is the same as the
denotation of TL-expression B under J .

While local translation rules always define at most one source language
interpretation as compatible with a given target language interpretation,
global translation rules do not have this property. They may thus be used to
represent ”indefinite” information.

One problem which must be faced in devising an algorithm which applies
global rule schemes, is that any redundancy in the expressive possibilities of
the logical language must be matched with redundancies in the formulation
of the rule schemes. For instance, if the rule above is applied to a language
which also contains a function-composition operator (2),Count (8DIDScan not
be translated into #EMPsby an algorithm which simply checks the source
language expression for sub-expressions of the form described in the rule
scheme. The PHLIQA1 language presents many examples of this
phenomenon. For instance, complicated examples can be found in the
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previous section. In such cases, the translation rule scheme can only be
applied after the expression has undergone simplification transformations.

As we have seen from the example in the previous subsection, for
languages like the PHLIQA1 language it would not be feasible to specify for
every descriptive rule scheme a wide variety of variants applicable to
expressions of different forms. We must be satisfied with specifying rules for
the simplest cases, and rely on general simplification algorithms for bringing
the source expression is a suitable form. To guarantee effective translation,
we then need normalizability theorems about the logical language. For many
powerful languages, like the PHLIQA1 language, no normalizability
theorems exist.

Since different rule schemes may operate on overlapping parts of an
expression, it is difficult to assess which set of cases is covered by a given set
of rule schemes. For instance, the rules

A(B(x)) => 0
B(C(x)) => R

do not eliminate the constants A, B, and C out of the expression

A(B(C(a)))

though all ”patterns” occurring in the expression are covered by the rules.

3. Definitions within one Language.

3.1. Introduction.

So far, methods have been discussed which define source language
expressions in terms of expressions of a distinct target language. This has
excluded recursive definitions from consideration.” The present section
investigates the use of constant-definitions which are allowed to be recursive.
In order to make that formally possible, both source language and target
language are assumed to be subsets of one language, called the ”union­
language”.

The definitions may all be viewed as axioms of the form A = E, where A is
the defined constant and E is the defining expression.

Given an interpretation of the target language constants, we define as
compatible with this interpretation: all interpretations of the union-language

2’ It must be noted, however, that phenomena which are usually handled by means of recursion
can often be handled differently if the logical language is rich enough. For instance, if the
language contains a closure-operator, ”ancestor” may be translated into ”parent+”
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which ”contain” the target language interpretation and which assign the
value TRUEto the axioms. A compatible source language interpretation is a
subset of at least one compatible union-language interpretation.

Nothing in this formulation prevents a definition from being recursive.
There is no reason why a source language constant could not occur in the
right hand side expression of an axiom defining it.

Less crucial advantages follow from the fact that source language and
target language may be allowed to overlap so that translating a constant into
a synonymous constant may be skipped. In addition, source language and
target language need not be required to exhaust the union-language. It is
possible therefore to use intermediate steps in the definition of some of the
notions, without having to introduce extra ”language levels”.

The problematic side of abolishing the definite distinction between source
language and target language is that it becomes less self-evident whether a
given set of rules defines an effective translation. The structure of the
formalism no longer guarantees that every set of rules has this property.

What sets of rules can be used also depends on the structure of the
algorithm which is to be applied. An algorithm in the PHLIQA-style, which
embodies a strict separation between translation and evaluation, imposes
more severe constraints than an algorithm in the PLANNER-style, which
interweaves these processes. The next subsections discuss these alternatives.

3.2. Translation and Evaluation.

Consider a situation where a source language SL and a target language TL
both are subsets of a union-language UL. The SL-to—TLtranslation is
specified by means of UL-axioms of the form C = E, where C is a UL­
constant and E is a UL-expression. A data base specifies values of TL­
constants.

To compute values of SL-expressions on the basis of this information,
different kinds of algorithms may be used. The present subsection discusses a
treatment which makes a clear separation between SL-to—TLtranslation and
TL evaluation.” (The next subsection discusses an alternative).

This method would first translate the SL-query into TL, and then evaluate
the resulting TL-expression. This can be summarized as follows:

result: = EVAL(TRANSLATE(x))

A possibly more efficient variant would be:

result: = EVAL(SIMPLIFY(TRANSLATE(x))),

3’ This method is akin in style to the PHLIQA1 method, which may be viewed as a refined
version of it.



105

where SIMPLIFYwould be a procedure which transforms target language
expressions into logically equivalent target language expressions which are
easier to evaluate.
EvALis recursively defined:
EvAL(A) = def

if A has the form ’equal(x,, x2)’then
if EVAL(x1) = EVAL(x2) then TRUEelse FALSE.

else if A has the form ’conj (x1, x2)’ then if EvAL(x1) = FALSE
then FALSE

else if EVAL(x2) = FALSE
then FALSEelse TRUE

else if A has the form ’disj (x,, x2)’ then if EvAL(x1) = TRUEthen FALSE
else if EvAL (x2) = TRUE
then TRUEelse FALSE

else if A has the form ’application (x1,x2)’then
if x1is a constant then the value which the data base function x1yields for
the argument EVAL(x2)
else if x, has the form (Ky:D)

then EvAL(D [y := x2])

else

It is important to notice that when the value of an expression is computed,
it is not necessarily the case that the values of all its sub-expressions will be
computed in the process. (See the bodies of the procedures for computing the
values for conjunctions and disjunctions above.)

TRANSLATEis a ”Leibniz-algorithm” which tries to achieve a translation by
means of substitution of equivalents.

TRANSLATE(A) = def

if there is an axiom of the form A = E then TRANSLATE(E)

else if A has the form ’bc (A,, ..._,An)’, where ’bc’ is some syntactic
construction of the logical language,

then MAKE-BC(TRANSLATE(A ,) , ..., TRANSLATE(A ,,))
else A.

One important constraint is that no effective translation is possible if some of
the rules are recursive, since the translation algorithm would not terminate in
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that case. For instance, a constant A is not allowed to occur in expression E if
there is an axiom of the form A = E — nor is it allowed to occur in the

expression F if there is a constant B in E such that there are axioms A = E
and B = F.

Recursive definitions can be put to use, however, if the translation from
source language into target language is not separated from the evaluation of
the target language expressions, as assumed so far. This possibility is
explored in the next subsection.

3.3. Interweaving Translation and Evaluation.

Translation specifications may be used by a different kind of algorithm
than the one indicated in the previous subsection. Translation and evaluation
do not have to be separate steps, applied one by one to an expression
representing the whole content of the question. Instead, translation and
evaluation may be interwoven within one recursive algorithm. In this case,
the computation of the value of a source-language expression X is simply
described as

EvAL* (X),

where EvAL*is an algorithm which attempts to evaluate a source-language
expression directly, only calling the translation module when that is
necessary. For instance, an EvAL*algorithm running parallel to the EVAL
algorithm of the previous subsection would be defined as follows.

EVAI-* (A) = def

if A is a constant and there is an axiom of the form A = E then EvAL*(E)
else if A has the form ’equal (x1,x2)’ then

if EvAL* (x1) = EvAL* (x2) then TRUEelse FALsE

else if A has the form ’conj (x,, x2)’ then if EvAL*(x,) = FALSE
then FALSE

else if EvAL* (x2) = FALSE
then FALSEelse TRUE

else if A has the form ’disj (x1, x2)’ then if EvAL*(x,) = TRUEthen TRUE
else if EvAL* (x2) = TRUE
then TRUEelse FALSE

else if A has the form ’application (x1,x2)’then
if x, is a TL-constant then the value which the data base function x, yields
for the argument EvAL*(x2)
else if x, has the form ’()ty.'D)’

then EvAL*(D [y := x2])
else...
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An algorithm of this sort was implemented in the MICROPLANNERsystem
(Hewitt, 1972;Winograd, 1972). An advantage of this algorithm, above the
one described in the previous subsection, is that it does not exclude recursive
definitions. For instance, a definition like

Ancestor :5 (}\.x,y:Parent (x,y) V ( Elz:Parent (z,y) &
Ancestor (x,z))

can be allowed now. The algorithm of the previous subsection would never
stop applying this definition: the algorithm sketched above would come to an
end, however, for a data base which is finite and which does not contain
”loops” in the Ancestor-relation (i.e. occurrences of entities which, under
the above definition, are their own ancestors).

Extreme care is necessary in exploiting this possibility, however. The
logicallyequivalent definition.

Ancestor => (Xx,y: ( 32: (Ancestor (x,z) & Parent (2,y)) V
Parent (x,y))

for instance, would lead to a non-terminating execution of the EVAL*
algorithm above.

Another disadvantage of the integration of translation and evaluation is
that is is not possible any more to introduce a simplification procedure
between the translation and the evaluation step. Complicated translations of
the kind described in Chapter V and applied in PHLIQA1 would lead to
unnecessarily long computation times because of this. Chapter V also
described extensions of the method of translation specifications which hinge
essentially on the availability of a powerful simplification procedure:
unevaluable constants may be introduced by a translation, and a
simplification procedure is then required to eliminate these constants before
evaluation takes place. Such techniques are incompatible with the
algorithmic structure just described.

4. Representing Knowledge by Means of Axiom Collections.

The previous sections of this chapter discussed knowledge representation
methods which can be viewed as variations on the PHLIQA1 method that
was developed in Chapter V: methods which assume a division between a
data base (which specifies the values of certain constants) and a set of
definitions of concepts which makes it possible to access this data base
through a ”higher-level” language. The present section discusses an
important knowledge representation method with a rather different
character: the representation of knowledge by means of axioms, i.e. by
means of formulas of a logical language which are stipulated to be true.

The axioms in the knowledge base of a system correspond to the facts that
the system is aware of. They determine what states of the world are
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”possible” (i.e. compatible with what the system knows): the states of the
world corresponding to the interpretations of the logical language which
assign to all the axioms the value TRUE.

The paradigm example of a question-answering system with an axiomatic
knowledge base is QA3 (Green, 1969)—a system which is still of more than
historical interest. QA3 represents knowledge as well as questions by means
of first-order predicate calculus formulas. To find its answers it uses a
refutation procedure based on the resolution principle (Robinson, 1965). It
answers yes/no questions (represented as closed formulas) and wh-questions
in the mention-one reading (represented as open formulas).

For the unrestricted predicate calculus, there are no complete decision
procedures, which would be guaranteed to find for any formula either a proof
or the decision that no proof is possible. There are only complete ”proof
procedures”: if a formula which the procedure is trying to prove is in fact true
in all realizations, the proof will be found in a finite number of steps, but
otherwise the procedure may continue forever.

QA3 uses a such complete proof procedure. When answering a yes/no
question, it tries to prove the query-formula (and answer ”yes”) or its
negation (to answer ”no”). If the proof procedure terminates in both cases
without a proof, it answers ”unsufficient information” (which means that the
system has succesfully established that it does not know the answer). But the
proof procedure is not a decision procedure, i.e. it is not guaranteed to
terminate. Therefore, the attempt to find an answer may have to be
abandoned at some arbitrary point. QA3 says ”No proof found” in this case.
(Allowing the system to work longer on the query might yield an answer,
whichcould be either ”yes” or ”no” or ”unsufficient information”.)

Besides yes/no questions, QA3 answers questions of the form: ”indicate
some entity x such that P(x)”. Any expression a such that P(a) is TRUEis a
possible answer to the latter kind of query. Such expressions may be found by
the same proof procedure which is used for answering yes/no questions: the
procedure tries to disprove -1 3 x P(x) by generating a formula orsuch that
the conjunction of —uP(a) and the contents of the knowledge base implies a
contradiction.

The knowledge representation used by QA3 is completely general in the
sense that anything which can be expressed in the (limited) query language
can be put in the knowledge base.“ The use of general purpose predicate
calculus proof techniques, which seems to be the natural consequence of this,
has some drawbacks however:

“’ All implemented and proposed systems of this kind use the first-order predicate calculus to
represent their knowledge. As noted before (Chapter I, section 4), this imposes considerable
constraints on the kinds of knowledge that can be represented. Often a very strict version of
the first-order predicate calculus is used, which does not allow functions —because of the
difficulty which resolution-based theorem-proving algorithms have in dealing with equality.
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—Termination of the proof procedure cannot be guaranteed.
—Genuine wh-questions are not handled.
—Equality and set-theoretic notions are handled in an inefficient way.
—The procedure gets increasingly inefficient if the number of axioms

increases or the axioms become larger.

5. The Closed World Assumption.

Carbonell and Collins (1973) and Collins et al. (1975) first pointed out the
importance of distinguishing between situations where the sets referred to in
a question are stored completely (”closed worlds”) and situations where this
is not the case (”open worlds”). In the former case there is much more
information implicit in the knowledge base than in the latter. If a property P
is defined in terms of closed sets which are completely stored, then the
question whether an object A which does not occur at all in the data base has
the property P may be answered nevertheless. Questions asking whether P
holds for all individuals in some set may also be answered, as well as those
asking for which number of individuals P holds. In the ”open world”
situation, none of these kinds of questions can be answered.

The knowledge representation method of value specifications, described in
Chapter V, is clearly geared towards the ”closed world” situation: a value
specifies the extension of a query language constant completely.
Reinterpreting values as partial specifications would invalidate the claims
made earlier about the operation of recursive evaluation algorithms and
require rethinking the connection between value specifications and
conventional data bases. Nevertheless, the use of the value specification
technique is not incompatible with ”open world” situations. For that
purpose, a particularly simple instance of the translation technique discussed
in Chapter V must be used. (See the discussion in Chapter V, section 6.)

The present section will focus on the open vs. closed worlds issue in
connection with the axiomatic knowledge representation technique. The
situation obtaining here is the opposite of the one obtaining for value
specifications: the axiomatic knowledge representation technique
automatically implements the open world situation. Sets are represented by
means of predicates, and axioms may stipulate about certain individuals that
they belong or do not belong to some set. That these various stipulations add
up to a complete specification of what the members of the set are, is never a
default assumption, though it may of course be explicitly stated by means of
another axiom. The axiomatic method, as used for instance in QA3, is
therefore completely general.

Often, axiom collections are proposed as being the logical entities
implemented by a conventional data base. Here, the simplest interpretation
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is again the ”open world” interpretation: every record in a file represents an
axiom. When a file is known to be complete, it may of course be viewed as
implicitlycontaining negated literals for all the n-tuples not contained in the
file.

A related but more complicated technique, involvingnot just an
abbreviation convention but a reinterpretation of the model-theoretic status
of the whole data base, is the Closed World Assumption. This technique was
described by Reiter (1978a); similar techniques had been used in several
systems, such as PLANNER (Hewitt, 1972;Winograd, 1972)and PROLOG
(Clark, 1978).

A system which makes the Closed World Assumption answers queries on
the basis of an ”implicit axiom collection” which is constructed out of its
explicit axiom collection in the following way:
1. All the explicit axioms are members of the implicit axiom collection.
2. If a positive literal is not provable on the basis of the explicit axioms, its

negation is a member is the implicit axiom collection.
Phrased in semantic terms, the Closed World Assumption amounts to the

following way of defining a set of interpretations of the logical language by
means of a set of axioms: the interpretations of the logical language which
may correspond to the state of the world are those realizations of the axioms
which assign the value FALSEto every positive literal which is not a valid
formula.

Operating with the Closed World Assumption is difficult, because it
introduces a kind of ”monism” in the knowledge representation —to
understand the meaning of a given axiom the other axioms stored must be
taken into account. Some problems with this technique will be illustrated
now. These problems follow directly from the fact that positive literals play a
special role in the semantics.

If definitions involve negation, and the extensions of the defining
predicates are not completely specified in the explicit data base,
inconsistency results. As an extremely simple example, imagine a knowledge
base consisting of the sole axiom

Vx: P(x) = —1Q(x) (1)

The yes/no question represented by the formula

P(a) (2)
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would be answered ”no” on the basis of this knowledge, since under the
Closed World Assumption

is a member of the ”implicit axiom collection”. The yes/no question
represented by the formula

0(3) (4)

would be answered ”no” as well, since

m 0(8) (5)

is also an ”implicit axiom”. These answers are inconsistent with the axiom (1)
which is in the knowledge base of the system.

The same example illustrates a related phenomenon which is a little
disturbing: adding a member of the implicit axiom collection to the explicit
axiom collection changes the content of the data base. If, for instance,
—aP(a) is added to the knowledge base, Q(a) will henceforth be answered
”yes” rather than ”no”.

Combined with an arbitrary axiom collection, there is no guarantee that
the Closed World Assumption can be made without inconsistency. This was
noted also by Reiter (1978a). In order to operate reliably with the Closed
World Assumption, one should like to impose syntactic constraints on the
axioms which are allowed. Reiter (1978a) gives a suggestion in this direction.
He shows that the Closed World Assumption does not affect the consistency
of an axiom collection containing Horn clauses only. He therefore proposes
to constrain the application of the Closed World Assumption to ”Horn data
bases”.

6. Theorem Proving and Data Bases.

6.1. Introduction.

A system which uses a set of axioms as its knowledge representation need
not necessarily treat this set of axioms as one homogeneous body of
knowledge accessed by one uniform proof procedure. The systems to be
discussed in the present section combine an axiomatic knowledge
representation with a perspective which is in some respects similar to the
PHLIQA1 approach. They employ a formatted data base with specific
knowledge as well as a separate, more freely structured axiom set containing
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general knowledge, definitions of concepts, etc. Because of their orientation
towards first-order logicand resolution based proof procedures, there are
also marked differences between PHLIQA1 and the systems discussed here.

The systems developed by Reiter (1977, 1978b), Chang (1978) and Minker
(1978) divide their axiom collections into two distinct parts, called an
”extensional data base” (EDB) and an ”intensional data base” (IDB). The
purpose of this division parallels the distinction we made in the previous
chapter between factual and conceptual information. The extensional data
base specifies a specific state of affairs in the world, by means of a more or
less homogeneous mass of fully instantiated unit clauses which may possibly
be stored in a conventional data base. The axioms which constitute the
intensional data base may be more complicated (though their format tends to
be restrained, as we shall see). Their purpose is to express the relations which
exist between the predicates used in the extensional data base and the
predicates which may be used in the higher-level formulations of queries to
be answered from that data base.”

This distinction parallels the one made in Chapter V —and in some cases
the parallel goes even further. Both Reiter and Chang use their intensional
axioms to transform an incoming query into a query (or set of queries) only
containing base relations, and which can then be evaluated on an ordinary
relational data base.

Some limitations of the systems to be discussed here follow from the fact
that they all use the first-order predicate calculus without function symbols as
the language for formulating their axioms. For formulating the queries
Minker uses predicate calculus while Reiter and Chang use predicate calculus
extensions comparable to the LUNAR language. (The limitations following
from the use of such languages were discussed in Chapter 1, section 4).

Although the view, implicit or explicit in all these proposals, that the
ordinary notion of a ”data base” should be formalized as a collection of base
axioms has been rejected here (see Chapter IV, section 5 for that
discussion), the logical and algorithmic properties of the systems which

5’ The term ”intensional data base” is an unfortunate one. It suggests that the knowledge
represented by the intensional data base would have a different status than the knowledge
represented by the extensional data base —that the IDB axioms would be valid in all possible
interpretations of the logical language, whereas the EDB axioms would only be claimed to be
valid in the interpretation of the language which corresponds to the actual state of the world.
It is not evident that this is what one has in mind here. Reiter’s examples include in the IDB
definitions of terms (”If teacher u teaches course v and student w is enrolled in v, then u is a
teacher of w.”) as well as contingent facts (”B teaches all computer science courses.”).
It may also be noted that, if a strict distinction between the logical status of the IDB and the
EDB would be maintained, this could be used for distinguishing between answers which are
”necessarily true” and answers which are ”contingently true”; none of these proposals uses or
mentions this possibility. Therefore it may be concluded that the intensional/extensional
distinction parallels the conceptual/factual distinction made in Chapter V.
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embody this approach are interesting enough to merit further consideration.
The system proposed by Reiter (1977, 1978b) may be viewed as the

paradigm example of this approach. A description of this system will be used
as a framework for a discussion of some general theoretical issues raised by
the approach. Though importantly different in their details, the systems
implemented by Minker (1978) and Chang (1978)embody some of the same
basic ideas. Therefore, the theoretical discussion carries over directly to their
work.

6.2. Reiter’s Proposal.

Reiter’s system uses the knowledge in its Intensional Data Base to map an
incoming query onto a set of queries which are formulated completely in
terms of the relations in the Extensional Data Base. The extensional data are
accessed by query evaluation algorithms rather than theorem-proving
procedures. The overall design thus bears some resemblance to the
PHLIQA1 structure.

The systemanswers yes/no queries and wh-queries expressed by LUNAR­
style query-formulas. It employs an Extensional Data Base which is a
collection of ground literals“).The Intensional Data Base of this system
consists of a collection of first-order formulas, each of which must have the
form

Vx, e 1311 Vx,, E t,,: W

for n 2 0, where Wis any quantifier-free first-order formula containing no
function symbols (Reiter, 1978b, p. 151). The set of axioms of the IDB must
have a property which guarantees that infinite deduction paths cannot arise.
A sufficient condition for this is that there are no recursive axioms.”

How the system constructs a mapping from ”EFL” queries to ”DBL”
queries may be illustrated with an example query taken from Reiter (1978b).

Consider a simple fragment of an education domain.

IDB A teaches all calculus courses. (la)

V2 e Calculus: Teach(A,z) (lb)

6) See Reiter (1978b, p. 152). Terminology: A literal is an atomic formula or a negated atomic
formula. An atomic formula is an application of an n-place predicate to n arguments.
A ground formula contains no variables.

7) I.e. , if the IDB is put into clause form, no clauses occur which contain the same predicate in a
positive as well as in a negative literal.
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B teaches all computer science courses (2a)

Vy e CS: Teach (B,y) (2b)

If teacher u teaches course v and student w is enrolled in v, then u is a
teacher of w. (3a)

Vu 6 Teacher: Vy é Course: Vw 6 Student:
Enrolled (w,v) &Teach (u,v) 3 Teacher-of (w,u) (3b)

EDB Teach (A, P100)
Teach (B, P200)
Teach (C, P300)
Teach (D, H100)
Teach (D, H200)

Enrolled (a, C100)
Enrolled (a, P300)
Enrolled (a, CS100)
Enrolled (b, C200)
Enrolled (b, CS200)
Enrolled (b, CS300)
Enrolled (c, H100)
Enrolled (c, C100)
Enrolled (d, H200)
Enrolled (d, P200)
Enrolled (d, P300)

Teacher = {A, B, C, D}
Student = {a, b, c, d}
Course = {C100, C200, CS100, CS200, CS300, H100, H200, P100, P200,

P300}
Calculus = {C100, C200}
cs = {cs100, CS200,cs300}

Consider the query

Who are a’s teachers? (4a)

{x 6 Teacher ITeacher-of (a,x)} (4b)
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To be able to treat a query with a resolution algorithm it must be put in the
form:

[x, T, P] (5)

where x is a variable, T is a type and P is a formula in conjunctive normal
form.

(Notation: [x, T, P] denotes the set of elements 1'E T such that if x denotes
i, P is false under all realizations of the axioms which constitute the EDB and
the IDB.)
Thus, (4b) is formulated as

[x, Teacher, —»Teacher-of (a,x)] (6)

Reiter’s algorithm first deals with the intensional data base only,
postponing access to the extensional data base to a separate next phase of the
process. The query (6) is resolved against intensional data base axiom (3b),
which leads to

[x, Teacher, fl Enrolled(a,v) V ——1Teach(x,v)] (7)

Now the system does not yet try to resolve the literals of (7) against the
extensional data base. Instead, all possible resolutions against the intensional
data base are done first. To begin with, the rightmost literal is resolved. First
against axiom (lb), yielding

[x, {A}, -1 Enrolled(a,zc,,,c)] (8)

Then against axiom (2), yielding

[x, {B}, ——aEnrolled(a,yC,,,C)] (9)

As no more resolutions against the intensional data base are possible, the
system enters the next phase of the process. All of the query expressions
which have been generated are evaluated - i.e. their value is computed by an
algorithm which is not a resolution theorem prover but an ”ordinary”
recursive evaluation program which views the EDB as an ”ordinary” data
base. For this purpose, the query expressions are reconverted from their
special resolution-oriented format into the more usual format which is more
suitable for a recursive evaluation program. Thus, the query-expressions (6),
(7), (8), (9) are rephrased as (10)-(13):
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{x 6 Teacher ITeacher-of(a,x)} (10)
{x 6 Teacher IEnrolled(a,v)& Teach(x,v)} (11)
{x e {A} I 3 z E Calculus: Enrolled(a,z)} (12)
{x e {B} I 3 y E Calculus: Enrolled(a,y)} (13)

Whenevaluatedthese yield,respectively:Q, {C}, {A}, and
The union of these is presented as an answer:

{A, B, C} (14)

The full description of this method is given in Reiter (1977).

6.3. The Exhaustiveness of the Answers in Reiter’s System.

First-order theorem-proving systems applied to question-answering
represent a wh-question as a formula with a free variable, and generate
answers by finding instantiations of the variable which make the formula
true. Reiter’s ‘systemis no exception: it interprets wh-questions as ”mention­
one” questions.

Reiter makes a point, however, of returning a representation of the set of
all answers to such a mention-one question. Investigating the relation
between such a ”super-answer” to a mention-one reading and the possible
answers to the mention-all reading reveals that a mention-one super-answer
always corresponds to a correct mention-all answer, but that a maximally
informative mention-all answer cannot always be encoded as a mention-one
super-answer.

For instance, if the axioms determine a state of the world such that

{x|P(x)‘} = {b} V {x|P(x)} = {d}, (15)

the mention-all question with content

{x | P(x)} (16)

would have the disjunctive answer

{b} or {d} (17)

The mention-one question

(x IP(x) > (18)
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would have as its only answer:

b or d. (19)

The mention-all answer which can be derived from this mention-one answer
is:

{b} or{d} or {b,d} (20)

which is a weaker answer than the one that could be given by a system which
would evaluate the mention-all query.

This point is also illustrated by the example in the previous subsection:
the question

Who are a’s teachers? (4a)

represented as

{x 6 Teacher ITeacher-of(a,x)} (4b)

The axiom collection consisting of (1), (2), (3), the type-axioms and the
extensional data base does not contain enough information to determine the
extension of the set {x 6 Teacher | Teacher-of(a,x)}.
A, B, and C are apparently in it, but the axiom collection does not determine
whether D is or not. So the only correct answer would be a disjunctive one:

{A,B,C} or{A,B,C,D} (21)

The fact that the axioms do not determine whether D is included in the set
of a’s teachers is not apparent from the set of answers in the mention-one

. reading of the same question. This set consists of ”A”, ”B”, ”C”, ”A or B”,
”A or C”, A or D”, ”B or C”, ”B or D”, ”C or D”, ”A or B or C”, ”A or B
or D”, ”A or C or D”, ”B or C or D”, ”A or B or C or D”. Presenting this
whole set is not necessary. It can be properly presented as ”A”, ”B”, ”C”,
since all the other answers are derivable from these. Answers which are not

implied by other answers are called ”minimal answers” by Reiter, and his
system in fact presents the set of all minimal answers to a mention-one
question.

It may be noted that from the set of answers to the mention-one question,
one cannot see whether D may be one of a’s teachers: if the axiom
—.Teacher-of (a,D) were added, the set of answers to the mention-one
question would be the same. This may be remedied by slightly extending
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Reiter’s system. The extended system would respond to a wh-query of the
form 0: | P(x)> by not only giving all minimal mention-one answers, but also
indicating the domain of predicate P, and all the minimal answers to the
query (x I—nP(x)>.

Such a system would, on the basis of data base above, give an optimal
answer to question (4a). It would specify:
—that A, B and C belong to the type ”teacher” and are in the positive

extension of the predicate ”teacher of a”,
—that besides these, D is an object of type ”teacher” which is in the domain

of the predicate ”teacher of a”,
—that there are no objects of type ”teacher” in the domain of the predicate

”teacher of a” which are known to be in the negative extension of this
predicate.
This information, taken together, means that

.{x a Teacher ITeacher-of(a,x)} = {A, B, C} or
{x. a Teacher ITeacher-of (a,x)} = {A, B, C, D}

It should be noted however, that this extended system is not sufficient to
guarantee optimal answers in every situation. The extra information about
the domain and the negative extension of the predicate cannot capture the
information that certain elements in a disjunctive answer are mutually
exclusive, as in the first example given above ((15) - (20)).

6.4. The Closed World Assumption.

The previous subsection discussed how ”super-answers” to mention-one
readings of wh-questions, as construed by Reiter, are related to the answers
to mention—allreadings of such questions. This discussion assumed the
knowledge base of the system to be a set of formulas which are meant as
axioms in the ordinary model-theoretical sense: they express that the state of
the world corresponds to an interpretation of the logical language which
assigns the value TRUEto all axioms.

Elsewhere, Reiter (1978a) describes the possibility of a significantly
different use of sets of formulas for knowledge representation: as an axiom
set which is meant to function under the Closed World Assumption. If one
makes this assumption, the interpretations of the logical language which may
correspond to the state of the world must not only assign the value TRUEto all
axioms, but must also assign the value FALSEto every positive literal which is
not assigned the value TRUEby every realization of the axioms.

The system described in Reiter (1978b) is presented as independent of the
Closed World Assumption, and should work for ”ordinary” axiom sets just
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as well. In view of the serious problems of the Closed World Assumption
discussed earlier (section 5), Reiter’s proposal was first discussed in
combination with ordinary axiom collections, in the previous subsection.
Now the combination of Reiter’s translation method and the Closed World

Assumption will be discussed.
Under the Closed World Assumption, the set of answers to the mention­

one reading of a wh-question amounts to the same as the answer to its
mention-all reading. All the situations discussed in the previous section
which give rise to discrepancies between mention-one super-answers and
mention-all answers cannot occur if one makes the Closed World

Assumption. In all these situations, the truthvalue of some positive literal
was not determined by the data base, which is exactly what the Closed World
Assumption excludes. Under this assumption, the data base alwaysfunctions
as an abbreviation for a complete data base, which for every positive literal
either indicates that it is TRUEor that it is FALSE.

The Closed World Assumption is also needed in order to justify a practice
which may be observed in all examples given by Reiter, Chang and Minker in
illustrating the use of their systems: they consistently represent definitions as
implications. In the example cited earlier ((1a)-(14) above), the following
axiom constitutes all the information given about the notion ”teacher of”:

Va e Teacher: Vv e Course: Vw e Student:
Enrolled(w,v)&Teach(u,v) 3 Teacher-of (w,u) (3b)

Without the Closed World Assumption, no query of the form
Teacher-of (A,B) could ever get a negative answer on the basis of the axioms:
there is an axiom which specifies conditions which imply the truth of certain
formulas of the form Teacher-of (A,B), but there are no axioms indicating
when such a formula would be false.

Minker (1978) and Chang (1978)contain similar examples of implicative
axioms, explicitly called ”definitions”, and clearly meant to establish an
identity-relation rather than a definition-relation. In the absence of other
information about the predicate in that literal, implication-relations with a
positive literal on the right hand side function as identity-relations under the
Closed World Assumption.

As pointed out in section 5 of this chapter, operating with the Closed
World Assumption means that special measures must be taken to guarantee
that the axiom set remains consistent. The only constructive proposal about
this problem was formulated by Reiter (1978a), who showed that consistency
can be guaranteed by confining the axiom set to Horn clauses. If this
restriction is assumed, it turns out that the expressive power of a set of
axioms does not exceed the expressive power of a sequence of local
translation specifications, as will be shown in the next subsection.
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6.5. A Comparison with the Translation Specification Approach.

The present subsection shows how the results which are achieved by means
of Reiter’s theorem-proving techniques may be achieved by means of the
translation techniques put forward in Chapter V.

The systems developed by Reiter, Chang and Minker all seem to operate
under the Closed World Assumption, and all formulate the connection
between a defined relation and the base relations by means of axioms which
express an implication between a base formula and a positive literal
containing the relation to be defined. For every defined relation R, the data
base contains a complete specification of the logically independent formulas
that imply R(x,, ..., x,,): a set of axioms of the form

Bk 3 R((x,, x,,) (22)

where B,, ..-., Bkare base formulas, R is a defined relation, x,, ..., x,, are
variables. (For the sake of simplicity, ”intermediate steps” in the definitions
are ignored. Reiter (1978b) has shown that this indeed makes no essential
difference: the IDB may always be ”compiled” into a set of ”direct”
definitions.) Operating under the Closed World Assumption, we know that if
the list (22) contains all the axioms about R, we know that they actually
define the extension of R: unless R(a,, ..., a,,) follows from the axioms (given
an interpretation of the base relations) it is false. Therefore,

R(a,, ..., a,,) is true iff
B, [x]: = a,, ...,x,,: = a,,]or or Bk[x,: = a,, ..., x,,: = a,,].

Instead of (22), one could therefore write

R(x,, ...,x,,) E B, V VBk (23)

or

R 2 ()..x,,...,x,,:B,V VBk). (24)

Thus, the IDB axioms defining R might be formulated as the equivalence
(24) rather than the set of implications (22). Such a reformulation actually
has advantages: it abolishes the need for the Closed World Assumption, and
allows for the use of the substitution of equivalents as an ”inference
procedure”. Such a procedure is simpler than resolution theorem-proving. It
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can also be applied to other constants than relations, and does not depend on
the restricted first-order character of the logical language.

Let us now see how such a reformulation would work in somewhat more

detail. As an example, consider again the data base from Reiter (1978b) that
was used in section 6.2.

To construct a set of translation specifications equivalent to Reiter’s
intensional data base, we distinguish three levels of semantic representation.
All levels have the same type system. The descriptive atomic types are:
Teacher, Student, Course. At the highest level (Level 1) we have at least the
constant Teacher-of, with type (<Student, Teacher) —>truthvalue).

At the intermediate level (Level 2) we have at least the constants
Enrolled’, with type (<Teacher, Course) —>truthvalue), and Teach’ , with type
(<Teacher, Course) —>truthvalue).

At the lowest level (Level 3) we have at least the constants Calculus and
CS, both with type S(C0urse), Enrolled with type
(<Student, Course) —->truthvalue), and Teach with type (<Teacher, Course) —>
truth value). _

The generic sets of the atomic types are constants at every level:
GST,,,,,_.,,,,,,GS 5,,,de,,,,GS(;0,,,,,,.The constant ”a” is a constant of type Student

at every level.
The extensional data base is a ”value specification” (see Chapter IV). It

specifies the values of the Level 3 constants.
The translation from Level 1 to Level 2 contains the rule:

Teacher-of => (Xw,u: 3 v e GSC0,,,,e.'Enrolled’ (w,v)& Teach’ (u, v))

The translation from Level 2 to Level 3 contains the rules:

Enrolled’ => Enrolled
Teach’ => (Xp,q: (p = A & q e Calculus) V (p =B & q CS)

V Teach (p,q))

Consider the example query

{x e GSTe,,c,,e,ITeacher-of (a,x)}

Application of the Level 1-to-Level 2 translation yields, after X-reduction:

{x e GSTm,,e, | 3 v E GSCWM:Enrolled’ (a,v) & Teach’ (x,v)}

Application of the Level 2-to-Level 3 translation yields after X-reduction:
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{X E GSTeacher l 3 V E GSCour.se:Enrolled (aav) &

((x = A & v e Calculus) V
(x=B & ve CS V Teach(x,v))}

This expression may be evaluated against the extensional data base, yielding

{A, B, C}

This may serve as another illustration of the thesis of Chapter V: if all the
possibilities of the translation specification method are exploited, it is
sufficient to handle many phenomena for which richer frameworks are
usually invoked.

7. Knowledge Representation for Question Answering: Conclusion.

In the previous chapters we have shown how formatted data bases may be
viewed as ”value specifications”, and how conceptual knowledge may be
stored in the form of ”local translation rules”. Chapter III has shown how
these knowledge representations were employed in the question answering
system PHLIQA1, leading to an elegant ”multilevel” design with an
unusually refined modular structure and precise definitions of the tasks of the
different modules.

In the present chapter a number of alternative techniques were reviewed.
Now I want to sum up the conclusions from that discussion. In doing so, I
shall focus on techniques which use a formatted data base for representing
factual knowledge. The practical usefulness of such set-up is firmly
established. Many systems ware designed to function as natural language
interfaces to a previously given formatted data base; PHLIQA1 is a system of
this sort.

In Chapter IV it was already argued extensively that formatted data bases
can best viewed as ”value specifications”. The remaining question then is,
how to present the conceptual information of the system, which bridges the
gap between the natural language terms and the data base primitives. For this
purpose, the method of translation specifications was developed in Chapter
V.

An interesting alternative to the method of translation specifications was
discussed in section 6 of the present chapter: the use of first-order Horn
Clauses to specify a translation from a high-level query into an equivalent set
of low-level queries. It was shown, however, that this method has serious
drawbacks: either it cannot give adequate answers to mention-all questions,
or it involves the problematic Closed World Assumption. It was also shown
how translation specifications can be used to capture the information in a
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Horn clause axiom set which is used under the Closed World Assumption.
In section 2 of the present chapter an example was given which showed

that it may sometimes be useful to extend the translation specification
method beyond what was presented in the previous chapter (and
implemented in the PHLIQA1 system): global translation rules may
sometimes be needed. It was also pointed out, however, that it is worth
avoiding global rules when that is possible; local rules have important
advantages.

Section 3 considered the use of alternative, PLANNER- like algorithms in
conjunction with a variant of the translation specification method. Such
algorithms might make it possible to use recursive definitions in certain cases.
Algorithms of this sort create a reliability problem, however. It seems
worthwhile, therefore, to make the logical language to be used sufficiently
powerful, so that there is no need to make definitions recursive.

The general conclusion that may be drawn from the present chapter,
therefore, is that the approach developed in the previous chapters is a
promising one. It is to be expected, however, that global rules must be
introduced when more complicated conceptual information must be
represented.
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Chapter VII. Conclusion: Design Styles.

One of the myths most tenaciously propagated through the oral culture
which constitutes the Artificial Intelligence Community of the world is the
idea that the problems tackled in this field have an intrinsic complexity which
defies rational design methods. A.I. programs are considered to be so
complex that they can not be designed from ”behind the desk” but need to
grow out of an incremental ”trial and error” process which at no stage
requires the programmer to have a real grasp of what has been built so far.
Problem solving programming languages such as PLANNER and QA4 and
knowledge representation languages like KRL and KLONE are designed to
support such processes. The result of this sort of interaction between
programmer and system is, hopefully, a working program which shares with
human intelligence the feature of being mysterious: no one knows how it
really works.

This ”unstructured programming” method is just as unrealistic and
idealistic as any other preconception about the design process. No programs
are designed strictly in this way. In fact, the more sucessful programs are
constructed according to considerably less fanciful methods. As an ideal,
however, this programming myth exerts a real influence —which explains,
among other things, the dismissals of formal logic and structured
programming one often finds” and the emphasis placed in A.I. on very highly
interactive and intelligent programming tools.”

This book has demonstrated the viability of another approach, at least for
the case of a large scale natural language question-answering program. The
point of departure for the PHLIQA1 system was a thorough analysis of the
problem of computational question-answering followed by a careful design
process aimed at separating sub-problems as clearly as possible in order to
allocate them to independently operating modules with well defined
interfaces. The resulting program displayed possibilities for compile-time
checking of program data and separate testing of modules —useful features
which are most unusual for an A.I. program. As a consequence, the

" See, e.g., Winograd (1972) and Winograd (1974).

2’ Rulifsons’s (1971) desiderata for the QA4 programming language constitute a most revealing
testimony of this. It is the purpose of QA4 ”. ..to provide a method whereby one can construct
programs without having to understand the whole problem or even to have worked out a
global structure to the solution process. We expect the programs to grow interactively and to
be continually refined and improved. We feel that the programmer has a notion of how the
program is to work, but does not understand enough of the notion to write algorithms. If he
must express his ideas in standard formal languages the strict formality inhibits his intuition
and the ideas are lost. By using QA4, he can express these ideas, ambiguous though they may
be.” (p. 15)
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implementation phase of the final program was unusually unproblematic and
fast. The debugging phase was, in fact, almost non-existent.

The approach taken here may thus be seen to have certain affinities with
the ideas behind ”structured programming”3). It is perhaps worth pointing
out, therefore, that the actual design process of any large complex program
differs considerably from the ”structured programming ideal”.

Usually, structured programming is discussed in the context of designing
algorithms for mathematical or otherwise precisely defined tasks.
Developing a structured program is then defined as the decomposition of a
”higher-level” program written in terms of the same algorithmic
constructions (such as iteration, if-then-else, and the like) as the final ”low
level” program —but containing unanalysed procedures which are spelled out
later in terms of other primitives. For mathematical, arithmetic or business
applications, this view of developing a properly structured program may be
adequate, because one operates within a well-defined formal framework. So
when one talks about ”unanalysed primitive procedures” whose task is
specified without their algorithm being spelled out, one can tacitly assume
that this task definition has a certain kind of preciseness.
We can not make this assumption, however, in designing an A.I. program.
The complexity and ill-definedness of the problems attacked by such
programs call for extensions and refinements of the function-decomposition
technique.

A theoretical investigation of the notions involved in the task of the
program has therefore played an important role in the design process.
Explicit characterizations of the meanings of questions, answers and data
bases were developed, to make it possible to define the tasks of program
modules with mathematical precision, independently of the design of the
algorithms for carrying out the tasks. Because of this, the work on the design
of PHLIQA1 has dovetailed, to some extent, with work on theoretically
relevant issues in formal linguistics and data base theory.

During the course of the process of designing a question answering system,
the ”question-to-answers” function is successivelydescribed at three
different levels:

—informally
—mathematically, by specifying a formal relation between input and

output‘).

3) Wirth (1971), Dahl et al. (1972), Mills (1972), Bates (1976).

4’ A mathematical definition of a function may be a non-deterministic program, for example.
(A case in point would be the use of an Augmented Transition Network (Woods, 1970)to
define the task of a parser.) But we need not exclude the possibility of explicating the task of a
procedure by means of a genuinely non-constructive definition —as when the task of a parser is
defined by means of a generative transformational grammar.
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—as a program (an effective algorithmic specification of the mapping from
inputs to outputs).

The design of a program starts from an informal specification of a function
which maps informally defined kinds of input data to informally defined
kinds of output data. The design process consists in getting more specific
about the data as well as about the function.

Thus, our approach can be seen to combine the idea of function­
decomposition as the basic design process (as in Dijkstra, 1972)and the
distinction of three different levels of abstraction in the description of the
program data (Hoare and Dahl, 1972).

In hindsight, the work reported on here may therefore be seen as a defence
and implementation of a particular style of software design for complex
problems. An important, though largely implicit, claim of this book, then, is
that the ”structured design” process which resulted in the PHLIQA1 system
could be most fruitfully applied to computational problems beyond the issues
of question-answering and natural language modelling treated specifically
here.
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Appendix A. Syntax and Semantics of the PHLIQA1
Languages.

1. Introduction.

The PHLIQA1 languages are typed languages. A system of semantic types
plays an important role in their syntax and in their semantics. A semantic
type may be an atomic type, or a compound type constructed from atomic
types.

The syntax of a language defines which expressions belong to it. The
definition of the expressions of a PHLIQA1 language consists of two parts:
—a specification of the primitive expressions (the terms) of the language.
—a recursive definition of complex expressions in terms of simpler

component expressions.
The syntax also assigns a semantic type to every expression of the language.
The rules which construct compound expressions out of simpler component
expressions impose conditions on the semantic types of the component
expressions.

The semantics of a language specifies how interpretations of the language
are defined. An interpretation of a PHLIQA1 language is defined in two
steps:
1. To every atomic type, a set of entities (called a domain) is assigned. (The

type system has semantic rules which define the domain of any type in
terms of the domains of the atomic types).

2. To every term, a denotation is assigned; this denotation must be an
element of the domain of the type of the term. The semantic rules of the
language define the denotation of any expression in terms of the
denotations of the terms occurring in it.

2. The Type System of the PHLIQA1 Languages.

A PHLIQA1 language is defined in two steps. First we define a type
system: a class of semantic types and a function (called COMPONENTS)which
operates on types. The type system is then used in the definition of the class
of expressions of the language.

In the present subsection we give a syntactic definition of the types of the
PHLIQA1 languages, and an informal discussion of their semantic aspects.
The types are defined by the following rules:
1. Every atomic type is a type. There are two kinds of atomic types: formal

ones and descriptive ones. The formal atomic types are truthvalue, integer,
real and string. They occur in the type system of every PHLIQA1
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language. The descriptive atomic types are specified separately for every
particular PHLIQA1 language.
If onis a type, then S(a), B((1), L(O.), F((1) are types.
If (11,..., an are types then ~<a1,..., an) is a type.
If (1and B are types, then (a —>B) and ((1--->B) are types.
If onis a type, AMT (0.) is a type.
If i is an integer or a string and onis a type, then ID,-(a) is a type.

. If (11,..., an are types, then U((11,..., an) is a type.
In the definition of the expressions of the language we use a function, called
COMPONENTS,which assigns to any type a set of types (its ”component types”)
as follows:

COMPONENTS ((1) = def

\'9‘.“".4‘$*’!"

ifa has the form U(0.1, ..., on)
then COMPONENTS((11) u u COMPONENTS(an)

else if (1has the form <a,, ..., ot,,>

then {<cp1, ..., cp,,> I Vi : cp,-e COMPONENTS ((1,-)}

else { on

The role of the semantic types in the semantics of the language will be
precisely described in section 4. But in order to give an intuitive idea about
the use of the types, we already give an informal description at this point.

An interpretation of the language assigns to every type a set of entities as
its domain. The domains of the atomic types are disjoint sets of individual
entities. Formal atomic types have the same domain in every interpretation
of the language, whereas descriptive atomic types may have different
domains assigned to them in different interpretations.

Types of the form S ((1),B(a), F(a) or L(a) have domains consisting of
compound entities (sets, bags, files and lists, respectively) which consist of
elements of the domain of oz.(Bags are unordered collections where elements
can have multiple occurrences. Files are ordered sets. Lists are ordered and
allow multiple occurrences). Types of the form <a1, ..., an) have domains
consisting of n-tuples whose first element is from the domain of (11,..., and
whose n”‘element is from the domain of an. Types of the form (on—>B) have
domains consisting of total functions from the domain of oninto the domain of
B; types of the form (0 --->B) have domains consisting of partial functions
from the domain of orinto the domain of B.

Types of the form AMT ((1)have domains consisting of ”amounts”, i.e.
pairs consisting of a number and an element of the domain of onwhich is used
as a ”unit”. A type of the form ID, (a) has a domain consisting of specially
constructed objects, which have a one-to-one correspondence to the objects
in the domain of (1.The domain of U((11,..., an) is the union of the domains
ofa1,..., an.
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The type system is used in the syntax which defines the expressions of a
PHLIQA1 language (see section 3). Such a syntax also assigns a semantic
type to each of the expressions of the language. Syntax and semantics are
defined in such a way that for-every interpretation of the language the
denotation of any expression is an element of the domain of the type of
expression.

3. The Definition of the Expressions of a PHLIQA1 Language.

The definition of the expressions of a PHLIQA1 language consists of two
parts:
—a specification of the primitive expressions (the terms) of the language.
—a recursive definition of complex expressions in terms of simpler

component expressions.
There are two kinds of terms: constants and variables.

There are two kinds of constants: formal constants and descriptive
constants. The formal constants are the same in all the PHLIQA1 languages.
They stand for logical or mathematical notions, and receive the same
standard denotation for every interpretation of the language. The formal
constants are:

—TRUEand FALSE,both with type truthvalue.
—the decimal representations of the integers, with type integer,
—all alphanumeric strings between quotes, with type string.

The descriptive constants are different for every PHLIQA1 language. For
' every atomic type a, there is a constant GSG.

For every type, there are countably many variables with this type. Every
expression of a PHLIQA1 language is either a term (a constant or a variable)
or a complex expression. Every complex expression has the form
b(sel,: e,, ..., sel,,.°e,,), where e,, ..., e,,are expressions of the language. b is
called the branching category of the expression; sel,, ..., sel,,are the selectors
belonging to this branching category.

The recursive definition of the complex expressions of a PHLIQA1
language consists of a number of rules. Each of these rules has the following
form: If e,, ..., e,,are expressions of the language, and their types fulfill
certain conditions, then b(sel,: e,, ..., sel,,:e,,)is also an expression of the
language, and its type can be derived from the types of e,, ..., e,,in a specific
way.

PHLIQA1 expressions can also be represented as trees, with constants and
variables as terminals, branching categories on the non-terminal nodes, and
selectors as labels on the arcs. Such a tree representation corresponds closely
to the internal computer representation of the expression. Describing the
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expressions as trees of this kind 1)also makes it easier to describe the syntax
and the semantics of the languages in a completely formal way —because the
trees explicitly display their syntactic structure, and their semantic structure
coincides with that. (In section 4 we shall see that the recursive definition of
the denotation of an expression parallels the syntactic definition of the
expressions given below).

We shall now define a fragment of the PHLIQA1 languages, by giving
some (but not all) of the syntactic rules.” We omit the elements of the
definition which are different for the different languages: the specification of
the descriptive atomic types and the descriptive terms. To make the
presentation not unnecessarily cumbersome, the type requirements for the
sub-expressions of a branching are in many cases chosen to be more simple
than in the actual PHLIQA1 system. Especially, the possibility of
subexpressions denoting ”collections” other than sets and n-tuples is largely
ignored. To shorten the formulations, we use, for instance, ”A has type <1”
for ”A is an expression of the language with type a”.

First of all, ‘wehave the core operations of the A-calculus,A-abstraction and
function-application:

1. If x is a variable of type (1and B has type B,abstraction (var: x, descr: B)
has type (on--->B). The expression may be abbreviated as (}oc:B).
(Because PHLIQA1 expressions may be denotation-less, under certain
interpretations, X-abstractionresults in a partial function).

2. If F has type (on—>B) or (or--->B) and E has any type 8, then
application (fun: F, arg: E) has type B.The expression may be
abbreviated as F (E).

Secondly, we have quantification and similar operations. They do not use
variables in an explicit way: the only branching category which introduces
variables is the K-abstraction.

3. If A has type S (e) or B(e), P has type (a -9 truthvalue) or
(a --->truthvalue), and F has type (a ——>B) or (ot --->B), then:
universal-quantification (forallsA, holds: P) and
existential-quantification (forsomes A, holds: P) have type truthvalue,
selection (head: A, mod: P) has type S (e),
iteration (for: A, apply: F) has type B (B).

" Landsbergen and Scha (1977) actually do this.

2) The corresponding semantic rules are given later, in section 4.
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Logical operations:

4. If P and Q have type truthvalue, then
non (arg: P), also written as ——aP,
conj (1: P, 2: Q), also written as P & Q,
disj (1: P, 2: Q), also written as P V Q,
have type truthvalue.

Some operations which are useful to form expressions which denote the
domains of compound types (see Chapter V, section 3):

5. If A has type S (8) then power (arg: A) has type S (S(e)), bags (arg: A)
has type S (B(e)), lists (arg: A) has type S (L(e)), files (arg: A) has type
S (F(e)).
IfA, has type S (2,), ..., A,, has type S (en), then:
cartesian-product (1: A,, ..., n: A,,), also written as A, X ><A,,,has
type S (<51,..., e,,>),and union (1: A,, ..., n: A,,), also written as
U(A,, ..., A,,), has type S( U(8,, ..., e,,)).

. If D has type S ((1)and R has type S ([3), then
functions, (domain: D, range: R) has type S ((a —>(3))and
functionsp (domain: D, range: R) has type S ((a --->(3)).

Next we mention various other operations.

8.

9.

10.
11.

12.

13.

14.

15.

16.
17.

If A has type S (a) then Count (arg: A) has type integer.
If D has type S (a) and E is an expression, then elt-of (E, D) has type
truthvalue. It is also written as E e D.

If A has type S (a) then unel (arg: A) has type a.
If Thas type <1-2,,..., en) then, for any positive integer isns
el, (arg: T), also written as T [i], has type 5,.
If F, has type (‘(1,—>(3,) or (<1,--->(3,), ..., FN has type ((1,,—>B“) or
(an--->B"), then function-choice (1: F,, ..., n: F,,) has type
(U ((119"'9 an)'—) U(B19“'9
If E, and E, are expressions, equal (1: E,, 2: E2) has type truthvalue. It is
also written as E, = E2.
If N has a type a such that COMPONENTS(a) Q {integer, real} and E has
any type 8, then amount“ (num: N, unit: E) has type AMT (e).
If N has a type (1such that COMPONENTS((1) Q {integer, real} and A has a
type of the form AMT (y), then amount, (num: N, amount: A) has type
AMT (y).
If B has type S (<01,B>) then function (pairs: B) has type ((1—-->B).
If A has type B (a) then bag-to-set (arg: A) has type S (a).
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18. If E,, ..., E,, have types 81, ..., en, respectively, then
tuple,, (1: E1, ..., n: E,,) also written as <E1, ..., En) has type <51,..., en)

19. If for some n NT has type <51,..., en) then bag (tuple: NT) has type
B ( U(E1,..., e,,)), set (tuple: NT) has type S ( Ue1,..., e,,)),
list (tuple: NT) has type L ( U(81, ..., e,,)), file (tuple: NT) has type
F( U(81, ..., e,,)).

20. If for some n TT has type <<a,, B1), ..., <a,,, 13,,»then function
(tuple: TT) has type ( U(01, ..., an) ---> U([3,, ..., B,,)).

21. If TV has type truthvalue and E has type 8 then cond (if: TV, then: E) has
type 8.

22. If E has type 5 and i is an integer, then id, (arg: E) has type ID,-(8).
23. If for some integer i and some type y, A has the type ID,-(y), then

rid (arg: A) has type y.
24. If P has type ((1—>truthvalue) or ((1-—->truthvalue) and E has any type 8,

then presup (presup: P, descr: E) has type 8.
If an expression is meant to be read by humans, we may use abbreviated
notations instead of the ”official” ones. Some abbreviations were already
introduced above. Some others:

—If the selectors identify the branching category, the branching category
may be left out. (For instance (forall: S, holds: P), instead of:
universal-quantification (forall: S, holds: P). )

—The selectors 1-n may be left out.
—If a branching category has only one selector, the selector may be left out.
The rules 1-24above define the type of any complex expression in terms of
the types of its immediate sub-expressions; so eventually the type of any
expression is defined in terms of the types of the terminals.

For any specific language, the types of the terminals are also given. We
may therefore assume the existence of a function TYPE,applicable to any
legitimate expression of a PHLIQA1 language, and delivering the type of
that expression.

The occurrence of the variable x as the ).-variable in an expression of the
form (Xx:A) is called the defining occurrence of x. The expression A is the
scope of this occurrence. If an occurrence of a variable is not a defining one
and it is not within the scope of a defining occurrence of the same variable,
the occurence is called free. A closed expression is defined as an expression
that does not contain free occurrences of variables.

4. The Semantics of the PHLIQA1 Languages.

Because the languages are many-sorted, assigningan interpretation to a
language consists of two steps:
1. To every atomic type, a set of entities (a domain) is assigned. By virtue of
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the semantic rules of the type system (see below), this defines the domain
of any type.

2. To every term, a denotation is assigned; this denotation must be an
element of the domain of the type of the term. By virtue of the semantic
rules of the language, this defines the denotation of any expression.

The semantic rules assume the following distinct primitive objects: TRUE
and FALSE,the integers, the reals, the alphanumeric strings, IDand AMOUNT.
Sets, bags, files, lists, functions and n-tuples are assumed to be distinct kinds
of mathematical entities. (E.g.: a function can never be equal to a set of
pairs).

The semantic rules of the type system.

A type interpretation lam, assigns domains to the atomic types. law",must
fulfill the following conditions:
a. for any atomic type (1,Ia,0,,,(a)is a set of individuals.
b. for any two distinct atomic types orand B, Ia,o,,,(a)and Ia,0m(B)are disjoint.
c. the domain of truthvalue is {TRUE,FALSE};

the domain of integer is the set of integers;
the domain of real is the set of reals;
the domain of string is the set of alphanumeric strings.

Now we define a function DOM which assigns a domain (a set of entities)
to any type. DOM is recursively defined, by means of the following rules:
1. For any atomic type (1,DOM ((1) = Ia,om(a).
2. DOM (S(B)) is the set of all subsets of DOM(B).

DOM(B(B)) is the set of all bags whose elements are from DOM(B).
DOM(F(B)) is the set of all files whose elements are from DOM(B).
DOM(L(B)) is the set of all lists whose elements are from DOM(B).

3. DOM (<a1, ..., a,,>) is the set of all n-tuples <A,, ..., A,,>such that
A, e DOM(oL1),..., A,, e DOM (an).

4. DOM ((a --->B)) is the set of all partial functions from the domain of a
into the domainof B.
DOM ((a —>B)) is the set of all total functions from the domain of a into
the domain of B.

5. DOM (AMT(a)) is the set {<AMoUNT,<x, y>>| (x e DOM (integer) V
x e DOM (real) ) & y e DOM (a)}

6. DOM (ID, ((1)) is the set {<<ID, t‘),y) | y e DOM (a)}
7. DOM ( U((11,..., a,,)) is the union of DOM ((11),..., DOM (an).
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The semantic rules of the language.

Let a type interpretation lam, be given, then a term interpretation 1,6,",can
be specified which assigns a denotation to each of the constants and variables
of the language. 1,6,",must fulfill the following conditions:
a. the denotation of every term is an element of the domain of its type,
b. the formal constants have their usual standard denotations,
c. for any atomic type (1,the denotation of GSOis the domain of a.
(Note that an interpretation also assigns denotations to variables —we do not
use a separate value-assignment function for the variables. The semantic
rules are such that the denotation of a closed expression does not depend on
the assignment of denotations to variables.)

We now give a recursive definition of the denotation D[E] of any
expression E .3)If E is a term, D[E] = Item,(E). If E is a complex expression
b (sel1:E1, ..., sel,,: E,,), its denotation is defined as follows:
—If E1, E2, ..., or E,, does not have a denotation, E does not have a

denotation.
—If E1, ..., and 15,,all have a denotation, D[E] is defined by the following

rules“): '
1. D[(%.x:A)] is the partial function that assigns to any element e in the

domain of the type of x the denotation (if there is any) that A has for the
term-interpretation I',em,which only differs from Item,in that x denotes e.

2. D[application (fun: F, arg: A)] is the result of applying D[F] to D[A].
If D[A] is not an element of the domain of D[F], the expression
’application (fun: F, arg: A)’ has no denotation.

3. D[universal-quantification (forall: S, holds: P)] is TRUEif the application
of D[P] to all elements of D[S] yields TRUE,and FALSEotherwise.
D[existential-quantification (forsomes S, holds: P)] is TRUEif the
application of D[P] to some element of D[S] yields TRUE,and FALSE
otherwise.

D[Selection (head: S, mod: P)] is the subset of those elements of D[S] for
which D[P] yields TRUE.
D[iteration (for: S, apply: F)] is the bag of all entities which D[F] yields
when applied to each element of D[S].

4. D[-—1TV]is TRUEif D[TV] is FALSE;otherwise it is FALSE.

D[conj (I : A 1,2: A2)] is TRUEif both D[A 1]and D[A2] are TRUE;otherwise
it is FALSE.

D[disj (1 : A 1, 2: A_-1)]is FALSEif neither D[A 1] nor D[A2] are TRUE;
otherwise it is TRUE.

3’A, B, E, F, N, P, S, TV, NT, TT and their indexed variants, are meta-variables which stand for
PHLIQA1-expressions.

‘’ These rules run parallel to the syntax rules in section 3.
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5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D[power (arg: S)] is the set of subsets of D[S].
D[bags (arg: A)] is the set of all bags whose elements are from D[A].
D[lists (arg: A)] is the set of all lists whose elements are from D[A].
D[files (arg: A)] is the set-of all files whose elements are from D[A].
D[cartesian-product (1: S,, ..., n: S,,)]is the set of all n-tuples whose first
element belongs to D[S1], ..., and whose n"‘element belongs to D[S,,];
D[union (1: S1, ..., n: S)] is the union of the sets D[S,], ..., D[S,,].
D[functions, (domain: A, range: B)] is the set of total functions which
map D[A] into D[B].
D[functionsp (domain: A, range: B)] is the set of functions which map a
subset of D[A] into D[B].

. D[Count (arg: S)] is the cardinality of D[S].

. D[E e A] is TRUEif D[E] is an element of D[A] and FALSEif D [E] is not an
element of D[A].
If D[S] is a one-element set, D[unel (set: S)] is its element; otherwise,
’unel (set: S)’ does not have a denotation.
D[eli (arg: NT)] is the i-th element of the n-tuple D[N T].
D[function-choice (1: F,, ..., n: F,,)] is the function which yields for any
argument the result of applying any applicable one from D[F,], ..., D[F,,].
If there are any arguments to which different functions from D[F,,], ...,
D[F,,]are applicable and for which they yield different values then
’function-choice (1: F1, ..., n: F,,)’ has no denotation.
D[A = B] is TRUEif D[A] and D[B] are identical entities; otherwise it is
FALSE.

D[amount,, (num: N, unit: E)] is <AMOUNT, <A, B>>,where A = D[N]
and B = D[E].
If D[A] = <AMOUNT, <M, U>>then D[amount, (num: N, amount: A)] is
<AMOUNT,<B,U>>,whereB = M *
If D[B] is a set of pairs such that
Va, b, c, d: (<a, b) e D[B] & <c, d> e D[B]) 3 (a = c 3 b = (1)

then D[function (pairs: B)] is the function whose extension is defined by
D[B]; otherwise, ’function (pairs: B)’ has no denotation.
If D[A] is a bag containing no duplicates, then D[bag-to-set (arg: A)] is
the set containing precisely the same elements as D[A]; otherwise
’bag-to-set (arg: A)' has no denotation.
D[tupIe,, (1: E,, ..., m: E,,)] is the n-tuple having D[E,] as its first element,
..., D[E,,] as its n"‘element.
D[bag (tuple:NT)] is the bag containing all elements ofD[N
D[set (tuple: NT)] is the set containing all elements of D[NT].
D[list (tuple: NT)] is the list containing all elements of D[NT], in the
same order.
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D[file (tuple: N T)] is the file containing all elements of D[NT], in the
order of their first occurrence.

20. D[function (tuple: TT)] is the function whose extension is defined by
D[TT]. If D[TT] does not define a function-extension
'function (tuple: TT)’ has no denotation.

21. D[cond (if: P, then: E)] is D[E] if D[P] is TRUE;otherwise it does not have
a denotation.

22. Ifi is an integer, then D[idi (arg: E)] is <<ID, i>,D[E]).
23. If E denotes, for some i and some A, <<ID, i>,A> then D[rid (arg: E)] is

A.

24. D[(presup: P, descr: E)] isD[E]. (This shows that the presup-descr
branching is semantically superfluous. The role of this branching in the
language is described in section Bronnenberg et al. (1980), section 5.5.)

It must be noted that the semantic definition of every branching category is in
accordance with its type definition:
IfD[A,] e DOM (TYP1-:[A,])& . . . . .. & D[A,,] e DOM (TYPE[A,,])
then D[b(sel,: A,, ..., sel,,: A,,)] e DOM (TYPE[b(sel,:A,, ..., sel,,:A,,)]).

This is a requirement which any branching category must fulfill.

5. Semantic Anomaly.

The phenomenon of ’semantic anomaly’ is perhaps best known from the

semantics of natural language. In the linguistic literature, one finds the
observation that certain sentences, though syntacticallywell-formed, are
neverteless ’weird’, ’absurd’ of ’deviant’: sentences of the kind
”The typewriter drinks the square root of the President of France”.
In a formal language with a many-sorted type system, similar phenomena
may be observed, in an even more clearcut way: an expression may be
semantically anomalous in being tautologous, in being self-contradictory, in
denoting the empty set under all interpretations the language (though using
descriptive constants in the expression), in having no denotation under any
interpretation of the language. Detecting that an expression has properties
like those just mentioned, may be an important facility in a question­
answering system: it may be worthwhile to be able to detect semantically
anomalous representations of questions, since they may represent less
plausible readings of the input question.

Procedures which detect the semantic anomaly of expressions must be able
to use the appropriate information about the semantic types of the sub­
expressions of an expression, since these indicate the range of their possible
denotations. The type of any expression is defined recursively in terms of the
types of its sub-expressions. (See section 3). To ’match’ the types of a
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function and its argument, or to compare the domain of a predicate with the
range of the variable in a quantification, a procedure which checks the
semantic well-formedness of sentences uses the ”type-inclusion” relation.
This is a relation between types, written as %,which has an important
semantic property:
(1%[3implies 5)that for every interpretation the domain of a is a subset of the
domain of B.

The type-inclusion relation is recursively defined, in terms of relation %con
”component types”.
0 % B = def

Vq) E COMPONENTS (oz): 3 mp e COIVTPONENTS([3): cp fa, mp
(For the definition of COMPONENTS,see section 2.)

(P %c ‘P = def

iffor some0 e {L, B, S, F, AMT, ID2,ID1,
cphas the form 0 (cp’) & mphas the form 0 (mp')

then cp’ %mp'

else if 3 n: cphas the form <cp1,..., cp,,> &
mphas the form < mp1,..., mp“)

then (pi%Ipi

else if mphas the form (mp,--->mpv)

then (P has the fOI'ITl(q)a—) (pv) 01' ((1)8--.) (pv)

& <va%wa & q>v%wv & w.%-cpa

else if mphas the form (mp,—->mpv)

then (p has the form (cpa—>cpv)

& <I>a%1va & wa%cpa & cpv%wv

else cpand mpare atomic types & (p E mp.

For instance, for different atomic types (11,(12,B1,B2,y, and y2:

<11% (11 holds,

U((1,, B1)%a, does not hold,
(11% U (a,, B1) holds,

U(01aB1)% U ([31, U ((11)) holds»

5’In Landsbergen & Scha (1977) it is claimed that a % B iff for every interpretation the domain
of a is a subset of the domain of B. But the implication from right to left is not valid —neither
for the definition of % which was used in the 1977paper, nor for the current one.
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S (011) % S( U (011, 51)) h01dS,

(01-431) % (011-’ U(51: Y1» holds,
((11"’ B1) % ((11'"’ B1) h01dS,

(U ((11: 02)» U (B1: B2)>%

U (<U (011: (12): U (B1, Y1)>a <01» B2), (012: U (32: Y2)>» (Y2: 51>) holds­

99:’?Equality of types, written as T , is defined as mutual inclusion:

affi =defa%B&

For instance, for different atomic types 01and B:

a 7 B does not hold,
01 01 holds,
S (01)f U (S(o1)) holds,
U (S (01), S (B)) T S (U (01,B)) does not hold.

Using the relation 97,we can now give the following syntactic definitions of
function-application, quantification, iteration and selection, which impose
stricter demands on the types of their sub-expressions than the definitions
given before.

If F has type (01—>B) or (o1--->B), E has type 8

and e %01,then application (fun: F, arg: E) has type B.

If A has type S(1-:)or B(e), P has type (a -—>truthvalue) or
(01--->truthvalue), F has type (01——>B) or

(a---> B), and 5 % 01,then:
universal-quantification (foralls A, holds: P)
and
existential-quantification (forsomes A, holds: P)
have type truthvalue,
selection (head: A, mod: P) has type S(e),
iteration (for: A, apply: F) has type B(B).

6. Additions and Abbreviations.

The previous sections of this Appendix have defined a fragment of the
PHLIQA1 language which is a slight extension of the language defined in
Bronnenberg et al. (1980). However, in Chapters II and V the examples lay
often outside the boundaries of this fragment; they use some semantic
operations which I did not include in the Bronnenberg et al. language
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because they are not particularly interesting. For the sake of readability, I
have also used some abbreviations which deviate considerably from the
PHLIQA1 notation. I shall now list these additions and abbreviations.

Additional operations.

1. IfA has type B(integer) or S(integer), Sum (arg: A) has type integer. It
denotes the sum of the elements of D[A].

2. If N has type integer, Ints (arg: N) has type S(integer). It denotes the set of
integers i such that 0<i$D[N].

3. If M and N have type integer than greater-than (I :M, 2:N), also written as
M>N, and smaller-than (I :M, 2:N), also written as M<N, have type
truthvalue, and have their usual meaning.

4. If A and B have type S(a) and S(B), than intersection (I :A, 2.°B)has type
S( u(y1, -y,,)),where {y1, y,,} = COMPONENTS(a)n coMPoNE1~rrs([3);
it has the obvious meaning, and may also be written as A n B.

5. If A has a type of the form B(S(a)) or S(S(a)), then union (arg: A), also
written as .U(A), has type S(a), with the obvious meaning.

Additional Abbreviations.

{A,, ..., A,,} stands for set (<A,, ..., A,,>).
(M1, ..., x,: E) with x, of type (11,..., x,,of type a,,, stands for (Xu:E’) where a
has type <a1, ..., a,,>and E’ = E [x, := u[1], ...,x,, := u[n]].

If A has type S(ot)or B(ot) and B has type truthvalue, then:
{x e A IB} stands for selection (head: A, mod: (Xx:B)),
[ix 9 A IB] stands for unel (arg: selection (head: A, mod: (Xx:B))),
(Vx e A: B) stands for universal-quantification (forall: A, holds: (Xx:B)),
(3 x e A: B) stands for
existential-quantification (forsome: A, holds: (Xx:B)) ,
( 3,,x e A: B) stands for Count (arg: selection (head: A, mod: (Xx:B))) = n,
P(A) stands for power (arg: A),
P,,(A) stands for selection (head: power (arg: A), mod: (Xx:Count(x) = n)),
where x has type (1.
If F has type (<ot>—>B) or (<a> —-->B) and C has type a, then F (<C>) may be
written as F(C).

In syntactic positions where expressions with a type of the form S((1)are
required, I have also allowed expressions with a type of the form B(a) in
some examples. If Ais such an expression one should, in such cases, replace
D[A] by D[bag-to-set (A)] in the semantics.
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Remark.

In the PHLIQA1 system, the PHLIQA1 languages are always used in an
extensional way —a descriptive atomic type possible-world is nowhere
assumed.

In Chapter II, where the PHLIQA1 treatment of questions and answers is
being compared with some intrinsically intensional treatments of questions
and answers, I have however taken the liberty to combine the notation
defined above with the use of intension- and extension-operators in the style
of Montague’s (1973) IL. I hope the syntax and semantics of this ”hybrid
language” are sufficiently self-evident, so that I am justified in abstaining
from an explicit definition.
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Nederlandstalige Samenvatting

Dit proefschrift poogt een theoretische onderbouwing te gevan aan enkele
belangrijke aspecten van zg. ”vraag-antwoordsystemen" —
computerprogramma’s die in natuurlijke taal gestelde vragen over een
bepaald onderwerpgebied kunnen beantwoorden. Bij het ontwerp van zo’n
vraag-antwoordsysteem moeten impliciete of expliciete beslissingen worden
genomen over enkele fundamentele problemen: hoe representeert het
programma de inhoud van de vragen die het beantwoordt en van de
antwoorden die het geeft; en hoe wordt de ”kennis” gerepresenteerd die het
programma gebruikt om de vragen te beantwoorden.

Dit proefschrift pleit ervoor, vr-aag-antwoordsystemente baseren op
expliciete, nauwkeurig geformuleerde beslissingen over deze problemen. Het
laat zien hoe het begrippen-arsenaal van de logische model-theorie voor dit
doel kan worden toegepast. Vanuit dit perspectief bespreekt het proefschrift
een samenhangend geheel van ideeén over de representatie van vragen,
antwoorden en kennis, dat ten grondslag ligt aan het vraag-antwoordsysteem
PHLIQA1 (een programma dat ontwikkeld werd bij Philips’Natuurkundig
Laboratorium te Eindhoven, en waarin de auteur een belangrijk aandeel
had). Andere, reeds bestaande methodes voor de representatie van vragen,
antwoorden en kennis worden eveneens Vanuitdit perspectief beschouwd.

Hoofdstuk I vergelijkt de hier voorgestane benaderingswijze met
mogelijke alternatieven. In dat kader worden doelstellingen en werkwijze
van de Kunstmatige Intelligentie besproken en de verdiensten van de
Procedurele Semantiek worden met die van de Modeltheorie vergeleken.

Hoofdstuk II bespreekt methodes voor het representeren van vragen en
antwoorden. Het toont de ontoereikendheid aan van voorstellen hieromtrent
die recentelijk in het kader van de theoretische linguistiek en de
philosophische logica ontwikkeld zijn. Een adequater voorstel wordt in enig
detail uiteengezet.

Hoofdstuk III beschrijft de structuur van het vraag-antwoordsysteem
PHLIQA1. De Hoofdstukken IV en V bespreken de twee kennis­
representatie-methodes waarop PHLIQA1 gebaseerd is. In Hoofdstuk IV
wordt een logische analyse gegeven van de wijze waarop kennis
gerepresenteerd wordt in een ”gewoon” gegevensbestand (georganiseerd
volgens b.v. de relationele principes of de CODASYL principes). In
Hoofdstuk V wordt een kennis-representatie-methode uiteengezet die
gebruik maakt van ”vertaalregels”. Deze methode is bijzonder geschikt om
de kennis te representeren die aangeeft hoe begrippen uit de natuurlijke taal
samenhangen met de begrippen in termen waarvan het gegevensbestand
georganiseerd is. In Hoofdstuk VI worden varianten van deze methode
aangegeven, en worden alternatieven kritisch besproken.
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Hoofdstuk VII trekt algemene conclusiesover de ”ontwerpstijl” die in het
boek gedemonstreerd wordt. Een Appendix definieert een rijke logische
taal, die op diverse punten in het boek in illustratieve voorbeelden gebruikt
wordt.
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Verbale interacties hebben een expliciet gemarkeerde syntactisch/seman­
tische structuur die beschreven kan worden als een aaneenrijging en recur­
sieve nesting van ,,discourse-eenheden”. De bezwaren tegen de recursieve
structuur aangevoerd door Bruce en Reichman zijn niet steekhoudend.

B. Bruce: Discourse Models and Language Comprehension.
American Journal ofComputational Linguistics‘, l975, Microfiche-35.
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and Discourse, January, 1982.Universiteit van Tilburg.
L. Polanyi and R.J.H. Scha: The Syntax of Discourse. Te verschijnen in: TEXT.

Analyse van de protocollen van de vaak opmerkelijke interacties tussen
menselijke personen en primitieve dialoogsystemen als ELIZA en PARRY
zou een nuttige uitbreiding vormen van het repertoire van Garfinkeliaanse
experimentele technieken voor onderzoek naar de interactieve constructie
van sociale realiteit.

J. Weizenbaum: ELIZA —A Computer Program for the Study of Natural
Language Communication Between Man and Machine. Comm. ACM 9, 1966,
36-45.

K.M. Colby, J.B. Watt and J.P. Gilbert: A Computer Method of Psychothe­
rapy: Preliminary Communication.
J. Nerv. Mcntal Disease 142, 1966. l48—l52.

H. Garfinkel: Studies of the Routine Grounds of Everyday Activities. Social
Problems 11, I964, 225-250.

. Gedurende het verloop van een narratieve tekst bepaalt het aspekt van de
hoofdzinnen of het referentiepunt voor de temporele interpretatie van de
uitingen wel of niet verschuift.

L. Polanyi and R.J.H. Scha: Towards a formal semantics of stories in conversa­
tion (Abstract). Colloquium on di.s'cour.s'ercprc.s'cntation, Kleve, September
I5-I8. 1981.

E. Hinrichs: Temporale Anaphora im Englischen. Ongepubliceerd Manuscript.
Universiteit van Tiibingen. I981.

Er bestaat geen syntactisch onderscheid tussen collectieve en distributieve
werkwoorden.

R.J.H. Scha: Distributive. collective and cumulative quantification. ln: J.A.G.
Groenendijk, T.M.V. Janssen en M.B.J. Stokhof(eds.): FormalMctl1ocl.s'in the
Study ofLanguage, Vol. 2. Amsterdam: Mathematisch Centrum. I981.

. Zich vertakkende quantificatiestructuren spelen geen rol in de semantiek
van natuurlijke taal.

J. Hintikka: Quantifiers vs. Quantification Theory. Linguistic Inquiry 5, I974.
I53-177.

G. Fauconnier: Do Quantifiers Branch‘?Linguistic Inquiry 6, 1975.555-578.

J. Barwise: On Branching Quantifiers in English. Journal of Philosophical
Logic 8, 1979. 47-80.
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Extensionele adjectieven kunnen niet geconjugeerd worden met intensio­
nele. Montague’s behandeling van extensionele adjectieven is daarom
onjuist.

R. Montague: The Proper Treatment of Quantification in Ordinary English. ln:
J. Hintikka, J. Moravcsik and P. Suppes (eds.): Approaches to Natural
Language. Proceedings of the I970 Workshop on Grammar and Semantics.
Dordrecht: Reidel, 1973,221-242.

Postulaten die tot doel hebben om de betekenis vast te leggen van intuitief
ongeinterpreteerde ,,semantische tussenstappen” (zoals Montague’spseu­
do—intensionele werkwoorden en adjectieven, en de pseudo—collectieve
werkwoordslezingen die ik voorgesteld heb i.v.m. stelling 4) vervullen dit
doel alleen wanneer zij de elimineerbaarheid van deze ,,hulp-eenheden”
garanderen. Het verdient daarom de voorkeur zulke postulaten niet als
axioma’s te formuleren maar als locale vertaalregels.

Dit proefschrift. Hoofdstuk V.
B. lndurkhya: Sentence Analysis Programs Based on Montague Grammar.
Eindhoven: Philips International Institute ofTechnological Studies. I981.

LISP is niet geschikter voor het schrijven van gecompliceerde ,,intelligen—
te” programma’s dan de meeste recentere talen uit de ALGOL-familie. De
speciaal in de context van de Kunstmatige lntelligentie ontwikkelde talen
met ,,ingebouwde deductie” e.d. zijn minder geschikt, omdat ze de pro­
grammeur de verantwoordelijkheid ontnemen voor de algorithmische
structuur van zijn programma.

De Kunstmatige lntelligentie produceert ,,beelden" van de uiterlijke ver­
schijningsvorm van de menselijke cognitie - geen ,,modellen” van de
interne structuur ervan. Het is dus eerder een artistieke discipline dan een
empirische wetenschap.

S.K. Langer: Mind: An Essay on Human Feeling, Vol. I. Baltimore: Johns
Hopkins University Press. I967, 59-68.

Een onderzoek naar de aard van het sociale instituut ,,kunst” kan niet de
plaats innemen van een onderzoek naar de aard van aesthetische proces­
sen.

G. Dickie: Art and the Aesthetic‘. An Institutional Analysis. Ithaca: Cornell
University Press. I974.

Rock ‘n roll is onze enige levende artistieke traditie.

De gedachte van een objectieve kunst die de werkelijkheid voor zichzelf
laat spreken, rond 1960veelvuldig geponeerd (Cage, De Vries, Nouveau
Réalisme, Fluxus), verdient het om alsnog ernstig in praktijk gebracht te
worden. Betekenisvolle beelden hoeven niet met mensenhand gemaakt te
zun.



13. De aesthetische principes van de Nederlandse Nul-groep zijn het helderst
geformuleerd en het eerst verwerkelijkt door Wladyslaw Strzeminski.

W. Strzeminski: Untitled Statements. Abstraction Création Art Non Figuratif,
Vol. I, I932, 35; Vol. 2, I933, 40.

H. Peeters: 0 =
I34-I45.

nul. De Nieuwe Tendenzen. Museumjournaal 9, 1964.

. Mandelbrot’s voorstellen voor de definitie van de vorm van de loop van
rivieren zijn uiterst onbevredigend. Een serieuzer voorstel kan worden
ontwikkeld door de Mandelbrot/Lévy definitie van de vonn van bergland­
schappen als uitgangspunt te nemen.

B.B. Mandelbrot: Fractals. Form, Chance and Dimension. San Francisco:
W.H. Freeman and C0,. 1977.

P. Lévy: Processus stochastiques et mouvement brownien. Parijs: Gauthier
Villars, 1948.

. Aan muzikale noties als rhythme, swing en harmonie liggen mechanische
verschijnselen ten grondslag.

Remko Scha: Machine Guitars. KR O06.Eindhoven: Kremlin Products, 1982.

Remko Scha: Guitar Mural I . Groningen: Taal Beeld Geluid, I982.






