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Chapter 1

Introduction

The actual �use� of modal logics in �elds like distributed systems, computational lin-
guistics, and program veri�cation has given rise to new questions in the �eld of modal
logic itself. For instance, though a logician might be satis�ed by knowing that a logic
is decidable, a typical �user� might want more precise information, e.g., how decidable
that logic is, or, in other words, what the complexity of the provability problem for the
logic is. The literature contains many results about the complexity of modal logics. How-
ever, all these results are on the complexity of speci�c, ��xed� logics, and, for each new
logic, the complexity has to be discovered and proven anew. In this thesis, we develop a
theory of the sources of complexity in modal logics�by identifying speci�c features that,
when possessed by a logic, ensure or preclude a certain level of complexity for the logic�s
provability problem.

In �traditional� modal logic, there are a number of results showing decidability, com-
pleteness, and the �nite model property for large classes of logics (see for instance [Fin85,
Zak92]). Perhaps the easiest example of this phenomenon is Bull�s theorem: all the (un-
countably many) S4.3 extensions have the �nite model property (and are decidable). In
the next chapter we prove the following complexity analog of Bull�s theorem: the sat-
is�ability problems for all S4.3 extensions are NP�complete. This theorem is proven by
a straightforward adaptation of Fine�s proof of Bull�s theorem [Fin72]. Its importance
lies in the fact that it shows that general theorems on the complexity of modal logics
exist. Looking at constructions used to prove decidability or the �nite model property
often leads to non�trivial upper bounds on the complexity of the satis�ability problems.
These upper bound results, however, are restricted to uni�modal logics, though �useful�
modal logics are usually multi�modal. Unfortunately, this situation is much more complex
than the uni�modal case, and only recently has some progress been made towards prov-
ing general theorems for the multi�modal case. These theorems�called transfer theorems
in [FS]�are of the following form. Suppose we have a collection of logics and we construct
a new logic from these logics; we say that a property transfers if the resulting logic has
this property whenever all logics in the collection have this property.

The simplest instance of this phenomenon is the following. Given two uni�modal
logics with different modal operators, consider the smallest (bi�modal) logic that con-
tains both uni�modal logics. Such a construction is called the (independent) join, also
known as bimodal sum or fusion. Joins inherit many properties from their uni�modal
fragments: decidability, the �nite model property, and (strong) completeness all trans-
fer [FS, KW91]. However, it is in general not the case that upper bounds transfer. A
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2 CHAPTER 1. INTRODUCTION

counterexample (under the assumption that NP 7é PSPACE) is given by the join of two
S5 logics, since S5 satis�ability is NP�complete [Lad77], though S5 EB S 5�satis�ability is
PSPACE�complete [HM85]. On the other hand, the join does not always increase the
complexity, as the satis�ability problems for K and K 63 K are both PSPACE�complete
([Lad77, HM85]). In chapter 3, we show that under reasonable conditions upper bounds
containing PSPACE transfer. In addition, we completely characterize what happens with
the join of two sub�PSPACE logics.

Multiprocessor systems are often modeled in the literature by the independent join.
However, if we want to make global statements about the system, we need more expressive
power. One of the simplest ways to do this is by enriching the language with the universal
modality [u], with the semantics: [u]q5 is true iff ¢$ is true in every world of the model.
Another auxiliary modality that occurs in various guises in the literature is the re�exive
transitive closure. This modality occurs, for instance, in temporal logic, as the �always�
operator is the re�exive transitive closure of the �nexttime� operator, and in logics of
knowledge, where �common knowledge� is de�ned as the re�exive transitive closure of
the S5 logics that model the processors.

Chapter 4 is devoted to the complexity of these two extensions. We show that, in
contrast to the join, decidability does not transfer to the enriched versions, even if we add
a number of extra restrictions. In fact, the complexity of the satis�ability problem can
jump from NP�complete to highly undecidable. Fortunately, this is not always the case:
Halpern and Vardi�s multiprocessor system with common knowledge [HV89] is (only)
EXPTIME�complete. In chapter 4, we show that it is impossible to do better than that:
except in some very trivial cases, adding the universal modality or the re�exive transitive
closure always forces EXPTIME�hardness.

It is clear that much work remains. The last two chapters give some idea of the
tremendous task that lies ahead: we will look at the complexity of various complex logics
that occur in computational linguistics (chapter 5) and distributed systems (chapter 6).

Computational Linguistics Attribute Value Structures are probably the most widely
used means of representing linguistic structure in computational linguistics, and the pro-
cess of unifying Attribute Value descriptions lies at the heart of many parsers. As a
number of researchers have recently observed, the most common formalisms for describ-
ing AVSs are variants of languages of propositional modal logic. Furthermore, testing
whether two Attribute Value descriptions unify amounts to testing for modal satis�a�
bility. In chapter 5, which is based on joint work with Patrick Blackburn [BS], we put
this observation to work. We study the complexity of the satis�ability problem for nine
modal languages which mirror different aspects of AVS description formalisms, including
the ability to express re�entrancy, the ability to express generalizations, and the ability
to express recursive constraints.

Distributed Systems Recent work has shown that modal logics are extremely useful
in formalizing the design and analysis of distributed protocols. Halpern and Vardi [HV89]
unify current formalisms for reasoning about knowledge and time, and prove the complex-
ity for all cases corresponding to different choices of knowledge operators and different
assumptions made about the distributed system. In the cases of most interest to dis-
tributed systems, the validity problems for the logics modeling these systems are highly



undecidable��in fact, H%�complete. Since this is a situation we want to avoid, it is es-
sential to determine what causes this complexity. The H}hardness proofs of Halpern and
Vardi [HV89] rely heavily upon the presence of various temporal operators, and in that
paper it is conjectured that reducing the temporal expressive power decreases the com-
plexity of the corresponding validity problem. However, in chapter 6, based on [Spa90],
we show that this is not the case�even restricting the temporal operators to just the
�always� operator is not enough to defy Hl�completeness.

These results provide evidence that undecidability is caused not by having a fancy
set of operators, but rather by the ability to express generalizations in combination with
certain assumptions of the models. For example, in the logics for distributed systems
mentioned above, undecidability is caused by assuming that processors never forget.
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Chapter 2

Modal Logic and Complexity

2.1 A Bit of Modal Logic

Syntax The language £(I,�P) is a language of propositional modal logic with an I
indexed set of modal operators, and a set �P of propositional variables. Unless explicitly
stated otherwise, we assume that 79 is in�nite. When I and/ or 73 are clear from context,
we write C(73), £(I) or £. The set of E formulas is inductively de�ned as follows:

0 p is an L formula for every p E "P,

o if o and 1/) are E formulas, then so are -uq� and o /\ 112,

o if o is an E formula, and a E I, then [a]¢ is an L formula.

We de�ne the other Boolean connectives V, �>, <�>, T and J. in the usual way. In addition,
we de�ne (a)¢ := -u[a]-uq� for each a E I. (If |I| = 1, we sometimes use |I| and O.) The
choice for basic operators is always arbitrary, and no choice is best under all circumstances.
In particular, in inductive proofs on models, it�s often more convenient to View (a) as the
basic modal operator instead of [a].

For the remainder of this section, we assume that £(I, �P) is �xed. For o a formula, we
de�ne the size of gz� as the length of o as a string over alphabet IU�PU {(, ), A, -u, [,  The
modal depth of q� is the nesting depth of modal operators, and the closure of q�, denoted by
Cl(q5), is the least set of formulas containing gz�, and closed under subformulas and single
negations, i.e. if 1/) E C&#39;l(¢) and 1b is not of the form -:5, then -nib E Cl(¢). Since the
number of subformulas of gz� is at most the size of gz� (for every connective and proposition
letter in o corresponds to a subformula of o and vice versa), the size of Cl(q5) is at most
twice the size of q�. To ease notation, we often identify double negations, i.e. -I-rd) is
identi�ed with 1/1.

Semantics An I frame is a tuple F = (VV, {Ra}aE1) where W is a non�empty set of
possible worlds, and for every a E I, Ra is a binary relation on W. The class of all I
frames is denoted by Fr]. For 0 a string over I, let RU stand for R,,,R(,2 - - -RUM; R,\ is
the equality relation.

If wR,w� for some string 0, we say that w� is reachable from w. A frame F is rooted
at we if every world 11) is reachable from wo. We call wo the root of F.

5



6 CHAPTER 2. MODAL LOGIC AND COMPLEXITY

An L model is of the form M = (W, {R,,},,¬I, 7r) such that (W, {R,,},,¬I) is an I frame
(we say that M is based on this frame), and 7r : 79 �> P0w(W) is a valuation, i.e. w E 7r(p)
means that p is true at 11). For ¢ an L formula, we�ll write M, w |= gz� for q� is true /satis�ed
at w in M. The truth relation )= is de�ned with induction on ¢ in the following way:

o M,w|=piffwe7r(p)forpe73,

o M,w |=�I(;5iffn0t (M,w |=qS),

o M,w|=gz5/\1/1iffM,w|=q5and M,w|=1/1,

o M,w |= [a]¢iffVw� E W(wR,,w�=>M,w� )=q5).

For A a set of formulas, we write M,w )= A if M,w )= Q3 for all q� E A. The size of a
model or a frame, denoted by | - | is the number of worlds in the model or frame.

The notion of truth can be extended to models and frames in the following way: q� is
true in model M (M )= q3) if M, w )= q3 for every world w in M; gz� is valid in frame F
(F |= go) if M )= ¢$ for every model M based on F. For A a set of £(I) formulas, F7"(A)
is the set of all I frames F such that F |= A.

In the same way, we can extend the notion of satis�ability: Q3 is satis�ed in M if
M, w |= q� for some world w in M, and c3 is satis�able in F (F satis�able) if ¢ is satis�ed
in M for some model M based on F.

We usually look at satis�ability and validity with respect to a class of frames f instead
of a single frame or model. gz� is valid in .7: (.75 )= q�) if F )= ¢ for every frame F E .7-", and
gz� is satis�able with respect to .7-"/.7-" satis�able if ¢ is satis�able in some frame F E .73.

The central problem of this thesis can then be formulated in the following way:

What is the complexity of .75 satis�ability?

Before we make precise what we mean by complexity, we �rst describe some useful
constructions on frames and models.

Restrictions A technique that is often used in upper bound proofs is restricting the
size of satisfying models and frames.

For F =/(\VV, {R/,,\},,E1A) a frame, and W Q W, we de�ne th<jrameF in the ollious
way, i.e. F|W = (W, {R,,},,¬;) where Ra = R,,|W = R, D (W X W). If F = F|W for
some W, we call F a subframe of F (and F a �iperframe of  Similarly, for a model
M = (W,/;[R,,},,¬I/,\7r) and W g W, let M|W = (W, {R,,|W},,¬I, 7?) where mp) = 7r(p)�W.
We call M = M|W a submodel of M.

It is obviously not the case that submodels preserve satis�ability. However, if W is
closed under all accessibility relations (i.e. for all 13 EA W : &#39;@R,,w => 11) E W), then for
all formulas q� and all worlds w E W: M ,w )= ¢$ iff M, w )= q�. We call subframes and
submodels that satisfy this additional requirement generated subframes and submodels.

Generated submodels preserve satis�ability for all formulas. If we are only interested
in preserving satis�ability of one speci�c formula in one speci�c world, we can restrict the
set of worlds more drastically. For suppose for example that M, we |= (1)((2)p /\ �v(1>q).
Then we can safely remove all worlds that are not reachable by RA, R1, R12 or R11. We�ll
de�ne paths(¢$) as the set of relevant strings over I. In the example above, path3(¢) =
{)\, 1, 12, 11}. Formally, for gz� a formula, de�ne paths(¢) as follows:
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0 Path3(P) = {A}

0 path3(-11,12) = paths(1/1)

0 path3(7,Z) /\ E) = paths(7,Z)) U paths(f)

0 path3([a]1/1) = {A} U {ao|o E path3(1/1)}

It is easy to see that for any model M = (W, {R,,},,E1, 7r), world we 6 W and formula
o5 the following holds:

M, we E o ¢> M|W,w0 E o, where W = {w|w0R,,w for some 0 E paths(w)}.

For uni�modal logics, W has a particularly easy form:

W = {w|w0R�w for some 71 3 the modal depth of go}.

P-morphisms Given L models M = (VV, R1,7r) and M� = (W�, },7r�), we say that f
is a p�morphism from M onto M� if the following hold:

o f is a map from W onto W�,

o if wR,,w� then f(w)Rf,f(w�),

o if f(w)R�,w� then wR,,u for some n E W such that f(u) = w�, and

° W?) = {&#39;w|f(&#39;w) E 7T�(P)}-

If the �rst three conditions are ful�lled, we say that f is a p�morphism from (I/V, RI)
onto (W�,R}). What good are surjective p�morphisms? They provide an immediate
equivalence between models, in the sense that for all formulas go and all worlds w E W:
M, w E o iff M�, f (w) E ct. It follows that surjective p�morphisms preserve validity: if
(W, RI) E q�, then (W�, R}) E q�.

Logics The semantical approach given above is the usual way to de�ne applied modal
formalisms. An alternative de�nition is provided by the axiomatic approach. We will
treat this approach here as well for the following reasons. First of all, an axiomatization
can give extra information about the modal formalism. Furthermore, many theorems
from modal logic that we will use are formulated in terms of logics rather than classes of

frames. 
     
     A normal modal logic in L is a set L of L formulas such that:

o L contains all propositional tautologies,

o L is closed under substitution,

0 [a](p �> (1) �> ([a]p �> Mg) 6 L for all a E I,

o L is closed under modus ponens, i.e. if o and o �> 1/; are in L, then so is 1/1,

o L is closed under generalization, i.e. if q� E L, then so is [a]q5.

,5 is L consistent if -uo� not in L. A set A is L consistent if for every �nite A� Q A, the
formula /\¢¬A, go is L consistent.
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The canonical model For L a logic, de�ne the canonical model M C = (WC, {R§},,¬I, 7r�)
Where:

0 W� consists of all maximal L consistent sets,

0 (F, A) E R2 iff for all formulas ¢$, if [a]<;5 E I� then gz� E A,

° 7T(p) = {A E Wclp E A}-

This de�nition ensures that ME, A )= o iff gt 6 A. It follows that every L consistent set A
is satis�able in a model for L. If Mi is based on an L frame, we call L a canonical logic.

Completeness For E a language, L an L logic and .7-" a class of L frames:

0 L is complete with respect to .7-" if F )= L for all F E .7-", and and if q� ¢ L then -no
is .75 satis�able. In this case, L consistency = .7-" satis�ability, and we often write L
satis�ability for L consistency.

o L is strongly complete with respect to .7: if F )= L for all F E .7-", and for all L
consistent sets A: A is .7-" satis�able.

We say that L is (strongly) complete if L is (strongly) complete with respect to some
class of frames (which holds iff L is (strongly) complete with respect to Fr(L)). Note that
any canonical logic L is strongly complete. Not every logic is complete, but every class of
frames .7-" corresponds to the (complete!) logic {¢|.7-" |= a5}. We use the logic terminology
on classes of frames: for instance, we will say that .7-" is strongly complete if the associated
logic is strongly complete.

Some Examples K is the minimal normal uni�modal logic, and, since any frame is a
frame for K, K is canonical. Adding extra axioms gives us the following canonical logics:

Name Axioms Frames

T K + Up �> p R is re�exive
34 T + Elp �> E|E|p R is re�exive and transitive
S 5 34 + <>|Z|p �> p R is re�exive, transitive and symmetric
S4.3 S4 + l�I(I�|p �> l�|q) V l�I(I�|q �> Flp) R is re�exive, transitive and connected.

The �nite model property A logic L has the �nite model property (fmp) if every L
consistent formula gt can be satis�ed on a �nite L model. It is well known that this implies
that L is complete with respect to a class of �nite frames, thus we will also refer to this
notion as the �nite frame property. The �nite model property is useful in the context
of complexity, for every �nitely axiomatizable logic with the �nite model property is
decidable.

Since we are interested in re�ning the notion of decidability, it is natural to re�ne the
notion of �nite frame property: we say that L has the s(n)�3ize frame property if every L
consistent formula a5 is satis�able on an L frame of size at most s(n) where n is the size
of the formula. (Note that this implies that L has the �nite model property.) If L has
the p(n)�size frame property for p a polynomial, we say that L has the poly�sz&#39;ze frame
property.
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From [Urq81], we know that the �nite model property does not imply decidability. We
will use similar methods to show, as a �rst example of the complexity reasoning that will
be used in this book, that even the poly�size frame property does not imply decidability.

Theorem 2.1.1 There exists a uni�modal logic L such that L has the poly�size frame
property, but L is undecidable.

We show that there exist a continuum of uni�modal logics with the poly�size frame
property. Since we work in a �xed countable language, only countably many of these
logics can be decidable, and the theorem follows. Showing the existence of a continuum
of logics with a certain property sounds more scary than it is, for we can translate the
requirements to a countable number of logics (cf [Fin74]). In the sequel, we will de�ne
classes of uni�modal frames {.7-",},¬N such that the following two conditions are ful�lled.

o For each 21 there exists a formula gt, such that gt, is .75, satis�able, but gt, is not .75,
satis�able for any j 7é 2, and

0 there exists a fixed polynomial p such that for every 21 .75, has the p(r2)�size frame
property. (Note that this is stronger than requiring that every .7-", has the poly�size
frame property.)

If we can de�ne {.7-",},¬N in this way, then for every X Q N, let .7-"X = U,¬X .7-",. All
these classes de�ne distinct logics. For suppose X, Y Q N and X 7é Y. Assume that X is
not a subset of Y, and let 2) E N be such that 2 E X, and 21 ¢ Y. Then gt, is TX satis�able,
since T, Q .7-"X. But qt, is not 7-} satis�able, since gt, is not  satis�able for any j E Y.

Furthermore, for all X Q N, 7-}; has the poly�size frame property. For suppose gt
is .7-"X satis�able. Then gt is .73, satis�able for some 2 E X. By the construction, gt is
satis�able on an .7-", frame of size at most p(n) for n the size of the formula.

It remains to construct the classes .7-",. All frames we use in the construction will be
�nite, rooted, linear and intransitive. Formally, let .7-",,,, consist of all frames (VV, R) such
that W = «[2110, . . . ,w;,}, and for 2 75 j, w,Rwj if and only ifj = 2+ 1. Thus, an .7-",,,, frame
is completely determined by its size and its set of re�exive worlds.

Though this is a very restricted class, it suf�ces for out purposes. For 2&#39; Z 1, de�ne .7-",
as the class that consists of the following frames:

o All .7-",,,, frames such that the last world is re�exive,

0 all .F,,,, frames such that all worlds are irre�exive, and

o the frame F,: the .7-",,,, frame of size 2+ 1 such that the root is the only re�exive
world.

And let qt, be the following formula: 
     
     gt, = p /\ <>p /\ <>(-up /\ <>i_1E|J_).

We claim that these classes of frames and these formulas ful�ll the two conditions

given above. First we show that gt, is satis�able in F,, and not satis�able on any .73, frame
for j 7E 2&#39;. It is immediate that gt, is satis�able in the root of F,, letting 7r(p) = {we}.
Next, let F be a frame in .73, for j 7é 23. We show that gt, is not F satis�able. There are
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o F is an .7-&#39;11,, frame that ends with a re�exive world. Then every world in F has a
successor, and therefore no world can satisfy |Z|J_. But satis�ability of ¢,~ implies
satis�ability of |Z|J_. It follows that ¢,~ is not satis�able on F.

o F is an .7-&#39;11,, frame where all worlds are irre�exive. Then every world in F has at
most one successor. But if gz5,~ is satis�ed at some world w, then w satis�es <>p/\<>-up,
which implies that w has at least two successors.

o Finally, suppose that F = F], and suppose that $1 is Fj satis�able. Let Mj be the
model based on F], and w a world such that M,~,w )= ¢,~. Then w must have at
least two successors. By the form of F], w is the root we of  Since Mj, we |= p,
and w1 is the only other successor of we, it follows that Mj, w1 )= <>"�1|ZIL. But if
j < 2, no world is reachable in 2 � 1 steps from w1, and if j > 21, then the only world
reachable in 2 � 1 steps from w1 is w,~. But w,~Rw,~+1, and thus M,~,w,~ bé E|J_. It
follows that Mj, w1 bé <>"�1|Z|J_, which contradicts our assumption.

Finally, to show that the second condition is ful�lled, let ¢ be an .73, satis�able formula.
We will show that ¢ is satis�able on a frame in .73, of size at most 222 + 2 for m the modal
depth of q�. First of all, it is easy to see that .73, is closed under generated subframes. Thus,
we may assume that ¢ is satis�able at the root we of some frame F E .7-",~. If  3 m + 2,
then we are done. So suppose that we, w1, . . . , wm, w,,,+1 and w,,,+2 are worlds in F. Since
m is the modal depth of q�, ¢$ is satis�able in we on the frame F|{we, . . . ,w,,,}. Let G be the
.7-&#39;11,, frame with m + 2 worlds such that the last world is re�exive, and G|{we, . . . ,w,,,} =
F|{we, . . . ,w,,,}. Then G satis�es ¢ at we, and |G| = m + 2. Furthermore, G is a frame
in .7-",~, since the last world in G is re�exive. CI

2.2 A Bit of Complexity

For a class of I frames .7-", we investigate the complexity of .75 satis�ability, i.e. the com-
plexity of the following problem:

Given a formula q�,

Question Is gz� .7: satis�able?

This might look like a proper de�nition of the problem, but it isn�t. First of all, the
problem depends on the choice of the set �P of propositional variables. Secondly, ¢ is a
string over the in�nite alphabet I U �P U {[,],/\,-I}. We can solve the second problem
by requiring that �P and I are given as strings over a �nite alphabet. But this leads to
strange behavior, for if 79 is given in unary, propositional satis�ability over this set is in
P. Another possibility is to �x the set of propositional variables. Although this certainly
solves many problems, we want to be free to use different sets of propositional variables
in the constructions. The solution we take here is the following: we encode set �P as
p1, P2, p3, . .. (where p, is encoded as p followed by 2 as a binary string).

The problems with I are more complex. In this section, we will assume that I is �nite.
The problems encountered when I is in�nite will be discussed in section 3.5.

Complexity is usually measured as a function of the length of the input. But what is
the length of a formula? Usually, we mean the size of the formula, i.e. the length over the
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in�nite alphabet. However, the actual length of the input is the length of the encoding.
By the approach taken above, this is not a tremendous problem: if we replace the i�th
variable in a formula ¢ by pi, the length of the encoding of q�, denoted by |q5| is at most
nlogn for n the size of q�. Similarly, the length of the encoding of a model or frame is
polynomial in the size (i.e. the number of worlds) in the structure. In the sequel, We will
only consider complexity classes that are oblivious to these differences.

Let�s move on to some complexity examples. We assume that the reader has at
least a basic acquaintance with complexity classes like P, NP, PSPACE, EXPTIME etc.
Completeness (not to be confused with the earlier de�ned notion of modal completeness!)
and hardness are de�ned by means of polynomial time many�one reductions. For basic
de�nitions see for example [BDG88]. In the proofs of the complexity of modal satis�ability
problems, we often use that the following problems are in P. Checking if a formula is
satis�ed on a given model:

Given A �nite model M, a world 11) in M, and a formula gz�,

Question Does M satisfy gz� (at w)?

And frame membership for a �rst order de�nable class of frames .7: (cf. [Imm87]):

Given A �nite frame F,

Question F E .73?

NP

Since all consistent normal modal logics are conservative extensions of propositional logic,
it follows that all satis�ability problems considered are NP�hard. There do exist NP-
complete satis�ability problems for non�trivial modal logics. As an example, we prove in
detail that S5 satis�ability is in NP ( [Lad7 Recall that S5 satis�ability is satis�ability
with respect to re�exive, symmetric and transitive frames. We show that every S5 satis-
�able formula ¢ is satis�able in an S5 frame of size at most m + 1 where m is the number
of modalities in q�. This implies that S5 satis�ability is in NP, since for any formula q�,
gz� is S5 satis�able iff there exist a model M of size at most m + 1, and a world w in M
such that M is based on an S5 frame and M, w |= q�. As the number of modalities in gz�
is obviously less than the length of q�, and verifying that M satis�es gz� is in P, it follows
that S5 satis�ability is in NP.

It remains to show that every S5 satis�able formula gz� is satis�able in an S5 frame
of size at most m + 1, where m is the number of modalities in q�. Let M = (VV, R, 7r)
be a model based on an S5 frame, we 6 W a world such that M, wo )= q�. We suppose
that M is generated. For every <>z[2 subformula of q�, either M ,w )= 01/1 for all 11) E W,
or M,w bé <>1/1 for all 11) E W. Let <>w1,<>w2, . . .,<>i[2k be all <> subformulas of gz� that
are satis�ed in M. Note that k is at most m, the number of modalities in q�. For each
71, let E, be a world such that M, w, |= 1/1,, and let M = M|{w0,w1, . . . ,wk}. We claim
that M, we |= q�. This proves that gz� is satis�ed on an S5 frame of size at most m + 1 as
required. To prove that M, we |= q�, we show with induction that for all 1/; E Cl(¢), and
all 2&#39; < k:
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The only non�trivial step is for 01/1. First suppose that M, w, |= <>1/1. Then 1/; = 1/zj for
some j 3 It. By de�nition, wj was chosen in such a way that M, wj |= 1/1]; By induction,
II/I, wj )= 1,12,, and thus II/I, w, )= <>1,[)j. On the other hand, if IT/I,w,~ )= 01,12, then IT/I,w,~ )= 1,1)
for some j 3 Is, and therefore M, wj |= 112, which implies that M, w, |= <>z[2. This completes
the proof of the NP upper bound on S5 satis�ability.

Many proofs of NP upper bounds for satis�ability problems proceed in a similar way,
i.e. by showing that

0 .7: has the poly�size frame property, and

o membership in .7-" can be determined in polynomial time.

In section 2.4, we will use this proof method to obtain NP upper bounds for an in�nite
number of modal logics. Other examples of NP�complete modal satis�ability problems
can be found in e.g. [ON80].

Though the two conditions given above imply that .7-" satis�ability is in NP, it should
be noted that the converse does not hold. For a trivial counter�example, let .7-" consist of
all frames (W, W X W) such that  E A for A an undecidable subset of N. Then .7:
satis�ability = S5 satis�ability. But membership in .7-" is undecidable, since A is reducible
to this problem. On the other hand, we know from theorem 2.1.1 that the �rst condition
is not suflicient.

PSPACE

PSPACE is the complexity class most associated with modal logic. First of all, for any
index set I 75 (7), satis�ability with respect to all I frames is PSPACE�complete, and
so is satis�ability with respect to all tense frames (frames of the form (I/V, R, R�1)). In
addition, the corresponding satis�ability problems with respect to all re�exive and/or
transitive frames are PSPACE�complete as well. (see [Lad77] for the uni�modal case,
[HM85] for the multi�modal case, and [Spa] for the tense case).

In this section, we review some results for uni�modal logics. The relation between
multi�modal and uni�modal cases is the subject of chapter 3. We �rst review Ladner�s
proof of the PSPACE upper bound for K satis�ability. After this, we formulate some
consequences of Ladner�s PSPACE�hardness proof that we will use in the next chapters.

K satis�ability is in PSPACE To prove the PSPACE upper bound of K satis�ability,
de�ne a recursive function K�WORLD(A,E) (a slight variation of Ladner�s procedure
K �WORLD). For A and 2 sets of formulas, and 2 closed under subformulas and single
negations, K �WORLD(A, 2) will be true iff A is a maximal K satis�able subset of E, i.e.
iff there exists a model M and a world w such that for all 1/) E Z : (M, w )= 1/1 ¢> 1/1 E A).
This function can then be used to solve K satis�ability, since ¢ is K satis�able iff there
exists a set A Q Cl(¢) such that ¢ 6 A and K�WORLD(A, Cl(qS)) is true.

For A and 2 sets of formulas, 2 closed under subformulas and single negations,

K�WORLD(A, 2)
iff

o A is a maximally propositionally consistent subset of E, i.e.
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�¢eA:¢e& 
     
     �%¢eA@ww¢A�m<weE 
     
     - (1/11/\1/12EA<=>v,Z)1EAandv,Z)2EA)for1/11/\1/1g¬E,and

o For each subformula <>1/1 E A there exists a set Ad, such that

�¢eAW 
     
     � �v�{(|Z|{ E A => 5 E A.,,), and
� K �WORLD(A¢, E� ), where E� is the closure under subformulas and single nega-

tions of the set {{||Z|{ E 2}.

That K �WORLD is correct can be proved by induction on the size of Z. We won�t go
into the details of the proof here. Note that for the induction to go through, we need to
show that |E� | <  It is immediate that E� Q 2. Since the maximal modal depth of a
formula in Z� is less than the maximal modal depth of a formula in X}, it follows that E�
is a strict subset of E.

For any formula q�, ¢ is K satis�able iff there exists a set A Q Cl(¢) such that o E A
and K �WORLD(A, Cl(gzS)) is true. All subsets encountered in the execution of K �WORLD
are subsets of C&#39;l(¢), and each subset of C&#39;l(¢) can be represented in space O(|¢|), by using
pointers to a copy of the formula. (Note that every connective and proposition letter in
gz� corresponds to a subformula of q� and vice versa.) Therefore, at each level of recursion,
we use space  After m recursive calls, for m the modal depth of q�, Z = (7). It
follows that the recursion depth is bounded by m, and therefore certainly by  The
total amount of space used to determine K satis�ability of ¢$ is therefore O(|¢|2).

It might seem that K-WORLD is of a non�deterministic nature, since it contains
the phrase �For each subformula Oil) 6 A there exists a set A,,, such that. . . .�1 Since
PSPACE = NPSPACE [Sav70], this doesn�t matter if we are just interested in proving
that K satis�ability is in PSPACE. For a more precise bound however, note that this part
can be executed by a deterministic machine using space O(|¢|): cycle through all subsets
of Cl(¢) and for each set check if the set ful�lls the conditions. If so, K �WORLD is true.
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For L a logic between K and S4, f,;,, is a reduction from QBF to L consistency, since
if A E QBF, then fL,,(A) is 34 satis�able, and therefore f,;a(A) is L consistent, and if
fL,,(A) is L consistent then fLa(A) is K satis�able, and hence A E QBF. It follows that
L consistency is PSPACE�hard, and, since PSPACE is closed under complementation, L
provability is PSPACE�hard.

We won�t go into the details of the proof here. To prove PSPACE�hardness of other
logics, we can of course try to adapt the reduction method given above. This often works,
but leads to lots of duplications. What we look for in this section is a simple criterion
that tells if for a class of frames .7-", .75 satis�ability is PSPACE�hard by Ladner�s method.
We do not claim that we derive strongest criterion possible. Rather, we look for a good
complexity/ generality trade�off. We need the following observation: Ladner�s method
can be used if .7-" can simulate binary trees. Formally, let the binary tree of depth n be a
frame (WT, RT) such that WT = «[0, . . .,2"+1 � 2} and RT =  2i + 1), (i, 2i +  (i.e.
(WT, RT) is the full irre�exive, asymmetric, intransitive binary tree, with distance n from
root to leaf). De�ne depth(i) as [log(i + 1)], i.e. the distance from the root. Inspection
of Ladner�s reduction shows that the following hold:

o fL,,(A) is of the form ¢1 /\ /\;�:0 l:li¢2, with (t1, d2 of modal depth 3 1,

o if A E QBF then fL,,(A) is satis�able in the root of the binary tree of depth n.

o if fLa(A) is satis�able then A E QBF.

This observation leads to the following PSPACE�hardness criterion.

Theorem 2.2.1 Let £(I) be a language and .75 a class of I frames. If there exists a
polynomial time computable function f such that for all uni�modal formulas Q3 of the form
Q51 /\ /\;�:0 Elzq�g, with <;51,¢2 of modal depth 3 1 the following holds:

0 f(¢) is an L�. formula,

0 ifg� is satis�able in the root of the binary tree of depth n, then f(¢) is satis�able in
an .75 subframe,

0 if f(gz5) is satis�able, then a5 is satis�able.

Then every set of £ formulas between .7: satis�ability and Fr; satis�ability is PSPACE-
hard.

Proof. First suppose that .7-" is closed under subframes. Let C be a set of E formulas
between .7: satis�ability and Fr; satis�ability. We�ll show that f - f,-4,, reduces QBF to C,
which implies the theorem. First suppose that A E QBF . Then f,;a(A) is of the form
q51 /\ /\§�:0 l:li¢2, with gzS1,¢2 of modal depth 3 1, and fL,,(A) is satis�ed in the root of the
binary tree of depth n. It follows that f ( fL,,(A)) E .75 satis�ability, and thus in C. For
the converse, suppose that f ( fL,,(A)) E C. Then f ( fL,,(A)) 6 Fr; satis�ability. It follows
that fL,,(A) in K satis�ability, and therefore A E QBF.

This proves the theorem for the special case that .75 is closed under subformulas. To
prove the general case, let pf be a new propositional variable and de�ne function g as
follows:

9(9) = P; 9(*¢) = u9(¢); 9(¢ /\ 1/�) = 9(¢) /\ 9(@/�)S 9([a]¢) = [a](Pf �> 9(¢))-
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It is immediate that g is polynomial time computable, and it follows by straightforward
induction that for all models M and M = M|{w E M|M, w |= pf}

ziw |=¢iffMuw eyes).

This implies that pf /\ g- f - fL,, is a polynomial time comoputable reduction from QBF to
C as required. El

We will use this theorem to prove PSPACE-hardness for two uni�modal examples. In
the next chapter, we�ll turn our attention to multi�modal logics. The theorem can roughly
be stated as follows: if .75 can simulate binary trees, then .75 satis�ability is PSPACE�hard.

A PSPACE-hardness example Let .75 be the class of frames such that every world
has at most two 2�step successors. We use theorem 2.2.1 to show that .7-" satis�ability is
PSPACE�hard. Let MT = (WT, RT, 7rT) be such that (WT, RT) is the binary tree of depth
n, and MT, 0 |= q�. Binary trees can be simulated by .75 frames if we use R2 as edges in
the tree. De�ne the corresponding model M = (W, R, 7r) as follows:

0 W = WTU  6 WT}

° R : {<2-77;�): <7;I7j>|Z-RTJI}

° 7T(p) = 7TT(p)

It is immediate that for all 71, j 6 WT, 7IRT j iff z&#39;R2 j . Furthermore, if 7§R2w, then w 6 WT.
Now it is clear how the reduction should be de�ned: just replace every occurrence of III
by EHZI. Formally, de�ne f inductively as follows:

f(P) =19; f(u1/1) = uf(%/I); f(¢1 /\ 1&2) = f(%/>1)/\ f(%/>2); f(D1/>) = DDf(1/1)-

It is immediate that f is polynomial time computable. With induction, it is easy to prove
that for all formulas Q3, and for all i 6 WT,

Mai l=¢i1�fM,%&#39; |=f(¢)

For propositional variables, this follows from the de�nition of 7r. The cases for 1/2 and
1/11 /\ 1,122 follow immediately from the induction hypothesis. Finally, look at the case where
q� = <>1/1. First suppose that MT,7I |= <>rZ). Let j be such that iRTj and MT,j |= 112.
Then, by de�nition, z&#39;R2j, and by induction, M, j )= f Therefore, M ,i |= <><> f (1/1) as
required since <><>f(1/1) = f(<>1/1).

For the converse, suppose that M,z&#39; )= f(<>1/1), i.e. M,z&#39; |= <><>f(1/1). Let w be such
that z&#39;R2w and M ,w )= f By de�nition of R, w 6 WT and z&#39;RTw. It follows that
MT,w |= 1/1, and therefore, MT,7§ )= <>1/1.

This shows that f ful�lls the second requirement of the theorem. For the third re-
quirement, suppose that f (gz�) is satis�able. We need to show that ¢$ is satis�able as
well. Let M = (VV, R, 7r) be a model and we a world such that M, wo |= f(¢). De�ne
the corresponding model M = (W, FE, 7r) such that F = R2. It is immediate that for all
11) E W, for all formulas 1/1, M ,w )= f (1/2) iff M,w |= 1/1. This proves that .7: satis�ability
is PSPACE�hard. Note that in this case, we didn�t use the special form of the formulas
gs. 1:1
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PSPACE-hardness for S4 Let .7-" = Fr(S4). (Based on Ladner) Let (WT, RT) be the
binary tree of depth 71,. We want to simulate this tree by the binary re�exive transitive
tree of depth n. ((WT, R) where R is the re�exive transitive closure of RT). The problem
is how to simulate the edges of the tree. It is obvious that we can�t use R itself, since
R is transitive. However, it is certainly the case that for all 71, j 6 WT, if depth(j) =
depth(z&#39;) + 1, then 7§RT j iff z&#39;Rj. If we label each 71 6 WT by its depth, using propositional
vector depth 6 {0, . . . ,n} (that is, depth consists of logn propositional variables and each
assignment to these propositional variables is interpreted as an element in {0, . .
RT = {(z&#39;,j)|7IRj,M,z&#39; )= depth = d and M,j )= depth = d+ 1 for some d}. If we de�ne g

as follows: 
     
     g(EIv,[;) := /\ (depth = d �> |Z|(depth = d+ 1 �> g(1,[))))

0§d<n

Then for all formulas gt and all 2&#39;, MT,z&#39; )= q5 iff M ,2" |= g(q3). Unfortunately, g is not
polynomial time computable for nested modalities. If we unpack the de�nition of g(|:|1/1),
we see that g(1/1) occurs more than once at the right hand side of the de�nition, which
leads to exponential blow�up. Now, we make use of the special form of formulas. Let
gt = ¢1 /\ /\;�:0 Eligbg, for q�l and ¢2 of modal depth 3 1. We de�ne

TLms) = m /\  mm) = g<¢1>A /\ aim).
i=0

f is polynomial time computable and if MT, 0 )= (pl /\ /\§�:0 Iiligz�g, then MT, 0 )= ¢1 and for
all 2&#39; 6 WT, MT,z&#39; |= Q52. It follows that M,0 |= g(¢1), and M,z&#39; |= g(¢2) for all i 6 WT.
Therefore, M,z&#39; |= g(gzS1) /\ /\§�:0 |Z|ig(¢2).

For the third requirement, let M = (W, R, 7r) be a model and wo a world such that
M, we )= f De�ne the corresponding model M = (W, R, 7r) such that z&#39;Rj if and only
if 7§Rj, M,z&#39; )= (depth = d) and M,j )= (depth = d + 1) for some d. It is immediate that
for all w E W, for all formulas 1,1), M,w )= 1/1 iff M, w )= g(1/1), and therefore, M,w0 )= q�.
This proves that S4 satis�ability is PSPACE�hard. El

EXPTIME

What PSPACE is to (the join of) uni�modal logics, EXPTIME is to logics with more
expressive power. For instance, the satis�ability problems for the following propositional
logics are all EXPTIME�complete:

o PDL (Propositional Dynamic Logic): EXPTIME lower bound in [FL79], EXPTIME
upper bound in [Pra79].

In our notation, the language contains a modal operator for every regular expression
over some set of atomic programs. We look at satis�ability with respect to frames
with the additional requirement that: Ray; = RCYR5, Raw; = R0, U Rg, and Rm =
R: = UkeN R5-

o DPDL: Deterministic Propositional Dynamic Logic: lower bound in [Par80], upper
bound in [BHP82]. The language for DPDL is the same as for PDL. Additional
requirement on frames: for all atomic programs a, Ra is deterministic, i.e. for every
world 11), there is at most one world w� such that wR,,w�.
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0 Various logics for knowledge with an operator 0 for Common Knowledge [HM85].
The language contains m + 1 modalities: K1, . . . , Km and C, where K11/1 stands for
�processor 2&#39; knows that q�,� and Cq� for �q� is common knowledge.� All frames have
the restriction that RC = (R1 U- - -URm)*. EXPTIME�completeness has been shown
for:

� m 2 1 and all processors are K or T logics,

� m > 2 and all processors are S4 or S5 logics. (Note that adding common
knowledge for one transitive logic doesn�t add expressive power.)

(1o Branching Time logics [EH85]. Interpreted on trees, with operators like VIII: at
every branch in the tree,� and EIIZI: �at some branch in the tree.�

0 Various Attribute Value description formalisms with the ability to express general-
izations and recursive constraints [BS].

What all these logics have in common is the ability to make universal statements, e.g.
statements about what is true in all worlds in a model, or all reachable worlds, or in all
worlds that are reachable by a certain set of edges.

As an example, look at the bimodal language with modal operators El and [u], where
[u] is the so�called universal modality, with semantics M ,w |= [u]q5 iff M, w� |= ¢$ for
all w� E M. For a detailed discussion of the logical consequences of augmenting modal
languages with the universal modality we refer to [GP92].

Let FT[u] consist of all frames (W, R, Ru) such that Ru = W X W (We identify this
frame with (W, We will show that F711,] satis�ability is EXPTIME�complete.

EXPTIME upper bound Using methods similar to [Pra79] and [HM85] we sketch a
construction of a deterministic exponential time algorithm for FT[u] satis�ability.

Let S be the set of all subsets F of Cl(q5) that are maximally propositionally consistent,
and are closed under re�exivity of  that is, if [u]1/1 E F then 1/; is also in F. Suppose gz�
is satis�able in some model M. Let SM be the set of subsets of Cl(q5) that actually occur
in M, that is, SM = {F E S : M,w |= F, for some 11) E  Obviously, SM Q S, and
every element of SM contains the same  formulas. Let E Q Pow(S), consisting of all
S� Q S which are maximal with respect to:

VP, P� E S�,�v�[u]7,Z) E Cl(¢) : [u]1/1 E F <=> [u]1/1 E P�

If ¢ is satis�ed in M, then there exists a set S� E 2 such that SM Q S�. What can we say
about the size of 2? Since Cl(q5) contains at most 2|¢| elements, there exist at most 22"�
maximal sets S Q S ful�lling this condition. Since is is bounded by |qS|, the size of E is
exponential in the length of q�.

For every S1 6 Z, we will construct a sequence of sets S1 3 S2 3 S3 3  such that:
if ¢$ is satis�able in a model M, and SM Q S1, then SM Q S1 for all 71.

Suppose we have de�ned S1. Call a set F 6 S1 inconsistent if one of the following
situations occurs:

1. ("(1)1/1 E F, but for all P� 6 S1: 1/; ¢ F�, or

2. <>r[2 E F, but there is no F� E S, such that 1/) E F� and VIZIE E Cl(¢$)(|Z|{ E F => 5 E
F�).
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If there are inconsistent sets in Si, then we let Si+1 consist of all sets of Si that are not
inconsistent, otherwise, we can stop the construction, since o is satis�able iff o E F for
some set F 6 Si.

Since S1 is of exponential size, and Si+1 is strictly included in Si, the algorithm ter-
minates after at most exponentially many cycles. Determining which sets in Si are incon-
sistent takes polynomial time in the length of the representation of Si. Thus, for every
member of E, the algorithm takes at most deterministic exponential time. Since 2 is of
exponential size, we can determine if q� is satis�able in EXPTIME. El

EXPTIME lower bound: For the lower bound, we can use the same reduction as in
the lower bound proof for PDL [FL79]. Again, we won�t go into the details of the proof.
We just state some properties of the reduction that immediately follow from the proof.
Let A be some EXPTIME�complete set and let fpi; be the polynomial time reduction from
A to PDL satis�ability from [FL79]. For all IE, there are only two modalities occurring in
fFL [I-] and [I-*], where l- is an atomic program. We use El and  for these modalities.
The following holds:

0 fFL(:z:) is of the form 1/11 /\ [>:<]w2, where 1121,1122 are of modal depth 3 1 with only
modality El,

o if fFL(:E) is satis�able, then fFL(./L�) is satis�ed at the root of a �nite binary tree.

o if _fFL(IE) is satis�able, then at E A.

This immediately implies that F r[ii] satis�ability is EXPTIME�hard, using this reduction
with  instead of

Note that this is all very similar to the PSPACE case described above. Using the
same arguments, we can prove the following analog of theorem 2.2.1 that will be used in
chapter 4.

Theorem 2.2.2 Let £(I) be a language, and .7: be a class ofI frames. If there exists a
polynomial time computable function f such that for all formulas Q5 of the form $1 /\ [>I<]qS2,
with Q51, a�g E £(E|) of modal depth 3 1 the following holds:

0 f(¢) is an L�. formula,

0 if q� is satis�able in the root of �nite binary tree, then f(<;5) is satis�able on an .7:
subframe,

0 if f(gz5) is satis�able, then a5 is satis�able.

Then every set of E formulas between .7: satis�ability and Fr; satis�ability is EXPTIME-
hard.

2.3 Tiling Problems

Moving up in the complexity hierarchy we now arrive at undecidable cases. As is shown
in [Har83], tiling problems provide a particularly elegant method of proving lower bounds
for modal logics, so we�ll use such an approach here.
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A tile T is a 1 X 1 square �xed in orientation with colored edges m&#39;ght(T), left(T), up(T),
and down(T) taken from some denumerable set. A tiling problem takes the following form:
given a �nite set of T of tile types, can we cover a certain part of Z X Z, using only tiles
of this type, in such a way that adjacent tiles have the same color on the common edge,
and such that the tiling obeys certain constraints? One of the attractive features of tiling
problems is that they are very easy to visualize. As an example, consider the following
puzzle. Suppose T consists of the following four types of tile:

����
Can an 8 by 4 rectangle be tiled with the fourth type placed in the left hand corner?

EEEEEEEM 
     
     EEEEEEHE 
     
     EEEEHEEE 
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2.4 Towards General Modal Complexity Results

To prove general complexity results, it makes sense to look at the form of general theorems
in modal logic. Often, these theorems are of the form: every logic L with property X has
property Y. In modal logic, property Y stands for instance for being complete, having
the �nite model property, or being decidable. In complexity theory, we are interested in
properties like: being PSPACE�hard, being in EXPTIME, or being undecidable.

Perhaps the easiest example of such a general modal theorem is Bull�s theorem [Bul66]:
Every normal uni�modal logic L containing 54.3 has the �nite model property. Recall
that 54.3 frames are those frames that are re�exive, transitive, and connected.3

Following Fine�s proof of Bull�s theorem [Fin72], we show the following complexity
theoretic analog:

Theorem 2.4.1 The satis�ability problem for every logic containing S43 is NP�complete.

For the proof, we �x a normal uni�modal logic L containing S4.3. As in the case of S5,
we show that L has the poly�size frame property, and that membership in Fr(L) is in P.
Let�s start with the poly�size frame property.

Lemma 2.4.2 Any L consistent formula a5 is satis�able on an L frame of size at most
m + 2, for m the number of modalities in q�.

Let M = (VV, R, 7r) be a �nite model based on an L frame and we 6 W a world such
that M, we |= gt (such a model exists by Bull�s theorem). We assume that M is rooted at
we. Let <>w1, Owe, . . . , Ow], be all 0 subformulas of o that are satis�ed at we in M. Note
that k is at most m, the number of modalities in q�. For each i, let w,~ be a last world
satisfying wi, i.e. a world such that M, w,~ |= wt and if not wRw,~, then M ,w té 1/1, (such
a world exists since M is based on a �nite rooted S4.3 frame).

The worlds {we,w1, . . .,w,,} are needed to keep q� satis�ed at we. However, if we
restrict M to these worlds, it is possible that the underlying frame is not an L frame.
(This problem didn�t occur when we considered S5, since any S5 subframe is an S5 frame).
To ensure that the restricted frame remains an L frame, let w;,+1 be a last world in M,
i.e. for all w E M, wRwk+1. Let W = {we,w1, . . . ,wk+1}, and let M =  We show
that M satis�es go at we, and that the underlying frame M is an L frame, from which
lemma 2.4.2 follows.

To prove that M , we |= go, we show with induction that for all it E Cl(gz5), and all
i S k + 1:

M,w,~ )=7,l)¢>M,w,~
The only non�trivial step is for Oil). First suppose that M, w,~ )= <>1/1. Since M is rooted
at we and R is re�exive, weRw,~. It follows that M, we |= Oil), and thus 1/; = &#39;(,[1j for some
j 3 It. By de�nition, Ulj is a last world satisfying wj. Therefore, w,~Rwj, and by induction
1?, ht, |= t/;,., which implies that �, w, |= <>tt,. On the other hand, if M w, )= 01/}, then
M, Ulj |= w for some j 3 l6 (by the maximality of wj), and therefore M, Ulj )= it, which
implies that M, w,~ |= <>w.

To prove lemma 2.4.2, it remains to show that the M is based on an L frame. We
will show that there exists a surjective p�morphism f from (VV, R) onto (I//I7,  Since

3 �Connectedness� is equivalent to the �rst order property: Vwyz(wRy A xRz �> yRz V zRy).
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(IE/,R)/is an L frame, and surjective p�morphisms preserve validity, this implies that
(W, R|W) is an L frame as well. The existence of such a p�morphism follows from the
following more general lemma:

Lemma 2.4.3 Let F and G be two �nite, rooted S4.3 frames. The following two state-
ments are equivalent:

0 There exists a surjective p�morphism from F onto G.

0 G is isomorphic to a subframe 0fF that contains a last world of F.

First suppose that there exists a surjective p�morphism from F onto G. Let wl be a last
world in F, and let V/I7 consist of wt and exactly one world in f �1[v] for every world 12 E G
such that 11 7E f It is immediate that taking F = F is the subframe we�re after.

For the converse, suppose that W is a subset of the worlds in F, and W contains\ a
last world w; of F. We show that there exists a surjective p�morphism from F onto F
De�ne f as follows: f(w) = w for w E 1717, and ifw ¢ I//I7, let f(w) be a �rst world 7.3 E W
such that wRw (where �rst means that for all w� E I//I7,wRw� => wRw�). Note that f
is well�de�ned, since for all w E W, wRwl and w; E  It remains to show that f is
a surjective p�morphism. That f is surjective is immediate. Next suppose that wRw�.
Since w�R f (w�) and R is transitive, it follows that wR f (w�). By de�nition, f (w) is a
�rst element in FF such that wR f (w), which implies that f(w)Rf(w� Finally, suppose
that f(w)Rf(w�). Then wRf(w)Rf(w�), which implies that wRf(w�), since f(w) is a �rst
world 13 in W such that wRiD. Since f (f(w� = f (w�), the last condition for p�morphisms
is ful�lled. Cl

To complete the proof of theorem 2.4.1, it remains to show that membership in Fr(L)
can be determined in polynomial time. From Fine [Fin72], we know that there exists a
�nite set X of �nite S4.3 frames that characterizes Fr(L) in the following way:

F )= L iff F is an S4.3 frame, and there does not exist a surjective p�morphism
from F onto any frame in X.

Since verifying that a �nite frame is an S4.3 frame is obviously in P (we check a �rst
order condition), and since X is a �xed �nite set, we only have to prove that determining
if there exists a surjective p�morphism from a �nite S4.3 frame F onto a fixed �nite S4.3
frame G is in P. We can of course look at all functions from F to G, and see if one of them
is a surjective p�morphism. However, there exist exponentially many such functions, so
this would take too much time. However, if we apply lemma 2.4.3, we see that we only
have to verify that there exists a set W of worlds in F such that F |W is isomorphic to
G, and 1717 contains a last world of F. Since  = |G|, we need to investigate less than
|F|&#39;G&#39; embeddings, and this amount is polynomial in the size of F, since G is �xed. El
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Chapter 3

The Complexity of the Join

3. 1 Introduction

In this chapter, we look at the complexity of the satis�ability problems for the simplest
kind of multi�modal logics. For two normal uni�modal logics, L1 and L2 with operators
[1] and [2] respectively, the join of L1 and L2, denoted by L1 63 L2 is the minimal normal
bimodal logic that contains L1 and L2. As recently shown in [FS, KW91], joins inherit
many properties from their uni�modal fragments. Following [FS], we say that a property
transfers if the join of two normal uni�modal logics with this property has the property
as well.

Theorem 3.1.1 ([FS, KW91]) Completeness, strong completeness and the �nite model
property transfer. Decidobility transfers under the condition of completeness.

A natural question is: does complexity transfer? Note that lower bounds do transfer
for consistent logics, since then L1 EBL2 is a conservative extension of L1 and L2. However,
it is in general not the case that upper bounds transfer. A counterexample (under the
assumption that NP gé PSPACE) is given by the join of two S5 logics, since S5 satis�ability
is NP�complete [Lad7 7], while S 5633 5 satis�ability is PSPACE�complete [HM85]. On the
other hand, the join does not always add to the complexity, as the satis�ability problems
for K and K EB K are both PSPACE�complete ([Lad77, HM85]). In this chapter, we
investigate in what way the the complexity of the satis�ability problem of the join is
related to the complexity of the satis�ability problems of its uni�modal fragments.

As in the previous chapter, we will look at the satis�ability problems with respect
classes of frames. For 71 and 72 two classes of uni�modal frames, the join of 71 and
72, denoted by 71 G3 72, consists of the frames (W, R1, R2) such that (W, R1) 6 71 and
(W, R2) 6 72. Joins of logics and joins of frames are related in the following way:

Theorem 3.1.2  If.71 and .72 are closed under disjoint union, L1 is complete with
respect to .71 and L2 is complete with respect to .72, then L1 63 L2 is complete with respect
t0 $1 69 $2.

Note that closure under disjoint union is essential, since for instance {o�>o } G3 {0} = (7).
Since the logic {o | 7 )= o} is complete with respect to 7, we obtain the following frame
version of this theorem.

23
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Corollary 3.1.3 If .71,71,72, and .72 a1"eAcl03ed under disjoint union, .71 satis�ability
f 71 satis�ability and .72 satis�ability = .72 satis�ability, then 71 G3 .72 satis�ability =
71 G3 .72 satis�ability.

The frame version of the problem to be considered in this section can be stated as
follows: given two classes of frames .71 and .72 that are closed under disjoint union, in
what way is the complexity of the satis�ability problem with respect to .71 E972 related to
the complexity of the satis�ability problems with respect to .71 and .72. Note that solving
the frame version of the problem solves the problem for complete logics as well, since if
L1 and L2 are complete, then these logics are complete with respect to classes of frames
closed under disjoint union, and, by theorem 3.1.2, L1 EB L2 is complete with respect to
the join of these two classes.

The goal of this chapter is to answer the following questions:

0 Under what conditions (on the classes of frames and the complexity class) do upper
bounds transfer?

0 When do upper bounds not transfer? And what can we say about lower bounds on
the join in that case?

Section 3.2 is devoted to the �rst question. We show that under reasonable conditions,
upper bounds containing PSPACE transfer. In addition, we derive a criterion for NP
upper bound transfer. In section 3.3 we investigate the second question. In section 3.4,
we show that the results of the previous two sections are optimal in the sense that given
two classes of frames .71 and .72 that are closed under disjoint union, we are in one of the
following three cases:

I One of the classes of frames, say .72, is trivial, in which case the satis�ability problem
for the join is polynomial time reducible to the satis�ability problem for .71,

II .71 G3 .72 satis�ability is PSPACE�hard by section 3.3, or

III .71 G3 .72 satis�ability is in NP by section 3.2.

Finally, in section 3.5, we discuss to what extent the results in the three previous sections
go through for the join of arbitrarily many multi�modal logics.

3.2 Upper Bound Transfer

In this section, we investigate in what way upper bounds on the complexity of .71 G3 .72
satis�ability are related to upper bounds on the the complexity of satis�ability problems
of the uni�modal fragments. In particular, we want to determine under what conditions
upper bounds transfer, i.e. when does the fact that .71 and .72 satis�ability are in C,
for some complexity class C and .71, .72 closed under disjoint union, imply that .71 G3 .72
satis�ability is in C?

From Fine [FS], we know that this is certainly the case for C is REC, since decidability
transfers. Furthermore, in [HM85], it is shown that the satis�ability problems for K EB K,
TEBT, 346334 and 3 5633 5 are in PSPACE, from which we might conjecture that PSPACE
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upper bounds transfer. We prove this result under an extra �uniformity� condition, which
is possessed by many modal logics. This result is not restricted to the PSPACE case; we
show that for C a nice complexity class that is large enough, C upper bounds transfer
under this extra condition.

For classes not containing PSPACE, this result obviously doesn�t go through. However,
we will give a condition under which NP upper bounds do transfer. In section 3.4, we
will show that this criterion is optimal, in the sense that it completely characterizes when
the join of two non�trivial classes of frames is in NP (under the assumption that NP 7é
PSPACE).

Satisfying Models for the Join

We will show how to build satisfying models based on 71 G3 .72 frames from models based
on 71 and .72 frames. The construction is similar to the construction used in the proof
of completeness transfer in [FS, KW91].

As an example, look at the following model for (1)(2)(1)p:

W0 1 U11 2 �LU2 1 W3
GT0 0 O

17

That this model satis�es (1)(2)(1)p, follows from the fact that p is satis�ed in U13.
Now look at the corresponding 1�model:

we 1 �LU1 �LU2 1 �LU3
GT0 0 0

<2) (1)1? P

We want this model to really correspond to the previous model. But here, the assign-
ment to the propositional variable p is not enough to conclude that this model satis�es
(1)(2)(1)p; we need the information that 101 satis�es (2)(1)p. That is, in this model
(2)(1)p should be viewed as a propositional variable.

We can make this change of views explicit by introducing a new propositional variable
p<2)<1),,, and use functions that translate formulas from one language into another. This is
the approach taken in [KW91]. Another approach is taken in [FS], where using replace-
ment functions is avoided by making the language ambiguous: if the language considered
is £1, we take (2)(1)p to be a propositional variable. We look at the following three
languages:

0 £12 =

0 £1 = £({1},P U {[2]¢|¢ an £ formula})

0 £2 = £({2},P U {[1]¢|¢ an £ formula})

We�ll use this approach, because it leads to more elegant formulations of the construction.

Construction To determine whether a formula is .71 G3 .72 satis�able, de�ne a recursive
predicate 71 EB .72�WORLD as follows, for F and 2 sets of formulas, and a 6 {1,2}:

.71 EB .72�WORLD(a, F, 2)
iff

E = (7) or there exist a model M = (W, Ra, 7r), and a world we 6 W such that:



26 CHAPTER 3. THE COMPLEXITY OF THE JOIN

0 (W, Ru) 6 .7�,

0 Fo1"mM(w0) D E = F (F0rmM(w) is the set of formulas true in M at w),

0 Vw aé wo : .71 EB .72�WORLD(E, F07"mM(w) D Z(w), E(&#39;w)), where T = 2 and 5 = 1,
and where E(w) (the relevant formulas at w) is de�ned smallest family of sets
satisfying:

�  Z 2,

� if wRaw� and [a]v,Z) E Z(w) then 1b 6 E(w�),

� 2(a)) is closed under subformulas and single negations.

This construction is a simpli�ed version of the construction used in the proof of com-
pleteness transfer in [FS, KW91]. From these proofs, it follows that gz� is .71 EB .72 satis�-
able iff there exists a set P Q Cl(¢) such that gz� E F, .71 G3 .72�WORLD(1,F,Cl(¢)) and
.71 G3 .72-WORLD(2,1�,Cl(¢)).

Can this construction be used to prove upper bound transfer? Let�s �rst look at a
speci�c instance of this question: can this construction be used to show that K EB K
satis�ability is in PSPACE? The answer is yes, but it seems that we can�t draw the
conclusion just from the fact that K satis�ability is in PSPACE. This is caused by the
fact that the uni�modal models used in the construction are not just any model, they are
models with the extra restriction that we only allow certain sets of relevant formulas. For
instance, the formula (1)[2]p/\ (1)[2]-up/\ (2)T viewed as an E1 formula is satis�able on the
re�exive singleton, but {[2]p, [2]�»p, (2)T} viewed as a set of £2 formulas is not satis�able.
This example shows that we can�t just take any model, and that we can�t take a model
of minimal size.

Making this precise, we introduce the following general notion. For a language L =
£(I), .7 a class of I frames, and R Q P0w(£), we de�ne .7 satis�ability under restriction
R as follows:

Given An L�, formula q�,

Question Does there exist an E model M = (VV, {R,,},,E1, 7r) and a world we 6 W such
that:

o M is based on an .7 frame,

. M7 1110 l: ¢7

o for every world 11), E(&#39;w) �F01"mM(w) E R, where 2(a)) is the earlier introduced
set of formulas relevant at 11).

Note that .7 satis�ability is .7 satis�ability with restriction P0w(£). How should we
de�ne the complexity of such problems? It seems reasonable not to count the complexity
of computing R membership. To be more precise, on input gz� we do not count the
complexity of computing R membership for subsets of Cl(¢) of modal depth less than ¢$.1

We say that .7 satis�ability under restrictions is in C if there exists an oracle Turing
machine M in C such that:

1This is similar to the notion of self�reducibility (cf [Sel88].
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o On input gt, M queries only subsets of Cl(¢) of modal depth less than the modal
depth of d,

o For all R Q Pow(£): a3 is .7-" satis�able under restriction R iff M R accepts q�.

As a �rst example, note that S5 satis�ability under restrictions is in NP. For suppose
M witnesses that go is S5 satis�able under restriction R. In the proof of the NP upper
bound for S5 satis�ability, it was shown that M can be restricted to at most m+ 1 worlds,
where m is the modal depth of go, such that the restricted model still satis�es go and every
world in the restricted model satis�es the same set of relevant formulas as in the original
model. It is immediate that the restricted model satis�es o3 under restriction R, and thus
S5 satis�ability under restrictions is in NP. The same argument can be used to show that
L satis�ability under restrictions is in NP for all S4.3 extensions L, by inspection of the
proof of theorem 2.4.1.

For a non�NP example, we show that K satis�ability under restrictions is in PSPACE,
using the following variation of recursive predicate K�WORLD from the introduction:
for A and 2 sets of formulas, and 2 closed under subformulas and single negations,
K R�WORLD(A, 2) will be true iff A is a maximal subset of E that is K satis�able under
restriction R.

KR�WORLD(A, 2)
iff

o A is a maximal propositionally consistent subset of E, i.e.

-1/2eA=>«/262, 
     
     � (-11/1EA¢>1/1¢A)for�w,b¬E
�(1/11/\1/12¬A<=>v,Z)1EAandiZ)2EA)for1/11/\1/1gEE,and

o For each subformula Oil 6 A there exists a set Ad, such that

-1/1eA¢, 
     
     ��v�{(|Z|{¬A=>{EA¢),
� K R�WORLD(A¢,E�), where E� is the closure under subformulas and single

negations of the set {f||Z|§ E E},

�A1/,¬�R,.

In the same way, the PSPACE upper bound proofs for T, K4 and S4 satis�ability imply
PSPACE upper bounds for the corresponding satis�ability under restrictions problems.

Now we return to the question of upper bound transfer:

Theorem 3.2.1
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Proof. Suppose that for a E «[1, 2}, .7-",, satis�ability under restrictions is in C, as wit-
nessed by oracle machine Ma. De�ne Ra such that P E Ra iff .731 G3 .7-"2�WORLD(a, P, Cl
From the construction of .71 G3 .7-"TWORLD we immediately obtain the following:

o 7-] e f2�WORLD(a,1�,E) iff

o /\ P /\ -I V(Z \ P) is .73, satis�able under restriction RE iff

0 Ma with oracle R5 accepts /\ P /\ -I V(E \ P).

Suppose that .71 and F2 satis�ability are in DSPACE(3(n)) and DTIME(t(n)). We
prove that for P Q E Q Cl(¢), a E {1,2},n = |gz5| and m the modal depth of 2 it holds
that .731 G3 .7-"2�WORLD(a, P, E) in DSPACE(m3(n2)) and DTIlVlE(t(n2)&#39;�).

The proof is with induction on m:

o If m = 0 then Ma doesn�t query any strings. The length of the formula /\ P/\-I V(E\
P) is less than |¢$|2. It follows that Ma uses space at most 3(n2), and time at most
t(n2).

o Next suppose that m > 0. We know that .731 EB.7�"2�WORLD(a,P, 2) iff Ma with
oracle R5 accepts /\ P /\ �u V(E \ P).

M,, on this input can only query subsets of Cl(q5) of modal depth less than m. It
follows from the induction hypothesis that every query to R can be computed in
DSPACE((m � 1)s(n2)), and DTIlV[E(t(n2)��1).

Thus, .71 G3 .7-"2�WORLD(a, P, E) can be computed as follows: simulate Ma, and for
each query, compute the answer to this query (i.e. whether the query is a member
of RE). Since queries can be handled one at a time, we only need extra space to
compute one query. It follows that we need DSPACE(s(n2) + (m � 1)3(n2)) =
DSPACE(ms(n2)). On the other hand, the time that is needed is proportional to
the number of queries multiplied by the time per query. It follows that we need
DTIlV[E(t(n2)t(n2)"�1) = DTIME(t(n2)"�).

For nondeterministic time classes, this proof does not go through, since in general these
classes are not known to be closed under complementation. However, a slight variation of
the construction above gives the wanted transfer result. Instead of computing whether a
query belongs to R5, we guess the set of queries in R5 and verify that all these queries are
indeed in R5. This gives us an NTIME(t(n2)&#39;�) algorithm if .71 and .732 satis�ability are
in NTIME(t(n)). That this construction is correct follows from the fact that M works for
every restriction R. For this implies that M is positive, i.e. if R Q R� and M R accepts,
then so does M R�. CI

The NP case The previous theorem showed transfer of upper bounds for classes like
PSPACE and EXPTIME. As we have mentioned before, NP upper bounds do not transfer
in general (under the assumption that NP gé PSPACE). However, as the following theorem
shows, under the extra restriction that every .751 EB .72 satis�able formula is satis�able on
an .731 G3 .752 frame of which the relevant part is of polynomial size, NP upper bounds do
transfer. Although this is an obvious restriction, we will show in the sequel that this
theorem is optimal, in the sense that � under the assumption that NP gé PSPACE �
satis�ability for the join of two non�trivial classes of frames can only be in NP by this
theorem.
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Theorem 3.2.2 Let 71 and 72 be closed under disjoint union. If 71 and 72 satis�ability
are in NP, and there exists a polynomial p such that for every 71 EB .72 satis�able formula
Q5 there exists a model M = (W, R1, R2,7r) such that:

0 <W,R1,R2> ¬f1®F2,

. M7w0 l=¢:

° |{w|woRpaths(¢>w}| S p(|¢|),

T hen 71 G3 72 satis�ability is in NP.

The obvious way to approach this is by looking at the following algorithm. On input

Q5: 
     
     1. Guess a model M of size 3 p(n), and a world we 6 W,

2. verify that M satis�es q�,

3. verify that M is based on F |{w|w0Rpath,(¢,)w} for some F E .71 EB 72.

The problem is the last step, for even under the assumption that 71 and 72 satis�ability
are in NP, step 3 can be undecidable. For let A be an undecidable subset of N, and let F1,
be de�ned as (W, R) such that W = {w,~},~5;,, and R = {(w,~,w,~+1)|i < is} U {(w0,w0)} U
{(w;,, w;,)}. Let .7 consist of the closure under disjoint union of the frame F = (W, R)
such that W = {w,~},~EN, R = {(w,~, w,~+1)|i E N} U «[1110, we}, and all frames F1, for is E A.
It is immediate that A is reducible to the problem of step 3 given above, by mapping is
to the pair (F2, q�) for some c3 of modal depth k. But .7 satis�ability is in NP, since any
.7 satis�able formula is satis�able on F.

To prove the theorem, we will relate .71 EB 72 satis�ability to 71 and 72 satis�ability.
This is not very difficult, just rather awkward. Let�s �rst de�ne some abbreviations that
will help in making the construction more readable:

o De�ne the formula mss(F, E) which re�ects the fact that F is a maximal satis�able

subset of Z: 
     
     mss(I�, E) := /\ I� /\ -u \/(E \ F)

o For E a set of formulas, a 6 {1,2}, (2),, is the closure under subformulas and
single negations of the set {1/1|[a]1/1 E Z}. This de�nition can be extended to strings
(I E {1, 2}* in the obvious way: (2)1 = E; (E),,, = ((E),,),,.

Now prove the following equivalence:

gt is .71 EB .72 satis�able
iff

There exist some is < p(n) and subsets of Cl(q5): 1�0,1�1,...,l�,,, E0, E1, . . . , 2,, such that

o q� 6 F0, 2, closed under subformulas and single negations,
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Note that this claim implies that 71 EB .72 satis�ability is in NP, for on input gz� we only
have to guess is < p(n), and 2(/9+1) subsets of Cl(q5), and verify that gz� 6 P0, 20 = Cl(¢),
2, closed under subformulas and single negations, and for all 71 < Is, a 6 {1,2} the
formula q�m is 7,, satis�able. Since 7,, satis�ability is in NP and q�m can be constructed
in polynomial time, it follows that 71 G3 72 satis�ability is in NP.

To prove the claim, we argue as follows: /For the right implication, suppose /]\:I =
(W, R1,R2,7r), we 6 W and M, we |= gb. Let W = {w E W|w0R,,,,1h5(¢,)w}. Then  3
p(n), by assumption. Let W =  <  For every 71, let 2, be the set of relevant
formulas at w,~, and let P, = F07"mM(w) � 2,. It is easy to verify that these sets ful�ll the
requirements.

We prove the converse by using the de�nition of 71 EB .72�WORLD. With induction
on the size of Z, we prove the following: if E is closed under subformulas and single
negations and E Q 2,, then (a, P1 � E, E) E 71 G3 72�WORLD. This proves the theorem,
since ¢ 6 P0.

o Suppose |E| = 0. By de�nition, (a, (I), (D) E 71 G3 72�WORLD.

0 Suppose the claim holds for all sets of size <  Suppose E Q 21. We show that
(a, F, n 2, :3) e $1 ea .72�WORLD.

Since q�m is 7,, satis�able, there exists a model M = (W, Ra, 7r) such that

(VV, R1) 6 .7a and M, wo |= $13,,

From the de�nition of gz�m, it follows immediately that FormM(w0) � E, = P1, and
therefore, since 2 Q 2,, F07"mM(w0) � E = P, D E

To prove that (a,1�,~ H 2,2) 6 71 EB7g�WORLD, it remains to show that for all
11) 75 we, (E,F01"mM(w) � E(w),E(w)> E .71 G3.72�WORLD. (recall that E(w) was
de�ned as follows: Z(w0) = E; if wRaw� and [a]zZ) E E(w) then 1b 6 E(w); E(w)
closed under subformulas and single negations).

If E(w) = (Z), we are done. So, suppose that E(w) gé (7). Then w0R£w for some
E > 0 (w gé wol) and E(w) = (E),,z. Since M, we |= gz5,~,,,, it follows that for some j,
M, w |= mss(Pj�(E,~)az, (Z,~)az), which implies that F01"mM(w)�(E,~)az = Pj�(E,~)az.
Since 2 Q 2,, it is immediate that (E),,z Q (E,~)az. We may therefore conclude that
F01"mM(w) D (E)az = Pj � (E)az. Since (Z),,z = E(w), it holds that F01"mM(w) D
E(w) = Pj � Z(w).

Since E(w) is a strict subset of E, and E Q 21, it follows by the inductive hypothesis
that (E, F07"mM(&#39;w) D Z(w), E(w)) E .71 EB .72�WORLD. CI

3.3 The Power of the Join

Whereas the previous section was devoted to determining when upper bounds transfer,
this section addresses the dual problem: when do upper bounds not transfer, or, in other
words, when does the join contribute to the complexity?

Given the results of the previous section and the fact that 35 EB 35 satis�ability is
PSPACE complete, while S5 satis�ability is in NP, it makes sense to focus on determining
when the join causes PSPACE hardness. We derive a criterion that is applicable in many
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cases; in fact, we show in section 3.4, that this criterion completely characterizes when
the join can contribute to the complexity.

How do we prove PSPACE hardness for .71 EB 72 satis�ability? Recall from theo-
rem 2.2.1 that it suffices to construct a polynomial time computable function f such that
for all uni�modal formulas gz� of the form ¢1 /\ /\§�:0 |Z|i¢2, with ¢$1,q52 of modal depth 3 1,
the following holds:

0 f (q�) is an L formula,

o if ¢$ is satis�able in the root of the binary tree of depth 71., then f (¢) is satis�able in
an .71 G3 72 subframe,

o if f (gz�) is satis�able, then q� is satis�able.

As an example, look at the case where .71 is the closure under disjoint union and generated

subframes of the frame .> <. and .72 the closure under disjoint union and generated
subframes of o�». The satis�ability problems of .71 and .72 are obviously in NP, since
both problems amount to satis�ability with respect to a �xed �nite frame. However,
it turns out that even in this simple case, .71 G3 72 satis�ability is PSPACE complete.
The upper bound follows from the previous section. For the hardness part, we construct
a function f as given above. This boils down to the ability of .71 G3 72 subframes to
simulate binary trees. In this speci�c case, it is easy to see how to do this: look at the

following .71 G3 .72 frame: 
     
     0

V X

1;\1 1/;
21 12 21 12

This certainly looks like a binary tree. Furthermore, trees of arbitrary depth can
be encoded in this way. Indeed, it is readily seen that de�ning f (q�) as the result of
substituting [1][2] for III in ¢$ ful�lls the conditions of theorem 2.2.1 as repeated above,
which proves PSPACE hardness for this simple case.

Note that all the information of this tree simulation is contained in the following.71 ® .72 frame F: 
     
     V X
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In general, assume that 71 and .72 are closed under disjoint union, and let E be an
71 G3 72 subframe, rooted at we and containing worlds U12 and w,. The goal of this section
is to determine what the requirements on E are to let the construction as sketched in the
example go through, and to conclude PSPACE hardness for 71 EB .72 satis�ability. We �rst
derive these requirements intuitively; the formal proofs can be found after the statement
of the theorem.

In the sequel, we need the following lemma, which gives the (obvious) correspondence
between 71 G3 72 subframes and 71 and 72 subframes. The proof of this lemma can be
found in the last section of this chapter.

Lemma 3.3.1 Let .71 and .72 be two classes of urLi�m0dal frames closed under disjoint
union. (W, R1, R2) is a sabframe of .71 G3 .72 i�" (W, R1) is a subframe of .71 and (VV, R2)
is a subframe of .72.

First of all, note that if we build tree simulations from E frames in the way as described
above, we identify wo worlds with &#39;LUg and w, worlds. It seems reasonable to require that
U10, �U13 and w, have the same re�exive behavior, i.e. for a E {1, 2}, either all three worlds
are a re�exive, or all three worlds are a irre�exive. Next, we want the constructed tree
to be an 71 63 72 subframe. This is not true for every frame E: Suppose for instance
that �Ll}0R1�(Ug, and that .71 consists of the closure under disjoint union of the frame o�>o.
Then the tree constructed from E is not an 71 EB 72 subframe, as identi�cation of wo and
�(Hg worlds leads to arbitrarily long R1 paths. This problem can be avoided by requiring
that we has no non�re�exive R1 edges, and �(Hg and w, have no non�re�exive R2 edges or
vice versa. This ensures that any Ra connected set in the tree is a subset of one of the
copies of E. Since we assume that E is an .71 G3 72 subframe, it then follows that every
Ra connected set in the tree is an 7,, subframe, and thus, by lemma 3.3.1, the tree itself
is an 71 G3 72 subframe.

These two requirements are enough to simulate binary trees by 71 G3 72 frames. How-
ever, this does not yet imply PSPACE hardness. Look for instance at the case where
71 and 72 consist of the closure under disjoint union of all linear intransitive irre�exive
frames. Then .71 G3 .72 frames can simulate binary trees by using R1 to simulate the left
successor, and R2 to simulate the right successor. However, 71 EB 72 satis�ability is in NP.
The crucial point is that for any formula gt, only polynomially many worlds are relevant
to determine satis�ability of q�. In other words, if we want PSPACE hardness then, apart
from being able to encode binary trees, we also have to be able to reach all worlds in the
tree.

Reachability can be forced by putting the following condition on E: there exists a
string 0 E {1,2}+ such that �LUg and w, are reachable from wo by R,. This forces that for
a binary tree of depth n, all (exponentially many) nodes are reachable by the (polynomial
size) relation: UL, Rf, Making the above precise, we obtain the following theorem:

TheoremA3.3.%\LeAt .71 and .72 be closed under disjoint union. If there exists an .71 G3 .72
subframe F = (W, R1, R2) such that:

1. W 2 {�Ll}0,�LUg,�Ll),~}, and for some 0 E {1,2}+.&#39; w0R(,wg and w0R,,w,,

2. wo, �LUg and U), have the same reflective behavior, i. e. for a = 1,2:

w0Raw0 <=> �LUgRa�LUg <=> w,R,,w,,
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5�. For some a E «[1, 2}:

0 we has no non�re�exive Rb edges, 2&#39;. e. if w0Rbw 07" wRbw0, then we = w.

0 wg and U), have no non�re�exive Rb edges, 2&#39;. e. ifwbRTw or wRb&#39;wb then w = wb,
and if w,Rbw 01" wRb&#39;w,. then w = w,.

Then .71 G3 .732 satis�ability is PSPA CE�ha1"d.

Proof. We will construct a polynomial time computable function f such that for all
uni�modal formulas gz� of the form q�l /\ /\;�:0 |Z|�q52, with ¢$1,q52 of modal depth 3 1:

0 (l5 is an L formula,

o if o is satis�able in the root of the binary tree of depth 71,, then f (o) is satis�able in
an .71 G3 .732 subframe,

o if f (gl�) is satis�able, then so is (l5.

Suppose ¢ = ¢1 /\ /\§�:0 |Z|�¢2, where ¢1 and gz�g of modal depth 3 1 and suppose gz� is
satis�able at the root of the binary tree of depth n. Let MT = (WT, RT, 7rT) be the model
witnessing this fact, i.e. (WT, RT) is the binary tree of depth 71, with root 0 6 WT, and
MT, 0 |= q�. (WT, RT) will be simulated by the .751 ED .732 subframe built from copies of E
in the way described above, i.e. by replacing each node 71 by a copy of E, and identifying
the wb (wb) world of the frame belonging to 71 with the we world of the frame belonging
to j for j the left (right) child of 1&#39;.

Formally, let F = (W, R1, R2) where W = WT x (W \ {wbw,}), and R1 and R2 are
inherited from R1 and R2 in the obvious way. That is, let gT be the mapping function
from WT X W to W de�ned by: gT(w) = w for w E W, and gT((z&#39;,wb)) = (j, wo) forj the
left child of 2&#39;, and gT((z&#39;, w,)) = (j, wb) for j the right child of 71, and let Rb be de�ned by:
wRbw� iff for some t� e WT and 13,23� e W it is the case that «wl�°zbw&#39;, gT((i, 73)) = w, and
gT((z&#39;,&#39;L3�>) = w�.

We �rst show that F is an $1 G3 .72 subframe. Since w0,wb and w, have the same
re�exivity behavior, it is easy to see that F consists of copies of E in the sense that for
every 2&#39; in WT, F|gT[{z&#39;} ><  is isomorphic to E by associating gT((7I, w)) with w.

To prove that F is an .71 ED .772 subframe, it suf�ces to show by lemma 3.3.1, that for
every I) E {1, 2} and for every Rb connected set W� Q W, (W�, Rb|W�) is an .7-"b subframe.
We will show that every world in an Rb connected set W� belongs to the same copy of E,
i.e. there exists a node 71 such that W� Q gT[{7l} ><  Since F | gT[{7I} ><  is isomorphic
to E, and E is an .751 ED .752 subframe, this immediately implies that (W�,Rb|W�) is an
.7-"b subframe as required. Now suppose for a contradiction that the worlds in W� do not
belong to the same copy of E. Since W� is Rb connected, there must exist worlds wl, U12
and U13 in W� such that w1(Rb U R,,�1)w2 and w1(Rb U R,,�1)w3, and U12 and "W3 do not
belong to the same copy of E. By de�nition of Rb, this can only be the case if wl is of the
form (i, wb), for only worlds of this form can belong to more than one copy of E. Let j be
the parent of 71,/and suppose that 71 is a\left child. It follows that (modulo permutation)
�(U2 6 gT[{j} X W] and 7.03 E gT[{z&#39;} ><  Furthermore, g;1((7I,w0)) = {(71,100}, (j, w)}.
By de�nition of Rb, it follows that both we and wb have non�re�exive Rb edges, which
contradicts the third condition of the theorem. This proves that F is an .71 G3 .72 subframe.
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Node 2 of the binary tree is simulated by world (2&#39;, we) in F. But how do we simulate
the edges of the tree? Since we and w, are H, reachable from we in F, it follows that
(2&#39;,we)R,(j, we) in F if j is a child of 21. Thus, Re looks like a promising candidate for
simulation of the edges of the tree. However, it is quite possible that (2, we)R(,(j, we) for
j not a child of 21. To simulate the edges of the tree, we have to avoid this situation.

It is easy to see that j is a child of 2 iff depth(j) = depth(2) + 1 and there exists an R0
path from (2&#39;, we) to (j, we) that does not contain (h, we) for k the parent of 2 or the sibling
of 2. From this observation follows the following rather awkward formulation, which can
be translated directly into modal formulas: Suppose 2 is a node at depth d, then j is a
child of 2 iff depth(j) = depth(2)+1 and there exists an R0 path from (2&#39;, we) to (j, we) such
that for every world of the form (I2, we) on this path, depth(/c) = (d + 1) or depth(/c) = d
and k is a left child iff 2 is a left child.

Now we can de�ne the reduction f, and the satisfying model for f Let M =
(W, R1, R2, 7r) be such that:

0 M,w|=pt<=>wEWT><{we},

o M, (2&#39;, we) |= (depth = d) <=> depth(2) = d, where depth is a propositional vector as
on page 16,

o M, (2&#39;, we) )= ple� <=> 21 is a left child,

0 M,(2&#39;,we) )=p<=>MT,2§ |=pforpin ¢$.

And de�ne Rmc to simulate the edges of the tree in the obvious way: if M, w )= depth = d
and M, w |= ple� <�> E for d E {0, . . . ,n} and E E {T, 1}, then wRseecw� iff

0 Muw� l=pt /\ depth(J&#39;) = d+ 1,

0 there exists an R0 path from w to w� such that for every world w� on this path:
M, w� |= -upt or M, w� )= (depth = d+ 1) or M, w� )= (depth = d) /\ (ple� <�> E)

It is immediate that j is a child of 2 iff (2,we)Rseec(j, we). We de�ne a modality cor-
responding to Rme in the following way: for 2/2 a propositional formula, let [3ucc]1/1 be
de�ned as follows:

/\ (depth = d) /\ (ple� <�> E) �>
ogdgn, ee{T,1}

[a1](-upt V (depth = d + 1) V ((depth = d) /\ (ple� <�> E)) �>
[a2](-upt V (depth = d + 1) V ((depth = d) /\ (pleft H E)) �>

[Ukl(pt /\ (depth = d + 1) �> 1/1)) - - &#39;)

From the de�nition of Reece, it follows that M ,w |= [3ucc]1/1 iff Vw�(wR5uccw� => 1/1). Let
g(2,Z)) be the result of replacing every III by [succ]. Then for all 2&#39; 6 WT, and for all 1/; of
modal depth 3 1:

MT7i I: 1/} ¢>M><i>w0>
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Finally, de�ne the reduction f as follows:

&#39;71.ms) = ma A  mm) =22 A you A /\[a1r�<m 2 go»).
i=0

It is immediate that if MT, 0 |= gt, then M, (0, we) |= f Furthermore, f is polyno-
mial time computable, since ¢$1 and (t2 are of modal depth at most 1.

It remains to show that if f (gt) is satis�able, then so is q�. Suppose M = (VV, R1, R2, 7r)
is a Amodel, wo E W such that M, wo |= f De�ne the corresponding uni�modal model
as M = (W, R,7r) such that wRw� if and only if wRmcw�. It is immediate that for all
vie W, for all formulas 1/1 of modal depth 3 1, M, w )= 1/; iff 17,10 )= g(1/1), and therefore,
M,w0|=q5. El

In the next section, we will give a complete description of all different cases where
theorem 3.3.2 is applicable. To avoid counting similar cases twice, note that the following
two subframes behave in the same way according to theorem 3.3.2:

C 0
wt wr /LUZ wr

Note that the �rst frame can be obtained from the second frame by removing edges.
De�ne the following notion:

De�nition 3.3.3 Let F = (W, {R,,},,¬1) and F� = (W�, {R,,},,E1) be two frames. We say
that F is a skeleton subframe of F� if W Q W� and Ra Q R; for all a E I.

We will show that theorem 3.3.2 holds as well if we only require that E is a skeleton
subframe instead of a subframe. This theorem follows immediately from theorem 3.3.2
and the correspondence between skeleton subframes and subframes of $1 EB $2, $1 and $2.
As in the case of subframes, if $1 and $2 are closed under disjoint union, then skeleton
subframes of the join correspond to skeleton subframes of the uni�modal fragments in
the obvious way: (VV, R1, R2) is a skeleton subframe of $1 EB $2 iff (W, R1) is a skeleton
subframe of $1 and (VV, R2) is a skeleton subframe of $2. The following lemma gives more
correspondence between skeleton subframes and subframes. Again, we defer the proof to
the last section.

Lemma 3.3.4 Let $1 and $2 be two classes of uni�modal frames closed under disjoint
union.

/\
0 If (W, R1,  is a skeleton subframe of$1G9$2 then (W, R1) is a skeleton subframe

of $1 and (W, R2) is a skeleton subframe of $2.

0 If (W, R1) is a skeleton subframe/of $1 and (W,R2) is a skeleton subframe of $2,
then there exists/a\subframe F = (W, R1A, R2) of$1EB$2 such that R1 Q R1, R2 Q R2
and for all 11) E W : wRa&#39;w&#39; => w(Ra U R;1)*w�.
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Combining this lemma with theorem 3.3.2 gives the skeleton version of this theorem:

Theorem 3.3.5 Let .71 and .72 be two classes of vniA�modglfrgmeAs closed under disjoint
union. If there exists an 71 G3 .72 skeleton svbframe F = (W,R1, R2) such that:

1. W 2 {�Ll}0,�LUg,�(1),~}, and for some 0 E {1,2}+.&#39; IUQRO-�(,Ug and w0H,,w,,

2. wo, �LUg and w, have the same reflective behavior, i. e. for a = 1, 2:

w0R,,w0 <=> �LUgRa�LUg <=> w,R,,w,,

5�. For some a E «[1, 2}:

0 wo has no non�refle:cive Ra edges, i. e. if w0R,,w or wR,,w0, then we = w, and

0 �(Hg and w, have no non�re�e:cive R5 edges: if �LUgR§�LU or �LUR§�LUg then w = �LUg,
and if wTRaw or wR§w, then w = w,.

Then .71 G3 .72 satis�ability is PSPA CE�hard.

3.4 Classi�cation

In section 3.2 we have given a criterion for the transfer of NP upper bounds, and in
section 3.3 a criterion for PSPACE hardness of the join. In this section we prove that
both these theorems are optimal in the following sense:

Theorem 3.4.1 Let .71 and .72 be two classes of vni�modal frames closed under disjoint
union. Then we are in one of the following three cases:

I For some a E «[1, 2}, .7a is trivial. (That is, every frame in .7,, consists of the disjoint
union of singletons, or, in other words, o�» is not a skeleton svbframe of .7�). In
this case, .71 G3 .72 satis�ability is polynomial time reducible to .72 satis�ability.

II 71 G3 .72 satis�ability is PSPACE�hard by theorem 3. 3. 5.

III .71 G3 .72 satis�ability is in NP by theorem

It follows that for two classes of non trivial frames, theorems 3.3.5 and 3.2.2 are optimal
under the assumption that NP 7E PSPACE. Furthermore, case II is the only case where
the join can contribute to the complexity. The proof of the theorem is rather lengthy. We
start with the simplest part, i.e. with case I.

Case I: Singletons

We will prove that if o�>o is not a skeleton subframe of .72, then .71 EB .72 satis�ability is
polynomial time reducible to .71 satis�ability.

If o�» is not a skeleton subframe of .72, then no world in an .72 frame has a successor
different from itself, i.e. every frame in .72 consists of the disjoint union of singletons.
Note that it might be the case that .72 is empty. If that is the case, then .71 63 .72 = (7),
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and therefore no formula is satis�able in $1 63 $2. Then $1 63 $2 satis�ability is trivially
reducible to $1 satis�ability by the reduction )\¢.J_.

Now suppose that $1,$2 75 (I). There exist many different classes of frames that are
closed under disjoint union and contain only singletons. For instance, $2 might consist
of all frames that contain at least 5 re�exive singletons, and an even number of irre�exive
singletons. However, it is easy to see that there are only three different cases for $2

satis�ability.

1. If all worlds in $2 are re�exive, then gz� is $2 satis�able iff gz� is satis�able on the
re�exive singleton. (Logic: K2 + [2]p <�> p.)

2. If all worlds in $2 are irre�exive, then ¢ is $2 satis�able iff ¢ is satis�able on the
irre�exive singleton. (Logic: K2 + [2]J_.)

3. If $2 contains re�exive and irre�exive worlds, then ¢ is $2 satis�able iff gz� is satis-
�able on some singleton. (Logic: K2 + p �> [2]p).

Recall that corollary 3.1.3 states that if $2 and $2 are closed under disloint union and
$2 satis�ability = $2 satis�ability, then $1 63 $2 satis�ability = $1 EB $2 satis�ability.
From this observation, it follows that:

1. If all worlds in $2 are re�exive, then ¢ is satis�able in $1 EB $2 iff Q3 is satis�able on
a frame F = (VV, R1, R2) such that (W, R1) 6 $1 and R2 = {(w,w)|w E

2. If all worlds in $2 are irre�exive, then ¢ is satis�able in $1 EB $2 iff gz� is satis�able
on a frame F = (W, R1, R2) such that (W, R1) 6 $1 and R2 = V).

3. If $2 contains re�exive and irre�exive worlds, then q� is satis�able in $1 EB $2 iff
gz� is satis�able on a frame F = (W, R1,R2) such that (VV, R1) 6 $1 and R2 Q
{(&#39;w,w)|w E

For each of these cases, we de�ne a reduction from $1 EB$2 satis�ability to $1 satis�ability.
First suppose that every world in $2 is re�exive. De�ne the following reduction f,.:

fr(p) = P; .f1"(_&#39;1/J) : ".f1"(&#39;9[)); .f1"("/11 A $2) : fr(7v[)1) A .f7�(w2)§
fr(l1l1/1) = l1lfr(1/J); fr(l2l1/9) = fr(%/>)-

It is easy to verify that ¢ is satis�able on a frame (W, R1, {(w,w)|w E  iff f,(q5) is
satis�able on the frame (W, R1).

Now suppose that every world in $2 is irre�exive. De�ne the following reduction f,~,:

fl-1(1)) = P; fi1"(�&#39;1/1) = �fz-r(z/I); fiT�(1;[}1 /\ 1122) = fir (1/11) /\ .fir(w2);
f.~1«([1]1/1) = [1lf.~,«(1/I); .fir(l2lw) = T-

It is easy to verify that ¢ is satis�able on a frame (W, R1, (7)) iff f,~,.(¢) is satis�able on the
frame (W, R1).

Finally, suppose that $2 contains re�exive and irre�exive worlds. In this case, we use a
new propositional variable p, to denote that a world is R2 re�exive. De�ne the reduction
fm as follows:

.f1"i1"(p) : pi .f1"i1"(_&#39;1/1) : _&#39;.f1"i1"(1/1); .frir( 1 A $2) : .frir(w1) A f1"i1"(1/J2);
 :   : pr �>

It is easy to verify that ¢ is satis�able on a frame (W, R1, R2) such that R2 Q {(10, w)|w E
W} iff f,,~,(q5) is satis�able in a model (VV, R1,7r) such that 7r(p,.) = {w E W|wR2w}. El
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Case II: PSPACE Hardness

For the remainder of the proof of theorem 3.4.1, we have to show that if 71 and 72 are
two classes of uni�modal frames that both contain o�» as skeleton subframe, then we are
in one of the following two cases:

II 71 G3 72 satis�ability is PSPACE�hard by theorem 3.3.5.

III .71 G3 72 satis�ability is in NP by theorem 3.2.2.

During the proof, we also obtain a complete classi�cation of the 71 and 72 subframes
that occur in case II.

Theorem 3.4.2 Let .71 and .72 be two classes of uni�modalfmmes closed under disjoint
union. Then theorem 3.3.5 can be applied (i.e. we are in case II of theorem 3.4.1) i�" we
are in one of the following six cases for some a E {1, 2}:

A .> <. is a skeleton subframe of .7a and o�>o is a skeleton subframe of .75.

B .<&#39;_,._,. is a skeleton subframe of 7,, and o�>o is a skeleton subframe of .75.

C ._,£&#39;_,. is a skeleton subframe of .7,, and o�>o is a skeleton subframe of .7;

D o�>o�>o is a skeleton subframe of 7,, and £&#39;_,. is a skeleton subframe of .75.

E o�»�>o and .<�_,. are skeleton subfmmes of .7a and o<�>o is a skeleton subframe of .75.

F o�»�» and S&#39;_,. are skeleton subframes of 7,, and ._..<Y is a skeleton subframe of .75.

Note that none of the six cases is included in the �ve other cases, even if we look only
at logics with satis�ability problems in NP (i.e. cases where the join really contributes to
the complexity). For instance, if .71 consists of the closure under disjoint union of ._,,<&#39;_,,
and 72 of the closure under disjoint union of o�», then we are in case C, but not in any
of the other cases, and both satis�ability problems are in NP.

Our two theorems will be proved simultaneously in the following way. First we show
that theorem 3.3.5 can be applied in all six cases of theorem 3.4.2. Then we show that
if 71 and 72 are two non�trivial classes of frames, and we are not in case A through F
as given above, then 71 G3 72 satis�ability is in NP, by theorem 3.2.2. This proves both
theorems, since theorem 3.3.5 and theorem 3.2.2 can never be applied at the same time.

We �rst show that if we are in case A through F, then the satis�ability problem for
the join is PSPACE�hard/by theorem 3.3.5. For each of the six cases, we give an 71 G3 72
skeleton subframe E = (W, H1, H2) and a string 0 E {1, 2}+ such that the conditions of
theorem 3.3.5 are ful�lled, that is:

1. W 2 {w0, �LUg,�LU,~}, and for some 0 E {1,2}+: we]-éiawg and w0H,,w,,

2. wo, we and w, have the same re�exive behavior, i.e. for a = 1, 2:

w0H,,w0 <=> wgfiawg <=> w,.H,,w,.,

3. For some a 6 {1,2}:

0 wo has no non�re�exive Ra edges, i.e. if w0R,,w or wR,,w0, then we = w, and

o w and w, have no non�re�exive R5 edges: if �(.UgR§�LU or �Ll}R5�Ll)g then w = �U13,
and if wTRgw or wRaw, then w = w,.
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A .>.<. is a skeleton subframe of .73, and o�» is a skeleton subframe of 7-}.

B 9&#39;_,,_,. is a skeleton subframe of .73, and o�>o is a skeleton subframe of .735.

E Q� a a
o�>o�>o�>o 0 = (Law

wo &#39;LUg 10,.

C ._,.<&#39;_,, is a skeleton subframe of .73., and o�» is a skeleton subframe of .755.

aovaa E
Cm>Cj�0j>0 71}! 0&#39; = 0.05

5 9 /wr

F .�».�»o and S&#39;_,. are skeleton subframes of .7�&#39;,, and ._,.<&#39; is a skeleton subframe of .755.

a,E
E a E a a E a _ _ _

O?>O�>0?>0�>0?>0�>0?>0 0 = aaaaaaa
wo &#39;LUg 10,.

Case III: NP Upper Bounds

Finally, we show that if $1 and F2 are two non�trivial classes of frames, and we are not in
case A through F of theorem 3.4.2, then .731 ED .752 satis�ability is in NP, by theorem 3.2.2.
This completes the proofs of theorems 3.4.1 and 3.4.2. To conclude that .71 ED .732 satis�-
ability is in NP by theorem 3.2.2, we need to show the following two requirements:

0 .71 and .752 satis�ability are in NP, and
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0 there exists a polynomial p such that for every .731 63 .752 satis�able formula q�, there
exists a model M = (W, R1, R2, 7r) such that:

� (W,R1,R2> E .71 G3 .72,

_ M7w0 l: ¢7

� |{w|&#39;woRpaths(¢)�w}| S P(|¢|)-

The �rst requirement Since fl and .752 both contain .�» as a skeleton subframe,

and we are not in cases A,B and C of theorem 3.4.2, it follows that .>°<., .<&#39;_,,_,., and
._,SV_,, are not skeleton subframes of .751 and .732. Let .7-" be a class of frames that does not
contain these three frames as skeleton subframes. We will show that .7-" satis�ability is in
NP.

Let Rt(.7-") be the class of rooted generated subframes of .7-". It is easy to see that every
frame in Rt(.7-") is of one of the following forms:

1. The in�nite frame of the form: o�>o�>o�>  ,

2. A �nite frame of the form: ._.   (The length of the cycle may be
one, in which case the frame ends with a re�exive world).

3. A �nite frame of the form: .�.._.._.  _.., or

4. A skeleton subframe of the frame: .<1_,.<&#39;

We�d like to use the following algorithm for .7-" satis�ability: guess a model M = (VV, R, 7r)
of size at most |gz5| and a world we, verify that M, we |= c3 and that there exists a frame
F E .7-" such that F|{w|w0R,,,,t,,5(¢,)w} = (W, R). Unfortunately, verifying the last condition
can be of arbitrary complexity. For suppose A is a subset of the natural numbers. De�ne
.7-" in such a way that a cyclic frame F is a member of .7-" iff the length of the cycle is in
A. Then A is reducible to veri�cation of the last condition for .7-".

We will show that the satis�ability problem for .7-" is in NP, by carefully analyzing the
different cases that can occur. First of all, let Y be the set of frames in Rt(.7-") of type 4.,
i.e. skeleton subframes of .<1_,.<&#39;. Since Y is a �nite set of �nite frames, Y satis�ability is
in NP. It follows that Rt(.7-") satis�ability is in NP iff Rt(.7-") \ Y satis�ability is in NP. We
will therefore assume that Rt(.7-") contains only frames of types 1, 2 and 3. We distinguish
the following cases:

o Rt(.7-") is �nite. In this case, either all frames are �nite, in which case the corre-
sponding satis�ability problem is in NP, or Rt(.7�") consists of a �nite class of �nite
frames and the only in�nite frame  . But in this case, the satis�ability
problem is in NP as well.

o Rt(.7-") is in�nite.

� Rt(.7-") contains a �nite class X of frames of the form o�>o�»�»  �»o. Then
Rt(.7-") satis�ability = X U {  } satis�ability.
First suppose that ¢ is satis�able in Rt(.7-" Then either gz� is satis�able in X, in
which case we are done, or gz� is satis�able on a frame of the form
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or  But then go is also satis�able on the corresponding
unraveled frame. In all cases, the unraveled frame is o�>o�>o�>  .

For the converse, suppose that q� is satis�able on X U {   Then
either go is satis�able in X, in which case we are done, or go is satis�able on
 , and therefore satis�able on the frame  of |(;5|
worlds. Since Rt(.7-") is in�nite and X is �nite, Rt(.7�") contains an in�nite
number of frames of the form ._.   But then there exists there

exists a frame G E Rt(.7-") and world we such that G|{w|w0Riw for i 3 |(;5| � 1}
is equal the frame  of |¢| worlds. It follows that G satis�es go
at wo.

Since X is a �nite class of �nite frames, the satis�ability problem for X U
{  } is in NP.

� Rt(.7�") contains an in�nite class of frames of the form o�»o�»�»  �»o. Us-
ing a similar argument as in the previous case, it can be shown that Rt(.7-")
satis�ability = satis�ability with respect to the class of all frames of the form
o�>o�»�>  �>o. The satis�ability problem for this class of frames is in NP.

The second requirement Finally, we show that if .71 and .752 are two non�trivial
classes of frames, and we are not in case A through F of theorem 3.4.2, then the second
requirement of theorem 3.2.2 is ful�lled, i.e. we show that there exists a polynomial p such
that for every .71 G3 .752 satis�able formula q�, there exists a model M = (VV, R1, R2, 7r) such
that:

0 <W,R1,R2> Ef1EBF2,

. M7w0 l:¢7

° |{w|woRpams(¢>w}| S p(|¢|)-

We start by describing the form of the frames in $1 and .772. It turns out that there are
three cases to consider:

Lemma 3.4.3 Let .71 and .772 be two classes of uni�modal frames closed under disjoint
union. If we are not in case I and A through F, then for some a E {1, 2}, we are in one
of the following three cases:

not skeleton subframe of 75,, not skeleton subframe of .735

In the proof of the �rst requirement, we have seen that .>°<., .<&#39;_,._,., and ._,,<&#39;_,. are
not skeleton subframes of .751 nor of .752. The remaining cases depend on the occurrence of
._,. as a skeleton subframe. If S&#39;_,, is not a skeleton subframe of F1 and not of f2, then
we are in case G. If both $1 and .752 contain ,<&#39;_,. as a skeleton subframe, then o�»�» is
not a skeleton subframe of .71 nor of .732, and we are in case H. Finally, if .<"_,. and o�»�».
are skeleton subframes of .751, then we are in case J.

9
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Case G Suppose .> <. and .<&#39;_,. are not skeleton subframes of .751 and .732. We will
show that for any frame F = (I/V, R1,R2) E .751 EB .72, world U10 6 W, and formula q�,
|{/w|w0Rpaths(¢)/w}| S

Let F = (W, R1,R2) be a frame in .731 ED .752, and let U10 6 W. For 0 6 {1,2}*,
let w0rld3(a) be the number of worlds w such that w0R,,w. Then w0rlds(a1) 3 1 and
w0rld3(02) 3 1, since every world in F has at most one R1 successor and at most one R2
successor. From this it follows immediately that for every 0, w0rld3(a) 3 1, and therefore,
for any formula q�, the set {w|w0R,,,,,;,,(¢,)w} is of size at most

Case H Suppose .>.<. and o�»�» are not skeleton subframes of .731 and .732. Then all
rooted generated subframes of .751 and .732 are skeleton subframes of 51...�.

Let F = (W, R1,R2) be a frame in .751 G3 .72, let we be a world in W, and let gz� be
a formula. We will show that |{w|w0R,,,,�,,(¢,)w}| 3  For strings 0,7, we say that 7&#39;
is contained in 0 iff there exist 7§1,...,z&#39;k such that 1 3 2&#39;1 < 22 <  < 1&#39;], 3 |a| and
&#39;7&#39; = 0&#39;i10&#39;i2 &#39; &#39; &#39;0&#39;Z&#39;k.

o If w0R,,w then there exists a &#39;7&#39; contained in 0 such that w is reachable from wo
by an acyclic r path. Since .�»�» is not a skeleton subframe of .751 nor of .732, it
follows that 7&#39; is alternating.

o If r is alternating and w and w� are reachable from wo by an acyclic 7&#39; path, then
I . 0

w = 11)�, since .> <. 1S not a skeleton subframe of .751 nor of .752.

From these two observations, it follows that |{w|w0R,,,,t,,5(¢,)w}| 3 |{r|7&#39; is an alternating
sequence contained in some 0 E paths(q5)}| 3  El

Case J Suppose .>.<., .<&#39;_,,_,. and ._,,<&#39;_,, are not skeleton subframes of .71, and .>.<.,
.<&#39;_,., o�»�», o<�>o and ._,.<&#39; are not skeleton subframes of .772. As we have seen in the proof
of the �rst criterion, any frame in Rt(.7-&#39;1) is of the form:  , ._.  _.._.  _..

 �» or a skeleton subframe of 52...". It is easy to see that any frame in Rt(.7�"2)
is a singleton, or the frame o�>o.

Let F = (VV, R1,R2) be a frame in .751 G3 .752, and let we 6 W. We will show that
|{w|w0RWh5(¢,)w}| 3 2|q5|2.2 For 11 a proper successor of wo, let W, consist of all the
worlds in W that are reachable from v by a path that does not contain wo. If w0R,w and
w gé U10, then for some real we successor 1}, w E W, and vRc,«w for 0� a su�ix of 0. The
following lemma shows that there exist at most two worlds in W, that are reachable from
12 by 0�. Since we has at most two real successors, it follows that |{w|w0R,,a,;,,(¢,)w}| 3
2|{a�|a� is a suf�x of some 0 E paths(¢$)}| + 1 3 2|¢$|2.

Lemma 3.4.4 Letv be real successor ofwo. For everyw G Wu, 0 E {1, 2}+, |{w|vR,&#39;w}| 3
2. Furthermore, if vR,&#39;w1 and URUUJQ and wl 75 U12 then w1R1w1R1w2 or w2R1w2R1w1.

Use induction on the length of 0. The claim trivially holds for 0 = A, since if vR;;w
then w = U. Now assume that the claim holds for 0. We will prove the claim for 01 and
02. If no world is 0 reachable from 12, then there are certainly no worlds reachable by aa

2With a bit of extra work, we can prove a linear upper bound.
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from &#39;1). Next assume that there is exactly one world w such that vR.,w. Since w has at
most one 2 successor, 12 has at most one 02 successor. Now look at the 1 successors of
w. w can�t have two 2 successors different from itself. Therefore, there exist at most two
worlds reachable by 01 from &#39;1). Furthermore, if there exist two different worlds wl and
U12 reachable from 11, then wR1w1 and wR1w2. It follows that w = w1 or w = U12 and
therefore either w1R1w1R1w2 or w2R1w2R1w1.

Finally, suppose there exist exactly two worlds wl and U12 that are reachable from 11
by R,. By the induction hypothesis, assume that w1R1w1R1w2. It is easy to see that wl
and 1112 do not have an R1 successor different from w1 and U12, which proves the claim for
01.

For 02, we will prove that at least one of the worlds w1 and &#39;LU2 has a real R2 pre-
decessor. From this, it follows that at most one of the worlds has an R2 successor, and
this successor is unique. Since vR,,w1, and 12 has by de�nition a real predecessor, wl has
a real predecessor, say w�1. If this is a 2 predecessor, then we are done, so suppose that
w�1R1w1. Then, w�1R1w1R1w1R1w2. It follows that w�, = U12, and w1R1w2R1w1. If both
wl and &#39;LU2 are not equal to D, then there exists a worlds 1)� 7é w1,w2 such that v�R,,w1 or
v�R,,w2. But then a = 2, and at least one of the worlds w1 and U12 has a real 2 successor
as required. Finally, if one of the worlds, say wl, is equal to 12, then either w0R2v, in
which case we are done, or w0R1v has a real 1 successor 11� such that not vR1v�. Since
w1,w2 6 Wu, it follows that w1,w2 75 we. But this contradicts the form of .71 frames. CI

3.5 The Complexity of the General Join

In the previous sections, we have investigated the relationship between the complexity of
the satis�ability problem for the join of two uni�modal logics and the complexity of the
satis�ability problems for these uni�modal fragments. The use of the join in the literature
however, is not restricted to this simple case. In particular, we see the occurrence of
in�nite joins, for instance in PDL which is a conservative extension of the in�nite join of
K logics, and the join of multi�modal logics, as in logics for distributed systems which
can be viewed as the join of a logic modeling discrete time with a logic modeling a multi-

processor system.
In general, we consider joins of an arbitrary number of arbitrary multi�modal logics.

As shown in [FS], these joins inherit many properties from their fragments as well. Fol-
lowing [FS], let (2 be a set of pairwise disjoint nonempty sets of indices I, J, K, . . .. We
assume that US) is countable. For normal logics {L1}1¬g, let the join 63169 L; be the min-
imal normal logic containing L, for all I E Q. We say that a property generally transfers
if {LI}IEQ has this property whenever L I has this property for all I E (2.

Theorem 3.5.1  Weak completeness and strong completeness generally transfer.

As before, we will look at the satis�ability problem with respect to a set of frames.
For {.7-"1}1e9 sets of frames, the join of .751, denoted by $169 .71, consists of the frames
(W, {R]}]EQ> such that for all I E 9, (W, R1) = (I/V, {Ra}a¬1) E .731. General joins of
logics and general joins of frames are related as would be expected:

Theorem 3.5.2  If for all I E Q, .751 is closed under disjoint union, and L1 is
complete with respect to .751, then EDIE� L1 is complete with respect to $169 .751.
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In this section, we investigate what effect the general join has on the complexity of the
satis�ability problem. In the previous sections, we measured the effect of the join of two
uni�modal logics by comparing the complexity of the satis�ability problem of the join to
the complexity of the satis�ability problems of its two uni�modal fragments. In particular,
we said that the join contributed to the complexity if the satis�ability problem for the join
was more complex than the satis�ability problems of its uni�modal fragments. However,
when we consider the join of in�nitely many logics, this de�nition does not capture our
intuition. The problem is that the choice of (2 has an impact on the complexity. In fact,
as pointed out in [FS], decidability does not generally transfer. Consider for instance the
following example: Let A be an arbitrary subset of N, let 9 = {A, N \ A}, and let .72;
be the closure under disjoint union of the re�exive singleton and .7�"N\A the closure under
disjoint union of the irre�exive singleton. Then the corresponding satis�ability problems
are in NP, but A is reducible to FA 63 .75N\A, by )\z&#39;.(z&#39;)T.

But this is not the only problem. Even when it is easy to detect to which sublanguage
a formula belongs, we can still get unlimited boosts in the complexity. Again, let A be an
arbitrary subset of N, and let (2 =  E N}. For all 2&#39; E N, let .7, consist of the closure
under disjoint union of the re�exive singleton if 71 E A, and of the closure under disjoint
union of the irre�exive singleton if 71 ¢ A. Obviously, for all 71 E N, .73, satis�ability is in
NP. Furthermore, every frame in ®,~¬N .73, consists of the disjoint union of singletons. In
this sense, the join is trivial, but again, A is reducible to ®,~¬N .7-",~ satis�ability, by )\z&#39;.(z&#39;)T.

There are two ways to avoid the problems mentioned above. If we don�t want to
restrict the choice of 9, these two examples make it clear that it is not fair to measure the
effect of the join by comparing the satis�ability problem for the join with the satis�ability
problems of the joinees. The problem is how to separate the effect of the choice of Q from
the effect of the join. Note that in both examples above, the boost in complexity as caused
by the choice of Q is already apparent in the complexity of the union of the satis�ability
problems of the joinees, in the sense that in both cases the constructed set A is reducible
to the set U IEQ(.7�"1 satis�ability). We can therefore say that the join contributes to the
complexity if the complexity of the join is higher than the complexity of the union of the
satis�ability problems. Note that in the case that we consider the join of �nitely many
sets, this de�nition corresponds to taking the supremum of the complexity of the joinees,
and thus this de�nition is consistent with the one used in the previous section.

This solution has the advantage that it is very general. However, it leads to rather
awkward formulations of the theorems, since the results are relative to the set UIEQ(.7-"1
satis�ability). The approach we will take is the following: we will restrict the choice of (2
and the classes of frames {.7-"I}1¬g in such a way that this choice does not contribute to
the complexity. We want these restrictions to be reasonable, in the sense that the logics
encountered in the literature still �t this framework. Our �rst restriction on (2 ensures

that we don�t have problems with recognizing the sublanguages involved, thereby avoiding
the �rst problem mentioned above. This is straightforward; we will only look at sets (2
such that for all I E Q, I E P. The second problem sketched above can informally be
stated as follows: given I, determining .731 does not contribute to the complexity. Note
that this problem only occurs when (2 is in�nite. We will ensure that there exists a �nite
number of classes of frames such that for every I E Q, .731 satis�ability is isomorphic to the
satis�ability problem with respect to one of these classes, and that these isomorphisms
can be computed in polynomial time. An additional advantage of this requirement is that
it ensures that the in�nite union of for instance NP logics is itself NP.
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Finally, we exclude undesirable behavior of the joinees. For it is still possible that
N E Q, .7-"N consists of the disjoint union of singletons, but .7�"N satis�ability is undecidable:
just let .7-"N = ({w}, {R,~},~EN) such that R, = (ll iff i E A for some undecidable set A. This
problem can be avoided by ensuring that trivial logics contain only a �nite number of
relations.

Formalizing the above, we obtain the following:

De�nition 3.5.3 Let Q be a set of pairwise disjoint sets of indices, and for every I E (2,
let .7; be a class offrames. We call {.7-"1}1¬g well�behaved if

0 for all I, .751 is non�empty and closed under disjoint union,

oforallI¬Q:IE P,

0 there exist I1, . . .I;, E Q and a polynomial time computable function f from US) to
I1 U. . .UIk such that for all I E Q, .751 satis�ability is isomorphic to .731]. satis�ability
by f, and

0 if there exists an upper bound on the size of rooted subframes of .751 then I is �nite.

Under these conditions, most of the theorems of the previous sections go through. In
particular, the upper bound transfer theorems from section 3.2 still hold if we replace
�transfer� by �generally transfer.� The PSPACE hardness criterion from section 3.3 has
a direct analog for the general join:

Theorem 3.5.4 Let Q be a set of pairwise disjoint sets of indices, and for every I E (2,
let 7-"; be a non�empty class offrames, closed under disjoint union. If there exist I, J E Q,
and a .71 G3 .732 skeleton subframe E = (W, {EI}1EQ) such that:

1. W 2 «[1110, &#39;lUg,�Ll},»}, and for some 0 E (U§2)+.&#39; UIORO-7,Ug and UJOEUUJT,

2. v10, "W3 and u), have the same re�exive behavior, i. e. for a = US):

u)0Raw0 <=> �LUgRa�LUg <=> w,.R,,&#39;w,.,

5�. wo has no non�reflexive R1 edges, i.e. if U}0Ra�LU or �LURa1.U0 for some a E I, then
wo = w, and

4. wg and iv, have no non�reflexive RJ edges: if U)gRa�LU or U)Ra�LUg for some a E J,
then w = 1113, and if v),Ra&#39;w or v)Raw,. for some a E J, then w = w,..

Then $169 .751 satis�ability is PSPA CE�hard.

Classi�cation

We now turn to the analog of theorem 3.4.1. We will prove the analog for the general join
of uni�modal logics. There is no reason why there shouldn�t exist such a theorem for multi-
modal logics. However, there are very many cases which force PSPACE hardness, and
we haven�t managed to obtain a complete characterization. Recall that such a complete
characterization was essential in the proof of theorem 3.4.1. To see why the situation is
more complex if we consider the join of multi�modal logics, look at the following example:
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Q = {{a, a� }, {b, b� }}, and ._a,.<b&#39;and .2�, are skeleton subframes of .7-"{a a} and ,<&#39;_b,, and 1.5.1�:
are skeleton subframes of .7-"{a,ar}. Then .7{a,a:} 63.7-"{;,,g,r} is PSPACE�hard by theorem 3.5.4,
using the following skeleton subframe.

a Ga,� ii a� b a� b�
o�>o�>o�>o�>o�>o�>o we 0&#39; = aba�ba�b�

U10 
     
     b

However, we have been able to prove the analog of theorem 3.4.1 for the arbitrary join
of uni�modal logics:

GU11»

Theorem 3.5.5 Let Q be a countable set of indices and for all a E 9 let .7-"a be a set of
frames such that {.7-"a}a¬g is well�behaued in the sense of de�nition 5�. 5. 5�. Then we are in
one of the following three cases:

I There exists an index a E (2 such that o�» is not a skeleton subframe of.7-"I, for all b aé a.
In this case, G3aEQ .7-"a satis�ability is polynomial time reducible to .7-"a satis�ability.

II Gaaen .7-"a satis�ability is PSPACE�hard, by theorem 3.5.4.

III El�aen .7-"a satis�ability is in NP, by the general analog of theorem 3.2.2.

Case I We �rst show how to get rid of uni�modal fragments that consist of the disjoint
union of singletons. In the previous section, we saw that one set of frames that did not
contain o�» as a skeleton subframe didn�t have any impact on the complexity of the join.
The following lemma shows that this observation also holds for an in�nite number of sets
of frames with this property.

Lemma 3.5.6 Let Q be a countable set of indices, and let 9&#39; be a �nite subset off) such
that for all a E §2\§2� : o�» is not a skeleton subframe of .7a. Then G3aEQ .7-"a satis�ability
is polynomial time reducible to ®a¬nI .7-"a satis�ability.

The proof is a generalization of the proof of case G in the previous section. Let b E Q\Q�.
Then .7-"a does not contain o�» as a skeleton subframe, and therefore 75;, consists of the
disjoint union of singletons. It follows that there are only three cases for .7-"a satis�ability,
depending on the occurrence of re�exive and irre�exive worlds. Using corollary 3.1.3, it
follows that gt is $aEQ .7�"a satis�able, iff a3 is satis�able on a frame F = (W, {Ra}aEQ) such
that (VV, {Ra}aEg«) 6 63am: Ta, and for all a E Q \ Q�:

Ra = {(11), w)|w E W} if every world in .7-"a is re�exive
Ra = (7) if every world in .7-"a is irre�exive

Ra Q {(11), w)|w E W} if .7�"a contains both re�exive and irre�exive worlds
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Now de�ne the reduction f as follows, using a propositional variable r,, to denote that a
world is a re�exive:

f(P) = P; f(*1/1) = *f(%/J); f(l/J1 /\ 1/12) = f(l/>1) /\ f(i/>2);
lalf (1/I) if G E 9&#39;
f(1/1) if a ¢ 9� and re�exive

f (law) = T if a g? Q� and irre�exive
ra �> f(1/1) if a ¢ 9� and both re�exive and irre�exive

This lemma immediately implies case I. III

Case II For the remainder of the proof, we use the following complete classi�cation of
situations where theorem 3.5.4 can be applied.

Theorem 3.5.7 Let Q be a countable set of indices and for all a E 9 let 75,, be a set of
frames such that {.7-",,}aEg is well�behaued in the sense of de�nition 3. 5. 3. Then ®a¬n .73.,
satis�ability is PSPA CE�hard by theorem 3.5.4 i�" there exist a, b E (2 such that a 75 b and
.73., G3 .735 is in one of the six cases of theorem 3.4.2, i.e.

A .* <. is a skeleton subframe of Ta and o�>o is a skeleton subframe of .735.

B ,<Y_,._,. is a skeleton subframe of .73., and o�>o is a skeleton subframe of .735.

C ._,.<&#39;_,. is a skeleton subframe of 75,, and o�» is a skeleton subframe of 7-}.

D o�>o�>o is a skeleton subframe of .73., and .<&#39;_,. is a skeleton subframe of .735.

E o�>o�>o and £&#39;_,. are skeleton subframes of Ta and o<�>o is a skeleton subframe of .735.

F o�»�» and S&#39;_,. are skeleton subframes of .73., and ._..<Y is a skeleton subframe of .735.

OR

N there exist three di�erent elements a, b, c E (2 such that S&#39;_,. is a skeleton subframe of
Ta, and o�>o is a skeleton subframe of Tb and TC.

That theorem 3.5.4 can be applied in cases A through F follovvs from the previous
section. For case N, we can apply theorem 3.5.4 with o = abc, and F the following frame:
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Case III Finally, we show that if we are not in in case I, and not in case A through F,
and N, then 69,69 .7,, satis�ability is in NP by the analog of theorem 3.2.2. Let Q� be the
set of indices a such that o�» is a skeleton subframe of .7,,. Since we are not in case I,
it follows that |Q�| 2 2. First suppose that 9� consists of two elements, say a and b. By
lemma 3.5.6, ®a¬n 7,, satis�ability is polynomial time reducible to 7,, EB 71, satis�ability.
By the previous section, .7,, EB .71, satis�ability is in NP, and thus ¬9,651 7,, satis�ability is
in NP as well.

Finally, suppose that 9� contains at least three elements. Since we are not in case N,
it follows that for all a E Q, .<&#39;_,, is not a skeleton subframe of .7,,. Furthermore, since we

are not in case A, we know that .>.<. is not a skeleton subframe of .7,,. This situation is
the multi�modal analog of case H of the previous section.

By the general analog of theorem 3.2.2, to prove that Elaaen .7,, satis�ability is in NP, it
suflices to prove that for all a, .7,, satis�ability is in NP and that every satis�able formula
can be satis�ed on a frame with polynomially many relevant worlds. From the previous
section it follows that for every a E Q, .7,, satis�ability is in NP. It remains to show that
there exists a polynomial size bound on the relevant parts of Elaaen .7,, frames:

Lemma 3.5.8 If .>.<. and £&#39;_,. are not skeleton subframes of .7,,, then for any frame
F = (W, {R,,}aEg2) and world we 6 W: |{w|w0R,,,,,;;,5(¢,)w}| 3

Let F = (W, {R,,},,Eg2) be a frame in 69,69 .7,,, and let wo E W. For 0 E 9*, let worlds(o)
be the number of worlds w such that w0R,,w. Then worlds(ooz) 3 1, since every world in
F has at most one Ra successor, and therefore, for any formula q�, the set {w|w0R,,,,t;,s(¢,)w}
is of size at most  CI

3.6 The Structure of the Join of Frames

In this section we prove the relationships between (sub)structures of .71, 72 and .71 G3 .72
that were used in the previous sections.

Lemma 3.6.1 Let .71 and .72 be two classes of uni�modal frames closed under disjoint
union. If F1 = (W1,R1) E .71 and F2 = (W2,R2) E .72, then there exists a frame
F = (VV, S1, S2) 6 .71 G3 .72 such that Fa is a disjoint subframe of (W, S,,) (i.e. (VV, Sa) =
Fa 69 (<W, Sa)|(W \ W0)-

Proof. Let F1� = (W1�,R�1) consist of the disjoint union of F1 and 2|W2| � 1 frames
isomorphic to F1, and let F; = (W5, Rg) consist of the disjoint union of F2 and 2|W1| � 1
frames isomorphic to F2. Since .7,, is closed under disjoint union, F,; E .7,,. De�ne
F = (W, 31, S2) in such a way that there exist isomorphisms fa from F,; to (W, S,,) and
for all w 6 Wu : f,,(w) = w. It is obvious that if F can be constructed, then F satis�es
the requirements of the lemma.

It remains to show that these isomorphisms can be constructed. But this is easy: it
suflices to show that  Z |W1 U W2|. Since  = |W,,| = 2|W1||W2|, and W,, is not
empty, it follows that  Z |W1| + |W2| Z |W1 U W2|. El

Proof of lemma 3.3.1 Let .71 and .72 be two classes of uni�modal frames closed under

disjoint union. We have to prove that (VV, R1, R2) is a subframe of .71 EB .72 iff (VV, R1) is
a subframe of .71 and (W, R2) is a subframe of .72.
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o If (W, R1, R2) is a subframe of .71 ED .732 then\ there exists a frame F = (VI//LR1/1R2) E
.71 G3 .752 such that W Q W and R1, = R,,|(W ><  This implies that (W, R11) is a
subframe of (W, R1,) and (W, R1,) E .73., by de�nition of the join.

0 Suppose (W,R,,) is a subframe of .731. Let (W,,,R:,) 6 Fa be a superframe of
(W,R,,). By lemma 3.6.1, there exists a frame\F =A(I/V, R1,R2) E/:7-"1 ED .732 such
that R5, = R,,|(W,, X W,,). But then R, = R,,|(W X W), and thus (W, R1, R1) is a
subframe of F. El

Proof of lemma 3.3.4 Let .71 and .732 be two classes of uni�modal frames closed under

disjointA union. We have to show that: If (W, R1, R2) is a skeleton subframe of .751 G3 .72
then (W, R1) is a skeleton subframe of .731 and (W, R2) is a skeleton subframe of $2, and
if (W, R1) is a skeleton subframe of .731 and (W,R2) is a skeleton subframe of T2, then
there exists a subframe F = (W, R1, R2) of .71 G3 .72 such that R1 Q R1, R2 Q R; and for
all w E W : wR,1w� => w(Ra U R;1)*w�.

o If (W,R1,R2) is a skeleton subframe of .751 ED .752 then there exists a frame F =
(W, R1131) e $1 as /3 such that W g W, R1 g R1, and R1 g R1. This implies
that (W, Ra) is a skeleton subframe of (VV, Ra), and (VV, R11) 6 .7511 by de�nition of
the join.

0 Suppose (W,R,,) is a skeleton subframe of Ta. Let W� Q P0w(W) be the set of
maximal Ra U R;1 connected subsets of  Then W is the disjoint union of the
sets in W11. For every V E W�, (V, R,1|(V >< V)) is a subframe of (W, R11) and
therefore a skeleton subframe of .7511. Let RV,� be such that (V, R14�) is a subframe
of Ta, and RV�, contains the restriction of Ra to the elements of V. Let F,, =
(W, UUEWG R1,-#1). Since W is the disjoint union of the sets in W�, Fa is the disjoint
union of the frames (V, R14�) for V 6 W11. Since all these frames are subframes of
Ta, and .73., is closed under disjoint union, F1, is a subframe of 731,. By lemma 3.3.1,
F = (W, UVEW1 R111, UVEW, R1/,2) is a subframe of $1 ea .72. Furthermore, if wR,,w�
then there exists a set V 6 Wu such that w, w� E V. Since V is Ra U R;1 connected,
it follows that w(R,, U R;1)*w�. El
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Chapter 4

Enriching the Language

4. 1 Introduction

The independent join occurs in the literature to model for instance multiprocessor systems.
However, if we want to make global statements about the system, we need more expressive

power.

One of the simplest ways to do this is by enriching the language with the universal
modality [u], with semantics [u]q5 is true iff gz� is true in every world of the model. Another
auxiliary modality which occurs in various guises in the literature is the re�exive transitive
closure, which we will denote by  This modality occurs for instance in temporal logic,
as the �always� operator is the re�exive transitive closure of the �nexttime� operator, and
in logics of knowledge, where �common knowledge� is de�ned as the re�exive transitive
closure of the S5 logics that model the processors.
In this chapter, we investigate the complexity of the satis�ability problems for languages
enriched with  and  Formally, for F = (W, {R,,},,E1) de�ne FM as (W, {R,,},,¬ 1, Ru)
such that Ru = W X W, and FM as (VV, {R,,},,¬I,R*) such that R... = (U,,¬IR,,)*. When
no confusion arises, we�ll identify FM and FM with F. For .7-" a class of frames, we de�ne
.7-"M as the class of all frames FM such that F E .7-", and .7�"M as the class of all frames FM
such that F E .7-".

In section 4.2, we investigate the transfer of upper bounds. We show that in contrast to
the join, decidability does not transfer to the enriched version, even if we add a number of
extra restrictions. In particular, we can assume that .7-" = Fr(L) for L a uni�modal, �nitely
axiomatizable, canonical and universal �rst order logic, thereby refuting a conjecture
from [GP92].

In sections 4.3 and 4.4, we look at enriched versions of the join. In section 4.3, we
show that the satis�ability problems for the enriched versions of the join of two non�trivial
classes of frames are always PSPACE�hard, and in almost all cases even EXPTIME�hard.
The criterion for EXPTIME�hardness has a particularly simple form: it depends only on
the size of rooted subframes of the joinees. We can conclude EXPTIME�hardness if there
exist a joinee that has a rooted subframe of size three, and a different joinee with a rooted
subframe of size two, or if there exist three different joinees that have rooted subframes
of size two. Note that these subframes don�t have to be generated subframes of the join.
In particular, the presence of a rooted subframe of size 19 implies the existence of a rooted
subframe of size m for all m 3 k.

Finally, in section 4.4, we show that this criterion is optimal. We obtain the following
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analog of theorem 3.4.1: There are three possibilities for the join enriched with  or

o All but one of the joinees is trivial, in which case the satis�ability problem is poly-
nomial time reducible to the satis�ability problem of the enriched non�trivial joinee,
or

0 the satis�ability problem is EXPTIME�hard, by theorem 4.3.3, or

o The satis�ability problem is PSPACE�complete.

4.2 Upper Bounds

Universal Box

In this section, we look at the following problem: given .75 and an upper bound on the
complexity of .7-" satis�ability, what can we say about .7�"[,,] satis�ability? The answer is:
�not much,� as shown by the next theorem:

Theorem 4.2.1 There exists a class of uni�modal frames .7: such that:

0 .7: satis�ability is decidable, and .7-"M satis�ability is undecidable.

0 .7: is �rst order universal,

0 .7: = F r(L) for L a uni�rnodal, �nitely azciornatizable, and canonical logic.

In the proofs that follow, we show undecidability for .7-"[,,] satis�ability by constructing
a reduction from the following coRE�complete tiling problem:

N X N tiling: Given a �nite set T of tiles, can T tile N X N?

That is, does there exist a function t from N X N to T such that:

left(t(n + 1, m)), and
d0wn(t(n,m + 1))?

right(t(n, m))
U;0(t(�= 7"&#39;7»))

An example As an example, we �rst look at the satis�ability problem with respect
to N X N; that is, we look F = (N X N,S), where S is the successor relation in the
grid, i.e. S = m), (n + 1,m)), ((n,m), (n,m+ 1))|n,m E N}. We will show that F
satis�ability is NP�complete, while FM satis�ability is coRE�hard.

To prove that F satis�ability is in NP, suppose that q� is satis�ed in (N X N,S).
We may assume that gt is satis�ed at the origin. Now let k be the modal depth of q�.
Then all relevant worlds (n, m) can be reached from the origin in at most is steps. Thus,
satis�ability of q� can be veri�ed by looking at the frame  m)|n + m 3 Is}, S), which
is obviously of polynomial size in the length of ct.

Next we give a reduction from N X N tiling to FM satis�ability, which implies coRE�
hardness for .7-"M satis�ability. Let T = {T1, . . . ,Tk} be a set of tiles. We construct a
formula qS7- such that:

T tiles N X N iff qS7� is FM satis�able.
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To encode the tiling, we use a propositional vector tile 6 {1, . . . ,  We need to ensure
that adjacent tiles have the same color on their common edges. In order to force this,
we have to be able to differentiate between upward and right successors. This would be
easy if we knew the coordinates at each world, but as the relevant part of the frame can
be in�nite, this would take too much space. Let S95 and S5, stand for the right and up
successor relations respectively. Then we want the following to hold:

0 S = S55 U S5,;

0 S95 and S5, are deterministic;

0 S95S5, = S5,S95.

If S95 and S5, ful�ll these conditions, then it is easy to see that one of the relations is
the upward successor relation on N X N, and the other the right successor relation on
N X N, which is what we were after. The last requirement seems the most difficult, for
how can we force this?

This becomes clear if we look at the two step successors of a world 111. Suppose that
every world has an S95 and an S5, successor. Let 111S95S951115555, 111S55S5,111555,, 111S5,S551115,95, and
111S5,S5,1115,5,. Since every world has exactly three 2�step successors, we know that two of
these worlds must be equal. We will ensure that the only worlds that can be equal are
111955, and 1115,95, which implies that S55S5, = S5,S55. We use propositional vector 1113 E «[0, 1, 2}
and ensure that the values of 1113 in 111555, and 1115,55 are the same, while the values of 1113
in 1115595,111555, and 1115,5, are all different. This is easy: intuitively, we let taking an S95 step
correspond to adding 2 (mod3) to the value of 1113, and taking an S5, step to addition
of 1 mod3. Then it is immediate that, for a the value of 1113 at 111, the value of 1113 is
a + 1 mod 3 at 111555, a + 2 mod 3 at 1115,5,, and a at 111955, and 1115,95.

Formally, de�ne

S95:= U {(111,111&#39;)|M,111|=(1113=a) and JV./,111&#39;)=(1113=(cL+2) mod3)}
0§a§2

S5, := {(111,111&#39;)|M,111 |= (1113 = a) and M, 111&#39; )= (1113 = (a+ 1) mod 3)}

And de�ne the corresponding modalities:

[1:]1,Z1:= ;\((1113 = (L) �> E|((1113 = (a + 2) mod 3) �> 1/1)
a=0

2

[y]1,Z1:= /\ ((1113 = C1) �> E|((1113 = (a + 1) mod 3) �> 1/1)
a=0

Recall that we need to force that S = S95 U S5,, S95 and S5, are deterministic, and S95S5, =
S5,S55. It suf�ces to force the �rst two requirements, since these imply that every world
has an S5 and an S5, successor, which in turn implies, by the argument given above, that
S95S5, = S5,S95.

Thus we only have to force that S = S95 U S5, and S95 and S5, are deterministic. Note
that by de�nition, S95 and S5, are contained in S. Now look at the following formula,
which states that every world has an S5 and an S5, successor:

¢succ = [U](<~�6>T /\ (Lt/>7)
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Since Su and Su are by de�nition disjoint, and every world has exactly two S successors,
this formula forces that S = Su U Su and Su and Su are deterministic. We conclude that
if c�suuu is satis�ed on a model based on F]u], then one of Su, Su is the upward successor
relation on N X N, and the other the right successor relation on N X N. Forcing a tiling
is now trivial:

gbu = [u]((tile =  �> V [:c](tz&#39;le =
N&#39;9ht(Tz&#39; ) = left(Tj ))

¢y = [Ul((til¬ = i) �> V [Lt/](til6 = .7&#39;))
up(Tu-)=down(Tj

Putting all this together, we de�ne ¢$7� to be c�suuu /\ q�u /\ q�u. We will prove that T
tiles N X N iff gzS7� is F]u] satis�able. The left to right direction follows from the arguments
given above.

For the converse, suppose if : N X N �> T is a tiling of N X N. We construct the
satisfying model for gz37- as follows: M = (N X N, S, 7r) such that:

(n, m) |= (tile = t(n, m))
(n, m) |= (103 = (271, + m) mod 3)

Clearly, ¢$7- holds at any node (mm) of M. This proves that F]u] satis�ability is
coRE�hard. El

Proof of theorem 4.2.1: We need to construct a class .75 of uni�modal frames such

that .75 is universal �rst order, .7-" = Fr(L) for L a uni�modal, �nitely axiomatizable,
and canonical logic, and .7-" satis�ability is decidable, while �u] is undecidable. The
undecidability will be proved using the reduction constructed in the example, that is, we
will construct .7-" in such a way that T tiles N X N ¢> $7 is �u] satis�able. The most
dif�cult restriction on .7-" is the �rst order de�nability, for how can such a class of frames
be forced to behave like N X N? We do need some kind of diamond property, for instance
�v�:z:yy�E|z(:vRy /\ :cRy� �> yRz /\ y� R2). But diamond properties are certainly not universal
�rst order.

However, F]u] only has to behave like N x N if ¢$7� is �u] satis�able. What does q�suuu
force? That every world has an :3 and a y successor. Recall from the previous proof
that we used the fact that every world in N X N has two successors, and three 2�step
successors. Let .7-" be the class of frames such that every world has at most two successors,
and at most three 2 step successors. Then .7-" is de�ned by the following universal �rst
order sentence:

90v= V53?  $Ryz&#39;�> V yi=yj) /\
1953 1gz�<jg3

V1103/�z ( /\ :ERyu~Rzu~ �> V zu = 2,)
1954 1gz&#39;<jg4

The claim is that .7-" de�ned this way satis�es the requirements of the theorem. We start
by proving that the reduction for coRE�hardness still works, i.e. T tiles N X N iff ¢$7� is
�u] satis�able.
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The right implication follows from the previous proof; if T tiles N X N then qS7� is
satis�able on (N X N, S) as de�ned above, and it is obvious that gov holds on this frame,
and thus <;S7- is .7�"[y] satis�able.

To see that the converse also holds, suppose that M = (VV, R, 7r) is a model such that
(W, R) )= gov and M satis�es ¢7�, say at we 6 W. We reason in a similar way as in the
example: let Ry and Ry correspond to modalities  and [y], i.e.

Ry := U {<w,w&#39;)|M,w |= (103 = a) and M,w� |= (U13 = (a+2) mod 3)}
0§a§2

Ry: U {(w,w&#39;)|M,w |= (U13 = a) and M, w� )= (103 = (a+ 1) mod 3)}
0§a§2

By de�nition, Ry and Ry are disjoint. By ham, every world has an Ry and an Ry
successor. Thus, by gov, it follows that every world has exactly one Ry and exactly one
Ry successor. Since the second conjunct of gov forces that every world has at most three
2�step successors, it follows in the same way as in the example that RyRy = RyRy. Now
de�ne the tiling as follows:

t(n, m) = Ty iff M,w )= (tile =  where w0R;�Ry"w

Since w exists and is unique, t is well�de�ned. To show that t is indeed a tiling, suppose
t(n, m) = Ty and t(n + 1, m) = Ty. Let w, 11)� be the corresponding worlds, i.e. w0R;�Ry"w
and w0R;�+1Ry�w�. Then, by de�nition, M,w )= (tile =  and M, w� |= tile = j. That
these tiles match follows from q�y if we can show that wRyw�. Since RyRy = RyRw,
it follows that R;�+1R;� = R;�R;"Ry, and therefore, wRyw� as required. That t(n, m)
and t(n, m + 1) match is immediate from the de�nition and q�y. This proves that .7-"M
satis�ability is coRE�hard, and thus undecidable.

Before we prove that .75 ful�lls the other restrictions of the theorem, we �rst show that
.7-" is indeed a counter example to decidability transfer to enriched languages. That is, we
need to show that .7-" satis�ability is decidable. Let M = (VV, R, 7r), U10 6 W be such that
M, we |= es and (W, R) e Jr, i.e. (W, R) )= gov. For /C the modal depth of go, let 1717 be the
set of worlds to in W such that w0R5��w. Then M|V/17,1110 )= q�, and (VV,  )= gov, since
gov is universal. It is easy to �nd an upper bound on 1717: since each world has at most two
successors, the size of 1717 is certainly less than 2&#39;°+2. It follows that go is .7-" satis�able iff ha
is satis�able on an .7-" frame of size at most 2��+2. Since .75 is �rst order de�nable, verifying
that a frame is in .7-" takes polynomial time (in the size of the frame). It is immediate
that .75 satis�ability is in NEXP.

To complete the proof of theorem 4.2.1, we need to show that .75 = Fr(L) for L �nitely
axiomatizable and canonical. This is easy to prove, for L is de�ned by the following
axioms:

<>p1 /\ <>p2 /\ <>ps �> <>(p1 /\ 192) V <>(p1 /\ps) V <>(p2 /\ 193)

1§i§4 1§i<jS4

The claim follows directly from Sahlqvist�s theorem [Sah75], but can easily be proven
directly. To prove that .75 = Fr(L), we need to show that for all frames F, F )= gov iff F |=
L. We prove an equivalence between the second conjunct of gov (�v�:I:y_z(/\1Sy~S4 :z:Ry,~Rzy~) �>
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(V1S,~<jS4 z, =  and the second axiom of L. Proving an equivalence between the �rst
conjunct of cpv and the �rst axiom of L can be done by similar arguments, from which
L = F2"(L) follows.

First suppose that M = (VV, R, 7r) and (W, R) |= §0v,2. Suppose M, w |= <><>p1/\<><>p2/\
<><>p3 /\ <><>p4. Let w1,w2,2u3 and 2114 be such that M, w, |= pi and wR2w,~. By §0v72, it
holds that 21), = wj for some 2,j with 1 g 2 < j 3 4. It follows that M,w |= <><>(p,~ Apj)
as required. For the converse, suppose that (VV, R) is not an gov; frame. Let w, 2111, . . . , 2214
be such that wR22u,~ and 21), gé wj for 2 gé j. De�ne valuation 7r in such a way that
7r(p,~) =  Then M,w |= /\1<,~<4 <><>p,~ but M,w bé <><>(p2 /\pj) for all 1 g 2 <_7&#39; 3 4.
It follows that (VV, R) is not an _L_frame.

Finally, we show that the canonical model for L has an underlying .75 frame. For
suppose it doesn�t, and suppose we violate the second conjunct of cpv. Then there exist
maximal consistent sets F,F1,...,F4 such that l:H:l�g/J E F => 1/1 E F,~, and all F, are
different. Since all F, are different, there exist formulas 212, such that 212, E F, and 2/1, ¢ Fj
for all j 7E 2. It follows that:

/\ <><><«2. A /\ aw.) e F
13254 #2

By the second axiom of L, it follows that for some 2, j such that 1 3 2 < j 3 4:

<><>(1/12 /\ /\ "1/he /\1/1;� /\ /\ "@1910 E F
&#39;9?� 7995]�

But then <><>J_ E P, which contradicts the consistency of F. It follows that L is canonical.
This completes the proof of theorem 4.2.1. [I

From frames to logics In [GP92], Goranko and Passy also investigate enriching the
modal language with a universal modality. They use an axiomatic approach: given a
uni�modal logic L, let LM consist of the following axioms:

0 all L axioms,

0 S5 axioms for the universal box,

0 interaction axiom (containment): [u]p �> Elp

Amongst other things, they investigate what properties transfer from L to LM. For in-
stance, it is shown that if L is strongly complete, then so is L[,,]. They also conjecture that
decidability transfers. However, the logic L de�ned above provides a counter example:
for, since L is canonical, it follows that L is strongly complete. By the above mentioned
transfer result, LM is strongly complete as well. Since F2"(L) = .75, it follows that L prov-
ability is decidable, being the the complement of .7-" satis�ability, and LM is undecidable,
being the complement of .7�"[u] satis�ability.

Transitive Closure

In this section, we investigate what happens to upper bounds on satis�ability if we add
[*] to the language. Intuitively,  is at least as strong as [22], and thus we would expect
the situation to be as least as bad as in the previous section. This is indeed the case:
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we will show that theorem 4.2.1 also holds if we replace  by  But there is more to
be said: whereas .7-"[,,] satis�ability is coRE�complete, we�ll show that the presence of the
transitive closure operator boosts the complexity to 21 complete.

Theorem 4.2.2 There exists a class of ani�modal frames .7: such that:

0 .7: satis�ability is decidable, and .7-"[*] satis�ability is 2% complete,

0 .7: is �rst order universal,

0 .7: = F r(L) for L a uni�rnodal, �nitely azciornatizable, and canonical logic,

Let .7-" and L be as de�ned in theorem 4.2.1. This immediately implies the second and
third clauses of the theorem. It remains to prove that .7-"[*] satis�ability is 2% complete.
The 2% upper bound is immediate, since any .7-"[*] satis�able formula is satis�able on a
countable .7-"[*] frame. For the corresponding lower bound, we construct a reduction from
the following E}�cornplete tiling problem:

N X N recurrent tiling: Given a �nite set T of tiles, and a tile T1 6 T, can T tile
N X N such that T1 occurs in the tiling in�nitely often on the �rst row.

That is, does there exist a function t from N X N to T such that: right(t(n,m)) =
left(t(n+ 1, m)), up(t(n, m)) = dou/n(t(n, m+1)), and the set  : t(i, 0) = T1} is in�nite?

Let T = {T1, . . . ,Tk} be a set of tiles. We construct a formula gt� such that:

(T, T1) 6 N X N recurrent tiling iff gt� is satis�able.

To ensure that (tn; forces a tiling of N X N, we use the formula gzS7� constructed in the
proof of theorem 4.2.1. Let gz3�7- be the result of replacing every occurrence of  by  in
gzS7-. Then, as in the proof of theorem 4.2.1, the following holds:

o If ¢§- is not satis�able, then T does not tile N X N.

o If M, we |= gz5�7-, then there exists a tiling t de�ned as follows:

t(n,m) = T, iff M,w )= (tile =  where w0R;�R;�w

Now we force the recurrence: we will use a new propositional variable rowo, which can
only be true at worlds of the form t(n, 0), and we will ensure that there exist an in�nite
number of worlds where rowo holds and tile T1 is placed. De�ne:

q�mc = [>s<]-urowg /\ rowo /\ (rowg �>  <*>(7�0U)0 /\ (tile =

Let gt� be the conjunction of ¢$�7� and om. It is easy to prove that (T,T1) E N X
N recurrent tiling iff ¢$,.1 is .7�"[*] satis�able. This proves theorem 4.2.2. El
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4.3 Lower Bounds

For the rest of this chapter, let 9 be a set of pairwise disjoint sets of indices, and for
I E (2, let .7; be a non�empty class of frames such that {.7-"I}1¬g is well�behaved in the
sense of de�nition 3.5.3. We look at the way in which the complexity of the satis�ability
problems [EBIEQ .7�"1][*] and [$169 .7-";][,,] are related to the complexity of the satis�ability
problems for .71 for I E (2.

First of all, we show that the enriched versions of the join of non�trivial classes of
frames are always PSPACE�hard.

Theorem 4.3.1 Let Q be a set of pairwise disjoint sets of indices, and for every I E (2,
let .7; be a non empty class offrames closed under disjoint union. If there exist I, J E (2
such that .751 and 7-} contain o�» as skeleton subframe, then E9169]-"1 satis�ability is
PSPACE�hard.

We construct a reduction from linear temporal logic with operators 6) (�nexttime�),
and III (�always�), the satis�ability problem of which is in PSPACE�complete [SC85].
Reformulating this result in our notation:

Theorem 4.3.2 ([SC85]) Let LIN be the closure under disjoint union of�nite or in�nite
uni�modal frames of the form 0R1R2R3R4R- - -, i.e. frames  < 7},  i +  + 1 <
7}), for 7 E N U  Then LINM satis�ability is PSPACE�complete, even if we only
look at formulas of the form (#1 /\ [>I<]q52, with gz51,¢2 E £(E|) of modal depth 3 1.

Let a E I, b E J be such that ._a,. is a skeleton subframe of .73; and ._b,. a skeleton
subframe of 7-}. Then all frames of the form 0R,,1R;,2R,,3R;, - -- are skeleton frames of

$169 .751. These frames are very close to LIN frames. The only problem is that they are
only skeleton subframes of $169 .751. In the reduction, we have to take care that extra
worlds and extra edges are ignored. We use ps to denote that a world is part of the
skeleton subframe, and f,, for worlds that have an R,, successor in the skeleton subframe.
De�ne g as follows:

907) = p; 9(*¢) = u9(¢); 9(¢ /\ it) = 9(¢) /\ 9(1/1); 9([*]¢) = [*](ps �> 9(¢));

9(&#39;3¢) = (fa �> [a](Ps �> 9(¢))) /\ (ufa �> [bl(Ps �> 9(¢)))-

Note that g is polynomial time computable for formulas of modal depth 3 2. g is almost
a reduction from LIN satis�ability to 63169 .751 satis�ability: we only have to force that ps
doesn�t behave too strangely. De�ne reduction f from LIN satis�ability for formulas of
the form q� = ¢$1 /\ [>Fl¢2, with ¢1,¢2 E £(|Z|) of modal depth 3 1 to $169 7-"; satis�ability
as follows:

f (<25) = P5 /\ g(¢) /\ [*](ups �> [*l(ups))- 
     
     El

EXPTIME-hardness Recall from the introduction, that EXPTIME is for logics with
more expressive power, what PSPACE is for uni�modal logics and the join of uni�modal
logics. In this section, we prove the analog of the PSPACE�hardness criterion for the join of
the previous chapter. Not surprisingly, this analog has the form of an EXPTIME�hardness
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criterion. Later, we will show that this criterion is optimal, in the sense that it completely
characterizes when enriching the join with  or  causes EXPTIME�hardness, and when
the enriched join of two non�triVial classes of frames is EXPTIME�hard.

Recall from theorem 2.2.2 that EXPTIME-hardness for [$169 .7-";][,,] and [@169 .7-";][*]
satis�ability follows from the existence of a polynomial time computable function f such
that for all formulas es of the form es. /\ [>t]¢2, with ¢1,¢2 e £(m) of modal depth g 1 the
following hold: (letting :1: stand for a and

0 f (d) is an £[,,] formula,

o if d is satis�able in the root of �nite binary tree, then f (q�) is .7�"[,,] satis�able,

o if f (gb) is satis�able, then q� is satis�able.

As in section 3.3, this boils down to the ability of $169.73; subframes to simulate
binary trees. We obtain the following analog of theorem 3.5.4:

Theorem 4.3.3 Let Q be a set of pairwise disjoint sets of indices, and for every I E (2,
let .751 be a non empty class offrarnes closed under disjoint union. If there exist I, J E Q,
and a .71 G3 .732 skeleton subfrarne F = (W, {fiI}1EQ) such that:

1. W 2 {�Ll}0,�LUg,�Ll}7.}, U10 is the root of 13,

2. U10, "W3 and U), have the same reflective behavior, i. e. for a = US):

w0Raw0 <=> �LUgRa�LUg <=> w,.Raw,.,

5�. wo has no non�refle:cioe R1 edges, i.e. if w0Raw or &#39;wR,,w0 for some a E I, then
wo = w, and

4. wg and to, have no non�refle:cioe RJ edges: if U)gRa�LU or U)Ra�LUg for some a E J,
then to = 1113, and if w,Ra&#39;w or wRaw, for some a E J, then to = w,..

Then $169 .751 satis�ability is PSPA CE�hard.

Note that this is theorem 3.5.4 without the requirement that for some 0 E (UQ)+: �LU0R0-�LUg
and wo�gwr. The proof is completely similar to the proof of theorem 3.3.5, i.e. we build
tree simulations from copies of F�. Since we is the root of 1:�, there exist 03, 0,. E (UQ)+
such that w0R,,/tug and wol-éiarwr. From og and 0,, we can de�ne �modalities� [succg] and
[succr] that play the role of III in the binary tree. For 1/) in £(I�) and of modal depth 3 1,
let g(i/1) be the result of replacing every occurrence of D5 by [saccg]f /\ [sacc,]{.

Recall that in the case of theorem 3.3.5, the clause wo�gwg and wo�gw, for some
0 E (UQ)+ was used to force formulas to hold in every node of the tree. But if we
have  or  in the language, we can express this right away. The reductions are now
obvious: for gb = (bl /\ [>:<]¢2, with gz31,¢2 E £(|Z|) of modal depth 3 1, and :1: E {u, >s<}, let
f(¢) = 9(¢1)/\l~�U](Pt �> 9(¢2))- 5&#39;
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4.4 Classi�cation

In this section, we show that the EXPTIME�hardness criterion of the previous section is
optimal, in the following sense:

Theorem 4.4.1 Let Q be a set of pairwise disjoint sets of indices, and for all I E 9, let
7-"; be a set of frames such that {f[}]&#39;EQ is well�behaoed in the sense of de�nition 3.5.3.
Then we are in one of the following three cases:

I There exists a set I E 9 such that for all J E Q with J 75 I, euery frame in f]
consists of the disjoint union of singletons. In that case, [$169 .751][,,] satis�ability
is polynomial time reducible to [.7-"1][u] satis�ability, and [$169 .7-"1][*] satis�ability is
polynomial time reducible to [.7:1][*] satis�ability.

II [E9169 .7-�1][u] satis�ability and [@9169 .7:1][*] satis�ability are EXPTIME�hard by theo-
rem 4.3.5�, or

III [@169 .7-"I][u] satis�ability and [$169 .7-"I][*] satis�ability are PSPACE�complete.

Case I: Singletons Let a I E Q be such that for all J E Q, J 75 I, J consists of the
disjoint union of singletons. The reduction is similar to lemma 3.5.6. We use propositional
variables r,, for a E US) \ I to denote that a world is a re�exive. First, de�ne g as follows:

907) = P; 9(n¢) = n9(¢); 9(¢ /\ it) = 9(¢) /\ 9(1/1); 9([ul¢)=[U]9(1/1); 9([*]¢) = [*]9(1/1);

9([a]¢)) = [al9(¢) for a E 1; 9([a]¢)) = Ta �> 9(¢) f0I" 0 65 I

y can be computed in polynomial time, since all index sets J E Q are in P. The reduction
f (q�) is de�ned as the conjunction of g(q5) and a formula which forces that the values of
the ra variables can occur, i.e. for all J E (2 such that J 75 I and J occurs in gb, let J� be
the set of J modalities occurring in q�, and add the following formula:

/\ [0] V (A Ta/\ /\ era)
�7¬paths(9(¢)) <{w}aRJ>E-FJ a¬J,:Ra.7éQ) a¬J,aRa:m

In general, this formula is not polynomial time computable, since the number of different
J� singletons can be exponential in the size of J�. However, since we have assumed that (2
and the classes of formulas are well�behaved, every J 75 I is �nite. In addition, we know
that there occur only �nitely many different sizes amongst the index sets in Q. It follows
that there exists a �xed upper bound on the size of J for J 75 I, and thus g is polynomial
time computable.

Case II: PSPACE-hardness For the remainder of the proof of theorem 3.4.1, we have
to show that if there exist at least two sets of indices in 9 such that both contain o�» as

skeleton subframe, then we are in one of the following two cases:

II [E9169 .7-}][,,] satis�ability and [@169 .7-"1][*] satis�ability are EXPTIME�hard by theo-
rem 4.3.3, or

III [@169 .7-";][,,] satis�ability and [@169 .7-";][,,] satis�ability are PSPACE�complete.
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During the proof, we also obtain a complete classi�cation on 71 subframes such that
we are in case II.

Theorem 4.4.2 Theorem 4.3.3 can be applied e. we are in case II of theorem 4.4) i�"
we are in one of the following two cases:

A There exist I, J E 9 such that I 75 J and .71 has a rooted subframe of size three, and
.7; has a rooted subframe of size two, or

B There exist three sets of indices I, J,K E 9 such that 7;, 7; and .7K have rooted
subfrarnes of size two.

We �rst show that if we are in case A and B, then the satis�ability problem for the
enriched versions of the join is EXPTIME�hard by theorem 4.3.3. For case A, note that

there exist a and b in I such that �.131.� or 0 5 are skeleton subframes of 71. In
addition, let c be such that ._C,, is a skeleton subframe of 7 J. It follows that one of the
two following frames is a skeleton subframe of .7; G3 7 J, which proves case A.

c a c a b
0?»

we \ we we wrb . wr

For case B, let a and b be such that ._a,. is a skeleton subframe of 71 and ,_b,. a

skeleton subframe of 7 J. Then �.131.� is a skeleton subframe of .71 ED 7;, and the claim
follows from case A. El

Case III: PSPACE upper bounds It remains to show the last part of the theorem,
i.e. if we are not in case I, A, B or C, then [@169 .7;][,,] satis�ability is PSPACE�complete.
First note that, since we are not in case B and C, there exist exactly two sets of indices
I and J in 9 such that 71 and 7 J have 2�world rooted subframes, and for all K gé I, J,
.7K consists of the disjoint union of singletons. By case C, [EBIEQ .71][u] satis�ability is
polynomial time reducible to [.71 EB7J][,,] satis�ability, and [$169 71][*] satis�ability is
polynomial time reducible to [71 G3 .7J][,,] satis�ability. It therefore suflices to prove the
following:

Theorem 4.4.3 IfI and J are �nite, 71 and .7; are closed under disjoint union, have
rooted subframe of size two, but not of size three, then [.71 G3 .7J][,,] and [.71 EB .7J][*] satis-
�ability are PSPA CE�cornplete.

Hardness follows immediately from the previous section. It remains to prove the upper
bound. As the proof is quite involved, we �rst look at a relatively simple instance. Let
.71 and 72 consist of the closure under disjoint union of the frame o�>o. We prove that
[.71 EB .72][*] satis�ability is in PSPACE.

Let�s �rst look at the form of a rooted .71 G3 72 frame F. Every world is R1 irre�exive
and R2 irre�exive, and has at most one R1 successor, and at most one R2�successor.
Furthermore, since F is generated, every world except the root has a predecessor. If w
has an a predecessor, then w doesn�t have any a successors. From these observations, it
follows that F is of the following form where both branches can be �nite or in�nite:
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0 
     
     \2�oe>oe>o

1 2 1

Apart from the root, F is a linear frame. This situation is very close to LIN[*] sat-
is�ability as described in the previous section, the satis�ability problem of which is in
PSPACE [SO85]. We can use similar methods to prove PSPACE upper bounds in this
case, but that leads to duplication of work. What we will do here is to use the fact
that LIN[*] satis�ability is in PSPACE. Recall that LIN is the closure under disjoint
union of �nite or in�nite uni�modal frames of the form OR1R2R3R4R. . ., i.e. frames
 < 7}, {(z&#39;,z&#39;+  + 1 < 7}), for 7 E N U

As a �rst step, we show how to simulate linear .731 G3 .732 frames by LIN frames. This is
simple: suppose F = (W, R1, R2) such that W =  < 7} and z&#39;+ 1 is the only successor
of 71. Then the corresponding LIN frame is de�ned on the same set of worlds. To encode
R1 and R2, we use propositional variables f1 and f2 which will be true if a world has a R1
or R2 successor. Not all valuations of a LIN frame correspond to a linear .751 63 F2 frame.
By de�nition of .731 and .752, two consecutive R1 or R2 edges do not occur:

l*](n(f1 /\ <>f1) /\ *(f2 /\ <>f2))

Furthermore, a world has a successor if and only if this world has an R1 or an R2 successor:

It is easy to verify that these formulas ensure that a LIN frame corresponds to a linear
.71 @732 frame. Using this correspondence between frames, we can construct a polynomial
time reduction from linear [T1 ED .752][*] satis�ability to [LIN] [*1 satis�ability. The reduction
constructed here will not be the simplest one for this particular example, but it will be
easy to generalize. First of all, let g(¢) be the propositional version of q5:

9(1)) =19; 9(n¢) = *9(¢); 9(¢/W) =9(¢)/\9(z/>); 9([a]¢) =p[a1¢; 9([*]¢) =p[*]¢-

Now de�ne f (¢) as the conjunction of g(¢), the frame formulas given above, and the
following formula which forces proper behavior of the new propositional variables. It
is immediate that III plays the role of [1] in worlds where f1 holds, and the role of [2]
in worlds where f2 holds. Furthermore, the transitive closures of corresponding frames
coincide. These observations lead to the following formulas:

[*](f1 �> (Pmw <�> D9(%/0)); [*l(f2 �> (P[2]¢ <-> D9(¢))); [*1 (P[*]¢ <�> [*]9(1/1)))-

It is easy to verify that ¢ is satis�able on a linear .731 G3 .752 frame iff f(gz3) is satis�able
on the corresponding LIN frame. Since f is obviously polynomial time computable, this
proves that linear [.751 ED .7-"2][*] satis�ability is in PSPACE. From this, it is easy to derive a
PSPACE upper bound for [.731 63 .7�2][*] satis�ability: suppose ¢ is [.71 G3 .7-"2][*] satis�able.
Let M be the model and w the world that witness this. Let F be the set of C&#39;l(¢) formulas
satis�ed in M at w, and let F1 (F2) be the set of Cl(¢) formulas satis�ed at 11) if we remove
the R2 (R1) edge with origin 11). Note that I�1 /\ [2]J_ and F2 /\ [1]J_ are satis�able, and
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therefore satis�able in linear .731 G3 .752 frames. Furthermore, since F, F1, and F2 all belong
to the same world w, all three sets contain the same propositional formulas. In addition,
F and F1 agree on [1] formulas and F and F2 on [2] formulas, and [*]¢ 6 P if and only
if [>s<]v,b 6 F1 and [>s<]v,b 6 F2. It follows that ¢$ is [.71 63 .7:2][*] satis�able iff there exist sets
F, F1 and F2 Q Cl(q5) such that:

0 <15 E T,

o 1/; E F <=> 1/) 6 Pa for 1/2 propositional, or 1/1 = [a]{,

o [*]¢ 6 F <=> [>:<];b 6 F1 and [*]¢ 6 P2,

0 F1 /\ [2]J_ and F2 /\ [1]J_ are maximally satis�able in linear .71 ED .732 frames.

Since subsets of Cl(¢) can be represented in space polynomial in the length of q�, and
linear [.71 G3 .7�"2][*] is in PSPACE, it follows that [.71 63 .7:2][*] is in PSPACE.

Proof of theorem 4.4.3: Now we turn to the general case, i.e. if I and J are �nite, .73;
and .7-"J are closed under disjoint union, and do not have rooted subframes of size three,
then [.751 G3 .731] [*1 satis�ability is in PSPACE.

Again, we �rst look at the form of rooted generated .75; G3 7-} frame F. Since .731 and
7-} only have rooted subframes of size at most two, it follows that for a subset of the
edges, F is of the following form, where both branches can be �nite or in�nite, and an
edge labeled I denotes some edge in I.

J I J

. Oe>O 
     
     Km.

I J I

Again, we �rst look at the linear case, i.e. we look at frames  < �Y},R[,RJ) in
.71 613.73; such that z&#39;+ 1 is a successor of 2&#39;, and for all a E IU J, if z&#39;R,,j then  � j| 3 1.
As in the simple case, the corresponding LIN frame is de�ned on the same set of worlds.
To encode Ra, we use propositional variables fa, b,, and 1",, to denote that a world has a
forward, backward or re�exive a edge. To ensure that a LIN frame indeed encodes an
.71 63 f] frame, we �rst of all ensure that there are no I or J connected sets of worlds of
size three, i.e. for all a, I) such that a and b are both in I or both in J, it is not the case
that 7IR,,(z&#39;+1)Rb(7l+2), or (7l+2)R,,(z&#39;+1)R,,z&#39;, or z&#39;+1R,,7§+2 and 7§+1R,,7§. This can be forced
by the following formula:

l*l(_&#39;(fa A Ofb) A "(bu A Obb) A "(fa A

This formula ensures that for K = I, J every maximal K connected set is of the form
«[71, z&#39;+ 1} or  To ensure that the LIN frame encodes a linear $1 G3 .73; frame, it remains
to force that these sets are generated 7-} subframes. For F = ({w}, RK) a generated .7-"K
frame, let q�p be the formula encoding the situation at w:
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And for F = ({2u,w�},RK) a rooted generated 9-} frame, with root 21), let q�p be the
formula encoding the situation at w:

/\ /\ fa/\ /\ afa/\ /\ <>ba/\ /\ w<>ba
a¬K wRaw� �uwRaw� w�Raw -vw�Raw

/\ /\ ra /\ /\ -Ira /\ /\ <>2"a /\ /\ -u<>7"a
wRaw -vwRaw w�Raw� -vw�Raw�

Recall that Rt(.7-") is the class of rooted generated subframes of .75. Now add the following

formula for K = I, J, 
     
     [*]( /\ uba �>( V ¢F))

aEK FeRt(]-&#39;K)

It is easy to verify that these formulas ensure that a LIN frame corresponds to a
linear 7-"; ED 7-} frame. Using this correspondence between frames, we can construct a
polynomial time reduction from linear [.751 ED .7-"J][*] satis�ability to [LIN][*] satis�ability.
Again, let g(¢) be the propositional version of q5:

9(2)) =29; 9(u¢) = *9(¢); 9(¢/W) =9(¢)/\9(z/>); 9([a]¢) =p[a1¢; 9([*]¢) =p[*]¢-

Now de�ne f (¢) as the conjunction of g(¢), the frame formulas given above, and the
following formulas which force proper behavior of the new propositional variables. We �rst
treat the case for p[a]a for a E I U J, and [a]2/1 6 Cl This is relatively straightforward,
as all successors are given by variables fa, ba and Ta. We treat all occurring combinations.
First of all, suppose that 2Ra2I+1. Then fa is true at 2, and either 21 is Ra re�exive, in
which case Ta is true at 2, and 2 and 2+ 1 are the Ra successors of 21, or 2 is Ra irre�exive,
in which case Ta is false at 2, and 2 + 1 is the only Ra successor of 2:

[*l(fa /\ Ta �> (P[a1¢ <-> 9(1/1) /\ D9(1/1)) /\ (fa /\ um �> (P[a]¢ <-> D9(1/1)))

We argue in a similar way in the case that 2&#39;+1Ra2, i.e. ba true at 21+ 1:

[*](<>ba /\ 07%» �> (<>P[a1w <-> 9(2)) /\ <>9(1/2)) /\ (<>ba /\ *<>7"a �> (<>P[a1¢ <-> 9(1/1)))

And if 2 does not have forward or backward Ra successors:

l*l(_�fa A _&#39;ba _> (p[a]1/1 4�) (Ta �>

Finally, we ensure the proper behavior of p[*],,, for [>n<]¢ 6 Cl In the proof of the simple
case this was easy, since there 2(R1 UR2)* j if and only if j 2 2&#39;, i.e. the transitive closure in
linear .71 G3 .72 frames coincided with the transitive closure in LIN frames. In the general
case we treat here, this only goes through for worlds without back edges:

[*l(( /\ uba) �> (P[*1¢<�> [*l9(1/1)))
aEIUJ

On the other hand, if 2&#39;+1Ra2 for some a, [>s<]2Z) holds at 2 iff it holds at 2+ 1:

[*l((<> V bu) �> (P[*]w <�><>P[*]w)))
a¬IUJ
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It is easy to verify that ¢ is satis�able in the root of a linear $1 63 FJ frame iff f (¢) /\
/\,,E,UJ -»b,, is satis�able on the corresponding LIN frame. Since f is obviously polynomial
time computable, this proves that linear [.71 EB .7�"J][*] satis�ability is in PSPACE.

As we have seen, .73; EB .75; frames do not have to be linear. However, an .75; ED 7-} frame
can be viewed as two linear .73; G3 .75; frames that coincide at we. Let M I be the branch
that starts with an I edge, i.e. M I is constructed from M by removing all non�re�exive
J edges that originate from U10, and restricting the set of worlds to those that are still
reachable from Now we have split M into two linear .73; ED 7-} models that together contain
all the information of M.

Let I� = F07"mM(w0) D Cl(gz5), I�; = F07"mM,(w0) � Cl(<;5), and FJ = F07"mMJ(w0) F1
Cl Along the line of section 3.2, we can determine the relationship between these
sets, thereby reducing [.71 EB FJ][*] satis�ability to linear [.71 EB .7-"J][,,] satis�ability. This
proves theorem 4.4.3 for

For [.751 G3 .7-"J][,,], we use similar methods. First note that we can�t assume that an
[.71 G3 .7-"J][,,] satis�able formula is satis�able on a rooted frame. Look for instance at the
following formula:

P /\ (UH? /\ [Ul(p �> Up)

How many disjoint frames do we need? This depends only on the behavior of  Since
[u] is an S5 modality, it follows from the introduction that m + 1 worlds are su�icient to
satisfy ¢ as far as the  part is concerned. (m is the number of  occurrences in q�.)
This leads to the following equivalence:

gz� is [.71 G3 .7-"J][,,] satis�able

There exist is 3 m and Cl(<;5)1sf1f1bsets F0,1�1...,1�,, such that:
0 [u]1/1 E I�, iff [u]7,Z) E T�, for all 1,1) and all z&#39;,j 3 m,

o If (u)v,Z2 E 1�, then 1/) E Fj for somej 3 m,

o 1�, is maximally satis�able in a rooted [.71 G3 fJ][u] frame.

Obviously, the main contribution to the complexity comes from the last condition, and
just as obviously, this step is in PSPACE by the proof for  given above. El
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Chapter 5

The Complexity of Attribute Value

Logics

5. 1 Introduction

Attribute Value Structures (AVSs) are probably the most widely used means of repre-
senting linguistic structure in current computational linguistics, and the process of uni-
fying descriptions of AVSs lies at the heart of many parsers. As a number of people
have recently observed (see for example Kracht [Kra89], Blackburn [Bla2], Moss [Mos],
Reape [Rea91] and Schild [Sch90]) the most common formalisms for describing AVSs are
notational variants of propositional modal languages, AVSs themselves are Kripke models,
and uni�cation amounts to looking for a satisfying model for q� /\ 1/) given two (modal)
wffs q� and 112. The purpose of this chapter is to make use of this connection with modal
logic to investigate the complexity of various uni�cation tasks of interest in computational

linguistics.
The chapter is structured as follows. The next section begins with an introduction to

such topics as �attributes,� �values,� and �uni�cation� and why they are of interest in
computational linguistics. It then goes on to explain the link with modal logic, and gives
the syntax and semantics of three modal languages � L, LN and LKR � which correspond
to three common uni�cation formalisms. In the third section we examine the satis�ability
problems for these languages and show, using a very simple �small model� argument, that
all three are NP�complete. In the fourth section we introduce three stronger languages,
L , LN and LKR . These are L, LN and LKR respectively augmented by the universal
modality III. Adding this modality allows general constraints on linguistic structure to be
expressed. As we will show, however, there is a price to pay: the satis�ability problem
for LKR is l&#39;l�1��complete. We then go on to show that dropping the ability to enforce
generalizations involving re�entrancy results in decidable systems. In fact we show that
the satis�ability problems for both L and LN are EXPTIME�complete. In the �fth
section we examine modal languages in which recursive constraints on linguistic structure
can be expressed, namely systems built using the master modality  of Gazdar, Pullum,
Carpenter, Klein, Hukari and Levine [GPC+88] and Kracht [Kra89]. We augment our
base languages L, LN and LKR with [>n<], forming L[*], LN [*1 and LKR[*] respectively, and
investigate the complexity of their satis�ability problems. We show that many of the
proof methods and results from our discussion of the the universal modality transfer to
the new setting, though in the case of most interest the satis�ability problem for LKR[*]

67
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turns out to be highly undecidable, in fact, El�complete. We conclude the chapter with
a table summarizing our results and a discussion of more general issues arising from this
work.

The chapter is relatively self contained; in particular, all the necessary concepts from
uni�cation based grammar and modal logic are presented. However we do assume that
the reader understands what is meant by such complexity classes as NP, EXPTIME and
so on; such de�nitions may be found in Balcazar, Diaz, and Gabarro [BDG88], for exam-
ple. Further, later in the chapter some ideas from Propositional Dynamic Logic (PDL)
are used. While these are explained, some readers may �nd the additional background
provided by Harel [Har84] helpful. For further information on modal logic the reader is
referred to Hughes and Cresswell [HC84]; and for more on uni�cation based grammar,
Shieber [Shi86] and Carpenter [Car92] are useful. Finally, it�s worth remarking that there
is a hidden agenda: although we emphasize the use of modal logic as tool for grammar
speci�cation, it is our belief that modal techniques have a wider role to play in computa-
tional linguistics and some possibilities are noted in the course of the chapter.

5.2 Attribute Value Logic

Even the most cursory examination of recent proceedings of computational linguistics con-
ferences reveals that there is a substantial level of interest in such topics as �attributes,�
�values,� and �uni�cation.� This section presents a brief introduction to these topics,
and explains what they have to do with modal logic. The basic point it makes is that the
most common machinery underlying Attribute Value grammar formalisms is simply that
of propositional modal logic, and that testing whether uni�cation is possible amounts to
testing for modal satis�ability. This correspondence provides the raison d �étre of the chap-
ter: by examining the complexity of the satis�ability problem for the modal languages
involved, we learn � often very straightforwardly � about the complexity of various
tasks of interest to computational linguistics.

Perhaps the best way of approaching these topics is via Attribute Value Matrices
(AVMS), or Feature Value Matrices as they are sometimes called. A (rather simple) AVM
might look something like this:

CASE nominative

AGREEMENT [PERSON 1st]

Such an AVM is taken to be a partial description of some piece of linguistic structure. In
this case we are describing a piece of linguistic structure that has two attributes, namely
CASE and AGREEMENT. The CASE attribute takes as value the atomic value nominative,
while the AGREEMENT attribute takes as value the complex entity [PERSON13t]. This
complex entity consists of an attribute PERSON that takes as value the atomic value 1 st.
The particular atomic values (or constants) and attributes (or features) that may occur
in AVMS varies widely from theory to theory, but typical choices of atomic entities a
syntactician might make are singular, plural, 3rd, 2nd, 1st, genitive and accusativeg and
when it comes to a choice of attributes the selection might include TENSE, NUMBER,
PERSON, AGREEMENT, and CASE. But although the different theories differ on the par-
ticular choices made, and indeed in the uses they put this machinery to, they are united
in agreeing that at least a part of our descriptions of linguistic structure should embody
the idea of attributes taking (possibly complex) values.
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The information expressed by AVMs can be considerably more complex than in the
above example. The above AVM is purely conjunctive, but many linguists feel it is nec-
essary to be able to express both disjunctive and negative information in their Attribute
Value grammars. To give two well known examples due to Kartunen [Kar84], one might
write

NUMBER plural
CASE {nominative, genitive, accusative}

an AVM which states that the attribute CASE takes one of the values nominative, genitive,
or accusative, but doesn�t say which; or one might write

NUMBER plural
CASE [-1 dative]

an AVM which speci�es that CASE doesn�t take the value dative.
It�s worth making a short historical remark here. We�ll shortly be introducing At-

tribute Value Structures (AVSS) and treating them as semantic structures for AVMs.
That is, we�re going to be adopting the now standard distinction between description lan-
guages (for example AVMs) and linguistic structure (the AVSs). Historically, the impetus
for making this distinction was motivated by the dif�culties involved in giving a precise
account of AVMs that employed disjunction or negation. The distinction was �rst intro-
duced by Pereira and Shieber [PS84], and it underpins the in�uential work of Kasper and
Rounds [KR86, RK86, KR90]. Thus the move towards full Boolean expressivity marked
an important turning point in the development of Attribute Value formalisms.

What do computational linguists do with AVl\/ls? The answer is, they try to unify
them. Intuitively, unifying two AVMs means forming another AVM that combines all the
information about Attribute Value dependencies contained in the two constituent AVMs.
For example, writing L! to indicate uni�cation, we have:

AGR [PER 1st]
CASE nominative

AGR
NUM plural
PER 1 st

CASE nominative

|_| [AGR [NUM plural]] =

There is a clear sense in which the AVM on the right hand side embodies all the informa-
tion in the two constituent structures; it is the result of unifying these structures.

But this is rather vague. Precisely when is uni�cation possible? Answering this ques-
tion will lead us �rst to AVSs, the semantics of AVMs, and then, quite naturally, to the
link with modal languages.

AVSs are certain kinds of decorated labeled graphs. Such graphs play the central role
in uni�cation based linguistics: they are the mathematical model of linguistic structure
underlying these frameworks. A number of de�nitions of AVSs exist in the literature. We
shall work with a particularly simple one:

De�nition 5.2.1 (Attribute Value Structures) Let E and A be non�empty �nite or
denumerably in�nite sets, the set of labels and the set of atomic information respectively.
An Attribute Value Structure (AVS) of signature (£,./1) is a triple (VV, {R[}lE£, {Qa}a¬,4),
where W is a non�empty set, the set of nodes,� for alll E C, R; is a binary relation on W
that is a partial function,� and for all or E A, C20, is unary relation on W. El
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The most important thing to note about this de�nition is the requirement that all the
binary relations be partial functions. As we shall see, this demand plays a crucial role in
establishing some of our complexity results.

The de�nition covers all the well known de�nitions of Attribute Value Structures,
and in particular those of Gazdar et al. [GPC+88] and Kasper and Rounds [KR86].
Moreover it�s not too loose: there are only two reasonably common further restrictions
on the binary relations that it doesn�t insist on. The �rst is that AVSs must be point
generated. In point generated AVSs there is always a starting node wo E W such that
all other nodes w E W are reachable via transition sequences from wo. The second is
that AVSs must be acyclic, which means that it is never possible to return to a node
in by following some sequence of R; transitions from in. As neither of these restrictions
plays a prominent role in the linguistics literature anymore, we ignore them here. This
de�nition also ignores three constraints computational linguists used to routinely place
on node decoration. The constraints in question are these. First, for all in E W and
all oz, � E A, if in 6 Q0, and oz 7E B then 11) ¢ Qg. That is, the constraint forbids what
linguists call �constant�constant clashes.� Second, for all in E W, w is in Q0, for some
oz 6 .4 iff w is a terminal node. This constraint rules out �constant�compound clashes.�
Third, for all w,w� E W, if in 6 Q0, and w� 6 Q0, then 7.1) = in�. Once again, the main
reason for ignoring these demands is that they no longer play the prominent role they
once did. Indeed in more recent work in computational linguistics, particularly work in
the Head Driven Phrase Structure Grammar (HPSG) framework, much use is made of
sorts [P01]; and sorts are essentially pieces of atomic information that don�t obey these
three restrictions.

Let�s consider some concrete examples of AVSs. Suppose we are working with some linguis-
tic theory which contains among its theoretical apparatus the attributes PERSON, CASE
and AGREEMENT, and the atomic information 3rd, 2nd, 1st and genitive. That is, our lin-
guistic theorizing has speci�ed a signature (£,./1) such that {PERsON, CASE, AGREEMENT}
Q L, and {3rd, 2nd, 1st, genitive} Q A. Then the following graphs are all examples of
AVSs of this signature, as (modulo some obvious abbreviations) nodes are decorated only
with items drawn from A and transitions are labeled only with items drawn from £:

0

AGR %As¥xGR
O 0

gen

2nd 3rd

What do AVSs have to do with AVMS? As has already been remarked, AVMs are
partial descriptions of linguistic structure, and in fact the structure they describe is the
structure embodied in the de�nition of AVSs. That is, AVMs are a formal language for
describing linguistic structure, AVSs provide the interpretation for AVMs, and thus the
relationship is that which always exists between semantic and syntactic entities: we talk
of AVSs satisfying (or failing to satisfy) the AVMs. To return to our examples, the �rst
graph, consisting of a single node decorated with the atomic information 1 st, satis�es the
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atomic AVM 1st. Why? Because this atomic AVM demands a node decorated with the
atomic information 1 st, and the �rst graph is such a node. The second graph satis�es the
AVM [AGREEMENT [PERSON  at its root node. Why? Because this AVM demands
a node in some piece of linguistic structure that has the following property: a transition
along an RAGREEMENT relation takes one to a node from which it is possible to make an
RPERSON transition to a node decorated with the information 2nd. The root node of the
second graph has this property. Finally, consider the third graph. This satis�es the AVM

AGREEMENT [PERSON 3rd]
CASE genitive

at its root node.

Now, we could give a precise de�nition of what it means for an AVS to satisfy an
AVM, but in fact this would be a waste of energy, for, as we�ll now see, the satisfaction
relation between AVSS and AVMs is just a disguised version of something very familiar:
the satisfaction relation between Kripke models and modal wffs. There are two facets
to this correspondence, the semantical and the syntactical. We�ll treat each in turn,
beginning with the semantical.

Consider once more the de�nition of AVSS as triples (W, {Rl}lE£, {Qa},,,EA). Such
triples are just (multimodal) Kripke models: each R; interprets a modal operator (l), and
each unary relation Q0, interprets the propositional symbol pa. To be sure, multimodal
Kripke models are usually presented as triples (W, {R;};E;,7r), where 7r is a valuation
function from a collection of propositional symbols "P to Pow(W). (In such presentations
the pair (W, {Rl}lE£) is usually given a special name, namely multiframe.) But obviously
there is no mathematical substance to this difference. Given a traditionally presented
Kripke model (W, {R;};E;,7r), we have that (VV, {R[}[¬£,{7T(p) : p E 73]») is an AVS of
signature (£,�P); and conversely, given any AVS (VV, {Rl}l¬;,{Qa}O,¬,4), we have that
(W, {Rl}lE£,7r) is a Kripke model, where 7r is the function from the set of (a�indexed)
propositional variables 79 to Pow(W) de�ned by 7r(p,,,) = Q0, In short, every AVS is a
Kripke model, and vice versa.

Now for the syntactical correspondence. Consider the following AVM.

AGREEMENT [PERSON 1st]
CASE nominative

This corresponds to 
     
     (AGREEMENT)(PERSON)1st

/\ (CASE)n0minatz&#39;11e

The key point to grasp is that the function of the attributes AGREEMENT, PERSON and
CASE in the AVM is precisely analogous to the function of the existential modalities
(AGREEMENT), (PERSON) and (CASE) in the modal wff. The function of the attributes is
to demand the existence of certain transitions in AVSs, the function of the modalities is to
demand the existence of certain transitions in Kripke models. But AVSS are just Kripke
models, and thus the equivalence of the description languages is clear. The rest of the
correspondence is straightforward: atomic values correspond to propositional symbols,
and the modal wff is in effect just a linearization of the AVM. To put it more generally,
AVMs are just modal wffs written in a particularly perspicuous manner.
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This correspondence extends in the obvious manner to AVMs with full Boolean ex-
pressivity. For example corresponding to the following AVM:

NUMBER �Ipluml
CASE {n0minatiue, genitive, accusatiue}

we have the wff 
     
     (NUMBER)-upluml /\ (CASE)(nominatiue V genitive V accusatiue).

The most important aspect of the link between modal languages and AV formalisms
is what it tells us about uni�cation. Recall that uni�cation is the attempt to coherently
merge two AVMs. But what does �coherent� mean? It means that the demands that the
two AVMs make can be simultaneously satis�ed at some node in some AVS. Now, both
AVMs correspond to a modal wff. Call these two wffs gt and 1/; respectively. Then we
have that uni�cation succeeds iff ¢$ /\ 1/1 is satis�able at some node in some Kripke model.
That is, testing whether uni�cation is possible amounts to testing for modal satis�ability.
This observation (familiar from the work of Kasper and Rounds [KR86, RK86, KR90]
and Kracht [Kra89]) lies at the heart of the chapter.

The correspondence we have noted extends to richer uni�cation formalisms than the
rather simple AVMs so far considered. In particular, it extends to formalisms that have
the ability to encode re�entrancy. Re�entrancy is a very in�uential idea in uni�cation
based approaches to grammar, and we need to discuss it, and how it can be dealt with in
modal languages.

One of the best known notations for forcing re�entrancy is to use AVMs with �boxla-
bels.� Consider the following AVM:

AGR foo 1SUBJ PRED bar

COMP [SUBJ ]

The boxlabels are the s. What is intended by this notation is explained by the following

graphs: 
     
     0 O

%3J%MP %BJ\yMP
1 Q 0 1 Q <� � � � � � � � � O

I SUBJ
IAGR XED |SUBJ AGR PRED
l

0 O O Q 0foo bar I foo bar
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the conditions demanded by the AVM are satis�ed, including the demand that picks
out a unique node.

How can we make modal languages referential in this way? The key idea needed can
be traced back to early work by Arthur Prior [Pri67], and Robert Bull [Bul70]: it is to
introduce a second sort of atomic symbol constrained to be true at exactly one node.
These new symbols �name� the unique node they are true at. In this chapter these
symbols are called nominals, and they are usually written as 2&#39;, j, k and m.

AVM boxlabels correspond straightforwardly to nominals. Consider once more the
following AVM:

AGR foo
1SUBJ PRED bar l

COMP [SUBJ ]

This corresponds to the following wff:

(SUBJ>(i /\ (AGR) foo /\ (PRED)ba1")
/\ (coMP)(sUBJ)z&#39;

Note that the nominal 71 is doing the same work in the modal wff that does in the
AVM. More generally, the use of nominals permits a transparent linearization of those
AVMs that utilize boxlabels.

Although AVM notation is widely used, it is certainly not the only notation com-
putational linguists use to describe AVSs. Another in�uential notation arose from the
command language of the PATR�II system [Shi86]. PATR�II is an �implemented gram-
mar formalism,� a program which provides a high level interface language geared towards
the needs of the linguist, together with a parser. The linguist writes grammars in the in-
terface language and tests them using the parser. The use of path equations for specifying
re�entrancy arose from this source. A user of PATR�II might write:

(VP HEAD) = (VP VERB HEAD).

This path equation means that the sequence of transitions encoded by the list of attributes
on the left takes one to the same node as the sequence of transitions encoded by the list
of attributes on the right. That is, both transition sequences lead to the same node. Note
that although this mechanism permits re�entrancy to be speci�ed, it does so in a very
different way from the �boxlabels� approach: no node labeling is involved.

To capture the effect of this in a modal language, we�re going to extend the basic
language in such a way as to permit �modal path equations� to be formed. In particular,
we�ll add a new primitive symbol x to allow us to equate strings of modalities. This will
permit wffs such as

(vP)(HEAD) x (vP)(vERB)(HEAD),

to be formed, and we will de�ne the semantics of these new wffs so that they capture the
meaning of the PATR�II path equations. Actually, we�ll also add a second new primitive
symbol, 0. This will be a name for the null transition, and with its help we will be able
to write such path equations as (b)(a) z 0. This wff, for example, will mean that making
an Rb transition followed by an Ra transition is the same as making the null transition.
That is, the path R;,R,, terminates at its starting point.
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It should now be clear that various AV formalisms correspond straightforwardly to
propositional modal languages. To conclude this section let�s make our discussion of these
modal languages more precise. Syntactically, the language L (of signature (£,.A)) is a
language of propositional modal logic with an L indexed collection of distinct (existential)
modalities and an A indexed collection of propositional symbols. As primitive Boolean
symbols we choose -I and V. The wffs of the language are de�ned by saying that: (a)
All propositional symbols pa are wffs, for all oz 6 A; (b) If gt and 1/; are wffs then so are
-uq�, gt V 1/1, and (l)q5, for all l E L; (c) Nothing else is a wff. We de�ne the other Boolean
connectives �>, A, <�>, J_, and T in the usual way. We also de�ne [l]q5 to be -v(l)-ugz�,
for all l E E and all wffs q�. The following syntactic notions will be useful. The degree
of a formula is the number of (primitive) connectives it contains. The length of a wff q�
(denoted by  is the number of (primitive) symbols it contains. (We will also use the
�| . |� notation to indicate cardinality, but this double use should cause no confusion.)

To interpret L we use Kripke models M of signature (£,.A). Such a Kripke model
is a triple (W, {Rl}lE£,7r), where W is a non�empty set (the set of nodes); each R; is
a binary relation on W that is also a partial function, that is, for every node w there
exists at most one 11)� such that wRl&#39;w�; and 7t (the valuation) is a function which assigns
each propositional symbol pa a subset of W. We interpret wffs of L on models M in the
familiar fashion:

M,w |=pa iff w E 7r(pa)
JV-[:�Wl=�¢ iff M:wf�$¢
M,w|=¢V1/1 iff M,w)=<;30rM,w|=&#39;g[)
M,w |= (l)¢ iff E|w�(wR;w� & M, w� |= gz�)

If M, w |= q� then we say that M satis�es gt at w, or ¢ is true in M at 11). To sum up, the
language L corresponds to the �core� AVM notation used by computational linguists. Its
models are just AVSS, and the way L formulas are evaluated in a model is just the way
AVMs are checked against AVSs.

L lacks any mechanism for enforcing re�entrancy. This lack is made good in its ex-
tensions, LN and LKR. The language LN (of signature (£,.A,B)) is the language L (of
signature (£, /1)) augmented by a B indexed collection of distinct new propositional sym-
bols called nominals. These symbols are typically written as 2&#39;, j, k and m and can be
freely combined with the other symbols in the usual fashion to make wffs. We assume
that B is at most countably in�nite. To interpret nominals we insist that any valuation
must assign a singleton subset to each nominal. That is, an LN model is just an L model
whose valuation has been extended to assign singletons to nominals. Because each nom-
inal is thus true at exactly one node in any model, it acts as a �name� identifying that
node. LN corresponds to AVMs augmented with �boxlabels� for indicating re�entrancy.
There have been a number of logical investigations of intensional languages containing
nominals. In addition to the early work by Prior and Bull already mentioned, see Passy
and Tinchev [PT85], Gargov and Passy [GP88] and Passy and Tinchev [PT91] for an ex-
amination of nominals in the setting of Propositional Dynamic Logic (PDL); see Gargov,
Passy and Tinchev [GPT86] and Gargov and Goranko [GG] for nominals in the setting
of modal logic; and �nally see Blackburn [Blal] for nominals in tense logic.

The language LKR is L augmented by two new symbols, 0 and z. The symbol 0
acts as a name for the null transition. In what follows we shall assume without loss of

generality that 0 ¢ L, and denote the identity relation on any set of nodes W by R0.
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(This convention simpli�es the statement of the following truth de�nition.) We use z to
make path equations: given any nonempty sequences A and B made up of modalities and
(0), then A x B is a path equation. Path equations are wffs and can be combined with
other wffs in the usual way to make more complex wffs. LKR models are just L models,
and we interpret the path equations as follows. For all ll, . . . , lk, l�1, . . . , l;,, E E U {0}:

M, �LU |=  &#39; &#39; &#39;  Z  &#39; &#39; &#39;   El�LUl(�LURl1 . . . Rlkuf & �LURy1 . . . Rymwl).

LKR models the path equation mechanism of PATR�II. The negation free fragment of
this language was �rst de�ned and studied by Kasper and Rounds [KR86][RK86]; a more
detailed presentation of their work may be found in [KR90]. Further logical investigations
of LKR may be found in Moss [Mos] and Blackburn [Bla2].

It is instructive (and will later prove technically useful) to examine L, LN and
from the more general perspective provided by modal correspondence theory. This subject
is the systematic study and exploitation of the relationships that exist between modal
languages and various classical languages; an excellent overview is provided by [Ben84].
The correspondence between L, LN and LKR and �rst order logic arises as follows. Note
that AVSs (that is, Kripke models) can equally well be regarded as models for a certain
�rst order language, namely the �rst order language (with equality) that contains a binary
relation symbol F, for each Rl, and a unary relation symbol PG, for each Qa; we will call
this language L1. There is an obvious translation from our modal languages to L1, the
standard translation. These are the clauses for L:

LKR

ST(p0,) = PO,$�
3T(*¢) = *3�-T(¢)
ST(¢V¢) = ST(¢)V3T(l/J)
3T(<l>¢) = 3y($Rz:t//\ ly/17l3T(¢))

Here :3 is the �rst order variable that represents the evaluation node, and the [y / :3] in
the �nal clause means substitute y for all free occurrences of :3, where y is some fresh �rst
order variable. Note that the standard translation is essentially another way of looking
at the satis�ability de�nition for L, thus it is clear that the standard translation is truth
preserving: that is, M, w )= a3 iff M )= ST(¢) The standard translation shows that L
can be regarded as a very simple fragment of L1, namely a one�free�variable fragment in
which only bounded quanti�cation is used.

L1 is also the �rst order correspondence language for both LN and LKR. To see this
note that we can extend the standard translation to LN by adding the following clause:

S&#39;T(z&#39;) = (:3 =a3,~).

Again :3 is the �rst order variable that picks out the point of evaluation, and :3, is the
�rst order variable that we have chosen to correspond to the nominal 71. Similarly, we can
extend the standard translation LKR by adding the clause:

ST((l1)---(lk) x (l�1)---(l;,,)) = E|y(a3Rl,...Rlky /\ :ERy1...Rl;ny).

Both extensions are truth preserving, thus the use of nominals can be seen as the use of
certain extra equalities, while the use of x is essentially the use of an additional form of
bounded quanti�cation. Thus all three of our base languages are rather small fragments
of L1.
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These observations immediately link the modal approach of this chapter with other
approaches to Attribute Value logic which may more familiar to the reader. Note in
particular that the standard translation links our approach with that of Smolka [Smo89].
Smolka was perhaps the �rst person to make explicit the connection between AVSs and
�rst order models, and he has proved a number of results concerning a certain �rst order
language of AVSs, namely the language we have here called L1. Thus, via correspondence
theory, many of the results of the present chapter can be seen as an investigation of the
complexity of certain fragments of Smolka�s language; this includes the results concerning
the yet to be introduced universal modality. However the word �many� is important.
Modal operators ai"en�t restricted to having �rst order correspondences, and when we
later consider the master modality we will in effect be working with a small fragment of

in�nitary logic.
This completes our discussion of the theoretical background of the chapter. Let�s

now turn to the issue of most immediate relevance to computational linguistics: the
complexity of various satis�ability problems. As most AV grammar formalisms assume a
�nite collection of both attributes and atomic symbols, the key problem is the satis�ability
problem for languages of signature (E, A) where both L and A are finite. Actually, with
one interesting exception, our results are insensitive to the cardinality of L for |£| 2 2,
however when we treat the richer languages involving the universal or master modalities
extra work is required to show that our results go through for the case of A �nite. In
order to minimize the work involved we shall proceed as follows. We will �rst prove results
which hold for languages |£| 2 2 and A countably in�nite; this allows natural proofs to be
given. Later on a very general result is proved ( the Single Variable Reduction Theorem)
which allows all these results to be sharpened to cover languages containing only one
propositional variable 17. (In fact, in order to give a complete classi�cation of the problem
we�re even going to show that our results hold for |£| 2 2 when no propositional variables
at all are used; all one needs is a primitive truth symbol T. We will call languages with a
primitive T symbol and no propositional variables languages of signature (£,  Finally,
we know of no linguistic theory which puts a �xed �nite upper bound on the number
of boxlabels that may be used, thus for languages with nominals the complexity of the
satis�ability problem when [3 is countably in�nite is the most important.

5.3 Complexity Results for L, LN and LKR

In this section we show that the satis�ability problems for L, LN and LKR are all NP-
complete. The fundamental result is that for L, for it turns out that the method used
for this language generalizes straightforwardly to its two extensions. The key to the NP
completeness result for L is to show that given a formula q� which is satis�able at a node
in in some model M, we can always �nd a suitably small model M |n0de3(¢, w) which
also satis�es q�. Once we have de�ned M |n0des(¢, w) and determined its size the NP
completeness result is immediate.

The de�nition of M |node3(gz3, w) follows from the following general property of modal
languages: when evaluating a wff in a model, only a certain selection of the model�s nodes
are actually relevant to the truth or falsity of the wff; all other nodes can be discarded.
The nodes that are relevant when evaluating a wff ¢ at a node w in a model M are
the nodes picked out by the function nodes : WFF X W �> Pow(W) that satis�es the
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following conditions:

nodes(p, w) = {w}
nodes(-uq�, w) = n0des(<;3, w)
nodes(<;3 V 1,1), w) = n0des(<;3, w) U nodes(<;3, w)
n0de3(  w)  U Uw�:wRlw� n�0des(w7 /LU�)

Given a model M, a wff gt and a node w we form M|nodes(q5, w) in the obvious way: the
nodes of this model are n0des(¢, w), and the relations and valuation are the restriction of
those of M to this set. The following lemma shows that nodes selects the correct nodes:

Lemma 5.3.1 (Selection Lemma) For all models M, all nodes w 0fM and all wffs a5,

M,w |= q� i�" M|nodes(¢,w),w )= q�.

Proof. By induction on the degree of q�. Note that it follows from the de�nition of nodes
that w E nodes(gzS, w), which is all that is needed to drive the induction through. CI

The selection lemma is a completely general fact about modal languages. It doesn�t de-
pend on any assumptions we have made in this chapter; in particular we haven�t yet made
use of the fact that we�re only concerned with models in which each of the R; is a partial
function. However when we take this into account we notice that M |n0des(<;5,w) has a
pleasant property: it is very small. There can only be one more node in M |n0des(q5, w)
than there are occurrences of modalities in q�.

Lemma 5.3.2 (Size Lemma) Let mod(<;5) be the number of occurrences of modalities in
q�. Then for all models M and all nodes w in M we have that |nodes(gz5,  3 m0d(gz3).

Proof. By induction on the degree of q�. For the base case note that for all atomic
formulas p we have that |n0des(p,w)\{w}| = (I), thus the result holds. So assume the
result for all wffs of degree less than k. Now if q� is a wff of degree is of the form 1/; V 0
then we have:

|nodes(1/1 V 0,  |n0des(1/1,  + |n0des(0,
mod(w) + m0d(0) (by Inductive Hypothesis)
mod(7,l) V 0).

|| |/\ |/\
Thus the required result holds for disjunctions. The case for negations is similar.

There only remains the case for modalities, so suppose that o is a wff of degree is of
the form (l)w. We wish to show that |nodes((l)w,w)\{w}| g mod((l)1/1). There are two
cases to consider. The �rst is that there there are no nodes w� such that wRlw�. But then
|nodes((l)w,w)\{w}| = (Z) and the result is immediate. So next consider the case when
there is a node w� such that wR;w�. Note that as we are working with partial functional
relations this w� must be unique. Thus we have the following:

|"0d¬3(<l)1/J, w)\{&#39;w}| |"0d¬3(1/1,&#39;w&#39;)|
|("0d¬3(1/1,&#39;w&#39;)\{&#39;w&#39;}) U {U/}|
|�0d¬3(1/1,&#39;w&#39;)\{&#39;w&#39;}| + 1
m0d(w + 1 (by Inductive Hypothesis))
m0d(<l>1/1)

|| |/\ |/\ |/\ |/\
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Thus the required result also holds for modalities, and hence the truth of the lemma
follows by induction. El

Together the selection lemma and the size lemma lead directly to the main result:

Theorem 5.3.3 Let L be a language of signature (L, .4) where |£| Z 2 and A is countably
in�nite. Then the satis�ability problem for L is NP�complete.

Proof. That this satis�ability problem is NP hard is clear, for as we have a countably
in�nite collection of propositional variables at our disposal the problem contains the sat-
is�ability problem for propositional calculus as a special case. That the problem is in
NP follows directly from the fact that any satis�able L wff gt can be satis�ed in a model
containing at most moal(gz3) + 1 nodes; this we know from the selection and size lemmas.
Thus, given ¢$ we can non�deterministically choose a suitable model of at most this size,
and evaluate gt in this model in polynomial time. El

Let�s turn to the complexity of the satis�ability problem for the language LN. Recall
that this language is L augmented by a distinct new set of atomic symbols called nominals
which are constrained to be true at exactly one node in any model. It is easy to use the
machinery developed above to prove that the satis�ability problem for LN is also NP-
complete, in fact there is almost nothing new to be done. Given a LN model M, a node
w in M, and an LN wff ¢ we de�ne M |n0des(¢, w) exactly as described above. Both
the selection and size lemmas hold, thus we are almost through. There is only one snag:
M |n0des(¢, w) is not guaranteed to be an LN model as some nominals may be not denote
any node at all. But this problem is more apparent than real. By adjoining a brand
new node (say *) to M |n0des(<;5,w) and insisting that all �unassigned nominals� denote
>:< we convert M |n0des(¢, w) into an LN model [M|n0des(¢,  Of course to maintain
the truth of the selection lemma we have to be careful where we place *, but there are
two obvious �safe� choices. The simplest choice is to insist that * is unrelated (by any
of the relations) to any of the points in M |nodes(q5,w). The second, which is slightly
more elegant, is to insist that * is related to w by some relation, but that none of the
points in S is related to *; choosing this second option means that >:< point generates
[M|n0des(q5,  Either way it it clear that the addition of >:< is harmless: we still have
that that [M|nodes(q5,w)]*,w )= q�. And [M|nodes(¢,w)]* is still small, having at most
m0d(¢) + 2 nodes. Thus by precisely the same argument as for L we have:

Theorem 5.3.4 Let LN be a language with norninals of signature (£,./1,3), where |£| Z
2 and both A and B are countably in�nite. Then the satis�ability problem for LN is
NP�complete. El

Finally we turn to LKR. The satis�ability problem for this language is also NP-
complete, but how are we to show this? Our de�nition of nodes says nothing about
occurrences of path equations. Actually the easiest way to proceed is not to extend the
de�nition of nodes, but rather to �rst transform LKR wffs into a certain special form. The
following example shows what is involved.

Suppose we have a model M which veri�es (a) z (b) at a node w. This means there
is a node w� such that wR,,w� and wR,,w�. But as n0des((a) z (b),w) is unde�ned, in
general we will not have that w� is a part of the small model we build. However if we
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�rst rewrite (a) z (b) into a logically equivalent form that makes explicit the existential
demands of the path equations, everything proceeds smoothly. Rewrite (a) z (b) as (a) x
(b) /\ (a)T /\ (b)T. Clearly this formula is logically equivalent to the original, however the
new syntactic form is very useful: the two new conjuncts make the the modalities (a) and
(b) available to nodes. Consider what happens when we apply nodes to this new formula
at w. As nodes commutes over A, we must calculate n0des((a) z (b),w), n0des((a)T, w)
and n0des((b)T,w). As before, we can�t do anything further with nodes((a) z (b),w),
but we can evaluate both n0des((a)T, w) and n0des((b)T, w), as nodes is de�ned for such
expressions. Evaluating these formulas will produce the point w� that we need to build
an equivalent small model.

Let�s make this precise. Any path equation (A) z (B) is logically equivalent to (A) x
(B) /\ (A)T/\ (B)T. For any path equation (A) z (B) we�ll call (A) x (B) /\ (A)T/\ (B)T
its explicit form. Given an LKR wff gb which we seek to satisfy, we�ll �rst form a new LKR
wff qS* by simultaneously substituting, for each occurrence of a path equation in q�, its
explicit form. Note that q5* is logically equivalent to gb, and that the length of qS* is linear
in the length of ct. The effect of this rewriting of ¢$ means that our existing de�nition of
nodes su�ices to produce all the points needed for the small model: precisely as illustrated
in the above example, when we apply nodes the occurrences of the new subformulas of
the form (A)T and (B)T ensure that all the needed evaluation points are selected. Thus
we can make M |nodes(qS, w) as before and both the selection and size lemmas hold. So,
by exactly the same argument we have that:

Theorem 5.3.5 Let LKR be a Kasper Rounds language of signature (L, A) where |£| Z 2
and A is countably in�nite. Then the satis�ability problem for LKR is NP�complete. III

In the above proofs was assumed that we had a countably in�nite supply of atomic
symbols at our disposal. However most Attribute Value formalism use a �nite number of
atomic symbols. Given that the number of atomic symbols is some �xed �nite number,
might this not permit us to evade the NP hardness result? (As is well known, for both
propositional logic and for S5, such a restriction lowers the complexity of the satis�ability
problem to P.) However this is not the case here: the satis�ability problem for L (and thus
for LN and LKR) remains NP�hard, even if we use only one propositional variable, and
one modal operator. This can be seen as follows. Consider the following set of L formulas:
{p, (a)p, (a)(a)p, . . . , (a)�°p}. The values of these formulas are all independent, that is, for
any sequence of truth values b0, . . . , bk, there exists a model such that M )= (a)�p iff b,~ is
true. Now de�ne function f from propositional formulas to L�formulas as follows:

f(¢(po, - � � .1910) = ¢(p, (am (a><a>p, - - - 7 <a>��p)-

Obviously, f is polynomial time computable, and q� is satis�able iff f (q�) is L satis�able.
Thus, we can summarize the complexity results of this section as follows:

Theorem 5.3.6 If |£| 2 1 and |A| Z 1, the satis�ability problems for L, LN, and LKR
are NP�c0mplete. El

Actually, if we look at the previous encoding carefully, we can see that if our language
contains at least two modalities, we don�t need any propositional variables to encode
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propositional satis�ability in an L formula; all we need is a primitive constant truth
symbol T. De�ne:

f(¢(po, - - - ,pk)) = ¢((b)T» (a><b>Ta <a>(a><b>T» - - - 7 <a>&#39;°<b>T)-

Obviously, f is polynomial time computable, and q� is satis�able iff f (o) is L satis�able,
which leads to the following theorem:

Theorem 5.3.7 If |£| 2 2 and |A| Z 0, the satis�ability problems for L, LN, and LKR
are NP�complete. El

Let�s summarize our results so far. The satis�ability problem for the core AV language
L is NP�complete. Adding either of two re�entrancy forcing mechanisms � nominals or the
Kasper Rounds path equality � does not increase the complexity: satis�ability remains
NP�complete. These results hold even if we have only one modal operator and one atomic
symbol at our disposal. There is a result from the literature worth noting here: Kasper
and Rounds [KR90] show, using a disjunctive normal form argument, that when attention
is con�ned to those models in which a) each atom is true at at most one node, b) no two
atoms are true at the same node, and c) atoms are true only at terminal nodes, then
the satis�ability problem for the negation free fragment of LKR is NP hard (and in fact
NP�complete). The interesting part of their result is the NP hardness part, for as their
language lacks negation this is not obvious. The non�trivial part of our result, on the
other hand, is our model theoretic proof that an NP time algorithm exists even if full
Boolean expressivity is allowed.

What can be said at a more general level about these results? From the point of view of
modal logic they�re somewhat unexpected: with the exception of S5 most familiar modal
logics are PSPACE�complete. To put it loosely, usually adding modalities to a language
of propositional logic makes matters worse, but here it hasn�t. The reason, of course, is
due to the fundamental constraint on our models, namely that all the relations be partial
functional. It�s this requirement which enabled us to build small models and thus kept the
complexity to that of propositional logic. It�s worth adding that this constraint seems to
be peculiar to the representational formalisms used in computational linguistics. Various
representation formalisms used in AI, such as KL�ONE, can be viewed from a modal
perspective, and as Schild [Sch90] has recently observed, terminological logics are also
modal logics. But from the point of view of complexity there is a difference: the modal
logics inspired by AI typically don�t usually obey the partial functionality constraint.
Usually they are multimodal versions of K , the modal logic which puts no constraints
on accessibility relations. As is well known, the satis�ability problem for this logic is

PSPACE�complete [Lad77].

5.4 The Universal Modality

In this section we are going to examine the complexity of the satis�ability problems for
three stronger modal languages, L , LN and LKR . These languages are, respectively,
L, LN and LKR augmented by the universal modality. The universal modality is a modal
operator written as III which has the following semantics: for all models M, all nodes 11),
and all wffs q�

M,w )= IZ|q5 iff M,w� |= Q3 for all nodes w� in M.
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That is, Elq� holds iff q� is true at all nodes. Note that all three enriched languages
are fragments of L1, the �rst order language of AVSs, as adding the following (truth
preserving) clause to the standard translation correctly deals with occurrences of the
universal modality:

3T(&#39;3¢) = Vy([y/~�0l5T(¢))-

For a detailed discussion of the logical consequences of enriching modal languages with
the universal modality, see [GP92]. The authors know of only one explicit application
of the universal modality to linguistic theorizing, namely Evan�s [Eva87] analysis of the
feature speci�cation defaults of GPSG, which we shall consider shortly. However, as we
shall see, the universal modality seems to have been implicitly used on other occasions.

But why should linguists be interested in L , LN and LKR ? One answer is as fol-
lows. Underlying much work in Attribute Value grammar is an idea that can loosely be
described as �grammar equals feature logic.� Somewhat more precisely, the use of the ap-
paratus of uni�cation formalisms is attractive to many linguists because it enables them to
view grammars of natural languages as theories in some sort of calculus of attributes and
values. According to such a view, linguistic structure can be adequately modeled by At-
tribute Value Structures (possibly augmented by the notion of phrase structure), and the
linguists� business is to state general constraints about which AVSs are admissible. Such
views are discernible in some of the earliest work in attribute value grammar, namely
Lexical Functional Grammar (LFG) [KB82]. Generalized Phrase Structure Grammar
(GPSG) [GKPS85], explicitly espouses such views, and its work on feature co�occurrence
restrictions remains one of the best examples of the approach in action. More recently,
Head Driven Phrase Structure Grammar (HPSG)[PS], has taken this approach even fur-
ther. Whereas in both GPSG and LFG the idea of uni�cation was only one component
(albeit an important one) of the systems, in HPSG the uni�cational apparatus completely
dominates.

It is these ideas that motivate the work of the present section. As we have seen the
most common uni�cational formalisms are nothing but modal languages. However as
they stand these languages aren�t strong enough to express generalizations, and indeed
as the �grammar equals feature logic� equation has become more widely accepted, work
in Attribute Value grammar has tended to abandon the simple languages we have con-
sidered so far in favor of increasingly powerful formalisms. The work of this section is an
exploration of the computational consequences of adding just enough power to the base
languages to enable generalizations to be expressed.

Let�s consider matters more concretely. Suppose we strengthen our languages by
adding the universal modality: what linguistic principles can we now express? Consider
a typical GPSG feature co�occurrence restriction, for example

[VFORM FIN] => [�N, +v].

This states that if a node has the value FIN for the attribute VFORM, then that node
has the properties of being �N and +V. In other words, only a verb can have tense.

The important thing about this constraint is its generality. It�s not something which
happens to hold of this or that piece of linguistic structure, it�s a pervasive fact of English.
Any AVS which doesn�t satisfy this generalization can�t represent an English sentence.
We can express this generalization in L as follows:

|Z|((VFORM)fz&#39;n �> �n /\ +12).
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(Here �n, �n and +11 are propositional symbols and (VFORM) is a modality.) In short
we can view the => notation of GPSG as what modal logicians have traditionally called
strict implication. Viewing gt => 1/; in this way accounts for the generality of feature
co�occurrence restrictions.

Evans [Eva87] also makes use of the universal modality in connection with GPSG,
but to express defaults, not generalizations. Evans uses L and mostly works with the
dual of the universal modality (<>¢ = �u|ZI�u¢), which he gives an autoepistemic reading:
<>¢ means that ¢$ is consistent with all known information. For example he uses the wff
<>(CAsE)dat �> (CAsE)dat to express the feature speci�cation default: �If it is consistent
with all known information that case is dative, then case is dative.� The idea of using a
modal operator to express linguistic defaults is interesting, though we would argue that
such an operator would need to be added in addition to the generalization expressing
universal modality. But this is to argue over details. There are many ideas worth pursuing
in Evans work, and the underlying philosophy is in harmony with that of the present
chapter: indeed in a footnote Evans raises the possibility of formalizing all of GPSG in a
modal language.

Let�s consider the use of LKR . This language is powerful enough to capture the
content of the Head Feature Convention of GPSG (or indeed HPSG). The essence of
the GPSG version is that for any phrasal constituent, the value of its head attribute is
shared with the value of the head attribute of its head child. For a discussion of what this

terminology means, and why it�s linguistically useful the reader is referred to [GKPS85];
here we�ll be content to indicate how the constraint can be expressed:

IZI(ph,rasal �> (HEAD) x (HEAD-DTR)(HEAD)).

Once again note that this is a strict implication; we could rewrite it as:

phmsal => (HEAD) z (HEAD-DTR>(HEAD>.

Further experimentation will convince the reader that LKR is a language capable of
expressing interesting linguistic constraints. However it has also crossed an important
complexity boundary; as we shall now show its satis�ability problem is undecidable. To
prove the undecidability result it suf�ces to give a reduction from a H�1��hard problem to
LKR satis�ability. As is shown in [Har83], tiling problems provide a particularly elegant
method of proving lower bounds for modal logics, so we�ll use such an approach here.

A tile T is a 1 X 1 square �xed in orientation with colored edges right(T), left(T), up(T),
and down(T) taken from some denumerable set. A tiling problem takes the following form:
given a �nite set of T of tile types, can we cover a certain part of Z X Z, using only tiles
of this type, in such a way that adjacent tiles have the same color on the common edge,
and such that the tiling obeys certain constraints? One of the attractive features of tiling
problems is that they are very easy to visualize. As an example, consider the following
puzzle. Suppose T consists of the following four types of tile:

E
Can an 8 by 4 rectangle be tiled with the fourth type placed in the left hand corner?

Indeed it can:
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There exist complete tiling problems for many complexity classes. In the proof that
follows we make use of a certain H�1��complete tiling problem.
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3. If T is the tile at w, and T� the tile at the up successor of w, then up(T) = down(T�

¢3 = �:&#39;( V (1% /\ (�>tj))
up(T,)= down(Tj)

Putting this all together, we de�ne gz� to be ¢_,,,,,, /\ q51 /\ q�g /\ gz33. We will prove that T tiles
N X N iff gz� is satis�able.

First suppose if : N X N �> T is a tiling of N X N. We construct the satisfying model
for ¢ as follows: M = VV, R,., Ru, 7r) such that:/\

W = {w,,,,,, : n, m E N}
R, = {(w,,,,,,, w,,,,,,+1) : n, m E N}
Ru {(w,,,,,,, w,,+1,,,,) : n, m E N}
7r(t,) = {w,,,,,, : n,m E N and t(n, m) =

Clearly, q� holds at any node w of M. To see that the converse also holds, suppose
that M, we )= q�. Let f from N X N to W be such that f(0, 0) = wo, f(n, m)R,f(n+1,m)
and f(n,m)R,,f(n,m + 1). De�ne the tiling t : N X N �> T by t(n, m) = T, iff M |=
t,[f(n,  Note that t is well�de�ned and total by $1. Furthermore, if t(n, m) = T, and
t(n + 1, m) = T,, then f(n, m)R,f(n, m + 1), M |= t,[f(n, m)], and M )= t,[f(n, m +
Since M satis�es (�g, we can conclude that 1"z&#39;ght(T,) = left(T,). Similarly, if t(n, m) = T,
and t(n, m + 1) = T,, then <;53 ensures that  = d0wn(T,). Thus, T tiles N X N. [I

Thus the satis�ability problem for LKR is undecidable. Note, however, that the above
proof depends on having access to an unlimited supply of propositional variables. (The
above argument shows how any tiling problem can be reduced to LKR satis�ability by
representing tiles as propositional symbols. But there is no pre�determined size limit on
the set of tiles T that we may be given.) This problem will be dealt with later.

The satis�ability problem for LKR is in fact H�1��complete. Given the previous result,
all we need to to show is that the LKR validities can be recursively enumerated. One way
of doing this is to give a recursive axiomatization of LKR . This can be done by building
on the completeness proof for LKR given in [Bla2], but it has the drawback of requiring
the introduction of the (otherwise irrelevant) machinery of modal completeness theory.
Fortunately correspondence theory comes to the rescue with a general argument showing
(at least for the case of �nite L) that LKR validity is a r.e. notion. The argument is
due to van Benthem [Ben84, page 175] who observes that when working with elementary
classes of frames (that is, frames de�ned by a single L1 formula) it is not necessary to
give an explicit axiomatization to show that modal validity is r.e.: if go is the L1 wff that
de�nes the elementary class, and if ¢$ is a modal formula such that ST(¢) E L1 then gz�
is a validity iff cp |= VxST But here �|=� denotes the �rst order consequence relation,
and as this is an r.e. relation we would be through if we could show that the multiframes
underlying our Kripke models form an elementary class. This is trivial: we are working
with the class of multiframes that are partial functional. Given that E is �nite we need
merely de�ne:

(,0 = /\ �v�1:yz(J:R,y /\ 1:R,z �> y =
lei.�

Thus we are working with an elementary class, namely the class that satis�es go. Thus we
conclude:



5.4. THE UNIVERSAL MODALITY 85

Theorem 5.4.2 If |L&#39;.| 2 2 and A is countdbly in�nite then the satis�ability problem for
LKR is H�1��c0mplete. El

What are we to make of this undecidability result? The key technical point is that
it is genuinely due to the interaction between the ability to state generalizations and the
ability to enforce re�entrancy. The subsequent results elaborate on this theme and reveal
an interesting difference between LN and LKR . We begin by showing, using a �ltration
argument (see Fisher and Ladner [FL79] for �ltrations in Propositional Dynamic Logic),
that the satis�ability problems for L and LN are decidable.

Theorem 5.4.3 Ifq� is a satis�dble L or LN formula, then Q3 is satis�dble in a model
with at most 22&#39;� nodes.

Proof. Suppose that n3 is an L wff, M = (W, {R;};E;,7r), and M, wo )= q5. Let Cl(q5)
be the smallest set that contains q�, and is closed under subformulas and single negations.
De�ne an equivalence relation ~ on W as follows:

w~w&#39; iff V1/1EC&#39;l(¢)(M,w )=v,b¢>M,w&#39;

Let WF Q W be such that WF contains exactly one element from each equivalence class.
Let 7rF be the restriction of 7r to WF, and de�ne Rf as follows:

wRlF&#39;w&#39; iff E|w"(wR;w" /\ w� ~ w").

Let MF = (WF, {R,F}l¬£,7rF). MF is a �ltration of M through Cl(¢) in the sense of
Hughes and Cresswell [HC84], thus it follows immediately that M F satis�es q�. Since
the size of Cl(q5) is at most 2|¢|, the size of WF is bounded by 22�". Furthermore, M F
is an L model, since the de�nition of Rf ensures that RZF is a partial function for any
modality l.

Essentially the same argument works for wffs q� of LN . We need only observe that
for all nominals i in Cl(gz3), if = {in} then w w w� iff w� = in. In short, all nominals in
Cl(q5) denote singletons in the �ltrations, and all other nominals can be assigned arbitrary
singletons of WF, thus we again have a small model for q�. III

From theorem 5.4.3, it follows immediately that the satis�ability problems for L and
LN are both decidable in nondeterministic exponential time. But we can improve these
results. Using methods similar to [Pra79] and [HM85] we sketch a construction of a
deterministic exponential time algorithm for both L and LN satis�ability.

Theorem 5.4.4 The satis�ability problems for L and LN are decidable in EXPTIME.

Proof. Let Cl (q�) be de�ned as in the proof of the previous theorem. Let S be the set
of all subsets F of Cl (q�) that are maximally propositionally consistent, and are closed
under re�exivity of III; that is, if El�!/J E F then 1/; is also in F. Suppose gt is satis�able
in model M. Let SM be the set of subsets of Cl(q5) that actually occur in M, that is,
SM = {F E S: M,w )= F, for some w E  Obviously, SM Q S, but we can say more
about SM. First of all, note that every element of SM contains the same El formulas.
Furthermore, if gt contains a nominal m, there is exactly one set in SM that contains m.
Let E Q Pow(S), consisting of all maximal S� Q S such that:
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1. VF,F� E S�,V|Z|1/1 E (Jl(¢) : D112 6 F ¢> Bib E F�, and

2. For every nominal m occurring in Q3, there is exactly one set F E S� such that m E I�.

If gz� is satis�able in M, then there exists a set S� E 2 such that SM Q S�. What can we
say about the size of 2? Since Cl(q5) contains at most 2|¢| elements, there exist at most
22"� maximal sets S Q S ful�lling the �rst condition. If ¢ contains is nominals, at most
|S|�� subsets of S occur in 2. Since is is bounded by |qS|, the size of E is exponential in the
length of ¢.

For every S1 6 Z, we will construct a sequence of sets S1 3 S2 3 S3 3  such that:
if ¢ is satis�able in a model M, and SM Q S1, then SM Q Si.

Suppose we have de�ned Si. Call a set F 6 Si inconsistent iff one of the following
situations occurs:

1. �u|Z|1/1 E T�, but for all P� 6 Si: i� E F�, or

2. For some modality l, (l)zZ) E F for some 1/1, but there is no F� 6 Si such that
V<l>£ 6 0l(¢)(<l>¬ 6 F ~:> E 6 F�)-

If there are inconsistent sets in Si, then we let Si+1 consist of all sets of Si that are not
inconsistent. Otherwise, ¢$ is satis�able iff ¢ 6 F for some set F 6 Si, and for every
nominal m occurring in gz�, there is exactly one set F 6 Si that contains m.

Since S1 is of exponential size, and Si+1 is strictly included in Si, the algorithm ter-
minates after at most exponentially many cycles. Determining which sets in Si are incon-
sistent takes polynomial time in the length of the representation of Si. Thus, for every
member of E, the algorithm takes at most deterministic exponential time. Since 2 is of
exponential size, we can determine if if ¢ is satis�able in EXPTIME. El

However as the next result shows, there is a clear sense in which this result cannot be

improved.

Theorem 5.4.5 The satis�ability problems for L and LN are EXPTIME�c0mplete for
|£| Z 2, and A countably in�nite.

Proof. The upper bounds follows from theorem 5.4.4. To prove the corresponding lower
bounds, it suflices to give a polynomial time computable reduction from an EXPTIME-
hard set to L satis�ability. We will use a suitable subset of Propositional Dynamic Logic.
Let PDL(a, >s<) be the bimodal propositional language with modalities (a) and (a*). We
interpret wffs of PDL(a, *) on Kripke models M = (W, R,i,7r), where R, is an arbitrary
binary relation on W, in the usual way, the key clause being:

M,w |= (a*)<;3 iff E|w&#39;(wR:&#39;w&#39; & M, w� )= q�).

where R: denotes the re�exive, transitive closure of Ra. In [FL79], it is proven that the
satis�ability problem for PDL(a, >s<) is EXPTIME�hard. In fact, from careful inspection of
this proof, we can conclude that even the following set is EXPTIME�hard: Let C consist
of all PDL(a, *) formulas gz� such that: ¢ = q�l /\ [a*]¢2, and

1. ¢1,¢2 are >n<�less and have modal depth 3 1,

2. Q5 is satis�able in a model where every node has at most two successors.
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De�ne the reduction f from C to L satis�ability as follows:

1. If o is not of the form ¢1 /\ [a*]¢$2, where oh and (t2 are *�less and of modal depth
3 1, then  = J.

2. For ¢$1,¢2 *�less and of modal depth 3 1, f(¢1 /\ [a*]¢2) = s(q51) /\ E|s(¢2), where s
is de�ned on >n<-less formulas as follows:

8(1)) �
aw) = �sh/1)
8(i/2 V 5) SW) V 8(5)
8(<a)1/1) <a1)s(1/1) V (a2)s(1/1)

Since s is polynomial time computable on >:<�less formulas of modal depth 3 1, f is
polynomial time computable. Now, it is straightforward to prove the following fact by
induction. If M = (VV, Ra, 7r) is a PDL�model, and M� = (VV, R,i1,R,i2,7r) is an L �model,
such that Ra = Riil UR,i2, then for all >I<�less PDL(a)�formulas q�, and for all nodes to E W,
M, w |= gt iff M�, w |= s((;5). By making use of this it is easy to prove that f is indeed a
reduction from C to L satis�ability. III

I 
     
     *5

Note that once again this reduction depends on having an unlimited supply of propo-
sitional variables. The following theorem will dispose of this issue once and for all:

Theorem 5.4.6 (Single variable reduction theorem) If |£| 2 1, then there exist
polynomial time reductions from the satis�ability problems for L and LKR over sig-
nature (L, A) to the corresponding satis�ability problems over signature (E,

Proof. Recall that we used the following reduction from propositional satis�ability to
L satis�ability over signature ({a},  in theorem 5.3.6:

f(¢(P0» - - - 71%)) = ¢(p, (am (a)<a)p, - - - 7 <a)��p)-

If q� is satis�ed in w, we build the corresponding model for f (gt) by replacing w by a
sequence of nodes w0R�iw1Rji . . .R;w,i such that p is true in wi iff pi is true in in. We will
use a similar encoding to to prove the theorem. Fix a signature (£, .4), L 7E (Z). We�ll use
a �xed element a E L to encode worlds. Suppose M = (W, {Ri}i¬;, 7r) is a model, and we
use propositional variables pg, . . . ,p;i. As a �rst attempt to obtain an equivalent model
with one propositional variable, look at the encodin iven above: replace each world w8 8

by a sequence of worlds w0Rjiw1R; . . . Rjiwii such that p is true in wi iff pi is true in w.
This doesn�t quite work: consider for instance the formula |Z|p1. The obvious translation
would be |Z|(a)p. But this would mean that (a)p has to be satis�ed in every world wi.
This is too strong a requirement: we just want (a)p to be satis�ed in every world of the
form U10. We therefore need to be able to determine if we are at a world of the form we.

We can�t use a propositional variable for this: we have already used our sole propositional
variable p. The solution is to use a slightly different encoding: we will replace each world
in by a list of 2k + 3 worlds w0R;w1R; . . . R;w2,i+2 such that: p is true in wi iff either
i 3 k and pi is true in w, or i = 2k + 2. De�ne:

2k:-1-1

00.k= /\ <G)i*P/\<a)2k+2P-
i=k+1
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Then aw, is true in every world U10, and we will ensure that for every 71 > 0, 007,, is false
in w,~. Now we will show how to de�ne the relations Rf. If l ;é a, this is easy: we let Rf
consist of all pairs (w0,w{,) such that (w, w�) E Rl. We can�t do this for Rf� since every
world we already has wl as its R; successor. If (11), w�) E Ra, we will add (w2;,+2,w{,) to
R1,, that is, we add an R; edge from the last node of the encoding of w to the �rst node
of the encoding of w�.

Now we are ready to de�ne the reduction:

f(¢(p07 &#39; &#39; &#39;  = 00,19 A

Where gk is inductively de�ned as follows:

gm») = WP
9k(��1/J) = _�9k(1/1)
9k(1/11 V 1/12) = 9k(&#39;9[�1) V 9Ic(1/12)
9k((l>%/J) = (l>(00,k /\ 9k(1/1)) for l 75 a
9k((a>1/J) = (a)2&#39;°+3(0o,k /\ 9k(1/1))
9k(&#39;:&#39;1/1) = &#39;:�(00,Ic �> 9k(1/1))
9k(<A> % (3)) (A) % <B>l<a> == <a>2�°+3] /\ 9k(<A>T) /\ 9k(<B>T)

(The notation [(a) := (a)2��+3] denotes the result of substituting (a)2��+3 for (a).) Obvi-
ously, f is polynomial time computable. Furthermore, if ¢$ does not contain path formulas,
then neither does f(q5). It remains to prove that gz� is satis�able iff f(¢)  satis�able.

Let M = (I/V, {Rl}l¬£,7r). De�ne the corresponding model Mk = (W, {El}l¬;,7�r) as
follows:

W = {w/¬\W:M)=a0,;,}
R1 =  fOI"l7é(L
R, = (R,,)2��+3|W
7?(m) = {w = M |= W19}

With induction the structure of 1/1, it is easy to prove that for all formulas 1/1 with propo-
sitional variables in {p0, . . . , pk}, and for all 7.0 E W:

Now suppose M,w |= f(q5). Then w E W�, since M, w )= aoyk. Therefore, M,,,w |= q�,
and hence ¢ is satis�able.

For the converse, suppose that ¢ is satis�able. Let M = (VV, {R,},¬£,7r) be a model
such that M |= gz3[v]. Let M� = (W�, {R§}lE;,7r�) be the corresponding model with one
propositional variable, as sketched before the de�nition of the reduction:

W� = {w0,...,w2,,+2:w¬W}
R2 = {(w0,w6) : wR,&#39;w�} (for l aé a)
R; = {(&#39;w,~, w,-+1) :1" g 2k + 1} U {(w2k+2,w6) :wRa&#39;w�}
7r�(p) = {w,~:7l=2k+2or (w¬7r(p,~) andz&#39;§k)}

It is easy to see that M], is isomorphic to M, and therefore M� )= aw, /\ g(gzS)[v0]. El

As in theorem 5.3.7, we can prove that if E contains at least two modalities, we
can dispense with propositional variables all together. Recall that we used the following
reduction in theorem 5.3.7:

f(¢(po, - - - ,pk)) = ¢((b)T» (a><b>Ta <a>(a><b>T» - - - 7 <a>&#39;°<b>T)-
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We can strengthen this. It is easy to see that the techniques of the previous theorem can
be applied to prove the analog of theorem 5.3.7. We leave the details to the reader.

Theorem 5.4.7 If |£| 2 2, then there exist polynomial time reductions from the satis�-
ability problems for L and LKR over signature (£,./1) to the corresponding satis�ability
problems over signature (E, (D). El

Combining the previous theorem with the earlier obtained lower bounds, we can sum-
marize the complexity results of this section as follows:

Corollary 5.4.8 If |£| Z 2, and |A| Z 0 the satis�ability problems for L and LN are
EXPTIME�complete, and the satis�ability problem for LKR is H�1��complete. El

An interesting aspect of the results of this section is the wedge they drive between
LN and LKR . At �rst sight the difference seems puzzling: after all, both are languages
in which generalizations can be stated and re�entrancy forced. A closer look shows that
the two languages work very differently. We might say that whereas in LKR we can
state genuine generalizations involving re�entrancy, in LN there is a clear sense in which
re�entrancy is only expressed within a given model. LN isn�t powerful enough to force
labelings. An example will make this clear. Consider the GPSG head feature convention
again. We�ve already seen that its force is captured in LKR by the following wff:

IZ|(ph.rasal �> (HEAD) x (HEAD-DTR)(HEAD)).

But when we attempt to capture its force using nominals we run into a problem: how can
we label the desired re�entrancy point? It seems we must step beyond the boundaries of
LN and write an expression such as the following:

|Z|(phrasal �> E|i&#39;((HEAD)i&#39; /\ (HEAD-DTR)(HEAD)i&#39;)).

Now, this expression clearly captures what is required, but unfortunately it�s not an LN
wff but a wff of a more powerful language in which explicit quanti�cation over nominals
is possible. Such languages have been investigated before; in fact Bull�s paper on the
subject seems to have been the �rst technical investigation of nominals [Bul70]. Moreover
Reape [Rea91] has used such language to investigate problems in uni�cation based gram-
mar. However when used together with the universal modality, explicit quanti�cation over
nominals is (from the point of view of complexity theory at any rate) rather uninteresting:
it is straightforward to show that strengthening LN to allow explicit quanti�cation over
nominals results in a notational variant of L1, the �rst order language of AVSS. Such a
language thus has a HE� satis�ability problem, just as LKR does.

In short, it is asking a lot to be able to express generalizations involving re�entrancy.
The nearest we can get to it in a decidable framework seems to be LN . However, while
generalizations are expressible in this language, these generalizations don�t involve re-
entrancy in any strong sense. It�s precisely for this reason that we�re not able to force
a tiling in this language, but (alas) it�s also precisely for this reason that it is not able
express some linguistically useful principles such as the head feature convention.
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5.5 The Master Modality

In this section we consider the complexity of the satis�ability problems for L[*], LN [*1 and
LKR[*], our base languages extended with the master modality  Gazdar et al. [GPC+88]
de�ne the master modality as follows:

M,w |= [>:<]¢ iff M,w )= c5 and
M, w� )= [>n<]q5, for all w� : wRlw�, for some t 6 £.

As they only work with �nite AVSS this de�nition is not circular, indeed it has the
advantage of making the intended use of  particularly clear:  expresses recursive
constraints over AVSS. (See Carpenter [Car92] for a discussion of recursive constraints.)
However it will make the following technicalities more straightforward if we extend the
de�nition to cover arbitrary AVSS. We do this as follows.

M,w )= [>s<]¢ iff M, w� |= q�, for all 11)� E W such that w(U Rl)*w�
le£

That is, gt must be satis�ed at all nodes w� that are reachable by any �nite sequence
of transitions (including the null transition) from 11). Clearly this de�nition reduces to
the previous one for �nite AVSS. It�s also worth mentioning that we have introduced a
notational change; Gazdar et al. use III for the master modality. We prefer to reserve this
for the universal modality.

The most important thing to note about both semantic de�nitions given above is their
in�nitary force: L1 is not the correspondence language for  As with PDL, the natural
correspondences are with classical languages in which in�nite disjunctions are allowed; in
effect we are working with a fragment of in�nitary logic.

A number of logical results for L[*], including the construction of a complete tableaux
system, have been proved by Kracht [Kra89]. However his methods only yield a nonde-
terministic exponential time upper bound for the satis�ability problem; we improve on
this below. Neither LN [*1 nor LKR[*] seem to have been treated in the literature, though
Gazdar et at. note that some re�entrancy coding mechanism would be desirable, and
Kasper and Rounds mention the possibility of combining the two approaches. LKR[*] is
this combination.

We begin our investigation with a lemma which enables us to utilize results from the
previous section.

Lemma 5.5.1 Let ¢ be a formula that contains no occurrences of III or  Then Elgz� is
satis�able i�" [>I<]¢ is satis�able.

Proof. First suppose M = (VV, {Rl}l¬£,7r), and M, we )= Elq�. Then for all 11) E W,
M, w |= q�, and therefore certainly M, we )=

Conversely suppose M = (VV, {R;};¬;,7r), and M, we )=  Let W� equal {w E
W : w0(U,¬£ Rl)*w}, and let M� be the restriction of M to W�. It follows by the usual
generated submodel argument that for all formulas 1/) without III or [>s<], and for all w E W� :
M,w |= 1/1iffM�,w |= 1/1. It followsthat M,w )= ct, for allw E W�. But then M�,w0 )= Elq�.
|:|

From this lemma, and the form of the reductions in the proofs of theorems 5.4.1
and 5.4.5, it follows immediately that the lower bounds for languages with El go through
for the corresponding languages with
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Corollary 5.5.2 The satis�ability problems for L[*] and LN[*] are EXPTIME�hard. The
satis�ability problem for LKR[*] is H(1��hai"d. [I

But do we have the the same upper bounds? The answer is almost always �yes,� but there
is one notable exception. If E is �nite, and contains at least two elements, the complexity
of the satis�ability problem for LKR[*] is much higher than that of the corresponding
satis�ability problem for LKR : we will show that in this case LKR[*] satis�ability is
E}complete instead of �just� H�1��complete.

Lemma 5.5.3 If q� is satis�able in M, then o is satis�able in a countable submodel of
M.

Proof. Suppose M, w )= o. Let W� be {w� E W : w(U,E£ R1)*w�}. It follows by induction
on the degree of gt that M |W� , w |= q�. But as all our relations are partial functions, and
as we only have countably many of them, W� must be countable. El

Theorem 5.5.4 If� is �nite, and |£| Z 2, the satis�ability problem for LKR[*] is 2%-
complete.

Proof. The upper bound follows directly from lemma 5.5.3. To prove the corresponding
lower bound, we will construct a reduction from the following E}complete tiling prob-
lem [Har86]:

N X N recurrent tiling: Given a �nite set T of tiles, and a tile T1 6 T, can T tile
N X N such that T1 occurs in the tiling in�nitely often on the �rst row.

That is, does there exist a function t from N X N to T such that: right(t(n,m)) =
left(t(n+ 1, m)), up(t(n, m)) = dou/n(t(n, m+1)), and the set  : t(i, 0) = T1} is in�nite?

Let T = {T1, . . . ,Tk} be a set of tiles. We construct a formula on such that:

(T, T1) 6 N X N recurrent tiling iff on is satis�able.

To ensure that ¢$,.1 forces a tiling of N X N, we use the formula q� constructed in the proof
of theorem 5.4.1. Let q�� be the result of replacing every occurrence of III by  in ct. Then,
as in theorem 5.4.1, the following holds:

1. If o� is not satis�able, then T does not tile N X N.

2. If M, we )= ct�, then there exists a tiling t of N X N, and a function f from N X N
to W be such that f(0,0) = we, f(n,m)R,.f(n + 1,m) and f(n,m)R,,f(n,m + 1),
and M,f(n, m) )= t,~ iff t(n, m) = T,~.

Now we force the recurrence: we will use a new propositional variable rowo, which can
only be true at worlds of the form f (n, 0), and we will ensure that there exist an in�nite
number of worlds where rowg holds and tile T1 is placed. De�ne:

q�rec =  /\ [l][>s<]�uro&#39;w0) /\ rowg /\ (rowo �> (>n<)(7"0w0 /\ t1)).
lEl.&#39;,,l;ér

Let ¢$,.t be the conjunction of q�� and om. In the same way as in theorem 5.4.1, we can
now prove that (T, T1) 6 N X N recurrent tiling iff ¢,.t is satis�able. El
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In the previous proof it is essential that we can force a propositional variable to be
true at w only if in is reachable from we in a �nite number of R, steps. We can�t force
this in LKR , nor in LKR[*] if E is in�nite. (Indeed the previous proof doesn�t go through
for L in�nite as then om is not a formula.) As we shall now see, in the case where E is
in�nite, the satis�ability problem for a language with  is never more complex than the
satis�ability problem for the corresponding language with III.

Theorem 5.5.5 IfL&#39;. is in�nite, then

1. The satis�ability problems for L[*] and LN [*1 are EXPTIME�complete.

2. The satis�ability problem for LKR[*] is H? complete.

Proof. The lower bounds follow from corollary 5.5.2. For the upper bounds, we will
reduce the satis�ability problems for L[*], LN[*], and LKR[*] to the satis�ability problems
for the corresponding languages with III. The claim then follows from theorems 5.4.5
and 5.4.1. To get rid of occurrences of [*], we de�ne function g from E|�less formulas to
formulas without III or  as follows:

g(p)=p 9(n1/J)=n9(i/I) 9(1/JV )=9(1/1)V9(£)
9(<l>w) � V>9(1/1) 9([*]1/1) = P[*]¢ 9(<A> W (3)) = (A) x

We have to ensure that p[*],,, mimics the behavior of  In particular, if �Ip[*],/, holds
at some world, this world should have a (multi�step) successor where g(-nib) holds. We
introduce new modalities (-:1/1) for all formulas [>n<]1b 6 Cl (q�), and we will force that for
every world w satisfying �p[*]¢, there exists a world w� such that wRn¢w� and g(-:1/1) holds
at w�. Let E� consist of the modalities occurring in q�, and the new modalities (-:1/1) for
[*]1b 6 Cl Since L is in�nite, we may assume that £� C £. Our reduction f is de�ned
as follows:

f (<15) = 9(¢) /\ D(P[*1w �> 9(1/1) /\ /\ [l]P[*1¢) /\ D(�P[*1w �> <n1/1>9(*w))-
l¬£�

Obviously, f is polynomial time computable. Furthermore, if gt doesn�t contain nominals
and/or path equations, then neither does f It remains to prove that gt is satis�able
iff f (gt) is satis�able.

First suppose o is satis�able. By lemma 5.5.3, there exist a countable model M =
(W, {Rl};E£, 7r), and a world we 6 W such that M, wo |= ct. De�ne a model � as follows:
if = (W, {Rl}lE,/_;,7/&#39;l&#39;>, S11Ch that:

1. E; = R; for l occurring in q�; E; = (Z) for l ¢ E�
/\

2. For [>s<]v,b E Cl(¢), Rnw is such that:

a. wE�¢,w�A=> M )= -nib, and w(Ul¬£ R;)*&#39;w&#39;; and
b. Elw� : wR�,/,w� iffM )= -u[>s<]v,[).

3. 7?(p) = 7r(p) for p occurring in gb; w E 7Ar(p[*],/,) iff M, w |=
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Obviously, if M, wo |= q�, then M is well de�ned, and M, wo )= f
For the converse, suppose f (q�) is satis�able. let M = (W, {R;};E;, 7r), and U10 6 W be

such that M, we |= f We may assume that R; = (Z) for l ¢ E. It is easy to prove that
for all formulas 1/) E Cl(¢) and for all in E W, M,w )= o iff M,w |= g(¢), and thus o is
indeed satis�able. [I

It remains to prove EXPTIME upper bounds for L[*] and LN [*1 for �nite C.

Theorem 5.5.6 If £ is �nite, and |£| Z 2, then the satis�ability problem for L[*] is
EXPTIME complete.

The lower bound follows from corollary 5.5.2. For the corresponding upper bound, we
will give a reduction from this satis�ability problem to the satis�ability problem for a
suitable subset of Deterministic Propositional Dynamic Logic (DPDL). This proves the
theorem, since the satis�ability problem for DPDL is in EXPTIME (see Ben�Ari, Halpern
and Pnueli [BHP82]). Our DPDL subset is the multi�modal propositional language with
modalities (Z) for all l E L, and ((U,E£l)*), which we will abbreviate as  We inter-
pret wffs of this language on Kripke models M = (VV, {Rl}l¬£,7r), where R; is a partial
functional binary relation on W, in the usual way, the key clause being:

M,w |= (>s<)¢ iff E|w&#39;(w(U R;)*w&#39; & M, w� |= q�).

Let o be an L[*] formula. It is obvious that o is a satis�able L[*] formula iff gz� is a satis�able
DPDL formula. III

Theorem 5.5.7 If£ is �nite, and |£| Z 2, then the satis�ability problem for LN[*] is
EXPTIME�c0mplete.

The lower bound follows from corollary 5.5.2. For the corresponding upper bound, we will
give a reduction from the satis�ability problem for LN [*1 to the corresponding satis�ability
problem for L[*]. The theorem then follows from theorem 5.5.6. Suppose gz� is an LN [*1
formula, and m1,. . .,mk are all the nominals occurring in q�. We can view nominals as
ordinary propositional variables, with the extra requirement that each nominal is satis�ed
exactly once. We can�t quite force that, but it turns out that forcing the following
requirements for every nominal m that occurs in gz� are enough to obtain the required
reduction.

1. All nodes where m holds are equivalent with respect to Cl(q5)

2. If m is true, and �u[>:<]i[;, 1/; hold at w for some [>s<]ib E Cl(q5), then there exists a node
11)� reachable from w by a non�m path such that -:1/1 holds at 11)�

To force the second requirement, we introduce new propositional variables mmhw, for
each [>I<]&#39;gb E Cl(¢), and each occurring nominal m. m<*)n¢ will be true if -nib has to be
ful�lled by a world reachable by a non�m path. Now de�ne the reduction f :

f (¢) = i5 /\ /\«iecz(¢)(l*l(m �> 1/1) V [*1 (m �> n1/1))
/\ /\[*]z/:eCz(¢)(l*l(m /\ "l*l1/J /\ 7»/9 �> Vle.c<l>m(*)~«/J)/\

[*l(m<*>~¢ /\ 1/� -> Vle£<l>m(*)�t/2)/\

[*l(m �> �m<*>~w)/\
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It is obvious that if gt is satis�able in a model where every nominal m occurs exactly once,
then f (¢) is satis�able.

For the converse, suppose f (¢) is a satis�able L[*] formula. Let M = (I/V, {Rl}l¬£,7r)
be a model such that ]\/[,w )= f(q5). De�ne relation ~ such that: in ~ w� ¢> (w =
w�) or M ,w |= m and M, w� )= m for some nominal m occurring in q�. It is easy to see
that ~ is an equivalence relation, and �ltrating over ~ yields a satisfying model for q�. El

As in the case of languages with III, we can reduce the number of propositional vari-
ables. De�ne g,,([*]1/J) = (0% �> g(i[))) in the construction of theorem 5.4.6, and de�ne

f<¢<po, . . . 21%)) = �70,k/\9k(¢)/\l*l(�70,k 4 (l�l2k+300,k/\l4\ [z1ao,iA2K:<a>i<aao,iAlQ mm)
to get the analogue of theorem 5.4.6 for languages with  The extra conjunct in f forces
more similarity between the original model and the encoded model:  can force more
structure than III. In a similar way, we can get the analogue of theorem 5.4.7. Details are
left to the reader.

We can summarize the complexity results of this section as follows:

Corollary 5.5.8 If |£| Z 2, and |A| Z 0 the satis�ability problems for L[*] and LN[*]
are EXPTIME�c0mplete, and the satis�ability problem for LKR[*] is H�1��c0mplete for L�.
in�nite, and E%�c0mplete for E �nite. El

Clearly the results of this section are very bad; does this mean such in�nitary ex-
tensions should be abandoned? We believe not: an interesting case for their linguistic
interest is made by Keller [Kel91], who works with a language even stronger than LKR[*]
namely PDL augmented with the Kasper Rounds path equality. Among other things
Keller shows how this language can give a neat account of the LFG idea of functional
uncertainty. Thus the idea seems linguistically interesting: the pressing task becomes the
search for well behaved fragments.

Finally it should be remarked that Gazdar et al. emphasize a different application
for L[*]. Instead of viewing it as a grammar speci�cation formalism, they use it to de�ne
syntactic categories; indeed the greater part of their paper is devoted to showing how
a wide variety of treatments of syntactic category can be modeled and compared using
L[*]. An interesting corollary of this is that they are not particularly interested in the
satisfaction problem: the problem of most concern to them is how expensive it is to check
a category structure against some �xed category description q�. Clearly this is a very
much simpler problem; in fact they show that it is solvable in linear time if gt is a wff of
L[*]. Their result extends to wffs of LN [*1 and LKR[*].

7

5.6 Concluding Remarks

In this chapter we have investigated the satis�ability problem for a variety of modal
languages of AVSs. The following table summarizes the results for the case of most
interest in computational linguistics: both E and A �nite  2 2, |A| Z 0).
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NP�complete NP�complete NP�complete
El EXPTIME�complete EXPTIME�complete II�1��complete
[>s<] EXPTIME�complete EXPTIME�complete E%�complete

As a �nal remark, let�s see what happens if |£| = 1. Intuitively, this should make things
easier, and indeed it does. Consider for instance the languages with only  and (a)
as modalities. It is easy to see that a formula in these languages is satis�able iff it is
satis�able on a (possibly in�nite ) model of the form w0R,,w1R,,w2R,, - - - or on a model of
the form w0Raw1R,, - - -R,,w;,Ra&#39;wk+1R,, - - -R,,wmRa&#39;wk. In this situation path equations
or nominals don�t make the situation more complex that L[*].

In fact L[*] is very like propositional linear temporal logic with operators X (next
time) and G (always in the future). Formulas of this language are interpreted on N, the
natural numbers in their usual order, as follows: X ¢$ holds at 2&#39; if ¢ holds at z&#39;+ 1, and Ggz�
holds at 2&#39; iff for all i� 2 71, gz� holds at 1&#39;�. Using the fact that satis�ability for this language
is PSPACE�complete [SC85], it is easy to prove that the satis�ability problems for the
languages with only (a) and  as modalities are PSPACE�complete as well. Using similar
methods, we get the same results for the corresponding languages with El. We leave the
details to the reader. Combining these remarks with theorem 5.4.6, and theorem 5.3.6,
we can summarize the results for |£| = 1 as follows:

Theorem 5.6.1 If |£| = 1, and |.A| Z 1, the satis�ability problems for L, LN, and
LKR are NP�c0mplete, and the satis�ability problems for L , LN , LKR , L[*], LN[*], and
LKR[*] are PSPACE�c0mplete. [I

There remains much to do. In this chapter we have con�ned ourselves to languages
with full Boolean expressivity, hence the results of this chapter are essentially limitative.
An important problem to turn to next is the exploration of weaker fragments. Obvious
choices would be fragments with only conjunction as a Boolean operator, fragments with
only conjunction and disjunction, or fragments with only conjunction and negation on
atoms. Results for such fragments exist in the literature, but a more detailed examination
seems both possible and desirable. Further, it would be interesting to look for tractable
fragments involving III or  A good way of approaching this topic would be to add strict
implication => as a primitive symbol to various fragments of L, LN or LKR (as we saw
earlier, it the implicit combination of El and �> provided by => that is the most important
use of the universal modality) and then to look for restricted forms of strict implication
that are useful but tractable.

It is our belief, however, that modal logic has more to offer computational linguistics
than an analysis of uni�cation formalisms. We�ve already seen a hint of this in Evan�s
use of III to look at feature speci�cation defaults, and in the the use of L[*] to specify
grammatical categories. Moreover modalities �gure in recent work in categorial grammar;
see [Roo] for example. However there seem to be further possibilities. A particularly
interesting one concerns the organization of computational lexicons. An important task
in this application is the developed of formalisms for representing and manipulating lexical
entries. DATR [EG89] is such a formalism, and an examination of its syntax and semantics
suggests that it is open to modal analysis. What sort of bene�ts might result from such
an analysis? Complexity results and inference systems are obvious answers, but there
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is another possibility that might be more important: modal logic might provide �logical
maps� of possible extensions.

This point seems to be of wider relevance. In recent years modal logicians have ex-
plored a wide variety of enriched systems, some of which clearly bear on issues of knowl-
edge representation. As has already been mentioned, Schild [Sch90] has made use of
correspondences between core terminological logic and modal logic to obtain a number
of complexity results for terminological reasoning. However more correspondences are
involved. For example, terminological reasoning may also involve the �counting quanti-
�ers�; that is, we may want to perform numerical comparisons. The modal logic of such
counting quanti�ers (and a great deal more besides) has been investigated by van der
Hoek and de Rijke  Their work covers such topics as completeness, normal forms
and computational complexity and is of obvious relevance to the knowledge representation

community.
Finally, there may be deeper mathematical reasons for taking the modal connection

seriously. Modal logic comes equipped not only with a Kripke semantics, but with an
algebraic semantics, and duality theory, the study of the connections between the algebraic
semantics and the Kripke semantics, is a highly developed branch of model logic; see
[Gol89] for a detailed recent account. While some use of the algebraic semantics has been
made in connection with Attribute Value structures (Reape [Rea91] for example, uses it to
make connections with Smolka�s work, and Schild [Sch90] utilizes an algebraic approach
to simplify his presentation) in general it seems that a tool of potential value has been
neglected.



Chapter 6

Nexttime is Not Necessary

6. 1 Introduction

Recent work has shown that modal logics are extremely useful in formalizing the design
and analysis of distributed protocols. (see [Hal87] for a survey). In [HV89], Halpern and
Vardi categorize these logics in terms of two parameters: the language used and the class
of distributed systems considered. The languages they consider depend on the number of
processors, the absence or presence of an operator for common knowledge and the use of
linear versus branching time. As in [HV89], we denote these languages by CKL(,,,), KL(,,,),
CKB(m) and KB(m), where m is the number of processors, C denotes the presence of an
operator for common knowledge, and L and B stand for linear and branching time. All
of these languages include temporal operators for nexttime, until and sometimes.

We will now brie�y describe the classes of systems considered in [HV89]. We view a
distributed system as a set of possible runs of the system. We assume that runs proceed
in discrete steps, and if 1" is a run then (T,  (for 2&#39; E N) describes the state of the system
at the i�th step of run 7". We say that a processor knows a fact ¢ at a given point, if gz� is
true at all points (7"�, 71�) that the processor considers possible at that point.

A processor does not forget if the set of runs it considers possible stays the same or
decreases over time. The dual notion is no learning: we say that a processor does not
learn if the set of runs it considers possible stays the same or increases over time. A
system is synchronous if all processors have access to a global clock. Finally, a system
has a unique initial state if no processor can distinguish (130) from (r�, 0) for all runs 1"
and 7"�.

We use C to represent the class of all models and use subscripts nf, nl, sync and ms to
indicate classes of models where, respectively, all processors do not forget, all processors
do not learn, where time is synchronous, and where there exists a unique initial state.

In [HV89], Halpern and Vardi completely characterize the computational complexity
for all combinations of their languages and classes of models, including some results from
Ladner and Reif [LR86]. In the cases of most interest to distributed systems, the sat-
is�ability problems for these logics are undecidable. The following theorem states the
complexity for all undecidable combinations. undecidable.

Theorem 6.1.1 (HV89)

1. The satis�ability problems for CKLQ2) and CKBQ2) with respect to CW), C(,,f,u,~s),
C(nf,sync); C(nf,nl): C(nf,sync,uz&#39;s); C(nf,nl,sync); C(nl,sync) and  are El&#39;c0mplete-

97
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2. The satis�ability problems for CKLQ2), KLQ2), CKBQ2) and KBQ2) with respect
to C(,,f,,,;,m~s) are E�complete.

5�. The satis�ability problems for CKLQ2), KLQ2), CKBQ2) and KBQ2) with respect
to C(,,,,,,,~s) are RE�c0mplete.

Since the satis�ability problem for linear temporal logic with the three operators men-
tioned earlier is PSPACE�complete, while the satis�ability problem for linear temporal
logic with just <> (sometimes) as temporal operator is only NP�complete [SC85], it is
interesting to examine the impact on the complexity if we restrict the temporal opera-
tors in our languages to O for linear time (resp. V0 and E|<> for branching time). Let
CKTW), KTW), CKFW) and KFW) denote the languages where O (resp. V0 and E|<>)
are the only temporal operators. Although the proofs in [LR86] and [HV89] rely heavily
on the use of either the nexttime or the until operator, it turns out that, by using new
techniques, we can prove the same complexity results if we restrict the temporal operators
to O (resp. V0 and E|<>). Using approximately the same techniques, we can prove that
the well�known El�hardness result for the satis�ability problem for two�dimensional tem-
poral logic [Har83] goes through if we restrict the temporal operators to the sometimes
operators in both directions O1, and <>,.

The rest of the chapter is organized as follows. In the next section we describe the
formal model, following the notation from [HV89]; in section 6.3 we describe the speci�c
problems encountered if we have only 0 as a temporal operator; in section 6.4 we prove
the analog of part 1 of theorem 6.1.1 for the linear time language CKTQ2), by forcing
models to be gridlike; in section 6.5 we prove the analogs of 2 and 3 for the linear time
cases and a 2% lower bound for two�dimensional linear logic, by appropriately modifying
the proof of Ladner and Reif [LR86]. Finally, in section 6.6, we prove that for all classes of
models considered, the satis�ability problems for the branching time languages CKFW)
and K§(,,,) are at least as hard as the corresponding satis�ability problems for CKL(m)
and Kf(m).

6.2 Syntax and Semantics

We start by giving the syntax of languages CKL(,,,) and CKBW). We assume we have
a set of propositional variables �P and de�ne the set of CKLW) and CKB(,,,) formulas as
follows:

0 if p E 79 then p is a CKL(,,,) (CKB(,,,)) formula.

0 if q�, 1/) are CKL(,,,) (CKB(,,,)) formulas, then so are -u¢ and gz� /\ 1/1.

o if ¢$ is a CKL(,,,) (CKB(,,,)) formulas, then so are Kkgz� (Ir knows gz�), Eq� (everyone
knows c3) and Cgb (q� is common knowledge).

0 if q�, 1/) are CKL(,,,) formulas, then so are ©<;5 (nexttime q�), <>¢ (sometimes gz�) and
<;5U1/1 (q� until 1/1).

0 if q�, 1/) are CKB(,,,) formulas, then so are �v�©gz3, 39¢, �v�<>q5, E|<>q5, Vq5U1/1, E|¢$UrZ).
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We de�ne T, V and �> in the usual way from -I and A. In addition, we de�ne for linear
time Elq� (always ¢) as an abbreviation of -u<>-uq�, and for branching time we view �v�E|¢
(resp. E||Z|¢$) as an abbreviation of �E|<>-uq� (resp. -uV<>-uq�).

We de�ne the sublanguages KL(m) (resp. KB(,,,)) as the set of CKLW) (resp. CKB(,,,))
formulas without the C operator. By restricting the temporal operators in each language
to O (resp. V<> and E|<>), we get the corresponding languages CKZW), Kim), CKRW)
and KB(m).

We will now give the semantics for CKL(,,,). A linear time model M for Tn, processors
is a tuple (R, ~1, . .. ~m,7r), where R is a set of runs, 7r : R X N �> P0w(�P) assigns to
each point the set of propositional variables that are true at that point, and ~,, is an
equivalence relation on R X N. We de�ne M, (T, )= ¢ (q� is satis�ed by point (T, of
M) with induction on $2

0 M,(r,2&#39;)|=p<=>pe7r(T,2&#39;)

o M,(T,2l)|=-I¢<=>M,(T,2&#39;)bé¢ 
     
     M( )|=¢/\¢<=>Mi(Tii)l=¢andMi(Tii)|=t/1
M (T,2&#39;) |= Km <=> V(T�,2") ~,, (732) : M, (r�,2") |= Q5

0 M,(T,2&#39;)|=E¢$<=>Vk§m:M,(T,2))=Kkgz3 
     
     AM >
M >

( )

0 T,2

,T,2I |=C&#39;<;5<=>�v�TL:M,(T,2&#39;) |=E"¢

W 
     
     s7

- M, m� |=<><z5<=>3.2�22:M,(T,.2&#39;)|=<z5

0 M, (T,2&#39;) |= ¢U2,b <=> 32" Z 2 : M, (T,2�) |=1/1 and V2"�(2&#39; 3 2"� < 2&#39; => M, (T,2") )= q�)

Given a model M for Tn, processors, we de�ne ~c as the re�exive transitive closure of

$21 ~;,. Then M, (T, )= Cq� if and only if �v�(T�,2") ~c (T, : M, (T�,2�) |= q�.
We will now give the semantics for CKB(,,,). A branching time model M for m proces-

sors is a tuple (F, ~1, . . . ~,,,, 7r) where F is a forest, 7r assigns to each point of F the set
of propositional variables that are true at that point, and ~,, is an equivalence relation
on points of F. We assume that each node in F has some successor. We will view F as
a tuple < RF, =p> where RF is the set of the in�nite branches of F that start at the
root of some tree in F. (T, denotes the 2�th node of T and (T, =p (T�,  if and only if
(T, and (T�,  denote the same node of F. We will de�ne M, (T, )= Q3 with induction
on q�. We only give the clauses for E|<> and V<>, the other temporal operators are de�ned

analogously.

0 M, (T,2&#39;) |=V<>¢<=>V(T�,2) =1: (T,2&#39;) Elj Z 2 : M, (T�,j) |= q�
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0 Processor k does not f0Tget in M if for all T, T� E R and i,i� E N: if (T, wk (T�, i�)
then Vj 3 i Elj� 3 i� such that (T,j) ~k (T�,j�).

o Processor k does not lawn in M if for all T, T� E R and i, i� E N: if (T, wk (T�, i�)
then Vj 2 i Elj� 2 i� such that (T,j) ~k (T�,j�).

o Time is synchronous in M if for all T, T� E R and i,i� E N and all processors k:
(T, ~k (T�, i�) implies that i = i�.

o M has a unique initial state if for all T, T� E R and all processors k: (T, 0) ~,, (T�, 0).

We use C to represent the class of all models and use subscripts nf, nl, sync, uis to
indicate classes of models where, respectively, all processors do not forget, all processors
do not learn, where time is synchronous, and where there is a unique initial state.

6.3 From Points to Intervals

In all our proofs, it is essential that the constructed formulas force runs to encode certain
strings. The obvious way to encode some string on run T starting at i is by letting (T, i+ j )
encode the j�th symbol of the string. However, if we restrict the temporal operators to just
O, we can�t distinguish adjacent points satisfying the same set of formulas. To solve this
problem, we introduce a propositional variable tick, alternating on runs. tick partitions
each run into an in�nite number of intervals. For all n, let [T,  be the set of points in
the n�th interval of T starting at i. (Note that we start counting the intervals from 0.)

[T,i]o [T,i]1 [T,i]2 [T,i]3
. /��+ r��i\ /��*\ rm

(M)....._._._..._._._..._._._..._.... 
     
     tick -vtick tick -vtick

We will encode strings at consecutive intervals of a run. We say that (T, encodes
some string if and only if each point in the j�th interval of (T, ([T, j) encodes the j�th
element of the string. It is possible to mark a �xed number of consecutive intervals on a
run by propositional constants. Let 1�int(p, upp) be the conjunction of the following �ve
formulas:

<>p /\ |Z|(p /\ tick �> |Z|(�:tick �> El-vp)) /\ |Z|(p /\ -utick �> |Z|(tick �> El-vp))

(19 holds somewhere at some interval, and 19 holds nowhere outside that interval.)

|Z|(tick /\ <>(p /\ tick) �> <>(-vtick /\ <>p) Vp) /\ |Z|(-utick /\ <>(p /\ �vtick) �> <>(tick /\ <>p) Vp)

(p holds exactly at some pre�x of an interval.)

|Z|(p /\ tick �> <>(up,, /\ -vtick)) /\ E|(p /\ -vtick �> <>(upp /\ tick))

(upp holds somewhere after the p interval.)

|Z|(upp /\ -vtick �> |Z|(tick �> El-»upp)) /\ E|(up,, /\ tick �> |Z|(-utick �> El-»upp))

(if upp holds somewhere at some interval, then up], holds nowhere outside that interval.)

3(1) �> &#39;3((uupp /\ <>upp) �> p))
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Thus, (T, )= 1�int(p, up,,,) if and only if there is exactly one interval at which 19 holds, p
holds nowhere else and app holds exactly at some pre�x of the next interval.
Therefore if (T, )= 1�int(p0,p1) /\ 1�int(p1,p2) /\  /\ 1�int(p,,_1,up,,) then there are n
consecutive intervals on T starting at i such that pj holds exactly at the j�th interval.

Now we can de�ne |= and ~,, on intervals:

0 [T,i]n |= <15 11°F V(7",.7&#39;) E [Kiln I (73.7) |= <15
(Note that [T,  té ¢ does not imply that [T,  )= -va�)

0 [T, M, [T�,i�]n« iff

� �v�(T,j) E [T, E|(T&#39;,j�) E [T&#39;,i&#39;],,r : (T,j) ~;, (T&#39;,j�), and

� �v�(T&#39;,j&#39;) E [T&#39;,i�],,« E|(T,j) E [T, : (T,j) ~,, (T�,j�).

Though the speci�c classes considered do imply speci�c behavior for the epistemic
relations with respect to points, not much of this behavior carries over to intervals. For
example, it is perfectly possible that a model in C(,_,,,,c) is not synchronous with respect
to intervals. However, the following formula it], will force that some of the structural
properties of points hold for intervals as well.

K;,|Z|((tick �> Kktick) /\ (-Itick �> K],-»tich))

Lemma 6.3.1 IfM 6 CW), M, (T, |= 1/Jk, and (T,j) wk (T�,j�) f0T some (T,j) E [T,
with n > 0, then

0 theTe exists some i� such that (T, ~;, (T�,i�), and

0 f0T all i� such that (T, M, (T�,i�) it holds that (T�,j�) E [T�,i�]n and Vn� < n :
[7", Wk [7"l,�ll:|nI.

Lemma 6.3.2 IfM E C(,,,,,_,,,,c), M, (T, )= wk and (T, M, (T�,i), then [T, M, [T�,i],,
f0T all n.

The proofs of these lemmas are similar to the proofs that force not necessarily syn-
chronous models to be essentially synchronous from [HV89].

6.4 Forcing Models to be Gridlike

Theorem 6.4.1 The satis�ability pT0blems f0T 0KE(Z2) with Tespect to CW), C(,,f,,,,~,),
C(nf,sync); C(nf,nl): C(nf,sync,uis) and C(nf,nl,sync) are El&#39;c0mplete-

Since the 2% upper bounds for these classes follow directly from [HV89], it is enough
to prove the lower bounds for two processors. As in [HV89], all 2% lower bounds for linear
time classes will be proved by a reduction from the recurrence problem for nondetermin�
istic Turing machines. We say that a Turing machine is TecuTTent if and only if it has an
in�nite computation that starts on the empty tape and reenters its start state in�nitely
often.

Theorem 6.4.2 ([HPS83]) If A1,A2,A3, . .. is a TecuTsive enumeTati0n of the 1�tape,
Tight�in�nite n0ndeteTministic TuTing machines, then {n | An is TecuTTent} is E}�c0Tnplete.
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Given an arbitrary 1�tape, right in�nite NTM A, we will construct a formula (15,; such
that:

o If ¢A is satis�able with respect to CW) then A is recurrent, and

o if A is recurrent then mg is satis�able with respect to C(,,f,,,l,s_,,,,c) and C(,,f,5_,,,,c,,,,s).

This implies the 2% lower bound for the satis�ability problems for all six classes.
For the remainder of the proof, we �x a 1�tape right�in�nite NTM A. Suppose A has

state space S, start state 30 E S; tape alphabet I�; b E F : the blank; and transition
function 6. We use a special symbol # to mark the left side of the tape. Let CD (the
set of cell descriptors) be the set F U {#} U (S X F). We view the IDs of A as in�nite
strings over CD, where (3, a) denotes a cell with contents a, which is currently read by
the head while A is in state .9. A starts on the empty tape in state 30, so the start
ID of A (idg) is equal to #(s0,b)b��. Now suppose ido |- idl |- idg |-  is an in�nite
computation of A. Then for all 71,: id� = #xn,1J:n,2...xW,1:n,n+1b�  6 CD). The idea
is to encode this computation in a model, by letting the runs represent the IDs (using the
interval techniques of the previous section) and using the epistemic relations to simulate
the transition function.

7. # $31 $32 $33 $34 5 5�3   . . . . . . . . .._.

# $11 $12 5 5�

K K �K
tzck -vtzck tick -vtzck

Since the encoding of IDs will be done at the intervals of runs, we start by partitioning
each run into an in�nite number of intervals, using the propositional variable tick. The
following formula (151 will take care of this:

C&#39;|Z|((tz&#39;c/9 �> <>-utick) /\ (-Itick �> <>tic/9))

The epistemic relation L is used to determine the contents of a cell at the next
step of a computation. Therefore, 1) should not be re�exive, transitive or symmetric.
As in [HV89], we use both epistemic relations ~1 and ~g and introduce a propositional
variable pA to avoid re�exivity. We de�ne the relation 1) as follows:

(131) L» (w, 2") iff amt": (T, 1) ~. (1"",7}") ~2 (yaw) and
(r",z"&#39;) |= -»pA and (7"&#39;,7§&#39;) )=pA

The associated modal operator K is de�ned by: K1/1 := K1(�IpA �> K2(pA �>



6.4. F ORCING MODELS TO BE GRIDLIKE 103

Let q�g be the following formula:

C((PA �> EPA) /\ (�PA �> |:l_�PA)) A C&#39;:&#39;C("K1PA /\ �&#39;K2�PA)

If (T0, 2&#39;0) |= q�g and (T, ~c (T0, 2&#39;0) then the value of pA on T from 2 upwards is constant,
and by the second conjunct we can take an in�nite number of L steps from each point
on T after 2&#39;. This will ensure that we encode an in�nite computation.

Since we are interested in the behavior of L with respect to intervals, we de�ne:

I[2~,i],, 1» [7«&#39;,2&#39;].,. iff v(7«, j) e [7«,2]., aw, 3") e [r&#39;,2&#39;],,, : (0 j) A (T , 3") /\
V(T�,j&#39;) E [T�,i�],,« E|(T,j) E [T,: (T,_7&#39;) L) (T&#39;,j&#39;)

For the IDs to match up right, we need synchrony and no forgetting of L with
respect to intervals. Let ¢3 be the following formula:

C&#39;|Z|((tich �> Ctick) /\ (-utich �> C-Itick))

By lemma 6.3.1 and the fact that pA is constant on runs (as forced by q�g), we immediately
obtain the following:

Lemma 6.4.3 If (T0,i0) )= (t3, (T, ~c (T0,20), (T,_7&#39;) 1) (T&#39;,j�), and (T,j) E [T, >
0), then

0 theTe exists some i� such that (T, L) (T�, 2�)

0 f0T all 2&#39;, if (T, 1) (T�,2�) then (T�,j�) E [T�,i�],, and VT2� < TL: [T,i],,r 1) [T�,i�]n:.

Now we turn to the encoding of IDs. We will encode IDs on runs where pA holds. To
encode the cell descriptors, we introduce for each :1: 6 CD a propositional variable px. Let
gz54 be the formula

CC&#39;(PA �> V (Pm/\� V 1711))
.2vECD y¬CD, ygéw

If (T0, 2&#39;0) |= ¢1 /\ - - - /\ (t4 and (T, ~c (T0,i0) and pA holds at (T, i), then each point on T
after i encodes exactly one cell descriptor.

We say that the T2�th interval of (T, 2)([T, encodes :1: 6 CD, if each point in [T,
encodes 1:. To encode the start ID (id0) at the �rst run, we introduce the following formula
gz�stm (ups is a dummy variable):

PA /\ 1�mt(p#,p<so,b>) /\ 1-mt(p<so,i>, ups) /\ |3(p# V p<so,i> V pi)

To simulate the transition function we just have to make sure that L points to the
corresponding cell of a next ID. Suppose id |- 2d�. The only cells that can be affected by
the transition are the cell holding the state and its neighbors. On each run we mark the
three consecutive intervals corresponding to these cells with propositional variables left,
state and Tight. Let ¢5,1 be the conjunction of the following formulas (upstate is a dummy
variable):

C&#39;(pA �> 1�iht(left, state) /\ 1�iht(state, Tight) /\ 1�iht(Tight, upstate))
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C|Z|(pA /\ V p<3,a) �> state)
(s�>ESXP

For the transition on all non�marked cells, let c3572 be the conjunction of the following
formulas:

/\ CE|(pA /\ (-uleft /\ -Istate /\ �vTight) /\ pg, �> Kpx)
$ECD

C&#39;|Z|(pA /\ (-vleft /\ �vstate /\ -Wight) /\ Elpb �> Klilpb)

Now the transition on the three marked intervals. Let N (:3, y, 2) be the set of successor
triples of (:3, y, 2) as given by the transition function 6. Let ¢$5,3 be the following formula:

CUM /\ <>(left /\ pm) /\ <>(state /\ pg) /\ <>(Tz&#39;ght /\ pz) �>

V (|Z|(left �> Kp,,:) /\ |Z|(3tate �> Kpyr) /\ |Z|(Tight �> Kpzz)))
(w�,y�,z�)¬N(w,y,z)

Let ¢5 be the conjunction of ¢5,1,¢5,2 and qS5,3. By lemma 6.4.3, if (T,  |= q51 /\- - -/\q55
and (T, encodes some ID id = 1:0 . . .:rn_1b�� of A, and for some j E [T,  > TL + 1),
(T,j) i> (T�,j�) then there exists some 2" such that (T, L) (T�, 2") and (T�,7I�) encodes a
successor ID yo . . .y,,b�� of id.

Since by gz�g, we can take an in�nite number of L steps from any point in the model,
we know that we encode an in�nite computation of A.

The only thing left to do now is to force the encoded computation to be recurrent. That
is, at each time in the computation, there must be some later time when the computation
is in the start state. To be able to express this requirement in a formula, we must be able
to discriminate at each time those IDs which occur at some later step in the computation.
Therefore, we time stamp each run that encodes an ID with the time of the computation.
Say (T, is at time t if and only if exactly the (t + 2)�nd and (t + 3)�rd interval of (T,
are marked with tz&#39;me1 and timeg. The �rst run is at time 0; we will mark the second and
third intervals on this run with timej and timeg, and we will ensure that a run at time
t has a successor at time t + 1. Let (�g be the conjunction of the following two formulas
(with uptime a new dummy variable):

C&#39;(pA �> 1�z&#39;TLt(time1,time2) /\ 1�z&#39;TLt(time2, upt,~me)) /\ I-i1�Lt(p<50,b),ti1�rL61)

C|Z|(pA /\ timeg �> Ktimej)

By the �rst conjunct, each pA run is time stamped, and (T0, 710) is at time 0. Next suppose
that (T, ~c (T0,z&#39;0) and (T, is at time t, and (T,j) 1) (T�,j�) for some j E [T,  with
m > t + 2. By lemma 6.4.3 and the second conjunct, it follows that for each 2" such that

(T, L (T�, 71�) it holds that (T�, 2") is at time t + 1.

To check whether an in�nite computation is recurrent or not, we need to discriminate
between runs that encode IDs in the start state and those that are in a different state.

To this end we introduce the following formula ¢7:

C(<> V p<s0,w> �> |Z|staTt3tate) /\ C&#39;(|Z| /\ -»p<5M> �> El-I3taTtstate)
$EP w¬F
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If (T0, i0) )= ¢1 /\ . . . /\ ¢7 and (T, ~c (T0,i0) and (T, encodes an ID, then 3taTtstate is
constant on the run, staTt3tate is true if the state of the encoded ID is the start state,
false otherwise.

Finally, we state the formula to force recurrence q�m

C|Z|(<>C(pA /\ timeg �> 3taTtstate))

Let q5A be the conjunction of ¢$1 through qS7, q�stm and q�m. Suppose M, (T0, i0) )= mg
for some M 6 CW). Then (T0,i0) encodes idg. Suppose (T, ~c (T0,i0) and (T, encodes
some ID id at time t. By q�m, for each i� there must exist some i� 2 i� such that
(T, i�) I= C(pA /\ timeg �> staTt3tate). In particular, there must exist some m > 0 and
some j such that (T,j) E [T,i]t+3+m and (T,j) )= C(pA /\ timeg �> 3taTtstate). By ¢2,
we can take Tn. 1) steps from (T,j), say (7�,j)(i>)m(7��,j�). By ¢5, there must exist
some i� such that (T, , i�), (T�,i�) encodes some ID id� such that id(|-)�"id� and
(T�,j�) E [T�,i�],;+3+m. By Q55, (T�,i�) is at time t + m, but then (T�,j�) |= timeg /\pA and
therefore 3taTtstate is true at run T�. Thus, id� is in the start state. Since (T, was chosen
arbitrarily, we have shown that M encodes a recurrent computation of A.

To conclude the proof of theorem 6.4.1, we still have to show that q5A is satis�able
with respect to C(,,f,,,l,s,,,,c) and C(,,f,sy,,c,,,,5) if A is recurrent. Let ido |- idl |- idg |-  be
an in�nite computation of A that starts on the empty tape and reenters its start state
in�nitely often. We will construct models in C(,,f,,,;,s,,,,c) and C(,,f,5_,,,w,,,,~s) that satisfy mg.

0 cm is satis�able with respect to C(,,f,,,;,s,,,,c).

We construct model M = ({7�g | E E N}, ~1, ~2, 7r) 6 C(,,f,,,;,s_,,,,c) such that M, (T0, 0) |=
¢A:

� ~1 is the re�exive, symmetric and transitive closure of the set

{(0237 Z�): (T2¬+17�;)> la� 6 N}

� mug is the re�exive, symmetric and transitive closure of the set

{<(T2e+1,i)» (T2e+2,i)> I N E N}-

� pA E 7l&#39;(7"g,�i) iff� even; tick E 7l&#39;(7"g,  iffi even.

It is immediate that M E C(,,f,,,,,5_,,,,c), [Tg,i],, = {(Tg,i +  and (7"2g,�i) )= Kw iff
(7�2(g+1),  )= 1/1. It is now easy to de�ne 7r such that M, (Tgg, 0) encodes idg at time B
and M, (T0, 0) satis�es all conjuncts of q5A with the possible exception of q�m. But if
(T0, 0) satis�es all other conjuncts of gzSA, then q�m is satis�ed as well. For let (Tg,
be a point of M. We need to show that (7"g,�i) |= <>C(pA /\ timeg �> staTt3tate).
Since the computation is recurrent, there must exist some j > i such that id]-
is in the start state. We claim that (Tg,j + 3) )= C(pA /\ timeg �> staTt3tate).
Suppose (Tm, j + 3) )= pA /\ timeg. Then Tn. is even and (T,,,,0) encodes some ID
at time j. This can only the case if m = 2]�. And since idj is in the start state,
(Tm, j + 3) |= 3taTtstate.

0 cm is satis�able with respect to C(,,f,5_,,,,c,,,,s).

Let M be the C(,,f,,,l7sy,,c) model de�ned above. Transform this model into an
C(,,f,sy,,c,,,,5) model M� = (R, ~�1, ~;, 7r�) by adding a unique initial state:
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_ Nic: {<(��7�; + 1): (7"�= 2� + 1» l (T7 Nk (T�7�;)} U {(03 0)(T�7 0» l T: T� E R}:

� 7T�(7"g,�i + 1) = 7r(Tg,

It is immediate that M� E C(,,,:,5_,,,,c,,,,~,) and M�, (T0, 1) )= gzS,4. El

Theorem 6.4.4 The satis�ability pT0blem f0T CKEQ2) with Tespect to C(,,,,5y,,c) is 2%-
complete.

We will show that formula ¢$A works for C(,,l,,_,,,,c) as well, i.e. A is recurrent iff mg is
satis�able with respect to C(,,,,5_,,,,c). By lemma 6.3.2, we immediately obtain the following
analog of lemma 6.4.3.

Lemma 6.4.5 IfM E C(,,,,5_,,,,c), (T, )= ¢3 and (T, 1) (T�,i), then Vn : [T, L)
[T�,

Using this lemma, we can use the same argument as in the proof of theorem 6.4.1 to

show that if M, (T0,i) )= q�l /\ . . . /\ gig, (T0,i) ~c (T, 1) (T�,i) and (T, encodes some
ID id at time t then (T�,  encodes a successor ID of id at time t + 1.

Suppose M, (T0,i) |= ¢A for some M E C(,,,,5_,,,,c). Then (T0,i) encodes ido. Suppose
(T, ~c (T0,  and (T, encodes some ID id at time t. As in the previous proof, there must
exist some Tn > 0 and some j such that (T,j) E [T, i]t+3+m and (T,j) |= C(pA /\ t�i7TL¬2 �>
staTtstate). By gz�g, we can take Tn L steps from (T, i), say (T, By gz55
and gig, we know that (T�,i) encodes some ID id� such that id(|-)��id� and that (T�,i) is
at time t+ Tn. By (nl, sync), (T,j) ~c (T�,j) and by lemma 6.4.5, (T�,j) E [T�,i]t+m+3.
Therefore, staTtstate is true at run T�. Thus, id� is in the start state. Since (T, was
chosen arbitrarily, we have shown that M encodes a recurrent computation of A. The
converse follows from theorem 6.4.1, since if A is recurrent, then cm is satis�able with
respect to C(,,f,,,l,,,,,,c) and thus certainly satis�able with respect to C(,,l,,y,,c). El

Theorem 6.4.6 The satis�ability pT0blem f0T CKEQ2) with Tespect to CW) is E%�c0mplete.

In our proof of the 2% lower bound of Theorem 6.4.4, it was essential that formula <;53
forced synchrony with respect to intervals. This is not the case for models in Cm), since
lemmas 6.3.2 and 6.4.5 do not hold for non�synchronous models. However, in [HV89] it is
shown that we can force synchrony on �nite pre�xes of runs. This will enable us to force
synchrony with respect to intervals on �nite pre�xes of runs. It turns out that this suf�ces
to prove a 2% lower bound for satis�ability with respect to CW) with minor changes to

925A. 
     
     Following [HV89], we call a point (T, k�repeating if there exist in�nitely many j > i
such that (T, wk (T,j).

Lemma 6.4.7 ([HV89]) Let M be a model in CW) and let T, T� E R:

o If (T, ~,, (T, i�), i 3 i� and (T, is not k�Tepeating, then (T, M, (T, i�) f0T all i�
between i and i�.

0 If (T,  is not k�Tepeating andj < i then (T,j) is not k�Tepeating.

0 If (T,  ~;, (T�,i�) and (T, is not k�Tepeating, then (T�, i�) is not k�Tepeating.
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Using this lemma, we can force synchrony with respect to intervals on �nite pre�xes of
runs. Let 1/1;, be the formula:

K;,|Z|((tick �> <>-Itick) /\ (-utick �> <>tick) /\ (tick �> Kktick) /\ (-Itick �> K1,-vtick))

Lemma 6.4.8 Let M be a model in CW) such that M, (T, |= wk. Suppose (T, M,
(T�,i�), j 2 i and (T,j) is not It Tepeating.

0 If (T,j) wk (T�,j�) and j� Z i� then ((T,j) E [T, i�" (T&#39;,j�) E [T&#39;,i�],,).

0 If (T,j) E [T, then Vm < n: [T, wk [T�,i�]m

For part 1, suppose (T,j) E [T,  and (T�,j�) E [T�,i�],,« with n� < n. Take i0 < i1 < --- < in
such that i0 = i, in = j and for each I 3 n (T, ig) E [T, i]g. Because we assume no learning,
there must eXist(if, <)  <  <  such that if, = i� and for each E 3 n (T, ig) ~;, (T�,
For each E < n, T, ig and T, ig+1 belong to consecutive intervals, so tick has a different
truth value for (T, ig) and (T, �ig+1). By wk, it follows that (T�,  and (T�, +1) must belong
to different intervals as well. Therefore, (T� E [T� = [T�,i�],,, for some Tn Z n.
Since n� < n and (T�,j�) E [T�,i�],,: it follows that  > j� and (T�,i§,) and (T�,j�) belong
to different intervals. But since also (T, j) ~;, (T�, j�) and (T, j) M, (T� and (T, j) is
not k�repeating, it follows by lemma 6.4.7 that every point on T� between j� and  must
be k�equivalent to (T�, j�), and therefore, by 1/1,, the truth value of tick must be constant
between (T�,j�) and (T�,i;,). But then (T�,j�) and (T�,  belong to the same interval.

For part 2, suppose (T, E) E [T,  for some Tn < n. By no learning, there exists some
E� Z i� such that (T, E) ~;, (T�,£� Since by lemma 6.4.7 (T, E) is not k�repeating, it follows
by part 1 that (T�,E�) E [T�,i�]m. El

We can force certain points to be not k�repeating. As in [HV89], de�ne:

n0nTep := q /\ <>|Z|~.q

If M 6 CW) and M, (T, |= K,,n0nTep then (T, is not k�repeating.
Where do we need synchrony? Reviewing the proof for C(,,,,5_,,,,c), we need the following:

if (T, encodes an ID id at time t, there exist some Tn > 0 and (T, j) E [T, i]t+m+3 such

that (T, j) 9: C(pA /\ timeg �> 3taTtstate) and if (T, i)(i>)m(7«&#39;, i�) then (T, j)(i>)m(w, 3")
for some (T�, j�) E [T�, i�]t+3+,,,. Let ¢{.�f,C be the formula:

C&#39;<>(E|-vtimeg /\ C(PA /\ t�i7TL¬2 �> 3taTtstate) /\ K1n0nTep)

And let ¢,,l be the formula:

CD(PA /\ K1n0nTep �> (K1(-upA �> K2n0nTep) /\ KK1n0nTep))

Let q�ff be the conjunction of q�l through (t7, q�smt, (tn, and q�féc. We show that q��l is
satis�able with respect to CW) iff A is recurrent.

We �rst prove that if q��l is satis�able with respect to CW), then A is recurrent. This
follows from the following lemma:

Lemma 6.4.9 Let M be a model in CW) and suppose M, (T0,i0) |= <;5�j,� and (T0,i0) ~c
(T,
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0 If (T, 1) (T�,i�), (T,j) E [T,i]n, and (T,j) )= K1n0nTep, then Vm < n : [T, 1)
[T�,i�],,, and (T,j) 1) (T�,j�) f0T some (T�,j�) E [T�,i�],, and (T�,j�) |= K1n0nTep.

0 If (T,  encodes ID id at time t, then theTe exist a point (T�, i�) and Tn > 0 such that:

_ (T7  NC (7"�7�;�):

� (T�, i�) encodes an ID id� in the staTt state at time t + Tn and id(|-)"�idt+,,,.

Suppose that the lemma holds and let M 6 CW) be such that M, (T0,i0) |= <;S&#39;j,�. Then
M, (T0,i0) encodes idg at time 0, and by part 2 of this lemma there exist to < t1 <
such that to = 0, for all E: idm, I-+ idm, +1 and idm, is in the start state. This implies that
A is recurrent. El

It remains to prove lemma 6.4.9. For the �rst part, suppose that (T, 1) (T�,i�).
By de�nition of L (T�, i�) )= pA and there must exists some (T�,i�) such that (T, ~1
(T�,i�) ~2 (T�,i�) and (T�,i�) )= -upA. By no learning, there exist some j� > i� and
j� > i� such that (T,j) ~1 (T�,j�) ~2 (T�,j�) Since (T,j) is not 1�repeating, it follows by
lemma 6.4.8 that Vm < n : [T, ~1 [T�,i�]m and (T�,j�) E [T�,i�],,. By ¢2, (T,j) )= pA
and (T�,j�) |= �pA. Therefore, by gz�nl, (T�,j�) |= KgnonTep, and again by lemma 6.4.8
Vm < n: [T�, i�]m ~2 [T�, i�],,, and (T�,j�) E [T�, i�],,. Since pA is constant on runs, Vm < n:

[T, 1) [T�,i�],,, and (T,j) i> (T�,j�) E [T�i�],, and by ¢$,,;, (T�,j�) |= K1n0nTep.
For the second part of the lemma, note that by ¢:.�f,C, M, (T, satis�es the formula:

C&#39;<>(E|-utiTne2 /\ C&#39;(pA /\ t�i7TL¬2 �> staTt3tate) /\ K1n0nTep).

Therefore, there must exist some j 2 i such that (T, j) |= l:l�Itt1�fL62 /\ C(PA /\ timeg �>
staTt3tate) /\ K1nonTep. Since (T, encodes an ID at time t, [7",�i]t+3 |= t&#39;i7TL¬2. Therefore
(T, j) must be in some interval after the (t + 3)�rd interval of (T, Suppose (T, j) E
[T,i]t+3+,,, for Tn > 0. (t2 ensures that we can take Tn 1) steps from (T, (T, 1)
(7�1,i1) 1) (T2,i2) 1)  1) (T,,,,i,,,). By repeatedly applying the �rst part of the
lemma, it follows that for all n 3 t+ 3 + Tn: [T, L [T1,i1],, 1) [T2,i2],, i>  1)
[Tm,im],, and (T,j) ~c (7"m,jm) for some (7�m,jm) E [7�m,im]t+3+m. It follows that (Tm,im)
encodes an ID id� at time Tn + t such that id(|-)��id�. Thus, [T,,,, i,,,]t+m+3 )= timeg. Since
(T, j) ~c (Tm, jm) E [Tm,im]t+3+,,,, it follows that (Tm,  |= staTt3tate, and therefore, id�
is in the start state. El

Finally, suppose that A is recurrent. We show that ¢�j,� is satis�able with respect to
CW). Suppose ido |- idl |- idg |- - - - is an in�nite computation of A that starts on the empty
tape and reenters its start state in�nitely often. Let M be the C(,,l,,,f,,,,,,c) model such that
M, (7�0,0) )= ¢A as de�ned on page 105. Recall that M = ({Tg | E E N}, ~1,~2,7r) and

0 ~21 is the rst closure of {<(7"2g,�i), (7"2g+1,  | E,i E N}

0 ~22 is rst closure of {<(7"2g+1,�i), (7"2g+2,  | E,i E N},

0 pA E 7l&#39;(7"g,  iff� even; tick E 7l&#39;(7"g,�i) iffi even.
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M, (rgi, 0) encodes idi at time I and M, (T0, 0) satis�es (ti through Q37 and q�siiiii.
It remains to show that we can de�ne an assignment on propositional variable q in

such a way that (To, 0) satis�es q�iii and q��l as well.
Since our computation is recurrent, there exist to 3 t1 3 t2 3 . . . such that Vm : tm >

m and idim is in the start state. Now de�ne

q 6 mm) <:~ 2� S 752/2 + 3.

Since nonrep was de�ned as q/\<>|Z|-uq, it follows that ifi 3 ti/2+3 then W� 2 E : (riz,  |=
nonrep. By de�nition of ~1 and ~2, it follows that if E is even and (pi,  )= K 1 nonrep then
(7�i,i) )= K1(-vpA �> Kgnonrep) and (7"i,i) )= KK1n0m"ep. Therefore M, (r0,0) |= gz�iii as
required.

For ¢:.�f,C, suppose (Ti, 0) |= pA. Then I is even, say E = 2m and (rim, 0) encodes idm at
time m. Since tin > m, (1"2i,i,ti,i+3) |= Klnonrep/\ El-Itimeg. If (rir, ti,i+3) |= pA/\ timeg,
then (7"iz,0) encodes idim. Since idim is in the start state, (riz,ti,i + 3) )= startstate.
Therefore (Tg, tin + 3) |= C&#39;(pA /\ timeg �> startstate). Now we have proved that

(Ti, 0) )= <>(|:l_|t&#39;l7TL¬2 /\ C&#39;(pA /\ timeg �> startstate) /\ K1n0m"ep)).

And since ri was an arbitrary pA run, it follows that (To, 0) satis�es q�nl El7&#39;80"

6.5 Variations on a Theme by Ladner and Reif

Theorem 6.5.1 The satis�ability problems for KTQ2) and CKTQ2) with respect to
C(iif,iii,iiii) are E%�c0mplete.

Since the 2% upper bounds for these classes follow directly from [HV89], it suf�ces to
prove the 2% lower bound for KTQ). In [LR86], Ladner and Reif prove that the satis�ability
problem for KBQ) is undecidable with respect to C(iif,,ii,iiii). In particular, they construct
for each deterministic Turing machine A a formula that forces a run to encode an in�nite
computation of A. As pointed out in [HV89], their proof can be trivially modi�ed to
obtain a 2% lower bound for KL(2). We will use the main idea of Ladner and Reif�s proof
to obtain for each nondeterministic Turing machine A a KLQ) formula that encodes the
recurrence problem for A.

Let A be a 1�tape right�in�nite NTM. Suppose A has state space S, start state so 6 S;
tape alphabet I�; b E F : the blank; and transition function 6. Let A be the set I�U{#, $}U
(S X F). We start by giving the de�nitions from [LR86], extended to nondeterministic
Turing Machines.

We view the IDs of A as �nite strings of the form: $a0$a1$ . . . $aii$ with ac . . . aii E
F*(S >< I�)F*. A starts on the empty tape in state so and we de�ne the start ID of A ialo
as the string $(s0, b)$. De�ne an in�nite computation as an in�nite string over A of the
form: #��°id0#"�1id1#"�2 . .. with for each i: mi > 0, idi |- idi+1,  = 2i + 3.

De�ne a function collapse : A� U A* �> A� U A*, that replaces multiple contiguous
occurrences of the same symbol by one occurrence, that is:

c0llapse(a6�°a§�1a§�2 . .  = aoalag . .. E A� (if for all i: mi > 0, ai aé ai+1)
77740 ml 777/2 7717- 77740 ml 777/2c0llapse(a0 a1 a2 ...a, )= c0llapse(a0 a1 (L2 ...a°;�) =

a0a1a2 . . .ai (if for all i: mi > 0, ai 75 ai+1)
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Suppose a and 7 are in�nite computations of the form:
0 = ######id0###id1###id2### &#39; "

T=#id0#id1 # M2 # ids #"&#39;

Analogously to [LR86], we can de�ne a function N : A6 �> P0w(A6) that veri�es
the matching of these strings. If 0 and 7 are in�nite computations as given, then
�V/Z.(�7&#39;Z&#39;, . . . ,�7&#39;Z&#39;+5) E N(0¢, . . . , 0&#39;Z&#39;+5).

The following lemma shows how we can use N to determine if A has an in�nite

computation.

Lemma 6.5.2 (LR) Leta, 7&#39; be in�nite strings over A such that:

1- 0 E #6$((*{#, $}$)*#3$)°"

2. 7&#39; E (�I$$)��

3.  2 (Ti, . . . ,�7&#39;i+5) E N(0¢, . . . , 03.1.5)

4. c0llap3e(0) = c0llap3e(7&#39;)

Then 0 and 7&#39; are infinite computations.

We will construct a formula iZ2A such that 1/JA is satis�able with respect to C(,,f,,,,,5_,,,,c)
if and only if A is recurrent. As in [LR86], we will encode two in�nite computations on
each run. Again we partition runs into an in�nite number of intervals by the propositional
variable tick. Let 1/11 be the formula:

EE|((tick �> <>-utick) /\ (-Itick �> <>tiC]§))

If (T0, i0) |= LZJ1 then by (uis, nl), tick alternates on all runs.
Since we will encode two strings on each run, we need to encode 2 elements of A per

point. Therefore we introduce for each c E A two propositional variables 36 and tc. Let
7/12 be the conjunction of the following formulas:

ED(V(s.A< V 311))/\ED(\/(ta/\" V ti»
c¬A d¬A,d;£c CEA dEA,d;£c

If (r0,i0) |= i122 and (T, wk (r0,ig) (k 6 {1,2}) then each point on 7" after i encodes
exactly 2 elements of A, say a point encodes s = a and t = b if exactly 3,, and tg, hold.
An interval [77,  encodes 3 = a [resp. t = b] if each point in that interval encodes s = a
[t = b]. Now we can de�ne the encoding of strings on a run: (77,  encodes 3� = 0 [t�� = T]
if for all n : [77,  encodes .9 = 0,, [t = 7&#39;,,].

The formula 1/1A that we will construct will force the existence of strings 0 and 7&#39;
ful�lling the conditions of lemma 6.5.2. Following [LR86], we will encode c0llapse(a) and
c0llap3e(7&#39;) on the current run and 0 and 7 on other runs. We use propositional variable
coll, constant on runs, to discriminate between the current run, where we want call to
hold, and the runs that encode the noncollapsed computations. The following formula LZJ3
will take care of this.

coll /\ -uK1c0ll /\ E((c0ll �> Elcoll) /\ (-vcoll �> El-»c0ll))

As in [LR86], we will enforce the following situation: if (770, i0) )= iZ2A then there exist
strings 0 and 7&#39; ful�lling conditions 1,2,3 and 4 of lemma 6.5.2 such that:
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0 if (T0, 20) ~1 (T, and (T, |= -ucoll then (T, encodes 3�� = 0 and t� = T

0 (T0, 20) encodes 3� = c0llapse(a) and t�� = c0llapse(T)

If we have constructed 1/) A and (T0, 20) |= 1/) ,4, then by lemma 6.5.2, (T0, 20) encodes an
in�nite computation of A. We can then easily force this computation to be recurrent by
adding the following conjunct 1/1,80 to 1/1 A:

D0 V 3<so,a>
ael"

We now turn to the construction of the formula 1/) ,4. First of all we have to make sure

that if (T0,z&#39;0) ~1 (T, ~1 (T�,7I�) and (T, 71), (T�,z") )= -ucoll, then (T, and (T�,7I�) encode
the same strings. As a �rst step, we force synchrony for ~1, by the following formula 1/14:

K1E|((tick �> Kltick) /\ (-Itick �> K1-utic/9))

If (T0,z&#39;0) )= 1/11,...,1/14 and (T, ~1 (T0,z&#39;0) then by (nl) for each _70 Z 710 there exists
some j > 2&#39; such that (T,j) ~1 (T0,j0). By lemma 6.3.1, it follows that for all TL :
[T,  ~1 [T0, 710]�. We can now force all -ucoll runs to encode the same strings, by formula

1/153 
     
     K1|Z|(-vcoll /\ sc �> K1(-vcoll �> 30)) /\ K1|Z|(-vcoll /\ tc �> K1(�vc0ll �> 150))
If (T0,z&#39;0) )= 1/11,...,7,[)5, (T0,z&#39;0) ~1 (T, ~1 (T�,7§�) and (T, i), (T�,7§�) |= -vcoll then, by 1/14,
VTL : [T, ~1 [T�,7l�]n. By 1/12 each point on T0 and T encodes exactly two elements in A
and therefore by 1/15 VTL : [T,  encodes s = a [t = b] if and only if [T�, i�],, encodes 3 = a
[t = b].

We have to ensure that -ucoll runs encode strings 0 and T ful�lling the conditions of
lemma 6.5.2, i.e. 0 E #6$((�I{#, $}$)*#3$)�" and T 6 (�$$)��� such that W : (T,~, . . . ,T,~+5) E
N(0¢, . . . , 0&#39;Z&#39;+5).

Following [LR86], it can easily be seen that these conditions can be checked lo-
cally: we can construct a local condition such that if for all TL this condition holds for
an . . .an+5, Tn . . .�7&#39;n+5 (taking some extra care for the �rst seven symbols), then 0 and T
are of the appropriate form. This is the reason why Ladner and Reif can force this situa-
tion using just one run. Obviously, one run won�t suf�ce in our situation, since we don�t
have the nexttime operator. However, we can force the local condition for one interval at
each run.

If (T, ~1 (T0, 20), and (T, |= -ucoll we use (T, to check the local condition for some
interval [T,  In order to do this, we have to be able to distinguish the �rst 7 intervals of
(T, We mark interval 0 to interval 6 of (T, by propositional variables staTt0 to 3ta1"t5,
by the following formula 1,120.

5

K1(�vc0ll �> staTt0 /\ /\ 1�mt(3taTt;,, Sta7&#39;t]0+1) /\ 1 -i1�Lt(StaT�t5, up5Wt))
k=0

We can check the local condition for some interval by just looking at that interval and
its 5 successors. We mark 6 consecutive intervals on each -ucoll run by aTg0 to aTg5, using

formula 1/17: 
     
     4
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It is now easy to construct a formula 2128 such that: if (T0,20) |= 2121,...,2128 and
(T0, 20) ~1 (T, 2), (T, |= -ucoll and [T, |= aTg0 then [T,  ful�lls the local condition.

By 2125 we know that for each (T�, 2�) ~1 (T0, 20) such that (T�, 2�) |= -vcoll the following
holds: VT2 : [T,  encodes 3 = a [t = b] if and only if [T�, 2�],, encodes 3 = a [t = b]. Therefore
[T�, 2�],, ful�lls the local conditions as well. We have to make sure that each interval is
checked, i.e. for each T2 there must be some (T, ~1 (T0, 20) such that (T, |= -vcoll and
[T,  |= M90. The following formula 2129 provides for this:

El-uK1�u(�uc0ll /\ aTg0)

Suppose (T0,20) )= 2121, . . . ,2129. Choose some (T0,j0) E [T0,2&#39;0],,. By 2129 there exists some
(T,j) ~1 (T0,j0) such that (T,j) )= -ucoll /\ aTg0. By (nf), there is some 2 3 j such
(T, ~1 (T0,2&#39;0). Then by lemma 6.3.1, (T,j) E [T, and [T,  )= aTg0 as required.

We have proved that if (T0, 20) |= 2121, . . . , 2129, there exist 0 and T ful�lling conditions
1,2 and 3 of lemma 6.5.2 such that for all (T, ~1 (T0,20) with (T, |= -vcoll : (T,
encodes 3� = 0 and t�� = T.

In order to apply lemma 6.5.2, we have to ensure that condition 4 holds as well,
i.e. c0llap3e(0) = c0llap3e(T). We will let (T0,20) encode 3�� = c0llap3e(0) and 15�" =
c0llap3e(T) and force the two strings encoded by (T0, 20) to be equal. First we will force
the condition for T. Let 21210 be the formula:

|j(I&#39;Ic �) Kltc)

If (T0,2&#39;0) |= 2121, . . . ,21210 then by 2123 there exists some (T, ~1 (T0,2&#39;0) such that (T, |=
-ucoll. By 2124, VT2 : [T0,20]n ~1 [T, Since (T, encodes t�� = T and each point on T0
encodes exactly one value for t, (T0, 20) encodes t� = T = c0llap3e(T).

We ensure that (T0, 20) encodes two equal strings by the following formula 21211:

El (156 <�> 36)

If (T0, 20) |= 2121, . . . , 21211 then (T0, 20) encodes 3� = t�� = c0llapse(T).
Finally, we force (T0, 20) to encode 3� = c0llap3e(0). As in [LR86] we will use ~2 to

simulate the collapse function for 0. Since 0 75 c0llap3e(0), ~22 must behave differently
from ~1. Therefore we partition the runs into different intervals, this time using our
propositional variable .90. Let [T,  be the n�th 3$�interval of (T,

W13 [2211 [0213 [2212
, /T rim 1% rim

(7",%)O�-n-�H�o-nH-n-�H�n-u�0n-n 
     
     mvzz +32 mvzz +32

5$ _�5$ 5$ _�5$

We can now force ~22 to be synchronous with respect to .90 intervals. Let 21212 be the
formula:

K2|:l((8$ �> K28$) /\ (�I8$ �> K2�I8$))

If (T0, 20) |= 2121, . . . ,21212 and (T, ~2 (T0,2&#39;0) then by (nl) W0 2 20 there exists some j 2 2&#39;
such that (T,j) ~22 (T0,j0). By lemma 6.3.1, it follows that VT2 : [T,  ~2 [T0, 20]§,. We want
the n�th 30 intervals of (T0,2&#39;0) and (T, to encode the same value for 3. The following
formula 21213 will take care of this:

K2l:l(8C �> K286).
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Suppose (T0, 20) |= L121, . . . , @1213, (T0, 710) ~22 (T, and (T, encodes 3� = oz and collapse(a) 6
(-$$)��. Then [T, must encode s = (c0llapse(oz)),,, since the 3$ intervals take adjacent
identical s�symbols together. By 1/113, [T0, z&#39;0]§, encodes .9 = (collapse(oz)),, as well. Since we
already know that (T0, 710) encodes 3�� = c0llap3e(T) 6 (-$$)���, the .90 and tick intervals of
(T0,z&#39;0) coincide. Thus, [T0,7l0],, encodes .9 = (collapse(oz)),, and therefore (T0,z&#39;0) encodes
.9� = c0llap3e(oz). Since We Want (T0, 20) to encode c0llapse(a), and c0llapse(0) E (�I$$)°",
we just need to force the existence of some (T, ~2 (T0, 20) such that (T, encodes .9� = 0.
Let 1014 be the formula:

-IK2-u(-ucoll /\ aTg0 /\ 1�int(staTt0, 3taTt1) /\ |Z|(aTg0 �> 3#))

If (T0,z&#39;0) |= L/)1, . . . ,1/114 then there exists some (T, ~g (T0,z&#39;0) such that (T, )= -ucoll
and staTt0 holds exactly at [T, z&#39;]0 and [T, z&#39;]0 encodes s = #. By (uis, nl), there must exist
some j such that (T, j) ~1 (T0,z&#39;0). By @123, (T, j) )= -ucoll, and therefore (T, encodes
.9� = 0 and 3taTt0 holds exactly at [T, j]0. But then (T, also encodes .9� = 0, and by @1213
it follows that (T0, 20) encodes 3�� = c0llap3e(0).

Finally, let LZJA be the conjunction of 1/11 through L/J14. If (T0,z&#39;0) |= L/JA then by
lemma 6.5.2 (T0,z&#39;0) encodes .9� = c0llapse(a) and c0llap3e(0) is an in�nite computation
of A. If (T0, 20) satis�es 1/1,80 as well, then c0llap3e(0) is an in�nite recurrent computation
of A. Therefore, if 1/1A /\ um is satis�able with respect to C(,,f7,,j,,,,~,), then A is recurrent.

To conclude the proof of theorem 6.5.1 it remains to check that 1/1 A /\ 1/Jm is satis�able
with respect to C(,,,e,,,,,,,,~,) if A is recurrent. Suppose z&#39;d0 |- idl |- id; |-  is an in�nite
computation of A that starts on the empty tape and reenters its start state in�nitely
often. We will construct a model M = ({Tg|E E N},~1,~2,7r) E C(,,f,,,j,,,,~,) such that
M: (T07  l: SZJA A 1/(rec:

0 ~21 is the re�exive symmetric and transitive closure of {((T, 2&#39;), (T�, z&#39;))|T, T� E R},

0 tick E 7r(T, iffi even,

0 coll E 7r(Tg,z&#39;) iff� = 0.

Then processor 1 does not learn or forget and has a unique initial state. And for all runs
T: [T,0],, = {(T,

Suppose a and 7&#39; are in�nite computations of the form:
0 = ######ido###2&#39;d1###id2### - --

T=#id0#id1 #1612 #1613 #"&#39;

Then V71: (T,~, . . . ,T,~+5) E N(a,~, . . . ,a,~+5) and collapse (0) = collapse
De�ne 7r on variables 30 and tc (c E A) such that (T0, 0) encodes (3) = c0llap3e(a)

and (t)°" = c0llap3e(T) and for each is > 0 (T1,, 0) encodes (s)°" = 0 and (t)�� = 7&#39;. On each
run T;,+1 we mark the �rst 8 points with 3taTt0, . . . , staTt0, upstart. and points k, . . . , is + 6
with aTg0, . . . , aTg5,up,,,_,,. Then (T0, 0) satis�es all conjuncts of LZJA that use only K1 as
epistemic operator. Since the computation encoded by (T0, 0) is recurrent, (T0, 0) satis�es
1/1,80 as Well.

We have to de�ne mag in such a way that it ful�ls $12 and $13:

(41

K2|:l((8$ �> K28$) /\ (�I8$ �> K2�I8$))

K2|Z|(sc �> K230)
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Take no < TL1 < TL2 <  such that:
no = 0, an, 75 a,,,+, and TL, 3 j < TL,~+1 => 0, = (c0llapse(a)),~

And de�ne:

~g as the rst closure of {((T0, 2&#39;), (Tg,j))|E > 0, TL, gj < TL,~+1}.

Then processor 2 does not learn or forget and has a unique initial state. It follows that
M E C(nf,nl,uis)-

It remains to verify that M, (7�0,0) |= 1/112 � 1/114. We know that (T0,i) encodes 3 =
(c0llap3e(0)),~ and VT� 75 T0 Vj(TL,~ g j < TL,~+1 <= (T�,j) encodes 3 = (c0llapse(a)),~).
Therefore, (T0, 0) |= 1/112 /\ 1/113. The last conjunct that has to be satis�ed by (T0, 0) is 1/114:

��K2_&#39;(_�C0ll /\ aTgg /\ 1�int(staTt0, 3taTt1) /\ |Z|(aTgg �> 3#))

Since (T0, 0) ~22 (T1, 0), (T1, 0) )= -ucoll /\ 3# and the only point on T1 where 3taTtg is true
is (T1, 0), (T0, 0) I: 1514 and the claim follows. El

Theorem 6.5.3 The satis�ability pT0blem3 f0T KTQ2) and CKTQ2) with Tespect to C(,,1,,,,~,)
aTe RE�c0mplete.

In the proof of theorem 6.4.6, we have shown that no learning enables us to force intervals
to be synchronous with respect to �nite pre�xes of runs. Now we can add an extra conjunct
to formula 1/1,1 of the previous proof to encode the halting problem. This gives us a RE
lower bound for satis�ability. The corresponding upper bound follows from [HV89]. El

Two Dimensional Temporal Logic

We can apply the techniques of the proof of theorem 6.5.1 to obtain a 2% lower bound for
the satis�ability problem of two�dimensional temporal logic with only the two �sometimes�
operators as temporal connectives. The models for two�dimensional temporal logic are
two�dimensional grids, in�nite to the right and upwards, i.e. each point is a pair (i, j) of
natural numbersl. Let T; be the propositional language with operators <>, (sometimes to
the right) and O, (sometimes upwards) such that: M, (i,j) |= <>,¢ <=> Eli� 2 i : M, (i�,j) |=
<25, and M, (M) I: <>..¢ <:~ 3.7"� 2 .7� : M. (M) e 13.

Theorem 6.5.4 The satis�ability pT0blem f0T 3(2) is E%�haTd.

We will brie�y sketch how to construct a formula q5A such that (M is satis�able if and
only if A is recurrent. First of all, note that if q5A is satis�able, then there exists a model
M such that M, (0,0) |= ¢A. Therefore, we will assume that the constructed formula is
satis�able in (0,0). Introduce two propositional variables tick, and tick, such that tick,
alternates on horizontal runs and is constant on vertical runs, and tick, alternates on
vertical runs and is constant on horizontal runs. We will use two�dimensional intervals

[(n, m)] (TL, m E N) to take over the role of points:

[(n, m)] := {(i,j) : (i, 0) in the n�th tick, interval of (0,0) and
(0,j) in the m�th tick, interval of (0, 0)}

1Note that the present complexity results no longer go through if we admit more general model classes
(cf [Ven92]).
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Now we do have a gridlike structure: for all n and m, there exist i1,i2,j1,j2 such that
[(rI»»m)] == {(i,.7&#39;)|i1 S 2&#39; S i2 /\,7&#39;1 3 .7" S .12}

Using the same trick as in the proof of theorem 6.5.1, we can force the existence of
strings o and r ful�lling conditions 1,2 and 3 of lemma 6.5.2, such that each horizontal
run encodes .9� = o and t°" = r on its consecutive horizontal tick, intervals.

We want (0, 0) to encode the same strings collapse(o) and collap3e(r) vertically, i.e. on
its consecutive ticku intervals. We use two new sets of propositional variables {éc : c E A}
and {tc : c E A} and force the values of .3; and t to be constant on horizontal runs. To
ensure that (0,0) encodes t� = collap3e(r), we mark the diagonal with propositional
variable D, i.e. (i, j) )= D if and only (i, j) E [(n,  for some n. Now we can force points
on the diagonal to encode the same values for t and t. This ensures that (0, 0) encodes
t= collap3e(r).

It is easy to ensure that the strings vertically encoded on (0, 0) are equal. To ensure
that (0,0) encodes .§ = collapse(o), we partition horizontal runs into intervals with .93
and vertical runs into intervals with §$. Since the value of .953 is constant on vertical runs,
and the value of .§$ is constant on horizontal runs, this gives us again a two�dimensional
gridlike structure. We can mark the diagonal in this structure with DS, and force the
points where D, holds to encode the same values for 3 and §. This ensures that (0, 0)
encodes .§ = collapse(o). By lemma 6.5.2, (0,0) encodes an in�nite computation of A,
and it is trivial to add a conjunct that forces this computation to be recurrent. CI

6.6 A Generic Reduction from Linear to Branching
Time

Intuitively, the satis�ability problems for branching time languages are harder then the
corresponding satis�ability problems for linear time. We will show that we can uniformly
reduce the satis�ability problems for CKTW) and KTW) to the corresponding satis�ability
problem for CKBW) and KB(,,,), thus corroborating our intuition.

There is an obvious way to associate a branching time model with each linear time
model and vice versa: suppose M = (R, ~1, . . . wm, 7r) is a linear time model, then M is
a branching time model as well; if M = (F, ~1, . . . wm, 7r) is a branching time model then
we de�ne the corresponding linear time model M L as (RF, ~1, . .. wm 7r) (recall that RF
is the set of branches in  Note that if M E D where D is one of our sixteen classes of
models, then ML 6 D.

Thgnem 6.6.1 There exists a polynomial time computable function f from CKTW) to
CKB(m) formulas such that:

1. For every linear time model M and all (r, .&#39; M, (r, |= Q5 => M, (r,  |= f(¢), and

2. For every branching time model M and all (r, M, (r, |= f(¢) => ML; (7",  |= gz�.

Moreover, ifq� 6 Kim) then f(¢) E KEW).

és a �rst attempt, we take g to be the function that replaces all 0 occurrences in a
CKLW) formula by V<>. Function g does not satisfy the conditions. Take for example the
following I formula gz� :

<>p/\<>q �> <>(p/\<>q) V<>(q/\<>p)
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Then q� is valid in all linear time models, but g(¢):

V<>p /\ V<>q �> V<>(p /\ �v�<>q) V �v�<>(q /\ �v�<>p)

is not valid in the following branching time model:

q, np 19, no V�:"&#39;P» VEW1/O O O

�p, ��q .\ 
     
     O O O O -

p: _&#39;q q: �&#39;p Vl:l�Ip7 Vl:l�Iq

The problem is that in branching time models E|<>g(iZ)) can hold, while V<>g(1/1) does
not hold. Given a CKTW) formula o5, we will exclude this situation for all subformulas
Oil) of o3 in all relevant points. De�ne a function lin from CKTW) to CKFW) formulas:

lin(p) = T; lin(-vgt) = lin(gz5); lin(<;5 /\ 1/1) = lin(<;5) /\ lin(7,l))
lin(Kkgz5) = Kklin(gz3); lin(Egz3) = E lin(<;5); lin(C¢) = C lin(gz3)

lm(<>¢) = (V<>9(¢) <-> 3<>9(¢)) /\ VDlm(¢)

By an easy induction on the structure of formula q�, we can prove the following lemma:

Lemma 6.6.2 IfM = (F, ~1, . . . ~m,7r) is a branching time model such that M, (T, |=
li"(¢) then M, (M) |= 9(¢) ¢> ML, (M) |= $-

The only interesting case is <>q5. Suppose M, (T, |= lin(<>¢). Then M, (T, |=
�v�<>q5 <�> E|<>¢$ and Vi� 2 i : M, (T, i�) |= lin(¢).

M» (M) |= 9(<>¢)=> M» (M) |=V<>9(¢) => 3%" Z 2&#39; I My (73 1") |= 9(¢)
=>E|i� 2i:ML,(T,i�) l=gz5=>ML,(T,i) |=<>

ML,(T,i) )=<><;5 =>E|i� 2i:ML,(T,i�) )=<;5=>E|i� Z i : M, (T,i� |=g(¢) =>
:> M=(T7i) I: E|<>g(¢) :> M=(T7i) l:V<>g(¢) :>
=>M»(7"�) |=9(<>¢)

El

Let f (gt) := g(¢) /\ lin(¢); we will prove that f ful�lls the conditions of theorem 6.6.1.
Suppose M is a linear time model and M, (T, |= ct. If we view M as a branching time
model, then for all points (T�, i�) in M and all branching time formulas 7,1) : M, (T�, i�) |=
�v�<>1/1 <�> E|<>i[2. Therefore, M, (T, |= lin(q5) and by lemma 6.6.2, M, (T, |= g(q5). But
then M, (T, |= f(<;5) as required. If M is a branching time model and M, (T,  )= f(¢),
then by lemma 6.6.2 ML, (T,  |= Q5. El

Corollary 6.6.3 If_D is one of ouT sixteen classes of models then the satis�ability pToblem
foT CKL(m) (TESE KL(,,,)) witl�espect to D is polynomial time Teducible to the satis�ability
pToblem foT CKB(m) (Tesp. KB(,,,)) with Tespect to D.

Combining the lower bounds from the previous sections with the upper bounds from [HV89]
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Corollary 6.6.4

0 The satis�ability problems for CKEQ2) with respect to CW), C(nf,m~s), Cmfysync),
C(nf,nl): C(nf,sync,uis): C(nf,nl,sync); C(nl,sync) and  are EI&#39;c0mplete-

0 The satis�ability problems for CKEQ2) and KEQ2) with respect to C(nf,n,,m~5) are
E}�complete.

0 The satis�ability problems for CKEQ2) and KEQ2) with respect to C(,,l,m~s) are RE-
complete.
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