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1 Introduction

It may be taken for granted that  any attempt at defining

disorder in a formal way will lead to a contradiction. This

does not mean that the notion of disorder is contradictory. It

is so, however, as soon as I try to formalize it.

Hans Freudenthal

0111000101001000....... is an initial segment of a long sequence produced by tossing a coin.
In its broadest outline, the subject of this thesis is the mathematical description of  the
sequences produced by random processes (such as coin tossing), which will be called random

sequences. The tantalizing motto, taken from Freudenthal [29], expresses a negative verdict on
this enterprise. But meanwhile it raises a no less interesting question: How can a non-
contradictory concept necessarily  defy formalisation?
Clearly, the two definite articles in the phrase "the mathematical description of the sequences
produced by random processes" present a host of problems. There might not be such a
description, as Freudenthal thinks; or it might be completely trivial, the reason being that all
we can say a priori on the sequences produced by, say, coin tossing is, that these are sequences
of zeros and ones. On the other hand, there do exist various definitions of random sequences;
perhaps even too many.

The discussion in the pages that follow is therefore concentrated on two main questions:
1. Is a mathematical definition of random sequences possible and if so, why should one want
to give such a definition?
2. Given the fact that various definitions have been proposed, does it make sense to ask for
criteria which allow us to choose between them?

Even apart from its usefulness, the possibility of providing a definition of randomness has
often been doubted. Here is a grab-bag of some of the a priori reasons which have been
adduced for this conviction:
– As soon as you can define randomness, it ceases to be true randomness;
–␣ Randomness is a property of processes, not of the sequences generated by such processes;
– It is characteristic of a random process that it may generate any  sequence.
For the moment, we shall leave these a priori arguments unanalyzed.
The first person to discuss systematically the possibility, and indeed the necessity, of  a
definition  of random sequences was Richard von Mises, who provided an axiomatisation of
probability theory with "random sequence" as a primitive term. He argued, as did later
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Kolmogorov, that, if probability is interpreted as relative frequency, then the applicability of
probability theory to real phenomena (which is amply verified) entails that these phenomena
must have certain properties of randomness, and he proposed to take these properties as basic
for a definition of random sequences (other properties being optional).
A definition of randomness is therefore necessary to explain the applicability of probability
theory and a minimal set of properties random sequences have to satisfy can be deduced from
its rules, a priori reasons for the impossibility of such a definition notwithstanding. But in a
philosophical analysis we must of course investigate the apparent conflict between compelling
physical reasons pro  and a priori reasons contra  a mathematical definition of randomness.

Although in the thirties, but also in recent years, there has been a lively commerce in
definitions of randomness, our second question, namely:  Do there exist criteria to choose
between these definitions?, has not been explicitly discussed in the literature. To be sure, there
have been discussions among partisans of various schools, the Geneva conference on the
foundations of probability (1937) being a notable example. But one is struck by the sheer
monotony of these discussions, the same arguments pro and con being repeated over and over
again, without noticible effects upon the opinions of the discussants.
We propose to break this stalemate by analyzing possible sources for the lack of mutual
comprehension so clearly displayed. The conclusion of our analysis will be that von Mises,
around whose axiomatisation of probability theory the discussion centered, had views on the
foundations of probability and of mathematics in general, which were not shared, but also not
fully understood, by his critics. His view on the foundations of mathematics, usually expressed
only implicitly, was shaped by his work as an applied mathematician and is a mixture of
constructivism and a tendency to introduce bold concepts whenever the description of real
phenomena seems to necessitate it. From this mixture results what one might call an
inhomogeneous mathematical universe, which is a far cry from the very homogeneous set
theoretical universe that inspired some of the objections of his critics. Unfortunately, these
assumptions were not made explicit in the debate. Von Mises' views on the foundations of
probability did, of course, figure explicitly and prominently in the debate; but its critics did
not show a reciprocal awareness of their own assumptions, thereby successfully creating the
impression that, while von Mises' view was unnecessarily complicated, theirs was simplicity
itself. We believe that this debate, if analyzed correctly, points to the conclusion that different
(objective) interpretations of probability lead to  different requirements for random sequences.
Hopefully, this point of view is helpful in understanding the debate that raged between von
Mises and his critics; and if it directs the reader away from  bickering about definitions of
randomness and toward the deeper questions of the foundations of probability, it has fulfilled
its purpose.
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These two main questions determine much of the technical work in Chapters 3 to 5. Given that
there exist different types of definitions, each with its own minor variants, we must investigate
how these definitions are related extensionally. Some of these relationships are well know, e.g.
that between randomness in the sense of Martin-Löf and definitions involving (variants of)
Kolmogorov complexity. In these cases, the novelty of our treatment consists solely in
introducing new proof techniques. But other relations have been studied less thoroughly,
notably that between von Mises' semi-formal definition, based on so called  admissible place

selections , and the other types. There are obvious reasons for this lack of attention. The fact
that von Mises' definition is not quite formal renders a comparison with the other definitions,
which are  rigorous in the modern sense, difficult; and often the need for such a comparison is
not felt acutely because, say, Martin-Löf's definition is considered to be an improvement  on
von Mises' proposal, rather than an alternative, based on radically different principles. We
therefore have to study ways in which to make von Mises' definition precise; moreover, these
attempts to instill precision should be based as much as possible upon his own philosophical
premises. This problem has not been solved entirely, but the results that have been obtained,
do enable us to effect a rigorous comparison between von Mises' definition and the other
types.

So far, we have been concerned with extensional relationships between different types of
definitions. But the exact meaning and justification of the definitions is no less important. The
rationale behind von Mises' definition is studied extensively in Chapter 2. It turns out that it is
completely justified on von Mises' own interpretation of probability, to be called strict

frequentism . His opponents, on the other hand, usually start from a very different
interpretation of probability, the propensity interpretation, and it is this interpretation which
inspires those modern definitions of randomness which, following Martin-Löf, characterise
randomness as the satisfaction of certain statistical tests. The choice of the particular type of
test employed by Martin-Löf is, in our opinion, debatable, and the conclusion of the
discussion is, in a nutshell, that whereas von Mises' definition is philosophically  rigorous, but
technically less so, with Martin-Löf's definition it is just the other way around.

The most promising approach to the characterisation of randomness appears to be the one
inaugurated by Kolmogorov, using a notion of complexity   for finite sequences.
Philosophically, it stands midway between the definitions of von Mises and of Martin-Löf.
Kolmogorov accepts von Mises' view that an analysis of the conditions of applicability of
probability theory necessarily leads to the concept of a random sequence (although they differ
in the place they allot to random sequences in the formal structure of probability theory). But
while von Mises requires of random sequences only those properties which make the
deductions of probability theory go through, Kolmogorov goes further and in a sense explains,
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non-probabilistically, why random sequences must have those properties.
Technically, a major advantage of Kolmogorov complexity is, that it allows us to discuss
degrees of randomness, both of sequences as a whole and within a single sequence. This
feature leads to new problem which cannot be posed in the other frameworks, such as: What is
the connection (if any) between the arithmetical complexity and the Kolmogorov complexity
of a sequence? What is the connection between traditional measures of disorder such as
entropy in its various forms, and Kolmogorov complexity?

The structure of this book is as follows. It consists of two parts, the first historical, the second
technical, which can by and large be read independently. Each of the technical Chapters (3 to
5) has its own non-technical introduction, setting out the reasons for the constructions that
follow. Of course, for the full motivation of the technical work, the reader is referred to the
historical part.
Chapter 2 deals with von Mises' semi-formal definition of random sequences and its function
in his axiomatisation of probability theory. We believe that insufficient attention to this
context has lead to wholly unjustified criticisms of von Mises' theory. Accordingly, an
overview of, and a critical commentary on, the debate to which von Mises' introduction of
random sequences gave rise, will  occupy half of the chapter. As intimated already, one of the
main conclusions of our analysis will be that the evident lack of mutual understanding
displayed in this debate is a consequence of widely divergent interpretations of probability.

The second, technical, part of the thesis opens with a chapter on Martin-Löf's definition of
random sequences via statistical tests, and some of its variants. The emphasis of the discussion
is, technically, on unified methods of proof, and, philosophically, on the virtues and vices of
the particular type of test adopted by Martin-Löf. The fourth chapter is an updated version of
[53] and contains results relating the definition of randomness of von Mises and that of
Martin-Löf and its variants. In particular we study the behaviour of Martin-Löf random
sequences under so called place selections (theorem 4.5.2) and we give a new proof of a
famous theorem due to Ville, the philosophical implication of which is discussed in 2. We
hope that this proof (4.6.1) has more explanatory power than Ville's original combinatorial
argument.
Chapter 5 is concerned with what we consider to be the most promising development incited
by von Mises' original proposal: Kolmogorov complexity. After studying several of its
variants, we settle for the definition proposed by Chaitin, which allows an equivalent
condition  for randomness in the sense of Martin-Löf (5.4.3). As mentioned above, the
decisive advantage of a complexity theoretic definition vis à vis other definitions of
randomness is that it also enables us to measure the degree of randomness of a sequence, both
locally, as a function of the initial segments of the sequence, and globally, as a number
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attached to the sequence as a whole. The local behaviour of the degree of randomness is
studied in a section on complexity oscillations (5.4, especially 5.4.2-3); the global behaviour is
compared with measures of disorder defined in ergodic theory, such as metric entropy (5.5.2)
and topological entropy (5.5.3).
The appendix (Chapter 6) contains notations and definitions not explained in the text.

Passages detracting from the main argument are labelled Digression. Those who are interested
more in philosophical vistas than in technical details will find at the beginning of each chapter
a list of sections which do not bear directly on foundational issues. But some mathematics is
necessary; there is no royal road to  the philosophy of science.
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2 Roots of Randomness:
Von Mises' Definition of Random Sequences

2.1 Introduction In 1919 Richard von Mises (1883–1957) published an (in fact the first)
axiomatisation of probability theory which was based on a particular type of disorderly
sequences, so called Kollektivs. The two features characterizing Kollektivs are, on the one
hand, existence of limiting relative frequencies within the sequence (global regularity) and, on
the other hand, invariance of these limiting relative frequencies under the operation of
"admissible place selection" (local irregularity). An admissible place selection is a procedure
for selecting a subsequence of a given sequence x in such a way that the decision to select a
term xn does not depend on the value of xn.

After several years of vigorous debate, which concerned not only von Mises' attempted
characterisation of a class of random phenomena, but also his views on the interpretation of
probability, it became clear that most probabilists were critical of von Mises' axiomatisation
and preferred the simple set of axioms given in Kolmogorov's Grundbegriffe der

Wahrscheinlichkeitsrechnung of 1933. The defeat of von Mises' theory was sealed at a
conference on probability theory in Geneva (1937), where Fréchet gave a detailed account of
all the objections that had been brought to bear against von Mises' approach.

We believe that this debate, for all its vigor, has failed to produce a careful analysis of von
Mises' views and the new concepts he introduced. In fact, when one reads the various
contributions, one is immediately struck by its monotony: the same objections and refutations
are repeated over and over again, with scarcely any new elements being brought in. (There is
one major exception: the objections based on a construction due to Ville (1937).) When one
takes into account the considerable scientific acumen of the participants in the debate, this
monotony may be a cause for surprise.

In the following pages, we shall attempt both to analyse von Mises' theory in detail and to
examine the reasons why the debate which ensued after its publication failed to lead to
satisfaction. Our guiding principles in this analysis will be twofold.

First, we believe that von Mises' characterisation of random sequences has great intuitive
appeal, for all its imprecision. We do not regard the lack of precision itself as objectionable.
Instead, we subscribe to Kreisel's doctrine of informal rigour:
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The 'old fashioned' idea is that one obtains rules and definitions by analysing intuitive notions
and putting down their properties. This is certainly what mathematicians thought they were
doing when defining length or area, or, for that matter logicians when finding rules of
inference or axioms (properties) of mathematical structures such as the continuum. [...] What
the 'old fashioned' idea assumes is quite simply that the intuitive notions are significant , be it
in the external world or in thought (and a precise formulation of what is significant in a
subject is the result, not the starting point of research into that subject).
Informal rigour wants (i) to make this analysis as precise as possible (with the means
available), in particular to eliminate doubtful properties of the intuitive notions when drawing
conclusions about them; in particular not to leave undecided questions which can be decided
by full use of evident properties of these intuitive notions [52,138].

It will be seen, for instance, that the notion of Kollektiv is at least clear enough to refute the
often repeated allegiation of inconsistency. We do not, however, claim to have reached the
limits of analysis (but perhaps the idea of the ultimate analysis does not even make sense).

Second, we try to explain the sterility of the debate by assuming that the participants had
widely diverging, but in part unarticulated, opinions on the foundations of mathematics and
probability. We shall meet instances of this phenomenon when we discuss the alleged
inconsistency of Kollektivs (in 2.3.3) and the force of Ville's objection (in 2.6.2).
The conclusion of our analysis will be that the criticisms directed against von Mises' theory
are either misguided (such as the charge that von Mises was working with a wrong concept of
what axiomatisation should be) or based on foundational views which are not his (the alleged
inconsistency, or the objection that Kollektivs do not always satisfy the law of the iterated
logarithm). One may then pursue the debate at the level of foundational issues, but here, it is
much more difficult to decide who is right and who is wrong. And for our purpose, the
conclusion that different views on the foundations of probability may lead to different
requirements on definitions of random sequences, is sufficient to motivate the technical work
of subsequent chapters.

The plan of this chapter is as follows. In 2.2 we examine von Mises' version of the frequency
interpretation, its surprising consequences and its possible rival, the propensity interpretation.
In 2.3 we introduce Kollektivs and discuss their metamathematical status. 2.4 is centered
around the demonstration that any form of the frequency interpretation assumes that the
phenomena to which it is applicable are Kollektivs. In 2.5 we study some of the attempts to
achieve precision in the definition of Kollektivs. 2.6 is devoted to a discussion of the
objections brought forth by Fréchet. Our conclusions will be summed up in 2.7.
It will be clear from this outline that we shall mostly be concerned with two problems and
their relation: the interpretation of probability and the definition of random sequences.
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2.2 The frequency interpretation of probability

2.2.1 Methodological considerations. In the early thirties, two books were published on the
foundations of probability theory, which express widely divergent attitudes: the
Wahrscheinlichkeitsrechnung, von Mises' definitive treatise (1931) and the Grundbegriffe der

Wahrscheinlichkeitsrechnung by Kolmogorov (1933). A convenient starting point for a
discussion of von Mises' views is given by the following juxtaposition of quotations:

   Die Wahrscheinlichkeitstheorie als mathematische Disziplin soll und kann genau in
demselben Sinne axiomatisiert werden wie die Geometrie oder die Algebra. Das bedeutet,
daß, nachdem die Namen der zu untersuchenden Gegenstände und ihrer Grundbeziehungen
sowie die Axiome, denen diese Grundbeziehungen zu gehorchen haben, angegeben sind, die
ganze weitere Darstellung sich ausschließlich auf diese Axiome gründen soll und keine
Rücksicht auf die jeweilige konkrete Bedeutung dieser Gegenstände und Beziehungen
nehmen darf.
   Dementsprechend wird im §1 der Begriff eines Wahrscheinlichkeitsfeldes als eines
gewissen Bedingungen genügenden Mengensystems definiert. Was die Elemente dieser
Mengen sind, ist dabei für die mathematische Entwicklung der Wahrscheinlichkeitsrechnung
völlig gleichgültig (man vergleiche die Einführung der geometrische Grundbegriffe in
HILBERTs "Grundlagen der Geometrie" oder die Definitionen von Gruppen, Ringen und
Körpern in der abstrakten Algebra).
    Jede axiomatische (abstrakte) Theorie läßt bekanntlich unbegrenzt viele konkrete
Interpretationen zu. In dieser Weise hat auch die mathematische Wahrscheinlichkeitstheorie
neben derjenigen ihrer Interpretationen, aus der sie aufgewachsen ist, auch zahlreiche andere.
Wir kommen so zu Anwendungen der mathematische Wahrscheinlichkeitstheorie auf
Untersuchungsgebiete, die mit den Begriffen des Zufalls und der Wahrscheinlichkeit im
konkreten Sinne dieser Begriffe nichts zu tun haben (Kolmogorov [44,1]).

   Die Wahrscheinlichkeitstheorie wird in dieser Vorlesungen  aufgefaßt als eine
mathematische Naturwissenschaft von der Art etwa wie die Geometrie oder die Mechanik.
Ihr Ziel ist es, für eine bestimmte Gruppe beobachtbarer Erscheinungen, die
Massenerscheinungen und Wiederholungsvorgänge, eine übersichtliche Beschreibung zu
geben, wie sie die Geometrie für die räumlichen, die Mechanik für die
Bewegungserscheinungen liefert. An der Spitze einer derartigen Theorie stehen Aussagen,
durch die die Grundbegriffe definiert werden und die man oft Axiome nennt; in ihnen
kommen allgemeine Erfahrungseinhalte zur Verwertung, ohne daß sie unmittelbar als
Erfahrungssätze angesprochen werden dürften. Aus den Axiomen werden dann auf
deduktivem Wege, oder, wie man jetzt besser sagt, durch "tautologische Umformungen"
mannigfache Sätze gewonnen, die vermöge des Zusammenhanges, der zwischen den
Grundbegriffen und der Erfahrungswelt besteht, bestimmten, durch Beobachtung
nachprüfbaren Tatbeständen entsprechen. So weist die Theorie am Anfang und am Ende
jeder Gedankenreihe Berührung mit der Welt der Beobachtungen auf; ihren eigentlichen
Inhalt aber, der uns vorzugsweise beschäftigen wird, bilden die rein mathematischen
Überlegungen, die zwischen dem Anfang und dem Ende stehen (von Mises [68,1]).

These quotations emphasize two different aspects of the mathematical method. The quotation
from Kolmogorov is concerned mainly with faultless derivations from axioms, which should
proceed regardless of the actual meanings of the primitive concepts involved.
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Von Mises, of course, does not deny the importance of this procedure, but he stresses the role
of mathematics in describing real structures, in as much detail as is necessary, a feature less
prominent in Kolmogorov's book.
The following quotation from von Mises' Wahrscheinlichkeit, Statistik und Wahrheit [70]
further clarifies the sense in which probability theory is mathematische Naturwissenschaft :

Die Wahrscheinlichkeitsrechnung (oder die Theorie der zahlenmäßig erfaßbaren
Wahrscheinlichkeiten) ist die Theorie bestimmter, der Beobachtung zugänglicher
Erscheinungen, der Wiederholungs– und Massenvorgänge etwa vom Typus der Glücksspiele,
der Bevölkerungsbewegung, der Bewegung Brownscher Partikel usf. Das Wort "Theorie" ist
hier in demselben Sinn gemeint wie die Hydromechanik Theorie der Flüssigkeitsströmungen,
die Thermodynamik Theorie der Warmevorgänge, die Geometrie Theorie der räumlichen
Erscheinungen heißt [70,128].

Statements such as these have led critics (e.g. Feller in his talk at the Geneva conference on
probability theory [23,9]; see also Fréchet [28]) to object that von Mises' conception of a
scientific theory was not true to the example set by Hilbert's Grundlagen and confused
mathematical and empirical considerations; and since Kolmogorov's theory did not fall prey to
this alleged confusion, it had to be preferred.

This objection is untenable. The axiomatisations of Kolmogorov and von Mises both attempt
to provide a rigorous mathematical foundation for probability theory, but they choose, as we
shall see, different sets of primitive terms. In particular, perhaps somewhat surprisingly, the
term "probability" does not occur in von Mises' axioms, but is a defined notion, whereas it is a
primitive term in the Kolmogorov axioms. These different languages reflect different motives,
as Kolmogorov was well aware. Von Mises believed that only the frequency interpretation of
probability makes sense and attempts to say in mathematical terms what this interpretation
amounts to. Kolmogorov's preferences are expressed in the continuation of the passage cited
above:

   Die Axiomatisierung der Wahrscheinlichkeitsrechnung kann auf verschiedene Weisen
geschehen, und zwar beziehen sich diese verschiedenen Möglichkeiten sowohl auf die Wahl
der Axiome als auch auf die der Grundbegriffen und Grundrelationen. Wenn man allerdings
das Ziel der möglichen Einfachheit des Axiomensystems und des weiteren Aufbaus der
darauf folgenden Theorie im Auge hat, so scheint es am zweckmäßigsten, die Begriffe eines
zufälligen Ereignisses und seiner Wahrscheinlichkeit zu axiomatisieren. Es gibt auch andere
Begründungssysteme der Wahrscheinlichkeitsrechnung, nämlich solche, bei denen der
Wahrscheinlichkeitsbegriff nicht zu den Grundbegriffe zählt, sondern durch andere Begriffe
ausgedrückt wird [a footnote refers to von Mises]. Dabei wird jedoch ein anderes Ziel
angestrebt, nämlich der größtmögliche Anschluß der mathematischen Theorie an die
empirische Entstehung des Wahrscheinlichkeitsbegriffes [44,2].
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Although Kolmogorov is clearly aware of the possibility of different axiomatisations of
probability theory, this passage has generally been overlooked by von Mises' critics (a
phenomenon which will recur again). Accordingly, Kolmogorov was used unwillingly as
support for a cause that was not his.

Our attitude toward the problem of axiomatising probability theory is as follows. There is no
need to deviate from the Kolmogorov axioms in purely mathematical investigations. But von
Mises' theory is a useful (indeed necessary) counterpart to that of Kolmogorov, since it
attempts to provide a frequentistic interpretation for the theorems of probability theory which
are, strictly speaking, statements about measure only. Interestingly, this attempt does not
always succeed, as with the law of the iterated logarithm when formulated as a theorem about
infinite sequences. Such cases lead one to question the empirical content of some of the results
of measure theoretic probability theory. (Ideally, a derivation from the Kolmogorov axioms
should be followed by a derivation from von Mises' axioms, to see what the result really
means.)
Furthermore, the frequency interpretation is not so crystal clear as to render superfluous
attempts at a precise formulation; even a rough formalisation shows that there exist essentially
different versions (see 2.2.3). Not least among the merits of von Mises' theory is that it
pursues one such interpretation, called strict frequentism in 2.2.3, to the bitter end.

2.2.2 Kollektivs (informal exposition). When we look at the list of examples of phenomena
to which probability theory should be applicable (see the quotation from von Mises' [70] on
p.9): coin tossing, demographic events, Brownian motion, it is clear that these examples
exhibit a common trait: either an unlimited repetition of an experiment or a great number of
events is involved. But the examples also differ in some probabilistic properties; in modern
parlance, we would say that coin tossing is a Bernoulli process, whereas Brownian motion is a
Markov process. The essence of von Mises' theory is, that it uses properties of games of
chance such as coin tossing as a tool to deduce properties of other processes and as an
instrument to define probability. In order to have at our disposal a technical term for this
privileged case, we introduce the word Kollektiv.
Informally, a Kollektiv is a sequence of elements of a sample space (which are also called
attributes), which is akin to a typical sequence of events produced by coin tossing. To say
precisely what "akin to" means, we have to list some of the properties of coin tossing which
we regard as essential. Two of these properties, amply verified by experience, are:

(i) Approximate stability of the relative frequency of an attribute if the number of observations
(or experiments) is increased;
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(ii) The impossibility of a successful gambling strategy, that is, the impossibility of making
unlimited amounts of money in a game of chance, using some kind of system. A gambling
strategy may roughly be thought of as a rule for betting on some trials and skipping others.

The informal statement of these properties of Kollektivs is sufficient to explain von Mises'
version of the frequency interpretation. A more formal statement will be given in 2.3; but, in a
sense, all the subsequent chapters are devoted to a formalisation of properties 2.2.2(i) and (ii).

2.2.3 Strict Frequentism: "Erst das Kollektiv, dann die Wahrscheinlichkeit"

We may now give an explicit, albeit informal, definition of probability.

2.2.3.1 Definition The probability of an attribute in a Kollektiv equals the relative frequency
of that attribute within the Kollektiv.

In 2.3 a more formal definition (involving infinite Kollektivs and limiting relative frequencies)
will be given, but the salient points can be illustrated as well using the finite version. Von
Mises summarizes his attitude in the slogan: "Erst das Kollektiv, dann die
Wahrscheinlichkeit", an innocuous–sounding formula with far reaching implications.

1. There is no probability of an individual event, e.g. that of Rachel dying at age 40, as such.
One may, however, metaphorically assign various probabilities to this event, corresponding to
each Kollektiv to which Rachel belongs: that of female heavy smokers, that of sports car
drivers and so forth. So far, only the first property of Kollektivs, 2.2.(i), is used.
2. The second property of Kollektivs gives a special twist to the definition of probability and
severely restricts its applicability. Basically, defining the probability of an attribute with
respect to a Kollektiv only, means that probability enjoys a multiplicative property. Details
will be given in 2.4, but an example will make clear what we mean. The paradigmatic example
of a Kollektiv is a sequence of tosses with a fair coin. The probability of heads in such a
Kollektiv will (approximately) be ; and the probability of heads on two consecutive tosses
will be ·  = . Now the relative frequency  may be called a probability only if this
multiplicative property holds. In this respect, von Mises' nomenclature differs from that of
Kolmogorov, who requires of a probability only that it be a positive measure with norm one.
The multiplicative property creeps in only afterwards, when he defines the notion of
independence, two events being independent if the probability of their joint occurrence equals
the product of the probabilities of the events themselves. He then duly remarks that it is this
notion of independence which distinguishes probability theory from measure theory [44,8]. Of
course, mass phenomena which do not satisfy the second property of Kollektivs can be
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handled as well in the theory, but von Mises' convention is such that in this case, the relative
frequency is not a probability.
3. Von Mises' definition is not the only one which establishes some connection between
probability and relative frequency. In 2.4, and again in 2.6, we shall meet the propensity

interpretation, which proceeds along rather different lines. We shall use the term strict

frequentism for any interpretation of probability which explicitly defines probability in terms
of relative frequency. Von Mises also thinks that there is more to probability than the
definition (2.2.3.1):

Die Wahrscheinlichkeit, Sechs zu zeigen, ist eine physikalische Eigenschaft eines Würfels,
von derselben Art, wie sein Gewicht, seine Wärmedurchlässigkeit, seine elektrische
Leitfähigkeit usw [70,16].

but this aspect of probability does not figure in the definition.
To appreciate the strictness with which von Mises himself applied his doctrine, it is instructive
to consider the case of attributes of probability zero. If computed in a finite Kollektiv,
probability zero is of course equivalent to the non-occurrence of that attribute. But when our
Kollektiv is infinite, as the precise version of the explicit definition of probability (2.2.3.1)
requires, then probability zero of an attribute is compatible with the attribute occurring
infinitely often. Although this idea is formulated in terms of infinite Kollektivs, it has
consequences for observable events. If x ∈ 2ω is a Kollektiv with probability distribution (1,0)
and if we derive from x a Kollektiv y ∈ (2n)ω by selection and combination as is done in 2.4,
then some of the yj (which represent finite, observable populations) may contain 1's, although

the probability of 1 is zero.
In the case of a continuous sample space, the idea that probability zero does not imply
impossibility is universally accepted. But the application of this idea to a discrete sample
space seemed too much to swallow, witness the following remark by Martin–Löf, when he
contrasts his own approach to the definition of random sequences with that of von Mises:

[...] an event with vanishing limit frequency is actually impossible. This contrasts sharply
with the conception of von Mises, who explicitly stated that the opposite might occur. It
seems as if he strained his seldom failing intuition on this point in order not to conflict with
his somewhat arbitrary definition of randomness [62,619].

We shall see in 2.5–6 that this divergence of opinions, small as it may seem, actually points to
irreconcilable intuitions as regards the principles which should govern the definition of
Kollektivs. (And our conclusion will be that Martin-Löf's definition and its relatives are rather
more arbitrary than that of von Mises.)
4. Another way to illustrate the strictness of strict frequentism, is to consider the role played
by the laws of large numbers (and in fact all weak and strong limit laws of probability theory)
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in von Mises' set–up; or rather, the role they do not play. We introduce some notation first.

2.2.3.2 Definition  Let p ∈ [0,1].  The measure µp on 2ω is defined to be the product measure

(1–p,p)ω.  We put

LLN(p) := {x ∈ 2ω | lim
n→∞ n

1∑
k=1

n

xk = p}.

2.2.3.3 Theorem  Strong law of large numbers :   µpLLN(p) = 1.

An influential interpretation of probability (influential because apparently unconsciously
adopted by most mathematicians), the propensity interpretation, holds that probability should
primarily be thought of as a physical characteristic. Now von Mises could concede this much
(cf. the passage quoted on p.12) but, contra von Mises, the propensity interpretation claims to
be able to derive the frequency interpretation from the strong law of large numbers together
with an auxiliary hypothesis. (Some use the weak law for this purpose; see e.g. the passage
from Fréchet [28] cited in 2.6.) In other words, propensity theorists claim that it is possible to
derive statements on relative frequencies from premisses which are (almost) probability–free.
We present the alleged derivation of the frequency interpretation in the form given in Popper's
Realism and the Aim of Science [83]. This presentation might seem anachronistic. But
expositions of the propensity interpretation which do show some awareness of its assumptions
are rare (the reader may wish to compare Popper's version with that of Fréchet, quoted in
2.6.1). Since the propensity interpretation has inspired some of the work on random sequences
in the literature, we have chosen to present it in its (for all its naiveté) most articulated form1.
The derivation goes as follows.
Suppose we have a coin; after a thorough examination of its physical characteristics (weight,
center of mass etc.) we conclude that the probability,  as a physical characteristic or

propensity, of coming up heads will be p. The strong law of large numbers is then invoked to
conclude that the set of outcome sequences which show limiting relative frequency of heads
equal to p has µp–measure one. Now the auxiliary hypothesis comes in. After explaining why

the weak law cannot be used in this context, Popper goes on to say:

The case is different if we obtain a probability that is exactly equal to 1 (or 0, as in the case of
measure zero). Admittedly, even in this case, "probability" has to mean something connected
with frequency if we are to obtain the required result. But no precise connection need be
assured – no limit axiom and no randomness axiom [the two conditions formally defining
Kollektivs; see 2.3]; for these have been shown to be valid except for cases which have a
probability (a measure) zero, and which therefore may be neglected. Thus all we need to
assume is that zero probability (or zero measure) means, in the case of random events,  a
probability which may be neglected as if it were an impossibility [84,380].
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Stated like this, the argument is quite like the type of reasoning employed in the ergodic
foundation of statistical mechanics. Here, one tries to justfy the auxiliary hypothesis on
physical grounds:

[...] one could have an invariant ensemble where every particle moves on the same straight
line reflected at each end from a perfectly smooth parallel wall. The obviously exceptional
character of this motion is reflected mathematically in the fact that this ensemble, though
invariant, is confined to a region of zero "area" on S [a surface of constant energy] and
therefore has no ensemble density. To set up such a motion would presumably be physically
impossible because the slightest inaccuracy would rapidly destroy the perfect alignment
(Lebowitz and Penrose [81,24]; for a variation on this argument, see Malament and Zabell
[60]).

Von Mises declines any use of the laws of large numbers in the way indicated above. He
rightly remarks that this use amounts to an adoption of the frequency interpretation for certain
special values of the probabilities, namely those near to 0 and 1 (or equal to 0 or 1 if you use
the strong law), and asks: Why not adopt the frequency interpretation from the start, for all

values of the probability distribution? The obvious answer is that the above procedure
explains (or at least pretends to) the frequency interpretation:

Thus, there is no question of the frequency interpretation being inadequate. It has merely
become unnecessary: we can now derive consequences concerning frequency limits even if
we do not assume that probability means a frequency limit; and we thus make it possible to
attach to "probability" a wider and vaguer meaning, without threatening the bridge on which
we can move from probability statements on the one side to frequency statements which can
be subjected to statistical tests on the other (Popper [84, 381]).

In the same way, the ergodic theorem plus the auxiliary hypothesis are taken to explain the
statistical behaviour of gases; and we may remark in passing that von Mises also declines such
uses of ergodic theory (see the last chapter of [68]).

It is not our purpose here to judge between these two interpretations of probability, strict
frequentism and propensity interpretation. We only note that the assumptions underlying the
interpretations are of a rather different character:
– The auxiliary hypothesis of the propensity interpretation is of highly theoretical nature and
badly in need of justification; indeed it is not clear what form a justification should take. In
any case it seems more profitable to study concrete examples of its use, for instance in
statistical mechanics.
– Von Mises starts from two brute facts, amply corroborated by experience, and makes no
attempt to explain these facts.
Obviously, in order to turn Popper's deduction of the frequency interpretation into a true
explanation,  his premisses have to be analysed further. But since we shall show in the sequel
that adherence to the propensity interpretation justifies requirements on the definition of
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Kollektivs which are quite unjustified from a strict frequentist point of view, we ask the reader
to be alive to both possibilities of interpretation.

2.2.4 Structure and task of probability theory. After all that has been said, it will come as
no surprise that the outward appearance of von Mises' theory is rather different from that of
Kolmogorov's. We now proceed to give a concise description of its structure; the
mathematical details, in so far as they are relevant, will be given in 2.3 and 2.4.

Von Mises emphatically presents probability theory as an empirical theory, designed to
transform data, in the form of probabilities, into predictions or explanations, again in the form
of probabilities (we omit complications due to the fact that some relative frequencies, e.g.
those in Markov processes, are not probabilities. See for these [68] and [70]). The theory
should be judged solely on its empirical merits, its adequacy in predicting or explaining
observable phenomena.
Since the data are probabilities, they are supplied in the form of relative frequencies in
Kollektivs. It follows that probability theory must consist of rules transforming given
Kollektivs into other Kollektivs. Accordingly, the axioms of the theory posit the validity of
one type of transformations (so called place selections); the validity of the other necessary
rules of transformation is derivable from these axioms. Consequences of the axioms include
the Kolmogorov axioms (albeit with finite additivity only), the multiplicative property alluded
to above (in 2.2.3.2) and the formula for conditional probability.
The axioms themselves are a translation into mathematical terms of the facts of experience
mentioned in 2.2.2: approximate stability of relative frequencies in long series of trials and the
impossibility of a successful gambling strategy. As such, these axioms exhibit a certain
amount of idealisation; in particular, the Kollektivs, which in practice are finite, are
represented by infinite sequences. This procedure is equally justified as concept formation in
geometry: the ideal entities are introduced for their technical advantages, but their properties
are studied only on so far as they are relevant to the prediction of observable, hence finite,
phenomena. If the infinities can be eliminated, then so much the better.
It would, therefore, be a grave mistake to suppose that von Mises' theory is a mathematical

theory of infinite Kollektivs, as is, for instance, the definition of random sequences proposed
by Martin–Löf (for which see Chapter 3). Von Mises introduced infinite Kollektivs only for
their technical advantages, not as autonomous objects of study [70,103-4]. We shall discuss
Kolmogorov's attempt to define finite Kollektivs in  5.2.
2.3  Axiomatising Kollektivs. We now introduce a mathematical description of Kollektivs,
essentially by expressing properties 2.2.2(i),(ii) in mathematical terms.
The formal set–up is as follows. Let M (for "Merkmalraum") be a sample space, i.e. the set of
possible outcomes of some experiment. The doctrine of strict frequentism says that
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probabilities P(A) for A ⊆ M must be interpreted as the relative frequency of A in some

Kollektiv. In our mathematical description the probability P(A) will be identified with the
limiting relative frequency of the occurrence of A in some infinite Kollektiv x ∈ Μω.

2.3.1 The axioms (as given by von Mises [67,57]).

2.3.1.1. Axiom   A sequence x ∈ Μω is called a Kollektiv  if

(i) for all A ⊆ Μ, Ρ(Α) := lim
n→∞

  
n
1∑

k=1

n

1A(xk)  exists

(ii) Let A,B ⊆ Μ be non–empty and disjoint; and suppose that A ∪Β occurs infinitely often in
x. Derive from x a new sequence x', also in Mω, by deleting all terms xn which do not belong
to either A or B. Now let Φ be an admissible place selection, i.e. a selection of a subsequence
Φx' from x' which proceeds as follows:

"Aus der unendliche Folge [x' wird] eine unendliche Teilfolge dadurch ausgewählt, daß über
die Indizes der auszuwählenden Elemente ohne Benützung der Merkmalunterschiede verfügt
wird."

Then P' (A) := lim
n→∞ n

1∑
k=1

n

1A(Φx' )k  and P' (B) := lim
n→∞ n

1∑
k=1

n

1B(Φx' )k  exist and

P' (B)
P' (A)

  =  
P(B)
P(A)

  when  P(B) ≠ 0.

A few remarks on the above definition are in order.

1. The set of axioms 2.3.1.1 will alternatively be called a definition of Kollektivs. In Hilbertian
jargon, 2.3.1.1 provides an implicit definition of Kollektivs (rather than of probability, as in
the Kolmogorov axioms).
2.The quantifier "for all A ⊆ Μ" should not be taken too seriously. In the

Wahrscheinlichkeitsrechnung [68,17] von Mises remarks that all one needs to assume is that
(i) and (ii) hold for "simply definable" sets. For definiteness, we may substitute "Peano–
Jordan measurable" for "simply definable".
3. The function P defined in  (i) is called the probability distribution determined by the
Kollektiv x, in conformity with the slogan of 2.2.3. We shall occasionally use the phrase "x ∈
Μ ω  is a Kollektiv with respect to distribution P"; this phrase might suggest that the

distribution is primary, but should be taken to mean only that P satisfies (i). In the same vein,
the phrase "a fair coin" is used to designate a coin whose relative frequencies are
approximately equal to . It will be clear from the discussion in 2.2.3 that no reference to the
physical properties of the coin is intended.
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4. We shall use the phrase "x ∈ Μω is invariant under an admissible place selection Φ" to
mean that the limiting relative frequency in the subsequence selected by Φ are the same as
those in x. The notation " x ∈ Μω " should be read to mean only that each term of x is an

element from M; we do not imply that Kollektivs are elements of a universe described by
Zermelo–Fraenkel set theory. Similarly, the notation "Φx" for the subsequence selected from x
by the admissible place selection Φ should, until further notice (in 2.5) not be read as the
application of a function Φ: Μω → Mω to x, since at this stage it is not clear that an admissible

place selection is indeed a function. The reasons for this caution will gradually become clear
in the sequel. (Note also that the notation "Φx" is ambiguous: do we keep track of where the

terms of the subsequence originate in x?)
5. Of course the enigmatic condition (ii) will take pride of place among our considerations. In
the relevant literature the first part (replacing x by x', obtained from x by deleting terms not in
A∪Β) is usually omitted. For the paradigmatic case of coin tossing, the sample space M

equals 2 = {0,1} and condition (ii) reduces to:

If Φ is an admissible place selection, lim
n→∞

 
n
1∑

k=1

n

(Φx)k = P({1}).

As will be made clear in 2.4, the more elaborate condition is necessary in order to ensure the
validity of the rule for conditional probabilities:

P(A|B)  =  
Ρ(Β)

Ρ(Α∩Β)

It is interesting that the validity of this rule has to be built in blatantly into the axioms (thus
emphasizing its empirical origin), especially in view of attempts such as Accardi's [1] to put
the blame for the failure of classical probability theory in quantum mechanics upon this rule.
(Wald [100, 41-2] claims that, also in the general case, condition (ii) can be reduced as for
Kollektivs in 2ω; but his proof uses evidently non–admissible place selections.)
6. The condition "P(B) > 0" is necessary for the ratios in (ii) to be well-defined. On the other
hand, it is clear that in von Mises' set-up conditionalisation on a set B is possible if B occurs
infinitely often in the Kollektiv, a strictly weaker requirement (cf. the discussion in 2.2.3). One
could extend condition (ii) to incorporate B which occur infinitely often, but for which P(B) =
0 by means of non-standard analysis: if B occurs infinitely often, then, in any non-standard
universe, P(B) is a positive infinitesimal, so the ratios in (ii) are well defined.

It will be noted that 2.3.1.1, and especially condition (ii) does not fully conform to present
standards of mathematical rigour. In the sequel we shall review a number of attempts to make
this condition precise; but let us first try to give an idea of what is meant by means of some
examples.
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2.3.1.2 Example  Admissible place selections may be viewed as gambling strategies: if n is
chosen, that means that a bet is placed on the outcome of the nth trial; otherwise, the nth trial is
skipped. In the examples we consider the simplest case, cointossing; in other words,
Kollektivs x in 2ω.
(a) Choose n if n is prime. (This strategy caused Doob to remark that its only advantage
consists in having increasing leisure to think about probability theory in between bets.)
(b) Choose n if the n–9th,......., n–1st terms of x are all equal to 1. (The strategy of a gambler
who believes in "maturity of chances".)
(c) Now take a second coin, supposed to be independent of the first is so far as that is possible
(no strings connecting the two coins, no magnetisation etc.). Choose n if the outcome of the
nth toss with the second coin is 1.
Condition (ii) is intuitively satisfied in all three cases, although in (c) a heavy burden is put
upon the word "independent". We shall call selections of type (a) and (b) lawlike (since they
are given by some prescription) and those of type (c) random.

Condition (ii) will usually be called the axiom of randomness (from Regellosigkeitsaxiom).
Von Mises alternatively uses the designation principle of the excluded gambling strategy

(from Prinzip vom ausgeschlossenen Spielsystem). Unfortunately, he uses the term "gambling
strategy" in two different senses (which he evidently considers to be the same):

Diese Unmöglichkeit, die Gewinstaussichte beim Spiel durch ein Auswahlsystem zu
beeinflussen, die Unmöglichkeit des Spielsystems....[70,29]

Daß sie nicht zum gewünschten Ziele führten, nämlich zu einer Verbesserung der
Spielchancen, also zu einer Veränderung der relativen Häufigkeiten...[70,30].

Apparently, von Mises thinks that a gambling strategy making unlimited amounts of money
can operate only by selecting a subsequence of trials in which relative frequencies are
different. It was shown by Ville that this idea is mistaken: there exist gambling strategies
(called Martingales)which cannot be represented as place selections. We shall come back to
this point in 2.6.2 and in 3.4.

Put concisely, the definition of Kollektivs consists of two parts: global regularity (existence of
limiting relative frequencies) and local irregularity (invariance under admissible place
selections implies that a Kollektiv is unpredictable). Both separately and in conjunction, these
parts have come under fire. The most pertinent objections will be reviewed in 2.6, except one,
the charge that the theory is outright inconsistent. In view of its urgent character, this charge
will be taken up in 2.3.3, after a brief review of some of the consequences of the axioms in
2.3.2.
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2.3.2 Some consequences of the axioms   The following propositions are literal translations
of some of von Mises' Sätze in [67].

2.3.2.1 Proposition [67,57] Let x ∈ Μω be a Kollektiv, P the probability distribution induced

by x. Then P(M) = 1 and P is finitely additive.

This proposition might seem to be trivially true, but in fact its truth value is undetermined
until it has been specified on which subsets of M P is defined. Wald [100,46] has shown that
for continuous sample spaces M, there exists no non–atomic P defined on all subsets of M; but
a finitely additive probability can be defined for all Peano–Jordan measurable subsets of M.

2.3.2.2 Proposition [67,58]  An admissibly chosen subsequence of a Kollektiv x is again a
Kollektiv, with the same distribution.

Proof  Composition of two admissible place selections yields a new selection which still
proceeds ohne Benützung der Merkmalunterschiede.                                                        
This proposition will be the starting point for some of our investigations in Chapters 4 and 5.

2.3.2.3 Proposition [67,59]  A Kollektiv x is determined completely by its distribution; it is
not possible to specify a function  n → xn.

Proof  Choose A ⊆ Μ such that 0 < P(A) < 1. If there were such a function we could use it to

define an admissibly selected subsequence of x which consists of elements of A only. 

This consequence contains the essence of the new concept: a Kollektiv has no other
regularities than frequency regularities. Von Mises adds the comment that 2.3.2.3 implies

das man die "Existenz" von Kollektivs nicht durch eine analytische Konstruktion nachweisen
kann, so wie man etwa die Existenz stetiger, nirgends differentierbarer Funktionen nachweist.
Wir müssen uns mit der abstrakten logischen Existenz begnügen, die allein darin liegt, daß
sich mit den definierten Begriffe widerspruchsfrei operieren läßt
[67,60].

In other words, Kollektivs are new mathematical objects, not constructible from previously
defined objects. Hence in one place [68,15; see also 70,112] von Mises compares Kollektivs
to Brouwer's free choice sequences, one extreme example of which is the sequence of
outcomes produced by successive casts of a die2. In another place he contrasts his approach
with that of Borel [8], in a way which makes clear that Kollektivs are not to be thought of as
numbers, i.e. known objects:



27

...den von Borel u.a. untersuchten Fragen (z.B. über das Auftreten einzelner Ziffern in den
unendlichen Dezimalbrüchen der irrationale Zahlen), wo das Erfülltsein oder Nicht–
Erfülltsein der Forderung II [i.e. 2.3.2.1.(ii)] ohne Bedeutung ist [67,65].

The reference is to Borel's Strong Law of Normal Numbers, i.e. Theorem 2.3.2.3 for p = 
(or rather its analogue for sequences in 10ω)!  To modern eyes, accustomed to set theory, von

Mises' statement may look surprising: (dyadic) numbers and Kollektivs (as they arise in a
coin tossing game) can both be thought of as elements of Cantor space. But it will be seen
time and again that the  set  theoretic perspective is not very helpful in understanding von
Mises' ideas and the debates to which they gave birth; because at that time, these set theoretic
notions were still fresh and not part of the thinking habits of mathematicians. (Neither is set
theory very helpful in understanding Borel's ideas on probability; see Novikoff and Barone
[79] for a particularly disastrous example of prejudiced historiography. We shall come back
to this point in 2.6.)

Digression  Perhaps Borel wouldn't have disagreed with von Mises' comment. When he
introduces the considerations which lead up to the strong law of normal numbers, he states
[8,194–5]

Nous nous proposons d'étudier la probabilité pour qu'une fraction décimale appartienne à un
ensemble donné, en supposant que
1 Les chiffres décimaux sont indépendants;
2 Chacun d'eux a une probabilité égale a 1/q (dans le cas de la base q) de prendre chacun de
ces valeurs possibles: 0,1,2,3,...., q–1.
Il n'est pas besoin d'insister sur le charactère partiellement arbitraire de ces deux hypothèses;
la première, en particulier, est nécessairement inexacte, si l'on considère, comme on est
toujours forcé de le faire dans la pratique, un nombre décimal défini par une loi, quelle que
soit d'ailleurs la nature de cette loi. Il peut néanmoins être intéressant d'étudier les
conséquences de cette hypothèse, afin que précisement de se rendre compte de la mesure
dans laquelle les choses se passent comme si cette hypothèse est vérifiée.

In this context it may be interesting to remark that, at the time when Borel proved his strong
law (1909), it was by no means considered to be self–evident; in fact one expected the
opposite result. Here is Hausdorff's comment [37,420]

Dieser Satz ist merkwürdig. Auf der einen Seite erscheint er als plausibele Übertragung des
"Gesetzes der großen Zahlen" ins Unendliche; andererseits ist doch die Existenz eines Limes
für eine Zahlenfolge, noch dazu eine vorgeschriebene Limes, ein sehr spezieller Fall, den
man a priori für sehr unwahrscheinlich halten sollte.

And in 1923 Steinhaus still called the strong law of normal   numbers le paradoxe de Borel

[94,286]. Evidently, the strong law was considered to be paradoxical because a regularity such
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as the existence of limiting relative frequencies was felt to be incompatible with chance. It is
perhaps useful to keep in mind that such was the intellectual climate in which von Mises first
published his ideas.

2.3.3  Do Kollektivs exist?  Objections to von Mises theory were not long in coming.
Although his efforts met with sympathy, doubts were raised concerning the soundness of the
foundation. In this respect the following comment is typical:

Ich glaube nicht, daß Versuche, die von Misessche Theorie rein mathematisch zu fassen, zum
Erfolg führen können, und glaube auch nicht daß solche Versuche dieser Theorie zum Nutzen
gereichen. Es liegt hier offentsichtlich der sehr interessante Fall vor, daß ein praktisch
durchaus sinnvoller Begriff – Auswahl ohne Berücksichtigung der Merkmalunterschiede –
prinzipiell jede rein mathematische, auch axiomatische Festlegung ausschließt. Wohl aber
wäre es wünschenswert, das sich diesem Sachverhalt, der vielleicht von grundlegender
Bedeutung ist, das Interesse weiter mathematischen Kreise zuwendet (Tornier [96,320]).

A catalogue of objections (with their rebuttals) will be given in 2.6, but one simple objection,
reiterated ad nauseam, will be dealt with rightaway. The objection states that the appeal to the
"abstrakten logischen Existenz" in 2.3.2.3 is illusory, since it is easily shown that Kollektivs
with respect to non–trivial distributions do not exist.

For suppose that x ∈ 2ω is a Kollektiv which induces a distribution P with  0 < P({1}) < 1.

Consider the set of strictly increasing sequences of (positive) integers. This set can be formed
independently of x; but among its elements we find the strictly increasing infinite sequence {n
| xn = 1}, and this sequence defines an admissible place selection which selects the

subsequence 11111........ from x. Hence x is not a Kollektiv after all. The above argument,
purporting to show the inconsistency of 2.3.1.1 is translated almost literally from Kamke's
report to the Deutsche Mathematiker Verein [41,23]. (It may not be entirely out of place to
mention that Kamke is the author of a textbook on set theory.) The argument calls for several
remarks.

1. It is obviously very insensitive to von Mises' intentions; in fact, it is almost verbally the
same as the proof of 2.3.2.3, the proposition which states that a Kollektiv cannot be given by a
function! Von Mises had no trouble in dismissing the argument: the set {n | xn = 1} does not

define an admissible place selection since it uses Merkmalunterschiede in a most extreme
way. The real problem is rather, to understand why the argument was considered to be
convincing at all. It seems that this is one of those cases in which there was no common
ground for discussion between von Mises and his adversaries. Kamke speaks as a set theorist:
the set of all infinite binary sequences exists "out there", together with all its elements, some
of which are Kollektivs. Hence the set {n | xn = 1} is available for admissible place selection
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in much the same sense as is the set of primes (our example 2.3.1.2(a)).
Von Mises, on the other hand, considers Kollektivs to be new objects which, like choice
sequences, are not pre–existent; hence {n | xn = 1} is not available. For him, n  → xn is not a

legitimate mathematical function; functions are objects which have been constructed. (For
evidence of von Mises' constructivist tendencies see, e.g., [71].)

2. Kamke's argument is somewhat beside the mark in that it fails to appreciate the purpose of
von Mises' axiomatisation; namely, to provide a mathematical description for certain physical
phenomena. The argument refers to what could happen, whereas von Mises' axioms are rooted
in experience and refer to what does happen.
The empirical roots are twofold: in some cases (e.g. in example 2.3.1.2(c), where we use
random selection) it is an empirical matter to decide whether a proposed place selection is
admissible; and even if we have established to our satisfaction that a place selection is
admissible (e.g. on a priori grounds, as for lawlike selections (examples 2.3.1.2(a,b)), the truth
of the axiom is by no means self–evident, but at most a fact of experience.
An analogy may be helpful here. In various places (see for instance [70,30]) von Mises likens
condition (ii) to the first law of thermodynamics. Both are statements of impossibility:
condition (ii) is the principle of the excluded gambling strategy, while the first law
(conservation of energy) is equivalent to the impossibility of a perpetuum mobile of the first
kind.
It may be even more appropriate to compare condition (ii) to the second law of
thermodynamics, the law of increase of entropy or the impossibility of a perpetuum mobile of
the second kind, especially in view of Kamke's criticism. Indeed, Kamke's objection is
reminiscent of Maxwell's celebrated demon, that "very observant and neat–fingered being",
invented to show that entropy decreasing evolutions may occur. Maxwell's argument of course
in no way detracts from the validity of the second law, but serves to highlight the fact that
statistical mechanics cannot provide an absolute foundation for entropy increase, since it does
not talk about what happens actually.

3.  Another point completely overlooked by Kamke's argument is the intensional character of
admissible selection, where we use "intensional" in Troelstra's sense:

Whenever we are led to consider information on sets or sequences beyond their extensions or
graphs, we shall speak loosely of "intensional aspects" [98,203].

Clearly, admissibility is not a property of the place selection itself; but, as can be seen from
the definition ("Auswahl ohne Benützung der Merkmalunterschiede"), it also involves the
consideration of the Kollektiv from which the choice is to be made, or perhaps the process
generating that Kollektiv.
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Only in the degenerate case where one is tempted to infer the admissibility of a place selection
on a priori grounds (e.g. when the selection is lawlike) admissibility may be predicated of the
place selection itself, but it must be kept in mind that this is an elliptical way of speaking only.
It is not unusual for physical quantities to have an intensional character in the above sense.
The notion of a disturbing measurement in quantum mechanics is intensional and likewise
admits a degenerate case, namely the measurements which are disturbing because they destroy
the system. In this example it is clear that the intensional element, the fact that "disturbing" is
not a property of the observable representing the measurement, can be completely explained,
using only extensional notions, in a more elaborate theory (via non–commuting operators
etc.).

We do not, of course, mean to suggest that these considerations themselves suffice to instill
precision in the phrase "Auswahl ohne Benützung der Merkmalunterschiede". But they do
serve to show that Kamke has not grasped von Mises' point and to direct one's attention to
possible formalisations of the enigmatic phrase.

Concluding this part of the discussion and having cleared the theory of the charge of outright
inconsistency, we now take a closer look at its metamathematical status. Admittedly, the
theory is not formalised, but then, formalisation is not an end in itself. One may expect to
derive two benefits from formalisation: the possibility of mechanical checking of proofs, and a
proof of consistency.
As can be guessed from the presence of two new primitive terms in 2.3.1.1, von Mises' theory
is really two in one: probability theory , in which it is assumed that some Kollektiv is invariant
under certain place selection; and an explanation of invariance via admissibility.
The structure of the first part is crystal clear: all notions can be defined in ordinary
mathematical terms (even Kollektivs, as follows from results of Wald presented in 2.5) and
proofs are just computations (as will be clear from the sample proofs given in 2.4).
Von Mises later came to regard this part as the essential mathematical part of the theory (see,
for instance, [68] and [70]; we return to this point in 2.5); the verification that a certain
Kollektiv is indeed invariant under a given set of place selections then had to proceed
empirically. He considered admissibility to be the intuitive explanation of invariance under
place selections, but admissibility as such dropped out of the theory [70,29].

The second part of the older theory (explanation of invariance via admissibility) is indeed less
clear than the first part; but this does not mean that the notion of admissibility is completely
unclear or even inconsistent. In particular, the notion is clear enough to show the validity of
arguments like the proof of 2.3.2.2, which is of the form:

If Φ is an admissible place selection on x, then Ψ is an admissible selection
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on y.
The same type of argument occurs in 2.4, when it is shown that the Kollektivs are closed
under certain operations (admissible place selections being a special case).
An axiomatisation of admissibility could proceed by postulating the validity of 2.3.2.2 and
related propositions in 2.4, with an additional postulate which says that lawlike place
selections are admissible. This is more or less the approach chosen by Dörge [22] and amounts
to an implicit definition of admissibility.
We believe that the second part of the theory has enough physical plausibility to make further
attempts at formalisation worthwhile. In 5.6 we present two different explicit definitions of
admissibility, involving Kamae entropy and Kolmogorov complexity; we do not claim that
these definitions exhaust the possible meanings of admissibility. Rather, these definitions
should be viewed as different projections of the universe where Kollektivs "live", the
formalisation of which still has to be found.

2.4 The use of Kollektivs  In the previous section we examined the meaning of proposition
2.3.2.3 from the point of view of the foundations of mathematics.We saw that it laid the theory
open to the (albeit unjustified) charge of inconsistency. Now we investigate  its probabilistic
meaning. On the face of it, proposition 2.3.2.3 seems to make von Mises' theory pointless: on
the one hand a Kollektiv is completely determined by its distribution (in the sense that nothing
more can be said about it), on the other hand, Kollektivs are deemed to be necessary for the
interpretation of probability. Then a natural question arises: Why do we need Kollektivs at all?
Why isn't it sufficient to use the distribution (as in effect happens in Kolmogorov's theory)
instead of the unwieldy formalism of Kollektivs?

In what sense, then, do Kollektivs occur in computations, over and above their distribution?
The answer, as we shall see, is that anybody who believes in the frequency interpretation and
in the validity of the usual rules for probability, is bound to believe in Kollektivs. That is, not
necessarily in the idealized, infinite Kollektivs as they occur in von Mises' axioms, but rather
as finite approximations to these. In other words, Kollektivs are a necessary consequence of

the frequency interpretation. This point is made by von Mises, when he states that

Die Autoren, die die allgemeine Regellosigkeit "ablehnen" und durch eine beschränkte
ersetzen, schließen entweder alle Fragen der Beantwortung aus, die nicht der von ihnen
willkürlich gesetzten Beschränkung entsprechen; oder sie nehmen in jedem konkreten Fall
die Regellosigkeit, die gerade gebraucht wird, als ein Datum der betreffenden Aufgabe an,
was nur auf eine Änderung der Darstellungsform hinauslauft [70,128-9].

One of the main goals of this section is to establish the claim that Kollektivs are necessary for
the frequency interpretation of probability (otherwise the reader might think that, von Mises'



32

theory being superseded by Kolmogorov's, there is no use anymore in investigating
Kollektivs). This will be done in 2.4.2. To do so, we need some facts concerning operations on
Kollektivs, which will be presented in 2.4.1. There, we also have the opportunity to stress the
differences in the treatment of independence in the theories of von Mises and Kolmogorov. In
2.4.3, we consider the role of the laws of large numbers in von Mises' theory, a subject already
touched upon in 2.2.3.

2.4.1 The fundamental operations: definition and application.

2.4.1.1 Definition of the operations  We indicate briefly how the usual rules of probability
theory can be derived using 4 operations, which transform Kollektivs into Kollektivs. That is,
we shall prove, using our intuitive understanding of admissibility, that these operations
preserve Kollektivhood. These proofs can be made fully rigorous if we start with a given set of
place selections, in the spirit of von Mises' later ideas; alternatively, we may use the four
operations to axiomatise admissibility.

1. Place selection  This operation transforms a Kollektiv into a Kollektiv with respect to the
same distribution; indeed, this is the content of proposition 2.3.2.2.
2. Mixture  Let x ∈ Μω be a Kollektiv with respect to a distribution P on M. Let N be a
sample space and f: M → N a function (which, of course, must in some sense be constructive).
Consider the sequence y = (f(xn))n in Nω.  Obviously y induces the distribution Pf-1.

Moreover, y is a Kollektiv with respect to this distribution: since f is defined by a
mathematical law, an admissible place selection operating on y can be transformed, using f, to
an admissible place selection on x.
3. Division  Let A be proper subset of M, x ∈ Μω a Kollektiv with respect to P, and suppose

that A occurs infintely often in x. Division allows one to define the conditional probability
P(B|A) for B ⊆ M: we transform x into a sequence x' ∈ Αω by retaining only those terms of x
which belong to A. If we also suppose that P(A) > 0, then we may define  (for Β ⊆ Α)  P(B|A)

:= P(B)/P(A) and x' is a Kollektiv with respect to P(•|A). In fact, the whole point of the
elaborate condition of randomness 2.3.1.1 (ii) is just to ensure that x'  is Kollektiv (a point
missed by Schnorr [88,18]). If A occurs infinitely often in x, but nonetheless P(A) = 0, we
may use non-standard analysis as indicated in 2.3.1. If *P denotes the extension of P to the
non-standard universe and st(•) the standard part map, the distribution in x' is given by P(B|A)
= st(*P(B)/*P(A)). (Related ideas can be found in [104].)
4. Combination  Let M,N be sample spaces, x ∈ Μω a Kollektiv with respect to P, y ∈ Μω a

Kollektiv with respect to Q. Combining Kollektivs is the operation of forming the sequence
(<xn,yn>)n in (M×Ν)ω. We then need to know conditions under which this sequence is again a

Kollektiv and if so, with respect to which distribution. If we analyse the meaning of applying



33

an admissible place selection to a sequence (<xn,yn>)n, we arrive at the following necessary

and sufficient condition for this sequence to be a Kollektiv:

Independence Let x, y be as above. (<xn,yn>)n is a Kollektiv with respect to the distribution
P×Q on M×N if x and y are independent3 Kollektivs, i.e. if  the following operation leads to a

Kollektiv x'' in Mω with distribution P:
Fix arbitrary A ⊆ Ν. Apply an admissible place selection to y, giving a subsequence (nk)k of
natural numbers and a sequence y' such that y'k equals the nk

th term of y. Then select a
subsequence x' from x as follows: the nk

th term of x is retained if y'k ∈ Α; and, lastly, apply an

admissible place selection to x', giving x''. (It is not difficult to check that the relation of
independence is symmetric. The last condition is necessary in order to ensure that x and y are
themselves Kollektivs.)

Similarly, one may define independence of three Kollektivs: we say that x,y and z are
independent Kollektivs if they are pairwise independent (in the above sense) and if each of
them is independent (again in the sense introduced above) of the combination of the other two.
The extension to n independent Kollektivs is routine.
In [70,58], von Mises calls the operation of selecting a subsequence x' from x as follows: the
nk

th term of x is retained if y'k ∈ Α, sampling. We have met sampling already in example
2.3.1.2(c), as a special case of admissible place selection: if x,y ∈ 2ω  are Kollektivs
supposedly generated by independent coins, choose those xn for which yn = 1. But note that in

the above condition, sampling is used to  define what it means for two Kollektivs to be
independent.
The particular type of sampling displayed in example 2.3.1.2(c) will occur so often, that is
denoted by a special symbol: for x ∈ 2ω,  y ∈ 2ω, where y contains infinitely many ones, x/y

is defined as:
                           (x/y)m = xn if n is the index of the mth 1 in y.

(This notation is slightly ambiguous; do we keep track of which n were chosen or not? We
shall never need to.)

We now illustrate the condition of independence with two examples, one pertaining to two
tosses with a single coin, the other to two coins, supposed to be physically independent.
Whereas in Kolmogorov's theory these two cases are treated alike by postulating that
probabilities multiply, in von Mises' theory the two cases are distinguishable in that in the first
case independence, hence the product rule, is provable, while in the second case independence
has to be assumed.

2.4.1.2 Examples
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1. We are interested in the probability of obtaining two times heads with two tosses in
succession of a fair coin. Let x be a Kollektiv with respect to distribution ( , ). A new
Kollektiv, representing the situation in which we are interested, is obtained as follows:
choose first those xn for which n is odd, then those xn for which n is even; then combine the
two Kollektivs thus obtained, which gives ξ = (<x2n-1,x2n>)n≥1.
In this case it is provable that ξ is a Kollektiv with respect to the product distribution on
{<0,0>,<0,1>,<1,0>,<1,1>}; in other words, it is provable that (x2n-1), (x2n) are independent
Kollektivs. To calculate the distribution in ξ (e.g. the probability of <1,1>), we may proceed
as follows: single out those odd n for which xn = 1; this operation gives us a sequence f: ω →
ω such that x2f(k)-1 = 1. For this particular f, consider (x2f(k))k. This sequence can be thought of
as being chosen from x by the following admissible place selection: xn is chosen if n is even
and xn-1 = 1. Hence this sequence is a Kollektiv with distribution ( , ). The computation is

now a matter of bookkeeping:

if we put y  = (x2n-1),  z is (x2n),  Y(m) = ∑
n=1

m

yn,  then (x2f(k)) =  z/y  and we may write

m
1 ∑

n=1

m

1<1,1>(<xn,yn>)  =  
m
1

Y(m)·
Y(m)

1 ∑
k=1

Y(m)

(z/y)k; 

and the desired value is obtained by taking limits.
In the same way one proves that ξ is a Kollektiv. Let Φ be an admissible place selection
operating on ξ. Φ determines an admissibly chosen subsequence (x2g(i)-1)i, for some sequence
g: ω → ω; and also an admissibly chosen subsequence of (x2n), the latter determined by the
procedure: choose those n such that n = 2g(i) and x2g(i)-1 = 1. The computation now proceeds
as above, with the sequences just defined replacing (x2n-1) and (x2f(k)).

We thus see that in von Mises' theory the product rule is part of the meaning of probability; it
is provable from the properties of Kollektivs that the probability of the outcome of two tosses
in succession is obtained by multiplying the probabilities of the single outcomes. The same
holds for the probabilities for the outcomes of n tosses in succession.
A single Kollektiv x in 2ω thus induces a product probability distribution on the binary words
of length n, for each n. This example therefore illustrates the claim made earlier, that place
selections are intended to capture the independence of successive tosses.

2. Now consider two tosses with two fair coins, supposed to be independent (in some physical
sense). In this case we also expect the product rule to hold. But now its validity must be
assumed; there is no way to deduce it from the theory. To be specific, if x and y are Kollektivs
representing the two coins, we must assume that x and y are independent in the sense of the
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condition given in 2.4.1.1.4. Once this assumption is made, a simple computation, exactly as
in the previous example, shows that the probabilities of the outcomes <0,0>, <0,1>, <1,0> and
<1,1> are given by the productrule:

if we put Y(m) = ∑
n=1

m

yn,  then 
m
1 ∑

n=1

m

1<1,1>(<xn,yn>) = 
m
1

Y(m)·
Y(m)

1 ∑
k=1

Y(m)

(x/y)k;

since y is a Kollektiv with respect to ( , ),  lim
n→∞ m

1
Y(m) = ,  so after taking limits

the left hand side equals .

The case of n independent coins (possibly with different distributions) is treated similarly; but
note that we now need n independent Kollektivs to induce a product probability distribution
on the binary words of length n, whereas in the previous example one Kollektiv sufficed for
all binary words.

2.4.1.3 Comparison  At this point, having seen some of the differences between von Mises'
theory and that of Kolmogorov, the reader may well wonder how the results of the two
theories are related. The answer is somewhat intricate. Recall the different definitions of
probability in the two theories: Kolmogorov provides an implicit definition of probability as a
positive measure with norm one, while in von Mises' theory, probability is basically a measure
together with a Kollektiv which induces that measure.

It is clear from this description that not necessarily every theorem of the form "the probability
of such-and-such is so-and-so" derived from the Kolmogorov axioms is derivable in von
Mises' theory, for the latter's interpretation of probability.
In fact, we shall see in 2.6 that the law of the iterated logarithm, when stated in this form, is a
counterexample. Roughly speaking, we may say that von Mises' theory can reproduce that part
of Kolmogorov's theory (with the probability distribution interpreted in a Kollektiv), which
makes no essential use of the σ-additivity of the measure. The first volume of Feller' treatise

[25] gives a fair sample of problems which fall in this category, as do, of course, von Mises'
own technical works on probability theory, Wahrscheinlichkeitsrechnung [68] and
Mathematical theory of probability and statistics [74] (this is not to say that the books
mentioned contain all that can be derived in von Mises' theory).
That part of Kolmogorov's theory which does use σ-additivity essentially, can be derived in

von Mises' theory purely conventionally, as a statement concerning measure, which in some
cases, but not in all, can also be interpreted as a statement concerning probability. The strong
limit laws belong to this category, when stated in their usual form:
     "The measure of the following set of infinite sequences {..|.....} is 1".
Nevertheless, as readers of Feller's [25] well know, the strong limit laws can also be stated in
terms of finite sequences and in that form they are derivable in von Mises' theory. This holds
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for the finite version of the strong law of large numbers, briefly considered in 2.4.3, as well as
for the finite version of law of the iterated logarithm (for which see Kolmogorov [45] and
2.4.3).

2.4.2 Necessity of Kollektivs  A natural question suggested by the existence of these two
different formalisms for probability theory is: Which formalism is to be preferred? The course
of history has already provided some sort of an answer: no one uses von Mises' formalism
anymore. Apparently, we must conclude from this fact that Kollektivs have no relevance for
probability theory as such. They may perhaps be studied for their own sake, in some far-out
corner of mathematics; but, to use Poincaré's famous distinction, as a problem that one poses,
not as a problem that poses itself. This conclusion, however, is mistaken.
Indeed, it is quite trivial to show that anyone who interprets probability as relative frequency
and accepts the Kolmogorov axioms plus the product rule for (physically) independent events,
also has to believe in Kollektivs. (If the sample space has cardinality greater than 2, the rule
for conditional probabilities must be added to this list.)
In practice, we have to operate with relative frequencies in finite sequences, so strictly
speaking one can't deduce the existence of infinite Kollektivs. However, for simplicity we
shall assume that probability is interpreted as limiting relative frequency, in which case the
existence of infinite Kollektivs can be deduced. With suitable approximations the argument
works as well for finite sequences. (In fact, Kolmogorov's later conviction that his axioms
needed to be supplemented by a precise form of the frequency interpretation, led him to the
first satisfactory definition of randomness for finite sequences; see 5.2)

We shall now give the argument, which consists essentially only in inverting the examples in
2.4.1.2.
Referring to the first example, we claim the following. Consider an infinite sequence of tosses
with a fair coin; if the probability of heads is identified with its limiting relative frequency in
the sequence (in this case ), and if this probability satisfies the usual rules plus the product
rule for two consecutive tosses, then the sequence must be invariant under the place selections
which occur in the proof of the product rule.

To prove the claim, recall that three place selections occuured in example 1: if x denotes a
sequences of tosses with a fair coin, we select from x
(i)    xm with m odd
(ii)   xm with m even
(iii)  xm with m even and xm-1 = 1.

We show that in each of the selected subsequences, the limiting relative frequency of 1 is .
We assume the frequency interpretation and the product rule: the probability of each of the
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outcomes <0,0>, <0,1>, <1,0>, <1,1> in (<xn,yn>)n is .  The computation goes as follows.

(i) lim
m→∞ m

1 ∑
n=1

m

x2n-1 = lim
m→∞ m

1 ∑
n=1

m

1<1,0>( x2n-1,x2n>) + lim
m→∞ m

1 ∑
n=1

m

1<1,1>(<x2n-1,x2n>)

=  +    =  .

(ii) is treated analogously.

<

(iii) If we put y = (x2n-1), z = (x2n), Y(m) = ∑
n=1

m

yn,  then the selected subsequence can be written

 z/y and we have

lim
n→∞ Y(m)

1
 ∑

k=1

m

(z/y)k  =  
lim
m→∞ m

1
Y(m)

lim
m→∞ m

1 ∑
n=1

m

1<1,1>(<zn,yn>)

 ;

by (i),  lim
n→∞ m

1
Y(m)  =  ,  so the right hand side equals   =  .

The same trivial argument can be applied to the second example, to show that the sequence x
of outcomes of the tosses with the first coin must be invariant under a place selection defined
by the second coin: choose those xn for which yn = 1 (for example).

Summarizing: interpreting probability as limiting relative frequency and applying the
deductions of probability theory to a sequence x entails assuming that x is a Kollektiv, or at
least that it has the Kollektiv-properties required for the particular deduction at hand (and one
is tempted to argue: since we could have chosen to perform a different calculation, e.g. that of
the probability of n times heads on n consecutive tosses, x must in fact be a Kollektiv,
invariant under all admissible place selections).
Part of probability theory is adequately represented by Kolmogorov's axioms, but as soon as it
comes to interpreting the results (as results on relative frequency), one necessarily has to
consider Kollektivs. And to say precsiely what the frequency interpretation is, one has to give
a precise definition of Kollektivs.

2.4.3 Strong limit laws  Twice already, strong limit laws were mentioned in connection with
von Mises' theory and both times we stressed a negative aspect. In 2.2.3 it was said that the
existence of limiting relative frequencies in a Kollektiv cannot be inferred from the strong law
of large numbers (which states that these limiting relative frequencies exist in "almost all"
sequences). Rather, they were assumed to exist because that is a reasonable idealisation of
experience. In 2.4.1.3 we remarked that the law of the iterated logarithm, when stated in its
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usual form (that is, for infinite sequences), is not derivable in von Mises' system. Given the
central role of the strong limit laws in probability theory, it is natural to inquire into their
status in von Mises' theory.
Von Mises devoted a chapter of Wahrscheinlichkeit, Statistik und Wahrheit [70,129-163] to
this problem; and elsewhere in this book, in a description of the contents of "das schöne und
sehr lesenswehrte Büchlein von A. Kolmogoroff" [70,124], the Grundbegriffe, he indicated in
what sense the law of the iterated logarithm is derivable in his system ([70,125]; a passage
which has apparently gone unnoticed).
We shall follow von Mises' description of the strong law of large numbers; after that, little
need be added to clarify the status of the law of the iterated logarithm.

Let x be a Kollektiv in 2ω with respect to distribution (1–p,p). Fix n,m ∈ ω with m < n and let
ε ∈ (0,1). From x a Kollektiv y in (2n)ω  is derived as in example 1 of 2.4.1.2: y is a

combination  (in the sense of the fourth operation discussed in 2.4.1.1) of the n Kollektivs
(xkn+i)k for 1 ≤ i ≤ n. As in the example, one shows that y is a Kollektiv with respect to the

product  distribution on the binary words of length n. From y we derive by mixing a Kollektiv
z in 2ω as follows (recall that each yj is an n–tuple):

zj = { 
0   otherwise

1   if for some k, m ≤ k ≤ n,  |
k
1∑

i=1

k

(yj)i – p| > ε

As von Mises presents it, the strong law of large numbers then says that the limiting frequency
of 1 in z, i.e. of the event:

∃k(m ≤ k ≤ n & | 
k
1∑

i=1

k

(yj)i – p| > ε) in y,

is less than ε−2⋅m-1, independent of the values of n and p. What is the relation of this form of

the strong law of large numbers to the form stated as Theorem 2.3.3?
Put

Amn(ε) := {w ∈ 2n | ∀k (m ≤ k ≤ n  → |
k
1∑

i=1

k

wi – p| ≤ ε)}.

Let Pn be the probability distribution on 2n induced by x (via y). Von Mises' version of the

strong law then implies:

∀ε > 0 ∀δ > 0 ∃m ∀n ≥ m Pn(Amn(ε)) > 1–δ.

Now Pn may formally be regarded as the restriction of the measure µp = (1–p,p)ω on 2ω to 2n.

We may then write equivalently (we just use a different notation):
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∀ε > 0∀δ > 0∃m∀n ≥ m µp{x ∈ 2ω|∀k (m ≤ k ≤ n → |
k
1∑

i=1

k

xi – p|  ≤ ε)} > 1−δ.

This statement is, using the σ-additivity of µp, equivalent to

µp{x ∈ 2ω| lim
n→∞ n

1∑
k=1

n

xk = p} = 1.

In other words, the usual version of the strong law can be derived from the version acceptable
to von Mises if we take the collection of probability distributions (Pn), induced by the
Kollektiv x ∈ 2ω, to define a single σ-additive measure µp on 2ω. From the standpoint of von
Mises, however, the extension of the collection (Pn) to µp is a purely conventional matter,

bereft of probabilistic significance.

It is perhaps not superfluous to recall that Kolmogorov was of the same opinion; in fact, von
Mises credits his presentation of the strong law  to Kolmogorov [45], the paper which contains
the general form of the law of the iterated logarithm for independent random variables. In this
article, Kolmogorov emphatically states that the only meaningful form of the law pertains to
finite sequences. Since we do not at present need the result in full generality, we state it for
i.i.d. two-valued random variables. Modulo this simplification, Kolmogorov's version reads as
follows:

(a) ∀ε > 0∀δ > 0∃m∀n ≥  m µp{x ∈ 2ω|∃k m ≤ k ≤ n & ∑
j=1

k

xj  > (1+δ) 2k ·p(1–p)loglogn }<: ε

(b) ∀ε > 0∀δ > 0∃m∀n ≥ m µp {x ∈ 2ω|∀k: m ≤ k ≤  n & ∑
j=1

k

xj  <(1–δ) 2k· p(1–p)loglogn }<ε;

with analogous conditions for the lower bound on the relative frequency. (For notational
convenience we have used µp instead of the Pn; but it will be clear that we refer in fact to finite

sequences only.)

As with the strong law of large numbers, this form is derivable from von Mises' axioms, the
extension to the version for infinite sequences then being purely conventional. Ville's theorem,
discussed in 2.6 and improved upon in 4.6, will in fact show that there is no straightforward
frequency interpretation for the infinite version.

In conclusion we emphasize again that, for von Mises, the limiting relative frequencies in a
Kollektiv do not owe their existence to the strong law of large numbers. Rather, it is the other
way around, as the above derivation should have made clear: only because our x satisfies the
two conditions on Kollektivs, it allows us to deduce the strong law, as a statement on the



40

relative frequency of a particular event.

2.5 Making Kollektivs respectable: 1919 – 1940  For a while, from 1919 to 1933, the only
explicit, more or less rigorous, axiomatisation of probability theory (von Mises') made use of
Kollektivs, hence the imperative need to make this objects mathematically acceptable. Two
principal lines of attack can be distinguished.

1. Restricting a priori the class of admissible place selections and trying to construct explicitly
a Kollektiv with respect to the class so obtained (Reichenbach, Popper, Copeland; 2.5.1);
2. Showing that von Mises' theory is consistent in context, that is, showing that in each
specific application we may assume the existence of a Kollektiv with respect to the place
selections required for the application (von Mises, Wald; 2.5.2).

After the appearance of Kolmogorov's Grundbegriffe in 1933, and especially after the Geneva
conference in 1937, at which strict frequentists and the proponents of an implicit definition of
probability came into head-on collision (see 2.6), attempts to define Kollektivs petered out,
with Church's [16] (1940) as a notable exception. Only in 1963, with the publication of
Kolmogorov's [47], hostilities were resumed. We now discuss attempts 1. and 2.; for
simplicity, we consider Kollektivs in 2ω only.

2.5.1 Lawlike selections  Common to all attempts which fall under the heading 1. above, is
the conviction that "admissible place selection" should mean "place selection given by a
mathematical law", as in the first two examples illustrating the definition of admissible place
selection (choose the nth term if n is prime; choose the nth term if it is preceded by 10 1's). We
comment on this interpretation later, but let us first consider some representative examples of
this approach.
Various authors (e.g. Popper [83], Reichenbach [85], Copeland [17]) independently arrived at
a class of place selections which is a generalisation of the second example (2.3.1.2(b)): the so-
called Bernoulli selections. They can be described as follows: let x be a Kollektiv; fix a binary
word w  and choose all xn such that w is a final segment (or suffix) of x(n–1).

Note that this selection chooses an infinite subsequence of x if x contains infinitely many
occurrences of w (which is for instance the case if x is a Kollektiv with respect to (1–p,p), for
0 < p < 1).
We henceforth treat place selections as partial functions Φ: 2ω → 2ω, where Φx is the infinite
subsequence selected from x by Φ . This identification is not unproblematic. It has the

technical disadvantage that it does not keep track of where the nth selected term occurred in
the original sequence. Its main philosophical disadvantage is, that it is most appropriate for
place selections which are judged admissible on a priori grounds. It is considerably less so for
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place selections which are admissible for a given Kollektiv, the general case of admissibility
(cf. the discussion in  2.3.3). Since we are concerned in this section with place selections
which are, for various reasons, judged admissible on a priori grounds, the identification is
harmless here.

The domain  of a place selection Φ will be the set of those x such that Φ operating on x
produces an infinite subsequence of x. Intuitively, a place selection Φ  is completely
determined by a function φ: 2<ω → {0,1}, when we interpret the statement "φ(w) = 1" as:
choose the |w|+1th term, and "φ(w) = 0" as: skip the |w|+1th term. To bridge the gap between φ
and Φ it is convenient to use a place selection Φ' which operates on finite sequences. We

formalize these remarks in the following definition; we first introduce a general definition of
place selection, and then specialize to Bernoulli selections, as introduced informally above.

2.5.1.1 Definition  Let φ: 2<ω → {0,1} be any function. φ determines a place selection Φ in

two steps:

(i)  Φ' : 2 ω → 2 ω is given by  Φ' (uj)  =  {
     Φ' (u)j         if φ(u)  =  1

Φ' (u)           if φ(u)  =  0       
where  j ∈  {0,1}<<

(ii) a partial function Φ: 2ω → 2ω is defined by

(a)  dom Φ  =  {x ∈ 2ω| ∀n∃k ≥ n φ(x(k))  =  1}

(b)  x ∈ dom Φ   implies Φ(x)  =  ∩n [Φ' (x(n))]

2.5.1.2 Definition  Let w ∈ 2<ω and φw: 2<ω → {0,1}  defined by

φw(u)  =  {
 1         if w is a final seg  

0          otherwise

ment of u

Φw: 2ω → 2ω is a Bernoulli selection if it results from φw by application of (i) and (ii) of

2.5.1.1.

Recall that for p ∈ [0,1], the set LLN(p) was defined as (2.2.3.2):

LLN(p)  =  {x ∈ 2ω| lim
n→∞ n

1∑
k=1

n

xk = p}.

2.5.1.3 Definition  Let  p ∈ [0,1]. x ∈ 2ω  is called a Bernoulli sequence with parameter p
(notation: x ∈ Β(p)) if for all w: x ∈ dom Φw implies Φw(x) ∈ LLN(p).
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It is not difficult to show that, if x is a Bernoulli sequence with parameter p, for each word w
the limiting relative frequency of w in x equals µp[w].

2.5.1.4 Lemma  Let p ∈ [0,1]. Then

x  ∈ B(p)  iff ∀w ∈ 2<ω: lim
n→∞ n

1∑
k=1

n

1[w](T
kx)  =  µp[w],

where T: 2ω → 2ω is the left shift and µp = (1–p,p)ω.

Proof  See, e.g., Schnorr [88,22].                                                                                       

Remark  The preceding lemma has as a consequence that, at least for 1 > p > 0, x ∈ B(p)
implies for all words w: x ∈ dom Φw.  The "implies" in definition 2.5.1.3 might therefore have

been replaced by "and".

In the special case p = , Bernoulli sequences are commonly called, normal numbers. Now,
although Kollektivs were not supposed to be constructible (cf. proposition 2.3.2.3), Bernoulli
sequences can be constructed explicitly. E.g.

2.5.1.5 Lemma  There exists a recursive normal number.

Proof (Champernowne [15]) Let x = 0100011011000........, i.e. the set of all finite binary
words written in lexicographic order. For the construction of Bernoulli sequences for arbitrary
p, see von Mises [69].

In one sense, normal numbers and, more generally, Bernoulli sequences, are clearly not
satisfactory models of Kollektivs, if only because problems involving two coins (say), cannot
be treated in the way von Mises intended4. On the other hand, the beautiful work of Kamae
[40], which is described in 5.6, shows that there are really many more place selections Φ such
that x ∈ B(p) implies Φx ∈ B(p); in fact an uncountable set and what's more, with an

appealing physical description.

Bernoulli selections are examples of lawlike selections, but by no means the only ones; e.g.
our second example: choose xn if n is prime, is not of this form. The apparently most general

characterisation of lawlike place selections is due to Church [16] (the article is from 1940, a
time when von Mises' theory was no longer a hot issue).
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2.5.1.6 Definition  A function Φ: 2ω → 2ω is called a recursive place selection if it is
generated by a total recursive φ: 2<ω → {0,1} according to (i) and (ii) of 2.5.1.1.

2.5.1.7 Definition  Let p ∈ [0,1]. x is Church random with parameter p (notation: x ∈ C(p)) if
for all recursive place selections Φ: x ∈ dom Φ  implies Φx ∈ LLN(p).

Remark  Unlike the situation for Bernoulli sequences, in this case the "implies" cannot be
replaced by "and". In other words, while

B(p)  ⊆  ∩w dom Φw

we do not have

C(p)  ⊆  ∩ {dom Φ|  Φ recursive}.

In 2.6.2 we shall meet an example of a place selection Φ such that C(p) ⊄ dom Φ. This

observation implies that, with the above definition of Church randomness, some Bernoulli
sequences are Church random for fairly trivial reasons. Note that, from the point of view of
von Mises' theory, it would be natural to require that a Kollektiv belongs to the domain of the
place selections needed to solve a particular problem, since the theory consists essentially of
transformations of (infinite) Kollektivs into (infinite) Kollektivs. Also, the wording of the
definition of Kollektivs (2.3.1.1; originally [67,57]) suggests that it is assumed that admissible
place selections select infinite subsequences. However, it is customary in the literature to use
the implication in 2.5.1.7 (see e.g. Schnorr [88,22]) and for good reason, since there exist
(recursive!) place selections with disjoint domains.

We now discuss the merits of the identification of "admissible place selection" with "lawlike
place selection".
1. It is an illusion to suppose that one can restrict oneself to the existence of lawlike place
selections only. As the paragraph on combination in 2.4.1.1 shows, a lawlike selection on
(<xn,yn>) factors as a lawlike selection on y and a random selection on x. Hence, by the

argument given in 2.4.2, it follows that an application of the theory, even to such a simple
problem as that of the probability of two coins coming up heads, assumes that x and y satisfy
stronger properties of randomness than just being Church random. And if it is maintained that
the admissibility of lawlike place selections can be recognized a priori, this has a consequence
that the admissibility of the above random selection on y is also an priori;  a consequence
which should perhaps instill some caution in the use of the a priori in this context.
2. The recursive analogue of proposition 2.3.2.2:
     An admissibly chosen subsequence of a Kollektiv is again a Kollektiv, with the same

     distribution,
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is
     If x ∈ C(p), then for every recursive place selection Φ, x ∈ dom Φ implies Φx ∈ C(p).

If the admissible place selections were identified with the recursive place selections, C(p)
would be the set of Kollektivs with distribution C(p); so if x ∈ C(p), we have by the above

analogue of 2.3.2.2 at least countably many subsequences of x which are also Kollektivs with
respect to (1–p,p). Now it seems very implausible that, for a satisfactory definition of
Kollektivs, only countably many subsequences of a Kollektiv are themselves a Kollektiv (with
the same distribution).
On the contrary, we shall prove the following principle of homogeneity, which can be read as
a quantitative version of proposition 2.3.2.2:
     If x is a Kollektiv with respect to (1–p,p), so is almost every subsequence of x.
To turn this rather vague principle into a precise mathematical statement requires some effort;
this will be done in Chapters 3 and 4 and involves, perhaps somewhat surprisingly, a study of
modern definitions of randomness. But to give the reader already at this stage an impression of
the formal version of the principle, we state it in semi-formal terms (where / denotes the
operation of sampling intoduced in 2.4.1.1):
     If x is a Kollektiv with respect to distribution (1–p,p), then µp{y|  x/y Kollektiv with 

respect to (1–p.p)} = 1.
Already from this form of the principle, which is considerably weaker that the version that
will be proved in 4.5, it is clear that the content of proposition 2.3.2.2 is not likely to be
exhausted by its recursive analogue stated above. In other words, the principle of
homogeneity, which is in itself a purely quantitative statement not mentioning admissibility,
suggests that there are many more admissible place selections than just those which are
recursive.
3. The recursive place selections owe their appeal to the circumstance that they are a priori
admissible. But there might be many more such selections, even disregarding possible wider
interpretations of the term "lawlike". We shall not consider these wider interpretations (such
as hyperarithmetical, constructible), since, although the admissibility of selections thus
defined is a priori, the truth of the axiom that Kollektivs are invariant under these admissible
place selections is by no means a priori; and our experience with constructible, non-recursive,
place selections is restricted, to say the least. In fact, one might also argue that the class of
recursive place selections is already much too large.
Physical processes are a possible source of a priori  selections, that is to say, if these processes
are in some sense physically independent of the process which generates the Kollektiv from
which is to be selected. Another source is the human mind (but perhaps this example can be
subsumed under the previous one): a choice sequence seems no less an admissible place
selection than e.g., the sequence of primes (at least if the mind generating the sequence has no
prognostic or telepathic abilities). The trouble with these examples is, that they do not lead to
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a well defined class of admissible place selections, considered as functions on the infinite
binary sequences. If we select from the Kollektiv produced by a coin using the outcomes of
the tosses of a second coin, all we can say a priori is that the second coin will produce a
sequence in 2ω.
Of course we trust that it will produce a sequence which is independent of the first sequence
and hence an admissible selection for that sequence. But to describe this situation, we must
widen our framework and consider, not only a priori admissibility, but also admissibility with
respect to a given Kollektiv, in conformity with the intensional character of admissibility
mentioned in 2.3.3.
However, there exist situations in which the old framework (i.e. admissibility as a priori
property) suffices and which nevertheless give rise to continuously many admissible place
selections: the special case of independence discussed under the name disjointness by
Furstenberg [30], is a case in point. The place selections obtained in this way are defined in
5.6.
4. The remarks in 3. point toward a general conclusion: lawlikeness is not as fundamental as
may seem at first sight. What is fundamental is a relation of physical independence between
the process generating the Kollektiv and the process determining the selection. A lawlike
selection rule is (as far as we know!) indeed independent of coin tossing in this sense; but
there are many other such selection procedures. The physical roots of probability theory,
emphasized by von Mises, are obscured rather than illuminated by Church' definition.

2.5.2 The contextual solution  We have noted already that von Mises' later presentations of
the theory differs slightly from the version given in 2.3 (which dates from 1919). The new
version is best described as being contextual: in each specific application of the theory it is
assumed that the Kollektiv under consideration is invariant under the place selections needed
for that application. This assumption of course has to be justified, and in the process of
justification notions such as admissibility or independence may come into play; but they do
not form part of the theory.

Die Festsetzung daß in einem Kollektiv jede Stellenauswahl die Grenzhäufigkeit unverändert
läßt, besagt nichts anderes als dieses: Wir verabreden daß, wenn in einer konkreten Aufgabe
ein Kollektiv einer bestimmten Stellenauswahl unterworfen wird, wir annehmen wollen,
diese Stellenauswahl ändere nichts an den Grenzwerten der relativen Häufigkeiten. Nichts
darüber hinaus enthält mein Regellosigkeitsaxiom [i.e. 2.3.1.1(ii)].
Da nun in einer bestimmten Aufgabe niemals "alle" Auswahlen in Frage kommen, sondern
deren nur wenige, so das man jedesmal mit einer eingeschränkten, ad hoc zugeschnittenen
Regellosigkeit das Auslangen finden könnte, so kann tatsächlich nichts von dem eintreten,
was ängstliche Gemüter befürchten [namely, inconsistency] [70,119].

As an instrumentalist position, von Mises' position is no more absurd than, say, the
complementarity interpretation  of quantum mechanics. But, if taken to be the whole truth, it
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leads to the same type of objection, known as "counterfactual definiteness": the real, physical
Kollektiv does not know which computation we are going to perform; we could have chosen
to perform a computation different from the one we in fact performed; hence the real Kollektiv
must be invariant under "all" place selections. In other words, although for computational
purposes an instrumentalist reading of the randomness axiom, with its abandonment of a

definition of Kollektivs, suffices, explaining the applicability of probability seems to require
more (recall that the older theory had both these aims).

The consistency of the contextual version of the theory was settled by Wald [100]. (Note that
von Mises wrote the passage quoted just now before Wald's results became known.)

2.5.2.1 Theorem  Let p ∈ [0,1] and let  be a countable set of place selections. Put C( ,p) :=
{x | ∀Φ ∈ (x ∈ dom Φ → x ∈ LLN(p))}. Then C( ,p) has the cardinality of the

continuum.

This theorem provides for the existence of many Bernoulli sequences or Church random
sequences; but its applicability is of course not so restricted. Von Mises was perfectly satisfied
with this result [75,92], since any specific application of the theory never involves more than
countably many place selections.

We now give a proofsketch of a measure theoretic version of the above theorem, a proofsketch
which will at the same time illustrate von Mises' stand on the laws of large numbers.

2.5.2.2 Lemma  (Doob [20], Feller [24]) Let p ∈ (0,1) and let Φ: 2ω → 2ω be a place
selection. Then for all Borel sets A ⊆ 2ω: µpΦ−1Α ≤ µpA. If µpdom Φ = 1, we have equality

for all A.

Proof  See Schnorr [88,23].                                                                                                 

As a consequence, we have

2.5.2.3 Theorem  Let p ∈ (0,1) and let  be a countable set of place selections. Then
µpC( ,p) = 1.

Proof  Let Φ ∈ . Since µpLLN(p)c = 0 (theorem 2.2.3.3) we get µpΦ−1LLN(p)c = 0, by the

preceding lemma.                                                                                                              

The theorem is of course most interesting for those  which contain only place selections
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whose domain has full measure (an assumption which is usually made). Note that we have
surreptitiously changed the condition "p ∈ [0,1]" in theorem 2.5.2.1 to "p ∈ (0,1)" in 2.5.2.3,
for the simple reason that for p = 0,1, the measure µp is concentrated at one point. It is possible

to give a measure theoretic proof of theorem 2.5.2.1 for the extremal values of p, but in that
case one has to use the techniques of 4.6.

The correct interpretation of theorem 2.5.2.3 (from von Mises' point of view) is not given by
the following quotation from Feller [25,204]:

Taken in conjunction with our theorem on the impossibility of gambling systems, the law of
large numbers implies the existence of the limit [relative frequency] not only for the original
sequence of trials but also for all subsequences obtained in accordance with the rules of
selection [i.e. admissible place selections]. Thus the two theorems together describe the
fundamental properties of randomness which are inherent in the intuitive notion of
probability and whose importance was stressed with special emphasis by von Mises.

Feller's remark fits in with the propensity interpretation, which allows one to say that theorem
2.5.2.3 explains the impossibility of gambling strategies; but, as we know by now, this is not
von Mises' interpretation of probability.
For him, theorem 2.5.2.3 has significance as an existence result only, since µp is a measure,

not a probability distribution (cf. the careful discussion in [74,41-2]). The theorem shows that
the concept of Kollektiv is free of contradiction (in context), but does not thereby render
superfluous the empirically motivated axioms for Kollektivs.

2.6. The Geneva conference: Fréchet's objections  In 1937, the Université de Genève
organized a conference on the theory of probability theory, part of which was devoted to
foundational problems (the proceedings of this part have been published as [35]). The focal
point of the discussion was von Mises' theory, and especially its relation to the newly
published axiomatisation of probability theory by Kolmogorov. The prevailing attitude
towards von Mises' ideas was critical. A fairly complete list of objections was drawn up in
Fréchet's survey lecture on the foundations of probability [35,23-55].  Von Mises himself was
absent, but his rebuttals of the objections were published in the proceedings [35,57-66]. To no
avail: the same objections were reiterated in Fréchet's [103]; and, for that matter, ever since.
Fréchet's criticism has more or less become the standard wisdom on the subject and for this
reason we shall present it in some detail. Our conclusion will be that most of the objections,
those based on Ville's famous construction included, are unfounded.

2.6.1 Fréchet's philosophical position  In view of the persistent controversy between von
Mises and his critics, with arguments seemingly having little or no effect, it seems worthwhile
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to investigate why the participants in the debate had so little common ground for discussion.
As stated in 2.1, we shall adopt as working hypothesis that the lack of mutual comprehension
is due to widely differing views on the foundations of mathematics as well as on the
foundations of probability.
The first difference comes out clearly when Fréchet advances the usual "proof of
inconsistency" against von Mises. Although the argument itself is identical to that of Kamke
reported in 2.3.3, it is worth quoting since it shows the extent of the mutual incomprehension.

Or la deuxième condition [i.e. 2.3.1.1(ii)] n'imposait aucune limitation au choix de la
selection des épreuves après laquelle la fréquence totale devait garder la même valeur. On
pouvait donc conclure: ou bien qu'en faisant intervenir la totalité des selections imaginables,
elle faisait intervenir un ensemble sans signification concrète precise, ou bien que si l'on
considère cet ensemble de selections comme bien défini, il contient la selection S1 qui retient
seulement la suite des épreuves ou l'évenement considéré E s'est produit – ou aura lieu – et la
selection S2 qui ne retient que les autres. L'une au moins de ces suites partielles est infini; si
c'est S1, la fréquence totale de E y est égale à 1; si c'est S2, elle est égale à zéro. Il n'existe
donc pas de collectif où la probabilité d'un évenement soit supérieure à zéro et inférieur à
l'unité. Cette observation évidente ayant été faite depuis longtemps de diverses côtés, il nous
est difficile de comprendre ce qu'entend  M. de Misès, en écrivant que jamais on n'a pu
signaler un cas concret de contradictions qui pourraient se produire dans l'application de la
notion de collectif [28,29-30].

Cette observation évidente...... it is astonishing to see that Fréchet has not grasped any of the
subtle properties of Kollektivs: the intensional character of admissible place selections and the
fact that Kollektivs have to be considered as new mathematical objects, so that the above
selections S1 and S2 cannot be elements of a collection of place selections "bien défini".

Like Kamke, Fréchet reveals himself in this passage as one who believes that all mathematical
objects are equally accessible; a view clearly not shared by von Mises (cf. his comparison of
Kollektivs with choice sequences)5.

So far, we have been concerned with different viewpoints on the foundations of mathematics.
We now turn to the foundations of probability. We shall assume as working hypothesis that
Fréchet is an adherent of the propensity interpretation. This hypothesis will explain at least in
part why Fréchet thought that Ville' theorem dealt such a devastating blow to von Mises
program. But part of Fréchet's conviction also results from plain confusion.

We shall now compile some passages from Fréchet [28,45-7] to show that he indeed subscribes
to the propensity interpretation.

[...] "la probabilité d'un phénomène est une propriété de ce phénomène qui se manifeste à
travers sa fréquence et que nous mésurons au moyen de cette fréquence".
  Voici donc comment nous voyons répartis les différents rôles dans la théorie des probabilités.
Après avoir constaté comme un fait pratique, que la fréquence d'un évenement fortuit dans un
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grand nombre d'épreuves se comporte comme la mesure d'une constante physique attachée à
cette évenement dans une certaine catégorie d'épreuves, constante qu'on peut appeler
probabilité, on en deduit, par des raisonnements dont la rigueur n'est pas absolue, les lois des
probabilités totales et composées et on verifie pratiquement ces lois. La possibilité de cette
vérification enlève toute importance au peu de rigueur des raisonnements qui ont permis
d'induire ces lois. Ici s'arrête la synthèse inductive.
  On fait correspondre maintenant à ces réalités (toutes entachées d'erreurs expérimentales), un
modèle abstrait, celui qui est décrit dans l'ensemble des axiomes, lesquelles ne donnent pas –
contrairement à ceux de M. de Misès –, une définition constructive de la probabilité, mais une
définition descriptive. [...]
  Sur l'ensemble d'axiomes est bâtie la théorie déductive ou mathématique des probabilités.
Enfin la valeur du choix de cet ensemble est soumise au contrôle des faits, non par la
vérification directe, mais par celle des conséquences qui en ont été déduites dans la théorie
déductive. La vérification la plus immédiate se présentera en géneral de la façon suivante: on
adopte comme mesures expérimentales de certaines probabilités p, p',.... les fréquences f, f',...,
correspondantes dans les groupes dépreuves nombreuses. Certains théorèmes de la théorie
déductive établissent les expressions de certaines autres probabilités, P,P',..., en fonction de p,
p', ... . Ayant calculé P,P',... au moyen de ces expressions où l'on a remplacé
approximativement p,p',.. par f, f',.., la vérification consistéra à s'assurer que les valeurs
approchées ainsi obtenus pour P, P',... sont aussi approchées des fréquences F, F',... qui sont les
mesures expérimentales directes de P, P',...
  On peut d'ailleurs réduire beaucoup les difficultés pratiques de ces vérifications. Si l'on
appelle Pn la probabilité pour que la fréquence dans n épreuves d'un évenement de probabilité
p, diffère de p de plus de ε, alors d'après le théorème de Bernoulli, Pn converge vers zéro avec
1/n. Si donc on se content de vérifier expérimentalement qu'un évenement de probabilité assez
petite est pratiquement très rare et même qu'une évenement de probabilité extrêmement petite
est pratiquement impossible, le théorème de Bernoulli se traduit pratiquement ainsi: quel que
soit le nombre ε>0, la fréquence dans n épreuves pourra pratiquement être considérée comme
différant de la probabilité correspondante, de moins de ε, si le nombre des expériences est
assez grand. Autrement dit, il est inutile d'opérer, pour toutes les valeurs de la probabilité p, la
vérification qu'on se proposait. On peut se contenter de la faire quand p est petit. Or cela est
beaucoup plus facile; il n'est pas nécessaire de faire de long relevés.

Except for the use of the weak law of large numbers where Popper uses the strong law,
Fréchet's version of the propensity interpretation follows the lines laid out in 2.2.3 (although
Fréchet seems to be much less aware of his assumptions than e.g., Popper!). It is evident from
[28] and [103] that Fréchet considers the propensity interpretation to be much simpler than the
strict frequency interpretation. Superficially, this is indeed so: much of that which von Mises
struggled to formulate precisely is relegated here to the "synthèse inductive", where "c'est
l'intuition qui domine et cherche à dégager, comme elle peut, l'essentiel de la complexité des
choses" [28,45]. In particular, as we have seen, the rules of probability do not have to be
rigorously derived from the interpretation, in contrast with von Mises' approach. Similarly,
Fréchet can do without limiting relative frequencies and Kollektivs.
But, although the outward appearance of the propensity interpretation is indeed simple, it is so
only because it takes so much for granted. The rules of probability theory are valid for certain
phenomena because these phenomena are Kollektivs (2.4.2) and Fréchet's use of the weak law
supposes either a large amount of randomness (2.4.3) or some highly theoretical assumption
2.2.3; but even then...). Pragmatic solutions indeed look simple, but a pragmatic attitude does
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not contribute much toward an understanding of foundations.

2.6.2 Formal objections  Above we considered Fréchet's methodological objections. We now
discuss the objections which concern the formal structure of von Mises' theory.

2.6.2.1  Inconsistency  Since Fréchet, as we have seen, advances the same "proof of
inconsistency" as the one discussed at length in 2.3.3, we need not dwell upon it here. Let us
recall only that this objection eventually led Wald to prove the consistency of von Mises' theory
in context, on the assumption that each specific computation employs at most countably many
place selections.
Fréchet objects that the revision by Wald causes the theory to lose much of its primordial
simplicity and elegance. It is hard to make sense of this objection, since Wald's theorem is
metamathematical  in character and shows only that the ordinary deductions can be performed
without fear of contradiction. The deductions themselves are in no way affected by the
consistency proof.

A really forceful objection, which brings out clearly the underlying difference in the
interpretation of probability, is provided by:

2.6.2.2 Ville's construction  To understand this objection, we have to go back to the law of the
iterated logarithm. In 2.4.3 we stated this law for finite sequences. This time, we state it for
infinite sequences, since this is the form used in Fréchet's objection.

Law of the iterated logarithm  Let p ∈ (0,1).

(a) For α>1, µp x ∈ 2ω| ∃k∀n≥k |∑
j=1

n

xj – np| < α 2p·(1–p)nloglogn  { } = 1

(b) For α<1, µp {x ∈ 2ω| ∀k∃n≥k (∑
j=1

n

xj – np) > α 2p·(1–p)nloglogn } = 1  and

     for α<1, µp
  {x ∈ 2ω| ∀k∃n≥k (np – ∑

j=1

n

xj) > α 2p·(1–p)nloglogn } = 1.

Part (b) in particular shows that the quantities

∑
j=1

n

xj – np ,  np – ∑
j=1

n

xj

exhibit fairly large oscillations. This observation provides the starting point for Ville's
construction [99,55-69], which proceeds in two stages (actually, our presentation is slightly
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anachronistic, since Ville uses Lévy's Law, a precursor of the law of the iterated logarithm,
instead of the latter).

1. Given any countable set  of place selections Φ: 2ω → 2ω, Ville is able to construct a
sequence x ∈ 2ω with the following properties (we assume the identity is in ):

 (i)  x ∈ C( , )   (for C( ,p), see definition 2.5.2.1)

(ii)  ∀n  
n
1∑

k=1

n

xk ≥ .

Part (ii) means that the relative frequency of 1 approaches its limit from above, a property
which is atypical in view of the law of the iterated logarithm. A very much stronger form of (i)
and (ii) will be proven in 4.6.
2. In the second stage of the construction, Ville temporarily adopts von Mises' viewpoint and
interprets probability measures on 2ω as in effect being induced by Kollektivs ξ ∈ (2ω)ω; so
that µ A = 1 must mean:

lim
n→∞ n

1∑
k=1

n

1A(ξ
κ
) = 1

So far we have considered only Kollektivs in 2ω; in particular, we have not defined what place
selections Ψ: (2ω)ω → (2ω)ω are. Fortunately, we need not do so here, since we may, for the

sake of argument, assume that Ville has done so in a satisfactory manner (for those interested in
the details, see [99,63-67]). Now put

A := {x ∈ 2ω| ∀n∃k≥n (np – ∑
j=1

n

xj) > nloglogn }.

Then Ville shows the following, using 1. :
For any countable set of place selections Ψ: (2ω)ω → (2ω)ω,  there exists ξ ∈ (2ω)ω such that

(iii)   ξ  induces µ   and is a Kollektiv with respect to 

(iv)   for A as defined above, lim
n→∞ m

1 ∑
j=1

m

1A(ξ
κ
) = 0.

Remark  The reader may well wonder what "induces" in  (iii) means in view of (iv), since we
defined "ξ induces P" to mean:

for all B ⊆ 2ω,  P(B) := lim
n→∞ n

1∑
k=1

n

1B(ξk);

but since P(A) = 0 (by (iv)), the induced measure P cannot be equal to µ  as claimed by (iii).
Therefore (iii) should be understood as follows. A σ-additive measure on 2ω is determined
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completely by its values on the cylinders [w], for finite binary words w; and we do have for the
ξ constructed by Ville:

for all w,   2-|w| = µ [w] = lim
n→∞ n

1∑
k=1

n

1[w](ξk).

Ville's construction is thus a very interesting case of the phenomenon that relative frequency is
not a σ-additive measure; since if P were σ-additive, it would coincide with µ .

From 1. and 2., Fréchet and Ville derived the following three objections to von Mises' theory.
(a)  (From 2) The theory of von Mises is weaker than that of Kolmogorov, since it does not
allow the derivation of the law of the iterated logarithm.
(b) (From 1) Kollektivs do not necessarily satisfy all asymptotic properties proved by measure
theoretic methods and since the type of behaviour exemplified by (ii) will not occur in practice
(when tossing a fair coin), Kollektivs are not satisfactory models of random phenomena.
(c) (From 1) Von Mises' formalisation of gambling strategies as place selections is defective,
since one may devise a strategy (a so called Martingale) which makes unlimited amounts of
money of a sequence of the type constructed in 1., whereas ipso facto (by (i)), there is no place
selection which does this.
For those who are accustomed to see Ville's construction as the deathblow to the theory of
Kollektivs, its cavalier dismissal by von Mises may come as a surprise: "J'accepte ce théorème,
mais je n'y vois pas une objection" [72,66]. In fact, von Mises to some extent anticipated Ville's
construction in his discussion of the meaning of probability zero [70,38]. As we have seen (in
2.2.3), von Mises thought that an event having zero probability might occur infinitely often in a
Kollektiv. But in this case, the limiting relative frequency is necessarily approached
unilaterally, as for the sequence constructed by Ville.
We must now try to understand why von Mises could remain unmoved, when apparently the
foundations of his work lay shattered. We believe that objections (a) and (b) are either
untenable or based on an interpretation of probability which was not his.  Objection (c) is
justified, but of no consequence. Before we go deeper into the objections, however, we discuss
in more detail the formal structure of Ville's argument.

We simplify a suggestion of Wald6 to show that Ville's theorem is appreciably less general than
may seem at first sight. Consider a countable set of place selections, as in 1. Obviously (i)
would be trivially true if the x constructed did not belong to the domains of the place selections
contained in ; and the construction would seem to be less interesting in that case.
Unfortunately, such cases do occur. For we may define a countable set of recursive place
selections as follows:
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 : = {Φ
α
−  | α ∈ (0,1)∩ } ∪ {Φ

α
+  | α ∈ (0,1)∩ }; Φ

α
−  (Φ

α
+)  is generated by φ

α
−  (φ

α
+)

as in definition 2.5.1.1 ;   φ
α
−   is determined by φ

α
−(x(n)) = 1 iff (

2
n

 – ∑
j=1

n

xj) > α nloglogn

and similarly φ
α
+(x(n)) = 1 iff (∑

j=1

n

xj – 
2
n) > α nloglogn .

Obviously

x ∈ dom Φ
α
−   iff  ∀k∃n≥k (

2
n

 – ∑
j=1

n

xj) > α nloglogn

and similarly for the Φ
α
+ .

Hence, if a sequence x belongs to the domains of the place selections in , it must exhibit the
oscillations prescribed by the law of the iterated logarithm. This means that, when Ville's
construction is applied to the set of recursive place selections (say), the constructed sequence x
is Church–random partly for trivial reasons. An analogous statement holds for the strengthened
form of Ville's theorem proved in Chapter 4. It is then of interest to ask to which countable sets
of place selections Ville's construction can be applied non-trivially. The advantage of the
measure theoretic proof given in Chapter 4 is, that a furnishes a characterisation of sets of place
selections to which the construction is non-trivially applicable:

Ville's theorem applies non-trivially to a collection of place selections if for each Φ in the

collection and for each product measure µ = Πn(1–pn,pn)  such that pn converges to , µ(dom
Φ) = 1.
The Φw satisfy this condition, but the Φα don't. Roughly speaking, the theorem applies to place

selections which do not have too much "memory".
These considerations show that Ville's theorem is somewhat restricted in scope. One might
even go further and argue that sequences such as constructed by Ville are not Kollektivs at all,
even on von Mises' definition; for this it suffices to replace the "implies" in definition 2.5.2.1
by "and". When we discussed this question in 2.5, we remarked that von Mises' use of
Kollektivs seemed to make such a convention natural: Kollektivs are useful in a particular
calculation only if the place selections needed for that application select an infinite
subsequence from the Kollektiv. On the other hand, in a Church–style definition of randomness
it is clearly impossible to demand that a random sequence belong to the domain of all recursive
place selections: just consider place selections based on the law of the iterated logarithm for p ≠
. Fortunately we need not consider the merits of such a modification of the definition of
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randomness in detail, since there are weightier arguments which show that the above objections
are unjustified. So let us state the import of Ville's theorem in the following way: place
selections with "limited memory" do not enforce satisfaction of the law of the iterated
logarithm. We now investigate the consequences of this result upon von Mises' theory.

Objection (a) is easiest to dispose of; in fact we have done so already in 2.4.3, when we
discussed the meaning of the strong limit laws in von Mises' theory. Stage 2 of Ville's
construction shows that, although the version of the law of the iterated logarithm for finite
sequences is derivable in von Mises' theory (which implies that it can be interpreted via relative
frequency), the version for infinite sequences is not so derivable.
But the latter statement does not mean that von Mises is not able to derive the law as stated in
2.6.2.2, only that this theorem does not have a frequency interpretation (in the space of infinite

binary sequences).

Far from being  a drawback of the theory, this seems to be a very interesting subtlety, which
illuminates the status of the law of the iterated logarithm and which nicely illustrates
Kolmogorov's note of caution when introducing σ-additivity:

Wenn man die Mengen (Ereignisse) A aus [which in this case is the algebra generated by
the cylinders [w]] als reelle und (vielleicht nur annäherungsweise) beobachtbare Ereignisse
deuten kann, so folgt daraus natürlich nicht, daß die Mengen des erweiterten Körpers B( ) [
the σ-algebra generated by ] eine solche Deutung als reelle beobachtbare Erscheinungen
vernünftiger Weise gestatten. Es kann also vorkommen, daß das Wahrscheinlichkeitsfeld ( ,P)
als ein (vielleicht idealisiertes) Bild reeller zufälliger Erscheinungen betrachtet werden kann,
während das erweiterte Wahrscheinlichkeitsfeld (B( ),P) eine reine mathematische
Konstruktion ist [44,16].

Objection (b) raises questions which go to the heart of the foundations of probability. It
consists of two parts:
(b1)  Kollektivs are not satisfactory models of random phenomena, since a unilateral approach

of the limit will not occur in practice;
(b2)  Kollektivs apparently do not necessarily satisfy all asymptotic laws derived by measure

theoretic methods; it is an arbitrary decision to demand the satisfaction of one asymptotic law,
viz. the strong law of large numbers at the expense of another, the law of the iterated
logarithm.

Ad (b1). "In practice" we  see only finite sequences. Kollektivs were so designed as to be able

to account for all statistical properties of finite sequences and they do so perfectly. To that
end, a certain amount of idealisation, in particular the consideration of infinite sequences
turned out to be convenient. But the consideration of infinite sequences was not an end in
itself and von Mises certainly had no intention whatsoever to model infinite random
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"phenomena".
The only criterion for accepting or rejecting properties of infinite Kollektivs was their use in
solving the finitary problems of probability theory and for that purpose, assuming invariance
under place selections suffices. Now objection (b2) claims that in fact there does exist another

criterion: satisfaction of asymptotic laws derived by measure theoretic methods. So let us now
consider the second part of objection (b).

Ad (b2). As we have seen in 2.2.3, this objection does not make sense on the strict frequency

interpretation of probability, i.e. von Mises' own interpretation. Limiting relative frequencies
in Kollektivs do not owe their existence to the law of large numbers. Neither are they invariant
under admissible place selections because place selections are measure preserving (lemma
2.5.2.2). Similarly, the fact that the law of the iterated logarithm has been derived (for infinite
sequences) does not in itself entail that Kollektivs should satisfy it.
On the propensity interpretation, objection (b2) makes sense, although in that case it is less

clear at whom the objection is directed, since infinite Kollektivs then have no role to play in
the theory of probability.
An adherent of the propensity interpretation may study Kollektivs for their own sake, as
models for the deductions of probability theory, but to give a "good" definition becomes a
fairly hopeless task: since one can't have satisfaction of all properties of probability one, it is
necessary to choose, but what are the guiding principles for such a choice?
Note that, although von Mises' theory might seem to be plagued by the same problem (which
set of place selections do we choose to define Kollektivs?) it is in reality less vulnerable: you
need assume only that amount of invariance which allows you to perform a (successful)
computation and if the computation fails to produce the right answer, you know the
assumption of invariance was wrong.
No such empirical check exists for definitions of random sequences based on the propensity
interpretation, such as those of Martin-Löf and Schnorr considered in the next chapter.

Another way to state von Mises' viewpoint on the relationship between Kollektivs in 2ω and
strong limit laws (considered as subsets of 2ω) is the following.
If µp is considered as just a measure, there is no relationship at all. If µp is a veritable
probability distribution, then there exists some Kollektiv ξ ∈ (2ω)ω such that Pξ defined by

P
ξ
(A) := lim

n→∞ n
1∑

k=1

n

1A(ξk)

conincides with µp on some reasonably large algebra of events A ⊆ 2ω.(Von Mises briefly

considered this set-up in [75,101]. Interestingly, he attributes it to Doob [20], although it is
doubtful whether Doob would have been happy with this attribution7.) Now even if Pξ(Α) = 1,
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this statement has no immediate bearing on Kollektivs in 2ω; it tells us only that "most" ξk are
in A. For reasonable definitions of Kollektivs in (2ω)ω, the ξk are themselves Kollektivs in
2ω; but we see that there is no reason whatsoever why all Kollektivs in the sequence ξ  = (ξk),
much less all Kollektivs in 2ω, should satisfy A .
If µp is considerd as a probability measure, it describes the situation of picking points from 2ω

at random; a situation which is very different from that of picking zeros and ones at random to
generate  a sequence in 2ω .
The latter procedure is evidently more constructive; and this was clearly one of the reasons
why Borel preferred his own theory of "probabilités dénombrables", based on assumptions 1
and 2 as cited in 2.3.2, to measure theoretic probability [8,195], thus perhaps for the first time
introducing free choice sequences (see Troelstra's survey of the history of choice sequences
[97]).

Digression  Another reason for Borel's preference was his conviction that the practical
continuum (consisting of elements which can really be defined) is countable. So he states in
the introduction to [8] that "dénombrable" refers to the cardinality of the sample space.
Curiously, later authors, including Fréchet [28,53], thought that "dénombrable" refers to σ-

additivity, in spite of Borel's statements to the contrary! Now Borel's conviction necessitated a
new approach to probability theory, not based on measure theory, since an approach based on
the latter seemed to require that the continuum be uncountable. The only measures he could
think of were (what came to be called:) Lebesque-measure and measures defined from
Lebesgue measure via densities; and all of these assign measure zero to countable sets. This
point has been completely overlooked by Novikoff and Barone [79], who keep wondering
about the "curious oversight" of Borel not to notice that probability theory is measure theory.
This is not to say that Borel's reasoning is free of muddles; it is possible to do measure theory
in a countable continuum, as Bishop [5] has shown. (End of digression.)

Lastly, we come to objection (c): von Mises' formalisation of gambling strategies (as place
selections) is not the most general possible, since one can construct a strategy (a so-called
Martingale) which may win unlimited amounts of money on the type of sequence constructed
in 1. For the present discussion, one need not know precisely what a Martingale is; suffice it to
say that it is given by a function V: 2<ω → +, where V(w) denotes the capital  which the

gambler , having played according to the strategy, possesses after w has occurred. The full
definition will be given in Chapter 3. Ville exhibits a Martingale V such
that for the sequence x constructed in 1., limsup V(x(n)) = ∞; but, obviously, since x is

n→∞

a Kollektiv, no gambling strategy in the sense of von Mises can win unlimited amounts of
money on x. This objection is undoubtedly correct, but not very serious.
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The purpose of von Mises' axioms is not to formalise the concept of an infinite sequence for
which no successful gambling strategy exists. Rather, the purpose of the axioms is to lay down
properties which allow the derivation of probabilistic laws. These properties are indeed
justified by an appeal to the (empirical) "principle of the excluded gambling strategy" and
perhaps this principle sanctions stronger axioms. For instance, in Chapter 3 we shall study
definitions of randomness which take this principle as basic. But stronger axioms are
necessary only if the given axioms do not suffice for the derivation of probabilistic laws.
At first sight it might seem that von Mises' theory cannot derive the characteristic properties of
Martingales, e.g. the following:

(*) if V is a Martingale (w.r.t. λ), λ{x ∈ 2ω| limsup V(x(n)) = ∞} = 0.
n→∞

But the situation here is completely analogous to that of the law of the iterated logarithm.
There is no trouble in deriving the properties of Martingales in so far as they pertain to finite
sequences (e.g. the Martingale inequality, from which (*) can be derived). The extension to
infinite sequences is then, again, a matter of convention.
Conversely, we know by now that the derivation of (*) does not justify the requirement that
for each Kollektiv y, limsupV(x(n)) < ∞.

n→∞

But, one might argue, although Kollektivs such as x do not imperil the derivability of
probabilistic laws, they may lead to wrong predictions. The following story illustrates what
may go wrong and is at the same time an informal exposition of the results that will be
obtained in 4.6.

Consider a casino, in which bets are placed on the outcomes of coin tosses. If the outcome is
1, the casino wins, otherwise the gambler wins. Beginning with the foundation of the
establishment, the house issues each day a new coin with which the games have to be played.
The management of the house, however, is thoroughly corrupt and issues coins which are
false: the coin issued on the nth day is such that the probability of heads on this day is pn = (1
+ (n+1)- ) ( so that pn > , but lim pn = ). The reason behind this devious

n→∞

procedure is the following.
A state inspector checkes the honesty of the casino by tossing a coin once a day, jotting down
the outcome and testing at the end of the year (say) whether the sequence so obtained is
Church random. The management of the house knows that, with the above choice of the pn,

there is a very large probability that the sequence in the inspector's notebook is indeed Church
random (lemma 4.6.2). One day, however, the inspector learns of the definition of randomness
given by Martin-Löf (Chapter 3), which is a (at least extensionally) a refinement of that of
Church, and decides to check, after a year, whether the sequence of outcomes is Martin-Löf
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random. Unfortunately for the management, there is also a very high probability that this
sequence is not Martin-Löf random (theorem 4.6.1). However, after consulting the relevant
literature (corollary 4.6.5), they change the value of pn to (1+ (n+1)-1). To his satisfaction, the

inspector notes that the sequences produced are (approximately) Martin-Löf random. The
management is also satisfied, since no definition of randomness, however strong, can force
them to change the value of pn to a value which is less advantageous to them.

The moral of this tale is that, for each w, the inspector's prediction for the relative frequency
of the occurrence of w on a specific day is false, regardless of whether a Church- or a Martin-
Löf random sequence is used for the prediction (and that is the reason why the establishment
is so profitable to its owners). Doesn't it follow that von Mises' theory fails in this case? No;
the inspector could, on the basis of his data, only predict the relative frequencies of the
outcomes of the experiment which consists of grouping (say) n days together and tossing a
coin each day. The data are not relevant for the experiment which consists of taking a single
day and grouping together the outcomes of n tosses with the coin isssued that day.

This concludes our review of the objections brought forward by Fréchet. These objections do
not necessitate a revision either of strict frequentism or of the definition of Kollektivs; but  we
do not, of course, wish to claim that such objections are logically impossible.

2.7 Conclusions  Two themes have occupied us in the preceding pages: the interpretation of
probability and the definition of Kollektivs.
1. The great merit of von Mises' theory lies in the rigorous version of the frequency
interpretation it presents. This interpretation, strict frequentism, is perhaps not the ultimate
truth; but its main rival among the objective interpretations of probability, the propensity
interpretation, has not yet arrived at a comparable stage of development, no one having
investigated its consequences and assumptions as thoroughly as von Mises did for strict
frequentism.
This is not to say that henceforth measure theoretic probability theory should be abandoned in
favour of von Mises' theory. We view the relation between the first and the latter much as the
relation between classical and constructive mathematics; there is nothing objectionable in
doing classical mathematics, but if you really want to know what your results mean, you have
to translate them in constructive terms, a translation which is sometimes impossible. Similarly,
a deduction in measure theoretic probability theory should ideally be accompanied by a
translation in terms of frequencies and Kollektivs; and this translation is not always trivial, as
was demonstrated using the law of the iterated logarithm.
2. Von Mises' theory shows very clearly the assumptions that underlie any application of
probability theory, in particular the necessity of the assumption that the mass phenomena to
which probability theory is applicable be Kollektivs.
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The older theory consists of two parts: invariance under place selections as an instrument for
deductions and an explanation of invariance via admissibility.
The explanatory part has strong intuitive appeal, but is rather difficult to formalize; although
the formalisation implicitly adopted in the alleged proof of inconsistency is blatantly not the
one intended by von Mises.
We could distinguish two approaches toward formalisation: identifying admissible selections
with lawlike selections and a contextual approach. For various reasons the identification of
lawlikeness and admissibility leads to a much too restricted notion of the latter, and in
particular leaves out the physical aspects.
Von Mises himself favoured the contextual approach, which means renouncing the attempt to
define Kollektivs, but assuming in each specific instance the amount of invariance needed. To
justify invariance, one may appeal to admissibility, but it does not occur anymore in the
theory.
However, to study the question why probability theory is applicable to certain phenomena it
seems best to follow the lines of the older theory and to make precise its basic idea:
probabilistic computations are successful when they correspond to admissible place selections.
In subsequent chapters we present a piecemeal approach to this problem: different
formalisations of admissibility which embody different aspects.
Lastly, we saw that, on the strict frequency interpretation, it suffices to define Kollektivs using
place selections only. The demand that truly random sequences satisfy all strong limit laws
proved by probability theory stems from a misinterpretation of the condition that limiting
relative frequencies in a Kollektiv exist; such a demand can be justified at most on the
propensity interpretation of probability.

Nevertheless, the objections voiced by Fréchet were almost universally accepted. Attempts to
define Kollektivs became rare. A renewal of interest in the subject occurred only after
Kolmogorov emphasized the necessity of Kollektivs for the frequency interpretation. For
technical reasons, however, we start, not with Kolmogorov's own proposal, but with a later
development: Martin-Löf's definition.

Notes to Chapter 2

1. Kolmogorov's Grundbegriffe contains a paragraph on "Das Verhältnis zur Erfahrungswelt"
in which he says

In de Darstellung der notwendigen Voraussetzungen für die Anwendbarkeit der
Wahrscheilichkeitsrechnung auf die Welt der reellen Geschehnisse folgt der Verfasser im
hohen Maße den Ausführungen von Herrn von Mises [44,3].
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But  his condition B is slightly awkward from a strict frequentist point of view:

B. Ist P(A) sehr klein, so kann man praktisch sicher sein, daß bei einer einmaligen
Realisation der Bedingungen [which determine the occurrence of A or its complement] das
Ereignis A nicht stattfindet [44,4].

This condition contains a vestige of the propensity interpretation and does not harmonize very
well with von Mises' views on the meaning of probability zero. However, even in von Mises-
Geiringer [74,110] we read:

Hence we assume that in certain known fields of application the frequency limits are
approached fairly rapidly. We also assume that certain "privileged" sequences (to be
expected by the law of large numbers) appear right from the beginning and not only after a
million of trials.

Apparently, the part of [74] where this passage occurs was not written by von Mises (see the
preface to [74]); I know of no comparable passage in von Mises' own works ([67] to [73]).
2. But note that von Mises' axioms for Kollektivs go much further and attempt to capture the
independence of the successive casts, using asymptotic properties in a way which is anathema
to the intuitionist. See also note 5.
3. For simplicity, we call independent what von Mises calls independent and combinable

[74,31].
4. We saw in 2.4 that lawlike selections do not suffice for this purpose.
5. In our overview of the history of Kollektivs, we did not consider objections inspired by
various forms of constructivism. But it will be clear that, for those who hold that the
mathematical universe consists of lawlike objects only, Kollektivs are equally impossible. For
in this case, if x is a purported Kollektiv, the set {n | xn = 1} is itself lawlike (see Reichenbach

[85]). Other objections were based on the conviction that the convergence of the relative
frequency postulated of Kollektivs had to be uniform; see, e.g., the lecture notes "Grondslagen
der Waarschijnlijkheidsrekening" [Foundations of Probability] by D. van Dantzig (library of
the Mathematical Institute, University of Amsterdam).
6. Wald's suggestion occurs in [101,98]. He defines a place selection to be singular (with
respect to Lebesgue measure) if its domain has Lebesgue measure zero. A sequence x is a
Kollektiv in the strong sense (with respect to ( , ) and some countable set of place selections

) if it is a Kollektiv in the old sense and is, moreover, not contained in the domain of a
singular place selection in . Now given any countable set of probabilistic laws (with respect
to Lebesgue measure) one can construct a set of place selections , such that a Kollektiv in
the strong sense with respect to  satsfies these laws. For by the regularity of Lebesgue
measure, the set of sequences not satisfying a probabilistic law is contained in a Gδ set.
However, the domain of a place selection is also a Gδ set and it is easy to construct a place
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selection whose domain is a given Gδ. Since the complement of a probabilistic law has

measure zero, place selections so constructed are ipso facto singular.
Because that part of the law of the iterated logarithm which is of interest to us, is itself a Gδ

set, we could use a simpler construction.
7. As will be clear from the discussion of the meaning of independence in 2.4, the measure µ
refers to the following experimental set-up: each time you want to toss a coin, you take a new

fair coin. In von Mises' theory this situation is to be distinguished from that of repeatedly
tossing the same coin: in this case the productrule is provable. Apparently, von Mises
considered the possibility of dropping this feature: see his references to the "Tornier-Doob
frequency theory" in [75,101]. Tornier's theory is explained in Feller [23], von Mises-
Geiringer [74] and Martin-Löf [63].
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3 A New Start:
Martin-Löf's Definition

3.1 Introduction  At the close of the Geneva conference on probability theory (see 2.6) it
became clear that von Mises' axiomatisation of the probability calculus had lost the day.
Although sub specie aeternitatis almost none of the objections brought against von Mises was
cogent, Kolmogorov's measure theoretic formalism, which did not attempt to define
probability explicitly, was henceforth universally accepted.
With the acceptance of a measure theoretic foundation of probability theory, the necessity of
providing a rigorous definition of randomness disappeared. Consequently, from the
publication of Ville' s book [99] in 1939 to 1963, interest in the problem dwindled. In 1963,
however, Kolmogorov came to the conclusion that the frequency interpretation stood in need
of a precise formulation after all. He published a definition of randomness for finite sequences
[47] which contains the germ of Kolmogorov–complexity (defined in Chapter 5). Martin-Löf,
investigating sequences with high Kolmogorov–complexity, gave a definition of randomness
[62] involving a particular type of statistical test, namely, significance tests. This definition is
nowadays the one most generally accepted. In this chapter we introduce Martin-Löf's
definition and several variants and discuss their respective merits.

As a consequence of the criticism voiced by Fréchet and Ville, the problem of defining
randomness was now conceived as follows: a random sequence (with respect to some
probability measure) should satisfy all probabilistic laws for that measure; in other words, the
set of random sequences should be the intersection of all properties of probability one. Of
course, in this form, the demand is impossible to satisfy, since the required intersection is
empty. Hence we have to choose among the properties of probability one; and Martin-Löf's
definition is one such choice.

The main result of the previous chapter is that this way of introducing Kollektivs has not much
more than the name in common with von Mises' ideas. For one thing, it completely reverses
the attitude von Mises expressed in the slogan "Erst das Kollektiv, dann die
Wahrscheinlichkeit". What's more, for von Mises a Kollektiv x in 2ω induces a probability
distribution on {0,1}, not on 2ω itself; so from his point of view, there is no immediate
relation between properties of probability one in 2ω and Kollektivs x in  2ω.
Speaking mathematically, a distribution (1–p,p) on {0,1} determines a measure  µp = (1–p,p)ω

on 2ω, but this measure is a probability only if it is induced by a Kollektiv ξ ∈ (2ω)ω. To be

sure, such a measure can be extremely helpful in proving existence theorems; for instance, in
this way we proved that the set of Church random sequences C(p) has µp–  measure one
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(theorem 2.5.2.3). But this result should not be construed as implying that a "true" random
sequence should at least be Church random (because  Church randomness is a property of
probability one).
Another consequence of strict frequentism is that the distribution (1–p,p) on {0,1} in no way
determines a unique distribution on 2ω, to wit, µp. Indeed, the distribution on (1–p,p) would
lead uniquely to µp if it were a property of each coordinate, as in the propensity interpretation.
But, according to strict frequentism, a Kollektiv x in 2ω allows no such conclusion: p is really

only a limiting relative frequency. It follows that all measures which, in a sense to be made
precise in Chapter 4, determine the same limiting relative frequency p, should be treated on
equal footing, and existence theorems should not be sensitive to which measure (from the
class of measures which determine the same relative frequencies) we choose. Some notation
we introduced in Chapter 2 was intended to reflect this point: e.g. the set of Church random
sequences with parameter p was denoted C(p), to emphasize the fact that only the limiting
relative frequency p is relevant. In Chapter 4 we shall show that, roughly speaking, C(p) has
measure one for measures which determine the same p.
The randomness notions which we shall introduce in this chapter are, on the other hand, very
sensitive to the underlying measure. This is emphasized by the notation R(µ), meaning "the set
of sequences random with respect to the measure µ". Exactly how sensitive to the choice of a

measure these notions are, will be investigated in Chapter 4.

Although we may have so far given the impression that the definition of randomness of
Martin-Löf and its variants, being conceived in sin, are ipso facto unsatisfactory, this is not
our purpose. The preceding chapter should have convinced the reader that randomness defined
as the satisfaction of "all" properties of probability one is anathema to the strict frequentist. It
is not, however, implied that such a definition does not make sense on any view of probability.
In particular, if you subscribe to some variant of the propensity interpretation, which views
probability primarily as a physical property of an experimental set-up, it does make sense to
have randomness defined with respect to some unique probability distribution on 2ω.
Indeed, the widespread belief that Kollektivs should satisfy the law of the iterated logarithm,
and that probability zero of an outcome should exclude that this outcome occurs infinitely
often (at least for a discrete sample space), probably testifies to an instinctive acceptance of
the propensity interpretation. Accordingly, the mathematical differences between the two
definitions, investigated in detail in Chapter 4, may be seen as a contribution towards the
study of the philosophical differences between these two interpretations of probability.

This chapter is organized as follows. In 3.2 we introduce the definitions of randomness of
Martin-Löf [62] and Schnorr [88] and we prove some recursion theoretic properties of these
definitions (3.2.2-3).
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Although most of the results occur already in Schnorr's book, the proofs have been simplified,
e.g. by using the so-called Basis Theorem from recursion theory. Apart from added elegance,
we thus introduce a technique that will be helpful in Chapter 5.
Having thus prepared the ground, we turn to some problems not usually treated in the
literature. For one thing, there is a notable lack of concrete examples of properties which
random sequences satisfy. E.g. in Schnorr's book, only the validity of the law of large numbers
is verified, not even that of the law of the iterated logarithm. This fact is slightly ironical, since
the non-validity of the law of the iterated logarithm for von Mises' Kollektivs was the main
impetus behind the new approach.
One  of the goals of this thesis is, therefore, to exhibit more examples of properties of random
sequences. For a start we prove in 3.3 effective versions of the Borel-Cantelli lemmas, which
allow one to show that random sequences satisfy the usual probabilistic laws.
So far, random sequences are considered only from the point of view of probability theory.
Martin-Löf's original introduction of random sequences proceeded slightly differently: a
sequence was defined to be random with respect to some statistical hypothesis H if it is not
rejected by some (effective) statistical test for H at arbitrarily small levels of significance.
From this perspective, it is not immediately clear that Martin-Löf's definition is the correct one
to use, since there is some controversy surrounding the notion of significance test employed in
the definition.
To set the stage for the discussion, we introduce Martingales in 3.4. Martingales were first
mentioned in 2.6.2, in connection with Ville's construction, as formalisations of gambling
strategies.  We shall briefly examine this aspect of Martingales, but our main interest lies in
their statistical meaning, as likelihood ratios. In 3.5 we explain the controversy surrounding
significance tests and we discuss some alternatives to Martin-Löf's definition. A conclusion
follows in 3.6.
The relation between Martin-Löf's definition and that of von Mises is discussed in Chapter 4,
which is considerably more technical than Chapter 3.

3.2 The definitions of Martin-Löf and Schnorr

3.2.1 Randomness via probabilistic laws  Ville ended his book [99] on a note of resignation:
a random sequence should satisfy all properties of probability one; that's impossible, so which
probabilistic laws should we choose? Ville had shown that, in a sense, any probabilistic law
can be represented by a Martingale (see lemma 3.4.7 below), so the question could
equivalently be posed as: which gambling strategies should one choose? Any choice seemed
to be arbitrary, thus causing the definition of random sequences to be arbitrary as well. Of
course Ville didn't mind, not being a strict frequentist.
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In [62], Martin-Löf proposed a canonical choice for the class of probabilistic laws: the class of
those laws which can be proved effectively. To explain this notion of effectiveness, we must
look at proofs of probabilistic laws.
A probabilistic law, according to the usual interpretation, is a statement of the form:

µ{x ∈ 2ω| Α(x)} = 1,

where A is some formula. The discussion in 2.4.3 should have made clear that this is not von
Mises' concept of a probabilistic law; but we are in a different circle of ideas now.
Typically, a proof of such a statement proceeds in either of the two following ways (examples
will be given in 2.3):
(i) One constructs a sequence (On) of open sets such that (a) {x|A(x)}c ⊆ On for all n, (b) µOn

≤ 2-n (or any other recursive function of n which decreases to 0), (c) the On are recursively
enumerable unions of cylinders, or at least unions recursively enumerable in µ and (d)
similarly, the function which associates to each n a Gödelnumber for On is recursive in µ.
(ii) One uses the two Borel-Cantelli lemmas (Feller [25,200-2]):

(a) if (An) is a sequence of sets such that ΣnµΑn < ∞, then

µ∩n ∪m≥n Am = 0

(b) if (An) is a sequence of independent events such that ΣnµΑn = ∞, then

µ∩n ∪m≥n Αm = 1.

Usually such a sequence (An) satisfies properties analogous to (c) and (d) in (i).

Roughly speaking, a probabilistic law is effective if it can be proved according to (i) or (ii).
Not all probabilistic laws are effective in this sense; the ergodic theorem (see 7.4) may be a
case in point1.
Martin-Löf's definition of randomness may be seen as a formalisation of procedure (i).
Procedure (ii) will receive separate treatment in 3.3.
Let us first introduce two notions of a measure being computable.

3.2.1.1 Definition  The probability measure µ on 2ω is called computable if there exists a
recursive function g: 2<ω×ω → such that for all w,k: |µ[w] – g(w,k)| < 2-k.
Note that if µ is a computable measure, then the following sets are ∑1:
W> := {<w,a> ∈ 2<ω× +| µ[w] > a} and W< := {<w,a> ∈ 2<ω× +| µ[w] < a}.

A slightly stronger concept of computability for measures results if we demand that these sets
be ∆1: a measure µ is strongly computable if the associated sets W<, W> are ∆1.

Evidently a strongly computable measure is computable, but not conversely: strong
computability excludes measures µ such that it cannot be decided whether µ[w] is rational, a
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case not very likely to occur in practice. In section 3.4 we have to introduce still another
notion of computability for measures, this time weaker than those above.

For computable measures, the clauses "recursive in" in (c) and (d) of (i) can be replaced by
"recursive" pure and simple. We shall now formally introduce procedure (i) under the name of
"recursive sequential test". This name, coined by Martin-Löf, reflects the statistical origin of
these sets, statistical rather than probabilistic. The statistical view will be explained in 3.5.

3.2.1.2 Definition  Let µ be a computable measure. N ⊆ 2ω is a recursive sequential test with

respect to µ if N can be written as a ∏2 set  ∩nOn, where On ∈ ∑1, the function n → On is

recursive, On+1 ⊆ On and µOn ≤ 2-n.

We shall see below that probabilistic laws such as the law of the iterated logarithm or the law
of large numbers can indeed be proven by constructing recursive sequential tests covering the
sets of sequences not satisfying these laws. In fact, these proofs usually show something more:
with the notation as in the preceding definition, one usually has that the µOn are computable
uniformly in n, i.e. that for some recursive function f: ω×ω → ,

∀n,k |µOn – f(n,k)| < 2-k

This added feature is present in Schnorr's definition of total recursive sequential test [88,63].

3.2.1.3 Definition  With the notation of 3.2.1.2: N is a total recursive sequential test with
respect to µ if µOn is computable uniformly in n.

Schnorr's reasons for preferring this definition will be examined in 3.2.3 and 3.4. In 3.2.3 we
shall see that indeed some recursive sequential tests are not total.
Abstractly, we may now introduce definitions of randomness as follows:

3.2.1.4 Definition  Let µ be a computable measure. x ∈ 2ω is random with respect to µ
(denoted x ∈ R(µ)) if for all recursive sequential tests N with respect to µ, x ∉ N.

3.2.1.5 Definition   Let µ be a computable measure. x ∈ 2ω is weakly random with respect to
µ (denoted x ∈ Rw(µ)) if for all total recursive sequential tests N with respect to µ, x ∉ N.

(Schnorr calls hyperzufällig what we call random, and zufällig what we call weakly random.)
3.2.1.6 Lemma  R(µ) ⊆ Rw(µ) and µR(µ) = µRw(µ) = 1.

Proof  Each (total) recursive sequential test has measure zero and there are only countably
many of them.                                                                                                                        
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These definitions are very abstract, much more so than that of von Mises. For example, while
a probabilistic law gives rise to a (total) recursive sequential test, via procedure (i) on p. 58,
the converse does not seem to be obvious: does every recursive sequential test correspond to a
bona fide probabilistic law? In order to answer such questions, one must have some kind of
representation or classification of recursive sequential tests. Sections 3-5 of this chapter, and
also Chapter 4, contain some efforts in this direction. The rest of 3.2 develops some recursion
theoretic properties of the above definitions and settles a question left open by lemma 3.2.1.6,
namely: is every weakly random sequence also random?

3.2.2 Recursive sequential tests  A surprising property of recursive sequential tests is:

3.2.2.1 Lemma  (Martin-Löf [62]) Let µ be a computable measure. (a) The collection of
recursive sequential tests with respect µ to is recursively enumerable. (b) There exists a
universal recursive sequential test with respect to µ, i.e. a test U such that for all recursive
sequential tests N with respect to µ, N ⊆ U.

A curious consequence of the preceding lemma is that R(µ) and, a fortiori Rw(µ), have
elements which are rather simple. Although neither set contains recursive sequences if µ is

non-atomic (for if x is recursive, ∩n[x(n)] is a total recursive sequential test with respect to

any non-atomic computable µ; cf. remark 3.2.3.11), R(µ) does contain ∆2-definable

sequences. This is a consequence of the following

3.2.2.2 Basis Theorem (Soare [92,109]) Any non-empty ∏1 subset of 2ω has a ∆2-definable

element.

Proofsketch  A ∏1 subset of 2ω can be viewed as the set of infinite paths through a recursive
binary tree T. Call w ∈ T admissible if ∀n>|w| ∃v∈2n(w⊆v & v ∈ T). (By König's Lemma, w
is admissible iff there is an infinite branch of T through w.) The set of admissible words is ∏1.

Since the subset is non-empty, T has an infinite branch. The leftmost infinite branch can be
constructed recursively in the set of admissible words, which is ∏1; hence this branch must
itself be ∆2.                                                                             

3.2.2.3 Lemma  Let µ be a non-atomic computable measure. Then R(µ) contains ∆2-, but no
∆1-, definable sequences.

Proof  (See also Schnorr [88, 56].) By 3.2.2.1, R(µ) is a ∑2 set of measure 1. Pick a ∏1 set A
⊆ R(µ) such µA > 0 and apply the Basis Theorem.  If x is recursive and µ computable and
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non–atomic, then ∩n[x(n)] is a total recursive sequential test with respect to any non-atomic

computable µ; cf. remark 3.2.3.11.                                                                    

Although ∆2 sequences may thus possess all statistical properties associated with randomness,

in another sense they can be completely deterministic.

lim (ξk)n.
k→∞

In words: ∆2 sequences x can be produced by Turing machines if the machine is allowed to
correct itself a finite number of times per xn. This is a far cry from the usual mechanisms that

produce random sequences: indeterministic systems such as those of quantum mechanics, or
deterministic systems that have been subject to coarse graining (see Chapter 5). The finer tools
of Kolmogorov complexity will allow us to distinguish between ∆2 definable random

sequences and those which are not so simply definable.

3.2.3 Total recursive sequential tests  The requirement of uniform computability of the µOn

is strong; to prove that a recursive sequential test is in fact total sometimes demands
considerable effort. Fortunately, nullsets bearing a strong resemblance to total recursive
sequential tests were already known in constructive mathematics, so we can draw upon the
large reservoir of proof techniques developed there (see, e.g., the books by Bishop [5], Bridges
[9] and Bishop-Bridges [6]) Although not every total recursive function is acceptable in
constructive mathematics (since the proof that the function is in fact total must itself be
constructively valid), arguments involving constructive functions usually carry over directly to
recursive functions; when the result is simple we shall not bother to write down proofs. For
instance, we shall often have occasion to use the following comparison principle:

3.2.3.1 Lemma  (See [5,30].) Let (an), (bn) be recursive sequences of computable reals such
that 0 ≤ an ≤ bn and ∑nbn < ∞ is computable. Then ∑nan is also computable.

To compute the measure of a ∑1 set, it is often helpful to have such sets presented in normal
form, namely as a disjoint union of sets of the form [w]. For if A in ∑1 is brought in such a

form, i.e. A =  ∪i[wi], then  µA = ∑i µ[wi].

3.2.3.2 Definition  A subset S of 2<ω is called prefixfree if for distinct w,v ∈ S: neither w⊆v
nor v⊆ w.



69

If S is prefixfree, the open set determined by S, namely [S] = {x | ∃n(x(n)) ∈ S)} can be

written as

[S] = ∪
w∈S

⊥
[w]  (where ∪⊥ denotes disjoint union).

3.2.3.3 Lemma  For every ∑1 set A ⊆ 2ω, one can effectively determine a recursively
enumerable prefixfree set S ⊆ 2<ω such that A = [S].

Proof  A is of the form [T], T ⊆ 2<ω r.e. Generate T. S is obtained as a union ∪nSn, Sn ⊆

Sn+1. Suppose Sn has been constructed. Consider the n+1th word w in T. (a) If w is a
prolongation of some v in Sn, put Sn+1 = Sn. (b) If w is an initial segment of some v in Sn,

replace w by all its prolongations of length |v| and apply (a) and (b) to each of these
prolongations. This process comes to a halt; let Sn be the union of Sn and the finite list thus
obtained and proceed. (c) In all other cases, put Sn+1 = Sn ∪ {w}.2

Using this lemma one can easily show

3.2.3.4 Lemma  Let µ be a computable measure on 2ω; A, B ∑1 subsets of 2ω with µA, µB
computable. Then µ(A∪B), µ(A∩B) are computable.

Proof  We do the first case only. We may suppose that A is written as a disjoint union

∪n[wn]; let B = [v]. Then µ(A∪Β) = ∑nµ([wn]∪[v]) and we may apply lemma 3.2.3.1 with

an = µ([wn]∪[v]) and bn = µ[wn] + µ[v]. For the general case, write B as a disjoint union

∪m[vm]; then µ(A∪B) = ∑mµ(A∪[vm]). Apply 3.2.3.1 with am = µ(A∪[vm]) (which is

compuable by the first part of the proof) and bm = µA + µ[vm].                           

We now come to an essential feature of ∑1 sets O such that µO is computable. If O is just ∑1,

it may be the case that all recursive sequences are contained in O; this is for instance true of
the levels Un of a universal recursive sequential test U. Not so for ∑1 sets O with µO

computable:

3.2.3.5 Lemma  Let µ be a computable measure, O in ∑1 and µO computable. Then for any
word w such that µ([w]∩O) < µ[w], there exists a recursive x in [w]∩Oc.

Proof  This is just a formalisation of an old intuitionistic result; see e.g. Schnorr [88,64-5].
Alternatively, one could show that, if µO is computable, it can be written as a recursive union
of cylinders [w] and then apply the lemma proved in footnote 2.                                



70

3.2.3.6 Corollary  Let µ be a computable measure which is positive on open sets, A a ∏1 set
without recursive elements. Then either µA = 0 or µA is not computable (both cases occur).

For our purpose the most important consequence is

3.2.3.7 Corollary  (a) Let µ be a computable measure. If N is a total recursive sequential test
with respect to µ, there exists a recursive x ∉ N. (b) If µ is non-atomic, there exists no
universal total recursive sequential test with respect to µ.

Proof  (a) Write N = ∩nOn as in definition 3.2.1.3. Observe that µO1 < 1 and apply lemma

3.2.3.5. (b) Otherwise, by (a), there would exist a recursive sequence outside this universal
test.                                                                                                                         

Schnorr sees in the preceding lemma a mark of the superiority of total recursive sequential
tests over recursive sequential tests. The construction of a recursive x outside N implies that
we can construct a model of the probabilistic law corresponding to N, so that we can visualize
the property stated by the law (von Mises considered this use of recursive "Kollektivs" in
[69]). This is indeed not an unreasonable requirement for probabilistic laws which purport to
be effective. But the requirement is satisfied by other types of tests as well (see footnote 2 and
section 3.4). Furthermore, the existence of recursive sequences satisfying a probabilistic law
does not imply visualizability of that law in any real, practical, sense: there must exist
recursive absolutely normal numbers (i.e. numbers which are normal to every base), but there
are no examples of absolutely normal numbers which are as easily described as the example of
a normal number in lemma 2.5.1.5. It therefore seems more correct to say that, whenever a
probabilistic law can be associated with a total recursive sequential test, the possibility of a
visualizable model for that law is at least not excluded.
We now state a technical lemma which, besides being useful later, will imply that the
collection of total recursive sequential tests (with respect to a given measure) is not r.e.

3.2.3.8 Lemma  (Schnorr [88,65]) Let µ be a computable measure and (Nk)k a recursively

enumerable collection of total recursive sequential tests with respect to µ. Then ∪kNk is a

contained in a total recursive sequential test M with respect to µ.

Proof  Let Nk = ∩nOk,n. Put M = ∩n∪kOk,(n+k). M is a recursive sequential test with respect

to µ.

To compute µ∪kOk,(n+k), note that for n+1 < i < j:
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µ∪k=1

j
Ok,(n+k) – µ∪k=1

i
Ok,(n+k) ≤ ∑

k=i

j

µOk,(n+k) ≤ ∑
k=i

j

2–k–n

hence lemma 3.2.3.4 implies that

(µ∪k=1

j
Ok,(n+k))j∈

is a recursive sequence of computable reals which is recursively Cauchy, so converges to a
computable real (see [5,27]).                                                                                                  

3.2.3.9 Corollary  Let µ be a non-atomic computable measure. The collection of total
recursive sequential tests with respect to µ is not r.e.

Proof  Otherwise the M constructed in lemma 3.2.3.8 would be universal.                         

We now come to the main result of this section: that R(λ) ⊂ Rw(λ). This observation is due to

Schnorr [88,77], whose proof uses Martingales and a detour via a different randomness
concept.

3.2.3.10 Theorem  Let µ be a computable measure. Then there exists a sequence which is
weakly random, but not random, with respect to µ.

Proof  Let (Nk)k∈  be an enumeration of the collection of total recursive sequential tests with

respect to µ. By lemma 3.2.3.8, we may assume that each Nk is of the form ∩nOk,n, where

Ok,n
  = ∪

i=1

k-1
Oi,(n+i).= O   

We construct a weakly random, but non–random x as a pointwise limit of a sequence (ξk)k∈ ,

where ξk ∈ 2ω. Let U = ∩nUn be the universal recursive sequential test with respect to µ.

By lemma 3.2.3.5, we can construct a recursive ξ1 not contained in O1,1. Since µ is non-
atomic, U contains all recursive sequences. Determine k1 such that [ξ1(k1)] ⊆ U. Since
[ξ1(k1)]∩(O1,1)c ≠ ∅, there exists a recursive ξ2 such that ξ2(k1) = ξ1(k1) and ξ2 not contained
in O2,1. Determine k2 > k1 such that [ξ2(k2)] ⊆ U. Proceeding inductively we
construct recursive ξk not contained in Ok,1. Put xn = lim (ξk)n. We show that for all k,

k→∞

x ∉ Ok,k+1. For if x ∈ Ok,k+1, say [x(m)] ⊆ Ok,k+1, we can determine k'>k such that ξk'(m) =
x(m). Since xk' is not contained in Ok',1 and

Ok',1
  = ∪

i=1

k'-1
Oi, i+1 

,
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ξk' is not contained in Ok,k+1, a contradiction.                                                                     

3.2.3.11 Remark If M is a total recursive sequential test with respect to µ, M = ∩nOn, then

the conventional upper bound on µOn is 2-n. This requirement may be relaxed. For if M =

∩nOn is a ∏2 µ-nullset and each µOn is computable, then M is contained in a total recursive

sequential test N: since for each k, µ∩n≤kOn is computable (uniformly in k) by lemma

3.2.3.2, there exists a total recursive g: ω → ω such that for all m,

µ∩
n≤g(m)

On ≤ 2–m
;

if we then put

O'm = ∩
n≤g(m)

On ,

N := ∩mO'm is the required recursive sequential test.

3.2.4 An appraisal and some generalisations  Do the definitions of Martin-Löf and Schnorr
really amount to a canonical choice of a class of probabilistic laws, thus providing an absolute

concept of randomness? Martin-Löf must have had his doubts, since he later proposed to
define the set of random sequences as the intersection of all hyperarithmetical sets of measure
one [64], the reason being that "the specific Borel sets considered [in probability theory] are
always obtained by applying the Borelian operations to recursive sequences of previously
defined sets, which means precisely that they are hyperarithmetical" [64,74]. Nor is it clear
that this is really the end: why not consider all Borel sets of measure one with codes in some
admissible set, the theory of admissible sets being the natural generalisation of recursion
theory?
Even if we assume that a random sequence should satisfy all "effective" laws of probability
theory, still "effectiveness" is an open-ended notion, so we can't expect to arrive at some
definitive notion of randomness in this way. The question is, whether we would be much
happier with such a definition.

We believe that the alleged "problem of the relativity of randomness" is a pseudo-problem,
born from an excessive concern with abstract things. The fundamental concept of
mathematics, set, is relative (with respect to axioms and models for set theory), but that
doesn't imply that the notion is useless; only that we should stick to those properties which are
uncontroversial, whenever possible. Very few mathematicians are willing to forego sets, just
because the contours of the universe of sets are hazy. Some, notably Kreisel, even believe that
philosophical analysis of the notion of set may help to enlarge the charted domain.
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The situation with respect to random sequences is different in so far as it is quite possible to
do mathematics without them; and one is of course much less willing to bear with a
problematic concept if one can forego it. We have seen in the previous chapter, however, that
random sequences are necessary for a frequentist foundation of probability and in particular
that random sequences should minimally be invariant under admissible place selections.
Invariance under place selections also suffices to explain the applicability of probability
theory, so that Martin-Löf's definition is threatened by relativity only because it disregards the
function of random sequences in von Mises' probability theory. The propensity interpretation
does nothing to remove this relativity.

We therefore propose to investigate the modern definitions of randomness, not with a view to
single out one as the definition, but rather to establish reasonable (or just interesting)
properties of random sequences. This attitude entails that we do not introduce sets which are
more complex (in the sense of the arithmetical hierarchy) than those occurring in definitions
3.2.1.2-3, unless we are forced to do so (see below). We wish to remain agnostic about the
exact boundary of the set of properties a random sequence has to satisfy (when these
sequences are not considered in their role as foundation for probability theory). The fact that
we shall almost never consider sets which are more complex than those in definitions 3.2.1.2-
3 does not imply that we believe that all (total) recursive sequential tests are reasonable
probabilistic laws, since it depends on one's views on, e.g., statistics (does significance testing
make sense in the absence of an alternative hypothesis? what exactly is an alternative
hypothesis?) which properties of random  sequences to accept. All in all, then, we regard the
definitions of Martin-Löf and Schnorr as convenient way-stations, as technically elegant,
concise descriptions of probabilistic laws. But we think that, in their present form, these
definitions are too abstract and that questions such as "Is Martin-Löf's definition the right one
to use?" do not make sense. Moreover, worrying about the recursive aspects of the definition
might easily lead to a neglect of its more urbane questionable aspects.

We shall now examine possible reasons for enlarging the framework. Up till now, we have
considered only computable measures. What happens if, for some reason or other, we wish to
consider measures which are not computable? A moment's reflection on how a measure µ
occurs in a probabilistic law (or a glance at section 3.3) will show that the most useful concept
in this context is 3.2.1.2. with "∏2" replaced by "∏2 in µ". Most theorems hold for the new
concept if we put in "recursive in µ" in the appropriate places; section 3.3 will provide

illustrations of this point. Consequently, allowing non-computable measures does not really
amount to a generalization.

We do get a generalization if we drop the requirement in 3.2.1.2 that µOn be bounded by 2-n;
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that leaves us with just a bare ∏2  µ-nullset. Once we're on this slippery slope, we could
replace the ∏2 set by a ∏n set, for arbitrary n. This is indeed what happens in Gaifman and

Snir [34]. They introduce

3.2.4.1 Definition  Let µ be a computable measure. x is n–random with respect to µ (Notation:
x ∈ Rn(µ)) if for all ∏n µ-nullsets N, x ∉ N.

It will turn out (in Chapter 4) that the concept is actually most useful for strongly computable
measures, which were defined in 3.2.1.1. Again, if we wish to consider arbitrary measures µ, it
is best to replace "∏n" by "∏n in µ".

It is doubtful whether we really do need this generality. I know of one probabilistic law which
may not be effective in the sense introduced in 3.2.1: the ergodic theorem (which is stated in
the appendix, 6.4). In this case, e.g. the set

{x ∈ 2ω| limsup
n→∞n

1∑
k=1

n

xk > µ[1] > liminf
n→∞n

1∑
k=1

n

x }
k

is ∑3 in µ, i.e. a countable union of ∏2 µ-nullsets; so here at least is some use for 2–

randomness.
Let us therefore in conclusion of this part compare 2–randomness (definition 3.2.4.1) with
randomness (definition 3.2.1.4).

3.2.4.2 Lemma  Let µ be a non-atomic computable measure. (a) There is no universal ∏2 µ-
nullset. (b) There exist sequences which are random, but not 2–random, with respect to µ.

Proof  (a) Suppose U were a universal ∏2 µ-nullset. Then µUc = 1 and Uc is ∑2. It then
follows from the Basis Theorem (3.2.2.2) that U contains a ∆2 definable sequence x. But then
{x} is a ∏2 set and µ{x} = 0 by non-atomicity of µ. (b) If not, then R(µ)c would be a universal
∏2 µ-nullset.                                                                                                          

In fact, as an application of the techniques developed in Chapter 4 we shall show in 4.7 that
for some continuous measure µ: µ(R(λ)∩R2(λ)c) = 1.

3.3 Probabilistic laws  After these abstract considerations, let us now exhibit some concrete
examples of probabilistic laws which are satisfied by (weakly) random sequences. The main
technical tools here are effective versions of the two Borel-Cantelli lemmas (Feller [25,200-
2]).
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3.3.1 Lemma  Let µ be a computable measure, (An)n∈  a recursive sequence of ∑1 sets in  2ω

such that each µAn is computable (uniformly in n) and ∑nµAn converges recursively3. Then

N := ∩n∪k≥nAk is a total recursive sequential test with respect to µ.

Proof  Obviously N is ∏2. µ∪k≥nAk is computable since for m2 > m1,

µ∪k=n

m2

Ak – µ∪k=n

m1

Ak ≤ ∑
k=m1

m2

µAk

and decreasing to 0 since ∑nµAn converges. Now apply remark 3.2.3.11.                         

Seeing that one automatically obtains a total recursive sequential test, starting from the natural
condition that ∑nµAn converges constructively, one might wonder whether there exists some

condition which yields only recursive sequential tests. There is, namely:

for some total recursive f: ω → ω, for all n:∑
k ≥f(n)

µAk ≤ 2-n;

but, in practice, whenever in an application of the first Borel-Cantelli lemma the latter
condition is satisfied, so is the more exacting condition of lemma 3.3.1. This illustrates a
general phenomenon: it is hard to come up with natural examples of recursive sequential tests
which are not total (they may come from the theory of Martingales, to which the next section
is devoted). Nevertheless, it will become clear in the sequel and especially in Chapter 5, that
Martin-Löf's concept has immense technical advantages.

Likewise we have the following effective analogue of the second Borel-Cantelli lemma:

3.3.2 Lemma  Let µ be a computable measure, (An)n∈  a recursive sequence of independent

∑1 sets in 2ω such that ∑nµAn diverges and µAn is computable (uniformly in n). Then

∪n∩k≥nAk
c is contained in a total recursive sequential test with respect to µ.

Proof  By the second Borel-cantelli lemma (Feller [25,201]), µ∩k≥nAk
c = 0, for each n.

∩k≥nAk
c is a ∏1 set, which by remark 3.2.3.11, can be taken to be a total recursive sequential

test. Now apply lemma 3.2.3.8.                                                                            

As an application of the preceding material, we shall now prove the strong law of large
numbers for (weakly) random sequences. The probabilistic argument is copied from Feller
[25,259], but we have to complicate the construction to ensure computability.
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3.3.3 Theorem  Let µ = ∏n(1-pn,pn) be a computable product measure. For a recursive and
dense (in (0,1)) set of computable reals ε, the sets

{x ∈ 2ω| ∀m∃n≥m |
n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk| > ε}

are contained in a total recursive sequential test with respect to µ.

Proof  Choose > 0 and rational. Let

Ak:= { x  ∈ 2ω| ∃n(2k-1 < n ≤ 2k & |
n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk| > ε)}

The obvious candidate for a total recursive sequential test is ∩n∪k≥nAk, but there is a slight

problem here: µAk need not be computable, even if ε is rational; for we might not be able to

decide whether

n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk = ε

for pathological µ. One may circumvent this problem by restricting µ to be strongly
computable (definition 3.2.1.1) or by choosing ε such that we know in advance that this

situation cannot occur. Now every number

|
n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk|

is of the form

|
n
m

 – 
n
1∑

k=1

n

pk| =: amn,  where m ≤ n.

Obviously each amn is computable and the sequence (amn)m,n∈  is recursive. By repeated
diagonalisation one may then construct a recursive sequence of computable reals (εj)j∈

such that lim εj = 0 and for all j, n and m: εj ≠ amn.
k→∞

Now if we set, in the definition of Ak, ε equal to εj, we do have that Ak is ∑0, (Ak) is recursive
and µAk is computable (uniformly in k). (A similar argument occurs in 4.4, where we need an

effective version of the Baire Category Theorem to effect the iterated diagonalisation.) The
argument then follows familiar probabilistic lines: if sn is the variance of µ at the nth

coordinate, then sn = pn·(1–pn) and since for all n, sn·n-2  ≤ n-2, ∑nsn·n-2 ≤ ∑nn-2 = π2/6

converges constructively by lemma 3.2.3.1. By Kolmogorov's inequality (Feller [25,234]),
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µAk ≤ 4·εj
−2·s

2
k·2

-2k

hence

∑
k

µAk ≤ 4·εj
-2·∑

k

2-2k·∑
n=1

2
k

sn = 4·εj
-2∑

n

sn·∑
2

k
≥n

2-2k ≤ 8·εj
-2∑

n

sn·n-2.

Now apply lemma 3.3.1.                                                                                                       

The law of the iterated logarithm can be proved similarly, this time using both effective Borel-
Cantelli lemmas and the proof of the law of the iterated logarithm in Feller [25,205]. In
Chapter 4 we shall construct examples of probabilistic laws not hitherto considered in the
literature.

In conclusion of this section, let us investigate what happens if we drop the requirement in
lemma 3.3.3, that the product measure µ be computable. Since there is now no sense in
requiring the µAk to be computable, we may choose rational ε > 0. We then have that the
sequence (Ak) is recursive in µ and that the upper bounds on µAk are given by a recursive
function of k, by the inequality ∑nsn·n-2 ≤ ∑nn-2. This illustrates our claim in 3.2.4, that the

most useful concept of effective probabilistic law for arbitrary µ is obtained if we replace in
definition 3.2.1.2, "∏2" by "∏2 in µ".

3.4 Martingales  As a technical prelude to 3.5, where we examine Martin-Löf's original way
of introducing random sequences, we present a different a characterisation of random
sequences, using Martingales, Ville's formalisation of the concept of a gambling strategy.

Von Mises' axioms for Kollektivs were stated in terms of admissible place selections and did
not mention gambling strategies. The second axiom, however, was explained informally as the
"principle of the excluded gambling strategy"; so it is natural to ask whether all gambling
strategies can be represented as place selections.  As we have seen in 2.6.2, Ville [99] showed
that such is not the case. He argued that place selections left one essential element of gambling
strategies out of consideration: the possibility to vary one's stakes from one bet to the next. We
now give a rapid introduction to the definition and main properties of gambling strategies with
variable stakes, so-called Martingales, and afterwards discuss their interpretation.

The stakes are given by functions B0, B1: 2<ω → + as follows: we bet B0(w) on the event
that w is followed by 0 and B1(w) on the event that w is followed by 1. If V(w) denotes our
capital after the sequence w has occurred, we must have (we exclude loans): B0(w) + B1(w) ≤
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V(w). We say that the game played with strategy V is fair if, for each n, the expected capital
after the n+1th trial is equal to the capital after the nth trial. To formalize this condition of
fairness we need a probability measure µ on 2ω. Having a probability measure, we may then

define Martingales.

3.4.1 Definition  Let µ be a measure on 2ω. V: 2<ω → + is a (positive) Martingale with

respect to µ if V(‹ ›) < ∞ and for all w:

V(w)  =  
µ[w]
µ[w0]

 ·V(w0)  +  
µ[w]
µ[w1]

 ·V(w1).

The relation to the usual probabilistic concept (see e.g. Feller [26] and Neveu [77]) should be
clear: let Bn denote the algebra generated by the cylinders of length n, Vn: 2<ω → + the
function defined by Vn(x) = V(x(n)), then the sequence (Vn) is a Martingale (in the usual
sense) with respect to µ and the filtration (Bn).

We say that a Martingale V is successful on a sequence x if 
limsup V(x(n)) =∞. The
n→∞

following lemma, called Kolmogorov's inequality for Martingales by Feller [26,242], but
which occurs already in Ville [99,100], shows that Martingales (with respect to µ) are almost
never (again with respect to µ) successful.

3.4.2 Lemma  Let V be a Martingale with respect to µ, then for a ∈ +

µ{x ∈ 2ω | ∃n (V(x(n)) > a)} ≤  min (
a

V(< >)
,1).

As a consequence,

µ{x ∈ 2ω| limsup
n→∞

V(x(n)) = ∞} = 0.

3.4.3 Examples
1. Let Φ be a place selection (see definition 2.5.1.1). Choose p,q ∈ (0,1). Define a Martingale
Vq with respect to the measure µp by
  (i) Vq(‹␣›) = 1
 (ii) if φ(w) = 0, let Vq(w) = Vq(w0) = Vq(w1)
(iii) if φ(w) = 1, put Vq(w0) = Vq(w)·(1–q)/(1–p) and Vq(w1) = Vq(w)·q/p.
Then Vq is a Martingale with respect to µp, and one can show that Φ(x) ∉ LLN(p) iff for
some q, limsup Vq(x(n)) = ∞ (see Schnorr [88,78-82]). (For the definition of LLN(p),

n→∞

see 2.3.2.3.) So Martingales are indeed generalisations of place selections.
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2.  Likelihood ratios. Let  µ0, µ1 be probability measures on 2ω. Put V(w) = µ0[w]/µ1[w], then
V is called the likelihood ratio of µ0 and µ1 and V is a Martingale with respect to µ1:

µ1[w]

µ1[w0]
 ·  

µ1[w0]

µ0[w0]
  +  

µ1[w]

µ1[w1]
 ·  

µ1[w1]

µ0[w1]
  =  

µ1[w]

µ0[w]
.

Note that some of the Martingales V defined in 1. are also of this form: if the place selection
Φ is the identity, Vq(w) = µq[w]/µp[w]. In fact, any Martingale in the sense of definition 3.4.1

can be written in the form of a likelihood ratio: if V is a Martingale with respect to µ with
V(‹␣›) = 1, and if we define µ'[w] := V(w)·µ[w], them µ' determines a probability measure and
V is the likelihood ratio of µ' and µ.

In order to obtain a rich supply of recursive sequential tests, we now introduce some
computability considerations, in particular a weak notion of computability for measures.

3.4.4. Definition  A measure µ on is called subcomputable if the set

{<w,a> ∈ 2<ω ×  | µ[w] > a}
is ∑1. A Martingale V is called subcomputable if the set

{<w,a>  ∈ 2<ω ×  | V(w) > a  }
is ∑1.

These concepts are not very natural from the point of view of probability theory, but the
representation of recursive sequential tests in terms of Martingales will make clear why they
are useful. The following two lemmas can be found in Schnorr [88, 38-44], but, stripped of
their recursive content, they go back to Ville [99,87-93].

3.4.5 Lemma  Let V be a subcomputable Martingale with respect to some measure µ. Then
{x| ∀k∃nV(x(n)) > 2k } is a recursive sequential test with respect to µ.

Proof  By subcomputability, the set {x| ∀k∃nV(x(n)) > 2k } is ∏2. Without loss of generality
we may assume V(‹␣›) ≤1; then by lemma 3.4.2, µ{x| ∃nV(x(n)) > 2k } ≤ 2–k.  

3.4.6 Example  Likelihood ratios. Let µ0, µ1 be computable measures on such that µ1 is not
absolutely continuous with respect to  µ0. Then there exists a recursive sequential test N with
respect to µ0 such that µ1N > 0. Indeed, put N = {x| ∀k∃nV(x(n)) > 2k}, where V(w) =
µ1[w]/µ0[w]. By the preceding lemma, N is a recursive sequential test with respect to µ0. The
Lebesgue decomposition of µ1 with respect to µ0 can be written as
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µ1 = ∫lim
n→∞

V(x(n))dµ0(x)   +   1Ndµ1
,

so that if µ1 is not absolutely continuous with respect to µ0, then µ1N > 0.

We now prove a converse to lemma 3.4.5.

3.4.7 Lemma  Let N be a recursive sequential test with respect to some computable measure
µ. Then there exists a subcomputable Martingale V with respect to µ such that N ⊆ {x|
∀k∃nV(x(n)) > 2k}.

Proof  Write N = ∩nOn as in definition 3.2.1.2. Put V(w) := ∑nn·µ([w]∩On)·µ[w]–1. Then V

is a Martingale with respect to µ:

µ[w]
µ[w0]

 ·  V(w0) + 
µ[w]
µ[w1]

 ·  V(w1) =

µ[w]
µ[w0]∑

n

n·µ([w0]∩On)·µ[w0   +  
µ[w]

µ[w1]∑
n

n·µ([w1]∩On)·µ[w]–1 1]–1 =  V(w).

Furthermore, V(‹␣›) = ∑nn·µOn  ≤  ∑nn·2–n  < ∞. V is subcomputable since for any  set O in
∑1, {<w,a> ∈ 2<ω × | µ([w]∩O) > a} is itself ∑1.
Lastly, N ⊆ {x| ∀k∃nV(x(n)) > 2k}:

if x ∈ ∩nOn, then ∀n∃m≥n∀m'≥m (µ([x(m')]∩O) = µ[x(m')]), which implies

∀n∃m≥n∀m'≥m (V(x(m')) ≥ n) and this in turn implies lim V(x(n)) = ∞.                           
n→∞

The preceding lemmas may be combined to obtain a characterisation of random sequences
along the lines suggested by Ville, namely as sequences which do not admit a successful
gambling strategy (where the latter are taken to be Martingales):

3.4.8 Lemma  Let µ be a computable measure. Then x ∈ R(µ) iff for all subcomputable

Martingales V with respect to µ: limsup V(x(n)) < ∞. (Note that, as a consequence of
n→∞

the proof, the latter condition is in turn equivalent to: for all subcomputable Martingales V
with respect to µ: lim V(x(n)) < ∞.)

n→∞

We may now give a more precise discussion of Ville's objection, that not all gambling
strategies can be represented as place selections. Recall that Ville could construct x ∈ 2ω

which satisfy (where C( ) is the set of Church-random sequences defined in 2.5.1.7.):
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x ∈ C( ) and for all n, 
n
1∑

k=1

n

xk ≥ .

The second property is in contradiction with the law of the iterated logarithm. By the results in
section 3.3, the set of sequences not satsfying the law of the iterated logarithm (for the
measure λ) is a (total) recursive sequential test with respect to λ. The last lemma then
implies that for some Martingale V with respect to λ: lim(sup)n→∞ V(x(n)) = ∞. This

Martingale V cannot be obtained from a place selection (in contradistinction to the
Martingales Vq defined in example 3.4.3). Hence, to give a precise formulation of the

"principle of the excluded gambling strategy", one should define Kollektivs using Martingales,
not just place selections.
We do not think that this result is a problem for von Mises, who after all does not require that
there is no successful gambling strategy, of whatever kind, on a Kollektiv. Furthermore, Ville's
argument assumes without further ado that Martingales constitute a good formalisation of fair
games and indeed that the notion of fairness is itself clear and unproblematic. But that may not
be so.

We formulated fairness as follows: a game is fair if, for each n, the expected capital after the
n+1th trial is equal to the capital after the nth trial. But taking expectations requires some
probability measure; and which probability measure should one consider? Adopting the
standpoint of strict frequentism, one might be inclined to say that expectations have to be
computed with respect to the measures Pn on 2n, induced by Ville's Kollektiv x via
combination as explained in 2.4 (so that in this case the measures Pn are uniform distributions

on 2n). In other words, one might think that the pay-offs for a game on x should be determined
by the limiting relative frequencies in x. Ville's example shows that, when two people agree to
play a game according to this  concept of fairness, one of them may have a successful
gambling strategy on Kollektivs of the type constructed by Ville. What's more, in Chapter 4
we shall show that there exist product measures µ =
∏n(1–pn,pn) with µC( ) = 1, but µ{x| limsup V(x(n)) = ∞} = 1, for some computable

n→∞

Martingale V (for instance, one may take pn = (1 + (n+1)- )). Thus, the first tentative

"operational" definition of fairness apparently has to be rejected: although it applies for games
with fixed stakes (i.e. place selections), it is not applicable to games with variable stakes.
However, it does not seem to follow from the strict frequency interpretation that this is the
only way in which fairness can be defined.

The intuitive idea behind fairness seems to be that it makes sense to speak of "probability of
heads at the n toss". This notion of fairness is clear on the propensity interpretation (or perhaps
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one should say: not less clear than the propensity interpretation), so it is not surprising that
Ville has no qualms about fairness.  But, as we have seen in the previous chapter, from the
point of view of strict frequentism  one may speak of probabilities at specific coordinates only
with reference to Kollektivs ξ ∈ (2ω)ω. In particular, one must consider infinitely many

(infinite) runs of the mechanism that produces the Kollektivs (with which the game has to be
played) and then count the limiting relative frequencies in each coordinate; and these

probabilities must determine the pay-offs. Now with this definition, a Martingale with respect
to the uniform distribution would no longer be considered fair for a game played with
Kollektivs of Ville's type: if each ξk is of this type, then the probability of 1 at the nth

coordinate will be larger than .
In conclusion, we may say that Ville's argument is not relevant for the question how to define
Kollektivs, but rather for the examination of the probabilistic assumptions that go into the
intuitive notion of a fair game. For games with variable stakes, fairness seems to involve a
reference to probabilities at some specified coordinate. An adherent of the propensity
interpretation will have no difficulty recognizing such probabilities, but the strict frequentist
can only introduce them using a Kollektiv of Kollektivs. If for some reason or other his data
consist in only one Kollektiv x ∈ 2ω, in other words, if his data consist only in a distribution

over {0,1}, he cannot decide whether some proposed game is in fact fair. To some, the strict
frequentist conception of fairness may seem artificial; but this seeming unnaturalness serves to
confirm the impression that the instinctively adopted interpretation of probability is the
propensity interpretation. Interestingly, the only reference to Martingales that I could find in
von Mises' published works expresses his incomprehension:

Jusqu'ici je n'ai pu encore saisir l'idée essentielle qui serait à la base de la notion de
"martingale" et de toute la théorie de M. Ville. Mais je ne doute point que, une fois son livre
paru, on s'apercevra à quel point il aurait réussi à concilier les fondements classiques du
calcul des probabilités avec la notion moderne du collectif [72,67].

Needless to say, there are no technical obstacles to a treatment of Martingales in von Mises'
theory; as for the interpretation of the results obtained, we need not repeat here the
observations made in 2.4.3 à propos of the strong limit laws.

We now continue our discussion of the technical aspects of the relationship between
randomness and Martingales. In section 3.5 we need more detailed information on the
Martingale constructed in lemma 3.4.7. This construction has the following analytical
meaning:

3.4.9 Corollary  Let N be a recursive sequential test with respect to µ and let V be the
Martingale constructed in the proof of lemma 3.4.7. If we put µ'[w] := V(w)·µ[w], then µ' is
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absolutely continuous with respect to µ.

Proof  Put

f(x) := ∑
n

n·1On
(x)

then f is in L1(µ) and f is the density of µ' with respect to µ:

µ' [w] = ∑
n

n·µ([w]∩On) = ∫
[w]

fdµ.

If µ is Lebesgue measure, one can show that the distribution function of µ' has derivative
equal to +∞ at all points of N.                                                                                                

The parallel theory for total recursive sequential tests is considerably less smooth.

3.4.10 Definition  The Martingale V is computable if for some recursive function          g:
2<ω× ω → : ∀n∀w |V(w) – g(w,n)| < 2-n.

Inspecting the proof of lemma 3.4.7 we see that

3.4.11 Lemma  Let µ be a computable measure and let N be a total recursive sequential test
with respect to µ. Then there exists a computable Martingale V such that N is contained in
{x|∀k∃n V(x(n)) > 2k}.

Proof  Write N = ∩nOn as in definition 3.2.1.3 and define V as in lemma 3.4.7. It suffices to

show that the expression ∑nn·µ([w]∩On) is computable uniformly in w. Since n·µ([w]∩On) ≤
n·µOn and ∑nn·µOn is computable, this follows from lemma 3.2.3.1.      

In this case the converse, namely
If V is a computable Martingale with respect to a computable measure µ, then
N = {x|∀k∃n V(x(n)) > 2k} is a total recursive sequential test with respect to

µ,

causes some trouble. Obviously N, so defined, is a recursive sequential test; but we also need
to show that µ{x|∃n V(x(n)) > 2k} is computable (uniformly in k). The obvious way to do this,
is to use lemma 3.2.3.1 and first passage times: µ{x|∃n V(x(n)) > 2k} = ∑mµ{x|V(x(m–1)) ≤
2k < V(x(m))}; and one could hope that there is some recursive sequence of computable reals
(am) such that µ{x|V(x(m–1)) ≤ 2k < V(x(m))} ≤ am and ∑mam converges recursively.
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However, it is impossible to choose such a sequence (am) independent of the Martingale under

consideration, since for each m, one may construct a Martingale V' such that µ{x|V'(x(m–1)) ≤
2k < V'(x(m))} = 2–k.. Hence, knowledge of the specific structure of the Martingale is
necessary. This is the reason why the Martingale convergence theorem in Bishop [5,225] has
to be proven under additional assumptions on the Martingales.

In order to circumvent this problem, Schnorr [88,70-7] proposed a different definition of the
total recursive sequential tests associated with computable Martingales.

3.4.12 Definition  Let f:  → + be a computable function, V a computable Martingale.

The set N = {x| limsup V(x(n))·f(n)–1 > 0} is called the nullset of order f associated to V.
n→∞

In other words, only those sequences are put into the nullset on which V can grow sufficiently
fast. With the help of the following lemma one may then show that N is indeed contained in a
total recursive sequential test.

3.4.13 Lemma  (Schnorr [88,72]) Let V be a computable Martingale. For any rational ε > 0,
one can construct a recursive Martingale V': 2<ω → + such that for all w, V'(w) ≥ V(w) and
V'(w) – V(w) ≤ ε.

3.4.14 Lemma  Let V be a computable Martingale with respect to µ and let be N as in
definition 3.4.12. Then N is contained in a total recursive sequential test with respect to µ.

Sketch of proof  The total recursive sequential test can be defined by

M = {x|∀k∃n (V'(x(n)) > 2k·V'(‹␣›) & V'(x(n)) > f(n))},

where V' is the Martingale constructed in the previous lemma. For a verification that M is
indeed a total recursive sequential test, see Schnorr [88,73]4.                                               

Although Schnorr claims that the concept of randomness itself suggests consideration of
Martingales together with order functions ( a sequence should be non-random only if we can
detect the non-randomness sufficiently fast [88,70]), we think that definition 3.4.12 is
interesting only in those cases in which it follows from the definition  of a Martingale V that it
must grow with speed f on some given nullset. Schnorr has established some results of this
kind (see chapter 10 of [88]). In other cases, Schnorr's way out seems to be adhoc.
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The considerations of this section therefore suggest a concept of randomness which might be
different from that of Schnorr.

3.4.15 Definition  Let µ be a computable measure. x is called Martingale-random with respect
to µ (notation: x ∈ RM(µ)) if for all computable Martingales V with respect to µ:

limsup V(x(n)) < ∞.
n→∞

By lemma 3.4.11, RM(µ) ⊆ Rw(µ); it is difficult to say whether we in fact have equality.

In  conclusion of this section we point out that tests of the form {x|∀k∃n V(x(n)) > 2k}, for

computable Martingales V,  share one of Schnorr's desiderata with total recursive sequential
tests: the existence of recursive sequences outside these sets (cf. corollary 3.2.3.7 and the
discussion which follows it).

3.4.16 Lemma  Let V be a computable Martingale. Then for some recursive x:
limsup V(x(n)) < ∞.
n→∞

Proof  Let V' be the Martingale constructed in lemma 3.4.13. Choose rational  δ > 0 and
define a recursive binary tree T by T := [w| V'(w) < V'(‹␣›) + δ}. For every w ∈ T, w0 ∈ T or
w1 ∈ T by the Martingale property, and we can decide which by the computability of V.

Consequently the leftmost infinite branch of T is recursive.                                           
3.5 Randomness via statistical tests

Originally, Martin-Löf [62] introduced the set of random sequences R(λ) as follows: a
sequence is random wirh respect to if λ it is not rejected at arbitrarily small levels of
significance by any (effective) statistical test for λ. Since this way of introducing randomness

raises some interesting problems of its own, we shall now give it a separate treatment. To do
so, we must first recall some elementary notions concerning statistical tests. As always, we
consider an experiment (or measurement) with two outcomes, 0 and 1.

3.5.1 Types of statistical tests  We want to test the hypothesis H0, that the probability of the
outcome 1 of an experiment equals p. We may divide tests of H0 into two classes:
(a) We may distinguish between tests of H0 which refer to some alternative hypothesis, the so-
called hypothesis tests, and significance tests, which reject H0 when an outcome sequence is
observed which has sufficiently low probability under the hypothesis H0, without

consideration of alternative hypotheses;
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(b) We may also distinguish between tests which use a fixed sample size, i.e. tests where the
number of repetitions of the experiment is fixed before the execution of the experiment, and
tests which are sequential, where the data themselves decide how large the sample is to be.

We now proceed to a detailed description. Let us first assume that we have a fixed sample
size, say n; hence the set of possible outcomes, the sample space, is 2n. Under the hypothesis
H0 an outcome sequence w in 2n is assigned probability µp[w]5. In essence, a significance test
for the hypothesis H0 consists in a partition of the sample space 2n in disjoint pieces S0 and S1.
Observation of an outcome sequence w in S0 leads to rejection of H0. Observation of w in S1

does not  lead to rejection of H (in practice, this will mean that H1 is given the benefit of the
doubt). S0 is often called a critical region. The probability of S0 under H0, namely

∑
w∈S0

µ [w]p

is called the size of the test and can be interpreted as the relative frequency of unwarranted
rejections of H0 were this test to be executed very often. Obviously we want the size to be

small; how small depends on the importance we attach to the hypothesis.
Usually S0 and S1 are determined via a test statistic, a function t: 2<ω → + which can be seen

as a measure of the discrepancy between hypothesis and data. Accordingly, the critical region
S0 is of the form:

S0 = {w ∈ 2n | t(w) > a}
where a is adjusted so as to have, for some preassigned significance level  α,

∑
t(w)>a

µp[w] ≤ α.

How should we choose such test statistics? Obviously not every S0 of small probability can
reasonably be interpreted as a critical region for H0; e.g. for n = 1000 and p = , the set of

words in 2n with 500 ones has very small probability, but to take this set for our critical region
would be a silly choice indeed.
This line of reasoning shows that the choice of a test statistic is a delicate matter, and it is still
a subject of lively debate whether this choice can be effected at all without the consideration
of hypotheses alternative to H0. In the survey by Cox [18], the issue is stated as follows:

The central philosophical point concerns whether it is sensible to find evidence against a
hypothesis solely because an outcome of relatively low probability has occurred, and without
regard to possible alternative explanations. If the labelling of the sample points in the sample
space is totally arbitrary and no other information is available, there seems to be no option
but to use the absolute test [i.e. significance test in the sense defined above]; such situations
do, however, seem quite exceptional in applications [18,53].
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Cox' first question is answered with an emphatic no by the founding fathers of modern
statistical theory, Neyman and Pearson:

It is indeed obvious, upon a little consideration, that the mere fact that a particular sample
may be expected to occur very rarely in sampling from [a certain population] would not in
itself justify the rejection of the hypothesis that it had been so drawn [from that population],
if there were no other more probable hypothesis conceivable [78,4].

It is clear from Martin-Löf's statistical work [65;66] that he rejects this view (or perhaps one
should say that his concept of "alternative hypothesis" is much wider than that of Neyman and
Pearson); but let us first expound the view of Neyman and Pearson.

To eliminate the possibility of disastrous choices of the test statistic, Neyman and Pearson
propose to introduce the consideration of alternative hypotheses. In the simplest case, we have
only one alternative H1 to H0, where H1 states that the outcome 1 has  a different probability q
≠ p. A test for H1 against H0 is again specified by a partition (S0,S1) of 2n: S0 corresponds to
rejection of H0 (and acceptance of H1) and S1 corresponds to acceptance of H0  (and rejection
of H1).
In this case, there are two possibilities for wrong decisions: rejecting H0 when it is true (type I

error ; the probability of type I error is called the size of the test) and accepting H1 when it is

in fact false (type II error; 1 – the probability of type II error is called the power of the test) .
As in the case of a significance test, the probability of type I error is equal to

∑
w∈S0

µp[w].

But whereas it makes no sense to speak of type II error for a significance test, for lack of an
alternative hypothesis, we may compute the probability of type II error here as

∑
w∈S1

µq[w].

The interpretation of power is the same is that of size: it measures the performance of the test
were it used a large number of times.

The distinction between type I and type II errors allows us to discredit the test defined on p.
81, which rejects H0: p = , upon observation of an outcome sequence of length 1000 with 500

ones. Clearly, in this case, for any q ≠ ,

∑
w∈S1

µq[w]

is large; and it will be required of a good test that both types of errors are simultaneously small
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(they are of course not independent).

Call a test of H0 against H1 most powerful of level α if

∑
w∈S1

µq[w]

is as small as is compatible with

∑
w∈S0

µp [w] ≤ α.

In this particular situation, most powerful tests exist and can even be given explicitly; this is
the content of the

Neyman-Pearson Lemma6  For suitable constant c (depending on α, the sample size n as
well as on the hypotheses involved): if a partition  (S0,S1) of 2n is defined by

S0 = {w ∈ 2n| 
µp[w]

µq[w]
 > c},  S1 = 2n – S0,

then (S0,S1) is the most powerful level α test of H0 against H1.

The preceding exposition of significance tests and hypothesis tests proceeded on the
assumption of a fixed sample size. We now relax this assumption and generalize the
description to situations in which the sample size is not fixed beforehand. The following
description of sequential tests is borrowed from Wald [102,22].
An essential feature of the sequential test, as distinguished from the [fixed sample size test] is
that the number of observations required by the sequential test depends on the outcome of the
observations and is therefore not predetermined but a random variable. The sequential method
of testing a hypothesis H may be descibed as follows. A rule is given for making one of the
following decisions at any stage of the experiment (at the mth trial for each integral value of
m):
(1) to accept the hypothesis H
(2) to reject the hypothesis H
(3) to continue the experiment by making an additional observation.
Thus, such a test procedure is carried out sequentially. On the basis of the first observation,
one of the aforementioned three decisions is made. If the first or the second decision is made,
the process is terminated. If the third decision is made, a second trial is performed [...]. The
process is continued until either the first or the second decision is made. The number n of
observations required by such a test procedure is a random variable, since the value of n
depends on the outcome of the observations.
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Formally, a sequential test for hypothesis testing may be described as follows. We have  a test
statistic t: 2<ω → +and constants A,B such that
(1) if t(w) > A and for all v⊂w, B ≤␣t(v) ≤␣A, reject H0 (accept H1);
(2) if t(w) < B and for all v⊂w, B ≤ t(v) ≤ A, reject H1 (accept H0);
(3) if for all v⊆w, B ≤ t(v) ≤ A, go on testing.
If the measure µp corresponds to H0, and µq to H1, the probabilities of type I and type II errors

can be computed as follows:
    size  = µp{x| ∃n (t(x(n)) > A & ∀m<n (B ≤ t(x(m)) ≤ A))}
    1 – power = µq{x| ∃n (t(x(n)) < B & ∀m<n (B ≤ t(x(m)) ≤ A))}.

Obviously, we want both types of errors to be as small as possible. Again, for the simple
situation of testing one hypothesis against another, there is an optimum result: for given
significance level α, one can determine constants A and B such that the likelihood ratio test

defined by putting t(w):= µq[w]/µp[w] in the decision rules above, is the most powerful test of
significance level α.

In a  sequential significance test we are concerned with one hypothesis H0 only. In this case
the set-up is as follows: we have a test statistic t and a constant A such that H0 is rejected on

the basis of data w if t(w) > A; otherwise we go on testing. Of course A is adjusted so as to
achieve a prescribed significance level α.

The difficulties we pointed out for fixed sample size tests seem to be even more severe in the
sequential case. Not only does the choice of a test statistic present a problem in the absence of
an alternative hypothesis; but there seems to be no rational basis for a decision to give H0 the

benefit of the doubt, since there does not appear to be  a non-arbitrary way to determine a
constant B such t(w) < B entails the decision to stop testing.
So it seems that sequential significance tests are useful for rejecting hypotheses, rather than for
accepting them. This point should be borne in mind when we discuss Martin-Löf's definition
of randomness via statistical tests.

3.5.2 Effective statistical tests  It is now easy to view definition 3.2.1.2 as a formalisation of
sequential (significance and hypothesis) tests. Let µ be a computable measure on 2ω. µ need
not be of the form µp, since we also wish to study tests applicable in situations not involving

independent repetitions of the same experiment. We interpret µ as the nullhypothesis to be
tested. Typically, µ contains information about the underlying model (Markov chain,
independent repetitions) as well as about the parameters of the model. We are interested in
arbitrarily small levels of significance; we may take these levels to be of the form 2-k, k ∈ .
Now, in practice, a test statistic t: 2<ω→ + will be a computable function. This implies that
the set {x|∃n (t(x(n)) > A & ∀m<n (t(x(n)) ≤ A))} is ∑1 for suitable choices of A, namely for
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those computable A which do not occur in the range of t. As in section 3.3.3, we may
construct a recursive and dense (in +) set of such A's by iterated diagonalisation.
Clearly, if (Ak)k∈  is a recursive set of computable reals which do not occur in the range of t,

the set {x|∀k∃n (t(x(n)) > Ak & ∀m<n (t(x(m)) ≤ Ak))} is ∏2.

If the sequence (Ak) is such that µ{x|∃n (t(x(n)) > Ak & ∀m<n (t(x(m)) ≤ Ak))} ≤ 2-k, we have

arrived at a recursive sequential test with respect to µ. This, in a nutshell, is the statistical
motivation of definition 3.2.1.2. Note that the test statistics are subject only to restrictions of a
recursion theoretic nature.

3.5.3 Discussion  Seeing that every effective statistical test corresponds to a recursive
sequential test, we may now ask for a converse: does every recursive sequential test determine
an acceptable statistical test? To settle this question,we have to investigate the influence of the
reservations concerning  significance tests, expressed above, on the proposed definition of
randomness. In essence, these reservations come down to this: it is impossible to construct
good test statistics without consideration of alternative hypotheses. "Good" here means: the
test based on the statistic should not reject the hypothesis when it is intuitively true.
This danger can be avoided if we require that the critical region is in a sense minimal: only
reject the nullhypothesis on the basis of data w if w is more plausible on some other
hypothesis. In Lévy's words

Si donc en présence d'une suite remarquable nous excluons la première hypothèse [of the
random origin of the data] ce n'est pas que le hasard ait a priori moins de chance de la
produire qu'une autre; c'est qu'une cause autre que le hasard a plus de chance de la produire
[57,92 ].

Does the alternative hypothesis necessarily have to be of probabilistic origin, stating a
different value of a parameter, or perhaps a different model? In other words, should the
condition "if w is more plausible on some other hypothesis" be interpreted as "if w is more
probable on some other hypothesis"? The talk of chance in the above quotation strongly
suggests so and, as we have seen, this was certainly the view of Neyman and Pearson.

If this is indeed the case, we may be led to a notion of randomness which is likely to be
different from that of Martin-Löf (or Schnorr), depending upon the definition of "alternative
hypothesis" in this abstract setting. The function of the alternative hypothesis ν is to assign a

high probability to events to which µ assigns a low probability. If we take "high" and "low" in
an absolute sense, so that "high" means "close to 1" and "low" "close to 0", we may regard ν
as an alternative to µ if ν⊥µ.
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3.5.3.1 Definition  Let µ be a computable measure. Put

RH(µ) := {x | for all subcomputable measures ν: limsup
n→∞ µ[x(n)]

ν[x(n)]
 < ∞}.

3.5.3.2 Remark  RMH(µ) may be defined as RM(µ), except that we require the measures to be

computable. This is obviously the more natural concept, but in this case we have trivially R(µ)
⊂ RMH(µ), since, by lemma 3.4.16, the diagonalisation argument of Theorem 3.2.3.10 goes

through as well in this case. To guard oneself against a trivial solution of the problem, whether
a restriction to hypothesis tests enlarges the class of random sequences, one must therefore
allow the alternatives to µ to be subcomputable only. The subscript "H" refers to "hypothesis
testing"; RMH(µ) should be interpreted as "the analogue of RM(µ) (definition 3.4.15) when we
consider hypothesis tests only". For reasons expounded at length in section 3.4, Rw(µ)

probably has no analogue in this sense.

The following lemma shows that sequences in RH(µp) and RMH(µp) have some reasonable

randomness properties:

3.5.3.3 Lemma  If p ∈ (0,1) is a computable real, then RMH(µp) ⊆ LLN(p); moreover,
RMH(µp) is invariant under recursive place selections whose domain has full measure.

Proof  Consider for q ∈ (-1,1)∩  the Martingale V defined by

Vq(w) :=
µp[w]

µq[w]
 .

In chapter 10 of [88] Schnorr shows that Nq := {x| ∀k∃nVq(x(n)) > 2k} is a total recursive
sequential test with respect to µp and that x ∈ LLN(p)c iff for some q, x ∈ Nq. Obviously
µq⊥µp. If Φ is a recursive place selection whose domain has full measure, then µqΦ−1 = µq, so
µqΦ−1 is also singular with respect to µp. Now apply Schnorr's result with Φx instead of x.

By lemma 3.4.5, we have R(µ) ⊆ RH(µ) and it is likely that in fact R(µ) ⊂ RH(µ). To prove

equality, for each recursive sequential test N with respect to µ, one must be able to construct a
computable measure ν⊥µ, such that N is contained in

{x | limsup
n→∞ µ[x(n)]

ν[x(n)]
 = ∞}.

This is probably impossible; but in section 3.4 we showed that recursive sequential tests,
which were introduced by Martin-Löf as significance tests, can always be represented via a
likelihood ratio of measures ν and µ, if we allow that  ν be absolutely continuous with respect

to µ (lemma 3.4.7 and corollary 3.4.9). The meaning of the condition
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limsup
n→∞ µ[x(n)]

ν[x(n)]
 = ∞

for absolutely continuous ν with respect to µ, is that neighbourhoods of x have probabilities
under ν which are relatively much larger than their probabilities under µ; in an absolute sense,

however, both probabilities may be small. If this concept of alternative hypothesis is
reasonable, then so is Martin-Löf's definition of randomness (modulo the propensity
interpretation). We leave this question open.

3.6 Conclusion  Using recursion theory, Martin-Löf has provided a definition of (effective)
statistical test and of randomness of great generality. How good a definition of randomness
this is, depends, among else, on
– the interpretation of probability
– the interpretation of statistical tests.
We need not here repeat at length the remarks on the foundations of probability made in
Chapter 2 and in the introduction to this chapter. For the sake of argument, we shall assume
the propensity interpretation and the idea that randomness should be defined as satisfaction of
certain statistical laws; let us see how far Martin-Löf succeeds in formalizing this idea.

As regards the interpretation of statistical tests, the very generality of Martin-Löf's definition
presents a problem. There is a glaring contrast between the careful, piecemeal discussion of
statistical tests in the literature (see for instance Cox [18] and Barnett [3]) and Martin-Löf's
sweeping generalisation. It seems to me that there is no use in trying to establish once and for
all all properties of random sequences if we cannot survey this totality and if there are no
general arguments for the choice of a particular class of properties. In this case, these
arguments would have to be supplied by recursion theory. Now the prospects for such general
arguments look bleak: without too much effort we could devise several alternatives to the
definitions proposed by Martin-Löf and Schnorr.

If these general arguments do not exist, the use of recursion theory may be rather inessential
here. After the discovery of a statistical law which should be true of random sequences, we
may determine its recursion theoretic structure; but this structure seems to be rather accidental.
It is open to doubt whether there really exists such an intimate connection between
randomness and recursion theory. Martin-Löf and Schnorr never seem to question this
assumption. We saw in Chapter 2 that the only argument given in favour of such an intimate
connection, the identification of admissible and lawlike place selections, is defective and that
other concepts, such as entropy, seem to be more relevant. In general, hierarchies which have
proved to be useful and natural in recursion theory or mathematical logic, might be unnatural
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or even misleading elsewhere. But if that holds true in this case, a definition of randomness
should be founded on principles which are less formal and are more concerned with the
content of probabilistic laws than those of Martin-Löf.

Also, if more and more concrete examples pile up, there is no guarantee that they will always
fit in the straitjacket of definitions 3.2.1.2 and 3.2.1.3. Our remarks on the ergodic theorem (in
3.2.4) and on Martingales (in 3.4) provide cases in point. We don't have much sympathy either
for attempts, reviewed in 3.2.4, to fix an upper bound on the arithmetical complexity of
statistical tests which is so large that it is inconceivable that it will ever be attained; and even
if it were attained, we might have included too many properties, witness the discussion on
statistical tests.

We conclude that Martin-Löf's definition provides nothing in the way of a canonical choice of
properties of randomness. We shall therefore take definitions 3.2.1.2 and 3.2.1.3 with a grain
of salt and certainly not as the ultimate truth concerning randomness. If, in the sequel, we shall
nonetheless use these definitions, it is because they provide a convenient formalisation of a
view which is diametrically opposed to that of von Mises; and as such they will be
investigated in Chapter 4.

Notes to Chapter 3

1. For an argument to the effect that the ergodic theorem is not constructively valid, see
Bishop [5,233].
2. Schnorr's claim [88,37] that S can be chosen to be recursive is false; the universal recursive
sequential test provides a counterexample. This is a consequence of the following Lemma
Suppose the ∑1 set O ≠ 2ω can be written as the union of a recursive set of cylinders [w]. Then

there exists a recursive sequence in Oc.

Proof  Let O = ∪n[wn]. We may assume that the recursive set {wn | n ∈ } is sequential, i.e.

that every prolongation of some wn occurs among the wn. Oc is a non-empty ∏1 set, which is

given by a recursive binary tree T. Determine a recursive subtree T' of T by throwing out all
the wn. No infinite branch of T is lost in this process, since no infinite branch of T passes
through a wn. Now every word of T' is admissible in the sense of (the proof of) theorem
3.2.2.2: for if no infinite branch of T' passes through a word v, this means that every infinite
branch starting with v must belong to O; but then v must be one of the wn. Since the set of
admissible words of T' is recursive, the leftmost infinite branch of T' is recursive.
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Note that a ∑1 set may be the union of a recursive set of cylinders without having, say,

computable Lebesgue measure.
3. A sequence (an)n of computable reals converges recursively to a computable real a if there
exists a total recursive function g: ω → ω such that for all k,n: n≥g(k) implies |a – an| < 2-k.

This is the usual constructive definition of convergence couched in recursion theoretic
terminology.
4. Since Schnorr wants to consider only Martingales together with some function indicating
growth, he must show that every total recursive sequential test is contained in a set of the form
defined in 3.4.12. His Satz (9.5) [88,74] purports to establish this, but the proof contains a
mistake.
5. This is so by definition if we assume von Mises' concept of probability. Otherwise, we have
to add that the repetitions of the experiment are assumed to be independent.
6. We disregard subtleties having to do with randomization at the boundary to achieve the
exact significance level α.
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4 Place Selections Revisited

4.1 Introduction  Now that we have definitions of randomness based on two entirely different
ideas, to wit, place selections (Chapter 2) and statistical tests (Chapter 3), we must investigate
the relations between these definitions. The main philosophical differences are summarized in
the Introduction to Chapter 3 and we shall not repeat them here. In this chapter, we shall be
interested primarily in the extensional relation between von Mises' proposal and that of
Martin-Löf. Prima facie, an obstacle to a mathematical investigation of this relation is that, as
it stands, von Mises' definition is not formal and does not lead to a well-defined set of random
sequences, whereas Martin-Löf's definition does determine such a set. We therefore cannot in
any literal sense determine the extensional relationship, but we may ask, for example, how one
could introduce admissible place selections in Martin-Löf's framework (note that Martin-Löf's
definition as such accords no privileged position to place selections). We shall do so in two
steps: sections 4.2-5 contain a quantitative study of the behaviour of random sequences under
place selections and 5.6 adds admissibility.
It is perhaps best to view these investigations along the following lines: we take some
mathematical model for Kollektivs, in this case  random sequences (according to any of the
definitions of Chapter 3) and we investigate their adequacy for the expression of von Mises'
ideas. In a similar vein, Kamae [40] chooses as a formalisation of Kollektivs the Bernoulli
sequences (definition 2.5.1.3) and investigates how these sequences behave under a special
class of admissible place selections, the entropy zero sequences (see section 5.6). We do not
claim finality for any of these formalisations; we are interested in constructing mathematical
models  for some of von Mises' ideas, even if these models are only partial or in some respects
defective.
While the results of 4.5 show that random sequences share many of the desiderata of
Kollektivs, section 4.6 elaborates on Ville's theorem (2.6.2.2) and shows that there are some
properties of random sequences which need not be satsfied by Kollektivs, when these are
defined using some countable set of place selections. The law of the iterated logarithm is one
such property, but not the only one. The novelty of the argument of 4.6 is mainly that it is
based as directly as possible on the philosophical differences between strict frequentism and
the propensity interpretation uncovered in Chapter 2.
We now give an outline of the contents of this chapter. In sections 4.2-5 we state precisely and
prove the "principle of homogeneity" first mentioned in 2.5: if x is a Kollektiv with respect to

(1–p,p), so is almost every subsequence of x. The main result is Theorem 4.5.2, the version of
the principle adapted to Martin-Löf's definition of randomness. The really hard part is 4.4,
where we prove various effective versions of Fubini's theorem. In section 4.6 we give a new
proof of Ville's theorem, which says that for any countable set of place selections , one can
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construct a Kollektiv x with respect to which approaches its limiting relative frequency 
from above, thus contradicting the law of the iterated logarithm. The philosophical
significance of Ville's theorem was discussed at length in 2.6.2.2. The idea of the new proof is
to construct a non-atomic measure µ on 2ω such that µ(C( )∩Rw( )c) = 1, where C( ) denotes

Church-randomness (with parameter ). We then have at one stroke continuously many
Church-random sequences which are not (weakly) random, but the main advantage of the
proof is that it also provides an explanation of this phenomenon.

4.2 Place selections from a modern perspective  The starting point of our investigations is
proposition 2.3.2.2 (von Mises [67,58]):

An admissibly chosen subsequence of a Kollektiv is again a Kollektiv, with

the same distribution.

Using recursive place selections one obtains countably many subsequences of a Kollektiv
which are themselves Kollektivs, but we noted in 2.5.2 that a "true" Kollektiv was likely to
satisfy a stronger property, dubbed the "principle of homogeneity":

If x is a Kollektiv with respect to (1–p,p), then so is almost every subsequence

of x.

To put the conjecture in a form susceptible to mathematical analysis, we recall some notation
from Chapter 2.

4.2.1 Definition  Let x, y ∈ 2ω and suppose that y contains infinitely many ones. Then x/y ∈
2ω is determined by

(x/y)k = xm  if  m is the index of the kth 1 in y.

One may now state the principle of homogeneity as follows:
If x is a Kollektiv with respect to distribution (1–p,p), then µp{x| x/y is a
Kollektiv w.r.t. µp} = 1.

This statement is still only semi-formal, since we have not said what we mean by "Kollektiv".
We now examine two possible formalizations.
It seems that the first attempt to prove a principle of homogeneity was Steinhaus' [94,305]. He
showed (curiously, without mentioning either von Mises or Kollektivs):

4.2.2 Theorem  x ∈ LLN(p) iff for all q ∈ (0,1): µq{y| x/y ∈ LLN(p)} = 1.

While this interesting in itself and will be useful to us later, it is defective as a formulation of
the principle of homogeneity. It would be satisfactory only if LLN(p) could be replaced by,
say, C( ,p), for arbitrary countable sets of place selections ; but the proof does not yield
this. Hence typical Kollektiv-like behaviour is not incorporated in the theorem. Indeed, we
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know of no probabilistic proof which accomplishes this (except for the slightly differently
oriented work of Kamae).

In Martin-Löf's set-up, we identify Kollektivs with random sequences and we may prove the
principle of homogeneity in the following form (Theorem 4.5.2):

Let p ∈ (0,1) be computable and suppose that ν is a non-atomic computable

measure on 2ω. Then for x ∈ R(µp), ν{y/ x/y ∉ R(µp)} = 0.

The "almost all" clause in the principle of homogeneity thus refers, not to some specific
measure, but to all computable non-atomic measures, indicating (at least for the constructivist)
the extreme smallness of the set of subsequences which are not themselves Kollektivs.
But note that the theorem itself does not speak of admissibility (unless we define: y is
admissible with respect to x if x/y ∈ R(µp)); it has a purely quantitative character. A direct

formulation of admissibility must wait until 5.6, when we have at our disposal the notion of
Kolmogorov-complexity.  There, the techniques used in proving the above theorem will be
helpful. One final remark on the principle of homogeneity: it will be observed that the
principle states a necessary condition for randomness, whereas Steinhaus' theorem (4.2.2)
states a necessary and sufficient condition. We comment on the difference in  4.5.

For completeness' sake, we prove the principle of homogeneity not only for (Martin-Löf)
randomness, but for all notions of randomness introduced in Chapter 3. In the case of weak
randomness this leads to considerable complexities, but this part of 4.4 can be skipped: section
4.3, lemma 4.4.1 and Theorem 4.4.4 suffice to understand the proof of the main theorem
(4.5.2).

4.3 Preliminaries  Eventually, in section 4.5, we shall prove
Let p ∈ (0,1) be computable and suppose that ν is a non-atomic computable measure
on 2ω. Then for x ∈ R(µp), ν{y/ x/y ∉ R(µp)} = 0.

Here R(µp) refers to Martin-Löf's definition of randomness (3.2.1.4), but the result holds as
well if we replace R(µp) by Rw(µp) (definition 3.2.1.5). For the notions of Gaifman and Snir

introduced in section 3.2.4 there is an analogous result if we replace "computable" by
"strongly computable". In this section we present some preparatory lemmas and motivate the
construction to follow.

The method used in the proof of the main theorem is based on the following observations. The
first lemma was already mentioned in section 2.5.

4.3.1 Lemma  (Doob [20]) Let p ∈ (0,1). If Φ: 2ω → 2ω is a place selection, A a Borel subset
of 2ω, then µp{x| Φx ∈ A} ≤ µpA. If µp(domΦ) = 1, then we have in fact equality for all A.
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Proof  See Schnorr [88,23].                                                                                                

4.3.2 Lemma  For all p ∈ (0,1), for all non-atomic measures ν on 2ω, for all Borel subsets A
in 2ω: µp×ν{<x,y>| x/y ∈ A} = µpA.

Proof  If y contains infinitely many ones, /y: 2ω → 2ω is a total place selection. Since ν is
non-atomic, the set of y's having only finitely many ones has measure zero. We may therefore
write, using the previous lemma and Fubini's theorem:   µp×ν{<x,y>| x/y ∈ A} =

  =  ∫1
{<x,y>| x/y ∈ Α}

dµp×ν  =  ∫µp{x| x/y ∈ Α}dν  =  µpA(y) .     

4.3.3 Lemma  If O ⊆ 2ω  is ∑1, then the set {<x,y> ∈2ω×2ω | x/y ∈ O} is ∑1, with

Gödelnumber primitive recursive in the Gödelnumber for O.

Proof  It suffices to prove the lemma for O = [w]. Now observe that the operation / is

completely determined by the operation /': ∪n(2n×2n) → 2<ω, as follows:

(v/'u)k  = vm if m is the index of the kth 1 in u;

and /' is primitive recursive.        

Lemma 4.3.1 suffices to show that for computable p ∈ (0,1), Rw(µp) is closed under the action
of recursive place selections with domain of full measure. Let Φ be a recursive place selection

and suppose µp(domΦ) = 1. If N = ∩nOn is a total recursive sequential test with respect to µp,

then Φ−1N = ∩nΦ−1On is ∏2 and by lemma 4.3.1, µpΦ−1On = µpOn, so that Φ−1N is a total

recursive sequential test with respect to µp. Obviously, for Martin-Löf's R(µp) we have also

invariance under recursive place selections whose domain has measure less than one.

Now let µ,ν be computable measures on 2ω. In Chapter 3 we defined (total) recursive
sequential tests as subsets of 2ω, but definitions 3.2.1.2-3 are easily generalized to the space
2ω×2ω and the measure µ×ν. We may then state the most useful consequence of the preceding

lemmas as follows:

4.3.4 Lemma  Let p ∈ (0,1) be computable and suppose ν is a computable measure on 2ω. If
N is a (total) recursive sequential test in 2ω with respect to µp, then {<x,y>| x/y ∈ N} is a
(total) recursive sequential test with respect to µp×ν. Similarly, for n ≥ 2, if N is ∏n µp-nullset
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in 2ω, then {<x,y>| x/y ∈ N} is a ∏n µp×ν-nullset in 2ω×2ω.

This lemma suggests the following strategy for proving the main theorem. Since R(µp)c is a
recursive sequential test with respect to µp, the last lemma implies that for any computable
measure ν, {<x,y>| x/y ∈ R(µp)} is a recursive sequential test with respect to µp×ν. By
Fubini's theorem, µp{x| ν{y| x/y ∈ R(µp)} > 0} = 0. We are done if we can show that this set
of x's is in fact contained in a recursive sequential test with respect to µp. That this is so, will

be proven in the next section.

4.4 Effective Fubini theorems  Let µ,ν be computable measures on 2ω. This section
addresses the following question: if N ⊆ 2ω×2ω is a (total) recursive sequential test with
respect to µ×ν, is it possible to construct a (total) recursive sequential test M with respect to µ
such that {x| νNx > 0} ⊆ M? The answer is yes, but the construction is somewhat complicated,

especially in the case of total recursive sequential tests. We also treat briefly the analogous
question for ∏n µ×ν-nullsets.

In the following pages we shall often use the phrase "[a real] bn,.. is computable, uniformly in

(the parameter(s)) n,...". This phrase should be interpreted as: "There exists a total recursive
function g such that g(n,...) is a Gödelnumber for an algorithm which computes bn,...".

The first lemma is in essence due to Sacks (see Sacks [87] or Kechris [42]). For the definition
of strongly computable measures, the reader is referred to 3.2.1.1.

4.4.1 Lemma  (i) Let ν be a computable measure on 2ω and suppose that A is a ∑0 subset of
2ω×2ω. Then the function x → νAx is of the form

νAx  =  ∑
k=1

n

ck·1Ck
(x),

where Ck is a ∑0 subset of 2ω and ck is a computable real. In addition, if ν is strongly
computable, then the sets {a ∈ | ck < a} and {a ∈ | ck > a} are recursive. (ii) Let ν be a
computable measure on 2ω and suppose that A is a ∑1 subset of 2ω×2ω. Then the set {<a,x> ∈

×2ω | νAx > a} is ∑1. (iii) Let ν be a strongly computable measure on 2ω. If A  ⊆ 2ω×2ω is
∑n, then the set {<a,x> ∈ ×2ω| νAx > a} is ∑n. If A is ∏n, then {<a,x> ∈ ×2ω| νAx > a} is
∑n+1.

Proof  (i) Using if necessary a suitable tiling of A, we may write A as a disjoint union

A  =  ∪([wi]×[vi])
i=1

m
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such that all wi have the same length n (hence the [wi] are either disjoint or identical). Then
we have, for all x

νAx  =  ∑
x(n) = w

i

    ν[vi].

If we define for k ≤ 2n, Ck := [u] for the kth word u in 2n and

ck :=  ∑
Ck = w

i

ν[vi]  (where  ∑
Ø

 ν[vi]  =  0),

then ck has the required properties and

νAx  =  ∑
k=1

2
n

 ck·1Ck
(x).

(ii) Let A = {<x,y>| ∃n R(n,x,y)}, where R is a recursive relation. Write Am := {<x,y>| ∃n≤m
R(n,x,y)}, then Am is ∑0. We have

{<a,x>| νAx > a}  =  {<a,x>| ∃m (νAx
m > a)},

and the result follows by (i).
(iii) If A is ∏1, then A = {<x,y>| ∀n R(n,x,y)} for some recursive relation R. Put Am :=
{<x,y>| ∀n≤m R(n,x,y)}, then Am is ∑0 and we may write

{<a,x>| νAx > a}  =  {<a,x>| ∃δ∈ +∀m (νAx
m > a+δ)},

and for strongly computable measures ν this set is ∑2, by (i). The result now follows by

induction on n.                                                                                                                       

4.4.2 Theorem  Let µ,ν be strongly computable measures on 2ω. Suppose that N ⊆ 2ω×2ω is a
∏n µ×ν-nullset. Then {x| νNx > 0} is a ∑n+1 µ-nullset.

Proof  {x| νNx > 0} = {x| ∃a ∈ +(νNx > a)} is ∑n+1 by lemma 4.4.1 and a µ-nullset by

Fubini's theorem.  

Theorem 4.4.2 is slightly unsatisfactory, in that one would like to have "∏n" instead of "∑n+1"

in the conclusion of the theorem. We do not know whether the above estimate is exact. We
can show, however, that in general "∑n+1" cannot be replaced by "∑n". Namely, we construct a
∏2 λ×λ-nullset in 2ω×2ω such that {x| λNx > 0} is not contained in a ∑2 λ-nullset. Let M be a
total recursive sequential test (with respect to λ) which contains LLN( )c (see section 3.3).
Consider N := {<x,y>| x/y ∈ M}. By lemma 4.3.3, N is ∏2 and by lemma 4.3.2, λ×λN = 0.
Suppose {x| λNx > 0} were contained in a ∑2 set B with λB = 0. If x ∈ LLN( )c, then by
Theorem 4.2.2, {y| x/y ∈ LLN( )c} = 1; hence λNx = 1 and thus x ∈ B. Therefore Bc ⊆
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LLN( ). But this is impossible since LLN( ) is first category while Bc is residual: the first
statement is obvious and the second statement follows since Bc is a Gδ set which is dense by

λBc = 1.

In what follows, we shall often refer to computable real-valued functions on 2ω, the recursion-
theoretic analogue of the continuous real-valued functions of constructive analysis (see e.g.
Bishop–Bridges [6,38]). We therefore introduce

4.4.3 Definition  f: 2ω →  is computable if it is recursively uniformly continuous, i.e. if for
some total recursive h: ω → :

            for all n, for all x,y:  if |x – y| < h(n), then |f(x) – f(y)| < 2-n.

The first part of lemma 4.4.1 implies that if ν is a computable measure and A ⊆ 2ω×2ω is ∑0,
then the function x → νAx is computable.

The effective Fubini theorem for recursive sequential tests can fortunately be obtained easily
by formalizing the proof of Theorem 14.1 in Oxtoby [80].

4.4.4 Theorem  Let µ,ν be computable measures on 2ω and suppose that N ⊆ 2ω×2ω is a
recursive sequential test with respect to µ×ν. Then {x| νNx > 0} is contained in a recursive

sequential test with respect to µ.

Proof  Let N = ∩nOn ⊆ 2ω×2ω be a recursive sequential test with respect to µ×ν. Uniformly

in n, we construct ∑1 sets Bn ⊆  2ω such that µBn ≤ 2-n and {x| νNx > 0} ⊆ Bn. Choose n.

Clearly µ×ν∪k>nOk ≤ 2–n. ∪k>nOk is of the form ∪i[wi]×[vi] and the sequence ([wi]×[vi])i

covers N infinitely often, that is, each <x,y> ∈ N is contained in infinitely many cylinders
[wi]×[vi] of the sequence.
Define a sequence of functions fk, k≥0, by

f0 (x) = 0 for all x

fk(x) = ∑
{i≤k| x∈[w

i
]}

ν[vi],  for k≥1.

fk is a computable stepfunction, fk: 2ω → [0,1], fk ≤ fk+1 and

fk+1(x) – fk(x)  =  {
ν[vk+1]       if x ∈ [wk+1]

0 otherwise.
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Clearly

∫fkdµ  =  ∑
i=1

k

∫(fi – fi-1)dµ  =  ∑
i=1

k

µ[wi]·ν[vi]  ≤  2-n.

Define Bn := {x| ∃k fk(x) > 1} (remember that the fk depend implicitly on n!). Obviously, Bn is
∑1, uniformly in n. Moreover, {x| νNx > 0} ⊆ Bn: choose x such that νNx > 0, then a fortiori
for some y, <x,y> ∈ N. Hence for infinitely many i: <x,y> ∈ [wi]×[vi]. Let (i') be the sequence
of indices for which x ∈ [wi']. For any y ∈ Nx, for infinitely many i': y ∈ [vi']. Hence the
sequence ([vi'])i' covers Nx infinitely often, so ∑i'ν[vi'] must diverge (otherwise, we could
cover Nx with open sets of arbitrarily small ν−measure). It follows
that, still for this particular x, lim fk(x) = ∞ and
thus, for some k, fk(x) > 1, i.e. x ∈ Bn.

k→∞

Clearly then, ∩nBn is the required recursive sequential test if we can show that µBn ≤ 2-n.

Now if we put Am := {x| ∃k≤m fk(x) > 1}, Bn is the limit of the Am. Since fk ≤ fk+1,

µAm  =  ∫1Am
dµ  <  ∫fmdµ  ≤  2-n  for all m,

and so µBn ≤ 2-n.     

4.4.5 Corollary  Let µ,ν be computable measures on 2ω. Suppose that U is the universal
recursive sequential test with respect to µ×ν and that U' is the universal recursive sequential
test with respect to µ. Then U' = {x| νUx > 0}.

Proof  By the preceding theorem, {x| νUx > 0}⊆ U'. On the other hand, U'×2ω ⊆ U.      

Consequently, if N is a recursive sequential test, {x| νNx > 0} need not be contained in a total

recursive sequential test, since such a test cannot be universal, as we have seen in Chapter 3.
This fact necessitates a separate effective Fubini theorem for total recursive sequential tests.
The reader not especiallly interested in total recursive sequential tests is free to stop here and
may proceed directly to section 4.5.

Our next object is to prove

4.4.6 Theorem  Let µ,ν be computable measures on 2ω. Let N ⊆ 2ω×2ω be a total recursive
sequential test with respect to µ×ν. Then {x| νNx > 0} is contained in a total recursive

sequential test with respect to µ.

This theorem can presumably be proved by formalizing proofs of Fubini's theorem from
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constructive analysis. However, since we allowed ourselves the use of classical logic and
mathematics, a more direct approach is possible. The key of the proof consists in the
following observation:

If O ⊆ 2ω×2ω is a ∑1 set such that µ×νO is computable and if the image
measure π is defined by π[0,s] := µ{x| νOx ≤ s}, for 0 ≤ s ≤1, then the set of
points of continuity of π has a ∏2 definition.

Since the set of points of continuity is dense, it follows from an effective version of the Baire
Category Theorem, that π has a recursively enumerable dense set of computable points of
continuity. From then on, the going is easy.
Our proof strategy is fairly opportunistic: whenever possible, we borrow the requisite
algorithms from constructive analysis (e.g. the functions g(u,v,·) defined below, are taken
from Bishop and Cheng [7]); but the proofs that these algorithms are in fact total are entirely
classical (e.g. lemma 4.4.12).

We now proceed to the proof of Theorem 4.4.6. Write N = ∩nOn, On+1
 ⊆ On, On ∈ ∑1,

µ×νOn computable (uniformly in n) and ≤ 2-n. Define on [0,1] the image measure πn as

follows:

πn[0,s] :=  µ{x| νOx
n ≤ s},  0 ≤ s ≤ 1.

πn need not be a computable measure, but nevertheless, as we shall see, some integrals with
respect to πn are computable. We use this fact to compute πn[0,s] for a recursively enumerable

dense set of computable reals s.

4.4.7 Definition  For u,v ∈ [0,1]∩ , u<v, we determine a function g(u,v,·) as follows:

g(u,v,t)  =  {
1 t<u

(v-t)/(v-u) u≤t≤v

0 v<t.

Let u0<v0<u1<v1 be rationals. The functions f(u0,v0,u1,v1,·) are defined by

f(u0,v0,u1,v1, t) :=  min {1 – g(u0,v0, t),  g(u1,v1, t)}.

Before we can motivate the introduction of these auxiliary functions, we need a lemma.

4.4.8 Lemma  The integrals

∫
[0,1]

 g(u,v,t)dπn(t) ,   ∫
[0,1]

f(u0,v0,u1,v1, t)dπn(t)
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are computable uniformly in the parameters n,u,v and n,u0,v0,u1,v1 respectively.

Proof  For this lemma we are indebted to constructive analysis, and in particular to the
constructive theory of integration developed in [6], [7] and [9]. Observe that

(i)    ∫
[0,1]

g(u,v,t)dπn(t)  =  ∫
2ω

g(u,v,νOx
n)dµ(x);

(ii)   g(u,v,νOx
n)  =  min {1, 

v – u

(v – min (νOx
n,v))

};

(iii) there exists a recursive family of ∑0 sets Cn,k such that each On can be written as a

disjoint union On = ∪kCn,k. We then have, for all x:

νOx
n  =  ∑

k=1

∞

νCx
n,k   and   ∑

k=1

∞

∫
2ω

νCx
n,kdµ(x)  =  ∫

2ω

νOx
ndµ(x)  =  µ×νOn  is

computable, uniformly in n.

(iv)  the function x → νCx
n,k is com  

 

putable (by lemma 4.4.1) and

∫
2ω

νCx
n,kdµ(x)  is computable, both uniformly in n and k.

Call a function h integrable (with respect to µ) if there exists a sequence (hm) of computable
functions such that h = ∑mhm µ-a.e. and ∑m∫hmdµ is computable (cf. [6,226]). Then the

function x → νOx is integrable (by (iii) and (iv)) and Theorem 2.18 of Bishop-Bridges [6,230]

may be translated to our recursion–theoretic setting to show that the operation min(·,·)
preserves integrability. Hence f and g are integrable (by (i) and (ii)).                      

Now consider a computable real s and rationals u0,v0,u1,v1 such that u0<v0<s<u1<v1.
Obviously,  ∫g(u0,v0,t)dπn(t) ≤ πn[0,s] ≤ ∫g(u1,v1,t)dπn(t), and by the preceding lemma the

terms on the left hand side and on the right hand side are computable. What remains to be
done, is to find a computable estimate of the difference

∫g(u1,v1,t)dπn(t) – ∫g(u0,v0,t)dπn(t).

 For certain s, this can be achieved using the functions f(u0,v0,u1,v1,t).

4.4.9 Definition  s ∈ [0,1] is an atom of πn if πn{s} > 0. s ∈ [0,1] is a point of continuity of πn

(abbreviated: s is p.c. of πn) if πn{s} = 0.

The key of the proof of Theorem 4.4.6 is that the set of p.c.'s of the πn has a ∏2 definition.
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4.4.10 Lemma  s ∈ [0,1] is p.c. of all πn iff

(*) ∀n ∀ε>0 ∃δ>0 ∃u0,v0,u1,v1 v0<s–δ<s+δ<u1  &  f(u0,v0,u1,v1, t)dπn(t)( ∫
2ω

< ε),

where the quantifiers "∀ε" and "∃δ" range over the rationals. Moreover, (*) is a ∏2 statement.

Proof  The first statement is obvious as soon as we realize that the condition "v0<s–δ<s+δ<u1"
in (*) means that f(u0,v0,u1,v1,t) equals 1 on   (s–δ,s+δ). The second statement follows from

lemma 4.4.8.       

The ∏2 definition of the property "s is p.c. of all πn" enables us to apply the following

effective version of the Baire Category Theorem:

4.4.11 Lemma  Let G be a dense ∏2 subset of [0,1]. Then G contains a recursively

enumerable dense subset of computable reals.

Proof  Formalize a proof of the Baire Category Theorem (e.g. Oxtoby [80,2]).                  

Combining these lemmas, we get

4.4.12 Lemma  There exists a recursively enumerable dense set D of computable points of
continuity of all πn.

Proof  By lemma 4.4.10 the set of p.c. of all πn has a ∏2 definition. This set is dense in [0,1],
since the set of s which are an atom for some πn is countable (this argument is non-

constructive). Now apply the preceding lemma.                                                             

We are now almost done.

4.4.13 Lemma  Let s ∈ [0,1] be a computable point of continuity of all πn. Then πn[0,s] is

computable, uniformly in n.

Proof  Choose ε > 0. We must effectively determine u < v < u' < v' such that

(1)  ∫g(u,v,t)dπn(t) ≤ πn[0,s] ≤ ∫g(u',v',t)dπn(t)
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(2)  ∫g(u',v',t)dπn(t) – ∫g(u,v,t)dπn(t) < ε.

Choose recursively enumerable sequences of rationals (bk), (ck) such that for all k, bk < s < ck

and ck – bk < 2-k. By lemma 4.4.10 there exist (for this particular ε) δ > 0 and rationals u0 < v0

< u1 < v1 such that v0 < s–δ < s+δ < u1 and ∫f(u0,v0,u1,v1,t)dπn(t) < ε. Choose   k large enough

so that s – bk < δ/4  and  ck – s < δ /4.
Define u:= bk – δ/4, v:= bk, u':= ck and v'= ck + δ/4. Then v0 < u < v < s < u' < v' < u1, hence
(1) holds and ∫g(u',v',t)dπn(t) – ∫g(u,v,t)dπn(t) ≤ ∫f(u0,v0,u1,v1,t)dπn(t) < ε.         

Now let D be the set constructed in lemma 4.4.12. Theorem 4.4.6 follows if we can show that

∪
s∈D

∩
n

{x| νOx
n > s}

is contained in a total recursive sequential test with respect to µ.
By lemma 4.4.1, for s ∈ D,

{x| νOx
n > s}  ∈  ∑1.

Moreover, since

(i)   µ{x| νOx
n > s} is computable, uniformly in n (by lemma 4.4.13)

(ii)  µ∩
n

{x| νOx
n > s} =  0 by Fubini's theorem,

we can determine a recursively enumerable infinite sequence (nk) of natural numbers such that

for all k

µ{x| νOx

nk > s} < 2–k.

Because On+1 ⊆ On

∩n {x| νOx
n > s}   =   ∩k {x| νOx

nk > s};

and

∩k {x| νOx

nk > s}

is a total recursive sequential test with respect to µ. By lemma 3.2.3.8, the union of these tests
over D is contained in a total recursive sequential test with respect to µ. But this union equals
{x| νNx > 0}. This concludes the proof of Theorem 4.4.6.                                        

4.5 Proof of the principle of homogeneity  Classically, a subset E of 2ω has absolute

measure zero if for every finite non-atomic measure µ on 2ω we can find a Borelset A such
that E ⊆ A and µA = 0. Hausdorff constructed an example of such a set of cardinality ℵ1 (and
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this is the best possible result).
This concept can be transferred to the constructive realm as follows: E ⊆ 2ω is recursively

small if for every computable  finite non-atomic measure µ on 2ω, we can find a Borelset A
such that E ⊆ A and µA = 0.
Theorems 4.5.2-3 will show that if x ∈ R(µp) (Rw(µp)), then the set {y| x/y ∉ R(µp)} ({y| x/y
∉ Rw(µp)}) is recursively small. (In another sense, these sets are quite large, since they are

residual.) For completeness' sake, we begin with the corresponding result for n-randomness.
Strongly computable measures were defined in 3.2.1.1. We say that p ∈ (0,1) is strongly

computable if the sets {a∈ | a > p} and {a∈ | a < p} are both ∆1. If p ∈ (0,1) is  strongly
computable, then µp is a strongly computable measure.

4.5.1 Theorem  Let ν be a non-atomic strongly computable measure on 2ω and let p ∈ (0,1)
be strongly computable. For n ≥ 2, if x is n–random with respect to µp, then ν{y| x/y is not n–
random with respect to µp} = 0.

Proof  It suffices to show that for each ∏n µp×ν-nullset N, {x| ν{y| x/y ∈ N} > 0} is contained
in a ∑n+1 µp-nullset. By lemma 4.3.4, {<x,y>| x/y ∈ N} is a ∏n µp×ν-nullset. Since µp is

strongly computable, we may now apply Theorem 4.4.2.                                  

4.5.2 Theorem  Let p ∈ (0,1) be computable. If x ∈ R(µp), then {y| x/y ∉ R(µp)} is

recursively small.

Proof  Let ν be a non-atomic computable measure. Since R(µp)c is a recursive sequential test
with respect to µp, lemma 4.3.4 implies that {<x,y>| x/y ∉ R(µp)} is a recursive sequential test
with respect to µp×ν. Now apply Theorem 4.4.4.    

4.5.3 Theorem  Let p ∈ (0,1) be computable. If x ∈ Rw(µp), then {y| x/y  ∉ Rw(µp)} is

recursively small.

Proof  Let N be a total recursive sequential test with respect to µp. Let ν be a non-atomic
computable measure. By lemma 4.3.4, {<x,y>| x/y ∈ N} is a total recursive sequential test
with respect to µp×ν. Now apply Theorem 4.4.6.                                                                 

4.5.4 Remarks  (i) The principle of homogeneity thus holds true for a wide class of
definitions of randomness based on probabilistic laws, although we needed three different
proofs to show this. The common core of these proofs is that the operation / is measure-
preserving and also preserves arithmetical structure; the differences result from the fact that
the Fubini-property needs a separate verification in each case.
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(ii) Looking back on what we have accomplished, we see that, at least in a quantitative sense,
von Mises' intuitions can be salvaged: if we provisionally identify Kollektivs with random
sequences (in Martin–Löf's sense), then the set of subsequences of a Kollektiv which are not
themselves Kollektivs is exceedingly small. Alternatively, we might say that Martin-Löf's
definition and its variants capture at least some of von Mises' intentions. Observe that, from
von Mises' point of view, the preceding theorems should not be interpreted as a result on the
extremely small probability  of the set {y| x/y ∉ R(µp)}.

(iii)  If we compare Theorem 4.2.2 with the preceding theorems, we see that the latter state a
necessary condition for randomness, whereas the first is a necessary and sufficient condition
for satisfying the law of large numbers. We doubt whether the preceding theorems admit a
converse. Perhaps there is a converse if we strengthen the consequences using compositions of
recursive selections and random selections, in the following sense.
If Φ is a recursive place selection (with generating function φ as in definition 2.5.1.1) such
that µpdomΦ = 1, define /Φ by

(x/Φy)k = xm if m is the index of the kth 1 in y and φ(x(m–1)) = 1.

Since /Φ satisfies lemmas 4.3.1-3, the preceding theorems hold with / replaced by /Φ.

Various other theorems on the operation / can be derived along these lines, the most
interesting of which is perhaps the following. Let  x/˚y be defined as  x/y, except that we now
look at the zeros of y. Hence, when viewed as sets of natural numbers, x/y ∪x/˚y = .

4.5.4 Theorem  Let p ∈ (0,1) be computable. If x ∈ R(µp), then the set {y| <x/y,x/˚y> ∉
R(µp×µp)} is recursively small.

Proof  Let ν be a computable non-atomic measure. We show first that µp×ν{<x,y>| <x/y,x/˚y>
∈ A×B} = µpA·µpB. As in lemma 4.3.2, it suffices to show that for fixed y, µp{x| x/y ∈ A,x/˚y
∈ B} = µpA·µpB. We need only verify this equality for A = [w], B= [v]. But {x| x/y ∈ [w],
x/˚y ∈ [v]} = [u], where |u| = |w| + |v| and u consists of w and v intertwined. Hence µp[u] =
µp[w]·µp[v]. From here on, the argument is entirely similar to the arguments above.

To interpret this theorem, recall that we defined two Kollektivs z0, z1 to be independent if the
pair  <z0,z1> is a Kollektiv with respect to the product distribution (cf. 2.4.1). Having
formalized Kollektivs as random sequences, it seems reasonable to formalize a pair of
independent Kollektivs as an element of R(µp×µp) (such pairs are invariant under recursive

place selections, they satisfy the law of the iterated logarithm etc.). We saw in 2.4.1 that a
lawlike partition of a Kollektiv into two (or more)  Kollektivs yields provably independent
Kollektivs and we remarked that this feature reflects the assumed independence of successive
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tosses. We now see that also in this context a principle of homogeneity obtains: "almost
every" partition, whether lawlike or not, produces independent Kollektivs.

4.6 New proof of a theorem of Ville  In 2.6.2.2, we stated Ville's theorem as follows:

Given a countable set of place selections Φ: 2ω → 2ω we can construct x ∈ 2ω such that

(i)   x ∈ domΦ implies Φx ∈  LLN( )

(ii)  for all n  
n
1∑

k=1

n

xk ≥ .

,  for all Φ ∈ 

C(p), the set of Church-random sequences with parameter p, was defined in 2.5.1.7. Since
property (ii) contradicts the law of the iterated logarithm and all (weakly) random sequences
satisfy the law of the iterated logarithm (as was shown in section 3.3), we have as a
consequence C( )∩R(λ)c ≠␣Ø (although of course R(λ) ⊆ C( )). Thus C( ) and R(λ), which

have very different philosophical justifications, differ also extensionally.
We need not repeat here the discussion on the philosophical significance of Ville's theorem
given in 2.6.2.2; in the present section we are concerned only with its proof. Ville's argument
[99,55-69] has a combinatorial character and consists roughly speaking in replacing  by a
different set ' of place selections Ψ such that if Ψ, Ψ' ∈ ', then Ψ   and Ψ' are "disjoint".
This notion of disjointness is best illustrated by means of an example. Let (pn) be an
enumeration of the prime numbers and let Ψn be the place selection that chooses all indices
which are a power of pn. Then no two Ψn choose the same index and in this case it is very

easy to construct an x which satisfies specifications (i) and (ii). By adroitly manipulating place
selections, Ville is able to reduce the general case to something very like the above example.

Without denying the ingenuity of Ville's construction, it seems worthwhile to try to derive the
theorem from first principles, that is, as an expression of the philosophical differences between
strict frequentism and the propensity interpretation uncovered in Chapter 2. In other words, we
want to show that the different interpretations of probability underlying the definitions of
Church-random sequences and (Martin-Löf) random sequences, namely probability as relative
frequency and coordinate-wise probability respectively, themselves imply that C( )∩R(λ)c ≠
Ø.

In the introduction to Chapter 3 we observed that, from the point of view of strict frequentism,
the distribution (1–p,p) on {0,1} should not be associated with a unique measure on 2ω, to wit,
µp, but rather with a whole class of measures, namely all those which in a certain sense

determine the same limiting relative frequencies 1–p and p. Existence theorems should not be
affected when we replace one measure from this class by another. We may therefore state
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Conjecture 1  Let π = ∏n(1–pn,pn) be a product measure such that lim pn = p and let
n→∞

 be a countable set of place selections. Then not only µpC( ,p) = 1, as was shown in

Theorem 2.5.2.3, but also πC( ,p) = 1.

On the other hand, the definition of (weakly) random sequences at first sight seems to involve
a unique measure, namely µp. This impression is confirmed by the discussion of Martingales

in 3.4, where it was seen that their definition seemed to require (constant) probabilities at
individual coordinates. One way to state this seeming dependence upon the underlying
measure is as follows:

Conjecture 2  If π = ∏n(1–pn,pn) with lim pn = p but pn ≠ p for all n, then πR(µp) =
n→∞

0. By the 0–1 law, πR(µp) is either one or zero and the first case seems to be excluded by the

above argument.

Both conjectures, taken together, would give us the required proof of Ville's theorem from
first principles, for if π satisfies the hypothesis of Conjecture 2, we would have
π(C(p)∩R(µp)c) = 1. But, although Conjecture 1 can indeed be proven (see corollary 4.6.3),
Conjecture 2 is false. First impressions notwithstanding, R(µp) is not that sensitive
to the choice of the underlying measure: there exist π = ∏n(1–pn,pn) such that  lim pn = p

k→∞

and pn ≠ p for all n, for which πR(µp) = 1.
On the other hand, the idea that the extensional difference between C(p) and R(µp) is due to a

difference in sensitivity to the choice of the measure is correct, but it should be formulated
more carefully. Although for a computable product measure π = ∏n(1–pn,pn), πR(µp) = 1 does
not imply that pn = p for all n, it does imply that ∑n(p–pn)2 < ∞, in other words, that pn

converges to p rather fast.We then get a proof of Ville's theorem if we take a computable
product measure π for which the marginals pn converge slowly to p, for in that case
π(C(p)∩R(µp)c) = 1 (Theorem 4.6.1).

The result we derive in this way differs from Ville's original formulation in two minor
respects:
– not only is C(p)∩R(µp)c non-empty, it has the cardinality of the continuum;
– on the other hand, the proof does not yield that for every π such that π(C(p)∩R(µp)c) = 1,
already π(C(p)∩LIL(µp)c) = 1, where LIL(µp) is the set of sequences which satisfy the law of
the iterated logarithm for µp. Indeed, the proof cannot yield such a result, since it is false for
some π with π(C(p)∩R(µp)c) = 1. But for some very slowly converging π, we do have that
π(C(p)∩LIL(µp)c) = 1, thus strengthening Ville's theorem in its original formulation.
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The reader may wonder why we persistently formulate these results for C(p) instead of for
C( ,p), for arbitrary countable sets  of place selections. The answer is that R(µp), due to its

recursion theoretic structure can only be reasonably compared with C(p). For very slowly
converging π, however, we have, for arbitrary , π(C( ,p)∩LIL(µp)c) = 1.

This section is organized as follows. We first prove Ville's theorem along the lines sketched
above (Theorem 4.6.1) and we comment on the significance of the proof (Corollary 4.6.6 and
following discussion). The reader may then proceed to Chapter 5; the rest of the section
generalizes Corollary 4.6.6 to measures which are not product measures and is not essential to
the main argument.

We prove Ville's theorem in the following form:

4.6.1 Theorem  Let p ∈ (0,1) be a computable real. There exists a non-atomic computable
measure π such that π(C(p)∩Rw(µp)c) = 1. A fortiori, π(C(p)∩R(µp)c) = 1 and C(p)∩Rw(µp)c

has the cardinality of the continuum.

The measure will be a computable product measure π = ∏n(1–pn,pn) such that lim pn = p
k→∞

and π⊥µp. In fact, the proof will show that for any such measure π, π(C(p)∩Rw(µp)c) = 1.

4.6.2 Lemma  Let π = ∏n(1–pn,pn) be a computable product measure. Then πC(p) = 1
iff lim pn = p.

n→∞

Proof  ⇒ Suppose not. Then for some rational ε > 0, at least one of the sets {n| pn > p+ε}, {n|
pn < p–ε} is infinite, say the first set. By the computability of π this set is recursively

enumerable, hence contains an infinite recursive subset. Using this subset, we can define a
recursive place selection Φ such that πΦ-1(LLN(p)) = 0, a contradiction.
⇐ For this direction, no assumption of computability or recursiveness is needed. So let Φ
be a place selection and π a measure of the form π = ∏n(1–pn,pn) such that lim pn = p

n→∞

and assume that pn ≠ 0 for all n (which is no essential restriction). We show that π(domΦ) =
π(domΦ∩Φ−1(LLN(p))). Given Φ and its generating function φ (as in definition 2.5.1.1), we
define a partial function θ: 2ω×ω → ω as follows:
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(1)   domθ  =  domΦ

(2)   if x ∈ domΦ, then  θ(x,n)  =  1 + min{k | n  =  ∑
j=1

k

φ(x(j))}.

Assume first that π(domΦ) = 1 Define random variables Zn: 2ω → by

Zn(x)  =  
p

θ(x,n)

x
θ(x,n)   for x ∈ domΦ  and  Zn(x)  =  1  otherwise.

Let Bn denote the algebra generated by the cylinders of length n. Let π denote the
expectation with respect to π and π(…|Bn) the conditional expectation with respect to π and
Bn. We then have

(3)   π(Zn) = 1  for all n:  π(Zn) =  ∑
k=n

∞

       ∫
{x|θ(x,n) = k}

     Zndπ  =  

=  ∑
k=n

∞

pk
–1·π{x| θ(x,n) = k & xk = 1} =  ∑

k=n

∞

pk
–1·pk·π{x| θ(x,n) = k} =

∑
k=n

∞

π{x| θ(x,n) = k} = 1.=

The third equality is a consequence of the fact that {x| θ(x,n) = k} ∈ Bk–1 and {x| xk = 1} ∈
Bk, so that these events are independent with respect to π. The last equality follows from the
assumption that π(domΦ) = 1.

(4)   π(Zn|Bn–1)(x) = 1 for all x: by definition, π(Zn|Bn-1) is Bn-1–measurable 

and satisfies for B ∈ Bn-1  ∫
B

Zndπ = ∫
B

π(Zn|Bn-1)dπ.

Now  ∫
B

Zndπ  =  ∑
k=n

∞

        ∫
{x|θ(x,n) = k}∩Β

xk·pk
-1dπ  =  ∑

k=n

∞

pk
-1·π{x| θ(x,n) = k & xk = 1}∩ Β  =

=  ∑
k=n

∞

pk
-1·pk·π{x| θ(x,n) = k}∩ Β  =  πB.  Since π(Zn|Bn-1)  is constant on

cylinders of length n–1, this implies that π(Zn|Bn-1) equals 1 ev ywhereer .

(5)  Since lim pn = p ∈ (0,1),
there is δ ∈ (0,1) and n0 ∈  such that for n ≥ n0: δ < pn

n→∞

< 1–δ. Then, again for n ≥ n0:  0 ≤ Zn ≤ pn
-1 < δ–1, hence the Zn are uniformly bounded.

By Theorem 3 in Feller [26,243]:
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lim
n→∞ n

1∑
k=1

n

Zk(x)  =  lim
n→∞ n

1∑
k=1

n

 
p

θ(x,k )

x
θ(x,k )   =  lim

n→∞ n
1∑

k=1

n

 
p

θ(x,k )

Φ(x)k   =  1  π–a.e.

But, generally, if (an) and (bn) are sequences of positive reals,

lim
n→∞

bn = p  and  lim
n→∞ n

1∑
k=1

n

 
bk

ak   =  1, then  lim
n→∞ n

1∑
k=1

n

ak  =  p.if

Hence, still under the assumption π(domΦ) = 1:

lim
n→∞ n

1∑
k=1

n

 Φ(x)k  =  p.

We now drop the assumption. Note that π(domΦ∩Φ−1(LLN(p))) = π(domΦ) is equivalent to
π(Φ−1LLN(p)|domΦ) = 1 (under the assumption π(domΦ) > 0, but otherwise there is nothing
to prove), so for the general case it suffices to replace in the above proof π by π(…|domΦ).

4.6.3 Corollary  Let be a countable set of place selections and π = ∏n(1–pn,pn) a
product measure such that lim pn = p. Then πC( ,p) = 1.

n→∞

We next investigate the sensitivity of R(µp) to the underlying measure.

4.6.4 Lemma  Let µ,ν  be computable measures on 2ω. µ⊥ν is equivalent to either of the

following statements: (i) there exists a total recursive sequential test N with respect to µ such
that νN = 1;  (ii) for each rational ε > 0, there exists a ∏1 set A such that νA > 1–ε and µA =

0.

Proof  Trivially, (i) and (ii) imply µ⊥ν. For  µ⊥ν implies (i) we use the following equivalence

µ⊥ν  iff  ∀ε>0 ∃C∈∑0 (νC > 1–ε & µC < ε)

and we take advantage of the ∏2 statement on the right hand side. Let f: + →∑0 be a total
recursive function which for each ε in + gives f(ε) in ∑0 such that νf(ε) > 1– ε and µf(ε) < ε.

Such a function exists by the computability of µ and ν. Let N = ∩n∪if(2-i-n-1). Obviously N

is ∏2. Since for each n and i, µf(2-i-n-1) < 2-i-n-1, µ∪if(2-i-n-1) is computable (see the proof of

the first effective Borel–Cantelli lemma (3.3.1)).  Hence N is a total recursive sequential test

with respect to µ. On the other hand, for each n and all i, ν∪if(2-i-n-1) ≥ νf(2-i-n-1) ≥ 1–2-i-n-1,

so ν∪ if(2-i-n-1) = 1. For (i) implies (ii), reverse the roles of µ and ν in (i), obtaining N =
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∩ nO n  such that µN = 1, νN = 0 and each On in ∑1 ; then some (On)c will do.

The following beautiful criterion for singularity of product measures is due to Kakutani [39]1.

4.6.5 Lemma  Let µ = ∏n(1–pn,pn), π = ∏n(1–qn,qn) be product measures on 2ω such that for
some δ > 0 and all n, δ < pn,qn < 1–δ. If ∑n(pn– qn)2 diverges, then µ and π are mutually
singular; on the other hand, if ∑n(pn– qn)2 converges, then µ and π are equivalent.

It follows from the zero-one law that product measures on 2ω are either singular or equivalent,
but Kakutani's theorem provides us with a criterion to distinguish these cases and this is what
we shall use to finish the proof of Theorem 4.6.1.

Let pn:= p·(1 + (n+1)- ), π = ∏n(1–pn,pn), then π is computable and since ∑n(p – pn)2 =
∑np2·n-1 = ∞, π⊥µp. By corollary 4.6.3, πC(p) = 1. By lemma 4.6.4, πR(µp) = 0. This

completes the proof of Theorem 4.6.1.   

We may extract the following information from the proof of Theorem 4.6.1:

4.6.6 Corollary  Let π = ∏n(1–pn,pn) be a computable product measure, p ∈ (0,1) a

computable real.
(i)   πC(p) = 1 iff lim pn = p

n→∞

(ii)  πR(µp) = 1 iff ∑n(p – pn)2 converges.
(iii) π(C(p)∩R(µp)c) = 1 iff lim pn = p but ∑n(p – pn)2 diverges.

n→∞

4.6.7 Remark  We saw in 2.6.2.2 that there exist countably many recursive place selections Φ
such that Kollektivs of Ville's type can never belong to the domain of Φ. But if x ∉ domΦ,
then the statement "x ∈ domΦ  implies Φx ∈ LLN(p)" is uninformative. (A failure is

significant only when preceded by a serious effort.) Similarly, although we have formally
proved that π(C(p)∩R(µp)c) = 1 if π satisfies the right hand side of (iii), the theorem and its

corollary are interesting only for a subclass of the recursive place selections, namely for those
Φ for which π(domΦ) = 1 if π is a product measure whose marginals converge to p.

The reader will have noticed undoubtedly that Ville's theorem in its original formulation uses
the law of the iterated logarithm essentially, whereas it is absent from our proof. This leads to
the following question: is the difference between C(p) and R(µp) due entirely to the law of the
iterated logarithm, in the sense that each sequence in C(p)∩R(µp)c fails to satisfy it?
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Interestingly, it is a corollary of Theorem 4.6.1 that this is not so: if π is, e.g., the product
measure ∏n(1–pn,pn) with pn = p·(1 + (n+1)– ), then π assigns measure one to the set of
sequences which satisfy the law of the iterated logarithm (for µp). To see this, we need a

general form of the

Law of the iterated logarithm  (Kolmogorov [45])

Let µ  =  ∏n(1 – qn ,qn ) be a product measure and define the variance sn by sn:= ∑
k=1

n

qn· (1 – qn ).

Then

(1)   for β > , for µ–a.a. x:  ∃m ∀n≥m |∑
k=1

n

xk – ∑
k=1

n

n·qk| < β 2snloglogsn1

(2)   for β < 1,  for µ–a.a. x:  ∀m ∃n≥m ∑
k=1

n

xk – ∑
k=1

n

n·qk > β 2snloglogsn

       for β < 1,  for µ–a.a. x:   ∀m ∃n≥m ∑
k=1

n

n·qk – ∑
k=1

n

xk > β 2snloglogsn .

If all qn are equal to p, we get back the form of the law stated in 2.6.2.2. Let LIL(µp) denote
the set of sequences which satisfy the law for the measure µp. Let π be the product measure
constructed above. We show that πLIL(µp) = 1.

If for instance for some  α < 1,

π{x| ∃m ∀n≥m ∑
k=1

n

xk > p·n  –  α 2n·p·(1–p)loglogn } = 1,

so that πLIL(µp) = 0, then, by the general form of the law of the iterated logarithm, for β > 1

and n sufficiently large:

p·n + p·∑
k=1

n

k+1

1
  –  β 2snloglogsn   >  p·n –  α 2n·p·(1–p)loglogn ,

hence

p·∑
k=1

n

k+1

1
  >  β 2snloglogsn   –  α 2n·p·(1–p)loglogn ;

but this is easily seen to be false, since the left hand side is O(√n), whereas the right hand side
is O(√(nloglogn)). An analogous argument for the upper bound then shows that πLIL(µp) = 1.
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On the other hand, it is possible to construct uncountably many Church-random sequences
(with parameter p) which do not satisfy the law of the iterated logarithm (for µp) if we use
product measures µp whose marginals converge to p slower than those of π. Choose a such
that –  < a < 0 and put qn:= p·(1 + (n+1)a), µ := ∏n(1–qn,qn).
We now do have, for α < 1,

µ{x| ∃m ∀n≥m ∑
k=1

n

xk  >  p·n  –  α 2n·p·(1–p)loglogn } = 1;

by the general form of the law of the iterated logarithm, it suffices to show that for some β > 1

and all n sufficiently large:

p·n  +  p·∑
k=1

n

(k+1)a  –  β 2snloglogsn   >  p·n  –  α 2n·p·(1–p)loglogn ;

in other words, that

p·∑
k=1

n

(k+1)a >  β 2snloglogsn   –  α 2n·p·(1–p)loglogn .

But now the left hand side is O(na+1), with a+1 >  and the right hand side is still
O(√(nloglogn)). Hence not only µ(C(p)∩R(µp)c) = 1 (since µ⊥µp), but also µ(C(p)∩LIL(µp)c)

= 1.

We may thus conclude that a part of, but only a part of, the difference between C(p) and R(µp)
is caused by the law of the iterated logarithm. The proof of Theorem 4.6.1 shows that Church–
random sequences may also fail to satisfy properties which are essentially different from the
law of the iterated logarithm.

The rest of this section is rather technical: we investigate what remains of Corollary 4.6.6 if
we drop the assumption that π be a product measure. We now obtain a theorem which
connects the different concepts of randomness with different types of convergence of
measures.

4.6.8 Definition  Let µ and ν be measures on  2ω and let T: 2ω → 2ω be the left shift. We say
that the sequence of measures (µT–n)n∈  converges strongly to ν if for all Borel sets A,
lim µT–nA = νA. We say that (µT–n)n∈   converges weakly to ν if for all Borel sets A
n→∞

such that ν∂A = 0 (where ∂A is the boundary of A), lim µT–nA = νA.
n→∞

The next lemma considerably simplifies the last condition:
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4.6.9 Lemma  (See Billingsley [4].)  (µT–n)n∈   converges weakly to ν if for all cylinders

[w]: lim µT–n[w] = ν[w].
n→∞

Part (i) of Corollary 4.6.6 can now be restated thus:  πC(p) = 1 iff (πT–n)n∈   converges

weakly to µp. We shall see presently that one half of this result can be salvaged even without

the assumption that π be a product measure.

4.6.10 Theorem  Let µ be a measure such that for all place selections Φ recursive in µ, if
µ(domΦ) = 1, then µ(Φ−1LLN(p)) = 1. Then (µT–n)n∈  converges weakly to µp. In particular,
if µ is computable and µC(p) = 1, then  (µT–n)n∈  converges weakly to µp.

Proof  Suppose not; then there exists a smallest binary string s such that 
lim µT–n[s] ≠

n→∞

µp[s]. Without loss of generality we may suppose that for some rational  ε > 0, for some
sequence (Ni) recursive in µ and for all i:

µT
–Ni[s]  >  µp[s] + ε.

Define for this particular sequence (Ni) and for all binary words v a place selection Ψv by

ψv(x(m))  =  {
∃i (Ni + |v| = m) & ∃u∈2<ω(uv = x(m))1     if

otherwise0 .

Recall that "v⊂w" means that v is a strict initial segment of w and that ‹› denotes the empty

string.
Claim 1

∀w∈2<ω (∀v⊂w lim
n→∞ n

1∑
k=1

n

Ψv(x)k = p → lim
n→∞ n

1∑
i=1

n

1[w](T
Ni  =  µp[w]).x)

Proof of claim 1  We use induction on w. If w = 1, the hypothesis of the claim implies that

lim
n→∞ n

1∑
k=1

n

Ψ‹›(x)k = p,

which is by definition of Ψ‹› equivalent to

lim
n→∞ n

1∑
i=1

n

1[1](T
Nix) = p.
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Suppose the claim holds for w. Note that

n
1∑

i=1

n

1[w](T
Nix)

n
1∑

i=1

n

1[w1](T
Nix)

   =   
|Ψw(x(Nn))|

∑
k=1

|Ψw(x(Nn))|

Ψw(x)k

.

The hypothesis of the claim implies that the right hand side converges to p; the hypothesis of
induction implies that the denominator of the left hand side converges to µp[w]. It follows that
the numerator of the left hand side must converge to µp[w1]. This concludes the proof of

claim 1.

Claim 2  Under the hypothesis of the theorem, for  α  = 0,1:

  ∈2<ω   µ( omΨv) = 1 & µ{x| lim
n→∞ n

1∑
i=1

n

1
[vα]

(T
Nix) = µp[vα]} = 1.∀ dv

Proof of claim 2  We use induction on v. Trivially, µ(domΨ‹›) = 1 and hence for α = 0,1:

µ{x| lim
n→ n

1∑
i=1

n

1
[α]

(T
Nix) = µp[α]} = 1,

∞

by claim 1 and the hypothesis of the theorem. Suppose the claim holds for u⊂v, then again by

claim 1 and the hypothesis of the theorem:

µ{x| lim
n→∞ n

1∑
i=1

n

1[v](T
Nix) = µp[v]} = 1.

It follows that  µ–a.e. v occurs infinitely often  at coordinates starting with an index Ni+1;
hence µ(domΨv) = 1. Then, as a consequence of claim 1 and the hypothesis of the theorem:

µ{x| lim
n→∞ n

1∑
i=1

n

1
[vα]

(T
Nix) = µp[vα]} = 1.

This concludes the proof of claim 2.

Claim 2 implies that for the particular string s determined at the outset,

µ{x| lim
n→∞ n

1∑
i=1

n

1[s ](T
Nix) = µp[s]} = 1.

By the dominated convergence theorem,
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lim
n→∞ n

1∑
i=1

n

µT
–Ni[s]  =  lim

n→∞
 ∫
2ω

n
1∑

i=1

n

1[s](T
Nix)dµ(x)  =  

=  ∫
2ω

lim
n→∞ n

1∑
i=1

n

1[s](T
Nix)dµ(x)  =  µp[s],

a contradiction.                                                                                                                       

A converse to the theorem is not to be expected. Indeed, the conclusion of the theorem is
probably too weak; it is plausible that the hypothesis implies some kind of asymptotic
independence condition.

We next generalize the second part of Corollary 4.6.6 to arbitrary computable measures.

4.6.11 Lemma  Let µ, ν be computable measures such that µ is not absolutely continuous with
respect to ν. Then for some total recursive sequential test N with respect to ν, µN > 0.

Proof  We showed in Example 3.4.6 that one can define a recursive sequential test N with
respect to ν such that µN > 0, using the likelihood ratio µ[w]/ν[w]. For reasons explained at

length in 3.4, it is difficult, if not impossible, to prove that N is a total recursive sequential test
with respect to ν. We therefore borrow an idea of Gaifman and Snir [34,518]. Choose ε > 0.
Since µ is not absolutely continuous with respect to ν, there exists a sequence (Ci) of ∑0 sets

such that µ∩ iCi > ε and ν∩ iCi = 0. Let (Dk) be a recursive enumeration of the ∑0 sets.

Define

f(n):=  min{k > n | µDk > ε & νDk < 2-k}.

Let N = ∩n∪m≥nDf(m), then µN > ε. That N is a total recursive sequential test is shown by an

argument similar to the proof of the effective first Borel–Cantelli lemma, 3.3.1.         

Gaifman [34,519] asks whether µ and ν can already be separated by a ∏1 set. An affirmative

answer would follow from lemma 4.6.4 in the unlikely event that the Lebesgue decomposition
of µ with respect to ν, namely µ = µ0 + µ1, where µ0<<ν and µ1⊥ν, can be achieved with
computable µ0, µ1. It is more probable, however, that one can produce a counterexample to

computable Lebesgue decomposition in this way.

4.6.11 Lemma  µ is absolutely continuous with respect to µp iff (µT–n)n∈  converges strongly

to µp.
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Proof  ⇒ T is strongly mixing with respect to µp, i.e. for f,g in L1(µp), lim ∫(f˚Tn)·gdµp

n→∞

= (∫fdµp)·(∫gdµp). Let g in L1(µp) be a Radon–Nikodym derivative of µ with respect to µp,
 then for all Borel sets A: µA = ∫g·1Adµp. Hence lim µT–nA = lim ∫g·(1A˚Tn)dµp =

n→∞ n→∞

 µpA·(∫gdµp) = µpA.

⇐ (proof due to M.S. Keane) Suppose µ is not absolutely continuous with respect to µp. Let A
be a Borel set with µpA = 0 and such that µA > 0 is maximal. We construct a Borel set B such
that µpB = 0 and for all n, µT–nB = µA. Let B1: = TA. Claim: B1 is also Borel. For we can
split T into two homeomorphisms T0: [0] → 2ω, T1: [1] → 2ω defined by Ti(ix) = x, for i =
0,1. Since the Ti are homeomorphisms, the sets Ti(B∩ [i]) are Borel; but  TB =
T0(B∩[0])∪T1(B∩[1]). Clearly µpB = 0. Since T–1B1⊇A and A was chosen to have maximal
µ-measure, µT–1B1 = µA. For each n, repeat the above argument with Tn replacing T, yielding

Bn. Put B:= ∪nBn, then µpB = 0 and µT–nB = µA for all n.             

4.6.12 Theorem  Let µ be a computable measure. Then µR(µp) = 1 iff (µT–n)n∈   converges

strongly to µp.

Proof  By lemma 4.6.11, µR(µp) = 1 implies that µ is absolutely continuous with respect to
µp. The converse is trivial. Now apply the previous lemma.                                             

4.7 Digression: the difference between randomness and 2-randomness  We are interested
in the size of the difference between R(λ) and R2(λ), the randomness notion that was defined
in 3.2.4.1. We have seen in 3.2.4 that R(λ)∩R2(λ)c is non-empty. On the other hand, by

lemma 4.6., there is no computable measure µ such that µ(R(λ)∩R2(λ)c) = 1: if µR2(λ) = 1,
then µ⊥λ, which implies µR(λ) = 0. (Note that, for all we know, there might be a computable
µ such that µ(R(λ)∩R2(λ)c) > 0.)
We now show, as an application of the techniques developed in 4.1-6, that R(λ)∩R2(λ)c is
indeed large: there exists a non-atomic ∆2 definable measure µx such that µx(R(λ)∩R2(λ)c) =

1.
To prove this,  we need a random measure, that is,  a family of measures (µx)

x∈2ω
 defined as 

follows:

µx = ∏n(1–pn
x,pn

x),  where  pn
x  =  {

3/4   if xn = 1

1/4  if xn = 0.

It is easily shown that for each Borel set B, the mapping x → µxB is measurable. Hence we



121

may define a measure µ on 2ω by

µ(A×Β)  =  ∫
A

µxBdλ(x).

µ is obviously computable, hence R(µ) is well defined. Using a construction exactly parallel to
the Fubini theorem for recursive sequential tests (Theorem 4.4.4), one can demonstrate that for
all x ∈ R(λ), µxR(µ)x = 1. For this, it suffices to show that for each recursive sequential test N
with respect to µ, {x| µxNx > 0} is contained in a recursive sequential test with respect to λ.
This can be done if we change slightly the definition of the functions fk occurring in the proof

of Theorem 4.4.4. We now put

f0 (x) = 0 for all x

fk(x) = ∑
{i≤k| x∈[w

i
]}

µ [vi],  for k≥1x
;

the rest of the proof then goes through almost literally.

We now show that for x ∈ R(λ), R(µ)x ⊆ R(λ). For this, it suffices to show that the mapping
π2: 2ω×2ω → 2ω defined by π2<x,y> = y is such that for any recursive sequential test N with
respect to λ, π2

–1N is a recursive sequential test with respect to µ, for in that case, <x,y> ∈
R(µ) implies y ∈ R(λ). (Observe that x ∈ R(λ) implies that R(µ)x ≠ Ø.) Now π2

–1N is
obviously ∏2 and is a recursive sequential test, since for all Borel sets A: µπ2

–1A = λA.

We thus have that for each x ∈ R(λ), µxR(λ) = 1. In particular, this is true of the ∆2 sequence
constructed in 3.2.2.3. Fix such a ∆2 definable µx; this µx is then recursive in Ø'. It is not
difficult to see that µx⊥λ; either by Kakutani's theorem (4.6.5) or by observing that R(µ) ⊆
R(λ×λ)c and applying the Fubini theorem 4.4.4 to conclude that for x ∈ R(λ), λR(µ)x = 0.

Since our µx is singular to λ, we may perform the construction of lemma 4.6.4 (ii) recursively

in Ø', to obtain a ∆2 definable sequence (Cn) of ∑0 sets Cn, such that λ∩nCn = 0 and µx∩nCn

> 0. Now ∩nCn is ∏2, hence µxR2(λ)c > 0 and since R2(λ)c is a tailset and µx a product

measure, we get in fact µx(R(λ)∩R2(λ)c) = 1.

Notes to Chapter 4

1. A simple proof of Kakutani's theorem has recently been published by S.D. Chatterji. See
S.D. Chatterji, Martingale theory: An analytical formulation with some applications in
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analysis, in: Letta (ed.), Probability and analysis, Lecture Notes in Mathematics 1206,
Springer-Verlag (1986).
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5 Kolmogorov–complexity

Undoubtedly, the notion of Kolmogorov–complexity (sometimes called descriptive, as
opposed to computational complexity), with its attendant complexity–based definition of
randomness, is the most important development stimulated by von Mises' attempt to define
Kollektivs. The virtues of Kolmogorov–complexity seem to reside in the fact that it allows a
discussion of randomness at a more basic level. Indeed, the intuition behind its definition
stems from a tradition, going back to Antiquity, which views the essence of chance as
(objective) unpredictability or irregularity. So far, of course, we have been concerned with a
form of randomness in which irregularity coexists with statistical regularity. In later life,
Kolmogorov came to regard the relation between these two forms of chance as the problem for
the foundations of probability.

In everyday language we call random these phenomena where we cannot find a regularity
allowing us to predict precisely their results. Generally speaking there is no ground to believe
that a random phenomenon should possess any definite probability. Therefore we should
have distinguished between randomness proper (as absence of any regularity) and stochastic
randomness (which is the subject of probability theory). There emerges a problem of finding
the reasons for the applicability of the mathematical theory of probability to the real world
[51,1].

Elsewhere, he writes

In applying probability theory we do not confine ourselves to negating regularity, but from
the hypothesis of randomness of the observed phenomena we draw definite positive
conclusions [50,34].

Roughly speaking, irregular sequences are distinguishable from those which show
irregularities and statistical regularities by the following property: in the latter type of
sequences, the Kolmogorov–complexity of an initial segment divided by the length of that
segment tends to stabilize. This phenomenon illustrates one of the technical advantages of
Kolmogorov–complexity: not only does it classify sequences as random or otherwise, but it
also assigns "degrees of randomness" to sequences. This is particularly useful when we study
infinite sequences; it allows us, for instance, to discriminate between ∆2 definable and "truly"

random sequences. It must be admitted, however, that Kolmogorov himself considered infinite
sequences to be irrelevant for the foundations of probability; indeed, his main motive for
developing a measure of complexity for finite sequences was his conviction that only a
frequency interpretation in terms of finite sequences is worthy of the name.

The themes introduced above determine the structure of this chapter. Sections 5.1–3 are
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concerned with finite sequences. In 5.1 we define Kolmogorov–complexity and irregular
sequences. It will turn out that a slight modification of Kolmogorov's definition, first proposed
by Chaitin and Levin, has some conceptual and technical advantages. In 5.2 we discuss
Kolmogorov's explanation of the applicability of probability theory. 5.3 collects some
recursion theoretic properties of the complexity measures introduced in 5.1 and contains a
critical discussion of Chaitin's claim that Kolmogorov–complexity sheds light on the
incompleteness of formal systems. We then turn to the investigation of infinite sequences. In
5.4 we first characterize (Martin-Löf) randomness in terms of Chaitin's complexity measure,
but the full power of this complexity measure (namely, as an indicator for the degree of
randomness) is revealed only when we study complexity oscillations. Here, we meet various
sources of unavoidable order in infinite sequences. The same theme, complexity as degree of
randomness,  dominates 5.5, where we compare complexity with more traditional measures of
disorder, in particular (topological and metric) entropy. Lastly, in 5.6 we look back to Chapter
2 and define admissible place selections using Chaitin's complexity measure. The purpose of
the first three sections is expository; apart from the critical discussions they do not contain any
new material. The main novelty in 5.4 is that ∆2 definable sequences always must have "low"

complexity. This result allows a very simple proof of a theorem on complexity oscillations
due to Martin-Löf. The results in 5.5 on the relation between complexity and topological
entropy appear to be new.

5.1 Complexity of finite strings  The intuition behind the definition of complexity of finite
strings can be stated in various ways. One might say that if a sequence exhibits a regularity, it
can be written as the output of a (simple) rule applied to a (simple) input. Another way to
express this idea is to say that a sequence exhibiting a regularity can be coded efficiently,
using the rule to produce the sequence from its code. Taking rules to be partial recursive
functions from 2<ω to 2<ω, we may define the complexity of a word w with respect to a rule A

to be the length of a shortest input p such that A(p) = w. Sequences with low complexity (with
respect to A) are then supposed to be fairly regular (with respect to A). In order to take
account of all possible rules (i.e. partial recursive functions), we then use a universal machine.
One obtains different concepts of complexity by imposing additional restrictions on the
functions A. We begin with Kolmogorov–complexity, where no such restrictions are imposed.

5.1.1 Kolmogorov–complexity

5.1.1.1 Definition  Let A: 2<ω → 2<ω be a partial recursive function with Gödelnumber A .
The complexity  KA(w) of w with respect to A is defined to be
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KA (w)  =  {
∞  if there is no p such that A(p) = w

|p|  if p is a shortest input such that A(p) = w.

A universal machine U is said to be asymptotically optimal if it is specified by the requirement
that on inputs of the form q = 0 A 1p (i.e. a sequence of A  zeroes followed by a one,
followed by a string p), U simulates the action of A on p. Fix a Gödelnumbering and an
asymptotically universal machine U and put K(w) := KU(w). K is called the Kolmogorov–

complexity of w (Kolmogorov [48–51]). Inputs will also be called programs.

The fundamental properties of Kolmogorov–complexity are stated in the papers by
Kolmogorov cited above, in the survey article by Levin and Zvonkin [54] and, in a slightly
different form, in Chapter 15 of Schnorr's [88]. Clearly, we have

5.1.1.2 Lemma  (a) For any partial recursive A: 2<ω → 2<ω and for all w, K(w) ≤ KA(w) +

A  + 1; (b) for some constant c and for all w, K(w) ≤ |w| + c.

Before we put the above definition to work, let us remark that complexity measures are not
restricted to finite words over the alphabet {0,1}; any alphabet n = {0,..,  n–1} will do. We
only have to replace the functions A: 2<ω → 2<ω by functions which have as their range nω.

Identifying a natural number with its binary representation, it makes sense to speak of the
complexity of natural numbers. Similarly, given some recursive bijection 2<ω → 2<ω×2<ω, it
makes sense to speak of the complexity of a pair of binary strings.

We now embark upon the promised definition of regular and irregular sequences. First
suppose that K(w) << |w|; then for some algorithm A and input p such that both A and |p| are
small compared to |w|, A(p) = w. In this case, we say that w exhibits a (simple) regularity.
How small K(w) has to be is a matter of taste. Since we shall consider regularity only in
connection with infinite sequences (cf. section 5.5), we shall not be precise here. On the other
hand, it is worthwhile to develop a theory of irregularity for finite sequences. Recall that for
some c, K(w) ≤ |w| + c. We wish to say that w is irregular if it is maximally complex.
Formally:

5.1.1.3 Definition  Fix some natural number m. A binary string w is called irregular if |w| > m
and K(w) > |w| – m.

The definition of irregularity is relative to the choice of m, but this is inessential for our
(highly theoretical) purposes.
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A note on terminology What we call irregular is usually called random. The reason that we
prefer the term "irregular" over "random", is that we have used randomness so far in a
stochastic sense; but the intuition behind Kolmogorov's definition is combinatorial rather than
stochastic. This will become particularly clear when we generalize this intuition to irregularity
for binary words known to belong to a recursively enumerable subset  of 2<ω. It is possible to
put a condition on the complexity of a word w which implies that w is approximately a
Kollektiv with relative frequency (of 1) equal to p. However, this condition is stochastic from
the outset, in the sense that it explicitly mentions a measure (cf. 5.2). Only when the measure
is Lebesgue measure is the condition for stochastic randomness identical to the condition for
irregularity; but this reflects the fact that Lebesgue measure is a so–called maximum entropy
measure for the system (2ω,T). We shall come back to this topic in 5.5. In 5.1.4 the two
aspects of definition 5.1.1.3, the combinatorial and the stochastic, will be separated; in 5.4.
and 5.5 we investigate the corresponding definitions of randomness.

A simple counting argument will show that infinitely many irregular sequences exist. In the
sequel, the expression "#A" always stands for the cardinality of the (finite) set A.

5.1.1.4 Lemma  (a) #{w∈2n| K(w) ≤ n–m} ≤ 2n–m+1–1; (b) #{w∈2n| K(w) > n–m} > 2n·(1 –

2–m+1)

Proof  (a) The number of programs on U of length ≤ n–m is ≤ 2n–m+1–1. Hence (b) at least 2n

– 2n–m+1 = 2n·(1 – 2–m+1) sequences in 2n satisfy K(w) > n–m.                             

Note the extreme simplicity of the argument: it can be formalized in any formal system
capable of handling finite sets of integers. This is to be contrasted with the fact, proved in 5.3,
that the set of irregular sequences contains no infinite recursively enumerable subsets.

5.1.2 Chaitin's modification  While definition 5.1.1.1 captures the basic idea of a complexity
measure for sequences, it is open to dispute whether it is really the most satisfactory
definition. The intuition behind the definition is supposed to be that if p is a minimal program
(on U) for w (i.e. a program of shortest length), then the bits of p contain all information
necessary to reproduce w on U. But this might well be false: U might begin its operation by
scanning all of p to determine its length, only then to read the contents of p bit for bit. In this
way, the information p is really worth |p| + log2|p| bits,  so it's clear we have been cheating in

calling |p| the complexity of p.

Chaitin [12–14] and Levin [55] independently observed that we may circumvent this problem
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if we modify the construction of our Turing machines. We shall follow Chaitin's description.
From now on, Turing machines are assumed to have worktapes, a read–only input tape and a
write–only output tape. Furthermore, we constrain the reading head (operating on the input
tape) to read the input in one direction only and we do not allow blanks as endmarkers. We
say that a machine M (of this type) performs a successful computation on input p if M halts
while the reading head is scanning the last bit of p. The fact that we defined a successful
computation using the last bit of p and not the first blank following p means that p must itself
indicate where it ends; in other words, p must be a self delimiting program. Formally, this
means that the domain of M, that is, the set of p such that M performs a successful
computation on p, is prefixfree: if p and q are both in the domain of M, then neither is an
initial segment of the other. We may now introduce

5.1.2.1 Definition  A prefix algorithm is a partial recursive function A: 2<ω → 2<ω which has

a prefixfree domain.

To define a reasonable complexity measure associated with prefix algorithms, we need a
universal prefix algorithm. At first sight it might seem that no such algorithm exists, since the
set of Gödelnumbers of prefix algorithms is ∏1. But there exists nonetheless a recursive

enumeration of the set of prefix algorithms, as follows. We construct an algorithm P which
turns any number e into a Gödelnumber for a prefix algorithm P(e). Given e, generate the
domain of the function φe with Gödelnumber e. A partial recursive function φP(e) with
Gödelnumber P(e) is determined by the following prescription: φP(e) equals φe except for those
q ∈ domφe which are initial segments or prolongations of previously generated p ∈ domφe. If
one of these cases occurs, φP(e)(q) is undefined. By construction, φP(e) is a prefix algorithm and

all prefix algorithms have at least one Gödelnumber which occurs in the range of P. Hence the
set of prefix algorithms, as opposed to the set of their Gödelnumbers, is recursively
enumerable. (In other words, range(P) is not "extensional".)

We may now define a universal prefix algorithm as in definition 5.1.1.1: on inputs of the form
q = 0 A 1p, U simulates the action of A on p, where A is a prefix algorithm. We put

5.1.2.2 Definition  Let A: 2<ω → 2<ω be a prefix algorithm with Gödelnumber A . The
complexity  (also called information) IA(w) of w with respect to A is defined to be

IA (w)  =  {
∞  if there is no p such that A(p) = w

|p|  if p is a shortest input such that A(p) = w.

If U is the universal prefix algorithm constructed above, we let I(w) := min {|p|| U(p) = w}.
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This definition is due to Chaitin [12;13]; the notation "I(w)" derives from the formal
similarities of this complexity measure with Shannon's measure of information. Indeed, the
complexity measure I is not only conceptually cleaner than K, it has also a number of
technical advantages, as will become gradually clear in the sequel. We first state some
fundamental properties, parallel to those of K.

5.1.2.3 Lemma  For some constant c and for all w: I(w) ≤ |w| + I(|w|) + c.

Proof  Let A be the following algorithm: given input p, it simulates the action of the universal
machine U on some initial segment q of p such that U(q) is defined; if m is the natural number
determined by U(q), A reads the next m bits of the input tape and copies them on the output
tape. By our conventions on a successful computation, A(p) is defined only if |p| = |q| + m; this
turns A into a prefix algorithm. Now if q is a (minimal) program for |w|, then A(qw) = w and
I(w) ≤ IA(w) + A  + 1 ≤ |w| + I(|w|) + A  + 1.                       

Here we see clearly the distinguishing feature of the new algorithms: acceptable inputs must
themselves indicate where they end, hence the extra I(|w|)-term.

5.1.2.4 Lemma  (a) for some constant c: #{w∈2n| I(w) ≤ n + I(n) – m} ≤ 2n–m·c; (b) for some
constant c: #{w∈2n| I(w) > n + I(n) – m} > 2n·(1 – 2–m·c).

A proof of this lemma may be found in Chaitin [12,337] (and in 5.1.3 we shall derive 5.1.2.4
from a property of conditional complexity). It should be noted that, whereas the corresponding
result for K was trivial, the proof of 5.1.2.4 is rather involved. This fact may add fuel to a
nagging suspicion on the reader's part, that Chaitin's definition introduces only gratuitious
complications. This impression, however, is mistaken; although proofs are sometimes more
difficult, theorems and formulae generally take on a pleasanter aspect. One example will be
given below; we shall meet another instance of this phenomenon in 5.1.3, where we define
conditional complexity.

5.1.2.5 Example  The main technical advantage of I lies in the fact that desirable results which
hold for K only with logarithmic error terms, are now true within O(1). E.g. for K we have
only: K(<v,w>) ≤ K(v) + K(w) + min[log2K(v),log2K(w)] + O(1), but the formula for I is

more intuitive:

Claim  For some constant c, for all v,w: I(<v,w>) ≤ I(v) + I(w) + c.

Proof of claim  Let A be the prefix algorithm which does the following. On input s, it sets U
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reading s; if U performs a successful computation on s, it outputs U(s). If U halts while
scanning the last bit of some proper initial segment s' of s, it stores U(s') on its worktape and
continues reading s'', where s = s's''. If U halts again scanning the last bit of s'', A outputs
<U(s'),U(s'')> and stops. Simulating A on U we get the desired result.       

The root of the superiority of I over K can thus be traced to the circumstance that we may
concatenate self delimiting programs; we only have to add a couple of bits which tell the
machine that it must expect two (or more) programs (this is what simulating A on U means).
One immediate application of the above formula for the complexity of a pair will illustrate its
force: if T is the leftshift on 2ω, we have for some constant c and all x in  2ω,

         I(x(n+m)) ≤ I(x(n)) + I(Tn(x(n+m))) + c.
The sequence of functions fn(x) := I(x(n)) thus forms a subadditive sequence and by the

subadditive ergodic theorem1, we have that for any ergodic measure µ there exists a constant
H such that

lim
n→∞ n

I(x(n))
  =  H  µ–a.e.

(It is, however, notoriously difficult to identify the limit of a subadditive process; eventually,
in 5.5.2, we shall show that H equals the metric entropy of µ, but via an entirely different
route.) These considerations justify calling the property of I stated in claim 5.1.2.5
subadditivity. End of the example.

Parallel to definition 5.1.1.3 we have

5.1.2.6 Definition  Fix a natural number m. A binary word w is irregular if I(w) > |w| + I(|w|)
– m.

By lemma 5.1.2.4, the great majority of binary strings is irregular.

Before we turn to conditional complexity, we introduce an important technical tool. Since we
defined I by restricting the class of admissible algorithms to those with a prefixfree domain,
we need some criterion to decide whether a certain task can be performed by a prefix
algorithm. Almost trivially, we have

5. 1. 2. 7 Lemma   (a) If A is a prefix algorithm, then  ∑
A(p) defined

 2–|p| ≤ 1. (b)  ∑
w∈2<ω

 2 I(w) ≤ 1.
–

Proof   (a) The cylinders in {[p]| A(p) defined} are pairwise disjoint.  (b)  Apply (a) to the
universal prefix algorithm.                                                                                                 
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Part (a) of the following lemma, to be called the Chaitin–Kraft inequality2 is a converse to
lemma 5.1.2.7.

5. 1. 2 . 8  Lemma  (a) Let S be an r.e.  set of pairs <w,m> such that  ∑
<w,m>∈S

 2–m  ≤ 1.  Then there

exists a prefix algorithm A with the property: <w,m> ∈ S iff ∃p (|p| = m & A(p) = w).

(b) Simulating A on the universal machine, we have for all <w,m>∈S: I(w) ≤ m + A + 1.

For a proof, see Chaitin [12,333]. Part (b) will be our main tool in deriving upper bounds on I.
Here is a useful consequence of lemma 5.1.2.8:

5. 1. 2. 9 Lemma  Let f: ω → ω be a total recursive function   ∑
n

 2–f(n) = ∞

 ∀m ∃n≥m (I(n) > f(n) + m).  (b)

. (a)  If ,  then

If  ∑
n

 2–f(n) < ∞,  then  ∃m ∀n (I(n) ≤ f(n) + m).

Proof  (a) follows from part (b) of lemma 5.1.2.7.  To prove (b), determine k such that

∑
n≥k

2–f(n) ≤ 1.  Lemma 5.1.2.8 (b),  applied to the r.e. relation {<n,f(n)> | n ∈ ω} yields a

constant m0 such that for n ≥ k: I(n) ≤ f(n) + m0.  Put m1:= max{I(n) | n≤k}. Then for all n:

I(n) ≤ f(n) + m.                                                                                                                      

In conclusion of this subsection, we mention a result on the relation between K and I due to
Solovay [93]. Obviously, for all w: K(w) ≤ I(w).

5.1.2.10 Lemma  For all w, I(w) = K(w) + K[K(w)] + O(log2K[K(w)]).

The intuitive meaning of this expression is, that it takes K[K(w)] + O(log2K[K(w)]) bits to

turn a minimal program for w into a self delimiting program.

5.1.3 Conditional complexity  In Chaitin's set–up, conditional complexity comes in two
varieties. The most straightforward definition is the following. We consider algorithms B(p,q)
in two arguments p and q, which can be thought of as being presented on the input tape and a
work tape, respectively, of a Turing machine. Such an algorithm is called a prefix algorithm if
for each q, the set {p| B(p,q) defined} is prefixfree. We shall use U interchangeably for both
the one–argument and the two–argument universal prefix algorithm.

5.1.3.1 Definition  I0(w|v) := min{|p|| U(p,v) = w}.
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For the second variant, denoted I(w|v), we demand that U is presented, not with v itself, but
rather with a minimal program for v.

5.1.3.2 Definition  I(w|v) := min{|p|| U(p,v*) = w}, where v* is some minimal program for v.

It will be seen in the sequel that both notions are useful. Some easy facts:

5.1.3.3 Lemma For some constant c and all w: I0(w||w|) ≤ |w| + c.

Proof  The algorithm B defined by B(w,|w|) = w is a prefix algorithm in the new sense.   

5.1.3.4 Lemma For some constant c and for all w: I(w||w|) ≤ I0(w||w|) + c.

Proof  Consider the following prefix algorithm B: on being presented with <p,q>, it calculates
U(q); if and when this computation halts, it calculates U(p,U(q)). Hence if p is a program such
that U(p,|w|) = w, then B(p,|w|*) = w.                                                            

The difference between the two notions of conditional complexity is brought out by the
following lemma:

5.1.3.5 Lemma  (a) I0(w||w|) – I(w||w|) is unbounded; (b) For some constant c and all w:
|I(w||w|) – I0(w|<|w|,I(|w|)>)| ≤ c.

A proof may be found in Chaitin [12,338]. The main difference between I and I0, however, is

that the former satisfies

5.1.3.6 Lemma  For some constant c, for all v,w: |I(w|v) + I(v) – I(<w,v>)| ≤ c.

This formula is proved in Chaitin [12,336] and is desirable if we think of I as giving the
information of a string. As an application of the preceding lemma, we may now prove lemma
5.1.2.4 (a): for some constant c, #{w∈2n| I(w) ≤ n + I(n) – m} ≤ 2n–m·c.

Observe that for some constant d, all n and all w in 2n: |I(<w,n>) – I(w)| ≤ d.
This observation, taken in conjunction with the lemma 5.1.3.6, enables us to write (for some
constant c): #{w∈2n| I(w) ≤ n +I(n)–m} = #{w∈2n| I(w) – I(n) ≤ n – m} ≤ #{w∈2n| I(w|n)≤
n–m–c}(we apply 5.1.3.6 to the pair <w,n>).
But #{p| |p| ≤ n – m – c & U(p,n) defined} ≤ 2n–m–c+1.

5.1.4 Information, coding, relative frequency  In the previous subsection, we studied the
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effect of using the information contained in a word v upon the complexity of a word w. We
now show how to take in account extraneous or global information, namely, knowledge of a
recursively enumerable subset of 2<ω to which a given word belongs, or knowledge

concerning the probability of a word, as given by some computable probability distribution.
We first make explicit the relation between complexity and coding, which was used to
motivate the definition of complexity in 5.1.1; the effect of the extra information may then be
explained in terms of coding procedures.

5.1.4.1 Definition  A prefix code is a prefix algorithm (in the sense introduced in 5.1.3)  A:
2<ω×ω → 2<ω such that for all n, {w| ∃p (A(p,n) = w)} ⊆ 2n. Note that A is given n itself, not

a minimal program for n.

A prefix code A provides for each n a coding scheme for the binary words of length n which is
uniquely decipherable: the requirement that A be a prefix algorithm ensures that any sequence
of length n·k can be coded into a uniquely decodable concatenation of k codewords. Observe
that any prefix algorithm can be transformed into a prefix code by a suitable restriction of its
domain. For instance, if U is the universal prefix algorithm, we may define a prefix code U*
by setting U* equal to U on domU* = {p| ∃w (U(p,|w|) = w)}. U* embodies many different
coding schemes. The expression I0(w||w|) = min{|p|| U*(p,|w|) = w}, where I0 was defined in

5.1.3.1, gives the length of the shortest code for w with respect to U*. The expression
I0(w||w|)/|w| might be called the compression coefficient of w; it measures how efficiently w

can be coded, using the universal coding U*. In section 5.5 we shall derive various asymptotic
estimates on the compression coefficient.

The fact that U* embodies many different coding schemes will now used to derive upper
bounds on I in the presence of extraneous information. The following lemmas may be seen as
elaborations of two aspects of the definition of irregularity (5.1.2.6). We motivated this
definition as follows: a finite binary sequence w was judged to be irregular if its complexity is
close to the theoretical upper bound |w| + I(|w|). But this upper bound can be interpreted in at
least two ways: if |w| = n, then n is the logarithm of the cardinality of 2n, or minus the
logarithm of the probability of w on the uniform distribution. The first lemma elaborates the
first interpretation.
5.1.4.2 Lemma  Let S ⊆ 2<ω be an r.e. set of words, Sn := S∩2n, #Sn the cardinality of Sn.
Then for some constant c, for all n and for all w ∈ Sn:

I0(w|n) ≤ [log2#Sn] + c and I(w|n) ≤ [log2#Sn] + c.

As a consequence, for some constant d and all w ∈ Sn:
I(w) ≤ [log2#Sn] + I(|w|) + d.
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Proof  For each n, order the words in Sn lexicographically and enumerate them in this order. If
p is the ordinal number of a word w in Sn, we may consider p to be a binary string of length
[log2#Sn] + 1, by adding if necessary zeros to the left of the ordinal number p, written in
binary notation. Now define an algorithm B as follows. If |p| = [log2#Sn] + 1, then B(p,n) is
the pth word in Sn. By construction, B is a prefix algorithm in the sense of 5.1.3. Hence for
some c, for all n and w in Sn: I0(w|n) ≤ [log2#Sn] + c. To get I(w|n) ≤ [log2#Sn] + d, replace B

by B' defined as follows: B'(p,q):= B(p,U(q)), where U is the universal prefix algorithm.  To
get the upper bound on I(w), apply lemma 5.1.3.6.             

5.1.4.3 Lemma  Let µ be a computable measure on 2ω.  Then for some c and all w:
I0(w||w|) ≤ [–log2µ[w]] + c and I(w||w|) ≤ [–log2µ[w]] + c.

As a consequence, for some c and all w:
I(w) ≤ [–log2µ[w]] + I(|w|) + c.

Proof  Since for each n

∑
w∈2n

 2
–[-log2µ[w]] –1

 ≤ 1,

we can, using the Chaitin–Kraft inequality, construct prefix algorithms An, uniformly in n,

such that

∀n ∀w∈2n ∃p (|p| = [–log2µ[w]] – 1  &  An(p) = w).

Defining B by B(p,n) := An(p), we see that for some c and all w:
I0(w||w|) ≤ [–log2µ[w]] + c

and if we put B'(p,q) := B(p,U(q)), we get for some c,
 I(w||w|) ≤ [–log2µ[w]] + c.

The upper bound on I(w) follows again by applying lemma 5.1.3.6.                                  

As we said above, both lemmas can be seen as generalizations of lemma 5.1.2.3:

for some constant c and for all w: I(w) ≤ |w| + I(|w|) + c,

corresponding to different interpretations of the expression "|w|". For n = |w| denotes not only
the length of w ∈ 2n, but is also equal to #log2Sn if S = 2<ω (this observation leads to lemma
5.1.4.2) and to [–log2λ[w]] (which leads to lemma 5.1.4.3). The upper bound of lemma 5.1.2.3

is not always sharp; in particular, additional information on w may lead to a sharper estimate
on I(w). The above two lemmas are cases in point.
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Lemma 5.1.4.2 says roughly that if we know that w belongs to S, to specify w completely it
suffices to give n (with cost I(n)) and then the ordinal number of w in Sn (with cost ≤
[log2#Sn] + 1). This might be called the combinatorial or topological aspect of I. The reason

for this nomenclature will become clear in 5.5, when we discuss the relation of I to topological
and metric entropy.

On the other hand, lemma 5.1.4.3 is based on the idea that words which have large probability
(with respect to µ) can have short codes, at the expense of words with small probability, which
must then receive long codes. This could be called the metric aspect of I. To give the reader an
idea of the size of the upper bounds obtained in this way, we need the following corollary of
the Shannon – McMillan – Breiman theorem. Unexplained concepts are defined in section 7.

5.1.4.4 Theorem  (Petersen [82,263] Let µ be an ergodic measure on 2ω with entropy H(µ).
For all ε > 0 there exists n0(ε) such that for n ≥ n0(ε), 2n can be partitioned into two sets Bn (of
"bad words") and Gn (of "good words") which satisfy
(1) µ[Bn] < ε;
(2) for all w ∈ Gn, 2–n(H(µ)+ε) < µ[w] <2–n(H(µ)–ε).
In other words, if we know that w belongs to the "good" words of µ (for given ε), then the
upper bound on I(w) is given by I(w) ≤ (H(µ)+ε)·|w| + I(|w|) + c. For "bad" words the upper

bound of lemma 5.1.4.3 may be much worse than that of lemma 5.1.2.3.

With these two interpretations on the upper bound of I at our disposal, we may develop the
fundamental intuition that a string is irregular if its complexity is almost maximal, in two
directions. We shall do so in section 5.5.

In conclusion, we note that lemma 5.1.4.2 can be used to derive an upper bound on I(x(n·k)) in
terms of the relative frequencies of words of length k occurring in x(n·k). This upper bound is
helpful when we study the relation between I and metric entropy.

5.1.4.5 Lemma  (Kolmogorov [50]) Let x ∈ 2ω. Fix an integer k and denote by qi(n) the

relative frequency of the ith word of length k in x(n·k). Then

I(x(n·k)) ≤ –n·∑
i=1

2
k

qi(n)log2qi(n) + I(n·k) + O(log2n).

Proof  By lemma 5.1.4.2, it suffices to show that the number N of words of length n·k which
have the given set of frequencies q1(n),...,qm(n), where m = 2k, is less than
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–n·∑
i=1

2
k

qi(n)log2qi(n) + O(log2n).

For the verification that this is indeed so, the reader may consult Levin and Zvonkin [54].
(They prove the result for K, but the proof goes over unchanged.)                                      

It is instructive to compare the preceding lemma with lemma 5.1.4.3. Both determine an upper
bound on I(w) in terms of probabilities; but in 5.1.4.5 these probabilities are the relative
frequencies of small words in w, whereas in 5.1.4.3 the upper bound is derived using the
frequency of w itself.

5.1.5 Discussion  Obviously the definition of complexity is open to the charge of arbitrariness
on various accounts. For one thing, we might have chosen a different Gödelnumbering or a
different universal machine. The difference between the resulting complexity measures is then
bounded by a constant. While this might impair the practical utility of complexity, it is quite
harmless for theoretical purposes. In particular the asymptotic results derived later are not
affected by such a change of scale.
More serious, perhaps, is the decision to restrict the concept of a rule to partial recursive
functions. Here, we are confronted with the same problem as in Chapters 2 and 3: Why choose
only recursive place selections, why choose only recursive sequential tests?
Complexity was invented to formalize an essentially negative concept, namely irregularity.
This formalization can succeed only if we replace the implicit negation of all regularity by a
negation of some particular form of regularity. The particular form of regularity we choose to
reject depends upon our view of chance. If we regard it as something subjective, e.g. if we
believe that the universe is really deterministic and that the appearance of chance is caused by
our limited observational and computational abilities, then a definition of rule which reflects
our mental powers is not unreasonable. But if we believe in objective chance, for instance
because we believe in quantum mechanics and the no–hidden variable proofs, then there
seems to be no reason at all why partial recursive rules should occupy a privileged position.

We have already seen, for example, that some ∆2 definable sequences are random; but such

sequences can with reason be regarded as far too regular, since they are produced by a Turing
machine operating by trial and error. This fact prompted Müller [76] to define a complexity
measure using ∑2 instead of ∑1 functions. The cynic might then ask: Why stop here? We

would be surprised to find any arithmetical or analytical regularity in a sequence. On the
positive side, we may remark that already the above complexity measures, which were defined
using recursive functions only, reveal that ∆2 definable sequences are really deterministic
sequences: the asymptotic behaviour of K and I on a ∆2 definable sequence is rather atypical
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(see section 5.4).
On the whole, however, we must conclude that complexity as presented above fits the
subjective aspect of irregularity and chance best. This is even more true of the resource–
bounded complexity measures briefly discussed below.

One more source of arbitrariness might be given by the coexistence of different definitions of
complexity for finite binary strings: for instance Kolmogorov–complexity, Chaitin–
complexity and monotone complexity, of which more will be said in 5.4. Nor is this the end of
the list. On this score, however, we are not so pessimistic: we believe that there are good
arguments to show that Chaitin's definition is both conceptually and technically the most
satisfactory.

5.1.6 Digression: Resource–bounded complexity  In the definition of K and I one feature of
computations has been left out of consideration: the amount of resources (time, space; in some
cases the number of times an oracle is consulted) needed to compute a string from a given
program. This is the motivation behind resource–bounded complexity. The gist of this concept
can be gathered from the following definition:

5.1.6.1 Definition  Let g be a total recursive function and U a universal Turing machine. Then
Kg(w) := min{|p|| U(p) = w and the computation takes ≤ g(|p|) steps}.

Natural choices for g would be: polynomials, functions of order f·log2f, where f is a

polynomial, or functions of order 2cn etc. For information on the use of these complexity
measures in computer science, the reader may consult the references [36], [59] and [90]2a.

5.2 Kolmogorov's program  In [50,34], Kolmogorov writes

The idea that "randomness" consists in a lack of "regularity" is thoroughly traditional. But
apparently only now has it become possible to found directly on this simple idea precise
formulations of conditions for the applicability of the mathematical probability theory to real
phenomena.

In other words, irregularity leads to (stochastic) randomness and
Practical deductions of probability theory can be justified as consequences of hypotheses
about the limiting complexity, under given restrictions, of the phenomena in question [50,34].
The applications of probability theory can be put on a uniform basis. It is always a matter of
consequences of hypotheses about the impossibility of reducing in one way or another the
complexity of the description of the objects in question [50,39].

For later reference, we shall call this view Kolmogorov's program. Its most sophisticated
presentation is [50], but some of the fundamental ideas are already present in [47]. We do not



137

give the formal details of the program, but limit ourselves to some philosophical comments.
To give the reader an impression of the formal details, we state here a result for infinite

sequences (proven in 5.4) which may be seen as an illustration (but only an illustration ) of
this program:

If µ is a computable measure, then x ∈ R(µ) iff (*) ∃m ∀n I(x(n)) > [–log2µ[x(n)]] – m.

This theorem is an illustration of Kolmogorov's program in the following sense: it states that
regular statistical behaviour, in this case the satisfaction of the effective probabilistic laws
associated with the measure µ, is implied by the assumption of (almost) maximal complexity
compatible with that measure. We saw in 5.1.4.3 that the upper bound on I(x(n)) is of the form
[–log2µ[x(n))]] + I(n) + c. Condition (*) indeed states that I(x(n)) is "sufficiently close to the

upper bound": by lemma 5.1.2.9, if a > 1 (and computable), then for some c and all n, I(n) ≤
a·log2n + c. Hence I(n) ∈ o(n), whereas, at least for ergodic measures, [–log2µ[x(n)]] is of

order n for almost all x. (Of course, (*) does not quite express that the complexity is maximal;
although the term I(n) is of lower order, hence may be neglected for large n, it has to be
explained why it doesn't occur in the right hand side of (*). This matter is taken up in the next
section.)

One of the reasons why the theorem announced above cannot be taken as a literal fulfillment
of Kolmogorov's program, is the fact that it is stated in terms of infinite sequences.
Kolmogorov considered it to be a major advantage of complexity, that it allowed a smooth
theory of randomness for finite sequences. Contra von Mises, he believed that infinite
sequences could not serve as a foundation for probability theory.

The set theoretic axioms of the calculus of probability [...] had solved the majority of formal
difficulties in the construction of a mathematical apparatus [...] so successfully that the
problem of finding the basis for real application of the results of the mathematical theory of
probability became rather secondary to many investigators. I have already expressed the view
that the basis for the applicability of the results of the mathematical theory of probability to
real "random phenomena" must depend on some form of the frequency concept of
probability, the unavoidable nature of which has been established by von Mises in a spirited
manner. However, for a long time I had the following views.
(1) The frequency concept based on the notion of limiting relative frequency as the number
of trials increases to infinity, does not contribute anything to substantiate the applicability of
the results of probability theory to real practical problems where we always have to deal with
a finite number of trials.
(2) The frequency concept applied to a large but finite number of trials does not admit a
rigorous formal exposition within the framework of pure mathematics.
Accordingly, I have sometimes put forward the frequency concept which involves the
conscious use of certain not rigorously formal ideas about "practical reliability",
"approximate stability of the frequency in a long series of trials", without the precise
definition of the series which are "sufficiently large" etc.
I still maintain the first of the two theses mentioned above. As regards the second, however, I
have come to realise that the concept of random distribution of a property in a large finite
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population can have a strict formal mathematical exposition [47,369].

We do not think that the use of finite, instead of infinite Kollektivs connects probability theory
closer with reality. Although it is theoretically possible to verify of a finite sequence of data
that it is a finite Kollektiv3, this is not the way probability theory is used in practice: one
assumes that the data form a Kollektiv with respect to some distribution and one makes
predictions on that hypothesis. If the predictions are wrong, then so is the hypothesis. Since
the property of being a Kollektiv is thus never exhaustively verified, it does not seem
mandatory to use finite Kollektivs only. In general, Kollektivs should be thought of as a
vehicle for expressing the necessary presuppositions of sucessful applications of probability
(when interpreted as relative frequency), not as an instrument yielding immediately verifiable
or falsifiable predictions. In fact, on the frequency interpretation, in any of its versions, such
immediately verifiable or falsifiable predictions are impossible. It then appears to be of
secondary importance whether we express the necessary presuppositions in terms of a finite or
an infinite model.

But even if we accept infinite sequences in the foundations of probability, the above theorem
is still not quite what Kolmogorov has in mind. It is clear from the quotation just given, that
Kolmogorov to a large extent subscribes to von Mises' version of the frequency interpretation.
In particular, relative frequency is the primary concept, not measure, as in the propensity
interpretation. But if that is so, (*) has to be replaced by a different condition; after explaining
von Mises' definition of Kollektiv, Kolmogorov observes

But it turns out that this requirement can be replaced by another one that can be stated much
simpler. The complexity of a sequence of 0's and 1's [of length n and with frequency of 1
approximately equal to p] cannot be substantially larger than nH(µp) = n·(–plog2p – (1–
p)log2(1–p)) [cf. lemma 5.1.4.5]. It can be proved that the stability of frequencies in the sense
of von Mises is automatically ensured if the complexity of the sequence is sufficiently close to
the upper bound indicated above [50,35].

Clearly, Kolmogorov envisages a condition of randomness in which the complexity I(x(n)) is
compared with an expression involving the (limiting) frequency p of 1; but in (*) I(x(n)) is
compared with an expression which involves the (limiting) relative frequency of the word x(n)
as given by µp (cf. the difference between lemmas 5.1.4.3 and 5.1.4.5). Hence (*) implicitly

refers to coordinate-wise probabilities and not to the (limiting) relative frequency of 1. This is
of course to be expected, given the material from section 4.6 and the fact that (*) is an
equivalent condition for randomness. We have added these cautionary remarks to warn the
reader that the characterization of (Martin-Löf) randomness in terms of complexity cannot be
seen as an execution of Kolmogorov's program.
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In our opinion, the most important feature of Kolmogorov's program is not so much its finitary
character, but rather the explanation scheme that it offers. Von Mises based the applicability
of probability theory on two (idealizations of) brute facts: existence of limiting relative
frequencies and invariance under admissible place selections. Kolmogorov replaces
admissibility by simplicity:

In fact, we can show that in sufficiently large populations the distribution of the property may
be such that the frequency of its occurrence will be almost the same for all subpopulations,
when the law of choosing these is sufficiently simple [47,370].

In other words, a prediction is successful if the place selections which are involved in its
derivation (in the sense of 2.4) have a simple description, while the phenomena are complex.
This characterization of successful predictions seems correct for a number of cases, although it
is not applicable to situations involving, for instance, two independent coins: the place
selection determined by the second coin is, in an absolute sense, no less complex than the
Kollektiv determined by the first coin. But a modification of Kolmogorov's program is able to
handle this situation as well: what seems to be important is not so much that the selection is
simple and the data complex, but rather that there exists an "information gap" between place
selection and Kollektiv. The existence of such a gap can be stated precisely using some form
of conditional complexity, and we shall do so in 5.6.

5.3 Metamathematical considerations on randomness The present section serves two
purposes: we collect some recursion theoretic properties of the complexity functions K and I,
and, more importantly, we investigate Chaitin's claim that the ideas of complexity theory may
help to explain the incompleteness of (sufficiently rich) formal systems.

In [13,336] Chaitin reformulates Gödel's first incompleteness theorem as follows:

Here is our incompleteness theorem for formal axiomatic theories whose arithmetical
consequences are true. The set-up is as follows: the axioms are a finite string, the rules of
inference are an algorithm for enumerating the theorems given the axioms and we fix the
rules of inference and vary the axioms. Within such a formal system a specific string cannot
be proven to be of entropy [=complexity] greater than the entropy of the axioms of the
theory. Conversely, there are formal theories whose axioms have entropy n + O(1) in which it
is possible to establish all true propositions of the form "I(specific string) > n".

In other words, Chaitin claims there exist constants c and d such that (i) an axiomatic theory
with axiom p does not prove any statement of the form "I(w) > I(p) + c", and (ii) for any n,
one may construct an axiomatic theory with axiom qn which proves all statements of the form
"I(w) > n" and for which I(qn) ≤ n + d. (i) implies that many assertions on the complexity of

individual binary strings are undecidable in arithmetic or set theory and as such it can be
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compared to the first incompleteness theorem. But (i) and (ii) go much further and assert that
there exists a precise quantitative relationship between the information content of an axiom
system (as measured by the complexity of the axioms) and the values of n such that I(w) > n is
not derivable in that system. Chaitin's ultimate aims are even more ambitious:

I would like to be able to say that if one has ten pounds of axioms and a twenty-pound
theorem, then the theorem cannot be derived from the axioms [14,942].

Hence not only the underivability of certain true complexity statements is to be explained by
an appeal to the finite information content of a formal system, but any undecidability result is
to be explained in this way. We must now investigate whether Chaitin's claim can be
substantiated.

5.3.1 Complexity and incompleteness  We first state precisely and prove Chaitin's version of
the incompleteness theorem; a discussion follows in 5.3.2. We use Rogers' notation for partial
recursive functions and recursively enumerable sets [86]: φn denotes the partial recursive
function from  to  with Gödelnumber n and We denotes the r.e. subset of  with
Gödelnumber e. As usual, we shall assume that sets such as 2<ω or 2<ω×ω  etc. are coded into

the natural numbers.

5.3.1.1 Lemma  {<w,m> ∈ 2<ω×ω | I(w) ≤ m} is recursively enumerable.

Proof  If U is the universal machine defined in 5.1, we have, using the definition  of I,
{<w,m> ∈ 2<ω×ω | I(w) ≤ m} = {<w,m> ∈ 2<ω×ω | ∃p (U(p) = w & |p| ≤ m)}; the condition
on the right hand side is ∑1.    

Hence {<w,m> ∈ 2<ω×ω | I(w) > m} is ∏1; but it also satisfies a stronger property:

5.3.1.2 Definition  (a) A set A is immune if it is infinite but contains no infinite recursively
enumarable subset; (b) a set A is effectively immune  if for some total recursive function g: ω
→ ω: We ⊆ A implies #We ≤ g(e); (c) a set B is (effectively) simple if B is r.e. and Bc is

(effectively) immune.

5.3.1.3 Theorem There exists a constant c such that any r.e. subset We of {<w,m> ∈ 2<ω×ω |

I(w) > m} is bounded in the second coordinate by I(e) + c.

Proof  Although the result is stated for I only, it holds for a wide variety of complexity
measures. To bring this out, we give an abstract proof. Let U be the universal prefix algorithm
and define a partial recursive function f as follows. f operates on inputs of the form 0n1q.
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Given this input, f first calculates U(q); if and when it has found e = U(q), it generates We

until it has found a pair <w,m> ∈ We such that m > |q| + n + 1; it then outputs w. Now

suppose We ⊆ {<w,m> ∈ 2<ω×ω | I(w) > m}. Apply the recursion theorem to get an n such
that for all q, φn(q) ≅ f(0n1q). (That is, the left hand side is defined iff the right hand side is

and when defined the two sides are equal.) Since f first calculates U(q) it is a prefix algorithm,
hence so is φn. Let q0 be such that e = U(q0); we claim that φn(q0) is undefined. For suppose
that φn(q0) = w. Then on the one hand, by construction,

(1) I(w) > m > |q0| + n + 1;
on the other hand, since φn is a prefix algorithm,
(2) I(w) ≤ I

φn
(w) + n + 1 ≤ |q0| + n + 1.

Hence φn(q0) is undefined. It follows that I(e) + n + 1 is an upper bound for the second
coordinate of We. To obtain a recursive upper bound, we can take any recursive upper bound
for I(e), e.g. 2log2e: observe that ∑ee–2 < ∞  and apply lemma 5.1.2.9.     

If we had used K instead of I, we could have dispensed with the demand that f on input 0n1q
first compute U(q); this condition was introduced only to ensure that f be a prefix algorithm.
We first apply the theorem to obtain some recursion theoretic information on I.

5.3.1.4 Corollary  Let g: ω → ω be total recursive and suppose that lim g(n) = ∞.
n→∞

Then {w| I(w) > g(|w|)} is immune. In addition, if  lim g(n) = ∞ recursively, then
n→∞

{w| I(w) > g(|w|)} is effectively immune. We obtain the same results if we replace I by K.

Proof  Let We ⊆ {w| I(w) > g(|w|)}. Put Ve := {<w,g(|w|)>| w ∈ We}; then for some total
recursive f, Ve = Wf(e). Since Wf(e) ⊆ {<w,m>| I(w) > m}, Wf(e) is bounded in   the second
coordinate, e.g. by 2log2f(e). But then, if lim g(n) = ∞, We must be finite and if

n→∞

lim g(n) = ∞ recursively, we can choose effectively n0(e) such that for n ≥ n0(e),
n→∞

2log2f(n). In the latter case we therefore have #We ≤ 2
n0(e)+1

.                                                        

It follows from the corollary that the r.e. relation {<w,m>| I(w) ≤ m} is not recursive and
likewise that the function I: 2<ω → ω is not recursive. We also have:

5.3.1.5 Example The set of irregular strings {w| K(w) > |w| – m} is effectively immune. By a
theorem of Martin (see Soare [92,87]) it follows that {w| K(w) ≤ |w| – m} is a complete

recursively enumerable set4. On the other hand, the arithmetical complexity of the set {w| I(w)
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≤ |w| + I(|w|) – m}is higher (namely ∑2), due to the presence of the term "I(|w|)".

We now formulate the first half of Chaitin's incompleteness theorem. Recall that for any
natural number m all except finitely many w satisfy I(w) > m. We proved this in 5.1 using
only elementary properties of finite sets; the proof can be formalized in any theory which
contains a modicum of arithmetic.  Nevertheless, as the following theorem shows, it is well
nigh impossible to verify that some specific string has high complexity.

5.3.1.6 Theorem  Let S be a sound formal system, identified with its r.e. set of theorems.
Delete from S all theorems not of the form "I(w) > m" and call the resulting sound formal
system S'. Let p be an r.e. index for S'. Then for some constant c, independent of S', and for all
w: S I(w) > I(p) + c.

Proof  S' may be identified with an r.e. subset of {<w,m> ∈ 2<ω×ω  | I(w) > m}with

Gödelnumber p. By Theorem 5.3.1.3, S' is bounded in the second coordinate by I(p) + c, for
some constant c not depending on p.                                                                              

Let us call the constant I(p) + c, which depends on S, the characteristic constant  of the formal
system S. We shall denote the characteristic constant as c(S). If we compare the preceding
theorem with Chaitin's formulation, we see that what matters is not the complexity or
information content of the formal system S, but only that of its reduced version S'. Indeed, we
shall see below, in 5.3.2, that it can't be otherwise. Before we discuss Chaitin's claims,
however, we shall prove the second half of the theorem announced above.

5.3.1.7 Theorem  The sets {w| I(w) > k} are r.e. and have indices pk such that for some
constant d independent of k,  I(pk) ≤ k + d.

Proof  (Sketched in Chaitin [13])  Obviously the sets {w| I(w) > k}, being the complements of
finite sets, are r.e.; but Theorem 5.3.1.3 tells us that their indices are not recursive in k. Let W
be a listing of all pairs <w,m> for which I(w) ≤ m. Let P be a set of programs for the <w,m>
in W such that every pair <w,m> in W is produced by exactly one p in P. P can be chosen to
be r.e. Let U be the universal prefix algorithm.
Consider P' := {<p,m>| p ∈ Ρ & (U(p) = <w,m> → I(w) ≤ m)}. P' is r.e. and

∑
<p,m>∈P'

2–m = ∑
{w|I(w)≤m}

2–m ≤  ∑
w

2–I(w) ≤ 1,

hence there exists a constant c such that for all p in P, if U(p) = <w,m>, then I(p) ≤ m + d, by
lemma 5.1.2.8. Now fix k and let pk be a program in P for the last pair <w,k> in W. (Such a
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program exists, although it cannot be found effectively.) Using the program pk,  we can

enumerate all of {w| I(w) > k}: enumerate W until we come to the last pair <w,k> (given by
pk); all w not occurring in this finite list must satisfy I(w) > k. We have seen above that I(pk) ≤
k + d.
Observe that if c is the constant determined in Theorem 5.3.1.6, then I(pk) + c ≥ k, so that the

preceding theorem is more or less the best possible result.

5.3.2 Discussion   Theorem 5.3.1.6 implies that any formal system can verify the irregularity
of at most a finite number of words. Alternatively, one could say that a Turing machine can
produce only a finite number of irregular sequences. This result may be seen as a modern
version of von Mises' conviction [67,60] "das man die "Existenz" von Kollektivs nicht durch
eine analytische Konstruktion nachweisen kann" and it justifies to some extent the misgivings
of those who maintain that randomness or irregularity cannot be formalized. But Theorem
5.3.1.6 is really much more than a formal statement of these intuitions: it expresses a precise
connection between the information content of some formal system (namely S') and its
"degree of incompleteness". We now discuss the question whether this theorem supports
Chaitin's philosophical claims.

1. Although Theorem 5.3.1.6 was hailed as a "dramatic extension of Gödel's theorem"5, we
should not forget that there is a big difference between the two results. Gödel's first
incompleteness theorem is an explicit construction of an undecidable (hence true) ∏1 formula:

the fixed point lemma [91,827] associates with any formal system S in a primitive recursive
way a formula ψS which says of itself "I am unprovable in S". But Theorem 5.3.1.6 provides

no such explicit construction. First, its proof shows that the characteristic constant c(S) is not a
recursive function of S. Second, suppose we take some recursive upper bound f(S) for c(S),
then it is still not possible to determine recursively a word w(S) such that I(w(S)) > f(S) ≥
c(S). If this were so, we could define an infinite r.e. sequence of

formal systems Sn and words w(Sn) such that I(w(Sn)) > f(Sn) and lim f(Sn) = ∞  as
n→∞

follows: S0 = PA, S1 = S0∪{I(w(S0)) > f(S0)} etc. An examination of the construction of c(Sn)
(cf. Theorem 5.3.1.6 and its proof) shows that lim c(Sn) = ∞, hence also

n→∞

lim f(Sn) = ∞. But corollary 5.3.1.4 implies that we can construct only finitely many
n→∞

w(Sn). Hence it is impossible to determine effectively, given a formal system S, a word w(S)

such that I(w(S)) > c(S). In this sense, Theorem 5.3.1.6 is a weak form, rather than an
extension, of the first incompleteness theorem.
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2. Furthermore, there is nothing in theorem 5.3.1.6 which supports Chaitin's claim that the
undecidability of a formula can be explained as the result of an excess of information content.
Observe that we said nothing about the information content of the formula  "I(w) > c(S)" (for
some specific w); all that mattered was that the undecidable formula asserts that some specific
string contains too much information, which is something entirely different.
This being said, it must be acknowledged that some true statements are undecidable in PA
precisely because they contain too much information.The construction of such a statement
utilizes the fixed point lemma:

5.3.2.1 Lemma [91,827] Let φ be an arithmetical formula in one free variable. Then, for
infinitely many ψ, PA (ψ ↔ φ( ψ )).

We use the fixed point lemma to define a sentence ψ which says intuitively "I contain too
much information for PA". Put k0 := max {k| I(k) ≤ c(PA)}. Choose (non-effectively!) ψ such
that  ψ > k0 and PA (ψ ↔ Ι( ψ ) > c(PA)). Then PA ψ, since otherwise PA I( ψ ) >
c(PA), which is impossible by theorem 5.3.1.6; but ψ is true, for if ¬ψ were true then I( ψ ) ≤
c(PA), which implies ψ  ≤ k0. Since PA is sound, PA ¬ψ. Hence ψ is true but undecidable

in PA. The construction is somewhat trivial, however, since we essentially use the fact that
there exist fixed points of "I( ψ ) > c(PA)" with arbitrarily large Gödelnumber.

3. The preceding discussion showed that Chaitin's explanation of the incompleteness of formal
systems: " I would like to be able to say that if one has ten pounds of axioms and a twenty-
pound theorem, then the theorem cannot be derived from the axioms", is at present only
scantly supported by the facts. But also his more modest claim, " Within ... a formal system a
specific string cannot be proven to be of entropy [=complexity] greater than the entropy of the
axioms of the theory" is not borne out by theorem 5.3.1.6. Recall that what mattered was not
so much the information content of the formal system S as a whole, but rather that of its
intersection S' with the set of statements of the form "I(w) > m". Of course there exists a
primitive recursive function which brings us from S to S', and this justifies the notation "c(S)"
for the characteristic constant of S. But since the information content of S', and not that of S,
determines the characteristic constant of S, we cannot say that stronger theories lead to larger
characteristic constants. Indeed, this is false, as we now show.
By theorem 11 in Kreisel–Levy [53,121], the arithmetical fragment of ZF is not finitely
axiomatisable over PA. Theorem 5.3.1.6 assigns finite constants c(PA) and c(ZF) such that no
statement "I(w) > c(PA)" ("I(w) > c(ZF)") is provable in PA (ZF). (Note that we do not even
know whether c(ZF) > c(PA)!) It follows that an infinity of ever stronger number theories Sn,

which lie in between PA and (the arithmetical fragment of) ZF must have the same



145

characteristic constant c and they must prove the same (finite) set of statements of the form
"I(w) > m". Since I is unbounded on axioms for the Sn, the information contents of these

axioms are totally irrelevant for the determination of c.

These considerations do not completely rule out the possibility that some kind of information
concept is useful in studying incompleteness. They do show, however, that the complexity of
the axioms is not a good measure of information. Furthermore, if the information is an
integer–valued function and obeys something like theorem 5.3.1.6, then we must accept the
consequence that a theory S1 may be stronger than S2, while having the same information
content as S2. It is difficult to imagine a concept of information which allows this possibility.

The most reasonable way-out appears to be, to define a rational-valued  (or real-valued)
measure of information6.

Even if the information concept turns out to be useless for the study of formal systems, it may
be worthwhile to investigate what other properties of formal systems are relevant for the
values of their characteristic constants. This investigation, however, is seriously hampered by
the extreme scarcity of concrete examples: as noted above, we do not even know whether
c(PA) < c(ZF)!

5.4 Infinite sequences: randomness and oscillations Two themes will occupy us in the
present section. First, we try to express randomness (in the sense of Martin-Löf) in terms of
the notions of complexity developed in 5.1.1 and 5.1.2. Now one might conjecture that the
following generalisation (to infinite binary sequences) of the definition of irregularity
(5.1.1.3): ∃m ∀n K(x(n)) > n – m, is an equivalent condition for randomness with respect to

Lebesgue measure; but Martin-Löf has shown that no sequence x satisfies this generalisation.
Similarly, no x satisfies ∃m ∀n I(x(n)) > n + I(n) – m, the natural generalisation of definition

5.1.2.6. But it turns out that membership of R(µ) can be characterised in terms of I, if we
choose a smaller lower bound instead of one of the form n + I(n) – m. This brings us to the
second topic: the oscillatory behaviour of the complexity measures K and I. Although this
oscillatory behaviour is usually considered to be a nasty feature, we believe that it illustrates
one of the great advantages of complexity: the possibility to study degrees of randomness.

5.4.1 Randomness and complexity  Early attempts to characterize randomness with respect
to some computable measure µ of an infinite binary sequence, in terms of a condition on the
complexity of the initial segments of the sequence, foundered upon the following obstacle:

5.4.1.1 Theorem  (Martin-Löf [61])  For all x and for all m, there are infinitely many n such
that K(x(n)) ≤ n – m. More precisely, if f: ω → ω is a total recursive function such that ∑n2–
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f(n) = ∞, then for all x there are infinitely many n such that K(x(n)) ≤ n – f(n).

A simple proof of a special case, namely f(n) := [a·log2n], with a ∈ (0,1) computable, is given

in Schnorr [88,110]. His proof can easily be adapted to show:

5.4.1.2 Lemma  Let a ∈ (0,1) be computable and let µ be a computable measure. For all x,
there are infinitely many n such that I(x(n)) ≤ [–log2µ[x(n)]] + I(n) – [a·log2n]. In particular,
no x satisfies ∃m ∀n I(x(n)) > [–log2µ[x(n)]] + I(n) – m.

Martin-Löf's theorem was considered to be a surprising result. To quote from Schnorr
[89,377]: "This fact is hard to comprehend and is the main obstacle for a common theory of
finite and infinite random sequences". In retrospect, it is somewhat difficult to understand why
Martin-Löf's theorem should be surprising. After all, results indicating that total chaos in
infinite binary sequences is impossible were known already. One example is van der
Waerden's theorem (from 1928), which states that if the natural numbers are partitioned into
two classes, then at least one of these classes contains arithmetic progressions of arbitrary
lengths7. Another example is a theorem in Feller [25,210] (cf. theorem 5.4.2.5 below) which
states that if a ∈ (0,1), then for µp–a.a. x, for infinitely many n, xn is followed by a run of
[a·logqn] 1's, where q = p–1.

More important, the association between the oscillatory behaviour of K (or I) and the
difficulty of characterising randomness in terms of complexity appears to be unfortunate.
Thus, although Chaitin's I also oscillates (and for at least three essentially different reasons), it
is possible to characterise randomness using I.

5.4.1.3 Theorem8  Let µ be a computable measure. Then x ∈ R(µ) if and only if
∃m ∀n I(x(n)) > [–log2µ[x(n)]] – m.

Proof  ⇒  It suffices to show that {x| ∀m ∃n I(x(n)) ≤ [–log2µ[x(n)]] – m} is a recursive
sequential test with respect to µ. By lemma 5.3.1.1, this set is ∏2. We therefore have to show
that µ{x| ∃n I(x(n)) ≤ [–log2µ[x(n)]] – m} ≤ 2–m for each m. We may write

µ{x| ∃n I(x(n)) ≤ [–log2µ[x(n)]] – m}  ≤  ∑ {µ[w] | w ∈ 2<ω, I(w) ≤ [–log2µ[w]] – m};

however, since I(w) ≤ [–log2µ[w]] – m iff µ[w] ≤ 2–m·2–I(w), the right hand side of the above

inequality is less than or equal to

∑ {2–m·2–I(w) | w ∈ 2<ω, Ι(w) ≤ [–log2µ[w]] – m}  and since ∑
w∈2<ω

2 I(w) ≤ 1, this is ≤ 2–m.–
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⇐  Let U = ∩mUm be the universal recursive sequential test with respect to µ. We may

suppose Um = [Tm], with Tm prefixfree; hence µUm = ∑{µ[w] | w ∈ Tm} ≤ 2–m. Define S :=
{<w, [–log2µ[w]] – m> | w ∈ Tm}. We show that ∑{2–k | ∃w (<w,k> ∈ S)}  < ∞:

∑
m

 ∑
w∈Tm

 2
[–log2µ[w]]+ m

  ≤  ∑
m

 ∑
w∈Tm

  2   =  ∑
m

 2
m

·µUm ≤ ∑
m

 2
– m

  <  ∞. 
m

·µ[w]

By lemma 5.1.2.8, we get for some constant c and all m and w: if w ∈ Tm, then I(w) is less
than or equal to [–log2µ[w]] – m + c. In particular, if x ∈ U, then ∀m ∃n (x(n) ∈ Tm),
hence ∀m ∃n (I(x(n)) ≤ [–log2µ[w]] – m + c).
In other words, if ∃m ∀n (I(x(n)) > [–log2µ[w]] – m + c), then x ∈ R(µ); but the antecedent is
equivalent to ∃m ∀n (I(x(n)) > [–log2µ[w]] – m).                                                               

The significance of this result has already been discussed in 5.2. The essence of the proof
consists in the observation that randomness in the sense of Martin-Löf is a negative condition:
x is random if it is not rejected at arbitrarily small levels of significance by the universal test

U. Now U, conceived of as a  r.e. set of finite sequences (namely ∪mTm), contains only

elements of low complexity; hence for an infinite sequence to be random it is necessary and
sufficient if it has no (except perhaps finitely many) initial segments of low complexity. In
other words, any complexity measure C is able to characterise Martin-Löf randomness if the
universal sequential test can be written in terms of C. Nothing more is necessary, but much
more is possible. The monotone complexity of Schnorr [89] and Levin [54] developed in
response to theorem 5.4.1.1 (see 5.4.4) also characterises randomness; but whereas I adds fine
structure to the theory of random sequences (see 5.4.2–3), monotone complexity does not and
we consider this to be a disadvantage.

5.4.2 Downward oscillations We now investigate more closely why the seemingly more
reasonable condition of randomness ∃m ∀n I(x(n)) > [–log2µ[x(n)]] + I(n) – m is impossible.

Not only doesn't this condition characterize randomness, it even cannot be satisfied by any

sequence. Interestingly, this is true for several very different reasons and in this section we
shall examine some of them. Martin-Löf's theorem 5.4.1.1 (and the simple version of it given
as lemma 5.4.1.2) essentially use only the fact that 2<ω has a  recursive enumeration. Below,
we present two more derivations of Martin-Löf's theorem, the first based on the observation
that ∆2 definable sequences, even when random, have low complexity and the second

elaborating the ancient idea that the existence of statistical regularities is incompatible with
total chaos. For ease of notation, we consider Lebesgue measure only.

We first investigate the complexity of simply definable infinite binary sequences.
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5.4.2.1 Lemma  Let x be recursive, then for some c and all n, I(x(n)) ≤ I(n) + c.

Proof  Let A be an algorithm such that A(n) = x(n) for all n. Define B as follows. On input q,
it calculates U(q). If and when U halts on q, B computes A(U(q)) = x(U(q)) and outputs this
sequence. B is a prefix algorithm, hence I(x(n)) ≤ I(n) + B  + 1.                                  

We now turn to ∆2 definable sequences. The conditional complexity I0 was defined in 5.1.3.

5.4.2.2 Theorem  If x is ∆2 definable, then lim␣(n – I0(x(n)|n)) = ∞.
n→∞

(As it stands the theorem is of course interesting only for x ∈ R(λ).)

Proof   By the modulus lemma (theorem 3.2.2.4), x can be written as: xn =  lim
k→∞

ξn
k,

where ξk  ∈  2ω such that {<k,n>| ξn
k = 1} is recursive.

Define a prefix algorithm A as follows. Let A be given n on its worktape and q as input. On
being presented with q, A first scans an initial segment s of q until it has determined an integer
i = U(s); it then calculates n – i, scans the remainder p of q, calculates U(p,n–i) and outputs

A(q,n) =  ξn(i)U(p,n–i).

For fixed i, if n is large enough, A(q,n) is of the form
A(q,n) = x(i)w.

Then there exist constants c,d such that  I0(x(n)|n) ≤ (IA)0(x(n)|n) + c ≤
≤ I(i) + I0(xi+1.....xn|n–i) + d ≤ I(i) + n – i + d. Then n – I0(x(n)|n) ≥ n – (n – i) – I(i) – d =

= i – I(i) + d. In other words
∀i ∃n0(i) ∀n≥n0(i) (n – I0(x(n)|n) ≥ i – I(i) + d).

Because the right hand side is unbounded, lim  (n – I0(x(n)|n)) = ∞.                                   
n→∞

5.4.2.3 Corollary  If x is ∆2 definable, then lim  (n + I(n) – I(x(n))) = ∞.
n→∞

Proof  By lemmas 5.1.3.4/6, I(x(n)) ≤ I0(x(n)|n) + I(n).                                                     

The corollary is most likely not the best possible result; we used the estimate I(x(n)) ≤
I0(x(n)|n) + I(n), which is far from being sharp (lemma 5.1.3.5). We conjecture that at least for
low degrees x, i.e. x with x' ≡T Ø', even I(x(n)) ≤ n + c. Anyway, the result obtained just now

will do for our purposes.
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5.4.2.4 Theorem  For all x: ∀m ∃n≥m (I(x(n)) < n + I(n) – m).

Proof  We use the Basis Theorem (3.2.2.2). Suppose the theorem is false, then for some m, {x|
∀n≥m (I(x(n)) ≥ n + I(n) – m)} ≠ Ø. This set is not itself ∏1, but may be shown to be included
in a set of the form {x| ∀n≥m (I0(x(n)) ≥ n – c)}, which is ∏1.

Indeed, by lemma 5.1.3.5, for some constant d, I(x(n)) ≤ I(x(n))|n) + I(n) + d, hence the
condition  I(x(n)) ≥ n + I(n) – m can be rewritten as I(x(n)|n) ≥ n – c. Now apply lemma
5.1.3.4, which says that I0(x(n)|n) is (much) larger than I(x(n)|n).
It follows that the ∏1 set {x| ∀n≥m (I0(x(n)) ≥ n – c)} has a ∆2 definable element x. But this is

impossible in view of theorem 5.4.2.2.                                                                      

We now give a second proof of the above theorem, based on a different idea: that statistical
regularities must lead to a decrease in complexity. We use an exercise in Feller [25].

5.4.2.5 Theorem  (after Feller [25,210])  Let Nn(x) denote the length of the run of 1's
beginning at xn. Then for all x ∈ R(λ):

limsup
n→∞

 
log2n

Nn(x)
 = 1.

Proof  (1) Let a > 1 be computable. We have to show that {x| ∀m ∃n Nn(x) > a·log2n} is a
recursive sequential test with respect to λ. We use the first effective Borel–Cantelli lemma
(3.3.1). Define An := {x| xn is followed by [a·log2n] + 1 1's}. It suffices to show that ∑nλAn

converges constructively. But this is so, since ∑nλAn ≤  ∑nn–a.
(2) Let a < 1 be computable. Since the set {x| ∃m ∀n Nn(x) < a·log2n} is ∑2, it suffices to

show that it has Lebesgue measure 0. Define a total recursive function f by f(n) := n + (n–
1)·[a·log2n]. Then we have f(n+1) – f(n) > [a·log2n].
Define An := {x| xn is followed by [a·log2n] 1's}, then the Af(n) are independent. Because
∑nλAf(n) ≥ ∑nn–a diverges for a < 1, the second Borel–Cantelli lemma (3.3.2) gives the

desired result.                                                                                                                        

5.4.2.6 Corollary  Let a ∈ (0,1) be computable. Define bn := n + [a·log2n]. Then for some
constant c, for all x ∈ R(λ): for infinitely many n, I(x(bn)) ≤ bn + I(bn) – [a·log2n] + c.

Proof  Define a prefix algorithm A(s,k) as follows. A first solves the equation k = bn for n. If

it has succeeded in doing so, it computes U(s) and when this computation terminates, it
outputs

A(s,k) = U(s)1
[a·log2n]

.
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It follows that, for x(bn) = x(n)1
[a·log2n]

,   I(x(bn)) ≤ I(x(n)) + A  + 1 ≤ n + I(n) + d =

= bn + I(bn) – [a·log2n] + c, for some constants c and d. Now apply theorem 5.4.2.5.        

5.4.2.7 Corollary  For all x and for all m there are infinitely many n such that I(x(n)) ≤  ≤ n +
I(n) – m.

Proof  If x ∉ R(λ), the result follows from theorem 5.4.1.3. If x ∈ R(λ), apply corollary

5.4.2.6.                                                                                                                                  

With corollary 5.4.2.6 at our disposal, we may understand the often repeated query: "How can
a random sequence exhibit statistical regularities, since randomness entails the absence of
regularities?" In a sense, the implied objection is right; we might even say that it is illustrated
by the failure of the putative definition of irregularity ∃m∀n I(x(n)) > n + I(n) – m.

This definition turned out to be impossible because a statistical regularity brought about a
decrease of I (although this is not the only source of downward oscillations of I). We see,
however, that some regularities are more regular than others; in particular, statistical
regularities are not simple, that is, they do not lead to a significant decrease in complexity.
We may also observe that there are essentially different reasons why total chaos in infinite
binary sequences is impossible: Martin-Löf's 5.4.1.1 (or Schnorr's 5.4.1.2) uses in essence
only the fact that 2<ω is recursive, whereas our theorem 5.4.2.4, although also of a recursion–
theoretic character, uses some less trivial facts about the arithmetical hierarchy. Corollary
5.4.2.6 is of a different nature altogether and depends on statistical properties of product
measures.

5.4.3 Upward oscillations  We now prove some results which show that the behaviour of I on
∆2 definable sequences is rather atypical: for most sequences x, I(x(n)) comes close to its

theoretical upper bound infinitely often. Our method of proof again involves Turing degrees.
In 5.4.2 we derived the existence of downward oscillations from the fact that the degrees
between Ø and Ø' have low information content; we derive the existence of upward
oscillations from the fact that the degrees above (and including) Ø', the so called complete

Turing degrees, have high information content.
We use "high information content" in the following sense. Let y be an infinite binary sequence
and let Iy be defined as I, except that we allow functions partial recursive in y, instead of
partial recursive functions only. Clearly, for all w: Iy(w) ≤ I(w).The following theorem shows
that if y is a complete Turing degree, then for most x, the difference I(x(n)) – Iy(x(n)) is large
infinitely often, indicating that y contains some information about most x. We use ≡T to
denote Turing equivalence and ≤T, ≥T to denote Turing reducibility.
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5.4.3.1 Theorem  Let y ≥TØ' and let g: ω → ω be a total recursive function such that ∑n2–g(n)

diverges. Then (*) λ{x| ∀m ∃n≥m (Iy(x(n)) < I(x(n)) – g(n))} = 1.

Proof  Since for some c and all w, Iy(w) ≤ |w| + Iy(|w|) + c, it suffices to prove that
 λ{x| ∀m ∃n≥m (n + Iy(n) + c < I(x(n)) – g(n))} = 1.

We absorb c into g. We show that for each m, λ{x| ∀n≥m (n + Iy(n) + g(n) < I(x(n))} = 0.

Observe that for each n, the measure of this set is smaller than
∑n{2–|w| | w ∈ 2n, I(w) ≤ n + g(n) + Iy(n)}.

Now the number of w ∈ 2n satisfying I(w) ≤ n + g(n) + Iy(n) = n + I(n) – (I(n) – g(n) –Iy(n))

is less than or equal to 2n–(I(n)–g(n)–I
y
(n))·d, for some constant d (lemma 5.1.2.4).

It follows that for each n, the required measure is smaller than 2–(I(n)–g(n)–I
y
(n))·d;

and we have to show that ∀k ∃n≥k (I(n) – g(n) – Iy(n) > k).
Now the function fk defined by fk(n) := I(n) – g(n) – k is recursive in y since Ø' ≤Ty and
unbounded since ∑n2–g(n) diverges (by lemma 5.1.2.9). Relativizing the definition of
immunity  (5.3.1.2) to y, we see that the set {n| Iy(n) ≥ fk(n)} must be y–immune for each k.
Hence for each k, {n| n ≥ k} ⊄ {n| I(n) –g(n) –Iy(n)  ≤ k}; in other words, for all k there is

some n larger than k for which I(n) – g(n) – Iy(n) > k.                                                      

The assumption that Ø' ≤Ty is essential for the proof, since for some fk, we may have fk ≡TØ'.

We conjecture that condition (*) in fact characterizes the complete Turing degrees. In any case
the results of 5.4.2 and 5.4.3 indicate that it may be profitable to study the Turing degrees
using complexity measures.

In conjunction with theorem 5.4.1.3 (with "Iy" replacing "I")), the preceding theorem
immediately implies:

let g: ω → ω be a total recursive function such that ∑n2–g(n) diverges; then  λ{x|
∃k ∀m ∃n≥m ( I(x(n)) > n + g(n) – k)} = 1.

Using the following lemma due to Chaitin, we can do slightly better:

5.4.3.2 Lemma  (Chaitin [12,337]) λ{x| ∃m ∀n≥m I(x(n)) > n} = 1.

Proof  By the first Borel–Cantelli lemma, it suffices to show that ∑nλ{x| I(x(n)) > n} < ∞. But
this is so, since λ{x| I(x(n)) > n} ≤ 2–I(n)·c by lemma 5.1.2.4. 
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5.4.3.3 Corollary  (Solovay) Let g: ω → ω be a total recursive function such that ∑n2–g(n)

diverges; then  λ{x| ∀m ∃n≥m ( I(x(n)) > n + g(n))} = 1.

The following observation is also due to Solovay (both results are announced, without proof,
in Chaitin [13]).

5.4.3.4 Theorem   λ{x| ∃m ∀k ∃n≥k ( I(x(n)) > n + I(n) – m)} = 1.

Proof  It obviously suffices to show that for some c and all m,
 λ{x| ∃k ∀n≥k ( I(x(n)) ≤ n + I(n) – m)} ≤ 2–m·c.

But the collection {{x| ∀n≥k ( I(x(n)) ≤ n + I(n) – m)}| k ∈ ω} is increasing in k and, for all n,
λ{x| ∀n≥k ( I(x(n)) ≤ n + I(n) – m)} ≤ ∑n{2–|w| |w ∈2n, I(w)≤n+I(n)–m} ≤ 2–m·c by lemma

5.1.2.4. 

It follows from this theorem that the behaviour of ∆2 definable sequences, for which we

could show lim (n + I(n) – I(x(n))) = ∞, is not typical of arbitrary random sequences.
 n→∞

5.4.4 Digression: monotone complexity  We saw in 5.4.1 that, according to Schnorr [89], the
difficulties encountered in characterising randomness in terms of K, were due to K's
oscillatory behaviour. In response to Martin-Löf's theorem 5.4.1.1, he (and independently
Levin [54]) developed a notion of complexity which does not oscillate on random sequences.
The new notion, so called monotone complexity, is again obtained by restricting the class of
algorithms. Schnorr considers monotone algorithms, i.e. those partial recursive functions A
such that v ⊆ w implies A(v) ⊆ A(w). The set of monotone algorithms is recursively

enumerable9, so we may define a universal monotone algorithm U by U(0 A 1p) = A(p). Let
KM denote the resulting concept of complexity. Schnorr [89,380] proves

x ∈ R(λ) if and only if ∃c ∀n |KM(x(n)) – n| ≤ c;

and generally (see Gacs [32])

x ∈ R(µ) if and only if ∃c ∀n |KM(x(n)) – [–log2µ[x(n)]]| ≤ c.

This is obviously in sharp contrast with the behaviour of I. The lower bound is the same (and
the proof follows very much the same lines), but the upper bound is not, and this is due to the
fact that the identical function F(w) = w is a monotone algorithm, but not a prefix algorithm:
since F is monotone, we have KM(w) ≤ |w| + F  + 1. (In general, every prefix algorithm is a
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monotone algorithm, but not conversely.) However, the only effect of lowering the upper
bound is, that KM obliterates distinctions which I is able to make. For instance, consider the
algorithm A defined in the proof of corollary 5.4.2.6; define B similarly but with the universal
monotone algorithm replacing the universal prefix algorithm. B is not a monotone algorithm,
whereas A is. The operation of suffixing words with strings of 1's is not monotone, except
when the domain of the suffixing algorithm is prefixfree; in other words, when the suffixing
algorithm is like A. But KM << KMA, so KM doesn't see these regularities.

Thus, although a characterisation of randomness in terms of KM can be given, this is where its
utility stops. Using I, we can learn something about random sequences over and above the fact
that they satisfy Martin-Löf's definition; it suggests questions such as "Does the complexity of
easily definable random sequences differ from the complexity of those which are not?", a
question which has only a trivial answer for KM. Historically, complexity oscillations have
earned their bad repute from the apparent impossibility of characterising randomness in terms
of complexity. Now that such a characterisation has been given, we see that oscillations need
not be feared. In fact, if a (downward) oscillation occurs, then, in accordance with the
motivation given in 5.1, we must accept the presence of a temporary regularity. These
regularities do not vanish the moment we decide to adopt a different complexity measure, to
wit, monotone complexity.

5.5 Complexity and entropy  Two problems will occupy us in this section. The first is to
explain the meaning of the phrases "topological aspect of I" and "metric aspect of I", used in
5.1.4. The second is to link I, which is a measure of disorder for sequences, with more
traditional measures of chaotic behaviour, defined for dynamical systems, such as (metric or
topological) entropy. This problem has received some attention in the physics literature (see
Ford 27], Lichtenberg and Lieberman [58], Alekseev and Yakobson [2] and Brudno [10]), in
connection with research on chaotic dynamical systems. It is shown here (theorem 5.5.2.5)
that if µ is an ergodic measure, then µ-a.a. x satisfy

lim
n→∞ n

I(x(n))
  =  H(µ),

where H(µ) is the metric entropy of µ. We use theorem 5.5.2.5 to elucidate the metric aspect
of I in terms of (un)predictability.
We then proceed to an investigation of the relation between E(A), the topological entropy of a
∏1 set A, and the behaviour of I on sequences x in A. It is shown that A must satisfy special

conditions (A must be "homogeneous") if there are to be many sequences in A with

lim
n→∞ n

I(x(n))
  =  E(A).

Lastly, we compare I with another measure of randomness for sequences, viz. Kamae–
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entropy.

5.5.1 Dynamical systems  Our set–up is as follows. A symbolic dynamical system on a set of
symbols n = {0,...,n-1} is a set X ⊆ nω (or n , as the case may be), together with the left–shift

(or two–sided shift) T. We assume that X is closed under the action of T. Symbolic dynamical
systems arise naturally in the study of general dynamical systems, in the following way.

Suppose (Γ,S) is a dynamical system, where Γ can be thought of as a phase space, equipped
with a σ–algebra of measurable sets, and S is a measurable transformation on Γ, which

represents the evolution of the system, considered in discrete time. A measurement with finite
accuracy on (Γ ,S) is represented (ideally) by a measurable partition A0,...An-1 of Γ ,

corresponding to "pointer readings" 0,...,n–1.
Define a mapping ψ: Γ → nω by  ψ(γ)k = i iff Sk(γ) ∈ Ai; then ψ(γ) represents the sequence of
pointer readings obtained upon repeatedly measuring {A0,...An-1} on a system which is in
state γ at time t = 0.
If the system (Γ,S) is also equipped with a probability distribution P, this distribution
generates a measure µ on nω by µA := Pψ−1Α.
One may now study the dynamical system (Γ,S,P) by means of its symbolic representative
(ψ[Γ],Τ,µ). In particular, the question whether, and to what extent, (Γ,S,P) displays chaotic

behaviour can be investigated in this way. Below, we introduce various measures of disorder
directly for symbolic dynamical systems, where for notational convenience we assume that the
alphabet consists of just two symbols, 0 and 1. For an overview of the theory of dynamical
systems, the reader may consult Petersen [82].

5.5.2 Metric entropy  Let µ be a stationary measure on 2ω; that is, for all Borel sets A, µ
satisfies µT–1A = µA. In other words, T conserves µ. For such measures, we may define the
metric entropy H(µ) as follows:

5.5.2.1 Definition  Let µ be a stationary measure on 2ω. The metric entropy H(µ) of µ is

defined to be H(µ) := lim
n→∞

– n
1∑

w∈2n

 µ[w]log2µ[w].  (Petersen  [82,240])

5.5.2.2 Example  It is easy to verify that H(µp) equals –plog2p – (1 –p)log2(1 – p).

The interpretation of H(µ) is roughly as follows. w ∈ 2n is a possible series of outcomes if we

perform n experiments upon the system under consideration. The probabilistic information
present in w is (by definition) –log2µ[w]; then
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– 
n
1∑

w∈2
n

 µ[w]log2µ[w]

is the average amount of information gained per experiment if we perform n  experiments.
H(µ) is obtained if we let n go to infinity. A positive value of H(µ) indicates that each
repetition of the experiment provides a non–negligable amount of information; systems with
this property may be called random. Obviously, H(µ) is a global characteristic of the system
(2ω,T,µ); it depends only on µ and T and reflects the the randomness of the system as a whole.
We must now investigate how this global characteristic is related to randomness properties of
individual sequences.

The measures occurring in 5.5.2 will be assumed to be ergodic; that is, if T–1A = A, µA is
either 0 or 1. If µ is ergodic, then µ[w] can be interpreted as the limiting relative frequency of
w in a typical sequence x:

5.5.2.3 Ergodic theorem (see Petersen [82,30])  Let µ be a stationary measure on 2ω,
f: 2ω → integrable. Then

f*(x)  =  lim
n→∞ n

1∑
k=1

n

f(Tkx)

exists µ-a.e., f* is T-invariant and ∫fdµ = ∫f*dµ. In addition, if µ is ergodic then f* is constant

µ-a.e. As a consequence, if µ is ergodic, then for any w ∈ 2<ω:

µ{x| lim
n→∞ n

1∑
k=1

n

 1[w] (T
kx)  =  µ[w]}  =  1.

Below, we use not only the ergodic theorem, but also one of its consequences, the Shannon–
McMillan–Breiman theorem:

5.5.2.4 Theorem  (see Petersen [82,261]) Let µ be an ergodic measure on 2ω, H(µ) its

entropy. Then for µ a.a. x– :  lim
n→∞ –

n

log2µ[x(n)]
  =  H(µ).

One immediate application of the Shannon–McMillan–Breiman theorem in this context is the
computation of the constant H such that

lim
n→∞ n

I(x(n))
  =  H  µ–a.e.

We saw in 5.1.2 that this constant exists, due to the subadditivity of I; but we couldn't compute
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it. However, at least for computable µ it is easy to see that H must equal H(µ). Combining
lemma 5.1.4.3 and theorem 5.4.1.3, we get: x ∈ R(µ) if and only if ∃m ∀n (m + I(n) + [–
log2µ[x(n)]] ≥ I(x(n)) > [–log2µ[x(n)]] – m). Since µR(µ) = 1, the preceding theorem implies

for µ–a.a.x: lim
n→∞ n

I(x(n))
  =  H(µ) 10

.

Hence for computable ergodic µ, the statement that I(x(n))/n converges to H(µ) µ almost
everywhere, is a trivial (and less informative) consequence of the characterization of
randomness. For arbitrary ergodic µ, we must do some more work.

5. 5. 2. 5 Theorem  Let µ be an ergodic measure, H(µ) its entropy. Then for µ–a.a. x:

lim
n→∞ n

I(x(n))
  =  H(µ) 11.

Proof   Stripped of its recursive content, the "⇒" half of theorem 5.4.2.3 shows that
µ{x |∀m ∃n I(x(n)) > [–log2µ[x(n)]] – m} = 0. Using theorem 5.5.2.4

it follows that liminf
n→∞ n

I(x(n))
  ≥  H(µ)  ,  for µ–a.a. x. To get limsup

n→∞ n
I(x(n))

  ≤  H(µ) for

µ–a.a. x,  we remark first that, for each x and for each k,  limsup
n→∞ n

I(x(n))
  =  limsup

n→∞ n·k
I(x(n·k))

.

Indeed, by the subadditivity of I,  there exists a constant c such that for all k: I(x(n))  =  
I(x(n0·k + r))  ≤  I(x(n0·k)) + I(xn0·k+1, . . . ,xn0·k+r) + c.

Clearly, then, limsup
n→∞ n

I(x(n))
  ≤  limsup

n→∞ n·k
I(x(n·k))

 ;  the converse inequality is trivial.

We now use lemma 5.1.4.5, slightly rephrased:

I(x(n·k)) ≤ n·[–∑
w∈2

k

(
n
1∑

j=1

n

1[w](T
j x)log2 n

1∑
j=1

( 1[w](T
j x)))  +  

n

O(log2n)
]·k

,·k

which implies

(*)  
n·k

I(x(n·k))
  ≤  – k

1 ∑
w∈2

k

(
n
1∑

j=1

n

1[w](T
j x)log2(n

1∑
j=1

n

1[w](T
j·kx)))·k

+  
n·k

O(log2n)
.

Since µ is stationary (although not necessarily ergodic) with respect to the Tk, the ergodic

theorem  implies that fw(x) = lim
n→∞ n

1∑
j=1

n

1[w](T
j x) exists µ–a.e. and that ∫fwdµ = µ[w]: .
·k

Taking limsups (with respect to n) and integrals (with respect to µ) on the left hand side and
right hand side of (*), we get, for all k:
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∫limsup
n→∞ n·k

I(x(n·k))
 dµ  ≤  –

k
1∑

w∈2
k
 ∫fwlog2fwdµ; hence by Jensen' s inequality

∫limsup
n→∞ n·k

I(x(n·k))
dµ  ≤  –

k
1∑

w∈2
k

 ∫fwdµlog2∫fwdµ  =  –
k
1∑

w∈2
k

µ[w]log2µ[w].

Since limsup
n→∞ n·k

I(x(n·k))
  =  limsup

n→∞ n
I(x(n))

,  we have, for each k: ∫limsup
n→∞ n

I(x(n))
dµ  ≤

–
k
1∑

w∈2
k

µ[w]log2µ[w]. Letting go  to infinity, we see that ∫limsup
n→∞ n

I(x(n))
  ≤  H(µ)  andk

the desired result follows since limsup
n→∞ n

I(x(n))
  is T–invariant, hence constant µ–a.e.           

5. 5.2. 6 Remark  Use of Solovay' s formula (5.1.2.10) immediately gives lim
n→∞ n

K(x(n))
  =

= H(µ) µ–a.e., but employing I instead of K reduces one half of the proof to a triviality.

We now interpret the preceding theorem as a result on the amount of computer power
necessary to predict the outcome sequence x(n), given x(m), where m < n. This problem arises
for instance in the study of dynamical systems (Γ,S) on which we perform a measurement
given by the partition A0,...Ak–1: we have observed the state of the system (i.e. one of the

numbers 0,...,k–1) at instants t = 1,...,m and we wish to predict the state at instants t =
m+1,...,n.
To calculate x(n) from x(m) we may use the evolution S, but other algorithms are also
allowed. We impose but one restriction: the algorithm should not be too large. So we fix some
constant c (representing the size of a program too large for practical purposes) and we call
x(n) unpredictable given x(m) if I(x(n)|x(m)) > c + I(n), or, what comes down to the same
thing (by lemma 5.1.3.6), if I(x(n)|<n,x(m)>) > c. (We use as conditions both x(m) and n,
since the instant n chosen in advance also belongs to the data.) The term unpredictable is used
here in the sense of not potentially predictable.

We now show that there exists a close connection between entropy and unpredictability. Since
c has been chosen so large, we may write the following chain of equivalent inequalities:

I(x(n)|x(m)) > c + I(n) ⇔

I(x(n)|x(m)) + I(x(m)) > c + I(n) + I(x(m)) ⇔ (by lemma 5.1.3.6)

I(<x(n),x(m)>) > c + I(n) + I(x(m)) ⇔ (since m and x(n) determine x(m))
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I(x(n)) + I(m) > c + I(n) + I(x(m)) ⇔

          (*) I(x(n)) > c + I(n) + I(x(m)) – I(m).

Since I(x(m)) ≤ m + I(m) + d, with d<<c, (*) surely holds if I(x(n)) > c + m + I(n).

Now let µ be an ergodic measure with entropy H(µ) and suppose lim
n→∞ n

I(x(n))
  =  H(µ).

Assume H(µ) > 0, choose ε > 0 small compared to H(µ) and let n0 be so large that
I(x(n)) > n(H(µ) – ε) for n ≥  n0.

Then (*) is surely satisfied if n > 
H(µ)–ε

c+m+I(n)
, an inequality which can thus be taken as a

sufficient condition for unpredictability.

Note that this condition can be significantly improved if we assume in addition that µ is
computable. In this case we may replace the upper bound I(x(m)) ≤ m + I(m) + d by I(x(m)) ≤
[–log2µ[x(m)]] + I(m) + d. By the Shannon–McMillan–Breiman theorem (5.5.2.4), there is
m0(ε) such that for m ≥ m0(ε): [–log2µ[x(m)]] ≤ m(H(µ) + ε). For suitable choices of n and m

the above sufficient condition for unpredictability can thus be sharpened to:

n  >  
H(µ) – ε

c + m(H(µ) + ε) + I(n)
 .

If ε<<H(µ),  then this boils down to: n  >  m + 
H(µ)

c + I(n)
 .

In other words, the complexity theoretic characterisation of randomness shows that random
sequences have a definite "predictability horizon", which is approximately (modulo the term
I(n), which is small compared to n) linear in the data x(m).

5.5.3 Topological entropy  Like metric entropy, topological entropy is a global measure of
disorder, pertaining to the dynamical system as a whole, not to individual trajectories. Again
our main interest concerns the relation between this global measure and the behaviour of I.

5.5.3.1 Definition  Let A ⊆ 2ω be closed. Call w ∈ 2n admissible for A if A∩[w] ≠ Ø. Put An

:= {w∈2n | w admissible for A}. #An denotes the cardinality of An.

5.5.3.2 Definition  Let A ⊆ 2ω be closed. E(A), the topological entropy of A is defined

to be E(A) :=  limsup
n→∞ n

log2#An .
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5.5.3.3 Remark   If A is shift–invariant, i.e. if T–1A = A, where T is the left–shift, we

have in fact  E(A)  =  lim
n→∞ n

log2#An . This is so,  for instance, if A is of the form ψ[Γ],  where 

ψ and Γ are as in 5.5.1. In this case, E(A) measures the extent to which the transformation S
on Γ scatters points around Γ. It may be of interest to note that for shift–invariant A, E(A)

equals the Hausdorff dimension of A.

5.5.3.4 Example  Let A consist of all those infinite binary sequences in which maximal blocks
of 0's and of 1's have even length. Clearly #A2n = 2n, hence E(A) = .

The calculation of topological entropy is sometimes made difficult by the circumstance that
the set of admissible words for a ∏1 set A need not be recursive, as it was in the example just
given. For instance, if A is a ∏1 set without recursive elements (one may think of the set of
complete consistent extensions of Peano arithmetic; or the set A = {x| ∀n V(x(n)) ≤ m} where

V is a universal subcomputable Martingale (cf. 3.4)), then its set of admissible words cannot
be recursive, for if it were, the leftmost infinite branch would also be recursive. (We
conjecture that in fact the following holds: if A is ∏1 without recursive elements, then E(A) =

0,1 or non–computable.)

5.5.3.5 Lemma  Let A ⊆ 2ω be ∏1. The set of admissible words for A is ∏1.

Proof  By König's lemma, w is admissible for A iff ∀n≥|w| ∃v∈2n (v∈T & w⊆v), where T is

the recursive binary tree associated with A.                                                                    

The relation between topological and metric entropy is given by

5.5.3.6 Variational principle  (Petersen [82,269]) Let A ⊆ 2ω be shift–invariant and closed.

Then E(A) = sup{H(µ)| µ stationary measure on A}.

A measure µ on A for which in fact E(A) = H(µ) is called a maximum entropy measure (e.g. λ
is the maximum entropy measure on 2ω).

At last, we may now discuss the relation between complexity and topological entropy. In order
to see what kind of relation can be expected, let us first derive some simple consequences of
the material presented so far.

5.5.3.7 Lemma  Let A ⊆ 2ω be ∏1 with a recursive set of admissible words. Then for all
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x in A: limsup
n→∞ n

I(x(n))
  ≤  E(A).

Proof  Since the set of admissible words is ∆1, we have by  lemma 5.1.4.2, for w ∈ An,

I(w) ≤ [log2#An] + I(|w|) + d. Hence also for all n, x ∈ An: I(x(n)) ≤ [log2#An] + I(n) + d,

and the result follows since lim
n→∞ n

I(n)
  =  0.                                                               

5.5.3.8 Lemma  Let A ⊆ 2ω be shift–invariant, µ a stationary measure on A. Then

µ{x∈A| lim
n→∞ n

I(x(n))
  ≤  E(A)}  =  1.

Proof  By theorem 5.5.2.5, the limit equals H(µ) µ–a.e. By the variational principle, H(µ) ≤
E(A). 

These results show that E(A) is in some interesting cases an upper bound for limsup
n→∞ n

I(x(n))
.

Now obviously, if µ is a maximum entropy measure for (A,T), then "≤" can be replaced by
"=" in 5.5.3.8.
But one would like to know whether,without special assumptions (such as shift–invariance)

about A, there exist x in A for which lim
n→∞

(sup) 
n

I(x(n))
  =  E(A), and if so, how many.

A little reflection shows, that the condition "lim (sup)
n→∞ n

I(x(n))
  =  E(A)" implies something

about the structure of A; and this becomes particularly clear when we consider the slightly
stronger form "∃m ∀n I(x(n)) > [–log2#An] – m", the topological analogue of the criterion for

randomness. In fact, this topological analogue seems to embody the pure form of irregularity
or lawlessness; irregularity which does not necessarily imply statistical regularity. The
condition roughly means the following (cf. 5.1.4). We are given a ∏1 set A, which determines
a priori restrictions on our freedom to choose x(n). For each n, we may choose among #An

possibilities to determine x(n). Obviously, once x(n) has been chosen, there is not much
freedom to choose x(n+1); but we are entirely free in choosing a program for x(n+1). Bearing
in mind that, at least when A has a recursive set of admissible words, the upper bound for
I(x(n)) is of the form [–log2#An] + I(n) + d, the condition for topological irregularity means by

and large (modulo the unavoidable oscillations) (1) that a program for x(n) is of the form
"program for n plus ordinal number of x(n) in An" and (2) that we need the full range of
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possibilities in the An in order to determine x, so that we have not restricted our freedom of

choice more than demanded by the a priori restrictions imposed by A. This seems to be a
pleasant way of saying what irregularity or lawlessness means in a classical setting.

But we only need the full range of possibilities in the An if it is not possible to restrict the

freedom of choice significantly (as measured on the logarithmic scale) by specifying, say, a
finite number of bits in advance. These considerations suggest that it may not be possible to
find many elements of A satisfying the topological irregularity condition if A can be
(effectively) resolved into components with properties very different from those of A itself12.
We attempt to formalize this idea in the following definition.

5.5.3.9 Definition  Let A⊆2ω be ∏1. A is called homogeneous if there exists a constant c

such that for every ∏1 subset B of A:  ∀n ∀k≥n 
#Bn

#Bk   ≤  c·
#An

#Ak  (where Bn is the set of

words of length n admissible for B).

For homogeneous ∏1 sets there is indeed a connection between complexity and topological

entropy.

5.5.3.10 Theorem  Let A ⊆ 2ω  be a homogeneous ∏1 set. Then for some x in A:
∃m ∀n I(x(n)) > [log2#An] – m.

Proof  Put C(m,k) := {w∈Ak| ∀n≤k I(w(n)) > [log2#An] – m}. By compactness, it suffices to

show that there exists m such that for all k: C(m,k) ≠␣Ø.

Now #C(m,k)  ≥  #Ak – ∪n≤k {w∈2k  | I(w(n)) ≤  [log2#An] – m}.  To calculate

#{w∈2k | I(w(n)) ≤ [log2#An] – m}, note that  #{v∈2n | I(v) ≤ [log2#An] – m}  ≤   #An

by lemma 5. 1.2.4.  Hence by homogeneity,   #{w∈2k | I(w(n)) ≤  [log2#An] – m}  ≤

·2–I(n)–m·d

≤  c·
#An

#Ak ·#An·2–I(n)–m·d  =  #Ak·2–I(n)–m·c·d.  Take m so large that c·d is dwarfed. We may

then write:  #C(m,k)  ≥  #Ak– ∑
n≤k

#Ak·2–I(n)–m  ≥  #Ak(1 – 2–m)  >  0. Hence there exists m

such that for all k, C(m,k) ≠ Ø. 

                              
This is not quite the optimal result. The topological analogue of theorem 5.4.2.3, x ∈ R(µ) if
and only if ∃m ∀n I(x(n)) > [–log2µ[x(n)]] – m,would be: under suitable restrictions on A, for
sufficiently large m, E(A) = E{x∈A| ∀n I(x(n)) > [log2#An] – m}13. By putting a condition on

A which is an elaboration of the considerations which lead up to the definition of
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homogeneity, we can indeed achieve this.

Observe that, if A is homogeneous, for all w, n and k≥n:
#(A∩[w])n

#(A∩[w])k   ≤  c·
#An

#Ak.

However, this fact does not exclude the possibility that  
#(A∩[w])n

#(A∩[w])k   is of lower order than

#An

#Ak.  This happens for instance if A∩[w]  =  {x}, whereas #An is unbounded.

Hence, even if A is homogeneous in the sense of definition  5.5.3.9, it may still be possible to
resolve A effectively into components which do not resemble A in the least. We therefore put

5.5.3.11 Definition  A is strongly homogeneous if A is homogeneous and if for some

constant e, for all w such that A∩[w] ≠ Ø, for all n and k≥n:
#An

#Ak  ≤  e·
#(A∩[w])n

#(A∩[w])k .

We then have

5.5.3.12 Corollary  Let A ⊆ 2ω be a strongly homogeneous ∏1 set. Then for sufficiently large
m, E(A) = E{x∈A| ∀n I(x(n)) > [log2#An] – m}.

Proof  If A is strongly homogeneous, then for all w such that A∩[w] ≠ Ø and for all ∏1

 subsets B of A∩[w]:

#Bn

#Bk   ≤  
e
c
·
#(A∩[w])n

#(A∩[w])k  .

For each w such that A∩[w] ≠ Ø we may therefore repeat the argument of theorem 5.5.3.10.
Since c/e is independent of w, we get m such that for all w such that A∩[w] ≠ Ø, there is x in
A∩[w] satisfying ∀n I(x(n)) > [log2#An] – m. Hence w is admissible for A iff it is admissible
for {x∈A| ∀n I(x(n)) > [log2#An] – m}, which shows that the topological entropies must be

equal.                                                                                                         

5.5.3.13 Remark  If A is a strongly homogeneous ∏1 set, and if #An is unbounded, A must be
perfect. It follows that {x∈A| ∀n I(x(n)) > [log2#An] – m} must have the cardinality of the
continuum, e.g. by observing that a non–empty ∏1 set without recursive elements has the

cardinality of the continuum (cf. lemma 26 in Jockusch and Soare [38,38]).

5.5.3.14 Corollary  Let A ⊆ 2ω be a strongly homogeneous ∏1 set with a recursive set of
admissible words and such that #An is unbounded.
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Then E(A) = E({x∈A| lim
n→∞ n

I(x(n))
  =  E(A)} and {x∈A| lim

n→∞ n
I(x(n))

  =  E(A)} has the 

cardinality of the continuum.

Digression: oscillations  We investigate briefly the oscillations of complexity of sequences x
in a ∏1 set A. The material in 5.4.2 leads one to conjecture that there is no x in A which
satisfies ∃m ∀n I(x(n)) > [log2#An] + I(n) – m. That this is indeed so, at least for A such that
#An does not grow too slowly, is the content of the following theorem. To state the condition

of growth in a simple form, we assume that A is shift–invariant.

5.5.3.14 Theorem  Let A be a shift–invariant ∏1 subset of 2ω with a recursive set of

admissible words. Suppose there exists a total recursive f: ω → ω with lim
i→∞

f(i) = ∞,

such that for all n and i:  
#An–i

#An   ≥  f(i).  Then no sequence x in A satisfies

∃m ∀n I(x(n)) > [log2#An] + I(n) – m.

Proof  The proof is modelled upon that of theorem 5.4.2.4. It suffices to show that for every
∆2 definable sequence x in A:
lim
n→∞

([log2#An] – I0(x(n)|n)) = ∞.

To this end, we may copy the proof of theorem 5.4.2.2 until we come to the inequality:
I0(x(n)|n) ≤ I(i) + I0(xi+1.....xn|n–i) + d. By shift invariance, Tix ∈ A, hence (forgetting about
the constants) I0(xi+1.....xn|n–i) ≤ [log2#An]. We then have [log2#An] – I0(x(n)|n) ≥

≥  [log2#An] – [log2#An–i] – I(i)  ≥ log2#An–i

#An   – I(i)  ≥  f(i) – I(i).

Since f is total recursive and lim
i→∞

f(i) = ∞ , ∀m ∃i (f(i) > I(i) + m),  which proves the theorem.

Although natural examples from probability theory (such as example 5.5.3.4) satisfy the
hypothesis of the theorem, equally natural examples from the logic (such as the set of
complete consistent extensions of Peano arithmetic) do not. It is conceivable that in those
cases the complexity is considerably higher.

5.5.4 Kamae–entropy  This measure of disorder is local, i.e. pertains to individual

trajectories and as such can be compared directly to the quantity limsup
n→∞ n

I(x(n))
.
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5.5 . 4 .1  Definition  Given x ∈ 2ω,  define measures µn on 2ω by: µn[w]  =  
n
1∑

k=1

n

1[w](T
kx).

Let V(x) denote the set of limit points of the µn (with respect to the topology of weak
convergence). Each limitpoint µ is stationary, so we may associate to each µ ∈ V(x) its metric
entropy H(µ). Put h(x) := sup{H(µ)| µ ∈ V(x)}. h(x) is called the Kamae–entropy of x (Kamae

[40]).

5.5.4.2 Example  Let µ be a stationary measure and x an ergodic point with respect to µ,

i.e. for all w, µ[w]  =  lim
n→∞ n

1∑
k=1

n

1[w](T
kx). Then V(x)  =  {µ} and h(x)  =  H(µ).

5.5.4.3 Example (Sturmian trajectories)  Let C be the unit circle, parametrized as C = {eia |
a ∈ [0,2π)}. Let α ∈ [0,2π) be irrational and let S be the transformation S(eia) = ei(a+α). S
represents an irrational rotation of the circle around angle α. Put C0 := {eia | a ∈ [0,π)}, C1 :=
{eia | a ∈ [π,2π)}. C0 and C1, together with the excluded points eiπ = –1 and e2πi = 1 represent

a partition (or "measurement") of the "phase space" C. As in 5.5.1, we may define a mapping
ψ: C → 2ω by ψ(γ)k = j iff Sk(γ) ∈ Cj. Let A:= ψ[C], then A is an uncountable closed shift–

invariant set. Elements of A are called Sturmian trajectories. It can be shown that there exists
only one stationary measure µ on A, and that this measure has zero entropy. As a
consequence, the Kamae–entropy of all x in A equals zero. Kamae calls sequences x with h(x)
= 0, deterministic. An examination of the definition of entropy shows that such sequences are
in a sense asymptotically predictable. It will be seen in 5.6 that deterministic sequences have
some of the properties postulated of admissible place selections.
The relation between Kamae–entropy and I is given by

5. 5. 4. 4 Theorem  (Brudno [10,145]) For all x, limsup
n→∞ n

I(x(n))
  ≤  h(x).

In this case, use of I does not seem to have technical advantages, so we refer the reader to
Brudno's proof (l.c.). Note that the inequality is strict for recursive points which are ergodic
for a measure with positive entropy. Examples are recursive Bernoulli sequences; for instance,
the sequence constructed by Champernowne: 0100011011000001...

5.6 Admissible place selections  In conclusion of this chapter, we come back to one of the
issues raised in Chapter 2, namely, the intensional character of admissible place selection. We
observed in 2.3.3 that, in general, admissibility is not a property of the graph of a place
selection, but, as indicated by the phrase ohne Benützung der Merkmalunterschiede, a relation
between the process generating the Kollektiv and the process determining the place selection.
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In some degenerate cases, namely, when the admissibility of a place selection is assumed for a
priori reasons, one may predicate admissibility of a place selection itself. This is so, for
instance, if the selection is lawlike. But we noted in 2.5.1 that it is doubtful whether  a priori
admissibility and lawlikeness really coincide. To substantiate this claim, we present in 5.6.1 a
theorem due to Kamae, which states that the deterministic sequences introduced in 5.5.4 have
many of the virtues of admissible place selections. In 5.6.2 we widen the framework and
attempt to capture the intensional aspect of admissible place selection.

5.6.1 Deterministic sequences  A deterministic sequence, as introduced in 5.5.4, is one which
is asymptotically predictable. A nice way to see this, is to apply Brudno's theorem 5.5.4.4,
which implies that if h(x) = 0, then I(x(n))/n converges to 0. Using a computation similar to
the one given in 5.5.2, we see that the predictability horizon, which is approximately linear in
the data for positive entropy, must recede in this case. In this sense, deterministic sequences
are generalisations of recursive sequences. (In another sense, they are not: it is easy to show
that each Turing degree contains, e.g., a Sturmian trajectory (5.5.4.3).) It stands to reason that
two sequences, one of which is asymptotically predictable and the other having a
predictability horizon linear in the data, are independent. The following theorem bears this
out. Recall that B(p) is the set of Bernoulli sequences with parameter p (definition 2.5.1.3).

5. 6. 1 . 1 Theorem  (Kamae [40]) Under the hypothesis liminf
n→∞ n

1∑
k=1

n

yk > 0,  the following are

equivalent  

(1)  h(y)  =  0

(2)  for  all x ∈ Β(p):  x/y  ∈  Β(p).

 for all p  ∈ (0,1):

The hypothesis of the theorem is necessary, since given x ∈ B(p) it is easy to construct a y in
which 1 occurs with limiting relative frequency 0, such that x/y ∉ LLN(p).

It is out of the question to prove Kamae's theorem here. To give the reader nevertheless an
inkling of the fundamental idea involved, we have decided to include a quick calculation,
which illustrates the direction (2) ⇒ (1) of the theorem.

5.6.1.2 Proposition Let p ∈ (0,1) and let µ be a stationary measure on 2ω  such that
µ{y| ∀x∈LLN(p): x/y ∈LLN(p)}=1. Then for µ–a.a. y: h(y) = 0.

Proof  By the ergodic decomposition theorem, it suffices to prove the proposition for ergodic
µ. By the ergodic theorem (5.5.2.3), µ–a.a. y are ergodic points with respect to µ. Hence (cf.
example 5.5.4.2) the conclusion holds if we can show that, under the hypothesis of the
theorem, H(µ) = 0. Suppose H(µ) > 0. By a result of Furstenberg (lemma 3.1 in Kamae [40]),
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in this case there exists a stationary measure ν on 2ω×2ω which has µ and µp as marginals, but
for which ν([0]×[1]) ≠ µp[0]·µ[1]. By the ergodic theorem

ν€<x,y>| lim
n→∞ n

1∑
k=1

n

1
[0]×[1]

(T
k
<x,y>)  ≠  µp[0]·µ[1]   >  0.{ }

But then, by the properties of /,

ν{<x,y>| x ∈ LLN(p), lim
n→∞ n

1∑
k=1

n

yk
  = µ[1], x/y ∉ LLN(p)}  >  0.

Disintegrating ν,  i.e.  constructing a family of measures {νy}y∈2ω
 such that for all E ⊆ 2ω×2ω,

νE  =  ∫
2ω

νyEydµ(y),

we see that for some A ⊆ 2ω  with µA > 0, and all y in A: νy(LLN(p)∩(/y)–1LLN(p)c) > 0,
whence µ{y| LLN(p)∩(/y)–1LLN(p)c ≠ Ø} < 1, a contradiction.                                         

The key ingredient of the proofs, both of Kamae's theorem and the above proposition, is
provided by Furstenberg's theorem which states, very loosely speaking, that two processes of
positive entropy cannot be entirely independent. One may now wonder whether Kamae's
theorem has an analogue for random sequences. In particular, do we have, under suitable
restrictions on y:

for all p ∈ (0,1), the following are equivalent

(1) lim
n→∞ n

I(y(n))
  =  0

(2) for all x ∈ R(µp): x/y ∈  R(µp)?

computable

5.6.2 Admissibility and complexity  We now turn to the intensional aspect of admissibility.
One way to explain admissibility is as follows: we might say that a sequence y is an
admissible place selection for a Kollektiv x if y contains no information about x. In other
words, y cannot use the Merkmalunterschiede  of x since it knows too little about x. There are
various ways to formalize this idea. One might use conditional complexity I(x(n)|y(m)), or the
relative complexity Iy, which was defined in 5.4.3. We choose the latter possibility.

5.6.2.1 Definition  Let p ∈ (0,1) be computable. If x ∈ R(µp), then y is an admissible place

selection with respect to x if ∃m ∀n Iy(x(n)) > [–log2µp[x(n)]] – m.

5.6.2.2 Remark  This definition may seem surprising, in view of the preceding motivation. In
fact, a definition of the form: "y is an admissible place selection with respect to x if ∃m ∀n
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Iy(x(n)) > I(x(n)) – m" would be rather more elegant. But then it is not clear that there exist
non–recursive y which are admissible (in this sense) with respect to a non–negligible set of
x's. We have already seen (in 5.4.3.1) that if y is a complete Turing degree, i.e. if Ø' ≤T y, then
λ{x| ∀m ∃n≥m (Iy(x(n)) ≤ I(x(n)) – m)} = 1. On the other hand, with the definition of
admissibility we have chosen, it is immediately clear that for all computable µ: µ{x| ∃m ∀n
Iy(x(n)) > [–log2µ[x(n)]] – m} = 1: just relativize theorem 5.4.1.3 to y.

We now put definition 5.6.2.1 to work.

5.6.2.3 Theorem  (a) If x ∈ R(µp) and y is admissible with respect to x, then x/y ∈ R(µp). (b)
If x ∈ R(µp), then the set of y not admissible with respect to x is recursively small (cf. 4.5).

Proof  (a) follows by relativizing theorem 5.4.1.3 to y. For (b), we have to show that for any
computable measure ν: ν{y| ∀m ∃n Iy(x(n)) > [–log2µp[x(n)]] – m} = 0.

By the Fubini theorem for recursive sequential tests (4.4.4), it suffices to show that
{<x,y>| ∀m ∃n Iy(x(n)) ≤ [–log2µp[x(n)]] – m} is a recursive sequential test with respect to
µp×ν. Now this set is obviously ∏2; moreover, we have

µp×ν{<x,y>| ∃n Iy(x(n)) ≤ [–log2µp[x(n)]] – m}  =  

∫µp{x| ∃n Iy(x(n)) ≤ [–log2µp[x(n)]] – m}dν(y)  ≤  ∫2–mdν(y)  =  2–m,  

the inequality following from the relativized version of theorem 5.4.1.3.                              

A trivial combination of the Fubini theorem and theorem 5.4.1.3 thus allows us to capture at
least some of the content of the randomness axiom.

Notes to Chapter 5

1. For the subadditive ergodic theorem, see e.g. Y. Katznelson, B. Weiss, A simple proof of
some ergodic theorems, Isr. J. Math  42 (1982) 291–300.
2. It is a generalisation of the Kraft–inequality from coding theory.
2a. See also Ker-I Ko, On the definition of infinite pseudo–random sequences, Theor. Comp.

Sc.  48 (1986), 9-34.
3. But with the condition of randomness proposed by Kolmogorov, this verification cannot be
effective. A finite sequence w may be called random  with respect to the distribution ( , ) if
for some m, I(w) > |w| – m. It can be shown that finite random sequences have many of the
desired statistical properties, such as (approximate) stability of relative frequency etc.; but, as
will be shown in 5.3, there exists no infinite r.e. set of finite random sequences, so that
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randomness for finite sequences is in a very strong sense not effectively verifiable. In this
respect, Kolmogorov's proposal substitutes one kind of unverifiability for another.
4. The argument used to prove corollary 5.3.1.4 also proves that the graph of the complexity
measure I, {<w,m>| I(w) = m} has degree Ø'.
5. Martin Davis, What is a Computation? in L.A. Steen (ed.), Mathematics Today, Springer
Verlag (1978).
6. One might try to define a real–valued measure of the information content of a formal
system S along the following lines. Let A(S) be the set of complete consistent extensions of S,
then A(S) may be identified with a ∏1 subset of 2ω. If S1 is stronger than S2, then A(S1) is
contained in A(S2). One may now define the information content of S as the inverse of the

topological entropy  (see section 5.5.3) of A(S). Of course, this measure is interesting only if it
can be shown that it is independent of the Gödelnumbering adopted.
7. Although perhaps the usual proofs of van der Waerden's theorem are too ineffective to bring
about a decrease in complexity.
8. It is not clear to whom to attribute this result. Chaitin credits Schnorr in [12] and Solovay in
[13]. The first published proof appears to be Dies [19].
9. This should be understood (and is proved) in the same way as the corresponding result for
prefix algorithms.
10. The proof of the Shannon–McMillan–Breiman theorem does not yield: x ∈ R(µ) implies

 lim
n→∞ n

I(x(n))
  =  H(µ) .  For certain special µ,  e.g. those of the form µp  this can be proved.,

11. Brudno [10,132] proves: if µ is an ergodic measure, then for µ–a.a. x:

limsup
n→∞ n

K(x(n))
  =  H(µ).

12. A simple example of a ∏1 set which can be so resolved is the set A consisting of

sequences of the form 1n0ω for n ≥ 0. Any element of A is determined by finitely many bits.
Having specified these bits, there is no more need to choose in An.
13. We cannot define topological entropy for the set {x∈A|∃m ∀n I(x(n)) > [log2#An] – m},

since this set need not be compact. We therefore choose the formulation "for m sufficiently
large....".
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6 Appendix:
Notation and definitions

6.1 Notations for sequences. 2ω is the set of infinite binary sequences. If x ∈ 2ω, then x(n) is
the intial segment of x of length n, and xn is the nth term (also called coordinate) of x. The
mapping T: 2ω → 2ω (called the left shift) is defined by (Tx)n = xn+1.  x is used consistently as
a variable over 2ω; ξ always denotes a variable over (2ω)ω.

2<ω is the set of all finite binary sequences. An finite binary sequence is alternatively called a
word or a string. The length of a word w is denoted  |w|. 2n is the set of all strings w such that
|w| = n. If m≤|w|, then w(m) is the initial segment of w of length m, and wm is the mth term of
w. If v is an initial segment of w, we write v⊆w; if v⊆w and v≠w, we write v⊂w. The empry

string is denoted <>.

6.2 Topology on 2ω. If B is a set, 1B denotes the characteristic function of B. Let 2 = {0,1}

have the discrete topology and form the product topology on 2ω. The open sets in this
topology are then  unions of  cylinders  [w] defined by [w] := {x ∈ 2ω| x(|w|) = w}. If S⊆2<ω,
then the open set generated by S, namely {x ∈ 2ω| ∃w∈S (x(|w|) = w)}, is denoted [S]. The
topology on spaces of the form  (2ω)m is constructed analogously.

For any subset A contained in 2ω, Cl(A) denotes the closure of A, and Int(A) the interior of A.
The boundary of A, denoted ∂A, is defined to be ∂A := Cl(A) – Int(A).
The Borel σ-algebra on 2ω is the smallest σ-algebra containing the open sets in 2ω. Elements

of this algebra are called Borel sets.

6.3 Measures on 2ω. A measure on the Borel σ-algebra is completely determined by its
values on the cylinders. We shall consider probability measures only, i.e. measures µ for
which µ(2ω) = 1. Now let (pn)n, where pn ∈ [0.1], be a sequence of reals. This sequence

determines a product measure on 2ω, denoted ∏
n

(1 – pn,pn) and defined as

∏
n

   

(1–pn,pn) [w] = ∏
k=1

|w|

pk,  where pk := pk if wk = 1 and pk := 1–pk otherwise.

One product measure on 2ω occurs so often that it is given a special name: λ = ( , )ω.

λ is the image of the Lebesgue measure on the unit interval under the natural map and will

also be called Lebesgue measure.
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The following relationships among probability measures µ and ν are of special importance.
- µ is singular with respect to ν (denoted: µ⊥ν) if there exists a Borel set A such that µΑ = 1
  and νΑ = 0.
- µ is absolutely continuous with respect to ν (denoted: µ<<ν) if for all Borel sets A such
  that νΑ = 0,   also µΑ = 0.
- µ and ν are equivalent (denoted: µ≈ν) if µ<<ν and ν<<µ.
Let (µn)n be a sequence of measures. We say that µn converges weakly to ν if for all Borel sets
A such that ν∂Α = 0, µnA converges to νA. The Portmanteau theorem [4] states (among else)
that weak convergence is equivalent to convergence on the cylinders. We say that µn

converges strongly to ν if for all Borel sets A, µnA converges to νΑ.

6.4 Computability We shall take as primitive the notion of an algorithm operating on natural
numbers, which yields as output natural numbers. It is understood that an algorithm need not
terminate on every input. A partial recursive function f: ω → ω is a function which can be

computed by an algorithm. With this intuitive description it is more or less clear that there
exists an effective procedure which associates to each partial recursive function a natural
number, its Gödelnumber. A recursive function  is a partial recursive function which is in fact
total. More formal definitions of (partial) recursive function and Gödelnumber are possible;
see Rogers [86] and Soare [92]. The connection between the informal concept of an algorithm
and the formal definition of a partial recursive function is provided by Church's Thesis, which
states that every algorithm computes a partial recursive function.
Usually one does not formally verify that an apparently recursive function is indeed recursive;
one exhibits an algorithm which computes the function and Church's Thesis is invoked to
guarantee that the function is in fact recursive. We shall do likewise. We must, however, warn
the reader that in constructing algorithms we freely use classical logic; as a consequence,
proving the existence of a recursive function need not mean that we can lay our hands on it.
Although we defined partial recursive functions to have the natural numbers as domain and
range, this restriction is not as severe as may seem, since many objects can be coded into the
natural numbers. In particular, this is true for and 2<ω. The following concepts thus make
sense. A function f: ω →  is called computable if there exists a recursive function g: ω×ω →

 such that for all n,k: |f(n) – g(n,k)| < 2–k. A measure µ on is computable if there exists a
recursive function g: 2<ω× ω → such that for all w, n: |µ[w] – g(w,n)| < 2-k

.
We shall often use the arithmetical hierarchy for subsets of ω and of 2ω. We say that A ⊆ ωk

is recursive if its characteristic function is a recursive function. Starting from the recursive
sets, we can define increasingly complex subsets of ωk using quantification over ω. A is
recursively enumerable  or ∑1 if there exists a recursive B ⊆ ωk+1 such that
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A = {u ∈ ωk | ∃n (<n,u> ∈ Β)}.

A is ∏1 if Ac is ∑1. In general, A is ∑n if there exists a B ⊆ ωk+1  such that B is ∏n-1 and

A = {u ∈ ωk | ∃n (<n,u> ∈ Β)};

A is ∏n if Ac is ∑n. Note that ∏n sets A can be written as

A = {u ∈ ωk | ∀n (<n,u> ∈ Β)},

for some ∑n-1 set B. A is called ∆n if it is both ∑n and ∏n. This is the arithmetical hierarchy
for subsets of ωk. (In the textbooks the ∑, ∏ and ∆ usually have superscripts "0", to indicate

quantification over natural numbers. Since we shall never quantify over sequences, we have
dropped the superscripts.)
We now generalize the concept of recursiveness to spaces of the form ωk×(2ω)m. Roughly, a
relation R ⊆ ω×2ω is recursive if for each natural number n and each x, the truth value of
R(n,x) can be computed using only a finite piece of x; similarly for relations in ωk×(2ω)m.
A subset A of ωk×(2ω)m is ∑1 if there exists a recursive relation B in ωk+1×(2ω)m such that

A = {< ,x> ∈ ωk× (n 2ω)m | ∃j B(j,n,x)}.

A ∏1 set is the complement of a ∑1 set. The reader can now copy the defintions of ∑n, ∏n and
∆n from the corresponding definitions for subsets of ωk.

We now specialize the preceding definition to the case that subsets of (2ω)m are defined using
recursive relations and quantification over natural numbers. Let A be of the form

A = {x ∈ (2ω)m | R(n,x)},

for some recursive relation R. It follows from the intuitive explanation of recursiveness and
the compactness of (2ω)m that A is of this form is A is clopen. The clopen sets will also be
called ∑0 sets. It is easily verified that ∑1 sets are open and that ∏1 sets are closed. The

converse is of course false, as a cardinality argument shows.

6.5 Ergodic Theory A measure µ on 2ω is called stationary if for all Borel sets A, µΤ−1Α =
µΑ, where T is the left shift defined in 7.1. A measure µ is ergodic if for all Borel sets A: T-1A
= A implies that µΑ is either 0 or 1. The single most important fact about stationary measures

is the
Ergodic theorem (see [82])  Let µ be a stationary measure on 2ω, f: 2ω → integrable. Then

f*(x)  =  lim
n→∞ n

1∑
k=1

n

f(Tkx)

exists µ-a.e., f* is T-invariant and ∫fdµ = ∫f*dµ. In addition, if µ is ergodic then f* is constant

µ-a.e.
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We say that a measure µ on 2ω  is strongly mixing if for all Borel sets A, B:   µ(T-nA ∩B)
converges to µA· µB.
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