
CWI Tracts"

Managing Editors
J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkei (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)
P.C. Baayen (Amsterdam)
R.T. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Centrum voor Wlskunde en Intorrnatica
Centre for Mathematics and Computer Science
P.O. Box 4079. 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded
on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics.
computer science, and their applications. It is sponsored by the Dutch Government through
the Netherlands Organization for the Advancement ot Pure Research (Z.W.O.).

CWI Tract 19

Foundations and applications of
Montague grammar
Part 1: Philosophy, framework,
computer science
T.M.V.Janssen

J
Centrum voor Wiskunde en Informatica
Centre forMathematics and Computer Science

1980 Mathematics Subject Classification: O8A99.03G15. 68F05, 03B15, 68F20.
1982 CR Categories: F.3.2, I.2.7, F.3.1, F.3.0, F.4.3.
ISBN 90 6196 292 7

Copyright © 1986, Mathematisch Centrum. Amsterdam
Printed in the Netherlands

PREFACE

The present volume is one of the two tracts which are based on my

dissertation ‘Foundations and applications of Montague grammar‘. Volume 1
consists of the chapters 1,2,3 and 10 of that dissertation, and volume 2 of
the chapters 4-9. Only minor corrections are made in the text. I would like
to thank here again everyone who I acknowledged in my dissertation, in par
ticular my promotor P. van EmdeBoas, co-promotor R. Bartsch, and coreferent
J. van Benthem.For attending me on several (printing-)errors in mydisser
tation I thank Martin van de Berg, Cor Baayen, Biep Durieux, Joe Goguen,

Fred Landmanand Michael Moortgat, but in particular HermanHendriks, who
suggested hundreds of corrections. The illustrations are madeby Tobias
Baanders.

The two volumes present an interdisciplinary study between mathematics,
philosophy, computer science, logic and linguistics. Noknowledgeof speci
fic results in these fields is presupposed, although occasionally terminology
or results from them are mentioned. Throughout the text it is assumed that
the reader is acquainted with fundamentalprinciples of logic, in particu
lar of model theory, and that he is used to a mathematical kind of argumen
tation. The contents of the volumeshave a lineair structure: first the

approach is motivated, next the theory is developed, and finally it is ap
plied. Volume I contains an application to programming languages, whereas
volume 2 is devoted completely to the consequences of the approach for
natural languages.

The volumes deal with many facets of syntax and semantics, discussing
rather different kinds of subjects from this interdisciplinary field. They
range from abstract universal algebra to linguistic observations, from the
history of philosophy to formal language theory, and from idealized conr
puters to humanpsychology. Hence not all readers might be interested to
read everything. Readers only interested in applications to computer science
might restrict them selves to volume 1, but then they will miss manyargu
ments in volume 2 which are taken from computer science. Readers only in

terested in applications to natural language might read chapters 1-3 of
volume 1, and all of volume 2, but they will miss several remarks about the
connection between the study of the semantics of programming languages and

of the semantics of natural languages. Readers familiar with Montaguegramar,
and mainly interested in practical consequences of the approach, might read
chapters 1 and 2 in volume I and chapters 6-10 in volume 2, but they will

miss new arguments and results concerning many aspects of Montague grammar.

Each chapter starts with an abstract. Units like theorems etc. are
numbered (eg 2.3 Theorem). Such a unit ends where the next numbered unit
starts, or where the end of the unit is announced (2.3 end). References to
collected works are made by naming the first editor. Page numbers given in
the text refer to the reprint last mentionedin the list of references,
except in case of someof Frege's publications (when the reprint gives the
original numbering).

CONTENTS

II.

III.

The principle of compositionality of meaning
1.
2.

U1-I-‘L40

Anattractive principle
Frege and the principle
2.1. Introduction
2.2. Grundlagen
2.3. Sinn und Bedeutung
2.4. The principle
2.5. Conclusion

. Towards a formalization

. An algebraic framework

. Meanings
5.1. Introduction

.2. Natural language

.3. Programming Language

.4. Predicate Logic

.5. Strategy

.6. Substitutional Interpretation
U'|U'IU'IU'|U'|

. Motivation

The algebraic framework

\D®\lO‘\U‘I-I-\(.;Jl\)'-'

O

. Introduction
Algebras and subalgebras

. Algebras for syntax

. Polynomials

. Term algebras

. Homomorphisms

. A safe deriver

. Montague gramar

. Discussion

Intensional logic
1.

\lO‘\U'l-I-\L¢Jl’\7

Two facets
1.1. Introduction
1.2. Model-part I
1.3. Model-part II
1.4. Laws
1.5. Method

. Two-sorted type theory

. The interpretation of Ty2

. Properties of Ty2

. Intensional Logic

. Properties of IL

. Extension and intension

iii

\O®O'\U'lU'1l\J—'

11

17
28
28
29
29
30
34
34
35

41
42
43
50
56
61
67
75
81
90

95
96
96
96
98
98
99
100
103
106
113
117
123

IV

Appendix

Montaguegramar and programing languages
1. Assignment statements

1.1. Introduction
1.2. Simple assignments
1.3. Other assignments
Semantics of programs
2.1. Why?
2.2. How?

. Predicate transformers
3.1. Floyd's forward predicate transformer
3.2. Hoare's backward predicate transformer
3.3. Problems with Floyd's rule
3.4. Predicate transformers as meanings

. Semantical Considerations
4.1. The model
4.2. The logic
4.3. Theorems

. First fragment
5.]. The rules
5.2. Examples

. Pointers and arrays
6.1. Pointers
6.2. Arrays

. Second fragment
7.]. The rules
7.2. The postulates
7.3. A model

. Correctness and completeness
8.1. State transition semantics
8.2. Strongest postconditions
8.3. Completeness

. The backward approach
9.]. Problems with Hoare's rule
9.2. Backwardpredicate transformers
9.3. Weakest preconditions
9.4. Strongest and weakest
9.5. Correctness proof

10. Mutual relevance

Safe and polynomial
Index of names
References

127
128
128
129
13]
I33
133
I35
137
137
139
I39
141
144
144
148
150
152
152
154
156
156
158
161
16]
164
166
168
I68
169
172
176
176
177
178
179
182
185

189

193
I97

CHAPTER I

THE PRINCIPLE OF COMPOSITIONALITY OF MEANING

ABSTRACT .

This chapter deals with various aspects of the principle of composi
tionality of meaning. The role of the principle in the literature is inves
tigated, and the relation of the principle to-Frege's works is discussed. A
formalization of the principle is outlined, and several arguments are given
in support of this formalization.

1. AN ATTRACTIVE PRINCIPLE

The starting point of the investigations in this book is the principle
of compositionality of meaning. This principle says:

The meaning of a compoundexpression
is built up from the meaningsof its parts.

This is an attractive principle which pops up at a diversity of places in
the literature. The principle can be applied to a variety of languages:
natural, logical and programming languages. I would not know of a competing
principle. In this section the attractiveness of the principle will be il
lustrated by means of manyquotations.

In the philosophical literature the principle is well known,and gener
ally attributed to the mathematician and philosopher Gottlob Frege. Anex
ample is the following quotation. It gives a formulation of the principle
which is about the same as the formulation given above. THOMASON(l974,p.55)

says:
Sentences [..] such as 'Ihe square root of two is irrational’, and
’Twois even’, F,_] ought to be substitutable salva veritate_in all
contexts obeying Frege’s principle that the meaningof a phrase is a
function of the meaningsof its parts.

Another illustration of the fame of the principle is given by DAVIDSON
(1967, p.306):

If we want a theory that gives the meaning (as distinct from refer
ence) of each sentence, we must start with the meaning (as distinct
from reference) of the parts.

Next he says:

Up to here we have been following Frege’s footsteps; thanks to him the
path is well knownand even well worn.

Popper mentions a version of the principle which applies to whole theories
(POPPER 1976, p .22) :

[..] the meaningof a theory [..] is a function of the meaningsof the
words in which the theory is formulated.

Thereafter he says (ibid. p.22):
This view of the meaning of a theory seems almost obvious; it is wide
ly helafl and often unconsciously taken for granted.

(For completeness of information:there is, according to Popper, hardly any
truth in the principle). Concerningthe origin of the principle, Popper
remarks in a footnote (ibid. p.198):

Not even Gottlob Frege states it quite explicitly, though this doctrine
is certainly implicit in his 'Sinn und Bedeutung', and he even produces
there arguments in its support.

In the field of semantics of natural languages, the principle is found
implicitly in the works of Katz and Fodor concerning the treatment of se
mantics in transformational gramars. Anexplicit statement of the principle
is KATZ(1966, p.152):

The hypothesis on which we will base our model of the semantic compo
nent is that the process by which a speaker interprets each of the in
finitely manysentences is a compositional process in which the meaning
of any syntactically compoundconstituent of a sentence is obtained as
a function of the meaningsof the parts of the constituent.

Katz does not attribute the principle to Frege; his motivation is of a tech
nical nature (ibid. p.152):

Accordingly, we again face the task of formulating an hypothesis about
the nature of a finite mechanismwith an infinite output.
The principle is mentioned explicitly in important work on the seman

tics of natural languages by logicians, and it is related there with Frege.
Cresswell develops a mathematical framework for dealing with semantics, and
having presented his framework he says (CRESSWELL1973, p.19):

These rules reflect an important general principle which we shall dis
cuss later under the name 'Frege's principle’, that the meaningof the
whole sentence is a function of the meaningsof it parts.

For another logician, Montague, the principle seems to be a line of conduct
(MONTAGUE1970a, p.217):

Like Frege, we seek to do this [..] in such a way that [..] the as
signment to a compoundwill be a function of the entities assigned to
its components[..].
The principle is implicitly followed by all logic textbooks when they

define, for instance, the truth value of p_Ag_as a function of the truth
values of p_and of 3} In logic the enormous technical advantages of treat
ing semantics in accordance with the principle are demonstrated frequently.
For instance, one may use the power of induction: theorems with a semantic
content can be proven by using induction on the construction of the expres
sion under consideration. Logic textbooks usually do not say much about the
motivation for their approach or about the principles of logic. In any case,
I have not succeeded in finding a quotation in logic textbooks concerning
the background of their compositional approach. Therefore, here is one from
another source. In a remark concerning the work of Montague, Partee says

the following about the role of compositionality in logic (PARTEE1975,
p.203):

A central working premise of Montague’s theory [..] is that the syn
tactic rules that determine howa sentence is built up out of smaller
syntactic parts should correspond one—to-onewith the semantic rules
that tell how the meaning of a sentence is a function of the meanings

of its parts. This idea is not newin either linguistics or philosophy;
in philosophy it has its basis in the work of Frege, Tarski, and Carnap,
and it is standard in the treatment of formalized languages [..].

Since almost all semantic work in mathematical logic is based upon Tarski,
mathematical logic is indirectly based upon this principle of composition
ality of meaning.

In the field of semantics of programminglanguages compositionality is

implicit in most of the publications, but it is mentioned explicitly only by
few authors. In a standard work for the approach called 'denotational se
mantics‘, the author says (STOY1977, pp.12-13):

Wegive ’semantic valuation functions’ which mapsyntactic constructs
in the program to the abstract values (numbers, truth values, functions
etc.) which they denote. These valuation functions are usually recur
sively defined: the value denoted by a construct is specified in terms
of the values denoted by its syntactic subcomponents[..].

It becomesclear that this aspect is a basic principle of this approach
from a remark of Tennent in a discussion of some proposals concerning the
semantics of procedures. Tennent states about a certain proposal the fol
lowing (NEUHOLDl978,p.163).

Yourfirst two semantics are not 'denotational’ in the sense of Scott/
Strachey/Milner because the meaningof the procedure call construct is
not defined in terms of the meanings of its components; they are thus
partly operational in nature.

Milner explicitly mentions compositionality as basic principle (MELNER1975,
p.167):

If'we accept that any abstract semantics should give a way of composing
the meaningscy°parts into the meaningof the whole [..].

As motivation for this approach, he gives a very practical argument (ibid.
p.158):

lhe designer of a computing system should be able to think of his
system as a composite of behaviours, in order that he mayfactor his
design problem into smaller problems [..].

Mazurkiewicsmentions naturalness as a motivation for following the prin
ciple (MAZURKIEWICS1975, p.75).

One of the most natural methods of assigning meanings to programs is to
define the meaning of the whole program by the meanings of its constituents [..].
Weobserve that the principle arises in connection with semantics in

manyfields. In the philosophical literature the principle is almost always
attributed to Frege, whereas in the fields of programing and natural lan
guage semantics this is not the case. Authors in these fields give a prac
tical motivation for obeying the principle: one whishes to deal with an

infinity of possibilities in somereasonable, practical, understandable,
and (therefore) finite way.

2. FREGE AND THE PRINCIPLE

2.1. Introduction

In the previous section we observed that several philosophers attribute
the principle of compositionality to Frege. But it is not madeclear what
the relationship is of the principle to Frege, and especially on what grounds
the principle is attributed to him.

In his standard work on Frege, Dummettdevotes a chapter to ‘Some

theses of Frege on sense and reference’. The first thesis he considers is
(DUMTT 1973, p.152):

The sense of a complex is compoundedout of the senses of the consti
tuents.

Since sense is about the same as meaning (this will be explained later),
the thesis expresses the principle of compositionality of meaning. Unfor
tunately, Dumett does not relate this thesis to statements in the work of
Frege, so it remains unclear on what writings the claim is based that it is
a thesis of Frege. The authors quoted in the previous section who attribute
the principle to Frege, do not refer to his writings either.

In the previous section we met a remark by Popper stating that the
principle is not explicit in Frege's work, but that it is certainly impli
cit. The connection with Frege is, according to Cresswell, even looser. He
says (CRESSWELL1973, p.75):

For historical reasons we call this Frege's principle. This namemust
not be taken to imply that the principle is explicitly stated in Frege.

And in a footnote he adds to this:

The ascription to Frege is more a tribute to the general tenor of his
views on the analysis of language.
However, Creswell does not explain these remarks any further. So we

have to conclude that the literature gives no decisive answer to the ques
tion what the relationship is of the principle to Frege. I will try to
answer the question by considering Frege's publications and investigating
what he explicitly says about this subject.

2.2. Grundlagen

The study of Frege's publications brings us to the point of terminolo
gy. Frege has introduced somenotions associated with meaning, but his ter
minology is not the same in all his papers. Dummettsays about ‘Die Grund

lagen der Arithmetik' (FREGE1884) the following (DUMMETT1973, p.193):

WhenFrege wrote 'Grundlagen', he had not yet fbrmulated his distinc
tion betweensense and reference, and so it is quite possible that the
words 'Bedeutung' and 'bedeuten', as they occur in the various state
ments [..] have the more general senses of"meaning’ and 'mean' [..].
This means that in 'Grundlagen' we have to look for Frege's remarks

concerning the 'Bedeutung' of parts. He is quite decided on the role of
their Bedeutung (FREGE1884, p.XXII):

Als Grundsatze habe ioh in dieser Untersuchungfblgendb festgehalten:
[..] naoh der Bedeutung der horter muss in Satzzusammenhdnge,nicht
in ihrer Vereinzelunq qefraqt warden [..]

He also says (FREGE1884, p.73):

Nur im Zusammenhangeeines Satzes bedeuten die Worter etwas.

Remarkslike these ones arerepeated, heavily underlined, several times in
'Grundlagen' (e.g. on p.71 and p.116). The idea expressed by them is some
times called the principle of contextuality. Contextuality seems to be in
conflict with compositionality for the following reason. The principle of
compositionality requires that words in isolation have a meaning, since
otherwise there is nothing from which the meaning of a compoundexpression
can be built. A principle of contextuality would deny that words in isola
tion have a meaning.

Dumett discusses the remarks from 'Grundlagen', and he provides an
interpretation in which they are not in conflict with compositionality
(DUMTT 1973, pp.192-196). A summaryof his interpretation is as follows.

The statements express that it has no significance to consider first the
meaning of a word in isolation, and next someunrelated other question.
Speaking about the meaning of a word makes only significance as preparation
for considering the meaning of a sentence. The meaning of a word is deter
mined by the role it plays in the meaning of the sentence.

Following Dummett's interpretation, the remarks from Grundlagen have
not to be considered as being in conflict with the principle of composi
tionality. It is quite well possible to build the meaningof a sentence
from the meanings of its parts, and to base at the same time the judge
ments about the meanings of these parts on the role they play in the sen
tences in which they may occur. As a matter of fact, this approach is often

followed (for instance in the field of Montague grammar). In this way a

bridge is laid between compositionality and contextuality. But even with his
interpretation, the statements formulated in Grundlagen cannot be considered
as propagating compositionality: nothing is said about building meanings of
sentences from meanings of words.

Dumett's interpretation weakens the statements from 'Grundlagen' con
siderably. Unfortunately, Duett hardly explains on which grounds he thinks
that his interpretation coincides with Frege's intentions whenwriting
'Grundlagen'. He provides, for instance, no references to writings of Frege.
I tried to do so, but did not find passages supporting Dummett's opinion.
Dummettmakes the remark that statements like the ones from 'Grundlagen'

makeno subsequent appearence in Frege's works. This is probably correct
with respect to Frege's published works, but I found some statements which
are close to those 'Grundlagen' in Frege's correspondence and in his posthu
mouswritings. They do not express the whole context principle, but repeat
the relevant aspect: that expressions outside the context of a sentence have
no meaning. In a letter to E.V. Huntington, probably dating from 1902, Frege
says the following (GABRIEL1976, p.90).

Solche Zeichenverbindungenwie "a+b", "f(a,b)" bedbuten also nichts,
und haben ffir sich allein keinen Sinn [..]

In 'Einleitung in die Logik', dating from 1906, he says (HERMES1969,

p.204):
Durch Zerlegung der singularen Gedankenerhdlt manBestandteile der
abgeschlossenen und der ungesattigten Aft, die freilich abgesondert
nicht vorkommen.

In an earlier paper (from 1880), called 'Booles rechnende Logik und die
Begriffsschrift', he compares the situation with the behaviour of atoms
(HERMES1969, p.19).

Ich méchte dies mit dem Verhalten der Atome vergleichen, van dbnen man
annimmt, dass nie eins allein vorkommt,sondern nur in einer Verbin
dung mit andern, die as nur verldsst, umsofbrt in eine andere ein
zugehen.
The formulation of the statements from 'Grundlagen' is evidently in

conflict with the principle of compositionality. Fromour investigations it
appears that related remarks occur in other writings of Frege. This shows
that the formulation used in 'Grundlagen' is not just an accidental, and
maybeunfelicitous expression of his thoughts. For this reason, and for the
lack of evidence for Dummett's interpretation, I amnot convinced that
Frege's clear statements have to be understood in a weakenedway. I think
that they should be understood as they are formulated. Therefore I conclude

that in the days of 'Grundlagen' Frege probably would have rejected the
principle of compositionality, and, in any case, the formulation we use.

2.3. Sinn und Bedeutung

In 'Ueber Sinn und Bedeutung' (FREGE1892) the notions 'Sinn' and ‘Be

deutung' are introduced. Frege uses these two already existing Germanwords
to name two notions he wished to discriminate. The subtle differences in

the original meaning of these two words do not cover the different use Frege
makesof them. For instance, it is very difficult to account for their dif
ferences in meaning in a translation. Frege himself has been confronted with
these problems as appears from a letter to Peano (GABRIEL1976, p.196):

[..] Sie [..] sagen, dass zwei deutschen Wortern, die ich verschieden
gebrauche, dasselbe italienische nach den Wfirterbuchernentspreche.
Amndchsten scheint mir demWbrte 'Sinn' das italienische ’senso' und
demWbrte ’Bedeutung' das italienische 'significazione' zu kommen.

Concerning the terminology DUMTT (1973, p.84) gives the following infor
mation. The term ‘Bedeutung' has come to be conventionally translated as
'reference'. Since ‘Bedeutung' is simply the Germanword for ‘meaning’, one
cannot render ‘Bedeutung' as it occurs in Frege by ‘meaning’, without a
special warning. The word ‘reference’ does not belie Frege's intention,
though it gives it a muchmore explicit expression. Concerning 'Sinn', which
is always translated ‘sense’, Dumett says that to the sense of a word or
expression only those features of meaning belong which are relevant to the
truth-value of some sentence in which it may occur. Differences in meaning
which are not relevant in this way, are relegated by Frege to the 'tone'
of the word or expression. In this way Dumett has given an indication what
Frege intended with sense. It is not possible to be more precise about the
meaning of 'Sinn'. As van Heyenoort says (Van HEYENOORT1977, p.93):

As for the 'Sinn' Frege gives examples, but never presents a precise
definition. '

And Thiel states (THIEL 1965, p.165):

WhatFrege understood as the 'sense’ of an expression is a problem
that is so difficult that one generally weakensit to the question
of'when in Frege's semantics two expressions are identical in sense
(synonymous).

I will not try to give a definition; it suffices for our purposes to con
clude that the notion 'Sinn' is very close to the notion ‘meaning’. There
fore we have to investigate Frege's publications after 1892 to see what he
says about the compositionality of Sinn. Whathe says about compositionali
ty of ‘Bedeutung'is a different story (as illustration: he explicitly

rejected that in 1919 (HERMES1969, p.275), but this is not the case for
compositionality of ‘Sinn’, as will appear in the sequel).

In 'Ueber Sinn und Bedeutung', I found one remark concerning the rela
tion between the senses of parts and the sense of the whole sentence. Frege
discusses the question whether a sentence has a reference, and, as an ex
ample, he considers the sentence Odysseus wurde tief schlafend in Ithaka
ans Land gesetzt. Frege says that if someoneconsiders this sentence as true
or false, he assigns the name Odysseus a reference (Bedeutung). Next he
says (FREGE1892, p.33).

Nun ware aber das Vordringen bis zur Bedeutung des Namensiiberflilssig:
man kannte sick mit dem Sinne begnfigen, wenn man beim Gedanken stehen—
bleiben wollte. Kdmees nur auf den Sinn des Satzes, den Gedanken, an,
so ware es unnbtig sich umdie Bedeutung eines Satzteils zu kfimmern;
fflr den Sinn des Satzes kann ja nur der Sinn, nicht die Bedeutung
dieses Teils in Betracht kommen.

So Frege states that there is a connection between the sense of the whole
sentence, and the senses of the parts. He does, however, not say anything
about a compositional way of building the sense of the sentence. More in
particular, the quotation is neither in conflict with the compositionality
principle, nor with the statements from 'Grundlagen'.Therefore I agree with
BARTSCH(1978), who says that, in 'Ueber Sinn und Bedeutung', Frege does
not speak, as is often supposed, about the contribution of the senses of
parts to the senses of the compoundexpression.

2.4. The principle

Up till nowwe have not found any statement expressing the principle
of compositionality. But there are such fragments. The most impressive one
is from 'Logik in der Mathematik', an unpublished manuscript from 1914

(HERMES1969, p.243).

Die Leistungen der Sprache sind wunderbar. Mittels weniger Laute und
Lautverbindungen ist sie imstande, ungeheuer viele Gedankenauszudrfick—
en, und zwar auch solche, die noch nie vorher von einem Menschen gefhsst
und ausgedrfickt worden sind. Wbdurchweraen diese Leistungen maglich?
Dadurch, dass die Gedankenaus Gedankenbausteinen aufgebaut werden.
Unddiese Bausteine entsprechen Lautgruppen, aus denen der Satz aufge
baut wird, der den Gedhnkenausdrfickt, sodass demAufbau des Satzes
aus Satzteilen der Aufbau des Gedankensaus Gedhnkenteilen entspricht.
Undden Gedankenteil kann man den Sinn des entspreehendes Satzteils
nennen, so wie man den Gedanken als Sinn des Satzes aufassen wird.

This fragment expresses the compositionality principle. However, the frag
ment is not presented as a fragment expressing a basic principle. It is
used as argument in a discussion, and does not get any special attention.

The quotation from 'Logik in der Mathematik', presented above, is con
sidered very remarkable by the editors of Frege's posthumous works. They
have added the following footnote in which they call attention to other
statements of Frege which seem to conflict with the quotation in considera
tion (HERMES1969, p.243)

An anderen Stellen schrankt Frege diesen Gedanken—Atomismusallerdings
in demSinne ein, dass man sich die Gedanketeile nicht als van den Ge
danken, in denen sie vorkommen,unabhdngige Bausteine vorstellen durfe.

They give two references to such statements in Frege's posthumous writings
(i.e. the book they are editors of). One is from 'Booles rechnende Logik..'
(1880), the other from 'Einleitung in die Logik’ (1906). I have quoted these
fragments in the discussion of 'Grundlagen'. In this way the editors suggest
that the fragment from 'Logik in der Mathematik' is a slip of the pen, and
a rather incomplete formulation of Frege's opinion concerning these matters.

The fragment under discussion does, however, not stand on its own. Al
most the same fragment can be found in 'Gedankenffige' (FREGE1923). I present

the fragment here in its English translation from ‘Compoundthoughts‘ by
Geach and Stoothoff (p.55).

It is astonishing what language can do. Witha few syllables it can ex-Ipress an incalcu able numberof thoughts, so that even a thought grasped
byczterrestrial being for the very first time can be put into4afbrm of
words which will be understood by someone to whomthe thought is en
tirely new. This would be impossible, were we not able to distinguish
parts in the thought corresponding to the parts of a sentence, so that
the structure of the sentence serves as an image of the structure of
the thought.

Moreover, in a letter to Jourdain, written about 1914, Frege says (GABRIEL
1976, p.127):

Die Moglichkeit fur uns, Sdtze zu verstehen, die wir noch nie gehort
haben, beruht offenbar darauj; dass wir den Sinn eines Satzes aufbauen
aus Yeilen, die den Wortern entsprechen.
It is a remarkable fact that all quotations propagating compositionali

ty are written after 1910: 'Gedankenfuge' (1923), 'Logik in der Mathematik'
(1914), letter to Jourdain (1914). I have not succeeded in finding such
quotations in earlier papers. But the statements which seem to conflict
with compositionality are from an earlier period: 'Booles rechnende Logik
....'(I880), 'Grundlagen' (1884), letter to Huntington (1902), 'Einleitung
in die Logik‘ (1906). This shows that, say after 1910, Frege has written
about these matters in a completely different way than before. Fromthis I
conclude that his opinion concerning these matters changed. On the other
hand, Frege never put forward the idea of compositionality as a principle.

It was rather an argument, although an important one, in his discussions.
I would therefore not conclude to a break in his thoughts; rather it seems
me to be a shift in conception concerning a detail.

In the light of this change, the following information appears relevant.
In 1902 Frege received a letter from Russell in which the discovery was
mentioned of the famous contradiction in naive set theory, and, in parti
cular, in the theory of classes in Frege's 'Grundgesetze'. About the in
fluence of this discovery on Frege,Dummett says the following (DUMTT 1973,
p.657):

It thus seems highly probable that Frege camequickly to regard his
whole programmeof deriving arithmetic from logic as having failed.
Sucha supposition is not only probable in itself: it is in complete
harmonywith what we knowof his subsequent carreer. The fourth period
of his life maybe regarded as running from 1905 to 1913, and it was
almost entire ly unproductive .

For this reason I consider it as very likely that in this period Frege was
not concernedwith issues related to compositionality. Then it is under
standable that after this period he writes in a different way about the de
tail of compositionality (recall that it never was a principle, but just an
argument).

2.5. Conclusion

Myconclusions are as follows. Before 1910, and in any case especially
in the years when he wrote his most important and influential works, Frege
would probably have rejected the compositionality principle, in any case
the formulation we use nowadays. After 1910 his opinion appears to have

changed, and he would probably have accepted the principle, in any case the
basic idea expressed in it. However, Frege never put forward such an idea
as a basic principle, it is rather an argumentin his discussions. There
fore, calling the compositionality principle ‘Frege's principle’ is above
all, honouring his contributions to the study of semantics. But it is also
an expression of his final opinion on these matters.

3. TOWARDS A FORMALIZATION

In this section, I will give the motivation for a formalized version
of the compositionality principle. It is not mypurpose to formalize what
Frege or other authors might have intended to say when uttering something
like the principle. I rather take the principle in the given formulation

12

as a starting point and proceed along the following line; the (formalized
version of) the principle should have as muchcontent as possible. This
means that the principle should makeit possible to derive interesting con
sequences about those grammarswhich are in accordance with the principle,
and at the same time it should be sufficiently abstract and universal to be
applicable to a wide variety of languages. Fromthe formalization it must be
possible to obtain necessary and sufficient conditions for a grammarto be
in agreementwith the compositionality principle.

Consider a language L which is to be interpreted in some domain D of

meanings. The kind of objects D consists of depends on the language under
consideration, and the use one wishes to make of the semantics. In this sec
tion such aspects are left unspecified. Defining the semantics of a lan
guage consists in defining a suitable relation between expressions in L and

semantic objects in D. Then the compositionality principle says something
about the way in which this relation between L and D has to be defined
properly.

In the formulation of the principle given in section 1, we encounter
the phrase ‘its parts’. Clearly we should not allow the expressions of L to
be split in some randomway. In the light of the standard priority conven
tions, the expression y+8 is not to be considered as a part of the expres

sion 7.y + 8.x; so the meaning of 7.y + 8.x_does not have to be built up
from the meaning of y + 8, It would also be pointless to try to build the
meaning of some compoundexpression directly from the meanings of its atomic
symbols (the terminal symbols of the alphabet used to represent the lan
guage). Since distinct expressions consist of distinct strings of symbols,
there is always some dependence of the meanings of the basic symbols. Con
sequently such an interpretation would trivialize the principle. Another
trivialization results by taking all expressions of the language to be
‘basic’, and interpreting themindividually. Theprinciple is interesting
only in case the 'parts' are not trivial parts. Traditionally, the true de
composition of an expression into parts is described in the syntax for the
language. Thus a language, the semantics of which is defined in accordance
with the principle, should have a syntax which clearly expresses what the
parts of the compoundexpressions are.

Let the language L, together with the set of expressions we wish to

consider as parts, be denoted by E. In order to give the principle a non
trivial content, we assume that the syntax of the language consists of
rules of the following form:

If one has expressions E
pression Sj(E],...,En).

Here S. is someoperation on expressions, and Sj(El,...,En) denotes the re

],...,En then one can build the compoundex

sult of application of S. to the arguments E .,En. If the rules have the1,..
above format, we define the notion ‘parts of‘ as follows.

If expression E is built by a rule S. from arguments E ,...,En, then
the parts of E are the expressions E],...,E I

n.
It often is the case that a rule does not apply to all expressions in

E, and that certain groups of expressions behave the same in this respect.
Therefore the set of expressions is divided into subsets. The names of these
subsets are called types or sorts in logic, categories in linguistics, and
types or modes in programming languages. Often the name of a set and the
set itself are identified and I will follow this practice. Instead of speak
ing about elements of the subset of a certain type, I will speak about the
elements of a certain type, etc. The use of names for subsets allows us to
specify in each rule from which category its arguments have to be taken,
and to which category the resulting expression belongs. Thus, a syntactic
rule S. has the following form:

If one has expressions E1,...,En of the categories C],...,Cn respec
tively, then one can form the expression Sj(E1,...,En) of categoryI

Anequivalent formulation is:

Rule S. isczfunction_from 'C1X...xCn to Cn+];J
i.e. 8.: C x ... x C + C .

J 1 n n+1

Suppose that a certain rule Si is defined as follows:
Si: C] X C2 + C3, where Si(El,E2) = EIEZ.

This means that Si concatenates its arguments. Then our interpretation of
the principle says that the meaning of E has to be built up from theIE2

meanings of E] and E2. A case like this constitutes the most elementary
version of the principle. A compoundexpression is divided into real sub
expressions, and the meaning of the compoundexpression is built up from
the meanings of these subexpressions. In such a case the formalization
coincides with the simplest, most intuitive conception of the principle:
parts are visible as parts. But in somesituations one might wish to con
sider as part an expression which is not visible as a part. Wewill meet
several examples in later chapters. One example is the phenomenonof dis
continuous constituents. The phrase take away is not a subphrase of take
the apple away; it is not visible as a part. Nevertheless, one might here

14

wish to consider it as a unit which contributes to the meaning of take the

apple away, i.e. as a part in the sense of the principle. The above defini
tion of ‘part’ gives the possibility to do so. If the phrase take the apple
away is produced by means of a rule which takes as arguments the phrases

the apple and take away, then take away is indeed a part in the sense of the
definition. Thedefinition generalizes the principle for rules which are
not just a concatenation operation, and consequently the parts need not be
visible in the expression itself.

There are no restrictions on the possible effect of the rules S.. They
mayconcatenate, insert, permute, delete, or alter (sub)expressions of their
arguments in an arbitrary way. A rule may even introduce symbols which do

not occur in its arguments. Such symbols are called syncategorematic sym
bols, These are not considered as parts of the resulting expression in the
sense of the principle, and therefore they do not contribute a meaning from
which the meaning of the compound can be formed. I will assume in general

that the rules are total (i.e. they are defined for all expressions of the
required categories). In chapter 6 partial rules will be discussed.

The abstraction just illustrated implies that we have lost the most in
tuitive conception of the principle. But it is not unlikely that several
authors whomention Frege's principle only have the most intuitive version
in mind. In order to avoid confusion, I will call the more abstract version
not ‘Frege's principle‘, but ‘the compositionality principle‘. As for the
simple rules, where only concatenation is used, our interpretation of the
principle coincides with the most intuitive interpretation. In more complex
cases, where it might not be intuitively clear what the parts are, our in
terpretation can be applied as well. If one wishes to stick to the most in
tuitive interpretation of the principle, one must use only concatenation
rules. In that wayone would restrict considerably the applicability of
gramars satisfying the framework(see chapter 2, section 5).

So far we have not considered the possibility of ambiguities. It is

not excluded that some expression E can be obtained both as E = Si(EI,...,En)

and as E = Sj(E;,...,E&?. In practice such ambiguities frequently arise. In
a programminglanguage (e.g. in Algol 68), the procedure identifier randbm
can be used to denote the process of randomly selecting a number, as well as
to denote the number thus obtained. The information needed to decide which

interpretation is intended, is present in the production tree of the program,
where the expression random is either of type ‘real’ or not. In natural
languages ambiguities arise even amongexpressions of the same category.

15

Consider for instance the sentence John runs or walks and talks. Its meaning

depends on whether talks is combinedwith walks, or with runs or walks. Al
so here, the information needed to solve the ambiguity is hidden in the pro
duction tree. In the light of such ambiguities, we cannot speak in general
of the meaning of some expression, but only of its meaning with respect to
a certain derivational history. If wewant to apply the compositionality
principle to some language with ambiguities, we should not apply it to the
language itself, but to the corresponding language of derivational histories.

In computerscience it is generally accepted that the derivational
histories form the real input for the semantical interpretation. SCHWARTZ
(1972, p.2) states:

we have sufficient confidence in our understanding of syntactic analysis
to be willing to make the outcome of syntactic analysis, namely the syn
tax tree representation of the proqram,into a standard starting point
for our thinking on program semantics. Therefore we may take the se
mantic problem to be that of associating a value [..] with each ab
stract program,i.e. parse tree.

In the field of semantics of natural languages, it is also commonpractice
not to take the expressions of the language themselves as input to the se
mantical interpretation, but structured versions of them. KATZ&FODOR
(1963, p.503) write:

Fig. 6 shows the input to a semantic theory to be a sentence S together
with a structural description consisting of the n derivations of S,
d1,d2,...,dn, one for each of the n ways that S is grammatically ambi
guous.

The book of Katz and Fodor is one of the early publications about the posi
tion of semantics in transformational gramars. There has been a lot of
discussion in that field concerning the part of the derivational history
which mayactually be used for the semantic interpretation. In the so-called
'standard theory’ only a small part of the information is used: the ‘deep
structure’. In the ‘extended standard theory‘, one also uses the informa
tion which ‘transformations’ are applied, and what the final outcome, the
?surface structure’, is. In the most recent proposals, the view on syntax
and its relation with semantics is rather different.

As a matter of fact, neither Schwartz, nor Katz and Fodor use the same

(semantic) frameworkwe have. They are quoted here to illustrate that the
idea of using information from the derivational history as input to the
semantic component is not unusual.

Let us now turn to the phrase 'composed from the meanings of its

parts’. Consider again a rule Si which allows us to form the compound

16

expression Si(E],...,En) from the expressions E ,...,En. Assumemoreover1

that the meanings of the E are the semantical objects D According to thek.
principle, the informationkwe are allowed to use for building the meaning of
the compoundexpression consists in the meanings of the parts of the expres
sion and the information which rule was applied. As usual, ‘rule’ is inten
ded to take into account the order of its arguments. So the meaning of a

compoundexpression is determined by an n-tuple of meanings (of its parts)
and the information of the identity of the rule. This is in fact the only
information which may be used. If one would be allowed to use other informa

tion (e.g. syntactic information concerning the parts), the principle would
not express the whole truth, and not provide a sufficient condition. Thus
the principle would tend to become a hollow phrase.

As argued for above, I interpret the compositionality principle as
stating that the meaning of a compoundexpression is determined completely
by the meanings of its parts and the information which syntactic rule is
used. This means that for each syntactic rule there is a function on meanings
which yields the meaning of a compoundexpression when it is applied to the
meanings of the parts of that expression. So for each syntactic rule there
is a corresponding semantic operation. Such a correspondence is not unusual;
it can be found everywhere in mathematics and computer science. If one en
counters for instance a definition of the style 'the function f*g is defined
by performing the following calculations using f and g...', then one sees
in factzasyntactic andzasemantic rule. The syntactic rule introduces the
operator * between functions and states that the result is again a function,
whereas the semantic rule tells us how the function should be evaluated

If we use the freedom allowed by the principle at most, we may asso

ciate with each syntactic rule Si a distinct semantic operation Ti. So the
most general description of the situation is as follows. The meaning of an

expression formed by application of Si to (E],...,En) can be obtained by

application of operator Ti to (Dl,...,Dn), where D. is the meaningof Ej.
These semantic operators Ti maybe partially defined functionscmlthe set 2
of meanings, since Ti has to be defined only for those tuples from_Qwhich

may arise as argument of Ti. These are those tuples which can arise as
meanings of arguments of the syntactic rule Si which corresponds with Ti.
In this way the set §_leaves a trace in the set 2, The set of meanings of
the expressions of some category forms a subset of 2_which becomes the set

of possible arguments for some semantic rule. Thus the domain_Qobtains a
structure which is closely related to the structure of the syntactic domain

E, Our formalization of the compositionality principle mayat this stage be
sumarized as follows.

Let S.: C x...x C + C be a syntactic rule, and M: E + D be a func
tion bhicé assignsna megningto an expression with given derivational
history. Then there is a function T.: M(C]) x...x M(Cn)+ M(Cn+l) such
that M(Si(E],...,En))=Ti(M(E]),...,l7I(En)).
In the process of formalizing the principle of compositionality we have

now obtained a special framework. The form of the syntactic rules and the
use of sorts give the syntax the structure of, what is called, a ‘many
sorted algebra‘. The correspondence between syntax and semantics implicates
that the semantic domain is a many-sorted algebra of the same kind as the
syntactic algebra. The meaning assignment is not based upon the syntactic
algebra itself, but on the associated algebra of derivational histories. The
principle of compositionality requires that meaning assignment is a homo
morphismfrom that algebra to the semantic algebra. Note that the principle,
which is formulated as a principle for semantics, has important consequences
not only for the semantics, but also for the syntax.

The approach described here, is closely related to the frameworkdevel
oped by the logician Richard Montaguefor the treatment of syntax and se
mantics of natural languages (MONTAGUE1970b). It is also closely related
to the approach propagated by the group called 'Adj' for the treatment of
syntax and semantics of programming languages (ADJ 1977, 1979). Consequent

ly frameworks related to the one described here can be found in the publi
cations of authors following Adj (for references see ADJ 1979), or follow
ing Montague (for references see DOWTY,WALL& PETERS 198], or the present

book). The conclusion that the principle of compositionality requires an
algebraic approach is also given by MAZURKIEWICS(1975) and MILNER(1975),

without, however, developing some framework. The observation that there is

a close relationship between the frameworks of Adj and Montague, was in

dependently made by MARKUSZ& SZOTS (1981), ANDREKA& SAIN (1981), and

Van EMDE BOAS & JANSSEN (1979).

4. AN ALGEBRAIC FRAMWORK

In this section I will develop the frameworksketched in section 3, and
arguments concerning the practical use of the frameworkwill influence this
further development. The mathematical theory of the frameworkwill be in
vestigated in chapter 2.

The central notions in our formalization of the principle of

18

compositionality are ‘many-sorted algebra‘ and ‘homomorphism’.An algebra
consists of someset (the elements of the algebra» and a set of operations
defined on those elements. A many-sorted algebra is a generalization of this.
It consists of a non-emptyset S of sorts (types, modes, or categories), for

each sort s e S a set As of elements of that sort (AS is called the carrier

of sort s), and a collection (FY)Y€ of operations which are mappings fromF

Cartesian products of specified carriers to a specified carrier. So in order
to determine a many-sorted algebra, one has to determine a ‘sorted’ family
of sets and a collection of operators. This should explain the following
definition.

4.1. DEFINITION.A many-sorted algebra A is a pair <(AS)S€S,§}, where
I. S is a non-empty set, its elements are called the sorts of A.

2. ASis a set (for each seS), the carrier of sort s.
3. §_is a collection of operators defined on certain n-tuples of sets AS,

where n>O.

4.1. END.

Structures of this kind have been defined by several authors, using differ
ent names; the name ‘many-sorted algebra‘ is borrowed from ADJ(I977). Notice
that in the above definition there are hardly any restrictions on the sets
and operators. The carriers maybe non-disjunct, the operators mayperform
any action, and the sets involved (except for S) may be empty.

In order to illustrate the notion 'nany~sorted algebra‘, I will pre
sent three examples in an informal way. I assume that these examples are
familiar, and I will, therefore, not describe themin detail. Themain in
terest of these examples is that they illustrate the notion of a many-sorted
algebra. The examples are of a divergent nature, thus illustrating the
generality of this notion.

4.2. EXAMLE:Real numbers.

Let us consider the set of real numbers as consisting of two sorts.

Neg and P03. The carrier RNegof sort.Neg consists of the negative real
numbers, the carrier RPOSof sort Pos of the positive real numbers, zero
included. An example of an operation is sqrt: RPOS+ RPOS,where sqrt yields

the square root of a positive number. For Rneg there is no corresponding
operation. Since we consider (in this example) the real numbers as a two
sorted algebra, there are two operations for squaring a number. One for

squaring a positive number (sqpos: R S + RPOS)and one for squaring aP0

19

negative number (sqneg: RNeg+ RPOS). Since these two operation: are close
ly related, we may use the same symbol for both operations: () .

4.3. EXAMLE:Mbnadic Predicate Logic

Sorts are Atom, Pred and Form. The carrier AAtomof sort Atom consists

of the symbols a1,aZ,... and the carrier APred of the sort Pred consists of
the predicate letters Pl,P2,.. . The carrier AFormconsists of formulas
like P1(al), 1Pl(a]), and £H(a2)VP2(a3). Twoexamples of operators are as
follows.

1. The operation Apl: Apred X AAtom+ AForm. Apl assigns to predicate P and
atom 3 the formula where P is applied to a; viz. P(a).

2. The operation Disj: AFormx AF0rm+ AForm. Disj assigns totwo formulas ¢
and w their disjunction ¢ V w.

Notice that (in the present algebraization) the brackets (,); andthedisjunc
tion symbol V are syncategorematic symbols.

4.4. EXAMTLE:English

Examples of sorts are Sentence, Verb phrase, and Nounphrase. The car
rier of sort Sentence consists of the analysis trees of English sentences,
and the carriers of other sorts of trees for expressions of other sorts.
An example of an operator is T Sentence + Sentence. The operator TNe ° Ne

assigns to an analysis tree of afi English sentence the analysis tree of Ehe
negated version of that sentence. Anexplicit and complete description of
this algebra I cannot provide. This example is mentioned to illustrate that
complex objects like trees can be elements of an algebra.
4.4. END.

As explained in the previous section, we do not assign meanings to the
elements of the syntactic algebra itself, but to the derivational histories
associated with that algebra. These derivational histories form an algebra:

if expressions E] and E2 can be combined to expression E3, then the deri
vational histories of El and E2 can be combinedto a derivational history
of E3. So the derivational histories constitute a (many-sorted) set in
which certain operations are defined. Hence it is an algebra. The nature
of the operations of this algebra will becomeevident whenwe consider be
lowrepresentations of derivational histories.

Supposethat a certain derivational history consists of first an ap
plication of operator S to basic expressions E and E and of next an

1 1 2’

20

application of S2 to E3 and the result of the first step. A description
like this of a derivational history is not suited to be used in practice
(e.g. because of its verbosity). Therefore formal representations for deri
vational histories will be used (certain trees or certain mathematical ex
pressions).

In Montaguegrammarone usually finds trees as representation of a de
rivational history. Thehistory described above is represented in figure I.
Variants of such trees are used as well. Often the names of the rules are

not mentioned (e.g. S S2),-but their indices (viz. 1,2). Sometimesthe rule,19

or its index is not mentioned, but the category of the resulting expression.
Even the resulting expressions are sometimes left out, especially when the
rules are concatenation rules (figure 2). The relation between the repre
sentations of derivational histories and the expressions of the languages
is obvious. In figure 1 one has to take the expression labelling the root
of the tree, and in figure 2 one has to perform the mentioned operations.
(For this kind of trees, it usually amounts to a concatenation of the ex
pressions mentionedat the leaves (i.e. end-nodes)).

w[S2] S2/\ /\
¢[si] E3 //S1 E3/\ / \

E1 E2 E1 E2

Figure 1. Representation of~a Figure 2. Another representation
deriva:iona1'history of the samederivational

history

Analternative representation originates from the field of algebra.
Derivational histories are represented by a compoundexpressions, consisting
of basic expressions, symbols for the operators, and brackets. The deriva
tional history from figure 1 is represented by the expression:

S2(S](E1,E2),E3).
Such expressions are called terms. The algebra of terms corresponding with

algebra A is called the term algebra TA. From a term one obtaines an ex
pression of the actual language by evaluating the term, i.e. by applica
tion of the operators (corresponding with the operator symbols) to the men

tioned arguments. The sorts of the term algebra TAare identical to the sorts
of A, the operators are concatenation operators on terms. Note that all these

21

different representations mathematically are equivalent.
MONTAGUE(l970b) introduced the name ‘disambiguated language’ for the

algebra of derivational histories. The relation between the disambiguated
language and the language under consideration (he calls it R) is completely
arbitrary in his approach. The only information he provides is that it is a
binary relation with domain included in the disambiguated language (MONTAGUE

1970b, p.226). Froman algebraic viewpoint this arbitrariness is very un
natural, and therefore I restrict this relation in the waydescribed above
(evaluating the term, or taking the expression mentioned at the root). This
is a restriction on the framework, but not on the class of languages that
can be described by the framework (see chapter 2).

The tree representations are the most suggestive representations, and
they are most suitable to show complexderivational histories. The term
representations take less space and are suitable for simple histories and
in theoretical discussions. In the first chapters I will mainly use terms,
in later chapters trees. According to the frameworkwe have to speak about
the meaningof an expression relative to a derivational history. In prac
tice one often is sloppy and speaks about the meaning of an expression
(when the history is clear from the context, or when there is only one).

After this description of the notion of a many-sorted algebra, I will
introduce the other central notion in our formalization of the principle of
compositionality: the notion 'homomorphism'. It is a special kind of mapping
between algebras, and therefore first mappingsare introduced.

4.5. DEFINITION.By a mapping m from an algebra A to an algebra B is under

stood a mapping from the carriers of A to the carriers of B. Thus:

m: U A + U BS.
seSA seSB

4.5. END.

A mapping is called a homomorphismif it respects the structures of the al
gebras involved. This is only possible if the two algebras have a similar
structure. By this is understood that there is a one-one correspondence be
tween the sorts in the one algebra and in the other algebra, and between
the operators in the one algebra and in the other algebra. The latter means
that if an operator is defined for certain sorts in the one algebra, then
the corresponding operator is defined for the corresponding sorts in the
other algebra. This should describe the essential aspects of the technical

22

notion of ‘similarity’ of two algebras; a formal definition will be given
in chapter 2. Then the definition of a homomorphismgiven below, will be
adapted accordingly, and the slight differences with the definitions in the
literature (Montague,Adj) will be discussed.

4.6. DEFINITION.Let A_= <(AS)S€S,§? and B = <(Bt)tET,§} be similar algebras.
A mapping h from A to B is called a homomorphismif the following two con
ditions are satisfied

1. h respects the sorts, i.e. h(AS) C Bt, where t is the sort of B which
corresponds to sort s of A.

2. h respects the operators, i.e. h(F(a1,...,an)) = G(h(a]),...,h(an)) where
G E §_is the operator of B which corresponds to F e E3

4.6. END

Nowthat the notions of a many sorted algebra and of a homomorphism

are introduced, I will present two detailed examples.

4.7. EXAMPLE:Fragment of English.

Syntactic Algebra

The syntactic algebra E consists of someEnglish words and sentences

I. Sorts

SF = {Sent,Subj,Verb}
II. Carriers

Esubj = {John,Mury,Bill}
Everb = {runs,talks}
Esent = {John runs, Maryruns, Bill runs, John talks, Mary talks, Bill

talks}
III. Operations

C: E E
Subj X EVerb —’ Sent

defined by C(a,B) = a8

So C(John, runs) is obtained by concatenating John and runs, thus
yielding John runs.

Semantic Algebra

The semantic Algebra Mconsists of model-theoretic entities, such as
truth values and functions.

23

I. Sorts

SM= {e,t,<e,t>}
So there are three sorts: two sorts being simple symbols (e ~ entity,
t ~ truthvalue), and the compoundsymbol <e,t> (function from e to t).

II. Carriers

Mt = {ggggggglig} The carrier Mt consists of two elements, the truth
values 5333 and EEEEE.

Me= {e],e2,e3} The set Meconsists of three elements: e],e2 and e3.

M<e,t> = (Mt) The carrier M<e,t> consists of all functions from
Me to Mt. This set has 8 elements.

III. Operations
There is one operation in M: the operation F of function application.

F: Me x M<e,t> + Mt,
where F(a,B) is the result of application of B to argument a.

The algebras E and Mare similar. The correspondence of sorts is
Subj ~ e, Verb ~ <e,t>, Sent ~ t, and operation C corresponds to F. Although

the algebras E and Mare similar, they are not the same. For instance, the

number of elements in Everb differs from the nuber of elements in E<e’t>.
There are a lot of homorphismsfrom TE (the derivational histories in

E), to M. An example is as follows.

Let h be defined by

h(J0hn) = el, h(BiZZ) = e2, h(Mhry) = e3

h(runs) is the function f] which has value 5533 for all e 6 Me
h(taZks) is the function f which has value false for all e 6 Me

Furthermore we define h for thezcompound terms.

h(C(John,runs)) = h(C(Mary,runs)) = h(C(BiZZ,runs)) = true
h(C(J0hn,taZks)) = h(C(Mury,taZks)) = h(C(BiZZ,taZks)) = false

The function h, thus defined, is a homomorphismbecause

1' h(TE,Subj) C Me’ h(TE,Verb) C M<e,t>’ h(TE,sent) C ME

2. h(C(a,B)) = F(h(a),h(B)) for all subjects a and verbs B.

It is easy to define other homomorphismsfronVTFto M. Notice that once

h 1S defined for TE,Subj and for TE,Verb,
the definition of h for TE Sent (provided that we want h to be a homo

5

then there is no choice left for

morphism).

24

4.8. EXAMPLE:Number denotations

Syntactic Algebra

II.

III.

The algebra Den of natural number denotations is defined as follows
Sorts

SDen = {digit,num}
Carriers

Ddigit = {0,1,2,3,4,5,6,7,8,9}
Dnum= {0,1,2,3,...10,11,...01,02,..010,..001,..007,.....}
So Dnumis the set of all number denotations, including denotations

Notice that D . c D. . ,

with leading zero s. digit num°
Operators
There is one operation.

C: Diumx Ddigit I Dnum
where C is defined by C(a,B) = a8.

So C concatenates a numberwith a digit.

Semantic Algebra

II.

III.

A natural homomorphism h from T

The algebra Nat of natural numbers is defined as follows
Sorts

Carriers

Nd consists
Nn consists

of the natural numbers up to nine (zero and nine included)
of all natural numbers.

Operations
There is one

F: N X Nn

operation:

d + Nn

where F is defined as multiplication of the element from Nn by ten,
followed by addition of the element from Nd.

Den to Wat is the mapping which associates
with the derivational history of a digit or numberdenotation the correspond
ing number. Then h(C(0,7)) and h(7) are both mapped onto the number seven.
That this h is a homomorphismfollows from the fact that F describes the
semantic effect of C, e.g. h(C(2,7)) = F(h(2),h(7)).
4.8. END

25

Syntax is an algebra, semantics is an algebra, and meaning assignment
is a homomorphism;that is the aim of our enterprise. But muchwork has to

be done in order to proceed in this way. Consider the two examples given
above. The carriers were defined by specifying all their elements, the ho
momorphismswere defined by specifying the image of each element, and the

operations in the semantic algebra were described by means of full English
sentences. For larger, more complicated algebras this approach will be very
impractical. Therefore a lot of technical tools will have to be introduced
before we can deal with an interesting fragment of natural language or pro
graming language. Consider again the first example (i.e. 4.7). The semantic
operation corresponding to the concatenation of a Subj and a Verb was de
scribed as the application of the function corresponding to the verb to the
element corresponding to the subject. Onewould like to use standard nota
tion from logic and write something like Verb(Subj). Thus one is tempted to
use some already knownlanguage in order to describe a semantic operation.
This is precisely the method we will employ. If we wish to define the

meaning of some fragment of a natural language, or of a programing language,
we will not describe the semantic operations in the meta-language (for in
stance a mathematical dialect of English), but use some formal language, the
meaning of which has already been defined somehow: we will use some formal

or logical language. Thus the meaning of an expression is defined in two
steps: by translating first, and next interpreting, see figure 3.

Natural or Programming Language?

J translation

LLogical or Formal Language I

1 interpretation

LMeaningsfor the natural or programing language

Figure 3 Meaning assignment in two steps.

Figure 3 illustrates that the semantics of the fragment of English is
defined in a process with two stages. But is this approach in accordance
with our algebraic aim? Is the mapping from the term algebra corresponding

26

with the syntax of English to the algebra of meanings indeed a homomorphism?
The answer is that we have to obey certain restrictions, in order to be sure
that the two-stage process indeed determines a homomorphism.The translation
should be a homomorphismfrom the term algebra for English to the logical

language and the interpretation of the logical language should be a homo
morphism as well. Then, as is expressed in the theorem below, the composi

tion of these two mappings is a homomorphism.

4.9. THEOREM.Let A,B, and C be similar algebras, and h: A + B and g: B + C

homomorphisms. Define the mapping hog: A + C by (h°g)(a) = g(h(a)). Then

hog is a homomorphism.

@
I. (hog)(AS) c g(h(AS)) C g(Bs,) C CS", where s' and s" are the sorts in B

and C corresponding with s.

2. Let GY, HYbe the operators in B and C corresponding with FY. Then

(h°g)(FY(a],.--,an)) = g(h(FY(a].-...an))) = g(G (h(a1) ,...,b(an))) =
= HY(g_(h(a1),...,g(h(an))) = HY<<hog)(a1) ,...,(h°g)(an))

4.9. END.

The semantical language does not always contain basic operators which
correspond to the operators in the syntax. In the example concerning natu
ral numberdenotations there is no basic arithmetical operator which cor
responds to the syntactic operation of concatenation with a digit. I de
scribed the semantic operator by means of the phrase ‘multiplication of the

element from NHwith ten; followed by an addition with the element of Na.
One is tempted to indicate this operation not with this compoundphrase,
but with something like '10 X number + digit‘. One wishes to use a compound

expression from the language of arithmetic for the semantic operation which
corresponds to the concatenation operation, i.e. to build newoperations
from old ones.

The situation I have just described, is the one which almost always
arises in practice. Onewishes to define the semantics of some language.
The set of semantic objects has some 'natural' structure of its own, and
a 'natural' semantical language which reflects this structure. So this
'natural' semantical language has not the same algebraic structure as the
language for which we wish to describe the semantics. Therefore we use the

semantical language (usually somekind of formal or logical language) to
build a new algebra, called a derived algebra. Wemake new operations by

27

forming compoundexpressions which correspond with the syntactic operations
of the language for which we wish to describe the semantics. This situation
is presented in figure 4; the closed arrows denote mappings, the dotted ar
rows indicate the construction of a new algebra by means of the introduction
of new operations (built from old ones).

Syntactic Term-algebra of the lan
guage under consideration

I translation homomorphism

Syntactic algebra of Derived syntactic algebra of the
logical language —-—--_+ adapted logical language

1 interpretation homo- 1 interpretation homomormorphism phism

Meanings for logical Derived meanings for logical lan
language _-__-_+ guage (and for language under con

sideration)

Figure 4. Meaning assignment using derived algebras

In this way, we have derived a new syntactic algebra from the syntac
tic algebra of the logical language. The syntactic algebra of which we wish
to define the semantics is translated into this derived algebra. Nowthe
question arises whether this approach is in accordance with our aim of de
fining somehomomorphismfrom the syntactic algebra to the collection of
meanings. The theorem that will be mentioned below guarantees that under
certain conditions this is the case. The interpretation of the logical lan
guage has to be a homomorphism, and the method by which we obtain the de

rived algebra is restricted to the introduction of newoperators by compo
sition of old operators. Such operators are called polynomials; for a for
mal description see chapter 2. If these conditions are satisfied, then the
interpretation homomorphismfor the logical language is also an interpre
tation homomorphismof the derived algebra (whenrestricted to this algebra).
Composition of this interpretation homomorphismwith the translation homo
morphism gives the desired homomorphismfrom the language under considera

tion to its meanings. The theorem is based upon MONTAGUE(1970b), for its

proof see chapter 2.

28

4.10. THEOREM.Let A and B be similar algebras and h: A + B a homomorphism

onto B. Let A‘ be an algebra obtained from A by means of introduction of
polynomially defined operators over A.
,Then there is a unique algebra B‘ such that h is a homomorphismfrom A‘ on
to B‘.
4.10. END

Finally I wish to make some remarks about the translation into some
logical language. As I explained when introducing this intermediate step,
it is used as a tool for defining the homomorphismfrom the syntactic al
gebra to the semantic one. If we would appreciate complicated definitions in

the meta language, we might omit the level of a translation. It plays no es
sential role in the system, it is there for convenience only. If convenient,
we may replace a translation by another translation which gets the same in
terpretation. Wemight even use another logical language. So in a Montague
grammar there is nothing which deserves the name of the logical form of an
expression. The obtained translation is just one representation of a seman
tical object, and might freely be interchanged with someother representa
tion. KEENAN& FALTZ(1978), in criticizing the logical form obtained in a

Montague grammar, criticize a notion which does not exist in Montague gram
mar.

5. MEANINGS

5.1. Introduction

In this section some consequences are considered of the requirement of
a homomorphicmapping from the syntactic term algebra to the semantic al
gebra. These consequences are considered for three kinds of language: na
tural languages, programminglanguages and logical languages. It will ap
pear that the requirement of associating a single meaningwith each expres
sion of the language helps us, in all three cases, to find a suitable for
malization of the notion of meaning. Furthermore, an example will be con
sidered of an approach where the requirement of a homomorphicrelation be
tween syntax and semantics is not obeyed.

29

5.2. Natural Language

Consider the phrase the queen of Holland, and assume that it is used
to denote someperson (and not an institution). Whichperson is denoted, de
pends on the momentof time one is speaking about. This information can

usually be derived from the linguistic context in which the expression oc
curs. In

(1) The queen of Holland is married to Prince Claus.
QueenBeatrix is meant, since she is the present queen. But in
(2) In 1910 the queen of Holland was married to Prince Hendrik.
Queen Wilhelmina is meant, since she was the queen in the year mentioned.

So one is tempted to say that the meaning of the phrase the queen of Holland
varies with the time one is speaking about. Such an opinion is, however,
not in accordance with our algebraic (compositional) framework. The approach
which leads to a single meaning for the phrase under discussion is to in
corporate the source of variation into the notion of meaning. In this way
we arrive at the conception that the meaning of the phrase the queen of
Holland is a function from momentsof time to persons. For other expressions
(and probably also for this one) there are more factors of influence (place
of utterance, speaker,..). Suchfactors are called indices; a function with
the indices as domain is called an intension. So the meaning of an expres
sion is formalized by an intension: our frameworkleads to an intensional
conception of meaning for natural language. For a more detailed discussion
concerning this conception, see LEWIS1970. A logical language for dealing
with intensions is the language of ‘intensional logic’. This language will
be considered in detail in chapter 3.

5.3. Programing Language

Consider the expression m+]. This kind of expressions occurs in almost
every programming language. It is used to denote some number. Which number

is denoted depends on the internal situation in the computer at the moment
of consideration. For instance, in case the internal situation of the com
puter associates with x the value seven, then x+1 denotes the numbereight.
So one is tempted to say that the meaning of x+1 varies. But this is not
in accordance with the framework. As in example 1, the conflict is resolved
by incorporating the source of variation into the notion of meaning. As
the meaning of an expression like x+1 we take a function from computer

states to numbers. On the basis of this conception a compositional treatment

30

can be given of meanings of computer languages (See chapter 10). States of
the computer can be considered as an example of an index, so also in this
case we use an intensional approach to meaning. In the publications of Adj
a related conception of the meaning of such expressions is given, although
without calling it an intension (see e.g. ADJ1977, 1979).

Interesting in the light of the present approach is a discussion in
PRATT1979. Pratt discusses two notions of meaning: a static notion (an ex

pression obtains once and for all a meaning), and a dynamic notion (the
meaning of an expression varies). He argues that (what he takes as) a static
notion of meaning has no practical purpose because we frequently use expres
pression obtains once and for all a meaning), and a dynamic notion (the
of time. Therefore he develops a special logic for the treatment of seman
tics of programminglanguages, called ‘dynamic logic‘. But on the basis of
our framework, we have to take a ‘static’ notion of meaning. By means of
intensions we can incorporate all dynamics into such a framework. Pratt's
dynamicmeanings might be considered as a non-static version of intensional
logic.

5.4. Predicate logic

It is probably not imediately clear howpredicate logic fits into the
algebraic framework. PRATT(l979,p.55) even says that ‘there is no function
F such that the meaning of Vxp can be specified with a constraint of the
form u(Vxp) = F(u(p))'. In our algebraic approach we have to provide for
such a meaning function u and operator F.

Let us consider the standard (Tarskian) way of interpreting logic. It
roughly proceeds as follows. Let @be a model and g be an @-assignment. The

interpretation in @of a formula ¢ with respect to g, denoted ¢g, is then
recursively defined. One clause of this definition is as follows (here 1
denotes the truth value for truth).

[¢A Mg is 1, if (pg is 1 and 4:3 is 1.

This suggest that the meaning of ¢ A w is a truth value, which is obtained
out of the truth values for ¢ and for w. Another clause of the standard way
of interpretation is not compatible with this idea.

[3x¢(x)]g is l,if there is a g' ; g such that [¢(x)]g' is 1.
(Here g' ; g means that g‘ is the same assignment as g except for the
possible difference that g'(x) # g(x)).

This clause shows that the concept of meaning being a truth value is too
simple for our algebraic framework. One cannot obtain the truth value of

31

3x¢(x) (for a certain value of g) out of the truth value of ¢(x) (for the
same g). If we wish to treat predicate logic in our framework, we have to
find a more sophisticated notion of meaning for it.

Note that there is not a single truth value in the semantic domainwhich
corresponds with ¢(x). Its interpretation depends on the interpretation of
x, and in general on the interpretation of the free variables in ¢, and
therefore on g. In analogy with the previous examples, we incorporate the
variable assignment into the conception of meaning. The meaning of a formula
is a function from variable assignments to truthvalues, namely the function
which yields 1 for an assignment in case the expression is true for that
assignment. With this conception, we can easily build the meaning of ¢ A w
out of the meaning of ¢ and of w: a function which yields 1 for an assign

ment iff both the meanings of ¢ and of w yield 1 for that assignment. The
formulation becomes simpler by adopting a different view of the same si
tuation. A function from assignments to truthvalues can be considered as
the characteristic function of a set of assignments. Using this, we may
formulate an alternative definition: the meaningof a formula is a set of
variable assignments (namely those for which the formula gets the truth
value 1). Let Mdenote the meaning assignment function. Then we have:

M(¢/W) = M(¢) 0 MW)

For the other connectives there are related set theoretical operations.
Thus this part of the semantic domain gets the structure of a Boolean al
gebra.

For quantified formulas we have the following formulation.

M(3x¢) = {h I h ; g and g 6 M(¢)}.

Let Cx denote the semantical operation described at the right hand side of
the = sign, i.e. Cx is the operation ‘extend the set of assignments with all
x variants‘. The syntactic operation of writing 3x in front of a formula

nowhas a semantic interpretation: namely apply Cx to the meaning of ¢.
M(3x¢) = M(ax)(M(¢))= CXM(¢).

In this algebraization there are infinitely manyoperations which introduce
the existential quantifier. Onemight wish to go one step further and pro
duce 3x from 3 and x. This would require that given the meaning of a vari
able (being a function from assignments to values) we are able to deter
mine of which variable it is a meaning. This is not an attractive algebraic
operation, and therefore this last step is not made. I conclude that we have
obtained a compositional interpretation of predicate logic: a homomorphism
to some semantic algebra. One might say that it shows how we have to look

32

at the Tarskian interpretation of logic in order to give it a compositional
perspective.

The View on the semantics of predicate logic presented here is not new.

Somelogic books are based on this approach in which the meaning of a quan
tified formula is a set of assignments (MONK1976, p.196, KREISEL&

KRIVINE1976, p.17). The investigations on the algebraic structure of pre
dicate logic constitute a special branch of logic: the theory of cylindric
algebras. It requires a shift of terminology to see that the kinds of struc
tures studied there is the same as those introduced here. An assignment can
be considered as an infinite tuple of elements in the model: the first ele
ment of the tuple is the value for the first variable, etcetera. Thus an
assignment-can be considered as a point in an infinite dimensional space.
So if ¢ holds for a set of assignments, then ¢ is interpreted as the set of

corresponding points in this universe. The operator Cx applied to a point p
causes that all points are added which differ from p only in their x-coor
dinate. Geometrically speaking, a single point extends to an infinite stick.

If Cx is applied to a set consisting of a circle area, then this is extended
to a cylinder. Becauseof this effect, Cx is called a cylindrification oper
ator, and in particular, the x-th cylindrification. (see fig.5) Thealge
braic structure obtained in connection with predicate logic is called a
cylindric set-algebra. These algebras and their connection with logic are
studied in the theory of cylindric algebras (see HENKIN,MONK& TARSKI1971).

The original motivation for studying cylindric algebras was a technical
one. Cylindric algebras were introduced to make the application of the power
ful tools of algebra possible in studying logics, as can be read in HENKIN,
MONKa. TARSKI (1971, p.l):

This theorg [..] was originally designed to provide an apparatus for
an algebraic study of first order, predicate logic.

Newin the above discussion was the motivation which led us towards cylin

dric algebras. In myopinion, the compositional approach gives rise to a
more direct introduction to this field than the existing one. Moreover, on
the basis of the approach given above, it is not too difficult to find al
gebras for other order logics, such as intensional logic.

It cannot be said that the theory of cylindric algebras itself is a
flourishing branch of logic nowadays. But the use of algebra is widespread
in model theory (i.e. the branch of logic which deals with interpretations).
Often one uses the terminology and techniques from universal algebra, as is

evidenced by the amount of universal algebra in ‘Model theory‘ by CHANG&

33

KEISLER(1973), and by the amount of model theory in ‘Universal algebra’ by

GRAETZER(1968). Results from one field are proven using methods from the
other field in Van BENTHEM(1979b). Algebraic interpretations of several non

classical logics are given by RASIOWA(1974). Important results concerning
modal logics are obtained, using algebraic techniques, by Blok (e.g. BLOK
1980).

{gl[3x3¢]8=true}

{g|¢8=true}

Figure 5. A cylindrification

The present discussion should not be understood as claiming that the
only legitimate way of studying (predicate) logic is by means of (cylindric)
algebras. There are a lot of topics concerning logic that can be studied,
and each has a natural viewpoint. For instance, if one is studying deduc
tion systems, a syntactic point of view is the natural approach. One should
take that view which is the best for one's current aims. What I claim is

that, if one is studying semantics, then there has to be an algebraic

34

interpretation existing in the background, and one should take care that
this interpretation is not violated by what one is doing.

5.5. Strategy

In all three examples discussed above, we followed the strategy of
first investigating what a meaning should do, and then defining such an en
tity as the formalized notion of meaning which does that and which satis
fies the compositionality principle. In all examples such an entity was ob
tained by giving the notion of meaninga sufficient degree of abstraction.
By proceeding in this way (first investigating, then defining) we follow
the advice of LEWIS(1970,p.5)

In order to say what a meaning i§,we mayfirst ask what a meaning does
and then find something that dbes that.

5.6. Substitutional Interpretation

Next I will discuss an approach to the semantics of predicate logic
which is not compositional with respect to the interpretation of quanti
fiers. For the interpretation of 3x[¢(x)] an alternative has been proposed
whichis called the ‘substitutional interpretation‘. It says:

3x ¢(x) is true iff there is somesubstitution a for x such that ¢(a)
is true.

Whetherthis definition is semantically equivalent to the Tarskian defini
tion depends, of course, on whether the logical language contains a name
for every element of the semantic domain or not. A definition like the

above one can be found in two rather divergent branches of logic: in philo
sophical logic, and in proof theory.

In philosphical Zogic the substitutional interpretation has been put
forward by R. Marcus (e.g. MARCUS1962). Her motivation was of an ontologi
cal nature. Consider sentence (3).
(3) Pegasus is a winged horse.
According to standard logic, (4) is a consequence of (3), and Marcus ac
cepts this consequence.
(4) 3x(x is a winged horse).
She argues, however, that one might believe (3), without believing (5).
(5) There exists at least one thing which is a winged horse.
This opinion has as a consequence that the quantification used in (4) can
not be considered as an existential quantification in the ontological sense.
The substitutional interpretation of quantifiers allows her to have (4) as

35

a consequence of (3), without being forced to accept (5) as a consequence.
KRIPKE(1976) discusses this approach in a more formal way. As syntax

for the logic he gives the traditional syntax: 3x¢(x) is produced from ¢(x)
by placing Bx in front of it. According to such a grammar¢(a).certainly is
not a part of 3x¢(x). This meansthat the substitution interpretation is
not a compositional interpretation (this was noticed by Tarski, as appears
from a footnote in PARTEE(l973,p.74)).

In proof theory the substitutional interpretation is given e.g. in
SCHUETTE1977. In his syntax he constructs Vx¢(x) from ¢(a), where a is ar

bitrary. So the formula Vx¢(x) is syntactically rather ambiguous: It has as

manyderivations as there are expressions of the form ¢(a). Given one such
production, it is impossible to define the interpretation of VX¢(X)on the
basis of the interpretation of the formula ¢(a) from which VX¢(X)was built
in the parse under consideration. It maybe the case that Vx¢(x) is false,
and ¢(a) is true for some a, but false for another one. So we see that the
truth value of Vx¢(x) cannot depend on the truth value of ¢(a) for any single

a. Hencein this case the substitutional interpretation does not satisfy the
compositionality principle.

If one wishes to define the semantics in a compositional way, and to
follow at the sametime the substitutional interpretation of quantifiers,
then the syntax has to contain an infinitistic rule which says that all ex
pressions of the form ¢(a) are part of Vx¢(X). Such an infinitistic rule
has not been proposed by authors which follow the substitutional interpre
tation.

6 . MOTIVATION

In this section I will give several arguents for accepting the com
positionality principle and the formalization given for it. I will give
three kinds of arguments. The first kind is very general and argues for
working within some mathematically defined framework. The second kind of

arguments lists benefits of working with the present framework, and is
based upon the properties of the framework. The third kind concerns the
principle itself. As a matter of fact, this entire book is intended as a
support for the algebraic formalization of the compositionality principle,
and many of the arguments will be worked out in the remainder of this book.

Regarding the first kind of arguments: it is very useful to work with

36

in some mathematically well defined framework. Such a standard framework

gives rise to a language in which one can formulate observations, relations
and generalizations. It is a point of departure for formulating extensions,
restrictions and deviations. If one has no standard framework, then when
ever one considers a new proposal, one has to start anew in obtaining in
tuitions concerning properties of the system, and to check whether old
knowledgestill holds. It is then difficult to see whether the proposals
within some framework are in accordance with those in other frameworks, and

whether they can be combined into a coherent treatment. If one wishes to

design a computer program for Montague grammars, then one has to design for

each proposed extension or variant a completely new program, unless all
proposals fit into a single framework. This experience was my original mo
tivation for the whole research presented in this book. But the final result
is independent of this motivation: only at a few places programmingcon
siderations are mentioned (viz. here and in chapters 7 and 8).

The second kind of arguments is based upon the quality of the frame
work.

a) Elegance
The frameworkpresented here is mathematically rather elegant. This is

apparent especially from the fact that it is based upon two simple mathe
matical notions: many-sorted algebra and homomorphism.The important tool
of a logical language is combined in an elegant way with these algebraic
notions. One should, however, not confuse the notion of 'elegant' with 'ele
mentary' or 'easy to understand’. That the system is elegant, is due to its
abstractness, and this abstractness might be a source of difficulties in
understanding the system. The insight obtained from the abstract view on the
framework led to an answer to a question of PARTEE1973 concerning restric

tions on relative clause formation, see chapter 9 or JANSSEN1981a. It also
led to an application in a rather different direction by providing a seman
tics for Dik's functional grammar, see JANSSEN1981b.

b) Genera Z1’ty

The framework can be applied to a wide variety of languages: natural,
programing and logical languages. See chapter 3 for an application to logic,
dhapter-IO for an application to programminglanguages, and the other chap
ters of this book for applications to natural languages.
c) Restrio tiveness

The frameworkgives rise to rather strong restrictions concerning the
organization of syntax and semantics, and their mutual relation. The use

37

of polynomialoperators especially constitutes a concrete, practical re
striction. For a discussion of several deviations from the present frame
work, see chapters 5 and 6.

d) Cbmprehensibility
The argument given by Milner (see section 1) for designers of computing

systems can be generalized to: ‘if someonedescribes the semantics of some
language, he should be able to think of the description as a composite of
descriptions, in order that he mayfactor a semantic problem into smaller
problems’. Andwhat is said here for the designer of a system, holds at
least as much for someone trying to understand the system. This property of
the system is employed in the presentation of the fragment in chapter 4.
e) Power

The recursive definitions used in the frameworkallow us to apply the
technique of induction. Statements concerning structures and expressions
can be proved by using induction to the complexity of the elements involved.
Especially in chapters 2 and 3 this power is employed.
f) Heuristic tool

A most valuable argument in favor of the principle and its formaliza
tion is its benefit for the practice of describing semantics of languages.
Examples of this benefit, however, would require a detailed knowledge of
certain proposals. Therefore somequotations have to suffice.
ADJ 1979 (p.85) say about the algebraic approach:

The belief that the ideas presented here are key, comesfrom our ex
perience over the last eight years in developing and applying these
concepts.

Furthermore they say (op.cit.p.88):
Whenone becomes familiar with such concepts (and the results concern
ing them) they provide a guide as to what one should look for, and as
to howto formulate one’s definitions and results.

Van EMDEBOAS & JANSSEN 1979 (p.112) claim:

It will turn out that quite often somecomplicated description in a
semantic treatment actually hides a deviation from the principle. Con
fronted with such a violation the principle sometimessuggests an al
ternative approach to the problematic situation which does obey the
principle and solves the problem easier than thought to be possible.
Suchcases establish the value of the principle as a heuristic tool.

Both papers contain a lot of evidence for their claims. I will present
several examples supporting them: concerning programing languages in
chapter 10, and concerning natural languages in the other chapters.

The last kind of arguments concerns the principle itself.

38

g) Noalternative
An important argument in favor of the principle is that there is no

competing principle. Authors not working in accordance with the principle
do not, as far as I know, put forward an alternative general principle with
a mathematical formalization. The principles one finds in the literature
are language-specific, or specific for a certain theory of languages, but
never principles concerning a framework.
h) Widespread

As demonstrated in section 1, the principle of compositionality is
widespread in sciences dealing with semantics; it arises in philosophy,
linguistics, logic and computerscience.
i) Psychology

An argument sometimes put forward is that the principle reflects some
thing of the way in which humanbeings understand natural language. The
principle explains howit is possible that a humanbeing, with his finite
brain, can understand a potentially infinite set of sentences. Or to say
it in Frege's words (as translated by Geach & Stoothof (FREGE1923, p.35)):

[..] even a thought grasped by a terrestrial being for the first time
can be put into a form of'words which will be understood by someone to
whomthe thought is entirely new. This would be impossible, were we
not able to distinguish parts in the thought corresponding to the parts
of a sentence E..]. '
The last two arguents I do not consider as very strong. As for argu

ment h), I think that the principle is so popular because it is so vague.
There are manyundefined words in the formulation of the principle, so that
everybody can find his owninterpretation in it. As for argument i), we
knowso little about the process in the humanbrain associated with learning
or understanding natural language, that arguments concerning psychological
relevance are no more than speculations. I would not like to have the mathe
matical attractiveness of the frameworkdisturbed by further speculations
of this nature. The most valuable arguments are, in my opinion, those con
cerning the elegance and power of the framework, its heuristic value, and
the lack of a mathematically well defined alternative. So I adhere to the
principle for the technical qualities of its formalization.

An argument not found above is the truth of the principle: a statement
like ‘The semantics of English is compositional‘. Such an argument would
not be convincing since it is circular. In section 5, I gave examples which
illustrated that the principle, and especially the requirementof similarity,
may lead us to a certain conception of meaning. And in section 3 I gave a

39

definition of the notion ‘parts’ which madeit possible to have ‘abstract
parts’. So there is a large freedom: we may choose what the parts are of an
expression, and what the meanings are of those parts. In such a situation
it is not surprising that there is somechoice which gives rise to a compo
sitional treatment of the semantics. In the next chapter I will prove that
it is possible within this frameworkto generate every recursively enumerable
language, and to relate with every sentence any meaning we would like. If
someonewishes to doubt the principle, this only seems possible if he has
some judgements at forehand about what the parts of an expression are, and
what their meanings are. In the light of the power and flexibility of the
framework, it cannot be refuted by pointing out in some language a phenome
non which requires a non-compositional treatment. I expect that problematic
cases can always be dealt with by means of another organization of the syn
tax, resulting in more abstract parts, or by means of a more abstract con
ception of meaning. The principle only has to be abandoned if it leads too
often to unnecessarily complicated treatments.

As appears from this discussion, the principle of compositionality is
not a principle about languages. It is a principle concerning the organiza
tion of gramars dealing both with syntax and semantics. The arguments given
above for adhering to the principle, are not based on phenomenain languages,
but on properties of gramars satisfying the framework. If one is not pleased
with the power of the grammars, one might formulate severe restrictions
within the framework. In the light of the examples to be given in chapter 5,
it seems that the frameworkas it is, gives, from a practical viewpoint,
already more than enoughrestrictions.

CHAPTER II

THE ALGEBRAIC FRAMEWORK

ABSTRACT

In this chapter a formal frameworkis defined for the description of
the syntax and semantics of languages. The theory of many-sorted algebra

which is needed for this frameworkis explained, and special attention is
paid to the motivation and mathematical justification of the framework. The
framework is a synthesis of the approaches of Montague and Adj and it con
stitutes a formalization of the principle of compositionality of meaning.

unicorn

Tr

unicorn

42

1. INTRODUCTION

The aim of this chapter is to present a mathematical description of a
framework for the description of syntax and semantics of a language- The
frameworkis a formalization of the principle of compositionality of meaning.
The framework is based upon universal algebra: a branch of mathematics which
is concerned with the general theory of algebraic structures (the standard
work in this field is GRAETZER1968). Universal algebra deals with the gen

eral structures we need, and it provides a language which allows us to speak
with precision about such abstract structures. Themost important contribu
tion of universal algebra to this book consists of the concepts it provides.
I will hardly use any deep mathematical results from universal algebra, but
mainly rather elementary notions such as 'subalgebra', 'homomorphism'and
‘polynomial’ (here generalized to the case of manysorted algebras).

The framework I will present is designed with two predecessors in mind:

‘Universal Gramar' (MONTAGUEl970b), and ‘Initial algebra semantics‘ (ADJ

1977). Montaguedid not use manysorted algebras, although it is the natural
mathematical notion for his purposes. The group Adj was not primarily in
terested in developing a general framework,but in its practical applica
tions. The present framework is based upon the ideas of Montague, and on

the techniques of Adj, and as such it is new. In a few cases, a definition
or theorem concerning this framework deviates considerably from what can be
found in the literature. The present frameworkis developed for practical
purposes, and I constantly kept PTQ (MONTAGUE1973) and its successors in

mind. As often happens in applying mathematics, the available theory was
not applicable in its original form. I had to invent definitions myself,
with the literature as a source of analogous notions (this point is also
made in Van BENTHEMl979a,p.l7). In the presentation much attention is paid
to the motivation of the definitions: if one understands whydefinitions
are the way they are, then it is possible to predict what happens when the
conditions in the definitions are violated. The insights developed in this
chapter will also be useful in the discussion of several deviations from
the framework (see chapter 5). Myaim is to give a comprehensible descrip
tion of an elegant, very abstract mathematical system. In one respect this
attempt probably has not been successful: the description of how to obtain
new algebras out of old ones. There is no general theory which I could use
here, and I had to apply ‘ad hoc' methods (see sections 6 and 7).

43

2. ALGEBRAS AND SUBALGEBRAS

In chapter 1 it was explained that the key notions in our formalization
of the compositionality principle are the notions ‘many-sorted algebra’ and
‘homomorphism’.For several reasons these definitions have to be refined.
The definition of 'many sorted algebra‘ is given below; the definition of
‘homomorphism’will be given in section 6.

2.1. DEFINITION.A many-sorted algebra of signature (S,F,r) is a pair

<(AS)S€S, (FY)Y€l.> such that
a) S is a non-emptyset; its elements are called sorts.

b) (AS)S€Sis an indexed family of sets. The set AS is called the carrier
of sort s.

c) P is a set; its elements are called operator indiees.
d) T is a function such that

T: F + R Snx S where n e El and n > 0.
Thus the function T assigns to each operator index 7 a pair <w,s>, where

s is a sort, and w = <s1,...,sn> is an n-tuple of sorts. Such a pair de
notes the type of the operator with index Y. Therefore the pair is called
an operator type, and the function I is called a type assigning function.

e) (FY)Y€ris an indexed family of operators such that if

T(Y) = <<s],...,sn>,sn+l> then FY: AS]X...xASn + Asn+l
2.]. END

The definition given above is due to J. Zucker (pers.com.); it is
very close to the one given in ADJ 1977. The main difference is that we
have no restrictions on the carriers: they mayhave an overlap, be included
in each other or som maybe equal. Another, minor, difference is that we
have no nullary operators (i.e. it is not allowed in clause d) that n=0).
For a motivation and discussion of these differences, see sections 8 and 9.
Structures like manysorted algebras are introduced, under different names,
in BIRKHOFF& LIPSON 1970 (heterogeneous algebras) and HIGGINS 1963 (alge

bras with a scheme of operators).
The different componentsof the above definition are illustrated in

the following example

2.2. EXAMPLE.I describe an algebra E consisting of some English words and
sentences .

44

%a The set of sorts S = {Sent, Term, Verb}

b) The carriers are

ETerm = {J0hn, Mary}

EVerb = {run}

Esent = {John runs, Mary runs}
c) The set of operator indices F = {1}
d) The type assigning function T is defined by 1(1) = <<Term,Verb>,Sent>.

e) The set of operators is {Fl}. This operator consists of first adding an
s to its second argument, followed by a concatenation of its first argu
ment with its thus changed second argument. So

Fl(a,B) = a B3 (e.g. F1(John, run) = John runs)
2.2. END

In this exampleI have followed the definition in order to illustrate
the definition. It is, however, not the most efficient way to represent the
required information. There are several conventions which facilitate these
matters. The sorts maybe used to denote the carriers as well: we will write

a e s instead of a e AS.We often will write A when (As)S€S or US€S(AS)is
meant, but we will use A for the algebra itself as well. By a Z-algebra we
understand an algebra with signature 2. Wewill avoid to mention S,P and T
when they become clear from the context (or are arbitrary). These conven
tions are employed in the example which will be given below. A final remark
about the notation in MONTAGUE1970b. There an algebra is denoted as

<AS,FY>S€S,Y€F. I agree with LINK & VARGA(1975) that this is not a correct
notation for what is intended: an algebra is not a collection of pairs, but
a pair consisting of two collections (the carriers and the operators).

2.3. EXAMLE.The algebra <A,§> is defined as follows.
Its sorts are

Nat = {O,l,2,3..} (the natural numbers)

Bool=={t£ue,fal§e} (the truth values)
Its operators are

F<: Nat X Nat + Bool where F(a,B) = ££u§_ if a < 8
{false_ otherwise

F): Nat X Nat + Bool where F(a,B) = E£ue_ if a > B
{fal§g_ otherwise

So <As,F > is a two sorted algebra with two operators of the same type.
S,P and T are implicitly defined by the above description.
2.3. END

45

It is useful to have some methods to define a new algebra out of an

old one. An important method is by means of subalgebras. A subalgebra is,
roughly, a collection of subsets of the carriers of an algebra which are
closed under the operations of the original algebra. The theorems and defi
nitions which follow, are generalizations of those for the one-sorted case
in GRAETZER 1968.

(F) > be an algebra. A subalgebra of2.4. DEFINITION. Let A = <(AS)s€S, Y Yer
A is an algebra

B = <(Bs)
such that

I

seS’ (Fy)yeP>

1) for each s E S it holds that BS C AS

2) for each Y e F it holds that F; = FYPB.(i.e. F; is the restriction of
F to B).

Y

2.4. END

Note that from the requirement that B is an algebra, it immediately

follows that F;(bl,...,bn) e B. In the sequel wewill not distinguish
operators of the original algebra and operators of its subalgebras (e.g.
we will not use primes to distinguish them). The next example illustrates
this.

2.5. EXAMLES.Let E be the algebra from example 2.2. Hence E is defined by:

E = <(Es)s€{Term,Verb,Sent}’{Fl}>

where ETerm = {J0hn,Mary}, Everb = {run},

Esent = {John runs, Mary runs}

and F1: ETerm X EVerb + Esent

is defined by F(a,B) = a 33,

Someexamples of subalgebras are:
I. E itself is a subalgebra of E.

II. Let BTem = {John}, Bve

Then B = <(BS)SES,

III. Let chm = {Mary},c
Then C = <(C)

S S

rb = {run}, and Bsent = {John runs}.

{F1}> is a subalgebra of E.

Verb = {run}’ and CSent = ¢'

€S,{F1}> is not a subalgebra of E.

46

IV. Let DTerm = {John}, Dverb = G, and Dsent

Then D = <(DS)S€S,{F]}> is a subalgebra of E, although a rather strange

= {Mary runs}.

one .

2.5. END

A sorted collection of subsets of an algebra maybe contained in sever
al subalgebras. There is a smallest one amongthem, namely the intersection
of these subalgebras. This is proven in the next theorem, this probably cor
responds with the mysterious ‘theorem due to Perry Smith’ mentioned in

MONTAGUE1973 (p.253).

(1) .
2.6. THEOREM.Let <(BS £€S,(rY)Y€r>i€I

algebra <(AS)s€S,(FY)Y€P>. For each s we deftne, C3 =

<CS,FY>is a subalgebra of A.

be a collection subalgebras of the
(')

fii€I(BS1). Then

PROOF.Wehave to prove that <CS,FY>is closed under the operations FY.

Let T(y) = <<sl,...,sk>,sk+]> and c] 6 CS ,...,ck 6 CS .
. . k

Thenfor all i e I: c e B(1),..., c e Bil).
I s] k sk

So for all i: FY(cl,...,ck) e Bil) , and consequently. k+l
(1)F (c ... c) e 0. B = C .

y 1’ ’ k 1eI sk+] sk+]
2.6. END

Wewill often be interested in the smallest algebra containing a given
collection of subsets. Then the following terminology is used.

2.7. DEFINITIONS.Let <A,§} be an algebra, and H a sorted collection of
subsets of A. The smallest subalgebra of A containing H is called the sub

algebra generated by H. This algebra is denoted by <[H],§>, and its ele
ments are denoted by [H]. A sorted collection H of subsets of an algebra

<A,§? is called a generating set if <[H],E} = <A,§}. The elements of the
sets in H are called generators.
2.7. END

Theorem2.6. characterizes the algebra <[G],§? as the intersection of
all subalgebras containing G. Another characterization will be given in
section 4.

An important consequence of theorem 2.6 is that it allows us to use
the power of induction. A property P can be proved to hold for all elements

of an algebra <A,E}by proving that:

47

1) Property P holds for a generating set G of A

2) The set B = {a e A I P(a)} is closed under all FY 6 E.
(i.e. if bl,...;b e B and FY is defined for them, then FY(b ..,bn)e B).I’'

From 2) it follows that <B,§> is a subalgebra of <A,£?. From 1) it follows

‘[1

that G C B, hence <[G],.§> is a subalgebra of <B,§}. Since A = <[G],F> it
follows that A = <B,£>. So for all a e A property P holds. —

Theorem2.6 provides us an easier way to present subalgebras than the
method used in example 2.5. The theorem shows that it is sufficient to give
a set of generators.

2.8. EXAMPLES.The subalgebra mentioned in example 2.5, case II, can be de
noted as:

<[{J0hn}Term, {run}Verb], {F]}>

where F]: Term X Verb + Sent is defined by F](a,B) = a 83.
Note that the sorts of the generators are mentioned in the subscripts.

The subalgebra mentioned in example 2.5, case III, can be denoted as:

([{John}Term, {Mary runs}]>.Sent

This algebra is ‘generated’ in the formal sense; it is howeverintuitively
strange to have a compoundexpression (Mary runs) as generator.
2.8 END

If the ‘super’ algebra within which we define a subalgebra is clear
from the context, we need not to mention this algebra explicitly. This
gives a simplification of the presentation of the subalgebra. Such a situa
tion arises whenwe wish to define some language, i.e. a subset of all

strings over some alphabet. In this situation one may conclude from the
generators what the elements of the alphabet are, and the ‘super’ algebra
is the algebra with as carrier all finite strings over this alphabet. An
example is given below.

2.9. EXAMLE.Wedefine an algebra N; the carrier of this algebra consists
of denotations for numbers. Leading zero's are not accepted, so 700 is an
element of N, whereas 007 is not. This algebra is described by:

48

N = <[{0,1,...,9} um],{F}>N

where F: Num X Num + Num is defined by

F(a,B) = {B if a = 0a8 otherwise.

Nowit is implicitly assumed that N determines a subalgebra of

A = <{o,1,...,9}* ,{F}>
'L1lIlN

where F is as just defined, and {0,1,...,9}* is the set of
all strings formedof symbolsin the set {0,1,...,9}.

The difference between A and N is that A contains all strings (007 included),
whereas this is not the case for N. Notice that N is highly ambiguous in the
sense that its elements can be obtained from the generators in several ways

e.g. F(1,7) = 17 but also F(0,F(1,7)) = 17.

2.9. END

The above example concerns an algebra with only one sort. In 2.2 and
2.5 we defined algebras with several sorts, and when we consider a subalge
bra of such algebras, we can also avoid writing explicitly the ‘super’ al
gebra. In that case the most simple algebra we may take as the ‘super’ al
gebra, is the one in which all carriers consist of all possible finite
strings.
Anexample as illustration:

2.10 EXAMPLE.We define an algebra M for number denotations, in which lead

ing zero's are accepted, and in which each element can be obtained from the
generators in only one way.

g = <[{0,1,...,9} dig],{F],F2}>

where F]: dig + num is defined by F](a) = a

and F2: num X dig + num is defined by F2(a,B) = a8.

49

So Fl says that all digits are numberdenotations, and F2
tains a newdenotation by concatenating the old denotation with a digit (in

says that one ob

this order).

e.g. F2(F1(7),1) = 71 and F2(F2(Fl(0),0),7) = 007.

The implicit ‘super’ algebra is

<{{0,1,...,9};ig,{0,1,...,9};um},{F],F2}>

2.11. EXAMPLE.Another algebra for number denotations is one which differs
from the above one in only one respect. Digits are concatenated with numbers
for obtaining new numbers (and not in the opposite order as in 2.10).

E} = <[{0,1,...,9}dig],{F],F3}>
where F : dig + num defined by F](a) = al

and F3: num X dig + num defined by F3(a,B) = Ba.

2.ll.END

In the examples 2.8/2.11 subalgebras are defined by mentioning a
generating set. In all these examples this was a special set: one which was
minimal in the sense that none of the generators can be obtained from the
other generators. The following terminology can be used to describe this
situation.

2.12. DEFINITIONS.A collection B of generators of algebra <A,E? is called

A-independent if for all b e B holds that b J <[B-{b}],£?.
An algebra <A,§? is called finitely generated if A = <[B],F> where B is some
finite A-independentgenerating set of A.
Analgebra is called infinitely generated if it is not finitely generated.
A collection of generators G is called the generating set of the algebra
if the algebra is generated by that set and if all generating collections
contain G as subcollection.
2.12. END

50

3. ALGEBRAS FOR SYNTAX

In most examples we have considered, the carriers consisted of strings
of symbols. Such algebras can be used to describe languages, and in fact we
did so in the previous section. The set we were interested in was the car
rier of a certain sort. This should explain the following definition (the
epithet 'general‘ will be droppedin a morerestrictive variant).

3.]. DEFINITION.A general algebraic grammar G is a pair <A,s>, where A is a

many-sorted algebra, s is a sort of A, and all carriers of A consist of
strings over somealphabet. The sort s is called the distinguished sort,
and the carrier of sort s is called the language generated by G, denoted
L(G).

3.2. EXAMPLE.Let E be the algebra <[{Mary, John} ,{run}Verb],{Fl}>,Term

1: Term X Verb + Sent is defined by Fl(a,B) = a 83.
Then the general algebraic grammar<E,Sent> generates the language

where F

{Maryruns, John runs}; and the general algebraic grammar<E,Verb> generates
the language {run}.
3.2. END

First a warning. In the French literature one finds the notion ‘gram
maire algebraique'. This notion has nothing to do with the algebraic gram
mars we will consider here: ‘grammaire algebraique' means the same as ‘con
text free grammar‘. In the definition above, I have not used the nameal
gebraic gramar because I will use it for a subclass of the general alge
braic gramars. Mostgeneral algebraic gramars are not interesting be
cause they do not provide the information needed to generate expressions of
the language. This is illustrated by the trivial proof of the statement
that there is for any language L (even for non-recursively enumerable ones)
a general algebraic gramar generating L. Take the gramar which has as al
gebra the one with no operators, one sort and L as carrier of that sort.
This is an uninteresting grammar.It is not sufficient to add the require
ment ‘finitely generated‘; this is illustrated by the following example.

3.3. EXAMPLE.Let L be some nonempty language over some finite vocabulary

V. Let w be an arbitrary element of L. Consider now algebra A

51

A = <[VSl],{F1,F2}>

where F]: S] X sl + S] defined by Fl(a,B) = a8

and F2: s] + S2 defined by F2(a) = {a if a 6 Lw otherwise.

So F] generates all strings over V, whereas F selects those strings which2

belong to L. The definition of an algebra requires that F be a function,2

so that F2 delivers some element of sort s2 even in case its argument is
not in L. For this purpose we use the expression w from L. Now<A,s2> is a
finitely generated algebraic grammarwith generated language L.
3.3. END

In case L is empty, then we may take a grammar with an empty generating

set: <<[¢S],{F1,F2}>,s]>.
The crux of the above example lies in the operation F2. There is no al

2.
algebraic gramar does not provide us with the information which allows us
gorithm which for every argument yields its image under F So the general

to generate expressions of the language. The absurdity of such a grammar

becomes evident if we replace F2 by the function F3:

F3(a) = a if a is an English sentence, and F3(a) = w otherwise.

The above example shows that for certain generalized algebraic gram
mars there exists no algorithm which produces the expressions of the lan
guage defined by the grammar. The example also illustrates that such gram
mars are uninteresting for practical purposes. Therefore wewill restrict
our attention to those algebraic gramars for which there is an algorithm
for producing the expressions of the grammar. For this purpose I require
that the operators of the grammarsbe recursive (the notion 'recursive' is
the formal counterpart of the intuitive notion ‘constructive', see e.g.
ROGERS1967). But this requirement is not sufficient: a grammarmight have
only recursive operators, whereas the definition of the set of operators
is not recursive. Then we would not knowof an arbitrary operator whether

it is an operator of the gramar, i.e. we do not effectively have the tools
to produce the expressions of the language of that grammar, although the
tools themselves are recursive. Therefore I also require that there exists

some recursive function which decides whether any given operator belongs

52

to the set of operators of the gramar, in other words, that the set of
operators be recursive. For similar reasons it is required that the sets of
sorts and generators be recursive. In section 5 it will be proven that for
such gramars there indeed exists an algorithm generating the expressions
of the language defined by the grammar. A more liberal notion is 'enumerable
algebraic grammar’. Also for these grammarsthere exists a generating algo
rithm, but they have someunattractive properties (e.g. it is undecidable
whether a given derivational history is one from a given grammar. Formal
definitions concerning recursivity and algebras are given in e.g. RABIN1960,
but the intuitive explication given above is sufficient for our purposes.

3.4. DEFINITION.An algebraic grammar is a general algebraic grammar such
that
1. its set of operators and its set of sorts are recursive, and it has a

recursive generating set
2. all its operators are recursive.

3.5. DEFINITION.An enumerable algebraic grammar is a general algebraic
grammar such that

1. its set of operators and its set of sorts are recursively enumerable,
and it has a recursively enumerable generating set

2. all its operators are recursive.

3.6. DEFINITION.A finite algebraic grammar is an algebraic grammarsuch
that
1. its set of operators, and its set of sorts are finite, and it has a

finite generating set
2. all its operators are recursive.
3.6. END

I have formally described what kind of language definition device we
will use. Next it will be investigated whether our device restricts the
class of languages which can be dealt with. The theorem below is of great
theoretical impact. It says that, even whenusing finite algebraic gramars
we can deal with the same class of languages as can be generated by the

most powerful language definition devices (Turing machines, Chomskytype
0 languages, van Wijngaarden grammars, recursive functions). This means
that the requirement of using an algebraic grammar, which was one of the
consequencesof the compositionality principle, is a restriction only on

53

the organisation of the syntax, but not on the class of languages which can
be described by means of an algebraic grammar. The theorem, however, is,

from a practical point of view not useful because it does not help us in
any way to find a grammar for a given language; this appears from the fact
that the proof neglects all insights one might have about the structure of
the language: the sorts in the proof have nothing to do with intrinsic
properties of the language under consideration.

3.7. THEOREM.For each recursively enumerable language over some finite

alphabeth there exists a finite algebraic grammarthat generates the same
language.

PROOF.Let G be a type-0 grammar. So, following the definition in HOPCROFT

& ULLMAN(1979, p. 79) we have

C = (VN2VT9PsS)

where V V P, and S are respectively the non-terminal symbols of the grammar,» 9

the tergingl symbols, the production rules and the start symbol. The set P

consists of a finite list of rules p],...,pn of the form u + v where
u e (VNUVT)+ and v e (VNUVT)*; so u is a nonempty string of symbols over

VNU VT, and v is a possibly empty string over this set.
Wehave to prove that there is a finite algebraic grammarA such that

L(A) = L(G). I distinguish two cases. I) L(G) = ¢ and II) L(G) # Q. In case

I we take an algebra with an empty set of generators, and that gives us a
finite algebraic gramar. In case II we knowthat there is at least one ex
pression in L(G). Let e e L(G). Then the finite algebraic grammarA for L(G)
is defined below.

There are three sorts in A:

In : the sort which contains the only generator of the algebra: the symbol S.
Mid: the sort of intermediate expressions
Out: the sort of resulting expressions; i.e. the sort of the generated lan

guage.

The operations of the algebra will simulate derivations of G. The sym
bol $ is used to focus our attention on that part of the string on which an
operator of algebra A is applied which simulates some rule of G. If a is some

string, we understand by a‘ the result of deleting from a all occurrences
of $.

54

The algebra A is defined as follows:

A = <<[SIn], (FY)Y€I,>,0ut>
where P = {l,2,3,4} U P.

The operators are defined as follows:

F]: In + Mid

F](ot) = $ot

F2: Mid + Mid

F2(a]$va2) = a1v$a2 where a1,u2 e (VNUVT)*and v E VN U VT

F2(a) = a if a is not of the form al$va2

F3: Mid + Mid

F3(a]v$a2) = a]$va2 where a],a2 e (VNUVT)*and v e VN U VT

F3(a) = a if a is not of the form a]v$a2
F4: Mid + Out

F4(a) = a‘ if a e (VTU{$})*, so F4 deletes the occurrences
in a of $

F4(a) = e if a d (VTU{$})*; remember that e e L(G).

FP.: Mid + Mid

1 Fpi(al$ua2) = a]$va2 where pi is u + v

Fpi(a) = a if a is not of the form just mentioned.

Note that Fpi is a function since the $-mark indicates to which expression
pi is applied.

The proof that L(G) is generated by this grammar follows from the two
lemmasbelow. But first somedefinitions.

W is the set of all finite strings over VNU VT U {$} in which at most
one $ symbol occurs

W$ is the subset of Wof strings in which precisely one $ symbol occurs

a=K 8 iff 8 = FY(a) for some Y e P

a 3-8 iff a = Gus, B = Gve and u + v e P, where 5,; 5 (VN U vT)*
*

is the transitive and reflexive closure of=X

00*>3 is the transitive and reflexive closure of=E

Recall that we defined a' as the result of deleting all $ marks from a.

LEMMA. L(G) C L(A).

55

PROOF.First we prove that a‘ fi~B' implies a‘% B for all a,B E W$.
Consider the following three cases:

L a'=B' md a=B. fmm1a%B.
2. a’ = B’ and a # B. Then a contains a $ in a different position than

in B. By repeated application of F2 or F3 the $
sign can be movedto that position.

3. a’ = Sue and B‘ = 6ve and u + v 6 pi, where 6, 5 e (VN U VT)*

30 a=% 6$ue (using F or F3); 6$ue=X 6$Ve2

(using Fpi) and 6$ve-i B (using F3 or F2.

So a %»B.

Suppose now that w e L(G), so S %~w. Hence ($S)' §~($w)'. Repeated appli
cation of the argumentation given above shows that $S=%$w. Since S=X$3

and $w=Kw, it follows that w e L(A).

LEMA. L(A) C L(G).

PROOF.We first prove that a XvB implies a‘ % B‘ for all a,B e W\{e}.
Consider the following five cases

1. B = F](a). Then a = S, B = $S so a‘ = B‘ hence 0' %’B'

2. B = F2(a). Then a’ = B’.

3. B = F3(a). Then a‘ = B’.

4. B = F4(a). Since B # e we have a' = B‘.

5. B = Fp(a) for p = u + v. Then either a = B, or a = 6$ue and
B = 5$ve. So a’ E-B‘.

Suppose now that w e L(A), so S=%w. By repeated application of the above

argumentation we find that S=%w. Hence L(A)\{e} C L(G)\{e}. Since e e L(G)
it follows that L(A) C L(G).
LEMA END

From the above two lemmas it follows that L(A) = L(G).
3.7. END

Note that the proof of this theorem does not provide an algorithm for
making a finite algebraic grammar for a given type-0 grammarG. The deci
sion whether we are in case I (L(G) = G), or in case II (L(G) ¥ ¢), is not

an effective decision because there exists no algorithm which decides
whether a given type-0 grammar produces an empty language (HOPCROFT&

ULLMAN1979, p. 218 and p. 189). This non-constructive aspect of the proof

56

is unavoidable, as will be proved in the next section.
Weaim at a kind of grammar which produces only recursively enumerable

languages. The theorem has as a consequence that in all cases a finite
gramar is sufficient for the syntax. Nevertheless, wewill, in the follow
ing chapters, frequently use infinite grammars.Such a decision is motivated
mainly by semantic considerations.

4. POLYNOMIALS

In this section a methodwill be presented for describing new opera
tors: polynomials. I will first present an example that is based upon high
school algebra. Consider the polynomial 7y+1. This polynomial is a compound
symbol that defines a certain function. The value of this function for a
given argument is obtained by substituting the argument in the polynomial
for the variable y and calculating the outcome. So its value for argument 2
is 7.2+], being 15, and for argument 1 it is 8. From the basic operations of
multiplication and addition we have built in this way a new operation. The
fact that the polynomial contains a multiplication operation is not evident
from the notation; it might be emphasized by writing the polynomial as
7.y+1. In less familiar algebras the operation symbols are not written be
tween their arguments, but in front. Using this function-arguent notation
the polynomial gets the form +(.(7,y),1). Functions with several arguments
are obtained from polynomials with several variables. An example is the

polynomial 7y1+5y2,or equivalently +(.(7,y1),.(5,y2)). It represents a
function which has for y1=1 and y2=2 the value 17. In order to let the po
lynomial denote a unique function on pairs of integers, we need a conven
tion which determines what the first argument is and what the second. The
convention is that this corresponds with the indices of the variables. For
the last example this means that the value for the pair (0,4) is 20 and not
28.

The notions discussed above are defined abstractly for the one sorted
algebras in GRAETZER1968. Below I will generalize them to the case of many

sorted algebras. The definitions are somewhatmore complicated than in the
one sorted case because it is not evident what the first argument and what

the second argument is of a polynomial like P1(y1). The definition is based
upon a suggestion of Jim Thatcher (pers.comm.).

57

4.1. DEFINITIONS. Let A = <(A) ,
——————————— —- s seS

each s e S we introduce a set VARSconsisting of countably many variables:
(FY)Y€r> be a many sorted algebra. For

VAR = {xS],S,x2,S,... } VAR= U VARS.s€S

For each element a of A we introduce a symbol 3

CONA = {E | a e A } CONA = u CONA.s s seS

For each operator FY of type <w,s> 6 Sn X S we introduce a symbol FY

A

0P<w, s> = {DY I FY e (FY)Y€r and 1(7) = <w,s>}

A A

Op = U n (Op<w 5)).<w,s>eS XS ’

Let w 6 Sn be <sl,...,sn>. Then we define

Xw= {x ,...,xn,S }.l,s]?x2,s2 n

4.2. DEFINITIONS.Let A be a many-sorted algebra. By POLf@S) we understand
9

the set of polynomial symbols over A of type <w,s>. These sets are induc
tively defined as follows:
I. If x. e XV, then x. e POLA

J93 J95 <Ws5>

II. If E 6 con“, then 5 e POLA
s s s <w,s>

‘ A A AIII. If F 0 d POL ... POL
Y 6 p<<s],...,sk>sk+l> an P] E <w,s]>’ ’pk 6 <w,sk>

— A

then FY(p],...,pk) € P0L<w,Sk+]>.

The set POLAof polynomial symbols over A is defined by

POLA= {P0L§@,S> I w e Sn,s 6 S}. The symbols ES are called the parameters
of the polynomial symbols.
4.2. END

Definition 4.2 differs from the standard definition by clause II. The
clause is required here since our definition of an algebra does not allow
for nullary operators (they are used in the sameway, to denote a specific
element of the algebra). In the sequel I will omit the bar when no confusion

58

is likely; so I will write c and FY instead of E and FY. Furthermore the
superscript Awill often be omitted.

A measure for the complexity of a polynomial symbol is its height.
(Other names for the same notion are complexity or depth).

4.3. DEFINITION.The height h of a polynomial symbol p is defined by the

following clauses
I. h(x) = 0 if x is a variable
II. h(c) = 0 if c is a constant

III. h(FY(p1.-.-,pk)) = 1 + max(h(p1),---.h(pk)).
4.3. END

A polynomial symbol p e POLA determines uniquel a (olynomial) opera
(W, y PS>

tor pA of type <w,s> in the following way.

4.4. DEFINITION.Suppose w = <s ..,s > and a e ASl...aSk 1 6 AS . ThenI’' k k
pA(a],...,ak) is defined by
I. if p = xj,S then pA(al,...,ak) = aj.
II. If p = cs then pA(a],...,ak) = cs,A
III. lf p = FY(p],...,pm)

then pA(al,...,ak) = FY,A(pl,A(al,...,ak)...,pm,A(a1,...,ak))
4.4. END

The interpretation of a polynomial does not depend on arguments of
which the corresponding variable does not occur in the polynomial.

4.5. THEOREM.If xi S_ e XWdoes not occur in p then for all asi and1 <w,s>
bsi fromAsi wehavep(as],...,aSi,...,aSn) = p(aSl,...,bSi,...,aSn).

PROOF.By induction on the height of p.
4.5. END

The following theorem says that the polynomially definable operations
give rise to a new algebra over the elements of the old algebra. The opera
tors of the new algebra are the (interpretations of) the polynomial symbols.

4.6. THEOREM.Let A = <(AS)S€S,(FY)Y€r> be an algebra and (G6)6€A the

collection polynomial symbols over A. Then B = <(AS)S€S,(G6,A)5€A>is an al
gebra.

59

PROOF.Each G defines a function, and (AS) is closed under such func6 seS
tions since

I. The polynomials of the form xi S yield one of the arguments as result.
9

II. The polynomials of the form cs yield an element of AS as result.

III. The collection (AS)S€Sis closed under the operations FY.
4.6. END

Note that for each operator FY from A there is a corresponding polynomial
symbol G in B such that'FY = GA-Let T(y) = <<w ,w >, Then the po... W >.

1’ n n+1
our)0

,x2’W29 Bxlynomial symbol corresponding to FY 1s FY(x],w n’wnl

4.7. EXAMPLEFormulas from propositional logic

In this example several algebras are presented, of which the last one
is an algebra defining formulas of propositional logic.
Let V = {p,q,r} u {‘1,v,A,—>,(,)}.
Consider

A = <[Vt],C>, where C is the two-place concatenation operator; so
C(p,+) = p+. Let a,B,y be x ,x ,x respectively. Then we definel,s 2,s 3,3

A‘ = <[vt],{c2,c3}>

where C2 and C3 are the 2-place and 3-place concatenation operators:

C2 = C(a,B)<<t,t>,t> and C3 = C(C(a,B),y)<<t,t,t>,t>.

Out of this algebra we define a new one:

B = <[{p,q,r}t],{RA,RV,R+,R1}>

where the R's are polynomial symbols over A‘:

Rj = C2(7,C3((,a.))) so R1(a) = 7(a)

RA= C3(C3((.a,)),A,C3((,B,))) so RA(a,B) = (a)A(B)

and analogously for RV and R+.
The expressions of B are the formulas from propositional logic with propo
sition letters p,q and r. Oneobserves that B is step by step defined out

60

of a very simple algebra: the algebra of all strings over the vocabulary
with concatenation as operator. Only on the final level does the algebra
provide interesting information concerning the structures of logical expres
sions. On the final level we may define the meanings of the formulas. Usual
ly one will present only the final algebra, the step by step construction
out of the basic algebra is omitted, and the concatenation operators C and2

C3 are written as concatenations. An algebra like B will in the sequel be
defined as follows:

3 = <[{Psq,r}t3.{7(a),(a)A(B),(a)V(B).(a)+(B)}>

4.8. EXAMLE:Nbn-polynomially defined operators
In example 2.9 we have met an operator which is not a polynomial one. I

repeat the relevant aspects of that example. The algebra considered there
is one of strings of digits:

N = <[{0,1,...,9} um],{F}>N

where F: Num X Num+ Num is defined by F(a,B) = {B if a'E 0a8 otherwise.

The operator F is not defined using somepolynomial symbol, i.e. it is not
a polynomial operator. By using the if-then-else construction, well known
from prograing languages, we obtain something of the format of a poly
nomial:

F = if a = 0 then 8 else as.

This is a convenient way to write the definition in one line, and I will
use that notation in the sequel. Onemight be tempted to think that it be
comesa polynomial if one rewrites it in the function argument notation:

F = if-then-else (a=0,B,aB).

This is, however, not the case. Theif-then-else operator requires as first

61

argument a truthvalue. So an algebra over which if-then-else can be an op
erator, has to contain the sort of truth values, and operations yielding
truth values (e.g. the two-place predicate =). Since the algebra N of number
denotations does not contain these, F cannot be a polynomial operator over
N. Nevertheless, F is a fully legitimately defined operator in N.

Someother examples of non-polynomial operators are

G1: take the reversed sequence of symbols, so Gl(792) = 297
G2: take the digits in even position and concatenate them, so G(2345) = 35

G3: substitute 7 for each occurrence of 3, so G3(3723) = 7727.
4.8. END

5. TERM ALGEBRAS

In this section the notion ‘term algebra‘ will be introduced. The car
riers of a term algebra consist of polynomial symbols which can be consider
ed as representations of the productions of a generated algebra. Termalge
bras play an important role in the formalization of the compositionality
principle. In chapter 1, section 3, it was explained that the meaning of an
expression depends on its derivational history. A term algebra represents
derivational histories, therefore the meaningsof the elements of

A = <[(Bs)seS
ing term algebra. Another important aspect of the notion term algebra is

],(FY)Y€F>will be defined on the elements of the correspond

that it allows us to describe generated algebras in a way that is more con
structive than the description given in section 2 (there they are defined
by meansof the intersection of a - possibly infinite - numberof algebras).
The newdescription will be used to obtain an algorithm generating the
elements of an algebra, thus justifying the name‘generated algebra‘.

Twoarguments are mentioned above for considering generated algebras:
semantic interpretation and syntactic production. This meansthat, in this
context, we do not deal with algebras as such, but with algebras with a
specified set of generators. Therefore we introduce the notion of a Z,X
algebra, being a Z-algebra with as collection of generators the sorted collec

consists of polynomial symbols which contain
2 X

no variables and which have only parameters that correspond with elements
tion X. The term algebra T

9

in X.

5.]. DEFINITIONS.A 2,X-algebra A is a Z-algebra such that A = <[X],§?.
Let us assume that X = (X) and F = (F) . Then we define the term

s seS —- Y Ye?

62

algebra T: as the algebra:
3 X

T

<(TZ,X,A,s)seS’(Fy)yeF>
where

A . .

I. Tz’X,A,S —{p e POL<w’S>I p contains no variables and for all con
stants c in p holds c 6 X}

and

II‘ = <<5l9-i.-pSn>,Sn+1>and t1 E T2,x’A,Sl:..o9tn E Tz’x,A’Sn
T ..

thenFY(t],...,tn) = FY(tl,...,tn).
5.]. END

In the sequel we will often simplify the notation for the term algebra.
Wewill attach to T a subscript which identifies the intended term algebra
sufficiently. For instance, if in the context the algebra A is given with

a specified collection of generators, we maywrite TA.

5.2. EXAMLE.Consider the algebra from example 2.1]:

M= <[{0,1,...,9}dig],{Fl,F2}>.

Then examples of elements in the term algebra TMare 0,], Fl(0), F2(F](0),1),
F2(F2(F1(1),2),3)).
5.2. END

The above example shows that each element of TMrepresents a way of
producing an element of Mfrom the generators by means of successive appli
cation of the operators. The following theorem says that all elements of
an algebra can be obtained from expressions in the corresponding term al
gebra, and that only elements of the algebra are obtained in this way (for

the definition of tA, see def.4.4).

5.3. THEOREM.Let A = <[(BS)],(FY)Y€r> be an algebra. Then a e AS iffseS

there is some t 6 TAsuch that tA = a.

PROOF. Let KS = {a e As] there is some t e TA such that tA = a}.

Since {b. I b.1,s 1,s, A 6 BS} C T S, we have BS C KS. Hence (KS)s€S con
3

tains all generators of A.
A

63

Next we prove that K = <(K) ,(FY)Y€P> is a subalgebra of A. It suf

fices to show that (KS)S€Sis c:o::: under (FY)Y€r. Let
1(7) = <<sl,...,sn>,sn+l> and let a] e KS1,...,an e Ksn. By definition of

KSwe know that there are t] e TA,S],...:tn e TA,Sn such that
tl,A = a]:...,tn,A = an. Define tn+] as FY(t1,...,tn). Then
tn+],A = FY’A(a],...,an), so tn+l e Ksn+]. Hence K is a subalgebra of A.

Since <[(BS)S€S

follows that K = A, and in particular KS = A8.
5.3. END

],(FY)Y€P>is the smallest algebra containing BS, it

This theorem gives the justification for the algorithm used in the next
theorem.

5.4. THEOREM.Let A be an enumerable algebraic grammar. Then there is an al

gorithm that produces for each sort s of A the elements of AS.

PEQQE.Since the gramar is enumerable, there is an algorithm that produces
the operators of A, and an algorithm that produces the generators of A. Let

Algop and Alggen be two such algorithms. The algorithm generating the sets
AS uses these two algorithms.

The algorithm that produces for each sort s of A the elements of AS can
be considered as consisting of a sequence of stages, numbered1,2,...
Stage N is described as follows.

Perform the first N steps of the algorithm Algop, thus obtaining a
sorted collection of operators, called F . Perform the first N steps of the

algorithm Alggen, thus obtaining a sorteg collection of generators, called
Béo . Since we performed a finite number of steps of Algop and Alggen, there
are finitely many elements in FN and Béo). So for an f 6 FN there are finite
ly manypossible arguments in Béo). Perform all these applications of op
erators in F to arguments in Béo). In this way finitely manyelements areN

produced. By addition of these elements to Béo) we obtain Bél). Next we

apply each f 6 FN to all possible arguments in Bél), add the new elements
to Bélz etc. This process is repeated until we have obtained B§N). This
completes the description of stage N, next stage N+l has to be performed.

Notice that N is used three times as a bound: for Algop, for Alg an and8
for the height of the produced polynomials.

The algorithm is rather inefficient: in stage N+l all elements are
produced again which were already produced in stage N. A more efficient

64

algorithm might be designed as a variant of the above algorithm. Our aim,
however, was to prove the existence of a generating algorithm, and not to
design an efficient one. Fromthe description of the algorithm it should be
clear that only elements of the algebra are produced.

It remains to be proven that the algorithm produces all elements of A.
Theorem5.3 says that for each a e A there is a term t in the corresponding
term algebra such that t = a. For each term t there is a stage in the above

A

algorithm in which t is produced for the first time. This appears from
A

considering the following two cases.
I. t is a generator:

Since Alggen produces all generators of A, there is a number Nt such
that after Nt steps t is produced.A

II. t = F_Y(t1,...,tn).
Assumethat t] A,...,tn A are produced for the first time in stages

I S

Nt ,...,Nt respectively, and that FYis produced in stage NF . Then
1. n . Y

tA 1S produced in stage max(NFY,Ntl,...,Nt)+l.n
5.4. END

Theorem5.4 says that an enumerable gramar produces a recursively
enumerable language. In theorem 3.7 it is proven that every-recursively
enumerable language over a finite alphabet can be produced by a finite al
gebraic grammar. So every enumerable algebraic grammar (and every algebraic
gramar) over a finite alphabet can be 'replaced' by a finite algebraic
grammar (this observation is due to Johan van Benthem). As has been said,
our choice of a grammardepends also on semantic considerations, and these
might lead us to the use of an enumerable grammarinstead of a finite one.

The proof of theorem 3.7 contains a non-constructive step. This can
not be avoided, as follows from the next theorem.

5.5. THEOREM.Let A be a finite Z,X-grammar. Then for each sort s of A it

is decidable whether AS = ¢.

339933 The algorithm proceeds as follows:
stage 1:
For all sorts s check whether there is a generator of sort 3, i.e. whether

X3= 0. If there are no generators at all, then all carriers are empty,
and the algorithm halts here. If generators are found, then it follows
that the corresponding sorts have non-emptycarriers.

65

stage 2N:

For all operators FYwe check whether they give us about new sorts the in
formation that they are non-empty. Assume1(7) = <<s],...,sn>,sn+l>. If it

was shown in a previous stage that AS ,...,ASn are non-empty, then it fol
lows that Asn is non-empty as well.
stage 2N+1:

If with the results of the previous stage all carriers are shownto be non
empty, then the algorithm halts here. If in the previous stage no new sort
was found with a non-empty carrier, then it follows that all remaining car
riers are empty, and the algorithm halts here. If in the previous stage
som new sort was found with a non-empty carrier, then go to stage 2N+2
(which is described above).
5.5. END

In theorem 3.7 it is stated that every recursively enumerable language
over some finite alphabet can be produced by means of a finite algebraic
grammar. The proof was based upon the construction of a finite algebraic
grammarsimulating a type-0 grammar. That construction was not effective:
the construction depends on the question whether the type-0 grammarpro
duces an empty language or not, which question is undecidable (HOPCROFT&

ULLMAN1979, p.281). Every constructive version of theorem 3.7 would re

duce emptyness of type-0 languages to emptyness of algebraic gramars.
Since the emptyness of algebraic grammarsis decidable (th.5.5), such a
reduction is impossible.

In chapter 1 an interpretation of Frege's principle was mentioned which
I described as the ‘most intuitive‘ interpretation. It says that the parts
of a compoundexpression have to be visible parts of the compoundexpres
sion and that a syntactic rule concatenates these parts. The following
theorem concerns such grammars. It is shown that we get such gramars as a
special case of our framework.

5.6. THEOREM.Let A be a finite algebraic grammar with generating set B.

Suppose that all operations A are of the form

FY(a],...,an) = w0,Ya]wl,Ya2w2;Y...anwn,Y
where wi,Y is somepossibly empty string of
symbols.

Then L(A) is a context free language.

66

PROOF.We define a context free grammar G as follows:

The set VNof non-terminal symbols of G consists of symbols correspond
ing with sorts of A:

VN = {E I s is a sort of A}.

The start symbol of the grammar G is the symbol corresponding with the

distinguished sort s (i.e. the sort such that L(A) = As).
The set V of terminal symbols of G consists of symbols correspondingT

with the generators of A:

The collection of rules of G consists of two subcollections

R = {s-+b I b 6 BS} u {sn+l-+wO,Yslwl’Ys2w2,Y...snwn,Y I

T(Y) = <<s ..,sn>,s >}.V52" n+1

It should be clear that L(G) = L(A). This means that L(A) is context free.
5.6. END

The above theorem could easily be generalized to the case that the ar
guments of an operation are not concatenated in the given order, but are
permuted first. Theorem5.6 shows that the most intuitive interpretation of
Frege‘s principle (all parts have to be visible parts) is a special case of
our framework. It showsmoreover that with this interpretation one either
has to accept an infinite numberof operators, or to conclude that the
principle can only be applied to context free languages. A restriction to
context free languages is not attractive because that would exclude a large
class of interesting languages (e.g. ALGOL68 and predicate logic), further

more it has been claimed that natural languages are not context free (for
a discussion see PULLUM& GAZDAR1982). An attempt to use only context

free rules for the treatment of natural language, but an infinite num
ber of them, is made by GAZDAR(1982).

In our approach the generation of a context-free language is only a
special case of the framework. The group Adj, which works in a similar
framework, seems to have another opinion about context-freedom. They give

67

no explicit definition of the notion ‘algebraic grammar‘nor of its ‘gener
ated language‘, but the definition they implicitly use, seems similar to
ours. They suggest, however, that by using algebraic grammars, one can ob
tain only context-free languages. Evidence for this is that they construct
an algebraic grammarfor a context-free language and next state that that
is ‘the most important and general example‘ (ADJ 1977, p.75). Another state
ment suggesting this arises when they discuss SCOTT& STRACHEY1971. Those

authors say (p.29):
Our Zanguage .. is no longer context free. But if we may say so, who
cares? .. The last thing we want to be dogmatic about is language.

As a reaction to this, they say (ADJ 1977, p.76)):
’But their semantics does depend on the context free character of the
source language, because the meaning of a phrase is a function of the
meaningsof its constituent phrases’.

So again they take for granted that an algebraic gramar generates a con
text-free language. The difference of opinion in these matters might be
explained by the fact that they consider only a very special relation be
tween the syntactic algebra and the corresponding term algebra (but see al
so the discussion in section 9).

6. HOMDMORPHISMS

A homomorphismfrom algebra A to B is a mapping from the carriers of

A to the carriers of B such that the structure of A and B is respected.
This is only possible if A and B have about the same structure, although it
is not needed that A and B are identical or isomorph. For instance, it is
not needed that the two algebras have the same sorts, but there has to be
a one-one correspondence of the sorts. It is not necessary that the opera
tors perform the same action, but there has to be a one-one correspondence
between the operators such that if an operator in A is defined for certain
sorts, then the corresponding operator in B is defined for the correspond
ing sorts in B. These considerations are expressed formally in the follow
ing definitions (they are due to J. Zucker, pers. com.).

6.1. DEFINITION.Let A be an algebra with signature 2 FA,IA), and BA = (SA’

an algebra with signature EB = (SB,PB,IB). Let 0: SA + SE and p: FA + PB
be bijections (i.e. mappings which are one-one and onto). Then two algebras
A and B are called (0,p)-similar if the following holds:

68

TA(y) = <<s],...,sn>,sn+]> if and only if

rB(p(Y))='<<0(s]),---,0(sn)>.0(s)>.n+1

If 0 and p are fixed in a certain context, we will omit them and say that
the algebras A and B are similar.

6.2. DEFINITIONS.Let A and B be (o,p)-similar algebras. By a (o,p)-homo

morphism h from A to B we understand a mapping h: US€SA(AS) + US€SB(BS)
from the carriers of A to the carriers of B such that

1) h(AS) c Bo(S).

2) If TA(Y)= <<s1,...,sn>,sn+l> and al e ASl,...,an e Asn

then h(EY(al,...,an))= F (h(a1),...,h(an)).D(Y)

The collection of (o,p)-homomorphisms from A to B, where A and B are

(o,p)-similar algebras, is denoted Hom(A,B,o,p). When0 and p are clear
from the context, or are arbitrary (but fixed), then we will simply speak
of a homomorphismh; the collection is then denoted by Hom(A,B).

In case h is surjective, it is called a homomorphismonto, or an epi
morphism. The collection of epimorphisms is denoted Epi(a,B,o,p), or simpli
fied Epi(A,B). In case h is bijective (one-one and onto), it is called an
isomorphism (note that in category theory this term is used with a different
meaning).
6.2. END

The definition of 'homomorphism'given in 6.2 differs from the one
given by Adj (see e.g. ADJ1977). One difference is that our definition
can be used in more circumstances: we do not require, for instance, that
the collections of operator indices and sorts are identical. I prefer, in
this respect, our definition for practical reasons. Sometimesalgebras have
'natural' sorts, e.g. an algebra generating a language mayhave a carrier
of the sort sentence, whereas a semantical algebra mayhave a sort of truth
values, or of propositions. Then one might wish to define a homomorphism
between these two algebras, although the sorts are not identical. Our de
finition allows to do so directly, whereas according Adj's definition re
namingof the sorts has to be done first. This difference in the definitions
is, in theoretical respect, not important, and does not give rise to inter
esting theoretical consequences. In the following theoretical investigations

69

I will assume, for the ease of discussion, that similar algebras do have
the same sorts and operator indices; then 0 and p are assumed to be the
identity mapping. Amore fundamental difference of the definitions is that

Adj defines a homomorphismas a sorted collection of mappings (hS)S€S, where

hsz A5+ BS, and where these operations respect, in a certain sense, the
structure of the algebras involved. Since, according to our definition of a
manysorted algebra, the carriers need not be disjoint, it would under Adj‘s
definition of homomorphismbe possible for an element occurring in two car
riers to have two different images under h. In section 9 it will be explain
ed whyAdj‘s definition is not suitable for us in this respect.

A homomorphismrespects structure. Therefore it is not surprising that
the homomorphicimage of an algebra is a (similar) algebra. This is ex
pressed in the following theorem.

S€S,(FY)Y€P> and B = <(BS)S€S,(GY)Y€r> be similar

algebras, and h e Hom(A,B). Then <(h(AS))S€S,(GY)Y€r> is a subalgebra of

<(Bs)seS(Gy)yeF>'

6.3. THEOREM.Let A = <<AS)

PROOF.Weprove the theorem by proving that the sets h(AS)S€S are closed

under GY. Let r(Y) = <<s],s s >,s2"'°’ n n+1
such that bi = h(ai). Consequently

> and let bi e h(AS_). This means1
that there are a. e A

1 si

GY(b],...,bn) = GY(h(a]),...,h(an)) = h(FY(al,...,an)).

It is clear from the last expression that it denotes an element of h(As),
so of BS n+1
6.3. END

n+1

In chapter I we discussed the way in which the set E of expressions
of the language should be related to the set D of semantic objects. Wecon
cluded that, in order to obey the compositionality principle, the syntax
has to be a many sorted algebra and that the meaning of an expression has

to be obtained in the following way. For each syntactic operator FY, there
is an operator G on D, where G is defined for the images of the arguments

of FY. For the mapping Mwhich yields the corresponding meaning it is re
quired that:

M(FY(e],...,ek) = GY(M(el),...,M(ek)).

70

Weconcluded that these requirements have the consequence that D gets the
samestructure as the syntactic algebra. Moreformally this is stated in
the following theorem.

6.4. THEOREM.Let E = <(E) ,(F) > be an algebra, D a set and M a—j s seS YyeI‘
mapping from E to D. Let (GY)Y€rbe operators defined on the subsets M(Es)
of D.

Suppose

M(FY(e],...,ek)) = GY(M(e]),...,M(ek))

for all y e F and for all arguments e

Then D’ = <(M(ES))

l,...,ek for which FYis defined.
S€S,(GY)Y€F>is an algebra similar to E.

PROOF.

I. (D;)S€S is a collection of sets closed under the operations GYsince
_ = I

GY(m],...,mk) —GY(M(e]),...,M(ek)) M(FY(e],...,ek)) 5 DS
II. D is similar to E since the sorts are the same, the operator indices

are the same and

ifF:Es XE ><...E +E
Y 1 s2 sn s

then G : D’ ><D' X... D' + D‘ .
s1 s2 sn sn+]

III. Mis a mapping onto USD;satisfying the conditions for homomorphisms.
6.4. END

n+1

Having introduced the notion ‘homomorphism’, we may formalize the com

positionality principle as follows: the syntax is a manysorted algebra A,
the semantic domain is a similar algebra M, and the meaning assignment is

a homomorphism from the term algebra TA to M.
A first consequence of this formalization is the following theorem

concerning the replacement of expressions with the same meaning.

6.5. THEOREM.Let e,e' e AS, with M(e) = M(e'). Suppose FY(... ,e,...) to

be defined. ThenM(FY(..,e,..) = M(FY(..,e',..)).

EEQQE.M(FY(..,e,..) = GY(..,M(e),..) = GY(..,M(e'),..) = M(FY(..,e',..)).

The equalities hold since M is a homomorphismand FY is defined for all
elements of AS.
6.5. END

7]

The theorem states that in case two expressions of the same category

have the same meaning, they can be interchanged in all contexts without
changing the resulting meaning. The reverse is not true, interchangeable in
all contexts without changing the meaning does not imply that the meanings
are identical, since the language might be too poor to provide for contexts
where the difference becomesvisible.

The above theorem is related to the well knownprinciple of Leibniz
concerning substitutions (GERHARDT,1890, p.228).

Eademsunt, quorumunumpotest substitui alteri, salva veritate.
This principle is sloppy formulated: it confuses the thing itself with the
name refering to it (CHURCH1956, p.300, QUINE1960, p.116). It should

be read as saying that two expressions refer to the same object if and only

if in all contexts the expressions can be interchanged without changing the
truthvalue. Let us generalize the principle to all expressions, instead of
only referring ones, thus reading 'Eadem sunt' as ‘have the same meaning’.
Then the above theorem gives us a formalisation of one direction of Leibniz‘
principle. The other direction can then be considered as a restriction on
the selection of a semantical domain. The semantical domain may only give
rise to differences in meaning that are expressible in the language.

An important, although very elementary, property concerning homo
morphisms is that the compositions of two homomorphisms h and g is a homo

morphism again. As defined in chapter 1, the composition which consists in
first applying h and next g is denoted hog. This has as a consequence that
(h°g)(x) = g(h(x)), note that the order is reversed here. For this reason
one sometimes defines hog as first applying g and next h. Adj follows the
standard definition, but in order to avoid the change of the order, they
have, in some of their papers the convention to write the argument in front
of the operator (so (x)(h°g) = ((x)h)g)l). I will use the standard defini
tion (hog means first applying h). The announced theorem concerning compo
sition of homomorphismsis as follows.

6.6. THEOREM.Let A,B and C be similar algebras and let h e Hom(A,B) and

g e Hom(B,C). Then hog e Hom(A,C).

PROOF.Let FY,GYand HYdenote operators in A,B and C respectively. Then

hog<FY<a,,...,a.k>> = g<h<cY<a,,....ak>>> = g<cY<h<a1>,...,h<e.k>>>=

HY(g(h(a1)),---.g(h(ak))) = HY(h°g(a]),---,h°g(ak)).
6.6. END

72

In general, it is not necessary to define a homomorphismby stating its
values for all possible arguments, since (as I will now show) in the same way
as a subalgebra is completely determined by its generators, a homomorphism

is completely determined by its values on these generators.

6.7. THEOREM.Let h,g 6 Hom(<[A],(F) €F>, <B,(GY)YEP>).
Suppose that h(a) = g(a) holds for all generators a e A. Then h(e) = g(e)

holds for all elements e of <[A],(FY)Y€r>.

PROOF.Let K = {a e [A] I h(a) = g(a)}. NowK is closed under the opera

tions (FY)Y€F:

Let k],...,kn 5 K. Then:

h(FY(k1,...,kn)) = FY(h(k1),...,h(kn)) =
FY<g<k,>,...,h<kn> = g<FY<k,,...,kn>>.

So K is a subalgebra with A C K. Since [A] is the smallest subalgebra with
this property, it follows that K = [A].

6.7. END

Suppose that we have defined a mapping from the generators of algebra

A to those of algebra B. Then the above theorem says that there is at most
one extension of this mapping to a homomorphism.But not in all cases such
an extension exists. Supposethat in A two different operators yield for

different argumentsthe sameresult (i.e. Fi(al,...,an) = Fj(ai,...,a$)),
whereas this is not the case in B for the corresponding operators. Then
there is no homomorphismfrom A to B. But for the algebras we will work
with, (viz. termalgebras) this situation cannot arise. In a termalgebra an

operator (e.g.S1) leaves the corresponding symbol as a trace in the result

ing expression (e.g. the symbol S in S](E1,E2)). Hence in a termalgebra difl

ferent operators always yield different results. Therefore we maydefine a
meaning assigning homomorphismby providing 1. meanings for the generators
of the syntactic algebra and 2. semantic operators corresponding to the
syntactic operators.

6.8. EXAMLE.Let Mbe as in example 2.10, so

M= <[{0,1,2,...,9}dig], {F],F2}>
where F]: dig + num F](a) = a

and F2: num X dig + num F2(a,B) = as.

73

This algebra produces strings of symbols. The meaning of such a string has
to be some natural number. Let us denote natural numbers by symbols such

as 7, 70 etc. The reader should be aware of the fact that there is (in this
example9 a great difference between strings such as 1 and 7 for which e.g.
concatenation is defined, but not addition or multiplication, and numbers
such as l and 7 for which addition and multiplication are defined, but not
concatenation. Another difference is that 7,07, and 007 are distinct strings
all corresponding to the same number 7. The meaning algebra N corresponding
to M, consists of numbers and is defined as follows.

N = <[{o,1,...,9}],{Gl,G2}>dig
where G]: dig + num defined by G](a) = a

and G2: num X dig + num defined by G2(a,B) = l0><a-PB.

The meaning homomorphismh is defined by h(0) = 0... h(9) = 9.
So

h<F1(1>> = c,<h<1>> = c,<1> = 1

h(F2(FI(0),7)) = G2(G1(O),7) = 10 X 0 + 7
II \I

6.9. EXAMPLE.In example 2.1] we considered an algebra which was the same

as the above one, with the difference that the digits are written in front
of the numbers:

F3: num X dig + num defined by F3(a,B) = Ba.

In this situation it is impossible to find a semantic operation G3corre
sponding with F For suppose there were such an operation G Then, since3. 3.

e.g. h(7) = h(007) = 7, we would have that on the one hand G3(7,h(2)) =

G3(h(7),h(2)) = h(F3(7,2)) = h(27) = 27, but on the other hand G3(7,h(2))=
= G3(h(007),h(2)) = h(F3(007,2)) = h(2007) = 2007, which is a contradiction.
So whereas in example 6.8 it was rather easy to find a semantic operation,
it here is impossible since on the level of semantics there is no difference
between the meanings of 7 and 007.
6.9. END

74

The last example is a formal illustration of a statement of Montague's
concerning the syntax of natural languages (MDNTAGUE1970b, p.223, fn.2):

It is to be expected, then, that the aim of syntax can be realized in
manydifferent ways, only someof’which would provide a suitable basis
fbr semantics.
Next I will prove a theorem that is important from a theoretical point

of view. The theorem implies that the framework allows for assigning any
meaning to any language. This means that working in accordance with the
frameworkgives rise to no restriction: neither on the produced languages,
nor on the assigned meanings. Notice that there is no conflict between the
theorem and the example above. The example shows that not every syntax can

be used, whereas the theorem states that there is at least one syntax. The
theorem is, however, not useful from a practical point of view, since it is

based upon the syntax developed in theorem 3.7: the construction does not
reflect the structure of the language. The proof of the theorem just says
that if you knowwhat the intended meanings of the expressions of the lan
guage are, then this knowledge defines some algebraic operation.

6.10. THEOREM.Let L be a recursively enumerable language over a finite
alphabet, and Ma set of meanings fbr elements of L. Let f: L + Mbe a func
tion. Then there is a finite algebraic grammarA and an algebra B such that
1) L(A) = L.

2) A and B are similar.

3) There is an h e Epi(A,B) such that h(w) = f(w) fbr all m e L.

PROOF.For the case L = G the theorem is trivial. For the case L # 9 consider
the algebraic grammardefined in theorem 3.7.

Let A be the algebraic gramar obtained in this way for L.
Recall that the last operation of this algebra gives for somestrings

as output the samestring, but with $ deleted. For other strings it gives
a special string as output. The semantic algebra will differ from the syn
tactic one only in this last operation: the function f will be incorporated.

More formally, let A be the syntactic algebra from theorem 3.7.

S0 A = <<[Sin], (FY)
>,in>, where S = {in,mid,out}. This alyePu{1,2,3,4,5} A

gebra is transformed into a semantic algebra B as follows:

3 = <(B) S,(GY)s se YePu{1,2,3,4,5}>

where Bin = Ain, Bmid = Amid and Bout = M and

75

G = FY if Y # 5,
and

G5 = F5°f.

The homomorphismh is defined by

w for w e B. u B .1n mid
h(w) =

f(w) for w e Bout.

6.10. END

7. A SAFE DERIVER

In chapter 1, section 4, I have sketched the framework in which we will

work, and I will repeat here somerelevant aspects. The syntax of the lan
guage of which we wish to define the semantics is an algebra A, and the

function which assigns meanings is an homomorphismdefined on TA. In order
to define this homomorphismwe use a logical algebra L which is interpreted

by homomorphismh in model M. From the algebra L a new algebra L‘ is de

fined, using deriver D, where L' is similar with A. The interpretation h
for L should determine uniquely an interpretation h' for L’. This situation
is represented in figure 1. Wewill return to this frameworkin section 8.

IA

L —9—+L'

Jh lb‘
M -9-+M'

Figure 1. The framework

In this and in the next section I will investigate somemethods for
building new algebras out of old ones, in such a way that an interpreta
tion homomorphismdefined on the old algebra determines a unique inter

76

pretation for the new algebra. Such a method will be called safe. Wewill

met several examples of methods to obtain new algebras from old ones; as
neutral name for such methods I will use deriver.

7.1. DEFINITION.A deriver is called safe if for algebras A and B and
all h E Epi(A,B) there is a unique algebra B' such that for the restriction
h' of h to D(A) it holds that h’ E Epi(D(A),B').
7.]. END

The requirement that h' is an epimorphism is important. If we would
not require this, B’ would in most cases not be unique. An extreme example

arises when D(A) is an empty algebra. Then there are infinitely manyal
gebras B‘ such that h' e Hom(D(A),B'), but only one such that
h' e Epi(D(A),B').

In this section I will consider the aspect of the introduction of new
operators. MDNTAGUE(1970b) claims that polynomially defined operators are

safe. A proof that for many-sorted algebras polynomial extensions are safe,
will be given below.

7.2. DEFINITION.Let A = <A,F> be an algebra and G a collection of operator
e S such thatsymbols such that for all g e G there are s n,sn+1 Al,OIO,S

gA=

7.3. THEOREM.If P is a collection of polynomial symbols, then AddopPis
safe.

> be similar al
PROOF. Let A = <(A) S,(FY)Y€r> and B = <(BS) A B

+ POL
s se seS’(Gy)yeP

gebras. Suppose that h E Epi(A,B) and P X POLA. We define h: POL
as follows:

I. Each operator symbol NYis replaced by a symbol EY.
II.Each constant 3 is replaced by a constant b, where b = h(a).

Define A‘ = AddopP(A), B’ = Add0ph(P)(B).

Wenow prove that h is an epimorphism from A’ onto B‘. That h is surjec

tive follows from the fact that h 6 Epi(A,B). Remains to show that
h e Hom(A',B'), so that for all newoperators, i.e. for all p e P, holds:

h<pA.<a1,....an>> = pB.<h<a,>,...,h<an>>.

AS]X...X Ash + ASn+l. Then the algebra <A,FUG>is denoted Addopc (<A,F>).

77

This is proved by induction on the complexity of p.
I. = .

P xJ.s

h(xj’S,A,(a1,...,an)) = h(aj) = x.J,S,B,(h(a]),...,h(an)).

DIII. p =

h(aA(al,...,an)) = h(§A) = BB bB(h(a]),...,h(an)).

III. p = FY(pl,...,pm)

h(PA.(a1.an>> = h<FY<p,,A.,...,pm,A.><a,,...,an>> =

= (al,...,an)),...,pm,A.(3190-o,an))=
GY(h(pl,A,(al,...,an)),...,h(pm,A,(a1,...,an))) =

= GY(p],B.,...,pm,B.)(h(a]),...,h(an)) = pB,(h(a]),...,h(an)).

Next we prove that B‘ is unique in the following sense: if h 6 Epi(A',B') and
h 6 Epi(A',D), then D = B‘. This follows from:

1. the carriers of B‘ and D are equal:

B; = {h(a) I a 6 Ag} = DS

2. the operators of B' and D are identical:

Let bl 6 BS],...,bn 6 Bsn. Then there are a] 6 AS ,...,an 6 Asn such
that h(ai) = bi. HencepB,(bl,...,bn) = pB,(h(a]),...,h(an)) =
= h(pA,(a],...,an)) = pD(h(a]),...,h(an)) = PD(b],...,bn).

One observes that uniqueness is a direct consequence of existence.
7.3. END

Nowthe question arises whether the restriction to polynomially de
fined operations is necessary. Wecannot generalize theorem 7.3 to opera
tors which are defined in an arbitrary way, as is shownby the next example.

7.4. EXAMPLE.Consider the following algebra of strings of digits:

N= <{o,1,...,9}dig,{0,...,9};um,c>
where C : Ndig X Nnum + Nnum is defined by C(a,B) = a8.

78

With these strings we associate a somewhatunusual meaning: their length
(it is not that unusual if one remembers the system 1-one, 11-two, 111

three). So the semantic algebra Mcorresponding to N consists of natural
numbers. Notice that in N we had digits (denoted 0,], etc.) with concate
nation, but in Mwe have natural numbers (denoted 0,] etc.), with the ope
ration of addition. The interpretation homomorphismh from N to Mis defined
as follows

h(0) = h(1) = .. h(9) = 1.

The operation corresponding with C is of course addition of the lengths of
the strings. So the semantic algebra Mis defined as

M = <(H}dig’]N num)’+>'

Nowwe extend N with a new operator D, defined as follows:

8 if a is the symbol 0

where D(a,B) =
a8 otherwise.

This operator is not polynomially defined, and it cannot be defined poly
nomially because there are no truth values in the algebra N (see example
4.8). Let N‘ be the algebra obtained from N by adding the operator D. Is
there a unique algebra M’ such that h 6 Epi(N',M')?

Suppose that there is such an algebra, called M’, with as operator d,
corresponding with D. What is then the value of d(l,l)?
On the one hand: d(l,l) = d(h(3),h(7)) = h(D(3,7)) = h(37) = 2.
On the other hand: d(l,l) = d(h(0),h(7)) = h(D(0,7)) = h(7) = 1.
This is a contradiction. So there is no such algebra M‘. The source of this

problem is that we makea distinction at the syntactic level which has no
influence on the semantic level: the difference between 0 and the other
digits.
7.4. END

This example has shown the dangers of using a non-polynomially defined
operator. If one introduces an operator which is defined in somearbitrary

79

way, then there is the danger of disturbing the interpretation homomorphism.
In practice the situation often arises that the meaningof somelanguage is
defined by translation into a logic. The addition to the logic of an operator
which is not polynomially defined, could invoke the danger that there is no
longer an associated semantics: a translation is defined, but there is no
guarantee of an interpretation for the derived logical algebra (i.e. there
is, in figure 1, no h‘). In chapter 6 (part 2) we will meet several exam
ples of proposals from the literature which are incorrect since there is
not such an interpretation.

The following example shows that in some cases operators which are not
polynomially definable nevertheless mayrespect homomorphicinterpretations.
So in theorem 7.3 the condition ‘polynomially defined‘ is not a necessary
condition.

7.5. EXAMLE(W. Peremans, pers. comm.).

Consider the algebra of natural nubers with as only operation S, the
successor operation (‘add one‘). So the algebra we consider is:

N = <N,S>

where S: I! + Ii is defined as ‘addition with one‘. Weextend N with the

operator 9, defined by the equalities n 9 0 = n and n 9 S(m) = S(n0m). This
means that 9 is the usual addition operator. This operator is not polyno
mially definable over N. One sees this as follows. All polynomial symbols
over N are of the form S(S(...S(x)). So a polynomial symbol which corre
sponds with an operator which takes two arguments, contains only one vari
able, and is therefore dependent on only one of its arguments. Consequent
ly the two place operation of addition cannot be defined polynomially.

In spite of the fact that $ is not a polynomially definable operator,
a (variant of) theorem 7.3 holds. For every algebra Mand every

h e Epi(N,M) there is an unique M‘ such that h e Epi(AddOpeN,M‘). This
is proved as follows. Let Sn(0) denote the n-times repeated application of
S to 0; so Sn(O) = S(S(...S(O)..)). For all n e N we have n = Sn(0). Since

h e Epi(N,M) this means that for all m e M there is an n such that

m = Tn(h(0)), where T is the operator in Mwhich corresponds with S.
Wedefine an operator * in-M as follows:

Assume: m =-Tn‘(h(0)) and m = Tn2(h(0)). Then m]*m2 =(iT1 2

This definition is independent of the choice of n

I1. +n

‘ 2(h(o)>.

1 and n2 as is shown as

80

follows:
"3T (h(0)), and that

n

Suppose that ml = T](h(0))
H H

n n
m T 2(h(0)) T 4(h(O)).2

Then

n + n n H D
r3%mm» r3w4mm»>=r%T%Mm»=

n+n
n + 2

+

TH3 n2<h<o>> = T 2 n3<h<o>> = T
l (h(0))

This showsthat the definition of * is a correct definition.

Now, let M’ be AddOp*(M).Then h e Epi(N',M') since it is a surjective map
ping and

“I "2 “1*“2
h(nlen2> = hcs <o>es (0)) = h(s (0)) =

nl+n2 n1 n2 n1 n2
T (h(0)) = T (h(0))*T (h(0)) = h(S (0))*h(S (0)) =

= h(n])*h(n2).

To prove the unicity of M‘, we only have to prove the unicity of this de

finition of *. Suppose that h e Epi(Add 0pe(N),M"), where the operation
corresponding with 0 in M" is 0.

Hr H2 H1 H2 “1 “2
m]°m2 = T (h(0))°T (h(0)) = h(S (0))°h(S (0)) = h(S (0)03 (0))

n1+n nl+n
2(h(0)) = m *m .

2
(0)) = T 1 2= h(S

7.5. END

The characterization of operators which are safe is still an open
question. But for a class of algebras which is relevant for us, such a
characterization can be given. In the sequel we will always work with a
logic which has as syntax a free algebra with infinitely manygenerators
(all variables and constants are generators). For such algebras all safe
operators are polynomially definable. Note that in example 7.5, were there
was no polynomial definition for 0, there is a single generator (viz.0).
Results related to the above one are given in Van BENTHEM(l979b); the proof
of the above result is given in appendix 1 of this book. The notion of a
'safe deriver' is, related to the notions 'enrichment' and 'derivor' used
in the theory of abstract data types, e.g. in ADJ1978.

81

8. MDNTAGUE GRAMAR

The notion ‘Montaguegramar‘ is often used to indicate a class of
grammars which resembles the grammarused in Montague's most influential

publication PTQ (MONTAGUE1973). It is, however, not always made clear what

is to be understood by ‘resembling’ in this context. There are a lot of
proposals which deviate from PTQin important respects. Someproposals have
a rather different syntax, other use a different logic or different models.
The definition of ‘Montague grammar‘ should make clear, which proposals are
covered by this notion and which not.

In my opinion the essentail feature of a Montague grammarconsists in
its algebraic structure. The most pure (and most simple) definition would
be that a Montague grammar consists in an algebraic gramar and a homomorphic

interpretation. One always uses, in practice, someformal (logical) lan-~
guage as auxiliary language, and the language of which one wishes to de
scribe the meanings is translated into this formal language. Thus the
meaning assignment is performed indirectly. The aspect of translating into
an auxiliary language is, in myopinion, unavoidable for practical reasons,
and I therefore wish to incorporate this aspect in the definition of a
Montaguegrammar. This decision includes (by suitable interpretation) gram
mars in which the interpretation is given directly. The most important ex
ample of that kind of grammar is the grammar in ‘English as a formal lan

guage‘ (MONTAGUE1970a). For such gramars the name simple Montague gram

mar seems suitable. These considerations should explain the following defi
nitions.

8.1. DEFINITION.A simple Mbntague grammar consists of

1. an algebraic grammar A

2. an algebra Msimilar to A

3. a homomorphism h e Hom(A,M).

8.2. DEFINITION.A Mbntague grammar consists of

1. an algebraic grammarA (the ‘syntactic algebra‘)
2. an algebraic grammarL (the ‘logical algebra‘)
3. an algebra Msimilar to L (the ‘semantic algebra‘)
4. a homomorphismh E Hom(L,M) (the ‘interpretation of the logic‘)

5. an algebra D(L), similar to A derived from L, where D is a safe deriver.

6. a homomorphismh 6 Hom(TA,D(L)) (the ‘translation‘).
8.2 END

82

Definition 8.2 is illustrated by figure 2 (cf. figure 1.)

TA

1..
L---+D(L)

J“ 1*‘

M---+ M‘

Figure 2. A Montague grammar

The logical language which we will use is just as in PTQ, the language
of intensional logic. Its (algebraic) grammarL and its (homomorphic)in
terpretation will be considered in chapter 3. The grammarA of the PTQ
fragment and its translation D(L) will be presented in chapter 4. The de
river D that will be used can be considered as being built from more ele
mentary ones. I have found it convenient to define fbur more elementary
derivers, but other decisions are possible as well. The most important de
river is AddOpwhich has been discussed in section 7. The other three

are introduced below: first an informal discussion; then a formal defini
tion.

The first deriver I will discuss is AddSorts. An application has the

T A3
function. The effect of this deriver is that a new algebra is formedwith
form AddSorts 0(A), where T is a collection of sorts, and 0: T + S

3

as sorts T U SA, and with as carrier for T e T the set AO(T). So this de
river introduces new sorts without introducing newelements. This deriver
will be used when we need to introduce several new sorts which get their

elements from one single old sort. An example of this as follows. In a
syntax for English, nouns like manand verbs like run will be in different
categories because they have different syntactic properties. But semantical
ly both expressions are considered as predicates of the same type. There
fore we have to build from one old carrier (of predicates) two carriers
(of nouns and of verbs). Wemay remove from each of these two carriers the

elements which are not necessary for the translation of English, but in

83

principle the carriers maystill be non-disjoint (e.g. both maycontain
variables for predicates).

The second deriver I will discuss is DelOp. An application of this de

river has the form Del0pA(A). Here is A a subset of the set of operator
symbols of A. The effect of this deriver is that a new algebra is formed
which differs from A in the respect that it does not have the operators
mentioned in A. This deriver is needed for the following reason. The

derived algebra D(L), see figure 2, should only have operators which cor
respond with operators in A. Not all operators of the logical algebra L will
be operators of D(L). For instance, the introduction of the universal quan
tifier might not correspond to any of the operations of the grammarA for
the natural or programminglanguage under consideration. Therefore we need
a deriver which removes operators.

The last deriver is SubAlg. An application of this deriver has the

form SubAlgH(A).Here is H a sorted collection of elements of A. Its effect
is that an algebra is formed which has the same operators as A, but which
has H as a generating set. This deriver is used in the following kind of
situation. The logical algebra L (see figure 2) has for each sort infinite
ly many generators. The grammarA might not have this property. For instance,
the sentences of a natural language are all built up from smaller components,
and hence there are no generators of the sort ‘sentence’. SubAlg is then
used to reduce the carriers of L to those elements which will be images of
elements in A.

Below these three methods are defined, and their safeness is proven.
It is not surprising that these methods are safe. Nevertheless the proofs
are not elegant, but rather ad-hoc. This is probably due to the fact that
there is hardly any theory about derivers of many-sorted algebras which I
could use here. GOGUEN& BURSTALL(1978) present some category-theoretic

considerations about derivers for many-sorted algebras in the sense of ADJ
1977. I have already mentioned the work of Van BENTHEM(1979b) concerning

the introduction of new operators in one sorted algebras. That there is a
need for a general theory appears, apart from the present context, in work
in the field of abstract data types in the theory of programminglanguages,
see e.g. EHRIG, KREOWSKI& PADAWITZ 1978 and ADJ 1973

8.3. DEFINITION. Let a: T —>s arbitrary. Then 0' = Un(TUS)n><(TUS)+ unsnxs
is defined by

84

l. o'(s) = s for s e S
2. o'(t) = o(t) for t e T

3. o'(<<t],...,tn>tn+]>) = <<o'(tl),...,0'(tn)>,o'(tn+l)>.
In the sequel we will write 0 for 0'.

8.4. THEOREM.Let A = <(A) (FY)Y€r> be a 2-algebra. Let T be some sets seS’
(SnT=¢) and 0: T + S some mapping. Then there is an algebra

I _ I
A — <(At)t€TUS,G> where

' Z
I. At AU,(t)

II. The set of operators G is defined as follows: for all y eI‘and all
<w,u> e (TuS)nx(TuS) with o(<w,u>) = r(y) we add a new operator

gY,<w,u>of type <w,u>, and define the effect of gY to be equal
to FY.

(So the operator indices are the compoundsymbols y,<w,u>).

,<w,u>

PROOF.The elements of A and A‘ are equal. Since A is closed under FY, we
have that A’ is closed under g .

Y.<W.u>

8.5. DEFINITION.The algebra introduced in 8.4 is denoted Add Sortso (A).,T

8.6. THEOREM.Addsorts is safe.

PROOF.Let A = <(As)) r> and B = <(BS)S€S,(GY) > be similar alseS’(Fy ye yef
gebras, and let h e Epi(A,B). Suppose 0: T + S. Define A‘ = Add Sortso T(A)I

and B’ = Add Sortso T(B). Wenow prove that h e Epi(A',B'), and that B‘ is
9

(up to isomorphism) the unique algebra with this property.
Since the elements in B‘ are the same as in B, the mapping h is sur

jective. Remains to show that h is a homomorphism. In analogy of theorem

8.4 we denote the operators introduced in AddSortsc,T(B) by gY,<W,u>,B,

and those introduced in Addsortso T(A) by gy9

Then
,<w,u>,A

h(g (a],...,an)) = h(FY(a],...,an)) =Y,<w,u>.A

= GY(h(a]),...,h(an)) = gY (h(a1),...,h(an)).,<w,u>,B

That B’ is unique can be proved in the same way as we did in the proof of

7.3 (if there was another algebra, it should have the same carriers and
operations).

85

8.7. THEOREM.Let A = <(A) ,
—-——-——— s seS

A = <(AS)S€S,§\A> is an algebra.

F} be an algebra and let A C F, Then

PROOF.A is closed under all FY from_F\A.

8.8. DEFINITION.The algebra introduced in 8.7 is denoted

DelOpA(A).

8.9. THEOREM.DelOp is safe.

ERQQF.Let A and B be similar algebras and h e Epi(A,B).

Define A‘ = DelOpA(A) and B’ = DelOpA(B). We now prove that h e Epi(A',B')
and that B’ is the unique algebra with this property.

Algebras A‘ and B‘ are similar since if FY is an operation of A’ then GYis
an operation of B‘. That h is surjective on B‘ is evident. Since h respects

all FY from F it also does for those in FNA. That B‘ is unique is proved in
the same way as in 7.3.

8.10. THEOREM.Let A = <(A) ,(F) > be an algebra and H = (H)
——————- s seS Y ye? “ s

colleetton sets wtth HS C AS. Let B = <[(HS)S€S],(FY)Y€r>. Define
T = {s I s e S such that HS # ¢}. Then B‘ = <(Bt)

aseS

t€T,(FY)Y€P> $3 an algebra.

t teTPROOF. (B) is closed under FY.

CD . DEFINITION.The algebra B‘ from theorem 8.10 is denoted SubAlgH(A).

8.12. THEOREM.SubAlg is safe.

FRQQF.Let A = <(AS)S€S,(FY)Y€r> and B = <(Bs)S€S,(GY)Y€r> be similar alge
bras and h e Epi(A,B). Suppose that H = (HS)S€Sis a collection such that

HS C AS. Define A‘ = SubAlgH(A) and B‘ = SubAlgh(H)(B). We now prove that
for H = hTA' holds that h e Epi(A',B'), and that B‘ is the unique algebra
with this property.

First we proof that h(A;) = B;.
1 F ' O O

I. D —<((h(AS))S€S,(GY)Y€P> 1S an algebra, see theorem 6.3. Since HS C AS
we have h(HS) C h(AS). So the generators of B' are in D, so (B;) C h(Aé).

II. That h(A;) C (B;) is proved by induction:
I

First note that this is true for the generators of AS.

Suppose T(y)=.<<s],«-.,sn>,sn+fn Let a] e A; ,...,an e Aén, and assume that

86

h(a1) e B; ,...,h(an) 6 BS . Thenh(FY(al,...,an)) AGY(h(a]),...,5(an))
because h e Epi(A,B). Since B is an algebra we have h(FY(a],...,an)) e B‘

From I and II it follows that B‘ = h(A;), hence h e Epi(A',B'). That
B‘ is unique can be proved in the same way as in 7.3.
8.]. END

Derivers like the ones defined above are not the only safe derivers.
Taking a cartesian product or taking a projection from such a product are
probably safe in somesense. Such derivers could be relevant for linguistic
purposes. In the treatment of presuppositions (by KARTTUNEN& PETERS1979)

a phrase is connected with two formulas: one denoting its meaning, and one
denoting its presuppositions. If two phrases are combinedin the syntax to
form a new phrase, then the two meanings are combined to form the meaning

of the new phrase, and the presuppositions are combined to form a new pre
supposition. This situation fits into the frameworkif the newsemantic
algebra would be considered as the product of two copies of the same seman

tic algebra (however, details of their proposal give rise to complications).
The derivers described in this section together with AddOpare the on

ly derivers we will use. They constitute the basis for the way in which I
will introduce derived algebras. A derived algebra will be defined by pro
viding in someway the following information
0) what the old algebra is
1) what the sorts of the new algebra are
2) what the generators of the new algebra are
3) what the operators of the new algebra are.

This information can be used in several ways to build a derived alge
bra. Onemight first add the new sorts and then the new operators, or vice
versa. Onemight use the derivers described above, or variants of them. But
all methods yield the same algebra, as follows from the uniqueness proof
given in the next theorem.

8.13. gyggggg. Let A = <(AS)S€S,(FY)Y€r> and B = <(BS)S€S ,(GY)Y€r>
similar algebras and let h e Epi(A,B). Let furthermore be given

be

1) a collection of sorts T and a mapping 0: T + S,

2) a collection of new generators (Ht)t€T, where Ht C AO(t)
3) a family of polynomials P = (pi).1eI

. A
f: (pi) + UnTn x T such that f(pi) = <w,t> only if pi e POL

and a type giving function

ieI

5n+l

<0(w).0(t)>'

87

Then there is a unique algebra D = <(D)t t€T,H> where

1) Dt c A0(t), i.e. the carriers of Dare subsets of the carriers of A
2) H = {pi.<w.v>,D ' Pi 6 ‘P9151’ “P9 = <“""> ‘md

pi,<w,v>,D(dl"'°’dn) = pA(dl""’dn)}

3) D is generated by the collection (Ht) D = <[(H)t€T],H>t€T, i.e. t

Moreover, there is a unique algebra E such that for E = hFDwe have
E e Epi(D,E).

PROOF1) Existence of D

The derived algebra will be defined in four steps which are indicated
in figure 3.

T ‘ ‘ ‘ * E1 _ ’ ’ + A2 _ ' ' + A3 ‘ ' " + A4 = D

B — — — + B] — - - + B2 — — - + B3 - - — + B4 = E

Figure 3. Construction of D

The algebras mentioned in figure 3 are obtained using the derivers de
fined before.

A = Add0pP(A), so A] is obtained by adding all polynomial symbols
mentioned in P.

$I>
II

AddSorts O(A]) so A is obtained from A by adding the sorts of T2 T, 2 1

A3 = Del0pA(A2) where A = {6 I f is an operator symbol of A2 and
6 4 H}

so A has only operators symbols given in P with the3

type indicated by f.

A = SubAlg(Ht)t€T(A3) so A4 is the algebra built from (Ht)t€T.

Fromthe previous definitions concerning derivers it follows that A4
i

0')

II. Uniqueness of D
Suppose that D1 and D2 are algebras satisfying the requirements for

D. Define D3t = Dlt n D2t. Then D3 = <(D3t) H> is a subalgebra of D] beteT’
cause

an algebra which satisfies the three conditions mentioned in the theorem.

88

1) D3t C Dlt

2) (D3t)teT
Let the type of n e H be <<t

is closed under the operations in H:

.,tn>,t > and supposeI’'' n+1

d] e D3tl, .dn 5 D3tn Then w(d], dn) 5 (Dlt + nD +) since u
on: 0 01:, 2 '

has the same interpretation in D1 and D2, and both D1 and D2 are closed
under 1. Hence D3 is closed under H.

Moreover, Ht C D3t. S0 D3 is a subalgebra of D1 containing the generators
of D], hence D3 = D]. From this follows that D2 = D].

III. Existence and unicity of E
Algebra E is defined by analogy to the definition of D. S0

B1 = Add0ph(P)(B), B2 = AddSortsT,C(Bl), B3 = DelOpA(B2) and

B4 = SubAlg(Ht)tET(B3). Here h(P) is defined as in theorem 7.3 and A is de
fined as above. From the previous theorems about derivers it follows that

h e Epi(Ai,Bi) for i e {l,2,3} and that hfAé e Epi(A4,B4). It also follows
that each Bi is the unique algebra with this property. In particular B4
is the unique algebra which satisfies the requirement for E.

8.14. EXAMLE.This example consists of the syntax and semantics of a small

fragment of English. The meanings of the sentences of the fragment are ob
tained by translating them into an algebra derived from predicate logic.
Its semantics is very primitive: the meaningof a sentence is a truth value.
This aspect is not important because the purpose of the example is to illu
strate the derivers described in this section.

The generators of the algebraic syntax are as follows:

B = {J0hn,Mhry}T

BIV = {run,waZk}

BCN= {chiZdLpr0féssor}.

The rules of the syntax are as follows

Fl: T X IV + S defined by F1(a,B) = a 88.

F2: T X CN+ S defined by F2(a,B) = a is a B.

89

Examples are:

Fl(John,run) = John runs

F2(Mhry,pr0fbss0r) = Mary is a professor.

This information determines the following algebraic grammar

<<[{J0hn,Mhry}T,{run,waZk} {chiZdLpr0féss0r}CN],{F1,F2h;S>.IV’

The fragment is translated into a derived algebra which is determined
by the following information.

The elements of BTare translated respectively into John,Mary which are
constants of type e. The elements of BIV and BCNare translated into the
following constants of type <e,t>: run,walk,chi1d,professor. Notice the dif
ferent type face used for English words and logical constants. The applica

tion of operator T (corresponding to rule F1) is described by the polyno1

2,<e,t> l,e
of a and B respectively, then the translation of the term Fl(a,B) is B'(a'),

mial symbol x (x). Consequently, if a' and B’ are the translations

The operator T2 (corresponding with rule F2) is defined by the same polyno
mial symbol. Examples are:

translation of Fl(John,run) is run(john).

translation of F2(Mhry,pr0féss0r) is professor(mary).

The description of the derived algebra given above has not the form
used in theorem 8.12. But implicitly all that information is given, as ap
pears from the following_
1. The sorts of the derived algebra are the same as those of the syntax:

T,IV,CN and S. The mapping 0 to the old sorts is o(T) = e, o(IV) = <e,t>,

o(CN) = <e,t> and 0(3) = t.

2. The generators of the derived algebra are the translations of the genera
tors of the syntactic algebra.

3. The polynomial operator is x (ml t), and the type-giving function
92,<e,t>

f says f((x (ml t)) = {<<T,IV>,s>,<<T,CN>,s>}.2,<e,t>
The process of making a derived algebra as is described in the proof

of theorem 8.12 proceeds as follows.

step 1. The polynomial operator x Gr! t) is added to the algebra of2,<e,t>
predicate logic.

90

step 2. The categories T,CN,IVand S are added. Their carriers consist of
the expressions of type e, type <e,t>, type <e,t> and type t respectively.
Moreover, the operators are multiplied. For instance, the operator
x x

2,<e,t>(l,e
tions are <<s,e>,e>,t>, <<CN,T>S>,<<s,e>,T>S> and <IV,T>t>.

) gets 12 incarnations. Examples of the types of these incarna

step 3. Everything that is not needed will be removed. The carriers of sorts
CNand IV are reduced, which has the effect that they become disjunct. Sort
t is removed, and most incarnations of the polynomial are removed, except
for <<CN,T>S>and <<IV,T>,S>.

The derived algebra which results from this process is the unique al
gebra guaranteed in theorem 8.13. In the sequel I will present the infor
mation needed to apply theorem 8.11 in the implicit way used here. The pro
cess of forming a derived algebra will not be described explicitly.

9. DISCUSSION

The frameworkdefined in this paper is closely related to two proposals
in the literature. These proposals are developed in two quite different
fields of semantics. The first one is developed by Richard Montaguefor the
treatment of the semantics of natural languages. It is presented in "Uni
versal Gramar" (MONTAGUEl970b), henceforth UG. The first sentence of
this article reads

There is in myopinion no important theoretical difference between
natural languages and the artificial languages of logicians; indeeaL
I consider it possible to comprehendthe syntax and semantics of both
kinds of languages within a single natural and mathematical precise
theory.

It is striking to discover that this statement also holds for the languages
of computer scientists. Independent of Montague's work, and independent of
the philosophical tradition this work was based on, the same ideas were
developed in the field of semantics of programming languages by the group
called Adj (Goguen, Thatcher, Wagner, Wright). Their motivation had nothing
to do with the compositionality principle; they have a practical justifi
cation for their framework. The second sentence of ADJ 1979 reads:

fhe belief that the ideas presented here are key, comesfrom our ex
perience over the last eight years in developing and applying these
concepts.

A more detailed comparision between these proposals and the one described
in this chapter will be given below.

91

The basic difference between Montague's framework and the present one, is
that Montaguedid not have the notion ‘manysorted algebra’ available. He
worked with a one sorted algebra and his syntax consisted of the descrip
tion of a very special one-sorted algebra: one with muchadditional struc
ture. I have a muchmore general algebraic concept of syntax and his one
sorted algebra is a special case. However, the mathematical object Montague
defines is the same as the object I define. The two frameworks present dif
ferent views of the same mathematical object. These different views have
some consequences for the details of the framework.
1. In the present framework operators are typed. In Montague's framework

operators are typeless, but rules are typed. This has the following con
sequence. If we apply the UGframework to PTQ, then not the syntactic
rules (i.e. S4,S5,...) are the operators in the algebraic sense, but the

operations on strings (i.e. F1,F2...). The frameworkrequires for each Fa
single corresponding semantic operation. But this is not for all F's the
case (e.g. not for F8: conjunction-operation). This illustrates that the
present framework, in which rules and operators coincide, gives an ap
proach which is closer to practice than the UGframework.

Both frameworks require that the operators be total. In my framework this
means that an operator has to be defined for the whole carrier of the
type of its arguments. In Montague's framework it means that the operators
have to be defined for all elements on the algebra, even for those ele
ments to which it will never be applied. A similar remark holds for homo
morphism. For instance the semantic interpretation has to be defined for
expressions which are not expressions of logic such as + + p. In practice
no one actually defines homomorphismsfor such arguments. In the present
frameworkthis practice is sanctioned.

In the present framework, there is a natural relation between the dis
ambiguated and the generated language: from an expression in the term
algebra one obtains the corresponding expression in the generated lan
guage by evaluating the expression. In UGthere is a (further unspeci
fied) relation R relating the disambiguated language with the generated
language. Such a relation can be used for several purposes: for neat
ones such as deleting brackets, but also for filtering, completely re
formulating the expression, or building new structures and other obscure
operations. That R can be any such relation is not good. As far as I

know, no one working in Montague gramar actually uses this extreme power
of R. Hence it is attractive to restrict R as we have done.

92

4. The present frameworkhas somebuilt in restrictions to guarantee that
the grammarbe effective. The restrictions are obeyed by all existing
proposals. The original, unrestricted definitions allow for too unin
teresting grammars.

Summarizing, the differences between the present framework and
Montague's have as a consequence that the present framework is much closer
to practice, and that unwanted, and unused, facilities are no longer avail
able.

Next I will consider the relation of our framework to that of Adj. The

basic idea underlying their approach is formulated in ADJ(1977, p.69).
In the cases we examine, syntax is an initial algebra, and any other
algebra A in the class is a pobbibfic domain (or Aemaniic afigebna);
the Aemantic fiunction is the uniquely determined homomorphismhA: S + A,
assigning a meaninghA(s) in A to each syntactic structure s in S.

This statement implies that the group Adj works with what we have called
'simple Montaguegrammars‘. They have, however, not explicitly described
the frameworkin which they work. They are interested primarily in practi
cal work concerning the semantics of programminglanguages. It appears that
their work is in accordance with what we have defined as being a (standard)
Montaguegramar. For instance, a central aspect of the present framework
is that polynomial operators are used to define complex operations on
meanings. Adj certainly knewabout the benefit of polynomials: their papers
are full of such operators. But no explicit formulation is given of the
role of polynomials in their approach. Since a frameworkis only implicit,
it is possible, that the algebraic theory developed in this chapter is
hidden in their works. The most fundamental difference between the two ap
proaches is that they base the semantics on the algebraic grammarfor the
language, whereas we base it on the corresponding term algebra (i.e. on
derivational histories). However, since the frameworkof Adj is not made
explicit, it is difficult to comparetheir approachwith ours. Therefore I
restrict myself to the general remarks given above. BelowI will discuss
some technical differences in the definition of algebra and homomorphism.

In the Adj approach it is required that all similar algebras have the
sameoperator symbols. I prefer to have the possibility of using different
operator symbols because that is standard in the field of Montague grammars

(the operators from the syntactic algebra are usually denoted Si, and those
of the logical algebra Ti). Furthermore, the Adj definition has as a con
sequence that renaming the sorts gives rise to a completely new algebra:

93

an algebra obtained by renaming the sorts is not isomorphic to the original
algebra, it is not even similar! For these reasons I prefer the more general
definition of manysorted algebra and of similar algebras which are used in
this chapter.

In the theory of universal algebras one usually allows for nullary ope
rations, i.e. for operations which do not take an.argument and-which always
yield the samevalue. In our definition such operations are not allowed.
To consider constants as nullary operators is intuitively difficult, and
practically inconvenient. For, instance, after having presented their de
finition, which allows for nullary operations, ADJ(l977,p.7l) says that
the uniformity is ‘mathematically nice‘, but ‘it is often more convenient’
to separate themout from the more general operators. Another difficulty
is the following. Let an algebraic gramar be given for a certain fragment.
Suppose that a new element is added to an existing carrier (a newword is
added of an already present category). Then one would judge intuitively
that nothing essential is added. If a newrule is added (i.e. a non-nullary
operation), then a new type of syntactic constructions is added to the
fragment. In such a situation one would say that something essentially is
added. If nullary operations would be allowed for, then these two kinds of
addition would have the same status, which is not in accordance with prac

tice. However,this difference concerning operators does not give rise
to essential differences in the algebraic theory (e.g. because I have
adapted suitably the definition of 'polynomial symbol‘).

In our approach a homomorphismis a mapping with as domain the elements

of the carriers. In the Adj approach it is a sorted collection of mappings.
For each sort there is a separate mapping. So in case an element occurs in
several carriers it is treated as if there are twodifferent elements. The

images under the homomorphismcan be different for the same element in dif
ferent sorts. This is not acceptable in our approach. In the process of
making a derived algebra we impose a new structure of sorts on the logical
algebra, and the interpretation homomorphismhas to determine uniquely the
interpretation of the elements of the new sorts (which are also elements of
the old sorts). If the homomorphismis defined as a sorted collection of
functions, the interpretation of the newcarriers is arbitrary. Hence
theorem 8.12 would not be valid. In order to guarantee an unique interpre
tation for the derived algebra, the Adj-definition was corrected.

Sumarising, the main difference between our approach and that of Adj

94

is that we base the semantics on the term algebra, whereas Adj does not.
Another difference is that we have an explicit framework. Differences in
technical details are a consequence of this frameworkor of requirements
from established practice. The present frameworkmight be considered as a
synthesis of the idea's of Montaguewith technical tools of Adj.

Finally, I will mention someafterthoughts about two points made in
this chapter. The choice not to allow for nullary operators is non-standard
and has some advantages for the explication. Along this way we came just
far enough. But this choice has the disadvantage that existing theory can
not be applied directly. Morein particular, I did not succeed in obtaining
a handsomedefinition of a ‘free algebra‘. Maybethis is a sign that it
might be wiser to follow the standard definition and accept the didactic
difficulties. The second point concerns the discussion in section 5(p.67) of
some remarks of ADJconcerning the context-freeness of the generated lan
guage. Joe Goguen (pers.comm) explained that ADJ's remarks should not be

understood in literal way. Ind ADJ1977 the possibility is mentioned that
the set of operators is infinite. In that waynon-context free languages
can be dealt with. The criticism on their approach should therefore not be
that ADJcan only deal with context-free languages, but that they can only
deal with gramars with context free rules, but not with arbitrary syntac
tic operations.

CHAPTER III

INTENSIONAL LOGIC

ABSTRACT

In this chapter the language of intensional logic is introduced; this
language is a useful tool for representing meanings of e.g. English. The
semantic interpretation of intensional logic is defined by a translation
into the language Ty2 of two-sorted type theory. Several properties of in
tensional logic are explained using this translation into Ty2.

96

1. TWO FACETS

1.1. Introduction

Our aim is to associate in a systematic way the expressions of a lan
guage with their meanings. Hence we need a method to represent meanings.
The most convenient way to do so, is to use some suitable logical language.

Oncethe interpretation of that language has been defined, it can further
be used to represent meanings. The language we will use in this book, is
the language of intensional logic, henceforth IL. This language is especial
ly suitable for representing the intended meaningsbecause it ‘wears its
interpretation upon its sleeves‘ (VanBenthem,pers.com.).

In chapter 1 some consequences of the principle of compositionality
are discussed. Here I will pay special attention to two of them.
I) The meanings associated with expressions of a natural language or a pro

graming language are intensions, i.e. functions on a domainconsisting
‘indices’. The indices formalize several factors which inof a set of

fluence the meaning of an expression.
II) The meanings form a many sorted algebra which is similar to the syntac

tic algebra. Hence we have for each category in the syntactic algebra a
corresponding sort in the semantic algebra: the semantic model is ‘typed’.

In the light of the close connection between IL and its models, it is not
surprising that these two facets of meaningare reflected in IL. This lan
guage contains operators connected with indices (e.g. tense operators), as
well as operators reflecting the typed structure of the semantic domain
(e.g. A abstraction). This means that IL can be considered as the amalgama
tion of two kinds of languages: type logic and modal tense logic. With this
characterization in mind, manyproperties of IL can be explained. This will
be done in the sequel.

1.2. Model - part I

The set of indices plays an important role in the formalization of the
notion 'meaning' since meanings are functions with indices as their domain.
The definition of the model will not say much about what indices are: they
are defined as an arbitrary set. This level of abstraction has the advan
tage that the meanings of such different languages as English and Algol can
be described by them. But one might like to have an intuitive understanding
of what indices are, what they are a formal counterpart of, and which degree
of reality they have. Several views on these issues are possible, and I will

97

mention some of them. Thereafter I will give mypersonal opinion.
1. Our semantic theory gives a model of how the reality is, or might have

been. An index represents one of these possibilities. In application to
natural language this means that an index represents a possible state of
affairs of the reality. In application to programing languages this
means that an index represents a possible internal state of the computer.

2. Our semantical theory gives a model of a psychologically acceptable way
of dealing with meanings. In this conception an index formalizes a per
ceptually possible state of affairs (cf. PARTEE1977b).

La.) Languages describe concepts, and users of a language are equipped with a
battery of identification procedures for such concepts. An index repre
sents a class of possible outcomes of such procedures (cf. TICHY1971).

-1-‘ 0 Our semantic theory describes howwe deal with data. An index represents
a maximal, non-contradictory set of data (cf. VELTMAN1981).

U1 'In order to say what meaning is, we may first ask what a meaning does,

and then find something that does that.‘ (LEWIS1970). Wewant meanings

to do certain things (e.g. formalize implication relations amongsen
tences), we define meanings in an appropriate way, and indices form a
technical tool which is useful to this purpose. Indices are not a formal

ization of something; they are just a tool.

Conception 1 is intuitively very appealing, and most widespread in the
literature. But the interpretations 2,3, and 4 are also intuitively appeal
ing. The reader is invited to choose that conception he likes best. An in
tuitively conceivable interpretation might help him to understand howand

whyeverything works. But the reader should only stick to his interpreta
tion as long as it is of use to him. For the simple cases indices can prob

ably be considered as an adequate formalization of his intuitions. But once
comes the day that his intuition does not help him any more. Then he should
switch to conception 5; no interpretation but a technical tool. Such a si
tuation arises, for instance, with the treatment of questions. Doyou have
an idea of what the meaning of a question should be in the light of concep
tion 1,2,3, or 4? For instance the treatment of indirect questions given in
GROENENDIJK& STOKHOF(1981) cannot be explained on the basis of the first

four conceptions. They have chosen as meanings those semantic entities
which do what they wanted them to do: the indices play just a technical
role.

98

1.3. Model - part II

In the model theory of type-logic the models are constructed from a
few basic sets by adding sets of functions between already available sets.
Twokinds of models can be distinguished, depending on how many functions
are added. In the so called ‘standard models‘, the addition clause says
that if A and B are sets in the model, then the set ABof all functions

from B to A also is a set in the model. In the so called ‘generalized mod
els' one needs not to take this whole set, but one may take some subset.
There is a condition on the construction of models which guarantees that
not too few elements are added to the model: every object that can be de
scribed in the logic should be incorporated in the model.

The laws of type logic which hold in standard models are not axioma
tizable. In order to escape this situation, the generalized modelswere
introduced (HENKIN1950). By extending the class of possible models, the
laws were restricted to an axiomatizable class: the more models the more

possible counter examples, and therefore the fewer laws.
Whatkind of models will be used for the interpretation of intensional

logic? I mention four options.
I. the class of all standard models
2. a subclass of the standard models

3. the class of all generalized models
4. a subclass of the generalized models.
Which choice is made, depends on the application one has in mind, and what

conception one has about the role of the model (see section 1.2). If one
intends to model certain psychological insights, then one might argue that
the generalized models with countably manyelements are the best choice
(cf. PARTEE1977b, and the discussion in chapter 7). If the model is used

for dealing with the semantics of programing languages then a certain sub
set of the generalized models is required (see chapter 4). In the applica
tion of Montague grammar to natural language, one works with option 2. A
subclass of the standard models is characterized by means of meaning postu
lates which give restrictions on the interpretation of the constants of the
logic. I will follow this standard approach in the sequel.

1.4. Laws

Most of the proof-theoretic properties of IL can be explained by con
sidering IL as the union of two systems: type logic and modal tense logic.
The modal laws of IL are the laws of the modal logic S5. Many of the laws

99

of type logic are laws of IL, exceptions are variants of the laws which
are not valid in modal logic. The laws of type logic (i.e. those which
hold in all standard models) are not axiomatizable. Since IL has (on sorted)

type logic as a sublanguage, IL is not axiomatizable either. For modal logic
there is an axiomatization of the laws which hold in all generalized models.
This is expressed by saying that type logic has the property of generalized
completeness. By combining these two completeness results, the generalized

completeness of IL can be proved (see also section 3).

l.5. Method

I have explained that many aspects of IL can be understood by consider
ing IL as the amalgamation of type logic and modal tense logic. Nevertheless,
the formal introduction of IL will not proceed along this line. I will first
introduce some other language: Ty2, the language of two sorted type theory.
On the basis of Ty2 I will define IL: the algebraic grammarof IL is an al
gebra derived from the algebraic gramar for Ty2. The reasons for prefer-'
ring this approach are the following:

1. Mbdel theoretic

In Ty2 the indices are treated as elements of a certain type just like all
elements. This is not the case for IL. In the interpretation of IL indices
occur only as domains of certain functions, but not as range. Therefore the
models for IL becomestructures in which carriers of certain types are de
leted, whereas, from the viewpoint of an elegant construction, these car
riers should be there. In the models for Ty2 they are there. Remarkable
properties of IL can be explained from the fact that these carriers are not
incorporated in its models. It appears to be better for understanding, and
technically more convenient, to describe first the full model, and to re
movenext certain sets, instead of to start immediately with the remarkable
model.

2. Homomorphisms

From the viewpoint of our framework, it is essential to demonstrate that
the interpretation of IL is a homomorphism.It seems, however, rather dif
ficult to show that the interpretation homomorphismfor type logic and
that for modal tense logic can be combined to a single homomorphismfor IL.
Furthermore, we should, in such an approach, consider first the interpre
tations of these two languages separately. It is easier to consider only
Ty2.

I00

3. Laws

Manyof the proof rules for Ty2 are easy to formulate and to understand.
This is not the case with IL. It is for instance mucheasier to prove lamb
da conversion first for Ty2, and derive from this the rule for IL, than to
prove the IL rule directly.

4. Speculation
Wewill use IL for expressing meanings of natural language expressions be
cause it is a suitable language for that purpose. Noexplicit reference to
indices is possible in IL, and there is no need to do so for the fragment
we will consider. But one mayexpect that for larger fragments it is un
avoidable to have in the logic explicit reference to indices. NEEDHAM
(1975) has given philosophical arguments for this opinion, Van BENTHEM

(1977) has given technical arguments, and GROENENDIJK& STOKHOF(1981)

treat a fragment of natural language where the use of Ty2 turned out to be
required. Furthermore we will consider in chapter 4:a kind of semantics
for programminglanguages which requires that states can be mentioned ex
plicitly in the logical language, and we will use Ty2 for that purpose.

2. TWO-SORTED TYPE THEORY

In this section the language Ty2 will be defined: the language of two
-sorted type theory. The name (due to GALLIN1975) reflects that the lan

guage has two basic types (besides the type of truth values). It is a gener
alization of one sorted type theory which has (besides the type of truth
values) one basic type. The language is defined here by means of an alge
braic grammar.

Since in logic it is customary to speak of types, rather than of sorts,
I will use this terminology, even in an algebraic context. The collection
of types of Ty2 is the smallest set Ty such that
I. {e,s,t} CTy (e='entity',s='sense',t='truth value’).
2. if 0 E Ty and T e Ty then <o,r> e Ty.

This is the standard notation for types which is used in Montague grammar.
It is, however, not the standard notation in type theory. Following CHURCH
(1940), the standard notation is (0)1 instead of <O,T>. I agree with LINK
&VARGA(1975) that if we would adopt that notation and some standard con

ventions from type theory, this would give rise to a simpler notation than

101

the one defined above. But I prefer not to confuse readers familiar with
Montaguegrammar, and therefore I will use his notation.

For each type 1 e Ty we have two denumerable sets of symbols:

CONf= {c]’T,c2,T,...} the constants of type T
and

VART= {v],T,v2,T,_,,} the variables of type T.

So the constants and variables are indexed by a natural number and a type

symbol. The elements of VARTare called variables since they will be used
in Ty2 as variables in the logical sense (they should not be confused with
variables in the algebraic sense which occur in polynomials over Ty2).

The generators of type T are the variables and constants of type T.

The carrier of type T is denoted as MET(meaningful expression of type T).
An element of the algebra is called a (meaningful) expression. The standard
convention is to call the meaningful expressions of type t 'formulas', but
I will call all meaningfulexpressions 'formulas'. (this gives the possibil
ity to distinguish themeasily from expressions in other languages).

There are denumerable many operators in the algebra of Ty2, because the

operators defined below are rather schemes of operators, in which the types
involved occur as parameters. For instance the operator for equalities

(i.e. R=) corresponds with a whole class of operators: for each type T 6 Ty

there is an operator R=,T. These operators R=,T all have the same effect:
R=’T(a,B) is defined as being the expression Ea;B]. Therefore we can define
a whole class with a single scheme. The scheme for R: should contain T as
a parameter, and other operations should contain two types as parameter.
These types are not explicitly mentioned as parameter, since they can
easily be derived from the context. The proliferation of operators just
sketched is a consequence of the algebraic approach and caused by the fact
that, if two expressions belong to different sorts for one operation (say
for function application), they belong to different sorts for all operations
(so for equality).

The operators of Ty2 are defined as follows

1. Equality

R=: MT X MET+ Mt where R=(a,B) = [a=B].

2. Function Application

R X MEG+ MT where R()(a,B) = [a(B)].(): ME<0,T>

102

3. Quantification

REV: MEt + Mt where v e VARTand R3V(¢) = 3V[¢].

For universal quantification (RVV)analogously. Recall that in chapter 1 ar
guments were given for not analyzing 3v any further.

4. Abstraction

RAV: MT + ME<0,T> where v e VAR0 and RAV(a) = Av[a].

5. Connectives

RA: Mt x MEt + Mt where RA(a,B) = [aAB].

Analogously for RV, R , and R++.-)

R1: Mt + Mt where R1(¢) = [7¢].

The (syncategorematic) symbols [and J are used to guarantee unique
readability of the formulas. They will be omitted when no confusion is
likely. The syncategorematic symbols 3v (existential quantifier), Vv (uni
versal quantifier) and Av (the lambda-abstraction) are called binders. A
variable is called free when it does not occur within the scope of 3v, Vv,
or Xv. The notions ‘scope’ and 'free' can be defined rigorously in the
usual way.

This completes the definition of the operators of Ty2. For the seman
tics of English, two more operators are needed. They introduce ordering
symbols between expressions of type s (i.e. between index expressions).

6. Ordering

R<: MS X MES + Mt R<(a,B) = [a < B]

R>: MS X MES + MEt R>(a,B) = [G > B].

After having described the sets of sorts, generators and operators of
Ty2, I will present the algebraic grammarfor Ty2. Let 3 be the collection
of operators introduced in clauses 1-5. Then an algebraic gramar for Ty2
is

<< [(CONTuVART) ‘§>,t>.IeTy]’

If 3 is replaced by g_u {R<,R>}: then an algebraic gramar for Ty2< is Ob
tained.

103

3. THE INTERPRETATION OF Ty2

The semantic domain in which Ty2 will be interpreted, consists of a
large collection of sets, which are built from a few basic ones. These basic
sets are the set A of entities, the set I of indices, and the set {0,l} of

truth values. The sets D1 of possible denotations of type T are defined by;
1. Dt={O,1}, De=A, DS=I

D
= o

D<O,T> DT .

In order to deal with logical variables, we need functions which assign
semantical objects to them. The collection ASof variable assignments
(based on A and I) is defined by

VAR

AS=l'l (Dr T).
meTy

Let as, as’ 6 AS. Wesay that as‘ 3 as (as' is a v-variant of as) if for
all w e VARsuch that w 1 v holds that as(w) = as'(w). If as' 3 as and
as'(v) = d then we write [v+d]as for as’.

Nowthe necessary preparations are made to say what the elements of

the semantic domains are. Let A and I be non-empty sets, and let DTbe de
fined as above. The sets MTof meanings of type T (based upon A and I) are:

By the semantic domain based upon A and I, we understand the collection

(MT)TeTy'
ture is required. The set I has to be the cartesian product of two sets W

In such domains we will interpret Ty2. For Ty2<additional struc

and T, where T is linearly ordered by a relation <. Here Wis called the
collection of possible worlds, and T the collection of time points. An
element i e WX T is called a reference point or index.

As is suggested by the definition of semantic domain, the interpreta
tion homomorphismof Ty2 will assign to an expression of type T some ele

ment of MT, i.e. the meaning of ¢ 6 METis some function f: AS + DT. In
chapter one we have formalized the meaning of an expression of predicate

logic as a function f: AS+ Dt, and here this approach is generalized to
other types. In the case of predicate logic a geometrical interpretation
of this process was possible, and this led us towards the cylindric alge
bras. For the case of Ty2 it is not that easy to find a geometrical

104

interpretation. In any case, I will not try to give one. But I consider
the interpretation of Ty2given here as a generalization of the interpreta
tion of predicate logic with cylindric algebras. Therefore I will call the
interpretation of quantifiers of Ty2'cylindrifications'.

Analogousto the interpretation of variables, there are functions for
the interpretation of constants. The collection F (based upon A and I) of
functions interpreting constants is defined by:

TeTy

By a model for Ty2 we understand a pair <M,F>where

1. M is a semantic domain (based on A and I).

2. F € F,hence F is a function for the interpretation of constants (based
on the same sets A and I).

In order to define a homomorphism from Ty2 to some model, the models

should obtain the structure of an algebra similar to the syntactic algebra
of Ty2. That means that I have to say what the carriers, the generators,
and the operators of the models are. The generators and operators will be
defined below, along with the definition of the interpretation homomorphism

V (V = 'valuation'). The carrier of type T has already been defined; viz. MT.
So the value of an element of METunder this interpretation V is a function
from AS to DT. This function will be defined by saying what its value is
for an arbitrary assignment as 5 AS. I will write VaS(a) instead of
V(a)(as) because the former notation is the standard one.

The generators of the semantic algebra are the images of the generators
of the syntactic algebra. These are defined by

a) V3.3(VT,I'1) = aS(VT,I'l)

b) Vas(C1,n) = F(ct,n '
As for the last clause, one should rememberthat we are defining the inter
pretation with respect to somemodel, and that models are defined as con
sisting of a large collection of sets and a function F which interprets
the constants.

The interpretation of compoundexpressions of Ty2 will be defined next.
Let R be some operator of the syntactic algebra of Ty2. Then the value

VaS(R(a)) will be defined in terms of Vas(a). In this way it is determined
how V(R(a)) is obtained from V(a). Then it is also determined how the

operator T, which produces V(R(a)) out of V(a) is defined. For each clause

105

in the definition of Vas(a), I will informally describe which semantic op”
erator T is introduced.

1. Equality

1 if Vas(a) = VaS(B)

Vas(a=B) =
0 otherwise.

So V(a=B) is a function from assignments to truth values yielding 1 if V(a)

and V(B) get the same interpretation for that assignment. Consequently T:
is the assignment-wise evaluated equality. To be completely correct, I have
to say that there is a class of semantic operators described here and not
a single one: for each type T there is an equality operator T_'9
2. Function application

VaS(a(B)) = VaS(a)(Vas(B))

So if V(a) 6 M<O’T>, V(B) 6 M0, then V(a(B)) 5 MT. And T : M T>xM -+Mo. ' . . T’

where T() is assignment-wise function application of the assignment-wise
determined function to the assignent-wise determined argument.

3. Quantification

1 if there is an as‘ ~ as such that V ,(¢) = 1.v as

VaS(3v¢) =
0 otherwise.

The element V(3v¢) 6 Mt is obtained from V(¢) 5 Mt by application of TBV.
This operation T is a cylindrification operation like the ones introduced3v

in chapter 1. VaS(Vv¢)is defined analogously.
4. Abstraction

Let v e VAROand ¢ 6 MET. Then VaS(lv¢) is that function f with domain DO

such that whenever d is in that domain, then f(d) is VaS,(¢), where as’ =
[V-*d]as. In the sequel I will symbolize this rather long phrase as

vaS(Av¢) = id v (cb).[v+d]as

Here A_mightbe considered as an abstraction in the meta language, but its
role is nothing more than abbreviating the phrase mentioned above: ‘that

106

AVcorresponding to RAVis a
function from M to M where T associates with an element e e M

T <O,T> Av T
This function f assigns to an as 6 AS the function

function which ...'. The semantic operator T

some fuction f e M .
<o,T>

that for argument d has the value e(as'), where as’ = [v+d]as.

5. Connectives

1 if VaS(¢) = Vas(¢) = 1

VaS(¢A¢) =
0 otherwise.

So T is the assignent-wise evaluated conjunction.

The corresponding operators Tv,T+,Tfi and T++ are defined analogously to
TA: assignment-wise evaluated connectives.

This completes the interpretation of Ty2. For the interpretation of
Ty2<an additional clause is required.

6 . Ordering

I if the world component of VaS(a) equals the

world component of VaS(B), and the time com

ponent of VaS(a) is before the time componentV (a<B) =

as of VaS(B) in the linear ordering of T.

0 otherwise.

Analogously for VaS(a>B).

This definition means that in case the world components of a and B are dif

ferent, then VaS(a<B) = 0. The relation-symbol < does not correspond with
a total ordering, and consequently 7(a<B) is not equivalent with
[a>B V a=B].

4. PROPERTIES OF Ty2

In the definition of the language Ty2, we introduced a lot of operators
(corresponding with connectives and quantifiers). Abstraction was just one
amongthem. In a certain sense, however, it is the most important and power
ful operator. The other operators are unnecessary since they can be defined
in terms of A-operators (and =). Also expressions denoting truth values
can be defined in this way. I will present the definitions (originating

107

from HENKIN1963), without further explications because I will not use
their details in the sequel. Theyare presented here for illustrating the
central role of A-abstraction in this system.

4.]. EXAMPLEdefinitions based on A-operators.

Let x,y e VARt and f e VAR<t,t>. Then

T = [Xx[x] = Xx[x]]

F = [Ax[x] = Xx[T]]

7 = [Ax[F=x]]

A = [AxAy[Af[f(x) = y] = Af[f(T)]J]

+ = [AxAy[[xAy] = x]]

v = [AxAy[7x+y]]

Let T e Ty and z e VART; then:
VzA = [XzA = AZTJ.

4.]. END

In certain circumstances, we may simplify formulas of the form Av[¢](a)
by substituting the arguent a for the free occurrences of v in ¢. This
kind of simplification is called A-reduction or A-conversion. In the theory
of A-calculi this reduction is knownunder the nameB-reduction (a-reduc

tion is change of the bound variable V). I described above the central po
sition of A-operators. This implies that the prooftheory of Ty2 is essen
tially the prooftheory of A-calculus. Therefore it is of theoretical impor
tance to knowunder what circumstances A-conversion is allowed. But there

is also an important practical motivation. In the next chapters we will en
counter frequently formulas with many A-operators. Then, by A-conversion,
these formulas can be reduced to a manageable size. This practical aspect
of reducing formulas is the main motivation for considering A-conversion
here in detail. I start with recalling a theoremwhich says which kinds of
reductions are allowed in all contexts. Thereafter soumtheorems will be

given concerning the reduction of formulas containing A-operators.

4.2. THEOREM.Let a,a' 6 M0 and 8,8’ e METsuch that
a) B is part 0f'a
b) B‘ is part 0fa'
c) a‘ is obtained from a by substitution of 8' fbr B.

108

Suppose that fbr all as e AS holds VaS(B) = VaS(B').

Then for all as 6 ASholds VaS(a) = VaS(a').

EEQQE3Recall that B is a part of a if in the production process of a some
rule is used which has 8 as one of its arguments. Hence 8 is used in a con
struction step R(..,B,..), where R is an operator from the algebraic gram

mar for Ty2. That Vas(B) = VaS(B') for all as 6 AS, means that B‘ has the
same meaning as B. This means that the present theorem is a reformulation
of theorem 6.4 in chapter two (here adapted for the present algebra and the
present notion of meaning). Hence the same proof applies.
4.2. END

As a consequence of this theorem, two expressions with the same
meaningmaybe replaced by each other 'salva veritate'. This is a gener
alization of Leibniz‘ principle (just as the corresponding theorem in chap
ter 2) since it applies to formulas of any type to be replaced within for
mulas of any (other) type. The theorem provides a foundation for all reduc
tions (simplifications) of IL-formulas we will meet in the sequel. A (sub)
formula may be replaced by a formula with the same meaning. This may even

be done in case it is not yet knownin which larger expression they will
occur as subformula. The theorem holds due to the fact that we have an al

gebraic interpretation of Ty2.

4.3. DEFINITION. Let ¢ 5 M0, a e METand v e VART. Then [a/v]¢ denotes the
formula obtained from ¢ by substitution of a for all free occurrences of v
in ¢. This substitution is defined recursively as follows

[ct/VJV 3 0:, [am w 3 w (if w 1 v), ta/vjc 3 c
Ea/V][w = n] 3 [Ea/v]w] = [Ea/v]n]

Ea/v][¢(n)] 3 [Ea/v]w]([a/vjn)

Ea/v][3w¢] E 3w[[a/v]¢] if w ¥ V

Ea/v]av¢ 3 amp

analogously for Vw¢ and for Aw¢

Ea/v][¢Aw] E [[a/v]¢] A [Ca/v]w]

analogously for the other connectives.

4.3. END

109

4.4. THEOREM.Suppose no free variable in a becomes bound by substitution

of a for v in ¢. ThenA-conversion is allowed; t.e. for all ase AS:

VaS(AV[¢](a)) = VaS([a/V]¢).

PROOF.The clause concerning function application in the definition of Ty2
says:

VaS(Av[¢](a)) = VaS(Av[¢])(VaS(a)).

By definition VaS(Av[¢]) is that function which for argument d yields value
V[V+d]aS(¢). So, writing A for VaS(a), we have

vaS<xvE¢J><vaS<a>> = vaS<xvE¢J><A> = <4»).V[v+A]as

Wefirst will prove, that for all as 6 AS

V[v+A]as(¢) = Vas([a/V]¢)°

From this equality the proof of theorem easily follows. The proof of the
equality proceeds with induction to the construction of ¢.

1. ¢ 5 c, where c e CONT

V[v+A]aS(c) = F(c) = VaS(c) = VaS([a/v]c).

2. ¢ E w, where w e VART.

2.]. w i V

V[v+A]as(w) = VaS(w) = VaS([a/v]w).

V[v+A]aS(v) = A = VaS(a) = Vasfa/v]v.

3- ¢ 5 Ew = n]

V[v+AJas““=”’ = ‘ iff "tv+AJas("” ‘ V[v->A]as(n)'

By induction hypothesis, this is true iff

VaS([oL/VN) = VaS([oL/v]n)a

hence iff VaS([a/v][w=n]) = 1.

110

¢~ S m <.‘

v[V+A]aS(>\mp)=VaS(lvq;) = vas[a/v][>.vw].

4.2. w 1 V.

The conditions of the theorem guarantee that w does not occur in a. This
fact is used in equality I below. Equality II holds since we may apply the
induction hypothesis for assignment [w+d] as, and equality III follows from
the definition of substitution.

V[v+A]as(xww) = v[v+VaS(a)]as(Aww) =

_A_dV vtw»aJax~vaSuoJas)“° =1 *d [w+d]([v+V[w+d]as

XdV—- [v+V (a)]([w»d]as)(¢) =11[w+d]as

AdV (Ea/v]¢) =[w+d]as

= VasAw[a/v]w =III

Vasfa/v]lww.

The proof for Vvwand Svw proceeds analogously.

V[v+A]as(1w) = 1 iff V[v+A]as(w) = O

by induction hypothesis we have

V[v+A]as(w) = Vas[a/VJ¢'

So V (W) =1 iff vaS‘I[a/v]¢ =1.[v+A]as

Analogously for the other connectives.

4.4. END

(a)]as)(“’) =

111

From theorem 4.2 it follows that in case A-conversion is allowed on a

certain formula, it is allowed in whatever context the formula occurs. So,
given a compoundformula with several A-operators, one may first reduce the
operators with the smallest scope and so further, but one may reduce also
first the operator with the widest scope, or one mayproceed in any other
sequence. Does this have consequences for the final result? In other words,
is there a unique A-reduced form ('a A-normal form‘)? The answer is affir

mative. The only reason which prevents a correct application of the A-con
version is the syntactic constraint that a free variable in a should not
become bound by substitution in ¢. Using a-conversion (renaming of bound
variables), this obstruction can be eliminated. It can then be shownthat

each formula in Ty2 can be reduced by use of a- and A-conversion to a A
reduced form which is unique, up to the naming of bound variables (see the

proof for typed A-calculus in ANDREWS1971 of PIETRZYKOWSKI1973, which

proof can be applied to Ty2as well). This property of reduction system is
known under the name ‘Church-Rosser property’.

The theorem we proved concerning A-conversion gives a syntactic de
scription of situations in which A-conversion is allowed. It is, however,
possible that the condition mentioned in the theorem is not satisfied, but
that nevertheless A-conversion leads to an equivalent formula. A semantic
description of situations in which A-conversion is allowed, is given in the
theorem below. This semantic description is not useful for simplifying Ty2
formulas, since there are no syntactic properties which correspond with the
semantic description in the theorem. In applications for the semantics of
natural languages or programing languages we will have additional infor
mation (for instance from meaning postulates) which makes it possible to
apply this theoremon the basis of syntactic criteria.

4.5. THEOREM(JANSSEN1980). Let Av[¢](a) e ME, and suppose that fbr all

as,as' e As: VaS(a) = VaS,(a).
Then fbr all as 6 AS: VaS(Av[¢](a)) = VaS([a/v]¢).

PROOF.Consider the proof of theorem 4.4. The only case where is made use

of the fact that no variable in a becomesbound, is in the equality I in
case 4. Since the condition for the present theorem requires that the in
terpretation of a does not depend on the choice of as, we have

Vas(a) = V[w+d]as(a)'

112

Consequentlythe proof of 4.4 applies, using this justification for equality
I.
4.5. END

Ty2 contains typed A-calculus as a sub-theory. Since typed X-calculus
is not axiomatizable, Ty2 is not axiomatizable either. That typed A-calculus
is not axiomatizable becomesevident if one realizes that its models are

very rich: they contain models for the natural numbers. The formal proof of
the non-axiomatizability is based upon standard techniques and seems well
known. GALLIN(1975) does not give a reference when remarking that typed

A-calculus is not axiomatizable, and HENKIN(1950) only gives some hints

concerning a proof. A sketch of a possible proof is as follows. Aneffective
translation of Peano arithmetic into typed A-calculus is defined (see below
for an example). Then it is proven that every formula ¢ from Peano arith
metic is true in the standard model of natural numbersiff the translation

of ¢ is true in all standard models for Ty2. Since arithmetic truth is not
axiomatizable, Ty2 cannot be axiomatizable either.

Anexample of an effective translation of Peano arithmetic into typed
A-calculus is given in CHURCH(1940). For curiosity I mention the transla

tions of some nubers and of the successor operator S. Also the Peano-axioms
can be formulated in typed A-calculus. The formulas translating 0,1,2 and S,

contain the variables x e VARe, f 6 VAR , and v e VAR<e,e> <<<e,e>,e>,e>'
One easily checks that S(0) = 1 and S(l) = 2.

arithmetics translation
0 XfXx[x]

1)\fAx[f(x)]

2 >.fAx[f(f(x))]
S AvAflx[f(v(f)(x))].

As I already said in section 1, Ty2 is generalized complete: i.e. the
class of formulas valid in all generalized models is axiomatizable. The
proof is a simple generalization of the proof for one-sorted type theory
(HENKIN1950). I will define below the generalized models and present the

axioms without further proof.

The generalized domains of type T e Ty, denoted GDT, are defined by

113

1. GD = A, GD = I, GD = {O,l}e s t
and

2. GD<o’T> C GDT (o,reTy).

The generalized meanings of type T denoted GMT,are defined by

AS
GMT= GDT where AS is the set of variable assignments.

A generalized model is a pair <GM,F>,where

1. GM = U GD
T T

2. F 6 F where F is the collection of interpretations of constants
3. the pair <GM,F>is such that there exists a function V which assigns

to each formula a meaning, and which satisfies the clauses a,b,l,...6
from the definition of V for Ty2 in section 3.

Without the last requirement concerning generalized models, there might
arise difficulties to define V for somemodel: the interpretation of A
might fail because the required function may fail to belong to the model.
The addition of requirement 3 makes that such a situation cannot arise. On
the other hand, the third condition makes that it is not evident that
generalized models exist since the given definition is not an inductive
definition. It can be shown, however, that out of any consistent set of
formulas such a model can be built.

The axioms for Ty2 are as follows (GALLIN1975, p.60):

Al) g(T) A g(F) = Vx[g(x)] x e VARt, g 6 VAR<t t)

A2) x=y-*f(x)=f(y) xe VAR,feVART <r,t>
A3) VxEf(x) = g(x)J = [f = 93 x e VAR , f,g e VAR0 <o,1>
AS4) Ax[A(x)](B) = [B/x](A(x)) where the condition of th.4.4 is satisfied.

Furthermore, there is the following rule of inference:

From A = A’ and the formula B one may infer formula B’, where B’ comes

from.B by replacing one occurrence of A which is part of B, by the
formula A' (cf. theorem 4.2).

5. INTENSIONAL LOGIC

The language of intensional logic is for the most part the same as the
language Ty2. The collection of types of IL is a subset of the collection
types of Ty2. The set T of types of IL (sorts of IL) is defined as the

114

smallest set such that
1. e e T and t e T

2. if 0,1 e T then <O,T> e T

3. if T e T then <S,T> e T.

The language IL is defined by the following algebra.

IL = <<[C0NT u VARTJTET, 3 u {Rv,RA,RD,Rw,RH}>,t>

where

a. CONTand VARTare the same as for Ty2 (as far as the types involved
belong to T)

b. 3_consists of all the operations of Ty2 (as far as the types involved
belong to T).

The new operators are as follows

1. Rv,T: M<S,T> + MT defined by RV,T(a) = E a]

2. RA,T: MT + ME<S,T> defined by RA’T(a) = [Au]

3. fig: MEt + Mt defined by &D(¢) = U3¢]

4. Rw: MEt + MEt defined by RW(¢) = [W¢]

5. RH: MEC+ MEt defined by RH(¢) = [H¢].

The symbol V is pronounced as 'extension' or ‘down’, A as 'intension' or
'up', D as 'necessarily', and Wand H are the future tense operator
(W~ 'will'), and the past tense operator respectively (H~ ‘has'). This
use of the symbols H and W follows Montague's PTQ. It should be observed

that his notation conflicts with the tradition in tense logic, where
P('past') and F('future') are used for this purpose. The operators Wand H
are used in tense logic for respectively ‘it always will be the case‘ and
‘it has always be the case’.

The semantics of IL will be defined indirectly: by means of a trans
lation of IL into Ty2<. I will employ the techniques developed in chapter
2 and design a Montague gramar for IL. This means that a homomorphismTr

will be defined from the term algebra TIL associated with IL, to an algebra
Der(Ty2) which is derived from Ty2< (see figure 1). The meaning of an IL

expression ¢ is then defined as its image under the composition of this

translation Tr and the interpretation homomorphismV for Ty2 (where V is
restricted to the derived algebra). This composition Tr°Vwill be denoted

115

V as well, since from the context it will be clear whether the interpreta
tion of an IL expression or of a Ty2 expression is meant.

TIL

In
Ty2< —--993----> Der(Ty2<)

iv J};
M ———1—)‘3‘—'————>Der(M)

Figure 1. IL as a Montague grammar

The translation Tr will introduce the variables v1,S and v2,S, which
will play a special role in the interpretation of IL. Following GROENENDIJK
& STOKHOF1981, these variables will be written a and a' respectively. The
translation Tr introduces only variable a as free variable of type s. Since
the expressions of IL contain no variables of type s, this means that the
interpretation of an IL-expression is determined by the interpretation of
the IL-variables and the interpretation of a. Hence the meaning of an IL
expression can be considered as a function with as domain the assignments
to pairs consisting of the value of a, and an assignment to IL-variables.

Let the collection G of assignments to IL variables be defined by

VAR
T

The meaning of an IL-formula ¢ 6 METis then an element of DIXG, where the
componentI determines the value assigned to a. The interpretation of a

with respect to i e I and g e G is denoted by Vi,g(a).
Fromchapter 2, I recall a special method for the description of de

(F) >. Then
seS’ Y YEP

a derived algebra is uniquely determined by the following information (see
rived algebras. Let the original algebra be A = <(AS)

chapter 2, theorem 8.13).
1) A collection S’ of sorts of the derived algebra and a mapping T: S’ + S

which associates new sorts with old sorts.

2) A collection (HS.)S
H c A

,es, of generators for the new algebra, such that
s' I(s')°

3) A collection P C POLAof operators of the new algebra, and a typegiving

116

function for these operators which has to satisfy certain requirements.
The interpretation of IL will be defined by means of an algebra which

is derived from Ty2 in the just mentioned way. The specification of the
three components is as follows.
1) The set T of types of IL is a subset of set of types of Ty2<. Hence the

set of types of the derived algebra is T. For the mapping T we take the
identity mapping.
2) There are two kinds of generators in the derived algebra: those which
correspond with variables of IL, and those which correspond with the con
stants of IL. As generators corresponding with the IL-variables, the same
Ty2-variables are taken. For the constants we do not proceed in this way.
Would we have done so, then a constant of IL would always been associated

with one and the same semantical object, because the Ty2-constants have
this property. For applications this is not desirable. For instance, the
constant walk will be interpreted (at a given index) as a function from en
tities to truth values, thus determining the set of entities walking on
that index. Wedesire, however, that for another index this set maybe dif
ferent. Therefore it is not attractive to take constants of Ty2<as genera

tors of the derived algebra. Wewill use the variable a e VARSfor indi
cating the current index. The generator corresponding to the IL-constant

cn’O is the compoundformula cn,<S’O>(a). Note that this formula contains
the constant with the same index, but of one intension level higher. These
considerations explain the following definition

HO. (a) I n 5 II}= VAR U C0' { n,<s,o'>

3) Note first that the type giving function for the polynomials does not
need to be specified because all types of IL are types of Ty2. There are
two kinds of operators. Someoperators of IL are also operators of Ty2<
as well. The polynomial symbols for these operators (see chapter 2, remark
after theorem 4.6) are incorporated in P. The polynomial symbols correspond
ing with the other operators of IL are as follows

RV T: X1 1(a)7 9

RA,T: la[X],T]

RU: Va[X]’t]

117

Rw: 3a'>a[Aa[Xl’t](a')]

RH: 3a'<a[Aa[X]’t](a')] .

In the polynomials for RDand RAa binder for a is introduced. In most cases
this does not give rise to vacuous quantification or abstraction since the
variable Xwill often be replaced by an expression containing a free variable

a introduced by the translation of some constant. The polynomial for Rw

might be read as 3a'>a[[a'/a]Xl,t] and for RHanalogously (but these expres
sions are not polynomial symbols).

The information given above completely determines a unique derived

algebra. Theoremsof chapter 2 guarantee that in this indirect way the in
terpretation of IL is defined as the composition of the translation of IL

into Der(Ty2<)with the interpretation of this derived algebra.

6. PROPERTIES OF IL

Below, and in the next section, some theorems concerning IL will be

presented. The proofs will rely on the way in which the meaning of IL is
defined: as the composition of the translation homomorphismTr and the

meaning homomorphismV for Ty2<. Hence the interpretation Vi,g(¢) of an IL
expression ¢ equals the interpretation VaS(Tr(¢)) of its translation in
Ty2<, where as is an assignment to Ty2-variables such that as(a) = i and

as(v) = g(v) for all IL-variables v. Hence we may prove Vi,g(¢) = Vi’g(w)
by proving VaS(Tr(¢)) = VaS(Tr(¢)) for such a Ty-assignment as. If n is an

expression of Ty2, then the notation Vi, (n) will be used for VaS(n), where
as is an arbitrary assignment to Ty2variables such that as(a) = i and
as(v) = g(v) for all IL-variables v. If ¢ is of type t, we will often write

i,g F=¢instead of Vi,g(¢) = 1. Wheni or g are arbitrary, they will be
omitted. Hence F=¢means that for all i and g it is the case that i,g #«¢.

In section 4 we notified the theoretical importance of A-conversion for
Ty2: all quantifiers and connectives can be defined by means of lambda oper
ators. For Ty2 the same holds, so it is of theoretical importance to know
under which circumstances A-conversion is allowed. But there also is an

important practical motivation. Wewill frequently use A-conversion for
simplifying formulas. For these reasons I will consider the IL-variants
of the theorems concerning the substitution of equivalents and concerning
A-conversion.

118

6.1. THEOREM.Let a,a' e MEGand B,B' e METsuch that
a) Bis part of a
b) B‘is part of a’
c) a’ is obtained from a by substitution of B‘ for 8.
Suppose that for all i e I and g e G

=Vig(B')
9

Then for all i e I and g e G

Vi,g(a) = Vi,g(a').

EBQQE.This theorem could be proven in the same way as the corresponding
theorem for Ty2: by reference to theorem 6.4 from chapter 2. I prefer, how
ever, to prove the theorem by means of translation into Ty2 because this
shows somearguments which will be used (implicitly or explicitly) in the
other proofs.

From (1) we may conclude that (2) holds, from which (3) imediately
follows:

(1) for all i e I, g e G: Vi,g(B) = Vi, (8')
(2) for all i E I, g e G: Vi,g(Tr(B)) = Vi,g(Tr(B'))
(3) for all as e As: VaS(Tr(B)) = VaS(Tr(B')).
Recall that B is a part of a if there is in the production of a an applica
tion R(..,B,..) of an operator R with B as one of its argument. Since Tr is
a homomorphismdefined on such production processes, it follows that
Tr(a) = Tr(..,R(..,B,..)..) = ...R'(..,Tr(B),..)... (here is R’ the poly—
nomial operator over Ty2 which corresponds with the IL-operator R). This
says that the translation of a part of a is a part of the translation of
a. Consequently we may apply to (3) theorem 4.2 and conclude that (4) holds.

(4) For all as 6 AS: VaS(Tr(a)) = VaS(Tr(a')).
From this follows

(5) For all i e I, g E G: Vi,g(a) = Vi’g(a').
6.1. END

An important class of expressions are the expressions which contain
5 Dneither constants, nor the operators , H or W. Such expressions are called

modally closed; a formal definition is as follows.

119

6.2. DEFINITION.An expression of IL is called modally closed if it is an
element of the subalgebra

<[(VART)T€Ty], E U {RA,q}>

where_3 consists of the operators of Ty2.
6.2. END

The theorem for A-conversion which corresponds with theorem 4.4 reads
as follows

6.3. THEOREM.Let Av[¢](a) e MET,and suppose that no free variable in a
becomesbound by substitution of a for v in ¢. Suppose that one of the
following two conditions holds:
1. no occurrence of v in ¢ lies within the scope of A,H,W,or U
2. a is modally closed.
Then for all i e I and g e G

i,g F=Av[¢J(a) = Ea/v]¢.

g1§)9_1:.Part 1.

Supposecondition 1 is satisfied.
The translation Tr(a) of a contains the samevariables as a, except for the
possible introduction of variables of type s. The translation Tr(¢) of ¢
contains the same binders as ¢ since only A,H,W, and D introduce new
binders (see the definition of Tr). Since ¢ itself does not contain binders
for variables of type 5, we conclude that:

No free variable in Tr(¢) becomesbound by substitution of Tr(a) for
v in Tr(¢).

Theorem 6.1 allows us to conclude from this that for all as 6 AS.

Vas(Av[Tr(¢)](Tr(a))) = Vas([Tr(a)/v]Tr(¢)).

Note that Tr(¢) has the same occurrences of v as ¢, hence one easily proves
with induction that

[Tr(a)/v]Tr(¢) = Tr([a/v]¢).

Consequently VaS(Tr(Av[¢](a)))= VaS(Tr([a/v]¢)).

120

So Tr°V(Av[¢](a)) = Tr°V([a/v]¢).
From this it follows that for all g 6 G and i e I

g,i F=Av[¢](a) = Ea/v]¢.

Part 2.

Supposethat condition 2 is satisfied.
The translation of ¢ may introduce binders for variables of type s, but it
does not introduce binders for variables of other types (see the definition
of Tr). The expression a does not contain free variables of type 3, and the
translation in this case does not introduce such variables since the only
kind of expressions which give rise to new free variables are constants,
and the operators v,H, and W. So we may conclude that:

No free variable in Tr(a) becomes bound by substitution of Tr(U) for
v in Tr(¢).

From this we can prove the theorem in the same way as we did for the first
condition.
6.3. END

In theorem 4.5 a semantic description was given of situations in which
A-conversion is allowed. The IL variant of this theorem reads as follows.

6.4. THEOREM(IL). Let Av[¢](a) e MEand suppose fbr all i,j e I. and

g,h e G: Vi g(a) = Vj (a). Then for all i e I and g e G:

Vi,g(Av[¢](a)) = Vi’g([a/v]¢).
D‘

PROOF.By translation into Ty2 and application of theorem 4.5.
6.4. END

In the light of the role of A-conversion, it is interesting to know
whether A-conversion in IL has the Church-Rosser property, i.e. whether
there is an unique lambda-reduced normal form for IL. In muchpractical ex
perience with intensional logic I learned that it does not matter in which
order a formula containing several A-operators is simplified: first apply
ing A-reduction to the most embeddedoperators, or first the most outside
ones, the final result was the same. It was a big surprise that FRIEDMAN

&WARREN(1980b) found an IL-expression where different reduction sequences
yield different final results. Their exampleis

12]

Ax[Ay[Ay==u(X)](x)](c)

where x and y are variables of some type T, c a constant of type T, and u a

variable of type <T,<S,T>>. For each of the A operators the conditions for
the theorem are satisfied. Reducingfirst Axyields

AyE“y = u<c>J<c>

which cannot be reduced further since the conditions for A-conversion are
not satisfied. Reducingfirst Ayyields

Ax[Ax= u(x)](c)

which cannot be reduced either. Weend up with two different, although logi
cal equivalent, formulas; i.e. there is no A-reduced normal form for IL.

The example depends on the particular form for A-contraction: for all
occurrences of the variable the substitution takes place in one and the
same step. FRIEDMAN & WARREN (1980

is equivalent to

[Ax[Ax]](c) = u(c).

This formula is in some sense further reduced. They conjecture that for a
certain reformulation of A-conversion the Church-Rosser property could be
provable.

It is interesting to comparethe above discussion with the situation
in Ty2, where there is a unique A-reduced form. The Ty2-translation of the
Friedman-Warren formula is (c'eCON 1)<s,1>

lx[Ay[Aa[y]= u(x)J(x)]c'(a).

This reduces to

Ay[Aa[y]= u(c'(a))]c'(a).

After renaming the bound variable a to i, this reduces further to

122

Ay[Ai[c'(a)] = u(c'(a))].

Note that this last reduction is possible here (and not in IL) because of
the explicit abstraction Xi, instead of the implicit abstraction in Ag.

A lot of laws of IL are variants of well knownlaws for predicate logic
and type logic. An exception to this description is formed by alws involving
constants. The constants of IL are interpreted in a remarkable way: their
interpretation is state dependent. Invalid is, for instance, the existential
generalizationJDA(a) + 3xEm(x), whereas VyGDA(9)+ 3MA(x)) is valid. In

valid is Vx[x = c +W3[x = c]], whereas VxVy[x = y +W3[x = y]] is valid.

Other examples of invalid formulas are 3jD[y = C] and Vx[0[A(x)]+ 0A(a)],
where 0 abbreviates 7 D'7.

Since IL contains type theory as a sublanguage, there is no axiomatiza
tion of IL (see also section 4). But IL is generalized complete as is
proved by GALLIN(1975). The proof is obtained by combining the proof of

generalized completeness of type theory (HENKIN1950), and the completeness

proof for modal logic (see HUGHES& CRESSWELL1968). The following axioms

for IL are due to GALLIN(1975); the formulation is adapted

Al [g(T) A g(F)] = Vx[g(x)] x e VARt, g 6 VAR<t,t>

A2 x = y + f(x) = f(y) x 6 VARO: f 6 VAR<0,t>

A3 Vx[f(x) = g(x)] = [f = g] x e VARO,fzg €VAR<0,T>

A4 Ax[a](B) = [B/x]a if the conditions of theorem 5.2. are
satisfied

A5 D[Vf=Vg]=[f=g] fgeVAR
’ <5,1_'>

A6 vAa = a a e MEG.

The rule of inference is:

From A = A‘ and the formula B one may infer to formula B‘, where B‘

comes from B by replacing one occurrence of A, that is part of B, by A’

Notice that the translation of axiom A5 into Ty2, would lead to a
formula of the form of A3, and that the translation of A6 into Ty2 would be
of the form of A4. AxiomA6 will be considered in detail in the next sec
tion.

I will not consider details of this axiomatization for the following
three reasons.

123

1) This axiomatization was designed for constituting a basis for the com
pleteness proof, and not for proving theorems in practice. To prove the
most simple theorems on the basis of the above axioms would be rather dif

ficult. All proofs that will be given in the sequel are semantic proofs
and not syntactic proofs: i.e. the proofs will be based upon the interpre
tation of formulas and not on axioms.

2) Wewill work with models which obey certain postulates. These postulates
express many important semantic details, and most of the proofs we are in
terested in, are based upon these special properties and not on the general
properties described by the axioms.
3) Wedo not work with generalized models,but with standard models. So the

axiomatization is not complete in this respect.

7. EXTENSION AND INTENSION

In this section special attention is paid to the interaction of the
extension operator and the intension operator. In this way someinsight is
obtained in these operators and their sometimes remarkable properties. The
'Bigboss' example, which will be given below, is important since the Bigboss
will figure as (counter)example on several occasions.

7.1. THEOREM.For all i,g: v. VA[a] = v. a.--——- 1.g 1.3

PROOF. Tr(VAoL)= Tr(AoL)(a) = Aa[Tr(oL)](a) = [a/a]Tr(oL) = Tr(a).

Note that A-conversion is allowed because the condition of theorem
4.5 is satisfied.
7.1. END

It was widely believed that the extension operator should be the right
inverse of the intension operator as well. This believe is expressed in
PARTEE(l975,p.250) and in GEBAUER(l978,p.47). It is true, however, only

in certain cases. In order to clarify the situation, consider the following
description of the effect of AV. Let I and D be denumerable, so

DT= {d],d2,..

is a function with domain I and range DT. Wemay represent a as a denumer

.} and I = {i ,i ,...}. Let a 6 ME , hence the meaning of G
I 2 T

able sequence of elements from DT. An example is given in figure 2.

124

arguments i1 i2 i3 i4 ..

Vi1,g(a): values for.the respective arguments d4 d2 d1 d3

Vi2,g(a): values for the respective arguments d2_d2 d3 d1
V. (a): values for the respective arguments d d d2 d

13,g l I - 1

F'g 2. Th ' t t‘ f ME1 ure e 1n erprea 1011 0 O. E T

The interpretation for index 1 of A a 1S some function Wlth domain I and

range DT. which function it is does not depend on the choice of i, because
/\V . . .Tr(a) which equals Aa[Tr(a)(a)], contains no free variables of type s.

The function V. (Ava) yields for argument i as value the value of V. (a)i,g n 1n,g
for argument in. So in the above example for argument i it yields asI

value d], for i it yields d2, and for i it yields dz (the underlined ele2 3

ments). One observes that Ava is the diagonalization of a. So Ava = a will

hold for all i,g if for all i,j e I: Vi g(a) = Vj g(a). A syntactic descrip! 3

tion of a class of formulas for which the equality holds, is given in the
following theorem.

7.2. THEOREM.Suppose a is modally closed. Then for all i,g: Vi g[AVa] =

= Vi,g(a).

PROOF.The functions Tr(AVa) and Tr(a) denote functions with domain I, and

their values for an arbitrary argument i are the same:

Tr(/Wa)(1) =)\a[Tr(a) (a)](.i) =[i/a]Tr(a) ([1/a]a) = Tr(a) (1).

Notice that [1/a]Tr(a)= Tr(a) since a is modally closed. So for all

as e AS:VaS Tr(Ava) = VaS(Tr(a)),which proves the theorem.
7.2. END

The insights obtained from the ‘diagonalization’ point of view, can be
used to obtain a counterexample for the case that a is not modally closed.

It suffices to find an expression a of type T which has at index i] as its
denotation a constant function from I to DT, say with constantly value d],
and at index i2 as its denotation a constant function yielding someother
value, say d2. This situation is represented in figure 3.

125

arguments i1 i2 i3 i4

V. g(a): values for the respective arguments d_ d dl d

V. (a): values for the respective arguments d d d2 d2

. AV
Figure 3. A counterexample for a.

AV , AV ,

NowVil’g[a](1l) - d] # d2 —Vi2,g[a](1]).
Oneway to obtain this effect is by means of a constant. I give an ex

ample of a somewhat artificial nature (due to JANSSEN1980). Let the valua

tion of the constant Bigboss e CON<Se> for index i be the function con
9

stantly yielding the object d 5 De to which the predicate 'is the most po
werful manon earth‘ applies on that index. A possible variant of this ex

ample would be the constant Miss-world e CON< to which the predicates,e>’
applies 'is elected as most beautiful womanin the world’.

Assumethat for the constant Bigboss holds that for all j 6 I both

Vi1,g[Bigboss](J) = Vi g[Reagan]
and

Vi2,g[Bigboss](j) = Vi2’g[Bresnjev].
Then

Vil,g[AVBigboss](i2) = §i[Vi,g[Bigboss](i)](i2) =

= Vi2,g[Bigboss](12) = Vi2,g[Bresnjev].
So

AV

Vi],g[B1gboss](12) # Vi],g[BlgbOSS](12).

This effect does not depend on the special interpretations for constants.
Another way to obtain the desired effect is by taking for a the expression
x where x is a variable of type <s,<s,e>>. Let g(x) be defined such that
for all j e I: g(x)(j) = V. [Bigboss]. Then Avvx# vx:J28

because vi <“”Vx><i2>=_;i£g<x><i><i>J<i2> = vi g[Bi9boss](i2) =2!1’g
= V. [Bresnev]

1223

whereas Vi],g(Vx) (12) = g(x)(i])(i2) = Vi],g[Bigboss](i2) = V‘il,g[Reagan].

126

The next example concerns the situation that IL is extended with the ifh
then-else construct. Let B be of type t and ¢ and w of type T, and define

vivgfiij B then ¢ else up]: {vi],g(¢) If vil,g(e) = 1
Vi’g(w) otherwise.

Let x and y be variables of type <s,e> and assume that g(x) # g(y), but that
for somei holds that g(x)(i) = g(y)(i).
Thenit is not true that for all i,g

i,g F= AV[££ Vx = vy then x else y] = Li: Vx = vy then x else y].

This kind of expression is rather likely to occur in the description of
semantics of programming languages.

The last example is due to GROENENDIJK& STOKHOF(1981). They consider

the semantics of whether-complements. An example is

John knows whether Mary walks.

The verb know is analysed as a relation between an individual and a propo
sition. Whichproposition is John asserted to know?If it is the case that
Mary walks, then John is asserted to know that Mary walks. And if Mary does

not walk, then he is asserted to know that Mary does not walk. So the pro
position John knows appears to be

££_walk(mary)E§§£_Awalk(mary) §£§§_A[7walk(mary)].
This example provides for a rather natural example of a formula ¢ for

. AVwhich ¢ does not reduce.

CHAPTER IV

MONTAGUE GRAMMAR AND PROGRAMMING LANGUAGES

ABSTRACT

The present chapter starts with an introduction to the semantics of
programing languages. The semantics of the assignent statement is con
sidered in detail, and the traditional approaches which use predicate
transformers are shownto give rise to problems. A solution is presented
according to the algebraic frameworkdefined in the first chapters of this
book; it uses an extension of intensional logic.

128

1. ASSIGNMENT STATEMNTS

1.1. Introduction

Programs are pieces of text, written in someprograming language.
These languages are designed for the special purpose of instructing com
puters. They also are used in comunication amonghumanbeings for telling
them how to instruct computers or for communicating algorithms which are not
intended for computer execution. So for programming languages we are in the
same situation as for natural languages. Wehave a syntax and we have in
tended meanings, and we wish to relate these two aspects in a systematic
way. Since we are in the same situation, we may apply the same framework.

In this chapter we will do so for a certain fragment of the programming
language ALGOL68.

There exists nowadaysseveral thousands of mutually incompatible pro
gramming languages. They are formal languages with a complete formal defi
nition of the syntax of the language. Such a definition specifies exactly
when a string of symbols over the alphabet of the language is a program
and whennot. The definition of a programing language also specifies how
a program should be executed on a computer, or, formulated more generally,
what the program is intended to do. In fact, however, several programing
languages are not adequately documentedin this respect. Each programing
language has its ownset of strange idiosyncracies, design errors, perfect
ly good ideas and clumsy conventions. However, there are a few standard

types of instructions present in most of the languages. The present chapter
deals mainly with the semantics of one of those instructions: the assign
ment statement which assigns a value to a name.

It appears that assignment statements exhibit the same phenomenaas
intensional operators in natural languages. A certain position in the con
text of an assignent statement is transparent (certain substitutions for
namesare allowed), whereas another position is opaque (such substitutions
are not allowed). The traditional ways of treating the semantics of pro
graming languages do not provide tools for dealing with intensional pheno
mena. A correct treatment of simple cases of the assignent statement can
be given, but for the more complexcases the traditional approaches fail.
I will demonstrate that the treatment of intensional operators in natural
language, as given in the previous chapters, mayalso be applied to pro
gramminglanguages, and that in this way a formalized semantics of

129

assignment statements can be given which deals correctly with the more com
plex cases as well. Hence we will use the same logic: intensional logic
(see chapter 3). The idea to use this logic goes back to JANSSEN&

Van EMDEBOAS(l977a,b). We will however, not only use the same logic, but

also the same compositional, algebraic framework. In chapter 1 the back
ground of this framework was discussed, and in chapter 2 it was defined
formally and comparedwith the algebraic approach of Adj. For a biblio
graphy of universal algebraic and logical approaches in computer science
see ANDREKA& NEMETI1969. The first sections of the present chapter are a

revision of JANSSEN & Van EMDEBOAS (1981).

1.2. Simple assignments

One may think of a computer as a large collection of cells each con
taining a value (usually a number). For some of these cells names are avail

able in the programminglanguage. Such names are called identifiers or,
equivalently, variables. The term ‘identifier’ is mainly used in contexts
dealing with syntax, 'variable' in contexts dealing with semantics. The
connection of a variable with a cell is fixed at the start of the execution

of a program and remains further unchanged. So in this respect a variable
does not vary. However, the cell associated with a variable stores a value,
and this value maybe changed several times during the execution of a pro
gram. So in this indirect way a variable can vary. The assignment statement
is an instruction to change the value stored in a cell.

An example of an assignment statement is: x := 7, read as ‘x becomes

7'. Execution of this assignment has the effect that the value 7 is placed
in the cell associated with m. Let us assumethat initially the cells asso
ciated with x, y and w contain the values 1, 2 and 4 respectively (figure
la). The execution of x := 7 results in the situation shownin figure lb.
Execution of y := x has the effect that the value stored in the cell asso
ciated with x is copied in the cell associated with y (figure 1c). The as
signment w := w + 1 applied in turn to this situation, has the effect that
the value associated with w is increased by one (figure ld).

117+ 18-)‘ 117"’ 113+

y+ y+ z/+7 y+7w + 4 w +- I! w +- ‘I w +- E!

Figure la Figure lb Figure 1c Figure 1d

Initial Situation After m := 7 After y := 7 After w := w + 1

130

Nowthe necessary preparations are made for demonstrating the relation
with natural language phenomena. Suppose that we are in a situation where

the identifiers m and y are both associated with value 7. Consider now the
assignment

(1) x := y + 1.

The effect of (d) is that the value associated with x becomes 8. Nowreplace
identifier y in (1) by x:

(2) x := x + 1.

Again, the effect is that the value associated with x becomes 8. So an iden
tifier on the right hand side of ':=' maybe replaced by another which is
associated with an equal value, without changing the effect of the assign
ment. Onemay even replace the identifier by (a notation for) its value:

(3) x := 7 + 1.

Replacing an identifier on the left hand side of ':=' has more drastic con
sequences. Replacing x by y in (1) yields:

(4) y := y + 1.

The value of y is increased by one, whereas the value associated with x re
mains unchanged. Assignent (1), on the other hand, had the effect of in
creasing the value of x by one; likewise both (2) and (3). So on the left
hand side the replacement of one identifier by another having the same
value is not allowed. While (2) and (3) are in a certain sense equivalent
with (1), assignment (4) certainly is not. Identifiers (variables) behave
differently on the two sides of ':='.

It is striking to see the analogy with natural language. I mention an
example due to QUINE(I960). Suppose that, perhaps as result of a recent ap
pointment, it holds that

(5) the dean = the chairman of the hospital board.

Consider now the following sentence:

(6) The commissioner is Zookingfor the chairman of the hospital board.

The meaning of (6) would not be essentially changed if we replaced the com
missioner by another identification of the sameperson; a thus changed sen
tence would be true in the same situations as the original sentence. But
consider now (7).

131

(7) The commissiorer is looking for the dean.

Changing (6) into (7) does make a difference: it is conceivable that the
commissioner affirms (6) and simultaneously denies (7) because of the fact
that he has not been informed that (5) recently has becomea truth. Sen
tence (7) is true in other situations than sentence (5). Hence they have a
different meaning. In the terminology for substitution phenomena,the sub
ject position of is looking for is called (referentially) transparent, and
its object position (referentially) opaqueor intensional position. Because
of the close analogy, we will use the same terminology for programming lan
guages, and call the right hand side of the assignment 'transparent‘, and
its left hand side ‘opaque’or 'intensional'.

The observation concerning substitutions in assignments statements, as
considered above, is not original. It is, for instance, described in TENNENT
1976 and STOY1977 (where the term ‘transparent’ is used) and in PRATT1976

(whoused both ‘transparent’ and 'opaque'). The semantic treatments of these
phenomenawhich have been proposed, are, however, far from ideal, and in

fact not suitable for assignments which are less simple than the ones above.
The authors just mentioned, like manyothers, avoid these difficulties by
considering a language without the more complex constructions.

1.3. Other assignments

Abovewe only considered assignments involving cells which contain an
integer as value. In this section I will describe twoother situations:
cells containing an identifier as value (pointers) and rows of cells (ar
rays).

Someprograming languages also allow for handling cells which contain
a variable (identifier) as value (e.g. the languages Pascal and Algol-68).
Namesof such cells are called pointer identifiers or equivalently pointer
variables, shortly pointers. The situation that pointer p has the identi
fier x as its value, is shownin figure 2a. In this situation, p is indi
rectly related to the value of x, i.e. 7. The assignment p := w has the

effect that the value stored in p's cell becomesw (figure 2b). Thusp is in
directly related to the value of w: the integer 5. Whennext the assignment
w := 6 is executed, the integer value indirectly associated with p becomes
6 (figure 2c). So an assignmet can have consequences for pointers which are
not mentioned in the assignment statement itself: the value of the variable
associated with the pointer may change.

132

P * x P * P +

x +- E! x +- x +

9 *' II 9 * H +

w—> 2.7-» 20+

Figure 2a Figure 2b Figure 2c
Initial Situation After p := w After w := 6

In a real computer, a cell does not contain an integer or a variable,
but rather a code for an integer or an code for a variable. For most real
computers it is not possible to derive from the contents of a cell, whether
it should be interpreted as an integer code or a variable code. In order to
prevent the unintended use of an integer code for a variable code, or vice
versa, someprogramminglanguages (e.g. Pascal) require for each identifier
a specification of the kind of values to be stored in the corresponding
cells. The syntax of such a programming language then prevents unintended
use of an integer code for an identifier code (etc.) by permitting only
programs in which each identifier is used for a single kind of value. Other
languages leave it to the discretion of the programmerwhether to use an
identifier for only one kind of value (e.g. Snobol-4). Our examples are
from a language of the former type: ALGOL68.

The programming language ALGOL68 also allows for higher order pointers,

such as pointers to pointers to variables for integer values. Theyare re
lated to cells which contain as value (the code of) a pointer of the kind
described above. These higher order pointers will be treated analogously to
the pointers to integer identifiers.

Several programming languages have names for rows of cells (arrays of
cells). Namesof such rows are called array identifiers, or equivalently
array variables. An individual cell can be indicated by attaching a sub
script to the array identifier. The element of an array a associated with
subscript i is indicated by a[i]. The cells of an array contain values of
a certain kind: the cells of an integer array contain integers (see figure
3a),and the cells of an array of pointers contain pointers. The execution
of the assignment a[2] := 2 has the effect that in the cell indicated by
a[2] the value 2 is stored (see figure 3b). The subscript maybe a complex
integer expression. The effect of the assignment a[a[1]] := 2 is that the
value in a[1] is determined, it is checked whether the value obtained
(i.e. 1) is an acceptable index for the array and the assignment a[1] := 2

133

is performed (figure 3c). In the sequel 1, will assume that all integers
are acceptable indices for subscripts for an array, i.e. that all arrays
are of infinite length (of course an unrealistic assumption; but I amin
terested in formalizing other aspects of arrays). Other kinds of assignment
which involve arrays are in the fragment (e.g. the assignment of the whole
array in a single action), but I will deal primarlily with assignments of
the form just discussed.

a[1]-> a[1]+ a[1]+
a[2] + a[2] -> a[2] + 2

a a[3] + H (1 a[3] -> a Ea[3] +I!
a[4]-> a[4]—> a[4]—>

Figure 3a Figure 3b Figure 3c
Initial Situation After a[2] := 2 After a[a[1]] := 2

2. SEMANTICS OF PROGRAMS

2.1. Why?

Let us consider, as an example, a program which computes solutions of

the quadratic equation axz + bx + c = 0. The program is based upon the well

-bjféz-4ac'
1,2‘ 2a

known formula

(8) :6

The program reads as follows:

I. begin real a, b, c, disc, d, m1, m2;
2. read ((a,b,c));
3. disc := b*b —4*a*c;

4. d := sqrt (disc);
5. x1 := -b + d; x] := x2/(2*a);
6. x2 := -b - d; x2 := x2/(2*a);

7. print ((a,b,c,x1,x2,newZine))
8. grid.

The first line of the programsays that the identifiers mentioned there,
will only be used as names of locations containing real numbers as values
(e.g. 3.14159). The second and seventh line illustrate that the computer

134

may obtain data from outside (input) and communicateresults to the outside
world (output). The program also shows that the mathematical formula looks
much more compact than the program, but that this compactness is made

possible by the use of some conventions which have to be made explicit for

the computer. For example, in the program we must write 4*a*c for 4 times a
times c, while in the formula 4ac suffices. In the formula we use two di

mensional features, which are eliminated in the program (sqrt(..) instead
of /...). This linear character is necessitated by the fact that programs
have to be communicated by way of a sequential channel; for example, the

wire connecting the comuter with a card reader. The symbolrggg indicates
that the identifiers mentionedmayonly be associated with real values,
and the symbols §§g£§_and egg indicate the begin and the end of the program.

There exists a considerable confusion amongprogrammers, theoreticians,
and designers as to what we should understand by the semantics of a program
ming language. There are, however, some properties of programs for which
there is a measure of agreement on the need for a treatment within the
field of semantics. These properties are:
correctness: A program should perform the task it is intended to perform.
For example the program given above is incorrect: it does not account for
a = 0 or disc < 0.

equivalence: Twodifferent programs mayyield the sameresults in all cir
cumstances. For example, in the program under discussion we may interchange

the order of the computation of x1 and x2, but we cannot compute d before

we compute disc.

termination: If we start the execution of a program, will it ever stop? It
might be the case that the computer keeps on trying to find the square root
of -1, and thus for certain values of a, b and c never halts.

Each of the above properties tells us something about the possible com
putations the program will perform when provided with input data. Wewant
to predict what mayhappen in case ...; more specifically, we want to prove
that our predictions about the capabilities of the program are correct. How
can we achieve this goal? Clearly it is impossible to try out all possible
computations of the program, instead one is tempted to run the program on
a 'representative' set of input data. This activity is knownas program
debugging. This way one may discover errors, but one can never prove the
program to be correct. Still, in practice, most programs used nowadayshave
been verified only in this way. Onemight alternatively try to understand

135

the program simply by reading its text. Again this is not of great help,
since mistakes made by the programmer can be remade by the reader. The only
way out is the invention of a mathematical theory for proving correctness,
equivalence, termination etc.. Weneed a formalized semantics on which such
a theory can be based.

2.2. How?

What does a formal semantics for a program look like? The most common

approach is a so-called operational semantics. One defines the meaning of
a program by first describing some abstract machine (a mathematical model
of an idealized computer) and next specifying how the program is to be
executed on the abstract machine. Needless to say the problem is transfer
red in this way from the real world to some idealistic world. The possibly
infinitely many computations of the program remain as complex as before. On
the other hand, it is by use of an operational semantics that the meaning
of most of the existing programminglanguages is specified. Examples are
the programming languages PL/I in LUCAS& WALK1971, and, underneath its

special description method, ALGOL68 in Van WIJNGAARDEN1975.

For about 15 years so-called denotational semantics have been provided
for programming languages (see e.g. TENNENT1976, STOY 1977, De BAKKER1980)

of a program is given as a mathematical object in a model; usually some
function which describes the input-output behaviour of the program. By ab
stracting from the intermediate stages of the computation, the model has
far less resemblance to a real computer than the abstract machines used in
operational semantics. The programs are not considered so much to be trans
formingvalues into values, but rather as transforming the entire initial
state of a computerinto somefinal state. In this approach, states are
highly complexdescriptions of all information present in the computer.

Mostly, we are not interested in all aspects of a computer state, but
only in a small part (for instance the values of the input and output vari
ables). This leads to a third approach to semantics, which uses so-called
predicate transfbrmers (FLOYD1967, HOARE1969, DIJKSTRA 1974, 1976 and

DEBAKKER1980). A (state) predicate is a proposition about states. So a

predicate specifies a set of states: all states for which the proposition
holds true. Weneed to correlate propositions about the state before the
execution of the program (preconditions) with propositions about the state
afterwards (postconditions). This is the approach to semantics that we will

_l36

follow in the sequel. Usually one distinguishes approaches which asso

ciate preconditions and postconditions, but do not consider termination of
the execution of the program, and approaches which consider termination as
well. The former approaches are said to deal with partial correctness, and
the latter with total correctness. Since all programswewill discuss are
terminating programs, the distinction is for our fragment not relevant and
will not be mentioned any further.

As an example we consider the program from Section 2.1. An initial
state maybe described by specifying that on the input channel three num
bers a, b and c are present such that a # 0, and b2 - 4ac 2 0. The execu

tion of the program will lead such a state to a state where x1 and x2 con
tain the solutions to the equation ax2 + bx + c = 0. Conversely, we observe
that, if one wants the program to stop in a state where $1 and $2 repre
sent the solutions of the equation axg + bx + c = 0, it suffices to require
that the coefficients a, b and c are present on the input channel (in this
order!) before the execution of the program, and that moreover a ¥ 0 and
b2 - 4ac 2 0. In the semantics we will restrict our attention to the real

computation, and therefore consider a reduced version of the program from
which the input and output instructions and the specifications of the iden

tifiers such as fegé are removed. Let us call this reduced program ‘prog’.
In presenting the relation between predicates and programs, we follow a
notational convention due to HOARE1969. Let H be a program, and ¢ and w

predicates expressing properties of states. Then {¢}n{w}means that if we
execute n starting in a state wherectholds true, and the execution of the
program terminates, then predicate w holds in the resulting state. Our ob
servations concerning the program are now expressed by:

(9) {a # 0 A (b2-4ac) 2 0} prog {a(x1)2 + b(x1) + c = 0 A

a(x2)2 + b(x2) + c = 0 A Vz[az2 + bz + c = 0 + z = x1 V z = x2]}.

There are two variants of predicate transformer semantics. The aim of
the first variant, the fbrward approachcn:(Floyd-approach) can be described
as follows. For any program u, find, according to the structure of n, a pre
dicate transformer which for any state predicate ¢ yields a state predicate
w, such that if ¢ holds before the execution of n, then w gives all infor
mation about the final state which can be concluded from ¢ and N. Such a

predicate ¢ is called a strongest postcondition with respect to ¢ and n.

137

Mathematically a strongest postcondition sp (with respect to ¢ and n) is
defined by

(I) {¢} n {Sp} and

(II) If {¢} H {n} then from sp we can conclude n.

Suppose that we have two predicates sp1 and spz, both satisfying (I)
and (II). Then they are equivalent. From (I) follows that {¢} n {sp1} and

{¢} W{spg}. Then from (II) follows that spl implies sp2 and vice versa.
Since all strongest postcondition with respect to ¢ and N, are equivalent,
we may speak about the strongest postcondition with respect to ¢ and n. For
this the notation sp(w,¢) is used.

Instead of this approach, one frequently follows an approach which re
verses the process: the backward-approach or Hbare-approach. For a program
n and a predicate w one wants to find the weakest predicate which still
ensures that, after execution of n, predicate w holds. Such a predicate is
called a weakest precondition. Mathematically a weakest precondition wp
(with respect to n and w) is defined by

I {UP} n {w}

II If {n} n {w} then from n we can conclude wp.

Analogously to the proof for postconditions, it can be shownthat all
weakest preconditions are equivalent. Therefore we may speak about the
weakest precondition with respect to n and ¢. For this the notation
wp(n,¢) is used (see DIJKSTRA1974, 1976 for more on this approach).

Above, I used the phrase ‘based upon the structure of n‘. This was re
quired since it would be useless to have a semantics which attaches to each
program and predicate a strongest postcondition in an ad-hoc way, in parti
cular because there are infinitely manyprograms. Onehas to use the fact
that programs are formed in a structured way according to the syntax of
the programming language, and according to our framework, we aim at ob

taining these predicate transformers by means of a method which employs
this structure.

3. PREDICATE TRANSFORMRS

3.1. Floyd's forward predicate transformer

Below, Floyd's description is given of the strongest postcondition for
the assignment statement. But before doing so, I give some suggestive

138

heuristics. Suppose that x = 0 holds before the execution of x := 1. Then
afterwards x = 1 should hold instead of x = 0. As a first guess at a gener
alization one might suppose that always after execution of v := 6 it holds
that v = 6. But this is not generally correct, as can be seen from inspec
tion of the assignent x := x + 1. Onemust not confuse the old value of a
variable with the new one. To capture this old value versus new-value dis
tinction, the information about the old value is rememberedusing a variable
(in the logical sense!) boundby someexistential quantifier and using the
operation of substitution. So after v := 6 one should have that v equals
'6 with the old value of v substituted (where necessary) for v in 6'. This
paraphrase is expressed by the expression v = [z/U] 6, where 2 stands for
the old value of v and [2/v] is the substitution operator. Thus we have ob
tained information about the final situation from the assignment statement
itself. Furthermore we can obtain information from the information we have

about the situation before the execution of the assignment. Suppose that
¢ holds true before the execution of the assignment. From the discussion
in Section 2 we know that the execution of v := 6 changes only the value

of v. All information in ¢ which is independent of v remains true. So after
the execution of the assignment [z/v]¢ holds true. If we combine these two
sources of information into one formula, we obtain Floyd's fbrward predi
cate transfbrmation rule for the assignment statement (FLOYD1967).

(10) {¢} v:=6 {3z[[z/v]¢ A v = [z/b]6]}.

Here ¢ denotes an assertion on the state of the computer, i.e., the values
of the relevant variables in the programbefore execution of the assignment,
and the more complex assertion 3z[[z/v]¢ A v = [2/v36] describes the situa
tion afterwards.

The examples below illustrate how the assignment rule works in prac
tice.
I) assignment: x := 1; precondition: x = 0

obtained postcondition:
3z[[z/x](x=0) Ax = [z/x31], i.e. 3z[z=0 A x=1], which is equivalent to
x = 1.

2) assignment: m := x + 1; precondition: x > 0

obtained postcondition:
3z[[z/x](x>0) Ax = [2/x](m+1)], i.e. 3z[z>0 A x=z+1], which is equiv
alent to x > 1.

I39

3) Assignment: a[l] := a[1] + 1; precondition: a[1] = a[2].
Obtained postcondition:
3z[[z/a[1]](a[1] = a[2]) Aa[1] = [z/a[1]](a[1]+1)], i.e.
3z[z = a[2] A a[1] = 2+1], which is equivalent to a[1] = a[2] + 1.

3.2. Hoare's backward predicate transformer

BelowHoare's description will be given of the weakest precondition
for the assignment statement. First I will give someheuristics. Suppose
we want x = 4 to hold after the execution of x := y + 1. Then it has to be

the case that before the execution of the assignment, y + 1 = 4 holds.
Moregenerally, every statement about x holding after the assignment has
to be true about y + 1 before its execution. This observation is described
in the following rule for the backward predicate transformer (HOARE1969)

(11) {[6/v]¢} v := 6 {¢}.

Someexamples illustrate how the rule works in practice.
1) Assignment: x := 1; postcondition: x = 1.

Obtained precondition:

[1/x](x=1), i.e. 1 = 1, or Eggg.
This result says that for all initial states x = 1 holds after the exe
cution of the assignment. If the postcondition had been x = 2, the ob

tained precondition would have been 1 = 2 or fglsg, thus formalizing
that for no initial state does x = 2 hold after execution of m := 1.

2\/ Assignment: x := x + 1; postcondition x > 1.
Obtained precondition:
[x+1/x](x>1), i.e. x + 1 > 1 which is equivalent to x > 0.

3 \/ Assignent: a[1] := a[1] + 1, postcondition ail] = a[2] + Z.
Obtained precondition:
[a[1] + 1/a[1]](a[1] = (a[2]+1)), i.e. a[1] + 1 = a[2] + 1, which is
equivalent with a[1] = a[2].

3.3. Problems with Floyd's rule

Since 1974 it has been noticed by several authors that the assignment
rules of Floyd and Hoare lead to incorrect results when applied to cases
where the identifier is not directly associated with a cell storing an in
teger value. Examples are given in Van EMDEBOAS(1974), (thesis 13),

140

De, BAKKER(1976), GRIES (1977), JANSSEN & Van EMDEBOAS (l977a,b). The

examples concern assignments involving an identifier of an integer array,
or a pointer to an integer identifier. In this section I will consider only
examples concerning Floyd's rule.

Anexampleconcerning assigment to a subscripted array identifier is

(12) a[a[1]] := 2.

Suppose that the assertion which holds before the execution of the assign
ment is

(13) a[1] = 1 A a[2] = 1

Then Floyd's rule implies that after the execution of the assignment holds

(14) 3Z[[z/a[a[1]J](a[1]=1 Aa[2]=1) Aa[a[1]] = [2/a[a[1]]]2]

i.e.

(15) 3z[a[1] = 1 A a[2] = 1 A a[a[1]] = 2]

which is equivalent to

(16) a[1] = 1 A a[2] = 1 A a[a[1]] = 2.

This formula is a contradiction, whereas the assignment is a correctly
terminating action. Comparethis result with the situations in figure 3,
where this assignment is performed in a situation satisfying the given
precondition. Then it is clear that the postcondition should be

(17) a[1] = 2 A a[2] = 1.

It turns out that problems also arise in the case of pointers
(JANSSEN& Van EME BOAS 1977a). An example is the following program con

sisting of three consecutive assignment statements. The identifier p is a
pointer and m an integer variable.

(18) x := 5; p := x; x := 6.

Suppose that we have no information about the state before the exe
cution of this program. This can be expressed by saying that the predicate

Egggholds in the initial state. By application of Floyd's rule, we find
that after the first assignment 3 = 5 holds (analogously to the first exam
ple above). Note that the state presented in figure 2a (Section 1) satis
fies this predicate. For the state after the second assignment Floyd's rule
yields:

(19) 3z[[z/p](x=5) A p = [z/plx]

141

i.e.

(20) 3z[%=5 A p=x]

which is equivalent to

(21) x = 5 A p = m.

It is indeed the case that after the second assignment the integer value
related with p equals 5 (of figure 2b). According to Floyd's rule, after
the third assignment the following is true:

(22) 3z[[z/x](x=5 A p=x) A x = [z/x36]

i.e.

(23) 3z[z = 5 A p = z A x = 6].

This formula says that the integer value related with p equals 5. But as
the reader may rememberfrom the discussion in Section 2, the integer value
related with p is changed as well (figure 2c).

3.4. Predicate transformers as meanings

Floyd's assignment rule is one rule from a collection of proof rules:
for each construction of the programing language there is a rule which
describes a relation between precondition and post condition. The meaning
of a construction is defined in a completely different way. A computer-like
model is defined, and the meaning of a statement (e.g. the assignment
statement) is described as a certain state-transition function (a function
from computer states to computer states). The proof rule corresponding to
the construction can be used to prove properties of programs containing
this construction. A prime example of this approach is De BAKKER(1980).

It is, however, not precisely the approach that I will follow in this
chapter.

In the discussion in section 2.2 I have mentioned arguents whypre
dicate transformrs are attractive from a semantic viewpoint, and why
state-transition function are less attractive. I will give predicate trans
formers a central position in my treatment: the meaning of a program, and

in particular of an assignment statement, will be defined by means of a
predicate transformer.

In theory I could define the meaning of an assignment by any predicate
transformer I would like. But then there is a great danger of loosing con
tact with the behaviour of computer programs in practice. Therefore I will

142

give a justification of mychoice of the predicate transformers. This will
be done by defining a state-transition function that resembles the usual
state-transition semantics. Thenit will be proven that the defined predi
cate transformers are correct and yield strongest postconditions (or weakest
preconditions). In the light of this connection with practice, it is not
surprising that there is a resemblence between Floyd's (Hoare's) predicate
transformer and the one I will define. But the formal position of the pre
dicate transformers is essentially different in this approach. Actually, I
shall argue that Floyd's (Hoare's) predicate transformer cannot be used for
our purposes. The problems with the standard formulation of the transformers
are mentioned below; they are solvable by somemodifications which will be
discussed in the next section. The discussion will be restricted to the

Floyd-approach; for the Hoare approach similar remarks apply.
In the Floyd-approach the predicate-transformation rule for the as

signment is an axiom in a system of proof rules. It can be considered as an
instruction howto change a given predicate into its strongest postcondi
tion. In our approach an assignment statement has to be considered seman
tically as a predicate transformer. Hence it has to correspond with a single
expression which is interpreted in the model as a predicate transformer.
This requires that Floyd's rule has to be reformulated into such an ex
pression. This can be done by means of a suitable A-abstraction. The pre
dicate transformer corresponding with assignment x := 6 will look like (24).

(24) A¢3z[[z/x]¢ A x = [z/x]6].

This expression is not quite correct because of an inconsistency in the
types of ¢. The subexpression [z/x]¢ is part of a conjunction. Therefore
both [z/x]¢ and ¢ have to denote a truth-value. But in the abstraction A¢
the ¢ is not intended as an abstraction over truth-values (there are only
two of them), but as an abstraction over predicates (there are a lot of
them). This means that the types of ¢ in (24) are not consistent, so it
cannot be the predicate-transformer which we will use.

A second problem is the occurrence of the substitution operator in
Floyd's rule (and in (24)). It is an operator which operates on strings of
symbols. The operator does not belong to the language of logic and there
is no semantic interpretation for it. Henceexpressions containing the
operator have no interpretation. To say it in the terminology of our
framework: expressions like (24) are not a polynomial operator over the
logic used. Rememberthat no logical language has the substitution operator

143

as one of its operators. Substitution belongs to the meta-language, and is
used there to indicate how an expression of the logic has to be changed in
order to obtain a certain other expression. Since proof rules and axioms
are, by their nature, rules concerning syntactic objects, there is no ob
jection against a substitution operator occurring in a proof rule. But we
wish to use predicate transformers to determine meanings. If we would use
substitution operators in predicate-transformers, then our transformers
would be instructions for formula manipulation, and we would not do seman
tics. The same observation is madeby Tennent with respect to another rule.
He stated in a discussion (NEUHOLD1978, p.69):

Substitution is purely syntactic, function modification semantic.
The third problem can be illustrated by considering the assignment

x := y + 1. The identifier x is used in the execution of the program in an
essentially different way than the identifier y. They is used to indicate
a certain value. The x is used as the nameof a cell, and not to indicate
a value. This different use corresponds with the semantic difference : in
section 1.2 we observed that the left-hand side of the assignment statement
is referentially opaque, whereas the right-hand side is transparent. Floyd's
rule does not reflect these differences. The rule makesno clear distinction

between a name and the value associated with that name. In my opinion this
is the main source of the problems with Floyd's rule. Rememberthat all
problems we considered above, arose precisely in those situations where
there are several ways available for referring to a certain value in the
computer: one mayuse an identifier or a pointer to that identifier; one
mayuse an array identifier subscripted with an integer, or subscripted
with an compoundexpression referring to the same value.

In the field of semantics of natural languages an approach which iden
tified nameand object-referred-to was employedin the beginnings of this
century. Ryle epitomizes this feature of these theories in his namefor
them: 'Fido'-Fido theoriesi The word 'Fido' means Fido, the dog, which is

its meaning (see STEINBERG& JAKOBOVITS1971, p.7). The approach was

abandoned, because it turned out to be too simple for treating the less
elementary cases. In view of the analogy of the behaviour of names in na
tural languages and in programming languages we observed in section 1, it
is not too surprising that Floyd's rule is not completely successful either.

144

4. SEMANTICAL CONSIDERATIONS

4.1. The model

In section 5 the syntax and semantics of a small fragment of a pro
graming language will be presented; in section 7 a larger fragment will be
dealt with. The treatment will fit the frameworkdeveloped in the first
chapter. So we will translate the programminglanguage into some logical
language, which is interpreted in somemodel. In the present section the
semantical aspects (model, logic) will be discussed which are relevant for
the treatment of the first fragment. In sections 6 and 7 this discussion
will be continued.

In section 2.1 we observed that the assignment statement creates an
intensional context. Therefore it is tempting to try to apply in the field
of programminglanguages the notions developed for intensional phenomena
in natural languages. The basic step for such an application is the trans
fer of the notion ‘possible world‘ to the context of programing languages.
It turns out that possible worlds can be interpreted as internal states of
the computer. Since this is a rather concrete interpretation, I expect that
the ontological objections which are sometimesraised against the use of
possible world semantics for natural languages (e.g. POTTS1976), do not ap
ply here. The idea to use a possible world semantics and some kind of modal
logic can be found with several authors. An influencing article in this
direction was PRATT 1976; for a survey, see Van EMDEBOAS 1978 or PRATT

1980.

An important set in the model is the set of possible worlds, which in
the present context will be called set of states. This set will be intro
duced in the same way as possible worlds were introduced in the treatment
of natural languages. It is just some non-empty set (denoted by ST). They
are not further analysed; so we do not build explicitly in our semantic
domains some abstract model of the computer. But this does not mean that
every model for intensional logic is an acceptable candidate for the inter
pretation of programing languages. BelowI will formulate somerestrictions
on these models, which determine a certain subclass, and these restric
tions have, of course consequences for the set ST as well. In this indirect
way certain properties of the computer are incorporated in the model. The
formulation of the restrictions only concern the simple assignent state
ment, and they will be generalized in section 7.

145

An integer identifier is associated with somecell in the computer,
and for each state we may ask which value is contained in this cell. The
semantic property of an integer identifier we are interested in, is the
function which relates a state with the value contained (in that state) in
the cell corresponding to that identifier. So we wish to associate with an
identifier a function from states to values, see chapter 1 for a discussion
(the same idea can be found in ADJ 1977 or 1979). In order to obtain this

effect, integer identifiers are translated into constants of type <s,e>
(e.g. the identifiers x,y and w are translated into the constants x,y and
w of type <s,e>). But something more can be said about their interpretation.
The standard interpretation of constants of intensional logic allows that
for a given constant we obtain for different states different functions
from states to values as interpretation. But we assume that on the computers
on which the programs are executed, the relation between an identifier and
the corresponding cell is never changed, so that for all states the func
tion associated with an identifier is the same. The interpretations of x,y
and w have to be state independent (in chapter 5, section 2 a related situa

tion will arise for natural language; one uses there for such constants the
name‘rigid designators'). This requirement implies that not all models for
intensional logic are acceptable as candidates for formalizing the meaning
of programming languages. Weare only interested in those models in which
the following postulate holds.

4.]. Rigidness Postulate

Let c e CON and v e VAR . Then the following formula holds:<s,e> <s,e>

BVU[c=v].

4.]. END

The above argumentation in favour of the rigidness postulate is not
completely compelling. For a fragment containing only simple assignment
statements one might alternatively translate integer identifiers into con
stants of type e which are interpreted non-rigidly. In such an approach
the constant relation between an identifier and a cell would not have been

formalized. This aspect will, however, becomeessentail if the fragment is
extended with pointers. Although there are no essentially non-rigid con
stants in the fragment under consideration, it is also possible to consider

146

such constructs e.g. the integer identifier xory which denotes the same as
the integer identifier x or the integer identifier y, dependingon which of
both currently has the greatest integer value. The rigidness postulate
guarantees that the interpretation of constants is state independent. There
fore we mayreplace the usual notation for their interpretation, being
F(c)(s), by somenotation not mentioning the current state. I will use
V(c) as the notation for the interpretation of a constant with respect to
an arbitrary state.

Twostates which agree in the values of all identifiers should not be
distinguishable, since on a real computer such states (should) behave alike.
Twostates only count as different if they are different with respect to
the value of at least one identifier. This is expressed in the following
postulate.

4.2. Distinctness Postulate

Let s,t 6 ST. If for all c e CON,V(c)(s) = V(c)(t), then s = t.
4.2. END

The execution of an assignment modifies the state of the computer in
a specific way: the value of a single identifier is changed, while the
values of all other identifiers are kept intact. This property is expressed
by the update postulate, which requires that the model to be rich enough to
allow for such a change. The term ‘update’ should not be interpreted as
stating that we change the model in some way; the model is required to havea
structure allowing for such a transition of states.

4.3. Update Postulate

For all s 6 ST, c 6 C0N<Se), n e hi there is a t e ST such that
3

V(c)(t) = n
V(c')(t) = V(c')(s) if c‘ # c.

4.3. END

The update postulate requires the existence of a certain newstate,
and the distinctness postulate guarantees the uniqueness of this newstate.

147

I formulated the update postulate for constants of type <s,e> only, but
in section 7 it will be generalized to constants of manyother types as
well. If the update postulate holds for a constant c and a value d, then
the (unique) state required by the postulate is denoted <c+d>s.

Note that the postulates differ from the meaningpostulates given for
natural languages in the sense that they are formulated in the meta-lan
guage and not in intensional logic itself. This allowed us to use quanti
fication over states and over constants in the formulation of the postulates.

Onemight wish to construct a model which satisfies these three postu
lates. It turns out that the easiest way is to give the states an internal
structure. The rigidness postulate and the distinctness postulate say that
we may take for elements of ST sets of functions from (translations of)
identifiers to integers. The update postulate says that SThas to be a suf
ficiently large set. Let ID be the set of integer identifiers. Thenwemight
take ST = EGID.Another possibility (suggested by J. Zucker) is

ST = {s e IJID I s(x) # 0 for only finitely manyJr}. Sets of states with a
completelydifferent structure are, in principle, possible as well.

In the introduction I have said that the set of states (set of pos
sible worlds) is just someset. This means that states are, in our approach,
a primitive notion and that no internal structure is required for them. But
the models just described correspond closely with the models know from the

literature (e.g. the one defined by De BAKKER(1980, p.2l)); for the larger
fragment we will consider this correspondence is less obvious (see section
7). The difference between these two approaches is that here we started
with requiring certain properties, whereas usually one starts defining a
model. A consequence is that we are only allowed to use the properties we
explicitly required, and that we are not allowed to use the accidental
properties of a particular model. This is an advantage when a model has to
be explicit about a certain aspect, whereas a theory is required to be
neutral in this respect. Anexample could be the wayof initialization of
identifiers as discussed in De BAKKER(1980, p.218). He says about a cer
tain kind of examplesthat it: '[..] indicates an overspecification in our
semantics [..], it also leads to an incomplete proof theory‘. He avoids
the problem by eliminating them from his fragment. By means of the present
approach such an overspecification could probably avoided.

148

4.2. The logic

Wewill use a possible-world semantics for dealing with phenomenaof
opaque and transparant contexts. Therefore it is tempting to use as logical
language the same language as we used in the previous chapters: intensional
logic. Since we deal with a programming language, some of the semantic
phenomenawill differ considerably from the ones we considered before. In
tensional logic will be extended with some new operators which allow us to
cope with these new phenomena.

The programs deal with numbers, and this induces some changes. The con

stants of type e (v ,...) will be written in the form 0,1,2,3 ..],e’V2,e
and interpreted as the corresponding numbers. The logic is extended with

operators on numbers: +, x, -, S, 2, =. The symbols t£Ee_and §§1§e_abbre
viate 1 = 1 and 1 # 1 respectively. The programming language has an if:
then-else-ti construction (the fZ_plays the role of a closing bracket; it
eliminates syntactic ambiguities). A related construction is introduced in
the logic. Its syntax and semantics are as follows:

4.4. DEFINITION. For all T e Ty, a e MEt, B e MT and y e METwe have

i_f<1t1iBe_12Y£€MET

The interpretation is defined by:

V (8) 1f VS’g(a) = l
V if a then 8 else 7 fi =s,g——-———

V g(y) otherwise.

4.4. END

The update postulate and the distinctness postulate guarantee for

n e E1 and c 6 CONeexistence and uniqueness of a state <c+n>s. It is use
ful to have in the logic an operator which corresponds with the semantic
operator <c+n>. These operators, which I will call state switchers, are
modal operators (since they change the state, (i.e. world) with respect to
which its arguent is interpreted). The syntax and semantics of state
switchers is defined as follows.

4.5. DEFINITION. For all 0,T e CAT, ¢ 6 MEG, c e CON , a e MET we have<s,T>

149

{a/Vc}¢ e MEG.

The interpretation is defined by:

V<c+Vsg(a)>s,g(¢) if <c+VS,g(a)>s

VS g({a/Vc}¢) = is defined,

VS,g(¢) otherwise.

Note that in the present stage of exposition, the ‘defined’ case only ap
plies for c e CON
4.5. END

<s,e>'

Onemight wonder why the state-switcher contains an extension operator,
for only the constant c and the expression a are relevant for determing
which state-switcher is intended. The reason is that state-switchers have

manyproperties in commonwith the well-known substitution operators. The
state-switcher determined by c and a behaves almost the same as the substi
tution operator [a/vc]. This will be proven in section 4.3.

The meaning of a program will be defined as a predicate transformer.
Since we will represent meanings in intensional logic, we have to find a
representation of predicate transformers in intensional logic. Let us first
consider state-predicates. These are properties of states. For somestates
the predicate holds, for others it does not hold, so a state predicate is
a function f: S + {0,l}. Since the interpretation of intensional logic is
state-dependent, such a state predicate can be represented by means of an
expression of type t.

A predicate transformer should, in the present approach, not be an
operation on expressions, but a semantic function which relates state
predicates with state-predicates. So it should be a function
f: (S+{0,l}) + (S+{0,l}). This means that it is a function which yields a
truth-value, and which takes two arguments: a state-predicate, and a state.
Changing the order of the arguments does not change the function essentially.
Wemayconsider a state-predicate as a function which takes a state and a
state-predicate, and yields a truth-value. Hencewe maysay that a predi
cate transformer is a function f: S + ((S+{0,l}) + {O,l}). This Viewis,
in a certain sense, equivalent to the one we started with. A formula of
type <<s,t>,s> has as its meaning such a function, hence formulas of type

150

<<s,t>,t> are suitable as representations of predicate transformers. There
fore programs and assignments can be translated into expressions of this
type.

One might have expected that programs and assignments are translated
into expressions of type <<s,t>,<s,t>>. This was the type of the transla
tions of programs and assignments in JANSSEN& Van EMDEBOAS (1977a,b). The

first argument for using the type <<s,t>,t> of theoretical nature. Anex
pression of type <<s,t>,<s,t>> has as its meaning a function
f: S + ((S+{0,l}) + (S+{0,1})), and this is not a predicate transformer
(although it is closely connected, and could be used for that purpose).
The second argument is of practical nature: the type of the present trans
lation gives rise to less occurrences of the A and V signs.

A consequence of the representations which we use for (state-)predi
cates and predicate transformers is the following. Suppose that program n
is translated into predicate transformer N’, and that this programis exe
cuted in a state which satisfies predicate ¢. Then in the resulting state
the predicate denoted by n'(A¢) holds; it is intended as the strongest
condition with respect to programn and predicate ¢ (i.e. sp(n,¢)).

4.3. Theorems

The substitution theorem says that the state-switcher behaves almost
the sameas the ordinary substitution operator. The iteration theorem
describes a property of the iteration of state-switchers.

4.6. SUBSTITUTIONTHEOREM.The following equalities hold with respect to all
variable assignments and states.

1- {a/Vc}c' = c' for all c' e CON.

2- {a/vC}v = v for all V 6 VAR.

3. {a/Vc}(¢A¢) = {a/vc}¢ A {a/Vc}w

analogously for v,+,++,7, £§fthen—else—§£_constructs.

3x{a/Vc}¢ if x does not occur free in a4. {a/Vc}(3x¢)

analogously for Vx¢, Ax¢.

5. {a/Vc}<s<y>> = [{a/VC}B]({a/Vc}y).

6- {a/Vc}AB = A8 analogously for E16.

7- {a/Vc}Vc = a.

J5!

Consequence

The state switcher {a/Vc} behaves as the substitution operator Ea/Vc],
except if applied to ABJJB or VB (where B 1 c). The formulas {a/vc}AB and

{a/VCHDBreduce to A8 and|DB respectively, whereas {a/vc}vB cannot be re
duced any further.

PROOF.Let t be the state <c+V (a)>s, so V {a/Vc}¢ = V ¢.—— s.g s.g t :8

1. VS,g({o1/Vc}c')= Vt’g(c') = VS,g(c').
The equalities hold because of the Rigidness Postulate.

2. vs,g {ct/Vc}(v) = Vt,g(v) = g(v) = VS,g(v).

3. Vs,g{o1/Vc}(¢Aq;) = 1 => Vt,g(¢/xgb) = 1 ~==>vt,g(¢) = 1 and

vt,g(¢) = 1 «=9 VS,g({oL/Vc}¢) = 1 and vS,g({a/Vchp) = 1 e==

Vs,g({a/vc}¢ A {a/“C111 = 1.

Analogously for the other connectives.

4. V {a/Vc}3x¢) = I fin’ Vt g(3x¢) = 1 ¢=- there is a g' ~x g suchs,g(

that Vt,g,(¢) = 1 => {x not free in o1'.}<-=>there is a g‘ ~x g such

that VS,g({o1/VC}¢) = 1 ea VS’g(3x{o1/Vc}¢) = 1.

5. vs g{a/Vc}(B(v)) = vt_g<e(y>> = vt,g(s)(vt,g(y)) =

VS,g({G/vC}B)(VS,g{G/vC}Y)= vs g({a/Vc}e({a/Vc}v)).

6. vs g({a/Vc}“B) = v (AB) = 5;’ vt.,g(B) = vs g(AB)

V(c)(<c+Vs,g(a)>s) = VS,g(a).
H < /\ 9, ll

7. VS’g({a/Vc}vc)

4.7. ITERATION THEOREM.

{al/Vc}({a2/vc}¢) = {{al/vc}u2/vc}(¢)

PROOF.Note that also here the state switcher behaves as a substitution
. . . V

operator: first a substitution of a2 for all occurrences of c, and next a
substitution of al for the newoccurrences of Vc, is equivalent with an im
medaite substitution of [al/Vc]a2 for all occurrences of Vc. The proof of
the theorem is as follows.

First consider <c+d]>(<c+d2>)s, where d] and d2 are possible values
of c. This denotes a state in which all identifiers have the samevalue as

in s, except for c which has value dl. So it is the same state as <c+dl>s

152

(due to the distinctness postulate). This equivalence is used in the proof
below.

VS,g{a]/vc}({oL2/Vc}¢) = v {a2/Vc}(¢) =<c+Vs g(a1)>s,g

V<c+V
(a2)>(<'c+-VS’g(cx])>)S,g(¢) =

(¢) =
<c+Vs’g(a])>s,g

V
<c+V (a2)>s,g<c+V (a)>s,g

S’g I v v

V<c+Vsg({a]/vC}a2)>S,g(¢) = VS,g{{a]/ c}a2/ c}(¢)
4.7. END

5. FIRST FRAGMNT

5.1. The rules

In this section the syntax and semantics will be presented of a small
fragment of a programing language. The fragment contains only programs

which consist of a sequence of simple assignment statements; many program
ming languages have a fragment like the one presented here. The treatment
will be in accordance with the frameworkdeveloped in the first chapters
of this book. This means that for each basic expression (generator of the
syntactic algebra) there has to be a translation into the logic, and that
for each syntactic rule there has to be a corresponding semantic rule which
says howthe translations of the parts of a syntactic construction have to
be combined in order to obtain the meaning of the compoundconstruction.

The syntax of the fragment has the following five categories:
1. INT The set of representations of integers. Basic expressions in

this categoryare: 1,2,3,...,12,...,666,... .
2. ID The set of integer identifiers. Basic expressions are x,y and z.
3. ASS The set of assigments.
4. PROG The set of programs.

5. BOOL The set of boolean expressions.

The basic expressions of the category INT translate into corresponding con
stants of type e; the translation of 1 is 1 etc. The identifiers x,y and w
translate into corresponding constants of type <s,e>: the translation of m
is x.

The syntactic rules are presented in the sameway as in previous chap
ters. In the clause called 'rule', the categories involved are mentioned;

153

first the categories of the input expressions, then the category of the re
sulting expression. The F-clause describes the operation which is performed
on the input expressions; here u always stands for the first input expres
sion, B for the second, and y for the third. The T-clause describes how the
translation of the resulting expression is built up from the translations
of the input expressions. Here a‘ denotes the translation of the first in
put expression, 8' of the second, and Y‘ of the third.

Rule 513: INT X INT + BOOL

Fla: a = B
. I = I

Tla. a B .
Example S : Out of the integer expressions 1 and 2, we may build the

boolean expression 1 < 2, with as translation 1 < 2.

Rules S]b..S]e: Analogously for the relations >,s,2, =.

Rule S23: INT X INT + INT

F23: a + B

T23: a' + 8'
Example : (1+2)' = 1 + 2

Rules Szb, Szc: Analogously for the operations X and +

Rule S3 : ID + INT
F : a

T: : Va'
Example : The integer identifier x can be used to denote an integer.

Rule S4 : ID X INT + ASS

F4 : a := B

T4 : Ap[az[{z/Va'}Vp A Va’ = {z/va'}B']] (z e VARe)
Example : See below. Notice the similarity and differences between

this predicate transformer and Floyd's original rule. Some
extension operators have been added, and the substitution
operator is replaced by an operator with a semantical in
terpretation.

Rule S5 : ASS + PROG

F5 : a

T5 : a‘
Example : Every assignment statement can be used as a (reduced) pro

gram.

154

Rule S6 : PROG x PROG + PROG

F6 : a;B A
T6 :).P[oL'(B'(1=))].

Rule S7 : BOOL x PROG x PROG + PROG

F7 :_£f a then 8 else 7 f§_ V
T7 : Ap[s'“(a' A Vp) v y'AC7a'A P)]

5,2, Examples

5.]. EXAMPLE:x := y.

The derivational history of this assignment is presented in figure 4.
Also the successive steps of the translation process are presented in the
tree. At each stage the number of the rule used and the category of the
produced expression are mentioned between braces.

{y := m {Prog,S5}AP[3z[{z/Vy}VP A V9 = {z/Vy}<Vxm

y := x {Ass,S4}

iAP[3x[{z/Vy}vP A Vy = {z/vy}(Vx)]]/
_ \‘\\

{yup} { :c{INT,S3}y V

{ {ID}X

T

Figure 4. y := x

The obtained translation of the program can be reduced, using the sub
stitution theorem, to (25)

(25) AP[E!z[{z/Vy}vP A Vg=Vx]].

Nowsuppose that before the execution of the assignment x equals 7 and y
equals 2 (cf. Section 1, Figure 2c). So the initial state satisfies predi
cate (26):

(26) vx = 7 A y = 2.

155

Then after the execution of the assignment the following holds:

(27) AP[3z[{z/Vy}VP A Vy=VxJJ<“[Vx=7 A Vy=2])

This reduces to (28), and further to (29) and (30).

(28) 3z[{z/vy}(Vx=7 A vy=2) A vy=Vx]

(29) 3z[vx=7 A z=2 A vy=Vx]

(30) vx=7 A vy=Vx.

5.2. EXAMPLE:y := x; y := y + 1.

The translation of the second assignment statement is obtained in the same
way as the translation of y := x in example5.]. Its translation is (31),
which reduces to (32).

(31) AP3z[{z/Vy}VP A Vy = {z/Vy}(Vy+l)]

ll(32) AP3z[{z/vy}VP A Vy 2+1].

The translation of the whole program is therefore

AQ[y:=y+1J%“[[y==xJ'(9)1) =

AQAP[3z[{z/Vy}vP A Vy = z+1JJ<“az[{z/”y}VQ A Vy=Vx]) =

AQ3z[{z/Vy}(3w[{w/vy}vQ A vy=Vx]) A Vy = z+1] =

AQ3z3w[{{z/vy}w/Vy}vQ A z=Vx A Vg = z+1] =

AQ3z3w[{w/Vy}vQ A z=Vx A Vy = z+1].

Suppose now that before the execution of the program x > 0 holds. Then af
terwards (33) holds, which reduces in turn to (34) and further to (35).

(33) 3z3w[{w/vy}(Vx>0) A z=Vx A Vy=z+l]

(34) 3z[vx>0 A z=Vx A Vy=z+l]

(35) Vx>0 A vy=Vx+l.

In the treatment of this programwe first determined the translation
of the program, and then considered some specific precondition. If we knew
the precondition beforehand, and were only interested in obtaining the post
condition (and not in obtaining the translation of the whole program),
we could first calculate the postcondition after the first assignment. This
postcondition could then be taken as precondition for the second assignment.

156

5.3. EXAMLE:£f_y < 0 then y := x else y := y+1 f;.

The predicate transformer corresponding with this program is

(36) >.Q[>\P[:‘1z{z/Vy}vp A Vy=VxJ"(Vy<o A V9) v Ap[az{z/"y}"p A

A Vy=z+1J“<‘I£Vy<oJ A “on.

This reduces to

(37) AQ[Elz[z<0 A {z/vy}VQ A V_L;=vx]v azt-:[z<o]A{z/"g}Vg A Vy=z+l].

Suppose that we have no information about the state before the execution of
the assignment. This is expressed by the precondition 1=1. Then afterwards
(38) holds, which reduces to (39).

(38) 3z[z<0 A Vy=Vx] V 3zf7[z<0] A Vy=z+l]

(39) Vy=Vx V Vy 2 l.

5.3. END

6. POINTERS AND ARRAYS

6.1. Pointers

An application of Floyd's rule to assignments containing pointers may
give rise to problems, see the example in section 3. In sections 4-6 we
have developed a compositional, algebraic approach for simple assignments.
This algebraic approach can be generalized in a straightforward way to the
case of pointers. I will consider at this momentonly pointers to integer
identifiers; a more general and formal treatment will be given in section 7.

Pointers to integer identifiers are expressions which have as value
in a given state someinteger identifier. In another state they mayhave
another identifier as value. Therefore we associate with a pointer some
function from states to interpretations of integer identifiers. In analogy
to the treatment of integer identifiers, this is doneby translating the
pointer into a rigid constant; so pointer p translates into constants
p e CON The execution of the assignment p := y has as an effect<s,<s,e>>'
that the current state is changed in such a way that in the newstate all
identifiers have the same value as before, except for p which nowhas
value y. This effect can be described by means of a state switcher like the
ones we introduced in relation with simple assignments. BelowI will

157

introduce soe postulates which guarantee that the state switchers {Z/vp}
can be interpreted in the waywe intend, and satisfies equalities analogous
to the substitution theorem (4.6). But first an example. Weassume that the
predicate transformer corresponding with the assignment p := 6 reads:

(40) AP[Elz[{z/Vp}VP A “P = {z/VP}6]] (z 6 VAR).<s,e>

6.]. EXAMPLE.x := 5; p := x; x := 6.

Let us assume that this program is executed in an arbitrary state, so the

precondition is true: Weare interested in the postcondition after the last
assignment. That postcondition is obtained by calculating the postcondition
of each assignment in turn, and taking that postcondition as input for the
predicate transformer of the next assignment. The postcondition of the
first assignment for precondition true reduces as follows.

AP[3z[{z/Vx}vP A Vx=5]](Atrue) = 3z[vx=5] = vx=5.

The postcondition of the second assignment (using the predicate transformer
described above) reduces as follows

7\P[3Z[{Z/Vp}VP v vp=x](A[vx=5]) = Elz[{z/Vp}(Vx=5) A

A Vp=x] = [vx=5 A vp=x].

Finally, the postcondition of the last assignent reduces as follows:

AP3z[{z/vx}vP A vx=6](A[vx=5 A Vp=x]) = 3z[{z/Vx}(vx=5 A vp=x) A vx=6]=

[3z[z=5 A Vp=x] A Vx=6] = [Vp=x A Vx=6].

From this formule follows VVp=6,so the postcondition has as consequence
that the integer value related with p is 6. This is as it should be (see
figure 2).

If we compare the treatment of this program with the treatment using
Floyd's rule see (18)-(23), then we observe that this success is due to a
careful distinction betweenthe representation of the interpretation of
identifier x, namelyx, and the representation of the value of that identi
fier, namelyVx. This has as its effect that in the calculation of the last
postcondition the x in the identity p=x is not replaced by z as would be
the case if Floyd's rule were used.
6.]. END

For the constants which translate pointers, we have postulates analogous
to the ones we have for constants translating integer identifiers (rigidness

I58

postulate, distinctness postulate, update postulate). Somethingmore, how
ever, has to be said about the possible values of pointer constants. Con

sider p e CON<S,<S’e>>.This constant is interpreted as a function from
states to objects of type <s,e>. Not all such objects are possible values
of pointers. In a given state the extension of p has to be the interpreta
tion of some integer identifier and we have already formulated somerequire
ments concerning such interpretations (update postulate etc.). For instance,
the interpretation of an integer identifier cannot be a constant function
yielding for all states the samevalue. Consequently the extension of p
cannot be such an object. Thus we arrive at the following postulate con
cerning the constants of type <s,<s,e>> (for higher order pointers analo
gous requirements will be given).

6.2. Properness postulate

For all c e CON 5 6 ST<s,<s,e>>’

V(c)(s) e {V(c') I c' e C0N<Se>}.

6.2. END

6.2. Arrays

In section 3 it was shownthat a straightforward application of Floyd's
rule to assignments containing subscripted array identifiers mayyield in
correct results. Here a compositional treatment of the semantics of such
assignents will be developed (the formal treatment will be given in 7).
In order to have a comparision for the treatment, I will first sketch a
treatment due to De BAKKER(1976, 1980).

De BAKKERpresents an extension of Floyd's proof rule for the case of

assignment statements. His treatment is based on the definition of a new
kind of substitution operator [a/B]. In most cases this operator behaves
as the ordinary substitution operator, but not in the case that both a
and B are of the form array-identifier-with-subscript. Then this substi
tution mayresult in a compoundexpression containing an if-tggg-else con
struction. The relevant clause of the definition of the operator is as
follows.

159

(41) [t/a[s]]](b[s2]) = b[[t/a[s]J](s2)]

[t/a[sl]](a[s2]) = if [t/a[sl]]s2 = s then t else a[[t/a[Sl]]s2]
1

Using this operator, De Bakker gives a variant of Floyd's rule for as
signment statements:

(42) {¢} a[s] := t {3y3z[[y/a[z]](¢) A Z = Cy/a[zJ](S)
Aa[z] = [y/a[z]](t)]}.

6.3. EXAMPLE.

Assignment: a[a[1]] := 2. Precondition: a[1] = 1 A a[2] = 1.
Postcondition:

3y3z[[y/a[z]](a[l] = 1 Aa[2] = 1) A z = [y/a[z]](a[l]) Aa[z] = [y/a[z]](2)]
By the definition of substitution this reduces to
ag3z[i_f1=zfl.e-_z3g.«e1_sea[1]§1'_=1A£2=zfla£g§Ea[2]§{=1A
z = if l=z t§§g_y §£§§_a[l] E; A a[z]=2].
From the second and the third boolean expression in the conjunction, we
see that we must take z=l, and the whole expression reduces to:
3y[y=l A a[2]=l A 1=g A a[1]=2].

This is in turn equivalent to a[1]=2 Aa[2]=l, from which it follows that
a[a[l]]=2.
This proof rule works correctly! It is not easy to understand why the rule
works, but De Bakker has proven its correctness.
6.3. END

Fromour methodological point of view this solution has the same dis
advantages as Floyd's original proposal, the main one being that the sub
stitution operator defined in (41) has no semantic interpretation. In order
to obtain a solution within the limits of our framework, let us consider
the ‘parts’ of the assignment a[s] := t. The usual syntax says that there
are two parts: the left hand side, (i.e. a[s]), and the right hand side
(i.e. t). The left hand side has as its parts an array identifier (i.e. a)
and an integer expression (i.e. s). This analysis has as a consequence that,
in our algebraic approach, we have to associate with the array identifier
a some semantic object. In the papers by De Bakker this is not done, nor is
this done by several other authors in the field. One usually employs a
model which is an abstract computer model with cells, and it is not pos
sible to associate somecell with a. In our model, on the other hand, it
is not difficult to associate somesemantic object with a. For each state
an array identifier determines a function from integers (subscripts) to

160

integers (the value contained in the cell with that subscript). In analogy
to the treatment of integer identifiers, this relation betweenan identi
fier and the associated function, is given by translating the array identi
fier into a rigid constant of type <s,<e,e,>>.

Using the fact that it makes sense to speak about the value of (the
translation of) an array identifier a, we can easily describe the effect of
the execution of an assignment a[B] := Y. By this assignent a state is
reached in which the value associated with a differs for one argument from
its old value. If the old value of a is denoted by z, then the newvalue

of a is, roughly, described by: An[£§_n=BEh§n_y e£§§_z(n) fifl. I said
‘roughly’ since it is not yet expressed, for B and Y, to take here the old
value of a. These considerations give rise to the following predicate trans
former associated with a[B] := Y:

V
(43) AP[3z{z/Va}VP A a = {z/Va}(An[££ n = B‘ then Y else va[n] ££])].

Notice the direct analogy of this predicate transformer with the predicate
transformer for the simple assignment. The correctness of (43) is, I believe,
much clearer than of the one given by De Bakker. This perspicuity is due
to the fact that we treat the array identifiers as having a meaning. In a
model based upon the use of ‘cells’, such an approach does not comenatural
ly. The main point of the present approach (arrays as functions) is the
basis for the treatment of arrays in GRIES1977. It turned out that already
in HOARE& WIRTH1973 arrays are considered as denoting functions (however

not in the context of the problems under discussion).

6.4. EXAMPLE.Consider the assignment a[a[1]] := 2, executed in a state in

which a[l] = 1 and a[2] = 1. Wewish to find the strongest postcondition
in this situation. This is foundby application of the predicate trans
former (associated with the assignment) to the precondition expressing the
mentioned property of the state. In the logical formulas given below I
should write a(l) etc., since we interpret a as a function. But in order
to keep in mind what we are modelling, I prefer the notation a[l]

[a[a[1]] :=2]'(A[Eva[E1]=1 AVa[2]=l]) =

= xp[az{z/Va}Vp A Va = {z/Va}(An ;§ n=Va[l] Eggg 2 9559

Va[nJ§;)J(“[Va[1J=1 A Va[2]=1])

An £§_n=z[l] E§§g_2 §£§§_z[n]££]3z[z[l]=l A z[2]=l A a

3z[z[l]=l A z[2]=1 All
H) II An ££_n=l then 2 else z[n]§£].

16]

Fromthis postcondition the value of a[a[l]] can be calculated:

V[a[va[l]] = va[An £§_n=l then 2 else z[n] 5; [1]] = va[2] = z[2] = 1.

6.4. END

Nowthat we knowwhich predicate transformer should be used, let us
look at how it was obtained. Wecould have tried to find some translation

for the left hand side of the assignment (i.e. for a[n]), out of which the
predicate transformer could be formed. It turned out to be preferable to
use the insights obtained from considerations based on the principle of
compositionality. Weobserved that a[s] := t is a notation for changing the
function associated with a. This suggests to consider such an assignment as
a three-place syntactic operation which takes as inputs the array identi
fier, the subscript expression, and the expression at the right hand side
of the := sign. In such an approach it is easy to obtain the desired predi
cate transformer, and therefore this approach will be followed. This shows
that semantic considerations may influence the design of the syntactic
rules (however, a binary approach to the assignment is not forbidden).

In JANSSEN& Van EMDEBOAS(l977a) assignments to multi-dimensional

arrays are treated. Since the proposal given there, is not strictly in ac
cordance with the principle of compositionality, it is not mentionedhere.
One could incorporate assignments to n-dimensional arrays by introducing a
separate rule for each choice of n; then an n-dimensional array is con
sidered as a function of n arguments.

7. SECOND FRAGMENT

7.1. The rules

In this section I will present the syntax and semantics of a fragment
of the programing language ALGOL-68 (Van WIJNGAARDEN1975). The fragment

contains integer identifiers, pointers to integer identifiers, pointers to
such pointers, etc., so there is in principle an infinite hierarchy of
pointers. The fragment also contains arrays of integers, arrays of integer
identifiers, arrays of pointers to integer identifiers, etc., so in prin
ciple an infinite hierarchy of arrays. In order to deal with such infinite
sets, the syntax will contain rule schemata. These schemata are like the
hyperrules used in the official ALGOL-68report (VANWIJNGAARDEN1975).

Following the framework from ch.], the semantics of the fragment will be

162

described by meansof a translation into intensional logic. As explained
in the previous section, this logic has to be interpreted in a restricted
class of models. The models have to satisfy certain postulates; these will
be presented in section 7.3. In section 7.4 a modelwill be constructed
that satisfies these postulates.

The names of the categories used in section 5 have to be changed in
order to follow the ALGOL-68terminology. The category of integers will be
called ‘int id‘ (i.e. integer identifier) and the category of integer iden
tifiers IDwill be called ‘ref int id‘ (i.e. reference to integer identi
fier). As explained above there will be an infinite set of categories. In

the description of a category name we may use the meta notion mode. The
possible substitutions for this metanotion are described by the following
meta rules;

m2dg_+ int%+ref%
mode + row of mode.

These modescorrespond with types of intensional logic; this correspondence
is formalized by the mapping T which is defined as follows.

I(int) = e
T(bO01) = t

t(ref mode) = <s,1(mgdg)>

T(row of mode) = <e,r(mg§g)>.

For each 'mode' there is a category ‘mode id‘ which contains denumer
able manyexpressions: the identifiers of that mode. Examplesare:

Category Typical identifiers
int id 1,2,3,...,666,...
ref int id x,y,w,x1,m2,...
ref ref int id p,q,p1,p2,...
rowof int id a,a1,a2,...
The rule schemata of the fragment are presented in the same way as the

rules presented in section 5. The main difference is that in section 5 we
had actual rules, whereas we here have schemata which become actual rules

by means of a substitution for mode. Important is that throughout one scheme
the same substitution for modehas to be used.

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

Rule

163

: int exp X int exp + bool exp
1 5

FBl..FB5 : a § B where K stands for <,>,s,2, or =.

TB]..TB5 : a' § B‘ idem for s.

I]..I3 : int exp X int exp + int exp
FI1..FI3 : a 9 B where 6 stands for +,X,+ respectively
TI] .TI] : a‘ 6 B‘ idem for 9.

El : mode id + mode unit

FE! a
TE a'

1

E2 mode unit + mode exp

FE2 a
I

TE2 a

E3 : ref mode exp + mode exp

FE3 3
TE a‘.

E4 : bool exp X mode unit X mode unit + mode unit

FE4 :‘g£ a then 8 else y if
TE4 : gi a’ then 8' else 7' fi
comment : The rule is defined for units and not for exp's in order to

avoid the problems of 'balancing' (see e.g. Van WIJNGAARDEN

1975).

E5 : ref row of mode unit X int exp + ref mode unit

FE5 : a'[B']
TE5 :"[Va'[s']].

A1 : ref mode id X mode exp + ass
FA : a := 8

TA‘ ->\a[{/V'}Ap/xv‘-{/V'}'] h VAR
I . P z z a a — z a 8 w ere z e T(mode).

A2 : ref row of mode id X int exp X mode exp + ass

TA2 : a[B] := y
V v V V I V I - 1 I

FA2 : AP[3Z{Z/ a } P A a = {z/ a }[An if n=B then Y else
z[n] gill.

I64

Rule P] : ass + simple prog

FP] : a

I :on'.

Rule P2 : simple prog + prog

FP2 : a
, I

TP2 . a .

Rule P3 : prog X simple prog + prog

FP3 : a;B

TP3 : AP(a'(A[B'(P)]))

Rule P4 : bool exp X prog X prog + prog

FP4 : £§_a then 8 else y f;
TP4 : AP[B'(A[a' A VPJ) V y'(A[7a' A vP])].

7.1. EXAMPLE.In section 5 I have given several examples of assignment

statements. Therefore now as example a somewhat more complex program

p := a[1]; a[1] := 2 precondition a[l]=l A a[2]=2.

Thepostcondition after the first assignent is:

[p := a[1]]'(A[Va[1]=1 A Va[2]=2]) =

Apaz:{z/Vp}Vp A “P = {Z/Vp}“[Va[1JJJ(“tVa[1J=1 A Va[2]=2]) =
V

[Va[1J=1 A Va[2]=2 A p = “[Va[1JJJ.

Then the postcondition after the second assignment is:

3z{z/Va}(VA[Va[1]=1 A Va[2J=2 A Vp = A[Va[1]]]) A

Va = {z/va}[Xn if_n = 1 then_2 el§e_a[n] fifl =

= 3z[z[l]=1 A z[2]=2 A “p = A[va[1]] A

Va = An ££_n = l E§§£_2 §£§e_z[n] {$3.

From this we conclude that Vvp = va[l] = 2.
7.1. END

7.2. The postulates

In order to formulate the postulates, I will first define the set AT
of achievable types. This set consists of the types which are achievable
by translating expressions of categories which have a nameobtained from

165

the name-scheme ‘mode exp’.

7.2. DEFINITION.The set AT C Ty is defined by the following clauses:

1. e 6 AT

2. If T 5 AT then <S,T> 6 AT and <e,1> 6 AT.

7.2. END

The rigidness postulate says that all constants are rigid designators.

7.3. Rigidness Postulate

For all T e AT and c e CON : Sdfl [c=v].<s,1>
7.3. END

The distinctness postulate says that two states are different only if
they give rise to a different extension of someconstant.

7.4. Distinctness Postulate

Let s,t 5 ST. If for all T e AT and c e CON<sT) we have V(c)(s) =
= V(c)(t), then s = t.
7.4. END

The properness postulate says, roughly, that the extension of a con
stant has to be a value that can be achieved by executing instructions

from the programing language. First we define these sets AVTof achievable
values of type T.

7.5. DEFINITION.The sets AVT(T€AT)of achievable values of type T are de
fined as the smallest sets satisfying the following clauses.
I AV = R1e

II {V(c) | c e CON<S,T>} c AV<s,T>

III if p e AV<S,<e,T>> and n e E1 then As[[p(s)](n)] e AV<S,T>
IV AV = AVN .<e,I> 1

7.6. Properness Postulate

For all s e ST,T 6 AT, c e CON<
7.6. END

S T) we have V(c)(s) e AVT.
9

166

The update postulate says that the model should have such a richness
that the value of one identifier can be changed into arbitrary achievable
value, without changing the values of other identifiers.

7.8. Update Postulate

For all s e ST,T 6 AT, c e C0N<S , d e AVT, there is a state t 6 STI 1:)
such that

1. V(c)(t) = d
2. V(c')(t) = V(c')(s) for all constants c' 1 c.
7.8. END

The update postulate only requires ‘updating’ to an achievable value.
This means that the interpretation of {a/Vc} can be defined as follows.

7.9. DEFINITION.

V <c+VS a>S,g ¢ if VS,g(a) is achievable
VS,g{a/ c}¢ =

V ¢ otherwise.3:8

7.9. END

7.3. A model

The postulates concerning the model can be distinguished in two groups.
Someof the postulates require a certain richness of the model (the dis
tinctness postulate and the update postulate), other postulates limit this
richness (rigidness postulate and properness postulate). I will showthat
it is possible to steer a course between this Scylla and Charibdis by con
structing a modelwhich satisfies all these postulates.

The model will be built from the set of natural numbers and a set of
states. This set of states should have a certain richness since the model

has to fulfill the update postulate (every constant can take every achiev
able value). In order to obtain this effect one would like to take as set

of states the cartesian product of the sets AVTof achievable values of
type T. This method cannot be used since the achievable values themselves
are defined using the set of states (clause III of their definition).
Therefore wewill first introduce a collection of expressions which will
turn out to be in a one-one correspondence with the achievable values. The

167

set of states will be defined as the cartesian product of the sets of these
expressions.

7.1]. DEFINITION.The sets AET(T€AT)of achievable value expressions of
type T are defined as the smallest sets satisfying the following clauses:

(1) V 1 e CONe if g e AEe

(2) V c 6 CON<S,T> if c 6 AE<S,T>

(3) V i e AEe and for V.p E AE<S,<e,T>> : 9£ij_e AE<S,T>

(4) If for all n 6 El: ¢n e AET then (¢n)n€nqe AE<e,T>.
7.10. END

Clause (4) introduced infinite sequences of symbols. They arise since
we did not formalize the finiteness of arrays. The above definition has as
a consequence that corresponding to each achievable value given by the
definition of AV, there is an expression in AE.

A model for IL satisfying the postulates is nowconstructed as follows.

Weuse the sets AETof achievable value denotations and define the set of
states by

S = H U AET.

TEAT CON<S,T>

For c e CON<S

s by HC(s).

Having chosen the set S, the sets DTare determined for each type T.

T>we denote the projection on the c-th coordinate of a state
3

To complete the description of the model we must explain how\I(c) is de
fined for constants. This function is defined simultaneously with a mapping

G: UTEAT AET + UTEAT AVT‘

(1) v(1) G(£) = i for £_e AEe
1.e. a number denotations are mapped onto the integers denoted by them.

(2) ‘V(c) = G(g) = A§[G(HC(S))] for c e CON<sT)
(3) G(9[i]) = §s[G(p)(s)[G(£)]] for p 6 AE

(4) G((¢n)
<s,<e,1>>

) = An[G(¢n)] for (¢n)n€nqe AEne]N <e,-r>°

Clearly the map G: UT€ATAET + UT€ATAVT in this way becomes a bijec
tion. So all elements in the model which are of an achievable type, are
achievable values. Moreoverthe model satisfies all postulates, due to the
definition of the set S.

168

8. CORRECTNESS AND COMPLETENESS

8.1. State transition semantics

In the previous section the meaning a program is defined, and one
might expect that the story ends there. But the kind of meanings (predi
cate transformers) are far removed from the behaviour of a computer while
executing a program. One might ask whether we did not loose the connection

with a notion of meaning that is more connected with the behaviour of com
puters. In order to answer this question another kind of semantics will be
considered; one in which the meanings of assignments and programs are de

fined as mappingsfrom states to states, rather than as predicate trans
formers. I will call it a state-transition semantics; it is related with
the standard denotational semantics.

In order to express such a state transition semantics, we need a lan
guage in which states can be represented. In the present context the best
choice seems to be Ty2: two sorted type theory (see chapter 3, or GALLIN

1975, for a definition). For our purposes this language is extended with
state switchers:

8.1. DEFINITION. If T 6 AT, c 6 CON ,8 5 ME and s E M , then
-—————————— <s,r> T s

<c+B>s6 MES.The interpretation of such an expression is defined by

Vg(<c+B>s)= Vg,(s), where g' g g and g'(s) is the unique state t,
such that V(c)(t) = V(B) and V(c')(t) = V(c')(s)

if c' 1 c, if such a state exists (the update
postulate guarantees uniqueness); otherwise g'(s) =5.

8.1. END

The state-transition semantics of the fragment is defined by means of
providing for a translation into Ty2. The translation function will be
denoted as ". For the identifiers the translation into Ty2 is the same as
the translation into IL, so X’ = X" for all identifiers x.

For most of the translation rules into Ty2 the formulation can easily
be obtained from the translation rules into IL using the standard formu
lation of IL in Ty2 (see chapter 3). Therefore I will present here only
those rules whichare essentially different: the rules concerning assign
ments and programs.

169

Rule P : Ass + Simple Prog

FP : a

OP : a".

Rule P : Simple Prog + Prog

FP2 : a
, n

0P2 . a .

Rule P : Prog X Simple Prog + Prog

FP3 : a§B

OP3 : As[a"(B"(s))].

Rule P ' Bool Exp X Prog X Prog + Prog

EP4 : ifva then 8 else 7 ii
OP4 : As[£§_a"(s) then 8" else 7" 5;].

4-‘

0

Rule A1 : Ref mode Id x mode Exp + Ass

FA] : a := 8

0A] : As[<a"+B">(s)].

Rule A2 : Ref Row of mode Id X Int Exp X mode Exp + Ass

TA2 : a[B] := y

0A2 : Xs[<a"+An ££_n = B" then Y" else a"[n] £§}(s)].

8.2. Strongest postconditions

Our aim is to prove that the predicate transformers we have defined in
the previous section, are correct with respect to the operational semantics",
and that these predicate transformers give as much information about the
final state as possible. The relevant notions are defined as follows.

8.2. DEFINITION.A forward predicate transformer n' is called correct with
respect to programn if for all state predicates ¢ and all states s.

if s F ¢ then n"(s) F n'(A¢).

8.3. DEFINITION.A forward predicate transformer n‘ is called maximal with
respect to programWif for all pairs of state predicates ¢,w holds:

if for all states s: s F ¢ implies n"(s) F w,
then F n'(A¢) + w.

170

8.4. THEOREM.Let n be a program, and H1 and n2 be forward predicate trans
formers which are correct and maximalwith respect to n. Thenfor all ¢:

|= «,<“¢> +—>n2<“¢).

EEQQE.Since W2 is correct we have:

if s F 4) then 1r"(s) F 1r2(Acb).

Since H] is maximal, from the above implication follows:

|= n1<“¢> + n2<“¢>.

Analogously we prove

|= «2(‘¢> + n,(“¢>.

8.4. END

A consequence of this theorem is that all predicate transformers which
are correct and maximalwith respect to a certain program yield equivalent
postconditions. This justifies the following definition.

8.5. DEFINITION.Let n be a program and ¢ an expression of type t. Now

sp(n,¢) is a newexpression of type t, called the strongest postcondition
with respect to n and ¢. The interpretation of sp(n,¢) is equal to the in
terpretation of n'(A¢), where H‘ is a forward predicate transformer which
is correct and maximalwith respect to n.
8.5. END

A notion which turns out to be useful for proving properties of predi
cate transformers is

8.6. DEFINITION.A predicate transformer n‘ is called recoverable with re
spect to programN if for all states t and state-predicates ¢

if t F 'n'(A¢) then there is a state s such that s F=¢ and n"(s) = t.

8.7. THEOREM.If n’ is recoverable, then n’ is maximal.

Egggg. Suppose that n‘ is recoverable and assume that s F ¢ implies that
w"(s) F up, but that not F 'n'(A¢) + w. Then there is a state t such that

t F 1T(¥) and t F '7 w. Since N’ is recoverable there is a state s such

that s F= ¢ and n"(s) = t. By assumption we also have n"(s) F 1p. Contra
diction.

171

8.8. THEOREM.The translation function I defined in section 7 yields
strongest postconditions.

PROOF.By induction to the structure of the possible programs. Weonly con

sider the case X := 6 because for other cases the proof is straightforward.

Part 1: Correctness. Let s F= ¢ and t = ""(s). Thus t = <x + 6">s. Wehave
to prove that

(44) t F= 3z[{z/Vx'}¢ A Vx' = {z/Vx'}a'3.

Let h be such that h(z) = Us(Vx). Then for every formula w:

(45) v <{ /V '}w> = v (w) = v (w).
t,h Z x <x'+h(z)>t,h s,h

Therefore

<46) tux F {z/Vx'}¢.

Moreover

(47) vt,h({z/VX'}5') = v<x+h(z)>£,h 6' = s,h ' = t,h X'
This means that ' is correct.

Part 2: Recoverability. Let

(48) t F 3z[{z/vx}¢ A “x = {z/Vx'}6'].

Thus there is a g such that (49) and (50) hold

(49) t,g F {Z/Vx'}¢
5ov"'=v V".

< > t(x > t g<{z/ x 15 >

Wedefine s = <x+g(z)>t, then we immediately conclude that s F ¢. Weprove
now that the value of Vx' is the same in n”(s) and in t. Since this is the
only identifier in which they might differ we conclude that the states are
the same (the update postulate guarantees uniqueness!)

v v

(51) vfl"(s) < x‘) = v < x') = vS(a') = v<x+g(z)>t(a') =

= vt,g{z/Vx'}s' = Vt(Vx')

<x+5">s

Notice that this proof also holds in case that 6 is an A-expression, or in
case g(z) is not achievable. This means that n' is recoverable, hence n’
is maximal.

8.8. END

172

8.3. Completeness

The notions 'completeness' and 'soundness' of a collection proof rules
play an important role in the literature concerning the semantics of pro
graming languages. Such collections are intended to be used for proving
properties of programs. Our main aim was not to prove properties, but to
define meanings. However, in the discussions about our approach the possi
bility to prove properties of programs played an important role. In the ex
amples several proofs concerning effects of programs were given, and one of
the arguents for using predicate transformers was their usefulness in
proofs. Therefore it is interesting to consider our approach in the light
of the notions 'soundness' and 'completeness'. First I will informally dis
cuss these notions in their relation to the traditional approach (for a
survey see APT1981), there after I will try to transfer them to our ap
proach.

In the traditional approaches one describes the relation between the
assertions (state predicates) ¢ and w and the program n by means of the
correctness formula {¢}n{w}.This formula should be read as stating that if
¢ holds before the execution of program n, then w holds afterwards (for a
discussion see section 2). Formula ¢ is called a precondition, and w a
postcondfition. collection C of proof rules for such formulas consists of
axioms, and of proof rules which allow to derive new formulas from already
derived ones. For the basic constructions of the programminglanguage cer
tain formulas are given as axioms (e.g. Floyd's axiom for the assignment
statement). An important proof rule is (52); the so called rule of conse
quence. It allows us to replace a precondition by a stronger statement, and
a postcondition by a weaker statement.

(52) If p+pl, {p1}S{ql}, q] + q are derived, then {p}S{q} follows.

The notion f-C (derivable in C) is then defined as usual. Hence (53) means
that the formula {¢}n{¢} can be derived from the axioms by using only rules
from C.

(53) |—C {¢}-aw}.

Besides the syntactic notion f- the semantic notion F=Mof satisfacC!
tion in a model M is used. A model M is defined, in which assertions ¢ and

w can be interpreted and in which the execution of n is modelled. Then (54)
says that it is true in Mthat if ¢ holds before the execution of n, then

173

w holds afterwards.

(54) }=M {¢}1r{w}.

The notions soundness and completeness of collection C of proof rules

relate the syntactic notion f-C with the semantic notion F=M.The collec
tion C is called sound if for all ¢,w and n

(55) |—C {¢}11{IJ)}implies I=M{¢}1r{tP}.

The collection C is called complete if for all ¢,¢ and n

(56) |=M {¢}«{w} implies I-C{¢}n{w}.

Most identifiers in computer programs have to be associated with num
bers, and the assertions in correctness formulas may say something about
the numerical values of these identifiers. Wemayconsider a trivial pro
grama (e.g. x := x) a trivial assertion B (e.g. true), and an arbitrary
assertion y from number theory. Then (57) holds.

(57) |=M{B}0.{'Y} if and only if l=M 7.

Suppose now that we had a complete collection C of proof rules for correct
ness formulas. Then combination of (56) with (57) would learn us that (58)
holds

(58) |‘C {B}0t{Y} if and only if |=M Y.

Thus a complete proof system for correctness formulas would give us a com
plete proof system for arithmetic. Since arithmetic is not completely
axiomatizable, there cannot be such a complete system C for correctness
formulas. Concerning this situation De BAKKER(1980, p.61) says the fol
lowing:

'[..] we want to concentrate on the programmingaspects of our language,
and [..] pay little attention to questions about assertions whichdo
not interact with [assignment] statements (so that even if an axioma
tization of validity were to exist, wemight not be interested in
using it).

For this reason De Bakker takes all valid assertions as axioms of C, i.e.

if F=M¢, then by definition F-C ¢. This notion of completeness, viz. where
certain assertions are taken as axioms, is called complete in the sense of
Cook. For a formal definition see COOK(1978), or APT (1981). This notion

is defined only for logical languages which are expressive: languages in
which all strongest postconditions can be expressed (for the class of pro
grams under consideration). From the results in 8.2 follows that our ex
tension of IL is expressive.

174

In order to define the notions ‘soundness’ and ‘completeness’ for our

approach, we have to find notions that can be compared with F-C and with

F=M.First I will consider the syntactic notion }-C. In our approach the
logical deductions are performed on the level of intensional logic. So if
we would introduce a system S of proof rules, it would be proof rules of
intensional logic. Hence we have to find an expression of IL which corre
sponds with (52).

Wehave characterized (in intensional logic) the meaning of a program
n by means of a predicate transformer H‘, and we have proven that this trans
former yields strongest postconditions, i-e- 8P(",¢) = “'(A¢)- Consider ROW(59)

(59) n'(“¢) + w.

Formula (59) expresses that if ¢ holds before the execution of n, then w
holds afterwards. So (59) corresponds with the correctness formula {¢}n{¢}.
An alternative approach would of course be to use the corresponding back
ward predicate transformer. The discussion below will be restricted to for
ward predicate transformers; for backwardpredicate transformers related
remarks could be made. Suppose now that we have a system S of proof rules

of intensional logic. The notion }-S can be defined as usual. Then (60)
says about S the same as (53) says about C. Therefore I will consider (60)
as the counterpart of (53).

A

(60) l—Sn'< ¢> +w.

In section 7 we have defined a class of models. Let F denote the in
terpretation in these models. In the light of the above discussion (61)
can be considered as the counterpart in our system of (54).

(61) F n'(“¢> +w.

A system of proof rules for IL is called sound if for all ¢,w and n (62)
holds.

(62) f-S n'(A¢) + ¢ implies F n'(A¢) + w.

A system S of proof rules is called complete if for all ¢,w and N (63)
holds

(63) F n'(A¢) + w implies f-S n'(A¢) + w.

Wemight consider again trivial program a, trivial condition 8, and
an arbitrary IL formula 6. Then (64) holds

(64) }= a'("e) + 5 if and only if |= 5.

175

Suppose now that proof system S contains modus ponens. Then (65) holds

(65) f-S a'(AB) + 6 if and only if F-S 6.

Suppose moreover that S is complete. Then from (64) and (65) it follows
that (66) holds

(66) |= 5 if and only if |—S 5.

Thus a complete system of proof rules would give us a complete axiomatiza
tion of IL. Such an axiomatization does not exist (see chapter 3). Hence S
cannot be complete either. In this situation we might follow De Bakker,
and make the notion of completeness independent of the incompleteness of
the logic we use. So we might take all formulas of our extension of IL as
axioms. But then S is complete (in the sense of Cook) in a trivial way since
all correctness formulas are formulas of our extension of IL.

This completeness result is not very exciting, and one might try to
find another notion of completeness. A restriction of the axioms to only
arithmetical assertions seems me to be unnatural for the fragment under
discussion because our programs do not only deal with natural numbers, but
also with pointers of different kinds. Froma logical viewpoint it is at
tractive to try to prove for our extension a kind of generalized complete
ness (see chapter 3). This would require that Gallin's axiom system for IL
(see chapter 3) is extended with rules concerning state-switchers. Thus we
might show that a system S is generalized complete, i.e. that it is com
plete with respect to the formulas which are true in all generalized models.
The models defined in section 7 constitute a subclass of the set of gener
alized models. I do not knowany reason to expect that the formulas valid
in all models of this subclass are the sameas those valid in all gener
alized models (because our subclass does not contain an important class:
the standard models). Hence generalized completeness would be an interest
ing result that proves a certain degree of completeness, but it would not
correspond with the traditional completeness results in computer science. I
doubt whether computer scientists would be happy with such a completeness
result.

Another concept between 'incomplete' and trivially 'complete', is sug
gested by Peter van Emde Boas. The formula n'(A¢) + w was intended to be

the analogue of the Hoare formula {¢}n{w}. The language in which we express

¢ and w contains state switchers, but in most cases a programmerwill be
interested in cases were ¢ and w are state-switcher free. However, our

I76

analogue of the Hoare formula, viz. n'(A¢) + w, will always contain a state
switcher introduced by the predicate transformer H‘. Nowone might hope for
a result which says that this state-switcher can always be eliminated. In
the examples we described this was indeed the case. There are however si
tuations where no reduction rule is applicable (if values of pointers are
involved, where these values are unknown). This makes it unlikely that it
will always be possible to eliminate the state-switcher from a formula ob
tained by application of a predicate transformer to a state-switcher free
formula (i.e. such an expressibility result is not te be expected). It
would however, be interesting to knowwhether the reduction formulas are
sufficient to eliminate the state-switchers from those translations of

Hoare formulas where elimination is possible. This gives the following in
termediate concept of 'completeness'.

If ¢ and w are state-switcher free and I=n‘(A¢) = w then P§“'(A¢) = $

9. THE BACKWARD APPROACH

9.]. Problems with Hoare's rule

Besides the approach discussed up till now, there is the approach
based on backward predicate transformers. In section 3 we have already met
Hoare's rule for the assignment statement

(67) {[6/V] ¢} v := 6 {w}.

Hoare's rule mayyield incorrect results whenapplied to assignment con
taining pointers or arrays, just as was the case with Floyd's rule. I men
tion three examples.

De BAKKER(1976) presents for Hoare's rule the following example

(68) {[1/a[a[2]]](a[a[2]]=l)} a[a[2]] := 1 {a[a[2]]=l}.

The precondition in (68) reduces to l=1. That would imply that, for any
initial state, the execution of a[a[2]] := 1 has the effect that afterwards
a[a[2]] = 1 holds. This is incorrect (consider e.g. an initial state satis
fying the equality a[2]=2 Aa[1]=2).

GRIESS(1977) presents the following example

(69) {l=a[j]} a[i] := 1 {a[i] = a[j]}.

Whereas in example (68) the obtained precondition was too weak, in the

present example the obtained precondition is too restrictive. The postcon
dition holds also in caseflueinitial state satisfies i=j.

177

Anexample of the failure of Hoare's rule for the treatment of pointers
is (JANSSEN & VAN EMDE BOAS I977b):

(70) {x=x+1} p := x; {p=x+l} x := x+l {p=x}.

It is impossible to satisfy the precondition mentioned in (70), whereas for
any initial state the postcondition will be satisfied.

Besides the objection that (67) gives incorrect results in certain
cases, the same more fundamental problems arise as were mentioned in sec
tion 3 for Floyd's rule (e.g. the use of textual substitution).

9.2. Backwardpredicate transformers

Using a state switcher a formulation can be given for the backward pre
dicate transformers which satisfies our algebraic framework.The transfor
mer corresponding to v := 6 is

APE{a' /Vv}VP].

The transformer corresponding with a[B] := y is

, , , V _ v vAP[{An££_n = B then Y else a[n] {if a} P].

9.]. EXAMPLE.Assignment afi] := 1; Postconditionva[i] = Va[j]

Precondition: {Ani£_n = i Ehgn_l el§e_Va[n]£i/Va}(Va[i]=Va[j]) reducing t0:
1 = (i_fj = 1' £_1le_n_l_<is_ga[j]E)[jI| and
further to: j = i V a[j] = 1 (compare this with (69)).

9.2. EXAMLE.Assignment a[a[2]] := 1; postcondition va[va[2]] = 1.

Precondition: {An£§_n = va[2] then 1 else a[n] fi/Va}(Va[va[2]]=l).
Wehave to apply the state switcher to both occurrences of Va in the post
condition. If we apply it to va[2] then we obtain

;§_2 = Va[2] then 1 else Va[2] gi.

This leads us to consider the following two cases.
I. 2 =Va[2].

Then the precondition reduces to

({An £§_n = a[2] §§§g_1 e£§§_a[n] fi/Va}Va)[1] = 1 which reduces to
a[l] = 1.

II- 2 * va[2].
Then the precondition reduces to

({An £§_n = a[2] §§gg_l e1§§_a[n] §§jVa}Va)[2] = 1 which reduces to
l = 1.

178

So the precondition is (va[2]==2/\Va[l]=l) V(va[2] %2). (Comparethis result
with (68)).
9.2. END

9.3. Weakest preconditions

Weaim at obtaining backward predicate transformers which yield a re
", and whichsult that is correct with respect to the operational semantics

require assumptions as weakas possible about the initial state (i.e. dual
to the requirements concerning the forward predicate transformers). The
relevant notions are defined as follows.

9.3. DEFINITION.A backward predicate transformer ‘w is called correct with
respect to a programn if for all state predicates ¢ and all states s

if s F “n(A¢) then n"(s) F ¢.

9.4. DEFINITION.A backward predicate transformer ‘n is called minimal with

respect to a programn if for all pairs of state predicates n and ¢, the
following holds:

if for all states s: s F n implies w"(s) F ¢,
then F n -> '1T(A¢).

9.5. THEOREM.Let n be a program, and n1 and W2be backward predicate trans
formers which are correct and minimal with respect to n. Thenfor all ¢:

}= n,<“¢> ++ n2<“¢>.

PROOF.Since H1 is correct, we have:

if s |= 1r](A¢) then 1T"(s) |= .1).

Since uz is minimal, from this implication follows

I= 1rl(A¢) -> 1T2(A¢)

Analogously we prove F n2(A¢) + n](A¢).
9.5. END

A consequence of this theorem is that all backward predicate trans
formers which are correct and minfimalwith respect to a certain program,
yield equivalent preconditions. This justifies the following definition.

179

9.6. DEFINITION.Let H be a program and ¢ a state predicate. Then wp(n,¢)

is a newexpression of type t, called the weakest precondition with respect
to H and ¢. The interpretation of wp(n,¢) is equal to the interpretation
of 'n(A¢), where ‘n is a backward predicate transformer which is correct
and minimal with respect to n. If a state predicate is equivalent with
wp(n,¢) it is called a weakest precondition with respect to n and ¢.
9.6. END

In 9.2 backward predicate transformers are defined for the assignment
statements. Wewish to prove that they yield a weakest precondition. This
will not be proven in a direct way because it turns out that backward and
forward predicate transformers are closely related. The one can be defined
from the other, and correctness and maximality of the forward predicate
transformers implicate correctness and minimality of the backwardpredicate
transformers. These results will be proven in the next subsections.

9.4. Strongest and weakest

Strongest postconditions and weakest preconditions can syntactically
be defined in terms of each other. This connection is proved in the follow
ing theorem.

9.7. THEOREM.Let Q e VAR<S,t> and let

(I) be EIQEVQA D [sp(1r,VQ) + «m

and

(II) be VQEUE¢ + wp(n.vQ)] + V0].

Then it holds that

fbrmula (I) is equivalent to wp(n,¢), and fbrmula (II) is equivalent to
Sp(n.¢)

P3901

part A

I show that (I) is correct (Al) and minimal (A2) with respect to ¢,n and ".
From this follows that (I) is equivalent to wp(n,¢).

part A]
Supposethat s satisfies (I), so

s l= EIQEVQA El Esp(vr.VQ) + M]

180

Then for some g (71) and (72) holds

(71) s,g I= VQ

(72) s.g l= D[SP(1T.VQ) -> M.

By definition of sp, from (71) follows

1r"(s),g l= sp(1r.VQ)

By definition of D from (72) follows

1r"(s).g }= Sp(1T,VQ) -* ¢

Therefore

n"(s),g F ¢, or equivalently n"(s) F=¢.

This means that (I) is correct.

part A2
Suppose that for all s holds

(73) s I= 11 implies 1r"(s) I= ¢.

By definition of sp from (73) follows

F sp(w.n) + ¢

So for all s

s]= CI [sp(1r,n) + «M.

Let g be an assignment such that g,s F= Q = An. Then

s,g l= '3 [SP(1T.VQ) ‘* (#1.

So (for the choice Q = An)

s l= n + EIQEVQA 13 Lsp(1r,VQ) -* M].

This means that (II) is minimal.

part B

I show that (II) is correct (B1) and maximal (B2) with respect to ¢,n, and".
Fromthis it follows that (II) is equivalent with sp(n,¢).

part B]
Let

s F ¢.

Suppose that for variable assignment g holds

(74) g |= :1 [¢ + wp(1T,VQ)].

181

Then from (74) follows

5:8 |= wp(1r,VQ)

So

(75) n"<s>.g }= VQ

From (74) and (75) it follows that for all g holds

1r"(s).g |= '3 [¢ '* wp(1r,VQ)] -> VQ.

n"(s) F= VQEU[¢ + wp(n,VQ] * V0].

This means that (II) is correct.

part B2
Suppose that for all s holds

(76) s }= cb implies 1r"(s) I= n.

Then, by definition of wp it follows that

(77) |= ¢ -* wp(1r,n)

Supposethat t satisfies (II), so

(78) t }= VQEIII£4» + wp(1r.VQ)] + Va].

Let g be an assignment such that g,t F= Q = An. Then:

<79) c,g l= U M + wp(1r.VQ)J + VQ.

Then from (77) and (79) follows

(80) t.g # “Q.

So

(an |= votm Ed>+ WP(1T,VQ)]+ VQ] + V0].

This means that II is maximal.
9.7. END

That wp(¢,n) and sp(n,¢) are closely connected is also observed by
RAULEFS(1978). He gives a semantic connection. Theorem 9.7 goes further,

because an explicit syntactic relation is given.

182

9.5. Correctness proof

The theorem 9.7 has as a consequence that weakest preconditions and
strongest postconditions can be defined in terms of each other. Nowit is
unlikely that the formulas with quantification over intensions of predi
cates are the kind of expressions one would like to handle in practice. The
importance of the theorem is that given someexpression equivalent with
sp(n,¢), it allows us to prove that someexpression (found on intuitive
considerations) is equivalent with wp(n,¢). Fromthe correctness and maxi
mality of the predicate transformers defined in section 5 and 7, it follows
that the backwardpredicate transformers defined in this section are cor
rect and minimal.

9.8. THEOREM.The following two statements are equivalent

(1) sp()(:= a, 4») = .'-.lz[{z/Vx}¢ A Vx' = {z/vx'}<S']

us‘/Vx}¢.(II) wp(x := 6, ¢)

PROOF.

part 1: (I) =»(II).
Assume that (I) holds. Then from theorem 9.7 follows:

(82) |= wp(x == M) = EIQEVQA E: [3z[{z/Vx'}VQ A Vx' = {z/Vx'}<S'] + cm.

So we have to prove that for arbitrary assertion ¢ and state s holds that

(33) s |= £5‘/Vx'}¢

if and only if

(84) s I= EIQEVQA :1 3z[{z/VX'}VQ A V)(' = {z/Vx'}<S'] + M]

part la: (83) =-(84)
Assumethat (83) holds. Let g be a variable assignment such that

(85) g l= Q = "{6'/Vx'}w.

Then (due to (83)) we have

(86) s.g l= VO

In order to prove (84) we have next to prove the necessary validity of the
formula mentioned after the U for this choice of Q. So we have to prove
that for arbitrary state t (87) implies (88).

(87) t F 3z[{z/vx'}{<5'/Vx'}¢ A Vx' = {z/vx'}6']

183

(88) t }= 4».

Let h be a variable assignment for which (87) holds. Then using the itera
tion theorem, we find

(89) c,h F {{z/Vx'}6'/Vx'}¢ A Vx' = {z/Vx'}s'.

The second conjunct gives us information about the value of vx' in this
state. The state switcher says that we have to interpret ¢ with respect to
the state where Vx' precisely has that value. So the state switcher does
not change the statel This means that

(90) t |= ¢.

So (87) implies (88), and therefore (84) holds.

part lb: (84):: (83)
Assume (84) holds. Then there is a variable assignment g such that (91)
and (92) hold

(91) s.g |= V9

(92) s,g |= U [3z[{z/Vx'}VQ A Vx' = {z/vx'}<S'] + 451.

In (92) it is said that a certain formula is necessarily valid. Application
of this to state <x'+6'>s gives

(93) <x'+6'>s,g |= 3z[{z/Vx'}VQ A vx' = {z/Vx'}6’] —>4:.

Let g' E g be such that g'(z) = Vs(Vx') so <x'+z><x'+6'>s = s. Since (91)
holds, we have

(94) <x'+z><x'+5'>s.g' I= V0.

Consequently

(95) <x'+6'>s,g' F {z/vx'}VQ

Moreover

(96) <Xl+6l>S,gl F: VX. _ {Z/Vx¢}6v

because V (6') =V
v

<Xl+6l>S (X‘) = US(5') = V<XI+z><Xl+6l>s <xl+6l>S
From (94) and (95) follows that the antecedent of the implication in (93)
holds. Therefore the consequent of the implication holds

(97) <x'+<S'>s,g' }= .1»

so

(98) s.g' |= {<5'/x'}¢

{z/Vx'}5'.

184

This means that (83) holds, so (84) =-(83), And this completes the proof of
(I) =9(II).

part 2: (II) = (I)
The proof of (II) =»(I) uses a related kind of arguments. Therefore this
proof will be presented in a more concise way. Assumethat (II) holds. Then
we have to prove that for arbitrary s and ¢:

(99) s |= vgm [¢ + {<S'/Vx'}vQ] + ‘'91

if and only if

(100) s |= 3z[{z/Vx'}¢ A Vx' = {z/Vx'}6'].

part 2a
Assume (99). Take for Q in (99) the assertion in (100). Wenow prove that

the antecedent of (99) holds, then (100) is an imediate consequent. So sup

pose t |= q). we have to prove that

(101) t % 3z[{<S'/Vx'}{z/Vx'}¢ A {«s'/Vx'}[Vx' = {z/Vx'}6']]

or equivalently

(102) t }= E|z[{z'/Vx'}¢ A 5' = {z/Vx'}<s'].

This is true for g(z) = Vt(vx'), so the antecedent of (99) holds, and from
this follows that (100) holds.

part 2b
Assume (100). Let g be arbitrary and assume

(103) s,g |= ¢ + {<5'/VX'}VQ

This is the antecedent of (99). Wenowprove that the consequent holds, so
that

(104) S98 |= VQ

From (100) follows that for some g‘ g g

(105) <x'+z>s,g' F ¢.

Using (103), from (105) follows

(106) <x'+z>s,g' F {6'/vx'}VQ.

Consequently

(107) s,g' l= {{z/Vx'}6'/Vx'}vQ

From (100) also follows

185

(108) s,g' F vx' = {z/vx'}6'.

From (108 and (107) we may conclude

(109) s,g' l= "o.

This proves (IO4), so (99) follows from (100).
9.8. END

9.9. THEOREM.The fbllowing two statements are equivalent

(I) F sp(a[B] := 6,¢) = 3z[{z/Va'}¢ A Va' = {z/va'}An ££_n = B’ then 6'

else Va [n] 5;]

(II) F= wp(a[B] := 6,¢) = {An £§_n = B‘ then 6' else Va'[n] fig/va}¢.

EEQQE,The expressions at the right hand side of the equality signs are a
special case of the corresponding expressions in the previous theorem. So
theorem 9.9 follows from theorem 9.8.

9.9. END

From theorems 9.9 and 9.10 it follows that the predicate transforma
tions for the assignment as defined in section 9.2, yield weakest precon
ditions.

10. MUTUAL RELEVANCE

In this section I will mention someaspects of the relevance of the
study of semantics of programming languages to the study of semantics of
natural languages, and vice versa. Most of the remarks have a speculative
character.

The present chapter constitutes a concrete exampleof the relevance of
the theory of semantics of natural languages to the study of programming
languages. Montague's frameworkwas developed for natural languages, but
it is used here for programing languages. The notions 'opaque' and 'trans
parant', well knownin the field of semantics of natural languages, turn
out to be useful for the study of semantics of programminglanguages, see
section 1. And the logic developed for the semantics of natural languages
turned out to be useful for programminglanguages as well.

In the semantics of natural languages the principle of compositionali
ty is not only the basis of the framework, but also, as will be shownlater, a
valuable heuristic tool. It helped us to understand already existing

186

solutions. It gives rise to suggestions howto deal with certain problems,
and it is useful in finding weakpoints.in proposals from the literature.
I expect that the principle can play the same role in the semantics of
programminglanguages. The treatment of arrays in this chapter (see sec
tion 6) is an example of the influence of the principle. Below I will give
somefurther suggestions concerning possible relevance of the principle.

Consider the treatment of 'labels' and 'goto-statements’ by
A. de Bruyn (chapter 7 in De BAKKER1980). The treatment is rather complex,

and not muchmotivation for it is given. I expect, however, that these
phenomenaare susceptible to the technique explained in chapter 1: if the
meaning of some statement seems to depend on certain factors, then incor
porate these factors into the notion of meaning. In this way the notion of
‘continuation’ (used by de Bruyn) might be more easily explained, and thus
the proposal more easily understood.

In De BAKKER1980, the proof rules for certain constructions make use

of devices which are, from a compositional point of view, not attractive.
These constructions are assignments to subscripted array identifiers, pro
cedures with parameters, and declarations of identifiers at the beginning

of blocks. In the proof rules for these constructions mainly syntactic sub
stitution is used. Froma compositional point of view it is not surprising
that the semantic treatment of these phenomenais not completely satisfac
tory. For assignents to array elements an alternative was proposed in
section 6, and for blocks a suggestion was made in section 4. A composi
tional approach to the semantics of procedures with parameters would de
scribe the meaning of a procedure-call as being built from the meaning of
the procedure and the meaningof its arguent. If this arguent is a re
ference parameter (call by variable), then the argument position is opaque.
This suggests that the meaning of such a procedure should be a function
which takes as argument an intension.

In the semantics of natural language ideas from the semantics of pro
gramming languages can be used. The basic expression in a programming lan
guage is the assignment statement. For the computer the assignment state
ment is a commandto perform a certain action. I have demonstrated how the

semantics of such commandsis dealt with by means of predicate transformers.

Inspired by this approach, we might do the same for commandsin natural

language. Some examples (taken from Van EMDEBOAS& JANSSEN 1978) are given

below. Consider the imperative

187

(110) John, drink tea.

Its translation as a predicate transformer would becomesomething like

(111) 1p["(B(VP) A drink-tea(Ajohn)].

This expression describes the change of the state of the world if the com
mandis obeyed. The operator 3 is a kind of state-switcher, it indicates
the momentof utterance of the command.A similar approach can be used to

describe the semantics of actions. Onemight describe the smenatics of per
formative sentences like

(112) Wecrown Charles emperor

by means of an predicate transformer.
Often a sequence of sentences is used to perform an action rather than

to make a someassertions: sentences can be used to give information to the
hearer. Consider the text

(113) Mary seeks John. John is a unicorn.

These sentences might be translated into the predicate transformers (114)
and (115).

(114) APEVPA seek*(mary,john)]

(115) APEVPA unicorn*(john)].

Suppose that the information the hearer has in the beginning is denoted by
¢. Thenby the first sentence this information is changed into

(116) ¢ A seek*(mary,john)

and by the second sentence into

(117) ¢ A seek*(mary,john) A unicorn*(john).

From the final expression the hearer may conclude that Mary seeks a unicorn.
Also on a more theoretical level the semantics of programminglanguages

can be useful for the study of semantics of natural languages. In the study
of natural languages the need for partial functions often arises. In the
semantics one wants to use partially defined predicates in order to deal
with sortal incorrectness and presuppositions, and in the syntax one wishes
to have rules that are not applicable to every expression of the category
for which the rule is defined. In the field of programing languages pheno
menaarise for which one might wish to use partial functions. In this field
techniques are used which make it possible to use nevertheless total

188

functions. The basic idea is to introduce in the semantic domainan extra

element. Since this approach is, from an algebraic point of view, very at
tractive, I wouldlike to use this technique in the field of natural lan
guages as well (see chapter 7).

189

APPENDIX

SAFE AND POLYNOMIAL

In this appendix the theorem will be presented which was announced in
chapter 2, at the end of section 7. The theorem states that in an infinite
ly generated free algebra all safe operations are polynomially definable
(free algebras are algebras which are isomorphic to a term algebra). Remind

that f: A X...X Asn + A is safe in 2-algebra <A,F>if for every Z-al5] 5n+l
gebra <D,G>and every h e Epi(<A,F>,<D,G>) there is a unique

f: D51 x...x Dsn + Dsn+l such that h e Epi(<A,F u {f}>,<D,G U {f}>). The
proof originates from F. Wiedijk (pers. com.).

THEOREM.Let A = <(As)s€S,(FY)Y€P> be a free algebra, that has a generating

set (BS)S€Swhere each BS is infinite. Let f: AS] x...x Asn-+ ASn+]
a safe operator. Then f is a polynomially definable over A.

HEURISTICS.First I will give someheuristic considerations, there after the
theorem will be proved by proving two Lemmas.

Let us assume for the momentthat the theorem holds and let us try to

reconstruct from f the polynomial p that defines f. Let <b],...,bn> be a
possible argument for f, where b1,...,bn are generators of A. There is a

term t e Tz,A such that tA = f(bl,...,bn). Since A is free, this term is
unique. Hence t is obtained from the polynomial p we are looking for, by
meansof substituting, for the respective variables in p constants cor

responding to b .,bn. Termt (probably) contains constants for b],...,b ,l"' n
but it is not yet clear for any given occurrence of such a constant in C9
whether it occurs in p as parameter, or is due to substitution for a variable

In order to decide in these matters, we consider the value of f for gener

ators <c ..,cn> which are different from <b1,...,bn> and from the con1,.
stants in t. Suppose that for term u we have uA= f(c1,...,cn). Then u can
also be obtained from p by substituting constants. Wealready know that all

constants in p also occur in t. Since c1,...,cn do not occur in t, all
their occurrences in u are due to of their substitution for variables. So

if we replace in u all occurrences of (constants corresponding with)

cl,...,cn by variables, we have found the polynomial p wewere looking for.
This idea is followed in the next lemma. Weperform these steps and prove

that the polynomial so obtained has the desired properties.

190

LEMA1. There is an infinite sequence (zk)k_] 2 of disjoint n-tuplesi, ,II.
of generators of A, and a polynomial p such that for each zk, f(zk) = p(zk).

EEQQE:Wedefine by induction a sequence (zk)k€{O’1,...}. Let ' '

B0,S] = BSl,...,BO,sn = B n, and take zo e B0,Sl x...X B0,Sn arb1trar11Y
This n-tuple is used for the first attempt to reconstruct the polynomial p
which corresponds with f. BelowI will define an infinite sequence of at
tempts to reconstruct p, and there after it will be proved that from the

second attempt on always the same polynomial will be found; this is the
polynomial p we were looking for, as will be proven in lema 2.

Assume that z ,2 and p0,...,pk are already defined. Thenwe obtain0,...
zk+] and pk+1 as follows.

k

Let Ck S be the set of generators of sort s which corresponds withI

constants in pk, and let {zk S} be the set of components of zk of sort s.
9

Define Bk,s = Bk,s/(Ck,S k+l Bk+l’sl X...X Bk+],S
Since A is generated by (BS)s€S, f(zk+1) can be represented by a term t

U {zk,S}), and let z E

with parameters from (Bs)S€ , including z . This term t can be expressedS k+l

as a polynomial expression in zk+], say pk+](zk+]), where, moreover, no
component of 2 occurs as parameter in pk+ . Since for all k and s the setsk+l 1

Ck’S and {zk,S} are finite, and Bk,s was infinite, it follows that Bk+],s is in
finite. Hencethis construction can be repeated for all k.

Next it will be proven that the polynomialspl,p2,..., are identical,
thus proving the theorem for the sequence z1,z2,..., (note that p0 and zo
are not included). The basic idea of the proof is that we introduce for each

k a homomorphismwhich maps zk on zo, and then apply the assumptions of the
theorem.

A
Consider the mapping h defined by

h(b) = b if b e (BS/{zk,S}) for some s

h(z£i)) = zéi), where zéi) is the i-th componentof zk.

Since A is free, the mapping h determines uniquely a homomorphism

h: <A’F>+ <[(Bs/{zk,s})seS
generators of the ‘range’-algebra occur in the range of h. The polynomials

],F>. Moreover, h is an epimorphism since all

pk were chosen to contain no constants corresponding to components of zk,
therefore h(pk(zk)) = pk(h(zk)) holds for all k.

Since operator f is safe, there is a unique f such that

191

h e Epi(<A,F u {f}>,<[BS,{zk S})S€S],F u {E}>).

Nowthe following equalities hold:

I h<£(zk>> = E(h<zk>> = me) = E<h(z0>> = h<f<z0>> = h<p0<z0>> =

P0(h(z0)) = 130(20)

II h(f(zk)) = h(Pk(zk)) = Pk(h(zk)) = Pk(z0).

From I and II follows pO(z = pk(zO). Analogously we can prove that0)

p1(21) = pk<z,>.

Since A is free, there is a unique term t such that pk(z0) = t = p0(z0).
So if we replace the variables in pk and po by constants corresponding to
the components of zo, we obtain the same expression. From this, and the fact
that no components of zo occur as constants in po, it follows that the con
stants in pk consists of:
al) all the constants in po.
a2) possibly some constants corresponding to components of z

Analogously it follows that the constants in pk consist of 0
bl) all the constants in p]
b2) possibly some constants corresponding to components of zk.

Wehave chosen z] in such a way that no constant in po corresponds to
a component of z], and no component of 2 equals a component of z So if0

pk contained constants for components of z
1.

1, this would conflict with al)
and a2). Therefore we have to conclude that the constants in pk are the
same as the constants in pl, and none of these, moreover, corresponds to
components of z So for all k 2 1 we have pk E pl. Call this polynomialI.
p. Then f(zk) = p(zk) for all k 2 1.

LEMA2. Let p be the polynomial guaranteed by lemma1. Then for all

a e As! x...X Asn, f(a) = p(a).

PROOF.Let a = <a(1),...,a(n)>, and assume that a' (i) = t(i)(b§i),___,br(li)),
(1) (i).

J
be the infinite sequence of dis

where t is a polynomial without constants, and the b s are generators

of A. Assume moreover that f(a) = t. Let zk
joint n-tuples of generators given by lemma1. Since there are only finite

I and finitely manyb§i)'s, there is an m such that
the componentsof zmare all different from the constants in t and the

b§1)'s.

ly many constants in t

192

Define

h by h(b) = b if b e BS/{zm,s} for some s

h(z(1)) = a(1) where z(1) is the i-th component of z .
m m m

This mapping h defines an epimorphism h e Epi(<A,F>,<[(Bs\{zm S})]S€S,F>).
9

Since f is safe, there is a unique operation i such that

h e Epi(<A,F u {f}>,<[(BS\{zm’s}S)],F u {E}>).

Nowthe following equalities hold

f(a(l),...,a(n)) = t Th(tA) = hf(a(]),...,a(n)) =A

h<£<c'(K“’>>,...,£<t“(3‘“’>>> 3 E<h<t“)<€“’>>....,h<c‘“’<E‘“’>>> =

= E(h(z;])),...,h(z;n))) =h(f(z;l),...,z;n))) =

= h<p<z;"
1 2 l

,...,z;“’>> = p<h<z;’>,....h<z; ’>)>=p<a‘),...,a‘“’>.

Equalities 1 and 2 hold since zmhas no components which occur in t or b.
END LEMMAS .

From lemma 1 and lemma 2 the theorem follows

END THEOREM.

INDEX OF NAMES

Adj
Andreka
Andrews
Apt
de Bakker
Bartsch
van Benthem
Birkhoff
Blok
de Bruyn
Burstall
Carnap
Chany
Church
Cook
Cresswell
Davidson
Dijkstra
Dik
Dowty
Dummett
Ehrig
van Emde Boas
Faltz
Floyd
Fodor
Frege
Friedman
Gabriel
Gallin
Gazdar
Geach
Gebauer
Gerhardt
Goguen
Graetzer
Gries
Groenendijk
Henkin
Hermes
van Heyenoort
Higgins
Hoare
Hopcroft
Hughes
Huntington
Jakobovits
Janssen
Jourdain
Karttunen
Katz
Keenan
Keisler

193

17,l8,30,37,41-43,66-69,80,83,90,92-94,129,145
17
111
172,173
135,140,141,l47,l58,l59,l73,l75,]86
9

33,42,64,80,83,96,l0O
43
33
186
83
4
32
71,100,112
173,175
3,5,122
2

135,137
36
17

5—8,11
83
17,37,129,139,140,l44,150,l6l,l75,186
28
135,137,138
3,15
1-11,38
120,121
7,8,10
l00,Il2,l13,122,l68
66
10,38
123
71
83,90,94
33,42,45,46
140,160
97,l0O,l15,l26
32,98,l07,ll2,122
7,9,10
8
43
135,l36,l39,16O
53,55,65
122
7,10
143
17,36,37,lll,125,129,140,l50,16l,l86
10

I94

Kreisel
Kreowski
Krivine
Leibniz
Lewis
Link
Lipson
Lucas
Markusz
Marcus
Mazurkiewics
Milner
Monk

Montague
Needham
Nemeti
Neuhold
Padawitz
Partee
Peremans
Peters
Peano
Pietrzykowski
Popper
Potts
Pratt
Pullum
Quine
Rabin
Rasiova
Raulefs
Rogers
Russell
Ryle
Sain
Schuette
Schwartz
Scott
Smith
Steinberg
Stokhof
Stoothoff
Stoy
Strachey
Szots
Tarski
Tennent
Thatcher
Thiel
Thomason
Tichy
Ullman
Varga
Veltman
Wagner
Wall
Walk

32
33
32
71,103
29,34,97
44,100
43
135
17
34
4,17
4,17,37
32
3,17,21,27,41,42,44,46,74,76,s1,90-92,94,114
100
129
4,143
83
3,35,36,97,98
79
17,86
8
111
2,5
144
30,131,144
66
71,130
52
33
I8]
51
11

143
17
35
15

4,67
46
143
97,1oo,115,126
10,33
4,131,135
4,67
17
4,32,35
4,131,135,143
56,90
8
2
97
53,55,65
44,100
97
90
17
135

Warren
Wiedijk
Van Wijngaarden
Wirth
Wright
Zucker

120,121
189
135,161
160
90
43,67,147

195

197

REFERENCES

Adj, 1977,
=(J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright),
‘Initial algebra semantics and continuous algebras‘,
Journal of the Association for ComputingMachinery 24, 68-95.

Adj, 1978,
=(J.A. Goguen, J.W. Thatcher, E.G. Wagner),
‘Aninitial algebra approach to the specification, correctness
and implementation of abstract data types‘,
in R. Yeh (ed.), ‘Current trends in programing methodology‘,
Prentice Hall, 1978, pp. 80-149.

Adj, 1979,
=(J.W. Thatcher, E.G. Wagner, J.B. Wright),
‘Notes on algebraic fundamentals for theoretical computer
science‘,
in De Bakker & Van Leeuwen 1979, pp. 83-163.

Andreka, H., & I. Nemeti, 1979,
‘Applications of universal algebra , model theory and
categories in computer science (survey and bibliography),
Computational Linguistics and Computer Languages 13,
251-282. 'Additions' in Computational Linguistics and
Computer Languages 14, 7-20.

Andreka, H., & I. Sain, 1981,
‘Connectionsbetweenalgebraic logic and initial algebraic
semantics of CF languages‘,
in Domolki & Gergely 1981, pp. 25-83.

Andrews, P.B., 1971,
‘Resolution in type theory‘,
Journal of Symbolic Logic 36, 414-432.

Angelelli, I. (ed.), 1967,
'Gottlob Frege. Kleine Schriften‘,
Georg Olms, Hildesheim.

Apt, K.R., 1981,
‘Ten years of Hoare's logic. Part 1',
A.C.M. Transactions on Programming Languages and Systems 3,
431-483.

Bakker, J.W. de, 1976,
‘Correctness proofs for assignment statements‘,
Report IW 55, Mathematical Centre, Amsterdam.

'Bakker, J.W. de & J. van Leeuwen, 1979,
‘Foundations of computer science III. part 2: languages,
logic, semantics‘,
Tract 100, Mathematical Centre, Amsterdam.

Bakker, J.W. de, 1980,
‘Mathematical theory of program correctness‘,
Series in Computer Science, Prentice Hall, London.

Bartsch, R., 1978,
'Semantiek en Montague grammatica',
AlgemeenNederlands Tijdschrift voor Wijsbegeerte 70,
117-136.

Benthem, J.F.A.K. van, 1977,
‘Tense logic and standard logic‘,
Logique et Analyse 80, 395-437.

198

Benthem, J.F.A.K van, 1979a,
‘In alle redelijkheid (Openbare les, 29 mei 1979)‘,
Bulletin centrale interfaculteit Groningen4,
Universiteit Groningen.

Benthem, J.F.A.K. van, 1979b,
‘Universal algebra and model theory. Twoexcursions
on the border‘,
Report ZW-7908,dept. of math., Groningen University.

Birkhoff, G. & J.D. Lipson, 1970,
‘Heterogeneous algebras’,
Journal of Combinatorial Theory 8, 115-133.

Blok, W., 1980,
‘Thelattice of modallogics, an algebraic investigation‘,
Journal of Symbolic Logic 45, 221-236.

Chang, C.C. & H.J. Keisler, 1973,
‘Model theory‘,
Studies in logic and the foundations of mathematics 73,
North Holland, Amsterdam.

Church, A., 1940,
‘A formulation of the simple theory of types‘,
Journal of Symbolic Logic 5, 56-68.

Church, A., 1956,
‘Introduction to mathematical logic. Vol I.',
Princeton Univ. Press, Princeton (N.J.).

Cook, S.A., 1978,
'Soundness and completeness of an axiom system for
programverification‘,
SIAMJournal on Computation 7, 70-90.

Cresswell, M.J., 1973,
'Logics and languages‘,
Methuen, London.

Davidson, D., 1967,
‘Truth and meaning‘,
Synthese 17, 304-323.

Davidson, D. & G. Harman (eds), 1972,
‘Semantics of natural language‘,
Synthese library 40, Reidel, Dordrecht.

Dijkstra, E.W., 1974,
‘A simple axiomatic base for programming language
constructs‘,
Indagationes Mathematicae 36, 1-15.

Dijkstra, E.W., 1976,
‘A discipline of programming‘,
Prentice Hall, EnglewoodCliffs (N.J.).

Domolki, B. & T. Gergely (eds), 1981,
‘Mathematical logic in programming(Proc. Salgotorjan 1978)‘,
Colloquia mathematica societatis Janos Bolyai 26,
North Holland, Amsterdam.

Dowty, D.R., R.E. Wall & S. Peters, 1981,
‘Introduction to Montaguesemantics‘,
Synthese language library 11, Reidel, Dordrecht.

Dummett, M., 1973,
‘Frege. Philosophy of language‘,
Duckworth, London.

199

Ehrig, H., H.J. Kreowski & P. Padawitz, 1978,
‘Stepwise specification and implementation of abstract'
data types‘,
in G. Ausiello & C. Boehm(eds), 'Automata, languages and
programming(proc. 5 th. coll., Udine)‘, Lecture notes in
computer science 62, Springer, Berlin.

Emde Boas, P. van, 1974,
'Abstract resource-bound classes‘,
unpublished dissertation, Univ. of Amsterdam.

Emde Boas, P. van & T.M.V. Janssen, 1978,
Montague grammar and programing languages‘,
in J. Groenendijk &M. Stokhof (eds), ‘Proc. of the
second Amsterdam coll. on Montague grammar and related
topics‘, Amsterdampapers in formal grammarII,
Centrale Interfaculteit, Univ. of Amsterdam,1978,
pp. 101-124.

Eme Boas, P. van, 1978,
‘The connection between modal logic and
algorithmic logic‘,
in J. Winkowski(ed.), Mathematical foundations of computer
science (7th. symposiumZakopane)', Lecture notes in computer
science 64, Springer, Berlin, 1978, pp. 1-18.

Emde Boas, P. van & T.M.V. Janssen, 1979,
‘The impact of Frege's principle of compositionality
for the semantics of programing and natural languages‘,
in '"Begriffsschrift". Jenaer Frege-Conferenz1979‘,
Friedrich-Schiller Universitaet, Jena, 1979, pp. 110-129.
Also: report 79-07, Dep. of Math, Univ. of Amsterdam, 1979.

Floyd, R.W., 1967,
‘Assigning meanings to programs‘,
in J.T. Schwartz (ed.), ‘Mathematical aspects of
computer science‘, Proc. Symp. in Applied Mathematics 19,
AmericanMathematical Society, Providence (R.I.), 1967,
pp. 19-32.

Frege, G., 1884,
‘Die Grundlagen der Arithmetik. Eine logisch-mathematische
Untersuchung ueber den Begriff der Zahl‘,
W. Koebner, Breslau.
Reprint published by: Georg Olms, Hildesheim, 1961.

Frege, G., 1892,
'Ueber Sinn und Bedeutung‘,
Zeitschrift fuer Philosophie und philosophische Kritik 100,
25-50.
Reprinted in Angelelli, 1976, pp. 143-162.
Translated as ‘On sense and reference‘ in P.T. Geach &
M. Black (eds), ‘Translations from the philosophical
writings of Gottlob Frege‘, Basil Blackwell, Oxford, 1952,
pp. 56-85.

Frege, G., 1923,
'Logische Untersuchungen. Dritter Teil: Gedankenfuege‘,
in 'Beitraege zur Philosophie des Deutschen Idealismus.
Band III‘, pp. 36-51.
Reprinted in Angelelli 1976, pp. 378-394.
Translated as ‘Compoundthoughts‘ in P.T.Geach &
R.H. Stoothoff (trans1.), ‘Logical investigations. Gottlob
Frege‘, Basil Blackwell, Oxford, 1977, pp. 55-78.

200

Friedman, J. & D. Warren, 1930,
‘Lambda-normalforms in an intensional logic for English‘
Studia Logica 39, 311-324.

Gabriel, 1976,
=(G. Gabriel, H. Hermes, F. Kambartel, C. Thiel,
A. Veraart (eds)),
‘Gottlob Frege. Wissenschaftliche Briefwechsel',
Felix Meiner, Hamburg.

Gallin, D., 1975,
‘Intensional and higher—order modal logic‘,
Mathematics studies 17, North Holland, Amsterdam.

Gazdar, G., 1982,
‘Phrase structure grammar‘,
in P. Jakobson & G.K. Pullum (eds), ‘The nature of syntactic
representation‘, Synthese language library 15, Reidel, Dordrecht,
1982, pp. 131-186.

Gebauer, H., 1978,
‘MontagueGramatik. Eine Einfuerung mit
Anwendungenauf das Deutsche',
Germanistische Arbeitshefte 24, Niemeyer, Tuebingen, 1978.

Gerhardt, C.I. (ed.), 1890,
‘Die philosphischen Schriften von Gottfried WilhelmLeibniz.
Siebenter Band‘,
WeidmannscheBuchhandlung, Berlin.

Goguen, J.A., & R.M. Burstall, 1978,
Somefundamental properties of algebraic theories:
a tool for semantics of computation.‘
Report 53, Departmentof Artificial Intelligence,
University of Edinburgh.

Graetzer G., 1968,
‘Universal algebra‘,
The univ. series in higher mathematics, van Nostrand, Princeton.
Second edition published by: Springer, NewYork, 1979.

Gries, D., 1977,
‘Assignmentto subscripted variables‘,
Rep. TR 77-305, Dept. of Computer Science, Cornell Univ.,
Ithaca (N,Y.).

Groenendijk J.A.G., T.M.V. Janssen &M.B.J. Stokhof (eds), 1981,
‘Formal methods in the study of language. Proceedings of the
third Amsterdamcolloquium‘,
MC-Tracts 135 & 136, Mathematical Centre, Amsterdam, 1981.

Groenendijk, J. &M. Stokhof, 1981,
‘Semantics of wh-complements‘,
in Groenendijk, Janssen, Stokhof, 1981, pp.153 -181.

Groenendijk, J., T.M.V. Janssen, &M. Stokhof (eds), 1984,
‘Truth, interpretation, and information. Selected papers from the
third Amsterdamcolloquium‘,
Grass 2, Foris, Dordrecht.

Henkin, L., 1950,
‘Completeness in the theory of types‘,
Journal of Symbolic Logic 15, 81-91.

Henkin, L., 1963,
‘A theory of propositional types‘,
Fundamenta Mathematicae 52, 323-344.

20]

Henkin, L., J.D. Monk & A. Tarski, 1971,
'Cylindric algebras. Part I‘,
Studies in logic and foundations of mathematics 64,
Norh Holland, Amsterdam.

Hermes, 1969,
=(H. Hermes, F. Kambartel, F. Kaulbach (eds)),
'Gottlob Frege. Nachgelassene Schriften‘,
Felix Meiner, Hamburg.

Heyenoort, J. van, 1977,
‘Sense in Frege',
Journal of Philosophical Logic 6, 93-102.

Higgins, P.J., 1963,
‘Algebras with a scheme of operators‘,
Mathematische Nachrichten 27, 115-132.

Hoare, C.A.R., 1969,
‘An axiomatic base for computer programming‘,
Communications of the Association for Computing Machinery
12, 576-580.

Hoare C.A.R. & N. Wirth, 1973,
‘An axiomatic definition of the programming language PASCAL‘,
Acta Informatica 2, 335-355.

Hopcroft, J.E. & J.D. Ullman, 1979,
‘Introduction to automata theory, languages and computation‘,
Addison-Wesley, Reading (Mass.).

Hughes, G.E. &M.J. Cresswell, 1968,
‘Anintroduction to modal logic‘,
University Paperbacks 431, Methuen & Co, London.

Janssen, T.M.V. & P. van Emde Boas, 1977a,
‘On the proper treatment of referencing, dereferencing
and assignment‘,
in A. Salomaa &M. Steinby (eds), ‘Automata, languages,
and programming(Proc. 4th. coll. Turku)‘, Lecture notes in
computer science 52, Springer, Berlin, 1977, pp. 282-300.

Janssen, T.M.V. & P. van Emde Boas, 1977b,
‘The expressive power of intensional logic in
the semantics of programminglanguages‘,
in J. Gruska (ed.), ‘Mathematical foundations of
computer science 1977 (Proc. 6th. symp. Tatranska Lomnica)',
Lecture notes in computer science 53, Springer,
Berlin, 1977, pp. 303-311.

Janssen, T.M.V., 1980a,
‘Logical investigations on PTQarising from programming
requirements‘,
Synthese 44, 361-390.

Janssen, T.M.V., 1981,
‘Compositional semantics and relative clause formation
in Montague grammar‘,
in Groenendijk, Janssen, Stokhof 1981, pp. 237-276.

Janssen, T.M.V., 1981b,
‘Montaguegramar and functional grammar‘,
in T. Hoekstra & H v.d. Hulst and M. Moortgat (eds),
‘Perspectives on functional gramar‘, Foris publications,
Dordrecht, 273-297.
also: GLOT3, 1980, 273-297.

202

Janssen, T.M.V., & P. van Emde Boas, 1981a,
‘Onintensionality in programing languages‘,
in : F. Heny(ed.), ‘Ambiguities in intensional contexts‘,
Synthese library, Reidel, Dordrecht, 1981, pp. 253-269.

Karttunen, L. & Peters, S., 1979,
‘Conventional Implicature‘,
in D.A. Dinneen & C.K. Oh (eds), ‘Presuppositions‘,
Syntax and Semantics 11, Academic Press, NewYork.

Katz, J.J. &J.A. Fodor, 1963,
‘The structure of a semantic theory‘,
Language 39, pp. 170-210.
Reprinted in J.A. Fodor &J.J. Katz (eds), ‘The structure
of language‘, Prentice Hall, EnglewoodCliffs (N.J.), 1964,
pp. 479-518.

Katz, J.J., 1966,
‘The philosophy of language‘,
Harper and Row, London.

Keenan, E.L. & L.M. Faltz, 1978,
‘Logical types for natural language‘,
UCLAoccasional papers in linguistics 3.

Kreisel, G. &J.L. Krivine, 1976,
‘Elements of mathematical logic. Model Theory‘,
Studies in logic and the foundations of mathematics 2,
North Holland, Amsterdam.

Kripke, S., 1976,
‘Is there a problemabout substitutional quantification?‘,
in G. Evans & J.H. McDowell (eds), ‘Truth and meaning.
essays in semantics‘, Clarendon Press, Oxford, 1976,
pp. 325-419.

Lewis, D., 1970,
‘General semantics‘,
Synthese 22, 18-67.
Reprinted in Davidson & Harman 1972, pp. 169-248.
Reprinted in Partee 1976, pp. 1-50.

Link, G. & M. Varga Y Ki.bed, 1975,
‘Review of R.H. Thomason(ed.), "Formal philosophy. Selected
papers of Richard Montague"‘,
Erkentniss 9, 252-286.

Lucas, P. & K. Walk, 1971,
‘On the formal description of PL/I‘,
in M.I. Halpern & C.J. Shaw (eds), ‘Annual review in
automatic programing, 6', PergamonPress, Oxford, 1971,
pp. 105-182.

Marcus, R.B., 1962,
‘Interpreting quantification‘,
Inquiry 5, 252-259.

Markusz, Z. & M. Szots, 1981,
‘On semantics of programming languages defined by
universal algebraic tools‘,
in Domolki & Gergely 1981, pp. 491-507.

Mazurkiewicz, A., 1975,
‘Parallel recursive programschemes‘,
in J. Becvar (ed.), ‘Mathematical foundations of
computer science (4 th. coll., Marianske Lazne)', Lecture
notes in computer science 32, Springer, Berlin, 1975,
pp. 75-87.

Milner, R., 1975,
‘Processes: a mathematical model of computing agents‘,
in H.E. Rose & J.C. Shepherdson (eds), ‘Logic
colloquium '73 (Bristol)‘, Studies in logic and the foundations
of mathematics 80, North Holland, Amsterdam, pp. 157-173.

Monk, J.D., 1976,
‘Mathematical logic‘,
Graduate texts in mathematics 37, Springer, Berlin.

Montague, R. 1970a,
‘English as a formal language‘,
in Visentini et al., ‘Linguagginella societa et nella
technica', Edizioni di communita, 1970, (distributed by
the Olivetti Corporation, Milan).
Reprinted in : Thomason 1974, pp. 188-221.

Montague, R., 1970b,
‘Universal grammar‘,
Theoria 36, 373-398.
Reprinted in : Thomason 1974, pp. 222-246.

Montague, R., 1973,
‘The proper treatment of quantification in ordinary
English‘,
in K.J.J. Hintikka, J.M.E. Moravcsik &P. Suppes (eds),
‘Approaches to natural language‘, Synthese Library 49,
Reidel, Dordrecht, 1973, pp. 221-242.
Reprinted in Thomason 1974, pp. 247-270.

Needham, P., 1975,
‘Temporalperspective. A logical analysis of temporal
reference in English‘,
Dept. of Philosophy, University of Uppsala.

Neuhold, E.J. (ed.), 1978,
‘Formal description of programmingconcepts (IFIP conf.
St. Andrews)‘,
North Holland, Amsterdam.

Partee, B.H., 1973,
‘Sometransformational extensions of Montague grammar,‘
Journal of Philosophical Logic 2, 509-534.
Reprinted in Partee 1976, pp. 51-76.

Partee, B., 1975,
‘Montaguegramar and transformational grammar‘,
Linguistic Inquiry 6, 203-300.

Partee, B.H. (ed.), 1976,
‘Montague grammar‘,
Academic Press, NewYork.

Partee, B.H., 1977b,
‘Possible world semantics and linguistic theory‘,
The Monist 60, 303-326.

Popper, K, 1976,
‘Unendedquest. An intellectual autobiography‘,
Fontana.

Pietrzykowski, T., 1973,
‘A complete mechanization of second order theory‘,
Journal of the Association for ComputingMachinery 20,
pp. 333-365.

Potts, T., 1976,
‘Montague's semiotics. A syllabus of errors‘,
Theoretical Linguistics 3, 191-208.

Pratt, V.R., 1976,
‘semantical considerations on Floyd-Hoare logic‘,
in ‘Proc. 17th. Symp. on Foundations of Computer Science
(Houston)', IEEEComputer Society, Long Beach (Cal.),
1976, pp. 109-121.

Pratt, V.R., 1979,
‘Dynamiclogic‘,
in De Bakker & Van Leeuwen 1979, pp. 53-82.

Pratt, V.R., 1980,
‘Applications of modal logic to programming‘,
Studia Logica 39, 257-274.

Pullum, G.K. & G. Gazdar, 1982,
‘Natural languages and context-free languages‘,
Linguistics & Philosophy 4, 471-504.

Quine, W.V.O., 1960,
‘Wordand object‘,
The MIT Press, Cambridge (Mass.).

Rabin, M., 1960,
‘Computablealgebra: general theory and the theory of
computablefields‘,
Transactions of the American Mathematical Society, 95, 341-360.

Rasiowa H., 1974,
‘Analgebraic approach to non-classical logics',
Studies in logic and foundations of mathematics 78,
North Holland, Amsterdam.

Raulefs, P., 1978,
‘The connection between axiomatic and denotational semantics
of programming languages‘,
in K. Alber (ed.), ‘Programmiersprachen, 5 Fachtagung der G.I.
Univ. Karlsruhe.

Rogers jr., H., 1967,
‘Theoryof recursive functions and effective computability',
Mc Graw Hill, 1967, New York.

Schuette, K., 1977,
‘Proof theory‘,
Grundlehren der mathematische Wissenschaften 225, Springer,
Berlin.

Schwartz, J.T., 1972,
‘Semantic definition methods and the evolution of
programming languages‘,
in R. Rustin (ed.), ‘Formal semantics of programming
languages‘, Courant Computer Science Symposium2,
Prentice Hall, EnglewoodCliffs (N.J.), 1972, pp. 1-24.

Scott, D. & C. Strachey 1971,
‘Towards a mathematical semantics for computer languages‘,
in J. Fox (ed.), ‘Computers and automata (proc. symp.
Brooklyn)‘, Polytechnic Press, Brooklyn (N.Y.), 1971,
pp. 16-46.

Steinberg, D.D. & L.A. Jakobovits, 1971,
‘Semantics. Aninterdisciplinary reader in philosophy,
linguistics and psychology‘,
Cambridge Univ. Press.

Stoy, J.E., 1977,
‘Denotational semantics: the Scott-Strachey approach
to programming language theory‘,
The MIT Press, Cambridge (Mass.).

205

Tennent, R.D., 1976,
‘The denotational semantics of programminglanguages‘,
Communications of the Association for Computing
Machinery 19, 437-453.

Thiel, C., 1965,
'Sinn und Bedeutung in der Logik Gottlob Freges',
Anton Hain, Meisenbach am Glan.
Translated as: ‘Sense and reference in Frege's logic’,
Reidel, Dordrecht, 1968.

Thomason, R.H. (ed.), 1974,
‘Formal philosophy. Selected papers of Richard Montague‘,
Yale University Press, NewHaven.

Tichy, P., 1971,
‘Anapproach to intensional analysis‘,
Nous 5, 273-297.

Veltman F., 1981,
'Data semantics‘,
in Groenendijk, Janssen & Stokhof 1981, pp. 541-565.
Revised reprint in Groenendijk, Janssen & Stokhof, 1984,
pp. 43-63.

Wijngaarden, A. van, et a1., 1975,
‘Revised report on the algorithmic language ALGOL68',
Acta Informatica 5, 1-236.

MATHEMATICAL CENTFIE TRACTS
I T. van der Walt. Fixed and almostfixed points. I963.
2 A.R. Bloemena. Samplingfrom a graph I964.
3 G. de Leve. Generalized Markovian decision processes, part
1: model and method I964.

4 G. de Leve. Generalized Markovian decisionprocesses, pan
ll: probabilistic background 1964.
5 G. de Leve. H.C. Ti'ms. PJ. Weeda. Generalized Markovian
decision processes, app ications. I97 .
6 M.A. Maurice. Compact ordered spaces. I964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.

8 J.A. Zonneveld. Automatic numerical integration. I964.
9 P.C. Baayen. Universal morphisms. I964.
I0 E.M. de Jager. Applications of distributions in mathematical

physics. I964.
II A.B. Paalrnan-de Miranda. Topological semigroups. 1964.
I2 J.A.Th.M. van Berckel. H. Brandt Corstius. R.J. Mokken.
A. van Wijngaarden. Fomial properties of newspaper Dutch.
I965.

I3 H.A. Lauwerier. Asymptotic expansions. I966. out of print;
replaced by MCT 54.
I4 H.A. Lauwerier. Calculus of variations in mathematical

physics. I966.
I5 R. Doombos. Slippage tests. I966.
I6 J.W. dc Bakker. Formal definition o programmin

la9n‘guageswith an application to the de inition of AL OL 60.I 7.

I7 R.P. van de Riet. Formula manipulation in ALGOL 60.
part l. I968.
I8 R.P. van de Riel. Fonnula manipulation in ALGOL 60,
part2. I968.

van der Slot. Someproperties related to corrgoactness.I .

20 P.J. van der Houwen. Finite diflerence methodsfor solving
partial diflerential equations. I968.
21 E. Wanel. The compactness operator in set theory and
topology. I968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra.
part I. I968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. I968.
24 J.W. de Bakker. Recursive procedures. I971.
25 ER. Paérl. Re resentations of the Lorentz group and projec
tive geometry. 96”
26 European Meeting 1968. Selected statistical papers, part I.
I968.

2;6§.uropean Meeting I968. Selected statistical papers, part II.I .

236J9.Oosterhoff. Combination of one-sided statistical tests.I .

29 J. Verhoeff. Error detecting decimal codes. I969.
30 H. Brandt Corstius. Exercises in computational linguistics.
I970.

3I W. Molenaar. Ap roximations to the Poisson, binomial and
hypergeometric distri ution functions. I 70.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. I970.
33 F.W. Steutel. Preservation of infinite divisibility under mix
ing and related topics. I970.
34 I. Juhész. A. Verbeek. N.S. Kroonenberg. Cardinal func
tions in topology. I971.
35 M.H. van Emden. An analysis of complexity. I971.
36 J. Grasman. On the birth of boundary layers. I971.
37 J.W. de Bakker. G.A. Blaauw. A.J.W. Duijvestijn. E.W.

Diqjikstra.P.J. van der Houwen. G.A.M. Kamstee -Kemper.F. .J. Kruseman Aretz. W.L. van der Poel. J.P. haap
Kruseman. M.V. Wilkes. G. Zoutendijk. MC-25 lnfomtatica
Symposium. I97].
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. I 72.
39 H. Bavinck. Jacobi series and approximation. I972.
40 H.C. Tijms. Analysis of (s,S) inventory models. 1972.
4| A. Verbeek. Superextensions of topological spaces. I972.
42 W. Vervaat. Success e Its in Bernoulli trials (with applica
tions in number theory). 972.
43 F.H. Ruym aart. Asy totic theory of rank tests or
independence. IE973. mp f

44 H. Bart. Meromorphic operator valuedfunctions. I973.
45 A.A. Balkema. Monotone transfomtations and limit laws.
I973.

46 RP. van de Riel. ABC ALGOL. a portable languageforformula manipulation systems, part I: t e language. I9 3.
47 R.P. van de Riet. ABC ALGOL a ortable langua efor
fomtula manipulation systems, part 2: t e corrgoiler.I9 3.

48 F.E.J. Kruseman Aretz. P.J.W. ten Hagen. H.L.
Oudshoom. An ALGOL 60 corrqzilerin A GOL 60, text of theMC-cornpilerfor the EL-X8. I9 3.
49 H. Kok. Connected orderable spaces. I974.

50 A. van Wijngaarden, B.J. Mailloux. J.E.L. Peck. C.H.A.
Koster, M. Slnlzoff. C.H. Lindsey. L.G.L.T. Meerlens. R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. I976.

5| A. Hordijk. Dynamicprogramming and Markov potential
theory. I974.
52 P.C. Baayen (ed.). Topological structures. I974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
I974.

54 H.A. Lauwerier. Asymptotic analysis. part 1. I974.
55 M. Hall. Jr.. J.H. van Lint (eds.). Combinatorics, part I:
theory of designs.finite geometry and coding theory. I974.
56 M. Hall. Jr.. J.H. van Lint (eds.). Combinatorics, part 2:

graph theoryjfoundations. partitions and combinatorialgeometry. 9 4.
57 M. Hall. Jr.. J.H. Van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. I974.

58 W. Albers. Asyrrgutoticexpansions and the deficiency concept in statistics. I9 5.
59 J.L. Mijnheer. Sample path properties of stable processes.
I975.

60 F. Gdbel. Queueing models involving bu_/]'ers.I975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.

64 W.J. de Schipper. Symmetric closed categories. I975.

65 J. de Vries. Tyological transformation groups, I : a categorical approach. I9 5.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. I976.
68 P.P.N. de Groen. Singularly perturbed di/ferential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. I977.
70 W.P. de Roever. Jr. Recursiveprogram schemes: semantics
and proof theory. 1976.
7I J.A.E.E van Nuncn. Contracting Markov decision
processes. I976.
72 J.K.M. Jansen. Si le periodic and non-periodic Lame
functions and their app ications in the theory of conical
waveguides. I977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. I979.
74 H.J.J. le Riele. A theoretical and computational study of
generalized aliquot sequences. I976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. I977.
76 M. Rem. Associons and the closure statement. I976.

77 W.C.M. Kallenberg. Asym totic qptimality of likelihoodratio tests in exponential fami ies. I9 8.
78 E. de Jonge. A.C.M. van Rooij. Introduction to Riesz
spaces. I977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. I977.

80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. I977.
8| K.R. Apt. J.W. de Bakker (eds.). Foundations of computer
science II, part I. I976.
82 K.R. Apt. J.W. de Bakker (eds.). Foundations of computer
science ll. part 2. I976.
83 L.S. van Benthem Juttin . Checking Landau's
“Gntndlagen" in the AUTO ATH system I979.
84 H.L.L. Busard. 77:e translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia (.7).books
vii-xii. I977.

85 J. van Mill. Supercompactness and Wallman spaces. I977.
86 S.G. van der Meulen. M. Veldhorst. Torrix l. a program
min stem for o erations on vectors and matrices over arbi
trary fields and of variable size. I978.
88 A. Schrijver. Matroids and linking systems. I977.
89 J.W. de Roever. Complex Fourier transfonnation and
analytic functionals with unbounded carriers. I978.

90 LPJ. Groenew en. Characterization of optimal strategies
in dynamic games. I 8I.
91 J .M. Geysel. Transcendence infields ofpositive characteris
tic. I979.

92 P.J. Weeda. Finite generalized Markov programming. I979.
93 H.C. Tijms. J. Wessels (eds.). Markov decision theory.
I977.

94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. I978.
95 K.M. van Hee. Bayesian control of Markov chains. I978.
96 P.M.B. Vitényi. Lindenmayer systems: structure, lan ges,
and growthfunctions. I980. gm
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. I984.
98 R. Geel. Singular perturbations of hyperbolic type. I978.
99 .I.I(. Lenstsa. A.H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Inte aces between computer science and operations
research. I 78.

I00 P.C. Baayen. D. van Dulsl, J. Oosterholf (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap,part

79.

IOI P.C. Baayen, D. van Dulst, J. Ooslerhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part
2. 1979.

I02 D. van Dulst. Reflexive and superre/lexive Banach spaces.
I978.

I03 K. van Ham. Classiffvin infinitely divisible distributionsbyfunctional equations. 97$
I04 J .M. van Wouwe. Go-spaces and generalizations of metri
zability. 1979.

I05 R. Helmets. Edéeworth expansionsfor linear combinationsof order statistics. I 2.

I(9)g9A.Schrijvet (ed.). Packing and covering in combinatorics.

tor equations by tmbedding methods. I97
I08 J.W. de Ba.k.ker,J. van Ixaeuwen (eds.). Foundations of
computerscience lll, part I. I979.
I09 J.W. dc Bakker, J. van Leeuwen (eds.). Foundations of
computer science lll, part 2. I979.
Il0 .I.C. va.n VI.ieI.ALGOL 68 transput, part 1.‘historical
review and discussion of the implementation model. I979.
II I J.C. van Vliet. ALGOL 68 transput, part II: on implemen
tation model. I979.

I12 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. I979.
I I3 T.A.B. Snfders. A tatic timalit theo or testin

problems with rlestricteylarlllelntatilzs.1979?’ of - g
II4 A..I.E..M.Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. I979.
II5 P.C. Baayen. J. van Mill (eds.). Topologicalstntctures ll,
part I. I979.
II6 P.C. Baayen, J. van Mill (eds.). Topologicalstntctures ll,

part 2. 1979.
II7 PJ.M. Kallenberg. Branching processes with continuous
state space. I979.
I I8 P. Groeneboom. Large deviations and asymptotic eflicien
cies. I980.

II9 F..I. Peters. S arse matrices and substructures, with a novel
implementation o_/{finiteelement algorithms. 980.
I20 W.P.M. de Ruyler. On the asymptotic analysis of large
scale ocean circulation. I980.

I2I W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.

I22 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. I980.

Iggol. Yuhész. Cardinal functions in topology - ten years later.

I24 R.D. Gill. Censoring and stochastic integrals. I980.
I25 R. Eising. 2-D systems, an algebraic approach. I980.
I26 G. van der Hock. Reduction methods in nonlinear pro
gramming. 1980.
I27 J.W. Klop. Combinatory reduction systems. I980.
I28 A..I.J. Talman. Variable dimensionfixed point algorithms
and triangulations. .
129 G. van der Laan. Simplicialfixed point algorithms. I980.
I30 P.J.W. ten Ha en. T. Hagen. P. Klint, H. Noot. H.J.
Sint. A.H. Veen. I : intennediate languagefor pictures.
I980.

I07 C. den Heijer. The numerical solution of nonlinear opera
9.

I3I R.J.R. Back. Correctness reserving program refinements:
proof theory and applications. 0.
I32 H.M. Mulder. The intervalfunction of a graph. I980.
I33 C.A.J. Klaassen. Statistical perfonnance of location esti
mators. I981.

I34 J.C. van Vliet. H. Wgfer (eds.). Proceedings international conference on ALG 68. I98].
I35 J.A.G. Gtoenendijk, T.M.V. Janssen. M..I.B. Stokhof
(eds.). Formal methods in the study of language. part I. I981.
I36 J.A.G. Groenendijk. T.M.V. Janssen. M..I.B. Stokhof
(eds.). Formal methods in the study of language, part II. I98l.
I37 J. Telgen. Redundancy and linear programs. I98l.
I38 H.A. Lauwerier. Mathematical modeLsof epidemics. I98].
I39 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and nearly optimal strategies for Markov
decisionprocesses and Markov games. I98l.

I40 J.H. van Geldrop. A mathematical theory 0 ‘pure
egchange economies without the no-critical-point ypothesis.I 8].

I4! G.E. Wellers. Abel-Jacobi isogeniesfor certain types of
Fano threefolds. I98l.
I42 H.R. Bennett. D.J. Lulzer (eds.). Topologyand order
structures, part I. 198I.
I43 J.M. Schumacher. Dynamicfeedback infinite- and
infinite-dimensional linear systents. I98 I.
I44 P. E" enraam. The solution of initial valueproblems using
interval arithmetic; formulation and analysis of an algorithm.
I98I.

I45 A.J. Brentjes. Multi-dimensional continuedfraction algo
rithms. I98].

I46 C.V.M. van der Mee. Semgroup and factorizationmethods in transport theory. I98 .
I47 H.H. Tigelaas. Identification and informative sample size.
I982.

148 L.C.M. Kallenberg. 'near programming and finite Mar
kovian control problems. I983.
149 C.B. Huijsmans. M.A. Kaashoek. W.A.J. Luxemburg.
W.K. Vielsch (eds.). From A to Z, proceedings of a symposium
in honour of A.C. Zaanen. I982.
150 M. Veldhorsl. An analysis of sparse matrix storage
schemes. I982.

I5I R.J.M.M. Does. Higher order asymptoticsfor simple linear
rank statistics. I982.

I52 G.F. van der Hoeven. Projections of lawless sequences.
1982.

I53 J.P.C. Blanc. A plication of the theory a boundary value
problems in the anaysis of a queueing mode withpaired ser
vices. I982.

I54 H.W. Lenslta, Jr.. R. Tijdeman (eds.). Computational
methods in number theory. part 1. I982.
I55 H.W. Lenslra, Jr.. R. Tijdeman (eds.). Computational
methods in number theory, part II. I982.
I56 P.M.G. Apers. Query processing and data allocation in
distributed database systems. I983.
I57 H.A.W.M. Kneppers. The covariant classification of two

dimensional smooth commutative{ormal groups over an algebraically closedfield ofpositive c aracteristic. I983.
I58 J.W. de Bakker. J. van Leeuwen (eds.). Foundations of
computer science I V, distributed systems, part I. I983.
I59 J.W. de Baldcer, J. van Leeuwen (eds.). Foundations of
computer science I V, distributed systems, part 2. I 83.
I60 A. Rezus. Abstract AUTOMA TH. I983.

I6I G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. I983.
I62 .I..I. Dik. Tests for preference. I983.
I63 H. Schippers. Multiple grid methodsfor equations of the
second kind with applications in fluid mechanics. I 83.
I64 F.A. van der Duyn Schoulen. Markov decision processes
with continuous time parameter. I983.
I65 P.C.T. van der Hoeven. On point processes. I983.
166 H.B.M. Jonkers. Abstraction. specification and implemen
tation techniques, with an application to garbage collection.
I983.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. I983.
I68 .I.H. Everlse. Upper boundsfor-the numbers of solutions of
diophantine equations. I983.
I69 H.R. Bennett. DJ. Lulzer (eds.). Topologyand order
structures. part 2. I983.

CWI THACTS

I D.H.J. Epema. Surfaces with canonical hyperplane sections.
I984.

2 JJ. Dijkstra. Fake topologicalHilbert faces and characterizations of dimension in terms of negligibi ity. I984.
3 AJ. van der Schafl. System theoretic descriptions of physical
systems. I984.
4 .I. Koene. Minimal cost flow in processing networks, a primal
approach. I984.
5 B. Hoogenboom. lntertwiningfunctions on compact Lie
groups. I984.
6 A.P.W. Bdhm. Dataflow computation. I984.
7 A. Blokhuis. Few-distance sets. I984.

8 M.H. van Hoom. Algorithms and approximationsfor queue
ing systems. I984.
9 C.PJ. Koyrnans. ModeLsof the lambda calculus. I984.
I0 C.G. van der Laan. N.M. Temme. Calculation of s cial
unctions: the gamma unction, the exponential integra and

error-like functions. I 84.
II N.M. van Di'k. Controlled Markov processes; time
discretization. I 84.

I2 W.H. Hundsdorfer. The numerical solution of nonlinear
stifl initial valueproblems: an analysis of one step methods.
I985.

I3 D. Grune. On the design ofALEPH. I985.
I4 J.G.F. Thiemann. Analytic spaces and dynamicprogram
ming: a measure theoretic approach. I 85.
I5 F.J. van der Linden. Euclidean rings with two infinite

primes. I985.
I6 R..I.P. Groolhuizen. Mixed elliptic-hyperbolicpartial
difierential operators: a case-study in Fourier integral opera
tors. I9 5.

I7 H.M.M. ten Eikelder. Symmetriesfor dynamical and Ham
iltonian systems. I985.
I8 A.D.M. Kesler. Some large deviation results in statistics.
I985.

I9 T.M.V. Janssen. Foundations and apilications of Montaguegrammar, part I: Philosophy,framewor , computer science.
I986.

20 B.F. Schriever. Order dependence. I986.
21 D.P. van der Vechl. Inequalities for stopped Brownian
motion. I986.

22 .I.C.S.P. van der Woude. Topological aynamix. I986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. I986.
24 J .C.M. Baeten. Filters and ultrafilters over definable subsets
of admissible ordinaLv. I986.
25 A.W..I. Kolen. Tree network and planar rectilinear location
theory. I98 .

26 A.H. Veen. The misconstmed semicolon: Reconciling
imperative languages and dataflow machines. I986.
27 A..I.M. van En elen. Homogeneous zero-dimensional abso
lute Borel sets. I9 6.

28 T.M.V. Janssen. Foundations and applications of Montague
grammar, part 2: Applications to natural language. I986.
29 H.L. Trenlelman. Almost invariant subspaces and high gain
feedback. I986.
30 A.G. de Kok. Production-inventory control models: approxi
mations and algorithms. I987.
31 E.E.M. van Berkum. Optimal paired comparison designsfor
factorial experiments. I987.
32 J.H..I. Einmahl. Multivariate empirical processes. I987.
33 0.]. Vrieze. Stochastic games withfinite state and action
spaces. I987.

CWI Tract 28

Foundations and applications of
Montague grammar
Part 2: Applications to
natural language
T.M.V.Janssen

J
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 03B65. 08A40, 08A55, 68810, 03B45, 03B15.
1982 CR Categories: 1.2.7, F.4.2, J.5.

ISBN 90 6196 306 0

Copyright © 1986, Mathematisch Centrum, Amsterdam
Printed in the Netherlands

PREFACE

The present volume is one of the two tracts which are based on ny

dissertation ‘Foundations and applications of Montague grammar’. Volume 1
consists of the chapters 1,2,3 and 10 of that dissertation, and volume 2 of
the chapters 4-9. Only minor corrections are made in the text. I would like
to thank here again everyone who I acknowledged in my dissertation, in par
ticular my promotor P. van EmdeBoas, co-promotor R. Bartsch, and coreferent
J. van Benthem.For attending me on several (printing-)errors in mydisser
tation I thank Martin van de Berg, Cor Baayen, Biep Durieux, Joe Goguen,

Fred Landmanand Michael Moortgat, but in particular HermanHendriks, who
suggested hundreds of corrections. The illustrations are madeby Tobias
Baanders.

The two volumes present an interdisciplinary study between mathematics,
philosophy, computer science, logic and linguistics. Noknowledgeof speci
fic results in these fields is presupposed, although occasionally terminology
or results from them are mentioned. Throughout the text it is assumed that
the reader is acquainted with fundamentalprinciples of logic, in particu
lar of model theory, and that he is used to a mathematical kind of argumen
tation. The contents of the volumeshave a lineair structure: first the

approach is motivated, next the theory is developed, and finally it is ap
plied. Volume1 contains an application to programing languages, whereas
volume 2 is devoted completely to the consequences of the approach for
natural languages.

The volumes deal with many facets of syntax and semantics, discussing
rather different kinds of subjects from this interdisciplinary field. They
range from abstract universal algebra to linguistic observations, from the
history of philosophy to formal language theory, and from idealized con
puters to humanpsychology. Hence not all readers might be interested to
read everything. Readers only interested in applications to computer science
might restrict them selves to volume I, but then they will miss manyargu
ments in volume 2 which are taken from computer science. Readers only in

terested in applications to natural language might read chapters 1-3 of
volume 1, and all of volume 2, but they will miss several remarks about the
connection between the study of the semantics of programing languages and
of the semantics of natural languages. Readers familiar with Montaguegramar,
and mainly interested in practical consequences of the approach, might read
chapters 1 and 2 in volume 1 and chapters 6-10 in volume 2, but they will

miss new arguments and results concerning many aspects of Montague gramar.
Each chapter starts with an abstract. Units like theorems etc. are

numbered (eg 2.3 Theorem). Such a unit ends where the next numbered unit
starts, or where the end of the unit is announced (2.3 end). References to
collected works are madeby naming the first editor. Page numbers given in
the text refer to the reprint last mentionedin the list of references,
except in case of someof Frege's publications (when the reprint gives the
original numbering).

CONTENTS

VI.

VII.

The PTQ-fragment
Introduction

. John runs
The woman walks
Mary walks and she talks
John finds a unicorn

. Every man loves a woman

. Bill walks in the garden
8. John tries to find a unicorn
9. John believes that Marywill run

\lO'\U'IJ-\L.Ql\7

Variants and deviations
1. Introduction
2. The use of syntactic information

2.1. Introduction
2.2. Easy to please
2.3. The horse Cannonero

3. Non-polynomially defined operators
3.]. Introduction
3.2. John who runs
3.3. Das Madchen gibt den Apfel dem

Vater
3.4. Womansuch that she loves him

. Operators defined on representants
U1-I-\ . New symbols in IL

5.1. Introduction
5.2. Shake John awake
5.3. I and You

6. Counting elements
6.1. Introduction
6.2. Keenan & Faltz count
6.3. Partee counts

7. The translation language
.1. Introduction

Hausser translates
Lewis translates

\l\l\l\l\l

Partial rules
.Restrictions of the framework
.Partial algebras
2.]. Partial gramars
2.2. Partial models
2.3. Discussion

.Incorporating transformations

.Defined for another category
4.1. Introduction
4.2. He] is loved

§-—

-l-\(.».)

.2.

.3.

.4. Groenendijk.&Stokhof translate

.5. Keenan.&Faltz on translations

16
20
25
32
38
42
47

53
54
56
56
56
57
58
58
59

62
64
68
68
69
70
71
71
71
73
74
74
75
76
76
77

79
80
83
83
84
87
90
93
93
94

iv

5

6

4.3. Give John a book
4.4. Mary shakes John awake again
4.5. See himself
4.6. Easy to see
.Subcategorization and rule schemes
5.]. Hyperrules
5.2. Metarules
5.3. Variables
.The Well-formedness constraint

VIII.Constituent structures

IX.

10

2
Structure-why?

. Theoretical aspects
2.1. Trees in Montague grammar
2.2. Algebraic considerations
2.3. Practical differences

3. Technical aspects
3.]. Introduction
3.2. Operations on trees
3.3. Features and lexicon
3.4. Queries for information

4. PTQ syntax

Relative clause formation
It
2

3.

O\U‘I

8

Introduction
. The CN-S analysis

2.1. The discussion by Partee
2.2. The PTQ-rules
2.3. Fundamental problems
The T-S analysis
3.1. Cooper on Hittite
3.2. Bach & Cooper on English
3.3. Fundamental problems

. The proposals of Cooper
4.1. Not-there
4.2. Left-over, proposal 1
4.3. Left-over, proposal 2
4.4. Conclusion

. The variable principle

. Many analyses
6.1. The CN-Sanalysis for English

. The S-S analysis for Hittite

. The T-S analysis for English

. The Det-S analysis for English

. Conclusion
er arguments
. Syntax: gender agreement

7.2. Semantics: scope
7.3. Conclusion

. The general question

6.2
6.3
6.4
6.5
Oth
7.1

94
95
96
98
99
99
102
103
108

115
116
118
118
121
122
125
125
126
127
131
133

137
138
138
138
140
142
144
144
145
147
148
148
149
150
154
154
158
I58
159
161
163
164
165
165
166
168
169

X. Scope ambiguities of tense, aspect and negation
1. Introduction
2. The PTQ-approach

2.1. Introduction
2.2. Syntax of PTQ
2.3. Ambiguities
2.4. Model

. Basic verb modifiers

. Compoundverb modifiers

. Complexconstructions
5.1. Introduction
5.2. Conjoined verb phrases with positive verbs
5.3. Conjoined verb phrases with negated verbs
5.4. Terms
5.5. Embeddings

6. One of the rules
7. The grammar

7.1. Introduction
. Rules
. Morphology
. Fins and Verb Phrase
. Final remarks

U1-I-‘LO

\l\l\l\l U1-I-\LA)l\7

Appendix 1. Individual concepts in PTQ
Appendix 2. Set manipulation in syntax
Index of names
References

173
174
174
174
175
175
177
177
184
187
187
187
189
191
192
194
199
199
200
205
205
206

209
223
227
229

CHAPTER V

THE PTQ-FRAGMENT

ABSTRACT

In this chapter the fragment of English described in Montague's article
PTQ (MONTAGUE1973) is presented. The method of exposition consists in

starting with a very small fragment, and expanding it gradually. In each
stage both the syntax and the semantics are discussed extensively. Special
attention is paid to the motivation and justification of the analysis.

1. INTRODUCTION

The aim of this chapter is to present in a rigorous way the syntax and
the semantics of a certain fragment of a certain dialect of English. The
fragment is about the same as the one presented in MONTAGUE(I973), hence

forth PTQ.On all essential points I will follow the treatment given in PTQ,
in the details, however, there are somedifferences. The presentation, mo
tivation and justification I will give for the treatment, differs consider
ably from PTQ. For the presentation I will employ a method which might be

called ‘concentric’. I will start with a very small fragment, and gradually
expand this. For the fragments in each of the stages both the syntax and
semantics are given, together with an extensive discussion. I hope that
this methodwill makeit easier to understand the sometimesdifficult or

subtle details of the PTQ-treatment. Certain details (concerning the prob
lems of extension and intension) will be discussed in appendix 1 of this
book. A list of the rules of the fragment (useful as a survey) can be found
in chapter 8.

In the exposition I will give special attention to algebraic and al
gorithmic aspects of the treatment. The algebraic considerations often
provide an explication whya certain detail is as it is, and not otherwise.

The algorithmic aspect concerns the method to obtain simple meaning repre
sentations. I do not like somerather abstract relation between a sentence

and its meaning. For instance, I amnot satisfied with a two-lines-long
formula, if there is a one-line-long-formula which represents the same
meaning, and if a meaning is represented by a formula which has to be in
terpreted in models satisfying certain meaningpostulates, I would like to
have a formula in which these postulates are madeexplicit. So I prefer
concise and clear meaningrepresentations. In order to reach this aim,
several rules will be given for the reduction of formulas.

The syntax of the fragment in PTQis treated rather poorly. In this
chapter only minor improvements will be given (for more fundamental changes

see chapter 8). But syntax was not Montague's main interest; he was inter
ested primarily in semantics. The fragment is rich in semantically inter
esting phenomena, and it deals with several famous semantic puzzles. Below
I will mention some of the sentences dealt with, together with some comments.

A first kind of phenomenadealt with concerns sentences of which it
is clear what their meanings are, and how these should be represented using
standard predicate logic. Their challenge lies in the aim to obtain these

meanings in a systematic way. Consider (1) and (2).

(1) John runs.

(2) Every man runs.

These two sentences are closely related in form: only the subject differs.
Therefore one would like to produce the sentences along the same lines. The
representations of their meanings, however, are rather different. In stan
dard logic it would be as in (3) and (4).

(3) run(john)

(4) Vx[man(x) + run(x)].

This gives rise to the question how to obtain rather divergent formulas
from closely related sentences. A corresponding question arises for the
ambiguity of (5).

(5) Every man loves a woman.

This sentence may be used when one specific womanis loved by every man,

(say Brigitte Bardot), or when for each man there may be another woman
(say his ownmother). Sentence (5) is considered as being ambiguous between
these two possibilities (for arguments, see section 6). This kind of am
biguity is called ‘scope ambiguity‘ (of quantifiers). The two readings that
will be obtained for (5) are (simplified) represented in (6) and (7).

(6) Vx[man(x) + 3y[woman(y) A love(x,y)]]

(7) 3y[woman(y) A Vx[man(x) + love(x,y)]].

A second kind of phenomenadealt with concerns sentences for which it
is difficult to say how their meanings should be represented. Consider (8)
and (9)

(8) John seeks a unicorn.

(9) John finds a unicorn.

These two sentences have about the same form, only the verbs they contain

are different. One is tempted to expect that they have about the same
meanings as well; the only difference being that they express another rela
tion between John and a unicorn. This is not the case, however. The one
sentence gives information about the existence of unicorns, which the other
sentence does not. So an approach which says that the seek—relation is
always a relation between two individuals would not be acceptable. Wehave

‘\

to provide a meaning for (8) from which it does not follow that unicorns
exist. However,sentence (8) can also be used in a situation that unicorns
exist, and it is ambiguousbetween these two possibilities. It has a reading
fromwhich it follows that at least one unicorn exists (the referential
reading), and a reading from which this does not follow (the non-referential
reading).

Someexamples of the referential/non-referential ambiguity are (10),
(11), and (I2).

(10) John talks about a unicorn.

(11) John wishes to find a unicorn and eat it.

(12) Marybelieves that John finds a unicorn and that he eats it.

Sentence (9) allows only for a referential reading. The same holds for sen
tence (13), see MDNTAGUE1973, p.269.

(13) John tries to find a unicorn and wishes to eat it.

The ambiguity we distinguish in sentences (8), (10), (11) and (12) is
in the literature also called the 'de-dicto/de-re‘ ambiguity, or the
‘specific/non-specific‘ ambiguity. This terminology is not felicitous, be
cause one might associate with it a distinction that is not covered by the
formal analysis that will be provided. Nevertheless, this terminology will
sometimes be used in the sequel, since it is standard for some of the exam
ples.

2. JOHN RUNS

The fragment in this section consists of very simple sentences like
John runs. It has three categories (=sorts): the category T of terms, the
category IV of intransitive verb phrases, and the category S of sentences
(in PTQa t is used instead of S). There are basic expressions (=generators)
of the categories T and IV. The set B of generators of the category T conT

tains the proper names of the PTQ-fragment, (BT ~ ‘Basic expressions of
category T‘). Furthermore a special nameis added for illustrative purposes:

Bigboss. The sets BT and B are defined as follows (BTwill be extended inIV
section 4).

BT = {John,BiZZ,Mhry,Bigboss}

2.2. BIV=={run,waZk,taZk,rise,change}.

2.2. END

In the logic there is for each element of B a corresponding constant
of type e, except for Bigboss. In PTQthese conszants are called j,m,b re
spectively, but I will use full names: john etc.. Notice the difference in
the letter type used for English (Mary), and the one used for logic (mary).
One might expect that a proper name translates into the corresponding con
stant, but for reasons to be explained later, the translation is a complex
expression containing this constant. So amongthe constants in IL of type
e, we distinguish three special ones.

2.3 {_7'ohn,bi1l ,mary} c CONe.

2.3. END

Constants of type e get as interpretation (with respect to a point of
reference) someelement in the domainof individuals. This interpretation
has to be restricted, for the following reason. If we will speak tomorrow
abount John, then we will mean the same individual as today (although he

mayhave some other properties). For instance, if the world would have
been different, say, if the MountEverest would not be the highest mountain,
then John would still be the same individual (although his opinion about
the MountEverest might be different). This conception about the individual
corresponding with a proper name is expressed by the phrase ‘proper names
are rigid designat0rs'. For an extensive discussion of this conception, see
KRIPKE1972. This idea will be incorporated in our semantics by interpreting
constants like john 'rigidly', i.e. for each index it will denote the same
individual. The name Bigboss is to be understood as a surname of the most
powerful individual on earth. Since this will not always be the same indi
vidual, Bigboss is not treated as a rigid designator of type e.

The constants of intensional logic are not interpreted rigidly, on the
contrary, they are interpreted index-dependent. I recall the clause for the
interpretation of constants:

c‘°*'1’3 = F(c)(i) (ceCON).

This means there is no guarantee that the constants corresponding with the
proper namesof PTQare interpreted rigidly. Therefore not all possible
models for the interpretation of IL are reasonable candidates for an inter
pretation of English. Wewill consider only those models in which the

constants john, bill, and mary are interpreted rigidly. This is formalized
as follows. The requirement of ’rigidity' is expressed by means of an IL
formula, and we will consider only those models in which this formula holds.
The formula is called a Meaning Postulate (an MP). It bears index 1 because
it is the first meaningpostulate in PTQ.Notice that this postulate de
scribes in fact a collection of three formulas.

2.4. Meaningpostulate 1:

3uU [u=a] where a e {john,bill,mary}.

2.4. END

This meaningpostulate requires that there is one individual in the
semantic domainsuch that the interpretation of john equals that individual
for all indices. For the PTQfragment this postulate maybe considered suf
ficient. In moresubtle situations this formalization of rigidity is proba
bly too absolute. If epistemological verbs like knowor believe are analysed
in detail, then the notion of rigidity mayhave to be weakened to something
like 'in all worlds compatible with the beliefs of someindividual such a
constant is rigid‘. I will, however, follow the PTQformalization.

An important technical consequence of MP1is that lambda-conversion is
allowed when one of the constants john, bill or mary occurs as argument.
First I recall the notation for substitution, for a formal definition see
chapter 3, definition 4.3.

2.5. DEFINITION.Ea/z]¢ denotes the result of substitution of a for all free
occurrences of z in ¢.

2.6. THEOREM.

F=Xu[¢](a) = Ca/u]¢

where

a 6 {john,bill,mary}.

PROOF.MP! says that for all i,g: i,g F 3uU [u=a]

so there is a g' E g such that : i,g’ F [3 [u=a]
hence for all j : j,g' F u = a

Let i1 and i2 be arbitrary. Then:

Vilg(a) = Vi],g.(a) = Vi],g.(u) = g'(u) = V. ,g.(u) = Vi2,g.(a) =

= Vi2,g(a).

This means that the condition of theorem 6.4 from chapter 3 is satisfied,
hence the theorem allows us to apply A-conversion.
2.6. END

In the sequel A-conversion will be used frequently for reducing a for
mula to a simpler form. Besides X-conversion several other rules wil1-be
introduced for this purpose; they are called reduction rules (RR's). To
gether they will constitute a procedure which simplifies the formulas ob
tained by translating the expressions of the fragment. For each reduction
rule a correctness proof has to be given, i.e. a proof that the rule trans
forms a formula into a logically equivalent one. Theorem6.1 from chapter 3
then allows us to reduce a formula as soon as it is obtained. The purpose
of the reduction rules is to obtain formulas which express the intended
meaning as clearly and simply as possible. The rules presented in this
chapter are almost identical with the rules presented in JANSSEN1980a.
Related reduction rules are discussed in FRIEDMAN& WARRENl980a,b and

INDURKHYA1981; these authors use the reduction rules for a somewhat dif

ferent purpose (e.g. to obtain the most extensionalized form), and there
fore there are somedifferences.

The first reduction rule concerns A-conversion. With respect to this
rule the following class of formulas is important: the formulas which con
tain no operators V, H, or W, and which contain as constants only john,
mary or bill. Extending definition 6.2 from chapter 3, I will call these
expressions modally closed, since they have the same properties with re
spect to A-conversion.

2.7. DEFINITION.An IL formula is called modally closed if it is an ele
ment of the IL-subalgebraz

<[{john,mary,bill}], (VART)T€ , R U {RA,RD}>TY

where R consists of the operators of Ty2 (recall that RA
and RDindicate prefixing with A and 0 respectively).

2.8. Reduction rule 1

Let z e VAR , a 6 ME , and B e ME
T T2 12

Then replace Az[B](a) by [Q/z]B if
1) no variable in a becomes bound by substitution of a for z in B
and either

2) no occurrence of z in 8 lies within the scope of A,H,Wor U
or

3) a is modally closed.

CORRECTNESS PROOF

The difference between this rule and theorem 6.3 from chapter 3 is that
condition 3 allows for the occurrence of the rigid designators john, mary
and bill. Hence if conditions 1) and 2) are satisfied, the correctness of
the A-conversion follows from that theorem. Suppose now that conditions 1)
and 3) are satisfied, and consider the case that a contains of the constants
john, bill and mary only occurrences of john.

Let w be a variable which does not occur in a or B, and let a‘ and B’

be obtained from a and B by substitution of w for john. Consider now

(A) Aw[Az[B'](a')](john)

Since a' and 8' do not contain occurrences of john the old conditions for
A-conversion on z are satisfied (chapter 3, theorem 6.3). S0 (A) is equiv
alent with:

Aw[[a'/z]B'](john).

From theorem 2.6 above, it follows that A-conversion on w is allowed, so
this formula is equivalent with

[john/w][[a'/z]B'].

By the definition of substitution, this is equivalent with

Ea/z]B.

S0 (A) is equivalent with this last formula. On the other hand, we may per
form in (A) A-conversion on w because the condition of theorem 2.6 is satis

fied. So (A) is also equivalent with

Az[BJ(a).

The combination of these last two, with (A) equivalent, formulas proves the
correctness of A-conversion for the case that conditions I) and 3) are

satisfied, and that a contains only occurrences of john. For other constants
and for occurrences of more than one constant, the proof proceeds analogous
1y.
2.8. END

As said before, at different indices different persons can be Bigboss.
Therefore we cannot translate Bigboss into a rigid constant of type e. We
might translate it into a constant of type <s,e>, or into a constant of
type e and interpret it non-rigidly. I choose the former approach (thus
being consistent with the examples involving bigboss given in section 7 of
chapter 3). This explains the following definition

2.9 bigboss e CON<Se).
9

2.9. END

The interpretation of the constant bigboss is a function from indices
to individuals. Such a function is called an individual concept. Also Ajohn
denotes an individual concept. The individual concept denoted by Ajohn is
a constant function, whereas the one denoted by bigboss is not. One might
expect that Bigboss translates into the corresponding constant. But, as
for the other proper names, it will be explained later why this is not the
case.

Suppose that the balance of power changes and Bresjnev becomes Bigboss

instead of Reagan. Then this might be expressed by sentence (14).

(14) Bigboss changes.

The meaning of (14) is not correctly represented by a formula which says
that the predicate change applies to a certain individual. Whowould that
be? Maybe there was a change in the absolute power of Reagan (it decreased),
or in the absolute power of Bresjnev (it increased). Probably both persons
changed with respect to power. Sentence (14) rather says that the concept

10

'Bigboss' has changed in the sense that it concerns another person. So the
meaning of (14) can be represented by a formula which says that the predi
cate change holds for the individual concept related with Bigboss. In such
an analysis change has to be of type <<s,e>,t>. Due to the homomorphicrela
tion between syntax and semantics, this means that all intransitive verbs
have to be of type <<s,e>,t>.

At this stage of the description of the fragment the only example of
an argument of type <s,e> is the artificial example bigboss. In appendix 2
of this book, other examples will be given where the translation of the ar
gumentof a property has to be of this type. This discussion explains the
introduction of the following constants and translations. The translation
function is indicated by meansof a '(prime). Note that this is a different
use of ‘than in PTQ(there it distinguishes English words from logical con
stants).

2.10 {run,walk,ta1k,rise,change} C CON<<S,e>,t>
2.11 run’ = run, walk‘ = walk, talk’ = talk

rise‘ = rise, change‘ = change.

2.11. END

One might be tempted to take the constant john as translation of the
proper nameJohn. In the fragment consisting only of sentences like John
runs there would be no problem in doing so. But there are more terms, and
the similarity of syntax and semantics requires that all terms are trans
lated into expressions of the same type. Wealready met the proper name
Bigboss, translating into an expression of type <s,e>. Onemight expect
Ajohn as translation for John. But in the sequel we will meet more terms:
e.g. every man. If we would translate John into an expression denoting an
individual concept (or alternatively an individual), then every manhas to
be translated into such an expression as well. Wouldthat be possible?

The idea is discussed by LEWIS(1970). He tells us that in the dark

ages of logic a story like the following was told. ‘The phrase every pig
namesa [..] strange thing, called the universally generic pig, which has
just those properties that every pig has. Since not every pig is dark, pink,
grey or of another color, the universally generic pig is not of an any
color (Yet neither he is colorless, since not every - indeed not any - pig
is colorless)’. (LEWIS1970, p.35). This illustrates that this approach
is not sound. Therefore, we will forget the idea of universal generic

objects (for a proposal for a reconstruction, see Van BENTHEMl98la), and

we will interpret the term every man as the set of properties every man has.
As a consequence of the similarity of syntax and semantics, all other terms
will denote sets of properties as well.

On the basis of this argumentation one might expect for John the trans
lation AZ[Z(Ajohn)], where Z is a variable of type <<s,e>,t>. But this is
not adequate for the following reason. A variable of type <<s,e>,t> denotes
(the characteristic function of) a set of individual concepts. Whatwe
usually take to be a property cannot be adequately formalized in this way.
Consider the property ‘being a football player‘. This would be formalized
as a set of individual concepts. The sameholds for the property of 'being
a memberof the football union’: this is formalized as a set of individual

concepts as well. Suppose nowthat (for a certain index) all football
players are membersof the football union. Then these two sets would be the

same, so the two properties would be formalized in the same way. But we do

not consider these two properties as being the same. In other circumstances
(for other indices) there might be players who are not a memberof the
union. In order to formalize these differences, properties are taken to be
of one intensional level higher hence a variable which ranges over properties
has to be of type <s,<<s,e>,t>>. This explains the following translations

of proper names.

2.12. Translations

John’ = xp£E"pJ("jo1m)J. Bill’ = xp[[VpJ("bi11)J

Mary’ = AP[[VP](Amary)], Bigb0ss' = XP[[vP](bigboss)]

here P e VAR .<s,<<s,e>,t>>

2.12. END

After this discussion concerning the proper namesand intransitive
verbs, the rule for their combination can be given. I first quote the PTQ
formulation, since this wayof presentation is in the literature the stan

dard one. The formulation of the rule contains expressions like ‘a 6 PT',
this should be read as 'a is a phrase of the category T’. The rule is

called S4, because it is the fourth syntactic rule of PTQ, and I wish to
follow that numbering when possible.

2.13. Rule S4
4-V

If a e ?T and B 6 PIV then F4(a,B) 6 PS, where F4(a,B) = a3 and B is
the result of replacing the first verb in Bby its third person singular
present.
2.13. END

This formulation of the rule contains a lot of redundancy, and there
fore I will use a more concise presentation. As one remembers from the pre
vious chapters, the syntactic rules are operators in an algebraic grammar.
The form of representation I will use, resembles closely the representa
tions used in the previous chapters for algebraic operators. First it will

be said what kind of function the rule is; as for S4 it is a function from
T X IV to S (written as T X IV + S). Next it will be described how the

effect of the operator is obtained. I will use a notation that suggests that
somebasic operations on strings are available, in particular a concatena
tion operator which yields the concatenation of two strings as result. The
semi-colon (;) is used to separate the consecutive stages of the descrip
tion of the syntactic operator; it could be read as ‘and next‘. Furthermore
the convention is used that a always denotes the expression which was the
first argument of the syntactic rule. If this expression is changed in some
step of the syntactic operation, it will then denote the thus changedex
pression. For the second arguent B is used in the same way. Rule S pre4
sented in this format reads as follows.

2.14. Rule S4

T X IV + S

F4: replace the first verb in Bby its third person singular present;
concatenate (a,B).

2.14. END

The occurrence of the name F4 is a relict of the PTQformulation, and
might be omitted here. But in a context of a long list of rules it is some
times useful to have a namefor an operation on strings, because it can

then be used in the description of other rules.

The translation rule corresponding with S4 reads in PTQas follows.
2.15. T :

4

If a 6 PT, 8 e PIV, and a,B translate into a',B' respectively, then
F4(a,B) translates into a'(AB').

2.15. END

Also the translation rule contains a lot of redundant information.

Let us denote by a’ the translation of the first, and by B’ the translation
of the second argument of the preceding syntactic rule. Then a translation
rule can fully be described by giving just the relevant logical expression
(polynomial over IL with a‘ and 8' as parameters). What the types of a‘ and
B‘ are, follows immediately from the sorts mentioned in the syntactic rule

T4 presented in this format reads:

2.16. T4:Aa'(B‘)
2.16. END

Nowwe come to the production of sentence (15), viz. Bigboss changes.

This sentence, containing the artificial term Bigboss, is given as the
first examplebecause all information needed for a full treatment of this
sentence is given now; sentences like John changes have to wait for a

moment. Sentence (15) is obtained by application of S4 to the basic term
Bigboss and the basic verb change. This information is presented in the
tree in figure 1. The S in {S,4} stands for the category of the obtained
expression, the 4 for the numberof the rule used to produce the expression

(15) Bigboss changes.

Bigboss changes {S,4}
/’ \

Bigboss {T} change {IV}

Figure I

The translation of Bigboss is AP[VP(bigboss)], and the translation of

change is change. If we combine Bigboss and change according to rule S4,
thus producing (I5), then the translation of the result is obtained by ap

plication of T4 to their respective translations. Since

14

T4(a',B') = a'(AB'), sentence (15) translates into (16).

(16) AP[VP(bigboss)](Achange).

Nowconditions 1 and 2 of reduction rule RR] are satisfied. So this formula
can be reduced to (17).

(17) [VAchange](bigboss).

This formula can be simplified further using the following reduction rule.

2.17. Reduction Rule 2

Let be given a formula of the form vAa. Then replace this formula by a.

CORRECTNESSPROOF. F=vAa = a see chapter 3, theorem 7.1.
2.17. END

Using this reduction rule formula (17) reduces to (18).

(18) change(bigboss).

This formula expresses that the predicate change holds for the individual
concept bigboss.

Instead of all this verbosity, wemight present the translations im
mediately in the tree. Depending on the complexity of the formulas involved,
these maybe unreduced, partially reduced or completely reduced formulas.
An example is given in figure 2.

Bigboss changes {S,4}

change(bigboss)“_““‘~h‘
Bigboss {T} change {IV}

AP[vP(bigboss)] change

Figure 2

Another method to present the production and translation process is to write
this in an algebraic way, of which the following is an example.

[Bigb0ss changes]' = [S4(Bigb0ss,change)]' =
T4(Bigboss',change') = Bigb0ss'(Achange') =
[AP[VP(bigboss)](Achange)] ={RRl} = [vAchange](bigboss) = {RR2}=

= change(bigboss)

15

The treatment of Marywalks proceeds, in its first stage, analogously to the
treatment of Bigboss changes, see figure 3.

Mary walks {S,4}

lk(A) ””””,_wa mary \\\\\\\
Mary {T} walk {IV}

AP[VP](Amary) walk

Figure 3

The formula obtained as translation for Marywalks, is not completely satis
factory. Intuitively one interprets this sentence as stating that a certain
predicate (denoting the property of walking) holds for a certain individual
(Mary). This is not reflected in the obtained translation; in walk(Amary)a
predicate is applied to an individual concept. Since mary is a rigid con
stant, Amarydenotes a function which yields for all indices the same in
dividual. Saying that this constant function has a certain property is tan
tamount to saying that the corresponding individual has a certain proper
ty (there is a 1-1 correspondence between individuals and functions yielding
always the same individual). However, one would like to have reflected in

the translation of Marywalks that a predicate holds for an individual.
Therefore the following notation is introduced (see PTQ,p.265).

2.18. DEFINITION. Let 5 6 CON
A

Au6(u) (so 6* e ME<e,t>).
2.13. END

. Then 6 is an abbreviation for
<<s,e>,t> *

Consequently we have the following rule for simplifying formulas.

2.19. Reduction rule 3

Let be given a formula of the form 6(Aa), where 6 E C0N<<Se) t) and
9 9

a e VAReor a e {john,bill,mary}. Then replace 6(Aa) by 6*(a).

CORRECTNESSPROOF. 6*(a) = Xu[6(Au)](a) ={RR1}= 6(Aa). Note that A-conver
sion is allowed because the mentioned constants of type e are rigid de
signators.
2.19. END

16

Using RR3the translation of Marywalks in figure 3, reduces to (19).

(19) walk*(mary).

As last example I present the treatment of the sentence mentioned in
the title of this section. For variation I use not the tree representation,
but the algebraic one.

[John runs)’ = [S4(J0hn,run)]' = J0hn'(Arun') = AP[[VP](Ajohn)](Arun) =

={RR1}= [vArun](Ajohn) ={RR2} = run(Ajohn) ={RR3}=run*(john).
In PTQmore is said about the fragment presented so far. A meaning

postulate (M3) is introduced which says that the truth of e.g. walk(x) on
ly depends on the extension of x, i.ez the subject position of walk is ex
tensional. In appendix 2 of this book the problems of extension and inten
sion will be discussed, and this postulate will be considered. For verbs
of other categories the extensionality of the subject position is guaran
teed by meaning-postulates as well, (see appendix 15.

3. THE WOMANIWALKS

In this section the fragment is extended with the categories of Common
Nouns (CN) and of determiners (Det). The treatment of determiners given
here differs from their PTQtreatment. In PTQdeterminers are introduced
syncategorematically, introducing each determiner by a distinct rule. May
be the motivation for Montagueto do so, was that in logic quantifiers are
usually introduced syncategorematically. Froma linguistic point of view it
is more attractive to have determiners in a separate category (they form a
group of expressions which behave syntactically in a regular way). Since I
do not knowany argument against treating them categorially, the PTQap
proach is not followed here. The generators of the two new categories are
as follows

3.1. BCN= {man,w0man,park,fish,pen,unicorn,price,temperature}

3.2. BDet = {every,a,the}

3.2. END

For each element in BCNthere is a corresponding constant, and the
commonnouns translate into these constants. The nouns are treated seman

tically in the sameway as the intransitive verbs we have met in section
2. Hence the nouns translate into constants of type <<s,e>,t>. This

explains the following definitions.

3.3. {man,woman,park,fish,pen,unicorn,price,temperature} c CON<<S,e>,t>

3.4. man‘ = man, woman’ = woman, park‘ = park, pen’ = pen,

unicorn‘ = unicorn, price’ = price, temperature‘ = temperature.
3.4. END

An example of a formula containing the constant bill is (20), in which
is expressed that Bill is a man.

(20) man(Abill).

The 6*-notation (definition 2.18) is applicable to all constants of type
<<s,e>,t>, so it can be applied to constants translating commonnouns as
well. So (20) may be replaced by (21).

(21) man*(bill).

Out of a CNand a determiner a term can be formed, using the following
rule.

3.5. Rule S2

Det X CN + T

F2: concatenate(a,B)
T2: a'(AB').

Example

F2(a,woman) = a woman.

3.5. END

Wewish to use the terms produced with this rule in the same way as we

used the term John: rule S4 should be applicable to the result of S
yielding sentences like (22), (23) and (24).

29

(22) A woman runs

(23) Every woman runs

(24) The womanruns.

The meanings associated with determiners are best understood by con

sidering the meanings that we wish to assign to the above sentences (cf.
the discussion concerning contextuality and compositionality in section 2
of chapter 1). Let us accept (for the momentwithout explanation) the
quantification over individual concepts; then the translations of (22),

(23) and (24) are (25), (26) and (27) respectively.

(25) 3x[woman(x) A run(x)]

(26) Vx[woman(x) + run(x)]

<27) 3xVy[[woman(y) ++ x=y] A run(x)].

The last formula is somewhatcomplex. It says that there is an entity
x which is a woman, and that for any entity y which is a womanholds that
it is identical to the entity x. In other words, (27) is false whenthere
is no womanat all, and it is false when there is more than one woman. This

kind of analysis for the is called the Russellian analysis, because it was
proposed by Russell to deal with the famous example (28).

(28) The present King of France is bald.

The meanings of the terms have to be such that if they take an IV
translation as argument, the resulting translations are the ones we desired
for the obtained sentences. Hence their translations have to be of the same

kind as the translation of the term John: a (characteristic function of a)
set of properties of an individual concept. So we wish to translate (29) by
(30).

(29) a woman

(30) AP3x[woman(x) A VP(x)].

Formula (30) is interpreted as the characteristic function of those proper
ties P such that there is at least one womanwhich has this property P.
Other determiners are treated analogously. As translation for the determiner
a we take formula (30), but with womanreplaced by a variable. This variable
is of type <s,<<s,e>,t>> (the reason for this is the same as the reason
given for the type of the variable P, see the translation of John). This
explains the following translations of determiners.

3.6. Translations of determiners

every‘ - AQAPVx[vQ(x)+ VP(x)]

xQxpaxLVQ(x) A Vp(x)J

the’ = XQAP3x[Vy[VQ(y)++ x=y] A vP(x)].

a!

3.6. END

Formulas (25), (26) and (27) are not in all respects a satisfactory
representation of the meanings of sentences (22), (23) and (24) respective
ly. The formulas contain quantifications over individual concepts, whereas
one wouldprefer a quantification over individuals. The conditions for ap

plication of RR3are not satisfied, so we have no ground for the elimina
tion of the individual concepts by means of an application of this rule.
On the contrary: as I will explain, the replacement of (31) by (32) would
replace a formula by a non-equivalent one.

(31) 3x[woman(x) A run(x)]

(32) 3u[woman*(u) A run*(u)].

A possible choice for the value of x in (31) would be to assign to x the
same interpretation as to bigboss, but in (32) there is not a correspond
ing choice. One would prefer to have (32) as the meaning representation of
the meaning of (25) because intuitively (25) gives information about in
dividuals, and not about individual concepts. Following Montague, we ob
tain this effect by means of the introduction of a meaning postulate. Only
those models for intensional logic are possible models for the interpreta
tion of English in which the following meaningpostulate holds.

3.7. Meaning postulate 2

:1 [am + Elu[x=Au]]

where 6 e {man,woman,park,fish,pen,unicorn}.

3.7. END

This meaning postulate says that constants such as mancan yield true
only for constant individual concepts, i.e. for individual concepts which
yield for every index the same individual. Note that the constants price

and temperature are not mentioned in MP2. Arguments for this, and examples
involving price and temperature will be given in appendix 1 of this volume.

As a consequence of MP2, it can be shown that (31) and (32) are equivalent.
I will not present a proof for this, because it is only one of the situa

tions in which MP2will be used. In appendix 1, it will be investigated in

general in which circumstances MP2allows us to replace a quantification
over individual concepts by a quantification over individuals. For the
momentit suffices to know that in all examples we will meet, such a re
placement is allowed. This is expressed in the following reduction rule.

20

3.8. Reduction Rule 4

Let be given a formula of one of the following forms: 3x[G(x) A ¢(x)],
Vx[6(x) + ¢(x)] or 3x[Vy[6(y) ++ x=y] A ¢(x)].

If MP2holds for 6, then replace these formulas by respectively
3u[5(Au) A ¢(Au)], Vu[6(Au) + ¢(Au)] or 3u[Vv[6(Av)<-+u=v] A ¢(Au)].

CORRECTNESSPROOF. See appendix 2.

3.8. END

The production of the sentence mentioned in the title of this section
is given in figure 4.

The woman walks {S,4}

3u[Vv[woman*(v) ++ u=v] A walk*(u)]
_ ‘L

the woman {T,2} walk {IV}

AP3u[Vv[woman*G0 +-u=v] A VP(Au)] walk

the {Dec} woman {CN}

AQXP[3xVy[VQ(y) ++ x=y] A VP($)] woman

Figure 4

Note how in this simple example RR4 and RR3 are used in order to sim

plify the translation of the woman,and RR] and RR3to simplify the trans
lation of the womanwalks. In the sequel such reductions will often be
performed without any further comment.

4. MARY WALKS AND SHE TALKS

In this section the fragment is extended with rules for disjunction
and conjunction, and with a rule for co-referentiality. The rules for pro
ducing conjoined sentences are as follows.

4.1. Rule S :Ila

S x S + S

Flla: concatenate (a, and, B)
Tllaz a‘ A B‘

21

4.2. Rule Sllbz

S x S + S

Fllb: concatenate (a, or, B)
. I I

Tllb. a V B .

4.2. END

Notice that the words and and or are not members of a category of con

nectives: they are introduced syncategorematically. It wouldbe possible to
have a three-place rule for sentence conjunction, with for the connective
and as translation X¢Aw[¢A w]. This categorical approach is not followed
here because there are rules for disjunction and conjunction for other
categories as well. Furthermore, the situation is complicated by the fact
that there is term disjunction in the fragment, but no term conjunction
(in order to avoid plurals). In this situation it wouldnot be a simpli
fication to use a categorical treatment of connectives. For a categorical
treatment in a somewhat different framework, see GAZDAR1980.

The rules for forming conjoined phrases of other categories than sen
tences are as follows.

4.3. Rule Slzaz

IV x IV + IV

concatenate (a, and B)
Ax[a'(x) A B'(x)].

F123:

Tl2a:

4.4. Rule Slzbz

IV X IV + IV

concatenate (a, or B)
Ax[a'(x) V B'(x)].

F121;‘

T1213‘

4.5. Rule S13:

T x T + T

: concatenate (a, or B)
XP[a'(P) V B'(P)].

F13

T13:

4.5. END

22

The production of (33) is given in figure 5.

(33) John walks and talks.

John walks and talk {S,4}

walk*(john) A talk*(john)v
John {T} walk and talk {IV,l2a}

AP[vP(Ajohn)] Ax[walk(x) A talk(x)],/’/ ‘\\
walk {IV} talk {IV}
walk talk

Figure 5

Note that the produced sentence is not identical with (33). The treatment

presented in figure 5 obeys the formulation of S4, and, therefore, only the
first verb is conjugated. For an improved treatment see chapter 8, or
FRIEDMAN 1979b.

An example of term disjunction is given in (34).

(34) John or Mary talks.

First (35) is formed according to S13. Its unreduced translation is (36).

(35) John or Mary

(36) AP[AP[vP(Ajohn)](P) v AP[vP(Amary)](P)].

Formula (36) contains several occurrences of the variable P, and three
binders for P (viz. three occurrences of AP). However, due to the different
scopes of the lambda operators, it is uniquely determined which variables
occur in the scope of each of the lambda operators. The conditions for
A-conversion are satisfied, and after two applications of RR formula (36)

1

reduces to (37).

(37) AP[vP(Ajohn) V VP(Amary)J.

Application of S4 to term (35) and the verb talk, yields (34), which has as
unreduced translation (38). This formula reduces by application of RR and

I

RR2 to (39), and using RR3 to (40).

(33) AP[vP(Ajohn) v VP(Amary)](Atalk)

(39) talk(Ajohn) V talk(Amary)

(40) talk*(john) V talk*(mary).

23

In sentences containing conjunctions or disjunctions pronouns occur
often which are coreferential with someother term in that sentence. An

example is the coreferentiality of she and Mary in (41).

(41) Mary walks and she talks.

In order to account for coreferentiality, a collection of new-artificial
terms is introduced. Since they have a relationship with logical variables,
they are called syntactic variables. These variables are not words of
English, and might be represented by means of some artificial symbol. Since
the variables are related to pronouns, it has someadvantages, to give
thema representation exhibiting this relationship. Thevariables are

written as male pronouns provided with an index (e.g. hen). Their trans
lations contain logical variables xn of type <s,e>. The syntactic variables
hen are generators of sort T.

4.6. {he1,he2,...} C BT.

4.7. hel’ = >.P[VP(xl)], keg’ = AP[VP(x2)],...

4.7. END

One of the most important rules of PTQis S As for the syntax it14'
removesthe syntactic variables. As for the translation, it binds the cor
responding logical variables. This rule enables us to deal with most of
the ambiguities mentioned in the introduction, but in this section we will
only deal with its use for coreferentiality. In fact S is not a rule, but

14
rather a rule-scheme which for each choice of the index n constitutes a

rule. This aspect will be indicated by using the parameter n in the descrip
tion of the rule scheme.

4.8. Rule S]4,n:

T x S + S

F]4,n1 If a = hek then replace all occurrences of hen/him” inE3 by
hek/himkrespectively.
Otherwise replace the first occurrence of hen in B by a, and
replace all other occurrences of hen in B by he/she/it and of
him” by him/her/it according to the gender of the first CNor
T in a.

24

T14,n‘ “'(A*”n[B'])'
4.8. END

An example of the use of (an instance of) S14 n arises in the produc
3

tion of (41), as presented in figure 6.

Mary walks and she talks {S, 14,1}

AP[vP(Amary)](AXx'[walk(x1) A talk(x1)])

Mary{T} He] walks and he] talks {S, Ila}
AP[vP(Amary)] walk(x]) A ta1k(x])Fa \

He] walks {S,4} He] talks {S,4}

walk(x]) /////talk(x1)
He1,{T} walk {Iv} He1{T} talk {IV}

AP|:vP(xl)] walk XP[VP(xl)] talk

Figure 6

The translation for (41) given in figure 6 can be reduced, using RR3, to (42).

(42) [AVAx][walk(x]) A talk(x1)]](Amary).

By application of RR2and RR1 this reduces to (43), and by RR3, further to
(44).

(43) walk(Amary) A talk(Amary)

(44) walk*(mary) A talk*(mary).

Somesyntactic details of S n give rise to problems. The rule for term
disjunction allows us to producelterm phrases like he] and Mary, and he] or
he2. In both cases it is not clear what is to be understood by the gender
of the first T or CNin such a term. And if the term John or Mary is formed,
it is not correct to use the pronoun he, but one should use he or she, wit

ness the following example (FRIEDMAN,1979).

(45) John or Mary walks and he or she talks.

It would require a more sophisiticated syntax than we have available here in

order to account correctly for these problems (see FRIEDMAN1979 for an im
proved treatment).

The detail of S] that the first occurrence of hen/himn has to be4,n

25

replaced, is explained as follows. A pronoun mayalways be coreferential
with a commonnoun or term occurring earlier in the sentence, but it may
not always refer forward to terms or nouns occurring later. So it is a safe
strategy to put the coreferential noun phrase always in a position which is
as leftmost as possible. It is a difficult, and not completely solved task,
to characterize the situations in which a pronoun may refer to a term occur
ring later in the sentence. Therefore S describes only reference to terms14

occurring earlier than the pronoun. Even this safe procedure does not avoid
all problems. In some cases a personal pronoun is produced, where a reflexive
pronoun is required. Sentence (46) has, according to the rules described
here, a translation which expresses that John loves himself. This result is,
of course, incorrect.

(46) John loves him.

Our aim was to deal with certain semantic problems, and therefore I will not
consider here proposals for dealing with this syntactic problem (one of the
proposals from the literature, viz. PARTEE1973, will be considered in chap
ters 5 and 6 although not from the present point of view).

5. JOHN FINDS A UNICORN

In this section the category TVof transitive verb phrases is intro
duced. The generators of this category are as follows.

5.1. BTV= {find,Z00se,eat,Zove,dhte,be,seek,c0nceive}.

5.1. END

Corresponding with these TV's (except for be), there are constants in
the logic. They denote higher order functions which take as argument the
intension of a term translation, and yield an element of the same type as
the translations of IV-phrases. The translations of the basic verbs of the
category TVare the corresponding constants; the translation of be is a
compoundexpression of the same type. Let us indicate by T(C) the type of
the translation of an expression of category C. Then
T(TV)= <<S,T(T)>,T(IV)>. This explains the following definitions

5.2. {find,loose,eat,love,date,seek,conceive} C C0N<<ST(T)> T(IV)>3 3

26

5,3, find‘ = find, loose’ = loose, eat‘ = eat, love’ = love,

be’ = xPxx[VP("xy[Vx = Vy])] where Pa VAR

seek’ = seek, conceive’ = conceive.
<s,r(T)>

5.3. END

Out of a TV and a Term and IV can be formed according to the following
rule.

5.4. Rule S53

TV X T + IV

F52 concatenate (a,B)-IA!
T5 a (B).

5.4. END

Anexample of the use of this rule is the production of (47), partial
ly presented in figure 7.

(47) John seeks a unicorn.

John seeks a unicorn {S,4}

seek(AAP3u[unicorn*(u) A VP(Au)])(Ajohn)
\

John {T} seek a unicorn {IV,5}

AP[vP(Ajohn)] seek(AXP3u[unicorn*(u) A VP(Au)])
/ \

seek {TV} a unicorn {T,2}

seek XP3u[unicorn*(u) A vP(Au)]

Figure 7

The translation obtained in figure 7 is not the traditional one:
one would like to consider seek as a two-place relation. Therefore the
following convention is introduced.

5.5. DEFINITION.y(a,B) = y(B)(a), where Y is an expression translating
a TV.

5.5. END

27

In PTQ(p.259) this convention is defined for all y. It is however
only useful for TV's (see section II). The above definition gives rise to
the following reduction rule.

5.6. Reduction rule 5

Let be given a formula of the form y(B)(a), where Y is the translation
of some transitive verb. Then replace this formula by y(a,B).

CORRECTNESS PROOF

See definition 5.5.
5.6. END

Using RR5, the formula obtained in figure 7 reduces to (48).

(48) seek(Ajohn, AAP3u[unicorn*(u) A vP(Au)]).

This translation describes the de-dicto reading of (47). The de-re reading
will be considered in section 6. BelowI will discuss whether the formula

expresses a relation between the right kinds of semantic objects.
The first argument of seek is a constant individual concept. Onemight

wish to have an individual as first argument. In analogy of the 5* notation
for intransitive verbs, wemight introduce a notation for transitive verbs
in which the A in front of john disappears. PARTEE(1975, p.290) has pro
posed such a notation, but it is not employedin the literature, therefore
I will not use it here. Notice that the interpretation of (48) is tant—
amount to a relation of which the first componentis an individual (see
section 2).

The second argument in (48) is the intension of a collection of proper
ties. So seek is not treated as a relation between two individuals, and
therefore (48) does not allow for the conclusion that there is a particular
unicorn which John seeks. In this way the problem mentioned in section l
is solved, so in this respect the formula is satisfactory. But one might ask
whether this effect could be obtained by means of a simpler formula, viz.
one without the intension sign. The need for this intension in the second
argument is explained as follows (JANSSEN1978b, p.l34). Suppose that seek
is considered as a relation between an individual and (the characteristic
function of) a set of properties. Consider a world in which there exist no

unicorns. Then for no property P it is true that 3u[unicorn*(u) A VP(Au)].
. . , V A .

Thus in these circumstances AP3u[un1corn*(u) A P(u)] 13 the

28

characteristic function of the emptyset of properties. The semantic inter
pretation of John seeks a unicorn then states that the seek-relation holds
between John and this empty set. Suppose moreover that in this world also
no centaurs exist. Then the semantic interpretation of

(49) John seeks a centaur

also expresses that the seek-relation holds between John and the empty set
of properties. But this contradicts our intuition that (47) and (49) have
different meanings. Whenwe wish to describe the difference between centaurs
and unicorns we cannot restrict our attention to the present state of the
present world. Weshould also consider other worlds (or other states of the
present world) for instance, those in which unicorns or centaurs do exist.

In other worlds the set AP3u[unicorn*(u) A VP(Au)] might be different from
AP3u[centaur*(u) A VP(Au)]. Therefore the seek-relation will be considered
as a relation between individuals and intensions of sets of properties.
Since these intensions are different, seek a unicorn will get an interpre
tation different from the one for seek a Centaur (even if both are extinct).

In the same way as we produced John seeks a unicorn, we may produce (50)
with as reduced translation (51).

(50) John seeks Mary

(SI) seek(Ajohn, AAP[VP](Amary)).

This formula expresses that the seek relation holds between an individual
concept and the collection of properties of Mary. But sentence (50) expres
ses that the seek-relation holds between two individuals: between John and

Mary. One would like to have this aspect expressed by the obtained formula.
Therefore the following definition (PTQ,p.265).

5.7. DEFINITION. 5* = Av}\u6(Au,AAP[VP(Av)]), where 5 e CON
5.7. END

I(TV)°

On the basis of this definition we have the following reduction rule.

5.8 Reduction rule 6

Let be given an expression of the form 6(Aa,AAP[vP(AB)]), where

a,B e VARe U CONe, and 6 5 CONT(TV). Then replace this expression by 6*(a,B).

29

CORRECTNESS PROQE

6*(a,B) = 6*(B)(a) = AvAu6(Au,AAP[VP(Av)])(B)(a) = {RRI} =
= a(“a,“xp[Vp<“e)J).
Note that A-reduction is allowed because the constants of type e in the
fragment are rigid.
5.8. END

Using RR6 we may reduce (51) to (52).

(52) seek*(john,mary).

In the same way as we produced the sentence John seeks a unicorn, we
mayproduce (53), with translation (54).

(53) John finds a unicorn

(54) find(Ajohn,AAP[3u unicorn*(u) A VP(Au)]).

This result is not precisely what we would like to have. Sentence (53) gives
the information that there exists at least one unicorn, and (54) does not
express this information. In order to deal with this aspect we restrict
our attention to those models for IL in which the following meaning postu
late is satisfied.

5.8. Meaning Postulate 4

asvxvPU [6(x,P) ++VP<“xgVs(Vx,Vy))J

where 6 e {find,loose,eat,love,date} and P 5 VAR
5.8. END

<s,r(T)>'

This meaningpostulate expresses that if the relation 6 holds between
an individual concept and a collection of properties, then there is a cor
responding relation which holds between individuals. This relation is index
dependent: the set of pairs which consist of a ‘finder’ and a ‘found object’,
maybe different for different indices. Therefore the existence of a rela
tion between finders and found objects is formalized by means of an existen
tial quantification over a variable which is of one intension level higher
than the relation itself. An equivalent alternative wouldbe (55), where
the quantification SS is within the scope of U (this variant is due to
P. van Emde Boas).

30

(55) D [3SVxVP[6(x,P) ++ P(AAyS(Vx,vy))]].

A notation for the relation between finder and found object is already

provided by the 6* notation. This notation is introduced in the following
rule.

5.9. Reduction rule 7

Let be given an expression of the form 6(a,B) where
6 e {find,loose,eat,love,date} and a 6 M B e M<s,e> T(T). Then, replace
this expression by VB(AAy[6*(Va,vy)]).

CQRRECTNESS PROOF

FromN? follows that for all g, there is a g' E g such that4

g‘ k I cs<x,P> ++VP<“xyVs<Vx.Vy>>.

This means that for all expressions a 5 ME , B e ME< holds that<s,e> s,'r(T)>

g‘ F 6(a.e) ++‘h<“xyVs<Va,Vy>>.

For this g' the following equalities hold:

Ve<“xya*<Va.Vy>> ={ne£.s.s}= s<“xy6*<Vy><Va>>={Def.5.7}=

vB(AAyXvXu6(Au,AAP[vP(Av)J)(Vy)(va)) ={choice of g'}=

vB(AAyAvAu[AAP[vP(Av)](Akyvs<V“u,Vy)>J<Vy><Va>>={RR2 1}=

”e<“xyAvxu£V“xy”s<u,"y><“v>J<Vy><Va>>={RR2 ,}=

Vs<“xyxvxutVs<u,V“v)J<Vy><Va>> ={RR2 1}=

VB(AAyVS(Va,vy))={choice of g'}= 6(a,B).

Since S does not occur in the first and last formula, these expressions are
equivalent for all g. Fromthese equalities the reduction rule follows.
5.9. END

After the introduction of RR7we return to our discussion of (54). Ap
plication of RR7to (54) yields (56).

(56) VA[AP3u[unicorn*(u) A vP(Au)]](AAy[find*(VAjohn,Vy)])

31

This reduces further to (57), and that is the kind of formula we were
looking for: it expresses that the find-relation holds between two indivi
duals

(57) 3u[unicorn*(u) A find*(john,u)]

The fragment contains one single verb be, which is used both for the
be of identity, and for the copula be. An example of the be of identity is
given in (58).

(58) John is Mary.

The first step in its production is to combinebe with Moryaccording

to S5. This yields the IV-phrase be Mhry. The translation of this phrase
reduces by several applications of RR and RR to Ax[vx=mary]. Combining

1 2

this with John according to S yields (58), and the corresponding transla4

tion reduces by applications of RRI and RR to john = mary. One observes
that the final result is an identity on th: level of individuals. This

showswhy there is no meaning-postulate like M4 introduced for be: its
translation already applies to the level of individuals rather than the
level of individual concepts.

Next I give an example of the copula use of be.

(59) John is a man.

First the IV-phrase be a man is formed. Its translation reduces to the for

mula Ax3u[man*(u) A Vx=u]. Combining this with the translation of John yields
as translation (60), which reduces to (61).

(60) AP[vP(Ajohn)]Ax[3u man*(u) A Vx=u]

(61) 3u[man*(u) A john=u].

In this situation one could perform one further simplification replacing
(61) by (62); below I will explain why I will not do so.

(62) man*(john).

It would of course be possible to introduce a newreduction rule per
forming this last reduction. But it is difficult to cover the reduction
from (61) to (62) by a general rule. Suppose that a rule R would say when

the occurrence of a subformula john=u implies that all occurrences of u may
be replaced by john. In order to decide whether reduction is possible, R
has to take the whole formula into consideration. Reduction from (61) to

(62) is allowed, but if in (61) connective A would be replaced by + the

32

reduction is not allowed. This supposed rule R would have a different
character than all other reduction rules. Theother rules are 'local': the
question whether they may be applied, can be answered by inspecting a con
text of fixed length. But R would not be local because the whole formula
has to be taken into account. I will not try to design such a rule R be
cause I prefer to have only local reduction rules. Moreover, the set of re
duction rules is incomplete, even with such a rule R, and only a partial
solution of the reduction problem is possible. This one sees as follows.
Suppose that we would define in each class of logically equivalent formulas
one formula as being the simplest one (say some particular formula with
shortest length). Then there exists no algorithm which reduces all formulas
to the simplest in their class, since otherwise we could decide the equiv
alence of two formulas by reducing them to their simplest form and looking
whether they are identical. Such a decision procedure would contradict
the undecidability of IL (see also chapter 6, section 4).

6. EVERY MAN LOVES A WOMAN

The rules introduced in the previous sections allow us to produce
sentence (63).

(63) Every man loves a woman.

In the introduction (section 1) I have described the two readings of this
sentence. On the one reading, the same womanis loved by every man (say

Brigitte Bardot), and on the other reading it might for every manbe another
woman(say his ownmother). These two readings are represented by (64) and
(65) respectively.

(64) 3v[woman*(v) A Vu[man*(u) + love*(u,v)]]

(65) Vu[man*(u) + 3v[woman*(v) A love*(u,v)]].

Note that the difference between (64) and (65) is a difference in the scope
of the quantifiers V and 3. Therefore this ambiguity is called a scope am
biguity. A well knownvariant of this scope ambiguity is (66).

(66) Every man in this room speaks two languages.

A remarkable aspect of the two readings of (63) is that the one
reading has the other as a special case: from (64) it follows that (65)
holds. Therefore one might doubt whether the two formulas really constitute

33

an ambiguity we should deal with. One might say that the weaker formula
(viz. (65)) describes the meaningof (63), and that, with additional infor
mation from the context, this can be narrowed down to the stronger one.

This argumentholds for (63), but I will illustrate, that it is not general
ly applicable. Consider (67), due to LANDMAN& MOERDIJK(198l,l983).

(67) Every schoolboy believes that a mathematician wrote 'Through the
looking glass’.

This sentence is (at least) twofold ambiguous. On the one reading there is
one mathematician of which every schoolboy believes that he wrote ‘through
the looking glass‘, but not every schoolboy necessarily believes that the
person was a mathematician. On the other reading every schoolboy has the
belief that somemathematician wrote the book, without necessarily having
a special mathematician in mind. The rules needed for the production of
sentences like (67) will be given in section 9. The formulas we will obtain
then, are presented below in a somewhatsimplified form. Formula (68) cor
responds with the first reading (the believes concern the samemathemati
cian), the second reading is represented by (69).

(68) 3v[mathematician*(v) A Vu[schoolboy*(u) + believe*(u, wrote*(v,
’Throughthe looking glass'))]]

(69) Vu[schoolboy*(u) +-be1ieve*(u,3v[mathematician*(v) A wrote*(v,'Through
the lookingglass')])].

These two readings are logically independent: the one can be true while the
other is false. The same situation arises for the well knownexample (66):
if we read in that sentence two as precisely two, then the different scope
readings are logically independent. These examples show that for variants
of the scope ambiguity, both readings have to be produced by the gramar
Then it is not clear why (63) should get only one reading.

A part of the production of reading (65) of sentence (63) is given in
figure 8. This production is called the direct production (because no
quantification rule is used).

Every man loves a woman {S, 4}

Vu[man*(u) + love(AlP3u[woman*(u) A VP(Au)])(éu)]
\

Every man {T, 2} love a woman {IV, 5}

lPVu[man*(u) + VP(Au)] love(AAP3u[woman*(u) A vp(Au)])

Figure 8

34

The translation obtained in figure 8 can be reduced further by an applica

tion of RR5, yielding (70).

(70) Vu[man*(u) + love(Au,AAP3u[woman*(u) A P(Au)])].

Application of RR6yields (71), and twice application of RR2yields (72).

(71) Vu[man*(u) + [vAAP3u[woman*(u) A VP(Au)]](AXy[love*(vAu,Vy)])]

(72) Vu[man*(u) + [AP3u[woman*(u) A VP(Au)]](AAy[love*(u,vy)])].

Further application of lambda conversion is not allowed because this would
bring the u in love (u,Vy) under the scope of Bu. In order to simplify this
formula further, we first have to replace the variable u bound by 3u by
another variable.

6.}. Reduction rule 8

Let be given an expression of the form Xz¢,3z¢ or Vz¢. Let w be a

variable of the same type as z, but which does not occur in ¢. Then replace
Az¢, 3z¢, Vz¢ by respectively Awfw/z]¢, 3w[w/z]¢, and Vw[w/z]¢.

CORRECTNESS PROOF

Evident from the interpretation of these formulas.
6.1. END

Application of RR to (72) yields (73). Applications of RR and RR8 l 2
yield then (74), which reduces further to (75).

(73) Vu[man*(u) + D\PElv[woman*(v)A "p("v)]]("xy love*(u,Vy))]

(74) Vu[man*(u) + Elv[woman*(v) A my 1ove*(U.Vy)](AV)]]

(75) Vu[man*(u) + 3v[woman*(v) A 1ove*(u,V)]].

A part of the production of reading (64) of sentence (63) is given in
figure 9. The production uses S , and it is called (for this reason) anl4,n
indirect production of (63).

35

Every man loves a woman {S, 14,1}

XP[3u woman*(u) A vP(Au)](AAxl[Vu[man*(u) + love*(Vx],u)])

a woman’fT:7l Every man Zoves him1{S,4}

XP3u[woman*(u) A VP(Au)] Vu[man*(u) ig£oze*(vx1,u)]

Every man {T,2} Zove himI{IV,5}

APVu[man*(u) + vP(Au)] love(AAP[VP(xl)])

Figure 9

The translation obtained in figure 9 reduces by application of RR] and RR
to (76).

2

(76) 3u[woman*(u) A Ax][Vu[man*(u) + love*(Vx],u)]](Au)].

After change of bound variable (RR7) we apply RR1, and obtain (77).

(77) 3u[woman*(u) A Vv[man*(v) + 1ove*(v,u)]].

In the introduction I have already said that sentence (78) is ambi
guous; its ambiguity is called the de-dicto/de-re ambiguity. Fromthe de
re reading (79) it follows that unicorns exist, whereas this does not
follow from the de-dicto reading (80).

(78) John seeks a unicorn

(79) 3u[unicorn*(u) A seek*(john,u)]

(80) seek(Ajohn,AAP3u[unicorn*(u) A P(Au)]).

This ambiguity can be considered as a scope ambiguity: the difference be
tween (79) and (80) is the difference in scope of the existential quanti
fier. Note that formulas (79) and (80) are logically independent, hence we
have to produce both readings.These productions are analogous to the pro
ductions of the different scope readings of Every man loves a woman.The

de-dicto reading (80) is obtained by a direct production. Wehave con
sidered this production in the previous section. The de-re reading, viz.
(79),is obtained by an indirect production. As a first stage of the in
direct production sentence (81) is formed, which has (82) as translation.

(81) John seeks him]

(82) seek(Ajohn, AAP[vP(x1)]).

36

Combination according to S , of (81) with the term a unicorn yields14,1
(78), and combination of their translations according to T14 1 yields (83),
reducing to (84).

(83) AP3u[unicorn*(u) A vP(Au)](AAx][Aseek(Ajohn, AAP[VP(x])])])]

(84) 3u[unicorn*(u) A seek(Ajohn, AXP[VP(Au)])].

Application of RR reduces this formula to (85).
6

(35) 3u[unicorn*(u) A seek*(john,u)].

Sentence (86) can be produced using the same syntactic rules as in
the production of (78).

(36) Mary finds a unicorn.

This sentence is not ambiguous; it only has a referential reading. In the
previous section it was explained howthe translation of the direct pro
duction reduces to such a reading. The indirect production yields, of
course, a referential reading as well. An interesting aspect of the in
direct production is the way in which the obtained formulas can be reduced.
For this reason I will consider this production in more detail. A first
stage of the indirect production of (86) is (87), which has (88) as trans
lation.

(87) Mary finds him].

(88) find(Amary, AXP[vP(x])]).

One method to reduce (88) is to apply the same reduction rules as used in
the reduction of (82). Then as last step RR is applied, see the reduction6

of (84). But another reduction process is possible as well. Wemight apply

RR7to (88) because meaning postulate 4 holds for find. Thus we obtain (89),
reducing to (90).

(89) AAP[VP(x])](AAy[find*(mary, vy)])

(90) find*(mary, Vxl).

Combination, according to S of (90) with the translation of a unicorn
14 1

yields (91), which reduces to,(92).

(91) XP3u[unicorn*(u) A vP(Au)](AAx][find*(mary,Vxl)3)

(92) 3u[unicorn*(u) A find*(mary,u)].

37

This shows that there are two methods to reduce the formulas obtained in

the indirect production of (86).
In general it makes no difference in which order we apply the reduction

rules. Sooner or later we have to apply the same rule to the same (sub)ex

pression. An exception is the introduction of 6* for constants to which
meaning postulate 4 applies. Once we have applied the meaning postulate

(i.e. RR7), we cannot apply the definition for 6* (i.e. RR6) any more. The
reason for this is that both applications consumean occurrence of 6, and

produce an occurrence of 6*. As practice learns, these two ways of reduction
always yield the same result. I have, however, not a formal proof of some
formal version of this observation. The situation is difficult due to the

interaction of RR6 and RR7with many other reduction rules. In FRIEDMAN&
WARREN(1979) related reduction rules are considered, and they provide
several examples of the complex interactions of the rules (they have no
normal form theorem for their system either).

Finally I consider a sentence which is not ambiguous. For sentence (93)
the de-re reading is the only possible reading, and it is the only reading
produced by the grammar.

(93) John seeks a unicorn and Mary seeks it.

The occurrence of it requires an application of S14,n. A part of the pro
duction of (93) is given in figure 10.

John seeks a unicorn and Mary seeks it

3u[unicorn*(u) A Ax][seek(Ajohn, AXP[VP(xl)]) A seek(Amary, AAP[vP(xl)])]u]

a unicorn John seeks him] and Mary seeks him]

AP[3u[unicorn*(u)AVP(Au)] seek(Ajohn,AAPVP(x]))/\seek(Amarg,AAPVP(x))

"John seeks him’ Mary seeks him
1 1

seek(Ajohn,AAP[vP(x])]) seek(Amary, AAP[VP(x])])

Figure 10

The obtained translation for (93) reduces to (94).

(94) 3u[unicorn*(u) A seek*(john,u) A seek*(mary,u)].

38

7. BILL WALKS IN THE GARDEN

In this section the fragment is extended with the categories Prep of
prepositions, and IAVof IV-modifying adverbials. In PTQthe category 'IAV'
is also called ‘IV/IV‘. For the basic elements of IAVthere are correspond
ing constants of type <<S,T(IV)>,T(IV)>. The definitions concerning IAVare
as follows.

7.1.

7.2.

7.3.

7.3.

7.4. Rule S 1

7.4.

BIAV= {slowly,voluntarily,allegedly}

{slowly.voluntar1ly,alleged1y} C CONT(IAV)

slowly’ = slowly, voluntarily’: ‘voluntarily,
allegedly’ = allegedly.

END

An adverb forms with an IV-phrase, according to S10, a new IV-phrase.

10

IAV X IV + IV

: concatenate (a,B)
F10 A

= a'(B’).T10

END

An example of a sentence containing an IAV is (95).

(95) John voluntarily walks.

The production of (95) is presented in figure 11.
_ 6

John voluntarily walks {S,4}
[vo1untarily(Awalk)](Ajohn)

John’fT} voluntarily walk {IV,lO}
XP[VP(john)] voluntarily(Awalk)/’_”,,,

voluntarily {IAV} walk {IV}
voluntarily walk

Figure 11

In PTQthe convention was introduced to write all expressions of the
form y(a)(B) as y(B,a). This exampleishows that the PTQformulation was too

39

liberal: it wouldallow to write voluntarily as a relation:
, A_ Avoluntar1ly(John, walk). This result 1S not attractive because tradition

ally one does not consider voluntarily as a relation. Therefore in reduc
tion rule 5 this convention was only introduced for Y being a verb.

The translation obtained for (95) does not allow for the conclusion
that John walks, although this would be a correct conclusion from sentence
(95). Not all adverbs allow for such a conclusion. From (96) it does not
follow that John walks.

(96) John allegedly walks.

This means that the adverb allegedly creates an intensional context
for the object of a verb. Also sentence (97) does not allow to con
clude to the existence of a unicorn.

(97) John allegedly loves a unicorn.

Onemight expect the introduction of a meaning postulate that expresses the
extensional character of slowly and voluntarily. Such a meaningpostulate
is not given in PTQ.I expect that it would be of a different nature than
the postulates we have met before: it would be an implication, and I ex
pect that it wouldnot give rise to simplifications of the formulas in
volved.

The fragment contains two prepositions, and from these new adverbial
phrases can be formed. Prepositions translate into constants of type
<<S,T(T)>,T(IAV)>.

7.5. Bprep = {in,about}

7.6. {in,about} C C0NT(Prep)

7.7. in’ = in, about’ = about.

7.7. END

The rule for creating new adverbs is as follows.

7.8. Rule S6:

Prep X T + IAV

F6: concatenate (a,B)
T6: a'(AB').

7.8. END

40

An example of an application of this rule is given in figure 12, where
sentence (98) is produced.

(98) John talks about a unicorn.

John talks about a unicorn {S,4}

about(AAP3u[unicorn*(u) A VP(Au)])(Atalk)(Ajohn)/‘
John iT} talk about a unicorn {IV,lO}

APVP(Aj0hn) about(AAP3u[unicorn*(u) A vP(Au)])(Atalk)If”?-4,.’ \
about a unicorn {IAV,6} talk {IV}

about(AAP3u[unicorn*(u) A vP(Au)]) talk

about {Prep} a unicorn {T}

about AP3u[unicorn*(u) A VP(Au)]

Figure 12

The translation obtained here does not imply that there is a unicorn
John talks about: about creates an intensional context. This is the result
we aimed at (see section I).

In the same way as we produced (98), we may produce (99) with as trans
lation (I00).

(99) Bill walks in the park

(100) in(AAP3u[Vv[pafk*(v) ++ u=v] A VP(Au)])(Awalk)(Abill).

This result is not completely satisfactory. If Bill walks in the park, then
one may conclude that there exists a park, and if the park is the Botanical
garden, then from (99) it maybe concluded that Bill walks in the Botanical
garden. So the locative preposition in does not create an intensional con
text. This property of in is formalized in the following meaningpostulate.

7.9. Meaning postulate 8

3GVPL'QvxEI(mp) (Q) (X) <—>VP(A>\y[[VGJ(Vy)(Q) (x) 1)]

7.9. END

In order to be able to give a reduction rule on the basis of this
. . . V . .meaning postulate, a notation for the predicate denoted by G in MP81S

4]

introduced (such a notation for prepositions is not defined in PTQ). This

notation is chosen in analogy of the notation 5* for verbs.

7.10. DEFINITION.

<s—xxA[e;"x[V(AJ J h 5 CON
* — x Q u (P P u))(Q)(x)) w ere e T(Prep).

7.10. END

On the basis of this definition we have the following reduction rule.

7.11. Reduction rule 9

Let be given an expression of the form in(a)(B)(y), where

G 5 ME<s,1(T)3’ B 6 M<S,T(IV)
a-T >~yCin*(y)(B)(Y)J).

>, Y 6 ME Then replace this expression.by<s,e>'

CORRECTNESS PROOF. Let v E VARe, x e VAR<S and Q 5 VAR Then,e> <s,r(IV)>'
for all g

g |= 1-n*(v> (Q) 0:) = 1n<“xpVp<“v>><o> (x).

Wenow apply M8 to the right hand side of the equality: this meaning pos

tulate says that there is a g' E g such that

g'|= in*(v) (Q)(x) = [“xp"p<"v)J(“xg[["cJ("y) (O)(x) J).

The expression to the right of the equality sign reduces by means of sever

al applications of RRI and RR2. Thus we obtain

g' |= in*(v)(Q)(X) = [VG](v) (Q)(x).

Consequently g‘ F in* = VG. This means that from MP8it follows that

|=vPvovxa £1-n<P>(Q) on *-*VP(Aly[in*(Vy) (Q) on J) 1.

7.11. END

Formula (100) can be reduced, using RR to (101) and further to (102)9,

(101) [VAAP[3uVv[park*(u) ++ u=v] A vP(Au)]](AXy[in*(vy)(Awalk)(Abill)])

42

(102) EluVv[park*(v) ++ u=v] A in*(u)(Awalk)(Ab.il1)].

In PTQno examples concerning the meaning postulate for in are given. This
example illustrates the consequence of the meaning postulate: if one stands
in the relation of walking in with 'a collection of properties‘, then there
is an 'individual' with which one has this relation.

8. JOHN TRIES TO FIND A UNICORN

In this section a new category of IV-modifiers is introduced. This new

category is called IV/IV (IV modifying verbs) and contains verbs taking verbs
as complements. The fragment has only two of such verbs (try to, wish to),
although there are a lot more in English. The syntactic treatment of these
verbs is rather primitive: try to is considered as a single word containing
a space (so to is not treated as a word). But our main interest is seman
tics, and the verbs are interesting in this respect. Theycreate inten
sional contexts even when the sentence without such a verb would only have

a de-re reading. An example is (103); this sentence does not necessarily have
the implication that unicorns exist.

(103) John tries to find a unicorn.

Corresponding with the verbs of category IVWIVthere are constants in the
logic of the type <<S,T(IV)>,T(IV)>. The verbs translate into these con
stants.

8.1. BIV//IV =.-{try to, wish to}

8.2. {try to, wish to} C CONT(IV”IV)

8.3. try to’ = try to, wish to’ = wish to.

8.3. END

The members of IVWIVare used in the following rule.

8.4. Rule S8:

IV/IV X IV + IV

F8: concatenate (a,B)
T8: a'(AB').

8.4. END

43

The production of (103) is partially presented in figure 13.

John tries to find a unicorn {S,4}
A_ A _ A A _ v A

try to(john, f1nd(AP3u[un1corn*(u) A P(u)]))//" .
John try to find a unicorn {IV,8}

APVP(Ajohn) try to(Afind(AAP3u[unicorn*(u) A VP(Au)]))
I

try to find a unicorn {IV,5}

try to find(AAP3u[unicorn*(u) A vP(Au)])

Figure 13

The formula obtained in this production process does not reduce further,
and it does not allow to conclude for the existence of a unicorn which John

tries to find. So the de-dicto aspect is dealt with adequately. But sen
tence (lO3) can also be used in a situation in which there is a unicorn

which John tries to find. For reasons related to the ones given concerning
John seeks a unicorn, the reading involving a particular unicorn has to be
obtained as an alternative translation for (103). That reading can be ob

tained using Sl4’n.
The translation obtained for (103) in figure 13 is, however, not in all

respects satisfactory. Wedo not get information concerning the relation
between John and the property expressed in the second argument of try to.
In particular it is not expressed that what John tries to achieve is that
John (he himself) finds the unicorn, and not that someoneelse finds the

unicorn. For verbs like promise and permit the relation between the subject
and the complement is muchmore complex. A correction of this disadvantage
of the PTQ treatment can be found along the lines of DOWTY(1978) and

BARTSCH(l978b), see also section 4.1 in chapter VII.

In section 4 we introduced the rules for IV conjunction and disjunc
tion. The verb phrases involved may concern two coreferential terms as in
(104).

(104) John finds a unicorn and eats it.

The coreferentiality can be dealt with by means of quantifying in the term
a unicorn. This yields the reading (105).

(105) 3u[unicorn*(u) A find*(john,u) A eat*(john,u)].

44

This formula expresses that there is a particular unicorn which John finds
and-eats.

The conjoined verb phrase underlying (I06) can be embeddedin a try to
construction.

(106) John tries to find a unicorn and eat it.

This sentence does not allow for the conclusion that there is a unicorn.

The occurrence of a pronoun, however, invites us to produce this sentence

with quantification rule S14, and that wouldresult in a referential reading,
viz. (107)

(107) 3u[unicorn*(u) A try to(Ajohn,ACfind(AP[VP(Au)J) A eat(AP[vP(Au)])])].

A newquantification rule makes it possible to produce (106) in a reading
which does not imply the existence of a unicorn. The following rule scheme
describes the quantification of a Terminto an IV-phrase.

8.5. Rule S]6,n:

T X IV + IV

F : If a does not have the form hel6,n k
then replace in B the first occurrence of hen or him”

by a, and all other occurrences of hen by he/she/it and of
him” by him/her/it according to the gender of the first T
or CN in a

else replace all occurrences of hen by hek and of him” by himk.

T]6,n: Ay[a'(Axxn[B'(y)])].
8.5. END

In order to produce (106) we first produce the verbphrase (108).

(108) find a unicorn and eat it.

The production of (108) is partially given in figure 14.

45

find a unicorn and eat it {IV, 16,1}

XyAP3u[unicorn*(u) A VP(Au)](AAx1[find(y, AAPVP(x])) A eat(y, AAPVP(x]))])‘______,,..

\
a unicorn {T,2} find him] and eat him] {IV,12a}

AP[3u[unicorn*(u) A VP(Au)]] Xx[find(x,AAPvP(x1)) A eat(x,AAPvP(x]))]

find him] {IV} eat himl {IV}

find(AAPVP(xl)) eat(A>\PVP(x]))

Figure 14

Nowwe return to the production of sentence (106). Its production from
(108) is presented in figure 15.

John tries to find a unicorn and eat it {S,4}
v

try to(Ajohn, AXy3u[unicorn*(u) A find*(Vy,u) A eat*(y,u)])

\
"fl‘____,..

John {T} try to find a unicorn and eat it {IV,8}

APVP(Aj0hfl) try t0(AAy3u[unicorn*(u) A find*(Vy,u) A eat*(vy,@])

try to {IVWIV} find a unicorn and eat it {IV}

try to Ay3u[unicorn*(u) Afind*(Vy¢0 Aeat;(V%u)]

Figure 15

A sentence related with (106) is (109).

(109) John tries to find a unicorn and wishes to eat it.

Montagueargues that only a referential reading of this sentence is possible
(except for the case that the pronoun it is considered as a pronoun of

laziness). A production of sentence (109) might be given in which S14 is
used. Thenit is not surprising that a referential reading is obtained.

But this is also the case for a production using S16, as will be shown
below. The first step is to form verb phrase (110), with translation (111).

(I10) try to find him] and wish to eat him]

(Ill) Ax[try to(x, Afind(AXPVP(x1)))A wish to(x, Aeat(AAPVP(x])))].

Combination of (110) with a unicorn according to S16 1 yields (112). The
3

translation is (113), which reduces to (114).

(112) try to find a unicorn and wish to eat it

46

(113) Xy[lP3u[unicorn*(u) A VP(Au)](AAxl[try-to(y, Afind(AAPVP(x]))) A

wish to(y, Aeat(AAPVP(xl)))])]

(I14) Ay3u[unicorn*(u) A try to(y, Afind(AAPVP(Au))) A
wish to(y, Aeat(AXPVP(Au)))].

Combination of (112) with Jbhn according to S4 yields sentence (109). The
translation is (115).

(115) 3u[unicorn*(u) A try-to(Ajohn, Afind(AAPvP(Au))) A
wish-to(Ajohn, Aeat(AAPVP(Au)))].

The formula obtained here can be simplified by replacing 6(AAPvP(Au))by
lg 6(AAPvP(Au))(y),where 6 is the translation of a transitive verb. The

advantage of this replacement is that now RR5and RR6can be used. In this
way (115) reduces to (116).

(116) 3u[unicorn*(u) A try—to(Ajohn, Aky find*(vy,u)) A

wish to(Ajohn, Aky eat*(Vy,u))]

This method is formulated in a reduction rule as follows.

8.6. Reduction rule 10

Let be given an expression of the form 6(AAPVP(Au)),where 6 is the

translation of a TVfor which MP4holds. Then replace this expression by
Aya*<Vy.u>.

CORRECTNESSPROOF.By definition of interpretation the two expressions are
equivalent.
8.6. END

The possibilities for application of RRIOare limited by mentioning
explicitly the argument of 6. Onemight omit this argument; then the rule
would be applicable in manymore circumstances, for instance to the formula
obtained in figure 13. I have not used this more general version because
it would not give rise to simpler formulas (in the sense of more concise
formulas), but one might judge that the general rule would give rise to
more understandable formulas.

47

9. JOHN BELIEVES THAT MARY WILL RUN

A newconstruction considered in this section arises from verbs of the

category IV/S; I.e. verbs taking a sentence as complement. There are several
such verbs, but only two of them are incorporated in the fragment.

9.1. BIV/S= {believe that, assert that}

9.2. {believe that, assert that} C CON<<S’T(S)>,T(IV)>>

9.3. believe that’ = believe that, assert that’ = assert that.

9.3. END

The rule producing IV phrases from these verbs reads as follows.

9.4. Rule S7:

IV/S X S + IV

F7: concatenate (a,B).7/‘I
T7. a (B).

9.4. END

An example of a sentence with a verb of category IV/S is (117).

(I17) John believes that Maryruns.

Part of the production of (117) is given in figure 16.

John believes that Mary runs {S,4}
believe that(Ajohn, Arun*(mary)).—-"”f-ff-J”.-‘ \

John believe that mary runs {IV,7}

XP[VP(Ajohn)] believe that(Arun*(mary)).’—-""”‘-fl \
believe that {IV/S} Mary runs {S,4}

believe that run*(mary)

Figure 16

Believe is considered as a relation between an individual concept and a
proposition (i.e. a function from indices to truth values). It is not
said what kind of relation this is. There are several proposals in the

48

literature analyzing the believe relation in more detail (e.g. LEWIS1970),
but Montaguedid not analyze it any further.

The formula obtained in figure 16 expresses that believe is a relation
with as first argument Ajohn. To this, the same commentapplies as to the
first argumentof the seek-relation: there is no generally accepted nota
tion which expresses that for this argument believe can be considered as a
relation with as first argument an individual. The second argument is an
expression of type <s,t>. would it have been an expression of type t, then
we could replace it by any other expression which denotes (for the current
index) the same truth value. So if someonewould believe a truth, he would

believe all truths (for the current index). Nowthat the second argument
of the believe-relation is a proposition, this is not the case. If John
and Mary walk, then one may believe that John walks, without having the
formal implication that one believes that Marywalks. Nevertheless, the
use of a proposition is not completely satisfactory. It implies that in
case John believes a tautology, he believes all tautologies. This is a
fundamental shortcoming of this kind of approach; there is, however, not a
generally accepted alternative.

The aspect that makes the introduction of believe and assert interest
ing in the present fragment, even with the present semantics, is that these
verbs introduce intensional contexts in which a de-re reading is impossible.
Sentence (118) does not allow for the conclusion that there exists a uni
corn.

(118) Marybelieves that John finds a unicorn and he eats it.

The relevant part of the production of sentence (120) is given in figure 17.

Marybelieves that John finds a unicorn and he eats it

believe that(Amary, A3u[unicorn*(u) A find*(john,u) A eat*(john,u)])

Mary believe that John finds a unicorn and he eats it

AP[VP(Amary)] believe that(A3u[unicorn*(u) A find*(john,u)A eat*(john,u)])

Figure 17

A further extension of the fragment are the restrictive relative
clauses: terms will be produced like Every man such that he runs. This such
that form is not the standard form of relative clauses, but it avoids the
syntactic complications arising from the use of relative pronouns. The

49

following rule schemedescribes howrelative clause constructions are
formed out of a CNand a sentence.

9.5. Rule S :3,n

CN X S + CN

F3 ni replace in B all occurrences of hen by he/she/it and him” by
9

him/her/it according to the gender of the first CNin a.
0 I I

T3,n- Axnfa (xn) A B].

9.5. END

An exaple is the production of term (119), which is given in figure 18.

(119) a man such that he runs.

A man such that he runs {T,2}

AP3x[man(x) A run(x) A vP(x)]
—‘—’__#_’__,...

\
a man such that he runs {CN,3,l}

AQAP3x[VQ(x)A VP(x)] Ax1[man(x]) A run(x,)J//’/ \\\
man he] runs

man run(xl)

Figure 18

The obtained translation can be reduced, using RR4, to (120).

(120) XP3u[man*(u) A run*(u) A vP(Au)].

Rule S3 n takes a CNas one of its arguments, and yields a CNas re
9

sult. This means that the rule can be applied more than one time in suc
cession. Then terms are obtained like the one in (121)

(121) Every man such that he walks such that he talks.

In (121) both the relative clauses are attached to the head man; this
phenomenonis called ‘stacking’. A situation that mayarise in connection
with stacking is as follows. The second relative clause contains a pronoun
which is coreferential with a term in the first relative clause, whereas
the pronoun is (semantically) within the scope of the determiner of the
whole term. An example, due to Bresnan (PARTEE1975, p.263) is (124).

50

(122) Every girl who attended a womanscollege who gave a donation to it,
was put on the list.

Sentence (124) exhibits co-reference within the compoundCNphrase: it
in the secondrelative clause refers to the college in the first relative
clause. The whole term has a reading in which the college needs not to be
the same for all girls. Suppose that we obtained coreferentiality by means

of quantifying in the term a womanscollege for him] in sentence (123).

(123) Every girl who attended him] who gave a donation to him] was put on
the list.

In that production process a reading would be obtained with for the existen
tial quantifier wider scope than for the universal quantifier. That is not
the intended reading. In order to obtain the intended reading, a new quan
tification rule is introduced: quantification into a CNphrase.

9.6. Rule S15’n3

T X CN + CN

F15 n3 Replace the first occurrence of hen/himn in B by a.
9

Replace all other occurrences of hen by he/she/it, and of him”
by him/her/it, according to the gender of the first CNor T ina.

A

T15,n: >~ya'(Axn[B'(y)])
9.6. END

Anextensive discussion of relative clause formation will be given in
chapter 8; examples in which rule S is used, will be considered in appen
dix I. There also will be solved a pioblem that I neglected above: reduc

tion rule RR4applies to the translation of terms like (l20\, but not to
such terms with the determiners every or the.

In the remainder of this section I mention somerules which are intro

duced only to incorporate the complete PTQfragment. The first rule con
cerns the sentence modifier necessarily.

9.7. BS/S = necessarily

9.8. necessarily’ = ADD[VP].

51

9.9. Rule S9:

S/S X S + S

F9: concatenate (a,B)
T9: a'(AB').

9.9. END

Anexample is the production of (124) which gets as its translation (I27).

(124) Necessarily John runs.

(125) U run*(john).

This example illustrates how sentence modifiers can be incorporated in the
fragment. The translation of (126) is not correct since that sentence cannot
mean that John always runs. For an alternative of the semantics of necessari
Zy see e.g. VELTMAN1980.

Up till nowwe have met sentences in the positive present tense. PTQ
has rules for someother tenses as well. These rules have several short

comings, and I will mention themwithout further discussion.

9.10 Rule Sl7a:

T x IV + S

F]7a: replace the first verb in B by its negative third person singular
present; concatenate(a,B)

T17a: 7a'(AB')

Rule Sl7b:

T X IV + S

\D D -—n —n

F]7b: replace the first verb in B by its third person singular future;
concatenate(a,B)

T17b: Wa'(AB')

17c:

T x IV + S

9.12 Rule S

Fl7c: replace the first verb in B by its negative third person singular
future; concatenate(u,B)

T17c: 1W[a'(AB')]

52

9.13 Rule Sl7d3

T X IV + S

Fl7d
concatenate(a,B)

r17d= H[a'(AB')]

9.14 Rule Sl7e=

T X IV + S

F]7e3 replace the first verb in B by its negative person singular
present perfect; concatenate(a,B)

T17.‘ 7HEa'(“s'>J.
9.14. END

This completes the exposition of the PTQfragment. One should realize
that the sentences we have discussed, constitute a special selection of the
sentences of the fragment. Besides those rather natural examples, there
are a lot of remarkable sentences in the fragment. An example is (128).

(126) The park walks in John.

Whether this is a shortcoming or not, depends on the opinion one has about
the acceptability of (126). Andhow this should be dealt with, depends on
the opinion one has about the question which component of the grammar

should deal with such phenomena. Since these questions are completely in
dependent of the problems we were interested in, I have not discussed this
aspect. Several more fundamental aspects of the system which were not com
pletely satisfactory, have been mentioned in the discussions. Other such
aspects will arise in the discussion in later chapters, for instance in
appendix . As for the main aim of the enterprise, I conclude that Montague

has for the problematic sentences mentioned in section 1 indeed provided
an analysis which has the desired semantic properties, and which is in ac
cordance with the compositional framework.

3 replace the first verb in B by its third person singular perfect.

53

CHAPTER VI

VARIANTS AND DEVIATIONS

ABSTRACT

In this chapter the impact of the algebraic framework on the design of
grammars,is illustrated by considering several proposals from the litera
ture. Most of these proposals contain details which are not in accordance
with the framework. It will be shown that these proposals can be improved
by adopting an approach which is in accordance with the framework, without
losing the semantic effect the proposal was designed for. Other proposals
present acceptable variants for certain details of the framework.

{ ;(';;g;\‘ '-w

54

I. INTRODUCTION

Onthe basis of several proposals from the literature, I will illustrate
in this chapter what the practical consequences are of the frameworkwe
have developed in chapters 1 and 2. Someof the proposals were already dis

cussed in JANSSEN1978a. The rules from the proposals will not be adapted to

the way of presentation used up till now, but they are quoted in the way
they were formulated in the original papers. I expect that this will cause
no problems. Only the formulas of IL are sometimes adapted to our notations

(e.g. AAinstead of T). Someof the proposals concern variants which are in
accordance with the framework, but most are not. The objections against
these proposals, however, concern in most cases only a minor detail of the
paper, and my criticism should not be taken as a criticism on the paper as a
whole. On the contrary, most of the papers I like very much, and that was a
reason for studying them in detail. I will not consider proposals which are
presented in such a way that it is evident that they are intended as a non
compositional componentof the system (e.g. the indexing component for vari
ables of COOPER& PARSONS1976, and the interpretation strategy for pronouns

of BARTSCH1979). Rather I will discuss aspects of proposals which seem at

first glance to be in accordance with the framework, but which at closer in
vestigation appear not to be. Such examples exhibit that the practical con
sequences of the framework are sometimes not well understood. These examples

are collected here to provide as illustrations of the framework:non-examples
too can be very instructive. I hope that the examples give the reader an
improved understanding of what it means to design a Montague grammar. As a

matter of fact, mypersonal experience with the examples discussed here,
was a great stimulans for the research presented in this book: discovering
the foundations of Montaguegrammar, and investigating the practical con
sequences of these fundamental properties.

The structure of our framework, as developed in chapters 1 and 2, is

presented in figure 1. The arrows 2,5, and 7, are homomorphisms, and the
arrows 3 and 6 are derivers. The examples we will consider are grouped ac

cording to the arrow representing the componentwhere the deviation from
the framework can be located. The number of the arrow indicates the section

where that group of examples will be considered.

55

TB TE ‘ Term algebra of grammar for English

12 IL ' Intensional LogicIL’: Translation of English into algebra derived
IL - -3- -+ IL’ from intensional logic

51 I7 M : Meanings for intensional logicJr

M _ _6_ _+ M, M‘ : Meanings for English

Figure 1. The framework

The framework of Montague grammar constitutes a framework which guaran

tees that one is working in accordance with the principle of compositionali
ty. Deviations from this frameworkare not just deviations from some arbi
trary mathematical system, but from a framework that is designed with the
purpose of both obeying the principle, and being at the same time as gener

al as possible. If one violates this framework, then there is a great risk
that one does not only disturb the framework, but also the underlying
principle of compositionality. The ultimate consequence maybe that one
does not describe a semantics at all. In the discussion it will turn out

that the practical examples of violations of the frameworkin most cases
indeed yield an incorrect (i.e. unintended) semantics, or no semantics at
all. In such cases the frameworkguides us toward a correct solution. In
other cases, where the proposal did not give rise to an incorrect semantics,
the principle suggests another kind of solution that is simpler than the
original proposal. These aspects exhibit the value of (the formalization
of) the principle of compositionality as a heuristic tool.

In the light of the above remarks, it is useful to give a characteri
zation of what are harmful deviations of Montague's framework, and what
are harmless variants. This characterization can be given at the hand of
figure 1. It is harmless to change the language of which the semantics is
given; to change the kind of logic used as auxiliary language, or to change
the kind of meanings obtained. All algebras in the figure maybe replaced
by other algebras. But the algebraic relations between them should not be
changed; the algebraic properties of the arrows should not be disturbed.
Homomorphismsshould remain homomorphisms, and derivers should remain de

rivers. These are the properties which guarantee that the principle of com
positionality is obeyed.

56

2. THE USE OF SYNTACTIC INFORMATION

2.]. Introduction

Someproposals from the literature contain a translation rule which
depends on the actual expression on which the syntactic rule operates. This
meansthat there are different semantic operations for the various syntac
tic possibilities. Hence there is a one-manycorrespondence between the
syntactic operations and the semantic operations. Then the mapping from
the syntactic algebra to the semantic algebra cannot be a homomorphism.
Consequently the frameworkis not obeyed: the relation indicated in figure
I by arrow 2 has to be a homomorphism. But also the principle of composi

tionality itself is violated. In this situation the meaningof the compound
expression is not determined by the information which syntactic rule is used
and what the meanings of the parts of the expression are, but also infor
mation about the actual expressions operated upon is needed. This situation
is not a source of great practical problems, since, at least in the ex
amples considered below, the rule can easily be reformulated in such a way
that the framework is obeyed.

2.2. Easy to please

This example concerns a variant of Montague grammar proposed in PARTEE

1973. The expressions generated by the grammarcontain labelled brackets
which indicate the syntactic structure of the expressions. Partee wants to
account for the occurrence of verb phrases in conjunctions and infinitives.
Examples are given in (1) and (2)

(I) Fewrules are both explicit and easy to read.
(2) John wishes to see himself.
For the production of these sentences a rule called ‘derived verb phrase
rule’ is used. The rule is so close to a correct formulation that I would
not like to call it a violation of the framework.It is rather an illu
strative slip of the pen.

Derived verb phrase rule (PARTEE1973)

If ¢ 6 Pt and ¢ has the form t[T[hei]IV[a]], then F) E P , where1o4(¢ IV

Fl04(¢)=a', and a’ comes from a by replacing each occurrence of hei,
himi, himiself by he*, him*_,him*seZf‘respectively.

57

Examples:

Flo4(he1 sees himlself) = see him*seZf

F104
Translation rule

(he? is easy to please) = be easy to please.

If ¢ 5 Pt and ¢ translates into ¢', then F]04(¢) translates into Axi¢'.

Fromthe formulation of the translation rule it might not be evident
that the translation rule uses syntactic information. But this becomes
clear if one realizes that in order to decide what the actual translation

is (Axl¢ or Ax2¢or ...), one needs to know the index of the first word of
¢. So syntactic information is used. The correction of this rule is rather
simple, in analogy of term-substitution in PTQwe give the syntactic oper

In a lateration an index as parameter: so F is replaced by F104 lO4,i°
paper (PARTEE1977a) the rule is corrected in this way.

2.3. The horse Cannonero

DELACRUZ(I976) considers expressions like the horse Cannonero. Such

expressions belong to a category T and they are generated by the following
rule:

S3.l If a 6 BT and C e B then F2l(c,a) 6 PT, provided that whenever a isCN

of the form hen, F2l(§,a) = a; otherwise F2l(§,a) = the Qa.
Examples:

F2](horse,Cann0ner0) = the horse Cannonero
F21(h0rse,he1) = he].

Translation rule:

T3.l If a 6 BT, C 6 B and a,§ translate into a',§' respectively, thenCN

F2l(§,a) translates into a‘ if a is of the form hen; otherwise
F2l(c,a) translates into

(3))\P3y[Vx[[1;'(x) A mz[VPJ(“xx[Vz=VxJ)(“aw(x)J ++ x=y]/\[VP](y)].

Translation rule T3.l depends on the form of the input expressions of
the syntactic rule, so it violates the framework. An attempt to formulate
the translation rule as a single polynomial in which no syntactic informa
tion is used, would require an extension of IL with an if-then-else con
struction, and with a predicate which discriminates on semantic grounds
betweenvariables and constants. I doubt whether the latter is possible.
But a simple solution can be found in the syntax. The construction

58

described by Delacruz provides evidence that we should distinguish among
the terms the (sub)categories Proper Namesand Indexed Pronouns. Rule S3.l
applies only to the category of Proper Nams, or alternatively, rule S3.l
is a partial rule which only applies to the subcategory of Proper Names.
This approach describes more clearly what the situation is, than the origi
nal rule does, or a semantic reformulation would do. A final remark about

the formula (3) given by Delacruz. It is not the simplest polynomial ex
pressing the intended semantic operation. I would use instead:

(4)).PElyVx[C' (x) A oL'(A>\z[vx=Vz]) «—»x=y]A[VP](y) J.

3. NON-POLYNOMIALLY DEFINED OPERATORS

3.1. Introduction

The algebra of formulas into which we translate, is obtained from the

algebra of IL-expressions by meansof restructuring this algebra. This
means that new operations may be added, another type structure may be put
on the elements, and old operations may be omitted. Following MONTAGUE1970b,

we require that in this process of restructuring, all operations are poly
nomial operations over IL. This restriction ensures that the interpretation
homomorphismfor IL determines a unique interpretation for the derived al
gebra. If one uses operations on IL expressions which are not defined as a
polynomial, then there is a great risk of disturbing the homomorphicinter
pretation. This would mean that we have no interpretation for the derived
algebra, thus we are not doing semantics at all! Therefore it is advisable
to use only polynomially defined operators.

Whenwe consider examples of operators which are not polynomially de
fined, it will turn out that in all cases the operator can be replaced by
a polynomially defined operator which has the desired properties. Replace
ment of a non-polynomially defined operator by a polynomially defined one,
is (in all these cases at least) a simplification. Thus the requirement
of working in accordance with the framework guides us toward a simpler
treatment than originally was proposed. This consequence illustrates the
heuristic value of the principle of compositionality. So there is, from a
practical point of view, no reason to use nonpolynomially defined operators.
Theoretical aspects of non-polynomially defined operators will be discussed
in section 4.

59

3.2. John who runs

The approach to natural language followed in BARTSCH1979 is closely
related to the approach followed in the field of Montague grammar. The

differences which appear in this and the next example are that the treat
ment of intensions is different, and that the generated language is some
what more abstract since it contains brackets and other auxiliary symbols.
These differences do not influence the aspect I wish to discuss. Bartsch
presents a rule for the formation of term phrases containing non-restric
tive relative clauses. Such expressions are formed from a term and a rela
tive sentence by the-following rule (BARTSCH1979, p.45).
S4. If a is a term and B a relative sentence, then 8(a) is a term. [...].
The corresponding translation rule reads
T4. If a' is the translation of the term a and RELT(lxB'(x)) is the trans

lation of the relative clause 8 from S4, then (RELT(AxB'(x)))(u') is
the translation of 8(a), and for all terms a with a' = AP(...P(v)...)
we have: (RELT(AxB'(x)))(AP(...P(v)...)) = AP(...B'(v) &P(v)...).

The translation rule evidently is no polynomial over IL. The rule works well
for the translation one usually obtains for term phrases. For every man
the standard translation is (5), and for this case the rule is perfect.

(5) APVv[man'(v) + P(v)].

In case an alphabetical variant of formula (5) is used, the situation
changes. Consider (6).

(6) X9 Vu[man'(u) + Q(u)].

Translation rule T4 as formulated above does not apply: it is not defined
for this representation. Probably we have to be more liberal and consider
T4 to be defined for all expression of the indicated form. But there are
also formulas which are equivalent to (5) and which are certainly not of
the same form. Let R be a variable of the same type as the translation of
terms, and consider (7)

(7) AQVv[AR[R(man') + R(Q)](AP[P(v)])].

Rule T4 is not defined for this representation. Moreover, application of

60

the rule to the subexpression AP[P(v)] would yield a semantically incorrect
result.

This discussion shows the consequence of T4 that it is no longer al
lowed to exchange logically equivalent formulas. The rule defines a partial
function between IL formulas; it is an instruction for formula manipulation,
not for compositional semantics. A reaction to these objections against a
rule like T4 might be that one adds to the rule a clause stating that in
case a formula is not of the mentioned form, it must be reduced to that for

mat. This instruction obscures a lot of problems since it does not say how
such a reduction is to be performed. A discussion of the problems arising
with this attempt to correct in this way a non-polynomial rule, will be
given in section 4.

Can the basic idea of the operation be described in a polynomial way?
The desired effect is the replacement of P(v) by B'(v)AP(v). This can be
obtained giving Az[B'(z)AP(z)] as argument of AP[...P(v)...]. Wemust take
care furthermore of the binding of the variable P. Thus we come to a
version of T4 which is in accordance with our formalisation of the semantic

compositionality principle:
T4‘. Let a‘ be the translation of the term a and Y‘ the translation of the

relative clause Y. Then the translation of the compoundexpression
y(a) is:

(8) >\Q(a' ()\Z[Y' (z) A Q(z)]))

One observes that it is not needed to follow the method hinted at above: to

define the intended semantic operator by defining an operator on specially
selected representations. The formulation of T4‘ uses the polynomial ex
pression (8). It is more exact and simpler than the original formulation,
and it works well for all formulas equivalent with a‘ or Y‘.

RODMAN(l976)also considers the formation of terms containing a non
restrictive relative clause. He presents a rule which produces such terms
out of a term and a sentence, where the sentence contains a suitable vari
able. His translation rule reads:

If a 6 PT, ¢ 6 Pt and a,¢ translate into a',¢' respectively, then
F3,n(a,¢) translates into APAQ[VP(AAxn[¢'AVQ(xn)])](Aa'),

This is not the simplest formulation of the polynomial. By one time A-re
duction one obtains

61

(9) xotou (AAxn[¢' A VQ(xn)]) J.

Oneobserves that this rule is almost identical with the version given
above of Bartsch's rule. The differences are due to a different treatment of

intensions, and the fact that Bartsch uses the intermediate stage of a re
lative sentence. Concerning the meaningof the relative clause construction
the two solutions are essentially the same. This shows another advantage of
the restriction to use only polynomials. It gives us a uniform representa
tion of meanings, and different polynomials can be comparedwith each other
by using known methods.

3.3. Das Madchen gibt den Apfel dem Vater

BARTSCH(1979) represents a rule which combines an n-place verb-phrase

with a term to produce an (n-1)-place verb-phrase. The rule does not in ad
vance fix the order in which the term positions should be filled in: a rule
has as parameter a number indicating which position is to be filled. By
varying the sequence of ‘filling in‘ one can generate the Germanversions
of Thegirl gives the father the apple, Thegirl the apple the father gives,
etc. (the Germanversions all seem to be parts of correct sentences). The
result of substituting the term a on the i-th place of a verb 8 is indi
cated by (a,i)B. The syntactic rule reads (BARTSCH1979, p.27)

(SI) If B’ is a Vn(n-place verb) with the set of n term-places, K,i e K,
and if a’ is a T(term), then (a',i)(B') is a Vn_l with the set of
term-places K - {i}.

For this we write (a&(i)(B'Vn)Vn-1).
(Tl) If a" is the translation of a‘ as a T, and Ax.,...,x B"(X.;---IX)

with n places, the translation of B‘ as a Vn,]then tab trinslatizn
oi (a',i)(B') is

Axj,...,xE'xi,...,xm(a"(Axi(B"(xj,...,xm)))),

with xi as the variable that precedes xi and ‘xi as the variable that
x..

1
This rule is defined only for special representations of the meaningof the
term, and, for reasons related to the ones mentioned in the previous ex
ample, it is not acceptable as a rule for compositional semantics. Again
the idea behind the formulation of the rule can be formulated by means of
a polynomial, thus becoming an acceptable rule and obtaining a shorter
formulation:

62

If a" is the translation of a’ as a T and Y" is the translation of Y‘
as a Vn, then the translation of (a',i)B' is

A91,-..,y;'yi,...,ym(a"(kyiY"(ylz---,ym)))

with g; as the variable that precedes yi and 'yi as the variable that
follows yi.

3.4. Womansuch that she loves him

Belowwe have the rule for the formation of restrictive relative

clauses from PTQ (MONTAGUE(1973)). This rule reads as follows (notation

adapted)

S3,n: CN x S + CN

F3,n: Replace hen in B by he/she/it and himn by him/her/it, according to
the gender of the first CNin a;
Concatenate (a, such that, B)

T3,n: Axn[a'(xn) A 8'].

This rule gives rise to an incorrect translation in case 8' contains an oc

currence of xn which should not be bound by the A-operator which is intro
duced by the translation rule. An example is the production presented in
figure 2.

womansuch that she loves himz such that she runs {CN, 3,2}

Xx2[Ax3[woman(x3?A love*(Vx3,vx2)](x2) A run(x2)]

womansuch that she loves himz {CN, 3,3} he? runs

Xx3[woman(x3)A love*(vx3,vx2)] run(x2)

woman he3 loves himz

woman love*(vx3,vx2)

Figure 2. Incorrect binding of x2

The translation obtained reduces to (10).

(10) Ax2[woman(x2) A 1ove*(Vx2,vx2) A run(x2)].

The produced CN-phrase may be used in the production of some sentence, and

63

in this process John might be substituted for himz. Then the sentence con
tains a CN-phrase womanwho loves John. But the translation contains (10),

expressing that the womanloves herself.
In order to avoid this collision of variables, Thomasonhas presented

the following translation rule (footnote to PTQ, THOMASON1974, p.26],

presentation adapted)

T3',n: Axm[a'(xm) A w]

where w is the result of replacing all occurrences of xn in B’ by
occurrences of xm, where m is the least even number such that xm has
no occurrence in either a‘ or B‘.

One observes that T3‘ uses an operation on expressions which is not an oper
ation of IL: the replacement of certain variables by a variable with a spe
cial index. Wemight try to describe the required change by means of IL

operators. It is easy to obtain the replacement: A-conversion does the job:

T3" Axm[a'(xm) A Xxn[B'](xm)].
Where m is as in T3‘

It is, however, impossible to extend IL with a operator Gr which yields the
greatest non-used even index. This can be shownby providing two equivalent
formulas for which this operator would yield non-equivalent results. Let ¢

be an arbitrary formula. Gr(¢Ax2=x2) would be x4, whereas Gr(¢Ax4=x4) would

be x6, what contradicts the law concerning substitution of equivalents.
Wejust observed that Thomason's rule contains instructions which es

sentially use the particular IL representation of the meaningof the rela
tive clause. Nevertheless the rule as a whole is correct in the sense that

it corresponds with an operation on the set of meanings. If the translation
of the commonnoun or of the sentence is replaced by an equivalent formula,
the application of T3‘ (or T3") gives for all cases an equivalent result.
This is due to the fact that the syntactic operation we called Gr is used
only in the context of renaming bound variables. So T3’, although violating
the framework,does not violate the compositionality principle.

But there is a more direct solution to the problem raised by Montague's
rule. A translation rule for relative clause formation which does obey the
restriction of using polynomially defined operators is

T3"’ APXxn[P(xn) A B'](a').
This translation rule yields a correct result for the problematic case
presented in figure 2, due to the conditions for A-conversion. In case a’

does not contain free occurrences of xn, then T3"’ reduces to T3, otherwise

64

A-conversion evokes change of bound variables. One observes that the for
mulation of T3"'is simpler and muchmore elegant than the formulation of
T3’ (or T3"). Moreover T3"' is in accordance with the variable principle,
whereas T3" and T3’ are not (see chapter 8). The simple formulation of T3’
is possible because the syntactic problemof collission of variables is not
dealt with in the translation rule, but on a more appropriate level: in
the rules for X-conversion which, by their nature, are syntactic operations
on IL expressions.

4. OPERATORS DEFINED ON REPRESENTANTS

In all examples from section 3, a rule was defined which works well in
the situations one usually meets in practice. In two of the examples the
rule does not work well in unusual situations. Often one is tempted to de
sign rules in such a way that as a consequence they have this character.
One defines a rule for the formulas one is familiar with, using well known
properties of these formulas. Then one hopes that an operation defined on
these special formulas in fact defines an operation on the associated
meanings. In the present section it will be investigated under which cir
cumstances this hope will becomereality. It will be shownthat it is not
easy to create such circumstances.

Besides the practical motivation given above for considering non-poly
nomially defined operators, there is a theoretical argument. In the intro
duction of section 3 I mentioned that an operator which is not defined by
means of a polynomial over IL violates the framework, and bears the risk of
violating the compositionality principle itself as well. But not all non
polynomial operators do so. In 3.4 we have met a non-polynomially defined
operator which could be replaced by a polynomially defined one. From chap
ter 2, section 7, we know that an operator which is defined on the language
IL, and which respects all homomorphicinterpretations, can be described by

means of a polynomial. But this does not imply that all non-polynomially
defined operators which respect the interpretation of IL, indeed can be

described by means of a polynomial. This is due to the rather strong con
dition of the theorem that all homomorphicinterpretations are respected.
Weare not interested in all meaning algebras we might associate with IL,
but only in some of them. Wewant to interpret P(x) as the application of a
function to an argument, we want the interpretations of ¢ A w and of
w A ¢ to be the same, and we want several meaning postulates to be

65

satisfied. Therefore the theorem does not give us the guarantee that every
operation on IL which respects the usual interpretations of IL indeed can
be defined by means of a polynomial. These considerations constitute a
theoretical argument for considering non-polynomially defined operators.
But the practical argument given above is, in my opinion a more interesting
reason for doing so.

The definition of an operation on IL formulas is acceptable if (and
only if) it does not disturb the compositionality principle, i.e. if with
the operation on formulas we can associate an operation on meanings. This
can only be done if for logically equivalent formulas the operation yields
equivalent results. So whendefining an operation by defining it for special
formulas, every special formula ¢ has to be considered as a representant of
the class of formulas equivalent to ¢.

A mathematical description of the situation is as follows. The set of
formulas (of a certain type) is divided into equivalence classes. A class
consists of formulas which have the same meaning in all models. Remember

that we defined the meaning of an IL formula of type T as a function which

assigns to an index and a variable assignment some element in DT (so ex
pressions in the same class represent the same function). In each class
representants are defined, and we wish to define an operation on the whole
class by defining an operation for the representants. If in each class
there is only one representant, we are in the situation presented in figure
2b, if there are more, then we are in the situation of figure 29. Wewant
to knowwhen a definition on a representant defines an operation on the whole
class.

Figure 2a Several representants Figure 2b One representant

when defining an operation on an equivalence class by a definition on
its representant, two aspects can be distinguished.
A) the definition of an operation on the representants

66

B) A proof that this defines an operation on the whole class.

As for A) we have to fulfill the following two requirements.
Al) Onehas to describe exactly the set of formulas for which the operation

is defined, i.e. one has to define a recursive set of representants.
A2) Onehas to define for all representants what the effect of the opera

tion is, i.e. we have to define an effective operation on the set of
representants.
This kind of requirements we have met before: define a set and opera

tions on this set (e.g. define a language and a translation of this lan
guage). Therefore it seems attractive, in the present context, to define
the set of representants by means of a gramar generating the expressions
in the subset. In order to be sure that the operation is defined for all
formulas in the subset, one might formulate the clauses of the operation
parallel to the grammatical rules generating the subset. This will probably
be more complicated than a polynomial definition. But other techniques for
defining the set of representants and the operation are possible as well.

As for B) I will consider first the situation described in figure 2a:
one representant in each class. Here the definition of an operation on the
representant automatically determines a semantic operation on the whole
class: the interpretation of the operation on the representant is the se
mantic operation on the interpretations of all expressions in the class.
But how can we be sure that we are in the situation of figure 2a? Proving
that we are in such a situation means that we have to prove the existence
and unicity of a representant for each class. I do not knowwhether there
exists for each type a recursive set of unique representants. Assumingthe
possibility of such a set, it remains the question howto prove the existence
and unicity of such representants. It seems attractive to do this by pro
viding an algorithm which transforms a given formula into the representant
of its equivalence class. This expresses the idea we met in section 3.2:
if a formula is not in the required form, it should be transformed into the
required form. This approach is, however, in the relevant cases impossible,
as follows from the following theorem.

4.1. THEOREM.Let 0,1 e Ty. Define the equivalence relation ~ on ME<U<1 t>>

by ¢ ~ w iff F= ¢ = w. Let R c ME<o(T t>> be a (recursive) set of represen, 9

tants such that for each equivalence class there is one element in R. Let

f: ME<O,<T,t>>+ M<O,<T,t>> be a function which assigns to each formula
the representant of its equivalence class. Thenf is not recursive. The

67

same result holds if the expressions are from ME<Tt).
3

PROOF. Let ¢ 6 Mt, P e VARU,Q 6 VART. Then the following statements are
equivalent

(11) F ¢ (¢ is logically true)

(12) |= >.PAQ[¢] = APAQ[Vx[x=x]]

(13) |=f(>.P)\Q[<b])= £(xpxQ[vx[x=x]J).

Note that in (13) semantic equality of the formulas is expressed. Since for
each class there is one representant, (I3) is equivalent with (14)

(14) f(APAQ[¢]) E f(APXQ[Vx[x=x]]).

Note that in (14) syntactic identity of the by f obtained formula is ex
pressed. So, if f is recursive, the question whether ¢ is logically true is
decidable: calculate f(XPAQ[¢]) and f(APAQ[Vx[x=x]]), and see whether they

are identical. Since IL is undecidable, f cannot be recursive. For ME<T,t>
analogously. Note that we did not use the recursiveness of the set of repre
sentants.
4.1. END

The translations of expressions of the PTQfragment are all of the
form <o,<r,t>> or <T,t>. The same holds for the expressions of the frag
ments considered in all examples. The theorem says that there is no algorithm
which transforms a formula into its representant. If one tries to define an
operation on a class by an operation defined on its representants, then
one has to find some other way of proving the existence and uniqueness of
a representant.

Next we will consider the situation described in figure 2b: a multiple
set of representants is allowed for. There is no doubt that such a set

exists: METitself is a recursive set of multiple representants of MET.But
also here a complication arises.

4.2. THEOREM.Define ~ as in the previous theorem. Let R be a (recursive)
set such that for every equivalence class there is at least one equivalent

l ' . : ' 'e ement in R Let f ME<o,<T,t>>+ M<O,<T,t>> be a recursive function that

68

assigns to every fbrmula an equivalent fbrmula in R. Then fbr r1,r2 e R it
is undecidable whether F 11 = r2.

PROOF.As observed in the proof of the previous theoreu1 F ¢ is equivalent

with F= f(APAQ[¢]) = f(APXQ[Vx[x=x]]). If equality is decidable for elements
of R, then the equality is decidable for these two formulas, so it is de
cidable whether ¢ holds. This gives rise to a contradiction since IL is un
decidable. Note that we did not use the recursiveness of the set of repre
sentants.
4.2. END

This result means that we have to prove that an operation defined for
representants yields for equivalent formulas an equivalent result, without
knowingwhat the equivalent formulas look like.

The above discussion shows that it is, generally spoken, a complicated
and extensive task to define a function by defining a function on specially
selected representations. Probably this can only be done in practice, if
one considers a situation with a special structure which has the effect
that all proofs becomedrastically simplified. But if the situation is such
a special one, it maybe expected that the same effect can be obtained in
a more direct way: by using polynomials. This is illustrated in the examples
considered in section 3. So far there is no evidence that there is any ad
vantage in defining operations in a non-polynomial way.

5. NEW SYMOLS IN IL

5.1. Introduction

Some authors extend the language of IL with new symbols. These symbols

should obtain an interpretation by means of an extension of the interpre
tation homomorphismfor IL. For each point of reference some semantic ob
ject of the right type has to be associated with the new symbol. If the new
symbol is an operator, its interpretation has to be a function operating on
the interpretation of its argument. If these requirements are not met, then
the interpretation homomorphismof IL cannot be extended to an interpreta
tion homomorphismfor the extension of IL. Consequently arrow 5 in figure I

is no longer a homomorphism. Hence arrow 7 is not a homomorphismeither.

Then the translation homomorphism2 cannot be continued to an interpreta
tion homomorphism,and this means that the principle of compositionality

69

is violated. Below we will consider two examples of new symbols.

5.2. Shake John awake

DOWTY(1976) treats, amongothers, the semantics of factive construc
tions such as shake John awake. In order to do so, he extends the language

of intensional logic with two operators: CAUSEand BECOME.Interesting for
our discussion is his treatment of CAUSE.In order to define its interpre
tation Dowtyadds "to the semantic apparatus of PTQa selection function f
that assigns to each wff ¢ and each i E I a memberf(¢,i) of I. [Intuitive
ly f(¢,i) is to be that i' most like i with the (possible) exception that
¢ is the case [..]]". Then the interpretation of CAUSEreads:
"If ¢,w eME then (¢ CAUSEw)A’i’j’g is 1 if and only if [¢Aw]A’i’j’g is l

and [7w]A’f€j¢’i)’j’g is 1."
The function f is defined on IL-expressions and not on the interpreta

tions of these expressions. As a consequence CAUSEis an operator on IL-ex
pressions and not on the meanings they represent. This is illustrated as
follows. The definition of f allows that for some¢,n,i holds that
f(7[¢An],i) # fC7[nA¢],i). This may have as a consequence that

[(¢An)CAUSEw]A’i’j’8 = 1 whereas [(nA¢)CAUSE¢]a’i’j’g = 0. The main

features of an example of such a situation are as follows. Let
[(¢An)A¢]A’i’j’g = I, so [(nA¢)A¢]A’i’j’g = 1. Suppose that f(7[¢An],i) = i‘
and [7¢]A’i:j’g = 1. Then [(¢An)CAUSEw]A’i’j’g = 1. Suppose moreover that
£(1[nA¢],i) = 1" and [1¢]A’i"’j’g = 0. Then [(nA¢)CAUSEw]A’i’j’g = 0.

In the above example the principle of compositionality is not obeyed:
two equivalent formulas cannot be interchanged 'salva veritate'. Moreover
the meaning of CAUSEdescribed above is incorrect since, intuitively,
[(¢An)CAUSE¢]A’i’j’g = [(nA¢)CAUSEw]A’i’j’g. A correction is possible by

taking as domain for f the intensions of formulas: f assigns to each

d e D<S,t> and i 6 I a memberf(d,i) e I. Then a situation as described
above is automatically excluded. The interpreation of CAUSEnow becomes as
follows.

[¢ CAUSEw]A’1’J’g = 1 if and only if

[¢Aw]A’i’j’g = l and [7w]A’£?j’g = l, where

i_= £(["‘1¢JA'i'5'g,i).

70

This definition has the property that if ¢ CAUSEw, then for all tautologies
n holds that (¢An)CAUSEw, a problem of the same nature as the problem we

met in chapter 4 concerning the complementsof belief-sentences.

5.3. I and You

GROENENDIJK& STOKHOF(1976) give a treatment of the pronouns I and

You. For this purpose, they extend the model for IL. Usually the denotation
of an IL expression is defined with respect to a world i and a time j; these
i and j are called 'indices'. Groenendijk &Stokhof extend the set of in

dices with three components: j0,s and h. Here jo e J is the moment ‘now’,
IXJis a function which for a point of

IXJ
i.e. the momentof utterance, s e A
reference (i,j) yields the speaker at that moment, and h e A is a func

tion yielding the hearer. The interpretation of a maydependon i,j,j0, s
A’i’j’g’S’h’j0 for the interpretation of a. The lanand h, and we write a

guage of IL is extended with the constants i and y of type <s,e>; these con
stants occur in the translations of the pronouns I and you respectively.
The goal they wish to reach is described as follows. (op.cit.p.308). ‘What
wewant our interpretations to express is that the extension of the con
stants i, y are the possible individuals which are speaking now, spoken to
nowrespectively. This would explain the tautological character of a sen
tence like (15) and the contingent character of sentences like (l6)'.:

(15) I am the speaker
(16) I will not be the speaker

Groenendijk & Stokhof define F(i) = s and F(y) = h. Furthermore they define

iA,iajsg:S,h9jO = (1-_,j0) (=S(i,jO))
and

yA,i,js8:S,h;jO = F(yy(i,jO) (=h(i,jO))_

So for any point of reference the interpretation of i is the speaker now,
and the interpretation of y is the hearer now.

The corresponding intensions, however, are separately defined: as
A. A.i.J'.g . A A,i.J',g (1) = F(i) and (y) = F(y) respectively. One observes that

A Asisjvg ' ' As].-sjag ' 'no longer holds that for all a: (a) = Afli,J) a . This combi
nation of the definition of interpretation of Ai and Agwith the interpre
tation of i and y violates the recursive interpretation of the IL, thus

71

disturbing its homomorphicinterpretation. This has drastic consequences:
several tautologies becomeunvalid. It is no longer true that for constants

AV v v . .
of type <s,e> holds that c = c, nor that a = B + a = B 15 Valld

(for a,B 6 ME). The interpretation of the logic is not a homomorphism

(since h(Aa) ;s5::j[h(a)]); therefore the interpretation of the natural
language is not a homomorphismeither. This means that the principle of com
positionality is violated.

Let us consider the first goal of the approach of Groenendijk &
Stokhof. Sentence (15) is true when evaluated with respect to the moment
'now', but not with respect to a point of reference where the speaker is
someoneelse. The sentence expresses not a tautology (as a matter of fact,
this is not claimed by Groenendijk & Stokhof). What they probably wish to
express by the phrase 'tautological character‘ is that for every choice of
the moment‘now’, the sentence is true when evaluated with respect to this

moment, whereas not the same can be said about the second sentence. This

effect can be obtained in a compositional wayby stipulating that

F(i) = Ai,j[s(i,j0)] and F(y) = §i,j[h(i,j0
being something like Vi = Vs, becomes true for the point of reference (i,jO),

)]. Then the translation of (16),

no matter what jo is, whereas this is not the case for the translation of
(16), being something like 7W[vi=Vs].

6. COUNTING ELEMENTS

6.1. Introduction

In the present section I will consider two examples of counting the
number of elements in the model. In the first example this is done in a way
which suggests a misunderstanding of the framework. As a contrast I present

the second example in which the counting proceeds correctly. These examples
illustrate the role of the derived algebra M‘which is obtained from the
algebra Min which we interpret intensional logic.

6.2. Keenan &Faltz count

KEENAN& FALTZ(1978) present a system for the description of syntax

and semantics that is related to Montague's system. An important dif
ference is that they obtain their semantic domainby application of alge
braic operations (join, meet, homomorphism)on certain basic elements.
One way in which they compare their system with Montague's is by ways of

72

counting the number of elements in the semantic domain of their system and

Montague's sets DT. They base an argument in favour of their system on the

fact that a certain domain DTcontains manymore elements than the corre
sponding set in their ownsystem. There are several objections against this
comparison. The stage at which Keenan &Faltz carry out their comparison
(viz.p.l30) does not do justice to Montague's enterprise. They compare their
model for an extensional fragment of English with Montague's domains de
veloped for an intensional fragment. Furthermore they do not take Montague's
meaning postulates into account. So the numbers they obtain are not the
relevant numbers. I will, however, not correct their calculations, since I
amprimarily interested in the method of comparison. This method will be
discussed below.

Keenan & Faltz have a theory which says e.g. how many verb phrase

meanings are possible (for a given domain of individuals): it is the num
ber of homomorphismsbetween certain sets (which are built from the set of
individuals). Keenan and Faltz count in their framework the numberof ele

ments in some of such sets, i.e. they count the number of possible deno
tations of certain types. In Montague's framework they count the number of

elements in DTfor the corresponding types. I have fundamental objections
against this comparison since in this way sets are compared that are in

comparable. The sets DT in Montague's system are sets in the algebra M (see
figure 1). Out of algebra Ma derived algebra is defined. This derived al
gebra M’ consists precisely of the elements which are used for the inter
pretations of expressions produced by the grammarfor the fragment. In the

process of forming the derived algebra M’ elements of DTmay be thrown out;

e.g. a set DTmay consist of all functions of a certain type, whereas in M’
only the homomorphismsmay be left over. If one wants to count the number

of possible denotations for the expressions of a certain category, then
one has to count the number of elements of the corresponding type in the

union of all derived algebras. One should not count the auxiliary set DT
instead. The method of counting of Keenan &Faltz neglects the role of
arrow 6 in figure 1.

The number of elements in a derived algebra can easily be counted. The
derived algebra M‘ is the image of the syntactic algebra for the fragment.
Therefore the number of elements in M‘ cannot be larger than the number of
expressions in the syntax. Since the latter is denumerable, the former is.
And for a given category, say the verb phrases, the number of expressions

73

of this category gives an upperbound for the number of elements of the cor
responding type in the semantic algebra.

6.3. Partee counts

As a contrast to the previous example, I would like to consider PARTEE
(l977b), where the difference between Mand M’ is taken into account. Partee
discusses the psychological plausibility of possible world semantics. She
argues that the finiteness of our brains requires that the theory of lin
guistic information we have should be finitely representable. The possible
world semantics, however, gives rise to sets of rather large cardinalities
(For instance if IAI = N and III = 8 thenID I= 2 0 andID0 0’

= 2<2 0) . These cardinalities make it impossible to assume that we have
<s,e> <<s,e>,<s,e>>|

finite representations of all sets DTin our brains. Partee gives a way out
of this dilemma: assume that we have finite representations of the form

of the sets DT, but not of all their elements. PARTEE(l977b,p.3l7-318)
says: ‘In the acquisition of any particular language, not all of the in
principle possible denotations need to be considered as a hypothesis about
the actual denotation of an actual expression of the language. The inten
sional logic into which the natural language is translated, will contain at
most denumerable many expressions of any given type, and the finite percep
tual and cognitive apparatus will make at most denumerable many members of

Da,A’I’J finitely representable, and it will only be correspondences be
tween these two at most denumerable sets that will have to be empirically
determined by the language learner’.

It is striking to comparethese psychologically motivated opinions
with the mathematical properties of the framework. These predict that in
an interpretation of a particular language there are only denumerable many
meanings because there are denumerable many expressions in the language of

which we give the meaning. So for any particular language the number of
meanings in the model, and the number found on psychological considerations
agree.

In relation with the previous discussion Partee considers the follow
ing question (PARTEE1977b p.318). ‘One might ask at this point, if the

'available' members of D are always going to form a denumerable set,a,A,I,J
why shouldn't all the sets D be constrained to be denumerable by thea,A,I,J
semantic theory?’ The answer Partee would argue for is ‘that there is no
telling in advance which possible world the native speaker will find her

74

self in; [..] her semantic componentmust equip her for a language in any of
them.

An alternative is to consider the psychological arguments as an invi
tation to change one of the algebras of the framework in figure 1. It seems
to be an argument against taking the standard model for intensional logic
because of the large cardinality of its sets, in favor of taking as seman
tic algebra some generalized model with denumerable manyelements (general
ized model in the sense of HENKINI950, see sections 1 and 3 of ch.3). This

would have the interesting consequence that the axiomatization of inten
sional logic (given in chapter 3) would be a complete axiomatization for
this class of models. This is a direct consequence of lemma3.3.) in GALLIN

1975. But no matter which conclusion is drawn from the psychological argu
ments, this whole discussion remains an interesting excursion because
Montague's system was not designed, as I explained in chapter I and 3, tov
formalize any psychological theory.

7. THE TRANSLATION LANGUAGE

7.1. Introduction

An intensional language is a language of which the denotation of an
expression depends on an index, and an extensional language is a language
where this is not the case. An example of an extensional language is pre
dicate logic, an example of an intensional language is IL. Our approach
makes English an intensional language: a sentence denotes a truth value;
which one this is depends on the current index (point of reference). In
an extensional approach we would say that a sentence denotes an function
from indices to truth values (an intension). Is it possible to give an ex
tensional treatment of English, and what are the consequences? In other
words, is it possible to change the relation indicated in figure I by arrow
7?

It will turn out that the answer to the above question is positive.
This gives us the choice between (at least) two different approaches. When
making a choice, we have to realize what the role is of the translation
level in the whole framework. Weaim at defining a systematic relation be
tween English expressions and their meanings. In order to be able to ex
press this relation conveniently, we use the translation into intensional
logic. In chapter 2 is explained howthis logic is interpreted

75

homomorphically: e.g. an expression of type t has as its homomorphic
IXJXG. Fundamental to thisimage (has as its meaning) some function in {0,l}

whole approach is the relation between expressions and meanings. If a trans
lation into an extensional language gives rise to the samerelation, it is
acceptable as well. Another translation is just another tool, and a choice
has to be made on the basis of technical arguments.

7.2. Hausser translates

As an introductory step of treating English as an extensional language,
I consider an approach which is very close to the PTQtranslation: translate
into an IL expression denoting the meaning of that expression. Let the in
tensionali ed translations of two sentences be A and B respectively. Then
the translation of their conjunction has to be AEVAAVBJ.Most of the trans
lation rules have the format a(AB). With the new translations this becomes

A[[VA](B)]. These examples illustrate that this approach does give rise to
somewhatmore complex formulas. A next step is to use a logical language in

which the operators on elements of type <s,r> are defined. For instance 1,
where A £_B is interpreted as the complex conjunction formula given above,
so as indexwise evaluation of the parts of the conjunction. For function

application is used Agblg to be interpreted as denoting the same as
A[[VA3(B)]. Such operators are used in JANSSEN & VANEMDEBOAS 1977 for

dealing with semantics of programminglanguages.
Following TICHY1971, HAUSSER(1980) argues for an extensional approach

to English. In HAUSSER(l979a,l984) this idea is worked out. Ie does not

use the standard logical operators (e.g. conjunction on truth values) any
more, and this gives him the opportunity to use the standard symbols with

a new meaning. Now¢ A w means indexwise valuation of the parts of the con

junction, and a(B) is the variant of function application which is described

above as aifil. In this way one obtains a simplification of the formulation
of the translation rules since no intension symbols have to be used. The
price one has to pay for this, is that the logical symbols obtain a some
what deviant interpretation, what is the normal price, and what is quite
acceptable. But the presentation of the translation rules is not the only
aspect of a new translation. What happens if one wishes to take the meaning
postulates into account, or if one wishes to simplify the formulas one ob
tains? To understand the dangers, one should realize that the new trans
lation causes the intension operators to be invisible whereas semantically

76

they still are there. Therefore newreduction rules have to be found. In
HAUSSER(l979b,l984) indeed a simple translation is obtained but not all
meaningpostulates are expressed in the translation. Therefore his results
are not convincing, and further investigations are required before it is
clear whether this extensional approach gives a simplification.

7.3. Lewis translates

A simplification I expect from the approach in LEWIS1974. He discusses
the consequences of another kind of extensionalized translation. He con
siders using the extra possiblities given by an extensionalized translation:
namely the possibility to relate to an expression a meaning that is not an
intension (i.e. not a function in DIXJXG).The verb run gets in the PTQap
proach a translation of type <<s,e>,t>. In the Hausser approach it is trans
lated into an expression of type <s,<<s,e>t>>. But in the Lewis approach its
translation would be of type <<s,e>,<s,t>>. So the translation of run wouldbe
a function which assigns to an individual concept a proposition. In this
way one gets rid of the remarkable non-constant interpretation of constants
of IL, where runA’1’J’g = F(run)(i,j). In Lewis approach it would be just

runA’i’j’g = F(run). The translation of He runs would be run(x]) being an
expression of type <s,t>. Note that here the function application has its
standard meaning. This illustrates the advantage of Lewis approach, but
further investigations are required in order to decide whether it is a real
simplification. A remarkable aspect of Lewis approach is that it gives a
completely different relation between expressions and meanings than we

considered up till now, so investigating these matters here, might bring
us far from the current work (cf. HAUSSERl984,p.82,83).

7.4. Groenendijk &Stokhof translate

A last version of what might be called an extensionalized translation
is used in GROENENDIJK& STOKHOF198]. They do not translate into IL, but

into Ty2 (see GALLIN1975). Such a translation can be called extensional

since the interpretation of a Ty2-expression does not depend on an index,
but only on the variable assignment (including the assignment to ‘index’
variables). Also in this translation we get rid of the non-constant inter
pretation of constants since the index dependencyof predicates as run is
madeexplicit by translating run into an expression containing an index
variable. The phenomenadescribed by Groenendijk & Stokhof seem to require

77

the expressive power of Ty2, and it is to be expected that this power will
be required for the treatment of other phenomena as well (e.g. VANBENTHEM

(1977) argues that explicit reference to momentsof time is needed for
tense phenomena). Since we will not consider these phenomena, we will not in

vestigate the details of such a translation. Fromthe way in which we intro
duced IL in chapter 3 (using a translation into Ty2), it is evident that
this would cause no problems at all (on the contrary, several aspects would
becomesimplified).

7.5. Keenan&Faltz on translations

In KEENAN& FALTZ1978, several requirements are given concerning the

logical form of a natural language, e.g. criteria concerning the correspon
dence between a natural language expression and its logical form. They cri
ticize the logical form which is obtained in a Montague Gramar. An example
is their coment on the translation of John which is in an extensional
fragment lP[P(j)]. They say (p.18) '... this assignment of logical struc
ture fails the Constituent CorrespondenceCriterion, since it contains three
logical elements, namely j, P and AP, none of which corresponds to a con
stituent of John.‘ Such criticism plays an important role in the argumenta
tion in favour of their framework.

The argumentation of Keenan & Faltz is, however, based upon a miscon
ception of the framework. I assume that they understand by ‘logical form‘,
that level of description at which the meaning of an expression is complete
ly determined. In fact, there is no unique level of description in Montague
Grammarfor which this holds. The analysis tree of an expression, its imme
diate, unreducedtranslation, its reduced translation (and all the stages
in between), all determine the meaning of that expression completely. That,
in particular, the translation of an expression into IL cannot be claimed
to have a special status as the logical structure of that expression, be
comesclear if one realizes that this level of representation, in principle,
can be dispensed with altogether. Grammarprovides a correlation between
syntactic structures and meanings. In Montague Grammarthis is done by pro
viding a homomorphismfrom the set of syntactic structures into the set of
abstract settheoretical entities, modelling the meanings. In the PTQ-system
this homomorphismis defined in two steps. First a homomorphictranslation
from syntactic structures into logical expressions is provided, second the
logical expressions are interpreted, i.e. related in the usual homomorphic

78

way to the abstract entities defined in the model. These two homomorphisms
together determine one homomorphismfrom the syntactic structures into the
meanings, viz. the composition of the two. This two-step approach is chosen
for reasons of convenience only, it is not necessary. As a matter of fact,
the EFL-system (MDNTAGUE1970a) is an example of a system in which the homo

morphismfrom syntactic structures into abstract meanings is defined in one
fell swoop,without an intermediate stage of translation into a logical lan
guage. All this means that within the PTQ-frameworkit is not possible to
talk of the logical structure, or the logical from, Qf an expression. So
Keenan&Faltz criticize a non-existing aspect of Montaguegramar.

79

CHAPTER VII

PARTIAL RULES

ABSTRACT

In the frameworkthe syntactic and semantic rules are considered as
algebraic operators. As a consequenceof the definitions given in the first
chapters, the syntactic rules have to be total. This is investigated and
comparedwith linguistic requirements. Partial syntactic rules from the
literature are considered and alternatives for them are presented. Oneof
the methods to avoid partial rules is the use of rule schemes. It turns out
that the requirement of using total rules is a valuable heuristic tool. Con
sequences of this requirement are compared to consequences of Partee‘s well
formedness constraint.

80

1. RESTRICTIONS OF THE FRAMWORK

Based upon the principle of compositionality, we have developed an al
gebraic frameworkfor the description of syntax and semantics. The algebras
of the frameworkhave operators: i.e. functions from carriers to carriers.
This implicates that an operator can be applied without any further restric
tion to any element of the sorts required by the operator. In this chapter
I will consider consequences of this aspect of the framework, and especially
its consequences for the syntactic algebra. Someof these consequences are
closely related with those of the ‘well-formedness constraint’, (PARTEE
l979b), which will be considered in section 6.

In linguistics one often conceives of a grammaras a generating device
for producing all and only the expressions of a language. With this concep
tion it is rather natural to think of restrictions on this production pro
cess. Onemight think of restrictions on the order of application of the
rules. Twoexamples are the following. One might have rules of which the
applicability depends on the way in which an expression is produced (such
conditions are called ' global constraints’). Onemight have a filter which
throws away some of the produced elements (e.g. one which filters out all
expressions which contain a certain symbol). The description of the possible
sequences of application of the rules constitutes an important componentof
a transformational grammar(for instance certain rules might be obligatory,
others ordered cyclically), and filters are also often used in that field.
If one wishes to use the syntactic knowledge from the field of transforma
tional gramar in the field of Montaguegrammar, then one is tempted to in
corporate these restrictions on the generation process in Montaguegrammars.
Would that be possible, and at what price?

In our framework the syntax has to be a many-sorted algebra, i.e. a
set of carriers with operations defined on these carriers. Analgebra is
not a generating device, it rather is the description of a situation. By
describing what the syntactic algebra is, it is said what the relevant ex
pressions are, and what the functions are which describe the relations be
tween these expressions. The expressions can be determined in any way one

likes, and nothing has to be said about their production. Onemight for
instance define an algebra by mentioning all the elements and describing
the effects of all operators (wedid so in the beginning of chapter 2).
A simpler method is to give a collection of generators, and tell what the
operators are. Several choices of generators maybe possible, one more

81

clever than the other. But no matter how the algebra is defined, the ele
ments remain the same elements, the operators remain the same operators,

and the algebra remains the same algebra.
The operators of the algebra are mappings from carriers to carriers.

The range of an operator (the expressions obtained as results of an appli
cation of the rule) consist by definition of elements of a certain carrier.
Therefore it is in our frameworknot possible to have a filter which says
that certain outcomes are not acceptable. The domain of an operator (the
expressions it operates upon) is somen-tuple of carriers. Howwe obtained
the information that an expression belongs to a carrier is of no influence.
The applicability of an operator cannot depend on the information which
rules were applied previously, because there are no ‘previously applied
rules‘ for an element of an algebra. For this reason, there cannot be a
prescribed ordering on the rules, there cannot be rules that are explicitly
required to be used in all derivations, and the derivational history cannot
influence the applicability of the rules.

Of course, the generation of expressions is an important aspect of
syntax, and therefore we paid special attention to it. The notion of a
generated algebra was defined, and theorems were proved about such algebras.
In a generated algebra it might be meaningful to speak about filtering,
ordering of the application of rules, the influence of derivational his
tory, and obligatory rules. But if we would allow this, we would describe
a generation mechanism, and not operators of an algebra: in an algebra
there is no place for such aspects. So this discussion brings us to reject
certain methods which are customary in the tradition of transformational gram
mars. But the rejection only concerns the method, not the ideas. It is pos
sible to organize an algebra in such a way that the same effects are ob
tained in another way. Below I will give some examples.

Anexplicit ordering of rules is not possible in an algebra. But in a
generated algebra there is a certain natural ordering amongthe operators.
If an operator R takes as its argument an expression of category C, then
the operators which yield expressions of the category C are used before R.
In this way the categorial system of the algebra has as effect a certain
implicit ordering of the operators.

If one wants a certain ordering on the rules, this effect can be ob

tained by a suitable refinement of the categorial system. Let Ra and Rb be
two rules, both operating on sentences and yielding sentences. Suppose that

82

we want Ra to be applied precisely_one time before Rb. This effect can be
obtained by distinguishing amongthe sentences two categories: SI and S2.

Here S1 is the category of sentences to which Ra has not yet been applied,
and S2 of sentences to which Ra has applied. Then Ra can be defined as a

rule which operates on expressions of category S] and yields expressions of
category S2, whereas Rb is defined to operate on expressions of category S2,
yielding expressions of this category again. The definitions of the other
rules have to be adapted for these categories as well. I expect that by
means of a refined categorization system the effect of any ordering can be
obtained. Since in the field of Montaguegramars explicit rule ordering
hardly is employed, I will not consider this topic any further.

As explained above, the applicability of a syntactic rule to an expres
sion cannot depend on the derivational history of that expression. Notice
that, on another level, we already met a situation where it was important
to have derivational histories available. The meaning of an expression may
depend on the derivational history of that expression. Wedid not define the
translation homomorphismon the algebraic gramar for a language because in
that grammarsuch histories are not available. The translation homomorphism
is defined on the associated term-algebra, i.e. the algebra of derivational
histories. This suggests us what to do whenderivational histories would be
important in syntax: use an algebra in which the elements represent deriva
tional histories. But in the field of Montague grammars I knowof only one
rule which uses information about the derivational history (rule 3 of
THOMASON1976), so the issue does not seem to be important. Moreover, this

aspect of Thomason's rule can probably be avoided by following the proposal
of PARTEE(1973) to let a grammarproduce not unstructured strings, but
labelled bracketings. For these reasons the role of derivational histories
in the syntax will not be considered here any further.

Abovewe have considered some restrictions on the circumstances in

which a rule may be used. The conclusion was that such rules violate basic
aspects of our framework. Another request from linguistics is to allow re
strictions on the expressions to which a rule is applied. In the field of
transformational gramars it is standard to put conditions on the possible
inputs of a transformation. In the field of Montague grammarmany rules are
proposed as well which do not apply to all expressions of the category re
quired be the rule, but only to some of them. In the field of semantics one
has proposed to use functions which are not defined for all arguments of
the required type (see section 2.2). In contrast to the constraints on

83

applicability discussed above, one might argue that our frameworkshould
allow for operators which are not defined for all arguments of the required
sort. Such partial operators are knownin the theory of universal algebras;
the algebras in which they occur are called partial algebras. In the next
sections it will be investigated whether we could be more liberal than we
have been, and whether we should allow for partial algebras within our
framework.

2. PARTIAL ALGEBRAS

2.]. Partial grammars

Contrary to what one might expect, it is not just a minor variation of
the system to allow for partial algebras (i.e. algebras with partial opera
tions). Such a step would disturb important parts of theory we have devel
oped so far. I will illustrate this by means of two examples which show
that certain theorems we proved concerning properties of the syntax are not
valid whenpartial rules are allowed. In 2.2 it will be shownthat certain
theoremsof intensional logic loose their validity whenpartial operators
are allowed in the logic.

2.]. EXAMLE.

C) II
<<[{aA},{bB},{cC}], {Fa,Fb,Fc,F}>,D>.

Here Fa: A + A is defined by Fa(a) = aa

b: B + B is defined by Fb(B) = 8b

F : C + C is defined by Fc(y) = ye.

So by repeated application of Fa strings of arbitrary length consisting of
a's are produced. Analogously for Fb and Fe. Furthermore the partial rule F
is defined as follows:

F: A X B X C + D

where

F(a,B,y) = aBY if the lengths of a,B and Y are equal.

undefined otherwise

84

The language L(G) generated by G is {anbncn I n 6 II}. This is a non-con
text-free language (see HOPCROFT& ULLMANN1979 example 6.1). So when par

tial operations are allowed in the syntax, theorem 5.6 from chapter 2 does
not hold.

2.2. EXAMPLE.Let L be some recursively enumerable language over alphabet

A. According to theorem 3.7 from chapter 2, there is an algebraic gramar

G such that L(G) = L. Suppose that G = <<[BS]s€S, (FY)Y€P>, O>.
Let 0 e A be arbitrary, and define the algebraic grammarHOby

HG = «[3] (FY)Y€I,U{f}>,sl>

S

s seS’

where s] is a new sort (s]¢SU{sO}), and where f is a partial operation de
fined by

f: so + s] where f(a) = 0 if a E o
undefined otherwise.

Note that HOproduces a language which is either empty (if 0 ¢ L(G)) or con

sists of o (if 0 e L(G)). So L(Ho) ¥ ¢ iff 0 6 L(G).

Suppose now that it was decidable whether L(HO) = ¢; then it was de
cidable as well whether o e L(G). Since L(G) is an arbitrary recursively
enumerable language, the latter is not decidable, and consequently it is

not decidable whether L(Ho) = ¢. This means that theorem 5.5 from chapter 2
(which states the decidability of the emptiness of L(G)) is not valid if
we allow for partial operations.

2.2. Partial models

The following example concerns the use of partially defined operations
in the semantics. They arise, for instance, if one wishes to deal with
sortal incorrectness: certain combinations of a verb phrase with a subject
do not fit well together, although most expressions of their categories
give no rise to problems. An example (THOMASON1972) is (1).

(1) Thevelocity of light is shiny
It is not attractive to say of such a sentence that it is ‘false’, since
then its negation would be 'true'. Either, one should consider (1) as being
syntactically incorrect, or the strangeness should be dealt with in the
semantics. THOMASON(1972) followed the latter approach and has proposed

85

to assign to such sentences no truth values. This idea is worked out in the
framework of Montague grammar by WALDO(1979). In his proposal several se

mantic domains contain partial functions, and the function corresponding
with shiny is not defined for arguments such as ‘the velocity of light‘.
So (1) is not associated with a truth value.

Waldo's approach gives rise to strange consequences. Formulas which
one might expect to be equivalent, are not. I will discuss two examples,
and indicate how the problems could be solved by using total functions in
the model.

The first example concerns formula (2), where ¢ 5 MEt.

(2) ¢ = ¢

Suppose that the interpretation of ¢ is undefined (e.g. because it is the
translation of (1)). Then, due to the interpretation of =, also (2) is un
defined. However, due to the interpretation of connectives (which uses
‘extended interpretations‘), formula (3) gets the interpretation true:
This difference in interpretation is, in myopinion, a strange result.

(3) ¢ = ¢ A ¢ = ¢

The second example is based upon a suggestion of R. Scha (pers.comm.).

It concerns formula (4), where z e VARt, and where ¢ 6 MEt is as in (2).

(4) Az[z=z](¢).

The possible assignments to z are, in Waldo's partial model, the truth
values true and false. Therefore the expression z = z is equivalent with
some tautology not containing z, for instance Vw[w=w].Hence (4) is equiv
alent to (5)

(5) Az[Vw[w=w]](¢).

According to the standard conditions for A-conversion, formula (5) can be
reduced to (6), which clearly gets the interpretation true.

(6) Vw[w=w].

86

Also in (4) A-conversion is, according to the standard conditions, an al

lowedoperation. Then (2) is obtained, but the interpretation of that for
mula is undefined. So the formulas (6) and (2), obtained by reduction of
(4) are not equivalent, an unacceptable result. Wehave to conclude that
one of the reductions steps is not allowed. This problem is, in my opinion
due to the fact that for the variable z in (4), there are two possibilities
(true and false), whereas for the arguments ¢ there are three possibilities
(true, false, and undefined). Note that the variable z cannot be undefined,
because its range consists of all elements in the model of the correct type,
and undefined is no value in the model.

The above examples show that the laws of logic we have met before,

cannot be used in this system without further investigations. In any case
the conditions for A-conversion have to be changed. Unfortunately, Waldo
does not provide laws for his system. This causes a difficulty in the
study of his proposal. He presents several examples, and each consists of
a sentence accompagniedby its reduced translation. Since I do not know
which reduction rules hold in an approach with partial functions in the
semantics, I cannot check the correctness of the examples. Also other
authors who describe a fragment with the use of partial functions in the se
mantic domains, do not present reduction rules (HAUSSER(1976), COOPER
(1975)). The last author mentions at least that not all standard reductions
remain valid. I expect that it will be very difficult to reformulate the
reduction rules. An obvious attempt to improve the conditions for A-conver
sion would be to require that the reduction of Az[a](B) is allowed only if
Bis defined. This is, however, not a syntactic condition on B, and I doubt
whether it is possible to give a syntactic characterization of ‘undefined’.

I already explained that the problem is due to the fact that a variable
cannot take the value undefined, whereas an argument ¢ (which might be

substituted for that variable) can be undefined. Therefore I expect that the
problems will be solved when a third truth value is introduced, say a
value error. In any case, the two problems mentioned above disappear. If
the value error is assigned to z, then the interpretation of z = z is al
ways the same as the interpretation of ¢ = ¢, even in case ¢ is undefined.
NowA-conversion is allowed both in (4) and in (5), and furthermore, all
formulas (i.e. (2)-(6)) get the sameinterpretation for all values of ¢.
Note that this plea for using a third value is not an argument for using
someof the existing tables for three valued logic. Waldouses super
valuations (Van FRAASSEN1969), and one might try to reformulate super

87

valuations for an approach with a third truth value.
The idea of using a third truth value is not new; it goes back to

EUCKASIEWICS(1920), who gives tables for the connectives in a three

valued system. In the theory of topoi one introduces a value representing
'undefined' (GOLDBLATT1979, p.268). In the theory of semantics of program

ming languages the problems of working with 'undefined' are well-known. Un
definedness arises, for instance, whena process is defined for calculating
the value of a function, whereas the process does not terminate normally
because not enough memorycapacity is available. The standard approach in
this field is not to use partial functions, but to makethe functions total
by means of the introduction of an extra element in the semantic domain,
called 'errorvalue' or ‘bottom’ (SCOTT& STRACHEY1971, GOGUEN1978). In

the field of Montaguegramars the situation is as follows. A model for in
tensional logic with 'undefined' as possible value, is presented in Von
KUTSCHERA(1975). It is however commonpractice to consider undefinedness

not as a value (see KAMP 1975, COOPER 1975, HAUSSER 1976, WALDO1979,

KLEIN198]). I know of only one author who presents a treatment of a cer

tain fragment and uses a model with 'undefined' as value: Ter MEULEN(1980).

2.3. Discussion

The examples given in sections 2.1 and 2.2 show that it will be a con
siderable change of the framework to allow for algebras with partial ope
rations. Moreover, it is not obvious in which way we have to proceed.
GRAETZER(1968,p.80) says the following. 'For algebras there is only one
reasonable way to define the concepts of subalgebra, homomorphism,and
congruencerelation. For partial algebras wewill define three different
types of subalgebra, three types of homomorphism,and two types of con
gruence relation .[..] all these concepts have their merits and drawbacks’.
This situation constitutes an argument for myexpectation that it will be
a considerable task to develop a frameworkbased upon the use of partial
algebras. WhatI have seen of the literature concerning partial algebras
did not give me the confidence that an elegant framework can be built using
this notion (e.g. ANDREKA& NEMTI (1982), MIKENBERG(I977), ANDREKA,

BURMEISTER& NEMETI(1980)). The example concerning partial functions in

the semantics gives me the conviction that it is not a good idea to base
a semantic theory on partial functions. For these three reasons I do not
sympathize with the idea of basing the frameworkon partial algebras.

88

As for the introduction of partial rules in the syntax only, the situa
tion seems to be different. It is just a minor change of the frameworkbe
cause the homomorphicrelations between the algebras of the framework are
hardly disturbed. An argument in favor of the introduction of partial rules
is that such rules are used frequently in practice. But there also are ar
gumentsagainst the introduction of partial rules in the syntax. BelowI
will mention some of them, thereafter they will be discussed.

1. Consistency of argumentation

The first argument concerns the consistency of our argumentation. In
a Montaguegramar we distinguish categories, and the rules give the infor
mation in which way the expressions of certain categories combine to form
expressions of other categories. An argument for distinguishing such cate
gories (given e.g. in chapter 1) was that certain groups of expressions be
have differently from other groups in syntactic or semantic respects. De
signing partial rules would mean that amonga single category we distin
guish two subgroups (these expressions of a category to which the rule can
be applied, and those to which the rule cannot be applied). A consistent
reaction in such a situation would be to conclude that the system of cate
gories was not refined enough, and that the system has to be refined in
such a way that the partial rules are no longer partial.

2. Filtering power

A partial rule introduces a kind of filter in the grammar,and filters
form a powerful tool which can easily be abused. In a Montague grammar the

syntactic rules provide the information which kinds of expressions maybe
combined to form new expressions. But partial rules would make it possible
that the syntactic rules combinerubbish to rubbish, whereas a final par
tial rule would filter out the undesired expressions. In this way, the
other rules would not give information about the combinations which make
sense and which not. The filtering power of partial rules in syntax is
employed in the first two examples given above.

3. Generation of expressions

Often one wishes to conceive a grammar as a generating device. The
rules of the fragment presented in chapter 4 can easily be conceived in

this way. A rule like S4 is considered as an instruction stating that if
One wants t0 generate a sentence, one has tO generate a term and an

89

IV-phrase, and next combine them. The rules for term-formation and IV-for
mation are, in the sameway, considered as instructions for a generating
process. The processes of generating a term and of generating an IV-phrase
may be carried out independently, and every outcome of the processes is ac
ceptable. Details of a computer program based upon these ideas can be found
in JANSSEN(l980a).<Suppose now that the grammarcontains a partial variant

of S4, say a rule which imposes restrictions on the possible combinations
of a term with an IV-phrase. Then the simple algorithm just sketched cannot
be used. Onehas to design an algorithm that gives the guarantee that after
a finite amount of time an acceptable combination is found (provided that
there is one). This requirement would make the algorithm rather inefficient:
the only possibility I see for such an algorithm is one which tries out all
possible combinations of a term with an IV-phrase. So in the perspective of
a generation process partial rules are unattractive.

4. Consequences

An important argument in favor of total rules is that this requirement
has attractive consequences. Ona more theoretical level it gives rise to
an interesting restriction on the possibility to incorporate transforma
tions in a Montague grammar (see section 3). On a more practical level the
requirement of using total rules turns out to be a valuable heuristic tool.
Several partial rules from the literature can be reformulated or eliminated,
and the requirement suggests how this can be done. Thus several proposals
from the literature can be replaced by a simpler treatment (see section 4).

5. No theory

The introduction of partial rules, even if only in the syntax, con
stitutes a considerable change of the framework. As the given examples have
shown, the theory which we have developed, cannot be used without correc

tions. Since a theory about partial syntactic algebras is not available,
there is no guarantee that all consequences are acceptable.

Noneof these five arguments is decisive. As for 'consistency', it is
indeed more elegant to use the argument for the introduction of categories
in all situations with the sameconclusion. But with respect to other con
siderations there might be arguments of elegance in favor of partial rules
(e.g. that in that way linguistic generalizations can be captured). That
partial rules introduce a powerful filter, is not an impressive theoretical
argument since the algebraic grammarshave a universal generative capacity

90

anyhow. As for the argument of ‘generation’, it is not a primary aim of
our grammarto develop an efficient generating device. Froma practical
point of view, a parser might even be of more importancy than a generator.
The fact that the practical consequences of using total rules turns out to
be attractive in the situations considered, is not a guarantee that in
other cases this will be the case as well, and that there is no theory about
partial algebraic grammarsmight be a challenge to develop such a theory.

The arguments against the introduction of partial rules and the argu
ments in favor of doing so, have to be weighed against each other. The
arguments given above show that there are several unattractive aspects re
lated with the introduction of partial rules. I do not knowof convincing
arguments for the need or attractiveness of partial rules. In the remainder
of this chapter I will showthat there are several alternatives for the
introduction of partial rules. These alternatives are: reformulating as a
total rule (section 3), reformulating as a rule operating on another cate
gory (section 4) and a refined system of subcategories (section 5). It will
turn out that the use of these alternatives gives, in most cases, rise to a
simpler treatment than originally proposed: the requirement of using total
rules turns out to be a valuable heuristic tool. So the situation can be

sumarized as follows: there are arguments against the introduction of par
tial rules, and attractive alternatives are available. Therefore I do not
feel enthousiastic about the introduction of partial rules in the syntax. I
do not state that I will never use partial rules myself, but I wouldfirst
try to use total rules.

3. INCORPORATING TRANSFORMATIONS

In the field of transformational grammars, the use of partial rules is
standard. As part of their specification the transformations always contain
a restriction on the inputs to which they maybe applied (a SC: i.e. struc
tural condition). Onemight wish to incorporate transformations in Montague
grammarin order to benefit from the syntactic insights obtained in that
field. In this section I will present a general methodfor the incorpora
tion of a class of transformations in a Montaguegramar in which all rules
have to be total.

91

Somecharacteristics of transformations are as follows

u— 0 Transformations define mappings from trees to trees; these trees repre
sent constituent analyses of sentences.

N If several transformations can be applied, then their order of applica
tion maybe prescribed.

3. A transformation is applied to one input tree at a time.
4. A transformation imposes structural conditions determining the possible

input trees.

In order to take care of the first point, it is required that a Montague
grammardoes not produce plain strings, but trees, (or, equivalently, label
led bracketings). Let us assume that Montague's framework is adapted in the
way proposed by PARTEE(1973). So the grammar produces trees. This change

of the system turns all rules into rules which operate on trees, so in a
certain sense all the rules in the gramar becometransformations. In order
to avoid confusion of terminology, I will use the name C-transformation
('Chomskyan') for transformations used in transformational grammars. Once
that they are incorporated in a Montaguegrammar, they are called M-trans
formations.

The second characteristic point is not acceptable in our framework. As
explained in section 1, explicit rule ordering does not fit into the alge
braic approach. But an implicit rule ordering which has the same effects
might be possible. The third point does not give rise to problems. Although
the rules in a Montague grammarmostly take two arguments, there is no ob

jection against rules taking one argument. The fourth point is problematic
since it implies that C-transformations are partial rules. This is an im
portant characteristic of C-transformations which makes themvery attrac
tive for practical use. It makesit possible to indicate in a simple way
what the relevant input trees are, without the need to bother about irrele
vant inputs.

I will incorporate a class of C-transformations in a Montaguegrammar
which requires total rules, by reformulating them in a way which makes
them total. The reader might be surprised by this reformulation and at
first glance consider it as a sneaky trick employedin order to obey the
letter of the principle. This is not completely true. The reformulation
expresses a different view on transformations than the standard one, and
it has interesting consequences.

The reformulation proceeds as follows. Suppose that a C-transformation

92

is given in the following form.
If the input sentence satisfies structural condition SC, then wemay
apply transformation T in order to obtain a new sentence, otherwise T
cannot be applied.

Its reformulation as a total rule has the following form.
To the input sentence we apply operation T‘. Operation T‘ is defined
as follows. If the input sentence satisfies the structural condition
SC, then transformation T is applied, and otherwise the ’do nothing’
transformation is applied.

By the ’do-nothing‘ transformation is understood an operation which does
not produce another expression, but which gives its input unchanged as out
put. The reformulation expresses the view that an M-transformation applies
to all expressions of the required category, and that its application yields
always a result.

Corresponding with a M-transformation T‘ there has to be a translation
rule T. For the cases that we did 'nothing' in the syntax, we do ‘nothing’
in the semantics: the input formula is given unchanged as output. This means
that for these cases the translation rule T can be represented as the poly
nomial x Since in our framework T has to be represented by means of at 1'
single polynomial expression, T yields for each input formula, that formula
as output. So the M-transformations (obtained with the method described
here) do not change meanings. Consequently, if one wants to incorporate C

transformations in this way in a Montaguegramar, then these transforma
tions have to be meaning preserving! This requirement is a well-known hypo
thesis in the so called standard theory of transformational gramars (see
PARTEE1971 for a discussion); it is, however, nowadays not generally ac
cepted.

The conclusion that transformations have to be meaning preserving,
holds only for the method described above. But I do not know of any other

uniform method for incorporating transformations in a Montague grammarwith
total rules. To illustrate this, I consider one attempt. Instead of re
quiring that the translation rule corresponding with a do-nothing transfor
mation is the identity operation on formulas, we might require that it is
the identity operation on meanings (but not necessarily the identity on
formulas). This would make it possible that the polynomial is not the iden
tity when interpreted for the real transformation. Such a rule T has the
following effect:

93

r(¢) = [p(¢) if ¢ is the translation of an expression which sa
tisfies the conditions for application of the trans
formation (p formalizes the semantic effect of the
transformation)

¢ otherwise.

The first objection is that this effect cannot be obtained by meansof poly
nomial over IL. In order to obtain the effect of such a choice, IL has to

be extended with something like the if-then-else construction. There would
be, however, no problem in doing so. A more essential objection is that in
the description of the translation rule T information about the (syntactic)
expressions is used. This has.to be replaced by information concerning
their meanings. For most transformations there is probably no semantic
property corresponding to the condition on the transformation. In any case,
we have no uniform method for obtaining a logical condition which is equiv
alent with the structural condition of the transformation. So a uniform

method for finding the polynomial cannot be given.
I described a uniform method for the incorporation of a class of trans

formations in Montague grammarby means of a do-nothing transformation. This
methodmight be generalized to a method to eliminate certain partial rules
from a Montague grammar. For rules with one argument the method can be used

if the rule is meaning preserving. For rules with more than one argument
the use of a kind of do-nothing transformations implies that (at least) one
of the inputs should have the same category as the output. The do-nothing
transformation has to correspond to a translation rule which is the identity
on formulas. Therefore the translation rule which corresponds with the ori
ginal partial rule has to be the identity translation for one of its argu
ments. So this method can be used only for very limited class of the partial
rules with more than one argument.

4. DEFINED FOR ANOTHER CATEGORY

4.1. Introduction

In this section I will consider several rules from the literature which

are partial, and for which the corresponding translation rule is not mean
ing preserving. This implicates that the method developed in the previous
section cannot be used for them. The method employed in this section is to

94

reformulate the rule for another category than where it was originally for
mulated for. It turns out that in all cases the newversion of the rule is

simpler than the original formulation of the rule, and sometimes the origi
nal rule was incorrect whereas the new rule is correct. This shows the

heuristic value of the framework, and of the requirement of using total
rules in particular. The examples are presented in the notation of the origi
nal proposal; most examples were already mentioned in JANSSEN(l978a).

4.2. He] is loved

PARTEE(I973) considers the M-transformation ‘Passive Agent Deletion’.

An example is

F]02(he1 is Zoved by himg) = he is Zoved.1

Translation:

If ¢ e Pt and ¢ translates into ¢', then F (¢) translates102

into 3xj¢'.

On the one hand this transformation applies only to input trees of a
special form, on the other hand the translation rule is not the identity
mapping. This means that we cannot reformulate this transformation as a
total rule, and that Partee's wayof dealing with agentless passive is dis
allowed by the requirement of using total rules. For the example under dis
cussion, the literature provides an alternative. THOMASON(1976) presents
rules for generating passive directly, i.e. without a passive transforma
tion and without a passive agent deletion.

4.3. Give John a book

The C-transformation of dative shift changes sentence (7) into (8).

(7) Mary serves the cake to John

(8) Mary serves John the cake.

A refined category system for sentences in which dative-shift would be a
total rule is very difficult to design (since each newsubcategory would
require rules producing expressions of that subcategory). Also here the

literature contains an alternative. DOWTY(1979a) shows that the partial
rule of dative shift on the level of sentences, can be replaced by a rule
on the level of lexical elements. That rule changes the category of the
verb serve from DTV(verbs which take a Dative and a Term) to TTV (verbs

which take two Terms). By having a sufficiently refined category system,
these lexical rules becometotal rules. Manyexamples of transformations
which are reformulated on the lexical level can be found in DOWTY1978,

1979a, and in BARTSCH1978b, thus they can easily be reformulated as total
rules.

4.4. Mary shakes John awake again

In chapter 5, section 5.2, we considered some semantic aspects of the
proposals of DOWTY(1976) concerning the treatment of factives. NowI will

consider somesyntactic aspects (of course, in doing this, the semantic
aspects cannot be neglected). Dowtyproduces the factive sentence Mary
shakes John awake from the term Mary and the IV-phrase shake John awake.

This IV-phrase in its turn is obtained from the TV-phrase shake awake. The
first rule Dowtypresents for generating this TV-phrase is as follows.

0: If a e P and ¢ 6 Pt and ¢ has the form hen is 753 IV

then F3O,n(a,¢) e PTVwhere F3o,n(a,¢) = ay.

An example is:

F30 1(shake, he] is awake) = shake awake.

The corresponding translation rule reads:

T30: If a translates into a‘ and ¢
translates into ¢' then F (a,¢') translates into:

v A A v 30’n
APAXP(Axn[a'(x, APEP(xn)]) cAUsE[BEcoME¢']]J).

This rule is a partial rule which is not meaning preserving, so we
have to find another approach. Can the above result be obtained by means of
a total rule? For generating expressions like shake awake one only needs an
adjective and a TV-phrase. So it lies at hand to try the following rule

If a e P and B 5 Pa . then F (a,B) e P5601‘ TV d3 60] TV

The corresponding translation rule would be

T601= If a translates into a‘ and ¢ translates into ¢' then F6O](a,B)
translates into
APlx[vP(Aly[u'(x,AAP[vP(y)]) CAUSE[BECOME(B'(9))]])]

where F60](a,B) =aB.

96

Whydid Dowtypropose a production of shake awake, with as intermediate

stage the sentence He] is awake? This has probably to do with the ambiguity
of Mary shakes John awake again. On the one reading Mary has done it before,
on the other John has been awake before. Dowty treats again as a sentence
modifier and he needs two different sentences in the derivation in order to

deal with the ambiguity. He starts his investigations along this line prob
ably for historical reasons: it is the way in which such constructions are
treated in generative semantics. But, as in the previous examples, we need
not to follow the old pattern. By rule R601
proach to this ambiguity. The one reading can be obtained by combining again

we are guided to another ap

with Mary shakes John awake, the other by combining it with shake awake. I
do not go into details of this approach for the following reason. After con
sidering several phenomenaconcerning factives, Dowtyobserves that his
first approach is not completely adequate. He discusses extensively several
alternatives and escapes. Finally he concludes ‘there would be no reason
whywe should not then take the step of simplifying rules S30-S32drastical
ly by omitting the intermediate stage in which a sentence is produced‘. Next
he presents as the rule which he considers as the best one, a rule which is

identical with $60]. So the frameworkhas led us immediately to the solution
which is the simplest and best one. This example suggests that we might de
rive from the framework the advice ‘when designing a syntactic rule, ask for
what you need as input and not for more‘.

4.5. See himself

In chapter 5, section 2.1, we considered the derived verb phrase rule
of PARTEE(1973). This rule makes verb phrases out of sentences. An example
is

Fl04(he1 sees him] self? = see him*seZf.

The syntactic part of this rule reads as follows:

If ¢ 6 Pt and ¢ has the form t[T[hei]IV[a]], then Fl04(¢) e PIV, where

F104(¢) = a’, and a' comes from a by replacing each occurrence of hei,
himi, himiself by he*, him* him*se.-ifrespectively.

At the one hand the derived verb phrase rule is a partial rule, at the
other hand its output belongs to a different category than its input.
Therefore we cannot reformulate this rule as a total one using a do-nothing
transformation. The derived verb phrase rule is disallowed by the requirement

of using total rules, and we have to find another treatment for the cases
where Partee uses this rule. Let us, in accordance with the advice given in
section 4.4, just ask for what we actually need and not for more. In the
above example we only need a TV-phrase. So we might try the following rule.

S If a e P then F602(a) e PIV where F602(a) = a him*self.602 TV

The corresponding translation rule reads:

T If a translates into a‘, then F (a) translates into
Ax[a'(x,AAP[VP(x)])]

602 602

Wouldthis rule be an acceptable alternative?
Let us consider why one would like to generate see himself from the

source sentence he sees himself. There are semantic arguments for doing so.
The sentence John sees himself is obviously semantically related to the

sentences John sees John and He] sees him]. In transformational grammarthis
might be an argument for producing these sentences from the same source:
no other formal tool is available. The effect of Partee's rules is that such

a transformation is split up into several stages; it amounts to the same
relations. Montaguegramar has a semantic component in which semantic re
lations can be laid formally. So if we do not have to ask for a sentence as
source for syntactic reasons, we are not forced to do so on semantical

grounds. So this cannot be an argument against S602.
PARTEE(1975) provides as an explicit argument for the derived verb

phrase rule the treatment of sentence (9)

(9) John tries to see himself.

This sentence is generated, using the derived verb phrase rule, from sen
tence (10)

(IO) he3 tries to see him3self.

The translation of (9) becomes in this case (11)

(11) try to(Ajohn,AAx3[see(x3,AAP[vP(x3)J)J).

Sentence (9) can also be generated according to the rules of PTQ. If we do
not change the syntactic details of the rule the following sentence is pro
duced:

(12) John tries to see him.

In (12) him is coreferential with John. The translation is

98

(13) try tO(AJohn,Asee(AP[VP(AJohn)])).

Partee provides arguments for her opinion that interpretation (11) might be
preferable to (13). Let us assume that her arguments hold and consider

whether S602 is compatible with that. The combination of try to with the
translation of see him*self (obtained by T) yields502

(14) try to(“xx[see(x,“xp[Vp(x)]).

So the translation of John tries to see himself is, as desired, equivalent
to (11). As Partee notices, the derived verb phrase rule does not prohi

bit the unwanted reading (13). Rule S602 is an improvement since it only al
lows for reading (11). Of course, does not give a complete treatmentS602
of reflexives, and I amnot sure whether I would like to treat them in this
way. For the purpose of the discussion this aspect is irrelevant: I just
would like to demonstrate that the requirement of using total rules, and in
particular the advice ‘ask for what you need’, guides us to a better rule
than originally proposed.

4.6. Easy to see

PARTEE(1975) presents another example for the derived verb phrase
rule:

F104(he7 is easy to please) = be easy to please.

This example may seem somewhat strange since it produces the IV-phrase be
easy to please from a sentence containing this IV-phrase. The reason is
that the sentence is obtained by some transformation from the source

(15) lb please him7 is easy.

This transformation is not sufficient for producing all sentences contain

ing the phrase be easy to please. Phrases resulting from F104 have to be
produced as such, in order to generate (16) and (17).

(16) few rules are both explicit and easy to read

(17) try to be easy to please.

In PARTEE(l977a) other constructions are considered which contain expres
sions of this kind, such as

(18) John is being hard to please.

In order to deal with such expressions Partee needs another rule, called

99

the derived adjective rule, which has the following effect

IV[be easy to please] + [easy to please].ADJ‘

This is again a partial rule which cannot be brought in accordance with the
restriction of total rules. So for (l5)-(18) an alternative has to be given.

The advice given in section 3.4 stimulates us to ask just for what we
need for generating easy to please. Weneed an expression like easy and
some TV-phrase. Let us, following PARTEE1977a, assume that we have a

special category K53which contains easy, tough etc. The resulting expres
sion easy to please will be of the category ADJ’. Then we are guided to the
following rule:

S ' whereADJ"

(a,B) = a to B.

: If a e PK53 and 3 e P then F (a,B) e P603 TV 603

F603

The translation of (this) easy must be such that it maybe combinedwith an
TV-translation in order to obtain an expression of the type of translations
of adjectives. Then the translation rule reads

T603: If a translates as a' and B as B’ then F603(a.B) translates into
Axa'(AyB'(y,AP[VP(x)])).

Rule S603 makes it possible to generate the expressions containing
easy to please we mentioned above. Unfortunately, Partee does not provide
an explicit semantics for the source of all her constructions (sentence (15))
so we cannot compare it with the semantic consequences of S but I ex9

pect that she will finally end up with something close to t:23result of

T603. Concerning the syntax, it is demonstrated that our requirement guides
us to a much simpler treatment.

In section 3.5 and 3.6 we have considered two examples concerning the

derived verb phrase rule. These examples do not cover all possible applica
tions of the rule. But the treatment given here shows that in any case the
two kinds of examples for which Partee has used the derived verb phrases rule
can be dealt with in a better way by means of total rules.

5. SUBCATEGORIZATION AND RULE SCHEMES

5.1. Hyperrules

Anargument for distinguishing categories (given for instance in

100

chapter 1, section 1.3) is that certain groups of expressions behave (syn
tactically or semantically) differently than other groups of expressions.
If for somerule it turns out that the rule can only be applied to a subset
of the expressions of its input category, then this can be considered as an
indication that the system of categories is to coarse. A method to avoid
partial rules consists of refining the systemof categories. In this sec
tion we will consider examples of this method, and present tools which are
useful when it is employed.

There are several arguents for distinguishing amongthe category of
nouns the groups of mass nouns and of count nouns. One of the differences
between the expressions of these two groups is their behaviour with re
spect to determiners. Let us compare, as an example, the count noun ring
with the mass noun gold. Well-formed are a ring and every ring, whereas
ill-formed are a goldg and every gold. In larger expressions the same dif
ferences arise: well-formed are a beautiful ring and every ring from China,
whereas ill-formed are a beautiful gold and every gold from China. These
differences constitute an argument for introducing in the gramar the sep
arate categories 'Mass Noun’ and ‘Count Noun‘.

In many respects, however, mass-nouns and count nouns behave analogous

ly. Expressions of both categories can be combinedwith relative clauses
and with adjectives. If we treat mass nouns and count nouns as being
two independent categories, then the consequence is that the rules for rela
tive clause formation and for adjective addition are duplicated. Thus the
gramar will contain a lot of closely related rules. This effect will be
multiplied if more categories are distinguished amongthe nouns. Therefore
it is useful to have a tool for controlling this proliferation. Sucha
tool are rule schemes.

Rule schemes are not new in Montaguegramars; recall the rule for
relative clause formation given in chapter 4.

S3 n: CN X S + CN9

F3 n: replace in a all occurrences of hen by him/she/it, and of him”
by him/her/it, according to the gender of the first noun or term
in B; concatenate (a, such that, B).

This cannot be considered as a rule because F3 n deals with occurrences of
9

hen, whereas this expression does not occur in the lexicon of the fragment:
examples of relevant expressions of the fragment for this rule are he], he2.
So we have to consider S3 n as a rule scheme out which rules can be obtained.

3

101

This can done by replacing all occurrences of n in the scheme by some num

ber. Thus S3,n stands for an infinite collection of actual rules.
In S3,” three characteristic features are illustrated of the kind of

rule schemes that I will use. The first one is that a rule schemediffers

from a real rule by the occurrence of a parameter. contains the paraS3,”
meter n, which stands for a number. Schemesmay contain several occurrences

of one or more parameters, and I will put no restrictions on where a param
eter stands for. The second characteristic feature is that out of a scheme

an actual rule can be formed by means of substituting the same expression
for all occurrences of a parameter. If it is not required that all occur
rences are replaced by the same expression then the occurrences of the

parameter will be indexed (e.g. with n1,n2,...), and then occurrences with
different indices maybe replaced by different expressions. The third fea
ture is that a parameter may stand for a part of a (formally simple) symbol.

The expression hen is, formally spoken, a single generator in the syntactic
algebra, but in the scheme given above it is treated as a compoundsymbol

with he and n as parts. This does not change the role of he] in the alge
bra; it remains a simple generator. One should distinguish the formal posi
tion in the algebra, and the presentation of an infinite collection opera
tors (or generators) by means of schemes.

A rule scheme involving nouns is the following.

S6O4,n: Ad] X cm Noun + cm Noun

F604,”: Concatenate (a,B).
From this scheme two actual rules can be obtained. If cm is replaced by
'Count', then we obtain a rule which says that an adjective in combination
with a Count Noun forms a new Count Noun. If cm is replaced by 'Mass', then

we obtain a rule which says that an adjective in combination with a Mass

Noun forms a new Mass Noun. This scheme exhibits again the feature that a

compound symbol in the sense of the scheme, can be a single symbol in the
algebraic sense. In the algebra ‘Count Noun" is a category symbol, whereas

in S604,” it is a compoundwith ‘Count’ and 'Noun' as individual parts.
Notice that the above scheme contains two parameters: n and cm.

The new formal aspects introduced in this section are the use of com
pound category symbols and the possibility to use parameters for parts of
these symbols. The practical impact of this is that partial rules can be
avoided by increasing the number of categories, and that rule schemes can
be used for handling these categories.

102

NowI will introduce some terminology. The parameters in the rule
schemes are called metavariables. To distinguish the rule schemes of the

kind just described, from others, the former are called hyperrules (i.e.
they are rules containing metavariables). Hyperrules without the occurrence
of a variable are considered as a special case; by means of an ‘empty’ sub
stitution they becomeactual rules. I will give the hyperrules a ‘name’

which starts with an H, and its parameters will not be included in the name.

So rule S mentioned above will be called H604. The distinction between604,n
Count Nouns and Mass Nouns is in linguistics called subcategorization. I

will use this term with the following formal interpretation. A category C]

is called a subcategory of a category C2 if the carrier of sort Cl is a sub
set of the carrier of sort C2.

5.2. Metarules

Suppose that we have a hyperrule which contains some metavariable. In
the example from section 4.1 concerning nouns, I explicitly listed the two
possible substitutions. But often the situation will be more complex. There
are arguments for distinguishing amongthe nouns manymore subcategories,
and we will meet examples were infinitely manysubstitutions are possible.
Therefore it is useful to have a handsometool for telling what the possible
substitutions for a metavariable are. In the sequel we will use rewriting
rules for this purpose. Besides the grammarconsisting of hyper
rules I will give a second grammar, called metagrammar. This grammar con
sists of a collection context-sensitive rewriting rules, and in these rules
the metavariables of the gramar occur as auxiliary symbols. If we take
somemetavariable as start symbol, then the metagrammardetermines a lan
guage: the set consisting of all strings which can be produced from the
metavariable which was taken as start symbol. The possible substitutions
for a metavariable in somehyperrule are all strings from the language
generated by the metagramar using that metavariable as starting symbol.

The benefit of using a metagrammarbecomes especially clear in cases
were there are several levels of subcategorization and crosslinks in the
category system. As example I present the metagramar for the subcategori
zation system given in CHOMBKY(1965, p.85); it is striking to observe
that Chomskyused rewriting rules as well for the presentation of the
subcategorization.

103

common + sgn count

3971 —> {+

- count + sgn Abstract CN

count -> {- Animate CNuanim

anim + sgn Huan CN

According to the convention for substitution, this metagrammarimplicates
that a hyperrule containing anim as metavariable represents two actual
rules (for the subcategories + HumanCNand -HumanCN), and that a hyper
rule containing commonrepresents 5 actual rules.

A gramar designed in the way sketched above is a system with two levels
in the gramar: the level of metarules and the level of the (hyper)rules.
The conception of a gramar with two levels is due to Van Wijngaarden, and
was developed for the formal description of the syntax of the programing
language ALGOL68 (see VANWIJNGAARDEN1975). He used these notions hyper

rule and metarule with about the samemeaning (for a linguistically orient
ed example see VANWIJNGAARDEN1970). The same terminology, although with a

somewhat different meaning, is used in GAZDAR& SAG 1981 and GAZDAR1982.

The concept of a two-levelled gramar gives rise to an elegant method
handling a lot of rules, even an infinite number. The method could easily
be generalized to multi-level gramars. In VanWijngaarden's original
system the metarules have to be context-free, whereas I allowed for context
sensitive rules. This liberty has no consequences since the generative
power of system lies in the rules, and not in the metarules. In the example
given above (Chomsky'ssubcategorization) the context sensitive rules
turned out to be useful. If we would be more liberal, and allow to use
a type-O gramar as metagrammarinstead of a context sensitive grammar,
then this would have the consequence that the by the metagrammar produced
language would be undecidable. Then it would not be decidable whether a
substitution for a metavariable is allowed, and consequently the set of
actual rules would not be recursive. Therefore type-O grammarsare in our
framework not acceptable in the metagrammar.

5.3. Variables

The use of variables in a Montaguegramar gives rise to certain prob
lems. I will consider here two of them. A more extensive discussion will be

I04

given in chapter 8.

1. ‘Left over’

According to the PTQrules we may generate the sentence Heg runs. This

is not a correct English sentence because it contains he3, which is not
a correct English word.

2. ‘Not there‘

Onemight apply a rule which involves variables in a situation in which
such variables are not there. In this way one obtains relative clauses,
which do not contain a reflexive pronoun. An example is the man such

that Mary seeks a unicorn.

In order to eliminate these two problems, in chapter 8 a restriction will
be proposed that contains the following two conditions:

(I) The production of a sentence is only considered as completed if each
syntactic variable has been removedby somesyntactic rule.

(II) If a syntactic rule is used which contains instructions which have the
effect of removing all occurrences of a certain variable from one of
its arguments, then there indeed have to be such occurrences.

It is evident that requirement (II) can be guaranteed by means of a
partial rule. To this aspect I will return later. Requirement(I) says that
all stages of the derivation process have to meet a certain condition. So
is appears to be a global filter. Since one can tell from the final result
whether the condition is met, it reduces however to a final filter. As I
explained in chapter V, filters are not acceptable in our framework. But
the effect of (I) can be obtained by means of a partial rule as follows.
Replace everywhere in the grammar the category of Sentences by the catego

ry of Protosentence (so the grammarproduces Protosentences). Then we add
an extra rule which produces a sentence out of a protosentence in case re
quirement (II) is fulfilled, and which is not applicable when this require
ment is not fulfilled. Thus only sentences obying (I) are produced. Since
I aim at avoiding partial rules, I have to provide an alternative method
for the incorporation of the above two restrictions. This will be given be
low.

Categories are defined to be complex symbols consisting of two parts:
a category name as we used before (e.g. S), and a representation of a set
of integers. The set indicates which indices occur in the expressions of

105

that (complex) category. So he2 or he3 is an expressions of the category
(T,{2,3}). Other examples are He runs of the category (S,{4}). and John of4
the category (T,¢). The language generated by the grammaris defined as the
set of expressions of the category (S,¢).

The hyperrules of the gramar contain variables for integers (n) and

variables for sets (set set2,...). The following notations are used.1;

set] U set2 denotes the set obtained as union of the sets set] and set2
set with n is a compoundexpression indicating that set contains elementn
set - n is a compoundexpression denoting the set obtained by removing

the element n from set.

The hyperrule corresponding with S4 reads

H4: (T,set1) x (IV,set2) + (S,set U setg)1

F4: replace the first verb in B by its third person present singular,
concatenate (a,B).

This hyperrule states that set of the syntactic variables in the sentence is
the union of the syntactic variables in the T-phrase and the IV-phrase. An

example of an actual rule obtained from H4 is

H4:

F4: see above.

This rule may be used in the production of He]

with S2,S5,...,S]3 and S17 we have analogous hyperrules. The hyperrules
corresponding with the rules S

(T.{1.2}) ><(IV,¢) -> (S.{l.2})

or he2 runs. Corresponding

14 and S3 are:

H14: (T,set1) x (S,set with n) + (S,set U [set2—n])2 1

F14: substitute (a, first occurrence of he in B);
replace all occurrences of hen in B by he/she/it and of him” by
him/her/it according to the gender of the first noun or term in a

H : (CN,set1) x (S,set2 with n) + (CN,set —n]).1 u Esetg

F : Replace hen in B by he/she/it and him” by him/her/it, according
to the gender of the first CNin a;
concatenate (a, such that, B).

An actual rule obtained from H14 is

H3: (T,¢) x (s,{2,3}) + (s,{3}).

An application of this rule is the production of John loves himg from John

I06

and heg Zoves him3.
A formalist might object to the hyperrules given above since they im

plicitly assume that the reader knowswhat sets are, and what is meant by

the symbols U, with and -. This is, however, not knowledge about operations
of the grammatical system, but set theoretical knowledge, and the rules
should not be dependent on this knowledge. In appendix 3 of this book it
will be shown how these notions can be described by means of purely gram

matical tools (viz. by rewriting rules).
Clause (I) required that the expressions of the generated language do

not contain any occurrences of syntactic variables. In myapproach this
requirement is not formalized as a filter or as a condition in a partial
rule, but within the system of categories. This is theoretically more at
tractive, and practically somewhatsimpler. Clause (II) requires that in
case a rule is applied which removes variables, then there are such occur
rences. This clause is also dealt with in the categorial system, as one
can see from the following. Let us suppose that the categorial information
given in the rules corresponds with the syntactic operations performed by
these rules (i.e. if the rule removesall occurrences of a variable, its
index is removed from the set mentioned in the category of the produced
expression). This assumption can easily be checked from the rules. Assuming

this correspondence, the condition set2 with n in H14 and H3 guarantee that
these rules are applied only to expressions containing the required occur
rences of variables. So instead of formalizing (1) as a condition in a par
tial rule, it is formalized within the categorial system. This is theore
tically more attractive, but practically somewhatmore complex.

One observes that the requirements concerning variables can be dealt
with in accordance with the aim of using total rules. This is mademanageable

by using a two-level grammar. Within this system the requirements can be
handled about as easy as in a system with partial rules. But the introduc
tion of two levels did not make the system simpler. Therefore I would not
say that the requirement of using total rules has led us here to a simpler
treatment. In order to see practical advantages of using a two-level
grammar, one has to consider a much more complicated situation. Such a
situation will be described in chapter 9: the interaction of tense scope,
and quantifier scope. But in the present situation the advantage is only of
theoretical importancy. Therefore one might take in practice the following
position. It has been shownthat the requirements concerning variables
can be incorporated within a system with only total rules. This implicates

107

that in practical cases there is no need to treat the requirements explicit
ly in this way. One might use requirements (I) and (II) as they are formu
lated, assumingthe present formalization.

5.4. A theoretical result

Themethodintroduced in this section for eliminating partial rules
consists in refining the system of categories. For nouns I gave an example
with five subcategories, and for the treatment of variables even an in
finite number. Onemight consider the possibility of applying this method
up to the very limit (every expression constituting a single category on
its own). By proceeding that far, all partial rules are eliminated from the
grammar. This simple idea is followed in the proof of the following theorem
(LANDSBERGEN 1981).

5.1. THEOREM.For every enumerable algebraic grammar G with partial rules,
there is a general algebraic grammarG‘ with total rules, such that
L(G) = L(G').

2399:. Weobtain G‘ as follows. For each category C of G and each expression
w of this category, we define a new category in G', denoted by the compound

symbol (C,w). The only expression of this category is w. Since for each
sort of G, the expressions are recursively enumerable, the sorts of G’ are
recursively enumerable as well (but in general not recursive). For each
rule R in G there is a collection of rules in G’. If according to a rule of

G the expression wo (of category Co) is formed out of the expressions
w1,w2,...,wn of the categories Cl,...,Cn, then there is in G’ a rule pro
ducing expressions of the category (C0,w0) out of expressions of the cate
gories (C],w1).(Cn,wn). Of course, this rule can be used in only one pro
duction, but it is a total rule. Since the rules of G and the expressions
of L(G) are recursively enuerable, the rules of G' are recursively enumer
able as well. Suppose that the distinguished category of G is S (so

L(G) = GS). Then we add for each category (S,w), where w is arbitrary, a
new rule which takes as input an expression of category (S,w) and yields
as output the expression w of category S. Fromthis construction it is evi
dent that L(G) = L(G').
5.]. END

The theorem states that every language generated by a grammarwith

108

partial rules can be generated by a grammarwith total rules. As such the
theorem is not surprising: even finite gramars have a universal generating
capacity. The merit of the theorem lays in the method used in its proof.
The grammars G and G' do not only generate the same language, but they do

so in the sameway. The derivational history of a given expression has in
G and in G‘ the same structure. Several properties of G are carried over to
G’; for instance, if Gconsists of concatenation rules only (i.e. if the
rules correspond with a context free rules), then the same holds for G‘.
This correspondence between G and G‘ means that the proof can be used for
restricted classes of grammarsas well.

One might be tempted to conclude from the theorem that gramars with
partial rules are just notational variants of grammarswith total rules,
and that it constitutes a justification for writing partial rules in a
frameworkthat requires total rules. This is howevernot the case, since
an important property of G can be lost by transforming it to G‘. If G is
a recursive grammar, where its generated language L(G) is not recursive,
then G‘ is not a recursive grammar. In chapter 2 we have restricted our at
tention to the class of recursive grammars. Hence the method used in the
theorem may bring us outside the class of grammars we are working with.
For this class the grammarswith partial rules cannot be considered as a
notational variant of the grammarswith total rules. So the requirement to
use total rules is a substantial one. It has a consequence that not every
condition on applicability is acceptable: only those are acceptable
which can be reformulated as total rules in a recursive algebraic grammar.
In previous sections it has been demonstrated that such a reformulation gives
rise to a simpler, a better gramar.

6. THE WELL-FORMEDNESS CONSTRAINT

In this section I will discuss someaspects of a principle for syntax
due to Partee. It is called ‘the well-formedness constraint‘, and it reads
as follows (PARTEE1979b, p.276):

Each syntactic rule operates on well-formed expressions of specified
categories to produce a well-formed expression of a specified category.

The motivation for this principle is related with the aim ‘to pursue the
linguists goal of defining as narrowly as possible the class of possible
grammarsof natural languages‘ (op. cit. p.276). Although this is a com
pletely different aim than the themeof the present chapter, it turns out

109

that the well-formedness constraint has practical consequences which can be
comparedwith consequences of our algebraic approach, in particular with the
requirement of using total rules. I will restrict the discussion of the
well-formedness constrain to these aspects.

Our investigations started from algebraic considerations, and the re
quirement of using total rules constitutes a formal restriction. The value
of the requirement was its impact on heuristics. What is the position of
the well-formedness constraint in this respect? Is it a formal restriction,
heuristic guideline, or something in between these two? I will first try
to answer this question by considering the constraint as it is formulated;
Partee's interpretation will be considered thereafter. In order to answer the
question concerning the formal position of the well-formedness constraint,
it is important to have a formal interpretation for the phrase ‘well-formed
expression’. I will consider two options.

Onemight decide to associate the phrase ‘well-formed expression‘ with
the meaning that this phrase has in formal language theory. The rules of a
grammarproduce strings over some alphabet, and these strings are called
the well-formed expressions over this alphabet. The epithet ‘well-formed‘ is
used to distinguish these strings from the other strings over this alphabet.
Un-well-formedgenerated expressions do not exist by definition. It is posr
sible to tell what the well-formed formulas of predicate logic are, but it
is not possible to give examples of un-well-formed formulas of predicate
logic: if a string is not well-formed, it is no formula at all. If we apply
this interpretation to the PTQgrammar, then we have to conclude that love

him] is a well-formed expression (of the category IV) because it is a string
produced by the grammar, whereas love her is not well-formed (because it
is not produced as IV-Phrase). With this interpretation the phrase in the
constraint stating that the rules produce well-formed expressions is a
pleonasm. The same holds for the input: the only possible expressions of
specified categories are the expressions generated by the grammar.With this
interpretation the well-formedness constraint just describes howthe frame
work operates, and it is no constraint at all.

Onemight relate the notion well-formedness with the language generated
by the grammar. Then the generated language consists of well-formed expres
sions, and also all substrings of well-formed expressions are considered as
well-formed. Following this interpretation, the constraint says that all
intermediate stages in the production process have to be substrings of the
produced language. So an acceptable gramar for English has not only to be

110

adequate (i.e. produce the correct language), but also all the intermediate
stages arising from the grammarhave to be adequate in a certain sense.
This mixture of the notions ‘possible grammar‘ and ‘adequate grammar’ makes
the constraint an unusable one. Suppose that a list of rules of a gramar
for English is presented, and one is asked whether they conform the con
straint. In order to answer this question one may start to produce some
strings by means of the rules, and ask for each application of a rule,
whether it is applied to well-formed expressions of English. Suppose that
this is the case, then one cannot thereby conclude that all rules from the
list obey the constraint, since not all possible derivations have been con
sidered. Onehas to try and try again, but the definite answer ‘yes’ can
not be given. It maybe undecidable whether an arbitrary grammarsatisfies
the constraint or not. Of course, this is not a mathematical proof. Such
a proof cannot be provided, since the set of English sentences is not a
mathematically defined set, but related questions in formal language theory
are knownto be recursively undecidable. Since the constraint is an unde
cidable constraint, it cannot be accepted as a restriction on the class of
possible gramars (otherwise a more attractive, undecidable, constraint
would be ‘is an adequate gramar for English‘).

Partee gives no formal definition of the notion ‘well-formed expres
sionfl Conclusions about her interpretation have to be based upon the exam-:
ples she gives concerning the constraint. As an illustration of the con
straint she presents a rule which forms adnominal adjectives from relative

clauses. (PARTEEl979b,p.277). Its syntactic function Fi has the effect
that:

Fi(immigrant whois recent) = recent immigrant.

The input for this operation is an ill-formed expression (immigrant whois
recent), and therefore she judges that this rule is prohibited by the well
formedness constrain. From this example is clear that she does not follow
the first interpretation given above, the second one is closer to her in
tentions. But she would not consider all substrings of well-formed expres
sions as being well-formed as well (Partee, personal communication). I ex
pect that John and Peter is well-formed, whereas John and is not. Probably
the judgement what well-formed expressions are, is to be based upon lin
guistic intuitions. In any case, Partee does not give a formal interpreta
tion for the notion ‘well-formed expression‘. If this notion is not for
mally interpreted, then the constraint itself cannot be a formal

Ill

restriction either. Furthermore, both our attempts to give a formal inter
pretation were not successful.

I conclude that the constraint has to be considered as a guideline for
designing rules. As such it might be useful for its heuristic value, but it
has not the position of a formal constraint on the possible kinds for gram
mars. As a guideline it is a very appealing one, since it aims at a natural
wayof production; in which no artificial expressions occur as intermediate
forms. However, following this interpretation is not without problems. As
HAUSSER(1978) remarks, the intuitions concerning the well-formedness of
incomplete expressions are rather weak. Hausser gives as example and about
the seven dwarfs quickly; well-formed or not? Furthermore, the well-formed
ness constraint does, even in clear cases, not guarantee that only natural
production processes are obtained. Hausser gives as example an operation
with the following effect.

Fn(J0hn kissed Mary) = Bill walks.

This operator Fn is according to the well-formedness constraint an accept
able operator: an intuitively well-formed expression is transformed into
well-formed expression. In order to give real content to the principle, re
strictions have to be put on the possible effects of a rule. PARTEE(1979a)
gives someproposals for such constraints, and her ideas will be followed
in chapter 8.

A consequence of Partee's interpretation of the well-formedness con
straint brings us back to the discussion of this chapter. Her interpretation
says that in all stages of the production process only well-formed expres
sions are formed. So there is no need to filter out some of them. Neither

there is a need to have obligatory rules which have in transformational
gramars the task to transform ill-formed expressions into well-formed
ones. So in a grammarsatisfying the constraint obligatory rules and filters
are not needed. Partee even goes further and interpretes the constraint in
such a way that they are disallowed. As we found in section 1, such require

ments are a direct consequence of the algebraic framework.
Partee's proposal deviates in an important aspect from our framework.

Following linguistic practice, she allows for partial rules. As explained
in the previous sections, I would not like to follow this idea and I would
prefer to use total rules. Someeffects of the well-formedness constraint
can be dealt with by means of the requirement of using total rules, as will
be shown below.

112

Suppose that in a grammarwith total rules there is a rule Si of which

the syntactic operation Fi has the following effect.

Fi(immigrant whois recent) = recent imigrant.

So the rule operates on a comon noun phrase which, according to rule S3,n
must be constructed from the commonnoun immigrant and a sentence of the

form hen is recent. This sentence has to comefrom the IV-phrase be recent.
Since we require that the rules are total, we may also combine this IV
phrase with other term-phrases. So the sentence John is recent also is
generated by the gramar, and this is not a correct sentence of English.
This example suggests that an adequate grammarfor English with total rules

cannot contain a rule which generates recent immigrant in the way Si does,
because one cannot get rid of the phrase be recent. But an easy solution
for the production of recent immigrant is available. Follow the advice
given in section 4.3, and ask for what we need to produce this phrase. This
advice suggests us to ask for an adjective (recent) and a noun phrase
(immigrant). So the requirement of using total rules has the samepractical
impact here as the well-formedness constraint: it is a guideline for ob
taining a non-artificial production process. (Note that I did not prove

that it is impossible to have a rule like Fi in a system with total rules;
I expect that a refined subcategorization might makethis possible).

PARTEE(1979b) discusses certain aspects of the formation of (13).

(13) Fewer of the womencame to the party than of the men.

Following BRESNAN(1973), this sentence is derived from the (ill-formed)
sentence (14) by means of an operation called Comparative Ellipsis.

(14) Fewer of the womencame to the party than of the men came to the party.

This is in its turn derived from (15) by Comparative Deletion.

(15) Fewer of the womencame to the party than x many of the men came to the
party.

As Partee says, the production of (13) is a difficult case for the well
formednessconstraint since it uses the ill-formed source (14). Partee
says: ‘Unless further analysis of these constructions leads to a different
kind of solution, they would seem to require the admissibility of ungram
matical intermediate stages. (Note that the derivations in question give
semantically reasonable sources, so any reanalysis has a strong semantic
as well as syntactic challenge to meet).' (PARTEEl979b,p.303,304).

113

For our requirement of using total rules this production process is
problematic as well. It is no problem that the rules of comparative deletion
and comparative elipsis are partial rules, since they are meaningpreserving.
But the production of the ill-formed sentence (14) is problematic since we
cannot get rid of this sentence: we cannot filter this sentence out, we may
not have it as an expression of the generated language, and we may not use
its embeddings (cf. the discussion concerning recent immigrant). But why

follow this approach? Maybeone judges that a source like (14) or (15) ex
presses the semantic content of the comparatives more completely than com
paratives. Or one wishes to explain the semantic relations between all
variants of comparatives by generating them from the same kind of source.
In transformational gramar this might be valid arguments, no other formal
tools than transformations are available. In a Montaguegrammarthere is a
semantic component in which such semantic relations can be formally ex
pressed. So if we do not need such a source for syntactic reasons we may
try another approach. The requirement of using total rules guides us toward
asking what we need. In order to make a sentence of which the kernel con

sists of two terms and a verb phrase, we need two terms and a verb phrase.

Therefore we should introduce a three place rule

F605 (John,Bill,see women) = John sees more womenthan Bill.

The semantic component has to express what is compared; the syntax needs no
to do so.

Another rule might compare of two nouns in which degree they are in
volved in a certain property.

F606 (man,boy,come to the party) = fewer of the men come to the party
than of the boys.

One may also compare two terms for two verb phrases

F607 (John,Bill, see men,meet women) = John sees more men than Bill
meets women.

These examples do not provide for a treatment of the comparative. They just
illustrate the kind of solution one might search for in a frameworkwith
total rules. Variants are possible: for instance, one might introduce com
pound quantifier phrases like fewer of the man than of the boys, and use

instead of F606 a rule with two arguments. Note that all these attempts to
find total rules, are in accordance with the well-formedness constraint.

115

CHAPTERVIII

CONSTITUENT STRUCTURES

ABSTRACT

Someproposals from the literature for assigning constituent structures
to the expressions produced by a Montague grammar are shown to violate the

framework. A treatment of the syntax of the PTQfragment is presented which
assigns constituent structures to the produced expressions and which meets
the requirements of the framework. Furthermore a restricted set of syntac
tic operations is introduced for the description of the syntactic rules.

116

1. STRUCTURE - WHY?

The syntactic rules of PTQmake a primitive impression in comparison
to the kind of rules used in transformational gramars. A first point of
difference is that the syntactic operations makeno reference to the con
stituent structure of the involved expressions. A second one is that the
syntactic operations are described without any formalism: the desired ef
fects are described by English sentences. On the one hand English is a
rather poor tool since in this way the description of the syntactic opera
tion can hardly use any abstract syntactic information. At the other hand
it is a very unrestricted tool, since it allows any operation that can be
described in the English language. Since the earliest times of Montague
grammar, it has been tried to bring the syntax of Montague grammarcloser
to that of transformational grammar.This would open the possibility to in
corporate syntactic knowledge from transformational grammars in Montague
grammar,and to discuss the differences. In this chapter I will present the
first steps of an approach which makes the syntax of Montague grammar less
primitive: by developing a formalism for the formulation of the syntactic
rules, and by introducing constituent structures in the syntax.

An example of the kind of structure used in transformational grammars
is given in figure I. The tree is not taken from any proposal in that field
(then several details wouldbe different), but it can be used to illustrate
what kind of information is provided by such trees. The words attached to
the end nodes of the tree yield, when read in the given order, the sen
tence of which the tree represents the constituent analysis. Constituents
are groups of words which have a certain coherence. This appears for in
stance from the fact that it is rather easy to replace a constituent of a
sentence by another group of words, whereas this is not the case for ar
bitrary groups of words from the sentence. The tree in figure 1 indicates
what the constituents of the sentence are: all words of a certain con
stituent are connected to the samenode in the tree. This node is labelled

by a symbol: the nameof the category of the constituent. Thus the tree
gives the information that each word is a constituent, and that e.g.
a unicorn is a constituent, whereas seeks a is not.

117

T////////S\\\\\\\\IV

Joihn w/ \I‘
I / \cN

seeks DTt unicorna

Figure 1 Tree like those in transformational grammar

A first arguent for the introduction of constituent structures in the
syntax of Montaguegramars is that it would make it possible to incorporate
ideas, or even particular rules, from transformational grammarsinto
Montaguegrammar. I will not try to sketch the role such structures play in
the syntax of transformational grammars; the reader should accept that con
stituent structures have proven their usefulness. A second argument is that,
even without the aim of incorporating ideas from transformational grammar,
it is useful to have structural information available about the expressions
dealt with. An example, based upon a phenomenon from the PTQgrammar, is

the following (PARTEE1973).

Rule S a from PTQ, the rule for verb—phrase conjunction, produces theII
IV-phrase

(I) walk and talk.

Rule S8 produces from (1) and the verb try to the IV-phrase

(2) try to walk and talk.

From the term John and the IV-phrase (2) we can produce, according to rule
S the sentence4:

(3) John tries to walk and talk.

Another derivation is to produce first (using S8)

(4) try to walk.

Next we produce (5), using S1].

(5) try to walk and talk.

118

Application of S to (5) yields (3), but the correct form of a sentence4
with the intended conjunction would be

(6) John tries to walk and talks.

In order to correct rule S4 for this, it is useful to distinguish the con
junction of try to walk and talk form the IV phrase try to walk and talk.
So it is useful to assign structure to the strings (5) and (6).

This second arguent shows that it is useful to have somekind of
structure available, not that it has to be the kind of structures used in
transformational grammars. As has been shown by FRIEDMAN(1979), the kind

of problems mentioned above can be dealt with by un-labelled trees. A com
pletely different kind of syntactic structures is used in JANSSEN1981b,
where the present framework is combinedwith the structures used in Dik's
‘functional grammar‘ (DIK 1978,1980). However, the kind of structures I
will consider in this chapter are constituent structures of the kind de
scribed above.

2. THEORETICAL ASPECTS

2.1. Trees in Montague grammar

The rules of a Montague grammardetermine how basic syntactic units

are combined to larger ones. Such production processes can be represented
by a tree. The tree for the de-dicto reading of John seeks a unicorn is
given in figure 2.

John seeks a unicorn

/\
John seek a unicorn

seek a unicorn

a unicorn

Figure 2 tree from Montague gramar

Such trees are representations of derivational histories. For this reason
PARTEE(l975)comparesthemvfiJf1theT-markers from transformational gramar,
andrunzwith theproduced trees themselves. In transformational grammarstrees
are produced, and if one wishes to compare the approach of Montague gramar

119

to the approach of transformational grammar, then one has to compare trees.
Trees like the one in figure 2 are the only trees one finds in publications
of Montague. Therefore one is tempted to compare such trees with the trees
obtained in transformational grammars.

The tree in figure 2 is not of the form of the trees of transforma

tional gramars. The main difference is that in transformational grammars
the nodes are not labelled with expressions, but with category symbols
(except for the end-nodes). Therefore one considers the tree from figure 2
as an unusual representation of the tree given in figure 1. Then the tree
from figure 2 is taken as the syntactic structure assigned to the sentence
by the PTQgramar. Proceeding in this way, using the only trees available
in Montaguegramars, it becomespossible to compare the structures in
Montaguegrammarwith the structures in transformational grammars. This
view on syntactic structure in Montaguegramar can be found in work of

several authors. In the next chapter we will see that PARTEE(1973) has
comparedthe relative clause formation in Montaguegramar and in transfor
mational gramar by comparing trees like the one in figure 2, with those
of transformational grammars. This way of discussion was followed up in

by BACH& COOPER(I978). The same approach can be found in COOPER&

PARSONS(1976). They describe a transformational grammar that is claimed
to be equivalent with the PTQsystem. The base rules of their transforma
tional gramar produce (roughly) the same trees as the derivational his
tories of PTQ.

If one just compares the trees in the two approaches one soon will
find great differences, and problems arise if one wishes to take the trees
from Montaguegramar as serious proposals for the syntactic structure as
signed to a sentence. Consider the tree for the de-re reading of John seeks
a unicorn, given in figure 3, or alternatively the one in figure 4.

John seeks a unicorn S
’/I,» \\\\ T’/// \\\ S

a unicorn John seek him] / \\
\ Det CN T I

a unicorn John seek him I I I \\1 . /
,/’ ‘\\ a unicorn John TV Tseek he

1 I I

seek he]

Figure 3: de-re reading Figure 4: variant of figure 3

120

This tree cannot be taken as a serious analysis of the constituent structure
of the sentence since it does not even fulfill the weakest requirement: that
the lexical material is presented in the correct sequence.

Cooper has developed a variant of Montague grammar in which no quanti

fication rules are used, and which seems to eliminate the problem just men
tioned. I give an example from COOPER1978 (the idea originates from COOPER

1975). Consider the tree in figure 2. The interpretation of this tree fol
lows its structure. The lexical items are interpreted first, and next the
interpretations of larger constituents are formed. Theusual interpretation
yields the de—dictoreading, roughly presented as John’(seek'(a unicorn’)).
The de-re interpretation is obtained by means of a mechanismwhich gives
the translation of the unicorn wide scope. This mechanismsimply is a
storage mechanismwhich allows the translation of the noun phrase a unicorn
to be stored, putting a variable placeholder in the regular translation.
The stored translation of a unicorn is carried up the tree, until it can be
retrieved at a suitable point where quantifying in is allowed. The store is
a set of pairs consisting of an interpretation of a term and a variable.
The way of processing is as follows.

. v .
a unicorn -~~+ <APP(x0), <a unic0rn',x0>>

, , v . ,
seek a unicorn --+ <seek (KPP(xO)), <a unicorn ,x0>>

. A v .

John seeks a unicorn -~~+ <John'(seek'(AP P(x0))), <a unicorn’,xO>>
retrieve from store, yielding

<a unicorn’(Ax0(John'(Aseek(APVP(x0))))),¢>.

Cooper is not very explicit about the details of his proposal, and
therefore it is difficult to evaluate it. Nevertheless, I have serious
doubts about the acceptability of his proposal in any approach which ac
cepts the principle of compositionality of meaning. The reason for this
is as follows. The phrase seek a unicorn has two parts: seek and a unicorn.
The contribution of the latter part to the meaning of the whole phrase con-'
sists in three components, one of them being the variable x Wehave0.
formalized meanings as abstract functions (intensions), and the symbolx0
is not an element in this formalization. I assume that Cooper does not in
tend to define meanings as something which has the symbol x as a component.0
So the mechanism does not build meanings from meanings, and therefore it
violates the principle of compositionality of meaning. A more explicit
description of a storage mechanism is given in PARTEE& BACH(1981); that

121

proposal is discussed in LANDMAN& MOERDIJK(1983), where is shown that

related objections apply.
The above discussion shows that we cannot get rid of trees like the

one given in figure 3 by using Cooper storage. This has the following con
sequence. If one takes the tree representing the derivational history of a
sentence in a Montaguegrammarto be the syntactic structure assigned to
that sentence, then one has to conclude that in certain cases they are un
acceptable as constituent structures. This is a practical reason against
identifying the derivational histories with constitutent structures. As
will be explained below, there are also algebraic reasons against it.

2.2. Algebraic considerations

In our frameworkthe syntax is an algebra, i.e. a collection of car
riers with operations defined on them. An algebra can be defined in many
ways. For instance, one can enumerate all the elements of each carrier, and
state what the operators are. But we have developed a more efficient way of
defining an algebra: state what the generators and the operators are. In
this waywith each element of the algebra (at least) one derivational his
tory can be associated. Such derivational histories are important for the
sanantics, because this process is mirrored whenbuilding the corresponding
meanings. Wehave met several examples where the choice of a certain gener
ated algebra was determined by semantic considerations. If we consider only
the syntactic side of the situation, the generation process is just some
method to define the algebra. If we would replace a given definition by
another definition of the samealgebra, the elements and the operators
would remain the same. More in particular, an element of an algebra by it
self does not have a derivational history. Only if one has additional in
formation concerning the way in which the algebra is defined, it becomes
possible to associate with an element somederivational history, and with
the algebra itself an algebra of derivational histories (a term algebra).
The operators of a syntactic algebra are functions defined on the elements
of that algebra, and since the information how the algebra is defined,
cannot be read off from these elements, the operators of the syntactic al
gebra cannot interfere with derivational histories. In section 2 I argued
that we need syntactic structures in order to design more sophisticated
rules. As argued above, the syntactic rules are completely independent of
such histories. Hencewe cannot consider derivational histories to be the

122

structures we are looking for. This means that the only available trees
cannot be used as a kind of syntactic structures. So the conclusion has to
"be that the PTQgrammarassigns no structure at all to the expressions it
deals with.

If one wants the elements of an algebra to have a structure, then these
elements should be structures! So in order to obtain a syntactic structure
for the expression of a Montaguegrammar, this gramar should produce struc
tures: trees, or, equivalently, labelled bracketings. This brings us to an
approach dating from the first years of Montague gramar: PARTEE1973. That

proposal follows the sound approach to structure in Montague grammar. It
distinguishes between the structure of the derivational history and the
structure of the produced element itself. A remark about the relevance of
distinguishing these two levels in a grammarfor natural language can al
ready be found in CURRY(I961), who calles the level of history ‘tecto
grammatics', and the level of produced expressions 'phenogrammatics'. DOWTY
1982 claims that rather different languages (such as Japanese and English)
mayhave the same tectogrammatic structures, whereas the differences be
tween the languages are due to phenogrammatical differences. This idea can
also be found in LANDSBERGEN1982, where it constitutes the basic idea for

a computer program for automatic translation. In figure 5 the two kinds of
structure are presented for the de-re reading of John seeks a unicorn: the
trees within the squares are the constituent structures producedby the
gramar, and the tree consisting of double lines with squares as nodes is
the tree representing the derivational history.

2.3. Practical differences

AboveI argued on algebraic grounds for distinguishing the structure
an element has, from the derivational history assigned to it in somegenera
tive definition of the algebra. A practical aspect of this distinction is
that there are completely different criteria for the design of these two
kinds of structures. The derivational history is mappedhomomorphicallyto
the semantic algebra and determines the meaning of the expression. Seman
tic considerations play a decisive role in the design of the operators, and
considerations concerning efficiency of definition determine the choice of
the generators. The inherent constituent structure of the expressions is
determined by syntactic considerations, e.g. the role such a structure has
to play in the description of the syntactic effect of an operation. These

123

S/\
T I///IV

TV

John

61

/

\T1 /
seeks DTt

{S, 14,1}

\°“.
unicorn// \\

-n

F

T {L3} ‘ S {S,4}

DTt/Xcxlq T/ \IV\ I
6‘ unicorn , TV T

’l [John seleks W’!-1
Det {Det}l ' / \
a L_un_7;?0m IT {T} N {Iv,5}

John

Figure 5 Onederivational history containing manyconstituent
StI'LlCtures

124

two different kinds of arguments mayyield different kinds of structures.

Below I will give some examples which show that the derivational history
may sometimes differ considerably from what an acceptable constituent struc
ture might be.

1

is not an acceptable syntactic structure since it contains at an end node
a) The PTQrule S14 produces e.g. John runs out of John and He runs. This

a word that does not occur in the sentence (cf. the discussion concerning
figure 3).
b) In the grammar for questions by GROENENDIJK.&STOKHOF(1981), there is a

rule which substitutes a comon noun into phrases of a certain kind. Thus
which man walks is produced out of man and which one walks. Here the same

argument applies as for the quantification rule of PTQ: it contains at an
end node an argument that does not occur in the sentence.
c) In HAUSSER(1979b) another variant is presented of the substitution of
a comon noun for an occurrence of one in some phrase. Here the same conclu
sion holds.

d) BACH(1979a) presents rules which produce persuade Bill to leave out of
Bill and persuade to leave. The operation which performs this task, called
'right-wrap’, is a kind of substitution operation. It disturbs the sequence
of words, and therefore it gives rise to a derivational history in which
the order of the words does not correspond with the order of the words in
the phrase. Therefore the derivational history is different from any pos
sible syntactic structure.
e) DOWTY(1978) gives a very elegant categorial treatment of phenomena which

are traditionally treated by transformations. Examplesare dative movement
and object deletion. His rules shift serve from the category DTV(takes a
dative and a term), to the category TTV(takes two terms), and next to TVand

IV. This history is presented in figure 6. As far as I know, such a struc
ture has not been proposed in transformational grammars, which is an indi
cation that there is no syntactic motivation for this structural analysis.
All steps in this production process are semantically relevant, and I con
sider it as a prime example of a semantically motivated elegant design of
a derivational history.

125

John serves {S}X
John {T} serve {IV}

serve {TV}

serve {TTV}

serve {DTV}

Figure 6: History 5 la Dowty

3. TECHNICAL ASPECTS

3.1. Introduction

In this section I will sketch some tools which are useful in a version

of Montaguegramar in which the syntax produces structured expressions.
The desire to provide handsometools for a certain limited purpose leads
to restricted tools (all-purpose tools are usually not very handsome:I
would not like to describe a language by means of a Turing machine). So,
whereas I do not have the aim of Partee (‘defining as narrowly as possible
the class of possible grammars of natural languages‘ (PARTEE1979b, p.276)),
the practical work is closely related. The tools I will use originate main
ly from Partee (ibid); in the details there are somedifferences. It is not
my aim to develop a complete theory about structured syntax, but I will use
the opportunity to make some theoretical and practical remarks about the
available techniques. For more ambitious proposals which use the same ap
proach to structure, see BACH 1979b, PARTEE 1979a, 1979b, and LANDMAN&

MDERDIJK 1981.

The basic change I will make here in comparison with previous chapters,
is a change of the algebra on the background, which is always assumed when

we define a generated algebra. In the previous chapters this was mostly the
algebra consisting of all strings over the alphabet involved with concate
nation as operator. In the present chapter this background algebra is
replaced by one which consists of all trees, labelled in an appropriate way,and
which has the basic operations which will be described in the sequel.

126

3.2. Operations on trees

It is not very convenient to describe operations on trees by means of
English sentences. Following Partee, I describe such operations as
the composition of a few basic ones. These are described in the sequel.

The operation root gives a new commonroot to the members of a list of

trees. The new root is labelled with a given category name. Let a and 8
denote trees, and let (a,B) denote the list consisting of these two trees.
The effect of root((a,B),IV) is that the roots of the trees a and B are
connected with a new root, labelled IV, see figure 7.

IVA/
Figure 7: root ((a,B).IV)

The operation insert substitutes a tree for a given node in someother

tree. Let us accept the phrase 'first hez in (a)' as a correct description
of the node marked with x in tree a, see figure 8. Then the effect of

insert (8, first hen in (a)) is given in figure 9. A single word is con
sidered as the denotation of a tree consisting of one node, labelled with
that word. So the root operation can be applied to it. The effect of
root(and, Con) is shown in figure 10.

Algit Con4: A and

Figure 8: situation Figure 9: insert(a,B,x) Figure 10: root(and, Con)

127

These two operations for tree manipulation, together with operations
for feature manipulation and index manipulation, suffice for the treatment
of the PTQfragment. For larger fragments other operations might be re
quired. An example is 'everywhere-substitution’, which has the effect of
substitution for all occurrences of a variable. This effect cannot be ob
tained by means of a repetition of the insert operator since one and the
same tree cannot be at the same time the daughter of different nodes. So
everywhere-substitution requires a copy operation which might be added as
a primitive operation. PARTEE1979b has no copy operation, but considers
everywhere-substitution as a basic operation (we do not need everywhere
substitution since we deal with S? by means of an operation on features).l4,n

As an example I present the rule for verb-phrase conjunction. If we
stay close to PTQ, it gets the following form, and yields the result given
in figure 11.

S ‘ IV X IV + IV11'

F1]: root((a, and, B),IV).

Onemight prefer to give the connective and a categorial status in the syn
tactic structure; the status of a connective. Then the operation could read
as follows, yielding the result given in figure 12.

S ' IV X IV + IV11'

F root((a,root(andL Con),B),IV)11‘

IV IV\\ \
\ \

\

a A cm‘.A
and

Figure 11: root((a,~and, B),IV) Figure 12: root((a,root(and, Con),B),IV)

3.3. Features and lexicon

Rule S4 of PTQtells that the subject-verb agreement in a sentence is
obtained by replacing the first verb by its third person singular present.
This is not an explicit formulation of what the effect of the rule is sup
posed to be. In an explicit form it would say that the verb run is to be
replaced by runs and that try to (in PTQa single word with a space inside)

128

is to be replaced by tries to. Rule S4 can have its short readable form on
ly since it is not explicit about such details. In order to obtain an ex
plicit syntactic rule which is not full with details, wehave to abstract
from the inflection behaviour of the individual verbs. So it is useful to

let the syntactic rules deal with more abstract lexical elements. By in

corporating features in Montague grammar, rule S4 may for the PTQfragment
simply attach the features like present and third person singular to an
elementary form of the verb without being concerned with the effect of these
details for every individual verb. The information about morphological be
haviour of the verb can be given in the lexicon or in a separate morphologi
cal component.

Features originate from transformational gramar. Theywere used, as
far as I know, for the first time in Montague grammar by GROENENDIJK&

STOKHOF1976 for a phenomenon like the one above. Features are also use

ful if one incorporates transformations into Montague grammar. PARTEE1979b

gives several examples of transformations which require features; an example
is the Subject-Aux inversion process for questions which requires isolation
of the tense morpheme.

As an example of the use of features I give a reformulation of rule S4
using features. Of course, the rule has in other respects the sameshort
comingsas the original PTQrule, but it is fully explicit now.

S4:

F4: add features((pres,sing 3), first verb in (a));
root((a.B).S).

T X IV + S

The details of the regular formation of the word forms can be given on
a separate morphological component, whereas details about irregular word
forms can be given in the lexicon. So the function verbfbrm in the morpho

logical componentwill be such that

verbform((pres,sing3),a) = as (e.g-walks)
verbform((pst,sing3),a) = aed (e-g-waZked)

The morphological component also contains a function pronomen such that

pronomen(sing3,acc,masc) = him

pronomen(SiT1g3_,nom,neut) = it .

Besides morphological details, the lexicon also contains the information
which features are inherent to the word (e.g. John always bears the feature

129

sing3) and information about kinds of features for which the word maybe
specified (e.g. John maynot be specified for tense).

On the basis on the above considerations I define a lexical element as

a list consisting of the following five components.
1. a string being the basic form of the word
2. a category symbol, being the category of the lexical element
3. a list of inherent features
4. a list of kinds of features for which the lexical element can be speci

fied.
5. a description of the procedure for making derived forms of the word.

The above definition says that a lexical element is denoted by a list
of five elements, of which some are lists themselves. Wealready introduced
a notation for lists. Let furthermore () denote an empty list. The examples
of lexical elements presented below are somewhatsimplified with respect to
PTQsince they only consider past and present tense.

("Jbhn",T, (masc,,sing3),(), wordform: "j0hn")
("waZk",IV,(),(tense,pres), wordform:verbfbrm((tense,presL”waZk"),)
("run",IV,(),(tense,pres),

if value of tense = past then wordform: "ran"
else wordform:verbfbrm((pres,sing3),"run")).

Up till nowwe only considered kinds of features which are well known.
But nothing in the feature definition prohibits us to define unusual ones.
Wemight define a feature kind 'mainverb' with values # and -. The instruc
tions for introduction or deletion of this feature can be the sameas the

instructions for Bennetts # mark which indicates the main verbs of a phrase
(BENNETT1976). In this way we can use the features as syntactic markers.

Following Partee, I would not like to do so. Features are introduced for
isolating morphological phenomena,not for syntactic marking. So I would
like to restrict features to morphological relevant ones, just as PARTEE
(1979b) proposed. This restriction requires, however, a formal definition
of this notion (Partee gives no definition).

The notion 'morphologically relevant feature‘ is clearly word depen
dent. The case feature is relevant for he but not for John. So we might
call a feature morphologically relevant if it is relevant for at least some
word in the grammar. But what does this notion mean? Something like that

the feature influences the form of the word? It is to be required further

130

more that this influence can be observed in real sentences: it is not enough
that it occurs in somemorphological rule since this leaves open the possi
bility of a fake feature which influences the form of some ‘external’ word
that does not occur in a produced sentence. Wewant a feature to create an
opposition of wordforms in the produced language. Based upon these consider
ations I would define the notion as follows.

3.1. DEFINITION.A feature F is called morphologically relevant in grammar
G if the following two conditions are satisfied.

1. There is a sentence S] e L(G) containing a lexical element Wwhich bears

feature F and which has wordform W].
2. There is a sentence S e L(G) containing an occurrence of Wwhich does2

not bear feature F and which has wordform W2where W2is different from

WI.
3.1. END

Note that this definition uses quantification over the sentences in the
language L(G). This quantification makes the notion ‘morphologically rele
vant' to an undecidable notion. Supposea list of syntactic rules, a lexi
con containing features, and a list of morphological rules is given. Then
one might try to show that a feature is not morphologically relevant by
producing a lot of sentences and checking the conditions. However, one
never reaches a stage that one can say for sure that such a feature is un
acceptable. A formal proof is given in the following theorem.

3.2. THEOREM.There exists no algorithm which decides for all grammars G

and feature F whether F is morphologically relevant in G.

EEQQE.Suppose that such an algorithm would exist. Then this would give
rise to a decision procedure for algebraic gramars, as will be shownbelow.
Let G be an arbitrary algebraic grammar,with distinguished sort S, and
suppose L(G) is a language over the alphabet A. Let a be an arbitrary
string over this alphabet, and let w e A be the first symbol of a. Let

u’ e A be a new symbol, and F a new feature not occurring in G. Define the

wordform of u when bearing feature F as being w‘. Extend now gramar G to
G‘ by adding the following rule:

R: S + S is defined by

R(a) = a‘ where a‘ is obtained from a by attaching F to w
R(¢) = ¢ if ¢ is not equal to a.

131

The only way to introduce w’ in some expression of L(G') is by means of this
new rule R. Hence F is morphologically relevant in G’ if and only if
a‘ 6 L(G'). From the definition of R it follows that a' e L(G) iff a e L(G).

So if it would be decidable whether F is morphologically relevant, it would
be decidable whether a is generated by grammar C. Since L(G) can be any re
cursively enumerable language, this question is undecidable.
3.2. END

The undecidability of the notion ‘morphologically relevant‘ has as a
consequence that it can not be considered as a formal constraint, and that it
cannot be incorporated in the definition of the notion ‘grammar’. This does
not mean that the property is worthless. It could play about the same role
as the well-formedness constraint, being an important practical guideline
for designing and evaluating gramars.

3.4. Queries for information

In syntax one often uses information about the grammatical function of
words and groups of words. The gramatical tradition has constituted names
for most of these functions, e.g. mainverb, subject and object. That the
information for determining these functions is present in the syntactic
structure assigned to them, has already been stated in CHOMSKY1965. He de

fines the subject of a sentence as the NPwhich is immediately dominated by

the main S node. In spite of this approach to gramatical functions, the
tradition of transformational grammarnever uses such information explicit
ly. PARTEE1979b proposes to incorporate this information in Montague gram
mar and to makeexplicit use of it in the syntactic rules.

On the question what the main verbs of a sentence are, an answer like
run is not good enough since that verb might occur more than once. An ans
wer has to consist of a list of occurrences of verbs; or formulated other
wise a list of nodes of the tree which are labelled with a verb. Functions

used to obtain syntactic information such as mainverb are functions from
trees to lists of nodes of that tree. The first use of functions of this

kind in Montague gramar is given in FRIEDMAN1979. Such functions are

called queries by KLEIN(1979); PARTEE(1979b) uses the name properties for

a related kind of functions. The different namecovers a different approach
to such functions. It is a property of each individual occurrence of a
verb to be a mainverb or not so: hence a property is a boolean valued

132

function, but a query is not. Since it is not convenient to use properties
in syntactic rules, I use queries.

PARTEE(1979b) defines queries by means of rules parallel to the for
mation rules of the syntax. This has as a consequence that she in fact per
forms induction on the trees which represent derivational histories. Thus
properties of derivational histories can be defined by meansof her queries.
It allows, for instance to define a query which tells us what the terms are
which are introduced by means of a quantification rule. This query which I
call ‘substituted terms’, can be defined as follows:

1. add to rule S14,n the clause
substituted terms (S]4,n(a,B)) = {a} U substituted terms (8)

2. do the samefor the other quantification rules
3. add to the other rules the clause

substituted terms (S,(a,B)) = substituted terms(a) U
substituted terms(B)

Since we do not consider the derivational histories as representations of
syntactic structures, we do not want information about the derivational
history to be available in the syntax. Therefore I will not define queries
in this way.

FRIEDMAN(1979) defines queries separately from the rules. She defines
themfor all constituent structures by meansof a recursive definition with
several clauses; each clause deals with a different configuration at the
node under consideration. So Friedman performs induction on the constituent
trees, and not on the derivational histories. Consequently, the query ‘sub
stituted terms' cannot be defined in Friedman's approach. In principle I
will follow Friedman's method, but somemodifications are useful.

Friedman's method has a minor practical disadvantage. If one adds a
rule to the grammar, then at several places the grammarhas to be changed:
not only a rule is added, but all query definitions have to be adapted. In
order to concentrate all these changes on one place in the grammar, I will
mention the clauses of the definitions of a query within the operation
which creates a new node, so within the operation root. In this way it is
for each node determined how the answer to a query is built up from the
answers to the query at its subnodes. If a root operation contains no
specifications for a query, this is to be understood as that the answer
to the query always consists of an empty list of nodes. As an example, I
present rule S , in which a clause of the query mainverb is defined.lla

133

S11: IV x IV + IV

Fl]: root((a,root(and, Con),B), IV,
mainverbs = mainverbs(a) U mainverbs(B)).

The basis of the recursion for a query is formed by its application to a
node only dominating an end node of the tree. Then a query yields as result
that end node. So is the query mainverbs is applied to the root of the tree
in figure 13, then the result is that occurrence of run.

IV

run

Figure 13: basis of recursion

4. PTQ SYNTAX

Below I will present a syntax for the PTQfragment. The purpose of

this section is to provide an explicit example of what a Montague grammarin
which structures are used, might look like. It is not my aim to improve all
syntactic shortcomings of PTQ; only some (concerning conjoined phrases) are
corrected. For more ambitious proposals see PARTEE1979b and BACH1979.

In the formulation of the rules, several syntactic functions and oper
ations will be used. Belowthe terminology for them is explained, thereafter
they will be described.

1. Queries

Functions which have a tree as argument and yield a list of nodes in the
tree. Theyare defined within the root operations.

2. Primitive functions
Functions of several types which yield information, but do not change any
thing.

3. Primitive operation
Operations of several types which perform some change of the tree or lists
involved.

4. Composedoperations

Like 3, but nowbuilt from other operations and functions.

134

QUERIES

Mainverbs

Yields a list of those occurrences of verbs in the tree which are the
mainverbs of the construction.

Headnouns

Yields a list of those occurrences of nouns, pronouns and proper names
which are the heads of the construction.

PRIMITIVE FUNCTIONS

lndex of (w)
yields the index of the word w (provided that w is a variable)

First of (1)
yields the first elementof list 1.

All occurrences of (hen,t)
yields a list of all occurrences of hen in tree t.

Gender of (w)

yields the gender of word w, and of the first word of w if w is a list.

Is a variable (w)

determines whether term w is a variable (of the form hen).

PRIMITIVE OPERATIONS

root((tl,...,tn),C, query:...).

Creates a newnode which is the mother of the trees t],...,tn.
This new node is labelled with category symbol C.
For all queries a clause of their recursive definitions is determined:
either explicitly, or implicitly (in case the query yields an emptylist).

Addfeatures (f,l)
Attaches to all elements of list I the features in feature list f.

Delete index (n,1)
Deletes index n from all elements in list 1.

Replace index (1,m)

Replaces the index of all variables in list 1 by index m.

Insert (r,t)
Replaces node r by tree t, thus inserting a tree in another tree.

Union (ll,l2)
Yields one list, being the concatenation of lists 11 and 12.

135

COMWOSED OPERATIONS

Termsubstitution (t,n,r)

Substitutes term t in tree r for the first occurrence of hen. The ope
ration is defined by:
if is a variable (t)
£hgn_replace index (all occurrences of (hen,r), index of (t))
else insert (t, first of (all occurrencesof (hen,r)))

define:list=all occurrences of (hen,r)
delete index(list)
add features ((sing,pers3,gender of (first of (mainnouns (t))), list).

Enddefinition.

Below the rules for the PTQ-fragment are given with exception of the
rules for tense. Their formulation resembles the formulation they would get
in an ALGOL68 computer program I once thought of.

S2: Det X CN + T
root ((a.B),T.
head nouns = head nouns (8)).

S : CN X S + CN

define: list = all occurrences of (hen,B);
delete index (n, list);
add features (gender of (head nouns (a), list));
root ((a, root (such-that,Re1),8),CN,
head nouns = head nouns (a)).

S : T X IV + 3

add features ((pres,sing3), main verbs (8));
add features (nom, bead nouns (a));
root ((a,8),S,
main verbs = main verbs (8)).

S : TV x T + IV

add features (ace, head nouns (8));
root ((a,8),IV,
main verbs = main verbs (a)).

S : Prep X T + IAV

add features (ace, head nouns (8));
root ((a.B). IAVL

136

: IV/S X S + IV

root ((a.B). IV.
main verbs = main verbs (a)).

: IV//IV x IV + IV

root ((0-9 21V:
(0))main verbs = main verbs

: S/S X S + S

root ((a.B). 3.
main verbs = main verbs (8)).

1 IAV X IV + IV

root ((B,a). IV.
main verbs = main verbs (8))

: S x S + S

root ((a, root (and, Con),B), S,
main verbs = union (main verbs (a), main verbs (B))).

: S x S + S

root ((a, root (or, Con),B), S
main verbs = union (main verbs (a), main verbs (B))).

IV X IV + IV

root ((a, root (and, Con),B), IV,
main verbs = union (main verbs (a), main verbs (B))).

: IV x IV + IV

root ((a, root (or, Con),B), IV,
main verbs = union (main verbs (a), main verbs (B))).

: T X T + T

root ((a, root (or, Con),B), T,
head noun = union (head nouns (a), head nouns (B))).

: T x S + S

termsubstitution (a, n, B)

: T x CN + CN

termsubstitution (a, n, B)

: T x IV + IV

termsubstitution (a, n, B)

137

CHAPTER IX

RELATIVE CLAUSE FORMATION

ABSTRACT

Does the principle of compositionality compelus to a certain analysis
of relative clause constructions? Answers given by Partee and Bach & Cooper
will be investigated, and new arguments will be put forward. The question
will be generalized and answered on the basis of algebraic properties of
the framework.The investigations give rise to a restriction on the use of
variables in Montaguegramar: the variable principle.

138

1. INTRODUCTION

Our framework, which formalizes the principle of compositionality of
meaning, says that the syntax and semantics are similar algebras, and that
the meaning assignment function is a homomorphism. Nowone may ask to what

extent this organization of the grammarrestricts the options we have in
the syntax to describe a particular phenomenon.This question was raised by
PARTEE(1973) with respect to relative clause constructions, and her answer
was that we have to use a particular analysis. She concluded that the frame
work puts very strong constraints on the syntax, with the consequence that
'it is a serious open question whether natural language can be so described’
(PARTEE1973, p.55). Her argumentation is used by CHOMSKY(1975) to support

his ideas of an autonomoussyntax in transformational grammars. Partee's
conclusion about relative clause formation has been disputed by BACH&

COOPER(1978), who give an alternative construction.
In chapter 2 it has been proven that every recursively enumerable lan

guage can be described by means of a finite algebraic grammar. Hence Partee's
question, as quoted above, has already been answered positively. But we
will curtail it to the question whether the frameworkconstrains the way in
which natural language phenomenacan be described. More in particular, we
will investigate the thematic question: does the framework of Mbntaguegram
mar compelus to a particular syntactic analysis of restrictive relative
clauses? The arguments given in the literature will be considered, and new
arguments will be put forward. In the course of the discussion positive and
negative answers to the thematic question will alternate. An answer to the
general version of the question is obtained as well. It will turn out that

syntactic variables (like hen) play an important role in relative clause
constructions. This role is investigated, and this gives rise to the intro
duction of a newprinciple for Montaguegramar: the variable principle.
This chapter is a slightly revised version of JANSSEN(l98la).

2. THE CN-S ANALYSIS

2.]. The discussion by Partee

PARTEE(1973) considers three kinds of analyses of relative clause
constructions which were proposed in the literature in the frameworkof
transformational grammar. She investigates which of them constitutes a good

139

basis for a compositional semantics. The comparison is carried out in the
waydescribed in chapter 7, section 2.1: the derivational histories from
Montaguegramar are comparedwith the constituent structures proposed in
transformational grammars. As was explained there, this is not the most
felicitous way to compare the two approaches. Our thematic question, how
ever, does not concern a comparison but is a question about the present
frameworkitself: the structures from transformational gramar merely con
stitute a starting point. Henceall trees under discussion have to be taken
as representing derivational histories, even in case they originate from
transformational gramar as constituent structures. In the sequel I will
use the categorial terminology from the previous chapters, and not the
transformational terminology used in the proposals under discussion.

BelowI summarizePartee's argumentation. She discusses three kinds
of analysis for the restrictive relative clause construction. Theyare named
after the configuration in which the relative clause is introduced. These
analyses (of which the second was the most popular amng transformational
grammarians) are

I. CN-S : the CommonNoun-Sentence analysis (Figure 1)

2. T-S : the Term-Sentence analysis (Figure 2)

2. Det-S: the Determiner-Sentence analysis (Figure 3).

/T / \ Det CN
Det (T S /

C I Det

fl/,y Det CNCi2;
the boy who runs the boy who runs the wh0 runs b0y

Figure 1: CN-S Figure 2: T-S Figure 3: Det-S

In the analysis presented in Figure 1, the commonnoun boy can be in
terpreted as expressing the property of being a boy, and the phrase whoruns
as expressing the property of running. The conjunction of these properties
is expressed by the noun phrase boy who runs. The determiner the expresses
that there is one and only one individual which has these two properties.
So the CN-Sanalysis provides a good basis for obtaining the desired
meaning in a compositional way.

140

In the T-S analysis as presented in Figure 2, the term the boy is in
terpreted as expressing that there is one and only one individual with the
property of being a boy. Then the information that the individual is running
can only be additional. So in a compositional approach to semantics whoruns
has to be a non-restrictive relative clause. Therefore Partee's conclusion

is that the T-S analysis does not provide a good basis for a compositional
semanticsof restrictive relative clauses.

The Det-S analysis from Figure 3 does not provide a good basis either.
The phrase dominated by the uppermost Det-node (i.e. the who runs), expres
ses that there is one and only one individual withthe property of running,
and the information that this individual is a boy, can only be additional.

Of course, these arguments do not constitute a proof that it is impos
sible to obtain the desired meanings from the T-S and Det-S analyses. It
is, in general, very difficult to prove that a given approach is not pos
sible, because it is unlikely that one can be sure that all variants of a
certain approach have been considered. This is noted by Partee when she
says: ‘I realize that negative arguments such as given against analyses 2.
and 3 can never be fully conclusive. [...]' (PARTEE1973, p.74 - numbers

adapted T.J.). She proceeds: ‘The argument against 3. is weaker than that
against 2., since only in 2 the intermediate constituent is called a T.’
(ibid.). Her carefully formulated conclusion is ‘that a structure like 1,
can provide a direct basis for the semantic interpretation in a way that
2 and 3 cannot‘ (ibid. p.54).

2.2. The PTQ-rules

Accepting the argumentation given in Section 2.1, is not sufficient
to accept the claim that one should use the CN-Sanalysis. It remains to
be shownthat such an analysis is indeed possible, and this means providing
explicit syntactic and semantic rules. Partee does not need to do so be
cause in her discussion she assumes the rules for relative clause forma

tion which are given in PTQ.Although these rules do not produce literarely
the same string as she discusses, the same argumentation applies to them.

I recall the rule for relative clause formation given in chapter 4.

S3 n: CN x S + CN9

F3 n: Replace hen in B by he/she/it and him” by him/her/it, according
3

to the gender of the first CNin a; concatenate (a, such that, B)
T3’n: Xxn[a'(xn) A 8'].

141

According to this rule, the derivational history of boy whoruns has the
structure presented in figure 1. The phrase can be produced from the noun

boy and the sentence he3 runs by an application of instance S3 3 of the9

above scheme. The corresponding translation reads

(1) Ax3[boy(x3) A run(x3)].

This expression is interpreted as the property which holds for an individual
if it both is a boy and is running. This is completely in accordance with
the interpretation sketched for figure 1.

I recall that S3,n can be applied two times in succession (or even
more). Then sentences are obtained like (2) (due to Bresnan, see PARTEE

1975, p.263) and (3) (due to PARTEE- ibid).

(2) Every girl who attended a women's college who made a large donation
to it was included in the list.

(3) Every man who has lost a pen who does not find it will walk slowly.

In these sentences two relative clauses are attached to a single head noun.
This construction is knownunder the namestacking (of relative clauses).
In Dutch and Germanstacking is not a gramatical construction.

Rules S3,n and T3,n do not give a correct treatment of all phenomena
which arise in connection with relative clauses. Someexamples are:
1. The rule produces the such-that form of relative clauses, and this is

not their standard form. A rule which produces a form with relative
pronouns cannot be obtained by means of a straightforward reformulation

of S3’n, since complications arise (see RODMAN1976).

2. In certain circumstances T3,n maygive rise to an, unintended, collision
of variables. This problem was discussed in section 5.3 of chapter 6;
see also section 6.1.

3. Somefamous problematic sentences do not get a proper treatment with
this rule. Examplesare the so called ‘Bach-Peters sentences‘ and the
'Donkey sentences‘. There are several proposals for dealing with them.
For instance HAUSSER(l979c) presents a treatment for the Bach-Peters sen
tence (4), and COOPER(1979) for the donkey sentence (5).

(4) The man who deserves it gets the price he wants.

(5) Every man who owns a donkey beats it.

For a large class of sentences, however, the PTQrule yields correct
results, and I will restrict the discussion to this class. Theclass

142

contains the relative clause constructions in the such-that form, the rela
tive clause is a single (i.e. unconjoined) sentence, and stacking is al
lowed. Bach-Peters sentences and Donkeysentences are not included. For this
class, the CN-Sanalysis gives a correct treatment in a compositional way,
whereas for the T-S and Det-S analyses it is argued that this is not the
case. So in this stage of our investigations, the answer to the thematic
question has to be positive: the compositionality principle compels us to
a certain analysis of relative clause constructions.

2.3. Fundamental problems

The PTQrule for relative clause formation is essentially based on

the use of variables in the syntax (hen), and the use of unboundvariables
in the logic (xn). This device gives rise to two problems which are of a
more fundamental nature than the problems mentioned in Section 2.2. The
latter concerned phenomenawhich were not described correctly by the given
rule, but it is thinkable that someingenious reformulation might deal with
them. The fundamental problems I have in mind are problems which arise from
the use of variables as such. It is essential for the entire approach to
obtain a solution for these problems, since in case they are not solved
satisfactorily we cannot use the tool at all. This aspect distinguishes them
from the problems mentioned in Section 2.2. The problems also arise in con
nection with other rules dealing with variables (S). Notel4,n’°"’Sl7,n
that the epithet ‘fundamental’ is not used to make a suggestion about the
degree of difficulty of the problem, but to indicate the importance that
some answer is given to it. The two fundamental problems are the following.

1) ‘left-over’
The first problem is: what happens in case a variable is introduced

that is never dealt with by S or any other rule. On the syntactic side3 n

it means that we may end up with a sentence like he? runs. Since he? is
not an English word, this is not a well-formed sentence, and something has
to be done about it. On the semantic side it means that we may end up with

an expression containing an unboundlogical variable. Fromthe discussion
in Section 5 it will appear that it is not obvious howwe should interpret
the formulas thus obtained.

2) ‘not-there’
The second problem is: what happens when a rule involving variables

with a given index is applied in case such variables are not there. I give

143

two examples of such situations. The first is obtained if one applies S3 1
D

to the commonnoun man, and the sentence Mary talks. Then the noun-phrase
(6) is produced, which is ill-formed because there is no pronoun which is
relativized.

(6) man such that Mary talks.

On the semantic side (6) gives rise to a lambda operator which does not

bind a variable. The second example (GROENENDIJK& STOKHOF1976b) is obtain

ed by an application of S to man and he2 walks. Then the comon noun3,1
phrase (7) is formed, out of which (8) can be obtained.

(7) man such that he2 walks.

(8) He2 loves the man such that he2 walks.

By an application of S]4,2 we finally obtain
(9) John loves the man such that he walks.

This sentence has just one reading, viz. that John loves a walking man. The
translation rules of PTQhowever, yield (10) as reduced translation for
(9).

(10) 3u[Vv[[man*(v) A walk*(john)] ++ u s v] A love*(john,u)] .

This formula expresses that the one who walks is John. THOMASON(1976) makes

a related observation by counting the numberof ambiguities of (11).

(11) Bill tells his father that John resembles a man such that he shaves him.

For the first problemit is evident that it is the use of variables
which creates it, and that it are not the phenomenathemselves: if there
were no variables in the syntax, they could not be ‘left-over’, nor remain
'unbound' in their translation. For the second problem it is rather a mat
ter of conviction that it is the use of variables that creates the problem.
Even if (6) would be well-formed, I would consider its production in the
way sketched above, as an undesirable side effect of the use of variables,
because it does not exhibit a phenomenonfor which variables are required.

In the literature there are someproposals for dealing with these two
fundamental problems. One proposal (implicitly given in RODMAN1976) is of

a purely syntactic nature and simply says: the ‘left-over’ and 'not-there‘
constructions are not acceptable, and in case such a construction threatens
to arise, it is filtered out. This approach is not considered here in de
tail, because it played no role in the discussion concerning our thematic

144

question. In the approach of COOPER(1975) the ‘left-over‘ constructions
are accepted, an answer is given to the semantic questions, and the 'not
there' constructions are dealt with in the semantics. In the next sections

his proposal will be discussed in detail. A proposal combiningsyntactic and
semantic aspects (JANSSEN1980b) will be considered in Section 5.

3. THE T-S ANALYSIS

3.]. Cooperon Hittite

COOPER(1975) considers the construction in Hittite which corresponds
to the relative clause construction in English. In Hittite the relative
clause is a sentence which is adjoined to the left or the right of the
main sentence. For this and other reasons, Cooper wishes to obtain such
constructions by first producing two sentences and then concatenating them.
A simplified example is the Hittite sentence which might be translated as
(12), and has surface realization (13). The sentence is produced with the
structure given in figure 4. For ease of discussion English lexical items
are used instead of Hittite ones. 'Genitive' is abbreviated as ‘gen’,
‘plural’ as 'pl', ‘particle’ as 'ptc', and ‘which’ as 'wh'. The example is
taken from BACH& COOPER(1978) (here and in the sequel category names are

adapted).

(12) And every hearth which is made of stones costs 1 shekel.

(13) SA HA4 HI.A-ia kuies GUNNI.MES nu kuissa 1 GIN
gen.stone-pl.-and which hearth-pl. ptc. each(one) I shekel

/]\I X/
Ptc T

S 2

\
T IV

/'/V \/
Det Cn

I I .

wh hearths be of stones nu each(one) cost 1 shekel

Figure 4

145

Sentence (13) is assumed to have the same meaning as the corresponding
English sentence (12). There seems to be a conflict between the arguments

in favor of a CN-Sanalysis as given in section 2, and the wish to use the
S-S analysis for Hittite. Cooper's solution is to allow the Term—phrase
each(0ne) ‘to denote the set of properties possessed by every entity having
property R‘ (BACH& COOPER1978, p.147). Which property R is, is specified

by the relative clause S]. The translations of S2 and SI are (14) and (15),
respectively (here and in the sequel v,A and * symbols are added).

(14) Vx[vR(x) + Cost-one—shekel(x)]

(15) Hearth(z) A Made-of—stone(z).

The syntactic rule which combines S1 and S2 to a phrase of the cate
gory §, has as corresponding translation rule

A

AR[S2'](Az[Sl']).

Here SI‘ and S2‘ are the translations of S] and S2, respectively. when this
rule is applied to (14) and (15), we obtain (16) as reduced translation.

(16) Vx[hearth(x) A made-of-stone(x) + cost—one-sheke1(x)].

Since § is of another category than S] and S2, this production process does
not allow for stacking, what is claimed to be correct for Hittite.

3.2. Bach & Cooper on English

BACH& COOPER(1978) argue that the treatment of COOPER(1975) of

Hittite relative clauses can be used to obtain a T-S analysis for English
relative clause constructions which is consistent with the compositionality
principle. Termsare treated analogously to (the Hittite version of) each
(one). The term every man is assued to denote, in addition to the PTQin
terpretation, the set of properties possessed by every manwhich has the
property R. Then the term-phrase every man who loves Mary is obtained from
the structure given in figure 5.

T~\\/‘ \‘T/ \‘$ E
Det CN COMPI I

every man who loves Mary

146

The rule for combining the translation of the term and the relative
clause is:

XR[T'](AS').

Here T’ and S’ are the translations of the term phrase and the relative
clause, respectively. If we take (17) as translation of every man, and (18)
as translation of the relative clause §, then we obtain (19) as translation
of the whole term (after reduction).

(17) APFVx[man(x) A VR(x)] + VP(x)]

(18) Az[love*(vz,mary)]

(19) XP[Vx[man(x) A love*(vx,mary)] + VP(x)].

Thus a T-S analysis is obtained for relative clause constructions, of which
the translation is equivalent to the translation in the case of a CN-S
analysis.

As Bach and Cooper notice, if we follow this approach, a complication
has to be solved, since English allows for indefinite stacking of relative
clauses. The proposal sketched so far, provides for one relative clause for
each T. The complication can be taken care of by allowing an alternative
interpretation not only for Terms, but also for relative clauses. ‘Thus,
for example, the relative clause who loves Mary can denote not only the
property of loving Mary but also the property of loving Mary and having
property R' (BACH& COOPER1978, p.149).

Bach and Cooper remark that their compositional treatment of the T-S
analysis clearly is less elegant and simple than the alternative CN-Sanal
ysis. They conclude: ‘Our results seem to indicate, however, that such an
analysis cannot be ruled out in principle, since any constraint on the
theory that would exclude the T-S analysis, would seem to exclude the
Hittite analysis as well. C...] or the happy discovery of someas yet un
knownprinciples will allow the one, but not other.’ (ibid. p.149).

The conclusion which prompts itself in this stage of our investiga
tions is that the answer to the thematic question is a negative one: the
principle of compositionality does not compel us to a special analysis of
English relative clauses.

147

3.3. Fundamental problems

As a matter of fact, the discussion in BACH& COOPER(1978) does not

provide the evidence that a T-S analysis is indeed possible for English
relative clauses. Theydo not present explicit rules, and neither is it
immediately clear.what the details would look like (e.g. what is the role
of B and COMPin the-system~of categories, and what is the translation rule
which combines the translations of § and COMP).Nevertheless, the main point
of their approach has becomeclear from their exposition.

The kernel of the approach of Bach and Cooper is to let the transla
tions of terms and relative clauses contain a free variable R. For this
variable the translation of somerelative clause will be substituted. How

ever, this variable R gives rise to the same kind of problems as mentioned

in section 1 with respect to the variables xn.
1. 'Left-over‘

Wemay select for a term the translation with free variable R, whereas we
do not use in the remainder of the production a rule which deals with this
variable. Since R has no syntactic counterpart, the produced sentences are
not per se ill-formed, but the question concerning the interpretation of
unbound variables remains to be answered.

2. ‘Not-there‘

There may be an occurrence of the term-phrase every man with the transla
tion without R, nevertheless appearing in a structure where a relative
clause is attached to it. Then an incorrect meaning is obtained.

Only when these fundamental problems are solved, we may hope that the

idea of Bach and Cooper leads to rules for the T-S analysis. Notice that
the proposal of RODMAN(1976) for solving the two fundamental problems by

filtering themout, cannot be followed here because in the syntactic ex
pressions there is no variable which maycontrol the filter. A solution has
to be found on the semantic side. These problems for the Bach-Cooper idea,
are signalized for the case of Hittite by COOPER(1975). He has proposed
some solutions which are assumed by Bach and Cooper. In order to obtain

further justification for the answer to the thematic question given in
Section 3.2, we have to check the details of Cooper's proposals for these
problems. This will be done in the next section.

148

4. THE PROPOSALS OF COOPER

4.1. Not-there

A translation rule which usually binds a certain variable, maybe used
in a situation where no occurrences of such a variable are present. To
avoid problems, Cooper proposes to give no semantic interpretation to ex
pressions of intensional logic which contain a vacuous abstraction. Accord
ing to his proposal the interpretation of ARais undefined in case a has no
occurrences of R.

Let us first consider in which way this idea might be formalized. At
first glance it seems easy to obtain the desired effect. Onejust has to
look into the expression a in order to decide whether ARais defined or not.
However, this is not acceptable. Such an approach would disturb the homo
morphic interpreation of intensional logic: for each construction of the
logical language there is a corresponding interpretation instruction. To
obtain the interpretation of a compoundlogical expression, the interpre
tations of the parts of that compoundare relevant, but not their actual
forms. An important consequence of this is that two semantically equivalent
expressions are interchangeable in all contexts. If we would have a condi
tion like ‘look into a‘ in the definition of interpretation, this basic
property of logic would no longer be valid. TwoIL-expressions a and 8
might be semantically equivalent, whereas a satisfies the ‘look into'-con
dition, and 8 not. Consequently, the interpretation of just one of ARaand
XRBwould be defined. Such a violation of the fundamental law of substitu

tion of equivalents is of course not acceptable, and therefore, a ‘look in
to’ clause has to be rejected. One has to respect the homomorphicinterpre
tation of logic, and therefore, the situations in which ARashould receive
no interpretation have to be characterized in terms of the semantic proper
ties of a (i.e. in terms of the interpretation of a with respect to a point
of reference and a variable assignment). Cooper follows this strategy.

Cooper's first step towards a characterization consists of adding a
restriction to the usual definition of the interpretation of Aua.
'[..] the function denoted by the abstraction expression Auais only de
fined for entities within its domainif a different assignment to the
variable u will yield a different denotation for a' (COOPER1975, p.246).
As he notes, this definition has as a consequence that Xua is 'undefined'
not only if a does not contain a free occurrence of u, but also if a is

149

a tautology. Thus for instance, according to this definition Au[u=u]re
presents a function which is undefined for any entity. However, the tech
nique of supervaluation [...] will showthese expressions to be defined but
not those where a is not a tautology' (ibid.). This definition is Cooper's
final one, but it is not the one we need. It implies that now AR[x=x]is
defined. This has the following consequence for relative clause formation.
Onemight produce some sentence expressing a tautology, while its transla
tion does not contain an occurrence of the variable R. Syntactically there
needs not, in Cooper's approach, be anything which can prevent us from
using this sentence in a relative clause construction, whereas, contrary to
his intention, the interpretation of the translation is defined. So Cooper's
definition does not provide a solution to the ‘not-there’ problem.

Cooper's aim was to give a semantic characterization of the IL-syntac
tic property ‘contains an occurrence of the variable R‘. I expect that there
is no semantic property coinciding with the syntactic one. This is suggested
by the observation that almost always a semantic irrelevant occurrence of a
certain variable can be added to a given IL-expression. (¢ and R=RA ¢ are
semantically indiscernable). Therefore, I expect that no solution in this
direction can be found. Moreover, I consider the whole idea underlying
Cooper's approach to be unsound. The standard interpretation of ARais, in
case a does not contain an occurrence of R, a function that delivers for
any argument of the right type, the interpretation of a as value. So ARa
denotes a constant function. Following Cooper's idea, one would loose this
part of the expressive power of IL, a consequence I consider to be unde
sirable.

4.2. Left-over, proposal 1

The translation of a completed syntactic production of a sentence may
contain an occurrence of a free variable. The second fundamental problem
was what to do with variables that are ‘left over‘. Cooper proposes to as
sign no interpretation to such an expression, and to follow this approach
for special variables only. Let z be such a variable (of the type of indi
viduals). As was the case with the first problem, discussed in Section
4.1, one has to respect the homomorphicinterpretation of IL. The desired
effect should not be obtained by looking into the formula, but by changing
the definition of interpretation. Cooperclaims that the desired effect is
obtained ‘by restricting the assignments to variables so that z is always

150

assigned someparticular non-entity for which no predicate is defined‘
(COOPER1975, p.257). This proposal gives rise to a considerable deviation

from the model for IL as it is defined in PTQ. In that model, there are for
every entity predicates which hold for it, e.g. the predicate of being
equal to itself (viz. Xu[u=u]). This property is lost in Cooper's approach.
He does not define a model which has the desired properties, nor does he
give other details. For the discussion concerning the thematic question,
this point is not that relevant, because BACH& COOPER(1978) do not pro

pose to follow this proposal in the case of English relative clause con
structions, but another one, which will be discussed in Section 4.3.

4.3. Left-over, Proposal 2

A second proposal of COOPER(1975) for the treatment of unbound vari

ables which occur in the translation of a completed production of a sen
tence is to let the unboundvariables be interpreted by the variable assign
ment function, and to give some linguistic explanation of how to understand
the results thus obtained. This approach assumes that in complete sentences
indices of variables can be neglected, or that there is somefinal ‘clean
ing-up’ rule which deletes the indices. For our discussion of relative
clause formation the syntactic details of this proposal are irrelevant be
cause the variable R leaves no trace in the syntax.

The unboundrelative clause variable R only occurs in subexpressions
of the form R(x). These subexpressions are understood by Cooper as ‘a way

of representing pragmatic limitations on the scope of the quantifier
[binding x].[...]. Thus assigning a value to R in this case has the same
effect as adding an unexpressed relative clause to showwhich particular
set we are quantifying over‘ (COOPER1975, p.258-259). The same strategy

is employed in COOPER(l979a,b) for indexed pronouns. A pronoun hen that
has not been dealt with by a relative clause formation rule or someother
rule, is considered as a personal pronoun referring to somecontextually

determined individual. Its translation has introduced a variable xn, which
remains unbound, and is interpreted by the variable assignment. This idea
for dealing with free variables is also employed in GROENENDIJK& STOKHOF

(l976b). In one respect the idea leads to a deviation from PTQ. There, an
expression of type t is defined to be true in case it denotes 1 for every
variable assignment (MONTAGUE1973, p.259). So, run(x) would mean the same

as its universal closure. In the proposal under discussion this definition

151

has to be dropped, but this does not cause any difficulties.
I have several objections against this proposal of Cooper. The first

one is that it yields incorrect results; the other three argue that the

whole approach is unsound. Myobjections are explained below.

1. If the translation of a phrase contains two occurrence of R, and a re
lative clause is combinedwith that phrase, then the translation of the re
lative clause is, by A-conversion, substituted for both occurrences of R.
As Cooper mentions, this phenomenonarises in his grammarfor Hittite for
(the Hittite variant of):

(20) That(one) adorns that(one).

Here the translation of both occurrences of that(0ne) contains an occurrence

of the variable R. If this sentence is combinedwith a sentence containing
two occurrences of a wh-phrase, semantically strange things happen. Cooper
notes this problem and he says: ‘Myintuition is, however, that if there
were such sentences, they would not receive the interpretation assigned in
this fragment. [...] As it is not clear to mewhat exactly the facts of
Hittite are here I shall makeno suggestions for improving the strange
predictions of the fragment as it is.‘ (COOPER1975, p.260).

Unfortunately, the proposal for English of BACH& COOPER(1978) runs

into a related problem. Consider the structure for the term phrase given in
Figure 6. It is an example taken from their article, and exhibits stacking
of relative clauses (the structure is simplified by omitting Comp's).

__LsT/T/NX\\/\
every man who loves a girl who lives in Amherst

Figure 6

The translation of every manhas to contain a variable for the relative
clause. Recall that, in the conception of Bach &Cooper, the proposal dis
cussed in Section 4.1 deals with the situation that we have the translation

not containing R. Let us assume that we have taken the translation (21),
which contains an unbound variable R.

I52

(21) APVx[man(x) A vR(x) + vp(x)].

Suppose nowthat the referent of a girl is to be contextually determined
(this possibility is not considered by Bach &Cooper). Then the transla
tion of a girl has to contain the variable R. Besides this variable the
translation of (22) has to contain a variable R for the second relative
clause. So the translation of (22) has to be (23).

(22) who loves a girl

(23) Az3y[gir1(y) A vR(y) A love*(vz,vy) A vR(z)].

Consequently, the translation of (24) has to be (25).

(24) every man who loves a girl

(25) APVx[man(x) A 3y[girl(y) A vR(y) A love*(Vx,vy) A vR(x)]+ vP(x)].

The translation of who lives in Amherst roughly is indicated in (26).

(26) Azflive-in—Amherst(z)].

The translation of the entire term-phrase in figure 6 is described by

(27) XR[every man who loves a girl'] (who lives in Amherst’).

This yields a logical expression which says that both the man and the girl
live in Amherst, which is not the intended reading of the construction with
stacked relative clauses.

These incorrect predictions are not restricted to stacking. The same
problems arise in case a relative clause like whoruns is combinedwith a
disjoined term phrase like the man or the woman.Then semantically both
terms are restricted, whereas syntactically only the second one is. The
source of all these problems is that a single variable is used for relative
clauses and for contextual restrictions. These two functions should, in my
opinion, be separated. But then the left-over/not-there problemfor rela
tive clause variables arises with full force again.

2. As a motivation for interpreting the R's as contextual restrictions,
the argument was given that when we speak about every man, we in fact in

tend every man from a contextually determined set. But this argument applies
with the same force in case we speak about every man who runs. It is not
true that terms sometimes are contextually determined, and sometimes not.
If one wishes to formalize contextual influence, then every term should be
restricted. This suggests (as under 1) a system of variables for context

153

restrictions which is independent of the system of variables for relative
clauses.

3. Variables of which the interpretation is derived from the context have
to receive a very special treatment. This can be shownmost clearly by con
sidering a sentence which has as translation a formula containing an occur
rence of an unboundvariable of the type of individuals or individual con

cepts: he runs, obtained from the sentence hen runs. These sentences have
as translation run(xn). For every variable assignment this translation gets
an interpretation. Oneof the possible assignments is that xn is the person
spoken to, so He runs would have the same truth conditions as You run. Som

female person might be assigned to xn, so the sentence may have the same
truth-conditions as she runs. These are incorrect results, so there has to

be somerestriction on the variable assignments for xn. There are also se
mantic arguments for such a restriction. A pronoun he usually refers to in
dividuals from a rather small group (e.g. the person mentioned in the last
sentence, or the person pointed at by the speaker). So again somerestric
tion has to be given. These two sources of inadequacy can be dealt with by
not evaluating a complete sentence with respect to all variable assignments,
but only to a subset thereof. In the light of the arguments given above,
this subset is rather small. So the contextually determined variables are
not so variable at all; they behave more like constants.

4. A rather fundamental argument against the use of variables for for
malizing contextual influence is the following. In PTQthe contextual fac
tor of the reference point under consideration (a time world pair), is
formalized by means of the so called indices I and J. Several authors have
proposed to incorporate other factors in the indices. LEWIS(1970), for in
stance, mentions as possible indices: speaker, audience, segment of sur
rounding discourse, and things capable of being pointed at. These indices
constitute an obvious way to formalize contextual influence. In the light
of this, it is very important to realize that in IL the interpretation of
constants is ‘index dependent‘, whereas variables have an ‘index indepen
dent’ interpretation:

CA:iaJ9g = F(c) (i’j)’ xAa19Jsg = g(X).

This means that in IL it is very strange to use logical variables for the
purpose of encoding contextual restrictions. The obvious method is by means

154

of constants. This is precisely the method employed in MONTAGUE(1968) and

BENNETT(1978).

4.4. Conclusion

Weconsidered Cooper's proposals concerning the solution of the ‘not
there/left-over' problems. His idea to give a semantic treatment of the
'not-there‘ problemwas not successfully formalized. His treatment of the
variables 'left-over‘ led to incorrect results for English sentences. We
have to conclude that the technical details of the Bach &Cooper proposal
are such that their approach does not work correctly. This means that at
the present stage of our investigations concerning the thematic question
we are back at the situation of the end of Section 2: only the CN-Sanalysis
seems to be possible.

I have not formally proved that it is impossible to find sometreat
ment in accordance with Cooper's aims. As I said in Section 2, such a proof
is, in general, difficult to give. But I have not only showedthat the pro
posals by Bach &Cooper do not work correctly, I have also argued that they
have to be considered as unsound. They constitute a very unnatural approach,
and in myopinion one should not try to correct the proposals, but rather
give up the idea underlying them altogether. Since I consider such proposals
as unsound, I will in the next section put forward a principle which pro
hibits proposals of these kinds.

5. THE VARIABLE PRINCIPLE

In the previous section we have considered some attempts to deal with
the ‘not-there/left-over‘ problems. These attempts do not give me the im
pression that the considered situations they deal with are welcome;rather
they seem to be escapes from situations one would prefer not to encounter
at all. In myopinion these attempts arise from a neglect of the special
character of syntactic variables. Syntactic variables differ fromother
words in the lexicon since they are introduced for a special purpose: viz.
to deal with coreferentiality and scope. In this respect they are like
logical variables, and in fact they can be considered as their syntactic
counterpart. Onewould like to encounter syntactic variables only if they
are used for such purposes. This special character of syntactic variables
is expressed by the variable principle, of which a first tentative version
is given in (29).

155

(29) Syntactic variables correspond closely to logical variables.

The intuition behind this statement is not completely new. THOMASON

(1976) draws attention to the analogy between 'that-complement‘ construc
tions in English, and the A-abstraction operator in logic. PARTEE(l979b)
proposes the constraint that any syntactic variable must be translated into
an expression of the logic containing an unboundlogical variable. Partee
does not accept this constraint the other way around, precisely because she
does not want to disallow Cooper's treatment of free variables.

The formulation of the principle given in (29) is vague, and one might
be tempted to strengthen it to (30).

(30) Anexpression contains a syntactic variable if and only if its unre
duced translation contains a corresponding unboundlogical variable.

This is intuitively an attractive formulation. However,a major drawback
is that it does not fit into the framework of Montague grammar. It would
give the unreduced translation of an expression a special status which it
does not have in the framework as it is. The unreduced translation, would

no longer be just one representation amongothers, all freely interchange
able. It would becomean essential stage since the principle would have to
function as a filter on it. It would no longer be allowed to reduce the in
termediate steps in the translation process since then a semantically ir
relevant occurrence of a logical variable might disappear, and thereby a
translation that had to be rejected, might becomeacceptable. Therefore,
I will give a formulation which turns the principle into a restriction on
possible Montague grammars. The formulation below has the same consequences
for the unreduced translation as (30), but it is not a filter on the unre
duced translations and it leaves the frameworkuntouched. This formulation

is slightly more restrictive than (30), and than the formulation in
JANSSEN(l980b).

The VARIABLEPRINCIPLEis defined as consisting of the following 6 re

quirements:

1a) A syntactic variable translates into an expression which contains a
free occurrence of a logical variable, and which does not contain oc
currences of constants.

lb) This is the only way to introduce a free occurrence of a logical vari
able.

156

2a) If a syntactic rule removesall occurrences of a certain syntactic
variable in one of its arguments, then the corresponding translation
rule binds all occurrences of the corresponding logical variable in the
translation of that argument.

2b) If a translation rule places one of its argumentswithin the scope of
a binder fbr a certain variable, then its correspondingsyntactic rule
removesall the occurrences of the corresponding syntactic variable
from the syntactic counterpart of that argument.

3a) The production of a sentence is only considered as completed if each
syntactic variable has been removedby somesyntactic rule.

3b) If a syntactic rule is used which contains instructions which have the
effect of removingall occurrences of a certain variable from one of
its arguments, then there indeed have to be such occurrences.

This formulation of the variable principle is not what I would like to
call ‘simple and elegant‘. I hope that such a formulation will be possible
when the algebraic theory of the organization of the syntax is further
developed. Suppose that we have found which basic operations on strings are
required in the syntax (following PARTEE(l979a,b,see chapter 8)),and that
a syntactic rule can be described as a polynomial over these basic opera
tions. Thenwe mayhope to formulate the variable principle as a restric
tion on the relation between the syntactic and semantic polynomials. We
might then require that these polynomials are isomorphic with respect to
operations removing/bindingvariables.

Requirementla) is a restriction on the translation of lexical elements.
It can easily be checked whether a given grammarsatisfies the requirement.
It is met by all proposals in the field of Montague grammar that I knowof;

e.g. the PTQtranslation of hen is AP[vP(xn)], and the translation of the
commonnoun variable onen (HAUSSER1979c) is the variable Pn.

For reasons of elegance, one might like to have formulation la’) in
stead of formulation la).

la’) A syntactic variable translates into a logical variable.

In order to meet la‘) in the PTQfragment, one could introduce a category

of Proper Namescontaining John, Mary, he], he (with translations2,...
john, mary, x], x respectively). Out of these Proper Names, Terms could2’
be produced which obtain the standard translation (XP[VP(john)], etc.).
Since I do not know of a phenomenon, the treatment of which would be sim

plified using this approach, and since the variable principle then still

157

would not have a simple formulation anyhow, I will not use it here. Re
quirement la) has as a consequence that the translation of a syntactic
variable is logically equivalent to a logical variable. If constants are
allowed to occur, then this would no longer be true (e.g. it is not true
that for every c the formula 3x[x=c] is valid).

Requirementlb) is a restriction both on the translation of lexical
elements, and on the translation rules. This requirement is met by PTQ.
It is not met by the proposals of BACH& COOPER(1978) which allow free

variables to occur which do not have a syntactic counterpart. Since they
do not present explicit rules, I do nowknowat which stage the context
variable R is introduced, as a lexical ambiguity of the noun, or by means
of somesyntactic rule.

Requirements 2a) and 2b) are conditions on the possible combinations
of a syntactic rule with a translation rule. Whethera grammaractually
meets them is easily checked by inspection (PTQdoes). Requirement 2b) is
not met by the Bach & Cooper proposal since their approach in some cases
gives rise to the introduction and binding of logical variables without
any visible syntactic effect.

Requirements 3a) and 3b) we have already mentioned in chapter 6. They
are not met by PTQ, nor by Bach & Cooper. In a certain sense they con

stitute the kernel of the principle. Theyexpress that certain configura
tions (described with respect to occurrences of variables) should not arise.
Whenthese requirements are met, the fundamental problems described in
Section 1 disappear. As such, the two requirements are closely related to
two instructions in JANSSEN(1980a, p.366), and to two conventions in

RODMAN(1976, one mentioned there on p.176, and one implicitly used on

p.170). Requirements 3a) and 3b) alone, i.e. without 1) and 2), would suf
fice to eliminate the syntactic side of the two fundamental problems, but
then the close relationship between syntactic and logical variables would
not be enforced. That freedom would give us the possibility to abuse syn
tactic variables for other purposes than coreferentiality and scope. An ex
treme case is given in JANSSEN(l980b), where some rules which obey 3a) and

3b), but violate 1) and 2), are defined in such a way that the information
that a rule is obligatory is encodedin the syntactic variables. I intend
to prohibit this and other kinds of abuse of variables by combining the
third requirement with the first and second. In chapter 6, section 5.3,
it is discussed howwe might incorporate requirements 3a) and 3b) by filters

158

and partial rules or by total rules (using a refined system of categories)
For the present discussion it is irrelevant howthese requirements are
exactly incorporated in the system. Since we are primarily interested in
the effects of the principle, it suffices to knowthat it can be done in
some way.

Let me emphasize that the principle is intended to apply to the stan

dard variables of intensional logic and their corresponding syntactic
variables. For instance, the argument concerning the use of unboundvari
ables for contextual influence does not apply if we do not translate into
IL but into Ty2. If Ty2 is used, the variable principle does not simply
apply to all the variables of type s. Neither does the principle apply to
so called 'context variables’ of HAUSSER(1979c), or the 'context expressions

of GROENENDIJK& STOKHOF(1979), which both are added to IL for the special

purpose of dealing with contextual influence.
The principle eliminates the basic problems from section 2 and dis

allows the treatment of variables aimed at in COOPER(1975), and COOPER

(l979a,b). Another example of a treatment which is disallowed is the pro
posal of OH(1977). For a sentence without discourse or deictic pronouns
he gives a translation containing a unboundvariable! A consequence of the
principle is that the denotation of a sentence is determined completely by
the choice of the model and the index with respect to which we determine
its denotation. In other words, the denotation is completely determined by
the choice of the set of basic entities, the meaningpostulates, the index,
and the interpretation function for constants (i.e. the interpretations of
the lexical elements in the sentence). In determining the denotation the
non-linguistic aspect of an assigment to logical variables plays no role.
This I consider to be an attractive aspect of the principle. What the im
pact of the principle is for the answer on the thematic question will be
investigated in the next section.

6. MANY ANALYSES

6.1. The CN-Sanalysis for English

Do the rules for the CN-Sanalysis of relative clauses obey the vari
able principle?

Recall the PTQrules from Section 2.1.

159

S CN X S + CN

F Replace hen in B by he/she/it and him” by him/her/it, according to
the gender of the first CNin a; concatenate (a, such that, B).

T3’n (PTQ) Axn[a'(xn) A 8'].

This combination of S3,n and T3,n does not obey the variable principle since
possible occurrences of xn in a‘ are, by Axn, bound in the translation,
whereas the occurrences of the corresponding syntactic variable hen in a
are not removed. This aspect is the source of the ‘collision of variables’
mentioned in Section 3.1. (for details see section 3.4 of chapter 5). A

reformulation of T n which avoids such a collision is given by THOMASON3,
(1974, p.261).

T3 (THOMASON),n N

XXm[(1'£Xm) A 8']
where B’ is the result of replacing all occurrences of xn in B’ by
occurrences of xm, where m is the least even number such that xmhas
no occurrences in either a’ or 8'.

The syntactic rule S3,n removes the occurrences of hen in B. Thomason's
reformulation has the effect that the unboundlogical variables xn in 8'
do not occur free in the translation of the whole construction, whereas the
same variables in a remain unbound. Nevertheless, Thomason's reformulation
does not obey the variable principle since in the syntax occurrences of

hen in B are removed, whereas in the translation the occurrences of the

corresponding variable (i.e.xn) are not bound, but of a variable xm (where
n # m).

Another kind of objection against Thomason'srule is that it is not a
polynomial over IL. This objection was considered in chapter 5, section 3.4.
The formulation proposed there for the translation rule is the following.

T3’n AP[Axn[VP(xn) A s'J<“a'>J.

This formulation has as a consequence that only those occurrences of xn are

bound, of which the syntactic counterparts are removed in S3 n
9

6.2. The S-S analysis for Hittite

Is an analysis of Hittite relative clause constructions possible which
on the one hand satisfies the variable principle, and on the other hand pro
duces such a construction out of two sentences?

160

Below I will describe an analysis which shows that the answer is af
firmative. I will only deal with the example discussed in Section 3, and
not with all other cases of Hittite relative clauses which are treated by
COOPER(1975). Myanalysis is intended mainly as an illustration of the
kinds of technique which are available if one obeys the variable principle.

The treatment described in Section 3 violates the variable principle
because both subsentences in Figure 4 have a translation which contains an
unboundvariable, whereas the sentences themselves do not contain a syntac
tic variable. Given the principle, in both sentences there has to be an oc
currence of a syntactic variable as well. The English variant of sentence

S2 gives a hint on how to do this. It contains in a CN-position the word
(one) - probably added for explanatory reasons. This word suggests the in
troduction in the syntax of CNvariables one one ., which are trans1° 2*"

lated into logical variables P P2,..., respectively (such CN-variables are,

discussed in HAUSSER(1979c)).lThe rule which combines S1 with 32 will then
give rise to a translation in which (by A-conversion) the relevant property

is substituted for P“. In case one prefers not to introduce a newconsti
tuent one”, a newvariable of category T might be introduced alternatively:
(31), translating as (32).

(31) each”

(32) AQ[Vx[VPn(x) + VQ(x)].

Thevariable in the translation of the relative clause can be intro

duced by the translation of the determiner uh. Therefore, the category of
determiners (which contains the Hittite version of every, etc.) is extended
with a variable (33), translating as (34).

(33) whn
v v _

(34) AQAPEQ(zn) A P(zn)J.

Wehave to combine a relative clause containing a free variable zn with
a main sentence containing a free variable Pn. This can be done by means of
a single rule binding both logical variables and performing the relevant
operations on both syntactic variables, or by means of two rules, each
dealing with one variable at a time. The former method would yield the tree
from figure 4, but it would implicate that a newkind of rules is introduced
(rules with two indices). I will follow the two-rules approach.

First the relative clause is transformed into an expression of the new

161

category Prop (=t//e), being a set of expressions denoting properties.
Wedo this by means of the following rule (the numbers in the 800-series
are nubers of newly proposed rules).

S80l,n S + Prop

F801,n Replace whn in a by wh

T80l,n Azn[u'].
The rule combining a property with a sentence is

S8O2,n Prop X S + S

F8O2,n delete all occurrences of one” from B;
concatenate (a,B)

A

T8O2,n [APnB'](a‘).

Using these rules, the Bach & Cooper example is obtained in the way

indicated in figure 7. Its translation is equivalent to the one given in
Section 3 for figure 4. Since we assume that it is guaranteed that the vari
able principle is obeyed, no problems arise with the syntactic variables.
The principle guarantees that rule S is applied only in case the main802,1
sentence contains an occurrence of one] and that rule S80] 2 is applied

9

only when the sentence contains an occurrence of the variable whg. Further
more, it guarantees that all syntactic variables finally will have disap
peared.

_//,,/I §{8o2,1}
Prop{80l,2} “‘-~c\ S

'I‘/u\ /(\
IV/ \

Det CN

wh2 hearth be of stone nu each one cost 1 shekel

Figure 7

6.3. The T-S analysis for English

As shown in Section 6.2, an S-S analysis can be obtained simply by
introducing a variable in the syntax, whensuch a variable is required in

162

the translation. The same idea can be used to obtain a T-S analysis for
relative clauses. In this case, we need a variable of the category Prop,

written as of kind”. It translates into the variable Kn.
A property and a commonnoun phrase combine to a new comon noun

phrase as follows:

S803 CN X Prop + CN

F803 concatenate (a,B)

T803 Ay[a'(y) A B'(y)].

A category RCof relative clauses (RC= t///e) is introduced because RC's
and Prop's will occur in different positions. The expressions of the cate
gory RCare made out of sentences as follows:

S804,n S + RC

F8O4,n delete the index n from all pronouns in a;
concatenate (such that, a)

I

T8O4’n Axnfa].

A relative clause maybe quantified into a term phrase by substituting the
relative clause for a property variable:

S8O5,n T X RC + T

F8O5,n substitute 8 for 0f>kindn in a
A

T8O5,n AKn[a'](B‘).

An example of a production using these rules is given in figure 8.

—/’,,,—T: every boy such that he runs {805,3}/’
RC: such that he runs {804,2}//\ +

Det //// CN\\\\ S
CN Prop

I

every boy 0f>kind3 heg runs

Figure 8

The translation of the lower term phrase in figure 8 is (35), the
translation of the RCphrase (36), and of the upper term phrase (after

163

reduction) is (37).

(35) AQVx[boy(x) A vK3(x) + vQ(x)]

(36) Ax2[run(x2)]

(37) AQVx[boy(x) A run(x) + vQ(x)].

is aNote that the intermediate stage of an RCis not required if S805
double indexed rule, dealing both with hen and of-kind”.

6.4. The Det-S analysis for English

Is a Det-S analysis possible which obeys the variable principle?
Recalling the pattern underlying the S-S and T-S analyses, one might try
to find such an analysis as a variant of the CN-Sanalysis by introducing
newvariables. It appeared, to mysurprise, that it is possible to obtain
a Det-S analysis which is not a variant of the CN-Sanalysis, but which is
a pure Det-S analysis (recall the proviso by Partee for her arguentation
concerning the Det-S analysis). I will not discuss the heuristics of this
analysis, but present the rules imediately.

S806,n Det x S + Det

F806,n remove all indices n from pronouns in B;
concatenate (a, such that, B)

T80“ xRta'<“xgtVR<y>A Axn[B'](y)])].

Maybethe following explanation of the translation is useful. A determiner
6 is, semantically, a function which takes as argument the property n ex
pressed by a noun and delivers a collection of properties which have a cer

tain relation with n. 3806 produces a determiner which takes a noun property
n and delivers a set of properties which has that relation with the conjunc
tion of n and the property expressed by the relative clause.

The combination of a CNwith a Det-phrase, requires that the CNis

placed at a suitable position in the determiner phrase. In the present
fragment this position is the second position (if we had determiners like
all the, then also other positions might under certain circumstances be
suitable). The rule for this reads as follows:

S807 Det x CN + CN

F807 insert 8 after the first word of a

T807 “'(AB')'

164

The combination of the determiner every with the sentence hez runs
yields determiner (38), with (39) as unreduced, and (40) as reduced trans
lation.

(38) every such that he2 runs

(39) mnQ>.p[vx[Vo<x> + VP(x)]](Ay[vR(y) A Ax2Erun(x2)](y)])J

(40) xRxpvx["R(x) A run(x) + "p(x)J.

The combination of (38) the commonnoun man yields the term phrase (41),
which has the (usual) reduced translation (42).

(41) every man such that he runs

(42) APVx[man(x) A run(x) + vP(x)].

The techniques which are used to obtain a T-S analysis from a CN-S
analysis can be used as well to obtain a T-S analysis which is a variant of

the Det-S analysis: introduce in the Det-S analysis the variable of-kind”,
but nowwithin the determiner. This means that at least two kinds of T-S

analyses are available.

6.5. Conclusion

In Section 5 a newprinciple was introduced: the variable principle.
Obeyingthis principle we designed rules for relative clause constructions.
It turned out that for English besides the CN-Sanalysis both the T-S and
the Det-S analysis are possible in at least twoessentially different
variants. Andfor Hittite an S-S analysis is possible. So at the present
stage of our investigations a negative answer to the thematic question has
to be given: several analyses of relative clauses are possible.

Consider the T-S analysis of 6.3 again. Is it the kind of T-S analysis
meant by Partee? I do not think so. At a certain level we indeed have a
T-S analysis, but on another level in the production tree there is a CN
Prop analysis which is nothing but a variant of the CN-Sanalysis. The op
position between the two analyses was, however, the main point in the dis
cussion of PARTEE(1973). So one could say that her conclusion that the

pure T-S analysis cannot be used, in a certain sense still holds. For the
case of Hittite however, the discussion primarily aimed at obtaining an
S-S analysis at some level, rather than at avoiding the CN-Sanalysis on
all levels. In Section 2 I quoted Bach & Cooper who expressed the hope for

the ‘happy discovery of yet unknownprinciples‘ which exclude the

I65

T-S-analysis, but allow for the S-S-analysis. It seems reasonable to inter
pret this as the desire for a principle which prohibits the pure T-S analy
sis, but allows somevariant of the S-S analysis. The variable principle
has such an effect. But if it is interpreted as the hope for a principle
which excludes all kinds of T-S analyses, or which allows a pure S-S analy
sis, then the variable principle is not such a principle. So the answer to
the thematic question I gave above, has to be relativized: although several
analyses are available, not all analyses are possible.

The answer to the thematic question obtained in this section, was
based upon an investigation of the relative clause construction as such.
Interaction with other phenomenawas not taken into consideration. In the
next section I will leave this isolation and consider the interaction of

relative clause formation with someother phenomena.

7. OTHER ARGUMENTS

7.1. Syntax: gender agreement

The relative pronoun has to agree in gender with the antecedent noun
phrase. In the Det-S analysis, this poses a problem. The rule which com
bines a determiner with a relative clause has to specify what is to be

done with the syntactic variable. The formulation I gave of rule S806,n
just deletes the index, so it gives a correct result if the nounhas male
gender. But in the same way as we produced every boy such that he runs, we

mayproduce every girl such that he runs. It is not possible to formulate

S806 in such a way that this kind of ill-formedness is avoided, because the
information which gender the noun has, is not available at the stage at
which the determiner and the relative clause are combined. Not removing the
index would, according to the variable principle, require a free variable
in the translation of the term phrase; but I do not see how this approach
might work.

The T-S analysis gives rise to a similar problem. The rule which makes

the relative clause (RC) out of a sentence (S), has to specify what has to

be done with hen. The formulation I gave of S 4 works correctly for mascu80
line nouns only. Again, information about the gender of the noun is not yet
available, and not removing the index would constitute a break with the
principle. This argument does not apply to the T-S analysis in which a
double indexed rule is used. In the CN-Sanalysis, no problems arise from

166

gender agreement, since at the stage at which the index has to be removed,
the gender of the noun is known.

One should not conclude from this discussion that it is impossible to
obtain correct gender agreement in case of the Det-S or T-S analysis under
discussion. I expect that it can be done by means of further subcategoriza
tion. Onehas to distinguish feminine, masculine, and neuter relative
clauses, and feminine, masculine, and neuter determiners, and probably one
needs to makesimilar distinctions in other categories. Then the subcate
gory system provides the information needed to obtain precisely the correct
combinations of relative clause, determiner and noun.

There is the hidden assumption in this discussion that gender agreement
has to be handled within the syntax. If we do not assume this, then a phrase
as a girl such that he runs, is no longer considered to be syntactically
ill-formed. COOPER(1975) argues in favor of dealing with gender in the se
mantics (at least for English). Others might prefer to handle gender in
pragmatics (Karttunen, according to PARTEE(l979a)). Then the arguments

given here are no longer relevant. But in languages with grammatical gender
(e.g. Dutch, German), this escape is not available. Here one might adopt
one of the solutions I mentioned: refined subcategorization, a T-S analysis
with a double indexed rule, or simply the CN-Sanalysis for relative
clauses.

7.2. Semantics: scope

Consider the following sentence (exhibiting stacking on the head man):

(43) Every man such that he loves a girl such that he kisses her is happy.

This sentence has a possible reading in which every has wider scope than a.
In a PTQlike approach (so with the CN-Sconstruction for relative clauses),
this reading is obtained by quantification of a girl into the CNphrase

(44) man such that he loves him” such that he kisses him”.

The corresponding translation of the sentence (44) reduces to

(45) Vy[3x[girl(x) A man(y) A love*(Vy,Vx) A kiss*(Vy,Vx)] + happy(y)].

Can this reading be obtained in other analyses of relative clauses?
In the T-S analysis this stacking of relative clauses can be obtained

by means of a process indicated in figure 9. In order to obtain coreferen

tiality between both occurrences of the term himn, the term a girl has

167

to be substituted at a stage in whichboth relative clauses are present.
The earliest momentat which this is the case, is immediately after the
uppermost term has been formed. Using a rule analogous to the standard
quantification rules wouldassign the existential quantifier wider scope
than the universal quantifier, thus not yielding the desired reading. So it
seems to be impossible to obtain in such a T-S analysis coreferentiality
and correct scope at the same time.

/T{S803,2}

T.\//”" T{S8O3,1}

\
DetCN Ta NC’: R%

1 //CN\\ Prop S S

TN Prop
every man of kind] of kindz such that such that

he loves himg he kisses him3

Figure 9

In the Det-S analysis the earliest stage at which the coreferentiality
of she and a girl can be accounted for, is when the determiner phrase (46)
has been formed.

(46) every such that he loves him3 such that he kisses him3.

Somelater stage (e.g. the term level), might be selected as well. But in
all these options, the quantification rule would give wider scope to a than
to every, thus not yielding the desired reading.

Underlying this discussion is the assumption that there is something
like stacking of relative clauses. If there is stacking, then the rule for
quantification into a CNis essential for the PTQfragment (FRIEDMAN&

WARREN(l979b)). But is stacking indeed a phenomenon of natural language?

As for Hittite, BACH& COOPER(1975) inform us that no stacking occurs, and

in Dutch and Germanstacking is not possible. As for English, no author ex
presses doubts, except for PARTEE(1979b). She states that the evidence
for stacking is spurious. If we accept this, it would leave a rather small
basis for our argumentation concerning an answer on the thematic question.

There is another phenomenon,however, that requires quantification

168

into CN's. It might be the kind of examples meant by PARTEE(1975, p.236).

Example (47) assumes that there are commonnouns in the fragment of the form

friend of.

(47) Every picture of a womanwhich is owned by a man who loves her is a
valuable object.

Here the intended reading is the one in which every has wider scope than
a, and in which there is coreferentiality between a womanand her. This
reading can easily be obtained by means of substitution of a womaninto the
CN-phrase (48).

(48) picture of he] such that it is ownedby a man such that he Zoves him].

So even if we do not accept stacking as a phenomenonof English, a CN-S

analysis wouldbe required.
It is remarkable to notice that the variable principle plays no role

in the discussion concerning scope. The occurrences of the Prop variables,
which form a practical consequence of the principle, were not relevant. If
they were omitted, which would bring us back to the original Bach & Cooper

approach, then still the same problems would arise with respect to scope.
So even without the variable principle a CN-Sanalysis appears to be re
quired. This conclusion has to be relativized imediately. I have not given
a formal proof that it is impossible to obtain a correct treatment of scope
in the other analyses. I just showed that the CN-Sanalysis provides a di
rect basis for a semantic treatment of scope phenomenain a way that the
considered T-S and Det-S analyses can not. This conclusion mentions an
other arguent for relativizing. Weonly considered the three analyses which
had our main interest. A lot more analyses are possible, and for some a
correct treatment of scope maybe possible. For instance, a correct treat
ment of scope might be possible if the category of determiners contains
variables for which a determiner can be substituted in a later stage.

7.3. Conclusion

In the previous section we observed that the framework of Montague
gramar hardly restricts the possible syntactic analyses of relative
clauses. In this section we investigated the possibilities for incorporating
the available options in a somewhatlarger fragment. It turned out that
from the three main options only one was suitable. From this we learn that
it is important to consider phenomenanot only in isolation, but to design

169

grammars for larger fragments. The fact that for each isolated phenomenon
there are manysyntactic options available, gives us a firm basis for the
hope that it is indeed possible to find a combination of syntactic construc
tions that fits together in a system yielding the correct semantics for the
constructions involved. Thus we see that extending fragments is a fruitful
step which has impact on the description of isolated phenomena. This can be
considered as a reaction to be a remark Van BENTHEM(1981, p.31) who denies

the use of generalization and the combinationof partial theories.

8. THE GENERAL QUESTION

In this section I answer the general version of the thematic question.
Weemploy a framework in which the syntax and semantics have to be algebras,

and in which meaning assignment is a homomorphism. The general version of

the thematic question was to what extent this organization of the grammar
restricts the options we have available for describing a particular pheno
menon in the syntax.

For the special case of relative clause formation we obtained in sec
tion 6 the answer that any kind of analysis can be obtained, but that cer
tain kinds of analysis cannot be avoided. This practical result will be ex
plained below on the basis of the algebraic properties of the framework, and
the result will be generalized to an answer on the general question.

Let us suppose that we have found a semantic operation T888 which
takes two arguments, and delivers the meaning of a certain construction. So

in the semantics we have the construction step T888 (a',B'). Due to the
homomorphismrelation, there has to be a corresponding operation F888(a,B)
in the syntax, and the two semantic arguments have to correspond with

the two syntactic arguments. Instead of the semantic step T888 (a',B'),
several variants are possible, each with its ownconsequences for the syn
tax. These variants amount to a construction process with two stages. We

mayfirst have T888 (a',R), where R is a variable, and introduce in a later
stage a A-operator for R taking 8' as argument:

I I

)\R[.. .T888(oL,R) ...](B).

This means that the syntactic expression 8 can be introduced in an arbitrary
later stage of the syntactic production process. Consequently, a lot of
variants of the original syntactic construction can be formed. These variants

170

are based on the use of the construction step T888 (a',R) in the logic. Due
to the variable principle, the variable R has to be introduced by the trans
lation of somesyntactic variable. Let us suppose that V is such a variable.
Due to the homomorphicrelation between syntax and semantics, this means that

in the syntax there has to be a step F (a,V). So whereas we have gained888
the freedom to introduce B in a later stage of the syntactic construction
process, step F is not avoided. The same argumentation applies when the888
first argumentof T is replaced by a variable. It is even possible to88
replace both argumeits by a variable, thus obtaining a large freedom in the
syntax concerning the stage at which a and B are introduced. But in all

these variants F888 is not avoided. Application of this argumentation to
the case of relative clauses (where two basic constructions are found) means
that we cannot avoid both the CN-Sand the Det-S construction at the same
time.

So on the basis of the compositionality principle, formalized in an
algebraic way, manyrelative clause constructions are possible. This is due
to the powerof A-abstraction. This operation makes it possible that on the
semantic side the effect is obtained of substituting the translation of one
argument on a suitable position within the other argument, whereas in the
syntax a completely different operation is performed. Referring to this
power Partee once said 'Lambdas really changed my life‘ (Lecture for the
Dutch Association for Logic, Amsterdam, 1980).

The above argumentation is not completely compelling: there is (at
least) one exception to the claim that it is not possible to makea variant
of a given semantic construction which avoids the corresponding syntactic
construction step. An example of such an exception arose in the S-S analy
sis for Hittite. In the main sentence we had the Det-CNconstruction each

one”, where one” was a variable. Weobtained a variant in which there is no

Det-CNconstruction: the logical variable introduced by onen, could be in
troduced by a newvariable each” (see (34)). The algebraic description of
this method is as follows. Consider again T888 (a',R). The variable R might,
under certain circumstances, be introduced by the translation of a, thus

allowing to replace T888by a related semantic operation which takes only
one argument. That the translation of a introduced the variable R, means
that in the syntax a is to be replaced by somevariable, say an indexed
variant of a. Its translation is then a compoundexpression (being a com
bination of the old translation a‘ with the variable R). This process,

171

which avoids to have F888 in the syntax, is possible only if a is a single
word with a translation which does not contain a constant (e.g. if a is a
determiner). If the translation of a wouldcontain a constant, then require
ment la) of the variable principle wouldprohibit that its translation in
troduces a variable. If a is not a single word, then it cannot be replaced
by a syntactic variable (maybeone of its parts can then be indexed). This
method of creating exceptions would be prohibited when requirement 1a) of
the variable principle wouldbe replaced by the more restrictive version
la‘). In order to prove that the exception described here is the only one
by which a given analysis can be avoided, the details of the relation be
tween operations in the semantics or in the syntax have to be formalized
algebraically (see also Section 3).

These algebraic considerations explain the results of our practical
work. On the basis of these considerations it would be possible to explain
that a Det-S analysis which is variant of the CN-Sanalysis, is not to be
expected (in any case the described method for obtaining variants does not
work). The algebraic considerations also answer the general question whether
the principle of compositionality restricts the options available for
descriptive work. On the basis of a given construction step, a lot of
variants are possible, but due to the variable principle and the homomorphic
relation between syntax and semantics, this construction step cannot be
avoided in these variants. So the answer to the general question is that
there are indeed restrictions on the syntactic possibilities, but only in
the sense that a basic step cannot, generally speaking, be avoided. But
these restrictions are not that strong that only a single analysis is pos
sible. Formal proofs for these considerations would require, as I said be
fore, a further algebraization of the syntax.

173

CHAPTER X

SCOPE AMBIGUITIES OF TENSE, ASPECT AND NEGATION

ABSTRACT

In this chapter verbal constructions with will, have, with negation,
and with the past tense are considered. The meanings of these syntactic
constructions are expressed by semantic operators. These operators have a
certain scope, and differences in scope give rise to semantic ambiguities.
These scope ambiguities are investigated, and a grammardealing with these
phenomenais presented. In this grammarfeatures and queries are used, and
the grammarproduces labeled bracketings.

174

I. INTRODUCTION

Verbal constructions with will, have, with negation, or with the past
tense, give rise to semantic operators: negation, tense operators and aspect
operators. The syntactic counterparts of such operators I will call ‘verb
modifiers'. So a basic verb modifier consists sometimes of a single word
(will, have), sometimes of two words (do not), and sometimes of a verb af

fix (for the past). Compoundverb modifiers are combinations of basic modi
fiers; they may consist of several words (will not have).

The semantic operators which correspond with basic verb modifiers have
a certain scope, and a sentence can be ambiguous with respect to the scope
of such an operator. The aim of the present chapter is to present a treat
ment of scope phenomena involving terms and verb modifiers. Examples of

such ambiguities are provided by sentences (1) and (2). Both are ambiguous;
each sentence mayconcern either the present president or the future presi
dent.

(l) Thepresident will talk

(2) John will hate the president.

It is not myaim to analyse in detail the semantic interpretation of

operators corresponding with verb modifiers. I will not present proposals
for the formal semantics of tense or aspect; there is, in my treatment, no
semantic difference between past and perfect (there is a syntactic differen
ce). It is my aim to investigate only scope phenomenaof operators and not
to consider the operators themselves.

The main conclusion concerning the treatment of scope will be that
the introduction of verb modifiers has to be possible both on the level of
verb phrases and on the level of sentences. Another conclusion will be that
compoundverb modifiers have to be introduced in a step by step process:
each step introducing one semantical operator. The treatment that I will
present does not deal with all scope phenomenacorrectly (see section 5).

2. THE PTQ APPROACH

2.1. Introduction

As starting point for my investigations I take the treatment of verb
modifiers as presented in MONTAGUE1973 (henceforth PTQ). I will discuss

F. Henyand B Richards (eds.), Linguistic Categories: Auxiliaries and Related
Puzzles, Vol. Two, 55-76.

Copyright ©1983 by D. Reidel Publisging Company.

175

syntactic and semantic aspects of that proposal and compare these with re
lated aspects of my approach.

2.2. Syntax of PTQ

The gramar of PTQhas six operations for the treatment of verb modi
fiers: rules for present, perfect and future, and for the negated variants
of these tenses. Someexamples:

F14 (John, walk) = John has walked

F (John, walk) = John has not walked15

F1] (John, walk) = John does not walk.

These operations are completely independent. The operation ‘make a sentence
in the perfect tense‘ is independent of the operation 'make a sentence in
the negative perfect tense‘. Onewould like to have here another situation.

Mytreatment aims at a so-called ‘orthogonal’ syntax: each phenomenonwill
be treated by its owncollection of rules (e.g. ‘negating’ will be treated
by means of a rules which just deal with negation), and all such collections
of rules will have the same structure as muchas possible.

The PTQrules do not treat conjoined verb phrases correctly since only

the first verb is conjugated. So the PTQsyntax produces (3) instead of (4).

(3) John has walked and talk
(4) John has walked and talked

FRIEDMAN(1979) has given a treatment of this kind of error, and the treat
ment in this chapter of these problems will be about the same as hers.

The rules of PTQdeal with only three verb-modifiers: future, perfect
and negation. Compoundmodifiers such as past perfect (in had walked) are
not treated, nor the simple past (walked). These modifiers will be incor
porated in the fragment of the present chapter. Furthermore, compound
verb phrases will be incorporated of which the conjuncts (disjuncts) may
be modified in different ways (has walked and will talk).

2.3. Ambiguities

The grammarof PTQdeals with several scope ambiguities. I will recall
two of them because variants of themwill return in the discussion. The

most famous example is (5). This sentence has a de-re reading (6) and a de
dicto reading (7).

176

(5) John seeks a unicorn

(6) 3u[unicorn*(u) A seek*(john,u)]

(7) seek(Ajohn,AAP3u[unicorn*(u) A vP(u)]).

Another example is the scope ambiguity in (8); this sentence has
readings (9) and (10)

(8) Every man loves a woman

(9) Vu[man*(U) + 3v[woman*(v) A 1ove*(u,v)]]

00) 3V[woman*(v) A Vu[man*(u) + love*(u,v)]].

The readings of (8) have a remarkable property. Reading (10) logically im
plies (9). This means that there is no situation in which (10) is true,
while (9) is false. For this reason one might doubt whether this scope am
biguity is an ambiguity we have to account for: reading (9) seems to be
always acceptable. I will give two arguments explaining why (8) is consider
ed ambiguous. Both arguments are due to Martin Stokhof (personal communi
cation); see also chapter 4, section 6.

The first argument is that for slight variants of (8) the two readings
are logically independent. Consider sentence (11), in which we understand
one as precisely one.

(11) Every man loves one woman.

"This sentence has readings (12) and (13), where neither (12) follows from
(13), nor (13) from (12).

(12) Vu[man*(u) + 3lv woman*(v) A love*(u,v)]]

(13) 3|v[woman*(v) A Vu[man*(u) + love*(u,v)]].

A more well-known variant of the scope ambiguities of (8) and (11) is sen

tence (I4). Also here the two readings are independent.

(I4) Every man in this room speaks two languages.

These considerations showthat sentences closely resembling (8) exhibit in
dependent ambiguities.

The second argument is that in certain contexts the weaker reading of
(8) is required. Consider (15) or (16).

(15) It is not the case that every man loves a woman

(16) John does not believe that every man loves a woman.

I77

Sentence (15) can be used in situations in which it means (17), as well as
in situations where it means (18).

(17) 7 [Vu[man*(u) + 3v[woman*(v) A 1ove*(u,v)]]]

(18) 7 3v[woman*(v) A Vu[man*(u) + love*(u,v)]].

Here the implication goes in the other direction: reading (17) implies (18).
So if we prefered to have only one reading for (15), it would have to be
(18). It is very likely that (15) is obtained by building (8), and next ne
gating it. This construction requires that reading (18) of (15) be produced
from reading (10) of (8). So sentences like (15) require that reading (10)
is available. Hence (8) should get both reading (9) and (10).

2.4. Model

In several recent proposals arguments are put forward in favor of an
other model for time than the one used in PTQ. Such proposals are based up
on a model with an interval semantics for time, rather than one with time
point semantics (DOWTY1979b, many contributions in ROHRER1980). I will not

incorporate these innovations, but follow the PTQlogic and semantics since
it was not my aim to improve the PTQinterpretation of modifiers. This means
that the logic does not provide for the tools to discriminate semantically
between simple past and perfect, and therefore I will assign the same
meanings to them. The use of the PTQmodel has as a consequence that, for
mally spoken, I only deal with a limited use of tense: the reportive use
(see BENNETT1977).

Using such a 'primitive' semantics is, for the present purposes, not
a great drawback. The scope phenomenaunder discussion will arise within
any semantic treatment of tenses, no matter what kind of a model is used.
I expect that my treatment can be adopted for another model (by taking the
samederivational history, but changing the translations or their inter
pretations).

3. BASIC VERB MODIFIERS

In this section sentences will be considered which contain basic verb

modifiers. First such sentences will be considered from a syntactic point
of view. The PTQrules produce such modifiers in few contexts only, but
there are more situations in which they may occur. Next we will consider

178

such sentences from a semantic point of Viewand investigate their scope
ambiguities. Finally we will consider which kind of rules might be used to
produce such sentences and to obtain the desired meanings.

The first kind of situation we will consider are the complementsof
verbs like try, assert and regret. The rules of PTQallow for unmodified
verb phrases as complement. An example is (19).

(19) John tries to run.

PTQdoes not allow for negated verbs as complement. Such complements are

possible as is pointed out by BENNETT(1976); see example (20). The sen

tence is intended in the reading that what John tries, is not to run.

(20) John tries not to run.

As sentence (21) shows, complements in the perfect are also possible (un
like the PTQpredictions).

(21) John hopes to have finished.

Future is not possible in these complements(but in Dutch it is possible).
The second kind of situations where the PTQrules are inadequate is

provided by sentences with conjoined verb phrases. The PTQsyntax states
that the first verb has to be conjugated. If we assume that the rule is
changed to mark all relevant verbs, then sentences like (22) are produced.

(22) John has walked and talked.

In the PTQapproach it is not possible to obtain differently modified

verbs in the conjuncts to the verb phrase; yet it was noticed by BACH(1980)
and JANSSEN(l980b) that they can be combined freely. Some examples, due to

Bach (op. cit.) are (23) and (24).

(23) Harry left at three and is here now.

(24) John lives in NewYork and has always lived there.

These examples can easily be adapted for other verb modifiers. In (25)
negation occurs and in (26) future.

(25) Harry left at three but is not here now.

(26) John has always lived in NewYork and will always stay there.

So the PTQsyntax has to be extended for complements and conjuncts.

Nowwe come to the semantic aspect. Sentences which contain a modifier

exhibit scope ambiguities with respect to the corresponding operator. An

179

example is (27).

(27) Thepresident will talk.

This sentence has a reading which says that the present president will speak
at a momentin the future (maybeafter his presidency). It also has a read
ing which says that on a future momentthe then president will speak. So
sentence (27) has readings (28) and (29).

(28) 3u[Vv[president*(v) ++ u = V] A W[ta1k*(u)]]

(29) W3u[Vv[president*Gd-+ u = V] A talk*(u)].

Notice that I consider president a predicate which mayapply for dif
ferent reference points to different persons. In somecases an index in
dependent interpretation of an in principle index-dependent noun seems to
be required. The Americanhostages in Iran will probably always be called
hostages although they are no longer hostages. This means that this noun in
sentence (30) is used with an index independent interpretation.

(30) The hostages were received by the president.

I assume that even the president can be used in an index independent way;
in a biography about Eisenhower one might say

(31) The president studied at West-Point.

With an index independent interpretation of president formulas (28) and (29)
are equivalent. An example of a term for which only an index-dependent in

terpretation is possible is 70—years-oldfiman.Sentence (32) only has
readings (33) and (34).

(32) A 70 years old man will visit China.

(33) W3u[70-years*(u) A man*(u) A visit*(u,China)]

(34) 3u[70-years*(u) A man*(u) A W[visit*(u China)]].

For past tense and for negation ambiguities arise which are related
to the ambiguities for future discussed above. For perfect the opinions
vary. Somenative speakers have claimed that perfect can only have narrow
scope, whereas others have no problems with two readings for sentence (35).

(35) The president has talked.

The gramar I wil present, assigns two readings to (35), but a slight mo
dification would give only one reading.

180

For sentences with differently modified verb phrases there is no
scope ambiguity. Sentence (36) only has reading (37), see BACH1980.

(36) A womanhas walked and will run

(37) 3u[woman*(u) A H[wa1k*(u)] A W[run*(u)]].

The above examples concerning embeddings and conjunctions suggest that
it is useful to have rules which produce modified verb phrases. This is the
approach that will be followed in this article. But the examples do not
prove that it is impossible to design a system in which only sentences with
verb modifiers are produced, and no modified verb phrases. I will sketch
below someproblematical aspects of such approaches.

Onemight think of introducing the perfect on the level of sentences,
thus obtaining (39) from (38). Combination with (40) then yields (41).

(38) Harry leaves at three

(39) Harry has left at three

(40) Harry is here now

(41) Harry has left at three and Harry is here now.

From (41) we obtain (42) by means of a deletion rule.

(42) Harry has left at three and is here now.

For these sentences there arise no problems with this approach. But for
(43) it is problematic since (43) does not have the same meaning as (44).

(43) A man left at three and is here now

(44) A men left at three and a man is here now.

Our framework requires that there be a semantic operation which corresponds
with the rule that produces (42) from (41) and (43) from (44). I do not

knowof a semantic operator which has the desired effect, and therefore it
is questionable whether this approach can be followed.

A variant of this method, due to Van Benthem (personal comunication)
is to produce (42) from (45).

(45) He] has left at three and is here now.

Sentence (45) is produced in the way sketched above, so obtained from (46)
by means of a deletion rule.

(46) He] has left at three and he] is here now.

181

The semantic problem mentioned above does not arise because (45) and (46)

are equivalent. I expect that an approach like this will require rules which
are far more complex than the rules which produce modified verb phrases in
this chapter.

If we have rules introducing verb modifiers at the level of verb
phrases do we then still need rules introducing them at the level of sen
tences? The answer of EACH(1980) seems to be that only rules for verb

phrases are needed. He presents a new translation rule corresponding with
the syntactic rule which produces a sentence from a term and a verb phrase.
His translation rule has the effect that in the translation of the sentence

the operator in the IV-translation gets wider scope than the subject. So
the basic situation is that subjects obtain narrow scope, and subjects can
obtain wide scope by quantifying in. In this way the two readings of (47)
are obtained.

(47) The president will walk.

Anexception to this pattern is the conjunction (disjunction) of different
ly modified verb phrases. As we observed above, the subject can only have
wide scope. Recall (36)

(36) A womanhas walked and will run.

In order to deal with such constructions, Bachpresents translation rules
for conjunction and disjunction of verb phrases which have the effect that
for such constructions the subject gets wide scope.

Bach's approach is insufficient because there are examples where one
whishes to quantify a term in, but where nevertheless this term should be
within the scope of the tense operator. I will give three examples. Each
exhibits in the future tense a phenomenonfor which quantification rules
are commonlyused in the present tense. The first example concerns scope
ambiguity of quantifiers: sentence (48) with reading (49).

(48) Every catholic will fbllow a man

(49) W3u[man*(u)A Vv[catholic*(v) + follow*(v,u)]].

In order to obtain reading (49) one wishes to quantify a man into Every
catholic follows him and only after that, assign the tense. The second ex
ample concerns the de-dicto/de-re ambiguity: sentence (50) with reading
(51).

I82

(50) John will seek a unicorn

(51) W3u[unicorn*(u) A seek*(john,u)].

Here John seeks a future 'de-re unicorn’. Again one wishes to quantify in,
and then assign tense. The third example concerns coreferentiality of terms
inside the scope of the tense operator: sentence (52) with reading (53).

(52) The president will love a womanwho kisses him

(53) W3u[Vv[president*(v) ++ u = V] A 3w[woman*(w)A kiss*(w,u)/\love*(U,W9]].

This translation represents the reading in which the loving and kissing
happen on the same moment in the future. Again one wishes to produce this
sentence by meansof first quantifying in at the sentence level, followed
by tense assignment on that level. Related examples can be given for other
tenses and aspects.

For the introduction of negation on the sentence level related examples
can be given: situations where one wished to quantify in, but where nega
tion has wide scope. Examples are the wide quantifier scope in (54), the de-re
reading of (55) and the coreferentiality in (56).

(54) Every womandoes not love a man

(55) John does not seek a unicorn

(56) The president does not love the womanwho kisses him.

The main conclusion of this section is that rules are needed which in

troduce modifiers on the level of verb phrases, but that also rules are
needed which do so on the level of sentences. This aspect constitutes the
fundamental difference between the present approach and the approach of
BACH(1980). Notice that an important part of the argumentation is based
upon the fact that phenomenalike scope of terms, de-dicto/de-re ambiguity
and coreferentiality, are dealt with by meansof quantification rules.

The last part of this section consists of two examples of sentences
which are produced according to the ideas I have just sketched. The details
of the rules will not be given here, but the sequence of stages of the pro
cess (and the respective translations) are the same as the ones obtained
by using the rules of the grammarfrom section 7.

The first example is sentence (57), with reading (58).

(57) John will seek a unicorn

I83

(58) W[3u[unicorn*(u) A seek*(john,u)].

First sentence (59) is produced, it has (60) as translation.

(59) John seeks him]

(60) seek(Ajohn,AAPAP(xl)).

The next step is to quantify in the term a unicorn. Then sentence (61) is
obtained, with translation (62).

(61) John seeks a unicorn

(62) 3u[unicorn*(u) A seek*(john,u)].

The last step is the introduction of future tense in (61). This gives us
sentence (57), with (58) as translation.

The second example concerns the sentence John tries not to run. This
sentence contains the verb phrase not to run, and this raises the question
which kind of translation we use for verb phrases. BACH(1980) has given
several arguents for considering verb phrases as functions operating on
subject terms. This approach has as a consequence that a new, somewhat
complex translation rule has to be used for S4 (the rule which combines a T

and an IV to make an S). One of Bach's arguments in favor of considering

verb phrases as functions was his treatment of tense and aspect. As we con
cluded, his proposal is in this respect not satisfactory. His other argu
ments in favor of verb phrases as functions, concern phenomenaI do not
deal with in this article (such as ‘Montaguephonology‘ and constructions
like A unicorn seems to be approaching). Since in our fragment we will not

have any of the advantages of that approach, I will use the simpler PTQ
translation. But no matter which translation is chosen, the conclusion
that modifiers have to be introduced on two levels remains valid.

Let us return to the example, sentence (63) with translation (64).

(63) John tries not to run

(64) try to(Ajohn,Ax7[(run(vx)]).

The first stage in the production of this sentence is to produce verb phrase
(65). Its translation as explained above, is (66).

(65) do not run

(66) Ax7 [run*(Vx)].

184

The next step is the addition of try to, yielding (67), with (68) as trans
lation.

(67) try not to run

(68) try to(Ax,7 [run*(Vx)]).

Combinationwith the term John gives sentence (63), with translation (64).

4. COMPOUNDVERB MODIFIERS

In this section I will consider sentences in which verbs occur which

are accompaniedby compoundmodifiers: constructions with will not, will
have, had, would, etc. The sentences exhibit ambiguities which give us sug
gestions as to how to deal with compoundmodifiers.

The first example concerns the combination of negation and future.
Sentence (69) has three readings, viz. (70), (71) and (72).

(69) Every womanwill not talk

(70) Vu[woman=;(u)+ '1 W[talk*(u)]]

(71) 7 WVu[woman*(u)+ ta1k*(u)]

(72) 7 Vu[woman*(u) + Wtalk*(u)]].

Notice that in all readings negation has wider scope than future. The first
two readings are the most likely ones. A situation in which the relative
scope of the third reading seems to be intended arises in HOPKINS(1972,
p.789). Hopkins argues that it is not necessary to always design elegant
computer programs because

(73) Every program will not be published. Manywill be used only once.

In the PTQapproach only readings (70) and (71) can be obtained. This is
due to the fact that in PTQtense and negation are treated as an indivisible
unit which is introduced by one single step.

For sentence (74) related ambiguities arise. The sentence is three
ways ambiguous.

(74) The president will have talked.

This sentence may concern

(i) Anaction of the present president (maybeafter his presidency).
(ii) An action of some president during his presidency (maybea future

president).

185

(iii) Anaction of a future president (maybebefore his presidency).

This readings are presented in (75), (76) and (77) respectively.

(75) 3u[Vv[president*(v) A u = V] A WH[talk*(u)]]

(76) WH3u[Vv[president*(v) ++ u = V] A talk*(u)]

(77) W3u[Vv[president*(v) ++ u = V] A H[talk*(u)]].

I assume that (75) is the most likely reading of (74). The relative scope
of the tense operators and president as indicated in (76) is, however, the
most likely reading of (78)

(78) {In 2000the political situation will be different since}

A USApresident will have visited Cuba.

The relative scope as indicated in (77) is the most likely reading of (79).

(79) The president will have learned Montaguegrammarat high school.

These examples show that the two tense operators corresponding with the
compoundmodifier ‘future perfect‘ mayhave different scope. For the other
compoundmodifiers related examples can be given. I will give some examples

of the reading in which the scope of the two operators is not the same.
Sentence (80) with reading (81) can be said about Eisenhower.

(80) The president had been a general. {Therefore he knew about the power
of the military—industrial complex}

(81) H3u[Vv[president*(v) ++ u = V] AH[general*(u)]].

Sentence (82) gives information about the former Dutch queen Wilhelmina.

(82) {In May 1940 Wilhelmina had to leave her country but}

The queen would return to Holland.

(83) H3u[Vv[queen*(v) ++ u = V] A W[return*(u)]].

Notice that in sentence (82) would is used to indicate a certain temporal
sequence. At the momentin the past under consideration, the return was
still in the future. Also the construction would have can be used to de

scribe a certain temporal sequence. The information about queen Wilhelmina
given above can be extended by (84).

(84) At her departure she was just the queen, at the momentof her return
she would have become a symbol of patriotism.

186

The use of would and would have described above is somewhat exceptional.

More frequently they are used in constructions like (85) and (86).

(85) John would come, but he is not here.

(86) If John had come, we would have won the game.

I do not intend to deal with constructions like (85) and (86), but only
with the 'temporal' constructions.

For simple modifiers ambiguities of the kind considered above do not
arise:(87) does not have reading (88), which would express the fact that
the action maytake place after the presidency of a future president.

(87) The president will visit Holland

(88) W3u[Vv[president*(v) ++ u = V] A W[visit*(u,Holland)]].

The ambiguities considered in this section suggest that the compound
modifiers have, for semantic reasons, to be introduced in a process with
several stages, each stage introducing one operator in the translation. For
instance, a sentence containing will have is obtained by first introducing
perfect and next introducing future. Analogously had is analyzed as past +
perfect and would as past + future. The semantic ambiguities can easily be
accounted for since for an operator we have the options of introducing it
on the level of verb phrases and of introducing it on the level of sentences.

Besides the semantic arguments there is also syntactic evidence for
the introduction of compoundmodifiers by means of a process with several
stages. Somecompoundmodifiers can be split up when they occur in connec

tion with a conjoined verb phrase. An example is (89).

(89) The president will have talked and have walked.

In (89) the verb phrases have talked and have walked share the auxiliary
verb will.

The main conclusion of this section is that compoundmodifiers have to
be introduced by a process with several stages, each stage introducing a
newoperator in the translation. An exampleillustrating this process is
sentence (90) with reading (91).

(90) The president will have talked

(9!) W3u[Vv[president*(v) ++ u = v] A H[talk*(u)]].

The first step is the production of the verb phrase (92), which has

translation (93).

(92) have talked

(93) xxut talk*(Vx)].

Next sentence (94) is formed with translation (95).

(94) The president has talked.

(95) 3u[Vv president*(v) ++ u = V] A H[ta1k*(u)]].

The last step is the introduction of the future, this yields sentence (90)
with translation (91).

5. COMPLEX CONSTRUCTIONS

5.1. Introduction

In the previous sections we considered scope phenomenaof simple and

of compoundverb modifiers. In this section scope phenomenawill be con
sidered in connection with more complex constructions than considered be
fore. The most important ones are conjoined and disjoined phrases and com
binations of them. I will use the name conjoined phrases to cover such con
junctions and disjunctions except where the difference is relevant. This
section has a somewhatdifferent character than the previous two, because
conjoined constructions give rise to phenomenawhich do not constitute a
clear and simple pattern. The acceptability of the sentences or interpre
tations is sometimes marginal and the judgements may have to be changed in
somecases. The present discussion is intended primarily to point out some
interesting phenomena.

5.2. Conjoined verb phrases with positive verbs

Conjoined verb phrases which consist of unmodified verbs give rise to
the same phenomenaas single verbs. The conjoined phrases can be modified

as if they were simple verbs and they exhibit the same ambiguities. An ex
ample is sentence (96), which has readings (97) and (98).

(96) The president will walk and talk

(97) W3u[Vv[president*(v) <—»u = v] A [wa1k*(u)I A ta1k*(u)]].

(98) 3u[Vv[president*(v) 4-» u = v] A W[walk*(u) A taJ.k*(u)]].

The formulas (97) and (98) present the possible readings as far as the

188

position of president with respect to the future operator is concerned.
Both readings, however, say that on a momenton the future a certain person
will both walk and talk. Probably this is too precise, and a better inter
pretation wouldbe that there is a future interval of time in which both
the walking and the talking are performed, possibly on different momentsin
that inverval. So this kind of objections against (97) and (98) might be
solved by using another model relative to which the formulas are inter
preted. But concerning the scope aspect, the formulas seem correct, and
therefore the rules will produce only (97) and (98) as translations for
(96).

Conjoined verb phrases with verbs which are modified differently only
have a reading in which both operators have narrow scope. Wehave already
met example (99) with reading (100).

(99) A womanhas walked and will run.

(100) 3u[woman*(u) A H[walk*(u)] A W[run*(u)]].

If the verbs of the conjoined phrase are modified in the same way, there is
a reading which corresponds with the above example: sentence (101) has a

reading (102)

(101) The president will walk and will talk

(102) 3u[Vv[president*(v) ++ u = V] A W[walk*(u)] A W[talk*(u)]].

Sentence (101) can, however, be considered as dealing with a future presi
dent, so it also has reading (103).

(103) W3u[Vv[president*(v) ++ u = V] A wa1k*(u)] A talk*(u)].

The possibility that the walking and talking are performed on the same
moment in the future can be dealt with in the same way as I suggested for

sentence (96). The fact that sentence (101) has reading (103) (= 97!) sug
gests us that we consider sentence (101) as a syntactic variant of (96) and
assign it, too, reading (98). The same treatment will be given of the per
fect.

For the past tense the same pattern applies: sentence (104) not only
has reading (105) but also readings (I06) and (107).

(104) The president walked and talked.

(105) 3u[Vv[president*(v) ++ u = V] A H[wa1k*(u)] A H[ta1k*(u)]]

I89

(106) H3u[Vv[president*(v) ++ u = V] A walk*(u) A talk*(u)]

(107) 3uVv[president*(v) ++ u = V] A H[walk*(u) A ta1k*(u)].

Conjoined negated verbs do not follow this pattern. Sentence (108) has
reading (109), but it has no reading with only one negation sign.

(108) The president does not walk and does not talk.

(109) 3u[Vv[president*(v) ++ u = V] A7 [walk*(u)] A7 [talk*(u)]].

A conjoined verb phrase which consists of equally modified verbs can,
in some cases, be modified further. An example is (110), where a modifier
is applied to a conjunction of verbs in the perfect.

(110) The president will have visited Homeor have visited Tbkyo.

Conjoined verb phrases with equally modified verbs cannot be negated, as
(111) illustrates. That examplecannot be interpreted as a negation of a
conjunction of perfect verb phrases, but only as a negated verb phrase con
joined with a non-negated one.

(111) The president has not visited Romeor has visited Tokyo.

If another modifier is applied first, the phrase behaves as a simple con
struction and can be negated, see (112).

(112) The president will not have visited Romeor have visited Tbkyo.

5.3. Conjoined verb phrases with negated verbs

If in a conjoined verb phrase the first verb is not modified and the
other verbs are negated, then the whole construction behaves as a verb
phrase with unodified verbs. This means that such a construction can be
modified further; an example is (113) with reading (114).

(113) John will walk and not talk

(114) W[wa1k*(john)A7 [talk*(john)]].

Note that sentence (113) is not ambiguous with respect to the scope of W
because the interpretation of John is index independent. WereJohn be re
placed by the president, then ambiguities would arise of the kind we have
discussed before.

If in a conjoined verb phrase the first phrase is negated and the
others are not negated, then the situation is different. Amodifier

I90

‘absorbs’ the negation: sentence (115) only has reading (116).

(115) John will not walk and talk

(I16) 7 W[walk*(john) A talk*(john)].

If all the verbs in a conjoined verb phrase are negated, then the two pat
terns give rise to an ambiguity. Sentence (117) has both reading (118) and
(119).

(117) John will not walk and not talk

(118) wt? w%1lk*(john) A ‘I talk*(john)]

(119) 7w[wa1k*(john) A7ta1k*(john)].

For conjoined verb phrases with verbs in the perfect a related situation
arises. Sentences (120) and (121) seem to have one reading, whereas (122)
has two readings.

(120) John will not have walked and have talked

(121) John will have walked and not have talked

(122) John will not have walked and not have talked.

Corresponding with the above sentences there are sentences with the con
tracted forms like won't. Sentence (123) has the same reading as its un
contracted variant (120).

(123) John won't have walked and have talked.

Sentence (124), however, is not equivalent with the corresponding uncon
tracted form (117): it only has reading (119), but not reading (118).

(124) John won't walk and not talk.

The way in which we may treat contracted forms depends on the organi

zation of the morphological component. Suppose that one decides that the
input of the morphological componenthas to consist of a string of words
(where the words maybear features). Then the contraction of will not to
won't cannot be dealt with in the morphological componentbecause sentence
(118) gives no syntactic information about the intended reading. This means
that the contraction has to be described within the rules: the rule intro

ducing negation should have the option of producing contracted forms like
won't. If one has the opinion that the input of the morphological component
has to be a syntactic structure, then the situation is different. I assue

19]

that sentence (117) will have a structure in which will is directly con
nected with not and a structure in which walk is directly connected with
not. This structural information desambiguates sentence (117) and provides
sufficient information to deal with contracted forms: will not only reduces
in case it is a constituent.

5.4. Terms

The PTQfragment only has terms which require a third person singular of

the finite verb. This is probably caused by the desire to keep the syntax
simple. Incorporating pronouns for the first and second person singular
wouldnot be interesting in the light of our investigations for the follow
ing reason. The pronouns I and you get an index independent interpretation
and therefore (125) and (126) are not ambiguous.

(125) I will have visited China

(126) Youhave discovered the solution.

In what follows we will only consider 'third-person’ terms.

Disjoined terms give rise to the same scope phenomenaas simple terms.

Sentence (127) has a reading that says that the present president or the
present vice president will go, and a reading that says that the future
president or future vice-president will go.

(127) Thepresident or the vice-president will visit Holland.

A complication may arise from quantifying in. One might first produce (128)
and obtain (127) from this by means of quantifying in.

(128) The president or he] will visit Holland.

This might result in a reading in which the present vice-president or the
future president will visit Holland. Suchmixed readings are not possible
for sentence (127). This means that we have to constrain the possible ap
plications of the quantification rule. I have not investigated these mat
ters and I will therefore simply assume the (ad hoc) restriction that

there are no terms of the form T1 or T2 in the fragment, where one or both
terms are indexed pronouns.

In the examples above the determiners the and a are most frequent.

For the term every president corresponding results are obtained: sentence
(129) gets readings (130) and (131).

192

(129) Every president will talk

(130) W[Vupresident*(u) + talk*(u)]

(131) Vu[president*(u) + W[talk*(u)]].

If (129) concerns future presidents, it is unlikely that they have to be
presidents at the same moment. One might try to represent such a meaning

by formula (132).

(132) VuW[president*(u) + talk*(u)].

This is, however, not correct, since (I32) would (vacuously) be true in
situations such that for everyone there is a future momentat which he is
not a president. I expect that the desired reading can be obtained by in
terpreting formula (130) in somemodel with interval semantics for time.
Then (131) might get the interpretation that there is an interval in the
future during which all individuals whoare president in that interval will
talk during that interval. The scope aspect of the meaning of (129) is then
adequately represented by formulas (130) and (131).

For conjoined terms the same ambiguities will be obtained as for dis
joined terms. Sentence (133) has a reading about present statesmen and one
about future statesmen.

(133) Thepresident and the vice president will visit Cuba.

The problem of 'mixed' readings, noticed with respect to disjunctions, al
so arises here, and for conjoined terms a corresponding (ad hoc) restriction
on quantifying in is required. Furthermore there is the samedifficulty as
for the term every president. It is not necessary that the two statesmen of
sentence (133) will visit Cuba together. A solution might be found follow
ing the suggestions concerning the interpretation of (129).

5.5. Embeddings

An important source of scope phenomena are the embedded sentences (in

verb complements and in relative clauses). LADUSAW(1974) and EJERHED(1981)

point out several sentences that are not treated correctly in PTQ.A variant
of an example of Ladusaw is (133).

(133) Mary has fbund the unicorn that walks.

The rules produce the possible reading in which the unicorn presently walks.
But they also produce a reading in which the unicorn walks on the momentof

193

discovery (which is not a possible reading). For the future tense this am
biguity seems to be correct, see sentence (134).

(134) Marywill find the unicorn that walks.

An example from EJERHED(1981) is

(135) Bill will assert that John loves Mary.

She argues that this sentence is ambiguous. On the one reading John loves
Mary at the momentof asserting, and on the other reading he loves her now.
PTQcannot distinguish between these readings, nor can the present treat
ment.

In order to deal with embeddings, Ladusawmakes his syntactic rules
rather complex (using e-g. dominancerelations) and his success is partial.
I would try to find a solution in the logic. Priorian tense logic is not a
suitable logical language to deal with the semantics of embeddedsentences.
This is illustrated by example (136).

(136) A child was born that will becomeruler of the world.

The will of the embeddedsentence takes as ‘starting point’ the reference
point used for the interpretation of the whole sentence, and not the re
ference point introduced by the past tense. Sentence (136) was one of

Kamp's arguments for introducing the 'Now'-operator (KAMT1971). However,
more power is required. The 'now'-operator keeps trace of the first point
of reference one encounters during the evaluation of the sentence: the
point of utterance. SAARINEN(1978) gives examples which show that one

needs to be able to keep trace of all points of reference one encounters
in evaluating the sentence. One of his examples is (137).

(137) Bobmentioned that Joe has said that a child had been born who would

becomeruler of the world.

Saarinen argues that the would can have as starting point for its evalua
tion any of the reference points introduced by the previous past tense
operators. So each operator introduces its ownvariant of ‘now’. This means
that considerable expressive power has to be added to the logic we use for
representing meanings. Since I use the logic of PTQ,with its Priorian
tense operators, it is not surprising that embeddedconstructions in general
are not treated correctly by my grammar.

194

6. ONE OF THE RULES

Most of the scope phenomenadiscussed in the previous sections will be
treated explicitly: in section 7 by providing a gramar. That grammaris in
somerespects different from the gramar used for the PTQfragment. The dif
ferences have already been introduced in chapter 8: words may bear

features, information provided by queries is used, the rules produce labeled
bracketings (or, equivalently, labeled trees), and in the formulation of
the rules certain basic operations can be mentioned. These aspects of the
grammarwill be considered below, thereafter one of the rules will be dis
cussed extensively.

The features are used mainly to facilitate the explicit formulation of
the rules. It is, for instance, shorter to write formulation (A) instead of
(B), and probably easier to understand.
(A) add features ((past, sing 3),6)
(B) replace 6 by its third person singular past tense form.
The features are not intended as a part of a general theory about features,
and therefore I will only introduce those features which I find useful for
the treatment of the present fragment. These are: past, pc (for participles)
and sing 3 (for the third person singular). Other features are not needed
(e.g. there is no feature pres since walk ~+ walked, andsing3,past
walk . ~+ walks).

STEE3mostimportant query that will be used is Fin. The Fins of a sen
tence or verb phrase are its finite verbs, i.e. the verbs which agree (in
person and number) with the subject of the sentence. So it is about the
same as the query Mainverb introduced in chapter 7. I prefer to avoid the
namemainverb in the present context, because auxiliary verbs (such as

will and do) can be used as finite verbs, and maybe not everyone would be
happy to call those auxiliary verbs 'mainverbs'. The other query that will
be used is Verbphrase. It gives the information what the verbphrase of a
given sentence is. For the present fragment it turned out to be the most
simple to define the queries directly on all trees, and not within the
root operation (as was the method employed in chapter 7).

The labeled bracketing are used mainly to give a correct treatment
of conjoined phrases. FRIEDMAN(I979) has shown that for dealing correct

ly with the conjoined and embeddedphrases of the PTQfragment, it is suf
ficient to have the bracketing available: the labels are not needed.

195

For the fragment under discussion the sameholds: no rule needs the infor
mation provided by the labels. The choice of the labels is, for our purposes,
arbitrary. Whichlabels actually have to be chosen, can only be decided if
larger fragments of English are considered, then we might decide which rules
need which information. The decision to call will in John will run an auxil

iary is arbitrary from my point of view, I have no arguments pro or contra
this choice. Since labels play no essential role in the discussion, I will
simplify the presentation of the grammarby omitting the labels, e.g. in
the presentation of the produced expressions and in the formulation of the
root operations. Furthermore, I will omit brackets around simple lexical
items. (e.g. using run instead of [run]). These simplifications allow me
to write (139) instead of (138).

(138) [[John]T[love 3 [Mary] J Jsing3 TV T IV S

(139) [John[love Maryll.sing3
The basic operations we will use are root and adjoin. The operation

root takes a sequence of trees as argument, and connects them with a new
comon root, labeled with a given category (see chapter 7). The operation
adjoin takes two trees as argument, and connects them with a new root,
which bears the same label as the root of the second argument.

As introduction to the presentation of the grammarI will extensively
consider one of the rules. It is the rule which has the effect that the
modifier for future tense is introduced into sentence (140), thus obtaining
(I41).

(140) John walk and talk sing3
walk and talk.

sing3

(141) John willSing3
Every sentence cannot be used as input for this rule; for instance a sen
tence in the future tense cannot be futurized again. There have to be re
strictions on the possible applications of a rule introducing future. For
other modifiers the same holds: not every sentence can be modified. One
might wish to have in the grammara single rule for the introduction on
sentence level of all modifiers. This rule has to mention under which cir

cumstances a future may be introduced, and the same for other modifiers.
Moreover for each modifier it has to describe precisely in which way it has
to be introduced. In this way we would obtain one great rule with a lot of
subclauses. For reasons of elegancy and understandability I prefer to have
for each modifier a separate rule.

F. Henyand B. Richards (eds.), Linguistic Categories: Auxiliaries and
Related Puzzles Vol 7E0 83-99

196

Wehave to characterize the sentences to which a certain modifier can

be added. There is a hierarchy which accounts for the relative scopes of
modifiers as we observed this in sections 3 and 4 (conjoined phrases give
rise to complications). Thehierarchy is

[neg[past[fut[perf]]]].

This hierarchy claims, for instance, that negation always has wider scope
than the perfect. It also says that future can be added to a positive per
fect sentence and to a positive sentence in the present tense. It says
moreover that future cannot be added to a negated sentence because that
would give rise to an incorrect order of scope.

The hierarchy suggest to us how the possible applications of the rule
introducing future has to be restricted. It can only be applied to sentences
in the positive present perfect and in the positive present tense. The rule
introducing future then has to contain a specification of what such sen
tences look like. Onemight expect as characterization of sentences in the
positive present perfect that the sentence has as finite verb the auxil
iary have, and as characterization of a present tensed sentence that its
finite verb is in the present tense. Sucha description is not sufficient.
In the description of the present tensed sentences one has to exclude finite
verbs which are modifiers themselves (has,wiZZ,d0). Furthermore we have to
exclude negations. If conjoined verb phrases are involved, further caution
is required. These considerations showthat the desired characterizations
will becomerather complex. I do not doubt that such characterizations are
possible, but I prefer to use a somewhatdifferent method.

The methodI prefer consists of subcategorization of the sentences
and verb phrases. This subcategorization is not obtained by describing ex
plicitly which sentences belong to a certain subcategory, but indirectly
by means of the rules. The rule which introduces the perfect gives the in
formation that the sentence obtained belongs to the subcategory of sen
tences in the perfect tense and the rule which introduces negation gives
the information that if the rule is applied to a perfect sentence the re
sulting sentence is the subcategory of negated perfect sentences. In this
approach the rules take expressions of specified subcategories and produce
expressions of specified subcategories. In this waywe avoid complexcon
ditions in the rules: the grammardoes the job.

I have already mentioned two subcategories of expressions to which

197

future tense can be added: the positive sentences in the present tense and
those in the present perfect. For these subcategories I will use the names
perf S and S respectively. For the category of all sentences I will use the
namefull S, so S in this chapter has a different meaning than in PTQ. In
the rules manymore subcategories are relevant than the ones mentioned here.
The namesof almost all subcategories that will be used, are indicated by
the following scheme of names:

(neg)(past)(fut)(perf)S.

The naes of subcategories are obtained from this schemeby replacing each
subexpression of the form (a) by the expression a or by the empty string.
Someexamples of subcategories are as follows:

name intuitive characterization
S sentences in the positive present tense
neg past S negated sentences in the past tense
past perf S unnegated sentence in the past perfect

For verb phrases a related system of subcategories will be used. The
system is somewhatlarger because there are somecategories for conjoined
phrases, e.g. the category of conjoined phrases consisting of verbs in the
perfect. The names which can be used are given by the following scheme

(conj)(neg)(past)(fut)(perf)IV.

Whether a conjoined phrase belongs to a subcategory of conjoined phrases is
determined by the rules. This might have as a consequence, however, that the
subcategorization of a phrase and the intuitive expectation about this do
not always coincide. Onemight, for instance, expect that will have walked
and have talked is a conjoined phrase. Since it behaves as a single verb in
the future tense it is considered as an expression of the subcategory fut
IV. For the set of all verb phrases we use the name full IV, the subcate
gory IV consists (in principle) of unmodified verbs.

NowI return to the rule under discussion: the one which introduces

future tense. One might design a two-place rule which combines the modifier
will with a sentence of the subcategory S or perf S. Then the rule yields
a sentence of (respectively) the subcategory fut S or fut perf S. The trans
lation of will introduced on the level of sentences has to be Apwfvp],
where p is a variable of type <s,t>, and the translation rule corresponding
with this syntactic rule could then be M0D'(AS'). Such a rule exhibits a

198

a remarkable property: there is just one expression which can be used as
first argument of the rule. Since only one argument is possible one could
as well incorporate all information about this argument in the rule. In this
way the rule with two arguments is replaced by a rule with one argument. I
consider such a one-place rule as simpler and therefore I will follow this
approach.

A one-place rule which introduces future in a given sentence has to
contain somesyntactic operation which has the effect of introducing will.
In this way will becomes a syncategorematic symbol. This will, when con
sidered in isolation, does not get a translation. But this does not mean
that its introduction has no semantic effect: its effect is accounted for

by the translation rule (which introduces the future tense operator W).
Nor does the syncategorematic introduction of will mean that it has no
syntactic status. The role of will in the syntax can be accounted for in
the surface structure which is produced by the rule. There it can be given
the position it should get on syntactic grounds and there it can get the
label it should bear.

For other verb modifiers the same approach will be followed. There is
no semantic or syntactic reason to have essentially different derivational
histories for past sentences and sentences with future. Both verb modifiers
can be introduced by means of one-place rules. That there is a great syn
tactic difference (in English) between past and future can be accounted for
in the producedbracketing: there the introduction of past has the effect
of the introduction of an affix and the introduction of future the effect of

introducing an (auxiliary) verb. Also the difference between future tense
in French (where it is affix) and in English can be accounted for in the
labeled bracketing. Notice that the decision to introduce verb modifiers
syncategorematically is not madefor principled reasons, but just because
it gives rise to a moreelegant gramar.

Next I will consider the formulation of the rule introducing future
on the level of sentences. This rule can be considered as consisting of
two rules: one producing expressions of subcategory fut S (from expressions
in the subcategory S) and one producing expressions of the subcategory
fut perf S (from perf S expressions). The subcategorical information is
combined in the following scheme (or hyperrule, see the discussion on Van
Wijngaarden grammars in chapter 6, section 5):

Rfut: (perf)S + fut(perf)S.

199

Fromthis schemewe obtain information about actual rules by replacing
(perf) on both sides of the arrow consistently either by perf or by the
empty string. The scheme says that there is a rule (function) from the sub
category S to the subcategory fut S and a function from the subcategory
perf S to the subcategory fut perf S. Whichparticular rules there are is
determined by the syntactic operation F . It consists of two syntacticfut
subfunctions which have to be performed consecutively.

Ffut: delete (sing 3,Fin(S));

adjoin (wiZZsing3,verb phrase(S)).
Agreementis dealt with in a primitive way: the rule is correct only for
subjects which require the third person singular form of the verb. This is
sufficient because our fragment contains only such terms. Notice that there
is for both rules indicated in the scheme, one single syntactic operation.
For the corresponding translation rule the sameholds: there is one trans
lation rule which reads as follows:

Tfut: W[a"].

7. THE GRAMMAR

7.1. Introduction

Nowwe come to the kernel of the proposal: the rules. Presenting an
discussion on how to treat a certain phenomenonis one step, but providing
for explicit rules is another important step. The rules presented here are
not just a formalization of the previous discussion. They contain more in
formation because I have to be explicit about details I did not discuss
(see also section 7.5). The rules do not deal with all phenomenamentioned

in section 2 (simple modifiers) and in section 3 (compoundmodifiers).
Furthermore the rules deal with all phenomenaconcerning conjoined verb
phrases discussed in 4.2 and 4.3, except for the contracted forms. As for
4.4, the fragment contains disjuncted terms, but no conjuncted ones. Al
though embeddedconstructions are in the fragment, the predictions of the
rules are in several cases incorrect.

The fragment described by the rules is an extension and variation of
the PTQfragment. The lexical elements are supposed to be the same as in
PTQ, except for verbs like try to, which loose their to. The rules (schemes)

presented below, replace the PTQrules S3(relative clauses), S4(IV+T),

200

S8(IV/IV+IV), S9(S/S), S]0(IV//IV+IV), Sl4(quantification of T into S),
S]5(quantification into IV), and S]7(variants of S4). Other rules are as
sumed to be as in PTQ, with the change that now bracketings are produced.

The rules will be presented in the form described in the previous
section; i.e. by presenting their S,F, and T component. Furthermore, some
of the rules are accompanied by comments or examples. In the examples the

subcategory of the produced expression is mentioned between braces. The
rules are divided into six groups. Each rule bears an index in the 900
series.

7.2. Rules

I. Rules modifying verb phrases

S901 : (conj)IV + perf IV

F901 : if do is amongFin(a) then delete this do;
add feat (pc,Fin(a)); adjoin (have,a)

: AxH[a'(x)]

([walk and[[do not]talk]) = [have[walkpCand[not talkpC]]] =
have walked and not talked {perf IV}.

T901

example: F901

comment1: The subcategory indication conj is not mentioned in the output
subcategory because the resulting phrase behaves as an simplex
verbphrase in the perfect.

S902 (conj)(perf)IV + fut(perf)IV
F902 : if do occurs in Fin(a), then delete this do; adjoin (will,a)
T902 : XxW[a'(x)]

example: F902 ([walk and[[do not]talk]]) = [will[walk and[not talk]]]
{fut IV}

S903 : (fut)(perf)IV + past(fut)(perf)IV
F903 : add features (past,Fin(a))
T903 : AxH[a'(x)]

examp1es:F903 ([walk and[[do not]talk]]) = [walkpast and[[dopaSt not]talk]D=
walked and did not talk {past IV}

F903 ([will walk]) = Ewillpast walk] = would walk {past fut IV}
comment:Notice that this rule has the same translation rule as the rule

introducing perfect (S In case we use a logic which allows90])’
for dealing with the semantic differences between past and perfect,
the translation rules wouldbe different.

II. Rules

5904

F904

T
00904

example

comment 3

KO O O\

3907

F907

T907
examples:

S903

F908 ‘

T903 ‘

: F904 ([John walk

20]

producing tensed sentences

: S + perf S

: delete features (sing 3,Fin(u)); F901 (verb phrase(a));
add feat (sing 3,Fin(a))
H[a']

3]) = [John have . walk 3 =
s1ng3 pcsin

John has walked {perf S}

If one decided that have cannot have wide scope (see section 3),
then this rule would have to be removed from the syntax.

: (perf)S + fut(perf)S

: delete features (sing 3,Fin(a)); F902 (verbphrase(a));
add features (sing 3,Fin(a))

- W[a']

' (fut)(perf)S + past(fut)(perf)S
: add features (past,Fin(a))
: H[a'].

. Rules for negation

(conj)(past)(fut)(perf)IV + neg(past)(fut)(perf)IV
: case 1 there is one verb in Fin(a):

let f be the list of features of Fin(a)
if Fin(a) is be, will or have then replace it by [be not],

[willf not] or [have not] respectively; f
otherwise adjoin (root(d0f,not),a).

case 2 there is more than one verb in Fin(a).
if do is in Fin(a) then delete this do;
adjoin (root(do,n0t),a).

: Ax7 [a'(x)]
([will walk]) = [[will notlwalk] = will not walk {neg fut IV}
([try[not[to walk]]]) = [[db not][try[not[to walk]]]] =

do not try not to walk {neg IV}

F907 ([walk and[[do not]talk]) = [[do not][walk and[not talk]]] =
do not walk and not talk {neg IV}

F907

F907

: (past)(fut)(perf)S + neg(past)(fut)(perf)S

F907 (verb phrase(a))
7 a'.

202

IV. IV4c0mplements and adverbs

S999 : IV//IV X (conj)(neg)(perf)IV + IV
F999 : if do is the only element of Fin(B) then produce

root(a,root(n0t,root(t0,B))), where B is obtained from B by
deleting do not
otherwise

if there are occurrences of do in Fin(B) then delete these d0's;
root(a,root(t0,B))

T909 ‘ “'(AB')

examp1es:F999 (try,[[d0 no3]runJ) = [try[not[t0 run]]] {IV}

F999 (hope,[have talkpcl) = [hope[t0[have talkpC]]] {IV}
F999 (wish,[walk and[[do notltalkl])=[wish[t0[walk and[not talk]]]]

{Iv}.

comment:The resulting phrases are of the subcategory IV because all verb
modifiers can be added to them. The possible inputs of the rule
are characterized as (conj)(neg)(perf)IV, predicting that all verb
phrases of the corresponding categories can be input for the rule.
This prediction is incorrect witness (142).

(142) John regrets to have talked.

Further investigations are required in order to decide which verbs
take which modified complements.

S919 : IAV X (neg)(conj)IV + IV

F919 : root(B,a)
, I I

T919 . a (B)

examples: F919 (sl0wly,talk) = talk slowly
F919(v0luntarily,[d0[not[talk]]]) = [[d0[n0t talk]]v0luntarily]

{Iv}.

V. Rules for conjoined phrases

In section 5 we observed that conjoined phrases behave in various ways.
This means that they are in various subcategories and that they have to be
produced by several rules. The first two rules mentioned below do not
create a conjoined phrase, but say that all modified verb phrases and sen
tences are membersof the categories full IV and full S respectively. Most
conjunction and disjunction rules are defined on these categories.

5911

T911

T911

5913

T913

T913

3914

T914

T914

3915

S916

The following two rules produce verb phrases which can be modified further.

5917

T917

T917

3918

203

(conj)(neg)(past)(fut)(perf)IV + full IV
: no change of the expression
2 O.

: full IV x full IV + full IV

: root(a,and B)
: Ax[a'(x) A B'(x)]

full S X full S + full S

: root(a,and,B)
. a’ A 8'

as 5913

914

but nowfor disjunction
as S but not for disjunction.

IV X(neg)IV + conj IV

root(a,and,B)
: Ax[a'(x) A B'(x)]

:as S917 but nowfor disjunction.

The following rules produce constructions with an exceptional character.

S919

T919

T919

: neg IV X neg IV + conj perf IV

: delete db from a; add feature(pc,Fin(a));

example :

S920

T920

T920
example

delete do from 8; add feature(pc,Fin(B));
root(have,root(a,and,B))
AxH[a'(x) A B'(x)]

3919 ([[do not]walkJ,[[do notltalkl) =

[have[[not walkpcl and [not talk]]] {conj perf IV}
The corresponding translation is
AxH[walk(x) A talk(x)].

Note that the output of S can be used as input for S919 902’ T°e°

future tense can be added to the output of S919.

: perf IV X (neg)perf IV + fut perf IV
: delete do from B; adjoin (have,r00t(a,and,B))
: XxW[a'(x) A B'(x)]

: F920 (have walk C,[[do not][have talk c]]) =

Ewillfhave walkpcl and [not have talkpC]]J =
will have walked and not have talked {fut perf IV}

204

S92] : neg perf IV X neg perf IV + neg fut perf IV

F921 : delete do from a; delete do from B;
adjoin(will,root(a,and,B))

T92] : AxW[a'(x) A B'(x)]

example: F921 ([[db n0t][have walkpC]],[[d0 not][have talkpcll) =
[wiZl[[not[have walkpcl] and [not[have talk c]]]] =
will not have walked and not have talked {neg fut perf IV}.

comment: If the example given with rule S920 is negated, the resulting
phrase is identical with the example given for rule S921. The
respective translations are different, thus accounting for the am
biguity noted in section 5.

S922,S923,S924 as S919,S92O,S92], but now for disjunction.

VI. Other rules

S925 : T X full IV + full S

F925 : add feature (sing3,Fin(B))
root(a,B)

T925 ’ “'(AB')

S926 : T X (neg)(past)(fut)(perf)IV + (neg)(past)(fut)(perf)S

F926 ‘ F92? (“'B)
T926 ‘ “'(3')

S927,n : CN x full S + CN

F927’n : see F3,n 1n PTQ

T927’n : see T3,n 1n PTQ

S928 : S/S X full S + full S

F928 : adjoin (a,B)

T928 : see T7 in PTQ

comment: The requirement that the sentence is an element of the category
full S prevents the introduction of a verb modifier after appli

cation of S928. Hence negation cannot have wide scope in:

(143) Necessarily John does not run.

S929n : T X (neg)(past)(perf)S + (neg)(past)(fut)(perf)S
9

F929,n : see Fl0’n in PTQ

T929,n : see T]4,n in PTQ

205

S930n : T X (neg)(past)(fut)(perf)IV + (neg)(past)(fut)(perf)IV

F930’n : see Fl0,n in PTQ

T93o,n : see T]5’n in PTQ

S931’S932 as 5929 and 3930’
respectively.

but nowfor the categories full S and full IV

7.3. Morphology

I will not explicitly describe a morphological componentsince that
would be an ad hoc version. I have already sketched (section 4) two views

on what the input for this componentcould be: either the whole surface
structure or only the string of lexical items (with features). In both ap
proaches it cannot be determined whether a certain occurrence of will was
introduced on sentence level or on verb phrase level. There is for the
morphological componentjust one will. Analogously there is just one have,
whether is was introduced as auxiliary at some stage, or as a main verb
describing the relation between owner and property.

7.4. Fins and verb phrase

In the rules the queries verb phrase and Fin are used. Below I will
give a definition of these queries. Although I have described the frame
work as one which produces labeled bracketings, I did not specify labels
because they are not needed in the rules. In the definition of Fin the
labels are useful and I will refer to them. (If the reader has objections
against this situation - not introducing the labels explicitly, but still
using them - then he should neglect the labels. It does not lead to dif
ferent predictions of the gramar.)

In the defintion below V is a paramter which stands for all verbal
categories, i.e. V has to be replaced by IV, IV, IV//IV, or Aux (or what
ever the label is of will, have and do). The X,Y and S stand for arbitrary
labels, and G for the empty set.

Fin(a) = a if a is a verb

Fin([a]V and EBJV) = Fin(u) U Fin(B)

Fin([a]V or EBJV) = Fin(a) U Fin(B)

Fin([[a]v[B]X]V) = Fin(a)
Fin([[a]x[B]S]Y) = Fin(a) if X is not a verbal category
Fin(a) = G if a does not satisfy one of the above

clauses.

206

Verb phrase is defined analogously.
Verb phrase(a) = a if a is a verb

Verb phrase([a]S and [B]S)= verb phrase (a) U verb phrase(B)

Verb phrase([a]S/SEBJ) = verb phrase(B)
Verb phrase([[a]T[B]IV]S) = B
Verb phrase(a) = ¢ if a does not satisfy one of the above

clauses.

7.5. Final remarks

agree with the final remark
I would like to end by saying something about the methodology. I fully

of PARTEE1979a (p.94): ‘It can be very frustra
ting to try to specify frameworksand fragments explicitly; this project
has not been entirely rewarding. I would not recomend that one always work
within the constraint of full explicitness. But I feel strongly that it is
important to do so periodically because otherwise it is extremely easy to
think that you have a solution to a problem when in fact you don't.‘

1‘

Someremarks about my experiences in formulating the rules.
The project was not entirely successful. It was too difficult to do
everything correctly at once. By providing explicit rules, I amalso
explicit in cases where I knowthe proposals to be incorrect (see sec
tion 5), or to be ad hoc (e.g. agreement).
The rules are explicit about borderline cases in which it is not evident
that the produced sentences or the obtained readings are possible (e.g.
verb phrase complementswith a verb modifier).
The rules describe a rather large system and they makepredictions
about a lot of kinds of sentences I never thought of (for instance be
cause they do not resemble the phenomena I thought of when designing the
rules). I would feel safer about the correctness of the rules if I had
a computer program producing hundreds of sentences of the fragment, to
gether with their reduced translations.

. Writing explicit rules forced m to consider the 'irrelevant' details.
It turned out for instance that of the three methods for defining Fin's

mentioned in JANSSEN1980, in fact only one was applicable.

. Considering some larger fragment explicitly gave me suggestions for
finding arguments. I have presented a related treatment of verb modifiers

in JANSSEN1980 as well, but most of the arguments given in sections 2,
3 and 4 of this chapter are new, and these were found when I extended

207

the fragment with the quantification rules and conjunction rules.

Althoughthe first three points are not really a recomendation for
the rules presented here, I would not like to call these negative conse
quences of working explicitly. They are inherent to such a method of working,
and constitute, in myopinion, rather an advantage. Shortcomings of a pro
posal with explicit rules are easier found than of a proposal without.
Therefore such an approach is, generally speaking, a better starting point
for further research and improvements.

209

APPENDIX 1

INDIVIDUAL CONCEPTS IN PTQ

In chapter 4 the syntax and semantics of the PTQfragment were pre
sented. The comon nouns and intransitive verbs of the fragment were trans
lated into constants which denote predicates on individual concepts. Re
duction rules allowed us to replace themby predicates on individuals. What
is then the benefit of using such concepts? The argument given in chapter 4
was based upon the artificial nameBigboss. In PTQtwo less artificial ex
amplesare given as justification for the translation into predicates on
individual concepts.

Consider the sentences (1) and (2).

(1) The temperature is ninety

(2) The temperature is rising.

A naive analysis of (1) and (2), using standard logic, might allow to con
clude for (3).

(3) Ninety rises.

This would not be correct since intuitively sentence (3) does not follow
from (1) and (2). So we have to provide some analysis not having this con

sequence. This example is knownas the temperature paradox.
Montague's second example is a variation of the temperature paradox.

Sentence (6) does not follow from sentences (4) and (5), whereas a naive
analysis might implicate this.

(4) Every price is a number

(5) A price rises

(6) A number rises.

The solution of these problems is based upon the use of individual
concepts. The idea of the solution is explained as follows. Imagine the
situation that the price of oil is $ 40, and becomes$ 50. In this situa
tion one might say:

(7) The price of oil changes.

By uttering (7) one does not intend to say that $ 40 changes, or that $ 50
changes. It is intended to express a property of the oil price, considered

210

as a function from momentsof time to amounts of dollars. Therefore (7)

could be translated into a formula expressing a property of an individual
concept: the oil price concept. Formally spoken, prices are considered as
functions from indices to numbers, and the same for temperatures. Numbers

are considered as elements in De, so prices and temperatures are of type
<s,e> they are individual concepts.

The technical details of the solution of the temperature paradox can
be illustrated by the treatment of sentence (I). The first step of its pro
duction is application of S to be and ninety. This yields (8); the cor5
responding translation reduces to (9).

(8) be ninety

(9) Axfvx = ninety].

The next step is to combine (8) with term (10), which has (11) as transla
tion.

(10) the temperature

(11) AP[3xVy[temperature(y) ++ x = y] A VP(x)].

Since the meaning postulate for commonnouns (MP2) does not hold for tem

perature, its translation (ll) cannot be reduced to a formula with quanti

fication over individuals. Combination of (8) with (11) according to S4
yields sentence (I); the corresponding translation reduces to (12).

(12) 3x[Vy[temperature(y) ++ x = y] A vx = ninety].

The translation of sentences (2) and (3) are respectively (13) and (14).

(13) 3x[Vy[temperature(y) ++ x = 9] A rise(x)]

(14) rise(Aninety).

From (12) and (I3) it does not follow that (14) is true.

Montague's treatment of the temperature paradox has been criticized for

his analysis of the notion temperature. But there are examples of the same
phenomenonwhich are not based upon temperatures (or prices). Several ex
amples are given by LINK (1979) and LOEBNER(1976). One of their examples
is the Germanversion of (15).

(15) The trainer changes.

On the reading that a certain club gets another trainer, it would not be
correct to translate (15) by a formula which states that the property of

211

changing holds for a certain individual.
The temperature paradox (and related phenomena) explain why individual

concepts are useful. But in most circumstances we want to reduce them to
individuals. In the remainder of this appendix it will be investigated when
such a reduction is allowed. First we will do so for translations of intran
sitive verbs, then for other verbs, and finally for translation of comon
nouns.

The only intransitive verbs in the PTQfragment which do not express a
property of an individual, but of an individual concept, are rise and change.
Therefore we restrict our attention to those models of IL in which the con

stants corresponding with the other intransitive verbs are interpreted as
expressing properties of individuals. This is expressed by the following
meaning postulate.

1. Meaning Postulate 3

EIMVXCJ[am <—»[VM](vx)] <MevAR<s,<e,D>)

where M e VAR<s’<e’t>> and 6 translates any member of BIV other than rise
or change.

1. END

This meaningpostulate states that for all involved predicates on individual
concepts there is for each index an equivalent predicate on individuals.
This predicate is index dependent: the set of walkers nowmay differ from
the set of walkers yesterday. MP3expresses the existence of such an equiv
alent predicate by the existential quantification BM.This Mis of type
<s,<e,tv: because variables get an index independent interpretation, and
as argued before, the predicate on individuals corresponding with 6 has to
be index dependent.

In chapter 4 section 2, the 6* notation was introduced as an abbrevia
tion for Xu[6(Au)], so as an abbreviation for those cases where it could
be said that 6 was applied to an individual. The above meaning postulate
says that for certain constants 6 the argument always is an individual,
even if this is not appearent from the formula. Therefore it might be ex

pected that M3 allows us to introduce the 6* notation for those constants
in all contexts. The following theorems allow us to replace a formula with
an occurrence of 6 (where MP3holds for 6), by a formula with an occurrence

of 6*.

212

2. THEOREM.MP3 is equivalent with

|= E1 6(x) «—»a*("x).

PROOFpart 1. Suppose that M3 holds, so F= 3MV#D[6(x) ++ [vM](vx)].

Then there is a g such that g F= VMU[6(x) ++ [VM](Vx)].

Now for all g' 3 g g‘ |= 6*(v) = >.u[<S(Au)](v) = a<“v> = tVMJ(”v> = [VM](V)

Consequently g' F 6* = VM.

So there is a g: g |= vxu [6(x) +->6*(vx)].
Since there are no free variables in this formula, we have

v
|= D [<5(x) «—»5*(x)].

REMARK.The following more direct approach is incorrect because the condi
tions for A—conversionare not satisfied.

g |= 5*(Vx) = xua("u)(Vx) = a(”x) = 6(x) = ["MJ("x).

PROOFpart 2. Suppose F=U[6(x) ++ 6*(Vx)].

Let g,i be arbitrary and define g’ E g by g'(M) = [AAu6(Au)]A’1’g.
Then i,g' F 6(x) ++ [Au6(Au)](vx) ++ CVAAu6(Vx)]++[VM](Vx).

Since g,i were arbitrary, MTZfollows.
2. END

On the basis of this theorem, we have besides RR3, another reduction
rule introducing the *.

3. Reduction rule 11

Let be given an expression of the form 6(x), where 6 is the transla
tion of an intransitive verb other than rise or change.
Then replace 6(x) by 6*(Vx).

CORRECTNESS PROOF

Apply theorem 2.
3. END

Nowwe have two rules for the introduction of 6*: RR3and RRII. The
one requires that the argument is of a certain form, the other that the
function is of a certain nature. Theyhave different conditions for

213

application, and none makes the other superfluous. In case both reduction
rules are applicable, they yield the sameresult. It is not clear to me
whyM3 is formulated as it is, and not directly in the form given in
theorem 2.

For verbs of other categories there are related meaningpostulates.
For instance the transitive verb find should be interpreted as a relation
between individuals. The meaningpostulate for the transitive verbs were
already given in chapter 4 (MP4). Exceptions to that meaning postulate
were seek and conceive because these verbs do not express a relation be
tween individuals. But also about these verbs something can be said in
this respect. The first argumentshave to be (intensions of) individuals:
it is an individual that seeks, and not an individual concept. This is ex
pressed by meaning postulate 5, that will be given below. For verbs of
other categories a related postulate expresses that their subjects are not
individual concepts, but individuals.

4. Meaningpostulate 5

VP3MVXU[6(x,P) «—>[VM] ("x)]

where 6 5 {seek, conceive}.

5. Meaning postulate 6

V931-1VxU[6(x,p) «—>[VM](vx)]

where 6 e {believe that, assert that}.

6. Meaning postulate 7

VPEIMVXDEG (x,P) <—»£"MJ("x) J

where 5 5 {try to, wish to}.
6. END

These three meaning postulates do not give rise to new reduction rules
because there are no generally accepted notations for the corresponding
predicates with an individual as first argument.

The treatmnt of the temperature paradox was essentially based on the
use of individual concepts.

214

This explains why all commonnouns are translated into constants denoting
predicates on individual concepts. Most commonnouns express a predicate
on individuals. This is formulated in a meaningpostulate which I recall
from chapter 4.

7. Meaning postulate 2

U [6(x) + 3u[x=Au]]

where 6 5 {man, woman, park, fish, pen, unicorn}.
7. END

The meaning postulates for nouns and for verbs have a related aim:
they both aim at excluding arbitrary individual concepts as argument and
guaranteeing an individual as argument. So one might expect that there is a
close relation between the consequences of the two meaning postulates. One
might for instance expect that for nouns something holds like the formula
in MP3. This is not the case, as is expressed in the following theorem.

8. THEOREM. Let 6 e CON .
j——— <<s,e>,t> A

Let (I) be the formula U [6(x) + 3u[x= u]]

and (II) the formula D [6(x) ++ 6*(Vx)].
Then (i) (I) a!»(II)

and (ii) (II) #»(I).

PROOF.(i) In chapter 3 we introduced the constant bigboss, which will be
used here. Suppose that

- . A . . . A .

11 F .bigboss = nixon and 12 F= bigboss = bresjnev.

Then

VA , A’i ’g . . , A’il’g . . , A’i2’g .
[bigboss] (12) = Ai[bigboss (i)](i2) = bigboss (12) =

bresjnev

and

AV Aai :8 As]-1,8 A91 93
E bigboss] (il) = Aifbigboss (i)](il) = bigboss (i1) =

nixon.

. VThis means that A bigboss is an expression of type <s,e> which does not
. . A,‘ . ' .

denote a constant function. Since [Au] 11’g(12) = [Au]A’1]’g(i1) = §ig(u)

215

we have that for no g: g,il F Au = Avbigboss. Suppose furthermore that 6

is a constant for which MPi holds, say man.
Then (I) is satisfied.

So g,i] F= man(Avbigboss) + 3u[AVbigboss = Au].
Due to the just proved property of Avbigboss, the consequence is never true.

So for no g g,il F nan(Avbigboss).
Suppose moreover that the predicate man*holds for Nixon.

So g,i] F 1man*(nixon).

Since g,i1 F vbigboss = nixon
we have g,i1 F nmq*(Vpigboss). Consequently
for no g g,i F nmn(VAbigboss) ++ man*(Vbigboss).I

So if g(x) = [AVbigboss]A’1l’g statement (II) is not true. Finally, note
that it is easy to design a model in which bigboss and man have the assumed
properties. Hence we have proven (i).

PROOF.(ii) Let bigboss be as above. Assume now that 6 is a constant for

which MP3holds, say walk. Then (II) holds for 6.

Suppose now il F walk*(nixon).
, v

So 1 F wa1k*(bigboss).
Let g(x) = [A bigboss]A5i’g.
Then it is not true that

. A

1 F= walk*(x) + 3u[x= u]

because the antecedence is true, whereas the consequence is false. A model
in which walk and bigboss have the desired properties can easily be defined
and that is a counterexample to the implication,
8. END

Consequences of the above theorem are:

1. The formulations of the meaning postulates for CommonNouns and for In
transitive Verbs cannot be transformed into each other.

2. The following statement from PTQ (MDNTAGUE1973, p.265,+l9) is incorrect:

U L6(x) ++ 6*(Vx)] if 6 translates a basic commonnoun other than price
or temperature.

3. The meaning postulate for commonnouns does not allow for replacing in
all contexts an individual concept variable by the extension of this
variable. This result was independently found by LINK(1979, p.224).

216

Next I will prove that in certain contexts the meaningpostulate for
comon nouns does allow us to replace bound variables of type <s,e> by

variables of type e. It are contexts created by these translation rules of
the PTQ-fragment: the translation rule for the determiner CNand the deter
miner-CN-re1.clause constructions. In the sequel 6 stands for the transla
tion of a CNfor which MP holds, and ¢ for the translation of a relative2

clause. This ¢ maybe omitted in the formulation of the theorems.

9. LEMMA.If A,i,g |= vmp then A,i,g |= vu["u/xjw

if A,i,g |= 3u[Au/x]1p then A,i,g |= amp.

PROOF. {m 6 D Im = [Au]A’1<s,e> ,3} C {m 5 D lm = XA’1’g}
9. END

<s,e>

The next theorem deals with terms in which the determiner is a.

10. THEOREM.A,i,g |= 3x[6(x) A ¢ A VP(x)]

iff A,i,g F 3u[6(Au) A [Au/x]¢ A VP(Au)].

EBQQE. Suppose that

(1) A,i,g }= 3x[6(x) A ¢ A "p(x)J.

Then there is a m e D<S,e> such that

(2) A,i,[x~>m]g |= am A ¢ A "pm.

From M2 and (2) follows

(3) A,i,[x->m]g F au[x=“uJ.

So there is a a e De such that

(4) A,i,[x+m,u+a]g F .x = Au.

From (4) and (2) follows

(5) A,i,[x->m,u+a]g }= a("u) A [Au/x]¢ A "1=(“u).

217

So

(6) A,i,g F= 3u[6(Au) A [Au/x]¢ A vP(Au)].

Reversely (6) implies (1), as follows from the above lemma.
10. END

The terms with determiner every are dealt with in theorem 1].

11. THEOREM.A,i,g }= Vx[6(x) A ¢ + vP(x)]

iff A,i,g }=vu[a(“u) A [Au/x]¢ + "p("u)J.

EEQQE.One direction of the theorem follows immediately from Lema 9.
The other direction is proved by contra-position. Assumethat was not true
that

(1) A,i,g |= Vx[6(x) A c»+ VP(x)].

This means

(2) A,i,g }= ‘I Vx[6(x) A ¢ + "p(x)J.

This is equivalent with

(3) A,i,g |= 3x[<S(x) A A A -1 "p<x)J.

Application of the argumentation of theorem 10 gives

(4) A,i,g |= au[s("u) A [Au/x]¢ A ‘I Vp(“u)J.

Therefore it is not true that

(5) A,i,g |= vu[c<“u) A [Au/x]¢ + VP(Au)].

So (5) implicates (1).
ll. END

The next two theorems deal with terms with determiner the.

218

12. THEOREM.If A,i,g |= 3y[Vx[[6(x) A M <—>x=y] A "p(y)J.

Then A,i,g F= 3u[Vv[[6(Av) A [Av/x]¢]-++ u=v] A VP(Au)].

PROOF. Suppose

(1) A,i,g |= 3y[Vx[<'S(x) A ¢ <—>X=y] A Vp(y)].

This means that there is an m e D<s’e> such that (2) and (3) hold

(2) A,i,[y->m]g |= Vx[<S(Jr) A 4, 4-» x=y]

(3) A,i,[y->m]g |= VP(y).

From (2) follows (4), and therefore (5) holds.

(4) A.i,Ey->m]g |= 6(9) A Ey/xJ¢ +-* y = y

(5) A,i,[gflm]g F 6(y) A [y/x]¢.

From (5) and MT follows that there is an a 6 De such that (6)2

(6) A,i,[y->'m,u+a]g }= y = ".1.

From (3) and (6) follows (7)

(7) A,i,[y->m,u+a]g |= Vp(“u>.

Apply lemma9 to (2) and substitute AVfor g. Since (6) holds it follows
that (8) holds

(3) A,i,[y->m,u+a] |= vv[a("v) /\ [Av/y]d> «—»Av=Au].

Since [u=v]A’1’g equals [Au=Av]A’1’g, we may replace in (8) Av = Au by

v = u. Combination of (8) with (7) yields (9)

(9) A,i,[y+m,u+a] F= Vv[6(Av) A [Av/y]¢ ++ v = u] A vP(Au)].

219

From this the theorem follows.

12. END

13. THEOREM.If A,i,g |= av[vu[[5("u) A [Au/x]¢] <—>u=v] A vP(Av)]

then A,i.g |= 3yEVx[[6(x) A 45] «—»x=y] A “pool.

Egggg. Suppose

(1) A,i,g |= av[vu[a(“u) A [Au/xlcb «—>u=v] A "p(“v)J.

Then there is an a 5 De such that (2) and (3) hold

(2) A,i,[v»a]g F= Vu[6(Au) A [Au/x]¢ ++ u=v]]

(3) A,i,[v+a]g |= "p(“v).

Let mce D<s > be such that (4) holds.,e

(4) A,i,[x~>mJg |= 5(x) A ¢.

Then from M2 follows that there is a b such that

(5) A,i,[x->1n,u->-b]g I= x = Au.

From (5) and (2) follows (6)

(6) A,i,[x->m,v->a,u+b]g |= 6(x) A .1,«—>x = AV.

Since (4) holds, it follows from (6).

(7) A,i,[x+m,v+a]g F= x = Av.

It follows from (4) and (7) that (8) holds

(8) A,i,[v+a]g F= Vx[6(x) A ¢ + x=Av].

Let now m e D be such that (9) holds<s,e>

220

(9) A,i,[v+a,x+m]g #= x = “V.

From (2) it then follows that (10) holds

(10) A,i,[v+a,x+m]g F= 6(x) A ¢.

From (9) and (10) follows (11)

(11) A,i,[v+a]g |= vx[x="v + a(x) A ¢].

From (3), (8) and (11) the theorem follows.
13. END

The above theorems constitute the justification for the following re
duction rule.

14. REDUCTION RULE 12

Let 6 be the translation of a commonnoun for which meaning postulate

MP2holds. Let be given a formula of one of the following forms,

3x[6(x) A ¢ A VP(x)]

Vx[6(x) A ¢ + vP(x)]

3y[Vx[6(x) A ¢ ++ x=y] A VP(y)].

Then replace this formula by respectively

EIu[6(Au) A [Au/x]¢ A Vp(“u>J

Vu[6(Au) A [Au/x]¢ + Vp(“u)J

3v[Vu[6(Au) A [Au/x]¢ ++ u=v] A VP(Av)]

(provided that ¢ does not contain a free occurrence of u or v).

CORRECTNESS PROOF

221

See the theorems.

I4. END

The theorems mentioned above, allow us to change the types of bound
variables in a lot of contexts which arise if one deals with sentences

from the PTQ-fragment. But they do not cover all contexts arising in this

fragment. If the rule of quantification into a CNphrase (i.e. S]5,n) is
used, then no reduction rule is applicable. An example is (14) in the
reading in which every has wider scope than a. The corresponding transla
tion is (15), and although none of the reduction rules is applicable, it
is equivalent with (16).

(14) Every mansuch that he looses a pen such that he finds it, runs.

(15) Vx[3u[pen*(u) A man(x) A loose*(vx,u) A find*(vx,u)] + run*(Vx)]

(16) Vv[3u[pen*(u) A man*(v) A loose*(v,u) A find*(v,u)] + run*(v)].

One would like to have a reduction rule which is applicable to con
structions in which quantification into a CNis used. However,not in all
such contexts reduction is possible. This was discovered by FRIEDMAN&
WARREN(l980a). Consider sentence (17)

(17) A unicorn such that every womanloves it changes.

Suppose that 17 is obtained by quantification of every womaninto unicorn

such that he] loves it. Then the translation of (17) reduces to (18);
Friedman &Warren call this 'a rather unusual reading‘.

(18) 3x[Vu[woman*(u) + unicorn(x) A love*(u,Vx) A change(x)]].

This translation is, howevernot equivalent with (19).

(19) 3v[Vu[woman*(u) + unicorn*(v) A love*(u,v) A change*(V)]].

This situation might rise doubts about rule S15 n, However, see chapter 9,
9

section 7.2 for an example where the rule is needed.

223

APPENDIX 2

SET MANIPULATION IN SYNTAX

In chapter 6 I provided a system of categories for dealing with syn
tactic variables. The rules given there implicitly assumethat the reader

knowswhat sets are, and what u, with and - mean. This is set theoretical
knowledge, and not knowledge of the grammatical system. In the present sec
tion I will formulate syntactic rules which allow for replacing expressions
like {l,2} - I by {2} and {l,2} U 3 by {l,2,3}. So we aim at rules which re

move the symbols U, with and - from the formulation of the rules. The col
lection of rules performing this task is rather complex. I wish to empha
size that the rules do not arise from the requirement of using total rules,
but from gramatical formalism. A related situation would arise whenusing
partial rules. Such rules would mention a condition like ‘contains an oc

currence of hen’. Since ‘containing’ is not a notion defined by gramatical
means, a formalist might wish to do so. Then rules are needed which are re
lated to the rules below since they have to perform related tasks. Once it

is shownthat the set-theoretical notions u, wi£h_and- are definable by
means of grammatical tools, there is no objection against using them in the
grammareven when not explicitly defined in this way.

Let G be a grammarwith a collection hyperrules H, and let the elements
of H contain expressions like set - n. Then the actual rules of the grammar
are defined as the result of performing the following actions in order.
I. replace the metavariables in the hyperrules by some terminal metaproduc

tion of the meta-grammar
2. replace subexpressions in the rules by other expressions, according to

the rules given below, until there are no occurrences of the non-accept

able symbols (U, withg -).
The rules eliminating the non acceptable symbols introduce some non

acceptable symbols themselves. These are +, is; unless, true and false;
these symbols have to be added to those mentioned in point 2 above. The
collection of rules performing the task of eliminating these symbols is in
finite, and will be defined by means of a two-level gramar. The hyperrules
describing the elimination of the unacceptable symbolsare unrestricted re
writing rules with metavariables. These variables are mentioned below, together
with someexamples of their terminal productions. Different examples are

224

separated by a bar symbol: /, and e denotes the empty string.

set : {1,2} / {3,1} /0.
seq : 1,2 / 3,1

Zseq: 1, / 3,1, / e.
rseq: ,2 / ,l,5 / 5.
n : 1 / 5.

The metarules for these metavariables are as follows (again a bar / sepa
rates alternatives, the non-terminal symbolsare in italics).

set + seq / G.
seq + n / n, seq.
n + 1/2/3/4/5/6/7/8/9/nn/n0.
Zseq + seq, / e.

rseq + ,seq / e.

The rules for with have to allow for replacing {1,2} with l by {1,2},
whereas they should not allow for replacing {2,3} with 1 by {2,3}. The hy
perrule describing such replacements is

{Zseq,n,rseq} wi5h_n + {Zseq,n,rseq}.

An example of a rule derived from this hyperrule is

{l,3,5} gi£h_3 + {l,3,5}.

Thus the expression wi£h_3 is eliminated. In case one meets the subexpres
sion {2,3} wi£h_l there is no rule which can be obtained from this hyper
rule and which can be applied to this subexpression. So we cannot get rid

of the non-acceptable symbol with, as was required in point 2. So we do not
obtain an actual rule and the derivation cannot continue. This 'b1ind alley’
technique is due to SINTZOFF(1967).

The rules for eliminating the - sign have to replace {1,2} - 2 by {I},
and {1,2} - 3 by {1,2}. The rules have to check whether the number pre
ceeded by the - sign occurs in the set mentioned before the sign. For this
purpose, we need gramatical means to check whether two numbers are equal
or different. It is easy to design a rule which can be applied only if two
numbers are equal: a hyperrule with two occurrences of the meta-variable n
can be transformed into a real rule only by substituting for both occurrences

225

the same number. If a hyperrule contains metavariables n] and n2, then it
can be transformed into a real rule by substituting for n] and n2 different
numbers. But nothing prevents us to substitute the same number. It is dif
ficult to guarantee that two numbersare different, but we need such rules.
The rules which do so use the blind alley technique again, nowon the sym

bol unless. The hyperrules are as follows.

0 i§_O + true 1 is 0 + false 2 i§_O + false

0 i§_l + false I is_l + true 2 is 1 + false

0 is 9 + false 1 i§_9 + false

In] i§_ln2 + n] i§_n2 2n1 i§_1n2 + false
In is_2n2 + false Znl i§_2n + n i§_n2 1 2

In i§_9n2 + false
unless true + false
unless false + true
true ‘* E.

The above rules have the effect that an expression of the form unless a is
b reduces to unless true and next to unless in case a equals b. This unless
constitutes a blind alley. If a is not equal to b, the expression reduces to
unless false and through true to the empty string. Then the test is elimi
nated, and the production may proceed.

The rules for the - sign have to check for all elements of the men
tioned set whether they are equal to the element that has to be removed. The
element for which equality is tested (in a step of the testing process) is
the last element of the sequence describing the set. If equality is found,
the element is removed. If a check shows that the numbers are different,

then the element which has been checked, is put at the beginnings of the
sequence, and the new ‘last element‘ is checked. By means of the * sign

the numbers are separated which are already checked from the numbers which

are not yet checked. This rotation technique is due to Van WIJNGAARDEN

(1974). The hyperrules introducing and removing the * sign are as follows.

226

{seq} - n + {*, seq} - n
¢-n->01

{seq, *} - n + {seq}
{*}-n->¢.

The hyperrule removing an element is

{Zseq * reseq, n} - n + {Zseq * rseq} —n.

The rule rotating the sequence is

{Zseq * rseq, nl} - n + {n1,Zseq * rseq} - n unless n i§_n2.2 2 ——————— 1

Weuse the unless phrase to guarantee that n] and n2 are different. If the
numbersare different, then the phrase reduces to the empty string. If they
are equal the unless phrase reduces to the expression unless, and we cannot
get rid of this phrase. This means that we are in a blind alley: we do not
get an actual rule.

The rules for U use the - sign. It would be easy to reduce {1,2} U {2}
to {l,2,2} but, in order to avoid this repetition of elements, I first re
move the 2 from the leftmost set and then add 2 to the set thus obtained.
The rules are as follows.

set U {n,rseq} + set - n + n u {rseq}

{seq} + n + {seq,n}
¢ + n + n

set U {¢} + set

set U { } + set.

This completes the description of the set of rules needed for dealing with
set-theoretical notions by grammatical means.

INDEX OF NAMS

Andreka
Bach

Bartsch
Bennett
van Benthem
Bresnan
Burmeister
Chomsky
Cooper
Curry
Delacruz
Dik
Dowty
Ejerhed
Emde Boas
Faltz
van Fraassen
Friedman
Gallin
Gazdar
Goguen
Goldblatt
Graetzer
Groenendijk
Hausser
Henkin
Hopcroft
Hopkins
Indurkhya
Janssen

Kamp
Karttunen
Keenan
Klein
von Kutschera
Kripke
Ladusaw
Landman
Landsbergen
Lewis
Link
Loebner
Lukasiewics
ter Meulen
Mikenberg
Moerdijk
Montague

227

87
119, 120, 122, 124, 125, 133, 138, 144-147, 150, 151, 157,
164, 167, 168, 178, 180-183
43, 54, 61, 95
129, 154, 177, 178
11, 77
112, 141
87
102, 103, 131, 138
54, 86, 87, 119, 120, 137, 138, 141, 144-158, 166, 167
122
57
118
43, 57, 69, 95, 122, 124, 177
192, 193,
29, 75
71, 72, 77, 78
86
7, 22, 24, 37, 118, 131, 132, 167, 221
74, 76
21, 103
87
87
87
70, 71, 76, 124, 128, 143, 150, 158
75, 76, 86, 87, 111, 124, 141, I56
74
84
184
7

7, 27, 54, 75, 89, 94, 118, 138
144, 155, 157, 178, 206
87, 193
166
71, 72, 77
87, 131
87
5
192
33, 121, 125
107, 122
10, 48, 76
210
210
87
87
87
121, 125
1, 2, 4, 58, 62, 78, 124, 150, 174, 215

228

Nemeti
Oh
Parsons
Partee

Rodman
Rohrer
Saarinen
Sag
Scha
Scott
Sintzoff
Stokhof
Strachey
Thomason
Tichy
Veltman
Waldo
Warren
van Wijngaarden

37
153
54, 119
25, 27, 49, 56, 57, 73, 30, 32, 91-99, 103-112,
117-120, 125, 129, 131, 132, 133, 140, 141, 155, 156,
163, 164, 206
60, 141, 143, 147, 157
177,
193
103
35
37
224
70, 71, 76, 124, 123, 143, 150, 153, I76
37
63, 32, 34, 94, 143, 155, 159
75
91
35, 37
7, 37, 167, 221
103, 225

229

REFERENCES

Andreka, H., P. Burmeister & I. Nemeti, 1980,
‘Quasivarieties of partial algebras. A unifying approach
towards a two-values model theory for partial algebras‘,
Preprint 557, Fachbereich Mathematics, Technische Hochschule,
Darmstadt.

Andreka, H., & I. Nemeti, 1982,
‘Generalization of variety and quasi variety-concept
to partial algebras through category theory‘,
Dissertationes Mathematicae 204.

Bach, E. & R.H. Cooper, 1978,
‘The NP-Sanalysis of relative clauses and compositional
semantics‘,
Linguistics and Philosophy 2, 145-150.

Bach, E., 1979a,
‘Control in Montague grammar‘,
Linguistic Inquiry 10, 515-531.

Bach, E., 1979b,
‘Montaguegrammarand classical transformational grammar‘,
in Davis & Mithun 1979. pp. 3-49.

Bach, E., 1980,
‘Tenses and aspects as functions on verb-phrases‘,
in Rohrer 1980, pp. 19-37.

Bartsch, R., 1978,
'Infinitives and the control problem in categorial grammar‘,
Theoretical Linguistics 5, 217-250.

Bartsch, R., 1979,
‘The syntax and semantics of subordinate clause
constructions and pronominal reference‘,
in Heny & Schnelle 1979. PP. 23-59.

Bennett, M., 1976,
‘A variation and extension of a Montague fragment of English‘,
in Partee 1976, pp. 119-163.

Bennett, M., 1977,
‘A guide to the logic of tense and aspect in English‘,
Logique at Analyse 80, 491-517.

Bennett, M., 1978,
‘Demonstratives and indexicals in Montague grammar‘,
Synthese 39. 1-80.

Benthem, J.F.A.K. van, 1977,
‘Tense logic and standard logic‘,
Logique et Analyse 80. 395-437.
Kennis en methode 5, 94-116.

Benthem, J.F.A.K. van, 1981,
‘Whyis semantics what‘,
in Groenendijk, Janssen & Stokhof 1981, pp. 24-49.

Bresnan, J.W., 1973,
‘Comparativedeletion and constraints on transformations‘,
Linguistic Analysis 1, 25-74.

Chomsky, N., 1965,
‘Aspects of the theory of syntax‘,
The M.I.T. Press, Cambridge (Mass.)

230

Chomsky, N., 1975,
‘Questions of form and interpretation‘,
Linguistic Analysis 1,
Reprinted in N. Chomsky, ‘Essays on form and interpretation‘,
North Holland, NewYork, 1977. Pp. 25-29.

Cooper, R.H., 1975,
‘Montague‘s semantic theory and transformational syntax‘,
dissertation, Univ. of Massachusetts, Amherst.
Published by: Xerox University Microfilms.

Cooper, R. & T. Parsons, 1976,
‘Montaguegrammar, generative semantics and interpretative
semantics‘,
in Partee, 1976, pp. 311-362.

Cooper, R.H., 1978,
‘A fragment of English with questions and relative clauses‘,
Unpublished paper, Dept. of Linguistics, Univ. of Wisconsin.

Cooper, R.H., 1979a
‘The interpretation of pronouns‘,
in Heny & Schnelle 1979. PP- 51-92

Cooper, R., 1979b,
‘Variable binding and relative clauses‘,
in F. Guenthner & J.S. Schmidt (eds), ‘Formal semantics and
pragmatics for natural languages‘, Synthese language library 4,
Reidel, Dordrecht, 1979. Pp. 131-171.

Curry, H.B., 1961,
‘Somelogical aspects of grammatical structure‘,
in ‘Structure of language and its mathematical aspects‘,
Proceedings of Symposia in Applied Mathematics vol. XII,
American Mathematical Society, Rhode Island, pp. 56-68.

Davidson, D. & G. Harman (eds), 1972,
‘Semantics of natural language‘,
Synthese library H0, Reidel, Dordrecht.

Davis, S. & M. Mithun (eds), 1979,
‘Linguistics, philosophy and Montaguegrammar. (Proc. conf.
Albany 1977)‘,
Univ. of Texas Press, Austin, Texas.

Delacruz, E.B., 1976,
‘Factives and propositional level constructions in Montague
grammar‘,
in Partee 1976, pp.177—199.

Dik, S.C., 1978,
‘Functional grammar‘,
North Holland Linguistics series 37, North Holland,
Amsterdam.

Dik, S.C., 1980,
‘Seventeen Sentences: basic principles and application
of functional grammar‘,
in E.A. Moravcsik & J.R. Wirth (eds), ‘Current approaches to
syntax‘, Syntax and semantics 13, Academic Press, 1980, pp. 45-75.

Dowty, D.R, 1976,
‘Montaguegrammar and the lexical decomposition of causative
verbs‘,
in Partee 1976, pp. 201-2H5.

231

Dowty, D., 1978,
‘Governedtransformations as lexical rules in a
Montague grammar‘,
Linguistic Inquiry 9, 393-H26.

Dowty, D., 1979a,
‘Dative "movement" and Thomason‘s extensions of Montague
grammar‘,
in Davis & Mithun 1979. pp. 153-222.

D0WtY, D.R.. 1979b.
‘Word meaning and Montague grammar‘,
Synthese language library 7, Reidel, Dordrecht.

Dowty, D., 1982,
‘Grammatical relations and Montague grammar‘,
in Jacobson & Pullum 1982, pp. 79-130.

Ejerhed, E.I., 1981,
‘Tense as a source of intensional ambiguity‘,
in Heny 1981, pp. 231-252.

Fraassen, B.C. van, 1969,
‘Presuppositions, supervaluations and free logic‘,
in K. Lambert (ed.), ‘The logical way of doing things‘,
Yale Univ. Press, NewHaven, 1979. Pp. 67-91.

Friedman, J., 1979a,
‘Anunlabelled bracketing solution to the problem
of conjoined phrases in Montague‘s PTQ‘,
Journal of Philosophical Logic 8, 151-169.

Friedman, J. & D. Warren, 1979b,
‘Erratum’,
Linguistics and Philosophy 3. 39.

Friedman, J., & D. Warren, 1980a,
‘Notes on an intensional logic for English III. Extensional
forms‘,
Report N-13, Dept. of Computer and Communication Sciences,
The Univ. of Michigan, Ann Arbor (Mich).

Friedman, J. & D. Warren, 1980b,
‘Lambda-normalforms in an intensional logic for English‘
Studia Logica 39, 311-324.

Gallin, D., 1975,
‘Intensional and higher-order modal logic‘,
Mathematics studies 17, North Holland, Amsterdam.

Gazdar, G., 1980,
‘Across categorial semantics for coordination‘,
Linguistics and Philosophy 3, H07-N09.

Gazdar, G. & I.A. Sag, 1981,
‘Passives and reflexives in phrase structure grammar‘,
in Groenendijk, Janssen & Stokhof, 1981, pp. 131-152.

Gazdar, G., 1982,
‘Phrase structure grammar‘,
in Jakobson & Pullum 1982, pp. 131-186.

Goldblatt, R., 1979.
‘Topoi. The categorial analysis of logic‘,
Studies in Logic and the foundations of mathematics 98,
North Holland, Amsterdam.

Goguen, J., 1978,
‘Abstract errors for abstract data types‘,
in Neuhold 1978, pp. 491-525

232

Graetzer G., 1968,
‘Universal algebra‘,
The univ. series in higher mathematics, van Nostrand, Princeton.
Second edition published by: Springer, NewYork, 1979.

Groenendijk, J. & M. Stokhof, 1976,
‘Somenotes on personal pronouns, reflexives and sloppy
identity‘,
in K. Braunmueller & W. Kuerschner (eds), 'Grammatik. Akten
des 10. linguistischen Kolloquiums. Band 2', MaxNiemeyer,
Tuebingen, 1976, pp. 301-319.

Groenendijk, J. & M, Stokhof, 1979,
‘Infinitives and context in Montaguegrammar‘,
in Davis & Mithun 1979. PP. 287-310.

Groenendijk J.A.G., T.M.V. Janssen & M.B.J. Stokhof (eds), 1981,
‘Formal methods in the study of language. Proceedings of the
third Amsterdamcolloquium‘,
MC-Tracts 135 & 136, Mathematical Centre, Amsterdam, 1981.

Groenendijk, J. & M. Stokhof, 1981,
‘Semantics of wh-complements‘,
in Groenendijk, Janssen, Stokhof, 1981, pp.153 -181.

Hausser, R.R., 1976,
'Presuppositions in Montaguegrammar‘,
Theoretical linguistics 3, 2H5-280

Hausser, R.R., 1978,
‘Surface compositionality and the semantics of mood‘,
in Groenendijk & Stokhof 1978, pp. 174-193.

Hausser, R.R., 1979a,
‘A constructive approach to intensional contexts. Remarks
on the metaphysics of model theory‘,
Unpublished paper.

Hausser, R.R., 1979b,
‘Howdo pronouns denote?‘,
in Heny & Schnelle 1979. pp. 93-139.

Hausser, R.R., 1980,
‘Surface compositionality and the semantics of mood‘,
in J.R. Searle, F. Kiefer & M. Bierwisch, 'Speach act theory and
pragmatics', Reidel, Dordrecht, 1980, pp. 71-95.

Hausser, R.R., 198R,
‘Surface compositional grammar‘,
‘Studies in theoretical linguistics, Fink Verlag, Muenchen.

Henkin, L., 1950,
‘Completeness in the theory of types‘,
Journal of Symbolic Logic 15, 81-91.

Heny, F. & H.S. Schnelle (eds), 1979,
‘Selections from the third Groningen round table‘,
Syntax and Semantics 10, Academic Press, NewYork.

Heny, F. (ed.), 1981,
'Ambiguities in intensional contexts‘,
Synthese language library 12, Reidel, Dordrecht.

Hopcroft, J.E. & J.D. Ullman, 1979,
‘Introduction to automata theory, languages and computation‘,
Addison-Wesley, Reading (Mass.).

233

Hopkins, M., 1972,
‘A case for the GOTO‘,
in ‘Proceedings of the ACM(proc. conf. Boston 1972)‘,
Association for Computing Machinery, NewYork, 1972, pp. 787-790.

Indurkhya, B., 1981,
‘Sentence analysis programs based on Montague grammars‘,
unpublishedpaper, Philips international institute
of technological studies, Eindhoven.

Jacobson, P., & G.K. Pullum, 1982,
‘Thenature of syntactic representation‘,
Synthese Language Library 15, Reidel, Dordrecht.

Janssen, T.M.V. & P. van Emde Boas, 1977a,
‘Onthe proper treatment of referencing, dereferencing
and assignment‘,
in A. Salomaa & M. Steinby (eds), ‘Automata, languages,
and programming (Proc. Hth. coll. Turku)', Lecture notes in
computer science 52, Springer, Berlin, 1977. pp. 282-300.

Janssen, T., 1978a,
‘Compositionality and the form of the rules in Montague
grammar‘,
in Groenendijk & Stokhof 1978, pp. 101-124.

Janssen, T.M.V., 1978b,
Simulation of a Montague grammar‘,
Annals of systems research 6, 127-180.

Janssen, T.M.V., 1980a,
‘Logical investigations on PTQarising from programming
requirements‘,
Synthese MU, 361-390.

Janssen, T.M.V., 1980b,
‘Onproblems concerning the quantification rules in
Montague grammar‘,
in Rohrer 1980, pp. 113-134.

Janssen, T.M.V., 1981,
‘Compositional semantics and relative clause formation
in Montague grammar‘,
in Groenendijk, Janssen, Stokhof 1981, pp. 237-276.

Janssen, T.M.V., 1981b,
‘Montague grammar and functional grammar‘,
in T. Hoekstra & H v.d. Hulst and M. Moortgat (eds),
‘Perspectives on functional grammar‘, Foris publications,
Dordrecht. 273-297.
also: GLOT3, 1980, 273-297.

Kamp, H., 1971,
‘Formal properties of "Now"‘,
Theoria 37, 227-273.

Kamp, H., 1975,
‘Twotheories about adjectives‘,
in Keenan 1975, pp. 123-155.

Keenan, E. (ed.), 1975,
‘Formal semantics of natural language. (Coll. Cambridge 1973)‘,
Cambridge Univ. Press, 1975.

Keenan, E.L. & L.M. Faltz, 1978,
‘Logical types for natural language‘,
UCLAoccasional papers in linguistics 3.

234

Klein, E., 1979,
Onsentences which report beliefs, desires and other
mental attitudes‘,
unpublisheddissertation.

Klein, E., 1981,
‘The interpretation of adjectival, nominal and
adverbial constructions‘,
in Groenendijk, Janssen, Stokhof 1981, pp. 381-398.

Kripke, S., 1972,
‘Namingand necessity‘,
in Davidson & Harman 1972, pp. 253-355.

Kutschera, F. von, 1975,
‘Partial interpretations‘,
in Keenan 1975, pp. 156-174.

Ladusaw, W., 1974,
‘Some problems with tense in PTQ',
Texas Linguistics Forum 1, p. 89-102.

Landman, F. & I. Moerdijk, 1981,
‘Morphological features and conditions on rules in
Montague grammar‘,
Amsterdampapers in formal grammar3, Centrale Interfaculteit
University of Amsterdam.

Landman, F., & I. Moerdijk, 1983a,
‘Compositionality and the analysis
Linguistics and Philosophy 6, pp. 89-114.

Landsbergen, J., 1981,
‘Adaption of Montague grammarto the requirements of parsing‘,
in Groenendijk, Janssen, Stokhof 1981, pp. 399-420.

Lewis, D., 1970,
‘General semantics‘,
Synthese 22, 18-67.
Reprinted in Davidson & Harman 1972, pp. 169-248.
Reprinted in Partee 1976, pp. 1-50.

Lewis, D., 1974,
"Tensions‘,
in M.K. Munitz & P.K. Unger (eds), ‘Semantics and
philosophy‘, NewYork Univ. Press, NewYork, 1974.

Link, G., 1979,
‘Montague Grammatik. I: Die logische Grundlagen',
Kritische Information 71, Wilhelm Fink, Muenchen.

Loebner, S., 1976,
‘Einfuerung in die Montague Grammatik‘,
Monographien Linguistik und Kommunikationswissenschaft 27,
Scriptor, Kronberg.

Lukasiewics, J., 1920,
‘Philosophische Bemerkungen zu mehrwertigen Systemen
des Aussagenkalkuels‘,
Comptes Rendus des Sceances de Varsovic, Cl. iii, 23, pp. 51-77.
Translated by H. Weber as ‘Philosophical remarks on many-valued
systems of propositional logic‘, in S. McCall (ed.), ‘Polish
logic, 1920-1939‘, Clarendon Press, Oxford, 1967.

Meulen, A. ter, 1980,
‘Substances, quantities and individuals. A study in
the formal semantics of mass terms‘,
distributed by: Indiana Univ. Linguistics Club,
Bloomington (Ind.).

235

Mikenberg, I., 1977,
‘Fromtotal to partial algebras‘,
in A.I. Arruda, N.C.A. da Costa & R, Chuaqui (eds),
Mathematical Logic. Proceedings of the first Brazilian
Conference‘, M. Dekker, NewYork, 1977. Pp. 203-223.

Montague, R., 1968,
'Pragmatics‘,
in R. Klibansky (ed.), ‘Contemporary philosophy. A survey‘,
La NuovoItalia Editrice, Florence, 1968, pp. 102-122.
Reprinted in Thomason 197M, pp. 95-118.

Montague, R., 1970b,
‘Universal grammar‘,
Theoria 36, 373-398.
Reprinted in : Thomason 1979, pp. 222-2A6.

Montague, R., 1973,
‘The proper treatment of quantification in ordinary
English‘,
in K.J.J. Hintikka, J.M.E. Moravcsik & P. Suppes (eds),
‘Approaches to natural language‘, Synthese Library #9,
Reidel, Dordrecht, 1973. DD. 221-2&2.
Reprinted in Thomason 1974, pp. 247-270.

Oh, Choon-Kyu, 1977.
‘The so-called Bach-Peters paradox explained away‘,
Theoretical Linguistics 4, 197-207.

Partee, B.H., 1971,
‘Onthe requirement that transformations preserve meaning‘,
in C. Fillmore & D.T. Langendoen (eds), ‘Studies in
linguistic semantics‘, Holt, Rinehart &Wintson,1971.

Partee, B.H., 1973,
‘Sometransformational extensions of Montague grammar,‘
Journal of Philosophical Logic 2, 509-539.
Reprinted in Partee 1976, pp. 51-76.

Partee, B., 1975,
‘Montague grammar and transformational grammar‘,
Linguistic Inquiry 6, 203-300.

Partee, B.H. (ed.), 1976,
‘Montague grammar‘,
Academic Press, NewYork.

Partee, B., 1977a,
‘John is easy to please‘,
in A. Zampolli (ed.), ‘Linguistic structures processing‘,
Fundamental studies in computer science 5, North Holland,
Amsterdam, 1977, pp. 281-312.

Partee, B.H., 1977b,
‘Possible world semantics and linguistic theory‘,
The Monist 60, 303-326.

Partee, B.H., 1979a,
‘Constraining transformational Montague grammar: A framework
and a fragment‘,
in Davis & Mithun 1979, pp. 51-102.

Partee, B.H., 1979b,
‘Montague grammar and the we11—formednessconstraint‘,
in Heny & Schnelle 1979, pp. 275-31H.

236

Partee, B. & E. Bach, 1981,
‘Quantification, pronouns and VP-anaphora‘,
in J.A.G. Groenendijk, T.M.V. Janssen, & M.B.J. Stokhof, 1981,
‘Formal methods in the study of language. Proceeding of the third
Amsterdamcolloquium. Part 2', MCTract 136, Mathematical Centre,
Amsterdam, pp. uu5—u31.
reprinted in J. Groenendijk, T.M.V. Janssen & M. Stokhof (eds),
‘Truth, interpretation and information‘, Grass 3, Foris,
Dordrecht, 198R, 99-130.

Rodman, R., 1976,
‘Scope phenomena, "movementtransformations", and relative
clauses‘,
in Partee 1976, pp. 165-176.
Gunter Narr, Tuebingen, 1977.

Rohrer, C., 1980,
‘Time, tense and quantifiers. (Proc. conf Stuttgart 1979)‘.
Linguistische Arbeiten 83, MaxNiemeyer, Tuebingen.

Saarinen, E., 1978,
‘Backwards-looking operators in tense logic and in natural
language‘,
in J. Hintikka, I. Niiniluoto, & E. Saarinen (eds), ‘Essays
on mathematical and philosophical logic. Proceedings of the
Nth. Scandinavian logic symposium‘, Synthese Library 122,
Reidel, Dordrecht, 1978, pp.341-367.

Scott, D. & C. Strachey 1971,
‘Towards a mathematical semantics for computer languages‘,
in J. Fox (ed.), ‘Computers and automata (proc. symp.
Brooklyn)‘, Polytechnic Press, Brooklyn (N.Y.), 1971,
pp. 16-H6.

Sintzoff, M., 1967,
‘Existence of a van wijgaarden syntax for every
enumerable set‘,
Annales de la Societe Scientifique de Bruxelles 81, 115-118.

Thomason, R.H., 1972,
‘Asemantic theory of sortal incorrectness',
Journal of Philosophical Logic 1, 209-258.

Thomason, R.H. (ed.), 197M,
‘Formal philosophy. Selected papers of Richard Montague‘,
Yale University Press, NewHaven.

Thomason, R.H., 1976,
‘Some extensions of Montague grammar‘,
in Partee 1976, pp. 77-117.

Tichy, P., 1971,
‘Anapproach to intensional analysis‘,
Nous 5, 273-297.

Veltman F., 1981,
‘Data semantics‘,
in Groenendijk, Janssen & Stokhof 1981, pp. 541-565.
Revised reprint in Groenendijk, Janssen & Stokhof, 198M,
pp. 43-63.

Visentini et al., 1970,
‘Linguagginella societa e nella technica‘,
Edizioni di communita, Milan (distributed by the Olivetti
Corporation).

237

Waldo, J., 1979,
‘A PTQsemantics for sortal incorrectness',
in Davis & Mithun 1979. pp. 311-331.

Wijngaarden, A. van, 1970,
'On the boundary between natural and artificial languages‘,
in Visentini et a1., 1970, pp. 165-176.

Wijngaarden, A. van, et a1., 1975,
‘Revised report on the algorithmic language ALGOL68',
Acta Informatica 5. 1-236.

CWI TRACTS

I9I8)‘.‘HJ.Epema. Surfaces with canonical hyperplane sections.I .

2 JJ. Dijkstra. Fake topologicalHilbert sfaces and characterizations of dimension in terms of negligibi ity. I984.
3 AJ. van der Schaft. System theoretic descriptions of physical
systems. I984.
4 J. Koene. Minimal cost flow in processing networks. a primal
approach. I
5 B. H enboom. lntertwining functions on compact Lie
groups. I 84.
6 A.P.W. Bbhm. Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. I984.

8 M.H. van Hoom. Algorithms and approximationsfor queue
ing systems. I984.
9 C.P.J. Koymans. Models of the lambda calculus. I984.

I0 C.G. van der Laan. N.M. Temme. Calculation of s/vecialfunctions: the gamma unction, the exponential integra s and
error-like functions. I 84.
ll N.M. van Di'k. Controlled Markov processes; time
discretization. I 84.

I2 W.H. Hundsdorfer. The numerical solution of nonlinear
sttfl initial value problems: on analysis of one step methods.
I985.

I3 D. Grune. On the design of ALEPH. I985.
I4 .I.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. I985.
I5 F.J. van der Linden. Euclidean rings with two infinite

primes. 5
I6 R.J.P. Groothuizen. Mixed elliptic-hyperbolicpartial
diflerential operators: a case-stuay in Fourier integral opera
tors. I 85.

I7 H.M.M. ten Eikelder. Symmetriesfor dynamical and Ham
iltonian systems. I985.
I8 A.D.M. Kester. Some large deviation results in statistics.
I985.

I9 T.M.V. Janssen. Foundations and ap lications of Montague

grammar. part I: Philosophy.framewor . computer science.986.

20 B.F. Schriever. Order dependence. I986.
2| D.P. van der Vechl. Inequalitiesfor stopped Brownian
motion. I986.

22 J.C.S.P. van der Woude. Topological dynamix. I986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. I986.
24 J.C.M. Baelen. Filters and ultrafilters over definable subsets
of admissible ordinals. I986.
25 A.W..|. Kolen. Tree network and planar rectilinear location
theory. I986.
26 A.H. Veen. The misconstrued semicolon: Reconciling
imperative languages and dalaflow machines. I986.
27 A.J.M. van En elen. Homogeneous zero-dimensional abso
lute Borel sets. I9 6.

28 T.M.V. Janssen. Foundations and applications of Montague
grammar, part 2: Applications to natural language. I986.

MATHEMATICAL CENTRE TRACTS
I T. van der Wall. Fixed and almo.1't‘fi.\'edpointx. I963.
2 A.R. Bloemena. Saniplingfrnm a graph. I964.
3 G. de Lcve. Generali:ed Markovian decision pro('¢'.v.\‘e.\‘.part
I: model and method. I964.

4 G. de Levc. GeneraIi:ed Markm-ian decision processes‘.purl
ll: probabilistic baekground. I964.
5 G..de L£VC.H.C. Ti'ms. P.J. Wceda. GeneraIi:ed Mufkt)l't(lII
decision proce.\'se.r. app icationx. I970.
6 M.A. Maurice. Compact ordered spaces. I964.
7 W.R. van Zwel. Convex transforniationx of random variablex.
I964.

8 .l.A. Zonncveld. Automatic numerical integration. I964.
9 P.C. Baayen. Universal tnorphi.tm.\‘. I964.
I0 E.M. de Jagcr. Applications of tll.\'lrll7llIt0It.\‘in mathematical

pli_r.vic.$. I964.

ll A.B. Paalman-dc Miranda. Topologicalseiiiigroiipx. I964.
I2 J.A.Th.M. van Berckel. H. Brandi Corslius. R..l. Mokkcn.
A. van Wijngaardcn. Formal propertiex of nen-spaper Dutch.
I965.

I3 H.A. Lauwerier. A.sji-nipiotic ('.\'[7tlII.\‘lt)I|.\‘.I966. out of print:
replaced by MCT 54.
I4 H.A. Lauwcrier. Calculus i_i/‘variatioiisin mathematical

pltl‘si¢'s. I966.

I5 R. Doornbos. Slippage texts. I966.
I6 J .W. de Bakker. Formal dcyinitiaii a/‘programniing

Iaigzuages with an application to the ile/iiiitioii of AI.(i0l. 60.I9 7.

I7 R.P. van de Riel. Formula maiii'piilatioii in Al.(}'0l. all.
part I. I968.
I8 R.P. van de Riel. Formula manipiilatioii in ALGOL 60.

part 2. I968.

I9 J. van dcr Slol. Some propertiex relateil to coiiipiictiie.c.\'.
I968.

20 PJ. van dcr Houwen. Finite tIi[]ereiii'e methoil.r./or .\'t)l|‘lI|_L'
partial differential equations. I968.
2| E. Wallel. The compactm-.r.roperator in .\'et tlicorr aiiil
topologr. I968.
22 T.J. Dekkcr. AL(i()l. 60 procedttres in numerical algebra.
part I. I968.
23 T.J. Dckkcr. W. Hoffmann. Al.(i()l. bllpriiceilitrex in
numerical algebra. part 3. I968.
24 J.W. dc Bakker. Recursive procediirex. l97l.
25 ER. Paérl. Re reseiitatioiix of the Loreiit: group tlllllpftt/('1'
tive geonietr_r. I969.

26 European Meeling I968. Selected .viaii.rticalpapers. part I.
I968.

27 European Meeting I968. Selected Slt.tli.\‘Il('alpaperx. part II.
I968.

28 J . Ooslerhoff. Combination of one-sided .\‘luIt.\‘Il('ttltexts.
I969. '

29 J . Verhoefl. Error detecting decimal codex. I969.
30 H. Brandl Corslius. E.\'erci.re.rin computational Iiiigiii.ctic.\'.
I970.

3| W. Molenaar. Ap I'0.\’lnIUllt)II.\'to the Poi.r.i'on.binomial aml
hrpergeometric distri iitioii_/iiiictioiis.
32 L. de Haan. On regular variation and itx application to ilie
weak convergence of xample l’.\'If(‘Ill('.\'.I970.

33 F.W. Sleulel. PI'¢’.\‘t’f|'U!l0Ilof infinite (llI'l.\‘lllllII_I'under mi_\'
ing and related topicx. 70
34 I. Juhész. A. Verheek. N.S. Kroonenbcrg. ('ardi‘noI_/iiiic
tiott.\' in topologr. l97l.

35 M.H. van Emden. An aiialvsix o/'comple.viit_r.l97l.
36 .I. Grasman. On the birth ofboumlarr la_rer.s.|97|.
37__J.W.de Bakker. G.A. Blaauw. A.J.W. Duijveslijn. I-l.W.
[)1 kslra. P.J. van dcr Houwen. G.A.M. Kamslee -Kempcr.
I-. .J. Kruseman Arclz. W.L. van der Poel. .I.P. 'haap
Kruseman. M.V. Wilkes. G. Zoulendijk. MC-35 Injormaiica
S_i-nipoxiiim. I97|.

38 W.A. Verloren van Thcmaal. Automaiic (lII(ll|'.\‘l.\‘of Dutch
cottipouiid word.\‘. 1972.

39 H. Bavinck. Jacobi xeriex and appro.\'imatioii. I972.
40 H.C. Tijms. AtIulI‘.\‘l.\‘of (5.3) inreiitorr ttl0tlt.'l.\'. I972.

4| A. Verbeek. SUp£’f¢’.\’I¢'II.\'I()II.\‘of topological .rpace.r. I972.

42 W. Vervaal. Succe.r.r epochs in Bernoulli !I‘ldl.\‘(with applica
tion.r in number theor_1-). 972.

43 F.H. Ruymgaarl. .4.\ji-mpioiiciheorr ii/"rank Il'.\'I.\'/or
inilepeiiiletice. I973. '

44 H. Burl. Meromorphic operator |'Ulllt.'tl>/IlII('IltIII.\‘.I973.

45 A.A. Balkerna. Monotone traii.\forniiitioii.i‘ aml Iiniit Ian-.\-.
I973.

46 R.P. van de Riel. AB(‘ Al.(i'0l.. a portable langua Major9 ..p/ormula niatii'pitIation .v_|'xteni.r_part I: the language. I

47 R.P. van de Riel. ABC ALGOL a portable lt.lnglltg;€_/tirformula niaiiipulatioti .\:r.rteni.v.part 3.‘ the compiler.

48 F.E..l. Kruseman Arelz. P..I.W. len HaEen. H.L. _
Oudshoorn. An ALGOL 60 confiler in A G01. 60. text o] theM('-compiler for the EL-X8. I9 3.
49 H. Kok. ("onriecteil orderable .\'pace.t. I974.

50 A. van Wijngaarden. B..I. Mailloux. .|.F..L. Peck. C.H.A.
Kosler. M. Sinlzoif. CH. Lindsey. L.G.l..T. Meerlens. R.(}.
Fisker (eds.). R('|'l.\'(’(/report on the algorithmic language
ALGOL 68. I976.

5| A. Hordijk. l)_i-iiamicprogramming and t.VlllI'l\t)\'/1t)l('Illltll
tlteorr. I974.
52 RC. Baayen (ed.). Topological .\‘IfIl(‘IIlI'('.\‘.I974.

53 MJ. Faber. Metri:abilit_r in geni-rali:cil orilereil .\'pace.\'.
I974.

54 H.A. Lauwcrier. A.\j'iiiptiitti' aiialr.si.\'.part I. I974.
55 M. Hall. Jr.. .I.H. van Linl (eds.). ('onibiiiatorii.\'. part I."
iheoi_'r o/'de.rigii.w. _/itiite _L’('0I7I('II_'l'iiml coding theorr. I974.

56 M. Hall. Jr.. J.H. van Linl (cds.). ("omliitiatoric.r. part _‘.'
graph theorr. /ttltIttl(lllt)tI.\‘.partitions and combiiiatiirial
geometrr. 974.
57 M. Hall. Jr.. .I.H. van Linl (cds.). (‘omhiiiatoric.\‘.part 3:
coiiibitiatorial group tlieor_i'. I974.

58 W. Albcrs. A.\jrti_l/itotice.\'pitii.\'ioii.\'aml the tle/iciem_'l' cottcept iii .\‘ItlII.\‘ll('.\‘. I9 5.

S9 .l.L. Mijnheer. Sample path priipertiex o/‘.\-tablepro('('.\:\'e.\'.
I975.

6(I F. (icihel. Queueing IIItKIt'l.\'involving hii_/jerx. I975.

63 J.W. dc Bakker (ed.). Fouiidationx ofcoiiipiiter .\'t'I(‘tIl'('.
I975.

64 WJ. dc Schipper. rmiiietric cloxedcategorie.\'. I975.

65 J. de Vrics. Til)/1iiliigii'iiItraiisformatioii _i_rroup.r.I: a catc_i;oi-.tcal approach. I9 5.
66 H.G..I. Pijls. l.ogicaIl_r com-e.\' algehra.\' iii xpectral tlieoijr
and eigeiifiiiictioii t.'.\'[7(lII._\‘lt)tI.\‘.I97 .

68 P.|’.N. dc Grocn. Sitigltlarlr pertiirbeil ilt/jerential operatorl
of second order. I976.
69 .l.K. Lenslra. Sequencing lir cniimeratire niethoil.\-_I977.
70 W.P. dc Roevcr. Jr. Recitr.s‘i\-cprogram .\‘('lI('IiI(’.Y.'.\'ettiiiiitic.\
and proof theor_i'. I976.
7| .I.A.E.E. van Nuncn. ('oiitractitig Marllor (Il'('I.\‘lt)tI
pritce.\'.\'e.\'. I976.

72 .l.K.M. Jansen. Sim le periodic aml tioii-periodic lxiiiii‘
_/itiictioiix aml their app l(‘(lIl0Il.\'in the tlieoi_1-ofcoiiiciil

7.u'tiregltide.\'_ I97

73 D.M.R. Lcivanl. Ahsoliiieiu-.\-.\~ofiiiiiiiiioiiixiic logic. I979.

74 H..I.J. lc Riele. A theoretical and conipiitaiional xiiulr of
gem-rali:eiI aliquot .\'l'(/ll¢'tI('l'.\'.I976.

75 A.F.. Brouwer. Tf¢’t.’lIl\'¢'.\'/Ml('¢’.\‘ittul relatcil coiiiiecteil topo
logical .rpace.s'. I977.
76 M. Rem. .'l.1‘.\'0(‘lt)II.Tand the (‘lt).\'IlI'('xtatemeiit. I976.

77 W.(‘.M. Kallenheru. Axr i totic optinialitr oflikeliliomlI9 8.ratio I(‘.\'I.\'in ('.\'[7t)Il(’IIIllll fumi l(’.\‘.

78 I-L.dc Jonge. A.('.M. van Rooij. llIlrttllll('lttttl Io Rtcx:
xpiices. I977.

79 M.(‘.A. van Zuijlcn. l;'mpericaI tlI.\‘II'llIIIlItIII.\'and rank
.\‘Itlll.\'Ilt'.\‘. I977.

80 P.W. Hemker. A numerical xtiulr o/ xii/_'/’tu'o-poiiitlmuiiiliir_i'
/7I'tthl('IH.\'. I977.

8| K.R. Apl. J.W. dc Bakk-:r (cds.). I-‘oiiiuliitionxo/‘coiiipiiter
.\‘('l(’Il('(‘ll. part I. I976.

82 K.R. Apl. J.W. dc Bakkcr (cd.\.). I-‘oiiiulaiionxofcunipiiicr
xcience ll. part 3. I976.
83 L.S. van Bcnlhcm Jullin '. (‘lieckiiig l4iiuIau‘.\
"(iniiiiIlagen" in the A UTO ATH .\jr.\~teni.I979.
84 I'l.L.L. Busard. The traiislatioii o/"the elciiietitx of Eiicliil
from the Ariihic ittto Ixitin hr lleritiaiiii o/‘(‘iiriiitliia If’).hoollx
|'Il-.\’lI. I977.

85 J. van Mill. Superi-onipuctiie.V.i and II'allinaii .\-piiccx. I977.

86 S.(i. van der Meulcn. M. Vcldhorsl. Tt)I'I'I.\' I. tl/7I't)_L'I'tlHI
miiig .\:I'.\‘l(’ttI_/‘Uroperations on rector.t aiul ttltllI'l('(’.\'over arbi
irari'_/ielil.\' and of variable .ri:e. I978
88 A. Schrijver. Matroiilx and liiikiiig .\‘|‘.lll'IiI_\'_I977.

89 J.W. dc Roever. (‘om/)le\' Fourier triiii.r/ormatioii iitiil
aiiiilrtic /iiiictioiial.r with iitihoiiiiileil carriers. I978.

90 L.P..I. Groenewegen. Characterization of optimal strategiesin dynamic games. I 8|.
9| J.M. Geysel. Trartscendence infields of positive characteris
tic. I979.

92 PJ. Weeda. Finite generalized Markov programming. I979.
93 H.C. Tijms. J. Wesscls (eds.)_.Markov decision theory.
I977.

94 A. Bijlsmn. Simultaneous approximations in transcendental
number theory. I978.
95 K.M. van Hee. Bayesian control of Markov chains. I978.
96 P.M.B. Vilényi. ‘Linden er stems: structure, langua es,
and growth functions. I980.may 9’ g
97 A. Federgruen. Markovian control problems; functional
equations and algorithms. I984.
98 R. Geel. Singular perturbations of hyperbolic type. I978.
99 J.K. Lenstra. A.H.G. Rjnnooy Kan. P. van Emde Boas

(cds.). lnteafaces between computer science and operationsresearch. 78.

I00 P.C. Baa en. D. van Dulsl. J. Oosterhoff (cds.). Proceed
ings bicentennial congress o the Wiskundig Genootschap. part

79.

IOI P.C. Baayen. D. van Dulsl. J. Ooslerhoff (cds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap. part
2. I979.

Ig28D. van Dulsl. Reflexive and superreflexive Banach spaces.7 .

103 K. van Harn. Classqyin infinitely divisible distributionsbyfunctional equations. 978;
I04 J .M. va.n Wouwe. Go-spaces and generalizations of metri
zability. I979.
I05 R. Helmers. Ed eworth expansionsfor linear combinations
of order statistics. I§82.

I(9)69A.Schrijver (ed.). Packing and covering in combinatorics.I 7 .

I07 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. I979.
I08 J.W. de Bakker. J. van Leeuwen (cds.). Foundations of
computer science Ill. part I. I979.
I09 J.W. dc Bakker. J. van beeuwen (cds.). Foundations of
computer science III, part 2. I979.
IIO J.C. van Vliel. ALGOL 68 transp'ut,part I: historical
review and discussion of the implementation model. I979.
III .I.C. van VIiet. ALGOL 68 transput, part II: on implemen
tation model. I979.

H2 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1979.
I I3 T.A.B. Snijders. As mptotic optimality theory for testing

problems with restricte alternatives. I979.
I I4 A.J.E.M. Janssen. Application of the Wigner distribution to
hannonic analysis of generalized stochastic processes. I979
II5 P.C. Baayen. J. van Mill (eds.). Topologicalstntctures II,

part I. I979.
II6 P.C. Baayen. J. Van Mill (cds.). Topologicalstructures ll.

part 2. I979.
II7 P.J.M. Kallenberg. Branching processes with continuous
state space. I979.
I I8 P. Groeneboom. Large deviations and asymptotic efficien
cies. I980.

II9 FJ. Peters. S arse matrices and substntcture.s. with a novel
implementation 0 finite element algorithms. I 0.
I20 W.P.M. de Ruyter. On the asymptotic analysis of large
scale ocean circulation. I980.

I2I W.H. Haemers. Eigenvalue techniques in design and graph
theory. I980.
I22 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. I980.
I23 I. Yuhész. Cardinal functions in topology - ten years later.
I980.

I24 R.D. Gill. Certsoring and stochastic integrals. I980.
I25 R. Eising. 2-D systems, an algebraic approach. I980.
I26 G. van der Hock. Reduction methods in nonlinear pro
gramming. I980.
I27 J.W. Klop. Combinatory reduction systems. I980.
I28 A..I..I.Talman. Variable dimensionfixed point algorithms
and triangulations. I980.
I29 G. van der Laan. Simplicialfixed point algorithms. I980.

I30 P..I.W. ten Hafin. T. Hagen. P. Klint. H. Nool. H.J.Sim. A.H. Veen. I .' intermediate language for pictures.
I980.

|3I R..|.R. Back. Correctness reserving program refinements:
proof theory and applications. 980.
I32 HM. Mulder. The intervalfunction of a graph. I980.
I33 C.A.J. Klaassen. Statistical performance of location e.sti
mators. I981.

134 .I.C. van Vliel. H. Wggaer (cds.). Proceedings international conference on ALG 68. I98].
I35 J.A.G. Groenendijk. T.M.V. Janssen. M.J.B. Stokhof
(cds.). Formal methods in the study of language. part I. I98l.
I36 J.A.G. Groenendijk. T.M.V. Janssen. M.J.B. Slokhoi
(eds.). Formal methods in the study of language. part II. |98I.
I37 J. Telgen. Redundancy and linear programs. I98].
I38 H.A. Lauwetier. Mathematical models of epidemics. I98].
I39 J. van der Wal. Stochastic dynamic programming. succes
sive approximations and rtearly optimal strategies for Markov
decision processes and Markov games. I98].
I40 .I.H. van Geldrop. A mathematical theory ofpure
exchange economies without the no-critical-point hypothe.si.s.
I98|.

I4I G.E. Wellers. Abel-Jacobi isogenie.sfor certain types of
Fano threefolds. I98].
I42 H.R. Bennell. D.J. Lutzer (cds.). Topologvand order
structures. part I. I981.
I43 J.M. Schumacher. Dynamicfeedback in finite- and
infinite-dimensional linear systems. I98 I.
I44 P. Eijgcnraam. The solution of initial value problems usirtg
interval arithmetic; formulation and analysis of an algorithm.
I98I.

I45 AJ. Brentjes. Multi-dimen.sionalcontinuedfraction algo
rithms. l98I.

I46 C.V.M. van der Mec. Semi roup and factorization
methods in transport theory. I98II.
I47 H.H. Tigelaar. Identification and informative satnple .si:e.
982.

I48 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. I983.
I49 C.B. Huijsmans. M.A. Kaashoek. W.A.J. Luxemhurg.
W.K. Vielsch (cds.). Front A to Z. proceedings of a srmposium
in honour of A.C. Zaanen. I982.
I50 M. Veldhorsl. An analysis of sparse matrix storage
schemes. I982.

I5| R..I.M.M. Does. Higher order asymptoticsfor simple linear
rank statistics. I982.

I52 G.F. van der Hoeven. Projections of lawless .sequence.s.
I982.

I53 .I.P.C. Blanc. A plication of the theory 0 boundary value
problems in the anaysis of a queueing mode withpaired ser
vices.

I54 H.W. Lenslra. Jr.. R. Tijdeman (cds.). Computational
methods in number theory. part I. I982.
I55 H.W. Lenstra. Jr.. R. Tijdeman (cds.). Computational
methods in number theory. part I I. I982.
I56 P.M.G. Apers. Query processing and data allocation in
distributed database systems. I983.
I57 H.A.W.M. Kneppcrs. The covariant classification of two

dimensional smooth commutative[ormal groups over an algebraically closedfield of positive 1' aracteristic.
I58 J.W. de Bakker. J. van Lecuwen (cds.). Foundations of
computer science I V. distributed systems. part I. I983.
I59 J.W. de Bakker. J. van Lceuwen (cds.). Foundations of
computer science I V. distributed systems, part .. I983.
I60 A. Rezus. Abstract AUTOMA TH. I983.

I6I G.F. Helminck. Eisenstein series on the metaplectic group.
an algebraic approach. I983.
I62 .I..I. Dik. Tests for preference. I983.
I63 H. Schippers. Multiple grid methodsfor equations of the
second kind with applications in fluid mechanics. I983.
I64 F.A. van der Duyn Schoulen. Markov decision processes
with continuous time parameter. I983.
I65 P.C.T. van der Hoeven. On point processes. I983.
I66 H.B.M. Jonkers. Abstraction. specification and implemen
tation techniques, with an application to garbage collection.
I983.

I67 W.H.M. Zijrn. Nonnegative matrices in a_‘vnamicprogram
ming. I983.

I68 J.H. Everlse. Upper bounds for the numbers of .solution.sof
diophantine equations. I983.
I69 H.R. Bennett. DJ. Lutzer (cds.). Topologyand order
structures. part 2. I983.

