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6 Appendix:
Notation and definitions

6.1 Notations for sequences. 2ω is the set of infinite binary sequences. If x ∈ 2ω, then x(n) is
the intial segment of x of length n, and xn is the nth term (also called coordinate) of x. The
mapping T: 2ω → 2ω (called the left shift) is defined by (Tx)n = xn+1.  x is used consistently as
a variable over 2ω; ξ always denotes a variable over (2ω)ω.

2<ω is the set of all finite binary sequences. An finite binary sequence is alternatively called a
word or a string. The length of a word w is denoted  |w|. 2n is the set of all strings w such that
|w| = n. If m≤|w|, then w(m) is the initial segment of w of length m, and wm is the mth term of
w. If v is an initial segment of w, we write v⊆w; if v⊆w and v≠w, we write v⊂w. The empry

string is denoted <>.

6.2 Topology on 2ω. If B is a set, 1B denotes the characteristic function of B. Let 2 = {0,1}

have the discrete topology and form the product topology on 2ω. The open sets in this
topology are then  unions of  cylinders  [w] defined by [w] := {x ∈ 2ω| x(|w|) = w}. If S⊆2<ω,
then the open set generated by S, namely {x ∈ 2ω| ∃w∈S (x(|w|) = w)}, is denoted [S]. The
topology on spaces of the form  (2ω)m is constructed analogously.

For any subset A contained in 2ω, Cl(A) denotes the closure of A, and Int(A) the interior of A.
The boundary of A, denoted ∂A, is defined to be ∂A := Cl(A) – Int(A).
The Borel σ-algebra on 2ω is the smallest σ-algebra containing the open sets in 2ω. Elements

of this algebra are called Borel sets.

6.3 Measures on 2ω. A measure on the Borel σ-algebra is completely determined by its
values on the cylinders. We shall consider probability measures only, i.e. measures µ for
which µ(2ω) = 1. Now let (pn)n, where pn ∈ [0.1], be a sequence of reals. This sequence

determines a product measure on 2ω, denoted ∏
n

(1 – pn,pn) and defined as

∏
n

   

(1–pn,pn) [w] = ∏
k=1

|w|

pk,  where pk := pk if wk = 1 and pk := 1–pk otherwise.

One product measure on 2ω occurs so often that it is given a special name: λ = ( , )ω.

λ is the image of the Lebesgue measure on the unit interval under the natural map and will

also be called Lebesgue measure.
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The following relationships among probability measures µ and ν are of special importance.
- µ is singular with respect to ν (denoted: µ⊥ν) if there exists a Borel set A such that µΑ = 1
  and νΑ = 0.
- µ is absolutely continuous with respect to ν (denoted: µ<<ν) if for all Borel sets A such
  that νΑ = 0,   also µΑ = 0.
- µ and ν are equivalent (denoted: µ≈ν) if µ<<ν and ν<<µ.
Let (µn)n be a sequence of measures. We say that µn converges weakly to ν if for all Borel sets
A such that ν∂Α = 0, µnA converges to νA. The Portmanteau theorem [4] states (among else)
that weak convergence is equivalent to convergence on the cylinders. We say that µn

converges strongly to ν if for all Borel sets A, µnA converges to νΑ.

6.4 Computability We shall take as primitive the notion of an algorithm operating on natural
numbers, which yields as output natural numbers. It is understood that an algorithm need not
terminate on every input. A partial recursive function f: ω → ω is a function which can be

computed by an algorithm. With this intuitive description it is more or less clear that there
exists an effective procedure which associates to each partial recursive function a natural
number, its Gödelnumber. A recursive function  is a partial recursive function which is in fact
total. More formal definitions of (partial) recursive function and Gödelnumber are possible;
see Rogers [86] and Soare [92]. The connection between the informal concept of an algorithm
and the formal definition of a partial recursive function is provided by Church's Thesis, which
states that every algorithm computes a partial recursive function.
Usually one does not formally verify that an apparently recursive function is indeed recursive;
one exhibits an algorithm which computes the function and Church's Thesis is invoked to
guarantee that the function is in fact recursive. We shall do likewise. We must, however, warn
the reader that in constructing algorithms we freely use classical logic; as a consequence,
proving the existence of a recursive function need not mean that we can lay our hands on it.
Although we defined partial recursive functions to have the natural numbers as domain and
range, this restriction is not as severe as may seem, since many objects can be coded into the
natural numbers. In particular, this is true for and 2<ω. The following concepts thus make
sense. A function f: ω →  is called computable if there exists a recursive function g: ω×ω →

 such that for all n,k: |f(n) – g(n,k)| < 2–k. A measure µ on is computable if there exists a
recursive function g: 2<ω× ω → such that for all w, n: |µ[w] – g(w,n)| < 2-k

.
We shall often use the arithmetical hierarchy for subsets of ω and of 2ω. We say that A ⊆ ωk

is recursive if its characteristic function is a recursive function. Starting from the recursive
sets, we can define increasingly complex subsets of ωk using quantification over ω. A is
recursively enumerable  or ∑1 if there exists a recursive B ⊆ ωk+1 such that
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A = {u ∈ ωk | ∃n (<n,u> ∈ Β)}.

A is ∏1 if Ac is ∑1. In general, A is ∑n if there exists a B ⊆ ωk+1  such that B is ∏n-1 and

A = {u ∈ ωk | ∃n (<n,u> ∈ Β)};

A is ∏n if Ac is ∑n. Note that ∏n sets A can be written as

A = {u ∈ ωk | ∀n (<n,u> ∈ Β)},

for some ∑n-1 set B. A is called ∆n if it is both ∑n and ∏n. This is the arithmetical hierarchy
for subsets of ωk. (In the textbooks the ∑, ∏ and ∆ usually have superscripts "0", to indicate

quantification over natural numbers. Since we shall never quantify over sequences, we have
dropped the superscripts.)
We now generalize the concept of recursiveness to spaces of the form ωk×(2ω)m. Roughly, a
relation R ⊆ ω×2ω is recursive if for each natural number n and each x, the truth value of
R(n,x) can be computed using only a finite piece of x; similarly for relations in ωk×(2ω)m.
A subset A of ωk×(2ω)m is ∑1 if there exists a recursive relation B in ωk+1×(2ω)m such that

A = {< ,x> ∈ ωk× (n 2ω)m | ∃j B(j,n,x)}.

A ∏1 set is the complement of a ∑1 set. The reader can now copy the defintions of ∑n, ∏n and
∆n from the corresponding definitions for subsets of ωk.

We now specialize the preceding definition to the case that subsets of (2ω)m are defined using
recursive relations and quantification over natural numbers. Let A be of the form

A = {x ∈ (2ω)m | R(n,x)},

for some recursive relation R. It follows from the intuitive explanation of recursiveness and
the compactness of (2ω)m that A is of this form is A is clopen. The clopen sets will also be
called ∑0 sets. It is easily verified that ∑1 sets are open and that ∏1 sets are closed. The

converse is of course false, as a cardinality argument shows.

6.5 Ergodic Theory A measure µ on 2ω is called stationary if for all Borel sets A, µΤ−1Α =
µΑ, where T is the left shift defined in 7.1. A measure µ is ergodic if for all Borel sets A: T-1A
= A implies that µΑ is either 0 or 1. The single most important fact about stationary measures

is the
Ergodic theorem (see [82])  Let µ be a stationary measure on 2ω, f: 2ω → integrable. Then

f*(x)  =  lim
n→∞ n

1∑
k=1

n

f(Tkx)

exists µ-a.e., f* is T-invariant and ∫fdµ = ∫f*dµ. In addition, if µ is ergodic then f* is constant

µ-a.e.
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We say that a measure µ on 2ω  is strongly mixing if for all Borel sets A, B:   µ(T-nA ∩B)
converges to µA· µB.


