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INTRODUCTION AND SUMMARY

Title of this thesis. In the present work we are exclusively concerned with

the stndy of syntactical properties of l—calculns (A, for short), Combina-

tory Logic (CL), Recursive Program Schemes, and in general, Term Rewriting

Systems with bound variables; especially those syntactical properties which

concern reductions. Hence the title of this thesis; Combinatory Reduction

Systems (CRS's) is the name by which we refer to Term Rewriting Systems

plus bound variables. The word 'combinatory' seems justified to us since it

captures the essential feature of these reduction systems: subterms in a

CRS-term are manipulated in a 'combinatory way'.

Motivation. There is ample motivation for the (in our case syntactical) in-

vestigation of CRS's. The importance of the paradigms of CRS's, A and CL,

is well—known in Mathematical Logic (see also our historical remarks below).

Moreover, A and CL play an important role in the semantics of programming

languages; we refer to the work of Scott. One can consider A-calculus as the

prototype of a programming language; see MORRIS [68]. Furthermore, in theo-

retical Computer Science, certain simple CRS's, Recursive Program Schemes,

and more general, CRS's without substitution known as Term Rewriting Systems

are studied. Then there is the AUTOMATH-project of de Bruijn, at the border—

line of Computer Science and Foundations of Mathematics, which has as one

of its aims the computer verification of mathematical proofs. Here A-cal-

culus plays an important role, too; we refer to the recent work of

VAN DAALEN [80].

In Proof Theory one is often interested in certain extensions of

(typed) A-calculus, such as AT 0 recursor R, iterator J, Pairing operators,

etc. All these extensions are covered by the concept of a CRS. It is inter-

esting that one encounters in Proof Theory also CRS's which have a variable-

binding mechanism other than the usual one in A-calculus: namely, in the

normalization of Natural Deduction proofs. Finally, let us mention that

there are recent foundational studies by Feferman in which certain syntac-

tical properties of extensions of l-calculus are relevant.

We conclude that CRS's arise in a variety of fields and that the study

of their syntactical properties is worth-wile.
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Restriction to syntax. Our restriction to syntactical investigations, as

opposed to semantical considerations, is born solely from limitation and

is not by principle. Recently, D. Scott, G. Plotkin and others have origi—

nated a model theory for the X-calculus and extensions thereof; by means of

this one can obtain in a fast and elegant way some results which require

much labour in a syntactical treatment. E.g. the consistency of An 9 Sur-

jective Pairing.

We do not feel however that the availability of the powerful modeltheo—

retic methods lessens the usefullness of Church—Rosser proofs and related

syntactical theorems. The reason is the well-known fact that the (sometimes)

tedious work of syntactical investigations yields longer proofs, but also

more information. We mention a typical example above: model theory yields a

beautiful proof of the consistency of An 9 S.P., but the much longer proof

which will appear in DE VRIJER [80] yields not only consistency, but also

conservativity of An 9 S.P. over An. (Another reason is that the models of

Plotkin and Scott, only bear on extensions of A-calculus and not on several

other Combinatory Reduction Systems.)

Although we have occasionally allowed ourselves a digression for com—

pleteness sake, this thesis certainly does not aim to give a survey of the

syntax of A—calculus and extensions. For such a survey we refer to

Barendregt's forthcoming monograph 'The lambda calculus, its syntax and

semantics'.

Some history. We will now give a short sketch of the history of the subject;

for a more extensive historical introduction we refer to the introduction

in BARENDREGT [80], to the short historical survey in SCOTT [79] and to the

many historical comments in CURRY-FEYS [58].

Combinatory Logic starts in 1924 with SCH5NFINKEL [24]: 'Uber die Bau—

steine der Mathematischen Logik'. Schonfinkel tries to reduce the num-

ber of primitive concepts in (higher order predicate) logic; in particular,

his aim is to eliminate bound variables. His motivation: asserting e.g.

flun2Vp,q-7p V (qu) for propositions, does not say anything about p,q but

only about 1 and V. To obtain his aim he introduces 'combinators' I,K,S,B,C,

'defined' by Ix = x, KXy = x, Sxyz = xz(yz), nyz = xzy and Bxyz = x(yz).

(S and K alone are sufficient, as Schonfinkel remarks.) Schénfinkel then

proves in an informal way that every formula A(x1,...,xn), with free vari—

ables g {x1,...,xn}, in higher order predicate logic (where quantification

over predicates and over predicates of predicates, and so on, is allowed)
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can be rewritten as a term Mxl...xn where M is built by application from

the combinators and an 'incompatibility predicate' U defined by

UPQ E Vk(7P(x) V 1Q(x)).

Example; Let P(g,y,f) be the formula Vk T(fx A gxy). Then P(g,y,f) =

= UF(ng) = CU(ng)f = BCU(Cg)yf = B(B(CU))ngf. Hence every closed formula

A can-be rewritten as a term M built from combinators and U; it can even be

written as a term NU where N contains only combinators (not U). So, omitting

U, every sentence in Schénfinkel's higher order predicate logic can be repre—

sented by a term built from the basic combinators alone.

Around 1928 the combinators were rediscovered by H.B. Curry, who tried

by means of a 'Combinatory Logic' to investigate the foundations of mathe-

matics. The aim of Curry's program is to use CL to give an analysis of sub-

stitution and the use of variables; and to attack the paradoxes like the

one of Russell. CL in Curry's program is also referred to as Illative Com-

binatory Logic, where the word 'illative' denotes the presence of inference

rules as in predicate logic. Curry's program does meet certain obstacles;

Schonfinkel's naive system was inconsistent (as demonstrated by 'Curry's

paradox'), and some later proposed alternative systems also suffered from

inconsistency. The foundational claims of Curry's program are not undisputed,

cf. SCOTT [79].

With a different motivation, a variant of CL was developed at about

the time of Curry's rediscovery of CL, namely 'l-calculus', by Church,

Kleene, Rosser. Kleene was led by the study of A-terms to his First Recur-

sion Theorem and other fundamental recursion theoretic results; l—definabil-

ity of functions was studied and discovered to be equivalent to various

other definitions of 'effective computable' functions (e.g. the one via

Turing machines). (See Kleene's eye—witness account of this period in

CROSLEY [75].) Rosser demonstrated the close connection between A-calculus

and CL, and established, together with Church, the consistency of A-Calculus

and CL by a syntactical argument. (The Church-Rosser Theorem for A-calculus

and CL.)

The Church-Rosser theorem yields the existence of term models of A-cal-

culus and CL. Term models of several versions of l and CL were studied in

BARENDREGT [71]. In the last ten years there has been a break-through in

the 'model theory' of l-calculus and CL, starting with the models DOD and Pm

of Scott and Plotkin. These models are of great importance in the semantics
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of programming languages.

Main results. As the main results of this thesis we consider

(I) the introduction of the concept CR5 and the development of the basic

syntactical theorems for CRS's; notably the Church-Rosser theorem (CR),

the Lemma of Parallel Moves (PM) and the theorem of Finite Developments

(FD), and

(II) simultaneously, the generalization of a method due to R. Nederpelt

which enables one to reduce Strong Normalization proofs for certain CRS's

to Weak Normalization proofs. This device is not only interesting in itself,

but enabled us also to obtain the theorems FD, CR, etc.;

(III) the negative result that CR fails for certain non—left—linear CRS's,

e.g.

MM 9 Surjective Pairing Iaé CR

A,CL 0 PM -> M laé CR

1_:_h__e_rl x 315.3 Y -> x I76 CR,

229. X 3L8: Y + Y

 

mxglssx+x
on the other hand, the positive result that e.g.

CL@D(M,M) +M |= CR

CL 0 iffthenfelsef as above F= CR.

(In the positive result, CL can be replaced by an arbitrary non-ambiguous

and left—linear TRS; not so in the negative one.)

Summary. The first part of Chapter I (AB—calculus and definable extensions,

which include Recursive Program Schemes) is mainly devoted to the basic

syntactical theorems of X—calculus: the Lemma of Parallel Moves, the Theorem

of Finite DeveloPments and as a consequence, the Church-Rosser Theorem. In

the proofs of these well-known theorems we make a systematic use of labels,

and of reduction diagrams. Since it is convenient for some applications

later on, as well as interesting for its own sake, we not only prove the

fore-mentioned theorems for AB-calculus but for a wider class of 'reduction

systems', which we have called definable extensions of lB-calculus. The re-

sults also hold for substructures of such extensions; e.g. Combinatory Logic

is a substructure of a definable extension of AB—calculus.

The method of proof of 'Finite Developments' was first used in

BARENDREGT, BERGSTRA, KLOP, VOLKEN [76]; it lends itself easily to prove FD

for other extensions of A-calculus (see also BARENDREGT [80]). The use of
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reduction diagrams is new; it was independently proposed in HINDLEY [78"].

The treatment via reduction diagrams is only a slight refinement of that in

LEVY [78]; it pays off especially in Chapter IV, where ABn-calculus is con-

sidered.

Before proving the Church-Rosser theorem, we have collected in section

1.5 several facts, mostly well—known, which hold for 'Abstract Reduction

Systems' and which we need later on. Typical examples are the Lemma of

Hindley—Rosen and (as we call it) Newman's Lemma. Also a preparation is

made for a part of Chapter II, in the form of Nederpelt's Lemma and related

propositions.

In 1.7 we proceed to prove another classical A—calculus theorem, which

we have called 'Church's Theorem'. It plays a key role in a new proof (in

1.8) of Strong Normalization for typed A—calculus and some more general

labeled A—calculi, such as 'Lévy's A—calculus'. Again the theorem is proved

not only for AI-calculus, but for 'definable extensions of AI'.

Sections 1.9 — I.10 contain two new proofs of the well-known Standardi-

zation Theorem. Compared to the known proofs (see e.g. MITSCHKE [79]) these

new proofs yield a simpler algorithm to standardize a reduction. The first

proof is used in Chapter IV to obtain as a new result standardization for

Bn—reductions, and the second proof is used at the end of Chapter II to ob-

tain Standardization for some generalizations of the reduction systems in

Chapter I (e.g. for A G recursor R, if one uses the 'left—normal' version

of R). Of all these results the strong versions are proved, in the sense of

(Lévy-) equivalence :L of reductions. (E.g. for every finite reduction 8,

there is a unique standard reduction fist which is equivalent to 3. This

strong version of the Standardization Theorem is due to J.J. Lévy.) Our

second proof of the Standardization Theorem casts some light on the relation

between standard reductions and equivalence of reductions. As a digression,

using the concept 'meta—reduction' of reductions as in this second proof,

we prove in I.10 some facts about equivalence classes of finite reductions.

(E.g. in AI the cardinality of the equivalence class {fi'lflzLfl'} can be any

n 2 1, but not be infinite.)

Chapter I is concluded by deriving in 1.11 the well—known Normalization

Theorem for A8 (and definable extensions thereof) and by considering in I.12

'cofinal' reductions; the main theorem about such reductions was proved

independently by S. Micali and M. O'Donnell.



Chapter II introduces a very general kind of reduction systems, ranging

from Term Rewriting Systems in Computer Science to Normalization procedures

in Proof Theory. These reduction systems can be called 'Term Rewriting

Systems with bound variables'; we refer to them as Combinatory Reduction

Systems. In Chapter II we pose a severe restriction on such reduction sys—

tems: they have to satisfy the well-known conditions of being 'non-ambiguous

and left—linear', a phrase which we will abbreviate by 'regular'. For such

CRS's we have proved in Chapter II the main syntactical theorems, such as

the ones mentioned above in the summary of Chapter I. (Normalization and

Standardization only for a restricted class of regular CRS's, though.) Since

the behaviour w.r.t. substitution of CRS's can be arbitrarily complicated

(as contrasted to that of AB), it turned out to be non—trivial to prove the

theorem of Finite Developments, a Strong Normalization result. This ob—

stacle is overcome by a device of Nederpelt for the reduction of SN-proofs

for regular CRS's to WN-proofs. Not only for that reason, but also since

this method seems to have independent merits, we have generalized

Nederpelt's method to the class of all regular CRS's. This is done by in—

troducing 'reductions with memory'; nothing is 'thrown away' in such reduc-

tions; they are non-erasing, like AI—calculus is. In II.5 we generalize

Church's Theorem for AI to all regular non—erasing CRS's. Section II.6 con-

tains a generalization of the Strong Normalization theorem for AL,AT,AHW in

Chapter 1.8, to regular CRS's for which a 'decreasing labeling' can be found

(like the types in a typed A-calculus are decreasing labels). This generali-

zation enables us in turn to extend Lévy's method of labeling to all regular

CRS's, and to prove the corresponding SN-result (this is only executed for

TRS's, i.e. CRS's without substitution, though). As a corollary we obtain

Standardization and Normalization for some 'left—normal' regular CRS's.

Whereas in Chapter I and II we considered only regular CRS's, we deal

in Chapter III with some irregular ones, namely with some non—left—linear

CRS's; i.e. in a reduction rule some metavariable in the LHS of a reduction

rule occurs twice, as in DXX + X. (Except for the case of 'Surjective Pair-

ing' we do not consider ambiguous rules; for results about ambiguous TRS's

we refer to HUET [78] and HUET-OPPEN [80].)

Non-left—linearity (we will omit the word 'left' sometimes) of the re-

duction rules turns out to be an obstacle to the CRrproperty: in a non-

linear CRS which is 'strong enough’, the CR-property fails. This is proved

for some non—linear extensions of A-calculus (or Combinatory Logic), thus
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answering some questions of C. Mann, R. Hindley and J. Staples negatively.

Although the intuition behind these CR—counterexamples is easily grasped,

the proof that they are indeed so requires several technicalities. In an

Intermezzo we expand this intuition using the well-known 'Béhm-trees', a

kind of infinite normal forms for terms.

In III.3 we have considered for these non—linear systems for which CR

fails, other properties (which are otherwise corollaries of CR) such as

Unicity of Normal forms (UN), Consistency, etc. Even though CR fails, UN

does hold for the systems considered.

In III.4,5 we prove CR for some restricted classes of non—linear CRS's.

Most notable is a positive answer to a question suggested in O'DONNELL [77] :

Does CR hold when the non-linear trio of rules (*)

EE_true then X else Y + x
 

EE_false then X else Y + Y
 

i_fx5_hsr;Ys.l_s_e_Y->Y
is added to a regular TRS?

This is seemingly in contradiction with our earlier CR-counterexample for

CL 9 B where B is a constant representing the branching operation above,

having the rules

BTXY+X, BlXY +Y, BXYY +Y.

The explanation is that CL 6 B b5 CR, but CL 9 B(—,-,—) F: CR, where the

notation B(—,—,-) means that B has to have three arguments (i.e. 3 cannot

occur alone). In the formulation of (*) as above this is similar, and so

O'Donnell's question can be answered positively.

Chapter IV, finally, is not related to Chapters II, III, but considers

ABn-calculus. Via a new concept of 'residual' for Bn—reductions (for which

the lemma of Parallel Moves holds, in contrast to the case of the ordinary

residuals) we prove the Standardization and Normalization theorem for ABn,

thus solving some questions of Hindley. Here we profit from the concept of

'reduction diagram' and from our first proof of the Standardization Theorem

for A8 in 1.9. Also an extension of the result in I.12 about cofinal reduc—

tions is given.
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INTERDEPENDENCE OF THE SECTIONS

The interdependence of the sections is as suggested by the following tree.
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CHAPTER I

AB-CALCULUS AND DEFINABLE EXTENSIONS

1. LAMBDA TERMS

1.1. The alphabet of the A—calculus consists of symbols Vi' for all i 6 I1,

brackets ( ) and A. From this alphabet the set Ter(A) of A-terms is in—

ductively defined as follows:

(i) vi 6 Ter(A) for all i e 11 (the variables)

(ii) A,B e Ter(A) =1 (AB) 6 Ter(A) (application)

(iii) A e Ter(A) =1 (AviA) e Ter(A) for all i 6 Id. (A—abstraction)

If in (iii) the restriction is added: "if vi occurs as a free variable in

A" (see 1.3 below) we get the set Ter(AI) of AI—terms.

Sometimes we will consider A-terms plus a set of constants C =

{D.A,B,C,...}. In that case we change Ter(A) into Ter(AC) in the above

clauses and add

(0) X e Ter(AC) for all X 6 C.

1.2. Some notational conventions will be employed:

(1) the outermost brackets of a term will be omitted;

(2) we will use a,b,c,...,x,y,z as metavariables for VO,V1,... ;

(3) instead of e.g. Ax(xx) we will also use the dot notation Ax.xx, and

instead of Axx or Axy we write Ax.x resp. Ax.y;

(4) a number of brackets will be omitted under the convention of association

to the left; that is if A1,A2,...,An e Ter(A) then A1A2...An abbreviates

((...(((A1A2)A3)A4)...)An);

(5) for a multiple A-abstraction Ax1(Ax2(...(Axn.A)...)) we will write

Axlxz...xn.A. (The xi(i = 1,...,n) will be in practice pairwise dis-

tinct, although e.g. Axx.xx is a well-formed term. See 1.6.)



1.3. Let x be some variable and M e Ter(A). Define ¢X(M) by induction on

the structure of M as follows:

(i) ¢X(x) = §_ and ¢x(y) = y for x i y.

(ii) ¢X(AB) = (¢XA)(¢XB)

(iii) ¢X(Ax.A) = Ax.A and ¢X(Ay.A) = Ay.¢xA for x f y.

EXAMPLE. ¢X(Ay.xx((Ax.xx)(yx))) = Ay.§§((Ax.xx)(y§)). So ¢x underlines some

X's in M; namely the free occurrences of x in M. Let ¢X(M) be the set of

those occurrences, and define the set of occurrences of free variables of

M:

FV(M) = U <I> (M).

erAR

where VAR is the set of variables. An occurrence of x in M is called bound

when it is & FV(M). M is a closed term if FV(M) = g.

1.4. For every variable x and N e Ter(A) we have a substitution operator

0x = [x := N], a mapping from Ter(A) to Ter(A), defined inductively as fol—

lows:

(i) Ox(x) = N and Ox(y) = y for x z y

(ii) 0 (AB) = (o A)(o B)
x x x

(iii) OX(AX.A) = Ax.A and 0x(Ay.A) = Ay.0xA for x z y.

So the mapping 0x = [X:=N] substitutes N for all the free occurrences of x

in M, as is seen by looking at the parallel definition in 1.3.

Note that our substitution operator also yields 'dishonest' substitu—

tions like

[x:=yy](Ayuyx) = Ay.y(YY)

but that is intentional; see 1.5 below.

1.5. Contexts. Consider an extra constant B and the set Ter(A{D}) as defined

in 1.1. The constant B is intended to be a 'hole'; so a term 6 Ter(A{U}) iS'a

A-term containing some holes. We will only need A—terms containing precisely

one hole; they will be called contexts. We can also define them inductively

as follows:



(i) U is a context (the trivial one)

(ii) if A e Ter(A) and B is a context, then (AB) and (BA) are contexts

(iii) if A is a context, then Ax.A is a context..

We use the notation €[ ] for a context. If M e Ter(A), then ¢[M] = [D:=M]

C[ ], where it is obvious how to define [D:=M]. Here variables, free in M,

may become bound in ¢[M]. M is called a subterm of N E C[M]; notation M E N.

We will also write '5 e N' for symbols 5 (i.e. variables or A or brackets)

occurring in N. Note that y e Ax.y and y g Ax.y, but y e Ay.x and y g Ay.x.

1.6. a—reduction. Expressions which result from each other by renaming bound

variables should obviously be identified, for instance in calculus

2
I; x dx = I; y3dy, or in predicate logic 3x.A(x) : 3y.A(y). Therefore:

let Ax.A e Ter(A) and y d Ax.A. Then we define a-reduction 3+ as follows:

C[Ax.A] 7?-C[Ay.[x:=y]A] for every context C[ ].

Let Ea denote the equivalence relation ('a-conversion') generated by 6+.

1.7. While a-reduction is a mere technicality, B-reduction (7?) which we

are going to define now, is the basic concept of A-calculus.

Terms of the form (Ax.A)B will be called B-redexes and in view of the

intended interpretation of A-terms we should like to replace such a B-redex

by [x:=B]A. However, consider the following sequences of such reductions

(i.e. replacements):

(Ax.xx)(Aab.ab)
' \e/ \522

(Aab.ab)(Aab.ab)
\Lél \329

l
Ab.(Aab.ab)b E Ab.(Aac.ac)b

a \52/

l??w l

A E Ab.(Ab.bb) B E Ab.(Ac.bc)
\\_;y£’ \\_,>1/

Now, if our formalism used arrows, as in the example, to denote 'binding'

of variables x by abstractors Ax, then the terms A,B (plus arrows) are

syntactically equal and no harm is done in the step 33+: but it is implicit

in the definition of 'free and bound' that a variable x is bound by the

nearmost Ax. Hence Ab.(Ab.bb) is to be interpreted as Ab.(Ab.bb) — and



so the step 33-->-was erroneous.

This leads us to postulating a condition on B—redexes, for the moment

only:

(Ax.A)B is unsafe if some variable y(ix) is free in B and A has a sub-

term Ay.C containing x as free variable.

Now we define one-step B-reduction by the clauses:

(i) if (Ax.A)B is a safe (i.e. not unsafe) B-redex and C[ ] a context, then

C[(AX.A)B] —E+ ¢[[x:=B]A]

(ii) if M Ea M' —E+ N' Ea N for some M', N', then M —§+ N.

There are several other ways to get around the a-conversion problem; in

BARENDREGT [71] an almost similar method is used; another way is to define

[x:=N] such that a-reduction is built in to prevent confusion of variables

(but note that in [D:=N] we intended that variables could be 'captured'!);

a third method is to work, in one way or another, with arrows like above

(see also DE BRUIJN [72]).

Henceforth we will forget everything about a-reduction. Instead of Ed

we write just E for syntactical equality.

Let R E (Ax.A)B and R' E [x:=B]A. Then the step C[R] —B+ C[R'] is

called a contraction of R, and R' is the contractum equality.

We will often omit the subscript B and write just M + N. When we want

to display the contracted redex R we will write M —3+ N.

The transitive reflexive closure of —+ is denoted by ——%>. The equality

(equivalence relation) generated by + is called convertibility and written

 

as ==B or ==.

Note that from the definition of —E+ it follows that for all terms

A,B:

A >> B =9 €[A] '—>> CEB]

A = B => ¢[A] = C[B].

A sequence of reduction steps is mostly denoted by a (plus subscripts

etc.) e.g.

R=M +M +...->M.



Although it is a slight abuse of notation we sometimes write also

a = M ——%> M .
0 n

1.7.1. REMARK. We will refer to the 'reduction system' AB—calculus, con-

sisting of the pair <Ter(A), ——+>, also as A—calculus or even A without
8

more. Likewise the reduction system AI—calculus <Ter(AI), ——+> will be re-
8

ferred to as AI.

In section 5 we will consider 'abstract reduction systems' <A,+> where

A is some set and ——+ a binary operation on A; in Chapter II we introduce

'combinatory reduction systems', generalizing A-calculus.

1.8. ADDITIONAL NOTATIONS

._).

(1) Instead of Axl...xn. A we use sometimes the vector notation Ax.A;
+

likewise MN for MN1"'Nn°

(ii) In R E (Ax.A)B we call Ax.A the function part of R and B the argument

of R.
+

(iii) Simultaneous substitution. Let x be x1,...,xn and let no xi be free
_).

in B E B1,...,Bn. Then the result of the n reduction steps

(A;.A)B -—e» [xn:=Bn]...[x1:=B1] A E c

can be seen as (and is in fact defined as) the simultaneous substitu-

tion of B ,...,Bn for x1 ,...,xn in A. We will write
1

_ + _+ = .=
C : [x.—B]A — [x1,...,xn . B1,...,Bn]A.

Note the difference with the sequential substitution:

 

Ayn.(——-.(Ay2.(Ay1.A)B1)B2---)Bn »

[y :=B ]...[yn n 2:=B2][y1:=B1]A,

where yi+1

(iv) We often employ the usual convention of writing A(B1,...,Bn) instead

,...,yn may be free in Bi (i = 1,...,n—1).

of [x1,...,xn := B1,...,Bn]A, after a preceding declaration of the

variables for which one has to substitute:



"Let A = A(x1,...,xn)", or implicitly as in:

(Axy.A(x,y))BC ——w> A(B,C).

Note that such a declaration does not say anything about FV(A), unless ex-

plicitly stated otherwise (as in 1.10).

1.9. NORMAL FORMS

1.9.1. DEFINITION. A A-term M not containing redexes is called a normal

form. (Or: M is in normal form.)

Notation: M 6 NF.

Obviously, the goal of reducing a term is to reach a normal form, as a

'final answer' of the computation. However, not every term can be reduced

to a normal form. The simplest example is the term 9 E mm where w E Ax.xx;

then

9 + 9 + Q + ...

and this is the only possible reduction. For other terms it depends on the

chosen reduction whether or not the term 'normalizes'; e.g. abbreviating

K E Axy.x and I E Ax.x we have the infinite reduction

KIQ + KIQ + ...

but also

KIQ + + I, a normal form.

1.9.2. DEFINITION.

(i) M has a normal form ¢=>3N 6 NF M ——§>N.

Instead of 'M has a n.f.' we will also say:

M is weakly normalizing. Notation: M e WN.

(iii) M is strongly normalizing'¢=tevery reduction of M must terminate even-

tually (in a normal form).

E.g. K19 e WN - SN.

Here the question arises whether a term can have two distinct normal

forms. Fortunately this is not the case: if a term has a nf., then that



nf. is unique, as we will prove later.

 1.10. COMBINATORIAL COMPLETENESS. Let A(x1,...,xn) € Ter(A) be a term with

free variables x1....,xn. Then it is not hard to find an F e Ter(A) such

that

Fxl...xn = A(x1,...,xn). (I)

One simply takes F E Axl...xn. A(x1,...,xn); then (I) holds (even with =

replaced by ——9>).

We say that A-calculus satisfies the principle of 'combinatorial complete-

ness'. (In the system CL of the next section this principle is less trivial.)

1.11. FIXED POINTS. Surprisingly, every A—term (when it is considered as a

function Ter(A)/____= ——+ Ter(A)/__) has a fixed point:

VF 3X FX = X.

It is even possible to find such an X in a uniform way; that is, there is

an Y e Ter(A) such that

VF F(YF)

f(Yf)

YF, or equivalently,

Yf for a variable f.

We will describe how to construct such an Y. Let us try to find a term 9F,

containing F as subterm, such that 9F ——fi> FQF. Suppose that 0F E waF,

where the first MP is meant to 'act' and the second mF serves for the re-

construction of the original wF. So meF —-*> F(waF), which leads to re—
4

. . . 4
quiring wF x ——%> F(xx). K\~-_--” /

Therefore, take: wF E Ax.F(xx). Hence we can take

Y E Af.wfwf E Af.(Ax.f(xx))(Ax.f(xx)).

The term Y is Curry's fixed point combinator. Using a slightly different

construction we find TUring's fixed point combinator YT which has the tech-

nical advantage (not shared by Y) that

VF F Y F <e—- Y F
( T ) T



 2> F(GGF); hence we try to find 6

. /
such that ~ _/;z‘—

For, suppose as above YT E 66. So 66F
\

GXF >> F(xxF). Thus take 6 E Axf.f(xxf) and 

YT E (Axf.f(xxf))(Axf.f(xxf)).

In a similar way everybody can construct his own fixed point combinator F:

by requiring F E yy...y (n 2 2 times) and proceeding as above, it is not

hard to see that every choice

‘szaa ...a f-f(Wf)
1 2 n—1

where w is an arbitrary word over the alphabet {a1,...,an_1} of length n,

yields a fixed point combinator T.

Sometimes it is convenient to have a fixed point combinator with
_)

parameter(s) P E P1,...,Pm; for example

i; -> + -> ++
YT E (Axpf.f(xxpf))(Axpf.f(xxpf)P.

An amusing way of deriving new f.p. combinators from old ones is men-

tioned in BéHM [66] (or see CURRY-HINDLEY-SELDIN [72], p.156): to find a

solution Y for Yf = f(Yf), or equivalently for Y = [Ayf.f(yf)]Y, amounts

to the same thing as finding a fixed point of Ayf.f(yf).

Hence: if Y' is a f.p. combinator, then Y" E Y'Ayf.f(yf) is a f.p. combina-

tor. In this way one gets starting with (say) Curry's Y, an infinite se—

quence of f.p. combinators. Notice that YT is the second one in the sequence.

(One can prove that they are pairwise inconvertible.)

The main application of fixed point combinators is that we can "define"

a term X in an impredicative way, i.e. in terms of X itself; that is, every

equation in X of the form X = A(X), has a solution, namely X E YAx.A(x).

 And if YT is used one has even: X »> A(X).

An example of a simple application: let P and H be such that

P  »’ Ax.P(xF) and H  >> P (HF)  >> Ay.H. Then PH >> PH —>>

(P produces food F for the hungry H.)

Finally, let us mention that it is straightforward to generalize this

to the case of n 'equations' in X ,...,X as follows:
n1



 X >> Al(X1,...,Xn)

 >> ... ,An(X1, ,Xn)

(Multiple fixed point theorem)

PROOF. For n = 2: define <M> := Az.zM and the pairing <M,N> := Az.zMN, where

z is not free in M,N. Then <K> and <KI>, where K E Axy.y and I E Ax.x, are

the corresponding unpairing operators (write <K>A =: A0 and <KI>A =: A1):

<M,N>O —* <M,N>K ——+ KMN —>> M

<M,N> —* <M,N> (KI) —* KIMN —>> N.
1

Now to solve

 X >> A(X,Y)

Y >> B(X,Y)

it suffices to find a Z such that Z-——»> <A(ZO'Zl)’ B(ZO,Z1)>, which can

easily be done: take Z : YTAz.<A(zO,z1), B(zo,z1)>. Finally, take X E Z

D

O

and Y E Z .
1

REMARK. For another proof, working also for AI—calculus (in contrast to this

proof), see BARENDREGT [76].

REMARK. The multiple fixed point theorem also holds for an infinite system

2 of reduction 'equations' if E is recursively given. This requires the

deeper result of the representability of recursive functions in the A-cal-

culus. See BARENDREGT [71].

1 . 12 . DEFINABLE EXTENSIONS

1.12.1. DEFINITION.(i) Let the alphabet of A-calculus be extended by a set

P = {Pi I i e I} of new constants and let Ter(AP) be the set of 'AP-terms'

as defined in Definition 1.1.

Furthermore, let J g I and let for all i 6 J a reduction rule be given

of the following form:
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P,x...x —-+Q.(x,...,x ,P. ,...,P, )
11 ni 1 1 n1 31 Jmi

for all X ,...,Xn e Ter(AP). Here n1 2 0, and the Qi are AP-terms contain-
1 1

ing some of the meta-variables X1""'Xn (possibly none), but no other
i

meta-variables. The X1,...,Xn must be pairwise distinct.

i
Then the reduction system consisting of Ter(AP) and as reduction

rules: B-reduction and the Pi-rules (ieJ), is called a definable extension

of A-calculus. We will refer to it as 'AP-calculus’.

(ii)-Terms of the form P.X ...X
1 1 n-1

arity of the Pi-redex. Constants Pi where i d J are called inert constants

(iEJ) are called Pi-redexes; ni is the

(they do not exhibit any activity since there is no reduction rule for them).

1.12.2. REMARK. (i) In Chapter III we will consider reduction rules without

the restriction that the meta—variables X ,...,Xn be pairwise distinct.
1

(ii) The reason for this terminology is that (if I is finite) by virtue of

the combinatorial completeness and the (multiple) fixed point theorem, we

can "solve" the set of "reduction-equations with unknowns Pi"; that is we

can find A-terms Pi and B—reductions

 

62 = >> .i Pixl Km. 8 Qi (X1 I Ixn. IP . I pp]. )

1 1 1 m.
1

If I is infinite, we will in general not be able to find defining re—

ductions fli, but by a slight abuse of terminology we will also call such

extensions definable (anyway, each finite part is definable).

EXAMPLES. 1. A—calculus + {0,5} and EM ——+ DMM for all M e Ter(A{D,E}). D

is an inert constant.

2. A—calculus + {P} and PABC + P(AC)B for all A,B,C. P can be defined by

e.g. P E YTApabc.p(ac)b.

These two examples will play a role in the sequel.

3. An arbitrarily chosen example: A-calculus + {P,Q,R} and the rules

PABc ——> AP (ACQ)

QA —+ Ax .xAPR

RABCD ——> AC ( PAx . xQ) AR
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1.13. REMARK. The definable extensions of A-calculus are closely related to

Recursive Program Schemes (RPS); see LEVY—BERRY [79], MANNA [74]. In the

theory of RPS's we have disjoint sets F = {f1,...,fm}, the basic function

symbols, standing for 'known' functions, and ¢ = {¢1,...,¢N}, the unknown

function symbols. Each fi and ¢i has an arity p(fi), resp. p(¢i) 2 0.

Now a recursive program scheme 2 is a system of equations

p(¢i)) = Ti (1 = 1!"°IN)I¢i(x1,...,x

where the Ti are terms built up in the usual way from symbols in F, Q and

variables x ,...,x
1 o(cbi)’

EXAMPLE.

¢1(x) = £1<x,¢1(x),¢2<x.y))

¢2(XIY) = f2(¢2(xlx)l¢1(f3))0

The connection with definable extensions AP of A—calculus is evident. (Re-

place in Z '=' by '—+J.) The basic function symbols fi are what we called

in 1.11 'inert' constants Pi, the unknown function symbols are the remaining

Pj in P. The definable extensions are slightly more general, syntactically

speaking, than the RPS's since in AP also A-terms occur and since in an

RPS an n-ary symbol ¢ has to have n arguments: ¢(t ,...,tn), whereas in
1

AP for an n-ary P also PMl' PMIM ,.. are well-formed terms (see the examples

above).

2

1.14. REMARK. Since almost everything in this Chapter will prove to hold

for definable extensions, it will hold also for RPS's (anyway in this simple

version, where the only operation is substitution of unknown function sym-

bols). Almost all of these results for RPS's were obtained already in LEVY—

BERRY [79]; but in the sequel one finds some alternative proofs for some

of these facts (FD, standardization).

2. COMBINATORS

2.1. We will now introduce a system called Cbmbinatory Logic, or CL, which

is closely related to A-calculus. The main difference is that CL is vari-

able free. The CL-terms or combinators are built up from the alphabet
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{(,),I,K,S} as follows:

(i) I,K,S e Ter(CL)

(ii) A,B e Ter(CL)== (AB) 6 Ter(CL).

Just as before we will admit meta—variables A,B,C,..., ranging over CL-

terms, in a meta—CL—term. Again, we use the convention of association to

the left.

2.2._Reduction in CL is generated by the rules

(i) IA —> A

(ii) KAB ——+ A

(iii) SABC —+ AC(BC)

for all CL-terms A,B,C. Here 'generated' means:

A —+ B => C[A] —>a:[B]

for every context C[ ]. Contexts C[ ] are defined as in A-calculus, see

section 1; and the same for E, ——»>, =.

Terms of the form IA, KAB, SABC are called (I-,K—,S-) redexes. Again

a term is a normal form (nf) iff it contains no redexes and has a nf if it

reduces to one.

2.3. REMARK. One may also take S,K alone as basic combinators for CL, since

I can then be defined: 1 E SKK. For, then IA E SKKA ——+ KA(KA) ——+ A. For

several other bases for CL, see CURRY, FEYS [58].

2.4. REMARK. Call a combinator 'flat' if it has no visible brackets (under

the usual convention). E.g. SISSSII.

One can prove that all flat combinators built up from S and K, have a

normal form (moreover they are strongly normalizing). If the combinator I

is included as well, this does not hold:

SISSSII -——+

IS(SS)SII ——+

S(SS)SII ——+

SSI(SI)I ——+

S(SI)(I(SI))I ——+

S(SI)(SI)I ——+
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SII(SIT)—-——+

I(SII)(7(SII)) —-*

SII(I(SII))

2.5. INTERMEZZO. The connection between reduction in A-calculus and CL.

This subsection, in which some terminology from the sequel is used,

is only needed in Chapter III.

Usually one includes variables in the term-formation of CL-terms. This

may seem a bit odd after claiming that CL is the variable free version of

A—calculus. The reason however is that the variables are needed to demon-

strate the connection between A-calculus and CL, namely to define abstrac—

tion [x] as an analogon of Ax.

We will give a slightly different treatment, in order to show how far

the correspondence between reduction in CL and reduction in A—calculus

reaches.

2.5.1. DEFINITION. A8 + CL is the definable extension of A-calculus obtain-

ed by adding S,K,I plus their reduction rules (as above). By —EE+ we denote

the contraction of an S—, K—, I—redex. Moreover we add a reduction rule,

called 'translation', written ~?+ , defined by:

(i) Ax.x “?“9-1

(ii) Ax.A ~¥~+ KA if x K FV(A)

(iii) Ax.AB “:9-S(AX.A)(AX.B) if the previous rules are not applicable.

EXAMPLE. (Ax.xx)(Ax.xx) ~?+ S(Ax.x)(Ax.x)(Ax.xx) ~?+ ~?+ SII(Ax.xx) “:9?

311(311).

It is routine to prove that ~?+ is strongly normalizing and has the

Church-Rosser property. Hence every term M in A8 + CL has a unique T-normal

form, called T(M).

A more economic variant of T, called T', is obtained by changing T

into 1' above and inserting between (ii) and (iii) the rule

(ii)' Ax.Ax ~?+ A if x é FV(A).

A comparison: T'(Axyz.xz(yz)) E 3 while T(Axyz.xz(yz)) E

S(S(KS)(S(KK)(S(KS)(S(S(KS)(S(KK)T))(KI)))))(S(S(KS)(S(KK)I))(KI)).



14

 Unfortunately it is not so'that M —§£>N=e T(M) CL>>T(N).

EXAMPLE.

M E Tx.(Ay.y)(xx) ~¥E> S(KI)(SII) E T(M)

4
N E Ax.xx ~¥2> 311 E T(N).

The problem is that the reductions -77? and ———+ or ———+ 'interfere' (are
T(111) 8 CL

ambiguous) in the sense of Chapter II; for consider

Ax.(Ay.A(y))B ~:~> S(Axy.A(y))(Ax.B)
l18 I

I
Ax.A(B) — - - - ?

Another source of trouble is demonstrated in the following example:

Ax.¢[KAB(x)]D -:~> S(Ax.C[KAB(x)])(Ax.D)

1CL
CL

S(Ax.C[A])(Ax.D)

1T

§(K¢[AJ)(KD)
Ax.C[A]D ~;~> K(C[A]D)-—-.

where the context ¢[ ] and the terms A,B,D are arbitrary but such that x

occurs only free in B.

Let us remove the cause of this trouble by defining:

(i) a (B- or CL-)redex R occurring in M 6 A8 + CL is safe iff R does not

occur inside a subterm Ax.A of M.

(ii) A (B- or CL-)reduction in A8 + CL is safe iff only safe redexes are

contracted in it.

Now we can state the following fact:

 

fe
2.5.2. PROPOSITION. Let A,B,C 6 A8 + CL be such that A ——%EEE———e» c and

I

A 'f» B. Then there is a D such that B ——~%2§§-—4» D and C -¥-®> D.
I

Likewise for T'.
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In a diagram:

safe

BICL

safe

BICL
O
+
+
-
—
-
—
—
-

I1
5

.
v
-
l

H
i V

\

I

I I I V\

0
+
+
—
—
-
-

"I
I!

where the dashed or dotted arrows have the usual existential meaning.

PROOF. It is sufficient to prove the proposition for the case that A ~?fi» B

is in fact one step. Since the proof is tedious but routine, we will sketch

it only.

In case the step A ~?~> B is by clause (i), (ii) (or (ii)' for T') of

the definition of T(T'), (1) follows easily since then (say for clause (i)):

  

A T > B and now (1) is a direct con-

safe (i) : safe
B,CL _ B,CL sequence of the fact that the

+ right side of this "elementary
W)

C T(i) D diagram" does not split into

more steps.

In case A ~:~> B is by clause (iii), we claim: VABCBDE

from which (1) also follows.

safe

BICL

A T

safe (111)

BICL

C o
«
—
—
—
wi

T(111)

If A + C is a CL-step, the claim is easy to prove.

If A + C is a B-step, say that R is the contracted redex. Underline the

head-A of R with - , and underline the head-A's of the "

Ax.FG with ~ .

T ... -redexes"
(111)

Case (a). The symbols __and N are disjoint. No problem.

Case (b). Else, perform in the reduction A -$> B first the T(iii)_

contraction of the A3.FG T(.ii)-redex.

Then we have the following situation:
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A s —- (A3.FG)H-- -~e»—eS(Ax.F)(Ax.G)H-- -~e» B
N (iii) aii)

§Jsafe lCL,safe CL,safe

+ B'E—-(Ax.F)H((AX.G)H)--:-@>B"

18 @1118,safe

B

C E --F(H)(G(H))-- E --F( )(G(H))-- ¥-®»D

@ii)

The completion of the diagram as shown, gives no problems, since the two

new B-steps are in the easy case (a) w.r.t. the -9> -reduction from B' to

B" dii)

The safety condition is easily checked. D

An example of safe reduction is head-reduction, i.e. the redex to be

contracted occurs at the head of the term. (Leftmost reduction, i.e. con—

tracting the redex whose head—symbol is leftmost of all the redexes, is not

always safe however.) So e.g. the reduction YTM ——E» M(YTM) 'translates well',
8

since it is a head—reduction, into T'(YTM) ——EE%» T'(M(YTM)). Here T'(YT) E

[S(K(SI))(SII)JES(K(SI))(SII)].

From the previous proposition we conclude at once the

2.5.3. THEOREM (Combinatory completeness of CL).

Given a 'meta—CL-term' M(A1,...,An) in which meta-variables A ,...,An occur,
1

one can find a CL-term N such that

... ——>> ... .NA1 An CL M(A1' 'An)

PROOF. Let N' 6 A8 + CL be Axl...xn.M(x ,...,xn). Then obviously N'A ...A
1 1 n

——E—E» M(A1,...,An) by a head-reduction for all A1,

Hence by the proposition (since head—reduction is safe):

...,A 6 CL.
n

T(N'A ...A ) ———-—+» T(M(A ,...,A )) E M(A ,...,A ).
n 1 n 1 n1 CL

The last identity is due to the fact that M is a (meta) CL-term, so (con—

taining no A's) a T-normal form.

Now take N _ TN', then T(N'Al...An) E NAl...An and the result follows. D
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2.5.4. REMARK. (i) In the other direction, the translation is easy: let for

a CL—term M, MA be the result of replacing I by Ax.x, K by Axy.x and S by

Axyz.xz(yz). Then obviously

M ——EE—e» M' => Nk——E—+» ' ,

(ii) If M is a CL-term having a normal form, or even in nf, it does not fol—

low that the A-term MA has a nf too.

Counterexample: M E S(Km)(Kw) where m E 311.

This is not due to the erasing nature of K; in the non-erasing variant

CLI of CL (which is to CL what AI-calculus is to A—calculus) based on the

primitive combinators {I,S,B,C} where BXYZ ——* X(YZ) and CXYZ —%1 XZY, one

has similar counterexamples, e.g. B(CIm)(Cm) and S(CI(CIm))(Cw).

One gets a better correspondence between A-calculus and CL by consider—

ing convertibility '=' instead of reduction and by adding extensionality

('n-reduction'). Further, a still better correspondence is obtained by de-

fining the so called 'strong reduction' in CL. See CURRY—FEYS [58], CURRY,

HINDLEY, SELDIN [72], HINDLEY, LERCHER, SELDIN [72], STENLUND [72] and

BARENDREGT [80].

3. LABELS AND DESCENDANTS

3.0. INTRODUCTION

There is a clear intuition of symbols being moved (multiplied, erased)

during a reduction; so we can trace them. This gives rise to the concept

of 'descendants' which we introduce by means of a A—calculus in which sym-

bols can be marked (by some color, say) in order to be able to keep track

of them. This is done in 3.1 - 3.3, and for definable extensions AP in 3.4.

Then we introduce 'underlining' in 3.5. Up to there, the markers (or labels)

do not affect the admissible reductions since they are merely a book-keeping

device.

This is different however in the remainder of this section: there the

labels do affect the allowed reductions. In 3.6 we introduce 'developments',

in 3.7 the AHW-calculus of Hyland and Wadsworth, in 3.9 the AL-calculus of

Lévy. At the end of this section all these systems with some of their re-

lations are brought together in a figure.
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3.1. DEFINITION. Let M e Ter(A) and let A be some set of symbols, called

labels or indexes. Then Ter(AA) is defined inductively as follows:

(i) xa e Ter(AA) for all variables x and all a'e A

(ii) A,B e Ter(AA) =1 (AB)a 6 AA for all a e A

(iii) A e Ter(AA) == (Ax.A)a e Ter(AA) for all X and all a e A.

I
A term A e Ter(AA) will sometimes by written as M where M is the A-term

obtained from A by erasing the labels and I: Sub(M) + A is the indexing map

(or labeling) corresponding to A. Here Sub(M) is the set of occurrences of

subterms of M.

EXAMPLE (in case A = 1N):

2MI E ([Ax.(x7x8)20]4(y1z0) )37_

I
Instead of looking at M as a A-term whose subterms are labeled, one

can also consider I as an indexing of the symbols of M:

I
M E Ax( [ ( x x ) J ( Y

37 4: 4 20 7 8 20 4 2 1

z))
0 237

such that matching brackets get the same label and an abstractor Ax gets

the same label as the 'corresponding' brackets. The (psychological) advan-

tage is that Sub(M) is partially ordered (by 5) while Symb(M), the set of

symbol-occurrences, is linearly ordered.

If A = EU, we can identify 'label 0' with 'no label'; thus we obtain

also partial indexings.

Sometimes we will write the A-labels as superscripts, sometimes as sub—

scripts.

3.2. LABELED B-REDUCTION. Our first use of labels will be: tracing subterms
 

(or symbols) during a reduction. Consider the B-redex MI above which served

as example, and view the labels as if they were firmly attached to the sym—

bols. (So we can conveniently visualize the labels as colors.) Then it is

almost obvious what the labeled contractum of MI should be:

5
9
"

O m
)
»
.

H
‘
<

O
N

“
3
‘
,

h
)
,
.

h
*
<

O
N

N
I
B

“
3
‘
,

O
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The 'almost' is because it requires a moment of thought to see that the

outermost brackets must have label 20 and not 37 or 4.

It is now obvious how to define labeled B-reduction, notation -———-> :
3A

b((Ax.A)aB) ——+ [x:=B]A

for all Ter(AA)—terms A,B. Here substitution 0 = [x:=B] is defined by

O(xa) = B, o(ya) = ya for y f x

o(AB)a = ((oA)(oB>)a

O(Ax.A)a = (Ax.oA)a.

This 'reduction system', consisting of the set of terms Ter(AA) and reduc-

tion rule BA, will be called AA-calculus.

3.3. DESCENDANTS. Consider M e A and a B-reduction step 8 = M —5+ N. Let

I: Sub(M) ——+ A be a labeling of M. Then, obviously, 8 and I determine in

a unique way the BA-reduction step 8* = MI —5+ NJ for some labeling J of N

(simply by contracting the 'same' redex R, but now also taking care of the

labels).

Now let I be an initial labeling, that is: labels of distinct subterm

occurrences are distinct. (So let A be infinite.) Define for all symbol oc-

currences s,t e M and for all subterm occurrences S,T g M the following re-

lation:

s-.-.+t iff J(s) = J(t)

S-.-.+T iff J(S) = J(T).

In case 8 consists of several steps, a = M —E» N, we write s-.-.-»>t resp.

S-.-.4» T. we say that s descends to t, or that t is a descendant of s, or

that s is an ancestor of t; likewise for S and T.

3.3.1. REMARKS.

(i) Let M ~5+ N. Then the redex R E (Ax.A)B has no descendants in N. The

same holds for (Ax.A) and the x's free in A.

(ii) Descendants of a redex are often called residuals. Note that resi-

duals are again redexes.
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(iii) Notice that if M + N (M,NEA) and A g M, then the descendants Ti g N

of A are mutually disjoint. However in the case of a many step reduc~

tion M —E» N this need not be the case: see Remark 4.4.2 below.

(iv) Note also that if 8 = M +...+ M' and s' e M' (resp. S' E M') then

s' (resp.S') has a unique ancestor s e M (resp. SgM), which will in

-general depend on the actual reduction 8 from M to M'.

3.4. DESCENDANTS FOR CL AND DEFINABLE EXTENSIONS AP

Let AP be a definable extension of A. Again we will derive the concept

of descendants for AP from a labeled version (AP)A. The definition of (AP)A-

terms is obtained from Def. 3.1 by adding to (i): Pa is a (AP)A-term for all

P E P, a e A.

Now to each P-rule of AP,

PAl...An ——+ Q(A1,...,An)

there correspond in (AP)A the rules

a0 a1 a2 an
(...((P A1) A2) ...An) -——+ Q(A1,...,An)

for all a0,...,an e A. Note that in the RHS of those labeled P—rules no A-

labels occur (i.e. only the zero label 0 which is not written); except of

course the labels which occur in the (AP)A-terms substituted for the meta—

variables A1""’An'

EXAMPLE. If PABC ——+ B(PAAC) is a rule in AP, then for all a,b,c,d e A the
' b

rules (((PdA)aB) C)C ——+ B(PAAC) are in (AP)A.

3.4.1. DESCENDANTS. Extend Def. 3.3 (of descendants) to definable extensions

AP, using the above definition of (AP)A.

3.4.2. REMARK. From this extended definition we have at once the following

facts:

(i) Like B-redexes, also P-redexes leave no residuals after their contrac—

tion.

(ii) In contrast with B-reduction, when P-reductions are present not every

subterm N' g M' in a reduction step M ——+ M' has an ancestor N g M.
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E.g. in Pabc ——+ b(Paac) where a,b,c are variables all the subterms

P, Pa, Paa, Paac, b(Paac) of b(Paac) have no ancestors in Pabc. But if

N' has an ancestor, it is unique.

A motivation for this definition of descendants will follow now; first we

need a definition.

3 . 4 . 3 . DEFINITION.

(i) Let PA1"'An ——+ Q(A1,...,An) be a rule in AP. This P-rule is called

proper if P "acts effectively" on all the A1,...,An; i.e. for no

Q'(A1,...,An_1) (not containing the metavariable An) we have Q E Q'An.

E.g. PABC ——+ B(PAA)C is not a proper rule, but

PABC —+ B(PAAC) ,

PABC —-+ B(PAA)

PABC -—»-BC(PAA)C are proper rules.

(ii) AP is called proper if al its P-rules are proper.

3.4.4. REMARK. Every definable extension AP can be 'embedded' in a proper

definable extension (AP)', as follows. If AP contains e.g. the improper rule

PABC —+ B(PAA)C then one replaces this rule simply by the proper rule

PAB + B(PAA). Thus we obtain a proper version (AP)' of AP, in which we have

the same reductions as in AP plus some more (such as Pab + b(Paa), a con-

traction not allowed in AP).

3.4.5. PROPOSITION. For a prOper definable extension AP of A-calculus there

is a natural (or 'canonical') concept of descendants: namely, every defini-

tion of AP into A (by means of defining reductions Bi fbr the Pi e P as in

Remark 1.11.2) induces the same descendant concept in AP.

MOreover, this canonical concept of descendants coincides with the

one in Def. 3.4.1.

PROOF. Consider a rule PA1°°°An ——+ Q and a defining reduction 8 = PA1"'An

-—¢> Q' for some A-term P. Then it is simple to prove (using the properness

condition) that a must be in fact

8 = .. -—— . ... . ... -——PA1 An >>(AX1M1)A1 An —>> (sz 142)A2 An >>

 >>... —>> (Ax .M )A —>> 9'.
n n n
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(So all Ai (i = 1,...,n) are 'eaten'.)

Hence (by Remark 3.3.1.(i)) none of the terms P,PA ,PA A ,...,PA A
1 1 2 1"' n

has a descendant in 9'. Since this holds for all the Pi—reduction rules

(Pi 6 P) and all defining reductions 8i for them, the induced concept of

descendant is therefore the same as the one in Def. 3.4.1. B

3.4.6. REMARK. The properness condition is necessary; for consider the im-

proper rule PABC-——+ PB(PAA)C and now define the A—term P such that

PAB -—§> PB(PAA) for all A,B, then in the reduction PABC ——»> PB(PAA)C we

have PABC —.-.-E> PB(PAA)C. So the induced descendant concept does not satis-

fy the property that a P-redex after its contraction leaves no residuals

(and we will need that property later on, to prove the theorem 'Finite

Developments' for AP).

3.4.7. EXAMPLE. Consider in CL the rule (((SA)B)C) —-+ ((AC)(BC)). Accord—

ing to our definition 3.4.1, the subterms (AC), (BC) and ((AC)(BC)) in the

RHS have no ancestors in the LHS, or equivalently, the displayed brackets

in the RHS have no ancestors in the LHS.

The following defining reduction in A for the S—rule shows why this is

so: the brackets in the RHS descend really from brackets "hidden" in the S:

(((SA)B)C) E
0 1 2 2 1 0

( ( ( ( Aa ( Ab ( Ac ( ( ac ) (bC) ) ) ) ) A ) B ) C ) ——-+
O 1 2 3 5 6 7 8 8 9 9 7 6 5 3 2 1 0

( ( ( Ab ( Ac ( ( Ac ) (bc) ) ) ) B ) C ) —-—+'

O 1 5 6 7 8 8 9 9 7 6 5 1 O

( ( Ac ( ( Ac ) (Bc) ) ) C ) -—-+
O 7 8 8 9 9 7 6

((AC)(BC))
7 8 8 9 9 7

Hence the subterms 7, 8, 9 have no ancestors.

3.5. UNDERLINING

(1) Consider AA-calculus as in Definition 3.1 and let A = {0,1}. A no-

tational variant of this reduction system

A{0,1} = <Ter(A{O’1}), -E——-———+-> is obtained by underlining the

subterms having label 1 (agg’égly those).

So instead of ((Ax(x1x0)1)1(y0z1)0)1 we write



(ii)

(iii)

(iV)
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((Ax(§_x)) (Y_Z_)) I
 

 

and this redex has a contractum:

((yg) (ya) ) .

Let A* = <Ter(A*), —E;—+ > be this reduction system. Note that there

are infinite reductions, e.g. (Ax.§§)(Ax.§§) B*—reduces to itself.

Now we restrict Ter(A*) to the subset of terms where only B-redexes

may be underlined. Let the resulting reduction system be

**
A = <Ter(A**), W >,

where B** is the restriction of 8* to Ter(A**) g Ter(A*).

Moreover we add a notational simplification to A**, namely 'reduced

underlining'. Since a B-redex is determined by its head-A, it suf-

fices to underline only thatIAinstead of the whole redex.

The resulting system will be called A_= <Ter(A), ——§+->, in

words: underlined A-calculus, underlined B-reduction.

Instead of 'Af—calculus)’ we will also say: 'Afij—calculus)‘.
* **

We will not need the auxiliary systems A , A anymore.

An example of a reduction in A;

(Aa.aa)[(Ab.b)(Ac.cc)]‘—§—+ (Ab.b)(Ac.cc)[(Ah.b)(Ac.cc)]

-—E—*-—E—+ (Ac.cc)(Ac.cc), a gfnormal form.

Analogous to A_we define 15! the underlined version of a definable

extension AP of A. The definition is straightforward and will be left

to the reader. Here also we may employ reduced underlining: instead

of PABC, say, write only PABC.

3.6. DEVELOPMENTS

Reductions in A_or Ag_give rise to reductions in A or AP, by erasing

the underlinings. Reductions in A or AP which can be obtained in this way,

will be called developments.

In the next section (4) we will prove that_A F: SN; or in other words,
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all developments are finite.

3 . 7 . HYLAND-WADSWORTH LABELS

3.7.0. Again we consider Ter(Alq). But now we define a reduction totally

different from —E;;—+ as introduced in 3.2; let us call it —E-——+ . It is

introduced by HYLAND [76] and WADSWORTH [76] and can be considered as a

syntactic counterpart of projection in Scott's models Dm, Pm of the A—cal-

culus; but we will not go into that (for references, see e.g. BARENDREGT

[77]).

Whereas in 3.2 the labels served merely for tracing the descendants in

a reduction, now they play a role of their own. BHW-reduction can be con—

veniently defined (as in BARENDREGT [77], but without 9) by admitting sub—

terms which have multiple labels, e.g. ((Ma)b)c- possibly no label at all.I

3.7.1. Ter(AHW), the set of AHW-terms, is defined by

(i) x,y,z,... e Ter(AHW)

(ii) A,B e Ter(AHW) =1 (AB) 6 Ter(AHW)

(iii) A e Ter(AHW) == (Ax.A) e Ter(AHW)

(iv) A e Ter(AHW) == An 6 Ter(AHW) for all n 6 I1.

The multiple labeling is only an auxiliary device; when possible the fol-

lowing simplifying rule will be applied:

(Mn)m __+ M(n,m)

for all M e Ter(AHW) and n,m 6 I1. Here (n,m) = minimum {n,m}.

BHw—reduction is now defined by

n—1:| n—1
(Ax.A)nB -——-—+-[x := B A

BHw

for all A,B e Ter(AHW) and n > 0.

Here n is called the degree of the redex on the LHS. Note that reduction is

only allowed for redexes of positive degree.

Furthermore, the substitution operator used in the previous definition,

0 = [x:=A], is defined as follows:
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(1) 0x = A, 0y = y for x 1 y

(ii) o(AB) = (0A)(0B)

(iii) G(Ay.A) = Ay.CA
. n n

(1v) U(A ) = (0A) .

Note the difference with substitution in 3.2:

there [x:=(...)b] xa = (...)b,
m (n,m)here [x:=(...)n] xm ((...)n) —>(...)

For an example of a BHW—reduction see the figure on p.26.

3.7.2. REMARKS. (i) In section 7 we will prove by an 'interpretation' of

A-calculus into AI-calculus that AHw F=SN (i.e. BHw-reduction is strongly

normalizing).

(Notation: we borrow the sign 'F=' from model theory, meaning: '... has the

property...‘ or: '...satisfies...'.)

(ii) Creation of redexes. One of the-key facts in the proof of (i) is that

a redex R of degree d can only create new redexes of degree < d.

Here we say that in the step M ——BF+ M a redex R g M is created
0 1 1 1

c . 1 LéVY0 _ M0 descends to R1 n

[74,78] it is worked out when such creations happen. There are the following

by (the contraction of) R iff no redex R

three cases:

I- ..-[(Ax.€[xB])(Ay.A)]... —-+ ...[CC[(Ay.A)BO]]...

11. ...[(Ax.x)(Ay.A)B]... ——+ ...[(Ay.A)B]...

111. ...[(Ax.Ay.A)CB]... ———-+-...[(>.y.A0 )B]...

where O is the substitution [x:=Ay.A], 0' is [x:=C] and C[ ], ...[ J... are

arbitrary contexts. (BO, C0[ ] stands for U(B), O(C[ ]).)

It is a matter of routine to verify that the degree of the created Ay

redex in the RHS is indeed less than the degree of the Ax redex in the LHS.

n-1] n—1
(The first occurrence of n-1 in (Ax.A)n B ——+-[x:=B A causes this de-

creasing effect for creation of type I, II; the second for type III.)

EXAMPLE.

((Ax-(x9I)11)7 (xymaflo €77
HW

((((((Ay.A)8)6)9I)11)6)10 __,> ((AY'A)(8,6,9)I)(11,6,10) E

((Ay.A)61)6.
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(

((I3w3)1(I3w3)1)1

(w1(13w3)1)1

1

   
3 3 O 3 3

I w ) (I w(( )

(m 

FIGURE

(w3(13w3)3)3

  

 

    

   
  

(I3w3)2(I3m3)2)2

(42(1343)2)2  
 

 
    
0)0

 

     

 

 

(w0w0)0, a BHw-normal form.

3 3 3 3
The BHw-reduction graph of (m3(I m ) ) , where m E (Ax.(x3x3)3).

All arrows are pointing downwards. At each arrow the degree of the

contracted redex is indicated.
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(iii) On the other hand, the redexes R' which descend from a redex R in a

BHW-reduction a = M ———+ ,.. ___+ M'

U u

R-;—.')‘ ...-.—.-> R'

have the same degree as R.

For a verification of (ii) and (iii) see LEVY [78], p.29-32.

(iv) The system A_in 3.5 can also be obtained from AHW. For, consider terms

M in Ter(AHw) such that some redexes g M have label 1 and all the other

subterms in M have label 0; let an underlined term 6 Ter(A) correspond to

such M as in 3.5. Then BHW-reduction of such terms M corresponds precisely

to a fifreduction of M.

3.8. Typed A-calculus or AT—calculus is obtained as follows. The labels are

called 'types' here and the set of types T is defined inductively by

(i) 0 e T

(ii) a,B e T =' (a+B) e I.

Now we do not work with the whole set Ter(AT) as defined in 3.1, but with a

subset T of terms subject to the restriction that types must match in the

sense of the following inductive definition:

(i) xa e T for all x e VAR and a e T

(ii) AOHB e T & Ba 6 T == (AOHBBO‘)B e T

(iii) A8 e T = (Axa.AB)a+B e T

3.9. LEVY'S LABELS

Now we turn to a labeled A-calculus introduced in J.J. LEVY [75,78].

It is a common generalization of all the labeled A-calculi we have dealt

with so far. We will refer to it as AL—calculus. It is closely connected

with the concept of equivalence of reductions (also introduced in LEVY [78]),

a concept we will comment on later.

The set L of Lévy-labels is defined inductively as follows. Let L' be

an infinite set of symbols, L' = {a,b,c,...}. Then define

(i) L' E L

(ii) a,B e L =¢ a8 6 L

(iii) a e L =1 2.6 L.

Here a8 is the concatenation of a and 8, without brackets.
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The definition of the set Ter(AL) of AL-terms and of substitution in

AL is mutatis mutandis (i.e. replace HW by L and n 6 Ed by a e L) the same

as for AHW in 3.7.

Again we simplify multiple labelings whenever possible, now using the

rule:

(Ma)B ————>-MO‘B

L
for all M e A and d,B e L:

BL-reduction is defined as

(Ax.A)a B —é——+ [X:=BE]A2
L

for all A,B e Ter(AL) and a e L. As before, a is called the degree of the

displayed redex. Also as before, it is easily checked that during a reduc-

tion the residuals of a redex R keep the same degree as R. (See LEVY [78].)

There are two differences in our definition as compared to LEVY [75,78];

there underlining and 'overlining' are used (but later Lévy remarked that

the latter is not necessary) and secondly, our labels are the mirror image

of those in LEVY [75,78].

3.9.1. EXAMPLES.

(1) ((AX-(Xal)b)C(AY-A)d)e'“E—-+-*4» ((Ay.A)dCaI )bce (cf. the similar ex—
L

ample for AHW above.)

(2) This example is taken from LEVY [75] but in our revised notation:

((Ax.((Ay.(yfzgIe)dxh)C)b(xu.(ukue)3)l>a

((Ay.(yfzg)e)-(Au. (ukue)j)ibh)Cba

((Ax.(xhg-fzg)eg-C)b(Au.(ukue)j)l)a

A// k e((Au (uu )j)ibhdfzg edcba
)

gibhdfk gibhdfe j ibhdf edcba

(2 z )

The following remarks are also essentially due to LEVY [75,78].
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3.9.2. REMARKS. (1) There is a simple homomorphism from AL to AA (as in 3.1).

Namely, take L' = A and given a AL-term M, erase all but the first symbol

of every label a in M. It is easy to check that this procedure transforms

BL-reductions in BL,—reductions in the sense of 3.1. (Cfr. the examples

just given.)

(2) AL is not SN, but certain restricted forms of it are.

Let P be a predicate on L which is bounded in the sense that the labels a

for which P(a) holds, are bounded in height, i.e.

3n 6 ]N Va 6 L(P(a) =9 h(a) S n).

Here the height h(a) is defined by

(i) h(a) = O for a e L'

(ii) h(aB) = max{h(a).h(B)}

(iii) h(a) = h(a) + 1.

Now restrict BL—reduction such that contraction of a redex with degree a is

only allowed if P(a). Denote the resulting system by AL'P, or in case

P(a) ==1 h(a) S n, simply by AL'n.

Now we have AL'P F= SN for bounded P. See LEVY [75,78] for a proof; in sec—

tion 8 we give an alternative proof.

(3) There is also a "homomorphism" from AL to AHW but not as direct as the

previous one. Let us describe it as follows.

Firstly, define Ag? just as AHw but now allowing also negative labels

and dropping the restriction that only redexes of positive degree may be

contracted.

Secondly, let f: L ——+ Z satisfy

(i) f(a) e 11 for all a e L'

(ii) f(aB) = min{f(a),f(8)}

(iii) f(g) = f(a) - 1.

Note that h(a) and f(a) are, roughly speaking, opposite in sign:

(*) m-h(a) S f(a) S M-h(a), where m == min {f(ai) I ai e a} and

M = max{f(ai) I ai e a}. We leave the proof of (*) to the reader.

(**) Now we have for every f satisfying (i), (ii), (iii) above a homomorphism

from AL to Air, namely by replacing every label in a reduction in AL by

f(a).
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Moreover one easily proves:

3.9.3. PROPOSITION. The following are equivalent;

H“ I(i) A = SN
. . . . . HW .

(ii) In every infinite reduction in AZ; a redex of degree S 0 IS contracted.

. HW
(iii) In every infinite reduction in AZZ the set of degrees of contracted

redexes is unbounded from below.

L .
(iv) In every infinite reduction in A the set {h(a) I a 1S degree of a

contracted redex} is unbounded from above.

L,n
(V) A

(vi) A

I= SNforall ne IN.

L,P I:
SN for all bounded predicates P.

PROOF. By using (*), (**) in the proof of (iii) == (iv) and noticing for

H
(ii) ==’(iii) that given a reduction 8 in Azy, the reduction 8' obtained by

adding a fixed n e HG to all the labels in 8, is again a reduction in A:?. D

The figure on p.31 summarizes this section (without definable exten-

sions).

4 . FINITE DEVELOPMENTS

4 . 0 . INTRODUCTION

A fifreduction is as we remarked in section 3, a special kind of SHW—

reduction. Since BHW-reduction has the property SN (as we will prove in

section 8), Efreductions are therefore strongly normalizing too. This is the

theorem of 'Finite Developments' (FD).

However, we will give another proof of FD in this section, because:

(a) it is much simpler than the proof of AHw F: SN,

(b) it generalizes without effort to FD for some extensions of A—calculus

such as ABnQ—calculus (see BARENDREGT, BERGSTRA, KLOP, VOLKEN [76]),

(c) it generalizes at once to FD for definable extensions (hence also for

CL), and

(d) our proof strategy is such that we need FD to prove AHW F: SN

(see p.32):
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'homomorphism'

 

 

 
AHW—calculus

AHWI=SN

  

 

A*-calculus

A*I3£SN

   
only 8- dexes

underlined

 

 

AT-calculus

ATI=SN

  

HW—labels:S1

\/  
 

Aycalculus

1 I= SN (AI=FD)
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FD for definable

extensions

(sect. 4)

  
Itsect.5)

 
Church.Rosser

theorem for de—
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Church'stheore

for definable

extensions of

 
Interpretation

of A-calculus

in AI—calculus

       

sions of A-cal— AI—calculus (sect.8)

culus (sect.5) (sect.7)

\ /wrii 

II(sect.8)

LP
SN for A '

AHW,AT

 

   
4.1. PRELIMINARY REMARKS

(i) If 2 is a 'reduction system', such as A, AI, AP, or CL (in Chapter II

we will consider a general concept of 'reduction system') then §_denotes

the corresponding underlined reduction system, as defined in 3.5.

(ii) We remind the reader that an essential feature of §_is that in Efreduc—

tions there is no creation of Efredexes; e.g. in a Afifreduction 8 =

R0 R1 _ .
— MO -7;+ M1 ——§d-... every contracted gfredex Ri _ (A_X.Ai)Bi (1 - 0,1,...)

is a degcendant—of some fifredex in M (There can be B-redexes created,

but no fifredexes.) 0

(iii) Let R be a §freduction and 8' be the corresponding X-reduction, ob-

tained by erasing the underlining in R. Then a is called a (Z—) development.

The theorem that we will prove now, asserts that for Z = A, AI, AP,

CL all developments are finite.

Notation: 2 F: FD. Note that by definition, this is equivalent to: §_F= SN.

(iv) The method that is going to be used in the proof below is taken from

BARENDREGT, BERGSTRA, KLOP, VOLKEN [76]. Given a development
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a = M0 ———+ M1 -—-—> ..., to each symbol 5 6 M0

ciated. During the reduction 8, every symbol keeps its weight unchanged.

a weight Isl 6 I3 is asso-

The assignment of weights is such that the total weight [Mil (:= XseM- Isl)
1

of the Mi 6 a (i = 0,1,...) decreases:

IMOI > IM1I >... .

Before giving the actual proof, we need some definitions. Throughout

the proof, 2 is a definable extension of A-calculus, having P as set of con-

stants.

4.1.1. DEFINITION. Let P e P have the reduction rule:

... —+ ... .PA1 An Q(A1, ,An)

(1) The multiplicity of Ai (i = 1,...,n) in Q, mult(Ai), is the number of

occurrences of Ai in Q.

(ii) m(P) = max{mult(Ai) | 1 = 1,...,n}.

(iii) m = max{m(P) I P e P} + 1.

4.1.2. EXAMPLE. Let )3 be A + CL + {PABC ———> P(AAACC)BB}. So

2 = {I,K,S,P}, m(I) = 1, m(K) = 1, m(S) = 2, m(P) = 3 and m = 4. This will

be our working example during the proof.

4.1.3. DEFINITION. (i) Let §_be the underlined version of Z.

(In our example, §_= A_+ EL_+ {PABC ———+ P(AAACC)BB}. The set of constants

P_of §_is {I,IJK,E,S,§JPEP} and the reduction rules are

(_A_x.A(x))B —+ A(B)

_I_A —-+ A, _K_AB ———+ A, §ABC —+ AC(BC)

PABC —-—-+ P(AAACC)BB.)

(ii) EW is defined as follows.

Ter(gw) is obtained from Ter(g) by adding natural numbers as labels to some

of the symbols of Efterms. These labels will be called weights and will be

written as superscripts.

Reduction in EW is just Efreduction where the weights are taken along, in

the sense of Definition 3.2 (I.e. each symbols keeps its own weight during
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the reduction and the presence of weights does not affect the allowed re—

ductions.)

4.1.4. EXAMPLE.

M1 E (Ay.x6x7)(E%Y2PPy3)

IE
M a BByZPPy3 (383721919173)2

13
M3 5 P(Y2Y2Y2PP)Y3Y3(§§Y2PPY3).

4.1.5. NOTATION AND DEFINITION.
 

(i) EW-terms will also be written as MI where M is a Efterm and I is M's

weight assignment (so I is a partial map from Symb(M) to 10).

(ii) if s e M, then Isl = I(s), the weight of s. We put IsI = 0 if s has

no weight (I(s) undefined).

(iii) if W E M is a subword of M (i.e. a sequence of consecutive symbols in

M) then

IWI = Z Isl.
sew

E.g. in the example above IM1I = 26 and IyZPPy3I = 5.

4.1.6. DEFINITION. Let MI be a EW—term.

(i) Let R g M be a gfredex. Then R E (Ax.A)B is called good w.r.t. I iff

IxI > IBI for every occurrence of x in A.

(ii) Let R E.M be a Efredex for some P e P. Then R E 2A1...An is called

good w.r.t. I iff IPI > mIA1°'°AnI where m is as in Definition

4.1.1(iii).

(iii) MI is called good if every (87 or Ef)redex in M is good w.r.t. I.

4.1.7. EXAMPLE. In example 4.1.4, the gfredex nor the Efredex in M is good
1

w.r.t. the displayed weight assignment.

24 3O 18 2
However, M4 E (A3.x x )(P y PPy3) is good.

4.1.8. PROPOSITION. Let M e Ter(g). Then there is a good MI 6 Ter(EW).

~PROOF. Let M E S£"'Si°"SZSlsO where si is the i—th symbol from the right,

and define the weight assignment I by I(si) = Isil = (m+1)l, for i = O,...,£.

Then, since
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i+1 .
(m+1) -1 2 1
———= + +...+ +(m+1)-1 1 (m+1)+(m+1) (m 1)

we have

(m+1)1+1 > m(1+(m+1) +...+ (m+1)l).

So Isi+1I > mIsisi_1...sOI, hence a fortiori

(i) every x free in A g (A3.A)B is heavier than B (since m 2 1 and B is

to the right of x) and

(ii) every P_e P is at least m times heavier than the total of its arguments

A1,...lAn.

Therefore MI is a good §W-term. D

4.1.9. PROPOSITION. Let a = M0 —-+ M-1 —-+ be a Z-reduction. Let
I — I

M 0 e Ter(Z ). Then there is a corresponding 2 -reduction 8 0 =
0 IO —’.“.'I "W

= M ——+-”M -—+O 1 ... .

PROOF. It follows at once from the definitions that every step in §_can be

'lifted' to the case where extra labels (in casu weights) are present. U

4.1.10. MAIN LEMMA.
_-"-'_’"— I I

. IO 0 1 .
_ ._+ _(1) Let M1 be a gOOd 2 term, and let M0 M1 be a 2 reduction step.

Then M11 is a good EW—term.

(ii) Mbreover,

I I
O 1IMO I > [MI I.

PROOF. First the easiest part of the lemma, (ii). Let R be the redex con-
I I

tracted in the step M0O ——+ M11 and let R' 5 M1 be the contractum of R.

I
CASE 1. R is a fifredex. Say R E (Ax....x...x...)B. Since M 0 is good, R is

0
good w.r.t. IO, i.e. every occurrence of x is heavier than B, so

IR'I = I...B...B...I < IRI.

If there is no occurrence of x, also IR'I < IRI, since B disappears.

CASE 2. R is a Efredex 3A1...An. Since R is good w.r.t. I IBI > m|A1'°'AnI'
. 0'

Moreover, the multiplying effect of P_is smaller than m. Therefore

IR'I < IRI.
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Hence

I
1 0|M1|<IMOI

(i) We have to show that every §_or Efredex R1 5 M1 is again good w.r.t. I

Let the redex R0 5 MO be the ancestor of R1. Clearly R

derlined redex. We will treat only the non—trivial cases.

1.

O is also an un-

As above R 5 MO is the contracted redex, and R' E M1 its contractum.

CASE 1. R E R0.

1.1. R0 is a fifredex and the 87 or Efredex R is a subterm of its argument:

RO E (AX.A)C[R] for some context C[ ].

11 or E
R1 E (Ax.A)GiR'].

IO
Now IC[R]I > I¢[R']I. Since M0 is good, for every occurrence of x in A we

have IxI > I€[R]I. Hence in R1 also for every x in A: lxI > ICER']|. So R
1

is good w.r.t. 11'

1.2. R0 is a Efredex and R is subterm of one of its arguments:

E ...A....A <'S
R EA1 III] n (1 J n)0

IE or E C[R]

A similar reasoning as in case 1.1 applies.

R cCASE 2. O _ R

2.1. R0 is a B-redex, R is a fifredex and R substitutes something in the ar—

gument of:

R s [Ay.—--(_(_A_X.A(Y))B(y))---]C

19 R0'
R' ': ---(Ax.A(C))B(C))---

g—W—q

R1

Now in R for all y in A(y),B(y) we have IyI > ICI, hence IB(y)I > IB(C)I.

Furthermore, for all x in A(y) we have IxI > IB(y)I.



37

Hence in R1: [x] > IB(C)I.

So R1 is good w.r.t. I 1.

2.2. R0 is a Efredex, R is a Efredex and R substitutes something in one or

more of the arguments of R0:

R = [Ay.---(£AL(y);. .An(y3)---Jc
 

 

1 R0
R' E ---(PA (C)...A (C))---

r1 4 n J

R1
Here in R: IyI > ICI and IBI > mIA1(y)...An(y)I.

Hence in R': IBI > mIA1(C)...An(C)I. So R1 is still good w.r.t. 11' D

4.1.11. THEOREM. (Finite Developments)

Let 2 be a definable extension of A-calculus. Then 2 I= FD (i.e. §_F= SN).

PROOF. Let flvbe a Efreduction, R = M6 ——+-M1 ——+-... By Proposition 4.1.8

M has a good weight assignment I . By Proposition 4.1.9 8 can be extended
0 I 11 O

to a Ew-reduction M0 ——+ M1 ——+ ...

By Lemma 4.1.10 we have

I I
O 1|M0|>|M1|>...

Hence 3 is finite. D

4.1.12. REMARK. Note that the above proof yields the following bonus: Every

development of M e Ter(A) has at most 2m steps, where m is the length of M

in symbols.

4 . 2 . FAST DEVELOPMENTS

This concept is introduced for use in Chapter II. Instead of evaluating

(Axl...xn.A(x1,...,xn))B1...Bn to A(Bl"°"Bn) in n steps, we can proceed

faster by performing such a reduction in one step.

4.2.1. DEFINITION. ABm-calculus (m for 'many') is defined as AB-calculus,

but with the B-reduction rule replaced by the rules (for all n 2 1)

Sn: (Axl...xn.A(x1,...,xn))B1...Bn -+-A(B1,...,Bn)
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4.2.2. DEFINITION. AB., underlined ABm—calculus, is defined like A§_(un-

derlined AB-calculus). That is:

(i) only Bn—redexes (n21) may be underlined. Notation:

: ' _ : iR _ (Axl...xn.A)B1...Bn 1s a fin redex. If here A _ Ayl...yk.A we

' I‘may wr1te R as (Axl...xny1...yk.A )B1'°'Bn'

.. _ -;:————- .
(11) Only En redexes (n_1) may be contracted in AB .

(iii) Reductions in A8 are called 'fast developments'.

4.2.3. EXAMPLE. (Axyz.xxzz)IIII —E;+ (Az.IIzz)II is a reduction in A8 to

a 8 -normal form.
—m

4.2.4. REMARK. The extension to ABPm (definable extensions of ABm) and

ASP , or AP and AP for short, is straightforward.
-—-m m ——m

4.2.5. THEOREM. (Finite fast developments)

Apm I= FD (I.e. AP I= SN).

PROOF. Entirely similar to 4.1. D

4.3. AN ALTERNATIVE PROOF OF FD FOR AP.

4.3.0. The following proof of AP F: FD is due to HYLAND [73]. We include it

here (omitting some details) in order to give some extra information about

developments which we need in Chapter II.

In this subsection we will omit the P of AP; the extension of the re-

sults below from A to AP is entirely straightforward.

4.3.1. DEFINITION. Let the 'disjointness property' (DP) be defined as fol—

lows:

For every reduction 3 = M -—+ ... ——+ M' and every subterm S g M the

descendants 51,...,Sn g M' (n20) of S are pairwise disjoint.

4.3.2. REMARK.

(1) AB b5 DP. For, let S contain x as free variable (Six) and consider

M : (Ay.yy)(Ax.§1§)) ——+ (Ax.§i§))(Ax.§£§)) -—+-S(Ax.§1§)) E M'.

(ii) Trivially CL I=DP, since there is no substitution in CL.
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Next we will prove that Ag F= DP, i.e. the disjointness property holds

for developments R. Before we do that, we show that the finiteness of devel-

opments (FD) follows almost immediately from this fact. This observation is

due to Silvio Micali (personal communication).

4.3.3; LEMMA (Micali). Lg I= DP=> AB I= FD.

PROOF. Consider M e A§_in which A0,...,An are the head—A's of the underlined

redexes. We will refer to the subscripts 0,...,n as 'colors'. Note that in

M all colors are different.

Now let a development a = M ~—+ M' ——+-... -—4-M(k) ——+-... be given.

In every M(k) e a we will attach superscripts to the Ai-occurrences

(i e {0,...,n}) as follows. Let ii be such an occurrence and let R be the

redex having Ai as head-symbol. Let d (=d(Ai)) be the number of different

colors of Aj's contained in R. Then d is the superscript attached to R's

head—symbol Ai. We will call d the 'Color degree' of Ai.

EXAMPLE. Let in M(k) the inclusion relations between the Ai-redexes be as

in the figure, where ii means that the Ai—redex 3 the Aj-redex.

A?

Then the color degrees are as indicated in the figure; e.g. the one

occurrence of A has color degree 5 since the A -redex contains the five
3 3

colors O,1,2,4,5.

A: Note that by :P, a color cannot contain

///////// \\\\ itself, so Ai g Ajj =>di < dj.

4? 43 43. 42
/\ 0 I1 I0 Now assign to M(i) the multi-set (see

10 A2 A4 A0 Def.6.4.1. below) of the color degrees

/\ +1 of all the Ai-occurrences in-M(k) ,

A: A: in the example: <6,3,3,2,1,1,1,2,1,1,1>,

and consider the effect on this multi-

set of contracting, say, A3. Then in the multiset of M(k+1) the number

d(Ai)+1(i = O,1,2,4,5) may increase after the contraction, they must re-

main < 6, regardless what happens exactly with those 11' E.g. the residuals

'of the A —redex can after the contraction at most contain the four colors
..5

O,1,2,4 (not 5 itself by DP).
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Hence by Prop.6.4.2 after the contraction we have a lower multiset

w.r.t. the well-ordering there defined, and so the development 8 must ter-

minate. D

Now we will turn to the proof of DP for developments. In fact we ob-

tain more. 4.4.4 — 4.4.6 are due to HYLAND [73]. (We are going into some

detail, since afterwards we want to extend the results below to fast devel-

opments.)

4.3.4. DEFINITION. Let M 6 A8: On Sub(M), the set of subterm occurrences of

M, we define the following two relations C* and C**.

(1) C* is defined by:

(i) C C D == C C* D (C is the strict (or proper) subterm relation)

(ii) if C, D are subterms of an underlined redex

(AX. .... D(x)....)(--C-—) such that x e FV(D), then c c* D
(iii)c* is transitive.

(2) c** is defined by:
**

C C D ==> for some development M ——+-... ——+~M' and some descen-

dants C', D' g M' of C, resp. D we have C' C D'.

4.3.5. PROPOSITION. Let M e A§_and M —§+ M'.

— * *

Let C',D' g M' be some descendants of C,D g M. Then C' C D' == C c D.

*
PROOF. If C' C D' in virtue of clause (i), then it is easy to see that

C C* D in virtue of clause (i) or (ii).

If C' E D' in virtue of (ii), then M' -—-(A;.--D'(x)--)<-—c'-—)--
and now there are 2 cases:

CASE 1. M ——((A3.--D(x)-—)(-—C--))--: then c c* D by clause (ii).

CASE 2. M : --[[Ay.-r((§3.-—D(x)--)(--y--))--][-—C--]]--

E

* * *
Then D D E D C, hence D 3 C.

(Since x e FV(D) there are no other cases to consider.)
*

Finally, the case that C' C D' by clause (iii), is trivial to deal

with. D

4.3.6. LEMMA (Hyland). Let M 6 Ag,

(i) For all C,D g M (Dix):

* **
C C D ¢=’ C C D.
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*
(ii) C is a strict partial ordering (p.o.) on Sub(M).

**

(iii) Likewise fbr C

*
PROOF. (i)==. Suppose C C D and D is not a variable. (That D is not allow-

* **
ed to be a variable is because C C x is possible, but never C C x since

an x has no descendants after a substitution for x.)

Then in fact, say,

* * * *

D E D0 D(ii) D1 3(1) D2 D(ii) '°° D(ii) Dk E C

for some chain of applications of clauses (i) or (ii). Now, drawing a figure

of the term-formation tree of M and looking for a few moments at the chain

D, D1,...,C in it, it is intuitively entirely clear that there is a devel—

opment at the end of which one has C' C D' for some residuals C', D' of C,D.

The formal proof, however, is rather tedious since it involves a lot

of checking of simple details. The proof will be given using induction to

k, the number of 'steps' in the displayed chain from D to C.

CASE 1. Let the first 'step', from D
*

to D1, be a 3 —application. Let
0 (ii)

R E (A3...Do(x)..)(..D1..) be the corresponding underlined redex. Then af—

ter contraction of R the original chain D ,...,C is transformed into a
0

chain D',...,C as follows:
0

D 3* D 3* D 3* 3* D = C ( A? > d teI0 (11) I1 (1) l2 (ii)'°‘ (ii) Ik ‘ ° ' eno S
. . . . the descendant

l
A3! 0 I I relation w.r.t.

I I I contraction of the
'k * * *

D D' D D D E

w
-6 3(i) 1 (i) 2 D(ii)‘”DIii) gg-redex)

where each (i)- or (iiI—step is carried over in a similar step except the

first step; so in the latter chain D6,...,C there are less (ii)-steps.

CASE 2. The situation D 3*. D 3*.. ...C where D f x, the bound variable
--—- 0 (1) 1 (11) 1

of the underlined redex R corresponding to the step D1 3(11) D2, is similar.

*
Then also the first DIii)-Step becomes a 3(i)-step after contraction of R

and the other steps stay similar.

Otherwise we have:
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|
U
+
—
—

U
F
I
_
.
—

x
.

0
9
3
—
0
—
-

etcetera.

* * *
So, by induction to the number of 3(ii)—steps in D D ...D C we are

through.

(In order to prove the assertions in 'Case 1' and 'Case 2', one has

to check the propositions

Ay Ax
—-* —-*

A 3 B E x and A .. B and x 2 A ,, B
(11) (11)

I I | I | I

AFI _3I A3] A3] AMI A3!

I I I A3 I I I

A' 3 33' A' 3 .. 3B' A' 3 3B'EB
(11)

i.e. for all A,A',B as in the diagram, there exists B' as in the diagram.)

This ends the proof of (i)==.

R: M E M ——+ M ——* ...
0 1

M' and descendants C', D' g M' of C,D E M such that C' C D'.

**
(i) en Suppose C C D, i.e. there is a development

tion is trivial. Further, there are C", D" 5 M1, descendants from C,D 5 MO,

Now use induction on the number of steps in a. The basis of the induc-

and having descendants C',D' g M' such that C' C D'. So by induction hypo-

* *
thesis C' C D'. Hence by Prop. 4.3.5 C C D.

(ii) Immediately. Notice that:

C C* D ==. the head-symbol of C is to the left of the head-symbol

of D.

** ** **
(iii) We have only to show that C is transitive. So let C C E C D.

**
Then E i x, hence we can apply (1) and get C C D. U

4.3.7. COROLLARY. _A_B_ I= DP.

. ** .

PROOF. Since C is a strict p.o., we have for no C,C C** C. That 15: DP. U
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*

4.3.8. REMARK. In HYLAND [73] c is written as >. Lemma 4.3.6 is used there

to prove FD as follows. Define for each underlined redex R in M e A§_the

degree d(R) by

*

d(R) = max{d(R') I R' :> R} +1

(the R' are underlined redexes in M) and assign to M the multiset of the

d(R) for all underlined redexes R in M. This multiset is argued to decrease

(w.r.t. the well-ordering in Prop. 6.4.2) during a development. This argu—

ment, however, seems incomplete since there is a complication due to the

fact that the p.o. C* need not be a tree (see figure below), like C is.

The complication can be avoided however by using instead of d(R):

*
d'(R) = max{d'(R') I R' c R} + 1.

*
EXAMPLE. The p.o. (w.r.t. C ) of underlined redexes R in M plus_degrees

d'(R).

 

For 'fast' developments (reductions in AB , see 4.2) we have analogous
* **

definitions of Cm and C111 :

4.3.9. DEFINITION. Let M 6 AB . Then for C,D E M:

*

(1) CCD =9 CcmD

(ii) if C,D are subterms of an underlined redex

A.» D( ) )AA A A(_§y. ... xi ... 1 2... i"' n

ul

C

4+ 1+
where x = x1,...,xn (some n21), y = y1,...,yIn (some mZO), 1 some num-

*
ber such that 1 S i S n and xi 6 FV(D), then C Cm D.

* * *

(iii)c C E c D =9 C C D.
m m m
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**
The definition of Cm carries over immediately from Def. 4.3.4.(ii).

Likewise Prop. 4.3.5 and Lemma 4.3.6, as the reader may check.

Hence the following fact, needed in Ch.II:

4.3.10. COROLLARY. A8 I: DP. D
——_”'—-_1Il

5. ABSTRACT REDUCTION SYSTEMS

In this section we define some properties of 'abstract' reduction

systems (i.e. replacement systems in the sense of STAPLES [75]) and state

some simple facts about them, for the most part well—known. This is done

only in as far we need those definitions and facts in the sequel; we are

not primarily interested here in abstract reduction systems and their

properties for their own sake. For the latter, see e.g. HUET [78], STAPLES

[75], HINDLEY [69,74].

Part of this section (5.16,5.17,5.18) is for use in Chapter II, the

remark about 'conservative extensions' (5.10,5.11) is referred to in Chapter

III.

We start with some definitions and notations (a few of them occurred

already above, but are repeated for the sake of completeness).

5.1. DEFINITION. (1) An abstract reduction system (ARS) is a structure

A = <A, —E—+ >a€I consisting of some set A and some sequence of binary re—

lations ——E+ (aeI), called reduction relations.

(2) Mostly we will be interested in ARS's A = <A, ——+ > having only one re-

duction relation.

These are called replacement systems in STAPLES [75].

(3) ———+> is the transitive reflexive closure of ——+,

—;¥—4-is the reflexive closure of ——+,

— is the 'convertibility' relation (i.e. the equivalence relation)

generated by —-+-.

Likewise -——+>, —:—éy = for-—-—+.
a a a 0

Identity of elements of A is denoted by E.

 (4) The converse relation of —E—+-1s denoted by 4 a or by ;:T+-.

(5) —E—+ U-—§—+ iS denoted by -——-4'.
a8

-5.2. DEFINITION. (1) Let a,B be reduction relations on A. Then a 8 B (a

commutes weakly with 8) iff
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wherethe dotted arrows have the usual existential meaning, i.e.:

Va,b,ceAE|deA (c+—-—a——-+b=9c-->>d<<——b).
B a a 8

Further, a commutes with 8 iff 7-» @ —B->>.

(2) The reduction relation —-——> is called 'weakly Church-Rosser' (WCR) iff

—-+ is weakly self-commuting:

I
I

__________>>VI

i.e. Va,b,c 3d (C+--—-a--->b => c—>>d<<--—b).
. <

(3) --—+ is called subcommutative (as in STAPLES [77]) , notation WCR‘I, iff

 

i.e. Va,b,c 3d(c +t-a—+b => c—E—+d +—:—b).

(4) ———+ has the Church-Rosser property (‘ is CR') iff

---------9‘"

i.e. Va,b,c Ed (c <<———a ———» b e c ——>> d <<-—b).

(5) Let A = <A,? , ——-—> >. Then A I= PPa (Postponement of 8's after 11's)
8 ,8

iff for all a,a‘ e A:

a———»a' =9 3beAa——>>b——>>a'.
018 a B

5.3. PROPOSITION. Let A = <A, —> > be an ARS. Then the following are equiv-

alent:
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(i) ——> is CR

(ii) —+» is WCR (weakly self-commuting)

(iii) -E» is self—commuting
S1

(iv) -+» is WCR

(v) PP+r+

(vi)

i.e. Va,b,c 3d (c +——-a'—%» b == c —%» d GF—-b)

(vii) Va,b 3c (a=b => a —E» c <é—-b)

(= is the equivalence relation generated by ——+)

PROOF. The equivalence of (i),...,(iv) follows at once from the definitions.

The proof of the remaining equivalences is routine. D

5.4. REMARK. (vi) is called 'property C' in NEWMAN [42]. Cfr. also the "Strip

Lemma' in BARENDREGT [76]. (vii) is often used as definition of the CR-

property.

In NEWMAN [42], HUET [78] a CR reduction relation is called 'confluent'.

. —15.5. PROPOSITION. Let A = <A,? ——> >. Let a commute Wlth B . Then A I=PPa
' B ’8'

PROOF. It suffices to prove that —EE» and —EE» can be interchanged:

u::f/§’P*“E\\%£o This follows at once from the

\ .

a fiflr’fif4» hypothesis that a commutes Wlth
—1

B . D

5.6. DEFINITION. Let A = <A,——> >.

(1) a e A is a normal fbrm (w.r.t.——+) iff 13b 6 A a + b. b e A has a nor-

mal fOrm iff 3a 6 A a is nf & b -E» a.

(2) A F: WN (——+-is weakly normalizing) iff every a e A has a nf.

(3) A F: SN (——é~is strongly normalizing) iff every reduction in A termi—

nates. (In HUET [78]: ——+ is noetherian.)

(4) A I: UN (unicity of normal fbrms) iff

Va,b e A (a,b are nf & a=b == aEb).
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(5) A I: NF (normal fbrm property) iff

Va,b e A (a is nf & a=b == b —4» a).

In the following lemma some sufficient conditions for the CR property are

given.

5.7. LEMMA. Let A I: <A;——+ >. Then the fbllowing implications hold:

(1) (Newman) SN & WCR == CR.

(2) WN & UN =$ CR.

(3) WCR$1 => CR
(4) (Hindley, Rosen) Let ——+ be ~azé-U —E§+ . Suppose ai commutes with aj

for all i,j 6 {1,2} (so in particular the ai are self-commuting, i.e.

CR).

Then -—+ is CR.

(Analogously for -—é—= U. 0..)

PROOF.

(1) See NEWMAN [42]; or for a shorter proof, HUET [78].

(2) Let reductions a —+» b and a -E» c be given. By WN b,c have normal

forms b' resp. c'. By UN b'Ec'. So

a—-—->>b

 
\/

E—>>c'Eb'

(3) Easy.

(4) Easy (see e.g. STAPLES [75]). U

5.8. REMARK. Note that WCRab CR, as is shown by the ARS defined as in Figure

1 of 5.9. Figures 2,3,4 give similar counterexamples. Now the following

question arises. First we define for n,m 2 1:

Sn

A F: WCR iff -——-—————€?

7 I

I: +_________s» 

Sn
where -—-4» denotes a reduction of at most n steps. (So WCR = WCR.) The

1,1

above mentioned counterexamples show WCR1 1 79> CR. Question: WCRn m 7‘? CR
' I
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for all n,m 2 1? Indeed one can find for every n,m 2 1 an A such that

A I= WCRn m but A b1 CR. Figure 5 gives an A where WCR is satisfied but
I 2,2

not WCR1'3.

In fact, one can find all sorts of 'logically possible' counterexamples,

2
in the following sense. Call a set B E II+ closed iff (n,m) e B== (m,n) e B

and (‘n+1,m) e B =9 (n,m) e B. (Here JN+= ]N- {0}.) Define

WCR(A) : {(n,m) e ]N: I A I: WCRn In}; so WCR(A) measures 'how CR' A is.

(Example: for A in figure 6 we have WCR(A) as in figure 7 of 5.9.) Obvious—

ly WCR(A) is closed, and:

A I: CR {=9

WCR(A) = N3 <=>

Vn 6 11+ (1,n) e WCR(A) ‘='

WCR(A) is infinite.

2
Now let an arbitrary finite closed B E II+ be given. Then (we claim with-

out proof) one can construct an A such that WCR(A) = B.

5.9. EXAMPLES. (In the following figures the direction of the reduction ar-

rows, when not indicated, is always to the right and/or downwards.)

fl

 

N

\
\
m 

 

     

N m

/
/
j
{
/

v   11K 17

Figure 1
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5.10. DEFINITION.

(1) Let A = <A'—A+ >. A is consistent iff =A # A X A, i.e. not every pair

of elements is convertible.

(2) Let A = <Apjg+ > and B = <B,—§+ >.

Then A g B (B is an extension of A, or: A is a substructure of B) iff

(i) A g B

(ii) -X+-= restriction of —5+ to A, i.e.

Va,a' e A (a —E+-a' ¢=' a _A+ a').

(iii) A is closed under —E+, i.e.

VaeA(a—-fi—+b =9 beA).

(3) Let A g B. B is a conservative extension of A iff

Va,a' e A (a = a' est a = a').

REMARK. Note that a conservative extension B of a consistent A is again

consistent.

The next theorem gives some important consequences of the CR property.

5.11. THEOREM.

(1) Let A = <A,-—é-> and let there be two distinct normal fbrms in A. Then:

A I: CR = A is consistent.

(2) CR =9 UN

(3) CR a NF

(4) Let A g B. Then: B I: CR =¢ B is a conservative extension of A.

The proofs are very elementary and will be omitted.

We will now make a remark about cofinality (see also §12). First some

definitions.

5.12. DEFINITION. Let A = <A,——+-> be an ARS and a e A. Let Aa = {bIa —e» b}

and ——+é be the restriction of ——+ to Aa.

Then the reduction graph of a, 6(a), is the ARS <Aa,-—6é>.

(In STAPLES [75] 0(a) is called the 'local system below a'.)
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5.13. DEFINITION. Let A = <A,——-+ > be an ARS.

(i) Let X,Y g A. Then Y is cofinal in X iff Y E X and VX e X 3y 6 Y x —e» y,

(ii) A F: CP ('A has the cofinality property') iff in every reduction graph

G(a) (aeA) there is a cofinal reduction sequence 8: a E a ——+ a_-——+...
O l

(finite or infinite).

I.e.:

Vb e G(a) 3a 6 a b —+» a .
n n

5.14. THEOREM. Let A = <A,——+-> be a countable ARS. Then:

AI=CP=IAI=CR.

£E§¥¥:' Fe) Suppose a -+» b and a-—€> c. By CP there is a cofinal

8: a E aO —--->-a1 ——+-... in G(a). Hence b -+» an and c —+» am for some n,m.

Say n S m. Then am is a common reduct of b, 0. Hence CR holds.

(ea Let a0 6 A and consider G(AO). By hypothesis, G(aO) is countable; say

G(aO) = {anIn e E1}. (The case that G(aO) is finite is easy.) Now define a

sequence {ann e 11} g G(ao), by induction on n:

bO : a0

b E the first common reduct of b and a in the sequence
n+1 n n+1

{a0,a1,...}.

Then {ann e 11} is cofinal in G(ao), and yields a cofinal reduction se—

quence bO -+» b -+» ... (after interpolation of reduction steps between
1

>bk and bk+1' k _ 0). D

5.15 REMARK. (i) The restriction to countable ARS's is essential for the

implication CR. =» CP. A counterexample for uncountable ARS's is obtained

by taking A = <A,——+-> = <a,<> where a is an ordinal in which the ordinal

w is not cofinal.

(ii) Let A = <A,——+ > be an ARS and define K g A to be a reduction Chain

iff

Va,b e K (a "8»bAIb —%» a).

Furthermore, let us call CP' the property obtained by replacing in Defini—

tion 5.13 of CP 'reduction sequence' by 'reduction chain'.
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Now it is an easy exercise to prove that for countable A, CP 1%: CP'.

Also now, however, the restriction to countable ARS's is essential for

the implication CR =$ CP'. For, consider the following uncountable counter—

example: let A' be an uncountable set and let A = {X g A' X finite}. Then

A = <A,——+-> = <A,g> is an ARS such that A I= CR. But: for every reduction

chain K g A, the union U K (= UX€K X) is countable. Hence if a e A' - U K,

then for no X e K one has {a} g X (i.e. {a} —E» X). Therefore K is not co—

final in G(fi) = A.

Although the next two items are for use in Chapter II, we include them

here since they also apply to abstract reduction systems.

5.16. DEFINITION. Let A = <A,——.—+ >.

(1) A is inductive (as in HUET [78]) iff for every reduction aO —€>a1 ——+

a2 ——+ (finite or infinite) there is some a e A such that an —E» a

for all n. Notation: A F: Ind.

(2) A is increasing iff there is a map I I: A ——+ II such that for all

a,b e A:

a ——+ b == IaI < IbI.

Notation: A I: Inc.

(3) A is well-fbunded iff there are no 'infinite descending ——+«-chains'

.... ——+ a3 ——+ a2 ——+ a1 ——+ a0. (Equivalently, iff

:T+-= +——-is SN.) Notation: A I: WF.

(4) A is finitely branching iff for all a e A the set of immediate reducts

of a, {b e A I a ——+ b}, is finite. Notation: A I= FB. (In HUET [78],
1FB = 'locally finite'.) Further, we write A I: FB- iff -—_i-+ is FB.

5.17. 23%-
(1) Ind & Inc == SN (Nederpelt)

(2) Inc => WF

(3) WN & UN =' Ind

(4) WF 4 FB_1 => Inc.

PBQQE, (1) Suppose a0 ——-*a1 -—+-a2 ——é-... is an infinite reduction. By

-Ind there is an a such that an —E» a for all n. By Inc there is a norm I I

such that IaOI < Iall < Ia2I < ... But also IanI < IaI for all n. Contra-

diction.
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(2) Trivial.

(3) A finite reduction trivially has a 'bound', namely the last element.

So consider an infinite reduction a -—-+ a ——+-a —-+-... By WN there are
0 1 2

normal forms a; of an for all n. By UN all the a; are identical. Hence
OJ O——7\ a1___>a2_% ...

Al; /

I

a0

(4) Let A = <A,——+-> satisfy WF and FB_1. Let a e A and consider

Xa = {b I b —E» a}.

By Kénigs Lemma, WF and FB—1 imply that Xa is finite. Now define for

all a e A: IaI = card. Xa. By our previous remark, IaI e 11. Moreover, if

a ——é-a' then IaI < Ia'I (for, a' e Xa is impossible since then a reduction

cycle a' —4» a ——+ a' would arise, contradicting WF). Hence A I: Inc. D

REMARKS. Ad (1): in a less explicit form this proposition occurs in

NEDERPELT [73]. In Chapter II we will extensively deal with the method in-

troduced by NEDERPELT [73] to reduce the property SN to WN, for some systems.

Ad(3), (4): in Chapter II we will prove that for certain 'Combinatory

Reduction Systems' as defined there, one has Inc = WP and FB—1 = NE, where

NE is the property 'non-erasing' (like e.g. the AI-calculus).

Finally, we will show that the property Inc entails (in the presence

of WCR) the equivalence of SN and WN, a topic which will interest us espe-

cially in Chapter II. First we will prove a more general fact.

5.18. THEOREM. Let G(a) be as in Def. 5.12 and suppose:

(1) G(a) I= WCR, and

(2) a has a normal fbrm b such that the length of reductions a-—€» b is

bounded (i.e. 3n 6 I1 Va: a —E» b IR] S n, where IRI is the number of

steps in R).

Then: G(a) I= UN 3. CR 3. SN.

33951111. SN & WCR =9 CR and CR =9 UN, so only to prove: G(a) I= SN.

Suppose not so. Then there is an infinite reduction

8: a E aO —---+-a1 -—+-a2 ——é-... . Let X = {c e G(a) I c -4» h}. Then,

clearly, by hypothesis (2), “.must leave X eventually, i.e.
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ElkelNVjZkajex. (Ir).

Now define for c e X the natural number

IcI = max.{IRI I 8: c -+» b}.

By hypothesis (2), IcI is indeed defined. Note that for all C,C' e X:

c —-+ c' == IcI > Ic'I.

Now we will prove by (course-of-values) induction on IcI that X is

closed under reduction, i.e.:

c E X & c ——+-c' =1 c' e X. (**)

Then we have a contradiction with (*) and we are done.

BASIS. Suppose IcI = 0. Then G is in fact the normal form b and (**) is

vacuously true.

INDUCTION STEP. Induction hypothesis: suppose (**) is proved for all c e X
 

such that IcI S n.

Now consider cO e X such that ICOI = n+1. (See figure below.) Let

c e X be such that cO ——»-c; then IcI S n. Suppose (for a proof by contra-

diction) that cO ——+-d for some d E X. By WCR, c and d have a common reduct

e. Since d d X, also e d X. Hence there are c', e' such that c —+» c' ——+

e' —E» e and c' e X but e' é X. Now Ic'I S IcI < ICOI, so the induction

hypothesis applies to c' and we have a contradiction. Hence (**) is proved

f .or c0 U



 
5 . 19 . COROLLARY .

(i) WCR&WN&Inc => UN&CR&SN

(ii) WCR&Inc => (WN=OSN).

PROOF .

(i) Hypothesis (2) of theorem 5.18 is ensured by Inc.

(ii) Trivial from (i). D

55
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5.20. The figure below gives a survey of several of the facts treated in

this section.

 

 

 

 

<
WCR-1

/\ countable

WN & UN Consistence

SN & WCR

Ind &/€:j/fi K\\\\\\§ WCR

WN

Inc

FB & WF

Some implications holding for ARS's.  
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6. THE CHURCH-ROSSER THEOREM

After the digressions in the previous section about Abstract Reduction

Systems we will now return to the main theme of this Chapter, A-calculus

plus labels and definable extensions AP of A-calculus. Note that these 'con—

crete‘' reduction systems are also ARS's; so the definitions and propositions

in the previous section apply to them. Often we will be able to prove re—

fined results for these systems, by considering not only the binary reduc-

tion relations M ——+ N, but the ternary relation M —34 N obtained by speci-

fying (the occurrence of)Iflmacontracted redex in M.

We will prove in this section that AL, AP I: CR, i.e. the Church—Rosser

theorem holds for Lévy's A-calculus, hence for all other labeled (typed,

underlined) A-calculi we considered in §3, and for definable extensions of

A, hence for CL.

Let us remind Def. 5.2.(4) of CR: if £1 = A —-a-... -—4-B and

R = A ——+-... ——+ C are two 'divergent' reductions, one can find 'conver—
2

gent' reductions 33 and 84:

An alternative formulation (easily seen to be equivalent; see also

Prop.5.3) is:

VB,CEID(B=C e B—>>D&C—>>D)
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\ \D/

Some important consequences of the CR theorem are mentioned in Theorem 5.11.

We will prove CR using FD (Theorem 4.1.11). In fact a strengthened

version CR+ is proved; namely, there is a canonical procedure of finding

the common reduct D of B and C. Moreover we will obtain as corollaries the

well-known Lemma of Parallel Moves, and the commutativity of B- and Pi-

reductions (see Def.5.2.(1)).

An almost similar version of CR+ for AL was first proved by LEVY [78],

not via FD however. Here we look in a slightly more detailed way to what

happens in a 'reduction diagram', which will help us in Chapter IV to deal

with Bn-reductions.

The method below of constructing a reduction diagram by 'tiling' was

independently considered by Hindley (in an unpublished note).

6.1. CONSTRUCTION OF REDUCTION DIAGRAMS

Let two coinitial finite reduction sequences 81 = M0 ——#-... ——+ Mn

and 32 = M0 ——+ Mi -—é-... —-+-M$ be given. We want to construct a common

reduct of Mn and M; by filling up a diagram D as indicated in the figure,

viz. by successively adjoining 'elementary diagrams'; these are the dia-

grams which one obtains by checking that AP F: WCR (Def.5.2.(2)).
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The order in which the elementary diagrams are adjoined, is unimportant.

It is fairly evident what is meant by 'elementary diagrams'; however since

we will use 'empty' steps, we will now list them.

6.1.1. For the A-calculus the elementary reduction diagrams are of the fol-

lowing types.

 

(i) \-

V
/

.
.
.
.
-
_
_
_
.
_
.
.
_
-
-

4
. 

R B B n 2 0 times; for n = O: B
. >

   ?
?
:
-

I 

Here R2 5 Arg(R1), the argument of R1, and mult(R1) = n where mult((Ax.A)B)

is the multiplicity of x in A.

In case n = 0 and 'emrty' or 'trivial' step is introduced.

(ii) R1
 

R B B if R1 f R2 and not case (i).
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(iii) R1 \‘

B 71'
I . _

R2 I E if R1 _ R2

|

I I

(iv) R \A (V) E

I B ’1 I--—-—---I
I | I l

I I | I

E ' '5 E' '5
I I l I

I I: : . .
I R l ' I
e e +——————.——_.—.—J 

Further, we have all the elementary diagrams obtained from these by re—

flection in the main diagonal.

6.1.2. For definable extensions AP we have moreover the following elementary

 

 
 

 

diagrams:

(1) 1 \-

P B n 2 0 times, in case R2 is a subterm of one

f .R28 8 o the arguments of R1

| Likewise with B and P interchanged, if

I R2 5 Arg(R1).

I 8
$-

P

(11) R .

1 L

P

R2 8 B if not case (1)

Likewise with B, P interchanged.

\I/ I   
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(iii) R 1. (iv) R x

P 7T. I P 4'
I|

I I
R P I: :I I:

1‘ ‘I '—
l I ': . :

14 ' L R I___; ____o f P fi\

Further, all the diagrams obtained from these by reflection in the main

diagonal.

The —-—;—-— steps, at which nothing happens, are called trivial or

empty (fl), and serve to keep the diagram 0 in a rectangular shape. This

enables us to have the intuition of reduction steps in a reduction diagram

D as objects 'moving' or 'propagating' in two directions 5 and -~@>, may

be 'splitting' on the way or becoming absorbed (= changing in a ¢~step.)

This intuition will prove to be especially rewarding in the Bn—case, which

is dealt with in Ch.IV.

Note that in each case the redexes contracted in the side BD are

A B 

   C D

residuals of the one contracted in AC, likewise for CD and AB.

6.1.3. ELEMENTARY REDUCTION DIAGRAMS WITH LABELS

Let an elementary diagram (e.d.) D as above be given, say

 

   

MM1 8 . 3

BM
8 D If 4 where Mi (i = 1,...,5) are unlabeled A—

8 terms.
\

M 8 M5
2 I1

L
Now let 11 be some Lévy-labeling for M1; result: a A -term M1 . Then one

has to check that D extends to a labeled e.d. DI:
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I I

M11 8 ”—2 M33 That is, M1 --—-+M2 —-—-->-M5 extends to

- L I ' I IB I 4 L 2 5L I M4 M1 —-—-+ M2 —-+ M5 ,

I . V I and M1 ——+-M3 ——+ M4 ——+-M5 extends to

M 2 8L M 5 I1 I3 I4 I5
2 5 M1 ——+ M3 e—é M4 ——4-M5 , and now”

we must have IS = 1%. This is a tedious but routine exercise which will be

left to the reader.

Since the extendability of e.d.‘s D to labeled e.d.‘s DI holds for

AL, it holds also for all of the 'homomorphic images' of AL, that is for

all the labeled/typed/underlined A—calculi we have encountered thus far —

except underlined AP—calculi (definable extensions of A—calculus). For the

latter a separate routine exercise yields the same result.

Since developments are a special case of underlined reduction in A—

calculus or AP—calculus, we note in particular that for developments we

have e.d.‘s.

6.1.4. DEFINITION. Elementary diagrams having two or more 'empty' steps, are

called trivial.

6.2. NOTATION.

(i) In the remainder of this chapter '2' will denote a definable extension

AP of A, or a substructure of AP (w.r.t. g as defined in 5.10). So 2

refers for instance to A, AI, AP, AIP (as defined in 7.1.);

and CL.

(ii) §_denotes the underlined version of 2, as defined in 3.5.

6.3. PROPOSITION. §_I= CR.

PROOF. By Theorem 4.1.11 we have §_I= SN. By 6.1.3 we have §_I= WCR. Hence

by Newman's Lemma 5.7.(1), a F: CR. D

In the next lemma the preceeding proposition will be considerably

strengthened. For that purpose we need transfinite induction up to the or—

dinal number ww. Therefore:

. a
'6.4. INTERMEZZO. Transfinite induction up to m .
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6.4.1. DEFINITION. (i) Let a be some ordinal, and let T be the set of all

n—tuples <81,...,Bn> (held) of ordinals less than a. Let.E be the equiva—

lence relation on T defined by:

(1) <a1,a2> = <a2,a1>

" E ' == * * E t * t' * t for all t t e T. Here * de—(11) t t t1 t t2 1 2 1, 2

notes concatenation of tuples.

(11.1) t1=t2 81 t2=t3 = t1=t3.

Further, letfm be the set of equivalence classes of T under 5 . So elements

offm can be thought of as tuples <81,...,Bn> where the order of the 81

(i = 1,...,n) is irrelevant. We call the elements offT also 'multisets'.

(ii) Now consider the following 'reduction relation' ——+-onfm: in

<Bl,...,Bi,...Bn> an arbitrary'Bi (i = 1,...,n) may be replaced by an ar-

bitrarily large finite number of elements Yj1""'YjN each less than 81'

So

<Bll-o-IBII-0-18n>—*(BII---IY- r-°°Y- I-o-IBn>o

1 N

6.4.2. PROPOSITION. The reduction relation ——e-onfm is strongly normalizing.

In fact -+» is a well-ordering ofir of order type ma.

PROOF. Group the elements of a given tuple together as follows:

 

(Yileloo-IYII Y2’ooo’Y2’ ...... I Yk’ooolYk>

L V J 1 V,____,. \____v____/

n1 t1mes n2 t1mes nk t1mes

such that Y1 > Y? > ... > Yk' Assign to such a tuple the ordinal
Y .

w Ion1 + ... + wykonk (a 'Cantor normal form'). The proposition now fol—

lows by elementary ordinal arithmetic. D

+ . . . .
6.5. MAIN LEMMA. §_I= CR , i.e. each construction of a Efreduction diagram

(as in 6.1) terminates.

£5993. Consider M e Ter(g) and Efreductions £1, 82 as in figure 6.5.1. Let

the reduction diagram 0(alpaz) be constructed up to the displayed stage, by

the successive addition of elementary diagrams. Compared to Proposition 6.3,

there is now the additional problem of the trivial steps in the e.d.‘s; a

priori it would be possible that they would make 0(81,82) "explode", i.e.



64

that the construction does not terminate but results in an Escher-like

figure, with ever decreasing tiles, as in figures 6.5.2 and 6.5.3.

 

  

 

 

1 A n

8
2

stage of construction of

0(81 ,IRZ)

A6 A

A3‘

A A
A U 4 5

2

l

A1

Figure 6.5.1.

 

Figure 6.5.2
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B C

Figure 6.5.3

(In the last two figures care has been taken of the constraint that an e.d.

can split at one side at most; so e.g.

\
 

   
is impossible. Figure 6.5.3 is the result of starting with the part bounded

by ABCDEF, reinserting an isomorphic copy of this part in the corner CDE,

and repeating this procedure ad infinitum whenever such a corner is formed.)

Give M a good weight assignment (see Definition 4.1.6). Extend 81,32

and all the reductions in 0(81,82) as far as completed, to reductions with

weight assignments. By Lemma 4.1.10 the weight assignments stay good for all

the terms in these reductions.

Now assign to each construction stage of U(fll,flz) the multiset of

natural numbers <IAII,IA2I,...,IAnI> where the Ai are as in figure 6.5.;'

and IAiI is the weight of Ai (i = 1,...,n). (In fact we should write IAilI

where Ii is the weight assignment of Ai.)

Next consider what happens to this multiset after adding an e.d. If

the e.d. is trivial, the multiset remains the same. Otherwise, suppose that

we add, say:
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 A‘L—PB
5 3

Now all the steps are proper reduction steps, so IA6I > IBiI, i = 1,2,3 by

Lemma 4.1.10(ii). Hence the multiset corresponding to this stage of the

construction, <IA1I,...,IA I, IB3I, IB2I, IB1I, IA7I,...,IAnI> is less than

the previous one w.r.t. th: well—ordering in Proposition 6.4.2.

Therefore after some stage in the construction, no nontrivial e.d.‘s

can be added. Further it is clear that addition of trivial e.d.‘s (which

have no 'splitting' effect) must terminate too.

Finally, each diagram construction ends in the same result. This is

evident by Lemma 5.7.(3), considering as objects: stages of construction,

and as reduction: addition of an e.d. D

In fact, we can obtain more information out of the proof of Lemma 6.5.

In order to state a refinement of this Main Lemma, we need the following

definition.

6.6. DEFINITION. (Complete developments)

Let M e Ter(g) and let II be the set of underlined redexes in M. Let

R = M ——+ M' ——+ ... ——+-N be a maximal Efreduction; i.e. N is a Efnormal

form, hence N contains no underlining.

Now let 8* be the E—reduction obtained from R by erasing the under—

lining symbols. Then 8* is called a complete (E—)development w.r.t. the

set of redexes Hz.

*

6.7. CONVENTION. Let M, £1 be as in Definition 6.6 and M be M without un-

derlining. Henceforth we will identify:

(maximal) Efreductions of M, and

*
(complete) Z-developments of M w.r.t. II.

.6.8. REFINED MAIN LEMMA. (I) First formulation.
 

Let M e Ter(Z). Let I%_ (i = 0,1) be two sets of redexes in M, and let 81

be two complete developments w.r.t. E%_ (i = 0,1).



67

Then the construction of the Z-reduction diagram U(flo,fll) terminates (see

following figure) and the right resp. lower side Mi -+» M2 is in fact a

complete development of n§_, the set of residuals of the redexes in 3%-

(i = 0,1).

(II) Second fbrmulation.

Let 201 be 2 where the head symbol of a redex may be labeled with 0,1 or

01 and where only reduction of labeled redexes is allowed. (So 201 is like

E, but now using underlining symbols of two 'colors'.)

Let M e Ter(ZOl) and let HO be a ZOl-reduction of M in which only 0— or 01-

redexes are contracted; likewise in 81 only 1— or Ol—redexes are contracted.

(See figure.) Mbreover, in MO no label 0, 01 is present, and M1 contains

no label 1, 01. Then

(i) the construction of the ZOl-reduction diagram 0(80'81) terminates;

(ii) in the right side M0 —+» M2 only 1—redexes are contracted and in the

lower side only O-redexes;

(iii) moreover in M no labels are present.

 

 

 
    

2

80, complete development
of O-, Ol-redexes
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PROOF. Clearly (I) and (II) are equivalent formulations. We will prove (II).

(i) There is an obvious projection E -—+ E, namely replacing AO,A A by
1I 01

-diagram would give rise to an
01

I ' ' IA_and PO,P1,P01 by B, So an explodIng 201

exploding Efdiagram, in contradiction with the Main Lemma 6.5.

(ii) The steps in 81 are contractions of labels 1 or 01, hence for the

propayated steps the same holds. Therefore in M —€» M only label 1 con-
0 2

tractions can occur since in MO there are no labels 01. Likewise for 80.

(iii) Immediate by the fact that in M1 no label 1, 01 occurs and in M0 no

label 0, 01. D

As a first corollary of the refined Main Lemma we have

+ .6.9. CHURCH-ROSSER THEOREM. 2 I: CR , .l.e.: Let 8 = M —+ M1—-> —+ N

and fl' = M ——+-Mi ... -—+ N' be Z-reductions. Then N, N' have a common

 

I

reduct which can be fbund by the construction of U(fll,82).

PROOF .

 

1703.6?)

\ R R
 

 

\1 ~i\\
\‘

  

 

      
Using the refined Main Lemma we can fill in block by block of the diagram

0(813'). Here we use the fact that a single reduction step is trivially a

.complete deve10pment. U
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6.10. NOTATION. (i) If 81,82 are two coinitial reductions, the right side

of U(fll,flz) is denoted by 82/81 and will be called the projection of £2 by

81. Likewise for the lower side:

v ?

  

(ii) If 81 = M ——+-... ——+ N and “2 = N ——+-N' ——+ ... is a finite or in—

finite reduction, then 81 * 82 denotes the concatenation M ——+ ... -—6-N

——+ N' ——+-...

.. . R . .
(iii) If a con51sts of one step, a = M ——+ N, we Wlll wr1te 3 = {R}.

6.11. REMARK. Even if 81 is infinite and 82 is finite, the reduction diagram

U(Rl,82) and the projection 81/82 are defined.

81
 

82
D(fll.flz)

I __._

“1432

The second corollary of the refined Main Lemma is:

6.12. PARALLEL MOVES LEMMA (PM).

(i) Let in M some redexes be labeled with 0. Let 80 be a complete develop-

ment (c.dev.) of the O-redexes, and let 8 be an arbitrary reduction M -€» N.

(See figure.)

Then 80/8 is a complete development of the O-redexes in N.

 

M 61 AN

C dig AO'PO D(fl,flo) :.d;v.

o 1 0,0

I i.‘
f/

   
(ii) As a special case of (i) we have:



7O

 

   

M a \\ N

r A

10 0(R,{R}) V 1:
\ A0

2 A0

(likewise for P0 instead of A0)

PROOF.(i) Induction on the length of 8. U

Thirdly, we have at once from the refined Main Lemma:

6.13. COROLLARY. Let E be (a substructure of) a definable extension

<Ter(AP), —E+,1§;+ >ieJ°

Then the reductions ——+,-§f+ (ieJ) are pairwise commuting (see Defini-
18

tion 5.2.(1)).

6.14. REMARK. By 6.1.3 it is clear that the results of this section general-

ize immediately to the case where L- or HW- labels or types, as in section 3,

are present.

6.15. EXAMPLE. In the next figure an example of a A-reduction diagram is

given:
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Ia.)Ax.xx and R(Here w

M(aa)M(wa)M(wR)
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7. CHURCH'S THEOREM

A well-known theorem in CHURCH [41] (p.26, 7XXXI) states that for AI-

calculus a term is weakly normalizing (has a normal form) iff it is strongly

normalizing. A corollary (p.27, 7XXXII) is that a AI-term has a normal form

iff all its subterms do. For A—calculus Church's Theorem fails as the term

(Ax.I)Q (where Q E (Ax.xx)(Ax.xx) and I E Ax.x) shows, since in (Ax.I) Q + I

the subterm Q is erased. Intuitively, the reason that AI satisfies Church's

theorem is found in the fact that in AI there is no erasing possible. I.e.

in a reduction step every redex R, except the one contracted, has at least

one residual; in other words, a redex R cannot be 'thrown away', like 9 in

the example above, or as in CL: KAC[R] + A. (In fact, we will prove in

Chapter II that Church's Theorem holds for all 'regular' Combinatory Reduc-

tion Systems which are non—erasing.)

In this section we will prove Church's Theorem for definable extensions

AIP of AI-calculus.

7.1. DEFINITION. Let P be a set of new constants, P = {Pi I i e I}, and let

(as in Def.1.12.1) reduction rules be given for the Pi (ingI) as follows:

PiAl...An + Qi(A1,...,An,Pj1,...,Pjni)

for some Qi(x1,...,xn,y1,...,yn ) e Ter(AI) such that FV(Qi) 3 {x1,...,xn}.

(So all the meta-variables A1,.I.,An occur actually in the RHS of the reduc-

tion rule.)

Then the reduction system AI together with P and the new reduction

rules, is called a definable extension of AI-calculus. We will refer to it

as AIP—calculus.

7.2. EXAMPLES.

(i) AIP where P = {1,1} and with the rules IA ——»-A, JABCD ——+-AB(ADC) is

a definable extension of AI.

(ii) The set of terms built up from 1,} as in (i) and with the same reduc-

tion rules, is the reduction system CLI (which is the non-erasing

variant of CL, as AI is the non-erasing variant of A).

CLI is a substructure of AIP in (i) in the sense of Def.5.10.(2).

fiii)AI{P} with the rule PABC -—+~P(AC)B is a definable extension of AI,

which will play a role in the next section.
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7.3. REMARK. (i) As in the case of AP—calculi (definable extensions of A),

it is not hard to prove that for P finite, the new constants Pi plus their

reduction rules can be defined.in AI-calculus, using the multiple fixed

point theorem for AI-calculus. Here the condition that the meta-variables

A1,...,An occur actually in the RHS of the reduction rule, is essential.

(ii) Note that AIP is non-erasing.

Church's Theorem will be a corollary of the following stronger fact:

7.4. LEMMA. Let E be a substructure of a definable extension AIP of AI.

Let R be an infinite reduction in 2 and 8' = M +...+ N a finite reduction

in 2.

Then 8/8' is infinite.

PROOF. The proof is a consequence of FD (4.1.11), CR+ (6.9), PM (6.12) and

the fact that there is no erasure in 2 g AIP.

 

Clearly it suffices to consider-the case that 8' = M —5+ N is one step,

in another notation: fl' = {R}.

MEM 8, infinite M M M
0 n \_ \‘ m m+1

. _ [v r 0"

‘6 A0 A0 A97‘ A1

A) I/P

A
O

E . IR < R '4’ >R (710:: A)B 1 A0 2 I132

      I I A it ________
NEN E N

0 Nn m m+1

 

Suppose the lemma does not hold and fl/{R} is finite; say after Nn it is

empty (*). Assign to the head-A of R the label 0 and to all the other A's

in M the label 1. Then 81 = Mn —+» Nn is a development of AO-redexes (by

PM).

Now consider the first step in Mn -—+-Mn+1 ——+-... where a Al-redex

is contracted, say this is Mm ——+-Mm+1. (By FD such a step must exist!)

R=—»' 'a-dlo .2 Mm Nm 15 again A0 eve pment
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CLAIM.

Mm Mm+1 / 82 # fl.

Then we have a contradiction with (*).

PROOF OF THE CLAIM. Since there is no erasure in 2, there are no elementary

-———1
:fi or I ‘ (i.e. n > O in 6.1.1.(i) and

- = -- 6.1.2.(i))
The only possibility for absorption of a step is an e.d.

R

 

diagrams of type

 

 

 

   

1

1

R2. :25
___J

g

where R1 : R2. M M

Hence in m \ m+1

)1 the bottom side is not w, since in Mm

AD the Al-redex ¢ the set of AO-redexes.

\V So the

P1 Q1

bottom side is P ——+ Pi —+» Q1. This argument can be repeated for the next
1

e.d. P'
- 1

 

 

etc. This proves the claim. U

7.5. COROLLARY (Church's Theorem).

Let E be a substructure of a definable extension of AI-calculus. Let

M e Ter(Z). Then:

(i) M 6 WN' ¢=’ M 6 SN.

In other words: if M has a normal form N, then every reduction of M

terminates eventually (in N, by CR).

(ii)M€WN <=> VM'EM M'eWN

(M has a normal form iff all its subterms have a normal fbrm.)

PROOF. (i) ¢=is trivial. =u suppose M e WN but M d SN. So there is a reduc-

tion 8' = M —4» N to a normal form N and there is an infinite reduction
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fl=M—+... .

By Lemma 7.4, 8/8' = N-——+ ... is an infinite reduction. This contradicts

the fact that N is a normal form. (ii) is an easy consequence of (i). D

7.6. REMARK. In A—calculus one can ask what happens in a step P B—+ Q

which is 'critical' in the sense that P d SN but Q 6 SN. (So by Lemma 7.4

there are no critical steps in 2 g AIP.) In BARENDREGT, BERGSTRA, KLOP,

VOLKENE76], Chapter II, it is proved that in such a step the redex R must

be of the form (Ax.A)B where x ¢ FV(A), i.e. R erases its argument B. This

result is refined in BERGSTRA, KLOP [78].

8. STRONG NORMALIZATION OF LABELED X-CALCULI (VIA AI-CALCULUS)

Introduction. In this section we will prove that XL'P (for bounded P) and

its homomorphic images AHW and AT have the property of strong normalization

(SN), i.e. every AL'P-reduction (resp. lHflle-) terminates.

(1) Such a proof can probably be given using Tait's method of (strong) com-

putability, although we have not seen yet such a proof for AL; for AHW this

is done by de Vrijer (unpublished) and for AT (and even for the much stronger

system AT + recursor R, also called "G6delH5T") this is done in e.g.

TROELSTRA [73]. Metamathematically speaking the method has the drawback of

using rather strong means, but it is amazingly slick.

(2) Another proof for AL F: SN is by a method due to D. van Daalen; see

LEVY [75,78].

(3) For AT + R there is a proof of Howard, using an ordinal assignment up

to 80, but only of WN. It is complicated but constructive, as opposed to

Tait's method. See SCHfiTTE [77] 516. (Instead of R, Schfitte uses the iter-

ator J.)

(4) For AT (+ numerals and some basic arithmetical functions: successor and

addition) a proof of SN was given by Gandy (unpublished) via an interpre-

tation in KIT, typed AI—calculus.

(5) Here we will give a proof of SN for the stronger system AL also via an

interpretation in AIL, Lévy-labeled AI-calculus. Apart from the idea of an

interpretation, there seems to be no resemblance with (4).

(6) DE VRIJER [75] and NEDERPELT [73] prove SN for certain A-calculi (re-

lated to the AUTOMATH project of de Bruijn) having A-terms as types.

(7) After this Chapter was written, we have elaborated the idea of this

section in a general setting; see Chapter II. There we use a method due to
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NEDERPELT [73] in an essential way.

In fact, the result in this section is a corollary of a general theorem

in Chapter II; nevertheless we have maintained this section 8 here since it

provides an intuitive idea and an introduction to the part of Chapter II in

question.

The next lemma was independently proved by J.J. Lévy (personal commu—

nication). By XIHW we mean AI-calculus plus Hyland-Wadsworth labels as in

L,P
3.7; likewise for AI (AI—calculus plus Lévy's labels, see 3.9) and AIT

(typed lI-calculus, see 3.8).

8.1. LEMMA.

(1) 1wa I: SN
.. L,P(11) AI F= SN fbr bounded P

(iii) III I: SN.

EBQQE, We will prove (i); by Proposition 3.9.3 this implies (ii), which.im-

plies (iii).

Suppose that there exists an infinite reduction 8 in XIHW, starting

with M. Now consider a reduction 3' of M obtained by repeatedly contracting

an innermost redex (Ax.A)n+1 B. Such a contraction does not multiply exist-

ing redexes (since B contains none), and the redexes which are created by

this contraction, have degree < n+1. (See 3.7.2.(ii).) Let 8' be

M E MO -—+-M1 ——+ ... and assign to Mi (i = 0,1,...) the multiset of de—

grees of redexes in Mi (Def.6.4.1). Then, by our previous remark and by

Proposition 6.4.2, we see that 8' must terminate, say in the XIHW-normal

form Mn. HW

Now construct the AI -diagram D(R,fi'). (See figure.) By Lemma 7.4

(which holds also in the presence of labels; see Remark 6.11) it follows

that 8/8' is infinite. But Mn is a AIHW-normal form, hence fl/flf must be

empty. Contradiction.

 

 
 

MEMO a ----

8' DORA?)

Mn fiflfl' ~-—
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8.2. INTUITION. The above simple proof suggests that it might be profitable

to interpret AL in AIL.

Firstly, let us simulate a given reduction a = M ——+-... in A-calculus

by a reduction 8' in lI—calculus as follows. Replace in M every subterm

Ax.A by Ax.[A,x] where [,1 is some pairing operator to be specified later.

Now consider e.g.:

in A-calculus: 8 == (Ax.I) ABC -——+ IBC ——+ BC-——+ ...

in AI—calculus: 3' (Ax.[I,x]) ABC‘——+ [I,A] BC ——+ ?

In order to be able to simulate the second step in R, we are led to

introduce the rule: [M,NJL ~~~> [ML,N]. And now the second step in a can

be simulated:

[I,AJBC -~> [IB,A]C ~-> [IBC,A] ————»-[BC,A].

In this way we ensure that the 'dummy subterms' A which are carried along

in [...,A] do not form an obstacle to perform the 'proper' reduction steps

which are copied from 8.

Secondly, we have to add L—labels. Everything extends to the labeled

case in a pleasant way; there is only one 'caveat': the intuition that in

[A,B] the A is the proper part and B is the dummy part, suggests that we

add the rule for label manipulation

[A,BJa ——-+ [A6,B].

The necessity of this rule can be illustrated by the following example:

 

[A,Bja c > [AC,B]a
: not I

Y |

[Aa,B] c. :
I

\9

[AaC,B] i [(AC)a,B]

8.3. DEFINITION. Let AP be the definable extension of A-calculus obtained

by adding a constant P with reduction rule

PABC --> P(AC)B
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for all A,B,C e Ter(AP).

8.4. PROPOSITION. Every M e Ter(AP) has a P-normal fbrm M', i.e. M' con-

tains no P—redexes and M -G» M'.

PROOF. Define the tree t(M) of M e Ter(AP) inductively as follows.

(i) t(x) = x and t(P) = P

A
A

(ii) t(AB) =

(iii) t(Ax.A) = Ax

E.g. t((Ax.ka(yy))(Ax.xyP)) =

 

/\ l
| /\P

So P—reduction in tree form looks like:

Now consider t(M) as a partial

ordering (p.o.) of its nodes.

P -~> P

Then if M ~~~> M', the p.o.‘s

/tA A tC A A t(M) and t(M') contain just as

A many points, but in the p.o.

t(M') more pairs of points

are comparable. Hence the proposition follows, since in a p.o. of say n

points the number of comparable pairs is bounded (by (3)). U
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We will restrict the set Ter(AP) to those terms in which every P is

followed by at least two arguments. (I.e. every P occurs as the head symbol

of PA1A2...An for some A1,...,An and n 2 2.) Furthermore, we will write

[A,B] instead of PAB.

8.5. DEFINITION. XE ] is the reduction system <Ter(AE J)’ -§+ , -®>> where
I I

Ter(AE ]) (the set of terms indicated above) is defined inductively by the
I

clauses

(i), (ii), (iii) similar to Definition 1.1 of Ter(A)

(iv) A,B e Ter(AE ]) == [A,B] e Ter(AE'J)

and ~~~> is defined by [A,BJC ~~~> [AC,B].

(I.e. the translation of the P—reduction rule in Definition 8.3.)

A [,J-normal fbrm is a term in which no ~~~>—step is possible.

8.6. DEFINITION. (1) ————é is a reduction relation on Ter(AR [,J) defined by

[A,B] —E—é-A for all A,B e Ter(AE ]"
I

Obviously every k—reduction ends, in a unique term 6 Ter(A) (the k-

normal form). The unicity follows from a simple Church-Rosser argument

(apply Lemma 5.7.(1) and Theorem 5.11.(2)).

(2) K: Ter(AE ]) ——+-Ter(l) is the map defined by
I

K: M F——+-the k—normal form of M.

(Remark: K can also directly be defined:

(i) K(X) = x

(ii) K(AB) = (K(A)K(B))

(iii) K(Ax.A) = Ax.K(A)

(iv) K([A,BJ) = K(A).

But the propositions about K in the sequel are easier to prove using -E+.)

8.7. PROPOSITION. Let A e Ter(AE J) be in [,J-nf and let A —E+ B. Then B
I

is in [,J-nf.
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PROOF. routine. U

8.8. PROPOSITION. Let A,B,C e Ter(Ar ]) be such that A-—i+ B —§+ C and A is
—I

in [,J—nf. (See figure.)

Then there is a D e Ter(AE ]) such that A -—+-D —%» C.
I

 
 

B k

A in [,J—nf D
n- —— — —— -————)f

l

l

k {k
l
|

V’\ I
B s 7c

PROOF. Just contract the 'same' B-redex in A as the one contracted in B. It

is routine to check that this is indeed possible. (We need A to be in

[,J-nf, for consider otherwise e.g.:

A E [I,MJN
1k

B E IN —E—+ N E C.). D

8.9. PROPOSITION. Let A e Ter(lE J) be in [,J—nf and B,C e Ter(A) such that
I

A.FE—+-B -E—+-C. Then there is a D e Ter(AE ]) such that A ———+-D-———+ C.
I B

A in E, J-nf
_o————-————- ——}9D

  

B r
I

I
I

K K‘
I
I

I

I

\ J
/

B B c

PROOF. Choose an arbitrary k—reduction from A to B:

A—+A'——+A"——* -—-+A(n)'—-+B
k k k ... k k '

Since A is in [,J-nf, by Prop. 8.7 also A 1) is in [,J-nf (i = 1,...,n).
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' D
Now repeated application of the preceeding proposition A B /

k
yields: (see figure) k

/
A §K DI

k B k

\
AI ’\ D"

and since C is a k-nf (because B is) we have K(D) E C. B

: :
' I

A(n)‘ D (11)

B

k k

B B C

8.10. PROPOSITION. (i) Let A,B,C e Ter(AE J) be such that C +—E—-A ~““> B.
—_-_—_— I

Then B ~E—+-C or 3D C -8> D +———-B. (See left figure.)

  

k

A B A B

i w?)
k {k K K

I

C E D C

(ii) Let A -8» B. Then K(A) E K(B). (See right figure.)

PROOF .

(i) routine.

(ii) immediately from (i). D

The next definition is crucial.

8.11. DEFINITION. Let Ter(AI ) be the set of At J-terms such that in terms
I[,3

of the form Ax.A the variable x e FV(A).

Now define 1: Ter(A) -—é-Ter(lI[ J) inductively by

(i) I(X) E x

(ii) 1(AB) E (1(A)1(B))

(iii) 1(Ax.A) E Ax.[1(A),x].
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8.11.1. REMARK. If M e Ter(A), then obviously K°1(M) E M.

 

8.12. Addition of labels. We want to reconsider 8.5-8.11, now in the pre-

sence of L—labels or HW-labels. I

Ad 8. 5. TheLdefinition of A? J-terms is an unproblematic union of the

definitions of AL-terms (3. 9) and of RE J-terms (8.5).

Reduction in A[ ]6is given by:

(i) (Ax.A) 6B —-—-—+ [x:=B—]A£

(ii) [x:=A]xa 2 AG

(iii) (AOL)B --—+ AaB

(iv) [A,BJO‘ -——+ [A0231

(v) [A,BJC -~> [AC,B]

for all A, B, C e Ter(AE ]) and a, B, 6 e L. Reductions (iii), (iv) which con-

cern the manipulation of labels, are not considered as 'proper' reductions;

we will execute them immediately whenever possible (hence we work in fact

with ---+ - normal forms). In this way we ensure moreover what we need in

(v) (see the last example in 8.2), viz. that a subterm [A,B] must be un—

labeled. I

Ad 8.6(1) Define: [A, B] —k—+ A for all A, B e Ter(XLL E, J)
Ad 8.6(2):

Define KL similar as before. The reader may convince himself that the ex-

tension of the Propositions 8.7-8.10 to the labeled case is entirely

straightforward and unproblematic. We will only present the extension of 1

to the labeled case:

Ad 8.11. Let 1 : Ter(AL) ——+ Ter(MIE 1) be defined by:
L

(i) 1L(X) 2 x.

(ii) 1L(AB) E 1L(A)1L(B)

(iii) 1L(Ax.A) E Ax.[1L(A),x]

(iv) ILIAO‘) s (1L(A))a

Now we get the [,J-analogue of lemma 8.1:

and AIT8.13. LEMMA. 11%”? (p bounded l: SN, likewise 11‘?” I J.
.,J
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PROOF. Suppose an infinite reduction 3 = M ——+ ... in say AI%'§ is given.
I

As before, in 8.1, we find a terminating reduction 8' of M by contraction

of innermost redexes, where after each B—step we_take the [,J-nf:

 

 

M __ a

‘R'J/ mom?)

i

L M?
_ L,P *—

N in AIE'J-nf

Applying Church's theorem 7.5 on AIr ]' a substructure of a definable
-I

extension of AI, yields: fl/fl' is infinite. Contradiction. U

Finally we can collect the fruits of our labor:

P8.14. THEOREM. AL' (P bounded), AHW, AT |= SN.

PROOF. Suppose an infinite reduction 8 = M ——-a- in AL'Pis given. LetBL ...

N E 1L(M); by Remark 8.11.1 we have KL(N) E M. (See figure below.) Now re-

peated application of the (according to 8.12) labeled versions of Pr0posi-

L P
tions 8.9 and 8.10(ii) yields an infinite reduction R' in AI ']

E.
L P

figure. But this contradicts Lemma 8.13. Hence A ' F= SN; for the other two

as in the

reduction systems SN follows from this, as before.

 

    

3' in AIE'S

T177 Tam»- 8. ‘ ‘7» e. > --
1L KL KL KL KL KL KL KL KL KL

a 1n AL'E \V \. \L \
' I / ’7 r ‘E

M BL BL BL BL
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9. STANDARDIZATION

In this section we will give the first of two new proofs of the well—

known Standardization Theorem for AB—calculus. This proof extends (see 9.10)

also to definable extensions of A-calculus; but in 9.1 — 9.7 we will con-

sider only AB-calculus, for notational simplicity. In Chapter IV the same

method will be used to prove the Standardization Theorem for ABn-calculus.

In fact we will prove (see 9.8.3) a strong version of the Standardi-

zation Theorem, due to LEVY [78]. To this end, in 9.8 Lévy's concept of

'equivalence of reductions' will be introduced.

9.1. DEFINITION. Standard reductions
  

A reduction fl = M0 —+-M1 —+ --- (finite or infinite) is standard if the

successive redex contractions take place from left to right.

More precisely: let * be an auxiliary symbol to be attached to some

redex—A's: (A*x.A)B, indicating that it is henceforth forbidden to contract

this redex. Now the reduction 8 is provided with markers * by the following

inductive definition.

Suppose up to Mn-l the markers are attached. Consider the step
R

M —§+ M where R is the contracted redex. Mark
n n+1 n

(i) every A in Mn which descends from a A* in Mn-1

(ii) every A in Mn to the left of the head-A of Rn’ if not yet marked by

(i).

Now we define: 8 is standard if no marked redex is contracted in 8.

9.1.1. REMARK. (1) It is equivalent to require in (ii): every redex—A in

Mn to the left of ... and so on.

(2) It is easy to see that this definition is equivalent to the usual one,

as in HINDLEY [78], in terms of residuals - but we find that the use of *

facilitates our way of speaking.

(3) Hindley distinguishes 'weakly standard' and 'strongly standard'- His

'strongly standard' is the above concept 'standard'. Hindley proved that

for the AB—calculus the two concepts coincide, see HINDLEY [78].

R0 R
9.2. DEFINITION. Let a = M0 ——+~M1 —l+---- be a finite or infinite reduc—

tion sequence. A redex R 5 MO is contracted in R if for some n 6 II, Rn is

a residual of R.
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9.2.1. NOTATION.

(i) lmc(fl) is the leftmost redex in MO that is contracted in 8.

(ii) p(fl) = 8/{lmc(8)}, i.e. p(fl) is the projection of R by the contraction

of the redex lmc(fl).

(iii)If s,s' e M, then s < 3' means: 5 is to the left of 3'.

'If S,S' g M, then S < S' means: the headsymbol of S is to the left of

that of S'.

9.3. DEFINITION of the standardization procedure 

Let R = M0 —+ M1 -+-... —+-Mh be a given reduction sequence. Define by in-

duction a reduction sequence RS as follows:

lmc(p28)
I ' _——

M2 M3 '
8 1mc(a) lmc(pfl)=M —————+M'
s 0 1

 

a possibly infinite sequence. It stops when there is no lmc(pnfl) for some

n, i.e. when pnfl = fl.

We will show that as is "the" standard reduction for 8; that is, as is

a standard reduction MO —+ ... —+ Mn which is moreover equivalent to H in a

sense later to be specified.

The construction of as is illustrated in the next figure. Us is the

corresponding "standardization diagram".

 

 

 

 

   

vs = M0 8' Mn

(’ lmc(fl) {lmc(fl)}/‘fl
Pa = fl/{lmc(fi)}

MI

1

lmc(pfl) 7

M' p‘fl
'2

as-j lmc(pzfl) 3

M' p a
3

lmc(p3fl) 4

M' P a
4  
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9.4. PROPOSITION. {lmc(fl)}/fl = fl (consists of empty steps.)

PROOF. Immediately by the Parallel Moves Lemma 6.12; let R in the figure

there be lmc(fi). The head-A of R, A0, is clearly not multiplied in 3, since

it is lmc(fl). Hence after the unique A -contraction in 8, no A is present,
0 O

in particular not in Mn. By PM, {R}/fl.must be therefore empty. D

9.5. COROLLARY. The right side of 03 is empty. I]

9.6. LEMMA. as is finite.

PROOF. We will use the labeled AHW-calculus as introduced in 3.7.

Let us recall the main properties of these labels:

(i) every subterm of a given A-term has a label 6 DJ written as super-

script.

(ii) the degree of a redex ((Ax.Aa)de)r is d.

(iii) indexed reduction is defined as in 3.7; for the application here we

need only to recall that contraction of a redex is allowed iff its

degree is > 0.

(iv) in an indexed reduction residuals of a redex with degree d, have

again degree d.

(v) Strong Normalization (SN) for indexed reduction: every indexed re-

duction terminates.

(vi) every finite reduction 8 = M0 —+ .. —+ Mn can be extended to an in-

dexed reduction, by choosing sufficiently large indexes for M0 and

'taking these along' through 8. Similarly for two finite coinitial

81, 82.

Now take an indexing for 8 (by vi). By (iv) lmc(fl) has the degree of

the residual of lmc(fl) which is contracted in 8; i.e. a positive degree.

Therefore the indexing can be extended to all of the diagram U({lmc(a)},fl).

Hence the bottom side of this diagram, 8', is again indexed. And so forth.

In this way the indexing of 8 determines a unique indexing of the whole

diagram US. Thus in particular as is indexed; hence by (v) it terminates. U

. HW . .
9.6.1. REMARK. Instead of u51ng SN for A to prove the termination of as,

one can alternatively use FD (the theorem of Finite Developments, 4.1.11).

The proof using PD is somewhat longer; in outline it is as follows (for a

complete proof see BARENDREGT [80]).
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Suppose as is infinite. Then for some k. the projection of as by

M0 -+ ... ---+-Mk is infinite (see figure), i.e.-contains infinitely many non-

empty steps, while the projection of as by M —t ... —’ Mk+1 is finite, i.e.
0

contains only ¢ steps after some term B.

Let 81,82,83 be as in the figure. Now by PM(6.12), 32 is a development.

a Mk Mk+1
 

  u> ID

)(
Uo u:

’1

=91
RX  \\
\\

k
x

_
”\
\\
\

//

Furthermore, it is not hard to prove that the step {lmc(fi)} propagates to

the right, without splitting, until it is "absorbed" as follows:

M07 ‘1 _(A0x.A')B' Mn

lmc (62) E (AOX.A)_BER

l

I

I
(AOx.A')B' E

L
_
-
_
_
_
_
1

  

Using this, and the fact that 82 is a development, one can easily show that

also 81 must be a development; hence, by FD, 81 is finite. Contradiction.

Hence “5 is finite. U

9.7. STANDARDIZATION THEOREM. Let a be a finite reduction. Then as is a

standard reduction fbr fl, i.e.

(i) a and as have the same first and last term, and

(ii) 35 is standard.

25995. (i) is almost trivial: since as is finite, the construction of the

diagram DS = U(fls,fl) terminates, hence US has a bottom side, R/fls. This

bottom side is empty, for otherwise as would have gone further, by its

definition.

*(ii) Attach markers in as as described in Def.9.1. Suppose Rs is not
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standard. Let ME be the first term in 88 such that in the step ME —+-M$+1

a marked redex R is contracted. Let MA be the term in Rs in which the

(unique) ancestor R' of this redex is marked fbr the first time. Label all

the A's in MA with distinct labels such that A0 is the head—A of R‘, and

extend this labeling throughout the diagram in the figure.

 

>
0
x. >
)

H Il
l

3 D >
"

I"

O

l—
l.

H   
  

 

>
2

O
)(-

<
_
.
_
.
.
_
.
_
.
_
.
_
.
.
.
_

          

Now A , the redex contracted in M' —+ M' , is > A in M', since A
1 n n+1 0 n O

was marked in M5 for the first time. Hence 0 & {i1,...,ik}, because other-

wise A0 or a A < AO should have been 1mc(pnfl).

By the PM Lemma (6.12), the contracted labels in pmfl form a subset of

{i1,...,ik}. Hence no AO can be contracted in pmfl, contradicting the as—

sumption that R E (AOX.A)B ' lmc(pmfl). U

9.7.1. REMARK. By the same method, one can also prove the 'completeness of

inside-out reductions', as it is called in WELCH [75] and LEVY [75]. Here

the definition of 'inside-out reduction' (not to be confused with 'inner—

most' reduction) is analogous to Definition 9.1 of 'standard' reduction:

replace in Def.9.1 the relation < ('to the left of') by g ('subterm of').

So instead of 'freezing' all redexes < the contracted redex by attaching

the marker *, we freeze all redexes g the contracted redex.

Now we have:

PROPOSITION. If M 7?» N, then there is an inside-out reduction M iégé» L

such that N ——€> L.
8

Since there is a short and elegant proof of the proposition in LEVY

L
[75] Thm.4, using A , we will give only a sketch:

Define, analogous to the definition of as, a reduction 8, o by repeated
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contraction of an "innermost contracted redex" (instead of the "leftmost

contracted redex").

The proof that such an 8i (not uniquely determined now, as 85 was) ter-

minates and is an inside-out reduction indeed, is entirely analogous to the

corresponding proofs for RS. Now let 0. o be the reduction diagram cor—

responding to the construction of 8. o ; then the bottom side is, as before,

fl. However, the right side of Di 0 will be in general not empty. So we have

 

  
which proves the proposition. D

9.8. Equivalence of reductions. In fact we have just proved something more
 

than Theorem 9.7 as it stands. In order to formulate this, we will introduce

Lévy's notion of 'equivalent reductions'. The notion is intuitively clear

and ties up nicely with AL. (In the next section it will be compared with

some other notions of equivalence for reductions.)

Suppose that RI, 82 are finite reductions such that 82/81 = g. This

means that in U(Rl,82) the steps coming from 82 (propagating to the right)

are "absorbed" by those of 81 (propagating downwards). In an intuitive

sense one can say: 81 does the same things as 32 and possibly more. There-

fore:

 

/81=¢

j

I
a I

{‘92
I
l
l
1  

9.8.1. DEFINITION (LEVY [78] 2.1.p.37).

(11)6{1zL6{2:=>6{126{2&a228

(81,82 are 'Lévy-equivalent')

1.



90

9.8.2. REMARK. (1) It is not hard to prove that 22L is indeed an equivalence

relation; the transitivity is ensured by the 'cube lemma' (see LEVY [78]

2.2.1).

(2) warning: if 82*83 and 8 have the same first and last term, it does not

follow that 82 S 31. The notion of diagram is essential here. Counterex—

ample:

81 = 9(II) —> RI, 622 = 9(11) —-+ {I(II), R3 = 9(II) --+ $21.

For then 82/81 = 91 —+-QI # ¢.

(3) Lévy uses a slightly different but equivalent definition of 81/82 and

of 0(81,82) (not using our e.d.'s).

Now we can prove the strong version of the Standardization Theorem for

AB-calculus:

9.8.3. STANDARDIZATION THEOREM (Strengthened version, Lévy). 

Let a be a finite reduction sequence. Then MS is the unique standard reduc-

tion fbr 8 such that as 2i 8.

L

deed in the standardization diagram 08 both the right side and the lower

PROOF. (i) as 2: fl is a direct consequence of the definition of’eif for in-

side were empty.

0
(ii) unicity. Suppose R is another standard reduction with the same first

0
and last term as 8, such that B 2i R . Then, because 88 2i a and because

0 I I O

2 13 trans1t1ve, we have R 2 fl .
L L S

NOW suppose that

R0 Rk-l Rk
IRS—MO—-—+ --——+Mk———+Mk+1 -——+ -——>Mn

and

0 ‘RO Rk-l Rk , ,
a -Mo-—* ---*M.-—Mk+1 —+ Emu

where Rk f Rk (as always: the occurrence of Rk # occ. of Rk)°

Then, testing whether U(flo ,RS ) has empty bottom and right side, we

have the following situation:
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Mo 1 1 ”k Rk 3+1 MM
" " r ’T *1 n

I I I
I 1 I
i I l
I I Iw I III w
l I :
i : 1

' I
I25 Rk Mk+1 '
 

,5

I’ i I i

.3
1

   

  
 

(25
M' .L_______________.I

M I

_ n

‘12 *1:
Suppose Mk E where Ak, Ai are the head-A's of Rk and

Ri and A; < Ak. (The other case follows by symmetry.)
R

Now it is clear, using that Mk -—E+ ... Mn is standard, that Ai propa—

gates without splitting or becoming absorbed. Hence the right side of

0
0(8 ,RS) is not w, hence 80 PI 8S, contradiction. U

9.9. REMARK. All the facts in this section 9 generalize to definable ex-

tensions AP of A—calculus. In Def. 9.1: "frozen" P—redexes PX are marked

as F*A; 9.2 - 9.5 also extend immediately. At this moment, the proof of

Lemma 9.6 does not seem to generalize to AP, since we used AHw F=SN and

for AP in general we have not yet a HW- or L—labeling available. However,

in Chapter 11.6.2.7.15, we will extend Theorem 8.14, stating that

AHW,AL'P 1: SN, to a class of reduction systems containing the definable

extensions. Then also the proof of Lemma 9.6 generalizes to AP. Even now

we have the Standardization Theorem for AP, since in Lemma 9.6 we could

alternatively use FD (see Remark 9.6.1).

The notion of Lévy-equivalence, the 'cube lemma' for AP, and the strong

version of the Standardization Theorem (9.8.3) also carry over, as one

easily checks.
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9.10. REMARK. There is a close connection between AL and 2i, which is ex—

tensively studied in LBVY [78]. We mention a few points: the reduction graph

G(MI) of a Lévy—labeled term MI, is isomorphic with RED(M)flgL,the set of

finite reductions of M modulo 2i. The reduction graph G(M) of the unlabeled

term M, is a homomorphic image of RED(M)/=i; that there is no isomorphism

between those structures is because there are 'syntactical accidents', as

Lévy calls them. The paradigm of such a syntactical accident is:

I(Ix):::: Ix; in two, clearly not Lévy-equivalent, ways I(Ix) is reduced to

the same result. For more examples of this sort, see our Examples 10.1.1.

LEVY [78] gives furthermore information about RED(M)/ei in terms of

lattices; e.g. they are not complete but can be completed by taking also

infinite reductions of M into account. As an example consider the lattice

(not complete) RED(M)fl§L where M E (Ax.Ka(x(w3w3))(Kb). Here Ka :E Ax.a

and M3 E Ax.xxx. It is isomorphic with.G(M), since there are no syntactical

accidents here. RED(M)/=1 can be completed by adding two pOints, i.e.

Rl/ei and Rz/ei where 81 = M —-+-... w w w ...-—-+ ... w w w w ... and
3 3 3 3 3 3 3

£2 = M ——+ Ka(Kb(w3w3)) -—+-Ka(Kb(w3w3m3)) ——+ Ka(Kb(w3w3w3w3)) —-+ ..-

(infinite reductions).

M

Ka(Kb(w3w3))

 
 

(Ax.a) (Kb)

 
a

Reduction graPh of M E (Ax.Ka(x(w3w3)))(Kb). 
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10. STANDARDIZATION AND EQUIVALENCE OF REDUCTIONS

In this section we give a second new proof of the Standardization

Theorem, thereby demonstrating a close connection between Lévy-equivalence

of reductions as introduced in Def. 9.8.1, and standardization. We start

with.comparing in 10.1 several definitions of equivalence which have been

proposed in the literature. In 10.2 we continue with e: and show that it

can be generated by a 'meta—reduction == between finite reductions 81, 82

with fixed first and last term. 81 ==I82 will mean that 82 is 'more stan—

dard' than 81. The reduction c: has the following properties:

(1) it is strongly normalizing,

(2) it has the CR property,

(3) the '=='—normal forms' are exactly the standard reductions,

(4) it generates 2i as equivalence relation.

Moreover, we obtain a simple proof of the Standardization Theorem.

When writing this section, we realized that Prop. 2.2.9 in LEVY [78],

due to Berry, is roughly the same as (4) above. A closely related idea is

stated in BERRY—LEVY [79]; see our remark after 10.2.6. There however the

direction in == is not considered, and (hence) neither the connection with

standardization.

In 10.3 we make some remarks on the cardinality of an equivalence

class [8] .
21

10.1. Some definitions of equivalence between finite reduction sequences

10.1.0. DEFINITION.

(i) 8 ~ 8' ¢=>8, 8' have the same first and last term. (HINDLEY [78']

calls such 8, 8' weakly equivalent.)

(ii) Let 8 = M0 ——é-... -a-Mh. Then: 8 NR 8'I==-8 ~ 8' & for every redex

R E M the residuals of R via 8 coincide with those of R Via 8'.0I

(This definition is introduced by HINDLEY [78'], who calles such

8, 8' strongly equivalent.)

(iii) 8 NS 8' ==>8 ~ 8' & for every subterm S 3 M0 the descendants of S

via 8 coincide with those of S via 8'. (This definition is proposed

by C. Wadsworth in private communication to H. Barendregt.)

(iv) 8 ~s 8"==>8 ~ 8' & for every symbol 5 e M the descendants of 5 via
0

8 coincide with those of 3 via 8'.
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(v) 8 2L 8' «=8/8' = 8'/8 = (21, as in Def. 9.8.1.

(vi) 8.&s8', 'permutation equivalence', will be defined in Definition

10.2.2.

(vii) The following definition is given in LEVY [78] p.41 Prop.2.2.9 and is

due to G. Berry:

8 kg 8' ¢=>8, 8' result from each other by repeated permutation of

adjacent complete developments.

(For a more precise definition see LéVY [78] p.41).

10.1.1. EXAMPLES.
I

(i) 8 = 11(12x) ——l+-I2x and 8' = 11(12x) ——2La>Iix. 1, 2 serve to dis—

tinguish the occurrences of I. This example is from LEVY [78].

(ii) 8 = K1(K2AB)B-—§L+ KZAB.and 8' = K1(K2AB)B —§2—+ KlAB.

(iii) 8 = (Ax.(Ay.A)X)B ~A§—+ (Ay.A)B

f Illa
8' = " -—gLa-(AX.A[y:=x])B

Here x & FV(A)-

(iv) Let L be such that Lx —+» L(Lx), to be specific:

L E [Aab.aa(aab)][Aab.aa(aab)].

——e»
Then L(Lx) ‘fi89 L(L(Lx))) in two different ways.

(v) Define A, B such that Ax —+» A(xI) and B —+» BI.

——4»
Then AB —fif» A(BI) in two different ways.

For all the above examples we have 8 PL' ¢R' $5 8'.

(Vi) 8 = I I2(I I x) -—a-———+ 12(1 x) ———4-I x
1 3 4 1 3 4 2 4

8| = n u H II _ .

4 5 I2"

NOW 8 ¢L' ~R' PE 8 .

(vii) 8 = [Az.z(zx)]I -—+~Il(12x) ——+-I x
1 2

a! = u u .——+ —§+ le

N N 8' .Now 8.¢i, R' S

(viii)Let A E Aab.aba. Then:

A A A ——+'——+'A A A ——9'-—+ A A A ——9'——+ A A A = 8"

 

0 1 2 1 2 1 2 1 2 1 2 1
L___ Va? .1

8

L _)
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NOW

a I all

 

R S L R S L
 

    8' a:
R 7LSPQL

(ix) In general, let C be a cyclic reduction: C = M0 ——+-... —--—>-Mn E MO.

Let C(l) = C * C * ... * C (i times). Here * denotes concatenation of

reductions.

. . (i) (j
Then (1) Vi,j 1 # 3 == C PL C

. . (i)~ (j)
(2)31'j1741 &C SC .

)

PROOF. (1) Follows directly from the definitions.

(2) Is a direct consequence of the fact that there are only finitely many

binary relations on the set of subterms of M0. (and '... descends to ...' is

a binary relation.) U

10.1.2. THEOREM.

(1) NB 7?)" EL 17’ N
U(3)

~ :5 ~

3 (4) 5

NR

2
C
:

(ii) The implications under (i) are the only ones.

38295. (i) (1): see LEVY [78] p.41,42

(2) is proved in Theorem 10.2.6 below;

(3) is easily proved by tracing the subterms (or symbols) in reduction

diagrams, starting with the elementary diagrams;

(4) 0:) follows since most of the symbols in a term are also subterms

(except A, and brackets);

(«0 follows since either a subterm is a variable (hence a symbol) or

else it is compound, and hence determined by its outermost brackets.

Then apply the hypothesis to those bracket symbols.
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The non-numbered implications are trivial.

(ii) That no more implications hold, follows from the preceding examples

(example (viii) suffices). U

10.1.3. REMARK. Note that all the equivalences considered in Theorem 10.1.2

have_the following pleasant property:

Any two coinitial reductions ending in a normal form, are equivalent.

PROOF. Immediately, via ei. D

10.2. Standard reductions and 2L
 

10.2.1. DEFINITION. An anti-standard pair (a.s.pair) of reduction steps is

a reduction consisting of two steps, which is not standard.

A A

10.2.1.1. RgMARK. Obviously, if 8 = M ——l—+ M' ——2—+-M" is an a.s. pair,

A2 A1
then M E ————————-—-where A1, A are the head-A's of B—redexes and A2 < A

2 1'

10.2.2. DEFINITION. (i) RED is the set of all finite reduction sequences.

(ii) The 'meta-reduction' =akon RED is defined as follows:
A

(1) If 8 = M ——l—+ M' ——2—+ M" is an a.s. pair, then 8 ==I8', where

8' is 'the' standard reduction for 8:

A2 A1 A1 A18| =M___)_MIII_____+___+___+MH.

 

n §~0 times

(2) If8=>8', then81¢c8>k821=>81 *8' *82.

(fii)===»is the transitive reflexive closure of == .

Riis the equivalence relation generated by ==, called permutation

equivalence.

10.2.2.1. REMARK. Note the connection between ll==b’and the elementary diagrams

introduced in 6.1.1, as suggested by the following figure (where A2 < A1):

 

   

”1 A1 M'

A2 A2

A1 A1 A1 \

M'" I I M"
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10.2.2.2. PROPOSITION. (LEVY [78] 2.2.6 Prop.p.40).

81 * 82/81 2I 82 * 81/82. I.e.: let 8 be the right-upper reduction of a

reduction diagram D and 8‘ be the left-lower reduction of D; then 8.2i 8.

8

 

 

   
(RI

PROOF. Simply by 'folding out' 0:

 

  

 

81 82/8

0= 1
I

6:{2 0(81,82) 612/81 {‘2’
¢ 1------- I62/8 . .w 1 2: I

fl! :9

I. ...... J________ J
P g

Hence indeed 8 = 81 * (82/81) 2i 8 = 82 * (81/82). H

10.2.2.3. REMARK. Let 8 be an a.s. pair and let 8 ==,a'. Then 8~§i 8’, as

is evident from Remark 10.2.2.1 and the preceding proposition.

10.2.2.4. PROPOSITION (LEVY [78] Prop.2.2.4).

If8=L8', then81*8*822L81 *8 *82.

PROOF. Immediate, by the following diagram construction:
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81 8 82

I I 2
' l i

8 ' I I
1 1 a I 8 Ig

l : 2 :

~ ------ r 4.
| I

8' a. ' li I
I i

82 82

95

 

El

10.2.2.5. LEMMA. If 8 R5 8' then 8 2L 8'.

M. If 8 =» 8' , then 8 mL 8' follows by Remark 10.2.2.3 and Proposition

10.2.2.4.

. From this, and the transitivity of 2L (LEVY [78] 2.2.3) the lemma fol-

lows. [:1

10.2.3. PROPOSITION. =. is aCyclic.

PROOF. Suppose not; that is: there is a '=' -reduction

80 => 81 =9 :8 8n = 80. We prove by induction on I80], the number of

steps of 80, that such a => —cycle cannot exist. (*) . The basis step of the

induction is trivial. ~

Induction hypothesis: suppose (it) is true for l80| S m. NOW let 1301 = m+1.

Suppose for some 17. < n the permuted a.s. pair is at the beginning of

8:, as displayed below; and let I. be the least such number. Then A1 < A0,

and the final reduction 8n must begin with the contraction of a

2 1 0

If there is no such K, then erasing the first step in 80,...,8n yields

A SA <A.Hence'8 758.
n 0

again a = -cycle 86 '=' .. . =5 81'1 = 86 where I86I = m; contradiction. D
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@
3
8
8

so
H

ll 3
 

 

A
Rf. = 111—09 N _._1_) L _9

U 8 J
V

I— i >\\

+1: m_h N £&)—”> L———>

g p 2 0 times

A2
8 =8n = M ———>

I2 I1
10.2.3.1. REMARK. Note that 80 = 11(12):) ———> 11x —-—+ x

11 I Ia .. 1 2
——>Ix——-—>x

1 2

is not a =9 -cycle, since we are considering reductions together with the

specification of contracted redexes. Hence 80 ;é 81.

10.2.4. DEFINITION. Let a = M —> .. . ——> N be a finite reduction. Then

the labeling I of M is adequate for 8 iff 8 can be extended to a labeled

J
reduction MI ——> . .. ——+ N , which will be called 81.

10.2.4.1. PROPOSITION. Let 8 = M ——+ —> N. Then there is a labeling

I .of M which is adequate for 8.

PROOF . Easy. [1

10.2.5. THEOREM. (1) The reduction = is strongly normalizing (i.e. every

sequence 8 =9 8' =9 8" '=' . . . terminates) .

(ii) 'The '=' -normal forms' are the standard reductions.
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PROOF. (1) Suppose that there is an infinite sequence 80 -===»81 ==.... ,

let I be a labeling which is adequate for 80;

8 = M ——+ ... (by Prop.10.2.4.1, I exists).

. I .
Now it is easy to see that the labellng I of M 15 also adequate for

81 = M ——+ ... ; we have only to check that things work for an a.s. pair,

as follows.

Consider the figure

 

2 0 times 
Here it immediately follows (from the fact that residuals of a redex

d
(Ax.P) Q have again the same degree d) that the degrees of the redexes con-

tracted from A to D to C are the same as the degrees d1,d2 of the redexes

contracted from A to B to C. Further, the labeling I was adequate for 80,

hence d1,d2

So the supposed infinite sequence extends to the infinite sequence of

> 0. Hence I is also adequate for 81.

labeled reductions
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Now by SN for labeled reduction (Theorem 8.14), every labeled reduction

I - .
starting from M must terminate. Hence, by Konigs Lemma, there are only

. I I
finitely many such reductions. Hence the sequence 80 ==i81==¢ ... must con-

tain a cycle. Contradiction with Prop.10.2.3.

PROOF of (ii). Suppose 8 is not standard. Claim: then 8 contains an a.s. 

pair. For, let

A 1 A

8=M——>,,_——>Mk-1-L+ ——k—+Mk+1—-—+,
0

‘_+M

n

h— _J
v

a.s. pair

where k is the least number s.t. MO ——+~... ——+-Mk+1 is not standard. Then

1t 15 not hard to see that Mk-l -—+-Mk ——+ Mk+1 15 an a.s. pa1r.

From the claim it follows immediately that the endpoints of maximal

== -sequences are standard reductions. U

2.5.1. COROLLARY (Standardization theorem).

W8 38' 8.-8' & 8' is standard.

PROOF. Every == -reduction of 8 leads to a standard reduction 8' for 8, by

theorem 10.2.5. U

Next we will show that every maximal == -reduction of 8 ends in a

unique standard reduction 8' for 8. We can proceed in two ways: prove

directly that ==>has the WCR property, by means of checking several cases:

621

. . ' 8 8 1:. 8 then

<\ 583 Le‘ Vfll'RZ'aT 1f 2 ‘=' 421 a3
2 ‘11. ’4’,” 384 R2 '=’) 4 ‘=' 3

\I:\ x37

fl4

Then by Newman's Lemma 5.7.(1) we have CR and hence UN (Uniqueness of Nor-

mal form) for1=:.. The other way is as follows.

10.2.6. THEOREM. 8558' «:5 82L 8'.
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PROOF. 0:) is Lemma 10.2.2.5.

(ca Suppose 8 21 8', so 0(8,8') is like:

 

We will show that one can directly read off a 'conversion', say

8¢==>=.. ..... =>4=58',fromv(8,8').

Remember the 'construction of diagrams' (6.1), which proceeded as in

the figure, by adjoining elementary diagrams:

 

 

   

 

F1
Here 81,82 are the two given coinifiia& reductions; the 'conversion' (i.e.

a sequence of ——+ and +-) To = <F—2*—lé» 'reduces' to the conversion P
1

via F.

Now suppose we have the completed diagram U(8l,82) available, and con-

sider the following procedure of again filling up the diagram; but now

starting from the upper right corner:

 
   

         
 

 
  

 

This 'dual' procedure is in fact a == —conversion of the reduction 83 to

8.4: via 8. That is, every adjunction of an elementary diagram D corresponds

either to
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(1) a p: —reduction step, in case Elis 5??

A A   
p20 times

 

   
or (2) an == -expansion, in case Elis (é? p20

times

or (3) a trivial step, in case Clis

I——‘. "'-
I

: l [ ]
L__i ----

[--1 r----1
l I |
I g :
I ' I

-..--J 1.----.4

So filling up 0(81,82) in this way yields a == -conversion, interlaced with

trivial steps, of reductions which are also interlaced with trivial steps.

Omitting all the trivial steps, one gets the desired proper == -conversion

8 = 8 8 = 8 8 .from 3 81 * (82/ 1) to 4 82 * ( 1/ 2)

In particular, for the 8, 8' s.t. 8 2L 8' we have a-== -conversion be-

tween them. D

Before formulating the corollaries of this theorem, we need the

10.2.7. PROPOSITION. Let 81, 82 be standard reductions and suppose that

8 2L 82. Then 81 = 82.

PROOF. This is Prop.2.3.2 in LEVY [78] p.43. We have also proved it, in

Theorem 9.8.3.(ii). D

10.2.8. COROLLARY. (1) Every Rs-equivalence class contains a unique

"=: -normal fbrm' (i.e. standard reduction).

(11) = is CR

(iii) Standardization Theorem, strenghtened version:

For every 8 there is a unique standard reduction 8' R58.

M. (i) , (iii) . Consider an equivalence class [8]” = {8'/8 N 8'}. By

Theorem 10.2.4.(i) there is at least one '== —normal form' in [8JRf NOW

suppose there are two different == -normal forms 81,82 as in the figure

below.

By Theorem 10.2.5(ii), 81,82 are standard. By definition of R5

81 k382, and hence by Theorem 10.2.6 81 2L 8 . Therefore, by Proposition
2
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(ii) We have just proved the uniqueness of == -normal forms (UN). Together

with SN for ==’(Theorem 10.2.5(i)) this yields CR (by Lemma 5.7.(2)).

10.2.8.1. REMARK. (i) Corollary 10.2.8.(i) and (iii) are due to LEVY [78];

see 2.3.4 Corollaire.

(ii) Theorem 10.2.6 is very close to Prop.2.2.9, due to G. Berry, in LéVY

[78] p.41, where it is proved that kg = 2L; or Prop.I.2.7 p.25 in BERRY-

LEVY [79] where the analogous fact for 'Recursive Program Schemes' is

proved. The theorem is even closer to a remark on p.25 of BERRY-LEVY [79]:

"In fact, it is possible to generalize this congruence only by the permu-

tation lemma of 1.1.4". This remark amounts to: for Recursive Program

Schemes, 2L coincides with the equivalence generated by1=¢,'where‘== is the

symmetric closure of == for RPS's.

10.2.9. REMARK. Note the following correspondence between the present proof

of the Standardization Theorem and the proof in section 9: in the latter

proof we had the 'standardization diagram'

 D = D(8,8 ) = ' 1
s s

   

 
having the property that steps moving to the right (see the figure above),

do not split. Otherwise said, case (2) in the proof of Theorem 10.2.6 does

not apply here. Hence the above procedure yields not only a == -conversion
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from 8 to 83, but even a F= -reduction from 8 to 88: (see figure)

 

  
 

 

 

 

 

   

8

l I '

E E 8 reduces to 8S in six propers== -steps.

" i
I

i
,_____ __._ l

.75: P
‘ l

I

i
8 ------ I

I
l
I

>--- L---——-+

!
4L ...... II---_--J

l

i . 1
: l l

|-—--— + ; J.     
From the proof of theorem 10.2.6 we obtain the following

10.2.10. COROLLARY. Let 8',8" be two reduction paths in a diagram 0(81,82)

having the same begin and end point. Then 8' R33".

8
1
 

8'

  
 

10.2.10.1. REMARK. By Theorem 10.1.2 hence also 8' ~g 8". So each symbol in

B traces back to a unique father symbol in A, regardless of the chosen

path. (For ABn—reduction diagrams this property is lost, as we will see in

Ch.IV.) ‘

10.3. The cardinality of equivalence classes [8]‘a

 

In this subsection we will make a few remarks on [813:

(1) in the AB—calculus card. [8]R‘can be any number S NO, in AI-calculus

and AT-calculus (typed A-calculus) any n < HO, but not 80.

(2) we will give a condition for an 8 to have card. [8]k‘= 80, and show
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that this property of 8 is not decidable.

10.3.1. EXAMPLES.

Notation: MI~n := MII...I(n times I); KI is short for Ax.I.

Q 5 mm; m E lx.xx.

 

 

(i) an = KI(IINn) ——+ KI(IINn‘l) —> KI(II) ———> KII ——+ I

8 = " -——+ " ——+ ... KI(II) —+— I
n-1

---KI(III)u;—+ I

80 = KI(IINn) ——+-I

This example shows that Vh e E! 38 card [813 = n + 1.

UJJ Let 8n = K19 -—+-KIQ ——+-...-——+ KIQ ——+—I

\ __1

V

n times

Then (anjef ==) is an infinite ascending chain:

8 c: 81 ¢=I82 ¢= ...

(iii)The next example shows that also in AI-calculus card [8].a can be any

finite number > 0:

Let 8h = Ii~n(II) ——+ IINnI (51f~n+1) ——+-...-——+ I.

Then card [8 J = n + 2.
n93

10.3.2. PROPOSITION. There is no infinitely upwardly branching point in

([8]~, =) , as in the figure:

xxx11%_____

PROOF. Let us distinguish two kinds of =¢ -steps:

 

(a) those in which the "contractum" (or permutation) of the a.s. pair con-

sists of at least two -—+~-steps:
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---A——>B——+c---
s__..v___3

U
--_ A ———+ B' —+~—e-—+-C _-_

p21 times

(b) those in which the contractum is just one ——+ -step.

They can only be of the form

—-- CEKAB] ———+ «:[KAB'] ——> CEA] —-—-
L A

V

U
——— ¢[KAB] —-+ ¢[A]

where CE ] is some context, KA := Ax.A (xéFV(A)), and B ——+ B'.

Now consider an 8' as in the above figure. Only finitely many subreductions

of 8' can be the contractum of an a.s. pair. (8" is subreduction of

g u = u8d? 381,82 81*8 *82 8.)

In case (a) the original a.s. pair is completely determined by the con-

tractum.

In case (b) there are just as many original a.s. pairs as B has redexes.

Hence 8' can be reached by one == -step from at most finitely many 8". D

10.3.3. DEFINITION. (i) Let M e Ter(A). Then 00(M) will mean: M is not SN

(strongly normalizing), i.e. M has an infinite reduction. (Par abus de

langage: 'M is infinite'.)

(ii) If 8 is a finite reduction, 8S will denote the unique standard reduc—

tion as 8.

(iii) [8] := {8'/8' =s> 8}

(iv) A step CEKAB] -—*-C[A]is called erasing. Here KA :E (Ax.A) where

x & FV(A). The term B is called the argument of the redex KAB.

10.3.3.1. PROPOSITION. The property w of A-terms is undecidable.

PROOF. Suppose m were decidable Then so was the property "M is SN", in

particular for AI-terms M. Hence for AI-terms M, the property "M has a

normal form" would be decidable; but is a well-known fact that this is not
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the case. (See e.g. BARENDREGT [80].) D

10.3.4. DEFINITION. Let Q 6 Ter(A). The labeling I is called strongly ade-

quate for Q, iff I is adequate for every reduction Q ——+-... -—+-Q' (see

Def. 10.2.4).

10.3.4.1. PROPOSITION. Let Q 6 Ter(A). Then: Q is strongly normalizing‘==

Q has a strongly adequate labeling.

EBQQE, (=0 Follows by SN for labeled reduction (Theorem 8.14) .

(=0 Suppose Q 6 SN. Then, by Konig's Lemma, there are only finitely many

reductions 8j = Q ——+ ... -+ Q' (j = 1,...,n). Let Ij be a labeling of Q

which is adequate for 8j (by Proposition 10.2.4.1, Ij exists). Then take

I = maxj_1 n Ij in the obVious sense. Now I is strongly adequate for
_'000,

92.0

I
10.3.5. DEFINITION. Let 8 = MI ——+ ... ——+ NJ be a labeled reduction. Then

8I is called special iff

(i) 8 erases only strongly normalizing arguments (i.e. if 8 contains a

step ... KAB ... ——+ ... A ..., then B 6 SN).

(ii) Whenever 8 contains an erasing step as in (i) and B 6 SN, then the

induced labeling of B is strongly adequate for B.

10.3.5.1. PROPOSITION. If 8 = M ——+ ... ——+-N erases only strongly normal-

izing arguments, then 8 can be extended to a special labeled reduction

8I = MI ——+— ——+ NJ

PROOF. Routine. D

and 8? is special, then 8: is special.10.3.6. LEMMA. If 82 1:581

33993, Suppose 8.2 ==’81 and 8f is special. Corresponding to (i), (ii) in

Def. 10.3.5 we have

(i) to show that 82 does not erase infinite arguments. Suppose 82 does

erase an infinite argument:

8 ='8 * CEKAB] -—+-¢[A] * 8', where x(B).
2

Now there are three cases.

CASE 1. The displayed erasing step is not a member of the a.s. pair of

steps, which is 'permuted' in 82 b: 81. Then 81 contains the same erasing
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step, and 81 erases an infinite argument; contradicting the assumption that

8; is special.

CASE 2. The displayed erasing step is the left step of the permuted a.s.

pair of steps. There are three subcases.

Case 2.1. Then

82 = ... ¢'[(Ax.--KA(X)B(x)--)D] 13+ ¢'[(Ax.--A(x)--)D]

_A§+ C'[--A(D)--] ——+ ... and

621 = —-)‘-}5-+ c'[-—KA(D)B(D)--] 35+ c'[-—A(D)—-] —-—> and now 81 erases

B(D) which is still infinite.

Case 2.2.

422 = —; c-[(Ax.p(x)> (--KAB--)] 45+ C'[(Ax.P(x)) (-—A--)]
——+ C'[P(--A--)] ——-> and

a = —> —"—‘+c'r.p<——KAB--)J Lil;
1

DEC times

¢-'[P(-—A--)] —+

Here p 2 0 is the multiplicity of the occurrence of x in P(x). If p 2 1,

then 81 erases the infinite term B; and if p = 0, then 81 erases the in-

A
finite argument (—-KAB——) in the step -—3£+ .

Case 2.3. KAB is disjoint from the Ax—redex. Then 81 erases B, trivial.

CASE 3. The displayed erasing step ¢[KAB] -§—+ CEA] is the right step of

the permuted a.s. pair. Let the redex contracted in the left step of the

a.s. pair, begin with Ax. Again there are three subcases. Let R' be the

contractum of the Ax—redex.

Case 3.1. R' g A: then 81 erases B

Case 3.2. R' g B. Then:

32 = —+ ¢[KA(--(AX.P(X))Q--) 11‘» cEKA(--P(<2)--) —K~> cEA] ——>

and 81= —+ CEKA(—-(Ax.P(x))Q--)] -I—<—+ ¢[A] ——-+

Now since B E --P(Q)-- is infinite, —-(Ax.P(x))Q-- is also infinite. So

also 81 erases an infinite argument.

Case 3.3. Similar to case 2.3.

. . I . . . .
So in all cases 1,2,3 the assumption that 81 18 speCial lS contradict-

ed. This proves (i).
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(ii) To show: (1) I is adequate for 82, and (2) if B ,...,Bm are the argu-
1

ments erased by 82 (so by (i) B ,...,BID 6 SN) and I1}...,Im are their in-
1

duced labelings, then I ,...,Im are strongly adequate for B1,...,Bm.

The proof of (1) is easy. (Cf. the proof of Theorem 10.2.5 in which

the converse was proved: if 82 =981 and I is adequate for 82, then I is

adequate for 81. As in that proof, it is sufficient to consider the case

that 82 is an a.s. pair. See the figure in the proof of Theorem 10.2.5.)

To prove (2), we distinguish two cases.

Case (a). The step 82 ==W81 is of type (a), as in the proof of Proposition

10.3.2. This is the easy case, as an inspection will show.

Case (b). The step 8.2 b» 81 is of type (b). I.e., the "contractum" of the

a.s. pair consists of just one step:

8: = ——+ CEKABi'] (—*).> CEKABiII'] (*—*)+ ¢[A] ——+

6%? = —+C[KAB:'] -—+ CEA] —+

We have only to consider the steps (*), (**) in 8:, since the other steps

of 8: coincide with steps of 8f.

'The assumption is that the induced labeling 1' of Bi (in 8?) is

strongly adequate for Bi' Now in the step (*) which reduces Bi to Bi, some-

thing can be erased; say this is CJ. Then C is SN and J is strongly adequate
I' I . . . .

for C, since CJ 5 Bi in 81. Also it is clear that in the step (**) I" 13
ll !

strongly adequate for Bi, since Bi is a reduct of B: . This proves (ii). D

10.3.7. THEOREM. Let 8 be a finite reduction. Then: [8]” is infinite ¢=O 8

erases an infinite argument.

E5995, (éfl Suppose 8.erases an infinite argument:

8 = ... ——*-C[KAB] -—+ TEA] ——+ ... where OD(B).

Let B 5 BO -—+-B1 ——+~B2 ——+ ... be an infinite reduction of B.

Define for all n e 10:

an = ——>¢[KAB] —+c[KA131] ——+ -—*C[KABn] —-+a:[AJ -——>

Then obviously 8 = 80 ‘=‘ 81¢: 82 == .
J.

Hence [8] is infinite.

(=9 Let us first remark that by Proposition 10.3.2 and Kénig's Lemma:



[83‘It is infinite ¢=1there is an infinite 'ascending' sequence

8<== 8"== 8P ¢=:,,, ,

Now suppose that the implication which is to be proved, does not hold.

So suppose that [8] is infinite, hence that there is a sequence

51¢='8' ¢=-..., but that 8 nevertheless erases only strongly normalizing

arguments.

Then by Proposition 10.3.5.1, 8 can be extended to a special labeled

reduction 8I. By Lemma 10.3.6 we have now an infinite sequence of special

labeled reductions 8I ¢=n 8'I o: 8"I <= . . . .-

But that is impossible, since there are only finitely many labeled reduc-

tions of MI (the first term of 81, 8'I,...) and since == is acyclic. (This

is the same argument as at the end of the proof of Theorem 10.2.5.(i),

but now for an 'ascending' E: —sequence, instead of a descending one.) D

10.3.8. COROLLARY. Let 8 be a finite reduction.

(i) [83k‘is infinite ¢=>8S erases an infinite argument.

(ii) In AI-calculus [83%,is finite, fbr every 8.

Similarly in AT-calculus (typed A-calculus).

(iii) The pr0perty '[8JR’is infinite' is not decidable.

1t£5993, (i) [8]R,= [8S] , by Corollary 10.2.8,(i), (ii). Hence the result

follows from the preceding theorem.

(ii) At once by the preceding theorem, since in AI-calculus there is no

erasing and in AT-calculus there are no 'infinite' terms (i.e. AT F=SN,

Theorem 8.14).

(iii) By (i) and Proposition 10.3.3.1. D

10.3.9. EXAMPLE. (i) Let a be (Ax.KI(xx))w -——> (Ax.I)m —+ I, where

w E Ax.xx.

Then ([8]~,'=>) is as in the figure:



Note that in 8 no infinite subterm is erased, contrary to 85.

(ii). Let 8 be a reduction from M E [Ax.KI(wa)]w to I.

M KI(Imw)
 

[Ax.KI(wx)]w
 r KI(ww)

 [Ax.KI(xx)]m \,KIQ 

KIQ  
V

(Ax.I)w

  \
/

Then ([8]R{ ==9 can be pictured as follows (at each node there is a reduc-

tion which is indicated as a tuple in an obvious shorthand.)

   
(I,w,K,Ax)

(I,K,Ax)

(K.AX)

(Ax,I,K)

(Ax,K)
standard reduction
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11. NORMALIZATION

11.0. DEFINITION. (i) Let M 6 AP (a definable extension of A-calculus),

and R,R' be 8- or P-redexes in M. Then: R is to the left of R', notation

R < R', if the head-symbol of R (A or P) is to the left of that of R'.

(ii) R g M is the leftmost redex in M iff R 5 R' for every redex R' in M.

The leftmost redex is also called the normal redex, for a reason that

will be clear soon.

(iii) A reduction 8 (finite or infinite) is normal (or leftmost) if it

proceeds by contracting in each step the leftmost redex. A leftmost step

will be denoted as -—::+ .
lm

(iv) A reduction 8 = M0 ——+-M1 ——+ ... is quasi-normal if it is finite, or

else if

Vi 3j > i Mj —Ifi—+ Mj+1°

Quasi-normal reductions are also called eventually leftmost reductions.

(v) A reduction is maximal if it ends in a normal form, or is infinite.

(vi) A class C of maximal reductions is said to be normalizing if for all

8 e C:

8(0) has a normal form ==’8 ends in this normal form. Here 8(0) is

the first term of 8; see the following notational convention.

('Par abus de langage' we will henceforth just say: 'such-and-such

reductions are normalizing' instead of 'the class of maximal s.a.s. re-

ductions is normalizing'.)

11.0.1. REMARK. The terminology 'normalizing', 'normal redex' and 'Nor-

malization Theorem' is historical (from CURRY, FEYS [58]). One should not

confuse the property asserted by the Normalization Theorem 11.2 with the

properties WN and SN (Weak and Strong Normalization), which do not hold

for A8.

11.1. NOTATION. Let 8 = M0 -——>M1 ——+

(i) Then write 8(n) E Mn for all n (for which Mn is defined).

(ii) (8)n = Mn ——+-Mn+1-——+ ...

n(8) = M0 —-—+ .. —-+Mn.

S0 8 = n(8) * (8)n = 8(0) -—+'8(1) -+ ...
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11.2. NORMALIZATION THEOREM

Nbrmal reductions are normalizing.

2599:, Let 8 = M -€» N where N is in normal form. By the Standardization

Theorem (9.7), there is a standard reduction 8S = M —+» N. Moreover, 8 is

a normal reduction. For suppose not, then 85 'by-passes' in some step the

leftmost redex. By the usual arguments, one proves easily that this by-

passed redex has a residual in N. But N is a normal form. Contradiction. U

Next we will provetimnzquasi-normal reductions are normalizing too.

For an alternative proof see BARENDREGT [80]; the reason for including an

alternative proof here is that it lends itself to a generalization to ABn—

calculus (Ch.IV). '

10.3. PROPOSITION. Let 8.qn = M0 -+-M1 ——+ ... be a quasi-normal (qn)re-

duction. Then:

(1) k(8qn) =Mk-—+-Mk+1fi... IS a qn reduction,

(ii) if 8: Nofi ... ——+ MO is an arbitrary reduction, also

8 * 8 = N ——+ ... -—+ -—+ -—+-... ' .qn 0 M0 M1 13 qn

PROOF. Trivial from the definitions. D

11.4. DEFINITION. Let 8 = M0 ——+ M1-——+ ... be a finite or infinite re-

duction and R 5 Mn some redex in 8.

R is called secured in 8 iff eventually there are no residuals of R

left (i.e. some Mn+k contains no residuals of R).

11.5. LEMMA. Let flqn = M0 ——+ ... be a qn-reduction, and let R 5 M0 be the

leftmost redex.

Then R is secured in 8 .
qn

PROOF. Almost trivial: the first leftmost step in 8.qn contracts the unique

residual of R. D

11.6. COROLLARY (Quasi—normalization Theorem).

Quasi-normal reductions are normalizing.

PROOF. Suppose M has a normal form N. Let 8n = M —18» N be the normal re-

duction to N.



Now suppose that an infinite quasi-normal 8 n' starting with M, exists.

 

  
 

MZMD R0 1:1 R1 [5‘ an TMnEN
r M1. 2m 1m :

I
M'Y '2 I

(flqn)n‘1 Ir 1

I

I
I15

L M'Ih———————J :

‘1 I
I
I

8 l
qn Ih-------------< :

0 I
I
I
I

M'...________________________.1
fl 

By the preceeding lemma, and the Parallel Moves Lemma (6.12) for some n

the progection {R0}/(8.qn)n = fl.

0 l . a t n n - '

By Prop051tion 11 3, [( qn)n/{RO}] * n(8qn) is again qua51 normal hence

R1 5 M1 is secured in it.

Repeating this argument we get a.k such that

8 8 =n/( ank In.
'8!

and because Mn E N is in normal form, also

(abn)k

Hence Mi E M E N, i.e. 8 ends in the normal form. D
n qn

12. COFINAL REDUCTIONS

The reduction graph G(M) of a term M, that is the structure

<{N/M —+» N}, ——4->, can be quite complicated and sometimes it is very

useful to know a cofinal reduction path 8.C = M -—+-M' ——+-M" —-»~... in
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G(M), in order to reduce properties of the whole graph G(M) to properties

of 8 .
c

12.1. DEFINITION. 8C is a cofinal reduction path in G(M) iff

VN e G(M) 3n.e II N —€» 8C(n).

 
In BARENDREGT e.a. [77] some typical applications of cofinal reductions

can be found. In BARENDREGT e.a. [76] (Ch.II) it is proved that a certain

kind of reduction called Knuth-Gross reduction is cofinal (for AB as well

as ABn). For technical applications, sometimes one needs a refinement of

this result. Such a refinement will be proved now. In Chapter IV the same

is done for ABn-calculus.

12.2. DEFINITION. 8 is called secured iff every redex R in 8 is secured in
Q5

8. (I.e.: iff Vh vredex R g 8(n) R is secured in (8)n.)

(See also Definition 11.4.)

REMARK. Obviously, for all n: 8 is securedI== (8)n is secured.

The next theorem is obtained independently in MICALI [78], where as

an application a 'space saving' reduction strategy is given. When writing

this section, we learned that the theorem occurs moreover in O'DONNELL [77],

where it is proved in an abstract setting; see Theorem 8 and 8'. Our 'se-

cured' reductions are called there 'complete'.

12.3. THEOREM. Let 8 be a reduction path in G(M). Then: 8 is secured ==I8

is cofinal.
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3399:, Let the secured reduction 8 = M -—+~..; and an arbitrary reduction

8' = M ——+ ... ——+ N be given. We have to prove that N —E» 8(k) for some k.

Construct D(8',8) (see figure). Now for some 10, 8(i0) does not contain a

residual of R0. Hence by PM(6.12): {R0}/io(8) = fl.

By the remark after 12.2 also (i0(8)/{R0})*(8)i0 is secured.

-Hence for some i1: ({RO}*{R1})/i1(8) = 0. So for some k,tRVk(8) = fl;

i.e. N -E» 8(k). U

 

  

 

a!

M M --
MEMO 1 2 M“;(

R0 R1 R2 --

108/{R0}

108 i

. k _____ __J

“('0’ {R }/. a=¢
0 l

0

8(i1) _ _____w_______.4

({RO}*{R1})/i18

0(8',8)

a 8' =<k)_____gfi_f______________.  
12.3.1. REMARK. The converse implication does not hold; counterexample:

Let M E Az.zflfl where Q E (lx.xx)(lx.xx), and consider

8 = M ——+ M ——*-M ——+-... where every time the right occurrence of 0 is

contracted.

12.4. DEFINITION. Let M be a AP-term. Consider the set of all B-redexes and

P—redexes in M, and let N be the result of a complete development of all

those redexes. Then N is unique (by PD, Theorem 4.1.11 and Prop.6.3).

NOTATION: M —EETA-N. Here —EE—+stands for 'Knuth-Gross'-reduction. A Knuth-

Gross reduction is a sequence of KG-‘steps'.

Knuth-Gross reduction is called the 'full computation rule' for Re—

cursive Program Schemes (see MANNA [74]).
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12.5. COROLLARY. Knuth-Gross reductions (in AP) are cofinal.

PROOF. After each complete development of the total set of redexes of M, no

residuals are left of the redexes in M. And so on. Hence the KG-reduction is

secured. D

12.6. DEFINITION. 8 is a quasi-KG—reduction if it is finite or contains in-

finitely many KG—reduction 'steps'.

12.7. COROLLARY. Quasi-KG-reductions (in AP) are cofinal.

PROOF. Let M0 ————»-M1 ———4-... ———+ Mn be a finite reduction, and let 8

be a quasi-KG-reduction. Let A —EE+ B the first KG-step in 8. (See figure.)

Now by PM(6.12) A -+» C is a development of the residuals of R and0!

hence (since —EE—+ is in fact a complete development of all the redexes in

B) B —E» D is the empty reduction. Repeating this argument, we find that in-

deed Mn —%» 8(m) for some m. D

 

 

 

M0 %1 Mn

R0

42

A \\ c

KG 1:. i:- "I

B I——-—- -__ D
1 II 1

g .. .. . .

KG KG

{5 -----.»a: 1111..
0 ¢   



CHAPTER II

REGULAR COMBINATORY REDUCTION'SYSTEMS

In this chapter we introduce a generalization of the reduction systems

in Chapter I (subsystems of definable extensions of AB-calculus, such as

AI, CL, Recursive Program Schemes), which we will call 'Combinatory Reduc-

tion Systems' (CRS). A CRS is in fact a TRS (Term Rewriting System) pos-

sibly with bound variables. So we will consider variable-binding mechanisms

other than the usual one in A—calculus; see Remarks 1.17, 1.18, 1.20 below

for a general discussion and a comparison with some notions of 'reduction

system' which occur in the literature.

We will consider in the present chapter only CRS's with two well-known

constraints: the reduction rules must be 'left-linear' and the 'non-ambi-

guity' property must be satisfied. For reasons of economy we use the ab-

breviation

regular = left-linear & non-ambiguous.

(In Chapter III we will consider some non-left—linear CRS's.)

In Section 1 we introduce the concept of a regular CRS. Section 2 con-

tains the definitions of 'descendant' for regular CRS's (via labels, as in

1.3), and of 'development'. In Section 3 a proof of the Church-Rosser theo-

rem for regular CRS's is given; this is done via an analysis of combinatory

reductions into a 'term rewriting part' (as in CL) and a 'substitution

past' (as in A). Some non-trivial technical propositions are required to

prove even the simple property WCR for regular CRS's (Lemma 3.10). In this

stage the Finite Developments theorem and its corollaries CR8, PM (analogous

to resp. Thm. 1.4.1.11 and its corollaries I.6.9 and 1.6.12) are not yet

proved; to obtain FD, which is a Strong Normalization result, we introduce

'reductions with memory' and generalize a method of R. Nederpelt to the

class of regular CRS's. Using this method, which seems interesting for its
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own sake, we obtain FD and hence CR+, PM; now a large part of Chapter I

generalizes at once to regular CRS's (e.g. Lévy-equivalence of reductions).

In Section 5 we investigate the property 'non-erasing' and state a

generalization of Church's Theorem (1.7.5) for regular non—erasing CRS's.

In Section 6 we explore further conditions which ensure Strong Normal-

ization for regular CRS's; as in Section 5, an application in Proof Theory

is given. we prove here a generalization of Theorem 1.8.14 (AHW F=SN, etc.).

Furthermore, Lévy's method of labeling (I.3.9) is generalized to all regular

CRS's, together with the corresponding SN result. This yields a tool to

prove the Standardization and Normalization Theorem for a restricted class

of regular CRS's (viz. the 'left-normal' ones).

1. COMBINATORY REDUCTION SYSTEMS

In this section we will define the concept of a Combinatory Reduction

System (CRS). A CRS 2 will be a pair <Ter(2),{pi/i€I}> where Ter(Z) is the

set of terms of Z and where the pi are reduction relations on Ter(Z).

So a CRS is a special kind of ARS, as in I.5. The reduction relations

pi are generated by reduction rules ii; Red(Z) = {ri/ieI} is the set of re-

duction rules of Z. Ter(Z) is built inductively from the alphabet of Z. In

order to define the ri (ieI), we will use meta-variables (written as Z plus

sub- and superscripts) in a formal way; that is, they serve to define the

set Mter(2) of meta-terms. There will be meta-variables of 'arity 0', as

in the definition of, say, the reduction rules for CL:

82 ———-+12223 2123(z2z3)

, —-—+K2122 21,

but also of arity >'O, to allow a description of reduction rules involving

substitution, as e.g. in the rules for m 2 1:

em = (Axln.xm.ZO(x1,...,xm))Zl...Zm -—*-ZO(ZI,...,Zm)

(see 1.4.2.1). Here Z is m—air and the other meta-variables are O-air.
0

Our universe of discourse in this and the next Chapter is the class

of CRS's; this class will be closed under the formation of substructures,

as defined for ARS's in Def.I.5.10. In fact that definition has to be
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slightly extended, since in that case only one reduction relation is pre-

sent. Therefore:

1.0. DEFINITION. Let z = <S,{ri/ieI}> and z' = <S',{ri/ieI'}> be ARS's.

Then 2' g 2 (2' is a substructure of 2) iff

(i) S' g S and I' g 1,

(ii) for all i e I', ri is the restriction of ri to S',

(iii) S' is closed under ri, for all i e I.

1.1. DEFINITION. The alphabet of a CRS consists of

(i) a countably infinite set Var = {x,y,z,...} of variables,

(ii) the improper symbols (...),[,]

(iii) some set Q = {Qi/iel} of constants

(iv) a set of metavariables Mvar = {ZE/i,k 6 1G}.

Here k is called the arity of Zt.

(REMARK. As in Chapter I, the metavariables in, say, a rule as KZOZ1 -—é-ZO

or (Ax.ZO(x))Z1 ——+ ZO(Z1) will range over the set of terms; but here we

will treat the metavariables in a more formal way, using valuations.)

1.2. DEFINITION. The set Ter of terms of a CRS with the above alphabet is

defined inductively by

(i) Q U Var g Ter

(ii) x e Var, A e Ter == [xJA e Ter (abstraction)

(iii) A,B e Ter == (AB) 6 Ter (application)

provided A is not of the form [x]A'.

1.3. REMARK. (i) CRS's having an alphabet and terms as defined above but

without the metavariables of positive arity, without 1.2(ii) and without

the proviso in 1.2(iii), are known as Term Rewriting Systems (TRS'S); see

e.g. HUET [78]. These are CRS's 'without substitution', such as CL.

(ii) The proviso in Definition 1.2(iii) is not really necessary, but no-

tationally pleasant; see Remark 1.9 below.

(iii) In [xJA the displayed occurrence of x is said to bind the free oc-

currences of x in A. The definition of the notions 'free and bound variable'

is analogous to that in the case of A-calculus (see 1.1). There are the

usual problems due to a-conversion (renaming of bound variables, see 1.1.6),
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but as usual they can safely be ignored (here anyway).

We will adopt the convention that all the abstractors [x] in a term be

different.

(iV) The usual notational convention of 'association to the left' (as in

1.1.2) will be employed. Outer brackets will be omitted. We write an n-

fold abstraction term [x1 ][x2 1 ...[xn]A as [x x ...xn ]A or [x]A. A term
1 2

QIXJA for some constant Q e Q will be written as Qx.A

1.4. EXAMPLE. (i) Let )3 be a CRS such that A e Q. Then (((A[x](xx)))\)

e Ter(Z). Using the notational conventions above this term may be written

(Ax.xx)A. Another Z-term: (Ax.xx)[yz](yyz).

(In practice we won't need and will not consider such pathological

"X-terms", but in this stage we want to be as liberal as possible in our

term formation.)

(ii) Let 2 be a CRS such that {3,V,&, =} g Q. Then 3y. Vk. & (=xx)(=yy) is

a Z-term.

1.5. REMARK. ACZEL [78] employs a different notation, in which every term

is denoted by an n-ary function (n20): F(A1,...,An) instead of our FA ...An.
1

The two notations are practically equivalent; our notation yields more

terms, viz. also F,FA1,FA2,... are subterms of FAl...An. (However, when

l-terms are present one can use 1x1...xn.-F(x1,...,xn) instead of F,

sz...xn.F(A1,x2,...,xn) instead of FA1, and so on.) We have preferred our

notation to conform with the notation in Chapter 1.

Instead of our set Q of constants, ACZEL [78] uses a set F = {Fi/iel}

of forms, each form having an arity <k1,...,kn>, an n-tuple of natural num-

bers (n20). A form of arity < > (n=0) is called there a constant, a form

‘of arity <0,0,...,0> is called a simple form. Term formation in ACZEL [78]

is as follows:

(i) Var C Ter

(ii) if F e F with arity <k1"'°'kn> and A1,...,An e Ter, then
+

F([x1]A1,...,[xn]An ) e Ter, where [xi 1 (i =1,...,n) is a string of

ki variables.

So e.g. 'application' .(-,-) is a simple form of arity <0,0>, and 'l-ab-

straction' A([-]-) is a form of arity <1>. The recursor R is a simple form

of arity <0,0,0>. An interesting non-simple form of arity <1,1,0> is en-

countered when derivations in "Natural Deduction' are reduced to a normal
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form; see Example 1.12.(v).

1.6. DEFINITION. (1) The set Mter of meta-terms over the alphabet as in

Def.1.1 is defined inductively as follows:

(i), (ii), (iii) as in Def.1.2, replacing Ter by Mter

(iv).H1,...,Hk e Mter =¢ z: (H1,...,Hk) e Mter, for all k,i 2 0.

(2) A meta-term H is called closed, if it contains no free variables, i.e.

if every x e Var occurring in H is bound by an occurrence of [x].

REMARK ad (1): So in particular O-ary meta-variables are meta-terms. On the

other hand, n+1-ary meta—variables are not in Mter. The purpose of the

k
brackets in Zi (H1....,Hk) will be clarified in 1.10, 1.11 below. Further-

more, note that Ter C Mter.

As in ACZEL [78], we will use H, H', H1,... as "meta—meta—variables"

ranging over Mter.

1.7. DEFINITION of formation trees corresponding to meta-terms.

Let H e Mter. Then T(H), the fbrmation tree of H, is defined by induction

on the formation of H as follows.

(i) T(x) = x, T(Qi) = (Li

(ii) T([x]H) = [x]

T(A)

(iii) T(AB) =

(iv) T(Z(H1,...,Hk)) = Z(H1,...,Hk) (kZO)
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1.8. EXAMPLE. (i) The terms in Example 1.4 have formation trees

A A 3

|\ | \ l
[x] A [x] E J [y]

1 I T I
x x [2] v

I I I I
x x Y [x]

/\ |
y z

8:

/ \=
x X Y Y

.. 1 2 0 .
(11) The meta-term (Ax.Zi(x))Z2(y,Z3) has the formation tree

A

| \
2 0

[X] Z2(YIZ3)

|
Z1(X)

1.9. REMARK. Note that by the restriction in Def.1.2.(iii), an [x] has

only one successor in T(H). Without this restriction, we would have forma-

tion trees like

T((EXJA)B) = [x]

TA TB

AA
suggesting that the free occurrences of x in both TA and TB are bound by

[x], which is not intended since the scope of [x] in ([x]A)B does not ex-

tend to B. So the restriction in Def.1.2.(iii) yields the pleasant property



125

that the scope of a variable x equals the whole subtree below that occur-

rence of x in the formation tree.

1.10. DEFINITION. (1) A valuation p is a map Mter + Ter such that

p(ZE) = A(x1,...,xk), i.e. p assigns to a k-ary metavariable a term plus

a specification of k variables.

(2) The valuation p is extended to a map Mter + Ter, also denoted by p, as

follows:

(i) O(X) = X. p(Qi) = Q1

(ii) p([x]H) = [x]p(H)

(iii) p(HiHZ) = O(H1)p(H2) k

(1v) p(Zi(H1....,Hk)) = p(Zi)(pH1....,ka)

Here in (iv) it is meant that if p(Zfi) = A(x1,...,xk) then

p(Z:)(pH1,...,ka) := A(pH1,...,ka), i.e. the result of the simultaneous

substitution of pHi for xi (i = 1,...,k) in A.

1.10.1. REMARK. Given a meta-term H and a valuation p, the term pH is ob-

tained by performing a number of nested simultaneous substitutions.

Hence one can ask whether the order in which these substitutions are

performed, affects the end result— and one may even ask if there is always

an end result. That indeed every execution of the simultaneous substitu—

tions terminates in a unique result, is a consequence of Agm F: SN (Theorem

1.4.2.5, stating that all developments are finite in ABm-calculus), and of

Afim F= WCR (the weak Church-Rosser property for underlined ABm-calculus,

which is easy to check).

1.10.2. EXAMPLE. Let ZZ, Z1, Z0 be resp. a binary, an unary, and a O-ary

metavariable. Let H = Z2(Z2(ZO,Z0), Zl(Zo)) and let p be a valuation such

that:

p(ZZ) = A(x,y) where A E xyxz

p(Zl) = B(z) where B E xzy

p(ZO) = u.

Then p(H) E pZz(pZZ(pZ0,pZO),le(pZO)) E the unique result of a complete

.gm-development of (§§Z,A(x,y))((Agy,A(x,y))uu)((A§,B(z))u) E

E uuuz(xuy)(uuuz)z.
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1.11. DEFINITION. (1) A reduction rule (in ACZEL E78]: contraction scheme)

is a pair (H1,H2) of meta—terms, written as H +-H , such that
1 2

(i) the top of T(Hl) is a constant Q1,

(ii) H , H are closed,
1 2

(iii) the meta-variables in H2 occur already in H1,

. k
(iv) the meta—variables Zi in H1 occur only at end-nodes of T(Hl) in the

—)- +
form z:(x), where x = x1,...,xk is a string of pairwise distinct

variables.

(2) If, moreover, no metavariable occurs twice in H the reduction rule1'

H1 + H2 is called left-linear.

(3) The reduction rule H + H defines a reduction relation, which also will
1 2

be denoted as f, on Ter, as follows:

¢[p(H1)] —+ ¢[p(H2)]

for every context CE 3 (defined analogously as for A8 in 1.1.5) and every

valuation 0.

If r = H + H then we will also write 31+ for the reduction rela-
1 2'

tion defined by r. A term of the form p(Hl) for some valuation p is called

an r—redex.

As usual, —€» denotes th transitive reflexive closure of —+.

1 0
1.12. EXAMPLES. (i) A ——> Z (Z )

[x] 0

I
1

zo(x)

is the rule of B-reduction. Henceforth we will omit the superscripts of

meta-variables, indicating their arity, and write Z, Z , Z , Z', Z",... .

Sometimes we will write instead of a meta-term its foriatiin tree, as

above, since it often makes the structure of the meta—term more apparent.

(ii) The definition of the recursor R yields an example of two left—linear

reduction rules where no substitution is involved (so with only O-ary

meta—variables):

R 2122 o -—>zl

R 2122(323) ——+ 222302212223)



127

(iii) The reduction rules for 'Surjective Pairing', which we will consider

in Chapter III, yield an example of a non left—linear reduction rule (the

third one):

00(Dzozl) ———+ 20

p(DOZ)(DIZ)-——+ 2

(iv) A pathological example:

////Q\\\\ -——+ 21(Z2(ZI(I)))

[x] [y]

I I

Z1(X) 22(y)

Let us give an example of an actual reduction step induced by this reduc-

tion rule. Let 021 = A(x) where A E xxK and p22 = B(y) where B E yS, then

p(Zl(x)) = xxK and p(Z2(y)) = y3, and we have as an instance of the reduc—

tion rule the following reduction step:

Q([x](xxK))([y](yS)) -—+

[x:= [y:= [x:=I](xxK)](yS)](xxK)

[xz= [y:= IIK ](yS)](xxK) E

EX:= IIKS ](xxK) E

IIKS(IIK3)K.

(v) The next example is from Proof Theory; see PRAWITZ [71], p.252. In a

normalization procedure for derivations (in 'Natural Deduction') we have

here the 'v—reductions' (i = 1,2):

 

 

 

_Z9, [01] [(1)2] Zo

¢i Z1 Z2 [¢i]
Q. -- --P ¢1v¢2 I» I > 21

W I

Here Qi' P are 'rule-constants' for the v-introduction and v-elimination
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rule. Omitting the formulae ¢i,¢ which function as 'types' of the deriva-

tions ZO,Z1,Z2, these reductions can be written linearly as follows:

P(Qizo) (Exilz1 (x)) ([y]Zz(y)) —+ 21(20) .

(Likewise one can consider the &-, D—, V;, 3— reductions in PRAWITZ [71]

p.252,253; these 5 proper reductions together constitute a regular CRS.

The vE-reductions induce an ambiguity however. See Def.1.14 and 1.16. for

the concepts 'ambiguous' and 'regular'.)

(Vi) (A[x].Zl(x))Z2 -*'P(Z1(Z2))ZZ

'B-reduction with memory'; see Section 4.

1.13. DEFINITION. If H, H' are meta—terms, we write H 50 H' to indicate

that the subterm H' "occurs at place 0" in H. Here the sequence numbers

0 = <n1,...,nk> (kZO) are possibly empty sequences of natural numbers, de-

signating the nodes in a tree T(H) as in the figure:

$_T(H')

  
-.....<~0'-’1'1'0,0>

c ' ,So H _<0’1> H
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REMARK. A shortcoming of the formation trees T(H') is that the nodes 0 in

T(H') are not in bijective corre5pondence with the subterm occurrences in

H', as is apparent from the figure above. (If one uses Aczel's notation as

explained in Remark 1.5 above, and the corresponding formation trees, then

this shortcoming is removed.) However, for our purposes the trees I(E')

suffice.

We illustrate the next definition by some examples.

(i) Consider a CRS 2 with the set of reduction rules

Red(Z) = {r1 : P(QZ) —-'> A, r2 : QZ —-* 3}.

Then the fact that the rl-redex R1 E P(Q(pZ)) contains as subterm a r2-

redex R2 E Q(pZ) is undesirable if one wants to have the CR—property.

(For R1 ——+~A and also R1 ——+ PB and there is no common reduct of A, PB)

(ii) A more subtle case of this kind of "interference" between reduction

rules is given by

Red(Z) = { P ———+ A Q __.> B}

Q Z1 3

2 ZR z
I 2

Z1

Here, too, there is 'interference'; namely if R E P

for some terms X,Y, then R.——+-A and also é
/\

R—-*PB. R S

I I

X Y

(iii) A reduction rule may also interfere with itself (example of HUET

[78]):

if RedIZ) = {P(PZ) ———> A} and R P(P(PX)), then R ——+ A and R-—-+ PA.

This leads us to:



130

1.14. DEFINITION.

(1) Let H1, H2 5 Mter. Then H1 C H2 ("H1 interferes with H2") <=$

(i) if H1 E H2 : for some 0 and non-terminal o # < > in H2,

(11) 1f H1 f H2: for some 0 and non-terminal O in H2, le go 0H2

An equivalent definition is:

H1 fl H2 iff whenever le E pH2, then 0H1 5 oz for some metavariable Z in

H2.

(2) If r1 = H1 -—+-Hi and r2 = H2-——+ Hi are two reduction rules (possibly

the same) of a CRS, we say that r1 interferes with r2 iff H1 9 H2.

(3) Let Red(2) = {ri = Hi ——+=Hi I i e I} be the set of reduction rules of

a CRS 2.

Then Red(Z) (or just 2) is non-ambiguous iff

. H f . .
(1) Hi i j or 1 # 3,

(ii) for no i,j e I, ri interferes with rj.

1.15. EXAMPLES.

(1) Red(2) = {IZ-——+ Z} is non-ambiguous, but Red(2') = {I(IZ) -—+-IZ} is.

(2) Red(Z) = {(Ax.Zl(x))Z2 —+ 21(22) (B-reduction),

(Ax.xx)(Ax.xx) ——+ Ax.x}

is ambiguous.

(3) The following example is from ACZEL [78]. Let 2 have the rules:

B—reduction

pairing: DO(DZ1Z2) —4- Z1

01(02122) —+ 22

definition by cases:

Roz...z —+z
n '1

|

t

iterator:

J(SZO)ZIZZ — 21(Jzoz122).
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Then 2 is a non—ambiguous CRS.

(Note that the rules for R2 above are similar to the rules:

ithrue then Z else Z 4—6-Z
2 1

1 else Z2 -—+-Zz.)

(4) Church's 6-rule. See CHURCH [41] p.62.

1

_if false then Z

Let 2 be AB—calculus plus the rules

GAB ——+-I if A E B and A,B are closed normal forms

GAB ——+-KI if A i B and A,B are closed normal forms.

In fact one should write, as pointed out in HINDLEY [78]:

Red(£) = {B} U {6AB -—+-IIA,B closed nf's, A E B} U

{GAB -—+ IIA,B closed nf's, A i B}

to see that 2 is a CRS. Note that the infinitely many 5-reduction rules have

no metavariables. Clearly, Z is non-ambiguous.

(5) Red(2)={Z1+Z -——>z +2
2 2 1

Z1 + $22 ——+ S(Zl+Z2)

(21+22) + Z3 ——+ z1 + (22+z3)}

is ambiguous, in several ways. (Here 21 + 22 stands for + Z1Z2.)

(6) The following very familiar CRS E has constants 0 (zero), 3 (successor),

A (addition), M.(multiplication), and E (expOnentiation).

Red(£) = {Azo —+ z, Azl(Szz) —+S(Azlzz),

Mzo —+ 0, le(szz) —+ A(lezzml,

Ezo ——+-So, Ezl(322) ——+-M(Ezlzz)zl}.

The rules are non-ambiguous and left-linear.

1.16. DEFINITION. Let Red(2) be non-ambiguous and let the reduction rules

in Red(£) be left-linear (Def.I.11.(2)). Then 2 is called a regular CRS.

1.17. REMARK. The definition of CRS's is, loosely speaking, the union of

the definitions of-

(i) the contraction schemes in ACZEL [78],

(ii) the Thrm Rewriting Systems as in e.g. HUET [78],

(iii) the A(a)-reductions of HINDLEY [78].

(See Figure 1.18.)
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Ad(i). Aczel's contraction schemes are less general then CRS's, since

there in a scheme H ——+ H', the formation tree T(H) has typically the form

 

+

Z0 Z2(x1) G2\

——- +
[9’1] £me

+ -> + —>

Z3 “‘2 'Y1) Zm (X2 ’Ym)
\ /

(I) (II) (III) (Iv) (V)"

I.e. all the 'arguments' of F can only have the form (I),...,(V). Here (I),

(II) are special cases of the form (V) and (III) is a special case of (IV).

So the meta—terms H in the LHS' of contraction schemes in ACZEL [78] have

a limited depth (viz. 4). In our definition T(H) can be arbitrarily deep,

hence the concept of a CRS also covers that of a TRS.

ad(iii). Hindley's A(a)-reductions generalize the class of regular (i.e.

non-ambiguous, left-linear) TRS's. In a reduction rule H + H', Hindley

admits only 0-ary metavariables (apart from the rule 8).

Among Hindley's A(a)-reductions are the so-called G-rules of Church.

These are of the form

ACOOIA —+B

n

where the Ai (i = 1,...,n) and B are closed terms and the Ai are moreover

in BG-normal form. So they are reduction 'rules' without metavariables;

each rule has only one instance, namely itself. Moreover the set of these

rules has to be non—ambiguous. An example was given in 1.15(4).
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A subclass of Hindley's A(a)—reductions and Aczel's contraction

schemes was considered in STENLUND [72]. There the CR theorem is proved

for ABnGR-calculus; n refers to n-reduction which we do not consider ex-

cept in Chapter IV, 6 refers to Church's G-reductions and Rrreductions are

a generalization of the usual recursor as in Example 1.12(ii). An inspec-

tion of Stenlund's definition shows that (when n is left aside) his ABSR

is a regular CRS.

A note on terminology: instead of 'non-ambiguous' ACZEL [78] calls

such a 2 consistent, HUET [78] says that such a Z (for TRS's) has no criti-

cal pairs, and ROSEN [73] speaks of the non-overlapping condition. In

HINDLEY [78] the non—ambiguity of Z is about the same as his (D2) & (D5) &

(D6); (D3) is the left—linearity.

 

 

  
 

  

F
\

O

Hindley's A 9 S-P-

Aa-reduction

Aczel's
F . . \

schema's Term writing SYStemS

o A

,Proof Th. R CLQDZZ + E
. 0

.

reduction k;
44

Church's

6-rules

regular irregular

Lk Combinatory Reduction Systems

J 
 

venn diagram of the extensions of various notions of reduction.

Here 'RPS' is the class of Recursive Program Schemes, as in 1.1.13; 'AGS.P.'

refers to the example in 1.12(iii); 'Proof Th. reduction' refers to the

reduction rule in Example 1.12.(V), '9' stands for the recursor (Example
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1.12.(ii), and CLGDZZ + E refers to a non-left-linear extension of CL which

will be considered in Chapter III.

In order to facilitate notation, let us define the following operation

on CRS's.

1.19. DEFINITION. (i) Let 21, 22 be CRS's having disjoint sets of constants.

Then the direct sum 21 0 Z is the CRS having as alphabet the union of the

alphabets of Z

2
9 =1, 22 and such that Red(21 £2) Red(21) U Red(£2).

(ii) If 21, 22 are CRS's not satisfying the disjointness requirement in (i),

we take 'isomorphic copies' 2i and £5 (e.g. by replacing each constant Q

(i) . _ ,_ I Iof Bi by Q (1 — 1,2)) and put 21 9 22 .— 21 0 22

1.19.1. EXAMPLE. (i) A 0 CL as in Def.I.2.5.1.

(ii) CL 0 CL has constants I,I',K,K',$”S' and rules IZ -—+-Z, I'Z ——+ Z and

likewise for K,S.

1.19.2. REMARK. Although we will not explore the properties of G systemat-

ically, we will state some observations on 9:

(i) the class of CRS's is closed under 6; likewise the class of regular

CRS's.

(ii) if 21, 22 are CRS's, then

21922|=c1a=> 21I=CR8I22I=CR

but the converse does not hold, as we will see in Ch.III. If moreover Z ,

22 are regular CRS's, the converse holds trivially, by (i) and because

every regular CRS is CR (Thm.3.11).

'(iii) According to Def.I.5.10.(1), a CRS Z is consistent iff not every two

E-terms (including open Z-terms, i.e. containing variables) are convertible

by means of the reduction rules. In particular, iff X b5 x = y for dif-

ferent variables x,y. Now we have

21 9 22 conSistent :; 21,22.

Here =’is obvious, and to see #5 let 21 be CL and 22 be the CRS having

constants P,Q and as only rules PZ —»- Z and P2 -é- ZZ. Then in 21 G 22:
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PKIxy ——+-KIxy -+~Iy -—+-y

——+ KKIxy —-+-ny ——+ x.

When 21,22 are moreover regular, then the converse implication does hold,

as a consequence of (ii).

(iv)'As for the property Strong Normalization, we remark that obviously

21 69 22 I: SN =9 21 I: SN & 22 I= SN; but again not conversely.

A counterexample is given by the regular TRS's 2 having K as only con-
1

having constants P,Q and as onlystant and as only rule KZZ'-—+ Z, and £2 ‘

rule P(QZ)‘——+ ZPP(QZ).

Then trivially 21 F: SN, and also 22 F: SN, since in 2 no new redexes can
2

be created (therefore 22 = 22, and by Theorem 4.15 below: 22 F: SN).

On the other hand, 21 9 22 n— I# SN, because P(QK) ——+ KPPYQK) —-+-P(QK.

(Question: does the converse implication hold if E ,Z1 are both RPS's?)
2

1.20. REMARK. In the study of CRS's we consider, next to the Term Rewriting

part, reductions involving general mechanisms of variable-binding. One can

ask whether this is necessary: it might be thought that the way of variable—

binding and substitution as in A-calculus ('the theory of functional ab-

straction') is sufficient, especially in view of a remark in CURRY—FEYS

[56] p.85,86 in which it is stated that "any binding operation can in prin-

ciple be defined in terms of functional abstraction and an ordinary opera-

tion", and that "the theory of functional abstraction is tantamount to the

theory of bound variables."

A similar remark is made in CHURCH [56] 506, p.41: here A is called

the 'singulary functional abstraction operator', and it is stated that

"all other operators can in fact be reduced to this one".

Indeed it is not hard to see that for the notation of terms, the

operator A suffices. 1n CURRY, FEYS [56] examples like '(3x)X E E(Ax.x)'

are given to that effect.

As to reduction of terms, however, and the corresponding syntactical

questions such as the Church—Rosser Theorem, the Parallel Moves Lemma, it

seems to us that one cannot claim that the theory of bound variables is

tantamount to that of A-abstraction. Let us try to make this more precise:

DEFINITION. Let E be a CRS such that Red(2) contains the rule

B==(AX.Z(x))Z'-——+ Z(Z') as only substituting rule, next to Term Rewriting
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rules. Then we will call 2 a A-TRS.

EXAMPLE. A 9 CL is a A-TRS; in general, if 2 is.a TRS, then A e Z is a

A-TRS. The converse does not hold, e.g. if X is such that Red(Z) =

= {B,PZIZ2 ——+-Az.Z2(le)} (Zl’ZZ O-ary metaviarables) then 2 cannot be

written as A 9 some TRS.

REMARK. Hindley's A(akreductionsystems are in fact regular A-TRS's.

Now we can interpret the statement from CURRY—FEYS [56], cited above,

as claiming that 'the theory of CRS's is tantamount to the theory of

A-TRS's'.

Indeed, it is not hard to show that for every CRS 2 there is a

*
A-TRS Z , having the same terms (modulo inessential notational differences)

and such that for all terms A,B:

(i) Z I= A—-—>B =9 2* I= A—->> B, and hence also

(11)): I= A—->>B => 2* I: A-——>>'B.

As a typical example, let 2 have the rule

r = P([XJZ'(X))([y]Z"(y))-—+ Az.Z"(Z'(Z)))

*
(Z', Z" unary metavariables) then 2 will have instead of r the rule

7k
r = P2122 ——+-Az.zz(zlz) (21,22

And now for terms C1[x], ¢2[y] we have in Z:

O-ary metavariables).

P([x]¢1[x])([y]C2[y]) j;+ Az. ¢2[¢1[z]]

in one step, while in 2*:

P(Ax.¢1[X])(Ay.€2[Y]) —;;*

AZ-(AY-¢2[y])((Ax.C1[x])z) -E+-—E+

Az.C2[C1[z]].

However, in general the converse implication does not hold in (ii) above:

‘1:
X has too many reduction possibilities. So to prove e.g. the CR theorem

*
for X it does not help, a priori, to have CR for Z .
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In fact, it seems to us that the theory of CRS's is a refinement of

that for A-TRS's; essentially the refinement amounts to the fact that many

step reductions such as in the example for 2* above can be dealt with as a

single step (in 2).

Furthermore, let us mention that reductions like r in 2 above, do in-

deed in a natural way occur: namely in Proof Theory (see Example 1.12(v));

we will return to that later.

Finally: our wish to consider more general variable-binding mechanisms

arose also in order to have maximum flexibility in defining 'odd' reduc-

tions, like e.g. BE ] (as in Example 1.12(vi),(vii)).
I

2. DESCENDANTS AND LABELS FOR COMBINATORY REDUCTIONS

The following definitions are analogous to Def.I.3.1 and 1.3.2. for

AB-calculus. To each CRS 2 we assign a 'labeled' CRS 2A.

2.1. DEFINITION. Let 2 be a CRS and A = {¢,a,b,...} be a set of labels, in-

cluding the empty label 0. Then M = Mter(2A), the set of meta-terms of 2A,

is defined inductively as follows:

(i) a e A, x e Var, Q a constant of 2 1: (ax),(aQ) e M

(ii) a e A, x e Var, A e M ==' (a([x]A)) e M

(iii) a e A, A,B e M =» (a(AB)) e M

. k k .
(iv) Zi e Mvar, A1""'Ak e M I: Zi(A1,...,Ak) e M (all i,k20).

2.2. NOTATION.

(1) Instead of (aA) we will write Aa; we used the notation (aA) to show

that the labeling can be seen as 'internal', i.e. that a labeled combinatory

reduction is just another combinatory reduction where the labels are new

constants.

(2) Instead of Ag we will write A. Hence Mter(2) g Mter(ZA).

(3) Note that meta-terms z: (A1,...,Ak) (i,k20) do not carry labels; there

is no need for that, since the metavariables Z will be metavariables for

labeled terms in BA.

(4)'Analogous to Def.I.3.1, we will write ZA-meta-terms also in the form

AI where A e Mter(2) and I is a labeling of the subterms of A.

2.3. DEFINITION. (i) To each reduction rule r e Red(£) we associate a set

rA of reduction rules:
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if r = H —+ H', then (HI-+ H') e rA for every labeling 1.

(ii) Red(ZA) = U {rA I r e Red(X)}.

2.4. EXAMPLE. 1 I = '( ) f r SZIZZZB -—+ Z1Z3(Z2Z3), then rA conSists of all

reduction rules

a b c d
(((S Z1) 22) 23) ——+ 2123(22z3)

for all a,b,c,d e A.

(2) If r = B—reduction rule, then rA consists of all rules

(08(1sz (xna'Ibz )C —+ z (2)
1 2 1 2

for all a,a',b,c e A.

(Cf. the definition of BA-reduction in 1.3.2. To get the latter, take

a,a' = 0; so rA contains all rules

b c
((Ax.Zl(x)) 22) —-+-zl(zz).

i.e. BA-reduction.)

2.5. DEFINITION. Let AI 6 Mter(ZA). We call I an initial labeling of A if

I labels all the sub-meta—terms of A by a different label # g.

It is now a simple matter to define the concept of descendants for

regular_CRS's. (In fact the definition applies to left-linear CRS's.) First

we need a proposition.

2.6. PROPOSITION. (i) Let 2 be a CRS. Then 2A is a CRS. MOreover:

Red(Z) is non-ambiguous == Red(ZA) is non-ambiguous.

Red(£) is left-linear == Red(£A) is left-linear.

(Hence, if E is a regular CRS, then EA is one.)

R . . .
(ii) Let E be a left-linear CRS. If M-:?+ M' 18 a reduction step in X, then

I RJ 1' J .
there is a unique labeledrule r' e rA such that M —r-'-—+ M' where R .13

the contracted r'—redex corresponding to the r-redex R in M.
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PROOF.(i) The main point to check is that Red(ZA) is again non-ambiguous.

Suppose not, and consider an ambiguity. Then it is not hard to see that

erasing the labels yields an ambiguity in Red(£).

(ii) Routine. D

2.6.1. REMARK. The restriction in Proposition 2.6(ii) to left-linear CRS's

is necessary. For, let 2 have as only rule r = DZZ —-+-Z; so SA has the

set of rules r = {(DaZ)bZ -—é-Zla,b e A}. Now consider M E Dxx -—+~x E M'
b I

and take MI E (Daxp) xq for p # q; then none of the rA-rules applies to M .

2.7. DEFINITION. Let E be a left-linear CRS. Consider a step M -;+ M' in 2

and a subterm N g M. "Lift" this reduction step to the step MI -r—,-> M'I' in

BA, where I is some initial labeling and r' is the suitable rule 6 rA

(unique by Proposition 2.6).

Then the descendant(s) N' g M' of N are those subterms of M' bearing

the same label as N.

2.8. REMARK. (1) NOte that sincetimaright hand side of r' = (HI+H') e rA

is unlabeled, an r-redex p(H) has no descendants after its contraction.

(2) Descendants of a redex will also be called residuals.

(3) Note that, contrary to the case of AB, in general in a step M —+ M'

not every subterm N' g M' has an ancestor N g M (i.e. a subterm N of which

N' is a descendant). We remarked this already for CL in Example 1.3.4.7.

However, if N' has an ancestor N g M, it is unique, since I was an initial

labeling in Def.2.7.

2.9. To every regular CRS X we will associate an underlined version, £3

(Cf. 1.3.5 and 1.3.6 where A_is defined.)
—1

2.10. DEFINITION. Let E be a regular CRS, having Q as set of constants.

Let_Q be the set {2/Q_€ Q}. Now define §_to be the CRS such that

(i) the set of constants of E is Q U Q,

(ii) r = (QM—+ H') e Red(2), then£= (fifiH').

(Note: Q's occurring in M, H' are not underlined in £,)

2.11. REMARK. (1) §_g 2{0 1}; or more precisely, §_can be 'isomorphically
I

embedded' (in the usual sense) into 2{0 1}.
I

(Cf. the definition of A_from A in 1.3.5.)
{0,1}
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Hence by Proposition 2.6, §_is again a regular CRS. (Obviously,

2' E Z & Z is regular == 2' is regular.) One can also check directly that:

2 regular =¢_§ regular; we will omit the routine verification.

(2) The main feature of §_is that in Efreductions M —+ ...-a-N there is no

creation of §_-redexes; cf. the analogous case of Ag, I.e. in a §_—step

A ——4 B every §_-redex in B is a residual of a §_-redex in A. Again the

verification of this fact is routine.

2.12. DEFINITION. (i) Let E be a regular CRS and §_the underlined version.

If 8' is a §_—reduction and 8 is the Z-reduction obtained by erasing the

underlining (i.e. replacing glby Q), then we will call 8 a (Z-) develop-

ment. Par abus de langage, we will call sometimes also 8' a development.

(ii) If, moreover, 8' terminates in a Efnormal form, 8 will be called a

complete (Z-) development. (Note that 8 does not necessarily end in a 2-

normal form; cf. the case for A8.)

2.13. REMARK. (i) The 'disjointness property' (Def.1.4.3.1), stating that

the descendants of a subterm are disjoint, and which was seen to hold for

one-step reductions in AB-calculus and even for B-developments (1.4.3.7),

fails here at once: consider e.g. a rule

QEx]Z(x) —+ Z(Z(I)).

(ii) O'DONNELL [77] states on p.89 (def.22') some axioms for 'pseudoresi-

duals' and on p. 23 (Def. 22) for residuals. These axioms require some

well-behaviour of his pseudoresiduals. The residuals which we have intro-

duced above for CRS's do not fall under the scope of O'Donnell's defini-

tion, since our residuals can be very much entwined even after one step,

(which is forbidden in O'Donnell's definition), e.g.:

Q([x]Z1(x)) (Eylzz(y)) ——+ zl(zz(zl(zz(1)))).

(iii) It is simple to see that Levy's AL-calculus (see 1.3.9), typed

A-calculus (1.3.8) and AHW-calculus (1.3.7) are regular CRS's. (I.e. the

. L
L—labeling and the HW—labeling can-be viewed as 'internal'.) E.g. A :
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(a(Ale(x)))Z2 -—a-- aZ1(-aZZ)

I” (notation) I” (notation)

a d a
(Ale(x)) 22 —-+-ZI%Z2)

for all a e L as defined in 1.3.9. So the a e L and "-" are constants of

the CRS AL.

3. THE CHURCH-ROSSER THEOREM FOR REGULAR COMBINATORY REDUCTIONS

One of our aims in the next sections of this chapter is to prove for

regular CRS's X that

(1) Z F= FD, i.e. §_I= SN (Finite Developments)
+

(2) X F: CR , i.e. the strong version of the Church—Rosser theorem,

analogous to Theorem 1.6.9 for definable extensions of AB.

For A(a)-reductions, a proof of (1), (2) is given by HINDLEY [783,

for TRS's by LEVY-HUET [79]. ACZEL [78] proves CR (not CR1) for his con-

traction schemes by a method analogous to that in the well-known proof of

AB F: CR of Tait and Martin-Ldf, see e.g. BARENDREGT [80] or [77].

In the proof of (1), (2) for all regular CRS's we have the problem

that the two methods used in Chapter I to prove AB F: FD are not of much

help here: Micali's proof (Lemma 1.4.3.3) based on the disjointness proper-

ty of AB-developments does not work here since DP does not hold for all

regular CRS's, see Remark 2.13.(i); the proof using 'decreasing weights'

as in 1.4.1 might be extended to the present case, but such an extension

seems very complicated.

Therefore we will split the problem to prove FD, and hence CR+, into

two parts: reduction in a CRS can be analyzed into

(a) a 'Term Rewritihg part' where subterms are manipulated (multiplied,

erased, permuted) as in a TRS, and

(b) a 'substitution part', as in AB-calculus.

To do that, we introduce for each CRS Z a CRS E (where the substi-
f

tution part is suspended or 'frozen') and a CRS ZfB' as follows.

3.1. DEFINITION. To each regular CRS X we assign a CRS If as follows.

(i) The alphabet of If = alphabet of 2 U {A,-}.

(ii) The map f0: Mter(2) ——a-Mter(2f) is defined by
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f0(x) = x, f0(Q) = Q

f0([x]A) = [x]f0(A)

fO(AB) = fO(A)fO(B)

f0(Z(H1,...,Hk)) = (Axl...xk.Z(x1,...,xk))fO(H1)...f0(Hk).

(iii) f1: Réd(2) ——+-Red(2f) is the map assigning to r = H —+ H' the rule

f1(r) = H —> fO(H').

(iv) R'ed(2f) = {f1(r) | r e R'ed(2)}.

3.2. DEFINITION. ZfB has the same alphabet and rules as 2

rules fik-reduction for all k 2 1:

f plus as extra

Ek = (Axl...xk.ZO(x1,...,xk))Z1Z2...Zk ——+—ZO(Zl,...,Zk)

Em (m for 'many') will denote the union of the Ek-reductions (k21), as in

Def.I.4.2.2.

3.3. REMARK. (i) Zf and 2f are evidently again regular CRS's, since the
B

LHS'S of the rules are unaltered.

(ii) Obviously, if in Z: A —;+ B, then in ZfB: A ff??? .8—é» B. So in 2f

the Z-reductions are separated into a 'term rewriting paEQ' f1(r) and a
B

'substitution part' §m°

(iii) Note that If is in fact a TRS, by considering the variables x,y,..,

which do not play that role in If anymore, as new constants. (This remark

is meant heuristically and we will not prove it.)

3.4. EXAMPLE. (i) 'Frozen' AB-calculus, (AB)f, has as only rule (writing

Ax for A[x] in the LHS):

f1(8) = (Ax.Z1(X))ZZ —-+ ‘i’i°21‘x“22

(ii) If 2 is a TRS, then 2f = Z.

+

3.5. DEFINITION. Let )3 be a regular CRS. Then X I= WCR iff
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AoT—_i—>1:A1
1 I

I
IR2 r2 r2|

I
I

\1/m————————_»v
A2 r1 A3

i.e. for all Z-terms AO,A1,A2 such that A0 ——#-Ai by contraction of an ri-

redex Ri (i = 1,2), there is a common reduct A , to be found by a complete
3

ri-deve10pment of the set Si of residuals in Ai of Ri (i = 1,2).

(Remark: We do not yet know that all developments of the sets Si (i = 1,2)

are finite, nor that all complete developments end in the same term. At

this stage, we do not know even that there is a complete development of Si.

Later on, in Lemma 3.9 and Theorem 4.15, all this will be proved to hold

indeed.)

Checking that E F: WCRf (for 2 regular) is no longer as trivial as for

AB-calculus, due to the possibly complicated substituting behaviour of

CRS's. Therefore first:

+

3.6. LEMMA. Let 2 be a regular CRS. Then X F= WCR .
f8

PROOF. This requires a consideration of the following cases:

    
(ii) A B (iii) A B

B
‘11!

c “““ D C ‘‘‘‘‘ D

 

and checking that indeed the common reduct D-can be found by reduction of
+

residuals of the redexes in question, as required by the property WCR .

+ +
This is just as easy as checking that Agm P: WCR and that every TRS F=WCR

(in fact for that reason 2 was introduced), and we omit the actual veri-
fB

fication. U

With the aid of the concept 2 we will now first prove a weak form
f8

of FD for regular CRS's 2 (namely that §_F= WN) and get CR as a corollary.
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After introducing some more theory (the elaboration of a method originally

due to NEDERPELT [73]) this is used to get the full FD and CR1 theorem.

In the next few pages we will prove to that end some technical (but

intuitively clear) propositions; the main activity thereby is 'label

tracing'. We will allow ourselves a bit of informality in the description

of this activity (in the same spirit as when one speaks of 'diagram chasing'

in e.g. category theory), since a more formal treatment would probably not

be more perspicuous.

The next Proposition prepares the way for the main Proposition 3.8.

3.7. PROPOSITION. ZfB F= FD. I.e. every 2 -development terminates.
f8

PROOF. Let M e Ter(Ef ) and let an underlining of the headsymbol of some

set 31 of redexes in s be given. Furthermore, let 8 be a reduction of M in

which only underlined redexes are contracted. We have to prove that 8 is

finite.

The proof is a straightforward extension of the proof of Theorems

1.4.1.11 and 1.4.2.5, using the method of 'decreasing weights', and will

therefore be omitted. U

3.7.1. EXAMPLE. Let 2 have as only rule

(Qx.Z1(X)) (Q1.Zz(y)) ——+ 22(zl(@.zz(y))).

Then sz has the two rules

(Qx.Z1(x))(Qy.Z2(y)) -+ (A§,Z2(a))[(A§,Z1(x))(Qy.(Ayl,Z2(y'I)y)]

£1 = (II_x.zl(x))z2 —> 21(22).

Now in 2 every reduction starting with (Qx.xx)(Qy.yyy) is infinite; in

2 B we have the terminating reduction:

(QXJX) (warn) -—-+ (Aa.aaa) [ (Ax.XX) (.(br. (Ay' .y'y'y')y)]

——+» MM(MM)(MM) (where M E Qy.yyy),

a 2 -normal form.
f8
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The 'main pr0position' says nothing more than that a 'separated' com-

plete development 8 of a set of redexes in a Z-term M, where 'separated'

means that 8 takes place via 2 , can be replaced by a complete development
f8

8' in Z of the same set of redexes.

3.8..PROPOSITION.

IM e Ter(Zf)

 
 

   

  

  

complete development in 2 complete gm-
f

 
1+ ———-+

of P, a set of fl(rl- evelopment
 

 redexes 

M e Ter(Z) _$> M" e Ter(Z)

 

complete.development in Z of the
+ +

same set of redexes P, now r-

 redexes

Let M be a Z-term, and P ,...,Pn be a set of resp. r ,...,rn-redexes
1 1

in M with r1,...,rn e Red(£). Since Ter(Z) g Ter(Zf), M is also a Z

and P1,...,Pn are resp. f1(r1),...,f1(rn)-redexes in if.

Now let M' e Ter(Ef) be the result of a complete development (c.dev.)
___.._+ _).

of the f1(r)-redexes P, and let M" be the complete fim-development (in ZfB)

of all the Agfredexes which have originated by the c.dev. M -E» M'. So

-t ;f erm

M" e Ter(Z).
+ +

Then there is a c.dev. in 2 from M to M" of the r-redexes P. (See

figure above.)

ERQQE. The proof is in five parts.

(1) In case n = 1 (in 3 = P1,...,Pn) the proposition follows immediately

from the definitions of If and SEE. In the case that the Pi-redexes are

disjoint, thetmopositionfbllows also immediately by the previous state-

ment.

(2) Reminder: fim-developments have the disjointness pr0perty. (Corollary

1.4.3.10) i.e. if M fim-develops to M', then the residuals in M' of a sub-

term N g M are pairwise disjoint.
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(3)

 

M e Ter(ZfB) \4M' 6 Ter(ZfB)

7f1(r) I

I
gm-dev. D Ifim—dev.

 II disjoint >y
M"€Ter(2f )_"E"(E)""— M"'€Ter(2 )

B 1 f8

CLAIM. Let M e Ter(Z ) and M' be the result of an f1(r)-contraction, M"
f8

of a fim-development (not necessarily complete). Then a common reduct M”

is found by a Em-development of M' and a development of the (by (2) dis-

joint) f1(r)-redexes which are the residuals of the contracted f1(r)-redex

in M. (See figure above.)

PROOF OF THE CLAIM. In Lemma 3.6, we proved that sz I: WCRf. So, we can

try a successive addition of the elementary diagrams (e.d.'s) shown in the

proof of Lemma 3.6, like in the proof of CR1 in 1.6.1, to find a common

reduct. That the thus obtained reduction diagram 0 'closes' indeed, follows

from the fact that 2f8 %= FD (Proposition 3.7) considering that all the

reductions in U are f1(r)- and fim-developments.

Finally, by the construction of v and properties of the e.d.‘s it is

obvious that the f1(r)-development M" -§> M"thus obtained is a development

of residuals of the original f1(r)-redex in M.

4 I( ) M e Ter(ZfB) MheTerQIfB)

51h») I
I
I

complete Icomplete B -
—m

Em-development

 

I
[development

I
I
I
li__________1y

M"eTer(Z) r M"'e Ter(Z)

 
'CLAIM. Given M,M',M" as in the figure, there is a common reduct M"'e Ter(Z)

which is the complete fim-development of M' and which is obtained from
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M" e Ter(E) by a complete development of the r-redexes which are the resi—

duals of the original f1(r)-redex in M.

PROOF OF THE CLAIM. By (3), (1) and the following figure:

 

  

M M'

f1(r)

c.gm—dev. Em-dev.

" § disjoint §¢ T ZM f (r) W, N 6 er( f8I

1

r c.gm-dev.

 /rMme Ter(Z)

(5) Finally we can prove the proposition. Let M e Ter(E), M' e Ter(Ef )

  

       

B
and M" e Ter(Z) be given as in the statement to prove:

MeTer(Z)_ M' eTerO: ) M" eTer(Z)
P1 P2 _____________ Pn f8 \\-

l/I

f1(r1) f1(r2) f1(rn) c.§m-dev. |

I

CSEPIZte c. c. c. c. I

p B -dev. B -dev. B -dev. B -iev.
B -dev. -m ‘ -m -m -m I
-m I

(*) (**) I
|
I

§ \ V V V \j
M r (I r 7 -----------_- r M7 _________ 4M"

1 2 n

Then repeated application of (4) yields the proposition, using (ad(*) in

the figure above) that the complete fim-development of M e Ter(Z) is the
+

empty reduction (since M does not contain Ag) and (ad(**) in the figure
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above) that the result of a complete gm-development is unique. U

3.9. COROLLARY. g I= WN.

I.e. for every 2, the corresponding underlined §_satisfies WBak Normaliza-

tion. Or in other words: fbr every Z-term M there is a terminating complete

development of a given set of redexes in M.

PROOF. Let M e Ter(Z) and let 11 be a set of redexes in M specified by

underlining their head symbol. (So (M,EU e Ter(§).) Now working in 2 take
fB'

a complete development M —+» M' e Ter(Zf ), and next the complete fim-devel-
B

opment of M':

M e Ter(Z) -——-————e> M' e Ter(Z ) --—-——9> M" e Ter(Z).
f8 c.B —dev.

-m

Then apply the proposition above to get a complete development M -E» M" now

taking place in 2. U

+

3.10. LEMMA. Let )3 be a regular CRS. Then )3 I: WCR .

+

PROOF. (1) Let reductions A -—+-Ai (i = 1,2) as in Definition 3.5 of WCR
0

be given.

(2) Perform the same steps but now 'separated', i.e. via sz'

(3) Complete the reduction diagrams 00,01,02,03 as in the figure below.

That these completions are indeed possible, is easily checked by some

'routine arguments. (See figure on p.149.)

1 ‘ _ ' _ ' , I!Here 112 1S the set of f1(rZ) reSiduals of the f1(r2) redex R2 in A0, 1R2

the set of f1(r2)-residuals of the redexes in R5 , etc.

By a label-tracing argument (color the original redexes R1,R2 red
- +
resp. blue and correspondingly the Agfs originating from them; so we have

red and blue 8 -developments; since A1 contains no red and A2 no blue,
- -m

_A is colorless) it is obvious that A e Ter(E).
3 3



 

 

 

    
 

A0 rl-redex R1 \_A1

70’
/ /

//

A / R1 A01 /

0 f ( ) \ B >WA1
1 r1' —m

R2 f1(r2) 'N D f1(r2)]R' D f1(r2) 1R2

‘=' o 2 1
>

%
a

I
A / N ]Ri “§7 Sj/
02 // A B / A13

03 -m

Em 02 -B1n 0 —8m

IA
/) 2

/

§ /

A u
2 1R1 A23 55m A3

Finally, using Proposition 3.8 yields complete developments as re—

quired:

where it is routine to check that 1R1 , as defined above, equals IR

set of residuals of R

terchanged. U

r -redex R
1 1
 

 

\,_ A1
//

A1

co _lete

r2 iev. of 1122: 1R2

 

  c.r -dev.   
of IRI==JR Y 
 

1
after contraction of R2

A3

1 I

, and likewise with 1,2 in-
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3.11. THEOREM. 2 I: CR, for every regular CRS Z.

PROOF. Let Z-reductions 81 = MO ———> M1 —+ .—> Mn and 82 =

 

 

 

    
 

MO -—+~MI -—+-Mé ——+-... ——+~M£ be given. Using the same argument as in the

proof of the preceding Lemma, we can now 'fill in' block-by-block of the

following two—layered reduction diagram, DZ behind and DB in front:

f8

M0 M1 M2 M3
D , 4?” 0’ 3 u

z l’ M M ,’ M M" 1’

’ 01 1 I 1 2 2’ /
M
0

02
f8 .

M
01

l l,” l”, I”,

M1

I

M1 2   
     I’T ,’

M ' ” ”

2 I

Note that after having 'lifted' the edge MO -—+ M1 -—+ ...

of 02 to the edge I

M—+M —+M —*M —+ M'
0 01 1 12 °" 1

of the auxiliary diagram Dz , the construction of 02 follows by

M61 a projection (using Proposition 3.8) of the construction of 02
f8'

as in the proof of the preceding Lemma.

3.12. REMARK. The status of several analogues to the case of AB-calculus

in Ch.I is not yet clear, namely:

(1) FD; if M e Ter(Z), then all developments of the underlined term

(M,IR) e Ter(E) terminate.
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(2) The Parallel Moves Lemma (cf.I.6.12).

(3) CR+; the 'stepwise' diagram construction by adjunction of e.d.‘s

terminates.

In fact it is sufficient to prove FD; for then PM and CR+ are corol-

laries. That FD holds for Z, i.e. E F= SN, will be a corollary of a general

method to reduce SN—proofs to WN-proofs. This will be the next subject.

4 . REDUCTIONS WITH MEMORY

The difference between A-calculus and AI-calculus is that in the

former subterms can be erased. This is the reason that some pleasant prop-

erties of the AI—calculuszfixtlfor A—calculus; see 1.7. We will now asso-

ciate to each regular CRS Z a regular CRS Z[.] in which there is no era-

sure. This will lead to anethodtb reduce SN-proofs to WN—proofs, de—

scribed in the next section; corollaries are the theorems FD, CR1, PM for

regular CRS's E.

4.1. DEFINITION. Let Q = {Qi I i e I} be the set of constants of 2. Then

the set of constants of XE J = Q U {Q: I i e I} U {P}.
I

4.2. NOTATION. (i) Instead of PAB we write [A,B]. The subterm B is called

the memory part of [A,B].

(ii) [A,B1,...,Bn+1] :2 [[A,B

(iii) If E = B1

typographically more convenient; we will even employ both notations simul-

1,...,Bn],Bn+1]
+

,...,Bn we will sometimes write A3 for [A,B], when it is

taneously in one term, as e.g. in [A,BC].

(iv) If H e Mter(2), then *H e Mter(2[ ]) is the result of replacing H's
I

head symbol Q by Q".

4.3. INTUITION. To motivate the next definition, consider the

TRS: Z = CL 0 Pairing, with constants I,K,S,D,DO,01 and rules:

Iz ——+ z, Kzlz ——+ Z1' Szlz z -——+ z z (z z ),
2 2 3 1 3 2 3

00(02122) ——»-zl, 01(02122) ——+-zz.

Obviously there is erasure here: in the rules for K and 00,01.

(i) We want to eliminate this erasure in It ] by replacing the K—rule by
I



152

*

K2122 —+ [21,K 2122],

the DO-rule by

*
00(02122) —-+ [21,DO(Dzlzz) J.

etc. I.e. the original redex is repeated as 'memory part', but 'frozen' by

*. (But note that the redexes possibly occurring in the'Subterms substi—

tuted for the meta—variables Zi' e.g. in K*Z1Z2 above, are not affected by

.) Obviously, the resulting rules are non-erasing. Even the non-erasing

rules will be transformed in this way, so the I—rule in 2 becomes in XE J:
I

*
12 —+ [Z11 Z].

(This is done not only for the sake of an uniform description, but also to

make ZE'] increasing; see Prop.4.9 below.)

(ii) Further, we want to be able to imitate each reduction 8 in Z by the

'same' reduction 8' in z[,] (necessary in the proof of Lemma 4.10); that is,

if in 8' the memorized parts are erased, the result is 8. To be able to do

this, we introduce in £[,] the 'shift rule'

[21,223z2 —+ [2123,22]

+ -+ .
which gives the reductions AEC —E> (AC)§; this was also done in 1.8.5. Now

consider e.g. the following 8 in Z:

KDOC(DAB) ——> 00(DAB) —+ A.

Then 8 will give rise to the following imitation 8' in it ] (by way of il-
I

lustration we employ the [,] - as well as the subscript notation):

KDOC(DAB) —+
*

[00,K DOCJiDAB) Do K*DOC(DAB) W

[00(DAB) ,K Doc] 2 (DO(DAB))K*DOC ——+

EEA.D’5(DAB)J,K*vocJ 2 A03
(DAB)IK*DOC.

*
Note how in the shift step the memorized subterm K DOC, which is affixed

to the head symbol 00 of the redex 00(DAB), is shifted 'out of' that redex.
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(iii) But this is not yet enough, because memorized parts affixed to

'deeper' subterms in a redex cannot be shifted out of the redex. For, in

order to imitate thefbllowingreduction 8 in 2:“

00(1KDCAB) —')'

00(KDCAB) -—->

00(DAB) —+

A

by the reduction 8' in IE 3:
I

00(IKDCAB)-——+
a.

_.________}00([K,I KJDCAB) shift >

00([KDCAB,I*K])-—--*
* *00([[D,K chAB,I KJ) shift

*00(IIDAB,K*ch,I K]) s DOIDABIKIDCII*K.____I

[A,DOIDABI JK*vc,I*K

we need the rule (for the last step in 8'):

00(Dz Z) —-+ [z ,Do(Dz z) 3
1 2 Z3,Z4 1 1 2 Z3,Z4

(Note: one should not confuse 00(DAB)E and (00(DAB))E.)

This motivates the next definition:

4.4. DEFINITION. (i) On Mter(ZE J) we define the 'forgetful' reduction rule
. I

(as in Def.I.8.6):

= 1k [21.22] —-+ 21'

If A,B € Mter(Z[ J) and A _Eé» B, then A is a 'k-expansion' of B.

So e.g. H : (AD,E(BFCG,H,I)J,K is a k-expan31on of (AE(BC)H)J' which

is a k-expansion of the k-normal form A(BC). Moreover, we will say that in

H the subterm A is k-expanded, and likewise the subterms B, BFC and

B C O

AD,E( F )G,H,I
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(ii) Further, we define on Mter(2[ ]) the rule
I

shift = [21,223z3 +—+ [2123,z2].

So a 'shift-normal form' H' e Mter(2[ ]) is a term H in which all the
I

memory parts are shifted to the right as far as possible. E.g. H in (i) is

not in shift—n.f., but H-———r—-e> (A(BC) ) E H' which is in
shift F,G,H,I D,E,J,K

4.5. DEFINITION Of Red(2[ :I) .
I

(i) Let r = H1 —---+-H2 e Red(2). Then rE ] is the set of rules of the form
I

*

H1 '—> [H21 (111)]

where Hi is a k—expansion of H1 such that:

(1) Hi is linear (i.e. no meta-variable occurs twice in Hi)

(2) Hi is in shift-normal fbrm

(3) HI is not of the form [H,E], or equivalently, Hi and H1 have the same

head symbol Q

(4) the meta-variables in Hi are not k-expanded.

Requirements (3) and (4) are merely technical; a motivation will follow

soon (in 4.6.(4)).

(ii) Now we can define

Red(Z[’]) = U rE’] u {shift}.
reRed(2)

4.6. EXAMPLES AND REMARKS.
 

(1) Let r = H ——+-h1 = 1292122 —+ 2 be a rule in Red(2). Then all the
2 1

rules

+ -k +
l : +31 _ R[9,zojzlz2 [21,R [9,zo]zlz2]

will be in Red(2[ ])' where E = Z ...Z m (m20), 21,2 are pairwise dis-
I 0 01 0 2

tinct.

(2) Let 2 be CL 0 Pairing, as in 4.3. Then we have in XE ] the rules
I

(among others):



00(DZZ') 2 I90 ————+ P [z,v’g(vzz-IZ _I.
Z1,...,Zn I //’ \\\ 1: n

P Z Do

/ \ I
/ P zn P

\Z
P n-l // \\\

// *n

/ \ 1 P
z z' /\

(3) Let Z = AB(-calculus). Then (AB)E ] has besides 'shift' as only rule:

*

B[,] = (AX.Z1(X))22 -—+ [Z1(ZZ),(A x.Z1(X))ZZ]

where Ax.Z1(x) is written for A([XJZ1(x)) (In fact this is not quite true:

due to our. inductive definition of Ter(ZI) , in this case also A and [x]Zl(x)

are subterms of A([x]Zl(x)). Hence we should have in (AB)[,] also a rule

r' = A([x]Z1(x))-Z>Z2 ——+ [Z1(Z2),...]. But the definition of Ter(E) can be

easily adapted such that it conforms to the usual one for AB-terms, thus

excluding the unnecessary rule r'.)

(4) Given a rule, say, r = KZIZ2 ——+-Z1 in 2, there is no need to include

in Red(2[ J) rules where the meta-variables are expanded:
+ ' +

K[Z1,Z][ZZ,Z'] -—4-[Z1,...] since in SE ] the meta-variables Zl,Z2 in
I

KZl-Z2-——+ [Z1,K*Z1Z2] range already over terms of the form [A,g].

Also there is no need to include the rule [KZIZ ,2] —-—+ [Z1,...]
2

since the LHS-is merely a context of KZIZZ.

4.7. PROPOSITION. Let 2 be a regular CRS. Then Red(Z[ J) is left-linear
I

and non-ambiguous; hence XE ] is a regular CRS.
I

PROOF. The left—linearity was explicitly required in the definition. As

to the non-ambiguity, it is not hard to show that a supposed ambiguity in

Red(2[ ]) would yield one in Red(2) after erasing all the memory parts in
I

the pair of interfering rules.
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(Note that the 'forgetful' rule k & Red(E[ J); otherwise we would have am-
I

biguity, since e.g. k and 'shift' interfere.) U

4.8. PROPOSITION. The operations 'addition of underlining': Z Fe-E and
 

'addition of.memogy': Z H+ 2E ] commute. I.e. fbr every regular CRS Z:
I

Em = Z[.]'

PROOF. We will give the proof by considering a typical example. Let E be

AB-calculus + constants 0 (zero), 3 (successor) and J (iterator).

So

(Ax.Z1(x))22 —+ z1(zz)

Red(Z) = 102122 ——+ z2

J(Szo)z122 ——+ Z1(JZOZIZ2)

(_)._:»:.z1(x))z2 —-> 21(22)

Red(_2_2) = 10le2 —+ Z2

J(Szo)z122 —+ 210202122) .

*
(Ax.Z1(x))Z2 _—+E21(Z2)'Q x.z1(x))z2]

RedIELJ) = 103.215 "’3 ”2’1 022122] *
J(SzO)—Z>2122 —+ [21(Jzozlzz) ,1 (320)22122]

*

(Ax.Z1(x))Z2 —+ [21(22),(A x.zl(x))22]
*

Red(2[,]) = JO—zrzlz2 —+ [22,] 022122] *

OJ(azo)?1z2 -——+ [21(Jz0z122) ,J (820)221Z2

*

(Ax.Z1(x))Zz ——> Ezl(z2) , (1.x.zl(x))z2]

Red(2[’]) = lo§Z1Z2 ———> [22,} nglzzl
*

—— ~ J(SzO)-Z>zlz2 —-+ [21(Jzoz1z2),l (SzO)—Z>2122].

So we have cheated a little bit in the statement of the proposition: more

precisely, E{ J and XE J are isomorphic, by letting correspond the symbols
I

2f in E{ J to the symbols Q8 in XE ] (Q;A,J). U
 

In the sequel, we will refer to the properties 'increasing' (ZF=Inc)

and 'inductive' (ZF=Ind), defined in 1.5.16.

4.9. PROPOSITION. 2E ] |= Inc, for all )3.
. I
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PROOF. Let [M] be the length of a XE J-term. Then obviously

MTN = M < N

for all r e Red(Z[ ])' since the 'old' redex R is repeated:
I

M E ¢[R]-—;:+ ¢[[R',*R]] E N. I.e. 2r ] is increasing. U
-'

4.10. LEMMA. 2[ J I: SN = 2 l: SN.
I

PROOF. We will not spell out the details, since the situation is very much

analogous to that of I.8. Sketch of the proof: suppose Z bk SN, and let

3 = MO-——+ M1 -—+-... be an infinite reduction in 2. Now it is easy to see

that a can be mimicked in the following sense:

 

    

In 2: a = M0 ”11 ”32 . ......
\ ro \ r1 A r2 /

k k k

In 2 : R! = > /\ >3 >\ 7\‘ 7\> ......

[.1 MO r6 shift Mi ri shift Mi r5 shift

where ri e Red(2), r; e (ri)[’] g Red(2[']), i = O,1,2,... . D

NOW we are ready to prove one of the main theorems of this chapter:

4.11. THEOREM (Generalization of NEDERPELT [73], Thm.3.20).

For all regular CRS's 2:

ZE’JFwN.=¢ ZI=SN.
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PROOF. First proof.

 

2t 3 |= CR (Thm.3.11, Prop.4.7)
I

  
 

(Thm.I.5.11.(2))

  

2[ J |= UN (Def.I.5 .6) 22E 1 |= WN (hypothesis)

     
 

(Lemma I.5.17.(3))

  
V

2[ J I: Ind (Def.I.5.16) z |= Inc (Prop.4.9)
[[,]

(Lemma I.5.17.(1))

   
 
 

 

  
 

 

Em l: SN

ll (Lemma 4.10)

2 }= SN

  
 

Alternative proof.

2 F= WCR (Lemma 3.10)
[,]

Z[ J |= WN (hypothesis) ==> IE 1 |= SN => 2 |= SN.
I I

I.5.19.(i) (4.10)

XE ] F: Inc (Prop.4.9)

D

4.12. REMARK. The main idea in this proof is due to NEDERPELT [73], where

(essentially) the first proof is given for a special case, namely a 'typed'

A-calculus which arose from the AUTOMATH-project of de Bruijn (Eindhoven).
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The properties Inc, Ind are not explicitly mentioned there. Instead of re-

ductions rt ] Nederpelt has 'Bl-reduction' (where 'scars' of earlier re-
I

ductions are retained, as Nederpelt puts it); in our notation (forgetting

Nederpelts types) it would read

81 = (Ax.Z1(x))Z2 -—+ (Xx.Zl(ZZ))Z2.

Nederpelt's 'BZ-reduction' corresponds to our k—reduction rule. Where we

use as an increasing norm, M*——+ IMI, the length of the XE'J-term M,

Nederpelt defines [M] to be the length of a longest k-reduction path to

the k—normal form (obviously k'is a strongly normalizing reduction); in

our notation we could, equivalently, say: [M] := the number of pairs of

[,]-brackets in M.

We quote from the 'Introduction and summary' of NEDERPELT [73]:

"In this thesis we shall show that, if in a system all terms are normal-

izable into a unique normal form, then each term is strongly normalizable.

This will be proved for a certain lambda-calculus called A, the method

can, however, be applied to more systems, and we suggest this as a field

of further investigation." In the present chapter we have endeavoured to

follow this suggestion.

4.13. REMARK. There is an obvious resemblance between the method of proof

L P T . . . .
' and A Via an 'interpretation' inin 1.8 (where we prove SN for AHW, A

AIE’J-calculus) and Nederpelt's method which has led to Theorem 4.11 above.

(Note the notational ambiguity: AIE’] in the sense of 1.8 is not the same

as AI[,] in the sense of Section 4 of the present Chapter.) This resem-

blance can be formulated abstractly as follows.

DEFINITION. Let A = <A, T > and B = <B, 73+ > be ARS's. Let 1: A —+ B

and K: B ——+-A be maps such that

(i) K o 1 = idA

, i.e. Vp,q e A VT 6 B 35 e B

K
(r ‘+ p A>q=r—B—+s'+—K—+q)
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(Reductions in A can be 'lifted' to B.)

Then B is called an associate of A.

Now, both in 1.8 in Theorem 4.11, the idea is to prove A F: SN by

finding an associate B of A for which SN is easier to prove; for, obvious-

1y:

PROPOSITION. If A,B are ARS's and B is an associate of A, then

BI=SN=>A|=SN. D

In 1.8, A,B are AHW resp. AI?W], 1 is as defined in Def.I.8.11 and K
- I

as in Def.I.8.6; and M _i;+ N iff M ~75+ L “"hfi» N for some L such that N

is the [,]-normal form of L. So we have a situation as in the diagram

(where A,B are as in the definition above):

B

\L

   
Furthermore, SN for the associate AIEW] was easy to prove since Algw] F: NE

(non-erasing; see Section I.7 and Section 5 below). ’

In Theorem 4.11, A and B are regular 2 resp. XE 1, 1 is the inclusion

map, K is as before and M —§+ N iff M —;———-+ L -~Q» N for some

r e Red(£) and some L such that N is the t,]-normal form of L. So the sit-

uation is as in the diagram:

   
Here SN for the associate XE ] was easy to prove since XE ] F: Inc.

I
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(In 1.8, AIgwj }# Inc; on the other hand XE ] F: NE, as we will see below.)
I I

4.14. REMARK. (i) Note that in 4.11 we also have proved.

Z WN == 2 SN
[,] I: [.3 l: '

hence for all XE ] the equivalence WN ¢='SN holds. Later on (in Section 5)
I

we will generalize this equivalence to the class of all ‘non-erasing' regu-

lar CRS's.

(ii) If E is a regular TRS, it is not hard to prove that

(.e) ZII=SN=>ZEJI=SN.
I

(Proof sketch: consider an innermost Z—reduction R to the normal form. Let

8' be the corresponding ZEIJ—reduction. Then the memory parts in 8' are in

normal form, and hence fl' terminates, in just as many steps as R, in a

ZE'J-normal form. (So 2L] l= WN. By (i), also EL] |= SN.)

Hence we have for regular TRS's Z:

(**) ZI=SN¢=¢>>3 I=WN¢=>Z FSN.
[.1 [.1

For regular CRS's Z in general, (*) and (**) require more effort; we

will return to this matter in Remark 6.2.5.(ii).

(iii) Note that Z I: WN #Et’] |= WN; for otherwise by Theorem 4.11, we would

have 2 F: WN =9 Z F= SN for all regular CRS's, an obvious contradiction.

The simplest example of a )3 such that Z I: WN but 2L] '9‘ WN is the

TRS with Red(Z) = {AZ ——+-B, C -—+ AC}. Obviously every Z-term has a

normal form. However, in SE ] where
I

Red zr ]‘= {A2 -—+ [B,A*zl, c ——+ [Ac.c*3}
I

the term C has no normal form; for, the XE J-reduction 8 (written in the
I

subscript notation of 4.2(iii).):
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C-——+ (AC)C* ——+ BA*C,C* ——+ BA*(AC)C*,C* ——+-._,

__+ T——+ ...

B *

A BA*B * * C*’C
A BA*B * * C*’C '

A C,C ’

is 'cofinal' in GEE (C), the set of SE J—reducts of C as in the figure be-

low; hence every ZE'J-reduct of C contains a redex C.
I

In the next two figures the reduction graphs GZ(C) and G J(C) are
IXE

depicted. In the last reduction graph the abbreviations

¢1[ J a [AD,C*]

c2[ ] a [[B.A*nl.c*l

are used; moreover, 1210 denotes CIECZECIECJJJ' etc. The bold line corre-

sponds to the cofinal reduction fl.

GZ(C):

 
 

 



We will now state the corollaries of Theorem 4.11.

20

110

10

 

 

4. 15 THEOREM. (Fini te Developments) .

For all regular CRS's X: E |= SN.

In other words: 2 I= FD.

PROOF. V2: g |= WN (Corollary 3.9)

 

Hence V2: 2D] I= WN.

V2: 2D] = EL] (Proposa.tion 4.8) .

Z: 2Hence V —-[,] i= WN

Therefore

vz: g l: SN (Theorem 4.11). U

[7
"3
'3
"

I
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\‘

 
I

{
\V

163

..
.:

b
—
l

N O

v
V
W
V
V
/

   

4.16. COROLLARY (Church-Rosser Theorem; Lemma of Parallel Moves) .

For all regular CRS's Z:
+

(i) E I= CR , i.e. every construction of a Z-reduction diagram, by
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successive addition of elementary diagrams (as in Def.3.5) terminates in

the same ’closed' diagram.

(ii) 2 |= PM, as in 1.6.12.

PROOF. Entirely analogous to the proofs in I.6.9 and 1.6.12. D

’4.17. NOTATION. As in 1.6, 0(81,82) denotes the reduction diagram deter-

mined by two coinitial, finite reductions 81,82. Likewise we employ the

notation 81/82, analogous to 1.6.10.

5 . NON-ERASING REDUCTIONS

The main properties of CRS's with memory XE ] are: non—erasure and
I

Inc. We will now focus attention on these properties, especially the first

one .

5.1. DEFINITION. Z F= NE ('2 is non-erasing') iff for all M,N e Ter(Z):

M ——+ N =9 EXXM) = EYXN)

where EyfiM) is the set of free variables occurring in M.

5.2. PROPOSITION. The following are equivalent:

(1) zlaéNE

(ii) there is a non-trivial context CE 3 erasing a free variable x:

 

¢[x] ——> M (x&§V_(M))

(iii) Ed: 1 3M VN CEN] ——+ M A‘ B

(iv) there is an elementary diagram of the form : ;

(Otherwise said: there is a non-trivial elemen- :¢

tary diagram containing an empty step.) )5 :

C B

5.3. PROPOSITION. The following are equivalent:

(i) 2 |= NE

(ii) fer all Z-terms M and all pairs of distinct redexes fll,R2 g M, con-

traction of one leaves at least one residual of the other.

(iii) Let H -* H' e Red(£) and let pH —+~pH' be some instance of this rule.
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Let H contain the meta-variable Z; then pZ(ng) has at least one

descendant in pH' (except possibly when pz 6 Var).

The routine proofs of these two propositions will be left to the

reader.

5.4. EXAMPLES. (i) CLS K I (Combinatory Logic based on the combinators
I I

3,K,I, Ch.I.2) is erasing and so is lB-calculus.

(ii) CLI J' the AI-version of CL with basic combinators 1,} and rules
I

12 —+ z, lezzz3z4 —— 2122(zlz4z3) 1s NE; so 15 AI—calculus.

(iii) Further, vz: it 3 k: NE.
I

(iv) 2 is a non—erasing TRS iff in each rule H —+ H' the same meta-variables

occur in H and H'.

5.5. PROPOSITION. (1) WF =9 NE (def. WF: I.5.16.(3))

(ii) FB-l =9 NE (def.FB—1: I.5.16.(4)).

PROOF. (i) We will prove the contraposition-vNE =9 VWF. So assume that

Z }=‘1NE. Then by Prop.5.2 for some non—trivial context ¢[ ] and term M

we have for all N: CEN] -+ M. In particular:

.... -—+ c[¢[¢[M]]]-—-+ CECEMJJ ——+-c[M] ——+ M.

i.e. 2 F='1WF.
_ 1 -

(ii) To prove‘VNE =9 VFB . Let Z F= ?NE, then again by Prop.5.2.(iii):

CEN
- 0
l
M

J CENl] cEN2] ....

-1
Hence'TFB . U

5.6. DEFINITION. A CRS Z is finitely presented iff 2 has a finite set Q

of constants and a finite set of reduction rules RedCZ).

5.7. REMARK. Almost all well-known CRS's one finitely presented: AB, CL,

TRS's as defined in e.g. HUET [78], RPS's as in I.1.13. A notable excep-

tion is AB 0 Church's 6-ru1es, see 1.15.(4) and 1.17.



166

\

5.8. THEOREM. For finitely presented regular CRS's Z the following equiv-

alences hold:

(i) NE 4:» FB-1

(ii) WF ¢=¢ Inc.

25993. (i) ¢=is Proposition 5.5.(ii).

=u Let the set of constants of X and Red(£) be finite. Suppose X F: NE.

Let M e Ter(Z) and consider H = {NIN -—+-M}. We have to prove that H is

finite; i.e. )3 I: FB—l.

Suppose H is infinite. Then, we claim, there must be arbitrarily long

N e H. The claim follows at once from the fact that the N e H are built up

from only finitely many different symbols, namely the Z—constants and the

free variables in EyflN) = Eij) (the last equality by Z F= NE).

Now consider a "very long" N e H, relative to [M', the length of M,

and to the LHS's of all the closed rules 5 Red(2). Here a reduction rule

is called 'closed' if its LHS contains no meta-variables (e.g. Church's

S-rules). If the redex pH contracted in the step

N E CEDHJ —-IT—'+ CEDH'] E M

is "small", then M would have the same order of length as N, contradiction.

So our very large N contains a very large r—redex pH, where r = H 9' H'

cannot be a closed rule since pH is very large relative to the LHS's of the

closed rules. Hence H contains meta-variables. NOW for at least one of the

meta-variables Z in H, pZ must be very large. (Here we use that Red(£) is

finite; hence the number of meta-variables Z in H is bounded.) By Proposi—

tion 5.3.(iii), pZ has a descendant in pH', call it (pZ)'. It is evident

that lpzl S [(pZ)'I, since the only thing that can happen to oz in the

r-reduction step is that some variables in pZ are replaced by some terms.

But then M, containing (pZ)', is very large—contrary to the assumption.

(To make the above estimations numerical, put 5 = the total number

of symbols in Red(2). Then choose N such that IN] > 2(s+1)IMI; now we

haye lle 2 %INI, because IN] = ICE ]l + [pH] and [M] = ICE 1' + IpH'I;

and moreover we have Ile S stZI + s for some Z in H, since there are

S s meta-variables Z in H and there are S 5 remaining symbols in H.

Therefore
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|(pZ)'|IZ |pz| 2 IpHI/ (5+1) 2 |N|/2(s+1) > |MI,

contradicting (pZ)' g M.)

(ii) ¢=is trivial.

=2 by Proposition 5.5.(i), WF #9 NE, so by (i) of this theorem, WF =9 FB-l.

By Lemma I.6.10.(4), WF & FB-1 =9 Inc for all Abstract Reduction Systems,

in particular for all CRS's 2. D

5.8.1. REMARK. (i) By Lemma I.5.19.(i):

WCR & WN & Inc =9 SN for ARS's.

Hence, by Theorem 5.8.(ii) and the fact that for all regular CRS's the

property WCR holds, we have for regular finitely presented CRS's:

(*) WF & WN =9 SN.

(ii) Below (in Corollary 5.9.4) we will strengthen (*) to:

NE & WN =9 SN, for all regular CRS's.

That this is really a strenghtening of (*) (apart from the fact that it

holds for all regular CRS's), follows from the fact that WF =9 NE (Proposi-

tion 5.5), but not conversely (consider Red(Z) = {IZ-——+ Z}).

(iii) In advance, let us note the following curious consequence of the

proposition in (ii):

PROPOSITION. Let 2 be a regular CRS and let N be a normal fbrm in 2. Sup-

pose there is an M such that M -4» N and M has an infinite reduction

M -—+ M' ——+~M"-—+ ...

Then there is an infinite 'inverse' reduction

... ——+ N" -——+-N' -—-+ N, as in the figure:

M M' M"
.———9*___9.___9~__u.
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EBQQE, Let [M] = {M' I M' =2 M} and consider the restriction of Z to [M];

call this 2M. Then 2M is a regular CRS (being a substructure of one); and

since [M] (= TerZM) contains a normal form, by the CR theorem: EM F: WN.

By hypothesis 2M 95 SN, so by the proposition in (ii),~1NE. Hence 2M F=*1WF

(Proposition 5.5.(i)). So there is an infinite reduction in 2M, which by CR

leads to the normal form N. D

(For A,CL this proposition is trivial: consider the reduction

——> II'IN ——-> IIN —+ IN ——> N.)

5.9. The paradigm of a regular CRS which is non-erasing, is the lI-calculus,

which was considered in I.7. We have enough material now (namely FD,CR&, PM

in Theorems 4.15 and 4.16) to prove theorems for non-erasing CRS's in gener—

al, analogous to those in I.7. The proofs will be omitted as they are en—

tirely analogous to those in I.7.

5.9.1. DEFINITION. We will say that 'the class of infinite Z-reductions is

closed under projections' (or 'infinite Z—reductions are closed under pro—

jections') iff Whenever 8 is'an infinite Z—reduction and R' a finite one,

then 8/8' is again infinite.

M a at, infinite

(11' 5 DORA?)

 
L fl/fl', infinite

5.9.2. LEMMA. Let 2 be a regular CRS and suppose X F: NE. Then infinite

X-reductions are closed under projections. U

5.9.3. CHURCH's THEOREM fer regular CRS's.
 

Let 2 be a non-erasing regular CRS. Then fbr all M e Ter(Z), the fbllowing

are equivalent:

(i) M is weakly normalizing (has a normal form)

(ii) M is strongly normalizing

(iii) all subterms of M have a normal fbrm. U

5.9.4. COROLLARY. For regular CRS's: NE== (WN‘=¢ SN).
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PROOF. The assertion is short for:

VregularCRS'sZ,Xl=NE=>(ZI=WN<=>ZI—=SN).

This is merely the 'global' version of Church's Theorem, trivially implied

by the 'local' version in 5.9.3. H

5.9.4.1. REMARK. Let A = <A,+> be an Abstract Reduction System as in I.5.1.
1

Let WCR mean:

Va,b,c e A(b#c) 3d 6 A

1
O
é
—
D
J

cm
<—
--
o-

I l l I V

>
(c + d and b + d exactly one step) and let WCR’1 mean:

Va,b,c e A(b#c) 3d 6 A

a -———9 b

l :21
l
I

V’
dc ____»

21

(c %>d and b %> d consisting of at least one step).

1
Then, as NEWMAN [42] Thm.2 (essentially) remarks, WCR & WN== SN.

21
QUESTION: does also WCR & WN== SN hold for ARS's? A positive answer would

result in an ‘abstract' proof of NE & WN =’SN for regular CRS's, since

2
NE ¢=’WCR 1.

However, the following ARS answers the question negatively:
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For regular TRS's we can strengthen Theorem 5.9.3 as follows.

5.9.5. DEFINITION. Let 2 be a regular TRS and r = H —+ H' a rule in Red(£).

Then r is called non-erasing iff both sides H, H' contain the same meta-

variables.

If r is a non—erasing rule, an r-redex is called a non-erasing redex.

(E.g. in CL the T- and S—reduction rule are non-erasing.)

5.9.6. THEOREM. Let )3 be a regular TRS. Let 61: M -—> M‘ —-> be an infinite

Z-reduction, and let R E M be a non-erasing redex. Then fl/{fl} is again in-

finite.

("Infinite reductions are closed under non-erasing projections.")

 

   

PROOF.

M M' . .M(k) M(n) M(n+1l

>> ‘ ‘ >: "n- 8

n.e. R D(fl,{R}) R(k) a(n)

N v___________ _____________----- fl/{R}
N(k) N(n)

The proof is very similar to the one of Lemma 1.7.2. Consider D(fl,{R}) as

(k), a/{R} con-

sists of empty steps. By the Parallel Moves Lemma (4.16) the reduction R(k)

is a complete development of the set R(k) of residuals in Mad

in the figure. Suppose fl/{R} is finite;_then after some N

of the

originally contracted redex R. Note that these residuals are again non—

erasing.

(n) ... M(n+1)Now let for some n 2 k, M be the first step in a in which

a redex is contracted that is not a residual of any member of I100 . By

Finite Developments kThm.4.15) there must exist such an n. a(n) is a com-

plete development of nah” , the set of residuals of R in M(n). Obviously,

every redex contracted in R(n), is non-erasing, being of the same kind as

R was.
+

We claim that the projection of this step, i.e. M(n) -*-M(n 1)/fl(n),

cannot be 0, however. The proof of the claim is entirely similar to that in

Lemma 1.7.2. [I
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5.9.6.1. REMARK. For regular CRS's in general, Theorem 5.9.6 fails, as is

suggested by the above proof and is shown by the following counterexample

from BARENDREGT e.a. [76], Ch.II.5:

 

  

(Ax.KIx)0 (Ax.I)Q (53.1)9 \_ >#i fl, infinite

K 9 Q 0

1x {R}

_ / ————————————————————————— -"' a/{R} I finite o

KIQ I I I

Analogous to the preceding theorem we have

5.9.7. THEOREM. Let 2 be a regular TRS, R: M ——+-M' ——6-... an infinite

reduction, and R g M an innermost redex (i.e. not containing other redexes).

Then fl/{R} is again infinite.

("Infinite reductions are closed under innermost projections.")

PROOF. Analogous to the proof of 5.9.6, using the following proposition

which is easily verified:

Let 2 be a regular TRS, M a X-term containing redexes R .such that1'R2
R1 i R2 and R2 is an innermost redex. Then:

 
innermost R2 innermost

I
I

J)
\k ________>4

M2 M3

(NOte that (i) M2 —+ M3 is one step and (ii) M1 4» M3 is an innermost re—

duction.) U

_5.9.8. COROLLARY (O'Donnell).

(1) Let 2 be a regular TRS and let there be an innermost reduction

R: M —+-... -+-N to the normal form N.
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Then M is strongly normalizing.

(ii) For all regular TRS's Z:

Z I: WIN «=SN,

‘where 'WIN' (Weak Innermost NOrmalization) is the property that every

term has a normal fbrm which can be reached by an innermost reduction.

PROOF. (ii) is merely the 'globalJ version of (i).

(i): Let 8': M-—+ ... be an infinite reduction and R: M —+ ... —+ N be an

innermost reduction to the normal form N.

 

 

 

  

M R', infinite

1.m ---

fl 1.m ---

1.m
av/a

N

Then by Theorem 5.9.7, R'/fl is infinite, contradicting the fact that N is

a normal form. Hence M 6 SN. U

5.9.8.1. REMARK. (1) Corollary 5.9.8 is a consequence of O'DONNELL [77]

(Thm.11 p.53), as is seen by noting that for regular TRS's the residual

concept satisfies the requirements stated there (Def.22), and by noting

that regular TRS's fulfill the property "Innermost Preserving" (Def.35)

defined there.

(ii) It is easy to give a counterexample to 5.9.7 and 5.9.8 for regular

CRS's in general, analogous to the counterexample in 5.9.6.1, since e.g.

A-calculus is not "Innermost Preserving" due to substitution.

5.9.8.2. APPLICATION. (Bar recursive terms)

TAIT [71] considers the TRS Z = CLT (typed Combinatory Logic) 9 {R,B,0,A}

where R is the Recursor having reduction rules as in Example 1.12.(ii),

B is the Bar recursion operator with reduction rules
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321222324n ———> .....

for each n (short for bn0).

(The precise form of the RHS is not important for us)

In fact there are constants S,K,R,B for each appropriate type. It is

easy to see that Z is a regular TRS; also if the types are viewed as 'in-

ternal', i.e. as elements of Ter(Z).

An extension of Z is 2' =.Z 9 constants 6 for all functions f: Ii —+-IJ

and rules

(0.6) —+ t(f.n,o)

where o is a type and t(f,n,o) is some term depending on f,n,0 of which the

precise form is not important for us. To write these rules in our notation,

we can adopt a constant C (for 'choice sequence') and write

C06 -—-+ t(f,n,o).

Note that moreover 2' is a regular TRS.

Now TAIT [71] proves, in our terminology, that both 2 and Z' satisfy WIN.

Hence by Theorem 5.9.8, also 2, 2' F= SN.

5.10.In the following figure we summarize some facts treated in this sec-

tion, which hold for regular CRS's. Here "f.p" is "finitely presented"

(Def.5.6)

  

Inc ¢==9
    
  

 

   
 

, J1

m. ?.E
11

Infinite reductions are

closed under projections

(5.9.2)

Church's Theorem (5.9.3):

 

  
 

 

WN ¢fl*SN
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5.11. DISCUSSION. Before we proceed to prove some more theorems about

Strong Normalization of regular CRS's in the next section, let us consider

the possibility of generalizing some theorems proved in Chapter I for

definable extensions of A-calculus, namely those concerning:

(1) Equivalence of reductions

(2) Standardization

(3) Normalization

(4) Cofinality of Knuth—Gross reductions.

Ad(i). The definition of 'Lévy-equivalence' of reductions, and Lévy's

results thereabout, generalize at once to the present case of regular

CRS's.

5912): Standardization, however, is much more complicated in the present

case than for definable extensions of A-calculus. This was pointed out by

Hindley, for the case of A—calculus.9 recursor R; see some examples in

HINDLEY [78]. See also Remark 6.2.8.6.(ii).

For regular TRS's a Standardization theorem is proved by HUET—LEVY

[79]. It is remarked there that the theorem seems to extend to 'applicative

rewriting systems with bound variables', i.e. to CRS's.

At the end of this Chapter (see 6.2.8) we will prove the Standardiza—

tion theorem for 'left-normal' regUlar CRS's.

59121: The Normalization Theorem (1.11.2), saying that repeated contraction

of the leftmost redex must lead to the normal form if it exists, does not

carry over, as observed in HUET—LHVY [79], where the following example is

given. If Red(Z) = {FZA-——+ B, C —-+-C, D ——+-A} then the term FCD has a

normal form: FCD ——+ FCA ——+ B, but the leftmost reduction is infinite:

FCD ——»-FCD ——é-... (repeated contraction of the redex C).

In 6.2.8 we will prove the Normalization Theorem for 'left—normal'

regular CRS's, as a corollary of the Standardization Theorem which we just

mentioned.

In HUET-LfiVY [79] the following interesting regular CRS is considered

(the example is basically due to G. Berry):

Red(Z) = {FABZ-——+ C

FBZA ——-> C

FZAB —+ C}
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which leads to the question:

does there exist a recursive one step normalizing strategy for every regu-

lar CRS? (or, for every regular TRS?)

We conjecture that the answer is negative; see for a discussion of

the problem HUET-LEVY [79]. (For a precise definition of the concepts in

the question, see BARENDREGT [80]. A likely candidate to establish the

negative answer may be: CL 9 the above mentioned 2.

Adlgl. The definition of Knuth-Gross (KG) reduction (see 1.12.4) extends

readily to the present case, and so does the theorem (1.12.5) stating that

KG-reductions are cofinal. So KG-reductions are normalizing; and hence we

have a recursive 'many step' normalizing reduction strategy for regular

CRS's.

Also the refinement (1.12.3) stating that secured reductions are co-

final, generalizes without problems to the case of regular CRS's.

6. DECREASING LABELINGS AND STRONG NORMALIZATION

In this section we will prove some more theorems from which one can

infer Strong Normalization for regular CRS's. We remark that the proof of

SN, so obtained, does not require stronger means, metamathematically

speaking, than the proof of WN (Weak Normalization) for the system under

consideration. To be more specific: where a proof of WN uses transfinite

induction to the ordinal a, the proof of SN as obtained here requires trans-

finite induction to ma. (For 'Gddel's T', see 6.1.7 below, we have

a
a = w = 80.) So if a WN-proof can be formalized in Peano's Arithmetic (i.e.

if a < 80), then the SN—proof can also be formalized in P.A.

6.1. For convenience we will restrict ourselves in this subsection 6.1 to

regular TRS's; but an extension to regular CRS's does not seem to be essen-

tially problematic. First two preliminary definitions.

6.1.1. DEFINITION. Let 2 be a regular TRS. Then Z'r 1 is the regular TRS

defined analogously to EC 1 (Def.4.5), with the only change that in a re-
I

duction rule only the erased metavariables are repeated ('memorized').

-6.1.1.1. EXAMPLE. Let 2 be CL 9 {J,6,0}, where CL is Combinatory Logic

based on I,K,S, and where the iterator J has reduction rules as in Example
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1.15.(3).

Then

Red()3[ 1) = {Iz ——-+ [2, I*z]

A'<zlzz—-+[z1 ,*12Kzz]

3212223 —> [21231(z:z3),3*z 13zzz ]

*

J0§Z1Z2 ——+ [22,] 0—Z>z1z2]

J(az' )22122 —+ [z1 (Jz' Z1Z2), 1* (AZ )—Z>zlz2 J}.

(Here Z = Z ,Z ,...,Z for some m 2 0, so the last two rules are in fact
01 02 0m .

schema's for rules; see Def.4.5.).

On the other hand,

Red(2'E ]) = {12 —+ z

Kzlz2 —+ [21,22 1

Sz122z3 —+ 21212234)

102212z —> [22,z1,z]

J(AZ')+Z1Z —+ [Z1 (12' Z122) ,z]}
2

6. 1. 2. PROPOSITION. Theorem 4.11 holds with XE ] replaced by Z'[ ]' I.e.
I

for all regular CRS' s X: l: WN =9 Z I: SN.
Z'EJ

PROOF. Z'E ] I: NE, hence: 2'[ 1 l: WN =9 2": ] I= SN, by Coroll. 5. 9. 4. The
I _.

proof of the implication X'E ] F=SSN=¢ 2 F: SN is analogous to the one in

Lemma 4.10. n

6.1.3. DEFINITION. Let E be a regular TRS and M e Ter(Z' Then the).. [.1
set of occurrences of memorized subterms of M, notation Sub[ 1(M), is de-

,-.

fined inductively as follows:

(i) K(M) 5 Sub[ ](M). Here K(M) is the k-normal form of M (k is the 'for-
I

getful' reduction rule defined in 4.4); so K(M) is the result of eras—

ing all memorized subterms in M.

(ii) %= EA, B] 5 M=9 K(B) 6 Sub[ ](M).

6.1.3.1. NOTATION. Instead of N e SubE ](M), we will write also: N E M.
—-———_ I [.3
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6.1.4. EXAMPLE and REMARK. (i) If T E (A

shift-n.f.

B C havin the(DE)J’K,FL )GHMN’OI ’ 9

(See Def.4.4):

T' 5 (ABC)
DE GH I

( )J,K'FL' MN,O

then Subl: J(T) = SubE 1(T') = {ABC,DE,F,GHI,J,K,L,MN,O}.
I l.

(ii) It is easy to see that SubE 1(T) is invariant under 'shift'.
I..

(iii) Note that SubE ](T) E_Ter(2) (more precisely, the terms having an oc-
I.

currence in Sub[ J(T) are Z-terms).
I

(iv) S SE 1 T does not necessarily imply S C T; unless S is "innermost
,.-

...

w.r.t. E{ ]"° E.g. ABC,GHI g T, but MN s_T in (i).
I

6.1.5. DEFINITION. Let 2 be a regular TRS.

(i) Let I l: Ter(Z) -—+-ORD be an ordinal assignment (or ordinal labeling).

Here 0RD is the class of ordinals.

Then 2 F: WNI I ("Z is weakly normalizing w.r.t. I I") iff for all

M e Ter(Z) not in normal form, there is a reduction step M ——+ M' such that

IMI > IM'I.

(ii) 2 F: DL ("2 has a decreasing labeling") iff there is a labeling I I:

Ter(Z) -—+-ORD satisfying:

(1) z |=WNI I

(2) MgN a IMI < IN].

(iii) )3 |= DL' iff there is a labeling J ]: Ter(Z) ——+ 0RD satisfying:

(1) )3 I: WNI

(2) MEN = ]M] s ]N]

(3) if R E QAI...An (n20) is a redex, then ]R] > ]Ai] (i = 1,...,n) (I.e.

a redex is 'heavier' than any of its arguments.)

(iv) )3 }= DL" iff there is a labeling ] ] satisfying:

(1) Z I: WNl

(2) MEN => IMI s IN]

(3) A redex is heavier than any of its erasable subterms. I.e.: let

r = H ——*-H' be a rule in Red(2), and let Z be a metavariable occurring

in H, but not in H'. Let p be a valuation; so pH is a redex containing

the 'erasable' subterm pZ. Then ]pHI > ]pZ].
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6.1.6. THEOREM. Let )3 be a regular TRS. Then the following equivalences

hold for 2:

DL «=9 DL' ¢=> DL" <=> SN.

3399:, DL == DL' => DL" follows at once from Def.6.1.5. The proof of

SN =9 DL is easy: suppose Z I: SN and M e Ter(Z). Consider the reduction

graph G(M) = {N e Ter(Z) I M —é» N}. Now define I I: Ter(Z) ——é-IJ by

IMI = total number of symbols in G(M), i.e.

length of N.

ZNeG(M) K(N) where K(N) 15 the

(By SN, IMI is indeed defined.) Then it is not hard to verify that 2 F: DL.

It remains to prove DL" == SN. Suppose X F: DL"; let I I be an ordinal

labeling such that the property DL" holds. Now assign to M e Ter(Z'r 1) a
-I.-

multi—set "M" (see Def.I.6.4.1 and Prop.I.6.4.2) as follows:

(*) "Mu = <|N| I N E{ 1(M) & N is not a normal form>.
IJ

CLAIM: there is a Z'[ q-reduction step M ——+ M' such that "M" >—"M'" (in
p .

the sense of Proposition 1.6.4.2.), unless M is already in it J-normal
I

form (equivalently: unless all N E{ 1 M are in Z-normal form).
1 .

If the claim is proved, we are through. For then Z'[ 1 F: WN, since
,..:

>'is a well—ordering by Proposition 1.6.4.2; hence Z F= SN by Proposition

6.1.2.

PROOF OF THE CLAIM. Select N E{']M satisfying

(a) N is not a E-n.f. and

(b) N is innermost w.r.t. E{’] (see Remark 6.1.4.(iv)) such that (a) holds.

By 2 F= DL", there is a Z—reduction step N Ji+-N' such that IN] > IN'I.

Now we c0py in Z'[ ] that reduction step:
I

* *

MECIIN]———-+a:[N' JEM',

* * * * .
where N , N' are such that K(N ) E N and K(N' ) N'. So If "M" =

= <INI,|PI,...>, then either

HM'H = <|N'|,[91],...,IQmI,]PI,...> if N' is not yet in Z—n.f. and for some

m 2 O, subterms Ql"°°'Qm not in n.f. were erased; or‘
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HM'I = <IQII....,IQmI,IPI,...> if N' is in 2-n.f. and the Qi are as above.

In both cases the ordinal INI in the multiset "M" is replaced by some lesser

ordinals in “M'", since INI >-IN'I by DL" (1) as noted above, and since

IQil < IRI s In! by DL" (3) resp. DL" (2).
(That the multiset “M" is otherwise not affected, i.e. that none of

the IPI,... is multiplied, follows because in the step N —B+-N' subterms

which are multiplied, must be in normal form by (b) and hence do not count

in "M'", by the restriction in (*).) I

So by Prop.I.6.4.2 we have indeed "M"I>'"M'". D

6.1.7. APPLICATION. Consider the CRS T = CLT (typed Combinatory Logic) plus

Iterator J and constants n for n 6 II. For this regular TRS ("G6del's T")

SCHfiTTE [77] (516) proves WN Via an argument due to W. Howard. This proof

shows that

(1) M' => [mo > [M‘IIO—————-——-+

M leftmost

where E ]0: Ter(T) ——+-e is an ordinal assignment. Furthermore, an in-
0

spection of the definition of [ 30 and a short calculation show that

(2) N 5 M = [n30 3 [M10

(3) [KABJO > [330 and [JOABJO > [A]O.

Hence (see Def.6.15(iv) we have T F: DL". Hence by the preceding theorem,

TI=SN.

6.2. In this subsection we consider again all regular CRS's. We will prove

another theorem (6.2.4) inferring SN from a 'decreasing labeling'; however,

now the labels will_not be assigned to all subterms of the terms M in

question as in 6.1, but only to the redexes of M. Cf. the 'degrees! of

redexes in AHW and AL'P in 1.3.7.1 and 1.3.9. In fact, Theorem 6.2.4 will

generalize Theorem 1.8.14 to all regular CRS's 2 having a certain assignment

of degrees. Analogously to AL'P and AHW we will define ZL'P and ZHW, and

prove SN for those CRS's; an application is the Standardization and Normali-

zion Theorem for a subclass of regular CRS's.

6.2.1. DEFINITION. Let 2 be a regular CRS.

(i) 11(2) E_Ter(£) is the set of redexes of 2. If M e Ter(Z), then I{(M)
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.is the set of redex occurrences in M.

(ii) Let M1,M2 e Ter(2). Then M1-.-.-+ M2 iff there is a 2-reduction step

¢[M1] ——»—c'[M2] in which M2 is a descendant of M1.

(iii) Let R1,R2 e.fii(2). Then R1 -~~+ R2 iff there is a 2-reduction step

is contracted and R has noTERI] —-+-C'[R2] in which the redex R1 2

ancestor in CERl]. ("R1 creates R2")

6.2.2. DEFINITION. Let 2 be a regular CRS. Then 2 F: DR ('2 has a decreas-

ing redex labeling') iff there is a map # : H{(2) ——+ ORD satisfying for

' —,_ # 2 #(1) R1 .-+ R2 =’ (R1) (R2)

(11) R1 ~+R2 =9 (R1) > (R2).

(#(R) will be called the degree of R.)

6.2.3. PROPOSITION. For all regular CRS's: DR== WN.

£5995: Let 2 be a regular CRS such that 2 F: DR and let M e Ter(2). Define

"M" = the multiset <#(R) I R e EI(M)>. Now in an innermost reduction step

M-Iggf N we have "M">- “NH, since R does not multiply already existing

redexes and the possibly in N created redexes have degree <#(R). Therefore

by Proposition 1.6.4.2 every innermost reduction must terminate. Hence

2I=WN. I]

6.2.4. THEOREM. For regular CRS's: DR=¢ SN.

EBQQE, We claim that 2 F: DR== 2[’] F: DR, for regular 2. For, suppose

2 F: DR and let #: 21(2) ——+ 0RD be the given degree assignment of 2; we

want to extend # to a degree assignment #[,]:~El(2[’]) ——*'ORD with the

required properties as in Definition 6.2.2. To this end, define #[’](R) =

= #K(R) where K is the memory—parts erasing function from Definition

4.4.(i).

. . d
NOTATION: If R is a redex and d its degree, we write R .

Now the claim follows, because if in 2[ J:
I

M ——-* M' resp. M —'> M'
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then it is routine to check that K(R)-.-.-+ K(R') resp. K(R) ““““9'K(R').

So we have d 2 d' resp. d > d', which proves the claim.

Hence 2 |= DR = 2E ] I: DR=> 2[ 1 I= WN =9 2 I= SN, where the middle
I I._

implication is justified by Proposition 6.2.3 and the last by Theorem 4.11.

D

6.2.5. REMARK. (i) The converse of this theorem does not hold, as the fol-

lowing simple counterexample shows: consider the fragment 2 of CL consist—

ing of those terms which contain only K's and the usual rule for K. Then

obviously 2 F: SN since every 2-term (e.g. K(KKK)KK) will be shortened in

E KKK -~+ KKK E R , i.e. the redex
1 2

KKK can create itself, as in the step RIKK E KKKKK-——+ KKK

a reduction. But 2 I94 DR, since R

R2.

(ii) However, it is possible to define a refined version DR' of the proper-

ty DR, by specification of the context in which we have R1 -.-.-+ R2 resp.

R1 --+ R2 as in Def.6.2.2. The degree assignment is then to pairs (M,R)

where R e 11(M). Then one can prove: DR} «=’SN. As in the proof of Theorem

6.2.4wehave2 |= DR'=92[ ] I= DR'. 802 I: SN=>2 |= DR'=>2[ J I: DR'
I- I

:= 2 F: SN, which yields a strengthening of Theorem 4.11 to:

[.1

For all regular CRS's, 2 I= SN ‘=' 2E ] I= WN => 2[ 1 I= SN. (See also Re-
I I-

mark 4.14. (ii) .)

6.2.6. REMARK. Note that Theorem 1.8.14, stating that AHW, AT, AL'P (for

bounded P) F= SN, is a corollary of Theorem 6.2.4, since as remarked in

1.3.7 and 1.3.9, these CRS's have the property DR.

6.2.7. Agplication of Theorem 6.2.4: SN for Lévyrlabeled regular CRS's

In I.10 we gave a (second) proof of the Standardization Theorem for

AB-calculus in which essential use was made of the fact that AL'P F: SN

(Theorem 1.8.14) or equivalently AHW k= SN. Now we would like to have

analogous L-labelings or HW-labelings for CL and prove CLHW,CLL'P F: SN),

in order to let this proof of the Standardization Theorem carry over to

CL. One method to Obtain such a labeling and labeled reduction, is via

l-calculus, since CL can be defined in A-calculus. The result is however

a bit cumbersome (our procedure in the sequel will yield a simpler labeled

reduction) and moreover, we would like to have a more systematic way of

adding Lévy-labels to not only CL, but every regular CRS. We will now

describe how Lévy's labeling (or that of Hyland-Wadsworth) and the
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corresponding SN theorem can be generalized to regular CRS's 2: to each 2

we will associate a 2L (or 2HW) and prove as a corollary of Theorem 6.2.4

that zL'P I= SN for bounded P' (resp. 2HW |= SN). This will be used in turn

to derive the Standardization and Normalization Theorem for a large class

of regular CRS's.

6.2.7.1. As in 1.3.9 the set L of Lévy-labels is defined: there is a set

of basic symbols L' = {a,b,c,...}, and from these L is built up by concate-

nation and underlining, e.g. abga e L. The function h denotes the 'height'

of a e L (i.e. the maximum ley;I_of underlining of a), e.g.

h(abga) = 2. (See 1.3.9.)

In order to define the concept 'degree of a rédex', analogous to the

one in 1.3.9, and to prove that a redex can only create redexes of lesser

degree, we need several definitions.

6.2.7.2. RESTRICTION. For technical reasons (see Remark 6.2.7.6) we will

consider in this subsection 6.2.7 only CRS's 2 without 'singleton redexes',

i.e. if H —+ H' e Red(2), then H is not a constant Q.

6.2.7.3. DEFINITION. Let 2 be a regular CRS.

(i) The relation E;('sUb-metaterm')'is defined for Mter(2) as for Ter(2)

with the extra clause that Hi s_Zn(H1,...,Hn), i = 1,...,n, for all

Hi 6 Mter(2) and n-ary metavariables Zn.

(ii) The relation 5% ('left subterm') on Ter(2) is defined as follows:

(1) A ££(AB) where (AB) is an applicative term,

(2) A E£ B E£,C =’A E£4F.+

(Note that A 511 B 4:» 3c AC E B.)

6.2.7.4. DEFINITION. Let 2 be a regular CRS and H e Mter(2).

(i) A proper indexing (or proper labeling) for H is a map assigning an

L-label to every subterm of H except H itself and except the meta-

variables Z in H.

We will use the exponential notation: if H E 32 Z Z
1 2 3'

is H plus a proper indexing map I.

then e.g.

I _ a b ab
H _ ((S Z1) 22)——z3

(ii) If I is a proper indexing of H, then (I) will denote the L-label ob-

tained by concatenation of the labels from left to right as they

. I
appear in H .
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E.g. in the example in (i): (I) = abab, Furthermore (I) is (I) under-

lined; in our example, (I) = abgb,
 

(iii) If a e L, then a x H denotes a labeling of H in which every sub-meta—

term of H bears label a.

E.g. for H as in (i): a X H E (((SaZ:)azg)aZ:)a. And if H = Z(I,I) for

a binary metavariable Z, then a X H E (Z(IalIa))a'; we will also write

z“(l“,l“).

6.2.7.5. DEFINITION. Let 2 be a regular CRS. Then 2L is the CRS obtained as

follows:

(i) Ter(2L)

(ii) Red(ZL)
{MI I M e Ter(2), I some L-labeling of M}

{HI ——6-(Ip x H' I H + H' e Red(2) & I is some proper L-

labeling of H}.

L
It is routine to check that 2 is a regular CRS again. (In Remark

L
6.2.7.16 we will mention a more 'economic' variant of 2 .)

6.2.7.6. EXAMPLE. (1) Let 2 be {12 —-—-+ 2, DZ ——+ zz}; then
L L

2 = {IGZ ——é-Zgy DaZ -—»-(ZEZE)E-I a e L}. An example of reduction in 2 :

 

Da(IbDC)d ((Ibvc)d341bvc)d393-

\ (DCEQEIIbDC)d9+3

Da(vcbd) \ \ (DCEHEQCEQEIE.   
L

(ii) (CL 0 Pairing) has the rules:

((SaZ1)BZZ)YZ3 -+-(Z?Z§)d(Z:Z§)d where d = a8

a 8 68
(K Z1) zz-——+ z?—

Da((DBZ )YZ )sng'B—Y‘é'r i=011l
1 0 1 1

for all a,B,Y,6 e L.

(iii) AL = {(Aax.zl(x))BZ2 -—+~Z%§-(Z%E) I a,B e L}. If we take 0 empty
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here (since the symbol A is in 'usual' l-calculus not a subterm, it should

L
have no label), we find again A of 1.3.9.

6.2.7.6.1. REMARK. (i) A reason to exclude the outermost label a of a redex

in the definition of labeled reduction, is that this allows us to treat the

labels in an associative way, i.e. we can make now the identification

a a
(A)BEAB

be ambiguous; consider e.g. the rule 92 v—+ ZZ then we would have as cor-

8 a6 a8
—~+-Z——Z——a However, then

, as in the preceding example. Otherwise labeled reduction would

responding L-reductions: (Daz)

(max) B)Y ——> (x951 x39”
III'? III

(Dax)BY -—a-x2§y'x2§1-

(ii) For the same reason we have excluded 'singleton redexes'; because there

the outermost label has to be taken into account if one wants Lemma 6.2.7.12.

However, an extension of the results of this subsection to the case where

singleton redexes are present, is possible, at the cost of the associativity

in the manipulation of labels as in (i).

We will now define another kind of term formation tree than used so

far (see Def. 1.7) and which has.the advantage-that there is a bijection

between the nodes of the tree T'(M) and the occurrences of subterms in the

term M.

6.2.7.7. DEFINITION. The term formation tree T'(M) of M e Ter(2) is induc-

tively defined as follows:

(i) T'(s) = s if s : Z,Q,x

(ii) T'(AB) = ° (iii) T([xJAI = [x]

«r' (A) 1' (B) T, (A)
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EXAMPLE. T'((Ax.xxxx)yz) =

L
6.2.7.8. DEFINITION. Let 2 be an L—labeled CRS. Let H -+ H' e Red(2) and

HI —4-(I) x H be a rule in 2L. Let R E p(HI) be a 2L-redex.

Then the degree of R is (I).

8
6.2.7.9. EXAMPLE. (i) The degree of (((SaA) B)YC)6 is aBY.

(ii) Consider in (CL 9 Pairing)L the term M E

(((SaIb) C< (Kd(IeIf)g)hsi) j)k(1)§( (van) OIP)q)r) 5.

Here the S-redex has degree ack, the K-redex dh, the I—redex e, and the

Do—redex £moq. In tree notation:
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6.2.7.10. DEFINITION. Let 2 be a regular TRS and r = H —+~H' e Red(2); say

H contains the metavariables Z1,...,Zn. Let R E pH be an r-redex for some

valuation p.

(1) Then every subterm S g pZi (for some i = 1,...,n) is called an inter-

nal subterm of R. Notation: S Si R. All other subterms S' of R are exter-

nal. Notation: 3' Se R.We will separate internal and external subterms in

T'(R) by a bar; e.gl as in T'(M) above.

2' 30 0 0 ' =Another example If H N0(Q1_2Z0)Z1(WB(Q4Z2Z3))Z4, then T (pH)

= T'(pZi).) 
(ii) If pH is labeled, then the label of an internal (external) subterm

will be called an internal (external) label of pH. E.g. in T'(M) above,

a,c,k,s are the external labels.

6.2.7.11 PROPOSITION. Let R = pH be a redex. Then:

(i) B Se R.¢=>B has a constant occurring in H as head symbol.

" c BC =9 c R,(11) A *K ‘e R A ‘e

PROOF. (i) Routine; (ii) immediately from (i). U

6.2.7.12. LEMMA. (i) Let M —+~M be a reduction step in 2L where 2 is a

regular TRS. Let R1 E-Ml' H2 s_M: be redexes having degrees d1 resp. d2.

Then :

(1) R1-.-.-+ R2=s d1 = d2 (descendants have the same degree)

(2) leva~+ R2== h(dl) < h(dZ) (created redexes have lesser degree).

(ii) As (i), fbr 2 = X 6 2', where 2' is a regular TRS.



187

PROOF. (i) The proof of (1) is routine.

Proof of (2): let R: be the contractum of R1 in M2. We distinguish two

cases .

CASE 1. R: E-RZ' Consider T'(R2) as in the figure. (We will identify T'(M)

and M in the remainder of this proof.)

 

 

Here all internal subterms of R2 are below the bar. We claim that R: cannot

be below the bar. For, if it was, then the upper part (above the bar) of R2

would clearly be unaffected by the reduction step M1 + M2, so R2 would be

a descendant of a redex in M1, in contradiction with the assumption that

R2 was created in the step M1 + M2. Hence R: Ee R2 as in the next figure:

 

 

Now consider the label a of the nop node of Rf: this is an external label

of R . Now a = (1) where (I) is the degree of R by Def.6.2.7.5 of labeled
2

reduction. So the degree of R

1:

2 (the concatenation of all external labels

except that of the top node) contains (19, whence the result follows; except

possibly in the case that the tops of R2 and R: coincide, i.e. R2 E Rf.

Suppose this is the case. By restriction 6.2.7.2, R2 is not a constant

c
- hence R2 E R1 is an applicative term AB. By Pr0position 6.2.7.11.(ii),
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A Se R2. The label of A is again (I), and this is an external label of R2

below the top node. Hence the result follows as above.

c
CASE 2. R2 E.R1' Let R be an r-redex where r = H + H'; say R E pH for a

valuation p. EvidentlyI there is a submetaterm J s_H' such thit R2 E pJ.

1 must be applicative; for J E Q E R2 is impossible by the restriction to

non-singleton redexes, and J E Z is impossible since then R2 would not be

a created redex. So J E J1J2; by definition of labeled reduction, le has

label (1) where (I) is the degree of R1. By Proposition 6.2.7.11.(i) this

label is external for R and obviously it is not the top label of R . So
2

contains (1).

2

again the degree of R2

(ii) When A is included, we can distinguish four cases:

1. R1,R2 are both B-redexes

2. R1,R2 are both TRS—redexes

3. only R is a B-redex
1

4. only R2 is a B-redex.

Case 1 is already considered in 1.3.9; case 2 is considered in (i) and that

the lemma holds for cases 3,4 follows by a reasoning very similar to that

in (i). U

P
6.2.7.13. Let 2 be a regular CRS. Then 2L' , where P is a predicate on L,

LP
is defined similar to A ' in 1.3.9.

HW . .
Also as in 1.3.7 and 1.3.9 we can define 2 , a 'homomorphic image}

P
of 2L' .

HW
E.g. CL has the rules:

K
)

n+1Z m+1 k+1 I Z
1) 22) Z3 -—é'(Z

k
a
w

D
O
N

((S z§)£(z

where K = min(n,m,k), for all n,m,k 6 n1.

So for 2HW, Lemma 6.2.7.12 says that descendants keep the same degree

as their ancestor redex, and created redexes have a degree less than that

of the creator redex.

6.2.7.14. EXAMPLE. In (CL 9 Pairing)HW, consider the step

03((K50)31AB) + D; (DZAB) .
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where all unmentioned labels are high (>7). Then the redex KDI of degree

min (5,3) has created the DO-redex of degree min (7,2).

6.2.7.15. COROLLARY. If 2 is a regular TRS, or 2 = A 9 2' where 2' is a

regular TRS, then: 2L'P (fbr P bounded) I= SN and 2Hw I: SN.

PROOF. Immediate by Lemma 6.2.7.12 and Theorem 6.2.4. B

6.2.7.16. REMARK. (i) The preceding corollary can be generalized to the

class of all regular CRS's. It is rather tedious to generalize Lemma

6.2.7.12, however.

(ii) It is possible to use a more economic version of 2L and 2Hw, in which

in a X H not every subterm of H bears the label a, but only the 'initial'

subterms in some sense. We will not elaborate this possibility, but merely

mention this more economic version for CL (cf.6.2.7.13) : (CLHW) ' has the

rules

((Sn+1Z1)m+1Z2)k+1Z3-—-+ ZfZ3(Z§Z3) where K = min(n,m,k)

n+1 m+1 min(n,m)
(K Zl) 22 —-+ Z1

In+1z ——»-Zn.

It is not hard to check Lemma 6.2.7.12 for (CLHW)'.

6.2.8. As an application of the preceding corollary, we will derive the

Standardizatioh and Normalization theorem for a restricted class of (A0)

regular TRS's, which will be defined now.

6.2.8.1. DEFINITION. Let 2 be a regular CRS and r e Red(2); r = H + H'.

(i) The rule r is called left-normal iff in H all constants Q_precede

the metavariables Z.

(ii) 2 is called left-normal iff all its rules are left-normal.

6.2.8.2. EXAMPLE. (i) A, CL and all definable extensions of A are left-

normal.

(ii) A 0 Pairing 9 Definition by cases 0 Iterator as in Example 1.15.(3)

is left-normal.

(iii) The 'proof—theoretic' reduction rule in Example 1.12.(v) is left-

normal.
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(iv) The rules for the recursor R as in Example 1.12(ii) are not leftrnormal

However, the (proof—theoretically equivalent) rules for R as follows:

120le2 ——+ .... R(SZ0)Z1ZZ ——+ ... are left-normal.

(v) Church' 5 generalized G-rules are left-normal (trivially) .

(vi) The rules for the combinator F in 5.11. Ad(3) are typically non-left-

normal.

Our definition of 'standard reduction' for a regular CRS is analogous

to the one for A (and definable extensions), see Def.I.9.1. This definition

deviates from the definition of 'standard' for regular TRS's in LBVY-HUET

[79], where Standardization is proved for all regular TRS's. Below we will

prove Standardization and Normalization for (A9) regular left-normal TRS's;

and on the intersection of those classes our definition is equivalent with

the one of Lévy and Huet (we will not prove this).

 

 

 

  
reg.TRS5

regular CRS' s

For left-normal CRS's the definition of 'standard' and of the standardiza-

tion procedure is very simple. Just as in 1.10, all we have to do is to

permute adjacent reduction steps which form an 'anti-standard pair'.

R
6.2.8.3. DEFINITION. (i) Let R = M0 —59——+-M1 ——l—-—é-... be a 2-reduction,

where 2 is a regular CRS.

Ri
In the step Mi —-————+ M (i 2 0 as far as defined), attach a

i+1

marker * to all the redex-head-symbols 0
N

to the left of the head-symbol

of Ri' These markers aregersistent,once they are attached (i.e. descen-

dants keep the marker).

Then a is standard, iff no marked redex is contracted.

(ii) An anti-standard pair of reduction steps is a reduction of two steps

which is not standard.

(iii) If R = M ——é-M ——*-M is an anti-standard pair, we define the
0 1 2

"meta-reduction" «R 1= 63' analogous to Def . 10 . 2 . 1 .
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E.g. if a = 00(U(KII)I) —-é-DO(DII) ——+ I (not standard) then

a ==tflfi = 00(D(K11)1) ——+ K77 -—4-1 (standard).

6.2.8.4. REMARK. The difference with (definable extensions of) A is that

now redexes can be created whose head—symbol is to the left of that of the

creator redex; e.g. as in 00(IDAB) ——+-DO(DAB).

6.2.8.5. LEMMA. Let 2 be a regular TRS or let 2 = A e 2'-where 2' is a

regular TRS. Then the meta-reduction =9 of 2-reductions is a-cyclic and

moreover SN.

PROOF. Analogous to the proofs of Proposition 1.10.2.3 and Theorem

1.10.2.4.(i), using Corollary 6.2.7.15. H

6.2.8.6. REMARK. (i) So every 2-reduction 3, for 2 as in the lemma, has a

== -normal form; however, fl.may have more than one == -normal form. Example:

M II {PzQ.—+ zz, R —-+ S, Iz ——> z},

and

3) ll PR(IQ)-—-+ PRQ-——+ PSQ_——+-SS.

Now 8 contains two anti—standard pairs, and

8=PR(IQ)—+PRQ—+RR—+3R_.+ss=al

a => PR(IQ) —-> PSUQ) —-——+ PSQ——+ 33 = 82

where 31.82 are both =¢ -normal forms.

(ii) Moreover, an ==I-normal form is not necessarily a standard reduction;

e.g. 31 is not standard. If the last step of 81 is omitted, we have a re-

duction which is not standard and for which there is no standard reduction

at all. I.e. for regular CRS's in general, the Standardization Theorem

fails. This observation is due to HINDLEY [78], who gives essentially the

same counterexample for A e Recursor 8, where the rules for R are the

non-left-normal ones (see Example 6.2.8.2.(iv)).

However:

6.2.8.7. LEMMA. For left-normal regular CRS's 2: the 2-reduction R is
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standard 4:» fl is a '=' -normal form.

PROOF. Claim. Let 2 be a left-normal regular CRS. Then the following can

not happen.

 

 

n O
M E '0 ‘1

n

I1 I
NE

0 0*
2 O

M-——+ N is a 2—reduction step, 9 ,0 e M are redex—head symbols such that
0 1

Q0 < Q1 (Q0 is to the left of Q1). After contraction of Q1 (i.e. the redex
*

headed by Q1), Q0 is marked as ”0 in N (as in Def.6.2.8.3 of 'standard')

Mbreover, the Ql-contraction has created a redex headed by Q2 such that
*

O < 0 .
2 ‘0

So what we claim is that no redex to the left of a marked redex can

be 'activated' (created). (Note however that in Remark 6.2.8.6 this does

happen, in the step PR(IQ)-——+ PRQ. Here 0 E R, 0 E I, Q2 E P.)
‘0 ”1

Proof of the claim. Obviously the step M -—+-N must have the form 

__ n + n" __( ...(QOA)...(_;1B)...)‘2 ’

*-+
: __ 0 __N— (Q2...(0flA)...(.3C). .)

where

(02...((10*X)...(Q33) ...)

is an r—redex, such that the LHS of the rule r is (Q2...Z...(Q3H)...).

That Q3: must be in fact a subterm of oz, follows from the non-ambiguity

of the rules, in casu r(see also Def.1.14). However, a left-normal CRS

cannot have a rule r as displayed, since Q3 should precede the meta—

variable Z. This proves the claim.

Now we can prove the assertion in the lemma, by induction on IR], the

number of steps in R. Here 0:) is trivial. (¢0:

Basis. IMI = 2: trivial.



193

Induction step. Suppose for IBI = n the assertion is proved. Now let
 

a = M ——+ ... —-A-M
n+0 1

==’-normal form, but nevertheless not standard.-By induction hypothesis we

be a reduction of n+1 steps, and suppose a is a

know that M -#+ ... ——+ M and M ——+ ... ——+ M are standard. So 8
0 n 1 n+1

must be of the following form:

 

 

 

M0 = Q0 Q1

91
11 <22 02';
I92

M2

I
Mr; oz;
1%

Mn+1

*

In Mn --—'+'Mn+ for the first time a marked redex 90 is contracted (other-
1

wise MO ——4-... ——+ Mn was not standard).

The ancestor of this redex must have been marked already by the first step

in R; otherwise M1 ——+ ... -—¢-Mn+1 was not standard. So in MO ——'>-M1 a

0 > . . 0. . 0*
redex ‘1 Q0 is contracted, marking “0 *Now in M1 ——# M2 a redex Q2 < “0

must have been contracted, for if Q2 > Q0 then Q2 marks Q0 again and

M—+ooo—*M
1 n+1

Q1, otherwise it was marked by Q1, and M

would be not standard. Now Q2 must have been created by

0-——+ ... ——+-Mn was not standard.

But that is the situation which cannot occur, according to the claim.

Hence R is standard.and the lemma is proved. D

So by the preceding two lemma's we have now:

6.2.8.8. THEOREM (Standardization for left-normal regular TRS's).

Let 2 be a left-normal regular TRS, or let 2 = A 9 2' where 2' is a left-

normal regular TRS. Then fbr every 2-reduction fl = M0 ——»-... —-» Mn there

is a standard reduction 8 = M -—+-... —-¢-M . D
st 0 n
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We conclude this Chapter with a corollary of the Standardization

Theorem. The proof is entirely analogous to that of Theorem 1.11.2:

6.2.8.9. THEOREM (Normalization fer left-normal regular TRS's)

Let 2 be as in 6.2.8.8. Then repeated contraction of the leftmost redex in

a 2-term leads to the normal form, if it exists. U

6.2.8.10. REMARK. (i) It is possible to extend these results to the class

of all regular left—normal CRS's. (Cf. remark 6.2.7.16.(i).)

(ii) Also we expect that one can prove moreover the strong version of the

Standardization Theorem for regular left—normal CRS's, analogous to Theorem

I.10.2.8.(iii).
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CHAPTER III

IRREGULAR COMBINATORY REDUCTION SYSTEMS

After having occupied ourselves in Chapters 1 and II exlusively with

regular CRS's, where 'regular' is short for 'left-linear and non-ambiguous'

(Def.11.1.11, 11.1.14), we will consider some irregular CRS's now. We will

mainly study the effect of dropping the left-linearity condition; only in

one instance (viz. A 9 Surjective Pairing) an ambiguous CRS will be con-

sidered here. (For results about ambiguous TRS's, see e.g. HUET [78].)

In section 1 we will prove that the CR property fails for some non-

left—linear CRS's. In section 2 an 'intuitive' explanation of this failure

is given, with the aid of 'infinite expansions' of terms (Béhm trees).

Finally some positive results about the CRS's in question are given.

1. COUNTEREXAMPLES TO THE CURCH-ROSSER PROPERTY

1.1. Consider A-calculus 9 constants 0,00,01 and reduction rules

r0: 00(Dzozl) -—-> z

r1: 01(Dzoz1) -—»-z

0

1

r : U(DOZ)(01Z) -—+-z.

The 'meaning' of the constants is that they constitute a Surjective Pair-

ing (SP): from the pair DZOZ1 one obtains the first resp. second codrdinate

by applying 00 resp. Di; the third rule gives the surjectivity, in the

sense that w.r.t. the equality = , generated by-——+ , every term is a pair:

A = U(DOA)(DIA).

It was asked by Colin Mann (1972) (see BARENDREGT [74]) whether this

CRS, A 9 SP, has the CR property. Note that A 9 SP is non-left-linear (in

rule r) as well as ambiguous: there are the interferences r g r (see
0

Def.11.1.14) as shown by the term 00(D(DOA)(DIA))' likewise r s r and1I
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moreover r r
0' 1

These ambiguities, however, do not spoil the property WCR:

s r as shown by 9(DO(0AB))(01(DAB)).

 

  

 

 

0(DO(DAB))(DI(DAB)) r >7 DAB

|

' wr0 I

I
l

I
\ I

DA(DI(DAB)) r1 ’ DAB

DO (B(DOA) (01-21)) r (M1 DOA

I
I

r I
0 |

I
l

l
l

I_________ .I
DOA DOA

Likewise the lack of left-linearity is no obstacle to WCR:

 

   

0(00¢[R1)(PICERJ) R B(DO¢[R'])(ch[RJ)

(*) R

r 5, 0(00¢[R'I)(DIT[R'])

r

¢[R] R > cER']

Here the 'disturbance' of the r-redex by the contraction of redex R to R'

is compensated by the 'mirrored' contraction of R in the step (*).

In attempts to prove that A 9 SP F: CR, it seems that the essential

problem is the non-left-linearity, rather than the ambiguity of the rules.

Therefore R. Hindley considered A 9 the constant 0h with the reduction
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rule

thz-—+ z

and posed the question whether A 9 Uh F= CR holds (cf. the problem list

BARENDREGT [75]). A further simplification of the question was made by

STAPLES [75], who considered A 9 the constant 05 with the rule

D zz ——+ E
S

where E is some 'inert' constant. In the sequel we will consider yet an—

other variant, namely A 9 9k and the rule

Dkzz -—- Ez

with a similar E as before. The CR—problem for this CRS is so to speak in-

termediate between the last two, and moreover the use of A 9 pk will prove

to have certain technical advantages.

G. Huet and J.J. Levy remarked (personal communication) that one en-

counters a similar Cderoblem when considering Recursive Program Schemes

(see 1.1.13) with the branching operation 'i£_P thgn_A el§§_B' and apart

from the usual rules for this operation also the rule

EE_P then Z else Z —-»-Z.

The same CR-problem was posed in the list of "Further Research' topics in

O'DONNELL [77].

Finally, we mention that the CR—problem for non-left-linear extensions

of A-calculus is also encountered in foundational studies, see FEFERMAN [80].

1.2. Before describing the underlying 'intuition' in the next subsection,

we will first prove that CR fails for the CRS's mentioned in 1.1.

1.2.1. As an introductory example, consider the TRS 28 consisting of the

constants A,C,DS,E and the rules
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Dzz——->E

CZ ——+ DZ(CZ)

A ——+ CA

(we will drop the subscript in US sometimes).

'Now we have the following reductions:

A ——+ CA ——» DA(CA) ——+ D(CA)(CA) ——» E

C(CA)

I
C(DA(CA))

I
C(D(CA) (CAN

I
CE

So in order to have 2S I= CR, the terms CE and E must have a common reduct.

First some notation:

1.2.1.1. NOTATION. Let M,N e Ter(2) for some CRS 2. Then M I N will mean:

3L M —e» L <e—-N.

Now obviously, CE I E iff CE —4» E. However, the only reduction of

CE is:

CE ——6-UE(CE) ——é-DE(DE(CE)) ——»-DE(DE(DE(CE))) ——é-..., hence CE vb» E.

Therefore 2S I75 CR.

1.2.2. For the TRS 2k consisting of constants A,B,Dk ,E and rules

Dkzz —-+ £2

Cz _+ DZ(CZ)

A ——e-CA

We have an analogous counterexample to CR:
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A --+ CA ——-+ DA(CA) —-+ U(CA) (CA) ——-+ E(CA)

I
C(E(CA))

(where the downward reduction is again the horizontal one preceded by C)

and now E(CA)II'C(E(CA)), as some calculations make plausible and as will

be proved later on.

1.2.3. The counterexamples to CR for the above TRS's 25,2 carry over a1—
k

most immediately to A 9 Us and A 9 Dk' as follows.

For A 9 US resp. A 9 0k, let E be either a new constant or some free

variable, or put E E (Ax.xx)(Ax.xx). Let

0 m YTAcz.DSz(cz) resp. YTAcz.Dkz(cz)

YTC

where YT E(Aab.b(aab))(Aab.b(aab)) is Turing's fixed point combinator as

introduced in 1.1.11 (Here we prefer YT to Curry's fixed point combinator

Y E Aa.((Ab.a(bb))(Ab.a(bb)) since YTM ——fi> M(YTM) for all M but not

YM ——>> M(YM) .)

Now as in 1.2.1 and 1.2.2 we have in both cases:

CM ——» DM(CM)

A —>> CA

and hece as above:

A -+» CA —4» E resp. A -4» CA -——4» E(CA)

I 1
CE C(E(CA))

1.2.4. Before proving that CE IE resp. C(E(CA)) {E(CA) , i.e. that

A 9 US If CR resp. A 9 pk I95 CR, we will state CR—counterexamples for

A 9 0k ZZ + Z and A 9 Surjective Pairing.

Note here that for A 9 oh it does not work to define A,C such that
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CM ——>> DM(CM)

A ——>> CA

since now the reductions analogous to the ones above:

A —>> CA —>> DA(CA) -—>> D(CA) (CA) —+ CA

C(CA)

do not provide a CR-counterexample.

The following heuristic consideration shows how one can proceed. There

are between the CRS's A 9 Dk'Ds'Dh' SP 'interdefinabilities' as in the

figure:

 

A 9 Surjective

Pairing

I I I I I I I I
.J

   
I

Dh I:= Axy.D(DOx)(Dly)

Ir
Aevhzz—az
 

f_'

   
= Axy.Dh<x><y>(KE)

17k :=
Axy.E(thy)

D
 

   

 

_
—
—
—
_
.
_
_
_
_
—
—
—
—
_
—
_
_
_
.
—
_
_
—
_

K) A 9 Dkzz ——+ Ez I I K.

  
 

k
Axy.E(D(DOx)(91Y))

Here we used the notation <M> E Az.zM (zéFV(M)) and KM E Az.M.

(Remark: it does not seem possible to reverse any of these -—--+ arrows.)

E.g. in A 9 DhZZ ——é-Z we can define the constant 0k as Axy.E(thy); for

then we have for all terms M:

DkMM E (Axy.E(thy))MM —-+ ——> E(DhMM) ——> EM.
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Now the (claimed) CR-counterexample for A 9 pk can easily be rewritten, to

yield (claimed) CR-counterexamples for the systems which are higher in the

above figure. E.g. the terms C,A in A 9 pk such that CM —4» DkM(CM) and

A -E» CA as in 1.2.3 can be defined also in A 9 Uh:

C'M —>> (Axy.E(thy))M(C'M) —>> E(DhM(c'M))

A' —4» C'A'.

In fact, let us define in A 9 Oh:

O m YT Acm.E(Uhm(cm))

A E YTC,

then we have (someWhat more directly than C',A'):

CM —>> E(DhM(CM)) for all M

A —4» CA

and now

A —>> CA ——>> E(DhA(CA)) —-—>>.E(Dh(CA) (CA)) —>> E(CA)

i
C(E(CA))

is again the (claimed) CR-counterexample for A 9 Dh.

Similarly we find for A 9 SP:

CM —9» E(D(D0M)(D1(CM))) for all M

A —4» CA

and reductions
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A —+» CA —4» E(D(DOA)(DI(CA))) —4» E(D(DO(CA))(01«3A))) —+» E(CA)

l
C(E(CA)).

1.2.5. REMARK. (i) Using the interdefinabilities scheme above, one can find

some alternative CR-counterexamples, e.g. for A 9 Dh' using the definability

of DS in A 9 Oh: CM —4» Dh<M><CM>(KE) and A —+» CA.

(ii) Our original construction in KLOP [77] was based on the TRS 2 consist-

ing of constants A,B,C,D,E and rules

Dzz-—-+ Ez

Cz ——»-Dz(Cz)

A ——»~DAB

B ——+ C(DAB)

Using the abbreviations A := DAB and D := DA(CA), we have reductions

A

\\\9 u E DA(CA)-——+-——+‘Dnn-——+ En
///7

CA

D(ED)(CA)

D(En)(C(Eu))

and now EU I D(ED)(C(ED)), as is made plausible by considering that

(i) EU I D(EU)(C(EU))== ED I C(Eu)

(ii) C(Eu) ——+-D(Eu)(C(Eu)).

This TRS can be defined then in A 9 0k by means of the multiple fixed

point theorem in 1.1211 (necessary since A,B are defined in terms of each

other).

H.P. Barendregt remarked that this construction could be simplified

as in 1.2.2 above, thus requiring for its definition only a single fixed

paint construction.

We will now prove that the claimed CR—counterexamples are indeed

counterexamples.
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1.2.6. DEFINITION. Let 2 be A a vk,vs,vh or SP

(1) We will call a finite 2-reduction a special if a = RB * 8b where 88

is a standard B-reduction and ab is a sequence of D-steps (i.e. Ds’vh'

0k or 9,00,01-steps). Here * denotes concatenation of reduction se-

quences.

(ii) A 2-conversion 1" is a finite sequence 1" = M0 -- M1 —- -—- Mn (for

some n 2 0) where each —- is either -+ or +—-. A conversion P which

is not a reduction, is called special if it conaists of two converging

special reductions 61,62; i.e. P n M -—l—4>N<6—-2—-L for some M,N,L and

1,622. _1
Notation: T = 81 * 82

(iii) Ifll denotes the total number of symbols in the reduction 61; i. e. if

a = M0 -—4-... -—+ Mn then Ia] = 2;OIMi I where 1M1 I is the length of

Mi.

special a

-1
If P - £1 * R2 , then IPI = Iflll + Iflzl.

1.2.7. PROPOSITION.

(1) A e (Dszz —-> E) In Ppems

(ii) A o (Dkzz --+ E2) I= PPB'vk

(I.e. the D-steps can be postponed; see Def.1.5.2.(5).)

P_ROOF. (i) Let r be the rule DQzz --+ E. Define M —r—_-1-> N iff N --E—+ M.

According to Proposition 1.5.5: if B commutes with r'1, then PPB r holds.
I

Now it is easily checked that

VA,B,C3D

 

Note that here B -§-+ D is one step; hence it follows easily that B and

r-1 are indeed commuting.

(ii) The converse of the rule r a 022 -—#-EZ is r-1 = EZ -—+-DZZ; and

A = A 9 r“1 is evidently a regular CRS. In fact, A is a definable extension
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of A-calculus. Therefore, by Corollary 1.6.13, 8 commutes with r-l. Hence

as in (i), A e r F= PPB,D° U

1.2.8. THEOREM. A e (0522 ——-+ E) If CR.

PROOF. Consider the reductions A —+» CA —€» E as defined in 1.2.3.

l
CE

We claim that CE-i—E, or equivalently (since E is a normal form), that

CE 7A» E. For, suppose that CE-—4> E, then, by Proposition 1.2.7(i) and the

Standardization Theorem for A, there is a special reduction 8 from CE to E.

Suppose moreover that a is a minimal special reduction from CE to E, in the

sense of I I, as in Def.1.2.6.(iii).

Since 3 is special, it is easy to see that a must be of the form

8: CE 5 Y (lcz.D z(cz))E‘
T S

I£.m

(Ab.b(YTb))(Acz.DSz(cz))E

l£.m

(Acz.Dsz(cz))CE

l£.m

W
D E(CE)
S

Blstandard fl'

(Here-jZSET+ denotes a 'leftmost' reduction step; i.e. the contracted redex

is the leftmost redex of the term.)

However, the reduction 3', indicated above, contains in an evident

sense a reduction 8": CE-—6> E, which is moreover a special reduction.

Furthermore IR"I < IRI, contradicting the minimality of 8.

Hence CE 7Q» E. U
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1.2.9. THEOREM. A e (Dkzz —-—+ £2) be CR.

PROOF. Consider the reductions

. A —>> CA —>> E(CA)

L
c(E(CA))

as defined in 1.2.3. We claim that E(CA)1i’C(E(CA)). Suppose not. Then there

is a conversion P = 81 * £31 as follows:

E(CA) C(E CA))

standard

 

for some term L. Here we may suppose that fil,fl2 are special reductions

(Def.1.2.6), as in the proof of Theorem 1.2.8; so P is a special conversion.

Now let P be moreover a minimal (w.r.t. I I, cf. Def.1.2.6.(iii)) special

conversion between E(CA) and C(E(CA)). Analogous to the proof of 1.2.8,

82 must be of the form

c(E(CA))

Bi£.m.

D(E(CA) A (C(E(CA) ))

Blstandard

Dk
Dk L'L'

1
EL'

i
EL
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But then the above indicated reduction 8' contains clearly a reduction 8i:

E(CA) —+» L' and a reduction 35: C(E(CA)) —é» L'. That is, 8' contains a

conversion F' = 3i * 85—1 between the two terms in question. Also it is ob—

vious that IP'I < Iflzl S IFI and that F' is special, contradicting the

minimality of F. U

1.2.10. THEOREM.

(1) A e (thz —-+ Z) I95 CR

(ii) A 9 SP I96 CR.

BEQQE, For the present CRS's we do not have PPBID (Postponement of D-steps)

as before. (E.g. consider DhIII —77é-II —hfé-I.) However, locally the si-

tuation is the same; to be more precise: G(CA) F= PPB,D' Here CA is the

term defined in 1.2.4 and the 'reduction graph' G(CA) is the restriction of

the CRS in question to the set of reducts of CA.

For (i) as well as (ii), we will prove that G(CA) #5 CR using the

previous theorem and an isomorphism argument.

' ' ' . . 9(1) Let Ck'Ak be the terms C,A as defined in 1 2 3 for A Dk' and Ch, Ah

the terms C,A as defined in 1.2.4 for A 9 Uh:

Ck : YTAcz.Dkz(cz) and Ak : YTCk

Ch E YTAcz.E(th(cz)) and Ah : YTCh.

Note that in G(CkAk) every'Dk appears in the form ... (DkPQ)..., and that

in G(ChAh) every'Dh appears in the form ...(E(DhPQ))... . (The proof is a

_routine exercise.)

Now define a map e: G(CkAk) —-4-G(ChAh) as follows: 1f M 6 G(CkAk)'

then E(M) E the resultof replacing every subterm DkPQ g M by E(DhPQ).

(To be more precise: e is inductively defined by

Il
l

mg(x) E x, E(vk) E Dk' E(E)

€(Ax.A) “ Ax.€(A)

E(DkPQ) E E(Dh E(P) e( Q))

E(AB) E eA(eB) if AB is not of the form DhPQ.)



Then one easily verifies that e is an isomorphism between G(CkAk) and

G(CkAk) and G(ChAh) in the sense that

1) E(CkAk) : ChAh

2) e 18 a bijection between Ter G(CkAk) and Ter G(ChAh)

I o3) for all M,M e G(CkAk).

M -—*-M’ ¢=’ €(M)-g-+ E(M')
B

M -TT—+ M' ¢=9 a(M) —TT-+ E(M').
k h

Hence the proof in 1.2.9 that G(CkAk) E5 CR carries over immediately to

G(ChAh) I74 CR, Vla 5:.

Alternative proof. Since in G(ChAh) every 0h occurs in a context

---E(UhPQ)-—-, a Dh-reduction step in G(ChAh) must have the form

—--E(DhPP)-- ——é--—EP--. This means that Dh-reduction in G(ChAh) can be

thought of as the converse of the reduction given by the rule

r* = EP ——> E(thp);

and A 9 r is obviously a regular CRS, hence CR. Therefore (as in Prop.

1.2.7) by Corollary 1.6.13 and Proposition I.5.5, we have

I

G ‘ChAh) I: PPB,Dh°

The remainder of the proof is then entirely similar to that of the pre-

vious theorem.
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(ii) A similar argument as in (i): let Csp'A be C,A as defined in 1.2.4
SP

for A 0 SP:

Il
lCSp YTlcz.E(U(DOz)(Dl(cz)) and Asp E Y C .

Now g: G(ckAk) ——a-G(CSPASP), defined by: C(M) E result of replacing each

subterm DkPQ g M by

E(D (DOP) (019)) I

is an isomorphism between the two reduction_graphs, analogous to the case
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in (i). (Note that in G(CspAsp) no 90-,Dl-steps are possible, only B-,D—

steps.)

Hence the result follows as in (i).

Alternative pgoof. Analogous to the alternative proof above, we have

G(cS AS ) |= PPB'D
P P

*
since D—reduction in G(CS ASP) is in fact the converse of r -reduction,

P

where

*
r = EP ——+ E(D(DOP)(DIP)).

The remainder of the proof is then again similar to the preceding cases.

1.2.11. We will now prove that there are similar CR—counterexamples for some

other non-left-linear CRS's, namely:

(i) For the TRS's Zk'zs as in 1.2.1 and 1.2.2. The proofs that the terms

CA as defined there yield indeed CR-counterexamples, are merely sim-

plified versions of the ones for A Q Ds'Dk°

(ii) Likewise for the TRS's Eh and Esp corresponding in the same manner to

A e 0h and A 9 SP.

(iii) For CL 9 Ds'Dk there are CR—counterexamples similar to the ones above,

bearing in mind that CL allows the analogous fixed point construc—

tions (see 1.2) and that the same necessary theorems (Standardization,

PPCL,D) hold.

(iv) For CL 6 Dh' SP there are also similar counterexamples; but in the

proof that they are indeed so, there is a technical obstacle. We will

deal with these'7CR—proofs below.

(v) For severalcfijmn:non—left-linear extensions of A and CL there are

analogous CR-counterexamples. We will give three examples:

(1) A a 03 where the constant 03 has the reduction rule D3ZZZ —-»-Z. Now

Dh can be defined in A 6 03 as Axy.D3xyy, and a CR—counterexample for

A 9 D3 is easily found by rewriting the one for A 0 Dh' (Instead of thy

take D3xxy.)

(2) Let 2 be the TRS with constants 0,+,— and rules 0 + Z + Z

(z1+zz)+z3 -—+-Zl+(z2+z3)

(-Z)+ Z -—+'O
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(Instead of + AB we have used the infix-notation A + B.) Then A G 2 b5 CR.

For, the counterexample for A 6 US can be rewritten: take E E 0 and szy :E

(—x) + y. (Note, however, that E F: CR by Newman's Lemma.)

(3) Let Z = A 6 i£_x then y else z be A plus a branching operation defined

by: if T then Z1 else 22 --—-+-Z1

lf i then Z1 else Z2 ——6-Z2

_i_f_Z thenz elseZ —->Z
0 1 -———- 1 1

Then 2 b5 CR. For, writing B(x,y,z) instead of i£_x th§2_y el§e_z, we can

define Dh as follows: Uh := Aab.B(I,a,b).

(It should be noted here that it does not matter whether one extends

A by B(x,y,z) or by B, the difference being that B(x,y,z) has always three

arguments,vflfijxaB can occur 'alone', as e.g. in (Ax.x)B.

For CL however, there is a crucial difference: CL 6 B b5 CR, analogous

to CL 9 0h b5 CR (see below), but CL 9 B(x,y,z) F= CR! This will be proved

at the end of this chapter.)

(vi) For An 0 Dh'vs'vk' SP the CR—counterexamples are the same as for A.

The proof that they 'work' requires several technicalities however;

see 1.3 below.

1.2.12. THEOREM. CL 69 Oh I75 CR.

PROOF. Translation (by means of T' as in 1.2.5.1) of the CR-counterexample

for A G Dh' viz.

CA E (YTAcx.E(Dx(cx)))(YT(YTAcx.E(Dx(cx)))),

yields: T'(CA) E nny(nn(nny)) where n E T'(Aab.b(aab)) and

y E T'(Acx.E(Dx(cx))) E S(K(3(KE)))(SD).

CLAIM 1. In GCL,D(CA) a subterm DPQ can only occur in a context

(i) ...E(DPQ)... or

(ii) ...KEB(DPQ)... for some B.

(If (ii) were not the case, postponement of D—steps in(3CL,D(CA) would

follow immediately, by an argument as in Proposition 1.2.7.)
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Proof of the claim

In GCL D(CA) the symbol 9 can only occur in the following subterms:
I

3 H- Y e S(K(S(KE))) (SD).
1

M2 E K(SIKE))X(SDX), for some X (the head reduct of M1X).

'M3 E S(KE)(SDX) for some x,

M4 E KEY(SDXY) for some X,Y (the head reduct of M3Y),

M5 E E(SDXY), Mé E KEY(DY(XY)),

M6 E E(DY(XY)).

Therefore claim 1 follows.

CLAIM 2. Let 2 be CL extended with constants D,E and the reduction rules

EZ ——+ E(DZZ) ('E—reduction')

I _ - lKEZ1Z2 ——é-KEZ1(DZ2Z2) ( KE reduction )

(so 2 is ambiguous).

Let '(K)E-reduction' be 'E— or KE—reduction'.

Then (K)E—reduction commutes with CL-reduction (i.e. I-, K—, S-reduc—

tion).

Proof of the claim
 

That (K)E- and CL-reduction commute weakly, is easily checked; the most

noteworthy case is:

KEAB -—7fi?—a+ KEA(DBB)

Kl 1K

EB -——————+ E(DBB)

The proof that they also commute is not immediately obvious (since (K)E—

reduction is duplicating) and requires some argument, e.g. the following.

Let us introduce underlining of redexes in 2; only the head symbols

of E-, I—, K-, S—redexes may be underlined and of a KE—redex the two head-

symbols may be underlined. The rules for underlined Efreduction are:
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12 ——+ z,K2122 —-+ Z1’ Szlzzz3 —-+ 2123(z223) .

£2 —-+ E(DZZ) , EE_ZIZ2 —+ KEz1(Dzzzz) ,

KE2122 —-+ E22 ,_I<_Ez1z2 —+ §Ez1(Dz2z2) .

Now underlined reductions are also weakly commuting; again the most note—

worthy case is:

EAB T EEA (DEB)

51 IE
EB ——E—"> E (DEB)

To prove that E F: SN (i.e. 'Finite developments' for Z) we can employ the

method of weights as in 1.4.

Every constant (say K) in a Erterm will have a weight (IKI) attached

to it; during a gfreduction the descendants of a constant keep the same

weight, with one exception.

Here the concept of descendant'is for the CL— and E-reductions the

usual one (note that CL 6 E—reduction is a regular TRS, for which we have

defined a 'canonical' concept of descendant); for KE—reduction it is de-

fined as follows:

If M e Ter(g), a weight assignment for M is called 'good' iff:

III = IKI = 1, for all I! £.in M;

III IKI ISI = IDI = IEI = O, for not underlined constants;

in each §ABC E.M' I§I > 2 ICI (where ICI is the sum of all the weights in

C); in each Eb, IEI > 2 IBI; in each EEAB or EEAB g M, IKI = 1 and IE] >

IBI. _"

Reduction of Efterms plus weights is as usual (descendants keep their

weight) with the following exception:
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KlEa AB —-) K0E0A(DBB) 

_K_1Ea AB ——> £1EOA(DBB),
 

i.e. the E loses its weight.

(Several other definitions work just as well.)

Now it is a matter of simple computations to check that

(a) the weight of a redex > the weight of its contractum,

(b) a 'good' weight assignment remains so during reduction,

(c) terms lose weight during reduction,

(d) every Efterm can be given initially a 'good' weight assignment.

(Cf. the proof of Theorem 1.4.1.11.)

Hence §_I= SN. Therefore, by the usual arguments, Z F= CR, and since

(K)E- and CL—reduction steps 'propagate' as similar steps, we have proved

that (K)E- and CL-reduction commute. Hence by Proposition I.5.5 the "con—

verse (K)E—steps", i.e. the D-steps, can be postponed. So we have

GCL,D(CA) F: PPCL,D' and the remainder of the proof that CA yields a CR—

counterexample is similar to previous cases. U

1.2.13. REMARK. The proof that CL 9 SP b5 CR is similar and is left to the

reader.

1.3. In this subsection we want to extend the above negative CR results

from A to An (or ABn-calculus; see Chapter IV). We will do this by showing

that the term CA, as in the CR-counterexamples above, has no n—redexes in

its BD-reduction graph GBD(CA) (hence GBD(CA) = GBnD(CA) and we are done).

To establish this fact requires some technical considerations; as a pre-

paration to the first technical proposition, but also for its own sake, we

will describe a method of proving a property P for all B—reducts of some

term M (i.e. G (14) I: p, or G (M) I: VN P(N)),. Such a method is desirable,
B 8

since often GB(M) is very complicated. One method is mentioned already in

I.12: there a cofinal reduction 8 in G (M) is used. Instead of proving
B

G (M) F: P, it suffices to prove P for the terms of 8. But this method

wgrks only if the property‘vP is invariant under B-reduction; the typical

example is: P(N)‘== N contains the free variable x. This 'cofinality method'

is not applicable for our purpose below.

We will now describe another (somewhat heuristical) method to prove

GB(M) I= P, which is based on the Standardization Theorem.
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1.3.1. DEFINITION. (i) M is in head-normal fbrm (h.n.f.), w.r.t. B-reduc—
->- +

tion, if M is not of the form RS for a B-redex R and some S = S S (n20).

R is called the head-redex of RE. 1 n

(ii) Head-reduction is the contraction of the head-redex, if present.

Notation:‘M _hé'N'

(iii).Let N s_M. N is called a derived subterm of M, notation M -ag;—+ N,

iff N is a proper subterm of M, not in h.n.f., which is maximal in that

respect. Otherwise said: iff (1) N $_M, (2) N not in h.n.f., (3) N' £_N &

N' not in h.n.f. =’N' E M. If M -----+ N, then N is said to be obtained by
der

derivation of M.

(iv) Let A1,...,An (n20) be the derived subterms of M. Then we will write

M E ¢hEA1,...,An] where ChE ,..., J is a n-ary context, called the head-

context of M.

C
B(M)'

is the least structure containing M-and closed under head-reduction and

1.3.2. DEFINITION. The condensed B-reduction graph of M, notation: G

derivation.

1.3.3. NOTATION. (i) If N g N' e Gp(M), we write N e Gp(M). Here

0 = B.Sn.BnD.

(iii) In the remainder of this subsection, 0 will stand for Dh'

(iv) CA is the term as in the CR—counterexample for A $ Dh’ i.e.:

CA E TY(T(TY)), where T E YT E (Aab.b(aab))(Aab.b(aab)), and

Ab.b(Tb), the head-reduct of T.y E Acx.E(Dx(cx)). Furthermore, 1'

1.3.4. PROPOSITION. (i) If (Ay.P)Q e GB(CA), then either Q is a variable x

or Q is a closed term.

(ii) if DMN e GBD(CA)' then M E x or M is a closed term.

PROOF. Define the property P by: P(M) ¢=1every argument B of a B-redex

(Ax.A)B in M is either a variable x or a closed subterm. So we wish to

(CA) I= P.prove: G
B

CLAIM. G;(CA) |= p=>G (CA) |= P.
B

If the claim is proved, we are done; for, it is easy to check for the finite

GE(CA) (shown on p.215) that P holds for every term. (Remark: the reverse

implication (¢9 can be easily proved.)
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Proof of the claim. Suppose there is a reduct M of CA such that.7P(M). We
 

c
have to show that there is some N e GB(CA) such that37P(N).

Let 8 be a standard reduction from CA to such an M; suppose B is of

minimal length. Say a is CA E M0 ——-+-M1 -—é-... ——'>-Mn

- - ' —-'+ ——")' E .0.a (maybe empty) head reduction. M0 11 ... h Mk ChEAl, ,AP] for some

k. Here ¢h[ ,..., J is the head-context of Mk and A

M. 8 starts with

1,...,AP are the derived

0,...,Mk, A1,...,Ap are by definition elements

of Ge(CA). If k = n we are done, therefore. Otherwise: due to the special
8

nature of P and to the minimality of 8, the remainder of R will proceed

subterms of Mk' Note that M

entirely inside one of the A1,...,Ap, say Aj' So 8 will proceed by a (pos-

sibly empty) head—reduction of Aj: Aj -——+ P = ChEB1""'Bq]' for—& 0.. —

h h

some P having B1,...,Bq as derived terms. Here we suppress the context

j-l'U'Aj+1
a proceeds entirely inside one of the B1,...,Bq, say BS. In this way 8 gives

ChEA1,...,A ,...,Ap] of the terms Aj,...,P. Again the remainder of

' E ——a- ,, ——+ ————+ -——+ ,,,-——+ _____+rise to a path CA M0 IE . h Mk der Aj h h P der BS

-fi» —agf+--fi» ... N in GB(CA) to some N(g Mn). By the speCial nature of the

property P and in View of the head—contexts which have been removed along

this path, it is evident that TP(N) (after a careful consideration of

G; (CA) ) .

(ii) From (1) we know that every 'substituted subterm' in GB(CA) is either

a variable x or a closed term. Hence (ii) follows for GB(CA). For GBD(CA)

the proposition follows easily now, using Postponement of D-steps. U
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1.3.5. DEFINITION. AI(-calculus) is the substructure of A where in every

(sub)term Ax.A(x) the variable x occurs at least once in A(X). Likewise

All is defined: the x in Ax.A(x) occurs at least twice in A(x).

Obviously, Ter(AII) is closed under B—reduction.

1.3.6. PROPOSITION. Dxx t GBD(CA).
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PROOF. Suppose not, and let a be a minimal special (see Def.1.2.6) BD-re-

duction from CA leading to a subterm Dxx.

8: —>>
SO CA 8, standard M D
Now we must have a Dxx s_M, i.e. by the minimality of 3, M —E» N is the

  v» N :> Dxx‘.

empty reduction. For, a Dxx can only be created by a D-step as follows:

Dx(ka) —-é-Dxx or D(Dxx)x ——+ Dxx. But then we have an 'earlier' Dxx; con—

tradiction with the minimality of 8.

Hence Dxx e GB(CA). However, this cannot be the case,asan inspectioncxf

Ge(CA) (preceding figure) shows. (Alternative argument:
8

Dxx e GB(CA) a>I E Ax.x e GB(CA), otherwise Dx(cx) E_CA cannot have Dxx as

descendant. But CA 6 AII 9 0, hence GB(CA) E_AII e 0; however I I AII 6 D.)

U

'.G CA=G CA.137 LEMMA BD() an()

PRQQE, We have to prove that if R E-Ax.Mx (xéFV(M)) is an n-redex, then

R ¢ GBD(CA). Suppose there is such an R e GBD(CA). Note that R & AII 0 D.

Since CA 6 AII e D and AII 9 D is closed under 8, there must be a D-step

P‘ffi—+ Q such that P e AII 9 D and Q i AII 0 0. Therefore the D—redex con—

tracted in this step, must be of the form DA(x)A(x),where x has one free

occurrence in A(X). But then by Proposition 1.3.4.(ii), A(x) E x. However,

this is impossible by Proposition 1.3.6. B

1.3.8. COROLLARY. An 63 Dh I75 CR. I]

1.3.9. REMARK. In likewise fashion one can prove that An 9 Dk'Ds' S.P.

I¢ CR. The proofs are very much similar to the proof of 1.3.8 and will be

left to the reader.

2. INTERMEZZO. An intuitive explanation via Béhm trees:

In order no bxplaid the failure of CR for the non-left-linear CRS's

which we considered above, it is convenient to use the concept of Bohm tree

(BT) of a term M; notation BT(M). This BT(M) coincides with what is called

the value of M in e.g. BERRY—LfiVY [793. We will not give a precise defini—

tion of BT(M) here; see BARENDREGT [80] for such a definition (for the

case of A-calculus) or the paper just cited (for RPS's). Let us merely in-

troduce the concept by an example. Consider the regular part of 28 as in
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1.2.1, i.e. the TRS with the rules CZ -—é-DZ(CZ), A ——+-CA. Then one can

develop an "expansion" (cf. the decimal expansion of numbers) of say the

term CA, in an attempt to find a normal form, as follows:

CA ——+ DA(CA) ——+~D(CA)(CA) —+» D(DA(CA))(DA(CA)) ——»-...

or, in tree notation, where PQl'°°Qn is written as //P

Q1”°Qn

CA ___9 ‘D —————4> /}<\ ————4> ‘—————> D\\\:-————+> ...

A 0 I I ./Q\ ,/Q\

A A A 0 A 0

A

In this way we find, as the 'infinite normal form' of CA, the tree

A E ,/D\\ E

A A

v
v/ \v

v/\v v/\v
../\.. ../\.. ../\.. ../\..

and this is BT(CA).

The same expansion is possible in A-calculus, CL, or other regular CRS's.

(Note that we restrict ourselves to regular CRS's in computing BT's; for

then we are assured of the unicity of the BT, regardless of the particular

computation. In fact, one can prove the CR theorem for infinitary reduc-

tions of infinitary terms, i.e. trees, if the reduction rules are combina—

tory and regular in the sense of Chapter II and this Chapter. The BT's are

then the unique normal forms.)

Now consider again BT(CA) : A. We will now extend the non-left-linear

D-reductions to trees (say for US):

E , for arbitrary trees T.v__..

T/ \T
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E.g. we have the reductions:

D H II

 \
/

m_/ D\ _ /D\

A A A

It is still possible now to find a common reduct, namely by "compensating"

the "balance-disturbing" D-steps in the vertical reduction:

v———ev———>D——>D——>E
/\ \ /\ /\

0 E0 E0 E
/\ /\ /\

D ED EE
/’\ /’\
EA EE

However, if we had executed infinitely many D—contractions in the vertical

reduction, as in the next figure, we would have lost the possibility of

'compensating':

 Asp A, E

A/ \v\

A/ 0\

1A/ D
l /\
I ....

€:/D\D

E
/\

E D
/\

E
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because here the trees E and e E D have obviously no common reduct.

E// \\ 8
Now this is precisely what happens in the CR-counterexamples above:

 BT(CA) = A ‘ D ’52 E
w 0/ \D

33.11" ' ”A v/ \v
.\ ......... ...)

“\\ .LL D/’\\D
‘ ‘-_..._.}

l A / \
l O O O O

i (Here the intermittent arrows

6 suggest where the D and E

BT(CE%\% E E/ \D settle down in the BT.)
\w:?\‘t-—é ./ \

\. ‘“~-—> E D
'\i\~ /

”E ‘9 E D

That is, the (finite) reduction CA —%» CE has had the same effect, in the

corresponding BT's, as the infinite vertical sequence of infinitely many

D-steps.

That it is indeed plausible that Eai/CE follows from the particular

state of their BT's in view of the following facts, which we will not prove

(since this is only an intuitive explanation):

(1) the BT of a term is invariant under B-reductions;

(2) if M 7+ N then BT(M) —-1“)’—>> BT(N) , where 793—» is a possibly infinite

sequence of D-steps

For Dk the BT's corresponding to the terms in the CR-counterexample

in 1.2.2, 1.2.3 are:

\I
/

.
m
‘
_
¢
4
>

l
>
-
—
m

C
D m t) n =5

/'\ / \
e E D

| I / \
A A
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and for 0h:

BT(CA) = c :F 7\ E = BT(E(CA))

I v '
/\ F

l c c
I

I?T(C(EE(CA)I>) = ¢ = F = E

D D
/ \

F I F/ \F
E v

c I
v E/ \E

E/ \E I ll?
I A I // \\\

/ \ /\ /\ F F

F . F I F F F A
/D\ /D\ D D D F E

1'; F F F) _/_\../_A A. [A E D
l

v D D D D E/ \E
/\ /\i\ /\ / I I
E E E E E v
I I I I I /\
D I) v v -- E
.[\_.[\.l\.__[\_ I I

and the same intuitive reasoning applies.

As a final remark to this intuitive intermezzo, let us conclude that

the above examples show that also when dealing with infinite "term-trees"

and infinite 'combinatory' reductions (of ordinal length) of them, the

left—linearity of the reduction rules is a necessary condition for the

CR property.

3. ADDITIONAL PROPERTIES OF A(CL) e Dh,05,0k,sp

The CR—property failing for the above discussed CRS's

A (or CL) 9 Ph.DS,Dk,SP, some other questions arise about them: namely

whether they are consistent, whether the property UN (Uniqueness of Normal

forms, see Def.I.5.6) holds, whether the property NF (Def.I.5.6) holds, and

whether these CRS's are conservative extensions of A (or CL). In the
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presence of CR, all these properties would have been corollaries, as re-

marked in Theorem I.5.11.

In order to answer (most of) these questions, we will need some pre-

paration: a technical lemma and a theorem which is of independent interest.

The lemma, which follows now, is a partial CR result. It says that given

a term A and two divergent reductions A —E» C, A -é» B, a common reduct can

still be found, if one of the two reductions is free of D-steps. Note that

this is consonant with the above CR-counterexamples, where in both reduc-

tions a D-step occurred.

3.1. LEMMA. Let E be A e DS,Dh,Dk,SP. Then B-reductions commute with ar-

bitrary reductions, i.e.:

VR,B,C 3D

 

(Here -§fi—+ is a B-step or D-step.)

Similar in case 2 = 2' 0 DS,Dh,Dk,SP, where 2' is a regular TRS.

PROOF. A simple argument shows that the statement in the lemma is equiv-

alent to the case where the reduction A ——4> C consists of one D—step:

VA,B,C 3D A

 
l
I
I

I2........... Y
B B1) >>13

and similarly for 2'. Let us first deal with the simpler case of 2'; say

2' = CL. So suppose that A —v-é-C and A .534» B; say A E CEDPP] where DPP

is the D—redex contracted in the step A -é-C. (The case of SP is similar.)

So C E CEE], resp. CEEP], resp. ¢[P] depending on which CRS we are con-

sidering; say this is CL 0 Dh' then C E CEP]. (The other cases are similar.)

Now underline in R: A ~634» B the redex DPP in A and all its
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descendants in Q. So B contains underlined subterms DQIR1,...,UQ£R£ for

some K 2 O ("unbalanced" descendants of the "balancedfi—v:redek—fiPPT. Ob-

viously all these underlined subterms are disjoint, since a is a CL-reduc-

tion. ‘

B can be separated into an "internal" part and an "external" part

w.r.t. the underlined subterms, by calling a step in 8 internal if it takes

place inside an underlined 223! external otherwise. Let flex be the reduc-
t

tion obtained from R by replacing every DQR in it by some variable x. Let

*
a : —'->Onl—+ ' a I 0ext C D be ext where x 18 everywhere replaced by P So now

we have

B : --- —-— ... ——— -——091 R1 DQ£R£

and

D' — —-— P --- ... --- P --— .

Furthermore, we note that the internal reduction part of 3 consists of

"unbalancing" reductions P ———4» Qi and P ———%» Ri for i = 1,...,3. So by
CL CL

CR for CL, we can find common CL—reducts Qi ——+» Si «G——- Ri (i = 1,...,K).

Now let

3' E -—— 05 s —-- ... _-_ DS 5 ___
1 1 K K

and

D = --- S1 --- ... --- SK ———,

then we have

 

   

A c. D ,

CL

CL A?D'

CL

A CL \‘ 0 §gr ”
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Likewise for CL 9 Ds'Dk° Note that we proved more than necessary: instead

—--——"->> B'———>>-——>> D. This '3 - ' ' 9of B CL,D D even CL 0 ( 1 only non tr1v1al for CL Uh

since there PP does not hold.)
CL,D

For Arcalculus instead of CL, the proof is complicated by the fact

that B may contain nested underlining (i.e. the descendants of DPP s_A may

be substituted in each other). The complications can be circumvented, how-

ever, by means of Lemma I.4.3.7, which says that in a B—development no such

nestings can occur. So if A ——4» B is a development, the DQiRi (i = 1,...,3)
B

are disjoint; and then the above proof for CL carries over without change.

I.e., we have

 

A \.C

B

dev B D'

B

A 
B 3'77 D

Furthermore, it is not hard to see that here B —9» B' and C —+» D are again

developments. Using this, it is routine to prove that a D-step can be

"pushed through" an arbitrary B-reduction, being a sequence of B—develop—

ments, as suggested by the following figure:

 

 

   
 

\

7’
D

dev dev

\ \/
\\

Kev If D / D I

dev dev
dev dev

/ » I »> »I » ”5’
dev dev D dev D I

dev dev dev

\ \\ - ---   
//

dev
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The closure of this diagram is ensured by the fact that the "dev—steps" do

not split, in their propagation to the right. U

The next theorem is a slight generalization of Theorem 1.4 in

MITSCHKE [77].

3.2. DEFINITION. Let X be some reduction system, and let P be an n—ary

predicate on Ter(2). Then

(i) P is closed under (Z—) reduction if: whenever Ai —9» A5 (1 = 1,...,n),

then P(A ,...,A ) =’P(A',...,A').
1 n 1 n

(ii) P is closed under substitution if:

P(A ,...,A ) == P(AO....,AO)
1 n 1 n

0’
where Ai denotes [x := B] Ai' the result of some substitution into Ai.

3.3. THEOREM (G. Mitschke) ('Reduction by cases', first version).

Let AD (or CLD) be the reduction system obtained by adding to A(CL) a con—

stant D and rules (for n,k21):

0A1...An ——+ M1 1f P1(A1,...,An)

coo —+ . .000A1 An Mk 1f Pk(A1, ,An)

where the Mi are closed AD (or CLO)—terms and the Pi (i = 1,...,k) are n—

ary predicates on Ter(AD) (resp. Ter(CLD)) satisfying:

(i) the Pi are pairwise disjoint,

(ii) the Pi are closed under reduction (including D-reduction)

(iii) the Pi are closed under substitution (in case of AD).

Then AU(CLD) k: CR.

PROOF. As in MITSCHKE [77], we can prove by inspection of cases that

    (1)
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(Here —§—+ is 0 or 1 step; i.e. the reflexive closure of ——+u) So D—, B-

reductions are self-commuting and commute with each other (see Def.I.5.2);

hence by the Lemma of Hindley-Rosen (I.5.7.(4)) CR follows for AD. Likewise

for CLD. U

3.3.1. REMARK. (i) In the formulation of MITSCHKE [77], n = k = 2 and the

conditions on Pi are more restrictive (the Ai have to be closed).

(ii) For some applications of the theorem, see MITSCHKE [77]. One of them

is:

A 9 DAB ——+ K if A,B are closed normal

forms and A E B

KI '" " and A I B

is CR. This is 'Church's 6-reduction', see also 1.15.(4).

(iii) Also 'Church's generalized G—rules' (as in 1.17) fall under the scope

of this theorem.

We will now give a strengthening of Mitschke's theorem, both for use

in the sequel and for its own interest.

3.4. THEOREM. ('Reduction by cases', second version.)

Let AD (or CLD) be as in the previous theorem, where Mi is replaced by

Mi (A1,...,An); i.e. the Mi may contain the metavariables A now.

Then AU(CLD) F= CR+ (the CR property in the strong version as e.g.

in Theorem I.6.9).

35995, The proof of 3.3 does not carry over to the present case, since the

assertions expressed in the diagrams (1), (3) there are no longer true

((2) and (4) stay true, as we will see), since now also D—reductions may

have multiplicative effect. AU(CLD) is not a CRS, but resembles one in the

following sense. Let A? (and likewise CB5; we will refer only to A in the

remainder of this proof) be-A-calculus augmented by constants 0,01,...,D
k

and rules

01 A1...An ——+- M1(A1,...,An)

6
.
.
.
.

kAl...An _fi Mk(A1,.o.'An)o
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D is now an inert constant. Then, obviously, A? is a regular CRS and even a

definable extension of A—calculus. Hence A5 I: FD, CR+ as we proved in

Chapter I (Theorems I.4.1.11 and I.6.9) using the method of developments,

decreasing weights, and reduction diagrams.

Now, in order to make the resemblance between AD and A? closer, let us

attach a subscript i to D in each subterm 0A1...An where P(A1,...,An). Note

that these subscripts are 'persistent' during a reduction, due to the re—

quirements (i), (ii), (iii) in the theorem. (The resemblance is not com-

plete since in AD we may have e.g.

(AX.—-xA——XB?—)D ——+ --01AF¥DZB?— if P1(A) and P2(§) hold.)

Now the point is that all the definitions (elementary diagram, under-

lining, development, weights) and theorems there-about used in proving

A6 F: FD, CR+, carry over without effort to AD. For, a development in AD

is in fact nothing else than a development in A?. To be more precise: let

M e Ter(AP) and underline some B-redexes and "Di"-redexes. Let R be some

development of these underlined redexes. Then 8 is also a development of

M e Ter(Afi), but for one thing: in R a 0 may become a Di (see the example

above) which is of course not possible in the regular CRS A6. In completing

a diagram D these subscripts, which appear out of the blue, do not bother

us however; ignoring them the whole diagram construction can be thought of

as taking place in A5) so it terminates indeed. So now we have CR+ for

AD-developments; to obtain CR+ for arbitrary reductions is then a small

step. D

Mk AD
development

A17 1)
devel pment

3.4.1. REMARK. (i) Note that the predicate P(A,B) ==IA E B is not closed

under reduction. Otherwise the previous theorem would yield that

A 9 (DAB ——+ A if A E B), i.e. A 9 Dh' was CR.

(ii) An example: )3 = A9 {UIA —-> A is CR, by the previous theorem

DKA —-+ AA

where P1(A1,A2) ¢=»A1 E I and P2(A1,A2) ¢=>A E K clearly satisfy the three
1

requirements. However, 2 is also a regular CRS, so this application is only
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illustrative and not essential.

(iii) The same as in (ii) can be said for Aczel's 'Definition by cases', as

in Example 1.15.(3).

(iv) An inspection of the proof shows that instad of A, CL any definable

extension of A-calbulus (or substructure thereof) can be taken. We expect

moreoyer that the theorem holds for an arbitrary regular CRS Z instaead of

A, CL, but did not work out the details. (For regular TRS's X it iS easy.)

We will now answer several of the questions posed at the beginning of

this section, in the following table, and give the proofs afterwards. (We

will only mention A, but everything holds for CL as well.)

 

' — c r —CR con51s onse va UN NF

tency tiVity
 

A9SP — + + ? —

Aevhzz—éz - + + + -

AeDSzz—+E - + + + -

AeDkzz—flrEz - + + + +       
 

3.5. Conservativity and consistency. The consistency of the CRS's is an

immediate corollary of the conservativity of these extensions over A; see

1.5.10.

To establish the conservativity of A 9 SP is a difficult matter; this

is done in DE VRIJER [80]. The consistency alone can also be proved by

elegant model theoretic means as in DE VRIJER [80], using the Graph Model

Pm; or in SCOTT [77], using an even faster construction.

For the remaining three CRS's the conservativity over A is easily

established:

3.5.1. THEOREM. A 9 Ds'vk'vh are conservative over A.

*

PROOF. Let D be Ds'vk'vh' and now consider next to A 9 D, the CRS A 9 D ,
*

where D is a new constant with the reduction rule

0*zz —+E resp.D*zz —->EZ resp D*zz —+z.s12 ’ k12 1' 'h12 1
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*

So A 9 D is a regular CRS, hence CR, and hence (see 1.5.11) conservative

l I O * I *

over A. That is, given a converSion F in A 9 0 between A—terms A,B, we

can find a common B-reduct C:

 

Now if F is a conversion between A,B e Ter(A) in A 9 D, then after re—

* * * .
placing each 0 by D we have a conversion F as above in A 9 D . Hence the

result follows. U

*

3.5.1.1. REMARK. The replacement of D by D , i.e. dropping the non-left-

linearity of the D-rule, yields a regular CRS in the proof above. Such an

attempt to "regularization" fails however for A 9 SP = A 9 (0,00,01); for

consider A 9 (0*ADO'DI) and rules

D (0*z z I ——»-z, (i = 0,1)
l 0 1 1

‘k

D (DOZO) (17121) —-+ Z0.

Then the rules are left-linear indeed, but they remain ambiguous. Moreover

they are inconsistent:

x = 01(D*Ax) = 01(D*(vO(D*Ax))(01(v*By)I) = 01(D*By) = y.

This may illustrate the difficulty of the syntactical treatment of A 9 SP.

3.6. The Normal Form property (NF). The failure of CR for A 9 SP'Dh'Ds'Dk

entails also the failure of NF (see Def.I.5.6) for the first three CRS's,

as we shall show; surprisingly, for A 9 0k we do have NF.

3.6.1. THEOREM. A ea Ds,Dh,s-P I?‘ NF.

PROOF. For Uh. Let D,U',D" be the terms CA. E(CA), C(E(CA)) as in the CR—

counterexample in 1.2.4. So D —+» D',n" and D' i n". Let
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<M> := Az.zM and KM := Az.M (zQFV(M)). (For CL, <M> := SI(KM1 as is seen

using 1.2.5.1.) Now consider the reductions:

Dh<c><u>(KI) ——»—<o>(KI)-——+ KID —~+ I.

Uh<D'><D">(KI).

Here the last term cannot reduce to the normal form I E Ax.x since 0": D".

Hence NF fails.

For US. Let D,n',n" be as in the CR-counterexample for A 9 DS in 1.2.3. Con-

sider:

DSDD -—+'E, a normal form

1
D n'n" d D n'n" > E ' u' D".s an now 5 —fL9 Since t’

For SP. Analogous to the case of Oh:

U(DO<D>)(Dl<n>)(KI) —+» I

l
U(DO<D'>(DI<D">(KI)

D

3.6.2. THEOREM. A 9 Dk |= NF.

PROOF. Let N be a normal form in A 9 0k and suppose M is convertible to N.

So suppose there is a conversion N E N0-—— N1 ——-... ——- Nfi E M where each

——- is -—é-or +~—-. We have to prove M -%b N. Suppose M 9L4» N, and let

Nk+1 be the first term in the conversion such that Nk+1 7L4» N. Then we

have the situation
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: _ —— “" N ————_ N —_ --—- N E M.

N ' N0 N1 k D k+1 .m

N

For t t N ——-N ' h o ' +——— ', he 5 ep k k+1 in t e c nver51on cannot be Nk Nk+1 Since then

also Nk+1 —4» N, contrary to the assumption; so NR ——4-Nk+1. Moreover, this

cannot be a B-step by Lemma 3.1.

Applying Postponement of D-steps in N —9» N (Prop.1.2.7) and again
k

Lemma 3.1, we have:

 

  

N N
k D k+1

B

P

\/ \\g Q
7"

L B D Q

U

I? 
N in normal form.

Now, since N is a normal form and L —4» N consists of Dk-steps, it is easy

to see that L cannot contain B—redexes. (Note that for vs the proof would

break down at this point; for Dh even earlier, since then PPBD fails.)

Hence L E P. Since D-reductions alone are CR (by Newman's Lemma

I.5.7.(1): D-reductions have the WCR-property and SN is obvious), we have

 

 

 

therefore:

Nk D Nk+1

V
L \ v >>VQ

D D

it ___________i? 
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(the bottom D—reduction being fl because N is a normal form)

But this contradicts our assumption Nk+1-f—%> N. Hence Nm = M —4» N,

i.e. NF holds. U

3.7. The Unicity of Normal forms (UN, see Def.I.5.6).
 

That-A 9 pk F= UN follows immediately by the previous theorem and the fol-

lowing general fact, whose proof is trivial:

3.7.1. PROPOSITION. For all ARS's: NF => UN. [‘1

For the CRS's A 0 Ds'vh the property UN turns out to hold also, but

the proof is more complicated. For A 9 SP the question is open; we conjec-

ture that A ea sp |= UN.

3.7.2. THEOREM. A e DS,Dh l: UN.

EBQQE, The proof is based on an idea of R. de Vrijer and an application of

Theorem 3.4.

Let 2 be A e DhZZ-+ Z. (The proof for US is similar to the one for D .

For 0k the proof works also, by the way.) Let 2* be A a a constant 0* and

the rule

0*AB ——+ A iff ¢(A) =2 ¢(B)

* u I I

where ¢z Ter(AGD ) ——+ Ter(AeD) 18 the operation of eraSIng every *, and

=2 denotes convertibility in Z. (E.g.

* * *

D (D II)I —+ D II since DII = I

but not

* .
D IK—'> I since I #2 K.)

To simplify notation, we will suppress ¢ from now on.
'k

We claim that the predicate P(A,B) :¢=>A =2 B is closed under 2 —re-

duction and under substitution. The closure under substitution is trivial.

To check the closure under reduction: let

*

A,BeTer(AeD), A=2B and A—*-'>A'.
z
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So to prove is A' =2 B. The only noteworthy case is that A ——é-A' is a

* ‘k

0 —step: A E CED PQ] —5;+ EEP] E A', where it is given that P =2 Q. (*)

So we have

‘ *
A' E c[p] +————-A E cED PO] AAAAAAAAAAAAAAAAAAAA B

0* “ converSion in Z

and using (*) we can obtain from this:

A' E ¢[P] +-—-— ¢[DPP] AAAA A E CEDPQTI AAAAAA B,
Z X

which is a Z-conversion between A',B. This proves the claim. Hence by
*

Theorem 3.4, E F: CR.

1, N2 such

1 =2 N2. 1, N2 are moreover chosen such that

INll + 1N2] (the sum of the lengths) is minimal.

Now suppose UN fails for Z. I.e. there are normal forms N

that N1 $ N2 but N Suppose N

(**) Then N1, N2 contain no subterm DAB such that A =2 B. For, suppose say

N1 contains such a DAB. Then obviously A,B are in normal form (since N

A $ B (since N

115):

1 contains no D-redex) and [Al + IBI < ]Nll. This would con-

tradict the minimality of N N .
1' 2

Since N1 =2 N2, we have a E—conversion P: N1 AAAA N2. After replacing

* . . * . * * * * *
each 0 by D , this yields a Z -converSion P : N1 AAAA N2. Now N1 and N2

* *

are also 2 -normal forms; that there are no 0 -redexes was remarked in

*

2 2'
* *

So 2 b5 UN. But this contradicts our earlier remark that 2 F: CR

*
(**). Moreover, N1 $ N since N1 $ N

(since CR => UN) . Hence 2 I= UN. U

4. SOME POSITIVE CR-RESULTS FOR NON-LEFT-LINEAR CRS's

If E is a non—left—linear, but strongly normalizing CRS, then CR holds

(provided 2 F: WCR) by Newman's Lemma. However, consider the TRS E with

constants w,D and rules wZ-—+ .ZZ and DZZ ——+-Z. Then 2 b4 SN; e.g. mm or

u(Dwm) reduce to themselves. Yet.2 seems clearly CR; but even for this

simple TRS the proof is problematic.

In this subsection we give some positive information on the CR—property

for non-left—linear CRS's; this will also cast more light on the previous

CR—counterexamples. One of these results (5.6(iii) and 5.7(i)) answers a

question (or rather, suggestion) in O'DONNELL [77] ('Further Research'
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P.103. (2)(b).)

4.1. DEFINITION. Let E be a CRS and let M e Ter(2). Then CR(M), "M is CR",

iff VA,BSC

 

(So CR(M) says that the CR—property holds locally, at M.)

4.2. NOTATION. LetAk be the CRS with constants Dk'E and rules

DkZZ ——+ EZ. Likewise AS has the constants 05,5 and the rule DSZZ‘—~+ E;

and Ah has the constant oh and the rule DhZZ ——+ Z. (Sometimes we will

revert to our previous 'abus de language' of writing 2 $ Di (i = k,s,h)

where 2 9 Ai is meant.)

4.3. DEFINITION. Let E be a CRS and consider 2 0 Ai where i = h,k,s.

(i) A D-preredex RD is a 2 9 Ai-term of the form of Di AB. A chain of D-

preredexes (of length n), or D-chain, in a term M is a sequence

v (1'1)
M 3 RD 2 R6 g R6 3 ... 2 RD

for some n.

(ii) [MID := the maximal length of chains of D-preredexes in M.

"MHD := max{lNID I M —4» N}; possibly “M"D = m. Here —6-is reduction in

2 6 Ai. We call "M“D the 'D-norm' of M.

4.3.1. EXAMPLE. In CL 9 131' let M1'E 10(011) (D(DH)1) and M2 2 CA as in the

CR—counterexample for CL 6 Ai above.

= = = II = 00.Then IMIID 2, "MlllD 3, 1M21D 1, and |le D

4.3.2. REMARK. (i) M —>> N = "MHD 2 IINIID.

(ii) If IIMIID is finite, then: M -—>> ¢[DPQ] =9 leIID,IIQIID < IIMIID.

4.4. THEOREM. Let E be a regular TRS. Then:

(i) for all M e Ter(Z 0 Ak), "MHD < m== CR(M)

(ii) likewise fbr Z 9 AS.
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35993. (i) The proof is by induction on "MHD.

The basis step, HMHD = O =>CR(M), follows easily from Z F= CR.

Induction step. Induction hypothesis: "M“D < n=¢ CR(M).

Now let M be a term such that “M"D = n+1.

Let two reductions of M, 81 and 32, be given; see figure.

 

' "
M M M (R

k >3 »‘ 1

8
2

\N\ \”\N'   
Suppose we have already found a common reduct N' of N and M'. If the next

step in 31, M' —+-M", is a Z-reduction step, we can find a common reduct

of N' and M" by Lemma 3.1.

The other case is as in the next figure: M' —+ M" is a Dk—step. By

Proposition 1.2.7(ii), which evidently holds also with A replaced by X (it

is easy to verify that an analogon of Cor.I.6.13 as used there, holds for

CRS's), we can postpone the D—steps in M' —E» N'.

 

 

  

 

M' 5 03M PP] M" a ctgfl
k v

k
z 2

L \ E \\El VL"

0k

N

Now underline the Dk—redex DkPP which is contracted in the step M' -—+ M",

and also the descendants of that redex in the reduction M' -4» L -E» L'.

(Since this is a Z-reduction, this makes sense: the concept 'descendant'

is defined for regular CRS's. Underline moreover the contractum EP in M"

and all its descendants in M" ——+ L"; here L' and L" are found as in the

proof of Lemma 3.1. So the Z—reduction steps in L —4» L' take place inside

underlined subterms, and we have:
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L“ H- ¢[DPIQI I . . . IDPQO]

 

L' E 0:th R ,...,DR R ]
1 1 m m

I." ¢[ER1,.. .,ERm]

for some m—ary context ¢[,...,] and terms as displayed. (An m—ary context

is a context having m 'holes', e.g. DS(IDU) is a ternary context.)

Now consider in L all U—preredexes (underlined or not) which are going

to be contracted in the reduction L-—4> N'. To be precise: the D-preredexes

having a descendant which is contracted in L —E» N'. (In fact, we have not

defined 'descendants' for irregular CRS's; but we can use for the purpose

of this proof the following definition.

Let A; be the :egular CRS with constants 0:, E and the rule 0]:le2 -+ EZI'

Then for Z 9 Ak descendants are defined; and now the concept of descendants

in Z 0 Ak is induced in the obvious way.)

We will mark those D-preredexes, which will be contracted in L —E» N',

by an underlining noich. . Next, consider the underlined D-preredexes (by

as well as.~eot) which are maximal w.r.t. S: Then

L E ¢'[DU1V1,...,DU£V£]

for some l—ary context 6'; here ——-- is ____or Av\,.or':::=:.

Note that the --- underlined D—preredexes are pairwise disjoint, trivially.

Since L —E» L' is a Z-reduction taking place inside ___funderlined D—prere-

dexes and in L' —E» L" only ___funderlined D-redexes are contracted, and

since --—- covers ____J the context ¢'[,...,] remains unchanged in L".

Therefore we can write

E ' ' ... D. E DU.V.L T [D1, 'Dfi] where 3 --2—2,

L" E C'EF1,...,F£] for some F.r
J

N' E ¢‘[Di,...,Dk] for some D5 (j = 1,...,2).

Hence it is sufficient to prove that D3 1 Fj (j = 1,...,3). We may suppose

that the descendants of the Dj (j = 1,...,3) are the last ones to be con-

tracted in L .4» N'. (The proof is easy: replace if necessary the
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reduction Dj E DUjVj ——9-DWjo ——e-EWj ——»-EW5 E D3 by the reduction

DU V. -—+ DW.W. ——6-DW!W!-—-+ EW! E Di, etc.) This is not an essential step,
3 3 J J J 3 J 3

however.

Now, according to the relative position in Dj of the and rc~_un-

derlining, we distinguish the following cases.

CASE 1. Dj DPij. So the reductions

M

l:
" ——4» L"

contain the following reductiOns of Dj:

L D. EDP. .———->>DR.R.T*ER. EF, L"
3 3 lg] >3 {31'3 3 JE

l I

$0 L'
03$

10

D: E E3 c N'3 ._

Since "Pj"D S n by Remark 4.3.2, the induction hypothesis yields a common

reduct of S and Rj as follows:

T.
3

Hence also D3 E ES and Pi E ERj have a common reduct.

CASE 2. Dj E DP.Q.; Pj and Qj may contain rvd/u Now we have the situation:
 

LDD. EDP.Q.——>> DR,R,—D-—>ER. EF, CL"
‘3 3'32 33 3 J—

10 ml
Ll

N' 3 D' E 053'
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Again, since the D—norms of the involved terms are S n, we can construct

by the induction hypothesis a common reduct Tj as follows:

 
Hence D! E 088' -€» DT.T. ——+ ET. and F, E ER, —é» ET..

3 J J J J 3 3

CASE 3. Dj E DUjVj; UUjVj is not_runderlined, but Uj'vj may contain __3

M,

(NOte that Duivj is not a proper subterm of a DPiQi for some i, by the

maximality condition for the Dj.) So we have the following situation:

L_:_>D. E DU.v. -—————>> DUEV'. E F. EL".
3 JJ 33 3

10

033

Now we can find again a common reduct Tj:
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Hence Fj E DUSVS —4» DTjTj ——> ETj and D3 E ES -+» ETj. So in all three

cases we have Fj + D! (j = 1,...,[); hence L" + N'.
3

(ii) For 2 e AS the proof is entirely similar to (i). D

4.5. REMARK; Note that indeed the terms in the previous CR—counterexamples

have an infinite D—norm.

4.6. REMARK. In fact we have proved the following stronger proposition, as

follows easily by inspection of the proof of Theorem 4.4:

4.6.1. PROPOSITION. Let 2 be a regular TRS and let M e Ter(Z$Ai) (i = k,s)

be such that fbr all N,A,B: M —E» N 3 DAB implies CR(A),CR(B). Then CR(M).

4.7. REMARK. (i) Let E be CL extended with Dk' E and the reduction rule:

DkMM ——+-EM if M is strongly normalizing (SN), w.r.t. CL - as well as

D—reduction. Then X F= CR.

To see this, note that M 6 SN £’CR(M) by Newman's Lemma; then the

proof of Theorem 4.4 applies without change. Likewise for 08.

(ii) A similar proposition holds when the restriction in (i) on M is re—

placed by:

"if M does not contain the constant 0k" (resp. US). For, then we have CR(M)

at once, since CL F= CR.

In order to state the following corollary of Theorem 4.4, first a

definition.

4.8. DEFINITION. (i) If H e Mter(2), then d(H) (the depth of H) is the

maximal length of branches of T(H), the term formation tree of H as in 1.7.

(Par abus de langage, we will write d(H) = d(TH).) E.g.

d(Szlz2z3) = d( /?\) = 1

z1 22 Z3

and

d(le3(Z2Z3)) = d( //Z\\ )= 2.

z z
3 2

I
z
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(ii) Call a reduction rule H ——+ H' diminishing if d(H) 2 d(H') and call

the CRS Z diminishing if all its reduction rules are.

4.9. COROLLARY of Theorem 4.4.

Let 2 be a diminishing regular TRS. Then X 9 Ai F: CR (i = k,s).

PROOF. Note that the rules for Di (i = k,s) are diminishing:

d( D ) 2 d( E ) and d( D ) > d(E).

Hence 2 9 Ai (i = k,s) is diminishing. Therefore, no M e Ter(EQAi) can have

an infinite D-norm. D

4.10. EXAMPLES. (i) Let 2 have constants m, D, E and the rules wZ-——+ ZZ

and Dzz —-+ £2. Then z I: CR.
* *

(ii) Let CL have constants K, S and rules

*

Kzlz2 —+ z1 and S Z1Z2Z3 —+ zlz3zzz3.

Then CL* 6 Ai F= CR (i = k,s).
**

(iii) Let CL** have constants K, S , Q and rules

**
oKzlz2 —--+ z1 and S (‘21)2223 —-+ 2123(2223) .

**
Then CL 9 Ai }= CR (i = k,s).

4.11. DEFINITION. Let E be a regular TRS. Then 2 0 Aiz) (i = k,s,h) will

denote the substructure of E 9 Ai where every Di is the head of a D—prere-

dex (i.e. every Di has two arguments).

E.g. if E is CL, then SK(DII) and D(DTTSK)KK are 2 G A(2)-terms, but

SK(DT) or 3K0 are not.

(Alternative, inductive definition of T = Ter(ZeAi):

(1) Ter(2) g T, (2) A,B e T => AB, DAB 6 T.)

4.12. COROLLARY of Theorem 4.4.
2

Let E be a regular TRS. Then 2 e A: ) F: CR (i = k,s).
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(2)
PROOF. If M ——+ N for M,N e Ter(zaAi ) (i = k,s), then HMHD 2 "N“D as one

easily verifies. Hence IMID = "M“D < m. D

4.13. REMARK. Consider a regular TRS as in HUET [78], where a TRS is written

in 'function notation'; e.g. instead of our PZ1Z2 ——a-Z1 the notation in

HUET [78] would read P(Z1,Z2)-——+ Z . Now, writing Ak for the TRS having

as only rule Dk(Z,Z) ——+ E(Z) and AS for the TRS with the rule DS(Z,Z)+ E,

Corollary 4.12 is equivalent to the proposition that for every regular TRS

Zf as in HUET [78], we have 2f 9 A: F= CR (i = k,s). (Below we will general—

ize Corollary 4.12 to the case i = h.)

This might seem somewhat paradoxical in view of e.g. CL $ Ak b5 CR;

the explanation is that the 'function-notation' version (CL 9 Ak)f cannot

be written as a 'direct sum' CLf 6 A:. See HUET [78], who gives as CLf:

A(A(A(S,zl),zz),z3) ——A-A(A(zl,z3), A(22,z3))

A(A(K,Z1) :22) —")' Z1

where A stands for application. Now (CLQAk)f would be the TRS having the

two preceding rules plus A(A(D,Z),Z) —-*E(Z).

We will now generalize some of the preceding results to Ah and SP. This

will be done via a lemma which may be of independent interest.

5. THE 'BLACK BOX' LEMMA

Consider an extension 2 of CL by some new constants and some new re—

duction rules. The rules need not to be regular, and may be quite 'patho—

logical'. Now consider a Z-term M E ¢[01,...,Un] where ¢[,...,] is an

n-ary CL-context (i.e. a CL-term with n 'holes') and where the Di

(i = 1,...,n) are Z—terms, possibly containing new constants. Suppose we

are not interested in the precise content of the Di (so they are 'black

boxes'), but know already that CR(Di) and moreover, suppose that a black

box can only be "opened" (and hence interact with its context) when its

content is a CL—term (not containing new constants).

Then, we claim, CR(M) holds.

A refinement, which we will prove and use below, of this claim is

that a black box, when opened, may yield a CL-context of other black boxes -

but only when the latter are of lesser 'order' (a natural number) than the
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5.1. DEFINITION. (1) CLD is an extension of CL with a set of constants

{0: I n,i 6 II}; here n is called the 'order' of U: (and i can be thought

of as the"internal state' of DE).

(ii) Next to CL-reduction we have the following kinds of reduction:

n m . . . . .
(a) Di —:;+-Dj for some n,m,i,j; it 13 required that n 2 m.

n 1 wk . . .
(b) Di -7;é'¢[0j1,...,njk] for some n,i,k,m1,31,...,mk,jk. Here C[,...,]

is a k—ary CL-context. It is required that m1....,mk < n.

A step of kind (a) is called 'internal'; furthermore we say that after

a (b)-step the black box D; is 'opened'. As always, reduction steps of any

kind may occur in an arbitrary context, i.e. A ——+ B =>¢EAJ ——+ CEB].

Sometimes we will omit the subscript in-j;+.

(iii) Reduction of kind (a),

1,1
must satisfy WCR , i.e.:

n? (a)

(b) is required to be CR: internal reduction
D

 1

(a)

 
D

and furthermore we require

(
4
.
3

__
__

l:
__

_I
I

E,

m “’k
 

 

n A. 1 _
n.f’ 11 ¢ED. ,...,D. 1 : M
i (b) : 1 3k

i
(a) :CL(a)(b)

I
l
I

I
\L _________>>V p D
m (b) , 1 "K :

nj ¢ [uh ,...,Dh 1 _ P
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i (b) ”I j1 .Jk
I

i
(b) :CL(a) (b)

i
I

I
I
IL" Igzgglélm__u_9 ql qs

PEC'EUh,...,Dh] ¢"EEI ,...,Dr‘lEo
1 Z 1 s

n . . .
(iv) CLD is the restriction of CLD to terms containing only constants D?

O n
here m < n. So CLD = CL. If M N e Ter CLD nd M ———————A» N e riteW ' ( ) a CL(a) (b) ' W W

M —-r—1+ N and call M an —n+ —redex. (Warning: ——I-1-->-;£ Tr )

(V) M _3+ N== ¢[M] _h+ CEN], where TE 3 is now a CLD—context. (Note that

GEM] will be in general not an —;+-redex, which is e Ter(CLDn).)

5.2. LEMMA. Let CLD be an extension of CL as in the preceding definition.

Then CLD I: CR.

PROOF. We will prove by induction on n that —;* has the CR—property. Then

obviously arbitrary CL(a)(b)—reduction (= U -*) is also CR.
neEJ n

. . O
BaSlS. Follows Since CLD = CL F= CR.

Induction step. Induction hypothesis:

 

Now consider CLD-terms A,B,C such that A —;:T+ B, A ~311+ C. These 'steps'

consist in fact of CL-steps, ——H—+ -steps, and 12%191+ -steps (mSn).

We will now examine the elementary diagrams which arise when these steps

are 'confronted'. (We will not explicitly consider the trivial cases in

which the two confronted redexes are disjoint.)

CASE I. A CL—step versus a CL-step. Trivial.
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CASE II. An (a)(b)-step versus an (a)(b)—step. There are three subcases.

 

   

 
 

    
 

 

m(1) (a) vs. (a): n? u.
/ 3

n

n m S n

\

7 ll

0“. n' S n Uni.
J J

(2) u’,‘ (b) M (3) u: (b) \ M
l n

n (a) n (b) n n

u m S n / P P n Q

Here P, Q, M are as in the diagrams in Def.5.1.

CASE III. An —E+ - step versus an —;+ - step. This case is covered by the

induction hypothesis: see the diagram there.

CASE IV. An —;+ - step versus an iééigl~+ —step (mSn).

(1). If m < n, then the latter step is also an —E+ - step and we are in

the preceding case. So we have then

 

   

(2). If m = n, these two steps involve disjoint redexes, since an —;* -

n . .
redex (a CLD -term) cannot contain an " —E+ - redex", (i.e. a constant

a?) by definition. So we have
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n

n n

\ ‘\

n

(a)(b) . . .
CASE V. A CL—step versus an -—;r———é-- step (mSn). This case 18 eaSIly

analyzed; the elementary diagrams which arise are of the form:

CL
 

  /
/

 
CL’

(Here —Efi:d+ is an S-,K—, or I—step.)

CASE VI. A CL—step versus an —;* - step.

Three subcases arise. Let R be the CL—redex and R' the —EO-— redex.

(1) R n R' = Q: trivial

(2) R g R'. Then R is also a -H+-- redex. Hence, by the induction hypothesis:

 

CL =’ n n

   

(3) If R 2 R', we distinguish the following sub—subcases.

(i) R E SABC, .R' E SAB

(ii) " R' E SA

(iii) " R' g

(iv) " R' g

(v) " R' g C

(vi) R E KAB, R' E KA

(vii) " R' E

(viii) " R' 5

(ix) R E IA , R' In
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We consider the two most noteworthy cases: (i) and (v).

(i) (v)

 

 

     
 

c BC
SABC~ AC(BC) SABC A ( )

S S n
n

n I c' BC
n VA'C(Bc) {A ( )

II

n

‘ l l ‘ ~\ AC'(BC')

The other seven cases are even simpler: they involve no splitting of steps.

The conclusion istflun:the CL-steps (in fact only the S—steps) are the

only ones who have the power to split the other arrow in an elementary

diagram. So by a routine argument and an appeal on the lemma of Hindley-

Rosen (1.5.7), reductions involving-CL-, -H+ -, —Ef-(m5n)—steps are CR.

I.e. we have proved

 

Hence CLEI |= CR. [1

5.3. REMARK. It is not hard to check that the 'black box' lemma 5.2 also

holds for A instead of CL, or for other regular CRS's in general.

5.4. EXAMPLE. (i) A simple application of the black box lemma for A is the

well-known result (obtained by MITSCHKE in an unpublished note and indepen-

dently by us) that A 9 (9 + M) F= CR, where 9 E (Ax.xx)(Ax.xx) and M is an

arbitrary fixed term. (Cf. BAETEN—BOERENBOOM [78]) (Just put 9 in a box,

which can only be opened after its reduction to M; the CR-requirements for

the boxes hold trivially.) This example is only meant as an illustration,

since it is easy to give a more straightforward CR-proof.

Before stating some corollaries of Lemma 5.2, some notation:
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 5.5. NOTATION and DEFINITION. (1) CL e 0&2) is already defined in 4.11. A

notational variant CL 6 Dh(,) is obtained by defining the set T of terms

inductively as follows:

(1) I,K,S e T, (2) A,B e T =»AB, Dh(A,B) e T. Next to CL—reduction there

is the rule Dh(A,A) + A.

(ii) A ® 0:1 is the substructure of A 6 Oh where in every DhAB one requires

A,B to be closed. So the set T of terms is defined by

(1) xi 6 T (2) A,B e T =IAB, Ax.A e T (3) A,B e T and closed =ID:1AB e T.

(Notational variant: 0:1(A,B) instead of DfilAB.)

(iii) A 0 (i£_.. thgg_.. §l§g_..), or its notational variant A e B( , , ),

and A 0 B are already defined in 1.2.11.(V) (3). Likewise for CL.

(iv) Analogous to A e 0:1 we define A o Bel.

Now we have the following situation:

5.6. THEOREM. (1) CL 9 Dh( , ) F= CR

(ii) 190:1“) |= CR

(iii) CLeBI , ,) l: CR

(iv) AeBC1( , ,) l= CR.

EBQQE: (i) Consider CL 9 Dh( , ) or its notational equivalent CL 9 Dfiz).

Let M e Ter(CL 6 Dézh and put the maximal subterms of the form DAB (a

maximal D—preredex) in boxes and let n = |DAB‘D (see Def.4.3) be the order

of such a box film. A box is opened when @n —>> UCC —-—-—-+ C. Ob-

viously ICID < n, i.e. C is a CL—context possibly containing boxes of

order < n. We have to prove the CR-requirements for the boxes, as stated

in Def.5.1.(iii). This will be done by induction on the order n.

Basis. n = 1: follows by a simple argument from CL F: CR, since then A,B

1
in [DABI are CL—terms.

Induction step. Induction hypothesis: the restriction Zn of CL 6 Déz) to

terms M such that IM1D < n (cf. CLEIn in Def.5.1), is CR.

Now let M contain a _n. Then CR(UAB) by the same argument as used

for the basis step, now using Zn F= CR and noting that‘A,B e Ter(Zn).

Hence all the boxes are CR. The remainder of the proof follows by

analogy from the proof of the black box lemma.

(ii) As (i). That in DfilAB the terms A,B must be closed, is essential

(for this method of proof); otherwise by substitution the D—norm (i.e. the
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order of the 'black boxes') could increase, as is indeed the case in the

previous CR-counterexamples. (See also Remark 5.7.)

(iii) Mutatis mutandis (e.g. the definition of 1 IB instead of I ID) the

proof is similar to that of (i). The ambiguity involved in the reductions

B 1 AA + A‘(by two clauses of the definition of the rules for B) is harm-

less.

(iv) As (iii). U

5.7. REMARK. (i) Theorem 5.6 holds for any regular CRS instead of A, CL.

(ii) We expect that analogous results can be given for SP instead of Dh'

(iii) Note the correspondence between 0(2 ) in CL and D? in A. Indeed,hif

T (or T ') is the translation from A to CL as in 1.2. then

C1 = --D(2)(TA)(TB)--. This is not the case for DhAB where A,B

are open; cf. our previous CR—counterexample T(CA) for CL 0 D:

(iv) warning: A 0 Dhl F: CR does not mean that A 0 (DhAA + A if A is closed)

F= CR. For, the previous CR-counterexample is also a CR-counterexample for

the latter restricted system: the two D-contractions in that counterexample,

D(CA)(CA) + CA, involved closed terms.

(v) We expect that Theorem 5.6 can be sharpened to yield a result analogous

to Theorem 4.4.

5.8. REMARK. The Fixed Point Theorem (cf.I.1.11) for A and CL can be stated

in the following equivalent ways:

(FP) VF 3X X -—>> FX

(FP') VIBE 1 3x x —>> In[x]

Note that for the extensions of A and CL in Theorem 5.6, (FP) stays valid,

but (FP') fails. (E.g. in CL 0 Dh( , ), consider CC 3 E Dh(U,I) and note

that IMID cannot increase in a reduction of M.)

In fact, the failure of (FP') is due to the failure of 'Combinatory

Completeness' (cf. I.1.10 and I.2.5.3; this property can be phrased as:

(cc) VcE ,..., 13c Cx ...xn —-—>> CEX1,...,xn]) since cc=> (FP <=>FP'), as
1

one easily verifies.

5.9. REMARK. For AT 0 SP (typed A-calculus plus Surjective Pairing). CR is

proved in POTTINGER [79].
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CHAPTER IV

ABn‘CALCULUS

In this chapter we will derive the main syntactical theorems for ABn—

calculus. As it turns out, the addition of the so simple n—reduction rule

complicates syntactical matters considerably. After the Church-Rosser

theorem, which is easily obtained from that for A8 and is presented via

Bn-reduction diagrams, we introduce A—residuals, which have a more pleasant

behaviour than the ordinary residuals in Bn-reductions. For instance, we

will show that the Parallel Moves Lemma fails for residuals, but holds for

A—residuals. We make an essential use of A-residuals and the PM Lemma in

this chapter.

By the same method as used for A8 in Section 1.9, the Standardization

Theorem for ABn is proved. Then the Normalization Theorem and Quasi—normali-

zation Theorem are proved for ABn. These last two theorems require an extra-

ordinary long proof, compared to the AB-case; nevertheless we felt the ef-

fort was worthwhile since firstly the Normalization Theorem is a very

'natural' theorem, and secondly since some of the lemma's used in the proof,

seem to be of independent interest.

This chapter was inspired by work of R. Hindley. It answers some open

problems mentioned in HINDLEY [78], namely whether the Standardization

Theorem (there called: Strong Standardization) and the (Quasi-) Normaliza-

tion theorem hold for ABn.

1. THE CHURCH-ROSSER THEOREM FOR ABn-CALCULUS

1.1. DEFINITION. Let the set of A-terms, Ter(A), as in Def. I.1.1. be given.

In addition to B-reduction we define n-reduction, as follows:

CEAx.Ax] T ¢[A]
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for all A e Ter(A) such that x & FV(A), and all contexts CE 1.

A term of the form Ax.Ax where x & FV(A) is called an n—redex. The

transitive reflexive closure of ~fi+ is 7:». By 'ABn—calculus' we mean the

reduction system

ABn = <Ter(A). -—+. —n* >-
B

The union —E+ U _3+ is written as ———+ or just-—+.
8n

1.2. CONSTRUCTION OF Bn-REDUCTION DIAGRAMS

Let coinitial Bn-reductions R1 = A ——+u.-—+-B and £2 = A ——+..——+-C be

given. As in I.6.1 we will try to find a common Bn-reduct D of B, C by con—

structing the reduction diagram 0(R1,32). In most cases it is obvious how

the diagram construction for B-reductions in I.6.1 is to be extended to in-

clude n-reductions. We will mention therefore only the two noteworthy cases:

Ax

 

(1) CE (Ax.Ax)B] —————é———+ CEAB]

Ax n { (trivial or 'empty' step)

I

CEAB] ------------- CEABJ

(II) cEAx. (Ay.A(y))x]+¢[Ax.A(X)]

Ax n :

¢[Ay.A(y)] ¢[AX.A(X)]

Here in (I), (II) x & FV(A). In the sequel we will often omit this condition

and assume it tacitly. Note that in (II) we identify the a-equivalent terms

Ay.A(y) and Ax.A(x)..

So in Bn-reduction diagrams we encounter the following types of ele-

mentary diagrams: the ones which are already mentioned for A8 (see 1.6.1.1),

plus
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I

.I 5
n n n n n21 n :

0 times :
n I

.L_______J
n B B

erasure

    
\f’

coincidence absorgtion

Here (I), (II) in the e.d.‘s of the absorption type refer to (I), (II) above.

It is now easy to extend the strong version of the Church-Rosser theorem
+

CR (Theorem I.6.9) to the present case:

1.3. THEOREM (Church-Rosser).

Every diagram construction in ABn terminates.

PROOF. Consider a square which is determined by one step in 81 resp. 32:

8.

'
 

 

  

 

  
     

Since B—steps propagate as B-steps (or fl-steps) and similarly for n—

steps, 8' consists entirely of B-steps + possibly fi-steps, or entirely of

n-steps + possibly fi-steps. Similarly for 8".

In all 4 resulting cases it is easy to show that the construction of'

U(fi'fl") terminates, using in one case the termination of B-diagrams



252

(Thm.I.6.9) and in the other 3 cases that n-reductions have no 'splitting

effect':

 

  

A B

n B

‘NK

n

n

\K

n \t

\L—Es
c B D

I.e. VA,B,C3D[A —§+ B a A 7T» c =»B if» D & (CED v C-7?+ 3)].

This fact follows at once by inspection of the e.d.‘s in 1.2. U

1.3.1. REMARK. Just as for the case of AB, one can prove that if R' consists

of B-steps, it is a complete B-development (Def.I.6.6). This is proved in

Propositions 5.1 and 5.3(i) below.

2. RESIDUALS

2.1. The definition of residuals for ABn is as in CURRY-FEYS [58] p.117,118.

We repeat the 'critical cases' of this definition.

Let M -5+ M' where R g M is a B— or n—redex, and let S g M be a redex

whose residuals in M' we want to define. It is immediately clear what the

residuals of S in M' should be, except in the following cases.

(I) i. R E (Ax.Ax)B, x & FV(A)
L_.v—I

8

ii. as i. with R,S interchanged

(II) i. s E Ax.(Ay.A)x, x & FV(A)
\u—v—d

R

ii. as i. with R,S interchanged.

In these four cases contraction of R leaves S without residuals. For most

A,B this definition is clear, bearing in mind that the residuals of a B—

resp. n-redex should be again B-resp. n-redexes; but it is somewhat sur-

prising in case (I)ii if A E Ay.A' and in case (II)i if A E A'y (yéFV(A')).

Here (I), (II) refer to (I), (II) in 1.2 above.
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Redexes R,S in the positions (I) or (II) are suggestively called in

HINDLEY [77] "too close together".

In the sequel (Lemma 4.9) we will need the following proposition. The

proof follows immediately by an inspection of the definitions.

2.2. PROPOSITION. Let R E (Ax.A)B and H E Ay.Cy be a B-redex resp. an n-

redex in a term M. Then:

(i) R and H are "too close together" .==

 

i.e. the elementary diagram D({R},{H}) is of the type I- or II-absorp-

tion.

(ii) if R and H are not "too close together", then (a) R n H = fl or (b)

R g C or (c) H g A or (d) H g B. U

2.3. REMARK. Analogous to AB-calculus, if

 

   

is an elementary diagram, the redexes contracted in B —+» D are residuals

of the redex contracted in A ——+ C and likewise for the bottom side. This

could suggest that the Parallel Moves Lemma (I.6.12) for A8 carries over to

ABn. The PM Lemma says that if 8 = M0 ——+... ——+-Mn is a finite reduction,

R g M a redex (B- or n— in this case), then the projection {R}flfi consists
O

of contractions of residuals R; of R:

 

 

RI

iv   
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To be more precise, every R1 is a residual via the reduction

MO ——9-... -—+-L0 -—+ ... -—+ Li; not just via some fi' = M0 ——+ .. ——+ Li as

in the figure. For AB this speCification is unnecessary, since there in a

diagram descendants and residuals are independent of the reduction path

(see COrollary I.10.2.10) not so for ABn, as the next example shows.

2.3.1. COUNTEREXAMPLE. The Parallel Moves Lemma fails in ABn fbr ordinary 

residuals (as in Def. 2.1).

A similar counterexample is given independently by R. Hindley in un-

published notes. See p.255.

In the diagram below the labels 0,1 are introduced to be able to in-

dicate which redexes are contracted. R in MO is an n-redex Ay.zIy. This n-

redex is doubled (AOy and Aly) and one of those residuals is substituted in

the other (AOy in Aly). Now AOy turns out to be the head- A of a B—redex

as well, and AOy is contracted as B—redex. Thereby the other residual Aly is

destroyed - that is, it ceases to be a residual of the original n—redex.

But precisely that redex Aly is contracted in {R}/fl. So the PM Lemma does

not hold for the usual residual concept.

(Note, however, that the final n-redex M is a residual of the original
5

_ . . | I I -n redex in MO Via MO ——+ M1 ——+ M1 -—+ M2 ——+-M3 -—+ M5.)

Although in a Bn—reduction the notion of a residual is not without

complications, there is nothing problematic about the descendant relation

for symbols. We will use this obvious possibility of 'tracing' symbols in

a Bn-reduction to introduce an alternative concept of residual for which

the PM Lemma does hold.

2.4. DEFINITION. Let IR = M0 —+ M1 ——-+ .. —-—+ Mk —+ be a Bn-reduction,

RO a redex in MO and-Rk a redex 1n Mk such that the head—A of Rk descends

from that of R0.

Then, regardless whether R0, Rk are 8— or n-redexes, Rk is called a

A-residual of R0 Via fl.

2.4.1. REMARKS AND EXAMPLES. 

(i) It is easily checked that in the notation of Def. 2.4:

Rk lS reSIdual of RO== Rk is A-reSIdual of R0.

But not the converse; for, consider (on p.256):
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R
O

Ax
(Az.zN)(Ax.(Ay.M)x -fi-*

/

.I'

a Az
(Az.zN)(Ay.M) _Y;——+

a/’/

. 4",

(Ay.M)N E Rk

and now Rk is a A-residual, but not an ordinary residual, of R0. Likewise

in the fOllowing example:

R E Ax.(Ay.KIyy)x L
|O B

i
Ax.KIxx -—§e>
I
I
W
Ax.Ix E Rk'

This example shows an undesirable characteristic of the ordinary concept of

residuals: by an internal reduction an n—redex can stop being one and a

moment later reappear as "the same" n-redex; but the latter is not a resi-

dual of the former. It is however a A-residual of the former.

(ii) For AB-calculus the two residual notions coincide.

(iii) Note that in the Counterexample 2.3.1 the final n—redex is a A-resi-

dual of the original one.

(iv) The theorem of Finite Developments does not hold for A-residuals:

M0 E (on.xx)(A1z.(A2y.yy)z) ~3;;-+

(Alz.(A2y.yy)z)(Alz.(A2y.yy)z) EEEE7A:"—W'

'(Azy.yy)(A1z.(A2y.yy)z) --+ '--+

(Azy.yy)(A1z.(A2y.yy)z) --—+ ...

an infinite reduction in which all the contracted redexes are A-

residuals of redexes in M0.

On the other hand, FD does hold for ordinary residuals; see

BARENDREGT, BERGSTRA, KLOP, VOLKEN [76], Ch.II. The proof there uses the

method of decreasing weights as in 1.4.
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3. TRACING IN DIAGRAMS

To keep track of events in a reduction diagram, we will stick labels

on the A's and follow them by means of these labels. In the B-case this

works very well, but in the Bn—case there is a complication, since in the

type II e.d.‘s (see 1.2) there is sometimes a "confusion" of A's":

Ay¢[A0x.(A1y.A)x] B \
P

—
-
.
.
.
.
-
_
_
_
.
_
_
0 CEAOX.A[y:=x]]

Ax n

 bCCAly.A] ¢[A9y.A]

(Note that the two terms on the right are syntactically equal modulo a-

equivalence, renaming of bound variables.)

Now it is not clear whether the label? in CEAoy.A] should be 0 or 1. There-

fore we put ? = {0,1}. In general:

3.1. DEFINITION. Let us admit as labels for A's (not only redex-A's) in a

Bn-reduction diagram finite sets of natural numbers, denoted by a0,a1,...

In every e.d. except type II it is clear how to carry along these

labels. For a type II e.d. the labels are carried along as indicated in the

figure above, where 0,1 are replaced by a0,a1 and ? = a0 U ml.

NOTATION. Instead of A we write A ; instead of A we write A and
-———————- {n} n {0,1} 01
for A‘a just A.

3.2. As we said before, we can visualize reduction steps in a diagram as

objects moving to the right or downwards, thereby possibly splitting or

becoming trivial (empty). This gives rise to what we will call propagation

paths, indicated by ~*~“flfific97 see the figure below. They should be'dis-

tinguished from the reduction paths in the diagram, which are ordinary re-

duction sequences of terms - except that empty steps may occur in them.

Thirdly, we will distinguish in a reduction path the paths which we get by

tracing a single symbol, in case a A. These are A-paths.
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reductioh path

\ propagation path
A A A AA

 

 

 

 

 

       

The notion of 'A-path' seems sufficiently clear to make further illu—

stration of it superfluous.

Note that if A,B are terms on a reduction path and A0 is in B, then

A0 can be traced to a unique 'father' A in A. Even in the Bn—case there is

no ambiguity. Now note the difference between B-diagrams D and Bn-diagrams
8

08”: if A,B are terms in 08, B 'later' then A (see next figure) then a A0

in B traces back to a unique A in A, regardless of the reduction path be-

tween A and B which one chooses to trace back. But in D the father in A
Bn

of A0 in B depends on the chosen reduction path. This is caused by the con-

fusion of A's which we observed earlier and which caused us to introduce

growing labels ai E E1.



  

Dam). i

 

 
A03.3. DEFINITION. Let M -—-—-+-N be a.B- or n-reduction step,
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where AG is

the head-A of the contracted redex. Par abus de langage, Ad will be called

'the contracted redex-A' of this step.

Before formulating the properties of the labels ai which make them

useful, we will give an example illustrating these properties.

3.4. EXAMPLE.

(Aux.(ABy.yy)x)I

 

    

  

A A . )I A .(A x.(ABy.(A z.zz)y)x)I AY B ( ax xx 3 \‘II

a Y >7 1’ '4B B : I8 I
I ‘1! :
I

Au Afluu--~flv-)xa n I (t :

3 I 1 iA . )I (A . yy)I
(A .(A z.zz)y)I Ay (_§¥_¥¥_______ L, auBy { \JTI

éy Y 1 A ,7

B l I owB l
I I l

A 5 1 :n
B : E :

I A II I

L_____________L____________l. cw&w >111
CAYz.zz)I A _ )I

(ABU z.zz)I (“OMBUYY'YY

\__._______-___7‘\__________.
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Note that in a propagation path A ~*“*> A.~*“**>... as well as in a A-path

A -.-.€> A —.-.4>... the labels can increase.

3.5. LEMMA. Let

 

   

a
M 1

“2 0 W2/W1

' R
al/ 2

be a completed Bn-diagram.

Let all the A's in M have a label and carry along these labels throughout 0.

Let Ind(fll) be the union of labels of A's contracted in 31, and similarly

for the reductions £2, Blflfiz and flz/fll. Then the following holds:

(i) Indufll/RZ) u Ind(82/fil) g Indml) u Ind(fl2)

(ii) the label of a A is weakly monOtonically increasing along a A—path in

D, i.e. if Aa-.-.4» A then a S B,
8

(iii) similarly fbr the label of the contracted A along a propagation path

in D, i.e. if Aa -~V9. A then a g B.
8

Before giving the actual proof, let us make the following remark.

That the lemma is not entirely trivial is due to the fact that in 31,

82 labels of A's occur which are not Q Ind(R1) U Ind(82). What we have to

prove is that those labels do not play a role, as label of a contracted A,

further in the diagram.

25992, Let a labeling of all the A's in M be given such that the i—th oc-

currence of A in M has label ai. It is not required that ai #(Ij for i # j;

the ai are entirely arbitrary. Without loss of generality we may suppose

ai = {i}; replacing afterwards {i} by arbitrary ai, (i), (ii), (iii) ob-

viously remain valid.

Now we will prove (i), (ii), (iii) simultaneously by induction on a

construction of 0.

Suppose that in our inductive proof a construction stage D' of D is

reached:
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new elementary square to be adjoined

and assume the following induction hypothesis:

(a) if a contracted A in D' has label a then a g Ind(fil) U Ind(82)

(b) if a A in D' has a non-singleton label a, then a g Ind(fll) U Ind(32).

The induction hypothesis is clearly fulfilled in stage 0 of the construc-

tion.

The remainder of the proof consists of checking the e.d.‘s plus what

happens in them with the labels. Without comment we will only mention the

critical cases. Note that the label of a A in a A-path can only increase in

a trivial step, and that the label of the contracted A in a proPagation

path can only increase in the first e.d. below:

 

A _ ............A 9A A A_........... _)

Ia I—i—nl Ila 'r- ----- -1' !(1UB IB a

i i I i : I ! i
| I I ! | I l l

i ' I ! . i i
I i l I i i i '
A L_______fi» A L.______ .4 ¢ i

GUS A B A ._......... .91 A _ .............

ow auY OIUBUY B

It is only a matter of patience to verify that (a) and (b) again hold

for D' + D. We will omit this verification here. If the diagram is completed,

then (a) of the ind.hyp. entails (i) of the Lemma. Part (b) of the ind.hyp.

serves to prove (a) in the case of adjunction of the first e.d. above. U

3.6. COROLLARY. Let R g M be a redex of which no A-residual is contracted

in £1 nor in 82 (see figure). Let S g N be a A-residual of R.
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Then no A-residual of S is contracted in 81/32.

 

M 31

82 D

N al/RZ

PROOF. Let the A of R have label 0, all other A's label 1. Then by the hy-

pothesis of the corollary, O & Ind(fl1) U Ind(fl2). Hence by (i) of the pre-

vious lemma, 0 & Ind(81/R2). D

3.7. PARALLEL MOVES LEMMA, for ABn w.r.t. A-residuals. Let
 

fl = MO-——+ ... -—+~Mn and let R be a redex in M. Then in D(fl,{R}) the pro-

jection {R}flfl consists 3f contractions of A—residuals of R, via the reduc—
i

tion MO-——+ ... ——+ Mn __9_+,_..

In other words: the A's of the redexes contracted in {R}/8 can be

traced back via MD to the A of R.

 

Mo M
u n

{R} A0 I Aio {RWY
Ai1   

PRQQE} The following argument is typical for the notions of diagram con—

struction and tracing of A's by means of growing labels.

Label the A of R with 0, all other A's in M0 with 1. So the Aij in

{R}flfl have label 0 or 01 by Lemma 3.5.(i). If a Aij has label 0 we are done,

for such Aij can only be traced back to A0 by Lemma 3.5.(iii). But if it

has label 01, it might be the case that such a A traces back via Mn to a A1

in MO, what we don't want.

Let us suppose this is the case (*). First we note that in Mn no mul-

tiple labels (01) can occur, since in a A-path the label can only increase

after an empty step (see the e.d.‘s in the proof of 3.5) and 8 does not con-

tain fl steps. Hence, if a A01 1 in M0,

this trace must be via a A1 in Mn. This implies that in {R}/fl a ¢-step must

occur, in which this label 1 grows to 01:

in {R}flR traces back via Mn to a A
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Let us call such a situation a 'vertical 1—adjunction'.

Now consider an arbitrary construction of the diagram D({R},fl) and in this

construction the first addition of an e.d. in which a vertical 1-adjunction

occurs. This e.d. must have one of the two following forms:

 
 

  

A _............... _...........
0 A1 341 A01 A1 9 A1

! A 7} l I A :

I I : i i : !
! 1 I i i A1 ' E
! ' ! i : i
1 : ! i I i

‘1’ I \1/ 4, I °
A ‘.L. ________ _J)‘ JI— ________ J W
O 01 A A

However, in both cases we have a vertical Al-contraction, in contradiction

with Lemma 3.5.(ii) which states that for every vertical Aa-contraction we

must have 0 e 0 (since we started with a vertical AO-contraction).

So we have proved that (*) is not the case, i.e. also the A 1 in {R}/3
O

trace back to A0 in MO. U

4. STANDARDIZATION OF Bn-REDUCTIONS

As in 1.9 for A8, we will employ a marker to help us remember which

(residuals of) redexes are not allowed to be contracted in a standard re-

duction. In fact we need two markers: * and *n, for B- resp. n-redexes.
B

4.1. DEFINITION. Every time when in a reduction a B- or n-redex with head-A

(say) A0 is contracted, we attach to all the B-redex-A's < A0 a marker *
B

(if not already present) and to all the n-redex-A's < A0 a marker_*n (if

not already present). Note that it may happen that one A bears both markers:

* * g I I '

A B n. These markers are carried along in a reduction as follows:
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1) all the residuals of (A*Bx.A)B will be marked by *B

2) all the residuals of A*nx.Ax (xéFV(A)) will be marked by *n.

Now a standard Bn-reduction is a reduction in which no redex is con-

tracted whose head-A is marked.

4.2. REMARK. This definition is equivalent with the definition of strongly

standard Bn-reduction in HINDLEY [78].

It turns out to be convenient for the proof below to work with a

stronger notion of standardness, which is also easier to formulate (with

the terminology of markers).

4.3. DEFINITION.

(i) Every time when a B- or n-redex with head-A (say) A0 is contracted,

we mark all the redex-A's (B- or n—) to the left of A0 with *, if not

yet marked.

(ii) These markers are carried along in the reduction as follows. All the

A's which descend from a A*, will also be marked - regardless whether

they are redex-A's or not.

(iii) Now a A-standard Bn—reduction is one in which no redex is contracted

whose A is marked.

4.4. REMARK.

(i) A-standard = standard w.r.t. A-residuals.

(ii) a is a A-standard Bn-reduction =Ifl is a standard Bn-reduction.

Cf. 2.4.1.(i). Here also, the converse does not hold.

4.5. THE STANDARDIZATION PROCEDURE FOR ABn

First we will extend the realtion "<" (to the left of) for A's in a

term to redexes.

4.5.1. DEFINITION. Let M be a A—term and R,S two redexes in M. Then

R<S 4: AR<AS or SgR.

Here AR, AS are the head-A's of R,S.
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4.5.2. REMARK. So if R,S are in position (I) (Def.2.1), R E (Ax.Ax)B E SB,

then the B-redex R is to the left of the n-redex 8.

4.5.3. DEFINITION. Let 6%. = M0 ——+ M1 —+ .. . be a (finite or infinite) re-

duction.

(i) In M0 we select a redex, called lmc(fl), as follows. lmc(fl) := the left-

most redex in MO of which a A-residual is contracted in 3.

(ii) As in I.7 for AB, define

P(a) := a/{lmc(3)}.

4.5.4. DEFINITION OF THE STANDARDIZATION PROCEDURE FOR ABn

Let R = M ——+-M -—+ ... be given. Then the (possibly infinite) re—
0 1

duction as is obtained as follows:

2
8 = M0 lmc(fl) Mi lmc(Efi) Mi lmc(B fl) ...
5

Cf. 1.9.3; see also the figure there.

Before we prove that as is A-standard, hence standard, and that if R

and as end in the same term, we will give some examples and state some tech—

nical lemmas.

4.6. EXAMPLES. Example 1 shows why we introduced A—residuals in the defini-

tion of the standardization procedure. For, the straightforward generaliza-

tion of the method for AB-calculus would have used *8, *n (see 4.1), i.e.

standardness w.r.t. the usual residual concept, and as lmc(8) we would have

taken: the leftmost redex in M0 which has a residual (in the usual sense)

contracted in 3.

But this generalization fails: as this example shows the result of the

procedure need not be standard. (This was pointed out to me by Gerd Mitschke.)

As usual, the dotted lines in the reduction diagram below denote empty

steps.
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8

(Ax.(Ay.yR) (Ix))X Ix (Ax.(Ay.yRIX>X (AY.YR)X XR XR.

B n Il B I B I
I I

I I I
AY B I I I

I I I

I I I
(Ax.IxR)X (Ax.xR)X (Ax.xR)X IXR IXR'

B B I B 2|
I

I
Ax B B I

l

I I
IXR XR XR IXR IXR'

————————————— -I I
I I I B
I l I
I

B I I
I

I
XR ___ _____1I____ ____|)gz______XR - XR'

B
I

s B B B I

XR' L -___JB(R~'________}E_R'_______KRL_ _____ IXR'   
Example 2 shows how application of the A-standardization method does produce

a A-standard (and hence standard) reduction for 8, the same reduction as in

Example 1.

In the diagram below, the A's of redexes which have a A-residual con—

tracted in 8 are indicated by I. Similarly for p(fl), p2(fl),...

Note that 8 contains an n-step while as does not. This is because in

the definition of 'lmc' we have built in a preference for B-steps over

n-steps: if a A is a B-redex A as well as an n-redex A, the B-redex is to

the left of the n-redex (Def. 4.5.1)



(Ax.(Ay.yR)(Ix))X
+I+.+

Ax

(Ay.yR)(IX
III

R Ay

IXR

I +

XR‘

XR'
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(Ax.(Ay.yR)x)X (Ay.yR)X XR XR'

8 TI I E I B I

I I I
B B I I I

I I I

) (Ay.yR)X i(Ay.yR)X :XR :XR'

e B I B ;

e B B I '
I

| I

I I
XR I

B I _ — _ _ —_I _____ r ‘2'

I I I
l I I |

B I I I I
I I
I I I I
I I I

I _1_ _ _ _ _j ______ __ __ I

B I
I

I
I

I——-—— —— .—IL ——_— —- -———————-—-— —— _— ——J    

EXAMPLE 3. In the reduction diagram below, the upper reduction 8 contains

a B-step (Ay), which is in a remarkable way transformed by the standardi-

zation procedure into an n-step (Ay) in RS.
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Ax.(ly.KIyy)x

  

  

 

Ax.KIxx Ax.Ix II I I #4
I

I I I
I l I

T] I l I

I l I

I I I
Xy.KIyy [Ay.KIyy IAy.Iy I

—-- — — — - I
I BIK I TI I

I I
I I
I lK B l I

l
I I

. l .
Xy.Iy ______ _ _A¥_ IX.__ _ _ _ALIY :1

I I n I

|
n n n I

I

IL _____ I LI_ _____ I I   
EXAMPLE 4. Here, as in example 2, an n-step in IR is transformed into a B-

. a .
step 1n 5

 

 
 

 

 

(Az.zN)(Ax.(Ay.M)x) (Az.zN)(Ay.M) (Ay.M)N M(N)

n B I B l

I I
B B I I

I

' I
(Ax.(Ay.M)x)N 9395 __ _IIOIy-Mm JMm)

I I I
B I | I

I’ l II

I I 'A(Ay.M)N —.—__-_ ___________ j

I _I B I

B B 3 I

I
I

mm L _______ ________I______ __l   
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EXAMPLE 5.

(lx.w(Ix))M (Ax.wx)M wM MM

I I I B n I B j

(mszIy.yy) A B B I I
I. I

m(IM) wM :wM :

B 1 e IMM
I

B B B I
I

M(IM) MM MM I
IMI?” B I F i _________ I— ________ I M

I I I
l I I I

B I l I I
I

I I I l
I I

M(IM) _____IM(IM_) Illvnf _IMM .IMM

I B | -——-———I—_--_———I
| I I

B B I l

I I '
I I I

MM L.____. _.___I__”__._._“__ L__ __________I

M MM M M

4.6.1. REMARK. Without the trivial steps the diagrams would be much simpler;

in example 5 we would have

’E E

(Ax.quxIIM - IIIX'III’QIE II   B

(IM)(IM)

But in this way we loose all intuition for the standardization procedure.
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In a standard reduction in AB-calculus the 'action' is literally going

from left to right in a term. In a standard Bn—reduction this is not so;

sometimes there is a leftward jump, as in the following examples:

Ak.(aAy.xy)‘—7T+ Ax.ax~—:T+ a

or

Ax.a(Ix) -—§—+ Ax.ax -—E-+ a

or

Ax.(Az.a)xx —7?+ Ax.ax —7;+-a .

It is clear that such a leftward jump in a Bn-standard reduction occurs on—

ly to contract an n-redex. (We will not prove this fact.) The next lemma

states that our standard reduction in spe, as, indeed satisfies this require-

ment. Then we prove, using this property, that 8s is A-standard.

*

4.7. LEMMA. If in £5 a A is contracted to the left of a A , then this must

be an n-contraction. And hence, by the definition ofaemc (with its built-in

preférence for B-reductions if there is choice) it is a contraction of a

passive n-redex.

PROOF. Suppose the lemma is false: let Mg+m+1 (see figure) be the first

term in R in which a A(say A0) as B—redex is going to be contracted with

*

1 9

marker. By A is meant the A which is going to be contracted, by A' that

* *
a A (say A1) to its right. Let MA be the term in which this A got its

+

this A possibly bears a marker * (in the situation above this is in fact

not possible).

. . . , .
Now 1t 18 not hard to see that AO,A1 in Mn+m+1 trace back to AO,A1 in

MA in the same position AO < A1. (*). This is so because every A in
+

M$’°"'Mfi+m such that A < A ,A is an n—redex-A by our hypothesis.+ o 1
Moreover, by the same hypothesis, A0 is in Mfi already a B-redex—A.

Here we use also the following fact:
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A' * a
0 A1 2 MI

- n+m+1
+   

if a A is not a B-redex-A, then the same is true after an n-reduction.

(Another formulation of this fact is:

n-reductions do not create new B-redexes w.r.t. A—residuals.)

Note that this is not true w.r.t. ordinary residuals; cf.:

[Ax.(Ay.M)x]N-—7r+ (Ay.M)N,

where (Ay.M)N is a newly created B-redex.)

1
first time in MA. Therefore (by (*)) also A2 > A0 in Mfi. By the definition

+

in Mfi has no contracted A-residual in pna.

*
Now A2 in M; is to the right of A1, because A was marked for the

+

of lmc, this means that A
0

Also A0 in MA has no contracted A-residual in the reduction

M' ——+ ... ——9-M' . Here we use that A is not multiplied in this reduc-
n+m+1 0

tion (this could only be done by a B-redex to the left of A0 and hence of

*
A1; but according to the hypothesis such redexes cannot be contracted in
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this reduction.)

Hence, by Coroll. 3.6, A in M' has no contracted A—residual in

n+m+1 O n+m+1
p 8. But then, contrary to what we supposed; in Mg+m+1:

+ +
A0 # lmc(pn m 18). Contradiction. D

It is now easy to prove:

4.8. LEMMA. as is a A-standard reduction sequence.

PROOF. Consider the following enlargement of the above figure:

>
3

 

O
H
-

>
"

P a

n+m
8

O
x
-
e
_
.
_
-
_
_
.
_

  ml

n+m  
Let us first note as an immediate consequence of the preceeding lemma,

*
that no A in as can be multiplied.

Now suppose that 88 is not A-standard. Then there is a A in MA which
0

gets a * there for the first time, and descending to a A-residual in say

' . . . n+m“n+m which is lmc(p R

residual contracted in pnfl, otherwise the A1 (displayed there) would not

). The (redex whose head-A is) A0 in MA has no A-

*
have been lmc(pnfl). And since A0 in MA is not multiplied in the reduction

*

MA ——+ ... -—+ Mn+m’ A0 has no A-resiQnal contracted in that reduction.

Hence, by Corollary 3.6, A

n+m
p 8. Contradiction. U

in M' has no A-residual contracted in
O n+m

4.9. LEMMA. Let a = M0 ——+-M1 ——+-... be an infinite Bn-reduction sequence

and H E MO an n-redex. Then the projection of a,by H is again infinite.
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PROOF. Suppose not. Then every step after say MD has an empty projection in

the following figure, in particular every B-step after Mn.

 

      

M M
o 1 M2 Mn n+1

H n II II n n

\§ \§ % ____jfi____

M' ’M' M' M' s M. =

We will now see how such a B-step, which has an empty projection for

some projecting n-reduction, looks like; and then conclude that it is im-

possible for an infinite reduction sequence, in casu Mn -—+ Mn+1 ——+- ...'

to contain next to n-steps only B-steps of that kind.

So let the projection of NO —§+-N6 by the n—reduction NO

empty, as in the next figure. Note that the B-step does not split in its

—4§ N be
n m

propagation, until it vanishes (becomes fl) after some step say Nk _fi+ Nk+1

Write Ri : (Ax.Ai)Bi (OSiSk). From Proposition 2.2 it follows immediate-

ly that the n-reduction

c0[(Ax.AO)BO] -;» Ck[(Ax.Ak)Bk]

is 'separable' as follows:

(a,b)cOE J —n—» ckI: ]

(*) (c) A0 7?» Ak

(d) B0 -+» Bk

corresponding to (a), (b), (c), (d) in Prop. 2.2(ii).

(Remark ad (a): in fact n-reduction is not defined for contexts CE 3; but

considering a context as a term in which some special free variable 0 may

occur once, it is clear what n—reduction of contexts is. E.g. Ax.ysz is
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a context n-redex.)
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: I 2 INo _ COERO] B \ NO _ COERO]

HO n n
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8
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I

Hk n :

I

I

V(_____ _ __ __ ___:

I

\/ I 
I
I
I

m ____-______.J

' -—+» — — " IISo R0 n Rk' and the B redex Rk and the n redex Hk are too close together .

Now there are two cases: Rk and Hk I—absorb or II—absorb each other.

CASE (i). Rk is II-absorbed by Hk (see 1.2).

Then Nk E ckERk] E ck[(Ax.Ak)Bk] E CiEAy.(Ax.Ak)y] E ChEHkJ' i.e.

Hk E Ay.Rk and Bk 5 y and y & FV(Ak). So by (*),

 

RO E (Ax.AO) Z

   

where we have used the notation g for an n-expansion of M. (I.e. g-7f> M)
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CASE (ii). Rk is I—absorbed by Hk.

Then Nk E CkERk] : ¢k[(Ax.Ak)Bk] E ¢k[(Ax.Afix)Bk] where x & FV(Ai),

Hk E Ax.Aix. '

So A0 _fié» Ai x, hence A0 E Eéi.

So ‘

  

R0 E (Ax.A);x)BO, x & FV(A'k)

  

Now we have proved that the infinite reduction Mn ——+ Mn+1-——+

contains only

(a) n-steps

(b) B-steps of type (i)

(c) B-steps of type (ii).

However, this is impossible: such a reduction cannot be infinite. For let

m(M) be the number of multiplying A's in M (not only redex-A's) where A in

Ax.A is called multiplying iff x occurs more than once as a free variable

in A. Now type (a) and (c) steps diminish the length £(M) of a term M, while

keeping m(M) constant, and type (b) steps may increase K(M) but only at the

cost of diminishing m(M). Hence the ordinal number <m(M),£(M)> = w-m(M)+£(M)

decreases in a strictly monotonic way along the reduction Mn ——+ Mn+1 -—+

Contradiction. D

4.10. PROPOSITION.

  

lmc(fl)

   >
-
—
—
-
-
—
-
I
I

0
—
—
-
-
—
—
-
T
D

I _____ ‘ fig
“I

In U(fi,{£mc(fl)}) the reduction step lmc(fl) propagates to the right, without

 

splitting, until it vanishes (in the indicated square) by 'coincidence' or

'I- or II-absorption' (not erasure).

PROOF. Let A0 be the head—A of £mc(fl). Using the same kind of argument as

in the proof that as is A—standard, one shows easily that if somewhere in

R a A is contracted to the left of (a descendant of) A then this A must0'

be an n-redex-A(*), in fact even a passive n-redex.

From this it follows directly that £mc(fl) does not split and that A0
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is not multiplied in 8.

From this last fact it is clear that if £mc(fl) propagates until the

(unique) step in 8 in which A is contracted, then the indicated square
0

must be of one of the following forms:

 

 

 

A0 A0 A0

8 I T} T B I I
I

A0 1 Ao " I Ao ” : :
----.I ..._l' __._.__1 _____|

coincidence I—absorption

Otherwise the £mc(8) contraction had already vanished before it reach—

ed the AO-contraction in 8; and this can only have happened by II—absorp-

tion (not erasure, by (*).) D

4.11. PROPOSITION. Let 8, A0 be as in the preceding proposition. Let the

step in R in which A0 is contracted, be a B-step. Then ch(fl) is a B-redex

(and {£mc(fl)} a B—step.)

EBQQE, (Note that the analogue for n does not hold; see p8 and £mc(pfl) in

Example 4.6.4.) Suppose the proposition is false. Then ch(fl) is a passive

n-redex. But since to the left of A0 in a only n—reductions take place

(see proof of preceding proposition), this passive n—redex cannot be acti-

vated, in contradiction with the fact that A0 in a was a B—redex A. U

Finally we can combine all these lemmas and propositions:

4.12. THEOREM. as is a A-standard (hence standard) reduction sequence fbr

a;

PROOF.
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In 4.8 it is proved that as is A—standard. Proposition 4.10 states
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that the right side of US is fl.

Now suppose, for a proof by contradiction, that as is infinite. Then

there is a k such that RS/M0 ——+~... ——-->-Mk is infinite and

fis/MO-—+ ...-——+ Mk+1 is finite (i.e. contains after some B only fl-steps.)

Let D' be the subdiagram as in the figure above.

From Lemma 4.9 we know that the "critical" step Mk ——+ Mk+1 cannot be

an n-step (otherwise flS/MO -—+ ... -—+-Mk+1 was still infinite.) Hence 32

is a B—reduction, since B-steps propagate as B-steps or fl-steps. (In fact

82 is a complete B-development, as is proved in Propositions 5.1 and 5.3(i).)

Now let us look at the "critical" subdiagram D'. By Prop. 4.11 all the

non-empty steps in 81 and B-steps.

By exactly the same argument as in 1.9.6, using the Hyland—Wadsworth

labels (1.3.7) and SN for labeled reduction (1.8), it is clear that 81 must

be finite. Contradiction, hence as is finite.
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It remains to prove that the lower side of 05' i.e. R/fls, is empty.

This is trivial, for if not, then as would have continued.

Hence a and as end in the same term Mn. U.

4.12.1. REMARK. Using the fact that 82 is a B—development, once can replace

the uSe of SN for HW-labeled terms by the use of FD for A8.

4.13. REMARK. There are two well-known technical lemmas concerning the re-

lation between B- and n—reductions:

4.13.1. LEMMA. (Postponement of n-reductions)

IfM——>>Nthen 3LM—->>L-—T-]—>>N.
8n 8

4.13.2. LEMMA. M has a Bn-normal fOrmI== M has a B-normal fbrm.

It is interesting to note that these lemmas (and in fact, a strengthened.

version of the first) follow easily using the method of the preceding proof.

£599? of 4.13.1. Note that Prop. 4.10 remains valid when instead of £mc(fl)

we take £mc8(fl), that is: the leftmost B—redex in MO having a A-residual

contracted in 8.

Now define (instead of as) the reduction H I by replacing in the de-

finition of as' ch by KmCB.

Checking the proofs above, we see that also 88,5 is finite, in exactly

the same way as for RS.

After “8,8 has stopped (that is, after we have 'exhausted' the [mos—

steps) the following situation has arisen:

 

  

M a N

l

I
flB.S B ‘13

f
I
I

L N
n

(For, if L -+» N was not yet an n-reduction, would have continued.)a
8,3

This proves lemma 4.13.1. Now it can be easily checked that something

more is proved: all the n-reductions in L ~4» N are passive (an n—reduction
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Ax.Cx . . . . .
A_——?r—> B 1S paSSive when Ax.Cx 1S a paSSive subterm of A, i.e. not occur-

ing in ((Ax.Cx)D) for some D.)

For if not, RB 5 would have gone further due to its definition and the
I

definition of A-residual. D

PROOF of 4.13.2. ¢=is almost trivial.

=1 By Lemma 4.13.1 the n—steps in R can be postponed, so we have a reduction

M -E%» L -fi€» N. Now L has a B-normal form; for suppose not, then there is

 

an infinite B—reduction 8' = L ——+-L' -—6'L" ——+ ... So by Lemma 4.9 the

projection fl" = fl'/L —;+» N must be infinite:

M L N

r > >\
B n

I

\(L
a! R!

  
contradicting the fact that N is a Bn—normal form. U

5. THE NORMALIZATION THEOREM FOR XBn—CALCULUS

In this section we will generalize the Normalization Theorem (1.11.2)

and the Quasi-normalization Theorem (1.11.6) (in other words: "(eventually)

leftmost reductions are normalizing") from A8 to ABn.

In AB the adjectives 'normal' and 'leftmost' for redexes and reductions

were used as synonyms. In ABn the leftmost redex-A may belong to two redexes,

e.g. in the term (Ax.ax)b; in such a case Definition 4.5.1 says that the

B-redex is the leftmost redex.

DEFINITION.

-(i) Let R g M be a B- or n-redex such that R's head-A is the leftmost

redex—A. Then R is called a normal redex of M.
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(ii) A normal reduction is a reduction in which only normal redexes are

contracted. Likewise for the leftmost reduction.

So e.g. the term M E (Ax.ax)b has two normal redexes, Ax.ax and M.

Note that there is now no unique normal reduction, though the difference

between two coinitial normal reductions is inessential. The leftmost reduc-

tion is unique; it is that normal reduction having the most B-steps in it.

In AB there is only one standard reduction from a given term M to its

normal form, namely the leftmost (or: normal) reduction. This is no longer

true in the ABn-calculus. There a A—standard reduction ending in a Bn—normal

form may by—pass the normal redex(es):

EXAMPLE 1. Let w E Ay.yy,

£1 = Ax.Imx —%—+ Ax.wx-fi%9 Ax.xx.

82 = Ax.Iqu —n-> 1w B—> w.

EXAMPLE 2.

£1 = Ax.w(1x)-—%—+ Ax.wx —E—+-w.

£2 = Ax.w(1x) —fi%+ Ax.Ix(Ix) —7§+ Ax.x(1x) —7;+ Ax.xx.

In all three cases, both 81 and 82 are A-standard while 82 is moreover

a leftmost reduction.

We will now proceed to the Normalization theorem for ABn-calculus. As

observed in the preceding remark, the proof of 1.11.2 does not carry over

to ABn, since A—standard reductions may by-pass the normal redex(es) and

still reach a Bn—normal form.

We have tried to construct a proof as follows: consider an arbitrary

A—standard reduction to the Bn-normal form, and try to amend this into a

normal reduction - but this seemed too messy. Therefore we will follow

another proof strategy, in which no use is made of the A—standardization

theorem.

Since the proof involves some technical lemmas and a lot of details,

we will begin by exhibiting the dependence of the elements of the proof

in the following figure.
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Here the following terminology is used. If A and B are two classes of re-

 

ductions, 3 containing only finite reductions, we will say: A is closed

under B-projections iff for all 8, 8':

a e A, 8' e B, 8 and fl' coinitial =>RflR' e A.

E.g. if A is the class of complete B-developments, B the class of all

finite n—reductions, we will say for short: "complete B-developments are

closed under n-projections." When 3 is the class of all finite Bn-reductions,

we will just say that "complete B-developments are closed under projections".
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5.0. PRELIMINARIES

5.0.1. Let M be a A-term and It a set of B-redexes in M. As is well—known,

all complete B-developments "relative to 11" end in the same result (FDl).

Instead of El we will employ a different but equivalent terminology, see

also BARENDREGT e. . [76] Ch.II; instead of the pair (M,I{) we take M plus

an underlining of every A in M which is the A of a redex in Ii; example:

[As.z((A3.yAa.a)z)]p.

Such an enriched M will be written as (M,v); sometimes we will identify M

and (M,v) if it is clear what v is meant. v can be seen as a set of B—redex—

A's in M.

Reduction relative to II is now called underlined B-reduction, or fi—reduc-

tion:

(M,v) ——§—+ (M',v').

NOTATION. if v, v' are underlinings of M, such that v 3 v', we write

(MN) 2 (MAN).

5.0.2. DEFINITION. By (FD), we can define a norm "(M;B)" as the length

(i.e. number of steps) of the longest Efreduction a starting from (M,v).

Minimal underlining corresponding to a complete B-development a

A complete B-development a does not determine uniquely a corresponding

underlining, since we work in AK—calculus. But a = M -—+-M' —-é'... does

determine uniquely a minimal underlining vmin' corresponding to it; namely,

the set of all A's of B-redexes in M of which a residual is contracted in

a.

5.0.3. DEFINITION. Now we define for a complete B-development

azM—>Ml——>

IIaII = II (M,\)min) II .
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In the sequel we will need the following obvious facts:

5.0.4. PROPOSITION.

(i) If (M.v) —E—+-(M',v'), then "(M,v)“ > "(M',v')“.

(ii) If (M,v) 3 (M,v'), then "(M,v)" 2 "(M,v')". D

5.0.5. QD-terms and their reductions. We borrow a method from BARENDREGT

e.a. [76] Ch.II: Introduce two formal symbols — and ~, to be placed under

the A of a B—redex resp. of an n-redex:

(Ay.A)B resp. Ax.Cx.

RESTRICTION: coincidence of -, ~ is not allowed, so (Ax.Ax)B is not a well-
~

formed term in our system.

The symbols -, ~ are introduced to formalize the usual concept of Bn-resi-

dual. Reduction for such fifl-terms is defined as follows:

(1) only underlined redexes, i.e. (Ay.A)B or Ax.Ax, may be contracted,

(2) all residuals (in the usual sense) of (Ay.A)B begin again with A; simi-

larly for Ax.Ax. Residuals of non—underlined terms are again non-under-

lined.

EXAMPLE .

(Ax. (Ay.Ay)x)B —%——+ (Ay.Ay)B

A
" -$ré-(A3.AX)B

A
(Ax.(Ay.Ay)x)B —%L+ (Ay.Ay)B

A
" —i§—+ (Ax.Ax)B

Now it is a routine matter to verify that the construction of diagrams im-

mediately extends to the present case. (This is verified in BARENDREGT e.a.

A
[76] Ch.II, however without ¢-steps.) Here it is essential that-z-cannot oc-

cur. For otherwise we are in trouble:
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(Afi-(Ay.By)x)C -§§&-(A;.Bx)c
N N _, I

n Ay :

(AX.BX)C ——————— ‘3

and now it is not clear whether ? should begin with A, A, A. (Remark: it is

,possible to find a remedy such that A_is allowed while we retain the "weak

CRrproperty" (i.e. CR for the elementary diagrams) and even (FD) - but at

the cost of some complications.)

5.1. PROPOSITION. Complete B-developments are closed under B-projections.

PROOF. Let 8 = M0 ——+-M1 ——+-.. ——+~Mn be a complete B—development and

 

  

R 3 MO a B-redex. We must prove that 8' = 8/{8} is again a complete B-devel—

opment.

8
M0 ‘gl _Mn

8 1B R . {R}fl8

I '

M «II = a/{R} Mn

Take the U . corresponding with 8 and label the A's e U . with 0.
min min

By the usual argument (tracing of labels in B-diagrams) we see that

every step in 8' is also a AO-step; moreover all A0 in MA have disappeared

since M contains no A .
n 0

Hence 8' is a complete B-development, namely of the set of B-redexes

in M6 with A0 as head-A. U

5.2. PROPOSITION. Let, as in the above proof, 8 = M0 ——+-M1 ——+ ... -—+-Mn

be a complete B-developmenf, R g M be a B-redex and 8' = 8/{R}. Suppose
0

moreover that

(i) R is the leftmost B-redex, and

(ii) {R}flfi = fl.

Then: "8" > “8'".

PROOF. Let Umin be as above. Since R is the leftmost B—redex, it is clear

'that

{R}/8 = fl ¢=I the head—A of R is e U , .
min
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Hence the head-A of R is underlined. Hence we have'

(M.U.)—B—+
0 min

8. (M6,U');

and therefore by Prop. 5.04(i):

"8" > "8'". D

5.3. PROPOSITION. Let 8 be a complete B-development and 8' a one—step n-pro-

jection of 8. Then:

(i) 8' is again a complete B-deve10pment, and

(ii) "8" 2 "8'",

 

  
 

PROOF .

M 8 1 N
(r

Ax.Ax“ 0
yr

,’ >>
M 8' N '

Let (M,U) be the minimal underlining of M corresponding to 8. We dis—

tinguish 2 cases:

CASE 1. The head—A of Ax.Ax is in U.

Label all the A's in U with 0, except the A of Ax.Ax (which is also a B-

redex—A); this A gets label 01. The remaining A's get label 2.

So every step in the reductions {Ax.Ax}, 8 is a contraction of a A0 or

A01. The same is therefore true in 8'. by Lemma 3.5.

Furthermore: every contracted A in 8' can be traced back to a A in M',

which must have label 0. This follows from the preceding remark plus Lemma

3.5 and the fact that 1 does no longer occur in labels in M'.

(*) Now it is easily checked that every A0 in M' is a B-redex-A, since

Ax.Ax is active in the present case. (The critical case to check is:

M s ...((A01x.(A:y.B)x)C)...

Ao1 ” A

b8 E ...((A0y.B)C)... .)
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Further we note that 8' is a B-reduction, since 8 is so and B-steps

propagate as B-steps or fl—steps.

So the situation is that some B-redex-A's in M' have label 0, the other

A's in M' have label 2, and that in 8' only B—steps occur with label con-

taining 0. Therefore 8' is a B-deve10pment.

To see that 8' is complete, note that there can only be fusion of A
0

and A01 (not of A0 and A2, or A and A2) (**) This follows from the proof
01

of Lemma 3.5: in a diagram, AOL and A can only fuse to Ad if 'before' this
8 US

fusion we have a Aa- and a A -contraction in the diagram.
8

Furthermore, since 8 is complete, only A2's occur in N. Hence, since

by (**) the label 2 cannot grow, only A2's occur in N'. Hence 8' is a com-

plete B-reduction of all the B-redexes in M' starting with A0.

It remains to be shown that "8“ Z "8'". Let us again consider two

cases: there is a second A e U such that this A and the n-redex A01X.Ax

are "too close together", or not. (The first A e U is the head-A of A x.Ax
01

itself.)

(a) M ...(A01X.(A0y.B)x)C...

I ZM _ ...(Aoy.B)C...

(b) M ...(Ale.Ax)C...(A z Aoy.B)

M' E ... AC ...

Let U, U' be the set of A0, A01 in M resp. M'. Then for both cases

(a), (b) we have

(MIU) -———* (M'IU')-
8

Hence by Prop.5.0.4(i):

(1) "(m,n)“ > "(M',u')fl.

-Maybe U' is not the minimal underlining Umin corresponding to 8', but that

does not matter, since we have
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(M',U') 2 (M',U'. ),
min

hence by Prop.5.0.4(ii):

(2) ||‘(M',U')|| 2 "(W'Ufilinw'

Combining (1) and (2) we have

"8" >|MPH.

This proves the proposition for case 1.

CASE 2. The head—A of Ax.Ax is not in U. Now the proof above breaks down at

at point (*), see p.285.

We will use the method of fifl-terms. So let us underline in M the A's

in U as A, and the A of Ax.Ax as A. Result: a EE-term M*. Extend the under-

lining to 0. Result: a 83-diagram 9*.

It is clear that 8'* is a complete B—development, since every step in

in it is a Afcontraction (for this is so in 8*, and Afsteps propagate as

* O

A—steps or fl—steps), and since no A occurs in N' (because no A occurs 1n

*

N.)

Moreover, it is readily seen that we are in one of the two following

cases (this is a similar distintion of cases as above; but here it is more

essential):

(a) M* ‘ ... Ax.(Ay.B)x ...

M'* E ... Ay.B ...

*

(b) M E.......A,xAx

(A E Ay.B; it is allowed that A E Ay.B)

M'* E ... A ...

The difference between (a) and (b) is that in (a) one symbol "_fl is
* *

lost. Let (M,U) and (M',U') be M resp. M' , where ~ is erased.

Then in case (a):

.13!
(M,U) -———+ (M',U'), due to a—conversion.

B
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So by the same argument as in case 1,

"8" > "8' H .

In case (b), we claim: “(M,U)" = “(M',U')".

Hence'

"(M,u)" Z "(M',u', )H, i.e. "8" 2 "8'".
min

Proof of the claim. The set of firreductions of (M,U) is trivially seen to
 

be "isomorphic" to that of (M',U'). Namely, underline Ax.Ax in M and re—

place all occurrences of Ax.A'x in a gfreduction of (M,U) by A'; result:

a Efreduction of (M',U'). And so on.

This proves the proposition for case 2. D

Before stating Prop. 5.5 and combining Prop. 5.2, 5.3 into proposition

5.6 we need a definition.

5.4. DEFINITION. Let 8 = M ——+ M ——+ be a finite or infinite Bn-re—
0 1

duction. 8 is called B—normal if in every B-step M.n —E%—+ Mn+1 in 8, 8n is

the leftmost B-redex in Mn.

5.4.1. REMARK. Obviously, if 8 is normal, then it is B-normal. The reason

to introduce this weaker property 'B-normal' is that B—normal reductions

are closed under projections (prop.5.5), while normal reductions are not,

as the following example shows:

(9 5 (Ay.yy)(Ay.yy)).

8: M E Ax.0[(Aa.I)xe g+*M g +>M ——£L—* ...
B

AalB AalB AaJB

 

8': M'EAX.QIX ————B'_+ M'—§B-2-+M'—§BZ—-+...

8 is normal, but 8' not, since it should start with the contraction of

the n-redex M'.
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5.5. PROPOSITION. B-normal reductions are closed under projections.

PROOF. Consider the elementary diagram:

A leftmost B

 7

   

B

n or B

C D

One easily checks that C ——-D is an empty step, or again a leftmost B-con-

traction. (Since a B— or n—step cannot create B—redexes to 'its' left.)

From this it follows immediately that if 8 is B-normal and 8' is a

projection, then every B—step in 8' is a leftmost B-contraction, i.e. 8'

is B—normal. U

5.6. PROPOSITION. One step projections of infinite B-normal reductions are

infinite.

PROOF. Let 8 be B-normal and infinite. We have to prove

(i) one step n—projections of 8 are infinite, and

(ii) one step B—projections of 8 are infinite.

(i) is Lemma 4.9 (we do not need 'B-normality' here.)

Proof of (ii). 8, B-normal and infinite

 

  
 

M0, M1 Mg Mn Mn_+1 M9+2 . '

B 620 81 1Rn “n+1 n+2

1V \
| -—--—-—— ——-————-——-—aoo

M M' Q

R!

Suppose (ii) does not hold: then let 8' be 8 after say MA. By Prop.

5.1 and 5.3(i), the reductions 8O, 81, 82,... are complete B-developments.

" “8 H 2 "8 H 2 "a H 2 . 2 ‘ >By 5.2 and 5.3(11), we have n n+1 n+2 where 1S

every time that Mn ——-+-Mn+1 is a B—step.

But since 8 is infinite, it contains infinitely many B-steps. Contra-

diction. U
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5.7. COROLLARY. Infinite B—normal reductions are closed under projections.

PROOF. Immediate, by 5.5 and 5.6. U

5.8. THEOREM (Normalization for ABn-calculus).

Normal reductions are normalizing.

PROOF. Let M have the Bn-normal form N, and let 8 be a reduction from M to

 

  

N.

a
M n ...

a

N,Bn-n.f. an/a = g

Suppose that 8n, a maximal normal reduction starting with M, is in-

finite. Then (since 8n is also B-normal) by the previous Corollary, the

projection of 8m by 8 is still infinite. '

But since N is a Bn-normal form, this projection is empty. Contradic-

tion, hence 8n is finite. Hence by definition of 8n, it ends in a Bn-n.f.

which must be N by CR. U

Now we come to the Quasi—normalization Theorem for ABn. First we need

a definition, analogous to Def. 1.11.4:

5.9. DEFINITION. Let 8 = M0 ——+ M1 ——+ ... be a finite or infinite Bn—re-

duction and R 5 Mn some redex in 8.

R is called (A—) secured in 8 iff eventually there are no (A-) residuals

of R left, i.e. 3m vm' 2 m MIn contains no (A—) residuals of R.

The proof of the Quasi—normalization theorem is a generalization of

that for A8 (1.11.6), but not entirely straightforward. For, the analogue

of Lemma 1.11.5 (with 'secured' replaced by 'A-secured') does not hold for

ABn, as the following example shows.

5.10. EXAMPLE. Let D E Azxy. zzyx (See also Example 6.2.) Let

M E R E AOX.DDyx. 8.qn is the reduction in which each time the leftmost B-

redex is contracted (so in AB, 8qn is the normal reduction); it is a quasi-

normal reduction in ABn.
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However, the normal n—redex R 5 MO is not A-secured in 8qn, for A

stays alive. Yet, our requirement for the proof of the Quasi-normalization

theorem is fulfilled: 3n {R}/n(8qn) = fl. (n8 denotes the initial segment of

length n of 8; see Notation 1.11.1)

 

 

  

 

A0x DDy

M0 2 R E AOX.DDyx ‘

D B

AOx.(A1X'y'.DDy'x')yx I (Alx'y'.DDy'x')y

Alx' B

I l l lon.(A2y .DDy y)x .l Azy .DDy y

A ' '2y :
i

5 ________AOx.Dny L Aozx.Dny

D

a-

Therefore we have to make the following distinction between two con-

cepts, which are identical in AB, but separate in ABn. One is "R g M

 

 

0 is

A-secured in 8 = M0 ——+-...". The other is given by the

5.11. DEFINITION. The redex R 5 MO is absorbed in 8 = MO-——+ ... if

an {R}/ 8 = Q).
n

M0 R 3

M W!

'8a n /{R}

M _______

n {R}/n8=¢ 
Note that in the example above the normal redex R, although not A—

secured in 8qn, is absorbed by 8qn. So we have in Aan

R A-secured in 8 == R absorbed in 8.
¢1

(Proof of==z immediately by the PM Lemma 3.7.)
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Now the analogue of Lemma 1.11.5 becomes:

5.12. LEMMA. Let 8qn = M0 -—+ M1 ——+ ... be a quasi-normal reduction in ABn

a normal (8— or n.) redex. Then:and R C M
— 0

R is absorbed in 8 .
qn

 PROOF. CASE 1. R is a B-redex. Let A0 be the head-A of R.

During the reduction 8qn, new n-redexes can be created whose A's are

< A0, by erasure of "obstructing variables", i.e. variable occurrences

x e FV(A) in H E Ax.Ax, obstructing H to be an n-redex. Note that it is im-

possible that new B—redexes are created whose A's are < A0.

In 8.qn there can only be finitely many steps in which such a newly

created n-redex is contracted, since there are only finitely many symbols

< A0 and contraction of an A—redex <.R diminishes their number.

These n—steps may demolish the B-redex R, by erasure of the argument

of R, essentially as in the following example:

(‘..N
I

8qn = Az.(A0x.(Ay.I)z)z ("obstructing'variable")

Ale R

(newly created n- A z.( 0x.I)z

redex—A to the left Az n

of A0) 1

on.1

As soon as this happens (*), we are through by the PM Lemma for A-

residuals (3.7); for, taking the projection of {R} the PM Lemma says that

this projection must_consist of B-steps whose A's trace back to A0. But as

there are no Ao's in B- reuex-position at moment (*), this projection must

be empty. I.e. R is absorbed in 8qn.

If this demolition of R does not happen, then after finitely many nor—

mal steps in 8qn it will be again R's turn to be a normal redex and to be

contracted in the next normal step.

CASE 2. R is an n—redex. A similar argument as for case 1. U
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5.13. COROLLARY (Quasi-normalization theorem for ABn).

Quasi—normal reductions are normalizing.

PROOF. Analogous to the proof for A8. U

6. COFINAL Bn-REDUCTIONS

6.1. DEFINITION. Let 8 be a finite or infinite Bn-reduction. Then 8 is

called (A-)secured iff every redex in 8 is (A-)secured (Def.5.9).

6.2. REMARK. 8 is A—secured ==I8 is secured; but not conversely:

EXAMPLE. (i) Let D E Azxy.zzyx and C E DD (see Example 5.10).

Then 8 = Ax.ny 7?»

Ax . ny —é-»

Ax.ny 7?»

is secured but not A—secured because the n-redex Ax.ny is not A-secured in

8. Note the flip—flop effect: off—and—on the term appears and disappears as

n—redex.

EXAMPLE. (ii) A more subtle example of a secured but not A—secured reduction

is given in 6.4; there the A—redex stays an n—redex, but looses again and

again its quality as residual.

6.3. THEOREM. Let a be a reduction path in G(M), the reduction graph of M.

Then:

a is A-secured == a is cofinal.

PROOF. Analogous to the proof of Theorem 1.12.3 for the B-case, now using

the Parallel Moves Lemma 3.7 for A—residuals. U

Even though the PM Lemma fails for ordinary residuals, one could hope

to prove the stronger theorem "secured == cofinal" in a different way. But

also here residuals behave badly: we will now give an example of a secured

but not cofinal reduction. It is similar to the counterexample 2.3.1 to the

PM lemma, but iterated by means of a fixed point construction.
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6.4. EXAMPLE of a secured but not cofinal reduction.

Let D E Axy.xx(Az.y(yz)) and E E DD.

1 E Aab.ab (Church's numeral.)

Now consider the infinite B-reduction a:

El 2 E(Aa.Ab.ab)
\.

 

\\.
\L

[AY-E( z.y(yz))J(A:.Ab.ab) _32Y__.
,//"—“‘ B

// . .
" 2.

EEAz.(Aa.Ab.ab)((Aa.Ab.ab)z)] rightB a

|

i,
EEAz. (Aa.Ab.ab) (Ab.zb)] EELBL

/

L! Ab'
EEAz.Ab.(Ab'.zb')b] __B_+

!
w

EEAZ.)\b.Zb] T ——— etc.

The intuition behind this example is the same as for the counterex-

ample to the PM lemma; only, here it is arranged so that we get an infinite

reduction (which is necessary if one wants a non—cofinal reduction; a

finite, maximal reduction is cofinal by CR.) The crucial step is B, de—

stroying the n-residual Ab.(Ab'.zb')b of Ab.ab. The -.-. trace shows that

a is not A-secured.

It is easily checked that a is secured. However, a is not cofinal in

G(Ei ). For, 1 E Aa.Ab.ab -7;+ Aa.a E I, and now consider E1 _fi—+ EI. We

claim that no Bn-reduct of E1 contains 1 as subterm. From this claim it

follows that a cannot be cofinal in G(El), because 1 keeps occurring in a.

PROOF of the claim. The proof consists of an application of the standardi-

zation theorem for Bn-reductions, and an amusing ad hoc argument.

Abbreviations: (i) AoB E Az.A(Bz)

(0)
 

(ii) E E E

E(n+1) E Ay.E(n)(y°y)

(SO E —--+E(1)_"‘"‘E(2)—* ...)
B B n
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[0]
(iii) I E

[n+1] _ [n] [n]

H

I l
l

H o H

Now suppose EI —Efi€» Cfi], for some context ¢[ ]. By the Standardiza—

tion theorem, we may suppose that this reduction is standard. Hence it

proceeds as follows:

[m] (n)I[m]
EI —%9 EI —-€» E

B B
-——+» CEfl],
Bn

(n)
where the latter reduction -EEE» does not affect (operate in) E , be-

(n)
cause the whole reduction is standard; and because E contains no 1 as

subterm (as can easily be checked), we can write

CE1] 2 E(n)C'[1].

So we must have IEm] ———%» c'Eil. (*)
Bn

This is however impossible. To show this, we need first a

DEFINITION. M is simple iff

VN g M FV(N) has at most one element.

_ . . [m] . .
Now 1 : Azx.zx is not Simple, whereas for all m, I is Simple.

Further it is a matter of routine to prove that the set of simple terms is

closed under Bn-reductions.

Hence (*) is impossible. This proves the claim. D

6.4.1. REMARK. The use of the Standardization theorem is not essential here

it could be replaced by 'Postponement of n-reductions' (Lemma 4.13.1) and

Standardization for A8.

6.5. KNUTH-GROSS-REDUCTIONS IN ABn-CALCULUS?

While the definition of Knuth-Gross reduction in AB—calculus (in 1.12)

is perfectly natural, it is no longer so in ABn-calculus. For consider the

following naive definition:

"Let 8 = M0 ——+ M1 ——+-... -—+-Mn be a reduction such that

(i) in every step a residual (in the usual sense) of a B-or n-redex in MO

is contracted, and

(ii) 8 is maximal with this property, i.e. Mn contains no residual of a
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redex R in MO.

Then we say M -E——+-N, in words:

Bn

N is the Knuth-Gross reduct of M."

However, N is not uniquely determined now. Example:

81 = Ax.(Ay.ay)x —%¥—+ Ax.ax —%§—+ a

Ay82 = Ax.(Ay.ay)x —7;—+ Ax.ax.

Both 81,82 are complete Bn-developments of the total set of redexes of

Ax.(Ay.ay)x.

It is possible, using ED-terms (see 5.05), to define Knuth-Gross-re-

duction for ABn-calculus with the required properties. But the definition

is not entirely straightforward; it is not immediately clear what, in that

treatment, the 'total set of redexes of MO' (= 'total EB-underlining of

M6) is. This is worked out in BARENDREGT, BERGSTRA, KLOP, VOLKEN [76]

Chapter 11.

Turning to A-residuals does not help here, since FD fails for them,

as shown in 2.4.1.(iv).

Therefore we will not consider Knuth-Gross—reductions in ABn-calculus

here. We will however consider an alternative concept, which might be just

as useful.

6.5.1. DEFINITION.

(i) M —7:—+ N iff N is the Knuth—Gross reduct (w.r.t. A8) of M.

 

8

(ii) M —75—+ N iff N is the n-normal form of M.

.n ‘

o a c o a + _'L .

(1.11) M T‘)’ N lff L M G L G N

Bn 8 n

REMARK. In (ii), N is uniquely determined, by CR for n-reductions.

Now we will prove the following theorem; before giving the proof an

immediate Corollary is mentioned.

6.5.2. THEOREM. Let 8 be an infinite Bn-reduction in which infinitely many

————a-—'steps' occur and infinitely many -Er-+--'steps'.

8 Then 8 is cofinal. U
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. . . . ' 8 = ...6 5 3 COROLLARY (1) Let MOW M1 —(¥n—+ M2 EB—n—-+

Then 8 is cofinal.

(ii) Quasi-G reductions, i.e. reductions in which infinitely many G
Bn Bn-

steps occur, are cofinal.

PROOF of theorem 6.5.2. Let 8 be as in the theorem. Note that replacing an
 

initial segment of 8 by an arbitrary reduction, yields a similar reduction.

(*)

Let R g M be a B- or n-redex. We claim that R is absorbed in 8 (see
0

def. 5.11, or the figure.)

 

 

  
G
8

1L ______J
Mn+k 8 =¢

2

' — ——)- = -——-—> -—->CASE 1. R is a B redex. Let Mn (3 Mn+k Mn 8 Mn+1 B ... -E+ Mn+k

be the first GB-'step' in 8. Then 81 = {R}/M0 -+ ... -—+-Mn is a complete

B-develoPment, by Pr0positions 5.1 and 5.3.(i); and it is a well-known fact

that therefore 81 is 'absorbed' by Mn -—-—+ M + , i.e. that
GB n k

8 —————+ = ,
1 /Mn G Mn+k Q

(For a pébof of this fact see BARENDREGT, BERGSTRA, KLOP, VOLKEN [76],

Chapter 11.)

CASE 2. R is an n-redex. Replace B by n in the figure above. Now 82 = fl

because Mn is an n-normal form by definition of-Er—+ .
+k N

This proves the claim.

The remainder of the proof follows from (*) and is similar to the

proof of Theorem 1.12.3.

D
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LIST OF NOTATIONS

The list of notations is divided in

(1) Abbaeuietéona
 

(2) Nbiaiionb conceining'tenma
 

(2.1)

(2.2)

(2.3)

(2.4)

(2.5

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

thiabieb and metavahiabfleé

Conbtaniz

Faequentfiy occumming conbzantb

SymboKA

Taamé

Faequentfiy occumaéng 194mb

Contextb

Subteamb

Redexeé

LabefiA

14264

’NonmA'

(3) Notationb cohdéihiflQ'dédetéOné
 

(3. 1) Reduetéom.

Reduction anaouw

(3.2) Reduction Aybtemé

deflated to A and CL

deflated to CRS'A

(1) AbbheuiaiionA

ARS Abstract Reduction SYstems

CL Combinatory Logic

CP, CP' Cofinality property

CR Church-Rosser property (or Theorem)

CR+ strong version of CR

CRS Combinatory Reduction Systems

DL, DL', DL" Decreasing labels (and versions)

"DP Disjointness property

DR Decreasing redexes

44

11

51

45,150

63,68,163,225,

251

120

177

38

180



FB

FD

f.p.

Inc

1nd

5
%

n.f.

PM

PP
a,B

WNII

Finitely branching

(Theorem of) Finite Developments

finitely presented

Increasing

Inductive

Non-erasing

Normal Form property

Set of normal forms

normal form

(Lemma of) Parallel Moves

Postponement of B-steps after a—steps

Recursive Program Schemes

Strong NormaliZation

Term Rewriting System

Unicity of Normal forms

Weak Church—RoSSer property

strong version of WCR

restricted variant of WCR

restricted variant of WCR

Subcommutative

restricted variant of WCR

Well-foundedness property

Weak Innermost Normalization

Weak Normalization

Weak Normalization w.r.t. )I

(2) Notations'conceaningitenma
 

(2.1) Vaniabfiejs and me/taua/véabflezs

vi,a,b,c,...,x,y,z variables

Var set of variables

A,B,C,...,M,N,..., (informal) metavariables, ranging

X,Y,Z over set of terms

2: formal metavariables

Mvar set of metavariables

[x] abStraction of variable x

FV(M) set of occurrences of free variables of

M

305

52

30,32,37,38,144

165

52

52

164,170

47

6

6,46

69,163,254,262

45

11

6,46

121,131,133

46

45

142

169

169

45

47

52

172

6,46

178

1,121

121

121

121

164
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[x := N] substitution of N for x 2

H,H',H1,... vary over meta—terms 123

(2.2) Comtanfl.

A,B,C,D,...,P,Pi, constants 1

2.72:3.
Fhequen/tfly occwwing cowstam:

PL constants in definable extensions of A 9,10

I,K,S basic combinators in CL 12

P pairing constant 79

[,] pairing operation 77,79,151

Qi constants in CRS's 121

R recursor 126

J iterator 130

0,3 zero, successor 126,130

6 Church's G-rules 131,132

0 used for non-left—linear rules 197

D 'Dk'vs versions of non-left-linear constants 197

(0,00,01) (Surjective) Pairing 127,130,195

E inert constant 198

if_.. Ehgg_.. §l§§_..branching operation 131,197,210,248

3 Bar recursion operator 172

B,B(-,-,—) branching operation 209,248

A* head-A of frozen redex 84

Qf head—constant of frozen redex 151

*H H with marked head-constant 151

* marker denoting frozen redex 264

(2.3) Symbobs

s 6 M symbol 5 occurs in term M 3

Symb(M) set of symbols occurring in M 18

s,t vary over symbol occurrences 19

s -.-.+ t descendant relation for symbols 19

s < t s is to the left of t 88,113,264

[ ] abstraction brackets 121



(2.4) Tenmb

Ter(A),Ter(AI)

Ter(2)

Mter(2)

MNNn

+

MN

”f3
MI

co(M)

CR(M)

Fnequentiy occuaning

i
<
i
<

ii
E
N
H
Q
E

<m>

<M,N>

(2.5) Context.)

ct J

¢[M]

El

c£,..., 1

ch[ ,..., J

(2.6) Subtenmb

M NIn

H H'In

M’EN

n
H z

z

51.1“
Sz N

2
3
3
3
2

g N

set of A-terms, AI-terms

set of Z—terms

set of meta-terms of Z

MN...N (n times N)
.9.

MN ...N (for N
1 m
+

[M,N]

term M plus labeling I

N1 0 O .Nm)

M has an infinite reduction

M is CR

tenmb

Curry's fixed point combinator

Turing's fixed point combinator

Ax.xx

ww

Ax.x

Axy.x

Ay.M (yéFv(M))

Ax.xM (x&Fv(M))

Ax.XMN (xéFV(MN))

context having one 'hole' 0

result of substituting M in U

trivial context

n-ary context (i.e. having n holes)

the head-context of a term

(M is a subterm of N

H is a submetaterm of H'

M is a proper subterm of N

(i.e. M g N & M I N)

syntactical equality

M occurs at place 0 in N

M e Sub[’](N)

M is a left subterm of N

M is an exterior subterm of N

121

123

106

151

18

107

233

m
m
m
m
q
q

107

200

3

3

2

213,240

213

182

213

128

176

182

186
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M C, N

H1 G H2

Sub(M)

Sub[,](M)

——-+
$1... S

S1 < S2

2

M e GB(N)

(2.7) Redexeb

R,R',R ,...,S
1

R
—-—-—-—--)-

Arg(R)

nz, nz(M)

lmc(8)

lmc B (8)

p(H)

R -o-o+ R.

RMR'

(2.8) Lab2£6
I

M

($1,000,8n>

8

IL
#

(I)

a X H

A (0510)
a

Ind(8)

(2.9) T4224”-

t(M)

-T(M), T'(M)

M is an interior subterm of N

31 interferes with H2

set of subterm occurrences in M

set of memorized subterms of M

descendant relation for subterms

the headsymbol of S is to the left of
1

that of S2

M is a subterm of a B-reduct of N

redexes

contraction of redex R

argument of redex R

set of redex occurrences (in M)

leftmost contracted redex in 8

leftmost contracted B-redex in 8

‘r-redex, if r = H + H' and p is some

valuation

descendant relation for redexes

(R' is a residual of R)

R' is created by the contraction of R

term M plus labeling I

multiset of ordinals

labeled reduction'MI + ...

well-ordering of multisets

ordinal labeling

concatenation of all labels in 1

(degree of redex p(HI))

H in which every subterm has label a

labeled A in Bn-diagram

union of labels of A's contracted in 8-

term formation tree of M

alternative term formation trees of M

(not to be confused with the T-(or T'-)

translation of M)

186

130

18

176

19

113

213

4, 252

59

66, 179

85, 265

278

126

180

180

18

63

99

178

180

183

183

257

260

78

123, 184



BT(M)

(2.10) 'NonmA'

IMI

ll MI]

K(M)

l8]

IFI

IMID

“M“ D

d (H)

II all

Béhm Tree of M

E D

A// \\A

weight of M e Ter(§_w)

ordinal assigned to M

length of M

multiset assigned to M

length of M

total number of symbols in 8

total number of symbols in F

max. length of D—chains in M

D-norm of M

depth of H

(3) Notationb conceaning'nedaetionb
 

(3. 1) Reduction!)

8 reduction (i.e. finite or infinite

sequence of reduction steps)

empty reduction

reduction diagram

reduction diagram determined by

81,82

concatenation of (appropriate) reduc-

tions

projection of 81 by 82

reduction consisting of the contraction

of redex R

standard reduction for 8

8/{lmc(8)}

81,82 are Lévy-equivalent

81:82 have the same first and last term

81,82 are permutation equivalent

other equivalences between reductions

set of finite reductions starting

with.M

216

34

177

203

178

179

203

203

233

233

238

282

61

58

63

69

69

69

85, 265

85, 265

89

93

93,94

92

309
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i=9 'meta—reduction' of reductions 93, 190

[£11“ {6178' ==>~> 6?} 107

8I labeled reduction MI + ... 99

P (AAAAAA) conversion 102,203,232

8(n) n-th term in 8 113

n(8) initial segment (of length n) of 8 113

(8)n 8—n(8) 113

Red(2) set of reduction rules of Z 120

r reduction rule 126

rA labeled versions of r 138

£_ underlined version of r 139

r[!] r plus memory 154

r-1 converse of r 203

G(a) reduction graph of a 50,115

GB(M) B-reduction graph of M 115

GZ(M) Z-reduction graph of M 162

Gg(M) condensed B—reduction graph of M 213

Reduction a/z/wwA

-—7;—-+ a-reduction 3

Ea,E syntactical equality 3, 4

——7;-+ B-reduction 3

=8 B-convertibility 4

-———4> transitive reflexive closre of ———d- 4, 44

——ii-+ reflexive closure of ———d- 44

——£i-> contraction of redex R 4

-Iir-* reduction in CL 13

~fi?+ , ~n279- translation from A to CL 13

T(M), T'(M) 'T-, T'-normal form of M (i.e. 13

T-, T'—translation of M)

—.-.+ descendant relation 19,139,180

——7§I—> labeled B-reduction 19

—-7?-—+ underlined B-reduction 23

-?§;;—+ Hyland—Wadsworth labeled B—reduction 24

——7?~«¥ Lévy—labeled B-reduction 28

3L n—ary B—reduction ('fast' B—reduction) 37



-—————+ or +h—Er—- converse of ——Er-* 44

 

a

---+, ---4» in a diagram: existential meaning_ 45

---- empty step in a diagram 61

_—7:—”+ k-reduction ('forgetful' reduction) 79,153

K(M) k-normal form of M 79,176

' ——~————+ ' ' 2 1 4~“fi9-or shift shift reduction 79,15 , 5

==' meta-reduction 93,190

~2fEr+- leftmost reduction 113,204

KG Knuth—Gross reduction 117

-~+ creation of redexes 180

i m innermost reduction 180

M+N M,N have a common reduct 198

-—7;-—+ head reduction 213

-----+ derivation 213
der

n e} n E» reductions in CLD 241,242

-_—7[-+ n-reduction 249

-7§T-* Bn-reduction 249

pr0pagation of reduction steps in a 257

m) diagram

2* 3* Knuth-Gross reductions in ABn 296 

(3.2) Reduction bybtemb

A, B Abstract Reduction Systems 44

A g B A is a substructure of B 50

deflated to A and CL

A, A8 A- (or AB-) calculus 5

AI ~AI-calculus 5

AP definable extension of A 10

CL Combinatory Logic 11

AA indexed (or labeled) A-calculus 18

A! 3L. underlined A-calculus 23

Ag. underlined AP—calculus 23

AHW Hyland-Wadsworth A-calculus 24

[AL Lévy's A-calculus 27

AT typed A-calculus 27

AL'P restrictedAL 29
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AB
m

AB

AIP

A[,]
AIE’]

CLT

CLD

An, ABn

183.

.meflated to CRS's

23|='P

P1
M

tfl
b
1
£
P
1
I
M

In

M
I
-
h
H
I
>
-
H
H

M

[,]

E ,]

D
H
M

M
M

P
'

-
I

(i = k,s,h)

A52) (i = k,s,h)

fast AB-calculus

underlined version of ABm

definable extension of AI

A-calculus plus pairing

AI-calculus plus pairing

typed CL

CL plus black boxes

An- (or ABn-) calculus

double underlined version of ABn

2 has the property P

(P is true in 2)

underlined version of Z

2 plus underlining and weights

Combinatory Reduction System

2 is a substructure of 2

direct sum of CRS's 21,222

labeled version of Z

E where substitution is 'frozen'

version of Z in function notation

2f plus fast B-reduction

2 plus memory

variant of [[,]

G5del's T

non-left—linear CRS's

binary versions of Ai (i = k,s,h)

37

38

72

79

81

172

241

250

283

25

32,139

33

120

121

134

138

142

240

142

151

175

179

233

239



Absorbed 291

absorption 251

Abstract Reduction System (ARS) 44

abstraction (A-) 1

abstractor 3

adequate labeling 99

alphabet of CRS 121

a-conversion 3

ancestor 19, 139

anti standard pair 96, 190

a—reduction 3

application 1, 121

argument 5

arity 10, 120, 121

associate 160

association to the left 1

Bar recursion operator 172

bar recursive terms 172

BA-reduction 19

BHw—reduction 24

BL-reduction 28

B-normal 288

branching operation 197, 209, 246

B-redex 3

B—reduction 3

black box 240

Bdhm tree 216

bound 2

bounded predicate P (for AL) 29

Church-Rosser property 45

Church-Rosser Theorem 57, 68, 150,

'163,.224, 225, 251

Church-Rosser, weakly (WCR) 45

313

INDEX

closed

diagram 164

meta—term 123

rule 166

term 2

under projections 168, 281

under reduction, substitution 224

cofinal 51, 293

cofinality property (CP) 51

coincidence 251

color degree 39

colors 39

Combinatorial Completeness (CC)

7, 16, 247

combinators 11

Combinatory Logic (CL) 11

Combinatory Reduction Systems (CRS)

119, 120, 121

commutes 45

commutes weakly 44

complete development (c. dev.)

66, 140, 252

concatenation 69

condensed reduction graph 213, 215

confluent 46

conservative extension 50, 220

consistent 50

constants 1, 126

construction of reduction diagrams 58

context 2

contracted in 8 84

contraction 4

contractum 4

contraction scheme 126, 131, 132
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convertibility 4

conversion 102, 203

(a-) 3

creation of redexes 25, 140

creator redex 188, 191

Curry's fixed point combinator (Y) 7

D—chain 233

decreasing labeling (DL) 177

decreasing redex labeling (DR) 180

definable extensions 9

definable extension of AI 72

definition by cases 130

degree 180, 185

of BHW—redex 24

of BL-redex 28

G—rules of Church 131,

depth 238

132

derived terms 213

descendant 19, 139

developments

complete 66

fast 37

Finite 30, 37, 39, 163, 256

in CRS 140

in A, AP

diminishing 239

direct sum 0 134

D—norm 233

D—preredex 233

Elementary diagram (e.d.) 59

empty step 59

equivalence of reductions 89, 93

erasing step 107

erasure 72, 251

'expansion 274

extension 50

external label 186

external subterm 186

Fast development 38

Finite Developments 30, 37, 39, 163, 256

finitely branching (FB) 52

finitely presented (f.p.) 165

fixed points 7

fixed point combinator

Curry's 7

Turing's 7

with parameters 8

Fixed Point Theorem 7, 224

multiple 9

-flat combinator 12

forgetful reduction rule 153

formation tree 78

t(M) 78

T(M) 123

T'(M) 184

free variables 2

frozen 91, 152

function notation 122, 240

function part 5

FV(M) 2

'§V_(M) 164

Gddel's T 75, 179

good 34

graph, reduction - 50

Head normal form (h.n.f.) 213

head reduction 16, 213

height of Lévy-label 29

Hindley-Rosen Lemma 47

homomorphisms from AL 29



Increasing (Inc) 52

index(ing) 18

induced concept of descendant 22

inductive (Ind) 52

inert 10 ‘

infinite term 107

initial labeling 19, 138

innermost redex 76

inside-out reduction 88

interdefinabilities 200

interference 129, 130

internal label 186

internal labeling 140, 141

internal subterm 186

Iterator (J) 130, 179

k—expansion 153

k-normal form 79'

Knuth-Gross reduction 117, 295

k—reduction 79

labeling 18

adequate 99

initial 138

strongly adequate 108

labeled B-reduction 18

labeled CRS 137

labels 18

Hyland-Wadsworth (HW) 24

Lévy— 27, 182

multiple 24

left-linear 119, 126

leftmost redex 16, 113

left—normal 189

Lévy-equivalent 89

leftmost contracted redex

(lmc) 85, 265

Levy‘s A-calculus (AL) 27

315

L-labeled CRS 183

lmc(8) 85, 265

A-abstraction 1

A(a)—reductions 131, 132, 133, 136

A—(or AB-) calculus 5

Af(or Agf) calculus 23

AII-calculus 215

AI-terms 1

AL-calculus 27

A-path 257, 258

AP-calculus 10

'Agfcalculus 23

A-residuals 254

A-secured 290

A-standard 264

'AT—calculus 27

Marker * 84

memory part 151

meta-metavariables 123

meta-reduction 96, 190

meta-terms 123

metavariables 12, 120

multiple fixed point theorem 9

multiplicity 33

multiset 63

Nederpelt's Lemma 47

Newman's Lemma 47

noetherian 46

non-ambiguous 119, 130

non—erasing 164, 170

normal form (n.f.) 6

normal form property (NF) 220, 228

normal redex 113, 279

normal reduction 113, 280

Normalization Theorem 114, 194, 290

normalizing
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weakly 6, 46

strongly 6, 46

Pairing 130

195

Parallel Moves Lemma (PM) 69, 163

for ABn 254, 262

Surjective 127, 133,

permutation equivalence 96

Pi-redexes 10

Postponement of B after a(PPa ) 45

P—normal form 78 ’B

Postponement of n—reductions 278

projection 69

Proof Theory 127, 133

propagation 61, 257

proper indexing 182

proper rule 21

Quasi—Knuth—Gross reduction 118

quasi-normal reduction 113

Quasi-normalization Theorem (ABn)

293

Recursive Program Schemes (RPS)

11, 133

recursor (R) 75, 122, 126, 133

redex

B- 3

contracted in 8 84

creation of 25

frozen 91

head 213

I-, K-, S— 12

leftmost 113

normal 113

Pi- 10

safe 14

secured 114

reduction

a— 3

B- 3

87 23

BA- 19

24

equivalence of 89

eventually leftmost 113

head 16

inside-out 88

k— 79

Knuth-Gross 117

labeled 8- 18

leftmost 16

maximal 113

normal 113

quasi-normal 113

secured 115

special 108

standard 84

reduction by cases 224, 225

reduction diagram 58

reduction graph 50

reduction relation 126

reduction rule 120, 126

regular 129, 131, 133,

replacement system 44

residuals 19, 139

for ABn 252

A— 254

Safe B—redex 4

safe

redex 14

reduction 14

secured



redex 114, 290

reduction 115, 290

shift normal form 154

shift rule 152

simultaneofis substitution 5

singleton redex 182

special 203

special reduction 108

standard reduction 84, 190, 264

standardization diagram 85

Standardization Theorem 87, 90, 101

103, 193, 276

strongly normalizing (SN) 6

subcommutative (WCRSI) 45

Sub(M) 18

SubE’](M) 176

submetaterm 182
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SAMENVATTING

In de volgende bladzijden wil ik proberen de achtergrond en de inhoud van

dit proefschrift te schetsen; daarbij richt ik me vooral tot degenen die

niet bekend‘zijn met het onderwerp. (Een nauwkeuriger beeld wordt gegeven

in de 'Introduction and Summary'.)

Er zijn ruwweg twee ingangen tot het onderwerp, de eerste van filoso-

fische aard ('Grondslagen van de Wiskunde') en de tweede van praktisch—toe-

gepaste aard ('Computer Science').

Laten we beginnen met het grondslagen—aspect. Zoals bekend, kan de he-

le wiskunde (in zekere zin) beschreven worden d.m.v. de Verzamelingentheo-

rie (bijvoorbeeld het systeem ZF van Zermelo en Fraenkel), onder het motto

'alles is een verzameling'. Een concurrerende visie (qua aantal aanhangers

veruit in de minderheid) propageert als fundamenteel begrip niet 'verzame—

ling', maar 'functie'. Een voorbeeld: de functie f: Ed + Ed met f(x) =

= (x2+1)x wordt genoteerd als Ax. (x2+1)x, waarmee dus

f(3) = (Ax. (x2+1)x)3 = (32+1)3 (het argument 3 wordt voor alle x-en gesub-

stitueerd). In de "pure" A-calculus komen in eerste instantie geen natuur—

lijke getallen of operaties als 'kwadraat' voor; de enige objecten in kwes-

tie zijn de functies zelf, en de enige operatie is applicatie van een func-

tie f op zijn argument x; resultaat fx. Daarbij zijn we zeer liberaal: het

domein van zo'n functie is 'alles' en zelf—applicatie wordt dus niet ge—

schuwd. Z0 is er bijv. een functie F = Axy.yx die zijn twee argumenten om—

keert: Fab = (Axy.yx)ab = ba. Merk op dat we zuinig zijn met haakjes en

niet F(a,b) schrijven; n-aire functies worden namelijk teruggebracht tot

unaire functies, via een simpele identificatie. (Bijv. de binaire functie

+ = A(x,y). x+y e (IJXIJ) + 11 kan geidentificeerd worden met de unaire

functie f = Ax.(Ay.x+y), afgekort tot Axy.x+y, d.w.z. de functie

f 6 ]N -> (]N-HN) met f(x) = Ay.x+y e ]N + ]N. Hierbij staat A -> B voor de

verzameling functies van A naar B.)

Een ander voorbeeld is de functie D = Ax.xx die zijn argument verdub—

belt: Da = (Ax.xx)a = aa. Dit leidt tot een merkwaardig object, namelijk

DD; bij 'uitrekenen' komen we in een cykel: DD = (Ax.xx)D = DD. Natuurlijk

hebben we ook de 'gewone' compositie C van functies f, g; in plaats van

fog schrijven we Cfg. In feite is dus C = Axyz. x(yz); want dan inderdaad

Cfgx (= (fog)x) = f(gx).

Een van de opmerkelijkste feiten bij dit rekenen met 'A—termen' is dat
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elke functie F een vast punt p heeft, dus Fp = p. Namelijk, neem bij gegeven

F eenvoudig p = D(F°D). Dan immers p = D(FOD) == (F°D)(F°D) = F(D(F°D)) = Fp!

Deze zo eenvoudig af te leiden Fixed Point stelling in de A—calculus hangt

samen met Gédel's Onvolledigheidsstelling en met een fundamentele stelling

in de Recursietheorie.

Bij de genoemde voorbeelden is het duidelijk dat er een zekere asym-

metrie zit in de gelijkheid (=); er is sprake van uitrekenen, reduceren ge-

naamd. Bijvoorbeeld, Da wordt gereduceerd tot aa; notatie: Da + aa. Meestal

bevat een A-term M verschillende onderdelen die gereduceerd kunnen worden

(zoals bijvoorbeeld ook de berekening van (3+2).(5+7) op verschillende ma-

nieren begonnen kan worden) en we kunnen de term M dus op verschillende ma-

nieren uitrekenen. A priori is het mogelijk dat er dan ook verschillende

'uitkomsten' gevonden worden,’waarbij een 'uitkomst' (officieel: normaal-

vorm) een term is die niet verder gereduceerd kan worden. Dat zou, intui-

tief gesproken, niet in de haak zijn. Gelukkig zegt een fundamentele stel—

ling (van Church en Rosser) dat wanneer een term M op twee manieren een

aantal stappen gereduceerd wordt, zeg tot A en B, er verdere reducties zijn

die tot een gemeenschappelijk reduct C van A, B leiden:

M

C

En deze stelling garandeert (na nog een kort argument) de uniciteit van de

uitkomst, als die er tenminste is. (Bijv. de berekening van DD leidt niet

tot een uitkomst: DD + DD + ...)

Het probleem bij het bewijzen van deze Church-Rosser eigenschap is als

volgt. Als elk tweetal reductiestappen#/A\\aangevuld zou kunnen worden tot

een 'tegel' , zou het niet moeilijk zijn het gemeenschappelijk

reduct C te vinden; in bovenstaande figuur door 12 tegels te leggen. Helaas

zijn de tegels meestal van de vorm .<;:>> of , bijvoorbeeld;

en dan kan het plaveien om C te vinden gemakkelijk uit de hand lopen:

??
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Deze 'Church—Rosser' problematiek, en het al of niet eindigen ('norma-

liseren') van reducties, hangen nauw met elkaar samen en vormen het centra-

le thema van dit proefschrift.

De A-calculus werd in de dertiger jaren ontwikkeld. Er is een verwant

systeem, genaamd Combinatorische Logica (in 1924 ontdekt), dat even sterk

is als de A—calculus; de twee systemen zijn in zekere zin vertalingen van

elkaar. Alles wat A-calculus kan, voor de Grondslagen van de Wiskunde, kan

CL ook. Bovendien heeft CL het voordeel dat er geen gebonden variabelen

zijn (zoals de x in Ax.xx); filosofisch prettig want het is problematisch

wat gebonden variabelen eigenlijk 'betekenen'. In CL zijn er drie basis

combinatoren I, K, 3 met als regels voor reductie:

Ix + x

ny + x

Sxyz + (x2) (yz) .

Dus I is de Identieke 'functie', K is de functie die Konstante functies

'maakt' (immers Kx is een functie met yi+ x voor all y), en 3 doet iets dat

in feite op hetzelfde blijkt neer te komen als Substitutie in de A-calculus.

Substitutie in A-calculus wordt a.h.w. geélimineerd ten gunste van conca-

tenatie (simpelweg achter elkaar zetten) in CL, en het laatste is natuurlijk

een eenvoudiger operatie.

Een voorbeeld. De 'combinator' SIT doet hetzelfde als de verdubbelaar

D boven:

SIIx + (Ix)(Ix) + x(Ix) + xx.

CL heeft ook weer zijn nadelen: de beschrijving door een A-term van een

'rekenproces' is veel directer; de corresponderende combinator is veel in-

gewikkelder. Een voorbeeld van een typisch verschil in syntactisch gedrag:

het is niet moeilijk A-termen M te vinden zodat M met al zijn 'reducten'

precies een reductie-‘loop' vormt: M

(DD::)was al zo'n loop.)

In CL daarentegen genereert de aan-

wezigheid van een cyclische reductie er meteen oneindig veel in de reductie-

graph. (Dit is goed te zien bij de CL—vertaling (SII)(SII) van DD.)

We zouden kunnen zeggen dat CL en A-calculus een analyse geven van

rekenprocessen. Een CL- of A-term is eigenlijk een 'programma', maar dan
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één in pure vorm, ontdaan van alle 'syntactic sugar' waaronder de essentie

van echte programma's soms schuil gaat. De A-calculus (of CL) is te zien

als een 'oer-programmeertaal', waarin veel van de essentiéle aspecten van

echte programmeertalen in pure vorm bestudeerd kunnen worden. (Zo bezien is

zelf-applicatie (FF) niet vreemd: een programma kan zichzelf als input heb-

ben.)-Reductie-stappen zijn atomaire berekeningen, zoals in Turing machines

het opschuiven van de band, het veranderen van inwendige toestand, het druk-

ken van een symbool, etc., de atomaire handelingen zijn. (Alles wat een

Turing machine kan, kan CL of A—calculus ook.)

Hiermee zijn we terecht gekomen van het Grondslagenaspect op dat van

de Computer Science. Het reductiesysteem CL is een voorbeeld van een Term

Reductie Systeem (TRS). TRS'en komen al in elementaire wiskunde voor, bij-

voorbeeld

x+0 + x

x+(y+1) + (x+y)+1

x.0 + 0

x.(y+1) + x.y+x,

de definitie 'vergelijkingen' voor + en . , vormen een TRS. Gegeven de term

(2+3).(5+7) dan kan deze, op verschillende manieren, m.b.v. de reductie-

regels uitgerekend worden. 00k hier dus de 'Church-Rosser problematiek' en

de vraag of de berekening eindigt. Voor deze TRS zijn die vragen niet zo

moeilijk positief te beantwoorden; de regels vertonen de prettige omstan-

digheid (net als die voor CL boven), dat de variabelen x,y,z aan de linker-

kant van de regels paarsgewijs verschillend zijn (rechts niet). Zulke TRS—en

heten lineair. Een simpel voorbeeld van een niet-lineaire TRS krijgen we door

aan bovenstaande regels de volgende reductie-regel voor de inverse toe te

voegen:

x+(—x)'+.0.

Het dubbel voorkomen van de x aan de linkerkant is lastig om de volgende

reden. Stel x + x', en beschouw de 'divergente' bereken—stappen

x + (—x) ———é-0

l
x'+(—x)
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dan moeten we om een gemeenschappelijk reduct te vinden eerst de verstoring

van de a.h.w. in evenwicht verkerende term x+(—x) compenseren:

X+(—x) 5+ 0

l
x'+(-x) + x'+(-x') ——+ 0

 

Het hoofdresultaat van dit proefschrift is nu, dat door die non-lineariteit

van reductie—regels de Church-Rosser eigenschap (CR) beslissend verstoord

wordt, als het reductie-systeem in kwestie tenminste 'sterk genoeg' is. Voor

de eenvoudige niet—lineaire TRS 2 van boven geldt CR nog wel. Maar als we

een 'mixture' zouden bekijken van A-calculus plus 2 (met termen zoals

Az.((Axy.x+(-y)+z)), dan geldt CR niet langer!

Overigens: het falen van CR impliceert nog niet dat een term dan tot

verschillende uitkomsten gereduceerd kan worden. Inderdaad blijkt in de on-

derzochte systemen dat daar de uniciteit van normaalvormen blijft gelden,

ook al geldt CR niet.

Zulke non-lineaire systemen komen in verschillende gebieden tevoor-

schijn; behalve in 'pure' A-calculus en als TRS-en die samenhangen met al—

gebraische structuren (zoals het voorbeeld boven), ook in de Bewijstheorie

en in de Theoretische Informatica, bij een stel regels als:

(i: true then x else y) + x

(EE_false then x else y) + y
 

(EE_Z then x else x) + x (*)

.waar het venijn van de niet-lineariteit in regel (*) zit.

Uit bovenstaande zal het duidelijk zijn dat a1 deze problemen een

'syntactisch karakter' hebben. Dit proefschrift beperkt zich tot die kant

van de zaak; semantische aspecten ('wat betekent een A-term? Is er een model

voor de A-calculus?') komen hier niet aan bod.
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