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3 A New Start:
Martin-Löf's Definition

3.1 Introduction  At the close of the Geneva conference on probability theory (see 2.6) it
became clear that von Mises' axiomatisation of the probability calculus had lost the day.
Although sub specie aeternitatis almost none of the objections brought against von Mises was
cogent, Kolmogorov's measure theoretic formalism, which did not attempt to define
probability explicitly, was henceforth universally accepted.
With the acceptance of a measure theoretic foundation of probability theory, the necessity of
providing a rigorous definition of randomness disappeared. Consequently, from the
publication of Ville' s book [99] in 1939 to 1963, interest in the problem dwindled. In 1963,
however, Kolmogorov came to the conclusion that the frequency interpretation stood in need
of a precise formulation after all. He published a definition of randomness for finite sequences
[47] which contains the germ of Kolmogorov–complexity (defined in Chapter 5). Martin-Löf,
investigating sequences with high Kolmogorov–complexity, gave a definition of randomness
[62] involving a particular type of statistical test, namely, significance tests. This definition is
nowadays the one most generally accepted. In this chapter we introduce Martin-Löf's
definition and several variants and discuss their respective merits.

As a consequence of the criticism voiced by Fréchet and Ville, the problem of defining
randomness was now conceived as follows: a random sequence (with respect to some
probability measure) should satisfy all probabilistic laws for that measure; in other words, the
set of random sequences should be the intersection of all properties of probability one. Of
course, in this form, the demand is impossible to satisfy, since the required intersection is
empty. Hence we have to choose among the properties of probability one; and Martin-Löf's
definition is one such choice.

The main result of the previous chapter is that this way of introducing Kollektivs has not much
more than the name in common with von Mises' ideas. For one thing, it completely reverses
the attitude von Mises expressed in the slogan "Erst das Kollektiv, dann die
Wahrscheinlichkeit". What's more, for von Mises a Kollektiv x in 2ω induces a probability
distribution on {0,1}, not on 2ω itself; so from his point of view, there is no immediate
relation between properties of probability one in 2ω and Kollektivs x in  2ω.
Speaking mathematically, a distribution (1–p,p) on {0,1} determines a measure  µp = (1–p,p)ω

on 2ω, but this measure is a probability only if it is induced by a Kollektiv ξ ∈ (2ω)ω. To be

sure, such a measure can be extremely helpful in proving existence theorems; for instance, in
this way we proved that the set of Church random sequences C(p) has µp–  measure one
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(theorem 2.5.2.3). But this result should not be construed as implying that a "true" random
sequence should at least be Church random (because  Church randomness is a property of
probability one).
Another consequence of strict frequentism is that the distribution (1–p,p) on {0,1} in no way
determines a unique distribution on 2ω, to wit, µp. Indeed, the distribution on (1–p,p) would
lead uniquely to µp if it were a property of each coordinate, as in the propensity interpretation.
But, according to strict frequentism, a Kollektiv x in 2ω allows no such conclusion: p is really

only a limiting relative frequency. It follows that all measures which, in a sense to be made
precise in Chapter 4, determine the same limiting relative frequency p, should be treated on
equal footing, and existence theorems should not be sensitive to which measure (from the
class of measures which determine the same relative frequencies) we choose. Some notation
we introduced in Chapter 2 was intended to reflect this point: e.g. the set of Church random
sequences with parameter p was denoted C(p), to emphasize the fact that only the limiting
relative frequency p is relevant. In Chapter 4 we shall show that, roughly speaking, C(p) has
measure one for measures which determine the same p.
The randomness notions which we shall introduce in this chapter are, on the other hand, very
sensitive to the underlying measure. This is emphasized by the notation R(µ), meaning "the set
of sequences random with respect to the measure µ". Exactly how sensitive to the choice of a

measure these notions are, will be investigated in Chapter 4.

Although we may have so far given the impression that the definition of randomness of
Martin-Löf and its variants, being conceived in sin, are ipso facto unsatisfactory, this is not
our purpose. The preceding chapter should have convinced the reader that randomness defined
as the satisfaction of "all" properties of probability one is anathema to the strict frequentist. It
is not, however, implied that such a definition does not make sense on any view of probability.
In particular, if you subscribe to some variant of the propensity interpretation, which views
probability primarily as a physical property of an experimental set-up, it does make sense to
have randomness defined with respect to some unique probability distribution on 2ω.
Indeed, the widespread belief that Kollektivs should satisfy the law of the iterated logarithm,
and that probability zero of an outcome should exclude that this outcome occurs infinitely
often (at least for a discrete sample space), probably testifies to an instinctive acceptance of
the propensity interpretation. Accordingly, the mathematical differences between the two
definitions, investigated in detail in Chapter 4, may be seen as a contribution towards the
study of the philosophical differences between these two interpretations of probability.

This chapter is organized as follows. In 3.2 we introduce the definitions of randomness of
Martin-Löf [62] and Schnorr [88] and we prove some recursion theoretic properties of these
definitions (3.2.2-3).
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Although most of the results occur already in Schnorr's book, the proofs have been simplified,
e.g. by using the so-called Basis Theorem from recursion theory. Apart from added elegance,
we thus introduce a technique that will be helpful in Chapter 5.
Having thus prepared the ground, we turn to some problems not usually treated in the
literature. For one thing, there is a notable lack of concrete examples of properties which
random sequences satisfy. E.g. in Schnorr's book, only the validity of the law of large numbers
is verified, not even that of the law of the iterated logarithm. This fact is slightly ironical, since
the non-validity of the law of the iterated logarithm for von Mises' Kollektivs was the main
impetus behind the new approach.
One  of the goals of this thesis is, therefore, to exhibit more examples of properties of random
sequences. For a start we prove in 3.3 effective versions of the Borel-Cantelli lemmas, which
allow one to show that random sequences satisfy the usual probabilistic laws.
So far, random sequences are considered only from the point of view of probability theory.
Martin-Löf's original introduction of random sequences proceeded slightly differently: a
sequence was defined to be random with respect to some statistical hypothesis H if it is not
rejected by some (effective) statistical test for H at arbitrarily small levels of significance.
From this perspective, it is not immediately clear that Martin-Löf's definition is the correct one
to use, since there is some controversy surrounding the notion of significance test employed in
the definition.
To set the stage for the discussion, we introduce Martingales in 3.4. Martingales were first
mentioned in 2.6.2, in connection with Ville's construction, as formalisations of gambling
strategies.  We shall briefly examine this aspect of Martingales, but our main interest lies in
their statistical meaning, as likelihood ratios. In 3.5 we explain the controversy surrounding
significance tests and we discuss some alternatives to Martin-Löf's definition. A conclusion
follows in 3.6.
The relation between Martin-Löf's definition and that of von Mises is discussed in Chapter 4,
which is considerably more technical than Chapter 3.

3.2 The definitions of Martin-Löf and Schnorr

3.2.1 Randomness via probabilistic laws  Ville ended his book [99] on a note of resignation:
a random sequence should satisfy all properties of probability one; that's impossible, so which
probabilistic laws should we choose? Ville had shown that, in a sense, any probabilistic law
can be represented by a Martingale (see lemma 3.4.7 below), so the question could
equivalently be posed as: which gambling strategies should one choose? Any choice seemed
to be arbitrary, thus causing the definition of random sequences to be arbitrary as well. Of
course Ville didn't mind, not being a strict frequentist.
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In [62], Martin-Löf proposed a canonical choice for the class of probabilistic laws: the class of
those laws which can be proved effectively. To explain this notion of effectiveness, we must
look at proofs of probabilistic laws.
A probabilistic law, according to the usual interpretation, is a statement of the form:

µ{x ∈ 2ω| Α(x)} = 1,

where A is some formula. The discussion in 2.4.3 should have made clear that this is not von
Mises' concept of a probabilistic law; but we are in a different circle of ideas now.
Typically, a proof of such a statement proceeds in either of the two following ways (examples
will be given in 2.3):
(i) One constructs a sequence (On) of open sets such that (a) {x|A(x)}c ⊆ On for all n, (b) µOn

≤ 2-n (or any other recursive function of n which decreases to 0), (c) the On are recursively
enumerable unions of cylinders, or at least unions recursively enumerable in µ and (d)
similarly, the function which associates to each n a Gödelnumber for On is recursive in µ.
(ii) One uses the two Borel-Cantelli lemmas (Feller [25,200-2]):

(a) if (An) is a sequence of sets such that ΣnµΑn < ∞, then

µ∩n ∪m≥n Am = 0

(b) if (An) is a sequence of independent events such that ΣnµΑn = ∞, then

µ∩n ∪m≥n Αm = 1.

Usually such a sequence (An) satisfies properties analogous to (c) and (d) in (i).

Roughly speaking, a probabilistic law is effective if it can be proved according to (i) or (ii).
Not all probabilistic laws are effective in this sense; the ergodic theorem (see 7.4) may be a
case in point1.
Martin-Löf's definition of randomness may be seen as a formalisation of procedure (i).
Procedure (ii) will receive separate treatment in 3.3.
Let us first introduce two notions of a measure being computable.

3.2.1.1 Definition  The probability measure µ on 2ω is called computable if there exists a
recursive function g: 2<ω×ω → such that for all w,k: |µ[w] – g(w,k)| < 2-k.
Note that if µ is a computable measure, then the following sets are ∑1:
W> := {<w,a> ∈ 2<ω× +| µ[w] > a} and W< := {<w,a> ∈ 2<ω× +| µ[w] < a}.

A slightly stronger concept of computability for measures results if we demand that these sets
be ∆1: a measure µ is strongly computable if the associated sets W<, W> are ∆1.

Evidently a strongly computable measure is computable, but not conversely: strong
computability excludes measures µ such that it cannot be decided whether µ[w] is rational, a
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case not very likely to occur in practice. In section 3.4 we have to introduce still another
notion of computability for measures, this time weaker than those above.

For computable measures, the clauses "recursive in" in (c) and (d) of (i) can be replaced by
"recursive" pure and simple. We shall now formally introduce procedure (i) under the name of
"recursive sequential test". This name, coined by Martin-Löf, reflects the statistical origin of
these sets, statistical rather than probabilistic. The statistical view will be explained in 3.5.

3.2.1.2 Definition  Let µ be a computable measure. N ⊆ 2ω is a recursive sequential test with

respect to µ if N can be written as a ∏2 set  ∩nOn, where On ∈ ∑1, the function n → On is

recursive, On+1 ⊆ On and µOn ≤ 2-n.

We shall see below that probabilistic laws such as the law of the iterated logarithm or the law
of large numbers can indeed be proven by constructing recursive sequential tests covering the
sets of sequences not satisfying these laws. In fact, these proofs usually show something more:
with the notation as in the preceding definition, one usually has that the µOn are computable
uniformly in n, i.e. that for some recursive function f: ω×ω → ,

∀n,k |µOn – f(n,k)| < 2-k

This added feature is present in Schnorr's definition of total recursive sequential test [88,63].

3.2.1.3 Definition  With the notation of 3.2.1.2: N is a total recursive sequential test with
respect to µ if µOn is computable uniformly in n.

Schnorr's reasons for preferring this definition will be examined in 3.2.3 and 3.4. In 3.2.3 we
shall see that indeed some recursive sequential tests are not total.
Abstractly, we may now introduce definitions of randomness as follows:

3.2.1.4 Definition  Let µ be a computable measure. x ∈ 2ω is random with respect to µ
(denoted x ∈ R(µ)) if for all recursive sequential tests N with respect to µ, x ∉ N.

3.2.1.5 Definition   Let µ be a computable measure. x ∈ 2ω is weakly random with respect to
µ (denoted x ∈ Rw(µ)) if for all total recursive sequential tests N with respect to µ, x ∉ N.

(Schnorr calls hyperzufällig what we call random, and zufällig what we call weakly random.)
3.2.1.6 Lemma  R(µ) ⊆ Rw(µ) and µR(µ) = µRw(µ) = 1.

Proof  Each (total) recursive sequential test has measure zero and there are only countably
many of them.                                                                                                                        
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These definitions are very abstract, much more so than that of von Mises. For example, while
a probabilistic law gives rise to a (total) recursive sequential test, via procedure (i) on p. 58,
the converse does not seem to be obvious: does every recursive sequential test correspond to a
bona fide probabilistic law? In order to answer such questions, one must have some kind of
representation or classification of recursive sequential tests. Sections 3-5 of this chapter, and
also Chapter 4, contain some efforts in this direction. The rest of 3.2 develops some recursion
theoretic properties of the above definitions and settles a question left open by lemma 3.2.1.6,
namely: is every weakly random sequence also random?

3.2.2 Recursive sequential tests  A surprising property of recursive sequential tests is:

3.2.2.1 Lemma  (Martin-Löf [62]) Let µ be a computable measure. (a) The collection of
recursive sequential tests with respect µ to is recursively enumerable. (b) There exists a
universal recursive sequential test with respect to µ, i.e. a test U such that for all recursive
sequential tests N with respect to µ, N ⊆ U.

A curious consequence of the preceding lemma is that R(µ) and, a fortiori Rw(µ), have
elements which are rather simple. Although neither set contains recursive sequences if µ is

non-atomic (for if x is recursive, ∩n[x(n)] is a total recursive sequential test with respect to

any non-atomic computable µ; cf. remark 3.2.3.11), R(µ) does contain ∆2-definable

sequences. This is a consequence of the following

3.2.2.2 Basis Theorem (Soare [92,109]) Any non-empty ∏1 subset of 2ω has a ∆2-definable

element.

Proofsketch  A ∏1 subset of 2ω can be viewed as the set of infinite paths through a recursive
binary tree T. Call w ∈ T admissible if ∀n>|w| ∃v∈2n(w⊆v & v ∈ T). (By König's Lemma, w
is admissible iff there is an infinite branch of T through w.) The set of admissible words is ∏1.

Since the subset is non-empty, T has an infinite branch. The leftmost infinite branch can be
constructed recursively in the set of admissible words, which is ∏1; hence this branch must
itself be ∆2.                                                                             

3.2.2.3 Lemma  Let µ be a non-atomic computable measure. Then R(µ) contains ∆2-, but no
∆1-, definable sequences.

Proof  (See also Schnorr [88, 56].) By 3.2.2.1, R(µ) is a ∑2 set of measure 1. Pick a ∏1 set A
⊆ R(µ) such µA > 0 and apply the Basis Theorem.  If x is recursive and µ computable and
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non–atomic, then ∩n[x(n)] is a total recursive sequential test with respect to any non-atomic

computable µ; cf. remark 3.2.3.11.                                                                    

Although ∆2 sequences may thus possess all statistical properties associated with randomness,

in another sense they can be completely deterministic.

lim (ξk)n.
k→∞

In words: ∆2 sequences x can be produced by Turing machines if the machine is allowed to
correct itself a finite number of times per xn. This is a far cry from the usual mechanisms that

produce random sequences: indeterministic systems such as those of quantum mechanics, or
deterministic systems that have been subject to coarse graining (see Chapter 5). The finer tools
of Kolmogorov complexity will allow us to distinguish between ∆2 definable random

sequences and those which are not so simply definable.

3.2.3 Total recursive sequential tests  The requirement of uniform computability of the µOn

is strong; to prove that a recursive sequential test is in fact total sometimes demands
considerable effort. Fortunately, nullsets bearing a strong resemblance to total recursive
sequential tests were already known in constructive mathematics, so we can draw upon the
large reservoir of proof techniques developed there (see, e.g., the books by Bishop [5], Bridges
[9] and Bishop-Bridges [6]) Although not every total recursive function is acceptable in
constructive mathematics (since the proof that the function is in fact total must itself be
constructively valid), arguments involving constructive functions usually carry over directly to
recursive functions; when the result is simple we shall not bother to write down proofs. For
instance, we shall often have occasion to use the following comparison principle:

3.2.3.1 Lemma  (See [5,30].) Let (an), (bn) be recursive sequences of computable reals such
that 0 ≤ an ≤ bn and ∑nbn < ∞ is computable. Then ∑nan is also computable.

To compute the measure of a ∑1 set, it is often helpful to have such sets presented in normal
form, namely as a disjoint union of sets of the form [w]. For if A in ∑1 is brought in such a

form, i.e. A =  ∪i[wi], then  µA = ∑i µ[wi].

3.2.3.2 Definition  A subset S of 2<ω is called prefixfree if for distinct w,v ∈ S: neither w⊆v
nor v⊆ w.
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If S is prefixfree, the open set determined by S, namely [S] = {x | ∃n(x(n)) ∈ S)} can be

written as

[S] = ∪
w∈S

⊥
[w]  (where ∪⊥ denotes disjoint union).

3.2.3.3 Lemma  For every ∑1 set A ⊆ 2ω, one can effectively determine a recursively
enumerable prefixfree set S ⊆ 2<ω such that A = [S].

Proof  A is of the form [T], T ⊆ 2<ω r.e. Generate T. S is obtained as a union ∪nSn, Sn ⊆

Sn+1. Suppose Sn has been constructed. Consider the n+1th word w in T. (a) If w is a
prolongation of some v in Sn, put Sn+1 = Sn. (b) If w is an initial segment of some v in Sn,

replace w by all its prolongations of length |v| and apply (a) and (b) to each of these
prolongations. This process comes to a halt; let Sn be the union of Sn and the finite list thus
obtained and proceed. (c) In all other cases, put Sn+1 = Sn ∪ {w}.2

Using this lemma one can easily show

3.2.3.4 Lemma  Let µ be a computable measure on 2ω; A, B ∑1 subsets of 2ω with µA, µB
computable. Then µ(A∪B), µ(A∩B) are computable.

Proof  We do the first case only. We may suppose that A is written as a disjoint union

∪n[wn]; let B = [v]. Then µ(A∪Β) = ∑nµ([wn]∪[v]) and we may apply lemma 3.2.3.1 with

an = µ([wn]∪[v]) and bn = µ[wn] + µ[v]. For the general case, write B as a disjoint union

∪m[vm]; then µ(A∪B) = ∑mµ(A∪[vm]). Apply 3.2.3.1 with am = µ(A∪[vm]) (which is

compuable by the first part of the proof) and bm = µA + µ[vm].                           

We now come to an essential feature of ∑1 sets O such that µO is computable. If O is just ∑1,

it may be the case that all recursive sequences are contained in O; this is for instance true of
the levels Un of a universal recursive sequential test U. Not so for ∑1 sets O with µO

computable:

3.2.3.5 Lemma  Let µ be a computable measure, O in ∑1 and µO computable. Then for any
word w such that µ([w]∩O) < µ[w], there exists a recursive x in [w]∩Oc.

Proof  This is just a formalisation of an old intuitionistic result; see e.g. Schnorr [88,64-5].
Alternatively, one could show that, if µO is computable, it can be written as a recursive union
of cylinders [w] and then apply the lemma proved in footnote 2.                                
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3.2.3.6 Corollary  Let µ be a computable measure which is positive on open sets, A a ∏1 set
without recursive elements. Then either µA = 0 or µA is not computable (both cases occur).

For our purpose the most important consequence is

3.2.3.7 Corollary  (a) Let µ be a computable measure. If N is a total recursive sequential test
with respect to µ, there exists a recursive x ∉ N. (b) If µ is non-atomic, there exists no
universal total recursive sequential test with respect to µ.

Proof  (a) Write N = ∩nOn as in definition 3.2.1.3. Observe that µO1 < 1 and apply lemma

3.2.3.5. (b) Otherwise, by (a), there would exist a recursive sequence outside this universal
test.                                                                                                                         

Schnorr sees in the preceding lemma a mark of the superiority of total recursive sequential
tests over recursive sequential tests. The construction of a recursive x outside N implies that
we can construct a model of the probabilistic law corresponding to N, so that we can visualize
the property stated by the law (von Mises considered this use of recursive "Kollektivs" in
[69]). This is indeed not an unreasonable requirement for probabilistic laws which purport to
be effective. But the requirement is satisfied by other types of tests as well (see footnote 2 and
section 3.4). Furthermore, the existence of recursive sequences satisfying a probabilistic law
does not imply visualizability of that law in any real, practical, sense: there must exist
recursive absolutely normal numbers (i.e. numbers which are normal to every base), but there
are no examples of absolutely normal numbers which are as easily described as the example of
a normal number in lemma 2.5.1.5. It therefore seems more correct to say that, whenever a
probabilistic law can be associated with a total recursive sequential test, the possibility of a
visualizable model for that law is at least not excluded.
We now state a technical lemma which, besides being useful later, will imply that the
collection of total recursive sequential tests (with respect to a given measure) is not r.e.

3.2.3.8 Lemma  (Schnorr [88,65]) Let µ be a computable measure and (Nk)k a recursively

enumerable collection of total recursive sequential tests with respect to µ. Then ∪kNk is a

contained in a total recursive sequential test M with respect to µ.

Proof  Let Nk = ∩nOk,n. Put M = ∩n∪kOk,(n+k). M is a recursive sequential test with respect

to µ.

To compute µ∪kOk,(n+k), note that for n+1 < i < j:
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µ∪k=1

j
Ok,(n+k) – µ∪k=1

i
Ok,(n+k) ≤ ∑

k=i

j

µOk,(n+k) ≤ ∑
k=i

j

2–k–n

hence lemma 3.2.3.4 implies that

(µ∪k=1

j
Ok,(n+k))j∈

is a recursive sequence of computable reals which is recursively Cauchy, so converges to a
computable real (see [5,27]).                                                                                                  

3.2.3.9 Corollary  Let µ be a non-atomic computable measure. The collection of total
recursive sequential tests with respect to µ is not r.e.

Proof  Otherwise the M constructed in lemma 3.2.3.8 would be universal.                         

We now come to the main result of this section: that R(λ) ⊂ Rw(λ). This observation is due to

Schnorr [88,77], whose proof uses Martingales and a detour via a different randomness
concept.

3.2.3.10 Theorem  Let µ be a computable measure. Then there exists a sequence which is
weakly random, but not random, with respect to µ.

Proof  Let (Nk)k∈  be an enumeration of the collection of total recursive sequential tests with

respect to µ. By lemma 3.2.3.8, we may assume that each Nk is of the form ∩nOk,n, where

Ok,n
  = ∪

i=1

k-1
Oi,(n+i).= O   

We construct a weakly random, but non–random x as a pointwise limit of a sequence (ξk)k∈ ,

where ξk ∈ 2ω. Let U = ∩nUn be the universal recursive sequential test with respect to µ.

By lemma 3.2.3.5, we can construct a recursive ξ1 not contained in O1,1. Since µ is non-
atomic, U contains all recursive sequences. Determine k1 such that [ξ1(k1)] ⊆ U. Since
[ξ1(k1)]∩(O1,1)c ≠ ∅, there exists a recursive ξ2 such that ξ2(k1) = ξ1(k1) and ξ2 not contained
in O2,1. Determine k2 > k1 such that [ξ2(k2)] ⊆ U. Proceeding inductively we
construct recursive ξk not contained in Ok,1. Put xn = lim (ξk)n. We show that for all k,

k→∞

x ∉ Ok,k+1. For if x ∈ Ok,k+1, say [x(m)] ⊆ Ok,k+1, we can determine k'>k such that ξk'(m) =
x(m). Since xk' is not contained in Ok',1 and

Ok',1
  = ∪

i=1

k'-1
Oi, i+1 

,
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ξk' is not contained in Ok,k+1, a contradiction.                                                                     

3.2.3.11 Remark If M is a total recursive sequential test with respect to µ, M = ∩nOn, then

the conventional upper bound on µOn is 2-n. This requirement may be relaxed. For if M =

∩nOn is a ∏2 µ-nullset and each µOn is computable, then M is contained in a total recursive

sequential test N: since for each k, µ∩n≤kOn is computable (uniformly in k) by lemma

3.2.3.2, there exists a total recursive g: ω → ω such that for all m,

µ∩
n≤g(m)

On ≤ 2–m
;

if we then put

O'm = ∩
n≤g(m)

On ,

N := ∩mO'm is the required recursive sequential test.

3.2.4 An appraisal and some generalisations  Do the definitions of Martin-Löf and Schnorr
really amount to a canonical choice of a class of probabilistic laws, thus providing an absolute

concept of randomness? Martin-Löf must have had his doubts, since he later proposed to
define the set of random sequences as the intersection of all hyperarithmetical sets of measure
one [64], the reason being that "the specific Borel sets considered [in probability theory] are
always obtained by applying the Borelian operations to recursive sequences of previously
defined sets, which means precisely that they are hyperarithmetical" [64,74]. Nor is it clear
that this is really the end: why not consider all Borel sets of measure one with codes in some
admissible set, the theory of admissible sets being the natural generalisation of recursion
theory?
Even if we assume that a random sequence should satisfy all "effective" laws of probability
theory, still "effectiveness" is an open-ended notion, so we can't expect to arrive at some
definitive notion of randomness in this way. The question is, whether we would be much
happier with such a definition.

We believe that the alleged "problem of the relativity of randomness" is a pseudo-problem,
born from an excessive concern with abstract things. The fundamental concept of
mathematics, set, is relative (with respect to axioms and models for set theory), but that
doesn't imply that the notion is useless; only that we should stick to those properties which are
uncontroversial, whenever possible. Very few mathematicians are willing to forego sets, just
because the contours of the universe of sets are hazy. Some, notably Kreisel, even believe that
philosophical analysis of the notion of set may help to enlarge the charted domain.
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The situation with respect to random sequences is different in so far as it is quite possible to
do mathematics without them; and one is of course much less willing to bear with a
problematic concept if one can forego it. We have seen in the previous chapter, however, that
random sequences are necessary for a frequentist foundation of probability and in particular
that random sequences should minimally be invariant under admissible place selections.
Invariance under place selections also suffices to explain the applicability of probability
theory, so that Martin-Löf's definition is threatened by relativity only because it disregards the
function of random sequences in von Mises' probability theory. The propensity interpretation
does nothing to remove this relativity.

We therefore propose to investigate the modern definitions of randomness, not with a view to
single out one as the definition, but rather to establish reasonable (or just interesting)
properties of random sequences. This attitude entails that we do not introduce sets which are
more complex (in the sense of the arithmetical hierarchy) than those occurring in definitions
3.2.1.2-3, unless we are forced to do so (see below). We wish to remain agnostic about the
exact boundary of the set of properties a random sequence has to satisfy (when these
sequences are not considered in their role as foundation for probability theory). The fact that
we shall almost never consider sets which are more complex than those in definitions 3.2.1.2-
3 does not imply that we believe that all (total) recursive sequential tests are reasonable
probabilistic laws, since it depends on one's views on, e.g., statistics (does significance testing
make sense in the absence of an alternative hypothesis? what exactly is an alternative
hypothesis?) which properties of random  sequences to accept. All in all, then, we regard the
definitions of Martin-Löf and Schnorr as convenient way-stations, as technically elegant,
concise descriptions of probabilistic laws. But we think that, in their present form, these
definitions are too abstract and that questions such as "Is Martin-Löf's definition the right one
to use?" do not make sense. Moreover, worrying about the recursive aspects of the definition
might easily lead to a neglect of its more urbane questionable aspects.

We shall now examine possible reasons for enlarging the framework. Up till now, we have
considered only computable measures. What happens if, for some reason or other, we wish to
consider measures which are not computable? A moment's reflection on how a measure µ
occurs in a probabilistic law (or a glance at section 3.3) will show that the most useful concept
in this context is 3.2.1.2. with "∏2" replaced by "∏2 in µ". Most theorems hold for the new
concept if we put in "recursive in µ" in the appropriate places; section 3.3 will provide

illustrations of this point. Consequently, allowing non-computable measures does not really
amount to a generalization.

We do get a generalization if we drop the requirement in 3.2.1.2 that µOn be bounded by 2-n;
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that leaves us with just a bare ∏2  µ-nullset. Once we're on this slippery slope, we could
replace the ∏2 set by a ∏n set, for arbitrary n. This is indeed what happens in Gaifman and

Snir [34]. They introduce

3.2.4.1 Definition  Let µ be a computable measure. x is n–random with respect to µ (Notation:
x ∈ Rn(µ)) if for all ∏n µ-nullsets N, x ∉ N.

It will turn out (in Chapter 4) that the concept is actually most useful for strongly computable
measures, which were defined in 3.2.1.1. Again, if we wish to consider arbitrary measures µ, it
is best to replace "∏n" by "∏n in µ".

It is doubtful whether we really do need this generality. I know of one probabilistic law which
may not be effective in the sense introduced in 3.2.1: the ergodic theorem (which is stated in
the appendix, 6.4). In this case, e.g. the set

{x ∈ 2ω| limsup
n→∞n

1∑
k=1

n

xk > µ[1] > liminf
n→∞n

1∑
k=1

n

x }
k

is ∑3 in µ, i.e. a countable union of ∏2 µ-nullsets; so here at least is some use for 2–

randomness.
Let us therefore in conclusion of this part compare 2–randomness (definition 3.2.4.1) with
randomness (definition 3.2.1.4).

3.2.4.2 Lemma  Let µ be a non-atomic computable measure. (a) There is no universal ∏2 µ-
nullset. (b) There exist sequences which are random, but not 2–random, with respect to µ.

Proof  (a) Suppose U were a universal ∏2 µ-nullset. Then µUc = 1 and Uc is ∑2. It then
follows from the Basis Theorem (3.2.2.2) that U contains a ∆2 definable sequence x. But then
{x} is a ∏2 set and µ{x} = 0 by non-atomicity of µ. (b) If not, then R(µ)c would be a universal
∏2 µ-nullset.                                                                                                          

In fact, as an application of the techniques developed in Chapter 4 we shall show in 4.7 that
for some continuous measure µ: µ(R(λ)∩R2(λ)c) = 1.

3.3 Probabilistic laws  After these abstract considerations, let us now exhibit some concrete
examples of probabilistic laws which are satisfied by (weakly) random sequences. The main
technical tools here are effective versions of the two Borel-Cantelli lemmas (Feller [25,200-
2]).
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3.3.1 Lemma  Let µ be a computable measure, (An)n∈  a recursive sequence of ∑1 sets in  2ω

such that each µAn is computable (uniformly in n) and ∑nµAn converges recursively3. Then

N := ∩n∪k≥nAk is a total recursive sequential test with respect to µ.

Proof  Obviously N is ∏2. µ∪k≥nAk is computable since for m2 > m1,

µ∪k=n

m2

Ak – µ∪k=n

m1

Ak ≤ ∑
k=m1

m2

µAk

and decreasing to 0 since ∑nµAn converges. Now apply remark 3.2.3.11.                         

Seeing that one automatically obtains a total recursive sequential test, starting from the natural
condition that ∑nµAn converges constructively, one might wonder whether there exists some

condition which yields only recursive sequential tests. There is, namely:

for some total recursive f: ω → ω, for all n:∑
k ≥f(n)

µAk ≤ 2-n;

but, in practice, whenever in an application of the first Borel-Cantelli lemma the latter
condition is satisfied, so is the more exacting condition of lemma 3.3.1. This illustrates a
general phenomenon: it is hard to come up with natural examples of recursive sequential tests
which are not total (they may come from the theory of Martingales, to which the next section
is devoted). Nevertheless, it will become clear in the sequel and especially in Chapter 5, that
Martin-Löf's concept has immense technical advantages.

Likewise we have the following effective analogue of the second Borel-Cantelli lemma:

3.3.2 Lemma  Let µ be a computable measure, (An)n∈  a recursive sequence of independent

∑1 sets in 2ω such that ∑nµAn diverges and µAn is computable (uniformly in n). Then

∪n∩k≥nAk
c is contained in a total recursive sequential test with respect to µ.

Proof  By the second Borel-cantelli lemma (Feller [25,201]), µ∩k≥nAk
c = 0, for each n.

∩k≥nAk
c is a ∏1 set, which by remark 3.2.3.11, can be taken to be a total recursive sequential

test. Now apply lemma 3.2.3.8.                                                                            

As an application of the preceding material, we shall now prove the strong law of large
numbers for (weakly) random sequences. The probabilistic argument is copied from Feller
[25,259], but we have to complicate the construction to ensure computability.
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3.3.3 Theorem  Let µ = ∏n(1-pn,pn) be a computable product measure. For a recursive and
dense (in (0,1)) set of computable reals ε, the sets

{x ∈ 2ω| ∀m∃n≥m |
n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk| > ε}

are contained in a total recursive sequential test with respect to µ.

Proof  Choose > 0 and rational. Let

Ak:= { x  ∈ 2ω| ∃n(2k-1 < n ≤ 2k & |
n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk| > ε)}

The obvious candidate for a total recursive sequential test is ∩n∪k≥nAk, but there is a slight

problem here: µAk need not be computable, even if ε is rational; for we might not be able to

decide whether

n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk = ε

for pathological µ. One may circumvent this problem by restricting µ to be strongly
computable (definition 3.2.1.1) or by choosing ε such that we know in advance that this

situation cannot occur. Now every number

|
n
1∑

k=1

n

xk – 
n
1∑

k=1

n

pk|

is of the form

|
n
m

 – 
n
1∑

k=1

n

pk| =: amn,  where m ≤ n.

Obviously each amn is computable and the sequence (amn)m,n∈  is recursive. By repeated
diagonalisation one may then construct a recursive sequence of computable reals (εj)j∈

such that lim εj = 0 and for all j, n and m: εj ≠ amn.
k→∞

Now if we set, in the definition of Ak, ε equal to εj, we do have that Ak is ∑0, (Ak) is recursive
and µAk is computable (uniformly in k). (A similar argument occurs in 4.4, where we need an

effective version of the Baire Category Theorem to effect the iterated diagonalisation.) The
argument then follows familiar probabilistic lines: if sn is the variance of µ at the nth

coordinate, then sn = pn·(1–pn) and since for all n, sn·n-2  ≤ n-2, ∑nsn·n-2 ≤ ∑nn-2 = π2/6

converges constructively by lemma 3.2.3.1. By Kolmogorov's inequality (Feller [25,234]),
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µAk ≤ 4·εj
−2·s

2
k·2

-2k

hence

∑
k

µAk ≤ 4·εj
-2·∑

k

2-2k·∑
n=1

2
k

sn = 4·εj
-2∑

n

sn·∑
2

k
≥n

2-2k ≤ 8·εj
-2∑

n

sn·n-2.

Now apply lemma 3.3.1.                                                                                                       

The law of the iterated logarithm can be proved similarly, this time using both effective Borel-
Cantelli lemmas and the proof of the law of the iterated logarithm in Feller [25,205]. In
Chapter 4 we shall construct examples of probabilistic laws not hitherto considered in the
literature.

In conclusion of this section, let us investigate what happens if we drop the requirement in
lemma 3.3.3, that the product measure µ be computable. Since there is now no sense in
requiring the µAk to be computable, we may choose rational ε > 0. We then have that the
sequence (Ak) is recursive in µ and that the upper bounds on µAk are given by a recursive
function of k, by the inequality ∑nsn·n-2 ≤ ∑nn-2. This illustrates our claim in 3.2.4, that the

most useful concept of effective probabilistic law for arbitrary µ is obtained if we replace in
definition 3.2.1.2, "∏2" by "∏2 in µ".

3.4 Martingales  As a technical prelude to 3.5, where we examine Martin-Löf's original way
of introducing random sequences, we present a different a characterisation of random
sequences, using Martingales, Ville's formalisation of the concept of a gambling strategy.

Von Mises' axioms for Kollektivs were stated in terms of admissible place selections and did
not mention gambling strategies. The second axiom, however, was explained informally as the
"principle of the excluded gambling strategy"; so it is natural to ask whether all gambling
strategies can be represented as place selections.  As we have seen in 2.6.2, Ville [99] showed
that such is not the case. He argued that place selections left one essential element of gambling
strategies out of consideration: the possibility to vary one's stakes from one bet to the next. We
now give a rapid introduction to the definition and main properties of gambling strategies with
variable stakes, so-called Martingales, and afterwards discuss their interpretation.

The stakes are given by functions B0, B1: 2<ω → + as follows: we bet B0(w) on the event
that w is followed by 0 and B1(w) on the event that w is followed by 1. If V(w) denotes our
capital after the sequence w has occurred, we must have (we exclude loans): B0(w) + B1(w) ≤
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V(w). We say that the game played with strategy V is fair if, for each n, the expected capital
after the n+1th trial is equal to the capital after the nth trial. To formalize this condition of
fairness we need a probability measure µ on 2ω. Having a probability measure, we may then

define Martingales.

3.4.1 Definition  Let µ be a measure on 2ω. V: 2<ω → + is a (positive) Martingale with

respect to µ if V(‹ ›) < ∞ and for all w:

V(w)  =  
µ[w]
µ[w0]

 ·V(w0)  +  
µ[w]
µ[w1]

 ·V(w1).

The relation to the usual probabilistic concept (see e.g. Feller [26] and Neveu [77]) should be
clear: let Bn denote the algebra generated by the cylinders of length n, Vn: 2<ω → + the
function defined by Vn(x) = V(x(n)), then the sequence (Vn) is a Martingale (in the usual
sense) with respect to µ and the filtration (Bn).

We say that a Martingale V is successful on a sequence x if 
limsup V(x(n)) =∞. The
n→∞

following lemma, called Kolmogorov's inequality for Martingales by Feller [26,242], but
which occurs already in Ville [99,100], shows that Martingales (with respect to µ) are almost
never (again with respect to µ) successful.

3.4.2 Lemma  Let V be a Martingale with respect to µ, then for a ∈ +

µ{x ∈ 2ω | ∃n (V(x(n)) > a)} ≤  min (
a

V(< >)
,1).

As a consequence,

µ{x ∈ 2ω| limsup
n→∞

V(x(n)) = ∞} = 0.

3.4.3 Examples
1. Let Φ be a place selection (see definition 2.5.1.1). Choose p,q ∈ (0,1). Define a Martingale
Vq with respect to the measure µp by
  (i) Vq(‹␣›) = 1
 (ii) if φ(w) = 0, let Vq(w) = Vq(w0) = Vq(w1)
(iii) if φ(w) = 1, put Vq(w0) = Vq(w)·(1–q)/(1–p) and Vq(w1) = Vq(w)·q/p.
Then Vq is a Martingale with respect to µp, and one can show that Φ(x) ∉ LLN(p) iff for
some q, limsup Vq(x(n)) = ∞ (see Schnorr [88,78-82]). (For the definition of LLN(p),

n→∞

see 2.3.2.3.) So Martingales are indeed generalisations of place selections.
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2.  Likelihood ratios. Let  µ0, µ1 be probability measures on 2ω. Put V(w) = µ0[w]/µ1[w], then
V is called the likelihood ratio of µ0 and µ1 and V is a Martingale with respect to µ1:

µ1[w]

µ1[w0]
 ·  

µ1[w0]

µ0[w0]
  +  

µ1[w]

µ1[w1]
 ·  

µ1[w1]

µ0[w1]
  =  

µ1[w]

µ0[w]
.

Note that some of the Martingales V defined in 1. are also of this form: if the place selection
Φ is the identity, Vq(w) = µq[w]/µp[w]. In fact, any Martingale in the sense of definition 3.4.1

can be written in the form of a likelihood ratio: if V is a Martingale with respect to µ with
V(‹␣›) = 1, and if we define µ'[w] := V(w)·µ[w], them µ' determines a probability measure and
V is the likelihood ratio of µ' and µ.

In order to obtain a rich supply of recursive sequential tests, we now introduce some
computability considerations, in particular a weak notion of computability for measures.

3.4.4. Definition  A measure µ on is called subcomputable if the set

{<w,a> ∈ 2<ω ×  | µ[w] > a}
is ∑1. A Martingale V is called subcomputable if the set

{<w,a>  ∈ 2<ω ×  | V(w) > a  }
is ∑1.

These concepts are not very natural from the point of view of probability theory, but the
representation of recursive sequential tests in terms of Martingales will make clear why they
are useful. The following two lemmas can be found in Schnorr [88, 38-44], but, stripped of
their recursive content, they go back to Ville [99,87-93].

3.4.5 Lemma  Let V be a subcomputable Martingale with respect to some measure µ. Then
{x| ∀k∃nV(x(n)) > 2k } is a recursive sequential test with respect to µ.

Proof  By subcomputability, the set {x| ∀k∃nV(x(n)) > 2k } is ∏2. Without loss of generality
we may assume V(‹␣›) ≤1; then by lemma 3.4.2, µ{x| ∃nV(x(n)) > 2k } ≤ 2–k.  

3.4.6 Example  Likelihood ratios. Let µ0, µ1 be computable measures on such that µ1 is not
absolutely continuous with respect to  µ0. Then there exists a recursive sequential test N with
respect to µ0 such that µ1N > 0. Indeed, put N = {x| ∀k∃nV(x(n)) > 2k}, where V(w) =
µ1[w]/µ0[w]. By the preceding lemma, N is a recursive sequential test with respect to µ0. The
Lebesgue decomposition of µ1 with respect to µ0 can be written as
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µ1 = ∫lim
n→∞

V(x(n))dµ0(x)   +   1Ndµ1
,

so that if µ1 is not absolutely continuous with respect to µ0, then µ1N > 0.

We now prove a converse to lemma 3.4.5.

3.4.7 Lemma  Let N be a recursive sequential test with respect to some computable measure
µ. Then there exists a subcomputable Martingale V with respect to µ such that N ⊆ {x|
∀k∃nV(x(n)) > 2k}.

Proof  Write N = ∩nOn as in definition 3.2.1.2. Put V(w) := ∑nn·µ([w]∩On)·µ[w]–1. Then V

is a Martingale with respect to µ:

µ[w]
µ[w0]

 ·  V(w0) + 
µ[w]
µ[w1]

 ·  V(w1) =

µ[w]
µ[w0]∑

n

n·µ([w0]∩On)·µ[w0   +  
µ[w]

µ[w1]∑
n

n·µ([w1]∩On)·µ[w]–1 1]–1 =  V(w).

Furthermore, V(‹␣›) = ∑nn·µOn  ≤  ∑nn·2–n  < ∞. V is subcomputable since for any  set O in
∑1, {<w,a> ∈ 2<ω × | µ([w]∩O) > a} is itself ∑1.
Lastly, N ⊆ {x| ∀k∃nV(x(n)) > 2k}:

if x ∈ ∩nOn, then ∀n∃m≥n∀m'≥m (µ([x(m')]∩O) = µ[x(m')]), which implies

∀n∃m≥n∀m'≥m (V(x(m')) ≥ n) and this in turn implies lim V(x(n)) = ∞.                           
n→∞

The preceding lemmas may be combined to obtain a characterisation of random sequences
along the lines suggested by Ville, namely as sequences which do not admit a successful
gambling strategy (where the latter are taken to be Martingales):

3.4.8 Lemma  Let µ be a computable measure. Then x ∈ R(µ) iff for all subcomputable

Martingales V with respect to µ: limsup V(x(n)) < ∞. (Note that, as a consequence of
n→∞

the proof, the latter condition is in turn equivalent to: for all subcomputable Martingales V
with respect to µ: lim V(x(n)) < ∞.)

n→∞

We may now give a more precise discussion of Ville's objection, that not all gambling
strategies can be represented as place selections. Recall that Ville could construct x ∈ 2ω

which satisfy (where C( ) is the set of Church-random sequences defined in 2.5.1.7.):
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x ∈ C( ) and for all n, 
n
1∑

k=1

n

xk ≥ .

The second property is in contradiction with the law of the iterated logarithm. By the results in
section 3.3, the set of sequences not satsfying the law of the iterated logarithm (for the
measure λ) is a (total) recursive sequential test with respect to λ. The last lemma then
implies that for some Martingale V with respect to λ: lim(sup)n→∞ V(x(n)) = ∞. This

Martingale V cannot be obtained from a place selection (in contradistinction to the
Martingales Vq defined in example 3.4.3). Hence, to give a precise formulation of the

"principle of the excluded gambling strategy", one should define Kollektivs using Martingales,
not just place selections.
We do not think that this result is a problem for von Mises, who after all does not require that
there is no successful gambling strategy, of whatever kind, on a Kollektiv. Furthermore, Ville's
argument assumes without further ado that Martingales constitute a good formalisation of fair
games and indeed that the notion of fairness is itself clear and unproblematic. But that may not
be so.

We formulated fairness as follows: a game is fair if, for each n, the expected capital after the
n+1th trial is equal to the capital after the nth trial. But taking expectations requires some
probability measure; and which probability measure should one consider? Adopting the
standpoint of strict frequentism, one might be inclined to say that expectations have to be
computed with respect to the measures Pn on 2n, induced by Ville's Kollektiv x via
combination as explained in 2.4 (so that in this case the measures Pn are uniform distributions

on 2n). In other words, one might think that the pay-offs for a game on x should be determined
by the limiting relative frequencies in x. Ville's example shows that, when two people agree to
play a game according to this  concept of fairness, one of them may have a successful
gambling strategy on Kollektivs of the type constructed by Ville. What's more, in Chapter 4
we shall show that there exist product measures µ =
∏n(1–pn,pn) with µC( ) = 1, but µ{x| limsup V(x(n)) = ∞} = 1, for some computable

n→∞

Martingale V (for instance, one may take pn = (1 + (n+1)- )). Thus, the first tentative

"operational" definition of fairness apparently has to be rejected: although it applies for games
with fixed stakes (i.e. place selections), it is not applicable to games with variable stakes.
However, it does not seem to follow from the strict frequency interpretation that this is the
only way in which fairness can be defined.

The intuitive idea behind fairness seems to be that it makes sense to speak of "probability of
heads at the n toss". This notion of fairness is clear on the propensity interpretation (or perhaps
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one should say: not less clear than the propensity interpretation), so it is not surprising that
Ville has no qualms about fairness.  But, as we have seen in the previous chapter, from the
point of view of strict frequentism  one may speak of probabilities at specific coordinates only
with reference to Kollektivs ξ ∈ (2ω)ω. In particular, one must consider infinitely many

(infinite) runs of the mechanism that produces the Kollektivs (with which the game has to be
played) and then count the limiting relative frequencies in each coordinate; and these

probabilities must determine the pay-offs. Now with this definition, a Martingale with respect
to the uniform distribution would no longer be considered fair for a game played with
Kollektivs of Ville's type: if each ξk is of this type, then the probability of 1 at the nth

coordinate will be larger than .
In conclusion, we may say that Ville's argument is not relevant for the question how to define
Kollektivs, but rather for the examination of the probabilistic assumptions that go into the
intuitive notion of a fair game. For games with variable stakes, fairness seems to involve a
reference to probabilities at some specified coordinate. An adherent of the propensity
interpretation will have no difficulty recognizing such probabilities, but the strict frequentist
can only introduce them using a Kollektiv of Kollektivs. If for some reason or other his data
consist in only one Kollektiv x ∈ 2ω, in other words, if his data consist only in a distribution

over {0,1}, he cannot decide whether some proposed game is in fact fair. To some, the strict
frequentist conception of fairness may seem artificial; but this seeming unnaturalness serves to
confirm the impression that the instinctively adopted interpretation of probability is the
propensity interpretation. Interestingly, the only reference to Martingales that I could find in
von Mises' published works expresses his incomprehension:

Jusqu'ici je n'ai pu encore saisir l'idée essentielle qui serait à la base de la notion de
"martingale" et de toute la théorie de M. Ville. Mais je ne doute point que, une fois son livre
paru, on s'apercevra à quel point il aurait réussi à concilier les fondements classiques du
calcul des probabilités avec la notion moderne du collectif [72,67].

Needless to say, there are no technical obstacles to a treatment of Martingales in von Mises'
theory; as for the interpretation of the results obtained, we need not repeat here the
observations made in 2.4.3 à propos of the strong limit laws.

We now continue our discussion of the technical aspects of the relationship between
randomness and Martingales. In section 3.5 we need more detailed information on the
Martingale constructed in lemma 3.4.7. This construction has the following analytical
meaning:

3.4.9 Corollary  Let N be a recursive sequential test with respect to µ and let V be the
Martingale constructed in the proof of lemma 3.4.7. If we put µ'[w] := V(w)·µ[w], then µ' is
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absolutely continuous with respect to µ.

Proof  Put

f(x) := ∑
n

n·1On
(x)

then f is in L1(µ) and f is the density of µ' with respect to µ:

µ' [w] = ∑
n

n·µ([w]∩On) = ∫
[w]

fdµ.

If µ is Lebesgue measure, one can show that the distribution function of µ' has derivative
equal to +∞ at all points of N.                                                                                                

The parallel theory for total recursive sequential tests is considerably less smooth.

3.4.10 Definition  The Martingale V is computable if for some recursive function          g:
2<ω× ω → : ∀n∀w |V(w) – g(w,n)| < 2-n.

Inspecting the proof of lemma 3.4.7 we see that

3.4.11 Lemma  Let µ be a computable measure and let N be a total recursive sequential test
with respect to µ. Then there exists a computable Martingale V such that N is contained in
{x|∀k∃n V(x(n)) > 2k}.

Proof  Write N = ∩nOn as in definition 3.2.1.3 and define V as in lemma 3.4.7. It suffices to

show that the expression ∑nn·µ([w]∩On) is computable uniformly in w. Since n·µ([w]∩On) ≤
n·µOn and ∑nn·µOn is computable, this follows from lemma 3.2.3.1.      

In this case the converse, namely
If V is a computable Martingale with respect to a computable measure µ, then
N = {x|∀k∃n V(x(n)) > 2k} is a total recursive sequential test with respect to

µ,

causes some trouble. Obviously N, so defined, is a recursive sequential test; but we also need
to show that µ{x|∃n V(x(n)) > 2k} is computable (uniformly in k). The obvious way to do this,
is to use lemma 3.2.3.1 and first passage times: µ{x|∃n V(x(n)) > 2k} = ∑mµ{x|V(x(m–1)) ≤
2k < V(x(m))}; and one could hope that there is some recursive sequence of computable reals
(am) such that µ{x|V(x(m–1)) ≤ 2k < V(x(m))} ≤ am and ∑mam converges recursively.



84

However, it is impossible to choose such a sequence (am) independent of the Martingale under

consideration, since for each m, one may construct a Martingale V' such that µ{x|V'(x(m–1)) ≤
2k < V'(x(m))} = 2–k.. Hence, knowledge of the specific structure of the Martingale is
necessary. This is the reason why the Martingale convergence theorem in Bishop [5,225] has
to be proven under additional assumptions on the Martingales.

In order to circumvent this problem, Schnorr [88,70-7] proposed a different definition of the
total recursive sequential tests associated with computable Martingales.

3.4.12 Definition  Let f:  → + be a computable function, V a computable Martingale.

The set N = {x| limsup V(x(n))·f(n)–1 > 0} is called the nullset of order f associated to V.
n→∞

In other words, only those sequences are put into the nullset on which V can grow sufficiently
fast. With the help of the following lemma one may then show that N is indeed contained in a
total recursive sequential test.

3.4.13 Lemma  (Schnorr [88,72]) Let V be a computable Martingale. For any rational ε > 0,
one can construct a recursive Martingale V': 2<ω → + such that for all w, V'(w) ≥ V(w) and
V'(w) – V(w) ≤ ε.

3.4.14 Lemma  Let V be a computable Martingale with respect to µ and let be N as in
definition 3.4.12. Then N is contained in a total recursive sequential test with respect to µ.

Sketch of proof  The total recursive sequential test can be defined by

M = {x|∀k∃n (V'(x(n)) > 2k·V'(‹␣›) & V'(x(n)) > f(n))},

where V' is the Martingale constructed in the previous lemma. For a verification that M is
indeed a total recursive sequential test, see Schnorr [88,73]4.                                               

Although Schnorr claims that the concept of randomness itself suggests consideration of
Martingales together with order functions ( a sequence should be non-random only if we can
detect the non-randomness sufficiently fast [88,70]), we think that definition 3.4.12 is
interesting only in those cases in which it follows from the definition  of a Martingale V that it
must grow with speed f on some given nullset. Schnorr has established some results of this
kind (see chapter 10 of [88]). In other cases, Schnorr's way out seems to be adhoc.
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The considerations of this section therefore suggest a concept of randomness which might be
different from that of Schnorr.

3.4.15 Definition  Let µ be a computable measure. x is called Martingale-random with respect
to µ (notation: x ∈ RM(µ)) if for all computable Martingales V with respect to µ:

limsup V(x(n)) < ∞.
n→∞

By lemma 3.4.11, RM(µ) ⊆ Rw(µ); it is difficult to say whether we in fact have equality.

In  conclusion of this section we point out that tests of the form {x|∀k∃n V(x(n)) > 2k}, for

computable Martingales V,  share one of Schnorr's desiderata with total recursive sequential
tests: the existence of recursive sequences outside these sets (cf. corollary 3.2.3.7 and the
discussion which follows it).

3.4.16 Lemma  Let V be a computable Martingale. Then for some recursive x:
limsup V(x(n)) < ∞.
n→∞

Proof  Let V' be the Martingale constructed in lemma 3.4.13. Choose rational  δ > 0 and
define a recursive binary tree T by T := [w| V'(w) < V'(‹␣›) + δ}. For every w ∈ T, w0 ∈ T or
w1 ∈ T by the Martingale property, and we can decide which by the computability of V.

Consequently the leftmost infinite branch of T is recursive.                                           
3.5 Randomness via statistical tests

Originally, Martin-Löf [62] introduced the set of random sequences R(λ) as follows: a
sequence is random wirh respect to if λ it is not rejected at arbitrarily small levels of
significance by any (effective) statistical test for λ. Since this way of introducing randomness

raises some interesting problems of its own, we shall now give it a separate treatment. To do
so, we must first recall some elementary notions concerning statistical tests. As always, we
consider an experiment (or measurement) with two outcomes, 0 and 1.

3.5.1 Types of statistical tests  We want to test the hypothesis H0, that the probability of the
outcome 1 of an experiment equals p. We may divide tests of H0 into two classes:
(a) We may distinguish between tests of H0 which refer to some alternative hypothesis, the so-
called hypothesis tests, and significance tests, which reject H0 when an outcome sequence is
observed which has sufficiently low probability under the hypothesis H0, without

consideration of alternative hypotheses;



86

(b) We may also distinguish between tests which use a fixed sample size, i.e. tests where the
number of repetitions of the experiment is fixed before the execution of the experiment, and
tests which are sequential, where the data themselves decide how large the sample is to be.

We now proceed to a detailed description. Let us first assume that we have a fixed sample
size, say n; hence the set of possible outcomes, the sample space, is 2n. Under the hypothesis
H0 an outcome sequence w in 2n is assigned probability µp[w]5. In essence, a significance test
for the hypothesis H0 consists in a partition of the sample space 2n in disjoint pieces S0 and S1.
Observation of an outcome sequence w in S0 leads to rejection of H0. Observation of w in S1

does not  lead to rejection of H (in practice, this will mean that H1 is given the benefit of the
doubt). S0 is often called a critical region. The probability of S0 under H0, namely

∑
w∈S0

µ [w]p

is called the size of the test and can be interpreted as the relative frequency of unwarranted
rejections of H0 were this test to be executed very often. Obviously we want the size to be

small; how small depends on the importance we attach to the hypothesis.
Usually S0 and S1 are determined via a test statistic, a function t: 2<ω → + which can be seen

as a measure of the discrepancy between hypothesis and data. Accordingly, the critical region
S0 is of the form:

S0 = {w ∈ 2n | t(w) > a}
where a is adjusted so as to have, for some preassigned significance level  α,

∑
t(w)>a

µp[w] ≤ α.

How should we choose such test statistics? Obviously not every S0 of small probability can
reasonably be interpreted as a critical region for H0; e.g. for n = 1000 and p = , the set of

words in 2n with 500 ones has very small probability, but to take this set for our critical region
would be a silly choice indeed.
This line of reasoning shows that the choice of a test statistic is a delicate matter, and it is still
a subject of lively debate whether this choice can be effected at all without the consideration
of hypotheses alternative to H0. In the survey by Cox [18], the issue is stated as follows:

The central philosophical point concerns whether it is sensible to find evidence against a
hypothesis solely because an outcome of relatively low probability has occurred, and without
regard to possible alternative explanations. If the labelling of the sample points in the sample
space is totally arbitrary and no other information is available, there seems to be no option
but to use the absolute test [i.e. significance test in the sense defined above]; such situations
do, however, seem quite exceptional in applications [18,53].
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Cox' first question is answered with an emphatic no by the founding fathers of modern
statistical theory, Neyman and Pearson:

It is indeed obvious, upon a little consideration, that the mere fact that a particular sample
may be expected to occur very rarely in sampling from [a certain population] would not in
itself justify the rejection of the hypothesis that it had been so drawn [from that population],
if there were no other more probable hypothesis conceivable [78,4].

It is clear from Martin-Löf's statistical work [65;66] that he rejects this view (or perhaps one
should say that his concept of "alternative hypothesis" is much wider than that of Neyman and
Pearson); but let us first expound the view of Neyman and Pearson.

To eliminate the possibility of disastrous choices of the test statistic, Neyman and Pearson
propose to introduce the consideration of alternative hypotheses. In the simplest case, we have
only one alternative H1 to H0, where H1 states that the outcome 1 has  a different probability q
≠ p. A test for H1 against H0 is again specified by a partition (S0,S1) of 2n: S0 corresponds to
rejection of H0 (and acceptance of H1) and S1 corresponds to acceptance of H0  (and rejection
of H1).
In this case, there are two possibilities for wrong decisions: rejecting H0 when it is true (type I

error ; the probability of type I error is called the size of the test) and accepting H1 when it is

in fact false (type II error; 1 – the probability of type II error is called the power of the test) .
As in the case of a significance test, the probability of type I error is equal to

∑
w∈S0

µp[w].

But whereas it makes no sense to speak of type II error for a significance test, for lack of an
alternative hypothesis, we may compute the probability of type II error here as

∑
w∈S1

µq[w].

The interpretation of power is the same is that of size: it measures the performance of the test
were it used a large number of times.

The distinction between type I and type II errors allows us to discredit the test defined on p.
81, which rejects H0: p = , upon observation of an outcome sequence of length 1000 with 500

ones. Clearly, in this case, for any q ≠ ,

∑
w∈S1

µq[w]

is large; and it will be required of a good test that both types of errors are simultaneously small
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(they are of course not independent).

Call a test of H0 against H1 most powerful of level α if

∑
w∈S1

µq[w]

is as small as is compatible with

∑
w∈S0

µp [w] ≤ α.

In this particular situation, most powerful tests exist and can even be given explicitly; this is
the content of the

Neyman-Pearson Lemma6  For suitable constant c (depending on α, the sample size n as
well as on the hypotheses involved): if a partition  (S0,S1) of 2n is defined by

S0 = {w ∈ 2n| 
µp[w]

µq[w]
 > c},  S1 = 2n – S0,

then (S0,S1) is the most powerful level α test of H0 against H1.

The preceding exposition of significance tests and hypothesis tests proceeded on the
assumption of a fixed sample size. We now relax this assumption and generalize the
description to situations in which the sample size is not fixed beforehand. The following
description of sequential tests is borrowed from Wald [102,22].
An essential feature of the sequential test, as distinguished from the [fixed sample size test] is
that the number of observations required by the sequential test depends on the outcome of the
observations and is therefore not predetermined but a random variable. The sequential method
of testing a hypothesis H may be descibed as follows. A rule is given for making one of the
following decisions at any stage of the experiment (at the mth trial for each integral value of
m):
(1) to accept the hypothesis H
(2) to reject the hypothesis H
(3) to continue the experiment by making an additional observation.
Thus, such a test procedure is carried out sequentially. On the basis of the first observation,
one of the aforementioned three decisions is made. If the first or the second decision is made,
the process is terminated. If the third decision is made, a second trial is performed [...]. The
process is continued until either the first or the second decision is made. The number n of
observations required by such a test procedure is a random variable, since the value of n
depends on the outcome of the observations.
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Formally, a sequential test for hypothesis testing may be described as follows. We have  a test
statistic t: 2<ω → +and constants A,B such that
(1) if t(w) > A and for all v⊂w, B ≤␣t(v) ≤␣A, reject H0 (accept H1);
(2) if t(w) < B and for all v⊂w, B ≤ t(v) ≤ A, reject H1 (accept H0);
(3) if for all v⊆w, B ≤ t(v) ≤ A, go on testing.
If the measure µp corresponds to H0, and µq to H1, the probabilities of type I and type II errors

can be computed as follows:
    size  = µp{x| ∃n (t(x(n)) > A & ∀m<n (B ≤ t(x(m)) ≤ A))}
    1 – power = µq{x| ∃n (t(x(n)) < B & ∀m<n (B ≤ t(x(m)) ≤ A))}.

Obviously, we want both types of errors to be as small as possible. Again, for the simple
situation of testing one hypothesis against another, there is an optimum result: for given
significance level α, one can determine constants A and B such that the likelihood ratio test

defined by putting t(w):= µq[w]/µp[w] in the decision rules above, is the most powerful test of
significance level α.

In a  sequential significance test we are concerned with one hypothesis H0 only. In this case
the set-up is as follows: we have a test statistic t and a constant A such that H0 is rejected on

the basis of data w if t(w) > A; otherwise we go on testing. Of course A is adjusted so as to
achieve a prescribed significance level α.

The difficulties we pointed out for fixed sample size tests seem to be even more severe in the
sequential case. Not only does the choice of a test statistic present a problem in the absence of
an alternative hypothesis; but there seems to be no rational basis for a decision to give H0 the

benefit of the doubt, since there does not appear to be  a non-arbitrary way to determine a
constant B such t(w) < B entails the decision to stop testing.
So it seems that sequential significance tests are useful for rejecting hypotheses, rather than for
accepting them. This point should be borne in mind when we discuss Martin-Löf's definition
of randomness via statistical tests.

3.5.2 Effective statistical tests  It is now easy to view definition 3.2.1.2 as a formalisation of
sequential (significance and hypothesis) tests. Let µ be a computable measure on 2ω. µ need
not be of the form µp, since we also wish to study tests applicable in situations not involving

independent repetitions of the same experiment. We interpret µ as the nullhypothesis to be
tested. Typically, µ contains information about the underlying model (Markov chain,
independent repetitions) as well as about the parameters of the model. We are interested in
arbitrarily small levels of significance; we may take these levels to be of the form 2-k, k ∈ .
Now, in practice, a test statistic t: 2<ω→ + will be a computable function. This implies that
the set {x|∃n (t(x(n)) > A & ∀m<n (t(x(n)) ≤ A))} is ∑1 for suitable choices of A, namely for
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those computable A which do not occur in the range of t. As in section 3.3.3, we may
construct a recursive and dense (in +) set of such A's by iterated diagonalisation.
Clearly, if (Ak)k∈  is a recursive set of computable reals which do not occur in the range of t,

the set {x|∀k∃n (t(x(n)) > Ak & ∀m<n (t(x(m)) ≤ Ak))} is ∏2.

If the sequence (Ak) is such that µ{x|∃n (t(x(n)) > Ak & ∀m<n (t(x(m)) ≤ Ak))} ≤ 2-k, we have

arrived at a recursive sequential test with respect to µ. This, in a nutshell, is the statistical
motivation of definition 3.2.1.2. Note that the test statistics are subject only to restrictions of a
recursion theoretic nature.

3.5.3 Discussion  Seeing that every effective statistical test corresponds to a recursive
sequential test, we may now ask for a converse: does every recursive sequential test determine
an acceptable statistical test? To settle this question,we have to investigate the influence of the
reservations concerning  significance tests, expressed above, on the proposed definition of
randomness. In essence, these reservations come down to this: it is impossible to construct
good test statistics without consideration of alternative hypotheses. "Good" here means: the
test based on the statistic should not reject the hypothesis when it is intuitively true.
This danger can be avoided if we require that the critical region is in a sense minimal: only
reject the nullhypothesis on the basis of data w if w is more plausible on some other
hypothesis. In Lévy's words

Si donc en présence d'une suite remarquable nous excluons la première hypothèse [of the
random origin of the data] ce n'est pas que le hasard ait a priori moins de chance de la
produire qu'une autre; c'est qu'une cause autre que le hasard a plus de chance de la produire
[57,92 ].

Does the alternative hypothesis necessarily have to be of probabilistic origin, stating a
different value of a parameter, or perhaps a different model? In other words, should the
condition "if w is more plausible on some other hypothesis" be interpreted as "if w is more
probable on some other hypothesis"? The talk of chance in the above quotation strongly
suggests so and, as we have seen, this was certainly the view of Neyman and Pearson.

If this is indeed the case, we may be led to a notion of randomness which is likely to be
different from that of Martin-Löf (or Schnorr), depending upon the definition of "alternative
hypothesis" in this abstract setting. The function of the alternative hypothesis ν is to assign a

high probability to events to which µ assigns a low probability. If we take "high" and "low" in
an absolute sense, so that "high" means "close to 1" and "low" "close to 0", we may regard ν
as an alternative to µ if ν⊥µ.
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3.5.3.1 Definition  Let µ be a computable measure. Put

RH(µ) := {x | for all subcomputable measures ν: limsup
n→∞ µ[x(n)]

ν[x(n)]
 < ∞}.

3.5.3.2 Remark  RMH(µ) may be defined as RM(µ), except that we require the measures to be

computable. This is obviously the more natural concept, but in this case we have trivially R(µ)
⊂ RMH(µ), since, by lemma 3.4.16, the diagonalisation argument of Theorem 3.2.3.10 goes

through as well in this case. To guard oneself against a trivial solution of the problem, whether
a restriction to hypothesis tests enlarges the class of random sequences, one must therefore
allow the alternatives to µ to be subcomputable only. The subscript "H" refers to "hypothesis
testing"; RMH(µ) should be interpreted as "the analogue of RM(µ) (definition 3.4.15) when we
consider hypothesis tests only". For reasons expounded at length in section 3.4, Rw(µ)

probably has no analogue in this sense.

The following lemma shows that sequences in RH(µp) and RMH(µp) have some reasonable

randomness properties:

3.5.3.3 Lemma  If p ∈ (0,1) is a computable real, then RMH(µp) ⊆ LLN(p); moreover,
RMH(µp) is invariant under recursive place selections whose domain has full measure.

Proof  Consider for q ∈ (-1,1)∩  the Martingale V defined by

Vq(w) :=
µp[w]

µq[w]
 .

In chapter 10 of [88] Schnorr shows that Nq := {x| ∀k∃nVq(x(n)) > 2k} is a total recursive
sequential test with respect to µp and that x ∈ LLN(p)c iff for some q, x ∈ Nq. Obviously
µq⊥µp. If Φ is a recursive place selection whose domain has full measure, then µqΦ−1 = µq, so
µqΦ−1 is also singular with respect to µp. Now apply Schnorr's result with Φx instead of x.

By lemma 3.4.5, we have R(µ) ⊆ RH(µ) and it is likely that in fact R(µ) ⊂ RH(µ). To prove

equality, for each recursive sequential test N with respect to µ, one must be able to construct a
computable measure ν⊥µ, such that N is contained in

{x | limsup
n→∞ µ[x(n)]

ν[x(n)]
 = ∞}.

This is probably impossible; but in section 3.4 we showed that recursive sequential tests,
which were introduced by Martin-Löf as significance tests, can always be represented via a
likelihood ratio of measures ν and µ, if we allow that  ν be absolutely continuous with respect

to µ (lemma 3.4.7 and corollary 3.4.9). The meaning of the condition
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limsup
n→∞ µ[x(n)]

ν[x(n)]
 = ∞

for absolutely continuous ν with respect to µ, is that neighbourhoods of x have probabilities
under ν which are relatively much larger than their probabilities under µ; in an absolute sense,

however, both probabilities may be small. If this concept of alternative hypothesis is
reasonable, then so is Martin-Löf's definition of randomness (modulo the propensity
interpretation). We leave this question open.

3.6 Conclusion  Using recursion theory, Martin-Löf has provided a definition of (effective)
statistical test and of randomness of great generality. How good a definition of randomness
this is, depends, among else, on
– the interpretation of probability
– the interpretation of statistical tests.
We need not here repeat at length the remarks on the foundations of probability made in
Chapter 2 and in the introduction to this chapter. For the sake of argument, we shall assume
the propensity interpretation and the idea that randomness should be defined as satisfaction of
certain statistical laws; let us see how far Martin-Löf succeeds in formalizing this idea.

As regards the interpretation of statistical tests, the very generality of Martin-Löf's definition
presents a problem. There is a glaring contrast between the careful, piecemeal discussion of
statistical tests in the literature (see for instance Cox [18] and Barnett [3]) and Martin-Löf's
sweeping generalisation. It seems to me that there is no use in trying to establish once and for
all all properties of random sequences if we cannot survey this totality and if there are no
general arguments for the choice of a particular class of properties. In this case, these
arguments would have to be supplied by recursion theory. Now the prospects for such general
arguments look bleak: without too much effort we could devise several alternatives to the
definitions proposed by Martin-Löf and Schnorr.

If these general arguments do not exist, the use of recursion theory may be rather inessential
here. After the discovery of a statistical law which should be true of random sequences, we
may determine its recursion theoretic structure; but this structure seems to be rather accidental.
It is open to doubt whether there really exists such an intimate connection between
randomness and recursion theory. Martin-Löf and Schnorr never seem to question this
assumption. We saw in Chapter 2 that the only argument given in favour of such an intimate
connection, the identification of admissible and lawlike place selections, is defective and that
other concepts, such as entropy, seem to be more relevant. In general, hierarchies which have
proved to be useful and natural in recursion theory or mathematical logic, might be unnatural
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or even misleading elsewhere. But if that holds true in this case, a definition of randomness
should be founded on principles which are less formal and are more concerned with the
content of probabilistic laws than those of Martin-Löf.

Also, if more and more concrete examples pile up, there is no guarantee that they will always
fit in the straitjacket of definitions 3.2.1.2 and 3.2.1.3. Our remarks on the ergodic theorem (in
3.2.4) and on Martingales (in 3.4) provide cases in point. We don't have much sympathy either
for attempts, reviewed in 3.2.4, to fix an upper bound on the arithmetical complexity of
statistical tests which is so large that it is inconceivable that it will ever be attained; and even
if it were attained, we might have included too many properties, witness the discussion on
statistical tests.

We conclude that Martin-Löf's definition provides nothing in the way of a canonical choice of
properties of randomness. We shall therefore take definitions 3.2.1.2 and 3.2.1.3 with a grain
of salt and certainly not as the ultimate truth concerning randomness. If, in the sequel, we shall
nonetheless use these definitions, it is because they provide a convenient formalisation of a
view which is diametrically opposed to that of von Mises; and as such they will be
investigated in Chapter 4.

Notes to Chapter 3

1. For an argument to the effect that the ergodic theorem is not constructively valid, see
Bishop [5,233].
2. Schnorr's claim [88,37] that S can be chosen to be recursive is false; the universal recursive
sequential test provides a counterexample. This is a consequence of the following Lemma
Suppose the ∑1 set O ≠ 2ω can be written as the union of a recursive set of cylinders [w]. Then

there exists a recursive sequence in Oc.

Proof  Let O = ∪n[wn]. We may assume that the recursive set {wn | n ∈ } is sequential, i.e.

that every prolongation of some wn occurs among the wn. Oc is a non-empty ∏1 set, which is

given by a recursive binary tree T. Determine a recursive subtree T' of T by throwing out all
the wn. No infinite branch of T is lost in this process, since no infinite branch of T passes
through a wn. Now every word of T' is admissible in the sense of (the proof of) theorem
3.2.2.2: for if no infinite branch of T' passes through a word v, this means that every infinite
branch starting with v must belong to O; but then v must be one of the wn. Since the set of
admissible words of T' is recursive, the leftmost infinite branch of T' is recursive.
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Note that a ∑1 set may be the union of a recursive set of cylinders without having, say,

computable Lebesgue measure.
3. A sequence (an)n of computable reals converges recursively to a computable real a if there
exists a total recursive function g: ω → ω such that for all k,n: n≥g(k) implies |a – an| < 2-k.

This is the usual constructive definition of convergence couched in recursion theoretic
terminology.
4. Since Schnorr wants to consider only Martingales together with some function indicating
growth, he must show that every total recursive sequential test is contained in a set of the form
defined in 3.4.12. His Satz (9.5) [88,74] purports to establish this, but the proof contains a
mistake.
5. This is so by definition if we assume von Mises' concept of probability. Otherwise, we have
to add that the repetitions of the experiment are assumed to be independent.
6. We disregard subtleties having to do with randomization at the boundary to achieve the
exact significance level α.


