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Introduction

It is by now a well-known and widely used fact that many constructions
of a set-theoretical nature can be performed in the context of sheaves on a
site (a site is a category equipped with a Grothendieck topology). More
precisely, for manyconstructions of new sets from given ones there are cor
responding constructions of new sheaves from given ones, having exactly the
same defining universal properties. For example, for two sets X and Y
the set Yx of all functions from X to Y is completely determined by
the property that for any third set Z, there is a bijection between func
tions Z + Yx and functions X><Z+ Y, denoted by

(1) ———zIYX
XxZ + Y ’

where X X Z is the Cartesian product (also definable by a universal prop
erty). For two sheaves X and Y, one can construct a sheaf YX, "the

sheaf of sheaf-morphisms from X to Y'fl such that the correspondence (1)
holds, when X X Z is now interpreted as the product of sheaves. This

sheaf Yx is completely determined by (1). As another example, one can
construct the sheaf P(X) of subsheaves of X from a given sheaf X, ana
logous to the construction of the power set.

In fact, all constructions whichare intuitionistically meaningfulas
constructions of sets, are also meaningful as constructions of sheaves.
In other words, each Grothendieck topos (or briefly topos, i.e. the category
of sheaves on somesite) can be regarded as a "set-theoretic universe", but
a universe in which one has to work intuitionistically, i.e. in which one
cannot freely use the principle of the excluded middle or the axiom of choice.
There are several ways of making this more precise: one can list the cate
gorical closure conditions corresponding to the basic operations on sets,
such as the formation of the product X X Y, the powerset P(X), and the

exponential Yx, and define elementary toposes as the categories which sat
isfy these conditions, imediately observing that every Grothendieck topos
is an elementary topos. From a more logical point of view, one would per
haps rather say that intuitionistic type theory (roughly, Heyting arithmetic
with rules for function types and powertypes) is interpretable in any
Grothendieck topos. (That is, one cannot only construct function types and
powertypesin a Grothendieck topos as I indicated above, but the logical
operations can also be interpreted. For example, if R CIX><Y is a sub
sheaf - think of it as a two-place relation R(x,y) - then there is a corres



ponding subsheaf VXR.CY having all the logical properties of the one
place predicate Vx E XlRCx,y) in intuitionistic type theory.) Or slightly
differently, one can mimick the construction of the Van Neumannhierarchy

V = g\Q in any Grothendieck topos, and obtain a model of intuitionistic
Zermelo Fraenkel set theory, IZF.

Classical logic or classical set theory is of course not excluded, but
subsumed. In many important cases Grothendieck toposes provide set-theoretic
universes where the principle of the excluded middle or the axiom of choice
does hold. For example, this occurs in the case of the topos of sheaves on
a Boolean algebra, or in the case of the topos of sets equipped with a con
tinuous action of a topological group. In the first case, one will recover
e.g. the Cohen-forcing models of set theory, and in the second case, e.g.
the permutation models of set theory. In the non-classical case, one also
recovers some traditional constructions from logic, such as Kripke models
and Beth models, as special instances of Grothendieck toposes modelling in
tuitionistic set theory.

The relation between toposes and intuitionistic logic and set theory
has a dual application. On the one hand, it has provided a very powerful
tool for the study of problems in mathematical logic, mainly (but not only)
those related to intuitionistic logic. Onthe other hand, however, the fact
that any topos may be regarded as a universe of sets has turned out to be
very useful in the study of general geometric problems of Grothendieck to
poses themselves. Indeed, given a map of one Grothendieck topos F to an

other one E, i.e. a geometric morphism F -£+ E, one may equivalently con
sider f as a topos constructed within the "universe" E, i.e. properties
of maps reduce to properties of Grothendieck toposes. Since E is an in
tuitionistic universe, one should really say that the study of mapsof to
poses reduces to the study of toposes themselves inaniintuitionistic context.
Or in a similar vein, maps of toposes F + E over a given base topos 3
correspond to mapsof toposes inside 3, so that intuitionistically valid
properties of maps of toposes generalize to the context of maps over a given
base topos.

This last point of view is already useful in understanding construc
tions in classical topology. A map Y -£+ X of topological spaces (let's
assume them to be Hausdorff) corresponds to a geometric morphism

Sh(Y) + Sh(X) between the toposes of sheaves, and hence to a topos in

'Sh(X), or in fact a space in Sh(X), denoted by Y Y is not quite aX. X

topological space in Sh(X), however, but a space in the generalized sense

10



where one takes the lattice of open subsets as primitive, rather than the
points. So one defines a generalized space or a locale, as a complete lat
tice A in which the distributive law

VAvixi = Vi’ " xi

holds (in other words, A is a complete Heyting algebra), and a map
A -£+ A’ of two such locales as a function f*: A‘ + A which preserves

finite meets and arbitrary sups. Every topological space X gives a locale
0(X), and a continuous function X -£+ Y gives a map 0(X) + 0(Y) of lo

cales by f* = f-1: 0(Y) + 0(X). Conversely, every locale A gives rise
to a topological space pt(A) of points of A (i.e. maps of locales
{0,1} + A). If A23 0(pt(A)), A is said to have enough points.

Locales behave very much like topological spaces. In fact, in many
respects locales behave muchbetter than spaces, especially in a context
without the axiom of choice, and even more so in an intuitionistic context.

Locales play a central role in topos theory, partly due to the fact
that any topos E can be approximated from two sides by a locale: there
exist locales A and B such that there are maps of toposes (i.e. geometric
morphisms) f and g

Sh(A) —f> E -3-» Sh(B)

with very nice properties (technically: f can be chosen to be connected
and locally connected, in fact even to have "acyclic fibres", and g can be
chosen to be hyperconnected). The construction of A and B is completely
constructive and explicit, so this generalizes to mapsof toposes as just
explained: given F + E, there are locales A and B in E such that
there are geometric morphisms f and g over E

ShE(A) —f—+F 3+ Shh-(B)\l/
E

with the same properties as before. (ShE(A), ShE(B) are the toposes over
E obtained by taking scheaves on A resp. B inside E.)

I mentioned above what it means for a locale to have enough points.
Since one often has to deal with locales in a given topos, as was just indi
cated, it is particularly important to note that for a specific locale the

H



question of whether it has enough points or not may depend on the topos in
which one works. Onemayformulate this slightly differently, by identify
ing locales with propositional (geometric) theories. A locale has enough
points iff the corresponding theory has enoughmodels, i.e. iff this theory
is complete. The completeness proof of such a theory may depend on essen

tially non-constructive axioms, such as choice axioms. It is thus of in
terest to see exactly which axioms need to be added to intuitionistic logic
in order to prove the completeness of a given propositional theory.

Let me give some examples: the completeness of the propositional theo
ry corresponding to the Dedekindreals, i.e. the question whether the locale
("formal space") of Dedekind reals has enough points, is equivalent to the
compactness of the unit interval, i.e. to the Heine-Borel theorem (HB).
And the formal Cantor space (the Cantor space defined as a locale) has enough
points iff the Fan Theorem (FT) holds, while formal Baire space has enough
points iff Bar Induction (BI) holds. One can thus compare the strength of
the completeness of the corresponding theories. In the paper "Heine-Borel
does not imply the Fan Theorem "it will be shown, amongother things, that
the implications

(BI) -* (FT) -> (HB)

are the only ones that hold amongthese three principles (relative to intu
itionistic set theory).

Theother papers in this collection fall naturally into two parts, ac
cording to the dual interaction between logic and topos theory. While the
first four articles are instances of applying topos theory to logic, the
last four articles rather apply the idea that toposes can be regarded as uni
verses of sets to the study of general topos theory.

The first group of articles is concernedwith the construction oftopos
theoretic models for theories of choice sequences. In intuitionistic math
ematics, one can distinguish various ways of constructing sequences of nat
ural numbers, by classifying the types of restrictions to be put on the
choices of future values. For example, one can fix all values of the se
quence at once, by requiring that the choices are made according to an algo
rithm for computing the next value from earlier'ones;sequences of this type
are "lawlike". At the other extreme, one finds the free choice sequences
or lawless sequences; these are sequences constructed without any restric
tions on the choice of values. There are many types of sequences in between
these two, corresponding to intermediate restrictions such as the requirement
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that the sequence being constructed must lie in the image of a lawlike con
tinuous function from NN to itself, or lie in a so-called spread (spreads
are certain closed subspaces of NN).

These various types of construction processes are reflected in the log
ical properties of the corresponding sequences: for instance, lawlike se
quences behave rather classically, but about a given lawless sequence we can
never knowmore than some initial segment. This leads to the principle of
open dbta for lawless sequences

A(O.) -> 3nVB(Vm<nam= Bm -> A(B))

where a and B are lawless sequences (some restrictions on the predicate
A are necessary, see the articles below and references given there).

All this maysound quite strange to a classically minded reader, but
this makes it all the more interesting that these various types of choice se
quences, with their different logical properties corresponding to the way
they are constructed, occur in a natural way in certain Grothendieck toposes!
This not only provides us with somemathematically natural models for theo
ries of choice sequences, but also gives someinsight in more syntactical
and proof-theoretic methods used earlier in the metamathematical study of in
tuitionistic mathematics. For example, the elimination translations for the
system ‘gg of lawless sequences and for the system gé of Kreisel and
Troelstra correspond literally to the fbrcing relation of certain topos mod
els for these systems (see e.g. the first paper with G. van der Hoeven, below).
And also at a more philosophical level, the informal ideas concerning con
struction processes for choice sequences nowappear in a mathematically ri
gorous setting in the description of the sites which define the various mod
els. This is particularly apparent in the article "Constructing choice se
quences from lawless sequences of neighbourhood functions", reprinted below.

The idea of constructing a site as the category of "finite initial
parts" of a construction process has manyapplications. An example which is
particularly simple but extremely useful is that of adjoining an enumeration
IN++X of a given (inhabited) set X to the "universe", say this universe
is a topos E and X is an object of E. One only needs to construct the
locale in E presented by all possible finite initial segmentsof this enu
meration. In this way one finds a "base-extension", i.e.a1geometricnmrphism
F + E, such that in F the set X has become countable. The map F + E

is an open surjection, so that all first-order properties of E are pre
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served and reflected along this base-extension (i.e. they are true in E
iff they are true in F). The sameholds for manyproperties of locales
in E, i.e. manyproperties hold of a given locale A in E iff they hold

for "the same locale" in F (technically, this is the locale in F corres

ponding to the pullback FE ShE(A)). Consequently, by adding suitable enu
merations to the universe, one can for manypurposes assume that the presenta
tion of a given locale is countable. This makes locales behave not only
very muchlike topological spaces, but in fact even like countably presented
topological spaces! - within Hausdorff spaces, these are precisely the com
plete separable metric spaces.

This is one of the ideas that lie at the basis of the paper "Connected
locally connected toposes are path-connected", written with G. Wraith, where
we generalize the classical result that all connected locally connected com
plete separable metric spaces are path-connected to Grothendieck toposes.
This result is improvedupon in a subsequent note, entitled "Path-lifting
for Grothendieck toposes”. As is explained in the introduction of the paper
with Wraith, these results seem to be an important first step if one wishes
to develop the homotopy theory of Grothendieck toposes, in a way which gener
alizes and improves the homotopytheory of topological spaces.

The central role that locales play in topos theory has been emphasized
earlier, but appears even more strikingly in the recent representation theo
rem of A. Joyal and M. Tierney. The assertion is that every Grothendieck
topos is equivalent to the category of equivariant sheaves on a localic
groupoid, i.e. a groupoid-object in the category of locales. This result is
a rather imediate consequenceof the so-called descent theorem for
Grothendieck toposes. Joyal and Tierney prove this descent theoremby developing
descent theory for "modules"over locales, similar to the classical descent
theory for modules over comutative rings. The aim of the paper "An elemen
tary proof of the descent theorem" is to give a direct proof of this result,
again exploiting the fact that every Grothendieck topos can be regarded as
a set-theoretic universe.

The last paper in this thesis, "Continuous fibrations and inverse
limits of Grothendieck toposes”, is concerned with the following problem:
Suppose we have an inverse filtered system of toposes (E.). and geometric

f.. on 1 1
morphisms Ei ——l-]—>E. (i>j), with inverse limit E = lim E1 and pro00 P’

jections E ——i+Ei. Which properties of the "bonding mappings" fij
are inherited by the projections pi? It will be shownthat some important
properties are indeed inherited. (If all the fi. are surjections (resp.
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open surjections, connected locally connected, hyperconnected, or connected

atomic) then so are all the pi.)
The general methods that have been mentioned above again occur pre

dominantly in this paper. First of all, the idea of regarding a topos E
as a universe of sets, and a map F + E as a forcing extension of this uni
verse, will lead to the construction of a very manageablepresentation of

the inverse limit Em= ljggEi, which generalizes the construction of forc
ing extensions by iterated forcing with finite supports, familiar from logic.
Second, the above mentioned fact that everything can be made countable by
passing to a suitable base extension enables us to reduce the problems to

the case of an inverse sequence ... + E2 + E1 + E0 of toposes, rather than
an arbitrary inverse system, a reduction which technically is of great value.

I will end the brief description of this collection of papers here.
I hope that I have been able to give the non-specialist some idea of the uni
ty and the central ideas underlying these papers, and I apologize to the
specialist whowill no doubt think that I have madematters only more obscure.
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Introduction

Sheaf models and toposes have by now become an important means for
studying intuitionistic systems. They provide a unifying generalization of earlier
semantic notions, such as Kripke models, topological (Beth) models, and realiza
bility interpretations. Moreover, higher order languages with arbitrary function
and power-types can be interpreted naturally in these models.

In this paper we investigate sheaf models for intuitionistic theories of choice
sequences. We will be mainly concerned here with sheaf models for the theories
LS and CS in the language of elementary analysis with variables for numbers and
sequences. Both systems are theories for (parts of) intuitionistic Baire space. The
part of CS not involving lawlike function variables coincides with the system FIM
of [12], which was intended as a codification of intuitionistic mathematical
practice.

* The results of this paper were first presented at the Peripatetic Seminar on Sheaves and Logic at
the University of Sussex, November 1981.

0168-0072/84/$3.00© 1984. Elsevier Science Publishers B.V. (North-Holland)
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64 G. van der Hoeven, I. Moerdijk

The axioms of CS and LS are based on an analysis of how certain kinds of
choice sequences are presented: thus, the conceptional viewpoint behind these
systems is the ‘analytic’ one (as opposed to the ‘holistic’ viewpoint).

From the holistic viewpoint, the universe of choice sequences is grasped as a
whole, and quantification over this domain is intuitively clear. From the analytic
viewpoint, one sees choice sequences as individual objects, each given by a
possibly non-predetermined construction process. Subdomains of choice se
quences can be distinguished, according to the sort of information about a
sequence that may become available at the various stages of its construction
process. (For a discussion of holistic vs. analytic see [19].)

Extreme examples of subdomains of intuitionistic Baire space are the lawlike
and the lawless sequences. Lawlike sequences are given by a set of rules which tell
us how to construct a value for each given argument. These rules are the
‘available data’ on the sequence, they do not change during the construction
process. The construction process of a lawless sequence, on the other hand, is
comparable to the casting of an infinite-sided die, with the stipulation that an
initial segment of the sequence may be deliberately fixed in advance. The
available data on a lawless sequence consist at each stage of its construction of an
initial segment of the sequence only.

LS is the formal theory of lawless sequences. The advantage of lawless se
quences is that the relative simplicity of the available data makes it possible to
justify rigorously (though informally) the validity of the traditional intuitionistic
continuity axioms for this subdomain. The drawback of lawless sequences lies in
the fact that the subdomain is not closed under any non-trivial continuous operation.
L8 is therefore not suited as a formal basis for intuitionistic analysis. The formal
system CS is adequate for this purpose, it combines strong continuity axioms with
closure under continuous operations. In general, on the analytic approach “one
starts with (a conceptual analysis of) the idea of an individual choice sequence of a
certain type (say 7) and attempts to derive from the way such a choice sequence is
supposed to be given to us (i.e. from the type of data available at any given
moment of its generation) the principles which should hold for the choice
sequences of type 7” ([20, p. 5]).

The CS-axioms arise from the presupposition that there exists a notion of
individual choice sequence for which the available data consist of lawlike continu
ous operations. The problem is to justify this presupposition, that is, to find a
subdomain of intuitionistic Baire space for which the available data of its
individual elements are the continuous operations (or any other subdomain of
Baire space of which the CS-axioms can be seen to hold, cf. [10], [7]).

A common and important feature of LS and CS is, that their axioms give a full
explanation of quantification over a subdomain of choice sequences in terms of
quantification over lawlike objects. This is formally reflected in the elimination
theorems for both systems.

Lawless sequences (of zero’s and one’s) first appear (as absolutely free se
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Sheaf modeLsfor choice sequences 65

quences) in [13]. In [14] lawless sequences of natural numbers are treated, with a
sketch of the elimination theorem. An extensive treatment of LS can be found in
[18].

The elimination translation provides a model for LS: it is a syntactic interpreta
tion of LS in its lawlike part, which is a subsystem of classical analysis. [17] gives
an ‘internal’ model for LS: it is shown that there exists a universe of sequences
“Ila,constructed from a single lawless a, of which we can prove in LS that it is a
model of LS. In [1] an LS-model is presented based on forcing techniques and
Beth models. In the appendix to [1] it is shown that the ‘internal model’
construction of [17] is in fact equivalent to a Beth model construction.

CS was introduced and discussed extensively in [15]. A concise treatment can
also be found in [18]. The elimination translation for CS (in [15]) gives a syntactic
interpretation of this theory. [7] and [10] give models for relativized variants of
CS. More specifically, universes “Ila, constructed from a single lawless a, are
presented for which one can prove in LS that they are models for variants of CS.
Such projection models correspond to Beth models in the ordinary sense. The
motivation behind the ‘reductionist program’ of constructing such internal models
for complex notions of choice sequence inside LS is discussed in [10].

The emphasis in this paper lies with the system CS. In fact, our original aims
were

(a) to see whether it was possible to obtain monoid models for the system CS
(and possibly also LS),

(b) to deny or confirm the first impression that there might be a connection
between monoid forcing and the elimination translation, and

(c) to try and simplify the construction of models for variants of CS as
presented in [7].

We briefly outline the contents of the paper: in Section 1 we give the basic
concepts relevant for the interpretation of intuitionistic theories in sheaves over a
site (M,J), M a monoid, and J a Grothendieck topology on M. In particular, we
define ‘Grothendieck topology ,5?on a monoid M’, ‘sheaf over (M, J)’, and we
give the inductive clauses of Beth—Kripke—Joyalforcing over (M, J). The material
in this section is standard, and proofs are not given in detail. Readers familiar
with such interpretations can skip Section 1. It is intended for those less at home
in toposes. We assume all readers to be familiar with interpretations in sheaves
over complete Heyting algebras (or over topological spaces). Such models occur in
Sections 4 and 5. A good introduction to such models is [4].

One of the main results of this paper is that sheaves over monoids give us a new
and very simple model for the theory CS. This will be proved in Section 2, where
we also show how to obtain similar models for variants of CS (Section 2.3).

There are essentially two ways to explain the naturalness and simplicity of these
models. On the one hand it can be shown that forcing over the monoid of Section
2.2 coincides (at lower types) with the elimination translation of [15] (cf. 3.2),
while the elimination translation is in fact the canonical interpretation prescribed
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66 G. van der Hoeven, I. Moerdijk

by the axioms (cf. 3.1). On the other hand, the closure properties of the universe
of choice sequences described by the CS-axioms (whatever that universe may be),
can be captured in a geometric theory. The generic model in the classifying topos
(in the sense of [16]) for this theory again coincides with the monoid model of
Section 2.2. This correspondence will be worked out in [9]. (The relation between
monoid models, elimination translations and classifyingtoposes described here for
CS, also holds for the relativizations of CS discussed in 2.3.)

It should be remarked here that the techniques exploited in Section 2 can also
be applied to theories which are analogous to CS or one of its relativized versions,
but with Baire space replaced by the space of Dedekind reals. One then obtains
models in which the Dedekind reals appear as the sheaf of continuous functions
IR—->lR.As in Section 2.2, a model satisfying the axiom of real-analytic data may
then be constructed; and as in Section 2.3, one can construct a model in which
there is a dense subset D of [Rsatisfying real open data

Vd ED(Ad —>3d1, d2(d1<d<d2/\Ve e D (d1<e <d2—>Ae))),

(this axiom has been considered in [8]).
We will not work out these models separately. One reason for this is that—as

far as things go through—the proofs are completely analogous to those given in
Section 2.2. Another, more fundamental, reason is that some of the results
obtained in 2.2, like ‘all functions from IRto IRare continuous’ do not go through.
One should not consider monoids of real functions, but sites of open subspaces of
finite products R", in order to be able to obtain a full parallel with Sections 2 and
3 of this paper.

Returning to the subject matter of Section 3, we stress that the elimination
theorem (and hence also, monoid models) give us a formal interpretation of
choice sequences (“quantification over choice sequences as a figure of speech”
[18]). In this respect, the models presented in Section 2 are completely different
from the ones in [7], which grew out of a conceptual analysis of a primitive notion
of choice sequence. As explained in [19], from the conceptual point of view sheaf
models for choice sequences over (subspaces of) Baire space are of a particular
interest. Therefore we’ will prove in the fourth section that with each of the
monoid models one may associate a spatial model which is first-order equivalent
to it. For countable monoids, the space will be a subspace of Baire space.

In Section 5 models for lawless sequences are discussed. We will first explain
that although approximations of LS can be modelled in sheaves over monoids, LS
itself cannot. We will then give an LS-model in sheaves over a topological space
instead. This model is inspired by the model discussed in the appendix of [1]. The
proofs we give, however, are semantical (in contrast to Troelstra’s original
proofs), and our treatment works for a language with arbitrary function and
powertypes (these are not contained in the original LS-language). We conclude
this final section with a discussion of the elimination translation for LS, and its
connection to projection models, and to our own model for LS.
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How to read this paper. We repeat that readers who are familiar with forcing over
sites can skip Section 1. As will be apparent from this introduction, we have made
some eflorts to explain the connections with the existing intuitionistic literature on
choice sequences. This will be done in the expository Sections 3 and 5.3. Readers
who are mainly interested in seeing classical models for intuitionistic theories of
choice sequences are advised to read Sections 2, 4, 5.1 and 5.2 only.

1. Monoid modeb

In this section we present some basic definitions and facts of sheaf semantics,
for the particular case of sheaves over a monoid. The material is standard, and
proofs are omitted or only briefly outlined.

1.1. Sheaves over monoids

A monoid M is a category with just one object, or equivalently, a triple
M = (M, o, 1), where M is a set with an associative binary operation 0 which has a
two-sided unit 1. If X is a set, an action of a monoid M on X is an operation

1:MxX—>X

such that for any xeX and f, geM,

(i) x1l=x,
(ii) (x1f)1g=x1(f°g)

Such pairs (X, 1) are called M-sets; the element x 1f of X is called the restriction
of x to (or along) f. A morphism of M-sets (X, 1)%(Y, 1) is a function a :X -> Y
which preserves the action; i.e., a(x 1f) = a(x) 1f for any xeX, fe M. A
sub-M-set of (X, 1) is a subset YEX which is closed under 1; equivalently, a
subset YSX with action 1,, such that the inclusion Y—>X is a morphism of
M-sets.

We give some examples of M-sets that will be used later. The set N of natural
numberscan be made into an M-set by giving it the trivial action: n 1f = n for
neN, f e M. All elements of N are ‘constant’ for this action. Another M-set,
which usually has hardly any constant elements, is the set of sieves (or cribles, or
right-ideals) on M: a sieve on M is a subset SEM such that if feS and geM
then also f o g E S. The set of sieves is made into an M-set by setting

S1f={geM|f°geS}.

Finally, note that M itself may be regarded as an M-set, with action f 1 g = f o g.
A (Grothendieck -) topology on M is a family J of sieves on M with the

following properties:
(i) M E .5‘.

(ii) if Se} and feM, then S 1fej,
(iii) if R E M, and there exists an S 6 I such that Vf e S (R 1f e y) then R e j.
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The elements of J are called (‘,6-)covers,or (J-)covering sieves. (When S is a
subset of M (but not necessarily a sieve), we will often say that S is a cover while
we actually mean that the sieve {s o f | s e S, f e M} generated by S is a cover.) It
can be shown from (ii) and (iii) that if S and S’ are covering sieves, so is S F)S’.

An M-set (X, 1) is called (J-)separated if for each S 6 J, Vfe S (x 1f = y 1f)
implies x = y, for all x, y e X. We now define sheaves: a collection (x, | f e S) of an
M-set (X, 1) indexed by a sieve Se} is called compatible if for each geM,
x, 1 g = xm. Now an M-set (X, 1) is a (J-)sheaf if for each compatible collection
(x, Ife S) there exists a unique x (called the join of (x, | f e S)) with x 1f = x, for
each fe S. By the uniqueness of joins, sheaves are separated.

Conversely, with a separated M-set (X, 1) we can associate a sheaf L(X, 1) (the
sheafification of (X, 1) as follows: the elements of L(X, 1) are equivalence
classes of compatible families (x, If e S) indexed by a cover S, where we identify
two such families (x, If E S) and (ya I g e T) if there exists a cover R C S F)T such
that x, = y, for each f e R. The action of M on L(X, 1) is defined by

(x;|f€S)1g=(xg.».|h€S18).

1 is well-defined on equivalence-classes, and L(X, 1) is a sheaf. L is functorial, in
the sense that a morphism (X, 1)—">(Y, 1) can be uniquely extended to a morph
ism La :L(X, 1)-> L(Y, 1). (In fact, all this can be done also for M-sets which are
not necessarily separated. For details, see [16].)

For a monoid M with a topology 35 on it, the collection of sheaves and
morphisms between them form a category Sh(M,?) This categroy is a topos,
which means that it is possible to interpret higher-order intuitionistic logic in this
category. Before we turn to this interpretation, let us indicate how to construct
products, exponents, and powersets in Sh(M, J).

The product of two M-sets X=(X, 1) and Y=(Y, 1) is simply the cartesian
product X X Y with pointwise action, (x, y) 1f = (x 1f, y 1f). It is easy to see that
XXY is asheaf if X and Y are.

The exponent (function-space) Yx (or sometimes (X—>Y)) is defined to be the
set of morphisms

a:M><X—->Y

(where M is regarded as an M-set), with action by (0: 1f) (g,x)=a(fo g, x).
This makes the evaluation —(-):Yx><X—>Y, a(x) := a(1, x) into a morphism of

M-sets. One can check that Yx is a sheaf whenever Y is. There is a natural 1-1
correspondence between morphisms Z —>Yxand morphisms Z><X—>Yinduced
by the evaluation.

The M-set of truthvalues (‘the subobjectclassifier’)0 is the M-set of }-closed
sieves on M:A sieve R on M is ,?-closed if for any fe M, SSE; VsES (f o s e R)
implies f e R. 0 is a sub-M-set of the M-set of sieves on M, and fl is a sheaf.
There is a natural 1-1 correspondence between morphisms X—°‘>fland sub
sheaves (sub-M-sets which are sheaves) UQX: given a, the corresponding U is
defined by xeU-<->1ea(x). Conversely, given UEX, a is defined by a(x)=
{fe M | x 1fe U}. Powerobjects 9°(X) are now constructed as exponents Ox.
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1.2. Forcing

A language for higher-order logic consists of two parts, the set of sons and the
set of constants. The set of sorts can be built up inductively: the basic sort is the
sort N of natural numbers; and if s,, . . . , s,, and t are sorts, then so are
9’(s, x- - -x s,,) (the sort of n-place relations taking arguments of sorts s1, . . . , s,,
respectively), and t“""""‘-’ (the sort of n-place functions taking arguments of sorts
s1, . . . , s,, to a value of sort t). The other part is a set of constants {q I iel},
together with an assignment of a sort #(c) to each constant c. We also take the
language to contain infinitely many variables of each sort.

A (standard-)interpretation .55of such a language in a topos of sheaves on a
monoid Sh(M, .9) assigns to each sort s a sheaf 9 (s), according to the following
rules:

(i) J (N) is the sheafification of the constant M-set N (we will usually write N
for this sheaf).

(ii) J‘(9’(s1 ><' ° ° X s..)) = 9’(J‘(s1)><-°->< .¢(s.,)). and
j(t(s‘x---><s_)) = J(t)J(s,)><...;<J(sn)_

Further, .9.assigns an element .¢(c) of .5P(#c)to each constant c, which is a fixed
point of the action on .¢(#c) (this is the same as a morphism from the one-point
M-seti to .¢(#c)). By the correspondences given at the end of 1.1, one may also
think of the interpretation as assigning a subsheaf of .¢(s,)x- - -><.9(s,,) to a
constant of sort 9’(s1><- - -><s,,), and a morphism .¢(s1)><- - -><.9(s,,)—>.¢(t) to a
constant of sort t“""""‘~’. The empty product is 1, so the interpretation .¢(9’( )) is
the M-set of truthvalues .0.

Terms of the language are built up as usual. Terms of sort 9’( ) are called
formulas. If r(x,, . . . , x,,) is a term of sort t with free variables among 1:.of sort s,
(i = 1, . . . , n), its interpretation (relative to x1, . . . , x,,) will be a morphism .¢(s1)x
- - -><.9(s,,) —>.¢(t), for which we write |I'r]L1...,_(or, just [[7]). It is defined induc
tively. First consider terms built up from variables and non-logical constants: we
let III.-IL,---x.be the projection .¢(s,) ><- - -X .55(s,,)—->.¢(s,); and if [0] and I[r,] have
been defined for i= 1,. . . , n, and 0‘ and 1-1,. . . , 1-,,are of the appropriate sorts,
then we let [[a'('r1, . . . , 1-,,)]]=lIcrI|(([[r1]I,. . . , II-r,,]I)).For formulas we also have the
possibility of making new formulas by use of logical constants. If A(x1, . . . .,x,_)is
a formula with x,-free, and .9(#x,) = Y,, IIAIIwill be a morphism Y1 x- - -xY,, —>
.0. Alternatively, |IA]] is interpreted as a subsheaf of Y1><-- -><Y,,, and the
corespondence is given by

)'=(Y1a---s)’n)EflA1] 1EflAII(y19°"syn)

We will write ll-A(y1,...,y,,) for 1e|IA]|(y,,...,y,,). The definition of the
interpretation can then be completed as follows: ll-a1(y,,...,y,,)=
02(.~/1. - . - , y..) ifi |Icr1ll(y1. - - - . y,.)=lIa2l(y1, . . - . ya),

I‘-R(T1(y19' ' '9 yn)a- - °9Tk(yl9- -°9yn)) (y17- - -:yn)EflR(Tls- --97132)]!

ll-A /\B(y) iff ll-A(y) and ll-B(y),

II-AvB(y) iff there exists an S e J such that for each
feS either ll-A(y 1f) or II-B(y1f),
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ll-—nA(y) ifl for each fe M, ll‘A(y 1f),

ll-A —>B(y) ifl for each fe M such that ll-A(y 1f), also
“'B(y lf),

|l-VxA(x) (y) iff for each a e.9(#x) and each
feM|FA(a.y1f),

ll-ExA(x) (y) if! there exists an S 655 such that for each
f e S we can find an a, e.9‘(#x) with
|FA(ar. r 1f).

Finally, we list some properties of the interpretation; the easy proofs are left to
the reader.

1.2.1. Lemma (i) ll-A(y1, . . . , y,,) implies ll-A(y1 1f, . . . , y,, 1f), for each fe M.
(ii) IfS E3, and for each fe 8, |FA(y1 1f, . . . , yn 1f), then also |FA(y1. . . . , y..)
(iii) For closed A, either ll-A or |l"1A.

ll-A(y,, . . . , y,,) is defined as (y1,..., y,,)e[[A]l§Y, ><-- -><Y,,,so (i) says that IIAII
is a sub-M-set, (ii) says that it is in fact a subsheaf, while (iii) says that the
one-point M-set 1 has only two subsheaves.

If X is a sheaf, a subset Y of X is said to generate X if every element of X is
locally the restriction of an element of Y; that is, for each x EX we can find a
cover S 655 such that

VfeS3geM3yeYx1f=y 1g.

Note that if the generating set Y is closed under restrictions, we may as a
consequence of the preceding lemma restrict ourselves to Y when verifying
whether a formula of the form Vx :XA or Ex :XA is forced. More precisely,

|FVx :XA(x) (p) ifi for all y e Y and all fe M, ll-A(x) (y, p 1f),

ll-3x :XA(x) (p) if! there is a cover S E,9 such that for each f e S

we can find a y, 6 Y with ll-A(x)(y,, p 1f).

1.2.2. Lemma. For any standard-interpretation,

(i) ll-Vx:s3!y:tA(x,y)<->3!f:t‘Vx:sA(x,f(x)),
"-3! y :9’(x) Vx : s (A(x) <—>y(x)).

(ii) Adding constants O and S with their obvious interpretations, we obtain a
model of higher-order Heyting’s Arithmetic (HAH) with full induction:

ll-VX:9’N (X(0)AVn : N(X(n) —>X(Sn)) -—>X= N).

2. Modelling CS and its relativizations

In this section we will describe monoid models for the system CS (Section 2.2),
and for the relativizations of CS which are considered in [7] (Section 2.3). We
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shall reason classically about the models. Later on (in Section 3) we consider
refinements using an intuitionistic metatheory. But first, we introduce some
notation and state the CS-axioms.

2.1. The theory CS

CS was introduced and extensively discussed in [15]. The motivation behind its
introduction was to give an adequate formal system for the foundation of
intuitionistic analysis from the analytic viewpoint. The domain of choice se
quences described by CS will be called BC. We will write BL for the domain of
lawlike sequences. Before stating the axioms, we introduce some notation.

We use k, n, m, . . . as variables for natural numbers, 5, 11,4’,. . . as variables for
elements of BC, u, v, w, . . . as variables for finite sequences of natural numbers,
and a, b, c, . . . as variables for lawlike mappings from N to N, or from N (N to N.
x, y, z, . . . are variables ranging over the whole of Baire space B, S is used for the
natural ordering between finite sequences, * denotes concatenation. If x e B and
u e N‘N, then “x e u” stands for “x has initial segment u”, and we often write u
for the basic open {x | x e u} of Baire space. If x e B and n e N, then x(n) denotes
the initial segment (x(O), . . . , x(n -1)) of x of length n.

Besides BC and BL there is a third set playing an important role in the theory
CS, namely the set K of lawlike inductive neighbourhood-functions (mappings
from N<” to N). An element a of K has the following properties:

Vxe B 3n 6 N a(i(n))>O,

Vu, v E N<” (u S v & a(u) >0 —>a(u) = a(u)).

Such a function a codes a continuous c_1:N”->N” by

g(x)(n) = m ifl 3k a((n) * x'(k)) = m + 1.

We put
IS = {Q l a 6 K}

Thus I_(E cts(N”, NN), the set of continuous functions from Baire space to Baire
space. In fact, classically, I_(is the set of all continuous functions; intuitionistically,
‘continuous’ is in this context usually defined as ‘being an element of I_(’.

The system CS consists of the following axioms and schemata.
1. (closure and pairing)

Vf€I.< V8 31111=f(e),

V8.713f. g 6 K3; (8 =f(€)/WI = 8(0).

2. (analytic data)

Ve (A(e) —>3f€ K (371(8 = f(n))/\Vn A(f(n)))).

3. (continuity for lawlike objects) For p ranging over N, BL, or K:

Vs 3pA(e, p) ——>3aE K Vu (aua/=0->3p Vs e uA(e, p)).
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4. (Va 31} continuity)

V8 311 A(e, 11)—->Bfe I_(Va A(:-:, f(e)).

And finally a schema of lawlike countable choice

5. (AC—NF)

Vn 3a 6 BL A(n, a) —>3 lawlike N—F>BL Vn A(n, Fn).

In the schemata, there are no free variables except possibly lawlike ones.
Observe that
(a) combination of CS3 and AC—NFyields a principle of continuous choice

analogous to CS4;
(b) if j :N XN —->Nis bijective, and h is the induced homeomorphism from

N" XN” to N”, h(x, y)(n) =j(x(n), y(n)), then 171oh“, 11-2°h“ EI_(,and for all
f, geI_(, h °(f, g)eI_(; hence BCXBCEBC via h, by CS1.

2.2. -The model for CS

Consider the monoid cts(B, B) of endomorphisms of Baire space, equipped
with the open cover topology ,9: for a sieve S we set S e ,9 iff there is an open
cover {Ui : i e I} of B together with homeomorphisms B —->U, such that each of
the composites u, :B—“>U, L» B is in S.

In connection with Section 3, we note the following. Let [Kbe the set of external
neighbourhoodfunctions, i.e. the set of functions f :N<"' -—>N which satisfy Vx e B
3n EN f(i(n))>0 and Vu, v (u 5 v /\f(u) >0 —->f(v) = f(u)). Then each cover
S e J has a ‘characteristic function’ in K, i.e. with each S 6 33 there is an fs EIK
such that for all ueN<"', there is a homeomorphism B —°‘->{xeBIxeu} in S
whenever fs(u) 990. Conversely, with each f EIKwe may associate a cover S, e J,
namely

3; ={g |3u (f(u) 7‘0/\im(g)§ u)}

Our model will be the standard interpretation in Sh(cts(B, B), O95).We start by
identifying the sheaf of natural numbers N and internal Baire space N” in this
model.

2.2.1. Lemma. (a) N is isomorphic to the sheaf cts(B, N) of continuous functions
B —->N,with the monoid action given by composition, a 1f = a 0 f.

(b) N" is isomorphic to cts(B,B), the monoid itself, with composition as the
monoid action, f 1 g = f 0 g.

Proof. (a) According to the definition of the standard interpretation given in
Section 1.2, elements of N are equivalence classes of collections (n, | f ES), n, EN,
S e J, which are compatible (i.e., n, = n,.,,,for all f e S and g ects(B, B)). If S is a
cover, S contains continuous functions u, :B-=> U, 9» B for some open cover {[1,}
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of B, and with a compatible (n, If e S) we may associate a function a :B —->Nby

a(x)= nu‘ ifi xe U,.

Then a is well-defined (by compatibility), and continuous. Conversely, each
continuous function a :B —>N determines an open cover {a"(n) In EN} of B, and
hence a cover Sa={f Iim(f);some a“(n)}e 3!, together with a compatible col
lection (rt, Ife Sa), where n, = m iff im(f)§ a"‘(m). These two constructions are
each others inverses (up to equivalence) and they both preserve the monoid
action.

(b) The exponent N N is the set of morphisms -r:cts(B, B)Xcts(B,'N) —>
cts(B, N) with monoid-action given by (-r 1f)(g, a)= 1-(f 0 g, a) (see 1.1).

With such a 1-we associate the continuous function f, :B —>B defined by

f.(x)(n) = 'r(1. fi)(x),

where ri :B —->Nis the constant function with value n. Conversely, with f e
cts(B, B) we associate the morphism 1-,defined by

r;(g. a)(x) = f (g(x))(a(x)).

As in part (a), these two constructions are inverse to each other, and they
preserve the monoid-action. Cl

2.2.2. Remark. If f e N”, a e N, then functional application in the model is given
by f(a) = )tx . f(x)(a(x)). Thus II-f(a) = b iff for all x EB, f(x) (a(x)) = b(x).

N (N, the sheaf of internal finite sequences of natural numbers, can be identified
as cts(B, N<"'), in a way analogous to 2.2.1(a). If fe N" and a e N, then f_(a), the
initial segment of f with length a, is Ax. W (a(x))ects(B, N4”), and if u EN‘‘",
then ll-fe u (i.e. f has initial segment u) iff for all x, f(x)e u(x). Cl

Next we turn to the interpretation of lawlike objects. Intuitively one may think
of the application of the monoid-action to an element of a sheaf as a step in a
construction process. For example, one may regard an element f e N” as ‘a choice
sequence at some stage of its construction’. The information we have at that stage
is, that the sequence lies in im(f). After restricting f to g, we have the information
that the sequence lies in im(f 0 g).

lawlike elements are elements whose construction is completed. Therefore we
put

2.2.3. Definition. Let X be any sheaf. XL is the smallest subsheaf of X which
contains the set {xe X Ix is invariant under the monoid-action}, i.e. x EXL iff there
is a cover S such that

VfeS‘v’gects(B,B)x1f=xIfog.

We call the elements of X,_ the lawlike elements of X.
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Observe that (N),_= N, (N(N),_= N (N; natural numbers and finite sequences of
natural numbers are all lawlike. An element f of N” Ects(B, B) is invariant under
restrictions iff f is a constant function. Thus BL is interpreted as the sheaf of
locally constant functions from B to B.

If x is an element of a sheaf X, and f: B —>B is constant, then x 1f is lawlike.
In other words, each element has a lawlike restriction, so

|l-Vx e X -1 fi(x is lawlike).

An immediate consequence of this observation is the following Specialization
Property:

(SP) II-3xeXA(x)—>3xeX,_A(x)

for formulae A containing only lawlike parameters besides x (cf. 1.2.1). For
X = N”, this property was formulated in [15].

We now consider internal neighbourhoodfunctions. The exponent NW“) is the
set of morphisms f:cts(B, B) Xcts(B, N<"‘)—>cts(B, N) with restrictions defined as
(f 1 g)(h, b) = f(g ° h. b). We Put

K0 is the sheaf {fe N‘”‘"’ | ll-VgeN” Ea eNf(§(a))>O

/\Vu, v e N<” (u <0/\f(u)>0 —>f(v)= f(u))},

and we interpret K as the sheaf (K0),_of lawlike elements of K0. Below we will
show that the model satisfies Bar Induction, of which induction over K (and over
K0) is a well-known corollary.

Observe that an element of K which is invariant under restrictions is in fact a
morphism cts(B, N<”) —>cts(B, N).

One easily proves the following. If fell( (the external set of neighbourhood
functions) then f :cts(B, N<"')—->cts(B,N) defined by f(b)(x)= f(b(x)) is an ele
ment of K, and conversely, if fe K is invariant under restrictions, then f = g for
some g EK. Hence K is the sheaf of morphisms cts(B, B) Xcts(B, N<"‘)—>cts(B, N)
which are locally of the form f for some felK.

Let us look at internal functions on Baire space. The exponent N N—>NN is the
set of morphisms F :cts(B, B) Xcts(B, B) —>cts(B, B), with restrictions defined by
(F 1f)(g, h) = F0‘ 0g, h). An Fe N” —>N” preserves the monoid-action:
F(f o h, g 0 h)=F(f, g) 0 h. Let h:B —>BXB be a homeomorphism, and’ write
a = F(7r1h, ~n-2h).Then F(f, g) = a 0h’1 °(f, g) for any f, g ects(B, B), since f=
11, 0 h 0 h" 0 (f, g) and g = 1r; 0 h 0 h“ 0 (f, g). So F is completely determined
by F('n'1, h, 1r2h).

An F e N” —>N” which is invariant under restrictions is in fact a morphism
from cts(B, B) to cts(B, B). Such an F is of the form F(f) = a o f, where a = F(1).
So lawlike elements of N” —>N” are locally of the form fr->a of for some
a 6 cts(B, B).

Each a ects(B, B) has (externally) a neighbourhoodfunction fa EK, i.e. a func
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tion such that

Vx (a(x)(n) = m <=>3kf,,((n) * i(k)) = m + 1).

With fa EIKwe may associate an internal neighbourhood function f, EK as above.

One easily verifies that for F0,: g v—>a o g in (N_” -> N”)L,

II-“f, is a neighbourhoodfunction for Fa”.

Hence for all F e (N” —>N”),_,

ll-“F is continuous”.

We will prove below that |l-VF :N” -> N” (F is continuous).
I_(is the sheaf of all lawlike mappings from N” to N” which have a neigh

bourhoodfunction in K. It will be clear from the foregoing that I_(= (N” —>N N),_.
The last step in the definition of the CS-model is the interpretation of the

universe of choice sequences BC. We interpret BC as N”, internal Baire space.
Under this interpretation, the axiom of closure (the first part of CS1) is

obviously true. The verification of the axiom of pairing (the otherhalf of CS1) is
straightforward. We state this explicitly in the following lemma.

2.2.4. Lemma. The standard interpretation in Sh(cts(B, B), J), with the interpreta
tion of BL, BC, and K as described above, gives a model of CS1, i.e.

II-Vfe I_(V:-:eBC (f(e)EBC),

“'V8»"l€Bc 3f»8€I_(3§€Bc (5 =f(§)/\"l = 8(§))- [3

The following observation will help to simplify the proofs in the sequel.

2.2.5. Lemma. Let X be a sheaf, and let A(p,, . . . , p,,,x) be a formula (possibly
containing parameters pl, . . . , p,,). Then if ll-Ex e X A(p1, . . . , p,,, x), there exists a
q EX such that ll-A(p,, . . . , p,,,q).

Proof. If ll-3xeXA(x), then there is an felK such that for all ueN>”,

f(u)9‘0 =>319.€X"'(A1l1)(x..).

where 112B-°'—>{yI yeu} ‘—>B, and A 1:? stands for the formula A with all
parameters restricted to 11.Let {u,}, be the set of minimal finite sequences such
that f(u,-)aéO, and let S be the cover {gects(B, B) | Si (im(g)°; u,)}. For each ge S
there is a (unique) i and a (unique) h ects(B, B), such that g = 11,0 h. Let
xg=x,,‘. 1h. Then the collection (x3 I geS) is compatible, so there is a unique
qeX with VgeS:xg =q 1g. For this q we have ll-(A 1g)(q 1g) for each geS;
hence also ll-A(q) (cf. 1.2.1). Cl

Each of the next three Theorems 2.2.6, 7, 9 consists of two parts, one stating
the validity of a lawlike schema in the model, the other the validity of a related
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axiom. We will briefly consider the connection between these two parts below, cf.
Remark 2.2.13. From now on, in this section“|l-” always refers to forcing in the
interpretation in Sh(cts(B,B), J) described above.

2.2.6. Theorem. (i) The schema of lawlike countable choice AC—Nholds (X any
sort; besides x, A contains lawlike parameters only):

ll-Vne N 3x 6 XA(n, x) —>3Fe (X”),_ Vn A(n, Fn).

(ii) The axiom of countable choice AC—N*holds (X any sort):

|l-VP e 9’(N><X) (Vn 3x P(n, x) -> 3Fe X” Vn P(n, Fn)).

Proof. (i) Suppose ll-Vne N 3x 6 X A(n, x). By 2.2.5 and the specialization
property, for each n EN we can find an x,,e XL with II-A(n,x,,), and by SP we may
even assume that x,, is invariant under restrictions. Let F :cts(B, B) ><cts(B,N) —>
X be the unique morphism determined by

F(1, ft) = x,,, for each n eN.

Then F is lawlike, i.e. ll-Fe(X”),_, and II-VnA(n, Fn).
(ii) Choose P:cts(B, B)><cts(B,N)><X—>.0 with ll-VnEx P(n, x). For each n

we may find (by Lemma 2.2.5) an x,,EX such that ll-P(n, x,,), i.e. P(1, n, x,,) = T.
As in (i), let F :cts(B, B) Xcts(B, N) —>X be the morphism determined by
F(1, ti) = x,,. Then ll-VnP(n, Fn), for if n EN and fects(B, B), then

P(f.r'I.(F1f)(fi))=P(f.r'1.x..1f)=P(1,fi.x..)1f=T1f=T- Cl

2.2.7. Theorem. (i) The schema of lawlike continuity for natural numbers C—N
holds: (A has all non—lawlikeparameters shown)

ll-VeeN"3neNA(e, n)—>3FeKVueN<"
(Fu>0 —>3nVa 6 uA(s, n)).

(ii) The axiom of continuity for natural numbers C—N*holds:

ll'VP€ 9’(N” XN) (Vs 3nP(e, n) —>3Fe K0Vu e N<”
' (Fu>0->3n Ve€uP(e, n))).

Proof. (i) Suppose ll-VsEN” 3n 6 N A(e, n). Then in particular, choosing a the
identity mapping, we find a continuous a :B -—>Nsuch that ll-A(1, a). Externally,
a has a neighbourhoodfunction geK determined by

g(u)= m+1 iff Vxeua(x)= m.
Intemalizing this neighbourhood function gives us the F eK with the required
properties. More precisely, let

F:cts(B, N<~) -9 cts(B, N), F(u) = g 0 17¢.

Choose any u eN<"‘ such that II-F(u)>0. Then a is constant on {xe B | x e u}, say
with value n, and it follows easily from ll-A(1, a) that II-Vse u A(1, L1).
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(ii) Choose P :cts(B, B) Xcts(B, N) Xcts(B, B) —>.0 such that Ii-Va3n P(n, 5).
Fix any homeomorphism h :B —>B XB, and find a continuous a :B —>N such that
P(1r1h, a, 7r2h) = T. Let {u, :B—°'>U, <-9 B}, be‘ a disjoint cover such that a 0 u, is
constant, say with value n,. We now have to find an F :cts(B, B)Xcts(B, N<~) —>
cts(B, N) such that

(1) ||-Fe K0,

(2) It-Vv(Fv7’=0—>3nVeevP(n, 5)).

Define, for f e cts(B, B) and v EN<"‘,

1, if for some i, f—(Jc—)(lth(v))x v ; h(U,),

0, otherwise.m,.s)={
Note that F (f, 6) is continuous, and that F(fg, 13)= F(f, 13)o g, so F determines a
well-defined morphism cts(B, B) Xcts(B, N<”) —>cts(B, N).

We show that now (1) and (2) hold:
For (1), the only thing that is perhaps not immediately clear is that ll-VsEu

(eeu/\Fu7’=0). To show this, choose f and g in cts(B,B). Then VxeB3i
(flx). g(x)>e h(ua), so

Vx 31'Bu, 3f(x) Bu, 3 g(x) u, ><v, E h(U,),

and we may assume lth (u,) =1th(v,,). Now choose for every x a neighbourhood w,,
of x such that Vye w,,f(y)e u,; then

Vx Bi Vy e w,,?@(1th(u,)) x u, g h(U,-).

Thus, we have found a cover {w,}, and finite sequences v, such that for each
x. g(w,-(x))e v,-,and f(w,-(x))(lth(v,-))><v,-E h(UJ, in other words

II-3veN<"‘(ge v/\(F1f)(v)9’=0).
Hence (1) holds.

For (2), choose v and f such that ll-F(f, z3)9é0, i.e.

Vx az?(’x')(1th(v))x v 9 h(U,).

Now fix a cover {w,_:_B—°'>W, C—>B}, such that for each 1'there is one particular U,
such that Vx e W, f (x)(lth(v)) XV; h(U,). It suflices to show that for each w,,

ll-3n V3 6 131 w, ((P 1f) 1 w,)(n, e).

To this end, let n = n,, and choose g and k in cts(B, B) such that Ii-ke 6 1 w, 1 g,
i.e. ‘v’xeB k(x)ev. Then ‘v'xeB (f o w, o g(x), k(x))eh(U,), so we can find a
continuous 111:8—>B such that (fw,g, k)= H 0 u, 0 1/].

But then

P(fw.-8. rig.k) = P(1nhuul1.aua¢. wzhu.-~11)

= P(1r1h. a. vrzh) 1 u.-tlv

=T1w¢=I
so ll-(P 1fw,g) (F1,-,k), which completes the proof of (2). Cl
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Note that in the proofs of C-N and C—N*we did not use special properties of
N, except that natural numbers are lawlike. Therefore,

2.2.8. Corollary. The model satisfies the schema of lawlike continuity for lawlike
objects, and the axiom of continuity for lawlike objects. In particular, the schema
CS3 holds in the model.

2.2.9. Theorem. (i) The scheme of lawlike continuity for sequences C—Cholds in
the model (where A(e, 1]) is a formula with all non-lawlike parameters shown):

||-V5 6 N” 31] ENNA(e, 'n)—>3FeI_( Va 6 NNA(e, Fe).

(ii) The axiom of continuity for sequences C—C*holds:

ll-VPE 9’(NN XN”) (Va 311P(e, 11)—>3F: NN—3°’-—>NNVe P(e, Fe)).

Proof. (i) Suppose ||-V3311A(e, 1;). If we choose 3 = 1, we find by Lemma 2.2.5
an fects(B, B) such that ll-A(1,f). Hence also ll-A(h, f o h) for all h ects(B, B)
(by Lemma 1.2.1, since all other parameters in A are lawlike). Thus letting F be
the morphism “compose with f”:cts(B, B) Xcts(B, B) —>cts(B, B), F (g, h) = f o h,
proves (i) (cf. the discussion of the internal set I_( at the beginning of this
subsection).

(ii) Choose a morphism P :cts(B, B) Xcts(B, B) Xcts(B, B) —>(I; suppose that
ll-Vs 311P(e, n). In particular, we find that |l- Sn (P1 1r,h)(1r2h, 1;), for a
homeomorphism h :B -9B XB. By 2.2.5, there exists an f ects(B, B) such that
ll-(P 1 'rr1h)(1r2h,f), i.e. P(1r,h, 'n'2h,f) i- T. Define a morphism

F :cts(B, B) Xcts(B, B) —>cts(B, B)

by

F(81, 82)=f ° (1-1 ° (81, 82)

then for all g1,g2ects(B, B),

P(81» g2a(FlS1)(1a 82)) = P(7T1hh_1(81a 82>.7T2hh-1(81» 82>.fll—1<81a82))

= (P(’7T1h:fa 772(1)1 h-1)<81a 82): T.

by choice of f. So

ll-VsP(e, Fe).

Finally, F is continuous, since all internal functions NN—>N N are continuous, by
Theorem 2.2.15 below. Cl

In the next theorem, we do not state the schema separately, since it follows
from the axiom.
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2.2.10. Theorem (Full Bar Induction BI*).

II-VPe9’(N<”) (Vs 3u EP (3 e u)/\Vu.(Vn u * (n)eP<-> u eP)—>( )eP).

In the proof of this theorem, we will externally use the principle of ‘double Bar
Induction’, which says that if U is a subset of N<"‘><N<"‘barring each pair of
sequences of natural numbers, and monotone and inductive in both arguments
(separately), then (( ), ( ))eU. This principle follows (constructively) from ordi
nary Bar Induction.

Proof of 2.2.10. Choose P:cts(B, B) Xcts(B, N‘‘”)—>.0, such that

ll-Ve3ueP(ee u)/\Vu(Vnu * (n)eP<->ueP).

Now let

P = {(u, v)eN<"‘ ><N<~ I P(L'¢,13)= T}

(here T is the top-element of .0, ii is the function x r—>u * x ects(B, B), and 13is
the constant function B —>N<"’with value v).

Clearly, B is montone and inductive in each of its arguments. For each x e B, let
3,, be the constant function B —>B with value x. Then ll-3n §,,(n)e P, hence for
some continuous a :B —>N,ll-§,,(a)e P, i.e. P(1, }\yJ'c(aY))= T. If y is any element
of B, choose an initial segment 14of y such that a is constant on {z E B I z e u}, say
with value n. Then P(ii, JE(n))= T, i.e. (u, i(n)) e B. This shows that P bars pairs of
sequences, so by double Bar Induction, (( ), ( ))o.=_I3,i.e. ll-( )eP. Cl

2.2.11. Theorem (i) (Analytic Data). Let A(e) be a formula with all parameters
lawlike, except for 3. Then

ll-Vse N” (A(e) —>3Fe I_((311e = F(-n)/\V§A(F({)))).

(ii) (Generalized Analytic Data). Let X1, . . . , X,, be arbitrary sorts, and let
A(x1, . . . , x,,) be a formula with all parameters lawlike, except for the variables x,-of
sort X, (i= 1,. . . , n). Then

ll-Vxl - - -‘v’x,,(A(x1,..., x,,)—>

3Fe((X1><° ' °><X..)”")L(3n (x1,- - -.x..)= Fn AV11A(F(n))).

Proof. Since I_(= (N N ——>N”)L, (i) is a special case of (ii). To prove (ii), we may
assume that n = 1, by taking the product X = X 1X- - -XX,, of sheaves. So suppose
ll-A(x), with x e X. Let F :cts(B, B) ><cts(B,B) —>X be the morphism defined by
F(f, g)=x 1g. Then F is lawlike, ll-F(1)=x, and ll-VnA(F-n). Cl

Reviewing the properties of the model that have now been proved, we see that
the CS-axioms are satisfied: CS1 was proved in 2.2.4, CS2 is 2.2.11(i), CS3 is
2.2.8, CS4 is 2.2.9(i), and AC—NFis a special case of 2.2.6(i). Thus,
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2.2.12. Corollary. The standard interpretation in Sh(cts(B, B), j) (with B,_,BC
and K interpreted as described in the beginning of this section) gives a model of the
theory CS.

2.2.13. Remark. We promised above to say a word about the relation between
the lawlike schemata and the axioms. We have given separate proofs of the
starred axioms AC—N*, C—N*, C—C* and BI* here in order to make our
discussion of the properties of the model self-contained. Readers familiar with
[15] will be aware of the fact that variants of the schemata AC—N,C—N,C—C,and
BI with an additional parameter of type N” follow logically from the schemata
without a parameter via analytic data. We shall indicate briefly how the starred
axioms follow from the lawlike schemata via generalized analytic data. For
example, consider the relation between C—Nand C—N*:to prove C—N*

|l'VPe 9’(N" XN) (V33n P(e, n)

—>3feK0 VueN<” (fu#=0—>3nVe e uP(e, n))),

it sufficas, by generalized analytic data, to show that

II-Vlawlike F:N” —>9’(N” XN) Vn (Ve 3nF(n)(e, v)

—>3feK0 Vu eN<” (fu7(=0—>3nV5 6 uF(n)(e, n)));

in other words, it suffices to prove the schema

ll-Vs3nA(n, e, n)

—>3f€KoVueN<N (fu#O—>3n V8 6 uA(n, 1-:,n))

for formulas A with no other non-lawlike parameters than n and e. In a similar
way, AC—N* (C—C*,BI"‘) is reduced to AC—N (C—C, BI) with an additional
parameter. The derivation of schemata with an additional parameter is treated in
[15], Section 5.7. The proofs there use analytic data in the form

“' V11(An -*Bn) <->Vf€I.((VnA(f(n)) -> VnB(f('n)))- L3

A consequence of Theorem 2.2.7(ii) is that the model satisfies strong continuity
principles for functions between metric spaces.

2.2.14. 'l1Ieorem. Let (X, p) be an internal metric space, which is separable, i.e.
ll-3deX” ({d,_IneN} is dense in X). Then

Ii-“all functions N” —>X are continuous”.

Proof. Given a morphism F EX”", consider the predicates

Pi: = {(n, 8) | 0(d... F(e)) <2"‘}€ €?(N XN").

and apply C—N*. Cl
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2.2.15. Theorem. |l-“if X is a complete separable metric space, and Y is a separable
metric space, then all functions X —>Y are continuous”.

Proof. In case X is Baire space, this is immediate from 2.2.14. The general case
follows from the fact that AC—N*(logically) implies that every complete separable
metric space X is a quotient of Baire space (i.e., ll-“there exists a g :N” —->X such
that for all V: X, V is open in X ifi g“(V) is open in N"”’), see e.g. [20]. Cl

Thus, for example, all functions from Baire space to itself, and all real functions
are continuous in the model. It is perhaps illustrative to see what real numbers
look like in the model: note that by countable choice (2.2.6) all reals are Cauchy.
Since N appears as cts(B,N), the sheaf Q of internal rationals is the sheaf of
locally constant functions B —>Q, for which we write loco(B,CD). Sequences of
rationals are morphisms a :cts(B, B)Xcts(B,N)—>loco(B,Q), and we can show
that such a are determined by their values a(1, ri), so Q” ’='loco(B,OWE
loco(B XN, 0). The sheaf of Cauchy sequences C E Q” is the subsheaf given by

a E C ifi ll-VkSn Vn’> n Ian —an’|< 1/k,

while elements of C are identified according to

ll-a ~ B ifl ll-Vk3n Vn'> n Ian'- Bn'| < 1/k,

We write gt for the sheaf of internal reals, which is the (internal) quotient C/~.

2.2.16. Proposition. 92 is isomorphic to the sheaf of continuous real valued
functions on Baire space.

Proof. If aeC, then by AC-N, ||-3feN” VkVn'>fk |a(fk)—an'|<1/k, hence
(by 2.2.5) there exists a continuous f :B —>N"'such that

ll-VkVn'>fk |a(fk)-an'| < 1/k,

or equivalently,

(1) Vx e B Vk e N Vn’>f(x)(k) |a(x, f(x)(k)) —a(x, n')| < 1/k.

But (1) expresses that for each x e B, {a (x, n)},, is an (external) Cauchy-sequence,
hence we have a function

Fa :B->[R, xr->lima(x, n)

and it is straightforward to check that F, is continuous, and that a ~ B implies
that Fa = F,,.

Conversely, for each continuous g :B -91}?we can construct an internal Cauchy
sequence 0g 6 loco(B XN, D) such that '

(2) op“~ a, and Faf = g,
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as follows. Given g, fix for each n a cover “It”= {U£}kof B consisting of disjoint
clopen subsets, with the property that

Vx, g 6 U2 |g(x)—g(y)|< 1/n, and 011"“ refines all".

For each n and k we choose a rational q(n, k) such that

Vx 6 UL‘|g(x)—q(n, k)|<2/n.
Now let

cr.,(x,n) = q(n, k(x)).

where k(x) is the unique k with x 6 UL‘.Then f: B ——>N"‘defined by f(x)(n) = 4n
is a modulus of convergence for 0-8,i.e.

Vx 6 13Vk V71’>f(x)(k) |0g(x. f(x)(k)) - 0g(x, n')| <4/k,

so we have that ll-“o-3is a Cauchy-sequence”. Clearly, lim_,,,Ug(x,n) = g(x), so
the latter half of (2) holds. It is also straightforward to check that o'F_~ a. To
conclude the proof of the fact that 0 and F are isomorphisms, it suflices to
observe that they preserve the monoid-actions (the action on loco(B ><N,Q) is
given by a 1f= a o (fx 1)), which is obvious. D

This concludes our discussion of the model. We will return to it from a different

point of view in Section 3.

2.3. Relativizations of CS

In [7], relativizations of CS are studied, which are obtained by the following
procedure: when M E K is a monoid of neighbourhoodfunctions, (with a corres
ponding submonoid M ={f Ife M} of cts(B, B)), we can restrict the quantifiers
over (lawlike) elements of I_(in the CS-axioms to M. This leads to the following
axioms:

CS(M) 1. a (closure of BC) VfeMVe 31}(f(e) = n),
b (Pairing) V6.7?3158 6 M34 (8 = f(€)/WI = 8(5))

CS(M) 2. (analytic data) Ve(A(e) —>Efe M (31;3 = f(*n)/\V{A(f(§)))).
CS(M) 3. = CS3
CS(M) 4. (Va 311 continuity) Va 31}A(e, n) —>V8 Bfe MA(e, f(e))

and lawlike AC—NFas before.
For countable sets M these relativizations come up naturally if one tries to

model CS in sheaves over Baire space (see Section 4 below).
CS(M)4 may seem rather unusual. Note first that it is non-trivial: elements of

M are lawlike, and if n is a non-lawlike element of BC, then there is no lawlike f
such that Ve f (e) = n. Secondly, an f e M has a lawlike neighbourhoodfunction, so
we can apply CS3 to V2Bfe MA(e, f(e)). This yields an open cover {u, | ie I} of
N” by disjoint basic open sets, such that for all i there is an fi eM satisfying
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V8 6 u, A(e, f,-(3)).Finally, through AC—NFwe can piece the f,’s together and find
an fe I_(such tat ‘v'sA(e,f(e)). That is to say, CS(M)4+CS3+AC—NFl-CS4. A
consequence of this is that CS(K) coincides with CS.

Note that the converse implication of CS(M)4 follows from CS(M)1a. If BC is
closed under application of elements of M only and M is a proper subset of I_(,
then the converse of CS4 may fail.

In the sequel, j is some fixed bijection N XN —>N with inverses 1'1 and
1'2:N—>N. This induces a homeomorphism h :N” —>N” XN”, h(x)(m) = (j1x(m),
j2x(m)), with inverse h“ such that h“(x, y)(m)=j(x(m), y(m)).

We call M pairing-closed ifi 11-,o h, 172° heM, and for all f and geM,
h ‘l o (f, g)e M. If M is pairing-closed, then one can prove in CS(M) that
BCXBCEBC via h.

We shall briefly indicate how models for CS(IV{)can be obtained by the
methods of Section 2.2.

Let M be a submonoid of cts(B, B), such that:
(1) For all finite sequences u, the function 11:xr—>uIx is in M. (u Ix denotes

the sequence obtained from x by replacing the initial segment x(lth(u)) of x by u.)
Let 35 be the collection of sieves S EM satisfying
(2) For all xeB there is a 116S such that x eim(fi).
Then J6 is a Grothendieck topology on M, and we interpret CS(1\/I)in sheaves

over (M, 3‘).
Before we do so, however, a word on the condition (1) and the definition (2)

seems in order. The open cover topology 35on cts(B, B) is characterized by the
fact that with each set S e 35there is a collection {U,}, of opens of B which cover
B, and such that for each i, 8 contains an embedding B—°'>U, ‘—>B. To preserve
this characteristic property, we must restrict our attention to monoids which
contain sufliciently many open embeddings. For reasons of simplicity we consider
only monoids which satisfy (1), and we define the topology (2) accordingly.

In the model over (M1,35), N, N”, BL,K and I_( appear just as before (cf.
Section 2.2, pp. 72-75). Let nbf(M) be the set of neighbourhoodfunctions for
elements of M. Then nbf(M)§ K. M is interpreted as the set of locally constant
maps B—>nfb(Ml),and M as the sheaf of morphisms cts(B,B)><cts(B,B)->
cts(B, B) generated by the set of morphisms which are of the form F(f, g) = h 0 g,
for some fixed heM (cf. the discussion of the interpretation of K and I_( in
Section 2.2). Note that M has the same properties internally as M has externally;
in particular, M is closed under pairing iff M is, and M contains j, and 1', iff M
does. Finally, BC is interpreted as the smallest subsheaf of NN (= cts(B, B)) which
contains 1; in other words, BC is interpreted as the set of functions in cts(B, B)
which are locally in M.

As in Section 2.2 we consider the specialization principle, continuity of lawlike
functions BC—>N”, countable choice, Ve 3n-continuity (C-N and C—N*),con
tinuity of arbitrary functions BC—>N”, Vs 311-continuity (CS(1W)4) and bar
induction (BI and BI*) in Sh(M,j) under the interpretation described above.
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If M contains all constant functions B -> B, i.e. if BLC BC, then the specializa
tion property holds in Sh(M,J) by the same argument as in 2.2.

All lawlike mappings F :BC—->N” are locally of the form F(f) = 0: 0 f, where
a ects(B, B) is F (1). So the elements of (BC—->N”)Lare continuous and have a
neighbourhoodfunction in K. Hence they can be extended naturally to continuous
functions N” -9 N" in I_(.

Sh(M, J) is a model for the axiom of countable choice AC-N* (proof as in
2.2.6). If M contains all constant functions B -> B then the schema AC—Nholds
in Sh(M, J) (cf. 2.2.6). In any case, Sh(M, J) is a model for the schema AC—Nof
lawlike countable choice to lawlike objects:

ll-Vn 3x 6 XL A(n, x) —>3 lawlike N—F>XL Vn A(n, F(n)),

where X is an arbitrary sheaf.
The schema C—Nis valid in Sh(M, 3‘) (cf. 2.2.7). If M is pairing-closed (i.e. if

BCXBC=BC) then the corresponding axiom C—N*holds as well, by the same
argument as in 2.2.7.

If M is pairing-closed then all functions F :BC—>N” are continuous. This
follows immediately from C—N*.

In Sh(M, J) the schema CS(1W)4holds:

II-Vs311A(e, n) —>Vs EFE MA(e, F(e)).

The proof deviates slightly from the one for C—C in 2.2.9. Assume
|l-Va 311A(.-'-:,1}), then in particular |l-A(1, f) for some f 6 BC. This F is locally in
M, hence there is a cover {iii} such that each f o 12,EM, and of course
ll-A(t1,,f 0 iii). Define REM by E(g, h)=f 0 12,,so ll-A(t2,,I~",(i1,))for all i, and
therefore II-3Fe M A(1, F(1)). Hence also ll-Vs3Fe M A(e, F(e)).

If M is pairing-closed, then the axiom C-C* holds in the form

ll-VPE 9’(BC XBC) (V8 31] P(e, 1])—>BFIBC —>BC Vs P(e, F(e))).

To see this, let P e 9’(BC XBC), i.e. P :M XBC XBC —>0, and assume
II-Vs 3-n P(e, 11). Then there is an f 6 BC such that P(7r, o h, 772o h, f) = T, where
h :B='—>B XB is induced by j. Define the morphism F :MX BC—>BC by
F(g,, g2)= f 0 h" o (g1, g2). One easily verifies that ll-VsP(e, F (3)). Moreover, by
the previous remark F is continuous.

Sh(M,,¢) is a model for relativized analytic data and for generalized analytic
data. Note that it suffices to prove CS(M)3 for the global elements of BC, i.e. the
elements of M. Thus, assume that I}-A(f) for some f EM],and define F :M XBC—>
BC by F(g, h) = f 0 h. Then trivially ll-A(F(1)), hence also ll-VsA(F(e)).
Generalized analytic data is proved as in 2.2.11.

Finally, we consider BI and BI*. Sh(M,J) is a model for the schema BI,
independent of the properties of M (the proof is left to the reader). If M contains
all constant functions B —>B, then BI* holds by the argument of 2.2.10. There is
an alternative way of proving BI* however, which leads to the following result: if
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M is pairing-closed, then BI* holds in Sh(M,5). To see this, choose Pe 9’(N<”)
such that

ll-Vsau (8 e u /\Pu)/\Vu (Vn P(u =«0.)) <-»Pu).

Then in particular ll-3u(-tr, 0 h e u /\P(11-20h, u) (where h :B -> B XB is the
homeomorphism induced by j), so we can find an a ects(B, N<”) such that
V-xe B 7r, 0 h(x)e a(x) and P(1r2 o h, a) = T. Let {fq}be a cover such that a 0 :1,is
constant for each i. For a finite sequence w, let us write w,, w; for the finite
sequences such that h : w=> w, Xwz. We may without loss assume that a 0 ii,‘= 12,‘,
the constant function with value uh. Obviously «r20 h 0 ii, = 12.2,so we have that
P(l1i,2,12,1):T for all i. Now consider the predicate Qu = [P(ti2, 12,)= T]. Q now

satisfies Vu (Vn Q(u * (n))<-> Qu) (note that h : u *_(n)-=>(u1 * (j,n))X
(uz * (j2n))). Hence we may apply B1 to Q and find P(('), ( )) = T, i.e. ll-P(( )).

As an immediate corollary to the observations just made, we obtain

2.3.1. Theorem. Sh(M, J) is a model for CS(1W). U

3. The connection with the elimination translation

We now want to investigate the connection between the interpretation of CS
provided by the elimination translation of [15] and the monoid models. The
interpretation of CS through the elimination translation is an interpretation in a
constructive metatheory. Therefore we will first (Section 3.1) outline a construc
tive treatment of the monoid models presented earlier, before actually comparing
the two interpretations (Section 3.2).

3.1. Constructive metatheory

We restrict ourselves to the interpretation of what we shall call the minimal
language. This is a four-sorted language of predicate logic, with sorts N (natural
numbers), BL (lawlike sequences), K (lawlike inductive neighbourhoodfunctions)
and BC (choice sequences). It does not have a sort N”. It is implicit in the rules of
tenn-forrnation that both BL and BC are subsorts of N”.

Note that there is a conceptual difference between the treatment of BC and BL
as subsets of N” and their treatment as separate sorts. Being of sort BC or BL is
an intensional property of an object: it is given to us as an object of that sort.
Being an element of the subset BC or BL is an extensional property of an object:
from the way it is given to us we can prove that it satisfies the extensional
e-relation w.r.t. that subset.

The minimal language contains constants which make it possible to represent
each primitive recursive f :N‘’ —>N by a term t[n,, . . . , np] in p numerical
parameters. In particular there is a bijective j :N2—>N in the language, with
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inverses 1'1,1'2:N —->N. Through j, 1'1,1'2elements of N can be viewed as codes for
elements of N1’and N ‘N. K is treated as a subsort of BL, i.e. the domain N ‘N of
the inductive neighbourhoodfunctions is coded in N.

We shall treat the minimal language rather loosely below. E.g. we use quan
tifiers Vf e I_(,3f EK and write equations f (e)(n) = m which are not in the minimal
language. Note however that quantification over I_(can be replaced by quantifica
tion over K and that atomic formulae f (z-:)(n)=m can be translated into their
‘definition’ 3k (a((n) * §(k)) = m + 1) where a e K is the neighbourhoodfunction
of f e I_(.

The treatment of CS in [15] is much more precise. The formal language used
there to formulate the axioms in is an extension of the minimal language. The
main difference is that it has constants appp : K xB'(’3—>BC, where
app,,(a, 51, . . . , 3,) is written as a [(31, . . . , 8p)oAmong the CS-axioms in [15] is
one specifying that a | (:21,. . . , e,,)=fv,,(.-51, . . . , 8p) where feI_( has neighbour
hoodfunction aeK and up is a homeomorphism (N”)" —>N”. Note that this
axiom makes our CS1-axioms of closure and pairing redundant. In fact, closure
and pairing are almost implicit in the presence of the constants appp. The minimal
language is entirely neutral in this respect. It can be used therefore to formulate
all kinds of theories of choice sequences.

For our metatheory we use the theory IDB, or rather a definitional extension of
this system. Strictly speaking, IDB ,is a two-sorted system, with variables
k, l, m, n, . . . of sort N, and variables x, y, z, . . . of sort B. The language has the
same constants as the language of CS for the definition of primitive recursive
functions from N” to N. In particular we have 1':N2—>N with inverses j, and
j2:N —>Nin the language as above, so N” and N‘‘’‘‘can be treated codewise. We
shall consider N” and N<"' as separate sorts here. Another constant of the
language of IDB is the constant K, for the set of neighbourhoodfunctions.
Formally these are treated as maps from N to N, but we refrain from this coding
and continue to look upon external neighbourhoodfunctions as maps from N‘‘'‘'to
N. Working within IDB, continuous functions from B to B are the functions coded
by elements of K. We add a constant K to the language for these continuous
functions. When working within IDB, we will often write cts(B, B) for K. (K is
defined from K as I_(is from K, see the beginning of 2.2.)

The axioms of IDB are the usual arithmetical axioms, the ‘defining’ axioms for
its constants (in particular, the axiom of induction over K), and the choice axiom
AC—NF.Bar induction is not an axiom of IDB, nor does it have any of the typical
intuitionistic continuity axioms for Baire space. Thus, IDB is just a subsystem of
classical analysis.

We must adapt the interpretation of the language of CS in sheaves over
K = cts(B, B) with the open cover topology to allow its treatment in IDB.

First we look at the definition of the open cover topology. As noted in Section
2, each open cover has a characteristic function in K. In the constructive
metatheory, we use this observation as the definition of open cover: a sieve
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S §cts(B, B) is a cover ifl there is an a GK such that for all u eN<~, Ax - u Ix is in
S whenever a(u)#0. (Recall that Ax- u Ix is the function “replace the initial
segment of length lth(u) by u”. In [15] it is shown that this function has a
neighbourhoodfunction in K, i.e. Ax - u Ix ects(B, B).)

The formal covers thus defined form a Grothendieck topology:
(i) An - m + 1 6K, so cts(B, B) is a cover. .
(ii) If S is a cover with characteristic function a 6K, and fects(B, B) has a

neighbourhoodfunction b EIK,then S 1f has characteristic function a ;b eK. (For
a ;b see [15]; a;b is defined in such a way that if a;b(v)9é0, then there is a
u eN<~ such that a(u) #0 and im(f°)\x - v Ix); u.)

(iii) If R E cts(B, B) is a sieve, S a cover with characteristic function a elK, and
R 1f is a cover with characteristic function bfGK for each f e S, then R is a cover,
with characteristic function a/b, where b :N<~->N is such that Av - b((u) * v) =
b,,,.,,,,,. (For a/b see [15].)

Next we look at the sheaves that are needed to interpret the CS-language. As in
Section 2, we interpret BC as cts(B, B). All other sorts and predicate constants are
to be interpreted as sheaves of lawlike objects, i.e. objects which are locally
invariant under restrictions. Such sheaves are completely determined by their
global elements, the elements which are totally invariant under restrictions.
Quantification over sheaves of lawlike objects reduces to quantification over the
global elements of such sheaves, because

ll-VxeXLA(x) ifi Vxe}_(L|l-A(x),
and

ll-3xeXLA(x) iff aseJvfes3xeX,_I+(A1f)(x),

where XL is the set of global elements of XL. Consequently, we can interpret
N, BL and K by the external sets N, B, and [K(modulo coding of finite sequences),
respectively.

Finally, we reformulate the forcing clauses. Prime formulas of CS are of the
form t=s (t and s numerical terms). Equations t=s are basically of the form
en=m or of the form an=m, e of sort BC, a of sort BL. (Constants are
interpreted by ‘themselves’, more complex equations can be replaced by equival
ent formulas in which only these simple equations occur.) BC is interpreted as
cts(B, B), BL as B, so we can put

ll-fn = m ifi Vx E B f(x)(n) = m,

|l-xn = m ifi xn = m.

We then proceed by induction:

II-A AB iff ll-A and ll-B,

ll-AVB iff 3aelKVu(au7é0$(|l-A1(}\x-ulx)

or II-B 1()tx - u | x)),

ll-A—>B ifl Vfects(B,B)(|l-A 1f:>|I-B 1f),
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ll-VpB(p) ifi Vp ll-B(p), p of sort N, BL or K,

ll-VsB(e) iff Vfects(B, B)||-B(f),

ll-3pB(p) ifl 3ae|K‘v'u(au¥=O=>3p||-B1()tx-u|x)(p)),
ll-3eB(e) ifl 3fects(B, B)|l-B(f).

(In the last clause we have incorporated Lemma 2.2.5.)
The language restrictions make it rather tedious to verify that the proofs we

gave for the validity of CS in sheaves over Cts(B, B) with the open cover topology
in Section 2 can be given in IDB with respect to the adapted forcing definition
above. It may be instructive to look at bar induction. Note first of all that the
language does not permit the formulation of this principle as an axiom. Instead
one can look at the schema with an additional parameter of sort BC,

Vs 3nA(é(n). n)/\Vu(A(u. n)<->VnA(u * (rt), 11))->A(< >.11).

To prove in IDB that this schema is "forced one uses the same argument as in
Section 2.3, except that external bar induction is replaced by induction over
unsecured sequences (which is a corollary of induction over IK),

Va GK (Vu (ausé 0-» B(u))/\Vu (B(u) <—>VnB(u =I=(n))) —>B(( ))).

Another problem here is that one has to show in IDB that the forcing interpreta
tion is sound, in order to have a full constructive proof that forcing over cts(B, B)
yields a CS model. Both the validity of the axioms and the soundness follow from
the observations in the next subsection.

We close this subsection with the following remark. Let A be a lawlike
sentence in the minimal language, i.e. all quantifiers in A are of sort N or sort BL.
Let A* be the IDB-formula obtained by replacing quantifiers over K by quan
tifiers over K. One easily verifies that

3.1.]. Lemma. IDB}-A* ifl IDB}-“ll-A”. D

In other words, the theory of the lawlike part of CS under the forcing
interpretation is just IDB. Since in the definition of CS in [15] IDB is the lawlike
part of CS, the treatment of forcing in an intuitionistic metatheory yields an
interpretation which is in this respect more faithful than the classical treatment.

3.2. Forcing and the elimination translation

Convention. In this section we assume that all choice parameters in a fonnula are
shown in notation.

In [15] a translation 1-is defined which maps sentences of the language of CS to
lawlike sentences. This translation is called the elimination translation. The
elimination theorem shows that 7 provides a sound interpretation of CS in IDB.
We give a short account of this interpretation here.

42



Sheaf models for choice sequences 89

The characteristic property of the CS-axioms is that they give an explanation of
choice quantifiers in terms of quantifiers over lawlike objects. This characteristic
property is exploited in the elimination translation.

Consider a formula 33 A(e). By the specialization property, it is equivalent to
3a eB,_A(a). Thus existential quantification over BC (in the absence of choice
parameters) is explained as existential quantification over BL. (In Section 2 we
have shown that the specialization property is true under the forcing interpreta
tion; in the form here, namely Se A(e) <—>3a6 BL A(a), it follows logically from
analytic data.)

Next we look at a formula Vs 3pA(e, p) (p ranging over N. BL, or K). By CS3
and CS1a it is equivalent to 3a 6 K Vu (au9’=0—>3p Ve A(u | 8, P». so universal
quantification over BC in the context of a lawlike existential quantifier is exp
lained in terms of a lawlike quantifier over K and a universal choice quantifier
over a formula of lower complexity. A similar observation holds for
V3(A(e)vB(e)).

By logic it follows that a universal choice quantifier in the context of a lawlike
universal quantifier or a conjunction can be pushed inside, i.e.

Vs VpA(e, p) <->VPVs A(e, p), and
V3 (A(e) AB(e)) <—>(Vs A(e)AVs B(e));

so universal choice quantification in this context reduces to universal choice
quantification over a formula of lower complexity.

Analytic data may equivalently be formulated as

V8 (A(e) —>B(e)) <-*Vfe K (Vs A(f(e)) -> V8B(f(e))).

so universal choice quantification in the context of an implication is explained in
terms of lawlike universal quantification over I_(and universal choice quantifica
tion over formulas of lower complexity.

By CS1b we have Vs Vn A(s, n) <—>Vf,ge I_(Vs A(f(e), g(e)), i.e. a pair of
universal choice quantifiers can be reduced to a single universal choice quantifier
and a pair of lawlike quantifiers over I_(.

Consider a formula Va 31; A(e, 11). By CS4 and CS1a this is equivalent to
3f e I_(Vs A(e, f(e)), i.e. universal choice quantification in the context of an
existential choice quantifier is explained in terms of a lawlike quantifier over I_(
and a universal choice quantifier over a formula of lower complexity.

Finally a formula Vs (f (e)(n) = m), where f e I_(,is easily seen to be equivalent
to Vb 6 BL(f(b)(n) = m), so universal choice quantification over an atomic formula
is explained as lawlike quantification.

One may summarize this by saying that the explanation of choice quantifiers
consists of a procedure to push universal choice quantifiers over the other logical
signs and to replace them eventually by universal lawlike quantifiers in front of
equations t= s, and to replace existential choice quantifiers not in the scope of a
universal one by existential lawlike ones straightaway.
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This procedure is the elimination translation. ~rnamely is defined inductively as
follows:

7 commutes with the connectives A, v, —->,and the lawlike quantifiers Vp and
3 p,

r(3e A(e)) 53a EBL1'(A(a)),

r(Ve (f(e)(n) = m))5 Va 6 BLf(a)(n) = m,

1'(Ve (A(e) AB(e))) E 1'(VeA(e)) /\ *r(Vz-:A(e)),

*r(VeVPA(e. p)) 5 VP 'r(Ve A(8. 0)).

*r(V8(A(8) -> B(6))) -=—Vf 6 K ('r(Ve A(f(8))) -> 'r(V8 B(f(8)))).

1'(Ve (A(e)vB(r-:)))'=‘-3a E K Vu (auaé 0 -> *r(V¢-:A(u I s))v'r(Ve B(u I e))),

1-(Ve3pA(e, p)) Eaa e K Vu (auaé 0 -—>3p1'(VeA(u | e, p))),

T(V8 VT!A(8, 11))E Vfs 8 € KT(V€ A(f(8), 8(8)».

'r(Ve 37: A(e. 11))E3f€ K *r(VeA(e, f(e)))

(In [15], the clauses for v and 3p contain an implicit application of AC-NF. Our
presentation is slightly different from but equivalent to the one given in [15].)

The elimination theorem states that the interpretation of CS in IDB via 1*is
sound, i.e.

(a) CS}-A $ IDBl-'r(A), for all sentences A in the language of CS,
and that is faithful, in the sense that

(b) CSl-A4-> r(A), for all sentences A in the language of CS.
The obvious question to ask now is whether the forcing- and the elimination

interpretation are in any sense related to one another. The answer is given by the
following theorem.

3.2.]. Theorem. Let A be a sentence in the minimal language, and let 1-(A)* be
obtained from the elimination translation 1-(A) as indicated at the end of the
preceding Section 3.1. Then r(A)* and ll-A are provably equivalent in IDB. In fact
one can show that 1-(VsA(f1(e), . . . , f,,(e)))* is literally the same as
|l-A(f1, . . . , f,,).

Proof. The second claim is proved by a straightforward induction on the logical
complexity of A(e1, . . . , an). From this, the equivalence of r(A)* and ||~A for
arbitrary sentences A follows easily, using the soundness of 1-. Cl

This theorem shows that elimination and monoid forcing are essentially the
same interpretation.

As a corollary to the elimination theorem and Theorem 3.2.1 we now find that
the monoid-forcing interpretation of CS (in the original CS-language) is classify
ing for CS, in the sense that
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3.2.2. Corollary. IDB}-“ll-A”ifl csm. El

The monoid forcing interpretation is also classifying in the sense of [16]; this will
be extensively discussed in [9].

We have thus shown that the elimination theorem is in fact a special case of the
standard method of interpreting intuitionistic theories in sheaves over a category
equipped with a Grothendieck topology. This result also shows that the elimina
tion procedure is not just a syntactical trick.

(It should perhaps be remarked here that it is not claimed in [15] that the
underlying idea is syntactical; the explanation of the elimination translation given
above even suggests the contrary. The syntactic flavour of [15] rather seems
inherent to the attention paid to the metatheory.)

A similar connection between monoid models and elimination translations can
be formulated for relativizations of CS. We trust that, with the monoid models of
Section 2.3 in mind, the interested reader can work out the details of an
elimination translation “which expresses monoid forcing” for relativizations of
CS.

4. Spatial models

We have now seen how CS and its relativizations can be interpreted in sheaves
over (a submonoid of) cts(B, B) with the open cover topology. In the preceding
section it has been shown that this interpretation corresponds to the elimination
translation for CS, i.e. the interpretation is in a sense the one ‘prescribed’ by
the axioms, and the monoid models are in a strong sense the classifyingmodels for
CS and its relativizations. But still, the monoid models do not help to solve the
problem of finding an informally described class of construction processes (a
subdomain of the universe of choice sequences) for which the validity of CS
axioms can be rigorously justified. As has already been said in the introduction,
the monoid models are formally motivated, not conceptually.

It therefore remains of interest to find models for CS (or relativizations) which
are spatial, and then preferably over spaces ‘resembling’ Baire space. The interest
of such spaces lies in their relation to internal ‘projection’ models: a model over
Baire space (treated in an intuitionistic metatheory) is equivalent to a projection
model of the form 011,,= {f(a) If e S}, where S is a subset of cts(B, B) (cf. Section
5.3 below). Such a 0110,is a subdomain of intuitionistic Baire space, i.e. it is a
‘conceptual model’. (For more discussion see [10] and especially [l9].)

In fact, the Diaconescu cover [2] yields a general procedure for obtaining a cHa
which is first-order equivalent to any given site (cf. [11]), but it seems to be
difficult to describe the cHa’s thus obtained in terms of familiar spaces. We will
therefore not apply the Diaconescu cover here, but instead we give a more direct
construction, which yields for each of the monoids M discussed in Section 2.3 a
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topological space XM which is first-order equivalent to Mlwith the open cover
topology. For countable M, XMis homeomorphic to a subspace of Baire space. In
general, X“ is a subspace of M” with the product topology, where Mlis regarded as
a discrete space.

Let M be a submonoid of cts(B, B), of the form described in 2.3. If F = (F,,),, is
a sequence of elements of M, we define FI," by induction: Pf’,=1 (the identity
mapping) and F",I‘” = F',I‘o F,,.,,,,. (Thus, if m >0, F',I‘= F,, o - - - 0 ,,+,,,_,.) We will
call a sequence admissible if for any composition F',{‘of m successive elements of
F the first m numbers of the sequence F,{‘(x),x e B, do not depend on x; i.e. F is
admissible it! for all m and n, AxF,',"”(x)(m):B —>Nis constant.

For a sequence F, being admissible means that we can define points lim,, (P) of
Baire space, for each n EN, by setting

lim,,(F)(m) = F,'I‘”(x)(m), for some (all) x e B.

Let X“ be the space whose points are the admissible elements of M", with the
product topology, regarding M as a discrete space; thus basic opens are the sets

Fn={G | G is admissible, and F, = G, for i=0, . . . , n-1}.

Note that this topology makes the functions lim,, :XM—->B continuous.
The language that we will consider is the minimal language, with an addditional

constant M (for a subset of K). Thus, we have a sort of natural numbers N, a sort
of lawlike sequences BL (a subsort of N”), a sort of lawlike neighbourhoodfunc
tions K (a subsort of BL), and a sort BC of choice-sequences.

In sheaves over XM, Baire space N” is interpreted as the sheaf of continuous
B-valued functions. We will interpret BC as the sheaf generated by (global)
elements of the form

f°lim,,:XM—>B,

where n EN, and f is (locally) an element of M (i.e. ll-f6 BC in the monoid model
over M, as in Section 2.3). The lawlike types are interpreted in sheaves over XM
as the sheaves of locally constant functions with the appropriate range.

We will show by formula-induction that forcing over the monoid M and forcing
over the space X“ are equivalent (Theorem 4.3 below). But first we need a
lemma to be able to compare covers in M and covers of XM.

4.1. Lemma. Let F 6 XM, n EN. Then for each a e B there exists a sequence G(a)
such that

(i) G(a) is admissible, and G(a)eBn.
(ii) If m > k 2 n, range(G(a),, o - - - o G(a)...-i) = V&(r):= {x 6 B Ici(r) is an ini

tial segment of x}, for some r strictly increasing in m.
(iii) If k 2 n, then limk G(a) = 0:.

Proof. If a e B, then for each k < n there exists a function g‘; such that for each
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m, the first m + 1 values of FR 0 - - - 0 F,,_, are constant on V,,-,(,,-_;(,,.,),by continuity
0fFk°"'° ,,_1ata.

Let g°‘(m) = max,,<,, g,‘;‘(m).Then

(a) Vk < n Vx, x'e V&(g..(,,,)Vi <\<mF,, 0 - - - ° ,,_,(x)(i)
=F:. ° ° ' ° ° ..—1(x')(i)

and without loss we may assume

(b) g“ is strictly increasing.

Now let

G(a),,(x) = Fk(x) if k < n,

G(a),,(x) = &(g‘'‘(k)) Ix if k 2 n.

(Recall that if x e B, U 6 N<"‘,then u | x denotes the sequence obtained from x by
replacing the initial segment of x of length lth(u) by u.) Then (i)—(iii)hold: the
only thing that is perhaps not immediately clear is that G(a) is admissible.
Consider a composition G(a),, 0 - - - 0 G(a)k+,,, of m + 1 successive elements of
G(a): if k + m < n, then there is nothing to prove since F is admissible. If k _>.n,
then G(a),, o - - - o G(a),,+,,,(x)= &(g°‘(k+ m)) Ix), and it is immediate from (b)
that the first m + 1 values of this output do not depend on x. And if k < n < k + m,
then

G(0!)k ° ' ' ' ° G(a)k+m(x)=Fk ° ' ' ' ° n—1° G(a)n ° ‘ ' ° ° G(a)k+m(x)

= Fk ° - ° ° ° ..-1(<i(g"(k + m)) I x).

and by (a), the first m + 1 values of this output do not depend on x. D

We now list some properties that we need in the inductive steps of Theorem 4.3
below:

4.2. Lemma. (a) If U§.{(-imIGelin, man} and VG€Fn3m2nC-ine U, then
the set {Gfl“" 0fl Fm e U, feM} is a cover of M.

(b) Ifa sieve S covers in M, then S bars each I7'n,i.e. VG e Fn 3m 2 n G$"‘e S.
(c) If geM, then {f|3m.>=n3GeI-7nG',{‘""=g 0f} is a cover of M.

Proof. (a) is immediate from Lemma 4.1; (b) follows trivially from the definition
of admissibility; (c) is a combination of (a) and part (ii) of the definition of a
Grothendieck topology. Cl

4.3. Theorem. Let A(e1, . . . , 3,) be a fonnula in the restricted language for CS(M)
described above, (where 51, . . . , 5,, are the non-lawlike variables occuning in this
fonnula,) and suppose ml, . . , mp< n. Then

I:"n|l-A(f,:m1,...,f,,:m,,) ifl‘ I+A(f,on,j"‘n,...,f,,o1=“,,;"'»)

where we write f, : m, for f, o lim,,H.(II-on the left is forcing in sheaves over the space
XM, II-on the right is forcing over the monoid M with the open cover topology).
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Proof. By induction on A:
(1) A(e) is em1= m2. Then if ksn,

I:"n||-em, = m,_[f: k] iff VG e Fnf 0 limk(G)(m1) = m2.

But f 0 limk = f 0 FL‘“'‘0 1im,,, so (using 4.1) this is equivalent to

Vx e Bf o FL‘""(x)(m1)= m2, i.e. ||'em1 = m2[f o F,'§"‘].

(2) A is B AC. This step is trivial.
(3) A is BvC. Then we have

Full-BvC[f,:mi]

iff VGe1:"nEmzn (Gm||-B[f,:m,-] or C-}m|l-C[fi:m,])

iff vgefin am an (II-B[f,o G:f'"«] or II-CU,o G,';:f'"«]).

But G',:‘,f""=P",I,f""0 GS“, so by 4.2(a) and (b) this is equivalent to

3 cover 5 of MVfeS|l-B[f, o"1=',:;"*«o f] or II-C[f, o1=',:,j"‘-of]

ifi ll-BvC[f. ° FK'"*].

(4) A is B—>C. In this case,

Full-B -+ C[f, :m.]

ifl VGe1:"n Vm an (C-}m||-B[f, :m,]=> C-}m||-C[_f,: m])

if! VGeI7‘n Vman (ll-B[f, o F',},f"‘*° G,'I""]$ II-C[f, o F',:,f"‘o G$"‘]

and by 4.2(c) this is equivalent to

vgem (tram ° F'.:.:'"-o g]: Ircm o P?.:"‘-o g1),

i.e. ll-B —>CU, : mi].

(5), (6)‘The case of universal quantification over lawlike types is obvious. The
case of existential lawlike quantifications is analogous to case (3) above.

(7) A is VnB(e1, . . . , 3,, 1.). Now if 1?“nI+A[r,:m,.], i.e.

‘v'feBC vm I7“_n|l~B[f,: m,,f: m],

then also

\/feBCVGeI:“nVmznémll-B[f,:m,,f:m]

(BC is the sheaf of functions f with ll-feBC in the monoid-model); so by the
induction hypothesis,

VfeBcVGe1:'n Vmznll-B[f, 0 F,'I,f"‘*° G$"",f].

But then, if f 6 BC and g EM are arbitrary, we derive that for the cover 3 defined
in 4.2(c), '

for each f'eS, ll-B[fi o P",‘,,.""*o g o f',f o f’],
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hence also ||—B[f,o F",‘,,f'"I0 g, f]. This shows that ll-VnB(e,, n) [f, 0 P',},f'"*].Con
versely, if ll-VnB(e,-,-n) [f, o F';‘,;"‘—],then if f and m are arbitrary, it follows
immediately from the induction hypothesis‘ that for each G e Fn and each
k 2 n, Gk ll-B [f,-: m,-,f: m]. Hence also Fnll-B [fi : m, f: m]. Thus Fnll-V11B(e,, 1})

tr. 0 F::.:'"- . H
(8) Finally, take A is 31; B(.'-:1,. . . , 8p’1;). Suppose that Fnll-31} B(:-:,, n)

[f, : m,-], i.e.

VGeI:"n3m2n3k,fC—}m|l-B[f,:m,,f:k].

We may assume k S m, so by induction hypothesis this is equivalent to

VGeFn Em Zn 3k,f|l-B [f, o F",},f"‘*0 G$"‘,f 0 FT" 0 G,'{“"].

Using Lemma 4.2(a), we then obtain ll-3nB(e,-,'n) [f,-0 FI‘,,f"“].Conversely, if
“-31;B(s,, n) [f, 0 F",;f"‘*],Lemma 4.2(b) gives us for each G eI:"n an m an and a
function fa such that ll-B[f, o F',‘,,’,i""-° G§"", fa], or, using the induction
hypothesis, Gm ll-B[f, zmi, fa : m]. Thus Fn ll-311B(e,, 11) [f,-:m,]. This completes
the proof. Cl

5. Lawlessness

A universe of sequences which satisfies the CS-axioms has strong closure
properties: it is closed under the application of all lawlike continuous operations.
For sequences satisfying the CS(M)-axioms, these closure properties are some
what weaker. On the far other end we find the universe of lawless sequences,
which has no closure properties at all (application of a lawlike continuous
operation other than the identity to a lawless sequence never yields a lawless
sequence again!) An important axiom here is the axiom of open data, which
roughly says that the extension of a property of lawless sequences is always an
open subset of the space of lawless sequences (as a subspace of intuitionistic Baire
space. For a precise formulation, see 5.2 below).

In this part of the paper, we first (Section 5.1) return to the models of Section
2.3, focusing attention on those which satisfy a version of open data. We also
describe how to obtain models for the theory of lawless sequences LS by an
internal model construction (‘projection models’, iterated forcing). The theory of
lawless sequences is formulated here in a language without arbitrary function and
power types (the minimal language), and the internal model-construction is
essentially the construction of [17].

Unfortunately, the proof of the correctness of this construction in [17] involves
a long formula induction, and is rather complex. Moreover, it is not easy to see
whether this proof can be extended to a higher order language. Therefore we will
in Section 5.2 present a sheaf model over (a space homeomorphic to) Baire space
for the higher order theory of lawless sequences. The proofs given in 5.2 are
purely semantical, and the model seems to be more perspicuous than the model
for LS presented in [1].
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Our construction of a model for the higher order theory of lawless sequences
was actually inspired by Troelstra’s appendix to [1], and it seems worth the effort
of explaining this in more detail. This will be done in Section 5.3.

5.1. Open data as analytic data

As a first example of a CS(lW)-model, consider the monoid M1,,of local
homeomorphisms of Baire space into itself. As has been said in 2.3, in sheaves
over this monoid Baire space internally appears as cts(B, B), and the sheaf BM‘of
‘Mb-choice sequences’ is interpreted as the subsheaf of cts(B, B) generated by 1,
i.e. the sheafification of M,,, which is just M1,,in this case. In this particular model,
analytic data ‘is’ open data (without choice parameters):

5.1.1. Proposition. In the model just described,

ll-Vs (As —+3u (u 3 1-:AV11e u An))

where A has all non-lawlike parameters shown.

Proof. We have to show that

II-V¢eM,,Ve(31je=t[rn—>3u(eeu/\V§eu3n§=tlrn)).

It suffices to choose mywith ¢:(f, g) = ll 0 g for some fixed local homeomorphism :1}
(since such morphisms Ill:M,,><Mh —>M,, generate the sheaf M,, of internal
lawlike operations N” —>N”, see 2.3). So suppose f and g are local
homeomorphisms such that "-31;f = (:111 g)(n), i.e. (Lemma 2.2.3) there exists a
local homeomorphism h such that f = o h. Find a cover {W,:B3> VV,C B}, such
that f 1 W, is a homeomorphism, and let for each x e W,, n§eN be such that

u:.==r?i<n:.>sr<U.>,

and let vi, be an initial segment of x such that f (v,,)§f—(x—)(n§,).The {vf,},_,,form a
cover, and ll-f 1 vie u; for each i and each x e W,. Also II-V5e u§,3-ng = 41(1)),for
if k and l are local homeomorphisms such that ll-ke uf, 1 I, then Vy e B k(y) e u; =
f?)(n,), so range(k)G U,, and therefore k = J:hf“k, i.e. ll-311lc= ¢(n). Cl

Sheaves over the monoid of local homeomorphisms were considered by Four
man in his talk at the Brouwer conference. He defined the subsheaf L of internal
Baire space (= cts(B, B)), his sheaf of ‘lawlesssequences’, to be the sheaf of local
projections. More precisely, let j:B XB —>B be a fixed homeomorphism, and
define L to be the subsheaf of cts(B, B) generated by j, = 7711'.Observe that this
sheaf L becomes definable in the particular theory CS(M,,) under discussion,
namely as {jle Ie e BM}. Thus, this model may be regarded as a ‘projection
model’, projected from a CS.(M)-modelof the type described in 2.3. In this model,
the sequences in L satisfy various conditions which are similar in character to the
axioms of LS (as formulated in 5.2 below), but there are some striking differences.
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For example, a crucial role is played by the notion of independence: two lawless
sequences a and B are said to be independent iff (a, B):=j °(a, B)eL (or in
CS(M,,)-terms, 1'13and jln are independent iff there exists a §eBM_ such that
1'1:-:= j,j,§, jln =j1j2§). This notion of independence is necessary, for example, to
formulate the multiple-parameter version of the open data axiom which is valid in
this model. Thus, there is an essential difference between this axiom of open data,
and the more traditional axiom, where instead of independence one has just
inequality. It does not seem to be possible to modify this model so as to obtain a
monoid model for ‘ordinary’ open data. _

The problem is that sheaves over monoids have to satisfy some non-trivial
closure-conditions (provided the sheaf and the monoid are non-trivial). For
example in Founnan’s model, the sheaf L is closed under projecting (ll-(a,B)e L
—>aeL/\B EL). Such closure conditions are incompatible with the ordinary
multiple-parameter version of open data. This strongly suggests that it is impossi
ble to obtain monoid models for the theory LS.

Let us take a different approach for obtaining an LS-model, by starting with a
monoid model for LS‘. (LS1 is the theory with axioms (schemas) just like those of
LS, but with the schemas LS3, LS4 restricted to formulas containing at most one
parameter over choice sequences (lawless sequences), see [1], [18].) In fact, the
sheaf L above is a domain satisfying the LS‘-axioms. A simpler LS‘-model can be
obtained as follows: let M0 be the monoid of continuous functions of the form
12,i1(x)= u Ix, for finite sequences u. The open cover topology is just the ‘bar
topology’ ({Li,I ie T} covers ifi {u, | ie=_I}is a bar in N‘‘’‘‘).In Section 2.3 it was
shown that sheaves over this monoid yield a model for this instance CS(Mo) of
relativized CS, and it is clear that analytic data comes down to open data without
(non-lawlike) parameters in this case, and the sheaf BMOof ‘M0-choice sequences’
(the subsheaf of cts(B, B) generated by the identity) gives a model for the theory
LS‘.

It is not an LS-model, of course, again because the monoid action on the sheaf
gives us too many closure properties. For example, in sheaves over M0,
ll-3:5,n E BM“(5% 1;/\3n Vk > n Ek = fik) (take to different sequences u and v of
equal length), which clearly contradicts (the two parameter case of) open data.

At this point, we may invoke a method of Troelstra’s for constructing an
LS-model from an LS‘-model: In [17], Troelstra shows that if L‘ is a subspace of
Baire space satisfying the LS‘-axioms, then for each a EL‘,

“ll...={u * 7r..(a) | 14€N<”}

can intuitionistically be shown to be a model of LS (here 71",,(a)(n) = a(u * (n))).
Thus, within the monoid model Sh(Mo) under discussion, we have many

LS-models, but they are not definable externally. An easy way out here is to
construct internally the direct product "U= ILEBC“Ila.Then Sh(Mo)|l-“Oil|l-LS” by
Troelstra’s result, and it is possible to reduce this two-step forcing to a single step.
One then obtains a sheaf-model over a site § which is neither a monoid, nor a
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topological space. We will not describe the construction of § in detail: the reader
who is familiar with models over sites will be able to work it out for himself.

It should be stressed that the proof of Troelstra’s result uses induction on
formulas, and holds only for the first-order language in which 15 is usually
formulated. We have not been able to find a direct proof of the validity of the
open data axiom in sheaves over the site S without this restriction on the
language.

5.2. A sheaf model for LS

We start by formulating the LS-axioms. Theyasre formulated in a higher order
language (with arbitrary function- and powersorts, as in Section 1), with in
addition, sorts BL for lawlike sequences, K for lawlike neighbourhoodfunctions,
and L for lawless sequences; these are all subsorts of N”. We use a, B, ‘y,. . . as
variables ranging over L. The axioms are

LS1 (decidable equality)

Va, BEL (a = Bvaaé B).

LS2 (density)

VueN<N3aaeu.

LS3 (higher order open data) For each n EN,

Va,” -Va,,(71=(a1,...,a,,)/\A(a,,...,a,,)—->3u1aa,-~-3u,,3a,,
VBl€u1. . .vBneun(#(Bla--'sBn)—}A(B19'-'vBn)))

where 79(a1, . . . , an) abbreviates /\1‘,<,-‘,, a,-=/=a,-).
LS4 (higher order continuity) For each n EN,

val. ' ‘van(#(al:'--sa'n)_')aaA(al9-°-9a7ua))
—>3eeK,,Vu1---Vu" (e(u1,...,u,,)7E0
—’3ava1Eu1" 'Va,,€u,,(=)é(a1,...,a,,)->A(a1,...,an,

(where K, is the set of n-place lawlike neighbourhoodfunctions, defined in the
obvious way).

In LS3 and LS4, the formula A contains no other non-lawlike parameters than
the ones shown.

Our sheaf model will in fact be an interpretation in ‘sheaves with a group
action’, as described in e.g. the appendix of [5]. Let (1),,: n e N) be an enumeration
of N4” in which each sequence occurs infinitely many times. Let T be the space
[INN V,,_,equipped with the product topology. In this section, we will write V“
instead of just u for the basic open subset {x | x e u} of B, for u a finite sequence.
If u,, . . . , u,, are finite sequences, then we write (VW,. . . , V,,_)for the basic open
subset fl,"=, 1r,"(V,,‘) of’ T. T is obviously homeomorphic to B,'but for present
purposes T is notationally more convenient than B is.
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We now define a group G of auto(homeo)morphisms of T as follows. Consider
the following two types of automorphisms of T:

(1) For each n, m EN and u EN<"‘ such that v,,< u and v,,,s u, the automorph
ism h = h[n, m, u] of T which interchanges the nth and mth coordinate of a point
x E T, provided both coordinates begin with u; i.e.

xm, ifk=nandx,,Eu,x,,,Eu,
h(x)k= x,,, ifk=mandx,,Eu,x,,,Eu,

xk, otherwise.

(2) For each nEN, f,g:N->N with

n<g0<f0<g1<f1<g2<f2<--
such that

—{v,,(,,,,},,,and {v,(,,,,},,, are constant sequences in N<"‘
—123(0)and um, are incompatible extensions of v,,, the automorphism h =

h[n, f, g] of T defined as follows (cf. the picture below):
(a) If x E T is such that x,, E vf(0)and xg(0)€ v,,, then h(x) = y, where y,, = xg(o,,

y,(0)= x,,, y,(,,,+,)= x,(,,,, for each m EN, yg(,,,)= xg(,,,+1,for each m EN, and y, = x,
for all i¢{n}U{g(m) I m EN}U{f(m) I m EN}.

(b) If y E T is such that y,, E 128(0)and y,(0)Ev,,, then My) = x, where y and x are
related as in (a).

(c) If z E T is a point to which neither (a) nor (b) applies, then h(z) = z.

7 ggo> rte) gg1> rg1> gg;> rg2> -~-
7 I I I T

r
l 1 1 l

“T3 glo> f(0) gl1>rx'1) g€2> r€2>

G is the subgroup 3f the group of automorphisms of T generated by all
homeomorphisms of the form (1) or (2).

Recall (cf. [5], appendix) that if G is a group of automorphisms of T, a ‘sheaf
with G-action’ on T is a sheaf A on T with an action of G on the sections of A,
written a H a‘, such that

a‘=a, a‘°"=(a“)", IIa‘=b‘]I=g"(IIa=b]I)

(and hence, E(a")= g“(E(a)), and (a 1 U)‘ = a‘ 1g"‘(U)).
In the ‘standard interpretation’ in such sheaves with a group action, the sheaf of

natural numbers N appears as the sheaf of continuous partial functions U —>N,
U E0(T), with right composition

<U—°——>N>o—>(h*‘(U)“—""»N)
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as action. Similarly, internal Baire space N” appears as the sheaf of continuous
partial functions U—>B with right composition as action.

If A is a sheaf with G-action, a global element of A is a global section a of A
which is invariant under the action of G (a‘ = a for g e G). We define the sheaf
AL of lawlike elements of A to be the subsheaf of A generated by the global
elements of A. (In fact, this is what we also did in Section 2.)

Our model will be the standard interpretation in sheaves over the space T with
G-action, where the space T and the group G are as defined above. Further, we
specify the interpretation of the additional constants: BL and K are interpreted as
the sheaf of locally constant partial functions U ——>B and U—>|K respectively
(where K C B is the set of external neighbourhoodfunctions), with right composi
tion as action. The sheaf of lawless sequences L is the sheaf generated by the
projections 1r,,: T—>B (n EN), again with right composition as action. Note that
each of the homeomorphisms in G locally either is the identity, or interchanges
coordinates. Hence the sheaf of partial functions U —>B (U e0(T)) which are
locally some 11-,,is indeed closed under the action of G.

The rest of this section will consist of the proof of the following theorem.

5.2.1. Theorem. The interpretation just described yields a model for the higher order
theory LS.

Verification of 1.81 and LS2 is trivial. For the axioms of open data and
continuity, however, we have to do some work. First note that if
A(a1, . . . , a,,, pl, . . . , pk) is a formula with al, . . . ,a,, as lawless parameters of
sort L, and we interpret all other parameters p1,. . . , pk by global sections
131,. . . , 15,,of the appropriate sheaves, then

[A(a1)-°°9ans§19°°-9§k)]

is a global section of the powersheaf 9’(L"); that is a function P:L" —->O(T')
which is strict and extensional

(P«a19--°9 ---9an)»
P(a11U.....a..1U)=P(a1....,a..)flU.

and_moreover preserves the action, i.e. P(a§, . . . , afi) = g“P(a,, . . . , a,,).
By the interpretation of lawlike elements described above, such functions

generate the extensions of the formulas A occurring in the LS-axioms, and
therefore we may restrict our attention to strict extensional functions P which
preserve the action, as we do in the following two lemmas.

5.2.2. Lemma. Let P:L" —->O(T) be a global section of 9’(L"), and let x and y be
two points ofTsuch that x,,= ymfor each i = 1,. . . , p. Then x €P(11',,1,. . ., 11-,__)ifl
y eP(1r,,1, . . . , 1r,,p).

Proof. Suppose x e P(1r,,,, . . . , 1r,,_),and choose sequences ul, . . . , uk such that
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xe(Vu‘, . . . , Vuh)§P(7'r,,l, . . . ,1r,,_). We may assume that each uiavi, and that
k znp. We now define an h e G and a point ze(V,,1, . . . , V...)such that h(z)= y
and 11",,‘o h = 7,,‘ for i= 1, . . . , p. This suffices to prove the lemma since then

y = h(z)e h(P(1r,,1, . . . , 1r,,v))= P(1r,,1 ° h’1, . . . , 1r,,_0 h"1) = P(1r,,‘, . . . , 1r,,,).

Let {a,, . . . , a,} = {1, . . . , k}\{n1, . . . , np}. Choose for each is 1,two incompati
ble extension wi and wfi of um, and let" {f‘(m)},,, and {g‘(m)},,, be sequences of
natural numbers such that

v,«(,,,,=wi and vg«(,,,,=wfi, for each isl,
and

k<g‘(0)<f‘(0)<g‘(1)<f"(1)<---, for eachisl.

and such that the ranges of the g"s, and those of the f"s, are mutually disjoint.
Now set

h = hlaa. f‘. g'] ° - - - ° h[a1. f‘. g‘]

and let 2 be the point defined by

Zen.= M0)» Zg‘(o)= Ya.» Zr'(m) = Yr‘(-n+1) for each m '5 N»

Zg‘(m+l)= yg«(,,,, for each m e N,

z,, = y,, for all other n.

a.- gj(0) f‘l(0) g‘l(1) f‘l(1)

I
1 1 1 I

:1. g*'<o> filo) g‘i1) fin

Then ze(Vu‘, . . . , Va), and h(z)= y. El

5.2.3. Lemma. Let P:L"—>0(T) be a global section of 9’(L"), and letl_y=
(V,,_,. . . , V”) be a basic open subset of T with U§P(1r,,l, . . . , 11-,,,).Iff:N—>N
is a function with f({n,, . . . , n,,})fl{n,, . . . , n,,}=¢, and W=(V,,,‘, . . . , V“) is a
basic open of T such that wfwz um (i = 1, . . . , p), then W_C_P(7r,(,,1,, . . . , 1r,(,,_,).

Proof. Let U and f be as described in the lemma. By 5.2.2, we find

(1) 7r;l1(Vu_l) F1- - -Fl 7r;p1(V,,_p)§ P(*n',,l, . . . , arm).

It suffices to show that

7Tf_(}1,)(‘/uni)n ' ° ° n 77]-'_(31,)(‘/unp)Q P(7Tf(n,)a - ° - 9 7Tf(n,))9

but by 5.2.2 again, (2) already follows from (3),
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P P

‘D1 niol 7TF—H1(Vs.)E P(7Tf(n1)9° - - 97Tf(n,))9

where s, is the shortest sequence with

(4) S,2 um and s, 20,0“).

(We may of course assume that u,,, and um‘, are compatible, since otherwise (2) is
trivially true.)

To prove (3), choose y E T such that

Yr(n.)€“-an Ymeunn and Yn.€”r(n.) (i=1.---.P)

We will define a point x e fl§’=.11r;l(V,,_d),and an automorphism h e G such that
h(x) = y, and arm‘, 0 h = 17,,‘on a neighbourhood of x, i = 1, . . . , p. This suflices to

prove the lemma, since x e P(7r,,l, . . . , 11-,5)implies that also

X E P(7Tf(n‘) ° h, . . . , ‘IT’-(up)° = h_lP(7Tf(n1), . . . , 7Tf(,.I_D)),

hCnCC y = h(x)E P(7Tf(nl), . . . , 7Tf(,,u)).

Let

h = h[n... f(n).,, Sp] ° - ° - ° h[n1.f(n1). 81]

h e G, since s, 2 um (and without loss um2 1)”),and s, 2 vfw. Let x be defined by

xm=y,(n0, X.f(,k)=yn‘,fOI'i=1,...,p

1». = Ym. for other coordinates m.

Then x,,‘es, and xfwes,-, so h[n,,f(n,-),s,] interchanges the mth and f(n,)th
coordinates on a neighbourhood of x. It is clear that h(x)= y, and that xen?=l D
5.2.4. Lemma. As Lemma 5.2.3, but without the requirement that
f({n19' °-9np})n{n19- - -7

Proof. This follows from Lemma 5.2.3 by factoring f as a composition of
injections that do satisfy the hypothesis of 5.2.3. I]

Proof of 5.2.1. It has already been observed that LS1 and LS2 are trivial, and the
validity of open data (LS3) follows immediately from the preceding lemma. So we
only have to check LS4. Now if Va, - - -Van 3a A(a1, . . . , an, a) is a formula with
all (lawlike) parameters interpreted by global elements, then
IVa1- --Va,,(9’=(a1,..., ap) —>3aA(a,, . . . , ap, a))]| is a global truth value, i.e.
an open subset U of T such that g"(U)=U for all automorphisms ge G. But
(using a composition of automorphisms of type (2)) it is easily seen that the only
such U are (6 and T.

We may thus assume that [Val - - - Vap (75(a1, . . . , a,,) —>3a A(a1, . . . , ap, a))]|
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=T. In particular, if we let n1, . . . , n,, be distinct natural numbers such that
vm=( )for i=1,...,p, wefindthat

T=II3aA(1r,,l, . . . , 1r,,v,a)]= U [[A(1'r,,l, . . . , 113,’,a)].
aeBL

Let e be a p-place (external) neighbourhoodfunction such that e(w1, . . . , wp)=/=0
implies that for some a 6 BL,

(VM, . . . , V,.,_)E[[A(1'r,,1, . . . , 1r,,v,a)].

Let «Ebe the internationalization of e (E= “compose with e”). Then

IIVw1---Vwp(é(w,,...,w,,)%O—>3aeB,_VB1ew,---VB,,ew,,

(#(B1,---.Bp)->A(B1.---»l3p»a))l=T. (*)

To see this, choose wl, . . , wpeN<"‘ with e(w,, . . . , w,)#O. Choose aeB,_ such
that (Vwl, . . . , Vwv)§|IA(7r,,i, . . . , 1r,,v,a)H. Then by Lemma 5.3.3, it holds for any
p-tuple of distinct natural numbers m1,. . . , mp that

1r;,“(Vw‘)fl- - -fl1r,‘,,:(Vwv)=II7r,,,le W1/\' - -/\1r,,,p e w,,]I

§I[A(1r,,,‘, . . . , arm’,a)]

Hence (*) holds. CI

5.3. Projection models are Beth models

In the foregoing we have used the word ‘projection-model’ to refer to universes
of the form ‘WE’={f(a)| f e M}, where M is a subset of I_( and a is a lawless
sequence or a sequence in a domain which satisfies the LS1 axioms. In this section
we give our own exposition of the fact that validity in such a projection model is
equivalent to constructive validity in a topological model over (formal) Baire
space (cf. [18], and the appendix to [1]). By doing so, we hope to clarify the
remarks made in the introduction to Section 4, as well as to explain the relation
between the model presented in Section 5.2 and the appendix to [1].

As in Section 3, we restrict ourselves to the four sorted minimal language. As
formal language for the treatment of interpretations of this minimal language in
projection models we take the same language, but with the sort BC replaced by L
(for lawless sequences). We use a, B, y, . . . as variables of sort L. Moreover, we
add a constant I_( for the sort of continuous functions N” —+NN with neigh
bourhoodfunctions in K. As constructive metatheory for the treatment of Beth
models we use the system IDB (cf. Section 3).

Let A(e1, . . . , 8") be a formula in the minimal language, and let Q13‘be a
projection model. 0212‘|l'A(f1(a), . . . , f,,(a)) expresses that A holds if we interpret
(a) the parameters 5,, . . . , e,, by f1(a), . . . , f,,(a) respectively (f, e M); (b) the sort
BC by “ltd, i.e. quantifiers over BC are interpreted as quantifiers over 0110,;and (c)
the sorts BL and N by themselves. (So the satisfaction sign l=is treated in the
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104 G. van der Hoeven, I. Moerdijk

traditional Tarskian sense here, be it within the theory L8‘, or within an
LS‘-model). We will write A°‘(f,, . . . , f..) for the LS-formula in the single
parameter a of sort L which denotes 0113'l=A(f,(a), . . . , f,,(a)); thus
A°‘(f1,...,f,,) is obtained from A(e1,...,e,,) by substituting f,(a) for e,,i=
1, . . . , n, replacing bound variables 5 by suitably chosen f(a), and replacing the
quantifiers Va, 33 by the corresponding Vfelyl, 3f EM. We say that a sentence A
holds in Oil?‘ifl LS1}-Va A“.

The LS‘-axioms provide a full explanation of universal lawless quantification
over formulas B(a), in which a is the only choice parameter, and in which no
quantifiers over L occur. This explanation proceeds along the same lines as the
explanation of quantification over choice sequences in CS (cf. Section 3.2), but
since we restrict ourselves to the explanation of universal quantifiers and avoid
nested quantification, there is no need for the explanation of 3a, Va 3 B, Va VB.
The main difference with the CS-explanation lies in the treatment of formulas of
the form Va(A(a)—>B(a)). By open data in a single parameter, Va (A(a)—>
B(a)) is equivalent to Vu(Vaeu A(a)—>Vaeu B(a)), i.e., universal lawless
quantification is explained in terms of universal quantification over finite sequ
ences and universal lawless quantification over.formulas of lower complexity.

The explanation leads to the following elimination translation for sentences
Va 6 u B(a), B(a) not containing lawless quantifiers:

r(Va Euf(a)(n) = m) E Va 6 uf(a)(n) = m,

1'(VaE u (A(a) AB(a))) E 1'(VaE u A(a))/\ 1'(VaE u B(a)),

1-(Vae u (A(a)vB(a))) 5 3a e K Vv (avaéO

—>(r(Va e u * v A(a))

v'r(Va E u * v B(a))),

Vv ('r(Va E u * v A(a))

—>1'(Va 6 u * v B(a))),

1'(Va E u VpA(a, p)) 5 VP TWO!€ 14A(a. P)). P of 3
lawlike sort,

3aeKVv (av=;éO

—>3p 1-(Va e u * vA(pz, p))).

The translation 1- defined here is just a fragment of the full elimination
translation for LS. 1-has the following property (cf. [18]):

(1) If B(a) is free of lawless quantifiers and lawless parameters other than a,
then LS1I-(Va B(a) 4->'r(Vd 3(0)»

1-(VaB(a)) is a formula of lawlike IDB (i.e. IDB with BL for B, K for K, I_(for
cts(B, B), and the LS‘-axioms are conservative over IDB (in fact LS is conserva
tive over IDB), so we also have

(2) If B(a) is a fonnula as in (1) above, then
LS‘!-VaB(a) iff IDBI-1-(VaB(a)).

fr(Vae u (A (a) -> B(a)))

r(Va 6 u 3p A(a. p))
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Now let A(r-:1,. . . , e,,) be a formula in the CS-language. Then A°'(f1,...,f,,)
is a formula in a single lawless parameter, without lawless quantifiers. Hence we
can apply the previous elimination theorem to Va A°‘(f,, . . . , f,,). Let us (sugges
tively) write ull-A(f,, . . . , f,,) for r(Va e uA°'(f1,. . .,f,,)). The relation u|l
A(f,, . . . , f,,) then satisfies the following equivalences (provable in IDB):

u II-f(n) = 'n iff Va e B,_(a e u —>f(a)(n) = m),

ull-a(n)=m iff an = m (a of sort BL),

ull-A AB iff ull-A/\u||-B,

u||-AVB ifl 3aeKVv (av#0—->(u*v|l-Avu *v|l-B)),
ull-A—>B iff Vv (u * vll-A—>u * vll-B),

ull-VpA(p) ifi Vpull-A(p),

u ll-3,,A(p) iff 3a 6 K Vv (avaé0->3p u * vll-A(p)),

u ll-VsA(e) ifi Vfe Mu ll-A(f),

ull-3eA(e) iff 3aeKVv (av;/=0—>3feMu * vll-A(f)).
Inspection of these clauses shows that they are exactly the clauses defining

‘formal’ Beth-forcing for the minimal language, formulated in the language of
lawlike IDB, where N, BL and K are interpreted by themselves and BC is
interpreted as (the subsheaf of internal Baire space generated by) M. The word
‘formal’ in this context refers to the fact that the clauses for v and 3 are
formulated in terms of existential quantification over K. The clauses are as for
forcing in sheaves over Baire space, but we do not mention points. We just talk
about finite sequences, and bars defined via K. In the absence of external bar
induction this is a sensible adaption: instead of BI we can now use induction over
unsecured sequences. The distinction between lawlike IDB and IDB itself is just a
matter of notation. Hence the elimination theorem for LS‘ (properties (1) and (2)
above) yields the following theorem.

5.3.1. Theorem. Let A(e1, . . . , e,,) be a formula in the CS-language. Then 0113‘l=
A(f1(a),...,f,,(a)), i.e. LS‘!-VaA“(f1,...,f,.), iff it is provable in IDB that
A(f1, . . . , f,,) holds in sheaves over formal Baire space, where N is interpreted as
cts(B,N), BL as the sheaf generated by the constant functions B —>B. K by the
sheaf generated by the constant functions B ->IK, and BC by the subsheaf of
cts(B, B) generated by M. Cl

A simple application of this result is the following. Let M be the set {id}.Let
Va A(a) be an LS-sentence without other lawless quantifiers. Then A(a) and
A°‘(id) are equivalent in LS‘. So LS‘!-VaA(a) iff A(a) holds in sheaves over
formal Baire space, where a is interpreted as the generic element id. In this sense
lawless sequences are generic.

Another application is the one mentioned in the appendix to [1]: In [17] it is
shown that for M ={f,,:a v->n * (a),, In EN}, 01193’is an LS-model, provably in

59



106 G. van der Hoeven, I. Moerdijk

LS‘. Hence the sheaf generated by M is an LS-model over Baire space, provably
in IDB. One easily verifies that there is a homeomorphism h :B —>T’, where T’ is
the product of all basic opens of Baire space (without repetitions), and that It can
be chosen in such a way that f,, o h“ = 1:-,,.This is obviously the origin of the
LS-model in 5.2 above.
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The open data axiom LS3 for lawless sequences is actually an infinite list of
axiom schemata: for each n we have

LS3(n): A(a,,...,a,,)A/\,-<1-5,, a,-=x:a,--vi-Yulaal Slu,,3a,,

V515 "1 VflnE un(Ai<jsn /3i¢;3j‘*A(fl1.---./3n));

here a,-, [3,range over lawless sequences, and the u,-range over finite sequences;
‘are u’ stands for ‘a has initial segment u’. In [D] it was shown that LS3(l) does
not imply LS3(2) by using Cohen generic sequences. In [DL], this method was
used to show that LS3(2) does not imply LS3(3).

The aim of this note is to give simple proofs of these facts, by using the
models described in [HM]. Our method also shows that LS3(3) does not imply
LS3(4), but we have not been able to prove a similar independence result for
larger n. For n 24 a different approach seems necessary for showing LS3(n)7‘>
-7"LS3(n+ 1).

We observe here that the models described below all satisfy the axioms LS1
(decidable equality) and LS2 (density), and that the models which show that
LS3(n)7‘>LS3(n+ 1), n= 1,2,3, also yield the corresponding result LS4(n)7‘+
7‘>LS4(n+ 1) for the continuity axiom LS4. Thus we obtain

THEOREM. For n = 1,2, 3, there exists a model satisfying LS1, LS2, LS3(n),
LS4(n), but neither satisfying LS3(n + 1), nor LS4(n + 1).
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This note is far from selfcontained. All unexplained notation is as in [HM],
and we assume familiarity with the LS-model described in section 5.2. of [HM].
As in [DL], it'will be notationally more convenient to consider only 0-1
sequences.

THE FIRST MODEL

Let M be the monoid of finite sequences of 0's and 1's, with the operation
given by

u/v= v with the initial segment replaced by u,

that is,

u(n), if n < lth (u)
(u/U)"= { v(n), if lth (u)sn<lth (v)

M may be regarded as a submonoid of the monoid Cts(C,C) of continuous
functions from Cantor Space to itself, by identifying u with the function x—>u/x
in Cts(C, C). In sheaves over this monoid M equipped with the open cover
topology, the internal exponent 2""appears as Cts(C, C) (with restrictions given
by right composition), and it was shown in [HM] (section 2.3) that if we
interpret the domain of lawless sequences as the subsheaf of Cts(C, C) generated
by M, open data and continuity in a single parameter (LS3(l), LS4(1)) hold.

On the other hand, open data and continuity in two lawless parameters
cannot hold, as follows easily from the observation that in this model

II-Va, flfln Vm2 na(m) = fl(m).

To see this, choose two elements u and v of M, and let n be the maximum of
lth (u) and lth (v). Then if weM and man, we find for any xe C

w(m), m < lth (w)
u/W/X0") = U/W/x(m)= { x(m), otherwise.

So ll-u/w(m) = v/w(m). Thus ll-Vm2 n u(m) = u(m). This proves

PROPOSITION1. There is a model for lawless sequences satisfying (decidable
equality, density, and) LS3(l), LS4(1), but not LS3(2), LS4(2).

THE SECOND MODEL

We will now describe a model for LS3(2), LS4(2), in which LS3(3), LS4(3) do
not hold. As in [HM] (section 5.2), we define a space Tand a group G of auto
morphisms of T. Let (v,,),, be an enumeration of 2<"“ in which each sequence
occurs infinitely many times. For ue2<"“, let V, denote the canonical basic

open subset of C (Cantor space) determined by u. Now let T: 17,,VD".(Observe
that T is homeomorphic to C.)

We consider three types of homeomorphisms from T to itself. The first two
types (1) and (2) are defined as in [HM], section 5.2 (but with Baire space
replaced by Cantor space). In addition, we have a third type
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(3) for each triple n,,n2,k of distinct natural numbers with v,,|+ v,,2=vk
(+ denotes pointwise addition modulo 2), a homeomorphism
h[n,,n2, k] defined by

h(x)k = xnl + xnz

h(x)n2 = xk + xn,
h(x),,,=x,,, for all other In.

1 ‘:2 1‘

it‘ \ x JP .1 \ L
n1 n2 k

Thus, we have

nkoh = 71,,‘+ n,,2, 7t,,2°h= 7r,,l+ nk, and 7t,,,0h= n,,, for me N \ {k, n2}.

Now let G be the subgroup of the group of automorphisms of Tgenerated by all
homeomorphisms of types (1), (2), (3).

Our interpretation will be the standard interpretation in sheavesover Twith a
G-action (as in [HM], section 5.2.). The sort L of lawless 0 —1-sequences will be
interpreted by the subsheaf (of internal Cantor space) generated by all functions

T—>Cwhich are of the form 7z,,l+ + 7r,,p, for a set of p distinct natural
numbers {n,, ...,np}.

Note that in this model the axioms of decidable equality and density for L are
satisfied. We will now show that LS3(2) is also satisfied in this model. For this,
we need two lemmas.

LEMMA2. If {n,,...,n,,} and {m,,...,mq} are two distinct sets of natural
numbers, listed without repetitions, then there are numbers i and j, i4:j, and a
homeomorphism h e G such that

7:,-Oh= 7:,” + + 7r,,p, TI]-Oh= 7z,,,1+ + 7z,,,q.

PROOF. If p = 1, we can find a composition h of homeomorphisms of type (3)

which leave 7r,,|unchanged and add 7r,,,|,..., nmq;i.e. for some ke N,

7: 0h=7r,,l, 7tk°h=7I,,,l+...+7t,,,q
(and 7r,0h=7z,,all [e lN\{k,m,,...,mq}).

Ifp#= 1, first find an h which reduces 7t,,,l+ + 7z,,,qto a single projection, i.e.

nkoh = 7z,,,l+ + 7z,,,q.

Then apply the case p: l to the pair of (distinct!) sets {k}, {I., ...,I,}, where

1,,...,1, are such that (In!+ + 7z,r)°h= n,,' + + n,,p. Cl
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LEMMA3. Let A(a,, ...,a,,) be a formula with variables (1,,...,a,, of sort L,
and all other variables lawlike. _LetU = no’'( Vuo)fl F11:; '( V“) be a basic open
in T with U Q|A(n,,l, ..., n,,p)|, where n,, ..., np are p mutually distinct natural
numbers, and kznp. Then for each p-tuple mutually distinct numbers
m,, ..., mp,

n,;I|(V,,"l)fl n n,;I:(V,,np); |A(n,,,l, n,,,p)|.

PROOF. As lemma 5.2.4. in [HM]. D

COROLLARY4. In the model described above, LS3(2) holds, but LS3(3) does
not hold.

PROOF. It is clear that LS3(3) cannot hold, since we can find three lawless
sequences a, ,6, y in the model such that II-a+ ,6: y. LS3(2) does hold, i.e.

I+-Va,, a2(a. =#a2/\A (al, a2)-*.’~7u,3 a,Slu2 3 oz;

V515 "1 V325 “2(.31¢/32"A(.31.fl2)))

To see this, choose two distinct sections a, , a; of the sheaf L. We may assume
that a. , a; are global sections of the form (1,= n,-, 012= 1:], i¢j, since such
sections generate (by lemma 2). Now suppose x e |A(n,~,7:,-)|.By lemma 3 we can
find finite sequences u. ax,-, uzax, such that

(1) 2:: ‘(mo 2:; ‘(V..,) ; |A(n.~.2:,-)1.

i.e.

In,-e u,/\n,- e uz->A(n,-, 1:,-)|= T.

But then it holds that

|Vl31€ “I V/32E “2(.31¢52"AU31»fl2))I= T

For if {n,, ...,np} and {m,, ...,m,} are distinct, we can find i’,j’ (i’=t-j’)and an
M50 such that

(2) n,~°h=n,,l+_...+7t,,p, nj-:°h=7z,,,l+...+n,,,q

(lemma 2), and by lemma 3, (1) implies that

(3) In,»e u,/xnj: e uz->A(n,-I, 7t_,-r)I= T.

Hence also

Inn‘+Isa+ +-on+ +oc
...+n,, ,7z,,,l+ + n,,, )|
= I7I,"° E U1(= llloh)/\7Ij'°h E U2"/4(7I,"°h, 7Ij'°h)I
=h"|7z,~eu,A7t,-reuz-*A(n,:,nj:)|=T. Cl

Summarizing, we have first shown that ‘singleton projections’ generate (lemma
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2). This enabled us to prove LS3(2) just as the full LS3 is proved in [HM]
(lemma 3, corollary 4). In a similar way, we can show that LS4(2) holds in this
model. LS4(3), however, cannot hold, since for three lawless sequences at,, a2,
a3, it cannot be decided on the basis of initial segments whether (13= a. + (12,or
not. This shows that we have obtained the following

PROPOSITION5. There is a model for lawless sequences in which LS3(2) and
LS4(2) hold, but LS3(3) and LS4(3) do not hold.

THE THIRD MODEL

A slight modification of the model just described suffices to obtain a model
for LS3(3), LS4(3) which is not a model for LS3(4), LS4(4). The space T
remains the same, but the definition of the group G is different. Besides the
homeomorphisms of types (1) and (2) from [HM], we now take as a third type
all homeomorphisms of the form h[n,,n2,n3,k], where n,,n2,n3,k are distinct

natural numbers such that vk= 1),,‘+ v,,2+ v,,3. h = h[n,, n2, n3,k] is defined by

h(x)k =x,,l +x,,2 +x,,3
h(x),,3=x,,l +x,,2 +x,,
h(x),,,=x,,, for all other m.

‘in 12 B j‘
L L L
Lfi L

V I
.L .1 4 4

n1 n2 I13 k

The interpretation is again the standard interpretation in sheaves over Twith

G-action, but now L is the sheaf generated by the global elements 7r,,l+ + 7r,,p,
for {n,, ..., np}, a set of p distinct natural numbers, and p is odd. Observe that
this sheaf is closed under the action of G (i.e. right composition with elements
of G preserves ‘oddness’).

In this model, LS3(4) does not hold, since we can find four distinct lawless
sequences a, ,6, y, 6 such that H-a+/3+ y=6. Similarly, LS4(4) does not hold,
since we cannot continuously decide whether a+ fl+ )2: 6 or not. LS3(3) and
LS4(3), however, do hold. This is proved as for LS3(2) and LS4(2) in the second
model described above, but one has to be slightly more careful now in showing
that ‘singleton-projections’ generate for triples, i.e.

LEMMA6. Let {n,, ...,np}, {m,, ...,m,}, {l,, ...,I,} be distinct sets ofnatural
numbers, listed without repetitions, and with p, q, r odd. Then there exists a
homeomorphism h e G and (distinct) coordinates i, j, k such that

TE,-°h=7I,,l+ ...+ n,,p, 7rj0h= n,,,l + ...+ 7r,,,q,7Ik°/1=7t/l + + H1’.
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SKETCHOFPROOF. As in lemma 2, the general case is easily reduced to the case
p: 1. Thus, we have three distinct sets

{It},{m,,...,mq}, {l,,...,l,}.

And again, not bothering about the coordinates ll, ...,l,, but keeping n
invariant, we may as well assume that q: 1; i.e. we find a composition h of
homeomorphisms of type (3) such that

7r,,0h = 11,,

7t,,,0h= 7t,,,l+ + 7z,,,qfor some m,
while 1:,‘+ + 7:,’= (nsl+ + n,r,)°h,
for some coordinates s,, ...,s,,, where r’ is still odd.

Thus, we have three distinct sets of the form

{n}! {m}! {Sis -°-sSr’}'

If r’: 1, we are done. Otherwise, r’23, so the third set contains an element
which is distinct both from m and from n. But in this case it is not difficult to
see that we can find a composition h’ of homeomorphisms of type (3) which

reduces 1:,‘+ + 7:5,,to a single projection, but leaves the coordinates n and m
invariant. C]

We have now obtained the following proposition:

PROPOSITION7. There is a model for lawless sequences in which LS3(3) and
LS4(3) hold, but LS3(4) and LS4(4) do not hold.

THE PROBLEM WITH MORE PARAMETERS

It is perhaps useful to indicate why this approach does not work in the case of
more parameters. To obtain a model for LS3(4)7‘>LS3(5)in a similar way, one
is inclined to put sums of four lawless sequences in the sheaf L (to falsify
LS3(5)), and to add homeomorphisms to G which reduce such sums to single
projections. However, if one puts such sums in L, one has to do so homo
geneously (in order to obtain open data in four parameters a,, ...,a., for the
formula I-76(a.+a2+a3+a4=6)). But then one finds four-tuples of lawless
sequences projected from the sets {n,,n2,n3,n4}, {n3,n4,n5,n6}, {n5,n6,n7,n3},
{n,,n2,n-,,n3}, for example, i.e.

3a,Sla23a3£Ia4(/\, S,-<1-S4a,-at a,-Aa, + a2 + a3 + 0:4=0)

will hold in the model. This clearly contradicts LS3(4).
The reason why the proof of lemma 6 above fails in this case lies in the fact

that the analog of ‘preservation of oddness’ for the elements of 0 does not

hold: if one adds sums of four tuples, one may find a sum 7t,,l+ n,,2+ 7r,,3+ 7z,,4,
where 7z,,40his the sum of, say, 7r,,l,n,,2,7z,,5,71,,6, for some heG, which leaves
the coordinates n,, n2,n3 unchanged. Hence one has also added sums of three

coordinates, since (7r,,l + n,,2 + 7r,,3+ 7z,,4)°h = 7t,,l + 7z,,2+ n,,3 + 7t,,| + 7t,,2+ 7t,,5+
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+ 7z,,6= 7t,,3+ 7r,,5+ 7r,,6.Therefore, in trying to prove the analog of lemma 6 one
may, after having reduced three out of the four sets to singletons, end up with
four sets which look like

{'1}. {"1}. {k}. {n.m.k}

In fact, such a situation must occur if one starts with the four sets {n,, n2,n3,n4},
{n-_,,n4,n5,n6}, {n5,n6,n7,n3}, {n,,n2,n7,n3} considered above, since the
relation a,+a2+a3+a4=0 must be preserved by the action of G on the
elements of the sheaf L.

This suggests that for the case of more parameters, a totally different
approach is needed.

REFERENCES

[D] Dalen, D. van — An interpretation of intuitionistic analysis, Ann. Math. Logic 13, 1-43
(1978).

[DL] Dalen, D. van and J .S. Lodder — Lawlessness and independence, The L.E.J. Brouwer
Centenary Symposium (North-Holland, Amsterdam, 1982), 297-309.

[HM] Hoeven, G.F. van der and l. Moerdijk — Sheaf models for choice sequences, to appear.

69



7O



Tue Journal; or Svuaouc LOGIC
Volume 49. Number 3, Sept. 1984

ON CHOICE SEQUENCES DETERMINED BYSPREADS

GERRIT VAN DER HOEVEN AND IEKE MOERDIJK1

§l. Introduction. From the moment choice sequences appear in Brouwer’s
writings, they do so as elements of a spread. This led Kreisel to take the so-called
axiom of spreaddata as the basic axiom in a formal theory of choice sequences
(Kreisel [l965, pp. 133- 136]).This axiom expresses the idea that to be given a choice
sequence means to be given a spread to which the choice sequence belongs.
Subsequently, however, it was discovered that there is a formal clash between this
axiom and closure of the domain of choice sequences under arbitrary (lawlike)
continuous operations (Troelstra [l968]). For this reason, the formal systemCS was
introduced (Kreisel and Troelstra [1970] ), in which spreaddata is replaced by ana
lytic' data. In this system CS, the domain of choice sequences is closed under all
continuous operations, and therefore it provides a workable basis for intuitionistic
analysis. But the problem whether the axiom of spreaddata is compatible with
closure of the domain of choice sequences under the continuous operations from a
restricted class, which is still rich enough to validate the typical axioms of
continuous choice, remained open. It is precisely this problem that we aim to discuss
in this paper.

Recall that a spread is a (lawlike, inhabited) decidable subtree S of the tree N ‘ ” of
all finite sequences, having all branches infinite:

(i) Vu,v(ueS&vsu->veS),
(ii) Vu3n(u e S —+u * (n) e S).

(Unless otherwise stated, all notational conventions are as in van der Hoeven and
Moerdijk [I981], henceforth [HM]; so u,v range over finite sequences, n,m over
natural numbers, a, B,5, :7over elements of the domain of choice sequences, and * is
used for concatenation.) A spread S determines a subset of N", also called S, by

a e S¢>VncY(n) e S.

Kreisel’s axiom of spreaddata now reads

A(a) -v 3 spread S (ore S & V136 SA(/3)),

where A(oz)contains no free variables for choice sequences other than at;all other
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parameters should be lawlike. Every spread contains sequences, i.e. we have the
density axiom

V spread S 3a (1e S.

Other typical axioms are continuity principles for quantifier combinations of the
form Vailnand Vail/3.(In the system CS the axiom of spreaddata is replaced by the
axiom

A(a) —>3 lawlike continuous f (oze range (f) & V136 range (f) A( 19))

of analytic data. In other words, spreads are replaced by images of lawlike
continuous functions. In CS, the density axiom is redundant, since the universe of
choice sequences is closed under application of an arbitrary continuous operation.)

In this paper we will present a model for a theory of choice sequences containing
the axiom of spreaddata. This model has all the desired properties: besides
spreaddata and the density axiom, it satisfies Va3n-continuity, Va3,8-continuity,bar
induction, and the specialization property. Furthermore, the domain of choice
sequences is closed under application of all lawlike continuous operations from a
certain subclass S E K. Every spread is the image of a function in S:

VspreadS3feSim(f)=S.

The density axiom is an immediate consequence of this, and we also get relativized
continuity principles for quantifier combinations of the form Va 5 S 3n, Va 6 S 35,
and relativized bar induction. Finally, an axiom of pairing holds in the model. The
model will be similar to the models presented in [HM], and we will assume that the
reader has some familiarity with the techniques used in §2of that paper. As shown in
[HM], the elimination translation for CS is a special case of such a model. The
model we present here, however, does not lead to a similar elimination translation
based on spreaddata rather than analytic data. This will be pointed out in a final
section, where we will also briefly discuss the relation of this model to other models
for spreaddata that have occurred in the literature.

Acknowledgements.We would like to thank G. Kreisel for drawing our attention
to the problems discussed in this paper, and A. S. Troelstra, whose encyclopaedic
knowledge of the subject was of great help to us.

§2. Description of the model. Our model will be similar to the sheafmodels for the
systems CS(M) of [HM]. These systems contain an axiom of “relativized analytic
data”,

A(a)—>Elf e M(a 6 range (f) & \/Be range (f)A(B)),

where M is a fixed monoid of lawlike continuous operations. In these models,
“lawlike” is interpreted as “external” or “constant” (that is, as lying in the image of
the “constant sets functor” A:Sets —>Sh(C), C a site, A left adjoint to the global
sections functor).

Assuming this interpretation of lawlike objects, a lawlike spread is just a spread
given in Sets, and when working in a classical metatheory, in the models all lawlike
spreads will automatically be decidable. In Sets, spreads correspond to closed

72



GERRIT VAN DER HOEVEN AND IEKE MOERDIJK

nonempty subspaces of Bairespace: every spread S Q N‘” determines a closed
subspace {x e N”|Vn x(n) e S} of Bairespace, and conversely, to each closed set
T; N" we can assign a spread {x(n) | n e N, x e T}. These processes are inverse to
each other.

We will begin the construction of our model by describing a class of mappings
from Bairespace to itself which map spreads to spreads (i.e.are closed mappings) by
retracting every spread onto its image:

DEFINITION1. A closed continuous function f: B —+B is called a CHR-mapping
(closed-hereditary retraction mapping) if for any closed subset F E B,the restriction
f [F:F-»f(F) has a continuous right inverse i,~:f(F) —>F; that is, f o i, = id,(,,.

Note that if f: B —+B is CHR, each inverse i,: f (F ) —>F is also a closed mapping.
For if G is a closed subset of f (F) and {x,,},,is a sequence of points from G such that
{i,-(x,,)},converges to p, then {fi,(x,,)},, = {x,,},,converges to f (p), so f (p) e G, and
i,-f(p) = lim,,i,-fi,(x,,) = lim,,i,(x,,) = p; hence also p e i,(G).

Examples of CHR-mappings are closed homeomorphic embeddings and con
stant functions. In fact, the CHR-mappings form a monoid:

LEMMA2. The composition of two CHR-mappings is again a CH R-mapping.
PROOF.If f and g are CHR and F E B is a closed set, then we find right inverses

i,:f(F) —>F and j,(,,:gf(F) —>f(F) for f and g respectively, so i, ojfm is a right
inverse for g o f. E]

The key property of CHR-mappings is expressed by the following lemma.
LEMMA3 (FACTORIZATION LEMMA).Let f and g: B —>B be CHR-mappings, and

suppose im(g) 9 im(f ). Then there exists a CHR-mapping h: B —>B such that
9=f°h

PROOF.Let i: f (B) —>B be a right inverse for f : B—»f (B), and define h to be the
function i o g.

Ij3——“’———>9(3)

hl In
* f
B=,———z /(B)

Obviously f o h = g. To show that h is a CHR-mapping, choose a closed subset
H E B. Since g is CHR, we can find a map k:g(H) —>H such that the composite
g(H)—"—vH-9—'i>g(H)is the identity map. Now let j :h(H ) = ig(H) —>H be the com
posite k o f: ig(H) —»fig(H) = g(H)—"—»H. Then in0 j = id,,(,,,, for if x e h(H),
then x = i(y) for some y e g(H) E f (B), so hj(x) = igkf(x) = igkfi(y) = igk(y) =
i(y) = x. Thus I: is a CHR-mapping. E]

In order to get a model which has the properties as described in the Introduction,
we need a sufficient supply of CHR-mappings. For each spread S we will define a
CHR-mapping S which retracts B onto S.

The points of B carry a natural linear ordering given by x < y iff x(n) < y(n) for
the smallest n at which x and y differ. If x < y we will say that x is to the left of y.

Let S be a closed subspace of B. As noted earlier, S can also be regarded as a set of
finite sequences {u| 3x 6 S x e u}. We define the function S afllows (foreach x e B§
we define initial segments S(_x)(n)of length n by induction). S(x)(O)= ( ) of course,
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and

_ fl+l) ifx(n+l)eS,
S(x)(n + 1) = S(x)(n) * (m) OthCfWiSC,WLhCfCm is the least number

for which S(x)(n) - <m> e 3.

Thus, when we think in terms of the tree N ‘ "',S(x) is that path in S which is equal to
x as long as this is possible, and then picks out the leftmost branch in S. (Later on, S
will also give an internal function from choice sequences to choice sequences, and in
the model it will hold that (1e s«—+35 a = §(/3).)

LEMMA4. For each closed S E B, S is a uniformly continuous closed retraction of B
onto S.

PROOF.Unifgr_mcontinuity of S is clear, since we need only the initial segment x(n)
of x to define S(x)(n). And if x e S, S(x) = x, so S retracts B onto S.

To see that S is closed, suppose F E B is closed, and {y,,},,is a sequence of points
in F such that {S(y,,)},,converges to a point p. We need to show that p e S(F). Since
S(y..) -+ p.

(a-) Vk an, vn 2 nfS"(_y:)(k) = p(k).

We now distinguish two cases:
1) If Vk 3m,‘Vm 2 mk}7,,(k)e S, then the sequence {y,,},, also converges to p. So p

must lie in the closed set F, and S(p) = p.
2) Otherwise there exists a ko such that the set M = {m|}7,,,(k0)¢ S} is infinite.

Since S is a trgalso for each k 2 kg and m 6 M, y,,,(k)qtS. By (*) we find fcoihis ko
that Vn 2 nkoS(x,,)(ko) = fi(k0). But then for m e M, m 2 nko,and k 2 ko, S(x,,,)(k) is
the leftmost extension of ;3(k0)in S, and hence no longer depends on m. Thus the
sequence {S(y,,)},,contains a constant subsequence, necessarily having value p.
Therefore also in this case, p e S(F). [:1

PROPOSITION5. For every closed S E B, the function S is a CH R-mapping.
PROOF.Let S be a closed subset of B. We want to define a right inverse iF: S(F) —»F

for each restriction S r F: F —>S(F) of S to a closed set F.
If x e S, we call x a leftmost point in u if u is an initial segment of x and for each

n > 1th(u), x(n) is the smallest m such that x(n) * (m) e S (in other words, x is the
leftmost branch in the tree {v| u s v & v e S}). To define i, we consider three types
of points in S(F).

(1) If x E S(F) and for none of its initial segments u, x is a leftmost point in u, then
S‘ ‘(x) consists of precisely one point, viz. x itself, so x e F, and putting iF(x) = x is
the only thing we can do.

(2) If x E S(F) and x is a leftmost point in one of its initial segments u, while x is not
isolated in S(F), we also put iF(x) = x. lndeed, x e F in this case, since from the fact
that x is not isolated in S(F) we conclude that there is a sequence {y,,},,of points in F
such that {S(y,,)},, converges to x, while for no n do we have 'S(y,,) = x. ln
particular, no subsequence of {S(y,,)},,is constant. Therefore it follows as in the
proof of Lemma 4 that the points y,,also converge to x. Each y,,is in the closed set F,
hence so is x.
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(3) The remaining case: x e S(_I_’).x is the leftmost point in one of its initial
segments u, and x is isolated in S(F). Then we let i,(x) be the leftmost point in
S ’ ’(x) n F.

Clearly, S o i, is the identity on S(F). We claim that i, is continuous at each point
x e S(F). To see this, choose a sequence {x,,},,in S(F) converging to x. We have to
show that i,(x,,) —+i,(x) also. If x is a point of type (3) this is trivial. If x is a point of
type (2),make any choice of points y,,e F with S(y,,) = x,,.Then again as in the proof
of Lemma 4 it follows that the sequence {y,,} also converges to x (provided we
assume that for all n, x,, ;é x, which we can do without loss). In particular,
i,(x,,) —>x = i,~(x).Finally, suppose x is a point of type (1), i.e. x is never leftmost in S.
Without loss we may assume that the points x,,are all of the same type. If each x,, is
of type (1) or each x,, is of type (2), we have i,(x,,) = x,, and i,(x) = x, so trivially
i,(x,,) -+ i,(x). So suppose all x,, are of type (3). For each n there exists a shortest
sequence v,,such that x,, is the leftmost branch in S running through v,,.Choose any
points y,, with S(y,,) = x,,. Then u, must also be an initial segment of y,,. If lth(v,,)
converges to infinity, i.e. Vk3n,,Vn 2 n,‘1th(v,,) 2 k, then clearly y,, —>x. In particular
i,(x,,) -> x. Otherwise there exists a subsequence of {x,,},, on which 1th(v,,) is
constant, hence a subsequence of {x,,},,is constant. But all x,,were assumed to be of
type (3) while x is of type (1), so this is impossible. E]

Let us write S for the monoid of CHR-mappings. S can be equipped with a
Grothendieck topology, as follows: A sieve of functions 11/ Q S is defined to be a cover
if for some open cover {Vm.|ie I} of Bairespace (i.e. Vx e Bili e I u,-is an initial
segment of x), every function I7,"is a member of ‘IV.To show that this indeed defines
a Grothendieck topology, we need to verify that

(i) (transitivity) if ‘IV is a cover, and Q is a sieve such that for each
f e */V,f*(Q) = {g|f og e Q} covers, then Q also covers; and

(ii) (stability) if ‘IVis a cover and f E"S then f*("/V) = {g|f o g e W} is a cover.
The proof of (i)uses the cancellation property of the mappings of the form S: if S

and T are spreads and S E T, then S o T = T o S = S. If ‘IVis a cover, there is an

open cover {V,,_.| i e 1} of B with each 17,“e ‘IV. By assumption, for each fixed i,~I~/,'}'_.(Q)
covers, so there is a cover {V0].|j e J} of Bairespace such that for each j, V,“o V”),e Q.
If w is an~exte~nsion of some n1-which also extends u,-, then by cancellation
V,, = V,"o V”),o V“,6 Q, so there exists an open cover {V,,,},,, of V,,_.with each
corresponding 17,,e Q. This holds for each i e I, so Q is a covering sieve. Thus (i)
holds.

To show (ii), pick f e S and suppose {Vm| i e I } covers B and each 17,,‘6 ‘IV. By
continuity of f, there exists an open cover {Vvj|j e J} of B such that each
f (Vol.)9 some V_,_..From the factorization lemma it then follows that each V,,_.is in
f ‘(V )

This Grothendieck topology makes S into a site (also denoted by S), and we can
interpret the higher order logic in Sh(S) as in [HM, §2]. Thus the natural numbers
appear in the model as the sheaf N = Cts(B, N), and internal Bairespace N” is the
sheaf Cts(B, B). In both cases restrictions are given by composition, x 1f = x of. As
in [HM], the lawlike sequences are interpreted as the subsheaf B,_E Cts(B, B) of
locally constant functions, while the choicesequencesare interpreted by the subsheaf
BCof Cts(B, B) generated by the identity. Thus our internal choice sequences are
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precisely the external functions from Bairespace to itself which are locally elements
of S.

Any external continuous function F 2B —+B reappears internally as a continuous
operation on Bairespace N”, by F(f) = F of All internal lawlike continuous
functions are (locally) of this form. In particular, if at:B —+B is an element of BC, or
induces a lawlike function N ” —>N ” in the model, and it follows easily from the
stability property (ii) above that this lawlike function restricts to a map of BCinto
itself. Let us write S for the subsheaf of lawlike continuous operations on NN
generated by the elements of BCin this way. That is, if F is an internal function
N ” —+N ” induced by an external continuous F : B —>B, then ||—FE S ifl F 6 BC, i.e. F
is locally in S. Then in the model it holds that BC is closed under the lawlike
operations from S,

|H1aVf e §3Bf(a) = B

(a and Brange over BC).Note that the functions in S do not map spreads to spreads,
but they do so locally, i.e.

|l—‘v’fe SV spread S 3e 6 K Vu(e(u) ;i=0

—>3 spread S’Va(a e S’<—>3B 6 u(B e S&a = f(,B)))).

Every function F e S appears in particular as an internal operation on N” which is in
S, and we will also write S for the subsheaf of S generated by these internal mappings
coming from an F e S; so ||—SE S.

Let us consider the relevant properties of this model. Many of the arguments that
follow are analogous to the arguments in [HM, §2], and will only be indicated
briefly.

First of all, as noted the universe of choice sequences is closed under operations
from S, and this gives a pairing axiom

||—Va,fi3v3f,g 6 S(a = f(v)&B = 9(v)).

(Proof: if at,B 6 BCc N ”, they are restrictions of the identity y(locall)’). say at= y 1f,
/3 = 71 9, so ll-01= f(v), fl = 9(7)-)

Since S contains all constant functions, every (16 BChas a restriction which is
lawlike, so the model satisfies the specialization property,

|l—A(a)—>3 lawlike a A(a),

where all parameters other than atin A(a) are lawlike.
The density axiom Vspread S 30:ate S holds in the model: again by using constant

functions, or alternatively, by observing that ||—Se S. We will come back to this
below, and formulate an axiom of strong density.

If a 6 BC, onis externally given as (locally) an element f E S, and every f (B) is a
restriction of oz.Hence if |l—A(a)and all other parameters in A are lawlike, it follows
that ||—V/3A(f (/3)).As in [HM] this yields analytic data relativized to S,

ll-/1(a) -> 3f 6 S0713A(f(/3))& or6 im(f))

From this, we immediately obtain spreaddata by an application of the factorization
lemma: if one BC, then, on a suitable cover, im(a) = S is a closed subset of B, and
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every other ,86 BC with im(B) E S can be written as a o y for some y, i.e. as a
restriction of a. Thus

(spreaddata) ll-A(a) —>3 spread S(a e S & VB e S A( 13)).

Continuity principles follow as in [HM] by considering the generic element
B = id 6 BC. For example, for VaElB-continuity suppose ||—Va3)3A(a,/3) (all non
lawlike parameters in A(a, )3)shown). Then in particular there is a B 6 BCsuch that
||—A(id,B). ,8acts internally by composition as a lawlike operation F on BCwhich is
in S, and we obtain

||—‘v’a35 A(a, /3) —»3F 6 sva A(a, F(a)).

A similar argument gives Vafln-continuity.
Since BCcontains all constant functions, Bar Induction holds in the form BI‘ (see

[HM, §2]).
Note that in the axiom of spreaddata asjust formulated, wecannot economize on

spreads, i.e. there is no proper subclass P of the class of all spreads such that
spreaddata holds with “Elspread S” replaced by “Elspread S e P”. This follows by
taking A(a) to be a e S, and choosing a = S.

This is how it should be, since given any spread S, there is no a priori reason why S
cannot occur as “complete information at a certain stage”, i.e. why we cannot
construct a sequence a such that at a certain stage of its construction the only
information we have about a is that a e S.One way of formalizing this as an axiom is
to say that for any spread S there is a step in a construction process consisting of a
single application of a lawlike continuous operation f (under which the universe of
choice sequences is closed), such that after applying this step to the universal
sequence a about which we have not yet_gained any knowledge, we know that a e S
and nothing more. We call this axiom the axiom of strong density, since it is a
strengthening of the ordinary density axiom (VS3a a e S).

STRONG DENSITYAXIOM. V spread S 3f e S Va(a e S 4-»313a = f ( ,B)).
Observe that the strong density axiom is satisfied in our model, since

||—Vspread Sim(S) = S.

Since the mappings S are retractions, i.e. |)—So S = S, we obtain relativized forms of
continuity,

(relativized ‘v’a3/3-continuity) |)—Va e S 3/3A(a, /3)

—>3 lawlike continuous F: S —>BCVa 6 S A(a, Fa),

(relativized Vafln-continuity) ||—Vae S 3n A(a, n)

—+3 lawlike continuous F: S —>N Va 6 S A(a, Fa).

(By definition, a lawlikercontinuous operation F: S —+BCcomes from a neighbour
hood function N ‘”——>N ‘” such that for all n, {u| length F(u) 2 n} is a(n
inductive) bar for S. Similarly for functions S —>N. The relativized versions follow
easily from the global ones together with the fact that

|}—‘v’spreadS3feS(im(f)=S&fof=f).)
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We also conclude that a relativized form of Bar Induction holds in the model: for
any spread S,

(BIS) ||—VPE N ‘”(P is a monotone inductive bar for S —>( ) e P).

PROOF.This follows from the global version BI* and strong density. Suppose P is
monotone (u 2 v e P —>u e P), inductive (Vn(u 1*(n) e S —>u * (n) e P) —»u e P)
and bars S (Va e S3n o‘z(n)e P). Let f e S be such that im(f) = S, let P’ =
{v| Va 6 vf(a)(1th(v)) e P}, and apply BI* to P’ to conclude that ( > e P.

For the record, let us sum up the properties of the model. (The axiom of pairing as
fonnulated below can actually be strengthened by replacing S by S;countable choice
is proved just as in [H M].)

THEOREM6. The interpretation in Sh(S) described above yields a model in which
there is a monoid S of internal lawlike continuous functions, satisfying the following
axioms:

countable choice: Vn3m A(n, m) —>3f e N ” Vn A(n, fn);

pairing and closure: Va, B3)»Elf,g e §a = f(y)& [3= g(y),

VaVfe s 3/3f(a) = 5;

specialization: 3a A(a) —>ElaA(a);

spreaddata: A(a) —>3 spread S(a e S& V)?e S A([i));

strong density: Vspread S 3f 6 §im(f) = S;

Bar Induction: Vspread SVP E N ‘N (P is a monotone
inductive bar for S —+< ) e P);

Va3n-continuity: Va 6 S ElnA(a, n) —>3 lawlike continuous
F:S—>NVaeSA(a,Fa);

Vafl/3-continuity: Va 6 S 3/3 A(a, B) —>3F 6 §Va E S A(a, Fa).

(Except for countable choice, all nonlawlike variables are shown in notation.) [:1

§3. Concluding remarks. One of the first models for spreaddata seems to be the
projection model in van Dalen and Troelstra [1970] (see also Troelstra [1970]).
Essentially the same model can be obtained as an analog of the LS-model presented
in §5.2 of [HM], which one obtains by replacing Bairespace by the space of
decreasing sequences of spreads (S,,),,such that flu S,,consists of a single point, with
the product topology (finite initial segments topology). Our LS-model from [HM] is
essentially equivalent to the LS-model presented in Fourman [l982, §2.2]. If in
Fourman’s model one replaces basic opens U, x x U,,c B"of finite products of
Bairespace by finite products of spreads S, x x S, c B",one obtains an analog
of Fourman’s LS-model in which the axiom of spreaddata holds (this seems to be
the model indicated in Fourman [l982, §2.4]).

The main differences between these models and the model presented in this paper
are caused by the fact that in the former models, the universe of choice sequences is
not closed under application of nontrivial lawlike operations. Consequently, Vail)?
continuity does not hold in the form described in Kreisel [1965]. (In the spreaddata
analog of our LS-model from [HM], VaEl,B-continuityholds in the form

Vail/3A(a, /3) —>Elf 6 K Vu(f(u) aé 0 —>(Va 6 u A(a, a) v 3/3Va E uA(a, ,B))).)
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On the other hand, these other models can be constructed within a constructive
metatheory (IDB), and hence are equivalent to elimination translations into IDB,
whereas our present model cannot: the statement that for all spreads S, the mapping
S is a closed hereditary retraction contradicts Church’s thesis. It remains an open
question whether a model for spreaddata with the properties as described in
Theorem 6 above can be constructed within a constructive metatheory.
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CONSTRUCTING CHOICE SEQUENCES FROM LAWLESS SEQUENCES

OF NEIGHBOURHOOD FUNCTIONS

G. F. van der Hoeven
(Twente University of Technology)

I. Moerdijk
(University of Amsterdam)

I. INTRODUCTION

The aim of this paper is to illustrate howvarious notions of choice sequence

can be derived from, or reduced to, the notion of a lawless sequence. More accurate

ly, we will construct a sequence of models, starting with a model for lawless se

quences of neighbourhood functions, and arriving by subsequent modifications at a

model for the theory CS of Kreisel &Troelstra(l970).

Such a process of gradually transforming a model for the theory of lawless se

quences into a model for the theory of CS provides an answer to the question posed

in Kreisel(I968), p.243, "Howfundamental are lawless sequences", in the sense that

_ it shows that many concepts of choice sequence can be derived from a notion of law

lessness.

The first model to be discussed in section 4 will be a model for lawless se

quences of neighbourhood functions, which is completely analogous to a model for the

theory LS of lawless sequences of natural numbers (for LS, see Kreisel(l968),

Troelstra(l977)). This model for LSwill be presented in section 3, after a short

introduction to forcing over sites given in section 2.

With a lawless sequence of neighbourhood functions 5 one can associate a "poten

tial" sequence of natural numbers a: given an initial segment (fO,...,fn) of E,

the information we have about a is that it lies in the image of f0 0 ... 0 f

(where the fi's are regarded as lawlike continuous operations IT“ + Bi , so com

posing then makes sense).

A first modification of the site serves to eliminate an intensional aspect of

the information we have about such a potential sequence a: two initial segments

(fo,f .,fn) and (foofl, f fn) represent the same information about a,l,.. 2,...,
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and should therefore be identified, given that u is the sequence we are interested

in, rather than the lawless sequence of neighbourhood functions that a is construc

ted from.

A next modification turns these potential sequences of natural numbers into ac

tual ones, simply by refining the Grothendieck topology of the underlying site. We

will see that the universe of choice sequences obtained at this stage is of little

interest.

This situation changes radically if we modify the site once more, this time in

order to obtain closure properties of the universe of choice sequences, and, in a

next step, eliminate the intensional aspects introduced with these closure properties.

Wethen have a model in which the universe of choice sequences satisfies the CS-axi

omsof analytic data and Vaan-continuity, i.e.

Va(A(a) + 3F(ae:im(F) A VB<:im(F)A(B)))

Va3nA(a,n) + 3FVaA(a,Fa),

where F ranges over lawlike continuous operations NH -> INN, and ]NN + ]N

respectively.

_Moreover, this model has a natural notion of independence, which is decidable

(i.e. a "B V “la” 8 is valid, where we write o.WB for " a is independent firom

B "). Using this notion, we can formulate several variants of Va3B-continuity

which are valid in this model, such as

Va3B(‘laWB/\A(a,B)) + 3FVaA(a,Fa)

vaasmfie AA(oL,B)) + 3e 6 KVu(e(U) #0 + aeva e u(a*B +A(u.B))).

A multiple parameter version of analytic data also holds:

Va|,...an(#(a],...,an) AA(al,...,an) + 3Fl,...,Fn({:L¢ai€ im(Fi) A

Av3],...,sn(#(e],...,sn) + A(FBl,...,FBn))),

where W(al,...,an) abbreviates /\{aiWaj I lsi<jsn}.
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However, the usual version of Va3B-continuity (which is an axiom of CS),

Va3BA(a,B) + 3FVaA(a,Fa),

does not hold.

Finally, we modify the site by introducing the possible creation of certain

dependencies between sequences. This is done in two steps. After the first step,

we obtain validity of the usual CS-version of Va3B-continuity. So the only thing

that is missing for a CS-modelis the axiom of pairing,

Vu,B3y3F,G(a = Fy A B = Cy) .

A second step will accomplish the validity of this axiom, and we have arrived at a

model for CS.

The constructions of these models and the proofs of their properties can be per

formed in an intuitionistic system like IDB(see Kreisel &Troe1stra(l970)). This

means that the theories of choice sequences that we provide models for are all con

sistent with Church's thesis ("all Zawlike sequences are recursive") and lawlike

countable choice.

As we said above, this sequence of models illustrates howvarious concepts of

choice sequence can be reduced to the concepts of lawlessness. There is an interest

ing parallel here between the material or this paper and the program of "imitating"

notions of choice sequence by means of "projections of lawless sequences"

(cf. van Dalen &Troelstra(l970), van der Hoeven &Troelstra(l980), van der Hoeven

(1982)), which has a similar purpose of reducing arbitrary choice sequences to law

less ones.

For example, in van der Hoeven(l982) a restricted version of CS is modelled by

sequences constructed from a lawless sequence of neigbourhood functions and two law

less sequences of natural numbers, of which the latter two serve to makepotential

sequences into actual ones and to create dependencies between membersof the universe

of choice sequences.

There are some important differences between these two approaches, however, the

main one being that here we obtain new notions of choice sequence by modifying the
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underlying site, that is, by modifying the notion of truth, whereas on the projections

approach new universes of choice sequences are constructed by applying more complex

continuous operations to lawless sequences.

Our present approach is technically simpler, because the changes in the forcing

definition really makethe intensional differences between sequences invisible.

Using projections, the forcing definition remains the same, but long formula induc

tions are needed to show that for formulas in the language of analysis the property

of being forced is independent of intensional differences in the parameters.

On the other hand, choice sequences projected from lawless sequences give a

clearer picture of a construction process. In the sites we discuss here there are

obvious representatives of steps in such a process ("going back along the arrows"),

but the process as a whole is not explicitly presented.

Sumarizing the results of this paper, then, we find models which have properties

similar to the models for the CS-like systems constructed by projections. In parti

cular, our last model but one, in which all of CSexcept pairing holds, is closely

related to the models of van der Hoeven &Troelstra(l98U). Technically, however, the

projections approach is muchmore involved than the present one. The full generality

of the models we obtain here has (so far) not been achieved along the projections ap

proach: the projection models are all models of restricted variants of the theories

we model here. Moreover, we obtain some new models for - so it seems to us - interest

ing systems with a primitive relation of independence.

In our paper van der Hoeven &Moerdijk(to appear) we constructed two models for

the system CSby using forcing over sites, as we do here. Especially the first model

(section 2.2 of that paper) is in some sense muchsimpler than the present one, but

its construction is not motivated by a "reduction to lawless sequences" and, contrary

to the present approach, we do not meet interesting (sub-)systems on the way of the

construction of that model. The second CS-model in that paper (section 4) bears a

relation to lawless sequences, but since it is constructed from the first one simply

by considering what would be needed to prove it first order equivalent, this relation

is less natural as a reduction. (See the remarks in Troelstra(l983), pp. 245-6.)

Thus, the constructions of these three CS-modelsare motivated rather different
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ly, and the relation between these models needs closer investigation. This is a

problem, however, that we do not touch upon in this paper.

2. FORCING OVER SITES

To make this paper accessible to readers who are less familiar with forcing over

sites, we will review some of the basic notions of this theory, otherwise knownas

sheaf semantics or Beth-Kripke-Joyal semantics.

Let C be a category. If C is an object of C, a sieve on C is a collec

tion of morphisms S with codomain C which is closed under right composition, i.e.

if D—f—>C6S and E -8-+D is any morphism of C then f°g6S.

A Grothendieck topology on C is a function which associates to every object C

of C a family J(C) of sieves on C, called covering sieves, such that

(i) (trivial cover) For each C, the maximal sieve

{f Icodomain(f) = C} 6 J(C).

(ii) (stability) If S 6 J(C) and D -£+ C is a morphism of C then

f*(S) = {E -3» D I f°g6S} 6 J(D).

(iii) (transitivity) If R 6 J(C) and S is a sieve on C such that for

each D —f—>can, £*(s) e 1(1)), then s e J(c).

A site is a category equipped with a Grothendieck topology. A site is called consis

tent if ¢ ( J(C) for some C 6 C, i.e. at least one object is not covered by the

empty family.

(i), (ii), (iii) are closure conditions, so the intersection of a family of

Grothendieck topologies is again a Grothendieck topology. Consequently, if for some

objects C 6 C we specify a couple of families (not necessarily sieves) {Ci-£i+C}i

with codomain C ("basic covering families"), then there exists a smallest Groten

dieck topology J with the property that for each of these selected objects C,

and for each sieve S on C, S 6 J(C) whenever S contains one of these basic

covering families. This smallest topology J is called the topology generated by

the basic covering families.

In general, it is rather hard to keep track of what a collection of basic covers
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generates, in particular, it is hard to see whether the generated Grothendieck topo

logy is consistent. For this reason, it is more convenient to work with basic covers

of the following form: for each object C we specify a collection K(C) of families

{Ci -1+ C}i such that

(i') (trivial cover) The one-element family {C-19+ C} e K(C).
f.

(ii') (stability) If Ci —-£+ C}i E K(C) and D —£+C is a morphism of C,
h.

then there is a family {Dj ——l+D}j e K(D) such that for each j there

is an i and a morphism k with fiok = gohj.

(iii') (transitivity) If {Ci ——l+C}i e K(C) and for each i we have a famg.. f.°g..
ily {c.. —‘-L» c.}. e K(c.), then {c.. ——‘-—‘—-L»c}. .s K(C).

1] 1 J 1 1] 1o]

If we have a family of basic covers K(C) for each C e C satisfying (i')-(iii'),

then the Grothendieck topology 1 generated by K is defined by

R 6 J(C) 4-0 BS eK(C)S E R.

In particular, J is consistent iff ¢ ( K(C) for some object C (we say that K

is consistent).

In section 4, we will define (models over) sites by some basic covers which in

general do not satisfy (i')-(iii'). So the way to showthat our models are consistent

is to find a bigger collection K of basic covers whichdoes satisfy (i')-(iii'),

and is consistent. This is rather straightforward in all cases, and will in general

not be shown in detail.

A domain X on a site (¢,J) is a functor Cop + Sets, i.e. a collection of

sets {X(C) | c s on} together with restriction maps

X03) + X(C). x +—>xlf.

for every morphism C -£+ D of C, such that (xlf) lg = x I(f°g), and x lid = x.

The elements of X(C) are to be thought of as partially constructed membersof the

domain X, C is the "stage" of construction, and by the restriction along D -£+ C

we gain more information about such a partially constructed memberof X, i.e. we

perform a construction step.
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A Zawlike domain (more precisely, a domain of lawlixe objects) is a domain

which consists of complete objects: there is nothing to be constructed. So X is

lawlike if X(C) = a fixed set X , and all restriction maps are identities. Thus,

for each "external" set X there is a corresponding lawlike domain, also denoted by

X, with X(C) = X. The main examples that occur in section 4 are the lawlike domain

of natural numbers (IN(C) = 11 for all C), and the domain of lawlike neighbourhood

functions K (K(C) = K, the set of inductively defined neighbourhood functions).

Given a collection of domains on (¢,J) we define forcing for a many sorted

language L. Each sort of L is identified with a certain domain. And each constant

c of L, of sort X say, is identified with a family of elements c(D) e X(D),

D an object of C, coherent in the sense that c(D) If = c(E) for any morphism

z—‘—»n.

Moreover, we assume to be given an interpretation of each relation symbol R

.,X say). The interpretation of R is an(taking n arguments of sorts X], .. n

assignment of a subset R(C) Q X](C) X ... X Xn(C) to each object C, such that

for D -£+ C,

(x],...,xn)eR(C)-O(xlIf,...,x;1If)€ R(D).

Theforcing relation

C IF @(x],...,xn),

.v , v. of sort Xi, and xi 5 Xi(C),where w has free variables among vl, .. n 1

is now defined by induction. For atomic formulas we have

C IF x==y «~'there is an S e J(C) such that xlf = ylf for all f E S

C IF R(xl,...,xn) «# there is an S e J(C) such that (xlIf,...,xn|f)e:R(D)
for all D—f>CeS.

Furthermore,

C IF it-0¢€J(C)

C IF @’\¢(xl,...,xn)‘-W C IF ¢(xl,...,xn) and C IF ¢(xl,...,xn)
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C IF ¢’\¢(xl,...,xn) on» C IF w(xl,...,xn) and C IF w(xl,...,xn)

C IF w\/w(xl,...,xn) c» {D—£+C I D IF m(xlIf,...,xnIf)

or D IF w(xlIf,...,xnIf)} e J(C)

C IF w-*w(xl,...,xn) ‘-0 for all morphisms D -£+ C,

if D IF ¢(x]If,...,xnIf) then D IF w(xlIf,...,xnIf).

and for variables v of sort Y we have

C IF 3vw(v,xl,...,xn) «o {D—£+C I 3y'eY(D) D IF w(y,xlIf,...,xnIf)} e J(D)

C IF VV@(v,xl,...,xn) on» for all D —£+C and all y 6 Y(D),

D IF¢(y,xlIf,...,xn|f).

By induction, one can show that the forcing relation has the important proper

ties of being monotone and Local:

(monotone) If D-£+ C and C IF w(xl,...,xn) then D IF ¢(x]If,...,xnIf).

(local) If S E J(C) and D IF w(xlIf,...,xn|f) for every D -£+ C in S,

then C IF w(xl,...,xn).

A formula w(vl,...,vn) is called valid (notation: I=@(v],...,vn)) if for each

object C and each n-tuple (xl,...,xn) e X](C) X ... X Xn(C),

C IF ®(x],...,xn).

Function symbols F of L, taking n arguments of sorts X .,Xn to a value

of sort Y, are treated as n+I-place relation symbolssuch that Vxl ...xn3!y

F(xl,...,xn) = y is valid.
This interpretation makesall of intuitionistic predicate calculus valid, and

whenhigher order sorts (exponentials and powersets) are properly defined it provides

a model for intuitionistic type theory with full comprehension. Whenthe sort D1

of natural numbers is interpreted by the corresponding lawlike domain, we obtain a

model for (higher order) intuitionistic arithmetic (These are well-knownfacts, but

they are not needed for the understanding of the rest of this paper.) The first or

der part of arithmetic is classical if wework in a classical metatheory, since (as

is easily shown by induction) we have
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C IF ¢(xl,...,xn) c-»m(x],...,xn) is true

if the sorts Xi are lawlike, and all quantifiers in w range over lawlike sorts.

3. A MODEL FOR LS

As a preparation to the next section, which is the core of this paper, we will

now describe a model for the theory LS of lawless sequences of natural numbers.

This model is not new, and was first described in Fourman(l982).

The underlying site of the model has as obgects finite products of basic open

subspaces of Baire space. Wewrite such objects as

where ui e ]N<N and V“ = {xe]NN I X has initial segment ui}. The empty Pro
1

duct, which is the one point space, is denoted by 7. Mbrphisms from one such ob

'ject to another

are continuous maps induced by injections w: {l,...,m} >-+ {l,...,n} such that

mD(i) extends vi, via ¢(xl,...,xn) = (xw(l),...,xw(m)). The Grothendieck topol
ogy is generated by basic covers of two sort ( * denotes concatenation):

(i) (open covers) {Vu*n C—+Vu}n€nq is a cover.

(ii) (projections) the singleton {VUXVV+ Vu} is a cover.

Classically, the generated Grothendieck topology can be described as: a family

{¢i: Ui + U} covers iff the images ¢i(Ui) ::U form an (open) cover of U. In an

intuitionistic metatheory like IDB, we do not get all open covers, but only the in

ductively defined ones (cf. the remarks at the end of this section).

The relevant domains over this site are the following: we have the lawlike do

mains Hi of natural numbers and K of neighbourhood functions, the lawlike domain
1N. . N . . .of continuous operations 11 + El corresponding to neighbourhood functions, and

the lawlike domain RT" of lawlike sequences (so all the "external" sequences appear
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in the model as lawlike sequences). The domain L of lawless sequences is the do

main of projections,

L(VulX...XVun)={1ri:Vi->]N | 1=l,...n},

with restrictions defined by composition: If ¢: V X...XV + V X...XV is a

morphism induced by w as above, then niI¢ = n.°¢ (i=l,...,m). If U is1 ‘ "co(i)

an object of the site and a 6 L(U), then a is interpreted as a sequence of natu

ral numbers by

(I) U IF a(n) =m4-vVxeUoL(x)(n) = m,

in other words, if U = Vul X... Xvhn and a = ni then U IF uezv iff ui extends
v, for any finite sequence v (as usual, a e v stands for Vi <£th(v)

a(i) = v(i)). Note that definition (1) is monotoneand local, i.e. if ¢: W+ U and

U IF a(n) = m then W IF (aI¢)(n) = m, and if {¢i: Wi + U}i covers and each

Wi IF (aI¢i)(n) = m then U IF a(n) = m.

This completes the description of the model.

The validity of the two simpler LS-axioms, density: Vv3a(aev) and decidable

equality: Va,B(a=BV'7a=B) is easily verified. For density, take a v eiN<lI

and an object Vul X ... X Vun. Then the projection Vul X... XVhn><Vv+ Vul X... Xvfin

covers, and Vul X... XVhnJ<VvIF nn+l evu So V“! X... Xvhn IF 3a(aev). Further
more, it is easily seen that

V X... XV IF nu fin. iff i # j,
I un 1 J

from which decidable equality follows imediately.

Before we prove the validity of open data and continuity in the model we state

three simple observations about the forcing relation.

Observation 1. If A(al,...,an) is a fbrmula which has all its non-Zawlikeparame

ters amonga], ...,an, and il, ...,in are distinct numbersin {l,...,k}, then
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V I X... XVuk IF A(ni ,...,ni ) ifT' Vui X... XVui IF A(ni ,...,ni )n n I n I n

(proof: IF is local and monotone (section 2), and the projection

¢: V X ..xV + Vuilx...xVui , ¢(xl,...,xk) = (xiI,...,xik), is a cover.)n
Observation 2. If A has only Zawlike parameters, then I=A iff'fbr some object

U, U IF A.

(proof: if U IF A then by observation 1, 1 IF A, so by monotonicity, V IF A

for any object V since I is terminal, i.e. there is a unique morphism V + I in

the site.)

Observation 3. Let U be any object in the site. Then
. <N

U IF yul...yan(A(al,...,an) + B(al,...,an)) Lff for all u],...,un 5 Bi ,

v x...xvn II- A(1t],...,11n) implies v x...><v |I- B(1Tl,...,1rn).ul ' u u] un

Here ya] ...yan (..) abbreviates Val ....a ( /\ ai#a. + (..)) and A(al,...,an),
i<j

B(aI,...,an) have all their non-lawlike parameters among a .,a .1’ " n

(proof: by observation 2, we may assume U = I. But if W= VwlX...xVwk is any ob

ject, and ii, ...,i are indices such that WIF /\ n. #n. AA(a. ,...,a. ),n £<£' 1£ ].£l 1‘ In

then il, ...in are all distinct, and by observation I, Vv]x...XVvnIF A(nl,...,nn)

where vj = wi_. So we may restrict ourselves to the case W= Vv]X...xVv , as wasJ n
to be shown.)

Note that as a consequence of observation 3 we have:

Genericity lema. F !al....yanA(a],...,an) iff V()X...XV() IF A(n],...,nn)
(n-fold product).

Using these observations, validity of the open data axiom and the axiom of con

tinuity is easily established.

Open data reads

ya] ...yan(A(a],...,an) + Bu], ...,un(aleu|,A... Aaneun;\

Ayfileul .. . V_fBn6unA(Bl,...,Bn))).

By observation 3, it suffices to showthat for any n-tuple u], ...,u , if

(I) VulX...XVunIF A(nl,...,nn),
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then also

(2) VulX...XVun IF yflleul ...yBneunhA(Bl,...,Bn).

So assume (I). To prove (2), it suffices by observation 3 again to show that if

(3) V ><...><V II-Treu A...A1reu
wl wn I I n n

then also

W(4) V |X...XVwn IF A(nl,...,nn).

But if (3) holds, then wi extends ui so we have an inclusion morphism

Vwx...xVw C—+Vu X...xV , restriction along which shows that (4) now follows
1 n I “n

from (I).

The axiom of continuity is

‘1’o.l...!an3mA(al,...,an,m) + SFYCII...!(1nA(C!l,...,0.n,F((11,...,0.n)),

where F ranges over lawlike continuous operations INNX XINN->]N (induced by
<N 'N

neighbourhood functions IN X . . . XIN< -> IN), and A(aI ,. . . ,an, 111) has no non

lawlike parameters other than a .,an. By observation 2, proving continuity is

equivalent to showing that if

(I) I=‘gal !'an3mA(al,...,an, m)

then also

(2) E 3F!al... yanA(al,...,an,FKal,...,an)).

So assume (I). Then in particular for the n-fold product of V()’

V( )><...><V() II- 3mA('nl,...,nn, In),

so we find a cover {¢i: W. + V X...X'V()} and natural numbers mi such that1 ()
for each i,

Wi IF A(nl I¢i,...,nn ¢i, mi).
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By observation I, we may assume ¢i to be a canonical inclusion

. = V" X...X Vw C—+V X...XV , and by passing to a disjoint refinement of1 hi mi () ()
the inductive open cover {Wi}. of V( )x ...X'V we can define F by1 ()’

F(xl,...,xn) = mi iff (xl,...,xn) e Wi.

Then Wi IF F(nl,...,nn) = mi, so Wi IF A(n1,...,nn, F(nl,...,nn)). Since the Wi

cover, it follows that V()x...xV() IF A(n],...,nn,FKnl,...,nn)). Soby the gener

icity lemma, F Ya ...!anA(a1,...,an,FKal,...,an)), hence (2) holds.I

The treatment of the model above is completely constructive, i.e. can be per

formed in an intuitionistic metatheory like IDB. (By definition of the Grothendieck

topology, every cover has a corresponding characteristic neighbourhood function in K,

so the map F defined in the proof of the continuity axiom can indeed be defined in

IDB.) It is a corollary of the elimination theorem (Troelstra(l977)) that any inter

pretation of LS in IDBis equivalent to the elimination translation. In particular,

‘for first order sentences A in the language of LS,

IDB I- (IF A) H 'r(A),

where IF is forcing over the model described above (formalized in IDB) and 1 is

the elimination translation. In fact, a simple formula induction shows that

V X...XV IF A(n ,...,n ) and T(ya eu
n I nU‘ U I I ...YoneunhA(al,...an)) are literally the

same (A not containing lawless parameters other than a .,on), provided one

includes observation 2 in the forcing definition to get rid of vacuous quantifiers.

4. C.HOICE SEQUENCES CONSTRUCTED FROM LAWLESS SEQUENCES OF NEIGHBOURHOOD FUNCTIONS

4.1. Lawless sequences of neighbourhood functions.

As usual, K denotes the (inductively defined) class of neighbourhood functions

lN<N -> ]N. Neighbourhood functions induce lawlike continuous operations F: ]N -> ]N

and F: INN+ ml" (cf. Troelstra(l977)), and we will often identify F and f,

writing things like F 6 K, or fog for the composition of the corresponding contin
. N ‘Nuous operations IN +]N , etc.
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Completely analogous to the model for lawless sequences described in section 3,

we may construct a model for lawless sequences of neighbourhood functions from K

(or lawless sequences of lawlike continuous operations JNN->N“ ). Objects of the
. . . . llsite are now finite products of basic open subsets of K ,

Val X ... X V5 (n20),

where ti 6 K<n‘, E. = (f1 il,...f. ) (and each f.. is identified with the correslki ij
. . . ‘N ‘N . . .

ponding continuous operation Bi + DJ ). Mbrphisms of the site are functions

which are induced by injections w: {l,...,m} >-+ {l,...,n} such that extends99(1)

ti (i=l,...,m), and ¢(xl,...,xn) = (xw(I),... xw(m)). The Grothenaieck topology
is generated by open covers and projections, just as in section 3. Andas in this

preceding section, lawless sequences are interpreted as projections. The logical

properties of the model are of course exactly the same as the properties of the model

or section 3. For the record:

Theorem. The site described above gives a model for the theory of lawless sequences

of neighbourhoodfunctions, i.e. it satisfies the axiomsof density, decidable equal-'

ity, open data, and continuity (the continuity axiom has to be rephrased using induc

tively defined neighbourhood functions on the tree K<nq).

4.2. Potential choice sequences of natural numbers.

with each of the lawless sequences ni (i=l,...,n) at an object V; X... XV
I n

of the site of 4.1 we can associate a potential sequence mi of natural numbers, by

setting

V€lX...><V£nH- ai(n) = m iff VxelNN fi] 0... °fiki(x)(n) = m.

'N

(Here 51 = (f and the fij are regarded as operations NN + IN ,iI"'°’fiki)’
so composing them makes sense.) ai is not an actual sequence, i.e.

V€l><...><V£n IH Vn3mai(n) = m,
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since the extensions (fil,...,fiki, g],...,g£) of Ci such that fi] 0... °g£(x)(n)
is constant in x do not form a cover of V5 . However, we can always extend a se1

. Di . .quence in K< by a constant function (constant when regarded as an operation

INN + INN), and therefore

V€l><...XV€n IF 77Vn3mo.i(n) = In.

The information we have about such a potential sequence a at an object

V(f f ) is that (in case u ever turns out to be a real sequence)l,OIIk
a eim(fl°...°f Thus, since a is the only non-lawlike element at Vk)’ (f],...,fn)
that we are interested in here, the two objects andV

(f|,f2,f3,...,fn)
V represent equivalent information. Therefore we will identify(fl°f2,f3,...,fn)

R1two such objects by passing to a quotient space of K :

Definition. Let ~' be the equivaience relation on Knq generated by

(£l,£2,£3,...) ~o(£]o£2,£3,...).

The space X is the quotient space Kn‘/rv, with the quotient topology.

11%

Lemma. flhe canonical projection p: K -+X is open.

Proof. The equivalence relation - can also be described by

(r )n -(gn)n iff 3k,£(f]°...ofn k = gl°...°g£ &Vnzl fk+n = g£+n).

So

-I
p p(V(fl’...,fn)) - {(gn)n I 3£3h€K.gl0...og£ ‘ fl ... fn h},

. . . Di
which 13 open in K . D

Wewill nowmodify the definition of our site, by replacing each basic open

V of Kn‘ by the corresponding open p(V ) of X. Note that(fl,...,fk) (fl,...,fk)
P(V(£l,...,rk)) = P(V(£lo...o£k))’
Wewill write

<95
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and sometimes by abuse of notation for sequences of length other than I,

V = p(V
(fl’...,fk) ), so V denotes V. = X.(f|,...,fk) ( ) id

As our site we now take the site obtained by applying p to everything in the

site of 4.1. So objects are nowfinite products

and morphisms ¢: Vflx...xVf + Vglx...xVgm come from injectionsn

w: {l,...,m} + {l,...,n} such that for each i = l,...,m there exists an hi 6 K

with gi ohi = fw(i),
if is nowa function on equivalence classes (note that this is well defined). The

and ¢(xl,...,xn) = (xw(l),...,xw(n)) as before, except that

Grothendieck topology is generated by basic covers of two kinds:

C—+V } is a cover(i) (open inclusions) {vfog f 86K

(ii) (projections) Vfxvg + Vf is a cover.

4.3. Actual choice sequences of natural numbers.

Our next modification will be to force the potential sequences a of 4.2 to bee

come real sequences by allowing to pass to a bar in nf<N to find the nth value

of a. Each finite sequence u induces a lawlike continuous operation 5: NH + INN

defined by

u(x) = u Ix ("overwrite u")

(u(0),...,u(£th(u)-I), x(£th(u)), x(£th(u)+l),...),

and we now add to the site of 4.2 as new basic covers the families of inclusions

for each inductive bar {ui}i for Rf“. (Note that this makes the covers of

type (i) in 4.2 redundant.) By stability and transitivity of the induced Grothendieck

topology, this means that for each inductive bar {ulihX ><u:}i for INNX X INN

we have a corresponding family
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in the site.

Observe that covers of this form are stable. For example, if {vfofi + Vf}i isi

a cover and V8 + Vf is an inclusion in the site (so g = f°h for some h) then by

continuity of h there is an inductive cover {vj}j of El“ such that h maps each

vj into some ui (i.e. if x e Bl“ extends vj then h(x) extends ui, we write
this as h(v.) §;u.), so u.°h°v. = h°v., gov. = fohov. = f°u.oh°v., and hence there

J 1 1 J J J J 1 J

is a comutative diagram

fofi. f
1

Wenow have obtained actual sequences:

Proposition. In this model |= ‘v’aVn3ma(n)= m, i.e. at each object V X X V
f] fk’

fbr each choice sequence ai(i=l,...,k), Vf x...xVf IF Vn3n|ai(n) = m
I k

proof. It suffices to take k = 1 (cf. observation 1, section 3), i.e. to showthat

for all n, Vf H- 3ma(n) = m. But f is continuous (as a map INN -> JNN) so

there is an inductive bar {vj}j for El“ such that for all j there exists an mj

with f(x)(n) = mj whenever x 6 vj. But then Vfov IF a(n) = mj for each j,

so Vf H-3mo.(n)=m. U

The universe of choice sequences of natural numbers we have now obtained models

a rather poor theory. Most importantly (since we are on our way to a model for CS)

the universe is not closed under application of lawlike continuous operations. Wedo

not have analytic data, or Va3B-continuity. Also, of the LS-like properties not

much is left. For example, the model does not satisfy decidable equality for choice

sequences.

On the positive side, we have
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Proposition. In the model under consideration, the following are valid:

(i) (density) Va'1"l3ao = a

(a ranges over choice sequences, a over lawlike sequences)

(ii) (Va3n-continuity) Vu3nA(a,n) + 3FVaA(a,Fa)

(here, as usual, A does not contain non-lawlike parameters other than u; and F
. . . Nranges over lawlike continuous operations I! + B1).

In the proof we use

Lemma. (genericity of the choice sequence a at V() ) Let A(a) be a formula

with a as its only non-lawlike parameter. If V( ) H- A(a) then I- VaA(u).

proof. Take a choice sequence oi at Vf X ... X Vf (isn). Since all other pa
] n

rameters in A(a) are (interpreted by) constant (elements), it suffices to showthat

a. is a restriction of the sequence a at V (by monotonicity of IF ). But1 ()
restricting a along

proof of proposition. (i) Weshow V( ) IF 7-73aa = a. By observation I of section i

it suffices to show that for each f, Vf Hi '13aa = a. But this is indeed the case,

since if g: mu 2 INN is constant with value b, then Vfog ||- (xi - a when we
let a = f(b).

(ii) By observation 2 of section 2, we have to show that if P Va3nA(u,n) then

E 3FVaA(a,Fa). But if P Vu3nA(a,n) then F 3nA(a,n), so (cf. observaV ()
tion I) there are an inductive cover {ui}i and numbers ni such that Va IF A(a,ni).i
Wemay assume the ui to be disjoint (incompatible), so we can define a lawlike con

tinuous operation F: ll“ + H1 with value ni on ui, i.e. F(x) = ni if x ex

tends u.. Then V- IF A(a,Fa), hence since {V- + V }. is a cover,
1 u. u. ( ) 1

1 1

V() |F A(a,Fa). By the genericity lemma, P VuA(u,Fa). U
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4.4. Closure under lawlike continuous operations.

Wewill now enlarge our universe of choice sequences, by "projecting" from the

lawless sequence (fl,f2,...) of neighbourhoodfunctions not only the single sequence

cx defined by o.(n) = m iff 3kVxelNN fl°...°fk(x) (n) = m as in 4.2, but using one

lawless sequence to generate an indefinite number of sequences of the form b(a),
. . . . N ‘Nwhere b is a lawlike continuous operation Bi + H1 .

At the level of the site this means that instead of having finite products of

spaces Vf as objects, we now take finite products of objects of the form

a l,COI
Vf ,

where al,...,ak E K. If {b],...,bm} C {al,...,ak} we add a morphism

a ... b b1’ ’a‘k 1"'°’m
Vf +vf

_to our site. On the underlying spaces, this is just the identity map. Going back

along this morphismcorresponds to the "step in the construction" by which we decide

to consider somemore choice sequences projected from the single lawless sequence

about which we knowthat it starts with' f.

Since we should be able to consider an arbitrary (finite) numberof such choice

sequences without narrowing our information about the sequences we already had, we

should declare this morphisma cover in the site. (Stability of this new type of

basic cover is trivial, since the underlying function of topological spaces is the

identity.)

The model we obtain in this way indeed satisfies closure, that is

VaVF3BF(o) = B

is valid, where a,B range over the new domain of choice sequences, and F over

lawlike continuous operations, but the extra logical properties that we obtain are

rather uninteresting. The reason is that the information we have about the single

choice sequence 8 = b(a) at the object Vgog say, is too intensional. This in
formation expresses that B e im(b°f°g), and that f and g are the first two
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elements in our lawless sequence of neighbourhood functions, while b is the lawlike

operation that we apply to extract the sequence 8 = b(a). Wewant to abstract from

the different r6les played by b and f in the construction of B, i.e. to pass to

a stage of information where f is regarded as an operation used for closing off.

This means adding a morphism

b°f + Vbv
3 f°g

to the site, which on the level of underlying spaces is defined by concatenation,

x I-+ f*x (this is obviously well-defined on equivalence classes xex - KN/~, and

it does not depend on the choice of f, i.e. if f' would be another function such

that b°f = b°f' and fog = f'°g, the same morphism is defined). Since we wish to

ignore the "intensional difference" between the information at V208;andthe informa
. bof . . bof b

tion at V3 completely, we should moreover declare this morphism V8 + Vfog
to cover.

(Digression: A similar abstraction is made in the theory of lawless sequences. A

lawless sequence a is usually conceived of as constructed by fixing a finite initial

segment u, and then starting to make free choices (throwing a die). At each stage

of the construction, the information we have about a is an initial segment u*v,

but we abstract from the extra "intensional" information that u is the initial "de

liberate" placings of the die, whereas v comes from making free choices. See

Troelstra(I977).)

whencompared to the earlier models of this section 4, the properties that the

universe of choice sequences has in this model are much richer and muchmore interest

ing.

-Before we investigate some of these properties, however, we give an explicit de

scription of the site that we have obtained at this stage. For easy reference, we

call this site ]K. Objects of the site ]K are finite products

_ < , ,
where fi 6 K and ai 6 K . Mbrphtsms of H( are best described by: all compo
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sitions of morphisms of the various types mentioned above. A more explicit but rather

tiresome description is as follows: a morphism

with Zi = (a.1],...,a. ) and b = (bjl,...,bj£ ) is inducedby an injectionlki j
w: {l,...,m} >-+ {l,...,n} together with injections pj: {l,...,£j} >-+ {l,...,k¢(j)}

for each j = l,...,m, such that there are maps hj and kj (j=1,...,m) with

h.°f . = . k.
J com 33° J

and for each p = l,...,£j,

b 0h
5p 3 ‘ a<D(J')oJ.(p).

On the underlying spaces we have

¢(xl,...,xn) = (hl*xw(l),...,hm*xw(m))

( * for concatenation; this is well-defined on equivalence classes and does not depend

on the choice of hj, kj). The Grothendieck topology of I( is generated by basic
covers of four kinds:

(i) ("open covers") {V:°fi. + V:}i is a cover, for each inductive bar {ui}i
N 1for Bi .

(ii) (projections) Va XVb+ Va is a cover.
f g f _

(iii) (adding choice sequences) Va + Vb is a cover for the mapwhich is the idenf f

tity on the level of spaces, and is induced by an inclusion of the sequence

b as a subsequence of 3.

(iv) (abstraction) Vgof+ V:°g is a cover, where aof = (alof,...,ak°f) if

E = (a],...,ak).
The universe of choice sequences at an object

b Ev x...xv“‘
g
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consists of all sequences of the form 8 = bjp oaj (p=l,...,£), where

b. = (b. ,...,bjp), and B is a sequence byJ J1

V l><...><Vgm IF B(n) = m iff VXGINN bjpog-i(x)(n) - m.m

Restriction of choice sequences along morphisms is defined in the obvious way. If

¢ is a morphismas just described and B = bjp oaj as above, then the restriction
of 8 along ¢ is the sequence

¢ = b . ° .

B ' <D(J)oJ-(P) °‘«o<J)

3 an
at the object Vf X ... XVf . This definition of restrictions is compatible with

I n

the definition of IF B(n) = m in the sense that for a morphism ¢ with codomain

W and domain U, W IF B(n) = m implies U IF (BI¢)(n) = m, and if {¢i: Ui + W}i

is a cover in n< such that Ui IF (BI¢)(n) = m for each i, then also

W IF B(n) = m.

In this model, all one parameter axioms of the theory CS are valid:

Theorem1. In the model over ]( just described, the following are valid:

(i) (closure) VaVF3BB = F(a)

(ii) (analytic data) Va(A(cx)+ 3F(a e im(F) A VB6 im(F)A(a)))

(iii) (Va3n-continuity) Va3nA(a,n) + 3FVaA(a,Fa).

Here, as usual, F ranges over lawlike continuous operations (into D1 or INIB,

a,B over choice sequences, and all non-lawlike parameters in A are shown.

Before we prove the theorem, let us reformulate the genericity lemmaof 4.3:

Genericity lemma. Let A(a) be a formula with a as its only non-lawlike parameter.

Then in the model over n<, Via IF A(a) implies E VaA(a).

proof. As before, we have to show that every choice sequence at an object
51 3 id

Vf x ... x Vfn is the restriction of the (single) choice sequence a at V( ).
I n 5 5

But if B = aij oai is a choice sequence at Vf X ... X Vfn, then B = a I¢ where
I n

¢ is the composite
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1 n 1 i aij Vaij Vid C V'd U
... C——+ ( -———+ a .__+ .

proof of theorem 1.

(i) By the lemma, it suffices to show Vii IF VFSBa = F(B). But if f is a law

like continuous operation, then V?fl’f + V?) covers, and at Vtd’f we have two se
. id,f

quences a and B with V( ) IF o==f(B).
.. 51 an .

(ii) Suppose Vf X...XVf. IF A(B) for some sequence 8 = aij oai. Since
an an aijl . aij

Vf X...XVf + Vf covers, we find Vf IF A(B). In other words, we may assume that
I n i i

n = I and 3' has length I, and we can write V: IF A(B). Then also V:'; IF A(B)

by restricting along the morPhism Vfigf + V: , so if we add a choice sequence a

corresponding to id and put F = aof we find V?§’1d IF A(Fu). Hence since

Va(lf)’1d+ Vfid) covers, Vid) II- A(Fa). By the genericity lemma, I= VaA(Fa), so a

fortiori V: IF VaA(Fa), while V?€’1d IF 8 =Fo, so V: IF B¢:im(F) since

V?§’1d + V: is a cover.

(iii) The proof of Vain-continuity is analogous to the one we gave in 4.3. D

Corollary. Let A be a sentence of the language of CScontaining only one choice

variable. Then A is valid in this model over n(.

proof. From the proof of the elimination theorem for CS (Kreisel &Troelstra(l970))

we conclude that if CS F A then CS] F A, where CS] is the theory axiomatized

by the axioms of CS which contain only one choice variable. But the theorem above

states that these axioms are valid over H(. U

The model does not satisfy the axioms for CS in more choice variables, notably

the pairing axiom Va,B3F,G3y(a=FyI\B=Gy), and Va3B-continuity.

The properties of the universe of choice sequence in this model can be more close

ly analysed if we introduce a primitive predicate of independence

a “B "a and B are independent choice sequences"

into the language. The interpretation of W in the model is given by
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a 5
n o H o ' '

V lx...xVfn IF aij oi akz oz iff 1 # Z,

i.e. two choice sequences are independent if they come from different factors of the
5] a

product V X ... XV , meaning that they are extracted from distinctprocesses for
fl fn

choosing a lawless sequence of neighbourhood functions. Obviously, 9 is decidable,

i.e.

QWBV —]a”B

is valid in the model (just as decidable equality in section 3).

with this primitive “ added to the language, the model can be shown to satisfy

a set of axioms that allows elimination of choice sequences. For example, we have

multiple parameter versions of analytic data and Vain-continuity:

Theorem2. The model over n< satisfies the following multiple parameter versions

of analytic data and continuity, where W(a],...,on) abbreviates _/\ aillaj.1<J

Val...an(”(al,...,on) AA(al,...,on) + 3Fl...Fn
n

(fax ai¢E1m(Fi) A VB]---Bn(#(Bl.---.8“) + A(FBl.--FBn))))

Vol...an(#(a‘,...,on) + 3mA(al,...,an,m)) +

+ 3FVol...an(#(al,...,an) + A(al,...,an, F(al,...,an))).

the proofs are easy modifications of the proofs given for the one-parameter case,

using a "genericity lema" for independent n-tuples, saying that the independent
id id

n-tuple (a],...,an) at V( ) X ... XV() (n-fold product) is the generic such.
Wedo have dependent versions of pairing and Va3B-continuity:

Theorem 3. The model over R1 satisfies

(1) VG.B(_7G#B + 3F,G3y(a=FyI\B=Gy))

(ii) Vo3B('1aWBA A(a,B)) + 3FVaA(a,Fa).

a a
proof. (i) If a,B are given at Vfl X ... X Vfn and are not dependent, then

I n

o = a.. 0a., B = a. 0a. for some i and some neighbourhood functions a.., a.
13 1 1k 1 13 1k

occurring in ii. Take F = aij, G = aik, y = id oai, which exists at the object
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a §i,id in E 5
I * X f. X X f covering Vfl X X fn

V O O I V I I O V . I O I V O

1 n

(ii) Suppose Va3B(_Ia”BA A(a.B)) is forced somewhere, or equivalently (since there

are no non-lawlike parameters) everywhere. Then Vld IF 3B(f1a9B A A(a,B)), and()
from this it follows that there is a disjoint inductive bar {ui}i and elementsid,f.
fi 6 K such that Vfi_ 1 IF A(a,B) (where a still corresponds to id, and B

1

to fi). Let F: INN+ INN be the lawlike continuous operation with Flu. = fi, i.e.
_ id,fi id,fi

F(x) = fi(x) if x extends ui. Then Va IF B==F(a), so Vfi IF A(a,Fa),
. . id-fi 1 id id 1

and hence since the objects Va cover V( ), also V( ) H- A(a,Fa). By generi
icity, IF VoA(a,Fa). U

The continuity axiom for the quantifier combination Va . Van3B in fact

splits into several variants. Without proof we state some for n = 1.

Theorem4. The fbllowing versions of Va3B-continuity are valid in the model over

I(.

(i) (uniforrrrity) Va3B(a“B AA(a,B)) + 3e 5 KVu(e(u) #0 -> 3BVae u(aWB+A(o.,B)))

(ii) Va3BA(a,B) -> Be eKVu(e(u) #0 + (3FVa euA(a,Fa) V 38%: 5 u(aWB->A(a,B)))).

(By analytic data and continuity for the quantifier combination Va3f 6 K, (i) may

equivalently be formulated as

(i') vaae(a#BAA(a.e)) + vaapvmafie +A(a.Fe)).)

4.5. Identifying independent processes.

The obstruction to having the usual form of Va3B-continuity at the end of 4.4

lies in the fact that there are independent "parallel" processes for constructing law

less sequences of neighbourhood functions. As a further abstraction, we will nowal

low identification of independent processes which "until now"have yielded the same

result. This abstraction is formalized by adding more morphisms to the site H( of

4.4: we add morphisms

5 b
+ Vf xvf
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which, at the level of the underlying spaces, are just the diagonal maps. Wethus ob

tain a new site which has as morphisms all compositions of morphisms of the type de

scribed in 4.4 and these new diagonal maps, and with the same basic covers (i)-(iv)

above generating the Grothendieck topology. Wecall this new site In The model

over H., with the universe of choice sequences defined as for the model over I(,

now comes very close to validating the CS-axioms:

TheoremI. In the model over the site H. just described, the following are valid:

(i) (closure) VaVF3B(B-Fa)

(ii) (analytic data) Va(Aa ->3F(u e im(F) A VB6 im(F)AB))

(iii) (Va3n-continuity) Vo3nA(u,n) + 3FVaA(a,Fa)

(iv) (Va3B-continuity) Va3BA(a,B) + 3FVaA(a,Fa)

proof. (i)-(iii) are proved just as in 4.4 (cf. theorem 1 of 4.4), since the generi

city lema remains valid over H.. For Va3B-continuity, suppose IF Vo3BA(a,B)

Efl IF 3BA(a.B). From this it fol
. id fi

where either U. - V_ XV and
. f.1 ui gi id h.

U. IF A(a,B.) (with a coming from Vid and B. from V 1), or U. - V- ’ 1
1 1 ui 1 gi 1 ui

and U. IF A(a,B.) (with a corresponding to id, 8. to h.), all this for some
1 1 1 1

(at every object, if at any). Then in particular V

lows that there is a cover {¢.: U. + Vld }.
1 1 () 1

inductive bar {ui}i. But if Ui is of the first type, we can restrict along

V:d’fi°gi ——-+Vid ’<Vfi°gi ?> Vfld><Vfi°gi ?* VfidXV/fi 9u. u. E. u. ( ) u. .
1 1 1 1 1 1

id,fi°gi .
and we conclude that Va IF A(a,Bi). In other words, without loss all Uii
are of the second type. Nowlet F: INN+ INN be the lawlike continuous operation

id,hi id.hi
such that F Iui = hi. Then VG IF F(a) = Bi, so Va IF A(a,Fa). Since

id-hi id . . 1 id 1 . .
{Va + V() }i 1s a cover, 1t follows that V( ) H- A(a,Fa), so by the gener1c1tyI 
lema, I= VaA(a,Fo). U

The model over H. is not a model for CS, since the pairing axiom is not satis

fied. With one small modification, however, we obtain pairing. Let D1 be the site

with the same objects and morphisms as H., and with the Grothendieck topology gener
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ated by the basic covers (i)-(iv) of 4.4, and in addition for each object
31 an '.

V X ... X V of the site,
fl fn

(v) (diagonals) the collection of morphisms

nfnhn 5| an:>V ><...><V |a11 (h
) I in

{v x...xv
fill H1 :3‘

/KQ3]
l,...,h ) e Kn}n

is a cover, where on the underlying spaces the morphism for an n-tuple

h ..,h is given byI’ ' n

(xl,...,xn) }——+(f1°hl*x ,...,fn°hn*xn).

Over the site 11, we define a universe of choice sequences exactly as in 4.4. We

then obtain

Theorem 2. The model over 11 is a model for CS.

proof. All the axioms are verified exactly as for theorem I above, except for pair

ing. But pairing is trivially forced to hold by the new covers of type (v). D
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HEINE-BOREL DOES NOT IMPLY THE FAN THEOREM

IEKE MOERDIJK

Introduction. This paper deals with locales and their spaces of points in
intuitionistic analysis or, if you like, in (Grothendieck) toposes. One of the
important aspects of the problem whether a certain locale has enough points is that
it is directly related to the (constructive) completeness of a geometric theory. A
useful exposition of this relationship may be found in [1], and we will assume that
the reader is familiar with the general framework described in that paper.

We will consider four formal spaces, or locales, namely formal Cantor space C,
formal Baire space B, the formal real line R, and the formal function space R“ being
the exponential in the category of locales (cf. [3]). The corresponding spaces of
points will be denoted by pt(C), pt(B), pt(R) and pt(RR). Classically, these locales all
have enough points, of course, but constructively or in sheaves this may fail in each
case. Let us recall some facts from [I]: the assertion that C has enough points is
equivalent to the compactness of the space of points pt(C), and is traditionally
known in intuitionistic analysis as the Fan Theorem (FT). Similarly, the assertion
that B has enough points is equivalent to the principle of (monotone) Bar Induction
(Bl). The locale R has enough points iff its space of points pt(R) is locally compact,
i.e. the unit interval pt [0, l] c pt(R) is compact, which is of course known as the
Heine-Bore! Theorem (HB). The statement that R“ has enough points, i.e. that there
are “enough” continuous functions from R to itself,does not have a well-established
name. We will refer to it (not very imaginatively, I admit) as the principle (EF) of
Enough Functions.

As is well known, (Bl)=(FT)=>(HB). A possible way of explaining that (BI)
implies (FT) is by observing that B is homeomorphic to the exponential CC,as has
recently been pointed out by Hyland [3]. In the present context, therefore, the
exponential R” is a natural object of study. Note that (Bl)=>(EF) since R" is
countably presented, and hence a continuous image of B.The principle (FT) holds in
every spatial topos, but (Bl) does not, so the implication (Bl) =>(FT) is not reversible
(cf. [2]). .

In [1, §4.l 1], it was asked whether (HB) implies (FT). We will show that this is not
the case by proving that R has enough points in sheaves over the locale K(R2) of
coperfect open subsets of R2. Hyland has asked whether (Bl) or (FT) follows from
the assertion that R" has enough points. We will show that in the same topos of
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sheaves over K(R2), (EF) holds, thus answering I-lyland’s question negatively (§2
below). The converse implication (FT)=>(EF) will also be seen to be false, but
(EF) =>(HB) is true (§1).

Thus, our results complete the picture of valid implications in intuitionistic
analysis, or in toposes, between the four statements (FT), (BI), (HB), and (EF): in the
diagram below, the implications indicated are the only ones that hold.

(BI) =>(FT)
U U

(EF)=>(HB)
§l. Internal locales. Let us begin with some conventions. There has been some

confusion concerning the use of the terms locale, frame, space, etc. In this paper, the
words locale and frame are used as in [1], and the elements of the frame
corresponding to a locale A will be called the opens of A. A space is a locale with
enough points, or equivalently, a sober topological space. The product sign x will
always denote the product in the category of locales. If X and Y are spaces
their product in the category of topological spaces is denoted by X x,Y; so
X xs Y 3 pt(X x Y). As pointed out above, C, B and R all have enough points
classically, and we will use C, B, and R to refer to the corresponding external spaces.
R“ refers to the external exponential, i.e. the space of continuous functions R —>R
with the compact-open topology.

If A is an external locale, (internal) locales in Sh(A) are locales over A, i.e.
continuous maps X —>A of locales in the real world of sets, and internal continuous
maps from X to Ycorrespond to external continuous maps over A.As is well known,
formal Cantor space, formal Baire space, and the formal real line interpreted in
Sh(A) are represented by the projections C x A ——>A, B x A —>A, and R x A -> A.
Since R“ is defined as the exponential in the category of locales, it follows that its
interpretation in Sh(A) is presented by R“ x A —>A.

The following very useful observation is due to Hyland, and is also mentioned in
[1]

1.l. LEMMA.Let X and Y be sober spaces, i.e. locales with enough points. Then the
internal locale YXrepresented by the projection Y x X —>X has enough points in
Sh(X) ifl the locale product Y x X has enough points externally, i.e. coincides with
Y xs X. (This happens for example if either X or Y is locally compact.)

Recall that a sublocale A1-ofa locale A is called closed ifj is of the form (—)v a for
some open a of A. It is easily seen that classically, a closed sublocale of a space is
again a space. (This need not be true intuitionistically! Cf. 2.6 below.) We now
immediately derive

1.2. THEOREM.(a) In spatial toposes, (EF) holds if and only if (BI) does.
'(b) There exists a spatial topos in which(EF) fails, hence in particular (FT) does not

imply (EF).
PROOF.(a) Note that in sets, B = N” is homeomorphic to a closed subspace of R“.

Now suppose X is any space such that Sh(X) satisfies (EF). Then by Lemma 1.1,
R" x X is spatial. But since the pullback of a closed sublocale is again closed, it fol
lows from the remark above that N” x X must be spatial, so by applying 1.1again
we find that Sh(X) satisfies (BI). Conversely, the implication (BI) =>(EF) holds in
any topos, as pointed out in the Introduction.
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(b) (BI) fails in sheaves over the space Q of rationals, but (FT) holds in any
spatial topos (cf. [2] ). [‘_‘]

Let us observe that R is a continuous image of RR:evaluation at a point of R gives
a surjective map R“ —+R of locales. Hence (EF) implies (HB). Thus the only
questions still open are whether (EF) implies (FT) and whether (HB) implies (FT).
The first implication, and hence also the second, will be seen to be false in sheaves
over K(R2), to which we now turn.

§2. The model over K(R2). Let j be the smallest nucleus (J-operator, closure
operator) on (9(R2)which identifies U and U\{t}, for each open U and each point t.
The resulting sublocale of R2 is denoted by K(R2); its lattice of opens is precisely the
lattice of complements of perfect closed subsets of R2. Obviously, K(R2) cannot
have any points. In [2], it was shown that (FT) fails in sheaves over K(R2). We will
show that (EF), and hence (HB), do hold over K(R2), thus answering the remaining
open questions mentioned above. To illustrate how small K(R2) really is, we begin
with the following observation.

2.]. PROPOSITION.Let A be any subset of R2 which does not contain a perfect closed
set. Then the inclusion K(R2) C. R2 of locales factors through the inclusion
R2\A c. R2 of spaces, i.e. K(R2) is a sublocale of R2\A.

PROOF.If U is open in the subspace R2\A, then U = Int(U u A)\A (where the
interior is taken in R2). For such a U e (9(R2\A), we denote Int(U u A) by U.

c9(R2\A)E (9(R’)

. ll(0

K(R2)

Now in the above diagram of frames, define (p*by qo*(U)= j(U). We claim that
(a) the diagram commutes, i.e.j(V) =j(Int(V u A))for each open V E R2, and
(b) cp*is a frame map, i.e. it preserves finite meets and arbitrary joins.
PROOFOF (a). Obviously, j(V) §j(Int(V u A)). R2\j(V) is the largest perfect

closed subset of R2\ V, and similarly for R2\j(Int(V u A)). So to prove that
j(Int(V u A)) Q j(V), it suffices to show that if F is a perfect closed subset of R2\V,
we also have F E R2\Int(V u A) = R2\(V u A).Now if x is a point of such an F,
let W, be an open neighbourhood of x, and let C be a copy of the Cantor set,
C__C_W, n F. Then C n V = Q, so W, _C_V L) A would imply C E A, contradict
ing the assumption on A. Hence VV,,5; V u A, i.e. x e R2\(V u A).

PROOFOF(b). It is clear that <p*preserves the top and bottom elements, as well as
binary intersections. Now let {U,-| i e I} be a collection of open subsets of R2\A. We
need to show that

j(UielInt(A U = .l(I“t(AU Uiel Us»

But by (a), it suffices to show that A u U,“ Int(A u U,-)= A u Int(A u U,“ U,-),
which is obviously true.

Thus, we have a map of locales K(R2) 3»R2\A, giving the required factorization.
[:1

H3



HEINE-BOREL DOES NOT IMPLY THE FAN THEOREM

We now turn to Sh(K(R2)). If X is a space (externally), we obtain an internal
locale represented by the projection X x K(R2) —>K(R2). X x K(R2) is a sublocale
ofX x R2(notethatX x R2 = X x,R2,since R2is locallycompact), and wehavea
pullback of locales

X x K022) —"’—» Km’)

l l
X XR2 LL, R2

We write 1 ®j:(9(X x R2) —+(‘»‘(Xx K(R2)) for the frame-map corresponding to
the inclusion X x K(R2) C. X x R2. Thus each open of X x K(R2) is the form
1 ®j(W) for some subset W of X x R2, and we use W as a name for this open of
X x K(R2). Recall that the (global) opens of the internal locale X x K(R2)—>
K(R2) arejust the opens of X x K(R2).The crucial part of the proof is the following
lemma.

2.2. LEMMA.Let (X,d ) be a complete metric space, and W an open subset of
X x R2 such that Sh(K(R2)) laéW = T when W is regarded as an open of the internal
locale X x K(R2) —>K(R2). Then there exist a copy D E R2 of the Cantor set and a
continuous function f :D —>X such that the graph off is disjoint from W. (T denotes
the top element of any locale.)

PROOF.It is notationally convenient to assume that complete metrics have been
fixed in X, R2, and X x R2, which are bounded by 1, and such that A E X and
B E R2, diam(A x B) 2 max(diam(A), diam(B)). By induction we will first define
for each finite sequence u e 2”‘ a nonempty basic open subset 0,, = U, x V, of
X x R2 such that for all sequences u and v:

1) (7,,E 0,, if u extends v, (7,,m (5,,= E if u and v are incompatible, and
diam(0,,) S 2‘ ‘”""’;and hence also

2) V, E V,, if u extends v, 17,,n 17,,= Q if u and v are incompatible, and
diam(V,,) S 2" '”“"’;furthermore

3) j(V,,) I950,, S W (wherej is the nucleus of 2.1).
For the case u = ( >, the empty sequence,wejust take U“= X, V,,= R2. For the

induction step, the following observation is needed:
(*) For any sentence (p,and any nonempty open V E R2, ifj(V) l?5(p then there are

nonempty opens V0, V, E V with V0 n V, = Q, such thatj(V0) la"-‘(p,j(V1) l?‘ (p.
PROOFor (-I-).If j(V) laé(p, then V — [[<p]]must contain a perfect closed set, and

hence a copy of the Cantor set K. Write K as the disjoint sum of two copies K0and
K, of the Cantor set, and let V0and V, be open neighbourhoods of K0 and K, such
that V0 n V, = Q. Then K0 <_=V0 — [[cp]],so j(V0) £[[(p]], i.e. j(V0)l¢ (p. Similarly
j(V,) #75(p.(The referee pointed out that this argument is somewhat simpler than my
original proof of (*).)

(*)being established, let us suppose that the 0,, have been defined for all sequences
of length n, and pick one such sequence u. We will now define 00.0 and 00.1. Using
(*),we may choose two nonempty open sets V0,V, E V,such that 170n V, = Q, and
j(V0) laé0,, _<_W.j(V,) laé0,, s W.That is, in X x K(R2), we have for each i = 0,1,

0.. A 7r2"(V.-) £ W A 0.. A 7I2"’(V.-).
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or equivalently U, x V,,;<_W. Now keep i fixed, and cover U“ x V, in X x R2 by
open cubes_I_3§= U? x V§of diameter < 2"‘"* "(C ranging over some indexing set),
such that B? C; U“ x V,-.Then the B‘?also form a cover of U" x V, in X x K(R2),
so for some C, say C,-,we must have that in X x K(R‘°'), B§ ,{ W. Now let ,,.,- =
B?‘ = U?‘ x V,9",so V,,.,-= V?‘ E V,-.Then from the fact that B? $ Win X x K(R2)
it follows that 0",, ,;<_W n 1:2’‘(V,,.,-) in X x K(R2), which just means that
j(V,,,,-)l¢ 0,,.,- S W, so condition 3) is satisfied. Conditions 1)and 2) are obvious.

We will now build our Cantor set D. Let us write F = (X x R2)\W, and
F“ = 0,,\W = (U, x V,,)\W. By condition 3), each F, is nonempty (in fact, from
Proposition 2.1 we may even derive that 1z2(F,,)must contain a copy of the Cantor
set). Hence we can choosea point y,, e F“for each u e 2‘”. Write x,, = n2(y,,) e V“.By
condition 2), we find that for each ate 2”, {x,,},,S, is a Cauchy sequence, so it
converges to a point x, 6 R2. Note that also by 2), all the x,, must be different, since
xa 5 17,,if u S at.Let D = {x,, | (Xe 2”}. Then as a subspace of R’, D is homeomorphic
to the Cantor space. (The canonical map ou——>x,is a continuous bijection, hence a
homeomorphism, from the Cantor space to D.)

By condition 1), each sequence {y,,},,s, also is a Cauchy sequence. Hence it
converges to a point ya, which must necessarily lie in the closed set F. Now let
g: D -—>F E X x R2 be the function defined by g(x,) = ya. Then g is continuous, and
since 1r2(y,) = lim,,S,1t2(y,,) = limusaxu = x,,, g must be of the form (f, id), thus
giving us the required continuous function f: D —>X. 1:]

Recall that a (Hausdorff) space X is called an absolute neighbourhood retract
(ANR) for a space Y if for any closed subset G E Y, every continuous function
G —>X has a continuous extension over some open subset of Y containing G.

2.3. THEOREM.If X is a complete metrizable space and an ANR for R’, then the
internal locale represented by X x K (R2) —>K (R2) has enough points in sheaves over
K (R2).

PROOF.Let W and W’ be two open subsets of X x R2 with W E W’, such that if
we regard them as names for internal opens of the locale X x K(R2) —>K(R2), then
Sh(K(R2)) l= pt(W’) S pt(W). We want to show that Sh(K(R’)) l= W’ E W,and for
this it suflices to show that for every cube U x V which is contained in W’,
Sh(K(R2)) |= U x V E W. If not, then we can apply Lemma 2.2 with X replaced by
U and R2 replaced by V to obtain a continuous function g: D —>U, where D is perfect
closed, such that for each p e D, (g(p), p) ¢ W. We can then extend g to a continuous
function N 5+U with open domain N E V, and the function (f, id):N —+X x R2
then restricts to an internal point q of X x K(R2)—>K(R2) defined over j(N).
Since (f, id)‘ ‘(W) n D = Q, we cannot havej(N) l= q e W,although we do have
j(N) l= q 6 W’. This contradicts the fact that Sh(K(R2)) l==pt(W’) Q pt(W). E]

2.4. COROLLARY.(a) In Sh(K(R2)), RR and R have enough points, i.e. Sh(K(R2))
satisfies (EF) and (hence) (HB).

(b) (EF) does not imply (FT) (and hence neither does (HB)).
PROOF.As remarked at the beginning of this section, (b) follows from (a). (a) is

immediate from the preceding theorem, since R" and R satisfy the hypothesis of 2.3
by Tietze’s extension theorem for normal spaces. E]

The proof above does not use the full strength of Tietze’s theorem. It is obvious
that the same argument gives a more general version of 2.3 and 2.4: for example, we
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could replace R2 by any complete metric dense-in-itself space Y and prove the
analogous results for sheaves over K(Y).I do not know any application of this more
general fact.

2.5. REMARK.It follows from Proposition 2.1 that if W is an open subset of
X x R’ such that Sh(K(R2) 179W = T, 7z2(Xx R’\W) must contain a copy of the
Cantor set. The converse is false, however. For example, let C _C_R2 be a fixed copy
of the Cantor set, and let X be the set C with the discrete topology. Then if we let
W = X x R2\{(x, x) | x E C W is open, but the image of W under the quotient
map of frames 1 ®j:(9(X x R’) —>(9(X x K(R2)) is the top-element T; in other
words, Sh(K(R2)) l= W = T. To see this, let B, = {x} x R2 e 0(X x R’). Then for
each x e C, Sh(K(R2)) # B, 3 W (just omit the point x from R’); hence since the
sets B, form an open cover of X x R2, Sh(K(R2)) l= T = V, B, s W.

This explains why the Cantor set D had to be constructed quite carefully in the
proof of 2.2, and could not be obtained by just applying 2.1. However, if X is
compact, the converse does hold, and a considerably easier proof can be given of
Lemma 2.2 for this case. Consequently, Theorem 2.3 can be proved much more
easily for locally compact X. This covers the special case Sh(K(R’))l= (HB) of
Corollary 2.4, but does not apply to the case of R", of course. [1

Let me end this paper by drawing attention to another curious phenomenon in
intuitionistic analysis illustrated by the model over K(R2).

2.6. COROLLARY.(In localic toposes) A compact closed sublocale of a space need not
be a space.

PROOF.Look at R and C in Sh(K(R’)). [:1
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Connected locally connected toposes are path-connected
*

I. Moerdijk and G.E. Wraith

Introduction

The proposition stated by the title was conjectured by A. Joyal in 1983

during a seminar at ColumbiaUniversity. Every topologist knows that a

connected locally connected topological space is not necessarily path-connected.

The natural numbers with the cofinite topology is an example, and so is "the

long segment". However, it is true that all connected locally connected comr

plete metric spaces are path-connected (Menger (1929), Moore (1932)).

Toposes are generalizations of (sober) topological spaces, if we identify

a topological space X with the topos of sheaves on X, The notions of

connectedness and local connectedness were defined in SGA4 (Grothendieck and

Verdier (1972)) for toposes in a way that extends the usual versions of these

concepts for topological spaces. Howthen can Ioyal's.conjecture be true ? The

explanation lies in the correct interpretation of what path-connectedness means for

a topos E. It does not mean that "for every pair of points X0, X1 of E

there is a path I-£%’E with f(0) = x0, f(1) = x1". This is an inappropri

ate definition in as muchas toposes do not necessarily have points. Instead,

one has to construct the "space of paths in E" as being again a topos.-More

precisely, a topos F is exponentiable if the 2-functor F X (-) has a

right 2-adjoint (-)F, and EF is interpretable as the topos of maps from

F to E. Points of EF correspond to maps from F to E. The (topos of

sheaves on the) unit interval I is an exponentiable topos, so for any

topos E we may form the topos EI of paths in E. The inclusion of the

end-points {0,1} + I induces a map of toposes

EI->ExE,

supported by the Netherlands Organisation for the Advancementof Pure
Research (ZWO).
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and it is natural to say that E is path-connected if this mapis a sur

jection. Wewill prove the following slightly stronger result (over an

arbitrary base topos).

Theorem . For any connected locally connected topos E, the canonical
I . . . . . .map E + E X E is an open surjection; so in particular, E is path

connected.

The explanation of what "goes wrong" for spaces like the long segment L

. . I . , , ,is straightforward. The topos L has no points corresponding to non-trivial

paths reaching the end-point (see e.g. Steen and Seebach (1978), Engelking

(1977)), but LI + L XL is nevertheless a surjective map of toposes.

In attempting to prove a result of this kind, two approaches are available.

One is to manipulate directly with a site for El (or a suitable site

"covering" this topos). In this rather algebraic approach, one generally

"stays at one place" (one base topos). The other approach is more geometrical:

the strategy is to use adequate extensions of the base topos available from

general topos theory, which enable one to follow classical arguments about

points of separable metric spaces rather closely. Although both approaches are

equivalent, we will follow the second one in this paper, because it shows

more clearly the interplay between general topos theory and arguments (some

what similar to those) from topology. (But we will also give a brief descrip

tion of the maps of sites involved in the "algebraic approach", see 2.6 below.)

Apart from the element of surprise, and as an illustration of the slogan

that generalized spaces are better behaved than topological spaces, what can

this result be used for ? One answer is: homotopy theory for toposes. Homotopy

groups of topological spaces are really topological groups (which usually, but not

always, turn out to be discrete), so it is hardly revolutionary to insist that

homotopy
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groups (or groupoids, or other gadgets) of toposes are themselves toposes. The point

is made in SGA4 that the right notion of quotient by an equivalence relation

for toposes is to take the topos of descent data. If X. denotes a simplicial

topos, H0(X.) will denote the topos of descent data; that is, its objects

are pairs (A, 0) where A is an object of X0 and O is an isomorphism

d0*A + d1*A in X1, satisfying the usual coherence conditions. Wehave

a surjective map of toposes X0 + H0(XO).Let A. denote the cosimplicial

topos given by the standard simplices. For any topos E, we have the simpli

cial topos EA’ and we define fi0(E) to be the topos H0(EA'). This is the

topos of connected components of E.

Of course, A is just the unit interval I. Let us denote by P(E)
1

the E X E -topos E1 + E x E. We denote by F(E) the ‘E x E - topos

F1(E) + E X E given by fl0(P(E)), got by applying no in the context of

E x E - toposes. We assert that P1(E) + E x E is a groupoid topos, and is

the fundamental groupoid topos of E. Pulling back along the diagonal

E + E x E gives the fundamental group n1(E) as an E - topos (this takes

care of the base point). Wehope to say more about this in a later paper.

P. Johnstone has pointed out to us an example of a topological space

having trivial fundamental group as a topological space, but a non-trivial

fundamental group as a generalized space, a topos. The example is a "long

loop" (obtained from the long segment by identifying the two end-points),

which admits no non-trivial maps from the circle, but - being connected and

locally connected - has a non-trivial, but pointless, generalized "space" of

loops. Since the homotopyrelation for it is given by an open equivalence

relation, its fundamental group as a generalized space will be discrete and

isomorphic to Z .
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1. Preliminaries

In this paper, all toposes are Grothendieck toposes over a fixed, but

arbitrary, base topos S (thought of as "the" category of sets).

1.1 Spaces and locales. Our terminology concerning locales, spaces,

etc. will be as in Joyal and Tierney (1982). So a locale is a complete

Heyting algebra, and a mapof locales is a function which preserves finite

meets and arbitrary sups; spaces are the duals of locales. For a space X,

0(X) denotes the corresponding locale, the elements of which are called

the opens of X. A (sober) topological space is a space with enough points.

A presentation of a space X is a poset E’ equipped with a stable

system of covering families, such that 0(X) is isomorphic to the set of

downwardsclosed subsets of E’ which are closed for the system of covers,

i.e. 0(X) E {S 9 E’|(p < q E S =-p E S), and (T covers p, T E33 -p E S)}.

(Equivalently, E’ is a site for the topos of sheaves on X.)

For general information about spaces and locales, see Isbell (1972),

Johnstone (1982), Joyal & Tierney (1982), and Hyland (1981).

*
1.2 Open maps. A geometric morphism Fig-E is open if m preserves

first-order logic. w is openiff its localic part (its spatial reflection)

is, iff the unique AV - map SEE+ tp*(§2F) in E has an internal left

adjoint. (A topos F is called open if the canonical map F + S is an

open geometric morphism.) An important characterization states that

F g E is open iff there is a site B for F in E such that (in E

it holds that) all covers in E are inhabited. Wecan take E to have

a terminal object iff F + E is also a surjection. In particular, a space X

is open (and surjective) iff it has a presentation E’ (with a top-element 1)

the covers of which are all inhabited.
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F0? 30meproofs and more information, see Johnstone (1980), Joyal and

Tierney (1982).

1.3 Connected locally connected maps. A geometric morphism F_> E is

connected if m* is full and faithful. w is called 10Ca11YConnected (Or

molecular) if m? commuteswith H-functors. F E E is locally connected

iff there is a site B for F in E all whose covers are inhabited and

connected, and we may take I to have a terminal iff m is also connected.

In particular, a space X is connected and locally connected iff it has a

presentation E’ with a top-element 1, whose covers are inhabited and con

nected. For I’ we can take the connected open subspaces of X, so we may

without 1055 of generality assume that E’ is closed under sups of chains. (A

chain in E’ is a sequence (V1,...,Vk) of elements of I’ such that for each

i = 1,...,k-1, there is a Wi E E’ with Wi-< Vi, W.-< V equivalently,1 i+1;

since all covers in E’ are inhabited, Vi A Vi+1 is a surjective (open)

space.) Wecall such a presentation E’ of X, with 1 E £5 E’ closed under

sups of chains, and all covers inhabited and connected, a molecular

presentation of X.

For proofs and further information, see Barr and Paré (1980), and the

appendix of Moerdijk (1984).

The properties of being an open (surjective) map, and of being a

(connected) locally connected map are closed under composition. Moreover,

as is clear from the characterizations in terms of sites, these properties

are preserved by pulling back along an arbitrary geometric morphism.

1.4 Exponentiability. A topos F is exponentiable if the functor F x (-)

of Grothendieck toposes over .3 has a right-adjoint (-)F (in the appropriate
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2-categorical sense). Anycompact regular space X is exponentiable as a

topos, and if Y is any space, Yx is the topos of sheaves on the space

Yx, i.e. the exponential in the category of spaces (so there is no harm in

not distinguishing the two notationally). The construction of the exponential
¢

space YX in S is stable; that is, if 3' + S is a geometric morphism,
_ :#

then <p#'(Yx) 2 (p#(Y)(p (X), as spaces in S‘.

For exponentials of toposes see Johnstone and Joyal (1982); the case of

spaces is dealt with in Hyland (1981).

1.5 -The uni§_interval. By the unit interval I we will always mean the

unit interval as defined as a locale, as a-"formal space? (see e.g. Fourman

and Grayson (1982)). Thus, in any topos S, I is a compact regular space,

and hence exponentiable as a space and as a topos. Moreover, the construction

of I as a formal space is stable; i.e. for a geometric morphism

S‘ $.S, <p#KIS)==IS, (where the subscript denotes where I is constructed;

by stability, this subscript can be suppressed).

(I need not coincide with the corresponding topological space of Dedekind

cuts; in fact it does iff this topological space is comact. Since we work

over an arbitrary base topos, we have to deal with the formal space, rather

than the topological space.)

1.6 Somebase extensions. Wewill use the following three types of base

extension.

LemmaA. (Joyal) Let E be a given topos over S. Then there exists a

space X in S and a geometric morphism X + E which is connected and

locally connected. Thus, if E is itself connected locally connected, so is X.
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proof. See Johnstone (1984).

Lema B. Let S be an object of S. Then there exists an open surjection
Y . . . . . .E + S such that S is countable in E, 1.e. there 18 an epimorphism

*
11+ Y (S) in E. (E may be taken to be a space.)

proof. See Joyal and Tierney (1982), § V.3.

Axiomsof choice are generally not available in a topos. However, the

following lemmasays that we can apply an axiom of dependent choices in the

context of toposes, provided we allow for a change of base.

Lema C. Let S be an object of S, and let T be an inhabited tree of

finite sequences from S "all whosebranches are infinite":

(i) < > E T,

(ii) u-< v and u E T ~' v E T (u < v means that u extends V),

(iii) u E T =0 3s E S uics E T (at for concatenation).

Then there exists an open surjection E + S such that T has a branch in
I O O a * O U 0E, 1.e. there is a function 11+ Y (S) in E such that (in E 1t holds

that) Vn E II < a(0),...,a(n) > E Y*(T).

‘proof. Weintroduce a generic branch in the standard way: consider T as a

poset, and make it into a presentation of a space X by equipping it with

the covering system generated by

{u * s Is E S} covers u, for each u E T.

T has a top-element (i), and all covers are inhabited (iii), so if we

take E to be the topos of sheaves on X, E + S is an open surjection.
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2. Proof of th9_£h§9:sI2;

2.1 Reduction to the case of spaces. As a first remark, let us point out

that it suffices to prove the theoremstated in the introduction for the

special case that E is the topos of sheaves on a space. Indeed, if E is

a connected locally connected topos, there exists a connected locally con

nected map X + E, where X is a connected locally connected space

(1.6, lemmaA). If the theorem is true for spaces, then XI+ X X X is an

open surjection, and hence EI-*E X E must be one, by the following commuta

tive diagram (cf. Joyal and Tierney (1982), prop. VII.1.2).

l LEI--"')ExE

Wewill first prove a slightly weaker version of the theorem, namely

2.2 Proposition. Let X be a connected locally connected space.

Then X1 + X x X is a stable surjection.

As said in the introduction, our strategy will be to extend the base

topos S sufficiently so as to be able to perform a classical argument (in

2.5 below) somewhat similar to Menger (1929), Moore (1932) (see also Engel

king (1977), exercise 6.3.11). To this end, we first introduce a generic pair

of points (in 2.3), and then we force somecountability conditions (in 2.4).

2.3 The generic_pair of points. Let X be a given connected locally con

nected space in 3. Let F = Sh(X X X);—E>S,and write Y = p’(X). Y is a

connected locally connected space in F, and p is an open surjection (in

fact p is connected locally connected). In F, there is a generic pair of
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points (yo , y‘) : 1 + Y X Y = p#(X X X), corresponding to the projections.

A simple diagram-argument shows that to prove that XI + X X X is a stable

surjection in S, it nowsuffices to find an open surjection G+ F such that
f

in G there is a map of spaces I—->-q*(Y)with f(0) = x0, f(1) = x1 (I is

the formal unit interval in G).

3;!» Countability conditions. Let P be the presentation by comedaed.opgns 9;

Y in F, so P is a molecular presentation as in 1.3. For each WE P , let

<Ui(W):1€Iw>

be the family of covers of W in PR Adjoining surjective functions

11+ IW to E (for each W6 P0 as in 1.6, lemma B, we find an open surjection

F‘ E F such that in F‘, Z = f#KY) has a molecular presentation in which

for each element the family of "basic" covers of this element is countable.

Similarly, we can adjoin surjections 11+ {U E E’Iy0 E U} and

N-* {U E P by‘ E U}. So in F‘ , the points yo ,y1 of r#(Y) each have a

countable neighbourhood base consisting of elements of the molecular presenta

tion.

So in F‘, we nowhave the following data: a connected locally connected

space Z and two points zo, z‘ of Z, with a molecular presentation E’ of
2 such that

(i) for all WE P’, < Un(W) : n 6 ll > enumerates the

covers of W in P,

(ii) < Nn(Z0) : n E N > enumerates the elements of P which

contain 20,

(iii) < Nn(z1) : n E N > enumerates the elements of P which

contain z‘.
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2.5 proof of-proposition 21.2., After these preparations, we can nowconstruct

‘(an extension G + F‘ such that in G there actually is a path I + s#(Z)

from z to z (s will be an open surjection). Wework in F‘ with the0

data as in 2.4.
1

Achain from zo to z‘

(see 1.3) such that zo E V1 and z‘ E Vk. Consider the tree T of pairs

is a chain (V1,...,Vk) of elements of P

of finite sequences

< (Vm,..., V”1 k(m))m<n ' (°m)m<:i > ’

where the (VT ,..., Vino) are chains from 20 to z‘ , and the

pm: {1,...,k(m+1)} '* {1,...,k(m)} are functions such that

(a) j < j' =. .pm(j) < p“‘(j'). and v‘JP*‘< V:m(j);

(b) for each m‘ < m and each j <-k(n) , is con

tained in an element of Un(Vm;, ), for
P .o___dP 1(1)

each n < tn;

(c) V? is contained in Nn(zO) for each n<I, and

V:(m) is contained in Nn(z1)_ for each n < I;

(d) Given i < k(m) , suppose pm(j) = i for

j " j09j0+1o°°°oj0+k°

Then V?” < (unless jo - 0 , i.e. i - 0) ,0 1-1
+1 ' . ~

and V?0+k < V?“ (unless Jo + k - k(n+-1), (,,¢,

i = k(m)).

It follows from the molecularity of JP that any such

pair of finite sequences satisfying (a)-(d) can be extended to a longer

one. Explicitly: suppose we are given < (V?,..., V:(m))m< n , (Om)m< D >
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as above. Cover each VI.‘ (j = 1,...,k(n)) by a commonrefinement wj of
u v‘"'

the covers n+1(Pn;.”°pn_1(j) 0
W0< some element of N1 , and W0< Nn+1(zO). Similarly choose a

), m’< :1. Choose a W0 3 z in ]P such that

Wk(n+1) 3 z1 such that Wk(n+1) < some element of U) andk(n)

Wk(n+1) < Nn+1(z1) °

Nowfor each j < k(n), some Wj E (Uj must have positive intersection with

some Wjfl 6 NJ.” (i.e. 3U E ]P U < Wj and U < Wj+1). Now let
+1 +1 +1 . . +1

V? = W0, V; ,..., V:_1 = W1 be a chain in (H1, and let V: be an

element of P with V:-H < W1 and V2” < W2 (so in particular VEH < V? and

V3” < V; , for condition (d)). Let on(i) = 1 for 1 < i < k. Nowdefine
. +1 1 . . . +1 +1

the next bit Va” ,o.., V2:-_£in a similar way: let V2” = V: ,
1 1 1 . .

let V::2 -=W2 , V::3 ,..., V::£_1 = W2 be a chain from W2 to W2 in W2 ,

and let VD” “+1 “+1 < W1 .k+£ be an element of P with Vk+£<W2 and Vk+I_
n+1 _
k(n+1) °‘_ wk(n.+1) 3 *1‘

By lenlna C of 1.6, there is an open surjection G-?'F' such that the

Let pn(i) = 2 for k < i < k + 1.; etc., etc., until V

tree T has an infinite branch in G. Replacing F‘ by G, we work within

G with this fixed branch which we will denote by

“’>
m

<(V1"°°’V:(m))m€N ’ (0 m€N>

Wenowmimic this branch of chains of V3]'s by consecutive rational

intervals in I = [0,1]. (Notational convention: the open interval (p,q)
. , -1

stands for [p.q) if p = 0, and for (p,q] if q = 1.) Let po = O,

1 = 1. Suppose we have defined (pi! , qn.1)1 for 1<i<k(m),‘C

m m_ m In: In =

1”‘)
J

for j= jo, j0+1,..., j0+k, chooserationals r1,..., rk with

Define (p?+1. q for 1-< j'< k(m+-1) as follows. If om(j) = i
J

p?<r1<...<rk<q?, andlet
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m+1 _ m m+1_ m+1

Pjo " Pi 3 qjo ' pj0+1 = 73190009

m+1 _ m+1 _ m+1 = In

qj0+k-1- pj0+k-rk’qj0+k ‘*1’

So for each m, {[p? , qgl] : j = 1,...,k(m)} is a "cover" of [0,1] by
consecutive closed intervals having one point in common,and the cover for m+ 1

refines the one for m according to the function pm.
. . *

Define a function f : IP + 0(I) by

f*(U) =V{(p‘JP, q‘JP.)|j < 5' and v...v v‘JP.<11}.
f

av:

Weclaim that f defines a continuous map of spaces I—-)Z, and that

f(O) = zo , f(1) = z‘ . Proof of this claim:

. * 0 0 . .
(i) f (1) = (po , qk(0)) = [0,1] (by the notational convention).

(ii) f* preserves binary meets; more precisely, since ]P does not

have meets, if W< f*(U) and W< Jf*(U) then W A W< f*(V) for some

V E ]P with V < U , V < 73. Indeed, suppose W = (p? , q?,) < f*(U) because

VIPv...v VH3.< U, and W = (pt-E, q?) < f*(U) because V9 v...v V5, < U.
J J J __ J __ J J

Let us say 5'1> m, and pl; < pt-35< qlil, < pg}. (other cases are synlnetricJ J

or trivial). By construction, qgl, = q? for some i >3 , and

< v? VOCCV <UC

Q

V? v...v V.
Ber-Bl

it

So W/\W' =(p?, q?)<f (V v...v V111),and V;nv...vVl:€P since P is5

closed under sups of chains, and moreover V? v...v V? < both U and U.

(iii) f* maps basic covers in P to sups in 0(1): Let {Ua}a

be a cover of U E P , and suppose (pg: , q?,) < f*(U) because

V? v...v V31,< U. For each k, j < k < j' , we have by stability a cover

{WE} of V: in ]P such that W‘;< Ua . Say {WE} = Unk(V:).

Let H:= max(nj,...,nj,). Nowconsider the chain (V;;i,..., Vila-1)) from zo

to z By definition, there are 1 < Zk < (.1:< k(m) such that1 O
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om °..-° pm"'(i) = k we KR < 1 < Ki

(for k = 1,...,k(m), but only k = j,...,j' are relevant). So for

£k-< i-< Ki,
‘E:

. < some Wk < some Ua .B

I-H

Hence (p? , q?)'< f (Ua), and therefore

(P2. ’ qtg.) v"'V (P2, ’ q1£1’.1.,)<Vocf*(Ucx)°
~ J J J J

Since p? = p3. and q?, = q%.', this almost means that

(P? , qgl.) <V;f*(Ua), but we miss the boundary points! To make up for those,

however, it suffices to note the following consequence of condition (d):

Given any V? , there is an n' >-n such that V?,,..., V?: < V? and
'- 1

p(j)-< i-< O(J'), where p = Qn°9--° on (i.e. for chains which are

sufficiently fine, we get over the boundary).
*

This completes the proof that f defines a map f : I + Z of spaces.

(iv) Finally, f(0) = 20 , f(1) = 21: Clearly, if £(o) e U then

V:'< U for some m, so zo E U. Conversely, if zo E U then U = Nn(zO)

for some n, so V3-< U for m.>-n; hence f(O) 6 U. Thus f(O) = zo as

points of Z. Similarly f(1) = z‘.

This completes the proof of proposition 2.2. In 2.7 we will show that
I . . . .

X + X X X 15 in fact an open surgection.

2.6. Remark. As said in the introduction, one can also give a more "algebraic"

proof, by workingdirectly with sites (presentations). Webriefly describe

the sites involved. Let X be a connected locally connected space, with a

molecular presentation I’. Hyland (1981) gives a presentation for the space

XI. It is not hard to see that in the present case, it suffices to consider

elements in the presentation of the form
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n

iQHl(pi. P1,‘). U11.

where 0 = p1-< ..-< pn = 1 are rationals, and (U1,...,Un) is a Chain in
*

E’(Hylandwouldwrite [(pi, pi+1)-<-< f (Ui)] for our [(pi, pi+1), Uil).

Let Q be a presentation of XI with underlying poset consisting of opens of

XI of this form. Let IP69P denote the presentation of X x X obtained in the
F

obvious way from the presentation E’ of X. The inverse image 0(X)GD0(X)-'*0(XI)

of the map X1 + X X X of proposition 2.2 is induced by the functor

F I
1P®1P—)0(x ),

hp,%]€mm<v,Un<m.
n

F(V@W) =v{ A [(Pis P
i=1 . F I

To show that F induces an open surjection, one checks that 0(X XX)->0(X )

has a left-inverse, left-adjoint G : 0(XI)-9’0(X XX) described in terms

of presentations by
G

m—+m®r

c</Ii [(pi.pi+1), vi] = U1@Un,
i=1

and that the Frobenius-law G(U A F(V)) = G(U) A V holds.

2.7. Openness of the map XI—)X X X. Given the fact that X1 has a presen

tation Q as in 2.6, our proof of 2.2 actually shows that X;->X x X is an

open surjection. Weargue again in the geometric style, using base extensions

to enable ourselves to reason about points.

In general, a map B-£?A of spaces in S (or in any topos) is open iff

the image f(V) is an open subspace of A, for all V in some basis (some

presentation) of B (see Joyal and Tierney (1982D. If we allow for change

of base, images can be described in terms of points, just as in topology: if

V E 0(B) and U E 0(A), then f(V) = U iff for any geometric morphism
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. #' . .
G—-)3 and any point p E to (A), we have (writing V for q)#(V) ,

U for cp# (U))

‘P

p E U ¢=othere is a surjection H—9G and a point
we . ,.

q€VC1JJ<f’(B) such that in H, p=f(q).

f I
Let us consider the special case where B->A is the map X--?X x X of

r
proposition 2.2. Take a basic open U = /\ [(pi , pi+

i=1

2.6. We claim that the image of U is the open subspace U1 X Un of X X X.

I .
1), Ui] of X as in

To show the equivalence (*), choose G-93 and a point

p = (x0, x1) E cp#(U1) x cp#(Un) in G. Since (CD (U1),...,<p#(Un)) is a

chain in G, there is an open surjection G0-4>G such that, writing wb
‘D. . #

for the composite Go—')G'-*3, there are points yi 6 (D0 (Ui A U11”) =

= cp0#(Ui) A cp0#(Ui+1) (1 = 1,...,n-1). Let yo = x0 , yn = x1 in G0.

Since each w&“r(Ui) is a connected locally connected space in G0, our

proof of 2.2 shows that there exists an open surjection H-> G0 such that

in H there are paths fi : I-§w#Lp0# (Ui) with fi(0) = yi,

fi(1) = yi+1 (i = 0,...,n-1). Putting these paths together, we obtain a map
f .

I--)lD# coo-‘V:(X) with f(i) = yi (i = 0,...,n). This shows =9of (st) for this

particular case.

The other implication 0- is obvious.

This completes the proof of the theorem as stated in the introduction.

. . I
2.8. Remark. Finally, we point out that openness of the map E-">E x E

can be of interest, even if this mapis not surjective. In fact, this general

izes.the notion of semi-local path-connectedness for topological spaces: one

easily shows that for a topological space X, the map X¥—4'Xx X (of topo

logical spaces, not of toposes) is open iff X is semi-locally path-connected.

(Weare indebted to P.T. Johnstone for this observation.)

134



References=22?-=%====

M. Barr, R. Paré, Molecular toposes, J. Pure Applied Algebra 11 (1980).

R. Engelking, General Topology, Warsaw (1977).

M. Fourman, R. Grayson, Formal spaces, in: The Brouwer Centenary Symposium,

(eds. A.S. Troelstra, D. van Dalen), Northrflolland (1982).

A. Grothendieck, J.L. Verdier, Theorie des topos et cohomologie étale des
schémas (SGA4), Springer Lecture Notes 269 and 270 (1972).

M. Hyland, Function spaces in the category of locales, in:
Continuous Lattices, Springer Lecture Notes 871 (1981).

J.R. Isbell, Atomless parts of spaces, Math. Scand§l_(1972).

P.T. Johnstone, Open maps of toposes, Manuscripta Mathflgl (1980).

P.T. Johnstone, Stone Spaces, Cambridge Univ. Press (1982).

P.T. Johnstone, Howgeneral is a generalized space?, to appear in a volume
to H. Dowker's memory, LMSLecture Notes, 1984.

P.T. Johnstone, A. Joyal, Continuous categories and exponential toposes,

J. Pure Applied Algebra E2 (1982).

A. Joyal, M. Tierney, An extension of the Galois theory of Grothendieck,
typescript (1982); to appear in Memoirs Amer. Math. Soc.

K. Menger, Uber die Dimension von Punktmengen III: zur Begrfindung einer

axiomatischen Theorie der Dimension, Monatsh. Math. Phys. §§_(1929).

I. Moerdijk, Continuous fibrations and inverse limits of toposes, to appear
(preprint 1984).

R.L. Moore, Foundations of Point Set Theory, NewYork (1932).

L.A. Steen, J.A. Seebach, Counterexamples in topology (second edition),
Springer (1978).

Mathematisch Instituut Mathematics Division
Universiteit van Amsterdam University of Sussex

Netherlands England

135





PATH-LIFTING FOR GROTHENDIECK TOPOSES

by

Ieke Moerdijk

In [MW]we proved that every connected locally connected topos E is path

connected, in the sense that the canonical map

(1) £1-—» E x E

given by the inclusion of the endpoints {O,1}C I is a surjection (actually,

we showedit to be an open surjection). Here I, the unit interval, is identified

with the topos of sheaves on I, and EI is the "path-space" of E, i.e. there is

an equivalence

HomS(F,EI) :_ HomS(Fx3I,E)

of categories of geometric morphismsover the base topos S, which is natural in F.

The aim of this note is to point out that a muchstronger result can in fact be

proved. Let F-—£+E be a connected locally connected map of toposes, i.e. F is

connectedznuilocally connected as an E-topos (intuitively, the fibers of f are

connected and locally connected). Wewill prove that for every path a in El and

points y0,y1 of F with f(y0) = a(0), f(yl) = a(1), there exists a lifting a 6 F1

of a with B(i) = yi. Moreprecisely, if we form the topos

EI )(FxF)‘(Ext

of such triples (a,y ,y ) by ulling back FXFiii; ExE along the map in (1), then0 1 P

the result can be stated as follows:

Theorem 1. Let F —£¥E be a connected locally connected map of toposes. Then the

canonical map

I I
F -——+E x(ExE)(FxF)

given by the map FI~—+EI induced by f, and F1 —+FxF as in (1), is a stable
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surjection.

For the special case of spatial toposes, or equivalently, for the case of spaces

(in the generalized sense of e.g. [JT], otherwise knownas locales!) we can do slightly

better.

Theorem 2. Let Y —£eX be a connected locally connected map of (generalized) spaces.

Then the canonical map
I I

Y -—+X x(xxx)(YxY)

is an open surjection.

I conjecture that theorem 1 can also be strengthened by replacing "stable sur

jection" with "open surjection", but I don‘t quite see howto prove this right now.

Finally, it maybe worthwhile to state the more down-to-earth case of metric

spaces explicitly. Recall that an open map Y —£+X of topological spaces is

o-acyclic if Y has a basis of open sets which intersect all fibers of f in a

connected (if non-empty) set (see [MV]). Wewill see that the following corollary is

just a special case of theorem 2, with the base topos 3 taken as the category of

classical sets.

Corollary. Let Y —E4X be a 0-acyclic map of complete separable metric spaces, and

assume f has connected fibers. Let YI-——+X1 be the induced map of function spaces

(with the compact-open topology), and let

S = {(<1.>'0.>'1)| ail —*X. 0(0) = f(Y0). a(1) = f(Y1)}

topologized as a subspace of X1 x Y x Y. Then the map

Y‘ —~s, s I-* (foe,B(0). 3(1))

is an open surjection.
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Preliminaries, notational conventions. This note is written as a sequel to [MW], and

we assume that the reader is familiar with that paper. All the basic results and the

notation that we use here can be found in section 1 of [MW].

51. Reduction to the generic case.

The only technically difficult thing to be proved is the following lemma.

1.1 Lemma. Let Y —f;» I be a connected locally connected map of a space Y into the

uit interval I, in "the" base topos S, and let yo 6 f-1(0), yl E f—1(l) be two

points of Y. Then there exists an open surjection G ——+S such that in the topos G,

f has a section I-JioNY with s(0) = yo, s(l) = y1. In other words, there is a

commutative diagram of toposes and geometric morphisms

(Y0.Y1)
G><S{0,1}—» I/

[ 5/’ f/I
I 772

Gx I z5——————-———+ I
S

This lemmawill be proved in section 2.

f
1.2 Proof of Theorem 1. Let F ——+E be a connected, locally connected map of toposes.

It suffices to show that for any map 6 -+ EIx(ExE)(FxF) there exists an open‘sur

jection H -» G and a map H —» FI such that

H-—-—————————» FI

I
G ——-——————-—+E x(ExE)(FxF)

commutes; By working in G, i.e. by replacing S by G, we may assume G = S (the

map F -+ E remains connected locally connected after this change of base). So

suppose we are given a map I -2»-E and two points x0,x1 of F, with f(xi) - a(i).
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Let Y -3» F be a connected locally connected map, where Y is a space (identified

with the corresponding topos Sh(Y)), as in [MW], 51.6. By extending S, i.e. by

replacing S with S‘ where S‘ ——+S is an open surjection, we may assume that in

3 there are points y0,y1 E Y with g(yi) = x.. Consider the pullback of toposes over1

Z

1..

I

(Z is spatial over 3, since Y is spatial over 8, so a fortiori over E.) Let

S

__E_..

n1+-——114———-<

H:*
zo,zl be the points of Z with B(zi) = y

an open surjection H -+ S such that in H there is a map I —§_».Z with hos = id

1, h(zi) = i. By lemma1.1 there exists

and s(i) = zi. Compsosing with go8 and transposing, this gives the map H —+FI

required in (1).
C]

1.3. Proof of Theorem 2. Let Y -£+ X be a connected locally connected map of spaces.

It follows from theorem 1 that

I I
Y -—+-X x(xxx)(YxY) - S

is a stable surjection. To prove that Y1-—»S is in fact open, one shows that the

n-l
image of a basic open of the form igo [(pi,pi+1),(Ui], where po = 0<p1<...<pn = l

are rationals and (U0,..,Un_1) is a chain of opens in Y, is the open

n-l
igo [(pi,pi+1),f(Ui)] x(xxx)(U0xUn_1)of S. This is completely similar to [MW]52.7.

ID
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1.4. Proof of the Corollary. It is observed in [J] that an open map X + Y of topo

logical spaces is 0—acyclic iff it is locally connected as a mapof (generalized)

spaces, or equivalently, as a map of toposes. If X and Y are complete metric

spaces in Sets, then the corresponding locales 0(X),,0(Y) are countably presented,

and hence so are the locales corresponding to the exponentials XI,YI, and the pull

back XIx (YXY) as generalized spaces. Consequently, these generalized spaces
(X’<X)

have enough points ([MR]), i.e. they coincide with the corresponding topological

spaces. By these general facts, the corollary follows imediately from theorem 2.

1.5. Remarkon path-connectedness. Note that by taking X = l in theorem 2, it

follows that if Y is a connected locally connected space, the map YI-—+YXY is an

open surjection. This is the special case proved in [MW]. As explained there, the

corresponding fact for toposes, stated in the first lines of this paper, follows

easily (cf. [MW],52.1).

Similarly, by taking X = 1 in the corollary, we obtain the old result of

K. Menger and R.L. Moore, saying that all connected and locally connected complete

separable metric spaces are path-connected (for references, see [MM]).

52, The generic case.

Wewill now prove lemma1.1. A crucial preliminary result is the following:

2.1 Proposition. Let Y -E» X be a locally connected map of spaces, and let P be a

presentation (a poset with a stable covering system) for X. Then there exists a

presentation Q for Y such that taking direct images induces a function

Q._§£:la-P U r——of(u) = 3f(U)
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with the following property: Given a cover {Ua}a of U E Q, and V E P with

V:_f(Ua) n f(UB) for two given indices u and B, there exists a cover w of

V in P such that for each WE N there is a chain Ua = Ua ,..,Ua = US from
1 n

Ua to Us in Q with for i = l,..,n-1 W‘: f(Ua A U“ ) (or more precisely,i i+l

since P may not have meets, W:_f(Ui) for some Ui E P, Ui:_Ua AUG ). Morei i+l

over, if Y -E» X is also a connected map of spaces, we may take f1(V) E Q for

each V-E P, so Y —E»X is determined by the adjoint pair Q £I;%v-P f

proof. This is really a special case of lemma2.5 from [M]. But it can also be

proved directly, by starting with a molecular presentation of Y, where Y is

considered as an internal space in Sh(P);
ID

2.2 Remark. Intuitively, the elements of Q are the opens of Y all whose non

empty fibers are connected. Clearly, we cannot assume that Q is closed under unions

of chains, i.e. we need not have (U,U'EQ) and Pos(UAU') = UVU'€Q). It is easy to

see, however, that when Q comes from a molecular presentation of Y in Sh(P), it

has the following property:

(1) If U,V E Q with Pos(UAV) and f(UAV) f(U) A f(V), then U V V E Q.

Moreover, it will hold that

(2) If ueo,vep and V:f(U), then uA£'1(v)eo2.\

2.3 Proof of lemma1.1. Let Y-11+ I be a connected, locally connected map of

spaces in S, and let P be the presentation of I by rational intervals. (As

in [MW],we take (p,q) to stand for [p,q) if p = 0, and for (p,q] if q = 1.)

Let Q be a presentation for Y as in 2.1, coming from an internal molecular

presentation of Y in Sh(P); so (1) and (2) of 2.2 will hold. Thus f: Y —»I
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is induced by the pair

Q :=£21P-1f

and Q is molecular since P is (cf. also lbfl, lemmain section 4).

Wenow proceed in the style of [MW], §2.4 and 2.5. First of all, by replacing

S by an (open surjective) extension 3' —»S of S, we may assume that we have the

following enumerations:

(i) for each U E Q, (Un(U) |neN) enumerates the covers of U in Q;

(ii) (Nn(y0)|neN) and (Nn(y1)IneN) enumerate the elements of Q which

contain yo and y1, respectively,

just as in [MW], 52.4.

Wenowbuild a tree T of pairs of finite sequences

((v’“,... v"' m

9 I (P139---nPk(m))m-<_n)D

where each (VT,...,V:(m))

<p:(m) = 1 are rationals, such that

m+1 }(a) for each m < n, {p3,..,p:(m)} C {p3+1,...,pk(m+1) and the chain

(Vm+1,... Vm+1 ) refines (Vm,..,V:(1 , k(m+1) ) accordingly, i.e. form)

1;i;k(m). 1<j<k(m+1). (p'J7“_‘i.p‘J7‘”)c (p',"_1.p';‘) = v’;”1 : ;

(b) for each m‘ < m :_n and each j §_k(m), V? is contained in an element

of U£(V?') for each 1 §_n, where i :_k(m') is the index with

m m m' m’

(c) VT is contained in N£(z0) for each 2.: m, and VE(m) is contained

in N£(z1) for each 1 §_m ;
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m+1 m m+l m

(d) given 1<i :_k(m), suppose pj_1 = pi_1, pj+k = pi (so

( m+l m+1) ( m+1 m+l) are all contained in ( m m) and1-"!pj+k_1!pJ'+k I
accordingly VW+lV...VVW*1 < VT, see (a) above). Then vT*1 < VW

3 3+k - 1 J -- 1-1

(unless j+k = k(m+1), i.e. i = k(m));

(e) for l 1 i §_j §_k §_k(m),

v,,vV:) = f((vTv_,vv?) A (V?+1v,_vV:))

(f) for 1 = l,..,k(m), Ip? 1,pT] 1 £(v’;‘), i.e., there are rationals

r,r', r<pT_1<p?<r', with (r,r') 1 f(VT).

Weclaim that by molecularity of P and Q, and by 2.2, 2.3 above, any pair of

sequences satisfying (a) - (f) can be extended to a longer one. To see this,

suppose we are given ((VT,..,V:(m))m<n, (pg,..,p:(m))m<n) as above. Cover each

V9 (j=1,..,k(n)) by a commonrefinement w. of the covers U (V? ) (m<n, i <k(m)
J J n+1 1m - m

the index such that (p?_1,p?) C (p? _1. p? )). Choose W3 yo in Q such that
m m

§

W1:_ some element of wl and W < N (yo), and similarly choose Wk(n) 3 yl in Ql - n+1

such that Wk(n) §_ some element of wk(n) and Wk(n) §_Nn+1(y0). W1 and Wk(n)

having been chosen, also fix for each of j< k(n) a Wj E wj and a Wj+1E wj+1

which have positive intersection. This can be done by molecularity of Q. Moreover,

we choose Wj and Wj+1 in such a way that there is an Uj E Q with
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(1) uj_: wj and UJ 5_Wj+1 and p? e £(uj) ,

. n n n

s1nce by (e) and (f), pj E f(Vj A Vj+1).

(picture for k(n) = 3)

I
;——--———+—— + +
" - 0 P" P" " - 1Po ' 1 2 P3 '

_ n ~ n ~ . _ n .
So 0 - po 6 f(W1), pj E f(WjAWj+1) (0<3<k(n)), and 1 - pk(n) E f(Wk(n)). S1nce f

is an open surjection, there are for each j, 1 :_j 1 k(n), opens

W. = oj,..,oj = w
J 1 U. J

_ _ J

in wj such that (f(0i),..,f(Oi )) is a chain in P from p?_1 to p?
J . . .

By ro osition 2.1 we can find rational intervals (qJ,rJ),.., (qJ ,rJ ) with
P P 1 1 u_-1 u_-1

J

p?_1 < qi < ri <...< qfl._l < r3 _1 < p? (j=1,...,k(n)),
J J

and for each s < u_ a chain
J

J: J J =
(2) 0s 0s,1""0s,tS j Oi+1

in wj ‘from 0: to og+1 (s=1,..,uj-1) with (q;,r:)_; £(o; taoi t+1) for each

S<u. and t<t
J s I

1145



By 2.2(2), we can refine this chain (2) by letting

Ai,t=Og’tI\f-1(q;’t,rjS,t) 1<t<tS,j, 1:s<uJ_

A%,1 = 01 A f-1(p?_1,r{) = Wj A f'1(p?_l,r{)

Ag,tS = 01 A f-1(qg'rg+1) = Ag+l,l 1 < S < uj-1

Aj ,t = 05 A £'1(q5 ,p9) = w. A £‘1(qj ,p9)
u.-1 u.-1 uj uj-1 J J u--l J

So now we have for each j = l,..,k(n) a chain

j J j 5 = 3 j j

(3) Al,1’Al,2’°"Al,t1 A2,l’A2,2""Au_-1,t 1
. J Uj'

- 5 ~ J

with A1,1 §_Wj,Au _1,t 1 §_Wj
1 “j”

To define (V?+1,..,V:Efi+1)) we take the chains (3)j, one after the other,

but with an open inserted "glue" the (3)j-chain to the (3)j+1 one, as follows. Fix

j, l_:j <k(n), and choose nationals aj,bj with

J n j+1

(4) ruj_,<aj<pj < bj < q, , and caj.bj) :.f(uj).

Bj = uj A £‘1(aj,bj), 1 ;_j < k(n),

and define (V?+1,..,V:Efi+l)) to be the chain

(5) (3)1.B1.B1, (3)2, 82.82.....(3)k(“"1.Bk(n)_1.Bk(n)_1.(3)k‘“’.

where (3)5 abbreviates the chain in formula (3)3 above.

Finally, we define the rationals (p3+1,..,p£E;+1)), refining the sequence

(p3,..,p:(n)). For each j = l,..,k(n) and s = l,..,uj-1, wehave a chain

(Aj Il<t<t .) over the interval (qj,rj), and we subdivide this interval intos,t 5,] s s
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Jt .-2 pieces accordingly: take rationals c : 1 < t< t .-l with5.] S.t S.)

To refine (p3,..,p:(n)), we replace (p?_1,p?) for 1 < j< k(n) by

n j j n j .

(7)j (pj_1,bj_1,(6)1,..,(6)uj_1,aj,pj), where (6)5 abbreviates the

S j-1)-tuple in formula (6)g above; for j = 1, j = k(n), we replace (pg,p:)(t

and (p:(n)_1,p:(n)) respectively by a sequence as in (7)j, but without the aj

and the b. .j-1

vn+l n+1 n+1 n+11 ,..,Vk(n+1)), (po ,..,pk(n+1))). Weleave it toThis, finally, defines ((

the reader to check that (a) -(f) are indeed satisfied.

After this rather tedious part of the proof, wecan finish quite straightforwardly,

just as in [MN]. By lemma C of 51.6 of that paper, there is an open surjection

G -» S in which the tree T has an infinite branch. Wereplace 3 by G, and

work in G with this fixed branch

((v"',... v“' m m

' k(m))meN ' (p0""pk(m))meN) '

Using this branch, we can define a map s: I —»Y of generalized spaces by the

function

5*: Q->0(I)

s*(u) =V{(p'J7',p'J3‘,) I j < 5' and v’T' v..vv'5‘ iu}.

Then just as in [MN] it follows easily from (a) - (e) that s preserves A and

V; and that 5(0) = yo, s(l) = y (By condition (e), sups of the form V?+1v..vVw1' 3

are in Q (cf.2.2) - this is used to prove that s* preserves A. In [MR], sups

of chains were automatically elements of the presentation.)
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Finally, we have to showthat s is a section of f, i.e., fos is the

identity on 1. But by condition (f), we have vu e Q s'1( u) = s*(U) 3 £(u),

so in particular
-1

(8) vv 6 p (fos)-1(V) = s £'1(v): ££‘1(v) = v.

But in any topos, the (formal) unit interval I is a T1-space, in the appropriate

sense of generalized spaces (see e.g. [F]), i.e.

(9) for any pair Xé I of mapsof generalized spaces,
W

vv 6 0(1) <»‘1(v) : Wcv) implies cp= w.

So for our particular case we conclude that fos = id.

This completes the proof of lemma1.1.
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The key theorem of loyal & Tierney [1] is the descent theorem for geometric
morphisms of Grothendieck toposes (over a fixed base topos V). This theorem says
that open surjections are effective descent morphisms -—a fact which has remarkable
consequences (see Ioc. cit.). loyal and Tierney prove the descent theorem by first
developing descent theory for ‘modules’ (suplattices) over locales, parallel to des
cent theory for commutative rings. In this way they provide an algebraic explanation
for the theorem. The purpose of this note is to give a direct proof of the descent
theorem. '

1. Formulation of the descent theorem (see Joyal & Tierney [l])

Let 6'49 be a geometric morphism of Grothendieck toposes over .7’,and
consider the diagram

P12

P23 .
/1 x,, z5"x,j«€"————*n5"><,,/‘ -46‘ -—-—-—-*1/.

3 pz

6

(t):

Descent-data on an object Xe/I consists of a morphism 0 :p,"'(X)-+p2"'(X)such that
§"‘(6)=id and p,"‘3(6)=p2"‘3(6)0p,"'2(6)(the cocycle condition). Des(f) denotes the
category of pairs (X,6), 6 descent-data on Xerfi, where morphisms (X, 0)-'()(’, 6’)
are morphisms X—>X’ in /; which commute with descent-data in the obvious way.
Any object f*(D), Dev, can be equipped with descent-data in a canonical way,
and this gives a commutative diagram
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I. Moerdrjk

2 -———>Des(f)

f‘ U

where U is the forgetful functor. f is called an effective descent morphism if
9 ->Des(f) is an equivalence of categories. The descent theorem states that every
open surjection is an effective descent morphism.

Note that by working inside Ix, it suffices to prove this theorem for the special
case that c‘;'——+§)is the canonical geometric morphism a€“—"+.9’;accordingly, we
will only consider this case.

2. Some preliminary remarks

Let (9=Sh(C), C a site in .71 Then a site for 6' X6’ :6’ ><,,«$”is given by the
product-category CXC with the coarsest topology making the projections

PlCXCCT’
2

continuous, i.e. the topology is generated by covers of the form

(f,-. id) (id.g—)

{(6.-.0)-—»<C.D)},~ and {(c.D,->——’—><c.D>},-,

where {C,-—£+C},-and {DJ-i>D}j are covers in C. The inverse image p,''' of the
geometric morphism «f‘x(€'fl»£‘ comes from composing with P,, followed by
sheafification. Similarly for pf‘. The inverse image 6"‘ of the diagonal r5"—(s+c5"X6"
comes from composing with A :C-’CxC followed by sheafification: given
Ye Sh(C XC) = 6'"x A",6"'(Y) is the sheaf associated to the presheaf C-o Y(C, C). So
for Y=p,"‘(X), 6*p;"(X)sX, and we have a canonical natural transformation r],
r;C:p,"'(X)(C,C)-+X(C),, which is the unit of the associated sheaf adjunction.
Similarly for pg’.

3. The case of connected locally connected geometric morphisms

As a warming up exercise, let us point out that the descent theorem is trivial when
/"'—+.'/' is connected, locally connected (this is not needed for the proof of the
general case). lndeed, let C be a molecular site for (‘i(with a terminal, since )2is con
nected). Constant presheaves on C are sheaves, and p,"',p2"'are just given by com
position with P, and P2 respectively (no sheafification needed). Now suppose X is
a sheaf on C, with descent—data XOP, —0—»X0P2.This means that we are given
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An elementary proof of the descent theorem

functions 0CD: X(C)-'X (D) for every pair of objects C and D of C. Naturality of
0 means that for any c'i.c, o'—‘.o, X(g)oow =owe x( f). 5-(0): id
means that for any C, OCC: X(C)-+X (C) is the identity. And the cocycle condition
means that for any triple C, D, E of objects of C, ODE0 Ow: 0C5. So in particular,
taking C =E, 0CDis inverse to 00¢, i.e. 0 is an isomorphism. From this it easily
follows that X is isomorphic to the constant sheaf y"'(X(1)): define

X )'''(X(1))

by the components (pg: 0,6; we = 65.. toand w are inverse to each other, and are
natural in C by naturality of 0. It remains to show that any morphism
y"‘(T) -1-. y*(T’) which is compatible with the canonical descent-data comes from
a map T—+T’.But this is clear from the fact that y"' is full and faithful.

4. A proof of the descent theorem

This is essentially the same as 3, but we have to keep track of sheafification all
the time. Let é"—7—>Ybe an open surjection, and let C be an open site for 6"; i.e.
C has a terminal object 1, and every cover in C is inhabited. We have to show that

(a) every object Xe <5"equipped with descent-data is isomorphic to a constant
sheaf ;

(b) every morphism y"'(T)—»y"'(T’) which commutes with the canonical
descent-data is of the form ‘t= y"'(f).
To prove (a), choose X 66 with descent-data 6. Write Ax 6'flu? and
6'X x for the projections.Identifyingp{(X)(C,D) withp,"'(X)(D,C) in the
canonical way, we may regard 6 as a system of functions (in .7‘)

9CDIPi"(X)(C. D)-’Pl"(X)(D. C)

which are natural in C,D: for C’->C and D’-+D,

0CD
- Pi'(X)(C. D) Pi'(X)(D.C)

900'
P1(X)(C’.D’) p1"(X)(D’.C’)

commutes. This implies that 05,, is determined by its restriction 6CD0t',,

9CD
x<C) Ci'—»pr(X)<C.D) p."'(x)(D.C)

for which we also write 6CD.The condition 6"'(6)= id means that
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_9cPf(X)(C. C) Pi'(X)(C. C)

"C ’Ic

X(C)

commutes for every C, while the cocycle condition means that

960(5)
p.*(X><C.D. E) p.*(x)<D. C. E)

0CE(D) 0DE(C‘)

p;*<X)<E.c.D) " p.*(X>(E.0.0)

where Ocmg, is the obvious map induced by 0CD, etc.
We will use the following lemma, to be proved below.

Lemma. For Xe pf’= Sh(C), and objects C, D, E of C, the canonical square

p."(X)(C.0) @—~ prtxxc, 0.15)

J J
X(C) C————+ p."<X)(C.E)

is a pullback in .71

Let S:{xeX(l)|6,,(i,(x))=i,(x)}, where i,:X(l)C»pf"(X)(l,l) as above. We
claim that Xsy*(S) via

X )'‘'‘(S).

where gois the transpose of S-’X(l), and w is the map defined by the components

X(C) y*<S>(C)

Jflil
9c‘:

p.*<X><x. I) p.*<X><I.C)

where j(- is the obvious embedding, natural in C. The nontrivial thing is to show
that w(- is well-defined, i.e. that 06,01’, factors through j(~. (Naturality of u/(- is
then obvious.) So take xeX(C), and write y= 6(y~,(i,(x))ep,*(X)(l,C). We have to

show that y “locally does not depend on the C-coordinat H1 is given as a compati
e’,

ble family {ya},,, y,,eX(Da), for a cover {(Da,Ca)£)"#5—>(l,C)}ae , in CXC.
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An elementary proof of the descent theorem

Fix a. and let xa=x1f,,eX(C,,). Then 0CaDa(xa)=y,,,and by the cocycle condi
tion, we have for any object E of C that 6CaE(xa)=6DaE(ya) in p,"'(X)(E, Da, Ca).
So by the lemma,

6C.E(xa)=0D.,E(ya)6

Choosing E=Ca, we find that t9CaCa(x,,)eX(C,,,), and hence since ryca is the
. . I

identity on X(C,,) C—'-—»p,"'(X)(C,,,Ca),that 0CaCa(xa)=xa. Now let E run over all
the objects D1,,/36:/. Clearly by naturality of 0, if

F,/'Dfl\lx /
then 0CaDfl(x,,)1h=0CaE(x,,)=6CaDy(x,,)1k, so since {D5-+l}5E,_, is a cover in C
(by openness), there is a unique z,,eX(l) with za,1D,, =t9CaDfi(x,,).So by naturality
of 0 again,

2..= 0c,.(x.,,)eX(l).

while moreover since 0CaCa(xa)=xa,

za1Ca=xaeX(Ca).

We claim that {z,,,},,determines an element zey*(S)(C). (Note that clearly if this
is so, jC(z)=6C.(x).) Indeed, the Z0,are compatible in the sense that if

commutes, then z,,=z,,'eX(l) —this is obvious from naturality of (9. Moreover,
each z,,eS. For if E is any object of C, we have 6?”-(z,,)=()(a-l,,_.(_\',,)in
;5, (X)(l,Cu, E) by the cocycle condition, so by the lemma, 0”-(:,,)eX(E). Since
r], |X(l) is the identity, we find for E=l that 9n(Za)=z,,. This proves that 1/15is
well-defined.

It is now clear that toand Ware inverse to each other: One way round, it suffices
to show that t,t/,(p,(s)=s for .965. But (p,(s)=seX(l), and 6,,(s)=i,(s) by defini
tion of S, so this is clear. The other way round, take xeX(C). Then
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u/C(x)ey"'(S)(C) is the element z as above with z 1fa=z.,eSCX(l). So by defini
tion, <p(-(z)eX(C) is given by (pC(z)1f,,=z,,1Ca. But z.,1C,,=xa as we have seen.
So (oC(z)=x, i.e. ¢Cl//C=ld. This proves (a).

To prove (b), suppose y"‘(T) —'>y"(T') is compatible with the canonical descent
data 0 and 0’on y*(T), y"(T’). It is trivial to check that T: {(6 y“(T)(l) | 0,,(t) = t},
and similarly for T’. So if (E TCy"'(T)(l), then 0,',r,(t)=t.(0..(t))=r,(t), so
r,(t)e T’. Therefore 1'comes from a map T-+T’, proving (b).

It remains to prove the lemma. To this end, suppose xep."'(X)(C,D) and
yep,"'(X)(C,E) are equal in p,"‘(X)(C,D, E). Write x= {xa}a, x,eX(C,) a com
patible family for a cover ¢#={(Ca,Da)->(C,D)},,€J, in CXC, and y={y,,},,,
y,;eX(C,,), a compatible family for a cover 1/ = {(C,,,E,,)-r(C,E)},,e,, in CXC.
Equality of x and y in p,"'(X)(C, D, E) means that there is a common refine
ment 1/: {(C,-,D,-,E,-)->(C,D,E)},-E, of {(C,,,D,,,E)->(C,D,E)},, and
{(C5,D,EB)-+(C,D,E)}fl in CXCXC on which x and y agree. Replacing 7/ by
{(C,-,D,-)-’(C, D)} and V‘by {(C,-,E,-)-*(C,E)},- we get the following notationally
more manageable situation: we are given x,-e X (C,-),y,-e X (C,-), such that whenever
we have a commutative diagram

(C. Di)/ \
(A, B) (C, D)\ /'

(C,-.19,-)

then x,-1A =xj 1A, and a similar condition for compatibility of {y,-}with D replac
ed by E. Moreover, since x and y agree on the cover 1//,x,~=y,- for every 1'.We now
have to show that x= {x,-}comes from an element of X(C), i.e. that {x,-}is com
patible for the cover {C,--+C} in C. So suppose

A/C'|\C\C/
commutes. Take a cover {(P,,, Qa,Ra)-*(A,D,-',E,~2)}a refining 11/;i.e. for each a
there is a java] such that

l5c’>



An elementary proof of the descent theorem

(Pas Qua Ra) (A9 Dig! Eiz)

(Cm D1.»51.. (C3D» 5)

commutes. By openness, {(Pa,Q,,)-+(A,D,-')},, is a cover in CXC, while more
over,

x,-_1P,,=x,-a1P,, (by compatibility of {x,-}over (C, D))

=yJ.a11>“ (by x: y over (C, D, E ))

=y,-21Pa (by compatibility of {y,-} over (C, E ))

=x,-z1P,, (by x: y over (C, D, E )).

The family {Pa->/I}, covers A, so x,-.1A =x,-21A. This completes the proof of the
lemma.

Reference

[I] A. loyal and M. Tierney, An extension of the Galois theory of Grothendieck, Preprint (1982), to
appear in Memoirs A.M.S.
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CONTINUOUS FIBRATIONS AND INVERSE LIMITS OF TOPOSES

by

Ieke Moerdijk

Introduction.
Wewill discuss somepreservation properties of limits of fil

tered inverse systems of (Grothendieck) toposes. If (Ei)i is
1

and E” is the inverse limit with projection morphisms Ni: Em+ Ei,
such a system, with geometric morphisms fij: E. + Ej (i>-j),

we say that a property of geometric morphisms is preserved if when

ever each fi. has the property then so does each Hi. It will be
proved that some of the important properties of geometric morphisms

are preserved by filtered inverse limits, notably surjections, open
surjections, hyperconnected geometric morphisms, connected locally
connected geometric morphisms, and connected atomic morphisms (defi
nitions and references will be given below).

Filtered inverse limits of toposes have been considered by
Grothendieck and Verdier (SGA4(2), exposé IV, 58). Here we will

take a slightly different - more "logical" - approach, by exploit
ing moreexplicitly the possibility of regarding a topos as a set
theoretic universe (for a constructive set theory, without excluded
middle and without choice), and a geometric morphism F + E of to
poses as a topos F constructed in this universe E. This will also
bring someparallels with iterated forcing (with finite supports) in
set theory to the surface.

Already in the first section this parallel becomesapparent
when we show that any geometric morphism of toposes can be represent
ed by a morphismof the underlying sites which possesses some special
properties that will be very useful for studying inverse limits.
Such a morphismwill be called a continuous fibration. In the second
section, we will characterize someproperties of geometric morphisms
in terms of continuous fibrations. This enables us to prove the pre
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servation properties for inverse sequences of toposes (sections 3
and 4). In the final section we will showhow the results can be

generalized to arbitrary (small) filtered systems.
Throughout this paper, 3 denotes a fixed base topos, all to

poses are assumed to be Grothendieck toposes (over S ), and all
geometric morphisms are taken to be bounded (over S ). Moreover,

2-categorical details will be suppressed for the sake of clarity
of exposition. Suchdetails are not really relevant for the pre
servation properties under consideration, but the meticulous reader
should add a prefix "pseudo-" or a suffix "up to canonical isomor
phism" at the obvious places.

Acknowledgements. The results of sections 1 and 2 were obtained
during my stay in Cambridge, England (Spring 1982), where I profited
from stimulating discussions with M. Hyland. Myoriginal motiva
tion for applying this to inverse limits camefrom a rather different
direction: a question of G. Kreisel led me to consider inverse se
quences of models for theories of choice sequences of the type con
sidered in van der Hoeven and Moerdijk(1984).

I would also like to thank A.Pitts for someuseful coments on a

preliminary version of this paper.
The author is financially supported by the Netherlands Organi

zation for the Advancement of Pure Research (ZWO).
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1. Iteration and continuous fibrations.

If E is a topos and G is a site in E, we write E[G] for

the category ShE(G) of sheaves on G, made in E. So E[G] is

a (Grothendieck) topos over E, and every topos over E is of this

form. Nowsuppose we have geometric morphisms

F + E + S,

where E = S[G] and F = E[Ifl , for sites G in S and I) in

E. Wewill construct a site G K I) in S such that F + S is

equivalent to S[G K Ifl +~$, and F + E corresponds to a flat

continuous functor T: G + G K D. The objects of G K I) are pairs

(C,D), with C an object of G and D an object of I) over C

(D E Do(C), where IDO:G°p + S is the sheaf on G of objects of

D). Morphisms (C,D) + (C',D') of GK D are pairs (f,g),

f: C + C’ in G, and g: D‘+ D'l f over C (i.e. g E ]D1(C),

where I“ is the sheaf on G of morphisms of IL and

D'l f = Do(f)(D'), the restriction of D‘ along f ). Composi

tion is defined in the obvious way: if (f,g): (C,D) + (C',D')

and (f',g') :(C',D') + (C",D"), then (f',g')o (f,g) is the pair

(f'of, (g'| f)o g). The Grothendieck topology on G X I) is defined
(51:31) .

by: {(Ci,Di) ——————+(C,D)}i covers iff the subsheaf S of In

at C generated by the conditions Ci IF giE S satisfies C IF "S

covers D". (It looks as if we only use the topology of I), but the

topology of G comes in with the definition of S as the subsheaf

S E P(IH)(C) "generated by" these conditions.) One easily checks

that this indeed defines a Grothendieck topology on GD<D.

161



If X is an object of S[¢], with a sheaf structure (E,l)

for I) (E: X + Bo and |: XXD D1 + X the maps of extent and

restriction), we can construct a sheaf X on Gu I) as follows:

X(C,D) = {x€X(C) | EC(x) =13}, and for (f,g) : (C',D') + (C,D)

mdx€X@JL flnyu>=moung.
Conversely, if Y is a sheaf on ¢ N In we first construct

a sheaf § on ¢, by

§(c) =_]_|_{Y(C,D)I D€Do(C)}

and restrictions along C‘ —£+C given by

§(f) (y) = Y(f,1)(y),

where y E Y(C,D), 1 the identity on DI f (over C' ). The

sheaf X carries a canonical sheaf structure for I) in S[¢]:

extent is given by the components

EC : §(c) + 130(0), y I——>D if y e Y(C,D),

while restrictions are given by the components

|C:§(c) x 131(0)->?(c):
DOCC)

if y E §(C) with EC(y) = D, and C IF f: D‘ + D, then

y%f=YUQW)JLfl+@JHfi€YWJU.
It is clear that X F—+X and Y F-+ X define functors which

are inverse to each other (up to natural isomorphism). Moreover, we

have a canonical projection functor P: G K I)+-¢ , and this yields

1.1. Proposition. F is equivalent to S[¢ N Ifl, in other words
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3[G] [D] § 3[G (X ]D]

and the geometric morphism F + E is induced by the functor

P: G V I)»-G . I

If we assume that the category (underlying) I)€E = S[G] has a

terminal object 1 6 Do, with components 1C 6 Do(C), then

P: G ix 1) + G has a right adjoint

T: G + G I D, T(C) = (C,1C).

T is a flat and continuous functor of sites, so it induces a geo

metric morphism F = ELD] + E by Diaconescu's theorem, and this is

again the given geometric morphismthat we started with.

Even without assuming that I) has a terminal object (in E),

P locally has a right adjoint. For each object (C,D) E G K I),

the functor

P/(C,D) :c o<1) / (C,D) + c/c

has a right adjoint

:G/C + G x n/(c,n), T )(c'—f>c) = (c',D Ir).T(c,D) (c,D

So P/(C,D) 0 T is the identity on G/C. If G and I) have(C,D)

terminal objects 1, then T = T .(1,1)
Thus we have obtained a fibration G K ])-+ G . In general, if

we are given a geometric morphism F + E and a site G in S for

E, we can express F as sheaves on a site (with a terminal object)

in E, and then "take this site out" to obtain a site in the base
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topos S, as described in proposition 1.1. In this way, we get

the following theorem (by taking for I) in 1.2 the site ¢ K I)

of 1.1).

1.2. Theorem. Let F + E be a geometric morphism over S, and

let ¢ be a site for E. Then there exists a site I) in S for

F, F = S[Ifl , such that the geometric morphism F + E is induced

by a pair of functors

with the following properties: T is right adjoint right inverse

to P, T is flat and continuous, and for each D E In

P/D: D/D+ ¢/PD has a flat and continuous right adjoint right in

verse TD. B

Wewill refer to a pair ZDz:::;¢ with these properties as a

continuous fibration. The geometric morphism

P3 SID] + S[¢]

that such a pair induces is decribed in terms of presheaves by

p* - compose with T
I’p composewith P, then sheafify.

If G and I) have finite inverse limits, then so does

G K In and P and T both preserve them. P cannot be assumed

to preserve covers, however, since in that case it would give rise
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to a pair of geometric morphisms F:z:: E; see Moerdijk & Reyes(1984),

theorem 2.2.

1.3. Examples. (a) (Iterated forcing in set theory). If H’ is a

poset in S (with p'< p' iff p + p', iff "p extends p' "),

and Q is a poset in .§Pop, then iP R Q is the poset in S of

pairs (p,q) with p 5 IP, p ||- q€Q, and (p,q) < (p',q') iff

p < p' and p IF q<q'. If E = ShS(IP, "11), and Q is a poset

in E, F = ShE(Q, 1'1), then F u ShS(IP0<Q,‘'11). In other words,

(IP, 11) Ix (Q, -11) g(1Po<Q,-1-1),

(b) Let G be a group in S (thought of as a category with one ob

ject), and E = SC be the topos of left G-sets. If H is a group

in E, H can be identified with a group in S on which G acts

on the left (preserving unit and multiplication of H ). According

to proposition 1.1 above, (SG)Hn:SGxH, where G><H is the product

of G and H with group action given by (g1,h1)(g2,h2) =

(g1g2,h1g1h2) (since G acts on the left, h1g1h2 can only be

read as h1(g1h2)). This is just the semidirect product of G and

(c) Let G be a site in S, and A a locale in S[¢]. A gives

rise to the following data (see e.g. Joyal &Tierney(1982)): for

each C E G a frame A(C) in S, and for each morphism

-A££l+ A(C) with af: C + D of G a frame map (AVLmap) A(D)

left adjoint Sf. The formula for internal sups of A (or rather,

in the frame of opens of A ) is as follows: If S E QA(C) is a
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subsheaf of A over C, then. Vgfs) E A(C) is the element

V U {Z (x) |x€S(D—£> C) s:A(D)}. So a site (I R A for

S[¢][A] has as objects the pairs (a,C), a E A(C); as morphisms

(a,C) -£+ (b,D), where C —£+D in G and a-< A(f)(b) in A(C);

fi . V .
and (ai,Ci) ———+(bi,D) covers lff A(D){Zfi(ai) |1} = b.

If G is a topological group and A is a locale in the topos

C(G) of continuous G-sets, one may apply this procedure to a site

for C(G), so as to obtain an explicit site for C(G)[A] as used

in Freyd(1979). (A site for C(G) is the atomic site with the fol

lowing underlying category: objects are quotients G/U, U an open

subgroup of C}, and morphisms w: G/U + G/V are maps of left

G-sets, or equivalently, cosets gV with Uc:gVg-1.)

2. Sometypes of geometric morphisms.

Wewill express some properties of geometric morphisms in terms

of their corresponding continuous fibrations of sites in S.

Westart with the case of surjections. Recall that a geometric

morphism F-12+ E is a surjection iff m* is faithful, iff the lo

calic part of w, ShE(¢*(QF))+ E is a surjection, iff the unique

AV-map QE + w*(QF) in E is monic.

2.T. Lemma. Let F-£+ E be a geometric morphism, and G a site

for E, i.e. E = S[¢]. Then w is a surjection iff w is in

duced by a continuous fibration 1) ;%:_¢ with the property that

P prgserves covers of objects in the image of AT (i.e., if
{Di -—i+ TC}i is a cover in 1), then {PDi ——$+C}i covers in

G, where Pfi = fi = the transposed of fi.)
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Proof. (=9 Let ;A be a site for F in E, with a terminal object

EA.

cover of 1A is inhabited". Under the construction D = (I NA of

As is well-known, F = E[AJ + E is a surjection iff E k= "every

section 1, this translates precisely into the righthand side of the

equivalence stated in the lema.

(¢9 There are several ways of proving this direction. Wechoose to

compute the canonical map of frames QE -5+ w*(QF) in E (since we

will need to consider this map anyway), and show that it is monic.

Since w* comes from composing with T,

w*(QF)(C) = closed cribles on TC in IL

The components AC: QE(C) + w*(QF)(C) of the map A are given by

AC(K)= the closed crible generated by TK, or equivalently,

by {D—f—>TC | Pf: PD->C€K}.

Wewill denote the closure of a crible for a given Grothendieck to

pology by brackets [ . ], so AC(K) = [TK] = [{fl Pf£EK}]. The

(internal) right adjoint p of A has components

pc :co*(s2F)(c) + c2E(c)
f

oC(S) = {c' —> c | Tf€S}

(this is a closed crible already, since T preserves covers).

So if C' -L C€pCJ\C(K), that is TC‘ if-> TC€AC(K), then

there is a cover Di —§i+TC’ in I) such that P(Tfogi) E K for

each i. But P(Tfogi) = f<>Pgi, and {Pgi: Di + C'} covers by

assumption, so f E K. I
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Next, let us consider open surjections. F-J£+ E is open iff

w* preserves first order logic. As with surjections, w is open

iff its localic part is, iff the unique A -map RE+ w*(QF) in E

has an internal left adjoint. See Johnstone(1980), Joyal &Tierney

(1982) for details, and various other equivalents.

2.2. Lemma. Let F -5;-E and E = S[¢] as in 2.1. Then w is

an open surjection iff w is induced by a continuous fibration

I)7—-+ G such that P preserves covers.

Proof. (:9 If m is open, there is a site ‘A. for F in E such

that E l= "VAE/A: all covers of A are inhabited" (see Joyal &

Tierney(1982)). Moreover, if m is a surjective, we may assume

that A has a terminal. So by constructing D = GKA, the impli

cation fromleft to right is clear.

(*0 Wewill show that the unique internal frame map in E,

A: QE+ @*(QF), has an internal left adjoint u. First note that

since P preserves covers, the components of A (cf. the proof

of 2.1) can now be described by

AC(K) = {D—f> TC | Pf: PD + CEK}

for C 6 ¢, K a closed crible on C in ¢. Nowdefine

u:-w*(QF) + QE by setting for C € G and S a closed crible on TC,

uC(S) = [PS], the closed crible generated by

{Pf: PD->C | £: D+TC E s},

u is indeed a natural transformation, for suppose we are given

a: C' + C in E, S E QF(TC). We have to check that
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“C
QF(TC) —-—-—+ r2E(c)

(Ta)-1 a-1

U u

QF(TC') ?—°—» s2E(c')

a“<uC<s)> = uC.<<Ta)"<s)>, i.e.

{co—f—>c|a£€[1>s]}=[{Pg:1>n+c' | g: D->TC', ToLog€S}].

2 is clear, since P(Taog) = a 0 Pg: PD+ C. Conversely, suppose
h

Co -£+ C‘ —g+C€I[PS]. Then there is a cover Ci-——£+Co such that

afhi = P(ki) for some ki : Di + TCES. But ki can be factored as

k.
D.---3--+-TC

1\
\

u. \ Ta
1 \

.9
TC‘

such that Pui = fehi, by adjointness P‘4 T, from which the in

clusion c: follows immediately.

Finally, p and A are indeed adjoint functors, since as one

easily checks,

uCAC(K) c:K, ACuC(S) 3 S,

for each C E ¢ and closed cribles S on TC, K on C. I

Recall that F-J£+ E is hygerconnected iff its localic part is

trivial, i.e. w*(QF)agQE in E (see Johnstone(1981), Joyal &

Tierney(1982)).
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2.3. Lemma. Let F -3» E, E = S[¢] be as before. Then (0 is

hyperconnected iff (,0 is induced by a continuous fibration D ——+,:(I
such that P preserves covers, and moreover every unit morphism

“D
D ——>TPD is a singleton-cover in 1).

Proof. (-0) Write to as E[A] +E, A asite for F in E. to

is an open surjecion, so we may assume that it holds in E that if

{Ai + A}i€I is a cover then I must be inhabited, and moreover that

A contains a terminal object. (0 is hyperconnected iff the canon

ical framemap P(1) ->cp*(QF) (=the poset of closed cribles on A)

is an isomorphismin E, iff its left adjoint

u(K) - IIK is inhabited]]

is an isomorphism. So K is inhabited iff 1 € K, and hence every

map A + 1 is a cover in LA. -9 now follows by taking 1) = ¢D<A,

as before.

(0-) Recall A: RE + (o*(§2F) and its right adjoint p from the proofs

of 2.1 and 2.2. By 2.1, we have pl = id. Conversely, if C E ¢

and S E QF(TC) is a closed crible on TC in D, then

f
xCpC(s) = {D ——>TC| Pf : PD->C E pC(S)}

= {D iwrc | TPD -I-P—f+TCE s}.

But if D -3» TPD covers, then TPf : TPD-+TC5 s iff

TPf°n = D I->TC E S, i.e. Xp = id. So <.p*(QF) 9-’QE. E!

A geometric morphism F £> E" is connected if q)* is full and

faithful. to is called atomic if tp* is logical, or equivalently,
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if F = E[]D] for some atomic site D in E (see Barr & Diaconescu

(1980), Joyal & Tierney(1982)). Such an atomic morphism (D is con

nected iff it is of the form E[]D] for some atomic site D having

a terminal object (1 is an atom in F).

2.4. Lemma. Again, let F -9-> E be a geometric morphism, G a site

for E in S. Then to is atomic connected iff cp is induced by a

continuous fibration D 4—_%Gwhere P preserves and reflects
COVBIS .

Proof. (=9)Let A be an atomic site for F in E, with a terminal

object. It suffices to take D = ‘GkA.

(4-) Let us first note that if X is a sheaf on G, CoP is a

sheaf on IL For in that case w* = compose with P, and

¢*w*==id, so w is certainly a connected surjection. To see this,

suppose {Di —-i+ D}i is a cover in I) and xi 6 X(PDi) is a

compatible family of elements - compatible over I), that is.

{PDi —-Ei+PD}i is a cover in G, so it suffices to show that the

family {xi} is also compatible over G. That is, for each i,j

and each commutative square

Q1
PD

g./15:

in G, xi I h = xj Ik. Since {xi} is D-compatible and X is af
sheaf on G, it is sufficient to find a cover PDa4» C and for

/M
C

\ PD.
J

each a a commutative square
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D.
1

D D
G.

\:>\Ei ////ET,(113.3
J

with P(ua) = hfa, P(va) - kg . Write e: C + PD for

Pg_o h = Pg.<>k, and let fi -2+ D = T (e). Applying T and
1 J D PDi

TPDj we find a diagram

13 D

~J.
D ———————+ D

J J

- -§i
with Pg. = Pg. = id . P reflects covers, so D. -—+ D is a cover

1 J C 1

in 1) (consisting of one element). Pulling back this cover along

gj yields a family of commutative squares

13.
- 1 ~

Du D

D.
J

such that the va cover fij. Weneed only set

fa = P(gioua) = P(gjova) to obta1n the des1red cover of C.
Having the information that w*(X) = X<>P for every X E 3[¢],

we easily prove that ¢W is logical.
itFirst, (0 preserves the subobject classifier: we always have
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a canonical map QF -2+ ¢*(QE) in F with an adjoint T. In this

case the components are described by

0D :QF(D) —————-—-—+QE(PD)

oD(K) = {C —f—»PD| TD(f) EK} = PK

TD : §2E(PD) §———> s2F(D)

'rD(S) -= £1)‘ 3+1) 1 Pges}.

Note that oD(K) as described is indeed a closed crible, and that
o and T are natural. Weclaim that o and T are inverse to

each other. If S is a closed crible on PD, then

ODTD(S) =- P({D' —&>DI Pg€S}), so clearly ODTD(S)c S. Converse

ly if C -£+ PDE S, then TD(f) E TD(S) and PTD(f) = f, so

S CiODTD(S). And if K is a closed crible on D, we have

rDoD(K) = {Br _8.yD | TD(Pg) EK}, so K c TDOD(K) since there is a

factorization

D' ““£L“*'D
.\
v\\ TD(Pg) .

\
' <n'>

TD

But P maps this morphism v: D‘ + TD(D') := domainIb(Pg) to the

identity on PD‘, so v covers since P reflects covers. Thus

K : 'rDoD(K) .

Finally, we showthat w* preserves exponentials, i.e. for
*

)(,Y E E , cp*(YX)5 cp*(Y)(D(X). Let us describe the isomorphism
*

a:(p*(Yx) +-¢> with inverse B explicitly: Yx(C) = the set

of natural transformations X + Y over C, so w*(Yx)(D) = Yx(PD),
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- at c0*(X)while w (Y) (D) = the set of natural transformations X<=P+ Y°ZP

D ° :7: X * (-p*(x)
°Ver - The Canonlcal map 0 3¢ (Y ) * 0 (Y) has components aD

described as follows. Given T: X + Y over PD, aD(I) :XoP + Yep

over D is defined by

aD(T)f(x) = rPf(x)

where D' —£+D and x E X(PD'). The components 8 of
D*x x

B=¢V(Y7¢)( ) + w*(Y ) are described as follows. Given 0 :X°P + Y°P

over D, B (0) :X + Y over PD is defined b
D Y

BD(o)g(x) = oTD(g)(x),

for c -3-» PD, (so TD(g) :D' + D with PD‘ = c), and x E x(c).

It is clear that B°(1 is the identity. The other way round, aoB = id

follows from the fact that if D‘ -£+ D, then the unit u :D' + domain

TD(Pf), with TD(Pf)<>u = f is mapped by P to the identity on PD‘.

For if x E X(PDI) then aDc>3D(o)f(x) = BD(o)Pf(x) o )(x) = of(x),TD(Pf
the last equality by naturality of 0, since Pu = id. 0

Finally, we consider the case of connected locally connected

geometric morphisms. This class has been studied in Barr & Paré(1980).

For some equivalent descriptions see the Appendix (This Appendix

has been added since we will need the main characterization of local

ly connected morphisms of Barr &Paré in a slightly different form

later on, and moreover for the bounded case there is a rather short

and self-contained proof of this characterization, which we give in

this Appendix.)

Let 1) 731+ G be a continuous fibration, and let
Tf.

{Di ——$+D}i€I be a cover in 1). Given a commutative square

174



C

(*) PD. PD.
1 J

1 J

PD

f.
we call Di and Dj C-connected (for the cover {Di -34-D})
if there are i = i ,i ,...,i = j in I such that there is a com

o 1 n

muting zig-zag

the P-image of which commutes under C:

2.5. Lema. Let F -53+ E, E = S[¢] be as before. Then w is

connected locally connected iff it is induced by a continuous fibra

tion I) ;£:_¢ such that P preserves covers, and for every cover

{Di -—i+ D} in I) and every commutative square of the form (*),

the family of maps C‘ + C such that Di,I3 are C‘-connected
is a cover of C.
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Proof. (=) Let ,A. be a molecular site (see Appendix) in E, with

terminal object IA‘. A straightforward argument by forcing over

(I shows that D = ¢D<A satisfies the required conditions.

(00 This is really completely similar to the proof of ‘= of lema 2.4.

The condition on I) ;%%:,G is exactly what we need to show that if
X is a sheaf on G, X<>P is a sheaf on I). So again w* = com

pose with P and w;w*s§ id. So w is connected. Moreover, it is

now straightforward to check that w* commuteswith H-functors

(or, since the conditions on I) 7——+G are stable under localiza

tion, just check that @* preserves exponentials), as in the proof

of 2.4. I

3. A description of inverse limits.

In the special case of inverse sequences of geometric morphisms

we can easily express the inverse limit explicitly as sheaves over

a site using continuous fibrations. Supposewe are given a sequence

f f
. E —“> ———>...——>E—"—>

'° n+1 1

of toposes and geometric morphisms over 3. By the results of sec

tions 1, we can find sites G for E in S, that is E = S[¢ ],n n n n

such that fn is represented by a continuous fibration

Wewill write 1>nm:¢n+¢m for Pm_;*...°Pn , Tnmzttm->¢n for
T 0 ...°'T . (So P , T are identity functors.)n nn
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Weconstruct a site ¢m = lhm¢ as follows. Objects of Gm
<——— n

are sequences (C ) , C an object of G , such thatn n n n

Pn(Cn+1) = Cu and 3mVn>-m Cn+1 = Tn(Cn). Morphisms
co . _ . '

(Cn)n + (Cg)n of G are Just sequences f - (fn)n, fn .Cn + CH

a morphism of Gm, such that Pn(fn+1) = fn.

There is a canonical fibration

for each m: 1>°°((c))=c, andfor cec,In nn In In

P (C) if m>n
mn

w:<c>,.= T (C) if m<n.
nm

®
¢ is made into a site by equipping it with the coarsest Grothendieck

topology making all the functors T; continuous. That is, the topol

ogy on Gm is generated by covers of the form

f. f.
{T (C. -—l+ C)}., for {C. ——3+C}. a cover in G .

m 1 1 1 1 m

Note that this is a stable generating system for the topology. This

topology makes each pair P;, T;: ¢w;:::_¢m into a continuous fi

bration. Moreover, the P;, T; are coherent in the sense that
® ® ® ®T or =T, PoP ‘P.
m+1 m m m m+1 m

Let Em= S[¢w]. The functors T: are flat and continuous,

so they induce geometric morphisms
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over S. Weclaim that Em= lhnfm. Indeed, suppose we are given

geometric morphisms gn: F + En with fn<>gn+1 = gn, each n (or

really only up to canonical isomorphism, since Em is a pseudo

limit; but cf. the introduction). gn comesfrom a flat and contin
G ®

uous functor C -—E+ F, and G o'T = G . Define Gm: G + Fn n+1 n n

by Gm((C ) ) = G (C ), for m so large that Cn n m m n+1 = Tn(Cn)’

Vn >-m. (This does not depend on the choice of m, since

n+1<>Tn = Gn. Moreover, the canonical maps Gm+1(Cm+1)+ Gm(Cm)

become isomorphisms eventually, so we could equivalently have set

Gm((C) ) = lhmG (C ). This also looks more coherently functorial.)n n +—- m m

Observe that Gm is a flat and continuous functor Gm+ F, and

that Gm<>T;= Gm. So we obtain a geometric morphism

gm: F + Em, with nmcvgm = gm.

gm is obviously unique up to natural isomorphism, since

(C ) = lim Tm(C) in Cm, and this inverse limit is eventually
n n +——m m m

constant, so really a finite inverse limit. Therefore, any flat and

continuous functor H: Gm+ F with H<>T; = Gm for all m must

satisfy H((Cn)n) = lim (Gm(Cm)). For the record,
f f

3.1. Theorem. If ... E -—2+ --+ ... -—+ E ——9+- is a
n+1 n 1 0

sequence of geometric morphisms, with fn induced by a continuous
P

a 0 n x ’ ‘d b t
fibration ¢n+1 ;;F::_¢n, then G as constructe a1pve 1S a si e

n ®

for Em= limfal, and the canonical projections E -—l5+ Em cor®

respond to the continuous fibrations Gmz:£%2.¢m. I
T3’;
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Suppose we are given an inverse sequence of continuous fibra

tions

Pu p Po
.. ¢n+141* Cn

T T T
n 1 o

as above. Let An be the preordered reflection of Gn. That is,

the objects of An are the same as those of ¢n, and we put C-< C’

in An iff there is a morphism C + C‘ in Gn. A family {Ci'< C}i

covers in A iff there is a covering family {Ci + C}i in Gn. So

S[¢n] + S[An] + S is the hyperconnected - localic factorisation of
T

D

S[¢n] = En + 8. There are canonical projection functors Gn --—+ An
P

and the continuous fibration ¢n+1 ;:£%2;¢n is mapped down by TnT

to a continuous fibration An+1z::2.An. So we obtain a diagram

G ...q—:_-_*¢24_":'*_¢1;.T;*¢o

J” 1% JV 1%
Am . 4...-‘:"*_.A2+_—:*_A14:_—;A°

and as is immediate from the construction, A9, the limit of the

lower sequence as described before theorem 3.1, is the preordered

reflection of the site Gm. So S[¢m] + S[Am]+ S is the hyper

connected - localic factorisation of Em+ 3.

Thus we have the following corollary.

3.2. Corollary. The localic reflection preserves limits of inverse

sequences. W

This will be generalized in section 5.
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4. Preservation properties of inverse sequences.

Weare now ready to prove preservation under limits of inverse

sequences of toposes for the classes of geometric morphisms that

were analysed in section 2. In the next section, this will be gen

eralized to arbitrary filtered systems.

4.1. Theorem. Let
f f

E -1» ——>...———+E —°»£
n+1 n 1

sequence of Grothendieck toposes and geometric morphisms over S,

and let Em= limlil be the inverse limit of this sequence, with
canonical

(i) If

(ii) If

(iii) If

(iv) If

(V) If

ms-I
application of lema 2.2 a sequence of sites ¢n

E = S[¢ ], such that fn n n

where Pn

. . m n
projections E —-+ En.
each

each

each

each

each

f is

is

is

is

is

postpone the

preserves covers .

Tl’

Then

a surjection, then so is each nn;

an open surjection, then so is each nn;

hyperconnected, then so is each fin;

connected atomic, then so is each fin;

connected locally connected, then so is each

proof of (i). For (ii), choose by repeated

i.e.for E ,

is induced by a continuous fibration

By lema 2.2 again, we need to show

that each projection P: :¢w + ¢n as described in section 3 pre
serves COVEIS.

of Gm
as

is stable, it is sufficient to showthat Pn

Since the family of covers generating the topology

®

generating covers. But if {T;(Ci) '-EL-3-+ T;(C)}i is a basic
on g‘

cover of G coming from a cover {Ci ——3+C}i in Gm, then
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Pm(Tm(g.)) = P (g.) if n-< m, and Pm(Tm(g.)) = T (g.) ifn m 1 mn 1 n m 1 nm 1

n >-m, so Pm preserves this cover since both T and P pren nm nm

serve covers. This proves (ii).

The proofs of (iv) and (v) are entirely similar. For example

to showfor (iv) that P; reflects covers if all the Pn do, one

reason as follows: suppose we have a family of morphisms g1 = (g;)n
®

in G Wlth common codomain,

. g.

<c;>n -1-» <cn)n,
i

and suppose {P:(g1)}i, that is {C; ——E+Cm}i, is a cover in Cm.

Choose an n >-m such that C = T (C ) for n >-n . P re
o n+ n n - o D m

1 g; 0
flects covers since all the Pm do, so (C; --9-+ Cn }i is a cover

. i o 0
in G . Thus {T (C1 ) -2-» T (C )}. is a cover in G , wheren n n n 1

i 0 mo 0 o

h = Tn (gno). But Tno(Cno) = (Cn)n since m >-no, so we need on
ly show that for a fixed i, the canonical map

i i w i '

k .(Cn)n + Tno(Cno), (k - g for n'< no)

is a cover. Choose ni >-no so large that (C$)n = Tn (Cg ). Then. i i
k1 is the map

k =T°°(k1):T°° (cl)->'r°° (T (C1)),II. II. n. H. n. n.n I1
1 1 1 1 1 1 0 O

which covers because the map C; + Tn n (C1 ) covers in Cu , asi i o o i

follows from the fact that Pn n reflects covers.
i o Pu

For (v), suppose each continuous fibration ¢n+1;::::¢n is of
T

the form as described in lema 2.5. Wewish to show forneach m that

the continuous fibration G ——9L+¢ 15 again of this form.*““' m
T“

In
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It suffices to consider the basic covers in ¢m which generate the

topology whenverifying the conditions of lema 2.5. So let

{T:(Ci+C)}i be such a basic cover, coming from a cover {Ci+C}i

in Gn. Since T: = T:,<>Tn,n (any n' >-n) and Tn,n preserves

covers, we may without loss assume that n >-m. It is now clear

that we only need to show that the composite continuous fibration
"U

n ziF:2.¢m again satisfies the conditions of lemma2.5.
Thus, arguing by induction, the following lemmacompletes the proof

of case (v) of the theorem.

QLemma. Let ID72+ ¢ :2: B be two continuous fibrations, each as
T S

described in lemma2.5. Then the composite continuous fibration

iD;§EL+iB also satisfies the conditions of lemma2.5.
TS

Proof of lema. Clearly if P and Q preserve covers then so does

QP. Suppose {Di + D} is a cover in In and for fixed indices

i,j we are given B € I3 and a commutative square

B1/ \
QPDi QPDj1/

QPD

Applying the conditions of lema 2.5 to iD+ ¢, we find a cover

{Ba + B}a of B, and for each a connecting zig-zags (n = na

depending on a)

E I o 0 ‘ E

PD if/’ 1‘\JPD . . ' ‘Z’ n §»
1 ‘n-1

PDi PDj
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such that there Q-images commuteunder Ba:

/ Xx J \\
QPD. QPD. ... QPD.

1 11 _]

Nowfix a, and apply the conditions of 2.5 to the continuous fi

bration D :2 C! for each square (0<k<na)

Ek

poi/ \pni
k-1 k

\\"PD‘fi//

separately. This gives for each k-< nu a cover {E
B

k + Ek} and

connecting chains

D/ON -,.. . ,__ J; \’bi

kr{\\\;\(‘v:{////' k

1

the P-images of which commuteunder E :
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For each k < nu, {QEE-> QEk} covers in ]B, and pulling back

this cover along Ba + QEk' gives a cover of Ba. It now suffices

to take a commonrefinement of these nu - many covers of Ba, say

{Bay + a
B }Y; then the family of composites {Bay + C}a Y is a9

cover of C such that Di and Dj are BaY

thus proving the lema.

Wenow complete the proof of the theorem. (iii) can be proved

exactly as (ii), (iv) and (v) , but for (i) I donot see an argumentof this

type. But in any case, (i) and(iij) follow imediately from Corol

lary 3.2: Let An be the localic reflection of En+ 3, so
Am= lhnA is the localic reflection of E”.

+——- n

f
E°° E1 —°>

1...g 1 gf
sh(A°°)... —'—»Sh(A1) 4» Sh(Ao)

For (iii),suppose each fn is hyperconnected, and choose m.

Wewant to show that nm is hyperconnected. By working in Em,

we may assume that m = 0 and that E0 = 3. Since each fn is

hyperconnected, each An is the one-point locale 1

(i.e. 0(An) = P(1)), hence so is Ag, hence Em+ S is hypercon

nected.

For (i), suppose each fn is surjective. To prove that each

nm is surjective, it is again sufficient to assume m - 0 and

S = E0. But then by proposition IV.4.2 of Joyal & Tierney(1982),

A + A = 1 is surjective, hence so is Em+ S
O

This completes the proof of the theorem. I
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5. Preservation properties of filtered inverse systems.

In this section we will generalize theorem 4.1 to inverse limits

of arbitrary (small) filtered systems of toposes, and prove the main

theorem. (Recall that a poset I is filtered (or directed) if for all

i,j EI thereisa kf-II with k>i, k>j.)

5.1. Theorem. Let (Ei)iFI be an inverse system of toposes over S,

indexed by a filtered poset I in S,

11

this system, with projection mappings

(i) if

(ii) if

(iii) if
(iv) if

(v) if

Corollary

each f.. is
11

each f.. is
11

each f.. is
13

each f.. is
13

each f.. is
1J

3.2 will also

with transition mappings

f.. :E. + E. for i >-j. Let Em= lhmf. be the inverse limit of
1 J -+-— 1

Em —:£+ Ei. Then

a surjection, then so is each Ni;

an open surjection, then so is each ni;

hyperconnected, then so is each ni;

connected atomic, then so is each ni;

connected locally connected, then so is each Hi.

be generalized to arbitrary filtered systems.

A main ingredient involved in the proofs is the following theorem,

which is of independent interest.

rem 5.1 are reflected downopen surjections.

is a pullback of toposes, where p

(i)

5.2. Theorem.

(*)

if fl is a surjection, then so is

All the types of geometric morphisms involved in theo

Moreexplicitly, if

E‘ -—3—+ E

1:‘ If
3' -11» s

is an open surjection, then

f;

1635



(ii) if f' is an open surjection, then so is f;

(iii) if f‘ is hyperconnected, then so is f;

(iv) if f‘ is (connected) atomic, then so is f;

(v) if f‘ is (connected) locally connected, then so is f.

Proof of 5.2. (i) is trivial. Note that the types of geometric mor

phisms in (ii)-(v) are stable under pullback, so by using a localic

cover S[A] + S‘ (A a locale in S, S[A] + 3' an open surjection;

see Diaconescu(1976), Johnstone(1980), Joyal & Tierney(1982)), we may

assume that S‘ + S is localic whenever this is convenient.

Case (ii) follows from proposition VII.1.2 of Joyal &Tierney

(1982).

For case (iii), let S’ = S[A], A an open surjective locale

in S, and write B = f*(QE), B‘ = f;(QE,) for the localic reflec

tions of E in S and of E‘ in S‘. Then we have a pullback of

open surjective locales

:>«——uu ..-4-—-—u:

in S, such that the map B‘ + A is an isomorphism. So

0(B') = 0(A) G 0(B), and in terms of frames we get

"*
om 00(3) .—:—»2__0(3)

"1

n* 3 3 B*

1 n gl
+ 3

0(A) :::::%E::: P(1)
A
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where the maps 3( ) are left adjoint to the frame maps (.)*, and

a Beck condition holds (Joyal & Tierney(1982), §V.4):

* = * * = *
A SB 3“ N2, B BA 3“ N1 .

1 2

By assumption N? is an isomorphism, so 3“ is its inverse. We
1 *

claim that B* is an isomorphism, with inverse EB. 3B~B = id

since B + 1 is an open surjection. The other way round, we have
it

= w*A*3B= nfiafl N2 = N3, and n is an open surjection, so
";B*3B 1 1 2

N; is 1- 1, so B*3B= id. This proves case (iii).

For case (iv), let us first prove that atomicity by itself is

reflected. This actually follows trivially fromthe characteriza

tion of atomic maps by Joyal & Tierney(1982), Ch.VII: a map E J; S

is atomic iff both f and the diagonal E —é+EXSEE are open.

For consider the following diagram:

E‘-—é:—+ E'x , E’ —-——+S‘S

J J J
A

E ————+ E XS E? ———-+ 3

Since (*) in the statement of the theorem is a pullback and the

right-hand square above is a pullback, so is the left-hand sqaure.

Therefore by case (ii) of the theorem, if A‘ is open so is A.

Hence if E’ -—f'—+S‘ is atomic, so is E —f—>3.

Next, we show that if f' in the diagram (*) is stably connect

ed (i.e. the pullback of f‘ along a geometric morphismis still

connected, as is the case for connectedness in combination with local

connectedness, and hence in combination with atomicityg as in (iv)
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and (v) of the theorem), then f must be connected. To do this,

we use descent theory (Ch.VIII of Joyal & Tierney(1982): As f‘
f‘Xf‘

is stably connected, so is the map E‘ XEE‘ —-—> S‘ XSS‘, since

we have a pullback

E‘x' E‘ —————+E
E

1 if
S‘>< S‘ —————+S

3 2

and similarly E‘ XEE‘ XEE‘ T» S‘ XSS‘XSS‘ is connected.

Nowclearly, if f‘* is faithful so is f* (this is case (i) above).

To show that f* is full, let 8: f*(X) + f*(Y) be a map in E.

E‘ -3+ E is an open surjection, hence an effective descent morphism,

so 8 is equivalent to a map Y = q*(B) :q*f*(X) + q*f*(Y) compa

tible with descent data in E‘, i.e. Y: f‘*p*(X) + f‘*p*(Y).

Descent data lives in E‘, E‘ XE E‘, and E‘ XE E‘ XE E‘, so

since f‘, f‘x f‘, f‘x f‘XIf‘ are all connected, as just pointed

out, y must come from a map 6: p*(X) + p*(Y) compatible with

descent data in S‘, y = f‘*(6). S‘ -JL+ S is an effective descent

morphism, so Y = p*(a) for some a: X + Y in S. Then also

8 = f*(a). This proves that f* is full.

It remains to showthat if f‘ is locally connected, so is f.

Since f and f‘ are open surjections, it suffices to prove (cf.

the Appendix) that for a generating collection of objects X E E,

the locale B = f*(XdiS) (corresponding to the frame f*(P(X)) of

subobjects of X) is locally connected. Thus, assuming

S‘ = S[A] -2+ S is localic over 3, it suffices to showfor open
n

surjective locales A and B in S that if AJ<B—-L+~A is local

188



ly connected, i.e. Sh(A) F= "p#KB) is a locally connected locale",

then B is locally connected in S. Weuse proposition 3 of the

Appendix(or rather, the first lines of its proof). Let S,‘T € 3 ,

and let a: f*(S) + f*(T) be a map in Sh(B). Consider

B = n§(a) :n§f*(S) + n:f*(T), i.e. B: n?p*(S) + n?p*(T) in

(fi#(B)). Since N is locally connected, it holds
Sh(A) 1

in Sh(A) that B locally (in the sense of p#(B)) comes from a

Sh(AxB) = Sh

map Y:p*(S) + p*(T). As seen from 3, this means that there is

a cover {Ui><Vi}i of A><B, Ui E 0(A) and Vi 6 0(B), and maps
* it 1|: _ * .

vi: pi(S) + pi(T) over Ui such that n1(yi) - B = n2(a) in

Sh(U. ><V.):
1 1

TI’

Sh(U. xv.) -2—> Sh(V.)
1 1. 1

J“ p 1%
Sh(Ui) —i—> S .

Translating this back into S, we have continuous maps (of locales)

a: Vi + ST and yi :Ui + ST (where ST denotes the product of T

copies of the discrete locale S, cf. the Appendix), such that
“2 a T H1 Yi T

Ui><Vi -—-+ Vi-—+ S = Ui><Vi ———-+Ui --+ S . The following lem

ma then shows that a must locally (namely, for the cover {Vi}

of B) come from a map ST in S.

Lema. Let

"1
X xz Y ———+ X

Y ——‘L—> z
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be a pullback of locales in S, with p and q open surjections.

Then this square is also a pushout of locales.

Proof of lema. This follows once more from the Beck condition men

tioned above: we have a pushout of frame maps (.)*

,”:k

00:) am) o<y)4—a_‘—__,——<0(x)
:f~ "1 '5

W: BN2 3p p*

3
om 2———q——L‘ 0(2)

qt

. .. ,.'_=,.,.=,.
Wlth left adJo1nts 3(_), and q_ JP 3 1 , 1) Sq 3“1n2.

P and R: Y + P into
TT2."

Now suppose we have continuous maps h: X +

some locale P such that hn1 = knz. It suffices to show that

* = p* Sph* and k* = q* Sph*. For the first equality, we have
h

* * * *

1r*p* Sph = 1r3q* Sp h* Tr; Snznfih = 1r; Elfl21r;k* = 11;k* = 1r1h .1

1r* is 1- 1, so h* = p*3 h*. The other equation is verified
1 P

similarly.

This completes the proof of the lemma.

Applying this argument to each open of B, we find that B is

a locally connected locale. Thus we have proved theorem 5.2. I

5.3. Lema. Let I be a directed poset in S. Then there exists

a localic open surjection S[A] -2+ S and a (0: N + p*(I) in

S[A] such that w is cofinal in I, i.e.

S[A] |= viep*(I) an e N <p(n) > 1.

Proof. Weadjoin a generic cofinal sequence to the universe in the
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standard way: Let E’ be the poset of finite sequences

1,...,in) from I with ii < ...-< in, partially ordered
by s-< t iff s extends t, and let the locale A be defined

by the following covering system on EH for each (i1,...,in) E2?

and each j € 1, the family

{(i1,...,in,...,im) I j-< im}

of extensionsof (i1,...,in) covers (i1,...,in). Since I is
directed, this is a stable family of covers (i.e. if S covers s

and t < s then {r€S I r<t} covers t), and moreover each

cover is inhabited. Thus if A is the locale defined by this poset

with covering system on E3 S[A] + S is an open surjection. I

Proof of theorem 5.1. Let (Ei)i be the given system in S, and

let (Fi)i denote the corresponding system obtained by change of

base along the map S[A] + S of 5.3. Let Fm and Em denote the

inverse limits. So we have a pullback

(D4-:é'|"7'1

F00-= lim. Fi = lim Fcp(n), where to is the cofinal sequence of

lemma5.3. Since the geometric morphismsof types (ii)-(v) are all

preserved by pullback, the result now follows immediately from theo

rems 5.2 and 4.1 in these cases. The case (i) of surjections fol

lows from corollary 5.4 below and proposition IV.4.2 of Joyal &

Tierney(1982), just as for inverse sequences (see section 4). I

191



5.4. Corollary. The localic reflection preserves limits of fil

tered inverse systems of toposes.

Proof. The hyperconnected - localic factorisation is preserved by

pullback, so this follows from corollary 3.2, using a change of base

by lemma5.3 as in the proof of 5.1. I

5.5. Remark. In Joyal &Tierney(1982) it was noted that the localic

reflection preserves binary products. By corollary 5.4 this can be

extended to arbitrary (small) products. It is not true, however,

that the localic reflection preserves all inverse limits. Here is

a simple example of a case where it does not preserve pullbacks:

Let G be the category with two objects C,D and only two non

identity arrows f and g: C + D

fC--—+-D
s

op

Let D1 be the category (poset) in Sc with D1(D) - {0<1}

D1(c) = {o<1} , 1>1(£)(1)= m1(£)(o) =1, 131(3) - id. Let n 2

be exactly the same, but with f and g interchanged. Construct
op

the product-poset ‘D1 XIDZ in. Sc . So we have a pullback

cc v< (1)1 xm2>>°" (¢ v< n1>°P________+ 3

(G KID )op op
2 C________n. 3
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The poset-reflection of the diagram

Gr (D1xD2) -——-—> can

1

GKD1 : G

1

however, do not give a pullback of posets, as is easily verified,

and therefore it does not give a pullback of the corresponding lo

cales of downwardsclosed sets. I
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Appendix: Locally connected geometric morphisms.

Let S be an arbitrary topos, which we fix as our base topos

from now on. In M. Barr & R. Paré(1980) several characterizations

are given of toposes which are locally connected (they say: molecular)

over S. The purpose of this Appendix is to give an alternative

proof of these characterizations for the special case of Grothendieck

toposes over 3. So in the sequel, geometric morphism means bounded

geometric morphism. Our proof uses locale theory, and familiarity

with the paper of Barr and Paré is not presupposed. Also, this Ap

pendix can be read independently fromthe rest of this paper.

For the case of Grothendieck toposes over S, the result of

Barr and Paré can be stated as follows.

Theorem. The following conditions on a geometric morphism Y: E + S

are equivalent:

(1) There exists a locally connected site G E S such that

E = S[¢], the topos of sheaves on G ("locally connected site" is

defined below).

(2) There exists a site G E S such that E = S[¢], with the prop

erty that all constant presheaves on G are sheaves.

(3) The functor y*: S + E (left adjoint to the global sections

functor 7*: E + S) has an S-indexed left adjoint.

(4) y* commuteswith H-functors, i.e. for each S -2+ T in S

we have a comutative diagram

S/s —I*—/9'—.E/Y*(S)

Ina HY*(G)*
S/T —l—/1+ E/v*(T)
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A geometric morphismsatisfying these equivalent conditions is called

locally connected. Recall that a site G is called locally connect

ed (or molecular) if every covering sieve of an object C E G is

connected (as a full subcategory of G/S ) and inhabited.

The implications (1) =»(2) ¢»(3) =»(4) are easy. The difficult

part is (4) d>(1), and it is here that our approach differs from

the one taken by Barr and Paré. To prove (4) =-(1), choose first

a site G for E in 3, closed under finite limits and subobjects,

say. It suffices to show that for each C E G, the locale (in S)

SubE(C) of subobjects of C is locally connected (see definition 1

below). If S E S, a section of y*(S) over C is nothing but a

continuous map from the locale SubE(C) into the discrete locale S,

i.e. a global section of the constant object S in the localic topos

Sh(SubS(C)), so it follows that for each C E G, the inverse image

of the canonical geometric morphism Sh(SubS(c) + S preserves H

functors. So we only need to show (4) w’(1) of the theorem for

locales, i.e. to showproposition 3 below. But let us recall some

definitions first.

Definition 1. Let A be a locale in S.

(i) an element a E A is called positive (written pos(a)) if

every cover of a is inhabited. A is positive if pos(1A).

(ii) a €.A is called connected if a ispositive,and every cover

of a bypositive elements is positively connected. (A cover

U = {bi}i of a is positively connected if for every

bi,bj E U there is a chain bi = bio,...bin = bj in U such

that Vk-< n pos(bikAbik+1).) A is connected if 1A is con
nected.
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(iii) A is open if for every a E A, a = V{b<a I pos(b)}.

(iv) A is locally connected if for every a E A, a = I/{b<a I b

is connected}

Lema 2. Let A be a positive open locale in S. The following

conditions are equivalent:

(1) A is connected.

(2) For every S E 3, every continuous map A —£+S into the dis

crete locale S is constant, i.e. 3s€ S f-1(s) = 1A.

(3) Every continuous map A + 9 into the discrete locale Q = P(1)

is constant.

Proof. (1)-*(2): Let A —£+S, and put as = f_1({s}). Then

V a =1, so also V{a Ipos(a )} =1 since A is open. This
s€S 5 9 3

latter cover must be positively connected. But if pos(as/\as,),

then since as A as, is covered by f_1(s)z\f-1(s') = f-1({s}f1{s'}) '

{f-1(3) I s==s'}, it follows that s = s‘. So 33 E S as = 1.

(2) =9(3) is clear.

(3)=9(1): Suppose U = {bi}i€I is a cover of 1 with pos(bi)Al

for all i. Fix io E I and define pj E Q for each j E I to be
the value of the sentence

. ,bi3 chain bi ,b no i ,.. = b. in U such that Vk-< n
1 J

b- b- .
p°s( 11¢A 1k+1)

Nowlet f-1: P(Q) + 0(A) be defined by

f'1(v) =V{bjEU I pj€V}.

Weclaim that f-1 is an XV-map, i.e. defines a continuous map
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A + Q. Indeed, f-1 preserves V’ by definition, and

f-1(9) = Vb = 1A. To show that f-1 preserves A, it suffices by

openness of A that pos(bj:\bj,) implies pj = pj,, which is ob

vious from the definition of pj. By (3), f is constant. But

bl-_o<f-1({“|'}), so 1A<f-1({T}), i.e. U connected.

Note that from this proof we can extract that for a positive

open locale A, a continuous function A —£+S (E3discrete) corres

ponds to giving a sequence {as I sE S} of elements of A such

that V a = 1 and pos(a Aa ,) nos=s'. Wewill call such a
353 s s 8

cover {as I SE S} of A discrete.

Proposition 3. Let A be a locale in S, and suppose that the in

verse image functor y* of the geometric morphism Sh(A) + S pre

serves H-functors (hence exponentials). Then A is locally con

nected.

Proof. As is well-known and easy to prove, the assumption implies

itthat A is open (e.g. Y preserves universal quantification,

and use Joyal & Tierney(1982), §VII.1.2). Wewill show that if A

is open and y* preserves exponentials, then A is locally connected.

Preservation of exponentials means that for any S,T E S and

any a E A (viewed as a sublocale of A), an f: a + ST is con

tinuous for the product locale ST iff it is continuous for the dis
Tcrete locale S .

Let for a E A, Fa be the set of continuous maps a + 9. Then

we have a canonical map

ma: a‘+ Q a
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which by assumption is continuous as a map into the discrete locale

QFa. Thus, writing aa = ¢;1(a), C(a) = {aa I a€EQFa} is a dis

crete cover of a, and since A is open, so is

C+(a) = {c€EC(a) | pos(c)}. Weclaim that the elements of C+(a)

are the "connected components" of a.

8First, suppose we are given a continuous a ——+S into a dis

crete locale S. Then for each an E C+(a) we have

(i) 3!s€S aa < g-1(s).

Indeed, the set U = {s€S I pos(aa/xg-1(s))} is inhabited since

an is positive and covered by {gi-1(5) I SEU}. Suppose a E U,

and let a —£—>Q be the composite

ai>S 9.
Then g-1(3) ==f-1(1_")-V{aB€C+(a) I Bf=T}. Since pos(aaflg-1(3)),

Fa
there is a B E Q with Bf =T such that pos(aaAaB), so

. -1 . .
ct = B, so Bf =7", i.e. aa < g (s). Since 3 E U was arbitrary,

this shows that the inhabited set U can have at most one element,

proving (i).

In other words, there is a natural 1-1 correspondence

. . a ——+ S (of locales in S)(11) ———-—
C+(a) + s (of "sets" in s)

between continuous maps into discrete locales S and maps C+(a) + S
. . . + .
in 3: given a -5-> S, define (.0: C (a) + S by (p(c) - the unique

s with c < g-1(3) (see (i)); and given cp: C+(a) -> S define f
-1 -1

by f (s) =Vo (s).
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Nowwe show that each b E C+(a) is connected. By lema 2,

it suffices to showthat each continuous map b ->8'2 is constant. This would

follow from (i) if we show that a continuous b + Q can always be

extended to a continuous a + Q. So take bo E C+(a) and b0 -£5-Q,

corresponding to (D: C+(bo) + Q by (ii). Write a = VC+(a) =

V{c | 3b€C+(a) : c€C+(b)}. The set u = {C | 3b€C+(a)cEC+(b)}

is a discrete cover (i.e. Vc,c' E U pos(c.«c') + c==c') of a

by positive elements, and C+(bo) CIU. Q is injective, so w can

be extended to a function w: U + 9, which by discreteness of U

gives a continuous f: a ->Q, defined by f-1(p) - VIP-1(1)).

f is the required extension of g.

This completes the proof of proposition 3, and hence of the im

plication (4)-9(1) of the theorem.
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S A M E N V A T T I N G

Dit proefschrift bevat een aantal artikelen waarin het verband tussen
intuitionistischeverzamelingenleerenmtopostheorieonderzochtwordt. Kortweg
komt dit verband erop neer dat men een gegeven Grothendieck topos hetzij als
meetkundig objekt (een gegeneraliseerd schemaof topologische ruimte, zoals
gebruikelijk in de Grothendieck-school), hetzij als een universum, oftewel
eenuwdel,voorintuitionistischeverzamelingenleeroplunivatten. Detoepassin
genhiervan werkennatuurlijk in twee richtingen: enerzijds kanmende meetkun

dige konstrukties van Grothendieck topossen gebruiken ommodellen te konstrueren
voor in de mathematische logika onderzochte intuitionistische theorieén,
maar anderzijds kan mende intuitionistische verzamelingenleer gebruiken bij
meetkundige konstrukties in de theorie van Grothendieck topossen.

Deeerste vijf artikelen in dit proefschrift zijn toepassingen van het
eerste type. In de artikelen met G.F. van der Hoevenworden modellen gekon
strueerd voor de theorie van keuzerijen, en wordt het verband aangegeven met
de klassieke literatuur over dit onderwerp waarin géén gebruik wordt gemaakt
van topos theorie, maar van meer traditionele methoden uit de mathematische
logika. In het vijfde artikel wordt onder meer een topos gekonstrueerd
waarin het eenheidsinterval kompakt is, maar de Cantor ruimte niet!

De overige vier artikelen zijn veeleer toepassingen van het tweede
type: hier wordt voortdurend gebruik gemaakt van het feit dat een topos op
gevat kan wordenals een intuitionistisch universum. In het eerste artikel
worden enkele eigenschappen van gefilterde inverse limieten van Grothendieck

topossen onderzocht. Het belangrijkste resultaat is dat als (Ei) eeni€I
gefilterd invers systeem is, met geometrische morfismen fij: Ei + Ej
(i<§j), en alle fij zijn surjekties (resp. open surjekties, samenhangen
de lokaal samenhangende morfismen, hyper-samenhangende morfismen, samenhan

gende atomaire morfismen) dan zijn alle projektie-morfismen lim_Ei ——l+Ej
dat ook. In het tweede artikel wordt een zeer kort nieuw bewijs gegeven

voor de zogenaamdeDescent stelling voor Grothendieck topossen. De laatste
twee artikelen vormen een aanzet tot een homotopie theorie van topossen in

"topologische stijl". In het artikel met Wraith wordt bewezendat als E
een samenhangende lokaal samenhangende topos is, het kanonieke eva1uatie
morfisme E1 + E><E een open surjektie is. Hierbij is E1 de "weg-topos”

van E. Met andere woorden, elke samenhangende-lokaal samenhangende topos

is ook weg-samenhangend. Dit resultaat laat teven zien dat zelfs gewone
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topologische ruimten eigenlijk betere eigenschappen hebben wanneer men ze
als topos beschouwt. In het laatste artikel wordt de studie van de weg
topos voortgezet, en onder meer een verscherping van het zo juist genoemde
resultaat met Wraith bewezen.
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S T E L L I N G E N

behorendebij het proefschrift
Topicb in Intuztioniam and Topoa Theony

van 1. Moerdijk

Er zijn goede redenen ombehalve niet - zoals in de standaard literatuur

beweerd wordt - als voegwoo%E\teklassificeren, maar als voorzetsel.
(Zie F. Landman & I. Moerdijk:
1980.)

Behalve als voorzetsel, Spectator 2_(4),

De op zichzelf voor de hand liggende opmerking dat de kracht van het kom

positionaliteits-principe afhangt van andere restrikties op de vormvan
de regels van de gramatika, heeft zeer belangrijke gevolgen voor de in
richting van grammatika'sAnn1een Montague-achtig type. (Zie F. Landman

& I. Moerdijk: Compositionality and the analysis of anaphora, Linguistics

& Philosophy Q) 1983; en ook: Compositional semantics and morphological

features, Theoretical Linguistics 19, 1983.)

Let S CI¢ be a sieve in a category G, and let ¢ —E+I) be a functor.

Then the canonical morphism

N(¢) G
N($) J_L N(D) ——> M: J_L 11))

is an anodyne extension (N denotes the nerve functor). From this fact
it follows easily that N induces an equivalence between the homotopy
category of categories and the usual homotopycategory of simplicial
sets by inverting the weak equivalences. (This latter consequence is
originally due to Quillen; see L. Illusie, Complexcotangent et défor
mation II, Springer LNM283, 1972.)

A topological space X

logic (IPC)

is called universal for intuitionistic predicate
if whenever a formula ¢ is not derivable in IPC from a set

of formulas F , there exists a sheaf model over X in which all formu
las from F bold, but ¢ does not. It can be shown that every metri

zable.space without isolated points is universal for IPC.
(See I. Moerdijk: Sometopological spaces which are universal for in

tuitionistic predicate logic, Indag.Math.33) 1982.)



Every Cm-ring which is a domain is a local ring; and every local Cm

ring is Henselian and has a real closed residue field. (See I. Moerdijk
&G. Reyes: Rings of smooth functions and their localizations I, to ap
pear in J. of Algebra.)

Let c”(M)

and let P be a prime ideal in Cm(M). Then the localization Cw(M)P

be the ring of smooth functions on a given manifold M,

in the category of Cm—rings, i.e. the ring limf€P<3 (M-Z(f)), is a
local ring iff P is a 2-ideal. (See I. Moerdijk, Ngo van Qué,
G. Reyes: Rings of smooth functions and their localizations II, to ap
pear.)

Although the sdpare root of a smooth function need not be smooth, the
m.—5+‘m>

the‘category of Cm-schemes(or duals of finitely generated Cm-rings),
function is nonetheless a stable effective epimorphisminéa

as follows from the following result: let M be a smooth manifold,
co 2 co

and let f,g E C (M). Then f E (g(x)-t ) C C (MXR)

p e c°°(1R) 12,0,
(See I. Moerdijk, Ngo Van Que, G. Reyes:

iff there is a
rm 6 (P(g(x))) c c°°<u).

Forcing smooth square roots

which vanishes on such that

and integration, to appear.)

There is a smooth analogon of the usual Zariski topos, which is a very
adequate model for infinitesimal analysis as used by Lie, E. Cartan,

as well as for a constructive version of non*standard ana

(See I. Moerdijk & C. Reyes:

Darboux, etc.
lysis. A smooth version of the Zariski
topos, to appear in Advances in Mathematics.)

There is an algebraic proof of the theorem of Ambrose, Palais, and
Singer on the 1-1 correspondence between affine connections and sprays
on a smooth manifold. (See W. Ambrose, R.S. Palais, I.M. Singer:

Sprays, Anais da Acad.Bras. de Ciéncias 22, 1960.)
This new proof actually gives a muchmore general result: the 1-1
correspondence not only holds for (finite-dimensional) smoothmanifolds,
but also for manifolds with singularities, for spaces of smoothfunc

On thetions, and for algebraic schemes. (See I. Moerdijk & G. Reyes:
relation between connections and sprays, to appear.)

De laatste stelling bij het proefschrift van A.J.M. van Engelen is onjuist.






