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INTRODUCTION

1. GENERALCLAIM.This dissertation combines a systematical and a historical search for a

Natural Logic: a proof system tailored directly for natural language. The goal of the systematical

search is the construction of a Natural Logic, while the goal of the historical search is to

discover principles useful for this logic. This work aims to show that there isn't an opposition

between the semantical and the inferential approach to natural language: the proof system begins

where semantics leaves off. Philosophers should handle with caution one-liners like the central

issue of linguistic theory is the construction of a theory of truth for natural language ( cf.

Montague, 1970a); or the central issue of linguistic theory is the construction of a proof system

for natural language (cf. Lakoff, 1972). We claim that the combination of semantics and proof

theory is necessaiy for a proper understanding of natural language inference.

2. HISTORYANDNATURALLOGIC.Traditional logic is generally considered a Natural Logic

because its syntactical forms are in close accord with natural language sentences. Given that

there are inferences which fall beyond the scope of syllogistic we pose the question: how did

Traditional Logic cope with those inferences?
In our historical search we shall focus on the work of the classical authors Ockham, Leibniz,

De Morgan and Peirce. These authors, we shall conclude, used monotonicity to explain non

syllogistic inference. The study of Peirce's logic will reveal further principles useful in the

construction of a Natural Logic: the principle of conservativity and the principle of anaphoric
identification.‘

From Ockham to Leibniz, and from Leibniz to De Morgan, we see a decreasing

understanding of syntactical issues: the historical use of monotonicity displays a successive

decline in the conception of the appropriate vehicles of inference ('logicalforms').2 One can say

that Leibniz and De Morgan had a poor theory of logical form, while Ockham had an

unpractical one. We shall also see that a syntactical criterion for monotonicity was missing in

the proposals of De Morgan and Leibniz. This absence caused their attempts to trespass the

syllogistic borders to fail. Ockham did have a criterion: the Medieval suppositio theory enabled

him to define precisely the contexts in which monotonicity rules can be used. But the proverbial

complexity of the suppositio theory renders Ockham's strategy unpractical.

The understanding of syntactical issues improved at the threshold of modern logic in the

work of Peirce: he gave a manageable syntactic characterization of monotonicity. Peirce's

version of monotonicity, however, refers only to formal languages. In this dissertation we shall

show that it is possible to extend Peirce's analysis of monotonicity to natural language.
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To resume, the historical search will reveal the following principles of Natural Logic :

0 monotonicity

0 conservativity

0 anaphoric identification
And two related desiderata:

0 an adequate theory of ‘logicalform’

0 a criterion for monotonicity

3. MODERN PROPOSALS FOR NATURAL LOGIC

3.1. LOGIC AND GRAMMATICALFORM. Suppes (1979) presents a theory of inference for a

fragment of English. In Suppes’ proof system the vehicles of inference are the analysis trees

generated by a context-free grammar. Broadly speaking, this system uses monotonicity as

inference rule, supplemented by reductio ad absurdum. Suppes lists all the schemata in which

monotone substitution is allowed. We select here two examples:

Some N" + TV + All + N’ All N’ VP

Some N" +TV +All + N‘

All N" +Aux + Neg+ TV + ALL+ N‘ All N’ are N

All N" +Aux + Neg+ TV + ALL+ N

These schemata generates the following inferences:

1.

Some boys love all vegetables All cabbages are vegetables

Some boys love all cabbages

All boys do not love all cabbages All cabbages are vegetables

All boys do not love all vegetables

Suppes‘ system is on all accounts a proof system tailored directly for natural language: in it

grammatical form and logical form coincide. Moreover, the system includes 'a good deal more

than the classical syllogism.‘ But the form of this pioneer system is not very insightful. For

instance, Suppes introduces about 75 rules of inference, which could be reduced to a common

pattern:

0 expressions occurring in upward monotone positions may be replaced by terms with a larger
denotation
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0 expressions occurring in downward monotone positions may be replaced by expressions
with a smaller denotation.

Obviously, the system would improve if supplemented with a theory of monotonicity marking

(cf. Chapter V).

3.2. LOGICAND MONOTONICITYMARKING.In some American universities research is going

on trying to rehabilitate pre-Fregean logic: the Sommers' project of Natural Logic. Sommers
claims that

traditional formal logic is especially suited to the task of making perspicuous the

logical form of sentences in natural languages that are actually used in deductive

reasoning.

Sommers' system consists of a monotonicity calculus, algebraic rules and rules for the

manipulation of quantifiers. The monotonicity calculus resembles a mechanism of monotonicity

marking: logical constants are represented by constructions displaying their monotone

properties. But there is a main difference between our conception of Natural Logic and

Sommers' approach: Sommers'.system is not tailored directly for natural language. The

vehicles of inference of Sommers' natural logic are expressions of a formal language scarcely

resembling natural language. For instance, the representation of Some sailor is giving every

child a toy is

+S + G3 -C + T

From our point of view, interesting as Sommers logic is, it does not qualify as Natural Logic.

4. OURSYSTEMATICALPROPOSAL.The main goal of this dissertation is the construction of a

Natural Logic.3 Our Natural Logic is based on Categorial Grammar and on a mechanism

allowing the systematic computation of monotonicity. To achieve this we define a variant of

Categorial Grammar, the Lambek Grammar, henceforth LG.

LG is an implicational logic formulated as a natural deduction calculus (cf. Prawits 1965). The

derivations of LG are disambiguated objects which may be seen as :

0 syntactical analyses

0 recipes for the computation of lambda terms
0 vehicles of inference

Our system, like Suppes, is tailored directly for natural language. But via the lambda terms we

are able to extend Peirce's analysis of monotonicity to natural language: we have a theory of

monotonicity marlcing as well.
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In principle there is no difference between our approach to natural language inference and

the standard one: the vehicles of inference of logical systems are expressions of an

disambiguated language. The main difference lies in the relation between the formal objects and

the natural language objects. In the standard case the logical forms need not to reflect the

grammatical form. In our case the vehicles of inference are the grammatical forms themselves.

At this part our twofold goal is reached: after extracting useful principles from the history of

logic, we employ them in our construction of a Natural Logic based on categorial grammar.

However, a new question arises: is our Natural Logic founded on a sound linguistic basis?

5. THE LINGUISTIC STATUS OF T'I-IENON-DIRECTED LAIVBEK CALCULUS

5.1. AMBIGUATINGRELATION.To make our proof system a more realistic one we shall take a

closer look at the status of LG itself. LG is a variant of the Lambek Calculus, henceforth LP,

discussed in Van Benthem (1986). LP is generally seen as a crude instrument for linguistic

purposes. We analyse this assessment of LP using the structure of proofs as a point of

reference in the linguistic discussion. The conclusion of our investigation will be that the

rejection of LP is based on the identification of the system with a particular ambiguating

relation: the ordering of the lexical items in the analysis trees determines the corresponding

string.4 In fact, the arguments intended to show the inadequacy of LP, only show that this

ambiguating relation is inadequate.

5.2. AMBIGUATINGRELATIONFORLG. We reject the idea that an LG proof cannot be a parse

because the lexical items are not presented in the correct sequence. Instead of the ordering of the

lexical material, we take the function—argumentstructure as guide. Since not all natural language

expressions combine directly (cf. Geach 1972), we make use of ‘shadow’ assumptions:

assumptions which are proxies of lexical items. As long as the shadow assumption is ‘active’

the corresponding lexical assumption is stored away. The withdrawal of a shadow assumption

is followed directly by the use of the lexical item it was a proxy for.5 The shadow assumptions

allow us to define a more realistic ambiguating relation for LG.

6. BEYOND NON—DIRECTEDLAMBEKCALCULI. The perspective adopted in this dissertation

leads to new logical and linguistical questions. By relaxing LP as follows:

an assumption is used at least once in a derivation

we obtain the categorial system called LPC. In this dissertation we shall argue that

strengthening LP does not necessarily imply choosing for LPC. One can choose from several

possibilities:
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0LP+ unrestricted right to identify occurrences of assumptions (LPC)

OLP + unrestricted right to identify some kind assumptions (cf. Prijatelj 1989)

0LP + controlled identification of assumptions ( Chapter VII)

In our view, identification of assumptions is triggered by special lexical items -hence the name

'controlled identification‘. By using proof-structure for linguistical description, we can show

that LP + controlled identification of assumptions can deal with the ubiquitous nature of the

Boolean particles ‘and’and ‘or’.We interpret the Booleans as such triggers, and by doing so

we are able to capture their polymorphic nature. The same strategy allows us to incorporate a

modest mechanism of anaphorical binding in LG.

7. OVERVIEW.Chapter I contains a discussion of the notion of Natural Logic. There we

comment on several objections which have been raised against natural language as vehicle of

inference and as illustration of our approach we define a syllogistic Natural Logic. Chapter H is

an historical investigation into extensions of syllogistic. Chapter III is a study on Peirce's

treatment of first-order inference from a specific point of view: what can Natural Logic learn

from Peirce's work. Chapter IV is about the vehicles of inference on which Natural Logic

works. Here LP and LG are defined. Chapter V completes the work preparatory to our system

of Natural Logic. In this chapter we introduce the mechanism of monotonicity marking.

Chapter VI contains the system of Natural Logic. Chapter VII discusses the adequacy of LG as

a linguistic theory.
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NOTES TO THE INTRODUCTION

1These principles have a Medieval history as well (cf. Prior 1962, Geach 1962). but for lack of space we shall not
elaborate on it.

2Surprisingly, Aristotle's focussing on to the so-called ‘categorical sentences’ is to be seen as a wise decision,
given the lack of an adequate general syntactical theory of natural language.

3Our Natural Logic differs from Suppes' system because we incorporate in the grammar a mechanism which allows
us to mark monotone sensitive positions. And it differs from Sommers' because our vehicles of inference are the
grammatical forms themselves.

4In Montague's Universal Grammar a language is defined as a pair < L. R > where L is a disambiguated
language and R is the 'ambigua1ing relation‘. R relates the expressions of the disambiguated language with strings
of basic expressions of L (Montague 1970b).

5This mechanism resembles closely Cooper's storage mechanism but originates in a natural way by reflecting on
the structure of proofs and their 'den'vational' history (cf. Cooper 1983). Incidentally. in the interpretation of
expressions in whose construction shadow assumptions occur, there is no semantically significant role for the
shadows. They become bound variables. But even more important. the LG derivations in which shadow
assumptions are marked, are structurally similar to the logical forms of transformational grammar. Our shadow
hypotheses correspond to the traces left behind by the moved elements. Our mechanism of referring to the
withdrawn assumption resembles the indexing mechanism that keeps track of the traces and the elements they are
traces of. These similarities are at least suggestive.



CHAPTER I

THE IDEAL OF A NATURAL LOGIC

DESCRIPTION OF THE CONTENTS OF THE CHAPTER. The first section introduces the theme of this

chapter. The second section consists of a discussion of the notion of Natural Logic. The third section comments

on several objections which have been raised against natural language as vehicle of inference. The fourth section

defines a fragment of English for which we construct a simple syllogistic Natural Logic.

INTRODUCTION

1.1. THE IDEALOF NATURALLOGIC.Recent developments in formal semantics have led to a

revival of the ideal of a proof system in close contact with natural language: the so-called

‘Natural Logic’. Our view on Natural Logic is unfolded in this chapter. We propose a working

definition of Natural Logic as a proof system based on grammatical form. The emphasis on

grammatical form should not be seen as opposed to a semantic approach to natural language.

On the contrary. Several results from formal semantics must be used in the consu'uction of any

realistic proof system for natural language.

In the second section, we consider and, subsequently, reject the idea that either Traditional

logic or first-order Logic or Montague Grammar is an adequate basis for a theory of natural

language inference.

In the third section we meet several objections to natural language as vehicle of inference.

Our conclusion is that Natural Logic is feasible. We argue that the problem of ambiguity can be

avoided. However, we point out that there are inferences which operate without eliminating

scope ambiguity beforehand.

In the fourth section, we construct a syllogistic Natural Logic as an example of the current

enterprise. The vehicles of inference of this system are grammatical forms based on the

analysis: Noun Phrase + Verb Phrase.

We illustrate the logical strength of the system by proving that it generates all the traditional

syllogisms. In fact, we prove that traditional syllogistic depends only on monotonicity and con

version. For a comparison of this result with previous semantical analyses of syllogistic infer

ence, we refer the reader to Van Eijck (l985b).

2. NATURAL LOGIC

2.1. SYLLOGISTICAS A BASISFOR A NATURALLOGIC. Any theory which gives a systematic

account of inferences in natural language can be called Natural Logic. According to this view,

the classical logical systems could be Natural Logics. Consider, for example, Aristotle's logic

of categorical sentences, i.e. the logic of the expressions: Every S is a P , Some 5 is a P ,
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No S is a P and Not every S is P . A Natural Logic based on Aristotle's theory may take the

following form. We have a logical theory of the categorical sentences. Therefore, we can give

an account of inferences by relating the sentences involved with the categorical forms.

2.2. SYLLOGISTICAND GRAMMATICALFORM. At first sight, Traditional Logic is a serious

candidate for the role of Natural Logic since its grammatical forms are in close accord with nat

ural language -it is often said that syllogistic respects the subject-predicate form. This suggests

that syllogistic constructions have the form: Noun Phrase + Verb Phrase. But this is a mistake.

The categorical parsing and the grammatical parsing of the sentence Every logician is a philoso

pher are not the same. The Aristotelian will distinguish a quantifier (every),a subject (logician),

a copula (is) and a predicate (philosopher). In other words, the Subject of the traditional lo

gician is not the Noun Phrase of the linguist: Traditional Logic is a logic of Common Nouns.1

There is an accord between syllogistic and natural language forms, but this accord is not an

identity of syntactical forms. Sometimes sentences have to be brought into categorical form.

Thus, for syllogistic purposes the sentence Every philosopher wanders will be expanded in

the unlovely paraphrase Every philosopher is a thing that wanders . Of course, this strategy is

quite legitimate. The paraphrases are only a small nuisance and they can be avoided by

correlating sentences directly with syllogistic forms - as Aristotle himself did. Instead of saying

that (a) is valid because (b) is valid, one can say that (a) is valid because (c) is valid:

(a) (b)

Every logician is a philosopher Every logician is a philosopher
Every philosopher wanders Every philosopher is a thing that wanders

Every logician wanders Every logician is a thing that wanders

(C)

Al1L are P
All P are W

AllLareW

2.3. LIMITATIONSOFSYLLOGISTIC.Syllogistic gives a systematic account of inferences

involving sentences similar to the categorical ones. But the paucity of the Aristotelian sentence

forms limits the scope of logic. This is the main reason why it cannot be a realistic Natural

Logic. Several classical authors consciously tried to expand the scope of Aristotle's system.

But, as we shall see in the next Chapter, their theory of grammatical form was not sound. In the

end, their disregard for the structure of the vehicles of inference is to be held responsible for the

failure of their attempts.
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2.4. PREDICATE LOGIC AS A BASIS FOR NATURAL LOGIC. In an analogous way, first-order

logic can be incorporated into a theory of Natural Logic. However, in this case, the problem

signaled in the last paragraph becomes more acute. To put it mildly, the syntactic structure of

natural language sentences is not captured in any systematic way by their first-order counter

parts. The correlation between natural language sentences and first-order formulas is not a

simple correlation between syntactical objects. But, of course, no translation -not even a reliable
one- ever is.

The problem is not so much that predicate logic has variables at places where natural lan

guage has none. This is a small problem, comparable to the fact that some languages lack arti

cles while others have them. The real problem is that we do not have a systematic translation

from natural language into predicate logic. Correlations which work well in one context, fail to

do so in another. For instance the sentences All men are perceptive and Every man is per

ceptive correspond to the same first-order formula. One may expect that the same should hold

for the sentences All men are not perceptive and Every man is not perceptive . But this is not

the case. Some native speakers of English would interpret All men are not perceptive as
-1‘v’x(Mx —> Px) , while they would interpret Every man is not perceptive as

Vx(Mx —) —aPx) .

2.5. GRAMMATICALFORMANDNATURALLOGIC.Both for syllogistic and for predicate logic

the following holds. In the evaluation of natural language inferences, grammatical form is not
the most important factor. Suppose one wants to evaluate the claim that the sentence ([9is im

plied by the set of sentences I‘. One grasps the truth conditions of the sentences involved and

one translates these sentences into the appropriate formulas of the logical system, i.e. formulas
with the same truth-conditions. After that, one focuses on the translations. If the translations of

I‘ imply the translation of 4) then one concludes that F itself implies ¢ . One can argue that

the grammatical form does indeed play an important role in the understanding of the truth con

ditions, but not in the translation itself. This is the reason why the classical logical systems may

fail to give a systematic account of inferences in natural language: the relation between natural

language and logical language is ad hoc.

We can liberalize our conception of Natural Logic by demanding that in the evaluation of

arguments, the grammatical form should merely play a relevant role. This means that a gram

matical theory of natural language will be one of the components of Natural Logic, because

such a theory provides expressions with grammatical form. The objects which represent

grammafical forms, however, may be expressions of a logical language. In this case, the task of

constructing a Natural Logic consists of choosing an adequate logical language and of finding a

systematic correlation between grammatical forms and expressions of this language.

2.6. BEYONDFIRST-ORDERLOGIC.This view on Natural Logic does not eliminate first-order
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logic as the logical engine of the theory. To see this point we only need to think of the correla

tions between grammatical deep structure and first-order formulas (cf. Harman, 1972). But due

to the limitations of expressive power of first-order logic, this move may be too restricted. This

was realized by Reichenbach who employed higher-order logic in his analysis of natural lan

guage (Reichenbach, 1947). But Reichenbach did not give an analysis of the grammatical form

of natural language sentences, nor did he give an analysis of the relationship of grammatical

form and higher-order expressions. This has finally come into being in Montague (1973),

which has been described as a synthesis of categorial grammar and higher-order logic.

2.7. MONTAGUEGRAMMARANDNATURALLOGIC. In Montague (1973) we find a procedure

correlating natural language with a formal language for which we already have a logic. We

evaluate inferences in natural language by translating them into higher-order proofs. The trans

lation is no longer ad hoc and the target language has a great expressive power. At first sight,

Montague's grammar could be a Natural Logic. However, as Thomason (1974) and Van

Benthem (1981) pointed out, Montague's uniform strategy complicates the evaluation of infer

ences. For instance, this strategy compels us to deem (a) invalid because it has the sameform

as (b):

(a) (b)

Every rodent is an animal Every price is a number
some rodents hibernate some prices are changing

some animals hibernate some numbers are changing

In the same way, we are obliged to reject (c) because it has the same form as (d):

(c) (cl) _
John runs The temperature rises

John is the mayor of New York The temperature is ninety
The mayor of New York runs Ninety rises

With Montague Grammar we have a successful theory providing a method for computing the

denotation of natural language expressions, but a poor theory of natural language deduction?

2.8. DIRECT INTERPRETATIONAND NATURALLOGIC. For Montague's immediate goal, the

construction of a rigourous semantics for natural language, the use of higher-order logic is su

perfluous. The higher-order language is only the passage to the mathematical objects which

constitute the meaning of natural language expressions. We have the following picture:

|natural language] =9] translation into higher-order logic] ==>linterpretation into mathematical objects I
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In principle, as Montague (1970a) elaborates, the relation between natural language and the
universe of denotations, may take the simpler form:3

lnatural languagfl =9 [interpretation into mathematical objects I

But from this perspective, the notion of Natural Logic becomes problematic. Higher-order

logic, being semantically superfluous, is the essential component of Montague Grammar as

Natural Logic: it is in this medium that inference takes place. Semantically superfluous though it

may be, the logical language is the inferential mechanism; without it there seems to be no

Natural Logic.

2.9. A PROOF SYSTEMFOR NATURALLANGUAGE.There is an alternative, however. Church

(1951) notices that, in principle, there is no difference between formal languages and natural

languages. This has been taken to mean that it is possible to construct a coherent semantics for

natural language. The syntax yields the well-formed expressions, the semantics provides these

expressions with a denotation. But one can also pursue the comparison in another familiar di
rection. With a formal language and its semantics one usually has a proof system. The similar

ity between formal and natural languages may be taken to mean that a coherent proof system for

natural language is possible. Montague's pioneering work showed that a rigourous local se

mantics for natural language is feasible. The contention of this dissertation is that an adequate

proof system for natural language is feasible as well.

3. THE CASE AGAINST NATURAL LOGIC

3.1. TRADITIONALOBJECTIONSAGAINSTNATURALLOGIC.Any plea for Natural Logic defies

the ideological basis of modem logic. In the Fregean tradition natural languages are considered

very poor vehicles of inference indeed. Expressions of this view are the following:

0 Frege himself advocates the elimination of natural language in the fonnulation of

mathematical proofs.

0 Tarslci is often seen as implicitly rejecting the very possibility of a rigourous definition

of entailment for natural language.

0 The misleading form thesis for natural language denies the possibility of devising a

logic for direct use, at least for linguistic objects other than expressions of logical

languages.

In the following sections we shall briefly consider these views, as well as a more modern rejec

tion of an inferential approach to natural language.
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3.2. FREGE.In the beginning, Frege tried to use natural language in the reduction of mathe

matical concepts to logical ones, but he eventually abandoned this approach. As far as precision

is concerned, Frege found natural language to be inadequate. In the first place, vernacular lan

guages are not suitable for expressing mathematical statements in a conspicuous way. In the

second place, inferences in natural language do not always live up to elementary exigencies of

rigour. The point is that reasoning in ordinary language admits transitions licensed by tacit

(semantical or syntactical) properties of the expressions involved. In the end, Frege constructed

a formal language in which the inferential steps can be rigourously checked. As he puts it, natu

ral language relates to his formalized language as the eye to the microscope. Natural language is

a versatile instrument but, as soon as rigour demands great sharpness of resolution, it proves to

be inadequate.

Frege's rejection of natural language in Frege (1879), seems to be a practical one. The daily

practice of mathematicians proves that this rejection is not compulsory. There are also practical

disadvantages in the total elimination of natural language as vehicle of inference. Ironically,

formalized proofs are difficult to read; the obligation of writing down any single step in the

proof makes the whole hardly perspicuous.

3.3. TARSKI.Of a more theoretical nature is Tarski's implicit rejection of natural language as a

vehicle of inference. Tarski very often stresses the difficulty in constructing a coherent seman

tics for natural language. By putting together Tarski's assertion that truth is not definable for

natural languages and the semantic definition of consequence, we could infer that it is impossi

ble to define the notion of consequence for natural languages. 4

This is a negative but definite result about natural language. However, its definiteness con

tains more than Tarski himself would accept. To see this point we only need to remember that

the expression ‘formalized language’ refers to languages having a clear syntactical basis.

Whereas for most formalized languages the notion of well—formednessis well-defined (and for

almost all these languages this notion is effective as well), this is not the case for natural

languages.5 Since natural language is not a formalized language, and the precise results
obtained in Tarski (1936) refer only to such languages, it follows that nothing definite can be

said about everyday languages in this framework.

This view on the syntax of natural language seems to rule out a Natural Logic based on

grammatical form. If the notion of well-formedness is not clear then all the notions based on it

will be obscure. In particular, inference rules which make reference only to the syntactic struc

ture will not be of great use. However, it is important to remember that the first systems of

mathematical logic lacked a clear syntactic basis as well; this did not block the construction of

powerful calculi of inference.
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3.4. MISLEADINGFORMTHESIS.The ideal of Natural Logic is opposite to the so-called

Misleading Form Thesisfor Natural Language. This is the thesis that the grammatical form of

sentences is at variance with their logical form. If we presuppose an intuitive notion of sen

tence, truth and entailment, then logical form may be introduced in the following way:6

‘Fix a logical system L. Correlate with each sentence natural language sentence w

a well-formed expression ':(\y) in L. Then 'c(¢) is the logical form of (1)iff

‘c(1")|=L 1(4))whenever the set of sentences I‘ intuitively entails ¢ '.

We interpret the defenders of the misleading form thesis as saying that the grammatical form of

w is of no use when we try to give a precise formulation of I(\y), because:

‘thefact that two expressions belong to the same grammatical category does not

entitle us to believe that their logical representation will be the same’.

3.5. LOGICALBEHAVIOURAND GRAMMATICALSTRUCTURE.This mismatch between logical

behaviour and grammatical structure has led to the rejection of aform of Natural Logic. Quine

resumes the situation by saying that

‘If we were to devise a logic of ordinary language for direct use on sentences as

they come, we would have to complicate our rules of inference in sundry

unilluminating ways’. Quine (1960 : 158)

Even those who are unsympathetic to the misleading form thesis will agree with Quine. It

seems impossible to devise a Natural Logic working on sentences as they come. This point can

be elaborated a little more. The difficulties facing a naive conception of Natural Logic can be

classified under the following headings:

structural ambiguity
0 poor correspondence of grammatical form with validity.

We shall consider these themes in the next two sub-sections

3.5.1. STRUCTURALAMBIGUITY.It is well-known that some sentences may be parsed in sev

eral ways. This fact is supposed to be problematic for a Natural Logic: one parse may sanction

some inferences which are not acceptable under another grammatical analysis. For example, the
sentence old men and women walk entails old women walk if we associate it with the

bracketing old (men and woman) walk . But it fails to do so if we associate it with the bracket

ing ((old men) and women) walk . This example shows that natural language sentences seen

as linear strings of words, are not reliable as instruments of inference.

For the Natural Logic project we are engaged in, structural ambiguity will be a fact of life

and not a problem we have to address. We have chosen our Natural Logic as vehicle of infer
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ence entities which lack the feature of structural ambiguity: the proper objects of the calculus are

natural language sentences cum grammatical analysis, things similar to the bracketed entities

appearing above.

3.5.1.1. REMARK.Inference is not an all-or-none matter. Given sentences (1),w we may say

that

'4) strongly entails qr iff q>entails qr for each bracketing of q)‘.

Thus old men and women walk would strongly imply old men walk . This observation can

be generalized. The sentence Every man loves a bright girl is considered semantically am

biguous. There is an interpretation in which a bright girl occurs in the scope of Every man ,

and there is another interpretation in which the relative scope of the Noun Phrases is reversed.

But in both readings Every man loves a bright girl entails Every man loves a girl and Every

dull man loves a bright girl . Thus, there is a kind of inference which yields conclusions

without having to resolve the scope ambiguities. These observations suggest a question to be

addressed: can we describe a Natural Logic which can also yield conclusions in ambiguous

cases? This question will be addressed in Chapter VI.

3.5.2. VALIDITYANDGRAMMATICALFORM.The choice of syntactic analyses as vehicles of

inference, however, is not the end of the matter. The thesis that Natural Logic is concerned with

grammatical forms, could be taken as implying that an argument is valid in virtue of the gram

matical form of the sentences involved.

We could then imagine that the task of a Natural Logic is similar to the task of Traditional

Logic. Both of them should try to classify patterns of valid argument schemas. But the former

should classify patterns which can be described in linguistic terms. This is, nevertheless, a step

we cannot take, in virtue of the poor match of grammatical form with validity. For instance, the

following arguments will probably be considered valid:

Abelard barely cried Abelard wearily cried Abelard certainly cried
Abelard cried Abelard cried Abelard cried

However, we can not express this intuition by saying that any sentence analyzed syntactically

as NP + Adverb + Verb entails another sentence analyzed syntactically as NP + Verb.

A counter-exarnple to this putative inference rule is:

Abelard allegedly cried

Abelard cried.

This observation against grammatical form as carrier of validity is not conclusive. An analysis a

little more fine-grained would yield a sub-categorization of adverbs. We could say that

allegedly is an intensional adverb, while wearily , barely , certainly are extensional adverbs.
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And we could say that only extensional adverbs support the above kind of inference. However,

the situation is a little more complicated. Certain Noun Phrases block the generalization. For

instance, we cannot say that No logician wearily cried entails No logician cried .

The proper response to this last problem requires further subtleties which will be introduced

in due course. For the moment, it is enough to know that our notion of Natural Logic is not

committed to the view that arguments in natural language are valid in virtue of grammatical

form. Roughly speaking we can say the following. Natural Logic is based on the grammatical

form of sentences, in the sense that the forms associated with sentences are the vehicles of in

ference. But they are not all there is to the notion of Natural Logic. Natural Logic will take the

grammatical analyses of Abelard wearily cried and No logician wearily cried as a starting

point. The same engine used to produce these analyses, will be employed to generate, in an al

gorithmic manner, markings of inference sensitive positions. We shall then be able to read off

from the syntactic analyses that in No logician wearily cried , wearily cried cannot be replaced

by cried , while such a replacement will be allowed in Abelard wearily cried.

3.6. A MODERNOBJECTIONAGAINSTNATURALLOGIC.There is still another objection against

the notion of Natural Logic -an objection of a mathematical nature.7 There are appealing argu

ments in favour of higher-order logic as the appropriate logic for natural language. For in

stance, at first sight, the logical representation of the sentences Abelard has all the properties of

a logician , Abelard cries easily ; Abelard is a minor logician , asks for a higher-order

language. This has far-reaching consequences, since higher-order logic lacks some of the meta

mathematical properties of ordinary logic. The text-book Dowty et al. (1981) says that the se

mantic study of natural language renders superfluous the construction of a proof system for

natural language. This is based on the opinion that a reason

‘forpreferring the semantic method to the deductive is that certain logics cannot be

given axiomatic definitions of validity and entailment, though model-theoretic def

initions of these notions are perfectly feasible for them.’ Dowty et al. (1981 : 52)

Dowty et al. suggest that, from a linguistic point of view, the semantic approach to inference is

more adequate. The incompleteness of higher-order logic forces one to prefer a semantic ap

proach to natural language inference to a proof-theoretical one. But we disagree with the way in

which these authors interpret the mathematical data and with their implicit assessment of con
temporary logical culture.

First, as Kreisel (1952 : 120) remarks, we should 'not speak of the completeness of a for

mal system, but of the completeness of a certain interpretation of the formal system’.Whether a

higher—orderlogic is complete or not, depends on the interpretation one chooses.8 If one works

with Henkin's general models, then completeness is achievable (cf. Henkin 1950). This means

that to support a preference for the semantic approach over the proof-theoretic approach, one

needs to establish first that the generalised models are inappropriate for natural 1anguage.9
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Second, logical practice shows that incompleteness does not mean superfluity. Even accept

ing that proof theory is narrower than semantics, one might wonder if Kreisel's question has

some relevance for natural language:

‘whatmore do we know if we have proven a theorem by restricted means than if

we merely know that it is true?‘

In this context, Dummett's approach to meaning is highly relevant. Dummett (1978) empha

sises at several places the idea that the theory of meaning should be determined by proof theory:

the meaning of a sentence is determined by its proof conditions.

Incidentally, in Chapter IV and V we shall show how the proof that a natural language ex

pression belongs to a linguistic category can be used to provide that expression with a denota

tion. Thus, through the proof we know that the expression belongs to a particular category and
we know its denotation.

Thirdly, behind the opinion of Dowty et al., there is a dramatic change in the conception of

logic. In formal semantics, a logic is usually identified with a language and its interpretation (cf.

Chang and Keisler, 1973). In this conception there is no place for the inference rules as essen

tial part of logic. This view reflects the abstract characterization of logic due to Lindstrom

(1969). But formal semanticists should be aware that the highlight of syntax lies in the imme
diate future:

‘The tradition called ‘syntactic’- for want of a nobler title- never reached the level

of its rival. In recent years, during which the algebraic tradition has flourished, the

syntactic tradition was not of note and would without doubt have disappeared in

one or two more decades, for want of any issue of methodology. The disaster was

averted because of computer science -that great manipulator of syntax- which posed

it some very important problems.

Some of these problems (such as questions of algorithmic complexity) seem to re

quire more the letter than the spirit of logic. On the other hand all the problems con

cerning correctness and modularity of programs appeal in a deep way to the

syntactic tradition of proof theory.‘ (Girard et al. 1989 : 4)

These observations suggest that the view expressed by Dowty et al. is not a good enough rea

son for the rejection of a proof-theoretic approach to natural language inferences. In the next

section we give a small example of the way in which semantics can be used to construct a proof

system for natural language. The scope of this system covers the ground traditionally assigned

to syllogistic system. The main difference between our proof system and syllogistic is first, that

we base our inference rules on semantic properties of denotations, and second that we stay

closer to the grammatical form than syllogistic does.
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4. A SYLLOGISTIC NATURAL LOGIC

4.1. SYLLOGISTIC AND GENERALIZED QUANTIFIERS. In this section we give a uniform

account of simple inferences involving the classical deterrniners. In particular, we shall consider

sentences of the form NP VP, where NP is any expression consisting of one of the classical

determiners followed by a suitable English expression. The setting of our considerations will be

the generalized quantifier perspective of natural language quantification.

The Aristotelian system is a theory for such inferences. Instead of simply taking over the

Aristotelian system we want to show that syllogistic inference can be related in a uniform way

to the basic semantic notion of monotonicity. We shall give an explanation of syllogistic

inference by treating it as consisting of monotone replacements. Earlier explanations treat

syllogistic inference as consisting of replacements of common nouns or of replacements of verb

phrases. To these replacements we now add the replacement of full noun phrases.

The view that syllogistic inference is related to monotonicity has been advanced by several

writers active within the generalized quantifier framework; cf. Van Eijck (1985b), Van Benthem

(1986 : Chapter 7), Zwarts (1986 : Chapter 4) and Westerstahl (1990).

4.1.1. THE RULEOFQUALITY.Positive universal categorical sentences play a crucial role in

syllogistic inferences, for they give a cue for the existence of an inclusion relation. In our treat

ment of syllogistic inference we generalize Ih‘.Sobservation. Both universal and particular sen

tences are crucial in those inferences, for they both give a cue for the existence of an inclusion

relation This clearly distinguishes the role played by negative and positive sentences in syllo

gistic inferences. The interesting paper Van Eijck (l985b) devoted to the syllogistic. ‘éoncludes

with an open question:

‘Canour generalized quantifier perspective be used to provide an illuminating

motivation for the success of the combined Distribution/Quality test? Classical ar

guments in this area consist in mere combinatorial checking of all possible cases:

one would like to replace that by a more semantic analysis.’ Van Eijck (l985b : 18)

Our treatment of syllogistic offers a semantic explanation of the role of the Rule of Quality.

4.2. AN ARISTOTELIANFRAGMENTOF ENGLISH. To show that a Natural Logic can account

for syllogistic inferences, we define a small fragment of English.

4.2.1. THELEXICON.The basic expressions of the language fall into the following categories:

(1) The set of common nouns, CN = { LOGICIAN,MAN,WOMAN,Pl-IILOSOPHER].

(2) The set of intransitive verbs, IV = { WANDERS,RUNS,THING}

(3) The copula Is.

(4) The operator THAT.

(5) The set of classical determiners, DET = [ EVERY,SOME,A, NO, NOTEVERY1.
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4.2.2. THE SYNTACTIC RULES.

(4) If A is a common noun , then QA is a noun phrase, where Q ranges over EVERY,SOME,A,

NO and NOT EVERY.

(Noun phrases will be designed by NP).

(5) If B is a noun phrase then ISAB is a verb phrase.

(6) If A is an intransitive Verb, then A is a verb phrase.

(Verb Phrases will be designed by VP).

(7) If A is verb phrase, then THINGTHATA is a common noun.

(8) If A is a noun phrase and B is a Verb Phrase, then ABis a sentence.

(Sentences will be designed by the schema NP VP).

4.3. NOUN PI-IRASESAS GENERALIZEDQUANTIFIERS. Fix a set of individuals D5 and a

classical set of truth-values Dt. Common Nouns will take their denotation in the set De; of

functions from De into Dt. If A is a Common Noun, II A 11 will designate its denotation.

Noun Phrases take their denotation one step further in the hierarchy, namely in the set D(e,t),t
of functions from CN denotations into truth-Values. In this section we identify Dct with the

set of sets of De, and D(e,t),t with the set of families of sets of Det. Denotations of NP's are

the Generalized Quantifiers first studied by Mostowski and explicitly introduced in the study of

natural language semantics by Barwise & Cooper (1981).

4.3.1. DENOTATIONS.The denotation of B, E3], is defined as follows:

(1) IfB is a member of CN or IV then EH] E De’;

(2) IfB is a member of CN, then [[18A B]! = II B]!

(3) If B is a member of VP, then [THINGTHAT13]] = II 13]]

(4) If Bis a member of CN , then

(4.1) IIEVERYBII = { Xul E13119 X]

(4.2) [[NoB]l= { X“! l[B]ln X = E]

(4.3) IINOTEVERYall = { X3’[| lIB]l Q X]

(4.4) IISOMEBII = IA 13]]= { Xe,,| [[13]]n X at Q }

(5) IINPVPJJ =1 ¢=> l[V1>]le ll NPJI.

These definitions allow us to express in a uniform manner the conditions under which classical

sentences are true. For example, EVERYWOMAN1s A LOGICIAN, SOMEWOMANIS A LOGICIAN, NO

WOMAN IS A LOGICIAN, NOT EVERYWOMANIS A LOGICIANwill be true if l[LooIc1AN]] e IIEVERY

woMAN]l; l[LoGIc1AN]] e |IsoME woMAN]l; |ILoG1c1AN]l e l[No woMAN]l and IILOGICIANZIJe

l[NoT EVERYwoMAN]] .

Notice that if a sentence like EVERYWOMANWANDERSis true, then l[woMANI| <2 |IwANDERs]l

must be the case. But then also IIISAw0MAN]] E IIWANDERSJJis the case, since the denotation

of IIISAWOMAN]!and the detonation of [[w0MAN]] are the same.
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4.3.2. COMPLEMENT NP'S.

(6) [mo 13]]= { Xe“! X e |[soME Ell}: D(,,,)_,- I[soME Ell .

(7) l[Nor EvERYB]l = [ X,,,,| X e l[EvERY 1311]: D(,,.,)',—IIEVERYEll .

4.4. MONOTONICITYPROPERTIES.In this section we introduce the notions of structural and

lexical monotonicity. We shall show that these notions are very useful for our Natural Logic

project.

4.4.1. STRUCTURALMONOTONICITY.The set-theoretical relation x e y is upward mono

tone in y, i.e. for all z with y E z, x e y entails x e z . We will say that any expression of

the form NP VP is monotone in NP, for if IIINPVP]! denotes the truth, then IINP VP] cor

responds to an expression of the form x e y .

4.4.2. LEXICALMONOTONICITY.The classical NP's have some closure properties which can

be described in terms of monotonicity.

(a) IIEVERYB]! and l[soME B]! are closed under supersets, i.e. if x e IIEVERYB1] and

x Q y,thcn ye l[EvERYB]l; if xe |[soMEE]l and x Q y,thcn ye l[soMEB]I. Any set

closed under supersets is called upward monotone.

(b) I[No'r EVERY13]] and [D1013]]are closed under subsets, i.e. if x e l[NoT EVERY13]] and

y 9 x,then ye l[No'rEvERYB]l; ifxe I[soMEB]land y E x,then ye l[soMEB]l.

Any set closed under subsets is called downward monotone.

4.4.3. MONOTONICITYAND TRADITIONAL LOGIC. As van Benthem (1986) points out,

(lexical) monotonicity lies at the the heart of Traditional Logic. On the one hand, upward

monotonicity reflects the classical Dictum De Ornni:

'whatever is true of every X is true of what is X‘.

On the other hand, downward monotonicity reflects what traditional logic called distributed oc
currence of terms:

'a term is distributed in a sentence if the sentence is true about all of the predicate.‘

These analogies, first noticed in Van Eijck (1985b), suggest that a monotone explanation of

syllogistic inference is possible.

4.5. PROOFSYSTEM.In this section we introduce a sizeable number of monotonicity rules

which are adequate for the treatment of syllogistic inferences.
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0 STRUCTURAL MONOTONICITY RULE M

NP1 VP |[NP1]l Q |[NP2]l M

NP2 VP

9 LEXICAL MONOTONICITY RULES

EVERYAVP1 [VP1] Q l[VP2]l Ml

EVERY A VP2

SOMEAVP1 l[VP1]l E l[VP2]I M2

SOME A VP2

NOAVP1 l[VP2]l Q l[VP1]l M3

N0 A VP2

NOTEVERYAISC [[13]] 2 EC] M4

NOT EVERY A IS B

The soundness of these lexical rules is a direct consequence of the definitions in 4.4 and the set

theoretical properties of the operations and relations involved.

4.5.1. THE ROLE OF POSITIVESENTENCES.The Rule of Quality says that a valid syllogism

must have at least one positive prerniss. Now we show that any positive categorical sentence is

a cue for the existence of an inclusion-relation between NP's. This is not exactly an answer to

van Eijck's question, since this fact cannot be interpreted as a criterion of validity. We only of

fer a motivation for the Quality Rule. According to our analysis, the role of a positive sentence

is to fuel the monotonicity engine. We can see, for instance, that if EVERYAISAB is true, then a

property of EVERYB is also a property of EVERYA . This is represented by I EVERYB1] 9

[[EVERYAll . By applying M to II EVERY13]] Q IIEVERYAll and EVERY13VP , we obtain EVERY

A VP.The following proposition captures the relation between positive sentences and inclusion
between NP's.

PROPOSITION 1. ANY POSITIVE SENTENCE IMPLIES AN INCLUSION RELATION.

Proof

We give here two examples.
(1) EVERYAIS A B entails IEEVERYAll :_>[[EVERYB]l .

By definition, |IEVERYA1sAB]l = 1 <=>[[13]]e IIAJJ <=>lIB]l Q [[A]] . Moreover,

x e IEEVERYBJJ<=>x ;> [[13]] . Hence, x 2 EA] i.e. x e IEEVERYAll. Therefore
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l[EvERY All 2 IIEVERYB]! .

(2) SOMEAISAB entails IEEVERYAll 2 I[soMEB]l .

By definition, |[soMEAIsAB]l = 1 c> IIBII e I[A]l <=>[[3]] n |IA]l at E . Moreover,

x e IIEVERYBII<=>x 2 EB] . Hence, x m [[A1]at Q i.e. x e l[soMEA]l . Therefore

l[soME All 2 IIEVERYEJI .

El

As a corollary to Proposition 1, we obtain the following inference rules:

EVERY AIS B P1 EVERY AIS B P2

IIEVERYBJI E l[EvERYA]l l[soME All 9 lIsoME Bl]

SOMEAISB P3 SOMEAISB P4
IIEVERYAll 9 l[soME B]! IIEVERYBII <; l[soME All

EVERYAISB P5 EVERYAISB P6
|INorrEvERv All .C_l[NorrEvERYB]] l[No Ell 9 ENG All

SOMEAISB P7 SOMEAISB P8
[mo 3]] E |[NorEvERYAI| I[No All E IINOTEVERYEll

EVERY A VP P9

lIIs ACN)All 9 [VP]!

A proof for these rules can be found in appendix 1.

4.5.2. REMARK.Notice that P1-8 can be formulated in a more general way. For instance, P3
can take the form

V .SOMEA P P3
IIEVERYAll 9 lIsoME THINGTHATW]!

In later sections we shall take this general formulation for granted.

4.6. EXAMPLESOF DERIVATIONS.Many syllogistic inferences can now be explicated in an

easy way. For convenience, we introduce the abbreviation:

I(X,Y)=: I X]! <; [Y]! .
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(1) NO LOGICIAN WANDERS, SOME WOMAN IS A LOGICIAN => NOT EVERY WOMAN WANDERS.

SOME WOMAN IS A LOGICIAN P7

NO LOGICLANWANDERS I(NO LOGICIAN, NOT EVERY WOMAN) M
NOT EVERY WOMAN WANDERS

(2) EVERY IDGICIAN IS A PHILOSOPHER, EVERY PHILOSOPHER WANDERS => EVERY LOGICIAN WANDERS.

EVERY LOGICIAN IS A PHILOSOPHER P1

EVERY PHILOSOPHER WANDERS I(EVERY PHILOSOPHER, EVERY LOGICIAN) M
EVERY LOGICIAN WANDERS

(3) EVERY DOGICIAN IS A POET, NOT EVERY LOGICIAN RUNS ='> NOT EVERY POET RUNS.

EVERY LOGICIAN IS A POET P5

NOT EVERY LOGICIAN RUNS I(NOT EVERY LOGICIAN, NOT EVERY POET) M
NOT EVERY POET RUNS

4.7. ACCOUNT OF TRADITIONAL SYLLOGISMS: THE TWO FIRST FIGURES.

The examples considered in the previous sections are instances of classical syllogisms. The

format of our monotonicity explanations can be used to explain several syllogistic inference fig
LIICS.

PROPOSITION 2. THE SYLLOGISMS OF THE FIRST AND SECOND FIGURE ARE DERIVABLE

BY MONOTONICITY ONLY.

Proof

BARBARA: EVERY M VP, EVERY S IS A M =} EVERY S VP

EVERY S IS A M P1

EVERY M VP I(EVERY M, EVERY s) M
EvERYs VP

DARIIZ EVERY M IS P, SOME S IS A M =9 SOME S VP

SOMESISAM P4

EVERY M VP I(EVERY M, SOME s) M
soMEs VP

CELARENTI NO M VP, EVERY S IS A M => NO S VPP6
NO M VP I(NO M, NO s) M

NOSVP
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FERIO:NOMVP,SOMESISAM% NOSVP

SOME S IS M P7

NO M VP I(NO M, NOT EVERY s) M
NOT EVERYSVP

DATISI2 EVERY M VP, SOME M IS S =-> SOME S VP

SOME M IS S P3

EVERY M VP I(EvERY M, SOME s) M
soMEs VP

FERISON NO M VP, SOME M IS S -=9 NOT EVERY S VP

SOME M IS S P8

NO M VP I(NO M, NOT EVERY s) M
NOTEVERYSVP

DISAMISZ SOME M VP, SOME M IS S => SOME S VP.

SOME M IS S P2

SOME M VP I(soME M, soME s) M
soME s VP

BOCARDO2 SOME M VP, SOME M IS S -9 SOME 8 VP

SOMEMIS S P2

NOT EVERY M VP I(NOT EVERY M, NOT EVERY s) M
soME 5 VP

El

Observe that in these schemas the structure of the NP and the VP is not relevant. The mono

tonicity rules we have used operate at a Verybroad level without demanding a finer syntactic

analysis. But other schemas demand a less global approach. The following section takes care of
those cases.

4.8. ACCOUNT OF TRADITIONAL SYLLOGISMS: THE THIRD FIGURE.

To explain the syllogisms of the third figure, one must take into account the particular logic of

SOMEand NO.We do so by introducing new rules which rest on the particular logical properties

of these items. Thus we add the conversion rules to our system .
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' CONVERSIONRULES

SOMEAISAB C1 NOAISABC2

SOME B IS Am) A No B IS Am) A

More in general,
SOME A VP No A VP

SOME THING THAT VP IS A(N) A NO THING 'I'I-IATVP IS A(N) A

Our definition of derivation must be extended to cover the case in which C1-2 is one of the

rules employed in the derivation.

PROPOSITION 2. THE SYLLOGISMS OF THE THIRD FIGURE ARE DERIVABLE BY MONO

TONICITY AND CONVERSION.

Proof

CAMESTRESZ EVERY P VP, NO S VP => NO S IS A P

EVERYPVP

No 3 VP I(1s A P, VP) M
NosIsAP

BAROCOZ EVERY P VP, NOT EVERY S VP -) NOT EVERY S IS A P

EVERY P VP

NoT EVERY s VP I(1s A P, VP) M
NOT EVERY s IS A P

CESARE: NO P VP, EVERY S VP =9 NO S IS A P

EVERYS VP

No P VP I(1s A 3, VP) M

NOPISASC2
NOSISAP

FESTINO 2NO P VP, SOME S VP => NOT EVERY S IS A P

NO P VP C2 SOME S VP P7

No THING THAT VP IS A P I(No THING THAT VP, NOT EVERY s) M
NOT EVERY s IS A P

E]

This completes the derivation of the Aristotelian modi Validin modern settings. The two central
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features in these set-theoretical proofs are the use of positive sentences to obtain information

about inclusion relations, and the application of monotonicity substitution rules at the broadest

level possible. According to our analysis of the syllogistic forms, these inference patters rests

on two principles: monotonicity and conversion. The latter can be seen as a more algebraic

property. We shall see in Chapter IH that Peirce's theory of logical inference also makes use of

monotonicity and of certain algebraic principles.

4.9. PROPERNAMESIN SYLLOGISTICINFERENCES.Is there any intrinsic interest in this logic

of Noun Phrases? At the very least, we can give a semantic explanation of inferences which are

treated in traditional logic in an awkward way. More importantly, we can do this while respect

ing the grammatical form of the sentences involved. Hence, our explanation warrants sound

ness while avoiding the mismatch between grammatical form and logical representations. We

shall elaborate this point by working out concrete examples.

Consider the following arguments:

EVERY PHILOSOPHER IS A LOGICIAN ABELARD IS A LOGICIAN

ABELARD IS A PHILOSOPHER ABELARD 15A PHILOSOPHER
ABELARD IS A LOGICIAN SOME PHILOSOPHER IS A LOGICIAN

The first-order explanation of their validity is given through proofs involving sentences like
Vx(P(x) -—>L(x)) and 3x(P(x) A L(x)) . For traditional logic, the situation is a little more

complicated. The original Aristotelian system lacks a natural form for Abelard is a logician.

Some traditional logicians solved this problem by correlating this sentence to Every Abelard is

a logician . We obtain then the syllogisms

EVERY EUROPEAN IS A LOGICIAN EVERY ABELARD IS A LOGICIAN

EVERY ABELARD IS A PHILOSOPHER EVERY ABELARD IS A PHILOSOPHER

EVERY ABELARD IS A LOGICIAN SOME LOGICIAN IS A PHILOSOPHER

These syllogisms are proven to be valid through the Aristotelian valid syllogisms Barbara en

Darapti. The validity of Darapti rests on the presupposition of existential import. Sommers, a

traditional logician who rejects this presupposition, considers sentences like Abelard is a

philosopher as systematically ambiguous (cf. Sommers, 1982). It may be correlated to Every
Abelard is a philosopher and to SomeAbelard is a philosopher. I-Iisexplanation of the second
inference then takes the form

EVERY ABELARD IS A LOGICIAN

SOME ABELARD IS A PHILOSOPHER

SOME LOGICIAN IS A PHILOSOPHER
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and this is a valid inference resting on Datisi.10

The traditional pamphrases and the first-order translation show a major departure from the

syntactic structure of the given sentences. Presently we shall give another explanation of the

validity of those inferences, without violating this structure.

4.10. A GENERALIZEDQUANTIFIEREXPLANATION.The common interpretation of a sentence

like ABELARDISAPPHLOSOPHERis the following. To the lexical object ABELARDwe assign an

object, s, from De; and to the expression IS A PHILOSOPHERwe assign a member,

IIPHILOSOPHERll, of the set Det. Then we say

IIABELARDIS A PHILOSOPHERJI=1 <=> se [[PHILosoPHER]]

In the Montague tradition, however, we collect all those members of De; which map s into

1, forming in this way the set I5 = {P EDal SE P}. Is is a member of D(3t)t and we design

this NP denotation by IIABELARD ll . We now say IIABELARDIS A 13]] = 1<=> l[B]le

IIABELARDJJ.

The motivation behind Montague's analysis of proper names is that it will treat proper names

and quantified expressions as members of the same syntactical category. This idea can be ex

ploited in the context of Natural Logic. If proper names and quantified expressions belong to

the same category, then they are mutually replaceable. The substitution rule we want to use is

the structural monotonicity rule M. Thus we need to show that a positive sentence of the form
PROPERNAMEISAB,is a clue for the existence of an inclusion relation between NP's. The two

one-prerniss rules which we obtain will be called UI and El.

ABELARD IS AB U1 ABELARD IS A B B1

[[1-:v1=.RYB1]9. IIABELARDJI l[ABELARDll E |IsoME 13]]

These two rules allow us to give a simple explanation of the inferences of section 2.5:

1.

ABELARD IS A LOGICIAN U1

EVERY LOGICIAN IS A PHILOSOPHER I(EVERY LOGICIAN, ABELARD) M
ABELARD IS A PHIDOSOPHER

ABELARD IS A LOGICIAN U2

ABELARD IS A PHILOSOPHER I(ABEl..ARD, SOME LOGICIAN) M
SOME LOGICIAN IS A PHILOSOPHER
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5. CONCLUDDIGREMARKS.In this chapter we have discused the notion of a logic based on

grammatical form. We met several objections to a proof system for natural language, and have

also given an example of the form a Natural Logic may take.

The notion of monotonicity allowed us to give a systematic account of syllogistic -the cen

tral theory of Traditional Logic. The question may now arise whether Natural Logic has no

more strength than the old syllogistic. In the next chapter we shall be concerned with the histor

ical question whether Traditional Logic ever used monotonicity, under the guise of Dictum de

Omni and Distribution, to trespass the borders of syllogistic inference. The answer to the

historical question can be interpreted as a provisional assessment of the strength of Natural

Logic.
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NOTES TO CHAPTER I

lln section 4 we shall show that it is possible to define syllogistic as a logic of Noun Phrases -thus bringing
rumour in harmony with reality.

2To save the theory from contradicting our intuitions too overtly. Montague introduced ‘meaning postulates‘. In
the end, suitable meaning postulates will warrant that (a) and (c) hold good. In the construction of our own Natural
Logic we shall make use of meaning postulates as well.

3 Of course. one still needs a language for speaking about the mathematical objects. For instance. one can say that
the interpretation of EVERYLOGICIANis [ X I 'l..ogician' Q X }. In this case we interpret the NP directly; the object
into which that expression is interpreted, however, is not present to our senses. The linguistic objects are
correlated with linguistic representations of the mathematical objects. The direct interpretation should not be
confounded with the project described in Swift (1726. Part III): ‘An expedient was therefore offered, that since
words are only names for things. it would more convenient for all men to carry about them such things as were
necessary to express the particular business they are to discourse on."

4It is worth noticing that the view usually attributed to Tarski is not his last word on the subject of natural
language and semantics. In Tarski (1969) he says:

‘I should like to emphasize that. when using the term ‘formalized languages", I do not refer exclusively to
linguistic systems that are formulated entirely in symbols. and I do not have in mind anything essentially opposed
to natural languages. On the contrary. the only fonnalized languages that seem to be of real interest are fragments
of natural languages (fragments provided with complete vocabularies and precise syntactical rules) or those which
can at least be adequately translated into natural language‘.

5 A typical example of a language in which the notion of well-formedness is not decidable, is Hilbert and Bemays
expansion of the usual logical language with the definite description symbol. 1:. In their system an expression of
the form (‘l5x)Ais well-formed if EXAX and Vxy(Ax A Ay —>x=-y) are provable. Since provability is not
decidable. neither is well-formedness in Hilbert and Bemays '5 system. Of course, when this was written, Church
had not yet published his note on the Entscheidungsproblern.

6Of course, this explanation has an air of precision which is not supported by the facts. It yields at most a
criterion of adequacy. We need to know more about the correlation 1:of sentences and expressions in L.

7This objection is not formulated as a rejection of natural logic. but as a rejection in general of a proof system for
natural language.

8 This holds even for ordinary predicate logic. If one chooses only fmite models. then this logic is incomplete.
(Tratenbrot, 1963).

glncidentally. it is worth noticing that the text-book. Gamut (1991. Section 6.5) suggests that lack of
completeness is not a serious drawback for the construction of higher-order proof systems useful in the treatment
of natural language inferences.

10 For a thorough analysis of the history and the logic of singular sentences within t.raditiona.llogic, see the rich
Barth (1974).



CHAPTER II

TRADITIONAL LOGIC AND NON-SYLLOGISTIC INFERENCES

DESCRIPTION OF Tl-IE CONTENTS OF THE CHAPTER. In the first section we describe the abstract form

of the traditional monotonicity rules. In the second section we outline the context in which De Morgan intro

duced non-syllogistic arguments. In the third section we consider Leibniz‘ use of monotonicity in order to justify

non-syllogistic inferences. In the fourth section we consider the oldest versions of monotone rules which we

have as yet been able to find, namely Ockham's fonnulation in terms of the medieval supposition theory.

1. INTRODUCTION

1.1. TRADITIONALMONOTONICITYRULES.The first chapter ended with the question whether

the notions of Distribution and the Dictum de Omni -the guise in which monotonicity penetrates

the syl1ogistic- were employed in accounts of non-syllogistic inference. The natural place to

start our research is the work of those traditional logicians who tried to explain non-syllogistic

inferences. Our working hypothesis is that particular forms of the lexical monotonicity rules

(see 1.4.4.3.) can be found in the works of the classical authors De Morgan, Leibniz and
Ockham.

As we pointed out, traditional logic is a logic of Nouns. Hence, we would expect the

monotonicity rules to take the following form:

UPWARD MONOTONICITY(MT) DOWNWARDMONOTONICITY(Ml)

Every A is B F(A) Every A is B F(B)

F(B) F(A)

where A, B are Nouns and F(A), F(B) are sentences containing these Nouns.

We shall show that in their account of non-syllogistic inference, De Morgan, Leibniz and

Ockham employed versions of MT and Ml. However, we shall also point out that De

Morgan's and Leibniz’ description of the contexts F(A) and F(B), was not adequate. Ockham's

version of the monotone rules is formulated in terms of the medieval suppositio theory. In fact,

Ockham uses this theory in order to determine monotone sensitive occurrences of terms. But he

does not go far enough: parts of complex terms are not marked as inferentially sensitive.

We shall start our brief historical journey with a general analysis of De Morgan's use of

monotonicity in his explanation of non-syllogistic inference.

23
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2. DE MORGAN

2.1. THE GENERALSETTING.In De Morgan (1847), De Morgan introduced a symbolic lan

guage for the representation of inference forms. The categorical sentences are symbolized as
follows:

Every S is P => S)P
No S is P => S.P

Some S is P => SP

Some S is not P => S:P

De Morgan also used lower case letters for negative terms. The conjunctive term X and Y is

rendered as XYor X-Y whereas the disjunctive X or Yis rendered as X,Y.

De Morgan extended the range of application of logic by increasing its expressive power.

On the systematic side, the negative terms suggested the notion of a universe of discourse :

'In logic, it is desirable to consider names of inclusion with the corresponding

names of exclusion; and this I intend to do to a much greater extent than is usual;

inventing names of exclusion by the prefix not, as in tree and not-tree, man and not

man. Let these be called contrary or contradictory names. Let us take a pair of con

trary names, as man and no-man. It is plain that between them they represent every

thing imaginable or real in the universe. But the contraries of common language

usually embrace, not the whole universe, but some one general idea. Thus, of men,

Briton and alien are contraries; every man must be one of the two, no man can be

both. Not-Briton and alien are identical names, and so are not-alien and Briton. . .

In order to express this, let us say that the whole idea under consideration is the

universe (meaning merely the whole of which we are considering parts) and let

names which have nothing in common, but which between them contain the whole

idea under consideration, be called contraries in, or with respect to that universe '.

De Morgan (1847 237-8)

And the interplay of the new terms suggested the so-called laws of De Morgan:

‘The complexity consists in the terms being conjunctively or disjunctively formed

from other terms, as in PQ, that to which both the names P and Q belong conjunc

tively; and as in P,Q that to which one (or both) of the names P and Q belong dis

junctively. The contrary of PQ is p,q; that of P,Q is pq. Not both is either not one

or not the other, or not either. Not either P nor Q is logically ‘not P and not Q‘ or

pq : and this is then the contrary of P,Q '. De Morgan (1847 : 118)
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On the practical side, with this notation we are able to build up a large reservoir of valid non

syllogistic schemata. Examples of valid schemata expressible in De Morgan's notation are:

Every A is B Every A is C Every A is B and C

Every A is B and C Every A is B and every A is C

2.1.1. REMARK.(A) As a matter of fact, De Morgan himself did not accept that the intro

duction of complex terms yields new inference schemes. He writes:

‘Accordingly X)P + X)Q = X) P-Q is not a syllogism, nor even an inference, but

only the assertion of our right to use at our pleasure either one of two ways of

saying the same thing‘. De Morgan (1847 : 117).

(B) Observe that De Morgan formulated the laws which bear his name in the context of a logic

of terms, and not in the context of propositional logic. The original propositional formulation of

those laws, is to be found in the medieval studies on consequentiae (Kneale and Kneale, 1962:

294).

2.1.2. RELATIVETERMS.De Morgan (1847) discussed the so—called‘relative terms’ such as

tail of a horse . De Morgan himself is supposed to be the first logician who was conscious of

the validity of inferences involving relatives. Well-known is the so-called ‘DeMorgan's exam

pie‘:

Every horse is an animal

Every tail of a horse is a tail of an animal

commonly seen as an inference which exposes the weakness of traditional logic.

However, the relatives are not represented in the symbolism of De Morgan (1847). In fact it

took him some years to devise a symbolism in which relatives could be expressed, see De

Morgan (1966). In the meantime, his treatment of relative inferences had to differ from the

schematic approach, since he had no schemata having the required form at his disposal.

2.1.3. DIRECT APPROACHTO NATURALLANGUAGEINFERENCE. To explain relative infer

ences De Morgan chose a direct approach. He formulated versions of MT and Mi which can be

applied directly to natural language sentences:

‘For every term used universally less may be substituted, and for every term used

particularly, more. The species may take the place of the genus, when all the genus

is spoken of; the genus may take the place of the species when some of the species

is mentioned or the genus, used particularly, may take the place of the species used

universally. De Morgan (1847 : 115).
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2.2. SYLLOGISTICFULLNESSTHESIS.De Morgan rejects the syllogistic fullness thesis, i.e.

the thesis that any valid inference is either an immediate inference or a classical syllogism, or is

reducible to one of these. He felt that several interesting inferences were unaccounted for in the

more traditional logic:

'Observing that every inference was frequently declared to be reducible to

syllogism, with no exception unless in the case of mere transformations, as in the

deduction of No X is Yfrom No Yis X, I gave a challenge in my work on formal

logic, to deduce syllogistically from Every man is an animal, Every head of a man

is the head of an animal '. De Morgan (1966 : 29).

2.2.1. REMARK.The argument that De Morgan actually used may seem questionable, be

cause of his use of the expression the in the conclusion:

Every man is an animal

Every head of a man is the head of an animal

However his intentions are clear. In 2.1.2. we introduced De Morgan's example. The reader

may notice that the generosity of history has replace the by a , thus correcting De Morgan's
mistake.

2.2.2. THEORIGINALEXAMPLES.In De Morgan (1847 : 114) the inferences were:

(a) (b)
Man is animal Every man is an animal

The head of a man is the head of an animal He who kills a man ldlls an animal

It is supposed to be obvious that neither argument is an instance of any classical scheme. De

Morgan also argued that (b) is not reducible to syllogisms either. He considered this argument

to be equivalent to:

(0)

Every man is an animal Some one kills a man

Some one kills an animal

But this move fails to yield a syllogism, for some one kills a man and some one kills an

animal are not syllogistic sentences. One can apply to (c) the paraphrase strategy, thus

obtaining:
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(d)

Every man is an animal Some one is a killer of a man

Some one is a killer of an animal

But (d) is not a syllogism since it lacks a middle term. It is true that man occurs in both

prernisses, but in the second one it occurs embedded in the complex term killer of man .

2.2.3. REMARKS.The usual interpretation is that De Morgan wanted to show that traditional

logic cannot handle relative arguments. It is of some importance to make two qualifications:

(A) De Morgan himself spoke of compound expressions in general as a problem for the syllo

gistic fullness thesis. And even though he actually formulated his two arguments with relational

expressions, the point he wanted to make can equally well be made without them. The follow

ing one does it :

Every horse is an animal Some brown horse runs

Some brown animal runs

(B) The expanded inference (c) does not count as a syllogism by De Morgan standards, but this

is due to his restricted notion of a syllogisms. Aristotle's own conception of the syllogism is

broader than De Morgan's, as the following passage shows:

‘That the first term belongs to the middle, and the middle to the extreme, must not

be understood in the sense that they can always be predicated of one another or that

the first term will be predicated of the middle in the same way as the middle is

predicated of the last term. It happens sometimes that the first term is stated of the

middle, but the middle is not stated of the first term, e.g. if wisdom is knowledge,

and wisdom is of the good, then conclusion is that there is knowledge of the

good '. Aristotle Book I, 36.

In fact, ((1)is an instance of the so—calledsyllogisms ex obliquis studied in medieval logic:

'Deinde. . . supponamus quod aliquando in syllogizando ex obliquis non oportet

quod extremitas syllogistica vel medium syllogisticum sit extremitas alicuis prae

missae . . . . Verbi gratia, bonus est syllogismus Homo omnem equum est videns;

Brunellus est equus; ergo Homo Brunellum est videns. In hoc autem syllogismo

iste terminus equus est medium, qui nec est subjectum nec praedicatum

in maiore propositione '. Buridan (1976 : 100)
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2.3. DE MORGAN'SINFERENCERULES. Having thus disposed of the fullness thesis, De

Morgan introduced the rules which would take care of relative inference (cf. 2.1.3.). The rules

he gave are neither unproblematic in their applications nor felicitously worded:

DT : The genus may take the place of the species when some of the species is mentioned.

Di : The species may take the place of the genus when all the genus is spoken of.

However, at first sight these rules seem to be up to the work required. For instance, with

the aid of Di we can explain the acceptability of this inference:

A man sees every animal

A man sees every horse

To achieve that goal we use semantical facts. We know that llanimalll , the denotation of

animal, is the genus of II horse]! , the denotation of horse ; and by the same token that

|Ihorse]l is a species of llanimalll . We therefore use Di in order to substitute horse for

animal in the given premiss; in doing this we reach the desired sentence as a conclusion.

2.3.1. A SCHEMATICFORMULATIONOF DE MORGAN'S RULES. In this section we give an

abstract formulation of DT and Di. De Morgan's wording of the rules seems to imply that we

need truths. If so, his logic flies into the face of a logical principle; for it would rule out valid

arguments with false premisses. For instance, consider the following argument:

Every animal is a horse A man sees every horse

A man sees every animal

This argument is valid, but the actual genus - species relationship which exists between the de

notations of horse and animal , precludes the rules from acknowledging this.

We know, however, that De Morgan accepted the principle that a valid argument could have

false premisses, see De Morgan (1847 : 1). Hence we have to bring our interpretation in line

with this principle. We shall not require the relevant denotations to behave as genus and

species. We shall just assume that they do. This can be done because universal sentences like

Every A is B are employed to assert that A is species of B, and that B is genus of A . This

is why universal sentences are an essential element in the arguments generated by De Morgan's

rules (cf. Chapter 1.4.1.1.) This interpretation of universal positive sentences is De Morgan's

own interpretation:

‘when X)Y, the relation of X to Y is well understood as that of species to genus’.

De Morgan (1847 : 75)

The preceding discussion will be resumed in the following formulation of De Morgan's rules:
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DT Di

Every X is Y F(X) Every X is Y F(Y)

F(Y) F(X)

provided some of the denotation provided all of the denotation

of X is spoken of in F(X) of Y is spoken of in F(Y)

2.3.2. DE MORGAN'SRULESAND DICTUMDE OMNI. De Morgan called DT above, a version

of the Dictum de Omni (cf. 1.4.4.3.). As we pointed out, this classical dictum has often been

thought of as the central syllogistic principle. Central in the use of the Dictum is the role as

signed to universal sentences. Given the sentence Every A is B and the further information

that some or every C is A , the Dictum entitles us to infer that some or every C is A. And that is

exactly what DT is supposed to do. For instance, assumes that in Every S is M and Some S is

M , ‘some of the denotation of S is spoken of. Then DT yields:

EVERY M IS P EVERY S IS M EVERY M IS P SOME S IS M

EVERY S IS P SOME S IS P

The rule Di above is the mirror image of the dictum de Omni. Assume that in No A is B and

in Not every A is B , 'all of the denotation of B is spoken of‘. Then Di yields these

syllogismsz

EVERY S IS M NO M IS P EVERY P IS M NOT EVERY S IS M

NO S IS P NOT EVERY S IS P

2.3.3. DICTUMDE OMNI ANDNON-SYLLOGISTICINFERENCES.De Morgan also applied DI

and Di outside the categorical fragment. This is why we are interested in those rules. For in

stance, the application of DT to (c) is quite direct The universal sentence Every man is an ani

mal establishes a genus-species relationship. Assume that in Some one kills a man some of
the denotation of man is spoken of. Then, in accordance with DT, the conclusion follows.

But it is rather disappointing that we ignore how De Morgan coped with the inferences (a)

and (b). We have isolated the contribution of the universal sentence given as a prerniss in (a)
and (b).1 We know for sure that substitutions have to occur. But what we do not know is in

which sentences the substitutions are to be carried out. De Morgan does not indicate this ex

plicitly.

2.3.4. A RECONSTRUCTION.Choose as a prerniss He who kills a man kills a man . Assume

that in the second occurrence of man some of the denotation of man is spoken of. Then the fol

lowing inference is generated by using DT with regard to that specified occurrence of man :
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Every man is an animal He who kills a man kills a man

He who kills a man kills an animal

We can also see why De Morgan could have considered (a) a valid inference. Assume that in

The head of a man some of the denotation of man is spoken of, then one application of DT to

The head of a man is the head of a man would yields The head of a man is the head of an ani
mal .

2.4. SHORTCOMINGSIN DE MORGAN‘SAPPROACH.As illustrated above, De Morgan's logic

seems stronger than syllogistic logic, since DT and Di can generate inferences involving rela

tives. There are, however, a few problems. It is not sufficient that the denotation of the relevant

expressions be given as genus and species. It is just as important that the expressions them

selves be used in a particular way. Before substituting one expression for another, we have to

be certain that the ‘genus [is] being spoken universally of‘ in one case and that ‘some of the

species [is] being mentioned‘ in the other.

2.4.1. CONDITIONSON DE MORGAN‘SRULES. Up till now, we have assumed that the ex

pressions of our examples fulfil those restrictions. This is a simplification, since we have not

yet given any criterion to determine whether this is the case. Once more, we are in the dark

about De Morgan's real choice. Our hypothesis is that he took expressions of generality as a

guide-line. Speaking about categorical sentences, he said that the words of the sentences indi

cate whether the subject is ‘spoken of universally‘ or not:

‘In such propositions as Every X is Y,Some Xs are Y &c., X is called the subject

and Y the predicate. It is obvious that the words of the proposition point out

whether the subject is spoken of universally or partially, but not so of the predi

cate." De Morgan (1847 : 6)

The generalization of this remark results in the following criteria

C1: In the context F(an A) some of A is mentioned.

C2 : In the context F(every A) all of A is spoken of.

However, a little reflection shows these criteria to be inadequate. It is true that (b) can be gen

erated by using C1 and DT. But the same holds for the following invalid inference:

Every man is an animal He who kills a man kills a man

He who kills an animal kills a man
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This inference shows conclusively that the combination of C1 and DT is unsound: the pre

misses are true and the conclusion is false. C1 does not permit differentiation between the two

occurrences of man in the tautological prerniss; therefore animal is in both cases substitutable

for man , and the first part of DT does the rest.

2.4.2. THE CONDITIONSIN TERMSOF DISTRIBUTION.De Morgan's treatment of his non

monadic arguments thus fails, but it is worth emphasizing that this is not due to the abstract

format of the rules. It is rather the restrictions C1 and C2 which have proved wanting: the con

ditions when all the genus is spoken of, when some of the species is mentioned are not effec

tive. We cannot tell whether a given expression obeys them or not. The use of C1 and C2,

which seems implicit in De Morgan's strategy, makes the restrictive conditions applicable. But

these criteria are clearly not adequate. At this point we may consider abandoning the literal

reading of De Morgan's rules, and instead, try to interpret them in terms of the traditional

doctrine of distribution. This doctrine can be seen as providing the means needed for the

description of the contexts in which substitution is allowed.

In fact, the description Prior gave of distribution suggests a connection between the tradi

tional doctrine of distribution and De Morgan's original rules:

‘It is often said . . .that a distributed refers to all and an undistributed term to only a

part, of its extension . . . What the traditional writers were trying to express seems

to be something of the following sort: a term I is distributed in a proposition f(I) if

and only if it is replaceable in f(I), without loss of truth, by any term ‘falling

under it‘ in the way that a species falls under a genus '. Prior (1967: 39).

This is not all too farfetched, since De Morgan himself identifies the expressions universally

spoken of and distributed:

‘It is usual in modern works to say that a term which is universally spoken of is

distributed. . . The manner in which the subject is spoken of is expressed; as to the

predicate, it is universal in negatives but particular in affirrnatives '. De Morgan
(1966 : 6)

Let us give a syntactic characterization of distribution:

0 The terms A, C, D are distributed in

Every A is B, No C is D, Not Every B is A

0 The tenns B, C, D are un-distributed in

Every A is B, Some C is D, Not Every B is A
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With the backing of his own identification, we can re-word De Morgan's rules in the following
form:

DT Dl
Every A is B F(A) Every A is B F(B)

F(B) F(B)

provided that A occurs provided that B occurs

non-distributively in F(A). distributively in F(A).

But this does not work. The distribution doctrine only says that kills a man has two different

values within the tautological premiss; it says nothing at all about the distribution value of man

therein. If we want to complement De Morgan's rules with the distribution doctrine, then this

doctrine will have to be extended itself so as to include the elements of compound expressions.

What we need is a procedure for computing distribution values, starting from basic expres

sions and using distribution values induced by the expressions of generality. De Morgan him

self does not, however, appear to have recognized the need for such a systematic procedure.

As we pointed out, in his treatment of non—syllogisticinference Leibniz, like De Morgan,

made use of what we have called monotonicty rules. In the next section we shall consider how

monotonicity was used by Leibniz.

3. LEIBNIZ

3.1. JUNGIUS'NON-SYLLOGISTICINFERENCES.Leibniz‘ interest in non-syllogistic inferences

was aroused by Jungius (1957). Jungius’ book is seen as one of the few 17th century logical

texts which deserve any attention, mainly because he recognized certain non—syllogisticpatterns

of inference. These patterns are the following ( see Jungius 1957: 89, 122, 151-154):

0 The inferences a compositis ad divisa:

Plato est philosophus eloquents Plato est philosophus eloquents

Plato est philosophus Plato est eloquens

0 The inferences a divisis ad composita

Omnis planeta per zodiacum movetur Omnis planeta est stella

Orrmisplaneta est stella quae per zodiacum movetur
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0 The inferences per inversionemrelationis

Salomon est filius Davidis David est pater Salomonis

David est pater Salomonis Salomon est filius Davidis

0 The syllogisms ex obliquis

0 The inferences a rectis ad obliqua

We already encountered the first two patterns in section 2.2.2. We comment on the syllogisms

ex obliqui in section 2.2.1. We shall come back to them in our consideration of Ockham's

monotonicity rules.

3.1.1. THE INFERENCESA RECTISADOBLIQUA.The inferences a rectis ad obliqua, on the

other hand, are now of greater importance. These are immediate inferences whose premisses

contain expressions in the nominative case (for instance man and animal in Every man is an

animal) , whereas in the conclusion these expressions are transferred into one of the non-nomi

native cases by some notio respectiva (for instance, the notion of killing transferred the expres
sions man and animal into the accusative case in He who kills a man kills an animal ). The

inference which Jungius used to illustrate this pattern is a variant of De Morgan's second
inference:

Omnis circulus est figura

Quicumque circulum describit f1guram describit

Jungius never tried to explain, however, why those patterns yield valid inferences; he simply

took it for granted that they do.

Leibniz, on the other hand, considered this lack of justification a gap which had to be filled.

Well-known is his treatment of the inferences per inversionem relationis; see Kneale & Kneale

(1962 : 324-25). We shall see that Leibniz failed to tackle the problem of multiple generality in

all its comprehensiveness, but that he did strive to give non-trivial demonstrations of some ar

guments commonly considered to involve multiple generality and calling for procedures from

first-order predicate logic; of. Dummett (1973 : 8).

3.2. LEIBNIZ' MONOTONEINFERENCERULE. In Leibniz (1768, VI : 38-9), Leibniz describes

how to cope with inferences a rectis ad obliqua. He introduced some rules of inference and

showed that according to these rules, the conclusion follows from the premisses. This strategy

depends on the principle of substitutivity of equivalents, and also on a syntactical generalization

of the Dictum de Omni. To get some insight in Leibniz‘ method we shall apply it to this Latin

version of De Morgan's example:
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Omnis equus est animal

Omnis cauda equi est cauda animalis

Leibniz’ rules are the following:

LT: Esse praedicatum in propositione universali affirmativa, idem est, ac salva veritate loco

subjecti substitui posse in omnia alia propositione affirrnativa, ubi subjectum illud przedicati

vice fungitur. Exempli causa: quia graphice est ars, si habemus rem qua: est graphice, sub

stituere poterimus rem qua: est ars.

PR: Obliquo speciali aequipollet obliquos generalis cum speciali recto, ideo sibi mutuo substitui

possunt. Verbi gratia, pro terrnino qui discit graphicem substitui potest, qui discit rem quae est

graphicem. Et contra, pro terrnino qui discit rem quae est graphicem substitui potest qui discit

graphicem.

LT says that given the sentence Omnis S est P, P is substitutable for S in any affirmative

sentence 4) in which S occurs as predicate; clearly Leibniz allowed <1)to be a relative

sentence. Therefore it should be evident that Leibniz‘ generalization of the Dictum de Omni

does not affect the kind of expression which may be involved in the substitutions; it allows
instead for a new context of substitutions: relative sentences.

It is thus not possible to apply LT to expressions in one of the oblique cases directly, since

it only concerns expressions in the nominative case. We have to bring oblique expressions into

the range of the dictum. The paraphrase strategy takes care of this situations. PR says that if A

is an expression with B as one of its non-nominative cases, then B is equivalent to the

complex expression R quae est A , where R is the word res in the same case as B . For

instance, equi and animalis are equivalent to rei quae est equus and rei quae est animal . In

virtue of this equivalence, oblique expressions can be brought into the scope of LT. To do this,

Leibniz must appeal to the principle of substitutivity of equivalents; this is what he does in

saying that B and the complex expression R quae est A are substitutable for each other.

3.2.1. LEIBNIZ' RULES AND DE MORGAN'S EXAMPLE. Now We proceed to work out the

derivation of Omnis cauda equi est cauda animalis from Omnis equus est animal , making use

of a tautological premiss:

Omnis cauda equi est cauda equi PR

Omnis cauda equi est cauda rei quae est equus Omnis equus est animal LT

Omnis cauda equi est cauda rei quae est animal PR

Omnis cauda animalis est cauda equi
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3.3. THE SHORTCOMINGSIN LEIBNIZ'APPROACH. Leibniz’ strategy is to some extent more

elegant than De Morgan's solution; moreover it is systematically applicable and this is more

than what we can say of De Morgan's proposal. However, Leibniz’ treatment of the inferences

a rectis ad obliqua unfortunately overlooks a few things:

(A) The only constraint Leibniz imposed upon LT is that S must occur as a predicate in the

context of substitution. If he had limited himself to the standard categorical sentences, then he

could, by implication, have derived a constraint. For in this case, S has to appear non

distributively: the predicates of affirmative categorical sentences occur, per definition, in this

way. But Leibniz went beyond the categorical fragment by permitting certain relative sentences

to be equivalent to oblique expressions, and thereby making these substitutable for each other.

Without undergoing a generalization, the traditional doctrine of distribution, however, does not

predict which distribution values equus has in Omnis cauda equi est cauda rei quae est equus ,

since equus is neither a predicate here nor a subject of any categorical sentence.

(B) The lack of constraints on LT becomes a problem when we look at PR. Here, there is no

mention of contexts where the non-nominative expression may occur, and no mention of con

texts in which the substitution of the complex expression for the oblique expression should not
be carried out.

As a result of Leibniz‘ overlooking those points the rules are unsound. The following sequence

constructed in accordance with PR and LT proves it:

Omnis cauda equi est cauda equi PR

Omnis cauda rei quae est equus est cauda equi Omnis equus est animal LT

Omnis cauda rei quae est animal est cauda equi PR

Omnis cauda animalis est cauda equi

3.4. REMARKS.The previous example illustrates that Leibniz‘ strategy is unsatisfactory. In the

sentence Omnis cauda rei quae est equus est cauda equi , the expression equus is the predicate

of the relative sentence rei quae est equus . Hence the paraphrase strategy has brought it within
the range of LT. This is, of course, a mistake. A more attentive theory of grammatical form

could have avoided this mistake. Occurrences of the predicates of relative sentences are not

automatically replaceable by terms with a larger denotation. But occurrences of those predicates

in the Verbal Phrases of affirmative sentences are indeed replaceable.

We started out by promising to study the role of monotonicity in the work of De Morgan,

Leibniz and Ockham. We have so far discussed De Morgan and Leibniz. In the next section we

close our historical journey: we shall survey Ockham's use of the suppositio theory as the

structural guide for his use of monotonicity.
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4. OCKHAM

4.1. SUPPOSITIOAND DISTRIBUTION. The shortcomings of Leibniz’ strategy and De

Morgan's proposal show that their generalizations of the Dictum de Omni have to be supple

mented. In the first case with effective constraints restricting the context of substitution, and in

the second case with effective definitions of this context. The distribution doctrine stops short

of yielding those features needed because it is restricted to categorical sentences; furthermore, it

sees all categorical expressions as logically simple even when they are syntactically complex.

The doctrine of distribution, however, is considered to be a simplification, or even worse,

to be an impoverished version of medieval suppositio theory. With the help of this theory, me

dieval logicians were able to handle arguments which lie beyond the scope of first-order predi

cate monadic logic. We have already stated that indeed Willian of Ockham formulated inference

rules which may be seen as precursors to the rules offered by De Morgan, i.e. which may be
seen as instantiations of MT and Ml. We shall see presently that he formulated his rules in

terms of supposition theory. Because of this, we give a short description of some aspects of

this theory. Of course, we do not pursue the supposition theory in all its complexity (and its

richness), taking instead the supposition assignments as primitive. For convenience, we also

consider only two syncategorematical expressions, namely omnis and non ; and we shall call

all transitive verbs copula.

4.2. BRIEF SKETCHOF THE SUPPOSITIONTHEORY.Roughly speaking, suppositio is a prop

erty which occurrences of terms may have. A fair description of this marking of occurrences is

given by Kneale and Kneale:

‘Every distributive sign (i.e. a sign with the sense of all or none) gives suppositio

confusa et distributiva to the term to which is directly adjoined, and a negative sign

does the same also for the remote term, but an affirmative sign gives suppositio

confusa tantum to the remote term’.

‘Aterm which occurred with existential quantification and not preceded by any term

with universal quantification was said to have suppositio determinata . .

Kneale and Kneale (1962 : 258, 260)

Observe that the suppositio of a term depends on its relative position in a sentence with regard

to expressions which trigger suppositio on their environment.

4.2.1. EXAMPLES.

(1) Consider the following sentences:

(i) Ornnis homo est animal.
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(ii) Non homo est animal.

(iii) Homo est animal.

(iv) Homo non est animal.

From the quotations it follows that suppositio confusa et distributiva belongs to the occurrences

of nomo in (i), (ii) and likewise to animal in (ii), (iii). Suppositio determinata, on the other

hand, is possessed by homo in (iii), (iv). But animal has suppositio confiua tantum in (i).

(2) Consider the following sentences:

(v) Asinum omnis homo videt.

(vi) Orrmis homo videt asinum

According to the definitions asinum has suppositio determinata in (v) and suppositio confusa

tantum in (vi).

4.2.2. DISTRIBUTIONAND SUPPOSITIOTHEORY. It will be clear that within the categorical

fragment suppositio confusa er distributiva belongs to expressions which according to the dis

tribution doctrine occur distributively and conversely. It is also the case that any expression

having supposition deterrninata occurs non-distributively. But the inverse does not follow: ani

mal appears non-distributively in (i) according to the distribution doctrine, and has suppositio

confusa tantum according to the medieval theory.

This distinction between suppositio confusa tantum and suppositio determinata which distribu

tion theory obliterates, gains importance when we look at sentences and arguments outside the

categorical framework. For instance, the distribution doctrine is unable to distinguish, in pure

distribution terms, between the two occurrences of asinum in the apparently equivalent sen

tences (v) and (vi) of example (B).

As we saw in example (B) the suppositio theory distinguishes between these two occur

rences. Moreover, medieval logicians formulated an inference rule based on this distinction:

from a sentence having an expression A with suppositio determinata, say (v), and asinum in it

we can confidently move to another one, differing from the first in that A occurs now with

supposition confusa tantum, thus (vi). The converse inference, however, was explicitly

rejected; situations were described showing that moving the other way around could be moving

from the true into the false; cf. Kneale & Kneale (1962 : 259).

4.3. OCKHAM'SMONOTONERULES.Ockham's version of MT and Ml is the following:

OT : Ab inferiori ad superius sine distributione, sive illud superius supponat confusa tantum

sive deterrninata, est consequentia bona. Ockham (1951 : 274)

Oi : A superiori distributo ad inferius distributum est bona consequentia. Bird (1961 : 69)
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The examples which illustrate the working of these rules make clear that they rest on universal

sentences: the subject of such a sentence is called the inferior and the predicate the superior ex

pression. This observation permits us to represent the above rules as follows:

oT oi
Omnis S is P F(S) Omnis S is P F(P)

F(P) F(S)

Provided that S occurs in F(S) Provided that P occurs in F(P)

with suppositio non-distributiva with suppositio confusa er distributiva

The rules OT and Oi operate on the surface form of sentences. In applying these rules one uses

the suppositio theory to determine whether an expression occurs in an inferential position or

not. This proof system is then a Natural Logic based on monotonicity and on a theory of

monotonicity marking. Due to this marking theory, Ockham's natural logic is able to explain the

inferences with which De Morgan and Leibniz unsuccessfully wrestled. They had monotone

rules, but lacked a theory of monotonicity marking. This historical fact makes clear that mono

tone rules without a theory of marking, are not an improvement vis-a-vis the old syllogistic.

4.3.1. EXAMPLES.

(1) The following sequence is sanctioned by Oi

Omnis equus est animal Omne animal videt hominem

Omnis equus videt hominem

In Omne animal videt hominem the expression hominem is the remote term with regard to the

affirmative sign omnis . Hence it has suppositio confusa tantum.. Therefore Oi can be

applied.

(2) The following sequence is sanctioned by OT

Omnis equus est animal Equus videt hominem

Animal videt hominem

In Equus videt hominem the expression equus is not preceded by any universal sign. Hence it

has suppositio determinata. Therefore OT can be applied.

4.4. OCKHAMON SYLLOGISMSEX OBLIQUIS.We have emphasized in section 2.2.1 that not

all early logicians would reject the validity of the arguments (c) or (d). Some logicians could see
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this arguments as valid syllogisms ex obliquis. These are two-premiss arguments in which

transitive verbs may play the role of the copula and in which oblique expressions are allowed to

appear as (part of) syllogistic terms.

Ockham himself listed a great number of oblique syllogisms, claiming that the Dictum de

Omni is the logical principle governing their validity.2 We must remark that Ockham did not re

sort to OT or Oi in justifying oblique syllogisms: the version of the dictum he employed in this

connection contains no mention of supposifion.

But the fact that Ockham did not use his rules for the generation of oblique syllogisms, need

not stop us from doing so. The reason for this is that we are not primarily interested in his
treatment of this kind of syllogisms, but in stressing the relative superiority of OT and Oi to
MT and Mi. Consider this Latin version of (c):

(d)
Omnis homo es animal Hominem aliquis necat

Animal aliquis necat

We have a universal sentence giving the superior-inferior characterization of homo and

animal . Furthermore, in the other premiss hominem occurs with suppositio non-distributiva.

Thus, in accordance with OT the substitution of animal for hominem yields the given
conclusion.

One might object to this demonstration, because the expression homo and not hominem

is initially given in the superior-inferior relationship. But Ockham himself allows for the

possibility of having the inferior expression in one of the oblique cases in the context of

substitution and, as a result of that, also the superior after the substitution has taken place:

'Tarnen aliquando consequentia valet, quia aliquando non possunt tales partes ordi

nari secundum superius et inferius nisi etiam tota extrema sic ordinentur vel possunt

sic ordinari; sicut patet hic homo albus-animal album; zidens hominem-zidens ani

mal Ockham (1951 : 188-9).

4.5. OCKHAM'S RULESAND DE MORGAN'S EXAMPLE. De Morgan introduced (c) as the syl

logistic expansion of his second inference. We have shown that Ockham knew of inference

rules which may be used to justify that inference. Furthermore, we have pointed out that

Ockham would recognize the validity of (c), although his justification might be different from
ours.

However, we have not yet touched upon the question whether OT could be used equally well

in reference to the original inference (b). Let the premisses below be given:

(1) Omnis equus est animal.

(2) Omnis cauda equi est cauda equi.
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We have already seen what role universal sentences like (1) play. But in order to apply OT or

Oi to (2) we need to know which supposition belongs to the occurrences of equi therein. We

certainly know that the complex expression cauda equi has suppositio confiisa et distributiva in

its first and suppositio confusa tantum in its second occurrence. But the question that interests

us is the supposition of the expressions which make up the complex one. Ockham's answer is

conclusive: neither equi or cauda has supposition in (2). Suppositio, he says, adheres to the

extremes of a sentence and not to the expressions making up subjects or predicates:

'Solum categorema quod est extremum propositionis . . . supponit persona1iter'.

Ockham (1951 : 188).

‘Per illam particulam extremum propositionis excluditur pars extremi, quantum

cumque sit nomen et categorema. Sicut hic homo albus est animal nec homo, nec

albus supponit set totum extremum supponit‘. Ockham loc. cit.

Ockham did not make clear why we should deny any supposition to the elements of cauda equi.

But we can try to understand his motivation, to some extent following Buridan's remarks on

this question.3 We take first the soundness of OT and Oi as given. Therefore, if one of those

rules assisted by certain assumptions yields an invalid inference, then we conclude that at least

one of the assumptions has to be rejected. Consider now:

(3) Omnis asinus logici currit.

Suppose that both asinus and logici have supposition in (3). Then we have three possibilities:

they have either suppositio determinata or suppositio confusa tantum or suppositio confusa et
distributiva.

However, neither of them could have suppositio determinata, since both asinus and logici
occur after omnis . But logici might have supposition confusa tantum. Thus, according to OT

the following sequence would be valid:

Omnis logicus est homo Omnis asinus logici currit

Omnis asinus hominis currit

But it is not. Let every donkey owned by a logician be running; let every logician be a man and

let some donkey owned by a non-logician be resting. In such a situation both premisses are true

and the conclusion is false. Therefore, logici cannot have suppositio confusa tantum in (10).

So, if logici has any supposition in (3), it must be suppositio confusa et distributiva. This

latter supposition has to be attributed to asinus in that sentence because omnis is adjoined to it
directly. Hence, the next inference would be valid according to Oi:
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(e)
Omnis asinus albus est asinus Omnis asinus logici currit

Omnis asinus albus logici cuirit

We accept this inference as valid. Ockham and Buridan, however, did not. Ockham introduced

the convention that an affirmative sentence with an empty subject is false.4

From this point of view, we rriight describe a situation refuting the claim that (e) is valid. Let,

again, every logician's donkey be running; let also white donkeys exist, all of which are wild.

Then there is no white donkey belonging to a logician. Thus asinus albus logici is an empty

expression and this makes the conclusion false, according to Ockham's convention. So (e)
turns out to be invalid.

At this point, Ockham and Buridan might reject the supposition claim made on behalf of

asinus or the convention on affirmative sentences. Clearly, both of them abandoned the sup

position claim. So, asinus has no supposition in (3). The claim that logici has suppositio

confusa et distributiva in (3) can be discredited in the same way. The conclusion is that neither

logici nor asinus has supposition in Omnis asinus logici currit.

Strictly speaking, the preceding inference only shows that logici and asinus have no sup

position when they make up the subject of a universal affirmative sentence. Consequently, in

the view of Ockham, cauda and equi lack any supposition in their first occurrence in (3). But

we do not know which kind of considerations brought Ockham to deny them any supposition
in their second occurrence as well.

Assume that one attributes suppositio confusa tantum to the second occurrence of equi in
(3). Applying OT to (1) and (2) he would get as a conclusion Omnis cauda equi est cauda ani

malis . But the two-premisses inference:

Omnis equus est animal Omnis cauda equi est cauda equi

Omnis cauda equi est cauda animalis

would be as far as Ockham would get. It was not open to him to treat (2) as a ladder that could

be kicked away after having reached the conclusion, thus obtaining:

Omnis equus est animal

Omnis cauda equi est cauda animalis

And this certainly is not due to the lack of metalogical backing. There is not much anachronism

in using a rule of Buridan which, to the modern reader, allows the elirriination of tautological

prernisses:
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‘Adquamcumque propositionem cum aliqua necessaiia sibi

apposita sequitur aliqua conclusio ad eadem propositionem solam

sequitur eadem conclusio, sine appositione illius necessaria. . . .

Buridan (1976 : 36)

The real trouble is that (2), for Ockham nor for Buridan, can count as a necessary proposition:
Ockham's convention allows it to be false.

4.6. REMARKSON DE MORGANANDOCKHAM.Ockham's convention throws new light on the

background of the inference:

Every horse is an animal

Every tail ofa horse is a tail ofan animal

the validity of which we take for granted, as De Morgan himself would have done. According

to that convention, De Morgan's example has to be considered formally invalid, in the usual

sense that there is an interpretation under which the prernisses are true and the conclusion false.

Let every horse be an animal; let no horse have a tail, then tail of a horse would be empty and,

hereby, every tail of a horse is a tail of a horse would be false.

We see thus in which way De Morgan's rejection of the syllogistic fullness thesis could fail to

impress a holder of it. If De Morgan's example is not formally valid, then the fact that it is not

reducible to a syllogism cannot be regarded as proving the inadequacy of the thesis. This point

was brought home to De Morgan by Mansel; this logician tried to prove that De Morgan's rela

tive arguments are not formally valid. To do this he devised an inference, essentially similar to

Every guinea pig is an animal

Every tail of a guinea pig is a tail of an animal

which had to play the counter-example role: given that guinea pigs do not have tails it follows,

on Ockham's convention, that the premiss is true and the conclusion false.

In his reply to this criticism, De Morgan abandoned Ockham's convention. However, he did

not adopt the modern interpretation of universal categorical sentences, making the conclusion of

the last inference tiivially true. He abandoned instead the principle of bivalence in reference to

sentences containing empty expressions. On the schema The tail of a S is P he said

A guinea pig, for instance, puts this proposition out of the pale of assertion, and

equally out of that of denial; the tail of non tailed animal is beyond us. De Morgan

(1966 : 252-3).
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To sustain the validity of his non-monadic arguments, he seems to resort to a new view on

formal validity:

Again, let X be an existing animal, it follows that the tail of X is the tail of an ani

mal. Is this consequence formal or material? Formal, because this is true whatever a

tail may be, so long as there is a tail; and it cannot be refused assertion except when

X has no tai1." De Morgan loc. cit.

Mansel's criticism and De Morgan's answer show that relative expressions like tail of a horse ,

killer of a man , because of their possible emptiness, force a dilemma upon the syllogistic. In

order to accept or deny the validity of arguments involving this kind of expression, some tradi

tional principle will have to be abandoned. The way-out for Mansel and De Morgan was to

deny the general validity of Every A is A . In contrast to this, the modern interpretation seems a

more superficial revision of the traditional framework, for even if A is empty, the law of

thought Every A is A is trivially true.

5. CONCLUDINGREMARKS.In this chapter we have pursued the history of the lexical mono

tone rules. We have shown that several attempts at explaining the validity of non-syllogistic

natural language inferences made use of substitution rules which revolve around monotonicity.

In a certain sense, the historical use of monotonicity can be seen as an extrapolation of the

Dictum de Omni from the formal system of syllogistic schemas into natural language.

Furthermore, we have pointed out that some formulations of those rules are not adequate. The

reasons for this inadequacy have been localized in the defective characterization of the contexts

in which the substitution must take place.

The reading of De Morgan and Leibniz, makes the prospect of a Natural Logic very gloomy

indeed. The situation changes when one takes a look at the Medieval logicians. The best formu
lation of the rules has been found in the work of Ockham. We have shown that the soundness

and fruitfulness of his approach is due to the underlaying suppositio theory. In terms of this

theory monotone inferential occurrences are characterized. We notice also that Ockham restricts

the scope of his theory by denying supposition to the parts of complex terms. In this sense,

Ockharn's marking mechanism does not go far enough. Nevertheless, our historical excursion

shows that a theory of monotonicity marking is indispensable for Natural Logic. The complex

ity of the medieval suppositio theory, however, may suggest that pursuing such a marking the

ory is not a realistic goal. The exclusive concentration of the suppositio theory on the surface

forms of sentences, makes a highly complicated enterprise of the monotonicity marking.

In the next chapter we shall see how this situation improved on the threshold of modern

logic, especially in the work of C.S. Peirce. There we shall see that for formal languages there

is an effective characterization of the substitution contexts on which the monotonicity rule can
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be applied. Later on, we shall also show that this characterization can be generalized to natural

language contexts.
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NOTES TO CHAPTER II

lWe identify. as De Morgan did. man is animal with Every man is an animal.

2Ockham (1954 : 351-2. 360. 355-7).

3Buridan (1976 : 98-9).

4'As far as presently known the first logician to consider the question of existential import or to propose a tenable
theory of it was William of Ockham. who holds that the affirmative categorical propositions are false and the
negative true when the subject term is empty‘. Church (1965 : 420).
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CHAPTER HI

NATURAL LOGIC AND C.S.PEIRCE

DESCRIPTION OF THE CONTENTS OF THE CHAPTER. The first section introduces the theme of the

chapter. The second section is concerned with Peirce's treatment of propositional logic. It introduces the proposi

tional part of the System of Existential Graphs (SEG) -the so-called Alpha Graphs. Furthermore, it argues that

some principles which Peirce employs here could be used in Natural Logic. The fourth section consists of a pre

sentation of the predicate logic part of SEG -the so-called Beta Graphs. Again, the usefulness of Peirce's notions

for Natural Logic is argued.

1. INTRODUCTION

1.1. PRELIMINARYREMARKS.In the previous chapters we pointed out that the notion of

monotonicity is important for Natural Logic. We also showed that this notion was central to at

tempts of trespassing the syllogistic bounds. Moreover, we saw that a criterion for monotonic

ity was missing in De Morgan's and Leibniz‘ proposals. Ockham did have a criterion.

However, we pointed out that the proverbial complexity of the suppositio theory renders

Ockharn's strategy infelicitous.

The difficulties facing the suppositio theory have been attributed to its exclusive concentra

tion on the surface forms of sentences, rather than on their construction (cf. Geach 1962;

Dummett 1973). As is well-known, modern logic pays close attention to the way in which for

mulas are constructed, and this is the way to recognize monotone occurrences.

In this chapter we introduce Peirce's treatment of formal inference in which monotonicity

plays a central role: the system of existential graphs. In this proof system we discern a general

izable syntactic characterization of monotone occurrences. Although Peirce's use of monotonic

ity is confined to formal languages, we think that the study of Peirce's logic, is relevant for

Natural Logic. It will enable us to identify some principles which, like monotonicity, are useful

for Natural Logic.

2. THE SYSTEM OF EXISTENTIAL GRAPHS

2.1. GENERALCHARACTERIZATIONOF SEG. The SEG is set up with the intention of giving

'a satisfactory logical analysis of the reasoning in mathematics‘. A part of this project consists

of the construction of a language in which proofs and inference principles can be represented.

The following passage by Peirce reminds us of Frege's project:

47
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What is requisite is to take really typical mathematical demonstrations, and state

each of them in full, with perfect accuracy, so as not to skip any step, and then to

state the principle of each step so as perfectly to define it, yet making this principle

as general as possible. . . If we attempt to make the statement in ordinary language,

success is practically impossible. . . At all times, the burden of language is felt

severely, and leaves the mind with no energy for its main work. It is necessary to

devise a system of expression for the purpose which shall be competent to express

any proposition whatever without being embarrassed by its complexity, which shall

be absolutely free from ambiguity, perfectly regular in its syntax, free from all dis

turbing suggestions, and come as nearer to a clear skeleton diagram of that

element of the fact which is pertinent to the reasoning as possible.

Peirce (1976. 111.406)‘

2.2. SPECIALPROPERTIESOF SEG. SEG is a proof system with special properties. In the first

place, this system is based on a non-linear propositional language. In the second place, in the

construction of the predicate logic part of the Existential Graphs, Peirce abandoned the

quantification symbols. In this system we find what has been called a system of implicit

quantification. This system represents the most radical implementation of Quine's analysis of

quantification theory: it is the role of the variables and not the symbolizing of quantifiers which

distinguishes predicate logic from earlier systems of logic. In the third place, the system em

bodies a few global inference rules which allow us to draw consequences from given premisses

without having to resolve them into smaller parts. Roughly speaking, the effects of the rules are

the following:

0 within any context we may introduce c.q. eliminate double negations;

0 within specified syntactic positions we are allowed to insert c.q. to delete (occurrences of)

formulas;

0 within certain syntactic configurations we are allowed to copy c.q. eliminate (occurrences

of copied) formulas; and finally

0 within certain syntactic configurations we are allowed to identify c.q. diversify argument

places.

2.3. THESTUDYOF SEG.In the present chapter we hope to show the importance of the study

of SEG. Peirce himself described SEG as his chef d’oeuvre, thus estimating SEG as being

even more important than his earlier contributions to logic. This fact makes SEG already worth

studying from a historical point of view. However, SEG itself constitutes the result of a

historical development and in the next section we intend to point out some aspects of this

process. Firstly, we shall survey the form which monotonicity takes in the so-called Qualitative
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Logic. It will then become apparent that Peirce sought to reduce inference to simple substitution

procedures - a goal reminding Jevon's program of mechanical inference. 2 Next we shall argue

that the operations of deletion and insertion introduced in SEG rest on monotonicity.

2.4. MONOTONICITYRULES.In the Qualitative Logic Peirce describes a formal language and a

proof system for propositional logic:

‘So far, we have a language but still no algebra. For an algebra is a language with a

code of formal rules for the transformation of expressions, by which we are en

abled to draw conclusions without the trouble of attending to the meaning of the

language we use.’ Peirce (1976, IV, p. 107)

With regard to this system, Peirce says that inference must be seen as elimination and
introduction of formulas:

‘We require that the rules should enable us to dispense with all reasoning

in our proofs except the mere substitution of particular expressions in

general formulae.‘ Peirce (1976, IV, p. 108)

To achieve this ideal, Peirce takes Modus Ponens as a primitive inference rule and proceeds to

generalize this rule as a general substitution rule:

‘The general rule of substitution is that if —:av b, then b may be substituted for a

under an even number of negations, while under an odd number a may be

substituted for b.‘ Peirce (1976, IV, p. 108)

2.4.1. A FORMAL FORMULATIONOF PEIRCE'S RULES. Peirce's general rule of substitution

can be brought into formats similar to the substitution schemes introduced in Chapter 11.1.1.

UPWARD MONOTONICITY (MT)

fi¢ V W T‘(¢)

1“(w)

provided that 4)occurs in 1"(¢)within the scope of an even number of negations.

DOWNWARDMONOTONICITY(Mi)

a (D V w P (IV )

F(¢)

provided that Woccurs in F(¢) within the scope of an odd number of negations.
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2.4.1.1. EXAMPLES.Several well-known inferences rest on the monotonicity rules.3

(1) Modus Ponens is an instance of MT:

-¢vw ¢
‘I’

(2) Modus Tollens is an instance of Mi:

‘'49 V ‘V "W

oil)

(3) Transitivity is an instance of Mi 2

“¢ V ‘V “W V X

fi¢ V X

2.4.2. REMARKS.It can be demonstrated that monotonicity alone does not account for all in

ferences in propositional reasoning.

(A) There are several inferences in which monotonicity is involved, but which require addi

tional principles:

Monotonicity yields the following derivation:

—-¢vx wv¢
—~\vvx wvx

XVX

To derive Xfrom one x v )5 one needs the additional (Boolean) identity X v x = x.

(B) There also are several elementary inferences in which monotonicity is not involved. The

first inference which one may think of in this connection is the introduction of the conjunction:

¢W

<l>/W!

The above examples suggest that Peirce's substitution rules are to be augmented with vari

ous other types of principles to obtain a proof system as strong as ordinary propositional logic.

Peirce himself was aware of the limitations of a purely monotone proof system -in the

Existential Graphs extra principles are added to monotonicity. The system of inference rules

thus obtained can be used as the basis for the axiomatization of propositional reasoning. (The

first published proof of this assertion is to be found in Roberts, 1973).

This observation is relevant for our Natural Logic. It follows from our examples, that

purely monotone Natural Logic will not systematize natural inference principles. But Peirce's



Natural Logic and C.S. Peirce 51

work suggests to us ways of improving the strength of that logic - ways that are worth consid

ering. In the next section we turn to the identification of Peirce's additional principles.

2.5. THE LANGUAGEOF THE ALPHAGRAPHS.In this section we introduce the alpha graphs. A

more precise treatment of Peirce's system is given in Sanchez Valencia (1989). In this disserta
tion we shall concentrate on the most salient properties of the system.

The language of these graphs consist of:

(a) the space we use while writing sentences. Every part of this space is called the ‘blank’.The

blank is interpreted as a symbol denoting the Truth.

The interpretation of all the parts of this space as a symbol for a special sentence allows Peirce
to define an unrestricted deletion rule: if (1)is a sentence then the result of deleting <1)will still

be a sentence, namely Truth.

(b) a symbol for negation ; negation is represented by us by means of a box surrounding the
sentence to be negated. Since the blank is a sentence, we can negate it. The result is The

meaning of this symbols is Falsity since it is the negation of Truth.

(c) Sentences which are written in the same space are considered as one sentence, namely their

conjunction.

CONVENTIONS.The following conventions are introduced to enable the reader to understand
Peirce's formulation of the inference rules:

(d) The box will be called sep or enclosure.

(e) The result of enclosing a sep is called a double enclosure.

(f) sentences are called graphs.

Essentially, the language of the alpha graphs can be described as a propositional language

augmented with a propositional constant, and based on the set of connectives { —a,A }. Notice,

for instance, that one sep is negation and a double enclosure is double negation.

Examples

(1) abelard writes heloise reads.

<2)

(3){abelardwritesJ

(4) I abelard writesj I heloise reacfl
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The 'meaning' of the above graphs is, respectively:

(1) Abelard writes A Heloise reads;

(2)—1(Abelard writes);

(3) —a(Abelardwrites A —-.(Heloisereads)), i.e. Abelard writes —>Heloise reads;

(4) —«(——.(Abelardwrites) A a(Heloise reads)), i.e. Abelard writes v Heloise reads;

We see from these examples that the alpha language is translatable into propositional logic. The

translation goes also the other way around. But for our present purposes this is not quite rele

vant. See, however, appendix 2.

2.6. As we pointed out, Peirce formulates a few global inference rules which, supplemented

with the blank (or T as symbol for verum) as an axiom, yield the full propositional logic. The

way in which Peirce introduces the rules is the following:

2.6.1 DELETION AND INSERTION

‘Within an even finite number (including none) of seps, any graph may be erased;

within an odd number any graph may be inserted.'Peirce (4 : 492).

2.6.2. COPYING RULE

‘Any graph may be iterated within the same or additional seps, or if iterated, a

replica may be erased, if the erasure leaves another outside the same or additional

seps.' Peirce (4 : 492).

2.6.3. DOUBLE NEGATION RULE

‘Anything can have double enclosures added or taken away, provided there be

nothing within one enclosure but outside the other.'Peirce (4 : 379).

Thereafter, we shall refer to 2.6.1/2.6.3 as ‘the alpha rules‘

2.6.4. EXAMPLES.We shall work out some concrete examples. For convenience, we assume
that the relation of deducibility (=) has been defined.

(1) abelard writes heloise reads =:>abelard writes

Proof

Apply the deletion rule to the graph heloise reads.
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(2) abelard writes = II abelard writes I I heloise reads|I

Proof

Apply the double negation rule to the graph abelard writes.This gives abelard writes I

Use the insertion rule to introduce .

Theresult is abelard writes I Iheloise readsII.

(3) II abelard writes ] | abelard writesII =>abelard writes

Proof

Apply the copy rule to the two occurrences of the graph in the graph

IIabelardwritesI I abelardwritesII.TheresultisI Finally,oneapplica
non of the double negation rule yields abelard writes.

(4) abelard writes I I abelard writesII <=>abelard writes

Proof

This follows form (2) and (3).

2.6.5. REMARK.The previous examples show that the alpha rules allow us to generate the

one-premiss propositional inferences mentioned in 2.5. We have here a hint of the strength of

the system. There is, however, a small subtlety. The easy monotone inferences become

relatively complex ones. It requires several steps to prove:

abelard writes Iabelard writes I =>heloisereads

Proof

1.abelardwritesIabelardwritesI =>(copyrule)

2.abelard writes I I = (deletionrule)

3.I I =>(doublenegationrule)

4. heloise reads

One should not think that the complexity of modus ponens indicates that the system is not based

on monotonicity. In the next section we shall be concerned with the logical analysis of the

global logical principles embodied in SEG. We claim that deletion and insertion can be seen as

restricted cases of the monotonicity rules schematized in 2.5. We shall also argue that the real
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new principles added to the monotonicity rules are algebraic principles and the copying rule -a

special case of the principle of conservativity.

3.1. THE ALPHARULESAND MONOTONICITY.We are going to show that the deletion and in

sertion rules are restricted forms of monotonicity rules. We assume in our discussion that logi

cal principles are invariant under changes of notation. In the discussion we use a propositional
language based on the constants { T, -1, A }. We assume also that the other constants have

been defined as usual. Moreover, if (1)occurs in F(¢) in the scope of an even (odd) number of

negations, we will say that 4) occurs positively (negatively) in 1‘(q>).

(A) Deletion. Notice that the deletion of the sentence (1)leaves the blank. But the blank is inter

preted as T(ruth). If we abstain from the special notation of the alpha graphs, then the proper

way of looking at deletion is the following:

‘any foimula that occurs positively may be replaced by T‘.

We can schematize this rule in the following way

F(¢)

F(T)

provided that cl)occurs positively in l"(<|>).

Let us see what we need to add to this rule to generate q;A w => (1).Application of deletion to w

gives 4)A T. By using the Boolean identity q)A T = (1),one obtains 4).

(B) Insertion. Notice that the insertion of the sentence 4),replaces the blank. Thus, the proper

way of looking at insertion is this:

‘any negative occurrence of T may be replaced by an arbitrary fonnula ¢>'.

We can schematize this rule in the following way

l"(T)

1“(¢)

provided that T occurs negatively in I‘(T)

Let us see what becomes of the inference V = (1)v ur. Application of double negation to w

yields -1-. 1|; . By using the Boolean identity T —.ur <=>—.\y one obtains -1(T -1 iv) . By

inserting a ct», we have a(—. (p-1 w) . But then, by definition, we have derived «pv w .

(C) Double negation. We have seen that deletion and insertion should be considered as
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restiicted monotonicity rules, in the sense that the implication premiss of the rules is restricted
to formulas of the form 4)-9 T . To do now what we were able to do with the original rules,

we add to monotonicity the Boolean identities:

Double negation was already part of the Alpha graphs. The need for (a) is not felt in the alpha

graphs. This is due to the special features of the language in which the system is formulated.

Observe, also, that we assume the principle of unrestricted substitution of equivalents.

(D) Copy. Now we turn on to the copy rule. We schernatize this rule as follows

(|)A1"(\|J)¢=> ¢)AF(¢>A\y)

This rule is not completely independent from monotonicity. There is some redundancy in the

alpha rules (Peirce himself noticed this redundancy):

(1) Suppose one has a formula of the form (pA ‘l’(\p) . By Peirce's copy rule one obtains at

once (1)A ‘I’(¢ A_\y).But suppose that w occurs negatively in ‘I’(\|/) . We first replace w by

T A qt , and then insert :1:. This is permissible since the occurrence of T herein satisfies the

condition for the insertion rule. Thus, in this case the copy rule is dispensable.

(2) Suppose one has a formula of the form «:9A ‘I’(¢ A qt) . By Peirce's copy rule one obtains at

once ¢ A ‘I’(\;/) . But suppose that q)A qr occurs positively in ‘P(\y) . Then this occurrence of

(1)must be positive. We first replace 4) by T . This yields T A w . Hence, we may introduce

now the equivalent formula qr.

Suppose that w occurs positively in ‘I’(\y) . As above, we can derive (pA ‘P(T A 1;!). But the

occurrence of T therein does not satisfy the condition on the insertion rule. Hence, mono

tonicity is not applicable. This is a situation in which the copy rule does something monotonic

ity alone cannot do. For instance, monotonicity cannot prove ¢ => q;A q). But the copy rule

can. Similarly, we can argue that if (1)A w is negative in q)A ‘P(¢ A w) , monotonicity is help

less, while the copy rule yields at once (1)A ‘P(\y) . For instance, monotonicity alone cannot

prove (1)A —.(q)A W) = «pA —:\y, but the copy rule can.

Of course, the copy rule is not indispensable in an absolute sense. One only needs to think

of the several axiomatizations of propositional logic (or Boolean algebra) in which the copy rule

is not used. The above observations are only meant to indicate the relative indispensability of

the copy rule vis-a-vis monotonicity.

We have been discussing the copy rule, because we want to assess the importance of adding

principles analogous to the copy rule to a monotone logic. This is important for Natural Logic

because it relies mainly on monotonicity. To illustrate the extra inferential strength of
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monotonicity plus the copy rule, we want to point out that the combined work of these rules

allows us to prove:

(C) (I)A w (|) <2 -1 T

(<1) <9 A ¢ <=> ¢

(6) 4) A W <=> W A ¢

(f)¢A (WVX)<=>(¢AW)V (¢AX)

3.2. DIGRESSION.The proof of (f) rests on (e), monotonicity and the copy rule. The proof

of (e) rests also on the copy rule, monotonicity and a notational trick. If we define the copy rule

along the line: q; A ‘I‘(\|J) / q>A ‘I’(\.|IA (p) , the proof of (e) is:

(1)A w => [copy rule] (1)A (w A :13)=>[de1etion] \y A 4) .

If we choose to define the rule in such a way that the relative ordering of the formulas remains

the same: «pA ‘I’(\|/) / q»A ‘I’(¢ A 1|!), then there is no way of deriving commutativity from dele

tion and the copy rule.

Thus, one can define the copy rules in such a way that some algebraic principles become

easily derivable. For practical purposes this is a legitimate strategy. However, one cannot say

that the principles thus obtained have been analyzed. On the contrary. The independent

character of the principles thus obtained is obscured.

3.3. THE COPY RULE AND CONSERVATIVITY.In section 3.1 we have seen that there are uses

of the copy rule which are independent of monotonicity. In this section we want to show that

the copy rule corresponds to a property of the implication known as conservativity. By show

ing this correspondence, we want to make plausible that the copy rule - in some form - can be

incorporated into natural logic, because conservativity is a property shared by one of the most

important logical items of the natural language: the determiners. In this section we investigate

the relationship between conservativity and the copy rule.

The conservativity of the implication is captured in the following schema:

(a)¢-*\If<=>¢->(¢AW)

In standard logic one derives from the above schema the following schema for the conjunction:

(b)¢Afi(¢A\V)<=>¢A-‘W

The conservative schema (b) shall be called the one step copy rule.

ASSERTION 1

The one-step copy rule, the insertion rule and double negation imply the copy rule.
Proof

We shall prove one special case which contains all the necessary information.
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First case: (1;A w <=>¢ A (q) A it!)

q)A w <2 ¢ /\fi—nw Double negation

<=>q) A: (cpA —.qt) Insertion

<2 (1)Am (:1)A -1 (¢ A \|1)) One step copy applied on ¢ A -1 w

c> ¢ Aw a (:1;A w) One step copy applied on 4)A—.(q)A -1 (¢ A \u))

4: :1)A (q)A w) Double negation

3.4. CONCLUDINGREMARKSON THE ALPHA GRAPHS. The previous sections demonstrate

the importance of Peirce's work for Natural Logic. In the first place we have seen that it is

possible to give a syntactic characterization of monotone sensitive positions. In the second

place, we have seen that the alpha graphs are stronger than a pure monotone calculus by the

presence of the copy rules. We have also established a connection between conservativity and

the copy rules. As we remarked above, this connection is encouraging for Natural Logic. There
are lexical items which are conservative. For instance the semantical behaviour of all

determiners is such that l[Det X1] Y is the same object as |IDet X1] YAX . This semantical

information is available. In the previous section we have seen that in the propositional case, the

addition of conservativity to monotonicity yields a stronger proof system. We are entitled to

hope that the addition of conservativity to Natural Logic will result in a more realistic proof sys
EH1

Actually, Peirce's contribution to the theory of quantification is as important as his conni

bution to propositional reasoning. One natural question would be: can Natural Logic learn

something from Peirce's treatment of predicate logic? We turn to this question in the next sec
tion.

4.THE BETA GRAPHS.

4.1. PEIRCEANDTHETHEORYOF QUANTIFICATION.What is called theory of quantification is

the result of a development involving Peirce's logical work, in particular Peirce (1885). In one

unpublished addendum to Peince (1885), we found new principles governing the behaviour of

quantifiers in deductions (Peirce, 3 : 403 E). These principles, which regulate identifications

and diversifications of variables, are the following:

0 Identification of variables.

1. VxVy <|)(x,y) —>Vxq) (x,x);

2. 3x\7’y ¢ (x,y) -9 3x<|) (x,x).

0 Diversification of variables.

3- VX<l>(x.x) -> VX3y¢ (x,y);

4. 3x¢ (x,x) —>3y3x¢ (x,y).
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In the next section we shall see that these principles were incorporated into the predicate

logic part of the SEG -the Beta Graphs. We claim that the treatment of diversification and iden

tification of variables to be found in the Beta Graphs, rests on monotonicity. Moreover, we

think that the way in which this is done is relevant for Natural Logic, because it suggests analo

gous operations on the natural language counterparts of variables: pronouns.

In the next section we give a general description of the Beta Graphs. Next we turn to a dis

cussion of Peirce's principles of quantification. For convenience, we formulate the rules in a

standard language. Finally, we present a tentative assessment of the relevance of the Beta prin

ciples for Natural Logic.

4.2. THEBETAGRAPHS.The vocabulary of the beta graphs contains the parentheses, n-ary

predicate letters and a quantifier symbol: Z , the quantifier line. This line is a protean ele

ment in the system. In the first place it is an atomic graph interpreted as saying that some object

exists. In the second place it is also used to show that argument places are no longer empty. In

this section we will try to keep these three functions of the line as separate as possible. For the

line as a sentence we will use a simple horizontal line; for the line entering one argument place

we will use a vertical line; to represent the quantifier line in its identifying role we will use a

kind of vine diagram, writing the line as the branch from which joined graphs hang down.

The quantifier line standing alone means that some indeterminate object exists. The line

keeps to some extent this existential import when attached to argument places:

'Thus the interpretation of ( is beautiful) to mean "Something is beautiful" is

decidedly the more appropriate.‘ Peirce (4 : 440)

The combination of the above reading of the quantifier line with the interpretation of the alpha

graphs makes universal sentences expressible. For instance, the following expression means

that P holds of all objects:

E’
Peirce expresses these facts by saying that a line occurring positively has existential and a line

occurring negatively has universal import:

' . . . and any line of identity whose outermost part is evenly enclosed refers to

something, and any whose outermost part is oddly enclosed refers to anything there

may be.’ Peirce (4 : 457)

To read more complex graphs we introduce the convention that the least negated expression has

to be read first. The general idea is that in the interpretation of a given line, we have to interpret
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all the graphs we find in our way to the end of the line- giving priority to horizontal lines above

other graphs when those occur in the scope of the same negations:

'And the interpretation must be given outside of all seps and proceed inward.’

Peirce (4 : 457)

4.3. EXAMPLES.With L for loves , B for boy and G for girl , the reading of the following

graphs is, respectively, Somebody loves himself , Every boy is a girl , Some girl is loved by

every boy , and Every boy loves some girl :

‘TIP‘Q '3 Lo
4.4.CONVENTION.The following convention is introduced to enable the reader to understand

Peirce's formulation of the quantification rules:

0 The quantifier line is called the line of identity or ligature

0 The space we use when writing sentences of this language is called the sheet of assertion.

4.5.TI-IE QUANTIFICATIONRULES. the quantification rules are introduced in the following
manner.

4.5.1. SCOPE

'Perrnission No 3. is to be understood as permitting the extension of a line of iden

tity on the sheet of assertion to any onoccupied part of the sheet of assertion.‘

Peirce (4 : 417)

4.5.2. DIVERSIFICATION OF ARGUMENT PLACES

‘This rule permits any ligature, where evenly enclosed, to be severed‘

Peirce (4 : 505)

4.5.3. IDENTIFICATION OF ARGUMENT PLACES

‘This rule permits . . . any two ligatures, oddly enclosed in the same seps, to be

j0ined.'Peirce (4 : 505)



60 Studieson Natural Logic and Categorial Grammar

4.5.4. COPY RULE

‘Therule of iteration must now be amended as follows:

Rule 4 (amended). Anything can be iterated under the same enclosures or under

additional ones, its idendcal connections remaining identical.‘ Peirce (14 : 386)

From now on, we shall refer to those rules as the Beta Rules. In appendix 2 we collect some

examples of derivations in the Beta Graphs.

4.6. In this section we shall concentrate on the logical points of Peirce's monotone Ueatment of

predicate logic inference. In appendix 2 we give a fair description of the Beta Graphs. In the

main text we shall not use the notation of the beta graphs but resort instead to the standard nota

tion of predicate logic.

4.6.1. THE LANGUAGE.To obtain a system similar to the Beta Graphs, one takes a formula

tion of predicate logic based on {3, A, a } and state:

(i) If (1)is a sentence, then Elxq>is a sentence defined as 3x(x=x) A (1).

(ii) If :1)is a sentence, then q; is called a beta graph.

4.6.2. PEIRCE'SSYSTEMOF RULES.We formulate now the inference rules introduced by

Peirce. The rules do not apply to all the formulas of the language, but only the to beta graphs.

These rules can be divided into two parts: propositional and quantificational rules. For conve

nience we repeat:

THE PROPOSITIONAL PRINCIPLES

(i) -=-=¢ <=>¢

(ii) (|) A T <=>(I)

(iii) q)A ‘I‘(¢ A w) «:>q)A ‘I’(\|I) , provided that no free variable of q: is bound in ‘I’(¢ A w) .

(iv) F(¢)

ITD

provided that (1)occurs positively in I‘(¢)

(V) F (T)

F(¢)

provided that T occurs negatively in F(T)

To these principles we add :
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THE PRINCIPLES OF QUANTIFICATION

(Vii) ELIMINATION OF VACUOUS QUANTIFICATION.

3x(x=x) A «I;4:: (1)

(viii) ALPHABETIC VARIANTS.

3x¢ <=>3y[y/xl ¢

In the following rules we define 4)‘by: ¢' 2 [y/x] ¢

(ix) PASSAGE RULE.

3x¢ A 3y\|,! <=>3x(¢ A Eiyql).

(x) DIVERSIFICA'I‘ION OF VARIABLES.

F(¢)

I‘(3x¢')

provided that 4) occurs positively in F(¢) .

(xi) IDENTIFICATION OF VARIABLES.

F(3x¢)

F(¢')

61

provided that 3x¢ occurs negatively in I‘(¢), and 3x4) occurs within the scope of an occur

rence of Ely .

We can also derive diversification and identification rules in which the universal quantifier
is introduced or eliminated:

(xii) DIVERSIFICATION OF VARIABLES.

F(¢)

F(Vx<|>')

provided that ¢ occurs negatively in 1"(¢).

(xiii) IDENTIFICATION OF VARIABLES.

F(‘v’x¢)

F(¢')

provided that \7’x¢ occurs positively in F(¢) ,

and Vxcp occurs within the scope of an occurrence of 3y or Vy .
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4.6.3. EXAMPLES.Before commenting on the rules, let us give some examples of the way

they work. To save space, we assume the passage rule for the universal quantifier.

(1) Vx(q> —>qr) =9 Vxqa —>Vxw

Proof (observe that (I)is negative in Vx(¢ —)w) : bring the formula into primitive notation)

Vx(¢ —>w) => (diversification)

‘v’x(Vy[y/x]¢ —>w) => (passage)

\7’y[y/x]¢ —>Vxxp => (alphabetic variant)

Vxq) —>Vxql

(2) VYVX 43=> VX[X/Y]¢

‘v'y\7’xcp= (identification)

Vylx/yl ¢

(3) Six ((1)A xy) :1» Elxcp A 3x1p

Elx(«pA \.|!)= (diversification)

3x(q>A 3y[y/x]\y)=> (passage + alphabetic variant)

3x¢ A Elxw

(4) 3y(Girl(y) A Vx (Boy(x) —>Loves(x,y)) => Vx(Boy(x) —->Ely(Girl(y) A Loves(x,y)))

Proof

3y(Girl(y) A Vx (Boy(x) —>Loves(x,y)) => (copy rule)

3y(Girl(y) A Vx (Boy(x) —->(Girl(y) A I..oves(x,y))) => (deletion)

3y(Vx(Boy(x) -> (Girl(y) A Loves(x,y))) =9 (diversification)

3y(Vx (Boy(x) —>Elz(Girl(z) A Loves(x,z))) => (vacuous quantification)

Vx (Boy(x) —>Elz(Gir1(z) A Loves(x,z))

4.7. IDENTIFICATION,DIVERSIFICATIONAND MONOTONICITY.Reflecting on the validity

of the identification and diversification rules, one sees that they are monotone uses of existential

generalization: q)—->3x[x/y]q> . Peirce's rules are instances of the monotonicity rules -instances

in which a tautologous premiss does not show up. The rules (x) and (xii) are sound, because

(a) and (b) below are:

(a)

¢ —> 3 W’ T (¢)

F(3x¢')

provided that (1)occurs positively in F ((1)), q)’= [x/y] q).
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(b)

q)‘ —> 3 x¢ F(El x¢)

F(¢')

provided that 3x¢ occurs negatively in I‘(¢) ,

¢' = [y/x] q)and Sixth occurs within the scope of an occurrence of Ely.

This observation is meant to sustain our claim that Peirce's treatment of quantification in the

Beta Graphs rests on monotonicity. Monotonicity is a prominent part of Natural Logic, thus
we are entitled to believe that Peirce's operations could be made available for a Natural Logic.

4.8. IDENTIFICATION AND DIVERSIFICATIONIN NATURAL LANGUAGE. The quantification

rules (vii) -(ix) are combinatorial devices without evident relevance for Natural Logic. But the

operations of diversification are another matter. We comment here on some examples that sug

gest that Peirce's operations are relevant for the study of natural language inference. We shall

assume that Peirce's operations are defined for a system of restricted quantification. Restricted

quantification is more like natural language quantification: full NP's and not deterrniners are in

volved in the latter. Thus, from this point of view, example (2) takes the form:

Vx 6 Zvy e Z¢ —>Vx e Zlx/)’]¢

In the examples we assume that the bold expressions are bound together. Consider first the

following sentences:

(1) every man knows that mary loves him

(2) some man knows that mary loves him

(3) some man loves himself

(4) every man loves himself

There is a theory of monotonicity marking according to which the occurrences of the pronouns

in those sentences are positive (see Chapter V). By using Peirce's diversification operation, we
should have as a result:

(1) every man knows that may loves some one.

(2) some man knows that mary loves some one.

(3) some man loves some one.

(4) every man loves some one.
And this seems to be correct.

Consider the following sentences:

(9) no man knows that mary loves him

(10) some man doesn't know that mary loves him

(11) some man doesn't love himself

(12) no man loves himself
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According to the theory of monotonicity marking we mentioned, the pronouns occur negatively
in those sentences. Hence, Peirce's rule does not allow us to infer:

(13) no man knows that mary loves some one

(14) some man doesn't know that mary loves some one

(15) some man doesn't love some one

(16) no man loves some one

And again this seems to be correct.

On the other hand, if some one occurs negatively in (13)-(14), then they imply (9)-(12).

This again seems to be correct.

These examples suggest that incorporating Peirce's diversification and identification princi

ples to Natural Logic can only improve it. Whether this is possible or not, remains to be seen.

The above examples indicate that monotonicity marking augmented with diversification and

identification could be combined in a profitable way.

Let us consider some more examples. Some man loves some man does not imply Some

man loves himself . But Every man loves every man implies Every man loves himself .

Notice that Peirce's rules combined with monotonicity marking tells us why this should be the

case: the second occurrence of Every man is positive in Every man loves every man .

Furthermore, it occurs in the scope of other occurrence of Every man . This situation is analo

gous to the structural conditions mentioned in (xiii). Thus we identify the argument places to

which these two occurrences of Every man are connected. On the other hand, the second oc

currence of Some man in Some man loves some man does not satisfy the structural conditions

mentioned in (x): it does not occur in a negativeposition.

Incidentally, observe that one can not derive Himself loves every man although the elimi

nated occurrence of every man is positive -this sentence is not even well-formed. But, again,

this occurrence does not satisfy the structural condition mentioned in (xiii): it does not occur in

the scope of other occurrence of every man .

5. CONCLUDINGREMARKSON THE BETAGRAPHS.In this part of the chapter we have studied

Peirce's treatment of logic in his system of Beta Graphs. We have pointed out that his opera

tions of diversification and identification of variables rest on an appropriate characterization of

the syntactic positions in which this can be done. In standard terms these operations revolve

around appropriate monotone substitutions. We have also shown that we are entitled to believe

that Peirce's operations can be used in the treatment of natural language anaphora in inferences.

Essential to these operations is the information whether the relevant items occur positively or

negatively. Thus, one needs a theory of grammatical form in which this information can be en
coded.

6. THE ARCHITECTUREOF PEIRCE'SSYSTEM.Our analysis of the syllogistic used the seman

tic principle of monotonicity and the algebraic property of conversion. The study of Peirce's
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System of Existential Graphs reveals a finer composition of inference principles. The SEG ap

pears to be a system based on the following principles:

0 Monotonicity -restricted to the case in which True is introduced into negative contexts and

eliminated from positive ones

0 The copy rule -proven by us to be a combination of monotonicity and conservativity

0 Algebraic principles - like double negation and commutativity

0 The identification and diversification of bound variables.

The architecture of this system is interesting for Natural Logic because it coincides with current

views on the semantics of natural language. The principles of Conservativity and Monotonicity

are central to the study of natural language quantification. In Chapter VI we shall show that the

addition of Conservativity to Natural Logic has an effect similar to the one in Peirce's system:

the inferential power increases. Furthennore, the variables in Peirce's system demand an an

tecedent quantifier. In this sense they resemble the kind of pronouns which demand an an

tecedent Noun Phrase. Moreover, Peirce's operations on variables suggest a Natural Logic

mechanism for the handling of typical first order inferences.
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NOTES TO CHAPTER III

1 References to Peirce (1931-38) will follow t.he convention of referring first to the volume. and then to die
paragraph. Similarly, references to Peirce (1976) will follow the convention of referring first to the series. then to
the volume. and finally to the page number.

2There remains an aspect of SEG that we will not consider in the present chapter. although this aspect renders SEG
an interesting system for modern readers. Sowa (1984). a book devoted to cognitive science and artificial
intelligence, claims that SEG is more adequate than standard systems for the representation of knowledge. In
particular. Sowa takes SEG as the logical base for the consuuction of a theory of conceptual graphs . from the
perspective of artificial intelligence research. Readers interested in this aspect of SEC are referred to Sowa's own
work.

3For a more general discussion of the formal properties of these monotonicity rules. we refer the reader to Chapter



CHAPTER IV

LAMBEK CALCULUS

DESCRIPTION OF THE CONTENTS OF THE CHAPTER. In section 1 we describe the theme of this chap

ter. In section 2 we describe the language of the so-called ‘non-directional Lambek Calculus’ (LP). In section 3

we describe an implicational system of Natural Deduction (ND). In section 4 we motivate the restrictions that

imposed on ND yield LP as one of its sub-systems. In section 5 we introduce the typed lambda calculus. In

section 6 we introduce the so-called Lambek terms - to be connected with derivations in LP. In section 7 we give

an explicit proof of the correspondence between derivations in LP and Lambek terms. In section 8 we show that

normalisation is provable for LP. Finally, in section 9 we introduce a variant to LP, the Lambek Grammar.

1. INTRODUCTION

1.1. NATURALLOGIC AND CATEGORIALGRAMMAR.A salient feature of modern logic is the

precise definition of vehicles of inference: modern logic gives rise to a rigourous theory of logi

cal fomi. Natural Logic should learn from this -we have already seen that Natural Logic without

a coherent syntactical theory fails.

In principle, several linguistic theories can function as a syntactical basis for Natural Logic.

But we are convinced that the categorical approach is most adequate because it is a theory in

which syntax and semantics are integrated. We believe that a grammar based on the calculus of

category combination described in Lambek (1958) qualifies as linguistic basis for Natural

Logic.

1.2. CLASSICALCATEGORIALGRAMMAR.The Lambek systems of category combination are

extensions of classical CG. Classical CG is a language recognition device first described in

Ajdukiewicz (1935). In its original form, the device works as follows. We have at our disposal

primitive categories and a category functor, '/’, the so-called right looking functor. Complex

categories are built from two basic categories e (proper names) and t (sentences) and a recur

sive procedure:

if B and ot are categories, then so is (B/ot) .

The recognition work starts with assigning each word to a category. To determine the category

of a complex expression we first write the categories of its elements. After this, we read the

string of categories from left to right. When we find the first sub-string of the form ([3/ot)ot we

replace this sub-string by B . This yields a new string of categories. We then rescan the new

suing, applying the reduction rule wherever possible. The complex expression belongs to the
category 7 only if successive applications of the procedure finally lead to the string 7.

67



68 Studies on Natural Logic and Categorial Grammar

Categorial Grammar was further developed in Bar-I-Iillel (1953). In this paper a new functor is

introduced - the so-called left looking functor. The associated formation rule says that

if [3 and on are categories, then so is ([3\oL).

The cancellation procedure is also enriched with a rule which allows the substitution of [3 for

any string of the form ot(ot\[3).

1.2.1. EXAMPLE OF CATEGORY ASSIGNMENTS.

Parts of sentences category

Proper Names e
Intransitive Verbs e\t

Transitive Verbs (e\t)/e

Noun Phrases t/(e\t)

Adverbs (e\t)\(e\t)

1.2.2. EXAMPLES OF RECOGNITIONS.

1. Abelard cries belongs to t :

Abelard cries
e e\ t

t result first scanning

2. Abelard cries bitterly belongs to t :

Abelard cries bitterly
e e\t (e\t)\( e\t)
e e\t result first scanning

t result second scanning

3. Every man likes Abelard belongs to the category t :

Every man likes Abelard
I/(e\t ) (e\t )/ e e

t/(e\t ) (e\t) resultfirst scanning

t result second scanning

The reader can find more details about CG in Buszkowski et al. (1988), Oerhle et al. (1988).

1.2.3. LAMBEKCATEGORIALGRAMMAR.The recognition pattern of the previous examples

resembles Natural Deduction trees: the substitution of adjacent categories can be seen as the re
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sult of application of Modus Ponens. The analogy with the logical calculus was completed in
Lambek (1958). Lambek constructed a calculus of sequents of the form

(l1,...,(1n

meaning that on, . . ., an reduces to B .

One formulation of the rules and axioms for the Lambek Calculus (L) is the following

(1)a=ot

(2) (al3)v=> a(Bv) a(Bv) => (aflw

(3) Y0€=l3 0W =9 [3

y=>B/ot y=>a\B

(4) y=>B/a y=>ot\B
vu=>B ow =>B

(4) on =>l3 B=>W

ot=>\y

The recognition mechanism is described as follows:

(1) If A belongs to the category (1 , and B belongs to the category B/on, then BA belongs to

the category B.

(2) If A belongs to the category on,and B belongs to the category ot\B, then AB belongs to the

category B .

(3) If A belongs to the category on, on= B is derivable in L, then A belongs to the category

B as well.

1.3. NON—DIRECTIONALLAMBEKCALCULUS.Van Benthem (1986) introduced a Lambek

Calculus in which there is only one category functor: —>. The main difference between this

functor and the old one is that -> lacks directionality. This is why this grammar is known as
‘non-directional Lambek Calculus‘. One formulation of the rules and axioms for this calculus is

the following ( Notation: capital letters stand for sequences of categories):

(1)a=> ot

(2) on—>B on = B on ot —>B => B (elimination rules)
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(3) I‘ on => b or I‘ => B

I‘ => ot—>B I‘ => ot—>B (introduction rules)

(4) I‘ => on

A1T‘A2 = A1otA2 (replacement)

(4) a => [3 I3 => W

a =>W (transitivity rule)

As a matter of fact, this system becomes equivalent to L if we add to the latter the permutation
rule

A1’YaA2 => B

A1ot'yA2=> B (permutation rule)

This explains why Van Benthem's CG is also known as LP.
In this dissertation we shall be concerned with LP - albeit formulated in the format of Natural

Deduction. The formulation of LP in a Natural Deduction style is not obligatory, but for Natural

Logic the natural deduction format is the more convenient one.

1.4. NATURALLOGIC AND CATEGORIALGRAMMAR.Lambek's original system is more syn

tactic than semantic. LP is more semantic than syntactic, it is constructed with a direct view to

wards semantical interpretation.

For a Natural Logic based on Categorial Grammar, it becomes necessary to find the right

mixture of syntax and semantics. Natural Logic should navigate between the Scylla of the more

syntactic approach and the Charybdis of the more semantic approach.

Since Natural Logic is based on grammatical form and its semantical interpretation, it will

be necessary to direct our attention to LP first. Later we shall define a variant to LP, called

Lambek Grammar (LG), which shall provide us with the vehicles of inference for Natural

Logic. The empirical adequacy of this variant will be considered in a later chapter.

2. THE LANGUAGE OF LP

2.1. THE CATEGORIESINLP. We define the language of LP -essentially an implicational lan

guage with a finite number of primitives - as follows:

2.2. DEFINITION.The set of categories is the smallest set C such that

Basis. {e, t, p } is contained in C.

Inductive step. if ot , B are members of C, so is (oz-9 B) .
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2.2.1. CONVENTION.

(11——)a2—> . . . —>an_1—->an abbreviates (11-> ((X2—-) . ..—-> ((1n_1-> an. . .).

2.2.2. REMARKON SYNTACTICINTERPRETATION.(A) The category to which Proper Names

are assigned is e ; the category of Sentences is t and p is the category of Common Nouns;

on—>B is the category of expressions which form a complex expression of category B when

combined with expressions of category on.

(B) The choice of three basic categories instead of the usual two, has a practical motivation:

some principles of Natural Logic are more easily formulated if we distinguish between the cate

gory of Common Nouns and the category of Verb Phrases}

2.3. RULES OF TYPECHANGE.Roughly speaking, LP can be described as an implicational

calculus that supports linguistically sensible rules of type change. An example of a rule of cate

gory change is the so—calledMontague Rule:

Expressions assigned to category at may also be assigned to category

(on -9 B) ——>B , for arbitrary category B .

This rule allows one to give a homogeneous treatment to coordination. In usual practice Proper
Names are assigned to the category e, noun phrases are assigned to the category (e —>t) —>t .

These assignments make it difficult to explain that Abelard and every man forms a syntactic

unity, since and coordinates only expressions of the same category. However, by applying the

Montague Rule to e one deduces that Proper Names belong also to the category of Noun
Phrases.

Another example of category change principles is the so-called Geach rule:

Expressions assigned to category on—>B may also be assigned to category

(7 —>on) —>(‘y—>B) , for an arbitrary category 7.

This rule allows one to give a categorial explanation of the construction of Verb Phrases.

Usually, Noun Phrases are assigned to the category (e —>t) —>t , Transitive Verbs are as

signed to the category e -9 e —>t . These assignments make it difficult to explain that loves

every man forms a syntactic unity. But by applying Geach to (e —>t) —>t , one deduces that

every man belongs also to the category (e —>e —->t) -—>e —>t .

In the next section we develop in detail a system of Natural Deduction as a necessary step
towards the definition of LP.
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3. A CONSTRUCTIVE IMPLICATIONAL SYSTEM OF NATURAL DEDUCTION

3.1. NOTATION.Derivations in the Natural Deduction Calculus (ND) are labelled trees. The

top nodes of derivations are formulas indexed by numeral. We write the top nodes as on“, but

they are in fact ordered pairs of the form (ct, n). We use D, Di , D‘, D'i for arbitrary deriva

tions. We write

D

B

to indicate that D is a derivation with B as its conclusion. We use [a“] for the (possibly

empty) set of occurrences of at" in a derivation; thus, the following tree is a deduction D, with

conclusion B , containing the set of occurrences of 0:“ among the 'open' ('undischarged‘,

'alive') assumptions:

[a“]
D

B

3.2. DEFINITION.The set of derivations is the smallest set T such that

Basis. The one-node derivation oz“ of (1.from the open assumption on" belongs to T.

Inductive step. (i) Assume D1 and D2 are derivations and that B, A are their respective sets of

open assumptions. Then

D1 D2

on -—> B on

B

eT=)D1 D2
(1 _>E EToL—)B

The open assumptions set of the new derivation is A u B.

(ii) Assume D1 is a deiivation with A as its set of open assumptions. Then

[an]

[0t“l D1

D1 6 T => (D) B I e T—-—-—-—->

B on —> B

The set of open assumptions of the new derivation is A—{ot" }. All the members of [otn] are

called discharged.

3.3. DEFINITION.We say that A l- B iff there is a derivation with conclusion B and open

assumptions B, where {otI ((1, n) e B} , for a certain n , is a subset of the set of formulas
A.
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3.3.1. EXAMPLE.The rules of category-change mentioned in 2.3 can be expressed by

e|- (e ——>t) —>t and (e —>t) —>t |- (e —)e —>t) —) (e -9 t) respectively. The derivations jus

tifying these type changes are (a) and (b) below:

e—-)e—>t1 e3

(e—>t)—> t3 e—> t

e—>t3e2 (
(3) t (1) C -9 I

(e—>t)—>t (e—>e—>t)—>e-—>t
(a) (b)

3.3.2. REMARKON THE INDICES.The derivations generated by this system are over—anno

tated. In an use of the —>I-rule(Introduction rule, Conditionalization) we refer back to a set of

occurrences; indices are then used to mark the node(s) we refer to. But adorning the nodes is

necessary only when the use of the rule is threatened by ambiguity. Derivations which are

unequivocal are seldom annotated. This is the policy followed in Troelstra & Van Dalen (1988):

annotated derivations are introduced only when it makes a difference. We argue in the next sec

tion that for the definition of LP it is indispensable to work with fully adorned trees, because
we want to restrict the use of the —>E-rule(Elimination rule, Modus Ponens). When the form of

the formulas makes the restriction redundant, we shall avoid unnecessary indices or references

to the rules employed.

We have given a standard presentation of Natural Deduction. However, some variation is

possible according to our choices in the following matters:

(a) Should we keep track either of formulas or occurrences of formulas in derivations?

(b) In the definition of the relation of entailment A |-- (1)should we say that A is a set, a

multiset or a list?

(c) In the definition of the relation of entailment A |- (b, should we say that all the members of

A must be used in the relevant derivation, or should we say that the used premisses must be
contained in A ?

As it happens, LP is a variant of ND in which we keep track of occurrences, and in which

the relation of entailment solely holds between the list of open assumptions and the conclusion
of a derivation.
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4. TOWARDS A DEFINITION OF LP

4.1. THE NEEDFOR RESTRICTINGTHE INFERENCERULES. Given the linguistic motivation of

LP, this calculus can not coincide with ND. ND contains, for example, the derivations

(a) (b) (C)

<2>_L_,I °“’ (‘H 9)‘ °‘2_,E <1) “1 _>1

on -> B a __) B 0,2 ot—>oc
—>E

(2) B —)I

O.—>B

These derivations would justify the rules

0 Expressions assigned to category B , may also be assigned to category

ot —>B , for arbitrary category at .

0 Expressions assigned to category a —>(ot —>B) , may also be assigned to

category at —>B .

0 Expressions assigned to the empty category, may also be assigned to category

B , for arbitrary provable B .

Unrestricted use of these rules does not make linguistic sense. According to the first one,

sentences would be intransitive verbs; according to the second one, conjunctions would also be

sentence modifiers. Therefore, to be linguistically relevant LP must fail to generate (a) and (b).

The third derivation is odd in this context. There is no empty category. It is true that in linguis

tics one works with empty elements, but they do not belong to the empty category. They are

combinatorial devices assigned to specific linguistic domains. The observation that these rules

do not make sense in general does not imply, of course, that they not make sense in particular
cases.

4.2. RESTRICTINGTHERULES.It is obvious that we need to restrict the snength of ND to ob

tain a linguistically relevant calculus. This is done in the current section. We shall first discuss

the strategy we shall follow. Next, we summarize the discussion in a more formal definition of
LP.

4.2.1. TO AVOID(a). ND generates (a) because the elimination rule does not need to refer

successfully to the expression indexed by the numeral. The initial characterisation of [ot“] as a

possibly empty set makes this vacuous reference possible. If [an] is empty, then the use of n
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in the Conditionalization, fails to refer. To avoid derivations like (a) it suffices to ask that [all]

should be non-empty in any application of this rule.

4.2.2. TO AVOID(b). In ND each time one uses a formula as an assumption, one must write

it. The uses of a formula are then represented by distinct objects: two formula occurrences are

two different objects - even if they are occurrences of the same formula. But we have the un

limited right to identify these occurrences. The use of this right, combined with conditionaliza

tion generates (b). To avoid (b) one can restrict Conditionalization: any introduction should

eliminate at most one assumption. Alternatively, one can say that an assumption should be used

only once in —>Eapplications. We choose for the second alternative. The reason is the follow

ing. In ND a formula occurrence is used only once in an application of modus ponens.

Occurrences may become identified and then eliminated. But identification must have taken

place before conditionalization; they are independent operations. Consider the ambiguous
derivation D:

ot—>(a—>[3) ct
—>E

at —> B on _\E

I3 _)I

on-—>[3

We could annotate this tree in several ways. The restriction we shall impose has as a result that

one of these ways is not longer available: we want to exclude the situation in which different
occurrences of a formula have the same name. To avoid inferences like (b) we formulate —>Eso

that two derivations are combined into one derivation, only when their sets of open assump

tions are disjoint. This means that the relevant part of D can not be annotated as (d), but only,
for instance, as (e):

on —> (ot—-> B) a2 on —> (ot—> B) a3
—>E —>E

on —> B a2 %_E (1 ——>B a2 %E

I3 B

(d) (e)

Henceforth, the elimination rule can only be applied to (e), since ((1)will not be available. In
this case it eliminates at most one occurrence of an : there is at most one in the tree.

Note that a restriction on conditionalization allows (d) and (e). But (d) is not linguistically

sensible: one proper name and a transitive verb do not, in general, combine into a sentence.
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Somewhere, a filter must be imposed on the derivations to get rid of (d). We prefer to impose

the filter at the modus ponens stage, barring (d) and (b) simultaneously.

4.2.3. AVOIDING(c). To avoid this kind of derivation we simply restrict the use of

elimination: no set of open assumptions may be empty after an application of conditiona1iza
tion.

We now define LP as a proper subset of ND derivations.

4.3. DEFINITIONOF THE NON-DIRECTED LAMBEK CALCULUS. LP is the set Of all the ND de

ductions D which satisfy

(i) D is a one node derivation.

(ii) In each use in D of the elimination rule the open sets of assumptions A, B are disjoint.

(iii) In each use in D of the introduction rule neither A - [an] nor [an] are empty.

4.4. DEFINITION.We say that A |- B iff there is a derivation with conclusion B and open

assumptions B, where A is the multiset [at I <ot,n> e B} , for certain n.

4.4.1. REMARKS.4.4 differs from Definition 3.3 in two ways. (A) According to 3.3, deriva

tion (e) proves [ e, e, e —) e —> t ] l- e —> t . Thus, (e) would also prove

{e, e —>e —>t } l- e —-)t . But this is one of the results we have tried to avoid. To keep intact

the fruits of the new inference rules, we have to covert A into a multiset.

(B) A coincides now with B. According to Definition 3, if one has A |- B , one will also have

AuA' l- B . This will not be the case in the new setting. Each formula listed in A (the pre

misses), has exactly one occurrence in the derivation (as an open assumption).

However, the two definitions share an important property:

(C) An ordering of the premisses does not impose a particular ordering on the assumptions.

4.5. We collect some simple observations in the following:

Lemma 1

1) Elimination of non existent assumptions is not available in LP.

2) Assumptions of modus ponens premisses are disjoint.

3) Every conclusion depends upon at least one assumption.

4) LP is closed under sub—derivations.

5) Every LP derivation has at least one open assumption.

6) Repeated use of an open assumption is not allowed.

7) Withdrawal of assumptions is limited to one at the time.
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8) The identity of the indices is immaterial.
Proof

Directly from the definition.
Cl

4.5.1. REMARK.Van Benthem defines LP as a calculus of occurrences of prernisses satisfy

ing the constraint:

‘each application of the introduction rule eliminates exactly one formula occur
rencefi

The above lemma shows that our definition is equivalent to Van Benthem's. In 4.2.2 we have

argued in favour of our definition; but see 6.2.1.

4.6. SIMILARITYOF DERIVATIONS.Apart from syntactic identity and isomorphy, there is an
other structural relation between derivation trees. Two derivations are called ‘similar’if:

they are the same tree but have a different indexing of assumptions

Consequently, (d) and (e) are isomorphic but not similar: ((1)has one open assumption, (e) has

two. Consider (d). Choose an arbitrary numeral and substitute it for 2. The result is a similar

derivation which is not in LP. Consider (e). Choose any pair of different numerals. Substitute

them for 2 and 3. The result is a similar derivation which is in LP. More in general, one can

prove by induction that if D and D’ are similar, then D 6 LP iff D‘ 6 LP.

As we pointed out in 1.1 the LP derivations are systematically linked to expressions of the

typed lambda calculus. In the next section we consider the language of this calculus. We shall

identify terms which correspond one-to-one with the LP derivations. These terms will be called
‘Lambek Terms‘.

5. THE LANGUAGE OF THE TYPED LAMBDA CALCULUS

5.1. DERIVATTONSANDTERMS.There is a systematic connection between derivations in

intuitionistic implication logic and typed lambda terms, first noticed by Curry, and further elab

orated by Howard. Van Benthem (1986) shows a similar connection between derivations in LP

and a class of terms -here suggestively called Lambek terms. Van Benthem gives a procedure

which applied to a derivation in LP yields a Lambek term. Conversely, this procedure applied

to a Lambek term yields a derivation in LP. In this section we first define the language of the

typed lambda calculus. In the next one we shall define the class of Lambek terms.

5.2. THE LANGUAGEOF THE TYPEDLAMBDACALCULUS.The following definitions

determine the language of the typed lambda Calculus, henceforth ‘lambda calculus’.
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5.2.1. DEFINITION.The set of types is the smallest set A given by

(i)e, p and t areinT;
(ii) (oc—>B) is inTif on and B are.

5.2.2. DEFINITION.We assume that we have at our disposal an infinite supply of variables
I1 . .

written X a , where n ISa natural number and ot a type. The set of terms is the smallest set

A satisfying:

(i) Any variable of type on is in A ;

(ii) Application: If Na and Ma _, [3 are in A, then also (Ma _, pNa) ;

(iii) Abstraction: If M3 is in A and Xa is a variable, then also [7\.Xa.M[3].

Note that this definition is similar to Definition 3.2.

5.2.3. CONVENTION

(i) Xa, X, Ya, Y, . . . denote arbitrary variables of type ot .

(ii) Ma, M, Na, N, . . . denote arbitrary terms of type on.

(iii) Outermost parentheses are not written.
(iv) M1,. . . .M,,is short for (. . . ((M1M2)M3) . . .M,,) .

(v) '5' denotes syntactic identity.

(iv) In the same context (comment, definition, proof) Ma, M denote the same term: Ma intro

duces the term and M is used for the purpose of cross-reference.

5.2.4. DEFINITION.The set of free variables in Na , FV(N) , is given by

(i) FV(X) = {X } ;

(ii) FV(MN) = FV(M) U FV(N);

(iii) FV(7\.X.M) = FV(M)-{X} .

5.2.5. CONVENTION.

(i) If M1, . . . , Mn is a term used in a proof or a definition, then we assume that all free vari
ables are different from the bound variables.

(ii) A term without free variables shall be called a ‘closed term; a term which is not closed shall

be called ‘open.

(iii) Ma(Xa1, . . ., Xan) denotes a term in which Xai occurs free for 1 S i S n.

5.2.6. DEFINITION.If Na is a term and X5 is a variable of the same type as My, then the

result of substituting M for the free occurrences of X in N (Notation: N[ X:= M]) is given

by:
(i)X[X:=M]aN;
(ii)Y[X:=M]s Y,ifY$X;
(iii) (NP)[ X:= M] 2 N[ X:= M ] P[ X:= M];

(iv) (KY. N) [ X:= M ] 2 }.Y. N[ X:= M].
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6. THE LAMBEK TERMS

In this section we introduce the typed terms which shall be connected with derivations in LP.

6.1. DEFINITION.The set of Lambek Terms (LT) is the set of all the terms P which satisfy:

(i) P is a variable.

(ii) P 2 Ma _, pNa is in LT iff FV(M) n FV(N) =¢ .
(iii) P 5 7..Xa.N is in LT iff X“ e FV(N) , FV(N)-{ X } ¢¢ .

Notice that this definition is similar to 4.3.

6.2. OBSERVATIONS.In the following lemma we show some consequences of 6.1. They are

intended to facilitate the comparison with the LP derivations.

Lemma 2

1) If }tXB.Ny is in LT, then so is N . Furthermore X is a free variable of N .

2) If NB_, aPp is in LT, then N and P are in LT. Furthermore, FV(N) n FV(P) = ¢ .

3) If XX[3.Ny is in LT, then 7tXg.Ny is open.

4) LT is closed under sub-terrns.

5) Every member of LT is open.
6) A variable occurs at most once as free variable in a Lambek Term.

7) Xbinds exactly one variable occurrence in a Lambek Term.

8) The identity of the free variables is immaterial.
Proof

Directly from the definition.
C]

These observations stress the structural analogy between Lambek derivations and LT. In the

next section we will establish the specific relation obtaining between these derivations and
terms.

6.2.1. REMARK.Van Benthem defines the Lambek terms as terms satisfying the constraint:

‘each occurrence of a 7»binds exactly one free variable occurrence‘.

The previous lemma shows that our definition is equivalent to Van Benthem's. We think that

Van Benthem's definition of the Lambek terms is more revealing than ours. But our definition

corresponds better to our definition of LP.
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7. DERIVATIONS IN THE LAMBEK CALCULUS AND LAMBEK TERMS

7.1. THE BASISFORTHECORRESPONDENCE.In this section we explicitly establish the

correspondence between LP and LT. To read off lambda-terms from the derivations in LP, we

use a correspondence between the Clauses of 3.2 and the Clauses of 5.2.2:

0 The one-node derivations correspond to Clause (i) of Definition 5.2.2;

0 E_) corresponds to Application;

0 I__)corresponds to Abstraction.

7.2. FROM LAMBEK DERIVATIONSTO LAMBEKTERMS. It is known, that to each derivation

in ND there is a corresponding a typed term. A fortiori, to each derivation in LP there is a cor

responding typed term. However, this term need not be a Lambek term. An independent proof

is needed to be sure that the term belongs to LT.

The following picture represents the essential features of a transformation of a proof of the

Montague Rule into a Lambek Term:

e—> t2 e1 X‘:___“ Y: X:=“ YE _X.g:zt Y:

(2)_; => (2)_‘__ => (2)fl__ => XY
(e—>t)—>t (e—->t)—>t (e—>t)—>t AX.XY

Assumptions match atoms. elimination reflects application. and introduction reflects absuaction.

7.2.1. PROPOSITION1. There is an effective procedure for obtaining from an LP derivation D

with conclusion B and open assumptions B = {(oti)1, . . ., (oti)n} a Lambek term Mp , such
that

1. FV(M) ={Xa1, . . ., xan};

2. or].is the category which appears in (oLi)j;

3. Xaj $ Xak, for 1 Sj,k S n.
Proof

Let D be a derivation of B from {(oti)1, . . ., (oti)n} .

Basis. If D is a one node derivation, then take any variable of type B as M .

Assume that the assertion holds for Lambek derivations of less complexity than D.

Inductive step. (i) Suppose that the last rule employed in D is E... Then D has the form

D1 D2

v—> B vE_,

[3

Without loss of generality, assume that {(oti)1, . . ., (oLi)m} and {(oti)m+1, . . ., (oti)n} are
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the assumptions of D1 and D2 respectively. According to 4.5.2, both D1 and D2 are Lambek

derivations. Hence, by the inductive hypothesis, there is a Lambek term N-,.,13 with

FV(N) = {Xa1, . . ., Xam} corresponding to D1, and a Lambek term P7 with FV(P) =

{Xam+1, . . ., Xan] corresponding to D2. These sets of variables need not be disjoint. But

according to 6.2.8 we shall always be able to find Lambek terms N'.,_, 13_Pl, such that

FV(N') n FV(P') = ¢ . Therefore a Lambek term corresponding to D can be found by putting

M135 N'P' .

(ii) Suppose that the last rule employed is D I_). Then [3E ‘y——)8 and D has the form

[Ykl

D1

(k).i_I—)
y —>6

According to observations 4.5.1 and 4.5.3, D1 is a Lambek derivation, with open assumptions

[(oti)1, . ., (oLi)n,yk} ; furthermore, {(ai)1, . . ., (oti)n} is not empty.

By the induction hypothesis there is a Lambek term N5 with FV(N) = {Xa1, . . ., Xan,

Y7}. By assumption, Y, is different from all the Xai. Hence, since {(oti)1, . . ., (ai),,} is

not empty, neither is FV(N)- [Y7] . A Lambek term corresponding to D can now be found by

putting M135 7tY.N .
El

7.2.2. CONVENTION.The term M found in this way will be called the ‘meaning’ of D.

7.3. FROM LAMBEKTERMS TO LAMBEKDERIVATIONS.The proof of the next assertion

results in a procedure leading from (the consuuction tree of) a Lambek Term to a derivation in

LP. A pictorial representation of this procedure in action is the following:

Xcfil Y: e->t2t1 e—>t2 t1 e-—>t2 t1

L % XY=)j; : (2)4.
XX. XY 7tX.XY 7tX.XY (e—>t) —>t

Assumptions match atoms. elimination reflects application, and introduction reflects abstraction.

7.3.1. PROPOSITION2. There is an effective procedure to obtain from a Lambek term MB

with FV(M) = {Xa1, . . ., Xan} an LP derivation D with conclusion [3 such that

1. {(oti)1, . . (ai),,] is its set of open assumptions;

2. otij is the type of X01].and
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3. (oti)j $(oti)k, for 1 S j,k S n.
Proof

Assume MB is in LT.

Basis. If M 5 X5 , then the one-node derivation Bi is the desired derivation.

Inductive step. Suppose that the assertion holds for Lambek terms of less complexity than M.

(i) Let M E Py_,BN7. Then, again without loss of generality, we can assume

(a) FV(P) = {Xa1, . . ., Xam} and

(b) FV(N) = {Xam+1, . . ., Xan]

By induction, we have derivations D1 and D2

D1 D2

Y —> B 7

where the assumptions sets of D1 and D2 are, respectively, {((Xi)1,. . ., (oti)m} and {(oti)1, .

. .,(oti)n} . If these assumptions sets are not disjoint, we can always find similar D'1 and D‘;

derivations in which this is the case (this is the point made in 4.5.8). The desired derivation

can be found by way of applying the elimination rule.

(ii) Let M E lY.,.N5. Since N5 is a Lambek Term it follows that FV(N5)-[Y7 }¢ ¢ and

FV(N) = {Xa1, . . ., Xan, Y7}. By induction, we have a Lambek derivation D1 of 8 with as

sumptions {(ai)1, . . ., (0ti)m, yk} :

[$1
D1

8

By assumption 1* is distinct from all the other assumptions. Hence, since FV(N5)-{Y7} is

not empty, neither is {(oti)1, . . ., (oti)m} . The derivation D we were looking for can now be

obtainedby using I_. and withdrawing
El

7.3.2. CONVENTION.The derivation D obtained in this way will be called the ‘tree’ of M .

7.4. REMARK.(A) Notice that we can not say that the procedures from 7.2 and 7.3 are

inverse operations. The following situation is not excluded:

C —) I2 [1 c _.) t2 t3

(2)4 =>7.Xe_,t.XZ=>(2)___‘___
(e—>t)—>t (e—>t)—>t
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The derivations are not the same because of the choice of indices -they are only similar.

However, for some uses of the correspondence established, similarity is sufficient. (see 4.6)

(B) The following situation isn't excluded either:

e—>t2 t1

xxe_, ,.xY=> (2)_—‘— => xxe_, ,.xz
(e —> t) —> t

The terms are not the same, they are only congruent. However, for some uses of the corre

spondence established, congruency is sufficient.

8. NORMALISATION FOR LP DERIVATIONS AND FOR LAMBEK TERMS

8.1. NORMALISATTONIN LP. In this section we comment on the fact that some derivations

which are different as syntactical objects, can be shown to be only different wrappings of a

common structure: their normal form. This can be proven by making use of the notion of nor

malisation. We shall prove directly that LP derivations have a normal form; (cf 8.3).

8.2. DETOURSANDREDUCTS.This section introduces some notions used in the proof that ev

ery derivation in LP has a normal form.

8.2.1. DEFINITION.

(i) If B and [3—>‘y are the premisses of an application of E.) then B is called the 'minor'

and B —>‘y the ‘major’ premiss of the application.

(ii) A detour in a derivation consists of an application of I_, followed directly by an application

of E_; where an occurrence of the formula eliminated by I_) is used as the minor premiss in

this application of E_.). Thus, a detour will have the form:

[5"l
D1

(n) Y ——>I D2

8 -9 y 8 4!:

7

(iii) Let D be a derivation with a detour like the previous one. A derivation D’ in which the
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following derivation replaces the detour is called a reduct of D:

D2
6

D3

Y

where D3 is a derivation like D1 except that the top node 5" has been changed into the

conclusion of D2_(We assume that the derivations are Lambek derivations, so that there is ex

actly one occurrence of 5" to be taken care of). In fact, one should prove that the result of a

detour elimination is an LP derivation, but this can be done (see 8.5).

(iv) A derivation without any detour is said to be in normal form.

8.2.2. EXAMPLE.Consider derivation (a):

e—> (e —->t)4 e2

(e—>t) —>t1 (e—> t)

(2) t
e—>t

(1) 5
((e—>t)—>t)—>(e—>t) (e—)t)—)t

(e—>t ) —>t3 (e—>t)

<3) ‘ 6
((e—>t) -> t) —>(e—> t) (e—>t) —>t

t

In this derivation we first withdraw assumption 1 and then apply the result directly to the

assumption 5. Afterwards we withdraw 3 and then apply the result to the assumption 6.

Elimination of the lowest detour yields the reduct (b):
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e—->(e —> t)4 e2

(e—>t ) —> t1 (e—> t)

(2)_L_
e—>t

(1) 5
((e—>t)—>t)-+(e—> t) (e—>t)—>t

(e—>t ) -—>t6 (e—>t)

Elimination of the remaining detour now yields derivation (c):

e—->(e->t)4 c2

(c—-)t) —>Is e—) t

t
(2)

(e—>t) —>t6 6-)!

t

This last derivation is said to be in normal form. In fact, with the previous example we have

proven:

PROPOSITION 3

Every LP derivation has a Normal Form.

8.3. NORMALISATIONFORTHELAMBEKTERMS.In this section we comment on the fact that

some terms which are different as syntactical objects, can be shown to be only different wrap

pings of a common structure: their normal form. This can be proven by making use of the no

tion of normalisation -a conservative operation on terms. We shall prove directly that Lambek

tenns derivations have a normal form. (of. 8.1)

8.4. REDEXES,REDUCTIONANDCONTRACTION.We introduce here notions concerning terms

which corresponding to the notions from 8.2.

8.4.1. DEFINITION.

(i) A term of the form [?\.Xa.N]M., is called a redex and the term N[X:= M] is called its con

tractum.

(ii) If a term M contains a redex and we replace this redex by its contractum and the result is
N, then we say that M contracts to N .

(iii) M reduces to N if there is a sequence of terms N1, . . ., N" such that M 2 N1, N" E N

and Ni contracts to N;+1 .

8.4.2. EXAMPLE.Consider the meaning of the above derivation (a) :
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(3') [7~U(e ——>t) —>t-U([7\-V(e —>t) —->t-(lze-V(Ye —>e —>tZ)]x(e—> t) —>t)]W(e —>t) —>t

replacing the outermost redex yields:

(b')W(e —>t) —>t ([1-V(e —->t) —>t-Ovze-V (Ye —>e —>tZ)]X(e —>t) —>t) ;

the subsequent elimination of the remaining redex yields:

(0') W(e -9 t) —>t Ovze-X(e —>t) —>t (Ye —>e —>tZ)

Observe that to each detour in the derivations there is a corresponding redex. On the other hand,

to each redex in the terms there is a corresponding a detour. Thus, we have

8.5. To each detour in a derivation there is a corresponding redex in its meaning.

8.6. To each redex in a term there is a corresponding a detour in its tree.

We want to show that the Lambek terms are closed under B-conversion. Similar things should

be checked for the LP derivations but we can do this by looking at the corresponding meanings.

8.7. THE SET OF LAMBEK TERMS IS CLOSED UNDER SUBSTITUTION OF DISJOINT TERMS.

Proof

Suppose N5, Ma are disjoint Lambek Terms. We want to show that N[ Xa:= M] is also a
Lambek Term. Remember that by the observations from 6.2, lX.N and M are in LT.

Furthermore, these terms are open and they do not share any free variable.

Basis step. If N3 is a variable then the result follows since in this case N[ Xa:= M] is M or
N .

Inductive step. Assume the result holds for Q7 _, [3, P7.

(i) N E QP. Then N[ X:= M] E Q[ X:= M ]P[ X:= M] . X must occur in Q or in P but not

in both. Suppose X occurs in Q . By induction hypothesis Q[ X:= M ] is in LT. Notice that

neither P and Q nor M and P have free variables in common. Hence Q[ X:= M ] and P

have no variables in common and therefore Q[ X:= M]P E N[ X:= M] is in LT. If X occurs

in P we argue in the same way.

(ii) N E l.Y.Q. Then N[ X:= M] E XY.Q[ X:= M ] . By induction hypothesis Q[ X:= M ] is

in LT. If X occurs free in Q, then by convention Y 3'5X. If X does not occur (free) in Q ,

Q[ X:= M ] E Q . In both cases we have that Y is a free variable in Q[ X:= M ] . Furthermore,

M is open, since it is a Lambek Term. But by assumption Y is not a free variable of M .
Thus, M must have free variables distinct from Y . Hence }»Y.Q[ X:= M ] is a Lambek
Term.

Cl
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Corollary
8.3. THE CONTRACTUM OF A LAMBEK TERM IS A LAMBEK TERM.

Proof

Direct from 8.7.

E]

8.9. THE EXPANSIONOF A LAMBEKTERM IS A LAMBEK TERM. One can also prove that if

Ma is aproper sub-term of N5 and Xa does not occur in NB, then [?»Xa.N'[3]Ma is a

Lambek term, where N'B is like NB except that it contains Xa instead of Ma. We shall
sketch an argument proving this assertion. M0, is in LT: LT is closed under sub-terms, and

N5 is in LT. If 7tXa.N'3 is not in LT, then it is closed, since Xa must occur in it. But if it is

closed then Xa 5 N5 and so NB5 Ma. However this is not possible since Ma must be a

proper sub-term of N3. Obviously [7tXa.N'p] and Ma have no variables is common. So

[7tXa.N'B]Ma is a Lambek Term.

8.10. NORMALFORM. An important property of a typed term is that it has a normal form.

More accurately, if Ma is a term, then there is a redex—freeterm N of type onsuch that

Ma = Na is provable in the lambda calculus. Typed terms have the additional property that the
order in which redexes are eliminated is immaterial: all alternative reductions lead to the same

term.

8.10.1. DEFINITION.A term which contains no redexes is called a normal form term. If M

contracts to N and N is a normal form term, then N is called a normal form of M.

8.10.2. DEFINITION.A term M is said to be strongly normalisable iff there is no infinite

sequence

M=M1=,»M2=> ...=> M.,=>
where Mi contracts to Mm.

8.10.3. IF M IS A LAMBEK TERM AND N IS A REDUCT OF M, THEN N IS SHORTER

THAN M.

Proof

Assume than M contains a sub-term of the form [7tXa.P[3]Qa . By the construction of the

Lambek Terms, it follows that X occurs exactly once in P and that Q occurs exactly once in

M. This means that in P[ X:= Q] , Q occurs exactly once. Thus P[X:= Q] will be less com

plex than [7\Xa.Pg]Qa: it has one '7.‘ less. Consequently, a reduct of M will be less com

plex than M itself.

COROLLARY

8.l0.4. LAMBEK TERMS ARE STRONGLY NORMALISABLE.
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Having thus developed LP and compared its derivations with typed terms, we shall define

the variant of LP that will generate the vehicles of inference for Natural Logic. This is the theme
of the next section.

9. LAMBEK GRAMMAR

9.1. A VARIANTTO LP. In this section we define a variant of LP which we call Lambek

Grammar (LG). LG generates derivations whose indices may be expressions of a natural lan

guage. Natural language expressions will be identified with the derivations which LG provides,

i.e. with their syntactical analysis. In a later chapter we shall say that a string of natural lan

guage expressions implies another one, if the analysis of the former implies the analysis of the
latter.

9.2. MOTIVATINGTHE LAMBEKGRAMMAR.Let us sketch the reasons for introducing LG. In

the construction of our proof system, the denotation of the vehicles of inference plays an irnpor

tant role. Since we identify expressions with their analyses, this means that the denotation of

the expressions plays an important role. Remember that to each derivation D of LP, there is a

corresponding Larnbek Term T. It is only natural to take the interpretation of the term T as the

denotation of the derivation D to which the term corresponds. For instance, we could say that

the meaning of the derivation (a) below is the interpretation of the term (b):

p->((c—>t)—>t) p
(c_)t)_)t =’ xp—>((e—>t)—>t)Yp

(a) (b)

But if we see (a) as the analysis of every logician then we cannot say that the interpretation of

the term (b) should be taken as the denotation of (a). The interpretation of (b) is restricted only

by one condition: IIXYJJ should be a member of a specific set of functions. The assignments

which take care of the free variables are not constrained in the particular choice of the denotation

of expressions. Therefore it is possible that a particular choice turns out to be unfortunate -in

the sense that the object chosen may show a behaviour we do not want to associate with a de

cent denotation of the analysis of every logician. For instance, it is possible to correlate (b) with

a function EVERYGIRL, such that the inference (c) below becomes valid while (d) becomes in

valid:

EVERY LOGICIAN IS A WOMAN EVERY GIRL IS A WOMAN

EVERY LOGICIAN IS A GIRL

(C)
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EVERY LOGICIAN IS A GIRL EVERY GIRL IS A WOMAN

EVERY LOGICIAN IS A WOMAN

(d)

The point of this observation is a familiar one, namely that natural language is an interpreted

language. In this sense, the semantics of natural language is severely constrained by an obvious

adequacy condition: formal interpretations are constrained by pre-theoretical interpretations.

Thus, by itself the denotation of the term XY may be an arbitrary function of the adequate

type. But the denotation of this term - taken as fixing the denotation of the derivation of every

logician - must be a quite specific function. To provide the analyses with the right denotations

we introduce LG. LG will provide every Iogician with the analysis

every logician

P -3’ ((3 -9 0"’ I) P

(e—> t)—> t

(e)

To fix the meaning of (e), we consider a typed language the vocabulary of which contains the

constants EVERYP_) ((3 _; t)._) t) and LOGICIANP. The general idea is that the meaning of a

derivation in LG should be found by mapping lexical indices into constants and numerical

indices into variables. In this view the interpretation of the temis corresponding to basic lexical

items is no longer dependent on the assignment functions, but on the interpretation functions.

From the possible interpretation functions we select the function which codifies our semantical

knowledge. Having done so, we can finally say that the denotation of (e) is the interpretation of

EVERY(LOGICIAN) .2

9.3. CONVENTIONS.In LG a basic assignment statement is considered to be an indexed

category, i.e. a category with a word as index. Thus, instead of writing s e ot , we shall sim

ply write as , or a . We shall adapt LP to the presence of lexical indices. Derivations in

LG are labelled trees. The top nodes of derivations are formulas with a numeral or an English
. . . S .

expression as index. We write those top nodes as on“, (15 or a2. An (open) assumption

with a numeral as index will be called a numerical assumption. An (open) assumption with

an English expression as index will be called a lexical assumption. We assume that the set

of numerical indices and the set of lexical indices are disjoint. For example, if n is a numeral,

then [a"] can not refer to a set of occurrences of a lexical expression. We reserve n for the

function of variable for numerals and s for the function of variable for lexical items. The nota

tion (oL15,ot25, . . ., ans) will be used to list the lexical assumptions of the category on with
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lexical index s. Thus

((118.0-25 9 - - -9 ans)

D1

denotes a derivation with conclusion [3from the assumptions oL1~",a2-5, . . ., ans . When we

use this notation we assume that D1 has no numerical hypotheses.
We define Lambek Grammar as a set of derivations in which numerical and lexical indices are

employed:

9.4. DEFINITION.The set of LG derivations is the smallest set T such that

Basis. The one-node derivations oz“ of at from the open assumption on" belong to T; the

one-node derivations as of onfrom the open assumption as belong to T.

Inductive step. (i) Assume that D1 and D2 are derivations and that B, A are their respective sets

of open assumptions. Then

D1 D2

e T => a —’B a

B

The set of open assumptions of the new derivation is A U B.

D1

ot—>B on “>561!

Restriction: the set of numerical assumptions in A and the set of numerical assumptions in B

must be disjoint.

(ii) Assume D1 is a derivation with A as its set of open assumptions. Then

[OW]

[0t“] 1),

D1 6 T => (n) B _)I e T

B oz -> B

The open assumptions set of the new derivation is A- {an } . Here, [an] is called

discharged.
Restriction: The sets A—{oL“}, [oL“] are not empty.

9.4.1. REMARK.According to the definition of LG lexical assumptions are never eliminated.

On the other hand, numerical assumptions are not present in the analyses. Numerical assump

tions may be seen as empty elements, not realized phonetically. Later we shall see that the
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combination of numerical and lexical assumptions can be profitably used to solve some ade

quacy problems in linguistic description.

9.5. EXAMPLES.The derivation (a) below does not belong to LG while (b) does:

Abelard

e —> t1 e

(Abelard);
C —) t

(a)

loves Abelard Heloise
e —>e —> t e e

admires Abelard Heloise
D e —>e -9 t e e

and

t -—) t -—> t t D

t -) t t
t

(b)

(a) is not an LG derivation since an assumption that is lexically indexed has been withdrawn.

By obliterating the distinction between the two kinds of indices, we could say that (a) may be

generated by the original LP. On the other hand, (b) satisfies the conditions imposed on deriva

tions of LG. Note that this time the derivation could not have been generated by LP, since the

premisses of a Modus Ponens application share some indices.

9.6. DEFINITION.Let s1 s2 . . . sn be a string of expressions over 2 , and B = [sl e (11,S2

(5 0:2, . . ., S" e an ] a set of lexical indices. If there is a derivation D with B as its set of

open assumptions, then we say that D is an analysis of s1 s2 . . . sn.

The following trees are analyses of the string every logician proves a theorem.

(a)

proves
. . e—>(e—>t) c2

every logician
(e—>t)->t e—>t

8.theorem (2) I
(e-—>t ) —> t ¢—>t
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(b)
proves
e—+ (e -—>t) e2

(e—>t)—-H1 (e—>t)

t
(2)

e—>t _ ,
(1) every logician
((e—>t)-—>t)—9(e—->t) (e->t)—>t

(e—->t) —> t3 (e——>t)

(3) t atheorem
((e—>t) —9t) —>(e—->t) (e—>t)->t

9.7. DIGRESSION.Our notation for the assignments is similar to the type assignment formulas

used in the type assignment to (ordinary) lambda terms (of. Hindley & Seldin, 1986). In this

approach one has three assignment rules: the primitive assignment and the recursive steps:

[xeot]
D

Y6 0 -> 13 *6 <1 _M_E_Lwi:hdrawa1ofxea
yxefl KxMeot—->B

We can pursue the analogy a little more by using two examples:
1.

every 6 e -—>t—-> ((e ——>t)-—) t) logician e e —> t

every logician e (e —+t) -> t wanders e e —->t

every logician wanders e t

xee provesee—>e—)t
every logician e (e —>t) -—>t provesx e e —>t

every logician provesx e t

a theorem e (e —>t)-9 t Xx. every logician provesx e e —>t

a theorem (Xx. every logician provesx) e t
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9.8. FROM LG DERIVATIONSINTOTERMS.The correspondence between LG and the lambda

calculus can be established as in 7.2. But now we are able to pay more attention to natural lan

guage details. Suppose we are focussing on a fragment of a natural language. Assume further

that the initial assignment has been established. Then by each initial assignment s e on we ex

tend the vocabulary of the lambda calculus by adding the constant Sof type on. The idea is now

that every derivation with lexical assumptions as the only open assumptions, should be made to

correspond to a closed term M. Thus the meaning of derivation (a) from 9.6. will be the term

A THEOREM (Xx. EVERY LOGICIAN PROVEX).

Please, note the similarity between this term and the conclusion of derivation (b) from the pre
vious section.

10. CONCLUDINGREMARKS.In this chapter we have defined a Lambek system, LG, which

will make Natural Logic possible. As a necessary preparation, we introduced the reader to LP.

We have also introduced the Lambek Terms and provided an explicit proof of the correspon

dence between derivations in LP and LT. We have shown that strong normalisation is easily

provable for the Lambek Terms, and that nonnalisation holds for LP.

The Lambek Grammar is the system which provides the vehicles of inference for Natural

Logic. We have said that Natural Logic needs the combined development of syntax and seman

tics. We have also claimed that this variant of LP allows us to integrate syntax and semantics.

Since we want to use LG derivations as vehicles of inference, we shall have to be precise about

the semantics of the non-directed systems. This will be a central issue in the next chapter.
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NOTES TO CHAPTER IV

1 Of course, this syntactical difference does not affect the semantical interpretation. We shall let Common Nouns
and Verb Phrases take their denotation in the same domain.

2 The interpretation functions will express our ‘meaning postulates‘.



CHAPTER V

MONOTONICITY AND MONOTONICITY MARKING

DESCRIPTION OF Tl-IE CONTENTS OF TI-IE CHAPTER. In section 1 we introduce the themes to be con

sidered. In section 2 we comment on the proper generalization of Peirce's syntactical criterion for semantic

monotonicity. In section 3 we introduce the semantics of the typed lambda calculus. We prove that positive

(negative) occurrence implies upward (downward) monotonicity in this calculus. We also comment on the natural

inversion of this result: do positive (negative) positions exhaust all monotone sensitive positions? In Sections 4

and 5 we describe the tools that make LG a suitable basis for Natural Logic. In section 4 we describe a lambda

language with monotone constants. This language will provide LG derivations with a meaning that mirrors their

denotation. In Section 5 we describe a mechanism for the transformation of ordinary LG derivations into vehicles

of inference: an algorithm for the marking of monotone sensitive positions.

I. INTRODUCTION

1.1. The previous Chapter was an introduction to the linguistic theory of Natural Logic. In the

present Chapter we shall describe the additional tool which allows us to combine LG with

inference: monotonicity marking. We have seen that Peirce uses a syntactical criterion for

monotonicity: expressions which occur in syntactical positive position may be replaced by

(semantically) stronger expressions; expressions which occur in syntactical negative positions

may be replaced by (semantically) weaker expressions.

In this chapter we show that in the lambda calculus, too, monotonicity is tied up with properly

defined positive and negative positions. Hence, it is possible to define a syntactic condition on

terms, warranting the soundness of monotone substitutions.

We will also address a technically inverse question: does monotonicity imply positive

(negative) occurrence?

As a preparation for the next chapter, we consider a lambda calculus with special constants:

they are meant to be counterparts of natural language expressions. We then use constrained

interpretation functions (in other words, ‘meaning postulates’) to assure that the denotation of

these constants reflects our semantical knowledge.
The correlation between derivations and terms allows us to transfer Peirce's criterion to the

derivations themselves. We develop a mechanism which makes monotonicity visible at the level

of grammatical forms. We show that a monotone position in a derivation corresponds with a
monotone position in the associated term. This warrants the soundness of monotone substitu

tion at the level of grammatical form, thus resolving the problem which vexed De Morgan and

Leibniz. Moreover, the mechanism is a simple tool built into the construction of the expres

sions, thus avoiding the limitations of suppositio theory.

95
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To provide the proper background to the theme of this chapter, we shall first consider

monotonicity in the context of first-order logic -as a better-known pilot system.

2. GENERALIZING PEIRCE'S CRITERION FOR MONOTONICITY

2.1. MONOTONICITYIN FIRST-ORDERLANGUAGES.A survey of the literature shows that

there are several alternative ways of defining monotonicity of a formula 4) with some parameter

R. One can define it with respect to

0 either all models of q»or only one model;

0 either all occurrences of R or only one of its occurrences;

0 either arbitrary sub-formulas of (1)or only predicates.

For first-order logic, Lyndon elucidated the precise relation between monotonicity and positive

(negative) occurrences. In Lyndon (1959)

monotonicity is a property which formulas may have with respect to all models and

all the occurrences of a predicatein them.

2.1.1. DEFINITION OF GLOBAL MONOTONICITY.In Lyndon (1959) the notion of upward

monotone (which he calls 'increasing') first-order formulas is introduced:

I‘(R) is upward monotone in R iff Vx(R(x1. . . xn) -—>S(x1. . . xn)),

F(R) |= I‘(S) ,where F(S) is the result of replacing the predicate R in l"(R) by
S.

(Notation : 'Vx <1)‘denotes an arbitrary universal closure of q)).

REMARKS.This kind of monotonicity is called ‘global’ because it may be read as saying that

for all models 9.1= <A, I) and interpretations I‘ if 9ll= F(R) and
KR) E I'(R) , then (A, I'> l=F(R) .

After having introduced this definition, Lyndon proves that there is a syntactic condition on
I‘(R) and R that implies upward monotonicity of F(R) with respect to R . The syntactic

condition is Peirce's definition of ‘polarity’. An occurrence of R in F(R) is positive iff R

occurs under an even number of negation symbols. A sentence I‘(R) is positive in R if every

occurrence of R in (1)is positive. Then we have:

Proposition 1
If 1"(R) is positive (negative) in R , then l"(R) is upward (downward) monotone in R .
Proof.

Induction on the complexity of F(R) .
El
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Hence, positiveness implies upward monotonicity in first-order logic.

Similarly, negativeness implies downward monotonicity. However, the direct converse does
not hold: for instance, p Afip is upward monotone in p but 4) is not positive in p . Up to

logical equivalence, however, Lyndon proves a converse of the above proposition:

Proposition 2 (Lyndon's Theorem)
If 1"(R) is upward monotone in R , then F(R) is equivalent to a sentence F'(R) positive in

R .

Proof

See Lyndon (1959).
El

In the remaining discussion we shall concentrate on upward monotonicity.

2.1.2. DEFINITIONOF LOCALMONOTONICITY.One may define monotonicity in the

following way. Let ‘U = < A,I > , then

1"(R) upward monotone w.r.t. R in 91 if (Q1,R) |=F, I(R) E I(R') implies

(‘U-, R')|= F .

this might hold for some special 9.1,even if it does not hold uniformly.

EXAMPLE: Elx Qx -9‘:/x-1Rx , with 9.1.153x Qx .

QUESTION(LOCALLYNDONTIEOREM): will there be a formula positive in R which is at least

equivalent to F(R) on all models (’II, R’) for varying R‘ ( but this fixed ‘ll )?

Van Benthem conjectures that although the answer may be negative in general, such a result

holds onfinite models.

2.1.3. MONOTONICITYANDOCCURRENCES.Lyndon's definition of monotonicity refers to all

occurrences of a predicate in a formula. Analogous to his definition, one can define

I‘(R) as upward monotone in a specified occurrence of R iff

Vx ( R(x1. . . xn ) —>S(x1. . . xn)), I'(R) l= I‘(S) , where I‘(S) is the result of

replacing the specified occurrence of the predicate R in l"(R) by S.

But this new notion can be reduced to the old one. We sketch a proof of this reduction here.
Extend the language with the new predicate R‘ defined by Vx (R(x1. . . xn ) <—>R'(x1. . .

xn)) . Now we have (cf. Kleene 1967 : 122):

l= A (R) <—>A(R') , where MS) is the result of replacing a specified occurrence

of the predicate R in A(R) by R‘ .

One can see that if F(R') is upward monotone in R‘ , then F(R) is upward monotone in a

specified occurrence of R .
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2.1.4. REMARK.In the previous paragraph we used the notion of ’specij‘iedoccurrence’ in a

formula. A specified occurrence of a predicate R in l"(R) can be defined as the predicate R

together with a code of its position in the construction tree of 1"(R) . An elegant and precise

formulation can be found in Troelstra & Van Dalen (1988).

2.1.5. GLOBAL MONOTONICITYAND ARBITRARYFORMULAS. Until now we have restricted

our attention to monotonicity in predicate letters. But we can say that for all formulas IV

a formula I‘(¢) is upward monotone in (1)if Vx(¢ —>qr), I‘(¢) l= l"(\y), where

F(\|J) is the result of replacing <1)by W in F(q>), and (1)is free for w in l"(¢).

Like in the previous case we can reduce this definition to Lyndon's original formulation. We

introduce new predicate letters F , Y with as many argument places as the formulas have free

variables. We define F , Y by Vx(¢ <—>F(x)) and Vx(w <—>Y(x)) respectively. We have

then l=Vx(¢ —>1|!) <—>Vx(F(x) —>Y(x)) , |= I‘(¢) <—>I‘(F) and |= I‘(\|J) e—>F(Y) . It follows

that if I‘(F) is (global)upward monotone in F , then F(¢) is upward monotone in q:.

2.1.6. GLOBAL MONOTONICITY AND SPECIFIED OCCURRENCE. Finally, one can also

extrapolate to arbitrary formulas:

I‘(¢) is upward monotone in a specified occurrence of q) if

‘v’x(¢—>qt), 1"(¢) |= F(\lI) , where I‘(\y) is the result of replacing the specified oc

currence of <1)by qt in I‘(¢) , and q) is free for \p in I‘(¢).

But this case can be reduced to the previous one in the manner explained in 2.1.3. So, one can

derive as a corollary to Proposition 1:

Proposition 3a
If some specified occurrence of (1)is positive in F(¢) , then r(q>) is upward monotone in that

specified occurrence of q).

One establishes in a similar manner:

Proposition 3b
If some occurrence of (1)is negative in F(¢) , then l‘(¢) is downward monotone in that

specified occurrence of <1).

In Section 3 we shall define semantical monotonicity for the typed language in the format of

Lyndon's definition. In practical cases, however, one employs monotonicity with respect to

specified occurrences of arbitrary expressions. The discussion above shows that this case can

be reduced to the most general one.
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2.1.7. DIGRESSION.Proposition 3 can be used to prove the soundness of the following

monotonicity rules:

MT Mi

VX(¢ —>W) F(¢) VX(¢ —>W) F01’)

F01!) F(¢)

with (1)positive in F(¢) with 1.]!negative in F(\|J)

These rules belong to the folklore of modern logic, and they can be seen as generalizations of

Modus Ponens and Modus Tollens. Peirce's monotonicity rules described in Chapter 3 are in

fact special cases of MT and Mi. Modern writers have also occupied themselves with these

rules. They are for example the Dictum de Omni in Sommers (1982 : 184), the

Semisubstitutivity of Conditional Rules in Zeman (1967 : 484), and Theorem 24 in Kleene

(1967 2124). Even some years earlier, the rules were mentioned in Kleene (1952 : 154). In this

last book we are referred to Curry (1939 : 290-91) for another version of the rules. Curry, in

turn, refers us to Herbrand (1930) and Maclane (1934). Finally, the first post-Fregean refer

ence to the rules which we have found is Behmann (1922 : 172-174).

In general, these versions of the monotonicity rules show two main divergencies. First,

there is a weak version in which the premisses of the rules are provable formulas (Behmann;

Curry; Herbrand; Kleene, 1967; Zeman). There is also a strong version in which the premisses

are assumptions (Kleene, 1952; Maclane; Sommers).

Secondly, there is a version in which the substitution affects all the occurrences of (1)in I‘(¢)

(Herbrand, Maclane) and another in which the substitution affects only one specified occur
rence of cp(Behmann; Curry; Kleene; 1952, 1967; Sommers; Zeman).

2.2. GENERALIZINGPEIRCE'SCRITERION.Counting negations is a coarse criterion

for monotonicity - even in the context of first-order logic. For instance in p —->q , the formula

p is positive in the sense that it occurs under no negations - but it is obviously not upward

here. As a matter of fact, the above definition of positiveness is confined to languages with w ,
A and v as their only constants. If we wish to incorporate —>as a constant, a definition of

‘polarity’ has better take the following form:

DEFINITION OF POLARITY

(i) R occurs positively in R( t1, . . ., tn) .

(ii) If R occurs positively (negatively) in q), then R occurs positively (negatively) in q»A xv,

(1)VV, \|J-—>¢, Vxq>,3x¢.

(iii) If R occurs positively (negatively) in (p, then R occurs negatively (positevely) in ad) ,

<1)-9 ul .
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Given this definition, the polarity names 'positive' or ‘negative’lose the direct connotation of

occurrence under negations. The picture that emerges is that of expressions occurring under the

scope of expressions denoting monotone functions. This idea allows one to generalize polarity

to other languages. Consider a language having the symbols A, B and a as its vocabulary. The
formation rules are:

(i) A is a formula.

(ii) If :1)is a fonnula, then A(¢) , B(¢) are formulas.

Let A denote an upward monotone function and B denote a downward monotone function. We

define polarity of a formula occurrence as follows:

(i) (p is positive in q) .

(ii) If 4) is positive in F(¢) , then it is positive in A(F(¢)) and negative in B(F(¢)) .

(iii) If 4) is negative in F(¢) , then it is negative in A(F(¢)) and positive in B(F(¢)).

The discussion on monotonicity in the typed lambda calculus, will use the format (i)-(iiii).

3. MONOTONICITY IN THE TYPED LAMBDA CALCULUS

3.1. SEMANTICSFOR THE LAMBDACALCULUS.Up till now, we have been preoccupied with

monotonicity in first-order logic. To say something about monotonicity and the typed lambda

calculus, we need to introduce the semantics of the lambda calculus. Before doing so, let us

give a broad characterization of the intended semantics.

Expressions belonging to the basic types take their denotation in fixed domains; expressions

belonging to complex types are considered as functions. Well-forrned expressions consisting of

the concatenation of two expressions, are interpreted as the result of applying the denotation of

the left expression to the denotation of the right one. More precisely:

3.2. DEFINITIONOF THE FREGEANUNIVERSE.Let D be a non-empty set. Then Du is given

for all types ot by the following recursion:

(i) D3 = D

(ii)Dt={0»1}

(iii) Dp= De _,,

(iv) Du _, B= DBD°‘, the collection of set theoretic functions from Du to D3 .

3.3. DEFINITIONOF AN ORDERINGOF THE FREGEANUNIVERSE. To compare the denotations

of expressions, we partially order the sets Du by a relation Sa as follows:

(i)Ifc, de Dethencsed iff c=d.
(ii)Ifc, de Dtthencsldiff c=0 or d=l.
(iii) If c, d e Du _, B then c SQ d iff for each a 6 Da, c(a) SBd(a) .-93
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3.4. DEFINITIONOF MODELS.A typed model is a pair < {Du} , I > , where

(i) {Du} is a Fregean universe.

(iii) I is a function on the set of all constants such that I(Ca) e Du.

3.5. DEFINITION OF ASSIGNMENTS.

(i) An assignment is a function f on the set of all variables, such that f(X a) e D(1.

(ii) If Y is any variable, f an assignment, then [a/Y]f is the assignment given by

[3/W: [a/Y]f(X)=f(X)ifX¢Y
[8/Y]f(X)= aifX=Y

(iii) The set of all assignments will be called Ass.

3.6. DEFINITIONOF THEDENOTATIONFUNCTION.We define the notion of the denotation of

an expression M of type on with regard to a model 91 and an assignment f, (Notation :

lIM]lf). This denotation will always belong to Da.

|IM]lf is given by the following recursion:

(i) l[MIlf = f(M) when M is a variable.

(ii) I[M]lf = I(M) when M is a constant.

(iii) l[MN]lf= l[Mllf(lIN]lf) , when M has type a -—>B and N type (1.

(iv) When M is of type [3, and X is type a then I[lX.M]lf is that function in Du _, [3

such that for all a e Du: l[7..X.M]lf(a) = l[M]l[a/xlf.

3.7. DEFINITIONOF STRUCTURES.A structure S is a pair <A,|I 1] > of a model and a deno
tation function into it.

We now turn to some notions of monotonicity in this setting.

3.8. UPWARD MONOTONEFUNCTIONS.A function z e Du _, [3is upward monotone iff for

every x , y E Du , x Suy entails z(x) SB z(y) .

3.9. DOWNWARDMONOTONEFUNCTIONS.A function 2 e Du _, 3 is downward monotone

iff for every x , y e Du , x Su y entails z(y) Sp z(x) .

The definition of monotone functions is language independent. In a natural way, expressions

associated with these functions can be called monotone. We are going to give a definition of

monotonicity similar to the definition introduced by Lyndon for predicate logic.

Assume that N'u is like Nu except for containing an occurrence of M'p wherever Nu

contains MB:

3.10.1. UPWARD MONOTONETERMS. Nu is upward monotone in M iff for all models

and assignments, [[M]lfS[3l[M']l{ entails l[N]]f Su lIN']lf.

B
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3.10.2. DOWNWARDMONOTONETERMS. Na is downward monotone in MB iff for all

models and assignments, |IM']lf SB|IM]lf entails IIN1];Sq |IN']]f.

3.10.3. REMARK.The convention on variables warrants that M is free for M‘ in N .

Notice that this means that N‘ may differ from N not only with respect to M , but also with

respect to the bound variables. Thus, strictly spoken, we should say that N‘ is like N ,

modulo on-conversion , except for containing an occurrence of M'[3 wherever Na contains

MB .

The definition of monotone terms corresponds to the notion introduced in 2.1.1. It is also

possible to define monotonicity with regard to specified occurrences. Assume that N'(, is like

Na except for containing an occurrence of M'p where Na contains a specified occurrence of

Mg . We shall refer to this specified occurrence of M in N by M . We have the following
definitions:

3.11. UPWARDMONOTONEOCURRENCE.Na is upward monotone in MB iff for all models

and assignments, |IM]lf SB|[M']lf entails l[N]lf Sq |IN']lf.

3.12. DOWNWARDMONOTONEOCCURRENCE. Na is downward monotone in MB iff for all

models and assignments, |IM']lf SBI[M]lf entails l[N]lf Sq l[N']lf.

The new definitions boil down to the previous ones: one adds to the system the equation

M = M* , for a new M* . This means that one has the right to replace any occurrence of M in

a term by M* and vice-versa. Let N* be the the term that results from replacing M* for an

specified occurrence of M in N . It follows that if N* is monotone in M* in the old sense,
then N is monotone in M in the new sense.

In the following definition we provide the basis for the definition of monotone syntactic posi
tions.

3.13. DEFINITIONOF ACTIVEOCCURRENCE.An occurrence of MB , MB , is called active ac

cording to the following clauses:

(i) M is activein M.

(ii) M is activein PQ iff M is active in P.

(iii) M is active in ?..X.P iff M is active in P and X at FV(M).

3.13.1. REMARK.Van Benthem (1986) defines the positive occurrences of a free variable

Xa in aterm Q as follows:

(i) Xa occurs positively in Xa.
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(ii) If Xa occurs positively in Q then also in QP.

(iii) If X(1occurs positively in Q and X ¢Y , then also in KY. Q .

In fact, our definition of active occurrence is a generalization of Van Benthem's definition to

occurrences of terms. If X“ occurs positively in Q , then Xa is active in this term. The

converse does not hold because we allow complex terms to be active.

3.14. ACTIVE OCCURRENCEIMPLIESUPWARDMONOTONICITY.Van Benthem (1986) shows

that if Xa occurs positively in N , then N is upward monotone in this variable. Van

Benthem's proof can be adapted to cases in which an arbitrary term is active.

Proposition 4.
If MB is active in Na , then N a is upward monotone in MB.
Proof

(i) Basis step. If MB-='Na then the assertion holds evidently.

(ii) Inductive step. Assume |IM]lf SBl[M']lf. There are two cases to consider.

(A) Let Na 5 P7_. QQY.Since M is active in N , by definition, M will be active in P . By

the inductive hypothesis, P is upward monotone in M . Therefore, by definition,

l[PIlf s,_.., |IP']lf. Hence by definition of S,_,., , and II 1], l[PQ]lf Sq I[P'Q]lf.

(B) Let N, E XXV.P5. Since M is active in N , M is active in P and Xye VV(M) .

By inductive hypothesis P is upward monotone in M . It is to be shown that

l[7tXy.P] f 57.. 5 IIKXY.P']lf. By definition of $,,_,., , and truth, it suffices to show that

lIP]l[a/x]f S5 l[P']l[a/X]f for all a e Dy. But the latter follows by the inductive hypothesis,
applied to P , P‘ and [a/X]f.

Cl

3.15. COROLLARY 1. If XY is active in N5 then the denotation of 7».X.N is an upward
monotone function.

In a sense, Proposition 4 generalizes the structural monotonicity introduced in Chapter I.
4.4.1. We said there that the expressions x e y are upward monotone in y -independently of

the particular monotone properties of y itself. We have obtained the result that MN is upward

monotone in M -independently of the monotone properties of the object that one assigns to

M . Notice that Proposition 4 is not quite analogous to Propositions 1 or 3. An analogous

proposition for the typed language, must allow that terms occurring in (embedded) argument

positions could have monotone properties.

We shall give some definitions that enable us to prove in our system a result analogous to

Proposition 3.
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3.16.1. POLARITYOF OCCURRENCES.Assume that the language contains constants denoting

monotone functions. A specified occurrence MB of MB is called positive (negative) according

to the following clausules:

(i) M is positive in M .

(ii) M is positive (negative) in PQ if M is positive (negative) in P.

(iii) M is positive (negative) in PQ if M is positive (negative) in Q , and P denotes an upward
monotone function.

(iv) M is negative (positive) in PQ if M is positive (negative) in Q , and P denotes a
downward monotone function

(v) M is positive (negative) in 7tX.P if M is positive (negative) in P and X as FV(M).

3.16.2. POLARITY OF OCCURRENCES.A term N is positive (negative) in M iff all the

occurrences of M in N are positive (negative).

3.17. POLARITY IMPLIES MONOTONICITY.

Proposition 5

If NB is positive (negative) in Ma , then N5 is upward (downward) monotone in Ma.

Proof

The only new cases as compared to Proposition 4 are argument positions:

Assume the proposition for terms of smaller complexity than N .

(A) NB5 PAHBQY.There are two cases to consider.

(a) N is positive in M . We want to prove that N is upward monotone in M . We have two
sub-cases to consider.

(a.1.) M is a sub-term of P but not of Q . Since N is positive in M , it follows that P is

positive in M . By inductive hypothesis we have that P is upward monotone in M . The rest

is as in Proposition 4.

(a.2.) M is a sub-term of Q but not of P . There are again two sub-cases.

(a.2.l.) Q is positive in M . Since N is positive in M , it follows that P must denote an

upward monotone function. By the inductive hypothesis, II M ]lf 5 l[ M’ llf entails

II Q Ilfs I Q‘ ]]f. Therefore [[ PQ Ilf 3 II PQ' llf , since [[ Pllf is upward monotone.
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(a.2.2.) Q is negative in M . Since N is positive in M , it follows that P must denote a

downward monotone function. By the inductive hypothesis II M llf S I M’ ]lf entails I Q‘ If

S [[Q Ilf. But I P Ilf is downward monotone. Therefore I PQ If S l[ PQ' llf.

(a.3.) M is a sub-term of P and Q . Hence, as above, P is upward monotone in M . Thus

I P llf S l[ P‘ Jlf. By definition I PQ' If S I P'Q' llf. As in (a.2.2.) we have two

possibilities:

(a.3.1.) [[ Q If S l[Q' llf and P denote an upward function. Hence I PQ If S |[PQ' llf.

Therefore I PQ ]]f S l[ P'Q' llf.

(a.3.2.) I Q‘ Ilf S IIQ llf and P denote a downward function. Hence I PQ llf S [[PQ' llf.

Therefore I PQ ]]f S [I P'Q' llf.

(b) N is negative in M . Similar.

E]

3.18. COROLLARY.

Proposition 5 implies Proposition 4.
Cl

3.19. COROLLARY.

If X is positive (negative) in N , then 2.X.N is upward (downward) monotone.
Proof

Similar to the proof of 2.15., but one uses Proposition 5 rather than 4.
CI

3.20. PRESERVATION.Having answered the question whether positive (negative) occurrence

implies upward (downward) monotonicity, we can ask conversely whether the syntactic notion

of polarity exhaustively describes all semantically monotone positions. For instance, does the

following analogy of Lyndon's theorem hold in the lambda calculus:

Ma is upward monotone in X3 iff there is a term M'a equivalent to Ma such

that X3 is active in M0,.

Van Benthem (1991) shows that this assertion fails for the full lambda calculus: the term

Xi _, , (Xt _, , Y,_) is upward monotone in X, __,t without being definable by a term in which

Xt _,[ occurs only actively. What can be shown however, is a similar Lyndon Theorem for

Lambek terms Ma with regard to variables XI; of a ‘Boolean type’:

Bsy1—>y2——>...—>t.

Another related question is whether the following proposition holds for the full lambda

calculus with Boolean parameters:
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M0; is upward monotone in X5 iff there is a term M'a equivalent to M0; such

that M';,; is positive in X3.

Answering this question may be extremely tricky. Van Benthem (personal communication)

devised the following example of a term X; _, ; (X; _, ; Y;) upward monotone in X; _, ;but

definable by a term C in which X; _,; occurs only positively:

1-Xt—>t(Xt—>t(O))=Xt—>t(0)/\Xt—>t(1) [A]

2.Xz—+:(Xz—>:(1))=X:—n(1)VXz—n(0) [B]

3- Xt—)t(Xt—-)tYL)=(YtAB)V("Yt"A) [C]

Nevertheless, Van Benthem conjectures that the preservation theorem will fail for the full

lambda calculus with Boolean constants, but that it will go through for Lambek terms with
Boolean constants.

4. AN APPLIED TYPED LANGUAGE

4.1. MONOTONICITYIN FORMALSEMANTICS.We have by now established a connection be

tween polarity and monotonicity. If we want to use this connection, we need to know which

terms denote monotone functions and which natural language expressions take such functions

as denotation. In the field of formal semantics the notion of monotonicity has been used pri

marily to characterize the behaviour of determiners and noun phrases. Monotonicity is interest

ing for Natural Logic, however, because its role is not confined to one category: almost all lin

guistic categories contain monotone items. In this section we collect monotonicity information

about selected lexical items. We shall do this by sketching a typed language which contains

constants with monotone properties. In the next chapter we shall see that this extended type

language is a necessary tool for the construction of Natural Logic.

4.2. THE TYPEDLANGUAGE.Consider a typed language containing the following constants:

constants type

(1) ABELARD, HELOISE e

(2) LOGICIAN, THEOREM, THING, MAN, MEN, HEAD p

(3) WANDER, WALK, RUN e —>t

(4) NOT t ——>t

(5) FEMALE, MALE, TALL, SMALL p —) p
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(6) PROVE, LOVE, IS e —>e —>t

(7) EVERY, A, NO, MOST, FEW, THE p —) (C —-)t) —-)t

(8)THAT p—>(e—>t)—)p

(9)OF (c—)t)—>t)—>p—)p

(10) IN, AT, ON, WITH, WITHOUT ((e —>0-) t) —>(e —>t) -—>(e —>t)

Expressions which can be constructed with this language do resemble English expressions. An

expression of this language is 7tXe.A LOGICIAN(ISX) . This expression may be seen as the

meaning of a derivation of is a logician. We can also exploit the fact that the typed language has

a semantics to provide the derivations with a denotation:

4.2.1. DEFINITION.If D is a derivation from LG and N is the term that corresponds to D, then
|IN]l will be called the denotation of D.

EXAMPLE.We say that the meaning of a derivation of is a logician is X.Xe.ALOGICIAN(ISX)

and that [[7»Xe.ALOGICIAN(IS x)1l is its denotation.

4.3. INTERPRETATIONOF THE NEW CONSTANTS.In this section we use the interpretation

function I to codify our semantical knowledge.

(1)
I(EVERY) , I(A) , I(NO) , I(MOST) , I(FEW) , I(THE) are those functions in

DP_, (e_, t) _,t suchthatforany xe DP:
(a)I(EVERY)(x)(y)=1 iff x g y.

(b) I(A)(x) (y) =1 iff x n y ¢ ¢ .

(c) I(NO)(x)(y) =1 iff x n y = 95 .

(d)I(MOST)(x)(y) =1 iff cardl x n y 1> cardl x - yl.

(e) I(FEW)(x)(y) =1 iff cardl x n y I < cardl x —y I.

(0 I('I'I-IE)(x)(y) =1 iff cardl x 1= 1 and x E y.

(2)

(a) I(-mmo) = Dp .

(b) I(IS) is that function on De _,(e _, I) such that for x , y e De , I(IS)(x)(y) = 1 iff x = y .
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(c) I(THAT)is that function in D(e _, t) _, (P _, P) such that for any x e De _, t , y 6 DP .

I(THAT)(X)(Y) = X 0 Y

(d) I(NOT) is that function in Dt _, I such that for any x e Dt, I(NOT)(x) = 1- x .

(3)
(a) I(FEMALE), I(MALE) are introspective upward functions on D(c _, t) _, (C_, 0 .

(b) I(SMALL), I(TALL) are introspective functions on D(e _, t) _, (C __, t) .

(4)
(a) I(IN) , I(AT ), I(WITH), I (OF) are upward functions on

D((e —> :)—+ t) —> ((e —> t) —> (e —> t)) Such that

I(IN)(x) , I(AT)(x) , I(WITH)(x) are upward introspective functions and I(OF)(x) is an

upward function.

(b) I(WITHOUT)is a downward function in D((c _, t)_, 0 _, ((6 _, 0 _, (C_, 0) such that

I(WITHOUT)(x)is an upward introspective function.

(5)
If Au is a constant not mentioned in (1)-(4), then I(A) is simply fixed as a member of Du.

4.3.1. REMARKSON THE INTERPRETATION.(A) The interpretation of the determiners is the

standard interpretation in the generalized quantifier approach to natural language quantification.

It follows that the denotation of the determiners have specific monotone properties. The inter

pretations of NO and EVERYare downward monotone functions, while the denotation of A

is an upward monotone function. On the other hand, the interpretations of the noun phrases

EVERYX , A X , MOSTX , THEX are upward monotone functions, while the denotations of

NOX, FEWX are downward monotone functions.

Incidentally, notice that if I(MOST)XYdenotes the truth, then X can not be the empty set.

If it were then we would have the absurdity that 0 > 0 . This makes plain that this definition of

MOSTis not compatible with the intuition that MOSTXXalways denotes the truth, (cf. Barwise

and Cooper 1973). We stick to the above definition, since we consider a sentence like most
unicorns are unicorns to be false.

(B) The interpretation of THINGis the set Dp , which we have defined as being the same as the

set Dc _, I. The interpretation of IS is the diagonal on De . The interpretation of THAT

allows us to give a denotation to combinations of nouns and intransitive verbs. A more

insightful representation can be given by assuming: I(THAT)ZY= |[7LXeZe _, 1(X) /\ Vp(X)]l .

For combinatorial reasons we need a denotation for THING. We know, for instance, that

I(A)XY is the same as I(A)YX. But whereas a woman wanders is English, a wanders woman
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is not. The best we can obtain is a thing that wanders is a woman. The interpretation of THING

warrants that the denotations of (AWANDERS)WOMANwill be the denotation of a derivation of

a thing that wanders is a woman. The denotation of NOT is a downward monotone function.

(C) The denotations of the adjectives S MALL, TALL, FEMALE and MALE are introspective

functions.1 This definition embodies the familiar insight that, for instance, ELEPHANTis

entailed by SMALLELEPHANT as well as by MALEELEPHANT.The difference between the

absolute adjectives MALEan d SMALLlies in their monotonicity. All absolute adjectives denote

upward functions. This definition embodies the familiar insight that whereas MALEELEPHANT

entails MALE ANIMAL , SMALLELEPHANT does not entail SMALLANIMAL.

(D) The denotation of the prepositions reflect the intuition that (most) adverbial phrases are in

trospective. One agrees that the sentence Abelard works in the convent with Heloise entails
Abelard works in the convent as well Abelard works with Heloise and Abelard works. We have

also taken the denotations of WITH, OF and IN t

o be upward monotone. We want to explain the relation between works with Heloise and

works with a woman: the first entails the second. On the other hand, we want to explain that

without a knife entails without a sharp knife. We accomplish this by assuring that WITHOUT
denotes a downward function.

We now have at our disposal a set of terms that we know the monotone properties of. This al

lows us to predict, for instance, that NOT(EVERYMAN)LOVESis upward monotone in MAN
and downward monotone in LOVES.The next section makes this information available at the

level of LG derivations.

5. MONOTONICITY MARKING

5.1. MOTIVATIONBEHIND THE RULES. We have established that in the lambda calculus

positive occurrences are monotone sensitive positions. In this section we describe a mechanism

which transfers that information to LG objects. We identified some constants of the typed

language as having monotone properties. The corresponding derivation will display this

information. Let us give the motivation behind the marking mechanism to be described

presently. Through the correspondence with the Lambek terms (see Chapter IV), we know that

the major of a Modus Ponens application, corresponds to the head of an application. As we

already know, this head is upward monotone. This explains the convention introduced at 5.3.

(i). The argument of an upward monotone function occurs in an upward monotone sensitive

position, and the argument of a downward monotone function occurs in an downward

monotone position. This explains the conventions introduced in 5.3. (ii). The introduction of an

abstraction does not alter the monotonicity of the terms occurring in the body of the abstraction.
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5.2. INTERNALMONOTONICITYMARKING.We introduce a notation which allows us to use

the assignments to produce the intended interpretations of natural language expressions:

(i) if ot , B are categories, then 0+ —>B , (1- —->B , and ot —>B are categories.

(ii) If A is an expression assigned to the category 0.... -—>B , then the meaning of the

derivation of A , is an upward monotone function in Da _, [3_

(iii) If A is an expression assigned to the category (1- —>B , then the meaning of the

derivation of A , is a downward monotone function in Da _, [3_
(iv) If A is an expression assigned to the category on—>B , then the meaning of the derivation

of A , is an arbitrary function in Da _, B_

5.3. EXTERNALMONOTONICITYMARKING.We will introduce a procedure which allows us to

transform ordinary Lambek derivations into derivations which display the polarity of the as

sumptions used in the derivation.

(i) The major premiss in a Modus Ponens application is positive in the relevant derivation:
on —> B or

oc—>Ba=> +
(1 (1

(ii) The minor premise in an application is positive if the major is the category (l+ ——>B :

(1+-DB on
+

on —> B on + +3 T:
B [3

(iii) The minor premise in an application is negative if the major is the category 0.- —>B :

on‘ —> B on

O. -) B (1 : + 
I3 [3

(iv) The withdrawal of a numerical index leaves the previous marking unchanged. This will be

indicated by putting a + symbol below the last but one node:

_ [ail
[00]

D1
D1

B

mi =; (0:
0t->B 0%->3
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(v) Assume that each node from on‘ to B is either positive or negative. If the number of

positive nodes is even, then
[ail

[ail
D1

D1 [3
=> .

<:>L <1>—*

on —> B ot+ —> B

(vi) Assume that each node from oti to B is either positive or negative. If the number of

positive nodes is odd, then

[a‘]

[09] D1

D] '3

mi =, (Di
on —> B oz‘ -9 B

5.4. EXAMPLES.The following examples show the result of marking LG derivations. If a is a

lexical item, then in the meaning of the derivation A stands for the Lambek term corresponding
to a.

(1)
abelard

e —> t1 9

abelard +
e —> t1 C t

<1>__‘__ =;. (‘)—++—
(e—>t)—>t (e—>t) —>t

Meaning: Me _, ;.Y(ABELARD)
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(2)
e -9 t1 e2

DOI +

t'—>t t
+ 

not e —-> t 1 e2 t

t—>t t (1) +

(2) t e—>t

(1) e —> t g (2) +
(e—>t)—->(e—>t) (e—>t)'—>(e-—>t)

Meaning: KY6_, ;.Z.Ze.NOT(YZ)

(3)

most
_ + men

p -9 (IV —-)t ) p

{most men +
P"(“"”) P dance .+ d“.n°°

1v —) t 1v

iv —> t iv =, + +
t t

Meaning: (MOST MEN) DANCE

<4) .
that sings

tht _ iv+—)(p+—)p) iva sings + +

lo 'cian ' -9 ( —> ) iv logician
81 1V P P p p+ _)p
P P '9 P => + +

iv p

Meaning: (THAT SINGS) LOGICIAN

5.5. POLARITYOF SUBDERIVATIONS.Let D be a derivation with conclusion on.

(i) A node 7 has polarity iff all the nodes in the path from y to onare marked and

(ii) A node 7 is positive iff (a) ‘yhas polarity, and (b) the number of nodes marked by '—'is

even.

(iii) A node 7 is negative iff (a) 7 has polarity, and (b) the number of nodes marked by '—'is
odd.
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(iv) A proper sub-derivation D1 with conclusion B is positive(negative) if B is positive

(negative).

5.6. EXAMPLES.We consider the examples from 5.4. For perspicuity's sake, we shall refer to

the sub-derivations by using the lexical assumption. We shall also compare the results of defi
nition 3.16.

In (1) Abelard is negative nor positive. In the meaning of (1) ABELARDis neither positive nor

negative.

In (2) not is positive. In the meaning of (2) NOTis positive. Notice that in X.Zc.NOT(YZ), Y is

negative. Hence KY6_,1.NOT(YZ) denotes a downward function.

In (3) most, most men and dance are positive; while men is positive nor negative. In the mean

ing of (3) MENis positive nor negative. On the other hand, DANCE,MOSTand MOSTMENare

positive.

The definition of polarity of subderivations is intended to warrant the following propositions.

Let D be a derivation with conclusion a and let Na be its meaning. Let D1 be a sub-derivation

of D with conclusion B , and M3 its meaning.

Proposition 8

(i) If D1 is positive in D, then N11 is upward monotone in M13.

(ii) If D1 is negative in D, then N01 is downward monotone in M13.

We will give a sketch of a proof of (i):

If D1 is a positive sub-derivation of D, then the path from B to on is marked with an even

number of minus symbols. This means that an even number of categories 5- —>7 has been

applied to get from B into ot . The terms corresponding to these categories denote downward

functions. Hence M is positive in N . By using Proposition 2 we deduce that N is upward in
M.

Cl

Let us conclude our preliminary work on Natural Logic by showing that withdrawal of

positive(negative) assumptions corresponds to the construction of an upward(downward)
monotone function.

Assume D be a derivation with conclusion a —>B . Assume that the last step in D is the

withdrawal of on. Then D contains a subderivation D1 with conclusion B , and the open

assumption ot . Let M13be the meaning of D1. One can prove

Proposition 9

(i) If ot is positive in D1, then 7tXa.M13is an upward function.
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(ii) If onis negative in D1, then Na is a downward function Mg .

proof

This follows from Proposition 8, and 3.19.

CI

6. CONCLUDINGREMARKS.In this chapter we discussed the notion of monotonicity as it is

in first order logic. We also discussed a generalization of Peirce's criterion for monotonicity to

the lambda calculus. We proved that in the lambda calculus positive (negative) occurrence

implies upward (downward) monotonicity. It is important to notice that Proposition 5 is the

cornerstone of a monotone Natural Logic. We must emphasise that this proposition has been

proven for the full lambda system. Therefore, the monotone mechanism will still be available

for extensions of the Lambek mechanism -a theme in Chapter VII. Besides, we have discussed

the possibility of proving the converse of the above result for the Lambek terms. We noticed

that Van Benthem (1991) resolved this question for the full lambda system and for the Lambek

fragment.

We were able to extend Peirce's criterion to the objects of the Lambek systems as well 

which is due to the correspondence between terms and derivations. Finally, we have described

a mechanism for the transformation of ordinary LG derivations into vehicles of inference. The

basis for Natural Logic has been laid down. In the next Chapter we develop our proof system

for natural language.
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Notes to Chapter V

ITO say that f is an introspective function symply means that f(X) S X. This property is called ‘restrictive’ in
Keenan & Faltz (1985).
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CHAPTER VI

A SYSTEM OF NATURAL LOGIC

DESCRIPTION OF THE CONTENTS OF THE CHAPTER. In the first section we describe the purpose of

this chapter. the construction of a Natural Logic. In the second section we define a fragment of English for which

we construct a Natural logic. In the third section we define Natural Logic itself. In the fourth section we list

some examples of inferences produced by the proof system. In the fifth section we incorporate conservativity in

Natural Logic. In the sixth section we consider inferences in which scope becomes a relevant factor. In the

seventh section we show the combined effect of monotonicity and conservativity.

1. Introduction.

1.1. GENERALDESCRIPTION.The purpose of this chapter is the construction of a Natural

Logic. Our Natural Logic uses the inferential information carried by the marked LG derivations.

In a marked LG derivation we see immediately which expressions are replaceable. An upward

monotone (+) expression will be replaceable by an expression with a larger denotation.
Similarly, a downward monotone (—)expression will be replaceable by an expression with a

smaller denotation. This will be the prime mechanism of our Natural Logic: every substitution

uses the monotonicity information encoded in the syntactical construction, and the S-informa

tion provided by the underlaying semantics. Hence, the inference rules need both syntactic in

formation about monotonicity and semantic information about the S—relation.The way in which

we obtain this informadon has been described in the previous chapter.

In the second section we define a disarnbiguated language called Formal English (FE)

whose expressions are LG derivations. The semantics of FE is obtained by mapping the lexical

items of FE into the constants of the typed language introduced in Chapter V. In fact, the asso

ciation of LG derivations with expressions of that language takes care of the semantics. In the

third section we discuss the appropriate formulation of the monotonicity rules and we introduce

a couple of abbreviations which allows for a simple formulation. In the fourth section we

illustrate the strength of the proof system. In the fifth section we add to Natural Logic the prin

ciple of conservativity -one of Peirce's principles of inference. In the sixth section we discuss

the problem that scope poses to Natural Logic. Finally, in the last section we show the effect of

adding conservativity to the logic.‘

117
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2. A FRAGMENT OF FORMAL ENGLISH.

2.1. A FRAGMENTOF FORMALENGLISH. In this section we introduce a fragment of English

(FE) for which we shall define a Natural Logic.The expressions of FE are the derivations

which LG generates by using the initial statements as assumptions. Expressions of FE are, for

instance, the derivations (a) and (b) below:

Abelard
C —) t 2 e

Abelard <2>——‘—
e (C —->t)—) t

(a) (13)

2.1.1. REMARK.Treating assignment statements or LG derivations as expressions of a natural

language will appear to be unnatural. For instance, 'Abe1ard e e‘ should be seen as an ex

pression about English and not as an expression of English. This is the reason behind our

pedantic characterization of FE as formal English.

2.2. VOCABULARYOF FE. The vocabulary of FE consists of proper names, deterrniners,

common nouns, verbs, absolute and non-absolute adjectives, adverbs, prepositions.

(1) Proper names: {abelard, heloise].

(2) Deterrniners: {every, all, a, some, no, most, few, the}.

(3) Common nouns: [logician(s), person(s), theorem(s), thing(s), man, men, head}.

(4) Intransitive verbs: {wander(s), walk(s), run(s)}.

(5) Transitive verbs:{prove(s), 1ove(s), see(s), is, are].

(6) Auxiliary verb: {do(es) }.

(6) Adjectives: {female, male, tall, small }.

(7) Adverbs: {clumsily, passionately, quickly, sharply].

(8) Prepositions: {in, at, on, with, without , of }.

(9) relative pronoun; {that, who, which}.

2.3. INITIALASSIGNMENTS.In the characterization of the initial assignments we shall use
{s1, . . ., sn} 9 Ca as abbreviation for the conjunction of the initial assignments
s1eot,...,s,,eot.
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(1) {abelard,heloise] 9 Ce.

(2) {every, all, a, some, no, most, few,the] 9 CP _, ((6 _, t)_, 0 .

(3){logician(s), person(s), theorem(s), thing(s), man, men, hcad(s)] 9 CP .

(4){prove(s), love(s), see(s), is, are] 9 Ce _, e _, t .

(5) {wander(s), walk(s), run(s)} 9 Ce _, t.

(6) {female, male, small, tall} 9 Cp _, P .

(7) {clumsily, passionately, do(es) } E C(c _, t) __, (3 _, t) .

(8) {in, at, with, without } Q C((e _, t)_, t) _, (3 _, t) _, (C__,t) .

(9) {Of} 9 C((e--> t)—) t)—> (p—>p)

(10) {that} E C(c _, I) _, (P _, P).

2.4. EXPRESSIONSOFFE. In the following definition we assume the notions of derivation and

open assumptions introduced in the description of LG.

(1) The initial assignments are expressions of FE.

(2) If each of s1 e (1, . . ., sn 6 a is in FE, and there is a derivation D in LG containing these

assignments among its open assumptions, then D is a member of FE.

2.4.1. ABBREVIATIONS.Writing the expressions of FE takes up a large amount of space. It is

true, as Frege remarked, that the comfort of the typesetter is not the summum bonum. Except,

of course, when we are the typesetters. For convenience, we introduce some abbreviations:

category abbreviation

e —) t iv

e —->(e —> t ) e —> iv

(e—>t)—>t iv—>t,np

p—>(e-—>t)—->t det,p—>np

((e—)t)—)t)-)(p—)p) np—>(p—>p)

(e—>t)—>(e—>t) iv—)iv

((e —> t)—-> t) —> ((e —> t) ——>(e —> t)) np -—>(iv —> iv)
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2.4.2. EXAMPLE.The derivation (a) below is a normal analysis of a head of a horse , while

(b) is an abbreviated version:

a horse

of p -9 ((e —->t)—>t) p

((e—>t)—>t)—->(p —)p) (e —> t)—>t head

3 P *9 P P

P -> ((6 —> t)—> t) P

(e—>t)—>t

(a)

a horse

of p —> np p

np—>(p—>p) np head

3 P -9 P P

P —’ “P P

“P
(b)

2.5. MONOTONICITYMARKINGIN FE. In Chapter V.4 we have established that the denotations

of certain constants are monotone functions. Thus, we know that the denotation of FEMALE

PROFESSORis a monotone function. Furthermore, the denotation of the determiners may also

have monotone properties. We will make these information available at the level of the assign
ment statements. For instance EVERYis a downward monotone function while the denotation

of EVERYN is an upward monotone function.

To make this information available at the level of the primitive assignments, we shall no

longer simply say that the category of every is p —->(e —>t) —->t. Instead, we shall use a cat

egory with internal monotonicity marking: p —>((e —>t)+—> t) .

This example will be extended to cover the relevant expressions:

(1) every, all e p-—> ((e—> t)+ -9 t).

(2) some, as p+ -9 ((e—>t)+—>t).

(3) no e p-—-9 ((e—>t)-—>t ).

(4)mostep—>((e—>t)+—>t).
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(5) fewe p—)((e—>t)‘ —>t).

(6) thee p—>((e-—>t)+—)t).

(7) female, male e p* —>p.

(3) clumsily, passionately, do(es) e (e —>t)* —+(e —>t) .

(9) in, at, with e ((e —>t)—) t)* —>((e —>t)* —>(e —>t)).

(10) without e ((e —>t)—-)t)‘ -9 ((e —>t)* —>(e —>t)) .

(11)ofe ((e-> t)—>0+ —>(p+ -> P)

(12) thate (e —>t)* —>(p* -—>p).

2.5.1. FL EXPRESSIONS WITH MONOTONICITY MARKING.

(1) . .
every logician

- . +
p —>(IV —) t) p

+ 

_ + wanders
IV —) t iv

not + +
t _—> t t

+ 

t
The monotonicity infonnation can be summed up as follows:

not+ ((every- logician +)'wanders— )- .

(2) In the following example we use a self-explanatory extension of the notation explained in

Chapter IV. 3.11.

not

t'—>t
+

D
__ _ wander

every logician ‘V " ‘V W
_ . + does + _

p —>(1v —>t) p , + , _
+ 1v —> 1v iv

+ +
. + ,
IV -9 t 1v

-1- +
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Monotonicity marking: (every+ 1ogician- )+ (does+ (not+ wander-)+ )+.

(3)

a horse

13+ —> rm p

of + ++ + —-———
np -> (P -> P) up

+ +
head +

p P -'> P
+ +

P

Abbreviation of the marking:

head+ (of+ a+ horse+)+.

<4) _a child

, p + --> up p
without + +

np- -—>(iv+ —>iv) np
+ 

lives +
iv iv -9 iv
+ +

iv

Abbreviation:1ives* (without * (a‘ child‘)').

2.6. SEMANTICSOF THE ENGLISHFRAGMENT.We can define a semantics for FE by making

use of the typed language described in Chapter V. 4. We assume that if c is a member of the
vocabulary, then the denotation of ce at is the denotation of Ca . The denotation of a deriva

tion D will be the denotation of the corresponding term, i.e. if D is an LG derivation, and M is

its corresponding term, then I M]! is the denotation of D.
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3. THE SYSTEM OF NATURAL LOGIC

3.1. MONOTONICITYINFE. In this section we bring together the syntactical and the semantical

approach to FE. Let us start utilizing the fact that if an occurrence, Ma , of Ma is positive in

Q; then QB is upward monotone in Ma. This fact can be used to pass from the term N of

type t containing M into the term N‘ in which M has been replaced by a term with a larger

denotation. In a self-explanatory notation we can codify this monotonicity rule as follows:

[EM]! S l[M']I |IN(M)]l

|[N(M')]l

Remember that for each of the Lambek terms there is a corresponding derivation. Hence,

we can interpret this rule with regard to the derivations themselves: if a derivation D1 occurs

positively in D , and the denotation of D2 is larger than the denotation of D1 , then the

denotation of D is smaller than the denotation of D‘ , if D‘ is obtained from D by

substituting D1 for D2.

ILLUSTRATION.Consider (1) and (2) below.

(1) llkxc _, t. x HELOISEe1] s(.,_,., _, ;|[SOME(NUNp)ll

(2)

Heloise
C —)t c

+
t

+ wanders

(e —>t) + -9 t e —>t

+ +
t

The derivation (a) below occurs positively in (2). From (1) we know that denotation of (a) is

smaller than the denotation of the (b) below:

Heloise
C—)t e

+ Some nun

t p+—>((e—>t)+—>t) p
+ + +

+ +

(e " 0 "’ ‘ => xx. _, .. x HELOISEC (*5-’ 0 -’ ‘ =;» SOME(NUN)

(a) (b)
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The result of replacing (a) by (b) is (c) below:

Some nun

p+ ->((e—->t)+—>t) p

+ + wanders

(e —->t) + —> t e —->t

+ +
t

(c)

3.2. CONVENTIONS.The important thing about the derivations as Vehicles of inference is the

monotonicity information. Hence, strings carrying the relevant information may be used instead
of the full derivations.

3.2.1. ILLUSTRATION.The above derivation may now take the following form:

E 7LX e _, ,. x (l-lELOISEe)]Ispp l[(soME NUN)np]l he1oise+ wanders

some nun wanders

We shall abbreviate the terms themselves as well as the inclusion relation. The result will be

more perspicuous.

3.2.3. ABBREVIATIONSOF TYPEDTERMS.We list a small number of schema's for abbrevia

tions of typed meanings of derivations. These abbreviations are intended for the ease of reading

and writing
Term Abbreviation

A xe _, t x (HELo1sEp) Hnp

7txp.ANp(1sx) 1sANp

THATNe_,.Mp Mp THATNe—)[

N(c—)t)—)(e—)t) Me—)t Me—>tN(e—>t)—->(e—>t)

SOME Mp 0.xp.A Np (IS x )) SOME Mp IS A Np

NO Mp (7txp.A Np (IS x )) NO Mp IS A Np

EVERY Mp (?.x.,.A Np (IS x )) EVERY Mp IS A Np

SOME(THAT Ne _, , Mp) SOME Mp THAT Ne _, , IS A Mp

NO(THAT Ne _, , Mp) NO Mp THAT Ne _, [IS A Mp

EVERY(THAT Ne _, , Mp) EVERY Mp THAT Ne _, ,

EVERY Mp (xxe .A (THAT Ne _, , Mp) (IS x )) EVERY Mp IS A Mp THAT Ne _,.



A System of Natural Logic 125

3.2.4. ABBREVIATION OF THE INCLUSION RELATION.

Ia(M,N)=:I[Mallsall Null.

3.2.4. ILLUSTRATION.Using the above conventions, our example takes the form:

Inp(HELOISE.SOMENUN) heloise+ wanders

some nun wanders

3.3. THE INFERENCERULES.According to the abbreviations introduced so far, the mono

tonicity rules are:

MT Mi

Ia<M. M‘) n<m*> Ia( M. M‘) n<m">

n(m') n(m)

3.3.1. REMARKSON THEUSEOF THE RULES.(A) The monotonicity rules can be used to

show that several inferences which are valid from a pre-theoretical point of view, are also valid

from the point of view of Natural Logic. We can, for instance, establish that some black horses
run follows from most black horses run . The following inference is an instance of MT:

Idet( MOST,SOME)most+ black horses run

some black horses run

(a)

(B) Not all inferences are direct ones. We can show that Some horses run follows from Most

black horses run by extending derivation (a) to the following derivation:

Idet( MOST,SOME)most+ black horses run

Ip(BLACKHORSES,HORSES) some (black horses)+ run

some horses run

(b)

The semantical premisses employed in (a) and (b), namely [[ MOSTII S I SOME] , and

II BLACKHORSES1] 5 II HORSES1] are not triggered by visible syntactical information. These

premisses are derived from the properties of the denotations of the expressions involved. The
denotation of MOST is an existential determiner, while the denotation of BLACKis an intro

spective function.

(C) One can say that Abelard loves Heloise entails Abelard loves a woman . In our frame

work we capture this inference as follows:
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I,,p( HELOISE,A WOMAN) abelard loves heloise +

abelard loves a woman

(0)

But the semantic premiss II HEDOISE1]S I AwoMAN]l is not derived from the properties of the

denotations of HELOISEand of AWOMAN.However, this premiss can be derived from the un

stated assumption: Heloise is a woman . The full explanation is the following:

heloise is a woman

Inp( HELOISE,A WOMAN) abelard loves heloise+

abelard loves a woman

From the previous remarks it follows that our proof system must

0 compile a number of interesting semantical inclusions which can be used as semantical input

for the rules;

0 compile a number of interesting sentences which trigger semantical inclusions.

3.4. SOMEIDENTITIESANDINCLUSIONS.In this section we list several inclusions and identi

ties which will be widely used in our natural logic. Their validity can be easily checked.

(A) The following inclusions will be called analytic sentences, since their truth depends on the

denotation of the expressions involved.

(0) Every Mpis a Mp.

(i)

(1) Idc;(MOST, SOME) .

(2) Id¢;(FEW, SOME) .

(3) 1det(THE. A) 

(ii)

(1) Ip(IS AN, N) .

(2) IiV(THING THAT N, Ne _, , ) .

(3) 1p (M THAT N, M ).

(4) 1p (M ,Tl-IING ).
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(5) Iiv (IS AMTHAT N, N) .

(iii)

(1) Ip(Np_,pM,M).

(2) Iiv(Niv-’ iv M’ M) '

(3) Iiv(DO M, M) = Iiv(M, DOM) .

(iv)

(1)Ia(NOTMa_”)=Da-I[Ma_H]I.

(2) It(NO MN, NoT (soME MN )) .

(B) The following entailments will be called analytic entailments, since their validity depends on

the denotations of the premisses involved.

(1) EvERY Mp IS A Np entails

(a) I,,p(EvERY N, EVERYM) ,

(b) Inp(SOMEM, soME N) , and

(c) Ip(M, N ) .

(2) EVERYM Ne _, , entails:2

(a) Inp(EVERY THING THAT N, EVERYM ) ,

(b) Inp(SOME Mp , soME THINGTHATN),

(c) I;V(Is A THINGTHATM, N) , and

(d) Ip(M, THINGTHAT N) .

(3) soME Mp IS A Np entails

(a) Inp(EVERY M, soME N) ,

(b) Inp(EVERYN, soME M), and

(c) Ip(M, N ) .

(4) soME MpNe_, , entails

(a) Inp(EVERY M, soME THINGTHATN) ,

(b) Inp(EVERY THING THAT N, SOMEM)

(5) He IS A Np entails

(a) Inp(EVERY N, H) ,
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(b) Inp(H, SOME N)

(6) MOST Mp Ne _, , entails

(a) Inp(MOST Mp , SOME THING THAT N )

(b) Inp(EVERY THING THAT N, MOST M)

(7) FEW MpNe _, t entails

(a) Inp(EVERY THING THAT N, FEW M)

(8) THE Mp Ne _, , entails

(a) I,,p( EVERY THING THAT N, EVERY M ),

(b) Inp( SOME M, SOME THING THAT Ne _, ,1},

(C) Ijv( IS A THING THAT M, N)

(d)Iiv(M, THING THAT N )

(9) THE Mp IS A Np entails

(a) I,,p(EvERY N, EVERYM )

(b) Inp(SOME M, SOMEN)

(c) Ip<M. N )

3.5.1. REMARK.It is possible to give a precise definition of the relation of deducibility (=9 ).

In this dissertation we shall rely on an intuitive use of this relation.

4. EXAMPLES OF NATURAL LOGIC INFERENCE

We have already seen that

(1) Heloise is a woman, Abelard loves Heloise % Abelard loves a woman.

(2) Most black horses run % Some black horses run.

(3) Most black horses run => Some horses run.

To these examples we now add the following.

(4) Abelard works with Heloise, Heloise is a woman : Abelard works with a woman.

Proof
heloise is a woman

Inp(HELOISE,A woMAN) abelard works with heloise +

abelard works with a woman.
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(5) John works with heloise => John works.

I1v(W0RKSWITHHELOISE,WORKS)john (works with heloise)+

john works

(6) Heloise is a woman =9 A woman is a woman

heloise is a woman

InQ(HEL0ISE,A woMAN) heloise+ is a woman

a woman is a woman.

(7) Some nun is a woman : Some woman is a nun

some nun is a woman

I,-p(EVERYNUN,some woMAN) (every nun)+ is a nun

some woman is a nun

(8) Most men dance skilfully => Most men dance

Inp(DANCESKILFULLY,DANCE) most men (dance skilfully) +

most men dance

(9) Most men dance, Most men sing => Some things that sing dance.

most men dance

Inp(MOST MEN, SOMETHINGSTHATDANCE) (most men) + sing

some things that dance sing

(10) Every horse is an animal => Every head of a horse is a head of an animal

Every horse is an animal

Inp(HORSE,ANIMAL) every head of a horse is a head of an horse+

every head of a horse is a head of an animal

(11) = Every man that sings sings.

I1V(ISA MANTHATSINGS,SINGS) every man that sings (is a man that sings)+

every man that sings sings
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(12) => Every man that sings is a man.

I1V(MANTHATSINGS,MAN) every man that sings is a (man that sings) +

every man that sings is a man

(13) The man is a logician, The logician is a musician => The man is a musician.

the logician is a musician

Inp(A LOGICIAN,A MUSICIAN) the man is (a logician) +

the man is a musician

4.2. A DERIVEDRULE.Given a precise definition of the entailment relation, one can establish

that for sentences (1)and ur, if (1)=> \|!, then I (1)1] S I u! II. We prefer to add our proof

system this entailrnent as a primitive inference rule.

4.3. EXAMPLES

(14) Some nun is a woman => Some woman is a nun, entails

l[soME NUNIS A woMAN]l S lIsoME WOMANIS A NUNJI.

(15) Most men dance => Some men dance,entails

[[MOST MEN DANCE]! S |[soME MEN DANCEII.

(16) No woman is a nun # Not (some nun is a woman)

It(NO woMAN1s A NUN,NOT(SOMEwoMAN1s A NuN)) (no woman is a nun) +

not (some woman is a nun)

(17) No nun is a woman => No woman is a nun

no woman is a nun

I1_(SOMENUN IS A woMAN, SOMEWOMANIS A NUN) not (some woman is a nun)

not (some nun is a woman)

no nun is a woman

(18) No men dance => Not most men dance

no men dance

It(MOST MENDANCE,SOMEMENDANCE) not (some men dance)
not most men dance
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The above inferences show the way in which a monotone Natural Logic works. Next we

want to discuss the effects of adding to the system a new principle.

5. CONSERVATIVITY

5.1. CONSERVATIVITYANDDISTRIBUTION.At several places we have stressed the importance

of the notion of conservativity. One should not think, however, that monotonicity exhausts the

logical properties of expressions. For instance, the usual interpretation of every man is

upward monotone. But it has additional properties which are independent of its monotonicity.

Two of these properties are:

- CONSERVA'I'IVITY. EVERYMANx entails EVERYMAN (MAN n x).

- DISTRIBUTION. EVERYMANx AND EVERYMANY entail EVERYMAN (Y n x).

Natural logic may significantly gain in strength if it is extended to cover such additional

principles. But it is not easy to accomplish this. Trying to capture conservativity puts our se

mantical imagination to the test. We must be able to see that I MANl n I X1]can be the deno

tation of the Verb Phrases is a man thatx , is a man and x or of is a x man . And that, conse

quently, the following inferences obey the same principle:

every man wanders every man is mortal

every man is a man that wanders every man is a mortal man

every man wanders

every man is a man and wanders

Trying to capture distribution is testing our syntactical imagination. We must be able to see

that and in every man wanders and every man sings must be a sentence operator. However,

in every man wanders and sings , and must be a Verb Phrase operator. Thus, in the case of

distribution even the category of one of the items must be changed in the course of the deriva

tion. Distribution can be seen as the combination of the deletion of one item and the raising of

the category of and . This means that distribution will complicate the grammar underlying our

natural logic. As we have pointed out in the previous chapter, the transition from t —>(t -9 t )

into (e —>t ) —>(e —>t) —>(e —>t ) is not a Larnbek transition. But at the end of chapter 7

we shall show a way in which Boolean items can be incorporated into a Lambek Calculus.

5.2. CONSERVATIVITY.Van Benthem (1991) shows how to compute the effects of conserva

tivity in lambda terms. A matter of further research is to try to discover an adequate algorithm

for the marking of conservativity sensitive positions: a full use of Conservativity needs a

‘theoryof govennent' determining which predicates restrict which argument places. As Van
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Benthem points out, in transitive sentences like Every boy loves a girl there is no

Conservativity in the sense of getting an equivalence with Every boy loves a girl who is boy .

What one does have is a restriction of argument roles ( cf. Van Benthem 1991).

In this dissertation, we shall incorporate the principle of conservativity as a lexical princi

ple. We add to our list of identities the following one:

|IQdc,Mp Nvpll = l[Qdet Mp IS A Mp THAT Nvp 1].

This identity generates almost directly the following inferences:

(19) No nun wanders =)« No nun is a nun that wanders

(20) Some nun wanders => Some nun is a nun that wanders

(21) Some nun wanders =9 Some nun is a nun that wanders

(22) Every nun wanders => Every nun is a nun that wanders

(23) The nun wanders => The nun is a nun that wanders

The principle of conservativity can now be used to incorporate some other inferences.

(24) Every nun that wanders thinks, Every nun wanders : Every nun thinks

every nun wanders
every nun is a nun that wanders

Ip(NUN,NUNTHATWANDERS) every (nun that wanders)_ thinks

Every nun thinks

(24) Some nun wanders =9 Some nun is a nun

some nun wanders

some nun is a (nun that wanders)+ Ip(NUNTHATWANDERS,NUN)

some nun is a nun

(25) Most nuns wander => Most nuns are nuns

Most nuns wander

Most nuns are (nuns that wander)+ lp(NUNTHATWANDERS,NUN)

Most nuns are nuns
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6. SCOPE OF PROPER NAMES IN NATURAL LOGIC

In this section we take a closer look at derivations in which scope plays a major role. We shall

show that although proper names are generally considered to be scopeless semantically, they

are not so inferentially. Consider the following inferences:

(a) Abelard loves no woman, Abelard is a man =9 Some man loves no woman

abelard is a man

Inp(ABELARD,SOMEMAN) abelard+ loves no woman
some man loves no woman

This inference is possible in virtue of the derivation:

loves
e -9 e—->t e1

no woman +

(e—9t)-—»t e1 e—->t
+ _

t

abelard (1) +

(e -> t)+ —->t e—» t
+ +

t

The meaning of this derivation is: ABELARD( 7\.X.NoWOMAN(bOVES(X))).Therefore, the meaning

of the conclusion is: SOMEMAN( Xx. NOWOMAN(LOVES(X))).

(b) Abelard loves no woman, Abelard is a man => Every man loves no woman.

abelard is a man

Inp(EVERYMAN,ABELARD) abelard‘ loves no woman
every man loves no woman

This inference is possible in virtue of the derivation:
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loves
e —> e—> t c1

abelard +

(e -9 t)+ —>t e—> t
+ +

no woman (1) +

(e -—>t)-—> t e1 e—> t
+ 

t

The meaning of this derivation is the term:

NOwoMAN( XX.ABELARD(wvEs(x)).

The meaning of the conclusion is the term:

NO WOMAN( Xx. EVERY MAN( LDVESO-()).

The conclusions of these inferences are not equivalent. Hence, sometimes it does matter in

which position a proper name is interpreted.2 This point can be elaborated with a couple of new
inferences:

(c) Heloise doesn't love Abelard, Abelard is a man => Heloise doesn't love a man.

abelard is a man

Inp(ABELARD,AMAN) heloise doesn't love abelard+
heloise doesn't love a man

(d) Heloise doesn't love Abelard, Abelard is a man % Heloise doesn't love every man.

abelard is a man

Inp(EVERYMAN,ABELARD) heloise doesn't love abelard
heloise doesn't love every man

As in the previous examples, the conclusions of these inferences are not equivalent.

6.2. REMARK.Even with the semantically scopeless proper names we seem to have to disam

biguate natural language sentences before inference takes place. But as far as monotonicity

goes, this is not quite true. In Chapter I we said that there are inferences which operate without

eliminating scope ambiguity beforehand. In our Natural Logic these inferences can be identified

in a easy way.

The following inferences are indifferent to the way in which the premiss is parsed. The chang

ing of the scope of the proper name does not yield non equivalent conclusions:



A System of Natural Logic 135

Abelard loves every woman Some man loves every woman
Abelard loves the woman Some man loves the woman

Abelard loves a woman Some man loves a womanAbelard is a man =>
Abelard loves two women Some man loves two women

Abelard loves most women Some man loves most women

The point is that if in F(m+) only upward monotone expressions occur, then for any meaning

ful ‘permutation’ F*, of F(m), m will be positive in F*. This is the reason why for a mono

tonicity inference one does not need to disambiguate a string like Some man loves every

woman . In the two standard readings of this sentence man and woman will be positive.

The presence of downward monotone expressions like no and not makes ambiguity a

pressing matter for a monotone logic. For instance, inferences (b) and (c) above are made

plausible only by giving the relevant LG derivations. They are acceptable only as inferences

between the disambiguated LG objects. But they do not qualify as plausible inferences operat

ing on the surface forms of the sentences. We shall discuss this question once again in the next

chapter

7. SCOPE AND CONSERVATIVITY

Sometimes it is important to indicate relative scope. Hence, with regard to multiple quantifica
tion in sentences it is advisable to resort to another abbreviation.

Consider derivations correspondin g to A 'I'HEOREM(?»X.EVERYLOGICIAN(PROVES(X))) and

EVERY LOGICIAN (Ax. A THEOREM (PROVES(X))) .

We shall abbreviate the derivations corresponding to these terms by

a theorem [every logician proves]

every logician[proves a theorem] .

We are now in the position to illustrate the combined work of monotonicity and Conservativity.
We show that from

(1) every logician [proves (every theorem that every logician proves) +], and

(2) a theorem[every logician proves],
follows:

(3) every logician [proves a theorem].
Proof

Assume (1) and (2). Conservativity and (2) yield

(4) a theorem[is a theorem that every logician proves]

By using (4) we establish the inclusion

(5) IIEVERY THEOREM THAT EVERY IDGICIAN 1>ROvEs]l 5 EA THEOREM]! .
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By applying monotonicity to (5) and (1) we obtain (3).

In fact we can argue to have brought about that (3) follows from (2).

(1) corresponds to the term:

EVERY LooIcIAN(Az.EVERY('rHAT( EVERY LDGICIAN(PROVESX))THEOREM) ( PROVESz Y)).

In predicate logic notation this term can be written as:

Vx( Lx -9 \7’y((Ty A Vz(Lz -—)zPy )) —>xPy)).

One can check the validity of this sentence and so the term below can be added harmlessly to

the stock of analytic sentences:

EVERY Np [MW (EVERY Pp THAT EVERYNp Mp,)] .

That this sentence is rather productive can be concluded form the fact that the following permu
tation is derivable:

every theorem [every logician proves] => every logician [proves every theorem]
Proof

From the assumption we have

(1) Every theorem is a theorem that every logician proves.
This sentence entails the inclusion

(2) l[every theorem that every logician proves] S l[every theorem II.

An instance of the new analytic sentence is

(3) Every logician [proves (every theorem that every logician proves) +]

From (2) and (3) by monotonicity we obtain:

(4) Every logician [proves every theorem]

From the last two examples we see that adding conservativity to the proof system makes it

possible to generate interesting inferences -inferences usually considered beyond the reach of

natural logics.

8. CONCLUDINGREMARKS.In this chapter we have described our Natural Logic. The range of

the inferences covers some of the ground occupied by predicate logic. We have shown that a

‘grammatical’ approach to inference can reach beyond syllogisticz inferences often considered

manageable only with the apparatus of predicate logic are manageable within our proof system

(see the example in the last section). However, as some of the examples show, the inferential

power of our natural logic is incomparable with that of predicate logic. We are able to generate

inferences involving non classical quantifiers like MOSTand FEW.So, maybe it is the wrong

idea to seek natural language systems which are comparable with predicate logic.
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There are, however, inferences which can be easily dealt with in predicate logic while they

escape our Natural Logic, namely inferences involving anaphoric connections and inferences

involving non-sentential use of Boolean particles. This kind of inference can not be considered

within our system without changing the logical part of Lambek Grammar in some way. This

theme will be considered in the next chapter.

We have also shown that the use of derivations as vehicles of inference, instead of the plain

strings, is a necessary component of the logic. However as our treatment of scope suggest, the

wording of the inferences in terms of strings may sometimes sound counter-intuitive. For ex

ample, one doesn't think that Every man loves no woman follows from Abelard loves no

woman . Our Natural Logic claims this because it gets the input

Abelard' loves no woman’.

The inferential mechanism work is all right. But is the underlying grammar a realistic one?

Have we founded Natural Logic on shaky ground? A discussion of these questions will be

found in the next chapter. We shall show that LG needs not to produce the above marking of
Abelard loves no woman .
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NOTES TO CHAPTER VI

1 Intuitively. natural language expressions will be identified with LG derivations i.e. with their syntactical
analysis. We shall say that a string of expressions implies another one if the analysis of the former implies the
analysis of the latter. As we pointed out in the introduction: in our proof system grammatical form and logical
form coincide.

2 Notice the curious fact that the inferences (a) and (b) seen as inferences at the level of strings. do not have the
same plausibility. Derivation (a) is acceptable as string derivation. But (b) is not. Apparently. the preferred reading
of the sentence Abelard loves no woman takes Abelard as positive -which is possible only if we raise the
proper name to the category of noun phrases. This means that the Montague rule has interesting logical effects.
and not only combinatorial ones. In fact, we think that the situation is more general. There is a strong tendency in
natural language in favour of interpreting positively the initial part of a string. We shall consider this point in
Chapter vii.



CHAPTER VH

EMPIRICAL PI-IENOMENA

DESCRIPTION OF THE CONTENTS OF THE CHAPTER. The first section contains a survey of the rest of

the chapter. In the second section we shall discuss and reject the usual association of strings with Lambek

derivations. In the third section we describe a new strategy for linking strings with derivations. In the fourth

section we show that sentences of the fonn NP TV NP have at most two readings in LG. In the fifth section we

introduce the generalized Boolean expressions and and or to LG. Elaborating further on the strategy of the

fourth section, we consider anaphorical phenomena in the last section.

LINTRODUCTION

1.1. NATURAL LOGIC AND THE ADEQUACYOF ITS GRAMMAR.Natural Logic cannot be dis

connected from the linguistic discussion on the empirical adequacy of its underlying grammar.

This question is especially pressing for us since undirected Lambek systems are considered

crude devices for linguistic description. A typical remark is the following:

'LP is inadequate as linguistic theory because whenever a sequent T = x is deriv

able, then for all permutations 1I:(T)of T, 1t(T) => x is derivab1e'.1

Moreover, LP is considered inadequate as semantical tool because it assigns several interpreta

tions to unambiguous sentences. It could also be seen as an inadequate basis for Natural Logic

because it can not cope with the Boolean particles and and or , nor with anaphorical

phenomena.

We are convinced that the inadequacy of non-directed Lambek systems has been proclaimed

too soon. In this chapter we shall discuss the adequacy of LG and LP, focussing on the fol

lowing themes: the association of Lambek derivations with strings; and the strengthening of the

logical machinery of LG. If we may seem to adhere much importance to the linking between

strings and derivations, this can be explained by our desire to make LG, and thereby Natural

Logic, more realistic. To be more precise the point we want to make is the following. Suppose

one associates the string no student attended any inspiring lecture with the term

NO STUDENT (Axe .ANY INSPIRING LEC'I'URE(7l.Ye.AT'I‘ENDED(Y,x))) ,

and suppose that one adds to LG the basic assignment:

anye (e—>t)--—>(e—>t)+->t.

139
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By constructing the corresponding tree we obtain the following (abbreviated) monotonicity

marking: No student attended any inspiring lecture+. Then we shall have the following deriva
tion

no student attended any inspiring lecture+
no student attended any lecture

Given the analysis associated with the string, the derivation is correct. But against the

background of our intuitions something is wrong. The prominent reading of this sentence

blocks the inference.2 This situation is similar to the situation discussed in Chapter VI. 6:

Natural Logic yields the result that Abelard loves no woman entails Every man loves no

woman . The prominent reading of the second sentence, however, blocks this inference.

Whatever is wrong here, it is not Natural Logic itself. If we think that a criterion of ade

quacy for Natural Logic requires that its inferences coincide with our intuitions about scope,

then it becomes important that the vehicles of inference reflect those intuitions. By guiding the

process of linking between derivations and strings we are able to keep the grammar from run

ning against the wall of our intuitions.

Before entering into details we describe our global attitude to the inadequacy of non-di

rected Lambek systems, and to possible ways of strengthening them.

1.2. STRENGTHENINGTHE NON-DIRECTEDLAMBEK SYSTEMS.There are several reasons why

one would like to strengthen LP. One of them is the following. Within LP we can capture the

polymorphic nature of negation. Starting from the basic assignment

note t—)t

we can establish that not lives on all categories

(ot—>t)—>(ot—>t).

We would like to capture in the same way the polymorphic nature of other Boolean expres

sions. But, for example, starting from the basic assignment

or e t-> t ——>t

we cannot prove in Lambek systems that or lives on all categories

((l—)t)—>((1—>t)-—)((1—->t).

As a matter of fact, the transition from the basic category of or into the higher-order ones can

be brought about in the relevance fragment of implicational logic: if suffices to allow in LP for

the identification of assumptions. For historical reasons, LP + identification of assumptions is

called LPC. We shall show that strengthening LP to explain the polymorphic nature of and

and or does not necessarily imply choosing for LPC. In Section 5 we shall show that by using
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controlled identification of assumptions, LG can capture the polymorphic nature of the Boolean

expressions without collapsing into LPC. Controlled identification shall also be used in our

treatment of anaphorical phenomena in LG. But first we shall prepare our proposal on the rela

tion between strings and derivations with a note on:

1.3. THE ASSOCIATIONOF LAMBEK DERIVATIONSWITH STRINGS. In the literature on LP the

relation between derivations and strings of expressions has been neglected and incorrectly so.

So far nobody defined correspondence between strings of English expressions and LP deriva

tions, unless one takes the relative position of the assumptions in a derivation as the criterion of

correspondence. In our presentation of LG we said that a derivation is an analysis of a suing if

the members of the suing appear as the only open assumptions of the derivation. These charac

terizations are not sophisticated enough. We shall make some new proposals for the association

of LG derivations with strings. But independent of our proposal, we intend to impose adequacy

conditions on any possible association. We think that any association should have as a conse

quence:

(a) If a derivation D corresponds to a suing S, then the normal form of D also

corresponds to S.

(b) To different suings correspond different derivations.

Let us describe our motivation for these conditions. We have taken the LG derivations as vehi

cles for our Natural Logic partially because they are unambiguous objects. But if a derivation is

associated with two suings, then the unambiguous character of the derivations is lost -at least at

intuitive level. For instance, a derivation D associated both with Every man does not love a

woman and with Not every man loves a woman will hardly be called unambiguous.

Demanding that the association of derivations with suings should determine a (partial) function

from LG derivations into suings of English expressions, would be a natural solution. But then,

as a consequence we should have that two derivations that are the same would have to corre

spond to the same suing. We shall also say that

‘two derivations are the same if they have the same normal forrn'.

This criterion of identity for derivations is taken from proof theory.

Those conditions (a) and (b) will feature in our discussion on the inadequacy of LP ascribed to

the unwanted number of readings it assigns to suings. We turn to this discussion in the next
section.
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2. DERIVATIONS, STRINGS AND READINGS

2.1. A REJECTIONOF LAMBEKGRAMMAR.As we said before, one complaint directed against

LP concerns the number of non-equivalent derivations (and thus meanings) which the system

attaches to sentences. For instance, the simple sentence Heloise loves Abelard is associated

with two different derivations. This would be a problem, because the sentence is not ambigu

ous. One then concludes that the system produces one derivation to much and its inadequacy

seems to have been established conclusively.

In this section we analyse the way in which this multiplicity of readings comes about. The

point we are going to make is that from the multi-set {abelard, heloise, loves} two non- equiva

lent derivations can be constructed -which does not imply, however, that they should be asso

ciated with the same suing.
Consider the derivation:

IOVCS
e —>(e -9 t) e

+ .
heloise

C—>t e
+

t

(a)

The following question may arise: which string of English words do we want to associate

with (a). A standard answer has (a) corresponding to Heloise loves Abelard . The reasons for

this choice are evident. In simple English sentences of the form NP1 (TV NP2)Vp, the verb

combines with the object first . Subsequently, the verb-phrase combines with the subject. This
choice is uncontroversial.
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Consider the derivation:

loves

e ——>(e —> t) c1

+

e —-) t e2

+

t

(1) *

e -> t
+

(2) abelard
e —> (e —>t) c

+ heloise
c —) t c

+

(b)

In the proofs of the inadequacy of the non-directed Lambek systems, (b) is associated with the

string Heloise loves Abelard because it has the same ordering of assumptions as (a). But now

we get ourselves into a predicament. The meaning of (a) is

LOVE(I-IELOISE, ABELARD),

while the (simplified) meaning of (b) is

LOVE(ABELARD, l-IELOISE).

In general, these meanings will be associated with different denotations. Hence we have con

structed the string Heloise loves Abelard as an ambiguous expression.

One way out of this predicament consists in changing the logical structure of LP (cf.

Hendriks, 1987). We want to argue that the bad result noted above is not due to the logical

properties of the Lambek systems. Instead, we think that it is the way in which derivations are

associated with strings which has to be revised.

Consider (b) again. By bringing this derivation in normal form we obtain:

loves heloise
C —) (6 —) t ) c

+ abelard
C —) t e

+
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The reasons that led us to associate (a) with Heloise loves Abelard should lead us now to

associate (c) with Abelard loves Heloise . But (c) is the normal form of (b): according to our

adequacy conditions they should be associated with the same string. They are not, however.

The strings Heloise loves Abelard and Abelard loves Heloise are different. Evidently we

were mistaking when we said that (b) could be associated with Heloise loves Abelard because

of the ordering of the assumptions.

The previous discussion makes clear that one should not claim that the Lambek Grammar

gives two readings to the string Heloise loves Abelard , without having shown that the deriva

tions which yield the readings are indeed derivations of that string. Evidently, the relative posi

tion of the lexical assumptions is not a safe guide. This point will be elaborated next with the

help of two further examples.

(A) Assume that the ordering of the assumptions determines the association of derivations with

strings. Consider the derivations (d) and (e) below with meanings EVERYMANWANDERSand

EVERYWANDERSMAN , respectively:

every man
e—->t—>((e—9t)—->t) e—->t

+ wanders

(e—>t)—>t e-->t
+

t

(d)

every
e—>t—>((e——>t)—->t) e—9t1

+

(e—>t)—>t e——>t2
+

(1)_i____
(e—->t)——>t

(2) + man

e—>t—+((e—>t)—9t) e—>t

+ wanders

(e—>t)—>t e——>t
+

(e)
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Since the ordering of the assumptions in (d) and (e) is the same, one associates them with the

same string, namely Every man wanders . The evidence for the semantical inadequacy of LP

and LG is strengthened in this way. The argument is not conclusive, though.

Consider (e) once again. By eliminating the detours in (e), we obtain (f) below:

every wanders
e—>t—->((e—>t)—+t) e—>t

+ man

(e——>t)—)t e—>t
+

t

(0

But (f) would correspond to the string Every wanders man and not to Every man wanders .

Hence, the same would hold for (e): they are the same derivation.

(B) Finally we consider one example in which normal forms do not seem to play a role, while

geometrical illusion does (in fact these derivations are not official derivations, but a similar ef

fect can be achieved by introducing detours).

Consider (g):
loves

e —>(e —>t) e1
+ a woman

e —>t (e —>t) -9 t
+

t

every man (1) +
(e —>t ) —at e ——>t

+

t

(g)

One assumes that (g) is to be associated with Every man loves a woman , because the

ordering of the assumptions is the ordering of the string. But (g) is the same derivation as (h):
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loves

e—>(e—>t) cl

awoman +

(e—>t)—>t e—>t
+

t

(1);— everyman
e—>t (e—>t)—>t

+

t
(h)

However, according to the ordering criterion, (h) should be associated with the string A

woman loves every man . Thus, once again, the same derivation is made to correspond with

different strings.

Resurning, we have argued that non-directed Lambek systems are not lost for linguistics.

They do not necessarily produce too many readings for strings. We introduced the adequacy

conditions regulating the connexion between strings and derivations, thus enabling ourselves to

reject the ordering of assumptions as a criterion of association. The rejection of LP is based on

the identification of the systems with a particular ambiguating relation: the ordering of the

assumptions determines the corresponding string.3 The arguments intended to show that

undirected Lambek systems are inadequate only show that this ambiguating relation is

inadequate for LP.

3. ASSOCIATION OF DERIVATIONS AND STRINGS

3.1. ASSOCIATIONMECHANISMS.In the previous section we have severed the ties between

strings and LG derivations. Now we are going to connect them again. We are convinced that it

is not wise to look for a general association mechanism linking derivations and arbitrary

strings. The next task is to lay down an ambiguating procedure for linking particular strings
with LG derivations.

Our working hypothesis is that TV's wear on their faces: ‘I combine with my object ',

while VP's wear on their faces: ‘I combine with my subject‘. This uncontroversial reading al
lows us to formulate a tentative:
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ASSOCIATION MECHANISM (AM)

‘A LG derivation D corresponds to the string NP (TV NP')vp if in D (the

category depending on) TV is combined with (the category depending on) NP’, and

(the category depending on) VP is combined with NP.‘

AM warrants that the derivations below, correspond to the strings Heloise loves Abelard and

Abelard loves Heloise , respectively:

10"“ abelard 1°"°S heloise
e——>(e——>t) e e——)(e—>t) e

+ +
heloise abelard

e —-) t e e ——>t e

+ +

t t
(1) (2)

Although AM works well for (1) and (2) it still needs revision as we shall show presently.

3.2. SHADOW ASSUMPTIONS.At first sight it seems difficult to apply AM in the cases in

which the NP is a complex noun phrase -the categories of TV's and NP's do not combine di

rectly. Consider derivation (3):

loves

e—>(e—>t) e1

awoman +

(e—->t)-—>t e->t
+

I

(1) + everyman
e—>t (e—)t)—>t

+

t
(3)

In (3) loves is not combined with a lexical hypothesis, but with the numerical assumption e1.

The withdrawal of this assumption is followed immediately by the application of the lexical hy

pothesis every man . We will define the numerical assumptions related with lexical assumptions

in the described way as:



148 Studieson Natural Logic and Categorial Grammar

SHADOW ASSUMPTIONS

The numerical assumption ei is a shadow assumption of the lexical assumption 2

iff the withdrawal of e5is followed by the use of 2 as the major of a Modus

Ponens application.

Now we can reword AM:

ASSOCIATION MECHANISM (AM)

‘ALambek derivation D corresponds to the string X (TV Y),,p if TV is
combined with Y or its shadow, and VP is combined with X or its shadow.‘

The AM mechanism allows us to associate derivation (3) with the string A woman loves every

man . This derivation corresponds to the term:

EVERY MAN (Axe A WOMAN (LOVES x))

in which EVERYMANhas wide scope. In the next section we show that there is another deriva

tion corresponding to the same string in which A WOMANhas wide scope. But first we give

two examples of our ambiguating relation.

3.2.1. EXAMPLES(In the following examples we use a self—explanatory notation for the

shadow hypotheses)

I.

loves abelard

e -9 e —>t e

a woman +

(e —>t ) —>t e —>t

+

t

This derivation corresponds to the suing A woman loves Abelard with associated meaning:

A WOMAN (LOVES(ABELARD)) .
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2.

loves

e—>(e—>t) eawoman
+

abelard
e —>t e

+

t

a woman (8 Woman) +

( e —>t ) —) t e —->t

+

t

This derivation corresponds to the string Abelard loves a woman , with associated meaning:

A WOMAN (Axe. LOVES(X,ABELARD)).

3.

loves

C—)(C*)t) Caman
+

€—)t Cu-lat
+

t

aman (aman).;___
(e—)t)—>t e—>t

+

t

that (man) “

(e—>t)—>(p—>p) e—>t
+

P *9 P

According to AM this derivation corresponds to the string that loves a man , and has as mean

ing the term:

THAT (7LYe.AMAN (xxe. LOVES(X,Y))) .

3.3. POLARITY AND THE ASSOCIATIONMECHANISM.In sentences of the form Heloise be

lieves-that Abelard loves a woman , A woman believes-that Abelard loves Heloise , the NP's

in subject position are not considered to occur in the scope of the ‘opaque’ expression

‘believes-that’. More in general, in Dowty (1979) it is claimed that the subject always has wider

scope than the auxiliaries. We can capture this demand by using the mechanism of monotonicity
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marking. We shall not require the subject always to be active, since we want to attach two

readings to sentences like Every man loves a woman . However, a weaker condition will
work:

POLARITY CONVENTION

In the derivation corresponding to the string x Y, x must be positive.

3.3.1. EXAMPLES

loves beatrice

e —>(e —>t) e

. . +

b:11CVCSthat heloise abelard
e —>(t —>t) e e -9 t c

+ + +

This derivation corresponds to the string Heloise believes that Abelard loves Beatrice , with as

sociated meaning

BELIEVES-THAT(HELOISE,LOVES(BEATRICE,

2.

loves

e —)(C"’ t) eawoman
+

abelard
C —) t e

+

I

believes that heloise a woman (awoman) +

e+—>(t—>t) e (e—>t)—>t e—>t
+ + +

This derivation corresponds to the string Heloise believes that Abelard loves a woman , with

associated meaning:

BELIEVES-THAT (HELOISE, (A WOMAN (7l.Ye.LOVES(Y, ABELARD))).
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3.
loves

e —>(e —>t) e2
+

abelard
e —) t e

+

t

believes-that 3 a woman 4'
e—’(t—”) C (e—>t)—>t e—>t

+ +

t—> t t

+

t

every man (3) +

(e —> t) ——>t e —> t

+

t

This derivation corresponds to the string Every man believes that Abelard loves a woman ,

with associated meaning

EVERY MAN (lxe .BELIEVES(X, (A WOMAN (7»Ye.LOVES(ABELARD,Y))))).

The polarity convention does also cover cases other than the one above. For instance, the fol

lowing derivation cannot be associated with A woman doesn't love Heloise , because

A woman is not positive in the derivation:

love heloise

e —-> e ——>t e

a woman +

(e -—>t) —> t e —> t

doesn't +

t'—>t t
+ _

3.3.2. REMARK.To our knowledge there are English counter-examples to the polarity con

vention. To begin with, the Shakespearian sentence: All that glitters is not gold . In this sen

tence the negation may be interpreted as the expression with the widest scope. However, we

think that this case should be attributed to special properties of the English all . Properties

which are not shared by other English deterrniners.
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Another counter-example is formed by 'numerical noun phrases’, witness Two men won't

be suflicient to carry the piano (Ladusaw 1980). But the impact of this case is less clear than

the previous one. Here, the predicate sufficient seems to trigger the wide scope reading of the

negation. In the sentence Two men won't be at the party the wide scope reading of wont is

not present.

Be it as it may be, the polarity convention will fail under restricted circumstances. But we

think that they are a seizable number of marked cases which can be explicitly ruled out.

3.4. ACTIVITYANDTHE ASSOCIATIONMECHANISM.In the philosophical literature on natural

language quantification one often reads that certain NP's always have wide scope. Examples of

such NP's are a certain woman and any woman . Their existence invites an extension of our
mechanism:

ACTIVITY CONVENTION

‘In the derivation corresponding to the strings X any z Y; X a certain z Y the de

terminer ‘any’ and ‘a certain‘ must be active’.

Our new convention establishes that a derivation associated with the term

DOESN'T (A CERTAIN WOMAN 0\.Ye.LOVES(Y, ABELARD))

can not be associated with the string Abelard doesn't love a certain woman . The term A

CERTAINis not active —andconsequently the same will hold for a certain in the corresponding
derivation. I

Similarly, the string No student attended any lecture , cannot correspond to a derivation asso
ciated with the term

NO STUDENT(lxc .ANY LEcTURE(7.Yc.A1TENDED(Y, x))).

The activity convention predicts that only the derivation corresponding to the following term

will qualify4:

ANYLECTURE(KY5 .NO s1'UDEN'r(kxE.A1'rENDED(Y, x))).

3.5. SURVEYOF THE MECHANISM.We have suggested an ambiguating relation between LG

derivations and strings, based on the following general principles:

POLARITY CONVENTION

In the derivation corresponding to the suing x Y , x must be positive.
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SHADOW ASSUMPTIONS

The numerical assumption ei is a shadow assumption of the lexical assumption 2

iff the withdrawal of ei is followed by the use of z as the major of a Modus

Ponens application.

For particular linguistic constructions these general principles need additional constraints such
as:

ASSOCIATION MECHANISM

A Lambek derivation D corresponds to the string X (TV Y),,p if TV is combined
with Y or its shadow, and VP is combined with X or its shadow.

ACTIVITY CONVENTION

In the derivation corresponding to the strings X any 2 Y; X a certain z Y the

determiner ‘any’ and 'a certain‘ must be active.

In the next section we use our ambiguating mechanism to discuss Van Benthem's proof that LP

assigns four readings to the string Every man loves a woman .

4. THE READINGS OF NP TV NP

4.1. THE FOURREADINGSOF NP TV NP. Van Benthem (1991) has shown that in LP there are

exactly four non-equivalent derivations with conclusion t , depending on the multiset

{(e—>t)—>t,e—>(e—>t), (e—->t)—>t].

After linking these derivations with the string Every man loves a woman , Van Benthem con

cludes that this suing has four readings. The point we are going to make is that there are indeed

four derivations indexed by the members of the set

{every man, loves, a woman}.

However, these four derivations are not derivations of the same string, they are rather pairwise

similar derivations of two different strings.
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First consider the following derivation (1):

loves

e—>(e—9t) c1
+

C-)t e2
+

t

(7) "'

(e—>t)-—>t3 e-—>t
+

t

(??)_+
(e—>t)—>t4 e—>t

+
I

This derivation is ambiguous. The elimination of the ambiguity results in two different deriva

tions, (2) and (3) :

loves

e—>(e—)t) c1
+

C-)t e2
+

t(2);
(c—)t)—)t3 e—)t

+

t

(1) +

(e-—>t)—>t4 e—>t
+

t
(2)
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loves

e—>(e—>t) e1
+

e-—>t e2
+

t

(1)_:_
(e—->t)—>t3 e—>t

+

t

(2)_+_
(e—>t)—>t4 e—>t

+

t
(3)

4.2. DERIVATION2. Let us concentrate on derivation (2) first. The derivations (4) and (5) be

low have the same extensional meaning:

loves

e —>(e —>t) e1
+

e -—) t c2

+ loves

I C —) (C -—)I) C1

(2) + *

C —)t C —) t

(4) (5)

The meaning of (4) is kYc.LOVES XCY,while the meaning of (5) is LOVESXe. But these

terms are extensionally equal.The point is that 7LN.MN is extensionally equal to M , if N

does not belong to the set of free variables of M . Since LOVESX3 is a Lambek Term, the

variable Ye , which represents e2 can not occur in LOVES X 6 .
Therefore XYc.LOVES XcYe = LOVESXe. And we are allowed to replace LOVESXe by

lY¢.LOVES XcYe and vice versa. Given the variable convention, this replacement can take

place in arbitrary contexts. Focussing on the derivations themselves, this substitution potential

implies that derivations like (4) and (5) are always inter—changeab1e.5
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Consequently we can simplify (2), obtaining:

loves

e—>(e—>t) c1
+

(e—9t)—>t3 e->t
+

t

(1).;
(e—)t)->t4 e-—>t

+

t
(6)

Given {every man, a woman}, there are two ways in which we can annotate (6). We obtain the

similar derivations (7) and (8) below:

loves

e—-)(e—>t) cl

awoman +

(e—>t)—>t e—>t
+

t

everyman (1) +
(e—>t)+—>t e—>t

+ +

t
(7)

loves

e—)(e——>t) cl

everyman +
(e—>t)—>t e—>t

+

t

awoman (1) +

(e—>t)+—)t e—>t
+ +

t
(8)

According to our ambiguating mechanism (7) corresponds to the string A woman loves every

man , while (8) corresponds to the string Every man loves a woman .
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So far we have two similar derivations corresponding to two different strings. Let us see

whether the same holds for derivation (3).

4.3. DERIVATION3. By using the set of indices {every man, a woman} we obtain again two
different derivations:

loves

e—->(e—)t) e1
+

e—>t C2
+

t
+

everyman (1)
(e—>t)—->t e—>t

+
t

awoman (2)—+——

(e—->t)—>t e—>t
+ +

t
(9)

loves

e—>(e—>t) c1
+

e—-)t C2
+

t

awoman (1) +

(e—->t)—>t e—>t
+

t

everyman (3%
(e—>t)+—>t e—>t

+ +

t
(10)

Once again, according to our association mechanism, these are similar derivations to be associ

ated with two different strings. Derivation (9) corresponds to the string A woman loves every

man , while (1) corresponds to Every man loves a woman .

The previous discussion shows that the four derivations that can be obtained with the

indices {every man, loves, a woman}, do not correspond to the same suing. An explosion of
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readings does not necessarily arise at the level of the strings NP TV NP. There is no such thing

in LP: derivations in themselves have nothing to do with strings until one defines the ambiguat

ing relation.

The concept of shadow assumptions was crucial in our argument against the explosion of

readings in LP and LG. They are not solely devised for this purpose, however. The next

section will demonstrate -by given other applications- that the shadow assumptions are not an
ad-hoc device.

5. GENERALIZED BOOLEAN OPERATIONS.

5.1 BOOLEAN EXPRESSIONS.The particles ‘and’ and ‘or’ are central in natural language.

However, our Natural Logic did not say anything about them. In this section we want to make

up for that omission. As we pointed out in the introduction the Boolean particles are particularly

problematic for LP. The derivation of higher-order coordination from sentence coordination re

quires the use of mechanisms excluded from those systems. For instance, in order to derive the

category of predicate disjunction

(e—9t)—>(e—>t)—>(e—>t)

from the category of sentential disjunction

t —> t —> t

one needs to use an assumption twice. At first sight it would seem as if one has to allow unre

stricted identification of assumptions to explain higher order coordination. This would be ill

conceived because umestricted identification is not possible in natural language. The standard

solution consists in adding to the system the so-called 'generalized Boolean operations’ (c.f.
Keenan & Faltz, 1985; Partee & Rooth, 1983; Hendriks, 1987).

In this section we shall show that it is possible to extend LG to cases in which the Boolean

particles are involved -thus malcing them available for Natural Logic. We introduce ‘controlled’

identification of assumptions triggered by Boolean particles and pronouns. Our identifications

are controlled because they are not available for all the items of the vocabulary.

In the literature on natural deduction there is an interesting proposal treating the

identification of assumptions in systems in which an assumption may be used only once
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(cf. Curry 1958). The main idea can be illustrated by the following picture:

e—>e——>t e1

e——>t e2

_‘1(1,2)
t

Given a derivation in which the same formula has been used more than once, we are allowed to

identify the indices by which we distinguish the occurrences of that formula. Before the identi

fication, the conclusion t in (a) depends on e1 and e2 . After the identification the conclusion

depends on only one of the indices, say e1 . The other assumption is eliminated from the set of

open assumptions. In the corresponding term we can describe this situation as follows: identifi

cation allows us to pass from the term

xe—>e—-)tYeZe
to

Xe —>e -9 tYe Ye

It will be clear that unrestricted use of identification yields the system LC.

5.2. CONTROLLEDIDENTIFICATION.Here we shall describe a way in which identification of

assumptions can be incorporated into LG without collapsing into LC. To this end we introduce

the following lexicalized identification rules:

5.2.1. IDENTIFICATION CONTROLLED BY CONJUNCTION

am

and D1 an

t —> t—> t t D2

t —) t t

_t_I(m, n)
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5.2.2. IDENTIFICATION CONTROLLED BY DISJUNCTION

am

or D1 an

t——> t —> t t D2

t —> t t

.;I(m, n)
t

Immediately after 'm' is identified with 'n', an is withdrawn from the set of open assump
. . rn . . . . n

tions. We also assume that if ot ISthe shadow of x , then after identification or becomes a

new shadow of x .

Derivations made with the help of these lexicalized identification rules can be associated

with strings by the following coordination principles

5.3. COORDINATION PRINCIPLES

A derivation D without numerical indices corresponds to the string ‘X and Y’ if

'and' is combined with (XZ)¢and (and XZ)[ _, l is combined with (YV);.

[Similar convention for 'or'].

A derivation D without numerical indices corresponds to the suing

(X TV and Y TV')Z if TV and TV‘ are combined with Z or its shadow.

[Similar convention for 'or'].

5.3.1. EXAMPLES(we use here a self—explanatorynotation for the identification rule)
1.

every player
( e ——>t )+ —> t

+

failed cried
e—>t e1 e—+t e2

and + +
t+—-)t+—->t:t'—' t

+ + +

t

" I(1,2)
t

(1) ‘‘
e-—>t

+

The ‘first part‘ of the derivation ending,with the withdrawal of e1 , has as meaning:

xx. AND (FAILED x, CRIED x) .
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This derivation corresponds to the string ‘failed and cried‘. The meaning of the whole
derivation is:

EVERY PLAYER (xx. AND (FAILED x, CRIED x)) .

By AM the derivation corresponds to the string Everyplayer failed and cried .

2.
loves admires

e—>e—>t e1 e—>e—>t e3
+ +

e—>t e2 e—->t e4

+ +
t t

+ +
awoman (1) aman (3)

(e—->t)—>t e—>t (e—>t)—>t e—>t
or + +

+ +
t —>t —>t t t

+ + +

t

* I<2,4>
t

(2)_"_
e—~>t

Before the identification, the meaning of this derivation is

OR (A WOMANXX. LOVES(X, Y), A MANXV. ADMIRES(V,

After the identification the meaning becomes:

on (A woMAN Ax. LovEs(x, Y), A MANAv. ADMIRES(V,Y)).

After the withdrawal of the identified assumption the meaning is:

7tY.oR (A WOMANxx. LOVES(X, Y), A MAN 7w. ADMIRES(V, Y))

The corresponding derivafion is associated with the string loves a woman or admires a man .

By applying EVERYBOY to this term we obtain the term:

EVERY BOY (xY.oR (A woMAN Xx. LOVES(X, Y), A MAN 7w. ADMIRES(V, Y))).

The corresponding derivation is associated with the string Every boy loves a woman or ad
mires a man .
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(3) _
loves admires

e—>e—)t e1 e—)e—->t e3

awoman ._+.____ aman +
(e—>t)—>t e—>t (e—>t)—>t e—>t

01' + +

t+—>t+—>t t t
+ + +

t

* 10.3)
I

(1)_:_
e—>t

The meaning of this derivation is

).Y.oR (A woMAN Ax. LOVES(Y, x), A MAN7w. ADMIRES(Y,v)).

A new term is obtained when we apply EVERYBOY. The question is now: to which string

does this term correspond? Notice that in the derivation itself e1 and e3 become shadows of

Every boy . Hence by the coordination principles the derivation corresponds to the string

A woman loves or a man admires every boy .

5.3.2. COORDINATIONANDNATURALLOGIC.The monotonicity marking of the the above ex

amples is abbreviated by

every player (failed and cried) + ,

every boy (loves a man or admires a woman) +
. +

(a woman loves or a man admnes) every boy

Hence, we can now generate the inferences
1.

Im(FAILEDANDCRIED,FAILED) every player (failed and cried) +
every player failed

2.

IVp(LOVESA MAN, LOVESA MANon ADMIRESA woMAN) every boy (loves a man) 4’
every boy loves a man or admires a woman

3.

Ivp(A woMAN LOVES,A woMAN LOVESOR A MANADMIRES) (a woman loves) + every boy
a woman loves or a man admires every boy
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These inferences show that the controlled unification strengthen Natural Logic. But there is a

problem posed by Proper Names. We turn to this question in the next section.

5.4. COORDINATIONANDPROPERNAMES.Notice that a proper name has no shadow : Proper

Names aren't major premisses of Modus Ponens applications. This limitation doesn't seem to

be a problem since one can always apply the Montague rule and get things straight. However,

there are extra problems. Consider once again the term

AYe.oR (A woMAN Aze. LOVES(Y, z), A MANAve. ADMIRES(Y, v)) .

By applying

Axe _, ;.X(ABELARD)

we obtain

Axe _, t .x(ABELARD)[AYe.oR (A WOMANAze. LOVES(Y, z), A MANAve.ADMIREs(Y, v))] .

According to our convention the term corresponds to the suing A woman loves or a man ad

mires Abelard . But by eliminating the redexes of this term we obtain

OR (A WOMAN 7\.Ze.LOVES(ABELARD, Z), A MAN Ae.ADMIRES(ABELARD, V)) .

But this term should correspond to the sentence A woman loves Abelard or a man admires

Abelard . Hence, our derivation corresponds to different strings, thereby violating our ade

quacy condition.

A solution to this problem would consist in assigning Proper Names directly to the category of

NP's without having to raise them locally. By applying ABELARDwe then obtain the term al

ready in normal form:

ABELARD[AYe.oR (A WOMANAze. LOVES(Y, 2), A MAN Ae.ADM1REs(Y, v))] .

The specific properties of ABELARDwould be dealt with at the same level in which we deal with

the special properties of complex Noun Phrases: the semantics of the typed language. We think

that this solution is not ad hoc, because the raising of Proper Names is especially relevant in the

context of coordination (cf. Moortgat 1988).

5.4. A MISSINGREADING.In Montague Grammar the sentence John caught and ate a fish is

given two interpretations. In one of them John caught and ate the same fish; in the other inter

pretation John caught a fish and ate another one. It is not clear whether this sentence indeed has

the second reading. But there are pragmatic arguments in favour to make the second reading a
sensible one (cf. Hendriks 1987).

Be it as it may, our treatment of Boolean coordination is not strong enough to produce a

derivation associated with John caught and ate afish having the meaning:
JoHN[Az.(AND (A FISH [Av. CAUGHT(V,2)], A FISH [Aw.ATE(w, z)]))] .



164 Studieson Natural Logic and Categorial Grammar

But a simple change in our characterization of shadow assumptions makes this reading avail
able:

SHADOW* ASSUMPTIONS

The numerical assumption ei is a shadow* assumption of the lexical assumption z

iff the withdrawal of ei is followed by the use of 2 as the major or the minor of a

Modus Ponens application.

Let us explain how we get the missing reading. We shall use terms instead of trees because they
encode all relevant information.

At first we obtain the term:

AND(x(e _, Q_, t[}.v. CAUGHT(V,Z)],we _, 0 _, t [>.w.ATE(w, K)]).

By using the identification rule, we have:

AND(x(c _, 0 _, ,[7.v. CAUGHT(V,Z)],x(c _, I) _, . [}.w.ATE(w, 1<)]).

Withdrawal of the identified assumption, and subsequent application to afsh yield:

7LX(c._, 1)_, ,.AND (x(c _, 0 _, ,[>.v. CAUGHT(V,Z)], x(c _, 0 _, , [7tw.ATE(w, K)]) (A FIsH).

This term corresponds to the string caught and ate a fish . The elimination of the redex gives
the term

AND (A FISH [>.v. CAUGHT(V,Z)], A FIsH [7LW.ATE(W, K)]).

Identification of the remaining free variables, abstraction and use of JOHN,result in the desired
term:

JoHN[Az.(AND (A FISH [Kv. CAUGHT(V,z)], A FISH[Aw.ATE(w, z)]))].

We have reasons for avoiding the shadow* hypotheses, however. The term:

AND (A FISH [7.v. CAUGHT(V,Z)], A FISH [xw.ATE(w, K)])

corresponds to the suing caught a fish and ate a fish . If this term also corresponds to caught

and ate a fish , we have a defective ambiguating mechanism: one and the same derivation would

correspond to different strings.

In the light of the previous discussion it could appear that our adequacy conditions are too

strong after all. They are incompatible with the shadow* convention needed for the generation

of the above reading. But we think that this is a marginal case and we are not eager to incorpo

rate it in our system.



Empirical Phenomena 165

We shall not pursue this matter in this dissertation. Instead we show the flexibility of con

trolled identification. Until now, we have only admitted the identification of numerical assump

tions. However, in natural language some occurrences of pronouns are prone to identification.

In the next section we make a modest proposal for the treatment of anaphoric phenomena in
LG.

6. ANAPHORIC BINDING

6.1. REFLEXIVES. Van Benthem (1991) has shown that it is possible to incorporate reflexive

pronominal binding into non-directed Lambek systems. For instance herself is considered a

‘relation reducer‘ belonging to the category (e —>e —>t) —>(e —>t) . The meaning of reflexives

is given by the term Xxe .9 6 _, t. KY. X(Y,Y) . The sentences Heloise sees herself and

Every woman sees herself are associated with the terms SEES(HELOISE,HELOISE), EVERY

WOMANltxe. SEES(x,x), respectively.

6.2. IDENTIFICATIONOF ASSUMPTIONSWITH PRONOUNS.Consider the sentence Abelard

loves Heloise and admires her . There is a reading of this sentence in which Heloise is the per
son whom Abelard loves and admires. But in this case the lexical solution is not available for

this reading is optional. Therefore we cannot treat non-reflexive pronouns in the same way as

reflexives; another approach is called for.

In Montague grammar one obtains the anaphoric reading of our sentence by applying to
HELOISEthe term

xx. LOVES(X, ABELARD) A ADMIRES(X, ABELARD) .

Notice that this term corresponds also to an LG derivation of Abelard loves and admires -a

derivation guided by the identification mechanism. It is suggestive to think that the same mech
anism can be used for the construction of a derivation of Abelard loves Heloise and admires

her . We shall sketch a procedure for the construction of LG derivations corresponding to such

expressions. To this end we extend the identification mechanism allowing pronouns to be iden

tified with numerical assumptions:
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6.2.1. IDENTIFICATION OF PRONOUNS I

ck

and D1 Proéioun
t—)t—)t t

+ D2

t—>t t

t

+ I( k, Pronoun)
t

After the identification the assumption indexed by a pronoun is eliminated.

6.3. EXAMPLES

(1)

loves admires her
e—>e—>t e1 e—>e—)t e

+ +

e—>t e3 e—>t e2
and + +

t+—>t+—->t t t
+ + +

t

+ I(1,her)
t

(1) "

e—>t

Before the identification, the meaning of the derivation is:

AND(LOVES(X, Y ), ADMIRES(HER,Z)).

After the identification the meaning of the derivation becomes:

AND(LOVES(X,Y), ADMIRES(X,Z)) .

The withdrawal yields:

>.x.AND(LovEs(x,Y), ADMIRES(X,Z)).
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To the above derivation we can apply any NP (of the appropriate gender). Among others, we

obtain derivations corresponding to the following strings (the bold expressions are anaphori

cally linked):

(I) loves a certain woman and admires her

(3) loves a Woman and admires her

(5) loves heloise and admires her

(7) loves the girl and admires her

(9) loves one girl and admires her

Evidently, controlled identification of assumptions engenders derivations we would not have

otherwise. And as a consequence we can obtain the multiple readings which we intuitively
attach to the sentences listed above.

6.4. REMARKS.(A) Since the application of the NP in the derivation is not constrained, we

shall also get derivations for the string loves no woman and admires her . This is an unde

sirable result which is also obtained in Montague Grammar. Van Eijck (1985 : 192-3) passingly

suggests the idea of restricting Montagues's quantifying-in at VP level to upward monotone

NP's.6 In our framework this proposal would take the form:

after withdrawal of an identified variable, only NP's of category (e —>t) + —)t

should be applied.

This excludes at once a derivation for the suing loves no woman and admires her on the ba
sis of our identification rule. Further research is needed in order to determine whether this re

striction is practical or not. But notice that Van Eijck's suggestion belongs in a grammar in

which monotonicity information can be encoded in the categorization of lexical items, i.e. LG.

(B) In the earlier linguistic treatment of anaphorical binding, the sentences of the list below,

were considered to be systematically linked to the previous list:

(2) loves a certain woman and admires a certain woman

(4) loves a woman and admires a woman

(6) loves heloise and admires heloise

(8) loves the girl and admires the girl

(10) loves one girl and admires one girl

The members of the previous list ( see 6.3) were considered to be transformations of the mem

bers of the present one. Pronouns were seen as useful devices for avoiding repetition of Noun
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Phrases —hencethe name ‘pronouns of laziness'.7 Assumed was that the sentences (n) and

(n +1) have the same meaning.

Geach (1964) conclusively argues that reflexives are not pronouns of laziness: ‘Only Satan

pities Satan‘ is not equivalent with ‘Only Satan pities himself‘.

An important question, from the point of view of Natural logic, is whether we have at least

entailment -from the first list to the second or the other way around. For instance, it seems that

the entailment relation holds between the members of both lists: (n) entails (n +1). This is not

limited to the so—calledexistential NP's because loves any woman and admires her also en

tails loves any woman and admires any woman .

The reader may have noticed that the entailments mentioned can be predicted from Peirce's

analysis: the bound pronouns occur positively, hence diversification may then take place.

According to Peirce, one should only have, for instance, that loves any woman and admires

her entails loves any woman and admires some one . It remains to be seen whether it is some

kind of conservativity which generates the inference:

. +
loves any woman and admires her

loves any woman and admires any woman

instead of the more general
. ‘Iloves any woman and admires her

loves any woman and admires some one

Controlled identification is, of course, a modest mechanism vis-a-vis the complexity of

anaphorical phenomena. And we do not entertain the hope that anaphorical binding will be re

duced to controlled identification. But we also think that this mechanism yields something more

than an ad hoc restatement of the facts. To illustrate this point we conclude this chapter by dis

cussing two further syntactical constructions in which our context —sensitivemechanism may be

employed. The counter-examples are left to the reader.

6.5. FURTHER CONTEXTOF IDENTIFICATIONS.(A) A new type of syntactical construction

can be described in which identification of pronouns and numerical assumptions is allowed.

Intuitively, the bold expressions in the following sentences may be anaphorically bound:

(1) Every man believes that he dances;

(2) No man believes that he dances;

(3) Every man believes that he loves Heloise;

(4) Every man believes that Heloise loves him.

The identification pattern one can infer from these sentences is the following:
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6.5.1. IDENTIFICATION OF PRONOUNS II

X_that Pronoun

e —>t —>t ck

+ D

I —-) I t

+

t

+ I(k, Pronoun)
t

EXAMPLE.In a familiar way, we can construct a derivation with the meaning:

BELIEVES-Tl-iAT(X,DANCES

By applying the identification rule we obtain:

BELIEVES-Tl-IAT(X,DANCES

Withdrawal and application of EVERYMANyields the term:

EVERY MAN().xe. BELIEVES-THAT(X, DANCES (x)).

This term corresponds to a derivation associated with Every man believes that he dances .

Similarly, we obtain derivations corresponding to the other strings. Notice that in this case

Every man believes that he dances does not entail Every man believes that every man dances .

This fact is taken into account in our system because we shall have

believes-that e e + -—>t —>t .

Hence, after the application of t —>t we stop the flow of monotonicity: the pronoun occuning

within its scope lacks monotonicity marking at the end of the derivation.

(B) Another familiar pattern of anaphorical binding is instantiated in the following sentences:

(1) A man loves a woman that he admires.

(2) A man loves a woman that admires him.
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The identification pattern suggested is:

6.5.1. IDENTIFICATION OF PRONOUNS III.

Pronoun
e

DET D k
(e—>t)—>(e—>t)—>t e—>t C

* D

(e—>t)—>t c—>t
+

t

+ I(k, Pronoun)
t

EXAMPLE.The following derivation is associated with the string a woman that he admires :

admires

e—>(e—>t) e1
+

he
C—)t c

+

t

that (1) * woman
(e——>t)—>p—>p e—>t p

a +

p—>(e—>t)—>t p
+

(e—>t)—9t

We shall abbreviate this derivation by:

he
awoman that e admires

D

(e——>t)—>t
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Now, we can continue in this way :

loves
e-—>e —>t e1

+

he e —>t e2
awoman that e admires +

D t
(1) *‘

(e—>t)—>t e-)t
+

t

_i'_I(2, Pronoun)
t

(2) “

e —> t

Let us turn to the terms. Before the identification takes place, the meaning of the derivation is:

A (WOMAN(X)A ADMIRES(x, HE)) [Xz.LovEs (z,v)].

After the identification and the withdrawal we have a derivation with the meaning:

7LVE.A(WOMAN(X)A ADMIRES(x, v)) [lz.LovEs (z,v)].

Application of every man will give a derivation associated with the string: Every man loves
a woman that he admires . In a similar manner, we can construct a derivation associated with

the string Every man loves a woman that loves him .

With this example we conclude our tentative approach to anaphorical binding in LG. We think

that the previous discussion shows that the controlled identification of assumptions may turn
out to be a fruitful addition to the mechanism of non-directed Larnbek calculus.

7. CONCLUDINGREMARKS.In this chapter we have considered the question of the empirical

adequacy of the Larnbek Grarrunar. We have shown that it is a misconception that this system

would be inadequate on account of the many readings it produces. This criticism is not valid as

long as no one has explicitly defined the ambiguating relation for the non-directed systems. We

have introduced adequacy conditions for any definition of the ambiguating relation. We have

then argued that reading the corresponding suing from the ordering of the assumptions, is an

unsatisfactory definition of the ambiguating relation. We have also made a new proposal for the

linking of LG derivations with strings. Whether the particular solution we advocate is tenable or
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not, is independent of the fact that rejection of non-directed Lambek systems assumes an am

biguating relation that has not been explicitly defined yet.

We have pointed out that there is no need to weaken the underlying logic in order to explain

scope phenomena. This can be done by introducing the notion of shadow hypotheses. We have

also considered the possibility of extending the Lambek grammar by adding the connectives and

and or . With this purpose in mind we have introduced mechanisms which allow us to identify

assumptions under certain conditions. Finally we have considered the possibility of generating

sentences with the right anaphorical bindings. We have introduced simple schemas for the

identification of pronouns with lexical hypotheses. In this way, we were able to generate

sentences with a reading that the original system did not provide. Whether this approach is fe

licitous, is a matter of further research. We have merely shown that the structures used as vehi

cles of inference by Natural Logic may also be useful for explaining several other phenomena —

anaphoric binding being one of them.
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NOTES TO CHAPTER VII

1One wonders how the following off-hand rejection of transformational grammar would be received:

‘Transformational Grammar is inadequate as linguistic theory because it has the rule ‘move 0.‘. for all categories a‘.

2 See, however. note 4.

3 See the introduction for an explanation of the expression 'ambiguating relation‘.

4In fact, with regard to 'any' the situation is not completely clear. The study of the so-called ‘polarity items’
suggests that the first term is the correct one and that the second one is wrong: the negative polarity item 'any'
must occur in negative syntactic position (cf. Ladusaw 1980). However, the monotonicity marking of the wide
scope 'any' and the polarity 'any' will coincide. The polar item is interpreted as an existential noun phrase. And
we must mark this 'any' as follows:

anye (e—>t)+ —>(e—>t)+ —>t.

5 Of course, these considerations do not hold in the full lambda system: if LOVESXe were not a Lambek term. we
would lack the guarantee that Ye does not occur in LOVESxe_

6Van Eijck himself rejects his own proposal on grounds which are not relevant for our present purposes.

7'In the earliest transformational grammars, it was suggested that a pronominalization transformation optionally
replaces a repeated noun phrase by a personal pronoun.

On such a view, all anaphoric pronouns were regarded as what Geach (1964) calls ‘pronouns of laziness’; reference
was considered irrelevant for the syntax.’ Partee (1972 : 421)
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EPILOGUE

The preceding chapters contain our view on Natural Logic and define such a logic for natural

language. The historical search we were engaged in revealed the principle of monotonicity as a

fundamental principle for syllogistic and non—syllogisticreasoning. Accordingly, we have

based our Natural Logic on monotonicity, using a theory of monotonicity marking which

makes monotone sensitive positions syntactically recognizable.

The architecture of the Natural Logic discussed in this dissertation displays the principles of

0 monotonicity

0 conservativity

0 anaphoric identification

To incorporate such principles in Natural Logic one must have a

0 theory of monotonicity marldng

0 theory of government

0 theory of anaphoric binding

This dissertation provides a theory of monotonicity marking, as well as some proposals for the

treatment of anaphorical binding. However, the use of conservativity presupposes a theory of

government which is as yet non-existent. Further research on this topic should (and can) result

in such a theory. This addition would make Natural Logic more fitted for its task, namely to

systematize natural language inference.
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Appendix 1

Proof of P1
EVERY A IS A B

E1311 6 IIEVERY A1] ,4 1) XE[[EVERYB]](4_1)
|IA]l C_I [[13]] [[13]] Q X

[[A1] 9 X (M)
X E IIEVERY A1]

Proofof P2
EVERY A Is A B

[[13]] e IIEVERYAJJ (4.1) X 6 II SOME All (M

l[A]]nX¢¢
I[B]]flX¢¢ M

)

|IA]] Q |IB]]

X e [[soME 13]]

ProofofP3
SOME A IS A B

E131] E I[soME All
(43) X e IIEVERY A1] (4_3

EA] n [[13]]: ¢ EA]! 9 X )

X n [[13]]: ¢ (43)
X e I[soME B]!

ProofofP4
SOMEAISAB

[13]] e |IsoME A1] (4.3) X e IIEVERY 13]] (43)

IA]! n l[B]]=x:¢ E13]! 9 X

l[A]]nX ¢¢,4_3)
X E [[soME All

Proof of P5

EVERY A IS A B P1

IIEVERYBJJ .C_ IIEVERYAJI

D(c,)[- IIEVERY A]! Q D(e,),- IIEVERY 13]] (7)

[[N0r EVERY All C_Z IINOI" EVERY B]!

177
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Proof of P6

EVERY A IS A B P2

[[soME All 9 l[soME Bill

D(e,)t- I[soMEB]I Q D(9,),- [[soME A1] (6)
I[No E]! Q l[No All

Proof of P7

SOMEAISAB P3
IIEVERYAll 2 l[soME B]!

D(e,),- I[soME B]! 9 D(.,,).- EEVERYA]! (6). (7)

[[No 13]] 9 [NOT EVERYA]!

Proof of P8

SOME A IS A B P4

IIEVERYB]! E |IsoME All

D(et),- I[soMEA]] E D(.,,)[- IIEVERYBII (6). (7)
[mo A1] .C_ l[NoT EVERY 13]!

Proof ofP9
EVERY A VP

EA]! 9 l[v1>]I [[A1] = |[Is A(N)A]J

l[1sA(N)All 9 [VP]!

Proof of P'3

SOME A vp

[[v9]] 6 [[soME A1] M3)

[[A1] n l[vP]l at ¢ IETHINGTHAT W]! = |[vP]l X e IIEVERYAll (M)

IIAJI n IITHING THAT VP]! ¢ ¢ EA]! 9 X

X 6 [[soME THING THAT VP]!

Proof of U1 Proof of EG

ABELARDISAB X E IIEVERY13]] ABELARDIS AB X el[ABELARD]]

se[[B]] IIBJJQX se|IB]] sex
s E X [[B]l n X at $25

Xe IIABELARDII Xe |IsoME 13]]



Appendix 2
THE BETA GRAPHS

l. QUANTIFIERLINEANDSCOPE.To prove some properties of the beta graphs we need an in

ductive definition of the language.The definition we give here is partly based on the selectives

employed by Peirce himself.

As a preliminary step we define the 'quantifier line‘ as a simple or broken horizontal line with a

marked free extreme adhering to one of its horizontal parts. By the ‘application’ of a quantifier

line L to a selective B we understand the result of the following simultaneous operations: (1) L

is written above B in such a way that all its horizontal parts occur outside negations in B; (2)

each occurrence of the variable xi in B is substituted by a vertical line joined to a horizontal

part of L. The result of this operation will be designated by /6/(Li/xi) and the expression oc

curring under Li or joined to it, is called its ‘scope’.For instance, if Px xQy is a selective, the

following expressions are results of the defined operation:

Px Qxg pl Qly

The afore mentioned line will inherit the index from the variable it replaces and

(sometimes) we will write that index on its marked extreme. If 6 does not contain any occur

rence of the variable xi then /6/(Li/xi) will not be defined.
2. THE SELECTIVE LANGUAGE.

A more formal characterization of this language is the following.

(i) The blank is a selective.

(ii) If P is an n-ary predicate letter, then Pxi . . . xii is an atomic selective.

(iii) If 6, 6' are a selectives, so are , 66'.

(iv) If 6 is a selective and the variable xi occurs in 6 , then also /6/(Li/xi) is a selective.

3. THEBETAGRAPHS.We define a graph as a special selective: if 6 is a selective lackin g

individual variables, then it will be called a beta graph. We use the constant T to define the

quantifier line as a sentence:

.i_ :=Tx(L/x)

4. POLARITY.As usual we define polarity by counting negations:

(i) Any selective 6 occurs in 6 in the scope of 0 negations.

(ii) If 6 occurs in q; in the scope of n negations, then it occurs in in the scope of n +1

negations.

(iii) If 6 occurs in \|!¢ in the scope of n negations, then also in web,/q//(Li/xi).

Now we say that a line L occurs positively (negatively) in \y, if its marked extreme occurs in qt

in the scope of an even(odd) number of negations.

179
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Observe that in (a) below L1occurs negatively its marked extreme, occurs within 1 negation,

whereas in (b) L1occurs positively since its marked extreme occurs within 0 negations.

1 1

@' pf’
(a) (b)

5. REMARKS.(A)Thisselective language differs in an important respect from the original

graphs. We construe quantifier-free expressions by using the selectives, whereas by Peirce

there are not such formulas. Any expression of its language is taken as quantified according to

the polarity involved:

A selective at its first occurrence shall be asserted in the mode proper to the com

partment in which it occurs. If it be on that occurrence evenly enclosed, it is only

affirmed to exists under the same conditions under which any graph in the same

closs is asserted. . . If, however, at its first occurrence, it be oddly enclosed, then,

in the disjunctive mode of interpretation, it will be denied, subject to the conditions

proper to the close in which it occurs, so that its existence being disjunctively de

nied, a non-existence will be affirrned and as subject, it will be

universal. Peirce (4 : 461)

(B) Notice that a standard language can easily be translated into the selective language. Given
the expressive completeness of the set {-1, A, 3 ] we can focus the translation on formulas

constructed with these symbols. If we have a translation 1t(¢) of 4)into the selective language,

and the variable x occurs free in this formula, then the translation of 3x4) is nothing else but

the application of a quantifier line to 1t(¢).

6. A SYSTEMOFRULES. The rules for the graphs fall out in three parts: propositional

rules, quantificational rules and mixed rules. The propositional rules consist of the alpha rules

considered earlier on. The quantificational rules regulate certain operations which may be car

ried out on the quantifier line. These operations consist in the lengthening or shortening, cutting

or joining of the line. The .mixed rules allow for the introduction of double negation on the

quantifier line and the copy of expressions or elimination of copied expressions bound to the

same quantifier lines in the same way. We comment on the quantificational and mixed rules,

and point out their standard predicate logic counter-parts.
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6.1. LENGTHENINGAND SHORTENINGOF QUANTIFIERLINES. Any line (vertical or

horizontal) may be extended whenever no negation is crossed in this operation. This operation

will be called a legal extension of lines. Thus if we have the graph (a) to start with, then we can

extend the vertical part of PS line and afterwards the horizontal part of it, obtaining in this way

the graph (b):

2

“:lQl;“ P1Qt'>1_.
(a) (b)

In the graph (b) the negated expression belongs to the scope of P's line. But this corresponds to

the construction in which P's line is applied to the selective consisting of Px and the negated

expression. Similarly, we can start from the graph (b) and shorten P's lines to obtain (a). These

two manipulations of the quantifier line correspond, according to our translation, to the process

of widening and shortening the scope of the existential quantifier, i.e. to one of the scope prin

ciples listed in the section about the 1885 paper. The above transformations

correspond to the substitution of the equivalent expressions 3xPx A-13)/Q)’,

3x(Px A —13yQy).

6.2. THE CUTTINGOFA LINE.We also have the operation of cutting lines on certain parts.

The idea is that any vertical part occurring in the scope of an even number of negations may be

cut into two parts. The result of this cutting must be a graph, hence we must ensure that in this

operation no vertical line appears which is not joined to a quantifier line. To this end we will
use the notion of cut. Let 1be a vertical line attached to a horizontal line L of 0. A cut of Icon

sists in the result of the following simultaneous operation: first of cutting 1into two parts leav

ing an un-marked extreme pertaining to the original horizontal line, secondly of adding a new

horizontal line with a heavy point to the other extreme and finally of eliminating the empty verti

cal extreme.This new line will have an index distinct from the index of the original line and its

horizontal part will not cross any negation . For instance, a cut of the quantification line i in (a),

will be the pair of lines i and k in (b):

ii ’_‘k“9? F.
(8) (b)

A cut of a quantification line does not need to be carried out in a positive context. The negations

enclosing P0 in the the graph (a) divide the vertical line into three segments. The first segment

occurs in the scope of 2 negations; the second segment occurs in the scope of 1 negation; the

third occurs in the scope of Onegations. The results of cutting are the graphs (b), (c) and (d):
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O'—': o:-—— .
1- - I 1

i k k k

@ PF‘ @ E“
(a) (b) (C) (d)

A legal cut of a quantification line is a cut carried out on a vertical positive part of a quantifi

cation line. Hence, among the above graphs, only (b) and (d) qualify as results of legal cuts.

Here is a more substantive example of a legal cut. If we have the graph (e), then we can legally

cut one of the vertical lines obtaining (f) as a result. In predicate logic terms, this means that we

can pass from Elx(PxA Qx) into 3x(ElyPy A Qx). But lines may be shortened. Hence, at the

end, we may derive (g), i.e. ElyPy A E-lxPx:

(6) (f) (g)

Notice that this operation corresponds to one of the diversification principles quoted in section
4.1.

6.3. JOININGLINES.We have also the converse operation of joining two lines together. The

idea in this case is that any quantifier line Lj occurring negatively may be joined to any other
line Li under which (scope) it occurs. To implement this idea we need the notion of legal joint .

Let Li, Lj be two horizontal lines such that Lj occurs in the scope of Lj. The legal joint of

Lj to Li is the result of the operation of attaching the straightened marked extreme of Lj to Li,

eliminating both Lj ‘smarked point and its index directly.

Thus this rule allows us to transform the graph (a) into the graph (b). According to our transla

tion we have the correct inference of Elx(PxA -1 Qx) from Elx(PxA a ElyQx).

lpol Ql;2_.1P1
(a) (b)

Notice that this operation corresponds to one of the identification principles quoted earlier on.

6.4. THE MIXEDRULES.(A) In the first place we have a rule which allows for the
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introduction and elimination of double negation on any part of the scope of a quantifier line. For

instance, we can pass from (a) into (b) and conversely. This amounts to the inference of

Vx(—mPx —>Qx) from \7’x(Px —)Qx):

Pl E
(a) (b)

(B) We also have a generalization of the copying rule for sub-formulas bound to a given quan

tifier line. The general idea is that we are allowed to copy c.q. to delete sub-formulas which are

identical except by their position inside a given expression. Thus we can pass from the graph

(a) below into (b) and vice versa. In predicate logic terms, this means that we can pass from

3x(<|)(x)A I'(\.|I)) into 3x(¢x A I‘(¢(x) /\\V)) and from 3x(¢x A F(¢(x) A\|J)) into 3x(¢(x) A

F(\V)).

O .

B U B1 OLD G!) G

(3) (b)

In the context of standard symbolisms, we must assume that in l"(\y), \|! does not occur in the

scope of a quantifier 3x or Vx. This can be achieved by introducing a variable convention. In a

formula I‘ each quantifier binds a distinct variable.

7. THE BETASYSTEM.The rules discussed in the previous section can be summarized as fol
lows:

7.1. AXIOMS

7.1.1 Theblank

7.1.2. «L
7.2.Rules

7.2.1. DELETIONRULE(DR). Within an even number of boxes any graph may be deleted.

7.2.2. INSERTIONRULE(IR). Within an odd number of boxes any graph may be inserted.

7.2.3. DOUBLENEGATIONRULE (DNR). The graphs 4)and are mutually interchange

able.

7.2.4.COPYINGRULE(CR). The graphs ¢F(\|I) ; <|>I‘(¢\|/)are mutually interchangeable.
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7.2.5. SCOPERULE(SR). Any horizontal quantifier line L may be legally lengthened or short
ened.

7.2.6. CUTRULE(CUTR). On any positive part of a vertical line L a cut may be carried out.

7.2.7. JOINRULE(JR). Any line Lj occurring negatively may be legally joined to any other

horizontal line Li if Lj occurs in the scope of Li .
7.1. EXAMPLES.

(a) We give here Peirce's proof of Barbara:

0 .
. E‘: Assumptions

ER

SR

JR
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6.

R
P Q“ E‘ CR

7.

P (SE. E] CutR

8.

13 IE] ER

9.

31% DN

(b) A classical example is the inference of Every boy loves some girl from There is a girl loved

by every boy . In this system the inference is proven as follows:
1.

Assumption

Bl) 0L0 Go

CR
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CutR

4.

T IB 011-3 Gr
SR

5 .

= I

B1 on I ER

7.2. THE SOUNDNESSOF PEIRCE'S RULES. In this section we consider the question as to

whether these rules are sound or not. Our strategy is as follows: given the translation 1tof the

graphs into standard logic, we point out that the rule in question can be seen as derived infer

ence rules within standard systems.

1. The soundness of the alpha rules has been proved in Sanchez Valencia (1989).

2. The effect of SR consists in giving wider(narrower) scope to a quantifier. We have here in

fact a rule based on the so-called passage rule: 3x¢(x) A \y <—>3x(¢(x) A w). This equivalence

holds whenever 1|!does not contain the variable x free. In the selective language such a condi
tion is automatic fulfilled.

3. Consider now CutR. Remember that a part of a vertical line is positive if the legal cut on that

part leaves a positive line. But positive lines are translated into existential quantifiers. Hence the

effect of this rule is the introduction an existential quantifier at certain designed positions within

a formula. Thus in standard terms this rule has the reading:

F(¢)

F(3x¢')

provided that ¢ occurs positively in F(¢), where (p'= [x/y] (1).

Notice that the soundness of this rule can be explained in terms of monotonicity. One can show

that in standard systems the following rule is a derived inference rule:
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¢-+ 3X¢' 11¢)

I‘(3x¢')

provided that (1)occurs positively in I‘(q>),where <1)‘= [X/y] Cb.

4.Consider now IR. Notice that a line which occurs negatively is translated into an existential

quantifier occurring negatively. Hence the effect of this rule consists of the elimination of an

existential quantifier at certain designed positions within a formula.

Thus in standard terms the rule has this reading:

F(3X¢)

IY¢5

provided that 3x¢ occurs negatively in F(¢).

Notice that 3x¢(x) can occur in the scope of a quantifier Ely.If this is the case, the the introduc

tion of ¢(y) has the effect of binding the variable to the quantifier Ely.To assure that

this is always the case, we can add to the rule the condition: 3x¢ must occur within the scope of

an occurrence of Ely.

This rule can also be seen as a special case of the earlier considered monotonicity rule. Thus we

can show that the following rule is a derived rule in standard systems:

¢' -9 Elx (p I‘ (3 mp)

IT¢W

provided that Elxcpoccurs negatively in I‘(¢),

3x¢ occurs within the scope of an occurrence of By and ¢' = [y/x]¢ .

7.4. THE COMPLETENESSOF PEIRCE'S RULES.Peirce's system of quantification can be com

pared with the axiomatization of first-order inference given in Quine (1947). In this discussion

we use the notation for the Beta Graphs introduced in the main text of this chapter. We show
that Quine's axioms are derivable.

(1) Vx(¢ -> w) —-)Vx¢ —>Vxqny

proof

1. Vx(q> —>w) -> Vx(¢ —>w) Alpha theorem

2. ‘v’x(¢ -—>qr) —>Vx(Vy¢' —->w) Diversification

3. Vx(q> —>w) —> (\7’y¢' -9 Vxw) Passage

3. \7’x(¢ —>w) -—>(Vx¢ —->Vxw) Alphabetic variant
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(2) ‘v’xVy 4) —)‘v’yVx<|>

proof

1. Vy\7’x ¢ —>VyVx¢ Alpha theorem

2. ‘v’y\'/x V24)’ -—)VyVx<|> Diversification

3. Vx Vz¢' —)‘v’yVx¢ Vacuous quantification

4. Vx Vycp —>‘v’yVx¢ Alphabetic variant

(3) Vx q)—->q)‘,where ¢' is like 4)except for containing free occurrences of y wherever (1)con

tains free occurrences of x.

proof

1. Vx q) —->Vxq> Alpha theorem

2. Vx q: —>¢' Identification

(3) ¢ -9 Vx¢, where x is not free in (1).

proof

1. q) —>(1) Alpha theorem

2. -w(¢ A-—.(1)) Definition

3. w(¢ /\fi—1fi 4)) Double negation

4. a(¢ A—m(3x(x=x) A-1¢)) Insertion

5. a(¢ /\—m(Elx(x=x) A-—.¢)) Definition

6. —.(¢ /\aa3xw (p) Definition

7. a(¢ /\—1V)((1)) Definition

8. q) —>Vx¢ Definition

Of course, the system is closed under Modus Ponens. But Quine's axioms are universal clo

sures of formulas. So one needs to demand that the alpha theorems which start the proof are
universal closures. This isn't a trivial condition, since it takes the role of the rule:

‘If (1)is a theorem, then so is Vx <p'

There is, however, no evidence that Peirce was aware of this rule. Alternatively, one can say

that Peirce's system lacks a real rule of introduction for the universal quantifier and a real

elimination rule for the existential quantifier.
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SAMENVATTING IN HET NEDERLANDS

Het doel van dit proefschrift is te laten zien dat een natuurlijke logica, d.w.z. een rechtstreeks

op natuurlijke taal gebaseerd inferentiesystem mogelijk is. We onderzoeken de geschiedenis van

de logica op inferentiebeginselen die toepasbaar zijn op de natuurlijke taal. Het bestuderen van

Ockham, Leibniz, De Morgan en Peirce levert diverse nuttige beginselen op. Een van deze

beginselen is het zogenaamde principe van monotonie. Tegelijkertijd ontdekken we dat, op

Peirce na, het werk van deze auteurs een (naar modeme maatstaven) gebrekkig begrip vertoont

van de notie ‘logische vorm'.

Om te voorkomen dat onze natuurlijke logica aan hetzelfde euvel zou leiden als haar

illustere voorgangers, definiéren we natuurlijke logica als een inferentiesysteem gebaseerd op

grammaticale vonn. Op deze manier bereiken we een nauwe aansluiting tussen logische en

grammaticale vonn: in ons systeem vallen deze twee noties samen.

Onze definitie van natuurlijke logica vcronderstelt de aanwezigheid van een theorie van

grammaticale vorrnen. We menen deze gevonden te hebben in de categoriale grammatica -een

linguistisch beschrijvingsmodel waarvan de ontstaansgeschiedenis tot Frege terug te voeren is.

De specifieke categoriale grammatica die we gebruiken is een variant op de zogenaamde

Lambek Calculus. De combinatie van deze grammatica met de historische inferentiebeginselen

resulteert in onze natuurlijke logica.

De geografie van deze dissertatie is de volgende:

Hoofdstuk I bevat een discussie van de notie van natuurlijke logica.We bespreken hier

verschillende bezwaren tegen natuurlijke taal als inferentiemedium. Hoofdstuk II is een

historisch onderzoek naar uitbreidingen van de syllogistiek. Hoofdstuk III is is een studie van

Peirce's werk vanuit een speciefieke standpunt: wat kan natuurlijke logica van Peirce leren?

Hoofdstuk IV is gewijd aan de logische vonnen waar natuurlijke logica mee werkt. Het is in dit

hoofstuk waarin we onze eigen categoriale grammatica definieren. Hoofdstuk V beeindigt het

voorbereidend werk voor de constructie van onze natuurlijke logica. In dit hoofstuk

introduceren we een mechanisme voor het markeren van plaatsen waarin monotone substituties

plaats kunnen hebben. Hoofdstuk V1 is gewijd aan de constructie van de natuurlijke logica.

zelf. Hoofdstuk VII bevat een discussie over de linguistische adequaatheid van onze categoriale

grammatica..



196 Studies on natural Logic and Categorial Grammar



Resumen 197

RESUMEN EN CASTELLANO

Esta disertacién persigue un ideal ha menudo mencionado en la literatura: la construccién de un

sistema de inferencia applicable directamente a los lenguages vemaculares, esto es, la

construccion de una lo’gicanatural. Asurniendo que los sistemas légicos pre-fregeanos son

esencialmente logicas naturales, hemos planteado una pregunta historica con motivos puramente

canibalescos: (3Que se puede aprender de las légicas naturales del pasado? A1final de cuentas el

estudio de Ochkam, Leibniz, De Morgan y Peirce nos ha permitido aislar tres principios de

inferencia natural: monotonfa, consewatividad e identificacion anaforica.

Pero al mismo tiempo hemos podido descubrir que la ausencia de una solida base sintactica

marro los intentos de Leibniz, De Morgan y Ockham. Esta limitacion es ausente en la obra de

Peirce, aunque sus observaciones son, a primera vista, relevantes solamente para lenguages
artificiales.

Para evitar que nuestra logica sufriese de la misma debilidad que sus predecesoras, hemos

optado por definir la logica natural como un sistema en el cual los vehfculos de inferencia son

las formas gramaticales mismas. De esta manera logramos una estrecha correspondencia entre

fonna légica y forma gramaticalz en nuestro sistema estas formas coinciden. A1mismo tiempo,

hemos sido capaces de aplicar las observaciones de Peirce al idioma natural.

Nuestra Concepcion de la logica natural presupone la existencia de una teorfa de formas

gramaticales. No es ninguna sorpresa que hayamos escogido la gmmatica categorial

-esencialmende inventada por Frege- como la base lingiifstica de nuestra logica. La gramatica

categorial que hemos escogido es aquella engendrada por Lambek y resucitada por Van

Benthem. La combinacion de esta gramatica con los principios de inferencia exu'a1’dosdel

pasado forman la arquitectura de nuestra logica natural.

La geograffa de esta disertacion es la siguiente:

E1Cap1’tu1oIdiscute la idea de una logica natural. Aqui’nosotros rechazamos djversas

objeciones contra una légica natural. El Capftulo H es una investigacion histérica acerca de

extensiones de la silogfstica. ElCap1’tuloIII es un estudio de la logica de Peirce desde un punto

de vista especial : g,Qué puede aprender de Peirce la logica natural ? El Capftulo IV esta

dedicado a la definicién de los vehfculos de inferencia de nuestra logica. En este capftulo

introducimos la gramatica categorial debida a Lambek y Van Benthem. El Capftulo V finaliza

nuestro trabajo preparatorio. Aqui’describimos una manera de marcar lugares en los cuales

substituciones monoténicas son permisibles. El Capftulo VI contiene nuestro sistema légico

propiamente dicho. El Capftulo VII, por otra parte, esta dedicado a una discusién de la

propiedad lingiifstica de la gramatica de Lambek y Van Benthem.

Finalmente: esta disertacion es en Inglés pero no es acerca del Inglés. Justamente por haber

empleado la gramatica (universalisable) de Lambek y Van Benthem nuestras observaciones

pueden ser trasplantadas facilmente a otros idiomas, por ejemplo al Kakchikel 0 al Castellano.
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1. Beschouw de logische taal L( Q, Q‘) verlcregen door de toevocging van de monotone
kwantoren Q en Q’ aan een standaard predicaatlogische taal L. Een verzameling axioma's voor
L( Q, Q‘) is de volgende:
(0) De theorema's van L.

(1)‘v’x(¢ -Ni!) —>(Qx¢-»Qxv).
(2)Qx¢H "'Q'x"¢
(3) Qx¢ H Qyw, waar ¢ een formule is waarin y niet vrij voorkomt en V uit ¢ wordt verkregen
door elke vn'j voorkomen van x te vervangen door y.
Henkin's bewijs van de Lyndon stelling laat zich generaliseren tot een bewijs van deze stelling
voor L( Q, Q‘). Bovendien volgt hieruit dat een zin uit L( Q, Q’) monotoon stijgend is in een
predicaatletter R desda hij equivalent is met een zin waarin R uitsluitend positief voorkomt. Dit
is een eerste stap op weg naar de algemene preservatiestelling besproken in Hoofdstuk V van
dit proefschrift.

Relerenties:
‘An Extension of the Craig-Lyndon interpolation theorem‘, L. Henkin, Journal of Symbolic Logic 28, 201-216.
‘A Proof of Lyndon Interpolation Theorem in 21Logic with Monotone Quantificrs', V. Sanchez, manuscript.

2. Genten's originele sequenten calculus voor de implicatie bevat de volgende regels:
Axioma's : A l- A

Logische Regels:
1- Al-AB,l“l-CR1LF_i3_ L1

l‘l-A——>B A—+B,A,l‘l-C

Al-C C,I‘l-A
CUT

A, F l- A

Structurele Regels:

A, A, B, F l- C (pennutatie)

A, B, A, F l- C

A, A, A, T l- C (contractie)

A, A, F l- C

_Ll-L (verzwakking)
F, A l- C

De pennutatieregel wordt bij deze opzet een afgeleide regel.
Dit is Gentzen waarschijnlijk bekend geweest, getuige zijn opmerking:
"The schemata are not all mutually independent, i.e., certain schemata could be eliminated with
the help of the remaining ones. Yet if they were left out, the 'Hauptsatz' could not longer be
valid." Szabo (1969, p. 85).
(Zie Hoofdstuk IV. 1. 3. over de permutatieregel en de Lambek Calculus)

Rclcrcntic:
S/aho (I969) : ( 'oIIm:1cdpapers of Gerhard (icntzcn, M. Smbo (ed), North Holland, Amsterdam.



3. Quine's variabelenvrije predicaten logica zoals geaxiomatiseed in Bacon (1985) is logisch
equivalent met Tarski's subtitutievrije predicaten logica zoals geaxiomatiseerd in Monk
(1965).

Referenties: . ' _
Bacon (1985): ‘TheCompleteness of a Predicate-functor Logic‘,Journal of Symbolic Logic. 50. 903-926
Monk (1965): 'Subtitutionless predicate logic with identity‘. D, Monk Archivfitr malhemalischeLogik und
Grundlagergforschung7, I02-121.
‘ANew Completeness Proof of Bacon's Predicate-1'unctor Logic‘. V. Sanchez. manuscript.

4. Anders dan Hawkins (en Peirce zelf) hebben gesuggereerd, is Dedekinds definitie van
oncindigheid onafhankelijk van Peinces behandeling van dit begrip.
Refcrenties:
The Collected Papers of Charles Sanders Peirce. C. S. Peirce. Carnbridge.Mass.: Harvard University Press.
‘ACompendium of C.S. Pcirce's 1866-1885 work ', B.S. Hawkins, Norre Dame Journal of Formal Logic,
Volume XVI, Number 1.
'Pcirce e Dedekind: La Definizione di lnsieme Finito', F.Gana, llistoria Mathcmatica 12 (1985) 203-218.
‘Peirce and arguments valid only in finite domains‘, V. Sanchez, manuscript.

5. F. Gana schrijft dat "Non risulta che Peirce abbia mai usato ne conosciuto l'assioma di
scelta"'. Maar de volgende passage laat zien dat Peirce een impliciet gebruik heeft gemaakt van
het keuze axioma:
"We have two collections, The M's and the N's. . . To begin with, there are vast multitudes of
relations such that taking any one of them, r, every M is r to an N and every N is r'd by an M.
Each one of the r relations could also be modified as to reduce to what we can call an x-t()—one
relation, by running through the M's and cutting the connection ofeach M with every N but
one. Call such a resulting relation t. Then every M would be t to a single N."

Refenenties:

The Collected Papers of Charles Sanders Peirce. C. S. Peirce, Cambridgc,Mass.: Harvard University Press.
‘Peirce e Dedekind: La Definizione di lnsieme Finite’, F.Gana. Ilistoria Muthcmatica 12 (1985) 203-218.
‘Peirce and arguments valid only in finite domains‘, V. Sanchez. manuscript.

6. L. E. J. Brouwer is de meest bekende Nederlandse wiskundige ttit dc twintigste ecttw.
Vandaar dat het nieuwe wiskunde gebouw van de Universiteit van Amsterdam "Euclides" heet.

7. De ontboezemingen van gewone mensen in praatprogramma's latcn zien dat dc uitdrukking
"doe gewoon dan doe je gek genoeg" in Nederland letterlijk juist is.


