$$
(\square(\neg \neg \square \mathrm{A} \rightarrow \square \mathrm{~A}) \rightarrow \square \square \mathrm{A})
$$

ASPECTS OF
DIAGONALIZATION \& PROVABILITY

ALBERT VISSER

ASPECTS OF DIAGONALIZATION \& PROVABILITY

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WIJSBEGEERTE AAN DE RIJKSUNIVERSITEIT TE UTRECHT, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. M.A. BOUMAN, VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP MAANDAG 16 NOVEMBER 1981 DES NAMIDDAGS TE 4.15 UUR

DOOR

ALBERT VISSER

GEBOREN OP 19 DECEMBER 1950 TE ZWIJNDRECHT

PROMOTOR: PROF. DR. D. VAN DALEN
voor mijn ouders, mijn broers, voor Karin en Eva

CONTENTS

CONTENTS
ACKNOWLEDGEMENTS
PART 0: INTRODUCTORY PART
1 What this thesis is about 1
2 Solovay's Completeness Theorem, an introduction 4
2.1 Modal logics and Kripke models 4
2.2 Embedding tail models in arithmetic 7
2.3 On the metaphysics of Solovay's Theorem 15
References 19
PART 1: NUMERATIONS, λ-CALCULUS \& ARITHMETIC
Abstract 259
§ 0 Introduction 259
§ 1 Introduction to some fundamental concepts 260
§ 2 A little excursion into topology 264
§ 3 The Fixed Point Theorem 268
§ 4 The Anti Diagonal Normalisation Theorem and some of its applications 278
References 283
PART 2: AN INCOMPLETENESS RESULT FOR PATHS THROUGH OR WITHIN 0.
Abstract 237
1 Introduction 237
2 Notations and conventions 238
3 The concept of separability and some related hierarchies 239
4 About downward closed and comparable sets 240
References 243
PART 3: A PROPOSITIONAL LOGIC WITH EXPLICIT FIXED POINTS
Abstract 01
0.0 The strange tale of the Formalist who lost Modus Ponens 01
0.1 Motivation 03
0.2 Contents 03
0.3 Some partly philosophical comments 03
0.4 Prerequisites 04
0.5 Acknowledgements 04
1 Basic Propositional Logic 1
2 Formal Propositional Logic 9
3 Basic facts about FPL 12
4 A "classical" version of FPL 17
5 Interpretations 24
References 31
PART 4: ON THE COMPLETENESS PRINCIPLE, A STUDY OF PROVABILITY IN HEYTING'S ARITHMETIC AND EXTENSIONS.
Abstract 1
1 Introduction 2
1.1 What is the Completeness Principle 2
1.2 Excurs: prima facie facts about CP 2
1.3 Motivation 3
1.4 Contents 3
1.5 Prerequisites 4
1.6 Acknowledgements 4
2 Conventions, notions, elementary facts 5
3 The Completeness Principle and the Strong Löb Principle 11
4 The T-translation 12
5 On Selfcompletions 25
6 Remarks on the provability logic of HA and extersions 32
7 On KLS 43
References 48
PART 5: ON THE PROVABILITY LOGIC OF ANY RECURSIVELY ENUMERABLE EXTENSION OF PEANO ARITHMETIC, OR ANOTHER LOOK AT SOLOVAY'S PROOF
1 Solovay's Completeness Theorem 1
2 Statement of our main result 1
3 A Kripke frame completeness theorem 2
4 Proof of the main result 3
5 Converse of the main result 4
Reference 5
PART 6: EPILOGUE:
REMARKS ON THE PROVABILITY LOGIC OF HA AND EXTENSIONS
1 On naively applying Solovay's method 1
2 Solovay's Theorem and the Completeness Principle 3
3 Translations and Principles 7
4 General insights on the L(T) 10
References 13
SAMENVATTING
CURRICULUM VITAE

ACKNOWLEDGEMENTS

As so often with important things, like the air one breathes, it is only when I pause and reflect that the pervasive influence of Dirk van Dalen becomes clear. As prime mover of the Utrecht Logic Group he created the pleasant atmosphere in which I studied and worked the last six years. I thank him for his guidance in the work on this thesis, his detailed comments on content and style, his attention for matters of organization and strategy.

Henk Barendregt was first my teacher then my colleague. I learned much from him. He helped me especially with part 1 of this thesis, asking good questions, giving relevant information. I am very grateful to him for that.

Jan Willem Klop and Karst Koymans were wonderful roommates. I thank Jan Willem for all our discussions on matters technical, philosophical and otherwise. Karst, I thank, for spotting mistakes in my work with unfailing precision.

Pepe Longo and Michael Beeson deserve special mention. Their enthousiasm and encouragement meant much to me.

I am grateful to professor A.S. Troelstra for stimulating conversations. I thank him and Michael Beeson for their meticulous comments on part 4.

The following people have helped me by conversations or correspondence: J.F.A.K van Benthem, G. Boolos, G. Gargov, D.H.J. de Jongh, M.H. Löb, H. Luckhardt, W. Ruitenburg, D.S. Scott, G. Sundholm, J.F. Zucker.

Perhaps the greatest intellectual debt I owe to Craig Smoryński. Every single paper I wrote is somehow a reaction to an article, a comment, a question of his.

I thank Sophie van Sterkenburg and Karin Stegmann for deciphering my handwriting and carefully typing this thesis.

Part 1 of this thesis is published in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, edited by J.P. Seldin and J.R. Hindly, Academic Press Inc., London, 1980. Part 2 is published in Indagationes Mathematicae, Volumen 43, (1981).

Part 3 will appear in Studia Logica.

PART 0 INTRODUCTORY PART

Monolithic this thesis is not. It reflects the history of our preoccupation with Gödel's Incompleteness Theorems over the last four years.

In part 1 and 2 we concentrate on generalizations of Gödel's First Incompleteness Theorem like the Gödel-Rosser-Mostowski-Myhill-Kripke Theorem (GRMMK for short). One cannot but be impressed how few specific facts about formal theories are needed to prove this theorem (just consistency and a weak kind of representability of the partial recursive functions). The rest is done by recursion theory; one is tempted to say that here recursion theory plays the role of "general nonsense" with respect to the theory of formal systems. An obvious question in this context is whether the applications of recursion theory to formal systems can be made uniform, whether one can give recursion theoretic results in "the right form" for these applications. In part 1 and 2 tentative answers are considered. In part 1 we adapt Eršov's theory of Numerations for our purpose. A disadvantage of the framework thus obtained is this: when one analyses an application to a formal system it sometimes turns out that there is a direct "theory-free" proof in which less about the system is used than demanded by the framework. For example in certain applications to arithmetic one uses the existence of the Σ_{n}^{0}-truthpredicate, to lambda-calculus the existence of the universal constructor E. These facts are not needed for your average recursive inseparability argument. So perhaps still some improvement is possible.. All the same the framework is rather natural for a wide range of applications.

As so many, we were at first victims of that easy, youthful fallacy: to think that Gödel's Second Incompleteness Theorem is "just" a formalization of Gödel's First Incompleteness Theorem and that therefore Gödel's Second Incompleteness Theorem does not differ programmatically from Gödel's First Incompleteress Theorem. (Clearly this fallacy is just an instance of a far more general fallacy, and is ultimately connected with a wrong appreciation of the very aims of formalization.) In due time we saw the fallacy's true nature, mainly because of Craig Smoryński's benificial influence. The strength of GRMMK is also a weakness, when looked upon as a basis for further work. Because it is so much a recursion theoretic result one is encouraged to forget the intrinsic interest of the concepts of formal provability and concistency.

Consequently part 3,4 and 5 are devoted to the concept of formal provability, or to be more specific to Provability Logic. Provability Logic is of course not the only possible approach to study formal provability (there is e.g. the work of Jeroslow), but we think its rasults, in particular De Jongh's Theorem and Solovay's Completeness Theorem are at present the deepest ones pertaining specifically to formal provability. Solovay's Theorem seems the natural generalization of Gödel's Second Incompleteness Theorem at least from "a propositional point of view".

Part 4 adds a new element: it is on the provability logic of intuitionis=ic arithmetic. Maybe this is the proper place to state our view on Intuitionism / Constructivism. We think classical mathematics is just plainly true, e.g. Format's Theorem is either true or false. Even if it is very well possible that it is
true but not provable in principle for human beings. In other words that it is simply outside the scope of the human a priori. (Can the mathematical a priori for Martians be stronger at some points than ours?) Still Constructivism is a perfectly legitimate branch of Mathematics like Numerical Analysis, Homological Algebra or Algebraic Geometry. It could be considered as that branch of mathematics that does systematically ("globally") what in other branches is done case for case ("locally"): finding algorithms corresponding to Existence Theorems (this "hackneyed business" of numerical content). A further point is that mathematicians are often interested in theories with many models. Now theories like Classical Arithmetic and Analysis suffer from a lack of (reasonable) models. In the Intuitionistic/ Constructivistic case however there are many models. In current developments in Intuitionistic Model Theory people try to put this aspect to good use. At present it is impossible to judge the merits of topos theory as intuitionistic model theory, but surely there is more than a grain of a good idea behind that approach.

The remaining section of the Introductory Part is an exposition of Solovay's Completeness Theorem, to introduce the reader to parts 3, 4, 5. The thesis is concluded by an Epilogue on the provability logic of Heyting's Arithmetic, both to elaborate on the results of part 4 and to provide some context for them.

SOLOVAY'S COMPLETENESS THEOREM, AN INTRODUCTION

This exposition is mainly intended as an introduction to Solovay's way to embed Kripke Models into arithmetic. Consequently we will refer the reader to the literature for most facts about Modal Logics and Kripke Models. Moreover to make this exposition not too long we will freely use notations and definitions from other parts of this thesis.

2.1 Modal Logics and Kripke Models

2.1.1 Modal Logics

Define: $\square^{0} \perp:=\perp, \square^{\mathrm{n}+1} \perp:=\square\left(\square^{\mathrm{n}} \perp\right), \square^{\omega} \perp:=\mathrm{T}$.
G_{a} for a $\in\{0,1, \ldots, \omega\}$ is the following theory in the language of
Modal Propositional Logic Lpr:

- The rules and axioms of Classical Propositional Logic (e.g. in Natural Deduction formulation)
- $-A \Rightarrow$ - $\square A$ (Gödel's Rule)
$-\vdash(\square A \rightarrow \square \square A)$
$-\vdash(\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B))$
$-\vdash(\square(\square A \rightarrow A) \rightarrow \square A) \quad$ (Löb's Axiom)
$-\vdash \square^{a} \perp$
G^{ω} is also called: G.
$G_{a}^{m o n}$ is $G_{a}+\vdash p_{i} \rightarrow \square p_{i}$.
G* is:
- All theorems of G
- Modus Ponens Rule
$-\vdash(\square A \rightarrow A)$

2.1.2 Kripke Models

A Kripke model <W, <,f> is defined as in 6.8 of part 4 of this thesis omitting however the monotonicity condition:
$w<w^{\prime} \Rightarrow f(w) \subseteq f\left(w^{\prime}\right)$. A model satisfying this condition will be called monotonic. We assume that every model has a bottom. \mathbf{l}_{K} is defined as in 6.8 of part 4.

We will be interested mainly in finite irreflexive Kripke models. For technical purposes - only to become apperent later - we want to attach an ω-tail to their bottoms. Numerating the elements of W by natural numbers in a suitable way we arrive at the following definition:

A Kripke model $K=\langle\omega,\langle, f\rangle$ is a tail model if:

- < is irreflexive
- if m $\neq 0$ then $0<m$
- if $n \neq 0, n<m, t h e n n>m$
- for some $N \neq 0$:
- for every $n, m \geqslant N$ if $n>m$ then $n<m$
- for every $n \geqslant N \quad f(n)=f(N)$
- $f(0)=f(N)$

Example:

Clearly every finite irreflexive Kripke model is the top part of some tail model (modulo isomorphism) and vice versa: proper top parts of tail models are finite irreflexive Kripke models.

We will call N as in the last clause of the definition a tail element. Note that this is not unique.

In this exposition we will formulate everything in terms of tail models. This causes a slight loss of naturalness. But in this way we avoid the tedious chopping off and tagging on of tails and the accompanying extra burden of notation.

The main lemma on tail models is:

2.1.2.1 Tail Lemma

For every tail model K:
$01=_{K} A$ iff for some M, for all $n \geqslant M \quad n \|_{K} A$;
$0 \not \#_{K} A$ iff for some M, for all $n \geqslant M \quad n \not \#_{K} A$.
Proof: induction on A.
We need one more definiton. Let K be a tail model. Define the depth of $n: d(n):=\sup \{(d(k)+1) \mid k>n\}$

Clearly $d(0)=\omega$ and for topmost $k: d(k)=0$.

2.1.2.2 Completeness Theorem

i) $\quad G_{a} \vdash A$ iff for all tail models K, for all n such that $d(n)<a$: $\mathrm{nl}=_{K} \mathrm{~A}$
ii) $G_{a}^{m o n} 1-A$ iff for all monotonic tail models K, for all n such that $d(n)<a \quad n F_{K} A$
iii) G*トA iff for all tail models K : $O F_{K} A$

Proo 6
i) See [Bo][So] and part 5 of this thesis.

```
ii) This is an easy consequence of \(i\) ).
iii) " \(\Rightarrow\) " O satisfies the theorems of \(G\) because \(K\) is well-founded
    upwards. Closure under Modus Ponens is trivial.
    Suppose \(0=_{K} \square A\). Then for all \(n>0\), i.e. for all
    \(n \in \omega \backslash\{0\}: n=_{K} A\). Hence by the Tail Lemma: \(0 l_{K} A\).
\(" \Leftarrow "\) Suppose \(G^{*} \not \forall A\). Clearly \(G H\left(\left(M\left(\square_{i} \rightarrow B_{i}\right)\right) \rightarrow A\right)\), where
    the \(B_{i}\) are those subformulae of \(A\) that have a box in front
    of them (the boxed subformulae of \(A\) ).
    Hence there is a tail model \(K\) such for some \(N(\neq 0)\) :
    \(N \not \xi_{K} M\left(\square B_{i} \rightarrow B_{i}\right) \rightarrow A\), i.e. \(N F_{K} M\left(\square B_{i} \rightarrow B_{i}\right)\) and \(N \not \xi_{K} A\).
    Note that we can arrange that \(N\) is a tail element.
    That \(O \not \equiv A\) follows easily from:
    Claim for all subformulae \(C\) of \(A\) :
    if \(N \|_{K} C\) then for all \(m \leqslant N \quad m F_{K} C\),
    if \(N \mid \boldsymbol{F}_{K} C\) then for all \(m \leqslant N \quad m \mid \boldsymbol{F}_{K}\) C.
    Proof of the claim: the proof is by induction on \(C\). The
    cases of atoms, \(\wedge, \vee, \neg\) are trivial. Hence assume \(C \equiv \square \square\).
    If \(N==_{K}\) प then (because \(D\) is a boxed subformula of \(A\) :
    \(N F_{K}\) D. By Induction Hypothesis for all \(m<N \quad m k_{K} D\). On
    the other hand for all \(m>N \quad m k_{K}\) D. Hence for all \(k\) :
    \(k=_{K} \square \square\), so certainly for all \(m \leqslant N \quad m \|_{K} \square \square\). The second
    case is again trivial.
```


2.2 Embedding tail models in arithmetic

We want to embed in some sense tail models into PA. Clearly we can consider a Kripke model K as assigning a truth values
$[[A]]_{K}=\left\{w \in W \mid w \|_{K} A\right\}$ to formulae A and consider the logical constants as functions on truth values. The idea is to represent $[[A]]_{K}$
by a sentence of arithmetic. A formula $A(\vec{p})$ may be considered as a polynomial in the truth values of the \vec{p} 's. Par abus de langage: $A\left([[\vec{p}]]_{K}\right)=[[A(\vec{p})]]_{K}$.
Suppose we represent [[B]] by the formula [B] in L, the language of arithmetic; again par abus de langage we want:
$\vdash_{P A} A([\vec{p}]) \leftrightarrow[A(\vec{p})]$
There is a simple reason why this programme does not work for finite irreflexive K. Clearly in such a K for some n :
$\left[\left[\square^{k+1} \perp\right]\right]_{K}=\left[\left[\square^{k} \perp\right]\right]_{K}$. * would give (for the case of PA):
$1_{P A} \square_{P A}^{k+1} \perp \leftrightarrow \square_{P A}^{k} \perp$. Quod non.
For the pressnt we fix a tail model K and an RE extension T of PA (T may be inconsistent). A first step is to represent the truth values [[A]] as sets in PA. By the Tail Lemma [[A]] is either finite or cofinite.

Define as formulae of L :
in case $[[A]]_{K}$ is finite: $\left(x \in[[A]]_{K}\right): \equiv W\left\{(x=i)|i|={ }_{K} A\right\}$
in case $[[A]]_{K}$ is cofinite: $\left(x \in[[A]]_{K}\right): \equiv M\left\{(x \neq i) \mid i \not{ }_{K} A\right\}$
(By convention the empty disjunction is \perp, the empty conjunction T.)

One easily verifies:
$\vdash_{P A}\left(x \in[[A]]_{K} \wedge x \in[[B]]_{K}\right) \leftrightarrow x \in[[A \wedge B]]_{K}$
$\vdash_{P A}\left(x \in[[A]]_{K} \vee x \in[[B]]_{K}\right) \leftrightarrow x \in[[A \vee B]]_{K}$
$\vdash_{P A} \times \notin[[A]]_{K} \leftrightarrow x \in[[\neg A]]_{K}$.
We make the following assumptions about the proof predicate
$\operatorname{Proof}_{T}(x, y)$:
$\vdash_{\text {PA }} \operatorname{Proof}_{T}(x, y) \wedge \operatorname{Proof}_{T}(x, z) \rightarrow y=z$
$\left.\vdash_{\mathrm{PA}}\right\urcorner \operatorname{Proof}(\underline{0}, y)$.

Clearly the usual proof predicate satisfies these. (Moreover if Proof $_{\mathrm{T}}(x, y)$ did not satisfy the assumptions Proof ${ }_{\mathrm{T}}(\mathrm{x}, \mathrm{y})$: \equiv $\left(\exists z<x \quad x=2^{z+1} \cdot 3^{y+1} \wedge \operatorname{Proof}_{T}(z, y)\right)$ certainly would.)

Further define for f monotonic in く:
$\lim f=s$ iff for some $m f(m)=s$ and for every $p, n f(p)=s$
and $n>p \Rightarrow f(n)=s$.
The second step is to define a term $\ell:=1 i m h$ where h is a total recursive function.

Define (by the recursion theorem):
$h(0):=0$
$h(k+1):= \begin{cases}n \text { if for some } n>h(k) \\ & \text { Proof }\left(k+1, \quad r \ell \neq n^{\top}\right) \\ h(k) & \text { otherwise. }\end{cases}$
(Note that the fact that ℓ occurs in the definition of h is made possible by the recursion theorem.)

We have:
$\vdash_{P A} " h$ is weakly monotonic inく"
$\vdash_{\text {PA }} " \ell$ exists"
Now (third step) we are in the position to define the representation
of $[[A]]_{K}$ in PA: $[A]_{K, T}: \equiv\left(\ell \in[[A]]_{K}\right)$. Take $f: P \rightarrow L$ as $f\left(P_{i}\right):=$
$\left[P_{i}\right]_{K, T}$.
Define $\langle A\rangle_{K, T}$: $=\langle A\rangle^{f, T}$ where $\left\rangle^{f, T}\right.$ is defined as in part 4, 6.4.
${ }^{(1)}$ Because $\vdash_{\text {PA }}$ " ℓ exists", scope problems are irrelevant here. We prefer mostly the large scope reading e.g. for $(\ell \neq n)$:
$\exists x(l=\times \wedge \times \neq n)$.

We have:

2.2.1 Theorem

$\vdash_{P A}\langle A\rangle_{K, T} \leftrightarrow[A]_{K, T}$
Proof: induction on A. The cases of atoms, $\wedge, ~ v, 7$ are easy (always using that ℓ provably exists). Now suppose $A \equiv \square B$.
a) In case $[[\square B]]_{K}$ is cofinite, clearly $[[\square B]]_{K}=\llbracket B \|_{K}=\omega$. Hence by Induction Hypothesis: $\vdash_{P A}\langle B\rangle_{K, T} \leftrightarrow T$, hence $(T \supseteq P A) \vdash_{T}\langle B\rangle_{K, T}$, $\operatorname{sot}_{P A} \square_{T}\langle B\rangle_{K, T}$ or $\vdash_{P A}\langle\square B\rangle_{K, T} \leftrightarrow[\square B]_{K, T}$.
b) Suppose $[[\square B]]_{K}$ is finite. Let j_{0}, \ldots, j_{s} be the minimal elements such that $j_{k}{ }^{\prime}{ }_{K} \square B$ and $j_{k} \mid \neq B$. Note that for each i with $i \not \equiv \square B$ there is a j_{k} such that $i<j_{k}$.
Clearly by Induction Hypothesis and the fact that $P A \subseteq T$ it is sufficient to prove:

$$
\vdash_{P A} \square_{T}[B]_{K, T} \leftrightarrow\left[\square_{ن}\right]_{K, T}
$$

Argue in PA:
" \rightarrow " first:
Suppose $\square_{T}[B]{ }_{K, T}$. We have: $\square_{T}\left(\ell \neq j_{k}\right)$ by the definition of [$B]_{K,-}$ and the fact that $j_{k} \mid \not{ }_{K} B$. Suppose $\operatorname{Proof}_{T}\left(p+1,\left\ulcorner\ell \neq j_{k}^{\urcorner}\right)\right.$ and $h(p)=y$. In case $y<j_{k}$ we have $h(p+1)=j_{k}$, in case $y K j_{k}, h(p+1) K j_{k}$. Hence $\ell K j_{k}$. Conclude $M\left\{\ell K j_{k} \mid h=0, \ldots, s\right\}$, hence by elementary reasoning $W\left\{\ell=i \mid i F_{K} \square B\right\}$.

Secondly " $<$ ":
Suppose $\ell=i$ for an $i l=\square B$; by the definition of n and the fact that $i \neq 0: \square_{T} \ell \neq i$ ("How else could h move up to i?"). Moreover from $\exists x h x=i: \square_{T} \exists x h x=i$. Combining: $\square_{T} \ell>i$, or $\square_{T} W\{\ell=j \mid j>i\}$. Hence $\square_{T}(\ell \in[[B]]),\left(\right.$ for,$\left.j>i \Rightarrow j \vDash_{K} B\right)$.

From here on T and K are free again.

2.2.2 Didactical Corollary: Rosser's Theorem

Solovay's proof is a Rosserlike argument, to bring out why this is so, we prove Rosser's Theorem from 2.2.1. Let T be an RE extension of PA.

Consider the simplest countermodel to the disjunction property:
$(\square(p \vee q) \rightarrow(\square p \vee \square q)):$


```
                                    We have: [p] \equiv(l=1), [q] \equiv(l=2).
```

Moreover " $\ell=1 "$ and $" \ell=2 "$ are provably equivalent to Σ_{1}-sentences and they are the solutions of Rosserlike equations:

$$
\begin{aligned}
\vdash_{\mathrm{PA}} l & =1 \leftrightarrow \square_{\mathrm{T}} \quad l \neq 1<\square_{\mathrm{T}} \quad l \neq 2, \\
l & =2 \leftrightarrow \square_{\mathrm{T}} \quad l \neq 2<\square_{\mathrm{T}} \quad l \neq 1 .
\end{aligned}
$$

Here $<$ is defined as in part 1, 4.2.
Further by 2.2.1: $\ell=1$ is a Rosser sentence for T :

$$
\begin{aligned}
& \vdash_{P A}\left(\square_{T} \ell=1 \vee \square_{T} \neg l=1\right) \equiv \\
& <\square \mathrm{p} \vee \square \neg \mathrm{p}>_{\mathrm{K}, \mathrm{~T}} \quad \leftrightarrow \\
& {[\square p \vee \square \neg \rho]_{K, T} \quad \equiv} \\
& {[\square \perp]_{K, T} \quad \leftrightarrow} \\
& \langle\square \perp\rangle_{K, T} \quad \equiv \\
& \square{ }^{\perp}
\end{aligned}
$$

2.2.3 Definition
the least n such that there is a tail model K and on
$d(A):=\left\{m\right.$ with $d(m)=n$ and $m l_{K} A$ if there is one.
ω otherwise.

2.2.4 Corollery

There is an $f: P \rightarrow L$ such that $\vdash_{P A}<A \wedge \square A>f, T \leftrightarrow \square_{T}^{d(A)} \perp$.
Proof:in càse $d(A)=\omega$ we have $G \vdash A$, so any f will work. Suppose $d(A)=M . C l e a r l y$ there is a tail model K with tail element N such that $d(N)=M$ and $N \not F_{K} A$. Take $f\left(p_{i}\right):=\left[p_{i}\right]_{K, T}$. By the minimality of $d(A)$ for every $n>N: n \|_{K}(A \wedge \square A)$. Moreover for $n \leqslant N$ $n \not \equiv A \wedge \square A$ hence:

$$
\begin{array}{r}
\vdash_{P A}<A \wedge \square A>{ }^{f, T} \leftrightarrow \\
{[A \wedge \square A]_{K, T} \leftrightarrow} \\
{\left[\square^{d(A)} \perp\right]_{K, T} \leftrightarrow} \\
\square_{T}^{d(A)} \perp
\end{array}
$$

2.2.5 Example

In case the propositional formula A is not valid we can take the N of 2.2.4: 1.

```
\(1 \not \neq K A \quad\) The interpretations of the atoms come out \(T\)
                                or \(\perp\), we find:
                                \(\vdash_{P A}<A \wedge \square A>{ }^{f}, T \leftrightarrow\)
                                    \(\square_{T}^{0} \perp\)
                            \(\perp\)
```

0 。
2.2.6 Corollary of 2.2 .4

Suppose a is the least element of $\{0,1, \ldots, \omega\}$ such that $T \vdash \square_{\mathrm{T}}^{\mathrm{a}} \perp$. We have:
$\vdash_{G_{a}} A \Leftrightarrow$ for every $f: P \rightarrow L \vdash_{T}\langle A\rangle^{f, T}$.
Proof 6
$" \Rightarrow$ " routine.
$" \Leftarrow$ Suppose $G_{a} \nvdash A$. Then there is a tail model K and a tail element $N \neq 0$ such that $d(N)=d(A), N \nexists_{K} A$ and $\vdash_{P A}<A \wedge \square A>_{K . T} \leftrightarrow \square_{T}^{d(A)} \perp$.

Suppose $\left.\right|_{T}\langle A\rangle_{K, T}$, then $\left.\right|_{T}\langle A \wedge \square A\rangle_{K, T}$, hence $\left.\right|_{T} \square_{T}^{d(A)} \perp$. But d there are tail models K, and $\left.m\right|_{K}, \square^{a}, m \not{ }_{K}, A$. Clearly for such $m d(m)<a$. Hence $d(A)<a$. Contradiction.

2.2.7 Corollary

Suppose T is a true RE extension of PA. We have:
$\vdash_{G *} A \Leftrightarrow$ for all $f: P \rightarrow L \mathbb{N} I=\langle A\rangle^{f}, T$.
Proo 6
$" \Rightarrow$ " routine.
$" \Leftarrow "$ Suppose G' $\forall A$. Then there is a tail model K with $0 \not \#_{K} A$. By 2.2.1: $\mathbb{I N} \mid=\langle A\rangle_{K, T} \leftrightarrow[A]_{K, T}$. Moreover IN $l=\ell=0$. Hence IN $\mid=\neg\langle A\rangle_{K, T}$.
2.2.8 Remark

Inspecting the definition of $(\ell=i)$ we see that $\left[p_{i}\right]_{K, T}$ is a Boolean Combination of Σ_{1}^{0}-sentences:
$\ell=i: \equiv((\exists x h x=i) \wedge \forall x y((h x=i \wedge y>x) \rightarrow h y=i))$.
Hence we can sharpen 2.2.6, 2.2.7 by stating the Completeness Theorems for $f: L_{p r} \rightarrow \operatorname{Bool}\left(\Sigma_{1}^{0}\right.$-sent). When we want to restrict ourselves e.g. to $f: L_{p r} \rightarrow\left(\Sigma_{1}^{0}\right.$-sent) we get:
2.2.9 Corollary
$G_{a}^{m o n} \vdash A \Leftrightarrow$ for all $f: L_{p r} \rightarrow \Sigma_{1}^{0}$-sent $\vdash_{T}\langle A\rangle^{f, T}$,
where T is as in 2.2.6.
Proof: as the proof of 2.2 .6 ; remark that for monotonic K and finite [[p $\left.{ }_{j}\right]{ }_{K}$:
$\vdash_{\text {PA }} W\left\{l=i \mid i=_{K} p_{j}\right\} \quad \leftrightarrow$ $W\left\{(\exists \times h x=i) \mid i l_{K} P_{j}\right\}$

2.2.10 Remark

As was pointed out by Guaspari the interpretations used in 2.2 .6 do not even exhaust Bool(Σ_{1}^{0}-sent): there is a Π_{1}^{0}-sentence Ω such that for every RE extension T of PA (we need PAF"PA $\subseteq T$ ") and every tail model $k: H_{P A} \Omega \leftrightarrow[p]_{K, T}$.

Proo6: By 3.6 of part 1 of this thesis there is a Π_{1}^{0}-sentence Ω such that: $P A+\square_{P A} \perp+\Omega \leftrightarrow A \quad \forall_{P A} \perp$ for every Π_{1}^{0}-sentence A. By 2.2.1
PA $1-W \quad\left\{\ell=i \mid i \vDash_{K} \square \perp\right\} \leftrightarrow \square_{T} \perp$.
Hence $P A+\square_{P A} \perp \vdash[p]_{K, T} \leftrightarrow$

$$
\begin{aligned}
& W\left\{\ell=i \mid i=_{K}\left(\square_{\perp} \wedge p\right)\right\} \leftrightarrow \\
& W\left\{\exists \times h \times=i|i|_{K}(\square \perp \wedge p)\right\} .
\end{aligned}
$$

In other words $P A+\square_{P A} \perp \vdash[p]_{K, T} \leftrightarrow B$ for some \sum_{1}^{0}-sentences B.
Clearly $H_{P A} \Omega \leftrightarrow B$ for $P A+\square_{P A} \perp+\Omega \leftrightarrow \neg B H_{P A} \perp$.
Next we prove the Uniformination Theorem. This seems to have been proved first by Artyomov using a different method (see [Ar]).

2.2.11 Uniformization Theorem

Let T and a be as in 2.2.6. There are Σ_{2}^{0}-sentences $\Omega_{0}, \Omega_{1}, \Omega_{2} \ldots$ such that for $f: L_{p r} \rightarrow L$ with $f\left(p_{i}\right)=\Omega_{i}$ we have:
for every $A \in L_{p r}: \vdash_{G_{a}} A \Rightarrow \vdash_{T}\langle A\rangle{ }^{f}, T$.
Proof: Let $Y:=\left\{\langle A\rangle_{K, T} \mid K\right.$ is a tail model such that for some tail element $n \neq 0 n \mid \#_{K} A$ and $\left.d(A)=d(n)\right\}$.

Clearly Y is recursive and $T \not \forall Y$ (i.e. for every $C \in Y: T \nmid C$). Define for $B \in \Sigma_{2}^{0}(x)$:
$X_{B}:=\left\{C \in \Sigma_{2}^{0}(x) \mid\left(\forall x(B \leftrightarrow C) \wedge \square_{T} \forall x(B \leftrightarrow C)\right) 1_{T} Y\right\}$
Applying part 1 , thm. 3.6 we find an $\Omega(x)$ such that $X_{\Omega(x)}=\varnothing$.

Take $\Omega_{i}:=\Omega(i)$. Suppose $G_{a} \nvdash A\left(p_{0}, \ldots, P_{n}\right)$ and K is the appropriate counter model. We know $T \not \forall\langle A\rangle_{K, T}$ and we want $T \not \forall\langle A\rangle^{f, T}$, hence it is sufficient to show: $T+\left(\Omega_{0} \leftrightarrow\left[p_{0}\right]_{K, T} \wedge \square_{T}\left(\Omega_{0} \leftrightarrow\left[p_{0}\right]_{K, T}\right)\right)$
$+\ldots+\left(\Omega_{n} \leftrightarrow\left[p_{n}\right]_{K, T} \wedge \square_{T}\left(\Omega_{n} \leftrightarrow\left[p_{n}\right]_{K, T}\right)\right) \nmid\langle A\rangle_{K, T}$.
Take $D(x):=\left(\left(x=0 \wedge\left[p_{0}\right]_{K, T}\right) \vee \ldots v\right.$

$$
\left.\left(x=n \wedge\left[p_{n}\right]_{K, T}\right)\right)
$$

We have:
$\forall x(\Omega(x) \leftrightarrow D(x)) \wedge \square_{T} \forall x(\Omega(x) \leftrightarrow D(x)) \vdash_{T}$
$M(\Omega(i) \leftrightarrow D(i)) \wedge \square_{T} M(\Omega(i) \leftrightarrow D(i)) \vdash_{T}$
$M\left(\Omega(i) \leftrightarrow\left[p_{i}\right]_{K, T}\right) \wedge \square_{T} M\left(\Omega(i) \leftrightarrow\left[p_{i}\right]_{K, T}\right)$.
And:
$\forall x(\Omega(x) \leftrightarrow D(x)) \wedge \square_{T} \forall x(\Omega(x) \leftrightarrow D(x)) H_{T}\left\langle A_{K, T}\right\rangle$.
Hence:
$\left.M\left(\left(\Omega_{i} \leftrightarrow\left[p_{i}\right]_{K, T}\right) \wedge \square_{T}\left(\Omega_{i} \leftrightarrow\left[p_{i}\right]_{K, T}\right)\right) \not H_{T}<A\right\rangle_{K, T}$.
Conclude: $H_{T}<A>{ }^{f, T}$.

2.3 On the metaphysics of Solovay's Theorem

What does Solovay's Theorem tell us? Clearly the question is 'metaphysical', maybe even in the pejorative sense - that dreaded member of the unholy company of 'vague', 'meaningless' and their kin. Nevertheless it imposes itself.

A fist point is that Solovay's Theorem implies Gödel's Second Incompleteness Theorem without using any further information on PA. So Solovay's tells us anything Gödel's does. What then does Gödel's Theorem say? That is a controversial subject. Interpretations are strongly and often strangely dependent on philosophical points of
view (examples are [Du], [Sto], for the standard view see [Sm]). We will not pursue that matter here.

So what more does Solovay's Theorem tell us than Gödel's Second Incompleteness Theorem?

Let us split Solovay's Theorem in two: the Soundness and the Completeness half. Soundness is implicit in Löb's 1955 article([Lö]). We will read Soundness as closure of PA under the Löb Conditions and Löb's Rule (even if, strictly speaking, as stated it is a bit weaker). Soundness thus viewed is and is exactly the articulation of the propositional provability principles implicit on the one hand directly in the concept of formal provability, on the other hand via Löb's and De Jongh's theorems in the Arithmetical Fixed Point Theorem or Selfreference Lemma.

But what does Completeness, the fact that these are all principles mean? Is Completeness surprising? For Completeness we only need interpretations in Bool (Σ_{1}^{0}-sent), doesn't that suggest that we get Completeness just because classical modal propositional logic is too poor to register further provability principles? The case for e.g. modal predicate logic could be far more difficult, possibly using sentences of any complexity, possibly having no RE axiomatization. On the other hand this cannot be the whole truth. Undeniably, interpretations in $P A$ and $R E$ theories extending $P A$ constitute a more specific semantics than say Kripke models, e.g. we cannot get the logic of finite linear irreflexive Kripke models (because of the Rosser-like phenomena in Solovay's Theorem).

As we will see in the epilogue, the provability logic of $H A$
is quite different from that of $P A$ and more complex. Hence Completeness of G for interpretations in $P A$ is in a very essential way bound to classical logic. Inspection of Solovay's proof shows that one needs the fact that existence of limits of recursive functions weakly monotonic in a finite ordering or equivalently decidability of \sum_{1}^{0}-sentences is provable in the theory. This shows at least that Solovay's Theorem is about formal provability in the context of classical logic. It is of course also another sign of the fact that many closure properties of HA are provable in HA. One may however not conclude that Solovay's Theorem shows that the metamathematics of $P A$ is more difficult (in the sense that it needs stronger principles) than the metamathematics of $H A:$ for one thing e.g. the modal predicate logics of $H A$ and $P A$ could very well be equally complex, moreover we cannot even add (e.g. using the Selfreference Lemma as in part 4, theorem 5.2) propositional provability principles to PA. The propositional provability logic of the resulting theory always collapses into G or $G+\square^{k} \perp$ for some k.

The above remarks are very tentative, they just touch the problem raised, but one point emerges clearly: the relevance of future work on generalizations of propositional provability logic (e.g. to predicate logic, quantified propositional logic, intuitionistic logic), and on interpretations as semantics in general (e.g. the logic of the truth predicates of the complexity classes of sentences, the logic of Δ_{2}^{0}-models of PA etc.) to the proper appreciation of Solovay's result.

Let us close with the remark that from a certain point of view

Solovay's theorem is surprising. Formal provability is a syntactical, man-made concept, not prima facie a bona fide modality at all. Modal Logic, even if conceived in sin, may have been redeemed by Gödliness, it is also true that the completeness theorem for interpretations is formal provability's Sole Way to salvation from Syntactical Earth into Modal Heaven.

REFERENCES

[Ar]	ARTYOMOV S.N., Arithmetically complete modal theories, (Russian), Semiotics and Information Sciences, no.14, (Russian), pp 115-133, Akad Nauk SSSR, Vsesojuz. Inst. Naucn. i Tehn. Informackk, Moscow.
[Bo]	BOOLOS G., The unprovability of consistency, Cambridge University Press, Cambridge, 1979.
[Du]	DUMMETT M.A.E., The Philosophical Significance of Gödel's Theorem, Ratio, vol. v. (1963), 140-155. Reprinted in: Truth and Other Enigmas, Duckworth, London, 1978, 186-201.
[Mo 1]	MONTAGNA F., On the diagonalizable algebra of Peano Arithmetic, Bolletino U.M.I. (5) 16-B (1979), 795-812.
[Mo 2]	Interpretations of the First-order Theory of $\overline{\text { Diagonalizable Algebras in Peano Arithmetic, Studia Logica }}$ XXXIX. 4. 1980, 347-354.
[Mo 3]	, The Undecidability of thie First-order Theory of Diagonalizable Algebras, Studia Logica XXXIX, 4, 1980, 355-359.
[Sm]	SMORYŃSKI C., The incompleteness theorems, in: Handbook of Mathematical Logic, ed. J. Barwise, North Holland, Amsterdam, 1977.
[So]	SOLOVAY R.M, Provability interpretations of modal logic, Israel Journal of Mathematics 25, (1976), pp 287-304.
[So Be]	SORBI A. \& BERNARDI C., classifying positive equivalence relations, Rapporto matematico n.13, 1980, preprint, Instituto di matematica dell' Università di Siena.
[Sto]	STOLTENBERG G., can an inquiry into the foundations of mathematics tell us anything interesting about mind? Unpublished manuscript.

PART 1

NUMERATIONS, λ-CALCULUS \& ARITHMETIC

Albert Visser
Mathematical Institute, Budapestlaan 6 3508 TA Utrecht, The Netherlands.

Dedicated to H.B. Curry on the occasion of his 80th Birthday

Abstract

Applications of complete and precomplete numerations (as introduced by Erצov) to term models of λ-calculus, structures associated with partial recursive functions and Peano arithmetic. Some results: a version of Gödel's First Incompleteness Theorem for λ-calculus (a consequence is that any countable p.o. can be embedded in the p.o. of RE λ-theories); a topological explanation of the Range Theorem of λ-calculus; representability of the partial recursive functions in any RE λ-theory and in any RE extension of PA.

\section*{§O INTRODUCTION}

In this paper I use some of ErSov's concepts to prove results about structures such as term models of λ-calculus. These results and their proofs are "coördinate free" i.e. they use (nearly) no specific properties of e.g. λ-calculus. As a consequence theorems from arithmetic carry over to λ-calculus and vice versa. For example there is a version of the Gödel-Rosser-Mostowski-Myhil1-Kripke Theorem for RE λ-theories. §1 introduces the relevant concepts from the theory of numerations. §2 is a small study of "intensional" phenomena in precomplete numerations by means of topological considerations.

E.g. I bring out the topological content of the well known Range Theorem of λ-calculus. §3 contains some consequences of the Fixed Point Theorem for precomplete numerations. $\S 4$ gives a construction which one could call: 'How to Kleene a Curry', i.e. a construction to form a complete numeration from a precomplete numeration by identifying certain elements.

To read the paper a general background in recursion theory and λ-calculus (e.g. Rogers (1967) and Barendregt (1978)) should be sufficient. I took some care not to presuppose knowledge of ErSov (1973) and ErSov (1975). Actually, I think the present paper could be considered as an introduction to the idea of precomplete and complete numerations.
§1 INTRODUCTION TO SOME FUNDAMENTAL CONCEPTS
1.1 DEFINITION. A numeration γ is a pair (ν, S), where ν is a surjective function from \mathbb{N} to S.

If $\gamma_{1}=\left(\nu_{1}, S_{1}\right)$ and $\gamma_{2}=\left(\nu_{2}, S_{2}\right)$ are numerations then μ is a morphism from γ_{1} to γ_{2} if μ is a function from S_{1} to S_{2} and if there is a recursive ψ s.t.

Numerations with their morphisms form the category of numerations.
1.2 DEFINITION. If $\gamma=(\nu, S)$ is a numeration then we will say $\mathrm{m} \sim_{\gamma} \mathrm{n}$ for $\nu(\mathrm{m})=\nu(\mathrm{n})$.
1.3 DEFINITION. We will call a numeration positive if $\mathcal{\sim}_{\gamma}$ is an

RE relation.
1.4 DEFINITION. A numeration $\gamma=(\nu, S)$ is called precomplete if for every partial recursive φ there is a total recursive ψ s.t. for every $n \in \operatorname{Dom} \varphi \varphi(n) \sim_{\gamma} \psi(n)$. We shall say that ψ makes φ total modulo γ.
1.5 DEFINITION. A numeration $\gamma=(\nu, S)$ is complete if there is an $a \in S$ s.t. for every partial recursive φ there is a total recursive ψ s.t. for every $n \in \operatorname{Dom} \varphi \varphi(n) \sim_{\gamma} \psi(n)$ and for every $\mathrm{n} \notin \operatorname{Dom} \varphi \quad \nu(\psi(\mathrm{n}))=\mathrm{a}$.
We will call "a" a special element of γ.
1.6 EXAMPLES OF NUMERATIONS
1.6.1 TERM MODELS OF $\lambda \beta$-CALCULUS. Let Λ be the set of closed λ terms. A λ-theory T is a consistent set of identities between elements of Λ closed under the rules of $\lambda \beta$-calculus. Suppose \urcorner is an elementary bijective coding of Λ in \mathbb{N} ("elementary" means: easy to give, primitive recursive etc.). Let for $M \in \Lambda: \llbracket M \rrbracket_{T}:=\{N \in \Lambda \mid(M=N) \in T\}$ and take $\mathbb{M}_{T}:=\left\{\llbracket M \rrbracket_{T} \mid M \in \Lambda\right\}$. Define: $\left.\lambda_{T}(\mid \mathcal{M}\rceil\right):=\llbracket M \rrbracket_{T}$. Now the term model M_{T} of T is the numeration $\left(\lambda_{T}, M_{T}\right)$.
1.6.1.1 THEOREM. M_{T} is precomplete.

Proof. Let φ be partially recursive. There is a representation F of φ in $\lambda \beta$-calculus. Let $E \in \Lambda$ be the universal constructor i.e. the λ-term s.t. $\lambda \beta \vdash E \Gamma M=M$, for all $M \in \Lambda$. Take $\psi(n):=\lceil E(F \underline{n})\rceil$, then it is easy to see that ψ makes φ total modulo M_{T}.
1.6.2 THE RECURSIVE NATURAL NUMBERS. The recursive natural numbers are the $0-p l a c e$ partial recursive functions. Define:

$$
\{n\}^{0}: \cong\{n\} \quad<>(\equiv\{n\} 0)
$$

Let

$$
\mathbb{N}^{*}:=\mathbb{N} \cup\{\uparrow\}
$$

Further take

$$
\begin{aligned}
& r \text { take } \\
& *(n):= \begin{cases}\{n\}^{0} & \text { if }\{n\}^{0} \downarrow \\
\uparrow & \text { e1se. }\end{cases}
\end{aligned}
$$

The numeration N^{*} of recursive natural numbers is ($*, \mathbb{N}^{*}$).
1.6.2.1 THEOREM. N^{*} is complete.

Proof. Let φ be partially recursive. Suppose φ has index p. Take an index p^{\prime} s.t. $\left\{p^{\prime}\right\}_{n} \cong\left\{\{p\}_{n}\right\}^{0}$ for all n. Construct a primitive recursive S_{0}^{1} with $\left\{\mathrm{S}_{0}^{1}(\mathrm{~m}, \mathrm{n})\right\}^{0} \cong\{\mathrm{~m}\}_{\mathrm{n}}$. Take $\psi(n) \cong s_{0}^{1}\left(p^{\prime}, n\right)$. It is easy to see that ψ makes φ total modulo N^{*}. Moreover if $\varphi(\mathrm{n}) \uparrow$ we have $*(\psi(\mathrm{n}))=\uparrow$. It is possible to prove that \uparrow is the unique special element of N^{*}.
1.6.2.2 REMARK. Define term models of λI-calculus in the obvious way. Call them M_{T}^{I}. Take T_{0} the closure under the rules of λI of $\left\{M=N \mid M, N\right.$ have no λI normal form\}. Then T_{0} is consistent and $M_{T_{0}}^{\mathrm{I}}$ is isomorphic (in the sense of the category of numerations) with N^{*}. No term model of $\lambda \beta$-calculus is isomorphic with N^{*}.
1.6.3 THE PARTIAL RECURSIVE FUNCTIONS. Let \mathbb{P} be the set of partial recursive functions. Let $K(e):=(\lambda x \in \mathbb{N} .\{e\} x)$. Then $P:=(K, \mathbb{P})$ is complete with as unique special element the nowhere defined function. (λ is an informal λ.)
1.6.4 THE RE SETS. Let \mathbb{R} be the set of $R E$ sets. Let $\Pi(e):=W_{e}$ (W_{e} is the domain of the partial recursive function with index e). Then $R:=(\Pi, \mathbb{R})$ is complete with as unique special element the empty set.
1.6.5 THE 'INTENSIONAL' PARTIAL RECURSIVE FUNCTIONS. Let T be a theory, $T \supseteq$ PA. (The language of T may extend the language of PA). Define: $\llbracket e \rrbracket^{T}:=\{f \in \mathbb{N} \mid T \vdash \forall x(\{\underline{e}\} x \cong\{\underline{f}\} x)\}$.
Take $K^{T}(e):=\llbracket e \rrbracket^{T}$ and $\mathbb{P}^{T}:=\left\{\llbracket e \rrbracket^{T} \mid e \in \mathbb{N}\right\}$.
Then $P^{T}=\left(K^{T}, \mathbb{P}^{T}\right)$ is the numeration of the partial recursive functions intensional in T.

1.6.5.1 THEOREM. P^{T} is precomplete.

Proof (sketch). Let φ be partially recursive. Suppose p is an index of φ. Define: $\psi(n):=\Lambda k .\{\{p\} n\} k$, where $(\Lambda k .\{\{p\} n\} k)$ is an index q s.t. $\operatorname{PA} \vdash \forall x\{\underline{q}\} x \cong\{\{\underline{p}\} \underline{n}\} x$.
($\Lambda \mathrm{k} .\{\{\mathrm{p}\} \mathrm{n}\} \mathrm{k}$) can be found in a primitive recursive way from p and n. Then ψ makes φ total modulo p^{T}.

1.6.6 THE Σ_{n}^{0}-FORIIULAE WITH FIXED FREE VARIABLES OF A THEORY EXTENDING PA.

Let T be a consistent theory $T \supseteq$ PA. Let $\Sigma_{n}^{0}\left(x_{0}, \ldots, x_{k-1}\right)$ be the class of Σ_{n}^{0} formulae (not necessarily in prenex normal form) of the language of PA with free variables among x_{0}, \ldots, x_{k-1}. We shall abbreviate $\left(x_{0}, \ldots, x_{k-1}\right)$ to \vec{x}. Take $\Gamma \neg$ to be an elementary bijective coding of $\Sigma_{n}^{0}(\vec{x})$. Define for $A(\vec{x}) \in \Sigma_{n}^{0}(\vec{x})$:

$$
\llbracket A(\vec{x}) \rrbracket_{n, \vec{x}}^{T}:=\left\{B(\vec{x}) \in \Sigma_{n}^{0}(\vec{x}) \mid T \vdash \forall \vec{x}(A(\vec{x}) \longleftrightarrow B(\vec{x}))\right\}
$$

and

$$
\left.\operatorname{sig}_{\mathrm{n}, \overrightarrow{\mathrm{x}}}^{\mathrm{T}}(\Gamma \mathrm{~A}(\overrightarrow{\mathrm{x}})\rceil\right):=\llbracket \mathrm{A}(\overrightarrow{\mathrm{x}}) \rrbracket_{\mathrm{n}, \overrightarrow{\mathrm{x}}}^{\mathrm{T}}
$$

Put:

$$
\operatorname{Sig}_{n, \vec{x}}^{T}:=\left\{\llbracket A(\vec{x}) \rrbracket_{n, \vec{x}}^{T} \mid A(\vec{x}) \in \Sigma_{n}^{0}(\vec{x})\right\}
$$

Then

$$
\operatorname{Sig}_{\mathrm{n}, \mathrm{x}}^{\mathrm{T}}:=\left(\operatorname{sig}_{\mathrm{n}, \mathrm{x}}^{\mathrm{T}}, \operatorname{Sig}_{\mathrm{n}, \overrightarrow{\mathrm{x}}}^{\mathrm{T}}\right)
$$

is the numeration of $\Sigma_{n}^{0}(\vec{x})$ formulae of T.
1.6.6.1 THEOREM. $S_{n, \vec{x}}^{T}$ is precomplete.

Proof. Consider φ partially recursive. Let p be an index of φ.

It is well known that there exists a $\Sigma_{n}^{0}(y, \vec{x})$ predicate $T_{n}(y, \vec{x})$ s.t. for all $A(\vec{x}) \in \Sigma_{n}^{0}(\vec{x}):$ PA $\left.\vdash \overrightarrow{x_{x}}\left(A\left(\vec{x}^{n}\right) \leftrightarrow T_{n}\left(\Gamma_{A}(\vec{x})\right\rceil, \vec{x}\right)\right)$. Now take:

$$
\psi(m): \cong\left(\left\lceil\exists y\{\underline{p}\} \underline{m} \cong y \& T_{n}(y, \vec{x})\right\rceil\right)
$$

If $\left.\varphi(\mathrm{m}) \cong \Gamma_{\mathrm{A}}(\overrightarrow{\mathrm{x}})\right\rceil$ we have:

$$
\left.T \vdash \forall \vec{x}\left(\exists y\{\underline{p}\} \underline{m} \cong y \& T_{n}(y, \vec{x}) \leftrightarrow T_{n}\left(\Gamma_{A}(\vec{x})\right\rceil, \vec{x}\right) \leftrightarrow A(\vec{x})\right)
$$

So ψ makes φ total modulo $\operatorname{Sig}_{\mathrm{n}, \mathrm{x}}^{\mathrm{T}}$.
1.7 REMARK. Definition 1.1-1.5 are from Eršov (1973).

The expression "making φ total modulo γ " is new. That $M_{\lambda \beta}$ is precomplete was pointed out to me by Henk Barendregt.
§2 A LITTLE EXCURSION INTO TOPOLOGY
2.1 DEFINITION OF O_{γ}. Let $\gamma=(\nu, S)$ be a numeration. Let $B_{\gamma}:=\left\{S_{0} \subseteq s \mid \nu^{-1}\left(S_{0}\right)\right.$ in $\left.\Pi_{1}^{0}\right\}$. Clearly B_{γ} is a basis for a topology. Call this topology O_{γ}.
2.2 THEOREM. Morphisms are continuous.

Proof. Trivial.
2.3 REMARK. As far as I know this topology doesn't occur in the literature. In Eršov (1975), ErŠov uses a topology based on Σ_{1}^{0} instead of Π_{1}^{0} sets. But doing this one loses Thm. 2.5.
2.4 ILLUSTRATIVE EXAMPLE. The topology O_{γ} is meant to capture something of the idea of nearness w.r.t. information content. The following example purports to illustrate this. Let $\left(T_{i}\right){ }_{i} \in \mathbb{N}$ be a sequence of consistent RE theories containing PA s.t. $T_{i+1} \subseteq T_{i}$ and $\cap_{i \in \mathbb{N}} T_{i}=$ PA. Suppose $\left(A_{i}\right){ }_{i \in \mathbb{N}}$ is a sequence of Σ_{1}^{0}-sentences s.t. $\mathrm{T}_{\mathrm{i}} \vdash \mathrm{A}_{\mathrm{i}}$. Consider $\mathrm{Sig}_{1,<>}^{\mathrm{PA}}$ with topology $0_{\operatorname{Sig}_{1,<>} \mathrm{PA}}$, then $\mathbb{0} \underline{0}=\underline{0} \rrbracket_{1,<\gg}^{\mathrm{PA}}$ is the unique limit of $\left(\llbracket A_{i} \rrbracket_{1,<\gg}^{P A}\right)_{i \in \mathbb{N}}$.
2.4.1 REMARK. There is a sequence $\left(T_{i}\right){ }_{i \in \mathbb{N}}$ of RE theories containing PA s.t. $T_{i+1} \subsetneq T_{i}$ and $\cap_{i \in \mathbb{N}} T_{i}=$ PA.

Proof of remark. It can be shown that for any RE theories U, V with $U \supsetneqq V \supseteq$ PA there is a sentence A s.t. V $\subseteq(V+A) \varsubsetneqq U$ (see §3 of this paper).
Let T be RE, $T \nexists$ PA. Let B_{0}, B_{1}, \ldots enumerate the sentences of L_{T}. Define: $T_{0}:=T ; B_{i_{k}}$ is the first sentence s.t.

$$
P A \subsetneq\left(P A+B_{i_{k}}\right) \subsetneq T_{k} ; T_{k+1}:=P A+B_{i_{k}}
$$

It is easy to see that the construction works and satisfies the desiderata.

Proof of 2.4. First we show that $\mathbb{K} \underline{0}=\underline{0} \rrbracket_{1,<>}^{\mathrm{PA}}$ is 'a 1 imit. Suppose it is not. Then there is an RE set U closed under $\sim_{S i g}{ }_{1,<>}^{\mathrm{PA}}$ s.t. for infinitely many $\left.\mathrm{i}, \Gamma_{\mathrm{A}}\right\urcorner_{\mathrm{i}} \in \mathrm{U}$ and $\Gamma_{\underline{0}}=\underline{0} \notin \mathrm{U}$. Let $\mathrm{B}(\mathrm{x})$ be a $\Sigma_{1}^{0}(\mathrm{x})$-formula which represents U in PA. Let $C: \equiv\left(\exists \mathrm{x} B(\mathrm{x}) \wedge \mathrm{T}_{1}(\mathrm{x})\right)$. Then $: \forall \mathrm{i} \in \mathbb{N} \mathrm{T}_{\mathrm{i}} \vdash \mathrm{C}$, but clearly PA $\forall C$ (because PA satisfies the existence property for $\Sigma_{1}^{0}{ }^{-}$ sentences). Contradiction.
For unicity: assume $\llbracket A \|_{1,<>}^{P A}$ is also a limit and $\llbracket \mathrm{A} \rrbracket_{1,\langle>}^{\mathrm{PA}} \neq \mathbb{\mathbb { 0 }}=\underline{0} \mathbb{\rrbracket}_{1,\langle>}^{\mathrm{PA}}$. Then there is an N s.t. $\mathrm{T}_{\mathrm{N}} H_{\mathrm{A}}$. But $\mathrm{O}_{\mathrm{A}}:=\left\{\llbracket \mathrm{A}^{\prime} \rrbracket_{1,<>}^{\mathrm{PA}} \mid \mathrm{T}_{\mathrm{N}} \not H^{\prime}\right\}$ is open and $\llbracket \mathrm{A} \mathbb{1}_{1,<>}^{\mathrm{PA}} \in \in^{N} \mathrm{O}_{\mathrm{A}}$. But : $\forall i \geqslant N \llbracket A_{i} \rrbracket_{1,<>}^{P A} \notin O_{A}$ contradiction.
2.5 THEOREM. If γ is precomplete then O_{γ} is hyperconnected i.e. every two non-empty open sets intersect.

Proof. Clearly it is sufficient to prove the theorem for elements of B_{γ}. So going over to complements, we have to show: for any RE sets U, V closed under \sim_{γ}, if $U U V=\mathbb{N}$ then $U=\mathbb{N}$ or $V=\mathbb{N}$. Suppose $U, V R E$, closed under \sim_{γ} and $U U V=\mathbb{N}$. We are done if $U \subseteq V$ or $V \subseteq U$. So assume $n_{U} \in U V$ and $n_{V} \in V \backslash U$, in
order to derive a contradiction. Let $\Sigma^{+}, \Sigma^{-} \subseteq \mathbb{N}$ be two RE, recursively inseparable sets. Define the partial recursive function φ as follows:

$$
\varphi(n): \cong \begin{cases}n_{U} & \text { if } n \in \Sigma^{+} \\ n_{V} & \text { if } n \in \Sigma^{-} \\ \uparrow & \text { else }\end{cases}
$$

Let ψ make φ total modulo γ. Consider:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{U}}:=\{\mathrm{m} \mid \psi(\mathrm{m}) \in \mathrm{U}\} \\
& \mathrm{W}_{\mathrm{V}}:=\{\mathrm{m} \mid \psi(\mathrm{m}) \in \mathrm{V}\}
\end{aligned}
$$

Then we have:

1. $W_{U} \cup W_{V}=\mathbb{N}$, since ψ is total and $U \cup V=\mathbb{N}$.
2. W_{U}, W_{V} are RE.
3. $\Sigma^{-} \cap \mathrm{W}_{\mathrm{U}}=\Sigma^{+} \cap \mathrm{W}_{\mathrm{V}}=\varnothing$.

By familiar arguments we can construct a recursive set which separates Σ^{+}and Σ^{-}, contradiction.
2.6 COROLLARY. Let γ be precomplete. Let $\mathrm{S}_{0} \subseteq \mathrm{~S}$ be discrete in 0_{γ}. (S_{0} is discrete if the induced topology on S_{0} is discrete). Let μ be continuous from $S \rightarrow S$ and $\mu(S) \subseteq S_{0}$. Then μ is constant on S .

Proof. This is an elementary topological fact.
2.7 DEFINITION. Let $\gamma=(\nu, S) . S_{0} \subseteq \mathrm{~S}$ is RE without repetitions if (i) S_{0} is finite and for every $\mathrm{s}_{0} \in \mathrm{~s}_{0}\left\{\mathrm{n} \mid \nu(\mathrm{n})=\mathrm{s}_{0}\right\}$ is RE.
or
(ii) There is a total recursive ψ s.t. $v o \psi$ is injective, $\cup 0 \psi(\mathbb{N})=S_{0}$ and $m \sim_{\gamma} \psi(n)$ is an RE relation in m and n.
2.8 FACT. Let $\gamma=(S, \nu)$. If $S_{0} \subseteq S$ is RE without repetitions then S_{0} is discrete.

Proof. Trivial.
2.9 FACT. Consider M_{T}. Define: $\mu_{M}: M_{T} \rightarrow M_{T}$ as $\mu_{M}(\llbracket N \rrbracket)_{T}=\llbracket M N \rrbracket_{T}$. Then μ_{M} is a morphism.

Proof. Trivial.
2.10 APPLICATIONS. Consider $M_{\lambda \beta}$. One easily sees that
(i) All finite $S_{0} \subseteq \mathbb{M}_{\lambda \beta}$ are $R E$ without repetitions.
(ii) $\mathbb{N} \mathbb{F}=\left\{\llbracket M \rrbracket_{\lambda \beta} M\right.$ is in normal form $\}$ is $R E$ without repetitions.

Remember that morphisms are continuous; combining 2.6, 2.8, 2.9, we find:
(i^{\prime}) If there is an N_{1}, \ldots, N_{k} s.t. for any $P \in \Lambda, M P=\lambda \beta N_{i}$ for some $1 \leqslant i \leqslant k$ then there is an N s.t. for all $P: M P=\lambda \beta^{N}$.
(i^{\prime}) Suppose for any P, MP has a normal form, then there is a normal form N s.t. for all $P: M P=\lambda \beta^{N}$. Of course (i^{\prime}) is the range theorem of λ-calculus.

2.11 DEFINITION.

(i) C, the set of contexts in the language $L_{P A}+\square+\mathrm{p}$, is the smallest set s.t.
(a) $A \in L_{P A} \Rightarrow A \in C$ (We allow that A contains free variables)
(b) $\mathrm{p} \in C$
(c) $\mathrm{A}, \mathrm{B} \in \mathrm{C} \Rightarrow \mathrm{A} \wedge \mathrm{B}, \mathrm{A} \vee \mathrm{B}, \mathrm{A} \rightarrow \mathrm{B}, \neg \mathrm{A} \in \mathrm{C}$
(d) For any $\mathbf{x}_{\mathbf{i}} \in \operatorname{Var}: \mathrm{A} \in \mathcal{C} \Rightarrow \forall \mathbf{x}_{\mathbf{i}} A, \exists \mathrm{x}_{\mathbf{i}} A \in \mathcal{C}$
(e) $\mathrm{A} \in \mathcal{C} \Rightarrow \square \mathrm{A} \in \mathcal{C}$.
(ii) We define Sub : $L_{P A} X C \rightarrow L_{P A}$ by:
(a) $A \in L_{P A} \Rightarrow \operatorname{Sub}(D, A)=A$
(b) $\quad \operatorname{Sub}(D, p)=D$
(c) $\operatorname{Sub}(D, A \Delta B)=\operatorname{Sub}(D, A) \Delta \operatorname{Sub}(D, B)$, where $\Delta \in\{\wedge, \vee, \rightarrow\} ; \quad \operatorname{Sub}(D, \neg A)=\neg \operatorname{Sub}(D, A)$.
(d) $\quad \operatorname{Sub}\left(D, Q x_{i} A\right)=Q x_{i} \operatorname{Sub}(D, A) \cdot Q \in\{\forall, \exists\}$. We allow that x_{i} is among the free variables of D.
(e) $\quad \operatorname{Sub}(D, \square \mathrm{~A}(\overrightarrow{\mathrm{x}}))=\operatorname{prov}(\Gamma \operatorname{Sub}(\mathrm{D}, \mathrm{A}(\overrightarrow{\mathrm{x}}))\rceil$, $\overrightarrow{\mathrm{x}})$, where \vec{x} contains all free variables of A in order of first occurrence.
We will write for $C \in C: C[p]$ and for $\operatorname{Sub}(D, C): C[D]$.
2. 12 LEMMA. $\mathrm{PA} \vdash \mathrm{A} \leftrightarrow \mathrm{B} \Rightarrow \mathrm{PA} \vdash \mathrm{C}[\mathrm{A}] \leftrightarrow \mathrm{C}[\mathrm{B}]$.

$$
\begin{aligned}
& \text { Proof. Use: } \quad \operatorname{PA} \vdash \overrightarrow{\mathrm{x}}(\mathrm{~A}(\overrightarrow{\mathrm{x}}) \leftrightarrow \mathrm{B}(\overrightarrow{\mathrm{x}})) \Rightarrow \\
& \left.\left.\operatorname{PA} \vdash \overrightarrow{\mathrm{x}}(\operatorname{Prov}(\Gamma \mathrm{~A}(\overrightarrow{\mathrm{x}})\rceil, \overrightarrow{\mathrm{x}}) \leftrightarrow \operatorname{Prov}\left(\Gamma_{\mathrm{B}}(\overrightarrow{\mathrm{x}})\right\rceil, \overrightarrow{\mathrm{x}}\right)\right) .
\end{aligned}
$$

2.13 APPLICATIONS.
2.13.1 Let $C[p], D[p] \in C$. Suppose that for all $A \in \Sigma_{1}^{0} P A \vdash C[A]$ or $\mathrm{PA} \vdash \mathrm{D}[\mathrm{A}]$. Then

$$
\begin{aligned}
& \text { for all } A \in \Sigma_{1}^{0}, \mathrm{PA} \vdash \mathrm{C}[\mathrm{~A}], \\
& \text { for all } \mathrm{A} \in \Sigma_{1}^{0}, \mathrm{PA} \vdash \mathrm{D}[\mathrm{~A}] . \\
& \text { Proof. } \Gamma:=\left\{\mathrm{A} \in \Sigma_{1}^{0} \mid \mathrm{PA} \vdash \mathrm{C}[\mathrm{~A}]\right\}, \\
& \Delta:=\left\{\mathrm{A} \in \Sigma_{1}^{0} \mid \mathrm{PA} \vdash \mathrm{D}[\mathrm{~A}]\right\} .
\end{aligned}
$$

Well $\Gamma \cup \Delta=\Sigma_{1}^{0} ; \Gamma, \Delta \mathrm{RE} ; \Gamma, \Delta$ closed under provable equivalence. Apply hyperconnectedness.
2.13.2 Suppose $\square C[p], \square D[p] \in \mathcal{C}$, where C and D contain no free variables. Then
for all $\mathrm{A} \in \Sigma_{1}^{0}$ PA $\vdash(\square \mathrm{C}[\mathrm{A}] \vee \square \mathrm{D}[\mathrm{A}])$
implies
for all $\mathrm{A} \in \Sigma_{1}^{0} \mathrm{PA} \vdash \square \mathrm{C}[\mathrm{A}]$
or
for all $\mathrm{A} \in \Sigma_{1}^{0} \mathrm{PA} \vdash \square \mathrm{D}[\mathrm{A}]$.
Proof. Because:

$$
\begin{array}{ll}
\mathrm{PA} \vdash \square \mathrm{C}[\mathrm{~A}] & \vee \square \mathrm{D}[\mathrm{~A}] \\
\mathbb{N} \vdash \\
\square \mathrm{C}[\mathrm{~A}] & \vee \\
\square \mathrm{D}[\mathrm{~A}] & \Rightarrow
\end{array}
$$

$\mathbb{N} \vdash \square C[A]$ or $\mathbb{N} \vdash \square D[A] \Rightarrow$
$P A \vdash \square C[A]$ or $P A \vdash \square D[A]$.
(The last step is because $\square \mathrm{C}[\mathrm{A}], \square \mathrm{D}[\mathrm{A}]$ are Σ_{1}^{0}). Now apply 2.13.1.
2.13.3 Let $C(x)[p] \in C$. Suppose that for every $A \in \Sigma_{1}^{0}$, there is precisely one n s.t. $\mathrm{PA} \vdash \mathrm{C}(\underline{\mathrm{n}})[\mathrm{A}]$ then there is precisely one n_{0} s.t. for all $\mathrm{A} \in \Sigma_{1}^{0} \mathrm{PA} \vdash \mathrm{C}\left(\underline{\mathrm{n}_{0}}\right)[\mathrm{A}]$.

Proof. $\varphi(\Gamma \mathrm{A}]):=($ the unique n s.t. $\mathrm{PA} \vdash \mathrm{C}(\underline{\mathrm{n}})[\mathrm{A}])$ induces a morphism from $\operatorname{Sig}_{1,<>}^{\text {PA }}$ to $N=\stackrel{\mathbb{N}}{\downarrow} \underset{\mathbb{N}}{\downarrow}$ id ; and O_{N} is discrete.
2.13.4 REMARK. For a different proof of 2.13 .2 see Boolos (1979) page 106.

§3 THE FIXED POINT THEOREM

3.1 REMARK. Let γ be precomplete. By definition there is for every partial recursive φ a total recursive ψ which makes φ total modulo γ. We can even show that there is a total recursive $X: \mathbb{N}^{2} \rightarrow \mathbb{N}$ s.t. for every index $e \lambda n X(e, n)$ makes $\lambda_{n}\{e\}_{n}$ total modulo γ. For consider $\rho(z):=\left\{z_{0}\right\}_{z_{1}}$. Let ρ^{*} make ρ total and take $\chi(x, y):=\rho^{*}(\langle x, y\rangle)$. We shall write $\{x\}^{\gamma} y$ for $X(x, y)$.
3.2 FIXED POINT THEOREM (ErKov). Let γ be precomplete, then for every partial recursive φ we can find an n (effectively from an index of φ) s.t. $\varphi(\mathrm{n}) \downarrow \Rightarrow \varphi(\mathrm{n}) \sim_{\gamma} \mathrm{n}$.

Proof. (We certainly can afford the space).
Let p be an index of φ. Let q be an index of $\lambda \mathrm{x} .\{\mathrm{p}\}\left(\{\mathrm{x}\}^{\gamma} \mathrm{x}\right)$. Say $\{q\}^{\gamma} q \cong q^{*}$. Suppose $\{p\} q^{*} \downarrow$ then:

$$
\{p\}_{q^{*}} \cong\{p\}\left(\{q\}^{\gamma} q\right) \cong\{q\}_{q} \sim_{\gamma}\{q\}^{\gamma}{ }_{q} \cong q^{*} .
$$

Alternative Proof. Let ψ make $\lambda \mathrm{x}\{\mathrm{p}\}\left(\{\mathrm{x}\}_{\mathrm{x}}\right)$ total. Let r be an index of ψ. Let r^{*} be $\{r\} r$. Suppose $\{p\} r^{*} \downarrow$ then:

$$
\{\mathrm{p}\} \mathrm{r}^{*} \cong\{\mathrm{p}\}(\{\mathrm{r}\} \mathrm{r}) \sim_{\gamma}\{\mathrm{r}\} \mathrm{r} \cong \mathrm{r}^{*}
$$

3.3 DEFINITION. We say that a sequence $\left(U_{i}\right){ }_{i} \in \mathbb{N}$ of subsets of \mathbb{N} is recursive if there is an $R E$ relation $R(i, k)$ s.t. $k \in U_{i} \Leftrightarrow R(i, k)$. r is an index of the sequence if r is an index of R.
3.4 DEFINITION. Let $R(x, \vec{y})$ be an RE relation, then we can write R as $\exists z R_{0}(z, x, \vec{y})$, where R_{0} is recursive. Define:

$$
\varepsilon x R(x, \vec{y}): \cong\left(\mu u R_{0}\left(u_{0}, u_{1}, \vec{y}\right)\right)_{1}
$$

So $\varepsilon x \cdot R(x, \vec{y})$ gives an element of $\{x \mid R(x, \vec{y})\}$ is there is one. Note that ε depends on the choice of R_{0}.

3.5 INDEX AVOIDING THEOREM. Suppose γ is precomplete and

 $\left(V_{i}\right)_{i \in \mathbb{N}}$ is a recursive sequence s.t.(i) Each V_{i} is closed under \sim_{γ}
(ii) $\mathrm{i} \notin \mathrm{V}_{\mathrm{i}}$;
then we can find (effectively from an index of $\left.\left(\mathrm{V}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}\right)$ an i_{0} s.t. $\mathrm{V}_{\mathrm{i}_{0}}=\varnothing$.

Proof. Take i_{0} a fixed point of $\lambda i\left(\varepsilon n . n \in v_{i}\right)$.
3.6 THE GÖDEL-ROSSER-MOSTOWSKI-MYHILL-KRIPKE THEOREM. Consider Sig ${ }_{n, \vec{x}}^{P A}$. Let $\left(T_{i}\right)_{i \in \mathbb{N}}$ be a recursive sequence of theories s.t. $T_{i} \supseteq$ PA. Let $\left(U_{i}\right)_{i} \in \mathbb{N}$ be a recursive sequence of codes of formulae (say the coding is " ") s.t. $\mathrm{U}_{\mathrm{i}} \subseteq \mathrm{L}_{\mathrm{T}_{\mathrm{i}}}$ and $\mathrm{T}_{\mathrm{i}} \nvdash \mathrm{A}$ for all " A " $\in U_{i}$. (We could say that T_{i} leaves U_{i} out). Then there is a $\Sigma_{n}^{0}(\vec{x})$ formula A_{0} s.t.

$$
\forall A \in \Sigma_{n}^{0}(\vec{x}) \forall i \in \mathbb{N} \quad \forall^{\prime \prime} B^{\prime \prime} \in U_{i} T_{i}+\forall \vec{x}\left(A_{0} \leftrightarrow A\right) \nmid \text { B. }
$$

Proof. Apply the Index Avoiding Theorem. Remember $\ulcorner\neg$ is a
bijective coding of $\Sigma_{n}^{0}(\vec{x})$ formulae of $L_{P A}$ in the natural numbers. Take V_{i} of the theorem as follows:
$\mathrm{V}_{\Gamma \mathrm{A}\rceil}:=\{\Gamma \mathrm{C}\rceil \mid \mathrm{C} \in \Sigma_{\mathrm{n}}^{0}(\overrightarrow{\mathrm{x}})$ and $\left.\exists \mathrm{i} \in \mathbb{N} \exists{ }^{\prime \prime} \mathrm{B}^{\prime \prime} \in \mathrm{U}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}+\overrightarrow{\mathrm{x}}(\mathrm{A} \leftrightarrow \mathrm{C}) \vdash \mathrm{B}\right\}$.
3.7 COROLLARY. Let $T \supseteq$ PA be consistent, RE. Then there is an infinite recursive sequence of Σ_{1}^{0}-sentences B_{0}, B_{1}, \ldots s.t. for any sequence of Σ_{1}^{0}-sentences $C_{0}, C_{1}, \ldots, T+C_{0} \leftrightarrow B_{0}, C_{1} \leftrightarrow B_{1}, \ldots$ is consistent.

Proof. Apply 3.6 for $\operatorname{Sig}_{1, \mathrm{x}}^{\mathrm{PA}}$ and $\mathrm{T}_{\mathrm{i}}=\mathrm{T}$ and $\mathrm{U}_{\mathrm{i}}=\{\underline{\prime} \underline{0}=\underline{1} \underline{"}\}$. Let A_{0} be the formula given by the theorem.
Take $\mathrm{B}_{0}=\mathrm{A}_{0}(\underline{0}), \mathrm{B}_{1}=\mathrm{A}_{0}(\underline{1}), \ldots$. It is sufficient to prove that for any $n: T+C_{0} \leftrightarrow A_{0}(\underline{0})+\ldots C_{n} \leftrightarrow A_{0}(\underline{n})$ is consistent. Take $D(x) \equiv\left(x=\underline{0} \wedge C_{0}\right) \vee \ldots\left(x=\underline{n} \wedge C_{n}\right)$, then $T+\forall x\left(D(x) \leftrightarrow A_{0}(x)\right)$ is consistent. But $T+\forall x\left(D(x) \leftrightarrow A_{0}(x)\right) \vdash C_{0} \leftrightarrow A_{0}(\underline{0}), \ldots C_{n} \leftrightarrow A_{0}(\underline{n})$.
3.8 THEOREM. Consider $M_{\lambda \beta}$. Let $\left(T_{i}\right)_{i \in \mathbb{N}}$ be a recursive sequence of $\lambda \beta$-theories. Let $\left(U_{i}\right){ }_{i} \in \mathbb{N}$ be a recursive sequence of non empty sets of codes of identities of closed λ-terms (say coded by " ") s.t.

$$
\forall i \in \mathbb{N} \quad \forall^{\prime \prime} P=Q^{\prime \prime} \in U_{i} T_{i} \nvdash P=Q
$$

Then there is an $\Omega_{0} \in \Lambda$ s.t.

$$
\forall M \in \Lambda \forall i \in \mathbb{N} \quad \forall^{\prime \prime} P=Q^{\prime \prime} \in U_{i} \quad T_{i}+\Omega_{0}=M \not H P=Q .
$$

Proof. As in 3.6.
3.9 COROLLARY. Let T be an RE λ-theory. Then there are $\Omega_{1}, \Omega_{2}, \ldots$ s.t. for every $M_{1}, M_{2}, \ldots T+\Omega_{1}=M_{1}+\Omega_{2}=M_{2}+\ldots$ is consistent.

Proof. Apply 3.8. Take $\mathrm{T}_{\mathrm{i}}=\mathrm{T}, \mathrm{U}_{\mathrm{i}}=\{$ "K $=\mathrm{I} "\}$. Let Ω_{0} be given by the theorem. Take: $\Omega_{1}=\Omega_{0} \underline{0}, \Omega_{2}=\Omega_{0} \underline{1}, \ldots$. It is sufficient to show that for any $n T+\Omega_{0} \underline{0}=M_{0}, \ldots \Omega_{0} \underline{n}=M_{n}$ is consistent. Let φ be recursive s.t. $\left.\varphi(0)=\Gamma_{M}\right\urcorner, \ldots \varphi(n)={ }_{M}{ }_{n} 7$.

Let F represent φ in $\lambda \beta$. Then $\mathrm{T}+\Omega_{0}=\lambda \mathrm{xE}(\mathrm{Fx})$ is consistent. And $T+\Omega_{0}=\lambda \mathrm{xE}(\mathrm{Fx}) \vdash \Omega_{0} \underline{0}=\mathrm{E}(\underline{\mathrm{F}})=\mathrm{E} / \bar{M}_{\underline{0}} 7=\mathrm{M}_{0}, \ldots \Omega_{0} \underline{\mathrm{n}}=\mathrm{M}_{\mathrm{n}}$.
3.10 COROLLARY. Let $T_{\infty}=\left(\mathbf{T}_{\infty}, \underline{\subset}\right)$ be the partial ordering of $\lambda \beta$ theories or of theories in the language of PA, extending PA, then $\mathrm{P} \omega$ can be embedded in T_{∞} i.e. there is an $\mathrm{f}: \mathrm{P} \omega \rightarrow \mathbf{T}_{\infty}$ s.t.

$$
\forall x, y \in P \omega(x \subseteq y \Longleftrightarrow f(x) \subseteq f(y))
$$

Proof. Let $\mathrm{x} \subseteq \mathbb{N}$. In the case of $\lambda \beta$ take $\mathrm{f}(\mathrm{x})=\lambda \beta+\left\{\Omega_{0} \underline{\mathrm{n}}=\mathrm{KI} \mid \mathrm{n} \in \mathrm{x}\right\}$ where Ω_{0} is as in 3.9. In the case of PA take $f(x)=P A+\left\{A_{0}(\underline{n}) \mid n \in x\right\}$. Clearly in both cases $x \subseteq y \Rightarrow f(x) \subseteq f(y)$. By 3.9 and 3.7: $x \neq y \Rightarrow f(x) \neq f(y)$.
3.11 INTRODUCTION TO 3.12. We are going to prove 3.12 both for $R E \lambda \beta$-theories and for $R E$ theories in the language of PA, extending PA. To avoid unnecessary duplication we need a little .ictionary:

NOTATION	MEANING FOR PA	MEANING FOR $\lambda \beta$
A, B, C	$\Sigma_{1}^{0} \text {-sentences }$	Identities between closed λ-terms
$\Omega_{0}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$	$\Sigma_{1}^{0} \text {-sentences }$	closed λ-terms
\sim	\leftrightarrow	=
Tr	$\underline{0}=\underline{0}$	KI
Fa	$\underline{0}=\underline{1}$	I
$\mathrm{X} \vee \mathrm{A}$	$\mathrm{X} \vee \mathrm{A}$	$\mathrm{XM}=\mathrm{XN}$ where $\mathrm{A} \equiv(\mathrm{M}=\mathrm{N})$
$\mathrm{X} \wedge \mathrm{A}$	$\mathrm{X} \wedge \mathrm{A}$	$\begin{aligned} & X(K T r) M=X(K F a) N \text { where } \\ & A \equiv(M=N) \end{aligned}$
$\mathrm{X} \rightarrow \mathrm{A}$	$\mathrm{X} \rightarrow \mathrm{A}$	$\mathrm{X}(\mathrm{KTr}) \vee \mathrm{A}$
T	The set of RE theories, extending PA, in the language of PA	The set of RE $\lambda \beta$ theories

Of the special logical constants for $\lambda \beta$ we really need only Tr , Fa and v. We use the following fact:

```
3.11.1 FACT FOR \(\lambda B\)
    (i) \(\lambda \beta \vdash \operatorname{Tr} \vee \mathrm{A}\)
    (ii) \(\lambda \beta, F a \vee A \vdash A\)
    (iii) \(\lambda \beta, \mathrm{A} \vdash \mathrm{X} \vee \mathrm{A}\)
    (iv) \(\lambda \beta, \mathrm{X}=\mathrm{Y}, \mathrm{X} \vee \mathrm{A} \vdash \mathrm{Y} \vee \mathrm{A}\)
```

Proof. All the verifications are trivial for example in case i) if $A \equiv(M=N)$ then $\lambda \beta \vdash K I M=I=K I N$.
3.12 THEOREM. Any countable p.o. $S=(S, \leqslant)$ can be embedded in $T=(\mathbf{T}, \subseteq)$.
Let $S=(S, \leqslant)$ be a countable p.o.
3.12.1 DEFINITION. Let $P, Q \subseteq S ; P, Q \neq \emptyset$. We define: $\mathrm{P} \leqslant \mathrm{Q}: \Leftrightarrow \exists \mathrm{p} \in \mathrm{P}, \mathrm{q} \in \mathrm{Q} \mathrm{p} \leqslant \mathrm{q}$.
3.12.2 DEFINITION. A function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ is called faithful to S if: (i) $\forall p, q \in S \quad p \leqslant q \Rightarrow f(p) \subseteq f(q)$
(ii) $\left(\forall A \cap_{p \in P} f(p) \vdash A \Rightarrow \bigcup_{q \in Q} f(q) \vdash A\right) \Rightarrow P \leqslant Q$, for all
$P, Q \neq \emptyset, P, Q \subseteq S$.
3.12.3 MINILEMMA. f is faithful $\Rightarrow \mathrm{f}$ is an embedding.

Proof. We just have to prove that $f\left(p_{0}\right) \subseteq f\left(q_{0}\right) \Rightarrow p_{0} \leqslant q_{0}$. We11: $\mathrm{f}\left(\mathrm{p}_{0}\right) \subseteq \mathrm{f}\left(\mathrm{q}_{0}\right) \Rightarrow \underset{\mathrm{p} \in\left\{\mathrm{p}_{0}\right\}}{\cap} \mathrm{f}(\mathrm{p}) \subseteq \underset{\mathrm{q} \in\left\{\mathrm{q}_{0}\right\}}{\cup} \mathrm{f}(\mathrm{q}) \Rightarrow$

$$
\begin{aligned}
& \left(\forall A_{p \in\left\{p_{0}\right\}}^{\cap} f(p) \vdash A \Rightarrow \underset{q \in\left\{q_{0}\right\}}{\cup} f(q) \vdash A\right) \Rightarrow \\
& \left\{p_{0}\right\} \leqslant\left\{q_{0}\right\} \Rightarrow p_{0} \leqslant q_{0} .
\end{aligned}
$$

3.12.4 LEMMA. Let $S=(S, \leqslant)$ be finite with a distinct top T and bottom 1 . Suppose f is faithful to S. Let $S_{0}=\left(S_{0}, \leqslant_{0}\right)$ be a p.o.
s.t. (i) $\mathrm{s}_{0}=\mathrm{s} \cup\left\{\mathrm{s}_{0}\right\}, \mathrm{s}_{0} \notin \mathrm{~s}$
$(i i) \leqslant=\leqslant_{0} \upharpoonright \mathrm{~s}$
then there is an f_{0} faithful to S_{0} with $f_{0} \upharpoonright S=f$.
Let's first prove the theorem from the lemma before proving the lemma.

Proof of theorem 3.12. Let $S=(S, \leqslant)$ be countable. Add to S a top and a bottom, T and \perp. $(T, \perp \notin S)$. We get $S^{\prime}=\{S \cup\{T, \perp\}, \leqslant \prime)$ where for any $u, v \in S \cup\{T, \perp\}:$

$$
u \leqslant v \Leftrightarrow((u, v \in S \text { and } u \leqslant v) \text { or } u=\perp \text { or } v=T)
$$

Suppose $S=\left\{s_{1}, s_{2}, \ldots\right\} \quad\left(i \neq j \Rightarrow s_{i} \neq s_{j}\right)$. Define:

$$
\begin{aligned}
& S_{n}:=\left\{T, \perp, s_{1}, \ldots s_{n}\right\} \quad(n=0,1, \ldots), \\
& S_{n}:=\left(S_{n}, \leqslant r S_{n}\right) .
\end{aligned}
$$

Let T_{0}, T_{1} be any two elements of T s.t. $T_{0} \subseteq T_{1}$ and there is an As.t. $T_{0} \nvdash A$ and $T_{1} \vdash A$. (Note that in the case of PA $A \in \Sigma_{1}^{0}$ so what we ask is stronger than $\mathrm{T}_{0} \subsetneq \mathrm{~T}_{1}$). For example for $\lambda \beta$ take $T_{0}=\lambda \beta, T_{1}=\lambda \beta+\Omega=I$ and for PA take $T_{0}=P A$ and $\mathrm{T}_{1}=\mathrm{PA}+\neg \operatorname{con}(\mathrm{PA})$.
Take: $\mathrm{f}_{0}: \mathrm{S}_{0} \rightarrow \mathbf{T}$ as $\mathrm{f}_{0}(\perp)=\mathrm{T}_{0}, \mathrm{f}_{0}(\mathrm{~T})=\mathrm{T}_{1}$. Clearly f_{0} is faithful to S_{0}. By the lemma we find $f_{0} \subseteq f_{1} \subseteq \ldots$, where f_{i} is faithful to S_{i} and thus an embedding. Define $g:=\bigcup_{i=0}^{\infty} f_{i}$ and $f=g \Gamma S$. It is easy to see that f is an embedding of S in T.

3.12.5 REMARK.

(i) We could also do our proof for the case of PA with $\Pi_{1}^{0}-$ sentences instead of Σ_{1}^{0}-sentences. This would give the extra result that we could embed any countable p.o. in the true RE theories extending PA in the language of PA .
(ii) We could also do our proof for the case of PA with $\mathbb{v}_{n}^{0}(\vec{x})$ or $\Pi_{n}^{0}(\vec{x})$ formulae. From this would follow that for any T_{0}, T_{1} with $\mathrm{PA} \subseteq \mathrm{T}_{0} \subset \mathrm{~T}_{1}\left(\mathrm{~T}_{0}, \mathrm{~T}_{1} \mathrm{RE}\right.$ and in the language of PA$)$ we could
embed any countable poo. in the RE-theories in the language of PA between T_{0} and T_{1}.
Because if $T_{0} \subset T_{1}$ then there must be an n, \vec{x} s.t. there is a $\Sigma_{n}^{0}(\vec{x})$ or a $\Pi_{n}^{0}(\vec{x})$ formula F s.t. $T_{0} \not \forall F$ and $T_{1} \vdash F$.
Now let's do the proof of the Lemma.
Proof of Lemma 3.12.4.
Define: $\quad \hat{P}_{0}:=\left\{p \in s \mid p<_{0} s_{0}\right\}$

$$
\check{\mathrm{P}}_{0}:=\left\{\mathrm{p} \in \mathrm{~S} \mid \mathrm{s}_{0}<_{0} \mathrm{p}\right\} .
$$

We have $\perp \in \hat{\mathrm{P}}_{0}, T \in \check{\mathrm{P}}_{0}$ so $\hat{\mathrm{P}}_{0}, \check{\mathrm{P}}_{0} \neq \emptyset$.
Let $\hat{\mathrm{P}}_{0}, \hat{\mathrm{P}}_{1}, \ldots \hat{\mathrm{P}}_{\mathrm{N}}$ be the subsets of S s.t. $\hat{\mathrm{P}}_{0} \subseteq \hat{\mathrm{P}}_{\mathrm{i}}$ and $\mathrm{T} \notin \hat{\mathrm{P}}_{\mathrm{i}}$ (i $=0, \ldots \mathrm{~N}) \quad\left(\right.$ clearly $\left.\mathrm{T} \notin \hat{\mathrm{P}}_{0}\right)$.
Let $\check{\mathrm{P}}_{0}, \ldots \check{\mathrm{P}}_{\mathrm{N}^{\prime}}$ be the subsets of S s.t. $\check{\mathrm{P}}_{0} \subseteq \check{\mathrm{P}}_{\mathrm{j}}$ and $\perp \notin \check{\mathrm{P}}_{\mathrm{j}}$ ($\mathrm{j}=0, \ldots \mathrm{~N}^{\prime}$) (clearly $\perp \notin \check{\mathrm{P}}_{0}$).
Define for $\mathrm{i}=0, \ldots \mathrm{~N}$:

$$
\check{Q}_{\mathrm{i}}:=\left\{\mathrm{q} \in \mathrm{~s} \mid \forall \mathrm{p} \in \hat{\mathrm{P}}_{\mathrm{i}} \mathrm{q} \notin \mathrm{p}\right\},
$$

then: $T \in \check{Q}_{i}$ so $\check{Q}_{i} \neq \emptyset$;

$$
\begin{aligned}
& \check{Q}_{i} \not \hat{P}_{i} ; \\
& Q \not \hat{P}_{i} \Rightarrow Q \subseteq \check{Q}_{i} .
\end{aligned}
$$

Define for $\mathrm{j}=0, \ldots \mathrm{~N}^{\prime}$:

$$
\hat{Q}_{j}:=\left\{q \in \mathrm{~s} \mid \forall \mathrm{p} \in \check{\mathrm{P}}_{\mathrm{j}} \mathrm{p} \not \mathrm{q}\right\}
$$

then: $\perp \in \hat{Q}_{j}$ so $\hat{Q}_{j} \neq \varnothing$;
$\check{P}_{j} \nless \hat{Q}_{j} ;$
$\check{P}_{j} \notin Q \Rightarrow Q \subseteq \hat{Q}_{j}$.
Let $f(s)=T_{s}$ for $s \in S$. We will define $T_{S_{0}}$. Make $f_{0}(s)=T_{s}$ for $s \in S_{0}$. Because f is faithful to S we have, for $i=0, \ldots, N$:

$$
\check{Q}_{i} \not \hat{P}_{i}
$$

thus there is an A_{i} s.t. $\underset{q \in \mathscr{Q}_{i}}{\cap} T_{q} \vdash A_{i}$ and $\underset{p \in \hat{P}_{i}}{\cup} T_{p} \nvdash A_{i}$. and for $\mathrm{j}=0, \ldots, \mathrm{~N}^{\prime}:$

$$
\check{P}_{\mathrm{j}} \not \hat{Q}_{\mathrm{j}}
$$

By theorems 3.8 and 3.6 pick Ω_{0} s.t. for all $0 \leqslant i \leqslant N, 0 \leqslant j \leqslant N^{\prime}$ and for all X

$$
\begin{aligned}
& \underset{\mathrm{p} \in \widehat{\mathrm{P}}_{i}}{U} \mathrm{~T}_{\mathrm{p}}+\Omega_{0} \sim \mathrm{XH} \mathrm{~A}_{\mathrm{i}} \\
& \underset{\mathrm{q} \in \hat{Q}_{j}}{U} \mathrm{~T}_{\mathrm{q}}+\Omega_{0} \sim \mathrm{XH} H \mathrm{~B}_{\mathrm{j}}
\end{aligned}
$$

Define: $T_{s_{0}}:=\bigcup_{p \in \widehat{P}_{0}} T_{p}+\Omega_{0} v B_{1}+\ldots \Omega_{0} v B_{N}{ }^{\prime}$.
We have to check that f_{0} is faithful.
Ad(i) Suppose $u, v \in S_{0}$ and $u \leqslant_{0} v$.
case a) $\mathrm{u}, \mathrm{v} \in \mathrm{S}$, then $\mathrm{T}_{\mathrm{u}} \subseteq \mathrm{T}_{\mathrm{v}}$.
case b) $\mathrm{u}=\mathrm{v}=\mathrm{s}_{0}$, then $\mathrm{T}_{\mathrm{u}} \subseteq \mathrm{T}_{\mathrm{v}}$.
case c) $\mathrm{u} \neq \mathrm{s}_{0}, \mathrm{v}=\mathrm{s}_{0}$. Then $\mathrm{u}<_{0} \mathrm{~s}_{0}$ i.e. $\mathrm{u} \in \hat{\mathrm{P}}_{0}$.
So $\mathrm{T}_{\mathrm{u}} \subseteq \underset{\mathrm{p} \in \hat{\mathrm{P}}_{0}}{\mathrm{~T}} \mathrm{~T}_{\mathrm{p}}$. Thus $\mathrm{T}_{\mathrm{u}} \subseteq \mathrm{T}_{\mathrm{s}_{0}}=\mathrm{T}_{\mathrm{v}}$.
case d) $\mathrm{u}=\mathrm{s}_{0}, \mathrm{v} \neq \mathrm{s}_{0}$. Then $\mathrm{s}_{0}<_{0} \mathrm{v}$. We have $\mathrm{v} \in \check{\mathrm{P}}_{0}$ and
thus for any $0 \leqslant j \leqslant N^{\prime} \quad v \in \check{P}_{j}$,
so $T_{v} \supseteq \bigcap_{\mathrm{p} \in \breve{P}_{j}}^{\mathrm{T}_{\mathrm{p}} \vdash \mathrm{B}_{\mathrm{j}} \text {. Therefore } \mathrm{T}_{\mathrm{v}} \vdash \Omega_{0} \vee \mathrm{~B}_{\mathrm{j}} .}$
Moreover because f is faithful and thus an embedding we have:

So

$$
\left.\mathrm{T}_{\mathrm{v}}^{\supseteq}{\underset{\mathrm{p}}{ } \in \hat{\mathrm{P}}_{0}}_{\mathrm{T}}^{\mathrm{p}} \text { (for } \mathrm{p} \in \hat{\mathrm{P}}_{0} \Rightarrow \mathrm{p}<_{0} \mathrm{~s}_{0}<_{0} \mathrm{v} \Rightarrow \mathrm{p}<_{0} \mathrm{v} \Rightarrow \mathrm{p}<\mathrm{v}\right)
$$

$$
T_{v} \geq \underset{p \in \hat{P}_{0}}{\cup} T_{p}+\Omega_{0} v B_{0}+\ldots \Omega_{0} v B_{N^{\prime}}=T_{s_{0}}=T_{u}
$$

Ad($i i)$ Suppose $U \mathbb{F}_{0} v(u, v \neq \emptyset)$; we prove that there is a C s.t. $\widehat{u \in U}^{\cap_{U}} T_{u} \vdash C$ and $\underset{v \in v_{v}}{U} T_{v} \nvdash C$.

We distinguish three cases:
case a) $\mathrm{s}_{0} \notin \mathrm{U}, \mathrm{s}_{0} \notin \cdot \mathrm{~V}$. Then we are ready by the faithfulness of f.
case b) $\mathrm{s}_{0} \in \underset{\sim}{\mathrm{U}}$, then of course $\mathrm{s}_{0} \notin \mathrm{~V}$.
Take $\widetilde{U}:=\left(U\left\{s_{0}\right\}\right) \cup \breve{P}_{0}$. Then \tilde{U} is one of the \check{P}_{j}, for trivially $\perp \notin \widetilde{\mathrm{U}}$.
Suppose $\widetilde{U}=\check{P}_{\mathrm{j}_{0}}$. We find $U \mathbb{V}$ so $V \subseteq \widehat{Q}_{\mathrm{j}_{0}}$. Clearly for every $u \in \tilde{U}: T_{u} \vdash \mathrm{~B}_{\mathrm{j}_{0}}$ so certainly $\mathrm{T}_{\mathrm{u}} \nvdash \Omega_{0} \vee \mathrm{~B}_{\mathrm{j}_{0}}$. Moreover $\mathrm{T}_{\mathrm{s}_{0}} \vdash \Omega_{0} \vee \mathrm{~B}_{\mathrm{j}_{0}}$. So
$\underset{u \in U}{\cap} T_{u} \supseteq \underset{u \in \widetilde{U}}{\cap} \cup\left\{s_{0}\right\}^{T} u \vdash \Omega_{0} \vee B_{j_{0}}$.
Suppose on the other hand that $\cup_{v \in V^{2}} T_{v} \vdash \Omega_{0} \vee B_{j_{0}}$, then
certainly $\underset{q \in \hat{Q}_{j_{0}}}{U} T_{q} \vdash \Omega_{0} \vee B_{j_{0}}$. But then
$\underset{q \in \hat{Q}_{j_{0}}^{U}}{T_{q}}+\Omega_{0} \sim$ Fa $\vdash B_{j_{0}}$.
This contradicts our choice of Ω_{0}. So we can take $C:=\Omega_{0} \vee \mathrm{~B}_{\mathrm{j}_{0}}$. case c) $\mathrm{s}_{0} \in \mathrm{~V}$, then $\mathrm{s}_{0} \notin \mathrm{U}$.

Take $\widetilde{V}:=\left(V \backslash\left\{s_{0}\right\}\right) \cup \hat{P}_{0}$. Then we have: $\widetilde{\mathrm{V}}$ is one of the $\widehat{\mathrm{P}}_{\mathrm{i}}$, for trivially $\mathrm{T} \notin \widetilde{\mathrm{V}}$.
Suppose $\tilde{\mathrm{V}}=\hat{\mathrm{P}}_{\mathrm{i}_{0}}$. We find $\mathrm{U} \not \subset \tilde{\mathrm{V}}$ so $\mathrm{U} \subseteq \subseteq_{\mathrm{Q}_{\mathrm{i}_{0}}}$. Then

Well: $\underset{v \in V}{U T} T_{v}=\underset{v \in \mathcal{V}^{U}}{\sim} T_{v}+\Omega_{0} v B_{0}+\ldots \Omega_{0} v B_{N}{ }^{\prime}$. It
follows that $\underset{v \in V}{U_{V}} T v+\Omega_{0} \sim T r \vdash A_{i_{0}}$. But $\widetilde{v}=\hat{P}_{i_{0}}$, so
this contradicts our choice of Ω_{0}. So take $C:=A_{i_{0}}$.
3.13 REMARK. Inspection of the proof shows that the theories constructed are all finite over T_{0}. So using conjunction in case of PA or pairing in case of $\lambda \beta$, we can formulate the theorem for sentences instead of for theories.
3.14 REMARK. The version of the Gödel-Rosser-Mostowski-Myhill-Kripke-Theorem which is closest to mine is that of Kripke in Kripke (1963). Of course we have been a bit too generous using PA: a subsystem like Robinson's Arithmetic would have been sufficient.
§4 THE ANTI DIAGONAL NORMALISATION THEOREM AND SOME OF ITS APPLICATIONS.
4.1 MEDITATION. Consider $M_{\lambda \beta}$. By identifying certain elements, the unsolvables, and closing off under the rules of $\lambda \beta$-calculus we get $M_{H} . M_{H}$ is complete. Here we have a natural transformation of a precomplete numeration into a complete one. The elements that we identify first are intuitively the "undefined" elements. By closing off under the rules certain other elements are also identified.

Now if we want to generalize the transition form $\lambda \beta$ to H it would be nice to have some control over the set:

$$
A^{\curlyvee}:=\left\{\left\{z_{0}\right\}^{\curlyvee} z_{1} \mid\left\{z_{0}\right\}_{z_{1}} \uparrow, z \in \mathbb{N}\right\}
$$

for arbitrary precomplete γ. The Anti Diagonal Normalisation Theorem seems a step in the right direction; it is not strong enough to get the consistency of the identification of the elements of A^{γ} in the general case.
4.2 DEFINITION. Suppose $R(\vec{x})$ and $Q(\vec{x})$ are RE-relations. We write them in the form: $\exists y R_{0}(y, \vec{x})$ and $\exists y Q_{0}(y, \vec{x})$, where R_{0} and Q_{0} are recursive. Define:

$$
\begin{aligned}
& R(\vec{x}) \leqslant Q(\vec{x}): \Longleftrightarrow \exists y \quad R_{0}(y, \vec{x}) \text { and } \forall z<y \text { not } Q_{0}(z, \vec{x}) \\
& R(\vec{x})<Q(\vec{x}): \Longleftrightarrow \exists y \quad R_{0}(y, \vec{x}) \text { and } \forall z \leqslant y \text { not } Q_{0}(z, \vec{x})
\end{aligned}
$$

Then $R(\vec{x}) \leqslant Q(\vec{x})$ and $R(\vec{x})<Q(\vec{x})$ are RE relations.
4.3 DEFINITION. Let γ be a numeration. A partial recursive Δ is a diagonal function for γ if:

$$
\forall x \in \operatorname{Dom}(\Delta) \quad \Delta(x) \not_{\gamma} x .
$$

4.4 THE ANTI DIAGONAL NORMALISATION THEOREM. Given a precomplete numeration γ and a partial recursive diagonal function Δ for γ, there is a total recursive function $\{x\}^{\gamma ; \Delta} y$ s.t.

1) $\{x\}_{y} \downarrow \Rightarrow\{x\}_{y} \sim_{\gamma}\{x\}^{\gamma ; \Delta} y$
2) $\{x\} y \uparrow \Rightarrow\{x\}^{\gamma} ; \Delta y \notin \operatorname{Dom}(\Delta)$.

Proof. Let δ be an index for Δ. Define:

$$
\{d(\delta, e, x)\} y: \cong\left\{\begin{array}{l}
\{e\}_{x} \text { if }\{e\}_{x} \downarrow \leqslant\{\delta\}\left(\{y\}^{\gamma} y\right) \downarrow \tag{*}\\
\{\delta\}\left(\{y\}^{\gamma} y\right) \text { if }\{\delta\}\left(\{y\}^{\gamma} y\right) \downarrow<\{e\}_{x} \downarrow \quad(* *)
\end{array}\right.
$$

Let us write $d \quad:=d(\delta, e, x)$. Suppose: $\{d\} d \downarrow$ because of clause $(* *)$, then $\{d\} d \cong\{\delta\}\left(\{d\}^{\gamma} d\right) \not_{\gamma}\{d\}^{\gamma} d \sim_{\gamma}\{d\} d$. Contradiction. So if $\{d\} d \downarrow$ it does so because of (*). Thus we find : $\{d\} d \downarrow \Rightarrow\{d\} d \cong\{e\}_{x}$.
Suppose $\{d\} d \uparrow$ then we must have $\{\delta\}\left(\{d\}^{\gamma} d\right) \uparrow$, else (**) would give $\{d\} d$ a value. So $\{d\} d \uparrow \Rightarrow\{d\}^{\gamma} d \notin \operatorname{Dom}(\Delta)$. So take: $\{x\}^{\gamma ; \Delta} y: \cong\{d(\delta, x, y)\}^{\gamma} d(\delta, x, y)$.
4.5 REMARK. The idea for the Anti Diagonal Theorem occurred to me when I tried to find another proof of the theorem of Smoryński (1978), which is a consequence of the ADNT. Smoryński's forerunners are Shepherdson's fixed point and ultimately the Rosser Sentence.
4.6 COROLLARY. Let γ be precomplete. Let U be RE, non trivial and closed under \sim_{γ}, then U is maximal in the RE m-degrees and
hence creative. (This corollary can be proved in other ways, see ErSov (1973)).

Proof. Consider an RE set V. Suppose $\mathrm{n}_{0} \in \mathrm{U}, \mathrm{n}_{1} \notin \mathrm{U}$. Take:

$$
\Delta x: \cong\left\{\begin{array}{l}
n_{1} \text { if } x \in U \\
\uparrow \text { else }
\end{array}\right.
$$

and

$$
\varphi(x): \cong \begin{cases}n_{0} & \text { if } x \in v \\ \uparrow \text { else }\end{cases}
$$

Clearly Δ is a diagonal function for γ.
Suppose p is an index of φ, then:

$$
\begin{aligned}
& x \in v \Rightarrow\{p\}_{x} \cong n_{0} \Rightarrow\{p\}^{\gamma ; \Delta} x \sim_{\gamma} n_{0} \Rightarrow\{p\}^{\gamma ; \Delta} x \in U \\
& x \notin V \Rightarrow\{p\}_{x} \uparrow \Rightarrow\{p\}^{\gamma ; \Delta} x \notin \operatorname{Dom}(\Delta) \Rightarrow\{p\}^{\gamma ; \Delta} x \notin U .
\end{aligned}
$$

4.7 COROLLARY OF 4.6.

(i) Every non trivial RE set of λ-terms closed under β convertibility is creative.
(ii) Any RE set U of identities between λ-terms s.t. if $(M=N) \in U$ and $\lambda \beta \vdash M=M^{\prime}, \lambda \beta \vdash N=N^{\prime}$ then $M^{\prime}=N^{\prime} \in U$ is creative or trivial.
(iii) Any RE $\lambda \beta$-theory is creative.
(iv) Let T be any $R E \lambda$-theory s.t. $T H M=N$ then: $\{(P=Q) \mid T+P=Q \vdash M=N\}^{\prime}$ is creative.

Proof.
(i) routine from 4.6.
(i) \Rightarrow (ii) \Rightarrow (iii), (iv) routine.
4.8 THEOREM. Let $\left(T_{i}\right)_{i \in \mathbb{N}}$ be a recursive sequence of $\lambda \beta$-theories. Let $\left(U_{i}\right){ }_{i} \in \mathbb{N}$ be a recursive sequence of sets of (codes of) identities between λ-terms s.t.

$$
\forall i \quad \forall^{\prime} M=N^{\prime \prime} \in U_{i} \quad T_{i} \nmid M=N
$$

Let
$I:=\left\{\Omega_{0} \in \Lambda \mid \forall P \in \Lambda \forall i \in \mathbb{N} \forall^{\prime \prime} M=N^{\prime \prime} \in U_{i} T_{i}+\Omega_{0}=P \nvdash M=N\right\}$.
Then there is an $F \in \Lambda$ s.t. for all $i, p, m, n \in \mathbb{N}$:

$$
\begin{aligned}
& \{\mathrm{p}\}_{\mathrm{m}}^{\cong} \cong \mathrm{n} \Leftrightarrow \lambda \beta \vdash \mathrm{~F} \underline{\mathrm{p}} \underline{\mathrm{~m}}=\underline{\mathrm{n}} \Leftrightarrow \mathrm{~T}_{\mathrm{i}} \vdash \mathrm{~F} \underline{\mathrm{p}} \underline{\mathrm{~m}}=\underline{\mathrm{n}} . \\
& \{\mathrm{p}\}_{\mathrm{m}} \uparrow \Leftrightarrow \exists \Omega_{0} \in \mathrm{I} \lambda \beta \vdash \mathrm{~F} \underline{\mathrm{p}} \underline{m}=\Omega_{0} .
\end{aligned}
$$

Proof. Take:
$\Delta \Gamma \mathrm{P}\urcorner: \cong \varepsilon\lceil\mathrm{Q}\urcorner\left(\exists \mathrm{i} \in \mathbb{N} \exists \mathrm{M}=\mathrm{N}^{\prime} \in \mathrm{U}_{\mathrm{i}} \quad \mathrm{T}_{\mathrm{i}}+\mathrm{P}=\mathrm{Q} \vdash \mathrm{M}=\mathrm{N}\right.$.
Clearly Δ is a diagonal function for $M_{\lambda \beta}$ and $\lceil\mathrm{P}\urcorner \notin \operatorname{Dom} \Delta \Leftrightarrow \mathrm{P} \in \mathrm{I}$. Choose p' s.t.

$$
\left\{p^{\prime}\right\}_{m} \cong\left\{\begin{array}{l}
\left.\Gamma_{\underline{n}}\right\urcorner \text { if }\{p\}_{m} \cong n \\
\uparrow \text { else }
\end{array}\right.
$$

Let $p^{\prime \prime}$ be an index of $\left\{p^{\prime}\right\}^{M_{\lambda \beta}} ; \Delta$.
It is clear that we can find $p^{\prime \prime}$ from p in an effective way. So there is a λ-term Q which represents: $\psi(p, m): \cong\{p "\}_{m}$ in $\lambda \beta$. Take $F: \equiv(\lambda x y . E(Q x y))$. (Remember that E is the universal constructor i.e. $\left.\forall_{0} M \in \Lambda \quad \lambda \beta \vdash E\lceil\underline{M}\rceil=M\right)$.
We have:

$$
\begin{aligned}
& \text { (i) } \left.\{\mathrm{p}\}_{\mathrm{m}} \cong \mathrm{n} \Rightarrow\left\{\mathrm{p}^{\prime}\right\}_{\mathrm{m}} \cong \Gamma_{\underline{\mathrm{n}}}\right\urcorner \Rightarrow\left(\left\{\mathrm{p}^{\prime \prime}\right\}_{\mathrm{m}} \cong \Gamma_{\mathrm{M}}\right\rceil
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) }\{\mathrm{p}\}_{\mathrm{m}} \uparrow \Rightarrow\left\{\mathrm{p}^{\prime}\right\}_{\mathrm{m}} \uparrow \Rightarrow\left\{\mathrm{p}^{\prime \prime}\right\}_{\mathrm{m}}=\left\lceil\Omega_{0}\right\urcorner \\
& \Rightarrow \quad \lambda \beta \vdash E(Q \underline{p} \underline{m})=E \Gamma_{0} \neg=\Omega_{0} \\
& \Rightarrow \mathrm{~T}_{\mathrm{i}} \vdash \mathrm{E}(\mathrm{Q} \underline{\mathrm{p}} \underline{\underline{2}})=\Omega_{0} \text {. Where } \Omega_{0} \in \mathrm{I} .
\end{aligned}
$$

Moreover by the properties of elements of I and the fact that numerals cannot be identified consistently with every term it follows $\forall \underline{\mathrm{n}} \mathrm{T}_{\mathrm{i}} \mid \forall \Omega_{0}=\underline{\mathrm{n}}$ for $\Omega_{0} \in \mathrm{I}$.
A moment's reflection shows that the theorem follows.
4.9 REMARK. Obviously a similar theorem can be given for PA.
4.10 COROLLARY. The partial recursive functions can be represented in any $R E \lambda$-theory.
4.11 EXAMPLE OF THE CONSTRUCTION OF A COMPLETE NUMERATION BY MEANS OF $M_{\lambda \beta}$.
Take I as in 4.8 for the constant sequence with $T_{i}=\lambda \beta$ and $\mathrm{U}_{\mathrm{i}}=\left\{{ }^{\prime \prime} \mathrm{K}=\mathrm{I}^{\prime \prime}\right\}$. Define:

$$
H^{-}:=\lambda \beta+\{(M=N) \mid M, N \in I\} .
$$

It is easy to see that if $M \in I$ then M is unsolvable, so H^{-}is consistent. By $4.8 \mathrm{M}_{\mathrm{H}^{-}}$is complete.
4.12 REMARKS.
(i) We could do a similar construction for e.g. $P^{P A}$. The point where we use " $M \in I$ then M is unsolvable" coniains a reference to specific properties of $\lambda \beta$-calculus. It would be nice to eliminate this. As yet I see no way to avoid it. Possibly some natural condition is missing. In the case $p^{P A}$ one uses that the identifications are true.
4.13 REMARK. There are some analogies between λ-calculus and PA that invite further reflection. I will state them without proof. Let for $e, f \in \mathbb{N}$, "e $\sim f$ " mean $" \forall x\{e\}_{x} \cong\{f\}_{x}$ ". Define:

$$
\mathrm{T}_{0}:=P A+\left\{(\underline{e} \sim \underline{f}) \mid \forall n\{e\}_{n} \uparrow,\{f\}_{n} \uparrow\right\} ;
$$

it is easy to see that

$$
\mathrm{T}_{0}=\mathrm{PA}+\Sigma_{2}^{0}-\text { truth }
$$

Let $T_{1}:=P A+\{(\underline{e} \sim \underline{f}) \mid e \sim f\} . P^{T}=P$ up to isomorphism.
We have:

1) $\{(\mathrm{M}=\mathrm{N})|\lambda \beta|-\mathrm{M}=\mathrm{N}\}$ is Σ_{1}^{0}-complete $\{(e \sim \mathrm{f})|\mathrm{PA}| \underline{e} \sim \underline{f}\}$ is Σ_{1}^{0}-complete.
2) H is Σ_{2}^{0}-complete (see Barendregt (1978));

$$
\left\{(\mathrm{e} \sim \mathrm{f}) \mid \mathrm{T}_{0}-\underline{\mathrm{e}} \sim \underline{\mathrm{f}}\right\} \text { is } \Sigma_{2}^{0} . \quad\left(\Sigma_{2}^{0} \text { complete? }\right)
$$

3) H^{*} is Π_{2}^{0}-complete and the unique maximal extension of H;
$\{(e \sim f) \mid e \sim f\}=\left\{(e \sim f) \mid T_{1} \vdash \underline{e} \sim_{f} \underset{f}{ }\right\}$ is Π_{2}^{0}
complete and is the unique maximal (consistent)
extension of $\left\{(\mathrm{e} \sim \mathrm{f}) \mid \mathrm{T}_{0} \vdash \underline{\mathrm{e}} \sim \underline{\mathrm{f}}\right\}$ in the sense that $\mathrm{T}_{0}+\underline{\mathrm{e}} \sim \underline{\mathrm{f}} \nmid \underline{0}=\underline{1} \Rightarrow \mathrm{~T}_{1} \vdash \underline{\mathrm{e}} \sim \underline{\mathrm{f}}$.
4. 16 REMARK. For a proof that M_{H} is complete see Barendregt (1975). The results on many-one degrees of λ-theories mentioned in 4.15 are from Barendregt (1978).

REFERENCES.

Barendregt, H.P., Some extensional term models for combinatory logics and λ-calculi, thesis, Utrecht, 1971.
Barendregt, H.P., Solvability in lambda calculi, Colloque International de Logique, 1975, Editions du Centre National de la Recherche Scientifique, pp. 209-219.
Barendregt, H.P., The Type Free Lambda Calculus, Handbook of Mathematical Logic, 1977, North-Holland, pp. 1091-1132.
Barendregt, H.P., Bergstra J., Klop J.W., Volken, H., Degrees of sensible lambda theories, JSL, volume 43, no. 1, 1978, pp. 45-55.
Boolos, G., The Unprovability of Consistency, 1979, Cambridge University Press.
ErŠov, Ju.L., Theorie der Numerierungen I, Zeitschrift für Math. Log., Band 19, Heft 4, 1973, pp. 289-388.
Eřov, Ju.L., Theorie der Numerierungen II, Zeitschrift für Math. Log., Band 21, Heft 6, 1975, pp. 473-584.
Eršov, Ju. L., Model \mathbb{C} of Partial Continuous Functionals, Logic Colloquium 1976, North-Holland, 1977, 455-467.
Kripke, S., "Flexible" predicates in formal number theory, Proc. AMS 13, 1963, pp. 647-650.
Rogers, Theory of Recursive Functions and Effective Computability, 1967, McGraw-Hill.
Scott, D., Data types as lattices, Logic Conference, Kiel 1974, Lecture Notes in Mathematics 499, Springer Verlag, 1975, pp. 579-651.
Scott, D., Combinators and classes, λ-Calculus and Computer Science Theory, 1975, Lecture Notes in Computer Science 37, Springer Verlag, pp. 1-26.
Scott D., Some philosophical issues concerning theories of
of combinators, λ-calculus \& Computer Science Theory, 1975, Lecture Notes in Computer Science 37, Springer Verlag, pp. 346-366.
Smoryński, C., Avoiding Selfreferential Statements, Proceedings of the AMS, volume 70 , number 2, July 1978, pp. 181-184.

PART 2

An incompleteness result for paths through or within 0

by Albert Visser
Mathematical Institute, University of Utrecht, the Netherlands

Communicated by Prof. A.S. Troelstra at the meeting of May 31, 1980

Abstract

In this paper an incompleteness result for paths through or within O and related structures will be proved. A consequence of this result will be that no complete Π_{1}^{0} set is partially many-one reducible to any path through or within O. For enumeration reducibility a weak kind of incompleteness is obtained.

1 INTRODUCTION

Roughly there are four kinds of results connected with completeness for paths through or within O :
a) Completeness results for progressions of theories

In [Fe] Feferman produced a path within O and a recursive progression of theories along that path, yielding the true sentences of number theory.
b) Completeness results in the sense of recursion theoretic reducibilities
E.g. it is easy to see that any set of natural numbers is enumeration reducible to a path within O of length ω^{2}.
c) Incompleteness results for progressions of theories

In $[\mathrm{Fe}, \mathrm{Sp}]$ Feferman and Spector established a number of incompleteness results for Π_{1}^{1}-paths through O. In $[\mathrm{Kr}]$ Kreisel gave another incompleteness result for Π_{1}^{1}-paths through O. We present here a strengthening of Kreisel's result with a new proof, using the methods of Feferman and Spector. For the definition of and the basic facts about O^{*}; see $[\mathrm{Fe}, \mathrm{Sp}]$.

THEOREM: Let π be a Π_{1}^{1}-path through O. Let $p \in T_{a}$ be an RE-relation in p, a s.t. for each $a \in \pi: T_{a}$ is a set of (codes of) sentences in the language of PA with $\mathbb{N} \vDash T_{a}$. Let \leq be an RE-relation s.t. $\leq \Gamma^{*}=\leq O^{*}$ and $a \leq b$ and $b \in O^{*} \Rightarrow a \in O^{*}$. Define: $T_{\pi}=\cup_{a \in \pi} T_{a}$. Then there is an RE theory T s.t. $\mathbb{N} \vDash T$ and $T \supseteq T_{\pi}$.

PROOF: Without loss of generality we may assume that $a \leq b \Rightarrow T_{a} \subseteq T_{b}$. Define $K_{a}=\{b \mid b \leq a\}$. There is an $a^{*} \in O^{*}$ s.t. $K_{a^{*}} \supseteq \pi$ (see [Fe, Sp]). So $T_{a} \supseteq T_{\pi}$. If $T_{a^{*}}$ is true, we are done, if not, consider:
$C:=\left\{c \leq a^{*} \mid T_{c}\right.$ is not (the set of codes of) a true theory in the language of PA $\}$.

Observe that C is hyperarithmetic, so C has a smallest element w.r.t. \leq, say c_{0}. Pick $c_{1} \in O^{*} \backslash O$ with $c_{1} \nsubseteq c_{0}$. Put $T:=T_{c_{1}}$.
d) Incompleteness results for recursion theoretic reducibilities

For example we will show that the halting problem is not partially many-one reducible to any path through or within O.

2 NOTATIONS AND CONVENTIONS

We use X, Y, \ldots, A, B for sets of natural numbers; x, y, \ldots, a, b for natural numbers, and $\varphi, \psi, \varphi_{A}, \ldots$ for partial recursive functions.

$$
\begin{aligned}
\Sigma^{+} & :=\{x \mid\{x\} x \cong 0\} \\
\Sigma & :=\{x \mid\{x\} x \downarrow \text { and }\{x\} x \neq 0\} \\
\Pi^{+} & :=\mathbb{N} \backslash \Sigma^{+}
\end{aligned}
$$

Let $R_{1}(x), R_{2}(x)$ be RE predicates. There are recursive relations $R_{1}^{\prime}(y, x)$ and $R_{2}^{\prime}(y, x)$ s.t.:

$$
\begin{aligned}
& R_{1}(x) \Leftrightarrow \exists \text { y } R_{1}^{\prime}(y, x), \\
& R_{2}(x) \Leftrightarrow \exists y R_{2}^{\prime}(y, x) .
\end{aligned}
$$

Define:

$$
\begin{aligned}
& R_{1}(x) \leq R_{2}(x): \leftrightarrow \exists y\left(R_{1}^{\prime}(y, x) \text { and } \forall z<y \neg R_{2}^{\prime}(z, x)\right) \\
& R_{1}(x)<R_{2}(x): \leftrightarrow \exists y\left(R_{1}^{\prime}(y, x) \text { and } \forall z \leq y \neg R_{2}^{\prime}(z, x)\right)
\end{aligned}
$$

Note that the meaning of $<, \leq$ depends on the choice of $R_{1}^{\prime}, R_{2}^{\prime}$. For any RE predicate $R(x)$ occurring in the text we will use one fixed $R^{\prime}(y, x)$ in the whole text. If an RE predicate $Q(x)$ is introduced in the text as (e.g.) $R_{1}(x) \wedge R_{2}(x)$, where R_{1}, R_{2} are RE predicates, we take: $Q^{\prime}(y, x) \equiv\left(R_{1}^{\prime}\left((y)_{0}, x\right) \wedge R_{2}^{\prime}\left((y)_{1}, x\right)\right)$. We will often use informal expressions as: "we found $R_{1}(x)$ before $R_{2}(x)$ " or "we found $R_{1}(x) \vee R_{2}(x)$ before $R_{3}(x)$, because we found $R_{1}(x)$ first'" etc. Clearly on our conventions these expressions have a natural interpretation.

For:

$$
\psi(x): \cong \begin{cases}a_{1} & \text { if } R_{1}(x) \leq R_{2}(x)^{1} \\ a_{2} & \text { if } R_{2}(x)<R_{1}(x)\end{cases}
$$

we use the following shorthand:

$$
\psi(x): \# \begin{cases}a_{1} & \text { if } R_{1}(x) \\ a_{2} & \text { if } R_{2}(x)\end{cases}
$$

We will sometimes use abbreviations such as: ' $\psi_{1}(x) \cong y$ ' for ' $\psi_{1}(x) \cong y$ or $\psi_{2}(x) \cong y^{\prime}$.

Scope should be evident from context.

3. THE CONCEPT OF SEPARABILITY AND SOME RELATED HIERARCHIES

The concept of separability introduced here is a generalization of the usual notion of separability in recursion theory. It is inspired by the proof of the Gödel-Rosser-Mostowski-Myhill-Kripke theorem and partial many-one reducibility. An analogous concept could be given for enumeration reducibility. However in that case the central result of this paper does not hold.

3.1 DEFINITION

$X \operatorname{sep}(A, B)(X$ separates A and $B)$ iff there are φ_{A}, φ_{B} s.t.:
a) $\quad \varphi_{A}^{-1}(X) \cap B=\varphi_{B}^{-1}(X) \cap A=\emptyset$
b) $\quad \varphi_{A}^{-1}(X) \cup \varphi_{B}^{-1}(X)=\mathbb{N}$.

3.2 DEFINITION

$X \leq_{p m} Y(X$ is partially many-one reducible to $Y)$ iff there is a φ s.t. $X=\varphi^{-1} Y$.

3.3 REMARK

$X \operatorname{sep}(A, B)$ and $X \leq_{p m} Y \rightarrow Y \operatorname{sep}(A, B)$.

3.4 DEFINITIONS

3.4.1 $X \sqsubseteq Y$ iff for every $(A, B): X \operatorname{sep}(A, B) \rightarrow Y \operatorname{sep}(A, B)$.
3.4.2 $X \square Y$ iff $X \sqsubseteq Y$ and $Y \sqsubset X$.
3.4.3 $(A, B) \leq_{s}\left(A^{\prime}, B^{\prime}\right)$ iff for every $X: X \operatorname{sep}\left(A^{\prime}, B^{\prime}\right) \rightarrow X \operatorname{sep}(A, B)$.
3.4.4 $(A, B)={ }_{s}\left(A^{\prime}, B^{\prime}\right)$ iff $(A, B) \leq_{s}\left(A^{\prime}, B^{\prime}\right)$ and $\left(A^{\prime}, B^{\prime}\right) \leq_{s}(A, B)$.

3.5 EXAMPLE

Let π be a Π_{1}^{1}-path through O, then $\pi \square\{1\}$.

[^0]PROOF: Let \leq be an RE relation that coincides with $\leq O^{*}$ in O^{*} and satisfies: $a \leq b$ and $b \in O^{*} \Rightarrow a \in O^{*}$.

Put $K(a):=\{b \mid b \leq a\}$. There is a $p \in O^{*}$ s.t. $\pi \subseteq K(p)$ (see [Fe, Sp]). Suppose that $\pi \operatorname{sep}(A, B)$ via φ_{A}, φ_{B}. There are two possibilities:

1. There is an $a^{*} \in \pi$ s.t. $K\left(a^{*}\right) \operatorname{sep}(A, B)$ via $\varphi_{A}, \varphi_{B} . K\left(a^{*}\right) \leq_{p m}\{1\}$ so then $\{1\}$ $\operatorname{sep}(A, B)$ and we are done.
2. There is no such a^{*}. But in that case: $a \in \pi$ iff $\left(a \leq p\right.$ and $\varphi_{A}^{-1}(K(a)) \cup$ $\left.\varphi_{B}^{-1}(K(a)) \neq \mathbb{N}\right)$. This makes $\pi \Sigma_{2}^{0}$. Contradiction.

The proof works also for enumeration reducibility, thus giving the result of [Kr] p. 313, §3.

3.6 FACT

If φ is a total recursive function then $(A, B) \geq_{s}\left(\varphi^{-1} A, \varphi^{-1} B\right)$.

3.7 FACT

If A, B are RE sets, $\mathrm{A} \cap B=\emptyset$, then: $(A, B) \leq_{s}\left(\Sigma^{+}, \Sigma^{-}\right)$.
PROOF: Find a total recursive φ s.t.: $\{\varphi(x)\} \varphi(x) \cong \begin{cases}0 & \text { if } x \in A \\ 1 & \text { if } x \in B\end{cases}$
Then: $A=\varphi^{-1} \Sigma^{+}, B=\varphi^{-1} \Sigma^{-}$.

3. $\begin{aligned} \text { EXAMPLES }\end{aligned}$

i) It is not the case that: $\{1\} \operatorname{sep}\left(\Sigma^{+}, \Sigma^{-}\right)$.
ii) $\Pi^{+} \operatorname{sep}\left(\Sigma^{+}, \Sigma^{+}\right)$.

PROOF OF ii: Let p^{+}be a fixed element of Π^{+}. Make: $\varphi_{\Sigma^{+}}(x): \cong p^{+}$if $x \in \Sigma^{+}$; $\varphi_{\Sigma-}(x): \cong x$.

4. ABOUT DOWNWARD CLOSED AND COMPARABLE SETS

4.1 A set X is Downward Closed and Comparable or DCC if there is an RE relation \triangleleft s.t.
a) $\quad x \triangleleft y$ and $y \in X \rightarrow x \in X$.
b) $\quad x, y \in X \rightarrow x \triangleleft y$ or $y \triangleleft x$.

4.1.1 Comment

Note that every RE set and every path through or within O is DCC.

4.2 THEOREM

No X, which is DCC, separates $\left(\Sigma^{+}, \Sigma^{-}\right)$.
PROOF: Suppose X is DCC and separates Σ^{+}, Σ^{-}via φ^{+}, φ^{-}. We will con-
struct recursive sets S^{+}, S^{-}s.t. $S^{+}=\left(S^{-}\right)^{c}$ and $\Sigma^{+} \subseteq S^{+}, \Sigma^{-} \subseteq S^{-}$. Thus obtaining a contradiction.

From the definitions of DCC and separability, we see that for every x and y :

$$
\begin{equation*}
\underset{i, j \in\{+,-\}}{\mathbb{W}}\left(\varphi^{i}(x) \triangleleft \varphi^{j}(y)\right) \quad \text { or } \quad \underset{i, j \in\{+,-\}}{\mathbb{W}}\left(\varphi^{i}(y) \triangleleft \varphi^{j}(x)\right) \text {. } \tag{*}
\end{equation*}
$$

(We take $\varphi^{i}(x) \triangleleft \varphi^{j}(y)$ to imply: $\varphi^{i}(x) \downarrow, \varphi^{j}(y) \downarrow$).
Find e_{x} (primitive) recursive in x s.t.

$$
\left\{e_{x}\right\} y: \#\left\{\begin{array}{rrr}
0 & \text { if } \varphi^{ \pm}(x) \triangleleft \varphi^{+}(y) & \text { or } \\
& \varphi^{-}(y) \triangleleft \varphi^{ \pm}(x) . & \\
1 & \text { if } \varphi^{ \pm}(x) \triangleleft \varphi^{-}(y) & \text { or } \\
\varphi^{+}(y) \triangleleft \varphi^{ \pm}(x) .
\end{array}\right.
$$

By $\left(^{*}\right)$ we see that $\left\{e_{x}\right\} y \downarrow$ for any x, y. We now construct S^{+}, S^{-}from the computation of $\left\{e_{x}\right\} e_{x}$. We will indicate the proof only for the case $\left\{e_{x}\right\} e_{x} \cong 0$; the case $\left\{e_{x}\right\} e_{x} \cong 1$ is similar.

Suppose $\left\{e_{x}\right\} e_{x} \cong 0$, then $e_{x} \in \Sigma^{+}$. So $\varphi^{+}\left(e_{x}\right) \in X$ and $\left(\varphi^{-}\left(e_{x}\right) \uparrow\right.$ or $\left.\varphi^{-}\left(e_{x}\right) \notin X\right)$.
Now there are four cases to consider:
We put $\left\{e_{x}\right\} e_{x} \cong 0$ because we first found that:
Case $1 \varphi^{+}(x) \triangleleft \varphi^{+}\left(e_{x}\right)$.
Then $\varphi^{+}(x) \in X$. Put $x \in S^{+}$.

Case $2 \varphi^{-}(x) \triangleleft \varphi^{+}\left(e_{x}\right)$.
Then $\varphi^{-}(x) \in X$. Put $x \in S^{-}$.
Case $3 \quad \varphi^{-}\left(e_{x}\right) \triangleleft \varphi^{+}(x)$.
Because $\varphi^{-}\left(e_{x}\right) \notin X$, also $\varphi^{+}(x) \notin X$. Therefore $\varphi^{-}(x) \in X$. Put $x \in S^{-}$.
Case $4 \quad \varphi^{-}\left(e_{x}\right) \triangleleft \varphi^{-}(x)$.
Then $\varphi^{+}(x) \in X$. Put $x \in S^{+}$.
That S^{+}, S^{-}have the desired properties is immediate from the construction.

4.4 COROLLARY

For no DCC X we have $X \geq_{p m} \Pi^{+}$.

4.5 DEFINITION

$X \leq_{e n} Y$ iff there is an RE relation R s.t. for every $x: x \in X \leftrightarrow$ there is a y s.t. $\left(M_{i=0}^{\operatorname{lth}(y)-1}\left((y)_{i} \in Y\right)\right.$ and $\left.R(x, y)\right)$.

We say: X is enumeration reducible to Y .

4.6 Lemma

If Y is DCC:
$X \leq_{e n} Y \leftrightarrow$ there is an RE relation Q s.t. for every x : $(x \in X \mapsto$ there is a $y \in Y Q(x, y))$.

PROOF: Let R be as in 4.5. Take $Q: Q(x, y)$ iff there is a z s.t. $M_{i=0}^{\operatorname{lth}(z)-1}\left((z)_{i} \& y\right)$ and $R(x, z)$.

The idea of the lemma is due to Kreisel, see [Kr] p. 313, §2.

4.7 THEOREM

Let Y be DCC, $X \leq_{e n} Y$ via Q as in 4.6. Suppose $X \operatorname{sep}\left(\Sigma^{+}, \Sigma^{-}\right)$via φ^{+}, φ^{-}. Then there are no ψ^{+}, ψ^{-}s.t. for every z :

$$
\left(\left(Q\left(\varphi^{+}(z), \psi^{+}(z)\right) \text { and } \quad \psi^{+}(z) \in Y\right)\right.
$$

or

$$
\left.\left(Q^{-}\left(\varphi^{-}(z), \psi^{-}(z)\right) \text { and } \psi^{-}(z) \in Y\right)\right)
$$

PROOF: Suppose there were such ψ^{+}, ψ^{-}. First remark that $Z=\{\langle x, y\rangle \mid y \in Y$ and $Q(x, y)\}$ in DCC. For suppose that Y is DCC via \triangleleft. Put:

$$
\langle x, y\rangle \triangleleft^{\prime}\left\langle x^{\prime}, y^{\prime}\right\rangle \quad \text { iff } y \triangleleft y^{\prime} \text { and } Q(x, y) \text { and } Q\left(x^{\prime}, y^{\prime}\right) .
$$

It is easy to see that Z is DCC via \triangleleft^{\prime}. We find: $Z \operatorname{sep}\left(\Sigma^{+}, \Sigma^{-}\right)$via χ^{+}, χ^{-}with:

$$
\chi^{+}(z): \cong\left\langle\varphi^{+}(z), \psi^{+}(z)\right\rangle
$$

and

$$
\chi^{-}(z): \cong\left\langle\varphi^{-}(z), \psi^{-}(z)\right\rangle .
$$

Contradiction.

4.8 COROLLARY

Let Y be DCC. Suppose $q \in T_{a}$ is an RE relation in q, a s.t.:
a) $a \in Y \rightarrow T_{a}$ is (a set of codes of) a consistent theory containing PA.
b) For every n there is an a in Y s.t.
$T_{a} \vdash{ }^{\prime} n \in \Sigma^{+}$" or $\quad T_{a} \vdash{ }^{\prime} \quad n \notin \Sigma^{+}$"
then there are no ψ^{+}, ψ^{-}s.t. for every z :

$$
\left(\left(\psi^{+}(z) \in Y \quad \text { and } \quad T_{\psi^{+}(z) \vdash} \vdash z \in \Sigma^{+\prime \prime}\right)\right.
$$

or

$$
\left.\left(\psi^{-}(z) \in Y \quad \text { and } \quad T_{\psi-(z)} \vdash{ }^{\prime \prime} z \notin \Sigma^{+\prime \prime}\right)\right) .
$$

PROOF: By taking in 4.7:

$$
\begin{aligned}
& X:=\bigcup_{a \in Y} T_{a}, \\
& \varphi^{+}(x):=" x \in \Sigma^{+} ", \\
& \varphi^{-}(x):=" x \notin \Sigma^{+} " .
\end{aligned}
$$

4.9 COROLLARY

The Gödel-Rosser-Mostowski-Myhill-Kripke Theorem: Let $\left(T_{a}\right)_{a \in \mathbb{N}}$ be a recursive sequence of consistent theories containing PA. Then there is a b s.t. for every a : $T_{a \nless}$ ' $b \in \Sigma^{+}$" and $T_{a \nless}$ " $b \notin \Sigma^{+} "$.

PROOF: Take for Y of 4.8 the set \mathbb{N}. Clearly condition a) of 4.8 is fulfilled. Suppose b) were fulfilled. It is easy then to give ψ^{+}, ψ^{-}s.t.

$$
T_{\psi^{+}(z) \vdash} \vdash ' z \in \Sigma^{+} ’
$$

or

$$
T_{\psi^{-(z)}} \vdash ' \quad z \notin \Sigma^{+}{ }^{\prime \prime} .
$$

Contradiction.

REFERENCES

[Fe] Feferman, S. - Transfinite Recursive Progressions of Axiomatic Theories, JSL, 27, 259-316 (1962).
[Fe, Sp] Feferman, S. and C. Spector - Incompleteness along paths in progressions of theories. JSL, 27, 383-390 (1962).
[Kr] Kreisel, G. - Which Number Theoretic Problems Can be Solved In Recursive Progressions on Π_{1}^{1}-Paths Through O? JSL, 37, 311-355 (1972).

PART 3

A Propositional Logic with Explicit Fixed Points

Albert Visser

Abstract: This paper studies a propositional logic which is obtained by interpreting implication as formal provability. It is also the logic of finite irreflexive Kripke Models.

A Kripke Model completeness theorem is given and several completeness theorems for interoretations into Provability Logic and Peano Arithmetic.

0.0 The strange tale of the Formalist who lost Modus Ponens

Imagine a formalist. He has become convinced that any philosophy of mathematics worth to be taken seriously, must explain the meanir of the logical constants. Yet he clings to the tenets of formalism He sets out to produce a hybrid: formal semantics.

Consider the translation * from L, the language of Propositional Logic (PL), to L_{\square}, the language of Modal Propositional Logic (MPL It is given by:

$\left.(A \wedge B) \stackrel{*}{\mapsto} \cdot A^{*} \wedge B^{*}\right)$
$\left.(A \vee B) \stackrel{*}{\mapsto}: A^{*} \vee B^{*}\right)$
$(A \rightarrow B) \stackrel{*}{\bullet} \square\left(A^{*} \rightarrow B^{*}\right)$.

Our formalist stipulates: the formalistic meaning of C is to be the classical meaning of C^{*}, where \square is interpreted as provability in some fixed formal system. For definiteness he restricts his attention to Peano Arithmetic (PA). An interpretation of L into $L_{\text {PA }}$ is just $f o^{*}$, where f is some interpretation for Provability
 will be defined as: A is formally valid iff for every interpretation g PAI- A^{g}.

The formalist proceeds to formalize. He looks for a logic - even before conception he calls it : Formal Propositional Logic (FPL) satisfying :
$\vdash_{F P L} A$ iff A is formally valid.
By Solovay's Completeness Theorem for Provability Logic (PrL), this is equivalent to : $\vdash_{\text {FPL }} A$ iff $\vdash_{\text {PrL }} A^{*}$.

The logic he finds turns out to have Full Explicit Fixed Points, i.e. for any $A(p, \vec{q})$ there is a $B(\vec{q})$ s.t. $B(\vec{q})-1 \vdash_{F P L} A(B(\vec{q}), \vec{q})$.

For this luxury however a price has to be paid. The Fixed Point Theorem readily yields an explicit Liar Sentence. Yet \perp should not be derivable. So one of the steps in the usual derivation of \perp must be blocked. It turns out to be Modus Ponens. The reason is that $\left.\mathrm{PA} \forall P \operatorname{Prov} \Gamma^{A}\right\urcorner \rightarrow A$ in general, e.g. PA $\forall \operatorname{Prov} \Gamma_{0}=17 \rightarrow \underline{0}=1$. This, of course, is part of Gödels Second Incompleteness Theorem.

After some soulsearching our formalist decides to follow the tortoise and repudiate Modus Ponens, for - he argues - what can one expect, to have a formal proof that $A^{*} \rightarrow B^{*}$, is no evidence whatsoever that if A^{*} is true, then B^{*} is true.

Only lately he is having some trouble expressing the thought

0.1 Motivation

A more serious reason than speculation about strange formalists to be interested in logics like FPL is the study of notions like Prov, formal provability as coded in PA, which naturally occur in the metamathematics of formal theories.

0.2 Contents

In the following I will provide a formalization of FPL and prove the associated completeness theorem .

The notion of interpretation described in 0.0 is not the only one which yields FPL and possibly not even the most interesting one. FPL turns out to be also the logic of Σ_{1}^{0}-sentences of PA by interpreting the atoms as Σ_{1}^{0}-sentences, \perp as $0=1$ and treating conjunction, disjunction and implication as before.
§ 1 contains the Kripke Model theoretic preliminaries for the development of FPL.
§ 2 gives FPL plus associated Kripke Model completeness theorem.
§ 3 has the basic facts about FPL.
§ 4 studies an extension of FPL which is complete for a certain infinite matrix.
§ 5 finally gives three interpretations into PA plus associated completeness theorems.
0.3 Some partly philosophical remarks
0.3.1 On a certain equation

Let IPL be Intuitionistic Logic. We have :

$$
\frac{I P L}{S_{4}}=\frac{F P L}{P r L}
$$

The reason is that * is a Gödel translation for IPL in S_{4}. We have :

$$
\vdash_{I P L} A \text { iff } \vdash_{S_{4}} A^{*}
$$

as well as

$$
\vdash_{F P L} A \text { iff } \vdash_{P r L} A^{*}
$$

The analogy gains substance when one considers that the axioms of S_{4} are valid for true, real or rigid provability. The crucial rule $\frac{\square A}{A}$, which is blocked in PrL, is justified as follows : suppose we have a proof p of A, then A, or else p would not be a true proof of A. This argument suggests that what a proof is, cannot be fixed completely by a set of 'formal' properties; there must be at least some semanticai properties.
0.3.2 Liar Paradox and Provability Paradox

With the usual derivation of the Liar Paradox in IPL from the postulated rules $\frac{L}{\neg L}(1)$ and $\frac{\neg L}{L}(2)$ corresponds via * the S_{4} derivation of the (true) Provability Paradox from the postulated rules $\frac{G}{\square \neg G}$ (3) and $\frac{\square \neg G}{C}$ (4). In FPL there is an explicit sentence L satisfying (1) and (2), likewise in PrL there is an explicit sentence G satisfying (3) and (4). In both cases paradox is blocked by failure of Modus Ponens resp. $\frac{\square A}{A}$.

0.4 Prerequisites

§ 1-4 are quite selfcontained. The reader only needs a basic under-. standing of Kripke Models for IPL, see e.g. [4] or [10]. §5 requires an understanding of the main results of PrL see E.g. [2], [9], [7], [8].

C.E Acknowledgements

The use of the work of the pioneers of Provability Logic should be evident.

For the development of the Kripke Model theory of $£ 1$, [6] has been my been my guide. [4]is related to [3].

The present work seems a companion to [2], [5] where the relation between PrL and S_{4} is studied.
1.1 Language

Let $P:=\left\{p_{0}, p_{1}, \ldots\right\}$ be the set of propositional variables. L is the smallest set s.t. :
$P \subseteq L ; \perp \in L ; A, B \in L \Rightarrow(A \wedge B),(A \vee B),(A \rightarrow B) \in L$.
1.2 The Theory

The theory Basic Propositional Logic BPL is given by the following groups of ruleschemes : group $I: \quad \wedge I \frac{A}{(A \wedge B)} \wedge E \quad \frac{(A \wedge B)}{A} \frac{(A \wedge B)}{B}$

(Transitivity)
$\wedge I f \quad \frac{(A \rightarrow B)(A \rightarrow C)}{(A \rightarrow(B \wedge C))}$
(formalized ^I)
vE f
$\frac{(A \rightarrow C)(B \rightarrow C)}{((A \vee B) \rightarrow C)}$
(formalized vE)

A rulescheme is considered here as a set of rules. A rule always contains individual elements of L, e.g. $\frac{P_{0} P_{1}}{\left(P_{0} \wedge P_{1}\right)}$ is a rule and $\frac{P_{0} P_{1}}{\left(P_{0} \wedge P_{1}\right)} \in \frac{A}{(A \wedge B)}$.

We may add to our system a set of additional rules R of the form $\frac{A_{1} \ldots A_{k}}{B}$. Such rules will be called normal rules.

When $\Gamma \subseteq L, \Gamma \vdash_{R} A$ means $: A$ is derivable from Γ, with the rules of BPL + R.

We say :

$$
\begin{aligned}
& \vdash_{R} A \text { for: } \emptyset \vdash_{R} A \\
& \Gamma \vdash A \text { for : } \Gamma \vdash_{\emptyset} A \\
& \vdash A \text { for : } \varnothing \vdash_{\emptyset} A \\
& A \nvdash \vdash_{\Gamma, R} B \text { for : } \Gamma, A \vdash_{R} B \text { and } \Gamma, B \vdash_{R} A \\
& A \nmid \vdash_{R} B \quad \text { for : } A \dashv \vdash_{\emptyset, R}{ }^{B} \\
& A+\vdash_{\Gamma} B \quad \text { for : } A+\vdash_{\Gamma, \emptyset} B \\
& A \nvdash \vdash B \quad \text { for }: A+\vdash_{\varnothing, \varnothing}{ }^{B}
\end{aligned}
$$

1.3 A few basic facts about BPL

1.3.1 Derived and underived schemes

The following are easily seen to be derived schemes :

$$
\begin{aligned}
& \Lambda E f: \frac{(A \rightarrow(B \wedge C))}{(A \rightarrow B)} \frac{(A \rightarrow(B \wedge C))}{(A \rightarrow C)} \\
& \vee I f: \frac{(A \rightarrow B)}{(A \rightarrow(B \vee C))} \frac{(A \rightarrow C)}{(A \rightarrow(B \vee C))} \\
& \rightarrow I f: \frac{((A \wedge B) \rightarrow C)}{(A \rightarrow(B \rightarrow C))}
\end{aligned}
$$

The following are not derived ruleschemes as can be seen from the completeness theorem (1.10):

$$
\begin{array}{ll}
\rightarrow E & \frac{A A \rightarrow B}{B} \\
\text { (or Modus Ponens) }
\end{array} \quad \begin{aligned}
& \frac{(A \rightarrow(B \rightarrow C))}{((A \wedge B) \rightarrow C)} \\
& \rightarrow E f
\end{aligned}
$$

1.3.2 Substitution of equivalents

Let a propositional context C [] be defined as usual. The following can be proved by easy inductions :
i) $S E$: $A \not f \vdash_{\Gamma, R} \cdot B \Rightarrow C[A] \nvdash_{\Gamma, R} C[B]$
(Substitution of Equivalents)
ii) SEf : $A \leftrightarrow B \vdash C[A] \leftrightarrow C[B]$
(formalized S E)
SE justifies us to be careless with brackets, so we will be.
1.4 Models

A (Kripke) Model K is a structure $<W, \triangleleft, f>$ where W is a set of "worlds"; \triangleleft a binary transitive relation on W; f a function from w in the subsets of P s.t. $w<w^{\prime} \Rightarrow f(w) \subseteq f\left(w^{\prime}\right)$.
1.4.1 Satisfaction

Let $K=\langle W, \triangleleft, f\rangle$ be a Model. $\|_{K} \subseteq W \times L$ is the smallest relation s.t. :
$-p_{i} \in f(w) \Rightarrow w{ }^{\|}{ }_{K} p_{i}$

- $w \Vdash_{K} A$ and $w \Vdash_{K} B \Rightarrow w H_{K} A \wedge B$
- $w \|_{K} A$ or $\quad w \|_{K} B \Rightarrow w \mathbb{I}_{K} A \vee B$
$-\left(\forall w^{\prime} \triangleright w \quad w^{\prime} \Vdash_{K} A \Rightarrow w^{\prime} \Vdash_{K} B\right) \Rightarrow w \Vdash_{K}(A \rightarrow B)$.
Define further for $\Gamma \subseteq L:$
$\Gamma \mathbb{H}_{K} A: \Leftrightarrow \forall w \in W\left(w \mathbb{H}_{K} \Gamma \Rightarrow w \mathbb{H}_{K} A\right)$. We write $K \|$ i- A or $\|_{K} A$ for $\emptyset \|_{K} A$.

1.4.2 Fact

For all $A \in L$ and $w, w^{\prime} \in w: w \mathbb{H}_{K} A$ and $w^{\prime} \triangleright w \Rightarrow w^{\prime} \|-_{K} A$.

1.4.3 Closure under rules

We say that K is closed under a rule of the form $\frac{A_{1} \ldots A_{k}}{B}$ if $\left\{A_{1}, \ldots, A_{k}\right\} \Vdash_{K} B$.

Let R be a set of normal rules. We say that K is closed under R if
K is closed under every element of R.
Define $: \Gamma \mathbb{F}_{R} A: \Leftrightarrow$ for every R-closed $K \quad \Gamma \Vdash_{K} A$.

We have :
1.4.4 Soundness Theorem
$\Gamma \vdash_{R} A \Rightarrow \Gamma \Vdash_{R} A$.

Proof: Routine.

As a preliminary for the completeness theorem we will give a connection between 'formalized' and 'unformalized' .
:. Definition
Let $\Gamma \subseteq L$. Jefine $: \quad R_{\Gamma}:=\left\{\left.\frac{A_{1} \ldots A_{k}}{B} \right\rvert\, \Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow B\right\}$.
1.5.1 Fact
$R \subseteq R_{\Gamma}$.
Proof: If $\frac{A_{1} \ldots A_{k}}{B} \in R$ then $\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow B$.
1.6 Theorem

For all $\Gamma \subseteq L ; k \in \mathbb{N} ; A_{1} \ldots A_{k}, B \in L$:
$\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow B \Leftrightarrow \Gamma, A_{1} \ldots A_{k} \vdash_{R_{\Gamma}} B$.
Proof : $" \Rightarrow "$ By definition.
$" \&$ " By induction on the length of the proof.

Case i) The length of the proof is 0 , i.o.w. $B \in \Gamma, A_{1} \ldots A_{k}$. Trivial.

Case ii) The last rule applied is of group I or of R_{Γ}. Say it is $R=\frac{B_{1} \ldots B_{s}}{C}$.

We have :

$$
\Gamma, A_{1} \ldots A_{k} \vdash_{R_{\Gamma}} B_{1}, \ldots \Gamma, A_{1} \ldots A_{k} \vdash_{R_{\Gamma}} B_{s} .
$$

By Induction Hypothesis and $\Lambda I f$:

$$
\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow\left(B_{1} \wedge \ldots B_{S}\right) .
$$

When $R \in R_{\Gamma}$ we have by definition :

$$
\Gamma \vdash_{R}\left(B_{1} \wedge \ldots B_{s}\right) \rightarrow C .
$$

When R is of group I this follows by $\wedge E$ and $\rightarrow I$.
By Tr we find :

$$
\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow C .
$$

Case iii) The last rule applied is $\rightarrow I$. We have:

$$
\Gamma, A_{1} \ldots A_{k} \vdash_{R_{\Gamma}} B \rightarrow C \text { from } \Gamma, A_{1} \ldots A_{k}, B \vdash_{R_{\Gamma}} C .
$$

By Induction Hypothesis :

$$
\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k} \wedge B\right) \rightarrow C .
$$

Using the derived rule \rightarrow If we find :

$$
\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow(B \rightarrow C) .
$$

Case iv) The last rule applied is vE. We have $\Gamma, A_{1} \ldots A_{k} \vdash_{R_{\Gamma}} D$ from $\Gamma, A_{1} \ldots A_{k} \vdash_{R_{\Gamma}} B \vee C ; \Gamma, A_{1} \ldots A_{k}, B \vdash_{R_{\Gamma}} D ; \Gamma, A_{1}, \ldots, A_{k}, C \vdash_{R_{\Gamma}} D$.
By Induction Hypothesis :

$$
\begin{aligned}
& \Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow(B \vee C) \Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k} \wedge B\right) \rightarrow D ; \\
& \Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k} \wedge C\right) \rightarrow D .
\end{aligned}
$$

By vef we find :

$$
\Gamma \vdash_{R}\left(\left(A_{1} \wedge \ldots A_{k} \wedge B\right) \vee\left(A_{1} \wedge \ldots A_{k} \wedge C\right)\right) \rightarrow D .
$$

One easily shows :

$$
\Gamma \vdash_{R}\left(\left(A_{1} \wedge \ldots A_{k}\right) \wedge(B \vee C)\right) \rightarrow\left(\left(A_{1} \wedge \ldots A_{k} \wedge B\right) \vee\left(A_{1} \wedge \ldots A_{k} \wedge C\right)\right)
$$

So by Tr :

$$
\Gamma \vdash_{R}\left(\left(A_{1} \wedge \ldots A_{k}\right) \wedge(B \vee C)\right) \rightarrow D
$$

Using :

$$
\frac{\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow\left(A_{1} \wedge \ldots A_{k}\right)\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow B \vee C}{\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow\left(\left(A_{1} \wedge \ldots A_{k}\right) \wedge(B \vee C)\right)} \wedge I f
$$

we find using Tr again :

$$
\Gamma \vdash_{R}\left(A_{1} \wedge \ldots A_{k}\right) \rightarrow D
$$

f.i Definition

$\Gamma \subseteq L$ is called R-prime if whenever $\Gamma \vdash_{R} A$ we have $A \in \Gamma$ and whenever $\Gamma \vdash_{R} A \vee B$ we have $\Gamma \vdash_{R} A$ or $\Gamma \vdash_{R} B$. Moreover Γ must be consistent.
1.8 Fact

If $\Gamma \forall_{R} A$ then there is an R-prime $\Gamma^{\prime} \supseteq \Gamma$ s.t. $\Gamma^{\prime} \forall_{R} A$.
Proof : Routine.
1.S Theorem

If $\Gamma \not \forall_{R} A$ then there is an R-closed model $K=\langle W,\langle, f\rangle$ s.t.
$K \mathbb{H}$ and $K \| A$.
Proof: Take $W:=\{[\Delta] \mid \Delta \supseteq \Gamma, \Delta$ is R-prime $\}$, where $[\Delta]$ stands for
$<\emptyset, \Delta>$. We use [Δ] rather than Δ itself to avoid confusion between $\Delta \mathbb{H}_{K} A$ as a world and $\Delta \Vdash_{K} A$ as a theory.
$[\Delta] \quad\left[\Delta^{\prime}\right]: \Leftrightarrow \Delta^{\prime}$ is R_{Δ} prime.
$f([\Delta]):=P \cap \Delta$.
Note that :
$[\Delta]<\left[\Delta^{\prime}\right] \Rightarrow \Delta \subseteq \Delta^{\prime} \Rightarrow f([\Delta]) \subseteq f\left(\left[\Delta^{\prime}\right]\right)$.
It is easy to verify that \langle is transitive so K is a genuine model.

Claim ：$\left\{B \mid[\Delta] \Vdash_{K} B\right\}=\Delta$ ．
The proof is by induction on the length of B ．The only problematic case is \rightarrow ：

Suppose $(D \rightarrow E) \in \Delta$ ．Then $\frac{D}{E} \in R_{\Delta}$ ．
So for every $R^{\Delta^{\prime}}$－prime $\Delta^{\prime}: D \in \Delta^{\prime} \Rightarrow E \in \Delta^{\prime}$ ．By Induction Hypothesis： for every $\left[\Delta^{\prime}\right] \triangleright[\Delta]\left(\left[\Delta^{\prime}\right] \Vdash_{K} D \Rightarrow\left[\Delta^{\prime}\right] \|_{K} E\right)$ ，i．e．$[\Delta] \|_{K}(D \rightarrow E)$ ．

Now suppose $(D \rightarrow E) \notin \Delta$ ，then by theorem $1.6 \Delta, D H_{R_{\Delta}} E$ ．Extend $\Delta U\{D\}$ to an R_{Δ}－prime Δ^{\prime} s．t．$\Delta^{\prime} H_{R_{\Delta}} E$ ．We have $\left[\Delta^{\prime}\right] \triangleright[\Delta]$ ． By Induction Hypothesis ：

$$
\left[\Delta^{\prime}\right] \Vdash_{K} D \text { and }\left[\Delta^{\prime}\right] \Vdash_{K} E \text {. So }[\Delta] \Vdash_{K}(D \rightarrow E) \text {. }
$$

It follows easily that ：
－K is R－closed
－K $ト$ Г，because each Δ つ 「
－$K \Vdash H A$ ，because there is an R－prime Δ s．t．$\Delta \supseteq \Gamma$ and $A \notin \Delta$ ．

1．10 Completeness Theorem
$\Gamma \vdash_{R} A \oplus \Gamma \Vdash_{R} A$ ．
Proob ：Combine 1.4 .4 and 1.9.

1．11 Remark
By inspection of the proof，we can see that we have the completeness theorem also for the class of models $K=\langle W, \triangleleft, f\rangle s, t, w \nmid w ' \triangleleft w \Rightarrow$ $\Rightarrow w=w^{\prime}$ ．

Logic.
Let Intuitionistic Propositional Logic (IPL) be BPL $+\rightarrow$. Then: $\Gamma \vdash_{\text {IPL }} A \Leftrightarrow$ for all reflexive $K: \Gamma \Vdash_{K} A \Leftrightarrow$ for all K where \triangleleft is a weak partial order $\Gamma \mathbb{H}_{K} A$.
Proof : " \Rightarrow " is clear.
$" \& "$ It is sufficient to show that the model constructed in 1.9 is reflexive when $R=\rightarrow E$. We have to show that any $\rightarrow E$-prime $\Delta \geq \Gamma$ is R_{Δ}-prime. But that is immediate using $\rightarrow E$.
1.13 Lemma

Suppose $\Gamma H A, \Gamma$ finite. Then there is a finite $K_{0}=\left\langle W_{0}, \triangleleft_{0}, f_{0}\right\rangle$, where $w \triangleleft_{0} w^{\prime} \triangleleft_{0} w \Rightarrow w=w^{\prime}$ s.t. $K_{0} \Vdash \Gamma$ and $K_{0} \| \neq A$.

Proof :Consider the model $K=\langle W, \triangleleft, f\rangle$ constructed in 1.9 s.t. $K \Vdash \Gamma$ and $K \| A$ (for $R=\varnothing$). Let Λ be the set of subformulas of the elements of $\Gamma \cup\{A\}$. (Each formula is a subformula of itself). Define :
$-\widetilde{w}:=\left\{B \in \Lambda \mid w \|_{K} B\right\}$

- $W_{0}:=\{\tilde{w} \mid w \in W\}$
- for $a, b \in W_{0}: a<l_{0} b: \Leftrightarrow a \subseteq b$ and $\operatorname{if}(E \rightarrow F) \in a, E \in b$ then $F \in b$.
$-f_{0}(a)=a \cap P$.

It is easy $=0$ see that K_{0} is a model, that K_{0} is finite and that $a \triangleleft_{0} a \triangleleft_{0} a \Rightarrow a=a^{\prime}$.

Claim : for every $B \in \Lambda: w \mathbb{H}_{K} B \Leftrightarrow \tilde{w} \mathbb{H}_{K_{0}} B$. The proof is by induction on the length of B. The only problematic case is \rightarrow. Let $B \equiv(E \rightarrow F) \in \Lambda$.
$" \Rightarrow$ Suppose $w \|_{K}(E \rightarrow F)$ and $a \nabla_{0} \tilde{w}$ and $a \|_{K_{0}} E$. There is a u such that $a=\tilde{u}$. By Induction Hypothesis: $u \|_{K} E$, hence $E \in \tilde{u}$ i.e. $E \in a$. Moreover $(E \rightarrow F) \in \tilde{w}$, a $\triangleright_{0} \tilde{w}$, so $F \in a$. Hence $u \|_{-} F$. Again by Induction Hypothesis: $\tilde{u} \|_{-K_{0}}{ }^{F}$ i.e. a $\|_{-K_{0}}{ }^{F}$.
$" \Leftarrow \quad$ Suppose $\tilde{w} \mathbb{H}_{K_{0}}(E \rightarrow F)$, $w^{\prime} \triangleright_{w}, w^{\prime} \mathbb{H}_{K} E$. Clearly $\tilde{w}^{\prime} \triangleright_{0} \tilde{w}$ and by Induction Hypothesis $\tilde{w}^{\prime} \|_{-} K_{0} E$, hence $\tilde{w}^{\prime} \|_{K_{0}} F$. Again by Induction Hypothesis: $w^{\prime} \|_{K}$ F.
1.14 Corollary

If Γ is finite we have
i) $\quad \Gamma \vdash A \Leftrightarrow$ for all finite models $K: \Gamma \Vdash_{K} A$
ii) $\Gamma \vdash_{\text {IPL }} A \Leftrightarrow$ for all finite K, where \triangleleft is a weak partial order $\Gamma \Vdash_{K} A$.

Proob : From 1.13 Observe that the construction in 1.13 preserves reflexivity.

2 FORMAL PROPOSITIONAL LOGIC
2.1 The system FPL

Let Löb's Rule L be $: \frac{(T \rightarrow A) \rightarrow A}{T \rightarrow A}$, where $T: \equiv(\perp \rightarrow \perp)$. FPL is BPL + L.

2.2 Completeness Theorem for FPL

Let $\Gamma \subset L, \Gamma$ finite, then :
$\Gamma \vdash_{F P L} A \Leftrightarrow$ for every finite irreflexive $K \quad \Gamma \Vdash_{K} A$.
Proof :
$" \Rightarrow$ " We will prove more generally that every K s.t. \downarrow is reverse wellfounded (i.e. \triangleright is wellfounded) is closed under L.

Consider $w \in W$. Suppose that every $u \triangleright w$ is closed under L and suppose $w \Vdash_{K}(T \rightarrow A) \rightarrow A$.

For $u \triangleright w$ we have $u \Vdash_{K}(T \rightarrow A) \rightarrow A$ by monotonicity. u is closed under L so $u \mathbb{H}_{K} T \rightarrow A$. Moreover if $u \mathbb{H}_{K} T \rightarrow A$, then $u \mathbb{F}_{K} A$ because $w \mathbb{H}_{K}(T \rightarrow A) \rightarrow A$. So $u \Vdash_{K} A$ for any $u P w$. So $w \mathbb{H}_{K} T \rightarrow A$. By transfinite induction we find that K is closed under L.
$" \sim$ Suppose $\Gamma \forall_{F P L} A$. Let K be the model constructed in 1.9 s.t. K is L-closed and $K \mathbb{H} \Gamma$ and $K \mathbb{H} A$. Let K_{0} be the model constructed in 1.13. We have $K_{0} \mathbb{H} \Gamma$ and $K_{0} \mathbb{H}+A$. Note that we do not know whether K_{0} is closed under L. Define $K_{1}=\left\langle W_{0}, \triangleleft_{1}, f_{0}\right\rangle$, where $a \triangleleft_{1} b: \Leftrightarrow\left(a \triangleleft_{0} b\right.$ and $\left.a \neq b\right)$. By the " \Rightarrow " part of our proof we see that K_{1} is automatically closed under L. Let Λ be as in 1.13. We prove :

For all $B \in \Lambda$, for all $w \in W: w \mathbb{H}_{K} B \Leftrightarrow \tilde{w} \|_{K_{K}} B \Leftrightarrow \tilde{w} \mathbb{r}_{K_{1}} B$. We already have the first equivalence. We prove the second one with induction on the length of B. The only non trivial case is again \rightarrow •

Suppose $B=(E \rightarrow F) \in \Lambda$.

1) If $\tilde{w} \Vdash_{K_{0}} E \rightarrow F$, then for any $\tilde{u} \triangleright_{0} \tilde{w}\left(\tilde{u}\left\|-_{K_{0}} E \rightarrow \tilde{u}\right\| r_{K_{0}} F\right)$.

By Induction Hypothesis : for every $\tilde{u} D_{0} \tilde{w}\left(\tilde{u} \Vdash_{K_{1}} E \rightarrow \tilde{u} \|_{-K_{1}} F\right)$.
So certainly : for any $\tilde{u} D_{1} \tilde{w}\left(\tilde{u}\left\|_{K_{1}} E \rightarrow \tilde{u}\right\|_{K_{1}}{ }^{F}\right)$. Thus :
$\tilde{w} \|_{K_{1}}(E \rightarrow F)$.
II) If $\tilde{w} \|+_{K_{0}} E \rightarrow F$, then there is an $\tilde{u} D_{0} \tilde{w}$ with $\left(\tilde{u} \| r_{K_{0}} E\right.$ and $\left.\tilde{u} \|+_{K_{0}}{ }^{F}\right)$.

Case i) There is such as \tilde{u} s.t. $\tilde{u} \neq \tilde{w}$. Then $\tilde{u} D_{1} \tilde{w}$ and by Induction Hypothesis $\tilde{u} \|_{K_{K}} E$ and $\tilde{u} \| \vdash_{K_{1}} F$. So $\tilde{w} \| \vdash_{K_{1}} E \rightarrow F$.

Case ii) The only such \tilde{u} is \tilde{w} itself. We have :
a) For every ut $D_{1} \tilde{w}:\left.\tilde{u}\left\|_{K_{0}} E \rightarrow \tilde{u}\right\|\right|_{K_{0}} F$
b) $\tilde{w} \mathbb{r}_{K_{0}} E$ and $\tilde{w} \| \gamma_{K_{0}}{ }^{F}$ and $\tilde{w} \nabla_{0} \tilde{w}$

Consider a u \triangleright w with $u \|_{K} E \rightarrow F$. It follows that :
c) $\tilde{u} D_{0} \tilde{w}$
d) $\tilde{u} \|_{K_{0}}(E \rightarrow F)($ because $(E \rightarrow F) \in \Lambda), \tilde{w} \| H_{K_{0}} E \rightarrow F$
e) $\tilde{u} D_{1} \tilde{w}$ (by (c), (d))
b) $\tilde{u} \|_{K_{K_{0}}} E(b y(b),(c))$
g) $\tilde{u} \|_{K_{0}} F(\operatorname{la},(e),(f))$
h) $u \| I_{K} F(F \in \Lambda)$
$u \triangleright w$ with $u \|_{-}(E \rightarrow F)$ was arbitrary, so :
i) $w \mathbb{H}_{K}(E \rightarrow F) \rightarrow F$.

By :

we find :
j) $w \|_{K} E \rightarrow F \quad((i))$

Thus
k) $\underset{\mathrm{w}}{\operatorname{H}} \mathbb{K}_{K_{0}} \mathrm{E} \rightarrow \mathrm{F} \quad((E \rightarrow F) \in \Lambda,(j))$

Contradiction.

3
BASIC FACTS ABOUT FPL
3.1 An alternative version of Löb's Rule

There is an alternative version of Löb's Rule L' which is interderivable with L over BPL. Namely :

$$
\begin{gathered}
T \not f A \\
\dot{\cdot} \\
\dot{\cdot} \\
\frac{A}{A} L \cdot
\end{gathered}
$$

Proo6:

3.2 Definition

FC($\left.p_{i}\right)$, the set of Formal Contexts of p_{i} is smallest set s.t.
i) $i \neq j \Rightarrow p_{j} \in F C\left(p_{i}\right)$
ii) $\quad \perp \in F C\left(p_{i}\right)$
iii) $A, B \in L \Rightarrow(A \rightarrow B) \in F C\left(p_{i}\right)$
iv) $A, B \in F C\left(p_{i}\right) \Rightarrow(A \wedge B),(A \vee B) \in F C\left(p_{i}\right)$
3.3 Example
$p_{0} \wedge\left(p_{1} \rightarrow p_{0}\right)$ is a formal context of p_{1} and not of p_{0}.
3.4 Theorem: More Substitution of Equivalents

Let $C\left[p_{0}\right]$ be a formal context of p_{0}.
i) SE^{+}: FPL is closed under : $A \leftrightarrow B \quad C[A]$
ii) $S E^{+} f$: FPL is closed under $\quad \frac{T \rightarrow(A \leftrightarrow B)}{C[A] \leftrightarrow C[B]}$

Proof : Induction on proof length or use Completeness Theorem.
3.5 Unicity of Fixed Points in Formal Contexts

Suppose $C\left[p_{0}\right]$ is a formal context of p_{0}. We have :
i) $\left(A \not f \vdash_{\Gamma, F P L} C[A]\right.$ and $\left.B \dashv \vdash_{\Gamma, F P L} C[B]\right) \Rightarrow A \dashv \vdash_{\Gamma, F P L} B$.
ii) (Formal Version of $i)$: FPL is closed under :

$$
\frac{A \leftrightarrow C[A] \quad B \leftrightarrow C[B]}{A \leftrightarrow B}
$$

Proo6:
i)

ii)

$$
\frac{A \leftrightarrow C[A] \quad \frac{T \rightarrow(A \leftrightarrow B)}{C[A] \leftrightarrow C[B]} S E^{+} f}{A \leftrightarrow C[B]} \operatorname{Tr}_{B \leftrightarrow C[B]}^{A \leftrightarrow B} L^{\prime} . \quad
$$

3.6 Fixed Point Theorem

For any $C\left[p_{0}\right]$ we have :
$C[T]+\vdash_{F P L} C[C[T]]$.
Before proving 3.6, first we give two lemma's.
3.6.1 Lemma

Let $D\left[p_{0}\right]$ be a formal context of p_{0} then :
$D[T] \dashv \vdash_{F P L} D[D[T]]$.

Proob : " |-"
Trivially we have : $[T] \nmid \vdash_{D}[T], F P L T$,
so by SE : $\quad D[D[T]]+\vdash_{D[T], F P L} D[T]$.
Thus : $D[T] \vdash_{F P L} D[D[T]]$.
(Note that we did not use that $D\left[p_{0}\right]$ is formal, nor did we use L.)
$" \dashv "$

3.6.2 Definition

SIC (p_{i}), the set of strictly informal contents of p_{i}, is the smallest set s.t.
i) $\quad p_{i} \in \operatorname{SIC}\left(p_{i}\right)$
ii) P_{i} does not occur in $A \Rightarrow A \in \operatorname{SIC}\left(p_{i}\right)$
iii) $D, E \in S I C\left(p_{i}\right) \Rightarrow D \wedge E, D \vee E \in \operatorname{SIC}\left(p_{i}\right)$
3.6.3 Example
$\left(p_{0} \wedge p_{1}\right) \vee\left(p_{1} \rightarrow p_{2}\right)$ is in SIC $\left(p_{0}\right)$ but not in SIC($\left.p_{1}\right)$.
3.6.4 Lemma

For every $D \in L, p_{i} \in P$ there is a $p_{k}, p_{l} \in P, E\left[p_{k}\right]<p_{\ell}>\in L$ s.t. $D \equiv E\left[p_{i}\right]<p_{i}>$ and $E\left[p_{k}\right]<p_{\ell}>\in F C\left(p_{k}\right)$ and $E\left[p_{k}\right]<p_{l}>\in \operatorname{SIC}\left(p_{\ell}\right)$.

Proof : routine.
3.1..

Let $D \equiv p_{0} \vee\left(p_{1} \rightarrow p_{0}\right)$. For p_{0} choose p_{2}, P_{3} and $E\left[p_{2}\right]\left\langle p_{3}\right\rangle \equiv$ $\equiv p_{3} \vee\left(p_{1} \rightarrow p_{2}\right)$.
3.6.6 Lemma

If $D\left[p_{0}\right] \in \operatorname{SIC}\left(p_{0}\right)$, then $F P L$ is closed under $\frac{D[A]}{D[T]}$.
Proob : Induction on $D\left[p_{0}\right]$. (The idea is that the relevant occurences of A are only in positive places.)

Proof of 3.6
$" \vdash "$ By the same reasoning as the "卜" part of 3.6.1.
$"-\mid "$ Write $C\left[p_{0}\right]$ as $D\left[p_{0}\right]<p_{0}>$, where $D\left[p_{0}\right]<p_{0}>$ is as in 3.6.4.
Appiy 3.6.1 to $D\left[p_{0}\right]<T>$. We find :
$C[T] \equiv D[T]<T>+\vdash_{F P L} D[C[T]]<T>$.
By 3.6.6:
$C[C[T]] \equiv D[C[T]]<C[T]>\vdash_{F P L} D[C[T]]<T>$.
So we have: $C[C[T]] \vdash_{F P L} C[T]$.
3.7 Remark

Of course we do not have unicity of fixed points in general as is seen in the case $C\left[p_{0}\right] \equiv p_{0}$.
We do get :
$A-\vdash_{\Gamma, F P L} C[A] \Rightarrow A \vdash_{\Gamma, F P L} C[T]$. Sinde $A-1 \vdash_{\Gamma, A, F P L} T$, we get
$C[A]-\vdash_{\Gamma, A, F P L} C[T]$. So $A, C[A] \vdash_{\Gamma, F P L} C[T]$. Thus $A \vdash_{\Gamma, F P L} C[T]$. So $C[T]$ is the maximal fixed point w.r.t. $1_{\Gamma, F P L}$.
3.8 Example: "The Liar"
$T \rightarrow \perp$ is the unique $A\left(\operatorname{modulo}-1 \vdash_{F P L}\right)$ s.t. $A \dashv \vdash_{F P L} \neg A(\equiv A \rightarrow \perp$.

4 A "CLASSICAL" VERSION OF FPL
4.1 Definitions

Let $\Gamma, \Delta \subseteq L$.
i) Sub $_{\Delta}=\{s \mid s: P \rightarrow \Delta\}$
ii) $-p_{i}{ }^{s}=s\left(p_{i}\right)$
$-(A \wedge B)^{S}=\left(A^{S} \wedge B^{5}\right)$
$-(A \vee B)^{s}=\left(A^{s} \vee B^{S}\right)$
$-(A \rightarrow B)^{S}=A^{S} \rightarrow B^{S}$
iii) $\Gamma^{S}=\left\{B^{s} \mid B \in \Gamma\right\}$
iv) $\Gamma \|={ }_{\Delta, R} A: \Leftrightarrow$ for every $s \in \operatorname{Sub}_{\Delta}\left(\vdash_{R} \Gamma^{5} \Rightarrow \vdash_{R} A^{S}\right)$.
4.2 Some Facts
i) Consider $s \in \operatorname{Sub}_{\{1\}}$. We have for any $A \in L$:

$$
A^{5} \nvdash \vdash_{I P L} T \text { or } A^{s} \dashv \vdash_{I P L} \perp
$$

ii) Let CPL be Classical Propositional Logic. We have :

$$
\Gamma \vdash_{C P L} A \Leftrightarrow \Gamma \|=\{T, \perp\}, I P L A
$$

iii) $\quad \Gamma \vdash_{C P L} A \Leftrightarrow \Gamma \|_{L, C P L} A$.

Proofs : routine.

Below we will do something analogous to the "classification" of IPL for FPL.
4.3 Definitions
i) $-\perp_{\omega}: \equiv T(\equiv \perp \rightarrow \perp)$
$-\perp_{0}: \equiv 1$
$-\perp_{n+1}: \equiv T \rightarrow \perp_{n}$

4.4 Facts

i) $a, b \in \omega+1$ and $a<b \Rightarrow \perp_{a} \vdash_{F P L} \perp_{b}$ and $\perp_{b} \not_{F P L} \perp_{a}$.
ii) Let $a, b \in \omega+1$, then :

$$
-\quad \perp_{a} \wedge \perp_{b} \dashv \vdash_{F P L} \perp_{\min }(a, b)
$$

$-\perp_{a} \vee \perp_{b} \nvdash^{F P L}{ }^{\perp} \max (a, b)$

- if $a \leqslant b \quad \perp_{a} \rightarrow \perp_{b}-1 \vdash_{F P L}{ }^{\top}$
if $a>b \quad \perp_{a} \rightarrow 1_{b} \nvdash_{F P L} \perp_{b+1}$
iii) If $s \in \operatorname{Sub}_{\{1\}}$, then for any $A \in L$, there is an a $\in \omega+1$ set.:
$A^{5} \dashv \vdash^{F P L}{ }^{\perp}$ a
Proofs : All the proofs are easy. Let me just prove:

$$
a>b \rightarrow \perp_{a} \rightarrow 1_{b} \nmid \vdash_{F P L} \perp_{b+1}
$$

$$
\begin{aligned}
& "-1 " \\
& \frac{\perp_{a} \rightarrow T}{\perp_{a} \rightarrow \perp_{b}} \stackrel{\perp_{b}^{\perp_{b+1}}}{\perp_{b}} \operatorname{Tr} \\
& " \mid-" \\
& \frac{\perp_{a} \rightarrow \perp_{b}{\frac{\perp_{b}}{\perp_{a-1}} \text { by (i) }}_{\perp_{a-1} \rightarrow \perp_{a-1}}^{\perp_{a}} \text { (il }}{\frac{\perp_{a}}{}} \\
& \frac{\left(T \rightarrow \perp_{a-1}\right) \rightarrow \perp_{a-1}}{T \rightarrow \perp_{a-1}} L \\
& \text { III } \\
& \frac{\perp_{a}}{T \rightarrow \perp_{a} \perp_{a} \rightarrow \perp_{b}} \underset{T \rightarrow \perp_{b}}{ } \\
& \text { III } \\
& \perp_{b+1}
\end{aligned}
$$

4.5 Definitions

i) $\wedge:(\omega+1)^{2} \rightarrow(\omega+1)$ with $\wedge(a, b)=\min (a, b)$
$v:(\omega+1)^{2} \rightarrow(\omega+1)$ with $v(a, b)=\max (a, b)$
$\rightarrow:(\omega+1)^{2} \rightarrow(\omega+1)$ with $\rightarrow(a, b)=\left\{\begin{array}{l}\omega \text { if } a \leqslant b \\ b+1 \text { if } a>b\end{array}\right.$
ii) An assignment f is a function $P \rightarrow \omega+1$.
iii) Let f be an assignment. Define :
$-\llbracket p_{i} \rrbracket_{f}=f\left(p_{i}\right)$
$-\llbracket \perp \mathbb{1}_{f}=0$
$-\llbracket(A \wedge B) \mathbb{1}_{f}=\Lambda\left(\llbracket A \mathbb{I}_{f}, \llbracket B \mathbb{\rrbracket}_{f}\right)$
$-\llbracket(A \vee B) \mathbb{1}_{f}=v\left(\llbracket A \mathbb{I}_{f}, \llbracket B \mathbb{\rrbracket}_{f}\right)$
$-\llbracket A \rightarrow B \rrbracket_{f}=\rightarrow\left(\llbracket A \rrbracket_{f}, \llbracket B \rrbracket_{f}\right)$
iv) Let $\Gamma \cup\{A\} \subseteq L$. Define :
$-\Gamma \mathcal{F}_{f}^{*} A: \Leftrightarrow\left(\left(\right.\right.$ for every $\left.\left.B \in \Gamma: \mathbb{\|} B \mathbb{l}_{f}=\omega\right) \rightarrow \mathbb{U} A \mathbb{\rrbracket}_{f}=\omega\right)$

- $\Gamma \mid{ }^{*} A$: for every assignment $g \Gamma \neq g A$
$-\Gamma \|_{f} A: \inf \left(\left\{\llbracket B \mathbb{1}_{f} \mid B \in \Gamma\right\}\right) \leqslant \mathbb{A} \mathbb{1}_{f}$ (Note that $\inf (\varnothing)=\omega$)

4.6 Facts
i) $\quad \mid={ }_{f}^{*} A \Leftrightarrow F_{f} A$
ii) $\quad F_{f}^{*} A \rightarrow B \Leftrightarrow F_{f} A \rightarrow B \Leftrightarrow A F_{f} B$
iii) $\Gamma F_{f} A \Rightarrow \Gamma F_{f}^{*} A$
iv) $\quad \Gamma I^{*} A \Leftrightarrow \Gamma \|=\left\{\perp_{a} \mid a \in \omega+1\right\}, F P L A$
v) $\quad \Gamma \quad I^{*} A \Leftrightarrow$ (for every $s \in \operatorname{Sub}_{L}: I^{*} \Gamma^{s} \rightarrow F^{*} A^{s}$).

Proofs: i) - iv) are entirely routine. Let us do vl.
$" \Rightarrow "$ Suppose $\Gamma \quad I^{*} A$ and $k^{*} \Gamma^{s}$. Consider an assignment g. We have: ${ }^{\prime}={ }_{g}^{*} \Gamma^{s}$. Define an assignment h as: $h\left(p_{i}\right)=\llbracket s\left(p_{i}\right) \rrbracket_{g}$. Then $F_{h}^{*} \Gamma$, so $F_{h}^{*} A$. Thus $F_{g}^{*} A^{s}$.
$" \& " \quad$ Suppose for every $s \in \operatorname{Sub}_{L} l^{\prime}{ }^{*} \Gamma^{s} \Rightarrow \vDash^{*} A^{s}$. Let $F_{f}^{*} \Gamma$. Define s with $s\left(p_{i}\right)=\perp_{f\left(p_{i}\right)}$. Then: $\stackrel{*}{\mid=} \Gamma^{s}$, so ${ }_{\mid=}^{*} A^{s}$, thus $F_{f}^{*} A$.
4.7 Facts
i)
$A, A \rightarrow B \mid={ }^{*} B$
ii) $\quad p_{0}, p_{0} \rightarrow p_{1} \not \vDash p_{1}$
iii) $\left.\perp_{1}\right|^{*} \perp$, but not $\left.\right|^{*} \perp_{1} \rightarrow \perp$.
iv) $\quad \Gamma, A \quad B \rightarrow \Gamma \quad A \rightarrow B$

Proofs: routine.
Obviously $\mid=$ looks more like FPL then $\left.\right|^{*}$. Below we will axiomatize k.

4.8 Theorem

Let $\Gamma \cup\{A\} \subseteq L$. We have :
$\Gamma \equiv A \Leftrightarrow$ for all finite, irreflexive, linear $K: \Gamma \Vdash_{K} A$.

Proo6:

$" \Rightarrow "$ Suppose Γ I= A. Let K be finite, irreflexive and linear, and ${ }^{W} \|_{K}{ }_{K}$. Without loss of generality we may assume that w is the downmost node of K and that $W=\{1, \ldots N\}$ and that $m \triangleleft n \Leftrightarrow$ $m>n$.

Define $\alpha_{K}(A)=\left\{\begin{array}{l}\max \left\{k \mid 1 \leqslant k \leqslant N \text { and } k \mathbb{H}_{K} A\right\} \text { if there is such a } k \\ 0 \text { else }\end{array}\right.$
Define an assignment f_{K} by: $f_{K}\left(p_{i}\right)=\alpha_{K}\left(p_{i}\right)$. We claim : $\alpha_{K}(A)=\min \left(\llbracket A \rrbracket_{f_{K}}, N\right)$.

The proof is by induction on the length of A. Suppose e.g. $A \equiv(B \rightarrow C)$. In case $\mathbb{\|} \mathbb{I}_{f_{K}} \leqslant \mathbb{C} C \mathbb{I}_{f_{K}}$ we have $\alpha_{K}(B) \leqslant \alpha_{K}(C)$ by Induction Hypothesis. So $N \mathbb{H} B \rightarrow C$ or $\alpha_{K}(B \rightarrow C)=N$.

When $\llbracket B \mathbb{I}_{f_{K}}>\llbracket C \mathbb{I}_{f_{K}}$ we have to consider two possibilities :
$-\llbracket C \rrbracket_{f_{K}} \geqslant N$, then $\llbracket B \rightarrow C \rrbracket_{f_{K}} \geqslant N$. By Induction Hypothesis: $N \|_{K} C$, so $N H B \rightarrow C$.
$-\llbracket C \rrbracket_{f_{K}}<N$. Then by Induction Hypothesis: $\alpha_{K}(C)<\alpha_{K}(B)$. So $\alpha_{K}(B \rightarrow C)=\alpha_{K}(C)+1=\mathbb{C} \rightarrow C \mathbb{I}_{f_{K}}=\min \left(\mathbb{I} B \rightarrow C \mathbb{I}_{f_{K}}, N\right)$. We assumed $N \Vdash_{K} \Gamma$. So for $B \in \Gamma \alpha_{K}(B)=N$ and thus $\mathbb{\|} \mathbb{I}_{f_{K}} \geqslant N$. Because $\Gamma \mid=A$, we have $\llbracket A \rrbracket_{f_{K}} \geqslant \min \left(\left\{\mathbb{B} \mathbb{I}_{f_{K}} \mid B \in \Gamma\right\}\right) \geqslant N$. So $N \Vdash_{K} A$.
$" \& " \quad$ Suppose $\Gamma \not \forall A$, then there is an f s.t. $\min \left(\left\{\llbracket B \mathbb{1}_{f} \mid B \in \Gamma\right\}\right)>\llbracket A \mathbb{I}_{f}$. Suppose $\min \left(\left\{\| B \rrbracket_{f} \mid B \in \Gamma\right\}\right)=M$. We construct $K_{f}=\langle W,<, g\rangle$. Let $W=\{1, \ldots, M\}$ and for $m, n \in W: m \triangleleft n: m<m$. Take $p_{i} \in g(m): \notin\left(p_{i}\right) \geqslant m$.

By the usual induction on the length of A we prove for $1 \leqslant m \leqslant M: m \|_{K_{f}} A \Leftrightarrow \mathbb{A} \rrbracket_{f} \geqslant m$. It follows that $M \mathbb{r}_{K_{f}} \Gamma$, but $M \| K_{K_{f}} A$.

4.9 Definitions

We shall consider an axiom as a rule with empty premiss.
i) BPLL is BPL + ((A $\rightarrow B) \vee((A \rightarrow B) \rightarrow A))$
ii) $F P L^{C L}$ is $F P L+((A \rightarrow B) \vee((A \rightarrow B) \rightarrow A))$
or
$B P L L+L$
4.10 Completeness for BPLL and FPL ${ }^{\text {CL }}$
i) Let $\Gamma \cup\{A\} \subseteq L:$
$\Gamma \vdash_{\text {BPLL }} A \Leftrightarrow$ for all linear ${ }^{*}$ Kripke models $K: \Gamma \|_{K} A$.
ii) Let $\Gamma \subseteq L$ be finite, $A \in L$, then:
$\Gamma \vdash_{\mathrm{FPL}} C L A \Leftrightarrow$ for all finite, irreflexive, linear $K \Gamma \Vdash_{K} A$ $\Leftrightarrow \Gamma 1=A$.

Proof:

i) " \Rightarrow " The validity of $(A \rightarrow B) \vee(A \rightarrow B) \rightarrow A$ is routine.
$" \Leftrightarrow$ Suppose $\Gamma \not \forall_{B P L L} A$. Consider the model $K=\langle W, \triangleleft, f\rangle$
constructed in 1.9 Let $\Delta \geq$ 「 be $B P L L-p r i m e ~ w i t h ~ A \& \Delta$.
Let $K_{1}:=\left\langle W_{1}, \Delta_{1}, f_{1}\right\rangle$ where $W_{1}=\left\{\left[\Delta^{\prime}\right] \in W \mid\left[\Delta^{\prime}\right][\Delta]\right\}$ and
$\Delta_{1}=\Delta \Gamma W_{1} \times W_{1}$ and $f_{1}=f \Gamma W_{1}$.
Clearly $\Gamma \Vdash_{K_{1}} A$, so it is sufficient to show that K_{1} is linear.
Consider $\left[\Delta_{0}\right],\left[\Delta_{1}\right] \in W_{1}$. The case that $\Delta_{0}=\Delta$ or $\Delta_{1}=\Delta$ is trivial, so assume $\Delta_{0}, \Delta_{1} \neq \Delta$. We have :
$[\Delta] \Delta_{1}\left[\Delta_{0}\right]$
$[\Delta] \triangleleft_{1}\left[\Delta_{1}\right]$.
The case that $\Delta_{0}=\Delta_{1}$ is trivial, so assume that for some C :

$$
\begin{aligned}
& {\left[\Delta_{0}\right] \|_{k_{1}} c} \\
& {\left[\Delta_{1}\right] \Vdash_{k_{1}} c}
\end{aligned}
$$

Suppose :
$\left[\Delta_{0}\right] \Vdash_{K_{1}} A \rightarrow B$ and $\left[\Delta_{1}\right] \Vdash_{K_{1}} A$.
We distinguish:
case i) $\left[\Delta_{0}\right] \Vdash_{K_{1}} A$, then $[\Delta] \Vdash_{K_{1}}(A \rightarrow B) \rightarrow A$, so $[\Delta] \Vdash_{K_{1}} A \rightarrow B$. So $\left[\Delta_{1}\right] \Vdash_{K_{1}} B$.
*(Here linear means: for any $w, w^{\prime} \in W w \not w^{\prime}$ or $w=w^{\prime}$ or $\left.w^{\prime} \varangle w\right)$

```
case \(i i)\left[\Delta_{0}\right] \mathbb{F}_{K_{1}} A\), then \(\left[\Delta_{0}\right] \mathbb{F}_{K_{1}} T \rightarrow B\).
        Well: \([\Delta] \Vdash_{K_{1}}(C \rightarrow B) \vee((C \rightarrow B) \rightarrow C)\). Because
        \((T \rightarrow B){ }^{H-} K_{K_{1}}(C \rightarrow B)\) we have :
        \(\left[\Delta_{0}\right] \Vdash_{K_{1}}(C \rightarrow B)\) and \(\left[\Delta_{0}\right] \|_{K_{1}} C\). So \([\Delta] H_{K_{1}}(C \rightarrow B) \rightarrow C\).
        So \([\Delta] \Vdash_{K_{1}}(C \rightarrow B)\). But \(\left[\Delta_{1}\right] \Vdash_{K_{1}}\) C. So \(\left[\Delta_{1}\right] \Vdash_{K_{1}} B\).
So \(\Delta_{1}\) is \(R_{\Delta_{0}}\)-prime and \(\left[\Delta_{1}\right] P_{1}\left[\Delta_{0}\right]\)
(i) " \(\Rightarrow\) " as in (i).
    \(" \& "\) use (i) and the fact that the constructions in 1.13 and
        2.2 preserve linearity.
```

 4.11 Fact
 Let
 $$
\begin{array}{ll}
D M_{1}: \frac{\neg(A \wedge B)}{\neg A \vee \neg B} & D M_{2}: \frac{\neg A \vee \neg B}{\neg(A \wedge B)} \\
D M_{3}: \frac{7(A \vee B)}{\neg A \wedge \neg B} & D M_{4}: \frac{\neg A \wedge \neg B}{7(A \vee B)} .
\end{array}
$$

i) $D M_{2}, D M_{3}, D M_{4}$ are derived ruleschemes for $B P L$.
ii) DM_{1} is derived for BPLL.

Prooh: i) routine.
ii)

$7 A \vee 7 B$
or via the completeness theorem.

We will interpreter FPL in Beano Arithmetic (PA) via Pr and directly.
5.1 The Language of Modal Propositional Logic (MPL)

Let $P, \wedge, v, \rightarrow, \perp$ be as in the case of L. \square is additional logical constant. L_{\square}, the language of MPL, is the smallest set set.
$-P \subseteq L_{\square}, \perp \in L_{\square}$
$-A, B \in L_{\square} \Rightarrow(A \wedge B),(A \vee B),(A \rightarrow B),(\square A) \in L_{\square} \cdot$
5.2 Kripke Models for MPL
i) $A($ Kripke $)$ Model for MPL is a structure $M=\langle W, \triangleleft, f\rangle$, where W is a set (of worlds), \triangleleft a transitive binary relation on W and f a function $W \rightarrow P$.
ii) $=_{M} \subseteq W \times L_{\square}$ is the smallest relation s.t. :
$-p_{i} \in f(w) \Rightarrow w{ }^{\prime}{ }_{M} p_{i}$
$-\left(w F_{M} A\right.$ and $\left.w F_{M} B\right) \Rightarrow w k_{M}(A \wedge B)$
$-\left(w F_{M} A\right.$ or $\left.w F_{M} B\right) \Rightarrow w F_{M}(A \vee B)$
$-\left(w k_{M} A \Rightarrow w k_{M} B\right) \Rightarrow w k_{M}(A \rightarrow B)$
$-\left(\forall w^{\prime} \triangleright w \quad w^{\prime} \quad k_{M} A\right) \Rightarrow w k_{M}(\square A)$
iii) Define for $\Gamma \subseteq L_{\square}$:
$-w F_{M} \Gamma: \leftrightarrow \forall \in \Gamma \quad \vDash_{M} B$
$-\Gamma F_{M} A: \leftrightarrow\left(\forall w \in W \quad w k_{M} \Gamma \rightarrow w k_{M} A\right)$
$-M I=A: \Leftrightarrow \quad F_{M} A: \Leftrightarrow \square \quad F_{M} A$
iv) - K is the class of all finite irreflexive Kripke Models for BPL

- M is the class of all finite irreflexive Kripke Models for MPL
$-\Gamma \vDash_{P r L} A$ means: for every $M \in M \quad \Gamma \vDash_{M} A$.
5.3 Two Gödel Translations

We define :
i) $0: L \rightarrow L_{\square}$ by :
$\left(p_{i}\right)^{0}:=\square p_{i}$
$(1)^{0}:=(\square \perp)$
$(A \wedge B)^{0}:=\left(A^{0} \wedge B^{0}\right)$
$(A \vee B)^{0}:=\left(A^{0} \vee B^{0}\right)$
$(A \rightarrow B)^{0}: \square\left(A^{0} \rightarrow B^{0}\right)$
ii) $1: L \rightarrow L_{\square}$ by :
$\left(p_{i}\right)^{1}:=\left(p_{i} \wedge \square p_{i}\right)$
$(\perp)^{1}:=\perp$
$(A \wedge B)^{1}:=\left(A^{1} \wedge B^{1}\right)$
$(A \vee B)^{1}:=\left(A^{1} \vee B^{1}\right)$
$(A \rightarrow B)^{1}:=\square\left(A^{1} \rightarrow B^{1}\right)$

We have :
5.4 Theorem

For finite $\Gamma \subseteq L, A \in L$:
i) $\quad \Gamma \vdash_{F P L} A \Leftrightarrow \Gamma^{0}=\left\{B^{0} \mid B \in \Gamma\right\} \vdash_{P r L} A^{0}$
ii) $\Gamma \vdash_{F P L} A \Leftrightarrow \Gamma^{1} \vdash_{P r L} A^{1}$

Proof: We know :
for $\Gamma \subseteq L$ finite, $A \in L: \Gamma \vdash_{F P L} A \leftrightarrow \Gamma \|_{F P L} A$. And for $\Gamma^{\prime} \subseteq L_{\square}$ finite, $A^{\prime} \in L_{\square}: \Gamma^{\prime} \vdash_{\text {PrL }} A^{\prime} \leftrightarrow \Gamma^{\prime} l_{\operatorname{PrL}} A^{\prime}$ (see [1], [9]). So it is sufficient to show for $\Gamma \subseteq L$ finite, $A \in L$:
i) $\quad \Gamma\left\|_{\text {FPL }} A \leftrightarrow \Gamma^{0}\right\|_{P r L} A^{0}$
ii) $\Gamma \|\left.\right|_{F P L} A \leftrightarrow \Gamma^{1}=_{P r L} A^{1}$

Case ii) is rather easy, so let us do case i) :
It is sufficient to provide $\Phi: M \rightarrow K$ and $\Psi: K \rightarrow M$ s.t.:

$$
\begin{aligned}
\Phi(M) & H A \\
K & \Perp M \vDash A^{0} \\
& \Leftrightarrow \Psi(K) \vDash A^{0}
\end{aligned}
$$

For assume $\Gamma \|_{\text {FPL }} A$ and $M \mathbb{I}=\Gamma^{0}$. Then $\Phi(M) \mathbb{H} \Gamma$. So $\Phi(M) \mathbb{H}$. Conclude: $M \vDash A^{0}$. (Clearly $\Delta F_{\text {PrL }} B \Leftrightarrow \forall M \quad M I=\Delta \nmid=B$.) The other direction is similar.

Now let us construct Φ, Ψ.
Consider $M=\langle W, \triangleleft, f\rangle \in M$. Take $\Phi(M)=M^{\Phi}=\left\langle W^{\Phi}, \triangleleft^{\Phi}, f^{\Phi}\right\rangle$, where :
$-W^{\Phi}:=\left\{w \in W \mid \exists w^{\prime} \quad w \triangleleft w^{\prime}\right\}$

- for $w, w^{\prime} \in W^{\Phi}: w \Delta^{\Phi} w^{\prime}: \leftrightarrow w \mathrm{w}^{\prime}$
- for $w \in W^{\Phi}: f^{\Phi}(w)=\underbrace{n}_{\substack{\prime \\ w^{\prime} \triangleright \\ w^{\prime} \in W}} f\left(w^{\prime}\right)$

Consider on the other hand $K=\langle W, \triangleleft, f\rangle \in K$. Take $\Psi(K)=K^{\Psi}=$ $<W^{\Psi}, \triangleleft^{\Psi}, f^{\Psi}>$ where :
$-W^{\Psi}:=W U(W \times\{W\})$

- for $w, w^{\prime} \in W^{\Psi}: w \triangleleft^{\Psi} w^{\prime}:\left(\left(w, w^{\prime} \in W\right.\right.$ and $\left.w \triangleleft w^{\prime}\right)$ or $\left(w=\left\langle w^{n}, W\right\rangle\right.$ and $\left(w \triangleleft w^{n}\right.$ or $\left.\left.w=w^{\prime \prime}\right)\right)$).
- for $w \in W^{\Psi}: f^{\Psi}(w)=\underbrace{W^{\prime} \in W}_{w^{\prime} \Delta^{\Psi}} W_{W} f\left(w^{\prime}\right)$

Now it is easy to see that Φ, Ψ have the derived properties (by induction on the length of A; note that $K^{\Psi \Phi}=K$).

5.5 Definition

Let $f: P \rightarrow L_{P A}$. Define :
i) $\left(p_{i}\right)^{f}:=f\left(p_{i}\right)$
$(1)^{f}:=(0=1)$
$(A \wedge B)^{f}:=\left(A^{f} \wedge B^{f}\right)$
$(A \vee B)^{f}:=\left(A^{f} \vee B^{f}\right)$
$(A \rightarrow B)^{f}:=\square\left(A^{f} \rightarrow B^{f}\right)\left(\equiv \operatorname{Prov}\left({ }^{\top} A^{f} \rightarrow B^{f}\right)\right)$
ii) $\left(p_{i}\right)^{0 f}:=\square f\left(p_{i}\right)$
$(1)^{0 f}:=\square(0=1)$
$(A \wedge B)^{D f}:=\left(A^{D f} \wedge B^{D f}\right)$
$(A \vee B)^{0 f}:=\left(A^{0 f} \vee B^{0 f}\right)$
$(A \rightarrow B)^{O f}:=\square\left(A^{O f} \rightarrow B^{O f}\right)$
iii) Let $g\left(p_{i}\right):=\left(f\left(p_{i}\right) \wedge \square f\left(p_{i}\right)\right)$, then $A^{1 f}:=A^{g}$

5.6 Theorem

Let $\Gamma \subseteq L$ be finite and $A \in L$, then :
i) $\quad \Gamma \vdash_{F P L} A \Leftrightarrow \forall f: P \rightarrow \Sigma_{1}^{0} P A+\Gamma^{f} \vdash A^{f}$
ii) $\Gamma 1_{F P L} A \Leftrightarrow \forall f: P \rightarrow L_{P A} P A+\Gamma^{O f} \vdash A^{O f}$
iii) $\Gamma \vdash_{F P L} A \Leftrightarrow \forall f: P \rightarrow L_{P A} P A+\Gamma \Gamma^{1 f} \vdash A^{1 f}$.

Proof: The proofs of $i i)$ and $i i i)$ are by combining 5.4 with Solovay's
Completeness Theorem [9]. Note that : $\Gamma \vdash_{F P L} A \nvdash_{F P L} M \Gamma \rightarrow A$, by an easy Kripke Model proof, and $P A+\Gamma^{i f} \vdash A^{i f} \leftrightarrow P A \vdash \square\left(M \Gamma^{i f} \rightarrow A^{i f}\right)$
($\mathrm{i}=0,1$). Let us turn to the proof of $i)$
There are standard ways of reducing certain sentences to provably (in $P A$) equivalent Σ_{1}^{0} sentences. It will be convenient to forget to mention these reductions. Alternatively one can read:
' $\left\{A \in L_{P A} \mid \exists B \in \Sigma_{1}^{0} P A \vdash A \leftrightarrow B\right\}$ ' for ' Σ_{1}^{0} ' in the statement of the theorem.
$" \Rightarrow " \quad$ By induction on the length of the proof. L uses Löb's Rule for PA. $\rightarrow I$ uses the fact that for $A \in \Sigma_{1}^{0}$: $P A \vdash A \rightarrow \square A$.
$" \approx \quad$ Suppose $\Gamma \not \forall_{F P L} A$. Let K be the finite irreflexive model of 2.2 such that $K \|-\Gamma$ and $K \| A$. Without loss of generality we may assume that $W=\{1, \ldots, N\}$ and that $1 \triangleleft 2, \ldots, 1 \triangleleft N . \quad{ }^{\prime} \downarrow \triangleleft n^{\prime}$ can be birepresented in PA in the obvious way.

We now turn to the proof of Solovay's Completeness Theorem (see [9]).
Solovay provides a (primitive) recursive function h s.t. :
i) $\mathrm{PA} \vdash(\mathrm{h}: \mathbb{N} \rightarrow\{0,1, \ldots \mathrm{~N}\})$
ii) $P A \vdash(h(m) \neq 0 \rightarrow h(m+1) \geqslant h(m))$

Let $\ell:=\lim _{m \rightarrow \infty} h(m) .(B y$ i), ii) ℓ exists)
iii) $(P A+\ell=i)$ is consistent for $i=0, \ldots N$.
iv) $P A \vdash(\ell=i \rightarrow \square(\ell \triangleright i))$ for $i=1, \ldots N$
v) $P A \vdash(\ell=i \rightarrow \neg \square \neg \ell=j)$, for $j \triangleright i$, for $i=1, \ldots N$.

Clearly $i \leqslant \ell$ is provably equivalent to $\nexists m \quad i \leqslant h(m)$, a Σ_{1}^{0} sentence.
Define :
$g\left(p_{j}\right)=\left\{\begin{array}{l}W\left\{" i \forall \ell " \mid i \mathbb{F}_{K} P_{j}\right\} \text { if there is such an } i \\ n 0=1 " \text { else. }\end{array}\right.$
Clearly $g\left(p_{j}\right)$ is Σ_{1}^{0}. We claim:

$$
\begin{aligned}
& I: i \|_{K} A \Rightarrow \operatorname{PA\vdash }\left(\ell=i \rightarrow A^{g}\right) \\
& I I: i \| H_{K} A \Rightarrow \operatorname{PA\vdash }\left(\ell=i \rightarrow \neg A^{g}\right)
\end{aligned}
$$

The proof is by induction on A, simultaneously over I, II.
Suppose i $\|_{K} A$:
a) $\quad A \equiv p_{i}$. Clearly PA $\vdash \ell=i \rightarrow i \leqslant \ell$

$$
\rightarrow g\left(p_{i}\right)
$$

b) Then \wedge, v case is trivial.
c) $A \equiv(B \rightarrow C)$. We have:

$$
\forall j \triangleright i j \|_{K} B \Rightarrow j \Vdash_{K} c
$$

Using the induction hypothesis and the fact that there are only finitely many $j \triangleright i$, we find :
PAF $\left(\forall j \triangleright i \quad \ell=j \rightarrow\left(B^{g} \rightarrow C^{g}\right)\right)$
(Note that we use the induction hypothesis on II for B.)
By iv) : PAF $(\ell=i \rightarrow \square \ell P i)$. So PAF $\left(\ell=i \rightarrow \square\left(B^{g} \rightarrow C^{g}\right)\right)$ i.e.
PAF $\left(\ell=\mathrm{i} \rightarrow A^{g}\right)$.
Suppose i llf A :
$\left.a^{\prime}\right)$ Suppose $A \equiv p_{j}$. Consider i s.t. $i{ }^{\prime} H_{K} P_{j}$, then $i \neq i$. Thus PAF $(i=\ell \rightarrow i=\ell)$. So PAF $i=\ell \rightarrow \neg g\left(p_{j}\right)$. (If there is no i, $\|_{K} P_{j}$ the case is trivial).
$\left.b^{\prime}\right)$ The \wedge, \vee, \perp cases are trivial. In the \perp case we use iii).
$\left.c^{\prime}\right)$ Suppose $A \equiv(B \rightarrow C)$. So there is an $i^{\prime} \triangleright i$ with $i^{\prime} \|_{K} B$ and i'llf ${ }_{K}$ C. By Induction Hypothesis and propositional logic : PAF $\ell=i^{\prime} \rightarrow \neg\left(B^{g} \rightarrow C^{g}\right)$. By $v): \operatorname{PAF}(\ell=i \rightarrow \neg \square \neg \ell=i \prime)$. So $\quad: \operatorname{PAF}\left(l=i \rightarrow \rightarrow \square\left(B^{g} \rightarrow C^{g}\right)\right)$ i.e. : PAF $\ell=i \rightarrow \neg A^{g}$.

We find : PAF $\ell=1 \rightarrow M \Gamma^{g}$
and : PAF $\ell=1 \rightarrow \neg A^{g}$.
By iii) : ($\left.\mathrm{PA}+\Gamma^{\mathrm{g}}+7 \mathrm{~A}^{\mathrm{g}}\right)$ is consistent.
So

$$
P A+\Gamma^{g} \forall A^{g} .
$$

5.7 Remark

Let for $f: P \rightarrow L_{P A},(A){ }^{*} f$ denote the usual interpretation of
L_{\square} in $L_{P A}$. It is easily seen that the proof of 5.6 .i can be adapted to give :
$\left.\left(\vdash_{P r L+\left\{p_{i} \rightarrow \square p_{i}\right.} \mid i \in \mathbb{N}\right\}^{A}\right) \Leftrightarrow\left(\forall f: P \rightarrow \Sigma_{1}^{U} P A \vdash A^{* f}\right)$.
5.8 Corollary

Let $C=\{n=0 n\} \cup\left\{n \neq \operatorname{con}^{n}(P A) n \mid n \in \mathbb{N}\right\}$. Then for finite $\Gamma \subseteq L, A \in L:$

$$
\Gamma \vdash_{F P L} C L A \leftrightarrow \forall f: P \rightarrow C P A+\Gamma^{f} \vdash A^{f} .
$$

Proof: Note that $\left(1_{n}\right)^{f}$ is provably equivalent with con^{n} (PA) and $\left(\perp_{\omega}\right)^{f}$ with $0=0$.

REFERENCES
[1] BOOLOS G., The unprovability of consistency, Cambridge University Press, Cambridge 1979.
[2] Provability, Truth and Modal Logic, Journal of Philosophical Logic (1980), pp 1-7.
[3] DUMMETT M.A., A Propositional Calculus with a Denumerable Matrix. JSL 24 (1959), pp 97-106.
[4] Elements of Intuitionism, Clarendon Press, Oxford, 1977.
[5] GOLDBLATT R., Arithmetical necessity, provability and intuitionistic logic, Theoria vol 44,2 (1978), pp 38-46.
[6] SMORYŃSKI C., Investigations of Intuitionistic Formal Systems by Means of Kripke Models, thesis.
\qquad , Calculating Self-Referential Statements I: Explicit Calculations, Studia Logica 38 (1979), pp 17-36.
[8] Calculating Self-Referential Statements II: Non-Explicit Calculations, Fund.Math., to appear.
[9] SOLOVAY R.M., Provability Interpretations of Modal Logic, Israel Journal of Mathematics, vol 25, (1976), pp 287-304.
[10] TROELSTRA A.S. (ed), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Math. 344, Springer Verlag, Berlin, 1973.

PART 4

On the Completeness Principle
 A study of provability in Heyting's Arithmetic and extensions.

Albert Visser

Abstract: In this paper extensions of HA are studied that prove their own completeness, i.e. they prove $A \rightarrow \square A$, where \square is interpreted as provability in the theory itself. Motivation is threefold: firstly these theories are thought to have some intrinsic interest, secondly they are a tool for producing and studying provability principles, thirdly they can be used to prove independence results. Work done in the paper connected with these motivations is respectively:
i) a characterization is given of theories proving their own completeness, including an appropriate conservation result.
ii) some new provability principles are produced. The provability logic of HA is not a sublogic of that of PA. A provability logic plus completeness theorem is given for a certain intuitionistic extension of HA. De Jongh's Theorem for propositional logic is a corollary.
iii) FP-realizability in Beeson's proof that $\left.\right|_{H A}$ KLS is replaced by theories proving their own completeness. New consequences are $H_{H A+} M_{P R}$ KLS, $H_{H A+D N S} K L S$.

1.1 What is the Completeness Principle?

Theories are in this paper recursively enumerable extensions of Heyting's Arithmetic (HA) in the language of Arithmetic. By the Completeness Principle for a theory T we mean:
$\left(C P_{T}\right) \quad A \rightarrow \square_{T} A$.
Here the scheme is interpreted as the set of universal closures of formulae in the language of HA of the displayed form.

1.2 Excurs: prima facie facts about CP

An air of paradoxality lingers around the Completeness Principle. The reader may well wonder: doesn't Gödel's Theorem refute the principle, or what? Let us see what happens.

By the Fixed Point Theorem (also known as Self Reference or Diagonal Lemma, see [Bo]) we can avail ourselves of a sentence G such that: $\vdash_{H A} G \leftrightarrow \neg \square_{T} G$. Hence $\vdash_{\left.H A+C P_{T}\right\urcorner G \text {. From this we have on the }}$ one hand: $\left.\vdash_{H A+C P_{T}}\right\urcorner \rightarrow \square_{T} G$, on the other: $\left.\vdash_{H A+C P} \square_{T}\right\urcorner G$. Hence by logic and the closure of \square_{T} under Modus Ponens: $\left.\vdash_{H A+C P}\right\urcorner \neg \square_{T} \perp$. In the paper we show that we cannot go further and derive $\vdash_{H A+C P} \square_{T} \perp$. We will for example exhibit a theory HA* such that $H A^{*}=H A+C P_{H A *}$ which is conservative over HA with respect to a wide class of formulae including all formulae of the form: $\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \ldots \forall x_{n} \exists y_{n} A$, where A contains only bounded quantifiers.

Clearly the principle becomes trivial over Peano Arithmetic (PA) for we have: $\left(P A+C P_{T}\right)=\left(P A+\square_{T} \perp\right)$.

1.3 Motivation

Given a theory U, we call V a selfcompletion of U if $V=U+C P V$. This paper studies $C P$ and selfcompletions for (mainly) the following reasons:
i) The principle CP has a certain intrinsic interest.
(a) CP is the natural counterpart of the Reflexion Principle.
(b) Selfcompletions bring intuitively the concept of truth closer to that of formal provability. There is a definite feeling that for example $\uparrow\urcorner \square \square^{\perp}$ which is provable in a selfcompletion T expresses the familiar provability theoretic fact that a consistent formal theory can never prove its own consistency or 'inconsistency cannot be excluded'. These intuitions are supported by the translation of section 4, which could be considered as an interpretation depending on an Intuitionistic Semantics given in advance.
ii) There are a number of technical applications. (a) We derive some new provability principles for e.g. HA. (b) We prove certain independence results for e.g. HA.

1.4 Contents

Section 2 is devoted to preliminaries and elementary facts. Section 3 proves the equivalence of $C P$ with the Strong Löb Principle $(\square A \rightarrow A) \rightarrow A$. Section 4 developes most of the basic technical apparatus needed in the remaining sections and provides some examples and minor applications. Section 5 studies Selfcompletions. Section 6 is on Provability Logic. We prove for example that $\square(\tau, \square A \rightarrow \square A) \rightarrow \square \square A$ is a provability principle of HA. This shows
that the provability logic of $H A$ is not a sublogic of that of PA. Moreover we treat the provability logic of a certain extension of HA: PA*. For this logic we prove a Completeness Theorem. A corollary is De Jongh's Theorem for propositional logic. In section 7 we give an alternative proof of the independence of the KreiselLacombe - Shoenfield Theorem (KLS) for HA and certain extensions. This is done by replacing FP-realizability in Beeson's proof by selfcompletions. As new results we find:
i) $\quad H_{H A+\neg M_{P R}} K L S$, where $M_{P R}$ is primitive recursive Markov's Principle i.e:
$\left(M_{P R}\right) \quad \forall e \forall x(\neg \neg \exists n T(e, x, n) \rightarrow \exists n T(e, x, n))$. $T(e, x, n)$ is Kleene's T-predicate.
ii) $H_{H A+D N S} K L S$, where DNS is the scheme Double Negation Shifti.e. (DNS) $(\forall x \neg\urcorner A(x) \rightarrow \neg\urcorner \forall x A(x))$.

A consequence is:
$\boldsymbol{H}_{H A} \div \div K L S \rightarrow K L S$.

1.5 Prerequisites

Some familiarity with $H A$ and elementary facts about provability, is sufficient for most sections. At some points realizability, Kripke Models and work on Provability Logic like Solovay's Completeness Theorem are used, however any of these sections could be skipped. All basic facts can be found in ([Tr] U [Bo]).

1.6 Acknowledgements

I wish to thank professors D. van Dalen and A.S. Troelstra for stimulating discussions. Special thanks must go to Michael Beeson for his helpful comments and questions.

2. 1 Language

L is the language of Heyting's Arithmetic (HA), considered as a set of formulae. We choose as logical constants $\perp, \wedge, \vee, \rightarrow, \forall, \exists$. (7 A) is defined as $(A \rightarrow \perp)$. It makes no difference for our treatment whether we choose the language with just $\underline{0},()^{\prime},+, \cdot$, or with symbols for all primitive recursive functions. The last choice is Troelstra's in [Tr]; it has the nice property that for any $A \in \Delta$ (see 2.2.1) $\vdash_{H A}(A \leftrightarrow s=t)$ for some terms s and t.

2.2 Special classes of formulae

2.2.1 Δ is the smallest class of formulae such that
i) $(s=t) \in \Delta$ for any terms $s, t . \perp \in \Delta$.
ii) Δ is closed under \wedge, v, \rightarrow.
iii) $A \in \Delta, t$ a term $\Rightarrow(\forall x<t A) \in \Delta,(\exists x<t A) \in \Delta$.
$2.2 .2 \sum_{1}^{0}:=\{\exists \times A \mid A \in \Delta\}$
$2.2 .3 \Pi_{2}^{0}:=\left\{\forall y A \mid A \in \Sigma_{1}^{0}\right\}$
2.2.4 Σ is the smallest class of formulae s.t.
i) $\quad(s=t), \perp \in \Sigma$
ii) \sum is closed under $\wedge, ~ \vee, \exists$
iii) $A \in \Delta, B \in \Sigma \Rightarrow(A \rightarrow B) \in \Sigma$
iv) $A \in \Sigma, \mathrm{t}$ a term $\Rightarrow(\forall x<t A) \in \Sigma$

We use Σ instead of \sum_{1}^{0}, because Σ has nicer closure properties. This enables us to avoid saying things like 'A is a \sum_{1}^{0}-formula modulo provable equivalence' all the time.
2.2.5 A is the smallest class of formulae s.t.
i) $(s=t), \perp \in A$
ii) A is closed under $\wedge, ~ v, \forall, \exists$.
iii) $A \in \Sigma, B \in A \Rightarrow(A \rightarrow B) \in A$.

Roughly speaking A is the set of formulae with only Σ-formulae before \rightarrow. A is the class with respect to which we will obtain various conservation results.
2.2.6 B is the smallest set of formulae s.t.
i) $A \in L \Rightarrow(\neg A) \in B$
ii) $A \in \Sigma \Rightarrow A \in B$
iii) B is closed under \wedge, \forall.
iv) $A \in A, B \in B \Rightarrow(A \rightarrow B) \in B$

Various nice properties of HA are preserved when we add axioms from B to HA.

2.3 Convention

" $A(x)$ " will sometimes stand for " $A\left(x_{1}, \ldots, x_{n}\right)$ ". This introduces an ambiguity which is certainly harmless, given the coding possibilities available in HA.
2.4 Some Facts
i) $A(x) \in \Delta \Rightarrow \vdash_{H A} \forall x(A(x) \vee \neg A(x))$
ii) $A \in \Sigma \Rightarrow$ there is a $B \in \Sigma_{1}^{0} \vdash_{H A} A \leftrightarrow B$.

2.5 Logical System

We will work in Natural Deduction (see [Tr]). We distinguish axioms from assumptions: an axiom is a rule with empty premiss set. The difference is that free variables in axioms may be universally generalized, but not in assumptions. In the expression $" \Gamma \vdash_{T} A^{\prime}, \quad " \Gamma "$
denotes a set of assumptions, while "T" denotes a set of axioms and rules. E.g. we have $H^{\prime}(x) \forall \times A(x)$, but not in general $A(x) \mid-\forall x A(x)$.

2.6 Theories

In this paper theories are always $R E$ theories in L extending HA. Strictly speaking a theory T is a pair $\langle A(x), X\rangle$ where $A(x)$ is a one place Σ-formula satisfied by the Gödel numbers of the axioms of T additional to those of $H A$ and X is the set of theorems of T. We will often write $T(x)$ for $A(x)$. When we speak about e.g. HA+DNS, we will always mean this theory as given by a natural formula. Of course it is very difficult to state what a natural formula is, but in specific cases natural formulae are easy to give or recognize.

2.7 The Provability Predicate

$" \square_{T} A\left(x_{1}, \ldots, x_{n}\right) "$ will mean:
$\operatorname{Prov}_{T}\left({ }^{r} A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)^{\urcorner}\right)$, where:
i) Prov $_{T}$ is the standard provability predicate for T built up from ($\left.A x_{H A}(x) \vee T(x)\right) .\left(A x_{H A}(x)\right)$ is a standard formula satisfied by the Gödel numbers of the axioms of HA.
ii) The free variables of $A\left(x_{1}, \ldots, x_{n}\right)$ are precisely x_{1}, \ldots, x_{n}.
iii) ' $A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)^{\urcorner}$is the 'Gödel term' for $A\left(x_{1}, \ldots, x_{n}\right)$ as defined in [Fe 2], [Sm]. Troelstra writes this as ${ }^{〔} A\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)^{7}$ (see $[\operatorname{Tr}]$ pp 25,26). The variables x_{1}, \ldots, x_{n} are free in ${ }^{r} A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)^{7}$ and we have:
$\left[\underline{m}_{1} \mid x_{1}\right] \ldots\left[\underline{m}_{n} \mid x_{n}\right]^{r} A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)^{\top}=\operatorname{GN}\left(A\left(\underline{m}_{1}, \ldots, \underline{m}_{n}\right)\right)$, where [|] is the usual substitution function and $G N$ a standard Gödel numbering.

2.8 Some relations between theories

Define: $\quad T \subseteq U: \Leftrightarrow$ (for all $\left.A\left(1_{T} A \Rightarrow \vdash_{U} A\right)\right)$
$T=U: \Leftrightarrow T \subseteq U$ and $U \subseteq T$
$T \leqslant U: \Leftrightarrow T \subseteq U$ and $\vdash_{H A} \forall x\left(\operatorname{Prov}_{T}(x) \rightarrow \operatorname{Prov}_{U}(x)\right)$
$T \equiv U: \Leftrightarrow T \leqslant U$ and $U \leqslant T$.
Note that under our conventions we have: $H A \leqslant T$ for each T.

2.9 Theorem

$A \in \Sigma \Rightarrow \vdash_{H A}\left(A \rightarrow \square_{H A} A\right)$
Proo6: We can copy the proof for Peano Arithmetic verbatim. See for a sketch [Sm]. For term identities it is given in [Tr] pp 37,38. One can also derive the theorem from the theorem for PA. Let $A \in \Sigma$. First we remark: $\vdash_{P A} A \Rightarrow \vdash_{H A} A$ and $\vdash_{H A} \square_{P A} A \rightarrow \square_{H A} A$, by the 7 translation and verifiable closure of HA under Markov's Rule (see 2.15). We know $\vdash_{P A} A \rightarrow \square_{P A} A$, so by the second half of the remark: $I_{P A}\left(A \rightarrow \square_{H A} A\right) \cdot\left(A \rightarrow \square_{H A} A\right)$ is provably (in $H A$) equivalent to $\forall x C(x)$ for some $C(x) \in \Sigma$. So $I_{P A} C(x)$. By the first part of the remark: $1_{H A} C(x)$. So $1_{H A} A \rightarrow \square_{H A} A$.
2.10 Corollary
$\vdash_{H A}\left([s \mid x] \square_{T} A(x) \leftrightarrow \square_{T} A(s)\right)$.
Proof: Suppose x is not free in s. In HA:

$$
\begin{aligned}
s=x & \rightarrow \square_{T} s=x \\
& \rightarrow[]_{T}(A(s) \leftrightarrow A(x)) \\
& \rightarrow\left(\left(\square_{T} A(s)\right) \leftrightarrow\left(\square_{T} A(x)\right)\right)
\end{aligned}
$$

So

$$
\begin{aligned}
s=s & \rightarrow[s \mid x]\left(\left(\square_{T} A(s)\right) \leftrightarrow\left(\square_{T} A(x)\right)\right) \\
& =\left(\square_{T} A(s) \leftrightarrow[s \mid x] \square_{T} A(x)\right)
\end{aligned}
$$

If x is free in s, first prove the corollary for $A(y), y$ not free in s and then substitute $\left([s \mid x] \square_{T} A(x)\right)$ for ([s|y] $\left.\square_{T} A(y)\right)$.

2.11 The Fixed Point Theorem

For every $A(x, y) \in L$ there is a $B(y) \in L$ such that:

$$
\vdash_{H A} B(y) \leftrightarrow A(\underline{\operatorname{GN(B(y)})}, y)
$$

Proob: see e.g. [Bo] pp 49,50.
2.12 Definitions
i) $\perp_{T}^{0}=\perp$

$$
\perp_{T}^{n+1}=\square_{T} \perp_{T}^{n}
$$

ii) T is n-inconsistent if $I_{T} \perp_{T}^{n}$.
2.13 The Löb Conditions

We have:
i) $\quad \vdash_{T} A \Rightarrow \vdash_{H A} \square_{T} A$
ii) $\vdash_{H A}\left(\square_{T} A \rightarrow \square_{T} \square_{T} A\right)$
iii) $\vdash_{H A} \square_{T}(A \rightarrow B) \rightarrow\left(\square_{T} A \rightarrow \square_{T} B\right)$
2.14 Löb's Theorem

$$
\vdash_{H A} \square_{T}\left(\square_{T} A \rightarrow A\right) \rightarrow \square_{T} A
$$

2.15 The Friedman Translation and Markov's Rule
H. Friedman defines (see [Fr]) the following translation for $A \in L$:
()$^{A}: L \rightarrow L$ is given by:
i) $(s=t)^{A}:=((s=t) \vee A)$
$(1)^{A}:=A$
ii) ($)^{A}$ commutes with all logical constants. (Only free variables in A may not be bound in (B) ${ }^{A}$. When this threatens to occur we have first to rename the bound variables of B).

One can prove by induction verifiably in $H A$:
a) $B \in \Sigma \Rightarrow \vdash_{H A}(B)^{A} \leftrightarrow(B \vee A)$
b) $B \in A \Rightarrow \vdash_{H A} B \rightarrow(B)^{A}$
c) $\quad \Gamma^{A} \vdash_{H A} B^{A}$ as a relation between Γ and B is closed under the axioms and rules of HA.

We can give two applications:
Application 1:
Suppose $\Gamma \subseteq A, A \in \Sigma$ and $\Gamma \vdash_{H A}>\rightarrow$.
We claim: $\Gamma \vdash_{H A} A$.
Proo6: $\left.\Gamma \vdash_{H A}\right\urcorner \rightarrow A$, so $\Gamma^{A} \vdash_{H A}(\neg \neg A)^{A}$. Hence: $\Gamma \vdash_{H A} \Gamma^{A}$
$\stackrel{1}{H A}((A \vee A) \rightarrow A) \rightarrow A$ $I_{\text {HA }} A$.

Application 2:

Suppose $\Gamma \subseteq A, A \in \Sigma$ and $\Gamma \vdash_{H A} \rightarrow \neg A \rightarrow A$.
We claim: $\mathcal{F} \vdash_{H A} A \vee \neg A$.
Proo6: $\left.\Gamma \vdash_{H A}\right\urcorner \div A \rightarrow A$, so $\Gamma^{\top A} 1_{H A}(\neg-A \rightarrow A)^{-1}$.
Hence: $\Gamma \vdash_{H A}\ulcorner \urcorner A$
$\vdash_{H A}(((A \vee \neg A) \rightarrow \neg A) \rightarrow \neg A) \rightarrow(A \vee \neg A)$
$\stackrel{1}{H A}(A \vee \neg A)$.

We can formalize this proof in $H A$, so we find for $A \in \Sigma$:

$$
{ }^{1-}{ }_{H A} \square_{H A}(\neg \neg A \rightarrow A) \rightarrow \square_{H A}(A \vee \neg A) .
$$

3 THE COMPLETENESS PRINCIPLE AND THE STRONG LÖB PRINCIPLE
3.1 Definition

The Strong Löb Principle for T is the axiom scheme:
$\left.\left(S L P_{T}\right) \quad\left(\square_{T} A \rightarrow A\right) \rightarrow A\right)$
Because we work in Natural Deduction there are the following two variants:
$\left(S L P^{\prime}{ }_{T}\right)$

and
$\left(S L P{ }_{T}\right)$

3.2 Theorem
CP_{T} is interderivable with $\mathrm{SLP}_{\mathrm{T}}$ over HA .
Proof:
i) $\stackrel{-}{H A+C P}_{T} S^{S L P} P_{T}$

$$
\frac{\frac{\left[\square_{T} A \rightarrow A\right]^{(1)}}{\square_{T}\left(\square_{T} A \rightarrow A\right)}}{\overline{C_{T} A}} \text { Löb's Theorem }_{\square_{T}}^{(1) \frac{A}{\left(\square_{T} A \rightarrow A\right) \rightarrow A} \rightarrow I}
$$

ii) ${\stackrel{1}{H A}+S L P_{T}}^{C P} P_{T}$.

[A] ${ }^{(2)}$		$\underline{\left[\square_{T}\left(A \wedge \square_{T} A\right)\right]}{ }^{(1)}$
		$\square_{T} \mathrm{~A}$
(1)	$\frac{A \wedge \square_{T} A}{A \wedge \square_{T} A}$	SLP ${ }^{\prime}{ }_{T}$
(2)	$\square_{T} A$	\rightarrow I
	$A \rightarrow \square_{T} A$	

This section introduces the necessary technical apparatus: the T-translation and U^{V}.

4.1 Definition: the T-translation

Let T be a theory. We define the translation ($)^{\top}: L \rightarrow L$ as:
i) $(s=t)^{\top}:=(s=t),(\perp)^{\top}:=\perp$
ii) ($)^{\top}$ commutes with \wedge, v, \exists.
iii) $(A \rightarrow B)^{\top}:=\left(\left(A^{\top} \rightarrow B^{\top}\right) \wedge \square_{T}\left(A^{\top} \rightarrow B^{\top}\right)\right)$
iv) $(\forall \times A)^{\top}:=\left(\left(\forall \times A^{\top}\right) \wedge \square_{T}\left(\forall \times A^{\top}\right)\right)$
4.2 Substitution Lemma
$\vdash_{H A}\left([s \mid x](A(x))^{\top}\right) \leftrightarrow(A(s))^{\top}$.
Proo6: Induction on $A(x)$. Use 2.10.
4.3 Definitions
i) For $U \leqslant T$ we define:
$U^{\top}: \equiv H A+\left\{A \mid 1_{U} A^{\top}\right\}$
ii) $U^{*}: \equiv U^{U}$

4.4 Definition

Let $G N: L \rightarrow \mathbb{N}$ be the standard Gödel numbering. Let h_{T} be the natural primitive recursive function such that $h_{T}(G N(A))=G N\left((A){ }^{\top}\right)$. Let (Sent (x)) be a formula of L that expresses ' x is the Gödelnumber of a sentence of L^{\prime}.
U is a base if for every T with $U \leqslant T$:
i) $\vdash_{U} A \Rightarrow \vdash_{U} A^{\top}$ and
ii) $\vdash_{H A} \forall x\left(\left(\operatorname{Sent}(x) \wedge \operatorname{Prov}_{U}(x)\right) \rightarrow \operatorname{Prov}_{U}\left(H_{T}(x)\right)\right)$
4.5 Definition: the Weak Completeness Principle

By the Weak Completeness Principle for T we mean:
$\left(W C P_{T}\right) \quad A \rightarrow \square_{T} A^{\top}$
4.6 Technical Lemma
i) $u \leqslant v \leqslant w \Rightarrow u^{W} \leqslant v^{W}$
ii) $\vdash_{H A} A^{\top} \rightarrow \square_{T} A^{\top}$
iii) $A \in \Sigma \Rightarrow \vdash_{H A}\left(A^{\top} \leftrightarrow A\right)$
iv) $A \in A \Rightarrow r_{H A}\left(A^{\top} \rightarrow A\right)$
v) $\quad A \in B \Rightarrow \vdash_{H A}\left(\left(A \wedge \square_{T} A\right) \rightarrow A^{\top}\right)$
vi) $\vdash_{H A+C P_{T}} A \leftrightarrow A^{T}$
vii) $\vdash_{H A+W C P_{T}} A \leftrightarrow A^{\top}$
viii) ${\stackrel{1}{H A}+C P_{T}}^{W C P} P_{T}$
ix) ${\stackrel{-}{H A+\square_{T} \perp}{ }^{C P} P_{T} .}$
x) $\quad^{1_{H A}}{ }_{H C P}+\square_{T} \square_{T^{\perp}} \quad{ }^{C P_{T}}$

Proo6:
i) trivial.
ii) Induction on A, e.g. the case of $A=(B \rightarrow C)$:

$$
\begin{aligned}
& (B \rightarrow C)^{\top} \\
& \left(B^{\prime \prime} \rightarrow C^{\top}\right) \wedge \square_{T}\left(B^{\top} \rightarrow C^{\top}\right) \\
& \square_{T}\left(B^{\top} \rightarrow C^{\top}\right)
\end{aligned}
$$

$\square_{T}\left(\left(B^{\top} \rightarrow C^{\top}\right) \wedge \square_{T}\left(B^{\top} \rightarrow C^{\top}\right)\right)$
II

$$
\square_{T}(B \rightarrow C)^{\top}
$$

iii) Induction on A using 2.9.
iv) Induction on A using iii).
$v)$ Induction on A. In the " \rightarrow " case use $i i)$ and $i v)$. we treat the case that $A=(\neg B), B \in L$:

First note that $\square_{T} \perp$ 'blows up the T-translation' i.e.
$\square_{T} \perp \vdash_{\vdash A}\left(B \leftrightarrow B^{\top}\right)$, this of course because it makes the second conjuncts in clause $i i i)$ and $i v$) of the definition of ()$^{\top}$ true.
We have: $\square_{T} \perp \vdash_{H A}\left(B \leftrightarrow B^{\top}\right)$, hence $\urcorner B, B^{\top} \vdash_{H A} \square_{T} \perp \rightarrow(*)$.
So: $\square_{T} \rightarrow B,\left.B^{\top}\right|_{H A} \square_{T} \neg B, \square_{T} B^{\top} \quad$ (by $\left.i i\right)$

$$
\begin{array}{ll}
\vdash_{H A} \square_{T}\left(\square_{\mathrm{T}} \perp \rightarrow \perp\right) & (\text { by } * \text { and the Löb } \\
\text { Conditions) } \\
1_{H A} \square_{\mathrm{T}} \perp & \text { (by Löb's Theorem) }
\end{array}
$$

We find, combining this with (*):
$\urcorner B, \square_{T} \rightarrow B, B^{\top} \vdash_{H A} \perp$, or:
$\left.\left(\neg B \wedge \square_{T} \rightarrow B\right) \vdash_{H A}\right\urcorner B^{\top}$.
Thus, using the Löb Conditions again:
$\left.\left(\neg B \wedge \square_{T}\right\urcorner B\right) \vdash_{H A}(\neg B)^{\top}$ 。
vi)

Induction on A.
vii)

```
viii) \(1_{H A+C P_{T}} A \leftrightarrow A^{\top}\), so by \(C P_{T}\) :
    \(\vdash_{H A+C P_{T}} \square_{T}\left(A \leftrightarrow A^{\top}\right)\). Using the Löb Conditions we find:
    \(\vdash_{H A+C P_{T}} \square_{T} A \leftrightarrow \square_{T} A^{\top}\). So:
    \(\vdash_{H A+C P_{T}} A \rightarrow \square_{T} A^{\top}\).
```

ix) trivial
x) Clearly:
$\vdash^{-} A+\square_{T} \square_{T} \perp \square_{T} A \leftrightarrow \square_{T} A^{\top}$.
4.7 Characterization of $U V$

Let $U \leqslant V$, then:
i) $\Gamma \vdash_{U} V A \Leftrightarrow \Gamma V \vdash_{U} A^{V}$
ii) $\vdash_{H A} \square_{U} V A \leftrightarrow \square_{U} A^{V}$
iii) $H_{U} V W C P V$

Proof:

i) "た" Suppose $\Gamma^{V} \vdash_{U} A^{V}$. Then there is a finite $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0}^{V} \vdash_{U} A^{V}$. Let C be the conjunction of the elements of Γ_{0}. Clearly $\vdash_{U} C^{V} \rightarrow A^{V} . U \leqslant V$, hence $\vdash_{U}\left(\left(C^{V} \rightarrow A^{V}\right) \wedge \square_{V}\left(C^{V} \rightarrow A^{V}\right)\right)$. Or: $\vdash_{U}(C \rightarrow A)^{V}$. Then by definition: $F_{U} V C \rightarrow A$. Conclude: $\Gamma \vdash_{U} V A$.
$" \Rightarrow$ " By induction on the length of the proof of $\Gamma \vdash_{U} V A$.
The length of proof is 0
In this case A is an axiom of HA or $\vdash_{U} A^{V}$. We treat for example the Induction Axiom:
We have: $\vdash_{H A}\left(B^{V} \circ \wedge \forall \times\left(B^{V} \times \rightarrow B^{V} x^{\prime}\right)\right) \rightarrow \forall \times B^{V} \times$
Since $\quad \vdash_{H A} B V_{O} \rightarrow \square_{V} V_{0}$:

$$
\vdash_{H A}\left(B V_{0} \wedge \square_{V} \forall \times\left(B V_{x} \rightarrow B V_{x}^{\prime}\right)\right) \rightarrow \square_{V} \forall \times B V_{x}
$$

Combining:
$1_{H A}\left(B^{V} \circ \wedge \forall x\left(\left(B^{V} x \rightarrow B^{V} x^{\prime}\right) \wedge \ldots\right) \wedge \square_{V} \forall x\left(\left(B^{V} x \rightarrow B^{V} x^{\prime}\right) \wedge \ldots\right)\right) \rightarrow$ $\left(\forall \times B^{V} \times \wedge \square \quad \forall \times B^{V} \times\right)$
Where ... is the (for our reasoning spurious) $\square_{V}\left(B^{V} x \rightarrow B^{V} x^{\prime}\right)$.
The length of the proof is $n+1$
We treat for example the case that the last step in the proof was:

$$
\frac{\Gamma, B I_{U} V^{C}}{\Gamma I_{U V} B \rightarrow C .}
$$

By the Induction Hypothesis we have:

ii) By formalizing the proof of $i)$. Remark:
a) We must formalize the proof of 4.6 ii.
b) We really need $U \leqslant V$ rather than $U \subseteq V$ here.
c) What we prove is even the stronger 'quantified' version of $i i$).
iii) By 4.6 iil:
$\left.\vdash_{H A}\left(A^{V} \rightarrow \square_{V} A^{V}\right) \Rightarrow \quad(4.6 i i i)\right)$
$\vdash_{H A}\left(A^{V} \rightarrow\left(\square_{V} A^{V}\right) V\right) \Rightarrow \quad(H A \leqslant V)$
$\vdash_{H A}\left(A \rightarrow \square_{V} A^{V}\right)^{V} \Rightarrow \quad(H A \leqslant U)$
$\vdash_{U}\left(A \rightarrow \square_{V} A^{V}\right)^{V} \Rightarrow$
$\vdash_{U} V A \rightarrow \square_{V} A^{V}$.

4.8 Theorem

Let $U \leqslant V$, then:
i) $A \in A$ and $I_{U} \vee A \Rightarrow I_{U} A$
ii) $A \in B$ and $\vdash_{U} A \Rightarrow \vdash_{U} V A$

Proof:
i) Suppose $A \in A$:
ii) Suppose $A \in B$:
$\mathrm{F}_{\mathrm{U}} \mathrm{VA} \Rightarrow(4.7 \mathrm{i})$
$I_{U} A \Rightarrow \quad(U \leqslant V)$
$\vdash_{\cup} A V \Rightarrow \quad(A \in A)$
$\vdash_{U} A \wedge \square_{V} A \Rightarrow(A \in B)$
${ }^{\vdash_{U}} A$
$\vdash_{U} A^{V} \Rightarrow$
$(4.7 i)$
$H_{U} V^{A}$
4.9 Definitions
i) Let $\Gamma \subseteq L, T$ a theory.

Define: T is Γ-sound if for every sentence $A \in \Gamma$:
$\left(\vdash_{T} A \Rightarrow(A\right.$ is (classically) true)).
ii) A theory T satisfies the Disjunction Property (DP) if for every sentence $(A \vee B):\left.\right|_{T} A \vee B \Rightarrow\left(\vdash_{T} A\right.$ or $\left.\left.\right|_{T} B\right)$.
iii) A theory T satisfies the Numerical Existence Property if for every sentence $(\exists \times A(x)): 1_{T} \exists \times A \times \Rightarrow\left(1_{T}\right.$ An for some $n \in \mathbb{N})$.
4.10 Theorem
i) $\vdash_{U *} C P_{U *}$
ii) U* is a base
iii) If U is \sum-sound then U^{*} satisfies $D P$ and EP.

Proo6:

i) By 4.7 iii) $\vdash_{U^{*}} A \rightarrow \square_{U} A^{U}$ and by 4.7 ii) $\vdash_{H A} \square_{U} A^{U} \leftrightarrow \square_{U *} A$.
ii) Suppose $U^{*} \leqslant T$. We have $\vdash_{U *} C P_{U *}$, hence $\vdash_{U *} C P_{T}$. By 4.6 vi: $\vdash_{U *} A \leftrightarrow A^{\top}$. Conclude $\vdash_{U *} A \Rightarrow \vdash_{U *} A^{\top}$. To prove the verifiability clause we must formalize this argument.
iii) Suppose U is Σ-sound. We treat $E P$. Let $(\exists \times A(x))$ be a sentence. We have:
$\vdash_{U^{*}} \exists \times A(x) \Rightarrow \quad(4.10$ i)
$\vdash_{U^{*}} \exists \times \square_{U^{*}} A(x) \Rightarrow \quad(4.8$ i)
$\vdash_{U} \exists x \square_{U^{*}} A(x) \Rightarrow \quad(U$ is Σ-sound)
$\vdash_{U *} A(\underline{n})$ for some $n \in \mathbb{N}$.

4.11 Example: PA*

In the next sections we will mostly be interested in theories U such that $U \leqslant U^{*}$. Bases have this property (see 4.12). A nice example of a theory without this property is PA: clearly PA \& PA*, for PA* satisfies DP and any extension of PA that satisfies DP is either not RE or inconsistent. In section 6 we will return to PA* to charactarize its provability logic.

By the Trace Principle we mean:

$$
\begin{equation*}
\left(\square_{P A^{*}} \forall x(A x \rightarrow B x)\right) \rightarrow((\exists x A x) \vee \forall x(A x \rightarrow B x)) \tag{TP}
\end{equation*}
$$

It is called Trace Principle because it is the trace left by Excluded Third in PA*.

We have:
i) \vdash_{PA} * $\mathrm{CP} \mathrm{PA}^{*}$
ii) $\vdash_{P A *} T P$
iii) $1_{\text {PA* }}$ DNS, where DNS is the scheme $\left.\left.\left.(\forall x(\neg\urcorner A(x)) \rightarrow\right\urcorner\right\urcorner(\forall x A x)\right)$

Proof:
ii) We have:

$$
\begin{aligned}
\vdash_{H A} & \left(\square_{P A^{*}} \forall x(A x \rightarrow B x)\right) \leftrightarrow \\
& \square_{P A}(\forall x(A x \rightarrow B x))^{P A} \leftrightarrow \\
& \square_{P A} \forall x\left((A x)^{P A} \rightarrow(B x)^{P A}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{H A} & (\forall x(A x \rightarrow B x))^{P A} \leftrightarrow \\
& \left(\left(\forall x(A x)^{P A} \rightarrow(B x)^{P A}\right) \wedge \square_{P A} \forall x\left((A x)^{P A} \rightarrow(B x)^{P A}\right)\right)
\end{aligned}
$$

Moreover:
$1_{P A}\left(\exists \times(A x)^{P A} \vee \forall x\left((A x)^{P A} \rightarrow(B x)^{P A}\right)\right)$
So $1_{-P A}(T P)^{P A}$
iii) We can prove $1_{\text {PA* }}$ DNS in two ways. The first is by remarking that $\left.H A+\left\{\neg A \mid 1_{P A}\right\urcorner A\right\} \equiv H A+D N S$. Moreover $\left.(\urcorner A\right) \in B$, hence: $\vdash_{P A} \rightarrow A \Rightarrow \vdash_{P A *} \rightarrow A$.

The second is by deriving DNS in $\mathrm{HA}+\mathrm{CP}_{\mathrm{PA} A^{+}}+\mathrm{TP}$. First note that from TP a slightly weakened form, the Propositional Trace Principle, follows:
(PIP): $\quad \square_{P A^{*}}(A \rightarrow B) \rightarrow A \vee(A \rightarrow B)$.

We have in $H A+T P:$

```
[ \(\square_{\mathrm{PA} *}+\) ]
\(\square_{P A^{*}}(\neg A x)\)
\(A x \vee \neg A x\)
\(\forall x(A x \vee \neg A x)\)
\(\square_{P A *} \perp \rightarrow \forall \times(A \times \vee \neg A \times)\)
```


$\vdash^{H A+C P_{P A *}+T P} \overbrace{} \rightarrow \forall x(A x \vee \neg A x)$
From this it is easy to derive:
$\vdash^{H A+C P_{P A *}}{ }^{+T P}$ DNS.
Open problem: Is $P A^{*} \equiv H A+C P_{P A *}+T P$?
We now turn to bases.

4.12 Theorem

Let U be a base, $U \leqslant V$, then:
i) $U^{V} \equiv U+W C P_{V}$
ii) $U^{*} \equiv U+C P_{U *}^{*}$

Proo6:
i) We prove: $U^{V}=U+W C P_{V}$. \equiv follows by formalizing this proof.
$u+\omega C P_{v} \subseteq u^{v}$
By 4.7 (iii) $\quad_{U} V W C P V$
Further $\quad \vdash_{U} A \Rightarrow(U$ is a base $)$
$r_{U} A^{V} \Rightarrow \quad(4.7 \quad i)$
${ }^{1-} U^{V}$ A

$$
\begin{array}{lll}
U^{V} \subseteq U+W C P_{V} & \\
& 1_{U V} A \Rightarrow & (4.7 i) \\
& 1_{U} A^{V} \Rightarrow & (4.6 \text { vii) } \\
& 1_{U+W C P_{V}} A &
\end{array}
$$

ii) By i): $U^{*} \equiv U+W C P_{U}$. By 4.7 ii): $\left.\right|_{H A} \square_{U} A^{U} \leftrightarrow \square_{U^{*}} A$ so $U+W C P_{U}=U+C P_{U^{*}}$. Formalization of this argument gives: ${ }_{U+W C P_{U}} \equiv U+C P_{U *} \cdot$
4.13 Theorem

Let U be a base, $U \leqslant V$, then $A \in A \Rightarrow\left(1_{U} A \Leftrightarrow 1_{U} V A\right)$
Proof: by $4.8 i)$ and the fact that $U \leqslant U^{V}$.
4.14 Application
i) HA is a base

iii) $A \in A \Rightarrow\left(1_{H A+C P_{V}} A \Rightarrow 1^{-} H A+\square_{V} Q_{\perp} A\right)$
iv) $\|_{H A+C P} \square_{V} \perp$, if V is consistent.
v) $\quad H A+C P_{H A} \equiv H A^{*}+\square_{H A} \square_{H A} \perp$
vi) $A \in A \Rightarrow\left(1-{ }_{H A+C P_{H A}} A \Leftrightarrow \square_{H A} \square_{H A} \perp \vdash_{H A} A\right)$

Proof:
i) The proof is implicit in the proof of 4.7 i), ii).
ii) We have: $1_{H A} V W C P_{V}$ (by 4.7 iii)), so $\left.\right|_{H A} V_{+\square_{V} \square_{V} \perp}^{C P_{V}}$ (by 4.6 x)).
iii) Suppose $A \in A$. Then $\left(\square_{V} \square_{V} \perp \rightarrow A\right) \in A$.

We have:
$A \vdash_{H A+C P} A \Rightarrow$
${ }^{-} H A^{V}+\square_{V} \square_{V} \perp 1$ A
$\vdash_{H A}{ }^{\left(\square \square_{V} \square_{V} \perp \rightarrow A\right) \Rightarrow \quad(4.8 i)}$
$\vdash_{H A}\left(\square_{V} \square_{V} \perp \rightarrow A\right) \Rightarrow$
$\vdash_{H A}+\square_{V} \square_{V} \perp A$.
iv) If $\left.\right|_{H A+C P_{V}} \square_{V} \perp$, then by iii): $\left.\right|_{H A} \square_{V} \square_{V} \perp \rightarrow \square_{V} \perp$, so by $H A \leqslant V$, Löb's Theorem and logic: $1_{H A} \square_{V} \perp$. HA is Σ-sound, hence $\mathrm{F}_{\mathrm{V}} \perp$.
v) By ii) we have $H A+C P_{H A} \subseteq H A^{*}+\square_{H A} \square_{H A} \perp$.

On the other hand:
$\vdash_{H A *} A \Rightarrow(4.7 i)$
$H_{H A} A^{H A} \Rightarrow \quad(4.6$ vi)
${ }^{-}{ }_{H A}+C P_{H A} A$
and (by 3.2)
$\vdash_{H A+C P_{H A}} \div \square_{H A} \perp \Rightarrow \quad\left(C P_{H A}\right)$
$\vdash_{H A+C P_{H A}} \square_{H A} \neg \neg \square_{H A} \perp \Rightarrow(2.15)$
${ }^{-_{H A}+C P_{H A}} \square_{H A} \square_{H A} \perp$.
So $\left.H A+C P_{H A}=H A *+\square_{H A}\right]_{H A} \perp$.
We find \equiv by formalizing this argument.
vi) Suppose $A \in A$, we have:

$$
\begin{aligned}
& \vdash_{\mathrm{HA}}+\mathrm{CP}_{\mathrm{HA}} \mathrm{~A} \Leftrightarrow \\
& \vdash_{\mathrm{HA}} \stackrel{(\square}{\mathrm{HA}}^{\left.\square_{\mathrm{HA}} \perp \rightarrow A\right) \Leftrightarrow} \\
& \vdash_{\mathrm{HA}}\left(\square_{\mathrm{HA}} \square_{\mathrm{HA}} \perp \rightarrow \mathrm{~A}\right)
\end{aligned}
$$

4.15 Examples of Bases

Our result in section 7 on the independence of KLS will hold for Σ-sound bases. Hence we will note when an example is Σ-sound.
i) HA is a \sum-sound base.

Proo6: that $H A$ is a base, we remarked in 4.14 i). \sum-soundness follows from the truth of HA.
ii) Let $B(x)$ be a natural formula of L such that the x satisfying it are precisely the Gödelnumbers of the elements of B. Let $\Gamma(x)$ be a Σ-formula with just x free. Suppose that: $\vdash_{H A} \forall x(\Gamma(x) \rightarrow B(x))$. Then $U: \equiv H A+\Gamma$ is a base.

Proof: Suppose $A \in \Gamma, \vdash_{\|} A, U \leqslant T$. We have:
$\vdash_{H A}\left(M \Gamma_{0} \rightarrow A\right)$, where $\Gamma_{0} \subseteq \Gamma, \Gamma_{0}$ finite. Hence by i :
$\vdash_{H A} M \Gamma_{0}^{\top} \rightarrow A^{\top}$. By 4.8ii: $\vdash_{U} M \Gamma_{0}^{\top}$. Conclude $\vdash_{U} A^{\top}$.

To prove the verifiability condition we have to formalize this proof.
iii) Let $U: \equiv H A+$ DNS, where $D N S$ is the scheme: $(\forall x(\neg \neg A x) \rightarrow$ $77(\forall \times A \times))$. Then U is a Σ-sound base.

Proof: Let \rightarrow वDNS be the scheme:

By simple logic $U \equiv H A+7$; DNS. Apply ii).
The Σ-soundness of U follows from the fact that $H A+D N S$ is classically true.
iv) Let Primitive Recursive Markov's Principle be:
$\left(M_{P R}\right) \quad \forall x \forall y(\neg \div \exists z T x y z \rightarrow \exists z T x y z)$
where Txyz is Kleene's T-predicate. Then $U: \equiv H A+\neg M_{P R}$ is a Σ-sound base.

Proof: U is a base by $i i)$. It is \sum-sound by a result of Kreisel, see [Tr] 3.8.3 page 264.
v) The Reflexion Principle for $H A$ is the axiomscheme:
$\left(R_{H A}\right) \quad \square_{H A} A \rightarrow A$.
Let U: $\equiv H A+R P_{H A}$. Then U is a Σ-sound base.
Proof: U is true, hence Σ-sound. Let $T \geqslant U$, we have:
$\mathrm{I}_{U}\left(\square_{H A} A\right)^{\top} \rightarrow \quad(4.6$ iii) $\square_{H A} A \rightarrow \quad(H A$ is a base)
$\square_{H A} A^{\top} \rightarrow \quad\left(R P_{H A}\right)$
A^{\top}.
Hence: $\vdash_{U}\left(\square_{H A} A \rightarrow A\right)^{\top}$.
To prove the verifiability condition we have to formalize this proof.
vi) Let < be a well founded RE relation, represented in L by the formula $(x<y)$. Let $\mathrm{TI}_{<}$be the scheme:
$\left(T I_{<}\right)((\forall y((\forall x<y A x) \rightarrow A y)) \rightarrow \forall z A z)$
Let U : $\equiv H A+T I<\cdot$ Then U is a Σ-sound base.
Proo6: The E-soundness follows from truth.
Let $T \geqslant U$. Clearly it is sufficient to prove:
$\vdash_{U}(\forall y((\forall x<y A x) \rightarrow A y))^{\top} \rightarrow(\forall z A z)^{\top}$
(and formalize this proof in HA).
Assume:
a) $\square_{T}(\forall z A z)^{\top}$
b) $(\forall y((\forall x<y A x) \rightarrow A y))^{\top}$

We first prove: $\forall z(\forall x<z A x)^{\top}$, by $T I^{\prime}$ in $(\forall x<z A x)^{\top}$:
Suppose we have $\forall u<z(\forall x<u A x)^{\top}$.
By b): $\forall u<z(A u)^{\top}$.
By $a): \square_{T} \forall u<z(A u)^{\top}$.
Comtining: $(\forall u<z A u)^{\top}$.

By $\mathrm{TI}_{<}$conclude: $\forall z(\forall u<z A u)^{\top}$, hence by $\left.b\right): \dot{\forall}(A z)^{\top}$. From $a):(\forall z A z)^{\top}$.

So we have :
$(*) \quad b \vdash_{U} \square_{T}(\forall z A z)^{\top} \rightarrow(\forall z A z)^{\top}$.
We have $U \leqslant T$ and $b \vdash_{U} \square_{T} b$ (according to $\left.4.6 i i\right)$ hence: $b \vdash_{U} \square_{T}\left(\square_{T}(\forall z A z)^{\top} \rightarrow(\forall z A z)^{\top}\right)$.
By Löb's Theorem:
$(* *) b \vdash_{U} \square_{T}(\forall z A z)^{\top}$.
Combining (*) and (**):
$b \vdash_{U}(\forall z A z)^{\top}$.
4.16 Theorem

Let $T(y, x)$ be a Σ-formula with just y, x free. Let T_{i} given by the formula $(T(\underline{i}, x))$ be a theory. Suppose $1_{H A}$ " $\forall i T_{i}$ is a base".
Let $U \equiv \underset{i \in \omega}{U} T_{i}, i . e$. the theory given by $\exists y T(y, x)$. Then U is a base.

Proo6: Suppose $\vdash_{U} A$ and $U \leqslant V$. Then there are B_{1}, \ldots, B_{k} such that $\vdash_{T_{i}}{ }^{B}{ }_{\ell}$ for $\ell=1, \ldots, k$, and $B_{1}, \ldots, B_{k} \vdash_{H A} A$. For every $\ell \in\{1, \ldots, k\}$: $T_{i_{\ell}} \leqslant U \leqslant V$, sor ${T_{i_{\ell}}}\left(B_{\ell}\right)^{V}$. Moreover $B_{1}^{V}, \ldots, B_{k}^{V} \vdash_{H A} A^{V}$. So $\vdash_{U} A^{V}$.

This proof can be formalized in HA.

5 ON SELFCOMPLETIONS

This section is about selfcompletions. We show how to construct them and give the appropriate conservation results. Selfcomoletions over a fixed theory are not in general unique but selfcompletions of a base, for which the fact that they are selfcompletions of that base is provable in $H A$, are unique.

5.1 Definition

Let T, U be theories.
i) T is a selfcompletion of $l l$ if $T=U+C P_{T}$.
ii) T is a strong selfcompletion of U if $T \equiv U+C P_{T}$.

5.2 Theorem

Every theory U has a strong selfcompletion.
Proof: Clearly we can find a primitive recursive h such that:
$h(G N((T(x))), G N(A))=G N\left(\left(A \rightarrow \square_{T} A\right)\right)$

Let (Form(z)) be a formula just satisfied by the Gödelnumbers of formulae and define:
$(B(y, x)):=(U(x) \vee \exists z(\operatorname{Form}(z) \wedge x=h(y, z)))$

By the Fixed Point Theorem (2.11) we find a formula (T(x)) such that:
$\vdash_{H A}(T(x) \leftrightarrow B(\underline{G N((T(x)))}, x))$

5.3 Theorem

Let U be a base.
i) Suppose T is a selfcompletion of U, then $T=U^{\top}$.
ii) Suppose T is a strong selfompletion of U, then $T \equiv U^{\top}$.

Proo6:
i) By $4.12 U^{\top} \equiv U+W C P_{T}$. Moreover $I_{T} A \leftrightarrow A^{\top}$ (by 4.6 vi), so $\vdash_{H A} \square_{T} A \leftrightarrow \square_{T} A^{\top}$. Hence $W C P P_{T}$ and $C P$ are interderivable over HA. Thus $T=U+C P_{T}=U+W C P_{T} \equiv U^{\top}$.
ii) By formalizing the proof of $i)$.

5.4 Theorem

Let U be a base. Then any selfcompletion T of U is conservative over U w.r.t. A.

Proof: by 4.13 and 5.3 i).

5.5 Theorem

Let T be a selfcompletion of U. Then $\left.\vdash_{T} \neg A \Leftrightarrow \neg \neg \square_{T} \perp \vdash_{U}\right\urcorner A$.
Proof:

$$
\begin{aligned}
\left." \Rightarrow " T=U+C P_{T} \subseteq U+\square_{T} \perp(4.6 i x), \text { so } \vdash_{T}\right\urcorner A & \Rightarrow \square_{T} \perp 1_{U} \neg A \\
& \left.\Rightarrow \neg \neg \square_{T} \perp 1_{U}\right\urcorner A .
\end{aligned}
$$

$" \leftrightarrows " \quad T \supseteq U+\neg\urcorner \square_{T} \perp$ by 3.2
5.6 Theorem

Let U be a Σ-sound base, T a selfcompletion of U. Then T satisfies $E P$ and $D P$.

Proo6: We treat EP: Suppose ($\exists \times A \times$) is a sentence, and $\vdash_{T}(\exists \times A x)$.
We have: $1_{\top}(\exists \times A x) \Rightarrow$
$\left(C P_{T}\right)$
$\vdash_{T} \exists \times \square_{T} A \times \Rightarrow$
$\vdash_{U} \exists \times \square_{T} A x \Rightarrow$
(U is Σ-sound)
1^{\top} An for some n.

5.7 Uniqueness Theorem

Let U be a base. Then U^{*} is the unique strong selfcompletion of U. (unique in the sense of \equiv).

Proo6: By 4.12 ii) U^{*} is a strong selfcompletion of U. Now suppose V and W are strong selfcompletions of U. We claim: $V \equiv W$.

By 5.3 ii) $V \equiv U^{V}, W \equiv U^{W}$, hence it is sufficient to show $U^{V} \equiv U^{W}$. We treat $U^{V}=U^{W}$. To get \equiv one must as usual formalize the argument. Clearly one needs only to prove: $\left.\right|_{H A}\left(A^{V} \leftrightarrow A W\right)$. We proceed by induction on A; we treat the case that $A=(B \rightarrow C)$:

$$
\begin{aligned}
\vdash_{H A} & \left(\left(B^{V} \rightarrow C^{V}\right) \wedge \square_{V}\left(B^{V} \rightarrow C^{V}\right)\right)
\end{aligned} \rightarrow \quad(4.6 \mathrm{Vi}) \quad \begin{aligned}
& (5.3 \text { and the Löb Conditions) } \\
& \left.\left.\left(\left(B^{V} \rightarrow C^{V}\right) \wedge \square_{V}(B \rightarrow C)\right) \leftrightarrow C^{V}\right) \wedge \square_{U}\left(B^{V} \rightarrow C^{V}\right)\right) \leftrightarrow \\
& \left(\left(B^{V} \rightarrow C^{W}\right)\right. \\
& \left(\left(B^{W} \rightarrow C^{W}\right) \wedge \square_{U}\left(B^{W} \rightarrow C^{W}\right)\right) \leftrightarrow \\
& \left(\left(B^{W} \rightarrow C^{W}\right) \wedge \square_{W}\left(B^{W} \rightarrow C^{W}\right)\right)
\end{aligned}
$$

5.8 Non Uṅqueness Theorem

There are different selfcompletions of HA, what is more: for every false Σ-sentence B there is a selfcompletion T of HA s.t. $T \subseteq H A+B$. Moreover if U and V are selfcompletions of $H A$ and $U \neq V$ then there are D, E in L s.t. $F_{U} D, H_{V} D, H_{U} E, F_{V} E$.

Proof: Let B be a false Σ-sentence. Find using the Fixed Point Theorem for HA a $(T(x))$ such that:
$\vdash_{H A}\left(T(x) \leftrightarrow\left(" \exists A \in L \times=r_{A} \rightarrow \square_{T} A^{i n} \vee B\right)\right)$.
Then T is clearly a selfcompletion of $H A$, because B is false. We have: $B \vdash_{H A} \square_{T} \perp$, so $H A+B \supseteq H A+\square_{T} \perp \supseteq T$. (Note that we do not get \geqslant, unless $\vdash^{H A}$ ᄀ B).

Now suppose U and V are distinct selfcompletions of HA. Suppose e.g. there is a D such that $\vdash_{U} D, H_{V} D$. Take $E:=\left(D \rightarrow \square_{V} D\right)$. Surely $\vdash_{V} E$. Suppose $\vdash_{U} E$, then $\vdash_{U} \square_{V} D$. Hence (by 5.4) $\vdash_{H A} \square_{V} D$, so $\vdash_{V} D$. Contradiction. Conclude: $\forall_{U} E$.

5.9 Example

We provide two concrete distinct selfcompletions of HA: take
T as in the first half of the proof of 5.8 with $B=\square_{H A} \square_{H A} \perp$. Compare T with HA*.

We have: $\vdash_{H A *} \neg \neg \square_{H A *} \perp$, so $\vdash_{H A *} \neg \neg \square_{H A} \perp$ (by 4.7 ii and the fact that $\left.(\perp)^{H A}=L\right)$. Suppose that $\left.\right|_{T}>\square_{H A} \perp$, then: $\left.\left.\square_{H A} \square_{H A}{ }^{\left.\perp\right|_{H A}}\right\urcorner\right\urcorner \square_{H A}$. By 2.15 application $1: \square_{H A} \square_{H A}{ }^{\left.\perp\right|_{H A}} \square_{H A} \perp$. Applying Löb's Theorem: $\vdash_{H A} \square_{H A} \perp$, quod non. Conclude: $\left.\left.\forall_{T}\right\urcorner\right\urcorner \square_{H A} \perp$.

5.10 Remark

In the introduction we have seen that any selfcompletion T of $P A$ coincides with $P A+\square_{T} \perp$. We have also seen that no selfcompletion of $H A$ is equal to $H A+\square_{T} \perp$. The following theorem will dispel the fear that there is a selfcompletion T of $H A$ such that $T=H A+\neg \square_{T} \perp$.

5.11 Theorem

 Proof: Clearly $T \geq H A+\neg\urcorner \square_{T} \perp$. Suppose $T=H A+\neg \neg \square_{T} \perp$. Let M be a classical model of $\mathrm{PA}+\square_{\mathrm{T}} \perp$. Consider the Kripke model:

This is a model of HA (see Smoryński's contribution to [Tr], pp 340, 341.) We have: $\omega \mathbb{H} \rightarrow>\square_{T} \perp$.

By an easy induction on $A(x)$ in $\sum(a l l$ free variables shown) we see that:

$$
\omega \|-A(m) \Leftrightarrow \omega \vDash A(m) \quad(\text { for all } m)
$$

We have for sentences B of L :

```
\(\vdash_{T} \mathrm{~B} \Rightarrow\)
\(\omega \|-\mathrm{B} \Rightarrow\)
\(\omega \|-\square_{T} B \Rightarrow\)
\(\vdash_{T}\) B.
```

So $\quad \omega \|-B \Leftrightarrow \vdash_{\top} B$.
Moreover: MEB $\Leftrightarrow \omega$ II- ᄀ $\rightarrow B$.
So finally:

$$
M \vDash B \Leftrightarrow \vdash_{T} \text { ר } B \text {. }
$$

This makes the true sentences of M RE. Contradiction. (The simplest way to see this, is by considering two recursively inseparable RE sets).

5.12 Open problems

i) Is HA* finitely axiomatizable over HA?
ii) Is HA* axiomatizable over HA by a set of formulae of bounded complexity? (The reader may consider his favourite measure of complexity.)

Conjecture: no, to both questions.
5.13 On $\mathrm{HA}+\mathrm{ECT}_{0}$

Our presentation here, leans heavily on that in [Tr] pp 188-205.
For Extended Church's Thesis (ECT0) see [Tr] page 195.

We have not been able to show that $\mathrm{HA}+\mathrm{ECT}_{0}$ is a base:
Open Problem
Is $\mathrm{HA}+\mathrm{ECT}_{0}$ a base?
Yet we can get a conservation result as in 5.4 for selfcompletions of $\mathrm{HA}+\mathrm{ECT}_{0}$.

Suppose T is a selfcompletion of $H A+E C T_{0}$. Define: A^{r}, as ($\exists \times \times r A$), where r is a formalized version of Kleene's relizability (see $[\mathrm{Tr}]$ page 189, 3.2.3 A). We have:
i) $\vdash_{T} A \Rightarrow \vdash_{H A+C P_{T}} A^{r}$

The proof of i) is along the lines of the proof of 3.2.18, [Tr] page 196, if necessary adapted to a language with just
()', +, . . In that case we need e.g. that for $B(x)$ in Σ we can find a partial recursive term $\Psi_{B}(x)$ s.t.:
$\vdash_{H A} B(x) \leftrightarrow \Psi_{B}(x) r B(x)$

Moreover we must show that $C P_{T}$ is realized in $H A+C P_{T}$. We have
(in $H A+C P_{T}$):

$$
y r A(x)
$$

$$
(A(x))^{r}
$$

$$
\frac{\square_{T}(A(x))^{r}}{\square_{T} A(x)} \text { (because } \vdash_{T} E_{T} A(x)_{0} \square_{T} A(x) \text { and } \vdash_{H A+E C T_{0}} B \leftrightarrow B^{r} \text {) }
$$

Take $X_{A}(x):=\left(\Lambda y \Psi_{\square_{T} A}(\dot{x})\right)$ i.e. a certain (standard) primitive recursive term such that for all $y\left\{X_{A}(x)\right\} y \cong \Psi_{\square_{T}}(x)$. Then:
$\vdash_{H A+C P_{T}} X_{A}(x) r\left(A(x) \rightarrow \square_{T} A(x)\right)$
ii)
$\vdash_{H A+C P_{T}} A^{r} \Rightarrow \vdash_{T} A$.
For we have $\vdash^{H A+E C T} T_{0} A \leftrightarrow A^{r}$.
iii) $\vdash_{H A} B^{\top} \Leftrightarrow \vdash_{H A+C P_{T}} B$.

By 4.7 i), $4.12 i)$, and the fact that $H A+C P_{T}=H A+W C P_{T}$, because T is a selfcompletion.
iv) $\vdash_{H A} A^{r \top} \Leftrightarrow \vdash_{T} A$.

Combining i), ii), iii).
We claim: for $A \in A: \vdash_{H A} A^{r T} \rightarrow A$.
Troelstra in [Tr] page 250 gives a class of formulae Γ_{0} such that for $A \in \Gamma_{0}: 1_{H A} A^{r} \rightarrow A$. It is easily shown that $A \subseteq \Gamma_{0}$. We find for $A \in A: \vdash_{H A} A^{\Gamma} \rightarrow A$, so $\vdash_{H A} A^{\Gamma \top} \rightarrow A^{\top} \quad(H A$ is a base). Hence: $\vdash_{H A} A^{r T} \rightarrow A(A \in A)$.

So for $A \in A$:

$$
\begin{array}{ll}
\vdash_{T} A \Rightarrow & (i v)) \\
\vdash_{H A} A^{r T} \Rightarrow & (A \in A) \\
\vdash_{H A} A \Rightarrow & \\
\vdash_{T} A . &
\end{array}
$$

6 REMARKS ON THE PROVABILITY LOGIC OF HA AND EXTENSIONS

This section is devoted to the provability logic of HA and extensions. First we give certain principles for the provability logic of HA and extensions informally. Then the apparatus necessary to state these principles as principles of provability logic is introduced. The last part characterizes PA*. A corollary is de Jongh's Theorem for Intuitionistic Propositional Logic.

The next theorem is folklore:

6.1 Thecrem

Let. $H A \leqslant T \leqslant P A$ and $A \in \Sigma$, then :
i) $\vdash_{T} \rightarrow \neg A \Rightarrow \vdash_{T} A$
ii) $\vdash_{H A} \square_{T} \rightarrow \neg A \rightarrow \square_{T} A$

Proo6:

i)
\vdash^{T} ᄀ $\rightarrow A \Rightarrow$

$$
\begin{array}{ll}
\vdash_{P A} A & \Rightarrow \\
\left.\vdash_{H A}\right\urcorner \neg A \Rightarrow & (2.15) \\
\vdash_{H A} A & \Rightarrow \\
\vdash_{T} A &
\end{array}
$$

ii) Formalize the proof of il
6.2 Theorem
$\vdash_{H A} \square_{H A}(\neg \neg A \rightarrow A) \rightarrow \square_{H A}(A \vee \neg A)$
Proof: This is application 2 of 2.15.
6.3 Theorem

Let $A, B_{1}, \ldots, B_{n} \in A$, then:
i) if $\vdash_{H A}\left(M_{i=1}\left(B_{i} \rightarrow \square_{H A} B_{i}\right)\right) \rightarrow A$ then $\vdash_{H A} A$.
ii) $\vdash_{H A}\left(\square_{H A}\left(\sum_{i=1}^{n}\left(B_{i} \rightarrow \square_{H A} B_{i}\right) \rightarrow A\right) \rightarrow \square_{H A}\right.$.

Proo6:
i) Suppose $A, B_{1}, \ldots, B_{n} \in A$ and $\vdash_{H A}\left(M_{i=1}^{n}\left(B_{i} \rightarrow \square_{H A} B_{i}\right) \rightarrow A\right)$.

We have $\vdash_{H A} \square_{H A *} B_{i} \leftrightarrow \square_{H A} B_{i}$ (by formalizing theorem 4.13), hence: $\vdash_{H A *} A$. Conclude $\vdash_{H A} A(4.13)$.
ii) Formalize the proof of i).

Clearly we could formulate a similar principle for SLP.

6.4 Definitions

i) $P:=\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$
ii) L_{p} is the closure of $P \cup\{T, \perp\}$ under \wedge, v, \rightarrow.
iii) $L_{p r}$ is the closure of $P \cup\{T, \perp\}$ under $\wedge, v, \rightarrow, \square$.
iv) $\Sigma_{p r}$ is the closure of $\{T, \perp\} \cup\left\{\square A \mid A \in L_{p r}\right\}$ under \wedge, v.
v) $A_{p r}$ is the closure of $\{T, \perp\} \cup\left\{\square A \mid A \in L_{p r}\right\}$ under \wedge, v and the rule: $\left(A \in \Sigma_{p r}, B \in A_{p r} \Rightarrow(A \rightarrow B) \in A_{p r}.\right)$
vi) Let $f: P \rightarrow L$. Define: $\left\rangle^{f, T}: L_{p r} \rightarrow L\right.$ as:
$-<T>^{f, T}:=(\underline{0}=\underline{0})$
$-\langle\perp\rangle^{f, T}:=\perp$
$-\left\langle p_{i}\right\rangle^{f, T}:=f\left(p_{i}\right)$
$-<>f, T$ commutes with \wedge, v, \rightarrow
$-\left\langle\square_{A}\right\rangle^{f, T}:=\square_{T}\left\langle A>{ }^{f, T}\right.$.
vii) Let $\Gamma \subseteq L$. We will say that $A \in L_{p}$ is Γ, T-valid or $1=\Gamma, T A$ if: for every $f: P \rightarrow \Gamma \vdash_{T}<A>{ }^{f}, T$. When $\Gamma=L$ we will speak simply about T-valid and $\mathrm{I}=\mathrm{T}$.
6.5 Theorem

We have the following provability principles:
i) Let $H A \leqslant T \leqslant P A$ and $A \in \Sigma_{p r}$ then: $1={ }_{T} \square \neg \neg A \rightarrow \square A$
ii) Let $A \in \Sigma_{p r}$, then: $\|_{H A}(\square(\neg \neg A \rightarrow A) \rightarrow \square(A \vee \neg A))$.
iii) Let $A, B_{1}, \ldots, B_{n} \in A_{p r}$, then: $=_{H A} \square\left(M\left(B_{i} \rightarrow \square B_{i}\right) \rightarrow A\right) \rightarrow \square A$.

Proo6: by 6.1, 6.2, 6.3 and the fact that for $A \in \Sigma_{p r}$:
$<A>^{f, T} \in \Sigma$, etc.

6.6 Corollary

i) Let $A \in A_{p r}$ then: $=_{H A} \square(\tau \mp \square \perp \rightarrow A) \rightarrow \square A$
ii) $1==_{H A} \square(\neg, \square A \rightarrow \square A) \rightarrow \square \square A$

Proo6:
i) Use 6.5 iii) and:
$\left.\right|_{H A}((\square \perp \rightarrow \perp) \rightarrow \square(\square \perp \rightarrow \perp)) \rightarrow$ $((\square \perp \rightarrow \perp) \rightarrow \square \perp) \rightarrow$ า ᄀ ロ \perp
plus the fact that $(\square \perp \rightarrow \perp) \in A_{p r}$.
ii) This is a consequence of i).

6.7 Comments

Let $A \in L_{p}, T \subseteq U$. Clearly we have $l={ }_{T} A \Rightarrow l_{U} A$. Or: the propositional logic of theories is monotone in theories. 6.6 ii) shows that this does not extend to $L_{p r}$, for:
$\forall_{P A} \square(\neg \neg \square \perp \square \perp) \rightarrow \square \square \perp$.

If it did we would have: $=_{P A} \square \square \perp$.
Professor Löb asked whether this last observation also holds for the (\rightarrow, \square)-fragment of $L_{p r}$ i.e. the closure of P under \rightarrow, \square. The answer is yes. From 6.5 we find e.g.:
$\left.\mathrm{l}_{\mathrm{HA}}\left(\square\left(\left(\square \square \mathrm{p}_{0} \rightarrow \square \mathrm{p}_{0}\right) \rightarrow \square\left(\square \square \mathrm{p}_{0} \rightarrow \square \mathrm{p}_{0}\right)\right) \rightarrow \square \square \mathrm{p}_{0}\right) \rightarrow \square \square \square \mathrm{p}_{0}\right)$.

Hence by Löb's Theorem:
$\mathrm{I}_{\mathrm{HA}}\left(\square\left(\left(\left(\square \square \mathrm{p}_{0} \rightarrow \square \mathrm{p}_{0}\right) \rightarrow \square \square \mathrm{p}_{0}\right) \rightarrow \square \square \mathrm{p}_{0}\right) \rightarrow \square \square \square \mathrm{p}_{0}\right)$
But if $l_{\text {PA }}(*)$, then we would have by Peirce's Law: $=_{P A} \square \square \square p_{0}$. Quod non.

We now turn to the characterization of the provability logic of PA*.

6．8 Definitions

i）$\quad \Sigma^{C}$ is the set of closed Σ－sentences
ii）$G\left(\Sigma^{C}\right)$ is the following theory in $L_{p r}$ ：
－Classical Propositional Logic（in Natural Deduction formulation）
－トA A トロA（Gödel＇s Rule）
－$-\square A \rightarrow \square \square A$
$-1-\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
$-1-\square(\square A \rightarrow A) \rightarrow \square A$
$-1-p_{i} \rightarrow \square p_{i} \quad$（for all $p_{i} \in P$ ）
Thus $G\left(\Sigma^{c}\right)$ is $G+\left(p_{i} \rightarrow \square p_{i}\right) \quad\left(a l l p_{i} \in P\right)$ ．Note that $G\left(\Sigma^{c}\right)$
does not satisfy the usual substitution property：
$1-A\left(p_{i}\right) \Rightarrow \perp A(B)$ ，for $1-B \rightarrow \square B$ does not hold in general．
iii）
H is the following theory in $L_{p r}$ ：
－Intuitionistic Propositional Logic in Natural Deduction formulation．
$-1 A \rightarrow \square A$
$-1-\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
$-1(\square A \rightarrow A) \rightarrow A$
$-1 \square(A \rightarrow B) \rightarrow(A \vee(A \rightarrow B))$
（the Propositional Trace Principle）
iv）（ $)^{\square}: L_{p r} \rightarrow L_{p r}$ is the following translation：
$-\left(p_{i}\right)^{\square}:=p_{i}$
－（ ）commutes with T，$\perp, \wedge, \vee, \square$ ．
$-(A \rightarrow B)^{\square}:=\left(\left(A^{\square} \rightarrow B^{\square}\right) \wedge \square\left(A^{\square} \rightarrow B^{\square}\right)\right)$
v）A Kripke Model K is a structure＜W ，＜，f＞where：
－W is a set

- < is a transitive binary relation on W, such that $w<w^{\prime}<w \Rightarrow w=w^{\prime}$.
- $f: W \rightarrow$ the powerset of P, such that $w<w^{\prime} \Rightarrow f(w) \subseteq f\left(w^{\prime}\right)$.

The monotonicity condition on f is usual for Kripke Models for Intuitionistic Propositional Logic, unusual for Kripke Models for Modal Propositional Logic. We have it in this paper because we are as far as Modal Logic is concerned just interested in Logics with the principle $\left(p_{i} \rightarrow \square p_{i}\right)\left(f o r\right.$ all $\left.p_{i} \in P\right)$.
vi) Let $K=\langle W,<, f\rangle$ be a Kripke Model. We define $\mid=_{K}$, the satisfaction relation on K, as follows: for $w \in W$:
$-w\left|={ }_{K} T, \quad w\right| \not{ }_{K} \perp$
$-w \mid={ }_{K} \quad p_{i}: \Leftrightarrow p_{i} \in f(w)$
$-w \mid=_{K}(A \wedge B): \Leftrightarrow(w \mid=A$ and $w \mid=B)$,
and similarly for v, \rightarrow.
$-w \mid=_{K} \square A: \Leftrightarrow$ for all $w^{\prime}>w w^{\prime} I=_{K} A$.
Clearly $\mathrm{I}=\mathrm{is}$ a satisfaction relation for classical modal logic, with a little modification.
vii) Let $K=<W,<, f>, w \in W$. We define $\|_{-}$the forcing relation on K as follows: for $w \in W$:
$-w\left\|_{K} T, \quad w\right\| f_{K} \perp$
$-w \|_{K} p_{i}: \Leftrightarrow p_{i} \in f(w)$
$-w \|_{K}(A \wedge B): \Leftrightarrow\left(w \Vdash_{K} A\right.$ and $\left.w \|_{-} B\right)$, and similarly for v.
$-w \|_{K}(A \rightarrow B): \Leftrightarrow\left(\right.$ for every $\left.w^{\prime} \geqslant w\left(w^{\prime}\left\|_{-} A \Rightarrow w^{\prime}\right\|-_{K} B\right)\right)$
$-w \|_{K} \square A: \Leftrightarrow\left(\right.$ for every $\left.w^{\prime}>w \quad w^{\prime} \|_{-} A\right)$.

Clearly \mathbb{H} is a forcing relation for a kind of intuitionistic modal logic. When we restrict it to L_{p} we get a forcing relation for intuitionistic propositional logic.
viii) Let K be a class of Kripke Models. Define: $I={ }^{K} A: \Leftrightarrow$ for all $K=<W,<, f>$ in K, for all $w \in W: W I={ }_{K} A$ $\vdash^{K} A: \Leftrightarrow$ for all $K=<W,<, f>$ in K, for all $w \in W: w \|_{K} A$.
ix) FI is the class of all finite irreflexive Kripke Models.
6.9 Theorem
$\vdash_{H} A \Leftrightarrow I_{P A *} A$

Proof:
$" \Rightarrow$ " Induction on the length of the proof using 4.11.
$" \Leftarrow "$ We give the proof modulo a number of subsequent lemma's:
$I_{P_{A} *} A_{1} \Rightarrow \quad$ (specialization)
$\mathrm{I}=\sum_{\sum^{C}, P .4 *}^{A \Rightarrow} \quad$ (Lemma 6.10)
$I=\sum_{\sum^{C}, P A}(A)^{\square} \Rightarrow \quad$ (Lemma 6.11)
$\vdash_{G\left(\Sigma^{\Sigma}\right)}(A)^{\square} \quad$ (Lemma 6.12)
$\mathrm{I}={ }^{F I}\left(\mathrm{~A}^{\prime}\right)^{\square} \Rightarrow \quad$ (Lemma 6.13)
$\|^{-}$AI $_{A} \Rightarrow \quad$ (Lemma 6.14)
${ }^{1} H_{H}$
6.10 Lemma
i) Let $f: P \rightarrow \Sigma^{C}$. We have:

$$
\vdash_{H A}\left(\langle A\rangle^{f, T^{*}}\right)^{\top} \leftrightarrow\left\langle(A)^{\square}\right\rangle^{f, T}
$$

ii) $I=\Sigma_{\Sigma^{C}, T^{*}} A \Leftrightarrow I=\Sigma_{\Sigma^{C}, T}(A)^{\square}$.

Proo6:

i) Induction on A , for example:
$-\left(\left\langle p_{i}\right\rangle^{f, T *}\right)^{\top}=\left(f\left(p_{i}\right)\right)^{\top},\left(\left\langle\left(p_{i}\right)^{\square}\right\rangle^{f, T}\right)=f\left(p_{i}\right)$, and by the fact that $f\left(p_{i}\right) \in \Sigma$ and $\left.4.6 i i i\right): \vdash_{H A}\left(\left(f\left(p_{i}\right)\right)^{\top} \leftrightarrow f\left(p_{i}\right)\right)$.

- Suppose $A=\square B$. We have:
$\left.\left.(<\square B\rangle^{f, T^{*}}\right)^{\top}=\left(\square_{T^{*}}<B\right\rangle^{f, T^{*}}\right)^{T}$ and:
$\left\langle(\square B)^{\square}\right\rangle{ }^{f, T}=\left(\square_{T}\left(\left\langle(B)^{\square}\right\rangle, T\right)\right)$.
Moreover:
$\left.\vdash_{H A}\left(\square_{T *}<B\right\rangle^{f, T *}\right)^{\top} \quad(4.6 i i i)$
$\left(\square_{T *}{ }^{\left.f, T^{*}\right)} \leftrightarrow \quad(4.7 i i)\right.$
$\left(\square_{T}(<B\rangle^{\left.\left.f, T^{*}\right)^{\top}\right) \leftrightarrow \quad \text { (Induction Hypothesis) }}\right.$
$\left(\square_{T}\left(\left\langle(B)^{\square}\right\rangle{ }^{f}, T\right)\right)$
6.11 Lemma
$\left.\vdash_{G\left(\Sigma^{C}\right)} A \Leftrightarrow\right|_{\Sigma^{C}, P A} A$
Proof: This is a simple corollary of the proof of Solovay's Completeness Theorem. See [Vi].

6. 12 Lemma
$I_{G\left(\Sigma^{C}\right)} A \Leftrightarrow I=I^{F I} A$
Proof: This is a simple corollary of the usual Kripke Model Completeness Theorem for G. (see [Bo], [So]).
6.13 Lemma

Let $K=\langle W,<, f\rangle$ be a Kripke Model, $w \in W$. We have: $w\left\|I_{K} A \Leftrightarrow w\right\|={ }_{K} A^{\square}$ Proof: a simple induction on A.
6. 14 Lemma: Completeness Theorem for H
$I_{H} A \Leftrightarrow \|^{F I} A$.
Proof:
$" \Rightarrow$ routine.
$" \Leftarrow "$

Step 1 We define $K_{H}=\left\langle W_{H},\left\langle_{H}, f_{H}\right\rangle\right.$ as follows: call a set $\Gamma \subseteq L_{p r} H$-saturated if Γ is closed under $\left.\right|_{H}$ and $((A \vee B) \in \Gamma \Rightarrow A \in \Gamma$ or $B \in \Gamma)$.

- $W_{H}:=\{\Gamma \mid \Gamma$ is H-saturated $\}$.
$-\Gamma<_{H} \Delta: \Leftrightarrow(\{A \mid(\square A) \in \Gamma\} \subseteq \Delta)$
$-f_{H}(\Gamma):=(\Gamma \cap P)$

Claim: $\Gamma \|_{K_{H}} A \Leftrightarrow \Gamma \vdash_{H} A$.
The proof is by induction on A. Let us just treat the case of \rightarrow :
suppose $A=(B \rightarrow C)$.
$" \Leftarrow$ Suppose $(B \rightarrow C) \in \Gamma, \Delta \geqslant \Gamma, \Delta \|_{-} B$. By the Induction
Hypothesis $\Delta \vdash_{H} B$. Clearly because of $C P: \Gamma \subseteq \Delta$, so
$(B \rightarrow C) \in \Delta$, hence $\Delta \vdash_{H} C$. By the Induction Hypothesis:
$\Delta{ }^{I I}{ }_{K_{H}} C$.
$" \Rightarrow$ Suppose $(B \rightarrow C) \notin \Gamma$.

- If $(\square(B \rightarrow C)) \in \Gamma$ then by PTP: $(B \vee(B \rightarrow C)) \in \Gamma$. Γ is saturated, hence $B \in \Gamma$ or $(B \rightarrow C) \in \Gamma$. By our assumption $(B \rightarrow C) \notin \Gamma$, so $B \in \Gamma$. By IH: $\Gamma \|_{K_{H}} B$ and $\Gamma \| f_{K_{H}} C$. Hence $\Gamma \| f_{K_{H}} B \rightarrow C$.
- If $\square(B \rightarrow C) \notin \Gamma$, let $\Delta_{0}:=\{D \mid \square D \in \Gamma\}$. A moment's reflexion shows that: $\Delta_{0}, B H_{H} C$. Using a standard argument we can find a saturated $\Delta \supseteq \Delta_{0}$ such that $B \in \Delta$ and $C \notin \Delta$. We have $\Delta \geqslant \Gamma$ and by IH: $\Delta\left\|_{K_{H}} B, \Delta\right\| f_{K_{H}} C$.

Step 2 Let $K=<W,<, f>$ be any Kripke Model such that $\left\|\|_{K} A\right.$ for all $W \in W$. Sub(A) is the set of subformulae of A. Let:
$w^{A}:=\left\{B \in \operatorname{Sub}(A) \mid w \|_{K} B\right\}$.
We define $K^{A}=\left\langle W^{A},\left\langle^{A}, f^{A}\right\rangle\right.$ as follows:
$-W^{A}:=\left\{w^{A} \mid w \in W\right\}$

- for $a, b \in W^{A}$:
a $<^{A} b: \Leftrightarrow(a \cup\{C \mid(\square C) \in a\} \subseteq b$ and $a \neq b)$.
$-f^{A}(a):=a \cap P$.
One easily verifies that K^{A} is a finite irreflexive Kripke Model.

Claim: for every $B \in \operatorname{Sub}(A): \quad\left(w\left\|-_{K} B \Leftrightarrow w^{A}\right\|-_{K}^{A} B\right)$.
The proof is by induction on B. We treat the case $B=(\square C)$. Suppose ($\square \subset) \in \operatorname{Sub}(A)$.
$" \Rightarrow$ Suppose: $w H_{K} \square C$ and $a>_{K} A^{A}$. $a=V^{A}$ for some v. We have: $v^{A}>_{K} A w^{A}$ and $(\square C) \in w^{A^{K}}$, hence $C \in v^{A}$. Conclude $v \|_{K} C$. By the $I H: a=V^{A} \|_{K}^{A} C$.
$" \Leftarrow "$ Suppose: $w^{A} \|-{ }_{K}^{A} C$ and $v>w$.
We have two cases:

Case $I \quad v^{A} \neq w^{A}$. Then clearly $v^{A} \gg^{A} w^{A}$, hence $v^{A} \| K_{K^{A}} C$ and by IH: $\mathrm{vlif}_{\mathrm{K}} \mathrm{C}$.
Case II $V^{A}=w^{A}$. Suppose $w \| t_{K}$ ■. We claim: $W^{H_{-}} \square \subset \subset C$. For consider $x \geqslant w$. If $x^{A} \neq w^{A}$, we have $x \| I_{K} C$ by case I. If $x^{A}=w^{A}$, we have $(\square C) \notin x^{A}$, hence: $x \|_{K} \square C$. By SLP $w \|_{-} C$, hence $w \|_{K}$ ロ C. (CP). Contradiction. We conclude: $w \|_{-} \square C$.

Step 3 Suppose $\forall_{H} A$. Then there is a saturated Δ such that $\Delta \vdash_{H} A$. (In fact we can take $\Delta=\varnothing$, because H has the disjunction property). By step $1: \Delta \| K_{K_{H}} A$. By step 2: $\Delta^{A} \| t_{K_{H}}^{A} A$, and K_{H}^{A} is a finite irreflexive Kripke Model.
6.15 Corollary: De Jongh's Theorem for $\Sigma^{\text {C-substitution instances }}$

Let $A \in L_{D}$, then:
$\vdash_{\text {IPL }} A \Leftrightarrow \vDash_{\Sigma^{C}, H A} A$, where IPL is Intuitionistic Propositional Logic.

Proo6:

$" \Rightarrow$ " triviei.
$" \Leftarrow$ " Suppose $A \in L_{D}$, we have:

$$
\begin{align*}
& \mathrm{I}=\sum_{\sum^{\mathrm{C}}, \mathrm{HA}} \mathrm{~A} \Rightarrow \\
& \mathrm{I}=\sum_{\sum^{\mathrm{C}}, P A *}^{A \Rightarrow} \\
& \mathrm{FI}_{\mathrm{A}} \Rightarrow \quad(6.10-13) \\
& \mathrm{F}_{\text {IPL }} \mathrm{A}
\end{align*}
$$

In this section we adapt Beeson's proof of the independence of KLS from HA, to the framework of selfcompletions. As a result we find the independece of KLS from any Σ-sound base.

7.1 Definitions

We define the necessary concepts in L. Let Txyz be Kleene's Tpredicate, U the result extracting function.
i) y total: $\Leftrightarrow \forall u \exists v T y u v$
ii) $y \sim z: \Leftrightarrow \forall u \forall v \forall w((T y u v \wedge T z u w) \rightarrow U v=U w)$
iii) z is an effective operation: \Leftrightarrow $E_{2}(z)$
$(\forall y(y$ total $\rightarrow \exists u T z y u) \wedge \forall y \forall w \forall u \forall v((y$ total $\wedge w$ total \wedge $y \sim w \wedge$ Tzyu \wedge Tzwv) \rightarrow Uu = Uv)))
iv) n is a modulus for z at $y: \Leftrightarrow$ $\operatorname{Mod}(n, z, y) \quad: \Leftrightarrow$ $\forall u \forall v \forall w((w$ total $\wedge T z w u \wedge T z y \vee \wedge \forall x \leqslant n \forall b \forall c((T w x b \wedge T y \times c) \rightarrow$ $U b=U c)) \rightarrow U(U=U v$
v) $\quad \operatorname{KLS}: \Leftrightarrow \forall z \forall y\left(\left(E_{2}(z) \wedge y\right.\right.$ total $\left.) \rightarrow \exists u \operatorname{Mod}(u, z, y)\right)$

7.2 Theorem

Let U be a Σ-sound base, then $\mathscr{H}_{U} K L S$. In particular:
$-H_{H A}$ KLS
$-H_{H A+T I(<)} K L S$, where $<$ is a wellfounded RE-relation
$-H_{H A}+R P_{H A} K L S$
$-\mathrm{H}_{\mathrm{HA}}+\mathrm{DNS}$ KLS
$-H_{H A+} \rightarrow M_{P R} K L S$
(Moreover inspection of the proof combined with our remarks in 5.13 shows:
$-\forall_{H A+E C T}$ KLS)
For Beeson's original proof, see [Be] or [Tr] pp 267-273. Our result that $H^{K} \quad$ KLS answers a question of Kreisel, which $\mathrm{HA}+\mathrm{M}_{\mathrm{PR}}$
was not answered by FP-realizability.
We prove 7.2 from a lemma:

7.3 Lemma

Let T be any RE theory, $T \geqslant H A$, s.t. $\vdash_{T} C P_{T}$. We have:
\vdash_{T} KLS $\rightarrow \square_{T} \perp$.
Proof of 7.2 from 7.3
Let U be a Σ-sound base. Suppose $\vdash_{U} K L S$. Then $\vdash_{U *}$ KLS. Hence by the lemma: $\vdash_{U^{*}} \square_{U^{*}} \perp$. $\left(\square_{U *} \perp\right) \in \Sigma$, so $\vdash_{U} \square_{U^{*}} \perp$. By Σ-soundness $\vdash_{U *} \perp$. $\perp \in \Sigma$, so $\vdash_{U} \perp$. By Σ-soundness: \perp.

Proof of 7.3
Let T be a theory such that $\vdash_{T}{ }^{C P_{T}}$.
We will produce an index e such that $\vdash_{T} E_{2}(\underline{e})$ and
$\vdash_{T}\left(\exists n \operatorname{Mod}(n, \underline{e}, \underline{\Lambda .0}) \rightarrow \square_{T} \perp\right)$, where $(\Lambda \times .0)$ is a canonical index of the identically zero function.

First we give the computation of \{e\}y. Let s_{y} be the smallest number s such that:
$\left(\{y\} s \downarrow \wedge\left(\left(\{y\} s=0 \wedge \operatorname{Proof}_{T}(s, r \dot{y}\right.\right.\right.$ total $\left.\left.\left.\left.\urcorner\right)\right) \vee\{y\} s \neq 0\right)\right)$.

Here \{y\}s \downarrow abbreviates (ヨuTysu). To compute \{e\}y we first compute
s_{y} by first considering $\{y\} 0$, in case $\{y\} 0 \cong 0$, checking whether Proof $_{T}\left(0, \mathbf{r}^{\dot{y}}\right.$ total $\left.{ }^{\mathbf{7}}\right)$ etc. Of course this procedure need not terminate. When we have found s_{y} there are two cases:
i) $\{y\}_{y}=0$, then put $\{e\} y$: $\cong 0$
ii) $\{y\} s_{y} \neq 0$. Check whether:
$\left(\left(\forall w<s_{y} \forall p<s_{y} \operatorname{Proof}_{\mathrm{T}}\left(\mathrm{p},{ }^{\text {r }} \dot{w} \operatorname{total}^{7}\right)\right) \rightarrow \exists k<\{y\} s_{y} T\left(w, s_{y}, k\right)\right)$. If so put $\{e\} y: \cong 1$, else put $\{e\} y \cong 0$.

We have:
Claim $1 \vdash_{T}$ y total \rightarrow \{e $\} y \downarrow$
Reason in $T: ~ S u p p o s e y$ total, then by $C P_{T}: \exists p \operatorname{Proof}_{T}\left(p,{ }^{r} \dot{y}\right.$ total ${ }^{7}$). Clearly s_{y} is bounded by $p . y$ is total, hence the computation of s_{y} will terminate. Moreover whenever the computation of s_{y} terminates, we have $\{e\} y \downarrow$.

Claim $2 \vdash_{T}\left(\left(y\right.\right.$ total $\wedge y^{\prime}$ total $\left.\left.\wedge y \sim y^{\prime}\right) \rightarrow\{\underline{e}\} y \cong\{\underline{e}\} y^{\prime}\right)$ Reason in T: Suppose y total, y^{\prime} total, $\mathrm{y} \sim \mathrm{y}$ '. We know from claim 1: \{e\}y \downarrow, \{e\}y' \downarrow. Suppose $\{e\} y=0$. $\{e\} y^{\prime}=1$. Let $s:=s_{y}, s^{\prime}:=s_{y},$.
Assume $\{y\} s=0$, so $\operatorname{Proof}_{T}\left(s,{ }^{\prime} \dot{y}\right.$ total $\left.{ }^{7}\right)$. We have $y<s$, because in a standard Gödel numbering the proof is longer than the theorem. Moreover $s<s^{\prime}$ because $y \sim y \prime$ and $\left\{y^{\prime}\right\} s^{\prime} \neq 0$. Hence $\exists k<\left\{y^{\prime}\right\} s^{\prime}=\{y\}_{s}{ }^{\prime} T\left(y, s^{\prime}, k\right)$. But this is impossible, for in a standard Gödel numbering the computation k must be longer than the result $\{y\} s^{\prime}$.

Hence $\{y\} s \neq 0$. We have $s=s^{\prime},\{y\} s=\{y\} s^{\prime}$. Conclude $\{e\} y=$ \{e\}y'. Contradiction.

Hence, because $=$ is decidable: \{e\}y = \{e\}y'.

Taking claim 1 and 2 together we have $\vdash_{T} E_{2}(\underline{e})$.
Reason in $T: ~ S u p p o s e ~ K L S, ~ t h e n ~ \exists n ~ M o d(n, e,(\Lambda \times .0))$ and hence by $C P_{T}: \exists n \square_{T} \operatorname{Mod}(n, e,(\Lambda \times .0))$. We have:
$\left(\forall w<n+1 \forall p<n+1\left(\operatorname{Proof}_{T}\left(p,{ }^{\Gamma} \dot{w} \operatorname{total}^{\top}\right) \rightarrow \square_{T}(\exists k \operatorname{Tw}(n+1) k)\right)\right)$.
Consider $w<n+1$, $p<n+1$. We have

$$
\begin{aligned}
\operatorname{Proof}_{T}\left(p, \Gamma^{-} \dot{w} \text { total }{ }^{\top}\right) & \rightarrow \square_{T} \exists k \operatorname{Tw}(n+1) k \\
& \rightarrow[]_{T}(\operatorname{Proof} T(p,\ulcorner\dot{w} \text { total }\urcorner) \rightarrow \exists k \operatorname{Tw}(n+1) k)
\end{aligned}
$$

and

$$
\begin{aligned}
7 \operatorname{Proof}_{T}\left(p, \Gamma^{\Gamma} \dot{w} \text { total }{ }^{\urcorner}\right) & \rightarrow \square_{T}-\operatorname{Proof}_{T}\left(p,,^{\top} \dot{w} \text { total }{ }^{\top}\right) \\
& \rightarrow \square_{T}\left(\operatorname{Proof} \mathrm{~T}^{\top}\left(p,{ }^{\top} \dot{w} \text { total }{ }^{\top}\right) \rightarrow \exists k T w(n+1) k\right)
\end{aligned}
$$

Hence by the decidability of Proof $\mathrm{T}^{\text {: }}$
$\left(\forall w<n+1 \quad \forall p<n+1 \square_{T}\left(\operatorname{Proof}_{T}\left(p, r^{\Gamma} \dot{w}\right.\right.\right.$ total $\left.\left.\left.{ }^{\top}\right) \rightarrow(\exists k \operatorname{Tw}(n+1) k)\right)\right)$
By a familiar induction argument:
$\square_{T}\left(\forall w<n+1 \quad \forall p<n+1\left(\operatorname{Proof}_{T}\left(p, \Gamma^{\Gamma} \dot{w}\right.\right.\right.$ total $\left.\left.\left.^{\top}\right) \rightarrow(\exists k \operatorname{Tw}(n+1) k)\right)\right)$

Reason in \square_{T} : We have
$\forall w<n+1 \quad \forall p<n+1\left(\operatorname{Proof}_{T}\left(p,{ }^{\prime} \dot{w}\right.\right.$ total $\left.\left.\left.{ }^{\top}\right) \rightarrow(\exists k \operatorname{Tw}(n+1) k)\right)\right)$.

Hence clearly there is an m such that:
$\forall w<n+1 \quad \forall p<n+1\left(\operatorname{Proof}_{T}\left(p,{ }^{\top} \dot{w}\right.\right.$ total $\left.{ }^{7}\right) \rightarrow \exists k<m(T w(n+1) k)$.

Let f be a canonical index such that:
$\{f\} x: \cong\left\{\begin{array}{l}0 \text { if } x \neq n+1 \\ m \text { if } x=n+1\end{array}\right.$
We have $\operatorname{Mod}(n, e, \Lambda \times .0)$, hence: $\{e\} f \cong 0$.
On the other hand: if $\{f\} s_{f}$ were 0 , we had $f<s_{f}$ and because f is a canonical index: $n+1<f$. Hence $n+1<s_{f}$. This is impossible. So $\{f\}_{f}=m$ and $s_{f}=n+1$. But then by (*): $\{e\} f \cong 1$. Contradiction.

Hence we conclude in $T: \square_{T} \perp$.

Hence $\vdash_{T} K L S \rightarrow \square_{T} \perp$.
7.4 Remark

Clearly we cannot establish the consistency of HA+ 7 KLS with our methods, for $H A+\urcorner 7 K L S$ is a \sum-sound base. Thus:

Open problem: do we have $\left.\left.\boldsymbol{f}_{H A}\right\urcorner\right\urcorner \operatorname{KLS}$?

7.5 Remark

Of course other independence proofs using CP and bases are possible. E.g. we can prove that for Σ-sound bases $U: H_{U} M_{P R}$ and $H_{U} M S$, where MS is Myhill-Shepherdson's Theorem. The proof of the last fact is a simple adaptation of the proof in [Be].

REFERENCES

[Be] BEESON M., The non-derivability in intuitionistic formal systems of theorems on the continuity of effective operations, JSL 40 (1975), 321-346.
[Bo] BOOLOS G., The unprovability of consistency, Cambridge University Press, Cambridge, 1979.
[Fe 1] FEFERMAN S., Arithmetization of metamathematics in a general setting, Fundamenta Mathematicae 49 (1960), 35-92.
[Fe 2] , Transfinite recursive progressions of axiomatic theories JSL 27 (1962), 259-316.
[Fr] FRIEDMAN H., Classically and Intuitionistically Provably Recursive Functions, in: Higher Set Theory, ed. G.H.Müller and D.S. Scott, Springer Lecture Notes in Mathematics 669, Berlin, 1977, pp 21-27.
[Sm] SMORYNSKI C., The incompleteness theorems, in: Handbook of Mathematical Logic, ed. by J. Barwise, North Holland, Amsterdam, 1977.
[So] SOLOVAY R.M., Provability interpretations of modal logic, Israel Journal of Mathematics, vol.25, 1976, 287-304.
[Tr] TROELSTRA A.S., Metamathematical investigation of intuitionistic arithmetic and analysis, Springer Lecture Notes in Mathematics 344, Berlin, 1973.
[Vi] VISSER A., A propositional logic with explicit fixed points, University of Utrecht, Preprint Series nr. 141, 1980. To appear: Studia Logica.

PART 5

On the provability logic of any recursively enumerable extension of Peano Arithmetic

or
Another look at Solovay's proof

Albert Visser

1) In [So] Solovay shows that for any recursively axiomatizable theory T such that T is Σ_{2}^{0}-sound and P is relatively interpretable in T, we have: a modal formula X is T-valid iff X is a theorem of G.

Actually a rather lazy inspection of his proof yields a characterization of the provability logic of any RE theory T such that P is relatively interpretable in T.

In this paper we will follow [So] rather closely. Not only do we adopt most of Solovay's notations, but we will also refer freely to subproofs and observations in [So]. Hence the reader is advised to consult [So].
2) We will state our main result for $R E$ extensions T of P. The case of relative interpretability of P in T is an easy consequence. Define: $\square^{0} \perp:=\perp, \square^{n+1} \perp:=\square\left(\square^{n} \perp\right), \square^{\omega} \perp=T$. $\square_{T}^{a} \perp$ for $0 \leqslant a \leqslant \omega$ is similarly defined. Here \square_{T} stands for the standard arithmetical
provability predicate for T.
Let $G_{a}:=G+\square^{a} \perp,(0 \leqslant a \leqslant \omega)$.

Theorem

Let T be an RE theory extending P. Then there is an $a, 0 \leqslant a \leqslant \omega$ such that: a modal formula X is T-valid iff X is a theorem of G_{a}.
3) Before proving our theorem we first turn to the avowedly unexciting Kripke frame completeness theorems for the G_{a}.

Let $F=\langle x ;\langle \rangle$ be a finite, irreflexive, transitive Kripke frame. (Remember that Solovay's trees grow downwards). Define the maximal downward pathlength $m: X \rightarrow \omega$ as:

$$
m(x):=\sup \left\{m\left(x^{\prime}\right) \mid x^{\prime}<x\right\}+1
$$

Clearly for bottom nodes $x: m(x)=1$. Let $m(F):=\max \{m(x) \mid x \in X\}$.

Theorem

Let X be a modal formula, then:
$G_{a} \vdash$ X iff x is valid in every finite, irreflexive transitive Kripke frame F, with $m(F) \leqslant a$.

Proof: The only if side is routine. For the if side: suppose $G_{a} \mid \nmid X$. Then $G \nmid \square^{a} \perp \rightarrow X$. By the Kripke frame completeness theorem for G (see [So] 3.6, 3.7) there is a Kripke model $K=\langle X ;\rangle$, e〉 such that for some $x_{0} \in X \quad e\left(\left(\square^{\exists} \perp \rightarrow X\right), x_{0}\right)=0$. Without loss of generality we may assume =hat x_{0} is the top node of $\langle X ;\rangle$. By an easy induction one may show: for all $x \in X$, all b with $0 \leqslant b \leqslant \omega$: $e\left(\square^{b} \perp, x\right)=1$ iff $m(x) \leqslant b$. Clearly $e\left(\square^{a} \perp, x_{0}\right)=1$, hence $m\left(x_{0}\right) \leqslant a$. So $m(F)=m\left(x_{0}\right) \leqslant a$. Moreover e $\left(x, x_{0}\right)=0$.
4)

We turn to the proof of the Theorem of 2). Let a be the smallest $b, 0 \leqslant b \leqslant \omega$ such that $\square_{T}^{b} \perp$ is a theorem of T. The case that $a=0$ is trivial, hence we will assume $a \neq 0$.

The if side of the theorem is routine.

For the only if side, assume $G_{a} \nvdash x$. Then by 3) there is a finite, transitive, irreflexive Kripke model $K=\langle X ;\rangle$, \rangle with top node x_{0} such that $m\left(x_{0}\right) \leqslant a$ and $e\left(x, x_{0}\right)=0$. We identify x_{0} with $1, x$ with $\{1, \ldots, n\}$.

Define ℓ and h for K as in [So] 4.3, substituting T for P.

We have:
i) $0 \leqslant \ell \leqslant n$ and $T 1-0 \leqslant \ell \leqslant n$
ii) if $0 \leqslant i \leqslant n$ and $j \in S_{i}$ then:

- if $\ell=$ i then $T+\ell=j$ is consistent
$-T H\left(\ell=i \rightarrow \neg \square_{T} \ell \neq j\right)$
iii) if $0<i \leqslant n$ and $j \notin S_{i}$ then:
- if $\ell=i$ then $T \mid \ell \neq j$
- $T 1-\left(\ell=i \rightarrow \square_{T} \ell \neq j\right)$
iv) if $0<i \leqslant n$ then:
- if $\ell=i$ then $T \mid \ell \in S_{i}$
$-T \mid \ell=i \rightarrow \square_{T} \ell \in S_{i}$
v) if $0<i \leqslant n$ then:
- if $\ell=i$ then $\left.\right|_{T} \square_{T}^{m(i)-1} \perp$
$-\vdash_{T} \ell=i \rightarrow \square_{T}^{m(i)}{ }_{\perp}$

Proof of $i \backslash-v):$ The proofs of $i l-i v j$ are simple consequences of the considerations in [So] 4.4.

The proof of v) is by induction on $m(i)$.
$\underline{m(i)}=1$: We have $S_{i}=\emptyset, T \mid\left(S_{i}=\emptyset\right), T-\square_{T}\left(S_{i}=\emptyset\right)$, hence by $\left.i v\right):$

- if $\ell=i$ then $T \mid \perp$.
$-T \mid \ell=i \rightarrow \square_{T} \perp$.
m(i) > 1: Suppose $\ell=i$, then by $i v):$

TH $\ell \in S_{i}$ i.e.
TH $W \ell=j$. By Induction Hypothesis:
$T \vdash \mathcal{W}_{j \in S_{i}}^{j \in \square_{i}} \square_{\perp}(j)$. Hence $T \vdash_{T}^{\max \left\{m(j) \mid j \in S_{i}\right\}_{\perp}}$ i.e.
$T \mid-\square_{T}^{m(i)-1} \perp$. The second case is by formalizing this
argument.

Suppose $\ell \neq 0$. Then $\ell=i, 0<i \leqslant n$.
By $v): \vdash_{T} \square_{T}^{m(i)-1} \perp$. But $m(i)-1<m(i) \leqslant m(1) \leqslant$ a and a was the least b with $0 \leqslant b \leqslant \omega$ s.t. $1_{T} \square^{a} \perp$. Contradiction.

Hence $\ell=0$. By $i(1): T+\ell=1$ is consistent.
Let ()* be as in [So] 4.7. We have $H_{T}(X) *$, for the obvious adaptation of [So] 4.7 just uses $i l-i v)$ and to repeat [So] 4.8 we just need that $T+\ell=1$ is consistent.
5) We have shown that the provability logics of RE extensions of
P are among the $G_{a}(0 \leqslant a \leqslant \omega)$. Conversely for any G_{a} there is an $R E$ extension T of P such that G is the provability logic of T.

Proo6: Take $T:=P+\square_{P}^{a} \perp$. Clearly $T 1-\square_{P} \square_{P}^{a} \perp$ hence $T H$ "P $=T$ ". We conclude $T \mid \square_{T}^{b} \perp \leftrightarrow \square_{P}^{b} \perp$ for any b with $0 \leqslant b \leqslant \omega$. Hence $T \mid-\square_{T}^{a} \perp$, but not (in case $a \neq 0, \omega) T \not-\square_{T}^{a-1} \perp$ for otherwise $P \mid-\square_{P}^{a} \perp \rightarrow \square_{P}^{a-1} \perp$ and by Löb's Theorem $P \nmid \square_{P}^{a-1} \perp$. Quod non. The cases $a=0$, $a=\omega$ are trivial.

Reference

[So] SOLOVAY R.M., Provability interpretations of modal logic, Israel Journal of Mathematics, vol 25, 1976 pp 287-304.

PART 6 EPILOGUE

EPILOGUE

Remarks on the Provability Logic of HA and extensions

In the epilogue we will make full use of the notations of part 4 , section 6 and of the introductory part. Define further:
$L(T):=\left\{A \in L_{p r} \mid \|_{T} A\right\}(T$ is an RE theory extending $H A)$
$L(*):=\left\{A \in L_{p r} \mid\right.$ for all RE T extending $\left.H A \mid=T A\right\}$
G^{I} is defined as G, only with intuitionistic instead of classical logic.

We are interested in questions like the following (all open):

- What is the provability logic of HA?
- What are the provability logics of interesting extensions of HA such as $H A+E C T_{0}, H A+M_{P R}, H A+K L S, H A+I P$ etc.?
- What is $L(*)$? Conjecture: $L(*)=G^{I}$.
- Is there an RE T extending $H A$ such that $L(*)=L(T)$? One can
 doesn't.)
- What are the possible complexities (our favorite measure is manyone reducibility) of the $L(T)$'s? $L(P A)$ is (primitive) recursively decidable; the $L(T)$'s can be at most complete Π_{2}^{0}.

The questions above are good questions, not only because of their intrinsic interest, but also because they promise to be technically fruitful. In particular the first two may be hard.

1 On naively applying Solovay's method
G, of course, is not sound for $H A$, but one might hope to prove:
$L(H A) \subseteq G(h e r e$ we confuse conveniently theories with the sets of
theorems provable in those theories), by repeating the completeness side of Solovay's proof for HA.

Consider A in $L_{p r}$, such that $G \not \forall A$. There is a tail model K and a tail element m with $d(m)=d(A)$. We would like to prove:
$H A H\left(\left\langle A \wedge \square_{A}\right\rangle_{K, H A} \leftrightarrow \square_{H A}^{d(A)} \perp\right)$, in order to get completeness. Clearly for completeness:
$\left.H A+\square_{H A}^{d}(A)+1 \perp I-(<A \wedge \square A\rangle_{K, H A} \rightarrow \square_{H A}^{d(A)} \perp\right)$ is sufficient. When we try to repeat the arguments of part 02.2 , it turns out that the only non intuitionistic step is the assumption that $H A+\square_{H A}^{d(A)+1} \perp \vdash$ " lim h exists". Clearly $H A+\square_{H A}^{d(A)+1} \perp \mid-\exists x h x \geqslant m$, for some $m \neq 口$, hence we need only the existence of the limit in a given finite upper part of $<$. So the relevant natural missing principle is given by the following scheme:
${ }^{(*)} e, k:(" \underline{k}$ codes a finite sequence of ordered pairs that determines a partial irreflexive ordering く"
$\wedge(\forall x \forall y \times<y \rightarrow \exists u \exists v$ Texu \wedge Teyv $\wedge U u \leqslant U v) \rightarrow$ " $\lim \{\underline{e}\}$ exists").

Let:
(**): for $\sum_{1}^{0}-$ sentences: $A \vee \neg A$.
We show:

1.1 Theorem

(*) and (**) are interderivable over HA.
Proof:
$"(*) \Rightarrow(* *) "$.
Consider $A \equiv \exists x A_{0}(x), A_{0}(x)$ primitive recursive. Reason in $H A+(*)$
Define:
$\{e\} x: \cong\left\{\begin{array}{l}0 \text { if } \forall y \leqslant x \neg A_{0}(x) \\ 1 \text { if } \exists y \leqslant x A_{0}(x)\end{array}\right.$

Then \{e\} is total and monotonic in < with (0 く 1). Hence $\lim \{e\}$ exists. If $\lim \{e\}=0$ we have $ᄀ A, \operatorname{if} \lim \{e\}=1: A$. $"(* *) \Rightarrow(*) "$

Argue in $\mathrm{HA}+(* *):$
Assume the hypothesis of ${ }^{(*)}{ }_{e, k}$. Let the domain of $<$ given by k be $\{1, \ldots, N\}$. We have by decidability of \sum_{1}^{0}-sentences and propositional logic that one of:
$M\{ \pm \exists \times\{e\} \times \cong$ i \mid i $\in\{1, \ldots, N\}\}$ is true. Pick any such possibility. If it is inconsistent with the totality and monotonicity of $\{e\}$, we have a contradiction, hence $\lim \{e\}$ exists. Otherwise there is a j such that $\exists \times\{e\} x \cong j$ and $M\{\neg \exists \times\{e\} \times \cong \subseteq s>j\}$.

Conclude $\lim \{e\}=j$, hence $\lim \{e\}$ exists.

The theorem indicates that for a naive extension of the completeness part of Solovay's Theorem, one must consider extensions of HA+(**). We think these are hardly interesting.

2 Solovay's Theorem and the Completeness Principle.
We can execute something like 1 's plan for theories $T \geqslant H A$, with TH CP ${ }_{T}$ (see part 4, p.2). Hence suppose TI-CP ${ }_{T}$.

Let K be a monotonic tail model. Let $\mathrm{mll}_{\mathrm{K}} A$ be defined as in part 4 , 6.8.

Define:
$h(0):=0$
$h(k+1):=\left\{\begin{array}{l}n \text { if for some } n>h(k) \operatorname{Proof}_{T}\left(k+1,{ }^{r}(\exists \times h \times \leqslant n)^{7}\right) \\ h(k) \text { otherwise }\end{array}\right.$

Clearly: $\vdash_{H A} " h$ is weakly monotonic in く".

One easily shows: $[[A]]_{K}:=\left\{w \mid w \|_{K} A\right\}$ is finite or \mathbb{N}.
Define: $[A]_{K, T}:=W\left\{\exists \times h x=i \mid i \in[[A]]_{K}\right\}$ if [[A]] ${ }_{K}$ is finite $[A]_{K, T}:=(0=0)$ if $[[A]]_{K}=\mathbb{N}$.

We will conveniently identify $W\{\exists x h x=i \mid i \in \mathbb{N}\}$ with $(0=0)$.
Take $f: P \rightarrow L$ as: $f\left(P_{i}\right)=[A]_{K, T}$ and define: $\langle A\rangle_{K, T}:=\langle A\rangle^{f, T}$.
2.1 Theorem
$\vdash_{T}\langle A\rangle_{K, T} \leftrightarrow[A]_{K, T}$.
Proof: induction on A.
i) $A \equiv p_{i}$ or $A \equiv \perp$. By definition.
ii) $A \equiv(B \vee C)$. Trivial.
iii) $A \equiv(B \wedge C)$.

We have to show:
$\vdash_{T}\left([B]_{K, T} \wedge[C]_{K, T}\right) \leftrightarrow[B \wedge C]_{K, T}$.
Reason in $T:$
$" ↔ "$ trivial.

Consider some $\exists x h x=i$ of the first disjunction, some $\exists x h x=j$ of the second. In case i and j are incomparable w.r.t. $<$, we have \perp, hence $[B \wedge C]_{K, T}$; otherwise $i \leqslant j$ or $j \leqslant i$, so e.g. if $i \leqslant j$, we have $\exists x h x=j$ and $j \|-B \wedge C$, hence $[B \wedge \subset]_{K, T}$.
iv) $A \equiv(B \rightarrow C)$.

We have to show:
$\vdash_{T}\left([B]_{K, T} \rightarrow[C]_{K, T}\right) \leftrightarrow[B \rightarrow C]_{K, T}$.
In cese $[[B \rightarrow C]]_{K}=\mathbb{N}$ this is easy. Hence assume $[[B \rightarrow C]]_{K}$
is firite. Let $j_{0}, \ldots . j_{s}$ be the maximal elements such that $j_{k} \|_{K}(B \rightarrow C)$. Note that $j_{k} \|_{K} B$ and $j_{k} \|_{K} C$.

Reason in T :
First" \rightarrow "
Suppose $\left([B]_{K, T} \rightarrow[C]_{K, T}\right)$ and $\square_{T}[B \rightarrow C]_{K, T}$. We have $\square_{T}\left(\exists \times h \times K j_{k}\right)$. Suppose $\operatorname{Proof}_{T}\left(p+1,\left\ulcorner\left(\exists \times h \times \nless j_{k}\right){ }^{\top}\right)\right.$ and $h(p)=y \cdot$ In case $y<j_{k}, h(p+1)=j_{k}$ and so $[B]_{K, T}$, hence $[C]_{K, T}$. From $h(p+1)=j_{k}$ and $[C]_{K, T}$ we have: $\exists x h x>j_{k}$ (for $j_{k} \notin[[C]]_{K}$). In case $y \nless j_{k}, h(p+1) \nless j_{k}$. Conclude: $\exists \times h \times \nless j_{k}$. Hence $M\left\{\exists \times h \times \nless j_{k} \mid k=0, \ldots, s\right\}$, so by the monotonicity of $h: \exists x M\left\{h \times \nless j_{k} \mid k=0, \ldots, s\right\}$. From this we have: $W\left\{\exists x h x=i \mid i \|_{K}(B \rightarrow C)\right\}, i . e$. $[B \rightarrow C]_{K, T}$.
By the SLP (see part 4,3) we may conclude $[B \rightarrow C]_{K, T}$ without assuming $\quad \square_{T}[B \rightarrow C]_{K, T} \cdot$

Secondly "*"
Suppose $[B \rightarrow C]_{K, T}$ and $[B]_{K, T}$. Hence by the reasoning of the $" \rightarrow$ " case of $\wedge: W\left\{\exists x h x=i \mid i \|_{-}((B \rightarrow C) \wedge B)\right\}$. So $[C]_{K, T}$.
v) $\quad A \equiv \square B$

The case that $[[A]]_{K}=\mathbb{N}$ is easy, hence assume $[[A]]_{K}$ is finite.

Let j_{0}, \ldots, j_{s} be all elements such that $j_{k} \Vdash_{K} \square B, j_{k} \|_{K} B$.
Note that for each i s.t. $i \| f_{K} \square B$ there is a j_{k} with $i<j_{k}$.

We have to show: $\mathcal{F}_{T} \square_{T}[B]_{K, T} \leftrightarrow[\square B]_{K, T}$.
Argue in $T:$
" \rightarrow " first:
Suppose $\square_{T}[B]_{K, T}$. We have: $\square_{T}\left(\exists \times h \times \& j_{k}\right)$ by the definition of $[B]_{K, T}$ and the fact that $j_{K} \| f_{K}$ B. Suppose
$\operatorname{Proof}_{T}\left(p+1, 「\left(\exists \times h \times \nless j_{k}\right)^{7}\right)$ and $h(p)=y$. In case $y<j_{k}$ we have $h(p+1)=j_{k}$, in case $y<j_{k} h(p+1) \nless j_{k}$. Hence $\exists x h \times K j_{k}$.

Conclude $M\left\{\left(\exists \times h \times \nless j_{k}\right) \mid k=0, \ldots, s\right\}$, hence by the monotonicity of $h: \exists x M\left\{\left(h \times \nless j_{k}\right) \mid k=0, \ldots, s\right\}$. So by elementary reasoning: $W\left\{\exists x h x=i \mid i \Vdash_{K} \square B\right\}$.

Secondly " \leftarrow "
Suppose $\exists x h x=i$ for an $i \Vdash_{K} \square B$, by the definition of h and the fact that $i \neq 0: \square_{T} \exists \times h \times \mathbb{i}$. ("How else could h move up to i".) Moreover from $\exists x h x=i: \square_{T}(\exists \times h \times=i)$. Combining: $\square_{T} \exists \times h \times>$ i or $\square_{T} W\{\ell=j \mid j>i\}$. Hence $\square_{T}[B]_{K, T}\left(\right.$ because $\left.j>\left.i \Rightarrow j\right|_{K} B\right)$.

2.2 Corollary

Let $d(A)$ be as in part $0,2.3 .3$ but now defined for \mathbb{H}_{K}. Suppose $T \vdash C P_{T}$. There is an $f: P \rightarrow L$ such that: $\vdash_{T}\left\langle A>{ }^{f}, T \leftrightarrow \square_{T}^{d(A)} \perp\right.$. Proo6: as in part 0, 2.3.3.

2.3 Corollary

Suppose $\mathrm{T}_{\mathrm{F}} \stackrel{\mathrm{CP}}{\mathrm{T}}$ and a is the least element of $\{0,1, \ldots, \omega\}$ such that $T \vdash \square_{T^{a}}^{a}$. Then $L(T) \subseteq H+\square^{a} \perp$, where H is as in part $4,6.8$. Proof: as in part 0, 2.2.5, using lemma 6.14 of part 4.

2.4 Examples and Applications

i) L(PA*) $=H$. Because PA* is sound for H.
ii) $L(T) \subseteq H$ for e.g. the following $T: T \equiv H A *, T \equiv H A+E C T_{0}+C P_{T}$, $T \equiv(H A+D N S) *$.
iii) We have De Jongh's Theorem for $H A, H A+E C T$, $H A+D N S$. From ii).
iv) $L(H A) \subseteq H+\square \square \perp$

Proof: Consider $T \equiv H A+C P_{H A}$. By 2.3 and part 4, 4.14
$L(T) \subseteq H+\square \square \perp$. Moreover $L(H A) \subseteq L(T)$, for $H A \leqslant T$ and $T \vdash \square_{H A} A \leftrightarrow \square_{T} A \quad$ (because $\left.\quad T \vdash \square_{H A} \quad C P_{H A}\right)$.

Of course this is a rather silly upper bound because $H+\square \square \perp \vdash \square(A \vee \neg A)$; but it is the only one we know.

3 Translations and Principles
3.1 Independence of Premiss, The Friedman Translation and The De Jongh Slash.

The De Jongh Slash was introduced by De Jongh [DJ] in 1973. It is given by:

- (E $\underset{\sim}{\perp} P):=(E \rightarrow P)$ for atoms P of L.
- (E $\underset{\sim}{\perp}$.$) commutes with \wedge, \forall$.
$-(E \underset{\sim}{\perp}(A \vee B)):=((E \perp A \wedge(E \rightarrow A)) \vee(E \perp B \wedge(E \rightarrow B)))$
$-(E \perp(A \rightarrow B)):=((E \underset{\sim}{\perp} A \wedge(E \rightarrow A)) \rightarrow E \underset{\sim}{\perp} B)$
$-(E \perp \mathcal{\perp} \mathcal{\perp}):=(\exists \times(E \underset{\sim}{\perp} A \wedge(E \rightarrow A)))$
The Friedman Translation was introduced by Friedman [Fr] in 1977. It is given by:
$-(P)^{A}:=(P \vee A)$ for atoms P of L.
- (.) ${ }^{A}$ commutes with $\wedge, v, \rightarrow, \forall, \exists$.

A typical application of the De Jongh Slash is a proof of closure of HA under the Independence of Premiss Rule (IPR), a typical application of the Friedman Translation is a proof of closure of HA under Markov's Rule.

Closer inspection of the De Jongh Slash gives us:
Lemma
The De Jongh Slash is a special case of Friedmans translation.
To be specific: $\vdash_{H A} E \underset{\sim}{\perp} A \leftrightarrow(A)^{7 E}$.
Proob: it is clearly sufficient to show that (.) ${ }^{\mathrm{E}}$ satisfies, modulo provable equivalence, the inductive clauses of the definition of (E $\underset{\sim}{~ \perp}$.):

- $\vdash_{H A}(P \vee \neg E) \leftrightarrow(E \rightarrow P)$, because atoms are decidable in $H A$.
- The other clauses follow easily by noting that $\left.\vdash_{H A} E \rightarrow((A))^{E_{\leftrightarrow}} \rightarrow A\right)$, hence $\vdash_{H A}(A)^{7 E} \rightarrow(E \rightarrow A)$. So e.g.:
$\vdash_{H A}(B \vee C){ }^{E} \leftrightarrow\left(B^{\urcorner E} \vee C{ }^{E}\right)$
$\leftrightarrow\left(\left(B^{\mathrm{E}} \wedge E \rightarrow B\right) \vee\left(C^{\mathrm{E}} \wedge E \rightarrow C\right)\right)$
$\leftrightarrow((E \underset{\sim}{\perp} B \wedge E \rightarrow B) \vee(E \underset{\sim}{\perp} C \wedge E \rightarrow C))$
The crucial lemmas on Friedman's Translation are treated in part 4 of this thesis, 2.15.

We show that IPR is a derived rule of HA.
Suppose $\left.\vdash_{H A}\right\urcorner A \rightarrow \exists x B(x)$, then $\left.\left.\left.\vdash_{H A}(\neg A)\right\urcorner \neg A \rightarrow(\exists x B(x))\right\urcorner\right\urcorner A$, hence $\left.\vdash_{H A}(\neg A)\right\urcorner \neg A \rightarrow \exists x(\neg A \rightarrow B(x))$.
But $\vdash^{-} \mathrm{HA}^{(}(A)^{7} \neg A \rightarrow(\neg A \rightarrow A)$ $\rightarrow 7 \neg A$)
and $(\neg A)\urcorner \neg A=(A\urcorner \neg A \rightarrow \neg \neg A)$, so $\left.\vdash_{H A}(\neg A)\right\urcorner \neg A$.
Clearly this proof can be formalized in HA, so
$\vdash_{H A} \square_{H A}(\neg A \rightarrow \exists x B(x)) \rightarrow \square_{H A} \exists x(\neg A \rightarrow B(x))$.
Consequences visible in $L_{p r}$ are e.g.:
$(\square(\neg A \rightarrow B \vee C) \rightarrow \square((\neg A \rightarrow B) \vee(\neg A \rightarrow C)))$ is in $L(H A)$. And for $B \in \Sigma_{p r}:(\square(\neg A \rightarrow B) \rightarrow \square(\neg \neg A \vee B))$ is a principle of $L(H A)$. To show this principle; suppose $\vdash_{\text {HA }} \neg A \rightarrow \exists x B_{0}(x)$, where $B_{0}(x)$ is
primitive recursive. We have by $I P R: \vdash_{H A} \exists x\left(\neg A \rightarrow B_{0}(x)\right)$.
Argue in $H A$:
Pick an x such that $\neg A \rightarrow B_{0}(x)$. In case $B_{0}(x)$ we have B and

3.2 Leivants Principle, q-realizability, () qHA.

In "Stelling" 1 accompanying his thesis of 1975, Leivant states that: $(\square(A \vee B) \rightarrow \square(\square A \vee \square B)) \in L(H A)$. When writing part 4 of this thesis we totally overlooked this. With this principle we think Leivant was the first to state an HA valid provability principle that together with G yields some degree of falsity. We give two proofs of a slightly stronger version of Leivant's Principle:

Theorem

$L(H A) \vdash \square(A \vee B) \rightarrow \square(A \vee \square B)$
First proof: Argue in $H A$:
Suppose $\square_{H A}(A \vee B)$ then for some recursive term t :
$\square_{H A}(\exists x \quad t \cong \times \wedge \times q(A \vee B))$, where q is q-realizability (see [Tr] pp 188-203). Hence by Gödel's Rule: $\square_{H A} \square_{H A}(\exists x t \cong \times \wedge \times q A \vee B)$. Argue in $\square_{H A}$:

Let $t \cong x$ and $x q(A \vee B)$. In case $(x)_{0}=0$ we have $(x)_{1} q A$
and hence A. Moreover we have: $\square_{H A} t \cong x\left(\right.$ for $(t \cong x)$ is $\left.\sum_{1}^{0}\right)$
and $\square_{H A}(\exists x t \cong x \wedge \times q(A \vee B))$, so $\square_{H A} \times q(A \vee B)$, hence in
case $(x)_{0}=1: \square_{H A}(x)$ qB. Conclude $\square_{H A}$ B.
Second proof:
Define () qHA as follows:

- $(P)^{q H A}:=P$ for atoms P of L.
- (.) ${ }^{q H A}$ commutes with $\wedge, ~ v, \exists$.
$-(A \rightarrow B)^{q H A}:=\left(\left(A^{q H A} \rightarrow B^{q H A}\right) \wedge(A \rightarrow B) \wedge \square_{H A}(A \rightarrow B)\right)$
$-(\forall \times A)^{q H A}:=\left(\left(\forall \times A^{q H A}\right) \wedge \square_{H A}(\forall \times A)\right)$
One easily shows:
a) $\Gamma \vdash_{H A} A \Rightarrow \Gamma^{q H A} \vdash_{H A} A^{q H A}$
b) $A^{q H A} \vdash_{H A} A \wedge \square_{H A} A$.

Cone does not have: $\Gamma^{q H A} \vdash_{H A} A A^{q H A} \Rightarrow \Gamma \vdash_{H A} A, e . g .\left(\neg \neg \square_{H A} \perp\right)^{q H A} \vdash_{H A}$ $\left(\square_{H A} \square_{H A}\right)^{q H A}$.)

Moreover the proofs of a and b can be formalized in HA. We have, in HA:

Suppose $\square_{H A}(A \vee B)$, then $\square_{H A}(A \vee B)^{q H A}$. So $\square_{H A}\left(A^{q H A} v B^{q H A}\right)$, hence $\square_{H A}\left(A \vee \square_{H A} B\right)$.

The principle $(\square(A \vee B) \rightarrow \square(A \vee \square B))$ is 2-inconsistent with G, for in G plus this principle:
$\square(\square \perp \vee \rightarrow \square \perp)$, so $\square(\square \perp \vee(\square \neg \square \perp))$. By Löb's Axiom:
$\square(\square \perp \vee \square \perp)$, or $\square \square \perp$.

4

General insights on the $L(T)$

We end our remarks on the provability logics of $H A$ and extensions with two gereral results.

The first is due to Gargov:

4.1 Theorem

Suppose $T \geqslant H A, T$ has the Disjunction Property, then $L(T)$ has the Disjunctior Property.
Proo6: Suppose for all $f: P \rightarrow L: \rightarrow \vdash_{T}<A \vee B>{ }^{f}, T$. We prove: for all $f: P \rightarrow L: \vdash_{T}\langle A\rangle, T$ or $\vdash_{T}\langle B\rangle{ }^{f, T}$.

Say $f\left(p_{i}\right)=E_{i}, g\left(p_{i}\right)=D_{i}$. Define $E_{i}(n):=\left(\left(\{\underline{n}\} \underline{n} \cong 0 \rightarrow C_{i}\right) \wedge\right.$ $\left.\left((\{\underline{n}\} \underline{n} \downarrow \wedge\{\underline{n}\} \underline{n} \not \equiv 0) \rightarrow D_{i}\right)\right)$ and $h_{n}\left(p_{i}\right):=E_{i}(n)$.

Clearly $\{d\}$ is total recursive, since just the restriction of h_{n} to the atoms of A and B is relevant for finding $\langle A\rangle^{h}{ }^{n} T^{T}$ and $\langle B\rangle{ }^{h}, T$.

Suppose $\{d\} d \cong 0$ then $\vdash_{T}\{d\} d \cong 0$ and so: $\vdash_{T} C_{i} \leftrightarrow E_{i}(d)$. Hence by an easy induction $\vdash_{T}\langle A\rangle{ }^{h}{ }^{\prime}{ }^{T} \leftrightarrow\langle A\rangle, T$. Moreover by the definition of $\{d\}: \vdash_{T}\langle A\rangle{ }^{h_{n}, T}$. Conclude $\vdash_{T}\langle A\rangle{ }^{f}, T$.

Suppose $\{d\} d \cong 1$. By similar reasoning as above: $\vdash_{T}g, T$. Conclude: $\forall f \forall g\left(F_{T}<A>f, T\right.$ or $\left.\vdash_{T}g, T\right)$. Hence by classical logic: $\left(\forall f \vdash_{T}<A>f, T\right)$ or $\left(\forall g \vdash_{T}g, T\right)$.

Remark: the proof of 4.1 can be formalized in HA (replacing reference to functions by reference to numbers as codes of finite functions) up to the last step. ("Hence bv classical logic ...".)

What we can get is:
$\exists f \forall_{T}<A>f, T \Rightarrow \forall g \vdash_{T}g, T$.
Or another variant:
$-\forall f \vdash_{T}<A>f, T \Rightarrow \forall g \neg \neg \vdash_{T}g, T$.
Hence in $H A+M P$ we can prove: T has $D P,(A \vee B) \in L(T)$ and $A \notin L(T) \Rightarrow B \in L(T)$.

Another question of interest is this: as we have seen: $T \leqslant U \neq$ $L(T) \subseteq L(U), e . g . L(H A) \nsubseteq L(P A)$, but is it possible to find for any T and U a V such that $L(V) \subseteq L(T) \cap L(U)$?

The next theorem provides a partial answer:

4.2 Theorem

Let $\left(T_{i}\right)_{i \in I N}$ be a recursive sequence of theories, (extending $H A)$, i.e. $T_{i} \mid-A$ is an RE relation in A and i. Let $\left(X_{i}\right)$ be a recursive sequence of non empty subsets of L (i.e. $A \in X_{i}$ is an RE relation in A and $i)$ such that X_{i} is a counterexample set for T_{i}; we say X_{i} is a counterexample set for T_{i} if each element of T_{i} is of the form $\quad i$ for some f and some $B \in L_{p r}$ and $T_{i} \not \forall{ }^{\prime}, T_{i}$.

We have: there is a $T=H A$ such that for each i, for each $\left.\langle B\rangle^{f, T_{i}} \in X_{i}: T H<B\right\rangle^{f, T}$.

Proof: By the methods of part 1 of this Thesis one can find an index e such that for each n and i and each $A \in X_{i}$:
$T_{i}+\{\underline{e}\} \quad \underline{0} \cong \underline{n} \nvdash A$.
Define $T: \equiv H A+\left\{B \mid \exists x\{\underline{e}\} \underline{0} \cong \times \wedge T_{x} \vdash B\right\}$.
Clearly $T=H A$ (but $T \not \equiv H A$). Consider T_{i} and $\left\langle B_{i}>^{f, T_{i}} \in X_{i}\right.$. We
 Hence $H A+\therefore \underline{e}\} \underline{0} \cong \underline{i} \nmid<B_{i}>f, T$, so $H A \nmid<B_{i}>^{f, T}$. Conclude $T \vdash<B_{i}>^{f}, T$.

4.3 Applミcation

There is an RE $T, T=H A$, such that $L(T) \subseteq H \cap G$.
Proof: Let $\bar{O}_{0}:=P A, T_{i}:=P A *, i \neq 0$. Inspecting the proofs of the completeness theorems for resp. G and H, we find recursive sets X_{0} and $X_{i}(i \neq 0)$ such that for each j :
$A \notin L\left(T_{j}\right) \Leftrightarrow$ for some $f\langle A\rangle^{f, T_{j}} \in X_{j}$.
Take T as in 4.2.

REFERENCES

[0]]	DE JONGH D.H.J., Formulas of one propositional variable in intuitionistic arithmetic, Report 73-103, 1973, Department of Mathematics, University of Amsterdam.
[Fr]	FRIEDMAN H., Classically and Intuitionistically Provably Recursive Functions, in: Higher Set Theory, ed. G.H. Müller and D.S. Scott, Springer Lecture Notes in Mathematics 669, Berlin, 1977, pp 21-27.
[Ga]	GARGOV G.K., A Note on the provability logics of certain extensions of Heyting's Arithmetic. Unpublished manuscript.
[Tr]	TROELSTRA A.S., Metamathematical investigation of intuitionistic arithmetic and analysis, Springer Lecture Notes in Mathematics 344, Berlin, 1973.
[Ur 1]	URSINI A., Intuitionistic Diagonalizable Algebras, Algebra Universalis 9 (1979). pp 229-237.
[Ur 2]	\qquad , A Modal Calculus Analogous to K4W, Based on Intuitionistic Propositional Logic, I^{0}, Studia Logica XXXVIII, 3, (1979), pp 297-311.

Dit proefschrift gat (voornamelijk) over generalisaties van de eerste en tweede onvolledigheidsstelling van Gödel en over begrippen die in het bewijs van deze stellingen voorkomen.

In Gödels eerste stelling wordt een $z i n G$ in de taal van de rekenkunde geconstrueerd zodat de rekenkunde (bijvoorbeeld zoals geformaliseerd door Dedekind / Peano, met inductieschema) deze zin noch zijn negatie impliceert. Dit resultaat is op spectaculaire manier te generalizeren met behulp van een zogenaamd recursief orscheidbaarheidsargument. Om dit argument toe te kunnen passen is nodig dat de partiëel recursieve functies semirepresenteerbaar zijn in de beschouwde (consistente) theorieën. De formalizering van het begrip bewijsbaarheid en het begrip consistentie is uit het bewijs geëlimineerd. Deel 1 en 2 van dit proefschrift gaan in wezen over recursieve onscheidbaarheidsargumenten met het oog op toepassing op formele theorieën. (De bestudeerde methoden kunnen natuurlijk ook elders toegepast worden.)

In zijn tweede stelling liet Gödel zien dat bovengenoemde zin G bewijsbaar equivalent is met (de formalizering van) 'de rekenkunde is consistent'. Löb heeft in 1955 drie principes geisoleerd die om zo te zeggen aan het bewijs van deze equivalentie ten grondslag liggen. Natuurlijk is 'ten grondslag liggen aan' vaag, en men kan dan ook heel goed andere principes formuleren die 'ten grondslag' zouden 'liggen' aan het bewijs. De principes van Löb hebben echter de prachtige eigenschap dat ze op te vatten zijn als principes van een modale propositielogica. Bovendien is het bewijs van voornoemde equivalentie, uit Löbs principes plus de 'definịtievergelijking'
van G geheel in modale propositielogica te geven. Löbs werk heeft aanleiding gegeven tot een nieuwe tak van onderzoek: bewijsbaarheidslogica (zie bijvoorbeeld G. Boolos, The unprovability of consistency, Cambridge University Press, Cambridge, 1979). Belangrijke resultaten op dit gebied zijn de stellingen van D.H.J de Jongh en van R.M. Solovay. Deel 3, 4 en 5 van dit proefschrift zijn bijdragen tot de bewijsbaarheidslogica.

CURRICULUM VITAE

Op 19 december 1950 ben ik te Zwijndrecht geboren. Van 1963 tot en met 1969 bezocht ik het Johannes Calvijn Lyceum te Kampen. In 1969 ging ik aan de Technische Hogeschool Twente studeren, waar ik in 1974 mijn Baccalaureaatsexamen in de toegepaste wiskunde behaalde. Intussen was mijn belangstelling verschoven naar zuivere wiskunde en filosofie. De Rijksuniversiteit te Utrecht accepteerde mijn Baccalaureaatsdiploma als grond van toelating tot de doctoraalstudie in de wiskunde. Van 1974 tot en met 1976 studeerde ik hier wiskunde met als bijvak filosofie. Mijn specialisatie in de afstudeerfase was metamathematica onder leiding van Van Dalen / Barendregt. Het onderwerp van de afstudeerscriptie - geschreven samen met J.S. Lub - was predicatieve analyse. Van 1976 tot 1981 was ik als promotiemedewerker verbonden aan het Mathematisch Instituut in Utrecht. Mijn eerste artikel 'Numerations, λ-Calculus \& Arithmetic' kwam voort uit een stafseminarium over Eršovs werk.

Vanaf januari 1981 ben ik werkzaam als medewerker bij de Centrale Interfaculteit te Utrecht.

Albert Visser
Centrale Interfaculteit
Heidelberglaan 2
3508 TC Utrecht

Bij het proefschrift 'Aspects of Diagonalization \& Provability' van Albert Visser.

1. Om mee te kunnen praten moet je weten waar je het over hebt. Om "Julius Caesar is dood" te begrijpen moet je weten naar wie "Julius Caesar" refereert. Anders dan D. Bell (zie BELL D. Frege's Theory of Judgement, Clarendon Press, Oxford, 1979, pp 60-62) houd ik dat voor onbetwijfelbaar. De problemen die men daarin gezien heeft zijn het gevolg van het geloof in naïve thesen over kennis, zoals:
a) kennis zit in het hoofd (of wellicht in de individuele geest).
b) kennis is zeker.

De eerste these lijkt plausibel als men meent dat het toeschrijven van kennis aan iemand het toeschrijven van een eigenschap is, en dat iemand een eigenschap kan hebben los van de rest van de wereld. Het is beter kennis te zien als een relatie tussen een persoon, een propositie en de wereld. Geloof in de tweede these is het gevolg van eeuwenlange filosofische preoccupatie met sceptische argumenten.
2. Iemand weet in voldoende mate naar wie "Julius Caesar" refereert om hem begrip van "Julius Caesar is dood" toe te schrijven precies dan als hij in de positie is om met "Julius Caesar = Julius Caesar" een waarheid over Julius Caesar uit te drukken.
3. In tegenstelling tot wat bijna iedereen vindt, gelooft iemand die denkt dat Hesperus $=$ Phosphorus, daarmee simpelweg dat Venus $=$ Venus. De reden dat zovelen anders geloven is dat men onbewust "Hesperus = Phosphorus" leest als elliptisch voor " "Hesperus" refereert naar Phosphorus en "Phosphorus" refereert naar Hesperus". Zo ongeveer zoals men "Jongens zijn jongens" leest alsof er stond "Jongens halen nu eenmaal typisch jongensachtige streken uit".
4. De eenheid van interpretatie is niet de zin, maar, laten we zeggen, het discourse: een groep op zekere manier samenhangende zinnen. Een voorwaarde om een aantal door Piet geuite zinnen tot én discourse te rekenen is dat Piet van de coreferentiële namen uit die zinnen weet dat ze coreferentiëel zijn, zoals het een voorwaarde is voor een zin om überhaupt tot een discourse van Piet te horen dat Piet weet waar de in die zin voorkomende namen naar refereren (even voorbijgaande aan zinnen als "Sinterklaas bestaat niet"). Stel Piet beweert oprecht (1) "Hesperus is een grote planeet" en (2) "Phosphorus is een kleine planeet". We kunnen Piet nu, aannemende dat hij z'n Nederlands beheerst en weet waar "Hesperus" resp. "Phosphorus" naar refereert,
zowel het geloof dat Venus een grote planeet is, als het geloof dat Venus een Kleine planeet is toeschrijven. Het volgt echter niet dat Piet gelooft dat Venus zowel een grote als een kleine planeet is. Immers (1) en (2) kunnen niet tot éen discourse gerekend worden. Geloof is niet gesloten onder conjunctie.
Stel Piet beweert oprecht (3) "Hesperus \neq Phosphorus". Nu volgt niet dat Pist geiooft dat Venus \neq Venus. (3) behoort tot geen enkel discourse en drukt dus geen propositie uit.
5. Stel Piet weet niet dat "Hesperus" en "Phosphorus" naar dezelfde planeet refereren, maar Piet is wel in de positie met "Hesperus" en met "Phosphorus" naar Venus te refereren. (Piet weet dat "Hesperus" naar Venus refereert en Piet weet dat "Phosphorus" naar Venus refereert, maar Piet weet niet dat "Hesperus" en "Phosphorus" beide naar Venus refereren). Stel nu Jar zegt tegen Piet: "Hesperus = Phosphorus" en dat Piet weet dat Jan altijd de waarheid spreekt. Nu gebeurt er iets heel merkwaardigs. Piet kan "Hesperus = Phosphorus" tot nog toe niet interpreteren, aangezien hij niet weet dat beide namen coreferentiëel zijn. Echter uit het feit dat Jan zegt: "Hesperus = Phosphorus" kan Piet concluderen dat "Hesperus" en "Phosphorus" beide naar Ven:is refereren. En daama kan hij ook begrijpen wát Jan gezegd heeft: dat Venus = Venus.
Het bovenstaande verklaart waarom "Hesperus = Phosphorus" bijna altijd als elliptisch voor " "Hesperus" refereert naar Phosphorus en "Phosphorus" refereert naar Hesperus" begrepen wordt. Men stelt zich immers, wanneer men zich afvraagt wat een zin betekent, bijna altijd een communicatiesituatie voor. Tevens laat het bovenstaande zien dat de informatie die Jans uiting "Hesperus = Phosphorus" Piet geeft iets heel anders is dan wat Jan zegt. De taal is als een bril waarvan men altijd ook de glazen ziet.
6. Fields clain (zie FIELD H.H., Mental Representation, Erkenntnis, vol.13, no 1, july 1978, pp 9-61; de relevante opmerking staat op p 49) dat als zinnen proposities betekenen dit een algemeen synonymie begrip oplevert, is juist. Echter niet juist is zijn verdere claim dat dit zowel intra- als interlinguistisch van toepassing is.
7. Wittgensteins opmerking: "Von zwei Dingen zu sagen, sie seien identisch, ist ein unsinn, und von $E i n e m$ zu sagen, es sei identisch mit sich selbst, sagt gar nichts." is indien welwillend geīnterpreteerd, juist.(Zie WITTGENSTEIN L. Tractatus Logico Philosophicus, Routledge \& Kegan Paul, 1969, 5.5303.) Opgemerkt dient echter te worden:
i) Wittgensteins opmerking zegt meer over wat het is iets over iets te zeggen dan over de identiteit. Identiteit is een doodgewone binaire relatie.
ii) Wittgensteins opmerking zou aantonen dat het hebben van een teken voor identiteit in de taal overbodig was, als we in een zin alleen naar een relatie zouden verwijzen om van zekere objecten te zeggen dat die relatie tussen hen bestaat. Dat laatste is echter niet zo.
8. Als ik iets geloof, dan geloof ik dat dat zo is. Echter ik geloof niet, dat als ik iets geloof, dat dat dan zo is. Sterker nog, ik weet dat ik iets geloof dat niet zo is, maar ik kan onmogelijk weten wat.
9. Wanneer we Kripkes Fixed Points (zie KRIPKE S.A., Outline of a theory of truth, Joumal of Philosophy, Nov.6, 1975, pp 690-716) beschouwen met als basis model de natuurlijke getallen met plus en maal (of meer algemeen: een 'acceptable structure') dan blijkt:
i) Elke verzameling elementen van het domein van het دasis model is representeerbaar in een zeker Fixed Point.
ii) Elke inductieve verzameling elementen van het basis model is representeerbaar in elk inductief Fixed Point.
iii) Er is geen maximaal inductief Fixed Point.
10. Definiëer voor \sum_{1}^{0}-zinnen A, B :
i) $A \lessgtr B: \leftrightarrow P A \vdash B \rightarrow A$
ii) $A \sim B: \Leftrightarrow A ふ B$ en $B \leqslant A$.
iii) $[A]:=\left\{C \in \Sigma_{1}^{0}\right.$-zinnen $\left.\mid C \sim A\right\}$
iv) Laat 'a', 'b', 'c' over equivalentieklassen als in iii) lopen. $a \lesssim b: \Leftrightarrow E r$ is een $A \in a, B \in b$ met $A \lesssim B$.
v) Voor a $\$ b:[a, b]:=\{c \mid a \leqslant c \lesssim b\}$

Dan geldt: elke aftelbare partiële ordening is in te bedden in <[a,b], $\$>$ voor willekeurige a, b met $\mathrm{a} \$ \mathrm{~b}$. (Dit is een direct gevolg van het bewijs van stelling 3.12 van deel 1 van dit proefschrift.)
11. Volgens een stelling van H.P. Barendregt en M. Dezani is iedere recursieve applicatieve structuur isomorf inbedbaar in een willekeurige combinatorische algebra.
Voor elke aftelbare combinatorische algebra is er echter een aftelbare applicatieve structuur die daarin niet isomorf ingebed kan worden.
12. Een S-term is een term van de Combinatorische Logica geheel opgebouwd uit S-en en variabelen (en haakjes). Zij A een S-term, X, Y, Z variabelen en U een variabele die niet in A voorkomt. Dan geldt: elk reduct van AXYZU is van de vorm BU, waar U niet in B voorkomt. In slogan: S-termen hebben een beperkte eetlust, tenzij het genuttigde voedsel zelf actief wordt.
13. Zij $C[]$ een context van de $\lambda \beta$-calculus met tenminste éen gat. De termen M, die in een β-stap reduceren naar $C[M]$, modulo α-reducties, (waar M geen subterm is van $C[$] modulo α-reducties), zijn precies de termen: $M \equiv \underbrace{C[C[\ldots C[D[((\lambda x . E[D[(x x)])(\lambda x . E[D[(x x)]]))] \ldots]}_{n C^{\prime} s}$
waar $n=0$ als er meer dan één gat in $C[]$ zit, $n \geqslant 0$ wanneer er één gat in $C[$] is, en waar $\mathrm{D}[\mathrm{]}$ en E[] contexten zijn zodat C[] $\equiv \mathrm{D}[\mathrm{E}[\mathrm{]}]$ en waar er precies éen gat in $\mathrm{D}[\mathrm{]}$ zit. (Bedenk dat [] ook een context is.)
14. De eerste fysicus moet een wijdse armbeweging gemaakt hebben met de woorden: ik wil weten wat hier achter zit. (Wat hier achter zit = фuoio.) De verdere ontwikkeling van de fysica moet niet slechts gezien worden als het geven van steeds betere antwoorden op déze vraag, maar evenzeer als een steeds nader interpreteren van die vraag, in het byzonder als een verdere precisering van dat 'hier'.
15. P. Aczel heeft in verband met het formalizeren van constructivistische theorieën het begrip 'taboe' ingevoerd. Een taboe is een test voor theorieën: een theorie dient een taboe te impliceren noch te weerleggen, tenzij nieuwe substantiële argumenten pro of contra worden aangevoerd. (Dit betekent constructivistisch gezien niet dat de negatie van een taboe weer een taboe is.)

Het verdient aanbeveling de methodologie van taboes ook in de wetenschapsfilosofie toe te passen. Een wetenschapsfilosofische theorie dient een taboe niet te impliceren of te weerleggen, tenzij:
a) op grond van nieuwe substantiële argumenten
b) op grond van expliciet gemaakte metafysische vooronderstellingen.

Bewering: de volgende uitspraken dienen taboe te zijn:

- Computer simulatie van wetenschappelijk onderzoek is mogelijk.
- Onze fysica en die van de Marsmannetjes zullen op den duur convergeren.
- Op een gegeven moment is de fundamentele fysica klaar.

16. Over W. Veldmans argument voor het axiom $A C_{10}$ (zie VELDMAN W., Investigations in Intuitionistic Hierarchy Theory, proefschrift, Katholieke Universiteit Nijmegen, 1981, p 8) valt het volgende op te merken:

Laat ' α ' over stap voor stap gecreëerde functies van $\mathbb{N} \rightarrow \mathbb{N}$ lopen en 'f' over wetmatige functies van $\mathbb{N} \rightarrow \mathbb{N}$. W. Veldman hanteert het principe $\forall f \exists \alpha \forall n \alpha(n)=f(n)$. (*)
i) volgens Veldmans argument is dit een niet wiskundig, want intensioneel, principe, en daarmee is het argument zelf niet wiskundig.
ii) Aangezien we voor gegeven α en f per definitie nooit een bewijs kunnen hebben dat ze voor alle n overeen komen, zou volgens de gebruikelijke uitleg van het constructivistisch redeneren (*) moeten fungeren als falsum. Daar Veldman zijn argument duidelijk niet beschouwt als instantie van ex falso sequitur quodlibet, moet hij een andere (wellicht 'intuitionistische' in tegenstelling tot 'constructivistische') uitleg hebben van de betekenis van de logische voegtekens. Het is te hopen dat hij deze ooit nader toe wil lichten.
17. Zij K een Kripke model van HA. Zij A een zin uit de taal van HA. We maken K^{\prime} uit K door alle knopen van K die A forceren weg te laten. Dan is K ' weer een Kripke model van HA.
Bovenstaande simpele stelling vat de betekenis van Friedmans vertaling voor HA samen in termen van Kripke modellen. (Zie FRIEDMAN H., Classically and Intuitionistically Provably Recursive Functions, in: Higher Set Theory, ed. G.H. Müller and D.S. Scott, Springer Lecture Notes in Mathematics 669, Berlin, 1977, pp 21-27.)
18. De intuitionistische oerste-orde theorie van paring en identiteit plus het axioma ($\exists \times \exists y \times \neq y$) is niet conservatief over de theorie van de identiteit plus de axiomas $\left(\exists x_{1} \ldots \exists x_{n} M\left\{\left(x_{i} \neq x_{j}\right) \mid 1 \leqslant i<j \leqslant n\right\}\right)$.
19. Het is heel goed mogelijk dat een ethisch principe een handeling voorschrijft, wat ook de gevolgen van die handeling zijn. Dat betekent echter niet dat men ontslagen is van de morele plicht na te denken over die gevolgen. Immers wat een individuele handeling ethisch rechtvaardigt is niet het feit dat ze uit een ethisch principe volgt, maar dat men gegeven dat ethische principe de verantwoordelijkheid voor de verwachte gevolgen op zich neemt.

Het is bijvoorbeeld mogelijk 'Gij zult niet doden' zo op te vatten, dat daaruit volgt dat we eenzijdig moeten ontwapenen ook al zou dit een kernoorlog eerder bespoedigen dan verhinderen. Wie op grond van dat principe voor eenzijdige ontwapening is, moet toch over de mogelijke reakties van verschillende naties op die stap nadenken.

[^0]: ${ }^{1}$ I consider the 'else : undefined'-clause as implicit in \cong.

