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PREFACE

The present treatise is a corrected version of the author&#39;s Ph.D. dis-

sertation, written at the University of Amsterdam in 1974/75 under the

direction of Professor A.S. Troelstra. My research, as well as the produc-

tion of the dissertation, were generously supported by the Mathematical

Center, and as is customary for such dissertations, it now appears as a

Mathematical Centre Tract.

The text that follows is divided into two parts. Part A deals with

theories whose arithmetical fragment is part of IA* := Heyting�s arithmetic
IA extended with transfinite induction over all recursive well-orderings.

Such theories (as well as some others closely related to them) are named

"regular". It is shown that fairly strong intuitionistic theories, and -

in particular - the intuitionistic impredicative theory of types, are

regular.

In part B we treat maximality (or "absoluteness") properties of in-

tuitionistic (Heyting&#39;s) propositional and predicate logic IL0 and IL] for
regular theories. Here, L is said to be maximal (or "absolute") for T if

HL F[P1,...,Pk] =>|%T F[A1,...,Ak]

for some arithmetical relations Ai of the same arity as Pi (i=l,...,k). The
maximality is unifbrm if the Ai&#39;s are independent of F. We are also inter-
ested in having the substituted relations Ai as low as possible in the
arithmetical hierarchy.

Refined versions of the results of part A are incorporated in LEIVANT

[A], while the theorems of part B together with several other maximality

results are proven in LEIVANT [B]. Nevertheless, the present exposition

might still be useful to the interested reader. In contrast to the afore-

mentioned papers, we use here natural deduction systems, and the proofs,

especially in part B, illustrate the convenience of using natural deduction

to straightforwardly formalize one&#39;s intuitive ideas. The sections in part

B motivating the proofs are particularly relevant here. The sequential cal-

culi used in our [A] and [B] allow more succinct presentations, but at the

cost of concealing to some extent the motivating ideas. Also, our exposi-

tion here is more leisurely, so that, in conjunction with the use made of

natural deduction, the effect is to reduce the effort required from the

reader.
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To do justice to the reader, we should place the maximality results

proven here amongst other similar results.

Since we prove "absoluteness" of IL, the interest in treating proposi-

tional logic ILO lies only in reducing the complexity of the substituted
sentences (0-ary relations). D.H.J. de JONGH and C.SMORYNSKI [73] have

proved that there exist uniform arithmetical substitutions, and also -

locally - Z? substitutions for IL0 and T = IA. Theorem I of part B below
improves this by making the Z? substitutions depend only on the number of
propositional letters in the schema F. However, by a uniformization lemma

proved in LEIVANT [B] §l.2, already the local Z?-absoluteness implies com-
pletely uniform absoluteness with Z? substitutions. From this, using meta-
mathematical properties of IL0, one easily derives uniform absoluteness
also with (binary) disjunctions of H? sentences as substitutions (idem,
§1.6). Similar statements are also true when IA is replaced by any regular
T, and also for T extended with either Church&#39;s Thesis CT0 or the Indepen-
dence-of-Premiss Principle IPO (cf. TROELSTRA [73] for their statement).
When Markov&#39;s Principle M is added, 2? absoluteness fails (since
FIA+M 11A+A for any X? sentence A), but IL0 is uniformly Z2 absolute for
T + IPO + M (cf. idem).

Turning to Intuitionistic Predicate Logic IL1, we should start by men-
tioning a proof ofDE.JONGH [73] of a relativized version of absoluteness.

Theorem II of part B below states the uniform H0 absoluteness of IL] for2
any regular theory T. IL] is also uniformly Z0 absoluteness for such T
(LEIVANT [B] §2.4) but not even locally 2? ab:olute for IA (LEIVANT [76];
this was also proved in §B.6 of the original version of the dissertation).

Nevertheless, Z?-absoluteness does hold for certain fragments of IL]
(LEIVANT [B] thm.2.VII) .

All theories mentioned above, for which IL] is proved absolute, are
r.e., and the "regular" ones are in IA*. Allowing for more complex substitu-
tions, one obtains in one stroke maximality of IL], for all regular theo-
ries, with the substitutions independent also of the theory; namely - one

proves the uniform maximality of IL for IA* (LEIVANT [B] thm.2.VIII). TheI
complexity of the substitutions may be somewhat reduced for ILO.

For logic with equality, we have the U3 (and Z2) uniform absoluteness,
for regular theories, of IL] extended with the following axioms:

VxVy(x=y V 1x=y)

3x 3x ...3x E N\ wx.=x.] n = 2 3 ...1 2 n 0<i<jSn 1 J � �
(idem §2.6).
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As noted in section 2 of the introduction below, there is no straight-

forward connection between classical and intuitionistic absoluteness. For

Classical Predicate Logic CL], local Ag absoluteness (for sound arithmetic
theories) is an immediate consequence of the refinement obtained by HILBERT

and BERNAYS [39] to G3de1&#39;s Completeness Theorem. The uniformization tech-

nique of LEIVANT [B] mentioned above may be applied here, to yield uniform

Zg (and H2) absoluteness of CL] (idem, thm.2II).





INTRODUCTION 
     
     (For unexplained terminology see the preliminary section P below.)
Int. 1. The concept of absoluteness and the main results

Our central aim in this treatise is to prove that the formal systems

of intuitionistic propositional and predicate logics (L0 and L1 resp.) are
"schematically complete" for intuitionistic (Heyting&#39;s) arithmetic A, as

well as for certain extensions of A. Let us first describe these results

as cases of a general type of problems.

Let L be a system of logic, and let M be a system of mathematics based

on the language of L; i.e., the language of M contains all the logical con-

stants of the language of L as well as constants or definable objects for

each type of parameter of that language. (Examples: (1) L is first order

predicate logic and M is ZF set theory; (2) L is second order logic and M

is second order arithmetic; (3) L is first order logic without first-order

Parameters (but With first-Order "bound" variables, of course), and M is

second order logic.)

Let C be a class of defined constants in the language of M. A schema

F in the language of L is C-absolute fbr M if for each instance F* of F
which comes from F by substituting constants of C for parameters of the

corresponding type,

(1) W F*.

L is said to be C-absolute fbr M if

(2) L = { F I F is C-absolute for M },

i.e., if

(3) I1 F «=> ( VC-inst. F* of F ) PM 17*

(Several other alternatives have been proposed to name the above property

of L: "L is maximal (schematically complete, saturated) w.r.t. M", and

"M is faithful to L".)

When M is based on L, the implication from left to right in (3) is



trivial, the interesting part being of course the converse direction. This
has been occasionally expressed in a contrapositive-like form:

(4) |-fLF => ( RIC-inst. F* of F ) HM F*.

In our treatment below we prove cases of (4), which is intuitionistically
independent of (3). Assuming however Markov&#39;s principle for prim. rec.

predicates, 
     
     MPR 113x A(x) + 3x A(x) (A arithmetical, quantifier free)-
(4) clearly implies (3) (by contraposition).

Actually the results proved below give the instance F* of F for (4)
constructively, independently of the premiss, and quite uniformly. Namely,
for a large class of "regular" theories T, which includes A (cf. A.1):

THEOREM I. Given a regular theory T; L0 is Z?�absolute fbr T. Ebr any given
schema F of L0 the substitutions depend only on the number of propositional
variables in F.

THEOREM II. For T as above, L1 is H02-absolute fbr T, with substitutions
which depend on T only.

These theorems are stated in more detail in B.O below.

D.H.J. de Jongh had proved already in 1969 the absoluteness of L0 for
intuitionistic arithmetic A (and extensions A4 of A with transfinite induc-
tion over some prim. rec. well ordering <). SMORYNSKI [72] shows that

the meta-substitutions may be taken to be X? (though depending on each
schema), and H. FRIEDMAN [73] proves that by allowing the meta-
substitutions to be �g one gets uniform absoluteness. This last result is
a corollary of our theorem II.

All the results just mentioned were obtained by classical methods.
Uniform absoluteness is however formalized as a H0 statement, since it has

2
roughly the form

(V schema F) [ Vx 1£rL(x,rF1) + Vx wErT(x,TfF1) ]

where EEL and 23$ are prim. rec. proof predicates for L and T resp., and



where f is a fixed prim. rec. function. For Hg sentences, however, prov-
ability in classical arithmetic implies provability in intuitionistic arith-

metic (cf. TROELSTRA [73]).

So the main novelty of theorem I is the "locally-uniform" Z? substitu-
tion. We nevertheless present this result in some detail, for two reasons.

Firstly, it may be used as an expository introduction to the proof of

theorem II; secondly, the method employed might turn out to be helpful in

solving a number of other problems concerning the relation between L0 and
A.

As to predicate logic, de Jongh has proved (unpublished) the (local)

absoluteness of L] for A, but where in each formula all quantifiers are
restricted to a fixed unary predicate. This restriction allows a model

theoretic treatment using Kripke models with a constant universe, and a

special notion of "forced realizability" which utilizes results from the

theory of Turing degrees.

Int. 2. Absoluteness in relation with some well-known results

For classical first order logic L? absoluteness is an immediate corol-
lary of HILBERT-BERNAYS [39]&#39;s proof of G5del&#39;s completeness theorem, where

one has:

(5) ff C F =v there is a Ag instance F* of F s.t. 1F*.
L1 
     
     O 

     
     2

is Ag-absolute for any theory M (in a language which
Hence, if bio F and }M F* then M is not (classically) sound for A sen-
tences, and thus L?
extends the language of Peano&#39;s arithmetic) which is sound for Ag sentences.

The same situation occurs not only for LG, but even for classical sim-
ple type theory LS.

It seems here the right place to note that absoluteness results for

classical systeum arehardly related to absoluteness of (the corresponding)

intuitionistic systems. Given (4) for classical LC, MC, nothing is said
even about the propositional rule of excluded third, p v 1p (which is in-

tuitionistically invalid and unprovable). Conversely, if (4) is given for

intuitionistic systems LI and MI, then ff I F does not necessarily imply
}%MC F for the classical completion MC of MI. Hence the easy proof of
absoluteness for L? is of no help in solving the problem for L1, while the
uniform result for L1 does not imply the uniform �g absoluteness of L?.



Another blind alley is to try to imitate the method of the proof of
(5) in the treatment of the intuitionistic case. Of course, there is a com-

pleteness result for L1 relative to Kripke&#39;s semantics which is analogous
to (5), i.e.:

(6) |+L F = there is a Ag Kripke model K in which F is not valid
1

(cf. e.g. THOMASON [68]). Here, however, K is not necessarily a Kripke model
for any numerical instrance F* of F since the models standing at each node are

not necessarily models of arithmetic. Therefore every use of Kripke&#39;s seman-

tics must refer here directly to Kripke&#39;s models for arithmetic, as done in

de Jongh&#39;s and Smorynski&#39;s proofs mentioned above, but this is a totally
different method.

Let us finally compare absoluteness with a conservative eitension re-

sult. Let A denote arithmetic A with predicate variables and with an axiom

schema of arithmetical comprehension:

ACA BX Vx [ Ax ++ Xx ]

(A in the language of A). Then A is a conservative extension of A (cf.

TROELSTRA [73] 1.9.8), and L1 is trivially contained in A. A is also con-
servative over Ll (compare MAEHARA [58] thm.l), i.e.,

L]|+A[P1,...,Pn] =9 A[-/-A[Pl,...,Pn]

for any schema A[P1,...,Pn] of L1. Absoluteness of L] for A reads on the
other hand

L1 |+A[P1,...,Pn] => AI+A[B],...,Bn]

for every B1,...,Bn in the language of A! Notice that the absoluteness of
L] for A implies the absoluteness of L] for A; this can be easily derived
from the fact that A is conservative over A.

Int. 3. Infinitary derivations and the subformula property.

The central method of proof used below in establishing absoluteness of

L0 and L] is an analysis of infinitary derivations, i.e. (roughly), of



derivations with the Wu-rule".

SCH�TTE [51] seems to have been the first one to notice the usefulness

of systems of infinitary derivations for the metamathematical study of

arithmetic. He was chiefly interested in extending to arithmetic one of the

main advantages of Gentzen&#39;s systems for logic, namely - their subformula

property. we say that a proof-figure n satisfies the subformula property

if every formula which occurs in w is a subformula of the formula derived

by n. A calculus m of proof-figures satisfies the subformula property if

the subsystem ¢ of 8 containing only those proof-figures of m which satisfy

the subformula groperty is complete for ¬, i.e., if for every proof-figure
n of ¢ deriving a formula (or a sequent) 0 there is a proof no of C which
derives 0 and satisfies the subformula property. Gentzen proved that his

sequential systems for first order classical and intuitionistic logic satis-

fy the subformula property (by "cut elimination"; of. GENTZEN [35]), and

PRAWITZ [65] proved that the same holds for GENTZEN&#39;s [35] system of natural

deduction (by "normalization").

Although cut elimination and normalization for the corresponding calculi

for arithmetic can also be carried out with some important metamathematical

consequences (such as consistency and the "existential definability" proper-

ty), the subformula property for these calculi is not implied.

Call a calculus ¢ of proof-figures for arithmetic good, if there is a

predicate Inf(x,y) such that the following hold, for each sequence of for-

mulas F1,...,Fk,G (k 2 0).
F F(1) If �JJff�l5 is an instance of an inference rule of G, then

1-(E mm &#39;F1" ,...,�Fk�) ,&#39;G�),
(2) 1-0: Inf((&#39;F1",...,"Fk"),&#39;G�)+. F18:  & F �>G.k

Thus, e.g., if ¢ generates HA and has all sentences of HA as axioms, G is

not good. But all standard calculi for arithmetic are good.

THEOREM. I f� an r. e. good calculus d1 of finatary proof� figures is complete for

Heyting�s arithmetic A and satisfies the elementary derivability conditions
(cf. TN! below, or e.g. SMORYNSKI [75]) then C proves that C does not

satisfy the subformula property.

PROOF. Let C be a calculus as above; the subformula property of m is

formally expressible as an arithmetical (actually a �g) sentence, Spm say.
Since the proof figures of C are finite, we can prove in A by induction on

the length of proof figures that implies the local reflection principle3pc
for w; i.e.,



(7) Spm IX-3p Prf (p,rF�) + F

for each specific arithmetical F (cf. TNI). Taking in (7) in particular
F :5 1§g¬ we get (since C is complete for A)

__ r 1Spm lm 3p Prf (p, 1SpB ) + 1Sp[

and so by propositional logic

IE ap PrfC(p,r1SPm") + wspc.

But this implies by the theorem of L6B [55]

I;-7SpC

since C is assumed to satisfy the elementary derivability conditions. QED.

Sch�tte&#39;s idea was to restore the subformula property for the systems
of arithmetic by giving up the finiteness condition. The reason that cut-

elimination for arithmetic does not imply the subformula property is the
presence of the induction rule; hence this rule, which for a natural deduc-

tion system may be given by

[A(a)]

T A(a)

A(6) A(a+1)
VxA(x)

(using the notations of GENTZEN [35], PRAWITZ [65]), is replaced by an in-
stance of an infinitary V-introduction rule (w-rule):

F

M)
1� Mo)

A(5) Ad) ....
r A(6) A(T)

M6) M7) M5)

VxA(x)

(compare PRAWITZ [71]). Obviously, this infinitary V-introduction rule may



take over the role of the finitary VI. Similarly the [SE] inference rule

[A(a)]

F A(a)

3xA(x) B 
     
     B

may be replaced by a corresponding infinitary rule

[A(5)] [Am]
1" M6) MT)

3xA(x) B B

B

By iterating these translations each finitary derivation A is mapped into

a well-founded infinitary derivation Am having the same derived formula and
the same open assumptions as A. (For a formal definition of the infinitary

derivations see A.1).

The mapping above may be described as one which replaces (hereditarily)

each expression (i.e., formula or derivation ) 5(3) which "depends" on a
list 3 of parameters, and where the parameters range implicitly over the
natural numbers, by an explicit enumeration {e(h)}E of the closed expressions
which correspond to a substitution [n/p] of numerals for those parameters-

For the system of infinitary proof figures obtained in this manner, a

normalization theorem can be proved (cf. e.g. A.3 below}, and in this case
the subformula property does follow. The method leads also to a number of

interesting applications (cf. e.g.; KREISEL-LEVY [68] remark on p.126,
PARIKH [73], PARSONS [60], LEIVANT [A]). The general pattern of these ap-

plications consists in embedding the (finitary) formal system to be inves-

tigated into a ("semi-formal") system of infinitary proof figures, which

then allows a smoother proof theoretic analysis.

It is precisely this method which is used in the proof of absoluteness

in part B below. We treat those theories whose arithmetical fragment can be

embedded as above in a system of infinitary proofs of arithmetic. These

proofs are subsequently transformed ("normalized")to oneswhich satisfy a

number of structural properties, the most important of which is the sub-

formula property described above.



Int. 4. Provably correct derivations; regular theories

An infinitary derivation of the kind described in Int. 3 may be viewed

formally as an assignment of sequents (or their Godel codes) to certain

nodes of the universal spread; the assignment may be made total by attach-

ing 0 to the rest of the nodes (A.1.l below). But while for a calculus C

of finitary proof figures (based on an r.e. set of inference rules) we may

formally define a prim. rec. proof predicate Prf (p,rF1), this obviously

cannot be done for the arithmetization of infinitary proofs. If Prfw(¢,rF1)
should be a formal proof predicate for the proofs described in Int. 3 above,

then we should have (in elementary analysis V0 plus Am as defined in sec-
00

tion P below)

(8) F + a¢3r_f°°<¢,FF�>

for every prenex arithmetical F (compare A.2.2.I). So the system of infini-

tary proof figures is classically complete, and Erf� cannot even be arith-
metical.

The completeness of the infinitary systems for classical truth expressed

by (8) illustrates the potential generality of the analysis of infinitary

proof figures as a technique in meta-arithmetic: whatever classically sound

theory T is given, an embedding of its arithmetical fragment into infinitary

proofs is guaranteed. On the other hand one may wish to utilize the recur-

sive enumerability of the embedded theory T, as we do in part B below, and

so one has to restrict the class of infinitary derivations into which T is

embedded. There are several simple methods for doing this, all having more

or less equal merits. We find it particularly convenient to restrict the

image of the embedding by requiring that each infinitary proof figure in

it is proved to be a correct proof in a given (r.e.) theory T1 (in a langu-
age extending the language of analysis V0). I.e., one considers the deriva-
tions which are shown in T1 to be well-founded and to respect the inference
rules. An enumeration of these derivations can easily be extracted from an

enumeration of T1, and so the class of infinitary derivations considered is
r.e. in T].

To sum up, we wish to exploit two properties of a given theory T:

firstly, that the arithmetic fragment AETJ of T, i.e., the arithmetic sen-

tences provable in T, is r.e.; and secondly, that A[T] can be investigated

through an analysis of the structure of infinitary derivations. Both con-

ditions are indeed satisfied if



(9) ACT] g A°°[Tl]

for some r.e. T1, where Aw[Tl]is (roughly, cf. A.1.2) the system of infini-
tary derivations proved in T1 to be correct and normal, and where the inclu-
sion refers to the derived sentences. When this is the case, we say that T

is regular (A.l.2). For the proof of theorem II in B.4 below, the infinitary

derivations examined have to be recursive, so for that proof (9) is strength-

ened to

(10) AU] 5 A:eC[T1]

where A:ec[T]] are (roughly) the recursive derivations of Am[T]]. When T
satisfies (1o)(and another minor condition, cf. A.l.2) we say that T is

strongly regular.

Our feeling now is that regularity (as well as strong regularity) are

conditions which are quite general and natural. There are a number of argu-

ments supporting this feeling.

[a] By (8) above we have for any theory T 3 V0 + A¢O0

(11) APETJ g A°°m

where APETJ is the fragment of prenex formulae of A[T]. As Ap[T] is classi-
cally complete for A[T], (11) implies that any classical r.e. theory T sat-

isfies

(12) Am g APE T + yo + AT00] g A°°[ T + V0 + M00],

(where the first inclusion is trivial) and so any such T which is consis-

tent with V0 + AqX)is regular.

[b] Obviously, regularity and strong regularity are preserved under restric-

tion. It is therefore quite satisfactory to know that some strong theory,

in which a large part of current intuitionistic mathematics can be formal-

ized, is (strongly) regular. We indeed show in A.4 below that intuitionis-

tic type theory Lw is strongly regular.

[c] If T is (strongly) regular and sound, then so is T extended with any

schema of transfinite induction over some prim.rec. well-ordering (cf.

A.2.4 for a precise statement, a proof and a discussion of its significance).
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Ed] The class of regular theories is closed under the operation of adding

self-consistency (A.2.2.4), and so this class is closed under transfinite

progressions along 2? paths in Kleene&#39;s 0.

Int. 5. The method of proof

The proofs of theorems I and II are both composed of two parts.

(i) A reduction of the problem, using proof�theoretic methods. For theorem

I we show, roughly, that given a regular theory T and a schema F of L0, if
F* is a Z? meta-substitution of F then

(13) 1+ F and [T1«"* = |�U*
Lo

where U is a specific schema and where U* comes from U by the same meta-
substitution (B.2.0). The proof theoretic reduction of theorem II is simi-

lar, with L] in place of L0, with T strongly regular and with U2 meta-sub-
stitutions. In the proof of theorem I the schema U is fixed for all schemata
with a certain bound on the number of propositional letters used, while in
the proof of theorem II U is fixed altogether.

(ii) A solution of the reduced problem. We find instances U* of the corre-

sponding U and of the kind required, for which IT-U* is impossible.
Step (ii) uses the recursive enumerability of T, and is (in both proofs)

a generalization of G5del�s first incompleteness theorem (B.1,B.5). On the
other hand the proof of step (i) in each case utilizes the embedding of
A[T] in the set of normal infinitary derivations. (Here we define "normal-
ity" in a somewhat broader sense which renders the arguments a bit simpler).

The idea of the proof�theoretic reduction is the following. Let T =
= Am[T1]. Then (13) is a consequence of the provability in T1 of

*7(14) <J_+LOF> & 31f°(¢,�F�) + aw§g§°°<q»,�u >.

Assuming the premiss of (14), one analyses the structure of p and, using
L�o F, shows how to "extract" a derivation w (for U*) from ¢.

The precise nature of this "extraction" will be clear from the heuris-

tic discussions (B.2.l, B.4.2) and from the technical details of the proofs
(B.2.2-6, B.4.3-ll). There is however a difference between the proofs of the
two theorems which should be noted outright. In contrast to L0, L1 is not



ll

decidable, and as a consequence one has to weaken the proof�theoretic reduc-

tion of theorem II to

<15) ( l+L F) & g_r_§:eC<d,�F*"> + «aw gr_f°°(¢,&#39;u*�)
1

where Prf:eC is the proof predicate for recursive infinitary derivations.
Compared to (14), the premiss here is strengthened and the conclusion is

weakened. Furthermore, (15) is not proved in the r.e. theory T], but in a
certain lg-enumerated extension of it (cf. B.3).

Int. 6. Normalization of infinitary derivations; regularity of the theory

of types

In Int. 3 above we have quoted Sch�tte&#39;s result stating that every in-

finitary derivation (of arithmetic) can be brought into a "normal" ("cut

free") form which satisfies the subformula property; this in turn is used

in our proof of absoluteness as indicated in Int. 5 (the additional struc-

tural requirements we are using are inessential to the proof of normaliza-

tion). The traditional proofs of normalization of infinitary derivations

(SCI-IETTE [51][60], FEFERMAN [68], TAIT [68], MARTIN-LESF E681) all use ordi-
nal assignments, following GENTZEN&#39;s [36][38] consistency proofs. This evolu-

tion is quite evident: ordinals can be assigned to well-founded infinitary

trees in a natural way, so extending Gentzen&#39;s idea was the first thing

which came to mind while passing from finite to infinitary proof figures.

In part A below we present however a new proof of normalization which

does not use the technique of ordinal assignments. We do so simply topermit

a certain generalization which will be explained below, and for which the

technique of ordinal assignment is not so adequate.

Cut elimination for (a sequential calculus for) the classical theory

of types L: is known since TAKAHASHI [67] (for the theory of species L2
proofs were discovered independently also by PRAWITZ [68] and TAIT [66]).

From the work of GIRARD [71][72] (as expounded in detail in MARTIN-L6F [73])
we also know an effective procedure which transforms each proof of Lw into
a normal one; and like for Gentzen&#39;s systems for first order logic L], we
get for Lw (and ipso facto for L2) normal proofs which do satisfy the sub-
formula property. However, when a normal proof n of L2 proves a formula F
in which a second order quantifier occurs, then the subformula property of

N is of limited interest: suppose e.g. that EX G[X] is a subformula of F,
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then so is GEE] for every formula H including e.g. F itself. This is an

evident drawback if one refers to the interpretation of arithmetic in L2,
as given by PRAWITZ [65], since under this interpretation first order sen-
tences of arithmetic are always mapped to second order formulae.

Consequently, a system of type theory which does satisfy the subformu-

la property for arithmetical sentences must be built up firstly by extending

the language to include the language of arithmetic, and secondly by expand-
ing the first order parametric expressions into explicit infinitary proof

figures (as in Int. 3 for first order arithmetic). I.e., a system L: is
adopted for the union of the languages of A and of Q�, whose inference rules
are those of the infinitary system for arithmetic, plus the rules of Lw for
higher order quantification.

We are now ready to justify our abandoning the technique of ordinal

assignment. We wish to prove a normalization theorem for hr, because then
we may conclude that Lw is regular: Lm is embedded in L: in an obvious man-
ner, and every normal derivation in an of an arithmetical sentence must ac-
tually be a purely arithmetical derivation, because it must satisfy the sub-

formula property. So, if T is a theory in which these facts are provable,
then

AELJ g A°°mLU

(cf. A.4.9), and so Lw is regular.
It is easily seen however (cf. TN 3) that if the normalization theorem

for L: was to be proved by assigning an ordinal notation to each proof fig-
ure, then notations should be available for all "provable ordinals" of Lw.
Such notations are unfortunately not known at present.

There remains the possibility of assigning ordinals (in place of ordin-
al notations) to the proof figures, as done e.g. by SCARPELLINI [71] p.156;
the proof of normalization is then carried out in some formal set theory (ZF
say). But then it seems unrealistic to expect either an optimal result, or
a proof within Lw of a normalization theorem for the systems obtained by re-
stricting L: to languages with a bound on formula-complexity. The method
described in part A below does have, on the other hand, the properties just
mentioned, in analogy to the well-known normalization proofs for arithmetic.

In proving the normalization theorem for L: (A.4) we combine the ideas
of PRAWITZ&#39;s [71] "validity" argument, the work of GIRARD [71][72] and the

"geometrical" treatment of infinitary proof figures of LEIVANT [A]. For
another application of the normalization theorem for L: see TN 4.
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TECHNICAL NOTES TO THE INTRODUCTION

TN 1. The elementary derivability conditions for an r.e. system T and a

provability predicate £3 for it are

2.1.� If F =�� IT� EETKFTI)

]-)2.   _>

_D_3_. |T g_5T{�F+c�) & §_5.r("F�) + 3£T("G").

The local reflection principle is proved in ¢ by a straightforward

induction on the length of derivations as follows. Each inference step of

¢ is of the form

where o_(i<n), 1 are formulae or sequents whose validity is equivalent to
1

certain sentences Fi(i<n), G (resp.). Assume now that a proof figure A of
G is given, with

A is finite, and so there is a (restricted) truth definition 33 in A which

applies to all formulae occurring in A (cf. e.g. TROELSTRA [73] 1.5.4). By

ind. hyp. we have T£�FFi1) (i<n), and since/EN Fi-4-G is simply a rule of
C, we thus get T£(rG1).

The predicate TE above depends on A, but if A is known to satisfy the

subformula property, then Tr depends only on the derived formula of A. So

we actually have, in A (and hence in C)

(I) Sp [ Prf (p,rF1) & "p satisfies the subformula property" ] +

+ E£<rF�>

for each sentence F. But

Sp :: Hp Prf (p,rFT) + 3p [ Prf (p,rF�) & "p satisfies the

subformula property" ],
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so (1) implies

§p¬ }- 3p Prf(p,rF1) + F

for each sentence F.

TN 2. KREISEL [65] proves that no r.e. system c of finitary proof figures

built up from derived rules of A and which is complete for A can be proved

in A to satisfy the subformula property. Our statement is stronger since

the subformula property is simply false (not only unprovable) provided G

is sound for X2 sentences (i.e., for j§pm).
The reference to the reflection principle made in Kreisel&#39;s proof men-

tioned above is redundant, since the result quoted is obvious already from

G5del&#39;s second incompleteness theorem: one proves trivially in A that no

derivation of O = I may satisfy the subformula property, and so if

PC _SP_q;

then C proves its own consistency.

TN 3. Suppose that we can prove in Lw for a certain prim. rec. well-order-

ing 4 
     
     T1� :2 Vx [ Vy<x P(y) + P(x) ] + Vx P(x)

where P is a predicate-parameter. We then have (trivially) a proof {d<} of
Lm for TI<.

w,rec 
     
     Suppose that {d4} is normalized into {dg}; an anlysis of {dg}

§} must have a specific struc-
I

ture for which the Brouwer-Kleene well-ordering-< associated with {d§} is
using the subformula property, shows that [d

equivalent (in V0) to4< itself (i.e., TI( and TI<&#39; are equivalent in V0 for
each predicate P in the language of V0). Taking various<( we find that the
ordinal of idg} may be any "provable ordinal" of Lw, i.e., any ordinal over
which t.i. is provable in L�.

TN 4. A memo of G. Kreisel from 1973 proposes another application of the

normalization of L:. Kreisel&#39;s aim there is to answer a question of
M.J. Beeson about a possible intuitionistic analogue to the KREISEL-

SHOENFIED-WANG [60] completeness result (which reads: Peano&#39;s arithmetic
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extended with transfinite induction over all prim. rec. well-orderings is

complete for classically true sentences). As a partial answer to that ques~

tion, Kreisel&#39;s memosketches a possible proof that Heyting&#39;s arithmetic A
extended with t.i. over all prim. rec. well-orderings is complete at least

for AELZJ (i.e., the arithmetical fragment of the theory of species). A
®system similar to L2 (:= the recursive derivations in L:) is presented,

9
and it is assumed that the normalization of that system can be proved. But

if {d} is a normal proof of L: rec which derives an arithmetical sentence F,
then {d} is actually a proof of A:eC by the subformula property. By t.i.
over the Brouwer-Kleene well-ordering corresponding to {d}, and using a re-

stricted truth definition for the subformula of F one gets that F is true.

The missing normalization step is proved in A.4 below. The proof re-

mains however incomplete, since one uses not only t.i. over the proof tree

{d}, but also the fact that {d} describes a correct derivation; this last

assumption is a W? sentence which is not necessarily provable in A. However,
this hiatus may be filled up as follows.

Given a quantifier free unary predicate E, define

x-<% y :5 x < y & Vzsy E(z)

V y < x & 3zSy 1E(z)

«(E is of course prim. rec., and if Vx E(x) then-<£ is simply <, and so it
is certainly well founded. Let

A (X) :2 as Vz<%x zes

where

zes :5 z is an element of the finite set of natural numbers en-

coded by s (via the binary encodement say).

It is easily seen that, in A,

vy<Ex AE<y> + AE<x>

and so by t.i. over.<%
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(1) Vx AE(x).

But in A one proves outright

<2) -.1~:<x> + ~AE(x)

Since E is decidable, we get from (1) and (2)

Vx E(x).

So, if Vx E(x) is true, then-<i is well-founded and Vx E(x) is provable by
t.i. over-<£. This completes now Kreisel&#39;s sketch: given a derivation W of
Lm which proves an arithmetical sentence F, one maps trivially n into an in-
finitary derivation {d} of L: rec for F. By the normalization theorem of

� oo
A.4 below, d is mapped into a_n0rmaZ derivation {e} of LM rec for F which

I
is, by the subformula property, a purely arithmetical derivation. Now one

looks at A extended with t.i. over�<% and over <6, where <% is defined as
above if Vx E(x) expresses the local correctness of the derivation {e}, and

where-4% is the Brouwer-Kleene well-ordering associated with the proof-tree
{e}. In the extended theory we can now conclude as above that F is true.

We thus have:

THEOREM: Lm is conservative over A extended with t.i. over prim. rec. weZZ�
fbunded orderings.
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PRELIMINARIES

P.l. SYNTACTICAL NOTIONS

P.l.l. The propositional constants we use are &, v, + and l (for absurdity);

negation is definable in terms of + and l:

&#39;11 
     
     1.�. F + l

We find it convenient to distinguish syntactically between "free" and

"bound" variables. The label "variable" is reserved to "bound" variables,

while the "free" variables we call parameters.

P.l.2. We often have to distinguish between different occurrences of the

same syntactic object 0 (usually a formula, sometimes a term or a param-

eter). An accurate definition of "an occurrence of o in 1" may be found

e.g. in STEEN [72] p.13. We shall write g (underlined) when referring to an

occurrence of 0; usually the specific occurrence refered to will be either

obvious from the context or irrelevant to it.

In a formula §_+ Q, §_as well as all its sub- (occurrences of) formu-

lae are said to be negatively bound by the shown occurrence of +. E is

said to be a negative subfbrmula of A if the number of implications nega-

tively binding §_in A is odd; if this number is even then §_is a positive

subfbrmula of A. (compare PRAWITZ [65] p.43).

P.].3. We shall usually use natural deduction calculi for generating formal

theories. In these calculi there are for each logical constant K an in-

troduction rule [KI] and an elimination rule [KE]. The natural deduction

calculi were invented by G. GENTZEN [35]; good introductions to them may

also be found in PRAWITZ [65], [71]. We shall freely use the terminology

of these works for dealing with natural deductions.

We also adopt the following convention: if A is a natural deduction

deriving a formula F (or a sequent s) we write é (resp., 2) in place of
A when we wish to express this fact explicitly. On the other hand % (with
a separating horizontal line) stands for the deduction which extends

A E é by deriving G from F.
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P.2. FORMAL SYSTEMS

P.2.1. Intuitionistic propositional and first�order predicate Zogics

{L0 and L1 respectively)
The language of L0 is built up from the propositional parameters

("letters") p0,pl,... and from the propositional constants &, v, + and l.
The language of L1 is built up as usual from predicate parameters
P?(i,n20,P: is n�place), first�order parameters aO,a1,... and first-order
variables x ., the propositional constants and the first�order quan-O,x1,..
tifiers V,3.

The theories L0 and L] are generated by the corresponding natural de-
duction calculi (GENTZEN [35], PRAWITZ [65]). A rough picture of these

calculi may be obtained by looking at A.1.l. below.

P.2.2. Second-order Zogio L2 {the theory of species)
The language of L2 contains, in addition to the second order parameters

P? of L1 also second order variables X?(i,n20) and corresponding second
order quantifiers V(n), 3(n).

The theory L2 is now generated by a natural deduction calculus as in
version I of PRAWITZ [65] p.65, i.e., without referring to A-abstraction

(compare A.4.l below).

P.2.3. The theory of types Lw
The simple types are generated inductively by starting with 0 as a

basic type (the type of "first-order objects"), and passing from a sequence

T1,...,Tn of types (n20) to a new type (T],...,Tn), the type of properties
of tuples (T1,...,Tn7 of terms of types T1,...,Tn respectively. In particu-
lar ( ) is the type of propositions.

The language of Lw is built up now similarly to the language of L2,
but with variables and predicates PE, X: (i20) for each type T and with
corresponding quantifiers VT, HT.

The intuitionistic (simple) type theory Lw is generated once again by
a natural deduction system in an obvious manner (for details see

MARTIN-LBF [73]) .

The theories Lk (k = 0,1,2,3...) may now be defined to be Lw restricted
to the types whose definition is of length S k.
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P.2.4. Intuitionistic (Heyting�s) arithmetic

Here we have in addition to the first order variables and parameters of

L1 also a first-order constant 0 and function symbols f2 (i20,n2l). Each
f? denotes a function from 1&1 to II, and we may take fé to denote the
successor function. The first-order terms are now built up in a standard

manner. If a term contains occurrences of ("free") variables we shall say

that it is a pseudo-term; otherwise it is a pure term.

The language of A contains only a single second order predicate = which
is binary; we write of course t = s for =(t,s).

A is now generated by a natural deduction calculus which includes, in

addition to the inference rules of L1:
(i) inference rules expressing Peano&#39;s third and fourth axioms;

(ii) an inference rule expressing the principle of induction;

(iii) all defining equations for prim.rec. functions, where each f? is
interpreted as the i&#39;th n-place prim.rec. fnction.

For details cf. PRAWITZ [71].

P.2.5: LIA: L] extended to the Zanguage of A.
The language of LIA is the union of the languages of L1 and of A, i.e.,

we extend the language of A with predicate letters P2 (i,n20).
LIA is now generated by a calculus of natural deductions based on the

rules of L].
Note that the language of LIA is more restricted than the language of

HASO (Heyting&#39;s arithmetric with species variables) of TROELSTRA [73] 1.9.3,
where quantification over second order variables is also allowed.

P.2.6. Elementary analysis V0
The language of V0 is the extension of the language of A obtained by

allowing function parameters g2 (i,n20), function variables ¢$ (i,n20) and
function quantifiers V¢?, 3¢2 (i20).

The natural deduction calculus for V0 is obtained by joining to the
inference rules of A inference rules for function quantification; e.g.,

the rule of V-elimination for function-variables:

vqfi� v[¢J
A[hn]

where hn is either a function constant f? (j20) or a function parameter
gj (j20).
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Note that we do not have in V0 any comprehension rule, and consequently
the function parameters and variables may be interpreted to range over

prim.rec. functions. V0 is therefore a conservative extension of A (cf.
HOWARD-KREISEL [66], where V0 is denoted by H).

P.2.7. Classical theories

For each intuitionistic theory T one obtains the classical completion

Tc of T by joining to T either the axiom schema of double negation,

�\*IA + A,

or the axiom schema of excluded third,

AV�1A.

P.3. ARITHMETIZATION OF MTAMATHEMATICAL NOTIONS

P.3.l. Finite sets of numbers {n0,...,nk} may be encoded by
n.{n0,...,nk} *+ Z 2 1

isk

which is a onerto-one prim.rec. function.

The set-theoretical relations 5, C etc. are then encoded by prim.rec.

relations for which we use the same notation (5, C etc.).

P.3.2. Let 4 9 stand for the coding of finite sequences given in TROELSTRA
[73] 1.3.9. We take

(nO,...,nk) = 4nO,...,n£ + 1.

The prim.rec. functions for projection (n)i, cancatenation u*v and
length l§h(n) corresponding to the coding () are then defined (as for

(D) in an obvious manner.

We shall use the following properties of ():

(1) () is onto the positive integers.

So an algorithm may produce the code of a node in the universal spread
which satisfies a certain property, and may yield 0 when no such node exists.

(2) ni < (nO,...,nk) (isk)
(3) (n0,...,nk) < (n0,...,nk,nk+1,...,nkH£
(4) u<v =9 u*{m2<v*(m) and(m) *u<(m7*v.
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We let u<v stand for the prim.rec. relation "u is (a code of) a proper

initial segment of (the sequence encoded by) V", and we let tail be a prim.

rec. function which satisfies

tai1(( n0,...,nk)) = ( n.� ,...,nk)

P.3.3. We shall frequently use the notations of KLEENE [52][69] for dealing

with general recursive functions: the standard prim.rec. predicates T,T¢,
the result-extracting function U,

{n} (resp. {n}¢) for the partial recursive (resp. recursive in ¢)
function with index n ,

!{n}(x) for 3y T(n,x,y)

33in} for VX !{n}(X) (i.e., {n} is a total function)

t u s for "t and s are both well-defined and equal, or they
are both undefined".

P.3.4. We shall implicitly assume throughout this treatise that some stan-

dard Godel coding of syntactical objects is given.

For arithmetization of proofs we shall use:

DerT.(x) for "x encodes a derivation of (a standard calculus generating)
the theory T";

Prf1(X;Y) for "x encodes a proof of T for the formula (sentence, se-
quent) encoded by y";

§3h.(y) for ax PrtT(x,y).

P.4. MATHEMATICAL SCHEMATA.

P.4.1. The axiomrschema of choice from numbers to numbers ACO0 reads:

ACOO: Vxay A(x,y) + 3¢Vx A(x,¢(x))

P.4.2. The schema of transfinite induction T14 over a (fixed) binary
relation �<

TI� : Vx [ Vy�<x A(y) + A(x) ] + Vx A(x)
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P.4.3. The axiom-schema of bar induction, or "induction over well founded

trees" 
     
     BI : V¢ [ E§(¢) + End [A,¢] ]
where

wF<¢> vxax ¢<§<<x>> = o

Ind[A,¢] :2 Vu { Vn JEA,d>,u*<n>3 + JEA,¢,uJ } + W J[A,¢,u3

J[A,¢,u] :5 Vv�<u ¢(v) # O + A(u)

(4 is the initial-segment relation between codes of finite sequences).

Here the function ¢ is thought of as representing a tree, namely, the

set of nodes u in the universal spread which satisfy

Vv<u �v)# 0

When ¢ is known to satisfy

¢(u) = 0 * ¢(u*(n)) = 0

then we may replace the J above by

J][A,¢,u] ¢(u) # O + A(u).

BI is easily seen to be derivable in V8 + AC00. It is also not difficult
to verify that our schema BI is a special case of the schema of bar induction
for monotonic predicates BIM of HOWARD-KREISEL [66] P\3Z6 as well as of the
schema of bar induction for decidable predicates BID on p.336 there.
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PART A. Regular theories and normalization of infinitary derivations ._

A. 1 . DEFINITION OF REGULAR THEORIES

This chapter is a self-contained introduction to part B. The reader

who wishes to do so may skip A.2 � A.4.

1.1. DESCRIPTION 01-� A�

By a sentence we mean a closed formula of A. A� sequent «is a syntac-
tical object of the form _a_-9 F where 3 is a finite set of sentences and F
is a sentence. 3 is the precedent, or antecedent of the sequent, and F is
the succedent, or the conclusion.

We use here the absurdity symbol .L though it is definable as O = 1

(GENTZEN [33] §6) because one of our aims is to get a formal separation

between logic and arithmetic.

�Propositional rules of Am:

[T] _a=> F where F e 3

3=>F0 a=:»F] £=>FO&Fl
�"13 *��;:�-FTP-~ ; mail 3 =. 1.~_ <1=°:1>

- 0 1 � 1

£,F => G §_= F �> G E: F

[+1] _a_=F�)-G _; [:+E] _;i=>G
(where a,F stands for 3 U {F})

a=>F. a=FvF aF=GaF=G- 1 ._ _ �� 0 1 �� 0 �� 1
Evli] E» FOVFI (1�0,|), [vE] 3: G

E� J-
[L]

E=:»F
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Quantification and arithmetical rules of Am:

[TE] a = E where E is a true equation when every function

symbol f; is interpreted as the j&#39;th i-place prim.
rec. function.

2=>E
[FE] E�: L where E is a false equation.

£3 = F<n)}m
EV� �::vx*p&#39;(:5��

3=VxF(x) §_=F(t)EVE] (t a term); [SI] ;�:§as F(t)

3 => ElxF(x) {§_,F(H) => G}n<w
BE] 3:� G

A function ¢ is a derivation of Am (notation: Derw(¢)) if

(1) { n I ¢n # O } is a tree of (codes of) finite sequents under the
obvious partial ordering:

¢u = O �+ ¢(u*(n)) = 0,

¢(u*(n)) = 0 �+ ¢(u*(n+])) = 0;

(where * denotes concatenation of sequent numbers).

(2) For every u (= the code of a node in the universal spread) (¢u)O is
the code of one of the inference rules p above (under some fixed en-

codement), while (¢u)1 and (¢(u*(n)))1 (n<w) are codes of sequents
which relate as the conclusion and the premiss sequents of p (and

when no n&#39;th premiss is required, (¢(u*(n)))1 = 0).
(3) ¢ is well-founded: VX3xu¢(i(x)) = 0.

EXAMPLE 1. The ("informal") derivation

[T] {A} =~ A [TE] {A} =- 6=6

[&I] {A}=>A&6=6

is formalized�by the function ¢ defined by
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¢<> = (&#39;_&I-&#39;, "{A} =:-A & 6=6�>

¢<o> := <"T", "{A} =» A")

¢< 1) = <&#39;n:E�, "{A} =»6=6�>

¢u := 0 for every u & {(),(0),(l)}.

EXAMLE 2. The derivation

{ [TE] 91 => fk(}.&#39;)=o }n<m

[VI] ¢ = Vx fk(x)=0

is formalized by the ¢ defined by

4,0 := <"v1","¢=>vx£k(x)=o�>
¢(n) := <"TE","¢ =.~ fk(E)=o�> for n<w
¢u 0 if lth(u) > 1.

A number d is a recursive derivation of Am (notation: Der:eC(d)) if {d} is
a total function (i.e., Vx3yT(d,x,y)) and clauses (1)-(3) above hold when

¢ and = are replaced by {d} and W respectively.

3r_§°°<¢,s) Ill _D_eg°°(¢)& (¢<>)1= s

III3;§°<¢,"F") 3r_f°°(¢ ,&#39;=F">

(The formal ambiguity of Egg? will never cause any trouble.)
A derivation ¢ is normal (notation: §Q§£f(¢)) if:
(1) No major (i.e., leftmost) premiss of an elimination rule in ¢ is

derived by an instance of an introduction rule;

(2) No major premiss of an elimination rule nor a premiss of an instance of

[31] or [FE] is derived by an instance of [vE], [SE] or [L].

(The reference to [BI] and fFE] in (2) is made for technical reasons: it
simplifies a bit the proofs in part B, since it implies that equations may

stand only at top nodes of the normal derivations treated there.)

Predicates like NDermeC(d), NPrf:eC(d,rFw), g£f:eC(d,s) etc. are defined1&#39;.�
now in an obvious manner.
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The central property of normal derivations is the subfbrmula property:

every formula occurring in a normal derivation is a subformula of the de-

rived sequent. Another property of normal derivations which we use is the

disjunction instantiation property: If Prfw(¢,PFVG�) then Prfw(¢(0),rF1) or
( . . . .Prfm(¢(O),FG�), where ¢ 0) 1S the "main" subderivation of ¢

(¢�°�(u) := ¢((0)*u)) (see A.3.8/9).

REMARK. The use of sequents in the formulation of Am above should not mis-
lead the reader to view Am as a sequential calculus. Sequents are used here
only as a convenience in describing a natural-deduction system. In sequential
calculi the precedent and the succedent of a sequent play a symetric role,
and there are two introduction rules for each logical constant, while here

(as in all natural deduction systems) there is an introduction and an elimi-

nation rule for each constant, both operating on the succedent.

1.2. REGULAR AND STRONGLY REGULAR THEORIES

Let T be a theory in the language of analysis. Write

A°°[T] {F I T }- q-.a¢ Nprf°°(¢,"F")}

A [T] :2 {F | 3d [T}- Nprf:eC(d,"F�)J}

E ( F ) :2 1=_r "-»�.a¢ N1>r£°°(¢,"F")"

Pr (rF�) :5 3dPr FNPrf
A [T]rec

in l""I-7
rec(d� F ) &#39;

In A.3 below we prove (in V0 + Lm + BI say) that each derivation ¢ of
Am can be mapped into a derivation ¢N which is normal, recursive in ¢ and
proves the same sequent as ¢. Hence, if T 2 V0 + Lw + BI, we can replace
in all the definition above NPrf by Prf.

We could formally strenghten the absoluteness results proved in part B

below by modifying the definitions of Pr m , Pr m above in yet another[T] rec[T]
way, namely - by inserting double negations wherever they make sense. We do

not see however any natural applications of these refinements.
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An r.e. set A* of sentences of arithmetic closed under Modus Ponens is

a regular number theory when for some consistent r.e. theory T in the lan-

guage of analysis (cf. P), A* 5 A°°[T]. A theory T* ina language extending the
language of arithmetic is regular if A[T*], i.e., the arithmetical fragment
of T*, is a regular number theory. When referring to A*, T* as above, we
shall assume that T 3 V0 + BI. This assumption does not of course affect the
generality of the discussion, since anyhow

A[T*J g A°°m E A°°[T + V0 + BI]

and we may replace a given theory T by T + V0 + BI. On the other hand, this
convention renders the set of infinitary derivations of Aw[T] closed under

operations which are proved in V0 + BI to preserve the correctness of proofs.
A theory T* is strongly regular if there is a theory T (as above) s.t.

A[T*] E A� [T]rec

and where

-: - CT ._ T+AC0O+n]

is consistent. Here AC6 is a "negative" intuitionistic version of the0
axiom of choice from numbers to numbers:

AC60 Vxwnay A(x,y) �+ nn3aVx A(x,ax)

and H? is the set of all trueIT? sentences. Formally, a proof predicate
PrfT+ for T+ may be defined from a proof predicate PrfT for T by thelT?
predicate

PrfT+(p,TF�) :5 3x<p "x encodes a conjunction of instances

of BI, ACQO and of truell? sentences"
& .I�_r£T<P=_iL<X,&#39;�F">>

where imp is a prim.rec. function which satisfies

l"If"|imp( G , F) = "G �>F".

The motivation for the condition on T 15 of a technical nature, and will

be clear from the proof of theorem II in B.
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A.2. GENERAL PROPERTIES OF THE CLASS OF REGULAR THEORIES

The aim of this chapter is to show that the class of regular theories

is quite large, and that it satisfies some natural closure properties.

(compare Int.4).

2.1. ARITHETIC, THE THEORY OF SPECIES AND TYPE THEORY ARE (STRONGLY)

REGULAR

There is an obvious embedding of A in A:eC (cf. Int.3), and so

0:
rec[A g A V0 + BI].

Hence A is regular. In A.4 below we also prove that the theory of species

L2, as well as type theory are regular; namely,

AELZJ 5 AIECELZ + V0 + BI]

A[Lw] 5 AreC[Lw + V0 + BI]

(actually BI is redundant everywhere, and even after dropping it the inclu-

sions are proper. See LEIVANT [A]). So L2 and Lw are also regular. Of
course, the last assertion implies the first two ones, since

A 3 A[L2] g A[Lw], and when Tl g T
implies trivially that of T1.

2, then the (strong) regularity of T2

. " . . CAssuming that Lw + AC00 + H? lS consistent (or that Lm + ACOO
1-consistent, cf. KREISEL-LEVY £68] §9) we have

is
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+ 0
(Lw) 5 Lu) + Acoo + "1

(the operation ( )+ is defined in A.l.2) must also be consistent. Hence
A, L2, Lw are all strongly regular.

2.2. ADDING SELF-CONSISTENCY TO A REGULAR THEORY

2.2.1. LEMA. There exists a prim.rec. function p s.t.

I-A F �> 3r_f:ec<p<"F�),&#39;F�>

fbr any prenex no2 sentence F.

PROOF. If E is an equation, and {p(rE�)} describes the singleton derivation

[TE] =» E

then, clearly,

°° f"�ll"&#39;|E �+« PrfreC(p( E ), E ).

Next, if F is 2?, F E: SXEX, then

°° !"�1|"I(I) F �+ Prfrec(p( F ), F )

where {p(rF1)} describes

[TE] => E(ux.Ex)

[31] => F

Finally, if F islTg, F E: VXFOX, then (1) where {p(rF1)} is defined to be
the description of

(¢ )I1 n<w

[VI3 : F

when ¢n is described by p(rF0(n)1), i_e, �
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     {p("F")} < ) == <"vI","=>1-"">

{p<&#39;F�>}«n>mo:= {p<"F0<E)�>}u.

p is now a prim.rec. function by the s.m.n. theorem. D

REMARK. (1) above is of course uniform, i.e., for a H open formula F(x),2

Vx E F(x) -+ g5;Tec(p<&#39;F<§>�>,"F<;>�) J

I(where rF(§)1 is sub(rF(a)j,nu(x)) :- the result of substituting the
numeral with value x for the parameter a in F). So, for a Z03 S entence
3xF(x) E: G

G �+ 3x 3;§:ec<p<&#39;F<§>�>,"F<§>�>

�+ 3d £§£:ec(d,rGq) (trivially).

But here d cannot depend primitive recursivelu on "G1. (Already for 2% sen-
tences G 5 3x F(x) one cannot have d depending recursively on G, since one

can extract recursively from d a number p s.t. F(p). A partial resursive ¢
yielding d = ¢&#39;G1 would therefore allow one to decide recursively member-
ship in an arbitrary H? set.)

2.2.2. LEMA. Let T be (strongly) regular,

T 2 A°°[T]J ( T s A:eC[T]] )
- 0 . . . .say. If F ts a Z3 sentence conststent with T1 (with T?) then T + {F} is

(strongly) regular.

PROOF. By the remark at the end of 2.2.1.

°° r -1
F ]-A Eld PrfreC(d, F )

and since T1 2 V0 3 A we thus have

M r nkTl + {F} ad £££rec(d� F )�
i.e.

FA� [T +{F}] F
rec I
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SO

T + {F} s A:eC[T1 + {9}}

If�) Aw[T] + {F}].

Together with the consistency conditions assumed for T] + {F} this concludes
the proof. D

2.2.3. LEMA. If T is regular then it is consistent.

PROOF. We have trivially (in V0)

V4; -uNPrf(¢ ,"l")

and so, if T] is consistent then AMCTIJ is also consistent, and so must be
every T E Aw[T1]. U

2.2.4. PROPOSITION. Let T be (strongly) regular,

T 2 A�[Tl] ( T s A:eC[T1] ;

where T] (T?) is sound for negations of H? sentences. If ConT is a canonical
consistency sentence for T then T + 993T is (strongly) regular.

PROOF. T is regular and therefore r.e. By 2.2.3 T is also consistent, and
. 0 . . .so Con 1s a true H] sentence which must therefore be consistent with T1

(with TT). So by 2.2.2 T + ConT is (strongly) regular. D

By the same token, if T1 is sound for negations of Hg sentences, then
T+ (global w-consistency oflh is regular, since the statement added is Hg.
Note that the global consistency of T is equivalent to uniform reflection

for Hg on T + (uniform reflection on T) (cf. SMORYNSKI [77] thm.l.l.).

2.3. THEORIES "GENERATED BY TRANSFINITE INDUCTION" ARE REGULAR

Let { be a binary predicate and write x{y for <(x,y).

Vyix A(y) -> A(x)Step:[A(x)] :

3;:[A(x)] Vx Ste§:[A(x)] �+ vx A(x)_
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2.3.1. PROPOSITION. Let T be (strongly) regular; T 5 Am[Tl] where T] is
sound fbr A: sentences. Let { be a prim.ree. well-ordering, then

�.= 4T " T + { 3£x[A(x)] }A arithmetical

is (strongly) regular.

PROOF. Let x<y be expressed by an equation fk(x,y)=0 (fk prim.rec.), and
define

X4 y x<y<zZ

Given an arithmetical formula A(x) define the partial recursive function

¢z E Au.¢(z,u) E Au.{a}(z,u) as a formal description of the following deri- .

vation of Am. 
     
     X

n,z{vx Step:[A(x)] -> I-142 �» A(�) }n<m
[VI] Vx Ste_p:[A(x)] => vx<z A(x)

where X is
n,z

(i) the derivation (represented by)

[T] �<E [T] �=2&#39;

[FE] l [FE] l

��<2 v �r? El] A(�) [l] A(�)

[VE] A(�)

[+1] �<Z + A(�)

if E=<2 is false (and where we have skipped the premisses of all sequents);
(ii) the derivation

[T] Vx Step:[A(x)] =~Vx Step;[A(x)] An
EVE]  => vy<E A(y) �> A(E) Vx Step:|:A(x)] =» vy<E A(y) 4

[+33 Vx Step�}<{[A(x)] = A6.)

[+1] Vx Step:[A(x)] => 342 -+ A(�)
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if 512 is true, and where An is described by ¢n.
¢ is defined here in terms of r¢� = a (via {a}), and so ¢ is well de~

fined by Kleene&#39;s recursion theorem (cf. e.g. KLEENE [52] p.352, thm. XXVII).

We may pick the index a to bethat one given (primitive recursively) by the
proof of the recursion theorem, and define d(z) by {d(z)} E lu.{a}(z,u).

d is a prim. rec. function by the s.m.n. theorem.
\

Further, let {e} = {e<�A} describe the derivation

A
z

{V}: Step:[A(x)] => Vx.,{z A(x) }Z<w
[VI] Vx Step:[A(x)] = VzVx<z A(x)
[+1] = Vx Step;[A(x)] + VzVx<z A(x)

where AZ is described by {d(z)}. The derived formula of {e} is clearly a
variant of Tl;[A(x)].

Using a suitable instance of T}:[B(x)], namely With
on < !A �(

BA<y) =2 ggrege Y ,"1I_xYtA<x>J�> ,

. . . A . . - - -we find quite directly that {e<� } is total, and describes a derivation in
Am of TI4[A(x)]. Hence

rec -X

T� C A°°[T1 + (Varith.A) T_l_:[BA(x)] 1

: A°°[T1 + w�.

It is easily verified that W� is a set of A;
1 .assumed to be sound for A1 sentences,T] + W&#39;(must be consistent. Hence T<

sentences, and since T1 is

is regular. The proof for strong regularity is similar. U

2.3.2. The interest in proposition 2.3.1 springs from the proof theoretic

power of the schemata Tl;[A(x)] (with { a prim.rec. well-ordering, A arith-
metical) which are complete for classically true arithmetical sentences
(cf. KREISEL, SHOENFIELD & WANG [60] §7 thm.6).

It should be noted that the converse of 2.3.1 is false: not every
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regular theory is an extension of A (say) by {EI:[A(x)]}A for some {.
arith.

The main reason for this is simply that a regular theory is not necessarily
sound: let F be a false but A-independent Hg sentence; then A-+F is regular
by 2.2.2.

If we restrict attention to classically sound regular theories, and

relativize the whole discussion to classical systems, then the converse of

2.3.1 does hold, simply by the Kreisel-Shoenfield-Wang theorem mentioned

above. For intuitionistic truth and formal systems we do not however yet

have an analogue to that theorem (compare TN4).
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A.3. NORMALIZATION IN A°°

3.1. AN INFORMAL DESCRIPTION or THE "NORMALIZATION STRATEGY"

We prove here that every derivation ¢ of Am for a sequent §;= F can be
transformed into a derivation ¢N for 5;: F which is normal in the sense of
1.1, i.e., no major premiss of an instance of an elimination rule in ¢N is
derived by an introduction rule, and no major premise of an instance of an

elimination rule, of [31] or of [FE] is derived by an instance of EVE],

[HE] or El]. Further, is recursive and continuous in ¢, that is, the¢N
value of ¢N at any given node u in the universal spread is computed recur-
sively from the value of ¢ at a finite number of nodes.

The transformation of ¢ into ¢N uses, as in the treatment of finite
natural deductions, "reductionrsteps" which eliminate local violations in ¢

of the requirements of normality. For lack of a better name we call these
violations cuts, in analogy to the traditional nomenclature for sequential

calculi.

One unfortunate situation is that a reduction which eliminates one cut

may create new ones; this is familiar from the finitary case. Here, in
addition, the number of reduction-steps cannot be finite, and their order
is important. What is essential to the success of the procedure we shall

describe is that for each specific node u we can compute ¢N(u) by performing
only a finite number of reductions on ¢. An insight into this can be ob-
tained by looking at the more general treatment given in LEIVANT [A], where
it is also shown that the order of the reductions is relevant only up to

obvious requirements.

The properties of reduction sequences proved in LEIVANT [A] are in a

way analoguous to the strong normalization property of finitary proofs,
i.e. - every reduction sequence starting with a given finitary natural de-
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duction terminates. The proofs use however arguments on the geometry of in-

fiuitary derivations which are combinatorially tedious. For our purpose
here all this is irrelevant, so we confine ourselves to the more modest

task of giving one method of obtaining ¢N from ¢.
The normalization strategy we use can be roughly described as follows.

Suppose that we have computed already ¢N(v) for every v < u. Under our
conventions on the coding of sequences this means in particular that

¢N(v) is given for every V�< u. These values have been computed by con-
structing a certain reduction sequence

1 1 1
(*> ¢l=¢1l=...|=4>k

(cf. 3.1 below), where for v < u ¢N(v) := ¢k(v). To compute ¢N(u) we show
now how to extend (*) by

1 1
¢k|= ¢k+l  F ¢k+m

so that ¢N(v) := ¢k+m(v) for v :_u. Examine the inference rules of ¢k at
u,u*(O),u*(0,0),..., as long as these are eliminations (of [ST] or EFEJ);
since ¢k is well-founded, this must come to an end. If no cut occurs
immediately above any of the examined nodes, let m := 0 (i-e., Stop);
else - let ¢k+] be obtained by a reduction at the uppermost (i-6-, maximal)
such cut. The process is repeated as long as cuts are found, and our point

(to be proved below) is that this may happen only finitely many times.
It should be noted that in ¢k above more than one cut can occur along

u,u*(0),...; namely, if we have a chain of instances of EVEJ and [HE]. If

the inference rule in ¢k at u is not an elimination (or [31] or [FE]) then
the sequence u,u*(0),... is empty, and the condition for m := O is satisfied

trivially.

3.2. SOME CONVENTIONS

We slightly modify the formulation of Am in 1.], so as to allow a
smoother exposition. Let an indexed fbrmula be a pair (n,F), which we write

as HF, where n is a natural number and F a formula. A sequent is now a syn-
tactical object of the form §_= G, where 3 is a finite set of indexed
formulae and G is a formula. The inference rules remain as in 1.], except
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for the "discharging" inferences; i.e., the EVE] rule for example takes

the form

k k
a=>A]vA2 3,Al=:-B _a_,A2=B

[vEk] a_= B

[+Ik] and [smk] are defined similarly.
W.l.o.g.we1nakethe conventionthat twooccurrences ofthe same formula which

are "discharged" at distinct nodes of a derivation ¢ are given distinct

indices. Note that normalization for the modified Am implies normalization
for the original formulation: indices can be just ignored in ¢ and ¢N. They
are indeed useful only as track�keepers through the normalization proof.

There is one more modification we make in Am, but this one does weaken
the results. We add to the rules of Am the replacement rule

£=> F(t)
_.._.._.__._j._..�.� where t� = t.

[R] _a_=> F(t&#39;)

The reason we make this modification is of course our concern for the

reader&#39;s time and patience: its presence allows a simplified formulation of

the reduction steps (see 3.3.2 below).

The normalization proof for the original version can be found in

LEIVANT [A] (where it is shown that the obvious "term replacing" derivations

which take the place of [R] can be inserted into the proof of normalization).
In the absoluteness proofs in part B we do use however normalization for the

I I K� I u n a .
original A , without [R], because a separation between logic and arithmetic

is utilized there, and this separation is destroyed by using [R] in the re-

ductions. 
     
     To shorten the discussion of infinitary proof figures we shall use the
following notational conventions. Given a derivation ¢ of Am we shall write
p¢9u ¢3uand s for the inference rule and the sequent (respectively) standing

at the node u in ¢, i.e.,

¢(u) = (r-pd) ,Ll�l!!�S¢,l1&#39;l)9

and when s¢�u E §§G then a?�u := E} F¢�u :5 G. Also, we shall freely use
geometrical representation of derivations,e,g,,
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-9- 
     
     ll

[p¢,<>] a¢,<> =, F¢,<>

(where ¢u := Ax.¢(u*x) ). ¢[§] will denote the result of joining the finite
set of indexed formulae a to all the premisses of sequents in ¢, i.e.,

ra¢�uq§éF¢�u�)¢[§_] (u) == <Fp¢�u_&#39;

¢[kA] := ¢[{kA}]

When ¢

is defined as the derivation which comes by replacing (or "grafting on")

each top node of ¢[§] of the form £pb)kA = A (where necessarily §_g E) by
kA] from all premisses of the result.w[Ej, and dropping [

Finally, we shall mark in this chapter by asterisks in the margins
those passages which can be omitted when only the �¬gatiVe (i-6-, free of

v and of 3) fragment of the language of A is treated: the reader will get

a more transparent View of the proof by skipping these sections on a first

reading. The beginning of a paragraph to be skipped is marked by /*, its
end by */, and isolated phrases by *.

3.3. PROPER REDUCTIONS

3.3.1. The critical inference rules are all the elimination rules

([&E],[+E],[vE],[VE] and [3E]), [31] and [FE]. These are the rules which
may induce a cut:

Cut(¢,u) :5 "p¢�u is an elimination and p¢�u*(0) an
. . u . . .introduction rule, or p¢� 1S critical
and p¢�u*(0) is EVE], [BE] or [i]".



3 . 3 . 2 . Detour reductions

&i-reduction:(i)

(0,0) (0,1) .

[&I] 3» A

[&E] 3=>A

(ii) +-reduction:

(0 0)¢ 3

3,kA = B

& A
O I

[+I] �i=4 A + 3

¢

8

(1)

= A

[�>E]

* (iii) vi-reduction:

<o,o>
41

a = A,- 1

[VI] 3.� A1

[vE]

a = B

V A

(i=1,2).

(0,i)

a:A
(i=O,l).

39
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(iv) V-reduction:

¢(o�n) ¢(O,n0)
{ 3 = A6) }n<w 3 => AGO)

P
[VI] _a; = VxA(x) [R] 3 =9 A(t)

EVE] 3 =9 A(t)

where no is the value of the term t (recall that we treat only sen-
tences, and so all terms are closed).

* (v) 3-reduction:

¢<o,o> 
     
     a => A(t) (n+1)

[31] 3:» axA(x) { g,kA(t_1) => B } < [kA � Jn to #1 (no)
[an] 3 =» B ¢��o*"

a =9 B

where no is the value of t, and

(0,0)
¢

3 =9 A(t)

[R] 3 =» A610)



/* 3.3.3. Permutative reductions

Let p be a critical inference rule.�

vp-reduction:

¢(0,0) ¢(O,j)
a = A v A { a kA = B }� 1 2 �� .� j=1,2

[vE] §_= B { ¢(n) }n>o

[p] g_= C

(O,&#39;)4) J
k (n) k¢(0,0) 3, AJ. => B {d5 [Aj] }n>O

3 = A1 v A2 { [p] §,kA. # C
P �

EVE] a = C

*/ Sp-reduction: analogous, with [SE] in place of [vE].

3.3.4. Absurdity reductions

Let p be a critical inference other than [FE].

lp-reduction:

(0 0)¢ 3

2=i 
     
     (0 0)

El] 3&#39;» A { ¢<n+]) }n<m ¢ ,
Fl 3=>i

[p] a = B

41
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L-[FE]-reduction:

(0 0)¢ 9

gal I ¢<o,o>
l=

[L] a_= E 3-: L

[FE] a => J.

The absurdity reductions are the converse of the expansion reductions

of PRAWITZ [71], 3.3.3. While Prawitz&#39;s aim is to show that the intu-

itionistic absurdity rule can be reduced to a Post rule (more generally,

that an intuitionistic first order system is conservative over the system

of its Post rules, of. PRAWITZ [71], 3.5.5), our aim is to get normal deri-

vations where, roughly speaking, breaking into the internal structure of

formulae is avoided when possible.

3.3.5. If ¢u F} w and ¢1 comes from ¢ by replacing ¢u by w (i.e.,

¢v if v * u
¢lv := {

ww if v = u*w

l . . . 1then ¢ F ¢l, and we also write more specifically ¢ F; ¢1.

¢l="¢, :2 awE¢=w�°� & ¢,=¢��) &

an ¢|=�¢1 .¢%¢,

3.4. DEFINITION OF THE NORMALIZATION STRATEGY; THE NORMALIZATION PREDICATE

3.4.]. Write (n)i for (n,...,n).
L____v_._.J

i times

Infl(¢,u,v) :2 3i<u E u = v*(0)1 & VwV<W<u "p¢�W is critical" ]
III "u influences v in ¢".
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3.4.2. Define

(1) C1ear(¢,u) :5 Vw E Inf1(¢,w,u) + 1§g£(¢,w) ]

(2) {j}(¢,v) := uusv. 3w[Infl(¢,w,u) &£J1�c_(¢,w)].

I.e., u is a "clear node" in the derivation ¢ if no out occurs at a node

which "influences" u in ¢. The function {j} picks out the first node up to

the argument v which is not clear in ¢. Here the natural ordering S is taken
in the definition in order to simplify the definition of the normalization

procedure defined below. Under our conventions u <.v implies u S v, but re-
placing S in the definition of {j} by~< would destroy the linear order of
the reduction steps we have in mind, and implied by 3.4.4 below.

We further define n

{k}(¢,V) == 0 if Clear(¢,v),

zz §§§[u IInf1(¢,u,{j}(¢,V)) &§g§�¢,u) 3 otherwise.

I.e., for the node {j}(¢,v) =: w defined above {k} picks the maximal node
y which influences w and where a cut occurs.

, . . n+1
non-critical rule ow*<0>

# \W*<0>n. 
     
     V w :m {j}(¢sV)

critical inferences E U zg {k}(¢�v)
is among w,.-.,%�(0)n

3.4.3. We define the derivation {r}(¢,u) E Av.{r0}(¢,u,v) by

¢ E11 {r}(¢,u) if _C_l£(¢,u)
(4)

{r}(¢:u) 1* ¢ otherwise.
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Using this notation we now define the normalization functional

:1» }�+ Av.�l�(¢,v)

by defining W E {n} through

(5) �P(4>,v) :~ {n}<{r}(4>,{k}(q>,v)),v) if {k}(¢,v) ¢ 0,

:2 ¢V otherwise.

It is seen outright that (5) is a correct Herbrand-Godel definition of W

as a partial recursive functional (compare e.g. PETER[67] p.195 or KLEENE[52]
sec.54). The reader less familiar with the Herbrand-Godel definition may
prefer to note that W is well-defined by K1eene&#39;s recursion theorem

(KLEENE[52] p.352, thm. XXVII) and that the index n is given primitive
recursively (from the definition (5)) by the proof of that theorem. The intu-
itive meaning of W E {n} is this: if

Hwsv ~Elea£(¢,w)

then 
     
     W :2 {j}(<1>,V) 9-� uwsv-�v_C_1_e3§(¢,w)

9�: 0

and so 
     
     {k}(¢,V) 2: u # O

as in the illustration above. Letting

4>l=�¢,11

we take

W(¢,V) 3% W(¢1,V)-



If

n�wsv 1Clear(¢,w)

then {j}(¢,v) 2 O and so {k}(¢,v) 2 O and

W(¢,v) == ¢V-

In other words, W(¢,V) is obtained by a series of reductions

_. J4)"
1

¢ l=
0 1 "1

I

lit ¢t+]
where

ut zm {k}(¢t,v) # 0.

If and when for some t we get

Vwsv Clear(¢t,v)

we stop and set

w(¢,v) =2 ¢ (V).t+l

Note that W(¢,v) E {n}(Q,v) may be defined by different reduction

sequences for various values of v, and so it is not evident prima facie

that {n}(¢,V) is at all a derivation.

Nmb1e(4>) ::{n}¢ & _W_F_({n}¢)

vvax T��(n,v,x) as VXEly {n}<¢,>Z<y>) 2 0

"¢ is normalizable".

We shall also refer below to the function
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{£}({r}(¢,{k}(¢,v)),v) + 1 if Swsv wClear(¢,w){£}(¢,v) :a {
O I otherwise.

which, like {n} above, may be formally defined by a use of the recursion
theorem. Intuitively {£}¢ measures the length of computation of {n}¢.

I . 13.4.4. When for some v {k}(¢,v) 2: u # O and ¢ E1 ¢ , we write ¢ F; ¢1.
If V] S V2 and

l

w :u {j}(¢,v]) :2 uzSvl.1Clear(¢,z)
# 0

then

{j}(¢,v2) m{j}(¢,v1)

trivially, and so

{k}(¢.v2) u {k}(¢,V])-

Hence ¢ I� ¢l for at most one ¢1.
We further define F{ to be the t-time iteration of |{. So {n}(¢.V) is

(when converging) ¢1(v), where ¢1 is uniquely determined by

K ,4) F: }(¢ v) ¢l

3.4.5. LEMMA. Let _qe_r_°°(¢).
(a) Nmb1e<¢> ++ vw E 4» I41 11» + Nmblew) J
(b) 4» l=� xv + s"��= s���
(c) ¢ I=� w + {m 2 {n}��.

PROOF. Obvious from the definitions. D

3.4.6. LEMA. Let Qe£h(¢). If ¢ �g w and w $ u then wu = ¢u and
~k<> <>Vm s¢.u m = S¢,u* m _

PROOF. Immediate. D
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3.4.7. LEMMA. Let gg5T(¢). If

(1) C1ear(¢.v),

<2) ¢l:�,wand
(3) w-K v

than C1ear(w,v).

PROOF. Assume (1) - (3), and towards proving C1ear(¢,v) assume

(4) Inf1(w,u,v), u = v*<o>�.

If w é u*<O> then we must have by (3) and (4)

(5) w = v*<0>k for some k, 0 S k S n.+1.

We know from 3.4.6 that (2) implies

(6) VE¥W ¢(y) = ¢(Y)

and by (4)

(7) Visn "pw�v*<0>1 is critical".

From (5), (6) and (7)

up�? aV*<0>1(8) Vi<k is critical"

¢�w must also be critical, from which by (8) and (5)while (2) implies that p

(9) Inf1(¢,w,v)

and so by (1) wCut(¢,w) contradicting (2). Hence

(10) w f u*<0>.

But now we get from (6)
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(11)

p¢,u*<0> = p¢,u*<0>

and from (4), (10) and (6)

(12) Inf1(¢,u,v).

(1) and (12) imply 1Cut(¢,u), from which by (11) 1Cut(¢,u), as required. C

3.4.8. PROPOSITION. If _P_g§°°(¢,s) and Nmb1e(¢) then NP:-£°°({n}¢,s).

PROOF. Assume the premiss; then by the definition of the predicate Nmble

we have

(1) ::{n}"� & _W_F_({n}¢).

It remains to prove that {n}¢ is locally correct and cut free.
Fix a node v. By the argument of 3.4.4 !{n}(¢,V) implies that

(2) ¢ |=:z}<¢,v> wV

for a certain derivation wv for which

(3) vwsv §_1_<aa_r(1IJv.W)

(4) {n}¢(v) =u wv<v>.

Likewise we have for each m a derivation ¢v*<m>

(5) 4) |=£m}(¢,v*<m>) wv*<m>

(6) Vwsv*<m> Clear(IJ1v*<m>,w)

(7) {n}¢(V*<m>) :12 1pv*<m>(v*<m>),

By 3.4.4 reduction sequence (2) is necessarily a subsequence of (5) (for

each m). Fixing m, we thus have for certain x0,...,xt, w ..,wt, t Z 0,1"



=1 
     
     "1(8) ¢ [=1V X] wX01 2

We prove by induction on t that

(9) Vwsv Clear(xt,w)

(10) Xt(V) = ¢v(V)

(ll) sXt�V*<m> = swV�v*<m> for the given m.

For t = O (9) - (11) are trivial (cf. (3)). Assuming (9) - (11) for t, we

have by (9)

(12) wt+� $ v, wt+1 & v

and so by 3.4.7

(13) Vwsv Clear(xt+1,w)

while by 3.4.6 (12) implies

xt+1(v) = xt(v) = wv(v)

and

Lpv ,v-k<m>sXt+1,v*<m> _ SXt,v*<m> S

This completes the induction. We thus have from (8)

(14) ¢v*<m>(V) = ¢v(V) (by (10))

a {n}��(v> (by (4))

(15) swv*<m>sV*<m> = S11�v:V*<m> (by (11))

= s{�}¢"�*���> (by (7))
¢ ¢Hence s{n} �: and s{n} �V*<m> relate according to the inference rule

pwV�V = p{n} �v and thus {n}¢ is a locally correct derivation. Further,

49



50

we have 
     
     ¢

(16) pm "� = p��v"� (by (4))

= ow"*<O�v (by (14))

while 
     
     <17) p{�*}¢�V*<°> = p��v=~<0>aV*<0> any <7»
But (6) implies that -1Cut(\lJv*<O>,V) and so (16) and (17) imply
1Cut(¢{n},v), since Cut(x,u) depends on pX�u and pX�u*<0> only. Hence
{n}¢ is cut-free. 3

3.5. GENERALIZED REDUCTIONS; STABILITY

The concepts defined in this section are analogues of the ones defined

for the finitary natural deduction system for A in LEIVANT [74], i.e.,

they are based on the ideas of PRAWITZ [7l]&#39;s "validity argument".

3.5.1. The measure of complexity u on the sentences of the language of A is

defined by recursion on their length as follows.

u(E) := 0 if E is an equation

u(A & B) == u(A v B) := LuEu(A), u(B)J

u(VxA(x)) == u(3XA(x)) == u(A(5))

u(A-> B) == geg[u(A)+1. u(B)].

We also write, for a derivation ¢ of Am,

i.e. - I¢| is the derived sentence of ¢.

3.5.2. We define now simultaneously by (metamathematical) recursion (on n)

two predicates:
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_S_tn(¢) (for &#39;{¢ is stable and p(|¢|) 5 n")

and 
     
     I1

:1)  :1: (for ¢ s.t. u(]¢I) 5 n).

The metamathematical recursion yields an explicit definition of St and
n m I
H= in terms of St and  with m<n. When <1) is recursive, ¢x m {d}x say,
then these predicates are arithmetical (compare LEIVANT [74] §7), and
given a (hyperarithmetical) truth definition for the full language of A, one
can define (arithmetically in this truth definition) predicates _S_tand I|=s.t.

St({d}) 4--> St ({d})-- �-n(1) } wheren := u(l{d}l).I!
{d} ||= {e} <��> {d} ||= {e}

But there are no arithmetical predicates _S_t,  satisfying (1). Likewise,
a truth definition for the full language of V0 provides uniform predicates
_S_t and  for arbitrary derivations ¢.

111
3.5.3. Assume now St ,  to be defined for every m<n, and let p(I¢I) S n

n
(i) If 41)  where u :2 {k}(¢s<>) 7� 0 then 11> �=1 1b. ({k} is defined in

3.4.3. Note that we may have X1 X2 while {k}(X&#39;,<>) = 0).

(ii) ¢(O) ¢(l) &#39;
3: A0 3:� A] n] ¢(1)

¢ = :�-��� ||= <i=o,1>
[&I] a=>A&A a=>A.- 0 1 - 1

(iii) 45°� 1:»

3,11.» B n] [km
H� <0)

[+1] 3 = A �> B (1:

§_=> B

whenever ID = a 3 A and _S_tu(A) (114).

* (iv) ¢(O)

_a_=$Ai nl ¢(0)
��-����� .n= <i=o,1)
[VI] a=>AvA a=>A.
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(V)

/* (vi)

(vii)

(viii)

(ix)

[SI] 3&#39;: 3xA(x)

(0)
¢

{ 3» A03) }m<w n 4,911)
���-���������H= _
[VI] 3 =9 VxA(X) 9. =� Am)

(0)
¢

3 a A(t) n :1)

( ) (&#39;)¢ 0 ? J
v A kA. =>B }-_

J J�1 2 { 3�2.� A 1,2 n ¢

EVE]

¢(O) ¢

3_= 3xA(x)

[HE]

_ |;l ¢<o>
U]3=A 3:;

Notice that the reduction is always at () in clauses (ii)-(ix).

(X)

(xi) §gn(¢)

n n
IF is the transitive closure of IF�

n . n <. )(1) �=k 4)] :5  I: d, =  & Vi-(k  �=1 �P 1+1
n nk

:1» IF 4», :2 3k¢ ll= ¢,
n

(so in particular ¢ IFO ¢ and ¢ IF ¢).

ll!
I1

v¢] E ¢ H= ¢l �+ Nmb1e(¢]) J.

&

(j=1.2)

11»
(k)

4»,J

We refer to reduction steps (ii)�(ix) as improper reductions. Reductions

(vii) and (viii) we label more specifically as simplifications (because of

their similarity to PRAWITZ [7l]&#39;s "immediate simplification� reductions).

In the discussion below we write §£(¢) for §tn(¢) and ¢ I? w for
n

¢ �= w where n := u<l¢l).
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3.5.4. LEMA.

(a) §§�¢) +~E9Els(¢)

(b) ¢ f= ¢1 and §£(¢) + St(¢1)
(c) §£(¢) iff [Nmble(¢) and [¢ H= w by improper reductions + Nmb1e(w)]].

PROOF. (a) Immediate, since ¢ é)¢. (b) and (c) are immediate from the defini-
tions. U

3.5.5. ¢ = k¢ is stable at kA if whenever
a, A=>B 

     
     W

&#39;4� = 2
�2=�A

Wthen [��] is stable.
n.

¢ = a i B is strongly stable (notation: §§£(¢)) if when a = { 1A-}-, and1 1

¢i,ni are stable derivations with ]¢i�ni] = Ai, then

wi,n1
�i{E .3 } .

1 ni 
     
     A1 5 3

¢

is stable, where 9 is defined analogously to the definition at the end of

3.2 for the substitution of a single derivation w. We write here ¢ F+ 6.

3.5.6. LEMA. SSt(¢) �+ §E�¢).

PROOF. Immediate, since the singleton derivations

¢i�ni := E [T] g_= Ai ]

are trivially stable. D
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3.6. THE STABILITY THEOREM; TREATMNT OF THE NON-CRITICAL INFERENCE RULES

3.6.1. Our aim is to prove the following

THEOREM (in V0+BI)

<1) E°°<¢> �> _s_§£<¢)

(ii) _1>_e§°<<:>) ~+ gm

(iii) 1_33_5°°(¢) �> Nmble(¢).

Here (i) implies (ii) by 3.5.6, and (ii) implies (iii) by 3.5.4. The

proof of (i) proceeds by BI on the proof�tree ¢. I.e., one proves

(1) vm§c_(¢�*��"> �» mot�)

and so by BI §§£(¢()) and ¢<) = ¢. 
     
     $9�

For the top nodes of ¢, i.e. - where p is [T] or [TE], the premiss of

(1) is satisfied trivially, and the conclusion is imediate from the defi-

nitions. So our main concern is to prove (I) for the other cases for p¢�u.
The cases of non-critical inference rules are treated in 3.6.3 below, the
proof for the critical rules being postponed to 3.7.

3.6.2. LEMMA. Assume Dir°°(¢) and C1ear(¢,()). Then

(1) Nmble(¢) «-> VmNmble(¢(m))

(ii) If Nmb1e(¢), than

( )ml� m = <{n}��)���

PROOF. [a] Assume Nmble(¢). For each m and v we prove

<1) {n}<¢��",v> = {n}(4>,<m)*V),

4> ¢<��� 4>i.e., (ii). But then !!{n} implies that !!{n} and EE({n} ) implies
(m)

EE({n}¢ ), so Nmble(¢(m)) for every m.



<m>

<0>

The proof proceeds by induction on {£}(¢,(m)*v), i,e_, we prove by
induction V¢Vi P(¢,i), where

P(¢ai)15{£}(¢,(m)*V) = 1 ~> {n}(¢(m).V) -- {n}(¢,<m>*v)-

Since, by Nmb1e(¢), !{£}(¢,(m)*v), we get (1).

Basis. If {£}(¢,(m)*v) 2 0 then

(2) C1ear(¢,(m)*v),

and so trivially

(3) C1ear(¢(m),v).
Hence

{n}<¢��",v> :z ¢��"<v> by (3)

= ¢((m)*v)

=: {n}(¢,(m)*v) by (2).

55

Ind. Step. Let {K}(¢,(m>*v) > 3, ¢ H%_ ¢1 for some u, where Inf1(¢,u,w) for
some w s(m)*v.

C1ear(¢,()) (which we are assuming from the start) implies C1ear(¢l,())
by 3.4.7, and also u # (), which in turn implies that

¢�q> = ¢< q) for q # (u)0

((u)O) <(u)O)¢ l=,�, ¢,
(4)
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So ¢] satisfies the 1emma&#39;s conditions, while
{£}(4>1,(m)*v) = {£}(¢>,(m)*v) 4 1. Hence

{n}(¢(m),v) z {n}(¢l(m),v) by (4), in any case (cf. 3.4.4)

2 {n}(¢],(m)*v) by ind.hyp.

¢= {n}(¢.(m)*v) since by 3.4.4 {n}¢ = {II} 1

Eb] Assume Vm Nmb1e(¢<m)). First, C1ear(¢,()) implies {n}(¢,()) 2 ¢();
so to prove Nmb1e(¢) it suffices to prove

{n}<¢,<m>*v> = {n}<4>���,v>.

We cannot here use induction on {»@}(¢,<II1)*V), because 1{Z}(¢,(1T1>*V) is �PIE�
cisely what we have to prove. So fixing m and v, we proceed by induction on

((w)0)£p}<¢,m,v) :2 2 mm» ,tai1<w)>
ws (m)~xv

where tai1(w) := ((w)l,...,(w)l-t£(w)L1).
( (w) )

Basis. {P}(¢,m,v) z 0. Then for every w S (In) *V {J@}(¢ 0 ,tai1(W)) 5 0;
((w) 7

hence Clear(¢ 0 ,tai1(w)) and so C1ear(¢,w). So we have

{n}(¢,(m)*v) :2 ¢((m)*v)

= ¢(m)(v)

u: {n}<4>�"�,v>.

Ind. Step. Let {p}(¢,m,v) > 0. Then there is at least one w 5 <111>*v s.t.
< ) *5 .-1C1ear(¢ (W O ,ta11(w)) and so -vC1ear(d>,w). Hence, 4:  ct], where the reduc-

tion occurs at some node u which influences w, and

¢,��)=¢
((w) ) ((w) )

¢ 0  4:1 0 at tai1(u)

(9) forq # (u)0 = (w)0
(5)



tai1(w)

( (W) )
Since clearly {k}(¢ ,tai1(w)) 2 tai1(u) we have

( (w)O) ( (w)O)
{1} (¢] ,tai1(w)) 2: {(7.} (¢ ,tai1(w)) ; 1 and so

{P}(¢1amsV) < {P}(¢9msV)

while (as in [a]) we conclude by 3.4.7 from the assumed C1ear(¢,()) that

C1ear(¢ 1,()).
Hence

{n}(¢:<m)*V) &#39;��-&#39; {n}(¢1,<m)*V) since by 3.4.5 {n}¢ = {n}¢�

N {n}(¢](m),v) by ind.hyp.

Du {n}(¢(m),v) by (5) and 3.4.5.

3.6.3. LEMA (in V0). Let Der�(¢).

(1) If p��" is cm 
     
     (0)

¢

3,kA=> B
(b = 
     
     E: A + B

0)say, and ¢( is stable at kA then _S£(4>).
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(ii) If p¢� () is a non-critical inference other than [+1], and Vm _S£(¢<m))
then §_t_(¢).

PROOF. Let (15 �=n up; we have to show Nmb1e(1lJ).

Case [a]. n = 0, q, = 4:. In any case we assume here Vm _s_5(¢<m>) and so by
3.5.4 Vm Nmble(¢<m>). By 3.6.2 this implies Nmble(¢).

Case [b]. n = m+1, qb [=1 (1)! H=m 11;. Here p¢�<> is not critical, so C1ear(¢,<>)
. 1 . .and hence {k}(¢a<>) 2 0; thus necessarily ¢ H= ¢>1 by an improper reduction.

When p¢�<> is [R] such a reduction is impossible. We are then left with the
following cases.

( . . .If p¢� ) 15 [+1] as 1n (1) above, then

IP

k¢  E A] = (bl ,for some stable 11),
(0)

43

so §_E(¢1) since dam) is stable at kA. Hence Nmble(Ip).
If� p¢�<) is [&I], [VI], [VI] or [L] the proof is similar. Cl

/* 3.7.1. <1: is stable at kA under 11� if whenever
3 =9 A v B

E

up It 2 => A

[VI] b =:» A v B

5

then [kA] is stable. (Asymmetric definition for 11: = B �U; A-)
�b

:1: is stable at kA(�) under 3: axA(x) if whenever

E

w ll= 2 = A0» _
, t = n

[31] g => 3xA(x)

and
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E

6 := b_=A(t)

[R] 3 =» A0?)

e

*/ then [kA(h)] is stable.
¢

3.7.2. MAIN LEMMA. Let ¢ be a derivation of Am which satisfies one of
(i)-(iii) below; then §£(¢).

(i) p¢�<) is a critical inference rule other than [vE] and [HE] (i.e. -
[&E], [+E], EVE], [31] or [FE]) and /X\ §g(¢(i)).

i=O,1

¢,() ¢,(0) _/* (ii) p is [wk], F =: A1 v A /A Nmble(¢<i)), and W� is3
2 i=0,1,2

stable at kAj under ¢<0) (j=1,2).
E: 3xA(x), and fbr each m�<m Nmble(¢(m))

*/ and ¢ is stable at kA(m) under ¢(0).
(iii) 94�� is [am 1,

(0)
PROOF. (I) Method: the proof proceeds by a primary BI on the tree {n}¢
I.e., formally speaking we prove

(I) Vm Q(¢,u*(m)) -+ Q(¢,u)

where

Q<4>,u> =2 VwEDir°°(¢) & Nmb1e<w�°�) &

w(O) (0)"{n} is a subtree of ({n}¢ )u "

-+ "the lemma holds for w� ].
(0)

Assuming E§({n}¢ ), as we do by the 1emma&#39;s assumptions, we get from (1)
by BI Q(¢,()), which trivially implies that the lema holds for ¢.

Further, we shall use a secondary (ordinary) induction on {£}(¢<0),()),
i.e., we prove Vm R(¢,m) where

W w(O) ¢(o)R(¢am) 55 VW E 235 (w) & "{n} is a subtree of {n} � &

 II II{£}(w ,()) ezm �+ the lema holds for w J.

NOW assuming !{£}(¢(O),()) as we do by the 1emma&#39;s assumptions, we get
. . (O)

trivially from R(¢,{£}(¢ ,(>)) that the lemma holds for ¢.
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(II) A preliminary observation: If 4) satisfies one of (i)-(iii), and

4:  4:1 by a reduction at some (0)*u u {k}(¢,()), then 4:1 satisfies the
same condition as 4: does. The proof is immediate from the definitions.

(111) Let ¢ satisfy one of (i)�(iii), ¢ |ki ¢1 H=; ¢2 ... |k; ¢n .
2 nWe have to prove Nmble(¢n). I

If n = O and §l_ca1;(q>,()), then _I:I_1££e_(¢) by 3.6.2(i). If -u_(3le_a_r_(¢,() ),
{k}(¢,()) &#39;3&#39; () , then <1) I71) 11.! for some 1]), and we shall see in (IV) below that
then St(1p); hence by 3.4.4/5 �1<a(¢). Finally, if {k}(¢,()) &#39;-�-� (O)*u then

<1) I=l I]; with 11; satisfying the lemma&#39;s conditions by (II) above, and
¢<0) #111 111(0) where u 3 {k}(¢<O) ,0 ). So {n}¢<0> }�4�<0)
UC}(¢<0) ,0) 5 {£}(tp(0) ,<)) + 1. Hence by the secondary ind.hyp. applied to
1p, St(1p) and so (3.4.4/5)  (¢{).

= {n while

Next, if n > 0, it obviously suffices to prove §_t_(¢l). If <1: F: (pl we
have _S_t(¢1) as above.

¢,<)If ¢ ]I=l (111 by an improper reduction then p must be one of [SI],
. (EVE], [HE]. For the first one, (151 = :1) 0) which is assumed stable (case (i) of

the lemma); for the last two, ¢1 = ¢<m-H) for some m < 0.), which is assumed
stable (cases (ii), (iii)). So _%(¢1) in any case.

(IV) It remains to prove that whenever <15 [=10 1p and <) 2 {k}(¢,()) then
_S_t_(1];). We inspect cases for the type of reduction, i.e. - for p¢�() and

¢,(0)

9 
     
     case (a). p¢�() is [~>E],
subc�se (aot). p¢�<o) is [+1],

¢(0,0)

E�kA=>B ¢(l)

a =9 B --

¢(1)

I [kA]f<> (0,0) � ¢
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Then, since §£(¢<l)), 
     
     (0) 1
¢ |l=(, 1:»

by an improper reduction; and as §t�¢<0)) by assumption, §£(¢).
/* subcase (a8). p¢�(0) is EVE];

¢(0,0) ¢(0,j)
k

5�A1"A2 3�Aj=°B+C j=1,2 ¢<1>
¢ = 
     
     [vE] 3:3-> C 3=>B

I:->E] §=>C

4) <0,j) ¢(1)[kAj]
<0 0) 3�kAj =5 B + C 3�kAj =� B

4) S 
     
     k

#1 _al=>A] v A2 IE->E] _a_, Aj => C j=1,2
______________________._____________.____.______________.

<) EVE] §_= C

=0 11)

We assume {k}(¢,()) u (), and so glg§;(¢(0),<)). Hence, by 3.6.2, §£(¢(0))
<0 0) ¢(0) ¢(0,0)implies Nmb1e(¢ � ), and {n} = {n} is a proper subtree of

(O)
{n}¢ . So w has a "lower" BI measure than ¢, and to conclude that §£(w)
it remains to check that ¢ satisfies case (ii) of the lema.

We have found that Nmb1e(¢(0)). We check next that Nmble(¢<j)) (j=1,2),

¢(j�1)== ¢<])[kAj] is stable by assumption, since ¢(l)[kAj]also by BI.
( . - . . .and ¢ 1) behave 1n the same way for all properties concerning reductions.

Finally, 
     
     (0) (0,&#39;) (&#39; 0)¢ IF ¢ J = W J:
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O) . .
( ) < ), we get by BI hyp. §£(w J ) and so Nmble(w J

It remains to verify that w(J) is stable at kAj under w(0). So assume
(

subtree of {n}¢

(1)  =  �:11 a =>A

3 = A] v A2

)If n = 0, then §u£(¢(O ,()), so {k}(¢,()) $ (), contradicting the as-
sumption of (IV). Else, and

(0,0) 1 (0,0)}=u e , ,<¢ u 2 {k}(¢ D

then

{k}(¢,<>) 2 (0,0)*u 4: 0,

again a contradiction.

Finally, if ¢(0�0) [H 9 by an improper reduction, then this must be a
simplification, because reduction (1) preserves the derived formula.
so p¢,(0,0) . ¢,(0)1S EVE] or [SE], and as p here is [vE], we thus have

Cut(¢,(0)), contradiction {k}(¢,()) z () once again. Hence (1) is simply
impossible under the inspected conditions.

*/ subcase (ay) p¢�(0) is [SE]. Similar to (a8).
subcase (a5) p¢�(0) is [L].

¢<o,o>

2.� L ¢(1)
El] §_= A + B §_= A

¢ = ________________ 
     
     [+E] a = B

¢(0,0)

I 3�°iF?) = ¢

) (j=1,2)-
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(0) IF ¢(0,0)Here S_t_(¢ (0)) is assumed, while Cb by an improper reduction,
so §£(¢ <o�0)) outright from the definition of stability.

p¢�<) is [&E] - similar to case (a) .case (b).

case (c). o¢�<) is EVE].
¢,(O)subcase (COL). p is [VI]. 

     
     (O,m )

¢(0,m> ¢ 0

£:ME mm 1 3=M%)
¢ = F =: w

[VI] 1 = VxA(x) [R] _a_ 9 A(t)

EVE] 3 a A(t)

0where m is the value of t. Here �(¢< )) by assumption, and
0 (0 m)

¢(°) ||= ¢ 0 = M0). So §£(¢(°)) and by 3.6.3(ii) gap).
Other subcases of (c) are treated like the analogous subcases of (a).

¢,() . .case (d). p 15 [FE] or [HI]; the proof 1S as for (a8) - (a6).

/* case (e). p¢�() is [vE].
subcase (ea). p¢�<) is [VI].

¢(0,0)

23% ¢<j)
k[VI] _a_=>A1 V A2 {a, Aj =6 B}j=],2

4, = 
     
     [vEk] i=9 B

¢<o,o>

I [kAi]H) ¢(i) =� "� (1��2)&#39;
a=>B

Then _S_t(xp) outright from the statement of condition (ii).
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subcase (eB). p¢�(0) is EVE].

¢(0,0) ¢(0,i)
K .9-�B1"B2 {3�Bi:A1vA2}i=1,2 453)

¢ = [vE£] a_=-Al V A2 §,kAj = C j=l,2
CvEk] 3=> C

¢(0,i) ¢(j)[ Bi]
¢(0,0) 3,£Bi = A] v A2 �[3,�eB1,kAJ. => C}J=1�2

1 3 =:~ B] V B2 [vEk] _a_,£Bi => C i=],2
%<) [VEZJ §_= C
=; .1,

and recall that we assume {k}(¢,()) 2 (). We find that the BI measure

of w is lower than that of ¢ as in (as), and that Nmble(w(O)),
§Eble(w(i�j)) (i=l,2; j=0,1,2) and that the induction measure of w is
lower than that of ¢ (i=1,2). To conclude §£(w<i)) and so §Ebl§(w<i)) (i=l,2)
as in (as) we have to check here that ¢(i) satisfies case (ii) of the lemma,

i�j)is stable at kAj under w(i�0>

(i)

i.e., that in addition to the above w(
(i=1,2; j=1,2). I.e., we have to verify that when

5

2,13, =>AJ.
(1) w(l,0) ___ ¢(0,l)  =: 6

g,£Bi = A] v A2
then 
     
     E

[km 
     
     J 
     
     (j) 1

¢ [ Bi]

(0) lk ¢(0,i)is stable (i,j=l,2). But ¢ by a simplification, so with (1)
we have ¢(0) IF 6, and so, since ¢ satisfies case (ii) of the lemma,
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. (i) .
find that §£(¢ ) (1=1,2).

We conclude from this §£(¢) as in (aB) (i.e., as in (as) the stability

of ¢(i) at £Bi under ¢<0) is satisfied vacuously because {k}(¢,()) = <)).
¢,(0)subcases (eY),(e6). p is [SE] or [L]. Analogous to (es) (compare (a6)).

case (f). p¢�<) is [BE] - like case (e), mutatis mutandis (compare also
*/ case (c) for the use of [R]). D

3.7.3. LEMMA (in V0-+BI). Let Qg£f(¢); if Vm §§£(¢(m)) then §§£(¢).
PROOF. [a] If ¢ is a singleton derivation (i.e., p¢�() is [T] or [TE])
then SSt(¢) outright from the definition.

[b] If p¢�() is [+1],

(0)

k¢ wi��i
£,B=>C ni

¢= ���-���� -�>¢ = [M �i3:3->c 1 ¢1 A155�-

then by our convention on indexing kB é a, so ¢�0) is stable at RB, and
by 3.6.3(i) ¢1 is stable.

¢�() is a non-critical inference other than [+I], then ¢ v+ ¢1[c] If p

implies outright ¢<m) *+ ¢:m), so Vm SSt(¢<m)) implies Vm §£(¢:m)) and by
3.6.3(ii) §t�¢1).
[d] If p¢�() is a critical inference other than [vE], [HE] we obtain that
SSt(¢) as in [c], using 3.7.2(i) in place of 3.6.3(ii).

. . . ) ( ) . (0)[e] p¢�() 1s [VE] or [SE]; ¢ ** ¢] implies ¢(0 P+ ¢l0 ,so lf ¢1 IF w
then we get from SSt(¢<0)) that §£(¢). Consequently, we find as in [b]
above that ¢1 satisfies the conditions of 3.7.2(ii) (respectively,
3.7.2(iii)), and so §£(¢]). D

This concludes the proof of theorem 3.6.1.

3.8. THE SUBFORMULA PROPERTY

&#39; &#39; &#39; x &#39; &#39; o n n &#39; n
For s1mpl1c1ty, we refer to A as given in 1.1, 1_e,, wlthout lndexlng

and without the replacement rule [R].
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Ad hoc definitions:

F sub of G E F is a subformula of G or F E L.

F sub of 3 E F sub of some G e 3.

3 sub of b_ 5 every F e 3 is sub of E.

s] = 36F sub of s = bG :5 §_U {F} sub of bhu {G}.

THEOREM (subformula property). Let NDerm(¢), then fbr every u s¢�u sub of
¢,()s .

(Note that the theorem refers also to equations!)

PROOF (in V0; BI is not used). The theorem is an imediate consequence
(by ordinary induction on the codes of nodes) of

(i) if u = v*hn) is a major premiss of an elimination rule, then

F¢�u sub of §¢�u.
(ii) Otherwise, then S¢�u sub S¢�V.

(ii) is clear by inspection of cases. If p¢�u is [FE],

<:>_, 3.: E

@�> [FE] §_=>J.
4):�-1say, then p cannot be an introduction, since E is an equation, and can-

not be [L] or an elimination - by our definition of normality. So necessar-
¢,u*(O)ily p is [T], and so E sub a and (ii) is satisfied.

(i) is proved by induction on the length of the branch u,u*(O),u*(0,0),...

in ¢, which by EE(¢) must be finite. Since ¢ is normal, if p¢�u is an elimi-
¢,u*(0)nation, then p is either an elimination or [T], so by ind.hyp. (i)

holds for u*(0), i.e.,

F¢,u*(0) f §o,u*(0) ¢,u(1) = 3 .sub 0

(a) If D¢�u is [&E] or [VE] then a¢�u = §§�u*(0) and F¢�u sub of F¢�u*(O)
so by (I) we have (i) for u.

(b) If p¢�u is [+E], then §?�u = E_ = E_ while F¢�u and F
F¢,u*(0)sub of , so by (1) we are done.
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¢,u*(m+1) ¢,u*(0)(c) If p¢�u is EVE] or [BE], then s sub of s , and s¢�u sub
of s¢�u*(l); so by (1) u satisfies (i). U

3.9. TH DISJUNCTION INSTANTIATION PROPERTY

PROPOSITION. If I-A* A] v A2 (where A* is A°°, A°°[T] or A:ec[T] for any T 3 A)
then either I�A* A] or I-A,� A2.

PROOF. By the normalization theorem (3.4.8, 3.6.1) if"££f(rA VAZ") then
for some ¢ NPrf@(¢,n#A1vAé1). Inspection on the cases for p x) . shows
that the only possible case for this inference is [VI]. So

w<o>r W .
35: (¢ , =Ai ) for i=1 or 2. D
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A.4. NORMALIZATION IN L2; Lw IS REGULAR

4.0. As explained in Int. 6, the chief raison d&#39;6tre of the departure

of the normalization proof in A.3 from the traditional method of ordinal

assignments is our wish to smoothly extend the proof to higher order systems:

the "abstract" argument used in the proof may be adapted to the infinitary

system L: which combines A� with the language and the inference rules of
simple type theory Lw. For the reader familiar with GIRARD [7l],[72] it is
probably clear by now how to combine Girard&#39;s proof of normalization of Lw
with the argument of A.3 so as to get a normalization proof for L:. The more
sceptic reader might like some details, and as a compromise we give below

a somewhat detailed indication of the proof for the system L:, which com-
bines Am with the language and rules of the theory of species L2. This
should make it clear that the notions of A.3, though applying to infinitary

proof figures, may be combined without further ado with Girard&#39;s proof for

the corresponding finitary systems. A detailed normalization proof for L: may
then be easily supplied by the patient reader.

The main consequence of the proof is that type theory Lu (and ipso facto
also the theory of species L2) are regular theories, namely

AELJ g A°° [L +313w rec w

(for refinements cf. LEIVANT [A]). Assuming that Lw + 31 + AC6O is consistent
(cf. A.1) we have that Lw is also strongly regular. This last assumption is
an immediate consequence of the consistency of Li + ACOO.

As indicated in TN4, another corollary of the normalization of L: is
that Lw is conservative over A extended with the schema of transfinite in-
duction over each well-founded p.r. ordering.
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4.1. DESCRIPTION 01-� L:

The language of L: is the language of A extended with variables and
n 
     
     }. n .

parameters for species of n-tuples, {Xi}i<m, {Pi i<w, n<w, and corresponding
universal quantification VXE.

When Vn is a variable or a parameter, F is a formula, G is a pseudo-
formula (i.e. - some first order variables possibly occur unbounded in G)

and ; is an n-tuple of first-order variables, we write F[G[;]/V] for the
(pseudo-) formula which comes from F by substituting (simultaneously)

Gft/:3 for every occurrence P(t) in F. Usually no confusion occurs if we
skip ;, and so we shall do below. i

The inference rules of L2 are those of Aw, with the addition of the
�second order quantification rules:

2 _a;=>A[V I] -������������� 
     
     3=¢VX A[X/P]

where P does not occur in a_(and X,P are of the same type).

2 a_= VX A
[V E] -----� 

     
     3 =9 AEG/X]

Derivations and recursive derivations are defined now as for Aw. We

shall use the notations 253%, 2§r:ec etc. in this chapter for derivations
w

of L2.
Without loss of generality we assume that each derivation satisfies

the convention on parameters of PRAWITZ [71] 1.2.4, i.e. - that no parameter

which occurs in the derived sequent of a derivation ¢ is the proper para-

meter of any [V21]-inference, and that the same parameter is not the proper
parameter of two distinct [V2I]-inferences. Note that any given derivation
¢ may be made to conform to this convention by replacing any occurrence of

a parameter p by pj+ where u is the code of the node for which that occur-[I
rence acts as the proper parameter when there is such a node (else u := O),

and where j is the largest index of the parameters which occur in the de-

rived sequent of ¢.
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4.2. PROPER REDUCTIONS; NORMALIZATION

. . . w W 2The crctzcal inference rules of L2 are those of A plus [V E]. Cuts
are defined accordingly as in 3.3.].

Reductions H, #2 F etc. on derivations are defined as in 3.3,
with the addition of permutative� and absurdity-reductions with [V2E]
as the lower (critical) inference rule, and of

(O )<1» �°

2 3 = FEP/X] I <b(0�o)[G/P]
V -reductions: 
     
     [V21] a => vx F 3 =� FEG/X]

[V2E] §_= FEG/X]

Other functions and predicates defined in 3.3 are now adapted to L: by
taking into account the above modifications.

4.3. BASES, BASING FUNCTIONS

A basis is a set E of derivations (of L?) which satisfies:

1¢ 6 B and ¢ F; ¢l =- ol 5 B.

A basing function is a finite function 8 from the second order parameters

of the language to bases. We write 8 = {(Pi,Bi)}i= also as
l,...,k

[B�] [B��]P] Pk

This notation makes it easy to denote an extension of a given basing func-

tion. (A basing function does not range over occurrences of parameters:
our convention on parameters makes this unnecessary.)

Given a formula F and a basing function 8, the basing function (BrF)
is defined to be the restriction of B to parameters occurring in F.



71

4.4. GENERALIZED REDUCTIONS; STABILITY

The measure u on formulae of L: is defined as in 3.5.1, with the ad-

ditional clause: 
     
     u(VXA) == u(A)-

We refer to triplets (¢,B,F), where ¢ is a derivation, B a basing
() . . . .E F¢� is a substitution instance F*function and F a formula, s.t. |¢I :

of F, and where B = (BrF) (F may be thought of as the "skeleton" of ¢).

We define by metamathematical recursion the predicates �= and gtn over
the triplets satisfying u(F) S n (n20). The nature of this recursion is the
same as in 3.5.2, and we shall omit the index n

(1) If ¢ |=�u¢1 Where u :={k}(¢,<>) #0 then

<¢.s.F> IF� <¢,,s,F>.

(ii) If g(w,s,F), |1M=F* then

< )¢ 0
(���-���� 3 F �->(;) £=�F&#39;k _)�G* 3 2

1:»

;|=� <[��1v*] ,3,c).

¢<o>

¢<o>[P]
(iii) <�����:*� ,5, vx F)

[V21] 3: vx F

||=� <¢�°�[c/pJ,s[§J,F[p/xJ>>

where G is any formula, P is the proper parameter of the main inference

of ¢ and B is any basis.
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(iv) <��-������ ,8, F
[&I] a=> & F�;

|}=� (¢(i),B,F�£) (i=0,1).

Other improper reductions are adapted from the corresponding reductions in

3.5.3 in the same manner.

|F is the transitive closure of IF].

s_t(¢,6,F) :2 v¢1,e1,F1 { <¢,s,F> H= <4>,,s,,F,> �> M(¢,,s],F1) 1

where M(¢1,B1,F1) is the formal predicate expressing

Nmble(¢1) & E F] PG) » ¢1e 61(9) J.

Here, if P é Domain(B) we let ¢l e B1(P) be definitionally true.

¢ is strongly stable (notation: SSt(¢)) if for every derivation ¢*
which comes from ¢ by substituting (pseudo-) formulae for parameters, and

for every basis function 8, if

"�i
*+ ni . .¢ = { E Ai] liel (like in 3.5.5)

*

¢ 
     
     "1 ¢ 0 . *+

where §t_(u:i,(e+Ai),Ai), Ai e 3 � (151) then §5(¢ ,(er|¢]),[¢|).

4.5. LEMMA. Let 1_)g°°(¢).

(i) If §_S£(¢) then §£(¢,(gr|¢[),]¢]) for any basing function 8.

(ii) If §t(¢,B,F) for some 8,F, then Nmble(¢).

*PROOF. (i) Let, in the definition of SSt(¢) above, ¢* := ¢ and ¢*+ := ¢
by taking

(singleton derivations).

(ii) Take IF of length 0 in the definition of §£(¢,B,F).
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4.6.1. LEMA. Given a basing function 8 and a fbrmula F, let

�B,FB := { ¢ I "I¢[ is a substitution instance of F"

& _S£(¢,(BrF),F) }.

Then �8,F] is a basis.

PROOF. Immediate from the definitions. U

4.6.2. SUBSTITUTION LEMMA. Let P not occur in G.

§g(¢.B,F[G/P1) +�+ §g<¢,sL�3;G�J,F>

(or, put differently,

�B,FEG/P3] = �8[[8§F�],F� 2.

PROOF. By induction on u(F).

I. Assume

(1) §s1¢,s*,F) where 8* == st�B§G"J.
If F E P, FEG/P] E G, then (1) implies ¢ 5 B*(P) = [B,G], and so
§£(¢,B,F[G/PJ) outright.

If F $ P, let 
     
     k

<¢,s,F[G/P1) ||= (1b,y,H).

We prove by (a second) induction on k that

Nmb1e(w) & E H 2 Q<?> �+ w e Y(Q) 1.IIIM(w,Y,H) :

Basis. k = 0, w = ¢, and so Nmb1e(w) by (I) and 4.5. Further, if

H E FEG/P] E Q(t) then F i P implies F 5 Q(t) , and so

w = ¢ e e*<Q> by (I)
=: BCQ) = Y(Q) since Q i P
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     Ind. step. Let 

     
     <¢,B,F[G/P]) |k� (¢I,s1,F][G/P])

lhk <w,v,H>

and inspect cases for the first reduction. The only non-trivial cases are
the following

[a] [+I]-reduction; F E A �+ B,

X

k _¢] = E AEG/P1], S1 = 8, F] = B
)¢<0

where §£(X,B,A[G/P]). But u(A) < u(F), and so by the first ind.hyp.
§£(X,B*,A). Hence

<¢,s*,F> IF� <¢,,e*,F,>,

and so by (1) §£(¢1,B*,F1). We may therefore apply the second ind.hyp.
to (¢l,B1,FI[G/P]) and conclude M(w,y,H).

Eb] EVZIJ-reduction; F E VX A

¢ = ¢(O)[D/Q], s = BEE], F 2 AEQ/X].1 1 Q 1

So 
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But (BIFG) = (BFG) because P does not occur in G, and so

H3196]! =  3

hence (2) implies (3), as required.

II. Assume

(4) _§§(¢,B,F[G/P1)

and let

<¢,s*,F> ll=k <w,v,H>.

As in I above we prove that M(w,y,H) by induction on k. The induction step

is symmetric to that in I, while for the induction basis we note that when

F E P, F[G/P] E G, then

¢ 5 e*(1=) := [[3,9]]

by (4). U

The reader might note, in connection to the proof above, that

GIRARD&#39;s [72] proof of the substitution lema is not quite accurate: the

application of the ind.hyp. given at bottom p.II.1.6 should yield [g,Y/§,G]g
within the l.h.s., in place of [a,A]o.

4.7. LEMA. Let <¢,B,F) be a triplet as above, and p¢�() be a non-critical
inference. If Vm §§£�¢(m)) then §§£(¢).

PROOF. The proof is totally analogous to that of 3.6.3. To take as an

example the only essentially new case, let p¢�(> be [V21],

¢(0)[P]

g=> FEP/X] n.
¢= """���*� ,a={1A.}.

a = VX F � 1 1
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and let ¢*+ come from ¢ as in 4.4, i.e
¢.n. 1

*+_ 1¢ - {[ Ai]}i. 
     
     ¢*

In analogy to the proof of 3.6.3, we have to show that §t(E,8,F[P/X]) for
any basing function 8, and where

(¢*+)(0)[G]
3 => FEG/X]

for some formula G. P cannot occur in�a and therefore, it does not occur in
. . (0)any wi (by the convention on parameters). Hence E may be obtained from ¢ *

by first substituting G for P and then substituting the derivations w
< . . 3&#39;�§§£(¢ 0)) is assumed we thus get §£(¬,B,F[P/X]) as required. U

. Since

4.8. LEMMA. Let (¢,B,F) be a triplet as above, p¢�() be a critical node. If
VmS_Sg(¢(m)) then �op).

PROOF. Here again the proof is analogous to the proof in 3.7.2-3 for the
first order case. Since p¢�() is not [V21],

<4>,s,F> H=&#39; <¢,,e,,F,>

must imply that B] = B, F] F; hence the proof in 3.7.2 for derivations is
. . . () 2trivially adapted to triplets. The only exception 15 the case p¢� = [V E],

where we have to show (in step (IV)) that if

u<¢,B,F[c/xJ> H=&#39;() (¢1,,B,F[G/X])
where

EEPJ

3 => F*EP/X] 5
¢ = N 3 ¢ =

3 =9 vx 17* 1 3 =:. F*[c*/x]
3 => F*[G*/X]
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then §t�¢1,B,F[G/X]). We have, by an improper reduction,

1 B
<n,B,VXF) [E (¢�,B[P],F[P/X1)

for any basis 3. Since §£(n,B,VXF) is assumed here, we thus get

B
(1) §5�¢,.B[P],F[P/X1).

But picking up in particular 3 := �B,G] we get from (1) by the substitution

lemma

§5(¢l,B,F[G/X3)

as required. U

4.9. THEOREM. Every derivation of L: is normalizable.

PROOF. Assume Derm(¢). As in 3.6.1, we get from 4.7, 4.8 by BI SSt(¢) and
so by 4.5 Nmb1e(¢). U ~

4.10. THE REGULARITY oF&#39;L2, Lw

Since there is a truth definition for L2 in L3 (by Tarski&#39;s method,
compare e.g. TARSKI [36]), the proof of normalization of L2 above is easily
seen to be formalizable in L3 + BI, and so

1 s A:eC[L3 + BI]ec<1) A[L2] 5 AEL: I

where L: tee is the system of recursive derivations of L3. The first inclu-
5

sion is an immediate corollary of the obvious embedding of L2 in L: rec.I
When a derivation {d} of L� proves an arithmetical sentence, then the

{a} ?"e° . . . m . . .} of {d} is a derivation in L2 rec which satisfies the
,

subformula property, and therefore must actually be a derivation of Am
{d} . rec

are proved in the theory

normal form {n

The local correctness and wellfoundedness of {n}

in which the normalization of {d} is proved, hence the second inclusion in

(1). 
     
     Actually the embedding of L2 in Lon

mentioned above assigns to each
2,rec

particular (finitary) proof w of L2 a proof ¢ of L: where there is a bound n
on complexity of formulae. Thus for ¢ the normalization proof uses the
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predicates Ikm, St only for m S n, and using a truth definition in H;-
analysis for a suitably large k = k(n) this proof is formalizable in

L: + BI. Hence (1) is refined to

A[L2] s Ajec [L2 + BI].

Analogously we have

AEL J g A�Lu Y.�
[L + BI].

ec m
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PART B. Absoluteness theorems.

B.O. STATEMENT OF THE RESULTS

When F[p1,...,pk] is a scheme of L0 with (at most) the k propositional
letters shown, and when A],...,Ak are arithmetical sentences, write
F[Al,...,Ak] for the sentence which comes from F[pl,..

1n
Ai for every occurrence of pi (i=1,...,k). When FEPI ,...,P ] is a scheme
of L] with (at most) the k predicate letters shown, where Pgi is

n.
ni�place, and Ail is an arithmetical formula with ni free variables
(i=1,...,k), write F[A1,...,Ak] for the formula which comes from

F[Pl,..
A.(x ,...,x .).1 1 D1

Regular and strongly regular number theories are defined in A.1 above.

.,p J by substituting
k n

.,Pk] by replacing every atomic subformula Pi(Xl,...,xni) by

THEOREM I (Locally uniform 2?
Let A* be a regular number theory. For every k < w there are 2? sentences
A1,...,Ak s.t.

L0 I+ Frp,,...,pk1 = A* |+ F[A1,...,Ak].

absoluteness of L0).

Or more precisely: there is a quantifier-free (q.f.) formula EO(x) s.t.

���o < ,"E �)1
o >:lX°JVkVxL _Fm1(x)[1§£L (x) & v(x)Sk + 1§§A*(subk

_o___

is provable in A + �%* is regular", where

LC-Fm1(x) :5 "x is the g.n. of a schema in the language of L ";

V(rFw) == "the number 0f�propositi0nal letters occurring in F�,
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and subko is a prim. rec. function which satisfies
:1

subkO(&#39;_F[pl , . . . ,pk]�&#39;, VEO-1) = r-F[ElxE0( k,x), . . . ,3xE0( k,x)]~&#39;.
Z

THEOREM II (Globally uniform �g absoluteness for L1).
Let A* be a strongly regular number theary. There are 112 predicates

J{Ai}i,j<w s.t. 
     
     �H. [&#39;1
L V HP}}�.��� » A*V MAW,.�;iL
1 11 1k 11 1k

Or more precisely: there is a q.f�. formula E1(x) s.t.

F � r 11§gil(x) + 1§5A*(sub o(x. E, ))jV 
     
     x_L_]-Fm1(x)[_ 
     
     2

where sub 0 is a prim. rec. function which satisfies

IT 
     
     2 
     
     I1 I).

1 �k 1 �ksub 0(&#39;F[Pl ,...,Pk 1", "E1�) = "FEQI ,...,Qk J�.
2

where

n� A _»
Qil(z) :�:� VxEJy El( x,y,i,ni,(z)).
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B.l. RECURSION-THEORETIC SOLUTION OF A REDUCED FORM OF THOEREM I

1.0. We wish to find 201 sentences A1,...,Ak s.t.

(-k) |fLO F[pl,...,pk] => 172* F[A],...,A.k].
If the theories L0 and A* are replaced by their classical completions then
A1,...,Ak may be defined by truth-tables arguments using recursion-theoretic
methods only, as in KRIPKE [63] and in MYHILL [72]. The complications for

the intuitionistic case are the result of the presence of implications in

the schema F, or more precisely - of negative nestings of implications. It

is in such cases that the intuitionistic interpretation of the logical con-

stants is expressed in an impredicative manner ("for every construction...

there exists a construction...").

As in A.3., let us count the negative nestings of implications by a

measure u, i.e., 
     
     urF7 := O for atomic F,
urF&G1 := urFvG1 := max[urF1,urG1],
urF+G1 := max£urF1+1,urG1]; and for the full language of L1,
u�vxF� := praxr� := u"F�

We shall see that for schemata F s.t. urF1 S 1 the classical recursion-

theoretic methods work. The complexity involved in the growth of the

u-measure is further illustrated by the fact (cf. LEIVANT E743) that the

consistency of Ak is provable in Ak+1 for every k, where

AR :2 A restricted to formulae F s.t. urF7 S k.
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1.1. STATEMENT OF THE REDUCED SOLUTION

We define a sequence U of propositional schemata, wherek
__ V� �IUk : Uk[p1,...,pk] and u Uk S 1 as follows.

U0 3 i
Ul[p] :5 pv1p-

Assuming Uk to be defined, let

C: 
     
     W W 
     
     P"! 
     
     �U 
     
     . 

     
     |_| 

     
     mUktpl 9° - - �pi;l,pi+l,&#39;..,Pk+]]

W [pi -> U115].
i=l,...,k+1

\_1 
     
     .. 

     
     II

We shall solve in this section (*) for the schemata Uk, i-6-9

PROPOSITION. We can uniformly construct 20 sentences A$,...,A: s.t.1

k k
Ii,� Uk[A1,...,Ak] (k<w).

Here A* may be taken to be any consistent r.e. extension of A which satis-
fies disjunction instantiation (the so-called �%%sjucntion property�U, i-9-3

]�A* A v B => [I-A*A or }-A*B].

1.2. Actually proposition 1.1 gives a solution of (*) for all schemata F

s.t. urF1 S 1, on account of the following

PROPOSITION. For any schema F of L0 s.t. urF1 5 1,

lie F[p1,...,pk] = flo F 9-Uk,
SKETCH OF PROOF. Use a primary induction on k (= the number of proposition-
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El G->11 => Eh F+F[H/g]
LO 0

(where F[H(§] comes from F by replacing the occurrence Q by H).
[a2] If 9 is a negative occurrence in F, then

Eh G+H = Eh Hmg+F.
0 0

[b] Let Fq be the propositional schema which comes from F by replacing
(simultaneously) every occurrence of some (fixed) propositional letter

p in F by pvq, where q is a fixed propositional letter. Then

PROOF. Ea]: Straightforward by induction on the length of F (simultaneously

for [a1] and [aZ]).

[b]: Since q]~L pvq, we get by repeated application of [a2]
0

(*)|-L Fq_ +�F, where Fq- comes from F by replacing only negative occur-
0

rences p in F by pvq. But wql-L pvq + p, so we get by iterated application
_ 0

of [a1]: (M) �.q |-L Fq + Fq�. (»~) and (M) yield [b]. D
o

1.4. SIMPLIFIED DEFINITION OF EFFECTIVELY INSEPARABLE R.E. SETS

It is just to smoothen the exposition that we use the following

LEMMA. Two disjoint r.e. sets A,B are effectively inseparable iff there

is a (total) recursive function f s.t.

Wi n A = ¢
I = f(i,j) & Wi U MG

W. B = ¢J n

PROOF.

I. The "if" direction is trivial, since the function f satisfies more

than what is required from a function of effective inseparability (cf. e.g.

ROGERS [67] p.94).

II. Let, on the other hand f] be a (partial) recursive function for the
effective inseparability of A and B, and let i,j satisfy
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(I) A n Wi = ¢, B n W3 = ¢.

By the reduction principle (cf. ROGERS [67], p.72) there are functions

g,h s.t.

(2) �g<i> fvwi� �h<j> 5-"j�

(3) Wg(i) u Wh(j) = Wi u W3 and

(4) Wg(i) n Wh(j) = ¢.

Take now

�5" "g&#39;<i) � �g<i> � B� Wh&#39;(j) " �h<j> � A�

Then

(6) Awg&#39;(i) 3 3; wh&#39;(j) 3

while by (4), (2), (1) and the assumed A n B = ¢,

�7� "g&#39;<i> � �h&#39;<j> � Ewgci) � �h<j>3 � [�g<i> � A] �

U [Wh n B] U [A n B] = ¢.
(i)

For the f defined by

f(i,j) == fl(g&#39;(i),h&#39;(j))

we have now, by (6) (7) and the choice of f] that f(i,j) 4 Wi U W} as re-
quired.It is easily seen, in addition, that f may be extended to a total
function. U

1.5. DEFINITION OF THE DESIRED X? SENTENCES

The following construction generalizes the method of MYHILL [72]. Let

A,B be r.e. sets, effectively inseparable (in the sense of 1.4) through the

function f, and let A* be any consistent r.e. extension of A which satisfies
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the disjunction instantiation property. Following SHEPHERDSON [60] we may
define (explicitly) a Z? formula F(a) &#39; 3xF0(x,a) s.t.

(1) A = {ml |�A* 17(5)}; 3 = {ml |�A* wF<Ex>}

(To see that this holds also intuitionistically, either inspect Shepherdson&#39;s

proof, or observe that the equations above are formalizable as Hg statements
and recall that for such sentences derivability in classical arithmetic im�

plies derivability in intuitionistic arithmetic.)
. . . . kWe construct now, by recursion on k, an infinite sequence {Ai}i<w s.t.

k . . . .(2) [if Uk[Ai ,...,A§ ] for every distinct 1],.-.,1k.
1 k

Basis: By the assumed properties of A* there is a Z? Rosser sentence R for
A*; set A: :5 R for every i.
Recursion step: Assume Ag, i < w to be defined and to satisfy (2). We define
a sequence of 2? sentences {G§}j/w s.t. no finite boolean combination of
the G§&#39;s implies in A* UREAE ,...,A: J for some distinct i],...,ik. (By a

1boolean combination we mean here a set {Hj}j where Hj is either G? or wG§.)
Sub-basis: Let

. . . . . - k k(3). Wg(l�k) = {m I BE distmct 11,---,1k for which F(m) |�A* Uk[Ai1,...,Aik]}

. . . . . - k k(4) Wh(1,k) = {m I 3 distinct 1l,...,1k for which 1F(m) }k* Uk[Ai1,...,Aik]}

Now Wg(],k) n A = ¢ and Wh(]�k) n B = 0 by (1) and (2). Hence

f 1 k h 1 k W W .(g( , ), ( , )) é g(1,k) U h(1,k)

Define

k _

then

G1: k k(5) U .  &#39;l�* k[A1l1 ,Aik] as required.
&#39;lG1:
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Sub-recursion steg: Assume that G?,...,GE are defined, and satisfy

(6) G* If* Uk[A§ ,...,A: J for every boolean combination G* of
A 1 k Gk Gk and ever distinct i --- i .19"�: 1 y 1� 9 k

Define 
     
     wgml k) := {m I 3: distinct i1,...,ik s.t. F03), 0* |�A* Ukmli� ,...,A1i� J

� 1 k

for some boolean combination G* of Gk,...,Gk} 
     
     1 1

� * k kwh(1+1,k) .� {m | ... wF(m), G }A* Uk[Ai1,...,Aik] ...}.

As in the treatment of the sub-basis we have here

Wg(1+1,k> � A = �� "h(1+1,k) � B = �&#39;

So, defining

k _
G1+] := F(f(g(1+1,k),h(1+1,k))),

we have

* k k . . * k kG Ia� Uk[Ai1,...,Aik] for every boolean combination G of G1,...,G1+l.

Main recursion steg continued: Define now A§+l to be (the purely Z? equiva-
k klent of) Ai v Gi. To conclude the proof, assume

A%+],...,A%+1 ] for some distinct i ,-.E 1 1k+] 1 "lk+l&#39;l_A* Uk+] 1
By the disjunction instantiation property of A* we get, w.l.o.g.,

A§+] + uk[A§+&#39;,...,Af+� J.+R* 1 2 1k+l
But recalling the definition of AF+lJ , this implies
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G: L-* UREA: v G? ,...,A§ v G? J
1 A 2 2 k+1 k+1

which by 1.3 [b] implies

of ,wcf ,...,1cf |- U [A3 ,...,Af J ,1 1 1 * k 1 11 2 k+l A 2 k+1

contradicting the construction of the sequence Gg. Hence

Af+�,...,Ak+]E 1 i
1 k+1

J

as required. D

Note, finally, that the above construction can be rendered totally

uniform. That is, every A? can be presented as 3xB(f&#39;(i,k),x) for a suit-
able total recursive function f&#39;. This formula does not belong, strictly

speaking, to the formalism of A. But it is equivalent to the following for-

mula of prim. rec. arithmetic:

32 T(e,<i,k>,(z)O) & F0(U((z)0),(z)1),

where e is the g.n. of the function f&#39;, T and U are K1eene&#39;s computation-

predicate and result-extrating function respectively. We have thus proved

theorem I for schemata F s.t. urF� S 1.
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B.2. PROOF-THEORETIC REDUCTION OF THEOREM I

2,0, Here we prove, for a regular number theory A* E Aw[T],

PROPOSITION. If f/L F[p1,...,pk] and tr F[A1,...,Ak], then
0

|�A..,[T] Uk[A1, . . . ,Ak]

fbr any 2? sentences A1,...,Ak.
To simplify notations we shall actually prove the proposition for

*
A

above is obtained trivially mutatis mutandis. Combined with the solution

g A:ec[T] (in place of Am[T]). A proof of the general version stated

given in section 2 for the schemata Uk, this implies theorem I, since
®

A 
     
     r
property.

[T] as well as Am[T] are r.e. and satisf the dis&#39;unction instantiationec Y J

The proposition is proved as follows. In 2.1 - 2.7 below we prove

(for some prim.rec. f)

(1) }�V0+BI .,_p_rL0(r-F-v) 3. Nprf:ec(d§&#39;F[Al,...,Ak]\)
�+ NEr£°°eC(fd,"uk[Al,...,Ak3").

So, for a theory T 2 V0 + BI and a proof-predicate £3 for it which is
proved in A to be closed under Modus Ponens,

(2) FA PAT»-_&#39;:r_L0(rF~n)/1 & p\l_T/¢~IPrf:ec(d�"f[A1,..-sAkI]�I)-.
_+ ]?_r "NPr£:ec(fd,"uk[Al ,. . . ,Ak]"&#39;)".
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But EEL is a prim.rec. predicate, so (2) implies
0

(3) H§£L0( F ) & E£A*("f[Al,...,Ak]") ,+ Pr :eQ[T](VUk[A1,..,,Ak]�)w
00

for any A* g A [T].rec

oo(3) is proved in any extension of A where A* g Arec[T] is proved.

2.1. HEURISTICAL CONSIDERATION LEADING TO THE REDUCTION

2.1.]. Assume the premiss of 2.0(l). It means that a normal derivation d of

F in A:ec is given where some quantification or arithmetical rule must
occur, because 1E£L0rF1. We "climb up" in the proof-tree d in search for
such an occurrence, starting at the root ().

To allow a smoother semi-formal exposition, let us write -for a node u-

p �u for the inference rule encoded by ({d}u)0, and

d,u _ d,ugFd,uS :

Vfor the sequent coded by ({d}u)1.
At every stage of our search in d we arrive at some node u where the

d . 0 . .sentence F �u is a Z substitution of a schema of L0, and where
1 d,u d,uwPrL ( s � ), i.e. a = F__ O __ cannot be proven using the rules of L0

Sup ose now that a node u is "selected" at a iven sta e of the search.P E 8
d,uIf p is a propositional rule, then at least one of thepremissesu*(n),

r&#39; d,u*( n)-1 d -1s ), because 12; (rs �u )n S 2 of u in d must satisfy wPrLO( L�- 0
since u is "selected". We "climb up" to the leftmost of these premisses,

pd�u cannot be [VI] or EVE], by the subformula property of d, because
V does not occur in F[A],...,Ak].

d,u . I� d,u*(0)"1 . . . .If p 1S [BE], and 1££L0( s ) (i.e., the major premiss is
not provable using propositional rules only), then we climb up to u*(0).
Else, we proceed simultaneously to all minorpremissesu*(n+1), n S w.
The major premiss Fd�uK 0) E: 3zCz must be a Z? sentence, by the sub-
formula property. So for every n
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Sd,u*(n) _ d,u � d u: §_ ,Cn = F �

d,u� . . . 0 . . . .where Cu is an equation, and F 1S a Z] substitution of a propositional
schema. It is easy to see (2.3 below) that if E£L0(rE§�u,CE=aFd�u") for

dsome n, then Pr &#39;-_a_ �u=>Fd�u�(
__L0~

node u is selected. It follows that all nodes u*(n+1) corresponding to
), which contradicts our assumption that the

. . d . . .the minor premises of p �u satisfy our conditions on "selected" nodes.
Now since d is a well founded tree, any successive selection of nodes

as above must terminate. Such a "search" cannot terminate at a top-node of

the derivation d, because
d,u(i) if p = [TE] then Fa�u is an equation, and so u is not selected;

(11) if pd,� = [T] then g5L0("sd&#39;�")
Hence the search determined by any successive choice of minor (or major)

premisses of instances of [HE] must stop at some node u s.t. pd�u is either
[HI] or [FE].

2.1.2. Let us now consider how this information on the "search" described

above may be used to construct a proof in A:eC for Uk[A],...,Ak]. To start
with, take the simplest case, where k = 1, F E F[3xEx] , and let u be some

terminating node of the search.

Case 1. pd�u = [31] 
     
     pd,u*(0) E = Et

the node <:}-+ [31] E = 3xEx

d,u*(0)Obviously, the inference rule p

pd,u*(0)
cannot be an introduction rule. If

is [+E], then we have the configuration

§_= G + Et a a G

the node u*0 ifs Et

But no subformula of F[Al,...,Ak] has the form G+Et where Et is an equation.
d,u*(O>So p cannot be [+E], and the cases [&E] and [VE] are ruled out like-

. d,u*(O)wise. p cannot be one of [L], [vE], [SE], by our definition of nor-

mality. We are thus left with the case that u*(O) is a top node of d, and

pd�u*(O) is [TE] or [T]. In the first case we may construct



9]

[TE] =9 Et

[HI] = 3xEx

[v10] = 3xEx v w3xEx

So we have obtained a derivation for U][3xEx].
d,u*(0)On the other hand, the case p = [T] is ruled out as fo1lows.~

d,u*(0)Assume that o = [TT. Then Et 5 3, and since d derives a sequent =F
with an empty precedent, Et must be "discharged" in d somewhere below the
node u. Again by the subformula property of d, this discharge cannot be at
an instance of [+I] or of EVE], and so it must be at an instance of [HE],

and we should have the following configuration (where t = E).

a_= En

¬1)��> 3» 3xEx

g=> 3xEx 3,EE => B

@�> [HE] b=>B

Here the two indicated occurrences of Z? formulae must be identical for the
case considered. Since the node u is selected, so must be v, but not v*<O).

This means that wPrLO(i§=3xEx�), but 23 0(Fb§axEx�). From the configuration
just shown we must have, however, b g a, and this is a contradiction.

Case 2. pd�u = [FE], a =:» E say.

[FE] a = i

As in case 1, we find that u*(0) must be a top node of d, and since E here
d,u*(O)is a false equation, we are left with the case that p is [T]; so we

must find in d the following configuration:
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and we may assume w.l.g. (by the well-foundedness of d) that the configura-

tion of the type shown does not repeat itself within any of the subderi-

vations Em. Since u is selected, so must be v, and hence VK m+1) for every
m < m. Each search in a subderivation Em must come to an end at some node

d�u*(0) = [T]) shows thatum, and the argument of case I (about ruling out p
since v*(0) is not selected, p , is not [HI], and must therefore be [FE].
Hence we can extract from the configuration above the derivation:

[T] 3xEx,En : En

[T] ElxEx => E|xEx [FE] axEx,EE =» .L M�

[HE] 3xEx = 1

[+1] = w3xEx

[VII] = 3xEx v 13xEx

and again we find a derivation in A:eC for U][3xEx]. This concludes our
observation on the case that k = 1, F = F[3xEx].

2.1.3. Consider now the case k = 2, i.e., F E F[3xE0x,3xE1x]. Here the
following configuration may occur

where the node u is selected, and the search continues to the minor sub-

derivations Zn (i.e. - ££L0(Pa_= 3xE0xq)). But now, from our argument for
the case k = 1 it is clear that, for the node um at which the search in the
minor subderivation Em terminates Fum i 3xE0x (m<w). So we may apply the
argument for the case k = 1 to each of the minor subderivations separately,

and extract from each of these a derivation 2; for 3xE]x v 13xE1x. Since
the method of doing this is uniform, we can actually collect the derivations

2* to yield the following derivation of Am .m rec
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*
2 
     
     m

[T] 3xE0x = EXEOX 3xE0x % 3xE1x v w3xE1x m<m

[BE] SXEOX = 3xE1x v 13xE]x

[+I] => 3xEOx �> axE1x v -:EIxE1x

[vIO] a U2[3xE0x,3xElx]

Iterating this process with some technical symmetrization arguments, we

obtain 2.0(1).

2.2. NOTATIONS

Ill aw,n<v [ v=w*(O) & w*(n+1) {u & pd&#39;W = CHEJJ
"v is a major premiss node of an instance of [BE]

in d, and u is a node in one of the minor sub-

derivations of this instance".

Here 4 stands for the initial-segment relation (between sequent-numbers).

d,u (rSd,u1) &is not an equation" & jg£L 
     
     0

Vw<u l Subordinated(d,u,w*(0)) + PrL (rsd�W*<0)�) ].�_ 0

When NPrf:ec(d,rF[A1,...,Ak]�) (Al,...,Ak 2? sentences) write
dE �u := {Fd�v I Subordinated(d,u,v)}
da0�u := {E e aé�u I E an equation}

Ud�� 2 U EA. ... A ] where [A A } = {A } \ bd��m 1 , , i i ,..., i l,...,Ak _
I m 1 m

(set-theoretic difference)
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2J.mmAjwAP�U%be£swwmw,ktiwcmjmmdwww�m�w
of F[A1,...,Ak] only, where G is not an equation, and let E be an equation.
Then

Pr (&#39;-a,E-�*.>Gq) => Pr (r£=>G-i) .__¢0 _. __L

PROOF. Let H be a normal proof for a,E=G which uses propositional inference-
rules only, and let H* come from H be eliminating E from all precedents of
sequents in H. Check by inspection on cases for inference rules that H* is
a correct derivation. (Note that by normality no formula of the form E + H

may occur in H). U

2.4. LEMMA. (in A) Assume m>r£°°ec(d,"F[Al,...,AkJ");

pd,u d,(a) Se1ected(d,u) -+ [ = [31] v p u = [FE] v 3nS2 Se1ected(d,u*(n)) ]
(b) Selected(d,u) & pd�u=[3E] & _rgL0("sd��*(°)")

~+ Vn>0 Selected(d,u*(n)) .

d .PROOF. Assume D �u f [3I],[FE] and the premiss of (a), and consider cases
d u dfor D � . p �u cannot be [T] or [TE], because Se1ected(d,u). pd�u is not

d,u[VI] Or [VE] by the subformula property of d. If p is a propositional

inference-rule, the proof is immediate. We are left with the case that pd�u
d�u*<O)�) then we are done (for part (a)). Else, then

Selected(d,u*(n)) for every n > 0 by 2.3. D

is [SE]. If Pr ("LL 0 S

2.5. ASSIGNMENT OF DERIVATIONS TO THE SELECTED NODES.

Assume NPrf:;c(d,rF[A1,...,Akj5 as above. We define a function {a(d,u)}
recursive in {d} and u by the conditions given below (compare the definition

of {n} in A.3.4.3). By the s.m.n.-theorem a(d,u) is then a prim.rec. function.

{a(d.u)} is intended to be the formal description of a derivation of Am for

Eg,u U Ed,u=�Ud,u .
(i) If wSelected(d,u), then {a(d,u)} E 0.

d,u(ii) Else, and p = [SI], then {a(d,u)} describes the finite derivation
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[pd,u*(0)] ad,u[Jbd,u : Fd,u*(O)_Q _

d u d u d u[SI] a � Ub � = F �
.0 _

instances of [+I] &#39;

and of [VI] .

§g,ulJ£o,u 5 Ud,u

Note that, by the argument of 2.1.2, Fd�u ¢ b��u and that pd�u*<0) is
either [T] or [TE]. So the figure above is indeed a derivation.

d,u(iii) Else, and p = [FE]. Let {a(d,u)} describe formally

d,u d,u $ Fd,u*(O)[T] 30 Lib

[FE] §g�ulJhé�u = i

[L] §$�ulJEF�u = Ud�u

(iv) Else, and pd�u is a propositional inference rule. Let u*(n) be the
leftmost premiss of u in d s.t. Selected(d,u*(n)) (cf. 2.4.(a)), and

let {a(d,u)} := {a(d,u*(n))}.

d,u(v) Else, and 0 = [SE];

Subcase A: If ~§5L0 "sd��*(0)"), let a(d,u) := a(d,u*(0)).
Subcase B: Else, and 3xEx :5 Fd�u*(0) & bd�u, then let {a(d,u)}
describe the figure

2;
d d d *( ) d d H >[T] g0�ulJb �u,3xEx = 3xEx { §0�u n ob �u,3xEx = U �u n } 0<n<w

[BE] §g,u1JEo,u,3xEx : Ud,u*(l)
[+1] §3,ulJbd,u � EXEX + Ud,uM 1)

instances of &#39;

[VI] .

d,u d,u d,ugo tJb = U
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Here, if En is described by {a(d,u*(n))}, then Es comes from En by
joining the formula 3xEx to all precedents. Note that by the case&#39;s

conditions

bd��*(�) bd�� u {ElxEx}

ag�u*(n) = ag�u U {En} for n > 0.
Ud,u*(n) E Ud,uK 1)

Subcase C. As subcase B, but 3xEx 5 bé�u. Then let {a(d,u)} describe

Zn
d u d u d u*(n) d u d u 1go� U E � 5 3xEx { 30� oh � ,3xEx = U � I 0<n<w

[SE] g$��u_13d�� => Ud��

d,u*(n) : dNote that here U U �u for every n.

2.6.]. LEMMA;

FV0+BI NPrf:ec(d�FF[Al�""Ak]�) & §ElEEEE9(d�u) &#39;_+

NPrf:ec(a(d,u) ,"3g��u_13d��=aUd,u1
).

PRO0F.Straightforward from the definition of a(d,u) above. D

2.6.2. LEMA. For F,A],...,Ak as above

3£L0(�F[A1,...,Ak]") = g;_LO(�F[p1,...,pk]")
PROOF. Let A be a normal proof of F[Al,...,Ak] which uses propositional in-
ference-rules only. All formulae occurring in A are subformulae of

F[A1,...,Ak], and a trivial inspection shows that by replacing A],...,Ak
throughout the proof by p],...,pk respectively we get a correct derivation
of L0 for F[p1,...,pk].



2.7. PROPOSITION.

NPr£rec(d,"F[Al,...,Ak]") & -.g£L0("1=") �»
NPrf:eC(a(d,( >),"=»uk[A1,...,AkJ") .

PROOF. Use 2.6.1 for u = (), which by the premiss and 2.6.2 must be a

selected node. B
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B.3. STRUCTURE OF THE PROOF OF THEOREM II

3.1. PRELIMINARIES

3.1.1. Fix a q.f. formula E(x) :5 f(x)=0 (where f is a fixed prim.rec.
function). We shall use the following notations.

E2(z],...,zn) :5 Vx�y E(x,y,i,n,<z1,...,zn))
*

E Vi,u,zVx3y E(x,y,i,u,z)

BE[w] : V(i,n,z) E l3g1((i,n,z),w) -+ Vx�y E<x,y,i,n,z) ]

where Ineg(a,b) is an equation which expresses the inequality a # b. More
intuitively,

BE[<j,m,<§�>>J :2 v<i,n,<?>> A A EEK?)
<i,n,<.-.>>¢<j,m,<s>> 1

We further define the sequent

sE[w] :5 BE[w] = Vxay E(x,y,(w)0,(w)1,(w)2)
(W)s BEEWJ = E(w)(�)<<w>2,0,...,<w)2,(w)l>

i.e.

_ssE[(i,n,(;))] E V�,m,w A A_ _ E�P($) =~ EEG).
(],m,w)#(1,n,z)

The sequents sE[w] play here the same role as the schemata Uk in the treat-
ment of L0 above.
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3.1.2. Let E be an equation as above. An E-sentence is a sentence built up

using the formation rules of L] only, with E? taken in place of the predicate
lettersP? (i,n=0,l,...). An E-atom is an E-sentence of the form E?(t1,...,tn).
We call the indicated occurrences of ti in the E-atom above (i=1,...,n) the
fbrmal occurrences in E:(t). Since the order of formally-occurring terms in
each E-atom is fixed by the very definition of Ei, it is uniformly decidable
whether two E-atoms are instances of the same E2.

Let d be a normal derivation in A:ec of an E-sentence. By the subfor-
mula property of d every formula occurring in d is either an E-sentence,

an equation E(t) = 0 or a X?sentence Hy E((p,y,i,n,z)). It is easily seen

that if we replaceevery formal occurrence of each term t (in some formula

in d) by the numeral E s.t. �=t, we get a correct and normal derivation
of the same E-sentence. We call such a normal derivation an E�dertvatton.

Notation: E-Der(d); E-Prf(d,rF�). Since we deal with E-derivations only,
�""� _ n n

we consider only E-atoms of the form E?(m1,...,mn). If F[Pi1,...,Piq] is
a schema of L1 whose predicate-letters are among those shown, we write

E nl r E1 r 1 r1n
F for FEE. ,...,E.q]. So F = sub 0( F , E ).

11 lq &#39;*�]&#39;[�2

3.1.3. We write [SE1] for an instance of [3E] whose major premiss (i.e.
the consequent of the leftmost premiss-sequent) has a q.f. matrix. For an

instance of [HE] which does not satisfy this we write [3E*].

3.2. DERIVATION OF E-SENTENCES IN LIA

LIA is Ll extended to the language of A(cf. P.2.5).

3.2.!. LEMMA. Let every fbrmula in a,F be either an E-sentence, an open
0 .Z1 fbrmula or an open equatton. Let §_be a set of closed equations. Then

gug+L1,.F => el-L1AF-
PROOF. Assume §_U 2 FL A F, and let A be a normal derivation of LIA for

1
3 U E F� F (Cf. PRAWITZ [65]). By induction on the length of A, using the
subformula property and the definition of E-atoms, one proves easily that

. . . . 0every formula occurring in A 1S either an E~sentence or an open 21 or q.f.
formula. Hence formulae in b are actually not used in A, and so 3 fl A F.

1
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3.2.2. LEMMA. Let a,F be closed fbrmulae of L1. Then

where

PROOF.The proof of PRAWITZ [65],[7I] for the normalization of L] applies
trivially toLlAand is easily seen to hold also for our definition of norma-
lity (for LIA only the trivial pi-reductions have to be considered in addi-
tion). So let A be a normal derivation (in the sense of A.l.1) of LIA for

E E .3 f- F and let §_be an occurrence of a formula in A, G not an E-sentence.
By the subformula property of A, G must then have one of the forms

[a] E(u,v,i,n,z) or [b] By E(u,y,i,n,z).

By the normality of A §_must either

(i) be an equation (case [a]) occurring at a top�node of A (by 2.1.2)

(ii) occur immediately below a top formula, or

(iii) occur as a premiss of 3E derived by VE (in case [b]).

Note now that E? is defined so that the order of variables in each
E-atom is fixed, so that the two first variables of the matrix are bounded

by the V3 quantifiers preceding it. Furthermore, two E-atoms formed from

distinct E? are syntactically distinct, and the rule [FE] is not used in LIA.
Hence every occurrence G as above must occur in a subderivation of A of the

form 
     
     (1)

E(u,v,i,n,z)
�:-����� 31

3yE(u,y,i,n,z)[ _.._.__..._ VI ]
Z Vx3yE(x,y,i,n,z) j

Vx3yE(x,y,i,n,z) P
__________._____.VE

3yE(1-lsysisnsz) H .
H E (1) SE
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Replace the subderivation H of A by

Z

[ Vx3yE(x,y,i,n,z) jj
F

H

Note that H* is normal. Repeating this operation we get by induction on
O . . .the number of occurrences of Z] formulae in A a derivation A* where all

. r n A
occurrences are of E-formulae. Replace in A every occurrence Ei(v) of an
E-atom (including occurrences as a subformula) by P?(v), and the result is
a correct derivation of L] for 3 F- F. D

3.3. We wish to prove theorem II, which is trivially implied by the follow-

ing more formal version.

THEOREM II (restated). For any T 3 V0 + BI there is a q.f�. E(x) s.t.

AT }- -.g£L ("F") �» -.1>_r M (E 0(&#39;F","E"))
1 A [T] 11

rec 2

where 
     
     AT == A + _c1r;(T) + Rfn:,0(T) + E)_11(T+)

EU) :5 Vx,y E P_rT(L�(x,y)) -> (_P_rT(x) +P_r-,�(y)) J,

Rfn: (T) :5 Vx [ ££T(x) & "x encodes a formula in C0"
0 
     
     -> EC(x) J,

0

and where C0 is the class of formulae of the formllg->-u-12(2), and ECO is a
truth definition for CO.

Vx [ "X encodes a conjunction of instances of

AC 
     
     -> -1§_1;T+(neg(x)) J.

_C_gg(T+)
00, of BI, and of true W? sentences"
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     3.4. THE PROOF~THEORETIC REDUCTION

The proof of theorem II proceeds now as follows. Fix an equation E

and a schema F of L] as above. In sec. 4.3 below we define a (classically)
W? predicate Crit(d,u) for which we prove

(1) |-V +31 E�Prf(d,r-FE�) �» [E* & -P_rL A("F") �> -.-.au Crit(d,u) J.
o 1

Since T 2 V0+BI we get from (1)

I� F E-I K _ �I(2) hA+cM?(T) §5T E�Prf(d, F ) �+ PrT [E* & 1g5L A"F� +.«1au Crit(d,u)]
-�� 1

and so

FE-1 * I�(3) hAf§!£(T)+Rfn (T) E2hfE�Prf(d, F ) & E & w§EL]A F� »+
__._CO

wwiu Crit(d,u).

On the other hand we prove in 4.7-4.11 below

(4) fv +BI+AC_ E-Der(d) & Crit(d,u) & Res(d,u,x) -+
0 00

«a3¢ NPrf�(¢,&#39;sE[x]")

where

Res(d,u,x) Vy E T(d,u,y) ~+

"if succedent((Uy)1) encodes EE(t) then x=(i,n,(t))" ].

Since T+ 3 V0+BI+AC6O (cf.A.l.2) and gy(T) + CMP(T+) trivially, we get
from (4) &#39;

+CMP(T) P£TFE_Der(d)-&#39; �*(5) I-A

Pr (&#39;�Crit(d,u)&§gg(d,11,X) + wm=r("sE[xJ�)").__T+ ..._.�_� .__.
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But Crit(d,u) and §§§(d,u,x) are U? and TA iscomplete for true W? sentences,
S0

(6) b\+%,mg3T"E-Der(d)" a. Crit(d,u) & _1ga3(d,u,x) �>

§£T+r11§§£mrsE[x]��.
We have however trivially

EA "{d} is total" -+ 3x §g§(d,u,X)

and so

+RfnCO(T) 357hAfgE£(T) E-Der(d)� �+ 3x §es(d,u,x).

Hence we get from (6)

I"(7) }-A+Rfn (T)£13T E-Der(d)-&#39; & au Crit(d,u) �>
--C 
     
     0 P wr E 11

3x §£_+ 1wNPr s [X] .
T

Combining (3) and (7) yields 
     
     * r-1

(8) &#39;"E�Pr£(d,"F")" & E & -._ggLAp .»|&#39;A+§g(T)+Rfn:O(T) 317
-1-ax 33 "-.-.N1>r°°"sE[x]"".

T+

But from 3.2.2 we have

hk 1§£L rF� -+ jggt ArFE� (F a schema of L1)
1

so 
     
     E-I *
(9) |� -1Pr "F" & Pr "F & E �+

A�%�T�*�c (T) "1 �A� [T]

0 rec 
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This completes the proof theoretic�reduction. Note that for any

predicate Crit (not necessarily H?) for which (1) and (4) hold, we could
prove a statement (7+) similar to (7), but with §£T+r3x 1wNPrwrsE[x]q1 as
the succedent; there is however no way to pull the existential quantifier

out of the provability predicate here.

3.5. SOLUTION OF THE REDUCED PROBLEM.

In this part of the proof of theorem II, given in B.5 below, we prove
for every 22 theory 3 the existence of a q.f. E(x) s.t.

r E 1 *(10) |_A+£c£1.(s)+Comp 0(3) VX �IEES S [X] & �!�|E
X

2

where Pr is a fixed 20 provability predicate for S, and where��S 2

Ill(11) c (S) VET () P()]._2EE:0 X _E:0 X "+ .53 X
2 2

i-e-, S is complete for E3 sentences. (Here Tr O(x) is a (canonical) truth
definition for 23 sentences). 2

We Wish t0 apply (10) to S E Am[T+], where T and T+ are as in A.1.2.
First, note

(12) |�y -.NPr°°("i"),
0

so 
     
     (13) |�A con(7*) �+ con(A°°[T*J).
Also, for X3 sentences F we have directly (compare A.2.2.l)

(14) [-3, F ��> NPr°°"F"
0

and since T+ 3 V0, and quite trivially CMP(T) + CMT(T+), this implies

r 7 r n(15) |� Pr F �+ Prm F .
"��°Q(T) �T� �A W]



105

By the definition of £5 + however
T

FA F �+ Pr +rF� for every 11? F,
_�T

and so

(16) FA F -+ £5 rFw for every 23 F.
T+

Hence we get from (15) and (16)

(17) EA+CM(T) F �+ 23 w +�rF� for every 23 formula F.
��� A [T J &#39;

Now observe that steps (15)-(17) can be uniformly formalized (within A),

i-e- :(11) holds for S E Aw[T+], as wanted.

From (10) for 3 5 Aw[T+], (9) and (13) we now have by predicate logic

-v _> .13 1&#39;FE&#39;l
A� [T]

rec

(13) |- Pr "F
AT1""&#39;1

for some fixed quantifier-free E(x).

We proceed now to prove (I) and (4) (the proof-theoretic reduction)
and (1) (the recursion-theoretic solution) which together imply as we have

just seen theorem II.
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B.4. THE PROOF�THEORETIC REDUCTION FOR THEOREM II

4.1. LEMMA. Let the numeral 5 not occur in 3, F, 3xGx.

(1) If (1) _a_,c� I-L A F then
1

(2) _a,Gv |-L A F where v is a parameter which does not occur
1 in 3, GE, F.

(ii) Ifg |�L A GE then 3 |�L A Gv (for v as above).
I 1

PROOF. Given a normal derivation of LIA for (I) replace every occurrence of
E by v and observe, by inspection on cases for the inference rules, that

the result is a correct derivation. The proof of (ii) is similar. D

4.2. SEMI FORMAL HEURISTIC OUTLINE OF TH REDUCTION

4.2.1. Preliminary notations.

R1(d,u) :5 HEEL AFsd�u�.
R2(d,u) 5 "all equations in a§�u are true".
R3(d,u) E "Fd�u is an E-sentence".
R4(d,u) E "Fd�u is an E-atom, and pd�u is [VI]".

d�u is a Z0-sentence".R5(d,u) :2 "F 1

Note that each Rj(d,u) may be formally defined as a H0 predicate. Example:1

R3(d,u) :5 Vy E T(d,u,y) �+ "succedent((Uy)1) is the g.n. of an
E-sentence" ].

Start(d,u) E i=]!§�3 Ri(d,u).
Crit](d,u) 2 /X\ R.(d,u).

i=1,2,4 1
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4.2.2. Locating an arithmetical inference in E-derivations
(the predicate Crit).

We want to define a predicate Crit and to prove for it 3.4(l),(4). The

idea is that when E-Der(d) and Crit(d,u) ("u is a critical node in the

proof-tree described by d") then the subderivation du of d (where
{du} := Ax.{d}(u*x)) has sufficiently nice properties so as to enable the
extraction from it of a derivation for sE[w] for some w.

As a first attempt to define such a predicate we try as in the proof

of theorem I to look, when §:§££(d,PF�) and n££L1A(rF�), for a "genuine"
use of an arithmetical inference in d. A starting node for such a search

upwards may be any node v of d s.t. Start(d,v). When Start(d,v) we can
weakly find (i.e., qua) a node v*(n) s.t. Start(d,v*(n)), using lemma 4.1

d�V is [aE�1when pd�V is [VI] or [3I*], and the truth of E* and 3.2.1 when p
(lemma 4.4 below). Thus the search up in d may continue. The only cases where

, d .this process stops are when R4(d,v) or when p �V 1s [FE]. In the last case,
the definition of normality of A.1.1 implies (as in 2.1.2) that a false equa-

tion occurs in g§�v, contradicting R2(d,v). Thus, by the well-foundedness
of the proof-tree d, we find a node u > v s.t. Crit](d,u).

when Crit](d,u),we can actually find in each subderivation du*<m) an
inference of the form

G

<:::)-+ [31] Fd��*�

(G is a true equation and Fd�u*w E Fd�u*(m)

(*)

). So these can be collected to

yield a derivation of the form:

(2 )
m m<w

[VI] B[<i,n,<E5>J = EE(f)

where Fd�u E: E2(f), and each Em is (schematically) of the form (*).
Unfortunately, the crude statement that the situation above occurs is
0 . .not]T1, essentially because there 1s no bound on the length of the w corre-

sponding to each m<m. A certain refinement of the argument is therefore

necessary.
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4.2.3. Heuristic fbr the disjunction-free fragment

Assume, again, E-Der(d) and Critl(d,u). The subderivation du of d
then takes the form�

2 
     
     m

a_= 3yE(�,y,i,n,(t)) m<w

(1) 
     
     [VI] a_= Vx3yE(x,y,i,n,<t))
where each Em is formally described by du*(m).

From each Em we wish to extract a derivation in Am of

(2) B[<1,n,<?>>] =9 ayE<E1,y,i,n,<?>>.

Fix some m, and let us analyse the structure of Em.
We assume first that d is a derivation for a disjunction�free

E-sentence; this implies by the subformula property that disjunction does

not occur in the derivation d, and in particular, in the subderivation Em

we are looking at.

In addition we may assume

(3) Vw>u*(m) wStart(d,w).

Because if §£art(d,w), w>u then we could start our initial search afresh;

this could not be iterated indefinitely, because d is well-founded.

Consider now the main inference rule of Z , pd�u*(m)
m

property of d we have to consider the following cases only.

. By the subformula

Cases (i)-(iiia): contradiction to (3).

. d ( )(1) �u* m = [L]; the� Sd�u*<m�O) = §�>l and so Start(d,u*(m,O)) contra-
dicting (3).

(ii) EVE];

3 =9
(4) EVE] 3 =. ayE<§1,y,i,n, <?>> say.
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Recall that E§(§) E Vx3yE(x,y,j,k,(§)), and so necessarily
(i,n,(f)) E (j,k,(s)) (syntactical identity). Therefore
sd�u*<m�O) E sd�u and so Start(d,u*(m,0)), contradicting (3)
once again.

(iiia) [SE1]; since d is normal, Em must then have the following form
(compare the first part of 4.5.4 below):

U 
     
     k A

3:» Pp
[VE] g_= 3zCz §,CE = 3yE(�,y,i,n,(f))

<5) _ A W
a_= 3yE(m,y,i,n,(t))

First, if (j,k,(s)) _ (i,n,(f)) then Start(d,u*(m,0,0)) as in (ii),ll

contradicting (3).

Cases (iiib) (iv): the search continues.

(iiib) If, in (iiia), 3zCz is true, let p := uz.Cz, and consider - in place

of 2m - its subderivation Pp (formally described by du*<m�p+1)).
d,u*(m)Before concluding the case p = [3E1] let us turn first to case

d�u*(m)is [3E*], then guided by lemma 4.1 we pick the first
d,u*(m) Sd,u*(m,O) 

     
     3

(iv) If p

numeral 5 which does not occur in the sequents s 9

and we consider (as in case (iiib)) the subderivation du*Gm�p+1).

Cases (iiic)1(v): haggy ending.

(iiic) If pd,u*<m> is [EIE1], and (iiia) and (iiib) do not apply, then in (5)
.3» ._

(j,k,(s)) # (i,n,(t)) and 3zCz is false; so we can extract from (5)

the following derivation in Am of (2):

B[<i,n,<?>>] cg

[VE] E1J.�(§) [FE] J.
[vs] EIzCz [J.] ayE<F.,y,i,n,<E>> <

<6) 1 _ A ��
[HE J 3yE(m,y,i,n,(t))

(here we dropped the precedents of sequents).

(v) [SI]; by 2.1.2 u*(m,O) is then a top-node in d, and so pd�u*(m�O)
is either [T] or [TE]. In the first case Fd�u*(m�0)e a_; but all

d u*(m,0)equations in a are true, so P � is in any case a true equation.
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These are all the cases in the absence of disjunction. Cases (i),(ii),

(iiia) rule out possible failures of the construction; cases (iiib),(iv)
allow the search to continue, while cases (iiic) and (v) yield the required
derivation for (2).

Note that if E* is true, then Ezcz in (6) is also true, and so case
(iiic) is excluded. Our argument here must however be independent of E*
(cf. 3.4(4)-(6)), and so this case has to be considered throughout.

In order to clarify a bit the form of a search which proceeds through

(iiib),(iv), let us consider for example the outcome of case (iv), and

suppose that now case (ii) applies to PP (:2 the derivation formally de-
u*(m,p+l)scribed by d ). I.e., the following configuration occurs:

Pp
� I-1 �¥

_a_.Cp => Ei(t) PP�
3 => azcz [vs] 3,05 = ayE<E.,y,i,n, (�En

the node [3E*] 3 => 3yE(m,y,i,n, (3)

Here (3) implies, as in (i)-(iii),

-.-.P_rL A("3=aazcz") and -.-.g£L A("3,cf;=>E�i�(?)"�)
1 1

which by 4.l(i) and the choice of � give

-1-|E£L
1

contradicting 9£i£1(d,u). So we have adapted the argument of (ii) to the
case that a Search for a proof of (2) proceeds via case (iV)- Otherarguments

are adapted in about the same way, and this allows the iteration of the

search through (iiib),(iv) above.

By the well-foundedness of d the process must terminate, that is,

one of cases (iiic),(v) ultimately appears, and we obtain a proof for (2),

as desired.

4.2.4. Disjunction reconsidered

when disjunction does occur in the derivation d above, we must add to

(i)-(v) above another case:

(vi) pd�u*<m) is [vE]. We then consider simultanuously both minor premisses
of pd�u*<m), i.e., the nodes u*(m,l) and u*<m,2).



111

As in the last paragraph of 4.2.3, let us see what happens if case (ii)

applies now to both u*(m,l) and u*<m,2). We have then the following config-

uration:

F1 F2

A 3,01 = E�.1�(E") 3,92 =:. E�i�(�E)
EVE] g,G1 = 3yE(...) EVE] §,G = 3yE(...)

[vE] 3 =� ElyE(m,y,i,n, (_t))

As in the last paragraph of 4.2.3,

2

r� -I I� n 4 -1 I� I1 "� "1
-.-.1>_rL]A( faclvcz ), -1-.1=_rL1A( _a_,Gl=>Ei(t) ), n1P_rL1A(§,G2=>Ei(t) ),

and so

w1E£L A(i§=E?(t)1), contradicting Crit1(d,u).
1

This argument may be generalized to conclude that, at least for one

successive choice of minors of EVE] in the search described by (iiib),(iv),

(vi) the construction leads to a node falling under one of the cases (iiic),
(v),thus allowing a construction of a proof of Aw (incidently of A:ec) for (2)-

The assertion that this is the case is now seen quite easily to be

formalizable as a H? predicate (over d,u).

4.3. FORMALIZATION OF THE PREDICATE Crit

Step(d,W,P) E _ �V Step.(d,w,p)
1=l,2,3 1

where 
     
     Step1(d,w,p) E "pd�w = [3El], and if Fd�W*(0) E: 3zCz then p = uz.Cz + 1".

d . .Step2(d,W,P) 5 "D �w = [3E*], and if Fd�w*(O) E: 3zCz then p 13
1 + the value of the first numeral which does not

. d,w d,w*(O)"
occur in s ,s ,

"pd�w = [vE] and lSpS2".IHStep3(d,w,p)
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These three predicates correspond to cases (iiib), (iv) and (Vi) in

4.2.3/4, where the search described there proceeds to the p&#39;th premise of
the node w. It should be noted that Step is a A? predicate. For example

step1(d.W,p) E Vx.Y E T(d.w,x) & T(d.w*<0>,y) -�+ A(x.Y,p) 3

III 3x,y [ T(d,w,x) & T(d,w*(0),y) & A(x,y,p) ]

where

I-1&#39;)(Ux)0 = HE &IIIA(x,y,p) (inst(antecedent((Uy)1),p*l))IEQF

& Vq<p w§£QF(inst(antecedent((Uy)]),q*1)).

Tr is a (A0) truth predicate for equations, and inst is a rim.rec. func-�-QF 1 q F _ P
tion which satisfies inst(r3xGx ,n) = Gn�.

Se1ected(d,v) E Vi<1th(v) SteE(d,(vIi),(v)i)

where

(v]i) := ((v)0,...,(v)i;l) (for i.s1th(v))

Fina1(d,v) :5 VV Fina1.(d,v)
--� i=l,2,3 1

where

Fina1](d,v) E Se1ected(d,v) & pd�v = [1] or EVE]
. _ d,v 1F1na12(d,v) : Se1ected(d,v) & p = [SE ]

Fina13(d,v) E Se1ected(d,v) & pd�v = [SI].

These predicates correspond to the cases in 4.2.3 where the construc-

tion may stop, whether successfully or not.

Final+(d,v,FA1) E Final;(d,v,rA�) V Fina13(d,v)

where 
     
     Fina1;(d,v,&#39;A") 2 Fina12(d,v) & Fd�V*(0�O) $ A.
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When for 4.2.3 A E E:(t) E Fd�u then Final+(d,v,rA�) expresses the
conclusion of the construction by one of (iiic), (V), 0r P0SSib1Y its OOH�

tinuation through (iiib). In any case, a "failure" through one of (i)-(iiia) 
     
     0

is excluded. It is important to note that Final and Fina1+ are both A]

predicates. 
     
     Let us use the binary encodement of finite sets of numbers. The pre-
dicates ne x, x==¢ etc. are then just prim.rec. arithmetical expressions.

§35(d,x) II! x # ¢ &

Vwex { Fina1(d,w) & Vu,y<x [ pd�u = [vE]

1
2

& w = u*( )*y -+ 3w&#39;ex3z<x w&#39; = u*(%)*z ] }.

I.e., a "bar" for d is a finite non-empty set of "final" nodes, which
intersects both minor subderivations of each instance of VE if it intersects

one of them.

u*(m) + u*(m) r d,uw) JCrit2(d,u) Vm,x E Bar(d ,x) �+ awex Final (d ,w, F

Crit(d,u) :5 Crit1(d,u) & Crit2(d,u).

Note that Crit is intuitionistically equivalent to a U? predicate.

Final++(d,v,rA�) E Fina1E+(d,v,rA�) V Final§+(d,V)

where

Fina1�;"(d,v,"A") 2 1«~ina1;(d,v,"A") & ~._T£Z0("Fd"�*�°"�)
. ++ _ . - d (0)F1nal3 (d,v) : F1nal3(d,v) & I£QF(FF .v* 1).

Fina1++ corresponds to a real termination of the search described in 4.2.3.
. + . ++ . . 0In contrast to Final however, Final 1S a H? predicate, and not a A] one.
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4.4 - 4.6. PROOF OF 3.4(l): THE EXISTENCE OF A CRITICAL NODE

(first part of the proof theoretic reductions)

4.4. LEMMA.

ky +BI [ 2* & E-Der(d) & Start(d,u) ] �+ ww�w)-u Crit](d,w).
0

PROOF. Denote the formula to be proven by R(u). First, we prove below by

BI using the well-foundedness of the proof-tree d the (open) formula

S(u) :2 [ E* & E-Der(d) & Start(d,u) & nR4(d,u) J �+
-1-13w }u Start(d,w) .

Assuming VuS(u), R(u) follows easily by a second use of BI, where S(u) is

to be used for the induction step.

Towards proving S(u) by BI assume the premiss of S(u), assume
d,uVnS(u*<n)), and consider cases for p which by the normality of d can

only be one of the following:

(i) pd�u is [T]. This contradicts R (d,u). p1

R3(d,u).
(ii) pd�u is [FE]. As in 2L2 the normality of d implies then that

d (0) . J d . .p �u* 1S [T], and so F �uesa �u, contradicting R2(d,u).

d�u is also not [TE] by

(iii) pd�u is a propositional rule, [BI] or EVE]. If 11§£L]A(rsd�u*<n)�)
for all n<3, then of course 11PrL Arsd�u�, since all the rules con-

Isidered in this case are rules of L1. This contra-
dicts R1(d,u). So 113n<3 1E£L1A(Psd�u*(n)�). For the cases considered
the subformula property of d implies trivially Rj(d,u) �+ Rj(d,u*(n))
for j = 2,3, and so we conclude that ww3n<3 Start(d,u*(n)).

d,u .(iv) o is [3E*]. Let E be the first numeral which does not occur in
sd�u, sd�u*(O), and prove

(*) ww[ Start(d,u*(0)) v Start(d,u*(p+1)) ]

like in (iii), using 4.l(i). That is, for the u considered
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wStart(d,u*(j)) -4- 1R1(d,u*(j))

_+ �1££L Arsd,u*(j)1
1

while by the choice of p and 4.l(i)

REL Aréd,u*<O)1 & EEL Aréd,u*(p+l)w _+ EEL ArSd,uq _+ 1Start(d�u).
l 1 1

Since this contradicts the assumed premise of S(u), one gets (*) by

intuitionistic prop. logic (cf. KLEENE [52], p.119,*60i,g).

(v) pd�u is [VI]. Let E be the first numeral which does not occur in sd�u,
and proceed to prove 11Start(d,u*( +1)) like in (iii), using 4.l(ii).______ P

(vi) Dd�u is [SE1], Fd�u*<0) E: 3zCz, where Cz is q.f.. Since R1(d,u),
. d .1.e., j§£LlAPs �u�, we get from 3.2.1 VmR](d,u*(m+I)). R3(d,u) im-
plies VmR (d,u*(m+1)) trivially. Finally for each m R (d,u) and CE3 � 2

imply outright R2(d,u*(m+l)). Suming up we hence get

(*) Start(d,u) & 3zCz �+ 32 Start(d,u*(z)).

But by the subformula property of d 3zCz is a subformula of the H2
sentence E*, and so E* -9 3zCz, while by the assumed VnS(u*(n)),

Start(d,u*(z)) ��+ wwaw >u*(z) Start(d,w).

So we get from (*)

Start(d,u) & E* -+ ww3w)>u Start(d,w)

as wished. U

4.5.]. LEMMA.

fyO+BI E-Der(d) & Crit1(d,u) & w3v}t1 Start(d,v) -+ Crit2(d,u).

We prove this lemma as a corollary of
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4.5.2. LEMMA. Let A be an E-sentence. Then

|�y +31 E-133;-(d) & critl(d,u) & w=u*(m)*z & Selected(du*<m),z)
0

& Vv,&u -1Start(d,v) & Bar(dw,x)

& Vyex -nFina1+ (dw,y ,&#39;_Fd � u-&#39;)

__> 1_&#39;PrL A(r-ad,w=,Fd,u-n) .
1

w = u* (m)*z

U

4.5.3. Proof that 4.5.2 irrzplies 4.5.]

Assume the premiss of 4.5.1. For each m<w this implies the first five
conjuncts of 4.5.2 for w = u*(m), z = O, and also

�EL A(r-Ed,u*(m)=�Fd,u-1)

since _a1d�u* (m) = _§d�u here. So, by the contrapositive form of 4.5.2, and quan-
tifying over In,

Vm,x [ Bar(du*(m),x) -> Elyex Final+(du*(m),y,&#39;-Fd�u_&#39;) ]

(note that Fina1+ is decidable); i.e. , Crit2(d,u) as required. 1]

4.5.4. Proof of4.5.2

Write S(w) for the closure over x,z of the formula to be proved. By BI
the problem reduces to showing
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Vn S(w*(n)) -+ S(w).

So assume

(1) Vn S(w*(n)) and

(2) the premise S�(w) of S(w).

Note first that the definition of Selected implies, by a trivial induction

on lth(w)

d,w = Fd,u*(m)(3) F _ ay E<5,y,i,n,<?>>
d,w(4) R2(d,w) :5 "all equations in 3 are true".

. d,wConsider now cases for p

(i) [T]. Then Fd�W 6 §é�w. But by the subformula property of d no 2? sen-
tence may be discharged in d, because an E-sentence has no subformula

of the form GVH, G+H or 32C where G is Z?.
A similar argument excludes the cases [&E] and [+E].

(ii) [L]. Then sd�W*(O) = §é�W=>i, while 1Start(d,w*(0)) implies (by (4))

So this case is ruled out.

_1_�P:rL A(r-a�d,W=>J_&#39;l) �
1

SO

_&#39;_&#39;E£L A(4-ad,W3Fd,u-I).
(iii) EVE]. Then (3) implies

Fd,w*(O) E Fd,u-
(5) 
     
     On the other hand wStart(d,w*(0)) implies

d (0) _]_1E£L1A(r�s aW�k 1).

Here §é�w*<0) = §E�W so (5) and (6) yield nwggi A(r§��W=Fd�u�).
1

d,w*(0)(iv) [SE1], F : azcz. Let Bar(dw,x).
d _

FF �u�) by S (w), and so bySubcase Ea]. () e x. Then wFinal+(dW,(), 
     
     d,w*(0,0) : Fd,u

the definition of Final+ for this case F , and we get

as in (iii)

r d,w-1-|_]?_]*_"L]A( 3 §FdgU�l).
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Subcase [b]. () & x. Then, since x # ¢ by the definition of Bar, we

must have for some p Step(dw,(),p). This means that the premiss of
S(w*(p)) is satisfied, and hence by the BI hyp. (1) applied to w*(p)

d - d
1nPrL A(r£ �w,C(p)=E �uj),

But C(E) is here a true equation,so by 3.2.1

r d,W-I-y?_]:_&#39;L1A( _a_ =5Fdg11�I).
(v) [3E*], Fd�W*<0) E: 3zCz. Let 5 be the first numeral which does not

occur in sd�w,sd�W*<0). We have then as in (iv)[b]

(7) �qE£L A(rsd,w*(p+1)w) E ��££L A(rad,w,C(�) Fd,u1),
1 1

and as in (iii) we get

11PrL A(rsd,w*(0)�) E �1PrL A(rad,w=azCz�)__.1 __.l _

which together with (7) and lema 4.1 yields

d d�jPrL A(r2 ,w=F ,u1).
1

(vi) EVE], Fd�W*(O) E: G� v G
Xe)

2. Let

:5 { y ] (j)*y 5 x } (j=l,2).

Then, by the definition of Bar, S_(w) implies

w*(j) r d unBar(dw*(j),x(j)) & Vyex(j) 1Fina1+(d ,y, F � )

while trivially

Se1ected(du*<w),z*(j)) (j=1,2),

Apply now, as in (iv) and (v), the BI hyp. (1) to w*(j) (j=1,2), to
yield

<8) w££m< 2 �Gj"Fd���> <j=:,2).
On the other hand we get as in (iii)

I&#39;sd,W* (0 >&#39;1) _ r d,w-.-.P_rL]A( = �.-.g£LlA(3 eclvcz")



119

which together with (8) yields

11PrL A(rad,wgFd,uw).
1

(vii) [HI]. Then the definition of Bar implies

(9) _n_a_r(d���,x) �» x = {<>}.

d,u�For this case, Fina1+(dw,(),rF ) automatically, while by S_(w)
(9) implies -1Fina1+(dW, <>,"Fd���), so this case is ruled out. 3

4.6. PROPOSITION.

fy0+BI E* & E-Der(d) & Start(d,u) �+ ww3v}11 Crit(d,v).

PROOF. Straightforward from 4.4 and 4.5.] using BI and the well-foundedness

of the proof-tree d. U

Applying proposition 4.6 to u = () we get assertion 3.4.(1).

4.7 - 4.11. PROOF OF 3.4(4)- (Second part of the proof�theoretic reduction)

4.7. LEMMA.

|�V0+BI E-Der(d) & R5(d,w) �+ Elx l3a_r(dW,x).

PROOF. Straightforward by BI and the well-foundedness of d. D

4.8.1. Let us use the following ad hoc terminology.

"x is a bar" : III Vu,vex u*v
"x is in d" :5 Vuex {d}u4:0

X k y :5 x and y are bars" &

Vuey Evex (v�u) & Huey Evex (v{u)

d .X F? y :5 "x and y are in d" & x k: y.



120

LEMMA (in V0+BI). If d is well-founded, i.e.,

vxan {d}<>?<n)) = 0,

than lcd is well-founded:

VIpE|n �. E Mn) Icd x:»(n+1) J.

PROOF. Apply BI to

S(u) :2 v¢ {{(u)}lcd mo) �+ an &#39;1[7,U(n) Icd ID(n+l) 3&#39;}. El

4 . 8 . 2 . PROPOSITION.

[- E-Der(d) & Crit(d,u) -�»V0+BI �� �-��

Vm-HEIW Final++(du* (m) ,w,"Fd��")

PROOF. Assume §fDer(d) and Crit(d,u), and fix m. We shall apply BI to the

well-ordering hd of 4.8.]. We prove below that

(1) vydoIxs(y> �> s(x)

for

u*(m) ++ u*(m) r d,u1S(x) :5 Bar(d ,x) �+ ww�w Final (d ,w, F ).

Then, by BI on 44 applied to S we get

(2) Vx S(x).

But by 4.7 we have

(3) §§£(du*<m),x) for some x

and so by (2)

++ u*(m) r d,uwww�w Final (d ,w, F )
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as required.

Towards proving (I) assume vy�H x S(y) and the premiss of S(x),
u*(m)Bar(d ,x). By Crit2(d,u) then

(4) Swex Fina1+(du*(m),w,rFd�u�).

Observe the two possible cases for pd�u*<m)*w =: p.
d�u*<m)*W*(o) : 3zCz, assumeHI(1) If p is [aE&#39;], F

(5) 3zCz V 13zCz

If 13zCz then Fina1;+(du*(m),w, Fd�u ) by definition. If 3zCz let p := uz.Cz.
by 4.7., for some y

Bar(du*(m)*w*(p+1>,y). 
     
     y du*(m)*w*<p+l)

u*(m)*w*(p+l)

du*(nD
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Let

y&#39; encode the set { w*(p+l)*v I vey } ;

then we have quite trivially

u* (m)
£@_r_<d ,x&#39;>

for x&#39; := (x\{w}) U y&#39; (set theoretic operations), and also x&#39; $4 x.
So by BI hyp.

++ u*(m) r. d(6) ww�w Final (d ,w, F �u�)

Here (6) depends on (5), but since (6) is negated (S) is eliminable

(cf. KLEENE [52], p.119 *58b-c,*51a).

(ii) If p is [SI] by our definition of normality (cf. A.l.]) pd�u*<m)*W*<0)
cannot be other than [T], But we have R2(d,u*@n)*w*(0)) because of
R2(d,u*�n)) and Selected(duKm�,w).
Hence Tr ( Fd�u*<m)*W*(0) ) and so Fina1++(du*(m),w, Fd�u ). U

�-QF 3

4.9. LEMA. There are prim.rec. functions fj (j=2,3) s.t.

}V E-Der(d) & Fina1f+(d,v,PE?(t)1) & "Fd�v E E?(?)"
o J 1 1

_+ §£:eC(fJ.(d,v, (i,n, <�E>>),"n[ (i,n, <?>>J==.1-�i*"").
PROOF.

(i) Let {f2(d,v,(i,n,(:)))} describe the tree

[I] BE] => B[<i,n,<�¬>>]

[VE] B[] =» 1neg(<j,k,<§>>,<i,n,<E>>) + pd="*�°=°� [TE] 35] =, Ineq( )

[aE] BE] � Fd,v*(0,0)

EVE] BE] = Fd,v*(0) {Fm} 
     
     I11<U)

[SE1] B[<i,n,<?>>] => Ed�



d,v*(0,0) d,v*(0)[IIwhere F E:(s) and F

[T] B[(i,n;(T¬))],C�=c�

rm :2 [FE] s[<1,n,<?>>J,cE.=.l
[L] BE (i,n, (?>)],cE: => Ed�

(ii) Let {£3(d,v,<i,n,<�E>>)} describe the tree

[TE] B[(i,n, <?>>] =» F�*"*�°�

[31] B[(i,n, Gm => pd�

fj(...) are indices of functions recursive in {d}, and by the s.m.n.-
theorem f. are indeed prim.rec. functions.,The Qroof of the lemma for

these functions is now straightforward. The only less trivial detail
is the correctness of the [TE] inferences in the definition of

f . From Fina1++(d,v,rE:(t)�) we only know that E§(§) and E?(F) are2 2
not syntactically identical, but this does not exclude, prima facie,

that E and t are numerically equal. Recall, however, that ny our
definition of E�Der in 3.1 t and § are tuples of numerals, and there-
fore their numerical equality would imply their syntactical identity.

4.10. COROLLARY.

d,u HIE-Der(d) & Crit(d,u) & "FI. 
     
     5/0+BI

�+ Vmww�x NPrfmec(x,rB[(i,n,(t))]=Fd1.�

PROOF. Immediate from 4.8 and 4.9. D

4.11. PROPOSITION (= 3.4.(4)).

d,uE-Der(d) & Crit(d,u) & "Fk _
V0+BI+AC00

�+ -.-.a¢ NPr£°°(¢,"s[<i,n,<E>>]").

E 3zCz, and where

n A u
Ei<c>

,u*<m)-.

n A n
Ei(t)

123
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PROOF. Assume the premiss; then by 4.10

d,u*(m)1Vmww�x Nprr� (x,&#39;B[<i,n,<?>>J=e )rec

and so by ACBO

(1) «saw Nprf:ec(¢m,"B[<i,n,<?>>]=wd*�*�m��).

Define now ¢ recursively in wt

¢<> := <"v1�,"s[<i,n,<?>>J�>

¢(<m)*u) == {wm} (u)-

The matrix of the positive form of (1) for w obviously implies

NPrfw(¢,Fs[(i,n,(:>)]�5,

and so (1) implies the succedent of the proposition. D
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B.5. SOLUTION OF THE REDUCED PROBLEM FOR Ll (proof of 3.5(lO))

5.1. PROPOSITION (= 3.5(10)). Let S be a 2(2) enumerated theory (with prov-
ability-predicate Elxvy PrfS(x,y,rF_&#39;) say) which is 22 complete. Then there
is a q.f. fbrmula E(x) s.t., in the notation of 3.5,

I-EkA+92E(S)+C0m 0(3) Vxwgrs s (k)1 & 1�§¥,
Z2

The proof given below is based on KRIPKE [63].

5.2. LEMMA. For S as above, there exists a £2 predicate J(x) s.t.
(i) }A Vx,y E J(x) & J(y) �+ x=y ]

(ii) VS -nJ(E-1) for every numeral t_|l.

PROOF. Let neg and sub be pr1m.rec. functions s.t. for every formula F
2

neg(rE") = r1F�

s_u1>_ ("F",x,y) = "Ft;/alt;/bi�

where Q is the numeral with value x, and where Fft/a] is the formula which
comes from F by replacing every occurrence of the parameter a by (the closed

term) t. Define

K(x,n,m) Vy Prf (x,y,neg(sub2(n,n,m)))��s

L E L(a,b) :5 3x [ K(x,a,b) & Vz<xVw<z wK(z,a,w) ]
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J(m) :5 L(rL1,m) (here the g.n. rL� is the code of the fixed

formula L(a,b), while the defining symbol L is

understood as a predicate)

We may assume w.l.g. that the g.n. of a proof is larger than the g.n.

of the formula it derives, because Prfs can be replaced by Prfé(x,y,z) :5
x&#39; z:5 3x&#39;<x PrfS(x&#39;,y,z) & x = 2 -3 . This change is harmless in all other

respects. Hence

(1) L<m,n> <-» L*(m,n>

is provable in A, where L* is defined like L except that the bounded quanti-
fier Vw<z is replaced by an unbounded Vw; and so

(2) EA Vx,y E J(x) & J(y) �+ x=y ].

Next suppose

(3) f3 wJ(�) for some 5,

i.e.,

Sm�xvy Prfs(x,y,rwL(rL�,E)�).

Then

l"�l&#39;(4) -.-amax [ Vy ggS(x,y,"-.L( L ,m)") & vz<xvway -.P_r£S(z,y,"-.L("L",v"a)") 1

which is just 113m L(rL1,m) by (1) and the definition of L.

But by Comp 0(3)
:2

(5) Vm E L(�L",m) �+ 3xVy prfS(x,y,"L(&#39;L",a)") J,

while the definition of L implies

(6) Vm[ L("L",m) _+ ElxVy pr£s(x,y,-."L("L",rn)") J,

so (4), (5), (6) together imply 1w3xVy PrfS(x,y,rlj), contradicting
Con(S). D
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5.3.1. LEMMA. For S as above there is a 23 predicate M(x), s.t. fbr every
q.f. predicate P(x)

[+3 -.vx [ M(x) «�+ P(x) ].

PROOF. Let U(n,x) be a binary q.f. predicate which enumerates all unary q.f.

predicates (by Kleene&#39;s enumeration theorem, cf. e.g. KLEENE [52], §58),

and let J be as in 5.2. Define

M(x) ay E J(y) & U(y,x) J.

By 5.2(i) then 
     
     J(m) EA Vx E M(x) ++ U(m,x) ] for every numeral Q.

But by 5.2(ii)

VS �J  9
SO

Ifs &#39;|VX E M(x) <�+ U(m,x) J for every 111, as desired.

5.3.2. LEMMA. Lemma 5.3.1 holds also when M is required to beI1g.

PROOF. Replace the M E 3yVz M0(x,y,z) defined above by Vyaz 1MO(x,y,z). D

5.4. PROOF OF 5.] (concluded). Let M(z) be given by 5.3.2, and write M(z)

as Vx�y E(x,y,z).

. E � . E �(1) Assume now grsrs (n)� for some n (1.e. , 3xVy PrfS(x,y,rs (n)1) ).
By the form of the sequent sE(n) we have then

}-3 Vz#nM(z) �+ M(E)

and therefore 
     
     !-S -:Vz E ztn S hd(z) J

contradicting 5.3.2.

(ii) Assume wE*,i e � 4VzM(z). Then, by Comp 9(3), 1\§ES((AVzM(z)W).
But taking P(z) :5 z=z in 5.3.2 we getlé 1VzM(z), a contradiction.
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INDICES

References are to sections. when a number of references is given for

the same item the most relevent one is occasionally underlined.

Index of notions

Here are given the ad hoc notions of this dissertations together with

some terms of general use.

Absoluteness Int.l, B-0

absolute schema Int.l, B.6.3.

absolute logic Int.l, B.0

antecedent A.1.l.

base, basing function A.4.3.

completeness theorem Int.2

conclusion (of a sequent) A.1.l.

critical inference rules A.3.3.

cut A.3.l., A.3.3.

cut elimination Int.3

derivability conditions TN]

derivation (infinitary) A.1.l.

disjunction instantiation property A.1.l., A.3.9

effective inseparability B.1.4.

E-sentence, E-atom, E�derivation B.3.1.2.

formal occurrence B.3.1.2.

incompleteness theorem Int.5, TN2

indexed formula A.3.2.

influence A.4.l.

inference rules P.l.

arithmetical A.1.l.

critical A.3.3., A.4.2.

propositional A.1.1.

quantification A.1.l.

second order A.4.l.

Kreisel-Shoenfield-Wang theorem TN4, A.2.3.

Kripke models Int.l, Int.2

Lob theorem Int. 3

normal derivation A.1.1., A.3.1.
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normalization Int.3, Int.6, A.3, A.4

ordinals, ordinal notations, ordinal

assignments Int.6

reduction steps A.3.1

absurdity A.3.3.4.

detour A.3.3.2.

generalized A.3.5, A.4.4.

improper A.3.5.3.

permutative A.3.3.3.

proper A.3.3.

second order A.4.2.

simplification A.3.5.3.

reflection principle Int.3, TNI

regular theory Int.4, A 1 2

strongly regular theory Int.4, A.1 2
replacement rule A.3.2.

sentence A.I.l.

sequent A.1.1, A.3.2.
stable derivation A.3.5.

strongly stable A.3.5.4.

stable under... A.3.7.l.

stable at...under... A.3.7.l.

subformula (negative, positive) P.1

subformula property Int.3, Int.6, TN], TN2,
A.l.1, A.3.8.

succedent (of a sequent) A.l.l.

transfinite indction Int.4, TN3, TN4, A.2.3.

transfinite progression Int.4

truth definition TN], A.3.5.2, B.4.3.

well-foundeduess A.1.1.

m-rule Int.3

Index of Formal theories (script majuscules)

A P.2.

A°° A.1.1.

A� Int.1

X Int.2

Ak 3.1.0.
A7 3.3.3.
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AU] Int .4

Ap[T] Int.4.
A�[T] Int.4, A.1.2.

A� [T] Int.4, A.l.2.
rec

L,L0,Ll,L1A,L2,L3,Lw 9.2.

L2 A.4.0, A.4.l.

L2,rec A.4.9.
� Int.6, A.4.0.
(1)

V 
     
     0 9.2.

Index of formal schemata (bold-face majuscules)

AC00 P.3.

Acao A.l.2.
ACA Int.2.

BI P.3.

MFR Int.l.

T1 P.3, TN3, A.2.3.

Index of formal sentences, predicates and functions

(Standard lettertype, underlined when more than one letter is used.

Predicates and sentences start with a capital letter, functions do not -

with the exception of K1een&#39;s result-extracting function U).

A , As B.6.l.n
Abs B.6.3.

Bar B.4.3.

C B.6.l.
n

Clear A.3.4.3.

CMP B.3.3.

Comp B.3.5.

Con A.2.2, B.3.3.

Crit B.3.4, B.4.2.2, B.4 3

Critl B.4.2.
Critz B.4.3.
Cut A.3.3.

Der P.4.
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255%� 2E£:ec A.1.1.9 A-4-1

Emm, E[Fm,Fn,P,Q] B.6.l.
E-Der, E-Prf B.3.l.2.

gal B.6.l.

Final, Finali, Fina1+, Finali, Fina1++, Fina1:+ B.4.3.

33 A.l.2.

Infl A.3.4.1.

{j} A.3.4.3.

{k} A.3.4.3.

{1} A.3.4.3.

L0-Fml, Li-Fml 13.0.
E P.l+.
M A.l+.4

{n}, {n}�� A.3.4 3

NDer°°, NDer:ec, NPr£°°, NPrf:eC A.1.l
Egg B.5.2.
Nmble A.3.4 3

£5, E 1>.4.

ggm Int.4, A.l.1.

Eifec A.1.l.
{ro}, {r} A.3.4.3.

Ri 13.4.2.

§_e_s_ 13.3.4.

Q 13.3.3.
s B.6.l.

gp_C Int.3, TNI.
_s_§t_ A.3.5.4.

§£, _S_t_:� A.3.5, A.4.4.

Start B.4.2.

E3, §t:<e_pi 3.4.3.

E3; A.2.3.
Selected B.2.2, B.4.3.



gggz 3.5 2

 B 0
gggho B O

2

Subordinated B.2.2.

T, T¢ P.4.
tail P.4.

IEQF B.4 3
U P.4

Uk B.l l

wl 3.4, B.6.l.

_W£ P.3, A.3.4.3.
Z 13.6.].

p A.3.5.l, A.4.4, 3.1.0.

v (counting propositional letters) B.0.

v (enumerating an urmodel) B.6.3.

Index of special smbols

[T], [&I], [&Ei], [+1], [+3], Evli], [v3], [1] A.l.l.
[TE], [FE], [VI], EVE], [31], [BE] A.1.l.

[V21], [V2E] 11.4.1.

[33]], [3E*] 3.3.1.3.
[R] A.3.2.

L 3.1.1, A.1.1.
o

7&#39;] A.1.2.
<>, *,�<, ( )i, 1, :2, e, 1}, 11¢, a 3.4.
(n)l A.3.4.1.

x(j) 3.5.4. (vi)
(vli) B.4.3.

(STE) A.4.3.

H ] A.4.6.1.

|¢| A.3.5.1

¢�,¢[g] A.3.2.
»> A.3.5.5.
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1=�, 1==; A 3 3
[=32 [= A.3.3.5.

&#39;,=1, 1:: A.3.4.4.
nJ n_k _||�, |[� , |[� A.3 5, A 4 4

1c, Icd 13.4 8 1

Index of metamathematical operations

p¢�u, s¢�u, §é�u, F¢�u A.3.2.

pd�u, sd�u, §¬�u, Fd�u B.2.1.

Ed�, 33��, ud�� B.2.2
EE 13.3.2.2.
FE B.1.l.2.

E2, 12* B 3 1 1
BE[w], sE[w] B 3 1 1

5* A.4.6 2

T+ A.l 2

TC P 2

G�, Ge, N , Ge�Ne B 6 3




