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I. Formulas of propositional logic as
descriptions of frames

An introduction to the subject of this dissertation, with a synopsis of its contents, is contained in

§1. Further preliminaries on Kripke semantics take up §2; §3 explains a notion of semantic tableaux

that is central to part II. In §4 a number of fragments of intuitionistic logic are compared with

regard to expressive power. §5 explores the relationship between intuitionistic logic and modal

logic as means for describing frames!



§1. Introduction.

1.1 A short history of ideas.

Formal intuitionistic logic, as codified by Heyting [I930], is ultimately based on certain ideas of

Brouwer about the way mathematics is created. In view of their later development, these may be
sketched as follows.

Imagine somebody who enjoys mathematics (or a collective of mathematicians, if you consider that

more realistic)‘. As time flows, this person makes calculations, stipulations, and the various other

things that mathematicians create — and of course, there may be periods during which he does

nothing of mathematical interest. Now we assume, and this is what makes the temporal aspect

important, that the mathematician has a certain freedom: the choice, at any time, to pursue one

subject rather than another; and that his choices may affect the actual content of his findings. Thus

given two mutually exclusive statements A and B, we need not know in advance whether the

mathematician — if he is to make a pronouncement at all — will settle for A or for B. (On the other

hand, we assume that our mathematician does not forget or blunder. So we do know, for example,

that if A has been established, B will never be found true.)

We thus arrive at a picture of the combination of time and the mathematicians choices as a tree, or,

more liberally, a partially ordered set In the particular form of the ‘theoryof the creative subject‘, it

was used by Brouwer to produce counterexamples to intuitionistically unacceptable statements (cf.
Troelstra [I969], Dummett [1977]). It may also serve as a background to the intuitionistic

explanation of the logical connectives in terms of proofs (the Brouwer-Heyting-Kreisel

exp1anation)2. Philosophical niceties apart, this explanation runs as follows:

- A proof of ‘A and B‘ (A A B) is a pair of proofs, one for A and one for B.

-A proof of ‘Aor B’ (A v B) is a construction which, depending on a parameter for which some

value is sure to be found eventually, either gives a proof of A or a proof of B.

-A proof of ‘if A, then B‘ (A —>B) is a construction which would turn any proof of A into a proof
of B.3

There may be things that are known to be false. It suffices to postulate one statement, the falsum

(symbol : .l.), which is always known to be false; that another statement A happens to be false may

be expressed by A —>_L.

Relational semantics turns the notion of a creative subject into precise mathematics, and the above
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explanation of the connectives into a definition of truth for intuitionistic logic. In the main, there are

two approaches, associated with the names of Beth [1956] and Kripke [I965]. Of these, Beth's

approach stays closest to the picture painted above. It is considered in an appendix; our chief

concern will be Kripke's semantics. Further limiting the field, we shall deal only with propositional

logic.

On both approaches, the possible stages in the development of an idealized mathematician are

represented by a quasi-ordered set (more briefly : a frame) — i.e. a set A with a relation SAthat
satisfies the conditions

(i) ‘V’a e A .a SA a (reflexivity)

(ii) Va,b,c EA: : a SAb & b SA c => a SAc (transitivity).

At the basis of Kripke's semantics lies an important simplification (Grzegorczyk [I964], Kripke

[1965]), which is easy to explain in terms of the creative subject. The question is, what the

elements of the quasi-ordered set (the points of the frame) stand for. One possible answer is that

they stand for some combination of time and increasing knowledge; correspondingly, we envisage

the mathematician as traveling along a path through the frame, entering new stages automatically as

time goes on. This is the intuition behind Beth's semantics. In Kripke's semantics, on the other

hand, the temporal component is weaker: again, the mathematician travels through the frame in the

direction of the ordering, but now he may stay at any point arbitrarily long. As a consequence, the

explanation of disjunction changes to: A or B is known at stage a if either A is known at a or B is

known at a. For suppose the mathematician stays at a forever: that the parameter mentioned in the

explanation of disjunction gets a value eventually then simply means that it already has one.

1.2 Kripke's Semantics.

Now let us fix a formalism, and have some precise definitions.

1.2.1 The language 11of intuitionistic propositional logic has an infinite set P of proposition letters

(p,q,r,p0,p1, ...... will be used to refer to them), binary connectives A (conjunction), v
(disjunction) and —>(implication), and a nullary connective _L(falsity). Formulas are built from

these in the usual way. The symbol llwill also be used to denote the set of all ll-formulas. I shall

employ <p,\jI,x,(p0,<p1,.....asvariables over ll-formulas. Negation and truth are defined connectives:

—.cp:=<p—>_L, T:=-a.L.

If no confusion is likely to result, sub- and superscripts may be dropped without further warning.

For instance, I write a Sb instead of a SAb. As usual, a 2b is the same as b Sa.
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1.2.2 Definition; Let A be a frame. A subsetX Q A is upwards closed if

Va eA VxeX (xsa =>a 6X).

U(A ) is the collection of all upwards closed subsets of A. If a 6A, I write [a )A for the set
{a'e A |a’2a }.

For example, [a ) e U(A ). Observe that subsets X g A are quasi-ordered by the restriction of S

to X, and thus may immediately be viewed as frames. If x «EX6 U(A ), then clearly

[X )x = [X ),4

1.2.3 Definition, Let A be a frame. A valuation on A is a function V: P -—>U(A ).

For p e P, V (p ) is to be thought of as the set of all stages at which p is true. The requirement that

V (p ) be upwards closed reflects the assumption above that the idealized mathematician never

forgets.

1.2.4 Definition, A model is a pair 9 := (A ,V ) of a frame A and a valuation V on A.

The valuation V is extended to a map of l into U(A ) inductively, by

V(i)=0;
V(<P"‘l’)=V(<P)flV(\V);

V(<PV\V)=V(<P)UV(\V);

V((p—)\y)={aeA|Va'2a (a'eV((p)=>a'eV(\|!))}.

The clauses of this definition are as we should have expected. In particular, given that we are not to

talk about proofs, what comes closest to the existence of a proof at a of (p—>u! is the circumstance

that as soon as (pbecomes true, xvdoes so too.

1.2.5 Definition, Let Q = (A,V ) be a model, and a GA. If a e V (cp),we say a forces (p(under

valuation V on A ). Notation:

(Q,a) u- (p.

If we have a particular model Q in mind, this will be shortened to a II—(p.

To determine whether a II—(p,we need only consider points a’ 2a. This fact may be put somewhat

more generally.
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1.2.6 Definition, (i) Let A be a frame. If B e U(A ), we call B, with the ordering inherited from

A, a generated subframe of A. Notation: B 9, A.

We say B is generated by A0 QA if B is the least generated subframe of A that contains A0 ;

and write B = [A0).

(ii) IfB g A and Q = (A,V), 33 = (B,V’) are models such that for every p e P, V’(p ) = V (p)

n B, then 73 is called a generated submodel of Q. Notation: 313g Q.

By induction over llone proves:

Lemma; If (B,V’) 9, (A,V ), then for all (p6 II,V’(p ) = V (p ) n B.

1.3 Completeness.

Above, Kripke's semantics has been construed as a model for the intuitionistic conception of

mathematics. Now the question arises to what extent this model is adequate, and an obvious test is:

to see whether the formulas that are forced in every point of every Kripke model are the same as the

theorems of the traditional formal systems of intuitionistic logic. To formulate the result, some new

notation will be useful. If Q = (A,V) is a model, I shall write Q II-(p((pis valid in Q) for: for all

a eA, (Q,a ) II-(p; and if (D Q 11,Q II-(D will mean that Q II-(p for all (p e (D. I shall assume some

formal system of intuitionistic propositional logic (there are several variants; perhaps the easiest to

use is the natural deduction system of Prawitz [1965]), and write (D P w for: there exists a

deduction of \|J from assumptions in (D.

Strong completeness theorem (Aczel [I968], Fitting [1969], Thomason [1968]): Let (DQ 11

and w e l. Then (D l- \p iff for every model Q, Q II—(D implies Q II—\|I.

It is to be noted that the proof of this theorem is not intuitionistically acceptable. Accepting it, we

decide to do classical mathematics. As it is, even our formulation of correspondence will be highly

unintuitionistic4. It is an open question to what extent a truly intuitionistic correspondence theory is

feasible. (Modulo a small modification of the forcing definition, intuitionistic completeness proofs

exist: see Veldman [1976], de Swart [1976],[1977].)

1.4 Intermediate Iogics.

The proofs of completeness, in Kripke [1965] and in the stronger form that appears above,

heralded a — classical — model theory for intuitionistic logic. A broad collection of results may be



§1. INTRODUCTION

found in Gabbay's book [1981].

Of particular interest is a certain form of completeness theorem for intermediate logics - logics

stronger than intuitionistic logic, but weaker than classical logic. For instance, the intermediate

logic LC, obtained by adding the axiom (p —>q)v(q —)p) (I shall call this formula LC as well) to a

standard set of axioms and rules (including substitution) for intuitionistic propositional logic, is

strongly complete for the class of all Kripke models on linearly ordered frames. Similarly, KC :=

—p v w—npis strongly complete for the Kripke models whose frames are ‘piecewise’ (i.e. from

each point onwards) directed (Smoryfiski [I973], see Gabbay [198l]). Through the interpretation

of Kripke's semantics as a model of an intuitionistic philosophy of mathematics, such theorems

connect intermediate axioms with possible conceptions of mathematics. Concretely, they allow us

to study formal systems through the consideration of ‘geometrical’properties of frames.

1.5 Validity.

Now we take a somewhat different view. We can interpret an axiom such as LC as expressing a

property of frames. Formally: we can abstract from the parameters V and a in the definition of

forcing (l.2.5), in three combinations. Suppression of a alone was explained above, in 1.3. Two
abstractions remain.

Qefinitigg. Let A be a frame, ae A, and (pan ll-forrnula.

(i) (A,a)lI-(p(cpis locally valid in ae A) iff for all valuations Von A, (A,V,a)Il-cp.

(ii) All-(p((pis (globally) valid on A) iff for all aeA, (A,a)IHp.

If (A,V,a)Il/<p, I will sometimes say that Vrefutes (p in A and a; and if A IVcp, that cpis
refutable in A.

The local and global notions are correlated through lemma 1.2.6. Let a be a point in a frame A, and

V any valuation on A. Define a valuation Va on [a) by

Va(p)=V(p)r\[a) , for all pe]P’.

Since Va(tp) is upwards closed, ( [a),Va)Il-cpiff ( [a),Va,a)II—<p;the latter statement is equivalent to

(A,V,a)II—<pby lemma 1.2.6. Since every valuation on [a) is of the form Va for a valution V on A,

we get immediately that [a)|I—<piff (A,a)IHp.

It can be shown (see 1.7 below) that for any frame A, AIFLCiff for all ae A, [a) is linear (that is,

A is upwards linear); and All-KCiff A is piecewise directed (see 2.6).

Thus, validity of these formulas corresponds to simple properties of frames. Such correspondences

are the subject of correspondence theory. Broadly speaking, we interpret ll-formulas as statements

about frames, and study the properties of frames that they may express. In particular, the language
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11may be compared with other languages as a means for describing frames.

1.6 Correspondence with first order properties.

The properties mentioned above are simple in a particular way: they can be expressed in a first

order language L0 with one relation symbol 5. Frames are structures for L0, and we have

A |l- LC iff A l=Vxyz (x_<.yA xsz —)ysz V zsy);

A ll- KC iff A l=Vxyz (xsy A xsz —) 3u(ySu A zSu));

with l=standing for the classical relation of satisfaction. Now, it is by no means obvious that all

properties expressed by ]I-formulasin this way are first order. Let us trace the definition of validity

in terms of classical predicate logic.

First, then, the definition of forcing may be read as a translation of ll-formulas into formulas of an

expansion 1.1 of L0: besides S , 1L1has a unary predicate symbol for each element of IF’— we

can use the same symbol in each case. Models (A,V) are structures for L1 with the predicate

symbol p interpreted as V(p). For each (p :5 l, a standard translation St((p) may be defined as

follows. (ot[x:=y]will be the result of substituting the individual variable y for each occurence of

the variable x in ot).

Qefinitign, Fix an individual variable x.

(i) St(p) = px, for all p e P; St(_L)= _L;

(ii) St(\V"X) = St(\V) A St(x);

(iii) St(\V’\X) = St(\V) V St()();

(iv) St(\|I—>x) = Vy( xsy —>( St(\|J) —>St()()) [x:=y]), with y some individual
variable distinct from x.

Clearly, for any model 9 = (A,V),each a e A and each (pe l,

(flaw (p iff Q :=St(cp)[a].

Passing on to validity in frames, we need a second order language L2, obtained by allowing

quantification over the unary predicate letters of IL].Then, if p1,....,pn are all the proposition letters
in (p,

(A,a)|i- (p iff Al=Vp1....pn St((p)[a],

with the understanding that the predicate variables of 11.2range over the upwards closed sets. So at
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first sight, ll-formulas express second order properties of frames. To what extent, and under what

conditions, L2-translations of ll-formulas reduce to L0-sentences, will be the main concern of part
H of this dissertation.

1.7 Finding first order definitions.

How does one find an L0-equivalent of an ll-formula?The reader can easily convince himself by
the above examples that standard translations are not very useful. Instead, we should try to isolate a

pattern that must occur in every frame in which the given ll-formula is not valid. Let us take LC as

an example.

Suppose, then, that (A,V,a)||/(p—)q) v(q—>p).By the definition of forcing — precisely, by the

definition of V on disjunctions — we must have aII;‘p—>qand al|7‘q—>p.Again by the definition,

all,/p—->qreduces to the existence of a point a’ 2a such that a'II-p and a'|b‘q. For simplicity it would

be nice if we could take a'=a; but, since a'||-q—)p,we would fail to falsify LC. So a’ and a are

distinct. Let us write x<y for (xsy and not ysx ): then similarly we must have a">a with a"II-qand

a"lb‘p.Actually, the important point is that a’ and a" be incomparable: not a"Sa' and not a"sa'

— that they are distinct from a then follows from asa',a". Now we may surmise that

(A,a)||;‘LC iff Al=E|yz(y2a A 22a A wysz A -azsy ).

We already have a proof for the direction from left to right, for the left hand side means that a

valuation V on A exists such that (A,V,a)II;‘LC.For the converse we must show that the right hand

side implies the existence of such a V. Suppose b and c are incomparable successors of A. Then we

can define V by: V(p)=[b); V(q)=[c); and the rest does not matter. Since not c Sb,b|I;‘q,and

similarly cll/p; so by the heuristic reasoning above, a|I;‘LC.

Summing up: All;/LC iff 3aeA. (A,a)|l7‘LC

iff 3ae A. Ai=3yz (yza A 22a A—aySzAfizsy)

iff Al=E1xyz (y2x A ZZX A -—uySzA wzsy );

which may be rewritten as:

All-LC iff Al=Vxyz (y2x A 22x —)y_<_zv zsy). 5

1.8 Semantic tableaux.

The search for ‘refutation patterns‘ can be formalized by a method originally due to Beth, which

was used by Kripke in [I965]. I shall briefly explain it in the form one finds in Fitting [1969]. The
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general situation in the search for a refutation pattern is that, in some point a, we deal with a finite

set of formulas, some of which we want to come out true and others false. They can be marked

accordingly: Ttp if tp is to come out true, Ftp if it should be false (the device of marking was

introduced by Smullyan). Let us call a finite set of such signed formulas a sequent. There are

obvious rules for expanding sequents.

if T(tpAw)occurs in a sequent, add Ttp and TV ; similarly,

to F(tp Mp) , add either Ftp or Ft}!;

to T(tpvw) , add Ttp or Tu! ;

to F(tpvw) , add Ftp and Ful ;

to T(tp~>\V) . add Ftp or Tu}.

These rules correspond to the definition of forcing. E.g. if all-tp—>\p, then either aI|7‘tpor aII—\p.In

this particular case, the forcing definition says something about successors of a as well. To take
that into account, it will suffice to carry the true formulas along when we create successors to a —

something to be discussed presently.

Of course, we have no use for a sequent unless it is possible that in some model, some point a

forces the formulas signed T, and does not force the formulas signed F (i.e. a realizes the

sequent). A sequentis certainly not realizable if it contains TJ_,or, for some tp,both Ttp and Ftp.

Now suppose a sequent 2 contains the signed formula F(tp —>\p). This situation requires, by the

definition of forcing, a successor to the point realizing E, in which tpis true and 14/is false. It may

be wise to try adding Ttp and Fw to 2, and see of the result is realizable; but in general , one should

start a new sequent 2' consisting of the signed formulas in 2 that are marked T with Ttpand Fw

added, and make a note to the effect that 2' is to be associated with a successor of the point 2 is

associated with —say, " 2 caused E‘ ".

The complex of sequents that results from applying these rules to a given initial sequent, with their

causal relations, will be called a semantic tableau. Such a tableau is closed if some sequent in it

contains TJ_or, for some tp, both Ttp and Ftp; open otherwise.

Semantic tableaux were devised as a method for deciding universal validity. This use derives from

the fact that a sequent is realizable iff it can be developed to an open tableau. So in particular, tpis

not universally valid iff {Ftp} can be so developed. (§3 contains a proof, of sorts; the matter is

treated explicitly in Kripke [1965] and in Fitting's book.) But we can employ them to find

refutation patterns, as the reader can illustrate by constructing an open tableau for {F(LC)}.
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1.9 Limits of first order definability.

The question complementary to the one that was just considered at length is: how does one prove

that a given ]I-formula (or rather, the property of frames that it states) is not L0-definable?
However, one might wonder if such ll-formulas exist; and here a few historical remarks are in
order.

Just as Kripke semantics for intuitionistic logic derives from the relational semantics for modal

logic (the development of which is sketched in Bull & Segerberg [1984]), so intuitionistic

correspondence theory derives from modal correspondence theory. (The key reference for modal

correspondence theory is van Benthem's chapter [1984] in the Handbook of Philosophical Logic.)

In modal correspondence theory, a considerable divergence was found between modal definability

and first order definability. The examples of this divergence typically exploited modal turns of

speech that have no counterpart in intuitionistic logic. (By G6del's translation [1932] —see §5

below —ll-formulas may be considered as a special kind of modal formulas.) This suggested the

conjecture (van Benthem [1976a]) that all ll-formulasexpress first order properties of frames. Van

Benthem also proposed semantic tableaux as the means to find these first order properties.

In the end, the conjecture was refuted, (see van Benthem [1984]). The proof used the

Lowenheim-Skolem property, which had also been widely used in modal correspondence theory.

Now, viewed from modal logic, intuitionistic logic represents not only a restriction on formulas,

but also on frames (modal frames need not be quasi—orderings)and valuations (in modal semantics,

V(p) need not be upwards closed).

The question then arises what happens when the restrictions on frames are strengthened. Indeed,

several more restricted classes have figured in the tradition of completeness theory. Some classes
worth an abbreviative name are:

Q0 : the class of all frames (quasi-orderings);

PO : the class of all partial orderings, i.e. frames in which a=b if both asb and

bsa (antisymmetry);

DLO: the class of downward linear orderings, i.e. partial orderings in which

points with a common successor are always comparable 

3.x(aSx & bsx) =>asb Vbsa;

TR: the class of trees, by which we shall understand downwards linear

orderings with a least element (the root) in which every interval [a,b]

(={x| a_<_x_<.b})is finite;

FPO: the finite partial orderings;

FTR: the finite trees;

LO: the linear orderings.

10
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(Note that the branches of our trees are all of type so) !)

Partially ordered by inclusion , these classes present the following picture:

QO

./ "°/ \.
LO T /\FTR

Strong completeness holds from TR upwards, weak completeness (the statement of which differs

from that of strong completeness by the requirement that (Dbe finite) from FTR.

In Rodenburg [1982] it was shown that the formula SP2:=

[-=(pAq)V-(pA~q)Vfi(-wq) —>(P"<I)V(P"“'q)V("P"q)] -—>

-(p M1)V-(P A-q)vfi(-19 M1)

is not fu'st order definable on DLO, and that every ll-forrnula is first order definable on FTR. (See

§§6,8 below.) The first result turned on the compactness property of first order logic, which, as it

appeared, is much easier to handle than the Lowenheim-Skolem property. (Below we shall use the

preservation of ILO-formulasunder ultraproducts).

In fact, these methods allow stronger conclusions: a formula such as SP2 is not even definable by a

set of first order sentences - in other words, it is not A-elementary6. There is, however, no point in

mentioning this added strength in particular cases, since ll-formulas are either elementary or not

even EA-elementary, by an early result of van Benthem ([1976b], or see [l984]).

One naturally wonders whether overall first order definability holds for TR and FPO. (LO is

simple: see 7.7.) These questions remained open for a while: clearly, sweeping methods such as

compactness are of no avail here. Doets finally answered them, in the negative, by considering

Ehrenfeucht games (see [B]). His results are stated in §§8 and 10.

The other kind of restriction, on formulas, is tightened in §7, where it is shown that semantic

11
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tableaux always work as long as we avoid a certain sort of occurrences of disjunction, and in §11 ,

on formulas in one proposition letter. Further syntactic observations may be found in §12. The

expressiveness of ‘fragments’of l is discussed on §4.

We are obviously very far removed from van Benthem's conjecture of 1976: first order definability

in ll-formulas is a complex matter. Precisely how complex is difficult to say. It is shown in §7 that

the tableau method, as developed in §3, does not work for all first order definable ll-formulas. I do

not know an upper bound to the computational complexity of the set of all ll-formulas first order

definable on Q0. For the rest, there are just a few local answers: on L0 and FTR the set of first

order definable formulas is the entire set l; on TR it is a decidable proper subset (§9).

1.10 ll-definability.

Part III is devoted to the question which first order properties of frames can be expressed by means

of ll-forrnulas. As in part II, preservation properties - this time of ll-formulas, of course —function

as a sieve. For example, Vxy(xSy v ysx) is not ll-definable since ll-formulas remain valid under

the operation of taking disjoint unions (cf 2.4.3). Ideally, we should like to characterize the

l[—definab1eclasses of frames by closure under such operations, and then derive the typical forms of

1L0-formulasthat are preserved under these operations. We shall find several obstacles in the way

of this project, both in characterizing the ll-definable classes and in relating preservation properties
to syntax.

As a warming-up, then, the problem which ILI-sentences correspond with ll-formulas on models

is dealt with in §l3. §l4 contains a short presentation of intuitionistic duality theory, and a
characterization of the ll-definable classes of frames along the lines of the characterization of

modally definable classes in Goldblatt & Thomason [1974]. The rest mirrors part II: both

restrictions on frames and resuictions on ll-forrnulasare invoked to obtain elegant partial results.

1.11 Some other issues.

Comparison with first order logic is just one of several directions that an investigation of the

expressiveness of ll-formulas may take. Two other directions are explored in part I: the

expressiveness of fragments of l[(§4); and a comparison with modal logic (§5).

Van Benthem [1984] names "three pillars of wisdom supporting the edifice of modal logic":

completeness theory, correspondence theory and duality theory. Such pillars may also be thought

to bear intuitionistic logic. The connections between the three, insofar as they are known, are

similar. Duality has been mentioned above, and its relation to correspondence will appear in part

H1.The relation between completeness and correspondence is shadowy. Analogously to the modal

case (van Benthem [l984]), it may be shown that the intuitionistic theory of an elementary class of

12



§l. INTRODUCTION

frames is recursively axiomatizable. The related question: whether every first order definable axiom

set is complete, is open. It is known that incomplete intermediate logics exist ($ehtman [1977]), but

they are much harder to construct than their modal counterparts; in particular, van Benthem's

example settling the above question for the modal case makes essential use of features that
ll—formulas lack.

As was remarked before, we shall deal only with intuitionistic propositional logic. Some examples

of correspondence in the realm of predicate logic may be found in van Benthem's Handbook article

[1984].

[Footnotes to §l]

1Mutatis mutandis, a computing machine would serve as well.

2 In itself, the BMK-explanation is independent of temporal considerations, as may be seen by its

formalization as realizability (see Troelstra [1973]).

3The clauses for quantification are suppressed, since the body of this treatise deals only with

propositional logic.

4 Sec 1.7, and in particular note 5 below.

5 From an intuitionistic standpoint, the relation between this equivalence and the method by which

it was established is highly problematic. It would be preferable to state more precisely what our

method gives us; it relates refutability of an ll-formula in A with the possibility of finding a certain

pattern in A, so we should get a statement on the form

(p is refutable in A iff Al=B,

where [3would begin with an existential quantifier.

6 I shall call a class of structures elementary if it is definable by a single first order sentence;

A-elementary if it is an intersection of elementary classes (i.e. definable by a set of first order

sentences); and )I.A—elementaryif it is a union of A-elementary classes.

This terminology is in accordance with van Benthem [1986] (see ch. VIII). Chang & Keisler

[I973], whose terminology for first order logic I will follow in almost all other respects, have

‘basic elementary‘ for my ‘elementary’ and 'elementa1y' for my ‘A-elementary‘.

13



§2. Further examples and Kripke model theory.

This section begins with two lemmas elaborating minor points that were glossed over in the

introduction. Next, the relation between the frame classes Q0 and PO is spelled out. The next

subsection sums up the fundamental validity-preserving operations on frames. 2.5 - 2.10 contain a

series of exemplary ll-formulasexpressing simple properties of frames. We end with a theorem on

a connection between embeddings and p-morphisms that will be applied in parts H and III.

2.1 In the example treated in §1, in defining a valuation to refute LC, only V(p) and V(q) were

important; the value of V on other proposition letters did not matter. This fact may be stated

generally, and proved by induction over I-formulas:

: LetA be a frame,cpe11,andsupposeVandV’are twovaluationsonAthat agreeon
every proposition letter that occurs in (p.Then V((p)= V'(<p).

Hence if we only want to evaluate certain formulas in p0, ....... ..,pn, we need only specify

V(p0).... ..V(pn).

2.1 Substitution

If <p,(p1,....,q>ne][,p1,.....,pn e P, then (p[p1:=(p1,.....,pn:=<pn] will denote the result of

simultaneously substituting (pl for p1,.....,(pn for pn in (p.

Lgrma: IfA II-cp, then A II=(p[p1:=(p1,.....,pn:=(pn].

flan‘: Suppose A II-(p,and let V be any valuation on A. Define a valuation V’on A by:

V'(p )=V(p) ifp E {p1,....,pn};

V'(p,-)= V((pl-)for lsisn.

Clearly, for all \y 6 ll, V'(\lI)=V(\.|l[p1:=(p1,....,pn:=(pn]).In particular, we may take \y=(p, and note

that , since A II- (p, V'(<p) = A. D



§2. FURTHER EXAMPLES AND KRIPKE MODEL THEORY

2.3 Quasi-orderings and partial orderings.

A valuation on a frame A is a map into U(A). Consequently, if a S b and a II—(p, b II-(pas well. If

also b S a, a and b force the same ll-formulas. Thus, as far as lI-formulas are concerned, a and b

might as well be equal; and we are led to expect that the difference between Q0 and PO is
inessential.

2.3.1 Definition. Let A be a frame, a,beA. If a S b and b S a we write a ~b.

It is easily seen that ~ is an equivalence relation. I shall denote the equivalence class of a point a by
§0.

2.3.2.Defini1iQn. Let A be a frame. The contraction C(A) of A is the quotient A/~, ordered by

535 iff a SAb.

The contraction is a partial ordering, and if A e PO, A E C(A). For X g A, define if := {‘5'cJxeX}.

In the description of the predicate languages L0, L1 and L2 in 1.6, equality was not mentioned. It
is time now to get precise: these languages do not contain equality. The reason will be made clear in

§6 (6.1). Remember that the set variables of L2 are supposed to run over the upwards closed sets.
Thanks to these limitations, the following statement holds:

2.3.3 Theorem; Let A be a frame, X1,.....,Xme U(A), and onan L2-formula. Then

A »=a[X1 .... ..Xma1 ..... Han] iff C(A) n=a[5E, .... ..3Ema, ...... ..a,,].

Prmf; induction on ot. In particular, if 56e if, then y e X for some y ~ x; then y S x, and x eX

since X is upwards closed. [I

We saw in 1.6 that lI-formulas, as interpreted in frames, are a special sort of l[.2—formu1as,so this

theorem says in particular that in a frame and its contraction the same l[—formulasare valid.

2.4 Validity-preserving operations

Certain well-known constructions of new frames out of given ones have the property that all
lI-formulas valid on the given frames are also valid on the new frame. One of these we met in
1.2.6.

15



§2. FURTHER EXAIWPLESAND KRIPKE MODEL THEORY

2.4.1 Lomma: Let B be a generated subframe of the frame A, and cpe l. If A II—(p, then also

B II—(p.

Proof: Any valuation V on B is also a valuation on A; and (B,V) g (A,V).Hence by lemma 1.2.6 ,

(B,V,b) II;‘(p implies (A,V,b)I|;‘<p.It immediately follows that B H7‘(p implies A H7‘(p. [1

2.4.2 p-morphisms

p-morphisms may be described as monotonic funtions (homomorphisms) that are locally surjective.
Precisely:

Dofinition. Let A and B be frames, and f: A —>B a function.

(i)f is a homomorphism if it respects the ordering, i.e.

if a SAa', then f(a).<_Bf(a').

(ii) A homomorphism f is a p-morphism if it satisfies the p-morphism condition

Va 6 A Vb eB (f(a) S b => 3a'2a.f(a’) =b)

_Loe_r_n_n;a:If f:A —'Bis a surjective p-morphism, then for any (p e l, A II-(p implies B II-(p.

Proof: If (B,V) lb‘cp,define for all p e P: V'(p) = f‘1[V(p)]. One shows by induction over

ll-formulas W that for all a e A, (A,V',a) |l- \|I iff (B,Vf(a)) |l—141— using the p-morphism

condition in the case of implication. So in particular (A,V')|l;‘(p. D

If there exists a p-morphism of A onto B, we call B a p-morphic image of A. In any case:

Proposition: If f:A—vB is a p-morphism, then f[A] <_Z,B.

Pfloj: F [A] e U(B) by the p-morphism condition. [I

2.4.3. Disjoint unions

In the disjoint union of sets that are quasi—ordered,the orderings may be carried along.
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Definition: Let (Ai | i e I) be a family of frames. Let for all i, Al-’= {i} ><Al-,ordered by (i,a)sA;
(i,a') iff a .<_A_a'.Then the disjoint union Z1-6,/li is the frame ul-e,Al-’, ordered by the union of

the orderings on the frames A1-’.

Lemma: If (p e l, and for all i e 1, Ai II—(p, then 2‘-e,Ai II-(p.

Prmf; A valuation refuting (pon XiAi immediately reduces to a valuation refuting (pon some Ai .

[1

Example; I mentioned in 1.10 that the L0-sentence Vxy (x S y v y S x) (=: on)is not ll-definable.

This may be shown as follows: otholds in the trivial frame {0} (with 050, of course); but not in

the disjoint union {O}+{O},since the two copies of 0 are not comparable. By the lemma above,

there cannot be an equivalent ll-formula.

2.4.4 Preservation

For a class K of frames and an ll-formula (p, we abbreviate VA e K. A II-(pto K II-(p(similarly

we get K II-(Dwith (D<_:l). Taking generated subframes, p-morphic images or disjoint unions

may be considered as operations on classes of frames:

mfinitjgn, Let K be a class of frames. Then

gK is the class of generated subframes of elements of K;

pK is the class of p-morphic images of elements of K;

dK is the class of disjoint unions of families in K.

We can sum up the lemmas above as follows:

Prgmsitign. Let K ba a class of frames, and (pe l. Then

K II-(p implies gK upK udK II-(p.

In words: lI—formulasare preserved under generated subframes, p-morphic images and disjoint
unions.

17



§2. FURTHER EXAMPLES AND KRIPKE MODEL THEORY

2.5 Example. We call a frame A atomic if for all a,a’ e A, a S a’ implies a’ S a. (The atoms are

the equivalence classes 5, that are unrelated in C(A) and cannot be split by ll-formulas.)

We identify models for classical propositional logic with valuations on the singleton frame {0} — it

may help to further identify {0} with 1 (truth), and 0 with O (falsity). We shall understand

tautology in the sense of classical logic: (pis a tautology iff {0} II-(p. We may write V l=(p for

({O},V) II—(p, and l= (p for {0} Il—(p.

Claim: an ll-formula (pis a tautology iff (pis valid in all atomic frames.

Proof: the direction from right to left is obvious, since {0} is atomic. Conversely, suppose l=cp.If

A is atomic, then it can be written as a disjoint union of equivalence classes under ~: A 5

2,(21|&eC(A)). For each a e A, C(&') E {0}, so C(2‘i) II-(p. By theorem 2.3.3, all-(p, hence

Z(fl|5e C(A)) II—(p by lemma 2.4.3 , and A Il-(pby the isomorphism.

2.6 Example. A frame A is piecewise directed if whenever a SAb,c , there exists d e A with
b,c S d. We claim (cf. 1.5) that A ll-KC (= ap v —.—.p)iff A is piecewise directed.

1° Suppose A is not piecewise directed: say a S b,c and there is no d e A with b,c S d. Let

V(p)=[b). Then bllffip ; and for all d 2c , d I b, hence d llf p , and cll-—-up,so cll/—:—:p.We

conclude that a N7‘KC.

2° Suppose A lb‘KC; say (A,V,a) lb‘KC. Then bll-p and cll-—,pfor some b,c 2 a. Points d 2 b,c

cannot exist, since they would force L. S0 A is not piecewise directed.

2.7 Definition, Let A be a frame.

(i) The quasi-ordering SAdetermines a strict quasi-ordering <A, defined by

a<Ab iff aSb & bfia.

If a < b, b will be called a strict successor of a.

(ii) X g A is a chain (in A) if Vx,y e X (x Sy ory Sx). X is a strict chain if Vx,y e X (x <y
orx=yory<x).
(iii) The height of A is the least upper bound of the cardinalities of strict chains in A.

2.8 Example, A sequence of ll-formulas generalizing Peirce's Law can be defined as follows:
let

18



§2. FURTHER EXAMPLES AND KRIPKE MODEL THEORY

P0 = P0,

Pn+l =[(Pn+1"Pn)"Pn+1] "Pn+1

(Peirce's Law is P1.)

We claim that A II—Pniff the height of A is at most n.

Proof, with induction over n: P0 is never valid, as it should. Suppose the statement holds for n.

IfA IVP say (A,V,a) lb‘P"+1, then there must be a0 2 a withn+1’

a0 H‘(pn+1_) Pn )_) pn+l ’ a0 “7lpn+l.

Then a0 Ilfpn+1—)Pn, so we can find al 2 a0 with a1II—pn+1,al II}P”. Since V(pn+1) is upwards

closed, al > ao. By induction hypothesis, [a1) has a chain al < < a with a0<a1, A has heightn+1;
at least n+2.

Conversely, let ao < a1< < an“ in A. Let V(p1),.....,V(pn+1)Q [a1) be such that ([a1,V) II7‘

P"; and V(pn+1) = [a1). Then as above, a0 lb‘Pn+1‘

2.9 Qefinitigg. Let A be a frame.

(i) We shall say a and b are comparable (a,b e A) if a S b or b S a; incomparable otherwise.

(ii) An antichain in A is a set of mutually incomparable points.

(iii) The width of A is the least upper bound of the cardinalities of antichains in subframes [a)gA.

We write as X, for a point a and a set X, as an abbreviation for Vxe X. a S x ; and similarly a <X.

The reason for the introduction of subframes [a) in clause (iii) of the definition above is that

antichains can only be relevant for the evaluation of ll-fonnulas if they have a predecessor.

We shall use the symbol /\ for iterated conjunction, with the convention that /\0=T. Similarly, V

stands for iterated disjunction,and V@=_L.

2.10 Example. Let W", for n e N, be the formula

V,-Sn(/\(pj | j¢i andjsn) -)pi).

Note that LC = W1.

Claim: A II-Wn iff the width of A is at most n. Indeed, if (A,V) H7‘W", there must be a SAao,

an with ai II—/\J-it-pj and at-Iblpi: then {a0,.....,an} must be an antichain of n+1 elements.
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Conversely, if [a)Acontains an antichain {a0,.....,an} of n+1 elements, define V on A by V(pl-)=

U]-‘,1-[aj-);then ai II-/\j#. pj, ai Ilfpi, and a II/W".

2.11 p-retractions.
Within a restricted class of frames, the notions of 2.4 may become easier to handle. We conclude

with two examples of this phenomenon (2.11.2, 2.11.6). They connect certain embeddings with

surjective p-morphisms. We shall use them later on.

2.11.1 Definitien, Let A,B be frames. Suppose fis a function from A to B, and g:B—»Ais a

p-morphism such that gof = 1A(the identity mapping of A).Then g will ba called a p-retraction
off. Iff: A93 is the canonical embedding of a subframe of B, g may be called a p-retraction of B

onto A, and A a p-retract of B.

2.11.2 Example. Suppose a e A e DLO, and a* 2 a has no strict successors. Then [a) is a

p-retract of A: define f: A -v [a) byf(b) = b if b 2 a, f(b) = a if b S a, andf(b) = a* if a and b are

incomparable. The main reason why this works is that if b is not comparable with a, it is not

comparable with any successor of a, by downward linearity.

2.11.3 Definitign.

(i) Let A be a frame, X Q A, and a <AX. Then a branches into X if, whenever x,x' e X are
incomparable, a S b S x,x' implies b < X.

(ii) An (isomorphic) embedding f: A>-—>Bis strong if whenever a e A branches into some set

XQA,f(a) branches intof[X].

The paths through a tree, as defined in §1, have type Sm . Therefore:

2.11.4 Lemma I_.etXQ A e TR; then X has a greatest lower bound in A.

Some lattice notation will be useful. Suppose a partial ordering A is given. If X Q A has a greatest

lower bound, we denote it by /\X, and /\{a,b} =: a/xb; VXis the least upper bound, if it exists,

and V{a,b} =2avb. (The symbols are the same as for conjunction and disjunction, but harmful

confusions are not likely.)

A least element of the entire set A we call the root of A. A cover of a point a e X is a strict

successor b such that VxeA (a < x S b =>b S x).

2.11.5 Lemma. Let A eTR and X Q A. If /\X branches into X, then for each x e X there is a

unique cover cx of /\X such that /\X<cx S x. If x,x’eX are incomparable, then cxatcxa.
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Brigg: Since /\X branches into X, /\X < X. As intervals [/\X, x] are always finite, there exists for

each x e X a cover c of /\X such that /\X < c S x. This c is unique by downward linearity.

Now suppose x,x'eX are incomparable, and cx=cx..Then since /\X branches into X, cxSX. But

this implies cxS /\X, contradicting that cl covers /\X. E]

For a point a in a frame A, let CovA(a) be the set of all covers of a in A.

2.11.6 Lemma. Suppose A e TR, B e DLO, andf: A>—>Bis an embedding. Then f is strong iff

(*)VaeA Vc,c'e CovA(a) VbeB (c¢c' &f(a) S b Sf(c),flc') => b Sf [CovA(a)] ).

Q: (=>)Immediateby definition 2.11.4, since a branches into CovA(a).
(:) Assume (*). Suppose aeA branches into X; let x,x'eX,f(x) andf(x') incomparable, with

f(a) S b Sf(x)f(x'). Note that x and x’ must be incomparable, sincef is a homomorphism. We are

to show that b Sf[X].

If b Sf( /\X), there is nothing to prove. By downward linearity, b $f[X] impliesf(/\X) < b. So let

us assume thatf(/\X) < b.

Observe that /\X is X: since a S /\X Sx,x’, we have /\X <X by the definition of branching. In
fact, /\X branches into X. For if y,y' are incomparable elements of X, and /\X S a’ S y,y’,then a

S a’ Sy,y' (as a S /\X), so a’ <X.

Let cx, cx.be covers of /\X such that /\X < C)‘S x and /\X < cx.Sx’. By the above lemma, cxatcxi.

Sincef is an embedding, flex) andflex.) are incomparable. Nowf(cx),b Sf(x); andf(cx.), b Sf(x');

hence, by downward linearity, b must be comparable with f(cx) andf(cx.). Sincef(cx) $f(cx.) and

f(cx.) $f(cx), the only arrangement possible is b Sflex), f(cx.). By (*), b SflCov A(/\X)]. Since
/\X < X, we conclude that b Sf[X]. III

2.11.72 LetA e TR andB e DLO. Supposef: A >—>B is a strongembedding,and beB.
Then every cover of /\f'1[[b)] belongs tof'1[[b)].

mm: Let C be the set of all covers of /\f‘1[b) (we drop the outermost brackets); we must prove

thatf[C] 2 b. Observe that /\f‘1[b) branches into C.

Since f‘1[b) is upwards closed, C gf‘1[b) is obvious if /\f"1[b) e f‘1[b). So suppose /\f“1[b)

ef“1[b). Then there must be incomparable a,a' e f‘1[b), and distinct c,c' e C such that /\f'1[b) <

c S a and /\f‘1[b) < c’ S a’. We get

f(/\f“[b)) <b <f(c),f(c3 :

for example, b Sf(a), so, since alsof(c) Sf(a),.b Sf(c) orf(c) S b by downward linearity — the
second of which would give c Sf‘1[b) sincef is an embedding, and a contradiction. Now, sincef
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is strong,f(/\f'1[b)) branches intof[C]; hence b sf[C], as was to be shown. [1

The following theorem generalizes one half of an unpublished theorem of de Jongh. The other half

will appear as lemma 16.4. We write (a]A for {a' e A la’ SAa}.

2.11.8 Thoorom. Let A 6 TR, with root a0, and B e DLO; let f: A >—>B be a strong embedding.

Suppose

(a) every a e A has a successor that is maximal in A;

(b) for every b e B, f“1(b] is finite.

Thenf has a p-retraction.

Proof: Suppose A, B and f are as stated, and satisfy conditions (a) and (b). We are to define a

p-morphism g: B —-A such that gof = 1A.Thus for some points b e B, the value of g is fixed in

advance: if b=f(a), then g(b)=a. This can be generalized to some extent. Let

30 := {b e B |f"1[b) ¢ 0}.

Since g is to be a homomorphism, we must have g(b) Sf"1[b); and it is not unreasonable to try

(1)ifb 6 B0, then g(b) = /\f'1[b).

Becausef'1[f(a)) = [a), this guarantees that gof = 1: gof(a) = /\[a) = a. Moreover, it is obvious that

g is a homomorphism of B0. Here is a diagram sketching some effects of clause (i); note that the

triple branching (of al into a2, a3 and a4) must be preserved byf.

(12 a3 a fla ) fla )
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For the rest of B, we generalize the trick of the example above. This time a single maximal element

of A might not suffice: it is possible that, though f1[b) = 0, somef(a) precedes b; and then we

must be sure that g(b) 2 a. Fix for every a e A a maximal successor m(a) e A. Since B is

downwards linear and f is an embedding, f'1(b] is linearly ordered; by condition (b) it is finite.

Therefore it has a least upper bound Vf1(b] (we set V0 = a0). The proper generalization of the
example is

(ii) if b e B —B0, then g(b) = m(Vf“1(b]).

Illustration:

It remains to check that g is a p-morphism. There are two parts to this: (I) g is a homomorphism;

(II) g satisfies the p-morphism condition.

1. Suppose b0 33 b1.B0 is downwards closed: b S b’ e B0 implies b e BO.Hence for checking
that g is a homomorphism there are three cases, one of which was dealt with above. The cases that

remain are (i) b0 5 B0, b1 6 B0; (ii) b0 as B0.

In case (i). g<bo)e r‘<b,1. so gaao) s vr‘<b11 s m<vr‘<b,1>= goal).

In case (ii), since bo s bl, we have f‘1(b0] g f'1(b1].Suppose f"1(b0] ;t_f'1(b1]; letx e f'1(b1] —

f'1(b0]. Then bothf(x) S b1 and b0 5 b1, so by downward linearity f(x) 5 b0 — contradicting x 6

f‘1(b0] — or bo Sf(x), contradicting b0 6 B0. Sof‘1(b0] =f'1(b1], whence g(b0) = g(b1).

H. Suppose g(b) S a. We must find a successor b’ of b (which may be b itself) with g(b') = a. If

be B0, then g(b) is maximal in A, so g(b) = a. If b e B0, then by 2.11.7, every cover, hence every

strict successor, of g(b) belongs tof‘1[b). So if g(b) ¢ a, sti1lf(a) 2 b, and g(f(a)) = a. El
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2.11.9(a)Ex_amp1g__The necessity of condition (b) is easily demonstrated. Let A = N U ({0} XN),

with SAextending the natural ordering on N by

n _<.A(O,k) iff n SN k;

Let «>0be a new point; B = A U {oo},with the ordering of A extended by oo2 N.

'C II’ /’ I
I’’ ’ I; I

(0.1

(0.0) A B
2

1

0

Then the canonical embedding A 9 B is strong, and condition (a) is satisfied; but it is easily

checked that A is not a p-morphic image of B.

2.11.9(b) Remark, By 11of the proof of the above theorem, g(b) SAa implies g(b) = a or b sBf(a).

Sincef(a) 2 b implies a = gf(a) 2 g(b), the p-retraction g constructed in that proof has the property
that

{g(b)} ur‘[[b>B1 = [g<b»,..

2.11.10 Qgrgllgg, If (i) A e FTR andB e DLO;

or (ii) A,B e TR, and every a e A has a successor that is maximal in A;

then every strong embedding of A into B has a p-retraction.

Proof, In either case it is immediate that condition (a) of the theorem is satisfied. Condition (b)

holds in case (i) because A is finite, and in case (ii) because (b] is finite. U
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2.11.11 ]2e_fmj1i_Qn_A tree A is binary if every point in A has at most 2 covers. More general, A is

n-ary (n e N) if every point of A has at most n covers.

2.11.12 Q91-_Ql_1ary_,If A and B satisfy either (i) or (ii) of corollary 2.11.10, and A is binary, then

every embedding of A into B has a p-retraction.

_P;<&f;Every embedding of a binary tree is strong. El
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The examples we have met so far were meant to suggest the following picture: there is a certain

well-defined procedure, ‘making semantic tableaux‘, that gives for each ]I-formula (p a finite

refutation pattern —or possibly a finite number of such patterns —with the property that (pis

refutable in a frame A if and only if A exhibits, in some sense, one of these patterns. Several parts

of this picture are still rather vague. This section will fill in the details: it contains a formal definition

of semantic tableaux; and a precise description of the relation between tableaux and the frames in

which the formula they treat is not valid, through the intermediary of multiple tableaux.

3.1 Signed formulas and sequents.

A signed formula is a pair (E,,(p)with (pe l and fl one of the letters T,F. We always write T<p,F(p

instead of (T,<p),(F,<p).A finite set of signed formulas we call a sequent.

We use 0,1:as variables over signed formulas. Of a point a in a given model, we say a realizes Tcp

(notation a ll—Tcp) if a II-(p; a realizes F<p(a II-F(p) if a H/(p. A sequent 2 is realized in a (a ll-2) if

for all 0’ e Z, a II-0.

If}: is a sequent, then ET = {T<p| T<pe Z} and 21- = {(p | Tcp e 2} (‘T dropped‘). Similarly we

have21:and

3.2 Definition, A sequent 2‘.is full if for all (p,\|Ie l,

(i) T((p/up) e 2 => Tcp, TV e‘ 2; F(q>/xxy)e )2 => F<pe Zor Fw e E;

(ii)T(cpv\|I)e 2 => Tcpe Eor'l'\|Je 2'.;F((pv\p)e 2‘.=> F(p,F\ye 22;

(iii) T((p—>\|I)e 2'. => Fcpe 2or'I\Ve 2;F((p—>\|1)e 2‘.=> Eye 2.

3.3 Semantic tableaux.

Informally, a semantic tableau was defined as a set of sequents, together with information on the

causal relations between them. Formally, we shall use a mapping S from the set X of the sequents

that make up the tableau, to the power set lP’(X);S(x) may be read as ‘the set of immediate

successors of x’, or ‘the sequents caused by x’.

A (semantic)tableau is a pair35= (X,S)of a finitesetXof fullsequentsanda map
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S: X —>lP(X) such that for all x e X

(i) if y e S(x), then xT c_:yT;

(ii) if F((p——>w)e x, then either T<pe x or S(x) contains a sequent y such that either

Tcp, Fw e y or F(<p—>\y)e y and yT atxT.

A tableau as defined here is the finished product of a tableau construction as described in 1.8. The

elements of S(x) represent the forcing behaviour of the nearest different successors of a point with

behaviour x. Observe that since X is finite, and yT in clause (ii) properly extends xT, F(<p—>\y)e x

implies there are x0=x, xl, ..., xn (n20) with xi“ 6 S(x,-)(i<n) and Tcp,Fw e xn.
We call a tableau X = (X,S) open if no x e X contains TJ_, or, for some (pe l, both Tcpand Fcp;

otherwise X closes, or is closed. X is strict if for all x E X, y e S(x) implies xT atyT.

3.4 Examples, Tableau constructions serve to find refutation patterns for ll-formulas. Suppose one

wants to refute (p:then it seems reasonable to consider only subformulas of (p,since these are the

only formulas relevant to the evaluation of (p.Indeed, the sensible approach will be to start with a

sequent {Ftp}, and construct from it, step by step, a tableau that contains only what the rules

(embodied in definitions 3.2 and 3.3) require.

(a) The search for an open tableau of F(KC) runs as follows. Start with F(KC) (= F(_'|p v —.—.p)),

and expand this as far as possible using the rules of definition 3.2: add Fap, Fw—apand F_L.Now

definition 3.3 must be used, and there are several options; let us try them all. First attempt: simply

add Tp. For F—a—ap,let us do the same: add T—ap.Now we must add either Fp or TJ_, both of

which make the tableau close. There were, however, other possibilities, which should be traced —

but first let us write down what we have done in a concise way. We have expanded a sequent,

adding signed formulas:

and then we (repeatedly) chose one option out of several, and to help ourselves remember that there

were other options, we mark the signed formulas involved:

..... .., Tp ?, T—1

Let us signify closure by underlining the last signed formula added:

......., ljg?

Now we work back from right to left, taking the other alternative each time we meet a choice.
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......., L

We conclude that the choice of T-—.pleads to closure. The alternative is to start a new sequent.

F(KC), 1=—.p.F—.—.p,F_L, Tp?

l
TP,T—p, F_L

Now, this will lead to closure, as before. Given the choice of Tp, this development is unavoidable,
so we should have

[ F(KC), H, F—1—up,F_L]

Now we could again try T—1pin the root sequent; but it would be handed on to the successor, and

lead to closure. Likewise it does not make sense to try T—:pin the successor sequent. So we end up
with

iTP,FJ_ T-up ,Fi,Fp

This is an open tableau, and with the observation that the successor sequents cannot have a

common successor (Tp and T—.pgive TJ.), it gives off the refutation pattern of example 2.6.

We shall save a little on notation by leaving out signed formulas whose presence can be easily

inferred, and that do not give rise to new steps in the construction. For example, with F—upand

F-1—:ppresent, there was no need to repeat F(KC); and writing FJ. does not make sense ever.

(b) Recall that P1 = ((p1 —>po) —>p1) —>p1, and P2 = ((p2 —>P1) —>p2) —>p2. In constructing an

economical open tableau for {FP2}, FP2 reduces immediately to

T((P2 —>P1) —>P2), FP2
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(We could have started with a separate sequent {FP2}; but then we would have continued with this

one anyway.) Next, it is easy to choose between F(p2 —>P1) and Tpz: we get

(1) T((P2 -3’ P1) "P2), F172»F(P2 —’P1)

This must lead to a successor:

(1)

12», FP,

FP1 is attacked in the same way, resulting in

(1)

l
‘P2’ T((PF’F0H°1)» FP1»F(P1—>Ft9

which is the pattern established by 2.8. (It is not necessary to repeat Tpz in the last sequent: it is
inherited by a general rule.)

(c) The formula

((-=—ap—>p)—>pv-50) —>-vpv-wp

is known as Scott's Axiom; we shall refer to it as SC. A tableau for {F(SC)} may look as follows:

LT((-=-= p—>p) —>pv-=12), F-wp , F-1-= p , F(-mp—>p) |

FT-=-=P»FP» H9 I
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If we had required, in (ii) of definition 3.3, that some sequent in S(x) contain {T<p,F\|I}, the root

of this tableau should have had three successors: {Tp}, besides what it already has; whereas two is

clearly enough to represent a model in which SC is not valid.

(d) There need not be a single ‘smallest’open tableau. A very simple example would be KC /\ P2,

which leads to both the tableau in (a) and the one in (b).

3.5 Models from tableaux.

Some formal details apart, an open tableau is a model of the sort that the tableau construction was to

help us find.

Definition, Let X = (X,S) be an open tableau.

(i) S3; is the reflexive and transitive closure of the relation {(x,y) | y e S(x)}. We shall consider X

as a frame, with quasi-ordering £35.

(ii) The model induced by X is the pair (X,V) with V(p) = {x e X | Tp e x}, for all p e P.

It is easy to see that the induced 'model' is indeed a model; in particular, each V(p) is upwards

closed by clause (i) of definition 3.3. If 35is strict, then S3; is a partial ordering.

Proposition, Let 35 = (X,S) be an open semantic tableau. Then in the model induced by X, every

point realizes itself.

l_3r_ofi,Induction on the complexity of 0' will show that 0 E x implies x II-0'. Since 1*is open, Ti

6 x; Fp e x implies Tp asx, so x |l/p.

The induction steps are straightforward, except for implication. There T((p —>w) e x implies, for

all y zx, T(<p —>w) e y; now y II—(p gives Fcp as y by induction hypothesis, hence 'I\|J e y by

fullness, and y I|—xvby induction hypothesis; so x II-(p —>W. On the other hand, F((p —>w) e x

gives y 2 x with T(p, Fur e y, or y > x with F(<p—>w) e y, by 3.3(ii). Since X is finite, we must

end up with T(p, Fw e y 2 x, so, by the induction hypothesis, x Ilf(p —>w. E!

Thus, our induced models are a pocket version of the standard Henkin models (cf. Aczel,

Thomason [1968]). They are alike both in what they are made of (syntactic matter) and in their

original purpose: to obtain counterexamples to formulas that are not deducible in some given

calculus. The differences are in constructivity and size. Tableau constructions can be finished,

whereas Henkin models are infinite; the ordering in a Henkin model would be defined globally, in a

tableau successors are tailored to local needs. Finiteness and some freedom in the ordering will

appear necessary for such purposes as establishing connections with first order logic.

30



§3. REFUTATION PATTERNS.

In the meantime, it has not been stated how small the tableaux we deal with may be taken.

3.6.1 Qefinitign, Let 2 be a sequent. The set of signed subformulas of Z‘.(notation: Sf(2)) is

the smallest sequent 22'Q 2 such that

(a) for g e {T,F}, (g, (p/xw)e 2' or (5,, (pvw) e 2' implies (§,<p)3 2' and (§,w) e 2';

(b) T(<p—>\y)e )2‘ => F<p,T\ye 2';F(<p—>u/)e 2' => T<p,F\ye 21'.

3.6.2 Definition, If X = (X,S) is a tableau, 2 is contained in some element of X, and uX Q Sf(2),

we call 35a 2-tableau. A refutation of (pis an open {Fcp}-tableau.

3.7 It is easy to see that for any 2, there are only finitely many 2-tableaux. Many of these will

contain sequents and connections that are not necessary. We shall define the minimal tableaux as
the tableaux without frills.

3.7.1 Definition, Let 36= (X,S) and 36'= (x',s') be tableaux. 36is a subtableau of 36'if either X

¢X' and there exists an injection f: X >-—>X’ such that for all x e X, x Q f (Jc)and Vy e S(x).

f(y) 2x.f(x); orX = X’ and Vx e X . S(x) <_ZS'(x).

A subtableau of a closed tableau may close no longer; but a subtableau of an open tableau is open,
and this is what matters.

3.7.2 Definition, Let E be a sequent. A minimal 2-tableau is a E-tableau no proper subtableau of

which is a E-tableau. A minimal refutation of (pis a minimal open {Fcp}-tableau.

A 2-tableau is a finite constellation of finite sets, so it is clear that every Z-tableau has minimal

)3-subtableaux. Minimality has a few simple consequences, illustrated in the examples above.

3.7.3 Proposition. If 36= (X,S) is a minimal 2-tableau, then

(i) Exactly one element xo e X contains 2; x0 is the root of (X, 535).

(ii) For every x e X —{xo}, there exist y e X and F((p —>u!) e y such that x e S(y), Fw e x, and

Tcp e x —y.

(iii) 36 is strict.

3.8 What is the connection between a frame in which (pis refutable and the —preferably minimal —

refutations of (p?For the examples of §2, the following simple solution works:
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A II}(piff the induced frame of some minimal refutation of (pcan be embedded into

A - provided certain sequents are mapped to points al, ..., an such that

[al) (N (W[a,) = 0.

The proviso would be needed for {T—1p,Fp} and {Tp} in 3.4(a). —This is a useful approach (cf.

§7), but it does not work in general.

Example, Recall the formula SP2 of 1.9: with (pfor p A q, \y:= p A —:q,and x2: —1pA q, it reads

(—.<pv—-.wv—.x—>(pvwv x)—>-—.cpva\yv—1x.

Its minimal refutation is, in a diagram omitting matters of course:

lT(fi(pv—I\|[\/—IX—>(pV\|IVx), Fwcp, Fang Fa x I

[Tp, T—.q,Ffl l T—-p,Fp, Tq I

The induced frame can be embedded in a binary tree C of five nodes a0 < al, a2, b0, b1, with al <

a2,b1:

“\/‘
1 b0\.0/

Take any valuation V on C, and suppose (C,V) |l;/SP2. Since (p,w and x are mutually exclusive,

ao must realize the bottom sequent of the tableau, with (p,q! and x each true in one top node. Say a2

lkcpandbl Imp. Then a1 Ik—ux;sinceal Il——.<pv—.wv—.x—><pvwvx,a1Ilwpvwvx.

Whichever of (p,w and x al picks must hold in both a2 and b1: an impossibility.

It may be part of a refutation pattern that there are no points in certain positions. Here a1 causes

trouble, and we might think that such points do not occur in frames in which SP2 is not valid. This

would be a mistake, however. Consider the frame A of example 2.11.7 (on the next page):
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(0,2)
(0,1)

1/ 0.0)\/
Define: V(p) = {0} X {3n, 3n+1 | n e N}; V(q) = {0} X {3n, 3n+2 | n e N}. Then (A,V) H7‘SP2.

'Interrnediate' points such as a1 cannot simply be forbidden; they must be taken into consideration.

This suggests that the general link between frames and tableaux is not to be thought of as

embedding (tableaux into frames), but projection of frames onto tableaux. Indeed, the induced

frame of the refutation of SP2 is a p-morphic image of A. In general, however, p-morphism cannot
be the right kind of projection: there are frames without finite p-morphic images (cf. Jankov

[1968], in view of the duality explained in part III below).

We avoid this problem by generalizing the notion of tableau. The difficulty may be viewed as

follows: we want to identify points that realize the same subset of some finite set of signed

formulas, to guarantee a finite image. There may thus be several points realizing the same sequentx

containing, say, some formula F(p —>q A r). In some points, F(p —>q A r) may be dealt with by a

successor containing Fq; in others, by a successor containing Fr. In the image of the projection,

this comes down to the existence of two kinds of successors for x. They should not be thrown into

one successor set, for then the image would contain a pattern not to be found in the original.

3.9 Multitableaux.

3.9.1 Definition, A multiple tableau (short: multitableau) is a pair (X,§) of a finite set X of

full sequents and a function 5: X —>lP(lP’(X))—{Q}such that

(1)if y e S e §(x), then xT c_:yT;

(ii) if F(<p—>W) e x, then either Tcpe x or every S e §(x) contains a sequent y such that either

Tcp,Fu/e yorF(cp —>w) e yandxT¢yT.

The old ‘simple’tableaux will be regarded as multitableaux in which every collection §(x) is a

singleton: §(x) = {S(x)}.

Tableau terminology will be extended to multitableaux. Some extensions are entirely

straightforward (open, 2-multitableau, multirefutation). The canonical ordering $35,for X =
(X,§), is the reflexive and transitive closure of {(x,y) | y e u§(x)}. 35is strict if y e S e §(x)
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implies xT atyT. Minimality will be discussed indirectly in §7 (labeled frames).

A few more words on the relation between simple tableaux and multitableaux may be helpful.

3.9.2 Definition, By a component of a multitableau 36= (X,§) I shall understand a tableau 36'=

(X',S') such that X’ g X, and

(i) the minimal elements of (X',S3¢.)are minimal elements of (X535);

(ii) for every x e X’, S'(x) e §(x).

3.9.3 Definition, The union of a finite family (36,) ie 1) of multitableaux (36,.= X,.,§>,.))is the

multitableau 36= (X5) with X = ui E,X,. and got) = u(§,.(x) | x e xi).

One easily checks that 35indeed conforms to definition 3.9.1.

The relation between simple tableaux and multitableaux can now be stated as follows:

3.9.4 Prgmsitign, Any multitableau is the union of its components.

3.9.5 Example, Multitableaux have practical use as a notation for alternative refutations of complex

formulas. For instance, two open tableaux for

{F([(P3 A ("P4 V ‘WP4 —>P5) A (P2 ’3’P5) -3‘P5 A P5) “> P3] ‘) P3)}

are represented in

T[(o3A (—iv4v--p4—; P5) /\ (P2—>p6)—>P5/\P6)—>P3],FP3,

F (pg/~(‘lP4V““P4—)P5) A (1§—>126)->p5Ap6). FP5

? ‘i
1223, T("H1V"-'P4—>p5)i T(P2—>n5), 1226 T123. T<~p4v—~—~Ia—>n,->. T(P2->p6).

TP5aF132: )—)p2)aW2, FCVZ->P1) F% 2F-304: F“‘1p4> '1-P6

(continue as in 3.4(b)) (continue as in 3.4(a))

(The alternative successor sets - singletons - of the root sequent are signalled by the different labels

of the arrows issuing there.)

3.10 Projections.
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Dofinition, Let A be a frame; X = (X,§) a multitableau. A surjectionf: A —»X is a projection of
A onto X if

(i)f is a homomorphism, in the sense that a SAa’ impliesf(a) £xf(a’);
(ii) for every x e X, there exists for every a e f'1{x} an S e §(x) such that S C;f[a).

Projections generalize p-morphisms:

Proposition, Let A be a frame; X = (X,S) a simple tableau. Then f: A —»X is a projection iff f: A

—»(X,S3;) is a p—morphism.

P_rQ<Lf.

(=>) Let f: A —»X be a projection; we must check the p—morphismcondition.

Suppose x e S(f(a)). Since a e f'1{/(a)}, we have S(f(a)) Qfla) by the definition. That is to say:

for some a’ 2 a, f(a') = x. Now if x 235f(a), there must be a sequence f(a) = x0,x1, ..., xn = x (n

2 O) with x,-+1e S(x,-).Accordingly we find a = a0, ..., an with f(a,-) = xi (in particular f(an) = x)

and a,-+12 a,-. By transitivity of .<_,an 2 a.

(<=) Let f: A —-X be a p-morphism; again, there is only one condition to check. Suppose x e

S(f(a)). Then x 2f(a), so by the p-morphism condition there exists b 2 a withf(b) = x. It follows

that S(f(a)) g fla). n

3.11 Dofinition, Let 9 be a model, and (pan ll-formula. Then C-)(pgis the function which assigns to

each point a of Q the sequent G-)q,g(a):= {o e Sf{F<p}| (Ra) II-6}.

3.12 flfhoorom, Let A be a frame, and (p e 11.Then A H7‘(p iff A can be projected onto a

multirefutation of (p.

_PgxLf,Suppose (A,V) H7‘(p; let (-9= ®q,(""V).It is easy to see that each (-9(a) is a full sequent. Let X
= {®(a) | a e A}. Define § by

506) = {@[a) | a E @‘1{x}}

Then (a) (X,5) (=: X) is an {Ftp}-multitableau, and (b) 6) projects A onto X.

Both these facts are direct consequences of the definitions:

(a) (i) Suppose y e S e §(x); say y = ®(b), x = ®(a). We may assume by the definition of 5 that

a S b, whence xT Q yT is immediate.

(ii) If F(\y—>x) e (-9(a), and Tu! as @(a), then a N7‘\y—>x, a N7’V, and b II-ul, b Ilfx for some b
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> a. Then by the definition of 9, mt, Fx 6 9(1)); and 9(1)) 6 ®[a) e §((-3(a)).

(b) (i) (-3is a homomorphism since a S b implies (-3(b)6 ®[a) e §((-3(a)).

(ii) Trivially ®[a) Q ®[a).

For the converse, let f: A -» X be a projection; define a valuation V on A by V(p) = {a | Tp e f(a)}.

We claim that for each a e A, a It f(a); hence A II/(p.

That a II-f(a) is established by showing inductively that 0 e f(a) implies a Il-<5.The case of

implication is as follows:

If T(\y—>x)e f(a), a S a’ It qr, then, since f is a homomorphism, f(a) s3¢f(a'), so T(\|I—>x)e

f(a'). Then Fw asf(a’) (otherwise a’ ll,-1\y by induction hypothesis); so Tx e f(a’) by fullness. By

induction hypothesis, a’ II-X. We conclude that a II—\V—>x.

If F(w—>x)e f(a), then either "N! e f(a), or to every S e §(f(a)) belongs some x containing

F(\y—>x) with xT ¢f(a)T, or some x containing 'I\V, Fx. In the first case, a |I—w and a Ilfx by

induction hypothesis (using fullness), so a Hf\|1—>x.In the first subcase of the second case, take

so is §(f(a) such that so g f[a). We find a’ 2 a with F(\y—-)x)e f(a’) e 50, andf(a’)T ¢f(a)T.
Since X is finite, this can only be repeated finitely often; then we must have found a” 2 a with T\|l,

Fx e f(a”). Then as before, a" H7‘\y—>x,and a II}\y—>xsince V(\y—>x)is upwards closed.

3.13 Remark, Since multiple tableaux are unions of simple components (3.9.4), we find,

combining proposition 3.5 and theorem 3.12, that an ll-formula (pis valid in every frame iff every

{F(p}-tableau closes. Because the set of all (minimal) {Ftp}-tableaux can be effectively constructed,

we can decide whether an ll-formula is universally valid. By 3.5 again, intuitionistic propositional

logic has the finite model property: if (pis not universally valid, it is not valid in some finite model.

Indeed, since (3.7) every refutation contains a minimal refutation, which is strict, and thus (3.5)

gives rise to a partially ordered frame, we may state the finite model property in the form

I- cp iff FPO II- (p.

(It is well known that FPO may even be replaced by FTR; see Smorynski [1973] or Gabbay

[1981]. Actually, the proof of this fact will surface in §17.)
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It is well known that in intuitionistic logic the connectives A,v, -> and J. are not interdefinable.

For an ll-formula (p , let Mod((p) be the class of all models in which q) is valid. Then

non-interdefinability may be expressed in terms of the interpretation in Kripke models by

statements such as : there exist l[-formulas (p such that for no ll-formula ur not containing A,

Mod(<p)=Mod(w).

Validity inframes does not have the same connection with intuitionistic logic. We shall investigate

in this section to what extent connectives can be dropped without loss of expressive force with

regard to frames. (A reduction of the sort we are seeking exists in modal logic: in van Benthem

[1986] (Cor. 2.9) it is shown that for each modal formula Cthere exists a modal formula C*with

—>and 0 as its logical constants, such that for all modal frames g=(A,R):‘v’a€A (QI=§[a] iff

%II=C*[al).)

4.1 Definition. Let c1,...,cn be a sequence of connectives (not necessarily primitive); then

ll[c1,...,cn] (the {c1,...,c ,,}-fragment) is the set of all ll-formulas that can be built from 11’using

only c1,...,cn.

4.2 Definition. (i) Let (pbe an ll-formula; then Fr(cp) is the class of all frames on which (pis valid.

(ii) ll-formulas (pand w are equivalent (notation: (pay) if Fr(<p)=Fr(\;/).

These notions may be relativized to any class K of frames; FrK(<p), then , is Fr((p)mK, and <p‘='K\p

if FrK(q>)=FrK(q1).

As usual, we abbreviate (<p—->\y)A(u1—><p)to <p<—>\y.We call (p and w logically equivalent if

l-(p(—)\.|!(equivalently, by completeness: (p(-)\|Jis universally valid). Note that logical equivalence

implies equivalence on frames.

We shall drop some parentheses in iterated implications, assuming association to the right: so

‘P—"V—>X = <P—>(\V—*X)

4.3 The elimination of conjunction.

4.3.1 Le-Ea. For each cpe ll, there are (p1,..., cpn 6 ll [—>,v,_L]such that I-(p<—>/\1<l-<n(pi.
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1: Move out conjunctions, using the logical equivalence of \y1/\\|l2—)\V3to \|I1—)\|I2—)\|I3,

‘V1‘’‘V2’‘‘V3 *0 (‘|’1—"V2)"(‘V1"‘V3)» (‘V1"‘V2)"‘V3 ‘O (‘|’1"‘l’3)"(‘|’2"‘V3)» and ‘V1"(‘V2"‘V3) ‘O

(\V1VW2)’‘(‘~|’1V\V3)- [1

4.3.2 Lemma. Let (pbe an ll-forrnula. If the proposition letter p does not occur in (p, then

<P‘=‘(<P—>P)—>P

Preef: Since I-(p—)((p—)p)—>p,All-(pimplies A ll-((p——)p)—)p.For the converse, substitute (p for p in

(<P—'>P)—>P- D

Now conjunction can be eliminated by a trick in which the adept will recognize the definition of

conjunction in second order propositional logic (Prawitz [l965]).

4.3.3 Theerem. Every ll-formula is equivalent to a formula of the {v,—>,J_}-fragment.

Ram": Suppose cpe I[. By the first lemma, there are <p1,...,<pnell[v,—>,.L] such that I-(p<—>/\1_<_l-glcpl-.

Take a new proposition letter p. By the second lemma, /\(pi is equivalent to ( /\(pi—)p)—)p;the latter

formula is logically equivalent to ((p1—>...—)(pn—)p)—)pe ll[v,—>,J_]. [1

Note that the proof gives equivalents in ll[—>,J_]for formulas of the {A,—>,_L}-fragment.We go on

to show that conjunction is the only connective that can be dispensed with.

4.4 Example. We saw in example 3.8 a frame C in which SP2 is valid. In the subframe

C'={a0,a2,b0,b1}, SP2 is not valid: C’ is isomorphic to the induced frame of the minimal refutation

of SP2. It will be shown in §17 below that ll[A,—>,_L]-formulasare preserved in passing from C to

C’ (C' is a directed subframe of C, and ]I[A,—>,J_]-formulasare transparent); hence SP2 is not

equivalent to an ll[A,—>,l]—formu1a.

4.5 Lemma. Let A, A0 be frames; A=A0u{a*}, and A0<a*. Suppose (pe lI[A,v,—>],V0 is a

valuation on A0 such that (A0,V0)|I/(p,and V is defined by V(p)=V0(p)u{a*}, for all pe P. Then

(A.V)II7‘<p

P_ro_Qf:By induction over \|I, (A,V,a*)I|—\pfor all we ll[A,v,—>]. Using this and induction over

we l[[A,v,—>],one proves that for all as A0, (A,V,a)I|-ui iff (A0,V0,a)||-\|J. C1

The lemma implies that if some cpell[A,v,—>]is not valid in a frame A, it remains not valid if we
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add to A a new top element a*. Now KC is valid in frames with a top element, by 2.6. So if it were

equivalent to a formula without i, it would be universally valid ; quod non. So KC :5 (pfor all

<96 1I[A, V,-+1 .

4.6 Recall the notion of height, defined in 2.7.

l_4:mma.The height of the induced frame of a minimal refutation of an ]I[A,v,w]-formula is at
most 2.

_P_ro_Qf:Let X =(X,S) be a minimal refutation of (pe lI[A,vm] . It suffices, by definition 3.5, to

show that if ye S(x) for some xe X, then S(y) =0.

Suppose there are x and 2 such that ye S(x) and ze S(y). Whenever x contains a signed formula of

form F(\|J—>x),we have x=J_, since x§Sf(F<p). By 3.7.3 (ii), FJ.e y and Fla 2. Moreover,

yT;zT. Now let X'=X—{y},and for xe X’,

S'(x)=(S(x)US0’))-{Y} if ye S(x),

=S(x) otherwise.

Then (X',S') is still a refutation of cp,contradicting minimality. For by 3.7.3, Fcpey, so some

xe X‘ contains Ftp; and if S'(x)¢S(x), and Fwwe x, then Twe y implies that Tu! belongs to all

successors of y; while if Txyey, some ze S(y) contains either {Tu/,FJ_}or Fww. D

If an ll-formula (pis not universally valid, it has a refutation (3.13), which may be taken minimal

(3.7); (pis not valid in the induced frame of this refutation (3.5). So:

Qgrgllagg. If an MA,v,—.]-formulais valid in all frames of height at most 2, it is universally valid.

Now by 2.8, P2 is valid in all frames of height at most 2, but not universally valid. So P2 is not
equivalent to an l[ A,v ,—u]-formula.

4.7 Downwards linear orderings.

The argument of 4.5 fails if we consider only downwards linear frames. In fact, for equivalence

on DLO, J. can be eliminated; as will appear presently.

4.7.1 Letpe IF’.For cpel, we define q>”elI[A,v,—1]inductively:
(i) qP=q vp, for all qe P; J_P=p.
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(ii) (wx)P=\v”Ax”.

(iii) (\vvx)P=wP vxp.

(iv) (w—>x)P=w”—>x"

This definition is a version of the translation to minimal logic in Prawitz & Malmnas [1968]. One

easily proves by induction on the complexity of (p :

4.7.2 Lemma: Suppose cpe11.Then

(i) PP-NP” ;

(ii) if p does not occur in (p, then I-q>P[p:=J_]<—><p.

Now consider a minimal refutation 3€=(X,S) of (p”—>p.No xeX contains Tp: the one sequent

(3.7.3) containing F(<p"—>p)contains Fp, and again by proposition 3.7.3, any other xeX contains

some Fwpe Sf(T(pP), hence (since I-p——>wP, whence {Tp,F\pP} is not realizable) Tpe x. Therefore

substituting J. for p in a minimal refutation of (pP—>pgives a (minimal, even) refutation of

(p”[p:=_L]—>_L.By (ii) of the lemma, if p does not occur in (p, this shows a<p is not universally
valid. Thus:

4.7.3 I._/emma.Suppose (p is an lI—formulain which p does not occur. Then I-—.(pimplies I-(p”—>p.

4.7.4 Lemma (Glivenko): If wcpis a tautology, then wcpis universally valid.

Prgef: Suppose l=a<pand Ae FPO; let V be a valuation on A. By example 2.5, —.(pis forced in

every top element of A. Since V((p) is upwards closed, no element of A forces cp, hence

(A,V)lF-—.<p.So FPO II-—u<p;by the finite model property (3.13), F—.<p. El

g;grglla1_*y.Let (Dbe a finite set of lI—formulas.If V-1/\<I>,then (Dis classically satisfiable.

Prggf: If (Dis not classically satisfiable, we have ha /\<D;then by G1ivenko's theorem, |~-I/\(D.EI

If (D is a set of ll-formulas, and pe lP’,<l>P={(pP|(peCD}.Observe that (/\<D)P= /\<DP.

4.7.5 Lemma. Suppose cpel, and p does not occur in (p. IfAe DLO is rooted, and (A,V)Il/<pP,

then there is a valuation VPon A such that (A,VP)||/cp.

_l1m_Q_gf:let A,V,(p and p be as stated, and a0 the root of A. Then aoll/p, since I-p—>(pP(by (i) of

4.7.2).

Let (Dbe the set of all subforrnulas of cp.For every ae V(p), define
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<I>a:={wedJ|3a'Sa(a'||;‘p and a'|l-wP)}.

Since (Dis finite and (a]-V(p) nonempty and linearly ordered, there exists a'sa forcing <l>aP.Hence

I--1/\<I>a;for otherwise F/\<DaP—>pby lemma 4.7.3, implying a'|l-p.

By corollary 4.7.4, (D0is classically satisfiable. Fix for each (Dd(not for each a! ) a model Val=<Da.
Now we define VP on <Dr\lP‘:

V”(q)=(V(q)-V(P))U{aE V(P)|Val=q}

We shall abbreviate (A,VP,a)II-wto all-Pw, and continue to use 'alI—w'for (A,V,a)II-w.

Note that if ae V(p) and we (D, aII—Pwiff VaI=w. We now establish the lemma by showing

inductively that for all we (D, for all ae A-V(p), all-Pw iff aI|—wP:for, since aollfp and a0|b‘<pP,we

shall have aoll/Pcp.

Most steps are simple; e.g. aII;‘J_Pby ae V(p), and for the same reason aII—qvpimplies all-Pq. We

check the case of implication. Let w=w1—>w2.

Suppose aIl—Pw,asbll-w1P. If bll-p, then, by Fp—>w2P,bll-w2P. If bllfp, by induction hypothesis

bII—Pw1;so bll-Pwz, and by induction hypothesis blkwzp. So aIl—wP.

For the converse, suppose all-wP, asbIkPw1. If bII7‘p,use the induction hypothesis. If b|I—p,then

we (Db since asb, allfp and aII—wP.Since bll-Pw, wl, we have VbI=w,wl, so Vbl=w2,and bll-Pwz.

Thus all-Pw. D

4.7.6 Thoorom. For every (pe ll, there exists we ll[v,—>]such that <pEDLOw.

Proof: Take xell [v,—->,J_]equivalent to (p, by 4.3.3. Since for Ae DLO, Allfx iff [a)AI|fx for

some aeA iff , by the lemma, [a)AIb‘xPfor some pe IPand aeA (p not occurring in x), iff Allfxi’,SOtakC D
From 4.6 and 4.4, it is clear that further reductions are not possible on DLO.

4.8 Linear orderings

On LO, disjunction can be dropped by a ‘logical’equivalence:

L0 |F(<PV\II)<->[(<P—9\I1)—>\VlA[(\l/—><P)-NP].

From a given ll—formula,one may successively eliminate J. (by 4.7), v (by the above equivalence )

and A(by 4.3). Consequently

Thoorom: On LO , every ll-formula is equivalent to a formula of lI[—+].
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As was noted in the introduction, modal logic allows a greater freedom of interpretation than

intuitionistic logic. In general, a modal frame consists of a set A and a relation R on A — R need

not be reflexive or transitive; and the sets in the range of a valuation need not be upwards closed in

any sense. However, in comparing modal logic with intuitionistic logic as languages for talking

about frames, restrictions on frames must be taken for granted; otherwise intuitionistic formulas

could not be interpreted in the usual way. So in this section, as always, frames will be

quasi-ordered sets. The restriction on valuations, on the other hand, can be limited to the

interpretation of intuitionistic formulas. We shall say of an l[-formula that it is valid in a frame A if it

is valid under all valuations that are appropriate for intuitionistic logic (just as we have done thus

far), and of a modal formula if it holds everywhere in A under all valuations that are allowed for

modal logic.

5.1 The language M of propositional modal logic has the same proposition letters as l, a binary

connective ——>(implication), a unary operator [1 (necessity), and a nullaiy connective _L.Formulas

are built as usual. We also denote by M the set of all M-formulas; C, 1], 9, C0, C1,... serve as
variables over M-formulas. Other connectives are defined from —->and _|_in the classical manner.

The possibility operator 0 is defined by <>§:=wCl—a§.

5.2 Definition. If A is a frame, and XQA, we let [X)A=uxeX[x)A ( the upward closure of X in
A).

For a simple example, we have [{x})=[x).

5.3 Let A be a frame. A modal valuation (short: M-valuation) on A is a mapping V:lP—>lP’(A).A

modal model (short: M-model) is a pair §=(A,V) of a frame A and a modal valuation Von A. A

valuation V is extended inductively to a map of M by

V(i)=QJ;

V(C->Tl)=(A-V(C))UV(T1);

V(UC)=[V(C)).

Note that the interpretation of —>differs from the interpretation for l. There is no ll-connective
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corresponding to this ‘classical’implication.

5.4 Parallel to the forcing notation of 1.2.5, we may write ae V(§) as (g,a)l=§; next, the parameters

V and a may be abstracted from as in 1.5. Clearly, many notions defined forll can be carried over

or extended to M. Thus, for a modal formula C,Fr(§) is the class of all frames in which Cis valid.

5.5 As before, we have a notion of equivalence on frames: T]E§ if Fr(n)= Fr(§). We want to

discuss equivalence between ll-formulas and M-formulas. <pE§is defined as Fr(<p)=Fr(§). Note

that on the modal side, more valuations are taken into account than on the intuitionistic side.

Generally, in speaking of equivalence between formulas of different languages, we shall assume

each formula is interpreted in the way proper to its language.

Now we shall consider how the expressive power of M with regard to models and frames

compares with that of l.

5.6 In the direction from l to M, translations have been known since G'c'>del'spaper [1932].

Define M: l[—>Mby

M(P)=DP ; M(J-)=J.;

M(<P"\V)=M(<P)/\ M(\V); M (<PVW)=M(<P) V M(\V);

M(<P—>\II)= U (M(<P)->M(\V)).

Then if cpel and (A,V) is a model, aII—(piff aI=M(<p),for all areA. As to frames: since ll-valuations

are special M-valuations, it is immediate that (A,a)I=M((p)implies (A,a)lI—(p.For the converse,

suppose (A,V,a) #M(cp), where V is some modal valuation. Define V‘byV‘(p) = V(Elp) (for all

pe P); then V‘is an ll-valuation, and it is easily seen that (A,V‘,a) II/(p.

Remark: Modal notation is an alternative to signed formulas: if Q is a model for l, and a a point in

Q, then (g,a)II-Fcp is equivalent to (g,a)I=wM(cp).

5.7 In the converse direction, not every M-formula has an equivalent in l.

Example. Al=El0p—)0Elpiff every point in A has a maximal successor (van Benthem [1984],

example 2.2.16; note that we assume frames are transitive). This implies that El<>p——)OUp , though

not universally valid, is valid in all finite frames; something no ll-formula can match, by the finite

model property (3.13).
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We shall not answer the general question which M-formulas are equivalent, on frames, to

I-formulas. One should compare the characterization of I-definable classes of frames (in part HI)

with that of M-definable classes (Goldblatt and Thomason [1974]; cf. van Benthem [1986]). It

may not be easy to derive an interesting necessary and sufficient criterion. A candidate is thefinite

submodelproperty:

if mtg, then JIM for some finite Jfigfl.

If C_,is of form M(<p),it has this property (Smorynski [1973]; cf. §7).

Instead, we shall give a characterization for equivalence on modal models, and derive from this a

sufficient criterion for frames. The M-translation above produces formulas with two notable

properties: the proposition letters are boxed, i.e. immediately preceded by a Usymbol; and so are

the implications. In fact, we may consider every M—translationto be of form DC;the equivalences

E11]/\l]6<-—>El(nA9), DnvEl9<—>D(E]nv D6) and J.<—>ELLare easily seen to be universally valid (the

latter two because our frames are reflexive and transitive).

Thedegreed(C_,)of anM-formulaQis definedinductivelyby
(i) d(p) = Ofor pe P; d(J_) = 0;

(ii) d(n—>9)=max(d(n),d(6));

(iii) d(DT])= d(n)+1.

Lemma: Suppose 116M, and every occurrence of a proposition letter in D1]is boxed. Then there

exists an ll-forrnula I(n) such that QOl=Eln<—>M(I(11)).

Proof: Induction on d(n). If d(n)=O, then 11is logically equivalent to J. or T, or nell’, and we may

take I(n)=n.

If d(T])>O,then T]is a Boolean combination of formulas of form [19,and can be written (modulo

logical equivalence) as

/\1gSm(v(ne,.j.|1sjs1i)v v(—.n9',.,,|1sks1',.))

Then

and it will suffice to consider the conjuncts of the right hand side. We have

<-> El (/\kM(I(9',-k ))-> V,-M(1(9,-J-))
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(-9 M( /\kl(9'l-k )—) VJ-I(6,-J-)),

using the induction hypothesis on 9},‘ , 9,-J-.Let

I(n) = /\,.( /\,‘1(9',.k )—> VJ-1(6),-J-)). n

fljggemz Let Ce M. There exists (pe ll such that QOt=C_,<—>M(<p)iff

(a) QOl=§<—)El§;and

(b) if p1,...,pn are all the proposition letters in C_,,then

QOl=§<—>C_,[p1:=Dp1,..., pn:=Dpn].

Prmf: (<=) If an M-formula C satisfies (a) and (b), we have Q0r=§<—>n§'for an M-formula C_,'in

which all occurrences of proposition letters are boxed (box the proposition letters by (b), and use

that n<—>9implies Em<—>E16).Now apply the lemma.

(=) (a) and (b) hold for M-translations of ll-formulas: (a) by the remarks preceding the definition

of degree, and (b) since Up is equivalent to [1Up in models on quasi—orderings.

Qgrgllagg. If all occurrences of proposition letters in CeM are boxed, then there exists (pellsuch

mmcso

Prmf: By the lemma, since CEEIC. D

Note that the equivalence CEDC holds for global validity only, not for local validity. An

M-formula for which the local and global notions do not coincide, cannot have a local ll-equivalent

(cf. 1.5). We end with an example of such a formula.

5.8 Example. Let cp,\Vand x be as in 3.8; let Cbe

M(—1<pva\pv—.x--><pvu/vx)—)M(-.(pvw\yv—.x).

Consider the frame A:={a0,...,a5} in wich a0 is covered by al and a2 , a1 by a3 and a4 , and a2 by

a3 , a4 and as (as in the diagram).
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0

\,0/
Then (A,a0)I=§;but (A,a2)b4§,as may be seen by taking V(p)={a3,a4}, V(q)={a3,a5}, (cf. 3.8).

Since ll-formulas valid in ao should also be valid in a2 , C_,is not locally equivalent to any ll-formula.
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II. First order definability

We say of an ll-forrnula (pthat it is first order definable, or elementary, if there exists an

ll..0-sentence ot (for L0, see 1.6) such that

for all frames A, A|l—<piff Al=ot.

In keeping with our use of 5 above, we shall abbreviate this to <pEot(tpis equivalent to ot).As

before, these notions can be relativized to any subclass K of the class of all frames. In particular, (p

is elementary on K if (pEKO. (that is: V/Ae K (AIl—<piff AI=ot))for some LO-sentence on.We

denote by E(K) the class of those ll-forrnulas that are elementary on K.

In this second part we study the classes E(K). Sections 6 and 7 are mostly about E(QO). In §6,

E(QO) is characterized by preservation properties (theorem 6.7.6); examples are presented of

ll-formulas that are not elementary. Section 7 describes a method for finding first order equivalents

that works for ll-formulas in which v does not occur in certain positions.

If K and K‘ are classes of frames, and K is a subclass of K‘, then it is immediate from the

definition of relativized equivalence that E(K') Q E(K). In particular, if E(K)=ll, then E(K') =llas

well. So the property 'E(K)=lI' is inherited downwards in the hierarchy of classes of frames (see

1.9 for some sample classes). Section 8 explores conditions on frame classes that make E(K)=ll:

first for KQDLO, establishing a procedure that produces H02-definitions; next, general restrictions
on width and height are considered.

Section 9 investigates E(TR), and refines some of the results of §8. Section 10 gives examples of

elements and nonelements of E(FPO).

Along the way, two sorts of observations are made on the complexity of E(K). Algorithmic

complexity is calculated in one nontrivial case: for K=TR, E(K) is shown to be recursive in §9.

As to quantifier complexity of first order definitions, the most sweeping result is at the end of §7,

where it is shown that ll-formulas exist whose first order definitions essentially exceed H02 —and
suggested that over all the complexity is unbounded.

The examples of nonelementary ll-formulas in §6 have two notable syntactic features. One is that

they contain a certain sort of occurrences of v, which is shown to be necessary in §7. The other is

that our example of a formula outside E(DLO) contains two distinct proposition letters. This is

shown to be necessary in §11. The formulas in one proposition letter (the monadic formulas, as

we shall call them) are a special case anyway: we possess an exhaustive description of the

Lindenbaum algebra of monadic formulas (Rieger [l949]). This will enable us to give an

exhaustive classification of the monadic formulas as to first order definability on PO and FPO.

Sections 8 through 11 make extensive use of theorems of Doets. I will state these without proof,
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except when the proof is clearly within the scope of this dissertation. The interested reader is

referred to Doets [A],[B].

We end with an overview, and answers to straightforward syntactic questions, in §12.
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At first sight , the properties of frames defined by l[-forrnulas are second order (cf. 1.6). Often,

however, these properties are not essentially second order. In this section we give first order

definitions for a number of ll-formulas that were introduced earlier, together with some new

examples. Next we prove a variant of a theorem of van Benthem (cf. his [l984], 2.2.10),

characterizing the ll-formulas elementary on a given elementary class K. We use this in 6.8 to

establish that Scott's axiom SC and the 2-stability principle SP2 are not elementary.

First of all, however, we consider whether our first order language should contain equality. As it

happens, the same consideration proves E(QO) = E(PO).

6.1 Equality

Let lLO[=]be the first order language obtained by expanding L0 with the equality symbol =. With

~ defined as in 2.3.1, the defining condition of partial orderings, as a class of frames, may be
written

a~b iff a=b.

For an lI..0[=]-formula ot, let ("itbe the L0-formula obtained from onby replacing every subformula

of form u=v by usv/xvsu. Then the following clearly holds:

Qmma. If Ae PO, and ot is an lL0[=]—sentence,then Al=otiff Al=5t.

In combination with theorem 2.3.3, this supports the view that equality has no part to play in

intuitionistic correspondence theory. We say that a class K of frames is closed under
contraction if VAe K. C(A)e K.

Theorem: Let K be a class of frames, closed under contraction; cpan ll-formula, and ot an

lL0[=]-sentence. Then (PEKCXimplies cpsxft.

fiqfi: Let K, (pand onbe as stated, and (pEKot.Then for A6 K,

All-(p iff C(A)II-(p, by theorem 2.3.3, and considering (pas an 1L2-formula;

iff C(A)l=ot, since C(A)e K;
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iff C(A)l=5c, since C(A)e PO;

iff A|=5t , by theorem 2.3.3. 1]

Thus, modulo closure under contraction, lL0[=]-definitions of ll-formulas can be replaced by

ILO-definitions.

6.2 Another corollary of theorem 2.3.3 is

flcorsm. E(P0) = E(Q0).

Prggf: if (pe E(PO), then (pEPO0t for some oneL0. Then for A6 Q0, A|I—(piff C(A)|I-cp(by 2.3.3)

iff C(A)IHx (since C(A)e PO) iff AII—oc(by 2.3.3). [1

6.3 Examples: some first order definitions

(a) pv-up 2‘:/xy(xsy—>ysx). Suppose A#Vxy(x$y—>ysx) : say a,beA,a<b. Then with

V(p):=[b), allfp since bsa, and aII;‘—npsince aSbII—p.Conversely, if AI=‘v’xy(xsy—)y9c) , then A

is atomic; and All-pv—:pby 2.5.

(b) PnEVx0....xn(/\l-(H xisxl-+1—>Vi<nxi-+1<Jcl-),by 2.8.

(c) WnE\7’xx0....xn(/\iSnxSxi—>V0g¢j9lxiSxj) , by 2.10.

6.4 Example: stability principles

Let ne Z+; take the least number k such that 2"2n+1. Order {O,1}{0'---"“1}lexicographically as

f0,...f2k_1, with O preceding 1. Let (-:)Opl-=pl-,(—1)lpi=—1pl-.Take for jsn, (pl-:=/\i<k(—1)§(‘7pl-.The

n-stability principle SP" is the formula

We have met SP2 on several occasions (1.9, 3.8). SP1 is

(-apvwap—>pv—ap) —>—apvfi—.p,

which is logically equivalent to
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(-"'P—>P)—>PV—9P

SPIEKC: for KC is logically equivalent to SP1[p:=—np],hence All-SP1 implies All-KC by 2.2;
and

I-wpv—mp—> (—1—ap—>p)—)pv—p.

Thus by 1.6 (cf. 2.6), SP1 is first order definable. In fact, SP1 is the only member of the sequence

of stability principles that is first order definable. (Sec 6.8 below for a proof that SP2 is not

elementary; it adapts to n>2 in a straightforward manner.)

The meaning of SP" is easily explained in terms of upwards closed sets: Ally‘SP" iff for some

aeA, [a)A has a nonempty subset B such that [a)—Bcan be partitioned into n+1 upwards closed

blocks in such a way that every element of B has successors in each block. We shall see that this is

a proper second order statement —even on FPO (§10).

6.5 Example: the Kreisel-Putnam axiom

The Kreisel-Putnam axiom (short: KP) is the formula

(—=p-+qvr)-> (-up->q)v (—sP—>")

Van Benthem found an 1L0-equivalentto KP; it will look better if we use some abbreviations. We
write xSy,z instead of xsy/xxsz (similarly, x,ySz, etc.); Comp(x,y) stands for xsyvysx (x and y

are comparable); we use bounded quantification Elxzy (for 3x(x2y A...)) and Vxzy (for

Vx(x2y—>...)).Now take a:=

Vxyz(xSy,zA—sC0mp(y,z)—)3u2x[uSy,zAVv2u3t2v(yStvzS.t)].

A diagram may help to clarify the meaning of —i(1.Below, continuous lines correspond with

existential quantification, broken lines with universal quantification combined with implication, and

crosses represent types of points that are forbidden. (-10:is written out in (*) below.)
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KP has just one minimal refutation; it may be represented as follows (cf. 3.4, 3.7):

(20) T(fiP-—)qV7‘),F(—1P—)C]),F(fip.—)r ),F—.p

(>31)[T~p,1?q,Tr ] (22) (23) IT—'P,Fr>Tq I

We claim that U.’-—'-KP.

If (A,V)II;‘KP,then there must be x,y,zeA with xsy,z, and x|I—20,ylkil, and zll-Z3 (for 2‘-, see

the diagram above). Then whenever xSusy,z, u|FF—:p,since ull--:p—)qvr and ullfqvr . So all

such u have a successor v with vll-Z2.Since XITU EZTand £3Tu 2.2T are not realizablel, neither
v and y nor v and 2 have a successor in common. Thus

(*) A l=E|xyz(x.<_y,z/\—:Comp(y,z)AVu2x[uSy,z—>3 v2uVt2v(—.ySt/\—.zSt)] ) ,

that iS, Ai=—1U..

Conversely, if Al=—.oc,pick suitable x,y,and z, and choose for every u such that xSuSy,z a

successor vu such that AI=Vt2vu(—uySt/mzst)(we apparently need the axiom of choice). Now
define:

V(P)=U([v,,)|ISuS)’,Z) ; V(C1)=A-(Y1; V(r)=A-(Z]

It is straightforward to check that (A,V,x)|I;‘KP.
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6.6 Terminology. We call a class K of structures for lL0[=]elementary if there exists a

sentence onof lL0[=] such that any lI.O[=]-structure (A,R)belongs to K if and only if (A,R)I=a.
(Such K are called basic elementary in Chang& Keisler [1973].)

Obviously, the intersection of two elementary classes is again elementary. Q0 is elementary;

hence, if KQQO is such that a frame A belongs to K iff Al=oL,K is elementary. Therefore,

(peE(QO) iff Fr(cp) is elementary.

6.7 A characterization of E(K) for elementary classes K

Let (93,-|ieI)be a family of structures for some first order language, and U an ultrafilter over I. We

shall denote byfU the equivalence class off under the relation ~Uinduced by U in Hie 19,-,and by

Hugi the reduced product of (gt-)1-E,modulo U( the ultraproduct over U). If 91-is the same

structure 9 for all ie I, l'IU§i is called an ultrapowerof Q, and may be written Hug.
We shall state a few well-known facts without proof; proofs are in Chang & Keisler. The important

property of ultraproducts is expressed in

6.7.1 Los"s theorem: For any formula onof the first order language appropriate to (giliel), and

for anyfU(1),...,fU(”) in the domain of Hug,-,

r1UQ,.m[fU<1>,...,fU(")] iff {ie 1|fl,.r=a[r<1>(i)...f(")(i)]}e U.

Since Ie U, first order sentences true in every 91-are true in Hug,-. Hence ultraproducts of frames
are frames (‘v’x.x_<_xand Vxyz(xSyA ySz—-)xSz)are preserved); of models, models (V(p) e U(A)

is expressed by Vxy(pxAxsy—>py)); and any structure Q is elementarily equivalent to its

ultrapowersHug.

6.7.2 Q_r_n_ma,(Goldblatt). let (Al) ‘-6,be a family of frames, U an ultrafilter over I. Then l'[UAi is

isomorphic to a generated subframe of the ultrapower HUZI-E[Al-.

Fifi Mapfy to ((if(i)),'e1)U- [3

6.7.3 Qgrgllary. Any class of frames closed under generated subframes, disjoint unions,

isomorphic images and ultrapowers is closed under ultraproducts.

For Z11-formulas , one half of Lo§'s theorem remains:

6.7.4 Lemma. Suppose onis a X11-formula; (gt-lie!) is a family of structures, and U an ultrafilter
over I. Then
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{ie 1|Q,.n=a[r<1>(i)...f(")(i)]}e U implies nU$Zt,.m[fU<1>,..., fU<'=>].

6.7.5 Keisler's theorem: Let K be a class of structures for some first order language. Then K is

elementary iff both K and its complement are closed under ultraproducts and isomorphic images.

6.7.6 Theerem. Suppose K is an elementary class of frames , closed under disjoint unions and

generated subframes; and cpell.Then (peE(K) iff FrK((p) is closed under elementary equivalence

iff FrK((p) is closed under ultrapowers.

flggfz Let [3 be a sentence of lL0[=] such that for 1L0-structures A, Ae K iff AI=[3.(So in

particular, l=B—>Vx.xSx/\‘v’xyz(xSyA ySz—>xSz) .)

The implications from left to right are obvious (cf. 6.7.1). To close the circle , assume FrK(<p) is
closed under ultrapowers. Validity of (pis preserved under disjoint unions, generated subframes

and isomorphic images (2.2.4); K is closed under these operations; hence so is FrK((p) .By 6.7.3,

FrK(<p) is closed under ultraproducts. Let p1,...,pn be all the proposition letters in (p. The

complement of FrK((p) is defined by the X11-sentence

3p1...pn([/\1SiSnVxy(xSyAppr—-9 pl-y)A3xfiSt((p)] v—:[3)

(cf. 1.6); it is closed under isomorphism and, by 6.7.4, under ultraproducts. So FrK(<p) is
elementary by Keisler's theorem, that is, cpeE(K) .

6.7.7 Remark. The fact that (pis not just an M-formula, and that frames are quasi-orderings, is of

no advantage in this proof. Thus, the theorem easily generalizes to modal logic; it then becomes a

simple generalization of a theorem of van Benthem ([1984] 2.2.10).

6.8 Examples. We use theorem 6.7.6 to establish that some ll-formulas are not elementary.

(a) Scott's axiom. This is the formula

SC := [(—mp—>p) —>pv-wp] —>—:pv—a—ip

There is a diagram of its minimal refutation in 3.4 (c). Here we reproduce the induced frame:
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1

| 2\/
(The points are named in accordance with §11; we shall refer to this frame as [8)M.)

Let A:={a}U{bn|ne N} U{cn|ne N}, ordered thus : a is the root; b

covered by cn,cn+1.

\,/\/
ne N, are the covers of a; bn isn’

Claim: Al|—SC.Proof: let V be any valuation on A. If every cn forces p, or every cn forces wp,

clearly (A,V )II—SC.Otherwise, since in each endpoint either p or wp is forced, there must be a pair

cn,cn+1 such that one forces p, the other —up.Then bn|I——:—«p—>p;hence neither bn nor a forces

(—.—-.p—>p)—>pv-up. Since bkll-SC for all k, (A,V )II—SC.

Now take a nonprincipal ultrafilter U over N; consider the ultrapower HUA. By Los's theorem,

H UA is rooted, has height 3, every cover of the root has exactly two covers —in fact, we may

picture HUA as consisting of A with certain extra points, placed as the bn's and cn's in A, lying
far to the right.

For example, since singletons do not belong to U, (cnlne N)U is not identical with any (ck|ne N)U
(for fixed k).
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Claim: HUAII/SC. Proof: define f: l_IUA—>[8)Mby f(cn)=1, f(bn)=4, f(a)=8, and f(x)=2 for all

points x outside (the copy of) A. f is easily seen to be a surjective p-morphism. Since [8)MIl/SC,

HUAII/SC by lemma 2.4.2.

This shows that SC is not preserved under ultrapowers; so by theorem 6.7.6, SCEE(PO).

(b)The 2-stability principle. As before (3.8), we write

SP2 = (wcpv—1wvwx—><pvwvx)—>wcpv—.uIv—.x,

with (p=p/\q, \.|,!=pA-iq,x=—-up/xq.We reproduce the induced frame B of its minimal refutation:

b c d

Let A be a downwards linear frame {an,bn|ne N} in which an+1 is covered by an and bn, and a0

.1 b°\/°
., \/1\/2

3

and all points bn are endpoints.

We claim that AIFSPZ.Proof: take any valuation V on A. Since <p,\|Jand x are mutually exclusive,

bull-—.<pv—.\|1v—1xfor every n, hence bnII—SP2.Suppose ak II-a<pv—a\yv—.x—><pv\pvx. Since al

has only two strict successors, al II-—.<pvw\|/vax; so if k21, alllwpvwvx. Consequently,

a2II——.cpv—nyv—.x. Again, if k22, this gives a2II—cpv1yvx. Continuing in this way, we get

aklkacpvaxyvwx .We conclude that (A,V)II—SP2.

Now take a nonprincipal ultrafilter U over N, and consider HUA. By Lo§'s theorem, every point
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of HUA either is an endpoint, or has exactly two covers, one of which is an endpoint. Let f("),
g(")e A’ be defined as follows:

r<")(k)=a,..,, . g<"><k>=b,..,,

(Here A stands for cut-off subtraction: kén equals 0 if k<n, k-n otherwise.) So f("+1) (k) and

g("+1)(k) cover f(")(k) for all k>n.

Since cofinite sets belong to U,f("+1)U and g("+1)Ucover f(")U by Lo§'s theorem. Then H UAmay

be pictured as follows:

Claim: IIUAH,-‘SP2.Proof: define h: HUA-B by

h(fU)=a if ane N. fUsf<">U;

h(fU)=b if 3neN. fU=g<3">U;

h(fU)=c if ane N. fU=g<3~+1>U;

h(fU)=d if ane N. fU=g<3"+2>Uor Vne N. My sfu.

h is a p-morphism, so as in (a) it follows that HUAIVSP2.

Since DLO is elementary, SP2e E(DLO) by theorem 6.7.6.
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6.9 Remark. We employed the ultrapower criterion because it gives rather perspicuous proofs .

On inspection, however, one will see that, in either case, only a few first order properties and a

countably repeating simple pattern are used. Both times we could have relied on the compactness

theorem to produce a countable frame in which the ll-formula under consideration is lost.

(Rodenburg [1982] in fact did this.)

From a proof that compactness always works, in proving ll-formulas nonelementary, and that

countable frames suffice, one might hope to get estimates of the algorithmic complexity of E(K) for

elementary K2.

Footnotes:

1 A sequent 2'.is realizable if there exists a model Q and a point a of Q such that (g,a)lI-Z.

2 Doets has found a modal formula that is elementary on the countable M-frames, but not on all

M-frames. So if countable frames suffice for first order definability of ll-formulas, this would be an

interesting difference between the modal case and the intuitionistic case.
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According to 3.12, Allfcpiff A can be projected onto a multirefutation of (p;we have seen in the

preceding section that the existence of such a projection need not correspond with a first order

condition on frames. In this section we return to the idea of embedding semantic tableaux into

frames, that was briefly considered in 3.8. We define labeled frames, and consider, essentially,

embeddings of such frames. The existence of such an embedding is first order expressible;

moreover, for a large class of ]I-formulas, it guarantees refutability. The section ends with a

discussion of the quantifier complexity of first order definitions. Among other things, it is shown

that not all first order definitions can be found by means of labeled frames.

7.1 Partial projections

7.1.1 Notation. Iff is a partial function from U to V, we writef: U-->V. The domain off,

abbreviated dom f, is the subset of U on whichf is defined; the range off, abbreviated ranf, is

f[domj]. If ranf=V, we writef:U--4-V. If dornf gdomf, and for all us domf, f(u)=f'(u), we write

f<_If’.

7.1.2 Definition, Let A be a frame; 3€=(X,§) a multitableau. A partial surjection g°A—-Xis a

partial projection of A onto 35if g is a projection of domg, as a subframe of A, onto X.

We say g is a Z‘.-projection if g is a partial projection onto a £—mu1titableau.If g and g’ are

E-projections and g§g', we shall say that g is a 2-subprojection of g’.

The proof of the following lemma is basically Smoryfiski's proof for the finite submodel property.

7.1.3LE; Let 2 be a sequent.Every2-projectionhas a finite 2-subprojection.

Pif: Let g:A——+-Xbe a Z2-projection;3€=(X,§). We define a sequence

B0<_ZB1Q

of finite subsets of dorng, as follows.

Pick b0eA such that Egg(b0); set B0={b0}.

Suppose B,1has been defined. For each be Bn—Bn_1,take for every x>3¢g(b) that belongs to g[b)

an element ax'b in [b) with g(ax_b)=x. Let
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BM]: Bnu{ax_b |be Bn—Bn_1,x>3¢g(b) and xe g[b)}.

Since chains in (X$35) are finite, there is a greatest N such that BN¢BN_1. Set go=grBN; i.e

domgo=BN, and for all be BN,go(b)=g(b). Let X'= rango. For xeX', S'gX ', let

S’e §'(x) iff 3be BN :x=g(b) and S'= go[b).

It is clear that go is finite, and gogg. 2;g(bo)e X’; so to prove that go is a 2-projection, it

remains to show that (1) 3€':=(X',§') is a multitableau, and (2) go a partial projection.

(1) If ye u§'(x), then by the definition of 5', there are a,be BN, with a_<.band x=g(a), y=g(b).

Then xsxy, hence xT§yT, and the first condition of definition 3.9.1 is satisfied. As to the second,

suppose F(<p—>\|I)exe X’ and T<pex. Take any S’e §'(x); say S'=go[b), with x=go(b). By
3.10(ii), §(x) contains some S§g[b). By 3.9.l(ii), S has an element y such that Tq>,F\pey or

F(cp—>\y)ey and yT¢xT, so y>3¢x. Then y=go(ay,b)e S’.

(2) go trivially satisfies the conditions of definition 3.10, by the definition of §' (cf. (b) in the
proof of 3.12).

7.2 Labeled frames.

7.2.1 Definitien. Let A be a frame, and X an open Z-multitableau. A Z-projection g:A-—+3€is a

2‘.-labeled subframe of A if whenever a set Bgdomg has an upper bound in A, ubeBg(b)T is
realizable.

7.2.2 Definitien. If g and h are 2-labeled subframes of a given frame A, we write gszh if

(i) domg Q domh, and

(ii)Vae domg. g(a) Q h(a).

Observe that $2 is a quasi-ordering.
It is immediate that a E-subprojection of a E-labeled subframe is again a 2-labeled subframe. Since

a finite Z-labeled subframe has only finitely many predecessors in S2, lemma 7.1.3 implies that the

class of )2-labeledsubframes has minimal elements. These have some convenient properties.

7.2.3 Lemma. Suppose g:A—-35is a minimal 2-labeled subframe of A. Then

(i) domg is a rooted subframe of A; the root is the only point ae domg such that

298(0);

(ii) if g(ao)=g(al) and (ao]domg=(a1]d0mg,then ao=a1 ;
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(iii) if a0<a1 in domg, then g(a0)¢ g(a1).

Egmf: If g does not satisfy (i)-(iii), we shall get a proper 2-subprojection of g by discarding parts

of domg, making straightforward modifications in X - as follows. If (i) is not satisfied, seek for

ae domg with 2<_:g(a)and for all a’ >domga,2‘.$g(a'); restrict g to [a)domg.If a0, a1 violate (ii) or
(iii), drop ao from domg. El

7.2.4 Definition. We call E-projections g and g’ equivalent if there exists a frame-isomorphism

f:domg§domg’ such that Vae domg:g’f(a) = g(a).

Given an open 2-multitableau 35,the lemma above restricts the construction of representatives of

the equivalence classes of minimal 2-labeled subframes onto X in such a way that it is clear that

there are only finitely many such equivalence classes. Let us assume unique representatives of these

equivalence classes, and call them 2-labeled frames. Lemma 7.2.3 also implies that 2‘.-labeled

frames are finite. In sum, we have:

7.2.5 Let2‘.bea sequent.The2-labeledframesarefinite,andfiniteinnumber.

A proper notion of subtableau for open multitableaux should imply that the minimal

2-multitableaux are the ranges of 2-labeled frames.

7.3 Transparency

By theorem 3.12, if an ll-forrnula (pis not valid in a frame A, there exists a projection g of A onto

an open {Ftp}-multitableau. By 7.1.3, g has a finite Ftp-subprojection h (we drop the curly

brackets). Since hgg, and g is a total projection, h is an F(p-labeled subframe of A. Now h has

finitely many predecessors in S so we conclude
Fcp’

[_;-gmma.Let A be a frame, (pe ll. If Alblcp,then A has a minimal F<p—labeledsubframe.

The converse is not generally true, as is shown by 3.8: the frame C in that example has an obvious

F(SP2)-labeled subframe, yet C lI—SP2.

Definition. An ll-formula (pis transparent if (pis refutable in every frame that has an Fcp-labeled
subframe.

Suppose A is a frame. We denote by l[.0[A]the expansion of L0 by distinct, unique individual
constants for all elements of A. For elements of A and corresponding constants we shall use the
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same letter. AA is the expansion of A, obtained by interpreting constants a of IL.O[A]by the
corresponding point ae A. The diagram of A is the set

{otlot is an atomic sentence of ]I..0[A]and AA l=ot}LJ

{—.B|[3is an atomic sentence of lL.0[A]and AA #13}.

Theorem. Transparent formulas are first order definable.

Proof: Suppose (pis transparent. Let g1,...,gn be the Ftp-labeled frames (n20). For lsisn, let 81-be

the conjunction of the diagram of domgl-.(By 7.2.5, the diagram of domgi is finite.) Let {ii:=

5,-A/\(—Elu/\b€B bsu | B gdomgi and Ube Bg(b)T is not realizable).

Next, let 8', be the result of replacing the individual constants in 81-by distinct new individual

variables. If v1,...,vmare all the free variables in Vlsisneg, let onbe

'13V1...VmV

We will show that (pEot.

IfAb¥ot, then for some 1'and a1,...,ame A,

(A, a1,...,am)i=€i.

Let aj (lsjsm) be the interpretation of the constant bj of IL0[domgt-].Define a partial function h of

A by h(aj)=g(bj). Then h is an Ftp-projection, because Si makes dom h Edom gt-;and by the clauses
a3u/\bSu in 8‘-,h is an Ftp-labeled subframe of A. Since (pis transparent, it follows that A||;’<p.

Conversely, if All/(p, then by the lemma, A has a minimal Fq>—1abe1edsubframe h. Say h is

equivalent to gi by an isomorphism f: domhsdomgl-. Let domh={a1,...,am}; then (A,a1,...,am)I=8l-,

with aj interpreting f(aj) (lsjsm). The other conjuncts of Bihold in (A,a1,...,am) by definition
7.2.1. Thus (A,a1,...,am)l=z-3,-; hence Al=Elv1...vmV1S-Sue,-, that is, Al=-—:(1.. El

Qorgllary. Transparent formulas are equivalent to H02-sentences}

Proof: The sentence ot in the above proof is easily seen to be logically equivalent to a

1'I02—sentence. El
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7.4 Deterministic formulas

Transparency is an abstract notion; we should like to know a property of l[-forrnulas that implies

transparency, and that can be seen to hold. To find such a property, we consider the question how

an Ftp-labeled frame may help us to define a valuation that refutes cp.

An Fcp—labeledsubframe g constitutes a finite grid, the points of which are associated, in a regular

fashion, with sequents in a multirefutation. If seems reasonable to expect that a valuation refuting (p

is arrived at by associating sequents to the points outside the grid, and then extracting a valuation as

in 3.12. Let us try to form such new sequents.

The sequent 2‘.of a point a outside domg should contain all signed formulas I~\Vthat are associated

to successors of a that belong to domg (in the resulting model, Wis to be false in a), and all signed

formulas Tut that belong to predecessors of a in dorng. Besides, 2 must be full. Most of the

conditions for fullness are met automatically; e.g. if F(<p1vcp2)belongs to some successor, then

Fcpl and F(p2 will turn up as well.

In fact, there is only one source of difficulty: the implications signed T. If T(\u—9x)e2., it may be

that no predecessor of a has Tx, and no successor Fq/. Apparently, we must add to 2: either Fw, or

Tx. But here a major snag appears. Maybe one predecessor of a has brought up T(\y——>x),and

another T1|I.Then we must take Tx, or 2 will certainly not be realizable. Now suppose x=x1vx2:

for fullness we must add Txl or Txz to 2, and we cannot expect guidance from a's predecessors.
Worse yet, a's successors in domg may make either addition impossible. They all carry Tx; but

some may opt for Txl, and others for Txz. In such a case, either choice in a will destroy the
pattern.

The following definition singles out a class of ll-formulas that cannot lead to awkward choices.

(i) An implicationxy-—>xel is determinate if Sf(Tx)containsno disjunctionssignedT.
(ii) An ll-formula cpis deterministic if in any signed subformula T(\u—>x)of Ftp, \y—>x

is determinate.

Determinism is a syntactic property, that can be effectively checked for. Note by way of example

that KC is deterministic; and that SC, SP2 and KP are not.2

Lemma. Let A be a frame, and 21a sequent. If g is a 2-labeled subframe of A, then there exists a

Z-labeled subframe hgg of A such that Vae A3a’ 2a.a’e domh.

Proof: Let 3€=(X,§) be an open Z—multitableau,and g:A--»3€ a 2-labeled subframe of A.

Abbreviate g[a)=g[a') to a=a’. The relation = is an equivalence. We shall denote the equivalence

class of a by a"‘.Let

A0:={aeA|Va'2a. a'=a}.
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Since chains in X are finite, every element of A has successors in A0.
By definition 7.2.1, U (g(a’)T|a'e (a]ndo mg) is realizable, for every ae A. Thus

|;‘—i/\u(g(a')T|a’e(a]r\domg); use corollary 4.7.4 to obtain for each a” a classical model Vazof

u(g(a’)T|a'e (a]r\domg). (It is important to do this by equivalence class, and not pointwise.) For

aeAO—domg, define

h(a)={T\|Je Sf(}3)|Va=i=xy}u{Fxe Sf(Z)|Va= e—.x};

then for ae dorng, h(a)=g(a).

Each h(a) is a full sequent. Define VI: ranh—>IP’IP(ranh)—{0}by

T6 W:(x)iff Eiaedomh[h(a)=x and T=h[a)].

Let E=(ranh,?lI). Observe that if ae domh—domg,then 1I(h(a))={{h(a)}}.
Claim: 2 is a Ermultitableau. Proof:

(i) If h(a)e Te VI(x), then ElbSa:x=h(b).Then either h(a)=x; or ae domh—domgand be domg, and

h(a)T; h(b)T by definition of h and vae; or h(a)=g(a), h(b)=g(b), g(a)2x g(b) by 3.10, and
g(a)T; g(b)T since 35is a multitableau.

(ii) If F(\y—>x)ex, then either x= h(a) for some ae domh—domg,in which case T\|/ex since Vazis
classical; or xeX. In the latter case, if Tute x, each Se §(x) contains some y with Tu/, Fxe y or

F(\|I—)x)Ey. Now if Te 11:(x), T=h[a); g[a) for some ae g-1{x}. By definition 3.10, some

Se §(x) is contained in g[a); so ElyeT( F(\y—>x)ey or Tu/, Fxe y).

Since ranh consists of sequents from X and sequents determined by classical models, E is open.

Trivially, h is a partial projection (cf. (b) in the proof of 3.12). To see that h is a 2‘.-labeled

subframe of A, note that if a2a0,...,ane domh, and ale domg, then u- h(aj)T=h(ai)T. I]19:

Theorem. Deterministic formulas are transparent.

Proof: Suppose (pis deterministic, X a multirefutation of (p, and g:A——-35an Fcp-labeled subframe

of A. By the preceding lemma, we may assume that Vae A3a' 2a. a'e domg.

For each aeA, let 220(a) be

U(g(a’)T| a'e (a]n domg) u u(g(a’)F | a'e [am domg).

Since g is a partial projection, £0(a)=g(a) for ae domg. Let 2(a) be the closure of 20(a) under the
rules

(1) If T(\y—>x)e2 and FWE2, add Tx to Z.
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(2) If T(\|JAx)e2, add "W and Tx.

Since g(a) always is a full sequent, Z‘.(a)=g(a)for ae domg.

As indicated above, 20(a) is full but for the decomposition of implications signed T, which is the
subject of rule (1). Therefore rule (1) is used in the first step of the derivation of any element of

)2(a)—20(a).Thus we can be sure that signed disjunctions T(\yvx) in 2(a) already belonged to

20(a): new formulas signed T come from the (T-signed) succedents of determinate implications.

Since formulas signed F, and disjunctions signed T, are decomposed in }20(a),and the rest is
covered by rules (1) and (2), each sequent 2(a) is full.

If Twe 20(a), then 'I\pe g(a’) for some a'Sa. It follows that We g(a”) for all a” 2a that belong to
domg - since a" 2a’ and g is a partial projection. If TV is added to 2(a) by rule (1) or (2) because

some T\|J'belonged to 2(a), and T\y'e n(g(a”)| a" 2a and a”e domg), then Tlye n (g(a")|a” 2a

and a”e domg) as well. Conclusion: 2 (a)T§g(a”)T for all a” 2a that belong to dorng.

Now since [a)ndomg #9, and X is open, it follows that Tie 2(a). Likewise, Twe 2(a) implies

Fwe 2(a): for if Twe 2(a), Twe g(a") for all a” 2a in dorng, implying that Fq/esg(a”).

If aSAb, then z0(a)T; 2‘.0(b)Tsince (a]r\domg§(b]r\domg; and similarly 20(a)FI_>Z‘.0(b)F.
Hence whenever rule (1) or (2) adds for a, it also adds for b. So £(a)T§ 2(b)T.

Now let Y={E(a)|aeA}; and for ye Yand TQY,

Te my) iff aae 2-1{y}. T=Z[a).

We want to show that E:=(Y,W) is a multitableau. For if it is , it is open, as shown above; Fur

belongs to some sequent in Y; and trivially, 2 is a projection onto E, whence All/cpby theorem
3.12.

Actually, only the second part of definition 3.9.1 remains to be checked. Suppose F(\y—>x)ey, and

Twasy. Take any Te 750’); then T=£[a) for some a e 2“1{y}. Then some y’e g[a) contains

F(\|/—>x). Say y'=g(a’), with a’2a. Since g is a partial projection, there exists a” 2a’ with

T\4J,Fxeg(a") or F(\y—>x)eg(a") and g(a")T¢ g(a')T. Then g(a")=Z(a")e T, and g(a")T¢yT since

fig g(a3Tg g(a")T. 0

With corollary 7.3 we get

Corgllm. Deterministic formulas are equivalent to H02-sentences.

7.5 Qgrgllariesz (i) ]I[A,—>,_L]C_IE(PO)

(ii) l[[/\,v,—.] <_ZE(PO)

Prmf of (ii): Implications in lI[A,v,-.] have succedent J_,hence are determinate. I3
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7.6 Quantifier complexity. First order definitions produced by the method of 7.3 are H02. One

might wonder whether all elementary ]I-formulasare equivalent to H02-sentences. We will now
show that KP is not; and construct a sequence of generalizations of KP whose first order

definitions seem to require an ever increasing number of quantifier changes.

7.6.1 In 6.5 we gave a H04 equivalent for KP. There may be simpler first order equivalents;

however, we will show that they cannot be as simple as H02, by exhibiting a chain

A0g A1g .....gA,, g (neN)

such that KP is valid in every An, but not in the union A=uneN An (cf. Chang & Keisler,
thm.3.2.3).

Let A” :={a,-,bJ-|OsiSnand lsjsn} u {c,d,e}, partially ordered in such a way that e and bn are

endpoints, c and d are covered by e, an is covered by c and d, and for 1',/'<n,b. is covered by bl-+1
and ai is covered by at-+1and bi”. The diagram below shows A2./ 6\

c d\fl2/
| ” 2

a1/ I
l/b1

do

If (An,V)I|;‘KP,some top node must force p, and another —.p(this immediately excludes n=O).

Note that KP must hold in bl-,c,d, and e. Now, if e||~-—.p,and bnll-p, we must have anll-ap and

anl|~—.p—>qvr;hence anll-q or anII—r,and we would have a0II—KP.The other way round, with elkp

and bnll-—1p, bn is the only point where wp is forced, and again aoll-KP. Since we obtained a

contradiction either way, Anll-KP.

Now consider A (see diagram on next page).
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Define a valuation V on A by V(p)=[b1), V(q)=[d) and V(r)=[c). Then (A,V)II;/KP.

7.6.2 Let pn, qn, rn (ne N) be infinitely many distinct proposition letters. We define a sequence

(KPn)neN of ll-formulas as follows:

KP0:=J.;

KPn+1:=[(pn—>KPn)—>qnvrn]—>(—pn—>qn)v(wpn—>rn).

For a corresponding sequence of 11.0-formulas,let

30(1) 3=T;

[3n+1(x) :=3yzZx(—:Comp(y,z)AV uZx(uSy,z-—>3v2u(Bn(v)A—E!w2v(ySwvzSw))));

and otn:=—ElxBn(x).

We claim that KPnE(1n. For n=Othis is obvious; suppose it is true for n. Reasoning as in 6.5, we

find that a multirefutation of KPM1 must begin as indicated on the next page:

67



§7. LABELED FRAMES.

T((P,,-—>KB, ) —>q,,vrn ),F(—;pn_) cg,),F(-=P,, -9 r,, )/ l \
T-.pn,Fc;l,Trn Tpn ,FKPn T—pn,Frn,Tqn

(note that I-—:pn—)(pn—)KPn)).Analogous to 6.5, and using that (A,a)II;‘KPniff Al=Bn[a], we see

that KPn+1E0tn+1.

As to quantifier complexity, B0(x) is A01, and [3n+1is ZOZM2;hence the an +1 are I'I02n+2.

7.7 On restricted classes of frames, more formulas may become first order. In extreme cases, every

ll—formu1ais first order; we already know about one of these, vz. LO (by 4.8 and 7.5). This

phenomenon will be investigated further in the next section.

Footnotes

1 §17 (17.8) contains some further considerations on the syntactic form of L0-equivalents of
transparent formulas.

2 Actually, deterministic formulas are equivalent to formulas in —>,_L,as can be seen by a little

second order propositional logic. As argued in §4, A can be eliminated. Next, v to the left of —>can

be eliminated by the logical equivalence I-(<pv\y—>x)e—>(<p——>x)A(uI—>x);the new A can be removed

without introducing new disjunctions (4.3.3). So only disjunctions to the right of —>(and

disjunctions that are not subformulas of implications) can be problematic. Now in general, (pV\|Jis

equivalent to the second order formula Vp((<p—>p)—>(\y—>p)—>p)(p a new proposition letter);

moreover, ((p——>‘v’pq;)<—>Vp((p—>\p)is universally valid if p does not occur in (p. A formula is

deterministic precisely when, after replacing the remaining disjunctions with quantifications over

distinct new proposition letters, we can move all the quantifiers to the front, using the equivalence

((p—>Vp\y)(—)Vp((p—)\|!).Front universal quantifiers can be dropped: the definition of validity

involves universal closure anyway.
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§8. Classes of frames in which every ll-formula is
first order definable

As was shown in 6.8(b), there exist l[-forrnulasthat are not first order definable on DLO. We now

consider a restriction additional to downward linearity, inverse wellfoundedness, under which

every ll-formula becomes first order definable. We use a theorem of Doets [A] to indicate to what

extent a restriction of this sort is necessary (some further details will appear in §9).

Finally, we consider restrictions on width and on height for the larger class of partial orderings.

8.1 Qgfinitign. We call a frame A inversely well-founded if every subset of A has maximal
elements.

Clearly, A is inversely well-founded iff (A,>) is well-founded in the ordinary sense. Another

equivalent statement is: A does not contain an infinite ascending chain

a0<al<...<an<... (ne N).

We shall denote the class of all inversely well-founded downward linear orderings by IWD.

8.2 Qefinitign. Let A be a frame; BQA. We call B a subtree of A if B, with the ordering inherited

from A, is a tree; a strong subtree if, moreover, the canonical embedding B‘->Ais strong.

By way of example, consider the binary tree T of the sequences of zeros and ones of length at most

2 ordered by initial segments:

°°\/° ”\1/”\/
T':={A,O0,0l,lO} is a subtree of T, but not a strong subtree; T’u{O} is a strong subtree.
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8.3 We introduce a partial ordering S of sequents:

8.3.1 Definition. Let Z and (-3be sequents. We write ESQ if ZTQGT and (-DFQZF.

We write < for the related strict ordering: }.‘.<(-Diff ESQ and Bate).

3.3.2 Definition. A multitableau 3€=(X,§) is monotone if for all x,ye X, ye u§(x) implies x<y.

Monotony is an attribute comparable to strictness (3.3). Its use is, that if we climb through a

monotone multitableau, passing from x to an element of u§(x) , we can take only a finite number

of steps.

8.4 2-labeled trees

As in §7, we shall use partial projections to obtain first order equivalents of ll-formulas. The

approach will be slightly different. In the definition of 2-labeled subframe, we had to ensure that

points with a common successor were assigned compatible sequents; for downwards linear

orderings this difficulty does not exist. Since points with a common successor are linearly ordered,

it is enough that each sequent is realizable. Instead we shall concentrate on difficulties caused by

points between elements of the domain of a partial projection: points a such that there are a’,

a"e domg with a'<a<a".

For a frame A, and areA, we denote by CovA(a) the set of all covers of a in A.

Definition. Let Ae DLO, 2. a sequent, and 3€=(X,§) an open 2-multitableau. A partial surjection

g:A——»Xis a 2-labeled subtree of A if

(i) domg is a tree;

(ii) for every ae domg, gICovdOmg(a) is a bijection onto some Se §(g(a)).

We shall say g is strong if domg is a strong subtree of A; perfect if g is strong, 35monotone, and

the root of domg is the only element of A such that £gg(a).

By (ii) and 8.3 it is immediate that the domain of a perfect 2-labeled subtree is finite —an upper

bound for its size may be deduced from 2.

As in 7.2, we assume unique representatives of the equivalence classes of perfect 2-labeled
subtrees; call them 2-labeled trees. Given a suitable 2-multitableau 35, it is clear from the definition

above how to construct Z-labeled trees with range X. These trees are finite, and there are finitely

many of them. Since there are finitely many X—mu1titableaux,we have
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gamma. For any sequent 2, there are only finitely many 21-labeledtrees.

8.5 Qmma. Suppose Ae IWD, and (pell. If All/<p,then A has a perfect Fcp-labeled subtree.

Erggfz Suppose (A,V)II/cp.Clearly, a perfect labeled subtree of a generated subframe is a perfect

labeled subtree; we may therefore assume that A has a root ao. In addition, since Ae IWD, we may

assume that a0 is the only point of (A,V)that does not force cp.For each ae A, let

®(a):=®q,(A'V)(a) (={oe Sf(F<p) 1all-6}).

We define a sequence

Aog A1C...gAnC... (neN)

of finite subtrees of A, as follows. A0={a0}. Suppose An has been defined. For each as An—An_1,

take a set Ca of strict successors of a in A such that

(i) for every b>a, Elce Ca : G-)(c)$(-3(b);

(ii) if c,c' are distinct elements of Ca, then ®(c),€®(c');

(iii) each ce Ca is maximal in {beA| (9(b)=®(c)}.

Now let g be the restriction of (-3to unAn, X=rang, and for xeX,

Se §(x) iff Elaeg‘1{x}. S=g[Ca].

Put 3€=(x,§). We shall establish a sequence of claims, culminating in (6): g is a perfect F<p-labeled
subtree of A.

(1) If as domg, then a is maximal in {be A|®(b)=(-9(a)}.

a0 is the only point that does not force (p,so {a0}={beA|F<p e (-)(b)}.The other elements of domg
are maximal by construction.

(2) If ye LJ§(x), then y>x.
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If ye LJ§(x), then there are a,ceA such that x=g(a), y=g(c), and c>a. Then €~)(a)S®(c)is

immediate, and ®(a)¢®(c) by (1).

(3) For each as domg, Ca=CovdOmg (a).

Suppose ce Ca, and a<bSc, with be domg. Then ®(a)¢ G)(b)by (1), and ®(b)s G-)(c).By (i) in

the definition of Ca, there exists c'e Ca, with ®(c')S @(b); by (ii) and transitivity of S, c'=c.
Hence ®(b)=®(c), and b=c by (1).

(4) 35 is a multitableau.

By (2), ye u§(x) implies x<y, whence xT§yT is immediate. If F(\y—>x)ex, T\|lEx, and Se §(x),

then S=g[Ca] for some as g‘1{x}. Then aI|;‘\y—>x;so there exists bza with bl}-utand bllfx. Since

allfw, b>a. So by (i), there is some ce Ca with ®(c)S (-3(b); ®(a)¢ G)(c) by (1). Since

F(\lf—>X)E9(1)), F(\I/—>X)E@(c)=8(C)E 5

(5) X is a monotone multirefutation of cp.

Since aoll/cp,Fcpeg(a0). By the nature of (-3,X is open. Monotonicity is by (2).

(6) g is a perfect Fcp-labeled subtree of A.

By (3), (ii) and the definition of 5, condition (ii) of definition 8.4 is satisfied. As for (i), it is

immediate that domg is a rooted downwards linear ordering. Since 35is monotone, (3) and the

definition of § imply that chains in domg are finite; hence domg is a tree. Finally, to prove that g is

strong, we check condition (*) of lemma 2.11.6 for the canonical embedding of domg into A.

Suppose c, c’ are distinct covers of a in domg, and aSb.<_c,c'.Then (-3(b)S G-)(c), ®(c'). By (ii),

this implies that @(b)< G-)(c),E-)(c’).So by (i) and (ii), a<b is impossible; hence a=b. Therefore

bSCovdOmg(a); so domg is a strong subtree of A. D

8.6 Lemma. Suppose Ae IWD and (pell. If A has a perfect F(p-labeled subtree, then Allfcp.

Proof: Suppose g:A——»xis a perfect Fcp-labeled subtree of A. Since g is a projection of domg onto

X, domgllftpby 3.12. Since the canonical embedding of domg into A is strong, and domg is finite,

there exists by 2.11.10(i) a p-retractionf:A —~domg.Then AIlfcpby lemma 2.4.2. B
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8.7 Theorem. E(IWD)=]I.

EggofzLet (pell be given; we are to produce an L0-equivalent on IWD. Suppose g1,...,gn are all

the Fcp-labeled trees (by lemma 8.4, there are finitely many). Each gi is finite, as observed in 8.4.

Now let 5, be the conjunction of the diagram of domgl-.Next, for each i (lsisn) and be domgi, let

7,-J,be the formula

/\(vSb'|b'e Covdomg_(b)).

Finally, for lsisn, let 81-be

8,-/\/\(Vv(bsvsb1,b2—>y,.’b) | be domgi and b1,b2 are distinct elements of Covd0mg'(b)).

Let E,-'be the result of replacing the individual constants in 81-by distinct new individual variables
-' then let ot be(so 8,-‘eL0). Suppose v1,...,vmare all the variables that occur free in Vlg 8,;Sn

*|3v1...vmV El".

This onis a first order equivalent of (p.Indeed, Ablotiff some 8, (lsisn) is true in an expansion of

A, iff for some i, domgi is isomorphic to a subtree of A (by 8,-)which is strong by the rest of 81-and

lemma 2.11.6. Suppose A0 is a strong subtree of A, and f:A0—>domgiis an isomorphism. Then

gt-ofis a perfect Fcp-labeled subtree of A, so All;/cpby lemma 8.6. Conversely, if Allfcp,then A has

a perfect Fcp-labeledsubtreef by lemma 8.5, which is equivalent to some gi by assumption; so that

in particular domfadomgl-. U

8.8 Rgmafi: Observe that, in contrast to theorem 7.3, the first order equivalent is entirely

determined by the domains of the Fcp-labeledtrees. In 7.3 we had to take the labeling into account.

8.9 Example. On IWD, SP2 is equivalent to

—uEIxyzw(x<y,z,wAVu[(xSu_Sy,z-—>usw)A (xSuSy,w—>usz) A (xSuSz,w—) uSy)]).

The only relevant tree consists of a root with three covers (cf. 3.8).

8.10 The above first order definitions would still work if we allowed frames that can be obtained
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from inversely well-founded downwards linear orderings by replacing some points by infinite

chains; with regard to a given formula cp,such chains behave essentially as finite chains with as

many points as can be distinguished with subformulas of cp.Still some small extensions are

possible (see §9); but soon, full first order defmability is lost.

8.11 Definition: A binary tree A is full if every point in A has either two covers, or none.

The class of all full binary trees we denote by TR(2).

We will show that E(TR(2))¢l[. As noted in the introduction to part H, an immediate consequence is

that E(K)¢l1for all frame classes K; TR(2).

8.12 Definition. The quantifier rank rnk(ot) of a first order formula onis defined inductively as
follows:

1. rnk(ot)=O if onis atomic, oc=T or 0r.=J_;

2- I‘nk(-vI3)=m1<([3). rr11<(l3AY)=mk([3VY)=rnk(l3->Y)=maX(m1<(I3)J'nk(Y));

3. rnk (3x|3)=rnk(VxB)=mk(B)+1.

Two structures Q and 33 for the same first order language will be called n-equivalent (notation:

gE"3B) if they satisfy the same first order sentences of quantifier rank n.

8.13 mfinitign. Let A be a frame. A path through A is a maximal chain in A.

8.14 Definition. Let n21; then P(n) is the conjunction of the following three conditions on full

binary trees A:

P.1 Each point in A lies below a maximal point.

P.2(n) Each path through A has cardinality at least 2"—2.

P.3(n) For all aeA and m<2", if some path through [a) has cardinality m, then every

path through [a) has cardinality m.

8.15 Prgmsitign (Doets [A]). HA and B are full binary trees, and both satisfy P(n), then AE"B.
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8.16 §2r21_1ag;. SP2asE(TR(2)).

_P_rmj:Suppose SPZE-I~R(2)(I.,and rnk(ot)=n. Let B be a full binary tree all of whose paths have

cardinality 2"-1. Since BII-SP2by 8.9, and B satisfies P(n), on(and hence SP2) must hold in every

full binary tree that satisfies P(n). Now let A=Nu(N><B),with SAextending the natural ordering
of N as follows:

nS(m,b) iff nsm;

(n,b)S(m,b') iff n=m and bSBb'.

Then A is a full binary tree satisfying P(n), hence AI=ot, and All-SP2. But setting

V(p)=u({n} ><B|n§é2(mod3)) and V(q)=u({n} ><B|n¢1(mod 3)) (cf. 3.8) we find (A,V)lI;‘SP2:a
contradiction. D

8.17 Width

The width of a frame A was defined in 2.9 as the least upper bound of the cardinalities of antichains

in rooted subframes of A. For ne N, we shall denote the class of all partial orderings of width at

most n by P0".
Hardly any width is needed to get nonelementary ll-formulas.

Example. The earlier example 6.8(b) can be adapted to show that E(PO4)¢lI. Let \|I1Z=p/xq,

\y2:=pA(q—)r), and \V3:=(p—-)r)Aq;set

‘P‘=(V1szs3(‘Vi—”)" V1sis3‘4’i)" V1sis3(‘|’i"’)

Note that SP2=cp[r:=J_]. In SP2 we had Hy—>wxand the like; here
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(*) for lSi¢jS3, I-wt-—>\yj—>r.

Let A be as in 6.8(b), except that the ordering is supplemented by

bm_<.bnifm_>.nand man (mod 3).

The top of the resulting frame is shown in the diagram below.

b2 bl b0

/5
b8 b7 b6 \ /"6/ ><></7

as

We want to show that All-cp.Take any valuation V on A.

Suppose i, j are distinct, 19', jS3. Suppose some bk realizes {Tull-,Fr}.By (*), bmll-Fwjif bmsbk;

and bmll-r if bml-\|.!j and bmz bk. Therefore bm|I—1pJ-—>r;bnI|—V‘-(xvi-—>r)for all ne N; and a fortiori

bump.

Now suppose some ak forces V(\|1i—>r)—>Vuti. We want to prove that akII-V(q/I-——>r);then we may

conclude that (A,V) I-(p. It will suffice to show that am ||-Vwi for all msk, since I-Vurl-—>V(\yl-—>r)

is an easy consequence of (*) (assume any wl; then for j¢l,\yJ-—>rby (*), hence V(u/i—>r)).We have

a0II—V(wi—>r)because V(\pi—>r)is a tautology and a0 is an endpoint (cf. 2.5). Since aksao,

a0lI- Vwl-. Now suppose m<k, and amII—Vu/1-.Since bmII—V(\yi—>r), and aksbm, bmIl-Vuli as well.

By (*), there is some I such that both amII—\y,—->rand bmll-\p,—>r.Then am+1IHy,—>r; or alkxyl

and allfr for some a2am+1, and then a=am+1 since am and bm are the covers of am+1. In the first

case, am+1II—V(\yi—)r),hence am+1IF Vwi since ak$am+1; in the other case am+1II—uI,,so

am +1Il—Vwi is immediate.

As before, take a nonprincipal ultrafilter U over N, and consider HUA. The ultrapower can be
pictured clear enough with the help of Lo§'s theorem. It has width 4, since it must satisfy the
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ILO-sentence

Vxlx2x3x4 V(xl-.<_xj|1Si,jS4).

It ends in an isomorphic copy of A. For the rest, it consists of pieces which are like A, except that

they have no endpoints. In a diagram (where the broken lines must suggest an infinity of points):

In particular, we can find cu, dn (neN) in HUA such that each cu is covered by dn and cn+1,and

dn+3covers dn. Let X=nn[cn).

Now we define a valuation V on I'IUAby

V(P)=[d1)U[d2)UX; V(q)=[do)U[d1)UX; V(r)=X.

Then d3n+iII-{T\|;i,Fr}.Moreover, if uzcl, then u is some d3n+iforcing wt-,or ueX and ull-lpl, or

u=cn for some ne N, and uIb‘(V1S-$3(\pl-—>r);hence cl ll-(V19-S3(\|Il--+r)—>V1g-S3\yi.We conclude

that cl II/(p,and therefore I'[UAIb’(p.Hence (pis not elementary on P04, by 6.7.6.

An open problem. Since LOII-cpiff POIII-(p,E(PO1)=ll by 7.5 and the logical equivalence in
4.8. There is a gap between this result and the example above, which I have not been able to fill in.

8.18 Height. As example 6.8(a) shows, not every ll-formula is elementary on the class of all

frames of height at most 3. If we reduce the maximal height by one, the problem of first order

definability becomes trivial: take .L, T, or an L0-sentence stating that the number of strict
successors of any point does not exceed a suitable finite bound.
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We are going to show that E(TR) is decidable. The argument centers on binaxy trees (we establish

that E(TR(2))= E(TR)), and the difference between validity on all binary trees and validity on finite

binary trees.

9.1 Every ll-formula that is not universally valid, can be refuted on a binary tree; but not necessarily

on afinite binary tree. The second of these well-known facts may be substantiated by SP2: example

8.9 implies that SP2 is universally valid on the finite binary trees.

As to the first, suppose lfcp,and let (X,S) be a minimal refutation of (p,with root x0. Then build a

binary tree T of sequences of elements of X (ordered by initial segments) as follows: start with

(x0). If (x0,...,xn) has been put into T, and does not yet have strict successors, and

S(xn)={xn+1,...,xk}, see if k—nS2. If it is, add nodes (x0,...,xn,xJ-)for n<jSk. If it is not, add
(x0,...,xn,xn+1), (x0,...,xn,xn), ...., (x0,...,xn,...,xn,xk) (with xn repeated k-n times) and

(xo,...,xn,...,xn) (with xn repeated k—n+l times). For example,

(x 0,1:0,x 0,x Orx 1)

(x0’x0’x2"4) ("o”‘o"‘2”‘5) (’‘o’“'’‘o) ("o”‘o”‘o”‘2). . \ / /2
4 5 (tax ,x2) (x0,x0,x0)

I X | maybecome (\ /
"1 x2 *3 (x(Txl) Qcrxo)\/ \%)/

Mapping each sequence to its last element gives a projection of T onto (X,S).

By proposition 3.7.3, (X,S) is strict; so xn+1 above contains more formulas signed T than xn.
Since X is finite, it follows that every point of T belongs to a finite path. In all, we have proven:
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Lgmma. If an ll-forrnula is refutable, then it is refutable in a binary tree in which every point has
maximal successors.

9.2 Example. It is not so difficult to see that, for any tree C, SP2 is refutable in C iff either some

point of C has three covers (or more), or C contains a copy of the ‘infinite comb‘ A of 2.11.9. The

direction from right to left is standard: use 3.8, 2.11.10, and preservation under p—morphism

(lemma 2.4.2). For the converse one uses a projection of C onto the tableau of 3.8 - if no ce C has

three covers, there must be an infinite chain of points mapped to the root of the tableau, with side

branches. Such a projection must exist, since the tableau of 3.8 is essentially the only

multirefutation of SP2. (Similarly, for Ce DLO: Cll/SP2iff some ce C branches into an antichain
of three elements, or C contains an infinite comb.)

Now we have an easy intuitive reason why SP2 is not elementary: in a first order language, we can
say that some pattern recurs ad infinitum; but we have to give conditions under which it recurs, and

these conditions must be finite in some way. One cannot decide whether a point belongs to an

infinite comb by looking at patterns whose size remains below some fixed finite bound.

Some additional knowledge about a tree C may make all the difference. Suppose we know that C

does not contain a copy of the tree

(cf. T in 8.2). Assume for simplicity that C is binary. Now if SP2 is not valid in some point co with

two covers c1 and c2, we know which one of c1, c2 leads to an infinite comb: the one that has

incomparable successors. And indeed, with Comp(u,v)=(usvvvSu) as before, C ||;‘SP2iff

C |=Elx[3u,vZx.—uComp(u,v)AVy2x(3u,v2y.—1Comp(u,v)—>3z>y3u,v2z.-:Comp(u,v))].

To prove that the second conjunct of the above lL.0—sentenceis necessary, one uses that C does not
contain a copy of T.

9.3 Definition. For each ne Z‘‘, we fix a full binary tree Fn in which every path has cardinality n.
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The class of all trees into which F" can not be embedded, we denote by T".

Observe that each Tn is the intersection of TR with an elementary class. A defining axiom can be

constructed from the diagram of Fn in a familiar way: let 5 be the conjunction of the diagram of Fn;

8' the result of replacing the individual constants in 8 by distinct variables v1,...,vm; then an

lL0—sentencedefining Tn is a3v1...vm8'.

9.4 The approach of example 9.2 can be generalized. Let us assume that we have proved E(Tn)=]I.

Let cpellbe given; we are after a first order equivalent for (pon TM1. Let Ae T" +1. If [a)Ae T", we
have a first order sentence ot such that [a)l=otiff [a)II-(p,by hypothesis. Now consider the points a

such that [a)e Tn. Their disposition is constrained byVV
hence:

l__.r;,@a.If Ae TM], then {aeA|[a)e Tn} is a chain.

Let us write FAfor {aeA|[a)e Tn}. FAmay be finite or infinite.

(A) If FAis finite, then the difficult part of A is inversely wellfounded, and in view of §8, it seems

we are all set if we can combine refutations on separate parts of A (cf. 9.6 below).

(B) If FA if infinite, then it is a path in A. Again assuming that valuations can be properly
combined, we should be able to give a first order definition along the lines of the example.

9.5 Definition. Let )2be a sequent. We abbreviate /\}L1-—>V2]: to W2.

The connection between 2‘.and qt: is: for any model (A,V), for any aeA: all/wz iff Ha’ 2a.a’|I-2.

Hence A Ilfwziff 2 is realizable in A —that is, (A,V,a)II—2‘.for some aeA and some valuation V on
A.
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9.6 We need a few lemmas to infer refutability from refutabilities on subframes. The first is an

obvious fact about restriction to signed subforrnulas of a given sequent.

9.6.1 Jgmjma. Let 3€=(X,§) be a multitableau, and 2 a sequent. Define for xe X:

xf>:=xnsf(z).

Now let 36 D: be (XF2, § F2), with

X f>:={x fzuxe X};

Se (§ F>:)(xF2) iff 3ye X3Te §(y)[y Fz=x F2 & S={z F2|ze T}].

Then 35 [Z is a multitableau; X [2 is open if 35 is open. If g is a projection onto 35, then g’,

defined by g’(a)=g(a) [2, is a projection onto X F2.

9.6.2 Lemma. Suppose Ae DLO; and 2‘.is a sequent. If A||f\|I£,then there exists a projection of A

onto an open 2-multitableau with root containing 2.

Proof: If A||;‘\.|IZ,then by theorem 3.12 there exists a projection of A onto a multirefutation of V2.

By the preceding lemma, these can be turned into an open 2-multitableau 35 and a projection

g:A—-X.Let x=(X,§); we regard X as a frame with ordering Sx.

Suppose 2_C_20eX. Fix a maximal successor 2* of 20 in X. Let

A0={aeA|3a'Sa.g(a')=20}, and

A 1={ae A—AO|—E|a'2a.g(a')=Z0}.

Obviously, A0 is upwards closed; and A1 is upwards closed because A is downwards linear.
Define 3€'=(X',§') by

X'={xe X'|£0Sx};

for xe X’,£>'(x)={snX'|se §(x)}.

Clearly, 36' is an open E-multitableau. Define h: A—~X’by

h(a)=g(a) if ae/40,

=>:*if ae/ll,
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=20 otherwise.

Then h is a projection of A onto W. Since 20 is the root of 3', we shall be done once we have
proved this.

1° h is a homomorphism. Suppose asAb. Since A0 is upwards closed, as A0 implies

h(a)=g(a)Sg(b)=h(b). Since A1 is upwards closed, aeA1 implies h(a)=h(b). Otherwise h(a) is the
root of X’.

2° h satisfies condition (ii) of definition 3.10 because g does. In particular, if ae A—(A0uA1),then

3a’ 2a.g(a)=2'.0;so if S’e5120), then S'§g[a')§g[a). :1

9.6.3 Lemma. Suppose Ae DLO and 2, £1,..., 2" are full realizable sequents such that

ZTg21T,...,£nT, and whenever F(<p—>\|J)e2 and Toe 22,there is some Xi (1Si_<_n)such that

F((p—>\|/)eEl-.Let C<_ZAbe a chain, BQA an antichain, such that Cr\B¢0 and A=Cuub€B[b)A.

Suppose there exists a partition {B1,...,Bn}of B such that

(i) ‘v’i(1si_<_n) Vbe Bl-.[b) ||7‘\|l£_;

(ii) Vce CVi(1SiSn) Ebe BI-.b2c.

Then Allfulz.

£r_QQ_f:By (i) and the preceding lemma, if be Bi for some i (lsisn), then there exists an open

)2‘--multitableau3e,,=(x,,,§,,) with root 2b22l- and a projection gb:[b)—-35b.Define 3€=(X,§) by

X={2}UUbeaXb?

for xe X, §(x)=u(§b(x)|be B & xe Xb)u{{2b|be Bn[c)}Lx=}I.& ce C}.

Then 35 is an open tableau. First, 2Tg£bT for all be B, since for some i (lsisn), 2‘.i<_:}2b.Second,

if F((p—)\V)e2 and T<pe2, then F((p—>u/)belongs to some 21-,hence, by (ii), for any ce C there

exist b2c with F(<p—)\;I)eEb.

Define a mapping g of A onto X by

g(a)=gb(a) if azbe B;
=2 if ae C.

Then g is a projection; in particular, {2‘.b|beBr\[c)}gg[c) for all ce C.

But for some straightforward emendations (some signed subformulas of qr: may have to be

added), 35 is a multirefutation of V2. So Allfutzby 3.12. D
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9.6.4 Lemma. Suppose Be TR, and AQB is a strong subtree in which every point has maximal

successors. Let {at-|ieI} be a set of endpoints of A. Let C:=Auu,-E ,[ai)B. Then for all cpell,BII-cp

implies C ll-cp.

Proof: Let f be a p-retraction of B onto A such that

(1) V19631 {flb)}U([b)3F\A)=[f(b))A

(Such fexist by 2.11.8; cf. 2.1l.9(b), 2.l1.10.) Suppose C||7‘<p;let g be a projection onto a

multirefutation 3€=(X,5) of (p,as in 3.12. Pick for each iel a maximal sequent xl23€g(al-).Now

define h:B ->Xby

h(b)=g(b) if ElieI.b>ai,

=xi if b and ai are incomparable andf(b)=ai, for some ie I,
=g(f(b)) otherwise.

We will show that h is a projection; then by 3.12, Bllfcp.

1° Suppose bSBb’; we want to prove h(b)S35h(b’). If b>a,-, then b’ >al- as well, so

h(b)=g(b)Sg(b')=h(b'). If f(b)=ai and b is not comparable with at-,then b’ is incomparable with al

by transitivity of S and by downward linearity. Since f(b’).>:f(b)and ai is an endpoint, h(b')=h(b).

Otherwise, if b’ >a,-, then bsai by downward linearity, so f(b)Sf(al-)=al-, whence
h(b)=g(f(b))sg(ai)sg(b')=h(b'). If f(b')=al., thenf(b)Sal-; so if h(b’)=x,-,
h(b)=g(f(b))Sg(al-)sxi=h(b’).Otherwise h(b)Sh(b') because both f and g are homomorphisms.
2° We must show that h satisfies condition (ii) of definition 3.10; i.e.,

VbeBase §(h(b)).Sgh[[b)B].

The only nontrivial case is the one in which h(b) is defined by the last clause of the definition of h.

So suppose h(b)=g(f(b)), and

(2) iff(b)=a,-, then bsa,-.

Since g is a projection, there exists Se §(h(b)) such that S§g[[f(b))C]. It will suffice to show that

g[[f(b))c]§h[[b)3l

Suppose c2Cf(b). If ce A, then by (1) either c=f(b) or c2b. If ce A, then c>ai for some i with

al2f(b). By (1), at-=f(b)or al2b; by (2), at-2b.So if c>al2f(b), then c>b. We conclude that

[f(b))C;{f(b)}U[b)3
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Sincef is the identity on A, h(c)=g(c) for all ce C. Therefore

8[[f(b))C]=h[[f(b))C]§h[{f(b)}U[b)3]=h{f(b)}Uh[[b)3]=h[[b)3].

since hf(b)=gf(b)=h(b). E]

9.7 To combine first order definitions, we must relativize lL.0—sentences.

Definitien. Let oneL0, and let u be an individual variable that does not occur bound in oz.The
relativization ot“ of onis defined inductively as follows:

(i) 0t": onfor atomic onand oL=_L,T;

(ii) (B—>y)“=[3“—>y“,and similarly for A, v, —i;

(iii) (Vv[3)“=Vv(v2u—>B“)and (3vB)“=3v(v2uA[3“).

Observe that A|=ot“[a] iff [a)Al=ot.

9.8 Igemma. Let K be a class of frames, and Hpe—>\|/Ax.Then if \y,xe E(K), <peE(K) as well.

fiegj: If ursxoc and xEK[3, then <pEKotAB. D

9.9 Theorem. For all ne Z+, E(Tn)=lI.

Prgpf: Induction over n. Since T1=Q, the basis is trivial.

Suppose that E('l‘n)=lI,and (pell.We want to prove that (paE(Tn+1).

Let S be the collection of all full realizable subsequents E§Sf((p). S is partially ordered by the

relation 5 defined in 8.3.1. We shall prove

V26 Swze E(Tn)

by induction on the number of strict successors of 2 in (S,i). This will suffice by 9.8 and

S'={2€ 2}.ThenA26 SW2.

This statement holds because for any model 9 and any point a in Q, all/(piff 326 S'.aII—Z.(Take

2‘.=®(Pg(a).) Since if all-cpno a’ 2a realizes any 216S‘, I-(p—>A26 SAVE.Conversely, alt A26 Say;
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implies that aIb‘2for all Be S’.

Now let Xe S. Let S1,...,Sk be all the subsets S" of S such that

(i) 2* S" ;

(ii) if F(\y—>x)e2 and We 2, then some 2'6 S" contains F(\y—>x).

By our major induction hypothesis —E(Tn) = II—we have an 1L0-sentence [3such that

(2) —'BE1*n\V}:,

The second induction hypothesis is

(3) for all Z'e U19-SkSl-,we have an 11.0-sentence I32.such that -1B2«ETn+1\|!Z-.

Let B" be an ILO-sentencesuch that

(4) W16 TR :Al=Bniff Ae Tn.

Suppose Si = {El-J,...,Zi'm’}, lsisk. Using (3) we can construct L0-sentences 81-=8‘-(u,v1,...,vm‘)
such that

(5) V/AeTR :Al=8i[a,a1,...,am‘] iff a1,...,am_are distinct covers of a,I

and for lsjsmi, [aj-)At=[32‘_.):

Take 8,:

/\1SJ-Sm‘ [u<vjAVv(uSv<vJ-—>vSu) A

/\(—1Vj.<_V}-I1sj1¢j2sm,. ) A /\1SjSm:(B£{f"j].

The formulas Si correspond with case (A) of 9.4.

Using (3) and (4) we can construct L0-sentences at-=8‘-(u,v,...,vm;),for lsisk, such that

(6) VAE TR :Al=el-[a,a1,...,am’]iff {a,a1,...,aml_} is an antichain,

[aj-)t=[3ZU_forlsjsmi, [a)AI=[3n,

and every aj (1sj_<_m,-)covers a predecessor of a.
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Take 81-=

/\(—uComp(u,vj)| lsjsml-) A /\(—:Comp (vj-,v,)| 1Sj<lSmi) A

/\< (B235-I Isjsmi >A (B,.)“A

/\(Vv(v<vj—-)v<u) I lsjsmi ).

The 81-are meant for case (B) of 9.4.

Now let 7 be

3W[fiBn/\B]w V

[Bu/\V1gSk( 3uv1,...,vm'_5l-vVw( [3n—)3uv1,...,vmi£l- )“’)]

(The first disjunct of ‘ydeals with the possibility that (pis refutable in a subframe [a)Ae Tn.) Our

aim is to prove that

‘V}:,ETmT"Y

Let Ae TM]; and FA={aeA | [a)i5 Tn}, as in 9.4.

(1) Suppose (A,V)lb‘\yz, and AI=—:3w[—.B"/\[3]”’.Then F A;{aeA la Ilfwz}, by (2). Let F *:=

{aeA|aII—2}.By 9.5, F* is a subset of FA. For as A, let

®(a)=®(p(A'V)(a)= {Ge Sf(F<p)|a|l-G};

so ®(a)e S for all areA. We distinguish two cases:

1. F * has a maximal element a*. Collect covers a1,...,am of a* such that

(a) if F(\|J—>x)e2 and We 2, then for some aj (lsjsm), F(\;/—>x)e®(aj);

(b) if lslatjsm, then (-3(a,)¢€-)(aJ-).

Then for some i between 1 and k, {®(a1),...,®(am)}=S,-, and since by (3) [aj-)I=[39(aI)for lsjsm,
AI=8i[a*,a1,...,am] by (b) and (5).

2. There is no maximal element in F *; then F * is an infinite upwards closed chain in A, by 9.4 and

since F *QFA. Suppose b0II~21.Then a1,...,ame F * may be found satisfying (a) and (b) of case 1,
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and covering elements of F *n[ b0). Then a1,...,am are mutually incomparable; by (3), [aj-)l=[39(aj)
(lsjsm). Since F * is infinite and A is a tree, there exists be F * incomparable with a1,...,am.

Again, for some i (1Si_<_k),{®(a1),...,®(am)}= Si. By (6), we have

Al=e,-[b1,a1,...,am].

This process may be repeated with bl instead of b0, and so on ad infinitum. At least one Si must
recur infinitely often; then

Al=Vw(Bn —)3uvl...vm;el-)“’.

(11) Suppose A|=Y,we must show that Alblu/2.

IfAl=3w [—.BnAB]“",then Allfulz by (2) and 2.4.1.

If Al=5i[a,a1,....,amg, then we can apply lemma 9.6.3 with C={a} and B={a1,...,am',}, proving

{a}U u([ai)|1sj$mi) ||/ wz . By lemma 2.11.6, {a,a1,....,amI} is a strong subtree of A; hence by
lemma 9.6.4, Allfwz.

If Al=BnAVw(Bn—>3uv1,...,vm_ei)“’,we can construct a strong subtree B of A as follows. Let bo

be the root of A; then b’0e FA, and there are a 1(0),...,am_(0), blzbo such that

AI=el-[bl,a1(0),...,am§0)].Then B0:=(b1] u{a1(0),...,am§0)} is a strong subtree of A, with endpoints

a1(°),...,am§°) and b1, and ble FA. (The canonical embedding B0‘->Ais strong by lemma 2.11.6.)
Continuing with bl, and so on, we find (Bn|m.=.N)such that B:=u,,Bn is a strong subtree of A, as

shown in the picture, with endpoints a1("),... amf") ( ne N).

b2 0], (1)

Since [aj-("))I=[3}_-I“,[aj(")) I|;‘\y£l"_by (3). Since Si satisfies (i) and (ii) above, we get
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Buu ([aj-("))A| ne N, lsjsmi) nwz

by lemma 9.6.3. By lemma 9.6.4 we conclude that A|b‘\.|!z. Cl

9.10 mfinifign. The class of all finite binary trees will be denoted by FTR2.

9.11 Theorem. If TR<2>gKgTR, then E(K)={(pe 11| Hp or FTR2II;‘<p}.

_l’_rc_>_Lf:Let <I>:={ <pe11| I-(p or FTR2II;‘(p}. Suppose TR(2)gKgTR. Then obviously

E(TR)gE(K)§E(TR(2)). We claim that (1) E(rR<2>)g<1>,and (2) <I><;E(TR).

As to (1), let we (D,and suppose \yETR(2)ot,with mk(a)=n; set m=2"-1. Since Vul,by lemma 9.1

there is a binary tree A in which w is not valid (since we (I),A must be infinite), and in which every

point has maximal successors. We may extend A to a full binary tree satisfying P(n) (cf 8.14); then

still B Ilfw,since A is a p-retract of B(2.11.12). Hence Bbiot.Since Fm satisfies P(n), F mblozby

8.15. Consequently, Fm Iblw,contradicting we (I).

To settle (2), suppose cpe(D. If Hp, then (pET. If FTR2Il;‘<p,then for some m, F mllfcp(as before,

extending a given binary tree and using 2.11.12). By 9.9, there is some oneL0 such that <pE1;“a.
Take Bme]L.0 such that Al=Bmiff Ae'l'm: then (pa-mot/m Bm.For suppose Al=Bm ; then Fm

is a p-morphic image of A by 2.11.12, hence AIb‘cp. III

9.12. If TR<2>gKgTR,thenE(K)isdecidable.

BLQQLWe have seen in §3 how to decide whether (p61 is universally valid. A related procedure

decides whether FTR2IHp: try to construct a monotonic refutation of (pin which |S(x)|s2 for each
sequent x. If there is such a refutation, then the induced model can be unfolded to a finite binary

tree in the standard way. Conversely, if Ae FTR2 and (A,V) |b‘<p,then a refutation as described

can be obtained from (A,V) by the method of §8. Begin with a maximal node aO||;‘<p,and let

®(a0)=®¢("‘-V)(ao) be the root of the tableau. If a1,a2 are the covers of a0, G-)(a0)-<C-)(a1),(9(a2) is

guaranteed by the maximality of a0_Set S(®(a0))={(-3(a1), E-)(a2)}.Repeat this for maximal at.’with

®(a,-')=®(a,-),for i=l,2 - for i=1 only if ®(a1)=®(a2). Continue in this way with new sequents

G-)q,(A’V)(a),up to the endpoints of A. Since in a simple tableau each sequent has just one successor
set, you need not look at successors of a if (-9(a)has been processed earlier in the construction.

[I
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9.13 Examples

(a) Recall the stability principles (6.4). Example 8.9 implies that FTR2 II-SP2.By very similar

reasoning, FTR2 II—SPnfor all n>1. Hence by 9.11 and 6.4, SPne E( TR) iff n=l.

(b)Let p0,...,pn (n21) be distinct proposition letters. The n-ary branching restriction BR” is the
formula

(De Jongh & Gabbay [1974]). It is known (and may be checked in a straightforward manner) that

BR" is refutable in a finite tree A iff A is not n-ary. Consequently, BR" e E( TR) iff n=1.

9.14 One might have hoped that the above procedure would also work for DLO. It does not. In

panicular, E(DLO)¢ E(TR), and if we let D" be the class of those downwards linear orderings in

which Fn cannot be embedded, E(D3)¢lI. (N.B.: E(D2)=E(LO)=lI, since frames in D2 are disjoint
unions of linear orderings.)

Example. Let (p0:=(p—>—.qvaaq)v(—lp—>—.qv—.—.q).We sketch a refutation of (p0:

f‘V\
Tp ,F-wq ,Fw—.q Twp ,F—:q ,Fw—aq

T4 T-'q B1

(p0is deterministic. Projection of F 3 onto the tableau above is the only F(p0-labeled frame with
downwards linear domain. By lemma 7.3 and theorem 7.4, for A6 DLO we have

AIlfcpoiff A has a minimal Fcpo-labeled subframe iff F 3 can be embedded in A

iff Ae D3.
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Hence FTR2Ib‘q>oASP2.By 9.11, cpo/\SP2e E(TR). But cpo/\SP2EE(D3): consider example

6.8(b). In the frame A in that example, (p0ASP2is valid; D3 is elementary, and closed under

disjoint unions and generated subframes; so, since cpo/\SP2is not valid the ultrapower I'[UA,

(POASPZEE(D3) by 6.7.6.
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This section just contains a few examples. We show that the formulas BR", of which only the first

belongs to E(DLO), are elementary on FPO. A theorem of Doets [B] (stated in 10.3) provides a

method to prove nonelementarity. We shall find that not only E(FPO);¢_E(DLO), but E(DLO)§,Z
E(FPO) as well.

10.1 Branching restrictions

Let [3n(u,v0,...,vn) (n 2 1) be the L0-formula

/\ u<vi A /\ (wvisvj-| ij_<_nand iatj) A
/\

isn

\'/w (uSwSv- v- —>/\kSn wsvk).i<jSn 1’ _]

Then A l: [3n[a,a0,...,an] iff {a0,...,an} is an antichain and a branches into {a0,...,an}. Set

an := Vu v0 vn —1Bn.

Recall the formulas BR" (n21) of 9.13(b). Quite analogously to that example, it may be shown that

BR" is refutable in a finite partial ordering A iff A l=Eluvo vn B" ; thus BR" EFPO an. (Cf.
the remark below.)

Remark, On the class of all frames, the formulas BR" are essentially second order. Yet in a way

they are not very complex. We can state a necessary and sufficient condition for BR" to be
refutable, in terms of only points and the ordering:

(*) A HfBR" iff A II—Eluv0 vn B" orA contains an infinite comb.

(*) can be formulated in the infinitary language Lwlcol.We will show how to construct a valuation

refuting BR" if A II—Bu v0 vn B"; the other case is similar (cf. the treatment of SP2 in 3.8).

Suppose A I=[3n[a,a0,...,an]. We may assume that a is the root of A (2.4.1). We are to define a
valuation V on A such that

(Aivfl) "71Ajgn ((P,' ‘3‘ V_,'¢,'Pj)-) Vj¢,'Pj) -3’ Vign P,’

For a’ e A, let
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a’ 95 V(pi) iff Elj;-ti:a’ S aj.

Then V(pi) is upwards closed, for if a’ as V(pi), then a’ precedes some ai with j¢i; then so does
every predecessor of a’.

It is easy to see that a N7‘pi, for all 1'Sn; and that ai |l-pi, while ai H7‘pi for all j¢i.

By B", any a’ e A either precedes all the ai (isn), or precedes at most one ai. If a’ S ai, then a’ N7‘

pi —) VJ-¢ipj. Hence if a’ S a0,...,an, a’ N7‘pi —> VJ-ii

a'||—pi,so a’ II—Vpj for every i'=.ti.Finally, if a’ does not precede any of aO,...,an, then a’ Ilrpi

for all isn. Therefore a II—/\i9i ((pi —>VJ-iipj) —>VJ-iipi). Since a’ N7‘Visii pi, a’ IlfBR".

pj for all isn. If a’ precedes only ai, then

10.2 For each n e Z+ we define a sequence of frames A", An’, Aii”, as follows. A" consists

of nodes ai (i<n), bi (i<n) and c; c is the root, Cov(c) (the set of covers of c) is {b0,...,b,i_1},

Cov(bi) = {ai,ai}, where jEi+l (mod n), and the ai are endpoints. Below is a diagram of A4.

:Z><Z;><i><Z\//
Let us write s(”‘)for s with m primes. The frame A,i(”')consists of m+1 copies of A", with the

roots identified. Formally, we put A,i(’")= {c} u {ai("),bi(") | ksm, i<n}. The order extends that on

A" by Cov(c) = {bi-U‘)Iksm, i<n}, Cov(bi(k)) = {ai(k), aj-(k)}with jEi+l (mod n); the aid‘) are
endpoints. Below is a diagram of A4': \ /

\ /‘
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10.3 Er_Qp_Qsj_tj_Q_t1(Doets). If 1 2 2"+2—3, then A, 2" An’.

10.4 Example (Doets). Recall from 6.8(a) that

SC:= [(—u—p—)p) -—>pv ap] —)—p v -mp.

The frame A in 6.8(a) is one half of an infinite version of the frames Ai defined above. In

particular, A, II—SC for the same reason as A Il-SC: if (Ai,V) II/SC, then Cl}-(-1—np-)p)-)pVfip,

and there must be ai, ai with j —=-i+l (mod I), one of which forces p, while the other forces —ap.

Then bi II-—.—.p-> p, hence bi ll-p v—:p, so bill-p or biIl——.p.But whatever bi forces, ai and ai
must both force: which they fafl to do.

On the other hand, it is easy to see that Ai’ IlfSC: let V(p) = {ai | id}; then bi lb‘fifip —>p,

bi'l|——ap,and c |l- (flap —)p) —)p v wp, c II;/wp v w—ap.

Now suppose that SC is elementary on FPO; say SC '=‘F-P0on.Let rnk(oL)= n and m22"+2—3.

Then Am l=at, so Am’ l=onby 10.3; hence Am’ II-SC by the assumed equivalence, contrary to

what has just been shown. We conclude that SC 6 E(FPO).

figmagk; We will prove in the next section that SC e E(DLO) (11.4). Thus, the example shows

that E(DLO) gl E(FPO).

10.5 Further examples

The proof of proposition 10.3 consists of a consideration of Ehrenfeucht games. Roughly, as 1

increases it takes longer (= takes more quantifiers) to tell that an ai’ is further removed from an ai
than any ak. This suggests the following, trivial, generalization:

Cpmuam, If I _>.2”+2—3,then Ai 5" Ai(’").

(a) Recall that SP2 is

("‘PV‘*‘VV'"X ") ‘PV\VVX)-9 —'<PV"\VV"X

with (p = p/\q, u! = p/\—1qand x = —.p/xq.Similarly to the example above, one can show that

AiIl—SP2:if c II——.(pva\yvax —>cpvutvx, then since each bi has only two strict successors,

bill-cpvwvx. If bi II-(p,and ai, ai are the covers of bi, then ai and ai both force (p; then bi must
force (pas well. Proceeding in this way, we find that all bi force q)(or all force W,or all force x).

So Ai I|—SP2 , and since Aim IlfSP2 (cf. 8.9), it follows that SP2 6 E(FPO).
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(b) SP2 was generalized to a sequence (SPn)ne2+ in 6.4. It can be shown, by an argument

resembling that of (a), that A1 ||—SP" for n>2; it is straightforward that A,9‘) H7‘SP". Thus

SPne5E(FPO).

Recall that SP” was defined as

with cpj= /\ 1-(k (—:)f}(")pl-,where k is the least number such that 2k2n+l, f0, ..., f2k_1 are the
functions from {0,...,k—1}into {0,l} in lexicographical order (0 preceding 1), and (—:)0pi= pi,

(—u)1p,-= —.pi.A necessary and sufficient condition for SP" to be refutable in an arbitrary frame A

seems essentially harder to formulate than for BR". The following would do:

for some a e A, there is a partition {A0,...,An,B} of [a)A in which A0,...,A,1are

upwards closed, a e B, and every element of B has successors in each A1-(isn).

The idea is to make Aj = V(<pj).This condition is more complex than (*) in 10.1 in that it involves
quantification over sets.

10.6 On DLO every ll-formula has an equivalent in lI[v,—>](theorem 4.7.6); on FPO this is not

true (cf. 4.5). Now the contrast between the formulas BR" (first order definable by 10.1) and the

formulas SP" raises a question, which does not seem easy to answer:

are all ]I[v,A,—>]-formulasin E(FPO)?

The answer might help to clarify the role of negation.

10.7 A-definability

Every subclass of FPO that is closed under isomorphism is A-elementary. For suppose K g FPO

is closed under isomorphism. For every A e FPO - K, we can take the conjunction 5Aof the

diagram of A, and turn this into an 1L0-sentenceSA‘by exchanging constants for variables and

quantifying existentially. For every n e N, there is an lL0—sentenceKnsuch that, for A e FPO,

A |= Kn iff |A| = n.
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Then K is defined by {-w(8A‘A Kw) IA e FPO - K}.
It follows that on FPO every I-formula is A-elementary. So in FPO A-elementary I-formulas need

not be elementary; in contrast to the elementary frame classes (cf. 1.9).
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For a proposition letter p, we let l[(p)be the set of all ll-formulas that contain no proposition letters

other than p. The logical structure of these 'monadic' formulas is completely known. Using this

structure, we prove that all monadic formulas are elementary on DLO (11.4), and establish for the

classes PO and FPO which monadic formulas are elementary on them. The results are tabulated in
11.9.

11.1 The Rieger-Nishimura Lattice

Let (Mn In e N) be the following sequence of ll(p)-formulas:

M0=_L,M1=p,M2=ap;
for odd n>2, Mn = Mn_2 v Mn_1;

for even n>2, M" = Mn_2 —>Mn_3.

T
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It may be shown, by patient induction, that every ll(p)-formula is logically equivalent to some M",

or universally valid (logically equivalent to T). (This was first done by Rieger [1949], and

independently by Nishimura [I960]. An idea of the proof can also be gained from Gabbay [l981].)

Similarly it may be established that 1-M” —->Mk precisely when this is (inductively) obvious from

the definition. We get the following neat picture of the Lindenbaum algebra of intuitionistic
1propositional logic restricted to ll(p) (the free Heyting algebra on one generator , sometimes

referred to as the Rieger—Nishirnuralattice). (On the previous page.)

There is a general method for turning complete Heyting algebras (= pseudo-Boolean algebras) such

as this into equivalentz frames (Raney [1952]). It consists in selecting those elements of the

Heyting algebra that are not the join of all strictly lower elements, and inverting the ordering. The

above then becomes (observe that O= V0) the following frame M:

1 2

4 o

8 10

12 14

16 18

11.2 Examples, Several lI(p)-formulas have appeared in earlier sections. The principle of excluded

middle, pv—:p(6.3(a)) is M3. By the rules for constructing the sequence (Mn)n, M4 would be

—,p—->p.Here, however, a simplification is in order: l'(-‘up—>p)(—)-1—1p,hence we may take M4 =

—1—1p.A more sweeping simplification is as follows: for odd n25, Mn=Mn_1vMn_2=

(Mn_3—>Mn_4)vMn_3vMn_4; since 1-Mn_4 —>(Mn_3 -9 Mn_4), we may reduce Mn to Mn_1vMn_3_

Then M5=—.pvw—.p=KC (1.4, 2.6). Next, M6 would be w—.p—>pvwp; simplifying once more,

we let M6=—.—.p—>p.In fact, for all even n26 we may take Mn=Mn_2—>Mn_5: for

Mn=Mn_2—>Mn4vMn_5, and Mn_2=Mn4—>Mn_5.(To algebraists all these reductions may have

been clear from the diagram.) Then finally, SC = [(—mp—->p)—->pV—:p]—-)—apvafip =
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11.3 Minimal refutations.

There is an intimate connection between the frame M and the minimal refutations of the monadic

formulas.

Define a valuation V on M by V(p) = {1}. Then k II-Mn iff F Mk —>Mn, as can be shown by

induction over the sequence (Mn)n. Indeed, the cases n=O,1,2 are easily calculated. If n>2 and n is

odd, k ll- Mn iff k I|—Mn_1 or k ||- Mn_2. So by induction hypothesis, k I|- Mn implies

FMk—>Mn_1 or FMk—>Mn_2, hence F Mk—> Mn. Conversely, if F Mk—>Mn , then by the

Rieger—Nishimura latice, k=l and n23, whence k II—Mn by k It Mk; or k is even, and n=k+1 or

n>k+2. If n=k+1, Mn = Mkv Mk_1, and k ||- Mk by induction hypothesis. If n>k+2, then

I-Mk-—)Mn_1,and k |I-Mk by induction hypothesis.

Let M := (M,V). Define a refutation 36,,= (Xn,Sn) of Mn as follows. Let k be the highest element

of M that does not force Mn in 1&1.Then let Xn be the image under (-DMFMof [k)M; and x e

Sn(C-)mFM(l))iff x is the image of an immediate successor of I in [k)M. “

In fact, 35:,is the unique minimal refutation of Mn. Note that k in the definition of 3€nis 1 if

ne {O,2}, n+1 if n is odd, and n—2if n24 and n is even. The minimal refutation of M3 is presented
by

I F(PV—Ip), ,

If n>4 is odd, then FMn decomposes to FMn_1, FMn_3; which gives rise to distinct strict

successors {TMn_3, FMn_4} and (if n27) {TMn_5, FMn_6} ({Fp} if n=5). If n>4 is even, FMn

reduces to {TMn_2, FMn_3}, with successors as for FMn_3. Clearly (Xn, $35.) 2-[k)M.
Thus each Mn has a single minimal refutation Kn = (Xn, Sn). Moreover, if x,y eX n, and xT Q yT,

then x 33;.‘ ; therefore the induced ordering in any tableau (Xn, S) is $35,‘.Now suppose f: A ——»35

is a minimal FMn-labeled subframe of a frame A. Then every component of 35 has 3€nas a

subtableau. By minimality, each component has the same sequents as 3€n(cf. definition 7.2.2).

Since Sxkis maximal, the induced frames of X and 36,,must be the same.
Since every point of M has at most two covers, the result of unfolding a frame [k)Mto a tree is

binary. Let us denote this tree by Tk. Now suppose A e DLO, (p e l[(p), and A II/(p. For some

ne N, |- (,0(-9 Mn, so A II7‘Mn. By lemma 7.3, A has a minimal FMn-labeled subframe f: A ——»35.

We have seen that we may assume X = 36,, Now if [k)n5 Xn, domfz Tk, since A e DLO. This
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proves:

Qmma; For each (pe ll(p), there is some k e N such that for all A e DLO, A Ilfcponly if Tk can
be embedded in A.

11.4 As we have just seen, each formula Mn is refutable in a finite binary tree; so by theorem

9.11, M" is elementary on the class of trees. The above lemma allows something stronger,
however.

_TLeme;n_;1(1))Q E(DL0)

Erolf; Suppose (p e 1[(p);let k be as in the lemma. There is an 1L0-sentence 8k such that for

Ae DLO, AI=8kiff Tk can be embedded in A. We show that (p ‘=‘DLOafik.

(=>) Suppose A e DLO, A l=Bk.Then by 2.11.12 there exists a p-morphism g: A —-Tk. Since

Tk II;‘(p, A II/ (p by 2.4.2.

(<=) If A e DLO and A H7‘(,0,then by the lemma Tk can be embedded in A; hence A |=8k. D

11.5 We know from 6.8 that M10 is not elementary on PO. Let us compare the frame A of 6.8(a)

with [8)M (in which, by 11.3, M10 is not valid). We may picture [8)M thus:

1

4/
8

[3)M

2

Now A may be regarded as an infinite series of copies of [8)Mglued together, in which every time

between 8 and 2 a predecessor of 1 has been interpolated. As shown in 6.8(a), these interpolations

make it impossible to refute M10 in A. Now [lO)M, like [8)M, is not wholly trivial; we show that it

can be treated similarly. The germ of the construction is pictured below. (On the next page.)
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As the reader can check, extending the ordering of [1O)Mby 4 S 2 (broken line) produces a frame

in which M12 is valid.

Let B = {an, bn, en | n e N}, ordered as follows: the covers of a0 are b0 and co, and for n>O,

Cov(an) = {an_1, bn, cn}; b0 is a maximal element, and for n>O, Cov(bn) = {bn_1,cn_1};every C”

is maximal. (See the diagram below.)

0

C2 6'1 l '70

. Cs : I |

[4 bl b3 61/004 l /1I /"2
E04203

(1

We show that B II-M12. Recall that M12 is

([(wwp —)p) -—>pv —p] —>—p v —:—p) —>—mp v (a—:p ——)p).

Suppose that (B,V) ll,-‘M12. Then there must be a partial projection f of B onto the minimal

refutation of M12 —the induced frame of which is [lO)M—with each b e domg realizing f(b). In

particular, there must be some a e B forcing M10 (= [(—.—p—>p) —>p v —.p]—>—:pv -1-—.p),and

some b>a forcing flap and not forcing p. a must be some an, since in [b,), bn<x<y&bn<x’<y'

implies thatx and x’ are comparable —which excludes domfg[bn). a has successors forcing —up,so

b may be assumed minimal: if b'<b, then b'Il;‘—mp.There exists ai <b with at-_1<;tb;asai. Suppose

at-SxII——mp—>p.Then x>al-, because of b; hence any maximal successor y of x succeeds b, so

yll-p. It follows that xII——.—:p,so xI|—p.Therefore at-lI—(w—up—>p)——>pv—.p.Because asai, at-I|—M10;

so at-lF—1pv—1—ap. Since at-<b, at-Ilfap. So al.|l—w—up,contradicting the minimality of b. We

conclude that BII—M12.

As in 6.8, take a nonprincipal ultrafilter U over N, and consider B’ = IIU B. Reasoning parallel to

100



§11. MONADIC FORMULAS.

6.8(b), we see that B’ ends in an isomorphic copy of B, below which a set {a’n, b’n,c'n | n e N}

may be found such that CovB(a’n) = {c'n, b’n, a’n+1}, CovB(b’n) = {c’n+1,b'n+1}, and each c'n

is maximal (as in the diagram below).

c’ C4

. C’ Ic
c’ 1 I ’I [’

'0 I1 |.2/a3/
I/av]/"2

...... .. ab

BI

Let a* e B’ be the element of the isomorphic copy of B that corresponds with a0 5 B. Define a

valuation V’on B’ by

for all b’ e B’, b’ e V’(p) iff b’ ii a* and for all n e N, b’ $ c’n.

We will show that (B',V’,a’0) lb‘M12. We consider [a’0) only. Let W = {a’n, b’n, c'n}n€ N. Then

c’n||-—.p, for all ne N, and elements of [a'0)—W either precede a*, or force p. Since

a*|l~{T—.—-.p,Fp}, a’0 lb‘—mp —>p; by c'n|I-—.p, a’0Ib‘—»-up.Similarly, b’n|b‘—.—-up.It follows that

b’n lb‘—mp —>p: if b’ 2 b’n and b’ Il-a——.p,then b’ $ a* and b’ as W, so b’ Il—p. Now suppose

b" 2 do and b" |l- (w—:p -—)p) -—>p v —up.Then b" $b'n, for all n e N, since b'n II-—.—p-—)p

and b'n lb‘p v —1p.So b" is a c'n, and forces —ap;or b’’ as W and b" II-—1—1p.Therefore a’0 Il

[(w—»p—>p) —>p v —p] —>wp v -1—:p.We have shown that a'0 lb‘M12.

We conclude by 6.7.6 that M12 95E(PO).

11.6 Thoorom; For all n2lO, Mn 6 E(PO).

Proof; The cases n=10, n=12 have been dealt with, in 6.8(a) and 11.5 respectively. We will

assume that the frames A defined in 6.8(a) and M defined in 11.1 are disjoint.

Suppose n=1 1. Let C12 = {1,2,6,12} u A, with the ordering inherited from M and A extended by

12 S A (see diagram on next page).
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A l\6/2\/
Obviously, [b) Il-M10; we know from 6.8(a) that A II-M10. Thus, by a consideration in 11.3,

C12IFM11: for (C12, V, 12) H7‘M11 requires that M10 be not forced in a strict successor of 12.

Taking an ultrapower HU C12over a nonprincipal ultrafilter U over N is tantamount to replacing A

in C12 by l'[U A, by Lo§'s theorem (6.7.1). Now, there exists a p-morphism f: IIU A —»[8)M, as

shown in 6.8(a). Extending f with the identity on C12-A, we get a p-morphism IIU C12-»[l2)M.

Since [12)M I17‘M11 (as noted in 11.3), [[0 C12 II7‘M11 as well (by 2.4.2).

For n=14, the same frames and p-morphism work: since M14=M12—>M11,and C12lFM11,

C12||—M14;and [l2)M lb‘M14 by 11.3.

For even k>12, let Ck := ([k)M—{8}) u A, with the ordering inherited from M and A extended by:

m SC14iff m SM 8. The diagram below may help to visualize this frame:

i\2

I

4 6

1A '0. I .' . O

'51.’, .1. .~

,. ""_i4
E ’:.... . .\\ 2

136" ’. 18

Let C8 := A, C10 := [lO)M. In C10, M12 can be refuted, but M10 is valid. As to the latter claim:

observe that C10 is isomorphic to [8)M with the interpolation mentioned in 11.5. If (C10,V)I|;‘M10,

then 6 H7‘—:pv —mp and 6 IF (w—1p—>p) ——>p v —.p. It is easily seen that 6 must force fi—1p -9 p,

from which a contradiction follows.

We may continue inductively. Let n=k—1(so n is odd); suppose Mk_4 is valid in Ck_4 and Ck_6.As

noted in 11.3, k H7‘Mn implies that Mn_3 is not forced in some strict successor of k. Since

n—3=k—4,Ck I|-Mn. Taking an ultrapower Ck’= HU Ck over a nonprincipal ultrafilter U over N

(that is, replacing A by HU A), and extending the p-morphism f: IIU A—-[8)Mby the identity on

Ck—A,we get a p-morphism Ck'—-[k)M,so Ck'|I/Mn, by 2.4.2 and a remark in 11.3. Similarly,

Ck'l|;‘Mk+2; while Ckll-Mk+2 is immediate by Ck||—Mn(n=k—1; Mk +2=Mk—>Mk_1).

Thus no Mn with n21O is preserved under ultrapowers. By 6.7.6, Mn e E(PO) for n210. El
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11.7 Theorem, For all n<10, Mn 6 E(PO).

Proof; This follows immediately from corollary 7.4 since, by 11.2, for n<10, Mn may be written
as a deterministic formula.

11.8 First order definability of ll(p)-formulas on FPO was investigated by Doets [B]. There

appears a difference of one formula. To begin with, we know from 10.4 that M10 as E(FPO).

Then the argument of 11.6 may be adapted to FPO, using frames A, and A1'from §1Oinstead of A

and flu A, and considerations of quantifier rank instead of the overall elementary equivalence of
frames to their ultrapowers. We state without further proof:

11.8.1 Theorem (Doets): If n21O and n¢12, Mn 95E(FPO).

11.8.2 Unlike A of 6.8(a), the frame B of 11.5 has infinite height. This difference proves essential.

flgorem (Doets): If n<1Oor n=12, Mn e E(FPO).

B; For n<10, the statement follows from 11.7. So only n=12 remains to be considered. As

before, u S v v v S u will be abbreviated to Comp(u,v); we also introduce CS(u,v) for Elw(u S w

A v S w) (u and v have a common successor). Let B1, B2, B3, B4be the following formulas:

B1:= x10<x6,x4 Ax4 <x1Ax6 <x2,x1'

B2 := Vy (x10 Sy 5x6, x4 —>y Sxlo)

B3 := Vy (xlo < y A Comp(y,x4) -9 —1CS(y,x2))

B4 == V)’ (x6 < y A C0mP(v.x1') —> -=CS()ux2))

Let B := B1 A B2 A B3 A B4; and B be the existential closure of B. We want to show that

M12EFP0"B

(=>) Suppose A e FPO and A l=B[a10, a6, a4, a2, a1, a1’] (alo corresponding with x10, etc.).

Definef: [a10)A -—>[1O)M by

f(a) = 10 ifa = am;
:4 ifa1O<aSa4;
=6 ifa10<aSa6;
= 2 if a and a2 have a common successor;
= 1 otherwise.

Then f is a (surjective) p-morphism. First, f is a homomorphism by B1and since, by B3,a1,a4$a2,

and, by B4,a]'$a2. Second, the p-morphism condition is satisfied: al 2 a4, andf(a1) = 1; a1'2a6,

andf(a1’) = 1; a2 2 a6, andf(a2) = 2. Since [1O)M II7‘M12 by 11.3, A H7‘M12 by 2.4.2.

(<=) Suppose (A,V)II;‘M12.Choose a10Il—{TM10,FM7} such that no a>a1O realizes {TM10, FM7}.

Since by 11.3 there must be a partial projection g of [(110)A onto the minimal refutation 3€12=(X12,
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S12) of M12, [31is satisfied by am and certain a6, a4, a2, a1,a1’ Zalo. Let us identify (X12,sxn)
with [1O)M(cf. 11.3), and assume g(al-(’))= i. To check [32,note that am 5 a S a6, a4 implies g(a)

S3e‘£g(a6),g(a4), hence g(a) = g(a10), and by maximality of am, a = am. For [33,note that a2|l-—:p,
a4 II-{T—mp, Fp}, and am < a implies a II——.—pv‘ (—.—.p—>p) by maximality of am. Finally, [34

must hold since we may assume that a6 is maximal among the points a 2 am that realize {T(w—p

—>p), F(p v —p)}; then Comp(a, a1’) implies a II—p. D

11.9 The table below sums up the results of this section. Plus means elementary, minus

nonelementary.

Mn n =10,1 1

Classes n<1O n :12 or 71>12

PO + — 

FPO + + —

DLO + + +

Footnotes:

1There will be more on Heyting algebras in §14 below.

2 In a sense to be explained in §14.
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§12. Syntactic closure properties and proper
inclusions of classes E(K)

In some respects, the results of the preceding sections are rather scattered and incomplete. We now

tie up some loose ends from two points of view: syntax of ]I-formulas (12.1-4) and proper

inclusions of E(K) for different classes K of frames (12.5).

12.1 Theerem; Let K be a class of frames. Then

(a) if <9»\l! E E(K). ‘P/“V E E(K);

(b) if (pand u! have no proposition letters in common and \Ve E(K), then (p—>we E(K);

(c) if (pand Wbelong to E(K) and have no proposition letters in common, then cpvwe E(K).

i1’Lo_cLf;

(a) follows from 9.8.

(b) If l- —a(p,then l- (p—)\|l, so <p—>\VE T. If b‘—:<p,then by 4.7.4, (p is classically satisfiable; say

V0 l=(p. It will suffice to show that w E (p-—)\|I.

(=>) If A Il—1;/, then obviously A ll—<p—>\y.

(<=) Suppose A lb‘qt; let V be a valuation such that (A,V) lb‘\|I. Since (p and u! do not have any

proposition letters in common, we may assume, using 2.1, that for each proposition letter p

occurring in (p, V(p) = A or V(p) = 0, according as V0 l=p or not. Then (A,V) Il-cp, hence

(A,V)|l/‘ <P—>\l'

(c) If on A e K there exist valuations V1, V2 such that, for some a e A, (A,V1,a) lb‘(p and

(A,V2,a) lb‘qt, we can combine V1 and V2, by 2.1, to a valuation V such that (A,V,a) lb‘(p and

(A,V,a) lb‘xv. Suppose that (p E onand w E B. Relativize ozand B to on“and B“ (as in 9.7). Then it

is easy to see that (pV\|I2 Va (oL“v B“). D

12.2 Qerellag; For any class K of frames and all (pe l, —.(pe E(K).

Em; Recall that —1(p= <p—>J..Since _Lcontains no proposition letters, and may be considered to

belong to L0, we can apply (b) of the above theorem. D

12.3 Theerem; The following implications do not generally hold for (p,\y6 ll:

(i) WV 6 E(P0) => <P—>\lI6 ECTR);
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(ii) (pe E(PO) => (p[r:=—1r]e E(TR);

(iii) (p/upe E(PO) => (pe E(PO) orwe E(PO).

Prggfz

(i) Consider SP2 (see 1.9). It is not elementary on TR, by 8.16 and TR(2) Q TR; by corollary 7.4,

both its antecedent and its succedent are elementary on PO.

(ii) Let (p0 = (w—1r—>r) A SP2, with r a proposition letter not occurring in SP2. If A II——mr —>r,

then A II—SP2; hence (cf. 6.3(a)) (p0 E Vxy (xsy —>ysx). But (p0[r:=—.r]is logically equivalent to

SP2, which does not belong to E(TR).

(iii) By 11.1, F M7 —>M10/\M12. By 11.6, M10 and M12 do not belong to E(PO); by 11.7, M7
does. I]

12.4 Remark; The implication (ii) above may be weakened to: if (pe E(PO), and q)‘results from (p

by replacing every proposition letter p in (pby its negation —p,then (p'e E(PO). Even this weaker

version is not valid; as is shown by the same example (p0.Let SP2‘ be SP2[p:=—p, q:=wq]. Since

FTR2 Il-SP2, FTR2 II—SP2‘ by substitution (2.2). Now the proof of 8.16 may be seen to go

through, if we change V(p) to U({n}><B| n52 (mod 3)) and V(q) to U({n} ><B| n51 (mod 3)).

12.5 If K, K‘ are classes of frames, and K g K’, then E(K') Q E(K). In the preceding sections,

we have proved several noninclusions. Below we give a schema, in which a connecting line

represents a proper inclusion of the lower set in the higher. We denote the class of all frames of

height at most n by HT".

11 = E(IWD) = E(FTR) = E(HT2) = E(LO)

E(HT3) E( P04)

E( TR)

E( FPO) E( HT4) E(P05)

E( DLO)

06
‘Q

E( P0) = E(QO)
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That E(IWD) = I[is shown in §8 (theorem 8.7); for HT2, see 8.18. FTR is contained in IWD.
That E(LO) = l is noted in 7.7. E(PO) = E(QO) by theorem 6.2. The other inclusions shown by

lines or broken lines in the diagram are obvious.

E(FPO) Q E(TR) by examples 9.13(b) and 10.1 (BR2 :5 E(FPO) —E(TR)). By 11.4 and 10.4,

SC (= M10) e E(DLO) —E(FPO).

It was noted in 8.18 that E(HT3) at]I.To see that E(HTn+1) ¢ E(HTn) (n23), suppose the

proposition letter p does not occur in P” (2.8), and consider tpn := PnvSC. By 2.8, HTHII-(pn;

cpneE(HTn+1) by a simple adaptation of the argument in 6.8(a) (add a chain of n—2points under
the roots of the frames involved).

That E(PO4) #11is shown in 8.17. A proof that E(POn) at E(POn+1) (n24) runs parallel to the

above proof of E(HTn) :5E(HTn+1), using (pof 8.17 and the formulas W" of 2.10 with wider
versions of the frame in 8.17 (where still every point has at most two covers).

This shows that the inclusions in the vertical paths of the diagram are proper. We also noted some

relations between these paths. Here are some more: SC :5 E(DLO) —E(HT3); E(HTn) Q E(TR)

and E(HTn) gt E(FPO) for all n (use P" v SP2); E(POn) Q E(FPO) for all n (use W” v SP2). It

may be that E(FPO) Q E(H'I‘n) and E(FPO) Q E(POn) for all n, but this would require further

analysis. We have not shown that E(DLO) Q E(PO4), though it seems rather likely.
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III. ll-definability

This part contains results relating to the question complementary to that of part H: which first order

sentences correspond with ll-formulas?Mostly, however, we will be concerned with a problem that

is, in a sense, preliminary, viz. to characterize ll-definable classes of models and frames in terms of

closure under certain operations.
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Let (Dbe a set of l[-formulas. We shall denote the class of all models 9 in which every formula in (D

is valid (notation: Q Il—(D)by Mod(<I>).We are going to characterize the classes Mod(<I>)in terms

of closure under certain operations known from modal correspondence theory.

13.1 Definition, Let Q = (A,V)and Q’ = (A’,V')be models. A p-relation between Q and g' is a

relation R Q A XA’ such that domR (= {a e A | 3a’ 6 A’.Raa'}) = A and ranR (= {a' e Al

Ela'eA. Raa'}) = A’, and moreover

(i) for all proposition letters p, Va e A, a’ e A’:Raa’ => (a e V(p) ¢:>a’ e V(p));

, 0

(ii) if a1 SAa2 and Ra1a’1, then 3a'2 2A. a'1: Raza 2,

(iii) if a'1 SA.a'2 and Ra1a'1, then Elaz2A a1: Ra2a'2.

It is clear from the definition that p-relations are symmetric: a p-relation between 9 and 9' is also a

p-relation between W and 9.

13.2 Invariance. We say that a property P is invariant for an operation 0 if P can neither be

gained nor lost by applying 0 (equivalently, if P is preserved under both 0 and its inverse); we say

of a formula that it is invariant for 0 if the property of validating it (or forcing or satisfying it in a

fixed element, as the case requires) is thus invariant.

13.3 p-relations are cognate to p-morphisms. Indeed, we began the proof of lemma 2.4.2

(preservation of validity under p-morphic images) by defining, given a surjective p-morphism f:

A—-Band a valuation V on B, a valuation V’on A such that (A,V’) and (B,V) are p-related by the

graph off. The rest of that proof can be generalized to show that ll-formulas are invariant under

p-relations:

Lt-flag, If there exists a p-relation between 9 (= (A,V)) and 53' (= (A',V’)), then for any (pe 11,

SEE|= (p <=> Q’ l= cp.
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fioof; A straightforward induction over ll-formulas (pshows that for all a e A and a’ e A’,Raa'

implies that (g,a) II—(p if and only if (g',a’) II—(p. Conditions (ii) and (iii) are used in the

implication step. Since ranR = A’, Q l=(p then implies 9' l=(p; and conversely, 9' 1=(p => Q I: (p

because domR = A. CI

13.4 Definition, Let (Q, | i e 1) be a family of models Q, = (A,-,V,-).The disjoint union 2,6 , $3,.

is the model Q = (A,V) in which A = 21.5, Ai (2.43) and v is defined by V(p) = {(i,a) e A 1

ae V,-(p)}.

Preservation of ll-formulas under disjoint unions is straightforward:

Lemma, If (gi | i e I) is a family of models, (p e l, and Vi e I. 91- II—(p, then Z‘-E, 91- II-(p.

13.5 Lemma, Let Q = (A,V) be a model. For each a e A, define a valuation Va on [a)A by

VP 6 PI Va(P) = V(p) 0 [a)A ,

and let ga = ([a)A, Va). Then there is a p-relation between Q and XaeA a‘

Pjfi; Take R := {(a', (a,a')) Ia SAa'}. E]

13.6 Ultraproducts. In 1.6, models are taken as structures for L1. This identification fixes the

notion of ultraproducts for models: if 91-= (Al-,Vl-)for i e I, and U is an ultrafilter over I, then the

ultraproduct HU 31-is the model (HU Al-,V) with fU e V(p) iff {i e I |f(z') e V,-(p)}e U (cf. 6.7).

We give translations of two lemmas of 6.7, in which (Q1.| i e I) and U are as above. Define St(T(p)

:= St(<p), St(F(p) := —tSt((p)(cf. 1.6).

13.6.1 Lemma, For all signed formulas G, (HU gt-,fU) II-0’ iff {i e I| (Q1-,f(i)) ||—0'} e U.

Proof; By 1.6 and 6.7.1,

(nu Q‘,fu) it o iff n U $3,.l=St(o)[fU]

iff {ie 1| SE1,I=St(o)[f(i)]} e U

iff {i 6 1| (§,.,f(i)) II-o} e U. D
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As before, we call HU Qi an ultrapower if Q‘.is the same model Q for all i, and use the notation

l'IU Q. We call Q an ultraroot of flu Q. An immediate consequence of the last lemma is

13.6.2 Lemma, ll-formulas are invariant for ultrapowers of models.

13.6.3 Lemma, HU Q‘.is isomorphic to a generated submodel of the ultrapower HU Z1-E1Q1-.

1; Define F: HU Qi —>HU 21-EI Qi by F (fU) = ((if(i))l-E1)U.Let V’be the valuation on the

ultrapower; after 6.7.2, it remains only to show that fU e V(p) iff F (fU)e V’(p).Both sides easily

reduce to {i e I |f(i) e V1-(p)}e U. E]

13.7 Saturation. Let I‘ be a set of first order formulas in which a single individual variable v

may occur free. A structure Q realizes P if there is an element a of the domain of Q such that

Ql=y[a] for all 7 E F (short: Q l=I‘[a]).

Suppose Q is a structure for a given first order language L, with domain A. For a subset X Q A,

lL[X]is the language obtained by extending L with distinct constants .5for all x e X, and QXthe

expansion of Q to a structure for lL[X] in which each J; is interpreted as x. Q is countably

saturated if for every finite A0 Q A, the expansion QAorealizes every set 1"(v)of lL[A0]-formulas

(with only v occurring free) that is consistent with the first order theory of QA0.(F(v) is consistent
with a theory T if T has a model that realizes I‘(v).)

13.7.1 An ultrafilter is said to be countably incomplete if it is not closed under countable

intersections. In particular, a free ultrafilter over N is countably incomplete: it does not contain any

singleton {n}, so it contains all their complements; but it does not contain 0 = r\nEN (N —{n}).
We shall use the following fact (see Chang & Keisler [1973], Ch. 6):

lgmma, Let L be a countable first order language, U a countably incomplete ultrafilter over a set I,

and (Qi | i e I) a family of structures for L. Then the ultraproduct HU Qi is countably saturated.

13.7.2 Let Q = (A,V) be a model, a e A, and (p 6 ll. Then obviously (Q,a) ll—Ftp iff Q l=

-uSt((p)[a]. Thus, every signed formula may be written as an L1-formula; and if 2* is a (possibly
infinite) set of signed formulas, (Q,a) II-2* (i.e. (Q,a) II—o for all 0' e 2*, or a realizes 2*) iff a

realizes St[2*] := {St(G) | G e 2*}. Accordingly, the above lemma may be specialized as follows:

Legal, Let 2* be a set of signed formulas, (Qn | n e N) a family of models, and U a free

ultrafilter over N. Let a be any point in HU Q". If every sequent 2 Q 2* is realized in a successor
of a, then some successor of a realizes 2*.

Brggf; By lemma 13.7.1. That every finite 2 Q 2* is realized in a successor of a means that {a Sx}
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u St[2*] is finitely satisfiable in my sin, a). n

13.8 Recall the notion of generated submodel (1.2.6). By the root of a model (A,V), we shall

mean the root of the underlying frame A.

Theorem, Let M be a class of models. There exists a set (D Q l such that M = Mod(<I>)iff M is

closed under p-relations, generated submodels, disjoint unions, ultrapowers and ultraroots.

Proof; One direction is by lemmas 3, 1.2.6, 4 and 13.6.2. We concentrate on the other: suppose M

satisfies the stated closure conditions. Observe that by 13.6.3, M is also closed under

ultraproducts. Let

<D:={(pe]I|V3JPeM.3lB|I-(p}.

Suppose Q II-(D,Q = (A,V). We want to show that g e M. By 1.2.6, given the closure

conditions on M, we may suppose that A has a root a0.
Let

2* := {G I 0 is a signed formula and a0 II—0'}.

Every sequent 2 Q 2* is realized somewhere in some model in M, for if not, we would have M II—

V: (= /\ zr —>V 2F, cf. 9.5), hence w); 6 ch; since a0 n/ W2, this would contradict Q 1+c1>.

Using closure under generated submodels, we may take for every sequent 2 Q 2* a rooted

M26 M the root of which realizes 2. We suppose M2 is the frame of M2.

Let S be the collection of all sequents contained in 2*. Let XE, for 2 e S, be the set {2' e S | 2'

Q 2}. Since X2. m X2" = Xruzu at 0, the collection U0 := {X}; | 2 e S} has the finite

intersection property. Consequently, there exists an ultrafilter U extending U0. Let f 6 H26 S M}:

be such that for each 2, f(2) is the root of M2. Then by Lo§'s theorem (6.7.1), fl, is the root of M

:= HU M2; and by 13.6.1, (iW1,fU)II—0 for every 0' e 2*, since, as {2| M: II-0} Q X{6} e U0
Q U, {2| M: II—0'} e U. Moreover, fit e M by closure under ultraproducts.

Take a free ultrafilter U’over N, and consider the ultrapowers HU. Q =: (B1, V1)and flu. im =:

(B2, V2). By Lo§'s theorem, B1 and B2 are rooted, and both roots realize 2*. Define a relation R

C; B1 XB2 by

12121122 iff Vcp e 11: (B1,V1,b1) |l- (p iff(B2,V2,b2) II-(p.

We show that R is a p-relation. First, 13.l(i) holds by definition. Second, for 13.l(ii), suppose bl

SB|b'1 and Rb1b2. Let G-)*be the set of all signed formulas that are realized in b'1. Then every
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sequent (-9Q 9* is realized in a successor of b2, for otherwise we have b2 |l-we, from which bl

II—we would follow —contradicting bl S b'1 ll-(9. By lemma 13.7.2, there exists b’2 231b2
realizing the entire set 9*; then Rb'1b'2. Condition 13.1(iii) is symmetric. Since the roots of B1

and B2 are related, (ii) and (iii) imply that domR = B1 and ranR = B2.

There remains only a walk around the diagram:

Q 1131

nu, ea HU, am

By closure under ultrapowers, HUI W e M. By closure under p—relations,HU. 9 e M. By
closure under ultraroots, Q e M. D

13.9 An lL1-structure is a model iff it satisfies the following axioms:

Vx. x S x

Vxyz (xsy/xysz —>xsz)

Vxy (px/xxsy —)py), for allpe P.

Let us denote the first order ‘theory of models‘ determined by these axioms by Mod. By the

completeness theorem for first order logic, an lL1-sentence (1.is true in all models iff Mod F on.In

particular, two 1L1-sentences onand [3are equivalent on models iff Mod I- on<—>B.

The theory Mod is not finitely axiomatizable. So unlike the class of all frames, the class of all

models is not elementary. As a consequence of this, we must distinguish between elementary

classes of models (classes M such that for some lL1-sentenceot, for all models Q: g e M iff ghot)

and elementary classes of lL1—structures.

By the complement of a class M of models we shall mean the class of all models that do not belong

to M, not the complement in the universe of all lL1-structures.

Lama (Separation Theorem). If M1 and M2 are disjoint classes of structures for the same first

order language, both closed under ultraproducts and isomorphism, then there exists an elementary

class K 2 M1 that is disjoint with M2.
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Proof; see Chang & Keisler [1973], corollary 6.1.17. [1

Theorem, Let M be a class of models. There exists an ll-forrnula (psuch that M = Mod(<p)iff M is

closed under p-relations, generated submodels, disjoint unions and ultrapowers, and the

complement of M is closed under ultraproducts.

Pol’; If M = Mod((p), M is closed under the operations listed in theorem 8. The complement of

M is defined by Mad U {—.VxSt(cp)},hence closed under ultraproducts by Loé's theorem.

For the converse, suppose M and its complement satisfy the stated closure conditions. Since M is

closed under p-relations, it is closed under isomorphism (hence: so is its complement). By 13.6.3,

M is closed under ultraproducts. M and its complement are disjoint classes of L1-structures, so by

the separation theorem, there is an L1-sentence onsuch that for all models Q, g e M iff A l=ot.

Since the complement of M is closed under ultraproducts, M is closed under ultraroots; so by

theorem 8, M = Mod(<l>)for some (D Q l. So

Mod u {Vx St((p) I (p 6 CD}l=on;

by compactness, there exists a finite set (D0 C_:(Dsuch that

Mod U {Vx St(<p) | (p e CD0}I=ot.

Then Mod I=ot <—>/\(p€¢.Vx St(<p), and M = Mod(/\ (DO). U

g§Qrgll_agg.Leta be an lL1-sentence. There exists an ll-formula cpsuch that Mod I—on <—>Vx St(<p)

iff onis preserved under p-relations, generated submodels and disjoint unions.

Proof: Let M be the class of all models 9 such that Q I: on.If Mod I—OL<—>Vx St((p), for some

cpell, then M = Mod((p), hence M is closed under p-relations, generated submodels and disjoint

unions by the theorem above —so ot is preserved under these operations. If, conversely, onis

preserved under p-relations, generated submodels and disjoint unions, then M is closed under these

operations. Since M and its complement are A-elementary classes of L1-structures, they are closed
under ultraproducts and isomorphism. By the theorem, there exists (pe l such that M = Mod(<p);

then Mod l=ot <—>Vx St((p) by the completeness theorem. 1]

Remark, The same argument was used for the modal case in an unpublished note by R. Woodrow.

It applies globally as well as locally; except that for local definability, invariance must be used

rather than preservation.
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For sets (Dof ]I—formulas,let us denote the class of all frames A in which every formula in (Dis

valid (in symbols: A I|—<I>)by Fr(<I>).A class K of frames is ll-definable if K = Fr(<D) for some

(I) Q II.We shall characterize the ll-definable classes of frames in terms of closure under certain

operations on frames. We arrive at this characterization by way of Birkhoffs theorem from

universal algebra, using a generalized version of frames as intermediary between frames and

algebras.

Universal algebraic notions that I leave unexplained may be looked up in Gr'atzer's book [1968] or

in Balbes & Dwinger [1974]. Specific references for Heyting algebras are Rasiowa & Sikorski

[1963] and Balbes & Dwinger [1974].

14.1 Definition; A Heyting algebra is an algebra 011= (U, A, v, J_, —))of type (2,2,0,2) (i.e.

/\,v and —>are binary operations, and .L is a nullary operation, on the set U), in which (U, A, v,

J.) is a distributive lattice with least element J. (we write Sm, or S, for the lattice ordering on U;

J_Su for all ue U), and —>is a relative pseudo-complement for S; i.e. for any u,v e U, u—>v
satisfies

(*) Vxe U: x/xusv iff xSu—->v.

The class of all Heyting algebras we shall denote by Ha.

For any elements u,v of a Heyting algebra Q11,u/\v S v, hence by (*): u S v—>v.So v—>vis the

greatest element of 011.We shall denote it by T (usually, Heyting algebras are introduced with T as

one more nullary operation). For a variab1e—freedefinition, take T := _L—>_Las in 1.2.1.

14.2 Examples. One very particular Heyting algebra has been diagrammed in 11.1.
Henceforward, I shall use 33 to denote it.

In general, for any frame A, U(A), the collection of upwards closed subsets of A, may be viewed

as a Heyting algebra. The operations of U(A) are n (intersection), U (union), 0 (the empty set),

and an operation =>defined by

(**) X=>Y={aeA|[a)r\XQY}
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(cf. the evaluation of (p—>\yin 1.2.4). To see that => is indeed a relative pseudocomplement for

(U(A),n,u), observe that (**) is equivalent to

X=>Y=u{Ze U(A)|ZnXg Y},

which is a reformulation of (*) in 14.1.

Actually, our first example was a special case of this construction: 33,5 U(M), for the frame M of
11.1.

14.3 Definition: The notions of subalgebra, homomorphism and product of Heyting algebras are

straightforward. When 3111,?e Ha, and 3111is a subalgebra of 9, we write 011Q 9. The product of

(@111.| i e I) is written as I'll-E, 011,-.

If Lg Ha is a class of Heyting algebras, we shall write S(L) for the class of subalgebras of

elements of L, H(L) for the class of homomorphic images of such elements, and P(L) for the

class of products of subfamilies of L.

14.4 Equations. Heyting algebras may be considered as structures for a first order language ILH
with equality, and function symbols interpreted as /\,v,J. and —>.Since we are only interested in

LH for its atomic formulas, there will be no confusion if we just take /\,V,J_ and —>for function

symbols of Another useful convention is that we shall let the proposition letters of 11be the

individual variables of This way, an atomic formula of LH is an equation (p=\|I,with (p,\|Ie l.
Terms <p,\ymay be evaluated as usual (as before, we use notation from Chang & Keisler [1973]).

If the list pl,...,pn contains all the proposition letters in (p and IV, and 011= (U,/\,v,_L,——>)is a

Heyting algebra, the equation <p=\yis valid in an (notation: U11I=cp=\y)if for all u1,...,un e U,

Q11I=(p=\|I[u1...un] (iff (p[u1...un] = \|I[u1...un]).

If I‘ is a set of equations, we write 1111I: I‘ for V7 e I‘. all I: 7.

14.5 Definition; Let L be a class of algebras of the same type; that is, in model theoretic terms, a

class of structures for the same language L without relation symbols. Then L is called a variety

(or equational class) if there exists a set I‘ of equations of L such that for any algebra Q of the

appropriate type, Q l: I‘ iff 9 e L.

14.6 Proposition; Ha is a variety.
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Proof; A set of equations defining Ha is obtained by adding to a set of equations defining the
distributive lattices:

p A _L= .L (L is the least element)

p—)p=T (:=.L—>.L)

pA(p—>q)=p/~61
P/\q—>r=p—>(q—>r)
(p—>q)Aq=q D

14.7 Proposition (Birkhoffs Theorem): Let L be a class of algebras of the same type. Then

HSP(L) is a variety, and the smallest variety containing L.

A proof may be found in the standard texts. Observe that in particular, for a variety L, H (L) Q L,

S(L) Q L and P(L) Q L. Thus, the proposition implies that validity of an equation is preserved

under H, S and P.

14.8 Varieties of Heyting algebras and ll-definable classes of frames. There is a
simple connection between validity of ll-formulas on a frame A and validity of equations in the

Heyting algebra U(A).

(a) Let p1,...,pn contain all the proposition letters in (p.Let V be a valuation on a frame A. Observe

that definition 1.2.4 closely parallels the evaluation of terms in the Heyting algebra U(A); indeed, it

is immediate that V(<p)= (p[V(p1)....V(pn)]. Thus

A II-(p iff for every valuation V on A: (A,V) II-(p

iff for every valuation V on A: V((p)= A

iff for all X1,...,Xn e U(A): (p[X1...Xn] = A

iff U(A) l=(p =T.

(b) An equation need not have the form <p=T.However, the relative pseudocomplement presents a

way to get around this difficulty. For elements u,v of any Heyting algebra, we have u sv iff

u—>v=T(use (*) of 14.1: u = T/xu , since T is the greatest element). Hence u=v iff (u—>v)/\(v—)u)

= T A T = T. As a consequence, we may assume equations to be of the form cp= T. Moreover, it

is clear by (a) that
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U(A) I=(p = q; iff U(A) t: (p <—>xy = T (abbreviating (cp—>w)A(u;—->cp)as before)

iff A II—(p <—>ur.

We conclude that a class K of frames is ll-definable iff there exists a subvariety L Q Ha such that

any frame A belongs to K iff U(A) e L.

14.9 To exploit Birkhoff's Theorem, we must find operators on classes of frames matching the

operators H, S and P. I shall give an example of the kind of parallel that we are looking for.

14.9.1 Recall the definition of the disjoint union of a family of frames (2.4.3).

Proposition. Let (A, | i e I) be a family of frames. Then U(2,-E1Al) 5 H,-EI U(A,-).

1 An upwards closed subset X of ElieIA, is uniquely determined as a union of sets {i} XX,-,

with X1-e U(A 1-).The mapping X H (X,-),-EI is the desired isomorphism. To see that —>is

preserved, note that the ordering of the disjoint union is such that (i,a) e X=>Y (where Y =

U,-E,({i} X Y,-)) iffa e Xi => Y,-. [1

14.9.2 It is far less simple to find analogues to H and S. In fact, at least for S, it is impossible. We

want a construction which, given a frame A and a subalgebra V Q U(A), produces a frame B such

that U(B) 5.V. Let A be an infinite set, ordered by

aSa' iff a=a'.

Then U(A) = lP(A), and for X,Y Q A, X =:»Y = (A -X) U Y. (This is an instance of a general

fact: any Boolean algebra (U,/\,v,J_,w,T) gives rise to a Heyting algebra (U,/\,v,_L,—>)with u—>v

= —1LlVV.)

Let V consist of all the finite and cofinite subsets of A, i.e. forX Q A,

X e V iff eitherX is finite orA —Xis finite.

Then V is a subalgebra of U(A), and |V| = |A|. If U(B) 5 V, then every singleton {a} e V must

correspond with a distinct singleton {ba} e U(B), since a set corresponding to {a} cannot have

proper nonempty subsets. As these ba must be maximal in B, we obtain, for distinct X,X' Q A,

distinct sets {ba Ia e X} and {ba. | a'e X'} in U(B). Then |U(B)| 2 21”“,contradicting the
assumption that U(B) E V.
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To accommodate this problem, we loosen the notion of frame.

14.10 Definition; A generalized frame is a pair A = (A,V) consisting of a frame A and a subset

V of U(A) which contains 0 and is closed under n,u and the relative pseudocomplement =>of

U(A).

In other words, we require that V is a subalgebra of U(A). This clearly is a sufficient adaptation to

the difficulty of 14.9.2.

Frames may be considered as generalized frames by identifying A with (A, U(A)). Accordingly,

we generalize our use of the symbol U: for any generalized frame A = (A,V), U(A) is the

collection V, considered as a Heyting algebra.

Having extended the notion of frame, we next adapt some concepts introduced in 1.2, 1.5 and 2.4.

14.11 Thus far, generalized frames have been motivated by mathematical expediency. A more

philosophical motivation might run as follows. In 1.2, every upwards closed set counted as a

proposition —in the down—to-earthsense that it could be selected as interpretation of a proposition

letter. One might not want to be so liberal. In that case, propositions would still be upwards closed

sets (as no information is ever lost); and the universe of propositions would have to be a subalgebra

of the collection of all upwards closed sets, to make sure that every formula could be interpreted. In

short, we shall have generalized frames A = (A,V), and valuations must give values in the

propositional domain V. 1

Definition, A valuation on a generalized frame A = (A,V) is a function V: P —)V. (As before, IP’

is the set of proposition letters.)

By the closure properties of V, a valuation V may be extended to a map of l into V as in 1.2.4.

Validity is defined as in 1.5: with A = (A,V),

A II-(p iff (A,V) II—(p for every valuation V on A.

Obviously, if V = U(A), we have A II—(p iffA ll-(p in the sense of 1.5.

In line with the notation introduced for frames at the beginning of this section, we shall write

AlI—(I>,for (D C; I, if Vcp e (D.A Il-(p, and denote the class of all generalized frames in which

every formula belonging to (Dis valid by Gfr(<D).A class K of generalized frames is ll-definable if

K = Gfr((D) for some (D Q II.We may write K It cpif VA e K: A II-(p.
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The argument of 14.8 works just as well for generalized frames. We sum up the conclusions:

Proposition, (i) Let A be a generalized frame, and (p,\ye 11.Then

(a) A II-(p iff U(A) I=(p=T;

(b) U(A) I: <p=\y iff A II- <p<—>u/.

(ii) A class K of generalized frames is ll-definable iff there exists a subvariety L Q Ha such that

any generalized frame A belongs to K iff U(A) belongs to L.

14.12 As shown in 14.9.1, disjoint unions of frames correspond with products of Heyting

algebras. Subsequently it turned out that no construction of frames can correspond to taking

subalgebras. In the opposite direction, however, a parallel can be found: there is an operation on

frames A which produces subalgebras of U(A) (modulo isomorphism), and one that produces

homomorphic images.

14.12.1 Proposition, Suppose f: A —~B is a surjective p-morphism. Then U(B) is isomorphic to a

subalgebra of U(A).

Q Consider the inverse functionf'1 on U(B).Becausef is a homomorphism,f‘1 mapsU(B)
into U(A): ifX e U(B), and a'2 a e f‘1[X], thenf(a') 2f(a) e fi"‘1[X]= X; since X is upwards

closed, we get f(a') e X and a’e f“1[X].

As an inverse function,f 1preserves n,u and 9; f‘'1 is injective sincef is surjective.

To show thatf“ 1preserves =>,we need the p-morphism condition. The crucial point is

(*) for a e A, and X,Ye U(B), [f(a)) OX Q Yiff [a) nf1[X] Qf‘1[Y].

Sincef is a homomorphism, f[[a)] Q [f(a)); hence [a) Q f"1f[[a)] Qf‘1[[f(a))]. So if [f(a)) nX

gr, [a)nrltxi §f“‘[[f(a))]nrltxi grlm. Fortheconverse.suppose[a)orltxi g
f‘1[Y]. If b zfla), then by the p-morphism condition there exists a’ 2 a such thatf(a') = b. So if

f(a) S b e X, we have a'e [a) nf‘1[X] withf(a') = b. Then a'e f‘1[Y]; so b =f(a') e
ff‘1[Y]=Y.

Now,

aef'1[X=>Y] ifff(a)e X=>Y
iff [f(a))nXQ Y
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iff la)nrllxi grim, by(*>,
iff a e rim =>f‘1[Y]. n

14.l2.2 Proposition, Suppose A g B. Then U(A) is a homomorphic image of U(B).

Prggf; Define f: U(B) —>U(A) by f(X) = X n A. Since actually U(A) is a subset of U(B), f is

surjective. Preservation of r\,u and 0 is immediate.

Let =>Adenote the relative pseudocomplement in U(A), =>Bin U(B). Then for all X,Ye U(B)

(X=>BY)nA=An{beB|[b)nXgY}
={aeA|[a)nXgY}
={aeA|[a)r\XnAgYnA}
= XnA=>AYnA.

Sof preserves :> as well. [3

Thus we may hope that suitable generalizations of p—morphismsand generated subfrarnes will do

the job.

14.13 Definition, (i) Let A = (A, V) and B = (B, W) be generalized frames. A p—morphismf:

A—>Bis a p—morphism from A to B if VX e W.f‘1[X] e V.

(ii) Let A = (A,V) and B = (B, W) be generalized frames. A is a generated subframe of B

(notation:A glas) ifA gB andV = {XnA |Xe W}.

(iii) Let A, = (A,-,V,-)be generalized frames, for all i e I. The disjoint union Z,-€,Ai is the

generalized frame (E,-E,A,-,V) in which X g 2A, belongs to V iff Vi e I. X n ({i} x A,-)e V,-.

B will be called a p-morphic image of A if there exists a p—morphismfrom A to B that is a

surjection for the underlying frames.

Note that disjoint unions of frames are a special case of disjoint unions of generalized frames. Also,

ifA g B, then U(A) = {X HA |X e U(B)}, so (A, U(A)) S, (B, U(B)). As to p—morphisms:iff:

A—>Bis a homomorphism, f'1[X] is upwards closed for every X e U(B). So f: A—>Bis a

p—morphism iff f is a p—morphismfrom (A, U(A)) to (B, U(B)).

14.14 The proofs of propositions 14.9.1 and 14.12 are easily generalized. We get

flgpositfl, (i) If (Ai | i e I) is a family of generalized frames, then U():,,-E1A,-)E H,-E,U(A,-).

(ii) If A 9, B, then U(A) is a homomorphic image of U(B).
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(iii) If IE3is a p-morphic image of A, then lU(lB3)is isomorphic to a subalgebra of U(A).

14.15 We have associated with every generalized frame A a Heyting algebra U(A). We also want

a construction in the opposite direction.

14.l5.1 Definition. Let 011= (U,/\,v,_L,—>)be a Heyting algebra. A filter in 011is a set V Q U
such that

(i) v 2 u e V implies v e V (in other words, V is upwards closed);

(ii) if u,v e V, then u/xv e V.

A filter V is prime if it is proper (i.e. equals neither U nor 0) and satisfies

(iii) if uvv e V, then u e V or v e V.

The following will be useful:

14.15.2 L_¢_rmn_g;Let 111= (U,/\,v,_L,—>) and 19 = (V,/\,v,J_,—>) be Heyting algebras; f: 011—»19 a

homomorphism. Then, if V is a prime filter in 19,;-1[v] is a prime filter in 011.

1; Suppose V is a prime filter in 19;we check (i) —(iii) above forf'1[V].

(i) Homomorphisms preserve S. So if u’ zu e f“1[V], we get f(u') 2f(u) e V, hence (V being

upwards closed) f(u') e V.

(ii) If u,u’ e f‘1[V],f(uAu') =f(u) Af(u') e V; so u/\u' e f“1[V].

(iii) If Wu’ e f1[V], thenflu) vf(u’) =f(uvu') e V. Hencef(u) e V orf(u') e V; accordingly,
ue f‘1[V] or u’e f'1[V]. El

Stone [1937] used prime filters to obtain topological representations of distributive lattices, and a

fortion' of Heyting algebras. There is a natural ordering on the resulting spaces which makes them

into generalized frames, with certain open sets as propositions. Very roughly, the idea may be

formulated as follows. The points in a generalized frame (AN) determine prime filters Va :=
{Xe V | a e X} in V. Then, if there are no points, we can at least take the prime filters and pretend

they are of form Va.

l4.15.3 Definition; Let 011= (U,/\,V,J_,—))be a Heyting algebra. Let A be the set of all prime filters

of U1,ordered by inclusion; and for each u e U, define Xu Q A by X“ := {a e A | u e a}. Then

lF(0I1),the prime filter representation of 011,is (A, {Xu | u e U}).

It is straightforward to check that lF(UI1)is a generalized frame. An example may be of help.
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14.16 Example; Let 53 be the Heyting algebra pictured in 11.1. It is clear from the diagram that

every filter in 19»has a least element; thus, every filter can be written as [r), with r in the domain R

of 33».A filter [r) is prime precisely if r cannot be decomposed as r = r1 v r2 with r1, r2 < r; and

[r)g [r') iff r’ S r. Since [_L)= R, the frame of P03) is isomorphic to the frame M of 11.1,

extended with a least element T. (Because T = V(R —{T}), it did not belong to M; but T cannot be

represented as afinite supremum of strictly less elements.)

Modulo an isomorphism, we may write IFUR)= (M', V), with M’ = M u {T} as above. Then V

almost equals U(M’): only M is missing. On the other hand, U(M) E 13».

The following theorem is proved in the literature on Heyting algebras.

14.17 Representation Theorem (Stone): Let all be a Heyting algebra; define Fm: 0I1—»UolF~‘(’011)

by Fq11(u)= Xu (in the notation of 14.15.3). Then Fm is an isomorphism.

We state the crucial lemma, for later reference. To do so, we need the duals of filters:

Definition: An ideal in a Heyting algebra 011= (U,/\,v,_L,—>)is a downwards closed set closed

under finite joins, i.e. A Q U is an ideal iff

(i) u’ S u e A implies u’ e A;

(ii) uo, ul 6 A implies uovul e A.

lgmma (prime filter theorem for Heyting algebras): Let all be a Heyting algebra, V a filter in 3111,

and A an ideal such that V n A = 0. Then there exists a prime filter V* of all such that V* 2 V
and V* (NA = 0.

(The proof uses Zom's lemma; the prime filter theorem is equivalent to the prime ideal theorem for

Boolean algebras.)

14.18 Generalized frames are not so well-behaved: it is not generally true that lF°U(A) E A. For

one, there may be too few sets in U(A) to localize every point of A: take for instance A = ({O,1},

{{O,1},0}). Here, U(A) is the two—elementBoolean algebra (which we shall denote by 2), and 2

has only one prime filter, viz. {T}. A different example is in 14.11: M ,é M’. We thus have a

construction that may lead to genuinely new frames.

There is a nice special case. Since UolF(?lI1)5 ‘(E11by the representation theorem, we have

14.l8.1 Proposition: Let all be a Heyting algebra. Then lF°U(lF(UI1))E lF(QI1).
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The isomorphism takes each prime filter V in UlF(?l11)to the prime filter {u lXu e V}. It is a rather

special feature of generalized frames of the form lF(QI1):ordinarily, homomorphisms from lFU(A)

to A involve an essential loss of information. E.g., homomorphisms from M’ to M have finite

range.

A generalized frame A will be called a descriptive frame if A 5 lFU(A). If lFU(A)= (B, V), I

shall call B the prime filter extension of A, in symbols: B = pe(A). Note that frames are

embedded in their prime filter extensions by the map a v—>Va(with Va = {X e U(A) Ia e X}).

14.18.2 Proposition, For all (p e l, A Il-(p iff lFU(A) II—(p.

Pgoi By proposition 14.11, since U(A) E U(lF°U(A)). D

In particular, valid formulas are preserved under IFOU.This contrasts with taking prime filter

extensions of frames: we will show in the next example that valid formulas may be lost that way.

Here we note that anti-preservation remains:

14.18.3 Proposition; Let A be a generalized frame, and (p6 ll.Then pe(A) II-(pimplies A If (p.

_P_ro_o_f;Suppose pe(A) II—(p. Then since U(lF°U(A)) Q U(pe(A)), lFoU(A) II-(p. By the corollary

above, A II-(p. D

14.19 Exgmplo, Let A be the frame defined in 6.8(a). We reproduce the relevant diagram:

K./\./S

Let C := {cn | n e N}. We consider the prime filters of U(A).

First, then, there are the filters Vd = {X e U(A) | d e X}, for all d e A. Since every X in U(A)

not of form [d)A can be decomposed as X = YU Z with Y,Z e U(A) proper subsets of X, the

filters Vd are the only principal prime filters. Since Vd g Vd. iff d S d’, A lies embedded in pe(A).

Now for the nonprincipal prime filters. Observe

(1) If a prime filter V contains a subset of C, V is maximal in pe(A).

124



§l4. I-DEFINABLE CLASSES OF FRAMES.

The reason is, that if a prime filter V contains X Q C (hence contains C, by 14.15.l(i)), it must

contain either Yor C—Yfor every Y Q C, by (iii) of the definition. Suppose C e V and V‘ is a

filter properly extending V. Say Z e V‘—V. Then Z n C e V‘; since Z 2 Z n C, Z n C as V. So

C—Ze V, and 0 = (C—Z)0 Z e V‘; that is, V‘ is not a proper filter.

(2) If V is a prime filter, V at {A}, and V‘ is a prime filter properly extending V, then V‘ is

maximal in pe(A).

Similarly to the case of (1), there will be an ultrafilter U over N such that

VX Q N: Unex [bn)Ae V iff X e U.

So a proper filter extending V must contain a subset of C.

Thus, pe(A) is not as forbidding as it may have seemed: at least it is not higher than A. Now we

come to a crucial point:

(3) Let Vd, V be maximal in pe(A); suppose V is not principal. Then if V‘ Q Vd n V is a prime
filter, V‘ = {A}.

Suppose V‘ Q Va,0 V is a filter, and A —{a} e V‘. Say that d = ck. LetX = [bk_1)u [bk) (or just

[bk) if k=O), and Y = U{[bn) I n¢k—l,k}. Then A —{a} = X UY; so if V‘ is prime, Xe V’ or

Ye V’. Now X E V: for then V would also contain either [bk_1)or [bk), and be principal. On the

other hand, d as Y, so Y 95Vd. It follows that V’ is not a prime filter.

We have seen in 6.8(a) that A II-SC (= [(w—.p —>p) —)pv—1p] ——>—IpV—1-up).For pe(A) we can

define a projection onto the frame [8)M(cf. 11.1, 6.8(a)) by putting:

f({A}) = 8,f(Vbn) = 4 for all n e N,f(Vc) = 1 for all c e C,
andf(V) = 2 for nonprincipal V.

Therefore pe(A) IlfSC.

14.20 The statement symmetric to 14.14(i) is: "if (011,.| i e I) is a family of Heyting algebras, then

lF(I'Iie I 011,.)5 2,-E, lF(@I1l.)".Unfortunately, this is false.

ample; Let 011"= 2 (= the Boolean algebra {.L,T}) for all n e N. Since |lF(2)|= 1, |ZnENlF(Ql1n)|

= No. But 1'1”011"is isomorphic to the Boolean algebra lP’(N);the prime filters in lP’(N)are the
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ultrafilters over N, of which there are 22% (Tarski; see e.g. Bell & Slomson [1969] Ch. 6, thm.

1.5); so |lF(l'[n Q[1n)|= 22”‘). Then obviously 2" ]F(QI1n)3,‘lF(l'In 011").

This also shows that a disjoint union of descriptive frames need not be a descriptive frame: since

1i='U(§;,,lF(QI1n)) 2 1i=(H,, U1F(0I1n)) 5 1F(I'[n 1111”);e )3" M11"),

En lF(011n)is not descriptive. We do have, as a consequence of 14.14(i) and the representation
theorem,

Proposition. If (011,.| i e I) is a family of Heyting algebras, then IF(H 011,.)5 lFU(2,-EI 1F(Q[1l.)).iel

14.21 Lemma, Let all and 19be Heyting algebras, and f: 011—>V a homomorphism. Define g on

the set of prime filters of 9 by

8(V) =f_1[V]

Then g is a p—morphism from ]F(QI1)to lF(v).

Proof: Let 3111= (U,/\,v,_L,—>), 9 = (V,/\,v,.L,—>), A the frame of prime filters of 011,and B the

same for 19. For every b e B, g(b) e A by lemma 14.15.2. g is a homomorphism by an

elementary property of inverse functions. In notation from 14.17, b e g’1[Fm1(u)]iff g(b) e Fm(u)

iff u e g(b) ifff(u) e b iff b e F19(f(u));so g‘1[Fm(u)] e Fw[V]. By definition 14.13, it will now

suffice to show that g:B —>Asatisfies the p-morphism condition .

So, suppose a 2A g(b0) (=f'1[bO]). We must find b 23 b0 such that g(b) = a. Let V be the filter

generated byfla] u b0, and A the ideal generated byf[U —a]:

V = {ve V|3ue a3v1e b0.v2f(u)/xvl},

A= {WE V|3u1....umE U*a.WS

By the prime filter theorem, it suffices to show that V n A = 0: for then there is a prime filter b;V

with b m A = Q, whence f1[b] = a, and b 2 b0 (i.e. b 23 b0) by the definition of V.

Suppose v0 :5 V n A. Then there exist u e a, v1 e bo, u1,....,um e U—a, with

f(u) A v1 S V0 S V13]-Smf(uJ-),

so f(u) A v1 5 V13]-Smf(uj).Consequently,
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vl Sf(u)—-)Vf(uJ-)=f(u—) Vuj).

Since v1ebO,f(u—>VuJ-)e b0, and

1

u—>VuJ-ef‘ [b0] Q a.

Since u e a, we get Vuj 2 u A (u ——>VuJ-)e a, so Vuj e a. Since a is prime, some uj must belong
to a: a contradiction. D

14.22 Proposition, If 011and 19 are Heyting algebras and Q11C_Z9, then lF(fl11)is a p-morphic image

of H19).

Proof; Let U be the domain of Q11,V that of 9; let A be the frame of prime filters of 011,B that of 1?.

Define g on B by

gm=bnU.

Then g is the inverse of the canonical embedding i: all L»‘M.Since i is a homomorphism, g is a

p-morphism from lF(‘fl5)to lF(U11)by the lemma above. So we need only prove that g is surjective.

Let a e A; we must find b e B such that a = g(b) (= b n U). Let V be the filter in 9 generated by

a, and A the ideal in 1?generated by U —a:

V: {ve V|3ue a.v2u}

A = {we V|3u1...um e U —a. w S V13]-Smuj}.

As in the proof of the lemma, it will suffice to show that V n A = 9. Say that v0 e V n A: then

we have u e a, u1,...,um e U —a, with

Since u e a, this implies Vlsj u- e a; which is impossible because a is prime. Elsm;

14.23 Proposition, If all and V are Heyting algebras and W is a homomorphic image of 011,then

lF(T9)is isomorphic to a generated subframe of ]F(Wl1).

Proof: Let f: 011—»19be a surjective homomorphism of Heyting algebras. Define g as in lemma 21.
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Define A, B, U, V as before. By lemma 21 and proposition 2.4.2, g[B] g A. g is one-to-one: for

if b,b’ er; and b Sb’, i.e. b gb', then f“1[b] g f1[b’] since f is surjective. So B s g[B]. It
remains to show that

{8[Fna(v)] I V6 V} = {g[B] 0 F0110!) I u E U}

(notation from 14.17).

Observe that, by surjectivity, every v e V isf(u) for some u e U. Thus it would suffice if Vu e U.

Fm(u) n g[B] = g[F;9(f(u))]. This equality is seen to hold by the following calculation:

b e Fv(f(u)) ifff(u)e b iff u e f'1[b] = g(b) iff g(b) e Fm(u).

14.24 Theorem, A class K of generalized frames is ll-definable iff K and its complement are

closed under IFOU,and K is closed under disjoint unions, generated subframes and p—morphic

images.

P_r&f:

(=>) Suppose K is lI—definable.By proposition 14.18.2, ll-formulas are invariant under lFU. By

proposition 14.11(ii), there exists a variety L of Heyting algebras such that any generalized frame

A belongs to K iff U(A) belongs to L. Suppose Ai e K for all i e I. Then U(Al-)e L, for all

ie 1; since L is a variety, this implies I'll-EI U(Al-)e L. By 14.14(i), H U(A,-) '='U(2A,-). Since L,

as a variety, is closed under isomorphism, lU(XA,-)e L; hence EA‘.e K. We conclude that K is

closed under disjoint unions. Closure under generated subframes and p—morphicimages can be

proved similarly, with applications of the rest of 14.14 .2

(<=) Suppose K and its complement are closed under JFU,and K is closed under disjoint unions,

generated subframes and p—morphicimages. Let L be the closure of U[K] under isomorphism.

Suppose U(A) e L: then U(A) E U(lB) for some B e K, hence lFU(A) 5 lFU(B); and

lFU(lB3)eK by closure under IFU. Since K is closed under isomorphism, lFU(A) e K; and

because the complement of K is closed under IFU,we must have A e K. We conclude that VA

(A e K 4:>U(A) e L).

Now it will suffice, by proposition 14.l1(ii), to show that L is a variety. Suppose 011,.e L for all

iel. Say 0111.E U(A,-), with A, e K. Then

Hie! mi 5 Hie! U(Ai) 5 U(Zie1 Ai)

by 14.14(i), and EAl-e K by closure under disjoint unions. So L is closed under products. If 011
Q 9 5 U(A), with A e K, then lF~'(Ql1)is a p—morphicimage of lF(‘M)(proposition 22), and, since

]F(n9)E ]FU(A), of lFU(A). By closure of K under lFU and p—morphic images, lF(Q11)e K. Since
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0115 lFU(QI1)by the representation theorem, ‘Q11e L. So L is closed under subalgebras. Finally,

suppose V is a homomorphic image of ‘C11e L; say 011.=_U(A), A e K. Then lF(I9) is isomorphic

to a generated subframe of ]F(011)(proposition 23), and a fortiori of ]FU(A). By the closure

properties of K, lF(v)e K, and as before, 19e L. So L = HSP(L); therefore L is a variety, by
Birkhoff's theorem. III

14.25 Now we return to ll-definable classes of frames. For a class K of frames, let ThI(K) :=

{cpe ]I| K II—(p}. We shall denote the least lI—definableclass of frames containing K by FrI(K) —

clearly, then, FrI(K) = Fr(ThI(K)).
Let A be a frame, and K a class of frames. Then

A e FrI(K) iff A II-ThI(K)

iff U(A) |={(p=T | K II—cp} (by proposition 14.11(i))

iff U(A) |={<P=\III U[K] F <P=\V} (by 14-3(1)),

U[K] l=(p=\|J iffU[K] l=(p<—>\|I= T)

iff U(A) e HSP(U[K]), by Birkhoff's theorem.

So if A e FrI(K), there will be a family (Bi | i e I) of frames in K, and a Heyting algebra V, such

that U(A) is a homomorphic image of V, and W a subalgebra of I'll-EI U(B,-). By proposition

l4.14(i), we may suppose that V is a subalgebra of U(El-E,Bi).

14.26 The next step is to investigate the relation between A and lF(I9), given that U(A) is a

homomorphic image of W.

lgmma, Suppose U(A) is a homomorphic image of 19;let C be the frame of prime filters in T9,and

V the domain of 79.Then A is isomorphic to a subframe B of C such that

U(B) = {B n F19(v) | v e V}.

1; Let f: V —»U(A) be a surjective homomorphism. Define g: A—>Cby g(a) =f1[Va]. That

indeed g(a) e C follows from lemma 14.15.2. Because a SA a’ implies Va Q Va,, g is a

homomorphism. If a $4 a’, then a’ E [a), so [a) e Va - Va; suppose [a) =f(v), then v e

g<a>—g<a3.so gm) 1%gm. Take 8 = gm].

Now if U e U(B), there is some u e V such that U = g[f(u)] = {f‘1[Va] | a e f(u)}. For any be B,

129



§l4. I[-DEFINABLECLASSES OF FRAMES.

b e U iff 3a e f(u). b = g(a) =f“1[Va]

iff 3aef(u). Vve V(ve b 4:»f(v) 6 Va)

iff 3a ef(u). Vve V(ve b :> aef(v))

iff u e b (down: take v=u; up: take a=g‘1(b), then u e b =

u e g(a) =>u e f“1[Va] =>f(u) 6 Va = a e f(u); and b=g(a)=f‘1[Va])

iff b e 1=,9(u).

This shows that U = B n Fp(u); we conclude that indeed U(B) = {B n F19(v)| v e V}. E]

14.27 The characterization of ]I-definableclasses of frames uses generalized frames, as was to be

expected after the example in 14.9.2. The concept of generalized frame is hidden in the notion of

subalgebra-based (cf. Goldblatt & Thomason [l974]).

Definition. A frame A is subalgebra-based on a frame B if there exists a descriptive frame lF(T9)

= (C, V) such that

(i) T?is a subalgebra of U(B);

(ii) A is a subframe of C;

(iii) U(A) = {Ar\X|X e V}.

Theorem. Let K be a class of frames, and A a frame. Then A e FrI(K) iff A is isomorphic to a
frame that is subalgebra-based on the disjoint union of a subfamily of K.

Proof: As noted in 14.25, A e Fr][(K) iff there is a subfamily (Bi | i e 1) of K and a subalgebra T9

of U(2l-E,Bl-) such that U(A) is a homomorphic image of 19.Suppose IF(@)= (C, V). By lemma

26, A is isomorphic to a subframe B of C such that U(B) = {X n B IX e V}. By the definition

above, B is subalgebra-based on 28,-. U

Corollary, A class K of frames is ll-definable iff it is closed under isomorphism and disjoint

unions, and contains every frame subalgebra-based on some element of K.

14.28 We end with another consequence of 14.25, to be used in the next section. If V is a

subalgebra of U(XB,-), then ll‘-7(9)is isomorphic to a p-morphic image of lFlU(2Bl-),by proposition

130



§l4. I-DEFINABLE CLASSES OF FRAMES.

22. If U(A) is a homomorphic image of 19,then lFU(A)is isomorphic to a generated subframe of

113(9)by proposition 23. Taking an isomorphic copy 39' of V such that lFU(A)g lF(v'), we get

Proposition, LetA be a frame, and K a class of frames. Then if A e FrI(K), there is a subfamily

(Bi | i el) of K such that IFlU(A)is a generated subframe of a p-morphic image of lFU(E,-EI B,-).

Footnotes:

1 This move is comparable to the nonstandard interpretation of higher order logic (e.g. Henkin

[1950]). The parallel extends to completeness theory: intuitionistic propositional logic is complete

for generalized frames, in the sense that an ll-formula (p can be deduced from the set of all

substitution instances of a set ‘P Q 11iff (pis valid in every generalized frame in which ‘I’ is valid.

2 One can also prove preservation theorems directly, on the pattern of 2.4.
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In this section we consider the question which L0-sentences are ll-definable —precisely, for which

L0-sentences onthere is a set (Dof ll-formulas such that for any frame A, A IHDiff AI=oL.As in §14,

the answers are adaptations of results of modal correspondence theory: theorem 3 derives from

Goldblatt & Thomason [1974]; lemma 2 and the discussion in 4 are inspired by, respectively

copied from, van Benthem [I986].

15.1 Lemma 13.7.1 can be generalized to languages of arbitrary cardinality. The generalization

requires that the index set be sufficiently large and the ultrafilters of a special kind (see Chang &

Keisler, §6.1); but these conditions do not figure in the coronary that we shall use:

Lemma. Let Q be a structure for some first order language. Then Q has a countably saturated

ultrapower.

If Q is a structure for the first order language L, we denote by Th(Q) the first order theory of Q,

i.e. the set of all L—sentencestrue in Q. For L-structures Q and 313,Q2313 will mean that Q and 3B‘

are elementarily equivalent (that is, Th(Q)=Th(3IB)).

15.2 Lemma. For any frame A, the prime filter extension pe(A) is a p-morphic image of an

ultrapower of A.

mm. Let A be a frame. Add to L0 distinct unary predicate letters PX for all Xe U(A); expand A to

Q=(A,X)XEU(A), with X as the denotation of PX. Take a countably saturated ultrapower

3B=(B,X')XEUm) of Q (with X’ as interpretation of PX), by the lemma above. Observe that 3132Q
by Los"s Theorem. Define a function f on B by

f(b)={Xe U(A) Ibe X'}.

(Note that beX’ iff 3Bl=PXb.)We shall prove that f is a surjective p-morphism from B to pe(A).
(1)f(b) is a prime filter in U(A), since for all X and YeU(A),

Xgr implies Q|=Vx(PXx—>PYx),hence J16l=Vx(PXx—>PYx),
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so if Xe f(b), equivalently 3Bl=PXb,we get 313l=P}.b,whence Yef(b);

gl=‘v’x(PXxAPyx—)PXnYx),

and X,Yef(b) implies J13i=PXbAPYb,hence, since Wag, 313|=PXflYband XnYe f(b); and

similarly

Q|=Vx(PXUYx—->PXxvPyx)

makes XuYe f(b) imply Xef(b) or Yef(b).

(2)f is a homomorphism. Suppose b1sBb2. We have for all Xe U(A),

gl=Vuv(PXvAvSu—>PXu);

consequently 3BI=PXbl-—>Pxbz, i.e. b1eX' implies b2eX’, and f(b1)§ f(b2).

(3)f is onto, by the saturation of 33.For, let V be any prime filter of U(A). Then

is consistent with Th(3I3)- for suppose it is not, then since 5135? we get Xe V and Y1,...,YmeV
such that

gl=Vv(PXv—) V13!-smPYjv);
I‘

i.e. XC_:uJ-Y]-,so U]-YJEV, and since V is prime, some Yj must belong to V: a contradiction. Since
33 is countably saturated, there exists b in B realizing FV; and 3JBl=l"V[b]implies f(b)= V.

(4)f satisfies the p-morphism condition. Suppose V%e(A)f(b1).Then

1":={Pxv |Xe V} U {-1Pyv |Ye V} U{b1Sv}

is consistent with Th((3I3,b1)).For, suppose not: then there are Xe V and Y1,...,YmeV such that

513l=Vv2b1 ( PXv—> V13]-SmPYJ.v),

or, with Z:= X=>uj-Y]-,and since blzbl,

318I=PZb1.

Thus by the definition off, Zef(b1). But since f(b1)gV, and Xe V, this implies U]-Yje V, and a
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contradiction as in (3).

So 1“is realized in 316;and if 313#l‘[b2], we have blsbz and f(b2)=V. n

15.3 Theorem. Let K be a A-elementary class of frames. Then K is ll-definable iff K is closed

under disjoint unions, p-morphic images and generated subframes, and the complement of K is

closed under prime filter extensions.

is (=>) Suppose <DgZ_ll,and K=Fr(<I>) is A-elementary. Since AI|;‘<Dimplies pe(A)II;‘(I>,by

proposition l4.18.3, the complement of K is closed under prime filter extensions. ll-formulas are

preserved under disjoint unions, p-morphic images and generated subframes by proposition 2.2.4;

since K is ll-definable, it is closed under these operations.

(<=) Suppose K is A-elementary, and K and its complement satisfy the closure conditions as

stated. Let Ae Fr]I(K). By proposition 14.28, lFU(A) is a generated subframe of a p-morphic

image of lFU(Xl-E[Bl-)for some family (B,-|iel) of frames in K. Say

lFU(A)=(A ',V)g (B,lN)<—-—P'"‘(C,X)=IFU(XBi).

Since K is A-elementary, it is closed under ultrapowers; since it is also closed under p-morphic

images, K is closed under prime filter extensions, by lemma 2. Now, by closure under disjoint

unions, EB,-e K; by closure under prime filter extensions, C=pe(§_‘,Bl-)6K. By closure under
p-morphic images, Be K. By closure under generated subframes, A'e K (cf. definition 14.13).

Since A’=pe(A), and the complement of K is closed under prime filter extensions, Ae K. So

Fr]I(K);K, and this implies that K is ll-definable. E]

15.4 The above theorem characterizes the ll-definable L0-sentences by their preservation properties:

an L0-sentence is ll-definable iff it is preserved under p-morphic images, generated subframes and
disjoint unions, and its negation is preserved under prime filter extensions. For some of these

preservation properties, syntactic criteria are known.

Definition. The set of restricted positive lI_.0-formulasis the least set F of L0-formulas such
that (i) atomic formulas belong to F;

(ii) _LE P; and if ot,Be F, then OLABand ocvB belong to 1";

(iii) if one 1",and u and v are distinct individual variables, then 3v(uSv/\(1) and

Vv(uSv—>0t)belong to I‘.

The following theorem is proved for modal frames in chapter 15 of van Benthem [1986]:
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Theorem (van Benthem). An L0-sentence onis preserved under generated subframes, p-morphic

images and disjoint unions iff onis logically equivalent to an L0-sentence Vufl with B a restricted

positive L0-formula.

Our a priori restriction to quasi-orders corresponds with replacing the second occurrence of otby

Ot/\Vv.vSvA‘v'vVw(vSw—>Vu(wSu—)vSu)).

So if we had syntactic criteria for anti-preservation of 1L0-formulasunder prime filter extensions —

that is, necessary and sufficient criteria for pe(A)I=otto imply AI=ot—we would have syntactic

criteria for ll-definability. As things are, we have neither.

15.5 As with L0-definability for ll-formulas, there are two sorts of limitation that can make the
ll-defmability problem easier: we can specialize to particular kinds of frames, and to particular kinds

of formulas. The concluding sections present an example of either sort
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Let K be a class of frames —e.g., K=FPO or K=FTR. Suppose K'C_iK. We say K’ is

ll-definable in K if there is a set (Dof ]I—formulassuch that K'=Fr(<I>)nK, and strongly

ll-definable if (Dmay be taken to consist of a single formula. We characterize in this section the

classes ll-definable in, respectively, FPO and FTR, by means of operations on frames.

16.1 The salient fact about finite frames is Jankov's theorem [1968]. For the reader's convenience,

we present the proof that Gabbay gives in Chapter 4 §3 of his book.

Lemma (Jankov's theorem): If Ae FPO is rooted, there exists an I[-formula \|IAsuch that for any

frame B, Bll/VAiff for some be B, A is a p-morphic image of [b)B.

Proof: Let Ae FPO be given, with root a0. Take distinct proposition letters pa for all a>Aa0.Define

a valuation V on A by V(pa)=[a). Let P:={_pa|a>aO},and Pa:={pe Plall-p}, for all as A.

For each QQP, let \|IQ=/\Q—>V(P—Q).When a<Aa', let xaa, be

(xaa.) /\Pa—>\4J&—>V(P—Pa).

Now let \yA:=<p0—><p1,where

(p0:=/\(\|IQ|—13aeA.Q=Pa)/\ /\(xaa.|a,a'eA and a<a');

‘P15=VaeA ‘V12;

It is easy to see that a0II—(p0and aoll/(pl. Hence if A is a p-morphic image of [b)B, BII;‘\|1Aby 2.4.4.

For the converse, suppose (B,V',b0)I|-(p0 and (B,V',b0)II;‘<p1.Define f:[b0)B—+Aby

f(b)=a iff VpeP.b||-p:>a||-p.

This is a good definition: iff(b) is defined, it is unique, for the points of A are uniquely determined

by the peP that they force. And f is defined everywhere on [b0)Bsince, if Q<_ZPis not Pa for any

aeA, boll-WQ,whence for b_>_b0the set {pe Plbll-p} cannot equal Q. Also, asa’ iff PagP 0., which
makesf a homomorphism.

Since boll/<p1,fis surjective: for each wa, there must be some bzbo with bIl—/\Pa and bII;‘V(P—Pa),
and no b can take care of more than one Pa.
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It remains to prove the p-morphism condition. Suppose a>f(b). Since boll-xf(b)a,and b|l-/\Pflb),

bll-ma —>V(P-Pm»). Now b||;‘V(P—Pflb)), so bll/qt]: —hence there must be some b’ >b with
b'|l-/\Pa and b'|b‘V(P-Pa), i.e. f(b')=a. D

16.2 Lemma: Let A be any frame, and (Al-liell)a family of generated subframes of A such that

U1-e1Al=A.Then A is a p-morphic image of Z‘-EIAI-.

_P;o_<;f:Map (i,a) to a (similar to 13.5). I]

16.3 Theorem. A class K of finite partially ordered sets is lI—definablein FPO iff K is closed under

p-morphic images, generated subframes and disjoint unions of finite families.

hm: (=>)Immediatefrom 2.4.4.

(=) Let K satisfy the above closure conditions. Set <l>:=ThI(K).Suppose Ae FPO, and All-(D.

We shall prove that Ae K. Since A=uae A[a)A,A is a p-morphic image of 206 A[a); so it suffices to
show that [a)e K for each aeA.

Suppose [a)e K. Then the Jankov-forrnula mm belongs to (D:for otherwise \y[a) is not valid in
some Be K, and [a) is a p-morphic image of a subframe [b)B§,B, hence [a)e K. But since All-(D,

this would mean All-\.|I[a),which is impossible by 2.4.4 and Jankov's theorem. CI

16.4 We can improve on the above result by further restricting the class of frames under
consideration.

Let A and B be finite trees. We shall write A-<Bfor: A is a p-morphic image of B. The relation -<is

a quasi—orderingon the class FTR. If |A|=|B| and f:B —-Ais a surjective p-morphism, then f is in

fact an isomorphism. Hence the equivalence relation "A-<Band B-<A"is isomorphism.

Lei (De Jongh). Let A,Be FTR. Every surjective p-morphismf:A—»Bis a p-retraction for

some strong embedding g:B>-—>A.

Ilqojz Suppose f:A-B is a surjective p-morphism. We define g:B—>Ain such a way that for any

be B, g(b) is a maximal element in f‘1[b], by induction up B. For the root b0 of B, g(b0) is some

maximal element of f"1[b0]. Now suppose b covers b’, and g(b') has been defined. Then since
fg(b’)=b’, andf is a p-morphism, some a>g(b’) must belong tof‘ 1[b]; take as g(b) a maximal such
a.

It is clear that g is an injective homomorphism. Suppose b branches into XQB. We must show that
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g(b) branches into g[X]: so suppose g(b)SaSg(x),g(x'), with x and x’ incomparable elements of X.

Then bSf(a)_<_x,x’, since f is a homomorphism and f°g=1B. Sof(a)<X by definition 2.11.3, and

a<g[X]. El

gggrgllagz A-<Biff there exists a strong embedding of A into B.

16.5 The following lemma is usually formulated in terms of strong embeddings. An elegant proof

may be found in Nash-Williams [I963].

Lemma (Kruskal's theorem): Any subclass of FTR has only finitely many -<—minimalelements,

modulo isomorphism. (In other words, FTR is a well-quasi-ordering.)

Suppose K is a class of finite trees, downwards closed in the sense that A-<BeK implies Ae K.

Then its complement FTR—K is upwards closed. Let {A1,...,An}be a maximal set of mutually

nonisomorphic minimal elements of FTR—K. Take their Jankov formulas WA, and consider

‘V: A 1sisn‘VA,.

If Ae FTR, and All-\|J, then Al--<Ais impossible, for lsisn, by lemma 2.4.2 and Jankov's

theorem. So Ae K. On the other hand, if Ae K, then AII—\yl-for all i (lsisn), as Al-7¢A.So

K={Ae FTRIAII-xv}.In view of lemma 2.4.2, we have proved

Theorem: Let K be a class of finite trees. Then the following statements are equivalent:

(i) K is ll-definable;

(ii) K is downwards closed in -<;

(iii) K is strongly ll-definable.

16.6 Limiting the class of frames as we have done has its price: characterizations such as we

invoked in 15.4 are lost. (This is not to say that they cannot be regained, but it would require a

different proof.) We know that the ll-definable L0-formulas are equivalent, on FTR, to

L0-formulas of a particular form: that of the L0-translations given in §8 (theorem 7). We should

like to prove that every L0-formula that is ll-definable in FTR is reducible to this form. The
reduction must be constructive in some sense; typically, one would expect it to be a proof of

equivalence in some first order theory. It is not self-evident that such reductions are possible.

The main difficulty here is that FTR is not A—elementary.A study of A-elementary classes, such as

DLO, might yield interesting results. I have not pursued this.
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transparent formulas

Let ']I‘<_:lIbe the class of transparent formulas, as defined in 7.3. We have shown in §7 that every

transparent formula is equivalent to an 11.0-sentence;and that many ll-formulas are transparent (in
particular the deterministic formulas of 7.4). In this section we derive closure conditions on classes

Fr(<D) for sets <l>g'I[‘—in other words, for '11‘-definableclasses of frames. We end with a syntactic

characterization of the 11.0-formulasthat are equivalent to a transparent formula.

17.1 Dofinition: Let A be a frame. A subframe B of A is a directed subframe of A if for finite

BOQB, if B0 has an upper bound in A, B0 also has an upper bound in B. Notation: BgdA.

For example, generated subframes are directed subframes.

lgmma: LetA, B, C be frames.

(i) AgdB §dC implies A§dC (i.e., gd is transitive).

(ii)IfAgB <_:Cand A§dC , then A<_IdB.

17.2 Recall the definitions of partial projection and E-labeled subframe (7.1, 7.2). Observe that if

X is an open multitableau, BgdA , and g:B——-Xis a 2-projection, then g is a 2-labeled subframe
of A iff g is a 2-labeled subframe of B.

Qmma: Suppose (peT, and A is a frame. Then AII/cpiffcpis refutable in a finite directed subframe
of A.

Proof: By definition 7.3,

AIb‘(piff A has an Ftp-labeled subframe.

Suppose All/cp; X=(X,§) is a multirefutation of (p,and g:A—-35a minimal Fcp-labeled subframe 01

A. As remarked in 7.2, domg is finite. Now consider the subsets Ugdomg with the following

pI'OpCI‘tyZ

U has an upper bound in A, and
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if U';domg properly extends U, then U’ does not have an upper bound in A.

For each such U, pick an upper bound aUZU, and let

A0Z=dOmg

Then A0 is a finite directed subframe of A. Since g is also an Fcp-labeled subframe of A0, A0lI7‘(p.

Conversely, suppose A0gdA and A0I|7‘(p.Then A0 has an Fcp-labeled subframe g; this g is also an

Fcp—labeledsubframe of A. I]

The last paragraph of the above proof also establishes:

Qgrgllag. If B§dA, then for each we '11‘:AII—<pimplies Bll-cp.

17.3 Definition: A set {Ai | ie I } of frames is directed if

Vijel Elke]: Al-§Akand A]-§Ak.

So if {Ai | ie I} is a directed set of frames, elements of U1-E,Ai are ordered in the same way in

every Ai in which they occur together. Moreover, for every pair of elements there is some Ai in

which they occur together. Thus we may safely consider ul-E[A1-as a frame, the union of

{Al-lieI }, ordered by

asb iff 3 ice]. aSA_b.

If a class K of frames is closed under the operation of taking unions of directed subsets of K, we

shall say K is closed under directed unions.

17.4 Lemma. Let {Ai | ie I} be a directed set of frames, and cpeT. Then

Vie I. Al-ll-(pimplies U,-EIAI-II-(p.

flat. Suppose U,-E,Ai|l/cp.By lemma 2, (pis refutable in some finite Bgd U,-Al-.By directedness,

there must be some is] such that BQAI-.By lemma 1, Bgd Al-,so Ai Ilfcpby lemma 2. El
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17.5 Qmma For every rooted Be FPO there exists a formula <pBelI[A,—>,i]such that for every
frame A:

AlI;‘(pBiff B is a p-morphic image of a directed subframe of A.

gm: Let a finite frame B be given, with root w. Take distinct proposition letters pb, qb, for every
be B.

We define for each be B a formula (pbe]I[A,—>,_L]with >-recursion. Assume cpb,has been defined

for every b’e Cov(b). Then cpb.:=

qbA lflab".bu2b',b}/\Ab: /\Abre

(recallthat /\0=T).

We take <pB:=(pW.Note that (p3 is transparent, by theorem 7.4.

Define a valuation V on B by

v<p,,>= {b'| bath} ; v<q,,>=[b>.

We shall prove that for all b and b’, (B,V,b’)||—(pbiff b'$b, with >-induction on b. In particular, it

will follow that BIb‘(pB;by lemma 2.4.2 and corollary 2, then, AI|;‘<pBif B is a p-morphic image of
a directed subframe of A.

If b’$b, then b'||-pb, hence b’Il—(pb.For the converse it will suffice to prove bllfqab.Observe that

bll-qb; b"|l;‘qb. if b’,;<.b”,so bII——.qb.ifb and b’ have no successors in common. If b’ ifb, then

b“'pb'. Thus if b'e Cov(b), b'||-pb; moreover bllfcpb.by induction hypothesis; so

'7"' /\b’e cov(b)(‘Pb""Pb)

So b forces the antecedent of cpb.Since blblpb,bllfcpb.

It now remains to prove that All/(p3implies that B is a p-morphic image of a directed subframe of

A. In the sequel we shall say that a point x, under a given valuation, refutes an implication w—>x

if xll-1|! and xll/X.

Let B* be the tree of all sequences (v0,...,vk) of elements of B (k20), with vO=w and

vine Cov(vl-)(i<k), ordered by initial segments. eJ9*—>Bis the projection to the last element.

Suppose (A,V)||;‘(pB.We define a function f: B*—>A, with induction over B*, in such a way that

f(...,b) refutes cpb, for all be B.

—f(w)is an arbitrary element of A that refutes (p3 (under V).

—Suppose f(v0,...,vk) has been defined, and CovB(vk)={b1,...,bn}. Suppose, moreover, that

f(v0,...,vk) refutes cpvk.Then f(v0,...,vk) Ivpvk, so f(v0,...,vk) Hfcpl},, lsisn. Take
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a1,...,an2f(v0,...,vk) that refute (pb',...,<pb"respectively, and define: f(v0,...,vk,bl-)=al-.
Now e°f‘1 is a partial function from A onto B. For suppose a=f(...,b) and a'=f(...,b') with b¢b’.

Then a refutes (pb,and a’ refutes <pb..Since Be FPO, bib’ or b’$b. In the first case all-pb-,

a’II;‘pb.;the other case is symmetric. Hence a¢a'.
We can extend ranf to a directed subframe of A, as we did with domg in the proof of lemma 2: for

each Ugranf such that U has an upper bound in A, but not in ranf, and no U’granf that properly

extends U has an upper bound in A, we pick an upper bound aUeA. Let A'be the result of adding

these points aU to ranf. Note that U=#U'implies aU¢aU., and that every aU is maximal in A’.

Choose for every aU a maximal upper bound bu of eof"1[U]. Such upper bounds exist: suppose

b=e °f‘1(a), b'=e of‘1(a’). If {b,b’} does not have an upper bound, then, since a refutes cpband a’

refutes <pb.,all-qb and a'IF-aqb ; this is impossible if a and a’ have a common successor.

Clearly A'_C_dA.Define g:A'—>Bby

g(a)=e °f‘1(a) if ae ranf ; g(aU)=bU.

By construction, g is surjective. We shall prove that g is a p-morphism. Recall that if ae ranf , a

refutes (pg(a)(under V).

(i) g is a homomorphism. If a<AaU, then ae U, hence

g<a>= eor‘<a> s by = g<aU>.

If a<A.a'e ranf, and g(a)$g(a’), then (since a refutes <pg(a))all-pg(a,); which would make it

impossible for a’ to refute (pg(a3.
(ii)g satisfies the p-morphism condition. Suppose g(a)_<_b.If a is one of the additional upper bounds

aU, then g(a) is maximal in B, and there is nothing to prove. Otherwise ae ranf. Suppose g(a)¢b.

If be CovB(g(a)), g(a)=e(v0,...,vk) for some (v0,...,vk)eB*, we may take a'=f (v0,...,vk,b),and
find b=g(a'), a’ >a. In general, we shall find a’ >a with g(a)=b in finitely many moves of this
kind. [1

17.6 Qgrgllag. For every rooted Be FPO there exists a formula uIBelI[-—>,_L]such that for every
frame A:

AII;‘\yBiff B is a p-morphic image of a directed subframe of A.

_Pflo_f:The conjunctions in VB may be eliminated by repeated applications of the logical
equivalence

*(<P’\\V—’X)<—>(<P"\V—’X)- U
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17.7 The use of the above is analogous to that of Jankov's theorem in §l6.

Theerem. Let K be a class of frames. The following statements are equivalent:

(i) K is lI[—>,_L]-definable;

(ii) K is 'lI‘—definable ;

(iii) K is closed under p-morphic images, directed unions, directed subframes and

disjoint unions.

1_’ro_<31°:

(i) =>(ii) since ll[—>,J.]-formulasare transparent, by theorem 7.4.

(ii) =>(iii) by 2.4.2, lemma 4, corollary 2 and 2.4.3.

(iii) =>(i) : let K be closed under p-morphic images, directed unions, directed subframes and

disjoint unions. Set

<I>:={<pe ll [—>,J_] | Kll-cp}.

We will show that K=Fr(<D). Suppose AIHD:we are to prove that As K. Let A be the set of all

finite directed subframes of A. Let Be A, and suppose b1,...,bn are the minimal elements of B.

Then [bl-)3 is a directed subframe of A, lsisn. Take formulas \lI[b'_)Ell[——>,J_],by the corollary

above, such that for any frame C, Cll/u/lb) iff [bl-)3is a p-morphic image of a directed subframe of

C. Then A|I;‘\y[b,_);since All-(D, u/[me (D. So there are K1,...,Kne K with Kl-|I;‘\y[b'_),1Si_<_n;by the

corollary , then, each [bl-)3 is a p-morphic image of a directed subframe of a frame in K, hence

[bl-)3e K. Since B is a p-morphic image of 219-3” [bl-),by lemma 16.2, Be K. Thus AQK.
Finally, A is a directed set of frames, and A=uA. Since K is closed under directed unions, we
have Ae K. [II

Remark. This theorem implies that to every set of 'll‘—formu1asthere exists a set of

]l[—>,J.]-formulaswhich is valid in the same frames.1 I do not know whether something similar

holds for intermediate logics; to be precise, whether an intermediate logic axiomatized by

'll‘-formulas (on top of a formal system for intuitionistic propositional logic, with substitution as a

provability rule) can always be axiomatized with lI[—>,_L]—formulas, or even ll[/\,-—>,_L]-formulas.

17.8 By theorem 7.3, every 'll"-formulais equivalent to an L0-formula. Indeed, 7.3 effectively

constructs a unique lL0-transtation Tr(<p) for each 'll‘-formula cp. Let cs-formulas be formulas
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CS(y1,...,yn) : 3x (ylsx/\.../xynsx) (n22)

with x a variable distinct from y1,...,yn (cf. 11.8.2). The translations defined in 7.3 are, modulo

logical equivalence, conjunctions of sentences —Ely1...yk[3-,in which each Bj is a conjunction of

atomic formulas, negations of atomic formulas, and negations of cs-forrnulas; each Bjdescribes an
Fcp-labeled frame.

We can stylize Tr((p), turning the descriptions Bj into descriptions of trees. Let g:A—»3€be the

labeled frame that Bjdescribes. Let A* be the tree of finite sequences (a0,...,an) of elements of A
(n20) in which a0 is the root of A and ‘v’i<n.at-+1eCovA(al-),ordered by initial segments; and

e:A*—»Athe projection to the last element. Let ocjbe the ]LO[A*]—sentence

/\(aSa' Ia,a'eA* & a'e CovA,..(a))A /\(waSa' |e(a)$Ae(a’))

A /\(—uCS(a1,...,ak.) | U19-Sk,g°e(al-)T is not realizable).

Let [3]-*be the result of substituting distinct new variables for the constants in otj.Then it is easy to

see that B]-*is satisfiable in any frame in which Bj is satisfiable. So if Tr(<p)=/\1SjSm—Ely1...ykB-,
then

QOl=V1SJ-Sm3y1...yk Bj -—>V13]-SmEly1...y, [3]-*.

Conversely, if B]-*is satisfiable in some frame B, say by points b1,...,b1 corresponding with
elements a1,...,al of A* in order, then we define an Fcp-labeled subframe h:B——-35by h(b,-)=g°e(al-)

(1si_<_l). Since cpe '11‘,Bll/cp. So we may take Tr(cp) to be /\1SjSm—-Ely1...y, B]-*.

B!-*begins with a sequence of atomic conjuncts. We may suppose that these are ordered in such a
way that there is only one variable whose first occurrence is at the left hand side of a 5. (Make the

ordering from left to right agree with the ordering of the corresponding points in the tree.) Now we

can move some existential quantifiers to the right, rewriting [3]-*in the form

existential quantifier —sequence of bounded existential quantifiers (Elvzu)

conjunction of negations of atomic formulas and negations of cs-formulas.

Negating this, and rewriting, produces an lL0—sentenceVx in which consists of a sequence of
bounded universal quantifiers (Vv2u) followed by a disjunction of atomic formulas and

cs—forrnulas.We shall call a formula of this form, containing at most one variable x free, a
t-formula .

We have proven the following refinement of theorem 7.3:
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Thoorom. For every transparent ll-formula (p, an 1L0-equivalent Tr(<p) can be effectively

constructed. Tr(<p) is a conjunction /\1SJ-Smvx7].,in which each is a t-formula.

17.9 Call an lL0—sentenceonT-definable if there exists a set <D<;'l[‘such that for every frame A,

A l=(l iff A II—<I>,

that is, if the class of quasi-ordered models of onis 'll‘-definablein the earlier sense.

Proposition. Leta be an L0-sentence. Then the following are equivalent:

(i) for some cpe ll[——>,_L],oLE(p;

(ii) onis 'll‘-definable;

(iii) onis preserved under p-morphic images, directed unions, directed subframes

and disjoint unions.

Em: (i)=>(ii) since ll[—>,_L]§'ll‘by theorem 7.4.

(ii)=>(iii) since 'll‘-definableclasses are closed under the operations of (iii) by theorem 7.

(iii)=>(i): Let K be the class of quasi-ordered models of on.By theorem 7, K is l[[—>,J_]-definable;

suppose K=Fr(<l>), with <I>§ll[—>,_L].Let Q0 be the first order theory of quasi-order. We have

Q0uTr[<D]l=ot ; hence by compactness, Q0|=/\Tr[<I>0]—>oLfor some finite CDOQCD.Then OLE/\<I>0.

Since A6130is an ll[A,—>,_L]-formula,eliminating negation produces an equivalent ll[—>,_L]-formula
- as noted under 4.3.3. B

17.10 Lomma. If L0-sentences (X.and B are 'll‘-definable, then so is OLAB.

P_roof:Suppose oLE(pand Bay, with (p,we '11‘.Then obviously a/\BE(pA\y. We may assume that (p

and 111belong to ll[—>,i], by the proposition above: then (pm;/e lI[A,—>,_L]_C_'l[‘by theorem 7.4. I]

17.11 Thoorom. Suppose oL=Vx/\1SiSmBi,with each Bi a t-formula with free variable x. Then onis
'11‘-definable.

1: By the lemma, it suffices to show that VxBl-is 'll‘—definable,lsism. We shall construct
'lI‘—formulasby a method resembling that of van Benthem [1986] lemma 14.5.

Let Bi be a t-formula, consisting of a sequence of bounded universal quantifiers followed by a
disjunction ‘y.In 17.8 above, the bounded quantifiers were derived from a finite tree; we can

recover the form of this tree from the bounded quantifiers. Indeed, we shall construct trees T(y) for

all variables y occurring in Bi,by induction from right to left in the quantifier prefix.
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If for some variable y occurring in [3,-,there is no bounded quantifier of the form Vvzy preceding

7, we let the tree T(y) consist of a single point y. Otherwise, consider all the quantifiers

Vv1Zy,...,Vvn2y in the prefix: T(y) is the union of the trees T(v1),...,T(vn) (they happen to be
disjoint) with y added as a root.

For example, if Biis

Vy1ZxVy2ZrVy3Zy2\7’y42y2Vy52y4

(y5Sy1vy3Sy4vy4Sy2v )’25-3‘v CS(y1,y3,y5))

wegettrees

Y5 )’ Y3 Y5 Y1 Y

F / /5
y4 y3 y4 y3 y4

\ / Y \ /
V2 1 yz\ /

X

For each node y in the tree T(x), take a distinct proposition letter py. We define ll-formulas wy by
induction down T(x), as follows. Let xvbe the disjunction of clauses

wz, for every cover 2 of y in T(x);

pa, for every clause usy in 7.

(As always, the empty disjunction is J_.) We take \|Iy=py—)\|I.

So for our example we get, with px=p and py’_=ql-:

Y53q5"i,

Y45q4“""I5Vq3,

Y3? q3—>J-,

Y23q2"”q3V(q4—3"‘q5Vq3)Vq4,

Y1? ‘I1—3'q5a

xi P->(q1—>q5)v(42-H613v(q4-+pq5vq3)vq4)vq2.

Finally, let x be the conjunction of the formulas -n(pu.A.../\p ) with CS(u1,...,uk) a clause of y;
and take (pt-=x—>\yx.It is straightforward to check that (piis deterministic —hence, by theorem 7.4,

(pie T. The 'I[‘-equivalent of ‘v’x[3l-is (pi: since AI=—.Vx[3iiff A has an Fcpl--labeled subframe (as,
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hopefully, the example will help the reader to see), Vx[3lE(pl-by transparency of (pi.

With 17.8 above, this theorem implies that an JLO-sentenceis 'll‘-definable iff it is equivalent, on

Q0, to the universal closure of a conjunction of t—forrnulas.

Remark. Since the essentials of a rooted finite partial order can be put in a t—formula,one would

expect a greater similarity between the formulas (p3of theorem 5 and the formulas (piconstructed

here. There are two reasons for the difference. One is that (picontains v: eliminating it (cf. §7

footnote 2) might introduce a number of new proposition letters. The other is that (pBis defined

locally, unlike (pi.In the latter case, all the cs-constituents were dealt with at once.

Footnote

1Equivalence is proved directly in §7, footnote 2.
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Beth semantics

There is another well-known semantics for intuitionistic logic, devised by E.W. Beth. As far as

propositional logic is concerned, the difference with Kripke semantics lies mainly in the treatment

of disjunction.

A1 Let frames and valuations be as usual: so in particular, if V is a valuation on a frame A, and

pe 1P’,V(p) is upwards closed in A. Recall that a path through A is a maximal chain CQA. A path

through a, for a point ae A, will be a path through A that contains a.

Definition: Let A be a frame, aeA and XQA. . Then X bars a if every path through a intersects
X.

A2 At first sight, Beth forcing will seem to model another notion of constructivity than Kripke

forcing. The definition below appears to distinguish between having calculated a proposition —that

is, being at a point within V(p) —and knowing that p is true, in the sense that, whichever way we

continue, p will come out true.

Definition: Let A be a frame, V a valuation on A, and ae A. Then

(i) all-p iff V(p) bars a;

(ii) all-cp/xw iff all-(p and all-w;

(iii) all-(p—>\;liff Va’ 2a: if a'||-(p, then a'|l-\|J;

(iv) all-cpvxy iff a is barred by a set X such that Vxe X: xII—<por xII—\y;

(v) a|l;‘J_.

All the same, ordinary intuitionistic logic is sound and complete for the Beth semantics. An

accessible proof, via Kripke semantics, is in Kripke [1965]. It turns finite Kripke models into Beth

models on finitely branching trees. A slight refinement of the transformation (almost as described in

9.1) will give binary trees, and more:

: Let cpell.Then I-cpiff (pis valid in the Beth semanticson all binarytrees in which
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every point is succeeded by endpoints.

(Validity in a frame is defined formally as in 1.4, with Beth's forcing instead of Kripke's.)

A3 The correspondence theory is very different from that for Kripke semantics. In order to show

how, we begin by deriving some consequences of the truth definition.

Qmma: Let A be a frame, ae A, and suppose XQA bars a.

(i) Let every xeX be barred by a set Yx.Then uxe XYxbars a.

(ii) If X is upwards closed and asb, then X bars b.

Proof: (i) Let C be a path through a. C intersects X; thus for some xe X, C is a path through x, and

must intersect Yx.

(ii) Let C be a path through b. There must be a path C’ through a and b that coincides with C from

b upwards. Since X bars a, C'r\X¢0. Suppose c eC'r\X. Then if c<b, beX since X is upwards

closed; thus in any case, X bars b. [I

A4 In the following lemma, and everywhere below, the forcing sign "II-" will stand for Beth

forcing, as defined in A2, and validity based on that definition.

lgmmaz Let (A,V)be a model; a,beA.

(i) If asb, and all-(p, then bll-(p.

(ii) all-cpiff a is barred by a set of points forcing <p.

figqfz By induction on the complexity of (p,with lemma 3. (ii) from left to right is trivial, since {a}

bars a. The other direction uses (i). C1

A5 By a tautology we understand, as before, a propositional formula valid in classical logic. Beth

semantics emphatically lacks the finite model property:

Theorem: In finite frames every tautology is valid.

Picgfiz For maximal points a, definition 2 is just the truth definition of classical logic. So in

endpoints every tautology is valid. But in a finite frame every point is barred by the endpoints:

hence the tautologies hold everywhere. III
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The proof allows a stronger statement:

: In framesin whichthesetof endpointsbarseverypoint,everytautologyis valid.

Anyway, this shows that there is no interesting correspondence theory for finite frames —T and _L

are the only relevant first order definitions.

A6 The same holds for linear frames. They are equivalent to one—pointframes: if V(p)¢0, then it

bars every node, hence p is forced everywhere.

A7 The next class in complexity is TR(2), the class of full binary trees. (By A6, infinite branches

without side-branches are equivalent to endpoints.) As to correspondence with first order logic, it is
the last class as well:

Theorem: For ll-formulas cp,either

(i) (pis not a tautology, and (pETR(2)J_;or

(ii) (pis a tautology that is not valid intuitionistically, and (phas no first order equivalent on

TR(2); or

(iii) I-cp,and <pETR(2)T.

Emgf: The one point that is not trivial is that refutable tautologies have no first order equivalents on

TR<2>,i.e. that the first part of (ii) implies the second.

Suppose (p is a tautology, and |;’(p.By A5, (p is valid on all finite trees. If (p has a first order

equivalent ot of quantifier rank mk(ot)=n, then by theorem 8.15, onholds in all full binary trees

satisfying P(n). So (pis valid in all full binary trees satisfying P(n).

By proposition 2, (pis Betli-refutable in some binary tree A in which every point is succeeded by

endpoints. Then A can be extended to a full binary tree A’ in which P(n) holds and (p is still

refutable. (If a has just one cover a’, replace [a’) by two copies {O}><[a')and {1}><[a’),putting

(i,a")e V(p) iff a”e V(p); repeat this process level by level, starting at the root of A. Replace some

endpoints by finite full binary trees, to satisfy P.2(n) and P.3(n).) This contradicts the conclusion

of the previous paragraph: so (pcannot be equivalent to a first order formula on TRQ). [1

As with the Kripke semantics, if <pEKot,under the Beth semantics, and K'gK, then (pEK.otas
well. So we have
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gggrgllagy:Let (pel, and suppose K is a class of frames containing all full binary trees. Then if l=<p

and blcp,cphas no first order equivalent on K.

This means that the conclusion of A5 holds generally: for Beth semantics, correspondence with

1L0-formulasis a non-subject.

A8 We can try to get around this difficulty by modifying Beth semantics or extending LO.We shall

discuss both possibilities, and a combination of the two.

A9 Though refuting any at all interesting formula in the Beth semantics requires an infinite model,

such a model will exhibit a pattern that can be finitely described. As an example, take —1fip'—)p.To

refute it, we need a point a forcing a—-upand not forcing p. Then a|I;‘—p,so there must be b>a

forcing p. We have:

b ll-p

(1)

0 Ilfp

This cannot be all, for a would be barred by V(p), and consequently force p. So a must have

another successor a’, forcing —r—.pand not forcing p, and not preceding b. Next, a’ will give rise to

new successors b’ and a", like b and a respectively, and so on ad infinitum. This process may be

taken to generate an infinite comb:

bl"\/
“\ /”" i

...\q/,.
..\a/,.

(2)

Nonetheless, almost all points in (2) are the same. In fact, we can represent the a's and b's and
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their arrangement by a finite graph:

b

(3)
The paths through (3) correspond with the paths through (2): either one takes a finite number of a's

and finishes with a b, or one loops through a forever —corresponding with the spine of (2).

Such finite graphs resemble the finite models that Kripke used to construct Beth models from. They

are not exactly the same, though: Kripke would have had a loop at b as well. It might be attempted

to do Beth semantics with frames in which the ordering need not be reflexive —we shall not pursue
this now.

A10 The truth definition in A2 contains second order clauses: (i) and (iv) quantify over certain

subsets of the frame. As a consequence, we would be hard put even to define first order

equivalents of ll-formulas on Beth models, parallel to the standard translations of §1.1 When we

abstract from valuations, we add another layer of second order quantifiers, this time over upwards

closed sets (cf. 1.6). It would be something already if we knew to what extent the second layer can
be eliminated.

We propose to take a look at the correspondence on Beth frames between ll-formulas and formulas

of L2, with the set variables ranging over paths. We shall use 1t,p as informal variables over paths.

In the formal language L2, we write X, Y,Z etc. for sets, instead of proposition letters as in 1.6.

All In fact, we have no real business with the second order theory of paths. We can easily

generalize Beth frames to two-sorted structures, consisting of an ordinary frame A and an explicit

domain of paths in A. From now on

A Beth frame is a pair A.=(A,H)of a frame A and a collection H of paths through A satisfying the

following existence axioms:

(i) 31t.ote TC (there are paths through every point)

(ii) bzae 1: => Elp(be p & Vce 1t(cSa => cosp))

(iii)bsae 1:=>3p(be p & Vce 1t(c2a =>ce p))
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1.2 will be regarded as a two-sorted first order language; structures for ll..2have two sorts, one of

which (the first, say) is a frame. Of course, it cannot be guaranteed that the second sort actually is a

collection of paths through the first; but we can make sure that it is isomorphic to a set of paths by a
few additional axioms:

(iv) Va(ae It <=>as p) => 1t=p (extensionality: paths are subsets of the

frame)

(v) a,be 1t=> a_<_bv bsa (paths are linearly ordered)

(vi) be TE=> Elae 1: (bia & b$a) (paths are maximal)

A12 With valuations as before, we get the following truth definition:

Definition: Let A=(A,H) be a Beth frame, V a valuation on A, and areA. Then

(i) all-p iff VICEH(ae It => Elbe 1!. be V(p));

(ii) all-(p/up iff all-(pand all-\y;

(iii) all-(p—>\piff Va’ 20: if a’||-(p, then a'|l-\|I;

(iv) a||—(pv\|Iiff V1t€ H(ae 1: => Elbe 1: (bll-(p or bIHy));

(V) a|b‘J..

Note that (ii), (iii) and (v) are the same as in A2.

A13 The results of A3-5 hold for generalized Beth frames. In particular, the path construction for

3(ii) can be carried through by axiom (iv). By a straightforward verification, intuitionistic

propositional logic is sound for the generalized Beth semantics. Since ordinary Beth models qualify

as generalized Beth models, completeness is a trivial consequence of completeness for ordinary
Beth semantics.

We conclude with two examples of correspondence on generalized Beth frames. Since the standard

frames are a subclass of the generalized frames, the correspondences hold for the standard frames
as well.

A14 Example: Let A=(A,H) be a Beth frame. Then

All--1-ap—)p iff A |= VX3x( Xx A VyZx3z2y.Xz )

The proof is by contraposition, in both directions.
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(=>) Suppose Ab4VX3x(XxAVy2x3z2yXz), i.e. for some rte H,

(*) Vae 1c3b2a.[b)r\7t=Q.

Let V(p)={beA|[b)r\1t=0}. Take ae 1:. Then all--1-up:for if a’ 20, then either [a’)r\1t=0, and

a'||-p; or Ela"2a'.a"e 1t, and then by (*) for some b2a, blkp; so in either case d'"7l—1p.On the other

hand, allfp; for ae 11:,and 1:does not intersect V(p).

(<=) Suppose (A,V,a) "'—1—1pand (A,V,a)lI;‘p.By the truth definition, there must be some path 1:

through a that does not intersect V(p), but every point of which is followed by elements of V(p).

Elements of V(p), of course, cannot have successors on ‘it.Winding up:

Al=ElX\7’x(Xx—>3yZxVzZy.—aXz).

A15 The above example may give the impression that (generalized) Beth correspondence is more

complicated than Kripke correspondence. This is not a correct impression, as will appear from the

next, and last, example.

The essence of deterministic formulas comes out in the proof of theorem 7.4 at the point where it is

argued that, if T(\yvx)e (-9(a),T(\Vvx) cannot have been added by the closure conditions. The

difficulty in the construction of that proof, avoided by determinism, is this: in some point a, we

may be forced to make some formula (pl->(p2vq>3true. Furthermore, it may be that in some

successors of a, (p2is true and (p3false; while in other successors (p3is true and (p2false; and no

provision has been made, above a, for making (pl false. Then (pl must be true in a, and the Kripke

semantics would have us choose in a whether (p2is true or (p3.We obviously cannot choose either,
and that is why the proof does not work for all formulas. In Beth semantics, however, there is no

problem: in the situation just sketched, a may still be barred by points forcing either (p2or (p3,and

thus force <p2v<p3.We shall illustrate this with SP2 (recall: SP2 is

("<PV"\VV“X->‘PV\VVX) —>"‘PV"\|’V"X,

with (p=pAq,\y=p/xwq and x=wpAq) on DLO.

Example: Let A=(A,TI)be a Beth frame, with Ae DLO. Then

All-SP2 iff A l=V)Elx[ Xx A Vy1y2y3Zx(Vi¢jyiSyjv V15,-S3Xyl-)]

The proof is, as always, by contraposition.
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(<=) Suppose (A,V)||;‘SP2. Then somewhere in A, ——.cpva1yv—.xis not forced. So there is a path

1:e TI on which acp, —:\yand —1)(are never forced. Thus if ae 1:, then allfwcp, aII7‘——.\|I,and aIb‘—ux.

So every ae 1: has successors b IHp, c IHV and dII—x,and since (p, \l! and x are mutually

incompatible (that is, (p—>a\yA—ax,etc.), b, c and d must be mutually incomparable and off 1:.

(=>) Suppose 1:eTI is such that each ae 1:has successors b, c and d that are pairwise incomparable

and off 1:. Then there are pairwise disjoint upwards closed sets U, V and W not intersecting 1:,

such that every point of 1: is succeeded by elements of all three. Their construction is

straightforward, but it does require some bookkeeping. Note that 1:has no greatest element: if ae 1:,

then there exists b2a with be 1:,so 1:must have elements incomparable with b (axiom (vi) in Al 1);

these must be higher than a.

(a) Take aoe 1:.Choose b0, co, doe [a0)—1:pairwise incomparable.

(b) Suppose ag, bg, cat,and d)»;have been chosen, for some ordinal §, with a§e1: and bg, cg and

die 1:. With axiom (vi) of Al 1, we can find a§+le1: such that a§+1$b§, a§+1$c§ and a§+1$d§.

Choose bg+1, cg+1, d§+1e [a§+1)—1:pairwise incomparable.

(c) Suppose ag, bi, cg and dg have been chosen for all § less than some limit ordinal K,with age 1:,

bg, cg, dge [a§)—1t,and all bg, cg and dé pairwise incomparable. Then if {a§|§<?t} is cofmal in 1:, the

construction is finished. Otherwise we continue with ax> {a§|§<?:} on 1:, and pairwise
incomparable bl, ck and dl in [a,‘)-1:.

Since A is a set, the construction finishes at some ordinal 7:;and then we may take U=u§<7\[b§),

V=u§d[c§) and W=u§d[d§). By downward linearity, U, V and W are disjoint.
Now for ae A, let a belong to V(p) unless a has successors in W, and to V(q) unless a has

successors in V. Then for all ve V, vIl—p/xwq(=\|J); for all we W, wll-ap/xq (=)(); and for all u

without successors in V or W, ull-p/\q (=(p). Moreover, no point of 1:forces wcp(because of U),

—.\|/(because of V), or —1)((because of W); so if ae 1:, then aIl;‘—.(pvw\yv—ax.

We shall be done once we have shown that some ae 1: forces —u(pv—1\pv—.x—><pvwvx;since Vae 1::

aII;‘w(pv—.u/v—.x,it is sufficient to show that every a'e 1: forces <pv\|Ivx. So take a'e 1:, and

consider any path p through a’. We have seen above that the ca force p/\—:q,and dgll-—.pAq.We

shall prove that if p does not contain any cg or dg, there is an a" on p without successors in V or W.
Then a"Il—p/\q;and it follows that a’ is barred by points forcing cp,Wor x, so that a'Il-cpvwvx.

Suppose that p does not pass through points cg or dg. Suppose that a'<c§. Then there must be some

xe p that is not comparable with cg. Then x>a’. Now suppose that x<c§.. Then since xe 1:,x>a§. by

downward linearity. Likewise, since a'e 1:,we know that a’ >a§. Since x>a’, a§<c§.. So <‘,<§'by

construction. But then a§.<a’<c§ since a’ and ag. both precede x and a'e 1:; whereas ag.</cgby

construction. Thus, x has no successors c)-;.,and by downward linearity, no successors in V. If
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necessary, we can repeat this argument with d§'s, and x instead of a’. We end up with a” as
desired. [3

The reader will have noticed that not all of SP2 was employed in the first part of the above proof.

Let us abbreviate VXElx(XxAVy1y2y32x(V#}-yisyjvv1SiS3Xyi))to on.We have in fact shown:

if Alalot,then AIVSP2, and

if A||7‘—1(pva\4Iv—ux,then Asia;

and observed in passing that AII7‘SP2implies Allfwcpv-—.\j1v—.x.Thus we have established an

equivalence between ll-forrnulas:

Qgrgllggz With (p,w and x as above, SP2 is equivalent with —.(pvw\pv—.xon downwards linear
Beth frames.

This contrasts sharply with Kripke validity (4.6): the expressive power of disjunction has become

quite different. With Kripke validity, disjunction without implication was fairly trivial, whereas

with implication it soon became unmanageable; under Beth's definition, it would seem that

disjunction is already complex with -. and A, but does not react so violently to implication.

A16 So there may be an interesting correspondence theory for Beth semantics after all. Inspection

of the above example gives rise to the following conjectures: with set variables interpreted as paths,

either in a predetermined domain of paths, or ranging over all paths in the frame,

I on DLO, every ll-forrnula is equivalent to an ll..2-formula;

II on PO, SP2 is not equivalent to an ll..2-formula.

Footnote

1In one rather natural class of Beth models, the quantification over bars (or paths) can be replaced

by quantification over numbers. Consider the models on finitely branching trees (i.e. in which

Cov(a) is finite for all a): a point a in such a tree is barred by an upwards closed set X iff for some

ne N, all successors of a that can be reached from a in n steps, from a point to one of its covers,

belong to X. The nontrivial direction in this equivalence is proved by an application of Konig's
Lemma.
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INDEX OF SYMBOLS

(syntax) 11,1?’1.2.1; <DHp 1.3; a[x:=y], St(<p), L0, L1, 11.21.6; T(p, Fcp 1.8; (p[p1:=<p1,...,pn:=(pn]

2.2; A, V 2.9; o, 1:3.1; 2'1",2r, 21‘, 2P 3.1; ]I[c1,...,cn] 4.1; cp”4.7.1; <1>P4.7.4; d(§) 5.7; ]L0[=]

6.1; Comp(x,y) 6.5; 1L0[A]7.3, 17.3; 5, -<8.3; rnk(ot) 8.12; V: 9.5; 01“9.7; St(T(p), St(F<p) 13.6;

'11‘§17.

(structures etc.) U(A), [a), [A0) 1.2.2; Cf,1.2.6; < 1.7; [a,b] 1.9; a~b 2.3; ‘ii2.3.1; C(A),5( 2.3.2;

X;-61A;2.4.3; aSX, a<X 2.9; A, A, V, v 2.11.4; CovA(a) 2.11.5; (a]A 2.11.7; S353.5, 3.9;fU,

1'1U$Zt;.,r1U§6.7; AA 73; F" 9.3; M 11.1; 7",;10.3; 2,6,8, 13.4; QX 13.7; => 14.2; 01199,

1'1,-6,011,.14.3; 1U(A) 14.10; Ag18, )3,~e,A;.14.13; Va 14.152; 1=(Z!I1)14.15.3; Fm 14.17; pe(A)

14.18.1; $21271315.1;A-<B 16.4; B§dA 17.1.

(mixed) V(p) 1.2.3; V((p) 1.2.4; (g,a)||-(p,a|I-(p 1.2.5; Q11<1>,$Zt1+<p1.3; (A,a)lI-(p,A||—<p1.5;

V1=(p2.5; all-Tcp,all-Ftp, all-2 3.1; (3,? 3.11; (p‘=‘\p,<pEK\y 4.2; T]E§ 5.5; (pEoL,(pEKot, E(K) II;

sz 7.2.2; 8t1=1“[a] 13.7; All-(D §14; $Zl1=cp=w,8191“ 14.4; All-(D 14.11; KII-(p 14.11; Th][(K)

14.25; Th($Zt) 15.1.

(special formulas) LC, KC 1.4; SP2 1.9; P” 2.8; W" 2.10; SC 3.4(c); SP” 6.4; KP 6.5; BR”

9.13(b); Mn 11.1.

(classes of structures) Q0, PO, DLO, TR, FPO, FTR, L0 1.9; Mod(<p)§4; Fr(<p),FrK(<p)

4.2; Frag) 5.4; IWD 8.1; TR<2>8.11; P0,, 8.17; Tn 9.3; FTR2 9.10; D; 9.14; HT" 12.5;

Mod(<I>)§13; Fr((I>) §14; Ha 14.1; S(L), H(L), P(L) 14.3; Gfr(<I>)14.11; FrI(K) 14.25.

(other) f:U——>V,domf, ranf,f:U—-»V,f;f 7.1.1; gfx 7.1.3; P(n) 8.14.



INDEX OF DEFINITIONS

Antichain

n-ary
atorr1ic

Bar

binary
boxed

branching

Cause

chain

c1ose(d)

comparable

completeness (strong)

(weak)

component

consistent (set of first order

formulas)
contraction

countably incomplete

countably saturated
cover

cs-formula

Definable (first order -)

(11-)

(... in K)

(strongly 11-)

(T-)

(...lL.0-sentence)

degree

2.9

2.11.9

2.5

A1

2.11.9

5.7

2.11.3

1.8

2.7

1.8, 2.3

2.9

1.3

1.9

3.9.2

13.7

2.3.2

13.7.1

13.7

2.11.4

17.8

11

§14, 14.11

§l6
§16

§17

17.9

5.7

descriptive frame
determinate

deterministic

diagram
directed: set of frames

subframe

union

disjoint union (of frames)

(of generalized frames)

downwards linear ordering

Elementary

(A-)

(of models)

(class)

(ll-formula)

equivalent (on frames)

(on K, logically)

(2-projections)

(n-)

Filter (proper, prime)

prime filter extension

representation
theorem

finite model property

forcing

fragment
frame

(generalized -)

full (sequent)

(binary tree)

14.18.1

7.4

7.4

7.3

17.3

17.1

17.3

2.4.3

13.4

14.13

1.9

§1 note 6, 6.6

1.9

H

4.2, 5.5
4.2

7.2.4

8.12

14.15.l
14.18.1

14.15.1

14.17

3.13

1.2.5

4.1

1.1

14.10

3.2

8.11
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Generated (subframe,

submodel, by)
subframeof a

generalized frame

Height

Heyting algebra

homomorphism (of frames)

Ideal

induced model

invariant

inversely well-founded

Z-Labeled subframe

frame

(sub)tree (strong -, perfect -)

Minimal Z-tableau, refutation
model

(modal, M-)
monadic

monotone

multitableau

Open

Path

through a point

piecewise directed

p-morphic image

p—morphism(condition)

(of generalized frames)

p-relation

preservation

p-retraction, p-retract

1.2.6

14.13

2.7

14.1

2.4.2

14.17

3.5

13.2

8.1

7.2.1

7.2.4

8.4

3.7.2

1.2.4

5.3

§11

8.3.2

3.9.1

1.8, 3.3

8.13

A1

2.6

2.4.2, 14.13
2.4.2

14.13

13.1

2.4.4

2.11.1

projection

2-, partial -, 2-sub

Quantifier rank

Realize, realizable

(set of lL0—formu1as)

(set of signed formulas)

refute, refutable
refutation

pattern
restricted positive

root (of frame)

(of model)

Scott's axiom

sequent

signed formula
subformula

stability principles
standard translation

strict (quasi-ordering,

successor, chain)

(tableau)

(multitableau)

strong embedding
subtableau

(strong) subtree

subalgebra-based

Tableau (semantic ...)

(E-)

tautology
t—forrnu1a

transparent
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3.10

7.1.2

8.12

1.8, 3.1,

§6 note 1

13.7

13.7.2

1.5

3.6.2

1.8

15.4

2.11.4

13.8

3.4(c)

1.8, 3.1

1.8, 3.1

3.6.1

6.4

1.6

2.7

3.3

3.9

2.11.3

3.7.1

8.2

14.27

1.8, 3.3

3.6.2

2.5

17.8

7.3
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lI6C

Ultrapower

ultraproduct
ultraroot

union (of multitableaux)

upward closure

upwards closed
linear

1.9

6.7, 13.6.1

6.7, 13.6

13.6.1

3.9.3

5.2

1.2.1

1.5

Valid (in model)

(on frame)

(on generalized frame)

(equation)
valuation

(modal, M-)

variety

Width
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1.3

1.5

14.11

14.4

1.2.3, 14.11

5.3

14.5

2.9



Samenvatting

De Kripke-semantiek voor de intuitionistische logika induceert een verband tussen interrnediaire

axioma's en quasi-ordeningen (frames): men kan een intermediair axioma opvatten als een

bewering over een frame, die geldt voor een gegeven frame juist als het axioma daarin geldig is.

Daarmee wordt de taal van de propositielogika een medium voor de beschrijving van frames. De

vraag rijst nu wat voor eigenschappen van frames op deze manier uitdrukbaar zijn. In het bijzonder

kan men onderzoeken of formules van de propositielogika "corresponderen" met formules van een

andere logische taal (met bijbehorende semantiek), in de zin dat ze dezelfde eigenschap van frames
uitdrukken.

Dit proefschrift handelt voomamelijk over correspondenties tussen formules van de taal I van de

intuitionistische propositielogika en klassiek geinterpreteerde formules van een predikaatlogische

taa1]L0met één binaire relatie. In deel II wordt bewezen dat er I-formules bestaan die niet eerste

orde definieerbaar zijn (i.e. niet corresponderen met ]L0formu1es).Uit resultaten van Doets volgt dat
sommige II-formuleszelfs niet eerste orde definieerbaar zijn op relatief overzichtelijke klassen van

frames, zoals bomen (met alle paden van type 50)), of eindige partiéle ordeningen. De grenzen van

de eerste orde definieerbaarheid worden in twee opzichten onderzocht: zekere beperkingen op de

vorm van I-formules garanderen dat men een corresponderende 11.0-formulekan vinden; aan de
andere kant worden langs verschillende wegen frameklassen afgebakend waarop elke ]I-formule

eerste orde definieerbaar is. De ]I—formu1esin één propositieletter worden geclassificeerd naar eerste

orde definieerbaarheid (§11). Er wordt aangegeven hoe men kan beslissen of een ]I-formuleeerste

orde definieerbaar is op de klasse der bomen.

Deel III onderzoekt de afsluitingseigenschappen van ]I-definieerbareklassen van frames; en welke

1L0-formules corresponderen met II-formules. Bekende resultaten van de modale
correspondentietheorie worden overgezet naar het intuitionistische geval.

In twee uitweidingen in deel I worden fragmenten van de taa1]Ibestudeerd, en enige opmerkingen

gemaakt over correspondentie tussen ]I-formulesen formules van de modale propositielogika.

Een altematieve interpretatie van I-formules in frames gaat terug op Beth. Voor de Beth-semantiek

kan men dezelfde soort vragen stellen als hier is aangeduid met betrekking tot de semantiek van

Kripke. De appendix bespreekt de vraag naar eerste orde definieerbaarheid. L0-definieerbare
eigenschappen geven geen inzicht in de 'k1assieke' Beth—interpretatie.Er bestaat echter een

redelijke, meer handelbare variant van de Beth-semantiek.
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STELLINGEN

bij het proefschrift

Intuitionistic Correspondence Theory

van P.H. Rodenburg.

I. Laat voor a1gebra's g=(A ;F), S(§) de collectie zijn van alle deelverzamelingen van A die

gesloten zijn onder de operaties in F; noem twee algebra's (A;F) en (A;F') equivalent als ze

dezelfde polynomen in >0 variabelen hebben; en definieer S+(§) als

fl(S(g') | W is equivalentmet Q ) .

Dan bestaat er, voor een niet-lege verzameling A en een algebraisch afsluitingssysteem S over A,

een algebra 9 met drager A waaryoor S=S+(g) desda A oneindig is, of 0¢S, of | fl(S—{Q}|¢1.
(Zie P. Rodenburg, Characterization of the algebraic closure systems that can be represented by

S‘‘, Algebra Universalis 14 (1982) pp.263-4.)

H. Zij L de taal van de infinitaire modale propositielogika, waarin conjuncties zijn toegestaan van

willekeurig grote verzamelingen forrnules. De collectie van equivalentieklassen modulo S4.3 van

forrnules van l. in één propositionele variabele p is geen verzameling.

(Cf. D.H.J. de Jongh, A class of intuitionistic connectives, in: J. Barwise, H.J. Keisler and K.

Kunen, eds., The Kleene Symposium, Amsterdam 1980.)

HI. In een klasse van eindige frames waarvan de breedte een vaste eindige bovengrens heeft, is elke
lI-formule elcmentair.

(Zulks in contrast met §lO van dit proefschrift.)

IV. De intermediaire logika geaxiomatiseerd door SP" is beslisbaar, voor elke n€Z+.

(Zie voorbeeld 6.4 in dit proefschrift voor de definitie van SPn.)

V. Zij Q®Q de structuur der paren van rationale getallen, strict geordend door

(q,r) < (q’,r') desda q<q' en r<r’.

Definieer

x1x2x3 := Vu ( u<x1 A u<x3 -—)u<x2)

en voor elke n>3,

x1)C2....xn_1xn Z: 1SiSnx1...Xi_1Xi+1...xn.
X

Zij T de universele theorie van Q®Q. Dan wordt T geaxiomatiseerd door een stel axioma's voor de

theorie der stricte halfordeningen, met toegevoegd de axioma's



Vx1...xn V( xp(1)...xp(n)| p is een perrnutatie van {1,...,n} )

voor alle n23.

(Dit beantwoordt een vraag in: J.F.A.K. van Benthem, The logic of time, Dordrecht 1983 — z. l.c.

p.28.)

VI. Een halfordening Q is splitsend als er voor elke a€Q elementen au en a" zijn zo dat

Q = (a] U[a.,) = [a) U(a"] . en

(a] fl[au) = [a) fl(a"] = 0 .

Noem een splitsende halfordening Q van type (iii) als Q niet bestaat uit twee onderling ongeordende

elementen (type (i)) en niet isomorf is met Z (type (ii)), en Q geen deelordening heeft die een

lineaire som is van twee of meer splitsende verzamelingen. Definieer voor functies ¢:Q—+Q:

¢»°<x>=x;¢"+1(x>=¢<¢"<x>).

Een splitsende halfordening Q is van type (iii) desda er een farnilie (Qt-|i€Z) bestaat van paarsgewijs

disjuncte deelordeningen van Q, met isomorfismen ¢>l-:QlEQ‘-+1, zo dat Q= U,-€zQi en WEZ

Vx,yEQl-:

<1) xsQ¢,-(y) <=>y¢Q;c;

(ii) V122: xS¢[(y) .

(Dit beantwoordt een vraag in: Ph. Dwinger, Unary operations on completely distributive complete

lattices, 2. Stephen D. Comer ed., Universal Algebra and Lattice Theory, Charleston 1984 (Berlijn

1985), p.73.)



Errata in Intuitionistic Correspondence Theory

p. 5, regel 8 van boven (kort: +8): voor p, lees ϕ (bis)

p. 7, regel 15 van beneden (kort: –15): occurrence

p. 7, regel 10 van beneden (kort: –10): St(ψ∨χ)

p. 8, +14: not a"≤a' and not a'≤a"

p. 9, –12: see if the result

p. 10, +16: refute (see

p. 11, –4: clearly,

p. 13, +13: BHK

p. 19, –6: disjunction, and

p. 37, –1: ϕi

p. 39, –2: I[ ,  ,  ]  

p. 41, +3:  ⁄|-¬Φa

p. 50, –6: i<k(¬)fj(i)pi

p. 55, –6: Łos's theorem

p. 98, +9: lattice

p. 126, –8: generated by f[a]  [since b0   f[a]]

p. 136, –2: for each ψPa
,

p. 145, –13: eliminating conjunction produces


