

INVESTIGATIONS IN INTUITIONISTIC HIERARCHY THEORY

Wim Veldman

INVESTIGATIONS IN INTUITIONISTIC HIERARCHY THEORY

Promotor: Prof. J.J. de Iongh.

INVESTIGATIONS IN INTUITIONISTIC HIERARCHY THEORY

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN

DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN

AAN DE KATHOLIEKE UNIVERSITEIT

TE NIJMEGEN

OP GEZAG VAN

DE RECTOR MAGNIFICUS PROF. DR. P.G.A.B. WIJDEVELD VOLGENS BESLUIT VAN HET COLLEGE VAN DECANEN

IN HET OPENBAAR TE VERDEDIGEN

OP WOENSDAG 20 MEI 1981

DES NAMIDDAGS TE 2.00 UUR PRECIES

DOOR

WILLEM HENRI MARIA VELDMAN GEBOREN TE MAASTRICHT

> 1981 KRIPS REPRO MEPPEL

in een ernstig bestaan zou hij te gronde gaan hield niet het zwevende plezier hem levende

hans lodeizen.

Hwat nimmen sizze kin yn frij bineamen, Ik hie in moed en soe it foar jimm'rime? Unnoazel bern dat seit: ûneindichheit, As it de stap hat op de fjirde trime! Obe Postma

De omslag is een ontwerp van mÿn kunstbroeder kees Streefkerk.

0 Introduction	1
1 A short apology for intuitionistic analysis	5
2 At the bottom of the hierarchy. A discussion of Brouwer-kripke's axiom	12
3 The second level of the arithmetical hierarchy	15
4 Some activities of disjunction and conjunction	21
5 An aside on implication	34
6 Arithmetical sets introduced	45
7 The arithmetical hierarchy established	54
8 Hyperarithmetical sets introduced	61
9 The hyperarithmetical hierarchy established	68
10 Analytical and co-analytical sets	84
11 Some members of the analytical family	96
12 An outburst of disjunctive, conjunctive and implicative productivity	128
13 Brouwer's thesis, and some of its consequences	155
14 The collapse of the projective hierarchy	167
15 A contraposition of countable choice	178
16 The truth about determinacy	189
17 Appendix: Strange lights in a clark alley	211
Notes / references	216/ 218
Synopsis	223
Subject index/index of symbols	232 234
Curriculum vitae	235

D. INTRODUCTION

This thesis is concerned with constructive reasoning in descriptive set theory.

The venerable subject of descriptive set theory was developed in the early decades of this century, mainly by French and Russian mathematicians. It started from the following observation: once the class of continuous real functions has been established, one naturally comes to think of the class of real functions which are limits of everywhere convergent sequences of continuous functions. This wider class can be extended in its turn, by the same operation of forming limits of everywhere convergent sequences. This goes on and on, even into the transfinite. Thus a splendid structure arises, called: <u>Baire's hierarchy</u>.

The same story may be told in terms of sets. Looking at the subsets of Baire space ω which are forced into existence when we allow for the clopen (= closed-and-open) neighbourhoods and then apply the operations of countable union and intersection again and again, we may wonder once more, because there is no end of it. One after another, the classes of <u>Borel's hierarchy</u> present themselves, each containing subsets of ω not heard of before.

No Borel class exhausts the possible subsets of wwThis can be proved in a few lines: one shows that each class contains a <u>universal element</u> and <u>diagonalizes</u>. (cf. chapter 6, esp. 6.14)

However, the very ease of the proof arouses suspicion. People like Borel, Baire, Lebesgue, who were the first to raise and answer many questions in this subject, spent much thought on the plausibility of their arguments. Diagonalizing was felt as cheap reasoning, especially by Baire. Avoiding the diagonal argument, Only relying on methods "from practice," one succeeded in showing up members of the first three or four classes

of Baire.

Diagonalizing, of course, was not the worst of all evils. In Lusin's catalogue, to be found on page 55 of <u>Lusin</u> 1930, it comes immediately after , normal constructive argument," before such horrible things as: the use of x_1 as a well-defined, completed mathematical set, or, even worse, the essentially incomprehensible argument by which Zermelo established a well-ordering of any set, from the axiom of choice.

Now, for heaven's sake, what might be wrong with the diagonal argument? From a <u>classical</u> point of view, one cannot bring up much against it. In fact, as soon as we agree upon the meaning of negation (P and ¬P cannot hold together, whatever be the proposition P) we have to accept it. But in intuitionism we may find an explanation for our uneasiness. Let us remark that, classically, we may build up the Borel sets in ^ww from the closed-and-open neighbourhoods, using only countable union and intersection. Complementation can be missed as an operation for making new sets out of already existing ones: as the complement of any closed-and-open set is closed-and-open, the complement of any set built from the closed-and-open sets by countable union and intersection, is such a set again. This certainty is given by such wonderful guardians of classical symmetry as are de Morgan's laws.

De Morgan's laws are not acceptable, intuitionistically, apart from some very simple situations, from which they were derived by a crude generalization. We cannot explain away complementation, or, more generally, the analogue of logical implication, as methods of constructing sets. But we might try to do without them.

We will do so in this treatise. When negation and implication are put aside, the possibility of diagonalizing is taken from our hands, and the hierarchy problem is open again. A solution is given in chapters 6-9.

There is good reason to consider negation and implication with some caution. Many unsettled questions in intuitionistic logic are connected with them. (Compare the discussion in the appendix, chapter 17 We are not able to decide how far the divergence between classical and intuitionistic logic goes. Also, a curious role is played by negation in the recent discussion of the intuitionistic completeness of intuitionistic predicate logic, cf. de Swart 1976, Veldman 1976).

The intuitionistic hierarchy has a very delicate structure. The class of the closed subsets of Baire space, for instance, is no longer closed under the operation of finite union. One has to distinguish between closed sets, binary unions of closed sets, ternary unions of closed sets, and so on. This phenomenon is discussed in chapter 4. The productive force of disjunction and conjunction is explored further in chapter 11.20-26 and chapter 12.0-7. Implication, although absent from chapters 6-9, is not completely forgotten, and, we will see, in chapter 5 and chapter 12.8-9 that it shares in some of the properties established for disjunction and conjunction.

Distrust of diagonalization is one of many points on which early descriptive set theorists and intuitionists have similar views.

Their common basic concern might be described as exploring the constructive continuum.

Brouwer's rejection of classical logic is, of course, a major point of difference.

But one is tempted to ask if not the main theorem of this essay, which establishes the intuitionistic hierarchy (chapter 9, theorems 9.7 and 9.9) might have delivered Baire from his scruples.

Since Addison 1955 it has become customary among logicians to consider descriptive set theory for its connection with recursion theory. We will bypass this development. From an intuitionistic point of view, recursion theory is an ambiguous branch on the tree of constructive mathematics. The deep results of this theory depend on very serious applications of classical logic. And the classical continuum, which is a rather obscure thing, is accepted without any comment, as a suitable domain of definition for effective operations. Nevertheless, there is an analogy between recursion theory and the theory to be developed here: Many paradoxical results of elementary recursion theory are due to the fact that functions and functionals are finite objects, and, therefore, of the same type as natural numbers. Now, functions from Baire space w_{ω} to w_{ω} , being necessarily continuous. are determined by a sequence of neighbourhood functions, and thus may be seen to be themselves members of ww. Once more, we are in a situation where functions do not differ in type from their arguments and values.

We also have to admit that, if there is any elegance in these pages, it partly is due to modern recursion theory. For instance, the following concept of many-one reducibility between subsets of ${}^{w}w$ is starring

 $A \leq B := \exists f[f \text{ is a continuous function from } w \text{ to } w \text{ and } \forall \alpha [\alpha \in A \neq f(\alpha) \in B]$

This so-called "Wadge-reducibility" was made the subject of classical study by some students of Addison's (cf. <u>Kechris</u> and <u>Moschovakis</u> 1978, <u>Wadge</u> 198?)

Their methods, however, are very far from constructive.

We introduce this concept in chapter 2, after a short exposition of the principles of intuitionistic analysis.

In the second part of this thesis (chapters 10-14) we turn to analytical sets, and the projective hierarchy. (cf. Note 3 on page 216). Analytical sets, being close relatives of good old "spreads", get a chapter of their own. It will be seen that the classical duality between analytical and co-analytical sets is severely damaged. (chapter 10). Some famous results of Souslin's are partly rescued by Brouwer's bar theorem, which we will present here under the name of <u>Brouwer's</u> thesis. (This expression means to suggest an analogy to Church's thesis in recursive function theory, that all calculable functions from ω to ω are general recursive) (chapter 13). If we persist in excluding negation and implication, the projective hierarchy does not exceed its second level (chapter 14). This is a consequence of the axiom AC_{11} which has been introduced and advocated in chapter 1.

In chapter 11 we study the typically intuitionistic subject of "quantifying over small spreads." Rather surprisingly, quantifying over the very simple spread σ_{2mon} already leads to sets which are not hyperarithmetical. Like some sets in chapter 4, these sets turn into more complex ones when they are given a treatment by means of disjunction, conjunction or implication.

In chapter 12 we find many other sets which have similar properties.

The proper place of the last three chapters (15-17) is the margin.

In chapter 15 we ask ourselves what is the domain of validity of the principle of reasoning which we get from the axiom AC₀₁, introduced in chapter 1, by "constructive contraposition". This principle is vital to many a classical discourse. It may be seen as a simple case of the axiom of determinacy. Chapter 16 pursues this line of thought a little further.

In chapter 17 we mention an annoying problem which we could not solve, and some quasi-solutions.

The synopsis is an analytical table of contents.

On the scene of contemporary mathematical logic a family reunion is being held, at which the different branches of the discipline cooperate in seeking for a new understanding of the beautiful problems which occupied our grandfathers. Recent books like <u>Hinman</u> 1978 and <u>Moschovakis</u> 1980 report about it Up to now, intuitionism has been absent. Here it comes, at last, ignoring the question whether it has been missed,

or was invited, and raises its voice, somewhat timidly, in the company of so much learning.

4

1 A SHORT APOLOGY FOR INTUITIONISTIC ANALYSIS

In this chapter, we want to give a sketch of the conception of intuitionistic analysis that guides our thought As may be expected, our <u>logic</u> will be intuitionistic; indirect arguments are put into their proper place, and are seen to prove less than direct ones; we clearly distinguish ¬¬(PvQ) from PvQ, and ¬¬∃n[A(n)] from ∃n[A(n)] The main objects of our considerations will be: natural numbers and infinite sequences of natural numbers. Let us take a closer bok at them.

1.0 w is the set of natural numbers, ^ww is the set of all infinite sequences of natural numbers. We imagine such sequences to be built up step by step in course of time,

there is no necessity for their being completely described at some finite moment One may restrict the future development of an individual sequence more or less severely, from excluding some possible continuations, up to destroying all freedom – such that the sequence follows a uniquely determined course This idea, roughly the one Brouwer had in mind, is our point of departure.

In recent expositions of intuitionism, like <u>Troelstra</u> 1977, one sometimes prefers another basic concept: that of sequences growing in complete, never to be restricted freedom. These objects are supposed to satisfy a very odd set of axioms. We do not like them.

(Intuitionism is trying to give a precise and reasonable account of the continuum, as it is known by the mathematician.

Lawless <u>sequences</u> are strange things which do not occur in daily life. Although it is possible to construct something like the continuum from them, one somehow does not like to be told that this is how real numbers really are)

We cling to the older tradition. We introduce a quartet of <u>axioms of choice and continui</u>ty and plead for them.

1.1 AC_{oo} Let $A \subseteq \omega$ If $\forall n \exists m [A(n,m)]$, then $\exists \alpha \forall n [A(n,\alpha(n))]$

(We use m,n... for members of ω , and $\alpha, \beta, ...$ for members of $\omega \omega$).

We defend AC_{oo} as follows:

Suppose: $\forall n \exists m \lfloor A(n,m) \rfloor$, we then determine, one after another, first, a natural number no such that $A(0, n_0)$, then a natural number n_1 such that $A(1, n_1)$,... and so on. This is nothing but creating step-by-step $\alpha \in {}^{\omega}w$ such that $\forall n \lceil A(n,\alpha(n)) \rceil$. We emphasize that AC_{00} does not say the following: If $\forall n \exists m[A(n,m)]$, then we can give a <u>finite</u> <u>description</u> of an $\alpha \in {}^{W}\omega$ such that $\forall n[A(n,\alpha(n))]$ Sometimes, (cf. <u>Troelstra</u> 1977), it is given this kind of interpretation by intuitionistic mathematicians. The set A is then subject to the condition that it, too, should admit of a finite description.

1.2 In order to state the next axiom, we need a pairing function on ω . In view of later developments, we do not go the shortest way.

Let $\langle \rangle : \bigcup_{k \in W}^{k} \longrightarrow W$ be a fixed one-to-one mapping of the set of all finite sequences of natural numbers onto the set of natural numbers. $\langle \rangle$ is a <u>coding</u> of the finite sequences.

Every natural number now stands for a finite sequence of natural numbers. *: $^2w \rightarrow w$ is the binary function on w which corresponds to concatenation, i.e. for all m, $n \in w$:

> m*n := the code number of the finite sequence that one gets by concatenating the finite sequence coded by m and the finite sequence coded by n

We define, for all m,new

m⊆n := the finite sequence coded by n is an initial part of the finite sequence coded by m, i.e.: ∃p[m=n*p]

We suppose that our coding fulfils the following condition:

∀m∀n[m≤n → n≤m].

Therefore, the empty sequence is coded by the number O.

For all $\alpha \in \mathcal{W}$ and new we define n_{α} and α^n in \mathcal{W} by:

for all $n \in \omega$: for all $n \in \omega$: $\alpha^{n}(m) := \alpha(n \neq m)$

1.3 AC₀₁ Let $A \subseteq \omega \times \omega \omega$

If $\forall n \exists \alpha [A(n, \alpha)]$, then $\exists \alpha \forall n [A(n, \alpha^n)]$

We defend ACo1 as follows:

Suppose: $\forall n \exists \alpha l A(n, \alpha)$] We first start the creation of an infinite sequence α_0 such that $A(0, \alpha_0)$ This job will ask for our active attention infinitely many times. This does not prevent our starting a second infinite project in the meantime: the creation of an infinite sequence α_1 such that $A(1,\alpha_1)$ From time to time we will have to look after the progress of work on α_0 , from time to time we will have to look after the progress of work on α_1 , but, still, this does not occupy all our mental powers: we can put more kettles on the furnace. Our program for constructing a sequence a such that $\forall n[A(n,\alpha^n)]$ is as follows:

> * Start a project P_0 for creating an infinite sequence α_0 such that $A(0,\alpha_0)$. Continue work on P_0 for one step and define: $\alpha^0(0) := \alpha_0(0)$ * Start a project P_1 for creating an infinite sequence α_1 such that $A(1,\alpha_1)$. Continue work on P_0 for one step and define: $\alpha^0(1) := \alpha_0(1)$ Continue work on P_1 for one step and define: $\alpha^1(0) := \alpha_1(0)$ * Start a project P_2 for creating an infinite sequence α_2 such that $A(2,\alpha_2)$. Continue...

Apparently, we believe in our ability to keep several infinite projects going at the same time. A good memory is useful in these circumstances. \boxtimes

Like ACon, ACo1 here has a meaning different from the one it has in Troelstra 1977

1.4 The next two axioms usually go under the flag of "principles of continuity" Their introduction requires some more technical conventions.

We define a function $lg: w \rightarrow w$ by: for all mew: lg(m):= the length of the finite sequence coded by m.

For all $\alpha \in \mathcal{W}_{\mathcal{W}}$ and $n \in \mathcal{W}$, we define:

 $\bar{\alpha}n := \langle \alpha(0), \dots, \alpha(n-1) \rangle$

Remark that, for all $\alpha \in \omega_{\omega}$: $\overline{\alpha} O = < 7 = O$

We also write, for all $\alpha \in {}^{\omega} \omega$ and $m \in \omega$:

For all $y \in {}^{\omega}w$, $\alpha \in {}^{\omega}w$, new, we define:

$$\chi: \alpha \mapsto n := \exists m [\forall p [p < m \rightarrow \chi(\bar{\alpha}p) = 0] \land \chi(\bar{\alpha}m) = n+1]$$

For all re^ww, we define:

$$\chi: {}^{\omega}\omega \rightarrow \omega$$
 (or: fun(χ)) := $\forall \alpha \exists n [\chi: \alpha \mapsto n]$

Let ye we be such that fun(y), and as we we then write:

 $\gamma(\alpha) :=$ the unique new such that $\gamma: \alpha \mapsto n$

1.5 AC₁₀ Let $A \subseteq {}^{\omega} w \times w$ If $\forall \alpha \exists n [A(\alpha, n)]$, then $\exists \gamma [fun(\gamma) \land \forall \alpha [A(\alpha, \gamma(\alpha))]]$

We defend AC10 as follows:

Suppose: $\forall \alpha \exists n [A(\alpha, n)]$ We have to make a sequence γ in w which fulfils certain conditions, and, as one may guess, we will do so step by step, fixing only one value of rat a time. Suppose this work to have proceeded until stage n, i.e.: r(0), r(1),... up to r(n-1) have been determined already We now consider the finite sequence of natural numbers which is coded by n, let us say: $n = \langle n_0, n_1, ..., n_k \rangle$ This finite sequence may be thought of as being the initial part of an infinite sequence a, which is disclosed to us "step by step While listening to the successively created values of α we are expected. to find a natural number p such that $A(\alpha, p)$ We can not wait indefinitely and have to act at some time. When p eventually is determined, therefore, only a finite part of a will be known to us. Some finite initial part of α should contain sufficient information, so to say, for p to be calculated. Looking at n, we may ask: is this finite sequence long enough as an initial part of a so as to enable us to find a natural number p such that $A(\alpha, p)?$ $\gamma(n) := p+1$, where p is such a number If so, we determine: $\gamma(n) = 0$ if not, we put: In this way the construction of *j* is being continued. Now one may have doubts whether Va In [r(ān) \$0] After all, during the construction of y only such sequences a are considered, as are growing step by step in freedom, not being subject to any restriction given beforehand, or coming to mind on the way. this objection may be answered as follows: Any sequence from ^ww, even a completely determinate one, can be imagined to be the outcome of a step-by-step-creation. (We do not want to distinguish between sequences a, B which fulfil $\forall n[\alpha(n) = \beta(n)]$, although one may have had different things in mind when making them. Any sequence is extensionally equal to some sequence growing in complete freedom. Some modern opinion (cf. <u>Troelstra</u> 1977) holds that this is impossible, as "being equal to some determinate sequence" would conflict with "being created in freedom" Vexing questions on freedom may be asked now, but they are left to the reader, or any philosopher, to muse upon.) Ø

8

1.6 We now prepare the way for the last of our four axioms, which is the most debated one.

For all
$$\gamma \in {}^{\omega}\omega$$
, $\alpha \in {}^{\omega}\omega$, $\beta \in {}^{\omega}\omega$, we define:
 $\gamma : \alpha \mapsto \beta := \forall n[\gamma^n : \alpha \mapsto \beta(n)]$
For all $\gamma \in {}^{\omega}\omega$, we define:
 $\gamma : {}^{\omega}\omega \to {}^{\omega}\omega$ (or: Fun(γ)) := $\forall n[fun(\gamma^n)]$ (cf. Note 2 on page 216)
Let $\gamma \in {}^{\omega}\omega$ be such that Fun(γ), and $\alpha \in {}^{\omega}\omega$. We then write:
 $\gamma | \alpha :=$ the unique $\beta \in {}^{\omega}\omega$ such that $\gamma : \alpha \mapsto \beta$
1.7 AC_{11} Let $A \subseteq {}^{\omega}\omega \times {}^{\omega}\omega$
If $\forall \alpha \exists \beta [A(\alpha, \beta)]$, then $\exists \gamma [Fun(\gamma) \land \forall \alpha [A(\alpha, \gamma | \alpha)]]$
 AC_{11} will be defended by a rather involved argument, which has features

in common with both the argument for ACo1 and the argument for AC10. Suppose: Va∃B[A(a,B)] We have to make a sequence r in www. which satisfies a certain condition. In fact, this condition on χ is stated in terms of its subsequences γ°, γ¹, ... We will build up all subsequences r, x;... step by step, but simultaneously. i.e.: at stage n, all values $\chi^{o}(n), \chi'(n), ...$ will be determined To be sure, only p°, p1,... up to pn, properly get into focus at stage n, that is to say: $\forall m \forall n [m > n \rightarrow \chi^m(n) = 0]$ Now suppose our work to have progressed so far, that all sequences x°, x¹,... have their values fixed in all points 0,1,... up to n-1. What about their values in n? Let us look at the finite sequence of natural numbers coded by n, $say: n = \langle n_0, ..., n_k \rangle$ We consider this sequence together with its predecessors: < >, <no>, <no, n, >,... <no, n, ..., ng, >. The values of ro, ri,... at these predecessors have been fixed already. We calculate the smallest number p such that $\forall m[(n \le m \land n \ne m) \rightarrow \chi^{p}(m) = 0]$ As $\forall m [(n \le m \land n \ne m) \rightarrow \gamma^n(m) = 0]$, this number may be found. We now imagine $n = \langle n_0, ..., n_k \rangle$ to be the initial part of an infinite sequence a, whose values are given to us one by one, successively. We should be able to calculate β in w_w such that $A(\alpha, \beta)$ We started already a project for creating such a sequence B, as appears from the part of y which has been completed by now. The finite sequence n turned out to contain sufficient information

for deciding about B(0), B(1), ... up to B(p-1)

We now continue this same project for creating a suitable partner p to the growing sequence α and ask ourselves: does $n = \langle n_0, n_1, \dots, n_k \rangle$ contain sufficient information for deciding about $\beta(p)$? If so, we determine a number q which may serve as p-th value of β and say: $\gamma P(n) := q+1$ If not, we put: $\gamma P(n) := 0$ All other subsequences of γ are left alone now, so: $\forall \ell [\ell \neq p \Rightarrow \gamma^{\ell}(n) = 0]$ In this way the construction of γ is being continued. Now suppose $\alpha \in {}^{\omega}\omega$, α being given step by step. By reflecting upon the construction of η , one realizes successively: $\exists m [\gamma^{\circ}(\bar{\alpha}m) \neq 0] \land \exists m [\gamma^{1}(\bar{\alpha}m) \neq 0] \land \exists m [\gamma^{2}(\bar{\alpha}m) \neq 0] \land \dots$ Hence: $\forall \alpha \forall n \exists m [\gamma^{n}(\bar{\alpha}m) \neq 0]$, as any sequence α can be thought of as being given step by step. In the same way one persuades oneself about: $\forall \alpha [A(\alpha, \gamma | \alpha)]$

1.8 Sometimes, in expositions of intuitionistic analysis, the insight which sustains AC_{10} , is given a less bold formulation, in the following <u>continuity principle</u>:

CP Let $A \subseteq \omega \times \omega$ If $\forall a \exists n[A(a,n)]$, then $\forall a \exists m \exists n \forall \beta[\bar{\beta}m = \bar{\alpha}m \rightarrow A(\beta,n)]$

Formally, CP is weaker than AC_{10} (cf. <u>Howard</u> and <u>Kreisel</u> 1966) As CP easily follows from AC_{10} , we need not defend CP, after all that has been said in favour of AC_{10}

1.9 Let $\alpha \in {}^{\omega}\omega$ and $\beta \in {}^{\omega}\omega$. We define: $\alpha \in \beta := \forall n [\beta(\bar{\alpha}n) = 0]$

Let $\beta \in {}^{\omega}\omega$. β is called a <u>subspread</u> of ${}^{\omega}\omega$ if it fulfils the following conditions: () $\beta(< >) = O$

(1)
$$\forall m [\beta(m)=0 \geq \exists n [\beta(m \neq \langle n \rangle)=0]$$
]

If β is a subspread of ${}^{\omega}\omega$, we are interested in the set $\{\alpha | \alpha e^{\omega}\omega | \alpha e \beta\}$ which we, at the risk of some confusion, also denote by β , and call a spread.

If β is a subspread of w_w , the corresponding subset of w_w may be treated like w_w itself. It makes sense, therefore, to introduce the following "relativized" concepts: Let $\beta \in {}^{\omega}\omega$ be a subspread of ${}^{\omega}\omega$ and $\gamma \in {}^{\omega}\omega$

We write:
$$\gamma:\beta \rightarrow \omega$$
 or: $fun_{\beta}(\gamma)$ if $\forall \alpha [\alpha \in \beta \rightarrow \exists n [\gamma(\bar{\alpha}n) \neq 0]]$
(If $fun_{\beta}(\gamma)$ and $\alpha \in \beta$, we define:
 $\gamma(\alpha) :=$ the unique new such that $\gamma: \alpha \mapsto n$)
We write: $\gamma:\beta \rightarrow \omega$ or: $Fun_{\beta}(\gamma)$ if $\forall n [fun_{\beta}(\gamma^{n})]$
(If $Fun_{\beta}(\gamma)$ and $\alpha \in \beta$, we define:
 $\gamma|\alpha :=$ the unique $\beta \in \omega \omega$ such that $\gamma: \alpha \mapsto \beta$)

We are able, now, to enunciate some of our principles of choice and continuity in a more general setting:

GAC₁₀ Let
$$A \le w \times w$$
 and $\beta \in w$ be a subspread of $w w$
If $\forall \alpha \exists n [A(\alpha, n)]$, then $\exists \gamma [fun_{\beta}(\gamma) \land \forall \alpha \in \beta [A(\alpha, \gamma(\alpha))]]$

GAC₁₁ Let
$$A \subseteq {}^{\omega}w \times {}^{\omega}w$$
 and $\beta \in {}^{\omega}w$ be a subspread of ${}^{\omega}w$
If $\forall \alpha \exists \delta [A(\alpha, \delta)]$, then $\exists \gamma [Fun_{\beta}(\gamma) \land \forall \alpha \in \beta [A(\alpha, \gamma \mid \alpha)]]$

GCP Let
$$A \subseteq {}^{\omega}\omega \times \omega$$
 and $\beta \in {}^{\omega}\omega$ be a subspread of ${}^{\omega}\omega$
If $\forall \alpha \in \beta \exists n [A(\alpha, n)]$, then $\forall \alpha \in \beta \exists m \exists n \forall \delta [\overline{\delta}m = \overline{\alpha}m \rightarrow A(\delta, n)]$

We may argue for these generalized principles in exactly the same way as we did for the ungeneralized ones. Or, if we prefer so, we may formally derive GAC_{10} from AC_{10} , GAC_{11} from AC_{11} and GCP from CP. We do not go into details.

1.10 The above presentation of the basic assumptions of intuitionistic analysis owes much, if not all, to many discussions in Nijmegen in which J.J. de Longh and W. Gielen took the lead (cf. <u>Gielen</u>, <u>de Swart and Veldman</u> 1981, and <u>Gielen</u> 198?) (This is not to make them responsible for any lack of clarity) The outcome of our considerations does not differ on any essential point from the axiom system in <u>kleene and Vesley</u> 1965, commonly known as FIM AC₁₁, for instance, corresponds to *27.2 in <u>kleene and Vesley</u> 1965 The names we have given to the axioms are new, and differ from the names used in <u>Troelstra</u> 1973, <u>Troelstra</u> 1977 We introduced them in Gielen, de Swart and Veldman 1981

2 AT THE BOTTOM OF THE HIERARCHY. A DISCUSSION OF BROUWER-KRIPKE'S AXIOM
For some time past, it is known, that
$$AC_{11}$$
 is inconsistent with a generalized
form of Brouwer-Kripke's axiom.
We repeat the simple argument which shows this because the hierarchy
theorems that will appear in the following chapters may be viewed as
attempts to extend and generalize this fact.
We include a short discussion of the axiom itself.
2.0 Theorem: $\neg \forall \alpha \exists \beta [\forall n [\alpha(n) = 0] \rightleftharpoons \exists n [\beta(n) = 0]]$

Proof: Suppose:
$$\forall \alpha \exists \beta [\forall n[\alpha(n)=0] \not\equiv \exists n[\beta(n)=0]]$$

Using AC_{11} , determine $\delta \in \omega \otimes$ such that $\delta : \omega \to \omega \otimes$ and:
 $\forall \alpha [\forall n[\alpha(n)=0] \not\equiv \exists n[(\delta|\alpha)(n)=0]]$
Consider the special element $\underline{0}$ of $\omega \otimes$ which is defined by: $\forall n[\underline{0}(n)=0]$
We know: $\exists n[(\delta|\underline{0})(n)=0]$ and we determine $m \in \omega$, $n \in \omega$ such that:
 $\delta^{n}(\overline{0}m)=1$ and $\forall p[p < m \rightarrow \delta^{n}(\overline{0}p)=0]$
Then: $\forall \alpha [\overline{\alpha}m=\overline{0}m \rightarrow (\delta|\alpha)(n)=0]$
Therefore: $\forall \alpha [\overline{\alpha}m=\overline{0}m \rightarrow \forall n[\alpha(n)=0]]$
This, of course, is not true.

2.1 BK Let Ω be a mathematical proposition (Brouwer-Kripke's axiom) Then: ∃α[Ω ⇄ ∃n[α(n)=0]]

In order to see the truth of this principle, I have to remember that, essentially, I am alone in this world, doing mathematics. A theorem is proved only if I myself succeed in making the construction in which its truth consists (External circumstances (meeting Brouwer, drinking coffee) may have influenced me substantially, but they have no place in a picture of the essence of mathematical truth)

A sequence α from ww may be built up step by step in the course of time, and this may be done without any haste, although, having determined $\alpha(n)$, I have to come with the next value of α , I am not to delay this indefinitely. But why should not I use the whole of my mathematical future for the construction of α ? Then Ω , if true, should be experienced as such during the construction of α . While numbering the stages of my mathematical life 0, 1, 2, ... successively, I define $\alpha(n)$ to be 0 if I succeeded in proving Ω at stage n, and to be 1, if I did not.

(A difficulty is, in our opinion, that, sometimes, we want to perform transfinite constructions. How do we schedule them in a future which is only a countable sequence of stages?)

BK in full generality conflicts with AC_{11} , as is evident from theorem 2.0. The first published proof of theorem 2.0 is in <u>Myhill</u> 1967.

Theorem 2.0 was a hindrance for people who tried to formalize intuitionistic analysis. Sometimes, they decided to reject AC₁₁ in favour of BK. This seemed to be in accordance with Brouwer's own intentions, as, in <u>Brouwer</u> 1949, he used the axiom in the generalized form.

An alternative way out of the conflict was shown by J.J. de Longh, who suggested to restrict application of BK to <u>determinate</u> propositions OL, i.e. propositions about which all information has been given and which do not depend on objects whose construction has not yet been completed. (We are not thinking of objects whose definition has still to be "worked out", but of objects in whose construction there is some freedom left.)

A more extensive discussion may be found in <u>Gielen</u>, <u>de Swart</u> and <u>Veldman</u> 1981, where BK has been used for giving intuitionistic parallels to classical proofs of the Cantor-Bendixson theorem and its extension by Souslin.

BK does not figure in the following, except that it will sometimes, in a helpful whisper, aid our intuition concerning the truth or falsity of certain propositions. (cf. 4.1).

2.2 Theorem: - Va∃B[∃n[a(n)=0] Z Vn[B(n]=0]]

<u>Proof</u>: Suppose: ∀α∃β[∃n[α(n)=0] ≠ ∀n[β(n)=0]] Using AC₁₁, determine δe^ωw such that δ: ^ωw → ^ωw and: ∀α[∃n[α(n)=0] ≠ ∀n[(δ|α)(n)=0]] Consider the special element 1 of ^ωw which is defined by: ∀n[1(n)=1] We claim: ∀n[(δ|1)(n)=0] For, suppose: new and (δ|1)(n) ≠0 We determine mew such that: δⁿ(Im)≠0 ∧ δⁿ(Im)≠1 ∧ ∀p[p<m→δⁿ(Ip)=0] Then: ∀α[ām = Im → (δ|α)(n) = (δ|1)(n)] and: ∀α[ām = Im → ¬∀n[(δ|α)(n) = 0]] so: ∀α[ām = Im → ¬∃n[α(n)=0]] and this is not so. Therefore: ∀n[(δ|1)(n)=0] and: ¬∃n[1(n)=0] δ's failure is obvious. ■ One cannot escape the feeling that δ , the protagonist of this last proof, is being trapped in a base way. One forces him to be careful about $\delta | \underline{1}$ and, later on, this caution is held against him. In comparison, the play was more fair in theorem 2.0.

2.3 That theorem 2.0 is not an isolated fact and might herald the birth of a new theory, was suggested by J.J. de Iongh. We now prepare for this more general theory.

Let A, B be subsets of ${}^{\omega}w$. We define: $A \leq B$:= $\forall \alpha \exists \beta [A(\alpha) \not\supseteq B(\beta)]$ (A is reducible to B)

Using AC_{11} , we see that: $A \leq B$ if and only if $\exists \delta[Fun(\delta) \land \forall \alpha[A(\alpha) \not\supseteq B(\delta|\alpha)]]$ If we want to avoid the use of AC_{11} , we might define: $A \leq B$ by: $\exists \delta[Fun(\delta) \land \forall \alpha[A(\alpha) \not\supseteq B(\delta|\alpha)]$ (cf. Note 3 on page 216).

Intuitively, the meaning of ${}_{\mu}A \leq B''$ might be described as: We have a method for translating every question whether some element of ${}^{\omega}w$ belongs to A_{μ} into a question whether some other element of ${}^{\omega}w$ belongs to B.

This reducibility relation is, obviously, reflexive and transitive.

Classically, this many-one-reducibility-relation is called Wadge-reducibility. (Cf. <u>Kechris</u> and <u>Moschovakis</u> 1978, <u>Moschovakis</u> 1980, <u>Wadge</u> 198?)

We introduce the subsets A_1 and E_1 of ${}^{\omega}w$ by: for all $\alpha \in {}^{\omega}w$: $A_1(\alpha) := \forall n[\alpha(n) = 0]$ for all $\alpha \in {}^{\omega}w$: $E_1(\alpha) := \exists n[\alpha(n) = 0]$

We have seen, in theorems 2.0 and 2.2 that $\neg(A_1 \leq E_1)$ and $\neg(E_1 \leq A_1)$

We also need the strict reducibility relation:

Let A, B be subsets of ${}^{\omega}w$. We define: $A \prec B$:= $A \preceq B \land \neg (B \preceq A)$ (A is strictly reducible to B) 3 THE SECOND LEVEL OF THE ARITHMETICAL HIERARCHY

Two theorems will be proved which are a natural extension of the theorems of the previous chapter. The leading ideas of their proofs will continue to inspire us, up to chapters 7 and 9.

3.0 We consider the subsets A_2 and E_2 of ${}^{\omega}\omega$, which are defined by:

For all $\alpha \in \omega_{\omega}$: $A_{2}(\alpha) := \forall m \exists n [\alpha^{m}(n) = 0]$ $E_{2}(\alpha) := \exists m \forall n [\alpha^{m}(n) = 0]$

We leave it to the reader to prove the following easy facts:

 $A_1 \leq A_2$, $E_1 \leq A_2$, $A_1 \leq E_2$ and $E_1 \leq E_2$

3.1 The following is an important remark on A_2 : According to AC_{00} : $\forall \alpha [A_2(\alpha) \neq \exists \gamma \forall m [\alpha^m(\gamma(m))=0]]$ For all $\gamma \in {}^{\omega}\omega$ and $\alpha \in {}^{\omega}\omega$, we define $\gamma \bowtie \alpha$ in ${}^{\omega}\omega$ by:

For all mew, new:

 $(\gamma \bowtie \alpha)^{m}(n) := 0 \quad \text{if} \quad n = \gamma(m)$ $:= \alpha^{m}(n) \quad \text{if} \quad n \neq \gamma(m)$ and: $(\gamma \bowtie \alpha) \quad (0) \quad := 0$

Remark that: $\forall \alpha [A_2(\alpha) \rightleftharpoons \exists \gamma [\alpha = \gamma \bowtie \alpha]]$

Let us make $\delta \in \omega \omega$ such that $\operatorname{Fun}(\delta)$ and $\forall \alpha [\delta | \alpha = \alpha^{\circ} \bowtie \alpha^{1}]$ Observe that: $\forall \alpha [A_{z}(\alpha) \rightleftharpoons \exists \beta [\alpha = \delta | \beta]]$

Let us define, for all $\delta \in \omega_{\omega}$, a subset $Ra(\delta)$ of ω_{ω} by:

$$Ra(\delta) := \left\{ \alpha | \alpha \in {}^{\omega}\omega \mid \exists \beta [\delta : \beta \mapsto \alpha] \right\}$$

 $(\mu \rightarrow \mu has been introduced in 1.6)$

We have seen: $\exists \delta [Fun(\delta) \land A_2 = Ra(\delta)]$ This is a useful property, which A_2 shares with many other sets. (cf. 7.0 and 10.7). 3.2 Theorem: $\neg (A_2 \leq E_2)$

<u>Proof</u>: Suppose: $A_2 \leq E_2$, i.e.: $\forall \alpha \exists \beta [A_2(\alpha) \not\equiv E_2(\beta)]$ Using AC_{11} , determine δ in \mathcal{W}_{ω} such that: Fun (δ) and $\forall \alpha [A_2(\alpha) \not\equiv E_2(\delta | \alpha)]$ Consider the intertwining function \bowtie , introduced in 3.1, and observe: $\forall_{\chi} \forall \alpha [E_2(\delta | (\chi \bowtie \alpha))]$

Consider Q in Ww, the sequence that is defined by: $\forall n [Q(n) = 0]$ Using CP, determine $p \in w$, $q \in w$, $m \in w$ such that:

$$\forall \forall \forall \alpha [(\bar{\gamma}p = \bar{Q}p \land \bar{\alpha}q = \bar{Q}q) \rightarrow \forall n [(\delta | \langle \gamma \bowtie \alpha \rangle)^m (n) = 0]]$$

Let us pause for a moment and imagine the situation:

We are assuming: $\forall \alpha [A_2(\alpha) \rightleftharpoons E_2(\delta | \alpha)]$

We think of "a" in this formula as being built up step by step by a creative subject, whereas $\delta | \alpha$ is being made by a less creative, imitative subject, who does not make a sequence of his own, but transcribes a, using the method coded into δ .

The creative subject is not very fond of the imitative one and plays a trick on him, as follows:

He calculates $r = \max(p,q)$ and defines a sequence α^* in ω by: $\alpha^*(0) = 0 \quad \wedge \quad \forall n \left[(n \le r \rightarrow (\alpha^*)^n = Q) \land (n > r \rightarrow (\alpha^*)^n = \underline{1} \right]$

 $(\underline{1} \text{ is the sequence in } {}^{w}w$ that is defined by: $\forall n[\underline{1}(n)=O]$) The creative subject will feed the imitative one on α^* , but he does not tell him so.

The imitative subject never sees more than a finite initial part of a^{*}, and, therefore, he is kept between hope and fear. His anxiety will grow with the number of 1's, but all the time, he has to reckon with the possibility that things will improve. Thus, he is forced to make all values of the sequence (Sla^{*})^m equal to zero. For, suppose: kew and $(\delta | a^*)^m (k) \neq 0$ Determine lew such that $\forall \alpha [\overline{\alpha} l = \overline{\alpha^*} l \rightarrow (\delta | \alpha)^m (k) = (\delta | \alpha^*)^m (k)]$ Define a sequence α^+ in ww by: $\overline{\alpha^+} l = \overline{\alpha^*} l$ and $\forall n [n \gg l \rightarrow \alpha^+ (n] = 0]$ We observe that: $A_2(\alpha^+)$ and $\exists \gamma [\alpha^+ = \gamma \bowtie \alpha^+]$ We can say more: as $\forall n [n \le r \rightarrow (\alpha^+)^n = 0]$, also: $\exists \gamma [\overline{\gamma} p = \overline{0}p \land \alpha^+ = \gamma \bowtie \alpha^+] \land \overline{\alpha^+} q = \overline{0}q$ Therefore: $\forall n [(\delta | \alpha^+)^m (n] = 0]$ and: $(\delta | \alpha^+)^m (k) \neq 0$, a contradiction.

The imitative subject has no choice and: $\forall n [(\delta | \alpha^*)^m (n) = 0]$ But his caution does not help him We observe: $\neg A_2(\alpha^*) \land E_2(\delta | \alpha^*)$ and: $A_2(\alpha^*) \rightleftharpoons E_2(\delta | \alpha^*)$, a contradiction

3.3 Theorem:
$$\neg (E_2 \leq A_2)$$

Proof: Suppose: $E_2 \leq A_2$, i.e.: $\forall \alpha \exists \beta [E_2(\alpha) \not\supseteq A_2(\beta)]$

Using AC_{11} , determine δ in ${}^{U}w$ such that: Fun(δ) and $\forall \alpha [E_2(\alpha) \not\geq A_2(\delta | \alpha)]$ This time, the creative subject, in order to make the imitative subject fall on his face, uses very foul means from the realm of darkness. He plays the good boy for a while, till the imitative subject, being impressed, cannot refuse him any longer the first of his countably many wishes. As soon as the initative subject gives in, the creative subject stops playing the good boy. But not for long. He soon starts to play another good boy and perseveres in it, till the imitative subject loses his firmness again, and grants him the second of his wishes. Ungratefully, the creative subject breaks off his good conduct, but chooses, after a moment, a third saint to follow, intending to follow him only so far as is required for getting his third wish fulfilled. And so on. In the end, the creative subject turns out to be no good boy at all, but he has got all he wanted.

In short, the creative subject makes a sequence at such that $\neg E_2(\alpha^*) \wedge A_2(\delta|\alpha^*)$, perplexing the imitative subject, as follows:

> First consider $\alpha_0 := Q$ Remark: $E_2(\alpha_0)$, and determine $p_0 \in \omega$ such that $(\delta | \alpha_0)^{\circ}(p_0) = 0$ Determine $n_o \in \omega$ such that $\forall \alpha [\overline{\alpha}_o n_o = \overline{\alpha} n_o \rightarrow (\delta | \alpha)^o (p_o) = 0]$ Define $\alpha_1 \in {}^{\omega} \omega$ by: for all $n \in w$, $n \leq n_0$: $\alpha_A(n) := \alpha_B(n)$

 $\alpha_{(<0,n_{2}>)} := 1$

 $\alpha_1(<0,n_o>) := 1$ for all new, n>no and n $\neq <0,n_o> : \alpha_1(n):= 0$

Remark: $E_2(\alpha_1)$, and determine $p_1 \in w$ such that $(\delta | \alpha_1)^2 (p_1) = 0$ Determine $n_1 \in \omega$ such that $n_1 \gg n_0$ and $n_1 \gg \langle 0, n_0 \rangle$ and: $\forall \alpha \left[\overline{\alpha}_{1} n_{1} = \overline{\alpha} n_{1} \rightarrow (\delta | \alpha)^{1} (p_{1}) = 0 \right]$ Define $\alpha_2 \in {}^{\omega}\omega$ by: for all $n \in \omega$, $n \leq n_1 : \alpha_2(n) := \alpha_1(n)$ $\alpha_{2}(<1,n_{1}>) = 1$

for all $n \in \omega$, $n > n_1$ and $n \neq < 1$, $n_1 > \cdots > \alpha_2(n) := 0$

Continue as before

(One may think of the following picture.

As soon as the imitative subject bla puts 0 in one of his columns, the creative subject answers this move by putting 1 in the corresponding one of his own columns)

In this way one creates successively $\alpha_0, \alpha_1, \alpha_2, \dots$ in ${}^{W}\omega$ and $P_0, n_0, p_1, n_1, p_2, n_2, \dots$ in w such that:

$$\begin{split} n_{o} < n_{1} < n_{2} < \dots \\ \forall i \forall j [i \leq j \rightarrow \overline{\alpha}_{i} n_{i} = \overline{\alpha}_{j} n_{i}] \\ \forall i \forall \alpha [\overline{\alpha} n_{i} = \overline{\alpha}_{i} n_{i} \rightarrow (\delta | \alpha)^{i} (p_{i}) = 0] \\ \forall j [(\alpha_{j+1})^{j} (n_{j}) = 1] \\ \forall i \forall j [i \leq j \rightarrow (\alpha_{j+1})^{i} (n_{i}) = 1] \\ \end{split}$$

$$\begin{aligned} \text{Define } \alpha^{*} \epsilon^{\omega} \omega \text{ by } : \forall \alpha [\overline{\alpha^{*}} n_{i} = \overline{\alpha}_{i} n_{i}] \\ \text{We observe: } \neg E_{2} (\alpha^{*}) \land A_{2} (\delta | \alpha^{*}) \text{ and } : E_{2} (\alpha^{*}) \rightleftharpoons A_{2} (\delta | \alpha^{*}), \\ a \text{ contradiction.} \end{aligned}$$

3.4 Proofs of more general hierarchy theorems are now within our grasp. We only have to look with some care into the proofs of this chapter.

When we reconsider the proof of theorem 3.2, that $\neg(A_2 \leq E_2)$, we are struck by its likeness, from a certain moment on, to the proof of theorem 2.2 (whose conclusion reads: $\neg(E_1 \leq A_1)$).

To be more specific: Suppose: $\delta \in \mathcal{W} \text{ and } \operatorname{Fun}(\delta)$ and $\forall \alpha [A_2(\alpha) \neq E_2(\delta|\alpha)]$ Construct numbers m and r, as in the proof of theorem 3.2 Continue by making $\varepsilon \in \mathcal{W} \text{ such that } \operatorname{Fun}(\varepsilon)$ and: $\forall \beta [\forall n [n \neq r \rightarrow (\varepsilon|\beta)^n = Q] \land (\varepsilon|\beta)^r = \beta]$ Remark: $\forall \beta [E_1(\beta) \neq A_2(\varepsilon|\beta)]$ and: $\forall \beta [A_2(\varepsilon|\beta) \neq A_1((\delta | (\varepsilon|\beta))^m)]$ Therefore: $\forall \beta [E_1(\beta) \neq A_1((\delta | (\varepsilon|\beta))^m)]$, i.e.: $E_1 \leq A_1$

Thus, the proof is seen to reduce the supposition: $A_2 \leq E_2$ to: $E_1 \leq A_1$

It is not difficult to find a general method for reducing the supposition: $A_{sn} \leq E_{sn}$ to: $E_n \leq A_n$.

This will be shown in chapter 7, when chapter 6 has given the necessary definitions.

It takes more pains to get a similar conclusion from the converse supposition. $E_{sn} \leq A_{sn}$, but, again, when the work has been done, we see some resemblance to the proof of theorem 3.3, that $\neg (E_2 \leq A_2)$.

To this proof of theorem 3.3, other useful observations may be made. Perhaps its most memorable feature is, how it pictures the creative subject as a cat bent upon its prey, the imitative subject, moving only in response to moves of its mousy victim. We understated the conclusion of this proof. Given a sequence δ in ww such that: Fun $(\delta) \wedge \forall \alpha [E_2(\alpha) \neq A_2(\delta | \alpha)]$, we set ourselves the aim of finding a sequence α^* in ww such that $\neg E_2(\alpha^*) \wedge A_2(\delta | \alpha^*)$. But the sequence α^* which we constructed, had a more constructive property than: $\neg E_2$, we know that it shows up a number different from zero in each one of its subsequences. We call this property: A_2^* .

Another important remark on the proof of theorem 3.3 is that we did not use the full strength of the assumption. Starting from: Fun(δ) $\wedge \forall \alpha [E_2(\alpha) \rightarrow A_2(\delta | \alpha)]$, we may reach the same conclusion.

A similar thing can be said on the proof of theorem 3.2.

This sharper view of the constructivity of the arguments used will enable us to extend the theorems into the transfinite, in chapter 9.

We decided not to leave out the more clumsy method of chapter 7, although its results are properly contained in those of chapter 9. This method held us captive for quite a long time, and it deserves of some attention, if only for the sake of comparison.

3.5 We may picture the results of this chapter as follows:

4 SOME ACTIVITIES OF DISJUNCTION AND CONJUNCTION

Both classically and intuitionistically, the intersection of two open subsets of \mathbb{R} is an open subset of \mathbb{R} . However, only by using classical logic, one may infer from this the dual statement the union of two closed subsets of \mathbb{R} is a closed subset of \mathbb{R} . It need not surprise, therefore, that this statement is not true, if interpreted intuitionistically. ([0,1] u [1,2], for example, is not a closed subset of \mathbb{R}).

This well-known fact will be confirmed by the theorems of this chapter We know from chapter 3, that E_2 , the subset of ${}^{\omega}\omega$ which we get from A_1 by an existential projection, is not reducible to A_1 or, for that matter, to A_2 . We will see now that the same holds true for the subset of ${}^{\omega}\omega$ which we get from A_1 by a disjunctive projection only: D^2A_1 .

In the case of A_1 , finite disjunction suffices to increase complexity No wonder, then, that the number of disjuncts is also important: the subset which we get from A_1 by a triple disjunctive projection, is not reducible to the subset we get by a binary disjunctive projection, and so on Between A_1 and E_2 , we may distinguish, in this manner, countably many levels of complexity.

Conjunction, of course, is inactive, if applied to A_1 , but it gets productive as soon as we apply it to D^2A_1 , for example. Let us consider the class of all subsets of $\omega \omega$ which originate from A_1 , when we apply the operations of finite disjunctive and conjunctive projection again and again. How does the reducibility relation behave on this countable class? We partially answer this nice question at the end of this chapter.

- 4.0 We introduce, for all subsets $P \subseteq {}^{\omega} w$ and new, a subset $D^n P$ of ${}^{\omega} w$ by: for all $\alpha \in {}^{\omega} w$: $D^n P(\alpha) := \exists q < n [P(\alpha q)]$
- 4.1 Theorem: It is reckless to assume $D^2A_1 \leq A_1$

<u>Proof</u>: Suppose: D²A₁ ≤ A₁, i.e.: ∀α∃β[D²A₁(α) ≥ A₁(β)] Remark: ∀β[¬¬ ∀n[β(n)=0] → ∀n[β(n)=0]] Therefore: ∀α[¬¬ D²A₁(α) → D²A₁(α)] This enables us to decide a lot of questions Let us turn to the decimal development of π which earned itself a reputation in providing counterexamples to all kinds of classically valid but constructively untrue statements. Construct a sequence α in $\mathcal{W}_{\mathcal{W}}$ which fulfils the condition: $\forall n[\alpha(n)=0 \neq At \text{ place } n \text{ in the decimal development of } \pi \text{ stands}$ the last 9 of the first block of ninety-nine 9's] Remark: $\forall m \forall n [(\alpha(m)=0 \land \alpha(n)=0) \rightarrow m=n]$, therefore: $\alpha^{\circ} \neq 0 \rightarrow \alpha^{1}=0$ and: $\neg \neg (\alpha^{\circ}=0 \lor \alpha^{1}=0)$, i.e.: $\neg \neg D^{2}A_{1}(\alpha)$ The conclusion: $D^{2}A_{1}(\alpha)$, however, is not empty as a communication on the decimal development of π . We should be able to exclude either all numbers <0, m> or all numbers <1, m> as a possible position of the last 9 in the first block of ninety-nine 9's in π 's decimal tail But we are not able to do so.

The axiom of Brouwer and Kripke (cf. chapter 2) increases our doubts concerning: $D^2A_1 \preceq A_1^{"}$ Let 07 be a determinate (cf. 2.1), as yet undecided mathematical proposition such that : $\neg \neg \Omega \rightarrow \Omega$. (One might think of Fermat's conjecture, or of any other mathematical proposition which can be brought into the form $\forall h[F(n)], where F is a determinate property$ of natural numbers, such that: $\forall n [F(n) \lor \neg F(n)]$ or v-or is also a determinate proposition, and, using (BK) and some acrobatics, we determine α in ^ww such that: $\mathbb{N} \vee \neg \mathbb{N} \not\supseteq \exists n[\alpha(n) = 0]$ and: $\mathbb{N} \not\supseteq \exists n[\alpha^{\circ}(n) = 0]$ and: $\neg \Omega \not\supseteq \exists n [\alpha^{1}(n) = 0] \text{ and} \quad \forall m \forall n [(\alpha(m) = 0 \land \alpha(n) = 0) \rightarrow m = n]$ Remark: $D^2A_1(\alpha)$, therefore: $D^2A_1(\alpha)$; i.e.: $\alpha^\circ = Q \vee \alpha^1 = Q$, and: $\neg \Omega \vee \neg \Omega$, therefore: - OLVOL By $_{1}D^{2}A_{1} \preceq A_{1}^{"}$ we are able to decide, in this way, any determinate, stable proposition (A proposition Ω is called <u>stable</u>, if $\neg \neg \Omega \rightarrow \Omega$) This is a reckless assumption. We constructed a "weak" counterexample to: $D^2A_1 \leq A_1^{"}$. (In Dutch: "een vermetelheidstegenvoorbeeld") In many such cases, as in this one, we are able to improve on the argument and to derive a contradiction. This is an art which has been practized much by Wim Gielen.

The axiom of Brouwer and Kripke does not figure in the eventual argument. We also did not use it in proving theorem 4.1.

4.2 We introduced, in 1.2, a coding function <>:
$$\bigcup_{k \in \omega} \mathbb{W} \to \mathbb{W}$$
 w
Thus, every natural number codes a finite sequence of natural numbers.
We also introduced a length function $lg: w \to w$ such that, for all new,
 $lg(n) =$ the length of the finite sequence coded by n.
We now define, for all n, kew such that $k < lg(n)$:
 $n(k) := n_k :=$ the value which the finite sequence coded by n,
 $assumes in k$.
Therefore, for each new: $n = < n(0), n(1), ..., n(lg(n) - 1) >$
We define a sequence τ in \mathbb{W} such that:
 $\forall h[\tau(n)=0 \ge (\forall k[k < lg(n) \to n(k] < 2] \land \forall k \forall l[(k < lg(n) \land n(k) \neq 0 \land n(l) \neq 0) \rightarrow k = l])]$
We remark that τ is a subspread of \mathbb{W} $(cf. 1.9)$ and:
 $\forall \alpha [\alpha \in \tau \ge (\forall k[\alpha(k) < 2] \land \forall k \forall l[(\alpha(k) \neq 0 \land \alpha(l) \neq 0) \rightarrow k = l])]$
The set $\tau = \{\alpha | \alpha \in \mathbb{W} \mid \forall n [\tau(\overline{\alpha}n) = 0]\}$ consists of those sequences of 0's and 1's
which have in at most one point a value different from 0.
The spread τ is very similar to the spread σ_{zmon} which will come to the fore in chapter 11.

4.3 Theorem:
$$\neg (D^2A_1 \leq A_1)$$

Proof: Suppose: $D^2A \leq A$

Proof: Suppose:
$$D^2A_1 \leq A_1$$
, i.e. $\forall \alpha \exists \beta [D^2A_1(\alpha) \rightleftharpoons A_1(\beta)]$
As in the proof of theorem 4.1, we observe: $\forall \alpha [\neg \neg D^2A_1(\alpha) \rightarrow D^2A_1(\alpha)]$
Now: $\forall \alpha \in \tau [\neg \neg D^2A_1(\alpha)]$, where τ is the subspread of ${}^{\omega}\omega$ which
we defined in 4.2
Therefore: $\forall \alpha \in \tau [D^2A_1(\alpha)]$
Remark: $\underline{O} \in \tau$ and, applying to the generalized continuity principle
GCP, determine $r \in \omega$ and $k \in \{0,1\}$ such that: $\forall \alpha \in \tau [\overline{\alpha}r = \underline{O}r \rightarrow \alpha \overset{k}{k} = \underline{O}]$
But this is not so, as we may define α_0 in τ such that:
 $\overline{\alpha_0}r = \overline{O}r$ and: $(\alpha_0)^{\overset{k}{k}}(r) = 1$

We feel content that, in proving this theorem, we did not use AC_{11} or AC_{10} , but G^{CP} only.

4.4 For all m, new we define [n]^m to be the code number of the m-th subsequence of the finite sequence coded by n Therefore, for all $k \in W$, $[n]^m(k)$ is defined if and only if $\langle m \rangle \star k < lq(n)$ and, in that case: $[n]^{m}(k) = n(\langle m \rangle * k)$ For every mew we define a sequence τ_m in w_w such that: Vn[tm(n)=0 Z Qe[n]m] We remark that, for all mew, τ_m is a subspread of ω_w (cf. 1.9) and: $\forall \alpha [\alpha \in \tau_m \neq \alpha^m = Q]$ We also observe: $\forall m \forall \alpha [D^m A_1(\alpha) \rightleftharpoons \exists n < m [\alpha \in \tau_n]]$ 4.5 Theorem: $\neg (D^3A_1 \preceq D^2A_1)$ <u>Proof</u>: Suppose: $D^{3}A_{1} \leq D^{2}A_{1}$, i.e.: $\forall \alpha \exists \beta [D^{3}A_{1}(\alpha) \rightleftharpoons D^{2}A_{1}(\beta)]$ Using AC_{11} , we find δ in w_w such that: Fun(δ) and: $\forall \alpha [D^3 A_1(\alpha) \neq D^2 A_1(\delta | \alpha)]$ We observe: $\forall m < 3 \forall \alpha [\alpha \in \tau_m \rightarrow (\delta | \alpha \in \tau_o \lor \delta | \alpha \in \tau_i)]$ and: $\forall m < 3 [\underline{0} \in T_m]$ (The spreads Tm have been defined in 4.4) Applying the generalized continuity principle GCP three times, we find natural numbers p_0, p_1, p_2 and k_0, k_1, k_2 such that: $\forall m < 3 \ [k_m = 0 \ v \ k_m = 1]$ $\forall m < 3 \forall \alpha \in \tau_m [\overline{\alpha} p_m = \overline{Q} p_m \rightarrow \delta | \alpha \in \tau_{k_m}]$ and: Without loss of generality, we may assume: $k_{a} = k_{a}$ Let $p := max(p_0, p_1, p_2)$ We determine Z in $^{\omega}\omega$ such that: Fun(Z) and, for all $\alpha e^{\omega}\omega$, m, new: $(\zeta | \alpha)^m(n) := 0$ if n 2 $= \alpha^{m}(n-p)$ if $n \gg p \wedge m < 2$:= 1 if n>p ∧ m=2 Now, suppose: $\alpha \in \mathcal{W} \omega$ and $D^2 A_1(\alpha)$, then: $Z | \alpha \in \tau_0 \vee Z | \alpha \in \tau_1$ and: $(\overline{\zeta}|\alpha) p = \overline{Q}p$, so: $\delta[(\zeta|\alpha) \in \tau_{\mathbf{k}}]$ Conversely, suppose $\alpha \in {}^{\omega}\omega$ and $\delta|(\zeta|\alpha) \in \tau_{k_{\alpha}}$; then $D^{2}A_{1}(\delta|(\zeta|\alpha))$ so: $D^3A_1(Z|\alpha)$, and: $D^2A_1(\alpha)$ Therefore: $\forall \alpha [D^2 A_1(\alpha) \supseteq A_1((\delta | (\zeta | \alpha))^{k_o})], i.e.: D^2 A_1 \leq A_1$ This contradicts theorem 4.3.

We confess that, in proving theorem 4.5, we did not succeed in avoiding AC_{11}

Without difficulty, we may extend theorem 4.5 to:

4.6 Theorem:
$$\forall m[\neg (D^{m+1}A_1 \leq D^mA_1)]$$

4.7 We introduce, for all subsets
$$P \subseteq {}^{\omega}\omega$$
, a subset $Un(P)$ of ${}^{\omega}\omega$ by:
for all $\alpha \in {}^{\omega}\omega$: $(Un(P))(\alpha) := \forall m[P(\alpha^m)]$

We now show that "choosing one-out-of-three" is not to be reduced to "choosing one-out-of-two", even if we are allowed to do the latter infinitely many times.

 $\neg (D^{3}A_{4} \leq Un(D^{2}A_{4}))$ 4.8 Theorem. $\underline{Proof}: \text{ Suppose}: D^{3}A_{1} \leq \text{Un}(D^{2}A_{1}), \text{ i.e.}: \forall \alpha \exists \beta [D^{3}A_{1}(\alpha) \neq (\text{Un}(D^{2}A_{1}))(\beta)]$ Using AC_{11} , we find δ in ww such that: Fun (b) and $\forall \alpha [D^3A_1(\alpha) \rightleftharpoons (Un(D^2A_1))(\delta|\alpha)]$ Let τ be the spread which we introduced in 4.2: $\forall \alpha [\alpha \in \tau \implies (\forall k [\alpha(k) < 2] \land \forall k \forall l [(\alpha(k) \neq 0 \land \alpha(l) \neq 0) \rightarrow k = l])]$ We want to show: $\forall a \in \tau \forall p [D^2 A_1 ((\delta | \alpha)^p)]$ Let us assume, to this end are and pew We observe, as in the proof of 4.5: $\forall m < 3 \forall \beta \in \tau_m [D^3 A_1(\beta)]$ and: $\forall m < 3 [Q \in \tau_m]$ $(\tau_0, \tau_1, \tau_2, ...$ are the spreads which made their first appearance in 4.4. $\forall m \forall \alpha [\alpha \in \tau_m \rightleftharpoons \alpha^m = Q])$ By a threefold invocation of the generalized continuity principle GCP we find natural numbers q_0, q_1, q_2 and k_0, k_1, k_2 such that $\forall m < 3 [k_m = 0 v k_m = 1]$ and: $\forall m < 3 \forall \beta \in \tau_m [\overline{\beta}q_m = \overline{Q}q_m \rightarrow (\delta|\beta)^P \in \tau_m]$ Without loss of generality, we may assume: $k_0 = k_1$. Let $q := \max(q_0, q_1, q_2)$. We distinguish two cases: Case 1: ãq≠₫q As $\alpha \in \tau$, we may determine, in this case, m<3 such that : $\alpha \in \tau_m$, and, thus, we know: $D^2 A_1((\delta | \alpha)^p)$

Case 2:
$$\overline{\alpha}q \neq \overline{0}q$$

We now turn up our trump card:
 $\alpha \in \tau$, therefore: $\neg \neg (\alpha \in \tau_0 \lor \alpha \in \tau_1)$ and $\neg \neg ((\delta | \alpha)^P \in \tau_{\kappa_0})$
so: $(\delta | \alpha |^P \in \tau_{\kappa_0}$ and: $D^2 A_1((\delta | \alpha | P))$
In any case: $D^2 A_1((\delta | \alpha | P))$
We have proved now: $\forall \alpha \in \tau \forall p [D^2 A_1((\delta | \alpha | P)], i.e.:$
 $\forall \alpha \in \tau [(Un(D^2 A_1))(\delta | \alpha |], and therefore: \forall \alpha \in \tau [D^3 A_1(\alpha | I)]$
We observe: $\underline{0} \in \tau$, and, applying to GCP, we determine rew
and $k \in \{0, 1, 2\}$ such that: $\forall \alpha \in \tau [\overline{\alpha}r = \overline{0}r \rightarrow \alpha^k = \underline{0}]$
But this is not so, as we may define α_0 in τ such that:
 $\overline{\alpha}_0 r = \overline{0}r$ and: $(\alpha_0)^k(r) = 1$

The reader will have remarked that the proof of theorem 4.8 is slightly more economical than the proof of theorem 4.5 and no longer leans on theorem 4.3 In the same way one may prove:

4.9 Theorem:
$$\forall m [\neg (D^{m+1}A_1 \leq Un (D^mA_1))]$$

We may sharpen the conclusion of theorem 4.3 also in this manner:

4.10 Theorem: $\neg (D^2A_1 \leq A_2)$

Proof: Suppose: D²A₁ ≤ A₂, i.e.: ∀α∃β[D²A₁(α) ≥ A₂(β)]
Using AC₁₁, we find δ in Ww such that: Fun(δ) and ∀α[D²A₁(α)≥A₂(δ(α)]
Let τ be the spread which we introduced in 4.2:
∀α[αετ ≥ (∀k[α(k)<2] ∧ ∀k∀l[(α(k)≠0∧α(l)≠0) → k=l])]
We want to show: ∀αετ[A₂(δ(α)]
Let us assume, to this end: αετ and pew
We observe: D²A₁(Q), therefore: A₂(δ(Q), and: E₁((δ(Q)^P))
We determine kew such that (δ(Q)^P(k) = 0
And we determine qew such that: ∀β[βq=Qq → (δ(β)^P(k)=0]
We now distinguish two cases:
Case 1:
$$\overline{\alpha}q \neq \overline{Q}q$$

As αετ, we may determine in this case, m<2 such that
 $α^{m} = Q$, therefore: D²A₁(α) and: A₂(δ(α), esp. E₁((δ(α)^P))
Case 2:
$$\exists q \neq \underline{O}q$$

Then: $E_1((\delta | \alpha)^p)$
In any case: $E_1((\delta | \alpha)^p)$
We have proved, now: $\forall \alpha \in \tau \forall p [E_1((\delta | \alpha)^p], i.e.: \forall \alpha \in \tau [A_2(\delta | \alpha)]$
Therefore: $\forall \alpha \in \tau [D^2 A_1(\alpha)]$
This will lead to a contradiction, as in the proof of theorem 4.3
 \boxtimes

The proofs of the theorems 4.8 and 4.10 are variations upon one theme, the latter being the more simple of the two. The conclusion of theorem 4.10 marks an improvement upon theorem 3.3, which said: $\neg (E_2 \leq A_2)$. In order to see this, one observes, using theorem 4.6: $\forall n[D^nA_1 \prec D^{n+1}A_1 \prec E_2]$ (We defined " \prec " in 2.3: $A \prec B \rightleftharpoons (A \leq B \land \neg (B \leq A))$ The reader's task reduces to proving: $\forall n[D^nA_1 \leq E_2]$).

4.11 We introduce, for all subsets $P \subseteq {}^{\omega}w$ and new, a subset C^nP of ${}^{\omega}w$ by: for all $\alpha \in {}^{\omega}w$: $C^nP(\alpha) := \forall q < n [P(\alpha q)]$

4.12 Without difficulty, we establish the following facts: $C^2A_1 \leq A_1$, $D^2E_1 \leq E_1$ and $C^2E_1 \leq E_1$.

First, we determine $\delta \in \omega_{\omega}$ such that: Fun(δ) and $\forall \alpha \forall n [(\delta | \alpha)(2n) = \alpha^{\circ}(n) \wedge (\delta | \alpha)(2n+1) = \alpha^{1}(n)]$

Then: $\forall \alpha [C^2 A_1(\alpha) \not\supseteq A_1(\delta | \alpha]]$ and $\forall \alpha [D^2 E_1(\alpha) \not\supseteq E_1(\delta | \alpha]]$

Next, we determine $\delta \in \mathcal{W}_{\omega}$ such that: Fun(δ) and $\forall \alpha \forall n [(\delta \mid \alpha)(n) = 0 \not\equiv (lg(n) = 2 \land \alpha^{\circ}(n(0)) = \alpha^{1}(n(1)) = 0)]$ Then: $\forall \alpha [C^{2} E_{1}(\alpha) \not\supseteq E_{1}(\delta \mid \alpha)]$

This seems to be a good place to mention an important difference between the results of this chapter and the results of chapter 3. When we set out to prove: $\neg (A_2 \leq E_2)$, we did not intend to prove as much as we did, eventually. Starting from a sequence δ , fulfilling only: Fun(δ) and: $\forall \alpha [A_2(\alpha) \rightarrow E_2(\delta | \alpha)]$ we were able to point out a sequence α^* such that: $\neg A_2(\alpha^*) \wedge E_2(\delta | \alpha^*)$ When proving: $\neg (E_2 \leq A_2)$, we also exceeded our own expectations. (cf. the discussion in 3.4) There is no hope for a similar reinforcement of a conclusion like: $\neg (D^2A_1 \leq A_1)$ In order to see this, we consider the subset E_1^* of ω which is defined by: for all $\alpha \in \omega : E_1^*(\alpha) := \exists n [\alpha(n) = 1]$ We easily find $\delta \in \omega$ such that: Fun(δ) and $\forall \alpha [C^2E_1^*(\alpha) \not \equiv E_1^*(\delta | \alpha)]$

We easily find $\delta \in W_w$ such that: $\operatorname{Fun}(\delta)$ and $\operatorname{Fall}(C^*E_1^*(\alpha) \not\subseteq E_1^*(\delta) \cap I)$ This same δ also satisfies: $\operatorname{Va}[\neg C^2E_1^*(\alpha) \not\supseteq \neg E_1^*(\delta) \cap I)$ and, therefore: $\operatorname{Va}[\neg \neg D^2A_1(\alpha) \not\supseteq A_1(\delta \mid \alpha)]$ Remark that $\forall \alpha [D^2 A_1(\alpha) \rightarrow A_1(\delta | \alpha)]$ and that it is impossible to find $\alpha^* \in {}^{\omega} \omega$ such that $\neg D^2 A_1(\alpha^*) \wedge A_1(\delta | \alpha^*)$

This phenomenon is put into perspective when we recognize that there are classical facts corresponding to the results of chapter 3 whereas, in this chapter, truly intuitionistic idiosyncrasies come to the surface.

4.13 We introduce, for all natural numbers m,n, a finite subset Exp(m,n) of ω by: $Exp(m,n) := \{f | f \in \omega | lg(f) = n \land \forall k [k < n \rightarrow f(k) < m] \}$

(Exp(m,n) is the set of all functions from n to m, where, following set-theoretical habits, m and n are identified with the sets of their predecessors).

We define, for each few, a subset A_f of ww by:

for all
$$\alpha \in \omega_{\omega}$$
: $A_{f}(\alpha) := \forall n [n < lq(f) \rightarrow (\alpha^{n})^{f(n)} = Q]$

We leave it to the reader to verify: $\forall f[A_f \leq A_1]$ and: $\forall f[f \neq <> \rightarrow A_1 \leq A_f]$ In this last sentence good old A_1 is meant, which we met for the first time in 2.3.

We are guilty of a slight inaccuracy by having introduced, here, namesakes for A_1 and A_2 , (cf. 3.0), but it will not harm us.

4.14 Theorem: $\forall n \forall m [C^{n}[D^{m}A_{1}] \leq D^{m^{n}}A_{1}]$ Proof: Remark: for all $\alpha \in {}^{\omega}\omega$: $C^{n}D^{m}A_{1}(\alpha) \rightleftharpoons \forall k < n \exists l < m [(\alpha k)^{l} = Q]$ $\rightleftharpoons \exists f [f \in Exp(m,n) \land A_{p}(\alpha)]$ Also observe that, for all $f \in \omega$, we may define $\delta_{p} \in {}^{\omega}\omega$ such that Fun (δ_{f}) and $\forall \alpha [A_{f}(\alpha) \rightleftharpoons A_{1}(\delta_{p}|\alpha)]$ As Exp(m,n) has m^{n} members, the construction of a $\delta \in {}^{\omega}\omega$ such that Fun (δ) and $\forall \alpha [C^{n}D^{m}A_{1}(\alpha) \rightleftharpoons D^{m^{n}}A_{1}(\delta|\alpha|]$ is now an easy matter \mathbf{N}

4.15 Theorem:
$$\forall n \forall m \forall q \forall p [C^n D^m A_1 \leq C^q D^p A_1 \rightarrow m^n \leq p^q]$$

 $\frac{\text{Proof}: (\text{The reader has understood, probably, that "C^DMA_1" stands for:$ $"C^(D^MA_1)")$ $Suppose: m^>p^9 and C^DMA_1 \leq C^9D^PA_1, i.e.: \forall \alpha \exists \beta [C^DMA_1(\alpha) \neq C^9D^PA_1(\beta)]$ $Using AC_{11}, determine <math>\delta \in W$ such that $\text{Fun}(\delta)$ and $\forall \alpha [C^DMA_1(\alpha) \notin C^9D^PA_1(\delta | \alpha)]$

For every $f \in Exp(m,n)$, consider A_f , as defined in 4.13 Remark : $\forall f \in Exp(m,n) \forall \alpha [A_f(\alpha) \rightarrow C^n D^m A_1(\alpha)]$ Therefore: $\forall f \in Exp(m,n) \forall \alpha [A_f(\alpha) \rightarrow C^q D^p A_1(\delta|\alpha)]$ and: $\forall f \in Exp(m,n) \forall a [A_f(a) \rightarrow \exists k [k \in Exp(p,q) \land A_k(\delta | a)]$ Observe that, for every $f \in Exp(m,n)$, $A_f(\underline{O})$, and A_f is a subspread of $\omega_{\rm W}$ (cf. 1.9) so that the generalized continuity principle GCP applies. Applying it for every fe Exp(m,n) separately and keeping in mind that $m^n > q^p$, one finds fe Exp(m,n), ge Exp(m,n), he Exp(p,q) and rew $f \neq q \quad \wedge \quad \forall \alpha [(\bar{\alpha}r = \bar{\mathcal{Q}}r \land (A_{f}(\omega) \lor A_{g}(\omega))) \rightarrow A_{g}(\delta|\alpha)]$ such that: We now again have recourse to τ , the subspread of ${}^{\omega}\omega$ which we introduced in 4.2 to serve us, in this chapter, as a true sorcerer's apprentice. $(\tau = \{\alpha | \alpha \in {}^{\omega} \omega | \forall k [\alpha(k) < 2] \land \forall k \forall l [(\alpha(k) \neq 0 \land \alpha(l) \neq 0) \rightarrow k = l]\})$ $f \neq q$ we may determine k < n such that $f(k) \neq q(k)$. As Therefore: $\forall \alpha \in \tau [\neg \neg ((\alpha^{k})^{f(k)} = \bigcirc \lor (\alpha^{k})^{g(k)} = \bigcirc)]$ Let us restrict our attention to $\tau^* := \{\alpha | \alpha \in \tau \mid \forall l \in l \neq k \rightarrow \alpha^l = Q \}$ τ^* is again a subspread of w_{ω} and : $\forall \alpha \in \tau^*[\neg (A_f(\alpha) \lor A_g(\alpha))]$ Therefore: $\forall a \in \tau * [\bar{a}r = \bar{Q}r \rightarrow A_{k}(\delta | a)]$ and: $\forall \alpha \in \tau * [\bar{\alpha}r = \bar{Q}r \rightarrow C^q D^p A_1(\delta | \alpha)], and \quad \forall \alpha \in \tau * [\bar{\alpha}r = \bar{Q}r \rightarrow C^n D^m A_1(\alpha)].$ especially: $\forall \alpha \in \tau^* [\bar{\alpha}r = \bar{Q}r \rightarrow D^m A_1(\alpha^k)]$ We now proceed easily to the contradiction we wanted to reach, following the pattern of the proof of theorem 4.8: We observe: $Q \in \tau^*$, and, applying to GCP, determine sew such that rss, and lew such that: $\forall \alpha \in \tau^* [\overline{\alpha}s = \overline{Q}s \rightarrow (\alpha^k)^l = Q]$ This is not so, for we may define do in t* such that: $\overline{a}_{p}s = \overline{Q}s$ and: $((a_{p}^{k})^{\ell})(s) = 1$.

4.16 <u>Theorem</u>: $\forall m \forall p [D^m A_1 \leq Un (D^p A_1) \rightarrow m \leq p]$

Proof: This follows from theorem 4.9.
Assume: m>p and
$$D^{m}A_{1} \leq Un(D^{p}A_{1})$$
.
Remark: $D^{p+1}A_{1} \leq D^{m}A_{1}$, therefore: $D^{p+1}A_{1} \leq Un(D^{p}A_{1})$.
This is not so, according to theorem 4.9. ⊠

- 4.17 Lemma: $\forall n \forall m [D^m A_1 \leq C^{n+1} D^m A_1 \leq C^{n+2} D^m A_1 \leq Un (D^m A_1)]$ <u>Proof</u>: Easy. **A**
- 4.18 Theorem: $\forall n \forall m \forall q \forall p [C^{n+1} D^m A_1 \leq C^q D^p A_1 \rightarrow m \leq p]$

Proof: Immediate, from 4.16 and 4.17. &

4.19 Many questions are answered by theorems 4.14-18, but some nasty problems remain to be solved.

Conjunctive power demonstrates itself in sequences like the following:

$$D^{2}A_{1} \prec C^{2}D^{2}A_{1} \prec C^{3}D^{2}A_{1} \prec \dots$$
$$D^{3}A_{1} \prec C^{2}D^{3}A_{1} \prec C^{3}D^{3}A_{1} \prec \dots$$

We know that no set from the second sequence can be reduced to any set from the first sequence. The converse thing sometimes happens, as $\forall n [C^n D^2 A_1 \leq C^n D^3 A_1]$ But what about the question if $C^3 D^2 A_1 \leq C^2 D^3 A_1$? No negative answer may be read off from theorems 4.14-18. Nevertheless, the answer is negative, as you will suspect after a short walk. More generally, we may ask, for any set from the first sequence: what is the first set in the second sequence to which it is reducible? And: do you know if $C^3 D^3 A_1 \leq C^2 D^6 A_1$, or, if $C^5 D^3 A_1 \leq C^4 D^4 A_1$?

In order to handle these and similar questions we introduce a new notation.

We define, for each new a subset
$$(CD)_n A_1$$
 of $^{\omega}\omega$ by:
for all $\alpha \in ^{\omega}\omega : (CD)_n A_1(\alpha) := \forall k [k < lg(n) \rightarrow D^{n(k)} A_1(\alpha^k)]$

 $C^{3}D^{2}A_{1}$ reappears as $(CD)_{\langle 2,2,2 \rangle}A_{1}$, and $C^{2}D^{3}A_{1}$ is now called $(CD)_{\langle 3,3 \rangle}A_{1}$ We make a few observations, without striving for completeness:

If the finite sequence coded by n' is a permutation of the finite sequence coded by n, then: $(CD)_n A_1 \leq (CD)_n, A_1$ If $lg(n) = lg(n_1)$ and $\forall k < lg(n) [n(k) \leq n'(k)]$, then $(CD)_n A_1 \leq (CD)_n, A_1$ $(CD)_{< p, q_7} A_1 \leq D^{p \cdot q} A_1$

More generally, if $n = \langle n_0, n_1, ..., n_{\ell} \rangle$, then: $(CD)_{\langle n_0, n_1, ..., n_{\ell} \rangle} A_1 \leq (CD)_{\langle n_0, n_1, n_2, ..., n_{\ell} \rangle} A_1$ (The proofs of the last two statements are similar to the proof of theorem 4.14) The following notion will also be useful: We define, for all f, new: $f = lg(f) = lg(n) \wedge \forall k [k < lg(n) \rightarrow f(k) < n(k)]$

If $n = \langle n_0, n_1, ..., n_p \rangle$, then the number of elements of $\{f | f \in w | f \in n\}$ is $n_1, ..., n_p$

We use square brackets [] to denote the entire-function from \mathbb{Q}^+ to w, which assigns to each positive rational number its integral part.

Sufficiently many preparations have been made now for:

4.20 Theorem: Let m,n be natural numbers, $m = \langle m_0, m_1, \dots, m_k \rangle$ and $n = \langle n_0, n_1, \dots, n_k \rangle$ Let $m_0 > 0$. Then:

 $\underline{Proof}: (1) \quad \text{First suppose: } t \leq l \land m_{0} \leq n_{1} \land (CD)_{(m_{1}, \dots, m_{k})} \land A_{1} \leq (CD)_{(n_{0}, \dots, [\frac{n_{1}}{m_{0}}], \dots, n_{l})} \land A_{1} \leq (CD)_{(n_{1}, \dots, m_{k})} \land A_{1} \leq (CD)_{(n_{1}, \dots, n_{l})} \land A_{1} \leq (CD)_{($

A moment's reflection shows: $(CD)_{m}A_{n} = (CD)_{m}m = A_{n} \leq (CD)_{m}m$

$$(CD)_{\leq n_{o}, \dots, m_{o}} A_{1} \leq (CD)_{\leq m_{o}, n_{o}, \dots, m_{\ell}} A_{1} \leq (CD)_{\leq m_{o}, n_{o}, \dots, m_{\ell}} A_{1} \leq (CD)_{\leq n_{o}, \dots, m_{\ell}} A_{1} \leq (CD)_{\leq n_{o}, \dots, n_{\ell}} A_{1} = (CD)_{n} A_{1}$$

(11) Now suppose: $(CD)_{m} A_{1} \leq (CD)_{n} A_{1}$, i.e.: $\forall \alpha \exists \beta [(CD)_{m} A_{1}(\alpha) \not\equiv (CD)_{n} A_{1}(\beta)]$ Apply to AC_{11} and determine $\delta \in \mathbb{W}_{w}$ such that: Fun(δ) and $\forall \alpha [(CD)_{m} A_{1}(\alpha) \not\equiv (CD)_{n} A_{1}(\delta | \alpha)]$ Observe: $\forall \alpha [(CD)_{m} A_{1}(\alpha) \not\equiv \exists f \models m [A_{f}(\alpha)]]$ (We introduced, in 4.13, for each $f \in w$, the set $A_{f} = \{\alpha | \alpha \in \mathbb{W} | \forall k < lg(f)[(\alpha^{k})^{f(k)} = 0]\}$) (all to mind that, for every $f \in w$, A_{f} is a subspread of \mathbb{W}_{w} (cf. 1.9) and $A_{f}(0)$ Remark: $\forall f \models m \forall \alpha [A_{f}(\alpha) \rightarrow \exists g \models n [A_{g}(\delta | \alpha)]]$. Invoke the generalized continuity principle GCP and conclude:

 $\begin{array}{l} \forall f \sqsubseteq m \exists g \sqsubseteq n \exists s \forall \alpha [(\bar{\alpha}s = \bar{\mathbb{Q}}s \land A_{f}(\alpha)) \rightarrow A_{g}(\delta \mid \alpha)]. \\ \text{We may construct a function } I: \{f \mid f \in w \mid f \sqsubseteq m\} \rightarrow \{g \mid g \in w \mid g \sqsubseteq n\} \\ \text{and a number } s \in w \text{ such that:} \end{array}$

 $\forall f \in \mathcal{M} \ \forall \alpha \in (\bar{\alpha}s = \bar{Q}s \land A_{f}(\alpha)) \rightarrow A_{I(f)}(\delta|\alpha)]$

We venture the following

Claim: $\exists t < lg(n) \forall f \in m \forall h \in m [f(0] \neq h(0) \rightarrow I(f)(t) \neq I(h)(t)]$ We prove this claim as follows: Suppose, to the contrary: $\forall t < lg(n) \exists f \equiv m \exists h \equiv m[f(0) \neq h(0) \land [I(f)](t) = [I(h)](t)]$ In this difficult situation, we need our friend from 4.2: $T = \{ \alpha | \alpha \in {}^{\omega} \omega | \forall k[\alpha(k] < 2] \land \forall k \forall l[(\alpha(k) \neq 0 \land \alpha(l) \neq 0) \rightarrow k = l] \}$ With his help, we define a subset B of ${}^{\omega}\omega$: B := $\{ \alpha | \alpha \in {}^{\omega}\omega | \alpha^{\circ} \in \tau \land \forall k > 0[\alpha k = 0] \}$ We remark: $\forall \alpha \in B \forall f \equiv m \forall h \equiv m[f(0) \neq h(0) \rightarrow \neg \neg (A_{f}(\alpha) \lor A_{k}(\alpha))]$ therefore: $\forall \alpha \in B \forall f \equiv m \forall h \equiv m[f(0) \neq h(0) \rightarrow \neg \neg (A_{f}(\alpha) \lor A_{k}(\alpha))]$ therefore: $\forall \alpha \in B \forall f \in m \forall h \equiv m[\bar{\alpha}s = \bar{Q}s \rightarrow ((\delta \mid \alpha)^{t})^{(I(f))(t)} = Q]$ and: $\forall \alpha \in B [\bar{\alpha}s = \bar{Q}s \rightarrow (CD)_{n}A_{1}(\delta \mid \alpha)]$ $so: \forall \alpha \in B [\bar{\alpha}s = \bar{Q}s \rightarrow (CD)_{m}A_{1}(\alpha)]$ $A_{I}so: \forall \alpha \in B [\bar{\alpha}s \neq \bar{Q}s \rightarrow (CD)_{m}A_{1}(\alpha)]$ Therefore: $\forall \alpha \in B[(CD)_{m}A_{1}(\alpha)]$, especially: $\forall \alpha \in B[D^{m(0)}A_{1}(\alpha \circ)]$, and: $\forall \alpha \in T[D^{m(0)}A_{1}(\alpha)]$. This is not so, as we have seen on several

occasions (cf the end of the proof of 4.15).

Our claim has been established, now, and the argument is constructive, although it does not appear so, because we are dealing with finite disjunctions and conjunctions of decidable propositions.

We calculate t < lg(n) such that: $\forall f \in m \forall h \in m [f(0) \neq h(0) \Rightarrow (I(f))(t) \neq (I(h))(t)]$ Remark that this implies: $m_0 \le n_t$

We may profit, now, from our training in combinatorics (if we had any): We define a mapping on $\{p \mid p \in \omega \mid p < m_o\}$:

$$p \mapsto \{q | q \in \omega \mid \exists f \sqsubseteq m [f(0) = p \land (I(f))(t) = q] \}$$

To different numbers, disjoint decidable subsets of w are associated. We determine p such that: $p < m_0$ and the number of elements of $\{q \mid q \in w \mid \exists f \in m[f(0) = p \land (I(f))(t) = q]\}$ is at most: $[\frac{n_t}{m_0}]$.

We define a subset E of ${}^{\omega}\omega : E := \{\alpha \mid \alpha \in {}^{\omega}\omega \mid (\alpha^{o})^{P} = Q\}$ Without fear, we make a second <u>Claim</u>: we may construct $Z \in {}^{\omega}\omega$ such that: Fun(Z) and: $\forall \alpha \in E[(CD)_{m}A_{1}(\alpha) \neq (CD)_{\langle n_{0}, n_{1}, \cdots, \lceil \frac{n_{L}}{m_{0}}\rceil, \cdots, n_{L} \neq A_{1}(Z|\alpha)]}$ We do not go into a detailed construction of Z, but it should be clear that Z may be obtained by a suitable rearrangement of S. Finally, we make $\eta \in {}^{\omega}\omega$ such that Fun(η) and $\forall \alpha [(\eta|\alpha)^{o} = Q \land \forall j [(\eta|\alpha)^{j+1} = \alpha^{j}]]$ Then: $\forall \alpha [\eta|\alpha \in E \land ((CD)_{\langle m_{1}, \cdots, m_{k} \nearrow}A_{1}(\alpha) \rightleftharpoons (CD)_{m} A_{1}(\eta|\alpha))]$ Putting all things together we see

$$\forall \alpha \left[(CD)_{\langle m_1, \dots, m_{k} \rangle} A_1(\alpha) \not\supseteq (CD)_{\langle n_0, n_1, \dots, n_{k} \rangle} \left[\frac{n_t}{m_0} \right], \dots, n_{k} \rangle A_1(\zeta | (\eta | \alpha)) \right]$$

i.e.: $(CD)_{\langle m_1, \dots, m_{k} \rangle} A_1 \leq CD_{\langle n_0, n_1, \dots, n_{k} \rangle} \left[\frac{n_t}{m_0} \right], \dots, n_{k} \rangle A_1$

4.21 Theorem 4.20 delivers us from many problems.

It provides us with an algorithm for the set $\{m|m \in w| lg(m)=2 \land (CD)_{m(0)} A_1 \leq (CD)_{m(1)} A_1 \}$ We refrain from a general formulation of this algorithm, and only calculate some special cases:

Suppose
$$C^{3}D^{2}A_{1} \leq C^{2}D^{3}A_{1}$$
; i.e.: $(CD)_{\langle 2,2,2 \rangle}A_{1} \leq (CD)_{\langle 3,3,3 \rangle}A_{1}$
then: $(CD)_{\langle 2,2 \rangle}A_{1} \leq (CD)_{\langle 1,3 \rangle}A_{1}$ and $4 \leq 3$: contradiction.
Suppose $C^{3}D^{3}A_{1} \leq C^{2}D^{6}A_{1}$; i.e.: $(CD)_{\langle 3,3,3 \rangle}A_{1} \leq (CD)_{\langle 6,6 \rangle}A_{1}$
then: $(CD)_{\langle 3,3 \rangle}A_{1} \leq (CD)_{\langle 2,6 \rangle}A_{1}$; then: $(CD)_{\langle 3,3 \rangle}A_{1} \leq (CD)_{\langle 2,2 \rangle}A_{1}$:
contradiction - there is no entry in $\langle 2,2 \rangle$ at least as big as 3.
Suppose $C^{5}D^{3}A_{1} \leq C^{4}D^{4}A_{1}$; i.e.: $(CD)_{\langle 3,3,3,3,3,5 \rangle}A_{1} \leq (CD)_{\langle 4,4,4,7}A_{1}$
then: $(CD)_{\langle 3,3,3,3,7}A_{1} \leq (CD)_{\langle 4,4,4,7}A_{1}$, and $\delta I = 3^{4} \leq 4^{3} = 64$:
contradiction.

We may prove, inductively : $\forall m \forall n [C^m D^2 A_1 \leq C^n D^3 A_1 \rightleftharpoons m \leq n].$

Theorem 4.20 is a very general statement, which embraces earlier results like theorem 4.18.

We might enter a new field of questions now, by forming "disjunctions" of sets $(CD)_n A_1$, and then again "conjunctions" of these new disjunctions, and so on. We could consider the class of all subsets of ^ww which are built from A_1 by a finite tree of disjunctions and conjunctions.

But we are getting tired and prefer to take the bus home. There is such a choice of playthings here, we cannot go and try them all. Many problems will be left alone, for, tomorrow, we are visiting another part of the country. This is a pity, but there are more things in heaven and earth, than are dreamt of in chapter 4.

4.22 Before leaving, however, we buy and send a postcard to our dearest friend:

$$\begin{array}{c} D^{2}A_{1} \\ D^{2}A_{1} \\ D^{2}A_{1} \\ D^{2}A_{1} \\ D^{2}A_{1} \\ A_{1} \end{array}$$

5. AN ASIDE ON IMPLICATION

We leave the main line of our discourse and look at some subsets of w_w which are built from A_1 and E_1 by means of implication. As we announced in the introduction, we do consider implication to be more mysterious and less well understood than disjunction or conjunction, and we try to build a hierarchy of subsets of w_w without using it. Someone might be inclined to say to this that logic really starts only when implication comes in. This chapter offers him some consolation. We first show how to erect, by repeated use of implication, some towers of subsets of w_w of ever increasing complexity. We then shortly discuss the difficult question of how to compare these new subsets with subsets of w_w which are arithmetical in our restricted sense.

5.0 We define a sequence $I_0, I_1, ...$ of subsets of w_{ω} by:

For every $\alpha \in {}^{\omega}\omega :$ $I_{o}(\alpha) := 1=1$ For every $\rho \in \omega :$ For every $\alpha \in {}^{\omega}\omega :$ $I_{Sp}(\alpha) := I_{p}(\alpha) \rightarrow A_{1}(\alpha P)$

As usual, S denotes the successor function on w. I₄, for example, will turn out to be:

$$I_{4}(\alpha) := ((\alpha^{\circ} = \bigcirc \rightarrow \alpha^{1} = \bigcirc) \rightarrow \alpha^{2} = \bigcirc) \rightarrow \alpha^{3} = \bigcirc$$

5.1 Theorem: Vp[Ip & Isp]

 $\frac{\text{Proof}}{\text{Then}}: \text{ Determine } \delta \in \mathbb{W} \text{ such that } \text{Fun}(\delta) \text{ and } \forall \alpha [(\delta | \alpha)^\circ = Q \land \forall p [(\delta | \alpha)^{SP} = \alpha P]]$ $\text{Then}: \forall p \forall \alpha [I_p(\alpha) \rightleftharpoons I_{Sp}(\delta | \alpha)].$

As the reader may suspect, we are going to prove: $\forall p [\neg (I_{sp} \leq I_p)]$ We will do this inductively, and need some auxiliary concepts.

5.2 Let A be a subset of
$${}^{w}w$$
. We define the subset Neg(A) of ${}^{w}w$ by:

For all
$$\alpha \in \mathcal{W}_{W}$$
: Neg(A) (a) $\rightarrow \neg A(\alpha)$

- Let A be a subset of w_w . A is called a <u>stable</u> subset of w_w if: Neg(Neg(A)) = A, i.e. $\forall \alpha [A(\alpha) \neq \neg \neg A(\alpha)]$
- 5.3 Lemma: (without proof): For all subsets A, B of ww: If $A \leq B$, then Neg $(A) \leq Neg(B)$. And:

For all stable subsets A, B of ω_{ω} : If Neg(A) \leq Neg(B), then $A \leq B$

- 5.4 Lemma : $\forall p [I_p \text{ is a stable subset of } ww]$
 - <u>Proof</u>: It is a well-known fact from intuitionistic logic, that A_1 is a stable subset of ${}^{w}w$, and that the class of stable subsets of ${}^{w}w$ is closed under the operations of (conjunction and) implication.
- 5.5 Lemma : $\forall p \forall q [I_{Sp} \leq I_{Sq} \rightarrow \neg \neg (Neg(I_p) \leq Neg(I_q))]$

<u>Proof</u>: Suppose p,qew and I_{Sp} ≤ I_{Sq}, i.e. ∀α∃p [I_{Sp} (α) ≥ I_{Sq} (β)] Using AC₁₁, determine δe^ww such that Fun(δ) and ∀α [I_{Sp}(α)≥ I_{Sq}(δ|α]] Consider α_{*} ∈ ^ww, where α_{*} fulfils the conditions:

 $\forall j$

(1 is the sequence in "w which is defined by: $\forall n [1(n) = 1]$) Remark: $\neg I_{sp}(\alpha *)$, therefore: $\neg I_{sq}(\delta | \alpha_*)$, and: $(\delta | \alpha_*)^{q} \neq 0$ Assume now, for the sake of argument: $\exists n [(\delta | \alpha_*)^{q}(n) \neq 0]$ Determine new such that: $(\delta | \alpha_*)^{q}(n) \neq 0$ (Both α_* and $\delta | \alpha_*$ now have a "useless" last subsequence,

 α_*^p , resp. $(\delta | \alpha_*)^q$. Keeping this in mind, one has no difficulty in finding the inductive step:)

Determine $l \in w$ such that: $\forall \alpha [\overline{\alpha} l = \overline{\alpha}_* l \longrightarrow (\delta | \alpha | q | n) = (\delta | \alpha_*)^q (n)]$ (If we have to make α in w satisfying: $\overline{\alpha} l = \overline{\alpha}_* l$, our options for the first p subsequences of α are almost open:) Define $\eta \in w$ such that Fun(η) and : for all $\alpha \in w$:

$$\forall j < p[(\eta|\alpha)] = \overline{O}[*\alpha]$$
 and $(\eta|\alpha)^{p} = \underline{1}$

(For all mew and $\alpha \in w_w$, $m \star \alpha$ denotes the sequence in w_w which One gets by concatenating the finite sequence coded by m and the infinite sequence α) We have ensured that: $\forall \alpha [(\eta | \alpha) l = \overline{\alpha_*} l]$ and: $\forall \alpha [(\delta l(\eta | \alpha))^q (n | \neq 0]$ Moreover, for all $\alpha \in w_w$:

$$\begin{array}{cccc} \rightleftharpoons & I_{sq} \left(\delta | (\eta | \alpha |) \right) \\ \rightleftharpoons & \neg I_q \left(\delta | (\eta | \alpha |) \right) \\ \rightleftharpoons & (Neg(I_q)) \left(\delta | (\eta | \alpha |) \right) \end{array}$$
Therefore: $Neg(I_p) \leq Neg(I_q)$
We reached this conclusion by assuming: $\exists n \left[(\delta | \alpha_*)^q (n) = 0 \right]$
Therefore, from: $\neg \neg \exists n \left[(\delta | \alpha_*)^q (n) \neq 0 \right]$ we may come to:
 $\neg \neg (Neg(I_p) \leq Neg(I_q)).$

5.6 Theorem:
$$\forall p[I_p \prec I_{sp}]$$

5.7 We define a sequence $J_0, J_1, ...$ of subsets of w_w by: For every $\alpha \in {}^{\omega}w : \qquad J_0(\alpha) := 1 = 1$ For every $p \in w$, for every $\alpha \in {}^{\omega}w : \qquad J_{\text{sp}}(\alpha) := J_p(\alpha) \longrightarrow E_1(\alpha P)$

5.8 <u>Theorem</u>: $\forall p [J_p \leq J_{ssp}]$ <u>Proof</u>: Like the proof of 5.1. Determine $\delta \in \mathcal{W}_{W}$ such that $Fun(\delta)$ and $\forall \alpha [(\delta | \alpha |^{\circ} = 1 \land \forall p [(\delta | \alpha)^{sp} = \alpha P]]$. Then: $\forall p \forall \alpha [J_p (\alpha) \rightleftharpoons J_{sp} (\delta | \alpha]]$

We want to prove now: $\forall p [\neg (J_{sp} \leq J_p)]$, and, again, we will do so by induction.

5.9 Lemma: $\forall p [J_{SSp} \leq J_{Sp} \rightarrow \neg \neg \exists q < Sp [J_{SSp} \leq J_q]]$ <u>Proof</u>: Suppose pew and $J_{SSp} \leq J_{Sp}$, i.e. $\forall \alpha \exists \beta [J_{SSp} (\alpha) \rightleftharpoons J_{Sp} (\beta)]$ Using AC_{H} , determine $\delta \in \mathbb{W}_{W}$ such that $\operatorname{Fun}(\delta)$ and $\operatorname{Va}[J_{SSp}(\Delta) \not\subseteq J_{Sp}(\delta|\Delta)]$ Observe: $J_{SSp}(\underline{1}) \not\cong \neg J_{Sp}(\underline{1})$ and: $\neg (J_{SSp}(\underline{1}) \not\cong J_{Sp}(\underline{1}))$ Therefore: $\delta|\underline{1} \neq \underline{1}$, and, to be more precise: $\neg \forall t < Sp \forall n [(\delta|\underline{1})^{t}(n) \neq 0]$ Assume now, for the sake of argument: $\exists t < Sp \exists n [(\delta|\underline{1})^{t}(n) = 0]$ Determine $t, n \in w$ such that $(\delta|\underline{1})^{t}(n) = 0$ Determine $\ell \in w$ such that: $\forall \alpha [\overline{\alpha} \ell = \underline{1}\ell \rightarrow (\delta|\alpha|^{t}(n) = (\delta|\underline{1})^{t}(n)]$ Define $\eta \in \mathbb{W}_{W}$ such that $\operatorname{Fun}(\eta)$, and, for all $\alpha \in \mathbb{W}_{W}$: $\forall j < SSp [(\eta|\alpha)^{j} = \underline{1}\ell * \alpha^{j}]$

In this way, we ensure: $\forall \alpha \left[(\eta | \alpha) \right] = \overline{1} \left[\right]$ and: $\forall \alpha \left[(\delta | (\eta | \alpha) \right]^{t} (n) = 0 \right]$ Moreover, for all $\alpha \in \omega_{\omega}$:

$$J_{SSP}(\alpha) \stackrel{\longrightarrow}{=} J_{SSP}(\eta|\alpha)$$

$$\stackrel{\longrightarrow}{=} (J_{SP}(\delta|(\eta|\alpha)) \wedge (\delta|(\eta|\alpha)|^{t}(n|=0))$$

$$\stackrel{\longrightarrow}{=} (\dots (E_{1}((\delta|(\eta|\alpha))^{t+1}) \rightarrow E_{1}((\delta|(\eta|\alpha))^{t+2}) \dots \rightarrow E_{1}((\delta|(\eta|\alpha))^{P}))$$

Therefore: $J_{SSp} \leq J_{p-t}$, and: $\exists q < Sp [J_{SSp} \leq Jq]$ We reached this conclusion by assuming: $\exists t < Sp [(\delta | \underline{1})^t(n) = 0]$ But: $\neg \forall t < Sp \forall n [(\delta | \underline{1})^t(n) \neq 0]$, i.e. $\neg \neg \exists t < Sp \exists n [(\delta | \underline{1})^t(n) = 0]$ therefore: $\neg \neg \exists q < Sp [J_{SSp} \leq Jq]$.

- 5.9 Lemma: $\forall p [J_{SSp} \leq J_{Sp} \rightarrow \neg (J_{Sp} \leq J_p)]$
 - <u>Proof</u>: Suppose pew and $J_{SSp} \leq J_{Sp}$. By 5.8, we know: $\neg \neg \exists q \leq Sp [J_{SSp} \leq J_q]$ Assume, only for a moment: $\exists q \leq Sp [J_{SSp} \leq J_q]$ and determine $q \leq Sp$ such that $J_{SSp} \leq J_q$. Remark: $J_{Sp} \leq J_{SSp} \leq J_q \leq J_p$, and: $J_{Sp} \leq J_p$. Therefore, making no additional assumptions, we have: $\neg \neg (J_{Sp} \leq J_p)$
 - X
- 5.10 Theorem : $\forall p [J_p \prec J_{Sp}]$
 - <u>Proof</u>: From 5.8, we know: $\forall p [J_p \leq J_{SSp}]$ In order to prove : $\forall p [\neg (J_{SSp} \leq J_p)]$, we use induction, starting from the obvious fact: $\neg (J_1 \leq J_0)$, and applying to 5.9 for the inductive step. The argument is similar to the argument for 5.6 and will not be given in detail.

A classical spectator might guess that all participants in the two processions $I_0, I_1, ...$ and $J_0, J_1, ...$ are reducible to both A_2 and E_2 . Let us try and see if this is true.

5.11 Theorem: $J_2 \leq A_2$

Proof: Note that, for all $\alpha \in w_{w}$:

$$J_{2}(\alpha) \rightleftharpoons (E_{1}(\alpha^{\circ}) \rightarrow E_{1}(\alpha^{1}))$$

$$\rightleftharpoons (\exists n [\alpha^{\circ}(n) = 0] \rightarrow \exists n [\alpha^{1}(n) = 0])$$

$$\rightleftharpoons \forall m [\alpha^{\circ}(m) = 0 \rightarrow \exists n [\alpha^{1}(n) = 0]]$$

$$\oiint \forall m \exists n [\alpha^{\circ}(m) = 0 \rightarrow \alpha^{1}(n) = 0]$$

Define
$$\delta \in {}^{\omega}\omega$$
 such that $\operatorname{Fun}(\delta)$ and:
 $\forall \alpha \forall m \forall n [(\delta | \alpha)^m (n) = 0 \rightleftharpoons (\alpha^0(m) = 0 \rightarrow \alpha^1(n) = 0)]$
Then: $\forall \alpha [J_2(\alpha) \rightleftharpoons A_2(\delta | \alpha)]$, and: $J_2 \preceq A_2$

5.12 Theorem: $A_1 \leq J_2$ and $E_1 \leq J_2$

Proof: Define $Z \in {}^{\omega}\omega$ such that $\operatorname{Fun}(Z)$ and $\operatorname{Va}[\operatorname{Vn}[(Z|\alpha)^{\circ}(n)=0;\mathbb{Z}\alpha(n)\neq 0] \wedge (Z|\alpha)^{1}=1]$ Then: $\operatorname{Va}[\operatorname{A}_{1}(\alpha) \rightleftharpoons J_{2}(Z|\alpha)]$ and: $\operatorname{A}_{1} \preceq J_{2}$ Define $\eta \in {}^{\omega}\omega$ such that $\operatorname{Fun}(\eta)$ and: $\operatorname{Va}[(\eta|\alpha)^{\circ}=Q \wedge (\eta|\alpha)^{1}=\alpha]$ Then: $\operatorname{Va}[\operatorname{E}_{1}(\alpha) \rightleftharpoons J_{2}(\eta|\alpha)]$ and: $\operatorname{E}_{1} \preceq J_{2}$ \boxtimes

5.13 Theorem:
$$\neg (D^2A_1 \leq J_2)$$

As there are sequences like $\beta = \overline{\alpha} l * \underline{1}$, this is contradictory We have proved now: $\forall \alpha [D^2 A_1(\alpha) \rightarrow (\neg E_1((\delta | \alpha)^1))]$, and may conclude: $\forall \alpha [D^2 A_1(\alpha) \rightleftharpoons \neg E_1((\delta | \alpha|^0)]$, and: $\forall \alpha [D^2 A_1(\alpha) \nRightarrow \forall n [(\delta | \alpha|^0(n) \neq 0)]$ This would mean: $D^2 A_1 \preceq A_1$, which we have refuted in theorem 4.3

5.14 Theorem:
$$\neg (A_2 \leq J_2)$$

Proof: Suppose :
$$A_2 \leq J_2$$
, i.e.: $\forall \alpha \exists \beta [A_2(\alpha) \not\equiv J_2(\beta)]$, and, using AC_{11} , determine $\delta \in {}^{\omega}\omega$ such that $\operatorname{Fun}(\delta)$ and : $\forall \alpha [A_2(\alpha) \not\equiv J_2(\delta | \alpha)]$.
The proof now proceeds like the proof of theorem 5.13
We first remark that: $\forall \alpha [A_2(\alpha) \rightarrow \neg E_1((\delta | \alpha)^4)]$, and
then conclude: $A_2 \leq A_1$, which has been refuted in chapter 3.

As $D^2A_1 \leq E_2$ and $\neg (D^2A_1 \leq J_2)$, also: $\neg (E_2 \leq J_2)$. Actually, E_2 and J_2 are incomparable:

5.15 Theorem: $\neg (J_1 \leq E_2)$ Proof: This result reinforces theorem 3.2 and is proved in a similar way. Remark that, for all $\alpha \in \omega$: $J_2(\alpha) \not\supseteq \forall m \exists n [\alpha^{o}(m) = 0 \rightarrow \alpha^{1}(n) = 0]$ $\rightleftharpoons \quad \exists y \forall m \left[a^{\circ}(m) = 0 \rightarrow \left(\exists n \leq m \left[a^{1}(n) = 0 \right] \vee a^{1}(y(m)) = 0 \right) \right]$ For all $y \in {}^{\omega}\omega$ and $\alpha \in {}^{\omega}\omega$ we define $y \otimes \alpha$ in ${}^{\omega}\omega$ by: For all h, tew: $(\gamma \otimes \alpha)^t (n) := \alpha^t(n) \quad \text{if } t \neq 1$ $(\gamma \otimes \alpha)^{\perp}(n) = 0$ if $(\exists m < n [\gamma(m) \le n \land \alpha^{\circ}(m) = 0]$ and: $\neg \exists m < n [(r \otimes \alpha)^{4}(m) = 0])$ = a¹(n) otherwise $(\gamma \otimes \alpha) (0) := \alpha (0)$ (The definition of $(\gamma \otimes \alpha)^{1}$ apparently goes by induction). We observe: $\forall a \begin{bmatrix} J_2(a) \neq \exists \gamma [a = \gamma \otimes \alpha] \end{bmatrix}$ Now suppose: $J_2 \leq E_2$, i.e.: $\forall a \exists \beta [J_2(a) \not\supseteq E_2(\beta)]$, and,

using AC_{11} , determine $S \in W_W$ such that Fun (S) and $\forall \alpha [J_2(\alpha) \rightleftharpoons E_2(S|\alpha)]$ Remark $\forall \alpha \forall f [E_2(\delta | \gamma \otimes \alpha)], i.e. \forall \alpha \forall f \exists m [A_1((\delta | \gamma \otimes \alpha)^m)].$ Using CP, determine mew, pew, gew such that $\forall_{I}\forall_{\alpha}\left[\left(\bar{I}_{P}=\bar{Q}_{P} \land \bar{\alpha}q=\bar{I}_{q}\right) \rightarrow A_{1}\left(\left(\delta I_{I}\otimes \alpha\right)^{m}\right)\right]$ (The creative subject, still musing upon his exploits in chapter 3, now has a possibility of reviving his old glories). Calculate $t := \max(p,q)$ and define a special sequence α^* in w_w such that: $(\alpha^*)^\circ = \underline{I}r * Q$ and $(\alpha^*)^1 = \underline{I}$ and $\overline{\alpha^*}r = \underline{I}r$. (Not suppressing a sober smile, the creative subject points to the following facts:) Now: $\neg (J_2(\alpha^*))$ and: $A_1((\delta(\alpha^*)^m))$ For, suppose new and $(\delta | \alpha^*)^m (n) \neq 0$. Determine lew such that: $\forall \alpha [\overline{\alpha} l = \overline{\alpha^*} l \rightarrow (\delta | \alpha)^m (n) = (\delta | \alpha^*)^m (n)]$ Determine a special sequence β in ww such that $\overline{\beta}l = \overline{\alpha^*}l$ and: $\overline{\beta^{\circ}}r = \overline{\beta^{\dagger}}r = \overline{\beta}r = \overline{1}r$ and: $E_{1}(\beta^{\circ})$ and: $E_{1}(\beta^{1})$ Remark that: $J_2(\beta)$, and, what is more: $\exists r [\bar{r} p = \bar{Q} p \land \beta = r \otimes \beta]$

From this, and : $\overline{\beta}q = \overline{1}q$, we infer: $A_1((\delta|\beta)^m)$, whereas, from: $\overline{\beta}l = \overline{\alpha^*}l$ we know : $(\delta|\beta)^m(n) \neq 0$. Contradiction.

Therefore: $\neg J_2(\alpha^*)$ and $E_2(\delta | \alpha^*)$.

(The initative subject bows his head and goes his way in silence). M

This proof tempts us to pause and reflect a little.

It seems that the distinction we proposed to make in 4.12 between "strong" results, which are backed up by solid classical reality, and "weak" results, characteristic of the subtle spirit of intuitionism, is not tenable, since, if the logic were classical, J_2 would be reducible to E_2 , and theorem 5.15 refutes this in the strongest possible way. A second remark is, that it is the same analysis of the true nature of J_2 , which, on the one hand, makes one see that it is reducible to Az, and, on the other hand, that it is not reducible to E_2 . One cannot have it both ways.

Thirdly, as a special case of theorem 5.15, we have that the following statement leads to a contradiction.

 $\forall a \forall \beta \left[(\exists n [a(n) = 0] \rightarrow \exists n [\beta(n) = 0]) \rightarrow (\forall n [a(n) \neq 0] \lor \exists n [\beta(n) = 0]) \right]$ This need not surprise, because, if we put a= p in this formula, we see that it entails $\forall a [\forall n [\alpha(n) \neq 0] \lor \exists n [\alpha(n) = 0]]$, which, by CP is obviously untrue

We now turn to the task of comparing I_2 , the subset of ${}^{\omega}\omega$ which we introduced in 5.0, with some other subsets of ^ww. Remember that $\forall \alpha [I_{\alpha}(\alpha) \rightleftharpoons (\forall n [\alpha^{0}(n) = 0] \rightarrow \forall n [\alpha^{1}(n) = 0])]$ An implication whose antecedens is universal, is less accessible to understanding than an implication whose antecedens is existential. Whereas we observe at a glance : $A_1 \leq I_1 \leq I_2$, in studying the question of whether E_1 is reducible to I_2 , we run up with a deep riddle of intuitionistic analysis. Consider the statement: $\forall \alpha [\neg \neg \exists n [\alpha(n)=0] \rightarrow \exists n [\alpha(n)=0]].$ This stands for a very reckless assumption, indeed. If we should accept it together with the restricted Brouwer-Kripke-axion, (cf. 2.1), we would be able to decide any determinate proposition, and, probably, would be asked more questions than we are now. (Let OI be a determinate proposition. Then OLV-OL is also a determinate proposition, and we may construct $\alpha \in \omega_{\omega}$ such that: $\Omega_{\nu} \circ \Omega \rightleftharpoons \exists n [\alpha(n) = 0]$ As (ava), also: TT En[a(n)=0], therefore: En[a(n)=0], and: Olv=Ol). Nevertheless, we are not able to prove this statement to be contradictory. Brouwer himself once stumbled at this stone, using an unrestricted Brouwer-Kripke-axiom in order to get absurdity. (It is not difficult to guess how he does this. As now any proposition, not only a determinate one, may be assumed to be decidable, we have, for instance: $\forall r[r=Q \lor \neg (r=Q)]$, which, with help of CP, leads to a contradiction). In the following we call: $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]]$ an <u>enigma</u>, and we reserve the same title for any proposition which we can prove to be equivalent to it. $_{I}$ E₁ \leq Neg(Neg(E₁))["] is an enigma 5.16 Theorem : $\frac{Proof}{} Suppose : \forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]$ then: $\forall \alpha [\exists n [\alpha(n] = 0] \supseteq \neg \neg \exists n [\alpha(n] = 0], \text{ and} \in E_1 \leq Neg(Neg(E_1))$ Now suppose: $E_1 \leq Neg(Neg(E_1))$, i.e: $\forall \alpha \exists \beta [E_1(\alpha) \rightleftharpoons \neg \neg E_1(\beta)]$. Let $\alpha \in {}^{\omega}w$ and assume $\neg = E_{1}(\alpha)$. Determine $\beta \in {}^{\omega}w$ such that: $E_1(\alpha) \not\subset \neg \neg E_1(\beta)$. Then: $\neg \neg E_1(\beta)$, and: $E_1(\alpha)$ Therefore: $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]]$

Remark that, in this proof, we did not have recourse to AC11.

- 5.17 Theorem ..., $Neg(Neg(E_1)) \leq E_1''$ is an enigma

Let $\alpha \in {}^{\omega}\omega$ and assume $\exists \tau E_1(\alpha)$; then $E_1(\delta[\alpha])$. Calculate $n \in \omega$ such that: that: $(\delta[\alpha])(n) = 0$ and determine $l \in \omega$ such that: $\forall \beta [\overline{\beta} l = \overline{\alpha} l \rightarrow (\delta[\beta])(n) = (\delta[\alpha])(n]]$. Consider $\alpha^* := \overline{\alpha} l * \underline{1}$, and remark: $(\delta[\alpha^*)(n) = 0$, therefore: $\exists \tau E_1(\alpha^*)$, and: $\exists m < l[\alpha^*(m) = \alpha(m) = 0]$

i.e.:
$$E_{A}(\alpha)$$
.

```
Ø
```

5.18 Theorem: $_{\mu}E_{1} \leq I_{2}^{\prime\prime}$ is an enigma.

Proof: Define Z ∈ ^ww such that Fun (Z) and: $\forall \alpha \forall n [(Z|\alpha|)n) = 0 \neq \alpha(n) \neq 0]$ Then: $\forall \alpha [(Neq(E_1))(\alpha) \neq A_1(Z|\alpha)]$, and: $Neq(E_1) \leq A_1$ Define $\eta \in ^ww$ such that $Fun(\eta)$ and: $\forall \alpha [(Z|\alpha)^\circ = \alpha \land (Z|\alpha)^1 = \underline{1}]$ Then: $\forall \alpha [(Neq(A_1))(\alpha) \neq I_2(\eta|\alpha)]$, and: $Neq(A_1) \leq I_2$ Therefore: $Neq(Neq(E_1)) \leq Neq(A_1) \leq I_2$ and: $Neq(Neq(E_1)) \leq I_2$. Suppose: $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]]$, then, according to theorem 5.16: $E_1 \leq Neq(Neq(E_1))$ and, consequently: $E_1 \leq I_2$ Conversely, suppose: $E_1 \leq I_2$, i.e.: $\forall \alpha \exists \beta [E_1(\alpha) \neq I_2(\beta)]$ Let $\alpha \in ^ww$ and assume: $\neg \neg E_1(\alpha)$. Determine $\beta \in ^ww$ such that: $E_1(\alpha) \neq I_2(\beta)$. Then: $\neg \neg I_2(\beta)$, and, as we noted in lemma 5.4: $I_2(\beta)$. Therefore: $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]]$.

AC11 has been circumvented once more.

5.19 Theorem $J_2 \preceq I_2''$ is an enigma

5.20 Theorem :
$$\neg (I_2 \preceq E_2)$$

Proof. We prove this by re-examining the proof of theorem 5.15 The argument given there may be seen to show the following: For all δε^ww, if Fun(δ) and Va[J₂(α) → E₂(δ|α)], there is α*ε^ww such that ¬J₂(α*) and E₂(δ|α*) Now, assume I₂ ≤ E₂, i.e.: Va∃p [I₂(α) ≥ E₂(p)], and, using AC₁₁, determine δε^ww such that Fun(δ) and: Va[I₂(α) ≥ E₂(δ|α)] Remark that Va[(∃n[α'(n)≠0]→∃n[α°(n)≠0])→ (∀n[α°(n)=0]→∀n[α'(n)=0])] i.e.: Va[(∃n[α'(n)≠0]→∃n[α°(n)≠0])→ I₂(α]] Therefore: Va[(∃n[α'(n)≠0]→∃n[α°(n)≠0])→ I₂(α]] As in the proof of theorem 5.15, we may construct α* in ww such that: ¬(∃n[(α*)¹(n)≠0]→∃n[(α*)°(n)≠0]) and: E₂(δ|α*)) i.e.: ¬∃n[(α*)°(n)≠0] ∧ ∀n[(α*)°(n)=0]) and: E₂(δ|α*) and: ¬I₂(α*) and: E₂(δ|α*).

This is the required contradiction.

X

We are approaching, now, the limits of our knowledge. Questions like ${}_{\mu}I_2 \leq J_2''$ or ${}_{I_2} \leq A_2''$ also have a ring of improbability but seem to belong to a different level of mysteriousness than their predecessors. We do not pursue this line of research any further. We do not see a reason why these annoying enigmas are true, and, therefore, we do not want to make axioms of them, although, such things are sometimes done, if only by way of experiment (Cf. Troelstra 1973). We want to conclude this chapter by a short comment on the subsets P and Q of ${}^{\omega}w$, which are defined by:

For all $\alpha \in \omega_{\omega}$: $P(\alpha) := E_{1}(\alpha^{\circ}) \longrightarrow A_{1}(\alpha^{1})$ $Q(\alpha) := A_{1}(\alpha^{\circ}) \longrightarrow E_{1}(\alpha^{1})$

We leave it to the reader to verify: $P \leq A_1$. In contrast to this, we have

5.21 Theorem: $Q \leq E''$ is an enigma

<u>Proof</u>: Suppose first: $\forall \alpha [\neg \neg \exists n [\alpha(n)=0] \rightarrow \exists n [\alpha(n)=0]$ Under this assumption, for every $\alpha \in \mathcal{W}_{\mathcal{W}}$ the following holds:

$$\begin{array}{cccc} Q(\alpha) & \rightleftharpoons & A_1(\alpha^{\circ}) \to E_1(\alpha^{1}) \\ & \rightleftharpoons & A_1(\alpha^{\circ}) \to \neg \neg E_1(\alpha^{1}) \\ & \rightleftharpoons & \neg \neg \left(A_1(\alpha^{\circ}) \to E_1(\alpha^{1}) \right) \\ & \rightleftharpoons & \neg \neg \exists n \left[\alpha^{\circ}(n) \neq 0 \ v \ \alpha^{1}(n) = 0 \right] \\ & \rightleftharpoons & \exists n \left[\alpha^{\circ}(n) \neq 0 \ v \ \alpha^{1}(n) = 0 \right] \end{array}$$

From this, we may conclude: $Q \leq E_1$ Now assume: $Q \leq E_1$. By an argument similar to the one given in theorem 5.18: Neg(Neg(E_1)) $\leq Q$, and, therefore, Neg(Neg(E_1)) $\leq E_1$. According to theorem 5.17, this implies: $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n] = 0]$]

We should be careful, in future, not to get entangled in this web of mysteries, but occasionally, and especially in chapter 10 and in the last chapter, we will have to refer to it.

The following picture summarizes the positive results of this chapter.

6. ARITHMETICAL SETS INTRODUCED.

Having plodded heavily through the last pages of chapter 5 where we saw much that we did not really understand, we now enter a glade where simplicity reigns and the sun is shining. The class of all subsets of "w which are reducible to E_1 , is introduced here and baptized Σ_4^{o} . Likewise Π_4^o appears, the class of all subsets of "w which are reducible to A_1 . We verify that these classes behave as one should expect. Both of them contain a <u>universal element</u> The other classes of the arithmetical hierarchy, Σ_2^o , Π_2^o , Σ_3^o , Π_3^o ,... are introduced in a straightforward way, and turn out to behave properly. A short discussion explains why the diagonal argument does not prove that each of these classes is properly included in one of the following classes.

6.0 We define DEC to be the following class of subsets of ω .

(Members of DEC are called: <u>decidable</u> subsets of w).

One might frown at this notion, as ne do not have, in intuitionism, a set of all subsets of w. But with the help of AC_{oo} we can get it into our grasp.

We may remark:

For all subsets A of w:

If $A \in DEC$, then $\exists \alpha \forall n [n \in A \not\supseteq \alpha(n) = 0]$ and: If $\exists \alpha \forall n [n \in A \not\supseteq \alpha(n) = 0]$, then $A \in DEC$

We have every reason to recognize DEC, as soon as we accept ω_{ω} , or, for that matter, σ_{z} (:= { $\alpha \mid \alpha \in \omega_{\omega} \mid \forall n [\alpha(n)=0 \lor \alpha(n)=1]$ })

6.1 We define Σ_1° to be the following class of subsets of w_{ω} :

 $\Sigma_1^{\circ} := \left\{ P | P \subseteq {}^{\omega} \omega \right\} P \preceq E_1$

Once more, one might feel inclined to object. We are very far, indeed from surveying all possible subsets of ω_{ω} . However, as in the case of DEC, we will be able to reassure ourselves, in a moment.

6.2 <u>Theorem</u>: Let $P \subseteq {}^{\omega} \omega$ $P \in \Sigma_{1}^{o}$ if and only if there exists a decidable subset A of ω such that $\forall \alpha [P(\alpha) \rightleftharpoons \exists m [\exists m \in A]]$ <u>Proof</u>: (i) Suppose P≤E₄, i.e.: ∀α∃β[P(α) ≥ E₄(β]. Using AC₁₁, determine δ∈ ^ωω such that: Fun(δ) and: ∀α[P(α) ≥ E₄(δ|α)] Define a decidable subset A of ω by: For all b∈ω: b∈A ≥ ∃m[m≤lq(b) ∧ ∃a[b⊆a ∧ δ^m(a)=1 ∧ ∀c[a⊆c ∧ a≠c → δ^m(c)=o]]] Now, ∀α[∃m[(δ|α)(m)=0] ≥ ∃n[an∈A]] Therefore, A fulfils the requirements.

(ii) Let A be a decidable subset of w such that: ∀∞ [P(α) ≥ ∃m[ām∈A]]
 Determine δ∈ ^ww such that Fun(δ) and:
 For all α∈ ^ww and m∈ w
 (δ|α) (m) := 0 if ām∈ A
 := 1 otherwise
 Remark: ∀∞[P(α) ≥ E₁(δ|α)], therefore P≤E₁

6.3 Theorem: (i) Let Pand Q be subsets of ${}^{\omega}w$. If $P \in \Sigma_1^{\circ}$ and $Q \in \Sigma_1^{\circ}$, then $PriQ \in \Sigma_1^{\circ}$.

- (ii) Let P_0, P_1, P_2, \dots be a sequence of subsets of ${}^{\omega}\omega$ If $\forall n [P_n \in \Sigma_1^0]$, then $\bigcup_{n \in \omega} P_n \in \Sigma_1^0$.
- <u>Proof</u> (i) Using the foregoing theorem, determine decidable subsets A and B of w, such that: Va[P(α) ≥ ∃m[am∈A]] and: Va[Q(α) ≥ ∃m[am∈B]] Define a subset C of w by: For all b∈w: b∈C ≥ ∃p∃q[b⊆p ∧ b⊆q ∧ p∈A ∧ q∈B] Now: Vb[b∈C v ¬(b∈C)] and: Va[(P(α) ∧ Q(α)) ≥ ∃m[am∈C]] Therefore: PnQ ∈ Σ^o₁.
 - (ii) Using the foregoing theorem, determine a sequence A₀, A₁,... of decidable subsets of w, such that: ∀n ∀x [P_n(x) Z ∃m [Zm ∈ A_n]]
 Define a subset A of w by:
 For all b∈w.

beA Z ∃n∃p[n≤lg(b) ∧ b∈p ∧ p∈An] Then: Vb[beA v ¬(b∈A)] and: Va[∃n[Pn(a)] Z ∃m[ām∈A]]

Therefore:
$$\bigcup_{n \in \omega} P_n \in \Sigma_1^o$$
.

We know, from theorem 3.2, that Σ_1° is not closed under the operation of countable intersection.

We need a pairing function on wwIn order to spare technical notions, we use our cooling of finite sequences of natural numbers (cf. 1.2) and define $< >: ww \times ww \rightarrow ww$ by: For all $\alpha, \beta \in ww$: $< \alpha, \beta >^{\circ} := \alpha$ and $< \alpha, \beta >^{1} := \beta$ and $\forall n [n > 1 \rightarrow < \alpha, \beta >^{n} = 0]$ and $< \alpha, \beta > (< >) := 0$

This function has the disadvantage of not being surjective, but this will not do any harm.

6.4 <u>Definition</u>: Let US be a class of subsets of ${}^{\omega}\omega$ and U be a member of US. U is called a <u>universal</u> <u>element</u> of US, if we are able to prove: Let $P \subseteq {}^{\omega}\omega$ If $P \in US$, then $\exists p \forall \alpha [P(\alpha) \rightleftharpoons U(\langle \alpha, p \rangle)]$

The careful wording of this definition is to make it apply even in cases where we do not yet know that ill may be viewed as a set.

6.5 Theorem: Σ_1° contains a universal element.

Proof: Define the subset U of ^ww by:
For all
$$\alpha \in ^{w}w$$
: U(ω) Z ∃m[α¹($\overline{\alpha \circ m}$)=0]
and note that U belongs to Σ_{1}°
Let $P \subseteq ^{w}w$ and $P \in \Sigma_{1}^{\circ}$
Following theorem 6.2, determine a decidable subset A of w such that:
 $\forall \alpha [P(\alpha) \supseteq \exists m [\overline{\alpha}m \in A]]$. Determine $\beta \in ^{w}w$ such that: $\forall n [\beta(n)=0 \ge n \in A]$
Then: $\forall \alpha [P(\alpha) \supseteq \exists m [\beta(\overline{\alpha}m)=0]]$, i.e.: $\forall \alpha [P(\alpha) \supseteq U(\langle \alpha, \beta \rangle)]$.

We are itching to diagonalize. Consider the subset U_{o}^{*} of ${}^{w}\omega$ which is defined by: For all $\alpha \in {}^{w}\omega : U_{o}^{*}(\alpha) := \forall m [\alpha (\overline{\alpha}m) \neq 0]$ One easily verifies, using theorem 6.5.: $U_{o}^{*} \notin \Sigma_{1}^{\circ}$. As $U_0^{\#} \leq A_1$, this confirms theorem 2.0, which said that $\neg (A_1 \leq E_1)$.

6.6 We define Π_1^o to be the following class of subsets of ${}^{\omega}\omega$:

 $\Pi_{1}^{o} = \left\{ P | P \subseteq \omega_{\omega} | P \leq A_{1} \right\}$

Like Σ_1^o , this class is manageable:

- 6.7 <u>Theorem</u>: Let $P \subseteq {}^{\omega} \omega$ $P \in \Pi_1^o$ if and only if there exists a decidable subset A of ω such that $\forall \alpha [P(\alpha) \rightleftharpoons \forall m [\bar{\alpha} m \in A]]$.
 - Proof: (i) Suppose P≤A₁, i.e.: ∀α∃β[P(α) ≥ A₁(β)]. Using AC₁₁, determine δ∈^ww such that : Fun(δ) and: ∀α[P(α) ≥ A₁(δ|α)] Define a decidable subset A of w by: For all b∈w: b∈A ≥ ∀m∀a[(m≤lg(b) ∧ b∈a ∧ δ^m(a) ≠0 ∧ ∀c[(a⊆c∧a≠c)→ δ^m(c)=0])→ δ^m(a)=1] Now, ∀α[∀n[(δ|α)(n)=0] ≥ ∀m[ām∈A]] Therefore, A fulfits the requirements.
 - (ii) Let A be a decidable subset of w such that : $\forall \alpha [P(\alpha) \rightleftharpoons \forall m[\overline{\alpha}m \in A]]$ Determine $\delta \in {}^{\omega}w$ such that $\operatorname{Fun}(\delta)$ and: For all $\alpha \in {}^{\omega}w$ and $m \in w$:

 $\begin{array}{ll} (\delta | \alpha) (m) &:= 0 & \text{ if } \overline{\alpha} m \in A \\ &:= 1 & \text{ if } \overline{\alpha} m \notin A \\ \\ \text{Remark: } \forall \alpha [P(\alpha) \rightleftharpoons A_1(\delta | \alpha)] , \text{ therefore } P \preceq A_1. \\ \hline \boxtimes \end{array}$

- 6.8 <u>Theorem</u>: Let $P_0, P_1, P_2, ...$ be a sequence of subsets of w_{ω} . If $\forall n [P_n \in \Pi_1^o]$, then $\bigcap_{n \in \omega} P_n \in \Pi_1^o$.
 - <u>Proof</u>: Using the foregoing theorem, determine a sequence A_0, A_1, A_2, \dots of decidable subsets of w, such that: $\forall n \forall \alpha [P_n(\alpha) \rightleftharpoons \forall m [\bar{\alpha}m \in A_n]]$ Define a subset A of w by: For all $b \in w$: $b \in A \rightleftharpoons \forall m \forall \alpha [b \in \alpha \land m \leq lg(b) \rightarrow \alpha \in A_m]$

We know, from theorem 4.3, that $\{\alpha \mid \alpha \in \mathbb{W} \mid \alpha^\circ = 0\} \cup \{\alpha \mid \alpha \in \mathbb{W} \mid \alpha^\circ = 1\}$ does not belong to Π_1° , and, hence, that it may occur that a union of Π_1° -sets is not a Π_1° -set.

6.9 Theorem: M^o contains a universal element.

Proof: Define the subset U of ^ww by: For all αε^ww: U(α) Z ∀m[α¹(ā^om)=0] and note that U belongs to Π^o₁. Let P⊆^ww and P∈ Π^o₁. Following theorem 6.7, determine a decidable subset A of w such that: ∀a[P(a) Z ∀m[ām∈ A]]. Determine β∈^ww such that: ∀n[β(n]=0 Z n∈A]. Then: ∀a[P(a) Z ∀m[β(ām)=0]], i.e.: ∀a[P(a) Z U(<a, β>)]. ⊠

Let us try and diagonalize once more. Consider the subset $U_1^{\#}$ of ${}^{w}\omega$ which is defined by: For all $\alpha \in {}^{w}\omega : U_1^{\#}(\alpha) := \exists m [\alpha (\bar{\alpha} m) \neq 0]$ One easily verifies, using theorem 6.g.: $U_1^{\#} \notin \Pi_1^0$ As $U_1^{\#} \leq E_1$, this confirms theorem 2.2, which said that $\neg (E_1 \leq A_1)$.

6.10 Definition: Let P be a subset of
$$w_{\omega}$$

We define the subsets Un(P) and Ex(P) of w_{ω} by:
For all $\alpha \in w_{\omega}$:
Un(P)(α) := $\forall m [P(\alpha^m)]$
Ex(P)(α) := $\exists m [P(\alpha^m)]$

6.11 <u>Definition</u>. We define a sequence $A_1, E_1, A_2, E_2, ...$ of subsets of w_w by:

(i) For all
$$\alpha \in {}^{\omega}\omega$$
: $A_1(\alpha) := \forall n [\alpha(n) = 0]$
 $E_1(\alpha) := \exists n [\alpha(n) = 0]$

(ii) For all new:
$$A_{Sn} := Un(E_n)$$

 $E_{Sn} := E_X(A_n)$

We define a sequence $\Pi_{1}^{o}, \Sigma_{1}^{o}, \Pi_{2}^{o}, \Sigma_{2}^{o}, \dots$ of classes of subsets of w_{ω} by: For all $n \in \omega$: $\Pi_{n}^{o} := \{ P | P \subseteq w_{\omega} | P \preceq A_{n} \}$ $\Sigma_{n}^{o} := \{ P | P \subseteq w_{\omega} | P \preceq E_{n} \}$

6.12 Theorem Let
$$P \subseteq {}^{\omega} \omega$$
 and $n \in \omega, n \ge 1$.
 $P \in \Pi_{sn}^{\circ}$ if and only if there exists a sequence Q_0, Q_1, \dots of subsets
of ${}^{\omega} \omega$ such that $\forall m [Q_m \in \Sigma_n^{\circ}]$ and $P = \bigcap_{m \in \omega} Q_m$.
 $P \in \Sigma_{sn}^{\circ}$ if and only if there exists a sequence Q_0, Q_1, \dots of subsets
of ${}^{\omega} \omega$ such that $\forall m [Q_m \in \Pi_n^{\circ}]$ and $P = \bigcup_{m \in \omega} Q_m$.
Proof: We prove the first part.
Suppose: $P \in \Pi_{sn}^{\circ}$, and determine $\delta \in {}^{\omega} \omega$ such that $Fun(\delta)$ and:
 $\forall a [P(\alpha) \rightleftharpoons A_{sn}(\delta | \alpha)]$. Define, for each $m \in \omega$, a subset Q_m of ${}^{\omega} \omega$
by: $Q_m := \{\alpha | \alpha \in {}^{\omega} \omega | E_n((\delta | \alpha)^m)\}$ and remark:
 $\forall m [Q_n \in \Sigma_{sn}^{\circ}]$ and $P = \bigcap_{m \in \omega} Q_m$

by: $Q_{m} := \{ \alpha \mid \alpha \in {}^{W}\omega \mid E_{n} ((\delta \mid \alpha)^{m}) \}$ and remark: $\forall m [Q_{m} \in \Sigma_{n}^{\circ}] \text{ and } P = \bigwedge_{m \in \omega} Q_{m}$ Now suppose: $Q_{o}, Q_{1}, ...$ is a sequence of members of Σ_{n}° , and, using AC_{11} and AC_{10} , determine $\delta \in {}^{W}\omega$ such that: $\forall m [Fun (\delta^{m}) \land \forall \alpha [Q_{m} (\alpha) \rightleftharpoons E_{n} (\delta^{m} \mid \alpha)]]$ Determine $Z \in {}^{W}\omega$ such that Fun (Z) and $\forall \alpha \forall m [(Z \mid \alpha)^{m} = \delta^{m} \mid \alpha]$ and remark: $\forall \alpha [\forall m [Q_{m} (\alpha)] \rightleftharpoons A_{Sn} (Z \mid \alpha)], i.e.: P = \bigwedge_{m \in \omega} Q_{m} \in \Pi_{Sn}^{\circ}$.

Like Σ_1^o and Π_1^o , all classes Σ_n^o , Π_n^o are surveyable:

6.13 Theorem: All classes $\Sigma_1^{\circ}, \Pi_1^{\circ}, \Sigma_2^{\circ}, \Pi_2^{\circ}, ...$ do possess a universal element.

Proof: Use theorems 6.5 and 6.9 and construct a universal element
$$U_{11}$$
 of Σ_1° and a universal element U_{01} of Π_1° .
We will exhibit universal elements for the other classes by induction.
Let new and suppose: U_{1n} and U_{on} are universal elements of

 Σ_n^o and Π_n^o , respectively.

Define subsets U_{1Sn} and U_{OSn} of ${}^{\omega}w$ by:

For all $\alpha \in \mathcal{W}_{\omega}$. $\mathcal{U}_{4sn}(\alpha) := \exists m [\mathcal{U}_{0n} (<\alpha^{\circ}, (\alpha^{4})^{m} >)]$ $\mathcal{U}_{0sn}(\alpha) := \forall m [\mathcal{U}_{4n} (<\alpha^{\circ}, (\alpha^{4})^{m} >)]$

 U_{1sn} and U_{0sn} do belong to Σ_{sn}° and Π_{sn}° , respectively We claim that they are universal elements in their classes Let us prove: U_{1sn} is a universal element of Σ_{sn}° . If P is any member of Σ_{sn}° , then, using the foregoing theorem and AC_{01} , we may find $\beta \in W_{W}$ such that: $\forall \alpha [P(\alpha) \rightleftharpoons \exists m [U_{0n}(\langle \alpha, \beta^{m} \rangle)]]$, i.e.: $\forall \alpha [P(\alpha) \rightleftharpoons U_{1sn}(\langle \alpha, \beta \rangle)]$

Members of $\bigcup_{n \in \omega} \Sigma_n^{\circ}$ will be called: arithmetical subsets of $\overset{\omega}{}_{\omega}$ (cf. Note 1 on page 216). An immediate consequence of theorem 6.12 is: $\forall n [\Sigma_n^{\circ} \subseteq \Pi_{sn}^{\circ} \land \Pi_n^{\circ} \subseteq \mathbb{Z}_{sn}^{\circ}]$ Verifying: $\forall n [\Sigma_n^{\circ} \subseteq \Sigma_{sn}^{\circ} \land \Pi_n^{\circ} \subseteq \Pi_{sn}^{\circ}]$ is not difficult.

6.14 Theorems 6.5 and 6.9 gave rebirth to the results of chapter 2. We may ask, whether theorem 6.13 is also fertile in this sense, and if it may be seen to confirm the conclusions of chapter 3, and, hopefully, to lead us on to new vistas. It is not, however. Let us try and cut the classical capers in order to find the cause of the trouble. Consider U_{12} , the universal element of the class Σ_2° which has been constructed in the proof of theorem 6.13 Then, for all a, BE WW: U12 (<a, B>) Z Im Vn [Bm(an)=0] Define a subset $U_{oz}^{\#}$ of ${}^{w}\omega$ by: For all $\alpha \in \mathcal{W}_{02}$ $\mathcal{U}_{02}^{\#}(\alpha) := \forall m \exists n [\alpha^{m}(an) \neq 0]$ It is obvious, now, that $l_{oz}^{\#}$ belongs to Π_{2}^{o} , but is not so obvious that lloz does not belong to Zoz Suppose $U_{oz}^{\#} \in \mathbb{Z}_{2}^{o}$. Determine $\beta \in W_{w}$ such that : $\forall \alpha [U_{oz}^{\#}(\alpha) \rightleftharpoons U_{12}(\alpha, \beta)]$ Assume: $U_{02}^{*}(\beta)$, then $U_{12}(\langle \beta, \beta \rangle)$, i.e.: $\forall m \exists n [\beta^{m}(\overline{\beta}n) \neq 0]$ and: $\exists m \forall n [\beta^{m}(\overline{\beta}n) = 0]$ Contradiction. Therefore - (1the (3) and - U12 (< B, B>); i.e.: ¬∀m∃n[β^m(β̄n)≠0] and: ¬∃m∀n[β^m(β̄n)=0]

Meeting such a p would be a very memorable event, indeed, but, as matters stand now, we are not able, like classical mathematicious, to exclude the possibility of its existence. We are reminded of the mysteries which we encountered in chapter 5. If we assume the enigmatical $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]]$, we may carry through the classical argument.

 $\neg \forall m \exists n [\beta^{m}(\bar{\beta}n) \neq 0]$, i.e.: $\neg \forall m \neg \exists n [\beta^{m}(\bar{\beta}n) \neq 0]$, i.e.: $\neg \exists m \forall n [\beta^{m}(\bar{\beta}n) = 0]$ The same turn of thought would save us at all future stages of the arithmetical hierarchy. In chapter 3, we circumvented the mystery, if only for the case of the second level, and gave a truly constructive argument. We will have no peace till we have extended this to all levels of the hierarchy.

6.15 We could have started the hierarchy with the class of all decidable subsets of w_{w} :

$$\Delta_{\mathbf{1}}^{\mathbf{0}} := \left\{ P \mid P \subseteq {}^{\omega} \omega \mid \forall \alpha [P(\alpha) \lor \neg P(\alpha)] \right\}$$

We may define a special subset D of ^ww by:

For all $\alpha \in \omega_{\omega}$: $D(\alpha) := \alpha(0) = 0$

and remark: $\Delta_1^o := \{P \mid P \subseteq ^\omega w \mid P \preceq D\}$ and: and: $A_1 \preceq Un(D) \preceq A_1$ and: $E_1 \preceq E_1(D) \preceq E_1$

On the other hand, Δ_q^o does not have a universal element, for, in that case, we would not survive diagonalization. It is for this reason that we mention Δ_q^o only now:

In this connection, we are brought to reconsider the classical fact: $\Pi_1^{\alpha} n \Sigma_1^{\alpha} = \Delta_1^{\alpha}$ (cf. Note 4 on page 216). This is improbable, in view of the following: Fermat's last theorem may be written in the form: $\forall n [f(n)=0]$, where f is a primitive-recursive function from w to $\{0,1\}$ But, using the Brouwer-Kripke-axiom, we may construct β from w to $\{0,1\}$ such that Fermat's last theorem is equivalent to: $\exists n [\beta(n)=0]$ Consider $C_F := \{\alpha \mid \alpha \in {}^{\omega}w \mid \forall n [f(n)=0]\}$ and assume: $\Pi_1^{\alpha} n \Sigma_1^{\alpha} = \Delta_1^{\alpha}$ Then: C_F is a decidable subset of ${}^{\omega}w$, and Fermat's last theorem has been proved or refuted, a big surprise, indeed.

6.16 A related question, which seems of some interest, refers to the structure $\langle \Sigma_{1,2}^{o} \rangle$ Both D and E₁ belong to Σ_{1}^{o} and $: D \prec E_{1}$ Is it possible to find $P \in \Sigma_{1}^{o}$ such that: $D \prec P \prec E_{1}$?

To be sure, we have no method for deciding, for all $P, Q \in \mathbb{Z}_{1}^{\circ}$: $P \leq Q \vee Q \leq P$ (Define $P := C_F$ and $Q := C_G$, where F, as in 6.15 stands for Fermat's last theorem, and G for some other unsolved proposition, which, as far as we know, has nothing to do with F, i.e. we do not know how to answer: $(Fv = F) \rightarrow (Gv = G)$ or $(Gv = G) \rightarrow (Fv = F)$) But we would like to see a P from \mathbb{Z}_{1}° such that the statements " $P \preceq D$ " and " $E_1 \preceq P$ " are both contradictory and not but reckless.

The dual problem asks if there exists $P \in \Pi_1^o$ such that $D \prec P \prec A_1$ Like its companion, this problem seems rather inaccessible.

Classically, both questions have to be answered in the negative.

(*) Let us define, for all βε^ωω: E_β = {α|αε^ωω | ∃n[β(ān)=0]} According to theorem 6.2 and AC₀₁: Z⁰₁ = { E_β | βε^ωω} Remark that, for all βε^ωω: E₁ ≤ E_β Z ∃α ∀n [β(ān)≠0 ∧ ∃m ⊆ ān [β(m)=0]] Suppose: ¬(E₁ ≤ E_β) and conclude: ∀α∃n [β(ān)=0 v ∀m ⊆ ān [β(m)≠0]] i.e.: ∃δ [Fun(δ) ∧ ∀α [E_β(α) Z D(δ|α)]], i.e.: E_β ≤ D

(**) Let us define, for all $\beta \in W \otimes A_{\beta} := \{\alpha | \alpha \in W \otimes | \forall n [\beta(\bar{\alpha}n) = 0]\}$ According to theorem 6.7 and $AC_{01} : \Pi_{1}^{0} = \{A_{\beta} | \beta \in W \otimes\}$ Remark that, for all $\beta \in W \otimes$ $A_{1} \leq A_{\beta} \not\cong \exists \alpha \forall n [\beta(\bar{\alpha}n) = 0 \land \exists m \in \bar{\alpha}n [\beta(m) \neq 0]]$ Suppose: $\neg (A_{1} \leq A_{\beta})$ and find: $A_{\beta} \leq D$.

We did not succeed in proving similar conclusions by intuitionistic means, and the semi-classical assumption: $\forall \alpha [\neg \neg \exists n [\alpha(n)=o] \rightarrow \exists n [\alpha(n)=o]]$ also did not bring any relief.

6.17 We close this chapter by two minor remarks.

The first one is, that spreads, as they have been introduced in 1.9 do belong to Π_2° , but that, conversely, not every element of Π_2° is a spread.

The second one says, that, in correspondence to chapter 4, we might have introduced a class like:

 $\{P \mid P \subseteq {}^{\omega}\omega \mid P \preceq D^2A_1\}$

and remarked, that a subset of ${}^w\!w$ belongs to this class if and only if it is the union of two sets, each belonging to $\Pi^o_1.$

Ne cannot deny, that in 6.14-16, the sky has been clouded slightly. Our first concern will be to make the arithmetical ladder, now lying down, stand up:

7. THE ARITHMETICAL HIERARCHY ESTABLISHED

We extend the results of chapter 3, in which we learnt that A_2 and E_2 are incomparable, and we prove: $\forall n [\neg (A_n \leq E_n) \land \neg (E_n \leq A_n)]$. This conclusion may be framed as follows: $\forall n [\neg (\Pi_n^o \subseteq \mathbb{Z}_n^o) \land \neg (\mathbb{Z}_n^o \subseteq \Pi_n^o)]$ The argument is an inductive one, and develops ideas from chapter 3.

7.0 We will make use of the fact that each one of the sets A1, E1, A2, E2,... is, - as we intend to call it from chapter 10 onwards -: strictly analytical, i.e.: $\forall n \exists \delta [Fun(\delta) \land A_n = Ra(\delta)] \land \forall n \exists \delta [Fun(\delta) \land E_n = Ra(\delta)]$ In chapter 3, we saw that A, has this property. This is not the full tale. We indeed construct for each A_n (resp. E_n) a special sequence δ such that Fun (δ) and A_n (resp. E_n) = Ra(δ). But the proof of the hierarchy theorem also uses other properties of these sequences S. Let us not talk too much and go working. We first recall and extend some notational conventions which we introduced in the chapters 1 and 4. (Cf. 4.2). For all n, kew such that k < lg(n): $n(k) = n_k =$ the value which the finite sequence coded by n, assumes in k Therefore, for each new: n = < n(0), n(1), ..., n(lg(n) - 1) >For all $n, k \in w$ such that $k \leq lg(n)$ = the code number of that finite sequence of $\overline{n}(k)$ length k, which is an initial part of the finite sequence, coded by n. Therefore, for each new: $\overline{n}(lg(n)) = n$. Let f∈ ^ww We introduce two subsets $\Sigma_{\tau}(y)$ and $\Sigma_{\pi}(y)$ of ω by: $\Sigma_{I}(y) := \{n \mid \forall k [2k+1 \leq lq(n) \rightarrow n(2k) = \gamma(\overline{n}(2k))] \}$ $\Sigma_{\pi}(\gamma) := \{n \mid \forall k [2k+2 \leq lg(n) \rightarrow n(2k+1) = \gamma(\pi(2k+1))\}$

These definitions do need some explanation.

Players I and II are doing a game in which they choose, alternately, a natural number.

Thus finite sequences of natural numbers represent possible positions in one of their plays.

 $\Sigma_{I}(\gamma)$ is the set of positions which may be reached if player I is following the strategy given by γ . $\Sigma_{I}(\gamma)$ is the set of positions which may be reached if player II is following the strategy given by γ We remark: $\forall \gamma \forall \delta \exists ! \alpha \forall n [\exists n \in \Sigma_{I}(\gamma) \cap \Sigma_{I}(\delta)]$ (Whenever both player I and player II have decided upon their strategies, there is a unique resulting play). For all new, and $\gamma \alpha \in {}^{\omega}w$ we define $\gamma \boxtimes_{n} \alpha$ in ${}^{\omega}w$ by:

For

$$(\gamma \mathbf{z}_n \alpha)(\mathbf{p}) := 0$$
 if $\mathbf{p} \in \Sigma_I(\gamma)$ and $lg(\mathbf{p}) = n$
 $:= \alpha(\mathbf{p})$ if $\mathbf{p} \notin \Sigma_I(\gamma)$ or $lg(\mathbf{p}) \neq n$

For all $n \in \omega$, and $y, \alpha \in {}^{\omega}\omega$ we define $\gamma \bowtie_n \alpha$ in ${}^{\omega}\omega$ by:

For all pew:

$$(\mathbf{r} \bowtie_n \alpha)(\mathbf{p}) := 0$$
 if $\mathbf{p} \in \Sigma_{\mathbf{I}}(\mathbf{r})$ and $lg(\mathbf{p}) = n$
 $:= \alpha(\mathbf{p})$ if $\mathbf{p} \notin \Sigma_{\mathbf{I}}(\mathbf{r})$ or $lg(\mathbf{p}) \neq n$

Appealing repeatedly to AC_{01} , as we did in 3.1, we may verify: $\forall n \forall \alpha [E_n(\alpha) \rightleftharpoons \exists r [\alpha = \gamma \boxtimes_n \alpha]]$

and: $\forall n \forall a [A_n(a) \rightleftharpoons \exists y [a = y \bowtie_n a]]$

The intertwining function M_2 is none other than the function M whose acquaintance we made in 3.1.

To spare the reader and ourselves, we do not go into the trouble of giving a detailed proof of the just mentioned facts, which should go by induction.

For each n, we may make $\delta \in \mathbb{W}$ such that $\operatorname{Fun}(\delta)$ and $\forall \alpha [\delta | \alpha = \alpha^{\circ} \Xi_{n} \alpha^{1}]$ We observe: $\forall \alpha [E_{n}(\alpha) \rightleftharpoons \exists \beta [\alpha = \delta | \beta]$

and: $\exists \delta [Fun(\delta) \land E_n = Ra(\delta)]$

For each n, we may make $\delta \in \mathbb{W}_{W}$ such that $\operatorname{Fun}(\delta)$ and $\forall \alpha [\delta | \alpha = \alpha^{\circ} M_{n} \alpha^{1}]$ Ne observe: $\forall \alpha [A_{n}(\alpha) \rightleftharpoons \exists \beta [\alpha = \delta | \beta]]$ and: $\exists \delta [\operatorname{Fun}(\delta) \land A_{n} = \operatorname{Ra}(\delta)]$

These remarks vindicate the statement which opened this section, and conclude the preparations we had to make for:

7.1 Lemma: $\forall n > 0 [If A_{sn} \leq E_{sn}, then E_n \leq A_n]$ <u>Proof</u>: Suppose new, n > 0 and $A_{sn} \leq E_{sn}$ Using AC_{11} , determine $\delta \in \mathcal{W} \mathcal{W}$ such that: Fun(δ) and: $\forall \alpha [A_{sn}(\alpha) \neq E_{sn}(\delta | \alpha)]$ Remark : $\forall \gamma \forall \alpha \ [A_{sn} (\gamma \bowtie_{sn} \alpha)]$ Therefore: $\forall \gamma \forall \alpha \ [E_{sn} (\delta | (\gamma \bowtie_{sn} \alpha))]$ and: $\forall \gamma \forall \alpha \exists m \ [A_n ((\delta | (\gamma \bowtie_{sn} \alpha))^m)]$ (The camera focuses on the creative subject which is supplying γ and α step-by-step, and then switches to the imitative subject, which is responsible for $\delta | (\gamma \bowtie_{sn} \alpha)$ and has to make a choice about it, notwithstanding the fact that his knowledge about γ and α is, and is to remain, widely insufficient. The creative subject, of course, can not but exploit this state of affairs:) Using CP, determine $m, p \in \omega$ such that $\langle s \rangle > p$.

The creative subject did not place himself under any obligation as regards the sequence α^s ; he still may choose anything he likes for it.

Define $Z \in {}^{\omega}\omega$ such that $\operatorname{Fun}(Z)$ and $: \forall \beta [(Z|\beta)^{S} = \beta \land \forall l[l \neq S \rightarrow (Z|\beta)^{l} = 0]]$ Let $\beta \in {}^{\omega}\omega$ and $\operatorname{suppose}: E_{n}(\beta)$, then: $A_{Sn}(Z|\beta)$, and, in addition: $\exists \gamma \exists \alpha [\overline{\gamma}p = \overline{\alpha}p = \overline{\Omega}p \land Z|\beta = \gamma \bowtie_{Sn} \alpha]$. Therefore: $A_{n}((\delta | (Z|\beta))^{m})$ Conversely, $\operatorname{suppose}: A_{n}((\delta | (Z|\beta))^{m})$, then: $E_{Sn}(\delta | (Z|\beta))$, therefore: $A_{Sn}(Z|\beta)$, and: $E_{n}(\beta)$ We have seen: $\forall \beta [E_{n}(\beta) \rightleftharpoons A_{n}((\delta | (Z|\beta))^{m})]$, i.e.: $E_{n} \preceq A_{h}$.

A small refinement of the argument for lemma 7.1 leads to the conclusion: $A_{sn} \leq A_{n}$. (Define $Z \in {}^{\omega}\omega$ such that Fun(Z) and: $\forall_{\beta} \forall \ell [\ell < s \rightarrow (Z|\beta)^{\ell} = Q) \land (Z|\beta)^{s+\ell} = \beta^{\ell}]$ This construction brings out that the problem if a given sequence has the property A_{sn} , is not diminished by any knowledge which refers to only finitely many of its subsequences)

But we may do without the stronger conclusion in our inductive scheme. An indispensable element in this scheme is:

7.2 Lemma: $\forall n \ \Box f \ E_{sn} \leq A_{sn}$, then $A_n \leq E_n]$

<u>Proof</u>: Suppose: new and $E_{sn} \leq A_{sn}$ Using AC_{11} , determine $\delta \in Ww$ such that: Fun (δ) and: $\forall \alpha [E_{sn}(\alpha) \not\subset A_{sn}(\delta \mid \alpha)]$ We will prove more than the theorem announces, viz. $A_n \leq A_{n-1}$ (We assume: n > 1. The cases n=0, n=1 have been taken care of in theorems 2.2 and 3.3, respectively, and will not be treated here, although, with some precautions, they might be subsumed under this more general theorem).

In order to avoid the sprouting of too many parentheses, we will sometimes write: $\alpha^{m,k}$ in stead of: $(\alpha^m)^k$

We are to construct $Z \in {}^{\omega}\omega$ such that Fun(Z), and, for each β , ZI_{β} looks as follows:

The first-order-subsequences of ZIB are, all of them, very similar to the sequence β : for each $k \in w$, the subsequences of $(ZIB)^k$ are: finitely many (viz. p_k) times the sequence Q, and, thereafter, the subsequences of β , in due order. One observes: $\forall \beta [A_n(\beta) \not\equiv E_{sn}(ZI\beta)]$ The numbers p_0, p_1, \dots depend on β ; for each $k \in w$, the choice of p_k will be made such that: $A_n(\beta) \rightarrow E_n((SI(ZI\beta))^k)$ Moreover, when calculating p_k , we also determine a number m_k such that: $A_n(\beta) \rightarrow A_{n-1}((SI(ZI\beta))^{k,m_k})$

Carrying out this program will bring us a rich harvest, and we will merrily go round as follows:

$$A_{n}(\beta) \longrightarrow \forall k [A_{n-1} ((\delta|(\zeta|\beta))^{k,m_{k}})]$$

$$A_{sn} (\delta|(\zeta|\beta))$$

$$\downarrow$$

$$E_{sn} (\zeta|\beta)$$

Therefore: $A_n(\beta) \rightleftharpoons \forall k [A_{n-1} ((\delta | (3|\beta))^{k,mk}]$ This looks very much like the conclusion we are chasing after.

Remark: $\overline{\alpha}_2 p_1 = \overline{\alpha}_1 p_1$.

Determine $f_2 \in {}^{\omega}\omega$ such that $f_2(<>)=2$ and $\forall t [t \neq <> \rightarrow f_2(t)=0]$ Remark: $\alpha_2 = f_2 \boxtimes_{s_n} \alpha_2$.

Suppose:
$$\alpha \in {}^{\omega} \omega \wedge \alpha^{\circ} = (\alpha_{2})^{\circ} \wedge \alpha^{1} = (\alpha_{2})^{1} \wedge \overline{\alpha} p_{1} = \overline{\alpha}_{2} p_{1} \wedge A_{n}(\beta)$$

Then: $A_{n}(\alpha^{1})$, and, what is more:
 $\exists \gamma [\overline{\gamma} p_{1} = \overline{\gamma}_{1} p_{1} \wedge \overline{\alpha} p_{1} = \overline{\alpha}_{1} p_{1} \wedge \alpha = \gamma \underset{S_{n}}{\simeq} \gamma^{-1}]$
Therefore: $A_{n-1}((\delta | \alpha)^{1}, m_{1})$.
We keep this in mind:
 $\forall \alpha [(\alpha^{\circ} = (\alpha_{2})^{\circ} \wedge \alpha^{1} = (\alpha_{2})^{1} \wedge \overline{\alpha} p_{1} = \overline{\alpha}_{2} p_{1} \wedge A_{n}(\beta)) \rightarrow A_{n-1}((\delta | \alpha)^{1}, m_{1})]$

Sk-th step: Remark:
$$E_{sn}(\gamma_k \boxtimes_{s_n} \alpha_k)$$
, and, using CP, determine $m_k, p_k \in w$,
such that $p_k \gg p_{k-1}$ and: $\forall_f \forall \alpha [\langle \tilde{p}_k = \tilde{\gamma}_k p_k \land \tilde{\alpha} p_k = \tilde{\alpha}_k p_k) \rightarrow A_{n-1}(\delta | \langle f \boxtimes_{s_n} \alpha \rangle)^{k, m_k}]$
Now define α_{s_k} as follows:

$$\begin{aligned} & (\alpha_{Sk})^{\circ} := (\alpha_{k})^{\circ} \wedge (\alpha_{Sk})^{1} = (\alpha_{k})^{1} \wedge \dots \wedge (\alpha_{Sk})^{k-1} := (\alpha_{k})^{k-1} \\ & (\alpha_{Sk})^{k, \ell} := Q \quad \text{if } \ell < p_{k} \\ & (\alpha_{Sk})^{k, p_{k}+\ell} := \beta^{\ell} \quad \text{for all } \ell \in \omega \\ & (\alpha_{Sk})^{m} := Q \quad \text{if } m \neq Sk \end{aligned}$$

Remark: $\overline{\alpha}_{sk} p_k = \overline{\alpha}_k p_k$. Determine $\gamma_{sk} \in {}^{\omega} w$ such that $\gamma_{sk}(<>) = Sk$ and $\forall t[t \neq <> \rightarrow \gamma_{sk}(<>]=0]$ Remark: $\alpha_{sk} = \gamma_{sk} \boxtimes_{sn} \alpha_{sk}$.

> Suppose: $\alpha \in {}^{\omega} \cup A \forall l < s \notin [\alpha^{l} = (\alpha_{sk})^{l}] \land \overline{\alpha} p_{k} = \overline{\alpha}_{sk} p_{k} \land A_{n}(\beta)$ Then: $A_{n}(\alpha^{k})$, and, what is more: $\exists \gamma [\overline{\gamma} p_{k} = \overline{\gamma}_{k} p_{k} \land \overline{\alpha} p_{k} = \overline{\alpha}_{k} p_{k} \land \alpha = \gamma \bigotimes_{sn} \alpha]$ Therefore: $A_{n-1}((\delta | \alpha|^{k}, m_{k}))$ We keep this in mind: $\forall \alpha [(\forall l < s k [\alpha^{l} = (\alpha_{sk})^{l}] \land \overline{\alpha} p_{k} = \overline{\alpha}_{s k} p_{k} \land A_{n}(\beta)) \Rightarrow A_{n-1}((\delta | \alpha|^{k}, m_{k})]$

We conclude the definition of ZIB by proclaiming:

$$\forall k [(\zeta | \beta)^k := (\alpha_{sk})^k]$$

We make the following observations: $\forall p \forall k [(\alpha_{sk})^k = (\alpha_{sk+p})^k], \text{ therefore:}$ $\forall k [(\overline{3}_{\beta}) p_k = \overline{\alpha}_{sk} p_k] \text{ and: } A_n(\beta) \rightarrow \forall k [A_{n-1}((\delta|(3|\beta))^{k,m_k})]$ The numbers m_0, m_1, \dots do depend on β , let us write them as $m_0(\beta), m_1(\beta)...$ We determine $\eta \in {}^{\omega}\omega$ such that $\operatorname{Fun}(\eta)$ and: $\forall \beta \forall k [(\eta | \beta)^k = (\delta | (\exists | \beta))^k, \mathfrak{m}_k(\beta)]$ Remark: $\forall \beta [A_n(\beta) \rightleftharpoons \forall k [A_{n-1} ((\eta | \beta)^k)]], i.e.:$ $\forall \beta [A_n(\beta) \rightleftharpoons (\operatorname{Un}(A_{n-1}))(\eta | \beta)], \text{ and: } A_n \preceq \operatorname{Un}(A_{n-1})$ But: $\operatorname{Un}(A_{n-1}) \preceq A_{n-1}$, as may be seen from the previous chapter (cf. 6.12), and therefore: $A_n \preceq A_{n-1}$.

In retrospect, lemma 7.1 may be seen to follow from lemma 7.2 For, suppose: $A_{sn} \leq E_{sn}$; then $E_{ssn} \leq E_{sn}$, and $E_{ssn} \leq A_{ssn}$, therefore: $A_{sn} \leq A_n$, and $E_n \leq A_{sn} \leq A_n$. We maintained lemma 7.1, because its shorter proof might serve to prepare the reader for the proof of lemma 7.2. And here we find it standing in all its glory:

<u>Proof</u> Theorems 2.1 and 2.2 taught us how to put a first foot on the ladder. (You may choose and start with your left foot or with your right foot). Lemmas 7.1 and 7.2 taught us how to pass the left foot on to the next higher step, if we lean on the right one, and how to pass the right foot on to the next higher step, if we lean on the left one. And so we climb, and climb, and still climb.

The following picture visualizes the result of our efforts:

And we dream of higher things...

60

8 HYPERARITHMETICAL SETS INTRODUCED

We continue the considerations of the previous chapters, and now enter the domain of the transfinite. We have to develop something of a theory of countable ordinals We will identify countable ordinals and their representations as well-ordered <u>stumps</u> in ^ww. After this, we build hyperarithmetical sets and prove their most obvious properties.

8.0 For every mew and every subset $A \subseteq w$, we define a subset m * A of w by: $m * A := \{m * p | p \in A\}$

(* has been introduced in 1.2, and denotes concatenation).

We define the set \$ of well-ordered stumps in ω by transfinite induction: (1) $\phi \in $$

(11) If A_0 , A_1 , A_2 ,... is a sequence of elements of \$, then A belongs to \$, where $A := \{< >\} \cup \bigcup_{n \in \omega} <n > * A_n$

(111) If any subset A of w does belong to \$, it does so because of (1) and (11)

It is difficult to judge, if the continually extending stock of well-ordered stumps is a totality which deserves of being called a mathematical set, on a par with w or ^ww. Some members of the French school of descriptiveset-theorists shrank back from doing so. Do we survey this totality so well, that propositions, obtained by quantifying over it, are meaningful? (L.E.J. Brouwer did not unambiguously express himself on this point.(cf. Note 8 on page 217)). We accept the definition, but keep in mind, that \$, although a set, is very much a set of its own kind, markedly different from both w and ^ww.

Because of the definition's second clause, members of \$, in general, cannot be assumed to be <u>determinate</u> objects (i.e. objects which admit of a finite description, cf. 2.1.).

Once it has been accepted, \$ may be handled by the method of transfinite induction, i.e.: relations and operations on \$ may be defined, and general statements about all members of \$ may be proved, by "following the definition"

8.1 We will use Greek letters o, t,... to vary over \$

Every $\sigma \in$ \$ is a decidable subset of w

Moreover, for all $\sigma \in \mathfrak{s}$: $\forall m \forall n [(m \in \sigma \land m \subseteq n) \rightarrow n \in \sigma]$

and: $\forall \alpha \exists n [\overline{\alpha} n \notin \sigma]$

We may verify these facts by transfinite induction

For all
$$\sigma \in \$$$
 and $n \in w$, we define subsets $n\sigma$ and σ^n of w by:
 $n\sigma := \{m \mid n \neq m \in \sigma\}$
 $\sigma^n := {m \mid n \neq m \in \sigma\}$

These definitions conform to the arrangements made in 1.2

One proves easily: for all $\sigma \in \$$ and $n \in w$: $h \sigma$ and σ^n do again belong to \$

We define a binary predicate \leq on \$ by transfinite induction:

- (1) For all $\sigma \in \$: \sigma \leq \phi \not\supseteq \sigma = \phi$
- (1) For all $\sigma, \tau \in \$, \tau \neq \phi$: $\sigma \le \tau \Rightarrow \forall m \exists n [\sigma^m \le \tau^n]$

We make the following observations:

For all $\sigma \in \$$ $\sigma \leq \sigma$ For all $\sigma, \tau, \varphi \in \$$: $(\sigma \leq \tau \land \tau \leq \varphi) \to \sigma \leq \varphi$ For all $\sigma \in \$$, $n \in \omega$: $\sigma^n \leq \sigma \land {}^n \sigma = (\cdot (\sigma^{n_0})^{n_1 \dots})^n (\ell q^{(n)-1}) \leq \sigma$

Let A and B be decidable subsets of w and $y \in {}^{\omega}w$. We define:

 $\gamma: A \longleftrightarrow B := \forall n [lq(\gamma(n)] = lq(n)] \land \forall m \forall n [m \le n \rightarrow \gamma(m) \le \gamma(n)] \land \forall n [n \in A \rightarrow \gamma(n) \in B]$

(One should think of y as an autempt to embed A into B) We also define:

8.2 Theorem: For all $\sigma, \tau \in \$$ $\sigma \leq \tau \rightleftharpoons \sigma \leq *\tau$
Using AC_{00} and AC_{01} , we determine $\eta e^{\omega} \omega$ and for each mew a sequence Ime www such that: $\forall m [\chi_m : \sigma^m \leftrightarrow \tau^{\eta(m)}]$ We define a new sequence $r \in {}^{\omega} w$ by: (1) $\gamma(<>) := <>$ (11) for all $m, n \in \omega$: $\gamma(<m>*n) := < \gamma(m) > * \gamma_m(n)$ Then: y: of +, and o <* t Now assume $\sigma \leq \star \tau$ and determine $\gamma \in {}^{\omega}\omega$ such that $\gamma : \sigma \leftrightarrow \tau$ Let $\delta \in \mathcal{W}_{w}$ be such that $\forall m [\gamma(< m >) = < \delta(m) >]$ Remark: $\forall m [\sigma^m \leq^* \tau^{\delta(m)}]$, and use the induction assumption to conclude: $\forall m [\sigma^m \leq \tau^{\delta(m)}], and: \sigma \leq \tau$ It is useful to consider the corresponding strict order on \$. For all $\sigma, \tau \in \mathfrak{r} = \exists n [\sigma \leq \tau^n]$ We take note of the following: $\sigma < \tau \rightarrow \sigma \leq \tau$ For all o, te\$ For all $\sigma, \tau, \rho \in$ $(\sigma < \tau \land \tau \leq \varphi) \rightarrow \sigma < \varphi$ For all $\sigma, \tau, \varphi \in \$$: $(\sigma \leq \tau \land \tau < \varphi) \rightarrow \sigma < \varphi$ For all $\sigma, \tau, \rho \in \mathfrak{s}$: $(\sigma < \tau \land \tau < \rho) \rightarrow \sigma < \rho$ For all $\sigma \in$: $\sigma \neq \phi \rightarrow \neg (\sigma < \sigma)$ One possible way to prove the last-mentioned fact is this one. Suppose $\sigma \in \$$ and $\sigma < \sigma$. Determine new such that $\sigma \leq \sigma^n$, and,

applying to theorem 8.2, determine $\gamma \in {}^{\omega}\omega$ such that $\gamma: \sigma \leftarrow \sigma^n$ Let $\alpha \in {}^{\omega}\omega$ be such that: $\forall n [\overline{\alpha}(sn) = \langle n \gamma + \gamma(\overline{\alpha}n)]$, and assume: $\sigma \neq \phi$ We may establish by induction: $\forall n [\overline{\alpha}n \in \sigma]$, contrary to: $\forall \beta \exists n [\overline{\beta}n \notin \sigma]$.

We seize the opportunity for an explicit statement of the principle of transfinite induction, which, to be sure, has been present for some time already:

- 8.3 (Principle of transfinite induction)
 - (1) A first formulation: Let $P \subseteq \$$ If $P(\phi)$ and $\forall \sigma [\forall n [P(\sigma^n)] \rightarrow P(\sigma)]$, then $\forall \sigma [P(\sigma)]$.

(11) A second formulation: Let $P \subseteq \$$ If $P(\phi)$ and: $\forall \sigma [\forall \tau [\tau < \sigma \rightarrow P(\tau)] \rightarrow P(\sigma)]$, then $\forall \sigma [P(\sigma)]$

- 84 We do not want to develop ordinal arithmetic; this stump though inviting subject falls outside the scope of this treatise. We will profit by introducing a special kind of well-ordered stumps. Doing so, we have to use a pairing function: < >: ²w →> w
 - We define the set HI\$ of hereditarily iterative stumps by transfinite induction: (1) {<>} ∈ HI\$ (1) If Ao, A1, A2,... is a sequence of elements of HI\$, then A belongs to HI\$, where A:= {<>} ∪ U <<≤n,m>> * An n,m∈w

Hereditarily iterative stumps are quite as nice as ordinary stumps and they enjoy one additional property:

For all $\sigma \in HI$ $\forall n \exists m [m > n \land \sigma^m = \sigma^n]$

We will write: (1) := $\{<>\}$

We define, by transfinite induction, for each $\sigma \in \text{HI}\$$, a subset A_{σ} and a subset E_{σ} of ${}^{w}\!\omega$:

(1) For all $\alpha \in \omega_{\omega}$: $A_{\mathfrak{O}}(\alpha) := \forall n [\alpha(\langle n \rangle) = 0]$ $E_{\mathfrak{O}}(\alpha) := \exists n [\alpha(\langle n \rangle) = 0]$ (11) For all $\sigma \in HI$, such that $\sigma \neq \mathfrak{O}$ and all $\alpha \in \omega_{\omega}$: $A_{\sigma}(\alpha) := \forall n [E_{\sigma n}(\alpha^{n})]$ $E_{\sigma}(\alpha) := \exists n [A_{\sigma n}(\alpha^{n})]$

Dhe might ask why we did not include ϕ into HI\$ and introduce $D := E_{\phi} := A_{\phi}$ by: For all $\alpha \in {}^{\omega}\omega$: $D(\alpha) := \alpha(<>) = O$, but there are disadvantages to this procedure, as in the case of the arithmetical hierarchy. (Cf. 6.15)

We define, for each $\tau \in HI\$$, a class Π_{σ}° and a class Σ_{σ}° of subsets of w_{ω} by: $\Pi_{\sigma}^{\circ} := \{P \mid P \subseteq {}^{\omega} \omega \mid P \preceq A_{\sigma} \}$

$$\Sigma_{\alpha}^{\alpha} := \left\{ \begin{array}{c} \mathsf{P} \mid \mathsf{P} \subseteq {}^{\omega} \mathsf{w} \quad | \mathsf{P} \prec \mathsf{E}^{\alpha} \right\}$$

Each one of these classes is easy to grasp as a whole.

8.5 Theorem: For all $\sigma \in HI$ Π_{σ}° and Σ_{σ}° do have a universal element.

Proof: As $\Pi_{\Omega}^{o} = \Pi_{1}^{o}$ and $\Sigma_{\Omega}^{o} = \Sigma_{1}^{o}$, where Π_{1}^{o} and Σ_{1}^{o} are our friends from chapter 6, we know from 6.5 and 6.9 how to construct universal elements for these classes. We proceed by induction. Suppose, therefore : $\sigma \in HI$, \sigma \neq 1$ and let $U_{00}, U_{01}, U_{02}, \dots$ and U10, U11, U12,... be two sequences of subsets of www such that: $\forall m[\mathcal{U}_{om} \text{ is a universal element of } \Pi^{o}_{am} \text{ and } \mathcal{U}_{1m} \text{ is a universal element of } \mathbb{Z}^{o}_{am}]$ We define subsets U_0 and U_1 of w_w by: For all de ww: $\mathcal{U}_{o}(\alpha) := \forall m \left[\mathcal{U}_{1m} \left(\langle \alpha^{o}, (\alpha^{1})^{m} \rangle \right) \right]$ $\mathcal{U}_{1}(\alpha) := \exists m [\mathcal{U}_{om}(<\alpha^{\circ}, (\alpha^{1})^{m} >)]$ We claim that U_0 and U_1 are universal elements of Π_0° and $\mathbb{Z}_{\sigma}^{\circ}$, respectively, and prove only half of this claim, as the other half may be established in a similar way. Let us first see to it that U_o does belong to Π_o° Using AC₀₁, we find a sequence $\delta_0, \delta_1, \dots$ of elements of ${}^{\omega}\omega$ such that: $\forall m [Fun (\delta_m)]$ and $\forall m \forall \alpha L U_{1m} (<\alpha^o, (\alpha^1)^m >) \rightleftharpoons E_{\sigma^m} (\delta_m | \alpha)]$ Let $\delta \in \mathcal{W}_{\omega}$ be such that: Fun (δ) and: $\forall m \forall \alpha [(\delta \mid \alpha)^m = \delta_m \mid \alpha]$ Remark: $\forall \alpha [u_o(\alpha) \rightleftharpoons A_\sigma(\delta | \alpha)]$, i.e.: $u_o \in \Pi_\sigma^o$ Let us prove now, that U_0 is a universal element of Π_0° . Suppose: $P \subseteq {}^{\omega}w$ and $P \in \Pi_{\sigma}^{o}$. Determine $\delta \in {}^{\omega}w$ such that: Fun (5) and: $\forall \alpha [P(\alpha) \neq A_{\sigma}(\delta | \alpha)]$ Consider, for each mew, the set: $\int \alpha |\alpha \in ww| E_{\sigma m} ((\delta | \alpha)^m) f$ and remark that this set does belong to Σ_{GM}° . As U_{1m} is a universal element of $\Sigma^{\circ}_{\sigma m}$, we may determine $\beta \in W$ such that: $\forall \alpha [E_{Gm} (\langle \delta | \alpha \rangle^m) \rightleftharpoons U_{1m} (\langle \alpha, \beta \rangle)]$ Using AC₀₁, we find $\beta \in {}^{\omega}w$ such that. $\forall m \forall \alpha [E_{\sigma m} ((\delta | \alpha)^m) \rightleftharpoons \mathcal{U}_{1m} (< \alpha, \beta^m >)].$

Therefore: $\forall \alpha [P(\alpha) \rightleftharpoons U_0(\langle \alpha, \beta \rangle)].$

The following theorems bring together some nice structural properties of the hyperarithmetical hierarchy.

8.6 Theorem: For all $\sigma, \tau \in HI$:$ If $\sigma \leq \tau$, then: $\Pi_{\sigma}^{\circ} \leq \Pi_{\tau}^{\circ}$ and: $\Sigma_{\sigma}^{\circ} \leq \Sigma_{\tau}^{\circ}$ If $\sigma < \tau$, then: $\Pi_{\sigma}^{\circ} \leq \Sigma_{\tau}^{\circ}$ and: $\Sigma_{\sigma}^{\circ} \leq \Pi_{\tau}^{\circ}$

8.7 Theorem: Let
$$P \subseteq {}^{\omega} \omega$$
 and $\sigma \in HI$, $\sigma \neq 0$$

PE TG if and only if there exists a sequence Q_0, Q_1, \dots of subsets of ^{w}w such that: $\forall m \exists \tau < \sigma [Q_m \in \Sigma_{\tau}^{\circ}]$ and: $P = \bigwedge_{m \in W} Q_m$

$$P \in \Sigma_{\sigma}^{\circ}$$
 if and only if there exists a sequence Q_{0}, Q_{1}, \dots of subsets
of w_{ω} such that: $\forall m \exists \tau < \sigma [Q_{m} \in \Pi_{\tau}^{\circ}]$ and: $P = \bigcup_{m \in U} Q_{m}$

Proof: We prove the second part.
Suppose: P∈ Z_σ^o and determine δ∈ ^ww such that: Fun(δ) and:

$$\forall \alpha [P(\alpha) \rightleftharpoons E_{\sigma}(\delta | \alpha)]$$
. Define, for each mew: $Q_m := \{\alpha \mid A_{\sigma m}((\delta | \alpha)^m)\}$ and
remark: $\forall m [Q_m \in \Pi_{\sigma m}^o \land \sigma^m < \sigma]$ and: $P = \bigcup_{m \in W} Q_m$
Now suppose: Q_o, Q_1, \dots is a sequence of subsets of ^ww such that:
 $\forall m \exists \tau < \sigma [Q_m \in \Pi_{\tau}^o]$. Using the definition of ${}_{n} < {}^{n}$ (cf. 8.2) and theorem
8.6, we infer: $\forall m \exists n [Q_m \in \Pi_{\sigma n}^o]$

Remembering now, that σ is hereditarily iterative, and using $A_{C_{00}}^{\circ}$, we find $z \in w$ such that: Z(0) < Z(1) < Z(2)... and: $\forall m [Q_m \in \Pi_{\sigma Z(m)}^{\circ}]$. We define a sequence $\delta_0, \delta_1, \ldots$ of elements of w such that: $\forall m [Fun (\delta_m)]$ and: $\forall m \forall \alpha [Q_m(\alpha)] \rightleftharpoons A_{\sigma Z(m)}(\delta_m |\alpha]]$. Finally, we make a sequence $\delta \in w$ such that: Fun (δ) and: $\forall m \forall \alpha [(\delta | \alpha |^{Z(m)}) = \delta_m | \alpha]$ and: $\forall k [\neg \exists m [k = Z(m)] \rightarrow \forall \alpha [(\delta | \alpha |^k = 1]]$ We easily verify: $\forall \alpha [\exists m [Q_m(\alpha)] \rightleftharpoons E_{\sigma}(\delta | \alpha)]$, i.e.: $\bigcup Q_m \in \Sigma_{\sigma}^{\circ}$. The first part is proved in a similar way.

Let us define, for each $\alpha \in {}^{\omega}\omega : |\alpha| := \{n \mid \alpha(n) = 0\}$. Thus, $|\alpha|$ is a decidable subset of ω , whose characteristic function is α We may observe that, for each $\alpha \in {}^{\omega}\omega$ and each $\sigma \in $$:

 $|\alpha| \leq^* \sigma \supseteq \forall m \exists n [|\alpha^m| \leq^* \sigma^n]$

We define, for each $\sigma \in \$$: $k_{\sigma} := \{\alpha \mid |\alpha| \le *\sigma\}$ and remark: k_{σ} is hyperarithmetical, that is, it does belong to some class Σ_{τ}° , $\tau \in HI\$$. One would like to calculate from σ the first τ such that $k_{\sigma} \in \Sigma_{\tau}^{\circ}$. But we do not study "stump-arithmetic", now, and we have to abandon this question Another problem arises, when we define a partial ordering Ξ on \$ by: For all $\sigma, \tau \in \$$: $\sigma \subseteq \tau := k_{\sigma} \le k_{\tau}$ and ask for a comparison between Ξ and \leq . This does not seem to be an easy matter, either, and we leave it alone. We may define a function $O: w \setminus \{o\} \to HI\$$ by: $\widehat{O} := \{< >\}$ For all $n \in w$: $\widehat{Sn} := \{m \mid lg(m) \le n\}$ We observe, without difficulty, that: for all $n \in w$. $\prod_{s=n}^{\circ} = \prod_{s=n}^{\circ}$ and $\Sigma_{s=n}^{\circ} = \sum_{n=1}^{\circ}$ Thus, the arithmetical hierarchy is seen to be part of the hyperarithmetical hierarchy.

The stage has been set, now, for one of the high-points in our little drama: the resuscitation of the hyperarithmetical hierarchy, which now lies flat and lifeless, although not all warmth has left its feet, as we saw in chapter 7.

9. THE HYPERARITHMETICAL HIERARCHY ESTABLISHED

We want to prove: for every $\sigma \in HI\$$: $\neg (A_{\sigma} \leq E_{\sigma}) \land \neg (E_{\sigma} \leq A_{\sigma})$ The first thing one thinks of when facing this problem, is some extension of the inductive argument by which the arithmetical hierarchy theorem was proved. But it turned out to be rather difficult to find this extension. We were brought to make some major changes in the original argument. First, we replaced the negative statements: $\neg (A_{\sigma} \leq E_{\sigma})$ and: $\neg (E_{\sigma} \leq A_{\sigma})$ by stronger conclusions, in which negation does not figure. Secondly, the proof of the new theorem is no longer inductive in the sense that it reduces the case σ to all cases $\tau, \tau < \sigma$. Rather, it consists in a schematical construction which has to be carried out from start to finish, for any σ anew. A minor change is that, henceforth, A_2 and E_2 will be considered as the most simple hyperarithmetical sets, and that A_1 and E_1 will be forgotten. The germ of the proof is to be found in chapter 9. (Chapter 7 had to make the same acknowledgement). We have to reveal the true richness of the results of chapter 3 and,

for this purpose, we introduce some new technical notions.

9.0 Let
$$\beta \in {}^{\omega}w$$
 be a spread, i.e.: β fulfils the condition:

 $\forall a[\beta(\alpha)=0 \not\supseteq \exists n[\beta(\alpha*<n>)=0] \land \beta(<>)=0.$

Spreads (subspreads of the universal spread: ω_w) have been mentioned before in 1.9. Let us recall the following definition:

For all $\alpha, \beta \in \omega_{\omega}$: $\alpha \in \beta$:= $\forall n [\beta(\overline{\alpha}n) = 0]$

When talking about a spread β , we often are thinking of the set $\{\alpha | \alpha \in \beta\}$.

For all $\beta \in {}^{\omega}w$ and $\alpha \in w$ we define a decidable subset K_{α}^{β} of w by:

$$k_{a}^{\beta} := \left\{ n \mid h \in W \mid \beta(a \times \langle n \rangle) = 0 \right\}$$

If p is a spread, the following holds true:

Va[β(a) = 0 2 ∃n[ne kß]]

Members of the spread $\{\alpha \mid \alpha \in \beta\}$ may be built up step by step in course of time. When during the construction of such a member we have got so far as the finite sequence a, the "choice set" k_{α}^{β} displays the natural numbers by which we may continue the finite sequence a.

In the following we will often meet with spreads p whose members a are thought of as being defined on finite sequences of natural numbers, rather than on natural numbers themselves.

Let $\beta \in {}^{\omega} w$ be a spread and $a \in w$. We want to call the finite sequence a free in β , if for every $\alpha \in \beta$, during the step-by-step-construction of a, we did not receive any restrictive injunction from β , as far as a_{α} was concerned. (We were left free to determine a value of α at the finite sequence a, and at any continuation of the finite sequence a) This is the exact definition: a is free in $\beta :=$ $\forall b \forall c [(\beta(b)=0 \land lq(b)=lq(c) \land \forall m < lq(b)[b(m)\neq c(m) \rightarrow m \leq \alpha]) \rightarrow \beta(c)=0]$ We remark that a is free in β if and only if: $\forall \alpha \forall \gamma [(\alpha \in \beta \land \forall m [\alpha(m) \neq \gamma(m) \rightarrow m \in \alpha]) \rightarrow \gamma \in \beta]$ We observe that, if a is free in B, then: $\forall n \ \forall m \left[\left(lg(n) = m \ \land \ m \subseteq a \ \land \ \beta(n) = 0 \right) \rightarrow \ K_n^{\beta} = \omega \right],$ The converse of this statement is not true in general. We define a binary predicate + on w by: For all a bew: $a + b := \neg (a \subseteq b) \land \neg (b \subseteq a)$ We remark that a is free in B if and only if: Va Vy [(deβ ∧ Vm [(a + m v a ⊆ m) → x(m] = y(m)]) → yeß] We also need the following concept: Let BEWw be a spread and a Ew. Then: a is almost free in $\beta := \exists p \forall n [n > p \rightarrow a * n is free in \beta]$ g.1. We will prove a suitable refinement of theorem 3.2. To this end, we introduce the subsets A_2^* and E_2^* of ω_{ω} , by the following. for all $\alpha \in W_{\omega}$: $A_{2}^{*}(\alpha) := \forall m \exists n [\alpha^{m}(n) \neq 0]$ for all $\alpha \in W : E_{2}^{*}(\alpha) := \exists m \forall n [\alpha^{m}(n) \neq 0]$ We observe: $\forall \alpha [\neg (A_2(\alpha) \land E_2^*(\alpha)) \land \neg (E_2(\alpha) \land A_2^*(\alpha))]$ When $\gamma, \beta \in {}^{\omega}\omega$ are spreads, γ is called a <u>subspread</u> of β if $\forall a [\gamma(a) = 0 \rightarrow \beta(a) = 0]$, or, equivalently, if $\forall \alpha \in \gamma [\alpha \in \beta]$. We will write j = B, occasionally 9.2 Theorem: Let $\beta \in {}^{\omega}w$ be a spread, $a, b \in w$, $\delta \in {}^{\omega}w$ such that: Fun(δ) and: (1) a is almost free in B (11) $\forall \alpha \in \beta \in A_2(\alpha_{\alpha}) \rightarrow E_2(\delta \mid \alpha)$] (11) $\beta(b) = 0$

We now may construct a subspread b' of b such that:

- (i) $\beta'(b) = 0$
- (11) $\forall \alpha \in \beta' [E_2^* (\alpha_{\alpha}) \land E_2(\delta|\alpha)]$
- (11) $\forall c [(c \downarrow a \land c \text{ is almost free in } \beta) \rightarrow (c \text{ is almost free in } \beta')]$

<u>Proof</u>: We have to relativize the proof of theorem 3.2 We determine pew such that: $\forall n[n > p \rightarrow (a * n \text{ is free in } \beta] \text{ and } p > lg(b)$ We assume our cooling of finite sequences of natural numbers (cf. 1.2) to be such that $\forall n[n < \langle n \rangle]$ Therefore, also the following holds: $\forall n[n > p \rightarrow (a * \langle n \rangle) \text{ is free in } \beta]]$ We now define $\exists \in {}^{\omega}w$ such that: $\exists n(z)$ and: for all $\gamma, \alpha \in {}^{\omega}w$ $\exists (\gamma, d) := \exists | \langle \gamma, \alpha \rangle$ fulfils these conditions:

> For all $m \in \omega$: $Z(y, \alpha)(m) = \alpha(m)$ if: $m \neq a$ or $a \leq m$, or m < lg(b)For all $n, m \in \omega$: $Z(y, \alpha) (a \leq n > m) = 0$ if: (n > m > m > n) = 0 $Z(y, \alpha) (a \leq n > m < m) = 0$ if: n > p and m = y(n) $Z(y, \alpha) (a \leq n > m < m) = \alpha (a \leq n > m < m)$

if:
$$n > p$$
 and $m \neq p(n)$

We remark: $\forall \gamma \forall \alpha [\alpha \in \beta \rightarrow (Z(\gamma, \alpha) \in \beta \land A_2(^{\alpha}Z(\gamma, \alpha)))]$ Therefore: $\forall \gamma \forall \alpha \in \beta [E_2(\delta | Z(\gamma, \alpha))]$ We choose some $\alpha^* \in \beta$ such that $\alpha^* \in b$ (i.e. $\overline{\alpha^*}(lq(b)) = b$), and some $\gamma^* \in {}^{\omega}\omega$ Applying to GCP (cf. 1.9), we determine $q \in \omega$, mew such that: q > p and $\forall \gamma \forall \alpha \in \beta [(\overline{\gamma}q = \overline{\gamma^*}q \land \overline{\alpha}q = \overline{\alpha^*}q) \rightarrow \forall n [(\delta | Z(\gamma, \alpha))^m (n) = 0]]$ We then define a subspread β' of β by saying: For all $\alpha \in \beta$: $\alpha \in \beta'$ if and only if: $\alpha \in b \land \overline{\alpha}q = \overline{Z(\gamma^* \alpha^*)} \circ \Lambda^{\alpha^* < q^*} = \beta'$

$$x \in \beta' \text{ if and only if: } \alpha \in b \land \overline{\alpha}q = \mathcal{Z}(r^*, \alpha^*)q \land^{\alpha^* < q^*} \alpha = \underline{1}$$
$$\land \forall n < q [\alpha^{* < n^*} \alpha = \alpha^{* < n^*} \mathcal{Z}(r^*, \alpha^*)]$$

We have to show that β' does everything we want it to do. Remark that $\forall \alpha \in \beta' [\alpha * < q^{\gamma} \alpha = 1]$, therefore: $\forall \alpha \in \beta' [E_{z}^{*}(\alpha \alpha)]$ On the other hand: $\forall \alpha \in \beta' [(\delta | \alpha)^{m} = Q]$ (and: $\forall \alpha \in \beta' [E_{z}(\delta | \alpha)]$)

In order to see this, one should realize: $\forall a [\beta'(a) = 0 \rightarrow \exists \gamma \exists \alpha \in \beta [\overline{\gamma}q = \overline{\gamma *}q \land \overline{\alpha}q = \overline{\alpha *}q \land \zeta(\gamma, \alpha) \in a]]$ Therefore: $\forall a[\beta'(a)=0 \rightarrow \exists a[a \in a \land (\delta \mid a)^m = Q]]$ Let dep' and consider bla Remark: $\forall n \exists m \forall \epsilon [\bar{\epsilon}m = \bar{\alpha}m \rightarrow (\delta|\epsilon)(n) = (\delta|\alpha)(n)]$ and: $\forall \alpha \in \beta' \forall n [(\delta | \alpha)^m (n) = 0]$ (As we put it in 3.2, it is the conscience-stricken nature of the imitative subject which brings triumph to the creative subject) The remaining properties of B' are obvious. \boxtimes We are going to prove a similar counterpart to theorem 3.3 We introduce the subset E_1^* of ${}^{\omega}\omega$ by: For all de "w. $E^*_{\alpha}(\alpha) := \exists n [\alpha(n) \neq 0]$ We remind the reader of the conjunctive projection operations which have been mentioned in chapter 4 (cf. 4.11) Let $P \subseteq {}^{\omega}w$ and new. The subset $C^n P$ of ${}^{\omega}w$ is defined by For all de ww $C^{n}P(\alpha) := \forall q < n [P(\alpha q)]$ 9.3 Theorem: Let $\beta \in {}^{\omega}w$ be a spread, $a, b, n \in w$, $\delta \in {}^{\omega}w$ such that: Fun(δ) and: (1) a is almost free in B (II) $\forall \alpha \in \beta [E_2(\alpha_{\alpha}) \rightarrow A_2(\delta | \alpha)]$ $(111) \quad \beta(b) = 0$ We now may construct a subspread b' of B such that: (1) a is almost free in B' (11) $\beta'(b) = 0$ (11) $\forall \alpha \in \beta' [C^n E_1^{*}(\alpha \alpha) \land C^n E_1(\delta | \alpha)]$ (IV) $\forall c [(c + a \land c \text{ is almost free in } \beta) \rightarrow (c \text{ is almost free in } \beta')]$ Proof: We use the same method as in the proof of theorem 3.3 The present situation is easier to handle, as we have set ourselves a more modest purpose.

We perform our task in a number of steps

First, determine $q_0 \in w$ such that $a * < q_0 > is$ free in β and $q_0 > lg(b)$ Determine $\alpha_0 \in \beta$ such that: $\alpha_0 \in b \land \alpha_* < 90^> \alpha_0 = Q$ Remark: $E_2(a_{\alpha_0})$, and determine p_0 such that $(\delta|\alpha_0)^{\circ}(p_0) = 0$ Also determine $n_0 \in W$ such that: $\forall \alpha \in \beta[\overline{\alpha}_0 n_0 = \overline{\alpha} n_0 \rightarrow (\delta | \alpha)^0 (p_0) = 0]$ We now construct $m_0 \in w$, $q_1 \in w$ and $\alpha_1 \in \beta$ such that: $\overline{\alpha}_1 n_p = \overline{\alpha}_0 n_0 \wedge \alpha_1 \in b$ $\alpha_{4}(a * < 0 > * < m_{2}) \neq 0$ $a * < q_1 > \alpha_1 = 0$ Remark: $E_{2}(\alpha_{\alpha_{1}})$, and determine $p_{1}, n_{1} \in W$ such that $n_{1} \ge n_{2}$ and $\forall \alpha \in \beta [\overline{\alpha}_1 n_1 = \overline{\alpha} n_1 \longrightarrow (\delta | \alpha)^1 (p_1) = 0], \text{ and } n_1 > \alpha * < 0 > * < m_0 > 0$ We continue this process for n steps In the end, we find a sequence $\alpha_n \in \beta$ and a number $k \in w$ such that: $\alpha_n \in b \land \forall \alpha \in \beta [\overline{\alpha}_n k = \overline{\alpha} k \rightarrow (\forall l < n [\alpha(\alpha * < l > * < m_p >) \neq 0]$ $\wedge \forall l < n [(\delta | \alpha)^{l} (p_{l}) = 07)7$ We define a subspread b' of b by saying: For all $\alpha \in \beta$: $\alpha \in \beta'$ if and only if $\alpha \in \beta \land \overline{\alpha}_n k = \overline{\alpha} k$. It is not difficult to see that b' fulfils all requirements \mathbf{X}

In comparison to theorem 9.2, theorem 9.3 does seem to have a rather weak conclusion. On the other hand, the finite sequence a which figures in theorem 9.3, has been kept almost free during its proof. It will be possible, for this reason, to apply theorem 9.3 several times at the same place.

9.4 We now prepare to attack the hyperarithmetical hierarchy. We made its acquaintance in chapter 8, but we redefine it, because it suits us to have it in a slightly different shape.

For each $\tau \in HI$$, we define subsets P_{τ} , Q_{τ} , P_{τ}^{*} , Q_{τ}^{*} of ω_{ω}

We do this by transfinite induction. As in chapter 8, we will write ① for $\{<>\}$

For all
$$\alpha \in {}^{\omega}\omega$$
:

$$P_{\mathfrak{Y}}(\alpha) := A_{\mathfrak{Z}}(\alpha) = \forall m \exists n [\alpha^{m}(n) = 0]$$

$$P_{\mathfrak{Y}}^{*}(\alpha) := \forall m \exists n [\alpha^{m}(n) \neq 0]$$

$$Q_{\mathfrak{Y}}(\alpha) := E_{\mathfrak{Z}}(\alpha) = \exists m \forall n [\alpha^{m}(n) = 0]$$

$$Q_{\mathfrak{Y}}^{*}(\alpha) := \exists m \forall n [\alpha^{m}(n) \neq 0]$$

For all te HI\$, $t \neq 0$, for all $\alpha \in {}^{\omega}\omega$:

$$P_{\tau}(\alpha) := \forall n [Q_{\tau^n}(\alpha^n)] \qquad P_{\tau}^{*}(\alpha) := \forall n [Q_{\tau^n}^{*}(\alpha^n)] Q_{\tau}(\alpha) := \exists n [P_{\tau^n}(\alpha^n)] \qquad Q_{\tau}^{*}(\alpha) := \exists n [P_{\tau^n}^{*}(\alpha^n)]$$

We remark: $\forall \tau \in HI \notin \forall \alpha [\neg (P_{\tau}(\alpha) \land Q_{\tau}^{*}(\alpha)) \land \neg (Q_{\tau}(\alpha) \land P_{\tau}^{*}(\alpha))]$

We resume a line of thought which we followed in chapter 7. We recognized $A_n(\alpha)$ and $E_n(\alpha)$ as boastful announcements of players, who were involved in a game on a tree of uniform height n. Likewise $P_{\tau}(\alpha)$ and $Q_{\tau}(\alpha)$ may be understood to say: "I (\forall resp. 3) am able to win the quantifier-game determined by α on the well-ordered stump τ , whatever the moves of my opponent!

This idea lies behind the following definition.

Let $r, \alpha \in {}^{\omega}\omega$. For each $\tau \in HI\$$ we will define sequences $\gamma \bowtie_{\tau} \alpha$ and $\gamma \bowtie_{\tau} \alpha$ in ${}^{\omega}\omega$. This is done by transfinite induction:

$$\gamma \bowtie_{\mathfrak{O}}^{\alpha} := \gamma \bowtie_{2}^{\alpha}$$

 $\gamma \bowtie_{\mathfrak{O}}^{\alpha} := \gamma \bowtie_{2}^{\alpha}$

 M_2 and M_2 are the intertwining functions which we defined in 7.0 We know, from 7.0.: $\forall \alpha [P_{\Theta}(\alpha) \rightleftharpoons \exists y [\alpha = y M_2 \alpha]]$

and:
$$\forall \alpha [Q_{\mathfrak{Q}}(\alpha) \rightleftharpoons \exists_{f} [\alpha = f \mathbf{Z}_{2} \alpha]]$$

Further, for each $\tau \in HI$ \$ such that $\tau \neq 0$, we define:

One more exercise in transfinite induction will learn: $\forall \alpha [P_{\tau}(\alpha) \neq \exists \gamma [\alpha = \gamma \bowtie_{\tau} \alpha]]$ and: $\forall \alpha [Q_r(\alpha) \neq \exists \gamma [\alpha = \gamma \boxtimes_r \alpha]]$ We forge a third weapon for the great battle: 9.5 Theorem: Let $\tau \in HI$, \tau \neq ①$ Let $\beta \in {}^{\omega}\omega$ be a spread, a, bew, $\delta \in {}^{\omega}\omega$ such that: Fun (δ) and: a is almost free in B (1) $\forall \alpha \in \beta \left[P_{T} \left({}^{\alpha} \alpha \right) \rightarrow Q_{T} \left(\delta \left[\alpha \right] \right] \right]$ (11) $\beta(b) = 0$ (111) We may construct a subspread β' of β and $n,m \in w$ such that. B'(b) = 0 (I) Q*<n> is free in B' (11) $\tau^n = \tau^m$ (II) $\forall \alpha \in \beta' \left[Q_{T^n} \left(\left(\alpha_{\alpha} \right)^n \right) \rightarrow P_{T^m} \left(\left(\delta \left[\alpha \right)^m \right) \right] \right.$ (17) $\forall c [(c + a \land c \text{ is almost free in } \beta) \rightarrow c \text{ is almost free in } \beta']$ (v) <u>Proof</u>: We determine pew such that $\forall n [n > p \rightarrow (a * n \text{ is free in } p)] and p>lg(b)$ We define $Z \in {}^{\omega}w$ such that: Fun(Z) and: for all $\gamma, \alpha \in {}^{\omega}w$ the sequence Z(r,a):= Z < r,a> fulfils the following conditions: $Z(y, d) \in b$, if $d \in b$ and, for all m, new: $\zeta(\gamma, \alpha)(m) := \alpha(m)$ if $m + \alpha$ or $\alpha \leq m$ Z(r, x) (a*<n> *m) := 0 if <n> *m >p and n≤p $\zeta(\gamma, \alpha) (\alpha * < n > * m) := (\gamma \bowtie_{\tau}^{\alpha} \alpha) (< n > * m), \text{ if } n > p$ Remark: $\forall n \leq p \exists l \forall m [m > l \rightarrow Z(y,a) (a * < n > * m) = 0]$ and: $\forall n > p \left[\left(a \zeta(y_{1}\alpha) \right)^{n} = \left(\chi p \alpha_{n}^{\alpha} \alpha \right)^{n} \right].$ Therefore: $\forall \forall \forall a [P_{\tau}(a z(y, a))], and: \forall \forall \forall a [z(y, a) \in B \rightarrow Q_{\tau}(\delta | z(y, a))]$ Observe, however, that: Yr Va [a = B -> Z(y,a) = B] We choose some $x \in \beta$ such that $x \in b$, and some $y \in w_w$. Applying to GCP, we determine q, mew such that:

> $q > lg(b) \land \forall \forall \forall \alpha \in \beta [(\bar{\gamma}q = \bar{\gamma}^{+}q \land \bar{\alpha}q = \bar{\alpha}^{+}q) \rightarrow P_{Tm}((\delta | Z(\gamma, \alpha))^{m})]$ We calculate new such that: n > q, n > p and: $\tau^{n} = \tau^{m}$ (Here we do need the fact that τ is hereditarily iterative)

Ø

Theorem 9.5 will prove its worth as part of our inductive argument. Like theorem 9.2, it has a (dual) companion, but this is too easy to be formulated as a theorem. If we are in a situation where $Q_{\tau}(a_{\lambda}) \rightarrow P_{\tau}(\delta | a|)$, we immediately see: $\forall n \forall m [P_{\tau n} ((a_{\lambda})^n) \rightarrow Q_{\tau m} ((\delta | a)^m)]$

9.6 There are still a few technical notions to be mentioned.

Let a ew and lg(a) > 0. Pol(a) (predecessor of a) is to be the code number of the finite sequence, which we get by omitting the last number from the finite sequence whose code number is a.

Therefore, for each a such that lg(a) > 0: $a = Pd(a) * < a_{lg(a)-1} > Pd(<>) = Pd(0)$ will be undefined.

Let $\tau \in \$$, and $\alpha \in \tau$. We call a an endpoint of τ if no proper extension of a does belong to τ , i.e. if $\neg \exists n [\alpha * < n > \in \tau]$ For any $\tau \in \$$, the collection $\{a | a \in w\} | a$ is an endpoint of $\tau \$$ is a decidable subset of w.

One could define the notion of "endpoint of τ " by transfinite induction, as follows: (We write. End (τ) for the collection of endpoints of τ)

(1) End (1) = End (
$$\{<>\}$$
) = $\{<>\}$ and: End (ϕ) = ϕ
(1) If $\tau > 0$: End (τ) = $\bigcup_{n \in U} * End (τ^n)$

This finishes our preparations. We take a long breath and summon up our courage:

- 9.7 <u>Theorem</u>: (Hyperarithmetical Hierarchy Theorem, First Part) Let $\tau \in HI$ and $\delta \in {}^{\omega}\omega$ such that: Fun(δ) and: $\forall \alpha [P_{\tau}(\alpha) \rightarrow Q_{\tau}(\delta | \alpha)]$. We may construct $\zeta \in {}^{\omega}\omega$ such that: $Q_{\tau}^{*}(\zeta)$ and $Q_{\tau}(\delta | \zeta)$.
 - <u>Proof</u>: The proof is divided into several paragraphs. We will spend a lot of words on giving a synopsis of our intentions, before going to work
- 9.70 We plan to define a decidable subset W of τ such that: (i) < $\tau \in W$.
 - (11) $\forall a[(a \in W \land lg(a) \text{ is even } \land a \text{ is no endpoint of } \tau) \rightarrow \exists ! n[a * < n > \in W]]$ (11) $\forall a[(a \in W \land lg(a) \text{ is odd } \land a \text{ is no endpoint of } \tau) \rightarrow \forall n[a * < n > eW]]$

The set W represents a strategy for the first player in a quantifiergame on the well-ordered stump τ . It will be the strategy which the statement $Q_{\tau}^{*}(3)^{\prime\prime}$ asserts to exist.

- At the same time, we will build a function $H: W \rightarrow \tau$, such that: (1) $H(\langle \rangle) = \langle \rangle$ (11) $\forall a \in W [a_{\tau} = H(a)_{\tau}]$
 - (111) $\forall a \in W[(lg(a) \text{ is even } n \text{ } a \text{ is no endpoint of } \tau) \rightarrow \exists n \exists p [H(a * < n >) = H(a) *]$ (11) $\forall a \in W[(lg(a) \text{ is odd } n \text{ } a \text{ is no endpoint of } \tau) \rightarrow \forall n [H(a * < n >) = H(a) * < n >]$

The function H carries positions of τ which belong to W, into structurally equivalent positions of τ . (As τ is hereditarily iterative, there are, at every turn, many such positions). The range of the function H again represents a first-player-strategy on τ . This strategy will speak for the truth of: $Q_{\tau}(\delta|Z)$. (We assumed familiarity with the logical convention that " \exists !" stands for: "there exists exactly one...").

^{9.71} In the following we will have to consider all natural numbers, in their natural order, decoding them into finite sequences of natural numbers. (Cf. 1.2).

	We assume our coding of finite sequences to be "regular", in the following sense of the word:
	(1) ∀m ∀n ∀p[n < m* <p> ∧ <n> * m < <p>* * m)] (11) ∀m ∀n [m ≤ m * n]</p></n></p>
	The latter condition has already been mentioned in 1.2.
9.72	The sequence ζ will be made step-by-step. We will form a sequence β_0, β_1, \dots of subspreads of w_w , such that: ${}^{w}w = \beta_0 \ge \beta_1 \ge \dots$ Each time, having defined β_k , we also determine a next value for ζ , viz. $\zeta(k)$, and ensure: $\beta_k(\overline{\zeta}Sk) = 0$ In the end, we have: $\forall k [\zeta \in \beta_k]$
g . 73	The constructions of W , H and β_0, β_1, \dots do connect. They will be made such, that for all $k, q, n \in w$:
	(1) If $k = \langle 0 \rangle * a$ and $a \in W$ and $lg(a)$ is even and a is not an endpoint of τ , then: $\forall \alpha \in \beta_k [P_{\alpha_\tau}({}^{\alpha_{\alpha}}) \rightarrow Q_{\alpha_\tau}({}^{H(\alpha)}(\delta \mid \alpha \mid))]$
	(11) If $k = \langle 0 \rangle *a$ and $a \in W$ and $lg(a)$ is odd and a is not an endpoint of r , then:
	$\forall \alpha \in \beta_{k} \left[Q_{\alpha_{\tau}} \left(a_{\alpha} \right) \rightarrow P_{\alpha_{\tau}} \left(H(\alpha) \left(\delta[\alpha] \right) \right] \right]$
	(111) If $k = \langle 0 \rangle *a$ and $a \in W$ and $lg(a)$ is even and
	a is an endpoint of τ , then: $\forall \alpha \in \beta_{k} [E_{2}^{*}(\alpha_{\alpha}) \land E_{2}(H(\alpha)(\delta(\alpha))]$
	(iv) If $k = \langle n \rangle * a$ and $a \in W$ and $lg(a)$ is odd and
	a is an endpoint of τ , then: $\forall \alpha \in \beta_k \left[C^n E_1^*(\alpha_\alpha) \land C^n E_1(H(\alpha)(\delta \alpha)) \right]$
9.74	Once these things come true, we establish: $\forall a \in W \left[(lg(a) \text{ is even } \rightarrow Q_{a_r}^* (a_z) \land Q_{a_r} (H(a)(\delta z)) \right] \land (lg(a) \text{ is odd } \rightarrow P_{a_r}^* (a_z) \land P_{a_r} (H(a)(\delta z))) \right]$

and therefore, as <> $\in W$: $Q_{\tau}^{*}(3) \wedge Q_{\tau}(\delta|3)$

This is done by transfinite induction. The principle sustaining this part of the argument, runs as follows:

> Let $\tau \in \$$ and $R \subseteq \tau$ If: $\forall a [a \text{ is endpoint of } \tau \rightarrow R(a)]$ and: $\forall a [\forall n [R(a * < n >)] \rightarrow R(a)]$ then: $\forall a \in \tau [R(a)]$, especially : R(< >)

9.75

9.76

The construction of W and H will not be done in advance, at one stroke, but will proceed stepwise, and intertwine with the construction of $\beta_0, \beta_1,...$ We should be careful that, for any $a \in \tau$, the decision about a's belonging to W, and, if necessary, the determination of H(a), have been passed before we come to stage $k = \langle 0 \rangle * a$, in which β_{k} has to be created. We settle these things, for each $a \in \tau$, if lg(a) is odd, at stage $\langle 0 \rangle * Pd(a)$, and, if lg(a) is even, even earlier, viz. at stage $\langle 0 \rangle * Pd(Pd(a))$

In our construction, active stages will occur along with inactive ones. At an inactive stage k+1, β_{k+1} is simply put equal to β_k . At an active stage k+1, one of the following cases applies:

- (1) $k+1 = \langle 0 \rangle * a$, where $a \in W$, lg(a) is even, and a is not an endpoint of τ . The formation of β_{k+1} is left to theorem 9.5.
- (11) $k+1 = \langle 0 \rangle *a$, where $a \in W$, lg(a) is even, and a is

The formation of β_{k+1} is left to theorem 9.2.

an endpoint of t

(111) $k+1 = \langle n \rangle * a$, where $a \in W$, lg(a) is odd, and a is an endpoint of τ

The formation of β_{k+1} is left to theorem 9.3.

Turn and again, the work is to be done by theorems 9.2, 9.3 and 9.5. They will not object, if Only we ensure that,

for all $k, a, n \in w$: if $k+1 = \langle n \rangle * a$ is an active stage, then a is almost free in β_k . This necessitates some retrospection. Careful reading of theorems

g.2, g.3 and g.5 learns, that a cannot have lost its almostfreedom at any stage <m>*c < k+1, where c ta. In each of the three abovementioned cases we go back to a critical preceding stage:

- (1)-(11) $k+1 = \langle 0 \rangle *a$, where $a \in W$ and lg(a) is even. The critical preceding stage is: $\langle 0 \rangle *Pd(Pd(a))$ We will see that, at this stage, $Pd(a) \in W$ has been chosen such that: Pd(a) is free in $\beta_{\langle 0 \rangle} *Pd(Pd(a))$ Therefore, a itself enjoyed freedom at this stage. The only possible stage at which a might have lost its almost-liberty, is: $\langle 0 \rangle *Pd(a)$, but there was no activity, then.
- (111) $k+1 = \langle 0 \rangle *a$, where $a \in W$, lg(a) is odd and a is an endpoint of τ . The critical preceding stage is: $\langle 0 \rangle *Pd(a)$. Going back, we will have to observe: $a \in W$ has been chosen such that: a is free in $\beta_{\langle 0 \rangle *Pd(a)}$. Therefore, a still is almost free in β_{k} .
 - (111)" $k+1 = \langle Sn \rangle *a$, where $n \in w$, $a \in W$, lg(a) is odd and a is an endpoint of τ . The critical preceding stage is: $\langle n \rangle *a$. An examination of theorem 9.3 who made the activity at that stage, allays our fears: a is almost free in $\beta_{\langle n \rangle *a}$, and so it is in β_k .

9.77 We now describe the construction. At each stage k, β_k and Z(k) will be defined. Moreover, if $k = \langle 0 \rangle * a$, and $a \in W$ and lg(a) is even, and a is no endpoint of τ , we decide, for all finite sequences c, such that: $c \subseteq a$ and (lg(c) = lg(a) + 1 or: lg(c) = lg(a) + 2), whether c belongs to W, and we define the function H for all finite sequences which are admitted into W,

Stage 0: We proclaim: $\beta_0 := {}^{\omega}w$ and $\zeta(0) := 0$ and $\langle \rangle \in W$ and $H(\langle \rangle) := \langle \rangle$ We know: $\forall \alpha \in \beta_0 [P_{\langle \gamma_{\mathcal{T}}}({}^{\langle \gamma_{\alpha} \rangle}) \rightarrow Q_{\langle \gamma_{\mathcal{T}}}(H(\langle \rangle)(\delta | \alpha |))]$

Stage k+1: We distinguish several cases:

- (1) $k+1 = \langle 0 \rangle *a$, where $a \in W$, lg(a) is even and a is not an endpoint of τ . We may assume:
 - (i) a is almost free in $\beta_{\mathbf{k}}$ (ii) $\forall \alpha \in \beta_{\mathbf{k}} [P_{a_{\mathbf{r}}}(a_{\mathbf{d}}) \rightarrow Q_{a_{\mathbf{r}}}(H(\alpha)(\delta|\alpha|)]$ (iii) $\beta_{\mathbf{k}}(\overline{\zeta}(\mathbf{k}+1)) = 0$

Applying theorem 9.5 we construct a subspread β_{k+1} of β_k , and $n, m \in w$ such that:

(i) $\beta_{k+1} (\overline{Z}(k+1)) = 0$ (ii) $a \leq n \leq i$ free in β_{k+1} (iii) $a \leq n \geq \tau = a \leq n \geq \tau$ (iv) $\forall \alpha \in \beta_{k+1} [Q_{a \leq n \geq \tau} (a \leq n \geq \alpha) \rightarrow P_{a \leq n \geq \tau} (H(a) \leq n \geq (\delta \mid \alpha))]$ (v) $\forall c [(c \neq a \land c is almost free in \beta_k] \rightarrow (c is almost free in \beta_{k+1})]$

We extend the definitions of the set Wand the function H by:

$$\frac{\forall c[(c \leq a \land lg(c) = lg(a) + 1] \rightarrow (c \in W \neq c = a * < n >)]}{and: H(a * < n >) := H(a) * < m >}$$

If $a \le n > is$ an endpoint of τ , there is no more to be said. If not, we add:

Remark that W may approve of its new members, because, in view of (iv):

 $\begin{aligned} & \forall c \left[\left(c \leq a \land lg(c) = lg(a) + 2 \right) \to \forall a \in \beta_{k+1} \left[P_{c_{\mathcal{T}}}(c_{\alpha}) \to Q_{c_{\mathcal{T}}}(\mathsf{H}^{k})(\delta(a)) \right] \\ & \text{We finish the activities of this stage by determining } \zeta(k+1) \\ & \text{such that}: \quad \beta_{k+1} \left(\overline{\zeta}(k+2) \right) = 0. \end{aligned}$

- (11) $k+1 = \langle 0 \rangle * a$, where $a \in W$, lg(a) is even and a is an endpoint of τ . Now: $a\tau = H(a)\tau = \{\langle \rangle\} = (1)$ and: $Pa_{\tau} = A_2$ and: $Qa_{\tau} = E_2$. We may assume: (1) a is almost free in β_k . (ii) $\forall \alpha \in \beta_k [A_2(a_{\alpha}) \rightarrow E_2(H(a)(\delta(\alpha))]]$. (iii) $\beta_k (\overline{\zeta}(k+1)) = 0$. Applying theorem 9.2 we construct a subspread β_{k+1} of β_k such that: (i) $\beta_{k+1} (\overline{\zeta}(k+1)) = 0$. (ii) $\forall \alpha \in \beta_{k+1} [E_2^*(a_{\alpha}) \land E_2(H(a)(\delta(\alpha))]]$. (iii) $\forall \alpha \in \beta_{k+1} [E_2^*(a_{\alpha}) \land E_2(H(a)(\delta(\alpha))]]$. (iii) $\forall c [(c \neq \alpha \land c is almost free in <math>\beta_k) \rightarrow (c is almost free in <math>\beta_{k+1})]$. We finish by determining $\overline{\zeta}(k+1)$ such that $\beta_{k+1}(\overline{\zeta}(k+2)) = 0$.
- (111) $k+1 = \langle n \rangle * a$, where $a \in W$, lq(a) is odd, and a is an endpoint of τ .

We may assume:

(i) a is almost free in β_k . (ii) $\forall \alpha \in \beta_k [E_2(\alpha_{\alpha}) \rightarrow A_2(H(\alpha)(\delta | \alpha))].$ (iii) $\beta_k (\overline{\zeta}(k+1)) = 0.$

Applying theorem 9.3 we construct a subspread β_{k+1} of β_k such that:

(i) a is almost free in β_{k+1}
(ii) β_{k+1} (3(k+1)) = 0
(iii) ∀α∈β_{k+1} [CⁿE^{*}₁(^aα) ∧ CⁿE₁(^{H(a)}(δ|α])]
(iv) ∀c[(c+a ∧ c is almost free in β_k) → (C is almost free in β_{k+1})]
Our last activity is to determine Z(k+1) such that β_{k+1}(3(k+2))=0.

(iv) If we are not in case (1)-(11)-(11), stage k+1 is an inactive stage. In order not to fall asleep completely, we perform two simple actions: we put $\beta_{k+1} := \beta_k$ and choose Z(k+1)such that : $\beta_{k+1} (\overline{Z}(k+2)) = O$. This concludes the description of our main construction, and ends the proof of theorem 9.7.

 \boxtimes

9.8 We do not want to leave theorem 9.7 alone in paradise. It will be but a minor effort to give it a companion.

We remark that, for each $\tau \in HI\$$, the class Π°_{τ} is closed under the operation of countable intersection, i.e.: if Q_0, Q_1, \dots is a sequence of elements of Π°_{τ} , then $\bigcap Q_m$ again belongs to Π°_{τ} . This follows from theorem 8.7, by a not too difficult argument, based on AC_{01} . Hence we are able to find, for each $\tau \in HI\$$, $\eta \in Ww$ such that $Fun(\eta)$ and $\forall x [\forall n [P_{\tau}(\alpha^n)] \neq P_{\tau}(\eta | \alpha)]$.

We introduce a successor-function S on HI\$ by: For all r∈HI\$ ∀n[(Sr)ⁿ = r]. Referring once more to the previous chapter, esp. theorem D.6, we observe:

 $\tau < S\tau$ and $\Pi^{\circ}_{\tau} \subseteq \Sigma^{\circ}_{\tau}$ and $\Sigma^{\circ}_{\tau} \subseteq \Pi^{\circ}_{s\tau}$

9.9 Theorem: (Hyperarithmetical Hierarchy Theorem, Second Part).

Let $\tau \in HI$ \$ and $\delta \in Ww$ such that: Fun(δ) and: $\forall \alpha [Q_{\tau}(\alpha) \rightarrow P_{\tau}(\delta | \alpha)]$. We may construct $z \in Ww$ such that: $P_{\tau}^{*}(z)$ and $P_{\tau}(\delta | z)$.

<u>Proof</u>: Let $\tau \in HI$ \$ and $\delta \in W$ be such that: Fun(δ) and: $\forall \alpha [Q_{\tau}(\alpha) \rightarrow P_{\tau}(\delta | \alpha]]$ Remark: $\forall \alpha [P_{s\tau}(\alpha) \rightarrow \forall n [Q_{\tau}(\alpha^n)], and, therefore:$

 $\forall \alpha [P_{s_{\tau}}(\alpha) \rightarrow \forall n [P_{\tau}(\delta(\alpha^{n})]]$

Let $\eta \in {}^{w}w$ be such that: Fun (η) and: $\forall \alpha [\forall n [P_{T}(\alpha^{n})] \neq P_{T}(\eta | \alpha)]$. Let $\delta' \in {}^{w}w$ be such that: Fun (δ') and: $\forall \alpha \forall n [(\delta'|\alpha)^{n} = \delta | \alpha^{n}]$. We observe : $\forall \alpha [P_{ST}(\alpha) \rightarrow P_{T}(\eta | (\delta'|\alpha))]$. Let $\varepsilon \in {}^{w}w$ be such that: Fun (ε) and : $\forall \alpha \forall n [(\varepsilon | \alpha)^{n} = \eta | (\delta' | \alpha)]$ We observe : $\forall \alpha [P_{ST}(\alpha) \rightarrow Q_{ST}(\varepsilon | \alpha)]$. Applying theorem 9.7 we find $\zeta' \in {}^{w}w$ such that: $Q_{ST}^{*}(\zeta)$ and: $Q_{ST}(\varepsilon | \zeta')$ Determine $m \in w$ such that $P_{T}^{*}((\zeta')^{m})$ and remark: $P_{T}(\eta | (\delta' | \zeta'))$, therefore: $\forall n [P_{T}((\delta' | \zeta')^{n})]$, and: $\forall n [P_{T}(\delta | (\zeta')^{n})]$, especially: $P_{T}(\delta | (\zeta')^{m})$. The sequence $\zeta = (\zeta')^{m}$ is a good sequence, indeed. 9.10 Theorems 9.7 and 9.9 do solve many problems.

We may define a function $*: \omega \setminus \{0, 1\} \rightarrow HI \$$ by:

$$2^* := (1) = \{ < > \}$$

 $(Sn)^* := S(n^*)$

We observe: $\forall n > 1 [A_n \leq P_{n*} \leq A_n \text{ and } E_n \leq Q_{n*} \leq E_n],$

In this way, the arithmetical hierarchy theorem (theorem 7.3) is seen to follow from the hyperarithmetical hierarchy theorem, and proves to admit of a stronger formulation than it has been given in chapter 7.

We may define subsets K, L of ww by:

For all $\alpha \in \omega_{\omega}$: $K(\alpha) := \forall n [A_n(\alpha^n)]$ For all $\alpha \in \omega_{\omega}$: $L(\alpha) := \exists n [A_n(\alpha^n)]$

The question whether K and L are reducible to each other, seemed one of the first problems to try one's force on, after the arithmetical hierarchy had been established.

After some reflection, one comes to suspect: $\neg (k \le L)$ and $\neg (L \le k)$, and, indeed, it is not difficult to see that: $\neg (k \le L)$

On the other hand, the proof of: $\neg(L \leq k)$ took blood, sweat and teams. Actually, it is a consequence of the hyperarithmetical hierarchy theorem: Let us define w* in HI\$ by:

For all $n, m \in \omega$: $\omega * \leq n, m \neq := n^*$

 $(\leqslant \)$ is the pairing function, introduced in 8.4) Then: $K \leq P_{u,*} \leq K$ and: $L \leq Q_{u,*} \leq L$

As another consequence of the hyperarithmetical hierarchy theorem, we have, that, for each $\tau \in HI\$$, Π°_{τ} is <u>not</u> closed under the operation of countable union, and Σ°_{τ} is <u>not</u> closed under the operation of countable intersection.

Perhaps because of breathing deeply the thin air of higher mathematics, we are feeling slightly exphanic

ID. ANALYTICAL AND CO-ANALYTICAL SETS We introduce Σ_1^1 , the class of analytical sets, and verify that all hyperarithmetical sets are analytical. We remark that the class of <u>strictly</u> analytical sets, i.e. sets which are the range of a total (and therefore continuous) function on www, is a proper subclass of Σ_1^1 , as not even all hyperarithmetical sets are strictly analytical. This is a pity, because strictly analytical sets are the things people liked to have of old, indeed, they are none other than Brouwer's dressed spreads. In the definition of Π_1^2 , the class of ∞ -analytical sets, no reference is made to negation. The symmetry of the classical picture is utterly lost: 2° already fails to be included in Π_1^1 . A very annoying question remains, whether Π_1^1 is included in Σ_1^1 We are not able to answer this. 10.0 We define a subset E1 of ^ww by: For all $d \in {}^{\omega} \omega$: $E_{1}^{1}(\alpha) := \exists \gamma \forall n [\alpha(\bar{\gamma}n) = O]$ We define a class Σ_1^1 of subsets of ω_{ω} by: For every subset P of w_w : PEZ¦ Z P≤E1 This last definition one may feel hesitant to accept, in the absence of a general notion of , subset of ${}^{\omega}\omega''$ But other characterizations of \mathbb{Z}_1^1 will follow and enable us to survey the whole of its members. The difficulty then evaporates, like it did in the case of Σ_1^0 and other classes of the (hyper) arithmetical hierarchy. (Cf. 6.0 and 1). 10.1 Theorem: Let P⊆^ww $P \in \Sigma_1^*$ if and only if there exists a decidable subset A of w such that $\forall \alpha [P(\alpha) \supseteq \exists \gamma \forall n [< \alpha n, \gamma n > e A]]$ Proof: (1) Suppose P≤E1, i.e.: Va∃B[P(a) Z E1(B)]. Using AC11, determine $\delta \in {}^{\mathsf{w}} \mathsf{w}$ such that : $\operatorname{Fun}(\delta)$ and : $\forall \alpha \in \mathsf{P}(\alpha) \rightleftharpoons \mathsf{E}_{2}^{1}(\delta | \alpha)$] Define a decidable subset A of w by: For all new: neA \neq $\exists a \exists c [n = \langle a, c \rangle \land lg(a) = lg(c) \land$ $\forall d \ \forall b \left[(a \leq b \land c \leq d \land \delta^d(b) \neq 0 \land \forall e \left[(b \leq e \land b \neq e) \rightarrow \delta^d(e) = 0 \right] \right)$

 $\rightarrow \delta^{d}(b) = 1$

Now, ∀a[∃j ∀n[(δla)(jn)=0] Z ∃j ∀n[<ān,jn> eA] Therefore, A fulfils the requirements. (11) Let A be a decidable subset of w such that: ∀a[P(a) Z ∃j∀n[<ān,jn>eA] Determine δe^ww such that Fun(δ) and: For all ae^ww and cew: (δ|a)(c) = 0 Z ∀n < lg(c)[<ān, cn> eA] (cn is the code number of the finite sequence of length n, which is an initial part of the finite sequence coded by c. This notation has been established in 7.0). Remark: ∀a[P(a) Z E1(δ|a)], therefore: P≤E1. ⊠

10.2 We again (as in 7.0) extend a notational convention which we introduced in chapter 1, from infinite sequences to finite sequences.

For all $m, c \in w$: $c^m :=$ the code number of the m-th subsequence of the finite sequence coded by c.

Therefore, for all $m, c, k \in w$, $c^m(k)$ is defined if and only if (m > k < lg(c)) and:

 $C^{m}(k) := c(\langle m \rangle * k)$ for all k such that $\langle m \rangle * k \langle lg(c)$

This notation could give rise to confusion with ordinary exponentiation, but we hope it will not do so, as exponentiation will not occupy us any more (Having figured in chapter 3, it may sink into oblivion).

We remind the reader of another definition which appeared in 7.0:

For all n, c
$$\in$$
 w such that $n \leq lq(c)$
 $\overline{c}n := \overline{c}(n) :=$ the code number of that finite sequence of length n
which is an initial part of the finite sequence coded by c.

10.3 Theorem: Let
$$P_0, P_1, P_2, \dots$$
 be a sequence of subsets of ${}^{\omega}\omega$.
If $\forall m[P_m \in \Sigma_1^1]$, then: $\bigcup_{m \in W} P_m \in \Sigma_1^1$ and $\bigcap_{m \in W} P_m \in \Sigma_1^1$

- <u>Proof</u>: Using theorem 10.1, determine a sequence $A_0, A_1, A_2, ...$ of decidable subsets of w such that: $\forall m \forall \alpha [P_m(\alpha) \supseteq \exists \gamma \forall n [< \overline{\alpha}n, \overline{\gamma}n > \in A_m]$ (1) Define a subset A of w by: For all bew: $b \in A \rightleftharpoons \exists m \exists t \exists a \exists c [b = \langle a * \langle t \rangle, \langle m \rangle * c \rangle \land lg(a) = lg(c) \land \langle a, c \rangle \in A_m]$ Then: UB[beAv -(beA)] and: UmUa[Pm(a)= Jy[y(0)=m ~ Un[<an, yn>eA]]] Therefore: $\forall \alpha [\exists m [P_m(\alpha)] \neq \exists \gamma \forall n [< \overline{\alpha} n, \overline{\gamma} n > \in A]]$ $\bigcup_{m \in \omega} P_m \in \Sigma_1^1$ and: (11) Define a subset A of w by: For all bew: be A \Rightarrow $\exists a \exists c [b = \langle a, c \rangle \land lg(a) = lg(c) \land \forall n \forall m [n < lg(c^m) \rightarrow \langle \overline{a}n, \overline{c^m}n \rangle \in A_m]]$ Then: Vb[beAv¬(beA)] and: $\forall \alpha \forall \gamma [\forall n [< \alpha n, \overline{\gamma} n > \in A] \supseteq \forall n \forall m [< \alpha n, \overline{\gamma}^m n > \in A_m]]$ Therefore $(by AC_{01})$: $\forall \alpha [\forall m [P_m(\alpha)] \neq \exists \gamma \forall n [< \alpha n, \overline{\gamma} n > \in A]]$ and: $\bigcap_{m \in \omega} P_m \in \Sigma_1^1$ \boxtimes
- 10.4 The property of 21, which came to light in theorem 10.3 is a beautiful one, and worthy of paraphrase.

Let $P \subseteq \omega_{\omega}$ We define subsets $E_{X}(P)$ and $U_{n}(P)$ of ω_{ω} by: For all $\alpha \in \omega_{\omega}$: $E_{X}(P)(\alpha) := \exists m[P(\alpha^{m})]$ For all $\alpha \in \omega_{\omega}$: $U_{n}(P)(\alpha) := \forall m[P(\alpha^{m})]$. P is called <u>existentially saturated</u> if: $E_{X}(P) \leq P$ P is called <u>universally saturated</u> if: $U_{n}(P) \leq P$ Theorem 10.3 shows that E_{1}^{*} is both existentially and universally saturated. We may gather, from theorem $\vartheta.7$, that, for each $\sigma \in HI\$$, the set A_{σ} is universally saturated, and the set E_{σ} is existentially saturated. Imagine P to be a subset of ω_{ω} which is both universally and existentially saturated, such that $A_{1} \leq P$ and $E_{1} \leq P$. Induction shows, that, for every $G \in HI\$$: $A_{\sigma} \leq P$ and $E_{\sigma} \leq P$. Thus we learn, from the hyperarithmetical hierarchy theorem (theorems 9.7 and 9.9), that, for each $\sigma \in HI\$$, the set A_{σ} is <u>hot</u> the set E_{σ} is <u>not</u> universally saturated. Moreover, as for each $\sigma \in HI\$$, $A_{\sigma} \leq E_{1}^{1}$ and $E_{\sigma} \leq E_{1}^{1}$, E_{1}^{1} itself is not reducible to any set A_{σ} or E_{σ} , E_{1}^{1} is <u>not</u> hyperarithmetical. This is another consequence of the hyperarithmetical hierarchy theorem.

10.5 Theorem: Σ_1^1 contains a universal element

Proof: Define the subset U of ^{w}w by: For all $\alpha \in ^{w}w$: $U(\alpha) \notin \exists \gamma \forall n [\alpha^{1}(\langle \overline{\alpha_{0}}, \overline{j}n \rangle) = 0]$ and note that U belongs to Σ_{1}^{1} Let $P \subseteq ^{w}w$ and $P \in \Sigma_{1}^{1}$. Following theorem 10.1 determine a decidable subset A of w such that: $\forall \alpha [P(\alpha) \notin \exists \gamma \forall n [\langle \overline{\alpha}n, \overline{j}n \rangle \in A]]$. Determine $\beta \in ^{w}w$ such that: $\forall n [\beta(n) = 0 \notin n \in A]$. Then: $\forall \alpha [P(\alpha) \notin \exists \gamma \forall n [\beta(\langle \overline{\alpha}n, \overline{j}n \rangle) = 0]]$, i.e.: $\forall \alpha [P(\alpha) \notin U(\langle \alpha, \beta \rangle)]$.

It is easy, though not exciting, to exhibit, by diagonalizing, a subset of ${}^{\omega}\omega$ which does not belong to Σ_1^4 . Our mind is exercised more by the question whether a set outside Σ_1^4 may be found, in whose definition no mention is made of negation.

In 3.1 we defined, for each
$$\delta \in \omega_{\omega}$$
, a subset $Ra(\delta)$ of ω_{ω} by
 $Ra(\delta) := \{ \alpha | \alpha \in \omega_{\omega} \mid \exists \beta [\delta: \beta \mapsto \alpha] \}$.

 Σ_1^* may be characterized as follows:

10.6 Theorem: Let Pc www.

 $P \in \Sigma'_{1} \not\supseteq \exists \delta [P = Ra(\delta)].$

 $\frac{\operatorname{Proof}_{:}(1)}{\operatorname{Suppose}} \stackrel{P \in \Sigma_{1}^{*}}{\operatorname{Suppose}} \stackrel{Using theorem 10.1, determine a decidable subset}{\operatorname{A of } \omega \operatorname{such that}_{:} \forall \alpha [P(\alpha) \neq \exists \gamma \forall n [< an, \overline{\gamma}n_{7} \in A]]}.$ $\operatorname{Determine } \delta \in {}^{\omega} \omega \quad \operatorname{such that}_{:} \quad \delta(< >) = 0 \quad \operatorname{and}_{:}$ $\operatorname{For all } n, b \in \omega:$ $\delta^{n}(b) := b^{\circ}(n) + 1 \quad \text{if } n < lg(b^{\circ}) \text{ and } n < lg(b^{1})$ $\operatorname{and} < \overline{b^{\circ}(n+1)}, \overline{b^{1}(n+1)} > \in A$ $:= 0 \quad \text{otherwise}.$ $\operatorname{Remark that}: \forall \alpha \forall \beta [\delta: \beta \mapsto \alpha \neq \alpha = \beta^{\circ} \land \forall n [< \overline{\beta^{\circ}}n, \overline{\beta^{1}}n > \epsilon A]]$

Therefore $\forall \alpha [P(\alpha) \rightleftharpoons \exists \beta [\delta: \beta \mapsto \alpha], i.e.: P = Ra(\delta)$ (11) Let $\delta \in W \omega$ and consider $P := Ra(\delta)$ Remember, from 1.6, that for all $\beta, \alpha \in {}^{\omega}\omega$: $\delta: \beta \mapsto \alpha$ $\Rightarrow \forall h \exists m [\delta^n(\beta m) = \alpha(n) + 1 \land \forall k < m [\delta^n(\beta k) = 0]$ According to ACo, that is to say, that for all B, a E www. $\delta: \beta \mapsto \alpha \quad \rightleftharpoons \quad \exists \zeta \forall n \left[\delta^{n}(\overline{\beta}(\zeta(n))) = \alpha(n) + 1 \quad n \quad \forall k < \zeta(n) \left[\delta^{n}(\overline{\beta}k) = 0 \right] \right]$ Therefore, for all as www. $\alpha \in R_{\alpha}(\delta) \not\supseteq \exists \beta \exists \zeta \forall n [_].$ Define a subset A of w by: For all mew: me A \geq = a=c [m = < a,c > ~ lg(a) = lg(c) ~ $\forall n < lg(c)$ [(c¹(n) and $C^{\circ}(c^{1}(n)+1)$ are both defined) $\rightarrow (\delta^{n}(\overline{c^{\circ}}(c^{1}(n))=a(n)+1)$ $\wedge \forall k < c^{1}(n) [\delta^{n}(\bar{c} \circ k) = O])]$ Then: ∀b[beAv ¬(beA)]. and: $\forall \alpha \forall \gamma [\forall n [< \overline{\alpha}n, \overline{\gamma}n > \in A] \rightarrow (\delta: \gamma^{\circ} \mapsto \alpha)].$ Conversely, suppose $\delta: \beta \mapsto \alpha$, and determine $Z \in W w$ such that $\forall n[-]$. Defining $\gamma = \langle \beta, 3 \rangle$, we observe: $\forall n [\langle \overline{\alpha}n, \overline{\gamma}n \rangle \in A]$ Therefore: $\forall \alpha [P(\alpha) \rightleftharpoons \exists \gamma \forall n [< \overline{\alpha} n, \overline{\gamma} n > \in A]], and,$ following theorem 10.1 $P \in \mathbb{Z}_{1}^{1}$. \boxtimes

10.7 A subset P of "w will be called <u>analytical</u>, if $P \in \Sigma_1^4$, that is, if $\exists \delta [P = Ra(\delta)]$. A subset P of "w will be called <u>strictly analytical</u>, if $\exists \delta [Fun(\delta) \land P = Ra(\delta)]$ icf. Note 1 on page 216). Every strictly analytical set is, trivially, analytical, and the converse is not true, as is shown by the example of the empty set. The bad habit of reasoning classically arouses the suspicion that this is the only exception. Indeed, if we assume P to be analytical and "finitely defined", and in possession of at least one element, we may follow John Burgess, and prove, by using Brouwer-Kripke's axiom, that P is strictly analytical. (cf. <u>Burgess</u> 1980, and also: <u>Gielen, de Swart and Veldman</u> 1980) Restricting oneself to "finitely defined", "determinate" objects, however, is like wearing sunglasses against the dazzling light of constructive truth. We will see that the supposition that all inhabited Π_1^o -sets are strictly analytical, already leads to a contradiction. Let us define, for all $\beta \in {}^{\omega}\omega : C_{\beta} := \{\alpha | \forall n [\overline{\alpha}n = \overline{Q}n \ v \ \forall m \le n [\beta(\overline{\alpha}m) = 0] \}$ Remark that, for all $\beta \in {}^{\omega}\omega : C_{\beta} \in \Pi_{1}^{o}$ and $Q \in C_{\beta}$.

The gap between strictly analytical and analytical sets is gaping wide and complicates our position seriously. To be sure, E1 itself, like all the exemplary arithmetical and hyperarithmetical sets from previous chapters: En, An, Er, Ar, Er, Ar, is strictly analytical. (To see this, define $\delta \in w$ such that Fun(δ) and: For all $\alpha \notin w$ and $b \notin w$: $(\delta | \alpha) (b) := 0$ if $\exists m [b = \overline{\alpha}^{T} m]$ $:= \alpha^{o}(b)$ otherwise. Remark: for all $\alpha, \gamma \in w$: if $\forall n [\alpha(\overline{\gamma}n) = 0]$, then $\alpha = \delta | < \alpha, \gamma >$ Therefore: E1 = Ra($\delta |$) There is no reason whatever for a set which is reducible to a strictly

analytical set, to be itself strictly analytical. This does not add to the reputation of strictly analytical sets. On the other hand, we should never forget how much, in former endeavours, we leant on the strict analyticity of certain sets. (Cf. chapters 3,7 and 9).

10.9 We define a subset A1 of www.by: for all $\alpha \in \omega_{\omega}$: $A_1^1(\alpha) := \forall \gamma \exists n [\alpha(\bar{\gamma}n)=0]$ We define a class IT! of subsets of ^ww by: For every subset P of www PE II Z PAA1 Members of Π_1^1 will be called: <u>co-analytical</u> <u>sets</u>. Π_1^1 shares in many good properties of Ξ_1^1 : 10.10 Theorem: Let P⊆^ww $P \in \Pi_1^1$ if and only if there exists a decidable subset A of ω such that ∀a[P(a) Z ∀y ∃n[< \overline{n}, \overline{n} > ∈ A]] Proof: (1) Suppose P≤A1, i.e.: ∀a∃p[P(a) Z A1(p)]. Using AC11, determine $\delta \in W$ such that: Fun(δ) and: $\forall \alpha [P(\alpha) \supseteq A_1^1(\delta | \alpha)]$ Define a decidable subset A of w by: For all new: $neA \rightleftharpoons \exists a \exists c [n = \langle a, c \rangle \land lg(a) = lg(c) \land$ $\exists d \exists b [a \subseteq b \land c \subseteq d \land \delta^{d}(b) = 1 \land$ $\forall e [(b \in e \land b \neq e) \rightarrow \delta^{d}(e) = 0]]$ Do not shy at all these letters and remark: $\forall a \forall c [\langle a, c \rangle \in A \rightarrow \exists d [c \leq d \land \forall d \in a [(\delta | d) c = 0]]$ Be quiet and conclude: $\forall \alpha [\forall \gamma \exists n [(\delta | \alpha)(\bar{\gamma} n) = 0] \rightleftharpoons \forall \gamma \exists n [\langle \bar{\alpha} n, \bar{\gamma} n \rangle \in A]]$ Therefore, A fulfils the requirements. (11) Let A be a decidable subset of w such that $\forall \alpha [P(\alpha) \neq \forall \gamma \exists n [\langle \alpha n, \overline{\gamma} n \rangle \in A]]$ Determine $\delta \in {}^{\omega} \omega$ such that $\operatorname{Fun}(\delta)$ and: For all $\propto \in {}^{\omega}\omega$ and $c \in \omega$ $(\delta | \alpha)(c) = 0 \neq \exists n < lg(c) [< \overline{\alpha}n, \overline{c}n \neq A]$ Remark: Vac[P(a) ≥ A¹₁(δ|a)], i.e.: P≤A¹₁. ⊠

10.11 Theorem: 17 contains a universal element.

Proof: Define the subset U of ^ww by: For all αε^ww: U(α) Z ∀y∃n[α¹(<āon, ŗn>)=0] and note that U belongs to Π1. Let P⊆^ww and P∈Σ1. Following theorem 10.10 determine a decidable subset A of w such that: ∀a[P(α) Z ∀y∃n[<ān, ŗn>∈A]. Determine β∈^ww such that: ∀n [β(n)=0 Z n∈A]. Then: ∀a[P(α) Z ∀y∃n [β(<ān, ŗn>)=0]], i.e. ∀a[P(α) Z U(<α, β>)].

- 10.12 Theorem: Let $P_0, P_1, P_2, ...$ be a sequence of subsets of w_w . If $\forall m [P_m \in \Pi_1^1]$, then: $\bigcap_{m \in W} P_m \in \Pi_1^1$.
 - $\begin{array}{l} \underline{\operatorname{Proof}} & \text{Using theorem 10.10, determine a sequence } A_0, A_1, A_2, \dots \text{ of decidable} \\ & \text{subsets of } w \text{ such that: } \forall m \forall \alpha \left[P_m(\alpha) \rightleftharpoons \forall \gamma \exists n \left[< \overline{\alpha}n, \overline{\gamma}n \neq A_m \right] \right] \\ & \text{Define a subset } A \text{ of } w \text{ by:} \\ & \text{For all } b \in w: \\ & b \in A \rightleftharpoons \exists m \exists t \exists a \exists c \left[b = < a * < t >, < m > *c > n \lg(a) = \lg(c) \land < a, c > \in A_m \right]. \\ & \text{Then: } \forall b \left[b \in A \lor \neg (b \in A) \right] \text{ and: } \forall m \forall \alpha \left[P_m(\alpha) \rightleftharpoons \forall \gamma \left[\gamma(o) = m \rightarrow \exists n \left[< \overline{\alpha}n, \overline{\gamma}n > \epsilon A \right] \right] \right]. \\ & \text{Therefore: } \forall \alpha \left[\forall m \left[P_m(\alpha) \right] \rightleftharpoons \forall \gamma \exists n \left[< \overline{\alpha}n, \overline{\gamma}n > \epsilon A \right] \right]. \\ & \text{and: } \bigcap_{m \in W} P_m \in \Pi_1^1. \\ \end{array}$

In 1.4, we introduced a subset fun of ${}^{\omega}\omega$ such that: $\forall \delta [fin(\delta) \gtrsim \forall \gamma \exists n[\delta(\bar{\gamma}n) \neq 0]]$ It is easy to see that fune Π_1^1 and it is not difficult to verify that Π_1^1 may be characterized as follows:

Catching sight of Fun := $\{\delta | \forall n [fun (\delta^n)]\}$, we observe that it does not do less than its little brother, as fun $\leq Fun \leq fun$. Fun is funny, for being a natural example of a subset of ww, which is not strictly analytical. (Theorem 10.8 did not provide us with such an example).

One feels a child's joy at arguing this: suppose. Fun is strictly

analytical, and let $Z \in W w$ be such that Fun(Z) and Fun = Ra(Z)Sitting on grandfather Cantor's knee, we construct $\eta \in W$ such that Fun(η) and $\forall \alpha [\eta | \alpha \# (3 | \alpha) | \alpha]$ (# denotes the well-known apartness relation $\forall \alpha \forall \beta [\alpha \# \beta \neq \exists n [\alpha(n) \neq \beta(n)])$ I go in search of $\beta \in w w$ such that $\eta = 31\beta$, and, upon finding it, we both start laughing, my grandfather and I. Observe that this argument does not settle the question whether Fun be analytical. Are Π_1^* and Σ_1^* a pair of identical twins? In a classical treatment, Π_1^4 could shelter behind Σ_1^4 , automatically sharing its reputation, by duality. But now its weaknesses are exposed. Doubts concerning Π_1^1 may have been lingering since theorem 10.12, which answered only one half of theorem 10.3. Recall, from chapter 3: $D^2A_1 := \{ \alpha \mid \alpha^\circ = Q \quad \forall \alpha^1 = Q \}$ 10.13 Theorem: D²A, is not co-analytical. Proof: The proof does not differ from the proof of theorem 4.10. Suppose: $D^2A_1 \leq A_1^1$, i.e.: $\forall \alpha \exists \beta [D^2A_1(\alpha) \not\equiv A_1^1(\beta)].$

Using AC_{11} , we find $\delta \epsilon^{\omega} \omega$ such that: Fun(δ) and: $\forall \alpha [D^2A_1(\alpha) \rightleftharpoons A_1^1(\delta | \alpha)]$. Let τ be the spread which we introduced in 4.2, that is:

 $\tau = \left\{ \alpha \mid \forall k [\alpha(k) < 2] \land \forall k \forall l [(\alpha(k) \neq 0 \land \alpha(l) \neq 0) \rightarrow k = l] \right\}$ We want to show: $\forall \alpha \in \tau [A_1^1(\delta|\alpha)].$

To this end, let us assume: $\alpha \in \tau$ and $\gamma \in {}^{\omega}\omega$. We observe: $D^2A_1(\underline{O})$, therefore: $A_1^1(\delta|\underline{O})$ and $\exists n [(\delta|\underline{O})(\bar{\gamma}n) = O]$. We determine $n \in \omega$ such that: $(\delta|\underline{O})(\bar{\gamma}n) = O$.

And we determine $q \in w$ such that: $\forall \beta [\overline{\beta}q = \overline{Q}q \rightarrow (\delta |\beta)(\overline{\gamma}n) = 0]$.

We now distinguish two cases:

Case 1: $\bar{\alpha}q \neq \bar{Q}q$. In this case, we may determine m < 2 such that $\alpha^m = Q$. Therefore, $D^2A_1(\alpha)$, and $A_1^1(\delta|\alpha)$, esp. $\exists n [(\delta|\alpha)(\bar{\gamma}n) = O]$.

Case 2: $\overline{\alpha}q = \overline{Q}q$. We now immediately see: $\exists n [(\delta | \alpha) (\overline{\gamma} n) = 0]$.

In any case : $\exists n [(\delta | \alpha)(\bar{r} n) = 0]$. We have proved: $\forall \alpha \in \tau \forall \gamma \exists n [(\delta | \alpha)(\bar{r} n) = 0]$, i.e.: $\forall \alpha \in \tau [A_1^4(\delta | \alpha)]$. Therefore: $\forall \alpha \in \tau [D^2 A_1(\alpha)]$, and this, following 4.3, is contradictory.

This theorem deals at least two fatal blows to any thought of symmetry between **\Sigma**¹; and **T**¹. As D^2A_1 already is not co-analytical, smiling is the proper answer at the suggestion that all arithmetical, let alone all hyperarithmetical sets belong to Π_1^2 Secondly, as A_1 itself is a plain member of Π_1^1 , Π_1^1 , obviously, does not make much of closure under the operation of finite union. And there is more to complain of. For the sake of contrast, we bring out another comfortable trait of Σ_1^* . Let P⊆^ww. We define subsets $\mathbb{E}(P)$ and $\mathbb{U}(P)$ of ${}^{\omega}\omega$ by: For all $\alpha \in {}^{\omega}\omega$: $\mathbb{E}(\mathsf{P})(\alpha) = \exists \mathsf{g} [\mathsf{P}(\langle \alpha, \mathsf{g} \rangle)]$ $\mathbb{U}(P)(\alpha) := \forall \chi [P(\langle \alpha, \gamma \rangle)].$ E and U will be referred to as the operations of <u>existential</u> and <u>universal</u> projection, respectively, and will be studied in chapter 14. We will see, in that chapter, that Σ_1^1 is closed under the operation of existential projection, and M1 under the operation of Universal projection, as it should be. As all hyperarithmetical sets are analytical, the existential projection of any hyperarithmetical set is also analytical. Again, II! fails to follow. A witness to its bad behaviour is the set $Q = \{ \alpha \mid D^2 A_1(\alpha^0) \land A_1^1(\alpha^1) \} =$ $\{\alpha \mid \forall \beta \exists n [\alpha^{1}(\bar{\gamma}n)=0 \land (\alpha^{\circ\circ}=Q \lor \alpha^{\circ1}=Q)]\}.$ Q is the universal projection of an arithmetical set. On the other hand, Q is not co-analytical, as $D^2A_1 \leq Q$ and $\neg (D^2A_1 \leq A_1^1)$. Theorem 10.13 also affords to observe that E_1^1 is not co-analytical, i.e. not reducible to A_1^1 (as $D^2A_1 \leq E_1^1$). This is a welcome result, and, in its simplicity, may be the envy of a classical mathematician. In order to set his mind at ease on this point, he would have to resort to diagonalizing. This is how his argument would run. Suppose $E_1^1 \in \Pi_1^1$. Then also: {a] Jy Vn [a (< an, jn >) \$0]} e Π Using theorem 10.10, and ACoo, we find BE "w such that: $\left\{ \alpha | \exists \gamma \forall n [\alpha(\langle \alpha n, \overline{\gamma} n \rangle) \neq 0] \right\} = \left\{ \alpha | \forall \gamma \exists n [\beta(\langle \alpha n, \overline{\gamma} n \rangle) = 0] \right\}$ Specializing, we find. ∃r Vn[β(<jšn,jn>)≠0] Z Vr∃n[β(<jšn,jn>=0] and, therefore: - Jy Un [B(< Bin, Jin>) = 0] ~ - Vy In [B(< Bin, Jin>=0]. And this sounds like a contradiction, undoubledly so in the ears of a

classical mathematician. An intuitionist, however, may find the sound unpleasant, but he has no easy way of turning it off. As in 6.14 some solace is offered by the enigmatical assumption

 $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]], which enables us to conclude:$ $\forall \mathbf{y} \exists \mathbf{n} [\mathbf{\beta} (\langle \mathbf{\bar{\beta}} \mathbf{n}, \mathbf{\bar{y}} \mathbf{n} \rangle) = 0]$ from: $\neg \exists \mathbf{y} \forall \mathbf{n} [\mathbf{\beta} (\langle \mathbf{\bar{\beta}} \mathbf{n}, \mathbf{\bar{y}} \mathbf{n} \rangle) \neq 0].$ Eventually, this does not diminish the pain. We will reformulate the result that E¹₄ is not co-analytical, so as to make it more alike to the hyperarithmetical hierarchy theorem (theorems 9.7 and 9.9) In view of this, we introduce subsets $(E_1^*)^*$ and $(A_1^*)^*$ of w_w by: For all deww $E_1^{\dagger *}(\alpha) := \exists \gamma \forall n [\alpha(\bar{\gamma}n) \neq 0]$ $A_1^{*}(\alpha) := \forall r \exists n [\alpha(\bar{r}n) \neq 0]$ and remark: $A_1^1 \cap E_1^{\dagger *} = \phi$ and: $A_1^{\dagger *} \cap E_1^{\dagger} = \phi$. 10.14 Theorem: Let $\delta \in W_{\omega}$ such that: Fun(δ) and: $\forall \alpha [E_{1}^{1}(\alpha) \rightarrow A_{1}^{1}(\delta | \alpha)]$ We may construct $Z \in W$ such that: $A_1^{+}(Z)$ and $A_1^{+}(S|Z)$. <u>Proof</u>: Let $\delta \in \mathcal{W}_{\mathcal{W}}$ such that: Fun(δ) and: $\forall \alpha [E_{1}^{1}(\alpha) \rightarrow A_{1}^{1}(\delta | \alpha)]$ Define a sequence ZE^ww by: For all cew: $\zeta(c) := 1$ if $\exists d[c \leq d \land \exists m < c[\delta^d(\bar{\zeta}m)=1]$ $\wedge \forall \ell < m \left[\delta^{d} \left(\overline{\zeta} \ell \right) = 0 \right] \right]$ = 0 otherwise. The following remark springs from some reflection on Z: $\forall r \left[\exists n \left[\zeta(\overline{r}n) \neq 0 \right] \rightleftharpoons \exists n \left[(\delta | \zeta)(\overline{r}n) = 0 \right] \right].$ A classical mathematician probably would leave the proof at this. But we have to be a bit more careful. Let us define, for each $\gamma \in {}^{\omega} w$, a sequence $\zeta_{\gamma} \in {}^{\omega} w$ by: For all cew $\zeta_{\gamma}(c) := 0$ if yec, i.e.: $\exists n[\bar{\gamma}n=c]$:= Z(c) otherwise. Let $\gamma \in {}^{\omega}w$ and consider: Z_{γ} Observe: $\forall n [Z_{\gamma} (\tilde{r}n) = 0]$, therefore: $E_{1}^{*}(Z_{\gamma})$, and: $A_{1}^{*}(\delta | Z_{\gamma})$ especially: $\exists n [(\delta | \zeta_{\chi}) (\overline{\chi} n) = 0].$ Determine k, mew such that: $\delta^{\overline{\delta}k}(\overline{\zeta_{\gamma}} m) = 1 \wedge \forall l < m [\delta^{\overline{\delta}k}(\overline{\zeta_{\gamma}} l) = 0]$ and distinguish two cases:

Case (1): $\overline{Z}m = \overline{Z}_{\overline{y}} m$. Then: $(\delta|Z)(\overline{y}k) = (\delta|Z_{\overline{y}})(\overline{y}k) = 0$ and: $\exists n[(\delta|Z)(\overline{y}n)=0]$. Case (11): $\overline{Z}m \neq \overline{Z}_{\overline{y}} m$. Then: $\exists n[Z(\overline{y}n)\neq 0]$, and therefore, by the definition of $\overline{\zeta}$: $\exists n[(\delta|Z)(\overline{y}n)=0]$.

In any case : $\exists n [(\delta|Z)(\bar{\gamma}n)]$ and we have to admit: $\forall \gamma \exists n [(\delta|Z)(\bar{\gamma}n)=0]$. Therefore: $A_1^1(\delta|Z)$, and, by the construction of Z: $A_1^{1*}(Z)$.

We now miss the looking-glass which once decorated our study, but has been removed on instigation of certain innovators. Holding up one of the above reasonings against it, a classical mathematician would find an argument establishing that A_1^{\prime} is not analytical, which we, however, know to be lame. To tell the truth, we did not succeed in finding a constructive argument refuting the analyticity of A_1^{\prime} .

A line of thought which seemed to offer some hope, is to parallel the proof of: A_z is not reducible to E_z . (theorem 3.2). The creative subject, having at his disposal a great many ways of ensuring, or seeming to ensure: $A_1^1(\alpha)$, might be supposed to be able to delude the imitative subject. But there is no easy method of surveying "all possible ways of ensuring $A_1^1(\alpha)$ ", as there was in the case of A_z . This is because A_1^1 , like Fun, (cf. the discussion following theorem 10.12) is not strictly analytical. Paraolox is flickering here: as part of the truth is easy (A_1^1 is not analytical), the whole truth (A_1^1 is not analytical) seems unattainable.

A better understanding of A11, which involves a better understanding of the set of well-ordered stumps, \$, (cf. chapter 7), as we will see the more clearly, after Brouwer's thesis has entered into discussion (cf. chapter 13), might, eventually, lead to an answer to our problem.

A task which boks more simple, but still is above us, is to refute that A_1^4 be arithmetical, or, better even, hyperarithmetical.

10.15 Gloom and disappointment are upon us, when contemplating the nasty state of things:

 E_1^4 , the subset of ω_{ω} which played a leading part in chapter 10, differs from hyperarithmetical subsets of ^ww by containing, in its definition, an existential quantifier over ^ww. We are going to see some consequences of restricting the range of this existential quantifier to a subspread of the universal spread, www. We mainly consider the case of the so-called monotonous fains, S2 moni S3moni... Thus the first set which offers itself is $S_2 := \{\alpha \mid \exists y \in \sigma_{2mon} \forall n [\alpha(\overline{y}n) = 0]\}$ We spend a lot of effort to prove the remarkable fact that S_2 is not hyperarithmetical. According to classical opinion, the fans τ_{2mon} , τ_{3mon} ,... are countable, and the resulting subsets of w_w all belong to z_2^o . Intuitionistically, however, quantifying over a spread, however small it may be, comes to exercising a new art, obeying its own laws, being altogether different from that of quantifying over a countable set, such as w. Watching the new sequence: S₁, S₂,... of subsets of ^ww and bringing it under the discipline of the reducibility relation, we find another hierarchy. A, is a natural leader for this sequence, and certain peculiarities, which we first encountered in chapter 4, when dealing with A1, reappear. At the end of the chapter we study, briefly, the case of the binary fan, o_s.

11.0 We define a sequence $\sigma_{2mon} \in W$ by:

For all ae w:

$$\sigma_{2mon}(a) := 0 \quad \text{if} \quad \forall n \left[n < lg(a) \rightarrow a(n) < 2 \right]$$

and.
$$\forall n \left[n+1 < lg(a) \rightarrow a(n) \le a(n+1) \right]$$

$$:= 1 \quad \text{otherwise.}$$

It is not difficult to verify that σ_{2mon} is a subspread of w_{w} (cf. 1.9) σ_{2mon} will be thought of as the subset of w_{w} given by:

For all reww.

 $\gamma \in \sigma_{2mon} \rightleftharpoons \forall n [\sigma_{2mon} (\overline{\gamma}n) = 0]$

This picture portraits Jmon.

We define a subset S_2 of ${}^{\omega}\omega$ by:

For all $\alpha \in {}^{\omega}\omega$

 $S_2(\alpha) := \exists \gamma [\gamma \in \sigma_{2mon} \land \forall n [\alpha(\overline{\gamma}n) = 0]]$

(In agreement with 1.9, we sometimes write: "reat for: " $\forall n [\alpha(\bar{r}n)=0]^{"}$ $\alpha \in \omega \omega$ has the property S_2 if there exists a sequence r in σ_{zmon} , each of whose initial parts is approved of by α).

The sequence Q which does belong to σ_{2mon} , is sometimes called the <u>spine</u> of σ_{2mon} . We fix an enumeration of the other branches of σ_{2mon} , defining a

function $*: \omega \rightarrow \sigma_{2mon}$ by:

For all $n \in w$: $n^* := \overline{Q}n + 1$

Therefore: ∀n ∀k[n*(k]=0 Z k<n].

Remark that, classically spoken: $\forall \alpha [S_2(\alpha) \neq 0 \in \alpha \lor \exists n [n \neq \in \alpha]]$, and, therefore: $S_2 \in \mathbb{Z}_2^{\circ}$.

We remind the reader of definition 4.0 in which we introduced, for each new and $P \subseteq {}^{\omega}\omega : D^n P := \{\alpha \mid \exists k < n [P(\alpha^k)]\}$.

11.1 Theorem: Vn[DnA1 ×S2].

Proof: Let new. Define δe^ww such that Fun(δ) and such that, for all αe^ww and mew: (δ(α)(m) := 0 if ∃k∃p[k<n ∧ m= 0k * 1p ∧ αkp=0p]

=1 otherwise

Make the following observations: $\forall y \forall a [\forall p [(\delta | \alpha) (\bar{j} p) = 0] \rightarrow \exists k < n [y = k^*]] and.$ $\forall k < n \forall \alpha [k^* \in \delta | \alpha \neq \alpha^k = Q].$ Therefore: $\forall \alpha [D^n A_1(\alpha) \neq S_z (\delta | \alpha)].$

We have seen, in theorem 4.6, that: $\forall n [\neg (D^{n+1}A_1 \leq D^nA_1)]$. Therefore:

11.2 Corollary $\forall n [\neg (S_2 \leq D^n A_1)]$

Corollary 11.2 is actually the first one of a series of theorems which is to culminate in the statement that S_z is not even hyperarithmetical.

11.3 Theorem $\neg (S_2 \leq E_1)$

<u>Proof</u>: Suppose: S₂ ≤ E₁, i.e.: ∀α∃β[S₂(α) ≥ E₁(β], and, using AC₁₁, determine δe^ww such that: Fun(δ) and: ∀α[S₂(α) ≥ E₁(δ|α)]. Remark: S₂(Q) and determine p, qew such that (δ|Q)(p) = 0 and ∀α[āq= Q̄q → (δ|α)(p) = (δ|Q)(p) = 0]. Therefore: ∀α[āq = Q̄q → S₂(α)], an absurd conclusion, as is testified by a sequence α* which satisfies: ∀n[α*(n)=0≥ n<q]. ⊠

We now prepare for proving a converse to theorem 11.3, that E_1 does not reduce to S_2 , either. The analysis of S_2 which we have to make in view of this, will also be useful for other purposes.

For all
$$\beta \in W$$
 and $\alpha \in W$ we define a decidable subset K_{α}^{β} of w by:
 $K_{\alpha}^{\beta} := \{ n \mid n \in W \mid \beta(\alpha * < n >) = 0 \}.$ (Cf. 9.0)

If β is a spread, we call it a finitary <u>spread</u>, or a fan, if: $\forall a \ [\beta(a) = 0 \rightarrow K_{\alpha}^{\beta} \text{ is finite }].$

Finitary spreads are remarkable as they are supposed to fulfil the fan theorem: Let A be a decidable subset of w, and $\beta \in Ww$ be a fan. If $\forall \alpha \in \beta \exists n [A(\bar{\alpha}n)]$, then $\exists m \forall \alpha \in \beta \exists n [n \leq m \land A(\bar{\alpha}n)]$

In the case of a fan like the full binary spread (i.e.: w_2), this theorem is proved by an appeal to Brouwer's thesis (cf. chapter 13), a rather deep and much debated principle of intuitionistic analysis. $\sigma_{2 \text{ mon}}$ however, nimble like all little folk, admits of a more easy treatment:

11.4 <u>Theorem</u>: Let A be a decidable subset of w. (1) If ∀reg_{zmon} ∃n [A(pn]], then ∃m ∀reg_{zmon} ∃n[n≤m ∧ A(pn]]. (11) If ∀reg_{zmon}¬¬∃n[A(pn]], then ¬¬∃m ∀reg_{zmon} ∃n[n≤m ∧ A(pn)]

<u>Proof</u>: (1) Suppose: A is a decidable subset of w, and: $\forall p \in \sigma_{2mon} \exists n [A(\bar{y}n)]$ Calculate $n_0 \in w$ such that $A(\bar{Q}n_0)$. Consider the infinite sequences: 0^* , 1^* , $(n_0-1)^*$ Determine natural numbers k_0 , k_1 ,... k_{n_0-1} such that:
$\begin{aligned} \forall j < n_0 [A(\overline{j^*} k_j)] \\ \text{Let } m := \max \{n_0, k_0, \dots, k_{n_0-1}\}. & \text{Then} : \forall j \in \sigma_{2mon} \exists n [n \leq m \land A(\overline{j}n)] \\ (11) \text{ Suppose} : A is a decidable subset of <math>w$, and $\forall j \in \sigma_{2mon} \exists n [A(\overline{j}n)] \\ \text{Assume, for the sake of argument} : \exists n [A(\overline{Q}n)]. \\ \text{Calculate } n_0 \text{ such that} : A(\overline{Q}n_0). \\ \text{Remark: } \forall j \leq n_0 \exists a \exists k [A(\overline{j^*} k)]. \\ \text{As for all propositions } P \text{ and } Q: (\exists P \land \exists a) \rightarrow \exists a (P \land Q). \\ \text{we may conclude: } \exists \forall j \leq n_0 \exists k [A(\overline{j^*} k)], \text{ and further,} \\ \text{following the argument } in(1): \exists \exists m \forall j \in \sigma_{2mon} \exists n [n \leq m \land A(\overline{j}n)]. \\ \text{Therefore: If } \exists m \forall j \in \sigma_{2mon} \exists n [n \leq m \land A(\overline{j}n)], \text{ then} : \exists n [A(\overline{Q}n)], \\ \text{ and} : \exists \forall j \in \sigma_{2mon} \exists n [A(\overline{j}n)]. \\ \text{Our conclusion follows by contraposition.} \end{aligned}$

In 5.2 we defined, to each subset A of ${}^{\omega}\omega$, a subset Neg(A) of ${}^{\omega}\omega$ by: Neg(A) := $\{\alpha \mid \neg A(\alpha)\}$. Another thing which we may learn from the proof of theorem 11.4, is:

11.5 Corollary: Neg (Neg (S_1)) $\leq A_1$.

The next remark will be made use of in the sequel:

11.6 Lemma : \neg (Neg(E₁) \leq Neg(Neg(E₁)).

Proof: Suppose : Neg(E₁) ≤ Neg(Neg(E₁)), and, using AC₁₁, determine δe^wω
such that: Fun(δ) and:
$$\forall \alpha [\neg E_1(\alpha) \neq \neg \neg E_1(\delta | \alpha)]$$
.
Remark: $\neg E_1(\underline{1})$, therefore: $\neg \neg \exists n [(\delta | \underline{1})(n) = 0]$.
Assume: $\exists n [(\delta | \underline{1})(n) = 0]$ and determine $n, q \in \omega$ such that:
 $(\delta | \underline{1})(n) = 0$ and: $\forall \alpha [\overline{\alpha} q = \overline{1} q \rightarrow (\delta | \alpha)(n) = 0]$.
Therefore: $\forall \alpha [\overline{\alpha} q = \overline{1} q \rightarrow \neg E_1(\alpha)]$.
This contradiction makes us retire.
We conclude: $\neg \exists n [(\delta | \underline{1})(n] = 0]$, and have another contradiction.

Therefore: \neg (Neg(E₁) \preceq Neg(Neg(E₁)).

11.7 Theorem: $\neg (E_1 \preceq S_2)$

<u>Proof</u>: Suppose: E₁ ≤ S₂: Using lemma 5.3, conclude: Neg(E₁) ≤ Neg(S₂). As we observed in corollary 11.5: Neg(Neg(S₂)) ≤ A₁, and therefore, again by lemma 5.3.: Neg(S₂) ≤ Neg(A₁). But it is not difficult to see that: A₁ ≤ Neg(E₁) ≤ A₁ and: Neg(A₁) ≤ Neg(Neg(E₁)). Taking all things together, we have: Neg(E₁) ≤ Neg(Neg(E₁)), and this, according to lemma 11.6, leads to a contradiction.

The fact that E_1 is not reducible to S_2 , destroys all hope that A_2, E_2 , or any other set to which E_1 itself is reducible, should be so. We turn to the question, whether S_2 is reducible to A_2 .

Like many sets we encountered thus far, S_2 is strictly analytical (cf. 10.7) In order to see this, we define, for each $x \in {}^{\omega}w$ and $f \in \sigma_{2mon}$, a sequence α_{χ} in ${}^{\omega}w$ by:

> For all $a \in \omega$: $\alpha_{\chi}(a) := 0$ if $\gamma \in a$ (i.e.: $\overline{\chi}(lg(a)) = a$) $\therefore = \alpha(a)$ if $\chi \notin a$

We remark: $\forall \alpha [S_2(\alpha) \rightleftharpoons \exists \gamma \in \sigma_{zmon} [\alpha = \alpha_{\gamma}]].$ (The same construction serves to prove the strict analyticity of $E_{1,1}^{1}$, cf. the discussion following on theorem 10.8).

We want to mention an important consequence of theorem 11.4:

Let A be a subset of $\sigma_{zmon} \times \omega$ If $\forall r \in \sigma_{zmon} \exists n \in A(r,n)$, then $\exists m \forall r \in \sigma_{zmon} \exists n \leq m \in A(r,n)$]

It is not difficult to derive this principle from theorem 11.4 and GCP (cf. 1.9) We now state a refinement of theorem 11.3:

11.8 Lemma: Suppose: $\delta \in {}^{\omega}\omega$ and $\operatorname{Fun}(\delta)$, and: $\forall \alpha [S_2(\alpha) \to E_1(\delta | \alpha)]$ Then: $\forall \alpha [\neg \neg S_2(\alpha) \to E_1(\delta | \alpha)]$.

100

A further remark is, that S_2 is not a stable subset of ${}^{\omega}\omega$, i.e.: $\neg \forall \alpha [\neg \neg S_2(\alpha) \rightarrow S_2(\alpha)].$ For, suppose: $\forall \alpha [\neg \neg S_2(\alpha) \rightarrow S_2(\alpha)]$, i.e.: Neg(Neg(S₂)) = S_2 . Then, according to corollary 11.5: $S_2 \leq A_1$, which is refuted by 11.2 Sufficiently many preparations have now been made for:

11.9 Theorem:
$$\neg (S_2 \preceq A_2)$$
.

<u>Proof</u>: Suppose: $S_2 \leq A_2$, and, using AC₁₁, determine δe^ww such that Fun(δ) and: $\forall a [S_2(\alpha) \rightleftharpoons A_2(\delta | \alpha)].$ Therefore: $\forall \alpha [S_2(\alpha) \rightarrow \forall k [E_1((\delta | \alpha)^k)]], and, according to$ $lemma 11.8: <math>\forall \alpha [\neg \neg S_2(\alpha) \rightarrow A_2(\delta | \alpha)].$ But now: $\forall \alpha [\neg \neg S_2(\alpha) \rightarrow S_2(\alpha)], and this should not be true.$

The next step does not surprise:

11.10 Theorem: $\neg (S_2 \leq E_3).$

<u>Proof</u>: Suppose: $S_2 \leq E_3$, and, using AC_{11} , determine $\delta \in Ww$ such that: Fun(δ) and: $\forall \alpha [S_2(\alpha) \supseteq E_3(\delta | \alpha)]$. Remember how we defined, to each $\gamma \in \sigma_{2mon}$ and $\alpha \in Ww$ a sequence α_{γ} in Ww such that: $\gamma \in \alpha_{\gamma}$ and: $\gamma \in \alpha \rightarrow \alpha = \alpha_{\gamma}$. (We did it just before lemma 11.8). Remark: $\forall \gamma \in \sigma_{2mon} \quad \forall \alpha [S_2(\alpha_{\gamma})], \text{ therefore: } \forall \gamma \in \sigma_{2mon} \quad \forall \alpha \exists n [A_2((\delta | \alpha_{\gamma})^n)].$ Using GCP, we find $n, q \in w$ such that:

$$\forall \gamma \in \sigma_{2mon} \ \forall \alpha \left[\left(\bar{\gamma} q = \bar{Q} q \land \bar{\alpha} q = \bar{Q} q \right) \rightarrow A_2 \left(\left(\delta |\alpha_\gamma \right)^n \right) \right].$$

(Again the initative subject has been forced to a decision, whereas the creative subject did not oblige himself to anything). Define $\eta \in {}^{\omega}w$ such that: Fun (η) and:

for all $\alpha \in {}^{\omega}\omega$.

for all	lew:	$\ell \leq q \rightarrow (\eta \mid \alpha) (\overline{\underline{O}} \ell) = 0,$	and:
for all	0.εω.	$(\eta \alpha) (\underline{O} q * \alpha) = \alpha(\alpha)$	and:
$(\eta \alpha) q := \overline{Q} q$, and			
$\forall j < q \exists m [(\eta \alpha) (j \neq m) \neq 0].$			

Remark, that for all $\alpha \in {}^{\omega}\omega$:

$$S_{2}(\alpha) \rightleftharpoons \exists \gamma \in \sigma_{zmon} [\overline{\gamma}q = \overline{Q}q \land \gamma \in (\eta \mid \alpha) \land (\overline{\eta \mid \alpha})q = \overline{Q}q]$$

$$\rightleftharpoons \exists \gamma \in \sigma_{zmon} [\overline{\gamma}q = \overline{Q}q \land (\eta \mid \alpha)_{\gamma} = \eta \mid \alpha \land (\overline{\eta \mid \alpha})q = \overline{Q}q]$$

Therefore: $\forall \alpha [S_2(\alpha) \rightleftharpoons A_2((\delta | (\eta | \alpha))^n)]$, i.e.: $S_2 \leq A_2$, and this is contradictory, according to theorem 11.9.

X

In a similar way, we might have obtained the conclusion: $\neg (S_2 \leq E_2)$ from: $\neg (S_2 \leq A_1)$. This very conclusion also follows from theorem 11.10 itself, as $E_2 \leq E_3$ Looking forward, however, and hoping for absurdity to follow from the assumption: $S_2 \leq A_3$, we want to articulate this truth in a more refined manner. (The reader should remember how we blew up theorem 11.3 to lemma 11.8, in order to prove theorem 11.9). We introduce a subset P of ^ww by:

For all $\alpha \in W_W$: $P(\alpha) := \forall n [\exists j \le n [j * \in \alpha] \lor \exists j \le \sigma_{2mon} [\tilde{j}n = \bar{Q}n \land j \in \alpha]].$ (As we observed, in corollary 11.5: Neg(Neg(S₂)) $\le A_1$. Therefore, P is an arithmetical set. Actually: $P \le A_3$.)

Remark: $S_2 \subseteq P \subseteq Neg(Neg(S_2))$. Both inclusions are proper, that is to say: either one of the assumptions: Neg(Neg(S_2)) $\leq P$ and $P \subseteq S_2$, leads to a contradiction.

We first prove: $\neg (P \subseteq S_2)$.

We are not making wild accusations but have good reasons for suspecting: $P \subseteq S_2$ of bringing about absurdity:

We think of the decimal development of π , as in 4.1 and in particular of $k := \mu m$ [At place m in the decimal development of π stands the last 9 of a block of ninety-nine 9's].

k is sometimes called: the volatile number of π (whet vluchtgetal van π^{*}) It is not a well-defined natural number, of course, but $\{n|n \in w|n < k\}$ is a perfectly clear, decidable subset of w.

We build a special sequence $\alpha \in {}^{\omega}\omega$, paying exclusive attention to the values it assumes on $\{a \mid a \in \omega \mid \sigma_{zmon}(a) = 0\}$.

The picture will help to clarify our wicked project. Up till level k, the only sequences in σ_{zmon} which have a chance of belonging to α , are: all extensions of $\overline{O}k$, and the two sequences: $O^* = 1$ and $1^* = \langle O \rangle * 1$.

If k appears, and turns out to be odd, O* will be approved of by α ; if k appears, and turns out to be even, 1* will be the happy one.

In either case we continue α , above" $\bigcirc k$ (in the shaded part of the picture) by some sequence β of which it is known that: $\neg \neg S_z(\beta)$, but not known that: $S_z(\beta)$.

Suppose: $S_2(\alpha)$, determine $\gamma \in \sigma_{2mon}$ such that $\gamma \in \alpha$ and consider $\overline{\gamma}^2$. We now are able to find out the following alternative:

(k exists \rightarrow k is even) v (k exists \rightarrow k is odd) v (k exists $\rightarrow S_2(\beta)$)

Thus we committed ourselves to a reckless announcement.

Remark, however, that P(a).

The following proof shows that the assumption: $\forall \alpha [P(\alpha) \rightarrow S_2(\alpha)]$ is not but reckless and actually disastrous.

11. 11 Theorem: $\neg \forall \alpha [P(\alpha) \rightarrow S_2(\alpha)]$

<u>Proof</u>: Reconsidering corollary 11.5, we find that Neg (Neg (S_z)) is not only a member of Π_1° , but also a subspread of ${}^{\omega}\omega$.

We may define a sequence $Ze^{\omega}\omega$ such that: $\forall \alpha [\neg \neg S_{\alpha}(\alpha) \neq \forall n [Z(\overline{\alpha}n)=0]].$ and: Z is a subspread of www. (cf. 1.9) We also may define a function $F_0: {}^{w}\omega \to {}^{w}\omega$ such that $Neq(Neq(S_z)) = Ra(F_o)$ In order to do so, we first define a function $f_0: \omega \rightarrow \omega$ by: fo(<>) := <> and, for all acw, new: $f_0(a \times < n>) := f_0(a) \times < n> \quad \text{if } \zeta(f_0(a) \times < n>) = 0$ $:= f_0(a) * < m > if 3(f_0(a) * < n >) \neq 0$ and m=µp[3(fo(a) *)=0] We then determine Fo by declaring: $\forall \alpha \forall n [F_{\alpha}(\alpha) \in f_{\alpha}(\overline{\alpha}n)]$ We introduce a technical convention: For all $\alpha \in \omega_{\omega}$ and $n \in \omega$, the sequence $\alpha |_{n} \in \omega_{\omega}$ is defined by: $\forall m [\alpha]_n (m) = \alpha (n+m)].$ (One gets $\alpha|_n$ from α by suppressing the first n values of α). We are going to define a function $F: {}^{\omega}\omega \rightarrow {}^{\omega}\omega$ Let $\beta \in ww$ and: $k := \mu n [\beta(n) \neq 0]$ be the volatile number of β We define F(B) such that: (1) For all new, $n \leq k$: $F(\beta)(\underline{O}n) = F(\beta)(\underline{O^*}n) = F(\beta)(\underline{1^*}n) = O$ $F(\beta)(n^*(n+1)) = 1 \quad \text{if } n \neq 0 \quad \text{and } n \neq 1.$ (11) For all new, n>k: $F(\beta)(\overline{0^*}n) = 0 \neq k \text{ is odd}$ $F(\beta)(\overline{A}n) = 0 \neq k$ is even (11) $\overline{Q}^{k} F(\beta) = F_{o}(\beta|_{k+1})$ i.e.: for all $a \in \omega$: (F(\beta))($\overline{Q}^{k} * a$) = ($\overline{F}(\beta|_{k+1})$)(a) We claim that $\forall \beta [P(F(\beta))].$ For, suppose $\beta \in W$ and $n \in W$ and $n < k = \mu p[\beta(p) \neq 0]$. Distinguish two cases: - If k exists, then: $\forall n \leq k [F(\beta)(\underline{O}n) = 0]$ and: $\neg S_2(\underline{O}^{k} F(\beta))$.

Therefore $\neg S_{z} (\overset{\overline{O}n}{} F(\beta)).$ - If k does not exist, i.e. $\neg \exists p[\beta(p) \neq 0]$, then: $Q \in F(\beta)$ and: $S_2(\frac{\overline{O}n}{F(\beta)})$. - As $\neg \neg (\exists p[\beta(p) \neq 0] \lor \neg \exists p[\beta(p) \neq 0])$, we know: $\neg \neg S_2(\overline{O}^n F(\beta))$. Now, suppose $n > k = \mu p[\beta(p) \neq 0]$. If k is odd, then O* e F(B). If k is even, then $1^* \in F(\beta)$. Therefore: ∃j<n[j*∈F(B)]. We proved: $\forall \beta \forall n [\exists j < n [j * \in F(\beta)] \lor \neg \neg S_2(\stackrel{Qn}{=} F(\beta)) , i.e.: \forall \beta [P(F(\beta))].$ We also claim that: $\neg \forall \beta [S_2(F(\beta))].$ For, suppose: $\forall \beta [S_2(F(\beta))].$ Then: $\forall \beta \exists a \exists \gamma [lg(a) = 2 \land \gamma \in a \land \gamma \in \sigma_{2mon} \land \gamma \in F(\beta)].$ Using CP, we find $q \in w$, $a \in w$ such that: $lg(a) = 2 \quad \land \quad \forall \beta \left[\beta q = \overline{Q} q \rightarrow \exists \gamma \left[\gamma \in a \land \gamma \in \sigma_{2mon} \land \gamma \in F(\beta) \right] \right]$ We scrutinize a and distinguish three possibilities. Case (1): a=<1,12. Then : $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow O^* \in F(\beta)].$ Therefore: $\forall \beta [\beta q = \overline{Q} q \rightarrow (\exists n [\beta(n) \neq 0] \rightarrow \mu n [\beta(n) \neq 0] \text{ is odd})].$ This is contradictory, as we may define $\beta^* \in {}^{\omega} \omega$ such that: $2q = \mu n [\beta^*(n) \neq 0]$. Case (11): a = < 0, 17. Then: $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow 1^* \in F(\beta)].$ Therefore: $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow (\exists n [\beta(n) \neq 0] \rightarrow \mu n [\beta(n) \neq 0] \text{ is even})].$ This is contradictory, as we may define $\beta^* \in {}^{\omega} \omega$ such that: $2q+1 = \mu n [\beta^{*}(n) \neq 0].$ Case (11): a = < 0,07.We claim that, now : $\forall \alpha [S_2(F_n(\alpha))].$ For, let $\alpha \in {}^{\omega} \omega$ and consider $\beta^* = \overline{Q} * < 1 > * \alpha$. We know: $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow \exists \gamma \in \sigma_{zmon} [\overline{\gamma}^2 = \overline{Q}^2 \land \gamma \in F(\beta)]].$ Because of the definition of F, therefore: $S_2(F_0(\alpha))$ But, then: $\forall \alpha [\neg \neg S_2(\alpha) \rightarrow S_2(\alpha)]$, and

$$\begin{split} \begin{array}{l} S_{2} \text{ is } \underline{not} \ a \ stable \ subset of \ {}^{\omega}\omega, \ as \ we \ observed \\ \text{ just before theorem 11.9} \\ \\ \text{We have seen: } \forall_{\beta} \left[P(F(\beta)] \ and: \ \neg \forall_{\beta} \left[S_{2}(F(\beta)) \right]. \\ \\ \hline \text{Therefore: } \neg \forall_{\alpha} \left[P(\alpha) \rightarrow S_{2}(\alpha) \right]. \\ \hline \text{Met} \ \underline{\text{Lemma}} \ \text{Suppose: } \delta \in \ {}^{\omega}\omega \ and \ Fun(\delta) \ and: \ \forall_{\alpha} \left[S_{2}(\alpha) \rightarrow E_{2}(\delta|\alpha) \right]. \\ \hline \text{Then: } \forall_{\alpha} \left[P(\alpha) \right] \rightarrow E_{2}(\delta|\alpha|) \\ \hline \text{Then: } \forall_{\alpha} \left[P(\alpha) \right] \rightarrow E_{2}(\delta|\alpha|) \\ \text{Let } \alpha \in \ {}^{\omega}\omega \ and \ Fun(\delta) \ and: \ \forall_{\alpha} \left[S_{2}(\alpha) \rightarrow E_{2}(\delta|\alpha|) \right]. \\ \hline \text{Let } \alpha \in \ {}^{\omega}\omega \ and \ P(\alpha). \\ \text{Remark: } \forall_{\beta} \in \ {}^{\sigma}_{2non} \left[S_{2}(\alpha_{j}) \right] \ and \ therefore: \ \forall_{\beta} \in \ {}^{\sigma}_{2non} \left[E_{2}(\delta|\alpha_{j}) \right]. \\ (\text{The definition of } \alpha_{j} \ has \ been \ given \ just before 11.8). \\ \text{Observing: } Q \in \ {}^{\sigma}_{2mon} \ and \ using \ GCP \ we \ find \ q, new \ such \ that: \\ \quad \forall_{\beta} \in \ {}^{\sigma}_{2mon} \left[\overline{j} q = \overline{Q} q \ \rightarrow (\delta|\alpha_{j})^{n} = Q \right]. \\ \text{Therefore: } \exists_{\gamma} \left[f \in \alpha \land \overline{j} q = \overline{Q} q \right] \ \rightarrow (\delta|\alpha_{j})^{n} = Q. \\ \text{In view of: } P(\alpha), \ we \ may \ distinguish \ two \ cases: \\ Case (0): \ \exists_{j} \langle q f \ j^{*} \in \alpha]. \\ \text{Now: } S_{2}(\alpha), \ and \ therefore: \ E_{2}(\delta|\alpha). \\ Case (0): \ \neg \neg \exists_{\gamma} \Gamma_{j} \in \alpha \land \overline{j} q = \overline{Q} q \right]. \\ \text{Then: } \neg \neg (\delta|\alpha|^{n} = Q), \ \text{therefore: } (\delta|\alpha|^{n} = Q \ and \cdot E_{2}(\delta|\alpha|). \\ \text{In either } case: E_{2}(\delta|\alpha). \\ \text{Ne proved: } \forall_{\alpha} \left[P(\alpha) \rightarrow E_{2}(\delta|\alpha|] \right] \end{aligned}$$

It is not possible to replace the conclusion of lemma 11.12 by: $\forall \alpha [\neg S_2(\alpha) \rightarrow E_2(\delta | \alpha)]$ The following example makes this clear: As one sees easily: $\forall \alpha [S_2(\alpha) \rightarrow (0^* \in \alpha \vee \neg \neg \exists \gamma [\gamma(0) = 0 \land \gamma \in \alpha])]$. The succedens of this implication is indeed Ξ_2° (cf. 11.5). Now suppose: $\forall \alpha [\neg \neg S_2(\alpha) \rightarrow (0^* \in \alpha \vee \neg \neg \exists \gamma [\gamma(0) = 0 \land \gamma \in \alpha]]]$. Then, in particular: $\forall \alpha [(\alpha(\langle 0, 0 \rangle) = 1 \land \neg \neg (0^* \in \alpha \vee 1^* \in \alpha)]) \rightarrow (0^* \in \alpha \vee 1^* \in \alpha)]$. And this, in turn, leads rather straightforwardly to: $\forall \alpha [\neg \neg D^2 A_1(\alpha)]$. $D^2 A_1$, however, is not a stable subset of ${}^{\omega} u$. (Neg(Neg($D^2 A_1$)) is reducible to A_1 , and $D^2 A_1$ itself is not.) This also establishes: $\neg \forall \alpha [\neg S_2(\alpha) \rightarrow P(\alpha)]$, a claim which we made at the introduction of P, just after theorem 11.10, but left open until now.

The following, gratifying conclusion is the one we have been striving for:

11.13 <u>Theorem</u>: $\neg (S_2 \leq A_3)$. <u>Proof</u>: Suppose: $S_2 \leq A_3$, and, using AC_{11} , determine $\delta \in {}^{\omega}\omega$ such that Fun(δ) and: $\forall \alpha [S_2(\alpha) \rightleftharpoons A_3(\delta | \alpha)]$. Therefore: $\forall \alpha [S_2(\alpha) \rightarrow \forall k [E_2((\delta | \alpha)^k)]]$, and, according to lemma 11.12: $\forall \alpha [P(\alpha) \rightarrow A_3(\delta | \alpha)]$. But now: $\forall \alpha [P(\alpha) \rightarrow S_2(\alpha)]$, and this contradicts theorem 11.11 \boxtimes

As P itself belongs to Π_3° , the above proof shows that P is the best possible Π_3° -approximation to S_z ; i.e.: $P = \bigcap \{R | R \in \Pi_3^{\circ} | S_z \subseteq R\}$. Similarly, Neg (Neg (Sz)), which belongs to Π_1° , and thus to Π_2° , is seen to be the best possible Π_2° -approximation to S_z : Neg (Neg (Sz)) = $\bigcap \{R | R \in \Pi_2^{\circ} | S_z \subseteq R\}$. (Cf. theorem 11.9 and its proof).

11.14 We will generalize the method used in proving : $\neg (S_2 \leq A_3)$, and prove that S_2 is not hyperarithmetical.

Remark that: $\forall \alpha [S_2(\alpha) \supseteq \forall n [\exists j [j \neq \in \alpha] \lor (\forall k \leq n [\alpha(\underline{0}k) = 0] \land S_2(\underline{0}^n \alpha))].$

We define $\mathcal{H}A$, a class of hyperarithmetical approximations to S_2 by the following clauses:

- (1) Neg(Neg(S_2)) belongs to $\rightarrow (A$.
- (1) Whenever Q₀, Q₁... is a sequence of elements of H(A such that ∀n [Q_{n+1} ∈ Q_n], then Q_w belongs to H(A, where Q_w is defined by: for all α∈^ww:

$$Q_{\omega}(\alpha) := \forall n \left[\exists j \left[j \neq e \alpha \right] \lor \left(\forall k \le n \left[\alpha \left(\overline{Q} k \right) = 0 \right] \land Q_n \left(\frac{Q n}{\alpha} \right) \right) \right].$$

(11) Whenever a set Q belongs to HA, it does so because of (1) and (11).

One observes, that for each $Q \in HA$: $S_2 \subseteq Q$. We want to show that the converse is not true for any $Q \in HA$.

- 11.15 We first remark that all members Q of HA are proof against procrastination. we will explain what we mean by that. We want to use the fact that, like S_2 , all members Q of HA have the following property: $\forall \alpha \ \forall k \ \left[\left(Q\left(\stackrel{\overline{O}k}{\sim} \alpha \right) \land \forall n \leq k \left[\alpha(\stackrel{\overline{O}n}{\sim}) = O \right] \right) \rightarrow Q(\alpha) \right]$ But there is more to it than this. This "more" is that we may extend the range of "k" to volatile numbers. To express ourselves correctly, we have to introduce another new notion. Let us define a procrastinating function $G: {}^{\omega}\omega \rightarrow {}^{\omega}\omega$, as follows: Let $\beta \in \omega$ and $k := \mu n [\beta(n) \neq 0]$ be the volatile number of β . he define G(B) such that: For all $n \in \omega$, $n \leq k \leq G(\beta) (\overline{Q}n) = 0$ and $G(\beta) (\overline{n*}(n+1)) = 1$. For all $a \in w$: $G(\beta)(\overline{O}k \star a) := \beta|_{k+1}(a).$ $(\beta|_{k+1})$ is the sequence which we get from β by deleting its first k+1 values, cf. the proof of theorem 11.11). We may reformulate the basic properties of G as follows:
 - A subset Q of $^{\omega}\omega$ is called <u>proof against procrastination</u> if: $\forall \beta [\forall k[k=un[\beta(n)\neq 0] \rightarrow Q(\beta|_{k+1})] \rightarrow Q(G(\beta))].$

Our first observation is that $Neg(Neg(S_2))$ is proof against procrastination. The proof of this fact has been part of the proof of theorem 11.11, but perhaps it is useful to repeat the argument here.

Suppose:
$$\beta \in W$$
 and $\forall k [k = \mu n [\beta(n) \neq 0] \rightarrow \neg \neg S_2(\beta|_{k+1})]$.
There are two possibilities:
 $- \exists n [\beta(n) \neq 0]$, then calculate $k = \mu n [\beta(n) \neq 0]$ and remark:
 $\forall n \leq k [G(\beta)(\underline{0}n) = 0] \land \neg \neg S_2(G(\beta) \underline{0}p)$, therefore: $\neg \neg S_2(G(\beta))$.
 $- \forall n [\beta(n) = 0]$, then: $Q \in G(\beta)$ and: $S_2(\beta)$ and: $\neg \neg S_2(\beta)$.
As: $\neg \neg (\exists n [\beta(n) \neq 0] \lor \forall n [\beta(n) = 0])$, we know: $\neg \neg S_2(G(\beta))$.

Now, assume that Q_0, Q_1, \dots is a sequence of subsets of w_w , which are, all of them, proof against procrastination, and such that: $\forall n [Q_{n+1} \subseteq Q_n]$, and consider: $Q_w = \{ \alpha \mid \forall n [\exists j [j^* \in \alpha] \ v (\forall k \le n [\alpha(\underline{O}k) = 0] \land Q_n(\underline{O}n_\alpha)] \}.$ We first remark that : $\forall n [Q_{\omega} \subseteq Q_n].$ For, let $\alpha \in \mathbb{Q}_{w}$ and $n \in w$. There are two cases to consider: (1) $\exists j [j^* \in \alpha]$, then: $S_2(\alpha)$, and: $Q_n(\alpha)$. (1) $\forall k \leq n [\alpha(\bar{Q}k) = 0] \land Q_n(\bar{Q}n_{\alpha}).$ Now, Qn(a), as Qn is proof against procrastination. In either case, therefore: $Q_n(\alpha)$. Next, we show that Q_w itself is proof against procrastination. $\beta \in \omega \omega$ and $\forall k [k = \mu p [\beta(p) \neq 0] \rightarrow Q_{\omega}(\beta|_{k+1})].$ Suppose Let new. First suppose: n<µp[β(p)≠0] Then: $\forall k \leq n [G(\beta)(\overline{Q}k) = 0]$, and $\overline{Q}^n G(\beta) = G(\beta|_n)$. Remark: $\forall k [k = \mu p [\beta]_n (p) \neq 0] \rightarrow Q_{\omega} (\beta|_n|_{p+1})].$ But $Q_w \subseteq Q_n$ and Q_n is proof against procrastination. Therefore $Q_n(G(\beta|_n))$ and $Q_n(\underline{\nabla}^n G(\beta))$. Now suppose $n > \mu p [\beta(p) \neq 0]$. Let $k = \mu p \epsilon \beta(p) \neq 0$ and consider $\beta|_{k+1}$, recalling $Q_{\omega}(\beta|_{k+1})$. There are two cases to distinguish. (1) $\exists j [j^* \in \beta|_{k+1}]$; calculate $j \in w$ such that $j^* \in \beta|_{k+1}$, and remark: $(j+k)^* \in G(\beta)$. (11) $Q_n((\beta|_{k+1})^{\overline{Q}n})$ and $\forall l \leq n[\beta|_{k+1}(\overline{Q}l) = 0]$ But now: $Q_n(\overline{Q}^n(\beta))$ as Q_n is proof against procrastination, and $\forall l \leq n [G(\beta)(\overline{Q}l) = 0].$ Therefore: $\forall n [\exists j [j^* \in G(\beta)] \lor (\forall k \le n [G(\beta)(\overline{O}k) = 0] \land Q_n(\underline{O}^n G(\beta)))]$ i.e.: $Q_{\omega}(G(\beta))$.

We may trust, now, that all members Q of H(A) are proof against procrastination, as $Neg(Neg(S_z))$ has this property, and the property is preserved in the process of making a new element of H(A) out of a sequence of earlier-constructed elements.

11.16 We now devote ourselves to the task of proving that no member Q of HA coincides with S₂. We will define, to each Q ∈ HA, a function F: ww → Q such that · ¬ ∀x [S₂(F(x))].
 In the case of Neg(Neg(S₂)), this promise is a cheap one.

We have seen that Neg(Neg(Sz)), being a spread, is strictly analytical and we constructed a function $F_0: w_w \to w_w$ such that Neg(Neg(Sz)) = Ra(F_0) in the course of the proof of theorem 11.11. On the other hand, we know, for some time already, that: $\neg \forall \alpha [\neg S_2(\alpha) \to S_2(\alpha)]$ (cf. the remark preceding theorem 11.9)

Now, assume Q_0 , Q_1 ,... is a sequence of hyperarithmetical approximations to S_2 such that $\forall n [Q_{n+1} \subseteq Q_n]$, and F_0, F_1, \dots is a sequence of functions from w_w to www such that: $\forall n \forall \alpha [Q_n (F_n(\alpha))] \land \forall n \neg \forall \alpha [S_2 (F_n(\alpha))]$ We define a new function $F: {}^{\omega}w \rightarrow {}^{\omega}w$ as follows: Let $\beta \in W$ and $k = \mu p [\beta(p) \neq 0]$ be the volatile number of β . We define F(B) such that: (1) For all new, $n \le k$: $F(\beta)(\overline{O}^n) = F(\beta)(\overline{O}^*n) = F(\beta)(\overline{1}^*n) = 0$. (11) For all $n \in \omega$, $n \leq k$, $n \neq 0$, $n \neq 1$: $F(\beta)(\overline{n^*}(n+1)) = 1$. (111) For all new, n > k: $F(\beta)(\overline{O^*}n) = O \rightleftharpoons k$ is odd $F(\beta)(1^{*}n)=0 \not\subset k \text{ is even}$ (iv) $\overline{\mathcal{O}}_{k}^{k} F(\beta) = F_{k}(\beta|_{k,i})$. We claim that: YB [Qw (F(B))]. Let be^ww and new. First suppose: n < µp[p(p)≠0]. Define a sequence $\beta^* \in {}^{\omega} \omega$ by requiring: $\forall k [k = \mu p [\beta(p) \neq 0] \rightarrow (\overline{\beta^*}(k+1) = \overline{\beta}(k+1) \wedge \beta^*|_{k+1} = \overline{F_k}(\beta|_{k+1}))]$ As $\forall n [Q_{n+1} \subseteq Q_n]$, this implies: $\forall k [k = \mu p [\beta^*(p) \neq 0] \rightarrow Q_n (\beta^*|_{k+1})],$ and, since Q_n is proof against procrastination: $Q_n(G(\beta^*))$ $\overline{Q}^n F(\beta) = G(\beta^*|_n)$ Remark, that: Almost the same argument proves: $Q_n (G(\beta^*|_n))$. Therefore: $\forall k \le n [F(\beta)(\underline{O}k) = O] \land Q_n (\underline{O}^n F(\beta))$. Now suppose: $n \ge \mu p [\beta(p) \neq 0]$. Calculating $k := \mu p [\beta(p) \neq 0]$ and seeing whether it is odd or even, we find: $0^* \in F(\beta) = 1^* \in F(\beta)$, therefore: $\exists j [j^* \in F(\beta)]$. Therefore: $\forall n [\exists j [j \neq \in F(\beta)] \lor (\forall k \leq n [F(\beta) \overline{\bigcirc} k = 0] \land Q_n (\overline{\bigcirc}^n F(\beta))]$ i.e.: Q (F(B)) We also claim that: $\neg \forall \beta [S_2(F(\beta))].$ Suppose: ∀B [S2 (F(B))]. Then: VB3a J[[g(a)=2 ~ rea ~ reozmon ~ re F(B)] Using CP, we find qew, aew such that: $lg(a) = 2 \land \forall \beta [\beta q = \hat{Q} q \rightarrow \exists \gamma [\gamma \in a \land \gamma \in \sigma_{2mon} \land \gamma \in F(\beta)]]$ We scrutinize a, and distinguish the following cases: (1) $a = \langle 1, 1 \rangle$ Now: $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow O^* \in F(\beta)]$

Therefore: $\forall s[\bar{s}q=\bar{Q}q \rightarrow (\exists n[s(n)\neq 0] \rightarrow \mu n[s(n)\neq 0] \text{ is odd})]$ This is contradictory.

(11) $\alpha = \langle 0, 1 \rangle$. Now: $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow 1^* \in F(\beta)]$ Therefore: $\forall \beta [\overline{\beta} q = \overline{Q} q \rightarrow (\exists n [\beta(n|\neq 0] \rightarrow \mu n [\beta(n)\neq 0])]$ This is contradictory.

(111)
$$a = \langle 0,0\rangle$$
. Now: $\forall \beta [\overline{\beta}q = \overline{0}q \rightarrow \exists \gamma [\overline{\gamma}^2 = \overline{0}2 \wedge \gamma \in \sigma_{2mon} \wedge \gamma \in F(\beta)]$
Therefore: $\forall \beta [(\overline{\beta}q = \overline{0}q \wedge \beta(q) = 1) \rightarrow S_2(\overline{0}^2 q F(\beta))]$
And: $\forall \beta [(\overline{\beta}q = \overline{0}q \wedge \beta(q) = 1) \rightarrow S_2(F_q(\beta|_{q+1}))]$
Therefore: $\forall \alpha [S_2(F_q(\alpha))]$.

And this, according to our assumptions, is contradictory.

We put the blame for all these contradictions where it belongs, and Conclude: $\neg \forall \beta [S_2(F(\beta))]$.

To any Q \in HA we may construct, by repeated application of the above, a function F: $w_w \rightarrow Q$ such that: $\neg \forall \beta [S_2(F(\beta))]$. Therefore, no member Q of HA coüncides with S_2 .

11.17 Let QE HA and let Qt be the set which results when we do apply the generating operation to the sequence Q, Q, Q,... Thus: $Q = \{ \alpha \mid \forall n \mid \exists j \mid j \neq e \alpha \} v (\forall k \leq n \mid \alpha \mid \underline{0} \mid k) = 0 \} \land Q (\underline{0}^n \alpha) \}$ We have seen, in the previous paragraph, that Q is proof against procrastination, and that $Q^+ \subseteq Q$ We observe, now, that $Q^{\dagger} \neq Q$ and that Q^{\dagger} is a proper subset of Q for, assume $Q^{\dagger} = Q$ Then: $\forall \alpha [Q(\alpha) \rightleftharpoons \forall n [\exists j [j * \in \alpha] \lor (\forall k \le n [\alpha(\bar{Q}k) = 0] \land Q(\bar{Q}n_{\alpha}))]].$ Especially: $\forall \alpha [Q(\alpha) \rightarrow (0^* \in \alpha \lor (\alpha (<0>)=0 \land Q(^{(0>}\alpha))].$ Let $\alpha \in {}^{\omega}\omega$ and $Q(\alpha)$. We will construct regimon such that rea and we will do so step-by-step. step (0): We know: Q(a) and distinguish two possibilities: (1) $0^* \in \alpha$, then r(0) := 1. (11) $\alpha(\langle 0 \rangle) = 0 \wedge \Omega(\langle 0 \rangle \alpha)$, then $\gamma(0) := 0$ (and $\Omega(\overline{\beta}^{1} \alpha)$). step(Sn): y(0),..... y(n) have been defined already. If $\gamma(n) = 1$, we define $\gamma(Sn) = 1$. If $\gamma(n) = 0$, we know: $Q(\overline{\delta}^{Sn}\alpha)$, and we distinguish two cases: (1) $O^* \in \overline{y}^{Sn} \alpha$, then y(Sn) := 1 $(11) \overline{\gamma}^{Sn} \alpha (\langle 0 \rangle) = 0 \land \alpha (\overline{\gamma}^{Sn * \langle 0 \rangle} \alpha), \text{ then } \gamma(Sn) = 0$ Remark, that, in the latter case: $Q(\bar{\gamma}^{ssn}\alpha)$.

It is easily verified that: $\forall n [\alpha(jn)=0]$ Therefore: $\forall \alpha [Q(\alpha) \rightarrow S_2(\alpha)]$, and: $Q \subseteq S_2$, and: $Q = S_2$ But this is impossible, according to 11.16

Remark that, for any $Q \in HA$, and $m \in \omega$: $Q^{\dagger}(\alpha) \rightleftharpoons \forall n \ge \forall n \ge [\exists j [j \neq \epsilon \alpha] \lor (\forall k \le n [\alpha(\bar{Q}k] = 0] \land Q(\bar{Q}n \alpha))]$

This is, because Q is proof against procrastination

We use this remark to make the following observation: If Q_0, Q_1, \dots is a sequence of hyperarithmetical approximations to S_2 , such that: $\forall n[Q_{n+1} \subseteq Q_n]$, and Q_w is the set which we get by applying the generating operation to this sequence, then:

 $\forall n [Q_{\omega} \subseteq Q_{n}^{+}] \quad \text{and} \quad \forall n [Q_{\omega} \neq Q_{n}].$

Thus, the process of generating new elements in XA is endless, a fact which at once surprises and reassures.

A last remark on HA, which we will need in the sequel, is that HA is closed under the operation of intersection.

We will prove, for all PEHA, that for all QEHA PAQEHA, and we will do this inductively.

If $P = Neg(Neg(S_2))$, we remark that for all $Q \in MA$: $Q \subseteq P$ and $Q \cap P = Q$.

Now suppose: $P_0, P_1, P_2, ...$ is a sequence of elements of HA, such that $\forall n [P_{n+1} \subseteq P_n]$, and such that any intersection of some P_n with any element of HA, belongs to HA again. We want to prove that: $P_{\omega} := \{\alpha | \forall n [\exists j [j \neq \epsilon \alpha] \lor (\forall k \leq n [\alpha(\bar{0}k) = 0] \land P_n(\bar{0}^n \alpha)] \}$ has the same property. To this end, assume $Q \in HA$, $Q \neq Neg(Neg(S_2))$, and determine a sequence $Q_0, Q_1, ...$ of elements from HA, such that $Q = Q_{\omega} := \{\alpha | \forall n [\exists j [j \neq \epsilon \alpha] \lor (\forall k \leq n [\alpha(\bar{0}k) = 0] \land P_n(\bar{0}^n \alpha))] \}$.

Now consider $A := \{ \alpha \mid \forall n [\exists j [j \neq \epsilon \alpha] \lor (\forall k \leq n [\alpha(\bar{\mathbb{Q}}k) = 0] \land P_n(\bar{\mathbb{Q}}^n \alpha) \land Q_n(\bar{\mathbb{Q}}^n \alpha)) \}$ We claim that $A = P_{\omega} \cap Q_{\omega}$.

The proof is straightforward and may be omitted. As, by hypothesis, $P_0 Q_0$, $P_1 \cap Q_1$,... is a decreasing sequence of members of P(A), this shows that $P_w \cap Q_w$ itself belongs to P(A).

The reader may feel anxious about the huge quantifier: for all $Q \in HA$ occurring in this proof. But he need not do so we could have been so economical as to avoid it, talking only about those members of HA, which played a role in the construction of P and Q (if we are engaged in proving that the intersection of P and Q belongs to HA).

11.18 The curtain rises for the final act: we prove that
$$S_2$$
 is not hyperarithmetical.
Let Q be a hyperarithmetical approximation to S_2 (i.e.: $Q \in HA$) and C a
hyperarithmetical set.
Q is called Q witness against C if
 $\forall \delta [(Fun(\delta) \land \forall \alpha [S_2(\alpha) \rightarrow C(\delta[\alpha]]) \rightarrow \forall \alpha [Q(\alpha) \rightarrow C(\delta[\alpha]]]$
If Q is a witness against C, S_2 cannot be reducible to C, for, in that
case, Q and S_2 would coincide, which does not happen, as we saw in 11.6
If Q is a witness against C, Q also witnesses against any set D which
is reducible to C.
If Q is a witness against C, the following is also true, for all $m \in \omega$:
 $\forall \delta [(Fun(\delta) \land \forall \alpha [S_2(^m\alpha) \rightarrow C(\delta[\alpha]]) \rightarrow \forall \alpha [Q(^m\alpha) \rightarrow C(\delta[\alpha]]].$
Suppose: $\delta e^{-\omega \omega} \land Fun(\delta) \land m \in \omega \land \forall \alpha [S_2(^m\alpha) \rightarrow C(\delta[\alpha]]].$
 $V\delta [(Fun(\delta) \land \forall \alpha [S_2(^m\alpha) \rightarrow C(\delta[\alpha]]) \rightarrow \forall \alpha [Q(^m\alpha) \rightarrow C(\delta[\alpha]]].$
Remark: $\forall \beta [S_2(\beta) \rightarrow C(2[\beta]].$
Therefore: $\forall \beta [Q(\beta) \rightarrow C(2[\beta]].$
Especially, since $Q(^m\alpha) \rightarrow C(\delta[\alpha]].$

We have seen, in lemma 11.8 and theorem 11.9 that $Neg(Neg(S_2))$ is a witness against E_1 and A_2 , and, therefore, against any set D which belongs to Σ_1^o or Π_2^o .

Starting from this fact, we may construct a witness against any hyperarithmetical set.

Suppose: $C_0, C_1, C_2,...$ is a sequence of hyperarithmetical subsets of ${}^{W}w$, and ${}^{P}_0, {}^{P}_1, {}^{P}_2,...$ is a sequence of hyperarithmetical approximations to S_2 , such that ${}^{V}n[P_n]$ is a witness against $C_n]$.

As H(A) is closed under intersection, we may assume: $P_0 \ge P_1 \ge P_2 \ldots$ (We may change over to the sequence $P_0, P_0 \land P_1, P_1 \land P_2, \ldots$, if we do feel any doubts). Consider: $P_{w} = \{ \alpha \mid \forall n \exists j [j^{*} \in \alpha \ v \ (\forall k \leq n [\alpha(\overline{Q}k) = 0] \land P_{n}(\overline{Q}^{n}\alpha)] \} \}$ We claim that P_{ω} is a witness against $\bigwedge_{n \in \omega} C_n$ and also against $\bigcup_{n \in \omega} C_n$. As $P_{\omega} \subseteq \bigwedge_{n \in \omega} P_n$, we have no difficulty in verifying that P_{ω} testifies against $\bigwedge_{n \in \omega} C_n$. Now, suppose: $\delta \in {}^{\omega}\omega$ and $\operatorname{Fun}(\delta)$ and: $\operatorname{Va}[S_2(\alpha) \to \operatorname{En}[C_n(\delta|\alpha)]$ Let $\alpha \in {}^{\omega}\omega$ and $P_{\omega}(\alpha)$. Remark: $\forall f \in \sigma_{2mon} [S_2(\alpha_f)]$, and therefore: $\forall f \in \sigma_{2mon} \exists n [C_n(\delta|\alpha_f)]$. (The definition of α_x has been given just before 11.8) Observing: $Q \in \sigma_{2mon}$ and using GCP we find q, $n \in w$ such that: $\forall j \in \sigma_{\text{zmon}} [jq = \overline{Q}q \rightarrow C_n(\delta|\alpha_j)].$ Therefore: $(\forall k \leq q [\alpha(\bar{Q}k) = O] \land S_2(\bar{Q}q_\alpha)) \rightarrow C_n(\delta|\alpha).$ Let $m := max(q, n_o)$. In view of: $P_{\omega}(\alpha)$ we may distinguish two possibilities: (1) $\exists j [j^* \in \alpha]$, then: $S_2(\alpha)$, and: $\exists n [C_n(\delta | \alpha)]$ $\forall k \le m \left[\alpha \left(\overline{Q} k \right) = 0 \right] \land P_m \left(\overline{Q} m_\alpha \right).$ (#) Remark, however, that $(\forall k \le m [\alpha(\bar{\varrho}k) = 0] \land S_2(\bar{\varrho}^m \alpha)) \rightarrow C_n (\delta | \alpha).$ As $P_m (\subseteq P_{n_o})$ witnesses against C_{n_o} , this implies: $(\forall k \le m [\alpha(\hat{Q}k) = 0] \land P_m(\hat{Q}^m \alpha) \rightarrow C_n(\delta | \alpha).$ Therefore: C. (Sla) Therefore: $\forall \delta[(Fun(\delta) \land \forall \alpha[S_2(\alpha) \rightarrow \exists n[C_n(\delta|\alpha)]) \rightarrow \forall \alpha[P_{\omega}(\alpha) \rightarrow \exists n[C_n(\delta|\alpha)]]]$ i.e., P_{ω} is a witness against $\bigcup_{n \in \omega} C_n$.

We have to abandon every hope that S_2 be hyperarithmetical, as any hyperarithmetical set may be built up from sets which belong to Σ_1° and Π_1° , by repeated use of the operations of countable union and intersection

We have seen, in 11.16 and 17, that very, very many hyperarithmetical sets are intercalated between S_2 and Neg(Neg(S_2)).

The results of this paragraph make us see a new that no hyperarithmetical set can be both existentially and universally saturated, a fact which has been seen to follow from the hyperarithmetical hierarchy theorem. (cf. 9.10). For, in that case, we would find an element in MA, witnessing against

We prove a generalization of theorem 11.1:

If this theorem is to bear the same kind of fruit as theorem 11.1, we must prove first:

11.21 Theorem:
$$\neg (D^2S_2 \leq S_2)$$

Proof: Suppose: $D^2S_2 \leq S_2$ and, using AC_{41} , determine $\delta \in W$ such that
Fun (b) and : $\forall \alpha [(S_2(\alpha^0) \lor S_2(\alpha^1)) \neq S_2(\delta|\alpha)].$
We claim that: $\forall \alpha [\bigcirc \in \alpha^0 \rightarrow \bigcirc \subseteq \epsilon \delta|\alpha].$
Suppose: $\alpha \in W$ and: $\forall n[\alpha^0(\bar{\bigcirc}n] = 0]$ and: $\exists n[(\delta|\alpha)(\bar{\bigcirc}n] \neq 0].$
Calculate $n_0, q \in W$ such that:
 $\forall \beta [\bar{\beta}q = \bar{\alpha}q \rightarrow (\delta|\beta)(\bar{\bigcirc} n_0) = (\delta|\alpha)(\bar{\bigcirc} n_0) \neq 0]$
The initiative subject has severely limited its own
possibilities, whereas the creative subject still has all
its options open.
Define $\eta \in W_W$ such that: Fun(η) and:
for all $\beta \in W_W$:
(i) for all $k \leq q$: $(\eta|\beta)^0(\bar{\bigcirc}k) = 0$
(ii) $(\bar{\eta}|\bar{\beta})q = \bar{\alpha}q$
(iii) for all $k \leq q$: $(\kappa \notin (\eta|\beta)^0$
(iv) for all $a \in w$: $(\eta|\beta)^0(\bar{\square} q * a) = \beta(a)$
(v) $\neg S_2((\eta|\beta)^{\perp})$

Let $Z \in W$ be such that: Fun(Z) and: $\forall \beta [Z]\beta = \delta [(\eta | \beta)]$ Remark that for all BEWW: $S_2(\beta) \not\in S_2(\eta|\beta)^\circ)$ $\vec{z} \qquad \mathbb{D}^2 S_2(\eta|\beta) \wedge (\eta|\beta) q = \overline{\alpha} q$ Therefore: $S_2 \leq D^{n_0}A_1$, and this contradicts corollary 11.2 Therefore: $\forall \alpha [\forall n [\alpha^{\circ}(\bar{\mathbb{Q}}n] = 0] \rightarrow \forall n [(\delta | \alpha) (\bar{\mathbb{Q}}n) = 0]]$ The same argument also establishes: $\forall \alpha [Q \in \alpha^1 \rightarrow Q \in \delta | \alpha]$ and, therefore: $\forall \alpha [(\bigcirc \in \alpha^{\circ} \lor \bigcirc \in \alpha^{1}) \rightarrow \bigcirc \in \delta | \alpha].$ This, however, has an undesirable consequence. Define $\eta \in \mathcal{W}_{\mathcal{W}}$ such that: Fun(η) and: for all BE Ww. (i) $\forall n [(\eta|\beta)^{\circ}(\overline{Q}n) = \beta^{\circ}(n) \land (\eta|\beta)^{1}(\overline{Q}n) = \beta^{1}(n)]$ (1) $\forall n [n^* \notin (\eta | \beta)^\circ \land n^* \notin (\eta | \beta)^1].$ Let $Z \in W$ be such that: Fun (3) and: $\forall \beta [Z] \beta = \delta[(\eta | \beta)]$ Remark that for all $\beta \in {}^{\omega}\omega$: $D^{2} A_{1}(\beta) \rightleftharpoons \beta^{\circ} = Q \lor \beta^{1} = Q$ $\rightleftharpoons Q \in (\eta|\beta)^{\circ} \lor Q \in (\eta|\beta)^{1}$ \neq $\forall n [(3|\beta)(\overline{Q}n) = 0]$ Therefore: $D^2A_1 \leq A_1$, and this contradicts theorem 4.3. We better admit: $\neg (D^2 S_2 \leq S_2)$. We thirst for more wisdom and are eager to know whether $D^3S_2 \leq D^2S_2$ Let us introduce, for each $\alpha \in {}^{\omega}\omega$, $\gamma \in {}^{\omega}\omega$, $m \in \omega$, a sequence $\alpha_{\gamma,m} \in {}^{\omega}\omega$ by: (1) $\alpha_{j,m}(<>) = 0$ (11) for all $q \in \omega$, $q \neq m$ $(\alpha_{\gamma,m})^q = \alpha^q$ $(\alpha_{\gamma,m})^m(q) = 0$ if $\overline{\gamma}(lg(q)) = q$ (111) for all gew: $= \alpha^{m}(q)$ otherwise

(The reader will be reminded of the definition which has been given immediately after theorem 11.7). We remark: Vm Va [S2(am) Z Jreozmon [a= arm]]. $\forall n > 0 [\neg (D^{n+1}S_1 \leq D^nS_2)].$ 11.22 Theorem : <u>Proof</u>. Suppose new, n > 1, and $D^{n+1}S_2 \leq D^nS_2$, i.e.: $\forall \alpha \exists \beta [D^{n+1}S_2(\alpha) \neq D^nS_2(\beta)]$ Using AC_{11} , determine $\delta \in Ww$ such that : Fun (δ) and : $\forall \alpha [D^{n+1} S_{\bullet}(\alpha) \neq D^{n} S_{\bullet}(\delta | \alpha)].$ Remark: Vm<n+1 Va Vyeozmon [Dn+1 Sz (ay,m)] Therefore: Vm<n+1 Va Vjeo2mon [D^S2 (Slar,m)] i.e.: Vm<n+1 Va Vreozmon 3p<n [S2((Slarm)))]. Observing: $\underline{O} \in \sigma_{2mon}$ and using GCP we determine natural numbers 90, ro, po, 91, r1, p1, 9n, rn, pn such that: $\forall m < n+1 \quad \forall \alpha \quad \forall \gamma \in \sigma_{2mon} \left[\left(\bar{\alpha} r_m = \bar{Q} r_m \wedge \bar{\gamma} q_m = \bar{Q} q_m \right) \rightarrow S_2 \left(\left(\delta | \alpha_{j,m} \right)^{p_m} \right) \right]$ Therefore: $\forall m < n+1 \quad \forall \alpha \left[\left(\bar{\alpha}r_m = \bar{Q}r_m \land \exists \gamma \in \sigma_{2mon} \left[\bar{\gamma}q_m = \bar{Q}q_m \land \gamma \in \alpha^m \right] \right) \rightarrow S_2((\delta | \alpha)^{p_m}) \right]$ As each of the numbers p_0, p_1, \ldots, p_n belongs to $\{0, 1, \ldots, n-1\}$, we may assume, without loss of generality: $p_0 = p_1 = 0$ and we perceive, putting $q := \max(q_0, q_1)$ and $r := \max(r_0, r_1)$: $\forall \alpha [(\bar{\alpha}r = \bar{Q}r \land \exists r \in \sigma_{2mon} [\bar{r}q = \bar{Q}q \land (r \in \alpha^{\circ}r ; r \in \alpha^{1})]) \rightarrow S_{2} ((\delta \mid \alpha)^{\circ})].$ Once more, we have eaten too much from the tree of knowledge: Let $s := \max(q, r)$ and define $\eta \in W$ such that: Fun(η) and for all BE www: (1) $(\eta|\beta)s = \overline{Q}s$ (1) $\forall k \leq s [(\eta | \beta)^{\circ} (\overline{Q} k) = (\eta | \beta)^{1} (\overline{Q} k) = O]$ (11) for all $a \in \omega$: $(\eta \mid \beta)^{\circ}(\overline{Q} \le \alpha) = \beta^{\circ}(\alpha)$ and $(\eta \mid \beta)^{1}(\overline{Q} \le \alpha) = \beta^{1}(\alpha)$ $(V) \forall k < s [k^* \notin (\eta | \beta)^\circ \land k^* \notin (\eta | \beta)^1]$ (v) $\forall m > 1 [\neg S_2((\eta | \beta)^m)].$ Define $Z \in W_{W}$ such that: Fun(Z) and: $\forall \beta [Z|\beta = (\delta|(\eta|\beta))^{\circ}]$. Remark, that for all Be www. $D^2 S_2(\beta) \rightleftharpoons \exists \gamma \in \sigma_{2moh}[\overline{\gamma} S = \overline{O}S \land (\gamma \in (\eta | \beta)^0 \lor \gamma \in (\eta | \beta)^1)] \land (\overline{\eta} | \beta) S = \overline{O}S$ \neq S_2 (ZIB). Therefore: $D^2S_2 \leq S_2$, and this leads to absurdity (cf. 11.21) We better leave paradise and keep in mind: $\forall n > 1 [\neg D^{n+1} S \leq D^n S,]$.

It is not difficult to establish: $\forall n > 0[D^nS_2 \le D^{n+1}S_2]$, and, therefore: $\forall n > 0[D^nS_2 < D^{n+1}S_2]$. Combining this with theorem 11.20, we find: $\forall n > 0[D^nS_2 < D^{n+1}S_2]$. Now, the world starts to move again. Looking into the proof of theorem 11.21, we see that it made us jump from: $\forall n > 0[D^nA_1 < D^{n+1}A_1 < S_2]$ to: $S_2 < D^2S_2$. Nothing prevents a similar jump from: $\forall n > 0[D^nS_2 < D^{n+1}S_2]$ from: $S_3 < D^2S_3$. Theorem 11.22 taught us how to conclude: $\forall n > 0[D^nS_2 < D^{n+1}S_2]$ from: $S_2 < D^2S_2$. Leaning on this experience, we trust that: $\forall n > 0[D^nS_3 < D^{n+1}S_3]$ will follow from: $S_3 < D^2S_3$.

Gradually, the following picture unfolds itself:

$$A_1 \prec D^2 A_1 \prec D^3 A_1 \dots S_2 \prec D^2 S_2 \prec D^3 S_2 \dots S_3 \prec D^2 S_3 \prec D^3 S_3 \dots S_q \prec D^2 S_q \dots$$

Or, to put the same into a learned formula:

$$\forall m > 0 \forall n > 0 \forall p > 0 \forall q > 0 [$D^m S_n \leq D^p S_q \rightleftharpoons (n < q \lor (n = q \land m \leq p))]$$$

It comes somewhat as a surprise, that much of this game may be played also with conjunction. We remind the reader of the easy fact that: $C^2A_1 \leq A_1$. (In definition 4.11 we introduced, for each new and $P \subseteq w$ $C^n P := \{ \alpha \mid \forall k < n \in P(\alpha^k) \}$). In contrast to this, we have:

11.23 Theorem: $\neg (C^2 S_2 \leq S_2)$

<u>Proof</u>: The proof is a charming variation upon the proof of theorem 11.21 Suppose: $C^2S_2 \leq S_2$ and, using AC₁₁, determine $\delta \in \omega_{\omega}$ such that: Fun(δ) and: $\forall \alpha [C^2S_2(\alpha) \neq S_2(\delta | \alpha)]$, i.e.: $\forall \alpha [(S_2(\alpha^0) \wedge S_2(\alpha^1)) \neq S_2(\delta | \alpha)]$ We claim that: $\forall \alpha [(Q \in \alpha^0 \wedge S_2(\alpha^1)) \rightarrow Q \in \delta | \alpha]$.

> Suppose: $\alpha \in {}^{\omega} \omega$ and: $\forall n [\alpha^{\circ}(\bar{\mathbb{Q}}n] = 0]$ and: $S_{2}(\alpha^{1})$ and: $\exists n [(\delta | \alpha)(\bar{\mathbb{Q}}n) \neq 0]$. Calculate $n_{0}, q \in \omega$ such that: $\forall \beta [\bar{\beta}q = \bar{\alpha}q \rightarrow (\delta | \beta)(\bar{\mathbb{Q}}n_{0}) = (\delta | \alpha)(\bar{\mathbb{Q}}n_{0}) \neq 0]$ With a sigh, we point out to the imitative subject that it should not have made this overhasty step: Define $\eta \in {}^{\omega} \omega$ such that: Fun (η) and: for all $\beta \in {}^{\omega} \omega$: $(0) (\eta | \beta)^{1} = \alpha^{1}$ $(1) (\overline{\eta} | \overline{\beta}) q = \overline{\alpha} q$

(iii) for all
$$k \leq q$$
: $(\eta|\beta)^{\circ} (\bar{Q}k) = 0$
(iv) for all $k \leq q$: $k^{*} \notin (\eta|\beta)^{\circ}$
(v) for all $a \in \omega$: $(\eta|\beta)^{\circ} (\bar{Q}q * a) = \beta(a)$.
Let $\zeta \in {}^{\omega}\omega$ be such that: Fun(ζ) and: $\forall \beta [\zeta|\beta = \delta](\eta|\beta)$?
Remark that for all $\beta \in {}^{\omega}\omega$:
 $S_{2}(\beta) \not \supseteq S_{2}((\eta|\beta)) \wedge (\bar{\eta}|\beta) q = \bar{a}q$
 $\not \supseteq C^{2}S_{2}(\eta|\beta) \wedge (\bar{\eta}|\beta) \bar{Q}n_{0} \neq 0$
 $\not \supseteq S_{2}(\zeta|\beta) \wedge (\zeta|\beta) \bar{Q}n_{0} = 0$
Therefore: $S_{2} \leq D^{n_{0}}A_{\eta}$, and this contradicts corollary 11.2
We retire and conclude:
 $\forall \alpha [(\forall n [\alpha^{\circ}(\bar{Q}n)=0] \wedge S_{2}(\alpha^{1})) \rightarrow \forall n [(\delta|\alpha)(\bar{Q}n)=0]].$
Now that our claim has been established, it remains to see how
it gets us into a further mess. But it does so rather quickly.
Define $\eta e^{\omega}\omega$ such that: Fun(η) and, for all $\beta \in {}^{\omega}\omega$:
(i) $(\eta|\beta)^{2} = \beta$.
Let $\zeta \in {}^{\omega}\omega$ be such that: Fun(ζ) and: $\forall \beta [\zeta|\beta = \delta|(\eta|\beta)]$.
Remark that for all $\beta \in {}^{\omega}\omega$:
 $S_{2}(\beta) \not \supseteq (Q \in (\eta|\beta)^{\circ} \wedge S_{2}(\eta|\beta)^{4})$
 $\not \supseteq \in \delta|(\eta|\beta)$
 $\not \supseteq \forall n [(\zeta|\beta)(\bar{Q}n) = 0].$
Therefore: $S_{2} \leq A_{1}$, and this contradicts corollary 11.2
We have to bow our head: $\neg (C^{2}S_{2} \leq S_{2})$.

 \boxtimes

it

Pondering this last proof, we come to reflect that for all $m \in \omega$, m > 0, $n \in \omega$. for all $\alpha \in \omega$: $S_{m+1}(\alpha) \wedge \alpha(\overline{Q}n) \neq 0 \neq \exists j < n \exists r \in \sigma_m [\overline{Q}j * f^+(r) \in \alpha]$ We may construct therefore, $Z \in \omega$ such that: Fun(Z) and: $\forall \alpha \in {}^{\omega} \omega \left[\alpha (\bar{\mathbb{Q}}^n) \neq 0 \rightarrow \left(S_{m+1}(\alpha) \neq D^n S_m (\zeta | \alpha) \right] \right].$

120

Thus, mimicking the proof of theorem 11.23 and using the fact that. $\forall n [D^n S_m \prec D^{n+1} S_m \prec S_{m+1}]$ we find that: $S_{m+1} \prec C^2 S_{m+1}$. Remark that, in doing so, we take advantage of previously acquired knowledge on disjunction, rather than conjunction. And now, dear and patient reader, we would like you to join us and climb the conjunctive towers which are based on S2, S3,... We have to warn you that the steps are high and many, but the view is a nice One... An indication of conjunctive vitality is given by: $\forall m > 1 \forall n > 1 [\neg (C^n S_m \leq S_{m+n-2})].$ 11.24 Theorem: Proof: Let m>1. We prove: $\forall n > 1 [\neg (C^n S_m \leq S_{m+n-2})]$ by induction on n The case: n=2 has been disposed of in theorem 11.23 and the subsequent discussion. Suppose: n>1 and: $\neg (C^{n}S_{m} \leq S_{m+n-2})$. In order to take the next step, assume: $C^{n+1}S_{m} \leq S_{m+n-1}$. Using AC_{11} , determine $\delta \in {}^{\omega}\omega$ such that: Fun (δ) and: $\forall \alpha [C^{n+1}S_m(\alpha) \rightleftharpoons S_{m+n-1}(\delta | \alpha)]$ We claim that: $\forall \alpha [(\forall p < n [Q \in \alpha^{p}] \land S_{m}(\alpha^{n})) \rightarrow Q \in \delta[\alpha]]$ Suppose: $\alpha \in {}^{\omega}\omega$ and: $\forall p < n [Q \in \alpha P]$ and: $S_m(\alpha^n)$ and: $n \in \omega$ and: $(\delta | \alpha) (\underline{O} n_0) \neq 0$. (The next argument, which looks rather technical, is to bring out that now, by skilful grafting, one may reduce $C^n S_m$ to S_{m+n-2}). Let us define a subset T of w w by: $T := \{ \beta | \beta \in \omega_{\omega} | \forall p < n+1 [\beta^{2p} \in \sigma_{mmon}] \}.$ We observe that T is a subspread of w_{w} . Let us define, as we did on earlier occasions, to each B; re www a sequence Br e www by for all $a \in \omega$: $\beta_r(a) := 0$ if $r \in a$:= $\beta(a)$ otherwise. Let us define a function $F: ww \rightarrow ww$ such that: $\forall \beta \in {}^{\omega} \omega \quad \forall p < n+1 \ \left[\ (F(\beta))^p = (\beta^{2p+1})_{\beta^{2p}} \right].$ We observe that . $\forall \beta \in T [C^{n+1}S_m(F(\beta))]$ and

we determine $\beta_* \in T$ such that $F(\beta_*) = \alpha$ and $\forall p < n [(\beta_*)^{2p} = Q]$. Now: VβεT[S_{m+n-1} (δ|F(β))]. Especially: $\forall \beta \in T \exists a [lg(a) = n_0 \land \exists f[f \in a \land f \in \sigma_{m+n-1} \land f \in \delta]F(\beta)].$ Applying GCP, we find a ew, gew such that: $lq(a) = n_0 \land \forall \beta \in \mathbb{T}[\overline{\beta}q = \overline{\beta}_*q \rightarrow \exists \gamma [\gamma \in a \land \gamma \in \sigma_{m+n-1} \mod \land \gamma \in \delta | F(\beta)]].$ We define $\eta e^{\omega} \omega$ such that \cdot Fun (η) and \cdot for all ZE www. (1) for all p < n: for all $a \in w$: $(\eta | 3)^{p} (\overline{Q} q * a) = 3^{p} (a)$ and: $\forall b [lq(b) < q \rightarrow (\eta | z)^{p}(b) = \alpha^{p}(b)]$ and: $\forall b [(lg(b) = q \land b \neq \underline{0}q) \rightarrow (\eta|3)^{P}(b) \neq 0]$ and: $(\eta|\zeta)^{P}(\overline{Q}q) = 0.$ (11) $(\eta|\zeta)^n = \alpha^n$ and $\forall m > n [(\eta|\zeta)^m = \alpha^m]$ and: $(\eta|\zeta)(\langle \rangle) = \alpha(\langle \rangle)$ n might be called the grafting function. Remark that, for all Ze "w : $C^{n}S_{m}(\zeta) \neq C^{n+1}S_{m}(\eta|\zeta)$ \Rightarrow $\exists \beta \in \mathbb{T}[\beta q = \overline{\beta}_* q \land \eta | \zeta = F(\beta)]$ Z Jreom+n-Imon [yea x ye 8 ((1)3)] Looking back, we realize that: $a \neq \overline{Q} n_a$. (As: (δ|α)(Qn) = o and: ∃reom+n-imon [rea reδ|α]). Suppose that: $a(n_{-1}) = 1$. Define a function f^+ : $\omega_{\omega} \to \omega_{\omega}$ such that $\forall \alpha \forall n [(f^+(\alpha))(n) = \alpha(n) + 1]$. Remark that, for all ZE ww: $C^{n} S_{m}(\zeta) \not\supseteq \exists \gamma \in \sigma_{m+n-2mon}[a * f^{+}(\gamma) \in \delta[(\eta|\zeta)]$ Therefore: $C^nS_m \preceq S_{m+n-2}$, and this leads to a contradiction, according to the induction hypothesis. If $a(n_0-1) > 1$, we also find ourselves in an impossible situation, by a similar reasoning. Therefore: $\forall \alpha [(\forall p < n [\underline{0} \in \alpha^p] \land S_m (\alpha^n)) \rightarrow \forall j [(\delta | \alpha) (\underline{0} j) = 0]]$ It is now an easy matter to bring the proof to its conclusion. (The more so, if we do remember the last bars of the proof of thm. 11.23).

> Define $\eta \in {}^{\omega} w$ such that: Fun(η) and, for all $\beta \in {}^{\omega} w$: $\forall p < n [(\eta | \beta)^{p} = Q]$ and: $(\eta | \beta)^{n} = \beta$.

Let $Z \in {}^{\omega}\omega$ be such that: Fun(Z) and: $\forall \beta [Z]\beta = \delta [(\eta | \beta)]$ Remark that for all $\beta \in {}^{\omega}\omega$: $S_m(\beta) \not\supseteq (\forall p < n [Q \in (\eta|\beta)^p] \land S_m((\eta|\beta)^n))$ $\neq \quad \underline{O} \in \delta | (\eta | \beta)$ $\neq \forall_j [(\zeta_{\beta})(\bar{Q}_j) = 0]$ Therefore: $S_m \leq A_1$, and, as $S_2 \leq S_m$ (cf. the discussion after theorem 11.22), this contradicts corollary 11.2. Admitting: $\neg (C^{n+1}S_m \leq S_{m+n-1})$, we complete the induction step and, thereby, the proof of the theorem. One of the consequences of this theorem is that: $\neg (C^{17}S_2 \leq S_{17})$ As m increases, the complexity of $C^m S_2$ outgrows the complexity of any given member of the sequence S_2, S_3, \dots In retrospect, disjunction did not behave half as wildly as conjunction. Let us introduce, for all subsets $P \subseteq {}^{\omega}\omega, Q \subseteq {}^{\omega}\omega, a$ subset C(P,Q) of ${}^{\omega}\omega$ by: For all $\alpha \in {}^{\omega}\omega : C(P,Q)(\alpha) := P(\alpha^{\circ}) \wedge Q(\alpha^{1}).$ 1125 <u>Theorem</u>: $\forall p > 1 \forall q > 1 [C(S_p, S_q) \preceq S_{p+q-1}].$ <u>Proof</u>: Let us define a function $\pi: {}^{\omega}\omega \times {}^{\omega}\omega \to {}^{\omega}\omega$ such that: for all $\alpha \in \omega_{\omega}$, $\beta \in \omega_{\omega}$: $\Pi(\alpha, \beta) = \langle \alpha(0), \alpha(0) + \beta(0), \alpha(1) + \beta(0, \alpha(1) + \beta(1), \dots) \rangle$ i.e. $\pi(\alpha,\beta)(0) = \alpha(0)$ and $\forall n[\pi(\alpha,\beta)(2n+1) = \alpha(n) + \beta(n) \wedge \pi(\alpha,\beta)(2n+2) = \alpha(n+1) + \beta(n)]$. (As usual, $m \rightarrow n := m - n$ if $m \gg n$, and $m \rightarrow n := 0$ if $m \le n$) Let us define a function $\lambda: {}^{\omega}w \to {}^{\omega}w$ such that. for all $\alpha \in \omega_{\omega}$: $\lambda(\alpha) = \langle \alpha(0), \alpha(2) - \alpha(1), \alpha(4) - \alpha(3), \dots$ i.e.: $\lambda(\alpha)(0) := \alpha(0)$ and: $\forall n [\lambda(\alpha)(n+1) := \alpha(2n+2) - \alpha(2n+1)].$ Let us define a function $\rho: \overset{\omega}{\longrightarrow} \omega \xrightarrow{} \omega \omega$ such that for all $\alpha \in \overset{\omega}{\longrightarrow} p(\alpha) = \langle \alpha(4) \stackrel{\cdot}{\rightarrow} \alpha(0), \alpha(3) \stackrel{\cdot}{\rightarrow} \alpha(2), \alpha(5) \stackrel{\cdot}{\rightarrow} \alpha(4), \dots$ i.e.: $\forall n [p(\alpha)(n) := \alpha(2n+1) - \alpha(2n)].$ Remark that: $\forall \alpha \forall \beta [\lambda(\pi(\alpha,\beta)) = \alpha \land \beta(\pi(\alpha,\beta)) = \beta]$ We also want a function $L: w \rightarrow w$ such that: for all $a \in w$: $lg(L(a)) := \mu p [2p \ge lg(a)]$ and: L(a)(0) = a(0) and: $\forall n [2n+2 < lg(a) \rightarrow L(a)(n+1) = a(2n+2) - a(2n+1)]$ Thus, I does to finite sequences what 2 does to infinite sequences. Similarly, we introduce a function $R: \omega \rightarrow \omega$ such that: for all $a \in w$: $lg(R(a)) := \mu p[2p+1 > lg(a)]$ and: $\forall n [2n+1 < lg(a) \rightarrow R(a)(n) := a(2n+1) - a(2n)]$ Remark that: $\forall \alpha \in R\alpha(\pi) \forall n [\lambda(\alpha) n = L(\overline{\alpha}2n) \land \overline{p(\alpha)}n = R(\overline{\alpha}2n)]$

Let
$$p \in w$$
, $q \in w$, $p > 1$, $q > 1$
Remark that: $\forall y \forall \delta [(y \in \sigma_{pmon} \land \delta \in \sigma_{qmon}) \rightarrow \pi(y, \delta) \in \sigma_{p+q-1 \mod}]$
Let us define $\eta \in w w$ such that: $Fun(\eta)$ and:
for all $\alpha \in w w$, for all $\alpha \in w$:
 $(\eta | \alpha)(\alpha) := 0$ if: $\alpha^{\circ}(L(\alpha)) = 0$ and $\sigma_{pmon}(L(\alpha)) = 0$
and $\alpha^{1}(R(\alpha)) = 0$ and $\sigma_{qmon}(R(\alpha)) = 0$
 $:= 1$ Otherwise

We make two observations:

$$\begin{aligned} \forall \alpha \,\forall \gamma \,\forall \delta \,[\,(\gamma \in \sigma_{pmon} \land \gamma \in \alpha^{\circ} \land \delta \in \sigma_{qmon} \land \delta \in \alpha^{\perp}) \rightarrow (\pi(\gamma, \delta) \in \sigma_{p+q-1mon} \land \pi(\gamma, \delta) \in \eta |\alpha|) \\ \forall \alpha \,\forall \gamma \,E(\gamma \in \sigma_{p+q-1mon} \land \gamma \in \eta |\alpha|) \rightarrow (\mathcal{M}\gamma) \in \sigma_{pmon} \land \mathcal{M}\gamma) \in \alpha^{\circ} \land p(\gamma) \in \sigma_{qmon} \land p(\gamma) \in \alpha^{\perp})] \\ \hline \text{Therefore:} \quad \forall \alpha \,E \,(S_{p} \,(\alpha^{\circ}) \land S_{q} \,(\alpha^{\perp})) \rightleftharpoons S_{p+q-1} \,(\eta |\alpha|)] \\ i.e.: \quad C \,(S_{p}, S_{q}) \, \preceq \, S_{p+q-1} \end{aligned}$$

 \boxtimes

When making theorems 11.24 and 11.25 join hands, we find a result which is worth remembering:

11.26 Theorem:
$$\forall m > 1 \forall n > 0 [\neg (C^{n+1}S_m \preceq C^nS_m)].$$

Proof: Suppose: mew, m>1 and: new and: $C^{n+1}S_m \leq C^nS_m$. Now: $C^{n+2}S_m \leq C(S_m, C^{n+1}S_m) \leq C(S_m, C^nS_m) \leq C^{n+1}S_m \leq C^nS_m$. In this way, we come to see: $\forall p \ge n [C^pS_m \leq C^nS_m]$. On the other hand, we may derive from theorem 11.25, that: $C^nS_m \leq S_{n:m-n+1}$. Therefore: $\forall p \ge n [C^pS_m \leq S_{n:m-n+1}]$. This calls for a protest by theorem 11.24, which says that, if we choose p large enough: ¬($C^pS_m \leq S_{n:m-n+1}$) Therefore: ¬($C^{n+1}S_m \leq C^nS_m$). By

As we have no difficulty in seeing that : $\forall m > 0 \forall n > 0 [C^n S_m \leq C^{n+1} S_m]$, we quiet down and relish the sight of the following towers:

$$S_{z} \prec C^{2}S_{z} \prec C^{3}S_{z} \prec \dots$$
$$S_{z} \prec C^{2}S_{z} \prec C^{3}S_{3} \prec \dots$$

Unlike the disjunctive ones, these towers have no easy upper bounds, and are very much entangled into each other.

11.27 We define a sequence $\sigma_2 \in {}^{\omega}\omega$ by:

For all aew:

 $\sigma_{z}(\mathbf{a}) := 0 \quad \text{if } \forall n [n < lg(\mathbf{a}) \rightarrow a(n) < 2]$ $:= 1 \quad \text{otherwise}.$

 σ_z is a well-known example of a subspread of ω_{ω} σ_z , or the set {a | $\forall n [\sigma_z(\bar{\alpha}n) = 0]$ } is called: the binary fan.

We define a subset S of ^ww by:

For all $\alpha \in \omega_w$.

$$S(\alpha) := \exists y [y \in \sigma_2 \land \forall n [\alpha(\overline{y}n) = O]].$$

We introduce a class e of subsets of w_w by:

For every subset P of www.

PEC Z P≤S.

Other definitions of ℓ may be given, which avoid quantifying over all subsets of w_{w} . (Cf. 10.0). Perhaps the most easy solution, here and now, is to restrict oneself to members P of Σ_1^1 .

We remark that C is closed under the operations of finite union and countable intersection.

Suppose: Pand Q are subsets of ^ww and: PEE and QEE Determine $\delta_0 \in {}^{\omega}w$ such that: Fun (δ_0) and: $\forall \alpha [P(\alpha) \rightleftharpoons S(\delta_0 | \alpha)]$ Determine $\delta_1 \in W_W$ such that: Fun (δ_1) and: $\forall a [Q(a) \neq S(\delta_1|a)]$ Define $\delta \in W_W$ such that : Fun (δ) and for all $\alpha \in W_W$, for all $\alpha \in W$: $(\delta|\alpha)(\langle 0 \rangle * \alpha) = (\delta_{\rho}|\alpha)(\alpha)$ and $(\delta | \alpha) (\langle 1 \rangle \star \alpha) = (\delta_1 | \alpha) (\alpha)$ and $(\delta | \alpha) (\langle \rangle) = 0$. One has to allow that $\forall \alpha [(S(\delta_0 | \alpha) \vee S(\delta_1 | \alpha)) \rightleftharpoons S(\delta | \alpha)]$ i.e.: ∀α[(P(α) vQ(α)) Z S(δ(α)], and: PuQ ∈ C. Suppose: Po, P1, P2,... is a sequence of subsets of ^ww such that: ∀m[Pm∈@]. Determine a sequence $\delta_0, \delta_1, \delta_2, \dots$ of elements of ww such that $\forall m [Fun(\delta_m) \land \forall \alpha [P_m(\alpha) \neq S(\delta_m | \alpha)]$ Define $\delta \in \mathcal{W}_{\mathcal{W}}$ such that: Fun(δ) and for all $\alpha \in \mathcal{W}_{\mathcal{W}}$, for all $\alpha \in \mathcal{W}$: if $\forall m < lg(a) \forall k [k < lg(a^m) \rightarrow (\delta_m | a) (a^m k) = 0]$ $(\delta | \alpha)(\alpha) := 0$:= 1 otherwise (The notations a^m and $\overline{a^m}$ have been mentioned in 10.2). We observe that: $\forall \alpha \forall \gamma \in \sigma_2 \ [\gamma \in \delta | \alpha \neq \forall m \ [\gamma^m \in \delta_m | \alpha]]$ Therefore: $\forall \alpha \ \forall m \ [S(\delta_m | \alpha)] \neq S(\delta | \alpha)]$ and: $\forall \alpha [\forall m [P_m(\alpha)] \gtrsim S(\delta[\alpha)], i.e.: \bigcap_{m \in D_m} e e.$

Recall that $\beta \in {}^{\omega}w$ is called a subfan of ${}^{\omega}w$ if β is a subspread of ${}^{\omega}w$ and: $\forall a [\beta(a) = 0 \rightarrow (K_{a}^{\beta} = \{n | \beta(a * < n >) = 0\}$ is finite)}. (Cf. 9.0 and the discussion following on theorem 11.3). To any subspread β of ${}^{w}w$ we may consider a corresponding subset S_{β} of ${}^{w}w$ which, in analogy to S_{2} and S, is defined by: For all $\alpha \in \mathcal{W}_{\mathcal{W}}$: $S_{\beta}(\alpha) = \exists y \forall n [\beta(\bar{r}n) = 0 \land \alpha(\bar{r}n) = 0]$ We remark that, for every subfan is of www, Sig belongs to C. A proof of this fact is readily found, if one realizes that any subfan β of ${}^{\omega}w$ may be embedded into σ_2 . Therefore, t is a quite complicated class of subsets of ${}^{\omega}\omega$. Many subsets of ω which have been mentioned in this chapter, do belong to \mathcal{E} , like S_2, S_3, \dots and all sets which we get from them by applications of the operations of finite union and countable intersection, for instance: $C^2 D^{17}S_3$. We remark that S is not hyperarithmetical, as $S_2 \leq S$ and S_2 already is not hyperarithmetical (Cf. 11.18) Also: $\forall n [S_n \prec S]$, as $\forall n [S_n \prec S_{n+1} \preceq S]$ (Cf. theorem 11.22 and the For all $\alpha \in {}^{\omega} \omega$: $T(\alpha) := \forall \gamma \in \sigma_2 \exists n [\alpha(\bar{\gamma}n) = 0].$ We introduce a class of of subsets of ^ww by: For every subset P of www: $P \in \partial \neq P \leq T$ (In this definition, we may restrict our attention to members P of 111). According to the fan theorem, which we mentioned already after theorem 11.3, for every subfan β of ww, and all $\alpha \in ww$: Yreß ∃n[a(jn)=0] Z ∃m Yreß ∃n≤m[a(jn)=0] Thus, we find that $\vartheta \subseteq \Sigma_{1}^{\circ}$, and, actually, that $\vartheta = \Sigma_{1}^{\circ}$. As $S_2 \notin \Sigma_1^{\circ}$ (cf. theorem 11.3), and $S_2 \in \mathcal{E}$, also: $\neg (\mathcal{E} \subseteq \mathcal{D})$ There are different ways of establishing this last truth. (The use of the fan theorem, which is a difficult principle of

ensuing discussion.) We define a subset T of ^ww by:

intuitionistic analysis, should be avoided as much as possible). We may remark, that, according to theorem 11.1, $D^2A_1 \in \mathcal{C}$, and, according to theorem 10.11, $D^2A_1 \notin \Pi_1^1$, whereas $\mathcal{D} \subseteq \Pi_1^1$ Neither one of these results depends on the fan theorem. Or, our memory may go back to theorem 10.12 We may cite its proof almost literally to obtain the following conclusion: Let $\delta \in \mathcal{W}_{w}$ such that: Fun(δ) and: $\forall \alpha [S(\alpha) \rightarrow T(\delta | \alpha)]$ We may construct Zeww such that: $\forall r \in \sigma_2$ $\exists n [\alpha(\bar{r}n) \neq 0]$ and: $\forall r \in \sigma_2 \exists n [(\delta|\alpha)(\bar{r}n) = 0]$. Like Σ_1^1 and Π_1^1 , \mathfrak{C} an \mathfrak{d} do form a mysterious couple. One is tempted to compare the two. The reader will remember how we deplored, at the end of chapter 10, not to be able to prove that: $\neg (\Pi_1^1 \subseteq \Sigma_1^1)$ There is much more that we do not know. (1) Is $\mathcal{P} \subseteq \mathcal{C}$? Is $\Sigma_1^{\circ} \subseteq \mathcal{C}$? (At the assumption of the fan theorem, these two questions are equivalent. Remark that the proof of $\neg(E_1 \leq S_2)$ (theorem 11.7) depended on theorem 11.4 (ii) It is not known whether σ_2 has this property). (11) Is & closed under the operation of countable union? (If so, all hyperarithmetical sets belong to E). $(\mathsf{M}) \text{ Is } \Sigma_1^* = \mathfrak{C}?$ (Remark that, on the other hand, $\Pi_1^1 \neq 0$, as $\Pi_1^0 \leq \Pi_1^1$ and, at the assumption of the fan theorem, $\neg \Pi_1^o \subseteq \mathcal{D} = \mathbb{Z}_1^o$ Is there a proof this fact, which avoids the use of the fan theorem?)

One would like to understand why these questions are giving so much trouble. A positive answer to any one of them would be very surprising, fooling classical opinion which holds, for duality reasons, that 179 and E coüncide.

While this new cloud of unknowing descends upon us, we feel that it is time to end the chapter.

12 AN OUTBURST OF DISJUNCTIVE, CONJUNCTIVE AND IMPLICATIVE PRODUCTIVITY.

We still are under the spell of the theme which captivated us in the second half of the previous chapter. We have seen, there, that S_2 is an upper bound to the increasing sequence A_1 , D^2A_1 ,... and, as such, rivals E_2 , although the two do not admit of a comparison. Trying to understand why S_2 should be so rude as to disturb the peace of the hyperarithmetical hierarchy, we might think of the fact that Sz, itself, is not a hyperarithmetical set. It turns out, however, that agitators may be found under our own roof: S2 has some hyperarithmetical relatives that are equal to similar mischief, being superior to all sets A_1, D^2A_1, \dots and, nevertheless, incomparable to E_2 . Like S2, these sets also support disjunctive and conjunctive towers. A subset P of ${}^{\omega}w$, such as A_1 , or S_2 , for which $P \prec D^2P \prec D^3P$... will be called disjunctively productive. General methods will be indicated, to assign to any disjunctively productive set P a disjunctively productive subset Q of www such that $\forall m[D^mP \leq Q]$. Fortunately, these methods assign to a set P which is hyperarithmetical, a set Q which is hyperarithmetical as well. We will find, in this way, that, for instance between A, and A3, uncountably many levels of complexity have to be distinguished. A similar game may be played with conjunction. Also, notions of implicative productivity will be around, carrying along, in their development, a generalization of some theorems of chapter 5.

12.0 Consider, as an example of the type of constructions which will occupy us, the set:

 $R := \{ \alpha \mid \forall n [n = \mu p [\alpha^{\circ}(p) \neq 0] \rightarrow D^{n} A_{1}(\alpha^{Sn})] \}.$

Remark, that $R \in \Pi_3^\circ$, and so is arithmetical, as $R = \{\alpha \mid \forall n \mid n \neq \mu p \mid \alpha^\circ(p) \neq 0 \} \vee D^1 A_1(\alpha^{sn}) \}$

Remark, that $\forall n [D^n A_1 \leq R]$.

Let new. Define $\delta \in \mathbb{W}_{W}$ such that: Fun(δ) and: $\forall \alpha [n = \mu p[(\delta | \alpha)^{\circ}(p) \neq 0] \land (\delta | \alpha)^{Sn} = \alpha]$ Then: $\forall \alpha [D^{n} A_{1}(\alpha) \rightleftharpoons R(\delta | \alpha)]$, i.e.: $D^{n} A_{1} \leq R$.

Also observe, that: $\neg (S, \leq R)$.

We may appeal to 11.18 where it is proved that S_2 is not hyperarithmetical, or even to theorem 11.13 which says only that S_2 is not Π_3° . The following argument resulted from an attempt at a direct proof: Suppose: $S_2 \leq R$, and, using AC_{11} , determine $\delta \in W_{W}$ such that: Fun (δ) and: $\forall \alpha [S_2(\alpha) \neq R(\delta | \alpha |]$, i.e.: $\forall \alpha [\exists p [p \in \sigma_{2mon} \land p \in \alpha] \neq R(\delta | \alpha |]$.

Consider: $T = \int \alpha | \forall n [\forall m \le n [\alpha(\overline{Q}m) = 0] v \forall m \le n [\alpha(\overline{A}m) = 0]] \}.$ We claim that: VaeT[R(S|a)]. Let $\alpha \in T$ and new and: $n = \mu p [(\delta | \alpha |^{\circ}(\rho) \neq 0]$ Determine $q \in w$ such that $\forall \beta [\beta q = \overline{\alpha}q \rightarrow \overline{\delta |\beta} \circ (n+1) = (\overline{\delta |\alpha}) \circ (n+1)]$ We now claim that $\exists r \leq q [\alpha(\overline{O}r) \neq 0].$ Suppose: $\forall r \leq q \left[\alpha(\bar{Q}r) = 0 \right]$. Define new such that Fun(n) and, for all Zeww. (1) $(\eta | \zeta) q = \overline{\alpha} q$ (11) for all $a \in \omega$: $(\eta | z)(\overline{0}q * a) = z(a)$ (11) ∀r<q [r* ¢ η|ζ]. Then, for all Ze ww: $S_{2}(\zeta) \rightleftharpoons S_{2}(\eta|\zeta) \wedge (\overline{\eta|\zeta}) q = \overline{\alpha}q$ $\overrightarrow{c} D^{n} A_{1} ((\eta|\zeta)^{Sn})$ Therefore: $S_z \leq D^n A_1$, which contradicts theorem 11.2. Therefore: $\exists r \leq q [\alpha(\underline{0}r) \neq 0]$, and, as $\alpha \in T : \forall m [\alpha(\underline{1}m) = 0]$ i.e.: $\underline{1} \in \alpha$, and $S_2(\alpha)$ Therefore: $R(\delta|\alpha)$, and $D^n A_1((\delta|\alpha)^{Sn})$. We proved : $\forall n[n = \mu p[(\delta | a)^{\circ}(p) \neq O] \rightarrow D^{n} A_{1}((\delta | a)^{\circ}n)].$ i.e.: R(8/2). Therefore: $\forall \alpha \in T[R(\delta | \alpha | 1], and: \forall \alpha \in T[S_2(\alpha)].$ Consider the following subset of T: $T^* := \int \alpha |\alpha \in T | \forall n > 0 \exists m [\alpha (n^* m) \neq 0] \}.$ NOW: Vae T* [S2(a)] and so: Vae T* [Ym [a(Qm)=0] v Ym [a(Im)=0]]. From this, it may be proved that: $\forall \alpha [\neg \neg D^2 A_1(\alpha) \rightarrow D^2 A_1(\alpha)]$. which, as we know, is not true. (Cf. theorem 4.3 and its proof). Finally, remark that: R3S2. Define $\delta \in {}^{\omega}\omega$ such that: Fun (δ) and, for all $\alpha \in {}^{\omega}\omega$. (1) $(\delta | \alpha)(\overline{0} n) := 0$ if $n < 2 \cdot \mu p [\alpha^{\circ}(p) \neq 0]$ $(\delta | \alpha) (\overline{0} n) := 1$ if $n = 2 \cdot \mu p [\alpha^{\circ}(p) \neq 0]$. (11) $(\delta | \alpha) (\overline{n*}(n+1)) := 1$ if $n < \mu p [\alpha^{\circ}(p) \neq 0]$. (111) for all new such that : $n = \mu p E \propto^{\circ} (p) \neq 0$, for all k < n for all lew: $(\delta \mid \alpha) (n+k)^* (n+\ell) = \alpha^{Sn,k} (\ell)$

Then, for all $\alpha \in {}^{\omega}\omega$:

$$\begin{split} \mathbb{R}(\alpha) & \rightleftharpoons \quad \forall n \left[n = \mu p \left[\alpha^{\circ}(p) \neq 0 \right] \rightarrow D^{n} A_{1} \left[\alpha^{Sn} \right] \\ & \rightleftharpoons \quad \forall n \left[2n = \mu p \left[\left(\delta | \alpha \right) \left(\underline{\hat{O}} p \right) = 0 \right] \rightarrow \exists k \left[n \leq k < 2n \land k^{*} \in \delta | \alpha \right] \right] \\ & \rightleftharpoons \quad S_{2} \left(\delta | \alpha \right). \end{split}$$

Therefore: $R \leq S_2$.

Apparently, R is a smaller upper bound to the sequence A_1 , D^2A_1 , ... than is S_2 and it has the advantage of being arithmetical.

12.1 We generalize the construction that has been sketched in 12.0 and discover nice properties of the sets which are produced by it.

Let P_0, P_1, \dots be a sequence of subsets of w_w which fulfils the condition: $\forall m \exists n [P_m \land P_n].$

Now define $Q := \{ \alpha \mid \forall n [n = \mu p [\alpha^{\circ}(p) \neq 0] \rightarrow P_n(\alpha^{\leq n})] \}.$

Remark that, by this definition, α° has to play the role of a signalling sequence, and, as such, may be compared to $\alpha \circ Q$, i.e. α , as behaving on the spine of σ_{2mon} , if we are studying whether α has the property S_2 .

Remark that: $\forall n [P_n \prec Q].$

Let $n \in w$. Define $\delta \in \mathcal{W}_w$ such that: Fun(δ) and: $\forall \alpha [n = \mu p[(\delta | \alpha|^o(p) \neq 0] \land (\delta | \alpha|^{sn} = \alpha]$ Then: $\forall \alpha [P_n(\alpha) \rightleftharpoons R(\delta | \alpha)]$, i.e.: $P_n \preceq Q$.

We make a minor assumption on the sequence P_0, P_1, \dots namely, that $\forall n \exists x [-P_n(a)]$, and prove: $\neg (D^2Q \leq Q)$.

The proof is similar to the proof of theorem 11.21 which stated that: $\neg (D^2S_2 \leq S_2)$.

Suppose: $D^2Q \preceq Q$ and, using AC_{11} , determine $\delta \in {}^{\omega}w$ such that: Fun (δ) and: $\forall \alpha [D^2Q(\alpha) \rightleftharpoons Q(\delta | \alpha)]$.

Determine a sequence β_0, β_1, \dots of members of w_{ω} , such that: $\forall n[\neg P_n(\beta_n)]$. Consider $T := \{\alpha \mid \forall n [\forall m \le n [\alpha^{\circ, \circ}(m) = 0] \lor \forall m \le n [\alpha^{1, \circ}(m) = 0] \land \forall n [\alpha^{\circ, sn} = \alpha^{1, sn} = \beta^n] \}$ We claim that: $\forall \alpha \in T [(\delta | \alpha)^\circ = Q]$.

> Suppose: $\alpha \in T$ and $n \in w$ and $n = \mu p [(\delta|a)^{\circ}(p) \neq 0]$. Determine $q \in w$ such that: $\forall Z [\overline{Z}q = \overline{z}q \rightarrow (\delta|Z)^{\circ}(n+1) = (\overline{\delta}|a|^{\circ}(n+1)]$ Determine r > q such that: $P_n \prec P_r$ Either: $a^{0,0}r = \overline{Q}r$ or: $a^{1,0}r = \overline{Q}r$ and it does no harm to assume that: $\overline{a^{0,0}r} = \overline{Q}r$.

Define $\eta \in \mathbb{W}_{W}$ such that $\operatorname{Fun}(\eta)$ and, for all $\zeta \in \mathbb{W}_{W}$: (i) $(\eta|\overline{z})q = \overline{\alpha}q$ (ii) $r = \mu p [(\eta|\overline{z})^{0,0}(p) \neq 0]$ and $(\eta|\overline{z})^{0,Sr} = \overline{z}$ (iii) $r \ge l = \mu p [(\eta|\overline{z})^{1,0}(p) \neq 0]$ and $(\eta|\overline{z})^{1,Sl} = \beta_{l}$. Then, for all $\zeta \in \mathbb{W}_{W}$ $P_{r}(z) \rightleftharpoons Q((\eta|\overline{z})^{0}) \land (\overline{\eta|\overline{z}})q = \overline{\alpha}q$ $\rightleftharpoons D^{2}Q(\eta|\overline{z}) \land (\overline{\eta|\overline{z}})q = \overline{\alpha}q$ $\rightleftharpoons P_{n}((\delta|(\eta|\overline{z}))^{Sn}).$ Therefore: $P_{r} \le P_{n}$, which contradicts: $P_{n} < P_{r}$. Therefore: $\forall \alpha \in T [(\delta|\alpha|^{0} = Q]]$ and: $\forall \alpha \in T [Q(\delta|\alpha|]]$ and:

 $\forall \alpha \in \mathbb{T}[D^2 Q(\alpha)]$ and: $\forall \alpha \in \mathbb{T}[\forall m[\alpha^{0,0}(m)=0] \lor \forall m[\alpha^{1,0}(m)=0]]$ We are almost in the same position as in 12.0, and may conclude, as we did there: $\forall \alpha [\neg \neg D^2 A_1(\alpha) \rightarrow D^2 A_1(\alpha)]$ which still is contradictory.

We make another minor assumption on the sequence P_0, P_1, \dots namely, that $\neg (Q \le A_4)$, and prove: $\neg (C^2Q \le Q)$.

> The proof is similar to the proof of theorem 11.23 which stated that: $\neg (C^2S_2 \leq S_2)$. Suppose: $C^2 Q \leq Q$ and, using AC_{11} , determine $\delta \in {}^{\omega}\omega$ such that: Fun $[\delta]$ and: $\forall \alpha [C^2 Q(\alpha) \neq Q(\delta | \alpha)]$. We claim that: $\forall \alpha [(\alpha^{0,0} = Q \land Q(\alpha^{1})) \rightarrow (\delta | \alpha)^{0} = O].$ Let $\alpha \in \omega$ be such that: $\alpha^{0,0} = Q$ and $Q(\alpha^{1})$, and new, $\mathbf{n} = \mu \mathbf{p} \left[\left(\delta | \boldsymbol{\alpha} \right)^{\circ} (\mathbf{p}) \neq \mathbf{0} \right].$ Determine $q \in w$ such that $\forall \zeta [\overline{\zeta}q = \overline{\zeta}q \rightarrow (\overline{\delta}|\overline{\zeta}|^{\circ}(n+1) = (\overline{\delta}|\alpha|)^{\circ}(n+1)]$ Determine r > q such that $P_n \prec P_r$. Define $\eta \in {}^{\omega}\omega$ such that: $fun(\eta)$ and, for all $Z \in {}^{\omega}\omega$. (1) $(\eta|\zeta)q = \overline{\alpha}q$ (11) $r = \mu p [(\eta | z)^{0,0}(p) \neq 0]$ and $(\eta | z)^{0,sr} = z$ (10) $(\eta | \zeta)^{1} = \alpha^{1}$ Then, for all $Z \in {}^{\omega} w$. $P_{r}(z) \rightleftharpoons C^{2}Q(\eta|z) \wedge (\eta|z)q = \overline{\alpha}q$ \neq P_n ((δ (η | Z))^{Sn}). Therefore: $P_{n} \leq P_{n}$, which contradicts : $P_{n} \times P_{r}$. Therefore: $\forall \alpha [(\alpha^{0,0} = Q \land Q(\alpha^1)) \rightarrow (\delta | \alpha)^0 = Q]$ and ...

we fall into an abyse, as follows:

Define
$$\eta \in Ww$$
 such that: Fun(η) and, for all $Z \in Ww$.
 $(\eta|Z)^{\circ} = Q$ and: $(\eta|Z)^{1} = Z$
Then, for all $Z \in Ww$:
 $Q(Z) \not Z = (\eta|Z)^{\circ,\circ} = Q \land Q((\eta|Z)^{1})$
 $\not Z = \forall m [(\delta|(\eta|Z))^{\circ}(m) = 0]$
Therefore: $Q \leq A_{1}$, which, by our rather weak assumption,
is not true.

Remark that the results of this paragraph apply to the set R, which we defined in 12.0, so that R, indeed, seems to do very well as a substitute for S_2 : $\neg (D^2R \leq R)$ and $\neg (C^2R \leq R)$.

12.2 Once more, let P_0, P_1 . be a sequence of subsets of ww which fulfils the condition: $\forall m \exists n [P_m \land P_n]$.

Define $Q^* := \{ \alpha \mid \exists n [n = \mu \rho [\alpha^{\alpha}(p) \neq 0] \land P_n (\alpha^{S^n})] \}$.

Q* challenges Q, as defined in 12.1, probably deserving as good a record.

Remark that: $\forall n [P_n \prec Q^*].$

Let $n \in w$. Define $\delta \in w$ such that: Fun(δ) and: $\forall \alpha [n = \mu p[(\delta | \alpha|^{\circ}(p) \neq 0 \land (\delta | \alpha)^{\circ n} = \alpha]$ Then: $\forall \alpha [P_{h}(\alpha) \not\supseteq Q^{*}(\delta | \alpha)]$, i.e.: $P_{h} \leq Q^{*}$

We make an assumption on the sequence P_0, P_1, \dots namely that: $\forall a \exists a [a \in a \land \neg Q^*(\alpha)]$ (i.e.: Neg(Q*) is dense in w_w). Observe that this holds, for instance, if $\forall n \forall a \exists a [a \in a \land \neg P_n(\alpha)]$. We also assume that $\exists a [P_0(\alpha)]$ and prove: $\neg (D^2Q^* \leq Q^*)$.

> Suppose: $D^2Q^* \leq Q^*$ and, using AC_{11} , determine $\delta \in W_W$ such that: Fun (δ) and: $\forall \alpha [D^2Q^*(\alpha) \not\supseteq Q^*(\delta | \alpha]]$.

Determine $\alpha \in {}^{\omega}\omega$ such that: $\alpha^{0,0} = \underline{0}$ and: $\alpha^{4,0}(0) \neq 0$ and: $P_0(\alpha^{4,1})$. Remark: $Q^*(\alpha^4)$, therefore: $D^2Q^*(\alpha)$ and: $Q^*(\delta|\alpha)$. Determine $n = \mu p [(\delta|\alpha|^o(p) \neq 0]$. Determine $q \in \omega$ such that: $\forall \zeta [\overline{\zeta}q = \overline{\alpha}q \rightarrow (\overline{\delta}|\zeta)^o(n+1) = (\overline{\delta}|\alpha|^o(n+1)]$. Determine $\beta \in {}^{\omega}\omega$ such that: $\overline{\beta}q = \overline{\alpha}^{T}q$ and: $\neg Q^*(\beta)$. Determine r > q such that: $P_n \prec P_r$. Now define $\eta \in {}^{\omega}\omega$ such that: Fun (η) and, for all $\zeta \in {}^{\omega}\omega$: (1) $(\overline{\eta}|\zeta)q = \overline{\alpha}q$ (1) $r = \mu p [(\eta|\zeta)^{0,0}(p) \neq 0]$ and: $(\eta|\zeta)^{0,Sr} = \zeta$ (11) $(\eta|\zeta)^1 = \beta$. Then, for all $z \in w_{\omega}$: $P_{p}(z) \stackrel{?}{\neq} Q^{*}((\eta|z)^{\circ}) \wedge \overline{(\eta|z)} q = \overline{\alpha}q$ $\stackrel{?}{\neq} D^{2}Q^{*}(\eta|z) \wedge \overline{(\eta|z)} q = \overline{\alpha}q$ $\stackrel{?}{\neq} Q^{*}(\delta|(\eta|z)) \wedge n = \mu p \mathbb{E}(\delta|(\eta|z))^{\circ}(p) \neq 0]$ $\stackrel{?}{\neq} P_{n}(\delta|(\eta|z))^{Sn}).$

Therefore: $P_n \leq P_n$ and this contradicts: $P_n \leq P_n$

Specializing this construction, we introduce, as a rival to the set R from 12.0, a subset R^* of ${}^{W}\omega$ by :

$$R^* := \int \alpha | \exists n [n = \mu p [\alpha^o(p) \neq 0] \land D^n A_1(\alpha^{sn})]_{\ell}^2$$

The general argument which we outlined a moment ago, applies to R^* and shows that: $\neg (D^2R^* \leq R^*)$. On the other hand, it is true that: $C^2R^* \leq R^*$.

> Let $\langle \rangle: {}^{w} w \times {}^{w} w \to {}^{w} w$ be a pairing function on ${}^{w} w$. (We mentioned such a function just before definition 6.4). It is an easy matter - and we leave it to the readerto define for each mew, new a sequence $\zeta_{m,n} \in {}^{w} w$ such that: Fun $(\zeta_{m,n})$ and: $\forall \alpha \forall \beta \mathbb{E} (D^{m}A_{1}(\alpha) \wedge D^{n}A_{1}(\beta)) \neq D^{m \cdot n}A_{1} (\zeta_{m,n}| \langle \alpha, \beta \rangle)$? Now define $\delta \in {}^{w} w$ such that: Fun (δ) and, for all $\alpha \in {}^{w} w$: (1) $\exists p \mathbb{E} (\delta | \alpha)^{\circ}(p) \neq 0$? $\Rightarrow (\exists p \mathbb{E} \alpha^{\circ, \circ}(p) \neq 0$] $\wedge \exists p \mathbb{E} \alpha^{\circ, \circ}(p) \neq 0$? (ii) For all mew, new: If: $m = \mu p \mathbb{E} \alpha^{\circ, \circ}(p) \neq 0$] $\wedge n = \mu p \mathbb{E} \alpha^{\circ, \circ}(p) \neq 0$? then: $m \cdot n = \mu p \mathbb{E} (\delta | \alpha)^{\circ}(p) \neq 0$] $\wedge (\delta | \alpha |)^{S(m \cdot n)} = \zeta_{m,n} | \langle \alpha^{\circ, Sm} \alpha^{\circ, Sm} \alpha^{\circ, Sm} \rangle$ One soon realizes that: $\forall \alpha \mathbb{E} \mathbb{C}^{2} \mathbb{R}^{*}(\alpha) \notin \mathbb{R}^{*}(\delta | \alpha)$. Therefore: $\mathbb{C}^{2} \mathbb{R}^{*} \neq \mathbb{R}^{*}$.

We compare R and R^* and establish that: $\neg (R \leq R^*)$.

Suppose: $R \leq R^*$ and, using AC_{11} , determine $\delta \in \mathbb{W}_W$ such that: Fun(δ) and: $\forall \alpha [R(\alpha) \neq R^*(\delta[\alpha])]$. Let $\alpha \in \mathbb{W}_W$ and $\alpha^\circ = Q$. Remark: $R(\alpha)$, and: $R^*(\delta[\alpha])$ and: $\exists n [(\delta[\alpha]^\circ(n] \neq O]]$. Determine $n = \mu p [(\delta[\alpha]^\circ(p) \neq O]]$. Determine $n = \mu p [(\delta[\alpha]^\circ(p) \neq O]]$. Determine $q \in W$ such that: $\forall \zeta [\overline{\zeta}q = \overline{\alpha}q \rightarrow (\overline{\delta[\zeta]}^\circ(n+1)] = (\overline{\delta[\alpha]}^\circ(n+1)]]$ Determine r > q such that $P_n \prec P_r$. Define $\eta \in \mathbb{W}_W$ such that: Fun(η) and, for all $\zeta \in \mathbb{W}_W$: (i) $(\overline{\eta[\zeta)}q = \overline{\alpha}q$ (ii) $r = \mu p [(\eta[\zeta]^\circ(p) \neq O] \land (\eta[\zeta])^{Sr} = \zeta$.

Then; for all Zeww: $P_n(z) \rightleftharpoons R(\eta | z) \land (\eta | z) q = \overline{\alpha} q$ \neq P_n ((δ l(n|Z))^{Sn}). Therefore $P_{n} \leq P_{n}$ and this contradicts $P_{n} \leq P_{r}$ We have to admit: $\neg (R \leq R^*)$. It is seen at a glance that: $E_1 \leq R^*$ Therefore: $\neg (R^* \leq S_2)$ because, according to theorem $(1.7: \neg (E_1 \leq S_2))$ Also: -(R* < R), as, according to 12.0 R < S2. After all, R seems nearer to Sz than R*. But we destroyed any claims that R might put forward, to be a least upper bound to the sequence A1, D2A1, D3A1,... (We did not seriously consider the question of least upper bounds with respect to the reducibility relation 4. It does not seem easy to find a nice example. The reader may try his wits on finding a least upper bound for A, and E,). 12.3 Let us return to the construction which we studied in 12.1 Let P_0, P_1, \dots be a sequence of subsets of w_w which fulfils the condition: $\forall m \exists n [P_m \prec P_n]$, and define $Q := \{ \alpha | \forall n [n = \mu p [\alpha^{\circ}(p) \neq 0] \rightarrow P_n (\alpha^{Sn})] \}$. We have seen, in 12.1, that: if $\forall n \exists \alpha [\neg P_n(\alpha)]$, then $\neg (D^2 \alpha \leq \alpha)$. We would like to prove the stronger statement: $\forall n [\neg (D^{sn} \alpha \leq D^n \alpha)]$. We will do so, in two different ways, but, each time, we have to extend our assumptions concerning the sequence Po, P1,... We observe, that, if the sets P, P, ... are, all of them, strictly analytical, then the resulting set Q is also strictly analytical. (Strictly analytical sets have been discussed in 10.7). Suppose . Vn [Pn is strictly analytical] Determine a sequence $\delta_0, \delta_1, \ldots$ of elements of ω_w such that $\forall n \ [\ Fun (\delta_n) \ \land \ P_n = Ra(\delta_n)].$ Define $\delta \in W_W$ such that Fun(δ) and, for all $\alpha \in W_W$. (i) $(\delta | \alpha)^{\circ} := \alpha^{\circ}$ (1) For all new: $\begin{aligned} & (\delta|\alpha)^{Sn} &:= \alpha^{Sn} & \text{if } n \neq \mu p [\alpha^{\circ}(p) \neq 0] \\ & := \delta_n |\alpha^{Sn} & \text{if } n = \mu p [\alpha^{\circ}(p) \neq 0]. \end{aligned}$

A moment's thought will convince you, that $Q = R\alpha(\delta)$.

134
In addition,
$$\delta$$
 has the following two properties:
(1) $\delta | Q = Q$
(1) $\forall q \forall \alpha [(Zq = Q \land Q(\alpha)) \rightarrow \exists \beta [\bar{\beta}q = Q \land \alpha = \delta | \beta]]$

More or less imitating the proof of 11.22, we find:

12.3.0 Theorem: Let
$$P_0, P_1, ...$$
 be a sequence of strictly analytical subsets of w_w ,
such that: $\forall m \exists n [P_m \prec P_n]$ and: $\forall n \exists \alpha [\neg P_n(\alpha)]$.
Let $Q := \{\alpha | \forall n [n = \mu p [\alpha^o(p) \neq 0] \rightarrow P_n(\alpha^{Sn})] \}$.
Then: Q is strictly analytical and: $\forall n > 0 [D^n Q \prec D^{n+1}Q]$.

(1)
$$(\mathcal{E}_{m} | \alpha)(\langle \rangle) = \alpha \langle \langle \rangle$$

(1) $(\mathcal{E}_{m} | \alpha)^{m} := \delta | \alpha^{m}$
(11) For all $n \in \omega$, $n \neq m$: $(\mathcal{E}_{m} | \alpha)^{n} = \alpha^{n}$.

We observe: $\forall m < n+1 \forall \alpha [Q((\epsilon_m | \alpha)^m)], \text{ therefore:} \\ \forall m < n+1 \forall \alpha [D^{n+1}Q(\epsilon_m | \alpha)] \text{ and: } \forall m < n+1 \forall \alpha [D^nQ(\eta | (\epsilon_m | \alpha))]. \\ \text{Using CP, we determine natural numbers } q_{o}, p_{o}, \dots, q_{n}, p_{n} \text{ such that:} \\ \forall m < n+1 \forall \alpha [\bar{\alpha}q_m = \bar{\Box}q_m \rightarrow Q((\eta | (\epsilon_m | \alpha))^{Pm})]. \\ \text{Ruminating the last remark which preceded this theorem, we conclude:} \\ \forall m < n+1 \forall \alpha [(\bar{\alpha}q_m = \bar{\Box}q_m \land Q(\alpha^m)) \rightarrow Q((\eta | \alpha)^{Pm})]. \end{cases}$

For, let $m \in w$, m < n + 1 and $\alpha \in {}^{\omega}w$ and $\overline{\alpha}q_m = \overline{Q}q_m$. Determine $\beta \in {}^{\omega}w$ such that: $\mathcal{E}_m | \beta = \alpha$ and: $\overline{\beta}q_m = \overline{Q}q_m$. We then see: $\mathbb{Q}((\eta | (\mathcal{E}_m | \beta))^{p_m})$, i.e.: $\mathbb{Q}((\eta | \alpha)^{p_m})$.

As $\forall m < n+1$ [$p_m < n$], we may assume, without loss of generality, that $p_0 = p_1$. Let $q := max(q_0, q_1)$.

The reader will sense how this is to end. we are able, now, by skilful grafting, to reduce D2Q to Q. First, we define $re^{\omega}\omega$ such that $\forall n[q < y(n) < y(n+1) \land P_n \leq P_{y(n)}]$ Then, we define a sequence $f_0, f_1, f_2, ...$ of elements of www such that $\forall n \in Fun(F_n) \land \forall \alpha [P_n(\alpha) \neq P_{f(n)}(F_n(\alpha)]$ Finally, we define $Z \in W w$ such that Fun(Z) and for all $\alpha \in W w$. $(1)(\overline{S[a]})q = \overline{Q}q$ (11) $\forall n [(\zeta|\alpha|^{9,0}(n) = O \not\subseteq \exists m [\alpha^{9,0}(m) = O \land n = \gamma(m)] \text{ and } \forall n [(\zeta|\alpha)^{9,1}(n) = f_n [\alpha^{9,n}]$ $\forall n [(3|\alpha]^{1,0}(n) = 0 \neq \exists m [\alpha^{1,0}(m) = 0 \land n = \gamma(m)] and \forall n [(3|\alpha)^{1,\gamma(n)} = f_n |\alpha^{1,n}]$ (11) $\forall n > 1 [\neg Q((Z|\alpha)^n)].$ Then, for all $\propto e^{\omega} \omega$: $D^{2}Q(\alpha) \rightleftharpoons D^{2}Q(\zeta|\alpha) \wedge (\overline{\zeta|\alpha})q = \overline{Q}q$ \vec{z} Q((n)($\zeta(\alpha)$)^{Pm}). Therefore $D^2Q \leq Q$, and, as we know, this is not true. Therefore: $\forall n [\neg (D^{n+1}Q \leq D^nQ) \text{ and } : \forall n [D^nQ \perp D^{n+1}Q].$ ⊠

Our heart is flooded with joy at this result.

To our regret, the underlying method did not help us to prove the same thing about Q* (as defined in 12.3), or to set up the conjunctive tower on the base Q. The reader will remember that, in connection with S_2 , we treated disjunction and conjunction rather differently. (Cf. theorems 11.21 and 11.26). Rethinking theorem 12.3.0, we come to prove it anew, on slightly other conditions, thus paving the way for a similar handling of conjunction.

12.4 Let us introduce, for all subsets $P \subseteq {}^{\omega}w$, $Q \subseteq {}^{\omega}w$, a subset D(P,Q) of ${}^{\omega}w$ by: For all $\alpha \in {}^{\omega}w$: $D(P,Q)(\alpha) := P(\alpha \circ) \vee Q(\alpha \cdot 1)$.

Let P_0, P_1, P_2, \dots be a sequence of subsets of $^{\omega}\omega$. We call this sequence disjunctively closed if $\forall m \forall n \exists k [D(P_m, P_n) \leq P_k]$.

- 12.4.0 <u>Theorem</u>: Let P_0, P_1, P_2, \dots be a disjunctively closed sequence of subsets of w_w such that: $\forall m \exists n [P_m \prec P_n]$ and: $\forall n \exists \alpha [\neg P_n(\alpha)]$. Let $Q := \{\alpha \mid \forall n [n = \mu p [\alpha^o(p) \neq o] \rightarrow P_n(\alpha^{sn})]\}$. Then: $\forall n > o [D^n Q \prec D^{n+1}Q]$
 - <u>Proof</u>: It is easy to see that: $\exists \alpha [\neg Q(\alpha)]$ and, therefore, that $\forall n > 0 [D^n Q \neq D^{n+} Q]$. This, of course, is a cheap observation.

In view of the large work at hand, we send for our old friend $\tau := \{\alpha \mid \forall m \forall n [(\alpha(m) \neq 0 \land \alpha(n) \neq 0) \rightarrow m = n]. (cf. 4.2)$ Observe that: $\neg \forall \alpha \in \tau [E_{\alpha}(\alpha)].$

> Suppose: $\forall a \in \tau [E_2(a)]$. As $Q \in \tau$ and τ is a subspread of ${}^{W}w$ (cf. 4.2), we apply GCP and calculate new, qew such that: $\forall a \in \tau [\bar{a}q = \bar{Q}q \rightarrow \alpha^n = Q]$. This is not true, as we may define ater such that $\overline{\alpha^*}q = \bar{Q}q$ and $(\alpha^*)^n(q) \neq 0$. Therefore: $\neg \forall a \in \tau [E_2(\alpha)]$.

We have, at the same time, that: $\forall n>1 \neg \forall \alpha \in T [D^n A_1(\alpha)]$ and that: $\forall n \forall \alpha \in T \forall k [:: fm|m < n+1| \alpha^m k = \overline{O}k \} > n]$

(The symbol # has usual function of denoting the cardinal number of a finite set).

Determine a sequence β_0, β_1, \dots of members of ww such that: $\forall n[-P_n(\beta_n]]$ Define a subset T of ww by: $T := \{ \alpha \mid \forall n \forall m [\alpha^{n, Sm} = \beta_m] \}$. Remark that: $\forall \alpha \in T \forall n > 0 [D^n Q(\alpha) \rightleftharpoons \exists m < n [\alpha^{m, 0} = Q]]$.

Suppose: $n \in W$, n > O and: $D^{n+1}Q \leq D^nQ$. Using AC_{11} , determine $\delta \in {}^{\omega}W$ such that: Fun (δ) and: $\forall \alpha [D^{n+1}Q(\alpha) \not\equiv D^nQ(\delta|\alpha)]$. Let us define, for each $\alpha \in {}^{\omega}W$ and $k \in W$, natural numbers $c_{\alpha}(k)$ and $d_{\alpha}(k)$ by:

 $C_{\alpha}(k) := \# \{ m | m < n+1 | \alpha^{\overline{m,0}}(k) = \overline{Q}k \}$ (we pronounce: the critical number of α at stage k) $d_{\alpha}(k) := \# \{ m | m < n | (\overline{\delta}|\alpha)^{\overline{m,0}}(k) = \overline{Q}k \}.$

(The number $c_{\alpha}(k)$ represents, so to say, the number of alternatives that α has left open, up till stage k). We claim that: $\forall p < n \forall \alpha \in T [\forall k [c_{\alpha}(k) > p] \rightarrow \forall k [d_{\alpha}(k) > p]]$

> We prove this by induction, and start with the case p=0. Suppose, therefore, that $\alpha \in T$ and: $\forall k[c_{\alpha}(k) > 0]$ and: $\exists k[d_{\alpha}(k) = 0]$. Calculate, for each $m < n : l_m := \mu k[(\delta | \alpha)^{m,0}(k) \neq 0]$.

Calculate gew such that: $\forall \gamma \left[\overline{\gamma} q = \overline{\alpha} q \rightarrow \forall m < n \left[(\overline{\delta | \gamma)}^{m, \overline{O}} (\ell_m + 1) = \overline{(\delta | \alpha)}^{m, \overline{O}} (\ell_m + 1) \right] \right]$ Finally, remember that the sequence Po, P1,... is disjunctively closed and calculate New such that: N > q and $D(P_{e_0}, P_{e_1}, \dots, P_{e_{n-1}}) < P_N$ (We write: $D(P_{\ell_0}, P_{\ell_1}, \dots, P_{\ell_{n-1}})$ for $D(\dots (D(P_{\ell_0}, P_{\ell_1}), \dots), P_{\ell_{n-1}})$) We may assume, without loss of generality, that $\overline{\alpha^{0,0}}N = \overline{O}N$ We define $\eta \in {}^{\omega}\omega$ such that: Fun (η), and, for all $r \in {}^{\omega}\omega$. (1) $(\eta | r) q = \overline{\alpha} q$ (1) $N = \mu k [(\eta | \chi)^{0,0}(k) \neq 0]$ and $(\eta | \chi)^{0, SN} = \chi$ (11) For all $j \in \omega$, j > 0: $N > l = \mu k [(\eta | \gamma)^{j, 0} (k) \neq 0]$ and $(\eta | \gamma)^{j, Sl} = \beta_{R}$ (This last "Be" is the fixed sequence which fulfils: - Pe (Be). The third clause is to ensure that $\forall y \forall j > 0 [\neg Q((n|y))])$ Then, for all ye www. $P_N(y) \neq D^{n+1}Q(\eta|y) \wedge (\eta|y)q = \overline{\alpha}q$ \Rightarrow Peo((δ | (η | γ))^{0, seo} v.... v Peo((δ | (η | γ))^{n-1, sen-1}) Therefore: $P_N \leq D(P_{\ell_0}, \dots, P_{\ell_{n-1}})$ and this conflicts with the choice of N. This contradiction shows that: $\forall \alpha \in T [\forall k [c_{\alpha}(k) > 0] \rightarrow \forall k [d_{\alpha}(k) > 0]].$ Suppose, now, that pew, p<n-1 and: $\forall a \in T[\forall k[c_{\alpha}(k) > p] \rightarrow \forall k[d_{\alpha}(k) > p]$ We wish to prove that $\forall \alpha \in \mathbb{T} [\forall k [c_{\alpha}(k) > p+1] \rightarrow \forall k [d_{\alpha}(k) > p+1]].$ Assume, therefore: $\alpha \in T$ and: $\forall k [c_{\alpha}(k) > p+1]$ and: $\exists k [d_{\alpha}(k) = p+1].$ Calculate $k_{e} \in w$ such that $d_{a}(k) = p + 1$. Calculate $q \in w$ such that $\forall \gamma [\overline{\gamma}q = \overline{\alpha}q \rightarrow \forall m < n[(\overline{\delta | \gamma})^{m, o} k_o = (\overline{\delta | \alpha})^{m, o} k_o].$ We may assume, without loss of generality $\forall m < p+1 [\alpha^{m,o} q = \overline{Q}q] \text{ and } (\overline{\delta|\alpha|}^{0,o} k_o = \overline{Q}k_o.$ We define $Z \in {}^{\omega}\omega$ such that: Fun(Z) and, for all $y \in {}^{\omega}\omega$:

(1)
$$(\zeta | \gamma) q = \overline{\alpha} q$$

(i) For all
$$m \in \omega$$
, $m . $(Z_1)^{m,0} = \overline{Q} + \chi^m$
(ii) For all $m \in \omega$, $n \in \omega$: $(Z_1)^{m,Sn} = \beta_n$
(iii) For all $m \in \omega$, $m \gg p + 1$: $\neg Q((\eta|\chi)^m)$.
Remark that: $\forall \gamma [Z_1 \gamma \in T]$.
Also observe that: $\forall \gamma \in T \forall k [c_{Z_1\gamma}(k) > p]$.
Therefore, taking into account what we proved at
the previous stage: $\forall \gamma \in T \forall k [d_{Z_1\gamma}(k) > p]$.
However, as: $\forall \gamma \in T [\overline{Z_1\gamma}] q = \overline{\alpha}q]$, also:
 $\forall \gamma \in T [d_{Z_1\gamma}(k_0) = d_{\alpha}(k_0) = p + 1]$, and:
 $\forall \gamma \in T [d_{Z_1\gamma}(k_0) = d_{\alpha}(k_0) = p + 1]$, and:
 $\forall \gamma \in T [\overline{(\delta[(Z_1\gamma)]^{0,0}} k_0 = (\overline{\delta[\alpha]}^{0,0} k_0 = \overline{Q} k_0]$.
Therefore: $\forall \gamma \in T \forall R[(\overline{\delta[(Z_1\gamma)]^{0,0}} k_0 = \overline{Q} k_0]$.
Therefore: $\forall \gamma \in T \forall R[(\overline{\delta[(Z_1\gamma)]^{0,0}} k_0 = \overline{Q} k_0]$.
Therefore: $\forall \gamma \in T \forall R[(\overline{\delta[(Z_1\gamma)]^{0,0}} k_0 = \overline{Q} k_0]$.
and: $\forall \gamma \in T [D^{n+1} A_1(\gamma)]$.
And this is not true, as we have seen at the beginning
of this proof.
This contradiction shows: $\forall a \in T [\forall k [c_{\alpha}(k) > p + 1] \Rightarrow \forall k [d_{\alpha}(k) > p]]$.
Thus, we know that: $\forall \alpha \in T [\forall k [c_{\alpha}(k) > n] \Rightarrow \forall k [d_{\alpha}(k) > n]]$
Victory cannot escape us any more.
We define $Z \in ^{m} \omega$ such that: $\operatorname{Fun}(Z)$ and: for all $\gamma \in ^{m} \omega$:
(i) for all $m \in \omega$: $(Z_1\gamma)^{m,0} = \chi^m$
(ii) for all $m \in \omega$, $n \in \omega$: $(Z_1\gamma)^{m,Sn} = \beta_n$
Remark that: $\forall \gamma \in T [\forall k [c_{Z_1\gamma}(k) > n]]$
And finish as follows, holding up your arms in triumph:
 $\forall \gamma \in T \forall R [d_{Z_1\gamma}(k) > n]$, therefore: $\forall \gamma \in T D^n ([\delta[(Z_1\gamma)]^m, ^0 = Q]]$
and: $\forall \gamma \in T [D^{n+1} Q (Z_1\gamma)]$, and: $\forall \gamma \in T D^n Q (S[(Z_1\gamma)],$
and so: $\forall \gamma \in T [D^{n+1} Q (Z_1\gamma)]$, and: $\forall \gamma \in T D^n Q (S[(Z_1\gamma)],$$

a flat contradiction, as we saw before. Looking for a culprit, we conclude: $\forall n > 0 [\neg (D^{n+1} Q \leq D^n Q]$ and: $\forall n > 0 [D^n Q \prec D^{n+1} Q].$ \boxtimes

And

and:

12.5 Conjunction, anxious to fly at least as high as disjunction, now attracts our attention.

We introduced, just before theorem 11.25, for all subsets $P \subseteq w w$, $Q \subseteq w w$, α subset C(P,Q) of w w by: For all $\alpha \in w w$: $C(P,Q)(\alpha) := P(\alpha^{\circ}) \wedge Q(\alpha^{1})$.

Let P_0, P_1, \dots be a sequence of subsets of w_w . We call this sequence <u>conjunctively closed</u> if: $\forall m \forall n \exists k [C(P_m, P_n) \leq P_k]$.

- 12.5.0 <u>Theorem</u>: Let P_0 , P_1 ,... be a conjunctively closed sequence of subsets of w_w such that: $\forall m \exists n [P_m \land P_n]$ and: $\exists n [A_1 \preceq P_n]$. Let $Q := \{\alpha \mid \forall n [n = \mu p [\alpha^{\circ}(p] \neq 0] \rightarrow P_n(\alpha^{Sn})] \}$. Then: $\forall n > 0 [C^n Q \land C^{n+1}Q]$.
 - <u>Proof</u>: It is easy to see that $\exists \alpha [Q(\alpha)]$ and, therefore, that $\forall n > 0 [C^n Q \leq C^{n+1} Q]$. This remark serves to loose our tongue.

Suppose: new, n>0 and: $C^{n+1}Q \leq C^nQ$. Using AC_{11} , determine $\delta \in W_W$ such that: $Fun(\delta)$ and: $\forall \alpha [C^{n+1}Q(\alpha) \neq C^nQ(\delta | \alpha)]$. As in the proof of theorem 12.4.0, we define, for each $\alpha \in W_W$ and $k \in W$, so-called critical numbers $C_{\alpha}(k)$ and $d_{\alpha}(k)$ by:

$$\begin{array}{l} c_{\alpha}(k) := \# \{ m \mid m < n+1 \mid \overline{\alpha^{m,0}} k = \overline{O} k \} \\ d_{\alpha}(k) := \# \{ m \mid m < n \mid (\overline{(\delta|\alpha)^{m,0}} k = \overline{O} k \} \end{array} \end{array}$$

We claim that: $\forall p < n \forall \alpha [(C^{n+1}Q(\alpha) \forall k [c_{\alpha}(k) > p]) \rightarrow \forall k [d_{\alpha}(k) > p]].$

We prove this by induction and start with the case: p=0. Suppose, therefore: $\alpha \in W$ and $C^{n+1}Q(\alpha)$ and $\forall k[c_{\alpha}(k)>0]$ and: $\exists k[d_{\alpha}(k)=0]$.

Calculate, for each m < n: $l_m := \mu k [(\delta | \alpha)^{m, 0} (k] \neq 0]$. Calculate $q \in w$ such that: $\forall \gamma [\overline{\gamma} q = \overline{\alpha} q \rightarrow \forall m < n [(\overline{\delta | \gamma})^{m, 0} (l_m + 1) = (\overline{\delta | \alpha})^{m, 0} (l_m + 1)]$ Remember that the sequence P_0, P_1, \dots is conjunctively closed and calculate New such that: N > q and: $C(P_{\ell_0}, P_{\ell_1}, \dots, P_{\ell_{n-1}}) \prec P_N$ (We write: $C(P_{\ell_0}, P_{\ell_1}, \dots, P_{\ell_{n-1}})$ for: $C(\dots (C(P_{\ell_n}, P_{\ell_1}), \dots, P_{\ell_{n-1}}))$ (1) $(\eta|r) q = \overline{\alpha}q$ (11) $N = \mu k [(\eta|r)^{0,0} (k|=0]$ and $(\eta|r)^{0,5N} = r$ (111) For all $j \in w, j > 0 : (\eta|r)^{j} = \alpha j$.

Then, for all re www:

$$P_{N}(\gamma) \rightleftharpoons C^{n+1}Q(\eta|\gamma) \wedge (\overline{\eta|\gamma})q = \overline{\alpha}q$$

$$\rightleftharpoons P_{e_{0}}((\delta|(\eta|\gamma))^{o,se_{0}}) \wedge \dots \wedge P_{e_{n-1}}((\delta|(\eta|\gamma))^{n-1,se_{n-1}})$$

Therefore: $P_N \leq C(P_{e_0}, \dots, P_{e_{n-1}})$ and this conflicts with the choice of N

This contradiction shows that:

 $\forall \alpha \left[(C^{n+1}Q(\alpha) \land \forall k \left[c_{\alpha}(k) > 0 \right] \right) \rightarrow \forall k \left[d_{\alpha}(k) > 0 \right] \right].$

Suppose, now, that pew, p<n-1 and:

 $\forall \alpha \left[\left(\mathbb{C}^{n+1} \mathbb{Q}(\alpha) \land \forall k \left[\mathbb{C}_{\alpha}(k) > p \right] \right) \rightarrow \forall k \left[d_{\alpha}(k) > p \right] \right]$ We wish to prove that: $\forall \alpha [(C^{n+1}Q(\alpha) \land \forall k [c_{\alpha}(k) > p+1]) \rightarrow \forall k [d_{\alpha}(k) > p+1]]$ Assume therefore: $\alpha \in W_{W}$ and $C^{n+1}Q(\alpha)$ and $\forall k[c_{\alpha}(k) > p+1]$ and $\exists k [d_{\alpha}(k) = p+1].$ Calculate $k_0 \in w$ such that $d_{\alpha}(k_0) = p+1$. We may assume, without loss of generality, that: $\forall m < p+1[(\overline{\delta(\alpha)^{m,o}} k_{o} = \overline{O}k_{o}] \text{ and} \quad \forall m[p+1 \leq m < n \rightarrow (\overline{\delta(\alpha)^{m,o}} k_{o} \neq \overline{O}k_{o}].$ Calculate, for each mew such that $p+1 \le m < n : \ell_m := \mu k [(\delta|_{\alpha})^{m,o}(k) \neq o]$. Calculate $q \in w$ such that: $\forall r [\overline{r}q = \overline{a}q \rightarrow \forall m < n [(\overline{\delta l_{r}})^{m,o} k_{o} = (\overline{\delta l_{a}})^{m,o} k_{o}].$ Remember, that the sequence Po, P1,... is conjunctively closed and that $\exists n [A_1 \leq P_n]$ and calculate New such that N>q and: $C(A_1, P_{e_{p+1}}, P_{e_{p+2}}, \dots, P_{e_{n-1}}) \prec P_N$. We again need not fear to endanger the generality of the argument when assuming: $\forall m \leq p+1 \left[\overline{\alpha^{m,o}} N = \overline{\bigcirc} N \right]$. We define $Z \in W_W$ such that: Fun (Z) and, for all $r \in W_W$: (1) $(\zeta | \gamma) q = \overline{\alpha} q$ (11) $N = \mu k [(Z|y)^{0,0}(k) \neq 0]$ and $(Z|y)^{0,SN} = y$ (11) For all jew such that: $0 < j \le p+1$: $(\zeta|\gamma)^{j,0} = Q$

(IV) For all jew such that
$$p+1 < j < n+1$$
: $(Z|Y)^{1} = \alpha^{1}$.
The most pleasing property of this function Z is,
that: $\forall Y \forall k [c_{Z|Y}(k) > p]$, which, in view of what we
proved before the break, has the further consequence
that: $\forall Y \forall k [d_{Z|Y}(k) > p]$.
Therefore, for each $y \in w_{w}$:
 $P_{N}(Y) \rightleftharpoons C^{n+1}Q(Z|Y) \land (\overline{Z|Y})q = \overline{\alpha}q \land \forall k [c_{Z|Y}(k) > p]$
 $\rightleftharpoons C^{n}Q(\delta|(Z|Y)) \land \forall k > k_{0}[d_{Z|Y}(k) = d_{Z|Y}(k_{0})]$
 $\rightleftharpoons (\forall m < p+1 [(\delta|(Z|Y))^{m,0} = Q \land \forall m [p+1 \le m < n \rightarrow P_{e_{m}}(\delta|(Z|Y))^{m,Se_{m}})])$

It is beyond doubt, now, that $P_N \leq C(A_1, P_{e_{p+1}}, \dots, P_{e_{n-1}})$ and this conflicts with the choice of N.

This contradiction shows that:

$$\forall \alpha \left[\left(C^{n+1} Q(\alpha) \land \forall k \left[C_{\alpha}(k) > p+1 \right] \right) \rightarrow \forall k \left[d_{\alpha}(k) > p+1 \right] \right].$$

Our claim obviously has been saved from all instinuations and: $\forall p < n \forall a [(C^{n+1}Q(a) \land \forall k [C_a(k) > p]) \rightarrow \forall k [d_a(k) > p]].$

Thus, we know that: $\forall \alpha [(C^{n+1}Q(\alpha) \land \forall k [C_{\alpha}(k) \ge n]] \rightarrow \forall k [d_{\alpha}(k) \ge n]].$ And this knowledge clears the way for a swift and joyful conclusion. Remark that: $\forall \alpha [(\forall m < n [\alpha^{m,0} = Q] \land Q(\alpha^{n})] \rightarrow \forall m < n [(\delta|d)^{m,0} = Q]]$ We define $Z \in {}^{\omega}w$ such that: Fun(Z) and, for all $Y \in {}^{\omega}w$:

 $\begin{array}{rcl} \left(\mathcal{Z}\left|y\right)^{n} := y & \text{and}, \text{ for all } m \in \omega & \text{such that } m \neq n \colon \left(\mathcal{Z}\left|y\right)^{m} = \mathcal{Q} \\ \end{array}$ Then, for all $y \in w_{\omega}$: $\begin{array}{rcl} Q(y) & \rightleftharpoons & \mathbb{C}^{n+1}Q(\mathcal{Z}\left|y\right) & \wedge & \forall k \left[\ \mathbf{c}_{\mathcal{Z}\left|y\right|}(k) \geqslant n \right] \\ & \rightleftharpoons & \forall m < n \; \forall k \left[\left(\delta \left| \left(\mathcal{Z}\left|y\right|\right)\right)^{m,0}(k) = \mathbf{O} \right] \end{array}$

Therefore: $Q \leq A_1$, and this is not true, as: $\exists n [A_1 \leq P_n]$ and: $\forall n [P_n < Q]$

Tired as we may be, we write down, out of love of truth: $\forall n > 0 [\neg (C^{n+1}Q \leq C^nQ)]$ and: $\forall n > 0 [C^nQ \leq C^{n+1}Q]$.

X

- 12.6 We apologize, but we long for the disjunctive ascension of the set Q*, whose acquaintance we made in 12.2, and are going to sing our magic song a third time.
- 12.6.0 Theorem: Let $P_0, P_1, ...$ be a disjunctively closed sequence of subsets of ${}^{\omega}\omega$ such that: $\forall m \exists n [P_m \prec P_n]$. Let $Q^* := \{ \alpha \mid \exists n [n = \mu p [\alpha^o(p) \neq 0] \land P_n(\alpha^{sn}) \end{bmatrix} \}$ and assume: $\forall a \exists \alpha [\alpha \in \alpha \land \neg Q^*(\alpha)]$. Then: $\forall n > 0 [D^n Q^* \prec D^{n+1}Q^*]$.
 - <u>Proof</u>: It is easy to see that: $\exists \alpha [\neg Q^*(\alpha)]$ and, therefore, that $\forall n > O[D^n Q^* \le D^{n+1}Q^*]$ That is not where the shoe pinches.

Suppose: $n \in w$, n > 0 and: $D^{n+1}Q^* \leq D^nQ^*$ Using AC_{11} , determine $\delta \in w$ such that: Fun(δ) and: $\forall \alpha [D^{n+1}Q^*(\alpha) \neq D^nQ^*(\delta \mid \alpha)]$ We define, for each $\alpha \in w$ and $k \in w$, critical numbers $C_{\alpha}(k)$ and $d_{\alpha}(k)$ by: $C_{\alpha}(k) := \{ m \mid m < n+1 \mid \overline{\alpha}^{m_1 \circ k} = \overline{0}k \}$ $d_{\alpha}(k) := \{ m \mid m < n \mid (\overline{\delta \mid \alpha})^{m_1 \circ k} = \overline{0}k \}$

We claim that: $\forall p < n \forall \alpha [\forall k [c_{\alpha}(k) > p] \rightarrow \forall k [d_{\alpha}(k) > p]].$

We prove this by induction and start with the case: p=0. Suppose, therefore: $a \in {}^{\omega}w$ and: $\forall k [c_{\alpha}(k)>0]$ and $\exists k [d_{\alpha}(k)=0]$. Calculate, for each m < n: $l_{m} := \mu k [(\delta | a)^{m,0} (k) \neq 0]$. Calculate $q \in w$ such that: $\forall r [\bar{r}q = \bar{\alpha}q \rightarrow \forall m < n [(\delta | r)^{m,0} (\overline{l_{m}+1}) = (\delta | a)^{m,0} (\overline{l_{m}+1})]$ Remember, that the sequence $P_{0}, P_{1}, ...$ is disjunctively dosed and calculate $N \in w$ such that: N > q and $D(P_{0}, ..., P_{n-1}) \prec P_{N}$ We may assume, without loss of generality, that $\overline{\alpha^{0,0}} N = \bar{Q}N$ We define $\eta \in {}^{\omega}w$ such that: $Fun(\eta)$, and for all $r \in {}^{\omega}w$: (1) $(\overline{\eta}|\overline{r})q = \bar{\alpha}q$ (11) $N = \mu k [(\eta | r)^{0,0}(k) = 0]$ and $(\eta | r)^{0,SN} = r$

(11) For all
$$j \in \omega$$
, $0 < j < n+1 : \neg Q^*((\eta|\gamma)^{\frac{1}{2}})$

Then, for all ye ww:

$$\begin{array}{l} P_{N}(y) & \rightleftharpoons & D^{n+1} Q^{*}(\eta|y) \wedge (\overline{\eta|y}) q = \overline{\alpha}q \\ & \rightleftharpoons & P_{e_{N}}(\delta |\eta|y))^{o,se_{O}} \vee \ldots \vee P_{e_{N-1}}(\delta |\eta|y))^{n-1,se_{N-1}} \end{array}$$

Therefore: $P_N \leq D(P_{e_0}, \dots, P_{e_{n-1}})$, and this conflicts with the choice of N.

We may trust, now, that $\forall a [\forall k [c_d(k) > 0] \rightarrow \forall k [d_d(k) > 0]].$

Suppose, now, that pew, p < n-1 and: $\forall \alpha [\forall k [c_{\alpha}(k) > p] \rightarrow \forall k [d_{\gamma}(k) > p]]$. We wish to prove that: $\forall \alpha [\forall k [c_{\alpha}(k) > p+1] \rightarrow \forall k [d_{\alpha}(k) > p+1]]$ Assume, therefore: $\alpha \in \mathcal{W}_{w}$ and $\forall k[c_{\alpha}(k) > p+1]$ and $\exists k[d_{\alpha}(k) = p+1]$. Calculate $k_0 \in w$ such that $d_{\alpha}(k_0) = p+1$. We assume, and do not damage, thereby, the generality of the argument, that: $\forall m < n [(\delta | a)^{m, o} k_{o} = \overline{\bigcirc} k_{o} \rightleftharpoons m < p+1].$ Calculate, for each mew such that $p+1 \le m < n := \mu k [(\delta h)^{m,0}(k) \neq 0]$. Calculate $q \in w$ such that: $\forall r[\bar{r}q = \bar{\alpha}q \rightarrow \forall m < n[(\bar{\delta}|r|^{m,0}k_{\rho} = (\bar{\delta}|a|^{m,0}k_{\rho}]]$. Remember, that the sequence Po, Py,... is disjunctively closed and calculate New such that: N>9 $D(P_{e_{p+1}}, P_{e_{p+2}}, \dots, P_{e_{p-4}}) \prec P_N$ and Again, we do not expect to be accused of dirty tricks, when assuming: $\forall m \le p+1 [\alpha^{\overline{m},\overline{p}} N = \overline{Q}N]$. We define $Z \in W$ such that: Fun(Z) and, for all $y \in W$ (1) $(\overline{Z}|_{r}) q = \overline{Z}q$ (11) $N = \mu k [(Z|\gamma)^{0,0}(k) \neq 0]$ and $(Z|\gamma)^{0,SN} = \gamma$ (111) For all jew such that: $0 < j \le p+1$: $(3|j)^{j,0} = Q$ (1v) For all jew such that: p+1<j<n+1: -Q*((31))). Remark that: $\forall y \forall k [c_{3l_k}(k) > p]$ and, therefore: $\forall y \forall k [d_{3l_k}(k) > p]$. Therefore, for each re www. $P_N(y) \neq D^{n+1}Q^*(Z|y) \wedge (\overline{Z|y})q = \overline{\alpha}q$ $\rightleftharpoons D^{n} Q^{*} (\delta|(Z|\chi)) \wedge \forall m < p+1[(\delta|(Z|\chi))^{m_{i}o} = Q]$ $\vec{\epsilon} \quad \mathcal{P}_{\ell_{p+1}}(\left(\delta|(\boldsymbol{z}|\boldsymbol{\gamma})\right)^{p+1,\,S\ell_{p+1}}) \vee \mathcal{P}_{\ell_{p-1}}(\left(\delta|(\boldsymbol{z}|\boldsymbol{\gamma})\right)^{p-1,\,S\ell_{p-1}})$ For this reason: $P_N \prec D(P_{\ell_{p+1}}, \dots, P_{\ell_{n-1}})$ and this conflicts with the choice of N. We are forced to conclude: $\forall a[\forall k[c_{\alpha}(k) > p+1] \rightarrow \forall k[d_{\alpha}(k) > p+1]]$.

This establishes our claim. $\forall p < n \forall a [\forall k [c_{\alpha}(k) > p] \rightarrow \forall k [d_{\alpha}(k) > p]].$

Thus, we know that: $\forall \alpha [\forall k[c_{\alpha}(k) > n] \rightarrow \forall k[d_{\alpha}(k) > n]].$ Faster than ever, we are to receive the palm of honour. We observe that: $\forall \alpha [\forall m < n [\alpha^{m,0} = Q] \rightarrow \forall m < n [(\delta | \alpha)^{m,0} = Q]].$ Therefore: $\forall \alpha [\forall m < n [\alpha^{m,0} = Q] \rightarrow \neg D^n Q^* (\delta | \alpha)]$ and: $\forall \alpha [\forall m < n [\alpha^{m,0} = Q] \rightarrow \neg D^{n+1} Q^* (\alpha)].$ This is contradictory, because, as $\exists \alpha [P_0(\alpha)]$, also: $\exists \alpha [Q^*(\alpha)]$, and we may define $\alpha^* \in {}^{\omega}\omega$ such that: $\forall m < n [(\alpha^*)^{m,0} = Q]$ and: $Q^* ((\alpha^*)^n)$, therefore $D^{n+1} Q^* (\alpha^*).$ A new grain of wisdom may be added to our treasury: $\forall n > 0 [\neg (D^{n+1} Q^* \leq D^n Q^*)]$ and: $\forall n > 0 [D^n Q^* < D^{n+1} Q^*]$

$$\boxtimes$$

The method underlying the proofs of theorems 12.4.0, 12.5.0 and 12.6.0 is a general one, admitting of application under not too restrictive and varying circumstances. The proof of the last theorem, which stated that: $\forall n > 0 [D^n Q^* < D^{n+1} Q^*]$. shows more likeness to the proof of the conjunctive ascension of Q (i.e.: $\forall n > 0 [C^n Q < C^{n+1} Q]$, theorem 12.5.0) than to the proof of the disjunctive ascension of Q (i.e.: $\forall n > 0 [D^n Q < D^{n+1} Q]$ theorem 12.4.0) Some understanding of why this should be so, is gained, when, one realizes, that the set $Q^* := \{\alpha \mid \exists n [n = \mu p [\alpha^o(p] \neq 0] \land P_n(\alpha^{Sn})]\}$ is, classically, parented to the set: $\{\alpha \mid \neg \forall n [n = \mu p [\alpha^o(p] \neq 0] \rightarrow \neg P_n(\alpha^{Sn})]\}$ i.e. the complement of the set which results from letting loose the operation which generated Q, on the sequence: Neg (P_0), Neg (P_1),....

12.7 Let us rest ourselves a little, and philosophize.

Let us call a subset P of ww, disjunctively productive, if Vn>0[Dnp<Dn+1P]

We know, from theorems 4.6 and 11.22 respectively, that there are disjunctively productive subsets of ω_w , for instance A_1 and S_2 .

And, now, theorem 12.4.0, (or, for that matter, theorem 12.3.0) enables us to find many more of them.

Starting with $A_1 = R_0$, and applying the generating operation to the sequence $A_1 \prec D^2 A_1 \prec \ldots$, we find R_1 , and, thereafter, applying the same operation to the sequence $R_1 \prec D^2 R_1 \prec \ldots$, we find R_2 , and, continuing in this way, successively: $R_0 \prec R_1 \prec R_2 \prec \ldots$ But this sequence itself is also an increasing (in the sense of the reducibility)

But this sequence itself is also an increasing (in the sense of the reducibility relation \leq) and disjunctively closed sequence. (We also may refer to the fact that all its members are strictly analytical).

Therefore, another application of the generating operation gives birth to

a disjunctively productive set R_{ω} such that $\forall n [R_n \times R_{\omega}]$. Continuing, we find an uncountable multitude of disjunctively productive sets.

The hyperarithmetical hierarchy theorem (theorem 9.7) showed us a very different way to the truth that, with respect to the reducibility relation s uncountably many levels of complexity have to be distinguished.

Here, we are facing a phenomenon of a more local nature. This is even more apparent from the conjunctive story.

Let us call a subset P of ^ww <u>conjunctively productive</u>, if $\forall n > 0 [C^n P \times C^{n+1} P]$.

We already met with some conjunctively productive subsets of ^{w}w , for example $D^{2}A_{1}$ (cf. theorem 4.15) and S_{2} (cf. theorem 11.26).

We also know, from theorem 4.14, that the sequence $A_1, D^2A_1,...$ is conjunctively closed. According to theorem 12.5.0, then, $R = W_0 = \{\alpha \mid \forall n \ln = \mu p \lfloor \alpha^{\circ}(p) \neq 0 \rfloor \rightarrow D^{n}A_1(\alpha^{n})\}$ is a conjunctively productive subset of ω_{ω} . The sequence $W_0, C^2W_0, C^3W_0,...$ is, obviously, increasing and conjunctively closed, and theorem 12.5.0 crowns it with a conjunctively productive set W_1 . As in the disjunctive case, α whole sequence $W_0 \prec W_1 \prec W_2 \prec ...$ is, successively, called up, and after it, applying the generating operation to this sequence, we find a conjunctively productive set W_{ω} such that $\forall n \lfloor W_n \prec W_{\omega} \rfloor$.

Reflecting, now, that each one of the sets $W_0, W_1, ...$ and W_w , and the whole of their yet unborn offspring (under the same generating operation) do belong to Π_3° , we lose ourselves in wonder: Π_3° seems to be rather complex.

We also remark that the sets $W_0, W_1, ..., W_w$, and their following, and the sets $R_0, R_1, ..., R_w$ and their following, are, all of them, reducible to $S = \{ \alpha \mid \exists f [f \in \sigma_2 \land \forall n [\alpha(\tilde{f} n) = 0] \}$ and thus belong to the class \mathcal{C} , which we discussed in 11.27. This is, because \mathcal{C} , as we have seen, is closed under the operations of finite union and countable intersection. This is some new evidence for the complexity of \mathcal{C} .

Still in our pensive mood, we turn to theorem 12.6.0. This theorem gives occasion to similar considerations. We remark that, if we start again with the sequence A_1, D^2A_1, \ldots , repeated application of the operation advertized by this theorem, keeps us within the bounds of Σ_2^o . The complexity of Σ_2^o .

like that of Π_{3}^{o} , is almost beyond imagination.

We mention only some of the many questions that remain to be asked. Are all universal representatives from the hyperarithmetical hierarchy, i.e.: the sets A_{σ} , as they have been introduced in $\partial.4$, disjunctively productive? We know, from the hyperarithmetical hierarchy theorem (theorem 9.7), that these sets are "existentially productive", i.e.: $V_{\sigma} \in HI\ [A_{\sigma} \prec E_{\pi}(A_{\sigma})]$ (cf. 10.4) We have proved, in theorem 4.6, that A_1 is disjunctively productive, and are prepared, on payment, to do the same for A_2 and A_3 . We conjecture, that all sets Ar are disjunctively productive, but miss a general argument. Is there any subset A of ^ww which is both "disjunctively saturated" and "existentially productive" i.e.: D²A A and A K Ex(A)? (Remark that E, is an example of a set which is "conjunctively saturated" and "universally productive": $C^2 E_1 \leq E_1 \leq A_2$) If so, we would be surprised, but we do not know. A candidate is $S = \{\alpha | \exists \gamma [\gamma \in \sigma_2 \land \forall n [\alpha(\gamma n) = 0] \}$. This lands us into the quicksands of 11.27. We have seen, there, that S is disjunctively saturated, and have stressed, that we do not know how to prove that S is existentially productive, although we would like to do so.

12.8 Implication, like an impatient little brother, has been watching the performances of disjunction and conjunction, eager to show its own abilities. Negation plays an important part in the implicational show: Recall, how we defined, in 5.2, to each subset P of ${}^{\omega}w$, a subset Neg(P) of ${}^{\omega}w$, by: Neg(P):= $\{ \alpha \mid \neg P(\alpha) \}$. A subset P of ${}^{\omega}w$ is called stable, if Neg(Neg(P)) = P.

12.8.0 Lemma: Let $P_0, P_1, ...$ be a sequence of stable subsets of w_w such that: $\forall m \exists n [P_m \land P_n]$ and $\forall m \exists n [Neg(P_m) \land P_n]$. Let $Q := \int \alpha | \forall n [n = \mu p [\alpha^o(p) \neq 0] \rightarrow P_n(\alpha^{sn})$. Then: $\neg (Neg(Q) \leq Q)$.

147

Finally, determine $Z \in W w$ such that: Fun(Z) and, for all $j \in W w$:

(1) $\overline{(Z|Y)} q = \overline{Q}q$ (11) $N = \mu p [(Z|Y)^{o}(p) \neq 0]$ and $(Z|Y)^{SN} = y$.

Then, for all $re^{\omega}\omega$.

$$\neg P_{N}(\gamma) \rightleftharpoons \neg Q(\zeta|\gamma) \land (\overline{\zeta}|\gamma) q = \overline{Q}q$$

$$\rightleftharpoons Q(\delta|(\zeta|\gamma)) \land n_{o} = \mu p[(\delta|(\zeta|\gamma))^{\circ}(p) \neq 0]$$

$$\rightleftharpoons P_{n}((\delta|(\zeta|\gamma))^{s_{n_{o}}}).$$

Therefore: $\operatorname{Neg}(P_N) \preceq P_{n_o}$ and, as P_N and P_{n_o} are stable subsets of ${}^{\omega}w$, also: $P_N \preceq \operatorname{Neg}(P_{n_o})$ and this conflicts with the choice of N. This contradiction shows that: $\neg \exists p [(\delta | \underline{Q})^o(p) \neq 0]$. And thus, the assumption: $\operatorname{Neg}(Q) \preceq Q$ is seen to lead us to absurdity.

X

This lemma is a worthy sequel to lemma 11.6 which stated that: $\neg (A_1 \leq Neg(A_1))$ To be sure, we never did encounter a subset A of ^ww such that: $A \leq Neg(A)$, and if anybody sees one, he should warn us.

Let R be a subset of w_{ω} . We define a sequence $I_{\sigma}R, I_{1}R, ...$ of subsets of $w_{\omega}by$: (1) For all $\alpha \in w_{\omega}$: $I_{\sigma}R(\alpha) := R(\alpha^{\circ})$ (1) For all $p \in w$, for all $\alpha \in w_{\omega}$: $I_{sp}R(\alpha) := I_{p}R(\alpha) \rightarrow A_{1}(\alpha^{sp})$

Remark: Neg(R) \preceq I₁ R Using the technique of lemma 12.8.0, we prove a further result:

- 12.8.1 Lemma: Let $P_0, P_1, ...$ be a sequence of stable subsets of ${}^{w}w$ such that: $\forall m \exists n [P_m \prec P_n].$ Let $Q := \{\alpha | \forall n [n = \mu p [a^{\circ}(p) \neq 0] \rightarrow P_n(\alpha^{\leq n})] \}.$ Then: $\neg (I_1 Q \leq Neq(Q)).$
 - $\frac{\text{Proof}:}{\text{Fun}(\delta)} \text{ Suppose}: I_1 Q \leq \text{Neg}(Q) \text{ and, using AC}_{11}, \text{ determine } \delta \in {}^{\text{W}} \text{w such that}:$ $\text{Fun}(\delta) \text{ and } \forall \alpha [(Q(\alpha^{\circ}) \rightarrow \alpha^{1} = Q) \neq \neg Q(\delta|\alpha|]$ We claim that: $\forall p [(\delta|\underline{0})^{\circ}(p) = 0].$

Suppose: $\exists p [(\delta|\underline{0})^{\circ}(p) \neq 0]$ and calculate $n_{\sigma} = \mu p [(\delta|\underline{0})^{\circ}(p) \neq 0]$. Calculate $q \in w$ such that: $\forall \alpha [\overline{\alpha} q = \overline{Q} q \rightarrow (\overline{\delta}|\underline{\alpha}|^{\circ}(n_{\sigma} + 1) = (\overline{\delta}|\underline{0}|^{\circ}(n_{\sigma} + 1)]$. Calculate New such that: N > q and: $P_{n_o} \prec P_N$. Finally, determine $Z \in {}^{\omega} \omega$ such that: Fun(Z) and, for all $r \in {}^{\omega} \omega$:

(1) $\overline{(Z_1y)}q = \overline{Q}q$ (11) $N = \mu p [(Z_1y)^{D,O}(p) \neq 0]$ and $(Z_1y)^{O,SN} = y$ (111) $(Z_1y)^{1}(N) \neq 0$.

Then, for all re^ww:

$$\begin{array}{ccc} \neg P_{N}(y) & \rightleftarrows & \left(P_{N}\left(\langle \mathcal{Z}|y\rangle^{0,sN}\right) \rightarrow A_{4}\left(\langle \mathcal{Z}|y\rangle^{1}\right)\right) \wedge \neg A_{4}\left(\left(\mathcal{Z}|y\rangle^{1}\right)\right) \\ \rightleftharpoons & \left(Q\left(\langle \mathcal{Z}|y\rangle^{0}\right) \rightarrow A_{4}\left(\langle \mathcal{Z}|y\rangle^{1}\right)\right) \wedge \neg A_{4}\left(\left(\mathcal{Z}|y\rangle^{1}\right)\right) \\ \rightleftharpoons & \left(Q\left(\langle \mathcal{Z}|y\rangle^{0}\right) \rightarrow A_{4}\left(\langle \mathcal{Z}|y\rangle^{1}\right)\right) \wedge \neg A_{4}\left(\left(\mathcal{Z}|y\rangle^{1}\right)\right) \\ \rightleftharpoons & \left(Q\left(\langle \mathcal{Z}|y\rangle^{0}\right) \wedge \left(\overline{\mathcal{Z}|y}\right)\right) q = \overline{Q}q \\ \rightleftharpoons & \neg Q\left(\delta\left(\langle \mathcal{Z}|y\rangle\right) \wedge n_{0} = \mu p \left[\left(\delta\left(\mathcal{Z}|y\rangle\right)\right)^{\circ}(p) \neq 0\right] \\ \rightleftharpoons & \neg P_{n_{0}}\left(\left(\delta\left(\langle \mathcal{Z}|y\rangle\right)\right)^{s_{n_{0}}}\right). \end{array}$$

Therefore: $Neg(P_N) \leq Neg(P_{n_o})$ and, since P_N and P_{n_o} are stable subsets of $^{\omega}w: P_N \leq P_{n_o}$ and this conflicts with the choice of N.

This contradiction shows that $\forall p [(\delta | Q)^{\circ} (p) = 0]$.

As $(\delta|\underline{0})^{\circ} = \underline{0}$, we have: $Q(\delta|\underline{0})$. We are in an impossible situation, because, just as well: $I_1Q(\underline{0})$. Let us be wise and give up the assumption: $I_1Q \leq \text{Neg}(Q)$.

Let R be a subset of ^{w}w . We say that R is wavering in \underline{O} if: $\forall n \exists z [Fun(z) \land \forall \alpha [(\overline{z} | \alpha) n = \overline{O}n] \land \forall \alpha [R(\alpha) \neq R(z | \alpha)].$

This means, more or less, that for each $n \in w$, $R \land \overline{Q} \land n$ is as complicated as R itself. (We might say: $R \leq R \land \overline{Q} \land n$).

If you come to think upon it, very many sets are wavering in Q.

We take the last preparations before launching implication, and try to follow a line of argument which has been successful in the past (cf. lemma 5.5).

12.8.2 Lemma: Let R be a subset of
$${}^{\omega}w$$
, which is wavering in Q, and such that: $R(Q)$
Then: $\forall p \forall q [I_{sp} R \leq I_{sq} R \rightarrow \neg \neg (Neg(I_p R) \leq Neg(I_q R))]$

 $\frac{Proof}{Proof}: \quad \text{Suppose: } p, q \in w \text{ and } I_{\text{Sp}} R \leq I_{\text{Sq}} R.$ $\text{Using AC}_{11}, \text{ determine } \delta \in {}^{w}w \text{ such that: Fun}(\delta) \text{ and } V\alpha [I_{\text{Sp}} R(\alpha) \rightleftharpoons I_{\text{Sq}} R(\delta | \alpha)].$

Consider a special sequence α_x in ω_w which fulfils the conditions: $\forall j \leq p[(\alpha_*)j = Q]$ and $(\alpha_*)^{SP}(0) = 1$. Remark: $\neg I_{SD}R(\alpha_*)$, therefore $\neg I_{SQ}R(\delta | \alpha_*)$ and: $(\delta | \alpha_*)^{SQ} \neq Q$. Assume now, for the sake of argument $\exists n [(\delta | \alpha_*)^{sq}(n) \neq 0]$, and determine $n_0 \in w$ such that: $(\delta | \alpha_*)^{Sq} (n_0) \neq 0$. Also determine lew such that $\forall \alpha [\overline{\alpha}l = \overline{\alpha}_{1}l \rightarrow (\delta | \alpha)^{sq}(n_{0}) = (\delta | \alpha_{*})^{sq}(n_{0})]$ Remember, that R is wavering in Q, and determine $Z \in {}^{\omega} \omega$ such that: Fun(3) and: $\forall \alpha [(\overline{\zeta} | \alpha)] = \overline{Q} []$ and: $\forall \alpha [R(\alpha)] \ge R(\zeta | \alpha)]$ Finally, determine $\eta \in {}^{\omega}\omega$ such that: Fun(η), and for all $\gamma \in {}^{\omega}\omega$. (i) $\overline{(\eta|\chi)}\ell = \overline{\alpha}_{\star}\ell$ and: $(\eta|\chi)^{sp}(0) = 1$ (11) $(\eta | r)^{\circ} = Z | r^{\circ}$ (iii) $\forall j [0 < j \le p \rightarrow (\eta | \chi)^{j} = \overline{Q} \ell * \chi^{j}].$ Then, for all re^ww: $\neg I_{p} R(y) \rightleftharpoons I_{sp} R(\eta|y) \land (\overline{\eta|y}) \ell = \overline{\alpha_{*}} \ell$ $\rightleftharpoons I_{Sq} R (\delta|(\eta|\gamma)) \wedge (\delta|(\eta|\gamma))^{Sq} (n_0) \neq 0$ \neq $\neg I_q R (\delta | (\eta | f)).$ Therefore: $Neq(I_p R) \preceq Neq(I_q R)$. We have proved, now, that: $\exists n [(\delta | \alpha_*)^{Sq}(n) \neq 0] \rightarrow (Neg(I_p R) \preceq Neg(I_q R))]$ And we know that: $\neg \neg \exists n [(\delta | \alpha_*)^{Sq}(n) \neq 0].$ Therefore: ¬¬ (Neg (Ip R) ≤ Neg (Iq R)). \boxtimes

Lemma 5.5 is a special case of lemma 12.8.2: consider
$$R := A_{\perp}$$

Implication now fulfils its promises and, really, goes far:

- 12.8.3 <u>Theorem</u>: Let $P_0, P_1, ...$ be a sequence of stable subsets of w_w such that: $\forall m \exists n [P_m \land P_n]$ Let $Q := \{ \alpha | \forall n [n = \mu p [\alpha^{\circ}(p) \neq 0] \rightarrow P_n(\alpha^{Sn})] \}$ Then: $\forall n [I_n Q \land I_{n+2} Q].$
 - <u>Proof</u>: Let us first remark that Q, and likewise all sets I_1Q , I_2Q ,... are stable subsets of ${}^{\omega}w_{\nu}$, as they are built from the sets A_1 , P_0 , P_1 ,... by means of operations (countable intersection, implication)

which preserve stability.

It is easily seen that, for each subset R of ${}^{\omega}\omega$: Neg(Neg(R)) $\leq I_2 R$. And: $\forall n [I_n Q = Neg(Neg(I_n Q))]$, therefore: $\forall n [I_n Q \leq I_{n+2} Q]$.

Suppose, now: $I_2 Q \leq Q$. Then: $\text{Neg}(I_1 Q) \leq I_2 Q \leq Q$, and, as we have to do with stable subsets of ${}^{w}w$: $I_1 Q \leq \text{Neg}(Q)$ This, however, has been refuted in lemma 12.0.1 Therefore: $\neg (I_2 Q \leq Q)$.

Remark that: Q is wavering in Q and: Q(Q)

Let new and define $Ze^{\omega}w$ such that: Fun(Z), and, for all $ye^{\omega}w$: (1) $\overline{(Z|\gamma)}n = \overline{Q}n$ (11) $(Z|\gamma)^{\circ} = \overline{Q}n * \gamma^{\circ}$ (11) For all jew: $(Z|\gamma)^{n+Sj} = \gamma^{Sj}$. Then: $\forall \gamma E Q(\gamma) \neq Q(Z|\gamma)$].

Therefore: lemma 12.8.2 applies and, observing first that, again because of stability: $\forall p \forall q [(Neq(I_p Q) \leq Neq(I_q Q)) \geq (I_p Q \leq I_q Q)],$ we establish, successively: $\neg (I_3 Q \leq I_1 Q), \neg (I_4 Q \leq I_2 Q),...$ i.e.: $\forall n [\neg (I_{n+2} Q \leq I_n Q)]$ and: $\forall n [I_n Q \prec I_{n+2} Q].$

Thus, we get an increasing sequence $Q \times I_2 Q \times I_4 Q \times ...$ We better leave out: $I_1 Q$, $I_3 Q$,... It is an easy consequence of theorem 12.8.3 that: $\neg(I_1 Q \leq Q)$ (for: if $I_1 Q \leq Q$, then $I_2 Q \leq Q$). On somewhat stricter conditions, the same conclusion follows from lemma 12.8.0. It is doubtful, on the other hand, whether $Q \leq I_1 Q$. We observed earlier, just before theorem 5.21, that $I_1 E_1 \leq A_1$, therefore: $\neg(E_1 \leq I_1 E_1)$ We admit that this is not a very convincing example, as E_1 is not a stable subset of ${}^{W}w$. Therefore: $\forall n[\neg(E_1 \leq I_n E_1)]$. But we need not trouble ourselves with these questions, if we concentrate upon the ascension of implication. It is clear, already, that, like its disjunctive and conjunctive predecessors 12.4.0 and 12.5.0, theorem 12.8.3 is capable of repeated application. First, consider the sequence $I_1 (:= A_1)$, $I_2 (:= I_1A_1)$, $I_3 (:= I_2A_1)$,... which we introduced in 5.0 and, using 12.8.3, build a set U_0 . Remark: $\forall n > 0 [I_n < I_{n+1} < U]$. Then, consider the sequence: $I_0 U_0$, $I_2 U_0$, $I_4 U_0$, ... and, using 12.8.3 again build a set U_1 . Remark: $\forall n [I_{2n} U_0 < I_{2n+2} U_0 < U_1]$. Similarly, from U_1 build U_2 , from U_2 build U_3 ,... Then, consider the sequence: $U_0, U_1, U_2, ...$ and, using 12.8.3 again, build a set U_w And so on.

12.9 Also the second construction of chapter 5, which led to theorem 5.10, may be generalized.

Let R be a subset of ${}^{\omega}\omega$. We define a sequence $J_{\sigma}R, J_{\eta}R, ...$ of subsets of ${}^{\omega}\omega$ by: (1) For all $\alpha \in {}^{\omega}\omega : J_{\sigma}R(\alpha) := R(\alpha^{\circ})$ (11) For all $p \in \omega$, for all $\alpha \in {}^{\omega}\omega : J_{Sp}R(\alpha) := J_{p}R(\alpha) \rightarrow E_{\eta}(\alpha^{Sp})$.

Remark that, if $R := \{\alpha \mid \alpha \mid 0\} = 0\}$, the sequence $J_0, J_1, ...$ which caught our attention in 5.7, reappears.

This time, we do without long preparations and we take the truth by surprise.

12.9.0 Theorem: Let Po, P1,... be a sequence of subsets of www such that:

if n is odd, then $J_n Q^*(\alpha)$, and if n is even, then $\neg J_n Q^*(\alpha)$. We see now that, as p+q is odd: $\forall \alpha [\alpha \text{ is negativist} \rightarrow \delta | \alpha \text{ is not negativist}]$ More precisely: $\forall \alpha [\alpha \text{ is negativist} \rightarrow \neg \exists n [(\delta | \alpha)^{0,0}(n) \neq 0 \lor \exists j [0 < j \le q \land (\delta | \alpha)^{j}(n) = 0]]$.

All the same, we announce, boldly, that
$$\forall \alpha [\alpha \text{ is negativist} \rightarrow (\delta | \alpha)^{9,0} = \underline{O}].$$

Suppose: $\alpha \in {}^{\omega}\omega$, α is negativist, and $\exists n [(\delta | \alpha)^{9,0}(n) \neq \overline{O}].$
Calculate $n_{o} := \mu n [(\delta | \alpha)^{9,0}(n) \neq \overline{O}].$
Calculate lew such that: $\forall \beta [\overline{\beta} l = \overline{\alpha} l \rightarrow (\overline{\delta} | \beta)^{9,0}(n_{o}+1) = (\overline{\delta | \alpha})^{9,0}(n_{o}+1)].$

Determine New such that: N>l and $\neg (J_p P_N \leq J_q P_{n_o})$. Finally, determine $Z \in {}^{\omega}\omega$ such that: Fun(Z) and, for all $\gamma \in {}^{\omega}\omega$: (1) $(\overline{\zeta}) \ell = \overline{\alpha} \ell$ (11) $N = \mu n [(3|\gamma)^{0,0}(n) \neq 0]$ and $(3|\gamma)^{0,SN} = \gamma^{0}$ (111) for all jew, 0<1≤p: (Zly) = 11+x1 Observe that, for all re "w: $J_p P_N(y) \rightleftharpoons J_p Q^*(\zeta | y) \wedge (\overline{\zeta | y}) \ell = \overline{\alpha} \ell$ $\exists q Q^*(\delta|(\zeta|\gamma)) \wedge n_o = \mu n [(\delta|(\zeta|\gamma))^{o,o}(n) \neq 0]$ Therefore: $J_p P_N \leq J_q P_n$ and this conflicts with the choice of N. This contradiction shows that $\forall n [(\delta | \alpha)^{o, o}(n) = 0].$ Going one step further, we assert: $\forall \alpha [\alpha \text{ is negativist} \rightarrow \forall j [0 < j \le q \rightarrow \forall n [(\delta | \alpha))(n) \neq 0]]$ Suppose: $j_0 \in w$, $0 < j_0 \leq q$ and: $n_0 \in w$, $(\delta[\alpha]^{j_0}(n_0) = 0$. Calculate lew such that $\forall \beta [\beta] = \overline{\alpha} [\rightarrow (\delta | \beta) \delta^{\circ}(n_{0}) = (\delta | \alpha) \delta^{\circ}(n_{0})].$ Calculate New such that: N>l and: $\neg (J_p P_N \preceq J_{sq} P_o)$. Remark that: Jq-1 \leq Jsq Po. (Define $\eta \in {}^{\omega}\omega$ such that: Fun(η) and, for all $y \in {}^{\omega}\omega$. $(\eta|\chi)^{1} = Q \land \forall j \leq q - 1 [(\eta|\chi)^{ss}j = \chi j]$ Then: $\forall j \in J_{q-1}(y) \neq J_{sq} P_{o}(\eta|y)$]). As in the previous paragraph, define, from a, l, N, a sequence Zeww such that . Fun (3) and ... Observe that for all ye ww: $J_{p} P_{N}(y) \rightleftharpoons J_{q} Q^{*}(\delta|(Z|y)) \wedge (\delta|(Z|y))^{j_{0}}(n_{o}) = 0.$ Therefore: $J_p P_N \preceq J_{q-j} \preceq J_{q-1} \preceq J_{sq} P_0$, (cf. theorem 5.8), and this conflicts with the choice of N. This contradiction shows that $\forall j [0 < j \le q \rightarrow \forall n [(\delta | \alpha)] (n \neq 0]]$. The quarreling conclusions that we reached will only cease to annoy us, if we accept: $\forall p \forall q [(p+q \text{ is odd}) \rightarrow \neg (J_p Q^* \leq J_q Q^*)]$ We do so. K

This theorem enables us, once more, to scrape the sky:

Using theorem 5.10, we start with the sequence: $J_0, J_1, J_2, ...$ and, applying 12.9.0, find V_0 . Then, considering the sequence: $J_0V_0, J_1V_0, J_2V_0, ...$ we see that 12.9.0 applies again, and we find V_1 . In the same way, from V_1 we find V_2 , from V_2 we find V_3 , and so on. We then consider the sequence: $V_0, V_1, V_2, ...$ and we observe

 $\exists N \left[\neg (J_{q} \cdot J_{N} \nabla_{n} \leq J_{p} \nabla_{n}) \right] \quad \text{and} : \quad \forall N \left[J_{N} \nabla_{n} \leq V_{n+1} \right]$ therefore: $\neg (J_{q} \nabla_{n+1} \leq J_{p} \nabla_{n})$

Therefore: 12.9.0 applies again, and we welcome the new set $V_{\rm W}$.

We may continue in this way for quite a long time.

A strange property of this construction is that we do not see, how to prove, or to refute: $\exists n > 0 [V_0 \leq J_n V_0]$.

In 12.8, we established an increasing line in U_0 , I_2U_0 , I_4U_0 ,..., by means of stability".

Here, the sets V_0 , JV_0 , J_2V_0 ... are like an unorderable crowd, which we only use to go up from V_0 to V_1 .

Remark, before leaving this chapter, that we did Our implicational clambering without raising the complexity of the succedens.

13 BROUWER'S THESIS, AND SOME OF ITS CONSEQUENCES

Having made, in the chapters 11 and 12, an excursion into typically intuitionistic phenomena, we now come to some more classical questions, which it is natural to ask in connection with chapter 10, but which we did not yet mention. One of the famous, beautiful theorems that Souslin proved for classical descriptive set theory, during its infancy, says that the class of all sets which are both analytical and co-analytical, coincides with the class of all hyperarithmetical sets. One half of this theorem has gone lost in 10.13 already, where it was shown that it is rather exceptional, for a hyperarithmetical set, to be co-analytical. We now turn to the other half, and prove, in this chapter, that every set, which is both <u>strictly</u> analytical and co-analytical, is hyperarithmetical, indeed. Souslin was not completely wrong, therefore, and we should perhaps be kind to him and not make too much of the difference between analytical and strictly analytical sets. (cf. 10.7-8). In defending Souslin, we appeal to the bar theorem, a fundamental tenet of intuitionistic analysis, and, probably, the most questionable one. We put this theorem into a formulation, which slightly differs from the usual ones, and refer to it as "Brouwer's thesis." Browner's thesis deserves our sympathy, for creating, in the midst of the waste land into which the classical paradise has withered, under the blaze of his harsh criticisms, some things of beauty. We will see that it also secures a separation theorem for strictly analytical sets, and a corollary thereof, saying that the range of a (strongly) injective function on ww, is hyperarithmetical. We hope for the truth of Brouwer's thesis, really, and we first try to get clear in what way Brouwer conquered his own doubts.

- 13.0 We recall, from 8.0, that the set \$ of well-ordered stumps in ^ww has been defined by transfinite induction, as follows:
 - ()) $\phi \in $$
 - (11) If A_0, A_1, A_2, \dots is a sequence of elements of \$, then A belongs to \$, where $A := \{<>\} \cup \bigcup_{n \in \{i\}} \langle n > *A_n \rangle$

(11) If any subset A of w does belong to \$, it does so because of (1) and (11).

We have observed, in 8.1, that every $\sigma \in \$$ is a decidable subset of w, and that for all $\sigma \in \$$: $\forall m \forall n [(m \in \sigma \land m \subseteq n) \rightarrow n \in \sigma]$ and: $\forall \alpha \exists n [\bar{\alpha}n \notin \sigma]$.

We now introduce:

Brouwer's Thesis, General Version. Let $R \subseteq w$ and $\forall \gamma \exists n [R(\overline{\gamma}n)].$ $\exists \sigma \in \$ \forall a [a \notin \sigma \rightarrow \exists b [a \subseteq b \land R(b)]]$ Then: (In words, which go back to Brouwer's discussion: the finite sequences which do not belong to \$, have to be past-secured with respect to R) (cf. Note 5 on page 216). To justify his thesis, Brouwer used a metamathematical argument, saying that, if we have some way of proving: $\forall y \exists n[R(\bar{y}_n)]$, we also have a standardized way of proving it. We should start to break down: Yr In [R(jrn)] into. $\forall f [\gamma(0) = 0 \rightarrow \exists n [R(\bar{\gamma}n)]] \land \forall \gamma [\gamma(0) = 1 \rightarrow \exists n [R(\bar{\gamma}n)]] \land \forall \gamma [\gamma(0) = 2 \rightarrow \exists n [R(\bar{\gamma}n)]] \land \dots$ and then do the same with each of the countably many propositions which we have before us, now, and continue this process, again and again. Sometimes, we will strike upon an elementary fact, i.e. a statement of the form: $\forall r[rea \rightarrow \exists n[R(\bar{r}n)]]$ which is obviously true, for the reason that 36[acb ~ R(b]] and which, therefore, needs no further breaking down. Brouwer says that this will happen quite often. He claims that, if $\forall \gamma \exists n [R(\overline{\gamma}n)]$, then the truth of $\forall \gamma \exists n [R(\overline{\gamma}n)]$ should admit of reconstruction, by a straightforward organization of elementary facts. The structure of this new proof is isomorphic to the stump σ , which Brouwer's thesis asserts to exist. This short sketch of the argument should suffice, as we, in any case, are not able to speak the last word upon it. We will not exploit the full strength of Brouwer's thesis. Let us introduce, for each $\alpha \in {}^{\omega}w$, a subset $|\alpha|^*$ of w by: $|\alpha|^* := \int \alpha | \forall \mathcal{G} [\alpha \subseteq \mathcal{G} \rightarrow \alpha(\mathcal{G}) \neq 0] \}$ We now present: Brouwer's Thesis, Special Version Let $\alpha \in \mathcal{W}_{W}$ and $\forall \gamma \exists n [\alpha(\overline{\gamma}n) = 0].$ Then: $\exists \sigma \in \{ |\alpha|^* \leq \sigma \}.$ (|a|* is a decidable subset of w, which consists of those finite sequences of natural numbers, that are unsecured with respect to ∞). Thus, Brouwer's thesis has an important thing to say about Π_1^1 .

13.1 Let P be a one-to-one function from wxw onto w, i.e. a pairing function on w. Let l and r be functions from w to w which are left-resp. right-inverse to P, i.e.: \forall m [P(l(m), r(m)) = m].

Using P, we introduce a new pairing function on w_w , and forget all earlier remarks on pairing functions:

Let us define, for all $\alpha \in \omega_{\omega}$, $\beta \in \omega_{\omega}$, a sequence $\langle \alpha, \beta \rangle$ in ω_{ω} by: For all $n \in \omega$: $\langle \alpha, \beta \rangle$ (n) := P(α (n), β (n)).

Obviously, $\leq \Rightarrow$ is a one-to-one function from $w_{w} \times w_{w}$ onto w_{w} , i.e. a pairing function on w_{w} . Its left- and right-inverses are called λ , resp. ρ so that $\forall \alpha [< \lambda | \alpha, \rho | \alpha \Rightarrow = \alpha]$.

Finally, we introduce a corresponding function from $\{\langle a, b \rangle | lg(a) = lg(b) \}$ to w, as follows:

Let $a \in w$, $b \in w$ and lg(a) = lg(b). We define $\langle a, b \rangle$ in w such that $lg(\langle a, b \rangle) = lg(a)$ and, for all $n < lg(a) : \langle a, b \rangle(n) := P(a(n), b(n))$

We observe, that for each $a \in w$, there exist exactly one $x \in w$ and exactly one yew such that $a = \langle x, y \rangle$ and call these numbers L(a), resp. R(a). Therefore: $\forall a [\langle L(a), R(a) \rangle = a]$.

Remark that. $\forall \alpha \forall \beta \forall n [\overline{\langle \alpha, \beta \rangle} n = \langle \overline{\alpha} n, \overline{\beta} n \rangle].$

13.2 We defined, in 8.1, a binary predicate \leq on \$ by transfinite induction, as follows:

(1) $\phi \leq \phi$ (11) For all $\sigma, \tau \in \$$: $\sigma \leq \tau := \forall m \exists n [\sigma^m \leq \tau^n].$

We also defined, for all decidable subsets A, B of w:

$$A \leq *B := \exists f [\forall n [lg(f(n)] = lg(n)] \land \forall m \forall n [m \leq n \rightarrow f(m) \leq f(n)] \land \forall n [n \in A \rightarrow f(n) \in B]]$$

And we established, in 8.2 that for all $\sigma, \tau \in \mathfrak{s}$: $\sigma \leq \tau \neq \sigma \leq^* \tau$.

This completes our equipment for the next step piling the wood which will be kindled by Brouwer's thesis.

13.2.0 Lemma (Boundedness lemma)

Let $\delta \in \mathcal{W}_{W}$ such that: Fun(δ) and: $\forall \alpha [A_{1}^{1}(\delta | \alpha)]$ Then $\exists \beta [A_{1}^{1}(\beta) \land \forall \alpha [|\delta | \alpha|^{*} \leq^{*} |\beta|^{*}]]$.

(The idea of this proof is quite simple: we know that $Va \forall \gamma \exists n [(\delta | \alpha)(\overline{\gamma} n)] = 0$, and, therefore have to do with a bar Proof: in $w \times w \omega$. B will be the product of translating this bar into a bar in www. 'A bar, of course, is nothing but a member of A1) We define a sequence B in www such that, for all a ew: if $\exists l \exists m[l \leq lg(a) \land m \leq lg(a) \land \delta^{\overline{R(a)}m}(\overline{L(a)}l) = 1 \land$ $\beta(a) := 0$ $\wedge \forall t [t < l \rightarrow \delta^{\overline{R(a)}} m (\overline{L(a)}t) = 0]$:=1 otherwise. Then, for all $\alpha \in \omega$: If $\beta(\alpha) = 0$, then $\exists m < lg(\alpha) \forall \alpha \in L(\alpha) [(\delta|\alpha) R(\overline{\alpha})m = 0]$ We claim that : A1(B). Suppose: Ye^ww We write: $f_0 := \lambda | \gamma$ and $f_1 := \rho | \gamma$, therefore: $\gamma = \langle \gamma_0, \gamma_1 \rangle$ Determine $m \in w$ such that $(\delta | \chi_0)(\overline{\chi_1} m) = 0$. Determine $\ell \in W$ such that $\delta^{\overline{\chi}_1 m}(\overline{\chi}_0 \ell) = 1 \wedge \forall t < \ell [\delta^{\overline{\chi}_1 m}(\overline{\chi}_0 t) = 0].$ Let $n := \max(m, \ell)$ and remark: $\beta(\overline{y}n) = \beta(\langle \overline{y}n, \overline{y}, n \rangle) = 0$ We understand, now: $\forall \gamma \exists n [\beta(\overline{\gamma}n) = O]$, i.e.: $A_{1}^{1}(\beta)$. In addition, we claim that $\forall \alpha \bar{\iota} |\delta| \alpha|^* \leq * |\beta|^*$]. Let ac www. Define a sequence γ in w such that, for all $C \in w$. $\chi(c) := \leq \overline{\alpha} lq(c), c >$ We observe, without difficulty, that $\forall c [lg(y(c)) = lg(c)]$ and: $\forall c \forall d [c \subseteq d \rightarrow \chi(c) \subseteq \chi(d)] \text{ and } \forall c [\forall t \leq lq(c) [(\delta|d) ct \neq 0] \rightarrow \forall t \leq lq(c) [\beta(\overline{\chi(c)}t) \neq 0]]$ i.e.: ∀c[c ∈ |δ|α|* → 1(c) ∈ |β|*]. Therefore: $|\delta|\alpha|^* \leq |\beta|^*$ We kept our word. (1) $\forall \sigma \in \ \forall \alpha [|\alpha|^* \subseteq \sigma \rightarrow A_1^1(\alpha)].$ 13.2.1 Lemma:

(11)
$$\forall \alpha \forall \beta [(A_1^1(\beta) \land |\alpha|^* \leq |\beta|^*) \rightarrow A_1^1(\alpha)].$$

158

- <u>Proof</u>: We prove only the second part, as the first part is easy. Suppose: $\alpha \in W$, $\beta \in W$, $A_{1}^{*}(\beta)$ and: $|\alpha|^{*} \leq |\beta|^{*}$ and determine $Z \in W$ such that: $\forall C[lg(Z(C)) = lg(C)]$ and: $\forall C \forall d[C \subseteq d \rightarrow Z(C) \subseteq Z(d)]$ and $\forall C [\forall t \leq lg(C)[\alpha(\overline{c}t) \neq 0] \rightarrow \forall t \leq lg(C)[\beta(\overline{Z(C)}t) \neq 0].$ Determine $\eta \in W$ such that: Fun(η) and: $\forall \gamma \forall n [(\eta|\gamma)n = Z(\overline{\gamma}n)].$ Let $\gamma \in W$ and determine $n_{0} \in W$ such that: $\beta((\eta|\gamma)n_{0}) = 0.$ Then: $\beta(Z(\overline{\gamma}n_{0})) = 0$, and, therefore: $\exists t < n_{0}[\alpha(\overline{\gamma}t) = 0].$ We see now, that: $\forall \gamma \exists t[\alpha(\overline{\gamma}t) = 0], i.e.: A_{1}^{1}(\alpha).$
- 13.2.2 <u>Theorem</u>: (Souslin-Browver) (cf. Note 6 on page 217) Let P be a subset of ^ww which is co-analytical and strictly analytical Then P is hyperarithmetical.
 - Proof: Determine $\delta \in {}^{\omega} \omega$ such that: Fun(δ) and: $\forall \alpha [P(\alpha) \not\supseteq A_{1}^{*}(\delta | \alpha)]$. Determine $Z \in {}^{\omega} \omega$ such that: Fun(Z) and P = Ra(Z), i.e.: $\forall \alpha [P(\alpha) \not\supseteq \exists \gamma [\alpha = Z | \gamma]]$. Remark that: $\forall \gamma [A_{1}^{*}(\delta | (Z | \gamma)]]$, and, applying the boundedness lemma (13.2.0), determine $\beta \in {}^{\omega} \omega$ such that $A_{1}^{*}(\beta)$ and: $\forall \gamma [|\delta|(Z | \gamma)|^{*} \leq {}^{*}|\beta|^{*}]$ Now, Brouwer's thesis (13.0) steps forward and finds us a $\sigma \in {}^{*}$ such that $\beta^{*} \leq \sigma$ We claim that: $\forall \alpha [P(\alpha) \not\supseteq |\delta|\alpha|^{*} \leq {}^{*}\sigma]$

First, suppose: $\alpha \in {}^{\omega}\omega$ and $P(\alpha)$ Determine $\gamma \in {}^{\omega}\omega$ such that $\alpha = Z_1\gamma$ and remark: $|\delta|\alpha|^* = |\delta|(Z_1\gamma)|^* \leq {}^*|\beta|^* \leq \sigma$ Therefore: $|\delta|\alpha|^* \leq {}^*\sigma$. Conversely, suppose: $\alpha \in {}^{\omega}\omega$ and $|\delta|\alpha|^* \leq {}^*\sigma$. Then, according to lemma 13.2.1: $A_1^4(\delta|\alpha)$, and, therefore, by choice of δ , $P(\alpha)$.

This establishes our claim.

We observed, at the end of chapter ϑ , that the set $K_{\sigma} := \{ \alpha \mid |\alpha| \le *\sigma \}$ is hyperarithmetical, and, as $P \le K_{\sigma}$, P is hyperarithmetical as well. It follows from the boundedness lemma (13.2.0), in the proof of which Brouwer's thesis did not yet figure, that A_1^4 , itself, is not strictly analytical.

Suppose: $\delta \in \mathcal{W}_{\mathcal{W}}$ and : Fun(δ) and : $\forall \alpha [A_{1}^{4}(\delta | \alpha)]$ Using 13.2.0, determine $\beta \in W_{w}$ such that $A_{1}^{1}(\beta)$ and $\forall \alpha [|\delta| \alpha|^{*} \leq \beta^{*}]$ Define a sequence $S\beta \in {}^{\omega}\omega$ such that: $S\beta(<>) = 1$ and $\forall n [(S\beta)^n = \beta]$ (Cf the definition of $S\sigma$, for $\sigma \in \$$, in 9.8) Then: $\forall \alpha [|S|\alpha|^* \leq * |(S_\beta)^\circ|^*]$ and: $A_1^1 (S_\beta)$ Therefore: $\forall \alpha [\delta | \alpha \neq SB]$. For, suppose $\alpha \in \mathcal{W}$ and $\zeta := \delta | \alpha = S \beta$ Then: $A_{1}^{1}(z)$ and: $|z|^{*} \leq^{*} |z^{\circ}|^{*}$. Let $r \in {}^{\omega}\omega$ be such that: $\forall c [lg(c) = lg(r(c))]$ and: $\forall c \forall d [c \subseteq d \rightarrow r(c) \leq r(d)]$ and: $\forall c [\forall t < lg(c)[r(\overline{c}t) \neq 0] \rightarrow \forall t < lg(c)[Z^{\circ}(\overline{r(c)}t) \neq 0]]$. Consider the following sequence: $d_0 := \langle \rangle, d_1 := \langle 0 \rangle, d_z := \langle 0 \rangle * \chi(d_1) \dots d_{s_n} := \langle 0 \rangle * \chi(d_n), \dots$ Remark that: $\forall n [lq(d_n) = n \land d_{s_n} \in d_n].$ Determine the unique $\eta \in w$ such that $\forall n [\eta \in d_n]$. Also observe, using induction, that $\forall n \forall t \le n [Z(\overline{d_n}t) \ne 0]$. Therefore: $\neg \exists n [Z(\bar{\eta}n) = 0]$ and this contradicts: $A_1^1(Z)$ Therefore: δla + Sβ. Slightly adapting this proof, we may use it to find, effectively, mew, such that: $(\delta|\alpha)(m) \neq S_{\beta}(m)$. Let η be defined as above, and determine pew such that $S\beta(\tilde{\eta}p)=0$. Then $\exists t < p[(\delta|\alpha)(\tilde{\eta}t) \neq S\beta(\tilde{\eta}t)]$. In any case: A1(SB) and: Va[Sla +SB]. We have seen, now: $\forall \delta [(Funl\delta) \land \forall \alpha [A_1(\delta | \alpha)]) \rightarrow \exists \beta [A_1(\beta) \land \forall \alpha [\delta | \alpha \neq \beta]]$ Therefore: At is not strictly analytical.

To appease our surprise, our thoughts go back to the short discussion following upon theorem 10.12, where we saw that Fun is not strictly analytical.

The two arguments are worth of comparison, leading to similar conclusions along, at least at first sight, rather different ways.

13.3 Let $\sigma \in $$.

A well-ordered stump, like o, may be used as a skeleton for mathematical proofs.

We may verify, by transfinite induction, the following

Principle of stump induction.

Let σ∈\$ Let Q⊆w and suppose: (1) ∀a[a∉σ → Q(a)] (11) ∀a[∀n[Q(a*<n>)] → Q(a)]. Then: ∀a[Q(a)] and, especially, Q(<>).

Combining this principle with Brouwer's thesis (13.0), we are led to a Principle of bar induction.

> Let $\beta \in {}^{w}w$ be such that: $\forall \gamma \exists n [\beta(\overline{\gamma}n) = 0]$. Let $Q \subseteq w$ and suppose: (1) $\forall a [\exists b [a \subseteq b \land \beta(b) = 0] \rightarrow Q(a)]$ (11) $\forall a [\forall n [Q(a * < n>)] \rightarrow Q(a)]$. Then: $\forall a [Q(a)]$ and, especially, Q(<>).

13.4 As is well-known, intuitionists like to consider, besides the negatively defined inequality relation, a constructive <u>apartness</u> relation on ^ww, which is denoted by # and defined by:

For all $\alpha \in \mathcal{W}_{\mathcal{W}}$, $\beta \in \mathcal{W}_{\mathcal{W}}$: $\alpha \# \beta := \exists n [\alpha(n) \neq \beta(n)].$

We are not going to recite the litary of good properties of # and only mention that: $\forall \alpha \forall \beta \forall \gamma [\alpha \# \beta \rightarrow (\alpha \# \gamma \vee \gamma \# \beta)].$

Let P and Q be subsets of ${}^{\omega}\omega$. We say that P is <u>separate</u> from Q, and write: Sep(P,Q) if: $\forall \alpha \forall \beta [(P(\alpha) \land Q(\beta)) \rightarrow \alpha \# \beta].$

Let P,Q,S and T be subsets of wwWe say that the pair <S,T> separates the pair <P,Q> if: $P \subseteq S \land Q \subseteq T$ and Sep(S,T).

Let P and Q be subsets of w_{ω} We say that the pair < P,Q > is <u>hyperarithmetically separable</u> (or: Borel-separable) if there exists a pair < S,T > of hyperarithmetical sets, which separates the pair < P,Q > . We are going to prove that any pair of separate, strictly analytical sets is hyperarithmetically separable, and have to make some preparations.

- 13.4.0. Lemma: Let $A_0, A_1, A_2, ...$ and $B_0, B_1, B_2, ...$ be two sequences of subsets of wwsuch that: $\forall m \forall n [< A_m, B_n > is hyperarithmetically separable]$ Then: $\langle \bigcup A_n, \bigcup B_n > is hyperarithmetically separable.$
 - <u>Proof</u>: Using countable choice, determine for each mew, new hyperarithmetical sets $E_{m,n}$ and $F_{m,n}$ such that:

 $A_m \subseteq E_{m,n} \wedge B_n \subseteq F_{m,n}$ and $Sep(E_{m,n}, F_{m,n})$ Consider the sets $E := \bigcup_{n \in \omega} \bigcap_{m \in \omega} E_{n,m}$ and $F := \bigcup_{n \in \omega} \bigcap_{m \in \omega} F_{m,n}$ and remark that both E and F are hyperarithmetical and that $\bigcup_{n \in \omega} A_n \subseteq E$ and $\bigcup_{n \in \omega} B_n \subseteq F$. Finally, we show that: Sep(E,F)

> Suppose: $\alpha \in {}^{w}\omega$ and $E(\alpha)$, and: $\beta \in {}^{w}\omega$ and $F(\beta)$ Determine $n_{o} \in \omega$ such that: $\alpha \in \bigcap_{m \in \omega} E_{n_{o},m}$ Determine $n_{1} \in \omega$ such that: $\beta \in \bigcap_{m \in \omega} F_{m,n_{1}}$ Remark: $\alpha \in E_{n_{o},n_{1}}$ and $\beta \in F_{n_{o},n_{1}}$ and $Sep(E_{n_{o},n_{1}},F_{n_{o},n_{1}})$ Therefore: $\alpha \# \beta$ We see, now, that: $\forall \alpha \forall \beta \Gamma(E(\alpha) \land F(\beta)) \Rightarrow \alpha \# \beta$], i.e.: Sep(E,F).

Therefore:
$$\bigcup_{n \in W} A_n \subseteq E$$
 and: $\bigcup_{n \in W} B_n \subseteq F$ and: Sep (E, F), i.e.:
the pair: $\langle \bigcup_{n \in W} A_n, \bigcup_{n \in W} B_n \rangle$ is hyperarithmetically separable.

We introduce another notational convention. Let $\delta \in {}^{\omega}\omega$ be such that: Fun (δ) , and let $a \in \omega$ Then: $\delta^{cc}a := \{\beta \mid \exists \alpha \in a [\delta \mid \alpha \in \beta]\}$ $\delta^{cc}a$ is the image of the set $a := \{\alpha \mid \alpha \in a\} = \{\alpha \mid \alpha \mid \beta \mid \alpha \in a\}$ under the function δ . Remark that $Ra(\delta) = \delta^{cc} < > (Cf. 3.1)$.

- 13.4.1 Theorem: (Separation theorem of Lusin-Brouwer). (cf. Note 6 on page 217). Let <P,Q> be a pair of separate, strictly analytical subsets of ω_{ω} Then: <P,Q> is hyperarithmetically separable.
 - <u>Proof</u>: Determine $\delta \in Ww$ such that: Fun(δ) and: $\forall \alpha [P(\alpha) \rightleftharpoons \exists y [\alpha = \delta | y]]$ Determine $\zeta \in Ww$ such that: Fun(ζ) and: $\forall \alpha [Q(\alpha) \geqq \exists y [\alpha = \zeta | y]]$ We then know: $\forall \alpha \forall \beta [\delta | \alpha \# \zeta | \beta]$ and, therefore:

 $\forall r \exists n [(\delta[(x|x)](n) + (Z](p|x))(n)]$

(Here, λ and ρ are the inverse functions of the pairing function $\ll \gg$, as they were defined in 13.1).

Thus, we are offered a bar in w_w , and we will reach our goal by an application of the principle of bar induction (cf. 13.3).

First, define a sequence
$$\beta$$
 in ww such that, for all $a \in w$:

(Here, L(a) and R(a) are finite sequences of the same length as the finite sequence a, which result from cutting a into two, as in 13.1).

Remark that, for all $a \in w$, if $\beta(a) = 0$, then,

 $3b 3c [b \neq c \land lq(b) = lq(c) \leq lq(a) \land$ $\land \forall \alpha \in L(a) [\delta | \alpha \in b] \land \forall \beta \in R(a) [\zeta | \beta \in c]].$

Remark also that: $\forall \gamma \exists n [\beta(\bar{\gamma}n) = 0]$

Let $r \in W$ and determine $n_o \in W$ such that: $(\delta | (\lambda | y) | (n_o) \neq | Z | (p | y|) | (n_o)$. Determine $p_o \in W$ such that $\forall m \leq n_o \exists t < p_o [\delta^m ((\overline{\lambda | y}) t) \neq 0]$. Determine $q_o \in W$ such that $\forall m \leq n_o \exists t < q_o [Z^m ((\overline{p | y}) t) \neq 0]$. Let $n := \max(n_o, p_o, q_o)$ and observe: $\beta(\overline{p}n) = 0$. This justifies the remark. Next, we define a subset Q of w by: For all acw:

 $Q(a) := < \delta^{(1)} Z^{(1)} > is hyperarithmetically separable.$

We claim that: $\forall a [\beta(a) = 0 \rightarrow Q(a)]$

Suppose: $a \in w$ and $\beta(a) = 0$ Determine $b \in w$, $c \in w$ such that: $lg(b) = lg(c) \leq lg(a)$ and: $b \neq c$ and: $\forall x \in L(a) [\delta | x \in b]$ and: $\forall \beta \in R(a) [\zeta | \beta \in c]$ $< b, c > is, obviously, a pair of hyperarithmetical subsets of <math>w_{w_i}$ which separates $< \delta^{cc}L(a), \zeta^{cc}R(a) >$

It is easily seen, now, that: $\forall a [\exists b [a \leq b \land \beta(b) \neq 0] \rightarrow Q(a)]$ We also claim that: $\forall a [\forall n [Q(a \neq \langle n \rangle)] \rightarrow Q(a)]$.

The principle of bar induction (13.3) now tells us: Q(<7), i.e.: the pair $< \delta^{(c)}L(<7), Z^{(c)}R(<7) > = < \delta^{(c)}<7, Z^{(c)} > = < Ra(\delta), Ra(Z) > = < P, Q >$ is hyperarithmetically separable. And this is the conclusion we sought for.

In the classical theory, this grand separation theorem is foreshadowed in more modest statements, for which, however, there is no obvious constructive equivalent.

For example, it is not true that any pair of separate members of Σ_1° is separable by a pair of decidable subsets of w_{ω} .

Let $y \in w$ and k = un[y(n) = 0] be the volatile number of y (cf. 11.10) Let $P := \{\alpha \mid (\alpha(0) = 0 \land \exists n[n=k \land 2[n]) \lor (\alpha(0) \neq 0 \land \exists n[n=k \land \neg(2[n)])\}$ Let $Q := \{\alpha \mid (\alpha(0) = 0 \land \exists n[n=k \land \neg(2[n)]) \lor (\alpha(0) \neq 0 \land \exists n[n=k \land 2[n])\}$ Remark that P and Q belong to Σ_1° and that:

 $\forall \alpha \forall \beta [(P(\alpha) \land Q(\beta)) \rightarrow \alpha(0) \neq \beta(0)], i.e. P is separate from Q$ Suppose, now, that <S,T> is a pair of separate, decidable subsets of w_w and that PSS and QST. Consider the question whether res. If $r \in S$, then $\forall n [n = k \rightarrow 2|n]$ If $y \notin S$, then $\forall n [n = k \rightarrow \neg (2|n)]$. Both answers are reckless, and a general method to answer this question, for each $y \in w_w$, does not exist. In 6.15, we have seen other symptoms, that, at the lowest level of the arithmetical hierarchy, disappointment may be waiting for us. Another feature of the classical theory is that, there in, theorem 13.2.2 (Souslin - Brouwer) may be derived from the separation theorem 13.4.1 (Lusin - Brouwer). We can not go this way, for two reasons we do not identify analytical and strictly analytical sets and we distinguish between co-analytical sets and sets whose complement is analytical. One succulent fruit, however, is still hanging there, and does not seem to be affected by the sickness of unconstructivity. Let us try and eat it. 13.5.0 Lemma: Let A, A, A, A, ... be a sequence of subsets of ^ww such that $\forall m \forall n [m \neq n \rightarrow \langle A_m, A_n \rangle$ is hyperarithmetically separable]. Then there exists a sequence Bo, B1, B2,... of hyperarithmetical subsets of ^ww such that: (1) $\forall n [A_n \subseteq B_n]$ (11) $\forall m \forall n [m \neq n \rightarrow B_m \text{ is separate from } B_n].$ Proof: Using countable choice, determine, for each mew, new such that m # n, hyperarithmetical sets Em,n and Fm,n such that: $A_m \subseteq E_{m,n} \land A_n \subseteq F_{m,n}$ and $Sep(E_{m,n}, F_{m,n})$ Define, for each new, a subset B_n of ^ww by: $B_n := \bigcap_{m \neq n} E_{n,m} \cap \bigcap_{m \neq n} F_{m,n}$ It is easily verified that the sequence B_0, B_1, B_2, \dots fulfils our promises. \boxtimes

165

Let $\delta \in \mathbb{V}_{w}$ be such that: Fun (δ) We say that δ is <u>strongly injective</u> if: $\forall \alpha \forall \beta [\alpha \# \beta \rightarrow \delta | \alpha \# \delta | \beta]$

- 13.5.1 Theorem: Let $\delta \in {}^{\omega}\omega$ be such that: Fun(δ) and δ is strongly injective. Then: Ra(δ) is a hyperarithmetical subset of ${}^{\omega}\omega$.
 - <u>Proof</u>: Let new and consider $S_n := \{a \mid lg(a) = n\}$. Remark that: $\forall a \in S_n \forall b \in S_n [a \neq b \rightarrow Sep(\delta^{<<}a, \delta^{<<}b)]$.

Therefore, according to theorem 13.4.1

 $\forall a \in S_n \forall b \in S_n [a \neq b \rightarrow \langle \delta^{<}a, \delta^{<}b \rangle$ is hyperarithmetically separable]. And, according to lemma 13.5.0, we may define a system $(B_a)_{a \in S_n}$ of hyperarithmetical subsets of ${}^{\omega}\omega$ such that

 $\forall a \in S_n \ [\ \delta^{cc}a \subseteq B_a \]$ and $\forall a \in S_n \forall b \in S_n \ [a \neq b \rightarrow Sep(B_a, B_b)]$. Doing this for each $n \in w$, we assign, to each $a \in w$, a hyperarithmetical set B_a .

Next, we define, for each $a \in w$, a hyperarithmetical set C_a by: $C_a := \bigcap_{a \in B} B_b = B_c$, $\cap B_{\overline{a}1} \cap B_{\overline{a}2} \cap \dots \cap B_a$.

We observe that: $\forall \alpha \forall b [\neg (\alpha \leq b \lor b \leq \alpha) \neq C_{\alpha} \cap C_{\beta} = \phi].$ We claim that: $\forall \alpha [\forall n \exists a \in S_n[C_a(\alpha)] \rightarrow \exists \gamma \forall n [C_{\overline{\chi}n}(\alpha)]]$

> Suppose: $\alpha \in {}^{W}w$ and: $\forall n \exists a \in S_n[C_a(\alpha)]$. Using AC_{00} , we determine a sequence a_0, a_1, a_2, \dots of natural numbers such that: $\forall n [lg(a_n) = n \land C_{a_n}(\alpha)]$ Remark that: $\forall n \forall m [\alpha \in C_{a_n} \land C_{a_m} \neq \phi]$ and, therefore: there exists exactly one $f \in {}^{W}w$ such that $\forall n [f \in a_n]$ and: $\forall n [f n = a_n]$. Thus, our claim is established.

Finally, we observe that: $\forall \gamma \forall \alpha [\forall n [C_{\overline{\gamma}n}(\alpha)] \rightarrow \alpha = \delta [\gamma].$ Therefore, for all $\alpha \in {}^{\omega}\omega$:

$$\alpha \in Ra(\delta) \notin \exists \gamma [\alpha = \delta | \gamma]$$

 $\not \supseteq \forall n \exists a \in S_n [C_a(\alpha)].$
And: $Ra(\delta) = \bigcap_{n \in \omega} \bigcup_{a \in S_n} C_a$ is hyperarithmetical indeed.

The classical converse of 13.5.1, does not survive constructive criticism.

14 THE COLLAPSE OF THE PROJECTIVE HIERARCHY

Classically, A1 and E1, the sets we studied in chapter 10, walk at the head of a long procession of subsets of www. A1, E1, A1, E1, A1, E1, A3, E1, ... The members of this procession are defined rather straightforwardly, by repeated use of the operations of existential and universal projection with respect to www. In perfect analogy to the arithmetical hierarchy, one finds that: $\forall n > 0 [A_n^1 \prec E_{sn}^1 \land E_n^1 \prec A_{sn}^1].$ Intuitionistically, however, the axiom AC_{11} disturbs this dream, making, as we will see in this chapter, that $A_2^1 \leq E_2^1$ and $A_3^1 \leq E_2^1$. This is a serious application of AC11. (Many other applications in this treatise could have been avoided by a change in the definition of the reducibility relation (cf. 2.3), but not this one). Thus, the projective hierarchy breaks off at E1. This Only happens by our refusal to recognize complementation as a blameless method of building new subsets of ^ww. Complementation immediately enables one to make subsets of w_w which are not reducible to E_{2}^{1} , by diagonalizing. At the end of the chapter we again have to face some nasty questions, which resisted our attempts to answer them, such as, whether $E_2^1 \leq A_2^1$. 14.0 We want to use, in this chapter, the pairing functions on w and wwwhich have been introduced in 13.1. \ll > is a pairing function on ^ww such that, for all $\propto \in {}^{\omega}w$, $\beta \in {}^{\omega}w$, $n \in w$, the value of the sequence $\langle \alpha, \beta \rangle$ at n is produced by glueing together $\alpha(n)$ and $\beta(n)$. The left-and right-inverses of this pairing function are called 2 and p. \ll \gg also denotes a function which pairs finite sequences of equal length into a finite sequence of the same length, employing the same method that his namesake uses in pairing infinite sequences. Remark that the domain of this function is not the whole of wxw, but only $\int \langle a, b \rangle | \langle a, b \rangle \in {}^{\omega}\omega | lg(a) = lg(b) \}$ Its left and right-inverses are total functions, and are called L and R. The pairing function \ll > on ^{w}w is different from the one we introduced in chapter 6, just before definition 6.4, where we learned what it means, if R is a class of subsets of w_w , and P belongs to R, that P is a universal element of R. This notion depends on the pairing function that we use, but in a rather innocent way:

Let us assume that the class K is closed under reducibility: i.e.: for all subsets P and Q of ${}^{\omega}\omega$: if $P \in \mathbb{R}$, and $Q \leq P$, then $Q \in \mathbb{R}$. In general, this is a difficult notion, because of the huge quantifier: , for all subsets P and Q of "w" In practice, however, this quantifier may be tamed often (cf. similar remarks in 6.1, 6.6, 8.4, 10.0) and we observe, easily, that all classes of the hyperarithmetical hierarchy, and also Σ_1^4 and Π_1^4 , fulfil the condition. Suppose, now, that UER and U is a universal element of R with respect to the pairing function < >. Define $U^* := \{ \alpha \mid U(\langle \lambda \mid \alpha, \rho \mid \alpha \rangle) \}$ and observe: U^* is a universal element of DR with respect to the pairing function < >. Conversely, suppose that U e Hs and U is a universal element of K with respect to the pairing function < >. Define $U^{\circ} = \{ \alpha \mid U \mid \langle \langle \alpha \rangle, \alpha^{1} \rangle \}$ and observe: U° is a universal element of 14 with respect to the pairing function <>. We may be convinced, now, that the new pairing function is, to all purposes, quite as good as the old one, and we will see that it is technically superior. We remind the reader of 10.9 where we defined a subset E_1^1 of w_w by $E_1^{\prime} := \{ \alpha \mid \exists \gamma \forall n [\alpha(\overline{\gamma}n) = 0] \}$, and introduced the class Σ_1^{\prime} of all subsets of www that are reducible to E1. We also introduced, in the discussion following upon theorem 10.13, for each subset P of ww, a subset E(P) of ww by: $\mathbb{E}(\mathsf{P}) := \{ \alpha \mid \exists \gamma [\mathsf{P}(\langle \alpha, \gamma \rangle)] \}.$ We now consider: $\mathbb{E}^*(P) := \int \alpha |\exists \gamma [P(\langle \alpha, \gamma \rangle)]$ and prove: 14.1 Theorem: Let P be a subset of "w such that $P \in \Sigma_{4}^{*}$ Then: $\mathbf{E}^*(\mathbf{P}) \in \Sigma^1$ Proof: Using theorem 10.1, determine a decidable subset A of w such that. Va[P(a) Z ∃BVn[<ān,Bn>∈A]]. Remark that: ∀a[E*(P)(a) ≥ ∃y∃B ∀n[< <a,y>n, Bn> ∈ A]] Define a subset A* of w by: For all new: $n \in A^* \neq \exists a \exists b [n = \langle a, b \rangle \land lg(a) = lg(b) \land \langle \langle a, L(b) \rangle, R(b) \rangle \in A].$ Observe that A* is a decidable subset of w, and that: $\forall \beta \forall \alpha [\forall n [< \alpha n, \beta n > e A^*] \supseteq \forall n [< \leq \alpha, \lambda | \beta > n, (\rho | \beta) n > e A]]$ We claim that ∀a [E*(P)(a) Z ∃B ∀n [<ān, Bn>EA*]]

Suppose: αε^ωω and E^{*}(P)(α). Determine γε^ωω, ζε^ωω such that: ∀n[<α, βn>εA]. Define β:= < f, ζ> and remark: ∀n[<ān, βn>εA*]. Now, suppose: αε^ωω and βε^ωω and: ∀n[<ān, βn>εA*]. Define: γ:= λ|β and ζ:= p|β and remark: ∀n[<<āu, f>n, žn>εA]. Therefore: E*(P)(α). Using theorem 10.1 again, we conclude: PεΣ₁¹.

It follows from theorem 14.1 that, for each subset P of $^{\omega}\omega$: if $P\in\Sigma^{1}_{1}$, then $\mathbb{E}(P)\in\Sigma^{1}_{1}$ (It suffices to call up $P^{*}:=\int \alpha | P(<\lambda |\alpha, p|\alpha>) f$).

The operation E did not come alone. We introduced, in the discussion following upon theorem 10.13, for each subset P of ${}^{w}w$, a subset UI(P) of ${}^{w}w$:

$$\mathbf{U}(\mathbf{P}) := \{ \alpha \mid \forall \mathbf{y} [\mathbf{P}(\langle \alpha, \mathbf{y} \rangle)] \}$$

We now prefer to consider $UI^{*}(P) := \{ \alpha \mid \forall \gamma [P(\langle \alpha, \gamma \rangle)] \}$.

We define a subset A_2^1 of w w by: $A_2^1 := \{ \alpha \mid \forall j \exists \beta \forall n [\alpha(\langle \beta, j \rangle n) = 0] \}$

Remark that we did not define: $A_2^1 := \bigcup_{i=1}^{\infty} (E_1^i)$, because we did not think this definition to be the most convenient one.

We define a class Π_2^t of subsets of ${}^w w$ by: For every subset P of ${}^w w$: Pe $\Pi_2^t \not\supseteq P \preceq A_2^t$

Like \mathbb{Z}_{4}^{1} , Π_{2}^{1} has many nice properties. We introduce a notational convention which is to help us in proving this:

Let $Se^{w}w$ and aewWe write S|a for the unique pew such that:

$$\begin{split} & lg(p) \leq lg(a) \land \forall t < lg(p) \exists n < lg(a) [\delta^{t}(\bar{a}n) = p(t) + 1 \land \forall m < n [\delta^{t}(\bar{a}m) = 0]] \\ & \land (lg(p) < lg(a) \longrightarrow \forall n < lg(a) [\delta^{lg(p)+1}(\bar{a}n) = 0]) \end{split}$$

Remark that, if $Fun(\delta)$, then $\forall a \forall \alpha [\alpha \in a \rightarrow \delta | \alpha \in \delta | a]$ and: $\forall \alpha \forall m \exists n [lq(\delta | \overline{\alpha} n) \gg m]$

^{14.2} Theorem: Let
$$P \subseteq W$$

 $P \in \Pi_{2}^{l}$ if and only if there exists a decidable subset A of w
such that: $\forall \alpha [P(\alpha) \neq \forall \gamma \exists \beta \forall n [< \delta n, \beta n, \beta n, \gamma \in A]]$
Proof: (1) Suppose: $P \in \Pi_{2}^{l}$ and, using AC_{11} , determine $\delta \in W$ such that: Fun(δ)
and: $\forall \alpha [P(\alpha) \neq A_{2}^{l}(\delta | \alpha]]$, i.e.: $\forall \alpha [P(\alpha) \neq \forall \gamma \exists \beta \forall n [(\delta | \alpha] (\langle \overline{\beta} p, \gamma \neq n] = \sigma]]$
Define a decidable subset A of w by:
For all new:
 $n \in A \neq \exists \alpha \exists A \exists A \exists C [lg(\alpha) = lg(b) = lg(c) \land n = \langle \alpha, \beta, c > \land$
 $\forall t < lg(\alpha) [\langle \overline{\delta c}, c > t < lg(\delta | \alpha] \rightarrow (\delta | \alpha \backslash \langle \overline{\delta c}, c > t > c \\ \forall t < lg(\alpha) [\langle \overline{\delta c}, c > t < lg(\delta | \alpha] \rightarrow (\delta | \alpha \backslash \langle \overline{\delta c}, c > t > c \\ \forall t < lg(\alpha) [\langle \overline{\delta c}, c > t < lg(\delta | \alpha] \rightarrow (\delta | \alpha \backslash \langle \overline{\delta c}, c > t > c \\ \exists \alpha, \beta n, \beta n, \gamma n > e A]]$
Remark that: $\forall \alpha \forall \beta \forall \gamma [\forall n [l\delta(\alpha) \langle \overline{\delta p, \gamma > n} \rangle = \sigma] \neq \forall n [\langle \overline{\alpha} n, \beta n, \gamma n > e A]]$.
(i) Let A be a decidable subset of w such that:
 $\forall \alpha [P(\alpha) \neq \forall \gamma \exists \beta \forall n [\langle \overline{\alpha} n, \beta n, \gamma n > e A]].$
(i) Let A be a decidable subset of w such that:
 $\forall \alpha [P(\alpha) \neq \forall \gamma \exists \beta \forall n [\langle \overline{\alpha} n, \beta n, \gamma n > e A]].$
Determine $\delta \in W$ such that $Fun(\delta)$ and:
For all $\alpha \in W$ and $b \in W$, $c \in w$ such that: $lg(b) = lg(c)$
 $(\delta | \alpha \rangle (\langle \beta, c \rangle) = O \neq \forall \neg \exists lg(b), b, c > e A.$
Remark that: $\forall \alpha \forall \beta \forall \gamma [\forall n [\langle \overline{\alpha} n, \beta n, \gamma n > e A]] \notin \forall n [\langle \delta | \alpha | \langle \overline{\beta}, \gamma > n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha) \notin \forall \gamma \exists \beta \forall n [(\delta | \alpha | \langle \overline{\beta}, \gamma > n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha) \notin \forall \gamma \exists \beta \forall n [(\delta | \alpha | \langle \overline{\beta}, \gamma > n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha) \notin \forall \gamma \exists \beta \forall n [(\delta | \alpha | \langle \overline{\beta}, \gamma > n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \notin A_{2}^{l} A_{2}^{l} (\delta | \alpha | \langle \overline{\beta}, \gamma > n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \notin A_{2}^{l} A_{2}^{l} (\delta | \alpha | \beta \wedge n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \notin A_{2}^{l} A_{2}^{l} (\delta | \alpha | \beta \wedge n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \notin A_{2}^{l} A_{2}^{l} (\delta | \alpha | \beta \wedge n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \notin A_{2}^{l} A_{2}^{l} (\delta | \alpha | \beta \wedge n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \emptyset \land A_{2}^{l} A_{2}^{l} (\delta | \alpha | \beta \wedge n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \emptyset \land A_{2}^{l} (\delta | \alpha | \beta \wedge n \rangle = \sigma]],$
i.e.: $\forall \alpha [P(\alpha | \emptyset \land$

 $- (y(u) = kg(b) \land < L(a), b, R(a) > \in A).$ Define $Q := \{ \alpha \mid \exists \beta \forall n [< \alpha n, \beta n > \in A^*] \}$, and, using theorem 10.1, remark that: $Q \in \mathbb{Z}_{1}^{4}$.

170
Also observe that, for all $\alpha \in {}^{\omega}\omega$, $r \in {}^{\omega}\omega$.

$$Q(\leq \alpha, \gamma \Rightarrow) \rightleftharpoons \exists \beta \forall n [< \leq \alpha, \gamma > n, \beta n > \in A^*]$$

$$\rightleftharpoons \exists \beta \forall n [< \delta n, \beta n, \gamma n > \in A].$$

Therefore, for all $\alpha \in \omega_{\omega}$.

$$\forall \gamma [Q(\langle \alpha, \gamma \rangle)] \not\supseteq \forall \gamma \exists \beta \forall n [\langle \overline{\alpha}n, \overline{\beta}n, \overline{\gamma}n \rangle \in A]$$

 $\not\supseteq P(\alpha).$

i.e.: P = U (Q).

(11) Conversely, suppose: $Q \in \Sigma_1^1$, and, using theorem 10.1, determine a decidable subset A of w such that $\forall \alpha [Q(\alpha) \not\equiv \exists \beta \forall n [< \overline{\alpha}n, \overline{\beta}n > \in A]]$ Then: $\forall \alpha [U]^*(Q)(\alpha) \not\equiv \forall \gamma \exists \beta \forall n [< \overline{\langle \alpha, \gamma \rangle}n, \overline{\beta}n > \in A]]$ Determine a decidable subset A^* of w such that: For all $a \in w$, $b \in w$ $c \in w$:

$$\langle a, b, c \rangle \in A^*$$
 \neq $(lg(a) = lg(b) = lg(c) \land \langle \langle a, c \rangle, b \rangle \in A)$

Remark that: $\forall \alpha [U]^*(Q)(\alpha) \rightleftharpoons \forall \gamma \exists \beta \forall n [< \bar{\alpha}n, \bar{\beta}n, \bar{\gamma}n > \in A^*]].$ and therefore, according to theorem 14.2: $P = U]^*(Q) \in \Pi_2^{\prime}.$

14.4 Theorem: Π_2^1 contains a universal element.

Proof: Define the subset U of ^ww by: For all αε^ww: U(α) Z ∀Y∃β∀n [(p|α)(<(λ|α)n, βn, γn>)=0]] and note that U belongs to Π'z. Let P⊆^ww and P∈ Π'z. Following theorem 14.2, determine a decidable subset A of w such that: ∀α[P(α) Z ∀Y∃β∀n [<ān, βn, γn> ∈ A]]. Determine Se^ww such that: ∀n [S(n)=0 Z n∈ A]. Then: ∀α[P(α) Z ∀Y∃β∀n[S(<ān, βn, γn>)=0]], i.e.: ∀α[P(α) Z U(≤α, δ>)].

A very minor change in this argument would have given a universal element with respect to any other pairing function.

Like Σ_1^1 , Π_2^1 is one of a pair of twins. The time has come, now, to consider its brother Σ_2^1 . Our speculations on Π_2^1 will be mirrored. We remind the reader of 10.9, where we defined a subset A_1^1 of w_w by: $A_1^1 := \{ \alpha \mid \forall r \exists n [\alpha(\bar{r}n) = O] \}$, and introduced the class Π_1^1 of all subsets of w_w that are reducible to A_1^1 .

14.5 Theorem: Let P be a subset of Ww such that $P \in \Pi_1^1$. Then: $UI^*(P) \in \Pi_1^1$.

<u>Proof</u>: Using theorem 10.10, determine a decidable subset A of w such that: ∀α[P(α) ≥ ∀β∃n[<ān, βn>∈ A]]. Remark that: ∀α[UI*(P)(α) ≥ ∀y∀β∃n[<≤ā, y>n, βn> ∈ A]]. Define a subset A* of w by: For all n ∈ w: n∈ A* ≥ ∃a∃b[n=<a, b> ∧ lg(a)=lg(b) ∧ < <a, L(b) >, R(b) > ∈ A] Observe that A* is a decidable subset of w and that: ∀β∀α[∃n[<ān, βn> ∈ A* ≥ ∃n[< āx, λ1p>n, (p1p1n > ∈ A]] We claim that: ∀α[UI*(P)(α) ≥ ∀β∃n[<ān, βn> ∈ A*]]. Suppose: α∈^ww and UI*(P)(α). Let β∈^ww and determine n∈w such that: <₹ā, λ1p>n, (p1p) n > ∈ A, and, therefore: <ān, βn> ∈ A*. We see, now, that: ∀β∃n[<ān, βn> ∈ A*]. Now, suppose: α∈^ww and: ∀β∃n[<ān, βn> ∈ A*].

> Let $f \in W$ and $Z \in W$ and determine $n \in W$ such that: $\langle \overline{\alpha}n, \overline{\langle \gamma, \overline{\zeta} \rangle}n \rangle \in A^*$, and, therefore: $\langle \overline{\langle \alpha, \gamma \rangle}n, \overline{\zeta}n \rangle \in A$. We see, now, that: $\forall \gamma \forall \overline{\zeta} \exists n [\langle \overline{\langle \alpha, \gamma \rangle}n, \overline{\zeta}n \rangle \in A]$, i.e.: $U = \{P\}(\alpha)$.

Ø

We define a subset
$$E_{2}^{1}$$
 of $^{\omega}\omega$ by:
 $E_{2}^{1} := \{\alpha \mid \exists \gamma \forall \beta \exists n [\alpha(\langle \beta, \gamma \rangle n) = 0]\}$

This definition parallels exactly the definition of A_2^1 .

We define a class Σ_2^1 of subsets of w_w by:

For every subset P of w_{ω} : $P \in \Sigma_2^1 \neq P \preceq E_2^1$

When it comes to pleasant properties, Σ_2^1 does not yield to Π_2^1 :

14.6 <u>Theorem</u>: Let P≤^ww.
 P∈ Σ'₂ if and only if there exists a decidable subset A of w such that ∀α[P(α) Z ∃γ∀β∃n[<ān, p̄n, ŗ̄n>∈A]].
 <u>Proof</u>: (1) Suppose: P∈ Σ'₂ and, using AC₁₁, determine δ∈^ww such that: Fun(δ). and: ∀α[P(α) Z E'₂(δ|α)], i.e.: ∀α[P(α) Z ∃γ∀β∃n[(δ|α)(< p̄, γ>n)=0]]

Define a decidable subset A of w by:

for all new:

$$n \in A \rightleftharpoons \exists a \exists b \exists c [lg(a) = lg(b) = lg(c) \land n = \langle a, b, c \rangle \land$$
$$\exists t < lg(a) [\langle b, c \rangle t < lg(\delta|a) \land (\delta|a) (\langle b, c \rangle t) = 0].$$

(The notation , S|a'' has been introduced just before theorem 14.2). Remark that: $\forall \alpha \forall \beta \forall \gamma [\exists n [(\delta|\alpha)(\langle \beta, \gamma \rangle n) = 0] \neq \exists n [\langle an, \beta n, \gamma n \rangle \in A]]$ Therefore: $\forall \alpha [P(\alpha) \rightleftharpoons \exists \gamma \forall \beta \exists n [\langle an, \beta n, \gamma n \rangle \in A].$

(11) Let A be a decidable subset of w such that:

$$\forall \alpha [P(\alpha) \neq \exists \gamma \forall \beta \exists n [< \alpha n, \beta n, \overline{r}n > e A]]$$

Determine $\delta \in W$ such that Fun(δ) and:

For all $\alpha \in \mathcal{W}$ and $\beta \in \mathcal{W}$, $c \in \mathcal{W}$ such that lg(b) = lg(c) $(\delta|\alpha)(\langle b, c \rangle) = 0 \rightleftharpoons \langle \overline{\alpha} lg(b), b, c \rangle \in A$.

Remark that: $\forall \alpha \forall \beta \forall \gamma [\exists n [\langle \bar{\alpha}n, \bar{\beta}n, \bar{\gamma}n \rangle \in A] \not\supseteq \exists n [\langle \delta | \alpha \rangle \langle \langle \bar{\beta}, \bar{\gamma} \rangle n \rangle = 0]]$ Therefore: $\forall \alpha [P(\alpha) \not\supseteq \exists \gamma \forall \beta \forall n [\langle \delta | \alpha \rangle \langle \langle \bar{\beta}, \bar{\gamma} \rangle n \rangle = 0].$ i.e.: $\forall \alpha [P(\alpha) \not\supseteq E_2^1(\delta | \alpha)]$ and: $P \in \Sigma_2^1.$

14.7 Theorem: Let
$$P \subseteq {}^{\omega}w$$
.
 $P \in \Sigma_2^1$ if and only if there exists a subset Q of ${}^{\omega}w$ such that
 $Q \in \Pi_1^1$ and $P = \mathbb{E}^*(Q)$.

Proof: (1) First, suppose: P∈ ∑¹/₂ and, using theorem 14.6, determine a decidable subset A of w such that: ∀α[P(α) Z ∃y ∀β∃n[<ān, jīn, jīn>∈ A]. Determine a decidable subset A* of w such that: For all a∈w, b∈w: <a, b>∈ A* Z (lg(a)=lg(b) ∧ <L(a), b, R(a)>∈ A)

Define Q:= {a | VB=n [<an, pn>E A*]}, and, using theorem 10.10,

remark that $Q \in \Pi_1^1$

Also observe that, for all $\alpha \in {}^{\omega}w$, $\gamma \in {}^{\omega}w$.

Therefore, for all a e www.

$$\exists r [Q(\leqslant \alpha, \gamma \Rightarrow)] \rightleftharpoons \exists r \forall \beta \exists n [< \overline{\alpha} n, \overline{\beta} n, \overline{\gamma} n > \in A]$$
$$\rightleftharpoons P(\alpha)$$

i.e.: $P = E^{*}(Q)$.

(11) Conversely, suppose: $Q \in \Pi_1^1$ and, using theorem 10.10, determine a decidable subset A of w such that: $\forall \alpha [Q(\alpha) \not\supseteq \forall \beta \exists n [<\bar{\alpha}n, \beta n > \epsilon A]]$ Then: $\forall \alpha [E^*(Q)(\alpha) \not\supseteq \exists \gamma \forall \beta \exists n [<\bar{\alpha}n, \gamma > n, \beta n > \epsilon A]]$ Determine a decidable subset A* of w such that: For all $a \in w$, $b \in w$, $c \in w$:

<0, b, c>
$$\in A^* \neq (lg(a) = lg(b) = lg(c) \land < < a, c>, b > \in A)$$
.
Remark that: $\forall \alpha [\mathbb{E}^*(Q)(\alpha) \neq \exists \gamma \forall \beta \exists n [< \overline{\alpha} n, \overline{\beta} n, \overline{\gamma} n > \in A^*]]$.
and therefore, according to theorem 14.6: $P = \mathbb{E}^*(Q) \in \mathbb{Z}_2^1$.

14.8 Theorem: Σ_2^1 contains a universal element.

Proof: Define the subset U of ^ww by:
For all αε^ww: U(α)
$$\neq$$
 ∃γ∀β∃n[(p|α)(<($\overline{(\lambda|\alpha)}$ n, $\overline{\beta}$ n, $\overline{\gamma}$ n>)=0]]
and note that U belongs to Σ_2^1
Let P ⊆ ^ww and P ∈ Σ_2^1
Following theorem 14.6, determine a decidable subset A of w such that:
∀α[P(α) \neq ∃γ∀β∃n[< $\overline{\alpha}$ n, $\overline{\beta}$ n, $\overline{\gamma}$ n>∈ A]]. Determine $\delta \in ^{w}$ w such that:
∀n[$\delta(n)=0 \neq n\in A$]. Then: ∀α[P(α) \neq ∃γ∀β∃n[$\delta(<\overline{\alpha}n, \overline{\beta}n, \overline{\gamma}n>)=0$]
i.e.: ∀α[P(α) \neq U(< α, δ >)].

In this last proof, any pairing function, other than $\ll \gg$, would do as well. Until now, our narrative has been straightforward, and almost boring. But the following, simple remark is surprising: 14.9 Theorem: $\Pi_2^{\prime} \subseteq \Sigma_2^{\prime}$.

<u>Proof</u>: It is sufficient to show that A_2^{t} belongs to Σ_2^{t} Using AC_{11} , observe, that for all $\alpha \in W_{W}$:

$$A_{2}^{\prime}(\alpha) \rightleftharpoons \forall \gamma \exists \beta \forall n [\alpha(\overline{\langle \beta, \gamma \rangle n}) = 0]$$

$$\supseteq \exists \delta [Fun(\delta) \land \forall \gamma \forall n [\alpha(\overline{\langle \delta | \gamma, \gamma \rangle n}) = 0]]$$

$$\supseteq \exists \delta [Fun(\delta) \land \forall c [\alpha(\langle \delta | c, \overline{c} | q(\delta | c) \rangle) = 0]]$$

(The notation, $\delta|c^*$ has been established just before theorem 14.2) Recall, from chapter 10, that $\operatorname{Fun} \in \Pi_1^1$, and remark that $\{ \leq \alpha, \delta \neq | \forall c [\alpha(\leq \delta|c, \overline{c} | q(\delta|c) \neq) = 0] \}$ belongs to $\Pi_1^\circ \subseteq \Pi_1^1$. As Π_1^1 is closed under the operation of finite intersection (cf. theorem 10.12) we may conclude, using theorem 14.7, that A_2' belongs to Σ_2' .

We now prepare to deal a final blow to any remaining hope of a projective hierarchy.

We define a subset
$$A'_3$$
 of ${}^{\omega}\omega$ by:
 $A'_3 := \{ \alpha \mid \forall \delta \exists \gamma \forall \beta \exists n [\alpha (\overline{\langle \langle \beta, \gamma \rangle, \delta \rangle} n) = 0] \}$

We define a class Π'_3 of subsets of w_w by:

For every subset P of $^{\omega}w$: P $\in \Pi'_3 \rightleftharpoons P \preceq A'_3$

The reader may trust, or else, for one time, go for himself into the treadmill of patient calculation, that:

For every subset P of ${}^{\omega}w$: P \in \Pi'_3 ~ there exists a decidable subset A of ${}^{\omega}w$ such that $\forall \alpha [P(\alpha) \neq \forall \delta \exists \gamma \forall \beta \exists n [< \bar{\alpha}n, \bar{\beta}n, \bar{\gamma}n, \bar{\delta}n > \in A]]$

and: $P \in \Pi_3^1 \rightleftharpoons$ there exists a subset Q of $^{\omega}\omega$ such that: Q $\in \Sigma_2^1$ and P = $U_1^*(Q)$.

14.10 Theorem: $\Pi_3' = \Sigma_2'$.

<u>Proof</u>: We leave it for the reader to prove that $\Sigma'_2 \subseteq \Pi'_3$. As to the converse, it is sufficient to show that A'_3 belongs to Σ'_2 . Using AC_{11} , observe, that for all $\alpha \in {}^{\omega}\omega$.

$$\begin{array}{rcl} A'_{3}(\alpha) & \swarrow & \forall \delta \exists \gamma \forall \beta \exists n \left[\alpha \left(\overline{\langle \langle \beta, \gamma \rangle, \delta \rangle n} \right) = 0 \right] \\ & \rightleftharpoons & \exists \zeta \left[Fun(\zeta) \land \forall \delta \forall \beta \exists n \left[\alpha \left(\overline{\langle \langle \beta, \zeta \rangle \rangle, \delta \rangle n} \right) = 0 \right] \\ & \swarrow & \exists \zeta \left[Fun(\zeta) \land \forall \delta \forall \beta \exists n \exists a \left[\delta \in a \land lq(\zeta|a) = n \land \alpha (\langle \langle \beta n, \zeta|a \rangle, \overline{\delta}n \land) = 0 \right] \right] \end{array}$$

(The notation "Z|a" has been established just before theorem 14.2. In the last line, $\leq \gg$ denotes a function which pairs finite sequences of equal length, cf. 14.0) Recall, from chapter 10, that Fun $\in \Pi_1^1$, and remark that $\{\leq \alpha, \zeta \gg | \forall \delta \forall \beta \exists n \exists a [\delta \in a \land lg(\zeta | a) = n \land \alpha (\leq \leq \overline{\beta}n, \zeta | a \gg, \overline{\delta}n \gg) = 0]\}$ belongs to Π_1^1 . As Π_1^1 is closed under the operation of finite intersection (cf. 10.12), we may conclude, using theorem 14.7, that A_3^1 belongs to Σ_2^1 .

Putting together theorems 14.7 and 14.10, we see, that for all subsets $P \circ f^{u}w$: If $P \in \Sigma_2^1$, then both $E^*(P)$ and $UI^*(P)$ belong to Σ_2^1 . It is not difficult to verify that the operations of countable union and intersection are but special cases of E^* , resp. UI^* . It is impossible, therefore, to go beyond Σ_2^1 by any one of these methods.

If we are so obstinute as not to use negation, or implication, and so dull as not to invent different methods of building subsets of ω_w , Σ'_z is the end.

From a classical point of view, theorems 14.9 and 14.10 are strange, indeed. We still may learn something from attempting the good old diagonal argument:

Let us consider D:= { a | YZB Vn[a (<an, Bn, Jn>) =0]}

D is easily seen to be a member of Π'_2 , and may be called: the diagonal member of Π'_2 .

According to theorem 14.9, D also belongs to \mathbb{Z}_{2}^{\prime} , and, using theorem 14.6, we determine a decidable subset A of ω such that: $\forall \alpha [D(\alpha) \rightleftharpoons \exists \gamma \forall \beta \exists n [< \overline{\alpha}n, \overline{\beta}n, \overline{\gamma}n > \in A]]$.

Using AC_{01} , we find $\delta \in W_{W}$ such that:

We observe, now, that

 $D(\delta) \rightleftharpoons \forall \gamma \exists \beta \forall n [\delta(\bar{\delta}n, \bar{\beta}n, \bar{\gamma}n) \neq 0]$ $\rightleftharpoons \exists \gamma \forall \beta \exists n [\delta(\bar{\delta}n, \bar{\beta}n, \bar{\gamma}n) = 0].$

Such a δ is worth a prize: it embodies the nonsense of classical logic. Looking for a place where to lodge it in our zoo, we choose a cage next to this animal:

> We claim that: $\neg \forall \alpha \exists n \forall m [\alpha(n)=0 \rightarrow \alpha(m)=0] \land \neg \exists \alpha \forall n \exists m [\alpha(n)=0 \land \alpha(m)\neq 0]$ First, suppose: $\forall \alpha \exists n \forall m [\alpha(n)=0 \rightarrow \alpha(m)=0]$. Using CP (cf. 1.8), we determine $n \in w$, $q \in w$ such that: $\forall \beta I \ \beta q = \overline{Q} q \rightarrow \forall m [\beta(n)=0 \rightarrow \beta(m)=0]$. Let $N := \max(q, n+1)$ Then: $\forall \beta I \ \beta N = \overline{Q} N \rightarrow \beta = Q]$, and this is not so. Therefore: $\neg \forall \alpha \exists n \forall m [\alpha(n)=0 \rightarrow \alpha(m)=0]$ Next, suppose: $\exists \alpha \forall n \exists m [\alpha(n)=0 \land \alpha(m)\neq 0]$. Choose such an α , an observe: $\alpha = Q \land \neg (\alpha = Q) !$ Therefore: $\neg \exists \alpha \forall n \exists m [\alpha(n)=0 \land \alpha(m)\neq 0]$

This harmless creature seems to be the most simple representative of its species which perhaps might be called the species of de Morgan's nightmares. (We do not know if there are any de Morgan's nightmares around, that cause panic about the quantifier-combination: "VaIn")

We cannot conceal our ignorance concerning some important points any longer. At the end of chapter 10, we mentioned our inability to settle the question whether $A_1^4 \leq E_1^4$, or, equivalently, $\Pi_1^4 \subseteq \Sigma_1^4$. If it should be so that $A_1^4 \leq E_1^4$, nothing remains of the, once, proud projective hierarchy, as $\Sigma_2^{\prime} \subseteq \Sigma_1^{\prime}$. Otherwise, if not: $A_1^4 \leq E_1^4$, then also not: $\Sigma_2^{\prime} \subseteq \Sigma_1^{\prime}$, as $\Pi_1^4 \subseteq \Sigma_2^{\prime}$. In this case there is another problem to haunt us, namely, whether $E_2^{\prime} \leq A_2^{\prime}$

dear parents, the blocks are very nice. but if I try to build a tower from them, the one sinks into the other. this I deplore. your son.

15. A CONTRAPOSITION OF COUNTABLE CHOICE

This chapter presupposes some love of the fan theorem A fan is used to bring distraction and a moderate breeze, during the unimportant chatterings which may occur when the heat of the day is over. Leaning on the axiom ACo1, we were able to prove, in chapter 10, that all hyperarithmetical sets are analytical. We are not able to prove that all hyperarithmetical sets are co-analytical, for, as we have seen, the arithmetical set D^2A_1 is not co-analytical. In this respect we fall behind a classical mathematician, who will stand on his head and then, making the movements required for analyticity, soothe his conscience. To carry through the classical argument, we need a constructive contraposition of ACo1, the second of the two principles of countable choice that we admitted (cf. 1.3)The resulting principle of reasoning, therefore, cannot be valid in full generality. Once, watching the classical circus in the company of some good friends, we discussed the question, what is the range of validity of AC₀₁-turnedupside-down. This question, though not too serious in itself, could be given a simple and elegant answer, which will be the subject of this chapter. Contraposition might be another method of constructing hierarchical structures of (neo-) classical beauty. We mention this possibility at the end of the chapter, but are not elaborating it. The following lines are dedicated in friendship, to Jo Gielen and Mervyn Jansen. (cf. Note 9 on page 217). 15.0 We remind the reader of the axiom AC_{p1} , that has been introduced and

 $AC_{o1} \quad Let A \subseteq w \times {}^{w}_{w}.$ If $\forall n \exists \alpha [A(n,\alpha)]$, then $\exists \alpha \forall n [A(n,\alpha^{n})]$.

defended in 1.3.

Dancing to the piping of A. de Morgan, we are led on to the following crazy principle:

CRP Let $A \subseteq \omega \times {}^{\omega}\omega$. If $\forall \alpha \exists n [A(n, \alpha^n)]$, then $\exists n \forall \alpha [A(n, \alpha)]$.

As we are entertaining already some grave suspicions against CRP, it seems wise to consider also a relativized version of it. For each subspread σ of ^ww which fulfils the condition: Va[ae\sigma Z Vn[aⁿe σ], it makes sense to study: CRP_o Let $A \subseteq w \times w w$. If $\forall \alpha \in \sigma \exists n [A(n, \alpha^n)]$ then $\exists n \forall \alpha \in \sigma [A(n, \alpha)]$.

We remark that the above-mentioned condition is met by the binary fan σ_2 , whose acquaintance we made in 11.27.

More generally, we may introduce, for each pew, the p-ary fan σ_p , by:

For all a ew:

 $\sigma_{p}(a) := 0$ if $\forall n [n < lg(a) \rightarrow a(n) < p]$:= 1 otherwise.

We remark that, for each $p \in W$, σ_p meets the above-mentioned condition.

15.1 The arguments given in the preface to this chapter may have convinced the reader that CRP leads to a contradiction. Perhaps because of a morbid trait in our character, we follow it once more on its way to absurdity. We first introduce a consequence of it, which, at the sight of it, is somewhat less disturbing:

 CRP^* Let $A \subseteq w \times w$.

If $\forall \alpha \exists n [A(n, \alpha(n))]$, then $\exists n \forall m [A(n, m)]$.

(The attentive reader may observe that CRP^* is AC_{00} -turned-upside-down, just as CRP is nothing but AC_{01} -turned-upside-down).

We claim that CRP implies CRP.*

Let $A \subseteq w \times w$ be such that $\forall \alpha \exists n [A(n, \alpha(n))]$. Define $A^* \subseteq w \times^{\omega} w$ by: For all $n \in w$, $\alpha \in^{\omega} w$ $A^*(n, \alpha) := A(n, \alpha(0))$

We claim that $\forall \alpha \exists n [A^*(n, \alpha^n)]$

Let $\alpha \in W_w$ and determine $\alpha^* \in W_w$ such that $\forall n [\alpha^*(n) = \alpha^n(0)]$ Determine $n_o \in w$ such that: $A(n_o, \alpha^*(n_o))$ and observe that $A^*(n_o, \alpha^{n_o})$.

Applying CRP we find $n_1 \in \omega$ such that $\forall \alpha [A^*(n_1, \alpha)]$. Therefore $\forall m [A(n_1, m)]$, and thus, our claim proves harmless. The danger of CRP* glimmers through the following consideration:

Suppose: $f \in {}^{\omega}\omega$ and let $k := \mu n [f(n) \neq 0]$ be the volatile number of f (we discussed this notion just after theorem 11.10) Let us define a subset A of $\omega \times \omega$ by:

For all new, mew:

 $A(n,m) = (n \le k \land m \le k) \lor n \gg k$

A is pretty close to having the property mentioned in the conclusion of CRP*, for, if k exists, then $\forall m [A(k,m)]$, and, if not, then $\forall m [A(0,m)]$

The reader will see for himself that still, in some cases, it may be reckless to assert that $\exists n \forall m[A(n,m)]$ And he will observe that, on the other hand, the premiss of CRP* goes through

And now, a fat contradiction, unable to hide itself any longer, creeps from the bushes behind CRP*:

Let us define, for each $r \in w$, a subset A_r of $w \times w$ by: For all $n \in w$, $m \in w$: $A_r(n,m) := \forall l \leq m[r(l)=0] \lor \exists l \leq n[r(l) \neq 0]$

We claim that: $\forall \gamma \forall \alpha \exists n [A_{\chi}(n, \alpha(n))].$

Suppose $re^{\omega}w$, $\alpha e^{\omega}w$ and consider $\alpha(0)$ We distinguish two cases:

> - If $\forall l \leq \alpha(0) [\gamma(l)=0]$, then: $A_{\gamma}(0, \alpha(0))$ - If $\exists l \leq \alpha(0) [\gamma(l)\neq 0]$, then: $A_{\gamma}(\alpha(0), \alpha(\alpha(0)))$

In either case, therefore: In [A, (n, a(n)]]

Applying CRP*, we find that: $\forall \gamma \exists n \forall m [A_{\gamma}(n, \alpha)]$. Therefore: $\forall \gamma \exists n [\gamma(n) = 0 \rightarrow \forall m [\gamma(m) = 0]]$. And this is easily seen to be contradictory:

Using CP, the principle of continuity mentioned in 1.8, we determine $q \in w$, $n \in w$ such that:

$$\forall r [(\bar{y}q = \bar{Q}q \land r(n) = 0) \Rightarrow \forall m [r(m) = 0]]$$

What about a member r^* of $^{\omega}w$ such that $max(n, q) < \mu p [r^*(p) \neq 0] ?$

Ø

15.2 We mentioned the fan theorem just before theorem 11.4 and repeat it, now:

Recall that $\beta \in \omega$ is a fan if the set of finite sequences determined by it is, everywhere, finitely-splitting, i.e.:

$$\forall a[\beta(a)=0 \rightarrow K^{\beta} = \{n \mid n \in w \mid \beta(a * < n >)=0\}$$
 is finite]

The fan theorem is a most famous consequence of Brouwer's thesis, which has been presented in 13.0 and, in its special version, reads as follows:

Let
$$\alpha \in \mathcal{W}_{\omega}$$
 and $\forall \mathbf{y} \exists \mathbf{n} [\alpha(\overline{\mathbf{y}}_{\mathbf{n}}) = 0]$
Then: $\exists \sigma \in \$ [|\alpha|^* \leq \sigma].$

The valuable set \$ is the set of well-ordered stumps in w_{w} , as we know it from 13.0 and 8.0.

The proof of the fan theorem goes by showing, by transfinite induction, that for each $B \in {}^{\omega}\omega$ and each $\sigma \in $$:

If β is a fan, then $\int \alpha |\alpha \in \sigma \land \beta(\alpha) = 0$ is finite

Once this observation has been made, we quickly enter the promised land:

Let A be a decidable subset of w and $\beta \in {}^{\omega}w$ be a fan, such that $\forall \gamma \in \beta \exists n[A(\overline{\gamma}n)]$. Determine $\alpha \in {}^{\omega}w$ such that $\forall \alpha[\alpha(\alpha) = 0 \rightleftharpoons (\alpha \in A \lor \beta(\alpha) \neq 0)]$ Observe that $\forall \gamma \exists n[\alpha(\widehat{\gamma}n) = 0]$ (cf. Note 7 on page 217). Using Brouwer's thesis, we determine $\sigma \in \$$ such that: $|\alpha|^{\ast} := \{\alpha \mid \forall b[\alpha \subseteq b \rightarrow \alpha(b) \neq 0]\} \subseteq \sigma$ We remark that: $\{\alpha \mid \alpha \in \sigma \land \beta(\alpha) = 0\}$ is finite, and calculate $m \in w$ such that $\forall \alpha[(\alpha \in \sigma \land \beta(\alpha) = 0) \rightarrow lg(\alpha) \leq m]$ We finish by noticing that: $\forall \gamma \in \beta \exists n[n \leq m+1 \land A(\overline{\gamma}n)].$

Combining the axiom AC₁₀ (cf. 1.5) and the fan theorem, we find the following principle of reasoning, which we want to apply freely in the sequel:

15.2.0 Let A⊆^ww xw and βε^ww be a fan If Vreβ∃n[A(r,n]], then ∃m Vreβ∃n[n≤m ∧ A(r,n]]

The contents of this section will not surprise someone who is acquainted

with an introduction to intuitionistic analysis, for instance, Kleene and Vesley 1965.

15.3 We will prove, for each $\tau \in {}^{\omega}\omega$, which is a fan and fulfils the condition: $\forall \alpha [\alpha \in \tau \rightleftharpoons \forall n[\alpha^n \in \tau]]$, that CRP_{τ} .

We first make a simple observation:

- 15.3.0 Lemma: Let $A \subseteq w \times w w$ and $\tau \in w w$ be a fan such that $\forall \alpha [\alpha \in \tau \not\supseteq \forall n [\alpha^n \in \tau]]$, and $\forall \alpha \in \tau \exists n [A(n, \alpha^n)]$. Then: $\forall \alpha \in \tau \exists n [A(n, \alpha)]$.
 - <u>Proof</u>: Let $\alpha \in \tau$ and determine $\beta \in \tau$ such that $\forall n [\beta^n = \alpha]$. Determine $n_o \in w$ such that $A(n_o, \beta^{n_o})$ and conclude: $A(n_o, \alpha)$.

The next observation is more than twice as difficult:

15.3.1 Lemma: Let $A \subseteq w \times w w$ and $\tau \in w w$ be a fan such that $\forall a[a \in \tau \neq \forall n[a^n \in \tau]]$, and $\forall a \in \tau \exists n[A(n, a^n)]$ Then: $\forall a \in \tau \forall \beta \in \tau \exists n[A(n, a) \land A(n, \beta)]$.

> Thus, we have a mapping from σ_2 onto the set of all members of τ whose only subsequences are \propto and β . We know: $\forall \gamma \in \sigma_2$ $\exists n [A(n, (Z|\gamma)^n]]$, and, applying 15.2.0, we calculate $M \in \omega$ such that:

> > $\forall x \in \sigma_2$ $\exists n [n \leq M \land A(n, (Z|x)^n)]$

Let us assume, for a moment only, that M = 2. We then know, how to find, for each $\gamma \in \sigma_2$, a natural number n, such that $n \le 2 \land A(n, (Z|\gamma)^n)$, i.e.: $A(0, (Z|\gamma)^2) \lor A(1, (Z|\gamma)^1) \lor A(2, (Z|\gamma)^2)$ In determining the triple $(3|\gamma)^{\circ}$, $(3|\gamma)^{1}$, $(3|\gamma)^{2}$ we have to choose one out of eight possibilities, from $\alpha, \alpha, \alpha \dots$ up to β, β, β .

Thus, we are offered eight pieces of truth, to wit:

Each of these eight statements produces at least one true fact of the form: $A(i,\delta)$, where $i \in \{0,1,2\}$ and $\delta \in \{\alpha,\beta\}$. Now, either: $A(0,\alpha)$ and $A(0,\beta)$ are both among these true facts, or: $A(1,\alpha)$ and $A(1,\beta)$ are both among these true facts, or: $A(2,\alpha)$ and $A(2,\beta)$ are both among these true facts. For, if, for instance $A(0,\beta)$, $A(1,\alpha)$ and $A(2,\beta)$ are, all three of them, not among these true facts, this conflicts with our having found true: $A(0,\beta)$ v $A(1,\alpha)$ v $A(2,\beta)$.

Therefore: $\exists n[A(n,\alpha) \land A(n,\beta)]$

This wordy argument has been necessary, as we do not know that A is a decidable subset of $w \times w w$, a subtlety which eludes the classical mathematician.

We close the proof by expressing our confidence that, should M have been some other number than 2, we could have played a similar game.

Ø

Lemma 15.3.1 has an obvious generalization:

15.3.2 Lemma: Let A ⊆ wxww and reww be a fan such that ∀α[αετz ∀n[αⁿer]], and ∀αετ∃n[A(n, αⁿ]]. Let pew, p>0. Then: ∀α_per ∀α₁er.... ∀α_per ∃n[A(n, α_p) ∧ A(n, α₁) ∧... ∧ A(n, α_p)].

$$\frac{\text{Proof}}{\text{We need help from the p-ary fan } \sigma_p := \{y | \forall n [f(n]$$

We determine $Z \in {}^{\omega} w$ such that: Fun(Z), and: for all $\gamma \in \sigma_p$, for all $n \in w$, for all $m \in w$, m < p: - if $\gamma(n) = m$, then $(Z | \gamma)^n = \alpha_m$

Thus, we have a mapping from σ_p onto the set of all members of τ , all whose subsequences are chosen from $\{\alpha_0, \alpha_1, ..., \alpha_p\}$. The rest of the proof is also quite similar to the proof of lemma 15.3.1 and will be omitted.

Without further delay, we close our eyes, and jump:

- 15.3.3 Theorem: Let $A \subseteq w \times w w$ and $\tau \in w w$ be a fain such that $\forall \alpha [\alpha \in \tau \supseteq \forall n [\alpha^n \in \tau]]$, and $\forall \alpha \in \tau \exists n [A(n, \alpha^n)]$. Then: $\exists n \forall \alpha \in \tau [A(n, \alpha)]$.
 - <u>Proof</u>: The water is colder than we thought. But never mind. Suppose: $\forall \alpha \in T \exists n [A(n, \alpha^n)].$ Then, according to GCP (cf. 1.9): Vaet ∃n ∃m Vset[jsm = Zm → A(n, sn)]. Therefore: $\forall \alpha \in \tau \exists n \exists m \forall \beta \in \tau [\beta^n m = \alpha^n m \rightarrow A(n, \beta^n)]$ We define a subset A^* of $\omega \times \omega$ by: For all new, aew: $A^*(n, \alpha) := \forall \alpha \in \alpha [\alpha \in \tau \rightarrow A(n, \alpha)]$ Observe that: $\forall \alpha \in \tau \exists n \exists m [A^*(n, \alpha^n m)]$ Using 15.2.0, we determine $M \in \omega$ such that: $\forall \alpha \in \tau \exists n \exists m \leq M [A^*(n, \alpha^n m)]$ and we remark that, now: $\forall \alpha \in \tau \exists n [A^*(n, \overline{\alpha^n} M)]$ We define a subset A** of wx ww by: For all new, deww $A^{**}(n, \alpha) = A^{*}(n, \overline{\alpha} M)$ Observe that: $\forall \alpha \in \tau \exists n [A^{**}(n, \alpha^n)]$ We now consider $S_M := \{a \mid lg(a) = M \land \tau(a) = 0\}$

As τ is a fan, S_{M} is a finite set. To each $a \in S_{M}$ we determine a sequence $\alpha_{a} \in {}^{\omega}\omega$ such that: $\overline{\alpha_{a}} M = a \wedge \alpha_{a} \in \tau$. We apply lemma 15.3.2 and find $n \in \omega$ such that $\forall a \in S_{M} [A^{**}(n, \alpha_{a})]$. Retranslating, we see that: $\forall a \in S_{M} [A^{*}(n, \overline{\alpha_{a}}M)], i.e.: \forall a \in S_{M}[A^{*}(n, \alpha)]$ Therefore: $\forall a \in S_{M} [\forall a \in a [a \in \tau \rightarrow A(n, \alpha)]]$ and: $\forall \alpha \in \tau [A(n, \alpha)]$.

15.4 We will prove a converse to theorem 15.3.3.

We first treat the reader to a small technicality. Let $\tau \in \mathcal{W}_{w}$ be a spread, which fulfils the condition: $\forall \alpha [\alpha \in \tau \neq \forall n [\alpha^{n} \in \tau]]$ Let us define, as in 9.0, for each $a \in w$, a decidable subset K_{a}^{T} of w by: $K_{a}^{\tau} := \left\{ n | n \in \omega \mid \tau(a * \langle n \rangle) = O \right\}$ We claim that $\forall a [\tau(a) = 0 \rightarrow k_a^{\tau} = k_{<>}^{\tau}]$. To justify this claim, we reflect on the coding function (cf. 1.2) Remark that: $\forall a [a > 0 \rightarrow \exists n \exists b [b < a \land a = < n > * b]]$ Therefore: $\forall a [(a > 0 \land \tau(a) = 0) \rightarrow \exists b [b < a \land \tau(b) = 0 \land k_a^{\tau} = k_b^{\tau}]]$ Henceforth, if tewwisaspread such that: Va[aet 2 Vn[anet]] we write $k^{\tau} = k_{<>}^{\tau}$ τ may be thought of as the set $w(\kappa\tau)$ τ is a fan if and only if κ^{τ} is a finite set of natural numbers. Next, we take a look of something which almost is a fan: consider a spread $\tau \in W_W$ such that: $\forall \alpha [\alpha \in \tau \supseteq \forall n [\alpha^n \in \tau]]$ and $K_{\tau} = \{0, k\}$ where k is a volatile number (cf. the discussion following on theorem 11.10), and a far one. It is reckless to assert that τ is a fan, this comes down to: $\exists n[n=k]$ It also is dangerous to claim that τ fulfils the fan theorem (cf. 15.2), for, as Vaer Im [a(0)=m], the fan theorem would imply $\exists n \forall \alpha \in \tau [\alpha(0) \leq n], i.e.: \exists n [k \leq n].$

Finally, we advise the reader against preaching that τ fulfils

the crazy principle CRP_r. We have our reasons for doing so: We define a subset A of wx^ww by: For all new, $\alpha \in {}^{\omega}\omega$: $A(n, \alpha) := \alpha(0) = 0 \quad \forall \quad n = k.$ We claim that: $\forall \alpha \in T \exists n [A(n, \alpha^n)].$ Let $\alpha \in \tau$ and consider $\alpha^{\circ}(o)$. - If $\alpha^{\circ}(0) = 0$, then: $A(0, \alpha^{\circ})$. - If $\alpha^{\circ}(0) \neq 0$, then: $\exists n[n=k]$ and: $\exists n[n=k \land A(n,\alpha^n)]$. In any case, therefore: $\exists n[A(n, \alpha^n)]$ Applying CRP, we would find: In Vaet [A(n,a)]. If $\forall \alpha \in \tau [A(0, \alpha)]$, then k is a hallucination. If $\exists n[n \neq 0 \land \forall \alpha \in \tau[A(n, \alpha)]]$, then $\exists n[n=k]$, i.e. k has been caught. Both assertions are overhasty. It seems wise, therefore, not to claim: CRPr. Taking to heart the lesson that this example forces upon us, we find: 15.4.0 Lemma: Let re^ww be a spread such that Va[aer 2 Vn[aⁿ er]] and CRP, Then: $\forall m \left[\forall l \left[\tau(\langle l \rangle) = 0 \rightarrow l \leq m \right] \lor \exists l \left[l > m \land \tau(\langle l \rangle) = 0 \right] \right]$ (That is to say: the "choice set" $K^T = K_{<>}^T$ is, in a sense, perspicuous. We may find out, for each mew, if there is a member of kigreater than m, or not). Proof: Let mew. We define a subset A of wx ww by: For all new, ae www: $A(n,d) := \alpha(0) \leq m \vee (n > m \land \mathcal{C}(< n >) = 0)$ We claim that: Vace In [A(n, an)]. Let $\alpha \in \tau$ and consider $\alpha^{\circ}(o)$.

- If
$$\alpha^{\circ}(0) \le m$$
, then: $A(0, \alpha^{\circ})$
- If $\alpha^{\circ}(0) > m$, then: $\tau(<\alpha^{\circ}(0) >) = 0$,
therefore, putting $n := \alpha^{\circ}(0) : A(n, \alpha^{n})$
In any case, therefore: $\exists n [A(n, \alpha^{n})]$.

Applying CRP_{τ} , we calculate new such that $\forall \alpha \in \tau[A(n, \alpha)]$. We then distinguish two cases.

(1)
$$n \le m$$
, then: $\forall \alpha \in \tau [\alpha(0) \le m]$ and:
 $\forall l [\tau(\langle l \rangle) = 0 \rightarrow l \le m]$
(11) $n > m$, then $\tau(\langle n \rangle) = 0$ and:
 $\exists l [l > m \land \tau(\langle l \rangle) = 0]$.

Ø

Now that we have placed the ladder, we have no hesitation to pick the apple, and eat it:

15.4.1 Theorem: Let te www be a spread such that Va[aet 2 Vh[anet]], and CRPr. Then: $\exists m \forall l[\tau(\langle l \rangle) = 0 \rightarrow l \leq m]$, and, therefore: τ is a fan. <u>Proof</u>: We define a subset A of wx ww by: For all de www. $A(O, \alpha) := \exists \ell [\ell > \alpha(O) \land \tau(\langle \ell \rangle) = O]$ For all $\alpha \in {}^{\omega}\omega$, for all $n \in {}^{\omega}\omega$, n > O: $A(n, \alpha) := \forall l [\tau(\langle l \rangle) = 0 \rightarrow l \leq n].$ We claim that: $\forall \alpha \in \tau \exists n [A(n, \alpha^n)].$ Let $\alpha \in \tau$ and consider $\alpha^{\circ}(0)$ Applying lemma 15.4.0, we distinguish two cases: $(I) \exists l[l > a^{\circ}(0) \land \tau(\langle l \rangle) = 0]$ Then: A(0, ~) (II) $\forall l [\tau(\langle l \rangle) = 0 \rightarrow l \leq \alpha^{\circ}(0)]$ Then, putting $n := \alpha^{\circ}(0) + 1$, $A(n, \alpha^{n})$. Using CRP, we calculate new such that $\forall \alpha \in \tau [A(n, \alpha)]$.

Again, there are two possibilities:

(1) n=0Then: $\forall \alpha \in \tau \exists l[l > \alpha(0) \land \tau(<l>)=0]$ Therefore: $\forall n \in k^{\tau} \exists l[l > n \land n \in k^{\tau}]$. As $\exists n[n \in k^{\tau}]$, this shows that k^{τ} is an infinite and decidable subset of ω . Thus, there is no important difference between τ and ω_{ω} According to 15.1, then, τ does not fulfil CRP_{τ} . This case has to be excluded, and we are led to: (1) n > 0Then: $\forall l[\tau(<l>)=0 \rightarrow l \le n]$ Therefore: k^{τ} is a finite set and τ is a fan.

We reached our goal.

⊠

The theorems 15.3.3 and 15.4.1 complement each other and characterize the fans among the spreads τ that fulfil the condition $\forall \alpha [\alpha \in z \forall n [\alpha^n \in \tau]]$ as those spreads τ that obey the crazy principle CRP_{τ} . This is a new occasion to throw the ranks of the classical army into disorder.

For, upon classical reading of the quantifiers, CRP, is valid for all spreads t satisfying the above-mentioned condition, especially for ^ww itself, and the fan theorem is not.

15.5 In conclusion of this chapter we invite the reader for an exercise in the difficult art of counterpoint. Do not the sweet melodies of chapter 7 and 9 deserve of a counterpart? Consider $A_2 := \{ \alpha \mid \forall n \exists m [\alpha^n(m) = 0] \}$, write $A_2 = \{ \alpha \mid \exists r \forall n [\alpha^n(r(n)] = 0] \}$ and try $P_2 := \{ \alpha \mid \forall r \exists n [\alpha^n(r(n)] = 0] \}$. Consider $A_4 := \{ \alpha \mid \forall n \exists m [A_2(\alpha^{n,m})] \}$, write $A_4 = \{ \alpha \mid \exists r \forall n [A_2(\alpha^{n,r(n)})] \}$ and try $P_4 := \{ \alpha \mid \forall r \exists n [P_2(\alpha^{n,r(n)})] \}$. Or, write: $A_4 = \{ \alpha \mid \exists r \exists \delta \forall n \forall p [\alpha^{n,r(n)}, P(\delta(<n,p)) = 0] \}$ and try $Q_4 := \{ \alpha \mid \forall r \forall \delta \exists n \exists p [\alpha^{n,r(n)}, P(\delta(<n,p)) = 0] \}$.

What is there to say on the behaviour of this kind of sets under the reducibility relation \preceq ?

We did not explore this question and it does not look easy. At probably would like it to have some more sets to boss. 16 THE TRUTH ABOUT DETERMINACY

The axiom of determinacy is playing first fiddle in recent discussions on the subject of descriptive set theory (cf. Moschovakis 1980) At the next audition, we want to hear if it is able to play a constructive tune. Our expectations are low. Its style of playing is that of A de Morgan, and of the two notes he produced, only one was right. Music aside, it is clear that we do not have a method to decide which one of two players is to win a one-move-game, if the number of alternatives at this one move is infinite. The axiom of determinacy makes this claim and ventures to extend it to games where there are infinitely many moves. It seems that the statement of the axiom of determinacy: under such-and-such circumstances, either player I is bound to have a winning strategy, or player II is, expresses an idle hope. We improve its chances by not taking it on its disjunctive face value. and testing instead the following hypothesis: Suppose player I has an answer to each strategy player I might follow. Then player I has a winning strategy. Observe that, when the game is being played, player I does not know which strategy player II is following. In calculating his moves, he has, to reckon with all possibilities. This formulation of the determinacy problem, is reminiscent of situations in daily life, like playing chess with a clever uncle. Suppose that player I is able to win the game, if, at each move, he is allowed access to any finite information on the answers which player II will give, whatever be the outcome of this information. Then he should be able to find the right moves without asking questions as well. The device of robbing classical statements of their disjunctive structure (and, thereby of blatant falsity) by making the constructive contraposition of one of the two disjuncts into a condition from which the other one should follow, has been successfull in other cases. The continuum hypothesis, to mention only one example, comes true, by this treatment (cf. <u>Gielen</u>, <u>de Swart</u> and <u>Veldman</u> 1981). Having made this first and sensible step, we have to face another disappointment: two-move-games still need not be determined. To be sure, we proved that in the previous chapter. We have seen, in 15.1, that the following step, in general, is not permitted: CRP* Let A = wxw If $\forall \alpha \exists n [A(n, \alpha(n))]$, then $\exists n \forall m [A(n,m)]$

Here, a should be interpreted as a possible strategy for the second player

The first player, though having an answer to each possible strategy of his opponent, may not know how to move. Thus, we are forced back to a more restricted situation, where, at each move, a player faces a finite choice. As the number of moves is still infinite, counting does not suffice and we have to think. Now, the fan theorem comes to our aid and saves the honour of determinacy. The story of it will be told in this chapter. We first reconsider the determinacy of finite games as we cannot trust A. de Morgan with this task. We then go on to some not too difficult infinitary games which are enacted in the monotonous fans that we know from chapter 11. Finally, we solve the problem for fans in general. The conclusion of this chapter is, therefore, that, from a constructive point of view, determinacy is a compactness phenomenon. (cf. Note 10 on page 217) 16.0 We first have to coin some terms Let $\tau \in {}^{\omega} w$ be a spread, and S be a subset of ${}^{\omega} w$ Together, τ and S determine the following game $G(\tau, S)$ Players I and \mathbb{I} co-operate in producing some det Player I chooses $\alpha(0)$, then player II chooses $\alpha(1)$, then player I chooses $\alpha(2)$, etc. These choices are restricted by the condition that $\forall n[\tau(\bar{\alpha}n)=0]$ (r being a spread, the game is not frustrated at any finite stage). Player I wins the game if a eS. Player II may be said to win if $\alpha \notin S$: his interest is in preventing player I from winning. We already had an occasion to use game-theoretic terminology, viz. in chapter 7, and we will build on what we have laid down there. Let rewwww r may be interpreted as a function defined on finite sequences of natural numbers, and therefore, as a strategy for either one of the two players I and II, which says him, at each possible position, how he has to move. We introduce two subsets $\Sigma_{I}(y)$ and $\Sigma_{II}(y)$ of ω by: $\Sigma_{I}(y) := \{ a \mid \forall k [2k+1 \leq lq(a)] \rightarrow a(2k) = \gamma(\overline{a}(2k)) \}$ $\Sigma_{III}(y) := \{a \mid \forall k [2k+2 \le lq(a)] \rightarrow a(2k+i) = \gamma(a(2k+i))]$

 $\Sigma_{\tau}(x)$ is the set of positions which may be reached if player I keeps to the strategy given by r. $\Sigma_{\pi}(y)$ is the set of positions which may be reached if player I keeps to the strategy given by r. Let $\tau \in {}^{\omega}\omega$ be a spread. We define $\text{Strat}_{I}(\tau)$, the set of strategies for player I which keep him within the spread τ , provided that his opponent does not leave it, either, by $\operatorname{Strat}_{\tau}(\tau) := \begin{cases} \gamma \mid \forall a \left[\left(a \in \Sigma_{\tau}(\gamma) \land lq(a) \text{ is even } \land \tau(a) = 0 \right) \rightarrow \tau(a \ast \langle \gamma(a) \rangle) = 0 \right] \end{cases}$ $\wedge ((a \notin \Sigma_{I}(\chi) \lor lq(a) \text{ is odd } \lor \tau(a) \neq 0) \rightarrow \chi(a) = 0)]_{\ell}^{\ell}.$ The corresponding set $Strat_{II}(t)$ is defined by: $\operatorname{Strat}_{\pi}(\tau) := \{ \chi \mid \forall a [((a \in \Sigma_{\pi}(\chi) \land lg(a) \text{ is odd } \land \tau(a) = 0) \rightarrow \tau(a \ast \langle \chi(a) \rangle = 0) \}$ $\wedge ((a \notin \Sigma_{\pi}(\chi) \lor lg(a) is even \lor \tau(a) \neq 0) \rightarrow \chi(a) = 0)]$. It is easy to see that $Strat_{I}(\tau)$ and $Strat_{n}(\tau)$ themselves are spreads. We also introduce the notion of "obeying to a strategy" For all $\alpha \in {}^{\omega}\omega$, $\gamma \in {}^{\omega}\omega$ we define: $\alpha E_{I} Y := \forall n [\overline{\alpha} n \in \Sigma_{\tau} (\gamma)]$ (i.e.: the sequence α is the result of some play, in which player I obeys to the strategy given by r). $\alpha \in_{\mathbf{I}} \gamma := \forall n [\overline{\alpha} n \in \Sigma_{\pi}(\gamma)]$ (i.e.: the sequence α is the result of some play in which player I obeys to the strategy given by r. The following property is to be the object of our investigations: Let $\tau \in {}^{\omega}\omega$ be a spread and S be a subset of ${}^{\omega}\omega$. We define : $Det(\tau, S)$ (i.e.: S is determined in τ), by: $Det(\tau, S) := \forall \gamma \in Strat_{\pi}(\tau) \exists \alpha [\alpha \in_{\pi} \gamma \land S(\alpha)] \rightarrow$ Jre Strat, (r) ∀α[αE_Iy → S(α)]. In the introduction to this chapter we have given some explanation, as to why we prefer this formulation above other possible ones. 16.1 Before losing ourselves in infinite games, we have a careful look at finite ones. We will treat them along similar, but shorter lines. Let T be a finite subset of ω such that $\forall a \forall b [(a \in T \land a \subseteq b) \rightarrow b \in T]$ Let S be a subset of w. Together, T and S determine the following game G(T,S).

Players I and I co-operate in producing some $a \in T$ Player I chooses a(0), then player II chooses a(1), then player I chooses a(2), etc. These choices are subject to the condition that, at each stage, the finite sequence produced until then, belongs to T. The play ends, and ends only, if there is no continuation of the finite sequence within T, and player I wins, if the final finite sequence belongs to S; otherwise, player II, whose interest is in preventing player I from winning, may be said to win.

aet is called T-complete if - In[a*<n>et]

Let $c \in w$. c may be interpreted as a finite sequence, and also as a function whose domain is a finite set of finite sequences, and therefore, as a strategy for either one of the two players in some game G(T, S). A natural number c is called a strategy for player I in T if:

 $lg(c) = max(T) + 1 \quad \wedge \quad \forall a \left[(a \in T \land lg(a) \text{ is even } \land \exists n [a * < n > \in T] \right] \rightarrow a * < c (a) > \in T].$

The set of all strategies for player I in T is a finite subset of ω , which is called: Strat_I(T)

Likewise, a natural number c is called a strategy for player I in T if:

 $lq(c) = max(T) + 1 \quad \wedge \quad \forall a[(a \in T \land lq(a) \text{ is orded } \land \exists n[a * < n > \in T]) \rightarrow a * < c(a) > \in T].$

The set of all strategies for player II in T is a finite subset of w, which is called: Strat_{II} (T).

Finally, we introduce the notion of obeying to a strategy. For all a ew, c ew, we define:

> a E_Ic := ∀b [(a⊆b ∧ a ≠ b ∧ lq(b) is even)→(b<lq(c) ∧ a⊆b * <c(b)>)] (i.e.: the finite sequence a is the result of some finite play, in which player I obeys to the strategy given by c).

a E_I c := ∀b[(a⊆b∧a≠b∧lq(b) is odd)→(b<lq(c)∧a⊆b*<c(b)>)] (i.e.: the finite sequence a is the result of some finite play, in which player II obeys to the strategy given by c).

We had to go through all these definitions for the sake of the following simple truth:

16.1.0 Theorem: (Determinacy of finite games)

Let T be a finite subset of w such that $\forall a \forall b [(a \in T \land a \subseteq b) \rightarrow b \in T]$ Let S be a subset of w. Suppose: $\forall c \in Strat_{\pi}(T) \exists a [a is T-complete \land a \in E_{n}c \land S(a)]$ Then: $\exists c \in Strat_{I}(T) \forall a [(a is T-complete \land a \in_{I} c) \rightarrow S(a)].$

The proof goes by induction on $\max\{lg(a) | a \in T\}$ Proof:

> Determine few such that $lq(f) = max(Strat_{II}(T)) + 1$ and: $\forall c \in Strat_{II}$ (IT) [f(c) is T-complete \land f(c) $\in_{II} c \land S(f(c))$] A strategy c for player I may be divided into different parts, each part answering one of the possible first moves of the first player.

Let us consider the finite set $K_{<>}^{T} := \{ i \mid < i > \in T \}$ As in 10.2, we define, for each cew and iew, such that i< lg(c),

> C^{i} := the code number of the *i*-th subsequence of the finite sequence, coded by c.

We claim that:

whatever player I is scheming on this subtree, player I knows how to answer him)

 $\exists i \in K_{\mathcal{T}}^{\mathcal{T}} \forall c \in \text{Strat}_{\pi}(\mathcal{T}) \exists d \in \text{Strat}_{\pi}(\mathcal{T}) [c^{i} = d^{i} \land (f(d))(k) = i]$

For, suppose not (Remark that the statement which we want to prove is a decidable one) We now determine, for each is $K_{<>}^{\Pi}$, $C_i \in Strat_{\Pi}$ (Π) such that: $\forall i \in K_{<>}^{T} \forall d \in Strat_{I}(T) [c^{i} = d^{i} \rightarrow (f(d)(<>) \neq i]$ It is clear that, building $c \in Strat_{II}(T)$ such that: $\forall i \in K_{<>}^{\pi} [c^i = (c_i)^i]$, we find: $\forall i \in K_{<>}^{\pi} [(f(c))(<>) \neq i]$, i.e.: a contradiction.

We determine $i_{o} \in K_{<>}^{T}$ such that $\forall c \in Strat_{II}(T) \exists d \in Strat_{II}(T) [c^{i_{o}} = d^{i_{o}} \wedge f(d))(<>) = i_{o}]$ i, is a safe first move for player I. Let us consider, for each $j \in k_{\langle i_0 \rangle}^T := \{ j | \langle i_0, j \rangle \in T \}$ the game

 $G(T^*, S^*)$, where $T^* := {}^{\langle i_0, j \rangle} T := \{ a | \langle i_0, j \rangle * a \in T \}$ and $S^* := {}^{\langle i_0, j \rangle} S := \{ a | \langle i_0, j \rangle * a \in S \}$ (We relativize the game G(T,S) to the position $\langle i_0, j \rangle$) By our choice of i_0 , we know that

 $\begin{array}{l} \forall c \in \operatorname{Strat}_{I}(T^{*}) \exists a [a is T^{*} - \operatorname{complete} \land a \in_{I} c \land S^{*}(a)] \\ \text{and, as } \max \left\{ \lg(a) | a \in T^{*} \right\} < \max \left\{ \lg(a) | a \in T \right\}, \text{ we may determine} \\ c_{j} \in \operatorname{Strat}_{I}(T^{*}) \text{ such that } \forall a [(a is T^{*} - \operatorname{complete} \land a \in_{I} c) \rightarrow S^{*}(a)] \\ \operatorname{Putting } all \text{ these things together, we find } c \in \operatorname{Strat}_{I}(T) \text{ such that} \end{aligned}$

 $\begin{array}{l} c(<>) := i_{o} \\ \text{and, for all } j \in k_{<i_{o}>}^{m}, \text{ for all } a \in {}^{<i_{o},j>} \pi, \\ c(<i_{o},j>*a) := c_{j}(a) \end{array}$

We easily observe that $\forall a [(a is T-complete \land a E_{IC}) \rightarrow S(a)]$

We should complete this proof by treating, separately, the case: max $\{ lg(a) | a \in T \} < 2$ But this will be left to the reader.

Ø

Remark that, in theorem 16.1.0, we did not impose any condition on the set S. In case S is a decidable subset of w, we may of course prove the theorem by classical joggling with quantifiers. This is an easy method, but not very promising for the kind of problems we are studying.

16.2 A simple example of a spread is σ_{2mon} (cf. 11.0)

It is in this spread that we want to play our first infinite games. Strong nerves will help you, when playing in σ_{2mon} . There is the desiring move via martinging the first 1 in the second

There is one decisive move, viz. mentioning the first 1 in the sequence or which the players I and II are working upon. This move may be done by either one of the two players, as long as

ins move may be done by elliner one of the two players, as long as his opponent has not yet made it. It is possible, in case both players like suspense, that nothing happens.

We then are witnessing an endlessly protracted cold war, in which the first strike is, necessarily, the last one.

We will prove that, in σ_{2mon} , every game is determined.

Before doing so, we reflect, for a moment, on $\text{Strat}_{II}(\sigma_{2mon})$ This is another simple spread, not very different from σ_{2mon} itself: remark that: $\forall re \text{Strat}_{II}(\sigma_{2mon}) \forall m \forall n \mathbb{I}(r(m) \neq 0 \land r(n) \neq 0) \rightarrow m = n].$

For elementary reasons, therefore, $Strat_{\#}(\sigma_{2mon})$ satisfies the conclusion of the fan theorem (cf. 11.4) We want to use the following corollary of the fan theorem (cf. 15.2): Let $\tau \in {}^{\omega}w$ be a fan and $\delta \in {}^{\omega}w$ be such that: $\delta : \tau \rightarrow w$ (cf. 1.9) Then: $A := \int n | n \in \omega | \exists \alpha \in \tau [\delta(\alpha) = n] \}$ is a finite subset of ω , especially: Un[neA v = (neA)] We now redeem our word. 16.2.0 Theorem: Let S be a subset of www. Then: Det(ozmon, S). Proof: Suppose: Yre strat ((Jamon) Ja[a E f A S(a)] Using GAC₁₁ (cf. 1.9), determine $\delta \in W w$ such that $\delta : \text{Strat}_{II}(\sigma_{2mon}) \rightarrow W w$ and: $\forall f \in Strat_{II}(\sigma_{2mon}) [\delta | f \in_{II} f \land S(\delta | f)]$ We now describe a strategy 3 for player I. What will be his first move? He considers $A := \int (\delta | \mathbf{y} | (\mathbf{0}) | \mathbf{y} \in \text{Strat}_{\mathbf{H}} (\sigma_{2 \text{ mon}})$ As we remarked just before theorem 16.2.0, this is a decidable subset of w. Player I distinguishes two possibilities: If $1 \in A$, then 3(<>) := 1If $1 \notin A$, then Z(< 7) := 0Now suppose that the game has been played, for some time, and players I and II have reached, in co-operation, the position $\overline{0}2n = \langle 0, 0, ... \rangle$ (2n times) Player I still has a choice. He considers $A := \{ (\overline{\delta | r}) (2n+1) | r \in \text{Strat}_{II} (\sigma_{2mon}) \}$ This is, again, a decidable subset of w Player I discerns two possibilities: If $\overline{0}2n \neq \langle 1 \rangle \in A$, then $\overline{2}(\overline{0}2n) := 1$ If $\overline{0}2n + \langle 1 \rangle \notin A$, then $\zeta(\overline{0}2n) := 0$ This completes the description of a strategy for player I, as,

in all other cases, he has no choice.

We have to show that this strategy Z which we described, is a winning strategy for player I, i.e. that $\forall \alpha \in \sigma_{2mon} [\alpha \in \sigma_{I} Z \rightarrow S(\alpha)]$ We will do this by proving: Vae Jonn [a EIZ -> fre Strat ((Jonn) [a= Sly]] (We have to reason in this careful way, as we do not know how complicated S is as a subset of ω_{ω}). Let $\alpha \in \sigma_{2mon}$ and $\alpha \in \mathcal{E}_{I} \mathcal{Z}$. First, we establish that. $\forall n [n = \mu p [\alpha(p) \neq \sigma] \rightarrow \exists \gamma e \text{ strat}_{\pi} (\sigma_{2mon}) [\forall m < n [\gamma(\bar{Q}m) = \sigma] \land \delta | \gamma = \alpha]].$ Suppose new and $n = \mu p [\alpha(p) \neq 0]$. We distinguish two possibilities. Case (1): n is odd. Player II has made the decisive move. As player I has been following the strategy Z, we know that: $\forall r \in \text{Strat}_{\pi}(\sigma_{2mon}) [\overline{(\delta | r)} n = \overline{0}n].$ Let $f_0 \in \text{Strat}_{II}(\sigma_{2mon})$ be such that : $\alpha \in_{II} \mathcal{J}_0$. Remark: (SIX) n = On and: SIX En Xo. Therefore: $(\delta | r_0)(n) = \alpha(n) = 1$ and $\delta | r_0 = \alpha$.

Observe that: $y_o(\overline{Q}n) = 1$ and: $\forall m < n [y_o(\overline{Q}m) = 0]$.

Case (1): n is even. Player I has made the decisive move. As he is following the strategy Z, he has done so for the reason that: $\exists y \in \text{Strat}_{II}(\sigma_{2 \mod n}) [(\overline{\delta | y})(n+1) = \overline{\Omega}n * <1 > = \overline{\alpha}(n+1)]$ We now determine $y \in \text{Strat}_{II}(\sigma_{2 \mod n})$ such that $\delta | x = \alpha$

We now determine $f \in \text{Strat}_{II}(\sigma_{2mon})$ such that $\delta | f = \alpha$, and observe that, as $\overline{\alpha}n = \overline{\Omega}n$ and $\alpha \in_{II} f$, also: $\forall m < n [f(\overline{\Omega}m) = 0]$

We now describe how to find, step-by-step, $j \in Strat_{II}(\sigma_{2mon})$ such that $\alpha = Sl_{II}$.

For all n∈w, we say: -if n<μp[α(p)≠0], then: ∀m<n[r(⊡m)=0] -if n=μp[α(p)≠0], then r may be determined completely such that ∀m<n[r(⊡m)=0] ∧ δlr=α. Observe that, for this r: ∀n[(δlr)n=an], i.e.: δlr=α. ⊠ 16.3 The reader may suspect that theorem 16.2.0 generalizes to the other monotonous spreads σ_{3mon}, σ_{4mon},... (cf. 11.19) and it does so, indeed. Before proving it, we first establish a lemma which is also useful for other purposes.
Recall, how we defined, in 9.0, for all τe^w and aew, a decidable subset k^T_a of w by: k^T_a := {n|new| τ(a*<n>)=0}
If τe^w is a spread and τ(a)=0, the set k^T_a is the set of natural numbers by which the finite sequence a may be continued within τ.
16.3.0 Lemma: Let τe^w be a fan and S be a subset of ^w such that:

Then:
$$\exists i \in K_{<>}^{\mathcal{T}} \forall r \in Strat_{II}(\mathcal{T}) \exists \alpha \in \mathcal{T} [\alpha \in_{II} r \land S(\alpha) \land \alpha(0) = i].$$

 $\frac{Proof}{Proof}: \text{ Using } GAC_{11}, \text{ determine } \delta \in {}^{\omega}w \text{ such that } \delta: \text{ Strat}_{II}(\tau) \rightarrow {}^{\omega}w \text{ and}:$ $\forall \gamma \in \text{ Strat}_{II}(\tau) [\delta | \gamma \in \tau \land \delta | \gamma \in I_{II} \gamma \land S(\delta | \gamma)].$ Remark that, as τ is a fan, $\text{ Strat}_{II}(\tau)$ is also a fan. Using the fan theorem (cf. 15.2), we calculate mew such that: $\forall \gamma \in \text{ Strat}_{II}(\tau) \forall \zeta \in \text{ Strat}_{II}(\tau) [\overline{\gamma}m = \overline{\zeta}m \rightarrow (\delta | \gamma)(0) = (\delta | \zeta)(0)]$

> Let $f \in \operatorname{Strat}_{II}(\tau)$. f is a strategy for player II in τ and naturally falls apart into different parts f^i , i $\in k_{<>}^{\tau}$, each part answering one of the first moves that are open to player I. As \tilde{f} m already is sufficient to decide about $(\delta | f) (0)$, we may reason as in the proof of the determinacy of finite games. (theorem 16.1.0) and we claim that:

 $\begin{aligned} \exists i \in K_{<>}^{\tau} \quad \forall j \in Strat_{II}(\tau) \exists Z \in Strat_{II}(\tau) \left[\overline{\gamma^{\iota}} m = \overline{Z^{\iota}} m \wedge (\delta | Z)(0| = i \right] \\ (i.e.: one of the first-level subfans of <math>\tau$ has the property that, whatever player II plans in this subfan, player I knows some answer to it.) \end{aligned}

For, suppose not.

(Remark that the statement which we want to prove is a decidable one; we have to examine only $\{\overline{\gamma}m| f\in \operatorname{Strat}_{II}(\tau)\}\)$ We now determine, for each $i \in K_{<>}^{\tau}$, $f_i \in \operatorname{Strat}_{II}(\tau)$ such that: $\forall i \in K_{<>}^{\tau} \forall Z \in \operatorname{Strat}_{II}(\tau) [\overline{\gamma}^{\tau}m = \overline{Z}^{\tau}m \rightarrow (\delta | Z)(0) \neq i]$ It is clear that, building $f \in \operatorname{Strat}_{II}(\tau)$ such that:

$$\forall i \in k_{<>}^{\tau} [\gamma^{i} = (\gamma_{i})^{i}], \text{ we find} \quad \forall i \in k_{<>}^{\tau} [(\delta|\gamma)(0) \neq i]$$

i.e.: a contradiction

We determine $i \in K_{<>}^{\tau}$ such that $\forall y \in Strat_{I}(\tau) \exists \zeta \in Strat_{I}(\tau) [\overline{y^{i_{o}}}m = \overline{\zeta^{i_{o}}}m \land (\delta | \zeta) | 0] = i_{o}]$ We observe that $\forall y \in Strat_{II}(\tau) \exists \alpha \in \tau [\alpha \in_{II} \gamma \land S(\alpha) \land \alpha(0) = i_{o}]$ and sigh our relief.

Ø

Let $\tau \in {}^{\omega}w$ be a spread and $a \in w$ be such that $\tau(a) = 0$ Then at (cf. 1.2) is also a spread, consisting of those infinite sequences a for which a * a ET. $(a \star \alpha)$ is the infinite sequence which we get by concatenating the finite sequence a and the infinite sequence a, i.e. a * a é a n Vn [a * a [lg(a) + n] = a(n)]) The spread $a\tau$ is the result of relativizing the spread τ to the position a. Suppose, in addition, that S is a subset of ww such that: $\forall j \in Strat_{\pi}(\tau) \exists \alpha \in \tau [\alpha \in_{\Pi} j \land S(\alpha)].$ Let us call $a \in w$ such that T(a) = 0 a position which is S-safe-for-player-I lq(a) is even $\wedge \forall \gamma e Strat_{\mathbf{I}}(\alpha \tau) \exists \alpha \in \alpha \tau [\alpha \in_{\mathbf{I}} \gamma \land S(\alpha * \alpha)]$ if: We have seen in lemma 16.3.0, that: Jie K^T ∀je K^T [<i,j> is S-safe-for-player-I]. We easily generalize this to the following conclusion: Va[(t(a)=0 ∧ a is S-safe-for-player-I] -> ∃ie ka Vje Ka*<i>[a*<i,j> is S-safe-for-player-I]]. 16.4 Theorem: Let S be a subset of ww and $m \in w, m \gg 2$. Then: Det (ommon, S). Suppose: Vjestrat II (Jmmon) Jae Jmmon [a EI J A S(a)] Proof : Using GAC₁₁ (cf. 1.9), determine $\delta \in \mathcal{W} \omega$ such that $\delta : \text{Strat}_{II}(\sigma_{\text{inmon}}) \rightarrow \mathcal{W} \omega$ and: Vrestrat (ommon) [Slreommon & Slreit & S(Slr)] Let $S^* := \{ \alpha \mid \alpha \in \sigma_{mmon} \mid \exists r \in Strat_{II}(\sigma_{mmon}) \mid \alpha = \delta \mid r \} \}$ Remark that $S^* \subseteq S$. We advise player I to go, each time, to the rightmost S*-safe.

position, but we will refine this advice in a moment.

The proof that such a strategy will bring victory to player I, is by induction to m.

Suppose, therefore, that m>2 and that the theorem has been proved for all m', m'<m (The case m=2 has been taken care of in theorem 16.2.0). Let us make a start with the description of the strategy Z, which we want to commend to player I. Using the fan theorem (which is an elementary theorem, in the case of these monotonous fans, cf. theorem 11.4) we find kew such that: $\forall y \in \text{Strat}_{II}(\sigma_{mmon}) \forall z \in \text{Strat}_{II}(\sigma_{mmon}) [\bar{y} k = \bar{z} k \rightarrow (\delta | y) | 0) = (\delta | z) | 0]$ Following the proof of lemma 16.3.0, we distinguish two cases: Case (1): 31>0 Yrestrat (mmon) 3Ze Strat (mmon) [J' k= Z' k (8/2)/0=1] In this case, we choose such a number, say i, and we determine: $\chi(<>) := i_0$ Remark that, after the answering move by player II, we reach a position $\langle i_0, j \rangle$ such that $\forall \gamma \in Strat_{II}(\langle i_0, j \rangle \sigma_{mmon}) \exists \alpha \in \langle i_0, j \rangle \sigma_{mmon} [\alpha \in I \gamma \land S(\langle i_0, j \rangle * \alpha)]$ Observe that <io,j>Gmmon is isomorphic to some om'mon, m'<m Applying the induction hypothesis we know how to complete the construction of Z as a winning strategy for player I. Case(11) - Case(1)

> Now, it seems that player I need not hesitate very long: we determine: $\zeta(<>) := 0$ From lemma 16.3.0 we know that:

 $\forall j \in Strat_{II}(\sigma_{mmon}) \exists Z \in Strat_{II}(\sigma_{mmon}) [\overline{j} \circ k = \overline{Z} \circ k \land (\delta[Z](0)=0]$ It is clear that player I has made a sensible first move. But he does something more. He is a very human being and he wants to know what player II would have done, should his (player I's) first move have been different. Not catching player I's intentions, player I does not want to tell, estimating that, in any case, a bit of mystery will add to his reputation

Player I, therefore, has to make a conjecture Chewing on the proof of lemma 16.3.0, he finds μ_0 in Strat_{II} (σ_{mmon}) such that:

 $\forall i > 0 \quad \forall f \in \text{Strat}_{II}(\sigma_{mmon}) [f^i = (\mu_o)^i \rightarrow (\delta | f | (0) \neq i]$ and, therefore:

$$\forall \mathbf{y} \in \mathrm{Strat}_{\mathrm{II}} (\sigma_{\mathrm{mmon}}) \left[\forall i > 0 \left[\mathbf{y}^{i} = (\mu_{o})^{i} \right] \rightarrow (\delta(\mathbf{y})(0) = 0 \right]$$

Player I now suspects that player I would have answered a possible move to <i>, i>0, by following the strategy $(\mu_0)^{i}$

In reality, however, his first move is to <0>. After the answering move by player I we reach a position <0,j>.

Let
$$\lambda \in \text{Strat}_{II}({}^{<0}, j^{>} \sigma_{mmon})$$

Determine $\gamma \in \text{Strat}_{II}(\sigma_{mmon})$ such that:
 $\forall i > 0 [\gamma^{i} = (\mu_{o})^{i}] \land \gamma(<) = j \land {}^{<0}, j^{>} \gamma = \lambda$
and remark: $(\delta | \gamma) \in_{II} \gamma \land \delta | \gamma \in <0, j > \lambda$

Let us define:

$$S_{\langle 0,j\rangle} := \left\{ \alpha \mid \alpha \in {}^{\langle 0,j\rangle} \sigma_{m \, mon} \mid \exists \gamma \in \text{Strat}_{II}(\sigma_{m \, mon}) \right[\\ [\gamma(\langle \gamma) = j \wedge \forall i > 0[\gamma^i = (\mu_0)^i] \wedge \delta[\gamma = \langle 0,j > \pi \alpha] \right\}$$
observe that:

We observe that:

$$\forall \lambda \in Strat_{II}(\langle 0,j \rangle \sigma_{mmon}) \exists \alpha \in \langle 0,j \rangle \sigma_{mmon}[\alpha \in I \lambda \land S_{\langle 0,j \rangle}(\alpha)]$$

We, of course, do understand what player I is aiming at, as we witnessed his wrestling in theorem 16.2.0. He wants to ensure that, if α is a game played according to his strategy Z, we are able to find $\mu \in \text{Strat}_{II}(\sigma_{mmon})$, such that: $\alpha = \delta l \mu$. He will be successful if he continues his strategy in the way he has begun it. While making Z, he chooses, for each new such that $\overline{O}(2n+1)$ belongs to $\overline{Z}_{I}(Z)$, a strategy μ_{n} from $\overline{Z}_{II}(\sigma_{mmon})$, such that:

(1)
$$\overline{\mathbb{Q}}(2n+1) \in \Sigma_{\mathbb{I}}(\mu_n)$$

(11) As a conjecture about the strategy used by player \mathbb{I} ,
 μ_n extends μ_{n-1} , i.e.:
 $\forall a[(\sigma_{mmon}(a)=0 \land lg(a)<2n \land Q \notin a) \rightarrow {}^{a}\mu_n = {}^{a}\mu_{n-1}]$
(111) $\forall y \in \text{Strat}_{\overline{\mathbb{I}}}(\sigma_{mmon})[\forall a[(\sigma_{mmon}(a)=0 \land lg(a)\leq 2n+1 \land Q \notin a) \rightarrow]$
 $\rightarrow {}^{a}y = {}^{a}\mu_n] \longrightarrow \overline{(\delta |y|}(2n+1) = \overline{\mathbb{Q}}(2n+1)]$
(Player I has made the move from $\overline{\mathbb{Q}}^{2n}$ to $\overline{\mathbb{Q}}(2n+1)$, only
because he had no other safe possibility. This is why he
may determine μ_n such that (111) holds.).

We define, for each new, jew such that $\tilde{Q}(2n+1) * < j > \in \Sigma_{I}(Z)$:

$$\begin{split} S_{\overline{Q}(2n+1)*} &:= \{\alpha \mid \alpha \in \overline{Q}^{(2n+1)*} \sigma_{mnon} \mid \exists y \in Strat_{\overline{II}}(\sigma_{mmon}) [\\ [\forall \alpha [(\sigma_{mmon}(\alpha)=0 \land lg(\alpha) \leq 2n+1 \land Q \notin \alpha) \rightarrow \alpha_{y} = \alpha_{\mu_{n}}] \\ \land \delta | y = \overline{Q}(2n+1)* * \alpha] \}. \end{split}$$

And we observe that:

$$\forall \lambda \in \text{Strat}_{I} \left(\overset{\underline{O}(2n+1)*$$

We now see how player I is going to win. He is trying to leave the spine of σ_{mmon} as soon as possible. While building, in co-operation with player I, a sequence $\alpha \in \sigma_{mmon}$, he conjectures more and more about the strategy $\mu \in \text{Strat}_{II}(\sigma_{mmon})$ which is to fulfil: $\alpha = \delta I \mu$. When arriving at $\overline{\alpha} 2n$ he conjectures the value of μ on at least all positions of length $\leq 2n$. As soon as the play, either by his own choice or by the command of player II, leaves the spine of σ_{mmon} , player I knows, using the induction hypothesis, how to complete α and μ . In any case, both α and μ are growing, step-by-step, and, observing them, we establish: $\forall h \ \overline{\alpha} n = (\delta | \mu | n \ J, i.e.: \alpha = \delta | \mu$. We abstain from a formal definition of ζ , and we guess that the reader will not deplore this decision.

16.5 Player I, having lost his fear of player II, is brooding on tactics to be used in fans other than the monotonous fans, which, now that he has seen through them, do not attract him any more. It does not seem easy to generalize the proof of theorem 16.4 Player I was successful in the monotonous fans, because, while playing a run a in such a fan, he was able to guess large parts of the strategy which player I appeared to follow. As he only conjectured on the possible behaviour of player II in parts of the monotonous fan that they could not enter any more, during the present play, his dreams would never be disturbed by reality. In general, however, he has to base his moves on a supposition concerning the future doings of player I, also at some positions which they still might come to pass, in the further course of the game. Player I might be mistaken, therefore, in his assumptions regarding player II, the more so, as player II will try to thwart his expectations. thus, we have to go a new way. Happily, we learnt a lesson from the classical adventures of the axiom of determinacy. We first try to prove it, in case the payoff-set S is rather simple (in the sense of the hyperarithmetical hierarchy). In this section, we will come ahead with Gale and Stewart 1953, and prove, for fans in general, the determinacy of open and of closed sets. 16.5.0 Theorem: Let $\tau \in {}^{\omega} w$ be a fan and S be a subset of ${}^{\omega} w$ such that $S \in \Sigma_{1}^{\circ}$. Then: Det(T,S). Proof: Using theorem 6.2, determine a decidable subset A of ω such that: $\forall \alpha [S(\alpha) \rightleftharpoons \exists m [\exists m \in A]].$ Suppose that: $\forall \gamma \in Strat_{\pi}(\tau) \exists \alpha \in \tau [\alpha \in \pi \gamma \land S(\alpha)].$ Then: $\forall r \in Strat_{II}(r) \exists x \in T \exists m [x \in I \land \overline{x} m \in A]$: Remark, as in the proof of lemma 16.3.0, that, as t is a fan, Strat_r (r) is also a fan. Using the fan theorem (cf. 15.2.0) we calculate $M \in \omega$ such that: $\forall r \in Strat_{\Pi}(\tau) \exists \alpha \in \tau \exists m [\alpha \in_{\Pi} r \land \overline{\alpha} m \in A \land m \leq M]$ We define: $T := \int a | \tau(a) = 0 \land lg(a) \leq M \}$ and: $A^* := \{a \mid \exists b [a \leq b \land b \in A] \}$

We observe: $\forall c \in Strat_{\pi}(T) \exists a [a is T-complete \land a \in A^*]$

The finite game $G(T, A^*)$ is determined, according to theorem 16.1.0, and we calculate $c \in Strat_I(T)$ such that $\forall a[(a \text{ is } T-complete \land a \in_I c) \rightarrow a \in A^*]$ Remark that for all $f \in Strat_I(T)$ which agree with c on T: $\forall a \in T[\alpha \in_I f \rightarrow \exists m \in A^*]$, and: $\forall a \in T[\alpha \in_I f \rightarrow S(\alpha)]$.

- 16.5.1 <u>Theorem</u>: Let $\tau \in {}^{\omega}w$ be a fan and S be a subset of ${}^{\omega}w$ such that $S \in \Pi_1^o$. Then: Det (τ, S) .
 - - \boxtimes
- ^{1b.b} The gods are smiling upon us, at our next undertaking. The determinacy of Π_2^o and Σ_2^o - sets has to be conquered, now.
- 16.6.0 Theorem: Let $\tau \in {}^{\omega}w$ be a fan and S be a subset of ${}^{\omega}w$ such that $S \in \Pi_2^o$. Then: Det (τ, S) .
 - <u>Proof</u>: Using theorems 6.12 and 6.2, we determine a sequence $A_0, A_1, ...$ of decidable subsets of w such that: $\forall \alpha [S(\alpha) \neq \forall n \exists m [\forall m \in A_n]]$ Suppose that: $\forall \gamma \in Strat_{II}(\tau) \exists \alpha \in \tau [\forall \in_{II} \gamma \land S(\alpha)].$ Using GAC_{11} , we determine $\delta \in w w$ such that: $\delta : Strat_{II}(\tau) \rightarrow w w$ and $\forall \gamma \in Strat_{II}(\tau) [\delta | \gamma \in \tau \land \delta | \gamma \in_{II} \gamma \land S(\delta | \gamma)].$ As τ is a fan, $Strat_{II}(\tau)$ is also a fan, and, applying the fan theorem (cf. 15.2) we determine a sequence $m_0, m_1, ...$ of natural

numbers such that $\forall n \forall y \in \text{Strat}_{II}(\tau) \exists m[m \leq m_n \land (\delta | y) m \in A_n]$ Next, we define a subset S* of www by: $S^* := \{ \alpha \mid \forall n \exists m [m \leq m_n \land \exists m \in A_n] \}.$ We observe that $S^* \subseteq S$ and that. $\forall \gamma \in Strat_{\pi}(\tau) \exists \alpha \in \tau [\alpha \in \pi \gamma \land S^*(\alpha)]$. As in the proof of theorem 16.5.1 we find $y \in \text{Strat}_{I}(\tau)$ such that $\forall a [(\tau(a) = 0 \land lg(a) \text{ is even } \land a \in \Sigma_{\tau}(\gamma)) \rightarrow a \text{ is } S^*-safe-for-player-I].$ Recall that a ew such that r(a)=0 is called S*-safe-for-player-I if: lq(a) is even $\wedge \forall \gamma \in Strat_{\pi}(a_{\tau}) \exists \alpha \in a_{\tau}[\alpha \in \pi_{\pi} \land S^{*}(\alpha * \alpha)].$ Remark that: \full Ha[(T(a)=0 \n a is S*-safe-for-player-I \n lg(a)>m_n) → 3b[a≤b \n b \n h_n] Therefore: $\forall \alpha \in \tau [\alpha \in \tau_{T} \rightarrow \forall n \exists m [m \leq m, n \forall m \in A_{n}]].$ and: ∀aer[aEIY → S(a)]. We might have concluded the proof also by perceiving that S*ell. and then referring to theorem 16.5.1. The proof of the determinacy of Σ_2^o -sets will be in two steps. First, we make a remark which improves on lemma 16.3.0. Let $\tau \in {}^{\omega}\omega$ be a spread and S be a subset of ${}^{\omega}\omega$. We define a subset $W_{\tau}(S)$ of ω by: $W_{\tau}(S) := \{ \alpha \mid \tau(\alpha) = 0 \land lq(\alpha) \text{ is even } \forall \gamma \in \text{Strat}_{\pi}(\alpha \tau) \exists \alpha \in \alpha \tau[\alpha \in \mu \gamma \land S(\alpha * \alpha)] \}$ $W_{\tau}(S)$ is the set of all positions in τ which are of even length and S-safe-for-player-I. 16.6.1 Lemma: Let $\tau \in {}^{\omega} w$ be a fan and S_0, S_1, \dots be a sequence of subsets of ${}^{\omega} w$ such that: $\forall re Strat_{\Pi}(r) \exists \alpha er[\alpha e_{\Pi} r \land \exists n[S_n(\alpha)]].$ Then: $\forall y \in \text{Strat}_{II}(\tau) \exists a[\tau(a)=0 \land a \in \Sigma_{II}(\gamma) \land \exists n[a \in W_{\tau}(S_n)]].$ <u>Proof</u>: Using GAC₁₁, determine $\delta \in W w$ such that δ : Strat_{II}(τ) $\rightarrow W w$ and

<u>Proof</u>: Using GAC₁₁, determine δe^ww such that δ: Strat_{II}(τ) → ^ww and $\forall y \in Strat_{II}(\tau) [\delta | y \in \tau \land \delta | y \in I_{II} Y \land \exists n [S_n(\delta | y)]$ Remark that, as τ is a fan, $Strat_{II}(\tau)$ is also a fan. Let $y \in Strat_{II}(\tau)$. Using the fan theorem, (cf. 15.2) we calculate mew, new such that: $\forall Z \in Strat_{II}(\tau) [Zm = Zm \rightarrow S_n(\delta | Z)]$ We consider Jm.

 \overline{y} m is a finite initial part of a strategy for player \mathbb{I} .

We define a subset B of w by:

$$B := \{a \mid \tau(a) = 0 \land lg(a) \text{ is even } \land m \leq a \\ \land \forall b [(a \leq b \land a \neq b \land lg(b) \text{ is even}) \rightarrow (b < m \land a \leq b \ast < f(b))] \}.$$

(When arriving at a position in B, player II has to make up his mind, because, from now on, his moves are not determined any more by $\overline{f}m$). When we choose, for any member a of the finite set B, a strategy Z_a in $\operatorname{Strat}_{II}(^a\tau)$, there exists exactly one strategy Z in $\operatorname{Strat}_{II}(\tau)$ such that $\overline{Z}m = \overline{f}m \wedge \forall a \in BI \ ^a Z = Z_a]$. Remark that: $\forall Z \in \operatorname{Strat}_{II}(\tau) [\overline{Z}m = \overline{f}m \rightarrow \exists a \in BI \ \delta | Z \in a]]$. Using the fan theorem, we calculate pew such that p > m and. $\forall Z \in \operatorname{Strat}_{II}(\tau) \forall h \in \operatorname{Strat}_{II}(\tau) [(\overline{Z}m = \overline{h}m = \overline{f}m \wedge \overline{Z}p = \overline{f}p) \rightarrow \forall a \in B[\delta | Z \in a \neq \delta | h \in a]]$ (i.e.: for any $Z \in \operatorname{Strat}_{II}(\tau)$ such that $\overline{Z}m = \overline{f}m$, it is sufficient to know $\overline{Z}p$, in order to decide which member of B $\delta | Z$ will pass through).

Let
$$Z \in \text{Strat}_{II}(\tau)$$
 such that $\overline{Z}m = \overline{\gamma}m$
 \overline{Z} , $a \in B$, \overline{Z} ,

Reasoning exactly as in the proof of lemma 16.3.0, we conclude: $\exists a \in B \forall z \in Strat_{I}(t) [\overline{z}_{m} = \overline{\gamma}_{m} \rightarrow \exists \eta \in Strat_{I}(t) [\overline{\eta}_{m} = \overline{\gamma}_{m} \land A = \overline{\gamma}_{m} \land B = \overline{\gamma}_{p} \land S | \eta \in a].$

Calculating such a number, a, we observe: $\forall Z \in Strat_{II}(a_{T}) : \exists X \in a_{T}[X \in E_{II} Z \land S(a * \alpha)]$ i.e.: $a \in W_{T}(S_{n})$.

X

16.6.2 Theorem: Let $\tau \in {}^{\omega}\omega$ be a fan and S be a subset of ${}^{\omega}\omega$ such that $S \in \mathbb{Z}_2^{\circ}$. Then: Det (τ, S) .

<u>Proof</u>: Using theorem 6.12 we determine a sequence S_0, S_1, \dots of subsets of ^ww such that $\forall h [S_n \in \Pi_1^o]$ and $S = \bigcup_{n \in \omega} S_n$ Suppose that: $\forall f \in Strat_{\Pi}(\tau) \exists \alpha \in \tau [\alpha \in_{\Pi} f \land S(\alpha)]$ i.e.: $\forall f \in Strat_{\Pi}(\tau) \exists \alpha \in \tau [\alpha \in_{\Pi} f \land S(\alpha)]$.

Using lemma 16.6.1, we observe that:

 $\begin{array}{l} \forall f \in \operatorname{Strat}_{II}(t) \exists a [\tau(a) = O \land a \in \Sigma_{II}(f) \land \exists n [a \in W_{\tau}(S_n)]] \\ \text{Reading through the proof of theorem 16.5.0 we see that we } \\ \text{may use it to find } f \in \operatorname{Strat}_{I}(\tau) \ \text{such that:} \end{array}$

$$\forall \alpha \in \tau \left[\alpha \in_{\mathbf{I}}(y) \rightarrow \exists m \exists n \left[\overline{\alpha} m \in \overline{W_{\tau}}(S_n) \right] \right]$$

(We never used the fact that the subset A of w, which occurs in that proof, is a decidable subset of w)

Assuming the grateful role of player I, we obey to this strategy χ , and call the play that now develops: α . Quietly, we make our moves, but when we come up to a position $\overline{\alpha}m$, such that $\exists n[\overline{\alpha}m \in W_{\mathcal{T}}(S_n)]$, we ask some time for reflection. We calculate new such that $\overline{\alpha}m \in W_{\mathcal{T}}(S_n)$ and we observe that $\forall \chi \in \operatorname{Strat}_{I}(\overline{\alpha}m \chi) \exists \beta \in \overline{\alpha}m \chi [\beta \in I_{I}\chi \land S_n(\overline{\alpha}m * \beta)]$. As $S_n \in \Pi_1^\circ$, we recall theorem 16.5.1 and find a strategy $Z \in \operatorname{Strat}_{I}(\overline{\alpha}m \chi)$ such that $\forall \beta \in \overline{\alpha}m \chi [\beta \in I_{I}\chi \rightarrow S_n(\overline{\alpha}m * \beta)]$. It seems wise to be obedient, from now on, to this strategy Z, and we do so. Continuing the play, we are sure that α will belong to $S_n \subseteq S$, and this is happiness.

16.7 The reader who is classically educated, will expect a long series of further adventures in determinacy. But he will be disappointed. A slight extension of the method used in theorem 16.6.2, solves the problem once and for all.
- 16.7.0 Theorem: Let $\tau \in {}^{\omega}\omega$ be a fan and S be a subset of ${}^{\omega}\omega$ such that $S \in \Sigma_1^1$. Then: Det (τ, S) .
 - <u>Proof</u>: Using theorem 10.1 we determine a decidable subset A of w such that $\forall \alpha [S(\alpha) \neq \exists \beta \forall m [\langle \bar{\alpha}m, \bar{\beta}m \forall e A]]$. Suppose that: $\forall \gamma \in \text{Strat}_{II}(\tau) \exists \alpha \in \tau [\alpha \in_{II} \gamma \land S(\alpha)]$. We again imagine ourselves to be player I, for we do not like games that we do not win. We define, for each new, a subset S_n of ^ww by:

 $S_n := \{ \alpha \mid \exists \beta \forall m [\langle \overline{\alpha}m, \overline{\beta}m \rangle \in A \land \beta(0) = n] \}.$ and we observe that $S = \bigcup_{n \in W} S_n$.

 $\forall y \in \text{Strat}_{II}(\tau) \exists a [\tau(a) = 0 \land a \in \Sigma_{II}(y) \land \exists n [a \in W_{\tau}(S_n)]].$ and, using the method of the proof of theorem 16.5.0, we find a strategy $y_0 \in \text{Strat}_{T}(\tau)$ such that:

 $\forall \alpha \in \tau [\alpha \in_{\mathbf{I}} \gamma_{o} \rightarrow \exists m \exists n [a m \in W_{\tau} (S_{n})]].$

We now start the game, producing, in co-operation with player II, a play α_{i} , while keeping to the strategy γ_{o} . When we come up to a position $\overline{\alpha}m_{o}$ such that $\exists n [\overline{\alpha}m_{o} \in W_{T}(S_{n})]$ We ask for a break.

> Remark that we may assume that $m_0 > 0$. This follows by a short reflection on the proof of lemma 16.6.1 We may slightly modify the definition of the set B, mentioned there, to ensure that all numbers in B have a positive length.

We calculate no such that āmoe W_τ (S_{no}) and we observe that τ(ām)=0 n mois even n ∀reStrat_{II}(ā^{mo}τ)∃ζe^{āmo}τ[ζE_{II}r nS(āmo*ζ)] Therefore: ∀reStrat_{II} (ā^mτ) ∃ζe^{āmo}τ ∃β[ζE_Ir n n∀k[<āmo*ζk, βk> eA] n β(0)= no]. Especially: <<a(0)>, < no>>> eA.

We get it into our head, to produce, while α develops, a sequence $\beta \in {}^{\omega}\omega$ such that: $\forall m [\langle \overline{\alpha}m, \overline{\beta}m \rangle \in A]$.

We start this project by putting: $\beta(0) := n_0$.

We define, for each $b \in w$, a subset S(b) of w w by: $S(b) = \{ \alpha \mid \exists \beta \forall m [\langle \bar{\alpha}m, \bar{\beta}m \rangle \in A \land \beta \in b >] \}$

Remark that: $\forall n [S(\langle n \rangle) = S_n]$ and: $\forall b [S(b) = \bigcup_{n \in \omega} S(b * \langle n \rangle)]$

It will be clear that we have to repeat ourselves.

Arguing like we did before we started the play α , we find a strategy $\gamma_1 \in \text{Strat}_{I}(\overline{\alpha}_{n_0T})$ such that:

 $\forall \mathbf{z} \in \overline{\mathbf{z}}_{m_0} \tau \left[\mathbf{z} \in \mathbf{z}_1 \xrightarrow{\rightarrow} \exists \mathbf{m} \exists \mathbf{n} \left[\overline{\mathbf{z}}_{m_0} * \overline{\mathbf{z}}_{m_0} \in W_{\mathcal{T}}(S(\langle n_0 \rangle * \langle \mathbf{n} \rangle)) \right]$ We continue the play α , keeping ourselves to this strategy \mathbf{z}_1 , till me reach, in co-operation with player II, a position $\overline{\alpha}_m$, such that $\mathbf{m}_1 > \mathbf{m}_0$ and $\mathbf{z} = \exists \mathbf{n} \left[\overline{\alpha}_m \in W_{\mathcal{T}}(S(\langle n_0 \rangle * \langle \mathbf{n} \rangle)) \right]$ We calculate \mathbf{n}_1 such that $\overline{\alpha}_m \in W_{\mathcal{T}}(S(\langle n_0 \rangle * \langle \mathbf{n}_1 \rangle))$, observe

that $\langle \langle \alpha(0), \alpha(1) \rangle, \langle \beta(0), n_1 \rangle \rangle \in A$ and, confidently, put $\beta(1) = n_1$

And thus we go on.

While playing α , we find a sequence m_0 , b_0 , m_1 , b_1 , of natural numbers such that:

(1)
$$\forall k [m_{k+1} > m_k \land lq(b_k) = k+1 \land b_{k+1} \subseteq b_k]$$

(1) $\forall k [\bar{\alpha}m_k \in W_r(S(b_k))]$

In order to move from $\overline{\alpha}m_k$ to $\overline{\alpha}m_{k+1}$, we use a strategy J_{k+1} which we find by an application of lemma 16.6.1 Finally, we consider the sequence $\beta \in \omega_w$ that fulfils: $\forall k [\overline{\beta}(k+1) = b_k]$ and we observe that: $\forall n [< \overline{\alpha}n, \overline{\beta}n > eA]$, i.e.: $S(\alpha)$ We hold a small reception, to celebrate our victory.

Actually, we have nothing left to wish for:

16.7.1 Theorem: (Determinacy of games in finitary spreads)
Let
$$t \in {}^{\omega}w$$
 be a fan and S be a subset of ${}^{ij}w$
Then: Det(t,s).

Suppose that $\forall \gamma \in Strat_{\pi}(\tau) \exists \alpha \in \tau [\alpha \in \pi Y \land S(\alpha)].$ Proof: Using GAC_{11} , determine $\delta \in \mathcal{W}_{W}$ such that $\delta : Strat_{II}(T) \rightarrow \mathcal{W}_{W}$ and $\forall y \in Strat_{\pi}(\tau) [\delta | y \in \tau \land \delta | y \in \pi Y \land S(\delta | y)].$ Define a subset S* of ^ww by: $S^* = \int \alpha | \exists \gamma \in Strat_{\pi}(\tau) [\delta | \gamma = \alpha]$ Observe that $S^* \subseteq S$ and : $\forall y \in Strat_{\Pi}(\tau) \exists \alpha \in \tau [\alpha \in_{\Pi} \tau \land S^*(\alpha)].$ Moreover, S* is strictly analytical and therefore, belongs to Σ_1^1 (cf. 10.7) Applying theorem 16.7.0 we find $y \in \text{Strat}_{\tau}(\tau)$ such that Vaer[a E_IY → S*(a)]. This satisfies us. 16.8 Theorem 16.7.1 admits of a minor extension. Suppose that $\tau \in {}^{\omega}\omega$ is a spread which fulfils the condition: $\forall a [(\tau(a)=0 \land lq(a) \text{ is odd}) \rightarrow K_{\alpha}^{\tau} \text{ is finite}].$ t need not be a fan. When a game $G(\tau, S)$ is enacted in the spread τ , a move by player $I\!I$ is always the result of a choice among finitely many possibilities, whereas player I may be offered, now and then, an infinite list of alternatives to choose from. It is easy to see that $Strat_{II}(t)$ is a finitary spread. Assume that S is a subset of ww such that $\forall \gamma \in Strat_{II}(\tau) \exists \alpha \in \tau [\alpha \in_{II} \gamma \land S(\alpha)]$ As usual, we determine, with the help of GAC_{11} , $\delta \in {}^{\omega}\omega$ such that: $\delta: \operatorname{Strat}_{\Pi}(\tau) \to {}^{\omega} {}^{\omega}$ Using the fan theorem, we observe that, for each new: $\{ (\delta|\chi) \mid \chi \in \text{Strat}_{\pi}(\tau) \}$ is a finite set. Therefore, the range of the function δ is but a limited part of the spread τ . Working steadily, we find $\tau^* \in {}^{\omega}\omega$ such that: (1) ?* is a finitary spread. (11) T^* is a subspread of τ (111) $\forall a [(\tau^*(a)=0 \land lg(a) \text{ is odd}) \rightarrow K_a^{\tau^*} = K_a^{\tau}]$ (iv) $\forall r \in \operatorname{Strat}_{\pi}(\tau) [\delta | r \in \tau^*]$ Player I is able to ensure that any play in τ is actually in τ^* , and,

of course, he resolves to do so.

This restraint pays itself, because, now, theorem 16.7.1 applies, and player I will steer by the winning strategy that this theorem finds him

Finally, we ask ourselves if the above-mentioned condition is necessary: Suppose that $\tau \in {}^{\omega}\omega$ is a spread such that: for all subsets S of ${}^{\omega}\omega^*$ Det (τ, S) (If the huge quantifier for all subsets S of ${}^{\omega}\omega^*$ worries you, you may safely replace it by: for all $S \in \mathbb{Z}_{+}^*$ (cf. 16.7)) Are we allowed to infer that $\forall a[(\tau(a)=0 \land lg(a) \text{ is odd}) \rightarrow K_a^T \text{ is finite}]?$ We are not, for example, in the extreme case that player I never has a choice, i.e.: if $\forall a[(\tau(a)=0 \land lg(a) \text{ is even}) \rightarrow K_a^T \text{ has exactly one element}].$ But it seems reasonable to require from τ that: $\forall a[\tau(a)=0 \rightarrow K_a^T \text{ has at least two elements}]$, so that there are no compulsory moves in τ . Now, the conclusion in question may be justified, as follows: We treat an exemplary case: Suppose that: $0 \in K_{\leq \tau}^{\tau}$, $1 \in k_{\leq \tau}^{\tau}$, We prove that $k_{\leq \tau}^{\tau}$ is a finite set. Let $\gamma \in \sigma_{2mon}$. We define a subset S_j of ${}^{\omega}\omega$ by: Sump [Gallow] = [Gall

 $S_{\gamma} := \left\{ \alpha \mid (\alpha(0) = 0 \land \forall p \leq \alpha(1) [\gamma(p) = 0] \right\} \lor (\alpha(0) = 1 \land \exists p [\gamma(p) \neq 0]) \right\}$ Remark that: $\forall \eta \in Strat_{II}(\tau) \exists \alpha \in \tau [\alpha \in_{II} \gamma \land S(\alpha)] :$

Let
$$\eta \in \text{Strat}_{II}(\tau)$$

Determine: $\alpha(0) := 0$ if $\forall p \le \eta(\langle 0 \rangle) [\gamma(p) = 0]$
 $:= 1$ if not

Therefore, we may find $Z \in \text{Strat}_{I}(\tau)$ such that: $\forall \alpha \in \tau [\alpha \in I_{I} Z \rightarrow S(\alpha)]$ Consider Z(<>), and distinguish two cases:

(1)
$$Z(<>) = 0$$
, then: $\forall q \in K_{<0>}^{\ell} \forall p [p \le q \rightarrow g(p) = 0]$
(11) $Z(<>) = 1$, then: $\exists p [g(p) \neq 0]$

We are able to make this decision for every $y \in \sigma_{2mon}$. Using GCP, we calculate $N \in \omega$ such that: $\forall y \in \sigma_{2mon} [\overline{y}N = \overline{Q}N \rightarrow \forall q \in k_{<o}^{\tau}, \forall p [p \le q \rightarrow y(p] = 0]$ (The alternative possibility immediately leads to a contradiction.) We remark that: $\forall q \in k_{<o}^{\tau} [q \le N]$, and $k_{<o}^{\tau}$ is a finite set.

Observe that the sets S_{f} , which occurred in this proof, are only Σ_{2}° . The results of this section improve upon our refutation of CRP* in 15.1 and may be related to the discussion in 15.4. 17 APPENDIX: STRANGE LIGHTS IN A DARK ALLEY.

We met with Ignorance, during our long travel, on more than one occasion. Living in the modern age, we should ask ourselves, if our failure to fight it down is not explained by the poorness of our equipment. It might be that the axioms of intuitionistic analysis, as we paraded them in chapter 1, do not decide some of the questions that keep us awake. We should jump into metamathematics.

Much work has been done on the metamathematics of intuitionistic analysis, but, mostly, classical interpretations of intuitionistic formal systems were looked for, and found.

Therefore, the results of this discipline have to be welcomed with caution, approximately, like the findings of a Japanese professor in Netherlandic studies, on reading closely a Dutch poem.

Intuitionism should develop its own metamathematics, but, until now, perhaps because of its famous distrust of logic, it has done so only with great reluctance, and very partially.

Great things will not be done in this chapter. We meditate, briefly, on an agonizing problem that we are carrying with us since chapter 10, viz., whether $A_1^1 \preceq E_1^1$ The classical devil is prepared to sell us a NO to this question if we only give up some very tiny part of our soul, it does not seem to matter which one. We try not to listen to him.

The light that comes from adding semi-classical assumptions to the axioms of intuitionistic analysis, is artificial light, and personally, we prefer to stumble under the twinkling of the stars, although there are but few of them.

17.0 We first consider a generalized form of Markov's principle:

GMP $\forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]].$

We discussed GMP already, just after theorem 5.15, and have seen, in theorems 5.16-21 other possible formulations of it.

GMP also occurs as the last formula of <u>Kleene</u> and <u>Vesley</u> 1965 and is the subject of that book's section \overline{N} . 18.2

Many (weaker) versions of it, and their relation to intuitionistic arithmetic have been studied, mainly by classical methods, cf. <u>Troelstra</u> 1973.

We remarked, in 6.15, that acceptance of GMP would have saved us the trouble of establishing the arithmetical hierarchy the way we did it in chapter 7.

Even the proud hyperarithmetical hierarchy shrivels - when touched by GMPinto a rather obvious phenomenon

17:00 Remark: If
$$A_1^4 \leq E_1^4$$
, then $\neg GMP$
Proof: Suppose $A_1^4 \leq E_1^4$, i.e.: $A_1^4 \in \Sigma_1^4$
Then also: $\{\alpha \mid \forall \gamma \exists n [\alpha(\langle an, \bar{\gamma}n \rangle) \neq 0]\} \in \Sigma_1^4$
Using theorem 10.1 and AC_{oo} we find $\beta \in \omega_w$ such that:
 $\{\alpha \mid \forall \gamma \exists n [\alpha(\langle an, \bar{\gamma}n \rangle) \neq 0]\} = \{\alpha \mid \exists \gamma \forall n [\beta(\langle an, \bar{\gamma}n \rangle) = 0]\}$
Specializing, we find: $\forall \gamma \exists n [\beta(\langle \beta n, \bar{\gamma}n \rangle) \neq 0] \neq \exists \gamma \forall n [\beta(\langle \beta n, \bar{\gamma}n \rangle) = 0]$
and, therefore: $\neg \forall \gamma \exists n [\beta(\langle \beta n, \bar{\gamma}n \rangle) \neq 0] \land \neg \exists \gamma \forall n [\beta(\langle \beta n, \bar{\gamma}n \rangle) = 0]$
Using GMP, we observe: $\neg \forall \gamma \neg \neg \exists n [\beta(\langle \beta n, \bar{\gamma}n \rangle) \neq 0]$, and:
 $\neg \neg \exists \gamma \forall n [\beta(\langle \beta n, \bar{\gamma}n \rangle) = 0]$.
This is a contradiction.

17.1 Another fancy, which may attract some half-hearted intuitionists, is the following scheme, proposed by <u>Kuroda</u> 1951. (cf. Note 11 on page 217)

KUR

If $\forall n [\neg \neg P(n)]$, then $\neg \neg \forall n [P(n)]$.

An immediate consequence of kuR is, that for every subset P of w: $\neg \forall n [P(n) \lor \neg P(n)]$

17.1.0 Remark: If A1 ≤ E1, then ¬ KUR

Let $P \subseteq \omega$.

<u>Proof</u>: Suppose: $A_1^1 \leq E_1^1$.

Using theorem 10.1 we determine a decidable subset A of w such that: ∀a[A¹₁(a) ₴ ∃g∀n[<ān, jn> € A]]. Now, we define a subset A* of w by: For all n∈w: n∈A* ₴ ∃a∃c[n=≤a,c> ∧ lg(a)= lg(c) ∧ ∃a∃g[a∈a ∧ g∈c ∧ ∀p[<āp, jp> ∈ A]]]

> (Here, $\ll \gg$ is the function, introduced in 13.1, which fuses two finite sequences of equal length into one finite sequence of the same length, operating like its namesake, a pairing function on ww).

Using Kuroda's scheme KUR, we observe that: $\neg \neg \forall n [n \in A^* \lor \neg (n \in A^*)]$ Let us assume, for the sake of argument, that: $\forall n [n \in A^* \lor \neg (n \in A^*)]$. Remark that: $\forall n [n \in A^* \rightleftharpoons \exists p [n * \in A^*]]$. The set: $\{\alpha \mid \forall n [\overline{\alpha}n \in A^*]\}$ is, therefore, a subspread of ${}^{\omega}w$, and, as such, a strictly analytical subset of ${}^{\omega}w$. (cf. 10.7).

> (Let $\beta \in {}^{\omega}\omega$ be a subspread of ${}^{\omega}\omega$ (cf. 1.9), i.e.: $\beta(x,y) = 0$ and: $\forall n [\beta(n) = 0 \neq \exists p [\beta(n*<py) = 0]$ Define $\delta \in {}^{\omega}\omega$ such that: Fun (δ) and, for all $\alpha \in {}^{\omega}\omega$, for all $n \in \omega$:

$$(\delta[\alpha](n) := \alpha(n) \quad \text{if } \beta((\delta[\alpha]n * < \alpha(n) >) = 0.$$

$$:= \mu p [\beta(\overline{\delta[\alpha]n} *) = 0], \quad \text{if not.}$$

Observe that $\beta = \{ \alpha \mid \forall n [\beta(\bar{\alpha}n) = 0] \} = \} Ra(\delta) = \{ \alpha \mid \exists g [\alpha = \delta | g] \}$ and that, therefore β is strictly analytical).

Observe, that, for all $\alpha \in \mathcal{W}_{W^{\pm}}$

$$\begin{array}{rcl} A_{1}^{*}(\alpha) & \rightleftarrows & \exists \gamma \forall n [< \overline{\alpha}n, \overline{\gamma}n > e A] \\ & \rightleftharpoons & \exists \gamma \forall n [< \overline{\alpha}, \gamma > n e A^{*}] \\ & \rightleftharpoons & \alpha \in \left\{ \left. \lambda \right| \left. \zeta \right| & \forall n [\overline{\zeta}n \in A^{*}] \right\} \end{array}$$

(λ is the left-inverse of the pairing function \ll > on ω_w , cf. 14.0).

Therefore, A_4^1 is a strictly analytical subset of ${}^{\omega}w$, and we have seen that this is not true, in the discussion following after theorem 13.22 (cf. also: the remarks concerning Fur, just after theorem 10.12). We conclude: $\neg \forall n [n \in A^* \vee \neg (n \in A^*)]$ and, thereby, bring shame upon Kuroda's schema. KUR.

Our thoughts go back to theorem 10.8, where we have seen that the assumption that all analytical subsets of ${}^{w}w$ are strictly analytical, leads to a contradiction.

If we assume that A_1^1 is analytical, we may add A_1^1 , being an example of an analytical subset of ${}^{\omega}\omega$ which, surely, is not strictly analytical, to our collection of curiosities.

17.2 In 10.7 we mentioned that one may prove, using the restricted principle of Brouwer and Kripke, introduced in chapter 2, that every finitely defined, analytical subset of ${}^{\omega}\omega$ is strictly analytical, indeed. We need not be surprised, therefore, by the following

17.2.0 Remark: If A1 ≤ E1, then ¬BK. (?) <u>Proof(?)</u>: There is (at least) one questionable step in this proof. Suppose A1 ≤ E1 Using theorem 10.1 we determine a decidable subset A of ω such that ∀a [A1(a) Z ∃y ∀n [<ān, jn>eA]] We like to assume, now, and this is the most point, that A is a determinate subset of w, arguing this, if urged, by saying that A_1^1 itself is a determinate subset of ω_{ω} . Does not it sound reasonable that an object which is created to fulfil certain needs of other determinate objects, may be constructed in such a way that it is itself determinate? As in the proof of remark 17.1.0 we define a subset A^* of w by: $A^{*} := \left\{ n \mid \exists \alpha \exists c [n = \langle a, c \rangle \land lq(a) = lq(c) \land \exists \alpha \exists r [\alpha \in a \land r \in c \land \forall p [\langle \bar{\alpha} p, \bar{r} p \rangle \in A]] \right\}$ Like A itself, A^* is a determinate subset of w, at least, we hope so. Using BK and AC_{o1} , we determine $\beta \in {}^{\omega}\omega$ such that: $\forall n [n \in A^* \exists m [\beta^n(m) = 0]]$ We claim that the set $\{\alpha \mid \forall n [\overline{\alpha} n \in A^*]\}$ is a strictly analytical subset of ^ww. (Remark that $\forall n [n \in A^* \neq \exists p [n * \langle p \rangle \in A^*]]$: Define $\delta \in \mathcal{W} \omega$ such that $\operatorname{Fun}(\delta)$ and, for all $\alpha \in \mathcal{W} \omega$, for all $\operatorname{ne} \omega$: $(\delta|\alpha)(n) := (\lambda|\alpha)(n) \quad \text{if} \quad \beta^{(\overline{\delta|\alpha})n} * < (\lambda|\alpha)(n) > ((\rho|\alpha)(n)) = 0$ = p where fulfils: (δla)(n) * ∈ A*

Observe that $\forall \alpha [\forall n [(\overline{\delta | \alpha}) n \in A^*]]$ On the other hand: suppose $\alpha \in {}^{\omega}\omega$ and: $\forall n [\overline{\alpha} n \in A^*]$ Determine a sequence $j \in {}^{\omega}\omega$ such that $\forall n [\beta^{\overline{\alpha}(n+1)}(j(n)] = 0]$ and remark: $\alpha = \delta | \langle \alpha, j \rangle$

We conclude, as in the proof of 17.1.0 that A_1^4 itself is a strictly analytical subset of ${}^{w}w$, and, as we know, it is not.

- The argument in this proof, showing that, on the assumption of BK, every (finitely defined) analytical subset of ω is a strictly analytical subset of ω , is due to John Burgess. (cf. <u>Burgess</u> 1980). He used the axiom of Brouwer and Kripke in a more general form and did not restrict himself to finitely defined analytical subsets of ω . To be honest, we deny support to the conjecture, made in the course of this proof, that a construction made in behalf of determinate objects, may be expected to yield a determinate object. This conjecture would extend to the sequences themselves which are claimed to exist by the axiom of Brouwer and Kripke. But, given a determinate proposition Q, the making of a sequence $\alpha \in \omega$ such that $\Omega \ge \exists n[\alpha(n)=0]$ requires an unbounded stretch of creative attention. A similar remark has been made in <u>Gielen</u>, <u>de Swart and Veldman</u> 1981, section 3.3.
- 17.3 We remind the reader of the set S, introduced in $11.27 : S = \{\alpha \mid \exists \gamma \mid \gamma \in \sigma_{2} \land \forall n \mid \alpha(\overline{\gamma}n) = 0\}\}$ One of the problems we have in connection with S is the question whether $E_{1} \leq S_{2}$

17.3.0 <u>Remark</u>: If E, ≤S, then - GMP

- Proof: We may indulge in some sweet memories from chapter 11. the fan theorem. (cf. the discussion after 11.3, and 15.2) Assuming GMP we find, that for every decidable subset A of w: if ∀reoz ¬¬∃n[A(z̄n)], then ¬¬∃m ∀reoz∃n[n≤m ∧ A(z̄n)] Repeating the argument, set forth in 11.5-7, we conclude that: ¬(E₁ ≤S).
- 17.4 Probably, other theorems, of the same kind as 17.0.0 17.3.0, may be formulated and proved. We are not interested in them. In our ears, they sound like as many stanzas in an old ballad on lost and faraway classical truth. If we surrender ourselves to these distressful thoughts, we may overlook theorems like those of chapter 7 and 9.

The axiom of Brouwer and Kripke keeps bad company, in this chapter. Sometimes, also this axiom seems the invention of a nasty child, wanting to make life easier than it is. NOTES.

[1] (cf. pages 3, 51, 88) We have to warn the reader: our terminology is somewhat confusing. In recursion theory, the "effective versions" of Borel-sets-offinite-order, general Borel sets, and projective sets, are called arithmetical, hyperarithmetical and analytical sets, respectively. (It is not difficult to understand how these effective notions are made: for instance: a subset P of w_w is effectively open if there exists a recursive function $\beta : w \rightarrow w$ such that $\forall \alpha [P(\alpha) \neq \exists m [\beta(\overline{\alpha}m) = 0]], (cf. theorem 6.2 on page 45))$ "Analytic sets" is the classical name for members of Σ_{1}^{1} . (cf. Moschovakis 1980, page 157 and notice the distinction between "analytic" and "analytical") Our notions are not effective in the recursion-theoretic sense, and, perhaps, we would have done better in using the classical terminology. On the other hand, our notions are not to be identified with the classical ones, either. [2] (cf. page 9) Remark that $\forall \gamma [\gamma(<>) = 0 \rightarrow (Fun(\gamma) \neq fun(\gamma))]$ [3] (cf. page 14, section 2.3, page 89, theorem 10.8, page 175, theorem 14.9) The axiom AC_{11} plays an important part only in theorems 10.8 and 14.9, and in many theorems of chapter 16. By a change in the definition of "Det (τ, S) " in section 16.0 on page 191, similar to the one proposed for " $A \leq B''$ in section 2.3, we may reduce its role still further. [4] (cf. page 52) Remark that this constructive formulation of "Post's theorem" does not use negation. We might also consider the question, if, for all subsets $P \subseteq {}^{\omega}\omega$, if $P \in \mathbb{Z}_{1}^{\circ}$ and $Neg(P) \in \mathbb{Z}_{1}^{\circ}$, then $P \in \mathbb{Z}_{1}^{\circ}$. This is a stronger statement than ours, and it is easily seen to be an enigma, i.e. equivalent to the generalized Markov principle $GMP: \forall \alpha [\neg \neg \exists n [\alpha(n) = 0] \rightarrow \exists n [\alpha(n) = 0]].$ (cf. Luckhardt 1976). [5] (cf. page 156)

This version of Brouwer's thesis avoids a difficulty which is touched upon in <u>Kleene</u> and <u>Vesley</u> 1965, sections 6.8 and 7.14 There is no apparent intuitive reason, why, in the bar theorem as it is formulated there, only effective predicates should be considered, and, for this reason, our version might be preferable.

[6] (cf. page 159, theorem 13.2.2, and page 163, theorem 13.4.1)

The names "Souslin-Brouwer-theorem" and "Lusin-Brouwer-theorem" may be misleading. Brouwer never proved these theorems, but the classical arguments are "rescued" by his bar theorem. Souslin's theorem has been announced in <u>Souslin</u> 1917, and proofs may be found in <u>Lusin</u> and <u>Sierpinski</u>, 1918 and 1923. The bar theorem may be found in <u>Brouwer</u> 1927, and is a central topic in the intuitionistic literature (cf. note [5])

We are reasoning rather quickly, at this place. First, build $\delta \in \omega_{\omega}$ such that $\operatorname{Fun}(\delta)$ and $\forall \alpha [\delta | \alpha \in \beta]$ and $\forall \alpha \in \beta [\delta | \alpha = \alpha]$ This may be done by defining, for each $\alpha \in \omega_{\omega}$ and $n \in \omega$: $(\delta | \alpha \rangle (n) := \alpha(n)$ if: $\beta(\overline{(\delta | \alpha \rangle}(n) * < \alpha(n) >) = 0$ $:= \mu m [\beta(\overline{(\delta | \alpha \rangle} n * < m >) = 0], \text{ otherwise}$ Remark: $\forall \alpha \exists n [A(\overline{(\delta | \alpha \rangle} n)]$ and: $\forall \alpha \forall n [A(\overline{(\delta | \alpha \rangle} n) \not (A(\overline{\alpha} n) \vee \beta(\overline{\alpha} n) \neq 0]].$

[8] (cf. page 61)

Brouwer's ambivalent attitude towards N, appears from <u>Brouwer</u> 1975, page 133, which, however, seems to contradict loc.cit., page 388, where he mentions: "die Spezies O der Ordinalzahlen."

[9] (cf. page 178)

In <u>Kleene</u> 1955, kleene admits that he is, sometimes, standing on his head.

[10] (cf. page 190)

As a foundational problem, determinacy made its appearance in <u>Mycielski</u> 1964. Further references may be found in Moschovakis 1980.

[1] (cf. page 212).

A similar question has been discussed in van Dantzig 1942.

REFERENCES

J. W. Addison

1955

1955	Analogies in the Borel, Lusin and Kleene hierarchies, I,II (abstracts) Bull Am. Math. Soc. 61, pp. 75 and 171-172.
1959	Separation principles in the hierarchies of classical and effective descriptive set theory. Fund. Math. 46, pp. 123-135

L.E.J. Brouwer

- Zur Begründung der intuitionistischen Mathematik. 1927 A II. Wohlordnung. Math. Annalen 96, pp. 451-488 (= <u>Brouwer</u> 1975, pp. 352-389)
- Ueber 1927 B Definitionsbereiche von Funktionen. Math Annalen 97, pp. 60-75 (= Brouwer 1975, pp 390-405) (English translation of \S 1-3. On the domains of definition of functions, in: van <u>Heyenoort</u> 1967, pp. 446-463)
- Consciousness, philosophy and mathematics. 1948 Proc. 10th. International Congress of Philosophy, Amsterdam, pp. 1235-1249 (= Brouwer 1975, pp. 480-494)
- De non-aequivalentie van de constructieve en de negatieve 1949 orderelatie in het continuum. Kon Ned. Ak. v. Wet. Proc. 52, pp. 122-124 (= Indag. Math. 11, pp 89-90) (= Brouwer 1975, pp. 495-496)
- 1975 Collected Works, Vol. I. Philosophy and Foundations of Mathematics. Amsterdam (North Holland Publ. Co.)

J. Burgess

1980 Brouwer and Souslin on transfinite cardinals. Zeitschr. für Math Log. und Grundl. der Math. 26, pp. 209-214

D van Dantzig	
1942	A remark and a problem concerning the intuitionistic form of Cantor's intersection theorem. Kon. Ned. Ak. v. Wet. Proc. 45, pp. 374-375 (= Indag. Math. 4, pp. 146-147)
M. Dummett	
1977	Elements of intuitionism. Oxford Logic Guides. Oxford (Clarendon Press)
D. Gale and F. M.	Stewart
1953	Infinite games with perfect information. Ann. Math. Studies 28, pp. 245-266
W. Gielen	
198 ?	Principles of intuitionism. Thesis, Katholieke Universiteit Nymegen
W. Gielen, H. de S	Swart and W. Veldman
1981	The continuum hypothesis in intuitionism. To appear in: J. Symb. Log.
J. van Heyenoort	
196 7	From Frege to Gödel. Cambridge Mass. (Harvard University Press).
A. Heyting	
1956	Intuitionism, an introduction. Studies in Logic and the Foundations of Mathematics. Amsterdam (North Holland Publ. Co), ² 1966, ³ 1972
P.G. Hinman	
1978	Recursion-theoretic hierarchies. Perspectives in Mathematical Logic. Berlin (Springer Verlag)

W.A. Howard and G. Kreisel

Ig66 Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis.
 J. Symb. Log. 31, pp. 325-58

A.S. Kechris and Y.N. Moschovakis (editors)

1978 Cabal Seminar 76-77. Lecture Notes in Mathematics, #689. Berlin (Springer Verlag)

A. Kino, J. Myhill and R.E. Vesley (editors)

1970 Intuitionism and proof theory. Proceedings of the summer conference at Buffalo, N.Y., 1968 Amsterdam (North Holland Publ. Co.)

S.C. Kleene

1955 Arithmetical predicates and function quantifiers. Trans. Am. Math. Soc. 79, pp. 312-340

S.C. Kleene and R.E. Vesley

1965 The foundations of intuitionistic mathematics, especially in relation to recursive functions. Studies in Logic and the Foundations of Mathematics Amsterdam (North Holland Publ. Co.)

K. Kuratowski

1966 Topology I. New York (Academic Press)

K. kuratowski and A. Mostowski

1968 Set Theory. Studies in Logic and the Foundations of Mathematics. Amsterdam (North Holland Publ. Co.) S. Kuroda Intuitionistische Untersuchungen der formalistischen Logik. 1951 Nagoya Math. J. 2, pp. 35-47 H. Luckhardt Ueber das Markov-Prinzip I. 1976 Archiv f. Math. Log. u. Grundl. Forsch. 18, pp. 73-80 N. Lusin Leçons sur les ensembles analytiques. 1930 Reprint: New York (Chelsea Publ Co) 1972 Paris. N. Lusin and W. Sierpinski 1918 Sur quelques propriétés des ensembles (A). Bull. Int. Acad. Sci. Cracovie, Série A: Sciences Mathématiques, pp. 35-48 Sur un ensemble non mesurable B. 1923 Journal de Mathématiques, 9^e série, 2, pp. 53-72 Y.N. Moschovakis 1980 Descriptive Set Theory. Studies in Logic and the Foundations of Mathematics. Amsterdam (North Holland Publ. Co.) J. Mycielski On the axiom of determinateness. 1964 Fund. Math. 53, pp. 205-224 J. Myhill 1967 Notes towards an axiomatization of intuitionistic analysis. Logique et Analyse 35, pp. 280-297

M. Suslin

1917	Sur une définition des ensembles mesurables B so	zns
	nombres transfinis. Comptes Rendus Acad. Sciences, Paris, 164, pp. 88-91	

H. de Swart

1976 Intuitionistic logic in intuitionistic metamothematics. Thesis. Katholieke Universiteit Nymegen.

A. S. Troelstra

- 1973 (editor) Metamathematical investigation of intuitionistic arithmetic and analysis. Lecture Notes in Mathematics, #344. Berlin (Springer Verlag)
- 1977 Choice sequences, a chapter of intuitionistic mathematics. Dxford Logic Guides. Oxford (Clarendon Press)

W. Veldman

1976 An intuitionistic completeness theorem for intuitionistic predicate logic. J. Symb. Log. 41, pp. 159-166

W. Wadge

198? Ph. D. Thesis, University of California, Berkeley

ĸ Fine Laus Deo <u>x</u> 1 1980

SYNOPSIS

1 A short apology for intuitionistic analysis.

We describe our point of departure and establish some notations. We express our confidence in an axiomatization of intuitionistic analysis as proposed by <u>kleene</u> and <u>Vesley</u> 1965 Nothing very new is to be found in this chapter. Its contents coincide roughly with section 1 of <u>Gielen</u>, de Swart, <u>Veldman</u> 1981

2 At the bottom of the hierarchy. A discussion of Brouwer-Kripke's axiom. 12

We introduce the central concept of reducibility between subsets of w_{ω} : $P \leq Q := \forall \alpha \exists \beta [P(\alpha) \supseteq Q(\beta)]$

We also introduce two subsets,
$$A_1$$
 and E_1 , of ${}^{\omega}\omega$ by:
 $A_1 := \{ \alpha \mid \forall n [\alpha(n) = 0] \}$ and $E_1 := \{ \alpha \mid \exists n [\alpha(n) = 0] \}$

We prove: $\neg (A_1 \leq E_1)$ and: $\neg (E_1 \leq A_1)$

The first one of these two theorems is a well-known result, showing the inconsistency between the principle of Brouwer and Kripke, in its general form, and Brouwer's principle for functions, (cf. <u>Kleene and Vesley</u> 1965, §7) or AC_{11} , as we did call it in chapter 1

We never use Brouwer-Kripke's axiom in this treatise, not even in its restricted formulation Up to chapter 13, AC_{11} is not very important either. (cf. Note 3, p. 216) It only makes $P \leq Q$ equivalent to: $\exists \delta [Fun(\delta) \land \forall \alpha [P(\alpha) \not\equiv Q(\delta | \alpha)]$. (Fun(δ) means: δ codes a (continuous) function from ω_{ω} to ω_{ω} , and $\delta | \alpha$ is the value of this function at α , cf. 1.6) If AC_{11} should fail us, we define: $P \leq Q := \exists \delta [Fun(\delta) \land ...]$

3 The second level of the arithmetical hierarchy.

We introduce two subsets, A_2 and E_2 , of $^{\omega}\omega$ by: $A_2 := \{ \alpha \mid \forall m \exists n [\alpha^m(n) = 0] \}$ and $E_2 := \{ \alpha \mid \exists m \forall n [\alpha^m(n) = 0] \}$

(According to a convention from chapter 1, every sequence α is divided into countably many subsequences α° , α^{1} ,...)

We prove: $\neg (A_2 \leq E_2)$ and $\neg (E_2 \leq A_2)$

The proofs are given slowly and are discussed at some length, as from these little seeds, big trees will grow.

The first result uses AC₁₀ and is, therefore, classically unacceptable. (AC₁₀ (of chapter 1) corresponds with Brouwer's principle for numbers in <u>Kleene</u> and <u>Vesley</u> 1965)

223

4 Some activities of disjunction and conjunction.

We introduce, for every subset P of $^{\omega}\omega$ and $n\varepsilon\omega$, subsets $D^{n}P$ and $C^{n}P$, $E_{z}(P)$ and Un(P) of $^{\omega}\omega$ by: $D^{n}P := \{ \alpha \mid \exists q < n [P(\alpha q)] \}$ $E_{z}(P) := \{ \alpha \mid \exists q [P(\alpha q)] \}$ $C^{n}P := \{ \alpha \mid \forall q < n [P(\alpha q)] \}$ $Un(P) := \{ \alpha \mid \forall q [P(\alpha q)] \}$ We define, for all subsets P,Q of $^{\omega}\omega$: $P < Q := P \leq Q \land \neg (Q \leq P)$ We prove: $\forall n [D^{n}A_{1} < D^{n+1}A_{1}]$ (theorem 4.6), $\neg (D^{3}A_{1} \leq Un(D^{2}A_{1}))$ (theorem 4.8), $\neg (D^{2}A_{1}) \leq Un(E_{1})$) (theorem 4.10) and: $\forall n \forall m \forall p \forall q [C^{n+1}D^{m}A_{1} \leq C^{q}D^{p}A_{1} \rightarrow m^{n+1} \leq p^{q} \land m \leq p]$ (theorem 4.20 provides us with an algorithm to decide which quadruples < n+1, m, q, p > satisfy: $C^{n+1}D^{m}A_{1} \leq C^{q}D^{p}A_{1}$ In order to solve this problem, we consider a wider class of subsets of $^{\omega}\omega$, viz. for each $m \in \omega$, reading m as a finite sequence of natural numbers: $(CD)_{m}A_{1} := (CD)_{< m_{0}, \cdots, m_{t} >} A_{1} := \{ \alpha \mid D^{m}A_{1}(\alpha^{q}) \land \ldots \land D^{m}A_{1}(\alpha^{t}) \}$

In hindsight, some of the earlier theorems may be seen to follow from theorem 4.20

5 An aside on implication.

We introduce a sequence $I_0, I_1, ... of$ subsets of ${}^{w}\omega$ by: $I_0 := {}^{w}\omega$ and, for each $p \in \omega$: $I_{Sp} := \{ \alpha \mid I_p(\alpha) \rightarrow A_1(\alpha P) \}$ We prove: $\forall p [I_p \prec I_{Sp}]$ (theorem 5.6) We introduce a sequence $J_0, J_1, ... of$ subsets of ${}^{w}\omega$ by: $J_0 := {}^{w}\omega$ and, for each $p \in \omega$. $J_{Sp} := \{ \alpha \mid J_p(\alpha) \rightarrow E_1(\alpha^P) \}$ We prove: $\forall p [J_p \prec J_{Sp}]$ (theorem 5.10) Some minor results (5.11-15) are added which try to locate subsets of ${}^{w}\omega$, built by means of implication, with respect to other ones. Theorems 5.16-20 collect a number of so-called enigmas, i.e. statements equivalent to the generalized Markov principle: $\forall \alpha [\neg \neg E_1(\alpha) \rightarrow E_1(\alpha)]$

6 Arithmetical sets introduced.

starting from A_1 and E_1 , we define a sequence $A_2, E_2, A_3, E_3, ...$ of subsets of w_w by: for all new: $A_{sn} = Un(E_n)$ and $E_{sn} = E_{\mathcal{Z}}(A_n)$

45

34

We introduce classes Π_1^o , Σ_1^o , Π_2^o , Σ_2^o ,... of subsets of ${}^{\omega}w$ by: for all $n \in w$, n > 0: $\Pi_n^o := \{P | P \subseteq {}^{\omega}w | P \leq A_n\}$ and $\Sigma_n^o := \{P | P \subseteq {}^{\omega}w | P \leq E_n\}$ These classes behave as one would expect; for instance: Π_n^o (Σ_n^o) is closed under the operation of countable intersection (union). Π_n^o (and similarly Σ_n^o) possesses a universal element; i.e. there exists a member U of Π_n^o such that $\Pi_n^o = \{U_\beta | \beta \in {}^{\omega}w\}$ where $U_\beta := \{\alpha | U(<\alpha, \beta>)\}$ (< > denotes a suitable pairing function on ${}^{\omega}w$) We easily find, by diagonalizing, a subset of ${}^{\omega}w$ which does not belong to Π_n^o , but this set cannot be said to belong to Σ_n^o (cf. 6.14) Most of the results of this chapter conform with the results of classical descriptive set theory We introduce $D := \{\alpha | \alpha(0) = 0\}$ and shortly discuss two questions: in 6.15 if for all subsets P of ${}^{\omega}w : (P \leq E_q \land P \leq A_q) \rightarrow P \leq D$ in 6.16 do there exist subsets P of ${}^{\omega}w$ such that $D < P < E_q$ or $D < P < A_q$?

7 The arithmetical hierarchy established.

We prove: $\forall n > 0$ [If $A_{sn} \leq E_{sn}$, then $E_n \leq A_n$] (lemma 7.1) and: $\forall n > 0$ [If $E_{sn} \leq A_{sn}$, then $A_n \leq E_n$ (lemma 7.2) The proofs extend the methods of chapter 3. The arithmetical hierarchy theorem (theorem 7.3) follows easily: $\forall n > 0$ [$\neg (A_n \leq E_n) \land \neg (E_n \leq A_n)$]

8 Hyperarithmetical sets introduced.

We define the set HI\$ of hereditarily iterative stumps by transfinite induction: (every element of HI\$ is a (decidable) subset of w and w is identified with the set of finite sequences of natural numbers) (1) $\{ < \} \in HI$ \$ (11) If $A_0, A_1, A_2, ...$ is a sequence of elements of HI\$, then A belongs to HI\$ where $A := \{ < > \} \cup \bigcup < < n, m > > * A_n$ $n, m \in w$ (* denotes the operation of concatenation of finite sequences. If $A \subseteq w$, then $n * A := \{n * m | m \in A\}$. $\leq >$ denotes some pairing function on w. If $\sigma \in HI$ \$ and $n \in w$, then $\sigma^n := \{m | < n > * m \in \sigma\}$) We define, by transfinite induction, for each $\sigma \in HI$ \$, subsets A_{σ} and E_{σ} of ^ww by: $A_{\{ p \}} := \{\alpha | \forall n [\alpha(< n >) = 0]\}$ $A_{\sigma} := \{\alpha | \exists n [A_{\sigma} n (\alpha^n)]\}$ $E_{\{ \phi \}} := \{\alpha | \exists n [\alpha(< n >) = 0]\}$ $E_{\sigma} := \{\alpha | \exists n [A_{\sigma} n (\alpha^n)]\}$

54

We introduce, for each $\sigma \in HI\$$, classes Π_{σ}° and Σ_{σ}° of subsets of \mathbb{W}_{ω} by: $\Pi_{\sigma}^{\circ} := \{P \mid P \subseteq \mathbb{W}_{\omega} \mid P \preceq A_{\sigma}\}$ and $\Sigma_{\sigma}^{\circ} := \{P \mid P \subseteq \mathbb{W}_{\omega} \mid P \preceq E_{\sigma}\}$ We introduce a strict and a reflexive ordering relation, <, <, respectively, on HI\$ (which is a subclass of the class \$ of stumps, presented in 80) such that: for all $\sigma, \tau \in HI\$$: $\sigma \leq \tau \notz \quad \forall m[\sigma^{m} < \tau]$ and: $\sigma < \tau \notz \quad \exists n[\sigma \leq \tau^{n}]$ We prove, in theorem 8.7, that, for each $\sigma \in HI\$$, and $P \subseteq \mathbb{W}_{\omega}$: $P \in \Pi_{\sigma}^{\circ}$ if and if there exists a sequence Q_{σ}, Q_{1}, \dots of subsets of \mathbb{W}_{ω} such that $\forall m \exists \tau < \sigma[Q_{m} \in \Sigma_{\tau}^{\circ}]$ and $P = \bigcap_{m \in \omega} Q_{m}$ An analogous result holds for Σ_{σ}° . Furthermore, Π_{σ}° and Σ_{σ}° do possess universal elements and remarks, similar to those in chapter 6, apply

9 The hyperarithmetical hierarchy established.

We introduce subsets A_2^* and E_2^* of ${}^{\omega}\omega$ by: $A_2^* := \{ \alpha \mid \forall m \exists n [\alpha^m(n) \neq 0] \}$ and $E_2^* := \{ \alpha \mid \exists m \forall n [\alpha^m(n) \neq 0] \}$ We introduce, by transfinite induction, for each $\sigma \in HI\$$, subsets $P_{\sigma}, Q_{\sigma}, P_{\sigma}^*$ and Q_{σ}^* of ${}^{\omega}\omega$ by:

$$\begin{array}{l} P_{\{<>\}} &:= A_2 \quad Q_{\{<>\}} := E_2 \quad P_{\{<>\}}^* = A_2^* \quad Q_{\{<>\}} = E_2^* \\ P_{\sigma} &:= \left\{ \alpha \mid \forall n \left[Q_{\sigma n} \left(\alpha^n \right) \right] \right\} \quad Q_{\sigma} := \left\{ \alpha \mid \exists n \left[P_{\sigma n} \left(\alpha^n \right) \right] \right\} \\ P_{\sigma}^* &:= \left\{ \alpha \mid \forall n \left[Q_{\sigma n}^* \left(\alpha^n \right) \right] \right\} \quad Q_{\sigma}^* := \left\{ \alpha \mid \exists n \left[P_{\sigma n}^* \left(\alpha^n \right) \right] \right\} \end{array}$$

We observe that, for each τ∈ HI\$: P_t ∩ Q_t^{*} = P_t^{*} ∩ Q_t = φ We prove the hyperarithmetical hierarchy theorem (theorem 9.7): Let τ∈ HI\$ and δ∈^ωw such that: Fun(δ) and ∀α[P_t(α)→Q_t(δ|d)] We may construct, now, Z∈^ωw such that Q_t^{*}(Z) and Q_t(δ|Z) (This result is complemented by its corollary, theorem 9.8)

The formulation of the theorem shows that we had to reason more carefully than in the case of the arithmetical hierarchy theorem in chapter 7. We first strengthen the results of chapter 3, concerning A_2 and E_2 (lemmas 9.2 and 9.3). Theorem 9.5 is a basic tool in the inductive construction

10 Analytical and co-analytical sets.

We introduce a subset E_1^1 of ω_w by: $E_1^1 := \{\alpha \mid \exists y \forall n [\alpha(\bar{y}n) = 0]\}$ We introduce Σ_1^1 , the class of all <u>analytical</u> subsets of ω_w , by: $\Sigma_1^1 := \{P \mid P \subseteq \omega_w\}$ We verify, in theorem 10.3, that Σ_1^1 is closed under the operations of countable union and intersection and, therefore, contains all

84

hyperarithmetical sets. Σ_1^1 also has a universal element (theorem 10.5). We call a subset P of "w strictly analytical if $\exists \delta [\operatorname{Fun}(\delta) \land P = \operatorname{Ra}(\delta)]$ (i.e.: P is the range of a total (and therefore continuous) function on "w. We show that the supposition that all analytical inhabited (i.e.: constructively non-empty) subsets of "w are strictly analytical, is contradictory (theorem 10.8). We introduce a subset A_1^1 of "w by: $A_1^1 := \{\alpha | \forall \gamma \exists n [\alpha(\overline{\gamma}n) = 0]\}$ We introduce III, the class of all co-analytical subsets of "w, by: $\Pi_1^1 := \{P | P \subseteq {}^{\omega} \omega | P \leq A_1^1\}$. Π_1^1 is closed under the operation of countable intersection, but D^2A_1 is not co-analytical (theorem 10.13), and, therefore Π_1^1 is not closed under the operation of countable union. We give a constructive version of the result that E_1^1 is not co-analytical (theorem 10.14) and have to admit that we do not know whether A_1^1 is analytical. It is easy to prove that Fun and A_1^1 are not strictly analytical.

11 Some members of the analytical family.

We study the effect of restricting the range of the existential quantifier which occurs in the definition of E_1^1 , to some subspread of w_{ω} . First, we consider $\sigma_{2mon} := \{ \alpha \mid \forall n [\alpha(n) \leq \alpha(n+1) \leq 1 \} \}$ and introduce $S_2 := \{ \alpha \mid \exists \gamma \in \sigma_{2mon} \forall n [\alpha(\overline{\gamma}n) = 0] \}$ We establish the following: $\forall n [D^n A_1 \prec S_2]$ (in 11.2), $\neg (S_2 \preceq E_1)$ (in 11.3) and $\neg (E_1 \leq S_2)$ (in 11.7) Refining the proofs of these facts, we find that $\neg (S_2 \leq A_2)$ (in 11.9), \neg (S₂ \leq E₃) (in 11.10) and, after some effort: \neg (S₂ \leq A₃) (in 11.13) We go further, now, and prove that S is not hyperarithmetical. This is a big task which engages us up to 11.18. While performing it, we observe that uncountably many hyperarithmetical sets may be intercalated between Sz and the arithmetical set Neg(Neg(S_2)) = $\{\alpha \mid \neg \neg S_2(\alpha)\}$ (cf. 11.16). We introduce, in 11.19, for each mew: $\sigma_{m \mod} := \{\alpha \mid \forall n [\alpha(n) \le \alpha(n+1) < m]\}$ and $S_m := \{\alpha \mid \exists j \in \sigma_{m \mod} \forall n [\alpha(j \cap) = 0]\}$ We find that $\forall n [D^n S_2 \times D^{n+1} S_2 \times S_3]$ (theorems 11.20, 11.22). and remark that it is easy to generalize this to. $\forall n \ \forall m \ \ \ D^n S_m \ < \ D^{n+1} S_m \ < \ S_{m+1} \ \]$ Trying to do similar things for conjunction, we have to work harder but find $\forall m > 1 \forall n > 0 [C^n S_m \prec C^{n+1} S_m]$ (theorem 11.26) Remark, however, that, for instance: $\neg (C^2 S_2 \preceq S_3)$ (cf. theorem 11.24) In 11.27 we consider the binary fan $\sigma_2 = \{\alpha \mid \forall n [\alpha(n) \leq 1]\}$ and introduce $S := \{ \alpha | \exists \gamma \in \sigma_2 \forall n [\alpha(\overline{\gamma}n) = 0] \}$ We make some observations on the class $P = \{P | P \le w_w | P \le S\}$ and formulate difficult questions.

227

g6

2 An outburst of disjunctive, conjunctive and implicative productivity.

We introduce a subset R of w by: $R = \int \alpha [\forall n [n = \mu p [\alpha^{\circ}(p) \neq 0] \rightarrow D^{n} A_{n} (\alpha^{\circ} n)]$ and prove, in 12.0, that $\forall n[D^n A_1 \prec R]$ and $R \prec S_2$ and $R \in \Pi_3^\circ$. Let P_0, P_1, \dots be a sequence of subsets of ω_w such that $\forall m \exists n [P_m \prec P_n]$ We define: $Q := \{ \alpha \mid \forall n [n = \mu p [\alpha^{\circ}(p) \neq 0] \rightarrow P_n (\alpha^{\circ}(p) = 0) \}$ Using methods from chapter 11 we prove, in 12.1, that: if $\forall n \exists \alpha [\neg P_n(\alpha)]$, then $\neg (D^2 Q \leq Q)$, and if $\neg (Q \leq A_1)$, then $\neg (C^2 Q \leq Q)$ Starting from the same sequence Po, P1r., we define: $Q^* := \{\alpha | \exists n [n = \mu p [\alpha^{\circ}(p) \neq 0] \land P_n(\alpha^{Sn}) \}$ and we prove, in 12.2, that: if Q^* is dense in w_w , then $\neg (D^2Q^* \leq Q^*)$ We introduce a subset R^* of ω_{ω} by $R^* := \{\alpha \mid \exists n[n = \mu p[\alpha^{\circ}(p) \neq \sigma] \land D^n A_1(\alpha^{sn})] \}$ and we observe that: $\neg (D^2 R^* \preceq R^*)$ but, on the other hand: $C^2 R^* \preceq R^*$ We prove, in two different ways, that $\forall n [D^n Q \times D^{n+1}Q]$ The first time, in 12.3, we require that each one of the sets Po, Py,... is strictly analytical. We define, for all subsets P and Q of ${}^{\omega}\omega$, a subset D(P,Q) of ${}^{\omega}\omega$ by: $D(P,Q) := \{ \alpha \mid P(\alpha^{\circ}) \lor Q(\alpha^{1}) \}$ We call the sequence P_{n}, P_{n}, \dots disjunctively closed if $\forall m \forall n \exists k [D(P_{m}, P_{n}) \leq P_{k}]$. We call a subset P of ω_{ω} disjunctively productive if $\forall n [D^n P \prec D^{n+1} P]$. We prove, in 12.4: if the sequence P, P, ... is disjunctively closed and $\forall n \exists \alpha [\neg P_n(\alpha)]$, then Q is disjunctively productive. Similarly, we prove, in 12.5, having made the obvious definitions: if the sequence P_0, P_1, \dots is conjunctively closed and $\exists n [A_1 \leq P_n]$, then Q is conjunctively productive. Thirdly, we prove, in 12.6 if the sequence Po, P1,... is disjunctively closed, and Q^* is dense in w_w , then Q^* is disjunctively productive. These results imply that uncountably many levels of complexity may be distinguished in Π_3° , and even in Σ_2° (cf. the discussion in 127). Let R be a subset of ^ww: We introduce a sequence I R, I, R, ... of subsets of w w by: $I_{R} = \{ \alpha | R(\alpha^{o}) \}$ and, for each pew: $I_{SP}R := \{ \alpha \mid I_{P}R(\alpha) \rightarrow A_{1}(\alpha^{SP}) \}.$ We prove, in 12.8, for the very set Q we introduced in 121, that: $\forall n[I_n Q \prec I_{n+2} Q].$ Let R be a subset of ω_{w} . We introduce a sequence J_R, J₁R,... of subsets of ω_{ω} by: $J_0R := \{\alpha \mid R(\alpha^0)\}$ and, for each pew: $J_{Sp}R := \int \alpha \mid J_{p}R(\alpha) \rightarrow E_{q}(\alpha^{SP}) \}.$ We prove, in 12.9, that, if the sequence Po, P1,... fulfils the condition: $\forall e \forall p \forall q \forall n \exists N [N > e \land \neg (J_p P_N \leq J_q P_n)]$ and, as in 12.2, $Q^* := \{ \alpha \mid \exists n [n = \mu p [\alpha^{\circ}(p) \neq 0] \land P_n(\alpha^{sn}) \}, \text{ then}.$ $\forall p \forall q [(p+q is odd) \rightarrow \neg (J_p Q^* \leq J_q Q^*)].$

13 Brouwer's thesis, and some of its consequences

We discuss, briefly, Brouwer's thesis, and formulate it in a way which suits our purposes. We introduce, for each $\alpha \in \mathcal{W}_{w}$, a subset $|\alpha|^*$ of w by: $|\alpha|^* = \{ a \mid \forall b \mid a \subseteq b \rightarrow \alpha(b) \neq 0 \}$ $(a \subseteq b)$ means that the finite sequence of natural numbers a extends the finite sequence b). We define, for all decidable subsets A, B of w: $A \leq * B := \exists y \forall n [lg(y(n)] = lg(n) \land \forall m \forall n [m \leq n \rightarrow y(m) \leq y(n)] \land \forall n [n \in A \rightarrow y(n) \in B]]$ (lg(m) denotes the length of the finite sequence m) and" we observe that for all stumps の,て: のミて 之 のミ*て We prove the boundedness lemma 13.2.2: Let $\delta \in W_{W}$ be such that : Fun(δ) and $\forall \alpha [A_{1}^{1}(\delta | \alpha)]$ Then: $\exists \beta [A_1^{1}(\beta) \land \forall \alpha [|\delta|\alpha|^{*} \leq^{*} |\beta|^{*}]$ We prove the Souslin-Brouwer theorem 13.2.2. A subset of ww which is both co-analytical and strictly analytical, is hyperarithmetical. Let P and Q be subsets of ww. We say that < P,Q > is a separate pair of subsets of ww if $\forall \alpha \forall \beta [P(\alpha) \land Q(\beta) \rightarrow \alpha \# \beta]$ (# denotes the usual apartness' relation on ω_w). We say that < P, Q > is hyperarithmetically separable if there are hyperarithmetical sets S, T such that: $P \subseteq S$ and $Q \subseteq T$ and Sep(S, T). We prove the separation theorem of Lusin and Brouwer 13.4.1: A separate pair of strictly analytical subsets of ω_{w} , is hyperarithmetically separable. Let $\delta \in \mathcal{W}_{W}$ be such that: Fun(δ) We call δ strongly injective if: V~ YB[~#B → 8|~ # 8|B] We prove, in theorem 13.5.1, that the range Of a strongly injective and everywhere defined function from we to we, is hyperarithmetical.

14 The collapse of the projective hierarchy.

We introduce, for each subset P of ${}^{w}\omega$, subsets $\mathbb{E}(P)$ and $\mathbb{U}(P)$ of ${}^{w}\omega$ by: $\mathbb{E}(P) := \{\alpha \mid \exists r [P(\langle \alpha, r \rangle)]\}$ and $\mathbb{U}(P) := \{\alpha \mid \forall r [P(\langle \alpha, r \rangle)]\}$ $\langle \rangle$ denotes a pairing function on ${}^{w}\omega$) We prove, in theorem 14.1, that Σ_{1}^{1} is closed under the operation \mathbb{E} We define a subset A_{2}^{1} of ${}^{w}\omega$ by: $A_{2}^{1} := \{\alpha \mid \forall r \exists \beta \forall n [\alpha (\langle \langle \beta, r \rangle n \rangle = 0]\}$ $\langle \langle \rangle$ denotes a pairing function on ${}^{w}\omega$. For all $\alpha \in {}^{w}\omega$ and $n \in \omega$: $\overline{\alpha}n := \langle \alpha(0), \dots, \alpha(n-1) \rangle$) We introduce a class Π_{2}^{1} of subsets of ${}^{w}\omega$ by: $\Pi_{2}^{1} := \{P \mid P \in {}^{w}\omega \mid P \leq A_{2}^{1}\}$ We prove, in theorem 14.3, that $\Pi_{2}^{1} := \{\mathbb{U}(P) \mid P \in \Sigma_{1}^{1}\}$ and, in theorem 14.4 that Π_{2}^{1} has a universal element.

We repeat the story, defining E_2' and Σ_2' in the obvious way and proving their (by now) obvious properties. (cf. 14.6-8) We then prove that, by intervention of $AC_{11} : \Pi_2' \subseteq \Sigma_2'$ and $\Pi_3' = \Sigma_2'$ (theorems 14.9-10) These are strange results, from a classical point of view, and they fascinate us.

15. A contraposition of countable choice

We consider the following crazy principle, for any subspread σ of ω : CRP $_{\sigma}$: Let $A \subseteq \omega$

If $\forall \alpha \in \sigma \exists n [A(n, \alpha^n)]$, then $\exists n \forall \alpha \in \sigma [A(n, \alpha)]$

(The intuitionistic notions of "subspread of " ω " and "fan" have been mentioned in section 1.9 and just before theorem 11.4, respectively The fan theorem is recalled in 15.2).

Using the fan theorem, we prove, in theorem 15.3.3, that CRP, holds, for any subfan σ of ω_w which fulfils the condition: $\forall \alpha [\alpha \in \sigma \neq \forall n [\alpha^n \in \sigma]]$ We also prove, in theorem 15.4.1, that every subspread σ of ω_w such that CRP, holds and $\forall \alpha [\alpha \in \sigma \neq \forall n [\alpha^n \in \sigma]]$ is a fan. The proof of this theorem develops a line of thought from section 15.1, where we made sure that CRP, is not true if $\sigma = \omega_w$, the universal spread.

16 The truth about determinacy

For any subspread τ of ω_{ω} and any subset S of ω_{ω} , we introduce the usual infinite game for players I and II, and we define $Strat_{\tau}(\tau)$, Strat_{π}(τ), the set of strategies in τ for players I and I, respectively. These two sets are spreads. We say that the game associated with τ and S is determined, and write: Det (r, S) if: $\forall j \in \text{Strat}_{I}(\tau) \exists \alpha \in \tau[\alpha \text{ obeys to } j \land S(\alpha)] \rightarrow \exists j \in \text{Strat}_{I}(\tau) \forall \alpha \in \tau[\alpha \text{ obeys to } j \rightarrow S(\alpha)]$ Adapting these definitions to the case of finite games, we first prove, in 16.1, that every finite game is determined. We then prove, in theorem 16.2.0, that, for any subset S of ω_{w} . Det (σ_{mon}, S) We extend this result and prove, in theorem 16.4.0, that, for all mew, for all subsets S of ω_{ω} . Det (σ_{mmon} , S). We leave the domain of the monotonous fams and prove, in theorems 16.5.0-1, that, for all subfans τ of ww, and all subsets S of ww which belong to Σ_1° or Π_2° : $Det(\tau, S)$ In section 16.6 we extend this result to subsets S which belong to Σ_2^o or Π_2^o In section 16.7, we conclude, to our own surprise, that, for all subfans τ of ω_{ω} and all subsets S of ω_{ω} which belong to Σ'_{i} . Det (7, S)

189

Therefore, by AC₁₁, for all subfans τ of ${}^{\omega}\omega$, for all subsets S of ${}^{\omega}\omega$. Det (τ, S) (theorem 16.7.1)

Actually, theorem 16.7.1 embraces the earlier results on monotonous fans, but we left those on their own, in order not to deny the reader the fun of discovery.

In 16.8 we remark that the result 16.7.1 may be extended to subspreads τ of ω_{ω} which offer only finitely many alternatives at any move by player I, but, possibly, infinitely many at some moves by player I Conversely, if a subspread τ of ω_{ω} is such that for all subsets S of ω_{ω} : Det (τ, s) and it offers, at each move by either player I or player I, at least two alternatives, then τ offers only finitely many alternatives, at any move by player I.

17. Appendix: strange lights in a dark alley.

We could not answer the question whether $A_1^1 \leq E_1^1$, in chapter 13 We observe that, assuming $A_1^1 \leq E_1^1$, we would have to abandon various schemes which have been proposed as additions to the axioms of intuitionistic analysis, such as: the generalized Markov principle GMP, saying that: $\forall x [\neg \neg \exists n [x(n) = 0] \rightarrow \exists n [x(n) = 0]]$, or kuroda's scheme kuR, saying that, for all subsets P of w: if $\forall n [\neg \neg P(n)]$, then $\neg \neg \forall n [P(n)]$. A somewhat dubious argument which forces us, on the assumption of: $A_1^1 \leq E_1^1$, to give up the restricted principle of Brouwer and kripke BK, is also given.

SUBJECT INDEX

References below are given as follows: first, the number of the section, and then, between parentheses, the number of the page. Thus, 2.1(12) means: in section 2.1, on page 12

Analytical sets strictly analytical sets	10.7 (88) 7.0 (54), 10.7(88)				
Apartness relation on ww	13.4 (161)				
Arithmetical sets arithmetical hierarchy theorem	6.13(51) 7.3(60)				
Bar, principle of bar induction	13.2.0(158), 13.3(161)				
Boundedness lemma	13.2.0 (157)				
Borel sets, see: arithmetical and hyperarithmetical sets.					
Brouwer, axiom of Brouwer-Kripke Brouwer's thesis	2.1 (12), 10.7 (88), 17.2 (213) 13.0 (156)				
Burgess, J.	10.7(88), 17.2(214)				
Choice, axioms of countable choice AC ₀₀ , AC ₀₁ contrapositions of these axioms	11(5), 1.3(6) 15.1(179), 15.0(178)				
Co-analytical sets	10.10 (90)				
Conjunction conjunctively closed sequence of sets conjunctively productive set	4.11 (27), 12.5 (140) 12.5 (140) 12.7 (146)				
Continuity, axioms of continuity AC ₁₀ , AC ₁₁ , CP generalized versions GAC ₁₀ , GAC ₁₁ , GCP	1.5(8), 1.7(9), 1.8(10) 1.9(11)				
Determinacy, game-theoretic	16.0(191)				
Determinate, i.e finitely defined objects	2.1(13), 8.0(61), 10.7(88) 17.2.0(214)				
Diagonal argument, diagonalization	0(1), 6.5(47), 6.9(49), 6,14(51), 14,10(176),				
Disjunction disjunctively closed sequence of sets disjunctively productive set	4.0(21), 12.4(136) 12.4(136) 12.7(145)				
Enigma (cf. Markov principle)	5.15-21(41-44),6.16(53), 17.0(211)				

Existential projection along w, viz. ^w w existentially saturated set	6.10(49), 10.13(93), 14.0(168) 10.4 (86)		
Fan, finitary spread, fan theorem monotonous fans	11.3(98), 15.2(181), 16 11.0(96), 11.19(115), 16 (194-201)		
Free, almost free (technical concept in chapter 9)	9.0 (69)		
Hyperarithmetical sets hyperarithmetical hierarchy theorem	8.4 (64), 9.4(73) 9.7(7 6), 9.9 (82)		
Implication	5.0 (341), 5.7(36), 12.8 (148), 12.9 (152).		
Injective: strongly injective function	13.5 (166)		
Intertwining functions Ø, S,	3.1(15), 7.0(55), 9.4(73)		
Kripke: the axiom of Brouwer and Kripke, see: Brou	wer		
Kuroda, S.	17.1 (212)		
Lusin-Brouwer separation theorem	13.4.1 (163)		
Markov: generalized Markov principle, see: enigma	17.0 (211)		
A. de Morgan, his nightmares	0(2), 14.10(176-177)		
pairing functions	1.2(5), 6.3(47), 13.1(157),		
reckless (Dutch: "vermetel")	14.0(167). 4.1(21), 11.10(103)		
separable, hyperarithmetically -, separation theorem	13.4(161), 13.4.1 (163)		
Souslin-Brouwer- theorem	13.2.2 (159)		
Stable sets	5.2(34), 11.8(1011, 12.8(147)		
Strategy	7.0(55), g.4(73), 16.0(191)		
Stumps, well-ordered hereditarily iterative stumps principle of stump induction	8D(61) 8.4 (64) 13.3 (161)		
Universal element of a class of sets universal projection along w, viz. ^w w universally saturated set	6.4(47) 4.7(25),6.10(49),10.13(93) 10.4(86) 14.1(169)		
Volatile number (Dutch: "vluchtgetal")	11.10(103), 15.1(180)		

INDEX OF SYMBOLS

References are given as in the subject index: first, the number of the section, and then, between parentheses, the number of the page. m,n,... are used for natural numbers; $\alpha, \beta, ...$ for members of ^ww.

AC	1.1 (5)	In	5.0(34)	c ^m	10.2 (85)
<nn_></nn_>	1.2 (6)	Neg(A)	5.2(34)	Α ¹ , Π ¹	10.g (go)
m *n	1.2 (6)	m*a	5.5 (35)	E (P), U (P)	10.13(92)
m⊆n	1.2 (6)	J	5.7 (36)	E1*, A1*	10.13 (94)
an	1.2(6)	YBA	5.15(39)	Jamon S.	11.0 (96-97)
na	1.2 (6)	DEC	6.0(45)	n*	11.0 (97)
AC.	1.3(6)	Σ_{A}°	6. 1 (45)	dr	11.7 (100)
2n	1.4(7)	Π°	6.7 (45)	dim	11.11 (104)
dem	1.4(7)	Un(P), Ex(P)	6.10(49)	ж.я	11.14 (107)
Y: a ⊢n	1.4 (7)	En Án	6.11 (49)	June Sm	11.19 (115)
fun	1.4 (7)	Σ° Π°	6.11 (50)	ft	11.19 (115)
$\chi(\alpha)$	1.4 (7)	Δ°	6.15 (52)	σ ₂ S	11.27 (125)
AC.	1.5 (8)	$n(R), \pi(R)$	7.0 (54)	ຮ່ອ	11.27 (125-126)
$\gamma: \alpha \mapsto \beta$	1.6 (9)	$\Sigma_{\tau}(\mathbf{y}), \Sigma_{\tau}(\mathbf{y})$	7.0 (54)	+	12.4.0 (137)
Fun	1.6 (9)	YZ_d, YM_d	7.0 (55)	D(P,Q)	12.4 (136)
rla	1.6(9)	am,k	7.2(57)	C(P,Q)	12.5 (140)
AC.	1.7 (9)	m * A	8.0 (61)	InR	12.0 (140)
CP	1.8 (10)	\$	8.0 (61)	JR	12.9 (152)
fun	1.9(11)	ng, on	8.1 (62)	al*	13.0(156)
Fun	1.9(11)	σ≤τ, σ≤*τ	8.1(62)	P, L, R	13.1 (157)
GAC.	1.9(11)	J-2	8.2 (63)	«», λ, p	13.1 (157)
GAC	1. 9 (11)	HI\$	8.4 (64)	δ"a "	13.4.0(162)
GCP	1.9 (11)	•	છે .મ (64)	А', п',	14.1 (16g)
ВК	2.1 (12)	A _a , E _a	8.4 (64)	GI*(P), E*(P)	14.1 (168-169)
A∠B	2.3 (14)	No, Do	8.4 (64)	81a	14.1 (169)
A∠B	2.3(14)	x	0.7 (67)	Ε', Σ'	14.5 (172)
0	2.0 (12)	ĥ	8.7 (67)	Α', Π'	14.9(175)
<u>1</u>	2 .2(13)	κ _σ	8.7 (67)		
A, E,	2.3(14)	KB	9.0 (68)	CRP, CRP	15.0(178-179)
A, E,	3.0 (15)			CRP*	15.0 (179)
xnd	3.1 (15)	att	9.1(69)	Strat _I (T), Stra	μ _I (T) 16.0 (191)
Ra(δ)	3.1(15)	Az, Ez	9.1 <i>(</i> 6 9)	deil, deul	16.0 (191)
D"P	4.0(21)	X⊆β	9.1(69)	$Det(\tau, S)$	16.0 (191)
n(k)	4.2(23)	ٌ٩ _٢ , Q _۲	9.4 (73)	ae _i c, ae _i c	<u> </u>
[n] ^m	4.4(24)	₽₽, Q₽	9.4 (73)	W _t (S)	16.6.0 (204)
Un(P)	4.7(25)	1 Zta' 2 Mta	. 9.4(73)	0.10	
C"P	4.11 (27)			GMP	17.0 (211)
Exp(m,n)	4.13(28)	rd(a)	Y.6(75)	kur	17-1 (212)
۹ ^t	4.13 (28)	End(r)	9.6(75)		
(CD),A1	4.19 (30)	5	9.8 (82)		
fcn	4.19(31)	E, ∑,	10.0(84)		

CURRICULUM VITAE

De schrijver van dit proefschrift werd op 7 oktober 1947 te Maastricht geboren. Hij volgde het gymnasium aan het Sint Ignatius college te Amsterdam. Hij studeerde wiskunde te Nijmegen van 1965 tot 1970 Tot zijn leermeesters behoorden J.H. de Boer, J.J. de Iongh, A.H.M. Levelt, A.C.M. van Rooij, H.O. Varma en H. de Vries. Sinds 1970 is hij medewerker aan het mathematisch instituut van de Katholieke Universiteit te Nijmegen.

STELLINGEN

behorende bij het proefschrift:

Investigations in intuitionistic hierarchy theory.

1

De opmerkingen die K. Menger in 1928 maakte over de gelijkenis tussen sommige intuitionistische begrippen en begrippen uit de klassieke beschrijvende verzamelingsleer hebben, tot nu toe, niet de aandacht gekregen die zij verdienden.

Hij redeneerde wel klassiek, en dus, voor een intuïtionist, niet zorgvuldig genoeg: Ofschoon nauw verwant, moeten spreidingen en analytische verzamelingen toch van elkaar onderscheiden worden.

> Vgl.: Karl Menger Selected Papers in Logic and Foundations, Didactics, Economics D. Reidel Publ. Co., Dordrecht 1979 i.h.b. blz. 79-87, blz. 246

dit proefschrift, hoofdstuk 10

2

E. Bishop en P. Martin-Löf bespreken beiden de vraag, hoe de Borel-verzamelingen in de constructieve wiskunde moeten worden ingevoerd. Onafhankelijk van elkaar, komen beiden er toe, de betekenis van het begrip "complement" zo te veranderen dat hun bouwwerken klassieke symmetrie vertonen.

Ze gaan voorbij aan het eigenlijke hiërarchie-probleem. Of deze bouwwerken nu ook bewoond zijn

De oplossing die in dit proefschrift wordt geboden, berust op een typisch intuïtionistisch continuïteitsbeginsel, en is voor hen vermoedelijk niet aanvaardbaar.

> Vgl.: Errett Bishop Foundations of Constructive Analysis Mc. Graw Hill, New York 1967 i.h.b. blz. 66-69 Per Martin-Löf Notes on Constructive Mathematics Almquist & Wiksell, Stockholm 1970 i.h.b. blz. 79-84

> > dit proefschrift, hoofdstuk 9

In de intuïtionistische reële analyse kan de continuïteit van (overal op IR gedefiniëerde) reële functies bewezen worden met behulp van alleen het zwakke continuïteitsbeginsel. (In 1.9 van dit proefschrift wordt dit beginsel CP genoemd).

Gebruik makend van het sterke continuïteitsbeginsel (AC₁₀ in 1.9 van dit proefschrift), kan men bewijzen:

(*) Als f: IR → IR en me IN, dan bestaat er een functie g: IR → IR zodat: ∀x ∈ IR [q(x) > 0] en: ∀x ∈ IR ∀y ∈ IR [|x-y|<q(x) → |f(x)-f(y)|<2^{-m}]

Ook hierbij is de waaierstelling niet nodig. Het vermoeden, uitgesproken door Charles Parsons, in zijn inleiding bij de heruitgave van Brouwer's artikel: "Ueber Definitionsbereiche von Funktionen", is dus niet juist. De bewering die aan dit vermoeden voorafgaat, dat (*) gelijkwaardig zou zijn met: f is locaal uniform continu, is onwaar.

> Vgl.: Jean van Heijenoort From Frege to Gödel Harvard University Press, Cambridge, Mass. 1967 i.h.b. blz. 448, voetnoot, laatste zin.

4

Bij de intuïtionistische behandeling van de volledigheid van de predikatenrekening, behoeven geen byzondere structuren als Beth- en kripke-modellen ter sprake te komen. Alleen voor het verkrijgen van een klassieke volledigheidsstelling voor de intuïtionistische predikatenrekening – een oud, maar wonderlijk verlangen – is het nodig een andere dan de voor de hand liggende interpretatie van het begrip "geldigheid" te bedenken.

5

Het volgende speciale geval van het lemma van Teichmüller en Tukey is constructief bewijsbaar:

> Zij t een waaier en B een decidabele deelverzameling van de collectie van de eindige deelverzamelingen van t Dan bestaat er een deelwaaier van t, die maximaal is onder de deelverzamelingen van t, waarvan alle eindige deelverzamelingen tot B behoren.

De beide functies, die Brouwer ziet voor de taal in verband met het wiskundig denken: het vasthouden van wiskundige constructies in het geheugen, en het suggereren van wiskundige constructies aan anderen, vertonen gelijkenis: de denker is een leraar die zijn eigen leerling is.

> Vgl.: Gilbert Ryle, Thinking and Self-teaching Rice University Studies 58, no.3, 1972 ook in: Gilbert Ryle, On thinking Blackwell, Oxford 1979 blz. 65-78

7

Verschillende axioma's van de verzamelingsleer, kunnen niet, in de termen van B. Nieuwentijt (1654-1718), gekenschetst worden als:

> "algemene Bekentenisse, aanstonts klaar aan ymant "die de woorden verstaat"

Eerder zijn het "hypotheses of onderstellingen", dit is "door ondervinding bekomen denkbeelden."

Zÿn de verzamelingstheoretici geen "suyvere Wiskundigen, die Waarheden soeken en bewÿsen, omtrent hare enkele of blote Denkbeelden" en bestuderen zÿ "Saken, die buiten haar verstant en Denkbeelden Wesentlyk bestaan"?

> Vgl. Bernard Nieuwentijt Gronden van Zekerheid of de regte betoogwijse der wiskundigen Johannes Pauli, Amsterdam 173g i.h.b. blz. 11, blz. 1, blz. 27

Kurt Gödel, What is Cantor's continuum problem? Amer. Math. Monthly 54(1947) 515-525

Yiannis Moschovakis Descriptive Set Theory North Holland Publ. Co., Amsterdam 1980 j.h.b. blz. 604-611

De Nederlandse man van wetenschap zou zich moeten uitdrukken

"in plat Neerduytsch sonder Vermenging van quade Barbarische woorden, die hij in sijns moederstael beter heeft."

Het is jammer dat de Nederlandse waarschijnlijkheidsrekenaars het woord "stochastiek" meer gebruiken dan het woord "giskunde".

> Vgl.: Simon Stevin, de Sterckenbouwing, Leiden 1594, i.h.b. blz. g1

> > ook in: The principal works of Simon Stevin, Vol Ⅳ, Swets & Zeitlinger, Amsterdam 1964, i.h.b. blz. 230

Nijmegen, 20 mei 1981 Wim Veldman.