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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. INTRODUCTION

In this monographwe investigate (a specific question concerning) in
tuitionistic Baire-space N, i.e. the universe of sequences of natural num
bers, or, as Brouwercalls them, ‘choice sequences‘.

Our approach to the subject is the analytic one, as described by
TROELSTRAin [T81]. That is to say, we do not accept the universe of choice

sequences as a single primitive entity, quantification over which is intui
tively clear. Welook upon N rather as a collection of individual objects,
each of them generated by a process of assigning to each argument n e 11 a

value m 6 IL in which we can distinguish subdomains, according to the type
of data that are available to us on a sequence 8 at any momentof its gen
eration. The meaningof quantification over choice sequences of a specific
type is explained in terms of the sort of data that can becomeavailable to
us for individual sequences of this type at somestage of the generation
process.

Twoextreme types of choice sequences to be distinguished are the law
like sequences and the lawless sequences.

Lawlike sequences are given to us by a law, i.e. a set of computation
rules. In generating a lawlike sequence a, we simply apply these rules to
the arguments0,1,..., in order to find the values a0,al,... . The data
that are available to us on such a sequence do not change during the genera
tion process, they consist of the set of computation rules. Onemayaccept
Church's thesis (CT), and identify lawlike with recursive. Weshall not do
so (though we do not reject CTeither).

The lawless sequences are the extreme opposite of the lawlike ones.
Here the generation process is divided into countably manystages 0,1,... .
At stage 0 we can fix an initial segment of the sequence to be generated



according to our needs, after that, we generate values as if we were throw
ing an infinite-sided die: at each stage we choose a completely arbitrary
value, to be assigned to the next argument.

A lawless sequence for which we do not specify an initial segment (or

in other words an empty segment) we call proto-lawless.
Lawless sequences were introduced by KREISELin [K68]. A discussion of

lawless sequences of zero's and ones (i.e. sequences comparable to the
tossing of a coin) is given already in [K58] (there called ‘absolutely
free‘).

Before we discuss the lawless sequences here, two remarks are in order:
Firstly, we do not discuss lawless sequences from a probabilistic point of
view. The truth of a statement about a lawless sequence is not identified
with ‘having probability 1'; such a statement is true iff it is intuition
istically provable as certainly true.
Secondly, it is to be noted that we can consider any choice sequence at two
levels: the extensional and the intensional. (This remark applies to the
lawlike sequences as well.) At the extensional level we take into account
only the information that is contained in the graph of the sequence (the
outcomeof the generation process), at the intensional level we consider
also the way in which this graph is constructed (the generation process it
self). E.g. we can distinguish between intensional and extensional equality
of sequences. These do not always coincide: two sequences may result from
different generation processes (in the case of lawlike sequences: from dif
ferent computation laws) but still take the samevalues. (It turns out that
for lawless sequences the difference between intensional and extensional
equality disappears.)

The data that are available to us on the graph of a lawless sequence
at any stage of its generation process, consist of an initial segmentof
that sequence only. Of course we do have more information on the sequence
we can also tell e.g. which initial segmenthas been specified in advance
and what values have been generated at later stages, but such facts are
irrelevant at the extensional level.

On the basis of this insight in the possibly available data on the
graph of a lawless sequence, one can justify informally, but rigorously,

the axioms for the theory of lawless sequences kg, as introduced by
KREISEL ([K68]), and corrected by TROELSTRAin [T7OA].

Somenotation:

a and b are variables for lawlike sequences, a,B etc. for lawless ones.



n, v and x are variables for natural numbers, also used as codes for finite

sequences of natural numbers.
If ¢ is an element of N then Ex is the finite sequence <¢O,...,¢(x-1)>,
< > = $0 is the empty sequence.

If ¢ is an element of N and v is (the code of) a finite sequence then ¢ e v

expresses '¢ has initial segmentv'.

If A(a,B1,...,Bp) is a formula which contains no lawless parameters besides
a,B1,...,Bp, then !cA(a,B],...,Bp) denotes: ‘for all lawless a distinct
from Bl,...,Bp, A(a,B1,...,Bp) holds‘. e is a variable ranging over a set
of neighbourhood-functions for continuous functionals. (This set is dis
cussed in more detail below.) The membersof this set are lawlike elements

of N which satisfy:
- for all ¢ 5 N there is an x such that e($x) # 0 and

—e<$x> = m+1+ e<$<x+y>> = am.

e is a neighbourhood-function for the continuous We: N +-ll defined by

we(¢) = m iff ax(e($x) = m+l).

Wewrite e(¢) for Te(¢), and e(¢1,...,¢p) for e(vp(¢1,...,¢p)) where vp is
some homeomorphismfrom Np into N. j is a bijective 'pairing' function,
j: 11 X 11 + Ii.

If ¢ 5 N then ¢ can be seen as the code of a countable sequence of elements

of N, (¢)n is the n-th element of this sequence,defined by (¢)n E Az.¢j(n,z).
= between elements of N is used for extensional equality, i.e. ¢ = w abbre
viates Vx(¢x=wx).
LS finally is the universe of lawless sequences.
Weadopt the convention that the choice parameters of a formula are expli

citly shown. I.e. A(al,...,ap) is a formula which contains no choice param
eters besides (maybe)a ..,a .l" p

The kg-axioms are:

(LS1) Vv3a(aev),

i.e. LS lies dense in Baire-space.

(L32) 0 = B V a ¥ 8:

i-e.extensional equality between lawless sequences is decidable.



(LS3) .!a(A(a,B],...,Bp) + 3v(a€v.A.!yevA(y,B1,...,Bp))),

the axiom of open data, where A(a,B1,...,Bp) is a formula expressing an
extensional property of a,B1,...,Bp. This axiomexpresses that if A holds
for a p+l-tuple a,B],...,Bp, a distinct from B],...,Bp, then Aholds for
all lawless Y distinct from B],...,Bp in an open neighbourhoodof a.
(1.

(LS4) !o1...!op3a A(a],...,ap,a) +

Seibyo ..!op A(al,...,ap,(b)1° e(al,...,ap))’

which expresses that if we can find with each p-tuple of distinct lawless
sequences a 1’.
countable sequence of lawlike sequences (b)0,(b)1, etc. coded in the single

..,ap a lawlike a such that A(a],...,a ,a), then there is a

sequence b and a continuous Wewith neighbourhood-function e such that for

all distinct a ..,ap A(a],...,ap,(b)n) holds, wheren = We(al,...,a ).1’° p
Here also A is an extensional property of a ...,a .9

The axioms and their motivation are discussedpat length in [T77]. The
justification of (LS4), which is the most complexof the four axioms, is
refined in [T81].

Wecan distinguish two variant of LS, according to our definition of
the range of e in (LS4). In the strong version (as intended by Kreisel, in
keeping with Brouwer's views) e ranges over the inductively defined set K.
(A detailed treatment of this set is to be found in [KT70], we give a con
cise description in 1.3.7-27 below.)
In this version, the schemaof bar induction is derivable from (LS4).

In the weaker variant we define the range of e in (LS4) as

KLS E {e: Vvw(ev#0 + ev=e(v*w)) A Va3x(e(dx)#0)}

I(where * denotes concatenation of finite sequences), and we adopt the ex
tension principle‘

EP eeKLS A ¢eN + 3x(e($x)#0),

which expresses that any continuous Wfrom LS to Ii can be extended to a
continuous operation on the whole of N.



Our proofs below can be formalized in the weaker system.

Note that the kg-axioms give a contextual definition of quantification
over LS:

from density (LS1) and open data (LS3) we find that

3aA(a,B],...,Bp) ++-SvyoevA(a,B1,...,Bp)

which explains existential quantification in terms of universal quantifi
cation,
(LS4) explains universal quantification over LS in the context of a quanti
fier 3a (and hence in combination with 3x and V),

and from open data we can derive

!o]...!up(A(a],...,ap) + B(a1,...,ap))-++

Vvl...vp(ya]evv...!opevp.A(a1,...,ap) 9-yd ev1 ...!opevp B(al,...,ap))1 1

which explains universal quantification in the context of an implication.
This observation is formally reflected in the elimination theorem

(formulated by KREISELin [K58], [K68], for a detailed treatment see [T77]):

there is a translation i from kg-sentences into sentences which do not con
tain g§-quantifiers, such that:
(i) each kg sentence A is equivalent to TA (provable in L§)
(ii) if A is a theorem of gg, then IA is derivable in the lawlike part of

L§ (i.e. without using (LS1)-(LS4)).

The lawless sequences are a simple type of choice sequence, in the
sense that it is easy to see what kind of information we can have on a law
less a at the various stages of its generation process. This simplicity is
of great advantage in rigorously justifying axioms for lawlessness, but it
is a drawbackif one tries to use LS as a basis for e.g. intuitionistic
analysis.

To give an example: if one associates with each lawless a a real num

ber generator (i.e. a Cauchy-sequenceof rationals) <r:>n, in a non-trivial
manner, i.e. in such a way that for all finite sequences v there are a and

B with the same initial segment v which yield non-equivalent <r:>n and
<rE>n, then the resulting notion of real numberdoes not contain any ra
tionals (to be able to state that <r:}n converges to the rational q we need
more information than just an initial segmentof a, but initial segments



are all we can ever get), and is for instance not closed under addition
(for a similar reason).

To put this quite generally: LS has the serious defect that it is not
closed under any non-trivial lawlike continuous operation.

Formal systems which, unlike Lg, can be used for the foundation of in
tuitionistic analysis have been proposed by KLEENEand VESLEY[KV65] and

by KREISELand TROELSTRA[KT70]. From the analytical viewpoint the second

one is the most interesting one.
The system of [KT70] is called Qg (for ‘choice sequences‘). It is a

corrected version of an earlier proposal by KREISEL(in [K63]). Before we

formulate and discuss the §§-axioms, we need some more notation.

Let e be a neighbourhood-function for a continuous mapping from N + 11.
Wecan think of e as a countable sequence e of such neighbourhood0,e]’OOO
functions by putting

env = e(<n>*v)

where <n> is the finite sequence consisting only of the element n. With
the sequence e ., and hence with e, we can associate a continuous0,el,..
mapping Fe from N into N by putting

Fe(¢)(n) = m iff en(¢) = m.

Wewrite e|¢ for Fe(¢), we call e a neighbourhood-function for Fe. e|(¢,w)
abbreviates e|v2(¢,¢) where v is a homeomorphismfrom N2 onto N.2

The g§-axioms are:

(CS1) VenVe3C(C=e|(e.n)),

which expresses closure under pairing and continuous function application.

(CS2) Ve(A(e) +-3e(eee A VnA(eIn))),

where A is an extensional property of e, and e e e abbreviates '5 lies in

the range of Pe'.This axiom is called the axiom 0f'anaZytic data, it ex
presses that if 5 has the property A, then we can find a continuous

Fe: N + N such that all sequences in its range (amongwhich is e) have the
property A.



(CS3) Ve3aA(e,a) + 3e3bV€A(e,(b)e(€)),

where A is an extensional property of 6 independent of other choice param
eters (cf. LS4),
and finally

(cs4) Ve3nA(e,n) -> EIeVeA(e,eIe) ,

where A is an extensional relation between e and n, independent of other
choice parameters. This axiom expresses that if all sequences lie in the
domain of A, then A contains a continuous mapping. This continuous choice
principle is sometimescalled 'Brouwer's principle for functions‘.

In the original formulation of Qg, (CS1) is not an axiom but a theorem.
Wehave put it amongthe axioms here to stress its importance. As a corol
lary of (CS1) we find e.g. that there exist choice sequences e and lawlike
sequences a which coincide (since for each a there is an e such that for

any ¢ e|¢=a), which is refutable for LS.
Note that this system also gives a contextual definition of the quan

tifiers Ve,3e:
from analytic data and the existence of lawlike n we find

3eAe ++ 3aAa,

which explains existential choice quantification in the absence of choice
parameters as lawlike existential quantification, (CS3) and (CS4) explain
universal choice quantification in the context of existential quantifica
tion and disjunction, and from analytic data one derives

Ve(Ae + Be) ++-Ve(VeA(e|e) +-VeB(e|e))

which explains V9 in the context of an implication.

Wecan formulate and prove an elimination theorem for g§ analogous to
the one for kg (see [KT70]).

gg has all the properties wewould like a formal system for intuitio
nistic analysis to have: it expresses closure under continuous operations,
it has strong continuity axiomsand it fully explains choice-quantifica
tion. The problem is, that we do not have a fully analyzed notion (sub

domain) of choice sequence for which the gg-axioms can be justified.



There are two approaches to the problem of finding interesting uni
verses of choice sequences other than the lawlike and the lawless sequences:
the informal approach and the study of universes of projections of lawless
sequences.

A general framework for the informal approach has been set up by

TROELSTRA[T69]. This was inspired by MYHILL,who developed in [My67] an

approach to choice sequences which seemed to be implicit in some of

Brouwer's writings. The idea is, that one can think of the generation pro
cess of a choice sequence as being a process of generating pairs
<x R >, <x R >, etc., where x0,x are to be the values of the generated0’ 0 1’ 1

sequence, and R0,R

1,...
1,... are 'restrictions' taken from somefixed universe

R, equipped with a partial ordering S (weaker than). The values xn,xn+l,...
must meet the restriction Rh, the restriction Rn must be weaker than the
next restriction Rn+1, otherwise we are completely free in choosing pairs
for the sequence, with the stipulation that an initial segmentmaybe fixed
in advance. Subdomains are now distinguished according to the universe R
from which the restrictions are taken.

E.g. we obtain the lawless sequences if we let R consist of a single
restriction, the emptyone U (for universal), which is met by all natural
numbers.

If we take R to be the set {U,Z}, where Z (for zero) is the restric
tion of ‘being equal to 0', which is met by 0 only, U being (obviously)
weaker than Z, we obtain a notion of ‘lawless zero sequence‘, a sequence
which we start generating as if it were lawless, but then, at somemoment
of the generation process, we can decide to continue choosing only zero's.

The alternative approach is to study subsets of N, the elements of
which are constructed from lawless sequences by means of continuous opera
tions from N to N, so called universes of projections of lawless sequences.

This approach was followed by VANDALENand TROELSTRAin [DT70] and further

investigated in [T69B], [T70] and [T70A].
Examples of such universes are (1)-(4) below.

(1) {na: a 6 LS} (introduced in [DT70]),

where n: N + N is defined by



j1(¢n) iff VmS n (j2(¢m) = 0)
W¢(n) =

0 otherwise.

wherej1,j2 are left-inverses to the pairing operation j, i.e. jl j(x,y) = x,
jz j(x,y) = y, and z H-(jlz,j2z) is a mapping from El onto 11 X EL
This projected universe can be seen to imitate (with a lot of redundancy in
the coding) the behaviour of the lawless zero sequences above: the finite

sequences <j2(a0)>, <j2(aQ), j2(a1)>,... play the role of the restrictions
RO,R1,..., a sequence<j2(aO),...,j2(an)> which consists only of zero's cor
responds to the empty restriction, if it contains a value unequal zero we

have the restriction Z; the values jl(aO),j2(al),... are the freely chosen
xl,x2,..., at least for as long as the restriction Z is not imposed.

(2) {ela :e 6 K} (discussed in [T77]),

which consists of all continuous images of a fixed lawless a (i.e. this
universe is projected from a single lawless sequence).

(3) {e|(al,...,ap) :e e K, #(al,...,ap), al,...,ap 6 LS}

(introduced in [T69B]),

which consists of all continuous images of all p-tuples of mutually distinct
lawless sequences (for all p). Weshall say more about (2) and (3) below.
Finally we mention

(4) {n*(a)n: n e E1} (introduced in [T7OA]),

a countable universe projected from a single lawless sequence a. As before

(a)n E Xz.aj(n,z), * denotes concatenation, i.e. n*(a)n is the result of
prefixing the finite sequence with code n to the sequence (a)n.
The universe (4) is a model for the theory of lawless sequences kg, one
can prove this fact inside gg. It is of interest to us because it shows
that there are non—trivial universes of projections in which all sequences
are identified by a natural number (‘have a name‘ so to speak).

An advantage of the study of projections over the informal approach
is that properties of projected universes can be proved from the gg-axioms
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whereas properties of an informal notion can only be justified informally,
albeit sometimesquite rigorously.

Another interesting feature of universes of projections is the cor
respondence between such universes and Beth-models or equivalently topol
ogical models over Baire-space. Validity in a universe projected from a
single lawless sequence translates immediately into validity in a Beth
or topological model. Under this translation the universe (2) above corre
sponds to the Moschovakis model of [M73] (cf. [T77]), and the universe (4)

can be reinterpreted as a Beth-model for kg (see the appendix of [D78]).
Via (4), the universe (3) is equivalent to

{el(nl*(a)nl,...,np*(a)np): e e K, #(n1,...,np)}

projected from the single lawless a, this universe corresponds to the Krol‘
model of [K'78] (cf.[T8l]).

These points in favour of the study of projections do not argue against
the informal approach of conceptual analysis of newprimitive notions. In
fact there are good reasons to use both approaches simultaneously: the in
formal description of a notion of choice sequence may suggest to us a uni
verse of projections in which the behaviour of those sequences is imitated
(cf. the example under (1)), further study of this universe mayhelp to im
prove our analysis of the informal concept. Eventually we can thus obtain
a fully analyzed notion of choice sequence, together with a reduction of
that notion, via projections, to the concept of lawless sequence, the
simplest notion of choice sequence. This reduction will generally not be
an isomorphism: one can expect to be able to rigorously justify axioms for
the informal notion, which are provable for the projected imitations only
under suitable language restrictions, necessary to avoid interference between
the projected sequences and the lawless sequences from which they are con
structed. (See e.g. [DT70].)

If we now return to the problem of finding a type of choice sequence

for which the gg-axioms hold, we find that none of the projected universes
of [DT70], [T69B,70,70A] and [T77] is a good candidate: these universes are
either not closed under non-trivial continuous operations (as e.g. all ex
amples in [DT70]) or, if they have closure properties, as e.g. (2) and (3)
above, then it is impossible to derive strong continuity principles for them,
at least in kg.



(The universe (3) of continuous images of p-tuples of independent lawless
sequences does provide an acceptable basis for intuitionistic analysis,
even if it is not a Cg-model, cf. [T69B].)

On the informal side there is a proposal for a notion which might ful

fill CS, madeby Troelstra, first in a restricted form in [T68]: the GUC
sequences, later generalized in [T69,69A] to the concept of a GC-sequence.
(GUCand GC stand for ‘Generated by Unary Continuous operations’ and ‘Gener

ated by Continuous operations‘ respectively.)
This notion is further analyzed in [T77], the analysis is discussed and

somewhat refined by DUMMETTin [Du77]. Troelstra's analysis and Dummett's

improvements yield convincing arguments showing that the notion is closed
under non-trivial continuous operations and pairing and that it satisfies
analytic data and Ve3a-continuity, (CS3).

The questions we shall deal with here are the following:
(a) to give a precise description of the notion of GC-sequence,
(b) to define universes of projections, projected from a single lawless a,

which faithfully imitate the behaviour of the GC-sequences,

(c) to prove in LS that these projected universes are Cg-models.
A first step towards answering (a)-(c) is taken in [HT80], where a variant

of the GUC-sequencesis imitated by projections, yielding a universe which
is (provably in ES) closed under a restricted set of unary continuous
operations, (but not under pairing), and which satisfies variants of analy
tic data (CS2) and the continuity axioms (CS3) and (CS4). These results are
not a special case of the results we obtain here. This is so for technical
reasons. At the cost of someextra technical effort we could give a uniform
treatment which covers the results of [HT80]as well. In any case, the
methodof [HT80]remains of interest because of its direct, easily visuali
zable character.

Question (a) will be answered in chapter 2, where we also analyze the

notion of GC(C)-sequence, for C a subset of K. (GC-sequence = GC(K)-sequence.)

As to question (b), we shall define universes of projections which
imitate GC(C)-sequences,where C is subject to the restriction that it can
be enumerated, modulo equivalence (cf.1.3.1l, 1.3.26), by a mapping
.1: 11 + C (i.e. we do not model GC(K)-sequences themselves).

In answer to question (c) we shall prove that for sufficiently nice
enumerable C c K, the projection model for GC(C)—sequencessatisfies the

axiom system Q§(C) which consists of
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CS(C)1 VenVeeC3§(;=eI(€,n))

CS(C)2 Ve(A(e) + 3eeC(eee A Vn A(e|n)))

CS(C)3 Ve3aA(e,a) + 3b3eVeA(e,(b)e(€))
cs(c)4 vean A(e,n) + Ve3feCA(e,£|e),

i.e. all quantifiers Ve,3e in gg which have something to do with closure of
the universe under continuous operations are relativized to C, and the quan
tifier combination 3eVe in the conclusion of CS4is switched.

In the presence of

AC-NF Vxfla A(x,a) + 3bVx A(x,(b)x)

one can show that Qg = g§(K) (see 1.3.29).

An important tool in the proof of the validity of §§(C) in the pro
jected universes is an elimination translation introduced by DRAGALINin
[Dr74]. This translation generalizes both the elimination translations for
kg and Qg, and is formulated as a kind of forcing. Wereturn to it in chap
ter 8. Our results do not give a reduction of the full concept of GC-sequence

to lawlessness, nor do they yield a projection model for the system gg it
self.

It is to be expected however that if we extend Eg with the schema

ECT0 Vx(A(x) + 3y B(x,y)) + 3zVx(A(x) + !{z}(x) A B(x,{z}(x))),

where A(x) is almost negative, and add variables for lawless sequences

ranging over sets {x:A(x)}, A almost negative (cf. [T8OA]), then Q§(Q) can
be modelled for any C c K which is enumerated by a mapping J:{x:A(x)} + K,

K itself has such an

(The details of this
A almost negative. Since under assumption of ECT0,

enumeration we would obtain a model for Q§ + ECT0.
claim have not yet been completely verified.)

To obtain a projection model for gg without using ECT it seems necesO9

sary to work inside a theory g§Kof lawless sequences of K-functions. It is
likely that a Q§model can be constructed from such lawless K-sequences,
but this needs further consideration, in particular the appropriate axioma
tization of £§K.



1.2. GENERAL OUTLINE

Chapter 2 of this monographis devoted to the precise description of
the notions of GC-sequence and GC(C)"sequence.

The chapters 3, 4 and 5 deal with the construction and investigation
of projection models for the notion of GC(C)-sequence. Chapter 3 gives the
necessary technical auxiliaries, chapter 4 contains the definition of the
models, and in chapter 5 we derive a crucial property for the models, the
so-called ‘overtake-property‘.

In chapter 6 the class of 'domains' is introduced. The projection
models are special cases of domains. Weshall give the proof of the validity

of g§(C) in domains, hence g§(C) will hold in all projection models. By
generalizing to domains, we achieve that our proofs are independent of some
of the peculiarities of the models.

The treatment in the chapters 2-6 is informal in the sense that we do

not derive our results inside a formal kg-like system.

In chapter 7 we introduce suitable extensions (modifications) of IQQI
and kg in which the formalization of the results can be carried out.

Then, in the chapters 8 and 9, we deal with the problem of showing

that domains are g§(C)-models, at least for suitable C c K.
In chapter 8 we describe and investigate an elimination translation T,

similar to the one introduced by DRAGALIN[Dr74], and we prove an elimina

tion theorem-for domains which states that a sentence A is valid in a domain_

iff its translation TAis derivable in the lawlike IQQIextension defined
in chapter 7.

In chapter 9 we take the final step by showing that indeed all g§(C)
axioms (for suitable C c K) are derivable under the translation T.

But before we turn to chapter 2, we present our notational conventions,
basic definitions and their properties in the final section 1.3 of this in
troductory chapter.

1.3. PRELIMINARIES

This section consists of a long list of notations, definitions and
simple facts. The notational conventions are mostly those of [T77] and
[KT70]. The same holds for the definitions and facts. 'New' here are only
1.3.3 (on finite sets), 1.3.11(b), 1.3.12, 1.3.16, 1.3.21, 1.3.23 (the
definitions of efw, [v], sn, id, exf, eAf and their properties), someof
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the results of 1.3.24, and 1.3.26 on subsets of K. In 1.3.28 and 1.3.29 we

give reformulations of the systems kg and g§(C) which deviate slightly from
the ones given in the introduction (1.1).

The reader is advised either to skip this section altogether and to
consult it only whennecessary, or to glance through its contents, with a
special eye for the 'new' facts mentioned above.

1.3.1. Sets and variables

11 is the set of natural numbers, we use i,k,m,n,u,v,w,x,y and z
(with sub- or superscripts) as variables ranging over 11.

N is the set of all mappings from E1 into 11 (i.e. Baire-space), ¢,w
and x (with sub- or superscripts) are used as variables for elements of N
(see also 1.3.4), a,b and c (with sub- or superscripts) range over the law
like elements of N.

K is the inductively defined subset of Nwhich contains the lawlike
neighbourhood functions for continuous functionals from N into N (cf.
1.3.7-27), we use e,f and g (with sub- or superscripts) as variables ranging
over K.

LS is the universe of lawless sequences, we use a,B,y and 6 (with sub
or superscripts) as variables for elements of LS.

e,n and c (with sub- or superscripts) are used to range over subsets
U c N distinct from LS and the set of lawlike sequences.

We use D,D D',D2, etc. and S,S S',Sl, etc. as variables for sets.19 0!

1.3.2. Formulae and terms

(a).MetavariabZes
A,B,C,D, ¢ and Ware used as metavariables for formulae, t and s are meta
variables for number-terms, ¢,¢ and x are metavariables for function-terms
(denoting elements of N).
(b) Formulae and terms with parameters

Wewrite A(al,...,ap), where a .,ap is any string of variables, to in1,00

dicate that someof the parameters of A are in the list al,.

ly we use t[al,...,ap] and ¢[al,...,ap] for number-and function-terms with

..,a , similar
P

parameters in the list al,.
In formulae of the form A(a) we sometimes omit the brackets, and write Aa.
(c) Substitution

OnceA(a1,...,ap), t[a],...,ap] or ¢[al,...,ap] has been introduced,

0 O,apO
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A(bl,...,bp), t[b1,...,bp], ¢[b1,...,bp] denotethe result of substituting
bi for ai (i = 1,...,p) in A, t or ¢ respectively. Here bi is a variable
or term of the sametype as ai, for i = l,...,p.
A(b/a), t[b/a], ¢[b/a] denote the result of substituting b for a in A, t
and ¢ respectively.
(d) Restricted quantification
If R is a relation in infix notation, like e.g. < between elements of Ii
or 6 between elements and sets, then

VaRb A(a):def va(aRb —>A(a)),

3aRb A(a)sdef aa(aRb A A(a)),

where a is a variable and b a term, both of the right type.
(e) Termsfor sets

If b1,...,bp are terms for elements of a set D, then {b],...,bp} denotes
the finite set with elementsb1,...,b .
If a is a variable ranging over D, then {a:A(a)} denotes the subset of D of
all elements with the property A.

1.3.3. Finite sets

If we speak of a finite set, we meanfinite in the strong sense of
‘being in 1-1 correspondence with an initial segment of Ii‘. That is to say,
we assume a finite subset S c 11 to be given to us by a mapping ¢ e N which

enumerates its elements without repetitions and a natural numbern, such that

Vk<n Vm<n(k#m + ¢k#¢m)

and

x e S iff 3m<n(x=¢m).

n is the cardinality of S, notation card(S).
¢ is the empty set with cardinality 0.

Note that with this interpretation of finite, membershipof a finite set
S c 11 is always decidable.
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1.3.4. Mappings (domain, codomain, range, composition, restriction)

A mapping ¢ from D into D2, notation ¢: D + D2, is a process of as1 1

signing to each element of D] a value in D2. D1 is the domain of ¢, D2 is

the codomain of ¢, the set {¢(d) :d 6 D1} C D is the range of ¢.2

D2D1 is the set of all mappings from D] into D2.
If the domain or the codomain of ¢ is not the set of natural numbers,

then ¢ will be lawlike; that is to say, the only choice sequences consider
ed here are choice sequences of natural numbers.

If the domain D of ¢ is a cartesian product, D = D]xD2,

l,d2> e D.

+ D3 then wo¢ is the composition of w and ¢;

then ¢(d1,d2)
is the value assigned by ¢ to the ordered pair <d

If ¢: D1 + D2 and w :D2

¢°¢ 3D] + D3. ¢°¢(d]) = ¢(¢(dl))
If ¢ :D] + D2 and D C D1 then ¢rD is the restriction of ¢ to the

domain D; ¢rD: D + D2, ¢tD(d)=¢(d).

If a is a variable ranging over D] and b[a] is a term such that
VaeDl(b[a]eD2), then a-+-b[a] and xa.b[a] denote 'b[a] as a function of a‘,
i.e. a mapping with domain D and codomain D which assigns to d e D the

1 2 1

value b[d] 6 D2.
If D is a set of mappings then we use ¢,w and x as variables ranging

over D (cf.l.3.l. for D¥N).
In terms of the form ¢(a) we sometimes omit the brackets and write ¢a.

= between functions is extensional equality, i.e. ¢=¢ EdefVx(¢x=wx).

1.3.5. Elementary analysis

(a) The formal system gt for (lawlike) elementary analysis contains vari
ables for natural numbers and (lawlike) sequences of natural numbers,
constants: 0 (zero), S (successor), = (equality between natural numbers),
A (abstraction operator), H (recursor for definition by recursion) and

j,jl,j2 (a pairing function from N XN onto N with two inverses),
and the usual logical constants.
Axioms of ED are:
(1) the successor and equality axioms,

(2) the pairing axiomsj(j1x,j2x)=x, j]j(x,y)=x, j2j(x,y)=y,
(3) the A-conversion rule (Ax.t[x])(s) = t[s],
(4) the axioms for primitive recursion:

H(x,a,0)=x, H(x,a,(Sn))=aj(H(x,a,n),n),



(5) and a weak choice axiom:

QF-AC VxflyA(x,y) + 3aVxA(x,ax), A quantifier-free.

(b) Weuse the following symbols for arithmetical operations and relations:
+ for addition,
- for multiplication,
; for ‘cut-off subtraction':

if x is larger than y, then x:y is the difference between x and y,
otherwise xzy is zero.

sg for the ‘sign-mapping‘: sg 0=0, sg(n+l) = 1.

>,2,<,s for ‘larger than‘, larger than or equal to’, 'smaller than‘ and
‘smaller than or equal to‘ respectively.

min for the minimumoperator: min(x,y) is the minimumof x and y, if S

is a finite non-empty subset of DL then min(S) is the smallest ele
ment of S, if A is a decidable property of natural numbers and 3kAk,

then mink(Ak) is the smallest natural numberwith the property
A,mink<n (Ak) is the smallest k below n with the property A, if such
a number does not exist then mink<n(Ak) = n,

max for the maximumoperator: max(x,y) is the maximumof x and y, if S is

a finite non-empty subset of BL then max(S) is the largest element

of S, if ¢ e N then maxn€S (¢n) is the largest element of
S'E{m : 3neS(¢n=m)},

Z for repeated addition; if S is a finite non-empty subset of R1 and

w e N then Xnés (wn) E w(¢O)+...+w(¢(card(S);l)), where ¢ is the

mapping which enumerates S, [new (wn) = O.

(c) Pairing and p-tuple coding
In the sequel it is assumedthat the pairing j satisfies j(0,0) = 0.

For coding of p-tuples we use vp with inverses j?,...,j::

.p .p = .p = .
Vp(JlX,...,JpX) x, JiVp(X1,...,Xp) xi (ISISP).

We put

vl(x) = x, (x ... x ) = j(vp(x],...,xp),x )."p+1 1’ ’p+1 p+l

If ¢ 6 N then

¢(x1,...,xP) 2 ¢vp<x1,...,xp>.
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The use of j,j],j2, vp and jg is extended from IE to N by putting
(for ¢.¢,¢1.-~-,¢p€N)=

j(¢.¢) 5 lX- j(¢X.¢X).

j,¢ 2 xx. j,<¢x>, 52¢ 2 xx. j2(¢x>.

vp(¢1,...,¢p) E Ax. vp(¢]x,...,¢px)
and

3%1 Ax. j‘i’(¢x).

If ¢ 6 N, n 6 ll then (¢)n E lz. ¢j(n,z).
(d) Finite sequences of natural numbers
Weassume a (primitive recursive) coding of all finite sequences onto the
natural numbers to be given. In fact we shall not distinguish between the
finite sequence and its code. Weshall use (as muchas possible) the vari
ables u,v and w for 'a natural number in the r6le of sequence code‘.

<xl,...,xp> is the code-numberof the finite sequencexl,...,xp.
< > is the empty sequence. In the sequel we assume that < > = O.

fi is the finite sequence <x>.
* is used for concatenation.

1th is the length-function.
tl is the tail-function, i.e. tl(< >) = < >, tl(§*v) = v.

(v)n is the n-th element of the sequence v: if v = <xO,...,xp>, and
n<lth(v)(=p+1), then (v)n=xn, if n2lth(v) then (v)n=0.

=4 is used for ‘initial segment of‘ between finite sequences:
v<w E 3u(v*u=w).

$n,$(n) is the finite sequence which contains the first n values of ¢ 5 N,
i.e. $0 = < >, $(n+l) = <¢0,...,¢n>.

¢ e v expresses that ¢ e N has initial segment v:

¢ 6 v EdefVn<lth(v)(¢n=(v)n, i.e. ¢ 6 v iff $(lth(v)) = v iff
3n($n=v).

2,..,kE (lsisp) are defined by:
k](< >) = k2(< >) = kE(< >) = < >,

P
v*<j2x> and kE(v*§) = k.v*<jpkl(v*i) = klv*<jl 2 ix>,

i.e. k1(<x1,...,xp>) = <J1Xl,...,J1Xp>, k2(<x
x>, k2(v*§) = k

III-'..,x >)1,. P <j2x],...,j x >2 p

and likewise for kg.
Via these mappings we can treat the finite sequence v as a pair of
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finite sequences k v,k V and as a p-tuple kpv,...,k§v.1 2 1

* is also used for concatenation of a finite sequence with an element
¢ 6 N. v*¢ is the sequence satisfying:

(v)n if n < lth(v)
v*¢(n) =

¢m if n = m + lth(v).

1.3.6. §A_CE§.

(a) j1(v*¢) = k1V*j]¢.

(b) kl(v*w) = klv*k1w,

(c) k](¢x) = j]¢(x).
and similarly for k and kg.2

The set K (1.3.7-1.3.27)

1.3.7. DEFINITION.K is the set of lawlike sequences of natural numbers,
inductively defined by

(K1) Vx(An.Sx) e K,

(K2) a0=0 A Vx(Av.a(§*v)eK) + aeK,

(K3) Va(A(a,Q)+aeQ).+ Va(aeK+aeQ),

where A(a,Q)E3x(a=An.Sx) A Vk(Av.a(§*v)eQ)).

(K3) is called induction over K, it expresses that K is the smallest set
satisfying (K1) and (K2).

1.3.8. IQQOis the formal system which consists of gg plus the constant K
and the axioms (K1)-(K3).

Weuse e,f,g etc. to range over K.

1.3.9. FACTS. If e 6 K then

(1) V¢3x(e($x)#0), by induction over K,

(2) Vvw(ev#0+ev=e(v*w)).

1.3.10. COROLLARIES(including the definitions of 'bar', e(¢),eI¢).
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(a) The set {w:ew#0} is a bar in the tree 0f'finite sequences: the bar
given by e or simply the bar e.

(b) with each ¢ e N there is a unique y such that, for some x, e($x) = y+l.

For this y wewrite e(¢), weput e(¢],...,¢p) E evp(¢],...,¢p).
(c) With each ¢ 6 N there is a unique sequence w e N such that

Vn3x(e(fi*$x)=l+wn).For wwewrite elb; eI(¢],...,¢p)EeIvP(¢l,...,¢p).

The mappings ¢0+-e(¢) and ¢0+-eI¢ from N to 11 and from N to N respectively,

are continuous. e is a neighbourhood-function for these mappings.

1.3.11. DEFINITION(of eeigefw). (a) Twoelements e and f of'K are equiva

lent, notation eei, iff eI¢ = f|¢ for all ¢, i.e. e and f are neighbourhood
functions for the same continuous mapping. Equivalently:

ezf EdefVw(ew#0Afw#O + ew=fw).

(b) efw is a commoninitial segment of the sequences {e|¢ :¢ew}. Formally:

efw E ¢[w](t[w])
where

Ax.e(i*w);l¢[w]
and

t[wJ E m’1nz<1th(w)(e(§*w)=0).

(So lth(efw) 5 lth(w)).

1.3.12. FACT.erw satisfies:

(a) vxaysx <er<Tx = T4>‘<y>>,

(b) vyaxzy <m<y> 4 erq'>x>.

1.3.13. E§yg§_(Closure properties of K).
(3) If e e K, Vv(ev#O + Xw.f(v*w)eK), and Vvw(fv#0 + fv=f(v*w)), then

f e L, i.e. K is closed under ‘unions over e e K‘.
(4) If e e K then Vv(Aw.e(v*w)eK),i.e. K is closed under 'restrictions'.
(5) If e e K and f e K then Av.e(f1v) e K, i.e. K is closed under ' ; com

position‘ (cf.l.3.17 belowfor;).

PROOF.(3) and (4) by induction over K w.r.t. e.
(5) is more complicated, we outline the idea.
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First one generalizes frw to frfiw, putting

fffiw E $fn:wi'(t[n,w])
where

¢[n,w] E Ax.f(<n+x>*w) :1
and

t[n,w] (minz<1th(W) (f (E-*w)=0)) : n.

i.e. ffw = ffow, and if n < lth(w), VmSn(f(<m>*w)#0)then

fffiw'=‘<f(<n>*w) 3] > * fFn+lw.

Nowone proves by induction over K w.r.t. e

Vn(Av.e(ffnv)eK).

This is trivial for e = Az.Sx. Assumee0 = 0 and for all x,n

Av.e(<x>*ffnv)eK. To prove that lv.e(fFmv)e:K it suffices by (3) to show
that for some g e K we have:

(*) gw#0 + Av.e(ffm(w*v))e:K.

Take g such that gw#0 + m<lth(w) A Vksn(f(<k>*w)#0).

(For the existence of such a g e K we need f e K, (3) and (6) below.)

Note that for this g, gw#0+ 3x(ffmw=<x>*fPm+1w),and apply the induction
hypothesis, which yields (*). U

1.3.14. LEMMA(a special element of K).

(6) For all n, Av.sg(lth(v);n)e:K.

PROOF.By induction w.r.t. n, using (K1), (K2). U

1.3.15. COROLLARY.If e satisfies

eO=0, e(i*v)=sg(lth(v):t[x])2(1+stxi(v)t[x]]),

where t[x] is independent of v and s depends on no other values 0f'v except

(V)ttxj," then e 6 K.
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PROOF. Immediate from (6), (3), (K1) and (K2). D

1.3.16. Fé§T, (Including the ‘definitions’ of [v],sn and id.) From 1.3.15 it
follows that K contains:

- for each v a mapping [V] such that [v]la = v*a,
- for each n a mappingsn (‘shift over n') such that snla = Az.a(n+z),

- for i = 1,2 mappingsji such that jila = ji(a).
The precise definitions of these mappings are irrelevant, we leave them to
the reader.

We put

- id 6 K is the mapping [0], i.e. idla = 0*a = a.

Derived closure conditions and operations on K (1.3.17-1.3.23)

1.3.17. DEFINITION.e;f E Av.e(f1v).

FACTS. If e,f e K then e;f e K by (5),

e;f satisfies e;fIa = e(fIa).

1.3.18. DEFINITION.e:f is the mapping such that

e:f(0) = O, e:f(i*v) = e(i*(ffv)).

FACTS. If e,f e K then e:f e K by (4), (5) and (K2).
e:f satisfies e:fIa = el(fIa).

1.3.19. DEFINITION(of h(e,u)). h : KXR1+ F1 is the mapping which satisfies

0 if eu = 0

h(e.u) =
1+¢[e,u] otherwise,

where ¢[e,u] the shortest initial segment v of u for which ev # 0.

FACT. If e e K then Au.h(e,u)e:K by (3).

1.3.20. DEFINITION.he is the mapping from K X 11 into 11 which satisfies

0 if ev 0,

hC(e,0)=0, hC(e,v*fi) =
hc(e,v)*§ otherwise.
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FACT.hc(e,v) satisfies ev#0 + v=(h(e,v);l )*hC(e,v), i.e. hC(e,v) is the
complementof h(e,v);1 w.r.t. v, provided ev#0.

1.3.21. DEFINITION.exf E Aw.sg(ew)-f(<h(e,w);1 >*hC(e,w)).

If eu # 0 then sg(e(u*w))
for someu',u" such that u'*u" = u (by 1.3.19,20). Hence

1, h(e,u*w);l =u' and hC(e,u*w) = u"*w

exf(u*w) = f(<u'>*u"*w), so, if e,f e K then exf e K by (3) and (4).

In the context of exf, f e K is to be considered as representing the mapping
¢: nv+ Av.f(fi*v).
exf is the 'composition' of the bars ¢n over the bar e, i.e. eXf(w) # 0
iff w = n*u, n is the shortest initial segment of w such that en # 0 and
¢(n)ur#_0. exf is comparable to e/f in [KT70].

1.3.22. FACT. If e e K then Aw.e(kiw) e K for i = 1,2, as follows from (5)

and 1.3.16 by the observation that we can define ji in such a way that
jifw = kiw.

1.3.23. DEFINITION.eAf, the pairing of e and f, is defined by:

eAf(O) = 0,

eAf(§*v)= sg(¢l[x,v])-sg(¢2[x,v])-(1+j(¢1[x,v];1 ,¢2[x,v]; 1)),
where

¢][x,v] E e(§*k]v), ¢2[x,v] E f(i*k2v).

FACTS. If e and f belong to K then so does eAf, by (4) and (3),

eAf is characterized by the following property:
eAfI(a,b) = j(eIa,fIb), or equivalently

jl(eAfIa) = eljla and j2(eAfIa) = fljza.

1.3.24. LEMMA.

(a) Composition of neighbourhood-functions is associative moduloequivalence:

(e:f):g u e:(f:g).

(Therefore we omit brackets in the context of'an equivalence.)

(b) eee' A £25‘ + ezf e:e':f'.

(c) Va(elaew) + e e:[w]: sn: e, where n=lth(w).

(d) f:[v] ==[fIv] :sn':f :[v], wheren=lth(ffv),
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(e) Pairing A is 1-1 modulo equivalence:

e=e' A f2i' ++ (eAf) e:(e'Af').

(f) Composition:is distributive over pairing A:

(eAf):(e'Af') e=(e:e')A(f:f').

(g) [k1v] A [k2v] av.[v], mm a id, smAsma Sm

PROOF.Is left to the reader. D

Note that the mapping ¢++ [w] : Snl¢. n=lth(w), has the effect of re
placing the initial segmnt En of ¢ by w. In [KT70], [T77] and [HT80] a

separate K element is used as neighbourhood-function for this mapping. They

write wI¢ where we have [w]: sn|¢.

1.3.25. REMARK.The properties of K that are used in the sequel can be
derived from (K1), (K2),(l)-(5) above. I.e. we do not use induction over K.

1.3.26. Subsets of K

Belowwe shall define a concept of choice sequence and projection
models for that concept, relative to a subset C of K. Weassume such a sub
set to be closed w.r.t. equivalence, i.e. by C C K we mean that VeeC(eeK)
and Vef(eeC A fez e + feC).

The reason for this convention is, that we are primarily interested in
the continuous mappings ¢ H e{¢, e e C, and not so much in the elements of
C themselves. At one point in the definition of the primitive concept of
choice sequence w.r.t. C however, it is essentail that C is a set of neigh
bourhood-functions and not a set of continuous mappings from N into N, name
ly in the construction of upb (see 2.8.1-3).

1.3.27. yggl
K-variables e,f etc” K-termslike e:f, e;f etc.,and K-termapplication elr

is a reformulation of IDB0in a richer language, containing

and e(-), strengthened with the choice axiom:

(AC-NF) Vnaa A(n,a) + 3bVn A(n,(b)n),

where (b)n E Az.bj(n,z), see l.3.5(c).
Wedefine a variant IDBF of this system, suitable for our purposes, in
7.2.8-ll.

l
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The systems LS and CS(C) reformulated (l.3.28-29)

1.3.28. LS is the formal theory of lawless sequences, of which LQQIis the
lawlike part. Weshall use the extension L§§* of this system, defined in
7.2.14-15. For the sake of completeness we give the axioms for lawless se

quences of LS:

(LS1) Vv3a(aev) (density),

(LS2) a=B V a#B (decidable equality),

(LS3) !g(A(a,B1,...,Bp) + 3v(aev Ajyev A(y,B],...,Bp)) (open data),

where A contains no lawless parameters besides those shown and

ya <I>(a,B],...,Bp) 2 Vor.(A1i)=1oL#Bi—><I>(oL,B],...,BP)),

(LS4) jg ]...!op3a A(al,...,ap,a) +

3eVv[ev¥0+ 3a!o1,...,!op A(a],...,ap,a)] (continuity),

where A contains no lawless parameters besides those shown and a is a meta
variable for ‘any lawlike variable‘.

In the context of LS, AC-NFis restricted to predicates without law
less parameters.

Note that the formulation of (LS4) given in 1.1 (which is the usual one)
is derivable from the one given here by AC-NF.

Our results can be formalized using a weaker variant of LS where e in
(LS4) ranges over the set

KLS E {e: Vvw(ev#0 + ev=e(v*w)) A Va3x(e(dx)#0)},

but using the extension principle

EP eeKLS A ¢eN + 3x(e($x)#0).

The conditions (1)-(5) on K above are derivable from EP for KLS.

1.3.29. Finally we reformulate §§(C):
CS(C)] (closure) Van VeeC3§(§=eI(e,n)),
CS(C)2 (analytic data)
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Ve(A(e) + 3eeC(eee A Vn A(e|n))),

where e is the only choice parameter in A and see 5 3n(e=eIn).
CS(C)3 (continuity for lawlike objects)

Veaa A(e,a) ->aevv(ev#0 + 3aVe A([v]|e,a)),

where e is the only choice parameter in A, a is a meta-variable for ‘any
lawlike variable‘ (n,a or e), and [V] is the K-element introduced in 1.3.16.
CS(C)4 (Vean-continuity)

Vefln A(e,n) +-Ve3eeC A(e,eIe),

where e and n are the only choice parameters in A.

In the presence of AC-NF, the formulations of CS(C)3 as given here and
in the introduction are equivalent.

Qg = §§(K), to see this we must show that CS(K)4:

VeflnA(e,n) + Veae A(e,eIe),

is equivalent to the usual CS4:

Vein A(e,n) + 3eVe A(e,eIe).

CS4implies CS(K)4trivially, for the converse implication assume that
VeflnA(e,n) and apply CS(K)4, this yields Vefle A(e,eIe).
To this sentence we can apply CS(K)3, and find an f e K such that

Vv(fv#0+ 3eVeA([v]|e, eI([v]Ie))).

Nowput f and e together. First we apply AC-NF,yielding an e' such that

Vv(fv#0'+ Vs A([v]Ie, Aw.e'(<v>*w)I([v]Ie)))).

Then we define g by



0 if fw = O,

g(i*w) =

e' (<h(f ,w);1>*5E*(h(f,w):.l)*w)

One easily shows that g e K, and that Vs A(e,g|€). [1

otherwise.
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CHAPTER 2

GC-SEQUENCES AND GC-CARRIERS

2.1. The concept of GC-sequence was introduced by TROELSTRA(in [T68],

[T69], [T69A]) as a candidate for a model of the Qg-axioms. In [T77], ap
pendix C, convincing, but not completely rigorous arguments are given for
the validity of the principle of analytic data and Ve3x-continuity in the
universe of GC-sequences. The description of this universe is elaborated
and refined by DUMETT([Du77], see also [T80]). This chapter will be de

voted to an even more rigorous, but still informal description of the prim
itive notion of GC-sequence (deviating in some respects from the one given
by DUMMETT),which is to be used as a basis for the construction of a uni

verse of projections, imitating the behaviour of the primitive concept.

First, we quote the description of the GC-sequenceof [T77]:
"Wethink of a choice sequence a as started by generating values aO,al,... 
then, at some stage we decide to make a dependent on another, "fresh" se

quence a by means of a continuous operation, i.e. a = Foao (PO:N+ N);0
from then on, a is determined by choosing values of a - at a later stage0

we may in turn wish to make do dependent on another sequence al, so

do = Fla], etc. (...).
So far we have presented a simplified picture, in as muchas we omitted to
take into account the possibility that a choice sequence is obtained from
two or more other choice sequences i.e. (...)

“k = Fkvr(k)(ak+l,1"°"ak+l,r(k))'"

(In this quotation a misprint in the original text has been corrected
instead of a = ). Note that the variable-conventions= Foao 0 Foao

in the quotation above, deviate from the ones we have adopted: we should

(line 4: a

use e,e 0,e],ek etc. instead of a,a0,a1,ak etc.)
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It will be clear from this description, that the universe GCof GC
sequences is not a collection of individual objects, but rather a network
in which gradually more dependencies can be created.

2.2. GC (THE UNIVERSE OF GC-SEQUENCES) IS CONSTRUCTED FROM GCC (THE UNIVERSE

OF GC-CARRIERS)

The decision to make a sequence 5 dependent on another sequence so, or

on a p-tuple e0,l,...,eo’p, or rather the description of that decision, pre
supposes something like the ability to call sequences ‘by their name‘. The

existence of countable models for gg in which all sequences are indexed by

a natural number (UaE{n*(a)n_:nel(}is such a universe) shows that it is
feasible to consider universes of sequences in which all elements are iden
tified by a natural number.

2.2.1. Hence we assume from now on:

the universe GCof GC-sequences is constructed from the countable universe

GCCE {en :nelK} of GC-carriers. (carriers for short).

n_is the name of the sequence en. Namesare underlined to distinguish them
from subscripts.
The construction of GCCis given in 2.3-2.8, the construction of GCfrom
GCCin 2.10. The relation between GCand GCC,will be comparable to the re

lation between lawless and proto-lawless.

2.3. INTRODUCTION TO THE CONSTRUCTION OF GCC

One may think of the name n_of a carrier as the name of an unbounded
register for storage of natural numbers. The construction of GCCis an in
finite (mental) process, divided into stages l,2,3,..., in which the regis
ters are filled with natural numbers(i.e. all sequences are constructed

simultaneousljfi enx is the x-th numberin register 3, With each pair (n,x)
there is a stage E'in the filling process at which sufficiently manydata

have been provided to determine enx. en is the infinite sequence
en0,enl,... . In general we shall not have a finite description of en.
AHassertion like ' en has property P‘ is made at some stage z of the_con
struction of GCC,onfthe basis of the data that are available to us on the

contents of register n_at that stage. This is characteristic for choice
sequences.

The description of GCquoted above can be rephrased for GCCas:
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at each stage of the construction of GCCwe can either put some values in

register 3, or makethe contents of this register dependent on the values

in the registers nJ,...,np via somecontinuous operation.
That is to say, if we decide to the second alternative at stage z, we as

sociate a computation law to the register 3, by which for each x the value
DDOUDE C

39..,n at a’?
enx can be determined from initial segments of the sequences en
These initial segments are to be found in the registers 34,.
stage z' later than z.

2.4. THE CREATION OF DEPENDENCIES BETWEEN GC-CARRIERS (1)

2.4.1. Initially all carriers are independent.
At each stage of the construction of GCCwe can decide to make at most one

carrier dependent on at most two others, or in other words: at each stage

we can choose a pair (k,m) or a triple (k,m,n), m and n_distinct from k,

and decide that 5 will depend on em or am and en.k
Not every choice 3} m_andn_is permitted{_

the carriers ck is madedependent upon at stage z, must be fresh at stage z,
where

2.4.2. DEFINITION(of a fresh carrier)

A GC-carrier an is fresh at stage z, if it has not been made dependent on
other carriers—at any stage z‘ s z.

2.4.3. If we make ek dependent on em or on em and an at stage z, we say that

ek jumps to amat stgge z or jumps to emand_en at stage z. If we are not
especially interested in the sequence or sequehces on which 3 comes to dek

pend, we simply say that ck jumps at stage z. '

2.4.4. Note that there are two restrictions in this description of the crea
tion of dependencies amongGC-carriers, not to be found in the original
description of GC-sequences, namely
- at each stage at most one carrier can be madedependent on others (the

single jumpproperty),
- a carrier can be made dependent on at most two others at the time (at

most binary jumps).
As we shall see later, these restrictions are not essential, "at most one"
and "at most two" can both be weakened to "finitely many". They are intro
duced to make it technically easier to imitate the concept by means of .
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projections.

2.4.5. If we follow a particular carrier, say 5 through the various stages,3)
we can picture its history of dependencies (its history of jumps) by means
of a sequence of labelled finite binary trees as in fig. 1.
Note: stage 0 is the stage preceding the actual construction of GCC,the
other stages are stages in the construction process.

Stage 0 1 2 3 4

Dependence ° 2 J/Kg‘ /Qi‘/ 1
tree 9 1 9 1. 

fig. 1

At stage 1 e3 jumps to (is made dependent on) 5 and e .O 1

At stage 2 no dependencies affecting 53 are made; .

At stage 3 so jumps to £2, whence e3 now depends on $2 and 5].

At stage 4 E: jumps to E2 and e2.whence 63 now depends on e4_and (two oc

currences of? 52.

2.5. THE CREATION OF DEPENDENCIES BETWEEN GC-CARRIERS (2)

The dependencies amongcarriers are made via continuous operations.

If, at some stage, we decide to make an dependent on other carriers, we
also choose an.e e K, a neighbourhoodfunction for a P:NE£g N. Wecall e

the jumpfunction.

The effect of the decision to make ck jump to emwith jumpfunction e is,
that ck is completely (lawlike) determined relative to em. The equation
which ekpresses the relation between ck and amafter the_first one has
jumped to the second one with jumpfunction e will be given in 2.7. As a
first approximation to that equation, think of

(1) ek=e|em.

Likewise

(2) ek=eI(em,en)



33

can be used as a first approximation to the relation between ck and (em,en)
if ek has jumped to em and em with jumpfunction e. '— ‘— '

The Eumpfunctions can_be added to the dependence trees for 83 of fig. 1.
This results in fig. 2

Stage 0 1 2 3 4

Dependence 03 .3 d/Ea‘. — /£\., 3tree with 3 1
9 I 9 I —

jumpfunctions

fig. 2

At stage 1 £3 jumps to e and 51 with jumpfunction e
with jumpfunction e

3.

At stage 3 ea jumps to e 0.

and £4 with jumpfunction e
|ro[N|O

At stage 4 5: jumps to e 1.

2.6. THE GENERATION OF VALUES FOR GC-CARRIERS (1)

2.6.1. Initially, all carriers (or rather: all registers E) are empty.
At stage 1 we can choose an initial segment of values for a finite number
of carriers. Wemake this choice after we have decided whether any carrier
will jump, and if so, which one. Weonly choose values for carriers that
are still fresh. E.g. in the exampleof fig. 2, we could choose the initial

segment mo for so and ml for €].

2.6.2. DEFINITION.A carrier is empty at stage z, iff at no stage z' < z we
have decided to make it dependent on other carriers, or have chosen values
for it.

2.6.3. At stage z > I we choose a segment of values for all carriers that
are non-emptyat stage z, but still fresh, and possibly for a finite number
of empty ones as well. Again, we choose values after having chosen the jump
(if any). In the example of fig. 2 we could choose

1 for 50, 81 respectively,at stage 2: the segments m6,m

then e9-e m0*m6, 51.5 m]*m;,
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at stage 3: the segment m? for 8] and the initial segment m2 for 82,

then 8 e m *m'*m" e1111' 6"‘2 2,

(for so see section 2.7 below),

at stage 4: the segment mé for 62 and the initial segment m4 for E4,

then 82 e m2*mé, e

(for 5 see section 2.7 below).
1

The pictures of fig. 2 can be adapted to show also the generated values. Thus
we obtain fig. 3.

Stage 0 1 2 3

Dep. tree 0 3

with jumpfns *m.*m”
1 1and values

Stage 4

Dep. tree
with jumpfns
and values

3’"‘2*m2 3’”‘4

fig. 3

2.6.4. For each n_and y the initial segment E;y must be available to us at
some stage of the construction of GCC.Hence certainly no carrier must re

main empty. If carrier n_is still empty and fresh at stage n + I, then we
generate an initial segmentfor it at this stage.
So, in our example above, we were forced to choose an initial segment for
5 at stage 1, but we might have left 5 empty. However, in that case we

0 1

would have been forced to choose values_for e] at stage 2.
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2.7. THE CREATION OF DEPENDENCIES BETWEE GC-CARRIERS (3)

In the example of figure 3, the initial segment m is generated for e
O 0

at stage 1, and the segment m6 at stage 2, i.e. then '

(I) 89.6 m0*m6.

At stage 3, so jumps to £2 with jumpfunction eo. If we keep to our first

approximation—to the relation that nowexists between so and E2, (see 2.5(1))
we find _' ‘

(2) egeeoleg.

(1) and (2) may be in conflict. Hence we replace (2) by

(3) Az.e9lk+z) = eolegf

where k = lth(m0*m6). (1) and (3) together yield

(4) e *m(')*(eo=‘“o ,o|€2)°

In general: if ck is madedependent on other carriers at stage I then this
dependency applies only to the values of ck that are not yet determined.
That is to say, as a second approximation Eb the relation which exists be

tween ck and the sequence(s) em (and an) to which it jumps at stage z with
jumpfunction e, we put

ek = mk*(elem).
<5) ’ ‘

ek = mk*(eI(em,en)) respectively,

where mk is the segment of values generated for e at the stages before z.5

At stage 4 in fig. 3 we have: 8] jumps to 54 and 62 with jumpfunction

el. At stage 3 we know already that —

(6) 2] e m1*m;*m?,
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hence (5) would yield

(7) cl = m1*m;*mT*(e1I(c£fcZ?).

Westart to generate values for c4 at stage 4, but c is nonemptyat this2

stage, at stage 3 we have already_chosen the initial—segment m . So, c is2 i
made dependent at stage 4 on values that have been generated at stage 3.
This is inconvenient for technical reasons. Therefore, we replace (7) by

(8) cl = m]*m;*m?*(elI(c£fAz.c2(k+z))),

where k = lth(m2).

In general: if we make a carrier ck dependent on one or two others at stage
z, then it will depend only on those values of the carrier(s) it jumps to,
that becomeavailable at the stages z‘ 2 z. That is to say,

2.7.]. if ck jumps at stage z, with jumpfunction f, then the relation be
tween ck and the carrier(s) cm (and en) it jumps to, is given by

ck. mk*f|Az.cEfym+z), or
(9)

ck’ mk*fI(Az.cEfym+z),Az.cElyn+z)),

where mk is the initial segment of ck available to us after stage z - 1,
and ym,yn are the lengths of the corfespcnding initial segments for cm and
and cmrespectively.
This formulation if final.

2.7.2. Note that for the range of all possible relations after a jump, it

makes no difference whether we adopt (5) or (9). If we keep to (5) and ck
. . . . Ym . 
jups to cmwith jumpfunction fzs , then we have the same relation between
ck and c 5%when we keep to (9) and ck jumps to c with jumpfunction f. For

-n 2- . -— . E-. . Ym 7n
a jump to two carriers cm and cn, the choice of the jumpfunction f:(s AS )
with (5), gives the same_result_as the choice of f with (9).

Conversely, if we keep to (9) and ck jumps to cmwith jumpfunction e:[um],

where umis the initial segment of Efi available—to us after stage z - 1
(i.e. lth(um)=ym, cm=um*Az.cm(ym+z))-thenthis gives the same result as when

ck jumps to cm with_jumpfuncfion e, if we keep to (5). For a jump to two



while for e2, e4 we_have

52.6 m2*mé,-1z.Eéfk+z) e m
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carriers emand en, e:([um]A[un]) in (9) gives the same relation as e in
(5) where En e ufi_after stage z-1). For [u] and sy see 1.3.16.

In the tree at stage 4 in fig. 3, the right most occurrence of g_is
not labelled with a sequence of generated values. The values generated for

e2 at that stage are m2*mé,as is shownby the label for the leftmost oc
currence of 2, The rightmost occurrence of g_results from a dependency be

tween 61 and (e4,e2), that is created at stage 4. In the foregoing we have
stated that the—initial segment m

Hence we should label the rightmost g_with mi only. This gives us fig. 4.

At stage 4:

fig. 4

Wehave the following equations for e3,eO,e1 at stage 4:

e = e3|(e9fel?,
= mo*m6*eo I82’

I

= m1*ml*m?*e:1(e4,Az.e2(k+z)), where k = lth(m2),

8

E
—-|c>|oa

5 and eé.e ma.

2.8. THE GENERATION OF VALUES FOR GC-CARRIERS (2)

Consider the possible sequence of dependence trees with jumpfunctions
for e in fig. 59

Stage 0 1 2 3

Dep.tree 09 Sljg s] 9 S1 9
with jumpfns l_ 1 l_ 1 _l

s s

2 , 3
s

2
fig. 5

2 of 52 is not involved in this dependency.
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s1 is a neighbourhoodfunction for the shift mapping A:¢!+ Ax.¢(x+l). Assume

that at stage 1 we generate the initial segment <O>for 81, then we have:

1 .

(1) 8-? = 0, cg-= s Isl = Ax.ellx+l).

At stage 2 we might generate the initial segment <]> for 52, then

1

620 = 1, el = <O> * s I52 = <O> * Ax.e2(x+l),
(2)

e = Ax.el(x+l) = lx.e2(x+l).

If at stage 3 we generate the initial segment <2> for 53 then

s 0 = 2, ea = <1> * )\x.e3(x-I-1),

(3) 6 <O> * Xx.e2(x+l) = <O> * Ax.e3(x+l),

("7
I
' Ax.e2(x+]) = Ax.e3(x+l).

None of the sets of equations (1), (2) and (3) determines e 0, and there is0
no guarantee that it will be determined at a stage z > 3. The process of
generating values as described in 2.6, must be adapted so as to provide
this guarantee. It is possible to refine the process in such a way, that

at stage n + l the initial segments E;(n+1) are available to us for all
m S n. Wemake a more radical change in the method of generating values, to

the effect that at stage n + 1 the initial segments E;(n+1) are determined
for all m. Wemotivate our approach at the end of this section.

To generate values for carriers we proceed as follows.

2.8.1. At stage 1 we first deal with the zreation of dependencies. So we
start generating values e.g. in a situation as pictured in fig. 6. (Carriers
not shown are all empty)
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Carrier 9 L E 2 3

. 0 o

DeP.tree Wlth G//fl§<L °_l O2. 9; 3
jumpfns 1 2

fig. 6

(a) Wechoose finite segments of values for a finite numberof fresh car
riers, or equivalently: we generate a natural numberx, and associate with

each fresh carrier n_the finite sequence (x)n, which is empty for all but
finitely manyn. Wecall (x)n the preliminary choice of values for en.
E.g. in fig. 6 we could choose x = <<l>, <2,3>, <4>>, this yields <2,3>

and <4> as preliminary choice of values for 5], e2 respectively, and < >
for all others. —- 

(b) The preliminary choice maybe insufficient to determine values for
non-fresh carriers. In our examplee.g., we need at least two values for

el and 52 to determine 600, whereas the preliminary choice for s2 consists
of the single value 4. wEnowextend our preliminary choice to an infinite
supply of values for each fresh carrier, by putting:

the guidfing sequence for a fresh carrier E, is the sequence gsn (x)n*Az.O.

In our example, the guiding sequences for 5] and 52 are <2,3> * Az.O and
<4> * Az.0 respectively, all other fresh carriers have Az.0 for their guiding
sequence.

(c) The final choice of values for each carrier n_is to be an initial seg
ment of its guiding sequence. In finding suitable (i.e. sufficiently long)
initial segments, we distinguish two cases:

- if no carrier has jumped, then <gsn0>is the initial segment generated
for e , i.e. we choose 5 O = gs 0.

E. E. n

- if a carrier ek has been made dependent on one or two others, then we
have an equation for e , eitherk

5 = elem,
|?~"or

m

|?~"

ll
e I (am. en) .
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O I

where em and en are fresh carriers. In our example we have so = s |(el,e2).
Nowwe substitute gsm, gsn for emand en respectively in this equation}.
which yields E = sl|(<2,3>*Az.O:24>*AzTU). In general, we find either

IO

ck‘ e|gsm,
Or

83- eI(gsm,gsn).

From this equation we can determine ekO; the computation of that value re

quires only an initial segment of either gsmor (gsm,gsn). Weput:

the upperbound for the relevant values of the guiding sequences at stage 1
is

upb] E the minimal z e Ii such that €k0 is determined by gsm(z)

or (gsm,gsn)(z) respectively, i.e. such that

e(<0>*gsm(z)) ¥ 0 or e(<0>*(gsm,gsn)(z)) # 0 respectively.

In the example upb] = 2 (i.e. assuming that s] has the optimal modulus of
continuity).

Once we have computed upb], we put

gsn(1+upbl) is the sequence of values generated for the fresh

carrier an at stage 1.

Weuse l+upb1 instead of just upb here, to provide for the case thatI

upb = 0. In our example we would end up with
1

<2,3,0> as the initial segmentof 6],

<4,0,0> as the initial segment of e , and2

<0,0,0> as the initial segmentof all other fresh carriers.

From the equation so = slI(el,e2) we find

800 = j(3,0) 501 = j(0,0).
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2.8.2. At the next stages we essentially repeat this procedure. To continue
our example, let 5 be made dependent on 5 via e at stage 2, see fig. 7.3 1

Carrier Q_ j_ 2_ §_ .3

Dep tree With 0 °19<2939O> °29<49090> 3s<09O9O> °49<O9O90>. I _. _. ._

jumpfns and J{%K\<\b2, 9
gen. values fi2,3:b> <4,6,0> .1

fig. 7

First we generateziy, e.g. y = <O,<0,l>,0,<2>,<3,4,5>>, i.e. as preliminary
choice of values we have

(V), <O,]> for £1

(y)4 = <3,4,5> for efl

(y)n = < > for all fresh n, n d {l,4},

and as guiding sequences

gs] <0,1> * Az.0, gs4 = <3,4,5> * Az.0,

and

g8n Az.0 for en fresh, n 4 {l,4}.

At this stage we have to provide for the determination of enl, for all car
riers. There are two dependencies now, which yield two equations to be con
sidered:

l

(1) 69- s I(el.e_2_).

(2) 8 =3 <0,0,0> * ellz. e](3+z).

(Cf. 2.7.1, 3 is the length of the initial segment generated for e at stage
1

1.) Nowwe substitute the guiding sequences for the parts of E] an3'e2 that
are not yet available, i.e. gs replaces Az.e](3+z) and gsz replaces1

Az.e2(3+z), which yields
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S1I(<2,3,O>*gs1,<4,0,O>*gs2),m

|O
II

a <0,0,0> * eIgsl.2

Obviously, we do not need any values of gs], gsz to determine 501 and €31
from these equations, that is, we find upbz = O. The generated Values £52

en, n fresh at stage 2, are gsn(l+upb2), i.e. <gsn0>. So nowwe have

El 6 <2,3,0> * <O> since gslO = 0,

e e <4,0,0> * <O> since gs 0 = 0,
Z_ 2

e4 5 <0,0,0> * <3> since gs40 = 3,
" 1 . . .

so = s I(el,e2), whenceso 6 <J(3,0),J(0,0),J(0,0)>, and

53 = <0,0,0> * e|Az.e1(3+z), whence 83 e <0,0,0>.

All other carriers have initial segment<0,0,0,0>.

Fig. 8 shows the situation after stage 2.

Carrier 9_ l_ g_ §_ _E

De tree with 9- °1 m °2 m 3 m °4 m
P‘ 81 -—’ 1 —’ 2 e —’ 3 —"4

jumpfns and 2 l)<O>
gen.va1ues —’m1 —’m2

ml = <2,3,0>*<O>, m2 =-<4,0s,0>*<0>, m3 = <0,0,0>, m4 = <0,0,0>*<3>

fig. 8

Carrier 9_ l_ Z_ 3 .3

Dep.tree with S f 19m] ° 2,m2 e §,m3 "4,m4
jumpfunctions f 1,m1 ggmz _l,<0>4 f
and gen.va1ues .3 -- ‘Q

fig. 9
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Figure 9 shows the situation which occurs if we decide to make e] dependent
on e4 at stage 3.

At this stage en2 must becomeavailable for all n. In fact, these values
are already available at stage 2. I.e. the upb computationwill yield 0,3

and there will be one value generated for each fresh en:gsnO.
Assuming that gs20 = 1, gs40 = 2, we reach the situation of fig. 10.

Carrier Q_ l_ Z_ _E _E

Dep tree with 19m] 2’m2*<]> §’m3 o4’m4*<2>o 0 e 

jumpfns and 2’m2*<1>e ],<0>
f 4,<2> f 4 <2>gen.values - -J

fig. 10

At stage 4 we do not create newdependencies, i.e. we start generating values
in the situation of fig. 10.

First we determine the guiding sequences, then we makea list of all car
riers that depend on other ones. This list consists of Q, 13 and §_in our
example. The equations relating these non-fresh carriers to the fresh ones
are:

1

(3) e9= s [(81,62).

(4) el = m1*f|Az.e4(4+z), where 4 = lth(mfi) is the number of values

that were available for s4 when el came to depend upon it at
stage 3. _- 

(5) 53 = m3*e|Az.el(3+z), see (2) above.

If we substitute (4) in (3) we find

1

(6) e0 = s |(m]*f|Az.e£(4+z),e2),

substituting (4) in (5) yields
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(7) c3 = m3*e|(<O>*fIAz.c4(4+z)), where <O>= <(m])3>, the first

value of Az.c](3+z).

Wedo already have initial segments m *<l> and m *<2>, both with length 52 4

for c2 and c4 respectively, so if we substitute gs and gs4 for the parts of2

c2 and c4 that are not yet available, we find

1

(8) cg-= sI(ml*fI(<2>*gs4), m2*<1>*gs2),

(9) c2 = m3*e | (<O>:-<f|(<2>*gs4)),

(10) cl = m]*f|(<2>*gs4).

From these equations we can compute c 3, c 3 and c 3, the values that must
0 1 3

become available to us at this stage._We determine_upb4 E minimal 2, such

that gs2(z) and gs4(z) suffice to perform these computations. (upb4 will
probably be unequal to 0, depending on e and f). As before, gsn(]+upb4) is
the sequence of generated values for each fresh n at this stage.

2.8.3. Sumarizing: in generating values for fresh carriers at stage z + 1
one takes the following steps:
- Determine a preliminary choice of values (completely arbitrary).
- Determine guiding sequences.

- List all 'depency equations‘, either of the form ck = ¢(cm,cn) or of the

form cE.= ¢(cE?.
- If chains of dependenciesexist, makesubstitutions in this list, to ob

tain only equations of the form ck = ¢(cEJ,...,cEp), where nJ,...,nP are
fresh at stage z + 1.

- Makea list m4,...,mq of all fresh carriers that occur in the right hand
side of an equation in the list, and substitute gsm_for the part of cmi

1 .—

not yet available at stage z + 1 in all equations of the list, for
i = 1,...,q.

- Determine the minimal y such that gsm](y),...,gsmq(y) suffice to compute
ck(z) from the equation for c in the list, for all non-fresh k. This y

.k_

we call upbz+].
- The generated values for cn at stage z + 1, cn fresh, are gsn(l+upb ).z+]
Note that in order to computeupb it is essential that jumpfunctions are
neighbourhoodfunctions for continuous mappings, and not the continuous
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mappings themselves.

2.8.4. This method of generating values does not leave us full freedom in

the choice of values for an at stage z (en fresh), nevertheless, we do have
freedomof continuation for carriers locally, in the following sense:

if n4,...,np are fresh at stage 2, Eggly) is the segmentof values available
to us for efli, i = 1,...,p at this stage (note that all these segmentswill
indeed have the same length y = Z]Sz,<z (upbz,+l)), and Eggly) = $;(y) for
i = l,...,p, ¢i e N arbitrary, then we can arrange by a suitable preliminary
choice of values, that after this stage wehave eEi(y') = $;(y'), i = l,...,p.
y’ > y, where eEi(y') is the segment of values now available for eni.

2.8.5. It mayseemunnatural to use an infinite supply of zero's, in order

to achieve that for all carriers n_at stage z + 1 the value en(z) is avail
able. This gives the number zero a special status in the universe of GC

carriers GCC:GCCsatisfies Vx3n(E;(x) = XET5(x)), but not e.g.
vxan(§(x) = i'z“.§7+T(x)). "
However, in the construction of GC, the universe of GC-sequences, this
special r3le of the zero is madeinvisible (see 2.10.6), that is to say:
for the construction of GCit makes no difference whether we define GCCas

we do here, or use a (non-equivalent) variant, in which it is guaranteed

only that for the carriers en, n S z, an initial segmentE;Kz+l) is deter
mined at stage z + 1.

Our choice of definition is motivated by a technical reason: if we
choose a more liberal approach, which requires the specification of suffi
ciently manyvalues at each stage only for a finite set of carriers, and
leaves us full freedomw.r.t. the others, then we have to take additional
steps in the generation of values, distinguishing between carriers for which
the choice of a sufficiently long segment is forced upon us, and others,
where we are (still) free to choose any segment we want. This would further
complicate a faithful imitation of GCCand GCby means of projections. (We
feel that the projectionmodel is already complicated enough.)
Moreover (and maybe even more important) it is technically most convenient
that at each stage z the segments of values generated for the fresh carriers

have the same length I + upbz.

2.8.6. With this section we conclude the description of GCC.Wehave defined
this universe more narrowly than seems natural, in order to prepare for the
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possibility of "coding" the construction of carriers by meansof projections.
Theartificial character of those restrictions is on reflection seen to be
inessential: the freedomof continuing and creating dependencies in a finite
set of GC-carriers is not affected by them.

2.9. DRESSINGS, FRAMES AND RESTRICTIONS

Stage 0 1 2 3

Dep.tree
with jumpfns

and gen.
values

fig. 11

Fig. 11 shows the possible history of carrier l_through the stages 1,2,3.
(The labelling with jupfunctions and generated values is restricted to the
changesw.r.t. the situation at the previous stage.)

2.9.1. DEFINITION.For each z, E2 is a mapping from the set {n:_n_fresh at
stage z} into N, defined by

Ez(n) E the part of an which becomes available only after stage z,
i.e. if we write UPBZfor the commonlength of the initial segments of the
fresh carriers that have becomeavailable through the stages l,...,z

(UPB0 = 0), then

Ez(n) Ax.eEIUPBz+x)

E stands for ‘empty’, we call Ez(n) the empty part of an at stage z.
Note that E0(n) is defined for all n and equal to en '

From fig. 11 we can read for each z e {l,2,3} a list of equations re

lating 51 to empty parts of fresh carriers at stage z. At stage 1 we find:

(1) cl = elI(e2,e3), E2 = m2*E](2), E3 = m3*E](3), or equivalently
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(2) 8 = [m2]|El(2), E3 = [m3]IE](3), and substituting (2) in (1)|N
yields:

(3) E1 = ell([m2]lE1(2), [m3]IE1(3)).

At stage 2 we find additional equations for E](2) and El(3). First 3 jumps2.

to 52 and e at this stage, with jumpfunction e3 3‘

<4) E1(3) = e3|<E](2), E1(4>).

Recall from 2.7 that if §_jumps to n_and E;at stage z+l, then the values of

ck not yet available (i.e. Ez(k)) are determined from the values of an and
en that are not yet available (i.e. Ez(n) and Ez(m)) via the jumpfunction.)
Moreover for e and 84 we generate the values mi and m' respectively at thisg_ 4
stage:

(5) E1(2) = [mé]|E2(2), E1(4) = [m;]IE2(4).

Wecan substitute (5) in (4), and the resulting equation and (5) in (3), to
find

(6) 81 = e1|([m2J|([m§J|E2(2)), [m3]|(e3|([méJ|E2(2),[m;J|E2(4)))).

At stage 3 we find the following additional equations for E2(2) and E2(4):

<7) E2<2> = e2|E2(o>,

(8) E2(0) = [m3]|E3(o),

<9) E2(4> = tmgJ|E3<4>,

which yield together with (6) an even more unreadable equation for 6].

2.9.2. It will be clear that for each carrier_n at each stage z we have an
equation

an = Fz(src(n,z)),

where F2 is a continuous mapping from N into N and src(n,z), the source
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fbr an at stage z, is an element of N constructed from empty parts of fresh
carriers at stage z, i.e. src(n,z) is a sequence of which no values are
known to us at stage z.

2.9.3. The dressing fbr an at stage z, is a standard neighbourhoodfunction
for P2, the frame fbr an at stage z is a structure which tells us how the
source src(n,z) is constructed and from which empty parts.

The mappings dn: z H-the dressing for an at stage z, and

fn: zla the frame for an at stage z
will play a key role in the imitation of GC-carriers by meansof projections.

Weshall not give the formal definition of dn and fn here, but we shall ex
plain their construction, using the exampleof fig. 11. For that explanation
we need some tools.

fig. 12

Fig. 12 shows three pictures of frames.

2.9.4. DEFINITION.Aframe is a finite strictly binary tree, i.e. a finite
tree in which each node has either two immediate descendants or none at all,

the terminal nodes of which are labelled by natural numbers.

(A detailed formal treatment of frames is given in chapter 3.)

Let D be either K or N. Let p: D X D + D, the pairing on D, be A or j re

spectively. (For A see 1.3.23.)
Fig. 13a shows a finite strictly binary tree T, with a mapping¢ from its
terminal nodes into D.
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p(a,p(p(b,c),e)

(p(b,c),e)

OJ

(D1?!

0)

E E (a) E 1, e

fig. 13

Fig. 13b shows how this mapping can be extended to one with domain all nodes
of T.

2.9.5. DEFINITION.(i) The extension of a mapping ¢: terminal nodes of T + D

is the mapping w: nodes of T + D which satisfies:

¢(n) if n is a terminal node of T,w(n)

w(n) p(a,b) if n is non-terminal in T, and a and b are the

values of w on the left hand and the right hand
immediate descendant of n respectively.

(ii) The T-nesting of ¢: terminal nodes of T + D is the image of the top
node of T under the extension of ¢.
(For a formal treatment of nestings see chapter 3.)
If a e D is the T-nesting of ¢, then we say that ¢ represents a in T.

2.9.6. CLAIM.Application .I. is distributive over nesting, i.e. if ¢ 5 N
is represented by ¢' in T as in fig. 14a, and w e K is represented by w‘

in T as in fig. 14b, then wI¢ is represented as in fig. 14c.

‘II “I: ‘W11
X2 X3 a 32 e3 b ezlxz e3lX3C
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PROOF.See 3.2.16(c). D

2.9.7. Nowwe show dnz and fnz are constructed for z = 0,l,2,3, n = 1 where
the history of carrier l_through the stages O,l,2,3 is pictured in fig. 11.

Stage 0 1 2 3

fig. 11 (repeated)

At stage 0 the source for e] is just el = E0(l). The values of e are com1

puted from those of the source via the_identity mapping.

Weput dl(0) = id, f1(0) = °l, the frame with a single node, labelled 1.
At stage 1 first EO(l) is made dependent on E0(2) and E0(3) via el, i.e.
we have an equation

E0<1>=e,Ix,.

where X1 can be represented as in fig. 15a./\ /\ /\ /\
I I I 1 I I 1 I

E (2) E (3) [m NE (2) E (2) E (3)

0 2 X1] [m3]|E1(g)[‘“2] g] [“‘3] C ¢]:SrC(]’:) d

fig. 15

Next we generate values, ml for E2 and m3 for 53. We can now refine the

representation of X] to the one giwen in fig. 13h. Weuse distributivity of
application over nesting, and find that
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where g] is represented as in fig. 15c, and $1 as in 15d. Weput d](1) =

= el:g], the source for 51 at stage 1, src(1,1) is w], and f](1) is the
structure obtained from fig. 15d by replacing E1(2) Ehd El(3) by their
names 2 and 3 respectively.
At stage 2 we first decide that

Elm = e3I(E,<2>.E,<4>>,

i.e. the representation of the source src(1,1) as given in fig. 15d. is re
fined to the one of fig. 16a.

/\ /\ /\ 1
1 I I I I I E,<2>

E](2) e3|(E1(2).E1(4)) id E1(2) j(E1(2),E(4)) I I

src(l,]) a w 2 b X2 E](2) X2 E1(4g

fig. 16

Using distributivity we find that

src(1,1) = £2|x2,

f2 represented as in fig. 16b, X2represented as in fig. 16c.
After generating values the representation of X2can be refined to the one
in fig. 17a, application of distributivity yields

x2 = gzlwz.

g2 as in 17b, $2 as in 17c.



52

l I /\ I
[mé]|E2(2fi l [mé] I I E2(2) I I

[mé]|E2(€;']lE (4) [mg] [mg] E2(2) E2(4)
2 4 2 a g2 b w2=src(l,2) c

fig. 17

$2 is the source for 8] at stage 2, src(l,2). The dressing for 5 at stage
I

2, d](2) E d](1): £2:'§2, the frame for E] at stage 2, f](2) is Sbtained
by replacing the empty parts of carriers Eh 17c by their names. (i.e. 2 for

E2(2), 4 for E2(4)).
At stage 3 we decide that

E2(2) = e2IE2(O)

i.e. 17c is replaced by 18a. Using distributivity we find that we nowhave

src(l,2) = f3Ix3,

f3 and X3 represented as in 18b and c.

1 I I

e2lE2(0)I I 92 I 1 E2“) 1 I

e2|E2(0) E2(4) e2 id E2(0) E2(4)

src(l,2) a f3 b X3 C

fig. 18
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I I

E3(0)
Cm3]lE3(0) EmgJIE3(4) [m0] [m4] E3(0) 33(4)

X3 [m8]|E3(0) a g3 b w3=src(l,3)

fig. 19

After generating values we can replace 18c by 19a; using distributivity we
find that

X3=

g3 and $3 represented by 19b and c respectively. As before w3 is src(l,3),
the source for e at stage 3, dl(3) E dl(2): f fl(3), the frame for1 3‘g3’
£1 at stage 3, 1; obtained from 19c by replacing empty parts by their names.

2.9.8. The example is characteristic for the construction of dn and fn in
general. Sumarizing:

- The frame for an at stage 0 is °n.

Weobtain fn(z+l) from fn(z) as follows:
(i) if none of the labels of fn(z) refers to a carrier which is madede

pendent on one or two others at stage z+1, then fn(z+l) = fn(z),
(ii) if k is a label of fn(z), and ek jumps to cmat stage z+1

(i.e. Ez(k) = e|Ez(m), e the jumpfunction) then k is replaced by m to ob
tain fn(z+1),

ID(iii) if ck jumps to e ,e , then the label k is replaced by the pair m ,
m m2 1 2

to obtain fn(z+l7; that is to say, we extend the tree of fn(z) by
adding two immediate descendants for each terminal node with label k,

label these new terminal nodes with m and m2, m1

the right, and erase the original label.
to the left, m to

1 2

- The dressing for an at stage 0 is id.
dn(z+l) has the form dn(z): f gn,z+l ° n,z+l°
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n z+l is represented by a mapping from the terminal nodes fn(z) into K,9

which assigns to a terminal node n with label k the value id if ck does
not jump at stage z+l, and the jumpfunction if it does. '

gn z+l
9

to K, which assigns to a node n with label k the value [mk], where mk are

is represented by a mapping from the terminal nodes of fn(z+1) in

the values generated for ck at stage z+l.

2.9.9. Recall that in the process of generating values we have to determine
at each stage a value upb. The construction of dressings for carriers can
be used to reformulate the computation of upb. Weillustrate this by means
of the example above. (2-9-7-)
At stage 1 we found that

51 = d1(l)|src(l,l)

wheresrc(l,l) is represented as in fig. 20a. (=fig.l5d.)

After having decided that at stage 2, 83 jumps to c2 and 54 with jumpfunc

tion e2 we have

51 = d1(1)‘ fzlxz’

x2 represented as in fig. 20b. (=fig.l6c.)
At stage 2, el 1 must become available. To achieve this we choose a suitable
initial segment of the guiding sequences gs2 and gs4 as generated values
for 82 and 84 (the carriers on which 5] depends) respectively. To find
such suitable initial segments, we substitute gsn for E](n) in fig. 20b,
which yields 20c. The sequence represented in fig. 20c is called the

guiding sequence for e at stage 2 : gsl.1

/\
I I

E](2) E1(3) 1 I I gsz I I

(—1

fig. 20
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Then we determine the smallest z such that

(d](1):f2)(<l>*gs1(Z)) ¥ 0.

If we generate gs2(z) and gs4(z) for 82 and 84 respectively, then we shall
find that d](2) = d](l): £2 :[gs:Iz)],_hhence—there is a y such that

(1) <d1<2)|4>)(1> = y

for all ¢, i.e. in particular wehave

(2) e]_(1) = (d](2)|src(l,2))(l) = Y

We shall not generate EEQKZ)and E3212) however. Before generating values
we repeat the construction of a minimal z as above for all non-fresh car

riers, the maximumof all these values we call upbz, and we generate for each
fresh n g§;Kl+upb2). But then (1) and (2) will hold a fortiori, and we have
similar equations for all non-fresh carriers at stage 2. Since at least one
value is generated for all fresh carriers, we are also sure to have deter
mined s 1 for 6 fresh, so we have 5 1 for all m.n n m

In general: we generate values for an, n fresh at stage z+1 in such a way
that

(3) Vn3yV¢[(dn(Z+1)l¢)(Z) = y]

Together with the equation

(4) ("7
ll dn(z+l)Isrc(n,z+l)

IE3

this yields

(5) 0')
ll 0 range (A¢.dn(z+l)I¢).2

Finally we put

2. 9.10. DEFINITION.

(i) A restriction is a pair (e,F), e e K, F a frame

(ii) Therestriction for en at stage z is the pair (dnz,fnz)
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The restriction for an at stage z contains all information that is available
to us on the values of an at stage z. (5) might suggest that this informa
tion is already contained in dnz. Note however that the growth of the
dressings is regulated by the frames, that is to say, the relation between

dn(z+l) and dnz depends on fn(z) and fn(z+l). Note also that the frame for
an at stage z contains information on the relation between the values of an
and the values of other sequences.

2.9.11. REMARKS.(a) It might appear strange that we should find such high

ly intensional information as the names of the carriers on which en depends
amongthe extensional data (as labels of the frame) for an at stage z. How
ever, they serve as markers only: if N is some permutation of 1%then we can

just as well replace all names of carriers m in the frame by the value wm.
(The use of the actual names is a matter of convenience.)

(b) Fig. 21 shows the frames and the dependence trees for the carrier 5] of
our example in the stages 0-3. There is an obvious resemblance: the frame

can be obtained from the depence tree by deleting its non-terminal labels,
and contracting pairs of nodes n,n', where n‘ is the only immediate descen
dant of n, into a single node.

Stage 0 1 2 3

Dep.tree 01 1 1

é/&\ /“ i
E

IN |oo

Il\> |4>

Frame

CD

fig. 21
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2.10. THE CONSTRUCTION OF GC FROM GCC

frame F tree T of F 2_ 1 F

fig. 22

2.10.1. DEFINITION. (of EF)
Let F be a frame with tree T. The nest of GC-carriers E is the T-nestingF
of the mapping ¢: terminal nodes of T + GCCdefined by

¢n = ek iff k is the label of n in F.

(See fig. 22, whereeF = j(el,j(j(e2,sl),s§)).)

2.10.2. DEFINITION(of GC, the universe of GC-sequences).

GCE {eleF :(e,F) a restriction},

i.e. each GC-sequences is given to us by a restriction (e,F), the initial
restriction for 8, and conversely, each restriction is the initial restric
tion of some8 e GC. If (e,F) is the initial restriction for e e GC, then
e is the initial dressing for e, and F the initial frame.

2.10.3. REMARK.One may compare the construction of GC from GCCto the con

struction of LS from PLS (the universe of proto-lawless sequences). The
data available to us on the values of a proto-lawless a at stage z of its
construction, consist of:
(i) an initial segment v of a, and

(ii) the nameg_of the source of future values (which plays a r6le in de
ciding the extensional equality betwee proto-lawless sequences).
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The restriction (e,F) for a carrier at stage z, is the analogonof the pair
(v,g) for a proto-lawless sequence. Proto-lawless sequences are, unlike

GC-carriers, individualistic. There is a condition on the set R2of all
available pairs (v,g) at stage z in PLSnamely

Vg3!v((v,g) 5 R2).

NowLS can be defined as

LS E {v*a: (v,g) 6 R0},

where R0 satisfies

(1) VgflIv((v,g) 6 R0)

and

(2) Vv3g((v.g) 6 R0).

i.e. LS is obtained from PLSby 'prefixing' a complete (i.e. satisfying con
dition (2)) and consistent (i.e. satisfying condition (1)) set of initial
pairs (v,g).
Analogously, GCis obtained from GCCby 'prefixing' a complete set of ini
tial restrictions. (Completein the sense that all restrictions occur as
initial restriction.) In this case there is no consistency condition, at
least not moduloextensional equivalence.

2.10.4. LEMA(Closure of GCunder continuous-function-application and
pairing).

If e,n e GCand e e K, then els e GCand j(e,n) e GC.

EEQQE,If e e GCis given by the initial restriction (f,F), then ele is
given by (e:f,F).

If e = fIeF and n = g|eG, then j(e,n) = (fAg)|j(eF,eG). (For f A g see
1.3.23.)j(sF,eG) = EFAG,where F A G is obtained by putting F and G below
a comon topnode, F to the left of G. (See fig. 23, recall the definition
of nesting, 2.9.5.)
So j(e,n) has the initial restriction (fAg,FAG). U
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fig. 23

2.10.5. The restriction for e at stage z (eeGC)is defined as follows
(example).
Therestriction for e at stage 0 is the initial restriction for e. Let
this restriction be (e,F), as in fig. 24a, then

(1) e = eIeF,

eF represented as in fig. 24b.
At stage z+l we have equations

en = dn(z+1)Isrc(n,z+l)

for each n, in particular for the n which occur as label in F, so the re
presentation of s can be refined to the one given in fig. 24c.F
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y///,///”“\\\\\\\V
‘ 2 E d1(z+1)Isrc(1,z+l) I

F F
E d2(z+1)lsrc(2,z+l)

C

1 i ¢

d1(z+]) d2(Z+]) src(1,z+l) src(2,z+1)f d src(F,z+l) e

fig. 24

Using distributivity of .I. over nesting we find that

(2) = fIsrc(F,z+l),SF

f represented as in fig. 24d, src(F,z+l), the source fbr EFat stage z+l
represented as in 24e.

Wewrite dF(z+l) for the mapping f of (2), and put:

the dressing fbr e at stage z+l is e :dF(z+l), e as in (1), i.e. the ini
tial dressing. dF(z+l) is the dressing fbr EFat stage z+l.

For each n we have a frame fn(z+1) at stage z+l and a corresponding repre
sentation of src(n,z+l), the source for an at stage z+l (see fig. 25).

/\ /\ 3 1
3 4 I I Ez+l(3)

E (3) E (4)

f](z+l) z+l src(?Ti+l) f2(z+1) src(2,z+1)

fig. 25
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/\
I I 1 3

src(l,z+1) src(2,z+1) I I Ez+1(3) 3 4src(F,z+]) E (3) E (4) f (z+l) the frame for
z+] 2+1 F , e at stage z+1src(F,z+1)

fig. 26

So the representation of src(F,z+l) of fig. 24e (=fig.26a) can be refined
to the one of fig. 26b, by simply substituting the representation of
src(n,z+l) for src(n,z+l) itself, for each label n of F.

The frame fbr 5 = e|eF at stage z+1 is obtained by replacing empty parts
by their namesin this last representation, or equivalently by substituting

fn(z+1) for each node n of F with label n, and deleting the original label

Wewrite fF(z+l) for the frame for eIeF at stage z+l, and put:

the restriction for e = eIeF at stage z+1 is (e:dF(z+1), fF(z+l)).

2.10.6. REMARK.GCCis a subset of GC, the carrier an is given by the ini
tial restriction (id,°n), (°n is the framewith a single node, labelled n.)
However, there is no extensional distinction between the carriers and the
other sequences of GC. Weknow that for each k, all but finitely many car

riers have an initial segment Xgffikk). Nowlet embe such a carrier. If we
are presented with the sequences em 6 GCand sk|E§ e GC (given by the re
striction (sk,°m)) there is no way_ofdeciding, laoking at their values
only, which of the two is the carrier: it may the first one, from which
the second one is obtained by deleting the first k zero's (as is actually
the case), but it mayalso be the second one, from which the first one is
obtained by prefixing Xgifilk).
Thus, the undesired side-effects of our methodof guaranteeing that for

each n, E;Kz+l) is available at stage z+l, are neutralized in CC.
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2.11. GCC(C) AND GC(C)

In this section we relativize the notions of GC-carrier and —sequence
to special subsets of K.

2.11.]. DEFINITION(of GC-carriers w.r.t. C C K).

Let C be a subset of K. GCC(C),the universe of GC-carriers w.r.t. C, is de
fined as GCC,except that if we decide to make a carrier jump at some

stage, then our choice of a jumpfunction is restricted to the set C.

Note that GCCitself is GCC(K).

Concepts like the dressing for cn at stage z, the frame for cn at stage
2 and the restriction for cn at stage_é, are defined for cn c GCC(C),C ar
bitrary, exactly as in the special case cm 6 GCC.

For any restriction (e,F) we can arrange in GCC,by a proper choice of

jumps, jumpfunctions and generated values, the existence of an ck such that

ck-= e|cF. 
Therefore it makes sense to define GC, the universe of GC-sequences, as the

set of sequences of the form e|cF where (e,F) ranges over all restrictions.

In GCC(C),the dependencies that can be created between one carrier
and a nest of others are limited.

We can achieve that ck = elcm or ck = eI(cm,cn) for e e C, by making ck
jump at stage 1 with jumpfunction E2

It is also possible to have ck = [V] :e :sxIcm, or ck = [V] ;e :sxI(cm,cn),
where x = 1th(v), e c C,by making c dependent on the empty part sxlcg ok
sx|(c c ) of c or (c ,c ) respectively at stage z+l, via the jumpfunction

E) E. E. E..E
e, after having generated the sequence v for ck.
Combinationof these two possiblities can yield the relation

I5*"
II el([v]:fl:sx|cm,[u]:f2:sy:cn) =

e: (([v]:f1:sx)A([u]:f2:sy))I(cE,cE?

where e,f1,f2 are elements of C.
In general, we can create dependencies

c = elcFk
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in GCC(C), where e is constructed from elements f e C and neighbourhood

functions of the form [V] and sz, by means of composition and pairing.

2.11.2. DEFINITION(of dependency-closed).

A subset C of K is dependency-closed iff
(i) Vv([v]eC), whence also id 6 C,

(ii) Vz(sz€C),
(ii) C is closed under composition :,
(iv) C is closed under pairing A.

2.11.3. LEMMA.If C is dependency-closed then:

(a) For each n and z, the dressing fbr an e GCC(C)at stage z, dn(z), be
longs to C. 

If F = fn(z), the frame fbr an at stage z, and x is the numberof
values generated through the stages z' S z, for each of the carriers

ck that are fresh at stage z, then cg-= dn(z): sx|eF, dn(z): sx e C.
(b) If e e C, F an arbitrary frame, then we can arrange fbr the existence

0f'an ck e GCC(C)such that ck-= eIeF.

§§EEHi

(a) Trivial from the construction of dn and the definition of dependency
closed. (Note that if C is closed under pairing, then it is also closed

under nesting.)

For the equation en = dnz :sxIe recall that by definition
an = dnz|src(n,z). src(n,z) is She nesting of emptyparts of carriers.
These empty parts can be obtained from the carriers themselves by de
leting the values already generated. If the numberof these values is

x, and F = fn(z), then src(n,z) = sx|eF.
(b) Wegive a characteristic example. Let F be the frame of fig. 27a. We

shall arrange that

c3 = e|eF.

2
0 04

0 0 1
F 1 2

1 2 2a b c
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First split F into F] and F2 as in figs. 27b and c, thereby introducing a
new label 4.

At stage 1 make E3 jump to €O,€4 with jumpfunction e, i.e.

(1) £3 = eI(e0,e4).

Choose values for e4,e 1,52 and 59 in such a way that

(2) EZ(x) = E;2—(x),

where x = 1 + upbl. (I.e. we make the chcice of values for 8 dependent.5“ .3
on the choices for 81,82 and 50.)

Nowsplit F2 into F$—andF4 as—in figs. 28a and b

A” /\ F4

fig. 28

At stage 2 make £4 jump to (€5,eO) with jumpfunction id, i.e. we arrange
that '

(3) Az.e4(x+z) = j(Az.e5(x+z),Az.e3(x+z)).

Choose values for e0,e1,e2 and es in such a way that those for £5 coincide
with those for eF4 = j?t1:t2L 1.21 we arrange that now '

(4) 8-4-(X"'Y) 6F (x+>') .- 2

where y = l + upb2.

At stage 3 finally we make as dependent on (e1,e2) via id, i.e. we arrange
that — 

(5) Az.e5(x+y+z) = j(Az.e](x+y+z),Xz.€2(x+y+z)).
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From (3) and (5) we now read:

(6) Az.e4(x+y+z) = Xz.eF (x+y+z).
— 2

From (4) and (6) we find

(7) e = e .

From (1) and (7) we find

(8) e = e|(e0,eF ).
— 2

Obviously j(eO,eF ) = SF, i.e. we have the desired relation. U
2

This lemmajustifies the following

2.11.4. DEFINITION(of GC(C), C dependency-closed).

If C C K is dependency-closed, then GC(C), the universe of GCsequences
w.r.t. C, is defined as

GC(C) = {elef :e e C, F a frame}

where eF is a nest of GC-carriers w.r.t. C.

2.11.5. REMARKS.

(a) Weshall not define GC(C)for arbitrary C.
(b) Since de endency-closed sets contain all ma in s [V] and sz remarkP PP 3 9

2.10.6 also holds for GC(C), and GCC(C), C dependency-closed.

2.11.6. LEMA(closure of GC(C), C dependency-closed, under pairing and

el.,e e C.)
If e,n e GC(C), C dependency-closedg then ele e GC(C) and j(e,n) e GC(C).

PROOF.See 2.10.4, for ele e GC(C)use that C is closed under composition,
for j(e,n) e GC(C)use that C is closed under pairing. D

2.12. PROJECTION.MODELS FOR GC(C)

In the construction of projection'models for GC(C)we shall proceed
as follows:
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(a) Weconstruct a universe which imitates the behaviour of {Az.fnz :n 6 II},
where fnz is the frame for the carrier an e GCC(C)at stage z.

(b) Wedefine a (class of) universe(s) imitating the behaviour of

{Az.dnz: n e 11}, dnz the dressing for en 6 GCC(C)at stage z.
(c) From the imitation of dressing sequences under (b), we define the imi

tation of carriers, using the observation that

enz = y ++ Va[(dn(z+l)|a)(z) = y]

cf. 2.9.9 (3) and (4).
(d) From the imitation of carriers we define the imitation of GC(C).

Weturn to the projection model construction in chapter 4. First we
give the formal theory of frames and nestings in chapter 3.
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CHAPTER 3

FRAMES AND NESTINGS

In this chapter we introduce the tools that are needed for the defini
tion of projectionmodels of GC(C)-sequences, and the derivation of their

properties. The reader should concentrate on the definitions that are pre
sented, and try to get used to the notation. Once the definitions have been
understood, the facts and lemmatawill be simple. It suffices to form an im
pression of their contents. It is not necessary to study them in full de
tail.

3.1. FRAMES

fig. 1

Fig. la showsa picture of a finite strictly binary tree. The little
circles are the nodes of the tree, the highest node in the picture, marked
T, is the top-node. All nodes, except the top-node, immediately descend
from (i.e. are connected by a line with) a higher node. A node without

descendants is a terminal- or bottom-node (the node marked B in fig. 1).
Bottom-nodeswill also be called branches; this name is explained by the
identification of the node with the path that connects it with the top-node.
Each non-terminal node has exactly two immediate descendants (hence strict
Zy binary tree).

In fig. lb all nodes of the tree, except the top-node, are marked by
zero or one; zero for left-hand imediate descendants, one for the right
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hand imediate descendants. Thus each node is identified by a finite 0-]
sequence: the top-node by < >, and e.g. the nodes marked A and B by <0,l>
and <O,l,l> respectively.

Wemight define a strictly binary tree in the usual manner, i.e. as a
finite set S of finite 0-1 sequences, satisfying two closure conditions:

(1) 3w(v*weS) + v e S,

(2) v~k<0>eS +—>v*<l> e S.

However,we shall mainly be interested in the relation 'v is a branch of S‘,
and less in the more general 'v is a node of S‘. Therefore it is slightly
more economical to define trees as sets of branches, as follows:

3.1.]. DEFINITION(of finite strictly binary tree).
(a) Afinite Strictly binary tree T is a non-emptyfinite set of finite

0-] sequences such that
(i) veT A v*weT + w=< >,

(ii) 3w(v~k<O>-kweT)+-> 3w(v*<l>*weT).

Wecall the elements of T branches, terminal-nodes or bottom-nodes.
(i) states that each branch is maximalw.r.t.=$, (ii) corresponds to (2)
above: it expresses that T is strictly binary branching. (The tree of fig. 1
e.g. would be formally defined as {<0,0>,<0,l,O>,<O,1,l>,<l>}.)

(b) If T is a finite strictly binary tree, then

nT Edef {v :3w(v*weT)}.

Wecall the elements of nT the nodes of T. If v and w are nodes of T and

v 4 w, then w descends from, is a descendant of or is below v. If
w = v*<x> for some x e {0,l}, then w is an immediate deseendhnt of v.

(c) Equality betweenfinite strictly binary trees is extensional
equality betweensets, i.e.

T = S Edef Vv(veT ++ veS).

3.1.2. NOTATION.Weuse T,S,T0,S0,... as variables for strictly binary
trees. Script letters b,n with sub- or superscripts are used as syntactic
variables for finite 0-] sequences. b is used especially for branches of
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trees, n for nodes.

3.1.3. Fégzg. (a) If T is a finite strictly binary tree, then nT satisfies
(1) and (2) above.

(b) The empty sequence is a node of every finite strictly binary tree.
Wecall it the top-node.

(c) Branches are nodes, i.e. T C nT, the only descendant of a branch is
the branch itself.

(d) T = S iff nT = nS (the second equality is extensional set equality).

fig. 2

Fig. 2 showstwo pictures of frames: finite strictly binary trees with a
natural numberattached as a label to each of their branches. Formally we
put

3.1.4. DEFINITION(of frame).

(a) A frame F is a pair <T,¢> consisting of a finite strictly binary
tree T, the tree 0f'F and a mapping¢: T + IL the labelling 0f'F.
- b 6 F, read ‘b is a branch of F‘, stands for ‘b is a branch of the tree
of F‘. (If F 2 <T,¢> then beF 2 beT.)

- nF, read ‘the nodes of F‘, stands for ‘the set of nodes of the tree of F‘
(If F E <T,¢> then nF E nT.)

- £bF, read ‘the label of b in F‘ stands for ‘the image of b under the
labelling of F‘. (If F E <T,¢> then £bF = ¢b.)
- (F, the set of labels 0f'F, is the set {n.:3b e F(£bF=n)}.

(b) Twoframes F and G are equal iff their trees and labellings are
extensionally equal, i.e.

F = G Edef Vbn(beF A £bF=n ++-beG A £bG=n).
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3.1.5. EXAMPLE.The frames of fig. 2 are formally defined as the pairs
< T,¢>,<S,w>, where

T E {<0,0>,<O,l>,<l>}, ¢(<0,0>) = O, ¢(<O,l>) = 1, ¢(<l>) = 2 and

{<0>,<1,0,0>,<1,0,l>,<1,l>}, w(<O>)= ¢(<1,0,1>) = 3, w(<l,0,0>) = 1,
w(<l,l>) = 0.

3.1.6. NOTATION.Weuse F,G,H,FO,GO,H0,... as variables for frames.

3.1.7. DEFINITION.Let n be a natural number, then °n is the single-nodé
frame with label n, i.e. °n satisfies
(i) be(°n) ++-b=< >,

(ii) K< >(°n) = n.

Note that instead of °n we sometimes write (°n); obviously K(°n) = {n} and
(°n)=(°m) ++ n=m.

Fig. 3 shows how two frames F and G can be paired into a single frame H,
by putting them below a comon top-node, F to the left of G. Wedenote this
pairing operation by A.

°o /\

fig. 3

3.1.8. DEFINITION(of FAG). Let F and G be frames. F A G is the frame which
satisfies:

(1) beFAG++-3b1eF(b=<O>*b]) v 3b2eG(b=<1>*b2),

(ii) vb e F(£<0>*b(FAG) = £bF),

(111) vb e G(£<]>*b(FAG) = Kbc).

3.1.9. FACTS. £(FAG) = KF u £6 and FAG= F'AG'-++ (F=F')A(G=G').

3.1.10. REMARK.One easily verifies by comparing FAGand GAF (F and G as in

fig. 3) that A is not comutative. If one compares FA(GAF)with (FAG)AF,it
turns out that A is also not associative.

3.1.11. DEFINITION(of ht). Let F be a frame. ht(F), read: the height of F,
is the length of the longest branch of F, i.e.
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ht(F) Edef max{1th(b): beF}.

3.1.12. FACTS(properties of ht).
(a) ht(F) = 0 iff 3n(F=°n),
(b) ht(FAG) 1 + max(ht(F),ht(G)),

(c) ht(F)>0 3GH(F=GAH).4'

3.1.13. PROPOSITION(induction over frames). Let Q be a property 0f’frames,
then

Vn Q(°n) A VFG(Q(F)AQ(G) + Q(FAG)) + VH Q(H)

PROOF.By induction over E1 w.r.t. ht(H). U

3.1.14. DEFINITION. (a) FRAMEdenotes the set of frames.

(b) A lawlike sequence of frames is a lawlike mapping 6: 11 + FRAME.

3.1.15. NOTATION.Weuse lower case script letters 6,g,6',9',60,g0,... as
variables for lawlike sequences of frames.

F

O 1 1 2

11 61 [5 I5

/\ °2 °2 /\
1 3 3 4

a b

fig. 4

Fig. 4a shows a frame F and 6f£F for some lawlike sequence 6 of frames.

If we ‘replace’ each terminal node b e F by the frame 6(£bF) (and delete
the original labelling), we obtain a new frame G (see fig. 4b). For the
frame G thus constructed from F and 6 we write F[6].

Note that (°n)[6] is just 6n. Moreover, the replacement of terminal
nodes by values of 6 is distributive over pairing, i.e.
(FAG)[6] = F[6] A G[6]. This leads us to the following definition by recur
sion.
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3.1.16. DEFINITION(of F[6] and G 2 F). (a) Let 6 be a lawlike sequence of

frames. Fffi] is the image of F under the mapping from FRAMEinto FRAM de

fined by the following recursion equations:

(°n)[6] = 6n, (FAG)[6] = F[6]AG[6].

If G = F126] we say that 5 produces G from F.

(b) GZF 2 FSG zdef 36(G=F[£]).

If G 2 F then we say that G can be produced from F.

3.1.17. Fgggg.
(a) F=G+ F[6]=G[6].

(b) £(F[6]) = Un€£F£(6n)
Tc) nF C n(F[6]), G 2 F + nF C nG, in particular VbeF(ben(F[6])) and

G 2 F + VbeF(benG).

(d) ht(F[6]) 2 ht(F), G 2 F + ht(G) 2 ht(F).

3.1.18. Lggyé (explicit characterization of F[6]).
Let F be a frame, 6 a lawlike sequence of frames. Then b is a branch of

F[6] iff it has the form b]*b2, where b] e F and b2 e 6n, n the label of
bl in F. The label of such a branch b = b]*b2 in FM] is the label of b2
in 6n.

PROOF.By induction over frames. See also fig. 4. U

3.1.19. Lgygé (properties of F[6], G 2 F).
(a) (F[fi])[g] = F[xn.5n[g]].
(b) F[6] = F[g] ++ Vne£F(6n=gn).
(C) F[Xn.(°n)] = F.

(d) F[6] = F ++ Vne£F(fin=°n).

(e) The 2-relation betweenframes is transitive and reflexive.

PROOF.For (a), (b) and (c) use induction over frames and 3.1.9:

FAG = F'AG' ++ F=F' A G=G', £F c £(FAG) and £6 c £(FAG),

(d) is a corollary of (b) and (c), (e) follows from (a) and (c). U

3.1.20. DEFINITION. FNGEdef F_>.GA GZF.
If F asG then we call F and G equivalent.
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E.g. the frames F and G of fig. 5 are equivalent since for 6 and g satis

fying 60 = °1, 61 = °3 and Q] = °O, g3 = °l we have G = F[6] and F = G[g].

fig. 5

3.1.21. §;_xg3§_.

(a) If F and G are both single-node frames, F = °n and G = °m say, then

F as G (F=G[)\k.(°n)], G=F[Ak.(°m)]).

(b) If F &¢Gthen F and G have the same height, nodes and branches (cf.

3.1.17, (c), (d)).For the relation betweentheir labellings see the
next lema.

3.1.22. LEMMA(alternative characterization of equivalence between frames).

Twoframes F and G are equivalent iff there is a Zawlike a: 11 + Ii, which

maps KF one-one onto KG, such that

G = F[An.°an].

PROOF. G=) If G = F[An.°an] then G 2 F by definition. If a maps KF one-one

onto KG, then we can find a b : Ii + Ii such that VneKF(b(an)=n). For this
b we have F = G[Xn.°bn] i.e. F 2 G.

(=>) Assume that F N G, G = FEM, F G[g].

ThenF = (F[6])[g], i.e. F = F[An.6n[g]], by 3.l.l9(a).
Hence VneZF(6n[g]=°n), by 3.1.19(d).
Hence Vne£F(ht(fin)=0), by 3.1.l7(d).
So VneKF3m(6n=°m), and hence G = Flfi] = F[An.°an] for some a.

This a maps ZF onto [G by 3.1.17(b), and it is one-one on KF, since it

satisfies VneKF(g(an)=°n). U"

3.2. NESTINGS

3.2.]. DEFINITION(of pairing w.r.t. ~D). Let D be a set,~ an equivalenceD

relation on D. A mapping p:DXD+ D is a pairing operation on D w.r.t. ~
iff

D9
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Vxyx'y'eD(p(x.y> = p(x'.Y') *“”‘"D"' " W93")

p is a pairing operation on D iff there is an equivalence relation «b on D
such that p is a pairing w.r.t. ~D.

3.2.2. EXAMPLES.

(a) j is a pairing on 11 and N w.r.t. extensional equality.
(b) A is a pairing on K w.r.t. the equivalence 25 defined by

e e:fEVa(e]a=fIa). (See l.3.24(e).)
(c) A is a pairing on FRAMEw.r.t. extensional equality as defined in

3.l.4(b).

3.2.3. REMARK.The more usual definition of pairing claims the existence of

pairing left-inverses p1,p2, defined on the subset {p(x,y): xeD,yeD}of D,
satisfying p]p(x,y) = x and p2p(x,y) = y.

In example (a) such pairing left-inverses jl,j2 exist. Theyare in
fact pairing inverses since j(j]a,j2a) = a for a 5 li or a e N.

In examples (b) and (c) pairing left inverses can be defined, but their
existence is irrelevant for our purposes.

3.2.4. FACT.For each n, the mapping (an,bn) H-j(a,b)(n), a,b lawlike ele
ments of N, is a pairing on the set of finite sequences with length n, w.r.t.

equality; kl and k2 (cf. l.3.5(d), 1.3.6) are the inverses to this pairing.

Let D be a set with a pairing operation p :D X D + D. (Weshall be interest

ed in the cases D = 11, D = N and D = K, with p = j, p = j and p = A respec

tively.) Let ¢ be a mapping from El into D.

‘—*p(p(d>0.p(d>l.d>0)),¢2)

2 p(¢0,p(¢1.¢o)> *—‘ '—’¢2

0 qalz ‘W *-' ~»p<¢1,¢o>

djl l% 0
lo 3 3 M “P

d>1 ¢0 61 b

fig. 6

Fig. 6a shows a frame F with ¢F(£F). ¢ induces a mapping bI+ ¢(£bF) from
the terminal nodes of F into D. Fig. 6b shows how this mapping can be
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naturally extended to a mapping ¢': nF + D by putting:

¢'b = ¢(£bF) for all branches b of F,
¢'(n) = p(¢'(n*<O>), ¢'(n*<1>)) for non-terminal nodes n of F,

i.e. the image of a non-terminal node under ¢' is found by pairing the
values assigned to its imediate descendants.

For the image of the top-node under ¢' we write v£’p¢, we call it ‘the F
nesting of ¢ (w.r.t. p)'. Formally we put:

3.2.5. DEFINITION(of vF). Let D be a set with a pairing operation

p :D X D + D, and let ¢ be a mapping from 11 into D. By v3’p¢ we denote the
image of F under the mapping from FRAMEinto D, defined by the recursion
equations

v?3f.>¢ = W» v3;£¢ = p<v3"’¢» v3"’¢>

If a e D and a = vg’p¢, we say that a is the F-nesting of ¢ (w.r.t. p).
° . . I K K

For v11E’Jq)we write vF¢, for v ’J¢ we write vF¢, and we put vF¢ ':' vF’A¢.F

3.2.6. EXAMPLES.

<1): ]N->]N satisfies

0 F ¢0=2, ¢1=0 vF¢ = j<2,j<o,2>>
¢

g , 0
¢1 ¢I

O 2

F ¢ :FJ+ K satisfies
¢O=g, ¢l=f, ¢3=e v:¢ ==(eAf)A(8Af)

13¢ 1 Q[ 1
1¢ ¢ g¢8

F ¢ :IJ+ N satisfies
1 ¢O=a, ¢1=b v;¢ = j(j(a,b),b)

0 1 4’

dal «bl
a b b
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3.2.7. REMARKS.(a) Note that the pairing p itself is a special case of F
- D . .

nesting w.r.t. p: p(x,y) = vF’p¢, where F = °0A°l, and ¢: 1J+D 1s defined
by ¢n = x if n = O and ¢n = y otherwise.

(b) Let 6 be a lawlike sequence of frames, F a frame. The F-nest of 6 w.r.t.
A, i.e. v§RAME’A
(Seedef.3.l.l6.)

6, is exactly the frame produced by 6 from F, i.e. F[6].

3.2.8. £§gT§. (a) Let ¢ map 11 into N (i.e. ¢neN, ¢n(z)eIU. Then

v%¢= Az.vF(An.¢n(z)), since the pairing j on N is defined from the pairing
J On 1‘ by j(¢.w> = AZ-j(¢Z.wz).

(b) If a subset D’ of D is closed under the pairing p, then it is closed
under F-nesting w.r.t. p.

If D = DJ or D = N, with the pairing operation j from D X D onto D,

and pairing-inverses j],j2 :D + D, we can reverse the construction of nest
ings as follows.

Let a be an element of D, T a finite strictly binary tree.

3132 J1J2J2a J2J2J2a

fig. 7

Fig. 7 shows how we can associate with the pair (a,T) a mapping ¢ :nT + D,
by putting:

¢<>=a,

¢(n*<0>) = j](¢n), ¢(n*<1>) = j2(¢n).

i.e. ¢ assigns the value a to the top-node of T, to the left-hand imediate

descendant of a node n it assigns j1(¢n) and to the right-hand immediate
descendant of n it assigns j2(¢n).

Note that ¢n can be computed independently of the tree T. If

n = <xO,...,xp>, xie{0,l}, for i = 0,...,p, then ¢n = jip...ji0a, where
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iq = 1 iff xq = 0 and iq = 2 iff xq = 1 (0SqSp).
Wewrite jna for the value ¢n. The mapping n++ jna thus defined on

finite 07] sequences, can be extended to a mapping vv+ jva defined on ar
bitrary finite sequences, by putting jva E a, wherej§§Kv)

sgK<x0,...,xp>) = <sgx0,...,sgxp>. (I.e. for a 0-1 sequence n, sgh = n.)
Formally:

3.2.9. DEFINITION(of jva, a e II or a e N)- Let D be IN or N, a an element

of D. The mapping vl+ jva from E! into D is defined by the recursion equa
tions

j§(jla) if sg(x) = 0.
a: a’ j<x>*v a =

jV(j2a) otherwise.

A mapping ar+ jva from D into D (veED, is called a nesting-inverse.

3.2.10. REMARK.Since our notation does not distinguish between the indices

1 and 2 and the number terms 1 = SO and 2 = SSO, we can interpret j] and jz
in two ways: as pairing inverses, where 1 and 2 are indices for the first
and the second memberof the pair respectively, and as nesting inverses,
where 1 and 2 are natural numbers coding finite sequences. Weshall assume

that 1 codes the sequence <0> and 2 the sequence <1>. Thus we make both

readings of jl,j2 coincide.

3.2.11. FACTS.

(3) jv*wa = jW(jva)9

(b) If ¢ e N then jv¢ = Ax.jv(¢x), since the pairing inverses ji :N + N,

i = 1,2 are defined by ji¢ = Ax.ji(¢x).

3.2.l2.'DEFINITION (of kv : N —>N). kv : N —>N is defined by the equations:

kV< > = < >, kV(w*i‘c) = kVw*<jvx>,

1.e. kv(<xO,...,xp>) = <JVXO,...,]vXP>.

3.2.13. FACTS.

(a) kV*Wu = kw(kVu),



78

(b) kv(k]w) if sg(x) = O

kv(k2w) otherwise,

(c) if ¢ 6 N, then jv(u*¢) = kvu*jv¢,

(d) if ¢ 6 N, then kV($x) = fv_¢(x),

(e) ku(v*w) = kuv*kuw.

3.2.14. LEMMA.Let F be a frame. Then

X‘Y *+ Vb€F(jbX=jbY)s

v=w-++-Vb€F(kbv=kbw),

¢=¢++ where¢.1P6N

PROOF.By induction over frames. D

3.2.15. NOTATION.Let ¢ 5 ¢[n] be an element of N for all n e 11. Wewrite

Aln.¢ for the mapping x|+ ¢[x/n] from 11 into N.

If ¢ = ¢[n] is an element of K for each n 6 11, then AKn.¢ stands for

the mapping xl+ ¢[x/n] from 11 into K.

3.2.16. LEMMA(properties of nestings and nesting-inverses). D is a set with

an equivalence relation ~D. p : D x D —>D is a pairing w.r.t. ~D. Then

(a) V¢w£D1q(vg’P¢ ~b v£’pw ++ VneKF(¢n~byn)).

(b) V¢eN VbeF[jb(vF<1>) = ¢(£bF)],

V1peNNVbeF[jb(vg.1p) = 1P(£bF)].

(c) V¢eKNW;eNVbeF[jb(v§¢|1p) = ¢(£bF)Ijbw].

(d) For (1;: N -+ D, 6 a lawlike sequence of frames, F and G frames, G = F[6]:

Dap Dsp
VG ¢~D"F ‘P’

where 4) : N -> D is defined by zpn = v]t);I’1p¢.

(e) V¢weKN(v§¢ : via; 2 v§(}.Kn.¢n : vJ;n)).

(f) vK().Kn.id) u id, vK(AKn.sm) m sm.F F

(g) For ¢ : N —>N (i.e. ¢neN, ¢—n(m)is the initial segment of the infinite
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sequence ¢n with length m),

[»;¢(m)J:= v§(xKn.t$E(m>J>.

23993. All assertions by induction over frames.

(a) and (b) are immediate from the definitions of vg’p and jb. (a) just
generalizes the characteristic property of the pairing p, namely

p(x,y) ~b p(x',y')-++ x-Dx' A y~E)x', (b) formally explains the name
nesting-inverse for mappingsjb.

(c) is shown in detail below.

(d) states that if G is obtained from F by substituting values of 6 for
terminal nodes of F, then the G-nesting of ¢ is obtained by first deter
mining all fin-nestings of ¢ for values fin of 6 and then applying F-nesting.

(e) says that composition of neighbourhood-functions is distributive
over nesting, for the proof one uses the corresponding property of :w.r.t.
pairing A, i.e. (eAf):(e'Af')e(e:e')A(f:f') (cf. l.3.24.(f)).

(f) says that a nesting of identities is an identity and a nesting of
shifts over m is a shift over m. Here use that id A id eeid, sm A sm essm

(cf. l.3.24(g)).
(g) is shown in detail below.

The detailed proofs of (c) and (g) can be skipped at first reading.

PROOF of (C):

(i) For f = °n, (c) becomes

<1) j< ,<v§.n)¢Iw> = ¢n|w.

- K . . . .

(2) J< >(v(°n)¢Iw by definition of JV (3.2.9),

(3) v%°n)¢ = ¢n by definition of vK (3.2.5),

(2) and (3) yield (1).
(ii) For F = GAH(c) is the conjunction of two statements

(4) vb€G(j<0>*b(v§AH¢|w) ¢(£bG)|j<0>*bw) and

(5) VbeH(j<]>*b(V§AH¢|¢) = ¢<£bH)|j<1>*bw>.

We show (4).

j<0>*b(v§AH¢|w)= jb(j](v§AH¢|w)) by definition of jv (3.2.9),
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K K K . . . K

vGAH¢Iw= (vG¢AvH¢)Iwby def1n1t1on of v (3.2.5),

and eAf|w= j(e|jl¢, fljzw) by definition of A (l.3.23),
. K . K .

hence J<0>*b(vGAH¢|¢) = Jb(VG¢|J1w)°

Moreover: jb(v§¢Ij1w) = ¢(£bG)|jb(j1¢) by induction hypothesis,

and jb(j]w) = j<0>*bwby definition of jv, which yields (4).

PROOFof (g):

(i) For F = 0k, (g) becomes

(6) [vi°k)¢(m)J 2:v%ok)(XKn.[$E(m)]).

v}°k)¢ = ¢k by definition of v], hence

<7) [v:°k)¢(m)] e. [?pI<m>J.

On the other hand

vK
(

(7) and (8) yield (6).
(ii) If F = GAHthen

(3) °k)(xKn.[$E(m)]) = [$E(m)J, by definition of vK.

(9) [V.g.3(m)J N [J'(<b1.d>2)(m)].

with ¢] 5 vé¢, ¢2 E v;¢, by definition of V1.
On the other hand

(10) b§(xKn.[$E(m)J) = eAf,

with e E v§(AKn.[$n(m)]) and f E v:(XKn.[$E(m)]), by definition of vK.
By induction hypothesis e ==[¢]m], f e=[¢2m].
'$;m = ki(3($T:$;)(m)) by 1.3.6, for 1 = 1,2, [klv]A[k2v]={v] by l.3.24(g),
hence eAf ==[j(¢1,¢2)(m)].
Combiningthis with (9) and (10) yields the desired result. D

3.2.17. COROLLARIES.

(a) For zp,¢ : 11 +11 : vF¢ = vFw <—>Vne£F(¢n=wn),

for ¢,¢ : N —>N : v1},¢ vFl,1p+'—»vne£F(¢n=mn) ,

for xp,¢ : N -> K : \)%¢ m vgxp +—->Vne£F(¢nm,bn).
[Special cases of 3.2.l6(a).]
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(b) If G = FM], than

for :1:: N +N : vG¢ = vF(Ar]1.v6n¢),
for <1;: N —>N : v(1;¢ v}!,(>\ n.v1]{n¢),

for (b : N —>K : vgqa v%(AKn.v§n¢).
[Special cases of 3.2.l6(d).]

R

(c) For xp: N —>N : VbeF(kb(:;1;(x)) = 1p(£bF) (x)).
[By 3.2.l6(b) and 3.2.l3(d).]

(d) For ¢ : N + K : Vne£F(¢n'—-*id) <—>vI;¢ 2 id, and

Vne£F(¢n'=sm) +—>\)%¢ -'2 sm.
[By 3.2.l6(a) and (f).]

REMARK.3.l.l9(a) and (b) (properties of F[6]) are special cases of 3.2.16(d)

and (a) respectively, since F[6] = v§RAME’A6. (589 remark 3-2-7(b)-)

3.2.18. DEFINITION(of "parallel to"). (a) Let 4) e N, F e FRAME.«pis paral

lel to F, iff there is a up: N + N such that ch= vggp,or, equivalently, iff

for each pair b,b' of branches of F having the same label in F, jb¢ = jb,¢.
Wewrite q>//Ffor q) is parallel to F. In formula:

¢//F 2 vbb'eE(£bF=£b.F —>jb¢ = jb,¢).

(b) A finite sequence v is parallel to the frame F iff for all branches

b and b‘ of F with the same label in F, kv = 1<b,v. I.e.

v//F E Vbb'eF(/CbF=£b,F -> kbv = kb,v).

(c) An element (pof K is C-parallel to the frame F, where C is a subset

of K, iff there is a mp: N ->C such that 4am vgtp. Wewrite //C for C-parallel
to. Formally, we put

¢//CF .=. Ehp: N ->C(¢eev§xp).

Wedenote the negation of parallel to by # .

3.2.19. REMARK.The property of being parallel to F is generally a non-tri
vial one. E.g. if a # b, then j(a,b) is not parallel to the frame "0 A °O.

On the other hand, all ¢ 6 N are parallel to °0 A °l (see 3.2.2l(e)).

A similar observation does not hold for //C, even if we take C = K. Consider
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e.g. the mappinge e K such that e|j(a,b) = j(b,a). This e is not K-parallel
to °0 A °l: if e 2 fAg then e|j(a,b) = j(fIa,gIb), and the assumption that
for

3.2.
(a)

(b)

(c)

(d)

(e)
(f)
(g)

(h)

(i)
(j)
(k)

(1)

(In)

(n)
(0)

(p)

(q)

(r)
(s)

(a)
(b)

(d)

(e)
(f)

(g)

all a and b fla = b and glb = a is obviously contradictory.

20. Lgggé (properties of fl’ and fl

For w:iN + N v;wflF.

VbeF(J'b¢=¢) + ¢//F.

VbeF(kbv=u) +‘vflF.
Vx(¢//F<—>¢x//F A lz.d>(x+z)//F).

v*wflF++-vflFA wflF.

¢>//FAG—>31¢//F A j2¢//G

eAf//CFAG -> e//CF A f//CG.

£Fn!iG = (5 -* (5149//F A 52¢//G -* <19//FAG)

£Fn£G = 95-> (e//CF A f//CG -+ eAf//CFAG).
¢//G AG 2 F + cb//F.

If'C is closed under A then eflCG A G 2 F + eflCF.

F R: G —>(e//CF4-> e//CG).

If C is closed under A then eflCG + e e C.

VeeCVn(e//Ce(°n)) .

ideC + id//CF.

smeC + sm//CF.
Let ¢ be a right-inverse to the labelling of F, i.e.

Vne£F(¢neF A £¢nF=n), then u//F+ [u] r: vI;()\Kn.[k
eflCFA ¢flF+-eI¢flF.
If C is closed under: then e//CFA f//CF-> e:f//CF.

C, for consultation whenneeded).

nu]).
¢>

PROOF.

by 3.2.l6(b).
and (c) by definition of fl.

¢ = $x*Xz.¢(x+z) and jb($x*Az.¢(x+z)) = kb$x*jb(Az.¢(x+z)) by 3.2.13(c),
nowapply the definition of fl.
by 3.2.l3(e).

Assume..£bF =~£b,1~‘, b,b'€F, and cb//FAG..Then 1: b(FAG) = 1:<0>* <O>*b'(FAG)

by definition of FAG,hence j j<0>*b,¢ by definition of H.<O>*b¢ =

j<0,*b¢ = jb<j,¢>, j<0,*b.¢ = jb.<j,¢> by definition of iv, hence
j]¢//F. By a similar argument we find j2d>//G.
Assume eAffl

K K C
FAG, i.e. eAf z vIF(,AG¢for some 4: :11 -> C.

K . . .

vFAG¢= vF¢ A vG¢ by definition of v , and
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(i)

(j)

(1)

(k)

(1)

(m)

(n)

(0)

(q)
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eAf 2 v§¢ A vIéd>-> (e2\)§¢)A(f2vIécb) since A is a pairing w.r.t. 2 (see

3.2.2(b)). Hence e//CF and f//CG.
Let <x>*b, <y>*b' be branches of FAGwith the same label, assume that

£Fn£G = ¢, then either 1: = y = 0 and b,b'eF or x = y = 1 and b,b'eG. In

the first case j b,¢ follows from the definition of jv and<x>*b¢ = j<y>*
the assumption j]¢//F, in the second case this equality follows from
j2¢flG.
Assume that e I\l K K

vF¢1 and f 2 vG¢2, ¢],¢2 : N ->C.

cpln if n e {F
Define up: N ->C by ypn =

¢2n otherwise.
INJIf £Fn£G = Q then Vne»(’.F(1pn=¢n) and Vne£G(xJ;n=¢ n), whence e

K 1 K K K 2 K K . .

f 2 vG1pbi 3.2.17(a). So eAf vFl1I/\vGxp, vF1p A vcxp = vF/‘Cupby defini
tion of v , and hence e/\f//C FAG.
Assume G = F[6], ¢://G and let b,b' be branches of F with the same label
n. We show that

vgtp and
I\I

Vb"€6n(jbII(jb¢) = jbn(jbu¢))s

then jb¢ = jb,¢ follows by 3.2.14.
To prove (I) we argue as follows:

jb"(jb¢) = jb*b"¢, jb"(jb,¢) = jb,*b"¢ by 3.2.ll(a). b*b" and b'*b" are
both branches of G = FM], with the same label £b,,(6n), by 3.1.18. Since

¢>//G then jb*bn¢ = jbI*bn¢

Let G = F[6], e 2 vlécbfor <1:: N ->C. Then e vI;()\Kn.vI6<n¢)by 3.2.l7(b).

If C is closed under A then vlgncbe C by 3.2.8(b), so e//CF.
Let F 2 G, then F = G[An.(°an)] for some a, by 3.1.22. If e//CF then

(°an). by

3.2.17(b), i.e. \)IF(.¢2 \)Ié(AKn.¢(an)). AKn.¢(an) : N + C, so e//CG. The

IN!

e 2 vIF(,¢for some 4: : N —>C. vgcp 2 vIé().Kn.vI6(n¢), where 6n =

converse implication follows from the symmetryof N.
by 3.2.8(b).

e 2 vléon) ().Km.e), if e e C then ).Km.e : ]N -+ C.
and (p) by 3.2.16(f).

¢ : N —>N satisfies Vne£F(¢neFA£Assume u//F, nF=n). We show that¢
for all a

. K K .

VbeF(Jb(vF(An.[k¢nu])|a) = Jb([u]Ia)),

then [u] 2 \)I§()\Kn.[k
by 3.2.14. [u]|a =

nu]), i.e.Va([u]|a = \)§(>\Kn.[knu]) Ia), follows
‘1’ ¢

u*a by definition of u, jb(u*a) = kbu*jba by
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(r)
(s)

3.2.
(a)
(b)

(C)

(<1)

(e)

(f)

(g)
(h)
(i)
(j)

(k)

(1)

(m)

3.2.l3(c). On the other hand jb(v§w|a) = w(£bF)|jba by 3.2.l6(c), i.e.

for w E v§(XKn.[k¢nu])= jb(v:w|a) = [k¢(£bF)u]Ijba = k¢(£bF)u*jba. But
¢(£bF) is a branch of F with label £bF, whence, since uflF, v

kbu = k¢(£bF)u.
by 3.2.16(c).
by 3.2.16(e). D

21. COROLLARIES(for consultation when needed).

Fbr ¢ 5 N Vn(¢fl(°n)L [By 3.2.20(b)]

VvVn(v//(°I1)). [By 3.2.20(c)]

v//F/\G—>klv//F/\k v //G.
2:

[V//FAG->v*v,;AG(x n.Az.0)//FAG by 3.2.20(a) and (:1),

v*¢//FAG—>j1(V*¢)//F/\ j2(v*¢)//G by 3.2.2o(£),

j](v*¢) = k1v*j1¢, j2(v*¢) = k2v*j2¢ by 3.2.l3(c) hence
ji(v*¢)//Hi—> kiv//Hi by 3.2.20(d), where 1 -= 1,2, H = F,H2 =

£Fn£G = 01—>(klv//F/\k2V // G + v//FAG).
[By 3.2.20 (a), (d) and (h), use a similar argument as for (c) above.]

If F has a 1-] labelling, i.e. ‘v’bb'eF(£bF=£b,F->b=b'), then Vq>eN(¢//F)
and Vv(v//F).

[Fromcorollaries (a), (b), (d) and 3.2.20(h) by induction over frames.]
v//G AG 2 F —>v//F.

1 G.]

[By 3.2.20(a), (d) and (j), use a similar argumentas for corollary (c).]
F as G + (¢//F<—>¢//G). [By 3.2.20(j).]

F as G -> (v//F<—+v//G). [By corollary (f).]

If Vv([v]eC) then u//F-> [u]//CF.-'[By 3.2.20(q).]
e//CF A v//F-> efv//F.

[e//CF/\ v//F-> e|(v*v,;,(x‘n.(xz.o)))//F by 3.2.20 (a), (d) and (r),
eI(v*¢) e efv by definition of efv, U//FAweu+ u//F by 3.2.20(d).]

j]¢//FA m££F->¢//F /\(°m). [By 3.2.20(h) and corollary (a).]
vaab((b//(°n) AF) A j1b=a). [Take b = v (A m.a) and use 3.2.20(a)
and 3.2.16(b).]

VuE|v((V//(°n) AF) A klv=u).
[Apply corollary (1) with a =

l

(°n)AF

u*Az.0, take v 2 b-(lth(u)), use 3.2.20(d) .1
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CHAPTER 4

PROJECTION MODELS FOR GC(C)

4.1. INTRODUCTION

Weconsider projected universes U? E {eI6: e e M}, where M is a subset

of K. Each e e K is the neighbourhood-function of a continuous Fe: N + N.

A set M E {Fez e e M}, M c K, is (externally) a subset of the Moschovakis

model for Baire-space over Baire-space. Validity in U? can be reinterpreted
as validity in the submodel M.

Weshall not construct a single projected universe imitating GC(C).

Instead we define a class U6(C) of universes of the form UM,all imitating

GC(C), and prove the existence of a U6 6 U6(C) for suitable C.

The lawless sequence 6, the generator of the universes U5 6 U6(C),
plays the following r8le: the value 6x is a numerical code for the choicés
one makes at stage x+l in the construction of the universe of GC-carriers.

‘I’6»

B E j26 and y E j36. As long as 6 does not appear in the same context we

It is convenient to think of 6 as a triple of sequences. Weput a E j

can think of a,B and Y as being lawless.

From ax E j?(6x), or rather, from ax and Ex, we read whether any car
rier jumps at stage x, and if so, which one and where to.

yx codes the preliminary choice of values at stage x, that is to say,

the preliminary choice of values for carrier n_at stage x will be (yx)n.
(cf. 2.8.l(a).)

The choice of a jump-function is made (if necessary, i.e. if d(x+l)
codes the decision to have a jump at stage x) via a lawlike J: 11 + C: if
there is a jump at stage x, then J(Bx) is the jump-function.

The imitation of GC(C)in projection models is therefore successful
only if there is a J which maps Ti onto C, at least modulo25 i.e. if
VeeC3n(Jn¢e).
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4.2. Wesketch the construction of U6(C)- The detailed explanation of the
construction is given in the sections 4.3-4.6 below.

A universe U6 e U6(C) has the form

U6 = {e|nF6: F e FRAME, e e C}.

For each F e FRAME,N is an element of K, NF5 abbreviates flF|5, we putF

nn6 E n )6. The universedef (°n

{1rn<S:n e N}

imitates GCC(C),HFGis a nest of carriers, that is to say, WF5behaves as
eF(cf.2.10.l).

Each mapping NF is related to a sequence {dFv :v e 11} of elements of
K. by

NFC= O, nF(i*v)=y+l ++ Va[(dFvIa)(x)=y].

If F = (°n), then dFv E d(°n)v = dnv, where

dn(3x) is the dressing for the carrier nn6 at stage x.

The K-element dFv is the image of the triple (O,F,v) under a mapping

d: Ii X FRAMEX Ii + K. In general, we write d;v for d(w,F,v), that is to

say, dFv abbreviates dgv.
d belongs to a set DG(J), where J maps ii onto C modulo ea If d e DG(J)

we say that d generates a universe of dressing sequences w.r.t. J.
The definition of DG(J) uses the auxiliary mappings jf and gv.

jf (for jump-function) is a mapping from El into Klq:
if d(x+l) codes the decision to makecarrier n jump at stage x+l,
then it jumpswith jump-function jf(3(x+l))(n) E J(Bx),
if carrier n does not jump at stage 3+1 then jf(E(x+l))(n) = id.

gv (for generated values) is a mapping from 11 into KIJ:
gv(5(x+]))(n) has the form [m], m is the sequence of generated values
for carrier n at stage x+l.

d is an element of DG(J) iff it satisfies the following equivalences (some
of which are redundant):
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d 0 esid,
“ - K . - K

dn(v*x) etdnv :v6nv jf(v*x) :v6n(v*§) gv(v*i),
Vouid
n

d i
n

R K. ._K 
v6 vJf(V*X) .v6n(v*fi)gv(v*x)

v*w
dV(w*5E) u dvw : d xn n

{(1

{V
<2‘.3d w a \)K (xKn.d"w), if ht(F) > 0.

6Fv n'11

In these equivalences, finv and 6Fv are frames.

6Fv is the image of the pair (F,v) under a mapping from FRAMEX 11 in

to FRAME:and finv = 6(°n)v;
6n(6x) is the frame for the carrier fln5 at stage x.

The mapping (F,v)'+ 6Fv is defined by the following clauses:
sno = on,

R U 3 R

6n(v*x) = 6nV[JPS(kl(v*x))].

6Fv = F[Xn.6nv]. ‘N
jps (for jumps) is a mapping from Ii into FRAME:

if jps(dx)(n) = °k, k # n, then carrier n jumps to carrier k at stageig
if jps(;x)(n) (°k)A(°m), k # n, m # n, then carrier n jumps to the
carriers k and m at stage x,
if jps(dx)(n) = °n, then carrier n does not jump at stage x.

Note that dx = k?(3x).

4.3. THE CREATION OF DEPENDENCIES BETWEEN CARRIERS IN PROJECTION MODELS

4.3.]. a E jfd governs the creation of dependencies in the GCC-projection
models {nndz n e II}. The numerical value ax contains the suggestion for a
jump at stage x+l. The suggestion is coded as follows:

ax = v3(0,k,m) stands for ‘try to make carrier k dependent on carrier

ax v3(n+l,k,m) stands for ‘try to makecarrier k dependent on the
carriers j m and j m'.

1 2

In other words, each y e-ll can be treated as the code of a suggested jump;

jay is the nameof the carrier which should jump, jgy contains the name(s)
of the carrier(s) it should jump to; if jly = 0 then a singular jump is
suggested: jgy is to be made dependent on jgy, if j?y # 0 then a binary
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jump is suggested: jay should be made dependent on jl(j§y) and j2(j§y).
Wecan not always create the dependency that ax suggests, since

(a) it is impossible for a carrier to jump to itself (which might be sug
gested),

(b) a carrier can only jumpto carriers that are still fresh (that is to
say, we have to check that the jump which ax suggests, is not in con
flict with the dependencies already created, following ‘previous sug
gestions‘ ax), and

(c) only fresh carriers can jump.

4.3.2. DEFINITION.new 2 3i<lth(w)((w)i=n), néw 2 7(new).

4.3.3. DEFINITION.A(n,y,w) is the formula which expresses:
'y suggests that carrier n should jump. If w is the full list of non-fresh
carriers, then we can follow the suggestion, since it is not in conflict
with (a), (b) and (c) above‘.
Formally:

A(n,y,w) Edef n=jgy A néw A
.3 . .

[(J1y=0 A J§y#n A J§Y¢W) v
.3 . .3 . .3

(J y#0 A A (J-(J y)#n A J-(J y)¢w))].
I ._ 1 3 1 31—l,2

Weuse A(n,y,w) to define two mappings: nf: Ii + Hi and jps:

1! + (FRAMEnq).

nf stands for ‘non-fresh’, nf(dx) is the full list of namesof carriers
that have been made dependent on others through the stages z 5 x.

jps stands for 'jumps', jps(dx) is a lawlike sequence of frames.
jps(dx)n - °n expresses ‘carrier n does not jumpat stage x',
jps(dx)n °k, k # n, expresses ‘carrier n jumps to carrier k at stage x‘,
jps(dx)n (°k)A(°m), k # n, m # n, expresses-‘carrier n jumps to the car
riers k and m at stage x'.

4.3.4. DEFINITION(of nf and jps, see example 4.3.5).
(a) nf : 11 + 11 is the mapping which satisfies:

.3 . .3
nf(V)*<J2Y>1f A(J2y.y.nf(v)).

nf(0)= < >, nf(v*y) =
nf(v) otherwise.
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(b) jps: N —>FRANEN is defined by:

jPS(0) = ln.(°n).

°n if-1A(n,y,nf(v)),

jps(v*?)n = °k if A(n,y,nf(v)), j?y=o and j§y=k,
<°k>A<°m>if A<n.y.n£<v>>, jfy¢o.

j,<j§y>=k and j2<j§y>=m.

4.3.5. EXAMPLE.

Ln ax jps(a(x+l)) nf(a(x+l)) comment
°2 if n=1

0 v3(0,l,2) n4+ ' <l>
°n othw

axsuggests that 2
should jump to 2

'1 v3(l,2,j(2,3)] n H-°n <l> and 3, which is im

possible.
ax suggests that 0

2 v3(0,0,03 n.H-°n <l> should jump to 0.
Nothing happens.

(°3)A(°4)ifn=2

3 v3(1,2,j(3,4))n++ <1,2>
°n othw

ax suggests that 1

4 v3(0,l,4) n'+ °n <1,2> should jump to 4,
but 1 is non-fresh.

ax suggests that 3

5 v3(l,3,j(2,5)) n »~°n <1,2> Sh°“1d jump t° 2and 5, but 2 is
non-fresh.

4.3.6. LEMMA(properties of jps and nf);

(a) jps(v*§)m #°m + m=j3y A nf(v*§)=n£(v)*<m>.
(b) jps(v*?)m ¢°m +

<jps<v*§>m=°j§y A j§y¢m> v

<jps<v*9>m=(°j,<j§y> A °j2<j§y>> A A ji<j§y>¢m>.‘=11 ,2
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- .3 . 
(c) nf(v*Y)=nf(v)*<m> + m=J2.‘/A JPs(v*y)n#°m.

(d) jps(v*?)m=F A F#°m + VkeKF(k¢nf(v*?)).

PROOF.Trivial by definition. U

4.3.7. COROLLARIES.

(a) jps(c-x(x+l))m#°m + Vk(k#m + jps(c-x(x+l))k=°k).

[The model has the 'single jumpproperty’ (2.4.4), by 4.3.6(a).]
(b) jps(a(x+l))k#°k +>3mn[m#kA n#k A (jps(d(x+l))k=°m Vjps(d(x+l))k=Gum°n»]

[The modelhas 'restriction to binary jumps’ (2.4.4), by 4.3.6(b).]
(c) menf(v) ++ 3u4v(jps(u)m#°m), or equivalently

ménf(v) ++ Vu4v(jps(u)m=°m).

[If ménf(;(x+1)) then carrier mis fresh at stage x+l, by induction w.r.t.
1th(v) fTom4.3.6(a) and (c).]

(d) jps(d(x+1))k=F A F¥°k + vme/ar VySx+l(jps(c:y)m=°m).

[If carrier k jumpsat stage x+1, then the earrier(s) it jumps to ts (are)
fresh at stage x+l, by (c) above and 4.3.6(d).]

4.3.8. Fig. 1 shows a possible frame foz for the carrier 5 e GCC(C)at some0
stage z, and for a numberof possible jumps at stage z+1, the resulting

frame f0(z+l) for e at-stage z+l. (cf. 2.9.7-8.)9 ‘
‘H

C)

N

jumps at stage z+l

SL jumps to 5; and 53 3 f0(Z+l)

2

3 4

' f0(z+|)
ii Jumps to £2 2

5 2

5; jumps to 52 i///j::>R\\b fO(z+l)
5

Fig. 1
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The construction of fnz has been described in 2.9.8. Wecan rephrase
that description, in the terminology of chapter 3, as:

fnO = °n, and fn(z+1) is produced from fnz by a mapping 62+]: 1! + FRAME,
whichsatisfies:

°n if n_does not jump at stage z+l,

6z+ln = °k if n_jumps to §_at stage z+l,
°kA°mif n_jumps to §_and m_at stage z+l.

(For ‘produced from F by 5' see 3.1.16.)

In the GCC(C)projection models {nn6:ne1U3 jPSa(z+l) plays the role of 62+].

4.3.9. We introduce a mapping (n,v)>+ finv from lJ><EJ into FRAME.finv is

the frame fbr nn at v, fin(5x) is the frame fbr nn at stage x.

DEFINITION. finv is the image of a mapping from lJ><IJ into FRAMEdefined by

6n0 = °n, 6n(v*i) = 6nvEjps<kf<v*a>>J..3 _ 3...
(Recall that a E 16, whencea(z+l) = k](6(z+l)).)

4.3.10. gggflé (properties of finv).
(a) Vu4k:]3v(jps(u)n=°n) + 6nv=°n.
(Acarrier which has not jumped, is.independent of others.)

(b) finv#°n + 6n(v*i)#°n.
(Acarrier which depends on others at stage z, will-not be independent of
others at stage z+l.)

(c) VmeK(6nv)(m£nf(k?v)).
(The labels 0f'the frame fbr wnat stage xg refer to fresh carriers.)
(d) Vw3gVn(fin(v*w)=finv[g]).

(With each y there is a 9: Hi + FRAME,which produces the frame fbr nn at
stage x+y from the one at stage x, fbr all n.)

PROOF.

(a) By induction w.r.t. 1th(v).

(b) 6n(v*i) = 6nv[jps(k?(v*§))] by definition, hence ht(6n(v*fi)) 2 ht(finv)
by 3.l.l7(d), so if ht(6nv) > 0 then ht(6n(v*i)) > 0 and 6n(v*i)#°n.
If ht(6nv)=0, i.e. 6nv=°m,m#n, then nenf(v) by (a) and 4.3.7(c). Hence
n¢£(jps(k?(v*i))m), by 4.3.6(d), and hence also né£(6n(v*i)), i.e.
fin(v*i)#°n.

(c) By induction w.r.t. lth(v):
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(1) nf(0) = < >, then certainly Vke£(finO)(k¢nf(O)).
Gi).Assume(induction hypothesis):

(1) vke£(5nv)(k¢nf(kfv)).
m€£(6n(V*i)) +* 3k€£(6nV) [me£(jPS(k?(V §))k)], by definition of
6n(v*i) and 3.l.17(b). Let keK(6nv), then by (1) and 4.3.7(c)

(2) Vu4k?v(jps(u)k=°k).
Either jps(k?(v*§))k=°k, then k¢nf(v*i) by (2) and 4.3.7(c),
or jps(k?(v*i))k=F, F#°k, then VmeKF(m¢nf(v*i))by 4.3.6(d).

(d) By definition, Vn(6n(u*i)=6nu[g]), for 9 = jpS(k?(u*§))_
The desired result nowfollows from 3.l.l9(a) by induction w,r,t_
lth(w). D

4.3.11. COROLLARIES.

(a) n¢nf(k?v) ++ finv=°n. [+ by 4.3.lO(a) and 4.3.7(c), + by 4.3.10(c).]
(b) 5nv=°n ++ vu<k?v(jps(u)n=°n). [By (a: and 4.3.7(c).]
(c) fin(v*§)=°n ++ 6nv=°n. [By 4.3.10(b).]
(d) VmeK(6nv)(6my=°m).[By 4.3.lO(c), 4.3.7(c) and 4.3.l0(a).]

In 2.10.5 we have defined the frame for the GC-sequence e=eIeF at stage
z as ‘obtained from the initial frame F by substituting fnz for each label
n in F‘, i.e., in the terminology of chapter 3, as F[Xn.fnz].

4.3.12. DEFINITION.6Fv is the image of the pair (F,v) under the mapping

from FRAMEX El + FRAME, defined by 6Fv = F[An.6nv].

Wecall 6Fv the frame for NFat v, fiF(3x) is the frame fbr NFat stage x.

Note that fi(°n)v=6nv, 6FAGv=6FvA 6Gv by definition of F[.].

4.3.13. LEMMA.6F(v*i) = 5Fv[jps(k?(v*i))J.

F3993, 6Fv[jps(k?(v*i))] = (F[An.6nv])[jps(k?(v*i))J by 4.3.12,
(F[An.6nv])[jPs(k?(v*i))J = F[Xn.finv[jpsCk?(v*fi))]]by 3.l.l9(a),
kn.6nv[jps(k?(v*i))] = An.fin(v*§), by 4.3.9, and finally
F[Xn.6n(v*i)] = 6F(v*§), by 4.3.12. U

4.3.14. £§g§§_(characteristic properties of 6Fv,6nv).
(a) 6F0 = F

(b) VW3flVF(6F(V*W)=6FV[Q])

(c) VneK(6Fv)(6nv=°n)

(d) VvVn3m>n(6my=°m).
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PROOF.

(a) fiF0 = F[An.6n0] by definition, 6H0= °n by definition, and F[An.°n] = F
by 3.1.l9(c).

(b) fiF(v*x) = 6Fv[g] with g = jps(k?(v*x)) by 4.3.13. Use induction w.r.t.
lth(w) and apply 3.1.19(a).

(c) ne£(6Fv) ++ 3ke£F(neK(fikv)), by definition of 6Fv and 3.1.17(b). Now
apply 4.3.11(c).

(d) By 4.3.11(a) we find that even Vn¢nf(k?v)(6nv=°n). U

4.3.15. COROLLARY.fiF(v*w)=6Fv[An.6n(v*w)].

EEQQF.Let g satisfy VF(6F(v*w)=6FV[g])(4.3.14(b)). Then in particular

fim(v*w)=6my[g] for all m. By 4.3.14(c), 6my=°mfor m££(6Fv), whence, for

those m, gm=6my[g]=fim(v*w)(cf. def. F[g], 3.1.l6(a)). By 3.l.l9(b) it
follows that 6Fv[g]=5Fv[Am.6m(v*w)],hence the desired equation. U

4.4. PROJECTED UNIVERSES OF DRESSING SEQUENCES

With each GC-carrier an we have associated a sequence dneKlq, where

dnz E the dressing for an at stage z. dn will be imitated by a projected
sequence dud. Note that-agz can be determined at stage z, i.e. in the pro
jection model dn6(z) will have the form dg(Ez), where do: (n,v)1+ div is a
mapping from ]N X]N into K. With each do: ]N X]N —>K we can associate se

quences dné E Az.dg(5z), but only for special do this will yield faithful

imitations of 'the sequence of dressings for eflf. 0Our first aim in this section is to define the set DG(J) (D for

‘dressing’, G for ‘generate’, J a mapping from 11 into K; the superscript
zero will be explained in 4.4.17). DG0(J)is to contain exactly those

do: l1><11 + K which yield sequences Az.dg(Ez) imitating 'the sequence of
dressings for en‘
{Jn : neN }) .

, where en 5 GCC(range(J)) (i.e. jump-functions are

4.4.1. From2.9.8 we recall that

dn0 = id, dn(z+1) = dnz: f gn,z+1' n,z+l'

Fig. 2 shows an example of the construction of the mappings f
(See also 2.9.7.)

19gn,z+ n,z+1'
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at stage 2, en = dnzlsrc(n,z),
src(n,z) is 'the source for 5
stage z!

E
z

at I
n E (:1)

z 1 I

(n2) Ez(n3)
src(n,z)

E EF/l//////::;;::::>K\\\\\»
z n] x x

J///\\\ appliedto I
6//}\\§ E (n >z 1

at stage z+1, en jumps to

EEJ and 6&2 with jumpfunction x

e Ez(n]) I

el(EZ(k]),Ez(k2)) E <n3>
src(n,z)

distributivity of - - over vF yields

id ;

Ie Ea I Ez(n3)
eI(EZ(k]),Ez(k2)) Ez(n3) j(Ez(k]),Ez(k2))

n.z+1

By definition: = I

; Ez(n1) I
Ez(“1) Ez(n3)

. I x I I

J(Ez(kl)’Ez(k2)) Ez(n3) Ez(kl) EZ(k2)
X

at stage z+1 the values

m],m2,m3 m4 are generated for J

c ,€k ck and 8 respectively [m’]|Ez+1(34 -4 -2 33
[m4]IEZ+](n3)

I; ;
[m2]1Ez+](k1) X [m3llEz+](k2)

Fig. 2. The construction of dn(z+l) from dnz (to be continued.)
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- over vF, x equalsByan application of distributivity of 

applied to

I
E (n )

[m]' z+l I 1;
] EZ+](n3)

I (k ) I
_ IL 2+1 1 E +](k2)

[m2] lm3] Z

8n,Z+] src(n,z+l)

Fig. 2. The construction of dn(z+1) from dnz.

and gWecan rephrase the definition of f 1, given in 2.9.8, usingn,z+]
the terminology of chapter 3, as follows:

n,z+

_ K _ K im

fn,z+1 - vfnz ¢z+1’ gn,z+1 _ vfn(z+1) wz+1’ ¢z+l’ wz+l 6 K ’

where

e if em jumps at stage z+l with jump-function e

¢z+]m =
id otherwise,

and

[u] if am is fresh at stage z+l, and u is the sequence

wz+lm= of values generated for amat this stage
arbitrary, if amis not fresh at stage z+l.

4.4.2. The definition of DG0(J)will have the form:
do e DG0(J) iff do satisfies:

Od O eaid,

d
330:!

- 0 K . A 
(v*x) esdnv: v6 vJf(V*X)2 v6 (v*§)gv(v*x),n n
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0 - .
d (60) 2 1d,

K

d (E(x+1)) 2=dg(Ex): v6n(5x)jf(3(x+1)) :v§g(g(x+1))gv(3(x+l)).DOD

Here 6n(Ez) is the frame for fin at stage z as in the previous section, and
jf (for jump-function) and gv (for generated values) are mappings from 11

into Kl‘ yet to be defined. jf(5(x+l)) is to play the role of ¢x+1,
gv(6(x+l)) will play the role of wx+].

4.4.3. DEFINITION.jf is the mapping from El into K1“ which satisfies:

jf(0) = Xkn.id,
.3 . . 3 A

J(J2X) 1f Jps(k1(v*x))n # °n,
jf(v*§)n =

id otherwise,

that is to say: if fin jumps at stage x+l then jf(3£x+l))n = J(Bx) (recall
that 6x = v3(ax,Bx,yx), j2(6x)= Bx), otherwise jf(6(x+1))n=id.

It is not so easy to define the mapping gv :10 + KIJ in such a way that

gv(3(z+l)) behaves as_the wz+l which assigns to n the K-element [u], where
u is the sequence of generated values for an e GCC(range(J)) at stage z+l
(if an is fresh at stage z+l).

From2.8.1-2 we recall that at each stage, the process of generating
values is started by makinga preliminary choice of values for all fresh
carriers, from which the guiding sequences are constructed.

4.4.4. DEFINITION.

(i) If fin(5(x+1)) = °n, i.e. fin is fresh at stage x+l, then the preliminary
choice of values for nn at stage x+l is the finite sequence (yx)n.

(ii) If 6n(v*i) = °n then the guiding sequence for fin at v*i is

gs (v*i) E (j3x) *Xz.0.n 3 n

Wecall gsn(5(x+1)) the guiding sequence fbr an at stage x+l.- . - . .3
gsn(6(x+1)) = (yx)n*Az.0 (if 6n(6(x+l))=°n), since J3(5X) = yx.

4.4.5. The next step is to determine the upperbound for the relevant values
of the guiding sequences.

At stage 2 we have for each carrier an the equation
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an = dnz|src(n,z)

where src is the source for an at stage z (cf. 2.9.2-3). src(n,z) is con
structed from emptyparts of carriers at stage z, in the terminology of
chapter 3 we can say:

src(n,z) = vé z(A]k.Ez(k))n

(see fig. 3, for Ez(k) see definition 2.9.1)

8 = d z|src(n.z) I nn n 1

_. Ez(n1) E n3
n

Ez(n2) Ez H3) 2
f

src(n,z) nz

at stage :+1, 522 flumps I nto e an e Wlt ‘ I
. 5‘ .152, E <n,>
Jump—funct1on e. Z E ( ) nn

_ . 3
eE-- dnz. fn,z+]l¢ z 3

Ez(k]) Ez(k2) kl k2

w fn(z+l)

Fig. 3

At stage z+l we first decide whether there will be a jump and if so,
which one and with which jump-function. Then we have, for each carrier n,
an equation (cf.2.9.9, see fig.3)

. _ 1 1

(1) 53-: dnz: fn,z+l|x Wlth X : v6n(z+1)(Xk.Ez(k)).

To determine upbz+], the upperbound for the relevant values of the
guiding sequences at stage z+l, we makea list of all the equations (1)
for non-fresh carriers n. In these equations we replace emptyparts of
carriers by guiding sequences, i.e. (1) is replaced by
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(2) e = d z° I

n_ n °fn,z+l|X

where jb X‘ is the guiding sequence for ck at stage z+l, if b has label k
in fn(z+l). (See fig.4.) '

gS

S
83k g

Fig. 4.

From (2) we can determine cnz, the computation of this value requires only
an initial segmentof x‘. Put

(3) Un is the minimal k such that QTRsuffices to determine 6 z from
(2).

Then

upb E max{U: carrier n non-fresh at stage z+l}.z+l n 

The construction of upbz+] is imitated as follows.

4.4.6. DEFINITION(of guiding sequence for fin). For each n, gsn is a mapping
from N into N.

gsn0 E Az.0,

gsn(v*i) E v; (v*§)(A1k.(jgx)k*Az.0).n

Wecall gsn(v*fi) the guiding sequence for fin at v*i, gsn(3(x+l)) is the
guiding sequence for nu at stage x+l.
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For n satisfying 6n(v*fi) = °n, this notion has been defined before,
in 4.4.4. Note that both definitions coincide. For n satisfying

6n(E(x+1)) # °n (i.e. fin is non-fresh at stage x+1), gsn(E(x+l)) is the
sequence X‘ of equation (2) above.

4.4.7. DEFINITION(of (d:JF)). Let d be a mapping from EJ><1J into K,

d: (n,v)I+ dnv. Then

- _ K . A(d:JF)(n,v*x) : d v: v Jf(v*x),
n finv

that is to say: if we think of dn(§x) as the dressing for carrier n at
stage x, then (d:JF)(n,5(x+1)) plays the role of dnx: f as in equationn,x+1
(2).(For the relation betweenjf and fn see 4.4.1-2.),x+l

4.4.8. DEFINITION(of mk(e,x,a)). For e e K, x e E1 and a e N, mk(e,x,a) is

the minimal k such that ak suffices to determine e|a(x), i.e.

mk(e,x,a) 2 mink(e(<x>*ak)#O).

mk((d:JF)(n,3(z+l)), z, gsn(E(z+1))) plays the r6le of un in (3).

4.4.9. DEFINITION(of upb). Let d be a mapping from 1i><lJ into K.

.upb(d,v*i).E max{Un(v*i) : nenf(k?(v*§))},

where

Un(v*fi) E mk((d:JF)(n,v*§), 1th(v), gsn(v*fi)).

Wecall upb(d,v*§) the upperbound at v*§ w.r.t. d, upb(d,3(x+l)) is the
upperbound at stage x+1 w.r.t. d.

Once we have upb, the sequence of generated values for the fresh
carrier n is easily determined: it is the initial segmentwith length
1+upbof the guiding sequence for carrier n.

4.4.10. DEFINITION.gv (for generated values) is a mapping which assigns to

each pair (d,v), d a mapping from N X]N into K, v e ]N, an element

gv(d,v) e KER as follows:
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K .
gv(d,O) = A n.1d,

gv(d,v*§) = AKn.[(j§x)n*Az.0(1+upb(d,v*i))].

4.4.11. DEFINITION.DG0(J) is the set which contains all mappings
O 0d : 1J><1J + K, with the property that Az.d (dz) imitates the behaviour ofn

the sequence of dressings for the carrier en in GCC(range(J)), where
J: El->K and dflv E dO(n,v). 
do 6 DG0(J) iff

dOO2 id,n

dg(v*i) eedgvz v§@vjf(v*§): v§n(v*§)gv(d0,v*§).

4.4.12. REMARK.Strictly speaking only the do 6 DG0(J) which satisfies the
equations

(1) d00 a id, andn

0 - _ 0 _ K . - . K 

(2) dn(v*x) —dnv. v6nVJf(v*x) .v6n(v*i)gv(v*x)

imitates the dressing construction as outlined in chapter 2 (2.9.7-8). The
other elements of DGO(J)result so to speak from the choice of a ‘non
standard neighbourhood function' for the continuous F in the equation

en = P(src(n.z)). (cf.2.9-2-3)

for some n and z.

Such a non-standard choice at stage 2 affects the upb-computation at
O 0' 0 0 0'

stage z+l. If d and d are elements of DC (J) and dnv esdn v, but

dgv # dg'v,'for somen then it is possible that dg(v*§) is not even equiv

alent to dfl (v*i). 0
The existence of a d which satisfies (1) and (2) and hence belongs

to DG0(J) is easily proved by an appeal to the recursion theorem (uniform
in J), or by first showing that for each v there is a d0(v) e N such that

for all w,w*iSvand for all n Az.d0(v)(v3(n,w,z)) and Az.dO(v)(v3(n,w*i,z))
belong to K and satisfy the equations (1) and (2) above, then putting these
together in a single D by AC-NF,and finally 'diagonalizing' the desired do
out of D.
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In the appendix we shall show that we can explicitly define an element
of DGO(J),primitive recursive in J. This element however shall not satisfy
the equation (2), but only the corresponding equivalence, i.e. it is ‘non
standard’. (Note that in the right-hand side of (2) there is an unbounded
minimumoperator, in the upb construction).

4.4.13. DEFINITION(of UPB). Let d: 1J><1J-+K. Av.UPB(d,v) is the mapping
from N into N which satisfies:

UPB(d,0) = 0,

UPB(d,v*i) = UPB(d,v)+(1+upb(d,v*§)).

If no confusion can arise we write gv(v), upb(v) and UPB(v) for gv(d,v),
upb(d,v) and UPB(d,v) respectively.

4.4.14. LEMA.If a carrier is fresh at stage z+l, i.e. tf'6n(5(x+l)) = °n,
then the dressing dn(§(x+1)) has the fbrm [w], where lth(w) = UPB(3(x+l)).
Fbrmally: if d e DG0(J) then

VvVn(6nv=°n -> 3w(dgvu[w] A lth(w)=UPB(v))).

EEQQE,By induction w.r.t. lth(v).
(i) For v = < > take w = < >.

(ii) Nowlet v = v'*§, assume

(1) finv = °n, then

(2) 6nv' = °n by 4.3.1l(c),
whence by induction hypothesis we have a w' such that

0
(3) dnv' e=[w'] and lth(w') = UPB(v').

. . . 0By definition of DG(J),

0 0 K . K .

dnve:dnv': v6nv.Jf(v) :v6nVgv(v), i.e.

R(4) dgv d:v' :jf(v)n: gv(v)n,

K
by (1), (2) and the definition of v’.



102

From (1) and 4.3.ll(b) we find that jps(k?v)n = °n, hence by definition of
jf

id.(5) jf(v)n

<6) gv<v>n t<j§x>n*xz.o<1+upb<v>>J,

by definition of gv.
From (4), (3), (5) and (6) we find

dgv ==[w'*((j§x)n*Az.0(l+upb(v)))J,

i.e. dgv 2 [w], where w = w'*((j§x)n*Az.O(l+upb(v))).
So lth(w) = 1th(w')+(l+upb(v)), while 1th(w') = UPB(v') by (3), hence
lth(w) = UPB(v) by definition of UPB. D

4.4.15. LEMMA.

v§@(v*§)gv(v*§)at[gsn(v*i)(]+upb(v*i))].

PROOF.Put m E l+upb(v*i). By definitions 4.4.10 and 4.4.6 of gv and gs:

K - _ K K .3 *
v6n(v*i)gv(v*x) - v6n(v*§)(A'k.[(J3x)k Az.O(m)])

and

g'sn'(v'*_i)'(m) = v; (V62)(A]k.(j§x)k*>\z.0)(m).
Tl

Nowapply 3.2.16(g): for ¢: 1J+ N

[v;¢(m)J »_v.v§(xKn.[¢‘n(m)J). 13

The complex definition of gv was motivated by our wish to achieve the
following.

4.4.16. LEMMA.If do e DG0(J) then d3(3(z+l)) determines a value fbr z, i.e.

Vn3yV¢[(dn(v*i)|¢)(1th(V))=Y].
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PROOF.Put m E 1+upb(v*i). Let nenf(k?(v*i)). By the foregoing lemma and
the definitions 4.4.7, 4.4.11, we have for d e DGO(J)

dfl<v*i>==<d°=JF><n,v*2>:t§£;i?¥§)<m>J,

i.e. for all ¢

dfl<v*a>|¢ = <d°=JF><n,v*2>|<§E;TG¥§><m>*¢>.

So (dg(v*i)|¢)(lth(v)) = y iff

(1) (d0:JF)(n,v*i)(<lth(v)>*w) = y+l

for some initial segment w of §E;?GI§)(m)*¢. By definition of upb(=m;l),
there is a y such that (1) holds for w = gsn(v*§)(m;1), i.e. (1) holds for
w and y independent of ¢.

If n f nf(k?(v*i)) then d3(v*i) e:[w] for somew with lth(w) = UPB(v*i),
by 4.4.14. Oneeasily verifies that UPB(v*fi)> lth(v), i.e. in this case

v¢£<dg<v*i>|¢><1th<v>> = (w) Blth(v)]'

In the sequel we shall not only be interested in the dressing of a
carrier at stage z, but also in the 'difference' between the dressing for
carrier n at stage z and the dressing for the samecarrier at stage z+z',
and in the dressing for a nest of carriers at stage z.

4.4.17. DEFINITION(of DG(J)). Let J be a mapping from 11 into K. DG(J) is

a set of mappings d: 11 X FRAMEX 11->K, d:(v,F,w)v+ dgw.
V . v 0 . _ 0

For d(on)w we write dnw, for dFw we write dFw, and we put dnw : d(on)w.
d belongs to DG(J) iff

(a) lKnAKw.dnwbelongs to DGO(J),

(b) dzw is the 'difference' between dnv and dn(v*w), and
(c) if ht(F)>0 then dgw is the 6Fv-nesting of AKn.d:w (i.e. dFwis the

F-nesting of XKn.dnw,dF(5x) behaves as the dressing dFx for eF at
stage x, cf.2.l0.5).

Formally, d e DG(J), iff

(a) AKn.AKw.dnwe DG0(J), i.e.
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(1) d o «= id,

(ii) d (W2) A»dnw : J6‘ wjf(w*5E) :1)‘; (W*i.{)gv(dO,w*iE),
D.

AKn.XKw.d w;n
id,

33:3

where do

(b)(i) d 0

<:::$<:m RR
(ii) d 32 vI6(nvjf(v*iZ) :\)16<n(v*§)gv(d0,v*i),:3

W

A n.AKw.dnw, and
(w*iT:) 2 dvw : dV*W3E;n n

K
v (AKn.dvw), for frames F with ht(F)>0.

6Fv n

where do

(iii) d
<1:3<m(c) d w’2
'1']

If d e DG(J) then d generates a universe of dressing sequences w.r.t. J.

4.4.18. LEMMA.If d e DG(J) then dF(5(x+1}) determines a value for x, i.e.
if d e DG(J) then

(1) 3YV¢[(dF(v*i)|¢)(1th(v))=Y]

PROOF.In lemma4.4.16 we have proved this assertion for F = (°n). For F

with ht(F)>0 we argue as follows:

dF(v*i) e=v:(XKn.dn(v*§)) by definition 4.4.l7(c) and 4.3.14(a) (6FO=F).Hence

vbeF<jb<dF<v*fi)l¢> = d£bF<v*i)Ijb¢>,

by 3.2.l6(c).
So

VbeF3zV¢[jb((dF(v*i)|¢)(lth(v)))=z],

by 4.4.16, which imediately yields (1). D

4.4.19. LEMA (the extension of a do 5 DG0(J) to a d e DG(J)). Let

do 6 DG0(J). Define d:N ><FRAMEXN —>Kby:

<1) d<o.<°n).v> = dflv.

(2) if lth(w)>0: d(w,(°n),v) = sUPB“") :v1gw(>\Km.dS1(w*v)),n

(3) if ht(F)>0: d(w,F,v) = $6‘W()\Kn.d:v),F

where d:v is d(w,(°n),v) as defined in (2) and (1). Then d e DG(J).
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PROOF.d fulfills 4.4.l7(a) and (c) by (1) and (3).

By (2)

d:O = sUPB(W): v§nw(AKm.dEy).

sUPB(w) 2=v:'W(AKm.sUPB(W)) by 3.2.l6(f),n

hence

(4) d:0 z vI6<nW(AKm.(sUPB(w): d:w)),

by distributivity of: over v (3.2.l6(e)). Bylema 4.3.l2(c)

VmeK(finw)(6nw=°m),hence, by 4.4.14,

Vme£(finw)3u(lth(u)=UPB(w) A dgy %=[u]), i.e.

(5) Vme£(finw)(sUPBW) : drawa id).

By (4), (5) and 3.2.l7(d) we find that d fulfills 4.4.l7(b)(i): d:O2 id.
Also by (2):

SUPB(w) :
(6) d:(v*3‘<) = $6‘ W(AKm.d3(w*v*SE)).n

. 0 O O - . .
S1nce d e DG (J), dm(w*v*x) 1s equlvalent to

0 K O A K A

dm(w*v) .v6 (W*V)Jf(W*V*X).v6 (W*v*§)gv(w*v*x).m m

Hence,by distributivity of: over v (3.2.l6(e))

(7) vIgnw(}\Km.d2l(w*v*5E)) 2 v16<nW(xKm.d21(w*v)) : »’gnW¢ : vlgnwxp,

where

(8) ¢ 2 AKm.vI6((W*V)jf(w*v*5E),In

and

(9) w E AKm.vK6 (w*v*§)gv(W*v*§)°
m
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By 4.3.15

6nw[Am.fim(w*v)] = 6n(w*v),

whence

K . - K K K . A

v6n(w*v)Jf(w*v*x) —-v6nW(Am.v5m(W*v)Jf(w*v*x)) (3.2.l7(b)),

1.e.

(10) v§fiw¢ ==v§fi(W*v)jf(w*v*§).

Similarly

(ll) vgnwwe:v6n(W*v*fi)gv(w*v*i).

By (6), (7), (10) and (11), d:(v*i) is equivalent to

sUPB(W): vK (AKm.d0(w*v)): e,
finw m

where

e E v§#(w*v)jf(w*v) :V§%(w*v*§)gV(W*v*i)'

By (2)

sUPB(W): VK (AKm.d0(w*v)) = dwv,
finw m n

whence

(12) d:(v*fi) e=d:v’:v§#(W*v)jf(w*v*§): v§n(w*V*§)gv(w*v*i).

(12) and 4.4.l7(b)(i), which we proved above, yield 4.4.17(b) (ii) and
(iii). U

4.4.20. LEMMA.d :1J><FRAMEx Ii-+ K belongs to DG(J) ifj’fbr all F and v:

(1) d"o a id,
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(2) d;(w*i) esdgw: y§F(V*W)jf(y*w*§):v§f(v*W*§)gv(d0,v*w*§),

where do : N X]N -> K is defined by dO(n,v) = d(2on)v.

PROOF.

(+) If we take y = o, F = (°n) in (1) and (2) we find that do e DG0(J).

(b)(i) follows by (1), (b)(ii) by (1) and (2), (b)(iii) by (2) and (b)(ii).
(c) By induction w.r.t. lth(w):

. . . K K .

(1) d;0 eeld by (1), 1d.e:v6 (A n.1d) by 3.2.16(f), A
K . K

V n.1d = A n.d:0 by

(1) hen e dV0 = K (xKF dv0)

(ii) Assume

(3) dgw25v? v(AKn,dVw)(induction-hypothesis).F n

6F(v*w) = 5Fv[xn.5n(v*w)] by 4.3.15, hence

K . A K K K . A

(4) V6F(v*W)Jf(V*W*X)= v6Fv(A n.v6n(V*w)Jf(v*w*x)) by 3.2.17(b).

Likewise

(5) v§F(v*w*i)gv(d0,v*w*i) = v? V(AKn.v§n(v*W*i)gv(d0,v*W*§)).

Substitute (3), (4) and (5) in (2) and apply distributivity of: over nesting,
(3.2.l6(e)), this yields

v - K K v _ K . - _ K 0 

(6) dF(w*x) —-v6nV(An.dnw .v6n(v*W)Jf(v*w*x) .v6n(v*W*fi)gv(d ,v*w*x)),

i.e. by (2)

d;(w*§) asvg V(xKn.d:(w*i)),
1'1

(+) If d e DG(J) then, by 4.4.l7(a) and (b)

(7) (1) and (2) hold for F = (°n).

If ht(F)>0, then (1) follows from 4.4.l7(b) and (c) by 3.2.16(f). By
4.4.l7(c) and (7) we find for F with ht(F)>O:
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d‘F’(w*§) r_~.vI6(FV()\Kn.d:lw : vI6(n(vW)jf(v*w*§) :vI6<n(v*W*i)gv(dO,v*w*i‘<))

whence by distributivity of: over vK, (4) and (5)

K

d;(w*i‘c) = v6Fv(xKn.d:w) :vI2F(v*w)jf(v*w*5E) : gv(dO,v*w*5E)
vK

6F (v*w*iE)

and hence, by 4.4.l7(c), (2). U

4.4.21. LEMMA.If d e DG(J) then

(a) ago as id

e:vK
aFv

(c) d;(v*w) e=d:v':d;*vw

(b) dgw (AKn.d:w)

(d) if Vn(JneC), Vv([v]eC) and C is closed under : and A then dxw e C

(e) Vv3aVn(6nv=°n+ dnv e¢[an]).

PROOF.(a) by definition, (d) trivial, (e) by lemma4.4.14. (b) is a corol
lary to the proof of 4.4.20: in the proof of 4.4.l7(c) from 4.4.20(l) and
(2), we do not use the assumption ht(F)>O. For (c) we use the characteriza
tion of DG(J) in lemma4.4.20. Weproceed by induction w.r.t. 1th(w):

(1) w 0: d;(v*o) = dgv e=d:v':id, and id ==d;*Voby 4.4.2o(1).
(ii) w = w'*i: by 4.4.20(2)

(1) d;(v*w) ned;(v*w') zvg (u*v*w,)jf(u*v*w) :v§'(u*v*W)gv(u*v*w).F ' F

By induction hypothesis

(2) d;(v*w') '—"—dgv : d:*vw' .

By 4.4.20(2)

(3) d;*vW' :v§ (u*v*w')F

. K *

Jf(u*v*w) :v6F(u*v*w)gv(u*v*w) aid: Vw.

u*v
DIf we substitute (2) in (1) and apply (3) we find d;(v*w) ezdgv :dF w.
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4.5‘. PROJECTED UNIVERSES OF NESTS OF GC-CARRIERS

4.5.]. DEFINITION.A mapping J :lJ+ K enumerates the subset C of K modulo

equivalence (or modulo e0 iff e e C ++ 3n(Jne:e).

4.5.2. DEFINITION(of ‘to generate nests of GC-carriers‘ and of CU5(C)).
(a) A mapping n: F + NF from FRAMEinto K generates nests of GC-car

riers w.r.t. C C K iff there are a J: 11+ K which enumerates C modulo equiv

alence and a d e DG(J) such that, for all F, HFIGis the intersection of
the ranges of the mappings dF(dx) -, more precisely, such that

nF(i*w) = y+] + Va[(dFw|a)(x) = y].

(Cf.2.9.9,(3)-(5) and 4.4.18.) we abbreviate nF|a to nF5.
(b) If n generates nests of GC-carriers w.r.t. C, J enumerates C

modulo etand d e DG(J) satisfies

nF(i*w)=y+1 + Va[(dFw|a)(x)=y],

then dF(§x) is the dressing for nF5 at stage x, d generates the dressings
for N. fiF(6x) is the frame for NF5at stage x, and the pair (dF(5x),6F(6x))
is the restriction for wF5at stage x.
Instead of dressing, frame and restriction for NF5,we shall also say
dressing, frame and restriction for NF.

(c) CU5(C) is the set of all universes U6 of the form

U5 5 {WF5 :F e FRAM},

where n generates nests of GC-carriers w.r.t. C. An element U6 6 CU5(C)is
a projected universe of nests of GC-carriers w.r.t. C.

(d) Wewrite nn for n(°n). If U5 6 CU6(C), then the subuniverse

{W 6: n 6 IN’ C Un 6

is a projected universe of GC-carriers w.r.t. C. An element nné 6 U6 is a
carrier of U6.

4.5.3. REMARK.The elements WF5of a universe U5 6 CU6(C) are to imitate

the nests of carriers €F (w.r.t.C). This is clear for the carriers fln5of
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U6. For frames F with ht(F)>0, we have defined

_ 1 1

8F _ vF(A n.eE?,

(cf.2.l0.l) while here weput

n 6 E n range (X¢.d (Ex)|¢).
F X F ~

In lema 4.5.5 below we shall prove that

NF5 = v;(A1n.nn6).

4.5.4. LEMMA.If n generates nests of GC-carriers w.r.t. C and d generates
the dressings fbr n, then

nF6(x) = y ++ va[(dF(3(x+1))|e)(x)=yJ.

ggggg, By lemma 4.4.18

azva[(dF(S(x+1))|a)(x)=zJ,

hence it suffices to showthat

nF6(x)=y A va[(dF(E(x+1))|a)(x)=z] + y=z.

If nF6(x) = y, then nF(i*E(k+1)) = y+1 for some k, hence

va[(dF(E(k+1))|a)(x)=yJ (by definition).

Nowassume that we also have

va[(dF(5(x+1))|a)(x)=z].

If k 2 x, then dF(3(k+1)) e=dF(E(x+1)): e for some e. (4.4.2l(c)) Hence
dF(3(k+1))|a = dF(3(x+l))|b for b=eIa, this yields y=z.
If k < x then dF(3(x+1)) = dF(3(k+l)) :e for some e, and then also y=z. U



4.5.5. LEMMA.If n generates nests of GC-carriers w.r.t. C then

VbeFVn[£bF=n+ jb(nF6)=nn5],

. 1 l

t.e. HFGWF,NF5 = vF(A n.nn6).

PROOF.Let b e F have the label n, assume that

(1) nFa<x> = y.

We show

(2) nna<x> = jby.

Let d generate the dressings for N, then (1) is equivalent to

<3) vat<dF<3<x+1>>|a><x>=yJ,

by the previous lema. By lemma4.4.21(b) and 4.3.l4(a)

dF(5(x+1)) e=v§(xKn.dn(E(x+1))),

SO

jb(dF(E(x+1))|a) = dn(E(x+1))|jba (3.2.l6(c)),

whence

vbt <dn<3<x+n>>lb) <x>=jbyJ,

by (3), and hence (2) by 4.5.4. B

4.5.6. LEMA. Let J zli-*K enumerate C modulo cg Zet d be an element of

DG(J). Define n: F + nF from FRAMinto K by

wF0=0, nF(fi*w)=sg(1th(w);x)-[dF(§(x+l))(fi*w)],

where §(x+1) E w*Az.0(x+l). Then n generates nests 0f’GC-carriers w.r.t. C.
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PROOF.

(a) (nFeK). Put ex E Au.sg(lth(u);x), then ex e K by 1.3.14 and

exu#0 + Aw.nF(§*u*w) = Aw.[dFu(x+1)(i*u*w)] e K,

(since dFu(x+l)eK) hence, by l.3.l3(3) Vx(nF(i*w)eK), whence, by (K2),

NF 6 K.

(b) (nF(i*w)=y+1 + Va[(dFwla)(x)=y]). If nF(§*w) = y+l then
w = v*§*u, where lth(v) = x, and

Vaew[(dF(v*§)|a)(x)=(dF(v*§)Ia)(lth(v))=y].

Nowapply 4.4.18. U

4.5.7. REMARK.Let N generate nests of GC-carriers w.r.t. C and let d

generate dressings for n. From lemma4.4.21(e) we know that if find is fresh

at stage x, i.e. if 6n(3x) = °n, then dn(<Sx)a[an] for some a: N ->l\1. That
is to say, if 6n(5x) = °n, then the empty part of N 6 at stage x, i.e. the
part of WH5that is not yet available at stage x, is s1th(an)I find.

The source for a carrier amat stage x is represented by substituting
the empty part of an at stage x for each occurrence of the label n in the
frame for an at stage x (cf.4.4.5). So the source for nméat stage x is

1 1 lth( )

v6m(3x)(X n.s an | fln5).

emis related to its source src(m,x) at stage x via dmx, its dressing at
stage x, by the equation em= dmxl src(m,x). (Cf.4.4.5.)

For nmdwe can prove the corresponding equation

nma= dm(Ex)| (v; (5x)(x'n.s1“h(a“)|nn5)).
III

Wepostpone the proof till chapter 6 (6.3.4(d)).

4.6. PROJECTED UNIVERSES OF GC-SEQUENCES W.R.T. C

4.6.1. DEFINITION.U6(C) is the set of all universes U5 of the form

U6 5 {e|nF6 :e e C, F e FRAME},
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where n generates nests of carriers w.r.t. C. If C is dependency-closed,

then a universe U5 5 U5(C) is a projected universe of GC-sequences w.r.t. C.

This is completely analogous to the definition of GC(C) from GCC(C).

4.6.2. DEFINITION. Let U6 2 {elnF6 :e 6 c, F e FRAME}belong to U6(c), and
let d generate dressings for W.

(e,F) is the initial restriction for e|nF5 6 U6, e is thu initial dressing
for e]nF6, F its initial frame.
(e:dF(5x),6F(6x)) is the restriction for e|nF6 at stage x, e :dF(6x) is
the dressing for e|nF6 at stage x, 6F(6x) is the frame for e|nF5 at stage x.

4.6.3. LEMMA.If C c K is dependency-closed and J: EJ+ K enumerates C modulo

cg then U5(C) is not empty: there exists a projected universe of GC-sequences
w.r.t. C.

EEQQE,It suffices to show that there is a N which generates nests of GC
carriers. By 4.5.6 the problem is reduced to showing that DG(J) contains
an element d. This follows from 4.4.19 and the fact that there is a

do e DG0(J) (4.4.12). D

4.7. At any stage in the construction of the lawless sequence 6, there is
only an initial segment of that sequence available to us. If at stage z we
have generated the initial segment Ex, then we can make no prediction
whatsoever about the 5(x+y) yet to be determined.

Part of the lawless behaviour of 5 is reflected in the behaviour of the

sequence of restrictions Ax.(dF(5x),6F(Ex)) for NF6in a projected universe
of nests of GC-carriers, but not all.

E_g_ Weknow that 6F(3(x+y)) can be produced from 6F(5x) by a lawlike
g: 11+ FRAME,and that

- - 5 5 K K 5

dF(6(x+Y)) °=dF(6x) :dFxw, dFxwe:v6F(gx)(X D-dnxw).

where w = Az.6(x+y)(z). (Cf.4.3.l5(b), 4.4.2l(b) and (c).) Moreover, we

knowthat dF(E(X+y)) will determine values for the arguments 0,... x+y4l.
The next chapter is devoted to the question of the freedom of continua

tion for sequences of restrictions Ax.(dF(5x),6F(5x))
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CHAPTER 5

THE ORDERING OF RESTRICTIONS AND THE OVERTAKE PROPERTY

5.]. THE ORDERING OF RESTRICTIONS

5.1.]. The frame for NF at v*w(6F(v*w)), can be produced from the frame for

NFat v(fiFv), i.e.

(I) 3g(fiF(v*w) = 6Fv[g]), or shortly, 6F(v*w) 2 6Fv (4.3.l4(b)).

If d e DG(J), then

(2) dF(v*w) = dFv : dgw (4.4.2l(c)),

and

(3) dgw a wigv(>\Kn.d:lw) (4.4.2I(b)).F

Moreover, if J enumerates C modulo eaand C is dependency-closed, then

(4) \7’n(d:weC) (4.4.2l(d)).

Hence

(5) 3g//C 6Fv(dF(v*w) u dFv=g) (by (2). (3) and (4))

5.l.2. DEFINITION(of stronger than between restrictions). Let (e,F) and
(f,G) be two restrictions. (e,F) is stronger than (f,G), or equivalently,
(f,G) is weaker than (e,F), iff it is consistent with (1) and (5) above that

(f,G) is the restriction for a projected nest of carriers WHOat stage x,
and (e,F) is the restriction for the same sequence at somestage x' 2 x.

Wedenote (e,F) is stronger than (f,G) by (e,F) 2 (f,G) or by
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(f,G) S (e,F). In formula:

(e,F) 2 (f,G) E (f,G) S (e,F) E F2G A 3gAQ:G(ee=f:g).

5.1.3. REMARK.The terminology and the notation are not quite accurate. In

stead of ‘stronger than‘ we should say ‘stronger than w.r.t. C C K’, in

stead of 2 we should use 2C. Since we shall use 2 only w.r.t. subsets of K
denoted by C, this omission will not cause confusion.

5.1.4. FACT. If d e DG(J), J enumerates C modulo 25 and C is dependency

closed, then

(dF(v*w),6F(v*w)) 2 (dFv,fiFv) (cf.5.l.1).

5.1.5. DEFINITION(of equivalence between restrictions). Tworestrictions
(e,F) and (f,G) are equivalent, which we denote by (e,F) Rs(f,G), iff (e,F)
is both stronger and weaker than (f,G), i.e.

(e,F) *5 (f,G) E (e,F)>—’(f.G)A (e.F)S(f,G).

5.1.6. Eggflé (properties of 2 and R0.
@)Ifide(3flwn(emf)A(F~G)+(efiU~(LGL
(b) If C is closed under : and A then P is transitive, i.e.

(e,F)2(f,G) A (f,G)2(g,H) + (e,F)2(g,H).
(c) If Vv([v]eC) then VyflT‘((e:[y],F) 2 (e,F)).
(d) (f,F)2(g,G) + (e:f,F)2(e:g,G).

PROOF.

(a) If F asc then F 2 G and F s_G by definition 3.1.20.

f:id and fa: ezid, while if id 6 C then VH(idflC:H)byIfeufthene
3.2.20(o).

(b) If F 2 G 2 H then F 2 H by 3.1.19(e).

R

R
Assume e :2 f:g1,gl//CG and f gzgz, g2//.,,H. Then g]//CH, since G ‘<H and

C is closed under A (3.2.20(k)), and g2:glflCH_ (3.2-20(5))! 1-9

e = g=(g2=g1). g2=g]//CH

(c) If Vv([v]eC) and Y//F then [y]//CF by 3.2.21(i).
(d) If f 2 g:g', g‘//CG, then ezf a (e:f):g', g‘//CG. E]
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5.1.7. COROLLARIES.

(a) lf'id 6 C then (e,F) Ri(e,F). [By 5.l.6(a).]
(b) If C is closed under pairing and composition, then 2 respects R5 and:%

is transitive. [By5.l.6(b).]

Weshall give more properties of 2 andsu in chapter 7. Note that the
conditions on C in 5.l.6(a)-(c) and 5.1.7 are all fulfilled if C is depen
dency-closed.

5.2. FREEDOM OF CONTINUATION FOR SEQUENCES OF RESTRICTIONS: THE ‘STRONG

OVERTAKE PROPERTY'.

5.2.1. First we formulate the (false) principle of 'full freedomof conti
nuation for sequencesof restrictions’:

Let C C K be dependency-closed, let J: Ii->K enumerate C modulo 25

let d 6 DG(J) and let 6Fv be as defined in 4.3.9, 4.3.12. Then we can find,
for each restriction (e,F) stronger than (dF(5x),6F(6x)) a lawless sequence
6' 6 6x and a y 2 x such that (dF(6'y),6F(6'y)) Rs(e,F), i.e. each restric
tion stronger than the restriction at stage x can be reached at a stage
y 2 x; in a formula:

V(e.F)2(dFV.6FV)3w((e.F) N (dF(v*W).6F(v*w))).

This principle leads to a contradiction. Consider the sequence of re
strictions {(sn,°m): n 6 13}. By full freedom of continuation for sequences
of restrictions, there is a ¢ e N such that

<1) VnE|x[ <dm<$x>.6m<4’>x>>~ <s“,°m>J.

On the other hand, the determination of a value for the argument zero must

be guaranteed, i.e.

V63z3yVa[(dm(3z)|a)(O)=y].

By the extension principle we find a z such that for the ¢ of (1)

(2) 3yVa[ (dm($z) Ia) (O)-.-y].
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By (1) there are n e N and e//C°m such that sn 2 dm($z):e, whence by (2)
3yVa[(sn|a)(0) = y], which is obviously false.

Note that the contradiction arises from the fact that we have to

guarantee the determination of a value for each argument, and not from the
method by which this guarantee is provided.

5.2.2. With each e 6 K and n e 10 we can find an f e K such that if w lies

in the bar f, i.e. fw # 0, then e:[w] determines a value for all arguments
m S n, i.e.

Vw[fw#O+ VmSn3yVa((e:[w]Ia)(m)=y)].

Wemight replace the principle of full freedom of continuation for
sequences of restrictions by the following:

Let C,J, d and 6Fv be as above. Then

(1) V(e,G)2(dFv,6Fv)V<1>//G3xw[(dF(v*w),6F(v*w))as (e:[$x],c)],

i.e. we can 'overtake' each restriction (e,G) stronger than the restriction

(dF(§z),6F(3z)) at stage z, and reach a restriction of the form (e:[$x],G)
stronger than (e,G) at some stage z' 2 z. The finite sequences u for which
(e:[u],G) can be reached form a bar in the set of sequences {¢ e N: ¢flG}.

This principle is valid, as will be shown below. A somewhatweaker
formulation is:

Let C,J,d, and 6Fv be as before. Then

(2) V(€.G)2(dFV.6FV)V¢//Gaxw[(8.33 s <dF<v*w>,5F<v*w>>s <e:£$x1,c>J,

which says that we can 'overtake' (e,G) and reach a restriction which lies
between (e,G) and (e:[$x],G). Obviously (1) implies (2), hence this prin
ciple is also valid.

5.2.3. If (e,G) 2 (dFv,fiFv) then G 2 6Fv and

(3) e '2 dFv:f, for some f//C 6Fv.

By 4.4.21(c) we have for d e DG(J)
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(4) dF(v*w) e:dFv:d;w.

So we can replace (e,G) S (dF(v*w),fiF(v*w)) S (e:[$x],G) by

(dFv:f,G) s (dFv:d;w,6F(v*w)) s (dFv:(f:[$x]),G),

which is equivalent by (3), (4), 5.1.7(a) and (b).
Wechange 5.2.2(2) into:

Let C,J,d and 6Fv be as before. Then

(5) Vf//C 6FvVG2fiFvVcb//G3wx[(f,G) S (d:F’w,6F(v*w)) .<_(f:[$x],G)],

i.e. instead of dF(v*w) overtaking e, we nowhave dgw (the difference be

tween dFv and dF(v*w)), overtaking the difference between dFv and e.
(5) implies (2) by the remarks above and 5.l.6(d). (5) is valid, in

fact we can prove a stronger form, with (d;w,6F(v*w)) &¢(f:[$x],G) instead
of (£,c) s (d;w,6F(v*w)) s (£:[$x],c).

In the final formulation of the ‘overtake property‘, we replace
V¢flG3xA($x) by the stronger 3eVuAK3[eu#0+ Au], i.e.

5.2.4. DEFINITION(of overtake property and strong overtake property). Let

d: 11> FRAMEX Ii-> K, 6: FRAMEX Ii + FRAMEbe two lawlike mappings, put

d;w E d(v,F,w), fiFv E 6(F,v).
(a) The pair (d,6) has the overtake property iff

(6) Vf//C 6FvVG26Fv3eVu//G[eu#O + 3w((f,G) s (d;w,6F(v*w)) s (f:[u],G))].

(b) (d,fi) has the strong overtake property iff

(7) Vf //C 6FvVG26FvVg3eVu//G [eu#O —>

3w(gw#0A (f,G)s(d;w,fiF(v*w))s(f:[u],G))J,

that is to say, the strong overtake property does not only claim that we
can overtake (f,G) by choosing the right w, thereby remaining below a ‘bar
of restrictions‘ of the form (f:[u],G), but also that we can choose w in a
bar given by g.
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5.2.5. LEMMA(the strong overtake properzy for the projections of chapter 4).
Let C be dependency-closed, let J enumerate C modulo es, let d be an ele

ment of DG(J) and let 6:(F,v) H-6Fv be as defined in 4.3.9, 4.3.12. Then
(d,5) has the strong overtake property.

5.3. THE PROOF OF LEMMA5.2.5

The proof of the validity of the strong overtake property is a long
and complicated one. In this section we shall outline the proof, using some
examples. Wepresent the details in 5.4. The reader is advised to skip those
details at first reading. If one is willing to accept lemma5.2.5 without
proof, one can skip even this section and continue with chapter 6.

5.3.1. Throughout the rest of this chapter
C is a dependency-closed subset of K,

J: 11 + K is lawlike and enumerates C modulorz,

d is an element of DG(J), and

for all F and V, 6Fv is the frame for NF at v.

5.3.2. Weshow that for all F, v and g

(1) VG26FvVf//C fiFvV¢eCSL.-'.|x[$x//G-> 3w(gw#0 A dgw 5 f:[$X] A 6F(V*W) *8 G)],

where CSL(for ‘continuous image of a single lawless sequence‘) is the set

{e|a: e 5 K, a 6 LS}. In words: (d;w,fiF(v*w)) can overtake the restriction
(f,G), fflC:6Fv, G 2 6Fv, and reach a restriction (f:[¢x],G) for any ¢ of
the form e|a, which has a sufficiently long initial segment¢x parallel to
G. In overtaking w reaches the bar g.

The strong overtake property for (d,6) states that there is a bar given

by an e e K, such that (d;w,fiF(v*w)) can overtake (f,G),.fflC:6Fv, G 2 6Fv
and reach a restriction which lies between (f,G) and (f:[u],G), for any
uflG i11the bar e. Again, in overtaking w reaches the bar g. In formula:
for all F, V, and g

(2) vc25Fvv£//C 6Fvaevu//Gteuaéo + 3w(gw¢oA (f,G)S(d;w,6F(V*W))S(f:[u],G))J.

LEMMA.(1)implies (2).

This is proved by an appeal to the continuity axiom
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(3) Va3xA(a,x) + 3eVu[eu#0 + VaeuA(a,eu:1)].

The proof is relatively simple. The reader can skip it and continue with
5.3.3.

PROOF.Let G 2 6Fv and fflC:6Fv be arbitrary and put

A(<b,x) E [Ex//G-> 3w(gw#0 A d;w2f:[$x] A 6F(v*w)i~‘5G)].

Assume (1), then in particular Va3xA(a,x) and hence, by (3), there is an e'
such that

(4) Vu[e'u#O + VaeuA(a,e'u ;l)].

Define e by eu = e'u-sg(1th(u);e'u), then

(5) eu#O + eu=e'U.

and

(6) eu#0 + eu<lth(u).

We prove

VuflW3[eu#O+ 3w(gw¥OA (f,G)S(d;w,fiF(v*w))S(f:[u],G))].

C

Let uflK3be arbitrary and assume that eu # 0. Then VaeuA(a,eu:l) by (4) and
(5), i.e.

(7) VoLeu[oi(eu:.1)//G->3w(gw#OA d;w2f:[§(eu.:l)] A 6F(v*w)r'¥G)].

By (6) and the assumptions eu ¥ 0, uflfll we have u = u1*u2, where

lth(ul) = eu.:l, ul//G and u2//G. Hence, if a e u then E(eu;l) = ul, u]//G .
I.e. (7) yields a w which satisfies

(8) gW¥0 A dgw =:f:[u]] A 6F(v*W)‘¥ G.

dgw 2 f:[u]], u]//G and 6F(v*w) N G imply

<f,c> s <d;w,5F<v*w)> (by s.1.e<c>,<a>>;

d;w 2 f:[u]], f:[u] =' f:[u]]:[u2], u2//G and 6F(v*w)95G imply
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(d;w,6§v*w))S (f:[u],G) (also by 5.l.6(c),(a)).

So (8) yields gw#0A (f,G)S(d;w,fiF(v*w))s’f:[u],G). D

Note that we apply (3) in this proof with a formula A not in the lan

guage of kg. A is a formula of LSF, a definitional extension of bg to be
discussed in chapter 7, i.e. A can be translated into an gg formula.

5.3.3. Wecan split 5.3.2(l) into two ‘semi-overtake properties‘ and a
'continuation till bar property’: for all F, v and g

(1) Vf//C§FvV¢eCSL3x[$x//6Fv > 3w(d;w2f:[$x] A 6F(v*w) w 6Fv)]

(i.e. dvw can overtake ffl ‘v, while the frame remains equivalent),F C F

(2) VG2fiFvV¢eCSL3x[cl>-x//G->3w(d;wm[$x] A 6F(v*w) 5'5C)]

(i.e. 6F(v*w) can overtake G 2 6Fv, while the dressing follows ¢),

(3) V¢eCSL3x[$x//G-> 3w(gw#O A dgw 5 [$x] A 6F(v*w)=6Fv]

(i.e. we can leave the frame unchanged and make d;w follow ¢ until w reaches
the bar g).

LEMMA.The universal closures of (1), (2) and (3) imply 5.3.2(1)

The proof of this lema is also simple. It maybe skipped. In that
case, go on with 5.3.4.

EEQQE,Let G 2 6Fv, fflQ:6Fv and ¢ 6 CSL be arbitrary. Apply (1).

Either we find an x] such that ¢x]-£L6FV. then ¢X]'fiLG (3-2-21(f)) and
5.3.2(l) follows trivially,

or we find an x] and a w] such that

(4) d}F’w12 f:[$x]] A 5F(v*w]) as 5Fv.

X1 _ _

Apply (2) with v*w1 for v and s |¢ for ¢. Since G 2 6Fv by assumption and

6F(v*w]) as6Fv by (4), we have GxZ.6F(V*Wl) (3-1-19(E))- 30
either we find an x such that s lI¢(x2)-%L G, then ¢(X]+X2)-%LG and\/2
5.3.2(l) follows trivially,
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or we find an X2 and a wz such that

x

(5) d;*w' w2 =:[s l|¢(x2)] A 5F(v*w]*w2) RSG.

Combinationof (4) and (5) yields (use 4.4.2l(c)):

(6) d;(wl*w2) e:f:[$(x]+x2)] and 6F(v*wl*w2)¢¥G.

. . X1+X2
Finally apply (3) with v*w]*w2 for v, s |¢ for ¢ and Aw.g(w]*w2*w)for g.

X.+X

Either we find an x3 such that s ’ |¢(x3).4L~fiF(v*w]*w2), then
‘iT¢i§“' 

I¢(x3)—fiLG, by (6) and 3.2.2l(h), hence ¢(xl+x
follows trivially,

2+x3) -/7‘ G and (1)

or we find x3 and w3 such that

x +x
v*wl*w2 W lg(w]*w2*w3) # O, dF 2|¢(x3)]3 ==[s

and

6F(v*w]*w2*w3) = 6F(v*w]*w2).

Combination of these with (6) yields 5.3.2(l) with x = x]+x2+x3 and

w = wl*w *w . D2 3

5.3.4. DEFINITION.
. . .3

(a) The Jps-part of y 18 Jly.
(b) Thejfrpart 0f'y is jgy.
(c) The gv-part of y is jgy.

5.3.5. FACTS.

(a) The jps-part of y determines 6F(v*y), that is to say

jfy=j?z + 6F<v*?>=6F(v*E>.

5Fv[jps(k?(v*y))J (4.3.13), and kf(v*y) = k?v*<j?y> by
definition of k? (1.3.5(d)).

1

since 6F(v*y)

. . . . . 3 A
(b) If the Jps-part of y makes n Jump, 1.e. if Jps(kl(v*y))n # °n,

then the jf-part of y determines the jumpfunction, since (cf.4.4.3)
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. . . 3 - .
1d lf Jps(k](v*y))m = °m,

jf(v*y)m =

J(j3y) otherwise.

(c) The gv—part of y determines the guiding sequences gsn(v*y) for n

fresh a- v*y, i.e. n ¢ nf(k?(v*y)); for those n, gsn(v*y) = (j§y)n*Az.O.
(d) If the jps-part of y is v3(0,0,O) then jps(k?(v*§)) = An_onand

6F(v*y) = 6Fv (cf. 4.3.4, 4.3.13 and 3.1.19(c)).

(e) Let k,m,n satisfy k I nf(k?v), m { nf(k?v), n i nf(k?v), k # m and
k # n.

If the jps-part of y is v3(O,k,m), then jps(k?(v*y))k = °m, and
jps(k?(v*y))k' = 0k‘ for k' # k.

If the jps-part of y is v3(l,k,j(m,n)), then jps(k?(v*y))k = 0mA °n and
jps(k?(V*?))k' = °k' for k' ¥ k.

(f) Let m and n be labels of 6Fv, m % n. Then m ( nf(k?v) and

n I nf(k?v) by 4.3.l4(c) and 4.3.ll(a), hence, if we take v3(O,n,m) for the
jps-part of y, then 6F(v*y) is obtained from fiFv by erasing all labels n and
putting the label m in its place. See fig.].

if the jps-part of y
is

O v3(0,3,l) then fiF(v*y) is O

L»)

Fig. 1

(g) If m is a label of 6Fv, k 4 nf(k?v), k I £(6Fv) and the jps-part
of y is v3(0,m,k), then jps(k?(v*§)) has the form An.°an, where am = k and

am' = m' if m' # m. Since k K £(6Fv); a is 1-] on K(6Fv), hence

6F(v*§) as5Fv by 3.1.22. K
(h) If the jps-part of y is v3(0,O,O) then jf(v*y) = A n.id, by (d)

above and the definition of jf (4.4.3).
(i) If the jps-part of y makes n jump and e e C, then we can choose



125

the jf-part of y in such a way that (an equivalent of) e is generated as
the jumpfunction. (By assumption, J enumerates C modulo25 cf.5.3.l.).

(j) Wecan choose a value z for the jf-part of y such that Jz eeid.
(C is dependency-closed, hence id 5 C). In that case jf(v*y) = AKn.id, in
dependent of the jps-part of y.

R _ K I A A __ K 35.3.6. DEFINITION.JF(F,v*y) : v Jf(v*y), GV(F,v*y) : v - gv(v*y).
-——-—— 5Fv sF<v*y>

Definitions 5.3.4 and 5.3.6 will not be used outside this chapter.

5.3.7. Eégzg.

(a) dlfy as J'F(F,v*y‘):GV(F,v*y), by 4.4.20.
(b) If jf(v*y) e=AKn.id then JF(F,v*y) acid by 3.2.16(f), and hence

dfgyu GV(F,v*y) by (a).

(c) If the jps-part of y is v3(0,0,0) then JF(F,v*y) eeid and
d‘F’y«=GV(F,v*y) by 5.3.5 (h) and (b) above.

(d) Wecan choose the jf-part of y in such a way that (independent of

the jps-part of y) JF(F,v*§) eeid and dz? e¢GV(F,v*y)by 5.3.5(j) and by
(b) above.

(e) JF(F,v*y) is completely determined by the jps- and the jf-part of

y, since these two together determine jf(v*y). The same holds for
(d:JF)(n,v*y) as defined in 4.4.7.

5.3.8. E§yfl§(freedomof generated values). Let the jps- and the jf-part

0f'y be given, and let Gbe the frame 6F(v*y), as determined by the jps
part of y (i.e. G = 6Fv[jps(k?(v*§))] = 6FV[jps(k?v*<j?y>)]). With any se
quence ¢ 5 N we can find

either an initial segment Exwhich is not parallel to G,
or an x and a value fbr the gv-part of y such that bxflk} and GV(F,v*y)==[$x].

In fbrmula

vy1y2v¢axyEjfy=y, A j§y=y2 A (Ex//5F<v*.«7>—>cv(F,v*9> =» t$xJ>J.

(The formula does not quite match the informal description, but it expresses

the same: since Ex//6F (v*y) is decidable, Ex//fiF(v*y) —>A is equivalent to

ax // 6F(v*S?) v (ax//5F<v*y> A A>.>

EBOOF. See 5.4.]. U
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Nowwe can turn to the proofs of the semi-overtake properties and the
continuation to bar property 5.3.3(1)-(3). Weconsider them in the reverse
order.

5.3.9. Thecontinuation to bar property (5.3.3.(3)) states that for all
F,v,g and ¢ of the form ela we can find

either an x such that (Ex‘/7‘6Fv,

or an x and a w such that gw#0 A dgw e=[$x] A fiF(v*w) = 6 v.F
First we show

LEMMA.For all F,v and ¢ we can find

either an xl such that $x]‘1t6Fv,
or an x1 and a y such that dgy e:[$x]] and 6F(v*y) = 6Fv.
I.e.

VFv¢E|x1[$x1//6Fv—> ay<d?F’y2 [$x]] A 6F(v*§')=6Fv)].

(That is to say: we can take one step towards the bar g.)

PROOF(can be skipped.)

Choosex] and y as follows ((i)-(iii)):
(i) For the jps-part of y take v3(0,O,O), then

(1) fiF(v*y) = 6Fv (by 5.3.5(d)) and

(2) dgy rs GV(F,v*$‘r)(by 5.3.7(c)).

(ii) For the jf-part of y take any value you like, the previous choice of
the jps-part makesthe jf-part irrelevant.
(iii) Nowapply lemma5.3.8:

either we find an x such that $x1'fi“ 6F(v*y), then Ex]-fih fiFv by (1),l

which proves the lemma, or we find an x and a value for the gv-part of y
1

such that

(3) Gv(F.v*.~7)s E$x1J.

which, in combination with (1) and (2), also proves the lemma. D
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To prove the continuation to bar property itself, one shows that this

lema implies the existence of two mappings f1,f2 e K such that for all ¢
and z

$<¢»,z> 7% 5Fv v<d;,’<?p§<z)> 2 t$<¢,z>J A 5F<v*$'gz>=5Fv>.

where ¢l E f1|¢, ¢2 E f2|¢. By the extension principle we find a zo such

that g($gKz0)) ¥ 0, the continuation to bar property follows with ¢lzO for
x and $220 for w. For the details see section 5.4.2.

5.3.10. The semi-overtake property for frames 5.3.3(2) states that for all

F,v,¢ and G 2 6Fv we can find
either an x such that ¢x'fiF G,

or an x and a w such that dgw &=[$x] and 6F(v*w) R36.
Recall that H &sGiff there is an a: Ii-+ ll such that G'= H[An.(°an)]

and afKH is 1-1 (lemma 3.1.22).

First we prove the semi-overtake property for frames under the addi

tional assumption that G = fiFv[An.(°bn)] for someb, i.e.

5.3.11. LEMMA.Let F,v and :1:be arbitrary and assume that for some b: l\I—>N

(1) G = 6Fv[An.(°bn)].

Then

either there is an x such that Ex W*G,

or there are x and w such that dgw = [$x] and 6F(v*w) as G.

PROOF(in sketch, for details see 5.4.3). Fig.2 shows a possible 6Fv and
two frames Gl,G2; G1 = 6Fv[An.(°b]n)], G2 = fiFv[Xn.(°b2n)], where b O = b 2

1 1

= l and bl] = b]3 = 0, while b20 = 1 and b2] = b22 = b23 = 0.

Fig. 2
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If the b in assumption (1) is a 1-1 mapping on £(6Fv), then fiFv RSG
by the remark preceding this lemma, hence we can take x = 0, w = 0.

If b is not 1-1 there is a non-empty set of pairs (n,m), n e £(6Fv),
m e £(6Fv), n'# m, such that bn = bm. In the examples we find the set

{(0,2), (1,3)} for bl and {(l,2),(2,3),(l,3)} for b2.
Wemeasure the extent to which b is not 1-] by counting the members of this

set. The formal proof proceeds by induction w.r.t. the resulting number.

In the examples we have bl3 = bl] and b23 = b2]. In both cases, y and
X] can be determined as follows ((i)-(iii)):
(i) For the jps-part of y take v3(O,3,1), then 6F(v*y) is the frame pictured
in fig.3 (5.3.5(f)).

0 1 \
1 0

6F(v*?) G G

Fig.3

(ii) Choose the jf-part of y in such a way that the jumpfunction id is
generated, i.e. such that (5.3.7(d))

(2) d?F’3v= Gv(F,v*>“r).

(iii) Applylema 5.3.8:

either we find an x] such that Ex-fifl 6F(v*y), since G1 2 6F(v*y) and

G2 2 fiF(v*y) (see fig.3) then also Ex-if G1, 5x-flLG2and we have the result
we want,

or we find an x] and a value for the gv-part of y such that

(3) Gv<F,v*§r>2 £¢x,J.

whence dgy etfgxl] by (2).
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Note that G] = fiF(v*y)[Xn.(°bin)] and G2 = 6F(v*y)[An.(°bén)], where

bi0 = b;2 = 1, bi] = 0, and bio = 1, bi] = bé2 = 0; that is to say, for b;

' there is only a single pair (n,m) of labels of 6F(v*y)2

such that n ¥ m and bin = bim.

as well as for b

If we have found x1 and y such that $xlflK% , i = 1 or i = 2 respec

tively, and dgy ==[$x]], then we repeat the construction, with v*y for vx

an s ]|¢ for ¢, and with the remaining pair (n,m) such that bin = bim in
stead of (1,3).

Either we find that s 1|¢(x2)-fib 6F(v*<y,y'>) for some x2,
. “ X]

or we find 6F(V*<y,y'>) &sGi and d;*y<y'> e:[s |¢(x2)].
In both cases we obtain the desired result. U

5.3.12. Next we prove a lemmawhich reduces the semi-overtake property for
frames to the property proved in the previous lema.

LEMMA.Let F,v and ¢ be arbitrary and assume that G 2 6Fv. Then we can ftnd
either an x such that 5x-fiL G,

or an x, a w and a b: El + 10 such that G = fiF(v*w)[An.(°bn)] and

dgw 2' [$x] .

PROOF.(in sketch, see also 5.4.3). If G 2 6Fv then G = 6Fv[Q] for some

g: 11 + FRAME.6Fv, G and g might be e.g. as in fig.4.

Fig. 4

Wemeasure the extent to which g differs from a mapping of the form

An.°bn by counting for each m e £(6Fv) the number of non-empty nodes in
gmand.adding the results.
The formal proof proceeds by induction w.r.t. to this number.
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If it is 0, then, for all m e K(6Fv), the only node of gm is the empty
one, and Q can be replaced by An.(°bn) for some b.

In the example gl has 4 non-empty nodes, g0 has none. Note that a frame

which has non-empty nodes is a pair H A H . In the example gl = H AH
I 2 1 2’

with H1, H2 as in fig.5(a).

/\ °0 H2 6FV*?)
H1

Fig.5

The first step towards constructing x and w such that

G = 6F(v*w)[Xn.(°bn)] for some b and d;w e¢[$x] would be to determine y and

X] as follows ((i)-(ii)): 3 3
(i) Choose n1,n2 such that nl # n2, n1 é nf(k1v), n2 é nf(k1v), n] i £(6Fv),
n2 i £(fiFv), and take v3(l,l,j(n],n2)) for the jps-part of y.
Then jps(k?(v*y))l = °nlA°n2 by 5.3.5(e) and 6F(v*y) is the frame pictured
in fig.5c.
(ii) Choosethe jf-part of y, x and the gv-part of y as in the previous

1

lema, i.e. such that either

(1) Ex, // 5F<v*:7>

or

dlfy «= [$1.11.

Note that G = 6F(v*y)[g'], where g'0 = °1, g'n] = H], g'n2 = H2 (see

figs.5b,c), hence if (1) is the case then also 5x1-%LG and the lemmais
proved.
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If (2) is the case, then we repeat the construction above with v*y for
x

v, s l|¢ for ¢, and g‘ for g: now we make n

k1,k2 é {0,n1,n2}.
Note that the distance between g‘ and a mapping ln.(°bn) is smaller

I jump to k] and k2, kl # k2,

than the one between g and a mapping An.(°bn): only g'n1 has non-empty
nodes, namely two. In our example we need one repetition of the construction
given above to reduce the remaining distance to zero; in general, more re
petitions will be necessary. U

5.3.13. Nowwe can prove

LEMMA.The semi-overtake property for frames holds.

PROOF.By a simple combination of the foregoing two lemata (details in
5.4.3). B

5.3.14. The semi-overtake property for dressings (i.e. 5.3.3(1)) states

that with all F,v,¢ and fflk: 6Fv we can find
either an x such that ¢xfl6Fv,
or an x and a w such that dgwe:f:[$x] and 6F(v*w) R¢6Fv.

Weillustrate the proof of this property with a simple example. The

formal proof is given in 5.4.4. Let 6Fv be the frame (°0)A(°l) as in fig.6a.

0 1 I I 1 E

6FV [321] [EzO] 5F(v*§) [S21] idd

a f 2 [;z]]Ar_6z2] bl n1 940, n] as 1 cJF(F,v*’y)=[az1]Aid

Fig.6.

Since f//C 6Fv we have a mapping 11;: N ->C such that f :2 vlg V112.ForF
6Fv = (°0)A(°1) this yields:

(1) fm1p0/H111.
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Nowwe make an additional assumption, namely

(2) VneK(6Fv)3u(wn¢=[u]).

Let e.g. $0 e=[azl] and $1 =1[bz2]. Wefind (see fig.6b.):

(3) f u [azl]/\[bz2].

Nowdetermine y and x 1 as follows ((i)-(iii)):
(i) Choose the jps4part of y in such a way that jps(k?(v*y))O # °O and

(4) 6F(v*:7) es 6Fv <s.3.5<g>>,

then fiF(v*?) has the form (°n1)A(°l), nl # 0, nl # I as in fig.6c.
(ii) Choose the jf-part of y in such a way that jf(v*y)0 =¢[az1] and
jf(v*y)m.eeid if m # 0. (Use 5.3.5(i), note that [521] e C since C is de
pendency-closed.) Then,._K.,..,..... -.
(5) JF(F,v*y) : v6 vJf(v*y) = Jf(v*y)0AJf(v*y)l=2 [az1]A1d.F

(See figs.6d,7a.)

(iii) Note that f c: Eazl]/\[bz2] satisfies f u JF(F,v*y‘):(idA[bz2]).
Weincorporate the difference between f and JF(F,v*y), i.e. (idA[bz2]) in
the generated values, that is to say: we apply 5.3.8 with

(idA[bz2])I¢ = j(j1¢,bz2*j2¢) for ¢.
Note that (idA[bz2])|¢fl{F(v*§O due to the special structure of 6F(v*y)
(by 3.2.2l(e), in this respect the exampleis not quite characteristic).

Hence we find an x] and a value for the gv-part of y such that

Gv(F,v*$‘r)ea [(id/\[5z2]) I¢(x1)]

or equivalently

(6) GV(F,v*§r_)=2[j'1?(x1)JA[Ez2*j2¢(x])J.

(See fig.7b.) Since, by definition,
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A K A

GV(F,v*y) = v6F(v*§)gv(v*y).

and

vK A gv(v*?)2= gv(v*?)n Ag (v*§)l
6F(v*y) 1 v

(6 (v*§) = (°n )A(°1)), (5) can also be expressed as:
F 1

gv(v*§7)n1u tficxln, gv(v*§7)l A.»[1;.z2*j2¢(x1)].A/\ /\
M ‘i1 ‘I I I

[52]] id EJ'_1$<x,>1 [5z2*J'2¢(xl)] [Bz2*T1E>‘<x1>1£E““z2*j2¢(x])1

JF<F,v*§r> Gv(F,v*§v) d‘F’9
8. b C

Fig.7

From (5) and (6) we find

(7) d;? =1[§z1*]:$(xl)]A[Ez2*j2¢(x])J.

(Use5.3.7(a), see fig.7c.)

Note that, since f ==[§z1]A[hz2]and [$(x])] e:[3:$Kxl)]Af§;$(x2)],

f:[$xl] =4[§z1*jl¢(x1)]A[hz2*j2¢(x])],

whence

(8) f:[$x1] &=d;?:(idAu),

where u is the finite sequence such that

bz2*j2¢(x1)*u = 5z2*j2¢(x1).
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Recall that our aim is to find a w and an x such that

V _
dFw¢=f:[¢x] A 6F(v*w) N 6Fv.

(dx is always parallel to 6Fv due to our special choice of fiFv.) From (4)
and (8) we see that it suffices to construct y' and x2 such that

A X

(10) d‘1f*V<y'>ca (id/\u):[s ‘|¢(x2)]

and

(11) 6F(v*<y.y'>)~ 6F(v*S").

for in that case

x

d;<y,y'> =:d;y:d;*y<y'> ==f:[s I¢(x2)] &=f:[¢(x1+x2)].

The construction of y' and x satisfying (10) and (11) is analogous to the2

construction of y and x above, with the label 1 in the r6le of O, with u
1_ x

in the r8le of azl and with s 1|¢ instead of ¢.

Nowwe drop the assumption (2) and consider a more general example,
where

(12) face/\e e ,e12’ 1 ‘C’2

Wemust construct w and x such that

(13) dgwm(el/\e2):[$x] A 6F(v*w)NfiFv.

It suffices to showthat there are w, x and f' such that

(14) d_;w:f' ea (el/\e2):[$x] and fiF(v*w) Rs6Fv,

where f' has the form [u1]A[u2] since by the argument above we can find w'
and x’ such that

(15) 6F(v*w*w')Ri6F(v*w) and d;*ww' eef':[sxI¢(x')];
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combination of (14) and (15) yields

6F (v*w*w') 9%!6Fv
and

d;(w*w') =:d;w:d;*Ww'e=d;w:f'[sx|¢(x')] e¢(elAe2):[$(x+x')].

0 I r;/\ <0/\1 $1
e 1 X _'i.I I 1 1 ‘Id FRI )1

e] e 6F(V*3,) R161” 1 31 1 .[e2l_]2d>(x])]
— 1 2 JF(F,v*§r) 2 el/\id GV(F,v*§z)

Fig.8

Westart our construction of w and x for (14) in the same way as above,

1 such that ((i)-(iii)):
(1) jps(k?(v*y))o = on], n] ¢ 0, nl ¢ 1, hence

i.e. we determine y and x

(16) 6F(V*§’) N 6FV3

(ii) jf(v*§)O ate], and jf(v*?)m = id if m # 0, hence

(17) JF(F,v*§) ==e1Aid;

(iii) GV(F,v*§)2=[(idAe2)|¢(xl)], where idAe2 is the difference between f
and JF(F,v*§). Then

(18) Gv(F,v*?) = E3fi<x1)JAEe2l.i2¢(x,)J,

where [§:3(x])] ==gv(v*?)n1, EE;T§;$(xl)Jz= gv(v*§)l.

(See fig.8.) Thus we achieve that

(19) d‘F’y= <e1:[3‘,$<x]>J>A[E2‘|3‘2$<x1>1
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(by (17), (18), 5.3.7(a) and distributivity of: over A).

Next we choose y', x; and x2 as follows ((i)-(iv)):
. . . . 3

(1) The Jps-part of y‘ 1s such that Jps(k1(v*<y,y'>))l = °n2, n2 # 1,
n 74n , whence2 l

(20) 6F(v*<y.y'>) *1 6F(v*$')

(ii) xi 2 x] satisfies Vm< x1(e2(<m>*j2¢(x;)) # 0), i.e. j2¢(x;) suffices
to determine e2|j2¢(x1), whence

(21) vz 2 x'1((e2:[‘jj(z)J)|a e e'2"]j‘;(x1)).

(iii) The jf-part of y' is such that

jf(v*<y,y'>)l ace‘ and jf(v*<y,y'>)mIu id, for m ¥ 1,29

where

X] ___
(22) eé E s :e2:[j2¢(x;)].

Then

xl ____
(23) JF(F,v*<y,y'>)== idA(s :e2:[j2¢(x;)]).

Note that ea 6 C since e2 6 C and C is dependency-closed. Note also that
by (21)

(24) [e2|j2¢(xl)]:e§ a:e2:[§;$(x;)].

So \

(25) d;§3JF(F.V*<YaY'>)‘= (B1=f§:$(Xl)])A(e2=[3;$(X;)3)9

by (19), (23), distributivity of : over A and (24).
(iv) Finally, the gv-part of y and x are such that2

_.__:T_._.
X X

cv<F,v+«<y.y'>> = us ‘As ‘>|¢<x2>J,
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X1 X1
(26) GV(F,v*<y,y'>)'=[s I¢(X2)]/\[s I¢(x2)].

Nowd;<y,y'> c:d;?:d;*y<y'>, (4.4.2l(c)), and

dfF’*y<y'>2 JF(F,v*<y,y'>) :GV(F,v*<y,y'>) (5.3.7(a)),

hence

d;‘Y.y'7 5’ d‘1:3’=JF(F.v*<y.y'>)=GV(Fsv*<y.y'>)

whence

(27) d:$Y,Y'> =1Ce]=[j]¢(Xl+X2)])A(e2=[j2¢(x;+X2)]) ((25).(26)).

By distributivity of : over A

(28) d¥.<YsY'> u (el/\e2) =([J' ]¢>(x]+x2) 3/\[J'2¢>(x;+x2) J) 

Nowput u E <j1¢(x1+x2),..., jl¢(xi+x2;l)>, (i.e. u = < > if x; = XI), and
f‘ E [u]Aid, then

(29) d¥$y,y'>:f' e:(e1Ae2):[$(x;+x2)].

Moreover

6F(v*<y,y'>) N 6Fv ((l5),(20)),

so we have (14) with <y,y'> for w and x;+x2 for x. U

5.4. THE PROOF OF THE STRONG OVERTAKE PROPERTY (2)

In this section we give extra details of the proof of lema 5.2.5,
which were left out in the preceding section. This section is to be read
only in connection with 5.3. (Andat first reading it is to be skipped.)

5.4.]. First we provide a proof for lemma5.3.8 on the freedom of generated
values, which states:
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Let the jps- and the jf-part 0f'y be fixed, let Gbe 6F(v*?) as deter
mined by the jps-part Qf y (5.3.5(a)), and let ¢ be an element of N. Then
we can find
either an x such that Ex#6,
or an x and a value fer the gv-part of y such that Ex AVGand
GV(F,v*§r) rs [Ex].

2399:. By definition 5.3.6, GV(F,v*§) E v§gv(v*§).
gv(v*?)n = [(j3y)n*Az.0(l+upb(v*§))], by definition 4.4.10.
(j§y)n*Az.0 = gsn(v*?), for n fresh (i.e. such that 6n(v*§) = °n), by de
finition of gsn (4.4.4, 4.4.6).
Labels of G(E6F(v*§)) are fresh (4.3.l4(c)), hence for n e KG
gv(v*§)n = [gsn(v*§)(l+upb(v*?))], whence

GV(F,v*§r)u vE(XKn.[ (1+upb(V*§)) 1).

Now put

gsF<v*9> 2 v;<x‘n.gsn<v*§>>.

then

GV(F,v*?)as[ (l+upb(V*§))] (3.2.16(g)).

Fig. 9 shows an example of G and gsF(v*§).

0 2

i) 2 '1<> 1 0 I
gs v*? 5 J ¢ O 1 0 332 V*§) $0 . I . I Jw2¢

J¢1(¢) JwO¢
gs1(v*?) gs0(v*?> a b
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Let w be a mapping from 1! into the set of branches of G, which satis
fies:

if n e KG then wn has label n in G.

If ¢ is parallel to G, then jb¢ = jwn¢ for all branches b of G with label

n. I.e. in that case, ¢ = vé(A]n.jwn¢) (3.2.l4, 3é2.l6(b), see fig. 9).
Our problem is to choose the gv-part of y, j3y, in such a way that for

all n e KG, gsn(v*y) coincides with jwn¢ over a sufficiently long initial
segment.

To make this choice we introduce the pseudo guiding-sequences pgsn.
As an auxiliary we put:

-1 jwn¢ if n e KG,
VG(n: E

Az.O otherwise.

The pseudo guiding-sequence for n is defined by

(1) pgs 2 v‘ - (A1k.v—1(k ¢))
n fin(v*y) G ’

i.e. for n e KG, pgsn = j¢n¢.
Nowwe perform the upperbound computation (cf.def.4.4.9) with pgsn

instead of gsn, i.e. we put

pupb E max{mk((d:JF)(n,v*y), 1th(v), pgsn) : n e nf(k?(v*§))}.

Note that pupb can be determined independently of the gv-part of y,
(d:JF)(n,v*y) depends on the jps- and jf-part of y only (4.4.7 and 5.3.7(e)).
Now take

xn.v;'<n.¢><x><m>

for the gv-part of y, (jgy), where x E 1+pupb, and m E 1 + max(KG). Then

v'1(k,¢)(x) if k < m

<j§y>k =
0 otherwise.
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Since v;l(k,¢) = Az.0 for k 2 m, we find that for all k

(j3y) *Az.O= v"(k,¢)(x)*xz.o.3 k G

Hence

(2) gs (v*y) = v1 - (A1k.v-l(k,¢)(x)*Az.0).
n 6n(v*y) G

From (1) and (2) we find (using 3.2.l4(b) and 3.2.17(c)) that for all n

W)i(x) = I»‘gs—n(x>.

Hence, if we compute upb(v*y), we find

upb(v*?) = pupb.

whence, for all k

- -1
8v(v*Y)k = Evc (k.¢)(x)J.

For n 6 KC, vgl(n,¢)(x) = j¢n¢(x) = kwn($x). The proof is now completed by
observing that hence

Ex//c ->v§gv(v*§r)u[$xJ, by 3.2.20(g). 1]

5.4.2. Next recall that we have reduced the strong overtake property to two
‘semi-overtake‘ properties and a ‘continuation to bar‘ property (5.3.3).
The latter says (cf.5.3.3(3) and 5.3.9):
(A) Let F,v,g and ¢ 5 ehxbe arbitrary, then

either there is an x such that Ex-#5Fv,
or there are x and w such that gw # O, 6F(v*w) = fiFv and d;wc=[$x].

As a first step of the proof we have shownin 5.3.9:

(B) For all F,v and ¢ 5 e|a we can find

either an x such that $x-fiL5Fv, .
or an x] and a y such that dgyex [$x]] and 6F(v*y) = 6Fv.

LEMA. (A) fbllows from (B) by AC-NF,Vaax-continuity and the extension
principle EP.
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PROOF.Let F,v,g,e and a be arbitrary and put

¢m,B E (sm:e)|B (i.e. ¢m,B = Xz.e|B(m+z)); ¢ =
I

-9 O
II

(‘D Q

Let A(m,w,B,x],y) be the formula

¢m,BCx])fl6F(v*w)-+ d;*W§ =¢[¢m,B(x])] A 6F(v*w*y) = 6Fv.

(B) states that

VmwB3x]yA(m,w,B,x],y),

hence

vmwafifévs A(m,w,B,fi(B),fé(B)), (V832-continuity),

whence

(1) aflfzvmwe A<m,w,s,£] |s(m,w),f2|s(m,w>) (Ac—NF).

(Here fi|B(m,w) abbreviates fiIB(j(m,w)), i=1,2.) Let f] and f2 be witnesses
to (1). By a simultaneous recursion we define w] and w2(eN):

w,<o> = f,Ioa<o,0>, w2(o> = f2|oe<o,0>;

wl(n+1) = w]n+flla(w1n,E;(n+l)),

w2(n+1) f2|a(w]n.$;Kn+1)).

The reasons for this definition are explained by the following observation

(2) vn($(w1n)//5Fv—> d}’<E;<n+1>> u E$(w,n>J A 5F<v*E<n+1>>=5Fv>,

which is proved by induction w.r.t. n.

For n = o, (2) is simply A(O,O,a,f1Ia(0,0),f2|a(0,O)), which holds by
(1).

Nowassume (2) to hold for n, and let $(w1(n+l)) be parallel to fiFv. Then

¢(w1n) fl’6Fv, whence by induction hypothesis
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(3) 6F(v¥$;(n+1)) = 6Fv

and

(4) d‘.;<E;<n+1>>e £$<w,n>J.

Moreover, if $(¢1(n+1)) // fiFv, hence

i'zTp,n_+Z)<f,|a<w,n.E‘2'<n+1)>> // 6Fv

by definition of 1p1(n+1), whence by (3) and the definitions of ¢,¢m,w:

flr1:<t1|a<w1n.$2<n+1>>>//5F<v*$’;<n+1>>.

So if we apply (1), with m = wln, w = E;(n+1), and a for B, we find

(5) 5F<v*$;<n+1)=~<f2|a(w,n.E(n+1)>>> = 5F<v=@(n+1)>

and

(6) d}’*“’2(“”’<f_,_Ia(w,n.$;<n+I))> r= [¢>w]n,a(f]la(1D1n.E(n+1)))].

Combining (3) with (5) and (4) with (6) yields (2) for n+1.
All we have to do now in order to prove (A), is to observe that for some n,

g(E;(n+l)) # 0 by the extension principle: i.e. (A) holds with $;(n+l) for
w and wln for x. U

Note that we use instances of AC-NFand V832-continuity here that are

not in the language of kg. They can be translated into that language however,
cf. chapter 7.

5.4.3. Of the two semi-overtake properties yet to be proved, the semi-over
take property for frames is the simplest. It states (cf.5.3.3(2) and 5.3.10):

(A) For all F,v,¢ and G 2 6Fv there are x and w such that either Ex-//-G,

or dgw :2 [$x] A 6F(v*w) N G.
As shownin 5.3.11-5.3.13, this assertion can be proved in three

steps. First one shows(cf. lema 5.3.11):

(B) If G 2 6Fv is replaced by the stronger assumption 3b(G= 5Fv[An.(°bn) J),
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then (A) holds.

PROOF.(Compare the sketch in 5.3.l1.)

For an arbitrary finite set S put

eq(b,S) E {(m,n) : meS, n€S, m#n, bn=bm},

and put

h](b,H) E card(eq(b,£H)).

Let b be such that G = 6Fv[An.(°bn)], to prove (B) we apply induction

w.r.t. h] E h1(b,6Fv).
If h] = 0 then b is 1-1 on K(6Fv) whence G58 fiFv by 3.1.22, and we

can take w = x = 0.

Nowlet hl = z+l. Choose a pair (m,n) e eq(b,£(6Fv)) and determine y
and X] as follows ((i)-(iii)):
(i) For the jps-part of y take v3(O,n,m), then 6F(v*y) = fiFv[g], where

g satisfies: gk = °k if k # n, and gn = m (5.3.5(f)).
(ii) For the jf-part-take somevalue such that

dgfy2 GV(F,v*§r) (5.3.7(d)).

(iii) Apply lema 5.3.8 to find an x and a value for the gv-part of y such
1

that either Ex] fiL-6F(vty) or $x1A’6F(v*y) and GV(F,v*y) ==[¢xl], i.e.
by (ii)

dgfgr2 [$241].

Once y and x have been determined, we can check whether or not $x1flG.
If not, then (B) is proved.

Otherwise we note that G = fiF(V*y)[An.(°bn)].

(By assumption G = 6Fv[An.(°bn)], by (i) 6F(v*y) = 6Fv[g] for a g which
maps both n and m on °m; bn = bm so (6Fv[g])[An.(°bn)] is simply 6Fv[An.(Wn0].)

It follows that $xlfl6F(v*y), whenceby (iii) dgy &¢[$x]]. Moreover,
h1(b,£(§F(V*§))) < h], i.e. we can apply induction hypothesis with v*y for

x x

such that s 1l¢:(x2) 7'7’-G,whichv and s ]|¢ for ¢, to find either an X2
proves (B), or x2 and w' such that
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- x
A I

6F(V*y*W') = G and d;*yw' ==[s |¢(x2)],

in which case we also have (B). U

The next step towards proving (A) is to show that (cf.5.3.l2)

(C) For F,v,¢ and G 2 fiFv we can find x,w and b such that either Ex-£LG, or

6x//G, 'd‘F’wu [$x] and c =' 6F(v*w)[An.(°bn)].

This claim is also proved by induction. If G 2 6Fv then G = 6Fv[g]
for some Q. We put

h2(g,H) E X ne(gm),
me£H

where ne(F) is the number of nonempty nodes in F. The induction is w.r.t.

h2(g,6Fv). Wetrust that the reader can find the proof from the sketch given
in 5.3.12 and the foregoing proof of (B).

The final step to be taken is to showthat (cf.5.3.l3)

LEMMA.(B) and (C) imply (A).

PROOF.Let F,v,¢ and G 2 6Fv be arbitrary. Apply (C) to find x],w and b

such that either ox] -;‘/-G,which yields (A), or —X]//G, dgw 2 [&;x]] and

G = 6F(v*w)[An.(°bn)]. X
In the second case apply (B) with s i|¢ for ¢ and v*w for V. We find

_X——

X2 and w‘ such that either s 1|¢ fl’ G, which yields (A), or
R1 . - - 

.s l¢2(x2)-//G, whence (since ¢Xl//G) ¢(x1+x2)//"G, and

d;*ww'e:[sx]|¢(x2)]. Thenby 4.4.2l(c)
x

d%,’(w*w')a=[$x1]:[s ]|¢(x2)] u [$(x1+x2)]

and

6F (v*w*w') N G.

I.e. in the second case we also have (A), with x +x for x and w*w' for
I 2

w. U

5.4.4. The most complexpart of the verification of the overtake property
is the proof of the semi-overtake property for dressings, which states
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(cf.5.3.3(l) and 5.3.14):

(A) For all F,v,¢ and 6fl%:fiFvwe can find w and x such that either

3x -79‘fiFv, or 6F(v*w) 2 6Fv A dgw '2 f:[$x].
The structure of the proof of this assertion resembles that of the

proof of 5.4.3(A): it consists of two auxiliary lemma's, the first one
claims that (A) holds under additional assumptions, the second one claims

that the general form of (A) can be reduced to the special form of the first
lema. Both lemata are proved by induction over Ii. First we show:

(B) If the assumption fflQ:6Fvis replaced by the stronger

3weN(f nevi V(lKn.DPn])). then (A) holds.F

PROOF. We show that

(1) VvF¢Ib[nz(1p,6Fv)=n -> 3xw(<-fix//fiFv->dgwufzfdx] A fiF(v*w) R#6Fv)],

K K

where ¢,w range over N, f e:v6FV(A n.[wn]) and

nz(w,6Fv) E card{meK(fiFv) : wm#O} (nz for non-zero).

The proof proceeds by induction w.r.t. n.

If n = 0, then wm= O for all m e K(6Fv), whence [wm] eeid for all

m e £(fiFv), whence f etid, and (1) holds for x = w = 0.
Nowassume (1) to hold for n (inductionhypothesis). Let v,F and ¢ be

arbitrary, and let w be such that nz(w,6Fv) = n+1. Then there is a label,
say m, of 6Fv for which wm# 0. Determine y and X] as follows ((i)’(iii))=

(i) For the jps-part of y take v3(O,m,m'), m' i K(6Fv), then

(2) 6F(v*y) R!6Fv (5.3.5(g)).

(ii) Choose the jf-part of y in such a way that jf(v*y)m 29[wm] and
jf(v*y)k ==[0] (=id) for k ¢ m (cf.5.3.5(i)). Let j£* be the mapping from
El into El such that for all k, jf(v*y)k ==[jf*k]. Let JF abbreviate
JF(F,v*y).
(iii) Put (w-jf*)
k # m. Put

Ak.(wk;jf*k), i.e. (¢—j£*)m= 0, and (w—jf*)k = wk if

(f-JF) 2 K (AKk.[(w~jf*)k]).
v6Fv
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Nowapply lemma5.3.8 with (f-JF)|¢ instead of ¢. This yields an x] and a
value for the gv-part of y such that

either (f—-3PT]T(x]) -//-6F(v*’$').

or GV(F.v*?) 2 [(f—-31WFb_(x1)].

We assume that ¢xlflfiFvu ‘Note that for b e 6Fv,

<3) kb<<E13r>|¢<x,>> = jb(?E?3FYI¢><x,> = [(w-jf*)k]Ijb¢(x1),

where k = £b(6Fv). Let lk be the length of the finite sequence (w-jf*)k. (3)
yields

(4) kb((f-JF) |¢(x1)) = ((w-jb*)k)*"jfi(x];1k).

whence, by the assumption that Ex]//6Fv,

<E?3f7T$<xl>#5Fv,

and since 6Fv es 5F(v*§) by (1), (?-,IT)|'q7(:<])//5F(v*§). Then

GV(F,v*y)e[(%)’]?(x1)J (see (111)),

whence

d;,’3>u JF:GV(F,v*’y)m JF:[(f-JF)|¢(x1)].

Using (4) one finds that for b e 6Fv with label k

o VA o * o * oi o
(5) Jb<dFy|x> = Jf k*<<w—Jf )k)*Jb¢(X1=1k)*JbX

(X e N arbitrary). Nowdefine wl by

<jb¢(x1;lk),..., jb¢(xl;l)>, if k e £(6Fv),
Wlk =

0 otherwise,

where b e 6Fv is such that £b(6Fv) = k (which b one chooses is irrelevant,
since $xlfl6Fv). If k e £(6Fv) and lk = 0, then wlk = O.
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One easily sees that

(6) vk<wk=o + w,k=o>,

(7) wlm = wm' = 0.

(m' replaces m in fiF(v*y), see (i), m' 4 £(fiFv)). Nowput

K (AKk.[w1k]), then
f‘ E v6Fv

(8) f‘ = v§f(V*?)<xKk.£w1kJ> (by (7))

and

(9) nz(w].6F(v*?)) = n (by (6) and (7)).

Moreover

jb(f'|x) = <jb¢(x;1k).---. jb¢(x:1)>*jbx.

whence

jb<d§9=f'|x> = wk*3;$Kx1)*jbx

for any b e 6Fv with label k (by (5)), i.e.

(10) c1"§r:£' ~_«£:[$x J.
F 1

’‘1
By induction hypothesis, applied with v*y for v, s I¢ for ¢ and $1, f' for
w and f respectively (cf. (8),(9)), we find X2 and w' such that
either sx]|¢(x2) £F6F(v*y), which proves (B),
or d;*ywe:f':[s 1|¢(x2)] and 6F(v*y*w')i¥ 6F(v*y). In that case (B) follows
from (2) and (10) with x +x1 2 for x and y*w' for w. D

Finally we prove

(C) For arbitrary F,v,¢ and w: Ii + C, we can find x,w and w‘ e N such that

either $x] -# 6Fv,
or 6F(v*w) &sfiFvand d;w:f' e=f:[$x],

K (AKn.[1p'n]) and f = v
K

where f —-v6F(V*w) aFv‘”'
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(Weleave it to the reader to verify that (B) and (C) imply (A)).

PROOF.The proof is very similar to the proof of (B) above. We show that

ZN .

(l) VvF¢VweC [n1x(w,fiFv)sn +

31p'eN3xw($x//6Fv->d;w:f' at f:[$x] A 6F(v*w) N fiFv)],

where f esvifivw and f' e:v§%(v*W)(AKn.[w'n])a find where nix(w,6Fv) S n is
the formula which expresses that we have a subset of £(6Fv) with
card(£(6Fv));n labels to which w assigns a value of the form [u]. ([u]
prefixes the finite sequence u to elements of N, nix is a contraction of
non-prefix.)
The proof proceeds by induction w.r.t. n.

If n = 0 then wkhas the form [u] for all k e £(6Fv), i.e. there is'a
w‘ such that Vke£(6Fv)(wke=[w'k]), and (1) follows trivially with
x = w = 0.

Nowassume (1) to hold for n. Let v,F and ¢ be arbitrary, and assume

nix(w,6Fv) S n+1. Let m be a label of fiFv outside the given set of labels k
for which wk has the form Eu].

Determinex and y as follows ((i)-(iii)):
1

(i) For the jps-part of y take v3(0,m,m'), m' 4 K(6Fv), then

(2) 6F(v*?) N 6Fv
(ii) Choose the jf-part of y in such a way that jf(m) = wm,jf(k) = id for
k # m, where jf E jf(v*y). JF will abbreviate JF(F,v*y).
(iii) Let (w-jf) be the mapping from 11 into C such that

(up-jf)m = id and (mp-jf)k = wk for k’# m. Put (f-JF) 2 vI6(Fv(1p-jf).
Apply lemma5.3.8 with (f-JF)|¢ for ¢. Wefind x] and a value for the gv
part of y such that either (f-JF)I¢ fiF6F(v*y),
or GV(F,v*?)==[(f:3f)T$(x1)].

By 1.3.12 there is an x

segmentof (f-JF)f$(x;).
Weassume that ¢(x;)fl6Fv.
Since (ffJF)fl%:6FVby definition, then also (f-JF)f¢(xi)fl6Fv' (3.2.2l(j)),
whence (f:3f)T$(x])fl6Fv' (3.2.20(e)). Then (f:3f)T$(x1)flfiF(v*§), ‘by (2),
so GV(F,v*y)=¢[(f:3§)T$(xl)] (see (iii) above), i.e.

2 x] such that (f-JF)|¢(x]) is an initial
gt‘
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dfF’§zu JF:[(f-JF) |d>(x])].

We put

xl _
£1 E s :(f-JF):[¢(xi)].

x
f - and sI - is the composition of three mappings, [$(x;)]
For all X, [$x;]Ix = $x;*x; (f-JF)

'9 (f-JF)
- mapsall sequences with initial seg

_ _ x
ment ¢x; onto sequences with initial segment (f-JF)P¢xi; s - deletes the
first x] values of all sequences, for sequences with initial segment
(f-JF)P$x' these first x] values are (f-JF)|¢(x1). That is to say
[(£-Jfi)[$(xl)J fl (f-JF):[$x;J, andR

R(3) d;§:f1 JF:(f-JF):[$x;] ==f:[$x;].

(The equivalence JF:(f-JF) 21f is easily verified-)

Define $1: 11 + C by

x

s ‘:¢k:[kXk($x;>J if k + m',
x

s 1:[kXm,($x;)] for k = m',

where X is a labellingeinverse for 6F(v*?), such that for all
k e £(6F(v*§)) xk is a branch of 6F(v*?) with label k. One may verify that

K

fl —'v6F(v*?)wl’

Vke£(6F(v*’)"))(3u(11Jk=[u]) -> 3v(1P]k- [v])) ,

and

3u(\p1m'¥[u]).

So ni¥(w‘,6F(v*§)) S n, and we can apply induction hypothesis with v*§ for
X .

v, s 1I¢ for ¢ and w ,f for w and f respectively, to find x , w' and
1 l*§T——- 2

w' e N such that either 3 lI¢(x2) %¥6F(v*§), which proves (C)
or
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I

(4) 6F(v*S"*w') ss 6F(v*§r) and d)F’*?’w':f' a f]:[s ‘|¢<x2)J,

K K

where f' e=v6F(v*?*W)(An.[w'n]).
In that case (C) follows imediately by (2) and (3), with §*w' for w, xi+x2
for x; in particular we have

d;w:f' exd;?:d;*yw':f' (by 4.4.2l(c)),

and T
V- *“ - l

dFy:d; 7w:£' m d;y:f1:[s |¢(x2)] (by (4)),

whence
7*

dv§:f]:[s 1|¢(x2)]m f:t$(x;+x2)J (by (3)). E]
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CHAPTER 6

THE CONCEPT OF A DOMAIN

In the next chapters we intend to show that for a special class of

dependency-closed subsets of K, each projected universe U6 of GC-sequences
w.r.t. C is a model for g§(C) (cf.l.3.29).

In the definition of U6(C), the set of projected universes of GC-se
quences w.r.t. C, we have used natural numbers to 'code' all kinds of in
formation: ax codes the jumps at stage x+l, Bx codes the choice of a jump

function and yx codes the preliminary choice of values at stage x+1.

The coding which we use is fairly arbitrary. E.g. ax = v3(O,k,m) ex
presses ‘if possible, makek jump to m', and ax = v3(z+l,k,j(n,m)) expresses
‘if possible, make k jup to n and m'. For the same purpose we could also
have used ax =j(2k,m) and ax = j(2k+l,j(n,m)) respectively.

Moreover, the concept of GC-sequence that is imitated in universes

U6 e U6(C) has some special features like the single jump property, the
restriction to binary jumpsand the guarantee that at stage x for all car
riers the initial segmentwith length x is available.

It would be most satisfactory if we could showthat the validity of

§§(C) in universes U5 5 U6(C) is independent of our choice of coding and
of the special features of our concept of GC-sequence.

To achieve this we introduce for each C C K a class D5(C) of domains

w.r.t. C. The definition of D6(C) is coding-independent, and does not re
quire any of the special features of the universes U6 6 U6(C). For depen
dency-closed C, U6(C) C D6(C). For suitable dependency-closed C, all
06 e D5(C) are models of Q§(C).

6.1. THE DEFINITION OF DOMAIN

A domainw.r.t. C (to be defined formally in 6.1.] below) is a uni
verse of the form
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D65 {e|nF6 : e e C, F e FRAME},

where NF5 E flF|5, NF e K the image of F 6 FRAMEunder the mapping n, i.e.

a domain w.r.t. C has the same structure as a universe U6 5 U5(C).
With each domain there are two lawlike mappings d and 6 from

IJXFRAMEX 11 into K and from FRAMEX Ii into FRAMErespectively. We put

dgw 2 d(v,F,w), dFw 2 d(0,F,w), dzw 2 d(v,(°n),w), 6Fw 2 6(F,w),

finw E 6((°n),w) and nn 5 n(on), and we call dF(3x) the dressing for wF6 at
stage x', fiF(3x) the ‘frame for WF5at stage x‘, just as for universes
U6 6 U6(C).

The mappings n,d and 6 associated with a domain, satisfy the following
‘axioms’:

(a) For the relation between N and d:

(1) nF(i*w)=y+l + Va[(dFwIa)(x)=y]

which expresses that WFGis the intersection of the ranges of the mappings
x¢.dF(Ex)|¢.

(b) For d:

(2) d;;< > u id,

(3) dgw e C

and

(4) d;(v*w) e:d:v:d;*vw.

The last axiom expresses that d;*vw is the difference between d;(v*w) and
dgv, in particular dgw is the difference between dFv and d (v*w). Mote thatF

d 6x is (modulo equivalence) completely determined by the values d:y<6y>,F
y < x.

(c) For the relation between d and fi((5),(6)):

(5) dgw 2 vI6<Fv(AKn.d:lw) .

From this axiom and (1) one finds that there is a relation between WF5and

the sequences fln5, n e £(6FEx). From (5) and (4) it follows that dF(3x) is
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completely determined by the values {d:y<6y>:n e §(6F3y)} for y < x. The
axioms do not specify any further properties of d:y<6y> for n e £(6F(5y)),
. . . . .- 6 . .- 
in particular it 1S not required that dny<5y>1s built from Jf and gv or
similar mappings.

(6) 6nv=°n + 3u(dnv==[u]),

which expresses that if fln5 is independent of others at stage x, i.e.
6n(3x) = °n, then there is only an initial segment of nné available at
stage x.

(d) For 6((7)-(10)):

(7) 6F< > = F,

(8) Vw3gVF(6F(v*w) = 6Fv[g]),

which expresses that 6F§(x+y) is produced from 6F(5x) by the same g for all
F. This axiom is equivalent to

Vx3gVF(6F(v*i) = 6Fv[g]).

The axioms do not require that g has the properties of jps like the re
striction to binary jumps and the single jumpproperty.

(9) VneK(6Fv)(6nv=°n),

i.e. if n occurs as a label in 6Fv then it is itself independent of others.

(10) Vm3n>m(6nv=°n),

i.e. there are infinitely manyn which are independent of others
(e) For d and 6 finally:

(11) the strong overtake property (5.2.4)

which expresses the freedom of continuation of sequences of restrictions

xz.(dF(3z),5F(Ez)).
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All these axioms hold for projected universes of GC-sequencesw.r.t. C,
see definition 4.5.2 and the lemmata4.3.14, 4.4.21 and 5.2.5.

6.1.]. DEFINITION(of domain).

Let N and d be mappings from FRAMEinto K and from lJ><FRAME X El into

K respectively. Let NFbe the image of F under n, and dgw the image of

(v,F,w) under d. Let 5 be a mapping from FRAMEX El into FRAME,and let 6Fv
be the image of (F,v) under 6.

n E n(°n), dgw E d:°n)w, finv E 6(°n)v, dFv E dgv and nF6 E w
n,d and 6 define a domainw.r.t. C iff the following hold:

Put N |6.F

(D1) Vv(nF(i*v)=y+l + Va[(dFv|a)(x)=y]),

(D2a) 5Fo = F,

(D2b) vvwagvF(5F(v*w)=5Fv[g]),

(D3a) dFO u id,

(D3b) d:(v*w) ==d;v:d:*vw,

(D3c) d;w»e:v§Fv(AKn.d:w),

(D3d) dgw e C,

(D4) vne£(5Fv) (6nv=°n) ,

(D5) vnam>n(5my=°m),

(D6) 3aVn(6nv=°n + dnv e=[an]),

(D7) the strong overtake property for d and 5, i.e.

Vf //C6FvV G26FvVg3eVu//G [eu#0 ->

aw(gw+oA (f,G)s(d;w,6F(v*w))s(f:[u],G))J.

Wecall (D1)-(D7) the domain axioms.

A universe 05 projected from the single lawless sequence 6 is a domain
w.r.t. C iff there are w,d and 5 which define a domainw.r.t. C such that

06 = {e|nF6:e e C, F e FRAME}.

The sequences Nn5are the carriers of.the domain 06, dF(6x) is the
dressing, fiF(6x) is the frame and (dF(6x),6F(6x)) is the restriction for
NFGat stage x. D5(C) is the set of all domains w.r.t. C

6.2. THEOREM(models are domains).

If U6 e U5(C), C dependency-closed, then U5 6 D5(C), i.e. if n generates
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nests of GC-carriers and d generates the dressings for w (of. definition

4.5.2) and 6 is the mapping which assigns to (F,v) the frame for NFat v
(of. definition 4.3.12) then n,d and 6 define a domain.

PROOF.Imediate from definition 4.5.2 and the lemmata 4.3.14, 4.4.21 and
5.2.5. B

6.3. PROPERTIES OF DOMAINS

6.3.1. LEMMA.Let n,d and 6 define a domain, then 6 satisfies:

(a) 6Fv = F[Xn.6nv],

(b) 6FAGv = 6FvA6Gv,

(C) 6FV=6GV+ 6F(v*w)=6G(v*w).

(d) 66 V(v*w) = 6F(v*w).F

PROOF.

(a) Let g satisfy

(1) VF(6Fv=6F<>[gJ),

such a g exists by (D2b). By (D2a), (1) yields

(2) VF(6Fv=F[g]).

whence in particular, for all n, 6nv = (°n)[g] = gn (by definition of F[6],
3.1.16), i.e. g = An.6fiv. Hence (2) becomes

(3) VF(6Fv=F[An.6nv]).

(Comparethe proof of corollary 4.3.15.)

(b) 6FAGv= (FAG)[An.6nv] = F[An.6nv]AG[An.6nv] = 6FvA6Gv, the first
and last equality by (a), the second one by definition of F[6], 3.1.16.

(c) Assume 6Fv = 6Gv, let g satisfy VH(6H(v*w)=6Hv[g]). Then

6F(v*w) = 6FV[g] = 6Gv[g] = 6G(v*w).

(d) In View of (c) it suffices to show that 66 vv = 6Fv. Wefind
66 vv = 6Fv[An.6nv] by (a), and Vme£(6Fv)(6my=°m) by (D4), hence
6Fv[An.6nv] = 6Fv by 3.1.19(d); D
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6.3.2. LEMMA.Let n,d and 6 define a demain, then d satisfies:

(a) d;’AGw e d;,’wAd§F’w,
V V

(b) d6Fvw — dFw,

(c) dfriw//C5Fv. dFw//CF,

(d) Va(d;w|aeu) + ufl6Fv,

(e) Va(dFv|a(x)=y) + Va(dF(v*w)Ia(x)=y).

PROOF.

(a) The following equivalences hold by (D3c), 6.3.l(b), the definition

of vi (3.2.5) and (D3c) respectively:

V Kd w eev
FAG 6FAGv

K v K K v

(A n.dnw) :3 v6FvA6Gv(A n.dnw) as

K K v K

v6Fv(A n.dnw)Av

K v v v

6GV(A n.dnw) —-dFwAdGw.

(b) Like (a) above, now using (D3c) and 6.3.l(d).
(c) The first assertion is immediate from (D3c) and (D3d), the second

assertion follows from the first one by (D2a).

(d) AssumeVa(d;w|aeu), then in particular‘Vafl6Fv(d;wIaeu). By (c)
and 3.2.20(r) we find Va//6Fv(d;w|a//6Fv_. hence u//6Fv, by 3.2.20(d).

(e) Immediate from (D3b). U

6.3.3. COROLLARY..Lfn,d and 6 define a domain, then

VeVw[(e:dF(v*w), 6F(v*w))2(e:dFv,6Fv)].

PROOF. By (D3b), e:dF(v*w) m e:dFv:d;w, by 6.3.2(c) d‘F7,w//C6Fv,and

6F(v*w) = 6Fv[g] for some g by (D2b). U

6.3.4. LEMMA.Let n,d and 6 define a domain. Then

(a) nF6(x)=y ++ 3v(6ev A Va(dFv|a(x)=y)),

(b) VnVb(£bF=n+ jb(nF5)=wn6), and hence nF6flF,

(c) nF6eu ++-3v(6ev A Va(dFv|aeu)),

(d) 3gV6ev(nF6=dFvI(gI6) A g|6fl6Fv).

(d) states that WF5e range(A¢.dF(3x)[¢), and that the sequence w such

that wF6= dF(3x)|w has the form glé and is parallel to 6F(dx). Inspection
ofethe proof will showthat
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1 1 bn

w —v6F(Ex)(A n.s Iwnd),

where bn is the length of the initial segment of find that is available to us
at stage x (for fresh n). I.e. in projection models w is the source for

NFGat stage x, and this result is the one that was announced in 4.5.7.

PROOF.

(a) The implication from left to right follows trivially from (D1).
Fromright to left: let v be an initial segmentof 6 which satisfies

(1) Va(dFvIa(x)=y).

let w be an initial segment of 6 such that

(2) nF(i*w) # 0.

Since v and w are initial segments of the same sequence 6, we have v = w*u

or w = v*u'. In both cases we find flF(i*w) = y+1:

if v = w*u, then (2) implies (by (D1)) Va(dFw|a(x)=nF(i*w);l), hence
Va(dFwI(d;u|a)(x)=n(§*w);1), hence (by (D3b)) Va(dFvIa(x)=n(i*w);l), hence,
by (1), n(i*w) = y+l; if on the other hand w = v*u', then by (1) and (D3b)

Va(dFw|a(x)=y), while by (2) and (D1) Va(dFw|a(x)=n(i*w);l), hence
n(fi*w) = y+l.

(b) The second assertion is an immediate corollary of the first one.
To prove the first assertion let n be a label of F, and b e F a branch such

that £bF = n. Let x and y be such that flF5(X) = y, we show that

nn6(x) = jby.
By (a) above, there is an initial segment v of 5 such that

Va(dFv|:(x;=y). Hence Va(jb(dFv|a)(x)=jby). By (D3c), (D2a)
dFv e:vF(A n.dnv), hence (by 3.2.l6(c)), jb(dFv|a) = dnvljba, and we find
Va(dnv|jba(x)=jby), i.e. Vb(dnv|b(x)=jby), whenceby (a): nn6(x) = jby.
(Cf.4.5.5.)

(c) This is an easy corollary of (a) and (D3b).

(d) By (D6) and (D4) there is an a such that VneK(6Fv)(dnv==[an]).

Put b E An. lth(an), e 2 vi v(lKn.sbn), f E n V and g E ezf.
Then g satisfies (i) V6(gId%[Fv), (ii) V6ev(d:vI(gI6)=nF6).

(i) By (b), fI<S(=1r6V6) is parallel to fiFv, e//KF by definition, hence
e:f|<S//F by 3.2.20(r).
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(ii) Let 6 have initial segment v, and assume (dFv:gI6)(x) = y, i.e.
there is a u such that

(1) dFv(i*u) = y+1

and

(2) g 6 e u.

We show that there is a w such that 6 e v*w and

(3) Va(dF(v*w)Ia(x)=y),

whence (by (a)) V6'ev*w(nF6'(x)=y), hence nF6(x) = y.
From (2) and the definition of g (g E e:f), we find a u' such that

(4) Vceu'(e|ceu)

and

(5) f|6 e u‘.

f|6 E n6Fv6, so by (5) and (c) we find a w such that 6 e v*w and

(6) Va(d (v*w)|aeu').
5Fv

Hence by (4)

(7) Va(e:d (v*w)Iaeu).
5Fv

By (D3b)

e d (v*w) :2 e:d v dv w

Now

K K bn K K K K bn

(8) e.d6Fvv e:v6Fv(A n.s ).v6Fv(l n.dnv) —-v6Fv(An.s .dnv),

the first equivalence by definition of e, _6.3.2(b) and (D3c), the secondone
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by 3.2.16(e). By definition of b, sbnzdnyeeid for all n e £(6Fv), hence

(by (8) and 3.2;19(d» ezdé vv esid, whenceF

V. v

e.d6FV(v*w) —-1d.d w —-dFwaFv

the second equality by 6.3.2(b)). So (7) yields

(9) Va(d;w|aeu).

Then

(10) Va(dFv:d;w|a(x)=y)

follows by (1), hence (3) holds by (D3b). U

6.3.5. LEMMA.Let n,d and 6 define a domain. Then

(a) (f,G)2(e:dFv,6Fv) +

3e2VuAM}[e2u#O+ 3w((f,G)S(e:dF(v*w),fiF(v*w))s(f:[u],G))],

(b) if id 6 C then I

Ve]3e2Vu//5Fv [e2u7‘0 —>

3w(e1W?‘0A (e:dF(v*w),6F(v*w))s(e:dFv:[u],6FV))J,

(c) if [u] e C for all u, then‘Vafl6FvVx36evCfi;Rx)= d;yTa(x))],

(d) vvafvwtfrw//5Fv A Vx(f(3‘;*w)#0+ Va(d;w|a(x)=f(S‘:*w);l))],

(e) if sn 6 C for all n and C is closed under composition, then

Ve23e1Vw[e1w#0 +

3ufl6Fv(e2u#0A»(e:dFv:[u],6Fv)s(e:dF(v*w),fiF(v*W)))],

(f) if sn 6 C for all n and C is closed under composition and pairing, then

VgeCVHVFVu3feCE-IG

[((e:dFu)A(f:dGu), 6FuA6Gu)Z((e:dFu)Ag, 5FuAH)].

Note that the conditions on C in (b), (c), (e) and (f) are automatical
ly fulfilled if C is dependency-closed.

(a), (b), (c) and (e) are corollaries of the strong overtake property
(D7).
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(a) says that with any restriction (f,G) stronger than (e:dFv,6Fv) we
can find a bar e2 such that with all u parallel to G in this bar there is
a w such that (e:dF(v*w)fiF(v*w»overtakes (f,G), but remains weaker than
(f:[u],G).

(b) says that with each bar e] we can find a bar e2 such that if
2 then there is a w in the bar e] such that the re

striction (e:dF(v*w),6F(v*w)),.whichis stronger than (e3dFv,6Fv), is still
14flfiFv' lies in the bar e

weaker than (e:dFv:[u],6Fv).
(c) says that we can choose 6 e v such that the initial segment

?;§(x) of 1rF6equals grTa_(x), for any at/6Fv. (Recall that by 6.3.4(d)
for all 6 e v, HF5 = dFv|w, for some wfl[Fv.)

(e) says that with any bar e2 there is a bar e] such that if w lies
in the second bar then (e:dF(v*w),6F(v*w)) is stronger than (e:dFv:[u],6Fv)
for someu//6Fv in the first bar.

(d) says that there is a mappingf such that for all ¢ f|¢ is the in

tersection of the ranges of Alw. d;($x)I¢. (E.g. for v = 0, we can take
f = NFby (D1).) f satisfies V¢(fI¢fl6Fv).

(f) finally says somethingabout the existence of restrictions of the

form (f:dGu,6Gu).
Let (e:dF(§x),6F(5x))'be the restriction for e|nF6 at stage x and let (g,H)
be an arbitrary restriction, g e C.

Note that ((e:dF(3x))A(f:dG(5x)), 6F(5x)A6G(§x))is equivalent to
((eAf):dFAG(6x), fiFAG
6.3.l(b). Thesecondrestriction is the restriction for

(5x)), by distributivity of: over A,6.3.2(a) and

eAf|n 6(=j(eInF6,f|nG6)) at stage x.FAG

The claim is that we can choose f and G in such a way that this restriction

is stronger than ((e:dF{Ex))Ag, 6F(3x)AH).

PROOF(of 6.3.5).

(a) Assume (f,G) 2 (e:dFv,fiFv), then we can find an f' and a 9 such that

(1) G = 6Fv[g],

(2) f e: e:dFv:f', f'//C 6Fv,

i.e. we have (f',G) 2 (id,fiFv).
By (D7) we find an e2 such that if u//6Fv and ezu 340 then for some w

(f',G) s (d‘1§w.6F(v*w))s <£':£uJc>.
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But then

(e:dFv:f',G) s (e:dFv:d;w,6F(v*w))s (e:dFv:f':[u],G),

by 5.1.6(d), and hence by (2) and (D3b)

(f,G) S (e:dF(v*w),6F(v*w)) S (f:[u],G).

(b) If id e C, then (id,fiFv) 2 (id,6Fv). Hence, by (D7) we find

Ve]Ele2Vu//fiFv[e2u¥0 -> 3w(elw=fOA (d¥w,6F(v*w))s([u],6Fv))] .

But if (d;w,6F(v*w)) S ([u],6Fv), then also (by 5.l.6(d))
(e:dFv:d;w, 6F(v*w)) S (e:dFv:[u],fiFv), i.e. (by (D3b))
(e:dF(v*w), fiF(v*w)) S (e:dFv:[u],6Fv).

(c) Let a//6Fv and x be arbitrary. Let y satisfy

(3) dFvr(55o,; E;GT§(x) (1.3.12).

Since [V] e C for all v,

(dFv:[ay],6Fv) 2 (dFv,6Fv) (5.1.6(c)),

hence, by (a) above, there is a w such that

(dF(v*w),6F(v*w)) 2 (dFv:[ay],6Fv),

whence dF(v*w) ==dFv:[ay]:f for some f. But then we find that for all b

(4) dF(v*w)|b = dFv:[ay]|(f|b) e dFvr(§y) (1.3.11),

hence ((3), (4)):

vb(dF(v*w)|beE;GTE(x)).

By 6.3.4(a) this yields
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V6'ev*w(nF6'edFv|a(x)),

whence by LS1 (which implies 36(6ev*w))

36ev(flF6(x) = dFv|a(x)).

(d) Let v be arbitrary. It suffices to showthat there exists an f e K such
that

Vxw[f(fi*w)#0+ Va(d;w|a(x)=f(i*w);1)],

for such an f will automatically satisfy VwVa(d;w|aeffw),whence, by
6.3.2(d), frw//5Fv.
Let a be such that Vne£(5Fv)(d v=:[an]) (cf.(D6) and (D4)), put

b E An.1th(an), e E v? v(XKn.s n), g E N6 V. (See the proof of 6.3.4(d).)
Define f by f0 = 0, f(i*w) = (e:g)(§*v*w) = e(i*gF(v*w)). Obviously, f is
an element of K. Nowassume f(§*w) = y+l, i.e. e(§*gP(v*w)) = y+l. By (D1)
we have:

Va(d6Fv(v*w)|a e gP(v*w)) (g 2 1r6Fv!)

hence

Va(e(i*d6Fv(v*w)Ia)=y), i.e. Va(e:d6Fv(v*w)la(x)=y).

As in the proof of 6.3.4(d) we have e:d6Fv(v*w) ezdgw, so we find
Va(d;wIa(x)=y), where y = f(§*w);l, as desired.

(e) Let e be arbitrary. Put el E e2;f E Aw.e2(fFw), f as in (d); Assume
u # 0 and

2

that elw'# 0, i.e. e2(ffw) # 0, we must find a uflfifv such that e
(e:dFv:[u],6Fv) S (e:dF(v*w),6F(v*w)).

2

We take u = f|‘w, then u//6Fv (by (d)) and e2u 340. In order to prove
that

(e:dFv:[ffw];6Fv) 5 (e:dF(v*w),6F(v*w)),

it suffices to showthat there are g and f' such that
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(S) 6F(v*w) = 6Fv[g].

(6) [fFw]:f' zsdgw, f'flCfiFv (use (D3b)).

(5) follows immediately from (D2b).

For (6), take f' essnzdgw, where n E lth(ffw). Wefind that by (d)

Va(d;wIa = (ffw)*Az.d;w|a(n+z))

hence [ffw]:f' ==d;w.

Moreover sn 2=v§fv(XKm.sn) bY 3.2.]6(f)9 dgw e:v§Fv(AKm.d;w) by (D3C)9

hence f' 25v: V(kKm.sn:d;w)by 3.2.16(e).F

sn 6 C by assumption, Vm(d;w e C) by (D3d), hence Vm(sn:d;w e C) (by assump

tion C is closed under composition) and this yields f'flC6Fv.

(f) Let g e C, H, F and u be arbitrary. Wefirst construct a g and a G such

that 5FuA5Gu= (5FuAH)[gJ.

Let m be a label of 6Fu. Let g satisfy

Jfm if n i K(6Fu)9“ =

[°n otherwise.

Put G H[g].

By definition of G and g, keK(G) + ke£(fiFu), hence (by (D4))

keK(G) + fiku=°k and hence 6Gu = G[Ak.6ku] = G (the first equality by

6.3.l(a)). By definition of 9 we have keZ(6Fu) + gk=°k, hence fiFu[g] = 6Fu.
So

(7) 5FuA5Gu = 6Fu[g]AG = 6Fu[g]AH[g] = (6FuAH)[g].

(The first equality is imediate.from the foregoing, the second from the
definition of G, the last one holds by definition of F[6], (3.1.l6).)

Next we construct an f e C such that f:dGu esg.

Let a be such that Vn€K(fiFu)(dnuc=[an]), this a exists by (D4) and
(D6). Put b E An.lth(an), f' E v§(AKn.sbn) and f E g:f'.

By assumption, C contains all functions sn and is closed under pairing,
hence f' e C. By assumption g e C, and C is closed under composition, hence
f e C. Moreover
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KKb KK
f:dGu e:g:vG(A n.s n):vG(A n.dnu),

by definition of f, f', (D3c), and the fact that ficu = G. By 3.2.l6(e)

v§(AKn.sbn):v§(AKn.dnu)=3v§(lKn.sbn:dnu).

All labels of G are labels of 6Fu, hence by definition of b sbbn
nzdurxid

K K . "
for all n e £(G), whence vG(A n.s zdnu) ==1d and

(8) f:dGu u g.

From (7) and (8) we find

((e:dFu)A(f:dGu), 6FuAfiGu)Z ((e:dFu)Ag, 6FuAH). D
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CHAPTER 7

FORMAL SYSTEMS; SUMMARY OF TECHNICAL RESULTS

7.1. OUTLINE

This chapter consists of two parts, 7.2 and 7.3.
In 7.2 we shall show that the results we have obtained so far can be

formally expressed and derived in IDB and LS. More precisely: we shall in
1

troduce definitional extensions IDBF*and LSF* of IDB and ES respectively
1

(F for frame) in which the foregoing can be formalized. The fact that these
extensions are definitional meansthat we can translate our results into

32%] and ES.
In 7.3 we have listed the lemmata and facts of the previous chapters

to which we shall refer in the sequel, supplemented with someproperties
of the 2-relation between restrictions which have not been proved before.

This chapter does not claim to contribute to a better understanding
of projected universes of GC-sequencesand of domains and their properties.

The reader is advised to glance through 7.2 and to skip 7.3 altogether
(it is to be used merely as a source of reference) except maybesubsection
7.3.7 which contains the newresults on the 2-relation.

7.2. FORMAL SYSTEMS

The system IDBF(7.2.l-7.2.7).

7.2.1. IDBFis a definitional extension of IDB0(i.e. without K-variables,
cf.l.3.8, [KT70]section 3.1) in which the theory of frames and nestings
of chapter 3 can be formalized.

(a) Symbols of the language of IDBFare those of TQQOand in addition:

(i) two countable sets of variables, for frames (F,G,H,F0,G0,HO,...) and
for lawlike sequences of frames (6,g,fi ..) respectively;0980: °

(ii) the constants nodes, K, 0, A, prod (for the definition of frames
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F[6]).T'(t0 be explained below), HF (for the definition of frames by
recursion), v, AF, =F and branch-of.
(b) Besides number- and function terms (Tm and F-Tm), LQQEhas frame

terms (Fr-Tm, meta-variables F,G etc.) and frame-function-terms (Frf-Tm,

meta-variables Fl,G1 etc.). The term-formation rules are those of LQQOand
(i) if F e Fr-Tm, t 6 Tm, then nodes(F), £tF, W(F) and vF¢

are number terms;

(ii) frame-variables are frame-terms; if F,G e Fr-Tm, t e Tm, F1 e Frf-Tm

then F A G, prod(F,F]) (or shortly FEFIJ), and HF(F,F1,t) are frame
terms;

(iii) frame-function-variables are element of Frf-Tm; the constant 0 be
longs to Frf-Tm; if F e Fr-Tm, n a number variable then

AFn.F e Frf-Tm. (Weshall omit the superscript F below.)
(c) Prime-formulae and formulae are defined as usual, with two addi

tional prime-formula clauses: if t e Tm, F,G e Fr-Tm then branch-of(t,F)

(or shortly t e F) and F =F G are prime-formulae. (Weshall omit the sub
script F below.)

(d) The axioms of TQQFare those of IDB (schemata extended to the new-~0
language), AC-NF(also in the language of IDBF) and

(i) the defining axioms for the constants branch-of, nodes, K, =F, 0, A,
prod and v as given in chapter 3;

(ii) the defining axioms for H (which allow a special kind of definitionF

of frames by recursion): HF(F,6,O) = F,
HF(F,fi,n+1) =.(HF(F,6,n))[Am.6j(n,m)];

(iii) the axioms for W:

W(F) = W(G) ++ F = G, (W is a 1-1 extensional mapping)

3F(n=TF) A'13F(n=WF) (range (V) is decidable);
. F .(iv) the A -conversion rule;

(v) the choice-axiom (AC-NFrf)

Vnafi A(n,6) + 3gVn A(n,Am.gj(n,m)).

7.2.2. Féglg.

(a) The properties of °n, F A G, F[6], vF¢ which we derived in chapter
3 are provable in LQQF.

(b) If v and w are two finite sequences of equal length, v is without

repetitions and the relation 3n<lth(v)(b=(v)n) betweenb and v satisfies
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the axioms of the relation branch-of, then there is an F such that b e F

iff 3n<lth(v)(b=(v)n) and £bF = m for b e F iff 3n<lth(v)(b=(v)n A m=(w)n).
This is provable in LQQFby induction w.r.t. the length of v.

(c) The properties of ht given in 3.1.12 are derivable in TQQF.To
prove ht(F)>O + 3GH(F=GAH)we need fact (b).

(d) The principle of induction over frames is provable in LQQFby a
reduction to ordinary induction over 11 via ht as indicated in 3.1.13.

(e) All properties of frames expressible in LQQFare extensional, i.e.
IDBF I- F=G -> (A(F) <-> A(G)) .

7.2.3. It is easy to see that TQQFis indeed a definitional extension of

TQQO. One can define in TQQOa subset FRAMECODEof 11 with a primitive
recursive characteristic function, which may serve as the range of the
frame-variables and frame-terms. Frame-function-variables and -terms can

then be interpreted as lawlike mappings from I1 into E1 whose range is a
subset of FRAMECODE,constants like ",K,A etc. are interpreted by (suitably

chosen) mappings from E1 into E1, and definition of frames by recursion
reduces to ordinary definition by recursion. The constant T can be inter
preted by the identity mapping.

7.2.4. The addition of the constant HF to TQQFand its defining axioms are
completely ad hoc: they make it possible to construct terms jps[v,n],

6[n,v] and 6[F,v] which satisfy the defining equations for jps(v)(n), finv
and 6Fv of chapter 4.(0f course nf(v) is definable already in IDBC.)

7.2.5. Via the constant T we can reinterpret mappings from D! into E1 as

mappings from FRAMEinto ]N. With a:l\I ->]N we associate ¢: FRAME—>N where

¢ is defined by ¢(F) = a(TF). That is to sayain LQQFwe can quantify in
directly over lawlike mapping from FRAME+ F1, and if we combine the use of

(FRAMEXID FRAMXFRAM
, E1 eWwith pairing also over I1 tc.

7.2.6. Pairing (as we have seen before) makes it possible to reinterpret a
lawlike b:I1-*lJ as a lawlike ¢:l1 + N. With b we associate the mapping

¢: n|+ (b)n. Hence we can discuss (and quantify over) lawlike mappings
from E1 into the lawlike part of N in TQQF.In particular we can put for

¢ 6 F-Tm, F e Fr-Tm: A1n.¢[n] Edef lz.¢[jlz](j2z) (cf.3.2.l5), then
x‘n.(¢)n = ¢, and v;¢ 2 v;(A‘n.(¢)n) sdef Az.vF(ln.(¢)n(z)) (cf.3.2.8(a)).

Using Was in 7.2.5 we can also talk about lawlike mappings from FRAME

into the lawlike part of N inside TQQE.
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Just as we use b e N to 'code' mappings ¢: Ii + N we can use

6 e FRAMEN to ‘code’ mappings (1): N -> FRAMEN. I.e. in IDBF we can in

directly discuss and quantify over lawlike mappings from 11 (or FRAMor
N X FRAMEetc.) into FRAMEIN.

7.2.7. FACT.The nesting-and //- properties not involving vk or //C can be
expressed and proved in IDBE.

The system IDBF (7.2.8-7.2.11).
1

7.2.8. LQQEIis obtained from TQQEby adding K-variables and constants for
elements of K and operations on K to the language, and specifying term-for

mation rules for a set of K-terms. (I.e. the relation between LQQEand
£223
IDBF

1 is like the relation between Egg and IDBI.) The full description of
1 is in 7.2.9 below.
Note that we can associate with each e e K a mapping ¢: Ii + K, putting

¢(n) = Xv.e(<n>*v). In IDBF we can quantify indirectly over Klq, and, if
we use Was in 7.2.5-6, alsd over KFRAM, K1qxFRAMEetc.

TQQEIhas constants AKand vK, and the rules for term-formation speci
fy that if F e Fr-Tm, ¢ 6 K-Tm, n is a numerical variable then AKn.¢ and

v§¢ are K-terms (see 7.2.9).
AKn.¢[n] is the element of K which represents the mapping

n|+ ¢[n] e Klq, i.e. AKn.¢[n] is defined by the axioms
AKn.¢[n](O) = o, AKn.¢[n](x*v) = ¢[x](v). It follows that
e 2 }.Kn.().v.e(<n>*v)).

vie is the F-nesting of the mapping nv+ Av.e(<n>*v) 6 K1; represented
by e, i.e. as axioms we have

K K K
vane = Av.e(<n>*v), vFAGe F G

7.2.9. The complete definition of IDBF1is as follows:
(a) The language of IDBF consists of the language of IDBFplus

f
1

(i) a set of K-variables e,f,g, etc.30’ o’go

(ii) constants appo, app] (for neighbourhood-function-application -(-) and
-I-),A' (for K-abstraction), AK(for the formation of K1)-elements),
shift, prix, nestinv, dpl and nest (to form neighbourhood-functions in
K for the shift- (a H-Xz.a(n+z)), prefix- (a H-v*a),nesting-inverse
(a H-Az.j a), duplicate- (aF+ j(a,a)) and F-nest-mapping

1 . .

(a'+'vF(A n.a)) respectively), and constants for operations on K
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(ii)

I1€W

(i)

(ii)

(iii)

(iv)

7.2.
(a)

(b)

(c)
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namely ;,:,A,x,vK (nesting).
(b) The term formation rules for IDBF are those of LQQEplus
the formation rules for the set of K-ierms (K-Tm, ¢ and w are used as

meta-variables for this set), namely:
K-variables are in K-Tm; the constant dpl is in K-Tm; if t e Tm,

F e Fr-Tm, n and m are distinct numerical variables and ¢ and w are

K-terms then A'n.Sm, A'v.¢(t*v), A'v.h(¢,v) (h as defined in 1.3.19),
XKn.¢,shift(t) (shortly st), prix(t) (shortly[t]), nestinv(t)

(shortly jt), nest(F) (written as nestF), ¢;w, ¢:w, ¢Aw,¢Xwand

finally v§¢ are elements of K-Tm;
the following new formation rules for Tmand F-Tm: if t e Tm,

w],...,¢p 6 F-Tm and ¢ e K-Tmthen ¢t e Tm, app0(¢,¢],...,wp) e Tmand

app1(¢,w],...,wp) e F-Tm.For appO(¢,w],...,wp) we write ¢(w1,...,wp)
app](¢,¢],...,¢p) is abbreviated to ¢|(w1,...,wp).
(c) Formulae and prime-formulae are constructed as in LQQE.
(d) The axioms of IDBF are those of IDBF (schemata extended to the

1

language) and

the defining equivalences for appo and app] (l.3.lO):

e(a1,...,ap)=y ++ 3v(vp(a1,...,ap)ev A ev=y+1)
eI(al,...,ap)(x)=y ++ 3v(vp(al,...,ap)ev Ae(x*v)=y+1);_

K .tfx], the A -conversion rulesthe A‘-conversion-rule: A'n.t[n](x)
(see 7.2.8);
the defining equations for the remaining constants (for dpl and nest

these are given in 9.2.1, for sn, [v],jb the precise choice is irrele
vant (cf.1.3.l6), for ;,:,A,X the definitions are given in l.3.17,18,
21 and 23, for vK finally the defining axioms are specified in 7.2.8
above);
the axiom expressing that K-variables range over K, i.e.
VaVe(Vz(az=ez) ++ K(a)).

IO REMARKS.

Weshall omit the superscript 'in A‘ below, i.e. we do not make the
syntactic distinction between e.g. the K-element A'v.e(<n>*v) and the

does.
1

So for we have not used the mappings dpl and nest
mapping Av.e(<n>*v) e N as LQQE

F. They will play a
r6le only in chapter 9.

Until now jva was used to abbreviate lx.jV(ax). From now on we put
3 Va 5 jvla (which is extensionally equal to Ax.jV(ax)), i.e. we treat
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v
(d) Our choice of K-Tmis a matter of convenience. It makes it possible to

j in j a as a neighbourhood-function.v

express the properties which we are interested in, without muchcircum

scription, in the language of IDBF]

7.2.11. FACT.The systems IDBF and IDBFare equivalent: there is a trans
1

lation from IDBF] into IDBFwhich preserves derivability and which maps

each sentence A of IDBF] to a sentence A‘ of IDBFwhich is equivalent (in

IDBFI), moreover the range of the K-variables and all constants of IDBF]
are definable in IDBF.

PROOF.The only problem is to eliminate the constant vK. The axioms of

LDBFIdefine this constant by recursion over frames, but such a definition
is not generally possible in IDBF. Combining the vK-axioms with the axioms
for A (definition 1.3.23) we find that

e(<n>) if F = °n,

v§e(0) =
0 otherwise;

K & ‘ A Q

vFe(x*v) = ¢(F,e,x*v)-(1+vF,(Aw.w(w,F,e,x*v))).

Here ¢(F,e,x*v) E sg(flb€Fe(<£bF>*x*kbv)),

w(w,F,e,i*v) E e(<£wF>*x*kWv):l, and F‘ is the frame with the same branches
as F, but satisfying VbeF(£bF'=b)(each branch is labelled with itself).
There is a term t1[e,F,0] of TQQEIwhich satisfies the equation for
v§e(O), there is a term s[e,F,i*v] which satisfies the equation for
¢(F,e,§*v) (use nodes(F) to construct a term card(F) and an enumeration of

the branches of F, then flb€ can be defined by an ordinary primitive re
cursion), there is a term s€[w,e,F,x*v] which satisfies the equation for
w(w,F,e,x*v), it remains to show that there is a frame-term F(F) such that

VbeF(Kb(F(F))=b).
This term is constructed as follows.

(a) Ubing nodes(F) construct a mapping x such that xn = 0 if n ¢ nodes(F)

or n*<O>¢ nodes(F) or n*<]> d nodes(F) and which gives the value 1 other
wise.

(b) Put g E An.(°(n*<0>)A°(n*<l>)), 6 E Am.g(j2m) (i.e. 6(k,n) = gn), and

put 6' E An.HF(°n,6,xn); then fin = °n if n is not in n(F) or n is a terminal
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node of F, and 6'n = °(n*<0>)A°(n*<l>) if n is a non-terminal node of F.

(c) Put F(F) E HF(°0,Am.6'(j2m),ht(F)).
The proof of the correctness of this definition is given by introducing
F(F,k), defined as F(F) but with k instead of ht(F), and then showing that

b e F(F,k) iff lth(b) S k and b e nodes(F), while £b(F(F,k)) = b. This is
done by induction w.r.t. k using the explicit characterization of F[6]
(3.1.l8). D

For the formulation and proofs of the flc-properties and the properties
of 2 between restrictions and for the treatment of models and domains, we

enrich IDBF to the system lDBF*.
1

7.2.12. ;Q§§* is LQQEIwith two additional constants in its language, C and
J, a term-formation rule J 6 K-Tmand a new type of prime-formulae: if

¢ e F-Tm, then C(¢) is a prime-formula. Axioms to be added are:
C is a subset of K: C(a) + 3e(a=e),

C is closed under 2:(cf.1.3.26): C(Az.ez) A e==f + C(Az.fz).

For C(Az.ez) we shall simply write e e C. J will be used only as re
presentative of the mapping nv+ Av.J(<n>*v) e KI‘. Therefore Jn will mean
Av.J(<n>*v).

l

F"’F
have been stated so far can be formulated and proved in IDBF*.

All properties of v ,\)E,//, //C and 2 (between restrictions) that

7.2.13. Models and domains in LQ§§*.

There is a frame-term jps[v,x] of LQQEsuch that for all V the de
fining equations for jps(v) (4.3.4) are provable in TQQEfor Xx.jps[v,x].

Using jps[v,x] we can express by a formula GFS(6) (GFSfor ‘generates

frame-sequences’) that the mappings (n,v)'+ 6(W(°n),v) and

(F,v) + 6(W(F),v) satisfy the defining equations for fifiv,6Fvrespectively
(4.3.9,4.3.l2).

In fact there is a frame-term F(n,v) of TQQEwhich satisfies the equa

tions for fifiv (4.3.9), hence for the mapping 6 such that
6(W(F),v) = F[Xn.F(n,v)] we can prove GFS(6) in LQQE.

The properties of jps and 6Fv that are derived in 4.3 are provable in
LQQEfor the corresponding term jps[v,x] and the mappings 6 satisfying
GFS(6) .

In the language of lQ§§* there are formulae JPF(e), UP(a,e,f,6) and
GEV(g,a) which express the following: JPF(e): the mapping Aw.e(<v,n>*w)
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behaves as jf(v)n (4.4.3) (in JPF the constant J occurs),
UP(a,e,f,6): a(v) behaves as upb(d,v) (4.4.9) if Xw.e(<v,n>*w)is used as

jf(v)(n) and 6j(WF,v) as 6Fv while the r3le of d: IJ><Ei-+K is played by

f, i.e. dnv e K is Aw.f(<v,n>*w),
GEV(g,a): Aw.g(<v,n>*w)behaves as gv(d,v)n (4.4.l0) if a(v) is used as
upb(d,v).

In IQ§§* one can prove 3e JPF(e), Veffiaa UP(a,e,f,6) and Vaag GEV(g,a).

For JPF one easily defines an F-Tm ¢ such that IQ§E* F 3e(ee=¢ A JPF(e)).
We can use JPF, UP and GEVto construct formulae DG0(f,6) and DG(g,6)

which express that the mappings do: 1i><IJ+ K represented by f(i.e.

Aw.f(<n,v>*w) E dnv) and d: IJX FRAM X Ii + K represented by g (i.e.

Au.g(<v,T(F),w>*u)E dgw) belong to DGO(J) and DG(J) respectively (the
formulae DG0and DGcontain the constant J in JPF), if 6 plays the role of
frame-sequence-generator.(cf.4.4.l1,4.4.l7.)

In IQ§§* we can prove 3f DG0(f,6) (4.4.12). In the appendix we show

that there is an F-Tm¢[n,v] of IQ§§* such that 3f(Vnvw(¢[n,v](w) =
= f(<n,v>*w))ADG0(f,fi)). Once we have an f such that DG0(f,6) we can con

struct a g such that DG(g,6) (4.4.l9). All properties of do e DGO(J)and
d e DG(J) mentioned in chapter 4 can be derived (assuming GFS(6), DG0(f,fi),

DG(g,6)) for the mappings (n,v) H-Xw.f(<n,v>*w) and (v,F,w)'+
'+ Au.g(<v,W(F),w>*u)respectively in I2§£*.

There also is a formula GNGC(e,g,6) which expresses that W: F'+ NF 6 K

defined by NF 5 Aw.e(<WF>*w)generates nests of GC-carriers, that

d: Nx FRAWEx N —>K defined by d}F’w5 d(‘_v,F,w) 2 Au.g(<v,‘P(F),w>*u)

generates the dressings for W, and that {j(¥(F),v) is the frame for nF at
v (4.5.2). GNGC(e,g,6) has ‘J enumerates C modulo e? as a sub-formula. The

existence of g,e, and 6 such that GNGC(e,g,6) is provable in IQ§§* from the

assumption ‘J enumerates C modulo 2?. (It suffices to construct HFfrom d
as in 4.5.6.)

Weshall continue to use n,d,6 and expressions like N d;w, 6Fv etc.9

as in chapter 4 but now as abbreviations for K-terms in IQEE . E.g. for
GNGC(e,g,6) we write GNGC(w,d,fi).

From GNGC(w,d,6)we can derive the properties of n mentioned in 4.5.

Obviously there is an IQ§§* sentence dclosed(C) which expresses that
C is dependency-closed. For dclosed(C) A GNGC(n,d,6) we write model(fl9ds6T

In 5.2.4 we have given the formula which expresses that the pair (d,6)
has the strong overtake property. The.proof of model(H,d,6) +.strong overé
take(d;6) (5;2.5) as given in 5.3, 5.4 can be formalized.in_£§E* (to be
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discussed below) hence this implication is provable in IDBF*(via the eli
mination theorem).

Finally we can express in ;Q§§* that fl,d and 6 satisfy the domain
axioms (6.1.2). The formula which does so is denoted by domain(n,d,6). The

properties of domains derived in 6.3 can be formally proved in LQ§§*. The
same holds for the theorem that models are domains (6.2):

lQ§§* E-model(n,d,6) +-domain(n,d,fi).
Weconclude section 7.2 with the introduction of LSF* (7.2.l4-15).

7.2.14. Over LQ§§*we define a formal system for the theory of lawless se
quences §§§* as follows (cf. the description of Lg in [T77]).

(a) To the language of lQ§§* we add variables for lawless sequences

a,aO,o] etc.
(b) Weintroduce a set L-Tmof lawless sequence terms, which contains

only the lawless variables.
(c) We leave the definitions of Tm, F-Tm, Fr-Tm, FrF-Tm and K-Tmun

changed, so these contain only terms with lawlike parameters, and add a set
Tm*of terms which may contain lawless variables. Tm*contains the same ex

pressions and is closed under the same term-formation rules as Tm(with
one exception, see below), and satisfies in addition:

if a,a1,...,ap e L-Tm; t e Tm*then at E Tm*, e(a],...,ap) e Tm*and
eI(a],...,ap)(t) e Tm. *

(d) The formation rule for recursion terms in Tm is slightly changed
w.r.t. the corresponding rule for Tm(the exception mentioned above) as
follows:

if t],t2,t3 e Tm*and x is a numerical variable, then
H(t1,(Xx.té),t3) e Tm*.

Thus we introduce expressions for natural numbers defined by recursion
w.r.t. a lawless parameter (like e.g. dx), without having function-terms
for constructs of lawless sequences.

(e) Prime formulae and formulae are defined as usual.

(f) Axiomsfor the theory are:

(i) The axioms of ;Q§§* (schemata in the new language, but with the
stipulation that instances of AC-NFcannot contain a lawless parameter,
and terms now ranging over Tm* instead of Tm.

(ii) Thedefining axiomsfor e(a1,...,ap), el(a],...,ap)(x), similar to
those for the lawlike case.

(iii) Axiomsfor the new recursion terms (obvious).
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(iv) The usual kg-axioms, in the new language.

7.2.15. REMARKS.

(a) Elements of K-Tmand F-Tm in £§§* cannot contain lawless variables,
so [ax], sax are not in K-Tm. Such K-functions can be discussed only in

directly in the language of g§§*. Moreover, in the prime formulae K(¢) and
C(¢), ¢ is an element of F-Tm, hence these formulae are lawlike.

(b) £§§* does not contain expressions for constructs of lawless se
quences like ela, but it does contain expressions for the values of such
constructs. Still we use expressions of :he form ela, e(fIa)frequently be
low. For the formalization of our arguments this is harmless, eventually we
are interested only in the values of such sequences.

(c) Note that we can formally define what we mean by the substitution

of an expression e|B for a (and of e|(fIB) for a, etc.) in a term tfa].
Some examples:

ax[(eIB)/a] E e|B(x),
e|a(x)[(f|B)/a] E e:f|B(x),
e(a)[(fIB)/a] E e;f(B),

e(a],a2)[(fIB)/al] E e;(fAid)(B,a2),
e|(al,a2)(x)[(fIB)/a2] E e:(idAf)l(al,B) etc.

(d) All theorems in the sequel can be formalized in the monadic part
of LSF* (domains and models are projected from a single lawless sequence 6).

7.2.16.%.
(a) The following continuity schemata are derivable in g§§*:

Va3F A(a,F) + 3eVv(ev#0 + 3FVaev A(a,F)),

Vaflfi A(a,6) + 3eVv(ev#0 + 36Vaev A(a,fi)).

(b) The elimination theorem for gs relative to gggl can be extended to
§§§* relative to ;Q§§*.

$393
(a) Va3F A(a,F) is equivalent to Va3n3F(W(F)=nA A(a,F)). By the or

dinary Vafln-continuity axiom we find that for some e if ev # 0 then
3nVaev3F(W(F)=nA A(a,F)). But ¢(F) = n uniquely determines F, so we can

interchange Vaev and SF. VaafiA(a,6) is treated similarly.
(b) By a straightforward adaption.of the original proof of the elimina

tion theorem. Note that the new classes of terms Fr-Tm and Frf-Tm will pose
no problem because their elements are lawlike. D
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7.3. SUMMARY OF LEMMATA

In this section wehave put together the technical results of the pre
vious chapters which remain important in the sequel, supplemented with some
properties of the 2-relation betweenrestrictions which have not yet been
discussed but will be used later on.

K-functions and related topics (7.3.1-7.3.5).

7.3.1. With each e e K and finite sequence w we have associated (in 1.3.11)
a finite sequence efw such that

lth(efw) = mink<1th(W)(e(<k>*w)=O)[=lth(w) if Vk<lth(w)(e(<k>*w)$0)]a
Vx<1th(eTw)((eFw)x = e(i*w);1).
Properties of efw are (1.3.12):

(a) Vx3y2x(31—a(x).4 ef(§y)) .
on wax s y<er<2y> = E'T£<x>>.

Rememberthat e;f E Aw.e(fFw) (1.3.l7).def

7.3.2. A is a pairing operation on K w.r.t. ea which satisfies

(a) j1(eAfla) = eljla, j2(eAfIa) = fljza (1.3.23)
(b) (eAf):(e'Af') e=(e:e')A(f:f') (1.3.24(f))
(c) eAe' 9-’fAf' iff e 2 f A e' at f' (1.3.24(e)).

7.3.3. [V] denotes the neighbourhoodfunction such that [v]|a = v*a,
sn is an element of K satisfying snla = Az.a(n+z) (1.3.16).
[ ] satisfies:
(a) [k z]A[k z] etfz] (1.3.24(g))

‘ 2 lth(v)(b) Va(eIaev) + e e£[v]:s :e (1.3.24(c))
Note that as a corollary of (b) and 7.3.1(b) we have
(c) £:[v]== [£1v]:sm:£:[v], wherem= lth(ffv). (l.3.24(d))

7.3.4. The mapping exf (composition of the bars e and f) is defined as

Au.sg(eu).f(<h(e,u);1>*hC(e,u)) (l.3.21), whenceeXf(u)#0 + eu#0 and even
eXf(u)=m+1 + 3vw(u=v*w A ev#0 A f(<v>*w)=m+1).

7.3.5. As an important property of K-nestings we recall

vbeF(jb(u§¢|a) = ¢(£bF)|jba) (3.2.16(c)).
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7.3.6. The relations // and //C (3.2.l8-21).

A sequence ¢ 6 N is parallel to the frame F, notation ¢//F, iff

vbb'eF(£bF=£b,F + jb¢=jb,¢).
Likewise, if v is a finite sequence, then

v//F zdef vbb'eF(£bF=£b,F —>kbv=kb.v) .

An element e of K is C-parallel to F (e//CF) iff there is a 4): 11+ C

(represented by f e K through cbn= >.v.f(<n>*v)) such that e 94\)§¢.

Properties oi // and //C
(a) If F has a 1-1 labelling, then ‘v’a(a//F) and Vv(v//F) (3.2.21(e))

(b) Va(a//(°n)). Vv(v//(°n)), VeeC(e//C(°n)) (3-2-20(n).21(a),(b))
(C) a//FAG -> jla//F A jza//G, V//FAG —>klv//F A kzv//G (3.2.20(f),21(c))
(d) a//F A m¢£F + Vb(j(a,b)//FA(°m)) (3.2.21 (k))

(e) Vv3v'v"(klv'=v A k2v'=v" A V'//(°0)AH) (3.2.21(m))
(f) a//F<-> Vx(ax//FA ).z.a(x+z) //F) (3.2.20(d))

(g) a//GA GZF—>a//F, (3.2.20(j))

V//GA G2F+ v//F (3.2.2l(f))

if C is closed under pairing then e//CG/\ G 2 F ->e//CF (3.2.20(k))
(h) FNG ->Va(a//G<-+ a//F) (3.2.2l(g))

(j) e//CFA a//F-> ela//F, e//CFA v//F—>efv//F (3.2.20(r),2l(j))
(k) if C is closed under pairing then e//CF—>e e C (3.2.20(m)) .

7.3.7. The2-relation betweenrestrictions (5.l.2-7).

(f.G) 2 (e,F) Edef 33//CF(f-"-’ e=8) A GZF.

<£,c> as (e,F) Edef <£,c>2<e,F> A <e,F)2<£,c>.

IVProperties of
(a) If id 6 C then emf A F~G -> (e,F)R$(f,G) whence in particular

(e,F) R5(e,F), euf -> (e,F)R$(f,F), F N G —>(e,F) N (e,G).
(5.1.6(a),7(a))

(b) If C is closed under pairing and composition, then the 2-relation is
transitive. (5.1.6(b))

(c) If [V] e C for all v then y//F-> (e:[y:,F)2(e,F) (5.1.6(c))
(d) (i) VeeCVF[(e,F)2(id,°n)],

(ii) VeeC[(f:e,°n)2(f,°n)].
(e) If sn 6 C, then (f:sn,F) 2 (f,F).
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(f) (f,G)2(e,F) A n¢£F +-VgeCVH[(fAg,GAH)2 (eAid,FA(°n))],

if id 5 C and n d KG, then Vg'eCVH[(fA(g:g'),GAH) 2 (fAg,GA(°n))

(g) (f,G)2(e,F) + Ve'F'3f'G'[(fAf',GAG') 2 (eAe',FAF')], where if C is
closed under pairing and composition then e'eC + f'eC.

(h) If C is closed under composition, Vn(sneC) and Vv([v]eC), and if G 2 F

then g//CF/\ y//F-+ (e:g:[y],G)2(e:[gFy],F) .
If C is also closed under pairing, then we may replace the premiss

g//CF/\ y//F of the implication by g//CG/\ y//G -.

(Or g//CF/\ y//G, g//CGAy//F), by 7.3.6(g).

Note that the conditions on C occurring in (a), (b), (c), (e), (f),
(g) and (h) are fulfilled if C is dependency-closed.

PROOF(of (d)-(h)).

(d) and (e) are trivial, observe that F

(cf.7.3.6(b)) and sneC —>sn//CF by 3.2.20(p).
(f)(i) if n ¢ KF and G = F[6], then GAH (FA(°n))[g], where gm = 6m

if n # m and gn = H. If f =:e:v§¢, ¢:IJ+ C, and g e C, then

(°n)[Am.F], eeC + eflCC%fl

fAg 2:(eAid):v§A(°n)¢, where wm= ¢m if m # n, and wn = g.
(f)(ii) GAH2 GA(°n) by the same argument as above;

f/\(g=g') = (fAg)=v1G<A(. 3
(g) If G = F[6] then GAF'[6] = (FAF')[6], so take G‘ = F'[6]. If

f e:e:v§¢, ¢: El-+C, then fA(e':v§,¢) e:(eAe'):v§AF,¢, so take f' ‘ e':v§,¢.

fi)¢, where ¢m = id if m # n, and ¢n

If C is closed under pairing, then v§,¢ e C, if C is closed under composi
tion and e' e C, then f' E e':v§,¢ e C.

(h) Note that g:[y] =¢[gPy]:sm:g:[y], where m = 1th(gfy) (7.3.3(c)).

e C then sm//CF, (3.2.20(p)), if Vv([v]eC) and y//F then [y]//CF
(3.2.2l(i)). gflkg? by assumption, so if C is closed under composition then
sm:g:[y]//CF (3.2.20(s)). D

If Sm

7.3.8. Finally we recall a numberof the domainproperties of section 6.3:
let n,d and 6 define a domain then

(a) fiFAGv= fiFvA6Gv (6.3.l(b))

(b) d;/‘Cw e dlfwxxdzw (6.3.2(a))

(c) Vw((e:dF(v*w),6F(v*w)) 2 (e:dFv,6Fv)) (6.3.3)

(d) VnVb(KbF=n+ jb(nF6)=nn6) (6.3.4(b))

(e) 3gV6ev(nF5=dFvI(gI5) A gI6flfiFv) (6.3.4(d))
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(f) (f,G)2(e:dFv,6Fv) +
3e2VuflG[e2u#0+-3w((f,G)S(e:dF(v*w),6F(v*w))s(f:[u],G))]

(6.3.5(a))

(g) If id € C then

Vel3e2Vu//6Fv[e2u#0 —>3w(e1w#OA (e:dF (v*w),6F(v*w))s(e:dFv:[u],6Fv))J
(6.3.5(b))

(h) If Vu([u]eC), then'Vafl6FvVk35ev(nF6(3D=dFvIa(x)) (6.3.5(c))

(j) If sn 6 C for all n and C is closed under composition, then

Ve23e1Vw[elW¥0 +

3ufl6Fv(e2u#O/x(e:dFv:[u],fiFv)S(e:dF(v*w),6F(v*w)))]
(6.3.5(e))

(k) If Vn(sneC) and C is closed under composition and pairing, then

VgeCVHFu3feC3G[((e:dFu)A(f:dGu), 6FuA5Gu) 2 ((e:dFu)Ag, fiFuAH)]
(6.3.5(f)).

Note that the conditions on C in (g)-(k) are fulfilled if C is dependen
cy-closed.
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CHAPTER 8

THE ELIMINATION THEOREM FOR DOMAINS

8.1. OUTLINE

In this section we shall take the first step towards proving that
suitable domains are models for the system g§(C); by deriving an elimina
tion theorem for domains.

First we introduce the language L8 (in which g§(C) is formulated).
L8 is the same as the language of £§§*, except that it has choice variables
e,n,eO,nO etc., instead of the lawless variables a,B etc.

With each formula A(e],...,ep) of LEwe associate a formula
A6(e]|nF1,...,epInFp) of §§§*, which expresses that A holds if we let its
choice quantifiers range over the domain 06 = {eIfiF6:e e C, F e FRAME}and

interpret the choice parameters ei in A by ei|nFi6 5 06 (i = 1,...,p).
Next we expand LE to a language L: by adding a clause to the formula

definition, saying that if A is a formula then so is Vee(¢,F)A, where
¢ 6 K-Tm,F e Fr-Tm (i.e.(¢,F) denotes a restriction).

Then we define an elimination translation which maps formulae of L:
onto formulae of ;Q§§*. For this translation T we derive two lemata,
stating properties that are essential for all its further uses.

The proof of the elimination theorem concludes this chapter.

8.2. THE LANGUAGES LE AND L:, THE SYSTEM Q§(C)

8.2.1. DEFINITION(of L€,L:).

(a) L6 is the language of LSF*with choice variables e,n,§,c etc.ODIIOSCO

instead of the lawless variables a,B etc.

(b) L: is the language obtained from Le by adding the clause:
‘if ¢ 6 K-Tm, F e Fr-Tm and A is a formula, then Vee(¢,F)A is a formula‘

to the clauses defining the set of formulae (see 8.2.5).
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In La we formulate the axioms of g§(C) (cf.l.3.29).

8.2.2. DEFINITION.Q§(C) is the system with the following axioms and axiom
schemata:

§,§(C)1 VenVeeC3t:(C=e|(e,n)) .

g§(c)2 A(e) + 3eeC(3n(e=e|n) A V; A(e|;)),
g§(c)3 veaa A(e,a) + 3eVu(eu#O+ 3aVe A([u]Ie,a)),
g§(C)4 Vein B(e,n) + Ve3feCA(e,fIe),

where A and B are formulae of Le containing no choice parameters besides
those shownin notation, and a is a meta—variable for 'any lawlike variable

of Le'.
From now on we shall frequently use the meta-variable a for the same

purpose as in definition 8.2.2, namely to abbreviate ‘any lawlike variable
* I

of L8 (L8).

8.2.3. DEFINITION.A is a closed fbrmula of L8 (L2), if it contains no
choice parameters.

Convention

If we denote a formula of LE, L: by A(e],...,ep), we mean that it contains
no choice parameters besides el,...,ep.

.8.2.4. DEFINITION.Let n,d and 5 define a domain, put 06 2 {e|wF6: e e c,
F e FRAME}.With each formula A of LE we associate a formula A6 in the

language of LSF*, which expresses that U6 fulfills A, as follows:
A6 is obtained from A by replacing, for each i 6 11, all occurrences of the

i-th choice variable ui in A by vi+j wi+k
Vvi+jVwi+k,3vi+j3wi+k respectively, where vi+j is the i+j-th K-variable,
wi+k is the i+k-th frame-variable, j is 1 plus the maximumof the indices

|n 6 and all quantifiers Vui, Sui by

of the K-variables occurring in A and k is 1 plus the maximumof the in
dices of the frame-variables occurring in A.

, 5 . .

For (A\e],...,€ ))6 wewrite A (e]|nF1,...,epInF ), to indicate thatPP

eilnfid replaces 61 (i = l,...,p).

NOTE:when we replace a choice variable a by a term eInF6, we follow the
conventions of 7.2.l5(c).

, * . . .
8.2.5. Weintroduce the language L6 for purely formal reasons: it is easier

0 I O I *

to describe a translation which eliminates choice quantifiers from Le than
to describe such a translation directly for Le. (It is an elimination
translation for Lewhich interests us.)
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Yet, it would be convenient if we could assign somemeaning to the re

stricted quantifiers Vee(e,F). To do so we consider another expansion Les

of LE, obtained by adding the clause
"if ¢ 6 K-Tm, F e Fr-Tm and e is a choice-variable then e e (¢,F) is a

prime formula"
to the formula definition.

The 6 translation of definition 8.2.4 above, which gives us the inter

pretation of a formula A of L8 in the domain D5, can be extended to L2 by
requiring that subformulae e e (¢,F) of a formula A are replaced by

3x[(e:dF(3x),6F(3x))2(¢,F)J, where e|nF5 replaces a everywhere else.
That is to say, 6 e (¢,F) is interpreted as: ‘there is an x such that

the restriction for e at stage x is stronger than (¢,F)'. Weabbreviate this

to: '6 meets the restriction (¢,F)' (where e ranges over the sequences eIwF6
in the domain 05).

L: can be defined as a sublanguage of L3; we can put

Vee(¢,F) A Edef Ve(ee(¢,F) + A).

Thus Vee(¢,F) A says: all sequences 3 which meet the restriction (¢:F)
satisfy A.

8.3. THE ELIMINATION TRANSLATION

8.3.1. The translation T to be defined in this section maps closed formulae

of L: onto formulae of L(lQ§§*), i.e. it eliminates choice quantifiers.
The idea behind the translation is (in complete analogy with the elimina
tion translations for kg and gg) to replace quantifiers 35 not in the scope
of a universal choice quantifier by 3eeC3FVee(e,F), to contract pairs of
universal choice quantifiers into a single one, and to push universal
choice quantifiers not in the scope of other universal choice quantifiers
inwards over the other logical signs A,v,+,Va Ba and 35, until we are left
with a formula which contains only universal choice quantifiers in front of
prime formulae, which are then replaced by lawlike quantifiers.

As will becomeclear on inspection of the definition of the elimination
mapping T (8.3.3-7), the translated sentence TAis equivalent to A if we

assume the following principles (in the language L2):

(3) V€€(€,F)Vn€(fsG)3C(C€ (3/\f9FAG) A .j1C=€ A j2C=T\)a
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(b) Vte(eAf,FAG)3e3n(ee(e,F) A ne(f,G) A j]§=e A j2;=n),

(c) VeeCVF3e(ee(e,F)),

(d) ee(e,F) A ee(f,G) -> (e,F)2(f,G) v (f,G)2(e,F),

(e) A5 + 3eeC3F(ee(e,F) A Vne(e,F) An),

(13) Vee(e,F)3a A(e,a) ++ aevu//F [eu#0 + aavee(e:[u],F) A(e,a)],

(g_) Vee(e,F)3n B(e,n) <—+aevu//F Eeuaéo-> 3feC3GVI;e((e:[u])Af,F/\G) B(j];,j2;)],

(h) Vee(e,F)(t[e]=s[e]) ++VaflT'(t[e|a]=s[e|a]).

Weshall prove the elimination theorem without relying on (a)-(h). However,
these principles mayhelp to explain the successful use of the elimination

translation: in content they are close to the gg-axioms, in form they re
semble the axioms for lawless sequences (in particular (e), (f) and (g)).

8.3.2. The translation T below is obtained by reworking a notion of forcing
introduced by Dragalin in [Dr74]. In fact, in [Dr74] a whole range of no
tions of forcing is introduced, generalizing both the elimination transla
tions for kg and for gg. It is proved that one of these notions provides a
model for the Qg-axioms (our theorem 9.2.10) but without using the key
lemma9.2.9 which is essential for our proof.

Dragalin seems to claim that his forcing is ‘essentially’ Beth-forcing.
Fromour point of view the reduction to Beth-forcing is far from trivial,
this reduction is proved in the elimination-theorem 8.4.2 below. Though
Dragalin's forcing is obviously inspired by Troelstra's description of
GC-sequences, it does not provide a notion of sequence which fulfills the
g§-axioms.

Before we define the actual elimination translation, we introduce an
auxiliary mapping*+. In 8.3.3 and 8.3.4 ¢ and w range over K-Tm, F and G

range over Fr-Tm.

8.3.3. DEFINITION.v+is a partial mapping from the set of closed formulae

of L: into itself. A closed formula ¢ is in the domainofv+ iff
¢ E Vee(¢,F) Ae, ¢ E Vs As or, ¢ 5 Se As for some formula A of L:. The
image of ¢ under H-is constructed as follows:

(i) Vee(¢,F)(t[s]=s[e]) H- VaflF(t[¢Ia]=s[¢|a]),
(ia) Vee(¢.F) KID ** KW.

V€€(¢9F) ‘CID H CID.
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¢V€€(¢aF) (AAB) V€€(¢sF) A A V€€(¢9F) B9

(iii) Vee(¢,F) (AVB) 4+ 3e‘v’Y//F[ey#O4

Vee(¢:[y],F) A V Ve€(¢:[y],F) B],

(iv) V€e(¢,F)(A+B) H~ V(f,G)2(¢,F)[Vee(f,G) A + Vee(f,G)B] ,

(V) Vee(¢,F)VaA H- VaVee(¢,F) A,

(v)C1 Ve€(¢,F)Vn A(e,n) » VeeCVGVce(¢Ae.FAG)A(j]c,j2c).

(v)C2 V€e(¢,F)Vne(w,G) A(e,n) H» Vce(¢Aw.FAG)A(j1c.j2c),
(vi) Vs;e(¢,F)-3a A » aevy//Fteyaéo —»aaVee(¢:[y],F) A],

(vi)C Vee(¢,F)3n A(e,n) F+ 3eVy//F[ey#0 +

3feC3GV§e((¢:[y])Af, FAG)A(j1t,j2c)],
(vii) Vs As H- VeeCVFVee(e,F) A6,

(viii) 35 As H- 3eeC3FVee(e,F) Ae.

8.3.4. REMARKS.

(a) The choice-quantifier in Vee(¢,F) Kw,V€e(¢,F) Cwis void, since w

in this context must be lawlike. The mappingH-deletes such quantifiers
(see (ia), (ib) above). In proofs by induction w.r.t. the logical complexi
ty of formulae, involving H3 we shall omit these (trivial) cases.

(b) Note thatI+ treats disjunction as if it were defined as follows:
A d B E 3x[(x=O + A) A (x#0 + B)]. This means that we can omit the disjunc

tion-case in inductive proofs too.

8.3.5. DEFINITION.Let © be a closed formula of L:. Let A be a subformula of
¢ in the domain of'+, let B be such that A H B. ©"is 0btained’fr0m Qby

an application 0f*+, if ¢' is the result of a replacement of an occurrence
of A in ®, not in the scope of a choice-quantifier, by an occurrence of B.

8.3.6. Eéggg.
(a) If ¢ is closed and ¢' is obtained from Q by an application of*+,

then ¢' is closed.

(b) c(¢) E the numberof logical operations (connectives and quanti
fiers) occurring in ¢ in the scope of a choice quantifier +
the numberof restricted choice quantifiers in ¢ +
twice the numberof unrestricted choice quantifiers in ¢.

Wefind that

(i) if Q‘ is obtained from ¢ by an application of H3 then c(©') < c(¢),
(ii) if ¢ is closed, c(¢) > 0, then there is a ¢' that can be obtained

from ¢ by an application of|+, and
(iii) if ¢ is closed, c(¢) = 0, then ¢ is lawlike.
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(c) Let ©', ¢" be distinct formulae, obtained from 0 by an application
of H, ¢' resulting from a replacement of an occurrence of A, ¢" from a re
placement of an occurrence of B. Then these occurrences of A and B must be

disjoint, hence there is a formula ¢" which can be obtained from ¢' as well
as from ¢" by an application of'+.

(d) From (a)-(c) we can conclude that with each closed formula ¢ of

L: there is a unique formula Wsuch that
(i) Wis lawlike, and

(ii) there is a finite sequence ¢ 3 ¢ .,¢p E Wof closed formulae of L:0,..
such that for all i < p, ® is obtained from ¢i by an application of1+1
1+.

8.3.7. DEFINITION(ofrtj and T). Let ¢ be a closed formula of L:, thenrbfi
is the unique lawlike formula T which satisfies 8.3.6(d)(ii).
T is the translation which carries ¢ intorbfi

Since T eliminates choice variables from closed formulae of L: we call it
I O I O *

an elimination translation for LE.

8.3.8. FACTS.

(a) 'A $6 81ErA1 €?f81, A and B closed.

A
"I(b) "ha A13 QaTA , closed, Q E 3 or Q E V, a a lawlike variable of any

SOI't.

(ct) '—VeA-'2 VeeCVF"—v’ee(e,F)A7, see 8.3.3 (the definition of '->).

(d) rile A1: 3eeC3Fr‘i/ee(e,F) A1, see 8.3.3.

(e) If ¢ E Vee(¢,F) A, then the structure o£'b‘ depends on the main logical
sign of ¢, see 8.3.3.

The next two lemata, 8.3.9 and 8.3.11, state important properties of
1. The reader is advised to skip their proofs at first reading.

8.3.9. Egggé (monotonicity of I).

Let Ae be a formula of LEwith at most one choice parameter: e. Let (e,F)
and (f,G) be restrictions. Assume

(a) C is dependency—cZosed,

(b) (f,G) 2 (e,F).
(c) qVee(e,F) As‘.
Then

(d) rVee(f,G) As’
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is derivable; the derivation can be formalized in IDBF*,i.e.

‘k

IDBF L-dclosed(C) +

V(e,F)[rVee(e,F) A6‘ + V(f,G)2(e,F)'-Ve:e(f,G) A6‘).

PROOF.Weproceed by induction w.r.t. the logical complexity of A. The proof

is subdivided into cases, one for each possible main logical sign in A. The
numbering of these cases corresponds to that of 8.3.3. By assumption (3) we
can apply all 2-properties (7.3.7.).

case (i) As 2 t[e]=s[e].
Assumption (c) becomes in this case

(1) VaflF(t[eIa3= s[eIa]).

To derive (d), i.e. in this case

(2) VbflG(t[f{b]= s[flb]),

it suffices to showthat for each b//G there is an a//F such that flb = ela.

Let bflfi} be arbitrary. By assumption (b) there is an 6 such that G = F[6],
so (by //-property 7.3.6(g)) b//F.

Also by assumption (b) there is an e' such that f e=e:e' and e'flCF.
Put a 2 e'|b. Thena//F by 7.3.6(j) and f|b = e:e'|b = ela.

case (ii) Ae E BeACe,

trivial by induction-hypothesis.

case (iii) As 5 BeVCe,

can be treated as A5 E 3x D(e,x), see 8.3.4(b).

case (iv) As 5 Be + Cs.

By assumption (a), C is dependency-closed, hence the relation 2 between re
strictions is transitive (2-property 7.3.7(b)). (d) imediately follows
from (c) by this transitivity.

case (v) Ae E Va B(e,a),

trivial by induction-hypothesis.

case (v)C Ac 2 Vn B(e,n).

In this case assumption (c) reads VgeCVHrV§e(eAg,FAH)B(j]c,j2;)1.
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id 6 C by assumption (a), hence this specializes to

<3) Vn¢£FrVce(eAid,FA(°n)) B<j,c,j2c)‘.

By assumption (b) and 2-property 7.3.7(f)

n¢£F + VgeCVH[(fAg,GAH)2(eAid,FA(°n))J,

whence (3) yields by induction-hypothesis, Vg€CVHrVC€(fAg,GAH)B(j]Csj2C)19
i.e. “vee(£,c)Ae‘.

case (vi) Ac E 3a B(e,a).

By assumption (c) we have an e] e K such :hat

(4) vyfiF[e]y¢0+-3a'vee(e:[y],F) B(e,a)‘].

To derive (d) we must construct an e2 6 K such that

(5) Vy//G[e2y#O+ aa'vee(£:[yJ,c) B(e,a)"].

By assumption (b), (f,G) 2 (e,F), there is a g such that gflef‘ and fix ezg.
2 fulfills (5), let y//G satisfy

e2y # O, i.e. e](gfy) # 0. By (4) we find an a such that

Put e2 5 e1;g. (7.3.l.) To show that e

(6) rVee(e:[giy],F) B(e,a)“.

By 2-property 7.3.7(h) (f:[y],G) 2 (e:[giy],F), so (6) yields, by induction
hypothesis rVee(f:[y],G) B(e,a)7.

case (vi)C Vs E 3n B(€,n).

By assumption (c) we have an e] e K such that

(7) vy#F[e,y¢o+-agec3H"vce<<e=£yJ)«g. FAH)B<j,c,j2c>‘J.

To derive (d), an e2 6 K must be constructed which satisfies

(8) VyflC[e2y#O+-3g'eC3H'rVce((f:[y])Ag', GAH')B(j]c.j2c)‘].

By assumption (b), (f,G) 2 (e,F), there is an e‘ such that
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e'//CF and f 2 e:e'.
Put e2 E e];e', then e2 fulfills (8):
Let yflK} be such that e2y # 0, i.e. e](e'Fy) # 0. By (7) we find a g e C
and an H such that

(9) ”vce<<e:te'ry1>Ag, FAH>B<j,c,j2c>'.

By2-property 7.3.7(h) (f:[y],G) 2 (e:[e'Fy],F).
By 2-property 7.3.7(g) we find g‘ e C and H‘ such that

((f:[y])Ag', GAH')2 ((e:[e'fy])Ag, FAH), so (g) yields by induction-hypo
thesis

'vce<(f:EyJ)Ag', GAH')B(j]c.j2c)". El

8.3.10 COROLLARIES.Let A: be a formula with at most one choice parameter:

a, let B(e,n) have no choice parameters besides a and n. Then, if C is de
pendency-closed:
(a) Vn(rVe A51 ++ rVee(id,°n) A81),

[Fromleft to right by definition, from right to left by monotonicity
and 2-property 7.3.7(d).]

<b> vn¢£F<“vee<e,F>vn B<e,n>‘ ++ 'Vce(eAid,FA(°n)) B<j,c,j2c>‘>,
[Fromleft to right by definition, from right to left by monotonicity
and 2-property 7.3.7(f).]

(c) e 21f + (rVse(e,F) A81 ++-rVee(f,F) A51),

[By monotonicity and 2-property 7.3.7(a).]

(d) rVe(Ae + Be)1 ++-VeeCVF(rVee(e,F) A81 + rVse(e,F) B51).

[By (a) and 2-property 7.3.7(d).]

8.3.11. L§y@A_(bar-property of T).

Let As be a formula of'L: with at most one choice parameter:e. Let f be an
element of K, (e,F) a restriction. Assume
(a) C is dependency—closed, and

(b) Vy”F[fy#O+-rVee(e:[y],F).Ae1].
Then

(c) rVee(e,F) A51

is derivable, the derivation can be formalized in IDBF*,i.e.
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lQB§* F- dclosed(C) +

V(e,F)Vf(VyflF[fy#O+-rVee(e:[y],F) Aefl] +>rVee(e,F) A81).

PROOF.By induction w.r.t. the logical complexity of Ae, cf. the proof of the
monotonicity of T. Because we assume C to be dependency-closed, monotonocity

of T can be applied, as well as the 2-properties.

case (i) As : t[e] = s[e].
By assumption (b), f satisfies

(1) VyflF[fy#0+-VaflF(t[e:[iHaJ = s[e:[y]la])].

This yields

(2) VbflFVx[f(bx)#O+-t[e:[bx]I(Az.b(x+z))] = s[e:[bx]I(Xz.b(x+z))]].

Since f e K, we have Vb3x(f(bx)#O), by definition [bx]I(Az.b(x+z)) = b for
all b and x, so (2) yields VbflF(t[elb]= s[eIb]), i.e. rVee(e,F) Aej.

case (ii) Ae E BeACe,

trivial by induction-hypothesis.

case (iii) Ae : BevCe,
can be treated as As 3 Ex D(e,x), cf. remark 3-3-4(b)

case (iv) Ae E Be + Ca.

By assumption (b), f satisfies:

(3) Vy”F[fy#O+-V(g,H)2(e:[y],F)[rV3e(g,H) Bej +-rVee(g,H) C611].

we want to derive rVe(e,F) A81, i.e.

V(e',F')2(e,F)[rVee(e',F') B51+ rVee(e',F') Cefl].

To this end, let (e',F') 2 (e,F) be arbitrary, let g' e K satisfy g'fl%;‘and
e‘ 5. e:g' and assume

(4) rVee(e',F') B51.

Put f' E f;g', let y be parallel to F‘. Then (4) yields, by monotonicity
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and 2-property 7.3.7(c)

(5) rVee(e':[y],F') Be‘,

while by 2-property 7.3.7(h)

(6) (e':[y],F') 2 (e:[g'Ty],F).

Nowassume f'y # O, i.e. f(g'fy) # 0.

y//F‘, F‘ 2 F hence y//F by //-property 7.3.6(g); g‘//CF , so g'l‘y//F by
fl’-property 7.3.6(j). Hence, (by (3), (5), (6))

f'y#O + rVse(e':[y],F') Ce‘.

By induction-hypothesis we conclude rVee(e',F') C51.

case (v) Ac E Va B(e,a),

trivial by induction-hypothesis.

case (v)C Ae E Vn B(e,n).

By assumption (b), f satisfies

(7) VyflF[fy#0+~V3eCVHrVce((e=[yJ)Ag. FAH)B(j1c.j2c)"].

Let g‘ e C and H‘ be arbitrary. Wewant to derive

(8) "Vce(eAg'.FAH') B(j]c,j2c)"

Put f' I Az.f(klz), one easily sees that f‘ e K. Let zflFAH', then k1zflF
(7.3.6(c)); suppose f'z # 0, i.e. f(k]z) # 0. Then (7) yields

vgecvH“vce<<e:£klzJ>Ag.ma) B(j1c.j2c)".

which specializes to

(9) Vn££FrV§e((e:[klz])Ag', FA(°n)) B(j1c,j2c)‘.

By assumption (a) C is dependency-closed, whence [k2z] 6 C. By 7.3.7(f) we
find for n d KF:
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(10) ((e:[klzl)A(g':[k2z]), FAH')2 ((e:[k]Z])Ag', FA(°n)).

By 7.3.2(b), 7.3.3(a)

(ll) (e:[k]z])A(g':[k2z]) ==(eAg'):[z].

If we combine (9), (10), (11) with the manotonicity of T and the corollary

8.3.lO(c), we find rV§€((eAg'):[Z], FAH')B(j];,j2§)1. By induction-hypo
thesis, (8) follows.

case (vi) As E 3a B(e,a).

By assumption (b) f satisfies

V)’//F[fy#0—>3e]Vz//F[e1z#O->aa"vee(e:Ey]:[zJ,F) B(e,a)-']].

Hence, by AC-NF, there is an e' e K such that

V)’//F[fy#0+ Vz//F[e'(<y>*z)#0 ->Ba’-Vee(e:[y]:[z],F) B(€,a)-,3].

Wemust derive rVec(e,F) A51, i.e. we have to construct an e2 e K such that

(12) Vw//F[e2w=f0->aa"vee(e:[w],F) 1s(e,a)"].

Take e2 5 fxe', i.e. if e2w # 0 then there are u and v such that w = u*v,
fu # O and e'(<u>*v) # 0 (7.3.4). Then e, clearly satisfies (12).

case (vi)C As 5 Sn B(e,n),
can be treated exactly like case (vi). D

For the proof of the elimination theorem, we need the following three
propositions.

8.3.12. PROPOSITION.With each equation t=s of g§§*, there is a formula

(t=s)* of g§g*, provably equivalent to t=s, but which contains only prime
fbrmulae of the form t'=s', where s‘ is lawlike and t' is either lawlike or
of'the form at", t" lawlike.

8.3.13. PROPOSITION.If t=s is an equation of L: in a single choice param
eter 5, and (t=s)* is its translation as in 8.3.12, then
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;9_gF* |— rVe:e(e,F)(t=s)-' +—>“vee(e,F)(t=s)*“.

8.3.14. PROPOSITION(extensionality of g§g*). If A(al,...,ap) is a formula
of LSF*, which may contain more choice parameters besides a ..,ap, then1"

g§§* 1- A§=,£vx<ei|si<x>=fi|vi<x>>J +

<A(e,|e1,...,ep|ep>«++ A(f1|Yl.---.fP|Yp)),

whereei|Bi, fi|yi are substituted for ai (i = 1,...,p) following the con
ventions of 7.2.l5(c).

8.3.14 is proved by formula-induction (straightforward). To give an:
idea of the translation ( )* in 8.3.12 we state someclauses:
if s is not lawlike then (t=s)* 3x((t=x)* A (s=x)*),
if s is lawlike then e.g.:

(e|a(t)=s)* E 3yv((t=y)* A Vn<lth(v)(an=(v)n) A e(y*v)=s+1),

(H(t1.Az.t2.t3)=s)* E 3y1y2v((tl=y1)* A (t3=y2)* A (V)0=Yl A

<v>y2=sA Vn<Y2(t2Ej((v)n.n)/z]=(v)n+])*).
The completion of the definition of ( )* is simple. 8.3.12 is easily proved.
For the proof of 8.3.13 finally, one needs the observation that with each

term t[a] of IDBF*there is an element et e K such that for all a
tfa] = et(a). For terms of LQQ this fact is proved in [KT70].1

Weleave it to the reader to verify that this result also holds for IDBF*.

8.4. THE ELIMINATION THEOREM

The hard work for the proof of the elimination theorem is done in the
following lema. The elimination theorem itself is then easily proved in
8.4.2.

8.4.1. Egggé, Let As be a formula 0f'L€ with at most one choice parameter:
5. Assume

(a) C is dependency-closed, and
(b) n, d and 6 define a domain.
Then we can derive

(c) V6ev A5(e|nF) ++ rVee(e:dFv,fiFv) A81.
This derivation can be formalized in g§§*, i.e.
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L§§* k- dclosed(C) A domain(n,d,6) +

[V6‘v A6(eInF) ++ rVee(e:dFv,fiFv) A81].

33995. The proof of (c) from (a) and (b) proceeds by induction w.r.t. the
logical complexity of A. Like the proofs of 8.3.9 and 8.3.1] it is subdi
vided into cases. Each nontrivial case consists of two parts, part (+) for
the implication from left to right, part (+) for the converse implication.
By assumption (a), we can use the monotonicity and the bar-property for T,
and all the 2- and domain-properties (7.3.7 and 7.3.8).

case (i) As E t'[e]=s'[e].
By propositions 8.3.12 and 8.3.13 we mayrestrict our attention to formulae
of the form A: E at = s, t and s lawlike terms.

(*) we assume Véev A6(e|nF), i.e.

(I) V5evVz(e(<t>*nF|6(Z))#O+ e(<t>*nFI6(z))=s+l).

Let aflfi xi be arbitrary, and let z be such that e(<t>*d vIa(z)) # 0. ByF F

domain-property 7.3.8(h) there is a 6 e v such that nF|6(z) = dFvIa(z), hence
(by (1)) e(<t>*dFvIa(z)) = s+l.

(+) For the converse implication we assume rVee(e:dFv,6wv) A81, i.e.

(2) VaflfFvVz(e(<t>*dFvIa(z))#O-+e(<t>*dFvIa(z))=s+l).

In order to derive (1), let 6 e v and z satisfy

(3) e(<t>*EFTs'(z)) 940.

By domain*property 7.3.8(e) we find a g 5 K such that

(4) «F6 = dFv|(gl6)

and

(5) gla#5Fv.

By 7.3.1(a) and (4) there is a y such that nF6(z);$ dFvP(gI6(y)), so by (3)
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e(<t>*§;5(z)) = e(<t>*dFvP§TE(y)).

From this equation and (5) we find an a//6Fv such that

(6) e(<t>*E;€(z)) = e(<t>*dFvf§y).

By 7.3-l(b) there is an x such that dFvf§y = E;?TE(x), whence by (6) and (3)

e(<t>*nF6(z)) = e(<t>*dFvIa(x)) ¥ 0. Nowapply (2), this yields
e(<t>*nF6(z)) = s+l.

case (ii) Ae E Be Ce,

trivial by induction-hypothesis.

case (iii) As 5 BevCe,

can be treated as Ae E Bx D(e,x).

case (iv) Ac 2 Be+Ce.

(+) Weassume V6ev A6(e|nF), or equivalently

(7) Vw(V6ev*wB6(e|nF) + V6ev*w C5(eInF)).

Wewant to derive rVee(e:dFv,fiFv)Aew, i.e.

(8) V(f,G)2(e:dFv,6Fv)[rVee(f,G)Be1‘+ rVee(f,G)Ce7].

Let (f,G) be stronger than (e:dFv,6Fv), and assume rVee(f,G) Be‘.
Then by monotonicity

Vw[(e:dF(v*w),6F(v*w)) 2 (f,G) + rVee(e:dF(v*w),fiF(v*w)) B51].

By induction-hypothesis (applied to Be), assumption (7), and induction
hypothesis, nowapplied to Ce, this yields

Vw[(e:dF(v*w),6F(v*w)) 2 (f,G) + rVee(e:dF(v*w),6F(v*w)) cs‘),

whence by monotonicity

(9) Vuw[(f,G) S (e:dF(v*w),fiF(v*w)) S (f:[u],G) +

rVee(f:[u],G) C51].
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By domain property 7.3.8(f), there is an e e K such that

‘WJflG[c]u#0+>3w((f,G) S (e:dF(v*w),6F(v*w)) S (f:[u],GD]. For this el we
find (by (9)) VuflG[e]u#0+-rVee(f:[u],G) C51]. But then rVee(f,G) Cej fol
lows imediately by the bar-property of T.

(+) The derivation of (7) from (8) is trivial, since by domain proper

ty 7.3.8(c) Vw[(e:dF(v*w),fiF(v*w)) 2 (e:dFv,6Fv)].

case (v) Ae E Va B(e,a),

trivial by induction-hypothesis.

case (v)C As E Vn B(e,n).
6 .

(+) We assume Vdev A (e|nF), 1.e.

6

(10) V6evVfeCVGB (e|wF,f|nG).

Wemust derive VfeCVGrV;e((e:dFv)Af,6FvAG)B(j]§,j2§)1 or equivalently (by
monotonicity, corollary 8.3.lO(b))

(11) an¢£(5Fv)'v;e((e:dFv)Aid,5FvA(on)) B(j1c.j2c)‘.

By definition of domain ((D6)), there are infinitely manym and u such that

(12) fi(om)v = 6 v = °m and dm (om)v = dmv = [u],

so in particular there are n¢K(fiFv)and u which satisfy (12). Let z be
1th(u); since C is dependency-closed (assumption (a)) sz 6 C, so (10) spe
cializes to

2| n(13) Vdev B5(e|w ).F's <°n>

_ z . = . = z .
Put w zdef (eAs )InFA(on), then 31¢ el1F, 32¢ s |n(°n), so (13) yields,
by extensionality (8.3.l4) VdevB5(j]w,j9w), which, by induction-hypothesis,
is equivalent to

<14) rVC€((eASz):dFA(on)v! 6FA(on)v) B<j,c,j2c>‘.

By 7.3.8(b) dFA(°n)v e:dFvAd(°n)v, hence, by choice of n,

dFA(°n)v ==dFvA[u]
By 7.3.2(b) (eAsz):(dFvA[u]) ==(e:dFv)A(sz:[u]), hence, by choice of z,
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(e/\sz) :(dFvA[u]) 2 (e:dFv)/\id.
By 7.3.8(a) 6
So ((eAsz):d

FvA6(°n)v, hence, by choice of n, 6FA(°n)v
v) R$((e:dFv)Aid, 6FvA(°n)), whence (14) yields

FA(°n)V = 6

FA<°n>V’ 5FA<°n>
(11) by monotonicity of T.

(+) Nowwe assume'rVee(e:dFv,6Fv)Ae1, i.e.

(15) VgeCVHrV;e((e:dFv)Ag, 6FvAH)B(j1C9j2C)1.

By domain axiom (D3d), VG(dGveC); since C is dependency-closed then also

VfeCVG(f:dGveC), so (15) specializes to

(16) VfeCVGrV§e((e:dFv)A(f:dGv), 6FvA6Gv)B(j];,j2;)fl.

By an argument similar to the one we used to show that (13) implies (11),
but nowapplied in the reverse direction, (10) is derived from (16).

case (vi) Ac ‘ Ba B(e,a).

(+) We assume Vdev A6(eInF), i.e. we have an e] e K such that

(17) Vw[elw¥O+ 3aV6ev*wB6(eInF,a)],

or equivalently (by induction-hypothesis), such that

(18) Vw[e]w¥0+ 3arV€€(e:dF(v*w),6F(v*w)) B(e,a)1].

Wemust derive rVee(e:dFv,6Fv) A57, so we must find an e2 6 K such that

(19) Vufl6Fv[e2u#0+-3arVte(e:dFv:[u],6Fv)B(e,a)1].

By domain property 7.3.8(g) there is an e2 such that

VuflfFv[e2u#04>3w[e1w¥OA (e:dF(v*w),fiF(v*w))s(e:dFv:[u],6Fv)J].

By (18) and monotonicity of I, this e2 will fulfill (19).
(+) Nowwe assume to have an e which fulfills (19), we must find an e

whichfulfills (17).
2 1

By domain property 7.3.8(j), we have an e] such that

= 6FvA(°n).
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(20) e]w#O+ 3ufl6Fv(e2u#OA.(e:dF(v*w),6F(v*w))2(e:dFv:[u],6Fv)).

This el satisfies (17), for let elw # 0, then by (20) we have a1Jfl5Fv such
that

(21) (e:dFV:[u],fiFv) S (e:dF(V*w),6F(v*w))

and ezu # 0, whence by (19) there is an a such that

(22) ’vee(e:dFv:[u],5Fv) B(e,a)‘.

By monotonicity, (21) and (22) yield rVee(e:dF(v*w),6F(v*w)) B(e,a)fl,

whence by induction-hypothesis V6ev*wB°(e|nF,a).

case (vi)C Ac 2 an B(e.n).

(+) We assume Véev A6(e|nF), i.e. we have an e] e K such that

(23) Vw[e1W¥0+ 3feC3GV6ev*wB6(e|nF,f|nG)].

Wemust find an e2 6 K such that

(24) ‘WJfl6Fv[e2u#0-+3g€C3HrV§€«e:éfiV:[u])Ag, 6FVAH)B(j]§,j2§)1].

Take e2 such that it satisfies (domainproperty 7.3.8(g))

(25) Vu//fiFv[e2u#O->3w(e]w#0 A (e:dF(v*w),6F(v*w))S(e:dFv:[u],fiFv))J.

e2 fulfills (24). Let14fl6FN"be such that e2u # 0. By (25) we find a w such
that

(26) (e:dF(v*w),6F(v*w))s(e:dFv:[u],6Fv)

and elw # O, whence by (23) we have f e 3 and G such that

V5ev*wB6(e|nF,f|nG), and hence, by induztion-hypothesis, extensionality
and monotonicity of T:

(27) rV§e((e:dF(v*w))A(f:dG(v*w)), 6F(V*W)A6G(V*W))B(j1C9j2C)1
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From (26) and 2—property 7.3.7(g), we find a g and an H such that

(28) ((e:dFv:[u])Ag, 6FvAH)2

((e:dF(v*w))A(f:dG(v*w)), fiF(v*w)A5G(v*w)).

f:dG(v*w) e C (because f e C, dG(v*w) 6 C (domain axiom (D3d)) and C
is dependency-closed), hence (2-property 7.3.7(g)) g e C. By monotonicity of

T we conclude from (27) and (28) rV§e((e:dFv:[u])Ag, 6 VAH)B(j1§,j2;)1.F

(+) Nowwe assume to have an e2 which satisfies (24). Let el satisfy
(domainproperty 7.3.8(j)):

(29) e]w#0 + 3ufl$Fv(e2u#0A.(e:dF(v*w),6F(v*w))2(e:dFv:[u],fiFv)).

Then el satisfies (23). Let elw # 0, then by (29) we have a|L”6FV, such
that

(30) (e:dF(v*w),6F(v*w))2(e:dFv:[u],6Fv)

and e2u # O, whence by (24) we have g e C and H such that

(31) 'v;e((e:dF:v:[u])Ag, 6FvAH)B(j1c.j2c)‘.

From (30) and 2-property 7.3.7(g), we find an f' e C (since g e C) and a G’
such that

(32) ((e:dF(v*w))Af', fiF(v*w)AG') 2 ((e:dFv:[u])Ag, 6FvAH).

By domain property 7.3.8(k) we can find an f e C and a G such that

(33) ((e:dF(v*w))/\(f:dG(v*w)). 6F(v*w)/\6G(v*w))2

<<e:dF<v*w>>Aif'. 6F(v*w)AG').

From (33), (32), transitivity of 2 (7.3.7(b)), (31) and monotonicity of T

we find rV;e((e:dF(v*w))A(f:dG(v*w)), 6F(v*w)A6G(v*w))B(jlC9j2C)1 whence
by monotonicity of T, induction-hypothesis and extensionality

V6ev*wB6(e|nF,f|nG). U



198

Note that as a corollary to this lema and the monotonicity of T we

have the following 'permutability property’: if As is a formula of Le with
at most one parameter 8, then

(e:dFv,fiFv) Rs(f:dGw,6Gw) + (V6ev A5(e|nF) ++-Vdew A6(fInG))

and

(e:dFv,6Fv)s(f:dGw,6Gw) + (Véev A6(e|nF) + V6ewA6(f|nG)).

8.4.2. THEOREM(the elimination theorem for domains).

Let ¢ be a closed formula of L8. Assume
(a) C is dependency-closed, and
(b) n, d and 6 define a domain.
Then

(c) Q6 ++-T¢.

This is provable in g§§* i.e.

ggf‘ 1- dclosed(C) A domain(1I,d,6) -> («p5 +—>'r<I>).

PROOF.The proof proceeds by induction w.r.t. the logical complexity of A.
Most cases are trivial: closed prime formulae are lawlike, hence for those
©65 ¢ 5 I¢; if the main logical sign in ¢ is A,V,+, or a lawlike quanti
fier, then we can simply apply induction-hypothesis. The interesting cases
are ¢ E Vs Ae, Q E 36 As.

(i) ¢ 2 Vs Ae.

Assume $5, i.e. VeeCVFA6(eInF). Then, by open data, there is a v such
that

6
(1) V6evVeeCVFA (e|nF).

Let n be such that finv = °n (exists by (35)) and let u satisfy dny =:[u]
(this u exists by (D6)). Since C is dependency-closed, sm 6 C, where
m = lth(u). Hence (1) specializes to

Véev A6(smInn).



199

By lema 8.4.1 this is equivalent to rVee(sm:dnv,6nv) A81, but by choice of
m and n,sm:dnv etid, finv = °n, hence rVee(id,°n) A81, which is equivalent
to I¢ by 8.3.10(a).

For the converse implication we assume IQ, i.e. VeeCVFrVee(e,F) A61.

By the preceding lema, (D2a) and (D3a), this is equivalent to

V6VeeCVFA5(e|nF), whence in particular ¢6.

(ii) Q E 36 As.

For the implication from left to right we assume ¢6, i.e. we have an

e e C and an F such that A6(eInF), whence by open data for some v

VdevA6(eInF). By lema 8.4.] this is equivalent to rVee(e:dFv,6Fv) A81,
hence (since e e C, dFv e C (by (D3d)) and C is closed under composition)
3feC3G Vee(f,G) Ae , i.e. I©.

For the converse implication, we assume to have an f e C and a G such

that rVee(f,G) A51. By the preceding lema, (D2a) and (D3a) this yields

V6 A5(f|nG), whence in particular ¢5. U
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CHAPTER 9

THE MAIN THEOREM AND ITS COROLLARIES

9.1. OUTLINE

In this chapter we prove the main theorem, which states that for suit

able dependency-closed C C K, lQ§§* F- rTfl for all axioms and instances of

axiom-schemata Wof g§(C). Combinedwith the elimination theorem for domains

this yields that each domainw.r.t. a suitable C is a model of C§(C), from
which we derive (by theorem 6.2) that each projection model for GC-sequences

w.r.t. a suitable C is a model of Q§(C).
It is not so that each domain w.r.t. a dependency-closed C is a model

for g§(C). E.g. the set C defined by e e C iff e = v§¢ for some frame F and
mapping ¢ with the property that for all n, ¢n has the form [u]:sm, is de

pendency-closed. (To prove this use the fact that v:¢ e=v§,¢' for someF',¢'
where F‘ has a 1-1 labelling (a corollary to 3.2.17(b)), 3.2.l6(e), (f) and
3.2.20(g).) This set, which is in fact the smallest dependency-closed subset

of K, does not contain (equivalents of) the pairing inverse j]. In a domain
w.r.t. this C the formula

3eeC3e(e = j1(e|nn6))

does not hold. (8 ranges over the sequences fInF6 (f e C) in the domain-)

But the formula 3e(e = jln) does hold in the domain e.g. for n = nonA°m5.
That is to say, in this domainanalytic data is not fulfilled.

The set C defined by: e 6 C iff either there is an f e K such that

Va(j1(eIa) = fljla) or there is an f e K such that Va(j1(eIa) = fljza), is
also dependency-closed. It is richer than the previous one since it contains

j] and jz. A domainw.r.t. this C does not fulfill g§(C)4: it satisfies
Ve3n(n = j(e,e)), but there is no e e C such that e|nn6 = j(wn5,nn6).

It turns out that domains w.r.t. a C C K which is dependency-closed
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and contains j1,j2 and a neighbourhood-function for the mappingar+ j(a,a)
are g§(C)-models. Weshall call such a C ‘CS-closed‘ (definition 9.2.3).

The first step towards the main theorem (for CS-closed C) is the in
troduction of subsets C[F] of C for each frame F. e is an element of C[F]

iff ‘v’a(eIa//F)and E|feCVa//F(eI(fIa)=a) (cf.9.2.5). Wederive some properties
of the sets C[F], which are used to prove the key lema for the main theorem,
stating that for CS-closed C

VfeC[F](rVee(e,F) Ag“ +—»"vs A(e:£|e)").

The main theorem follows simply from the key lema.

In the final section of this chapter we show that each subset of K
which can be enumerated modulo eeis contained in a CS-closed C C K which

can be enumerated modulo ea That is to say: with each J: I! + K there are

C C K and a Q§(C)-model U6 6 U6(C) which satisfies the closure axiom
VenVeerange(J) 3§(§=e[(€,n)).

9.2. THE VALIDITY OF g§(C) UNDER T

9.2.]. DEFINITION(of dpl and nestF, cf.7.2.9, 7.2.10(b)).
(a) dpl (for duplicate) is the element of K which satisfies

dp1(0) = 0, dp1(i*u) = sg(1th(u):x)-(l+j((u)x.(u)x)).

(b) nestF is the element of K which satisfies

nestF0 = 0, nestF(§*u) = sg(1th(u);x)(l+vF(An.(u)x)).

9.2.2. gxgg.
(a) For all a and x, dpl(i*a(x+l)) = j(ax,ax)+l. HenceVa(dplIa=j(a,a)),

or equivalently Va(j1(dplIa)=j2(dplIa)=a).
(b) For all a and x, nestF(i*a(x+1)) = 1+vF(An.ax). Hence

Va(nestFIa = v;(A]n.a)), or equivalently VaVbeF(jb(nestFIa)=a), i.e. nestFI
maps a onto an F-nest of copies of a.

(c) Oneeasily verifies that a sequence b is parallel to F[Az.0] (the
frame obtained from F by substituting O for all its labels) iff

3cVbeF(jbb=c). From (b) it follows that Va(nestFIaflF[Az.O]); since
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F[lz.O] 2 F then also Va(nestFIaflT9 (7.3.6(g)). In fact: if F and G have
the same branches, then nestFIaflG.

(d) With the help of (a) and (b) one easily verifies that
m id) and VFVG(nestVn(nest :2 (nestFAnestG):dpl).(°n) FAG

9.2.3. DEFINITION(of CS-closed).
Wecall a subset C of K CS-closed iff

(a) C is dependency-closed,

(b) dpl e C, and

(c) j] eCand j2eC.

9.2.4. FACTS. (a) By 9.2.2(d) a CS-closed C C K contains nestF for all F
(proof by induction over frames).
(b) By induction w.r.t. lth(v) one proves that a CS-closed C C K contains

all functions jv.

9.2.5. DEFINITION(of C[F]). Let C be a subset of K, let F be a frame. C[F]

is the subset of K defined by

e e C[F] iff e e C, Va(e|a//F) and 3feCVa//F(e:fIa=a),

i.e. an e e C belongs to C[F] iff the functional A¢.e|¢
(a) maps N onto the set of sequences parallel to F, and

(b) has a continuous right-inverse on this set, with a neighbourhood-func
tion f e C.

9.2.6. Eggflé (properties of C[F]).
(a) F R‘!G -> C[F] = C[G].

(b) Let F be a frame with a 1-1 labelling, i.e. b # b‘ implies

£bF # £b,F fbr all b,b' e F. In that case, id e C implies id e C[F]. In
particular, if id 6 C then id 6 C[°O] and id 6 C[°0A°l].

(c) If C is CS-closed and F is a frame in which all branches have the

same label, then nestF e C[F].
(d) If C is CS-closed and KF c {O,l} then v§(AKn.j<n>):nestF e CEFJ.
(e) Let C be CS-closed, let F and G be frames and assume that e e C[F].

Then there are H, f and g such that

(i) (eAg):f e CEFAGJ,

(ii) f e C[°0AH] and

(iii) g e c.
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(f) f e C[F] ->Vv(ffv//F).

35993:
(a) follows immediately from 7.3.6(h): F N G ->Va(a//F<-> a//G) .

(b) follows imediately from 7.3.6(a): if F has a 1-1 labelling then
Va(aflTfi, and the fact that id is its owninverse.

(c) if C is CS-closed then nestF e C by 9.2.4(a); Va(nestF|aflT9 by
9.2.2(c); if [F = {m}then VaflF(nestF:jbIa=a) for any branch b of F (as is
easily verified) and if C is CS-closed then jb e C by 9.2.4(b).

(d) Put e ‘ v§(AKn.j<n>):nest If C is CS-closed then nest e C,

Vn(j<n>eC) and C is closed under p:iring and composition, hence Z 6 C.

Va(nestFIa//F) by 9.2.2(c), v§(>.Kn.j<n>)//CFby definition, hence
Va(eIa = v:(AKn.j<n>)|(nestFIa)flFO by 7.3.6(j).
To construct the right inverse to e, le: b: Ii + F be a labelling inverse,

i.e. Vne£F(£bnF=n). Put f E (jb0Ajbl):dpl. Then f e C since jb0,jb] and
dpl e C, and C is closed under composition and pairing. Moreover, if aflF

then e:fla = a, because jba = jb(e:fIa) for arbitrary b e F:
Let m e {0,l} be the label of b, then

jb(e:f|a) = jb(e|(f|a)) = j<m>(jb(nestFl(f|a))) by 7-3-5;
j<m>(jb(nestF|(f|a))) = j<m>(f|a) by 9-2-2(b);
j<m>(f|a) = j<m>((jb0Ajb1)|(dP1|a)) = jbm(j<m>(dP1Ta)). by d€finiti0n Of A
(recall that m e {0,l} i.e. j<m>= j] or j<m>= jz);
jbm(j<m>(dplIa)) = jbma by 9.2.2(a); and finally
jbma = jba since a//F and In = £bF = £bmF.

(e) Define a by

0 if n e KF,

an

1 otherwise.

_KK.
Put H E G[An.°an], H‘ E °OAH, f = vH,(A n.J<n>):nestH,.

Let bl,b2 be labelling inverses for F and G respectively, i.e.

Vne£F(£b]nF=n) and Vme£G(Kb2mG=m).
Define ¢: II + C by

jb nze if n e ZF (i.e. an = 0),
l

j otherwise.
bzn



205

v§¢.
(iii) g e C since C is closed under pairing.
(ii) f e C[°0AH] by (d) above (obviously K(°OAH)C {0,l}).

(i) (eAg):f e C[FAG]is shown as follows.

Put g

Firstly (eAg):f e C, since e,f and g belong to C and C is closed under pair
ing and composition.
Secondly Vc((eAg):fIcflFAG). To prove this let b,b' be branches of FAGwith
the same label, m say.

Case 1. b = <O>*b], b‘ = <0>*b2, b1,b2 e F. Then

jb((eAg):flc) = jbl(eIj](f|c)) by definition of jb and 7.3.2(a);
jb,((eAg):fIc) = jb2(eljl(flc)) analogously.
eIj](f|C)”F' since e e C[F], and hence jb](eIj1(fIc)) = jb2(elj](fIc)).

Case 2. b = <0>*bl, b' = <1>*b2, b e F, b2 6 G. Then m e KF, hence am = 0.

jb((eAg):flc) = jb1(eljl(fIc)) as in case 1, but now
jb.((eAg)=f|c) = jb2(g|j2(flc)).
jb2(gIj2(fIc)) = (jb1m:e)Ijb2j2(fIc) by 7.3.5, the definition of g and the
definition of ¢.

<O> and b' = <1>*b2 are both branches of °0AH. Obviously £<0>(°0AH) = 0,

but also Kb,(°OAH) = 0 since Kb,(°OAH) = £b2H = Kb2(G[An.°an]) = a(Zb2G) =
= am = 0.

Since f 6 C[°OAH](by (ii)), j](flc) = jb.(fIc) = jb?j2(fIc). I.e. Wefindthat

jb((eAg):flc) = jbl(elc') and jb,((eAg):f|c) = jbm(eIc') for c' = j](flc).
By the same argument as in the last step of case 1 we have

jb1(e|c') = jbm(e|c')

Case 3. b = <1>*b], b‘ = <1>*b2, b],b2 e G.

If m e {F i.e. if there is a b3 6 F such that Kb F = m, then we can apply

the argument of case 2 twice: to the pairs b, <0>*b3 and b', <0>*b3.
Assume m 4 ZF, am = 1.

jb((eAg)=f|c) = jb1(g|j2(f|c)), jb.((eA8):f|c) = jb2(g|j2(f|c))- BY7-3-5,
the definition of g and the definition of ¢

jbl(8|j2(f|C)) = jb2m(jblj2(flC))9 jb2(8|j2(f|C)) = jb2m(jb2j2(f|C))
b and b' are branches of °OAHwith the same label 1, fIcfl“’0AH by (ii), hence

.lb]j2(f|C) = jb(f|C) = J'b.(flc) = jb2.l2(f|C)
Finally we must show that (eAg):f has a right-inverse in C. Onemayverify
the following claims:
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if b 6 FAG, b <O>*b1,bl 6 F then jb((eAg):fIc) = jb](eIj1c),
if b 6 FAG, b <l>*b2, b2 5 G then

j (elj c) if K G e KF, where b e F has
b3 1 b2 3

label Kb G,

jb((eAg):fIc) = 2

jb2(j2c) otherwise.

with these observations one easily proves that the desired right-inverse is
e—lAid, i.e. VcflFAG((eAg):f:(e—1Aid)Ic=c), where e-] is such that
VcflF(e:e-]Ic=c).

(f) follows imediately from the fact that for f e C[F] we have
fl(v*Az.O)flT3 while by 7.3.l(b), ffv = fTT;;7E:5)(x) for somex, whence
ffvflF by 7;L6(f). D

9.2.7. COROLLARY.If C is CS-closed then VF3eeC(eeC[F]).

[By induction over frames from 9.2.6(b) and (e).]

To prove the key lema 9.2.9 we need one more fact, namely

9.2.8. PROPOSITION(extensionality of I). Let A(el,...,ep) be a formula of
LC, with no other choice parameters than c ..,ep. Then1’°

* _ p N
IDBF | Ai=l (fi —-gi) +

(“vce<e,F>A(f1lc.....fp|c)
'1

++ 'vce(e.F) A(g,|c,.--.gpk51)=

wherefi|?;, gi|C are substituted for ei, i = l,...,p according to the con
ventions of 7.2.l5(c).

PROOF.Is left to the reader. U

9.2.9. LEMMA.Let C be a CS-closed subset of K, and Zet Ae be a formula of

L? with at most one choice parameterze. If F is a frame and f is an element
of C[F] then

rVee(e,F) Aefi++~rVeA(e:f|e)1.

This is provable in ggggf i.e.
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TQ§§* L- CSclosed(C) +

VFVfeC[F](rVee(e,F) Aej ++ rVe A(e:fIe)1).

33993. By induction w.r.t. the logical complexity of As. The proof is sub
divided into cases, most of the non-trivial cases consist of a part (+) for
the implication from left to right and a part (+) for the converse implica
tion. The numbering of the cases corresponds to the numbering of definition
8.3.3. In each case we assume f e C[F]. Since CS-closed implies dependency

closed, we can use all 2-and A“-properties, as well as monotonicity and the
bar-property of T. Throughoutthe proof, 'extensionality' refers to propo
sition 9.2.8.

case (i) As E t[e] = s[e].
Then

rVee(e,F) Aefl++-VbflF(t[eIb] = s[elb])++-Va(t[e:fIa]=s[e:f|a]) ++

rVe A(e:f|e)1,

the first equivalence holds by definition of T (8.3.3-7), the second one by
definition of C[F], the last one follows from the observations that
"vs Be‘ ++ rVee(id,°n) Be‘ (8.3.lO(a)) and that Va(idIa=afl(°n)) (7.3.6(b)).

case (ii) As 5 BeACe,

trivial by induction-hypothesis.

case (iii) Ac 5 BevCe,

can be treated as A6 E 3x D(e,x).

case (iv) Ae E Be + C8.

(+) First we assume rVee(e,F) A51, i.e.

(1) V(e',F')2(e,F)(rVee(e§F”) Be” + rVee(e',F') Cefi).

Wemust show that (cf.8.3.l0(d))

(2) VgeCVH(rV€e(g,H)B(e:fIe)1 + 'vee(g,H) c(e:f|e)‘).

Let g e C and H be arbitrary and assume

(3) rVee(g,H) B(e:f|e)1.
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Let f‘ be an element of C H , then by induction-hypothesis, (3) is equivalent
to

(4) FVEB(e:f:g:f'|c)fi.

Let a be a labelling-inverse for F, i.e. VneKF(£anF=n).(a assigns to each
label of F a branch of F which has this label.) Put f" E v§(XKn.jan:f:g:f').
Thenf":nestF=2 f:g:f', which is seen as follows: let b be an arbitrary
branch of F, let n be £bF, then

an:f:g:f'Ijb(nestFIb) by 7.3.5;
jan:f:g:f'Ijb(nestFIb) = janl(fI(g:f'lb)) by 9.2.2(b); and
jan|(fI(g:f'Ib)) = jb(fI(g:f'Ib)) since Vc(flcflT) and £anF = £bF = n.
Hence (4) is, by extensionality, equivalent to

jb(f":nestFIb) = j

(5) “vs B(e:f":nestFIe)1.

Put F[O] E F[Az.(°O)], then nestF = nestF[0]
is, by induction-hypothesis, equivalent to

e C[F[O]] (9.2.2(c)) so (5)

(6) rVee(e:f",F[0]) B51.

Obviousl F[O] > F moreover f” = vK(AKnj 'f°g'f')” F‘ (since j fy _ ’ F ° an° ° ' C an’ ‘g
and f' are elements of C and C is closed under composition), hence
(e:f",F[O]) 2 (e,F) and we can apply (1) to (6) yielding

(7) rVee(e:f",F[0]) C51.

But by the same argument which showed the equivalence between (3) and (6)

above, (7) is equivalent to

(3) 'vee(g,H) c(e:£|e)".

(+) To prove the converse implication, assume (2), let (e',F') 2 (e,F)
be arbitrary and suppose that

(9) rVee(e',F') B61.

Let f' be an element of C[F'], then (9) is equivalent to
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(10) "vs B(e':£'|e)‘

by induction-hypothesis. Since (e',F') 2 (e,F) we have that (i) F‘ 2 F and

for some g (ii) e‘ eeezg, where (iii) gflCF. Pkmeover, the f of (2) is an
element of C[F], whence for some f-1 e C (iv) VaflF(f:f—lIa=a) (cf. defini
tion of C[F], 9.2.5).
It follows that e:f:f-]:g:f' e=e:g:f' e:e':f', in fact weevenhave
f:f-]:g:f' e:g:f'. (Thisis seen as follows: let a be arbitrary, then f'IaflF'
(since f' e C[F']), hence f'IaflT‘ (by (i) and 7.3.6(g)), hence
g:f'la = gI(f'|a)flT' (by (iii) and 7.3.6(j)) whencefzf-l:g:f'la = g:f'la
(by (iv)).) So by extensionality, (10) is equivalent to

lPVEB(e:f:f- :g:f'|e)fi,

which (by induction-hypothesis) is equivalent to

(11) 'vee(f" :g,F') B(e:fIe)1.

gflkd? by (iii), C is closed under pairing, hence g e C. f-] e C by defini
tion of C[F], C is closed under composition, hence f-lzg e C. So we can

apply (2) to (11) yielding

rVee(f_l :g,F') C(e:f|e)1.

But this is equivalent to rVee(e',F') C51: simply replace B by C in the
equivalence (9) ++-(ll).

case (V) A6 E Va B(€,a),

trivial by induction-hypothesis.

case (v)C Ae E Vn B(e,n).

Let m be a natural number, m I KF, then rVee(e,F)Vn B(e,n)1 is equivalent
to

<12) "Vz;e(eAid,FA°m) B<j1c,j2c>"

by 8.3.l0(b). If f e C[F] then fAid e C[FA°m], for

(i) f e C, id 6 C, C is closed under pairing, hence fAid e C;

(ii) Va(fAidIa=j(fIj1a,j2a)//F Aom)since fljla//F (cf.7.3.6(d));
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(iii) let f-I e C be such that VaflF(f:f-lIa=a), then f-lAid e C (cf.(i))
. -I . -I . . - . . .

and (fA1d):(f A1d)Ia = (fzf )A1dIa = J(f:f lIJ]a,J2a); 1f aflFA°m
then j1aflF (7.3.6(c)). So f:f—]Ij]a = j la, whence
VaflFA°m((fAid):(f-5\id)Ia=a), i.e. f Aid is a right-inverse to fAid.

So (12) is (by induction-hypothesis) equivalent to

"V: B(j]((eAid):(fAid)|c).j2((eAid):(fAid)Ic))".

which (by extensionality) is equivalent to

(13) “V; B<e=£lj,c,j2z>‘

id e C[°0A°1] by 9.2.6(b), so (13) is equivalent to

rV;e(id,°OA°l)B(e:£|j];,j2;)‘

by extensionality and induction-hypothesis. The desired rVeVnB(e:fIe,n)1
follows by 8.3.l0(a) and (b).

case (vi) As E 3a B(e,a).

(+) First we assume rVee(e,F) Aej, i.e. we have an e] such that

(14) Vu//F[e u#0-> 3&1-Vee(e:[u],F) B(e,a)-1].
1

Since for all n and e (e:sn,F) 2 (e,F), (7.3.7(e)), (14) yields (by mono
tonicity)

VuflF[e1u#0+-3aVnrVse(e:[u]:sn,F) B(e,a)fi],

whenceby induction-hypothesis and 8.3.l0(a)

(15) Vu//F[e]u¥O—>aavn"vee(id, °o) B(e:[u]:sn:f |e,a)"].

Since ([v],°0) 2 (id,°0) for all v (by 7.3.7(c) and 7.3.6(b)), (15) yields
(by monotonicity)

Vu//F[e1u#O-+3avnvw"vee([w],°o) B(e:[u]:sn:fle,a)1].
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id e C[0], (9.2.6(b)), hence, by induction-hypothesis and extensionality

(16) VuflF[e]u#O+~3aVnVwrVeB(e:[u]:sn:f:[w]Ie,a)1].

Nowput e e1;f, let v satisfy e v # O, i.e. e1(fFv) # 0. ffvflT‘ by2 E

9.2.6(f), so
2

3aVnVw'-VaB(e:[frv]:sn:f:[w]Ie,a)-'

follows from (16), whence in particular

(17) Harv: B(e:[fTv]:sm:f:[v]|e,a)7,

where m = lth(ffv). [ffv]:sm:f:[v] ==f:[v] by 7.3.3(c), hence (17) is
equivalent to

Earve B(e:f:[v]Ie,a)1

by extensionality, which in turn is equivalent to

3a"vee([v],°0) B(e:£|e,a)‘

by induction-hypothesis and 9.2.6(b): id 6 CEO]. Thus we have shown that

(£8) Vv[e2v#0+ 3arVee([v],°0) B(e:f|e,a)1],

i.e. we have rVee(id,°O)3a B(e:f|e,a)1 or equivalently, by 8.3.10(a)
rVe3aB(e:£|e,a)‘.

(+) For the converse implication assume e2 to satisfy (18). Let f-1 e C
be such that VaflF(f:f .a=a). f e C, sn 6 C,[w] e C and C is closed under

composition, hence VnVw(sn:f-1:[w]:feC), so ([v]:sn:f-1:[w]:f,°O) 2 ([v],°0)
for all n and w, by 7.3.7(d). Bymonotonicity, (18) yields

1' I1-1 O 1
vv[e2v¢0 + aavnvwVee([v]:s :f :[w]:f, 0) B(e:fIe,a) J,

which (by induction-hypothesis and 9.2.6(b) (id 5 C[0])) is equivalent to

(19) Vv[e2v#O+ 3aVnVwrVeB(e:f:[v]:sn:f—l:[w]:f|e,a)1].
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Nowput e] E e2:f—l, let uflT‘ be arbitrary and assume that

elu E e2(f-lfu) # 0. By (19) we find an 3 such that

vnvwrveB(e:f:[f-1Fu]:sn:f—]::w]:fIe,a)fi

whencein particular

-1(20) "vs B(e:£:[£"ru]:sm:£ :[u]:5|e,a)‘,

wherem= lth(f-lfu). But then [f-]fu]:sm:f-]:[u] &=f-l:[u] (7.3.3(c)), so
(20) is equivalent to

-1(21) "vs B(e:f:f :[u]:£|e,a)‘

by extensionality. Since f e C[F] whence Va(fla//F), u//F whence
VbflF([u]Ho= u*bflF) (by 7.3.6(f)), an VcflF(f:f-1Ic=c), we have
f:f-l:[u]:f e:[u]:f. Hence(by extensionality) (21) is equivalent to
FVEB(e:[u]:fIe,a)1, which is equivalent to rVee(e:[u],F) B(e,a)7 by in
duction-hypothesis. Thus we have shown that

VuflF[e1u#0+-3arVee(e:[u],F) E(e,a)1],

i.e. we have rVee(e,F) A61.

case (vi)C A: E Sn B(e,n).

(+) Weassume rVee(e,F) A51, i.e. we have an e] e K such that

VuflF[e1u¥O+-3geC3GrV§e((e:[u])Ag, FAG)B(j]Csj2C)1].

As in case (vi)(+) above we find (by monotonicity)

(22) Vu//F[elu#O->agecacvn'vz;e((e;[u]:s“)A(g:s“), FAG)B(j]z;,j2z;)-'1.

Nowput e E e1;f (f e C[F]), let v be such that e v E e1(f[v) # O.2 2

Since ffvflT3 (22) yields us a g e C and a G such that

(23) vn'vce<<e:t£rvJ:s“>A<g=s“>, FAs>B<j,c.j2c>‘.
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Let f', f", g' and H satisfy (i) f'°‘(fAg'):f", (ii) f' e C[FAG],
(iii) f" e C[°OAH]and (iv) g‘ e C; such f', f", g‘ and H exist by 9.2.6(e).
Then (23) is equivalent to

(24) VnrV;B(e:[fTv]:sn:flj](f"I§), g:s“:g'|j2(£"|;))"

by induction-hypothesis, (ii), (i) and extensionality; (24) in turn is (by
(iii) and induction-hypothesis) equivalent to

(25) VnrVce(id,°0AH)B(e:[ffv]:sn:fIj]t, g:s“:g'|j2;)‘.

Let v', v" be such that v'fl'°OAH, k1v' = v, k2v' = v" (7.3.6(e)), then (25)
yields (by monotonicity):

VnrV;e([v'],°0AH)B(e:[fFv]:sn:fIj]c, g:sn:g'lj2§)1.

[v'] &=[k]v']A[k2v'] (7.3.3(a)), so it follows by induction-hypothesis and
extensionality that

(26) VnrV§B(e:[fIv]:sn:f:[v]|jl(f"|c), g:sn:g':[v"]Ij2(f"|c))1.

If n = 1th(fFv) then [f[v]:sn:f:[v] =1f:[v] (7.3.3(c)), hence wehave, as
a special case of (26) (by extensionality):

rV§B(e:f:[v]Ij](f"I§), g:sn:g':[v"]Ij2(f"I;))1

where n = lth(fPv). By induction-hypothesis, this is equivalent to

rVce([v]A(g:sn:g':[v"]), °0AH)B(e:f|j1;,j2c)7.

Thus we have shown that

Vv[e]v#0+ ag"ec3H'v;e([v]Ag",°0AH)B(e:£|jl;,j2;)"]

(note that g:sn:g':[v"] e C since g,sn,g' and [v"] are elements of C and C
is closed under composition), i.e. we have rVee(id,°O)3n B(e:f|e,n)1.

(+) Conversely, assume “vs A(e:fIe)1, i.e.
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VgeCVH3e2VuflH[e2u#0+-3g'eC3GrV§e(Ig:[u]Ag'),HAG)B(e:fIj1§,j2c)1].

Take for g e C the mapping f-] such that VaflF(f:f-]|a=a), take F for H,

then we find an e2 such that

-1 . .
VuflTTe2u#O-+3geC3GrV§e((f :[u])Ag, FAG)B(e:f|J1CsJ2C)j].

Let uflT‘ be such that e2u # 0, then we have a g e C and a G such that

r -1 . . "1
Vce((f :[u])Ag, FAG)B(e:f|J]CsJ2C) .

Let f' e CEFAGJ(f' exists by 9.2.7); apply induction-hypothesis and exten
sionality, this yields

-1 . .
(27) '-V; B(e:f:f :[u]|_]](f'|C)a gl;;2(f'|;))'.'.

f' e C[FAG],hence f'la//FAG for all a, i.e. Va(jl(f'Ia)//F), (7.3.6(c)),
since [u]//F then also [u]Ij](f' Ia)//F for all a. Hence
Va(f:f-l:[u]|jl(f'la) = [u]|j1(f'la)), so (27) is equivalentto

(28) "V: B(e:[u]|j1(f'|c). glj2<£'|c>>‘

by extensionality. But (28) yields rV§e((e:[u])Ag, FAG)B(j]§,j2§)1 by in
duction-hypothesis. I.e. we have shownthat

VuflF[e2u#O+-3geC3GrV;e((e:[u])Ag, FAG)B(j1C,j2C)7]

so we have rVee(e,F)3n B(e,n)1. D

9.2.9 is the key-lema for the derivation of the main theorem:

9.2.10. THEOREM.If C is CS-closed, then g§(c) is valid under T, i.e. from
the assumption CSclosed(C) we can prove in ;Q§§*

(a) rg§(C)lfi, i.e. VeeCrVen3§(c=eI(e,n:)1a
(b) r§§(C)2j, i.e. rVe(Ae + 3eeC(3n(e=e n) A V; A(eIc)))1,
(c) 'g§(c)3”, i.e. rVe3aA(e,a)7 + 3eVu[eu#O+ 3arVe A([u]Ie,a)1],
(d) rQ§(C)41, i.e. rVe3n B(e,n)1 + rVe3eeCB(e,e|e)1,

for all formulae A and B of LEwhich contain no choice parameters besides
e and e,n respectively.
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PROOF.

(a) By 8.3.lO(a) and (b), 1.3.24(g) (idAid esid) and 8.3.10(c) we have
’cs(c)1‘-++ VeeCrVC'e(id,°0A°l)A(e,;')‘, where

A(e,;') E 3§(§=e|(jlc',j2§')). Bydefinition of T and 7.3.6(a) (which im
plies Vu(u// °O/\°l)) we have

rV§'e(id,°OA°1)A(e,c')1 ++ 3e]Vu[elu#0 + 3feC3GrB(u,f,G,e)1], where

B(u,f,G,e) ++-V§e([u]Af, (°OA°1)AG)(j2C=€|(j]j]C,j2jl§)) (by 8.3.10(c) and
the definition of T). To prove rQ§(C)P it suffices to show that

VeeC3e]Vu[elu#O+ 3feC3GrB(u,f,G,e)1]. Weshall show that in fact
veeCVu3feC3GrB(u,f,G,e)1: let e e C and u be arbitrary, put f E e:[u]
(f e C) and G E °OA°1.

ThenrB(u,f,G,e)1 is equivalent to

rV;e([u]A(e:[u]),GAG)(j2;=e|(j1j1;,j2jl;))w which is (by definition of T
and 7.3.2(a):j](eAfIa) = eIj]a,j2(eAfla) = fljza) equivalent to
‘VaflGAG(e:[u]|j2a = e|([u]lj]a)). This is obviously true, since aflGAG
implies aA’°OA°0(by 7.3.6(g)) and aA’°OA°Oiff j a = ' a by definition of fl.

_ 1 32

(b) By 8.3.10(d), rQ§(C)21 is equivalent to
VfeCVF(rVee(f,F) A61 + rVee(f,F) B61) where Be 5 3eeC D(€,e), and

D(e,e) E 3n(e=eln) A V: A(e|C).
Let f e C and F be arbitrary and assume rVee(f,F) A81. Wehave to show that

rVee(f,F) Bej follows, i.e. (by definition of T) we must find an e] such
that

VuflF[elu#O+~3eeCrVee(f:[u],F) D(e,e)1].
We take e E Az.S0, i.e. now we have to find for each uflT‘ an e e C such

1

that rVee(f:[u],F) D(e,e)fi. For e we take e E f:[u]:f', where f' is an
(arbitrarily chosen) element of C[F].
By definition of T, rVee(f:[u],F) D(e,e)fi is the conjunction of
rVee(f:[u],F)3n(e=eln)1 and rVee(f:[u],F)V§ A(e|;)j (where e does not occur
in A). If we apply the key-lemma9.2.9 to the first conjunct we find that

it is equivalent to fiVe3n(e|e=e|n)1 which is easily seen to be true.
Also by 9.2.9 the second conjunct is equivalent to rV€V§A(e|c)1.

'vev;A(e|;)‘ ++ Vv;e(id,°oA°1)A(e|j2;)‘ by 8.3.l0(a), (b), (c),
rVCe(id,°OA°1)A(e|j2;)“ ++ "V; A(e|j2;)‘ by 9.2.9 and 9.2.6(b):
id e C[°0A°l].

FVQA(e|j2;)j follows imediately from the assumption rVee(f,F) Aej:
rVee(e,F) As‘ + rVee(f:[u],F) A51by monotonicity of T and 7.3.7(c)
([u]”F);
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rVee(f:[u],F) Aefi+ rVe A(e|e)1 by 9.2.9 (e = f:[u]:f', f' e CEFJ);

“vs A(e|€)j +rVee(j2,°O) A(e|e)1 by definition of T (jz e C);
’vee(j2,°o) A(e|e)‘ + TveA(e|j2e)‘ by 9.2.9 and 9.2.6(b): id 6 c[°0].

(c) AssumerVe3a A(e,a)1 then in particular rVee(id,°0)3a A(e,a)1
whence, by definition of T and 7.3.6(b) (Vu(ufl°O)).
3eVu[eu#0+ 3a'vee([uJ,°o) A(e,a)‘J. By 9.2.9 and 9.2.6(b) (id 6 c[°o])

rV€([u],°0) A(e,a)1 is equivalent to “vs A([u]|e.a)1.
(d) AssumerVe3n B(e,n)1, then in particular rVee(id,°O)3n B(e,n)1,

i.e. we have an e] such that

Vu[e]u#0 + 3f€C3FrV§€([U]Af,°0AF)B(j];,j2§)1] by definition of T and
7.3.6(b): Vu(u//°0).
Wemust derive rVe3eeCB(e,e|e)j or equivalently (by 8.3.lO(a))
rVee(id,°0)3eeC B(e,eIe)1,i.e. (by definition of T and 7.3.6(b)) wemust

find an e such that Vu[elu#O+ 3eeCrVee([u],°O) B(e,eIe)1].I

For e we take the one we have by assumption. Let u be arbitrary, e1 1“ * 0’

then we have an f e C and an F such that rV§e([u]Af,°0AF) B(jl§,j2c)1. By
monotonicity of T then also rV§e([u]Af,G) B(j]§,j2§)1 where
G = (°0AF)[Az.°O]. By 9.2.6(c) nestG e CZGJ, i.e. we find that

FVQB([u]Ij1(nestGI§), fIj2(nestG|§))1 by extensionality and 9.2.9. By
9.2.2(d), nestG O0
Va(j1(nestGIa) = nest°0Ij](dpl|a) = nest,0|a=a) (9.2.2(a),(b)) and

2:(nest A nestF,): dpl, where F‘ = F[Az.°0]. Hence

Va(j2(nestG|a) = nestF,|j2(dplIa) nestF,|a) (9.2.2(a)). I.e. by exten
sionality weobtain rV§B([u]|C,f:nestF,I;)1.
Our aim is to find an e e C such that rVee([u],°0) B(e,eIe)7. Wetake

hence the foree E fznest :sn, where n = lth(u), then e:[u] etfznestFl Fl!
going yields (by extensionality)hV§ B([u]|C,e|([u]|§))1, from which the
desired result follows by one more application of 9.2.9 (again using
id 6 C[°O]). D

9.3. CONCLUSIONS

Combiningthe results of the previous chapters with theorem 9.2.10 we
obtain the following theorems.

9.3.1. THEOREM.If U6 is a dbmain w.r.t. a CS-closed C c K, then U6 is a
model for g(C). This can be shown fbrmaZZy_in LSF*, i.e.

LSF* F- CSclosed(C) A domain (n,d,6) + ¢6
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for each axiom and instance of an axiom schema <I>of g§(C) .

PROOF.Imediately from the main theorem 9.2.10 and the elimination theorem
8.4.2. Observe that CSc1osed(C)+ dclosed(C) by definition. U

"9.3.2. THEOREM.If U6is a projected universe of GC-sequences w.r.t. a
CSlcosed C c K (which means in particular that J enumerates C modulo 20 then

U6 is a model for g§(C) . This can be proved in LSF*, i.e.

LSF* L- CSc1osed(C) A model(n,d,6) + Q5

for each axiom and instance of an axiom schema <I>of gs (C) .

PROOF.Combine theorem 6.2 (models are domains) with the previous theorem.

Note that 6.2 can be formalized in IDBF*(cf.7.2.l3). (Note also that

dclosed(C) and 'J enumerates C modulo 29 are subsentences of model (n,d,fi)
(cf.7.2.l3).) D

9.3.3. THEOREM.With each mapping I:l\I—>K there exists a universe U5 of

projections of lawless sequences which satisfies eeU5->‘v’n(InI€eU6)and
which is a model for g§(c).

33993. It suffices to show that with each mapping I:IJ + K we can find a
Jzli + K such that

(a) range(I) c range(J),
(b) C E {e e k: 3n(Jn e:e)} is CS-closed,

for then the desired result follows immediately from 9.3.2 above and the
observation that there exist n,d and 6 which generate a projected universe
of nests of GC-carriers and the corresponding dressings and frames respec
tively, whatever J is (cf.7.2.l3). (Note that J enumerates C moduloetby
definition of C.)
To make J fulfill (a) and (b) we must ensure that:

(i) Vn3m(In 2-’Jm) ,

(ii) Vv3n(Jn [v]),
(iii) Vn3m(Jm Sn),

(iv) am0mlm2(JmO“ j<o> ’‘
(v) VkVm3n(Jn==Jk:Jm),

(vi) VkVm3n(Jn ==JkAJm).

I2

[2

Jm A Jm e: dpl),1 ” J<1> 2

This is achieved if we construct J such that J(j(O,n))= In, J(j(l,v)) = [V],
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J<j<2.n>> = s“, J<j<3,o>> = 3(0), J<j<3,n>> = j<,,. J<j<3,2>> = dpl,
J(j(3,n+3)) = id, J(j(n+4,2m)) e¢Jn:Jm, and J(j(n+4,2m+l)) ==JnAJm.

In ggg we can construct an F-Tm ¢ such that K(¢), ¢O = O and Av.¢(<n>*v) be
haves as desired for Jn, relative to any w such that Vn K(Av.w(<n>*v)), i.e.
such that n.H-Av.w(<n>*v) can play the r61e of I. D
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APPENDIX

In 4.4.1] we introduced the set DG0(J) of mappings d: IJ>< Ii-+ K satis
fying

(1) dn0 2 id

(2) dn(v*i) esdnv: JF(n,v*i):GV(n,v*i)

A __ K 0 g A _ K

where JF(n,v*x) : vény Jf(V*X) and GV(n,v*x) : v6n(v*fi
In this appendix we shall show that DG0(J) has elements which are primitive

) gv(v*i).

recursive in J.

Since each element e e K is a mapping from Ii to EL a mapping

d: N X N -> K can be viewed as a mapping d: N X N X N -> N. To construct

the desired d, we use an auxiliary mapping D, which assigns to each k e EU

a finite sequence Dk with length k. The finite sequence D(k+l) is to con
tain the ‘initial segmentof d', i.e.

D(k+l) = <dj30j3O(j§0),...,dj3kj3k(j§k)>. That is to say, once D has been
1

defined we shall put

(3) dnv E Au.(D(au+1))au,

where au E v3(n,v,u).
D is defined by an ordinary recursion, its definition has the form

D0 = 0, D(k+1) = Dk*<¢(Dk,k)>.

¢(Dk,k) will be the value of dnv(z), where v3(n,v,z) = k. Wedefine ¢(Dk,k)
as follows (k = v3(n,v,z)).

(a) If v = 0 then we put ¢(Dk,k) = id(z). Thus we achieve that for all

n, dn0 will be equal to id eventually.
(b) If z = 0 then also ¢(Dk,k) = 0. It follows that dnv(0) = O for all

n and v, this is consistent with (a) above and with equivalence (2), if we
write f[n,v*i] for the right-handside of (2) then f[n,v*i](0) = 0.

(c) If both z and v are unequal zero, say z = y*u, v = w*i, then we

proceed as follows: we put
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f[n,w*i] E dnw: JF(n,w*i):GV(n,w*i)

(i.e. the right-hand side of (2) with w for v) and we try to establish the
value f[n,w*i] (ytu), using only information that is to be found in Dk. If
we succeed we put ¢(Dk,k) = f[n,w*i](y*u), otherwise ¢(Dk,k) = 0.

In order to find f[n,w*§](y*u) we must first try to computeupb(d,w*i).
upb(d,w*i) is defined as

upb(d,w*i) E max{Um(w*i):me nf(k?(w*i))}

where

Um(w*i) mk((d:JF)(m,w*i),lth(w),gsm(w*i))

(see 4.4.9). mk((d:JF)(m,w*i),lth(w),gsm(w*i)) is the smallest z such that
((d:JF)(m,w*i))(<lth(w)>*gsm(w*§)(z)) # 0 (see 4.4.8) and this inequality
is equivalent to

(4) dmw(<lth(w)>*JFmfgs;Kz)) # 0,

where JFm 5 JF(m,w*fi) and gsm E gsm(w*fi) (see 4.4.7 and the definition of:
in 1.3.18). In computing upb(d,w*i) from the information on d contained in

Dk, we shall first make lists {wm:menf(k?(v*i))}satisfying

z e wm iff v3(m,w,<lth(w)>*JFmfgsm(z)) < k,

i.e. if z e wmthen we can use Dk to check whether or not (4) holds. If

there is an m such that (4) does not hold for any of the z e wm, then Dk
gives us too little information to determine upb(d,w*fi) and we shall put
¢(Dk,k) = 0. Otherwise we compute upb(d,w*i). (Wetacilty assume here that

the lists wmare initial segments of IL This will be the case if z < z*fi
for all z and n, and if v3 is monotone in all its arguments. Wecan do
without such assumptions, the construction of ¢(Dk,k) will remain essential
ly the same, but we shall have to proceed with more care.)

Once we have succeeded in finding upb(d,w*i) from Dk we can easily
determine the K-function GV(n,w*fi).By definition of:, f[n,w*i](y*u) (the
value that we want to assign to ¢(Dk,k)) is equal to
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(5) dfiW(?*(JFn=GVn)iU).

where JFH E JF(n,w*i), GVn E GV(n,w*§). In order to compute (5) from Dk we

makea list v0,v1,...,vi (possibly empty) of initial segments of (JFn:GVn)Fu,

in which vj occurs iff v3(n,w,y*vj) < k. If for somevj in the list

(Dk)V3(n,W,§*v_) = m+l then (5) will yield m+1 and we put ¢(Dk,k) = m+1,
otherwise ¢(Dk,k) = 0.

Wehave to check the following facts for the mappings dnv defined by

dnv E Au.(D(l+v3(n,v,u)))v3(n,V,u):

(i) dnv e K,

(ii) dnO2 id,
(iii) dn(v*i) 2:dnv:JF(n,v*i):GV(n,v*i).

(ii) is trivial, by (a) above we have dn0 = id, whence also dn0 e K.
(i) is proved by induction w.r.t. lth(v), in this proof we shall

establish (iii). The basis-step of the proof of (i) (v = O) is in the proof
of (ii). For the induction step we show that

(6) dn(v*i)(y*u) = sg(e(y*u))-(dnv:(JFn:GVn))(y*u)

for some e e K. Since dn(v*§)(O) = O (by (b)) this proves that dn(v*i) e K,
at the same time it shows (iii).

The left-hand side of (6) is ¢(Dk,k) for k = v3(n,v*i,y*u). From (c)
above it follows that we must choose e such that e(y*u) # 0 iff Dk contains

sufficient information to determine a value for (dnv:(GSn:JFn))(y*u). The
existence of such an e follows from the induction-hypothesis: Vm(dmveK).

First one proves that there is an e e K such that e1(y*u) # 0 iff1

Vmenf(k?(v*i))3z[dmv(<lth(v)>*JFmfgsm(z)) ¢ 0 A

v3(m,v,<lth(v)>*JFmfgsfi(z)) < k],

then one shows that there is an e2 in K such that e2(§*u) # 0 iff

3w4(JFn:GVn)Pu(dnv(y*w) # 0 A v3(n,v,y*w) < k).

Then e can be defined by e(y*u) = e1(y*u)°e2(y*u).
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e is found as a product of mappings e1 ,m, where el,m(§*u) # 0 iff1

az[c1mv(<1th(v)>*JFmrg—s;(z)) -,éo A v3(m,v,<1ch(v)>*JFmrgTm(z)) < k];

since dmy e K there is a shortest w of the form <1th(v)>*JFmfgsm(z) such

that dmy(w)# 0, and we can put e E Au.sg(v3(n,v*fi,u):v3(m,v,w)). Sincel,m
v3(m,v,w) is a constant, there is a k such that for all u' with 1th(u') > k
el m(u'*u) = 1, together with the monotonicity of v3 in its third argument

9

this yields e] m e K (see l.3.13,l4).
9

e2 is the product of e2,l and e2’2, where
e2 1(§*u) h(Az.e(?*z), JFn:GVnfu) and

9

e (§*u) = sg(v (n,v*i,§*u);v (n,v,§*(e (§*u);l))). e (§*u) # 0 means2,2 3 3 2,1 2,1
that there is an initial segment w of JFn:GVnfusuch that dnv(§*w) # 0, if

e2,l(?*u) 940 then e2,2(?*u) -7‘0 means that the shortest w 4.JFn:GVnTu such
that dnv(§*w) # 0 satisfies v3(n,v,§*w) < k, i.e. dnv(?*w) can be found in
Dk. We leave it to the reader to verify that e2 1 e K and e2 2 e K.

9 9
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Analytic data

Baire-space (intuitionistic-)
bar

bar property (of T)
below

binary jumps (restriction to-)
branch of finite strictly binary tree

of frame

bottom node

Cardinality (of finite set)
carrier (infbrmal)

see also GC-carrier

carrier (projected)
choice sequence

closed formula of L8
closure (g§(C) axiom of‘)
codomain (of mapping)

composition
of mappings

of neighbourhood-functions
concatenation

C-parallel
CS-closed
cut-off subtraction

Density (kg-axiom of-)
dependence tree
dependency (between GC-carriers

and - sequences)
dependency-closed
descendant

imediate 
descends from
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distributivity
of application over nesting
of composition over pairing
of composition over nesting

domain (of a mapping)
domain (w.r.t.C)

- axioms

dressing (infbrmal)

for en

for e,eF
dressing (projected)

for nF,flF6

for e|nF, e|nF6
duplicate

Elementary analysis
elimination theorem

for Qg
for domains

for pg
for §§§*

elimination translation

Dragalin's for L:
empty carrier

empty part of an, of carrier
enumerate ‘

modulo =5 modulo equivalence

equality
extensional, intensional

equivalent
frames

K-elements
restrictions

extensional equality
extensionality

of L.§§,*

of T

2.9.6, 3.2.16
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3.2.16
1.3.4

6, 6.1.1
6.1.1

2.9.3, 2.9.7, 2.9.8
2.10.5, 2.11.2

4.5.2, 6.1.1
4.6.2
9.2.1

1.3.5

1.1

8.4.2
1.1

7.2.16

1.], 8.3.1-8.3.7
2.6.2
2.9.1

1.1, 4.5.1

3.1.20
1.3.11
5.1.5
1.]

8.3.14
9.2.8



extension principle

Finite set
finite sequence of natural numbers
finite strictly binary tree
frame

frame for (informal)

En

eIeF
frame for (projected)

fin at v, at stage x
H at v, at stage xF

eInF
freedom of continuation

for GC-carriers (informal)
for sequencesof restrictions

(projected)
fresh carrier

GC-carrier
GC-carrier w.r.t. C

GC-sequence

GC(C)-sequence

generate
a universe of dressing sequences
nests of GC-carriers

dressings for N
generator
guiding sequence (informal)
guiding sequence (projected)

Immediate descendant
induction

over frames

over K

initial
dressing, frame, restriction

(informal)
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1.1, 1.3.28.

1.3.3
1.3.5

3.1, 3.1.1
2.9.4, 3.1.4

2.9.3
2.10.5

4.3.9
4.3.12, 4.5.2, 6.1.1
4.6.2

2.8.4

4.7, 5.2
2.4.2

2.2-2.8
2.11.1

1.1, 2.1, 2.2, 2.10
1.1, 2.11

4.2, 4.4.17
4.5.2
4.5.2
4.1

2.8.1

4.4.4, 4.4.6

3.1.1

3.1.13
1.3.7

2.10.2
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dressing, frame, restriction
(projected)

intensional equality
Jump (informal)

jump (projected)
jump-function (informal)
jump-function (projected)

Label

labelling
lawless sequence
lawlike sequence

Monotonicity of T

Neighbourhood-function
nesting
nesting-inverse
nest of GC-carriers
node

Obtained from ¢ by an application
of*+

open data (Lg-axiom of-)
overtake property

strong 

Pairing
on FRAME

on K

on 11

w.r.t. ~D
pairing left inverse
pairing inverse
parallel

C

preliminary choice of values
(informal)
(projected)

4.6.2

2.4.3

8.3.9.

1.1, 1.3.10
2.9.5, 3.2.5
3.2.9
2.10.1
3.1.1.

8.3.5
1.1, 1.3.28
5.2.4
5.2.4.

3.1.8, 3.2.2
1.3.23, 3.2.2
1.1, 3.2.2
3.2.1
3.2.3
3.2.3
3.2.18
3.2.18

2.8.1
4.4.4



produce

projected universe
projected universe of

dressing sequences
GC-carriers

GC-sequences
nests of GC-carriers

projection model
see projected universe

projection model for GC
see projected universe of GC
sequences

proto-lawless sequence

Range (of mapping)
real number

generator
recursor
restriction
restriction for (informal)

en 4

5

restriction for (projected)

"F

e|nF6
restriction of a mapping to subdomain
restriction to binary jumps

Sign-mapping
shift
single jump property
single node frame
source

for an
for €F

stronger than
strong overtake property
subset of K

229

4.4
4.5.2
4.6.1
4.5.2

2.9.10
2.10.5

4.5.2, 6.1.1
4.6.2
1.3.4

2.4.4, 4.3.7.

1.3.5
1.3.16

2.4.4, 4.3.7
3.1.7

2.9.2, 2.9.7-2.9.8
2.10.5
5.1.2
5.2.4
1.3.26.
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Terminal node

topnode
tree of a frame

Universe of projections of lawless
sequences

see also projected universe
upperboun for the relevant values

of guiding sequences

Weaker than

3.1.]
3.1.3
3.1.4.
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AXIOMS AND SCHEMATA

AC-NF axiom of choice from numbers to

(lawlike) functions

VxflaA(x,a) + 3bVxA(x,(b)x). 1.], 1.3.27, 1.3.28.
AC-NFrf axiom of choice from numbers to lawlike

sequences of frames:

VX36A(x,fi) + 3gVxA(x,(g)x). 7.2.1.
CSi, i = 1,...,4 gg-axioms 1.1.
CS(C)i, i = l,...,4 Q§(C)-axioms 1.], 1.3.29.

ECT0 extended Church's thesis 1.1.
EP extension principle:

vee1<LSv¢eNax(e($x)¢o). 1.1, 1.3.28.
LSi, i = 1,...,4 kg-axioms 1.1, 1.3.28.
QF-AC quantifier-free axiom of choice: for

A quantifier-free
VxflyA(x,y) + 3aVx A(x,ax). 1.3.5.

FORMAL LANGUAGES

L(X) X any formal system; the language of X,

see formal systems

L8 the language of g§(C) 8.2.1.

L0,L* extensions of L 8.2.1, 8.2.5.
5 e e
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FORMAL SYSTEMS

,Q§(C)

EL

LEE

IDB

LEE

LQEE

IDBE“W1
EQEE

LS
f\JI\J

LS
I€"\J

TheKreisel-Troelstra
tion of intuitionistic
Relativized g§

Elementary analysis

system for the founda
analysis

gg + inductively defined set K of neighbour
hood functions

functions

Egg with K-terms

LQQ+ theory of frames

LQEEwith K-terms

LQQE with additional
1

The theory of lawless

The theory of lawless
functions

The theory of lawless

part lQ§§*.

+ the axiom of choice from numbers to

constants C and J

sequences

sequences of K

sequences with lawlike

1

\l\l\l

.1, 1.3.29,
8.

.3.5.
2.2.

.3.8.

.3.27.

.2.1-7.2.7.

.2.8-7.2.11.

.2.12.

.1, 1.3.28.



SETS, UNIVERSES AND CLASSES

CU5(c)

C[F]

DG0(J)

DG(J)

D5(C)
FRAME

cc

ccc

GC(C)

GCC(C)

%
6

U5(C)

The class of projected universes of nests of
GC-carriers w.r.t. C

The subset of C C K which contains exactly

those e such that {e|¢:¢eN} = {weN:¢”F}.

The set of mappings d0:l\1><]N->Kwhich

generate dressings for carriers
The set of mappings d:l\1 XFRAMEX ]N -+K

which generate universes of dressing sequences
The class of domains w.r.t. C

The set of frames

The universe of GC-sequences
The universe of GC-carriers

The universe of GC-sequences w.r.t. C
The universe of GC-carriers w.r.t. C

The inductively defined set of neighbour
hood functions

The set of neighbourhood functions for
continuous mappings with domain LS

The universe of lawless sequences
The natural numbers

Intuitionistic Baire-space
The universe of proto-lawless sequences
The projected universe {e|6:eeM}
The class of projected universes of
GC-sequences w.r.t. C
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4.5.2.

9.2.5.

4.4.2, 4.4.10

4.2, 4.4.17
6.1.1.
3.1.14.
2.2, 2.10.2.
2.2-2.8.
2.11.4.
2.11.].

1.1, 1.3.1,
1.3.7-1.3.27.

1.1, 1.3.28
1.], 1.3.1.

1.1, 1.3.1.
2.10.3.
4.1.

4.1, 4.2, 4.6.
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SYMBOLS, TERMS, RELATIONS AND SPECIAL FORMULAE

b 3.1.2.
b e F 3.1.4.

dnz 2.9.3, 2.9.7-2.9.8.
dFz 2.10.5
dny 4 2, 4.4.10, 6.1.1.
dFv 4 2, 4.4.17, 6.1.1.
dgy 4.2, 4.4.17, 6.1.1.
d¥w 4 2, 4.4.17, 6.1.1.
(d:JF) 4.4.7.
dc1osed(C) 7.2.13.

domain (n,d,fi) 7.2.13.
dpl 7.2.9, 9.2.1.

EZ 2.9.1.
e(¢) 1.1, 1 3 10

e|¢ 1 1, 1 3 10

emf 13.11
e,f 1.3.17
e f 1.3.18

exf 1 3.21

eAf 1 3.23.

efw 1.3.11

(e,F) 2.9.10
(e,F) 2 (f,G) 5.1.2.
(e,F) R¢(f,G) 5.1.5.

en 2.2.1
EF 2.10.1
FAG 3.1.8.

FM] 3.1 16
F 2G 3.1.16.
F R5G 3.1.20.

fnz 2.9.3, 2.9.7-2.9.8.
fFz 2.10.5.
finy 4.2, 4.3.9, 6.1.1.
6Fv 4.2, 4.3.12, 6.1.1.
gsn 2.8.1.
gsn(v) 4.4.4, 4.4.6.



gV

ht
h(e,u)

hC(e.u)

jP1
jV.jb
jf
jps

k1,k2
kP

1

k ,kv
lth
ZF

£bF
X1n.¢

A n.¢

max

min

mk

mode1(n,d,6)

nestF
nf

nF,nT
n e w

V1.

C

c '%

C

CC
"I:17<1"I1--"1-'1'1'JU"CJ

--UJUJUJUO

U0

LQUJUOU.>«l-‘U3-b\l\l-I-\ 000O0O
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.1, 1.3.5.

.1, 1.3.5.

.2, 4.4.3.

.2, 4.3.4.

.2.l2.

.3.5.

.1.4.

.1.4.

.2.15.

.2.15.

.3.5.

.3.5.

.4.8.

.2.l3.

.2.9, 9.2.1.

.1.l, 3.1.4.

.2.5.
4.5.2, 6.1.1.
4.2, 4.5.2, 6.1.1.

.2, 4.5.2.
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src (1)
(ii)

t1

upb

UPB
z

upb

UPB

V*W

v*¢

wgw

[V]

(V)

¢ev

<¢>n
Ex

<>
<x ,x >0,... P

* see v*w, v*¢.

see VRAW.

e|¢.
e esf.

—/A
888

R see

(i)
(ii)

; see e;f.

-2
see elw.

see e;f.
X see exf.

A (i) logical constant:
(ii) see FAG.
(iii) see eAf.

and

OOOIOOOIO U.)U)0-)LA)L»)-P4-‘-I-\\O CU‘OO‘O’-'0

j

.2, 4.5.2, 6.1.1.

.3.3.

.8.I-2.8.3, 2.9.9.

I t_n I

C so 0

(_a'b

(fl 0

O tn 0

.1,

.1,

.1,

.3.5.

.3.5.

.3.5.

.3.5.

1.3.5.
1.3.5.
1.3.5.

.3.4.



IV

|/\

(i) greater than or equal to.
(ii) see F 2 G.
(iii) see (e,F) 2 (f,G).
inverse of 2.

(i) see F as G.

(ii) see (e,F) &s(f,G)

(i) set membership.
(ii) see b e F.
(iii) see u e w.
(iv) see ¢ e v.

l\J
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.1.7.

.18.

.2.l, 8.2.5.
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SAMENVATTING

Dit proefschrift behandelt de volgende drie nauwsamenhangendevragen
uit het onderzoek naar deelverzamelingenvan de intuitionistische Baire
ruimte:

(a) Geef een nauwkeurige beschrijving van het door TROELSTRAgeintroduceerde
informele begrip GC-rij.

(b) Construeer een verzameling continue afbeeldingen van de Baire-ruimte
naar zichzelf, zodanig dat de beelden van een vaste wetteloze rij onder
de operaties uit deze verzameling zich als GC-rijen gedragen. D.w.z.
construeer een projectiemodel voor de GC-rijen.)

(c) Bewijs dat het onder (b) geconstrueerde universum een model is voor het

axiomasysteem gg (uit KREISELTROELSTRA1970).

In hoofdstuk 1 wordt de achtergrond van deze vragen uiteengezet. Bovendien
bevat dit hoofdstuk een opsoming van (merendeels uit de literatuur bekende)
definities, feiten en lema's die voor het vervolg van belang zijn.
In hoofdstuk 2 wordt vraag (a) beantwoord. In aansluiting daarop wordt een
relativering van het begrip GC-rij geintroduceerd, de GC(C)-rij, waar C een
verzameling continue afbeelding van de Baire-ruimte naar zichzelf is.
Hoofdstuk 3 bevat de technische hulpmiddelen die nodig zijn voor het beant
woorden van vraag (b).

In hoofdstuk 4 laten we zien hoe voor een aantal soorten GC(C)-rijen een
projectiemodel kan wordengeconstrueerd. Deze constructie werkt alleen in

gevallen waar de verzameling C aftelbaar is. Het antwoord op vraag (b) dat
hier gegeven wordt is derhalve onvolledig, voor de GC-rijen zelf vinden we
geen model. (0verigens valt te verwachten dat een kleine aanpassing van de
constructie, onder de aannamevan de zogeheten uitgebreide these van Church,
wel een model voor het gedrag van de GC-rijen zal geven.)

In hoofdstuk 5 wordt een lema bewezen dat van wezenlijk belang is voor de
beantwoording van vraag (c), in hoofdstuk 6 wordt de in hoofdstuk 4 gein
troduceerde klasse projectiemodellen gegeneraliseerd tot de klasse van do
meinen.

Hoofdstuk 7 geeft een samenvatting van de tot dan toe gevonden resultaten
(met namedie, die in het vervolg nog een rol spelen). Bovendien worden in
dit hoofdstuk de formele systemen beschreven waarbinnen deze resultaten
kunnen worden afgeleid.

In hoofdstuk 8 behandelen we een eliminatie vertaling die geintroduceerd
door DRAGALIN,en we bewijzen dat een zin waar is in een domein dan en
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slechts dan als hij waar is onder deze eliminatievertaling.
In hoofdstuk 9 tenslotte wordt bewezendat alle Q§(C)-axioma's (g§(C) is
een gerelativeerde variant van Qg) waar zijn onder de eliminatievertaling uit
hoofdstuk 8. Daaruit volgt dat alle domeinenmodellen zijn van de Q§(C)
axioma's en daaruit volgt weer dat de projectiemodellen van GC(C)-rijen
uit hoofdstuk 4 modellen zijn van de g§(C) axioma's. Daarmeeis ook vraag
(c) beantwoord.



STELLINGEN

bij het proefschrift P/wjccxtéonb 05 LawflcbbSequences
van G.F. van der Hoeven.

I. Het is mogelijk een beperkte versie van het begrip GC-rij tot het
begrip wetteloze rij te reduceren. In de projectiemodellen die voor deze re
ductie gebruikt worden: gelden varianten van de gg-axioma's "analytic data",
"Vefln-continuiteit", "V€3n—continuiteit". Bovendien zijn deze modellen
gesloten onder een aftelbare verzameling continue operaties.

Dit proefschrift.

II. De rechtvaardiging van de continuiteitsaxioma's voor de theorie der
wetteloze rijen zoals die te vinden is in TROELSTRA(1977) gaat voorbij

aan de vraag of een formule waarin geen vrije keuzevariabelen voorkomen
altijd wetmatig is. Een eenvoudig voorbeeld uit de theorie der proto
wetteloze rijen laat zien dat dit niet altijd het geval hoeft te zijn, met
nameniet als in de formule existentiele kwantificatie over een niet dicht

liggend deeluniversum van de Baire4ruimte voorkomt.

TROELSTRA,A.S.(1977) Choice Seqnences,
Clarendon Press, Oxford.

(1981) Analysing choice sequences,
Report 81-05, Dept. of Math. Univ. A'dam.

III. Het projectiemodel corresponderend met KROL'smodel voor zwakke conti
nuiteit in parameters, is het universum CLvan de vorm

{eI(0.],...,O.p) :eeK, #(oL],...,oLp)}.
KROL',M.D.(l978) Distinct variants of Kripke's

schemein intuitionistic analysis, Soviet
Mathematics l2_I, 474-477.

IV. De parallel die bestaat tussen geldigheid in Beth modellen en geldig
heid in een wetteloze parameter, bestaat ook tussen geldigheid in topo
logische modellen over [0,1] en geldigheid in een parameter lopend over de
vrije reele getallen in [0,1].

van der HOEVEN,G.F.(l981) To appear in the

Proceedings of the Brouwer Centenary
Conference.



V. Ieder intuitionistisch "klassiek reeel getal" (element van Ilee) is de
limiet van een Cauchy-rij van singleton rationale getallen.

TROELSTRA,A.S. (1980) Intuitionistic extensions

of the reals II, Report 80-09, Dept. of
Math., Univ. A'dam.

VI. De interne Baire-ruimte in de topos van schoven over de monoide van
. . ZN 1N . .continue operaties van El naar El met de "open overdekking" topologie,

is een modelvoor de gg-axioma's. De eliminatievertaling voor gs is hetzelfde
als forcing over deze monoide.

van der HOEVEN, G.F., MOERDIJK, I., GRAYSON,R.

(1981) Hanuscript.

VII. De Baire-ruimte in.FOURMAN'smodel voor een notie van wetteloosheid is
Eplijkwaardig aan de Baire-ruimte over O(n1n') onderzocht door MOSCHOVAKIS,

althans voor zinnen in de taal van de eleuentaire analyse. Dit volgt uit
de opmerking dat de Baire-ruimte in Fourman's model op te vatten is als de
verzameling van alle continue beelden van een vaste rij a uit een verzameling
Mdie een model is voor de Lg]-axioma's.

FOURMAN,M.,(198l) Another kind of lawlessness

Abstract, to appear in the Proceedings of
the Brouwer Centenary Conference.

VIII. Het is opmerkelijk dat de stelling dat iedere separabele volledige
metrische ruimte een quotient is van nil‘ niet te vinden is in de standaard
literatuur op het gebied van de algemene topologie.

IX. In het boek "An Introduction to Compiler Writing" zet J.S. ROHLuiteen
dat een algoritme voor het herkennen van arithmetische expressies eerst
dient te onderzoeken of de invoer van de vorm "term plus of min expressie"
is, en daarna of hij van de vorm "term" is, met het argument dat anders een
"term plus of min incorrecte expressie" als een correcte "term" herkend zou
worden. De procedure die hij vervolgens aangeeft voor het analyseren van
expressies constateert weliswaar eerst dat de string "x+/y" niet van de vorm
"term plus of min expressie" is, maar accepteert hemvervolgens als de
correcte term "x". Zijn argumentverliest hierdoor aan kracht.

ROHL,J.S.(l975) An Introduction to Compiler
Writing, Macdonald and Jane's, Londen.



X. In het artikel "Analysis without actual infinity" geeft J. MYCIELSKIte
kennen dat naar zijn meningintuitionistische logica onhandig is, en de
Platonistische filosofie van de wiskundekinderachtig. Hij wekt de indruk te
geloven dat door het toekennen van deze twee adjectieven het intuitionisme
en het Platonisme voldoende gediskwalificeerd zijn. Een nadere toelichting
op dit oordeel was echter op zijn plaats geweest.

MYCIELSKI,J., Analysis without actual infinity,
The Journal of Symbolic Logic 46 (1981)
625-633.




