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Abstract

Liquid democracy is a voting system that allows citizens to vote directly, or to
delegate their votes to a trusted individual. If delegations occur, the preferences
of the electorate (set of voters choosing to vote directly) can exhibit different
properties than the preferences of the entire society. One well-studied property
of particular interest is single-peakedness since it guarantees problem-free aggre-
gation of preferences into a collective choice. We investigate conditions under
which delegations generate single-peaked electorates out of non-single-peaked
societies. We find that the willingness of voters to delegate is critical for the
existence of single-peaked electorates.



Chapter 1

Introduction

Democratic decision-making has a long history but its story has not been told
to the end. Two forms of democratic voting systems prevailed, representative
and direct democracy, but recently a contender has entered the stage: liquid
democracy (Brill, 2021). In liquid democracy the ability to cast a vote directly,
like in a direct democracy, is extended by delegations allowing for political rep-
resentation, like in a representative democracy. Voters can choose to delegate
their vote to somebody they trust, or vote directly. The voters deciding not to
delegate are often referred to as gurus, and the set of gurus is called the elec-
torate. Generally seen as a hybrid between representative and direct democracy,
liquid democracy sets out to bring together the best of both worlds (Blum and
Zuber, 2015).

One main advantage of representative democracy is that voters can choose
a representative, who is arguably an expert, or a trusted individual. At the
same time, representative democracy is confronted with a democratic deficit.
Voters can only choose representatives every couple of years, which then might
not serve the public’s best interest. A state of (political) lethargy can be the
consequence. On the other hand, direct democracy improves democratic par-
ticipation. Everyone is treated equally in every vote. However, it is caught up
in a dilemma: Either voters need immense effort to understand underlying is-
sues, or voters are, potentially, uneducated with respect to these issues. Liquid
democracy, arguably, alleviates these shortcomings and improves democratic
participation, giving everyone the chance to vote, while it furthermore allows
representation through delegations in case voters do not feel confident enough
to submit an own ballot.

Arguably, liquid democracy brings benefits along but, like any other system,
it is nonetheless confronted with a classical problem in social choice theory: the
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(fair) aggregation of individual preferences into a collective choice. Citizens
rank alternatives to their liking, and collectively decide on a best alternative,
or possibly best ranking of alternatives. Finding an agreement is not only hard
in real life, it poses mathematical problems and even leads to paradoxes. One
fundamental paradox concerns the (ir)rationality of preferences. Consider three
friends, Alice, Bob, and Charlie, who have to decide on a vacation destination.
Alice, an environmentalist who dislikes aviation, suggests the Ijsselmeer, Bob
loves the urban life and wants to go to Berlin, and Charlie prefers beaches as
they have them in Cuba. They rank their friends’ suggestions with the following
result.

Alice Bob Charlie
Ijsselmeer Berlin Cuba
Berlin Cuba Ijsselmeer
Cuba Ijsselmeer Berlin

While each of the three friends have acyclic preferences (arguably a minimal
requirement for rationality), the majority preferences are not acyclic. A major-
ity of voters (Alice and Charlie) prefer the Ijsselmeer to Berlin, a majority
of voters prefers Berlin over Cuba (Alice and Bob), and yet a majority prefers
Cuba over the Ijsselmeer (Bob and Charlie). The fact that individually ratio-
nal preferences do not necessarily result in rational societal preferences is called
Condorcet’s Paradox (Brandt et al., 2016). A further classical problem has been
advanced in a seminal work by Arrow (1950) who showed that, under reasonable
assumptions for fairness, any fair voting rule is a dictatorship. In a dictator-
ship a single voter decides over the collective outcome. Gibbard (1973) and
Satterthwaite (1975) seem to bury the hopes for good voting rules by showing
that the only voting rule that cannot be manipulated must be a dictatorship.
A manipulation occurs when voters do not submit their actual preferences, but
can affect the collective outcome to their advantage by submitting a manipu-
lated ballot. Naturally, the question arises how individual preferences can be
aggregated into a collective choice, while avoiding Condorcet’s Paradox, and the
threat of dictatorship and manipulation. We call this the aggregation problem.

A mathematically elegant solution to the aggregation problem are restricted
preferences: If certain preferences are not admitted, and thus restricted, then the
aggregation problem does not arise. The restriction discussed in Black (1948)
and shown to avoid the aggregation problem is single-peakedness. A society
is called single-peaked, if its citizens can agree on an order of the alternatives
such that each voter prefers alternatives less, if they are further away in this
order from their most preferred preference (Brandt et al., 2016). This ordering
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comes about naturally in some scenarios, for example in discussions about the
legal drinking age. If one’s preferred legal drinking age is 18, one will probably
consider 15 as a legal drinking age more inappropriate than 16, and 21 more
inappropriate than 19. However, single-peaked preferences are not generally
realistic.1 This poses a problem, as voters’ preferences cannot be simply made
single-peaked if they are not. Declaring non-single-peaked preferences invalid
would be extremely undemocratic, and hardly an improvement to a dictatorship,
the very thing a democracy sets out to avoid.

Liquid democracy might come to rescue and offer a way out of this dilemma.
Starting with a non-single-peaked society, delegations can bring about single-
peaked electorates. Consider again the example of our three vacationers Alice,
Bob, and Charlie. Together they form a non-single-peaked society. However,
note that any two of them together are single-peaked. If any of them were to
delegate their vote, a single-peaked electorate can be formed. Compare this
process more generally to direct democracy. Given the same society, a single-
peaked electorate can therefore be generated through delegations from a non-
single-peaked society.

(a) Direct Democracy (b) Liquid Democracy

As we have argued above, if the electorate, which is a subset of all citizens, is
single-peaked, the results from Black (1948) apply, and the aggregation problem
is solved. Instead of undemocratically taking the voting rights away from non-
single-peaked citizens, liquid democracy could avoid the aggregation problem by
bringing about single-peakedness with democratic means, namely, delegations.
The goal of the thesis is to identify conditions under which liquid democracy
guarantees single-peaked electorates—and when it does not.

1In fact, the real life data set we will analyze in Chapter 5 of this thesis does not contain
a single single-peaked profile.
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1.1 Related Literature
Behrens (2017) traces back the origins of liquid democracy to Dodgsons (1884).
With technological advances like the internet, a revival of liquid democracy came
along (Behrens, 2017). Discussions on political and philosophical foundations
as well as implications can be found in Blum and Zuber (2015) and Valsangia-
como (2021). Furthermore, liquid democracy has become a trend in the field
of computational social choice. One standard model of liquid democracy and
some standard problems it is exposed to is provided in Brill (2019). Various
papers have analyzed and criticized liquid democracy, e.g. for its performance
in discovering an underlying ground truth (Kahng et al., 2021; Caragiannis and
Micha, 2019), a lack of individual rationality (Brill and Talmon, 2018; Christoff
and Grossi, 2017), or potential tendencies to aggregate power in the hands of
few individuals (Zhang and Grossi, 2021). Liquid democracy has been tested
in some scenarios, for example in the German Pirate party (Litvinenko, 2012),
and in Google Votes (Hardt and Lopes, 2015). However, scalability remains
a problem since, similarly to direct democracy, it is hard to implement it on
a large scale. For a more optimistic view on scalability see Brill (2021). Re-
cently, liquid democracy has been discovered in the world of blockchains, and
cryptocurrencies (Zhang et al., 2018; Fan et al., 2019).

Brandt et al. (2016) provide an excellent introduction to the field of com-
putational social choice. The chapter by Zwicker (‘Introduction to the Theory
of Voting’, Chapter 2) describes the three problems of Condorcet’s paradox,
Arrow’s Theorem, as well as the result by Gibbard and Saitherwaite, and lays
out how single-peaked domain restrictions solve these problems. Elkind et al.
(2017) discuss the relevance of domain restrictions, like single-peakedness, be-
yond the aggregation problem by laying out their benefits from an algorithmic
perspective. Essentially, single-peakedness can reduce the complexity of certain
computational problems.

The theoretical foundations of this work are largely inspired by Escoffier
et al. (2019), and Escoffier et al. (2020), who provide us with a model and
analysis of stable electorates. This thesis is, to the best of our knowledge,
the first discussion of single-peaked (stable) electorates in liquid democracy.
The idea that single-peakedness has to be in some sense ‘brought about’ also
appears in the literature on deliberative democracy (List and Dryzek, 2003;
List et al., 2013; List, 2018). List (2018) discusses whether deliberation pro-
cesses can bring about a meta-agreement between citizens. While not reaching
substantive consensus about a topic, citizens can agree on what they disagree
on (for example they ‘agree that their disagreement concerns a trade-off be-
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tween the economy and the environment’, List, 2018). One interpretation of
single-peaked electorates in liquid democracy could therefore go along the lines
of meta-agreements. However, it requires a conceptual analysis what meta-
agreement in liquid democracy means which we do not provide in this thesis.

1.2 Our Contribution
The main concern of this thesis will be to investigate the conditions under which
single-peaked electorates can be generated in liquid democracy. To the best of
our knowledge, this is the first work on single-peaked electorates in liquid democ-
racy. We will, however, not analyze the whole class of single-peaked electorates,
but a subclass, the stable, single-peaked electorates. A game-theoretical notion
of stability, has been proposed by Escoffier et al. (2019), and Escoffier et al.
(2020). An electorate is stable, if every voter is happy with their final delegate
after all voters have delegated. The relevance of stability becomes clear if we
make ourselves aware of the fact, that liquid democracy allows for transitive del-
egations. If Alice delegates to Bob, and Bob delegates to Charlie, Charlie is the
guru of Alice. However, Alice might not accept Charlie as her guru, and prefers
to change her delegation. This would be a case of unstable delegations. The
concept of acceptance of a guru will be cashed out in mathematical symbolism
through two notions. First, we introduce a distance measure between voters.
While there are many distance measures on preference orders, the Kendall Tau
distance is arguably the most representative for differences in opinions repre-
sented by strict linear orders. For two preference orders, it counts the number
of adjacent swaps needed to turn one order into the other.2 Besides preferences,
each citizen is associated with a delegation threshold. Intuitively, this threshold
can be seen as an indicator of how opinionated citizens are. If this threshold is
larger than the distance to another voter, the latter will not be accepted as a
guru, if it is smaller, she will be accepted. This setting including a (symmetric)
distance measure and delegation thresholds is called distance based in Escoffier
et al. (2020), and it always admits stable electorates. We will analyze what
restrictions we have to make on the delegation thresholds, in order to guarantee
that the stable electorates are furthermore single-peaked.

2Compare this to the Cayley distance which counts the number of not necessarily adjacent
swaps. The two orders a � b � c, and c �′ b �′ a, have Kendall Tau distance three, and
Cayley distance one. As they are inverses of each other, they represent diametrically different
opinions, and we take the Kendall Tau distance to be more appropriate for our setting.
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1.3 Overview
In Chapter 2 we introduce the main concepts and tools of this thesis. We lay
the preliminary groundwork by introducing the standard components of prefer-
ences and profiles, the main property of single-peakedness, and some graph the-
oretical basics. Each of these are treated independently, and partially brought
together when the Kendall tau distance is defined, and some basic results are
proven.

Chapter 3 forms the theoretical core of this thesis, and proves the main re-
sult. We discuss the model of liquid democracy defined in Escoffier et al. (2020),
and connect it to single-peakedness. We prove a characterization theorem for the
existence of single-peaked, stable electorates in liquid democracy. Essentially,
we prove a lower bound on the delegation thresholds: Single-peaked, stable elec-
torates exist if and only if voters are (in a to be defined way) open-minded. The
proof is based on three assumptions: Every possible preference is submitted
once (complete preference domain), every voter has the same delegation thresh-
old (homogeneity of thresholds), and everyone is allowed to delegate to anyone
(complete social network). Analytical results are hard to obtain for relaxed
assumptions. In Chapter 4 we will computationally analyze the impact of
dropping the assumption of the complete preference domain via a Monte Carlo
simulation. We will see that the bound on the delegation threshold established
in the existence characterization extends (mostly) to the universal preference
domain. Finally, we consider real life data, and additionally drop the assump-
tion of the homogeneity of thresholds in Chapter 5. With a further Monte
Carlo simulation, we show that the bound on the delegation threshold alone
is not fine-grained enough to indicate the existence of single-peaked equilbria.
It remains, however, a crucial factor. A generalization to any social network
remains future work, which together with a summary, and discussion of the
results is provided in the conclusive Chapter 6. Furthermore, we relate the
results to the motivating aggregation problem.
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Chapter 2

Preliminaries

This chapter formally introduces some of the main concepts. The thesis spans
from combinatorial arguments on preference orders, to graph theoretical notions.
Most of these notions are introduced independently here, and brought together
in Chapter 3.

2.1 Preference Orders and Profiles
We denote by A = {a1, ..., am} the set of alternatives with m = |A|. A strict
linear order � is a binary relation over A, satisfying the following three proper-
ties for all a, b, c ∈ A: Irreflexivity (not a � a), transitivity (if a � b and b � c,
then a � c), and connectedness (if a 6= b then a � b or b � a). For a strict linear
order � we sometimes refer to the maximal element of � as its peak. Generally,
we denote by � the reverse of �, that is for all distinct alternatives a, b ∈ A,
we have a � b if and only if b � a. Intuitively, one can think of a strict linear
order as a ranking of alternatives. We denote by L(A) the set of all strict linear
orders over A.

If � is a strict linear order on A, we say that �′ is a suborder of � if it
is a restriction of � to a subset A′ ⊂ A. If �′ is a suborder of �, and only
contains the highest ranked alternatives of �, we say that �′ is a prefix of �.
Analogously, we define the suffix if �′ contains the lowest ranked alternatives
of �. We define the operation + to be the concatenation of two strict linear
orders �′ and �′′ on disjoint sets A′ and A′′, such that �′ + �′′ = � where �
is a strict linear order on A = A′ ∪ A′′.
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Example 1. � is a strict linear order over A = (a1, a2, a3).

� = (a1, a2, a3) �′ = (a1, a3)

�′′ = (a1, a2) �′′′ = (a3)

The order �′ is a suborder but neither prefix nor suffix of �. While �′′ is a
prefix, �′′′ is a suffix of �. Note furthermore that �′′ + �′′′ = �. 4

Given a set of alternatives, each of a finite set of agents N = {1, ..., n} expresses a
preference �i ∈ L(A). This gives rise to a vector of preferences orders which we
call a preference profile P = (�1, ...,�n) ∈ L(A)n. The domain of a preference
profile D(P ) is the set D(P ) ⊆ L(A) containing the orders corresponding to
each preference relation �i in the profile P . In the setting of profiles we will
make use of the preference orders indexed by the agents, e.g. �i, while we omit
the index when reasoning about domains.

2.2 Single-Peakedness
We begin by introducing the basic definitions of single-peakedness, and talk
through some observations. Let max(�) denote the peak of the order � ∈ L(A),
and min(�) the minimal element. For a domain D ⊆ L(A), we let min(D)
denote the set of all bottom alternatives, i.e. min(D) =

⋃
≻∈D min(�). For

a preference profile P the set containing the least preferred alternatives of all
voters, is just min(D(P )), which we denote by min(P ) for short.

Definition 1. Given a designated order � ∈ L(A), an order �′ ∈ L(A) is
single-peaked with respect to � if we have for every triple of distinct alternatives
max(�), a, b ∈ A:

(max(�′) � a � b or b � a � max(�′) ) implies a �′ b .

We say a set D ⊆ L(A) is �-single-peaked if all its members are single-peaked
with respect to �. Denote by SP≻ the maximal �-single-peaked domain, i.e.
SP≻ = {�′ ∈ L(A) | �′ is �-single-peaked}.

The following observation follows from closer inspection of Definition 1:

Observation 1. An order �′ ∈ L(A) is �-single-peaked if and only if �′ is
single-peaked with respect to the reverse of �.

The definition of single-peakedness can be naturally expanded to preference
profiles as follows:
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Definition 2. Given some order � ∈ L(A), a preference profile P is single-
peaked with respect to � for voter i if we have for every triple of alternatives
max(�i), a, b ∈ A:

(max(�i) � a � b or b � a � max(�i) ) implies a �i b .

A preference profile is single-peaked with respect to � if it is single-peaked with
respect to � for all voters. We then write that P is �-single-peaked. Note that
the basic definition of single-peakedness is insensitive to the number of voters
as it only considers which orders are submitted.

Observation 2. A preference profile P is �-single-peaked if and only if the
domain of the profile D(P ) is �-single-peaked.

Instead of reasoning about different preference profiles with the same domain,
we can therefore reason about the set-based notion of domains of preference
profiles. By Proposition 2 this allows us to draw conclusions about all profiles
with the same domain.

The following theorem shows that given an order �, any �-single-peaked
order can be divided into two suborders.1

Theorem 1. Let � = (a1, ..., am), and let �′ be an order with ai = max(�′)
and 1 ≤ i ≤ m. Then �′ is �-single-peaked if and only if

ai �′ ai−1 �′ ... �′ a1 and ai+1 �′ ai+2 �′ ... �′ am .

Proof. Let � = (a1, ..., am), and ai = max(�′).
(⇒) For contradiction, assume �′ is �-single-peaked, and not ai �′ ai−1 �′

... �′ a1 or not ai+1 �′ ai+2... �′ am. In the first case, there are aj and ak such
that j < k < i, and aj �′ ak. Since � = (a1, ..., am), we know ai � ak � aj. By
the definition of single-peakedness it follows that ak �′ aj, a contradiction. The
second case works analogously.
(⇐) Again, there are two cases to consider. In the first case we have to show that
for any triple ai, aj, ak ∈ A if ai � aj � ak then aj �′ ak. Since � = (a1, ..., am),
we know that i > j > k. Since ai �′ ai−1 �′ ... �′ a1, it follows immediately
that aj �′ ak. For the second case consider any triple aj � ak � ai. Since
j < k < i, and ai+1 �′ ai+2... �′ am, we derive by analogous reasoning that
aj �′ ak which concludes the proof.

1The equivalence is well-known. In fact, the definition of single-peakedness varies from
author to author. Here we essentially prove the equivalence of two definitions.
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Given the peak of an order, Theorem 1 makes checking for �-single-peaked-ness
relatively easy. Once the indexation {1, ...,m} of the alternatives in � is fixed,
simply check whether alternatives with lower indexes than the peak are ranked
in descending order in �′, and alternatives with a larger index than the peak
are ranked in ascending order in �′.
Example 2. Let � = (a1, ..., a6). We want to check whether the following
orders are �-single-peaked:

�′= (a4, a3, a2, a1, a5, a6)

�′′= (a4, a5, a3, a6, a2, a1)

�′′′= (a4, a6, a3, a2, a5, a1)

The first two orders are indeed �-single-peaked, since they both contain the
suborders (a4, a3, a2, a1) and (a5, a6). The last order however contains a6 �′′′ a5
which violates Theorem 1, and is thus not �-single-peaked. 4
With Theorem 1 at hand, it is easy to prove that any single-peaked profile can
have at most two different minimal alternatives.
Observation 3. If P is single-peaked, then |min(P )| ≤ 2.
Proof. Assume for contradiction that P is single-peaked with respect to some
order � = (a1, ..., am), and |min(P )| > 2. From the latter, we deduce that
there exists an order �′ with minimal element ai 6= a1 6= am. But then �′ is
not �-single-peaked by Theorem 1.

Theorem 1 furthermore motivates the partition of the single-peaked domain
according to the peaks of the orders. It provides us with structural knowledge
which we will exploit later in this thesis. Let SPai

≻ denote the set of �-single-
peaked orders with peak ai.
Observation 4. The �-single-peaked domain can be partitioned into disjunct
subdomains induced by the peaks ai of the orders �′ ∈ SP≻ as follows:

SP≻ = SPa1
≻ ∪ ... ∪ SPam

≻

We will show later in this chapter that each subset is non-empty (Corollary 4.1).
Furthermore, note that SPa1

≻ and SPam
≻ each contain only one element: the or-

ders �, and � respectively. To give a taste of what is yet to come, Observation 4
will come in handy when measuring the distance between an order �′ and a �-
single-peaked domain. As this task turns out to be rather difficult, we will
instead measure the distances between �′ and each of the subdomains SPa1

≻ ,...,
SPam

≻ . The minimal distance of �′ to any single-peaked subdomain is then the
distance to the whole single-peaked SP≻.

10



2.3 Elements of Graph Theory
A directed graph is a pair G = (V,E) consisting of a set of vertices V and
edges E ⊆ V × V , a subset of the Cartesian product of V . A directed graph is
symmetric if for all edges u, v ∈ V we have (u, v) ∈ E if and only if (v, u) ∈ E.
In a symmetric graph the direction of an edge loses its significance, and we will
refer to them as undirected graphs. In a directed graph G = (V,E), a subset
of vertices S ⊆ V is independent if there is no edge between any two vertices
in S. We say that S is maximal independent if no vertex can be added to S
without losing the property of independence. A subset S ⊆ V is absorbing if for
every vertex u /∈ S, there exists v ∈ S such that (u, v) ∈ E (then we say that v
absorbs u). A kernel of G is a subset of vertices that is both independent and
absorbing. A clique C ⊆ V is a subset of vertices, such that all vertices in C
are adjacent. Intuitively, a clique is the opposite of an independent set. The
complement G of a graph G, is a graph on the same vertices, and contains an
edge between two vertices whenever G does not contain an edge, and vice versa.

Observation 5. In an undirected graph G, a set S is independent in G if and
only if S is a clique in the complement graph G.

Observation 5 follows directly from the definitions of independent sets and
cliques. Next, we show that a kernel is equivalent to a maximal independent
set if the graph is undirected.

Observation 6. If G = (V,E) is an undirected graph, a set K ⊆ of vertices is
a kernel if and only if it is a maximal independent set.

Proof. (⇒): Since K is a kernel, any vertex v /∈ K is absorbed by some ver-
tex u in K. Thus, (u, v) ∈ E, and v cannot be added to K without losing
independence.

(⇐): Assume for contradiction that there is a vertex v that is not absorbed
by K. Since G is undirected, there is no edge between v and any element
of K, and v can be added to K without losing independence, resulting in a
contradiction. Thus, K is absorbing, and therefore a kernel.

Notably, we only used the assumption that the graph was undirected in the
right-to-left direction. In directed graphs not every maximal independent set is
a kernel, but every kernel is a maximal independent set.

An isomorphism between two graphs G = (V1, E1) and H = (V2, E2) is a
bijection f : V1 → V2 between the vertices such that (u, v) ∈ E1 if and only if
(f(u), f(v)) ∈ E2. Isomorphisms will play an important role in Chapter 3 since
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they preserve kernels. This is straightforward to see since by definition edges
are preserved in isomorphism.

Observation 7. Kernels are preserved under isomorphisms.

2.4 Kendall Tau Distance
For any two distinct alternatives a, b ∈ A, two strict linear orders �,�′ ∈ L(A)
agree on the rankings of a and b if a � b ⇔ a �′ b, and they disagree on the
rankings if a � b ⇔ b �′ a. We define τa,b(�,�′) = 0 if � and �′ agree on the
order of a and b, and τa,b(�,�′) = 1 if they disagree. The Kendall tau distance
is defined by the following formula

τ(�,�′) =
∑
a,b∈A

τa,b(�,�′)

In words, the Kendall tau distance between two orders equals the number of
pairs they disagree on. If two orders disagree on all pairs the Kendall tau
distance is maximal (denoted by τm), and one order is the reverse of the other.
Since there are

(
m
2

)
pairs of distinct alternatives we have that:

Observation 8. The maximal Kendall tau distance τm between any two orders
of length m is

(
m
2

)
= m(m−1)

2
.

A more intuitive way to think of the Kendall tau distance is as the minimum
number of adjacent swaps needed to reach an order � from �′. Each swap
of adjacent alternatives changes whether two orders agree, or disagree on the
ranking of these alternatives. A swap therefore either increases or decreases the
Kendall tau distance between two orders by 1. The minimal number of swaps
is therefore equivalent to the Kendall tau distance. We will often write that �
and �′ are k swaps away from each other, instead of τ(�,�′) = k.

Example 3. Consider the orders � = (a1, a2, a3), and �′ = (a3, a2, a1). As they
disagree on the ranking of all pairs, we get τ(�,�′) =

(
3
2

)
= 3. In the sequence

((a1, a2, a3), (a2, a1, a3), (a2, a3, a1), (a3, a2, a1)) three swaps are performed. First
a1 and a2, then a1 and a3, and finally a2 and a3 are swapped, resulting in the
same answer. 4

2.4.1 τ-Graph
For the pursuit of the following chapters it will prove helpful to visualize the
complete domain L(A) in terms of the Kendall tau distance. We introduce the
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τ -graph Gτ = (L(A), Eτ ), an undirected graph consisting of all strict linear
orders on a set of alternatives A as vertices, and edges between � and �′ if
τ(�,�′) = 1, or equivalently two orders are one swap away from each other.
The d-τ -graph is a generalization of the τ -graph, where edges between � and
�′ exist if τ(�,�′) ≤ d. A path from �1 to �k is a sequence P = (�1, ...,�k)
with k ≥ 2 such that for all j ∈ {1, ..., k − 1} we have that �j and �j+1 are
neighbors, i.e. τ(�j,�j+1) = 1.2 The length ℓ(P ) equals the number of elements
in P which are distinct from the starting order �1. The Kendall tau distance
between two orders �,�′ therefore corresponds to the length of a shortest path
from � to �′ in the τ -graph.

Example 4. The τ -graph for A = {a1, a2, a3}.

a1, a2, a3 a3, a2, a1

a2, a1, a3 a2, a3, a1

a1, a3, a2 a3, a1, a2

Recall the sequence of swaps performed to reverse (a1, a2, a3) in Example 3:

P = ((a1, a2, a3), (a2, a1, a3), (a2, a3, a1), (a3, a2, a1))

This sequence corresponds to the purple path in the τ -graph. 4

As can be seen in the τ -graph in Example 4, there are two shortest paths
(purple and orange) resulting in the reversion of �1 = (a1, a2, a3). Note that
the sequence P follows a specific logic. First, the top alternative in � is moved
to the bottom: The order �3 = (a2, a3, a1) agrees with � on all pairs containing

2To avoid confusion, a remark about the notation is to be made. Although both paths
and profiles are sequences of orders, we refrain from using the bold symbol P for paths since
it is already used for profiles. A profile is associated with a set of agents N which is not
necessarily the case for paths.
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a1. Next, the same is done for a2, until the reversion is completed. The reversion
path following the same logic looks as follows for four alternatives:

P ′ =((a1, a2, a3, a4), (a2, a1, a3, a4), (a2, a3, a1, a4), (a2, a3, a4, a1),

(a3, a2, a4, a1), (a3, a4, a2, a1), (a4, a3, a1, a1))

As ℓ(P ′) = 6 =
(
4
2

)
, P ′ is a shortest reversion path. The paths induced by this

method fulfill a property which we are aiming to investigate throughout this
thesis: single-peakedness.

2.4.2 Reversion-Algorithm
We generalize the reversion approach above by defining an algorithm which
always outputs a shortest reversion path. As an auxiliary operation, we define
Push-Down(�, a) to output the order which is like � except it switches the
alternative a with its lower adjacent neighbor. If there is no lower adjacent
neighbor, the operation is undefined. In the definition of P ′ above, the Push-
Down-operation corresponds to the arcs.

Algorithm 1
Input: Strict linear order � = (a1, ..., am) ∈ L(A)
Output: Shortest reversion path P

1: �′ ← �
2: P ← (�)
3: for i ∈ {1, ...,m− 1} do
4: while τai,am(�′,�) = 0 do
5: �′ ← Push-Down(�′, ai)
6: P ← P + (�′)
7: end while
8: end for
9: return P = (�, ...,�)

Algorithm 1 iteratively builds a reversion path based on an input order � =
(a1, ..., am). Ordered by the ranks, an alternative ai is picked, swapped with its
lower adjacent neighbor, and the resulting order �′ is added to the path. Since
the goal is to reach the order �, this is repeated until the order �′ and � agree
on the ranking of ai and am. In practice, the while-loop (line 4) is exited once
ai and am have been swapped. The while-loop is then repeated with alternative
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ai+1. Intuitively, after each completed while-loop, the last element �′ of the
path P can be divided into two concatenated suborders:

�′ = (ai, ..., am, ai−1, ..., a1)

= (ai, ..., am) + (ai−1, ..., a1)

The first part contains elements that have not been reversed, they are ranked
according to the input order �. The second suborder is reversed, and its ele-
ments are ranked such that they agree with �. As am cannot swap the position
with itself, the algorithm terminates, once alternatives am−1 and am have been
swapped.

Correctness

We need to show that the algorithm indeed produces a shortest reversion path.
Formally, we show that for an order � of length m, Algorithm 1 produces a
path P such that (a) the final element of P is �, and (b) ℓ(P ) =

(
m
2

)
. Firstly,

note that it takes m−1 swaps to turn a maximal element of an order of length
m into the minimal element. Formally,

Observation 9. If � = (a1, a2, ..., am), and �′ = (a2, ..., am, a1), then

τ(�,�′) = m− 1.

Next, we prove the following Lemma by induction on the ranking i of the al-
ternatives. Part a. formally represents the intuition that the order �′ can be
divided into two suborders, the first agreeing with �, and the second agreeing
with �. Part b. establishes the amount of swaps performed—equivalently the
length of P—after i while-loops.

Lemma 2. Given � = (a1, ..., am) as the input for Algorithm 1, let �′ be the
order such that ai has been swapped with am, and �′ has been added to the path
P ,

a. the orders �′ and � agree on the ranking of all pairs (aj, ak), for 1 ≤ j <
k ≤ i,

b. ℓ(P ) =
i∑

j=1

(m− j)
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Proof. Let � = (a1, ..., am).
Base Case: i = 1. Immediate from Observation 9.
Induction Step: Assume Lemma 2 holds for alternative ai−1. We need to show
that if also holds for ai. The last element of P before entering the while-loop
for ai is therefore

�′ = (ai, ...am, ai−1, ..., a1)

as otherwise part a. of the induction hypothesis would be violated. Let P+ be
the path after exiting the while loop for ai, and �+ its last element. Proving a.
is trivial, as the while-loop is exited once ai and am are swapped. Thus,

�+= (ai+1, ...am, ai, ai−1, ..., a1)

as this amounts to turning the maximal element of subsequence (ai, ..., am) of
length m−(i−1) into the minimal element, the while-loop performs m−i swaps.
We therefore get

ℓ(P+) = ℓ(P ) + (m− 1)

=
i−1∑
j=1

(m− j) + (m− i)

=
i∑

j=1

(m− j)

where the second step follows from the induction hypothesis.

With Lemma 2 in hand, we continue to prove the correctness of Algorithm 1,
in words we need to prove that Algorithm 1 produces a shortest reversion path.

Theorem 3. Algorithm 1 is correct and terminates.

Proof. Consider the last iteration of the while-loop i = m−1. From Lemma 2.a
we deduce that the orders �′ and � agree on all pairs, and therefore �′ = �.
Furthermore, ℓ(P ) =

∑m−1
j=1 (m − j) =

(
m
2

)
. This concludes the correctness of

Algorithm 1. From above considerations together with the fact that the order
� is of finite length, termination of Algorithm 1 follows as well.

Single-Peakedness

The purpose of the—admittedly—lengthy discussion of Algorithm 1 becomes
clear when we consider its relation to the property of single-peakedness. Before

16



we finally bring the three threads of kernels, single-peakedness, and the Kendall
tau distance together in the next chapter, the following paragraph is devoted
to show that all elements of the path induced by Algorithm 1 are single-peaked
with respect to its input order. For short, we say that P is single-peaked with
respect to its input.3

Lemma 4. Algorithm 1 produces an output P which is single-peaked with respect
to its input �.

Proof. Recall that we can test �-single-peakedness of an order �′ by checking
whether given a peak max(�′), and �-rank-indexes i ∈ {1, ...,m}, alternatives
with a lower index than max(�′) are ordered descendingly, while higher indexed
alternatives are ordered ascendingly. This condition is only violated if at one
point in the algorithm an alternative ai is swapped with an alternative aj such
that j < i. However, since alternatives are only swapped with lower adjacent
neighbors, i.e. higher indexed alternatives, until the adjacent neighbor is am,
this is never the case.

Algorithm 1 gives us some valuable insights about the single-peaked domain.
We say that a set S ⊆ L(A) of strict-linear orders is minimally-rich if every
alternative a ∈ A is the maximal element of at least one order � ∈ S. Further-
more, S is of maximal width if S contains two reversed orders.

Corollary 4.1. The single-peaked domain is minimally-rich and of maximal
width.4

Proof. Note that the set containing the elements of path P output by Algo-
rithm 1 is minimally-rich and of maximal width. As P is single-peaked with
respect to � by Lemma 4, the �-single-peaked domain is minimally rich and of
maximal width.

2.4.3 An Important Lemma
We conclude this chapter by proving a more technical lemma which we will
utilise throughout the next chapter. The lemma states that the distances of an
order �′ to an order � and its reverse � sum up to the maximal distance τm.
We first prove an auxiliary lemma.

3Recall that we defined both paths and a profiles to be vector of orders. A path, however,
is not associated with a set of agents N .

4These are two of four properties that form a characterization of the single-peaked domain
(Puppe, 2018).
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Lemma 5. Given any order � and its reverse �, it holds for every third order
�′ that for any two distinct alternatives a, b ∈ A,

τa,b(�,�′) = 1 iff τa,b(�,�′) = 0

Proof. This follows immediately from the observation that a � b whenever
b � a, and vice versa. Therefore, whenever � and �′ agree on the order of a
and b, � and �′ disagree on the order of a and b.

Lemma 6. Let � and � be two orders, one the reverse of the other. Then for
any order �′ we have

τ(�,�′) + τ(�,�′) = τm

Proof. We start by expanding the distances according to the definition of the
Kendall tau distance.

τ(�,�′) + τ(�,�′) =
∑
a,b∈A

τa,b(�,�′) +
∑
a,b∈A

τa,b(�,�′)

=
∑
a,b∈A

[τa,b(�,�′) + τa,b(�,�′)]︸ ︷︷ ︸
=1

From Lemma 5 we can straightforwardly derive that τa,b(�,�′)+τa,b(�,�′) = 1
for all distinct a, b ∈ A. Since there are

(
m
2

)
many pairs we get

τ(�,�′) + τ(�,�′) =

(
m

2

)
= τm.

On an intuitive level, Lemma 6 proves a form of symmetry on the distances of
orders with respect to a designated pair of reversed orders. If an order �′ is
close to �, it is far away from �, and vice versa.
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Chapter 3

Single-Peaked Electorates

The main endeavour of this thesis is to study stable delegations in liquid democ-
racy that give rise to single-peaked electorates. In this chapter we introduce one
model of liquid democracy formally, and explore in game-theoretic terms what
it means for a delegation to be stable. Escoffier et al. (2019) show that the
game-theoretical concept of stable delegations corresponds to the graph the-
oretical concept of kernels. We will then see that stable delegations exist if
voters choose to delegate based on a symmetric distance measure (Escoffier
et al., 2020). The second part of the chapter is devoted to the analysis of
stable, single-peaked electorates under a specific symmetric distance measure,
the Kendall tau distance. We show that the search for single-peaked, stable
electorates can be reduced to single-peaked kernels in the τ -graph, an undi-
rected graph consisting of linear orders and edges depending on their respective
distances. The main result of this chapter is a characterization theorem for
the existence of stable, single-peaked electorates. We conclude this chapter by
counting the stable, single-peaked electorates, and discussing their structure.

3.1 Stable Electorates in Liquid Democracy
In liquid democracy the voters in a preference profile P are connected in a
social network, restricting the admissible delegations of individual voters. The
network is represented by an undirected graph G = (N,E) in which vertices
are agents, and there is an edge {i, j} ∈ E between two agents if they can
delegate votes to each other. In large networks not all voters might be aware of
one another, so delegations might be limited to, for example, colleagues, friends
and family. Each voter i is either allowed to vote herself, or to delegate to one
of her neighbors Nb(i) = {j ∈ N | {i, j} ∈ E}. A delegation function is a
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function d : N → N such that d(i) = i if voter i decides to vote herself, and
d(i) = j ∈ Nb(i) if she delegates her vote to her neighbor j.1

Given a delegation function d, the electorate Elct(d) under d is the set of
agents that vote themselves, i.e. Elct(d) = {i ∈ N | d(i) = i}. The delegation
function d is transitive, in words, if i delegates to j, and j delegates to k, then
i delegates her vote to whomever k delegates her vote to. If one follows this
sequence of delegations until there is an agent l with d(l) = l, then we call
l the guru gu(i, d) of i. However, transitive delegations do not come without
problems as the following example illustrates.

Example 5. Our three friends Alice, Bob and Charlie agreed to disagree on
the vacation plans, and are now trying to arrange their dinner. Alice, blindly
in love with Bob, is willing to go anywhere Bob wants to go, so she delegates
her vote to Bob. Charlie has been praising a new restaurant, so Bob trusts him
with the choice, and delegates his vote to Charlie. However, Charlie picks a
Steak house for dinner which is a rather troublesome decision for Alice, who
is vegetarian. She is not happy with this choice whatsoever, and would like to
change her delegation. 4

The underlying delegation function in Example 5 is not stable since there is an
agent, namely Alice, who would like to change her vote. The example motivates
the study of conditions that give rise to stable delegation, which we will intro-
duce formally later in this section. To tackle this challenge, Escoffier et al. (2019)
introduce preferences over possible gurus. This allows them to check whether
each voter accepts their guru, or favors a change of her delegation. While we
will make use of their framework, in our setting the preferences over gurus are
not given but rather induced from the voters’ preferences over alternatives.

Let dist be some symmetric distance measure over preference relations. We
denote by dist(�i,�j) the distance between the preference relations �i and �j

of voters i and j under that distance measure. Each voter has an acceptability
threshold ρi ∈ R+: she accepts as possible gurus only the voters that are at
distance at most ρi from her. For a voter i we call the set containing the
acceptable gurus Acc(i).

∀j ∈ N \ {i}, j ∈ Acc(i)⇔ dist(i, j) ≤ ρi

Given some preference profile P , let us denote by ρ = (ρ1, ..., ρn) the threshold
profile assigning to each voter i an acceptability threshold ρi. If all voters have

1This model can be straightforwardly extended to permit abstentions by redefining the
delegation function d : N → N ∪ {0}, where d(i) = 0 if agent i chooses to abstain.
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the same acceptability threshold, we say ρ is homogeneous, and we write ρ
instead of ρi for specific voters. If voters have different delegation thresholds
we say ρ is heterogeneous. We call the triple 〈G,P ,ρ〉 a delegation structure,
where G is the social network, P is a preference profile, and ρ specifies the
acceptability threshold of each voter.

Definition 3. Given a delegation structure 〈G,P ,ρ〉, a symmetric distance
measure dist induces a ranking �i over acceptable gurus for voter i as follows

(i) dist(i, i) = ρi

(ii) ∀j, k ∈ N, dist(i, j) ≤ dist(i, k)⇔ j �i k

(iii) ∀j, k ∈ N, dist(i, j) > dist(i, k)⇔ k �i j

Proposition 1. The ranking �i is a total preorder over N .2

Proof. Firstly, note that by the definition of dist(i, i) as ρi, the position of agent
i with respect to her own order �i is defined by its delegation threshold ρi.

To show transitivity, assume h�i j, and j �i k, for i, j, k, h ∈ N . From (ii)
of Definition 3, we get dist(i, h) ≤ dist(i, j), and dist(i, j) ≤ dist(i, k). Since ≤
is transitive, we get dist(i, h) ≤ dist(i, k), and consequently h�i k.

For total connectedness, note that for any j, k ∈ N , either dist(i, j) ≤
dist(i, k), or dist(i, j) > dist(i, k). From both cases we derive by definitions (ii)
and (iii) that j �i k or j �i k.

With these tools in hand we can define the notion of a Nash-stable delegation
function.

Definition 4. Given a delegation structure 〈G,P ,ρ〉, a delegation function d
is Nash-stable for voter i if

gu(i, d)�i g ∀g ∈ (Elct(d) ∪ {i}) \ {gu(i, d)}.

In words, d is Nash-stable for i, whenever i prefers her guru over herself and any
member of the electorate under d. If a delegation function d is Nash-stable for
all voters, d is Nash-stable, and we call it an equilibrium.3 Note that while the
definition of Nash-stability does not explicitly mention the preference profile P ,

2Note that this order is not strict. It can easily be made strict by introducing a tiebreaking
rule.

3The underlying intuition is the same as for pure Nash equilibria in a normal-form game:
No player, voter in our case, can do better by unilaterally deviating from her assigned action,
delegation in our case.
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the induced rankings �i for voters i ∈ N relies on the preference orders of each
agent i. Furthermore, since the rankings � are total preorders (Proposition 1),
the definition of Nash-stability through � is sensible, as � compares any two
voters (total connectedness), and is transitive.

3.1.1 Acceptability Digraphs and Kernels
Given the rankings �i that have been induced for all voters, an equivalent
definition for the set of acceptable gurus is Acc(i) = {j ∈ N | j �i i}, i.e. the
set of voters that i prefers over voting directly. It is a necessary condition for
Nash-stability that the guru of any voter i is also an acceptable guru for i.
Consequently, all voters ranked lower than i in �i have no impact on equilibria.
We proceed by introducing delegation-acceptability digraphs, in which an edge
from i to j exists if and only if i accepts j as a guru.

Definition 5. The delegation acceptability digraph is the directed graph Gρ =
(N,Eρ), with Eρ = {(i, j) | j ∈ Acc(i)}

We briefly recapitulate some graph theoretical terminology, and discuss the
connection between acceptability digraphs and kernels. Given a digraph G =
(V,A), a subset of vertices K ⊆ V is independent if there is no arc between two
vertices of K. It is absorbing if for every vertex u /∈ K, there exists v ∈ K such
that (u, v) ∈ A (then we say that v absorbs u). A kernel of G is a subset of
vertices that is both independent and absorbing.

Escoffier et al. (2019) prove that an equilibrium (stable electorate) in a del-
egation structure is equivalent to a kernel in the acceptability digraph. Stable
delegations (which are functions) can therefore be reduced to a graph theoretical
concept.4

Theorem 7 (Escoffier et al. 2019). Given a delegation structure 〈G,P , ρ〉 and
a subset K ⊆ N there exists an equilibrium d such that Elct(d) = K if and only
if K is a kernel of the acceptability digraph induced from 〈G,P , ρ〉.

Theorem 7 allows us to treat equilibria in a delegation structure and kernels in
the associated acceptability digraph equivalently. When it is clear from context,
we will use these notions interchangeably. With the newly gained concepts, let
us return to the dinner plans of Alice, Bob and Charlie.

4The connection between kernels and game theory is not novel. Von Neumann and Mor-
genstern proposed kernels as a solution to cooperative games (Boros and Gurvich (2006),
Berge (1985)).
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Example 5 (continued). Assume that both Bob and Charlie appreciate Al-
ice’s vegetarianism, and are happy to let her choose a restaurant. Formally, the
scenario can be represented by a delegation structure 〈G,P ,ρ〉 with G the com-
plete graph over N = {Alice, Bob, Charlie}, a set of restaurants, representing
the alternatives A = {V eggie, Steak, P izza}, and the following preferences and
delegation thresholds.

�A= (V, P, S) �B= (P, V, S) �C= (S, V, P )
ρA = 1 ρB = 3 ρC = 2

Based on the Kendall tau distances, the sets of acceptable gurus for each agent
are Acc(Alice) = {Bob}, Acc(Bob) = {Alice, Charlie}, and Acc(Charlie) =
{Alice}. The acceptability digraph looks as follows, where the dashed lines
depict the Kendall tau distances.

1

3

2

Bob

Alice

Charlie

The electorate under the first (unstable) delegation d from Example 5 was
Elct(d) = {Charlie}. Since Alice is not absorbed, Elct(d) is not a kernel,
and by Theorem 7 d is not an equilibrium. However, consider K = {Alice}. K
absorbs both Bob and Charlie, is independent since it is a singleton, and thus a
kernel. It is indeed the only kernel. Therefore, any delegation function d′ such
that Elct(d′) = K is an equilibrium. 4

As Escoffier et al. (2020) point out, this leads to the following interesting ob-
servation: Given a kernel K of the acceptability digraph Gρ, one can easily
construct an equilibrium d such that Elct(d) = K. Every member of K
votes directly, and every voter not in K delegates to her most preferred voter
in K. Consequently, for any equilibrium d, there is an equilibrium d′ with
gu(i, d) = gu(i, d′) for every voter i, where each voter delegates directly to her
guru in d′.
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We define [d] to be the equivalence class containing all delegation functions
d′ such that Elct(d) = Elct(d′). In the following we are not interested in
particular delegation functions, but reason about their equivalence classes. This
is justified by the observation above.

Before continuing to explore the connection between acceptability digraphs
and the Kendall tau distance, we present a general result concerning the ex-
istence of kernels in acceptability digraphs. In Definition 3 we defined how a
symmetric distance measure induces a ranking over acceptable gurus. Based on
this ranking, together with the delegation thresholds for each voter, Definition 5
defined the delegation acceptability digraph. Here, a kernel corresponds to a
stable delegation, which we call an equilibrium. Theorem 8 states that if the
social network is complete, and the distance used to induce the ranking over
acceptable gurus is symmetric, an equilibrium always exist. This is particularly
interesting since the Kendall tau distance is symmetric.

Theorem 8 (Escoffier et al., 2020). For a delegation structure 〈G,P ,ρ〉, if the
acceptable gurus are induced by a symmetric distance measure, and G is the
complete graph, then an equilibrium always exists.

Corollary 8.1. For a delegation structure 〈G,P ,ρ〉, if the acceptable gurus
are induced by the Kendall tau distance, and G is the complete graph, then an
equilibrium always exists.

In this section we investigated how kernels in acceptability digraphs correspond
to stable delegations, also called equilibria, in liquid democracy. In Section 3.1.2
we show that under some assumptions the acceptability digraph is isomorphic
to the τ -graph introduced in Section 2.4. We will prove that an isomorphism
exist which preserves kernels as well as single-peakedness. Due to this bridge
between equilibria and the Kendall tau distance, the search for single-peaked
equilibria in liquid democracy can therefore be reduced to single-peaked kernels
in the τ -graph.

3.1.2 Acceptability Digraphs and τ-Graph: Isomorphism
In the previous chapter we introduced the Kendall tau distance, and associated
to it the τ -graph. Recall the definition of the Kendall tau distance between two
linear orders over the same set of alternatives, which equals the number of pairs
of alternatives the two linear orders disagree on. In the τ -graph vertices are
preference orders, and there is an edge between two vertices if their Kendall tau
distance is 1. We extended the τ -graph to the d-τ -graph, where an edge between
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two vertices u, v exists if τ(u, v) ≤ d. We show that under three assumptions,
the acceptability digraph induced from a delegation structure 〈G,P ,ρ〉 is iso-
morphic to the d-τ -graph. This enables us to shift our focus to the d-τ -graph,
as kernels are preserved under isomorphisms.

For a delegation structure 〈G,P ,ρ〉 we assume the following three assump-
tions for the remainder of the chapter unless stated otherwise.

1. Every preference order is submitted exactly once, entailingD(P ) = L(A),5

2. G is the complete graph, i.e. every voter is allowed to delegate to every
other voter,

3. ρ is homogeneous, i.e. all voters have the same acceptability threshold.

Let 〈G,P ,ρ〉 be some delegation structure satisfying the assumptions, and
Gρ = (N,Eρ) the associated acceptability digraph. We will prove that Gρ

is isomorphic to the d-τ -graph Gτ = (L(A), Eτ ), where d = ρ. In words the
acceptability digraph with homogeneous delegation threshold ρ is isomorphic to
the ρ-τ -graph.

Before proving the isomorphism, we first show that the delegation accept-
ability digraph is symmetric, i.e., for all i, j ∈ N , (i, j) ∈ Eρ ⇔ (j, i) ∈ Eρ.
Recall that the edges in the acceptability digraph are based on the sets of ac-
ceptable gurus. Symmetry of the acceptability digraph therefore follows, if for
any two voters i, j ∈ N , voter i accepts j as a guru, if and only if j accepts i as
a guru.

Lemma 9. If ρ is homogeneous, then for all i, j ∈ N :

j ∈ Acc(i)⇔ i ∈ Acc(j)

Proof. Recall the definition of the set of acceptable gurus:

∀j ∈ N \ {i}, j ∈ Acc(i)⇔ dist(i, j) ≤ ρi

It suffices to show that dist(i, j) ≤ ρi ⇔ dist(j, i) ≤ ρj. Since ρ is homogeneous,
ρi = ρj. Since the Kendall tau distance is symmetric, τ(i, j) = τ(j, i).

5The assumption can be generalized to ‘at least once’. If there were voters with the
same preference, we would need to argue about equivalence classes of voters with the same
preferences. This complicates the following proofs, but we are confident they go through. In
essence, a kernel in the τ -graph does not correspond to a kernel in the acceptability digraph,
but one would need to pick out one single voter from the equivalence class of voters.
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Corollary 9.1. The delegation acceptability digraph is symmetric if ρ is homo-
geneous.

With Corrollary 9.1 at hand we proceed to prove the isomorphism. In words,
we show that the function mapping each voter to her preference order is an
isomorphism between the delegation acceptability digraph and the d-τ -graph,
where d is equal to the (homogeneous) delegation threshold ρ. Crucially, the
proof makes use of all three assumptions.

Theorem 10. Given a delegation structure 〈G,P ,ρ〉, the induced delegation
acceptability graph Gρ = (N,Eρ) is isomorphic to the d-τ -graph Gτ = (L(A), Eτ )
with d = ρ.

Proof. We show that

f : N → L(A)
i 7→ �i

is a bijective function that satisfies the adjacency condition (i, j) ∈ Eρ if
and only if ⇔ (�i,�j) ∈ Eτ . Bijectivity follows from the assumption that
D(P ) = L(A). As the social network is complete, delegations are not re-
stricted, and therefore only based on the thresholds and distances of voters.
Since the threshold is homogeneous, the adjacency condition follows from these
equivalences.

(i, j) ∈ Eρ ⇔ j ∈ Acc(i)

⇔ dist(i, j) ≤ ρi

⇔ τ(�i,�j) ≤ d

⇔ (�i,�j) ∈ Eτ

Note that the third equivalence follows from Corollary 9.1 together with the
assumption that d = ρ.

We showed in the preliminaries that kernels are preserved under isomorphisms
(Observation 7). Generally, isomorphisms do not guarantee the preservation of
single-peaked kernels. The isomorphism f mapping an agent i to her preference
�i, however, does preserve single-peaked kernels. Recall that we showed in
the preliminaries (Observation 2) that the profile-based definition of single-
peakedness corresponds to the set-based definition: A profile is single-peaked if
and only if the domain of the profile is single-peaked. Since the isomorphism f
maps each voter to her respective preference order, any single-peaked kernel in
the acceptability digraph is a single-peaked kernel in the corresponding τ -graph.
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Proposition 2. Single-peaked kernels are preserved under the isomorphism f
mapping an agent i to her preference �i.

3.2 Characterization Theorem for Existence of
Single-Peaked Equilibria

Having concluded a substantial part of the preliminary work we can finally
analyze under which assumptions liquid democracy gives rise to single-peaked
(stable) electorates. In particular, we analyze the class of stable, single-peaked
electorates where acceptability digraphs are induced by the Kendall tau dis-
tance. Recall that we also call stable electorates equilibria.

Before we begin the proof of the main theorem, we provide a recap of the
previous sections. Starting with a delegation structure 〈G,P ,ρ〉, a ranking
over acceptable gurus for each voter is induced through the Kendall tau dis-
tance measure, which in turn gives rise to a set of acceptable gurus for each
voter. Based on this set, the delegation acceptability digraph is constructed.
Escoffier et al. (2019) prove that any kernel in this graph constitutes a stable
delegation (equilibrium). We are not merely interested in the existence of equi-
libria induced by the Kendall tau distance, but the existence of single-peaked
equilibria. In this chapter we prove a characterization for the existence of single-
peaked equilibria, based on the delegation acceptability threshold ρ, and under
the three assumptions:

1. Every preference order is submitted exactly once, entailing D(P ) = L(A),

2. G is the complete graph, i.e. every voter is allowed to delegate to every
other voter,

3. ρ is homogeneous, i.e. all voters have the same acceptability threshold.

The main result claims that there is a crucial delegation threshold that is de-
cisive for the existence of single-peaked equilibria. In a delegation structure
〈G,P ,ρ〉 we say that a voter i ∈ N is opinionated if the delegation threshold
ρi is strictly smaller than b τm

2
c, half of the maximal Kendall tau distance. If

ρi ≥ b τm2 c, we say that voter i is open-minded. On a more intuitive level, the
opinionated voter only delegates her vote to voters that have a similar opin-
ion, where similarity is based on the Kendall tau distance. On the other hand,
an open-minded voter is willing to delegate to voters with drastically differ-
ent views. If every voter is open-minded (opinionated) we sometimes speak of
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an open-minded (opinionated) society. In words, the main result states that
single-peaked equilibria exist if and only if all voters are open-minded.6

Theorem 22. Single-peaked equilibria exist if and only if voters are open-
minded.

This is bad news for liquid democracy as it is highly unlikely that a society in
real life is open-minded. Furthermore, we will see that the only single-peaked
equilibria that exist are made up of (probably) at most two voters with dras-
tically different preferences. The successful search for single-peaked equilibria
is thus not only unlikely if it succeeds liquid democracy has strong polarizing
effects.
The proof of the main theorem proceeds in two parts. First, we show that
for an open-minded society, single-peaked equilibria always exist (right-to-left
direction). Based on insights on the Kendall tau distance we gained in Chapter 2
we can show that any two voters with reversed preferences constitute a single-
peaked equilbrium. To prove that the delegation threshold b τm

2
c is furthermore

necessary for the existence of single-peaked equilibria (left-to-right), we will need
to utilize some of the technical machinery introduced in the previous chapters.
Essentially, we show that for any �-single-peaked domain, there is always a
voter whose distance to the single-peaked domain is b τm

2
c. If that voter has a

delegation threshold smaller than b τm
2
c, she will never accept anyone from the

�-single-peaked domain as a guru. Therefore, she will not be absorbed by any
�-single-peaked voter, and no �-single-peaked, stable electorate can exist.

3.2.1 Open-Minded Societies
Recall Lemma 6 which stated that the distance between any order, and two
reversed orders sums up to the maximal distance τm. With this lemma at hand
Theorem 11 is relatively straightforward. We show that for a single-peaked
domain SP≻, any two voters with reversed preference orders � and � form a
kernel. For the special case where ρ = τm, independence fails for said kernel.
However, any singleton is a kernel, as any voter is willing to delegate to any
other voter.

Lemma 11. If voters are open-minded, then single-peaked equilibria exist.
6During the proofs we will often talk about kernels while we generally use the term equi-

libria. Recall that in this thesis kernels are the graph theoretical equivalent of the game
theoretical notion of equilibria.
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Proof. There are two cases.
Case 1: ρ = τm. As any voter is willing to delegate to any other voter, any
singleton is absorbing. Trivially, a singleton is independent, and therefore a
kernel.
Case 2: b τm

2
c ≤ ρ < τm. Let K = {i, j} for two voters i, j ∈ N with reversed

preference relations � and �. In order to prove that K is indeed a kernel, we
show that K is independent and absorbing. From Lemma 6 we can derive that
any order that is more than b τm

2
c swaps away from � is less than b τm

2
c swaps

away from �. Since ρ ≥ b τm
2
c, any order is therefore reachable from the kernel

within b τm
2
c swaps, and K is absorbing. Furthermore, τ(�,�) = τm > b τm

2
c = ρ,

and K is thus independent. Adding any other voter to K would result in loss of
independence of K, thus K can only contain two voters with reversed preference
relations. Since every kernel is an equilibrium (Theorem 7), K is a single-peaked
equilibrium.

We have therefore found a sufficient condition for the existence of single-peaked
equilibria: an open-minded society. Note that we can relax the assumption
of homogeneity of the delegation thresholds. Instead of homogeneity, we can
simply require that all voters have a threshold larger than b τm

2
c. The proof

works analogously to Case 2 from the proof of Theorem 11, and extends the
result to heterogeneous thresholds.

Corollary 11.1. If b τm
2
c ≤ ρi < τm for all i ∈ N , then single-peaked equilibria

exist.

3.2.2 Single-Peaked Kernels in the τ-Graph
We proceed to show that a (homogeneous) delegation threshold of at least b τm

2
c

is necessary for the existence of single-peaked, stable electorates.

Lemma 21. If voters are opinionated, no single-peaked equilibria exist.

The proof of Lemma 21 is more involved, and we will need to utilize some of the
technical machinery introduced in the previous chapters. For one, Algorithm 1
plays an important role. Recall that Algorithm 1 produces a reversion path of
an input order. It was only defined on the τ -graph, while our attention shifted
to the acceptability digraph. However, we found an isomorphism between the
acceptability digraph and the τ -graph which preserves single-peaked kernels
(Corollary 2). The proof strategy of Lemma 21 consists of finding an order in
the τ -graph of maximal distance to the �-single-peaked domain. We then show
that the maximal distance is b τm

2
c. Thus, in opinionated societies voters with
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that order are not willing to delegate to voters associated to �. To support the
reader’s intuition for (single-peaked) kernels in the τ -graph, we start with an
example.7

Example 6. There are five kernels in the τ -graph for three alternatives a, b, c.
Recall that there is an edge between two orders in the τ -graph if their Kendall
tau distance is equal to 1, and an edge in the d-τ -graph if the Kendall tau
distance equals d. Vertices with the same color form a kernel. However, only
the three kernels in the left graph are single-peaked. Note that the single-peaked
kernels consist of two reversed orders.

abc cba

bac bca

acb cab

abc cba

bac bca

acb cab

In the 2-τ -graph, there are three kernels, all of which are single-peaked (left).
In the 3-τ -graph, each singleton is a single-peaked kernel (right).

abc cba

bac bca

acb cab

abc cba

bac bca

acb cab

4
7Recall that we showed that kernels in the d-τ -graph are equivalent to kernels in the

acceptability digraph which are equivalent to equilibria in a delegation structure. Kernels
and equilibria are thus equivalent notions. When talking about delegation structures we will
use the notion of ‘equilibria’ while we make use of ’kernels’ in more graph theoretical settings.
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The τ -graph for three alternatives is a special case. Recall from Theorem 11
that kernels exist if the delegation threshold is larger than b τm

2
c. For three

alternatives, this lower bound equals 1, so kernels exist starting at the lowest
threshold that allows for any delegation to happen (if ρ = 0, trivially, there are
no delegations). The case for four alternatives is more elucidating.

Example 7. The orders (vertices) that are single-peaked with respect to the
order (a, b, c, d) are colored in red. It covers only a relatively small set of vertices
(8), not evenly distributed throughout the graph, but rather spanning over
one side of the graph. The reversion path (edges) of Algorithm 1 with input
(a, b, c, d) is additionally added in purple.

dbac

bdac

badc
bacd

� = abcd
abdc

adbc

dabc

dacb

adcb
acdb

acbd

cabd

cadb

cdab
dcab

� = dcbacdba
cbda

cbad

bcad

bcda

bdca

dbca

Recall that the d-τ -graph simply adds edges according to the Kendall tau dis-
tance d between two orders. As the graph becomes unreadable already for d=2,
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we ask the interested reader to manually check for the shortest paths for d-τ -
graphs. It can then be verified that the set K = {(a, b, c, d), (d, c, b, a)} forms
a single-peaked kernel in the 3-τ -graph. Recall our aim to prove that for any
threshold strictly smaller than τm

2
(here τm

2
= 3), no single-peaked kernels exists.

It suffices to find an order which is at least 3 swaps away from the �-single-
peaked domain. While there are multiple such orders, we can construct the
order (a, d, c, b) (colored in blue) with the help of Algorithm 1. We leave it
to the reader to verify that indeed the distance of (a, d, c, b) to any �-single-
peaked order is at least three which can be checked by counting the edges in
the τ -graph. Crucially, the order (a, d, c, b) is the reverse of the order (b, c, d, a)
which lies on the reversion path of Algorithm 1 such that it is equidistant to
(a, b, c, d) and (d, c, b, a).

Recall that the d-τ -graph is isomorphic to the delegation acceptability graph
of a delegation structure 〈G,P ,ρ〉 with ρ = d. If ρ < 3, in words voters are
opionated, the voter associated to the constructed order (a, d, c, b) is then not
willing to delegate to any voter single-peaked with respect to (a, b, c, d) since
the closest order is at least 3 swaps away. 4

In fact, the procedure sketched in Example 7 generalizes to all strict linear
orders of finite length. For any order � we pick the order that is of distance
d τm

2
e to � on the reversion path of Algorithm 1, reverse it, and obtain an order

with distance of b τm
2
c to the �-single-peaked domain. Note that this order

is equidistant to � and � if the path is of even length. Since the distance
to the �-single-peaked domain is at least b τm

2
c, this means for opinionated

societies—delegation thresholds are smaller than b τm
2
c—that for every single-

peaked domain, there is a voter not willing to delegate to any member of that
domain. Consequently, no single-peaked kernels exist. In the following section
this construction is analyzed in more detail, and generalized.

3.2.3 The π-Algorithm
The construction of the orders described in the previous section can be for-
malized by the π-Algorithm which essentially proceeds in two steps. First,
it partially inverts the input order � following the inversion routine of Algo-
rithm 1, and then outputs the inverse of the partially inverted order. The output
π(�) = �π is not single-peaked with respect to its input �, and the distance
between input and output is b τm

2
c. The π-Algorithm will prove helpful as we

will see in Section 3.2.4 that the distance not only from π(�) to � is b τm
2
c but

also from π(�) to the whole �-single-peaked domain.
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Recall that Algorithm 1 induces an inversion path P for an input order �.
The path P is of length τm which can be even or odd. If P is of even length,
there is an order which is equidistant from � and �. If it is odd, there is an
order which is d τm

2
e swaps from the input �, and b τm

2
c swaps from �. Let

�⋆ ∈ P be the order such that τ(�,�⋆) = d τm
2
e. Intuitively, this order is in the

middle of the path P .8

Algorithm 2 π-Algorithm
Input: Strict linear order � = (a1, ..., am) ∈ L(A)
Output: π(�) = �π

1: P ← Algorithm 1 with input �
2: �⋆ ← (d τm

2
e+1)-th element of P

3: return �π = �⋆

The π-Algorithm makes use of Algorithm 1 as a subroutine, and picks out the
order �⋆ from the path P . Recall that all elements of P are �-single-peaked,
and therefore that �⋆ is �-single-peaked. However, the inverse �⋆ fulfills two
requirements:

1. �⋆ is not �-single-peaked, and

2. its distance to � is b τm
2
c.

The output of the π-Algorithm is then π(�) = �⋆.

Analysis and Correctness

To understand the structure of the order π(�), it is useful to take a closer
look at the order �⋆. Recall the routine of Algorithm 1 with output P . The
maximal element of the order � = (a1, ..., am) is repeatedly swapped with its
lower adjacent neighbor until it is swapped with am. This procedure is repeated
for all ai with i ∈ {1, ...,m−1}, until finally am−1 and am are swapped. We saw
that after an alternative ai swapped positions with am, the resulting order �′

can be split into two concatenated suborders, where the first agrees with � on
the ranking of the alternatives, and the second with �.

�′ = (ai+1, ..., am) + (ai, ..., a1)

8More precisely, an exact middle only exists if the path is of even length. If it is uneven,
the order is picked that is one swap farther away from � than from �.
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If we now consider the order �⋆ from Algorithm 2, we notice that it is not
guaranteed that �⋆ can be split into two suborders like above. As the following
example shows, there are two cases.

Example 8. Let �1 = (a1, ..., a4), and �2 = (a1, ..., a5) be two orders of length
four and five respectively. The inversion paths induced by Algorithm 1 is as
follows, where the alternative that has been swapped with its lower adjacent
neighbor is highlighted in red.

P1 = ( (a1, a2, a3, a4), (a2, a1, a3, a4), (a2, a3, a1, a4),

≻⋆
1︷ ︸︸ ︷

(a2, a3, a4, a1), ...,

(a4, a3, a2, a1) )

P2 = (( a1, a2, a3, a4, a5), (a2, a1, a3, a4, a5), (a2, a3, a1, a4, a5), (a2, a3, a4, a1, a5),

(a2, a3, a4, a5, a1), (a3, a2, a4, a5, a1︸ ︷︷ ︸
≻⋆

2

), ..., (a5, a4, a3, a2, a1) )

The order �⋆
1 can indeed be split into two concatenated suborders as described

above. However, in �⋆
2 the alternative a2 has been swapped with its lower

adjacent neighbor, but not yet with a5. The alternatives in the prefix of �⋆
2 are

not in ascending order with respect to their index. 4

Let a⋆ be the alternative which has been swapped with its lower adjacent neigh-
bors at least once, but not yet with am if it exists. While we do not know its
exact position, we can divide the order �⋆ into two concatenated suborders as
follows if a⋆ exists.

�⋆ = (ai+2, ..., a
⋆, ..., am, ai, ..., a1)

= (ai+2, ..., a
⋆, ..., am)︸ ︷︷ ︸

≻α

+(ai−1, ..., a1)︸ ︷︷ ︸
≻β

The sequence �β contains the alternatives that completed the inversion routine,
and agrees with � on the ranking of the alternatives. On the other hand,
�α does not agree with � on the rankings. Note that a⋆ = ai+1, and since
i < i+1 the alternatives are not ranked ascendingly with respect to their indexes.
However, if we delete the culprit a⋆, the sequence �α \ (a⋆) is a suborder of
� once again. The analysis of �⋆ can be described as follows. A number of
alternatives, say i many, have swapped their position with am and constitute
the suborder �β. Possibly, there is an alternative a⋆ = ai+1 for which a number
of adjacent swaps have been performed, however a⋆ has not swapped positions
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with am. The prefix of �⋆ is therefore an order �α, such that �α \a⋆ is a
suborder of �.

This gives us valuable insights into the structure of π(�), as it is simply the
inversion of �⋆.

�⋆ =

≻α︷ ︸︸ ︷
(ai+2, ..., a

⋆, ..., am)+

≻β︷ ︸︸ ︷
(ai, ..., a1)

π(�) = (a1, ..., ai)︸ ︷︷ ︸
≻β

+(am, ..., a
⋆, ..., ai+2)︸ ︷︷ ︸
≻α

(3.1)

The orders π(�) and � therefore share a prefix, while the suffix of π(�) agrees
with � on the rankings of alternatives {ai+2, ..., am} \ {a⋆}. If a⋆ does not exist
the structure is simple, as π(�) and � share the suffix {ai+1, ..., am}.

Correctness

For the correctness of π we need to show that (i) the distance of π(�) to � is
b τm

2
c, and (ii) π(�) is not �-single-peaked. Correctness thus follows from the

following two lemmas.

Lemma 12. The distance between � and �π is b τm
2
c.

Proof. Recall Lemma 6: The distance between an order and two reversed orders
sums up to τm. For our case, let the two reversed orders be �π and �⋆, and the
third order �. Since we know by construction of �⋆ that τ(�,�⋆) = d τm

2
e, we

get that τ (�,�π) = b τm
2
c.

Lemma 13. The order π(�) is not �-single-peaked.

Proof. Since any single-peaked domain contains at most two reversed orders
(Observation 3), π(�) cannot be �-single-peaked.

Correctness of the π-Algorithm follows from Lemmas 11 and 12, while termina-
tion is trivial, since the subroutine Algorithm 1 terminates.

Theorem 14. Algorithm 2 is correct and terminates.

In summary, the π-Algorithm generalizes the construction of an order π(�)
which is not �-single-peaked, and b τm

2
c swaps away from its input �. In the

following section we show that not only is this the distance to � but to the
whole �-single-peaked domain SP≻.
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3.2.4 Opinionated Societies
Let us take a step back, and look at the big picture again. Our aim is to
find a delegation acceptability threshold ρ, such that any values smaller than
ρ guarantee that single-peaked, stable delegations do not exist. We will show
that this is the case if voters are opinionated, i.e. ρ < τm

2
.

Theorem 21. If voters are opinionated, no single-peaked equilibria exist.

We have seen that these types of delegations correspond to single-peaked kernels
in the acceptability digraph, which in turn is isomorphic to the τ -graph under
assumptions of a complete social network, a complete domain, and homogeneous
delegation thresholds. We are therefore searching for single-peaked kernels in
the τ -graph. The proof of Lemma 21 is based on two steps. First, we show
that the order �π constructed by Algorithm 2 is b τm

2
c swaps away from the �-

single-peaked domain SP≻. In a second step we conclude, that no single-peaked
kernel can absorb voters with order �π if the delegation acceptability threshold
ρ is strictly smaller than b τm

2
c. We will prove the former in Lemma 20, and then

conclude with the main theorem of this section.
Lemma 20 claims that every �-single-peaked order is at least b τm

2
c swaps

away from π(�).

Lemma 20. If �′ ∈ SP≻, then τ(�′,�π) ≥ b τm
2
c

We first provide an outline of the proof, and argue that the proof can be split
into five auxiliary lemmas. Unless stated otherwise, let � = (a1, ...am) for the
remainder of this section. Recall that we can partition any single-peaked do-
main SP≻ into disjunct subdomains, according to the peaks ap (Observation 4).
In fact, each of these subdomains is non-empty, as we showed in Corollary 4.1.
Furthermore, we have shown in the analysis of Algorithm 2 (Equation 3.1),
that π(�) is divisible into two subsequences �α, and �β. These insights are
the cornerstones of the proof. Let ai be the last alternative that has been com-
pletely inversed, the alternative that has possibly undergone a partial inversion
is therefore a⋆ = ai+1, and the minimal element of π(�) is thus ai+2.

SP≻ = SPa1
≻ ∪ ... ∪ SPam

≻

π(�) = (a1, ..., ai︸ ︷︷ ︸
≻β

, am, ..., a
⋆, ..., ai+2)︸ ︷︷ ︸
≻α

We show that the distance between π(�) and any subdomain of SP≻ with
peaks a2 to am is greater than the distance between π(�) and SPa1

≻ = {�}.
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Since we know the latter distance to be b τm
2
c the desired result follows. In

order to prove that the distance from π(�) to each subdomain is larger than
b τm

2
c, we group the subdomains based on which subsequence �α or �β the

maximal element is part of. The division of π(�) into subsequences enables us
to reconstruct the distance to any subdomain in terms of (partial) inversions
of these subsequences. Formally, the proof is divided into five claims, each
depending on which alternative is the peak, and in which subsequence of �π

the peak appears.

SP≻ = SPa1
≻︸ ︷︷ ︸

Lemma 15

∪SPa2
≻ ∪ ... ∪ SPai

≻︸ ︷︷ ︸
Lemma 16

∪ SPa⋆

≻︸ ︷︷ ︸
Lemma 17

∪SPai+2
≻ ... ∪ SPam−1

≻︸ ︷︷ ︸
Lemma 19

∪ SPam
≻︸ ︷︷ ︸

Lemma 18

We remind the reader of three propositions from the Preliminaries (Section 2).
Firstly, the inversion of an order of length m requires

(
m
2

)
swaps. Secondly, a

path through the τ -graph is a shortest path from � to �′ if only pairs of alter-
natives are swapped on which the two orders disagree. And finally, a shortest
path through the τ -graph corresponds to the minimal number of swaps needed
to make two orders agree on all pairs of alternatives, which in turn equals the
Kendall Tau distance.

In the first auxiliary lemma, the Kendall tau distance between π(�) and
SPa1

≻ is calculated. In words, the distance equals the inversion of an order
of length m−i−1, added to the number of swaps needed to reach agreement
between a⋆ and all other alternatives, which we denote by R ∈ N.
Lemma 15. τ (�π,SPa1

≻ ) =
(
m−i−1

2

)
+R, with R ∈ N

Proof. Note that the only order with peak a1 that is is single-peaked with respect
to � is � itself.

�=

≻β︷ ︸︸ ︷
(a1, ..., ai, a

⋆,

≻α\a⋆︷ ︸︸ ︷
ai+2, ..., am)

π(�) = (a1, ..., ai︸ ︷︷ ︸
≻β

, am, ..., a
⋆, ..., ai+2)︸ ︷︷ ︸
≻α

We describe the number of swaps needed to turn π(�) into �. The two orders
share the prefix �β, therefore no swaps are required to reach agreement on the
prefix. Next, consider the alternative a⋆. As a⋆ = ai+1, it needs to be turned
into the lower adjacent neighbor of ai. Let R ∈ N be the minimal number of
swaps needed for this. The intermediary order π(�)′ is then

π(�)′ = (a1, ..., ai︸ ︷︷ ︸
≻β

, a⋆, am, ..., ..., ai+2)︸ ︷︷ ︸
≻α\a⋆
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The suffix (am, ..., ai+2) of π(�)′ is the inverse of the suffix of �. The length
of the suffix is m−i−1, and thus

(
m−i−1

2

)
swaps are needed to reach agreement

between π(�)′ and �. It is clear that the paths from π(�) to π(�)′ and from
π(�)′ to � are shortest paths. Generally, the concatenation of two shortest
paths is not necessarily a shortest path. However, note that in the concatenation
of the two paths, a⋆ is only swapped with alternatives the two orders � and
π(�) disagree on. The same holds for the inversion steps. Thus, the number of
swaps calculated is minimal, and we conclude

τ (�π,�) =
(
m−i−1

2

)
+R.

The second auxiliary lemma argues that the distance of �π to any member
�′ of subdomains of SP≻ with maximal elements ap ∈ {a2, ..., ai} is strictly
smaller than the distance of �π to �. In the proof of Lemma 15, we calculated
the distance between π(�) and SPa1

≻ = {�}. For Lemma 16 the distance to a
subdomain of SP≻ is calculated which is not a singleton. The proof therefore
requires a slightly different approach. First, we calculate the distance between
π(�) and a designated order �′, and in a second step prove that any other order
with the same peak as �′ requires more swaps. The minimal distance between
π(�) and SPap

≻ is therefore τ(�π,�′) which we prove to be strictly larger than
τ(�π,�).

Lemma 16. τ
(
�π,SPap

≻
)
> τ (�π,�) , for ap ∈ {a2, ..., ai}

Proof. From Theorem 1 we know that any order �′ with peak ap is �-single-
peaked if and only if it can be divided into two suborders as follows.

ap �′ ap−1 �′ ... �′ a1 and ap+1 �′ ap+2 �′ ... �′ am (3.2)

Consider the order �′, which is a concatenation of the two suborders described
in 3.2, and compare it to π(�).

�′ = (ap, ..., a1, ap+1, ..., am)

π(�) = (a1, ...ap, ..., ai︸ ︷︷ ︸
≻β

, am, ..., a
⋆, ..., ai+2)︸ ︷︷ ︸
≻α

Recall that ap ∈ {a2, ..., ai}. In order to reach agreement on the prefix between
π(�) and �′, the first p alternatives of π(�) need to be reversed in

(
p
2

)
swaps. In

order to reach agreement on the suffix, exactly the same steps as in Lemma 15
need to be performed. First, move a⋆ into the correct position in R swaps,
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and then inverse the remaining suborder in
(
m−i−1

2

)
swaps. Since the set of

alternatives swapped in the inversion of (a1, ..., ap) is disjunct to the set of
alternatives swapped to reach agreement on the suffix �α, the concatenation of
the two paths is a shortest path. We therefore get,

τ (�π,�′) =

(
m−i−1

2

)
+R︸ ︷︷ ︸

τ(≻π ,≻)

+

(
p

2

)
> τ (�π,�)

We proceed to show that for any other �-single-peaked order with peak ap, the
distance to π(�) is larger. In order to maintain the condition (3.2) for �-single-
peakedness, the two subsequences can be ‘zipped together’. There are multiple
options to do this, the easiest two are to move a1 into the order ap �′ ap+1 �′

... �′ am, or equivalently, to move ap+1 into the order ap �′ ap−1 �ap ... �′ a1.

�′= (ap, ap−1, ..., a1, ap+1, ..., am)

�′′= (ap, ap−1, ..., ap+1, a1, ..., am)

Compared to �′, π(�) additionally disagrees with �′′ on the pair (a1, ap+1),
while the rest of disagreements stays the same. The crucial point is that the
more one ‘zips’ the two suborders into each other, the more additional dis-
agreements arise. Thus, �′ is the closest order to π(�) from the subdomain
SPap

≻ .

Next, for �-single-peaked orders with maximal element a⋆, we proof that the
distance to �π is strictly greater than τ (�π,�).

Lemma 17. τ
(
�π,SPa⋆

≻
)
> τ (�π,�)

Proof. Compare the orders �′ with peak a⋆ and π(�).

�′ = (a⋆, ai, ..., a1, ai+2, ..., am)

π(�) = (a1, ..., ai︸ ︷︷ ︸
≻β

, am, ..., a
⋆, ..., ai+2)︸ ︷︷ ︸
≻α

Again, we consider the number of swaps required to turn π(�) into �′. In order
to make a⋆ the peak, it needs to be moved to the top position in R′ > R > 0
swaps. Then �β needs to be reversed in

(
i
2

)
swaps, to guarantee a⋆ �′ ai �′

... �′ a1. Furthermore, �α needs to be reversed in
(
m−i−1

2

)
swaps, to guarantee

ai+2 �′ ai+3 �′ ... �′ am. An analogous argument to the proof for Lemma 16
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shows that for any other �-single-peaked order with maximal element a⋆ more
swaps are required. Thus,

τ
(
�,SPa⋆

≻
)
=

(
m−i−1

2

)
+R′︸ ︷︷ ︸

>τ(≻π ,≻)

+

(
i

2

)
> τ(�π,�)

In Lemma 18 we will prove that the distance between �π and � is the partial
inversion of �π plus some positive rest R′′. The partial inversion is performed
for the alternatives a1 to ai, as they need to be inversed and moved to the
bottom of the order in order to reach agreement with �.

Lemma 18. τ (�π,�) =
∑i

h=1(m− h) + R′′, with R′′ ∈ N

Proof. As � is the only �-single-peaked order with maximal element am, com-
pare π(�) with �.

� =

≻α\a⋆︷ ︸︸ ︷
(am, ..., ai+2, a

⋆,

≻β︷ ︸︸ ︷
ai, ..., a1)

π(�) = (a1, ..., ai︸ ︷︷ ︸
≻β

, am, ..., a
⋆, ..., ai+2)︸ ︷︷ ︸
≻α

First, make a⋆ the minimal element to receive the intermediary order

π(�)′ = (a1, ..., ai, am, ..., a
⋆)

in R′′ steps. The orders π(�)′ and � agree on the suffix (am, ..., a
⋆). In order

to reach agreement on all pairs, we move, one after the other, the top elements
to the bottom of the order. First, make a1 the minimal element of the order in
m−1 steps, then move a2 to the second last spot in m−2 swaps, until ai has
been moved to i-th last place in m−i swaps. Note that this is essentially the
reversion of the π-Algorithm. This takes in total

∑i
j=1(m− j) +R′′ swaps. We

leave it to the readers to convince themselves that only pairs are swapped that
the orders disagree on.

Finally, we prove that it requires some additional swaps for π(�) to reach any
�-single-peaked orders with maximal elements ap ∈ {ai+2, ..., am−1}.

Lemma 19. τ
(
�π,SPap

≻
)
> τ (�π,�) , for ap ∈ {ai+2, ..., am−1}
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Proof. Analogously to the proof of Lemma 18, first move a⋆ to the bottom to
receive the order (a1, ..., aj, am, ..., a⋆) in R′′ swaps. Again, just like in Lemma 18,
move the first i alternatives to the bottom in

∑i
j=1(m− j) swaps, to arrive at

the order
� = (am, ..., ap+1, ap, ..., a

⋆, ai, ...a1).

Since we require ap to be the peak, the sequence (am, ..., ap+1) additionally needs
to be reversed and moved behind ap. Let R′′′ be the number of swaps necessary
for this operation which, notice, is always strictly larger than 0. Therefore for
ap ∈ {ai+2, ..., am−1},

τ
(
�,SPap

≻
)
=

j∑
h=1

(m− h)+R′′+R′′′ > τ(�π,�)

We have seen in Lemmas 16 and 17 that the distance between any �-single-
peaked orders with peaks ap ∈ {a1, ..., ai, a⋆} and π(�) is strictly smaller than
the distance between π(�) and �. Furthermore, Lemma 19 proved that for
�-single-peaked orders with peaks ap ∈ {ai+2, ..., am−1}, the distance to π(�) is
strictly smaller than the distance to �. We furthermore know by the construc-
tion of π(�),

τ(�π,�) =
⌊τm
2

⌋
≤

⌈τm
2

⌉
= τ(�π,�).

Therefore, the closest order to π(�) from the �-single-peaked domain is � itself,
and we conclude

Lemma 20. If �′ ∈ SP≻, then τ(�′,�π) ≥ b τm
2
c.

We are now finally ready to prove the main theorem of this chapter. Intuitively,
if ρ < b τm

2
c, no agent is willing to delegate to anyone who is farther than b τm

2
c

swaps away from her. The proof is based on the observation that for any single-
peaked domain SP≻ there is an order π(�) which is more than ρ < b τm

2
c swaps

away from SP≻ (Lemma 20). Therefore, the agent associated with that order
will not delegate to anyone with a �-single-peaked order.

Lemma 21. If voters are opinionated, no single-peaked equilibria exist.

Proof. Take a delegation structure 〈G,P ,ρ〉, and consider SP≻ for some or-
der � ∈ L(A). Construct π(�) from � according to Algorithm 2. Recall our
assumption that every preference order is submitted, so let i be the agent sub-
mitting the preference π(�). Furthermore, since ρ is homogeneous, and we
assume ρ < b τm

2
c, we have that ρi < b τm2 c. By contraposition of Lemma 20, it
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follows that the distance between π(�) and any �-single-peaked order is greater
than b τm

2
c, and therefore greater than the delegation acceptability threshold for

agent i. Thus, any kernel K, containing only members with �-single-peaked
preference orders, will not absorb agent i, since i is not willing to delegate to any
member of K. In turn, any K ∪ {j} such that i is willing to delegate to j, i.e.
τ(�i,�j) ≤ ρi, is indeed absorbing, but not single-peaked by Lemma 20.

From the necessary condition for the existence of single-peaked equilibria (Lemma 21)
and the sufficient condition (Theorem 11), we derive the main result of this
chapter.

Theorem 22. Single-peaked equilibria exist if and only if voters are open-
minded.

To summarize this section, we have investigated the existence of single-peaked
equilibria under the three assumptions that (1) every order is submitted, (2)
every voter can delegate to every other voter, and (3) all voters have the same
acceptability threshold. We found that the society needs to be open-minded for
single-peaked kernels to exist.

3.3 Number and Structure of Single-Peaked
Equilibria

After the exploration of the characterization theorem for the existence of single-
peaked kernels, we conclude this chapter with an analysis of the number of
single-peaked kernels, and their structure, in particular their cardinality. At
first sight, the number of single-peaked equilibria does not seem to be of interest.
In the light of the following result proved by Escoffier et al. (2020) the picture
changes. In this thesis we are mainly concerned with the existence of single-
peaked equilibria, and do not inspect whether equilibria are actually reached in
some delegation dynamics. A brief remark about the latter shows that extending
our interest from the mere existence to the number of single-peaked equilibria
is valuable. Escoffier et al. (2020) analyze whether a “delegation process (nec-
essarily) converges”, and come to the conclusion that this is the case whenever
a delegation structure is distance-based. Since some equilibrium is reached, we
might be able to estimate how likely it is that this equilibrium is furthermore
single-peaked by counting both single-peaked equilibria and non-single-peaked
equilibria.
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Theorem 23 (Escoffier et al., 2020). If delegation structures are distance-based,
then a best response dynamic (BRD) always converges (in three rounds).

We will omit diving into the details of convergence of (best) response dynamics
in detail, and merely briefly sketch the underlying intuition. In a best response
dynamic voters iteratively vote for their most preferred guru. A round is fin-
ished, after each voter submitted their vote. All delegations are made public,
and everyone is given the opportunity to retract their delegation and change
their guru. Theorem 23 establishes that after three rounds a best response dy-
namic converges to an equilibrium. This equilibrium is not necessarily single-
peaked, but given the number of single-peaked equilibria and total equilibria,
we gain insights into the likelihood that a best response dynamic converges to a
single-peaked equilibrium.9 Here, we only provide a lower bound for the number
of single-peaked equilibria. However, in Chapter 4 we will put the number of
single-peaked and total equilibria into relation with each other. The proof of the
lower bound also provides insights into the structure of single-peaked equilibria.
It is based on the construction of a particular single-peaked equilibrium, con-
taining two voters with reversed preferences. We will see that a single-peaked
equilibrium always contains voters with relatively opposed opinions (large dis-
tance between their preferences).

3.3.1 Counting Single-Peaked Electorates
Before we consider the upper and lower bounds, it is worthwhile to consider the
question of how many single-peaked electorates, not necessarily equilibria, can
possibly exist. Again, we assume that every preference is submitted once, and
thus this question is equivalent to counting the number of single-peaked profiles.
Given a set A containing m many alternatives, Escoffier et al. (2008) show that
for every order � ∈ L(A) there are 2m−1 orders that are �-single-peaked. In
our terminology this means that the �-single-peaked domain is of size 2m−1, or
formally |SP≻| = 2m−1. Note that any subset of SP≻ forms a �-single-peaked
electorate. As the number of subsets of a set of size k equals 2k, there are
22

m−1
= 22(m−1) possible �-single-peaked electorates. We will see that requiring

single-peaked electorates to be equilibria reduces this number significantly.
9Unfortunately, we do not have knowledge whether certain equilibria are more likely to be

reached than others. While it might be the case that single-peaked equilibria are never reached
(although they exist), it is also possible that every best response dynamic converges to a single-
peaked equilibrium if one exists. It is certain however, that a single-peaked equilibrium is
reached if all equilibria are single-peaked.
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The main result from the previous section (Theorem 22) showed that whether
an electorate is a single-peaked equilirium depends on the delegation threshold
ρ, which we, once again, assume to be homogeneous for the remainder of this
section. We analyze how the number of possible �-single-peaked electorates is
reduced if we furthermore require the electorates to be equilibria for two cases:
First we consider ρ = τm, the maximal Kendall tau distance, and secondly, we
count the number of single-peaked equilibria if ρ = b τm

2
c. We then generalize

this to the number of equilibria single-peaked with respect to any order.10 Let
us start with a general result that holds for all delegation thresholds.

Theorem 24. The number of single-peaked equilibria is bounded from below by
m!
2

, the number of pairs of reversed orders.

Proof. We have seen in the proof of Theorem 11 that any two reversed orders
form a single-peaked kernel if b τm

2
c ≤ ρ < τm. Note that there are m!

2
many pairs

of reversed orders. The lower bound for the number of single-peaked kernels is
therefore m!

2
.

Furthermore, recall that each singleton is a single-peaked kernel if the delegation
threshold is maximal, i.e. ρ = τm. Since singletons are the only kernels for
maximal ρ (otherwise independence would be violated), the number of single-
peaked equilibria equals the number of singletons, in other words the number
of orders.

Proposition 3. If ρ = τm, then the number of single-peaked equilibria is m!.

As every singleton forms a single-peaked equilibrium, and there are 2m−1 orders
single-peaked with respect to some designated order, there are 2m−1 single-
peaked equilibria for each single-peaked domain. If we compare this result with
the number of possible �-single-peaked electorates, not necessarily equilibria,
we notice this number reduces from 22(m−1) to 2m−1 if we require the electorates
to be equilibria.

In Theorem 3 we considered the maximal delegation threshold ρ = τm. It is
furthermore interesting to consider the minimal delegation threshold ρ = b τm

2
c.

We show that the number of single-peaked kernels is exactly m!
2

if τm is odd,
and exactly 3·m!

2
if τm even. Crucially, if τm is even we have b τm

2
c = τm

2
, and

if τm is odd we have b τm
2
c 6= τm

2
. The parity of τm thus plays a surprising

10It would furthermore be interesting to analyze how the number of possible equilibria
reduces if we additionally require them to be single-peaked. Recall that an equilibrium cor-
responds to a kernel in the appropriate delegation acceptability graph. However, we are not
aware of results counting kernels in graphs.
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a, b, c c, b, a

b, a, c b, c, a

b, c, a b, c, a

Figure 3.1: The τ -graph for ρ = 1 and A = {a, b, c}. Since τm
2

= 1.5, the only
�-single-peaked kernels are unordered pairs of reversed orders (Proposition 4).
Let � = (a, b, c), and therefore �+ = (b, a, c). The set S = {�+,�} (the red
vertices) does not absorb the order π(�) = (b, c, a) (yellow vertex).

role for the number of single-peaked equilibria. Figure 3.1 provides a visual
representation for the following proposition, in particular for three alternatives
and odd maximal distance τm = 3.

Proposition 4. If ρ = b τm
2
c and τm is odd, then the number of single-peaked

equilibria is exactly m!
2

.

Proof. Recall that any kernel is an equilibrium and vice versa. In order to
prove that m!

2
is also an upper bound, we show that any set S ⊆ L(A) that

does not consist of two reversed orders cannot be a single-peaked kernel. First,
note that adding any third order to a set of two reversed orders results in the
loss of independence of the set, and therefore such an extension is not a kernel.
Let � ∈ L(A) be an arbitrary order. We show that any �-single-peaked kernel
must contain either � or �. Let SP−

≻ = SP≻\{�,�}. Recall that the distance
from π(�) to the SP−

≻ is strictly larger than b τm
2
c (Lemma 20). Thus, any set

S ⊆ SP≻ such that S ∩ {�,�} = ∅ does not absorb the order π(�). Any
�-single-peaked kernel must therefore contain � or �. We claim that for any
�′ ∈ SP−

≻, the set {�′,�} is not a �-single-peaked kernel. In particular, the set
{�′,�} does not absorb the order π(�). As τm

2
/∈ N, the distance from π(�) to

� is b τm
2
c, and from π(�) to � the distance is d τm

2
e. Thus, since ρ = b τm

2
c, the

order π(�) is not absorbed by �. Furthermore, recall that the distance from
π(�) to SP−

≻ is strictly larger than b τm
2
c (Lemma 20). Therefore, �′ does not

absorb π(�) neither, and {�′,�} is not a �-single-peaked kernel. The proof for
the set {�′,�} works analogously. The only single-peaked equilibria for each
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single-peaked domain therefore consist of the two reversed orders. As there are
m!
2

many, there are exactly m!
2

many single-peaked equilibria if τm is odd.

Next, we consider the case where τm is even. As noted above, we have b τm
2
c = τm

2

for even τm. One of the intuitive consequences is that the order constructed
through the π-Algorithm is equidistant to its input � and �. We prove that
two reversed orders are not the single-peaked equilibria. In particular, we will
show that the �-single-peaked neighbor an order � ∈ L(A) forms a single-
peaked kernel together with the order �. Unlike in the proof of Proposition 4,
π(�) is absorbed by �, since π(�) is equidistant to both � and �. Analogously,
the �-single-peaked neighbor of � forms a single-peaked kernel together with
�. Together with {�,�}, there are thus three single-peaked kernels for every
single-peaked domain.

To facilitate the proof we first show an auxiliary lemma concerning the
distance of π(�) to the �-single-peaked domain. Note that the orders � and
� have only one �-single-peaked neighbor in the τ -graph, and the respective
distance of the neighbors to π(�) is τm

2
+1. Lemma 25 states that the distance

of any other �-single-peaked order to π(�) is at least τ(�π,�)+2. For the
following sections the superscript (·)+ denotes the neighbor of an order in the
τ -graph which we will specify in the given context.

Lemma 25. Let � = (a1, a2, ..., am), �+ = (a2, a1, ..., am) and furthermore
SP−

≻ = SP≻ \ {�,�+}. Then for any �′ ∈ SP−
≻,

τ(�′,�π) ≥ τ(�,�π)+2 .

Proof. Recall the structuring of the order π(�) into two suborders, depending
on the fully reversed alternatives a1, ..., ai, and the partially reversed alternative
a⋆. Claim 2 and 3 from Lemma 20 stated that τ(�′,�π) ≥ τ(�,�π)+

(
p
2

)
, where

ap designates the maximal element of �′. p can therefore take values between
2 and the rank of the alternative a⋆ in �. If a2 is the maximal element, the
distance between �+ and π(�) is τ(�,�π)+

(
2
2

)
= τ(�,�π)+1. For any other

peaks, the distance is therefore at least τ(�,�π)+
(
3
2

)
= τ(�,�π)+2.

We continue to prove Proposition 5 by showing that for every single-peaked
domain there are three single-peaked kernels, and thus the total number of
single-peaked equilibria is 3·m!

2
. Figure 3.2 provides a visual representation for

four alternatives and even maximal distance τm = 6.

Proposition 5. If ρ = b τm
2
c and τm is even, then the number of single-peaked

equilibria is exactly 3 · m!
2

.
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dbac

bdac

badc�+= bacd

� = abcd
abdc

adbc

dabc

dacb

�π = adcb
acdb

acbd

cabd

cadb

cdab
dcab

� = dcbacdba
cbda

cbad

bcad

bcda

bdca

dbca

Figure 3.2: The τ -graph for A = {a, b, c, d}. Let � = (a, b, c, d), then π(�) =
(a, d, c, b) (blue vertex), and �+ = (b, a, c, d). If ρ = 3, the set K ′ = {�+,�}
absorbs all orders, including π(�).
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Proof. The proof makes use of the isomorphism f mapping an agent i to her
preference �i, and we will argue about distances and sets of orders, instead of
the associated voters. The proof proceeds in two parts. We first show that
there are three single-peaked kernels for a single-peaked domain, and then in a
second step that there are no other single-peaked kernels.

Let � = (a1, ..., am), �+ = (a2, a1, ..., am), �+ = (am−1, am, ..., a1), and
K = {�,�}. The orders with the + superscript are �-single-peaked neighbors
of � and � respectively. We prove that K ′ = {�+,�} and K ′′ = {�,�+}
are �-single-peaked kernels. As the proofs work analogously, we only consider
K ′ = {�+,�}. By assumption, ρ = τm

2
. For independence of K ′ we thus

need to prove that τ(�+,�) > τm
2

. Since � and �+ are neighbors we have
τ(�+,�) = τm−1. Recall that τm = m(m−1)

2
. We leave it to the reader to verify

that
τ(�+,�) = m(m− 1)

2
−1 >

m(m− 1)

4
=

τm
2

from which we conclude the independence of K ′.
Recall that K = {�,�} is a �-single-peaked kernel. In order to prove that

K ′ is absorbing, assume for contradiction that there is an order �′ ∈ L(A) that
is absorbed by K but not by K ′. Consequently, τ(�,�′) ≤ τm

2
, τ(�+,�′) > τm

2
,

and τ(�,�′) > τm
2

. There are two cases to consider:
Case 1: τ(�,�′) = τm

2
. Then also τ(�,�′) = τm

2
, and �′ is absorbed by �.

Case 2: τ(�,�′) < τm
2

. This is the case if and only if τ(�,�′) ≤ τm
2
−1.

Since � and �+ are neighbors, �+ absorbs �′.
As both cases result in a contradiction, no order that is absorbed by K but

not by K ′ exists, and consequently K ′ is absorbing. Thus, K ′ is a single-peaked
kernel, since it is absorbing and independent.

So far we found an improved lower bound for ρ = τm
2

with even τm. We
continue to prove that there are no other �-single-peaked kernels than K, K ′,
and K ′′. As we have seen in the proof of Proposition 4 any S ⊆ SP≻ that does
not contain � or � does not absorb π(�). Any potential kernel must therefore
contain either of these orders.

Let SP−
≻ = SP≻ \ {�,�,�+}. Consider the order π(�)+ which is the

neighbor of π(�) on a shortest path to �. From Lemma 20 we know that the
distance between π(�) and SP−

≻ is at least τ(�,�π)+2. The distance between
π(�)+ and SP−

≻\{�+} is therefore at least τ(�,�π)+1. Since ρ = τm
2

, the order
π(�)+ is therefore never absorbed by any order in SP−

≻ \ {�+}. Consequently,
the only three kernels are K, K ′, and K ′′. For every single-peaked domain there
are thus three unique single-peaked kernels. Since there are m!

2
single-peaked

domains, the number of single-peaked peaked kernels is 3 · m!
2

if ρ = τm
2

and τm
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is even. Note that we can simply multiply by m!
2

: No double-counting of the
kernels takes place since the kernels K, K ′, and K ′′ are single-peaked only with
respect to the order �.

In Propositions 4 and 5 we considered the special case where ρ = b τm
2
c in more

detail. We have seen that for ρ = b τm
2
c, the number of possible �-single-peaked

electorates reduces from 22(m−1) to, depending on the parity of τm, one or three
if we additionally require them to be equilibria. This shows how strong the
definition of an equilibrium is.

3.3.2 Structure of Single-Peaked Equilibria
We believe that for delegation thresholds larger than b τm

2
c, the single-peaked

equilibria can be constructed along the technique used in the proof of Proposi-
tion 5. The consequences are that single-peaked equilibria always consist of two
voters with relatively opposed opinions. Here we can see the conflict between
the property of absorbance and independence. If ρ increases, the distance be-
tween the orders in a potential kernel can increase, as they absorb orders that
are relatively far away. At the same time, the distance between the two voters
must always exceed ρ, as otherwise the voters are not independent.

We conclude this chapter with a remark about the cardinality of a single-
peaked equilibrium. We conjecture that the cardinality of a single-peaked equi-
librium is bounded from above by two, and it is one if and only if ρ = τm. The
latter is easy to see, as any singleton is a single-peaked equilibrium if ρ = τm.
For lower thresholds, no voter can absorb the voter with the reversed order.
Thus, at least two voters are required to achieve an equilibrium. However, we
conjecture that the addition of any third voter results in the loss of indepen-
dence, and thus an electorate containing three voters cannot be an equilibrium.

Conjecture 1. The cardinality of a single-peaked equilibrium is at most two.

If the conjecture turns out to be true, single-peaked equilibria in liquid democ-
racy are a reduction of the multitude of opinions to merely two opinions. We
are still concerned with equilibria, and therefore each voter is accepting this
reduction (otherwise we would not have an equilibrium). However, from a more
abstract democratic theoretical view, a single-peaked equilibrium does not seem
to be a desirable outcome. If we treat liquid democracy as a model aiming to
increase participation, the reduction of an electorate to two voters seems to
undermine the entire endeavour of liquid democracy. The aggregation of vot-
ing power into the hands of only a few individuals is a phenomenon that has
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been confirmed by Kling et al. (2015), and theoretically discussed by Gölz et al.
(2018). Our analysis of single-peaked equilibria confirms this aggregation ten-
dency of liquid democracy.

We will see in the following chapter, that for smaller thresholds than b τm
2
c

single-peaked kernels can exist if we relax the assumptions. In particular, there
are single-peaked kernels of size larger than two if not all orders are submitted.
We can already point at a necessary condition: the order π(�) cannot be sub-
mitted, as otherwise it cannot be absorbed by any �-single-peaked voter/order.
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Chapter 4

Counting Single-Peaked
Electorates: Simulations

In the previous chapter we investigated the existence of single-peaked equilibria
in delegation structures 〈G,P ,ρ〉 under the three assumptions

1. Every preference order is submitted exactly once, entailing D(P ) = L(A),

2. G is the complete graph, i.e. every voter is allowed to delegate to every
other voter,

3. ρ is homogeneous, i.e. all voters have the same acceptability threshold.

A complete generalization of the results in Chapter 3 would require an analysis
of all graphs, every possible profile, and every possible delegation threshold.
We will see, partly in this chapter, partly in the next, that generalizing the
result analytically is a complex if not impossible endeavour. The consequences
of relaxing the assumptions will thus not be investigated analytically but com-
putationally. Essentially, each constituent of a delegation structure 〈G,P ,ρ〉
can be treated as a random variable. This chapter is dedicated to the relaxation
of the complete domain assumption, and we will therefore treat the profile P as
a random variable. We generate random profiles and analyze these for single-
peaked equilibria. In Chapter 5 we shift our attention to real life data, which
we take from the PrefLib data set (Mattei and Walsh, 2013). Under the as-
sumption that the underlying social network G is complete, we randomize over
the (heterogeneous) delegation thresholds of each voter.

The goal of this chapter is to take a step from the complete preference
domain D(P ) = L(A) towards the universal preference domain D(P ) ⊆ L(A)
in which every possible domain is admitted. For a small number of alternatives,
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the number of possible preferences is relatively small, so it is likely that every
preference is held by one voter. However, the number of possible orders grows
factorially with the number of alternatives. For three alternatives there are 3! =
6, for four 4! = 24, and for five alternatives already 5! = 120 possible preferences.
While it may be realistic that for three alternatives each of the possible six orders
is submitted, this becomes less likely as the number of alternatives grows. This
is in fact supported by the PrefLib data sets. In the vast majority of profiles
containing three or four alternatives, each order is submitted at least once, while
for five or more alternatives many possible orders are not submitted.

Ultimately, our interest lies not in the domains but the profiles. However,
recall that if ρ is homogeneous, then all voters with the same preference order
can be put into the same equivalence class. Since—for now—only the complete
domain assumption is relaxed, results about the set of all possible domains
D(P ) ⊆ L(A) extend to the set of all possible profiles P ⊂ L(A)n.

In the previous chapter we have proven a characterization for the existence
of single-peaked equilibria if the domain is complete, in particular, if every
order is submitted exactly once. We can make use of this result and achieve the
generalization to the universal domain by iteratively deleting voters from the
complete profile P with D(P ) = L(A). Note that we assume that every order is
submitted exactly once, thus voter deletion is equivalent to the deletion of orders
from the complete domain. Since any domain is a subdomain of the complete
domain, this approach covers all possible domains. Our approach can easily
be generalized to allow for multiple submission of the same order by different
voters by deleting all voters with the same order. For reasons of simplicity this
chapter is following the assumptions that orders are submitted exactly once.1

As hinted at above, the impact of deleting voters from the complete profile,
and thus orders from the domain, on the existence and number of single-peaked
equilibria is hard to generalize analytically. In Section 4.1 we prove that the
deletion of a voter can have two effects: Either equilibria that included the
deleted order cease to be kernels, or the deletion results in a new equilibrium.
Unfortunately, this observation bears little informational value, which motivates
us to perform computational simulations—the main endeavour of this chapter.

1Consider the case where one order is submitted multiple times. Under the assumptions
that the social network is complete, and thresholds are homogeneous, the deletion of a single
voter does not impact the existence of single-peaked equilibria. There are still voters with the
exact same delegation behaviour: They can delegate to everyone, have the same preference,
and same delegation threshold as the deleted voter. The deletion of single voters becomes
relevant only once thresholds are heterogeneous, or the social network is not complete.
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4.1 Theoretical Observations
Given a delegation structure 〈G,P ,ρ〉 a deletion sequence s = (s1, ..., sn) is a
sequence of voters with agent s1 ∈ N , and agents si ∈ N \ {s1, ..., si−1} that are
successively deleted from the profile P . A deletion sequence therefore gives rise
to profiles P 1 to P n, and consequently to delegation structures 〈G1,P 1,ρ1〉 to
〈Gn,P n,ρn〉 each containing one voter less than its predecessor. The number
of deletion sequences is therefore n×(n − 1)×...×1 = n!. By the assumptions,
each voter expresses one of m! many strict linear orders over A. This gives rise
to (m!)! total distinct deletion sequences.2

Let 〈G,P ,ρ〉 be a delegation structure where G is the complete graph, ρ
is homogeneous, D(P ) ⊆ L(A), and s = (s1, ..., sn) is a deletion sequence. We
first show that the number of single-peaked equilibria lost by deleting a voter,
cannot exceed the number of single-peaked equilibria of which the deleted voter
was a member.

Proposition 6. Let si be a deleted voter, and let k be the number of single-peaked
equilibria of which si is a member in the delegation structure 〈Gi−1,P i−1,ρi−1〉.
Then the number of deleted equilibria in 〈Gi,P i,ρi〉 is bounded from above by
k.

Proof. Let K be a single-peaked equilibrium in 〈Gi−1,P i−1,ρi−1〉. If si /∈ K,
trivially K remains a single-peaked equilibrium in 〈Gi,P i,ρi〉. Next, assume
si ∈ K. Since si is no longer a voter in the delegation structure 〈Gi,P i,ρi〉,
trivially K cannot be an equilibrium. More interestingly, we check whether
K ′ = K \ {si} is a single-peaked equilibrium. Let S be the set of voters that
delegated to si in 〈Gi−1,P i−1,ρi−1〉. If all members of S are willing to delegate
to someone in K ′, then K ′ remains a single-peaked equilibrium. However, if
there is a voter in S that is not willing to delegate to someone in K ′, that voter
is not absorbed, and K ′ ceases to be a equilibrium in 〈Gi,P i,ρi〉. Thus, the
number of equilibria lost by deleting si is bounded from above by k, the number
of equilibria si was part of in 〈Gi−1,P i−1,ρi−1〉.

Whether the deleted equilibria actually equals the number of equilibria the
deleted order was part of, depends on the willingness of voters to delegate to
the reduced equilibria. This is a big ‘if’ that is based on the number of voters left,
whether the distance between the voters is large, and generally on the specific

2Note that the number of possible domains is 2m! << (m!)!. This can be explained by the
fact that multiple deletion sequences can express the same profile. For example, first deleting
voter 1, and then voter 2, results in the same profile as first deleting voter 2 and then voter
1.
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structure of the profile. Without this knowledge it is hard to get more specific
results. An analogous argument can be made about the following proposition in
which we analyze whether new single-peaked equilibria come about by deleting
a voter.

Proposition 7. Let si be a deleted voter. A set S of voters is a single-
peaked equilibrium in 〈Gi,P i,ρi〉, and not in 〈Gi−1,P i−1,ρi−1〉 if and only
if S is a single-peaked, independent set and the only voter not absorbed by S in
〈Gi−1,P i−1,ρi−1〉 is si.

Proof. (⇐): Trivial. (⇒): If S is a single-peaked equilibrium in 〈Gi,P i,ρi〉, and
not in 〈Gi−1,P i−1,ρi−1〉, then either S was not absorbing in 〈Gi−1,P i−1,ρi−1〉,
not independent, or not single-peaked. If it did not absorb other voters than
si, it is still not an equilibrium since only si is deleted. Since si /∈ S, deleting
si does not impact whether S is independent and single-peaked. Thus, si must
be the only voter not absorbed by S in 〈Gi−1,P i−1,ρi−1〉.

Unfortunately, Propositions 6 and 7 are too general to bear informational value.
Whether or not equilibria are lost or added depends too much on the structure
of the profiles. Without the structure at hand, there is little to say about the
existence and number of single-peaked equilibria. Once we have the structure,
on the other hand, the number of single-peaked equilibria can be computed. We
therefore proceed by computations whose design is in line with the theoretical
observations we have obtained—the iterated deletion of voters.

4.2 Monte Carlo Simulation
An analytical solution to the analysis of single-peaked equilibria for the universal
domain requires analyzing (m!)! deletion sequences. This ceases to be tractable
already for m > 4, which pulls us towards probabilistic modelling, in particular
we will run a Monte Carlo Simulation. The underlying idea of Monte Carlo
simulations is that “anything we want to know about a random variable θ can
be learned by sampling many times from f(θ), the density of θ” (Jackman,
2009). We will treat the deletion sequences as random variables, and therefore
sample from their—to be defined—distribution. Before we devote our attention
to describing the random variable and the Monte Carlo simulation in more
detail, some technical preliminaries are required.

Assume we are given a complete profile P consisting of voters i ∈ N with
strict, linear preferences over a set of alternatives A with |A| = m. The goal is to
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understand the impact of voter deletion on the number and structure of single-
peaked equilibria, for fixed, homogeneous delegation thresholds ρ ∈ {1, ..., τm}.
Unless stated otherwise, we assume the voters to be part of a complete social
network G. For readability, we will refer to the social network as G, and to the
delegation thresholds as ρ even if voters are deleted from the network.

Recall that a deletion sequence s ∈ Σ gives rise to n-many profiles P 1 to P n.
Each profile P k together with a (homogeneous) delegation threshold ρ gives rise
to a delegation structure 〈G,P k,ρ〉, where the social network G is completely
specified since we assume it to be complete. Therefore, there is a function with
a deletion sequence s and delegation threshold ρ as inputs, and a sequence of
delegations structures as output. Given a delegation structure 〈G,P k, ρ〉, one
can check for every subset of voters K whether K is a single-peaked equilibrium.
Therefore, there is a function g mapping a delegation structure to a set of single-
peaked equilibria K ⊆ P(N), the power set of N . Consequently, there must be
a compositional function h, taking as input a deletion sequence s = (s1, ..., sn),
and delegation threshold ρ, mapping these to a sequence of sets of single-peaked
equilibria:

h : Σ× {1, ..., τm} → (P(P(N)), ...,P(P(N)))

((s1, ..., sn), ρ) 7→ (K1, ...,Kn)
(4.1)

Intuitively, given a delegation threshold, the function h maps n profiles to their
single-peaked equilibria, where the profiles result from deleting voters from the
complete profile P according to some deletion sequence s=(s1, ..., sn). As we
have argued above, we cannot consider all possible deletion sequences. The
underlying idea of the Monte Carlo simulations is to randomly draw from the
set Σ and then compute for each ρ ∈ {1, ..., τm} a sequence of sets of single-
peaked equilibria, which we then analyze with respect to the average number of
single-peaked equilibria, the smallest single-peaked equilibrium, and the largest
single-peaked equilibrium.

Formally, a random variable X is a mapping from a sample space Ω to
measurable space E. The delegation thresholds ρ are fixed, and we only treat
the deletion sequences as random events. An outcome ω ∈ Ω is the result of
drawing a deletion sequence s ∈ Σ. We are finally ready to define the random
variables. Let Xρ be the random variable, mapping a sample space Ω to a
sequence of natural numbers (x1, ..., xn), where each xi equals the number of
single-peaked equilibria according to the function h(si, ρ)i (Equation 4.1). If
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(K1, ...,Kn) is the output of h(s, ρ), then (|K1|, ..., |Kn|) is the output of Xρ(s).

Xρ : Ω→ Nn

(s1, ..., sn) 7→ |h(si, ρ)i| for 1 ≤ i ≤ n

We are not only interested in the number, but also in the size of single-peaked
equilibria. For a set K of single-peaked equilibria, let card(K) = {|K| | K ∈ K}
be the set containing the size of each single-peaked equilibrium. If (K1, ...,Kn)
is the output of h(s, ρ), then (card(K1), ..., card(Kn)) is the output of Yρ(s).

Yρ : Ω→ Nn

(s1, ..., sn) 7→ card(h(si, ρ)i) for 1 ≤ i ≤ n

In order to show that the random variables are well-defined we need to show
that Ω is part of a probability triple (Ω,F ,P), where F is a set of events where an
event E ⊆ Ω is a set of outcomes in the sample space Ω, and P is a probability
distribution over Ω. As is commonly done on a discrete sample space, let F =
P(Ω) be the power set of Ω. Any subset of Ω is therefore an admissible event.
Next, consider the probability distribution P. Each ω ∈ Ω is the outcome of
drawing a deletion sequence s ∈ Σ. Recall that there are (m!)! many deletion
sequences, each equally likely. Thus, P is a uniform distribution with P(ω) =

1
(m!)!

for all ω ∈ Ω.3 Since all random variables defined above share the same
sample space Ω, we can assume that they furthermore share the same probability
space (Ω,F ,P).

With the formal definitions of the random variables at hand, we proceed
to describe the Monte Carlo simulation in more detail. Generally, one knows
the probability distribution of a random variable θ but cannot draw conclusions
about functions of θ. In our case, we know the distribution of the deletion
sequences, but we cannot from this alone infer anything about, for example,
the number of single-peaked equilibria. A Monte Carlo simulation offers a way
out: By sampling many times from the distribution, we can make statistically
valid statements about the number of single-peaked equilibria. The mathemat-
ical foundation of this approach, like so often in statistics, is the law of large
numbers. For a formal description, and the relation of the law of large numbers
to the Monte Carlo simulation, we refer the reader to Chapter 3 in Jackman
(2009), in particular pages 138 ff.

3To show that (Ω,F ,P) is indeed a probability space is straightforward. As Ω is a discrete
set, the power set guarantees that the event space is measurable. Trivially, the uniform
probability distribution adds up to 1.
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Our Monte Carlo Simulation essentially follows Jackman (2009), Chapter 3,
with a slight variation. Recall that the random variables we defined output a
sequence of numbers. To estimate the expected value E, we therefore cannot
take the mean, but take the mean of each member of the sequence. The ‘mean’
of a random variable is therefore a sequence of means. We draw a random
deletion sequence s ∈ Σ and then calculate the random variables based on s.

Algorithm 3 Monte Carlo Estimate for the Mean
Input: Set of all deletion sequences Σ

1: for t = 1 to T do
2: draw s(t) ∈ Σ
3: calculate θ(s(t)) where θ ∈ {Xρ, Yρ, Zρ} and ρ ∈ {1, ..., τm}
4: end for
5: Estimate E(θ) with 1

T

∑T
t=1 θ

(t)

Furthermore, if we are interested not in the mean but the probability that a
variable takes on values larger than a constant c we can use Algorithm 4. In
particular, we will be interested in the probability that single-peaked equilibria
exist, i.e. the probability that the number of single-peaked equilibria is larger
than zero.

Algorithm 4 Monte Carlo Estimate of Cumulative Probability
Input: Set of all deletion sequences Σ

1: for t = 1 to T do
2: draw s(t) ∈ Σ
3: z(t) ← I

(
c < θ(s(t))

)
where θ ∈ {Xρ, Yρ, Zρ} and ρ ∈ {1, ..., τm}, and I(·)

is a binary indicator function
4: end for
5: Estimate P

(
c < θ(s(t))

)
with 1

T

∑T
t=1 z

(t)

For the random variable Yρ that counts the size of single-peaked equilibria, we
will use a different approach. We will simply count the number each size occurs.

4.3 Experimental Planning and Setup
We expounded the general approach of the Monte Carlo simulation in the pre-
vious section. In the following section, we explain the Python implementation
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of the simulation. Furthermore, three variables need to be fixed in order to run
the simulation: (i) the number of alternatives, (ii) the delegation thresholds,
and (iii) the number of runs. The main criterion for the parameter choice has
been the running time of the resulting simulation.

4.3.1 Python Implementation
In every delegation structure 〈G,P ,ρ〉 we assume the social network G to be
complete. Delegations thus only depend on the Kendall Tau distances between
voters, and their delegation thresholds. We follow the structure of profiles pro-
vided by PrefLib (Mattei and Walsh (2013), Mattei and Walsh (2017)). For
every deletion sequence, we create the profiles resulting from that sequence.
For every profile we then create delegation acceptability digraphs based on the
Kendall Tau distance, and the delegation thresholds. We make use of the Python
package NetworkX (Hagberg et al., 2008) to analyze the graphs for kernels. Re-
call that homogeneous thresholds result in symmetric acceptability digraphs,
which we can simply reduce to undirected graphs. In the preliminaries we
proved that kernels in an undirected graph correspond to maximal indepedent
sets (Observation 6), which in turn correspond to maximal cliques in the com-
plement of that graph (Observation 5). The built-in function find_cliques(G)
in NetworkX outputs all maximal cliques of a graph G, and thus all kernels of
G. In a final step we check which of these kernels are single-peaked, and store
the result in a Pandas Dataframe (Wes McKinney (2010)). Effectively, the
dataframe stores the output of the function h (Equation 4.1). The values of all
random variables can be derived from the dataframe, as they are based on the
function h.

We just argued that the search for kernels in a graph G can be reduced to
maximal cliques in its complement G. It is a well known result that the maximal
clique problem is NP-hard, and brute force requires exponential running times.
However, the Bron–Kerbosch algorithm improves on brute force, and can solve
the problem in O(3n/3), where n is number of vertices (Bron and Kerbosch,
1973). In NetworkX the function find_cliques(G) returns all maximal cliques
of a graph G based on the Bron-Kerbosch algorithm. Together with the function
is_single_peaked(S) from PrefLib, which checks each maximal clique S of G
for single-peakedness, this builds the pipeline for our analysis of the graph.
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m
ρ 1 2 3 5 7 9

3 ∼1.2s ∼1.2s - - - -
4 ∼1.3s ∼1.5s ∼1.5s ∼2.0s - -
5 >30min∗ >30min∗ ∼182s ∼2.2s ∼2.2s ∼1.8s

Table 4.1: Average Running times for checking the complete profiles for single-
peaked kernels. Experiments were run on a MacBook Pro with 2 GHz Quad-
Core Intel Core i5, 16Gb Ram, running MacOS Big Sur 11.6.
(·)∗: Did not terminate after 30 min.

4.3.2 Parameter Selection
As the running time grows exponentially with the number of vertices, the choice
of parameters is based on the running time. A number of test runs yield the
running times depicted in Table 4.1. As the number of alternatives, and thus
vertices in the acceptability graph grows, the number of kernels increases dras-
tically. For example, if ρ = 3, there are 88 kernels for m = 4, and already
6899432 for m = 5. All of these then additionally have to be checked for single-
peakedness. Based on Table 4.1 we choose the following parameters. For m = 3,
and m = 4 we perform 30.000 runs with ρ ∈ {0, 1, ..., τm}. In other words, we
perform a Monte Carlo simulation with a sample size of T = 30.000. As the
running times increase drastically for m = 5, we perform T = 1000 runs for
ρ ∈ {0, 3, 4, 5, 7, 9}. Additionally, we do not analyze the profiles for each dele-
tion of a deletion sequence. A complete deletion sequence is of length 5! = 120,
however we restrict the analysis to profiles after every tenth deletion. Thus, we
only analyze 12 profiles for each deletion sequence.

4.3.3 Hypotheses
Recall from Section 4.1 the impact one deletion has on the number of single-
peaked equilibria. All equilibria the deleted voter was part of are lost, and
potentially new kernels, that did not absorb the deleted voter, come into exis-
tence. On average, we expect the deletion of voters to result in a decrease of
single-peaked kernels. It is furthermore interesting whether the random variable
Xρ is strictly decreasing.

Hypothesis 4.1. The number of single-peaked equilibria is inversely propor-
tional to the number of deletions.

59



One of the main points of interests in this thesis is to explore the delegation
threshold b τm

2
c. In the previous chapter it was proven, that no single-peaked

equilibria exist if voters are opinionated. We expect a slightly weakened result
to hold if the domain of a profile is not complete. Generally speaking, for a �-
single-peaked equilibrium in a delegation structure 〈G,P ,ρ〉 to exist, all voters
with a delegation threshold smaller than ρ must be deleted. If d is the number
of these voters, at least d many deletions need to be performed. The probability
that �-single-peaked kernels exist is thus depended on the likelihood that all d
voters are deleted. As the number of deletions increases, the likelihood that all
d voters are deleted increases.
Hypothesis 4.2. If voters are opinionated, the likelihood for the existence of
single-peaked equilibria increases as the number of deletion increases.
If voters are open-minded, we expect the result from Chapter 3 to generalize to
the universal domain.
Hypothesis 4.3. If voters are open-minded, single-peaked equilibria almost
always exist.
In the previous chapter we conjectured that the size of single-peaked equilibria
in complete domains is bounded from above by two (Conjecture 1). This con-
jecture should not be impacted by voter deletion. If the upper bounds holds
for the complete domain, the bound generalizes to any domain if voters are
open-minded.
Hypothesis 4.4. If voters are open-minded, the size of a single-peaked equi-
librium is bounded from above by 2.
On the other hand, if voters are opinionated, we expect larger equilibria. In the
extreme case, where no one is willing to delegate, i.e. ρ=0, it is possible, though
unlikely, that only a single-peaked domain remains as voters. As the size of a
single-peaked domain is 2n−1, the maximal size of a single-peaked equilibrium is
2n−1. If the threshold is 1, at most every second voter of a single-peaked domain
can be in an equilibrium, reducing its size to 2n−1

2
. If the threshold is 2, only

every third voter can be part of an equilibrium, and so on.
Hypothesis 4.5. If voters are opinionated, the size of a single-peaked equilib-
rium is bounded from above by 2n−1

ρ+1
.

4.4 Results
We discuss the hypothesis individually and conclude this chapter with a more
general discussion of the results (Section 4.5).
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(a) m = 3 (b) m = 4

(c) m = 5

Figure 4.1: Number of deleted voters plotted against the mean of the number
of single-peaked equilibria. Each colour represents a different value for the
delegation threshold ρ.

Hypothesis 4.1

As expected, the number of single-peaked equilibria decreases as voters are
deleted. If ρ = τm every singleton is a kernel, thus one deletion results in the
linear decrease of one kernel. As can be seen in Fig 4.1, the decay is slower than
linear if ρ = τm − 1. To understand this phenomenon, it helps to take a look
at the structure of the equilibria. If ρ = τm − 1, the only voter not absorbed
by a voter with order �, is the voter associated with the reversed order �.
Thus, a single-peaked equilibrium consists of two voters with reversed orders.
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(a) m = 3 (b) m = 4 (c) m = 5

Figure 4.2: Each cell represents a combination of the delegation threshold ρ and
number of deletions. The colour depicts the ratio between single-peaked and
total equilibria. Since equilibria always exist (Theorem 8), this value is always
defined, and ranges from zero to one.

A deletion however does not necessarily result in the loss of an equilibrium. As
we have established in Proposition 6, an equilibrium K can be replaced by a
subset K ′ ⊂ K. If � is the deleted order, the singleton containing the voter
with order � is an equilibrium, since � is the only order not absorbed by �.
Any single-peaked equilibrium containing two reversed orders is replaced by a
singleton subset. This is confirmed by Figure 4.4 depicting the size of the single-
peaked equilibria. For ρ = τm − 1, this number is equal for size one and two.
Only once the likelihood that two reversed orders are deleted, the decrease of
single-peaked equilibria becomes visible (Fig 4.1). If voters are opinionated,
the number of single-peaked equilibria becomes larger than zero, only after some
deletions have been performed. For m = 4, only after 71% of voters have been
deleted, there is more than one single-peaked equilibrium. For m = 5 the mean
never exceeds one.

If voters are open-minded the mean of the number of single-peaked equi-
libria decreases faster than linearly. This is unsurprising, as the same can be
observed for the number of equilibria—including non-single-peaked ones. Curi-
ously though, the latter decreases faster than the former. Figure 4.2 depicts the
ratio of single-peaked equilibria to total equilibria. For large delegation thresh-
olds, this ratio equals one: Every equilibrium is a single-peaked equilibrium.
As can be seen especially for m = 4, the ratio increases as voters are deleted.
The ratio is noticeably bigger than 0 after many deletions, even though voters
are opinionated. The absolute number of single-peaked equilibria is small, how-
ever the probability that an equilibrium is single-peaked is not negligible. We
will discuss the implication of this result in Section 4.5. The reasons for the

62



(a) m = 3 (b) m = 4 (c) m = 5

Figure 4.3: Number of deleted voters plotted against the probability that single-
peaked equilibrium exists, i.e. that the number of single-peaked equilibria is
larger than 1. Each colour represents a different value for the delegation thresh-
old ρ.

increasing ratio shine a light on the role of single-peakedness in Proposition 7
which concerned how the deletion of a voter si results in a new single-peaked
equilibrium S. Essentially, Proposition 7 established that si is not absorbed by
S, and the deletion then makes S a single-peaked equilibrium. The following
scenario explains the phenomenon of the increasing ratio. Assume S ∪ {si}
is kernel, but not single-peaked kernel due to si. Then if si is the only voter
not absorbed by S, S is single-peaked kernel if si deleted. Therefore, there is
a new kernel. Disregarding the single-peakedness, this scenario cannot be the
case since S ∪ {si} already is a kernel. Thus, no ‘new kernel’ is created but
only replaced with the subset S ⊂ S ∪ {si}. This furthermore explains, why
the number (not the mean!) of total equilibria is strictly decreasing, while the
number of single-peaked equilibria is not.

Hypotheses 4.2 & 4.3

For delegation structures with open-minded voters, there almost always exist
single-peaked equilibria, as can be seen in Figure 4.3. Only in small profiles
does the average probability drops below one. The importance of the threshold
ρ = b τm

2
c can be seen in Figure 4.3. For opinionated voters, the probability that

single-peaked equilibria exists is very low. The only exception is for ρ = 2 where
m = 4. We observe continuous increase while this increase fails to materialize
for the analogous threshold of ρ = 4 for m = 5. One explanation can be the
difference in the number of runs performed (30,000 for m = 4, and 1,000 for
m = 5). However, the number of voters in the domains that are of maximal
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(a) m = 3 (b) m = 4 (c) m = 5

Figure 4.4: Size of single-peaked equilibria. Each colour represents a different
value of the delegation thresholds ρ.

distance to a single-peaked domain seems to be a more significant difference.
If voters are opinionated, for a �-single-peaked equilibrium to exist, all voters
with a distance larger than τm

2
to the�-single-peaked domain need to be deleted.

The number of these voters seems to grow faster than linearly with respect to
the number of alternatives. Thus, the likelihood that these voters are all deleted
decreases. If this conjecture is true, the threshold b τm

2
c becomes only more rigid,

as the number of alternatives grows.

Hypotheses 4.4 & 4.5

Figure 4.4 confirms Hypotheses 4.4, and 4.5. In open-minded societies, we do
not observe any single-peaked equilibria of size larger than two. For opinionated
voters the picture looks different. For m = 3, we observe that kernels of size
three and four occur, although less frequently than of size one or two. This
holds analogously for m = 4, where kernels of size up to seven exist if ρ = 0, up
to size four if ρ = 1, and up to size three if ρ = 2. We take this to be evidence
for the upper bound of 2n−1

ρ+1
proposed in Hypothesis 4.5.

4.5 Discussion
Before discussing the results, we devote a paragraph to analyzing the robust-
ness of the data. While the sample size of 30, 000, and 1, 000, for three and
four alternatives, and for five alternatives respectively, is not particularly large,
regularities in the data speak for its representativeness. For each deletion, the
number of single-peaked equilibria seem to be normally distributed around the
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mean, with relatively small standard deviation (see the Appendix (Figure A.1)
for a selection and brief discussion of graphs). We furthermore observe similar,
if not the same, results for three, four and five alternatives.4 Arguably, making
similar observation counts as evidence for reliability. While each observation is
not conclusive evidence for the robustness of the data, we take the multitude of
evidence as sufficient for the robustness.

The results confirm that the distinction between opinionated voters and
open-minded voters is not only sensible, but marks a crucial threshold for the
existence of single-peaked equilibria. Although the results from Chapter 3 do not
generalize in its entirety to the universal domain, a slight weakening holds. We
have seen that single-peaked equilibria exist even though voters are opionated,
but only after a substantial amount of deletions have been performed. Recall
the main result from Chapter 3 under the assumptions of a complete social
network, homogeneous thresholds, and complete domains:

Theorem 22. Single-peaked equilibria exist if and only if voters are open-
minded.

Generalizing to the universal domain, we take the Monte Carlo simulation to
be evidence for the following weakening of Theorem 22.

• If voters are open-minded, single-peaked equilibria are “very likely” to
exist.

• If voters are opinionated, single-peaked equilibria only exist if the domain
is “small”.

However, the probability that single-peaked equilibria exist is not the only rel-
evant result. We have seen that the ratio of single-peaked equilibria to all
equilibria increases, as voters are deleted. Thus, the share of single-peaked
equilibria increases if the profile decreases in size. This is particularly interest-
ing in light of the convergence result (Theorem 23) by Escoffier et al. (2020).
Theorem 23 stated that a best response dynamic always converges to an equilib-
rium. Crucially, this is the case for both opinionated and open-minded voters.
Thus, even though the total number of single-peaked equilibria might be low,
the probability that an actual vote under the best response dynamic converges
to a single-peaked equilibrium is not negligible.

4With the slight exception of the probability for the existence of equilibria for m = 4, and
ρ = 2. However, as argued in the previous section, we believe to have found an explanation
for this phenomenon.
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We conclude this chapter with a remark about the cardinality of single-
peaked equilibria. In open-minded societies, the maximal cardinality is two.
Furthermore, most single-peaked equilibria consist of voters with two reversed
orders. Essentially, this means that single-peaked equilibria consist of people
with opposite opinions. Delegations therefore lead to an absolute polarization
of opinions, paired with an aggregation of voting power in only two hands.
Chapter 6 concludes with a more thorough discussion of this phenomenon, and
implications for the ‘democraticity’ of liquid democracy.
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Chapter 5

Counting Single-Peaked
Electorates: Real Life Data

In the previous chapter we generalized the existence characterization from the
complete domain to the universal domain with the help of a Monte Carlo sim-
ulation. We randomly created synthetic profiles through voter deletion, and
concluded that while the delegation threshold b τm

2
c is no longer a logical neces-

sity, it remains a crucial factor. This chapter takes the step from theoretical
results to analyzing real life data collected in the PrefLib library (Mattei and
Walsh, 2013). Again, we assume the social network to be complete, thus the
missing constituent to form a delegation structure 〈G,P ,ρ〉 is the delegation
thresholds profile ρ. In order to make our analysis as realistic as possible, we
dismiss the assumption of homogeneity, and for the first time in this thesis
dedicate our attention to heterogeneous thresholds. Similarly to the findings in
Chapter 3, an analytical analysis is not feasible. And similarly to our proceeding
in Chapter 3, a Monte Carlo simulation offers a good computational alterna-
tive. By drawing individual delegation thresholds from a normal distribution,
we randomize over ρ. The resulting delegation structures 〈G,P ,ρ〉 are then
analyzed for single-peaked equilibria.

We begin this chapter with a description of the Monte Carlo simulation,
and formally introduce the random variables. We proceed with a brief discus-
sion of the PrefLib data, and our choice of profiles. The parameter choice for
the simulation pose some problems (Section 5.2.3), which we will solve with a
probabilistic argument, about the likelihood that single-peaked equilibria exist,
leading us to the simulation and analysis thereof (Section 5.4).
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5.1 Monte Carlo Simulation
Once again, we assume that voters are part of a complete social network G, and
can therefore delegate to every voter. Given a profile P , there is therefore a
function from the delegation thresholds ρ to a delegation structure 〈G,P ,ρ〉.
Recall from Chapter 3 the function assigning a delegation structure to a set
K ⊆ P(N) containing all single-peaked equilibria in 〈G,P ,ρ〉. Given a profile
P , we define the function g to map a delegation threshold ρ = (ρ1, ..., ρn) ∈ Rn

with ρi ∈ R for each voter i ∈ N to the set of single-peaked equilibria K ⊆ P(N)
in the delegation structure 〈G,P ,ρ〉.

g : Rn → P(P(N))

ρ 7→ K
(5.1)

Based on the function g, we can define random variables analogously to Chap-
ter 4. The sample space Ω contains as outcomes every possible heterogeneous
delegation threshold ρ ∈ Rn. Defining the sample space only on the delegation
thresholds suffices since the social network G and the profile P are given. We
define the random variable X as a mapping from Ω to the number of single-
peaked equilibria K in 〈G,P ,ρ〉 based on the function g (Equation 5.1).

X : Rn → R

ρ 7→ |g(ρ)|
(5.2)

Furthermore, we let X tot be the random variable counting all equilibria, includ-
ing the ones which are not single-peaked.

In order to get a deeper understanding of the foundation of the Monte-Carlo
simulation, and to show that the random variables are well-defined, we show that
Ω is part of a probability space (Ω,F ,P). For all i ∈ N , we define Ωi to contain
all outcomes of drawing an individual delegation threshold ρi ∈ R. Since Ω is a
vector of individual delegation thresholds, let Ω = Ω1×...×Ωn. Furthermore, we
assume that all delegation thresholds ρi are identically, independently normally
distributed. In particular, we assume ρi ∼ N (µ, σ2) for all i ∈ N , where µ
denotes the mean and σ the standard deviation. Since the normal distribution is
a well-defined probability distribution, for each voter i ∈ N , so is the probability
space (Ωi,Fi,Pi). Since all Pi are independent, and Pi(Ωi) = 1, we have P(Ω) =
1, and consequently (Ω,F ,P) forms a probability space. We refer the reader
to Remark 1 for a more formal definition of the probability space, including a
breve exploration of the event space F .

A single run of the Monte Carlo simulation consists of drawing delegation
thresholds ρi ∈ R independently from the normal distribution N (µ, σ2) for all
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voters i ∈ N . This gives rise to a delegation threshold ρ = (ρ1, ..., ρn) ∈ Rn, on
which the random variables were defined. In the following paragraphs, first the
Python implementation, and then the choice of the parameters µ (mean), and
σ (standard deviation), as well as the choice of profiles from PrefLib, and the
number of runs is explained.

Remark 1. More formally, the probability space (Ω,F ,P) is defined as a fi-
nite product of probability spaces (Ωi,Fi,Pi). By defining a probability space
(Ωi,Fi,Pi) for each individual delegation threshold ρi, we can define the prob-
ability space (Ω,F ,P) as the product of each individual probability space as
follows.

Ω = Ω1 × ...× Ωn = Rn

F = B(Rn)

P(ω1, ..., ωn) =
n∏

i=1

Pi(ωi)

This definition can be explained straightforwardly for the sample space Ω, as
well as the probability distribution P. However, the definition for the event
space F requires some measure theoretical, and topological work, which we will
omit diving into. Essentially, the complexity arises due to uncountability of
the sample space. Unlike for the countable case (Chapter 4), admitting every
possible subset of an uncountable set as events, leads to paradox (Tao (2011),
Chapter 1) We refer the interested reader to Tao (2011) for an introduction to
measure theory, and reasons why the Borel σ-algebra B(Rn) represents a suitable
event space.

5.2 Experimental Planning and Setup
We discuss the Python implementation of the Monte Carlo simulation as well as
the data set selection. We choose the parameters mean and standard deviation
mainly based on the running time while a probabilistic argument will be of
further aid to justify our choice. Finally, we propose a number of hypotheses.

5.2.1 Python Implementation
Again, we assume the social network G to be complete for every delegation
structure 〈G,P ,ρ〉. Since the synthetic profiles constructed in Chapter 4 are of
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the same structure as the PrefLib profiles, we can follow a similar setup to Chap-
ter 4. The first difference is that profiles are not generated but given. Secondly,
we need to generate heterogeneous delegation thresholds drawn from the nor-
mal distribution instead of homogeneous thresholds. For each voter the function
random.normal(µ, σ) from the NumPy package (Harris et al., 2020) generates
random delegation thresholds from the normal distribution. Since thresholds
are heterogeneous, the induced acceptability digraph is no longer symmetric.
The function list_all_cliques(G) in NetworkX, which is defined only on
symmetric graphs, is thus no longer sufficient for kernels. However, two ver-
tices are independent in a directed graph if and only if they are independent in
the underlying undirected graph. In order to list all kernels, we therefore first
list all maximally independent sets in the undirected graph of the acceptability
(di)graph. We then use a naive algorithm to check whether a maximally inde-
pendent set is absorbing in the directed graph. In a final step, each kernel is
inspected for single-peakedness, and the single-peaked kernels are stored in a
Pandas dataframe. Effectively, the dataframe stores the output of the function
g (Equation 5.1). The values of all random variables can be derived from the
dataframe, as they are based on the function g.

5.2.2 Data Set Construction
The PrefLib data set contains 315 profiles with strict linear orders, none of which
are single-peaked, making all of them in principal eligible for the investigation
of single-peaked equilibria. The main criterion, as in the previous chapter,
is the running time of the simulation. As we have seen, the running time
increases exponentially with the number of voters. Some test runs yield that
maximally ∼ 450 voters are feasible leaving us with 191 profiles. From these
profiles, there are 65 profiles in which the only possible single-peaked equilibria
are singletons, as no two voters in these profiles are single-peaked together. This
is mainly due to the fact, that these profiles contain few voters with large ballots.
We furthermore exclude all profiles contain less than 30 voters, as delegation
dynamics are limited with few voters. This leaves us with ∼ 80 profiles with
at most 450 voters with ballots of size three or four, 15 profiles with ballot size
nine to 15 and 30 voters, and two profiles with ∼ 150 voters and ballots of size
seven and nine.

We consider the last two profiles the most interesting, as they provide a rel-
atively large number of voters, with an incomplete preference domain. Further-
more, we pick two profiles with ballot sizes three and four, as their underlying
domain is complete. With these profiles we analyze the impact of heteroge-
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neous thresholds on complete domains, while the former two provide us with
data on incomplete domains. The profiles chosen are ‘ED-00004-00000005’ (448
voters, ballot size 3), ‘ED-00004-00000096’ (371 voters, ballot size 3), ‘ED-
00004-00000140’ (352 voters, ballot size 4), ‘ED-00004-00000160’ (350 voters,
ballot size 4), ‘ED-00009-00000001’ (146 voters, ballot size 9), and ‘ED-00009-
00000002’ (153 voters, ballot size 7).

5.2.3 Parameter Choice
Since the running times for the profiles ‘ED-00009-00000001’ and ‘ED-00009-
00000002’ are relatively low, our parameter choice is liberal. We perform 500
runs for means µ ∈ {15, ..., 31}, and µ ∈ {8, ..., 20} respectively, with σ ∈
{0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. The values for the mean µ
are mainly motivated by the distances b τm

2
c and τm. The maximal distance τm

is 36, and b τm
2
c is 18 for ‘ED-00009-00000001’, and τm = 21 with b τm

2
c = 10

for ‘ED-00009-00000002’. Through this choice the impact of both the mean and
the standard deviation on the single-peaked equilibria can be studied.

For the profiles with ballot size three and four however, the number of voters
is with >350 relatively large, resulting in long running times. For µ < b τm

2
c

multiple runs are not feasible. However, a probabilistic argument shows that
the likelihood that single-peaked equilibria exist is low if µ < b τm

2
c. Based on

the profile P , the mean µ and standard deviation σ of the normal distribution,
we calculate a lower bound for the probability that no single-peaked equilibrium
exists. A large lower bound on the probability that no single-peaked equilibrium
exists is equivalent to a small upper bound on the probability that single-peaked
equilibria exist since they are complementary events. In cases where this bound
is sufficiently small, we can therefore refrain from running the simulations: It is
highly unlikely that we will find single-peaked equilibria. Fortunately for us, we
will see that this is exactly the case whenever running times are very large. We
present the argument in the following subsection, and then continue to apply it
to the parameter choice.

Probabilistic Argument

In the probability space (Ω,F ,P) we defined in Section 5.1 for the Monte Carlo
simulation, let K ⊆ F be the event that no single-peaked equilibrium exists,
and E ⊆ F the event that for every order � there is a voter i with order �π and
threshold ρi < b τm2 c. We show that E ⊆ K, and thus P(E) ≤ P(K). In words,
the probability of the event E constitutes a lower bound for the probability
that single-peaked equilibria do not exist. We proved in Chapter 3, if ρi < b τm2 c
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for all i ∈ N , then no single-peaked kernels exist (Theorem 21). Recall the
foundation of the proof: The existence of an order �π which is ‘too far’ from
the �-single-peaked domain SP≻ for it to be absorbed by any subset S ⊆ SP≻.
More precisely, if a voter with preference �π has a threshold smaller than b τm

2
c,

S does not absorb �π, and is therefore not an equilibrium. In terms of the
events E and K, this implication translates into E ⊆ K, and consequently
P(E) ≤ P(K).

We can calculate the probability of event E, and thus a lower bound on
P(K), the probability that single-peaked equilibria exist. First, partition the
set of voters N according to their associated orders. Let N(�) = {i ∈ N |�i=�}
contain all voters i ∈ N with preference �.

Proposition 8. If delegation thresholds are identically and independently dis-
tributed, and every order is submitted at least once, then the probability that no
single-peaked equilibria exist P(K) is bounded from below by

P(K) ≥
∏

≻∈L(A)

1− p|N(≻)|

where p denotes the probability that a voter is open-minded.

Proof. Let E≻ be the event that for all i ∈ N(�), ρi ≥ b τm2 c, in words every
voter with preference � has a delegation threshold larger than b τm

2
c. As above,

let E denote the event that for every order � there is a voter i with order �π

and threshold ρi < b τm2 c. Thus, E denotes the event that for all orders �, E≻
is not the case.

E =
⋂

≻∈L(A)

E≻

Assume that each threshold ρ is drawn independently from the same distribution
(in our case ρ ∼ N (µ, σ2)). The probability of E is therefore the product of the
probabilities E≻ of all � ∈ L(A).

P(E) =
∏

≻∈L(A)

P(E≻)

=
∏

≻∈L(A)

1− P(E≻)
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For all voters, the probability that their delegation threshold is larger than
b τm

2
c is identical. Denote this probability by p. The event that all voters with

preference � have a delegation threshold larger than b τm
2
c is therefore p|N(≻)|.

P(E) =
∏

≻∈L(A)

1− p|N(≻)|

Since E ⊆ K we get

P(K) ≥
∏

≻∈L(A)

1− p|N(≻)|

Furthermore, note that given any distribution P of the delegation thresholds ρ
with probability density f , the probability p that a voter i ∈ N is open-minded,
can be calculated in standard practice through the following integral.

p = P
(
ρi ≥

τm
2

)
=

∫ ∞

⌊ τm
2

⌋
fρ(x)dx

(5.3)

We apply Proposition 8 to support the readers intuition of its consequences.

Example 9. The profile ED-0004-0000005 contains 448 voters, where the num-
ber of voters per order are as follows: 191, 119, 41, 38, 32, 27. Note that τm

2
= 1.5

since the ballots are of size three. For ρ ∼ N (µ, σ2) with µ = b τm
2
c = 1 we get

that p = 0.5. In the graph below, the shaded area depicts the probability p.

P(E) =
∏

≻∈L(A)

1− 0.5|N(≻)|

= (1− 0.5191) · ... · (1− 0.527)

≈ 0.999999992

Since P(E) ≤ P(K), the probability that no single-peaked equilibrium exists is
therefore large if the mean is µ = 1. 4

Let us briefly discuss the limitations of Proposition 8. In Proposition 8 it is
easy to verify, that both an increase in the probability p that a voter is open-
minded, and an increase in the number of voters, result in a larger likelihood

73



that a single-peaked equilibrium exists. Unfortunately, Proposition 8 only bears
informational value if p does not exceed some threshold. In case it does, the
calculated lower bound is not a good estimation for the probability of the ex-
istence of single-peaked equilibria as the following example shows. Consider
again Example 9, but this time with ρ ∼ N (1.5, 0.252) which yields p = 0.9772.
This results in P(K) ≥ 0.008, in words the probability that no single-peaked
equilibria exist is with 0.008 very low.1 However, this does not mean that the
probability that a equilibrium actually exists is high. We can deduce that the
probability that a single-peaked kernel exists is at most 1 − 0.008 = 0.992.
This is not informative since the actual probability can still be any number
between 0 and 0.992. In particular, in a test simulation with 50 runs with
ρ ∼ N (1.5, 0.252), there were single-peaked kernels in only four runs.

Fortunately, we can run simulations for the cases in which the lower bound
calculated through Proposition 8 is not informative, while we can exclude sim-
ulations with long running times based on Proposition 8.

Running Times

Recall again the purpose of Proposition 8: Excluding certain probability distri-
butions from the simulations by showing that the probability that single-peaked
equilibria exist is small. Table 5.1 depicts the lower bound probabilities for the
non-existence of single-peaked equilibria P(K) and running times for a selec-
tion of means µ and standard deviations σ. The probability that no equilibrium
exists P(K) has been calculated analogously to Example 9. The probability p
that a voter is open-minded, is calculated according to Equation 5.3, where the
density is given by the normal distribution with mean µ and standard devia-
tion σ stipulated in Table 5.1. The first two profiles (‘ED-...005’, ‘ED-...0096’)
contain three alternatives, thus b τm

2
c = 1. For the means and standard devi-

ations depicted in Table 5.1, the running time is relatively large. We believe
that the large running times are due to a large number of independent sets
(for one test run there were 260,493,280 many independent sets which had to

1It is hard to exactly define a threshold on p but we can stipulate a minimal likelihood c for
the event K, and require P(K) ≥ c. We then solve analytically for p, leading us to an upper
bound on p, which in turn gives us insights about the choice of the parameters µ and σ of the
normal distribution. For example, if we want to be 99% sure that no single-peaked equilibria
exist (i.e. P(E) > 0.99) in the profile from Example 9, it can be calculated that p < 0.837.
Thus, any distribution that results in p < 0.837 will lead to no single-peaked equilibria with a
certainty of at least 99%. However, while this analytic approach gives us interesting insights,
the aim of the argument is to facilitate the parameter selection based mainly on the running
times of the Monte Carlo simulation.
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Profile µ σ p P(K) Running Time

ED-...005
1 0.25 0.5 ≈ 0.9999 >30min
1 0.5 0.5 ≈ 0.9999 >30min

1.5 0.5 0.8413 0.9844 10min

ED-...096
1 0.25 0.5 ≈ 0.9999 >30min
1 0.5 0.5 ≈ 0.9999 >30min

1.5 0.5 0.8413 0.9971 10min

ED-...140

2 0.25 3.167e-05 ≈ 1 >30min
2 0.5 0.0228 ≈ 0.9999 >30min

2.5 0.25 0.0228 ≈ 0.9999 >30min
2.5 0.5 0.1587 0.9992 >30min
3 0.25 0.5 0.8712 14min

ED-...160

2 0.25 3.167e-05 ≈ 0.9999 >30min
2 0.5 0.0228 0.9767 >30min

2.5 0.25 0.0228 0.9767 >30min
2.5 0.5 0.1587 0.8135 >30min
3 0.25 0.5 0.2539 11min

Table 5.1: Running times, probability p that a voter is open-minded, and P(K)
for the complete profiles depending on the mean and standard deviation. Ex-
periments were run on a MacBook Pro with 2 GHz Quad-Core Intel Core i5,
16Gb Ram, running MacOS Big Sur 11.6.

be checked for absorbance and single-peakedness for µ = 1, σ = 0.5). Fortu-
nately, the probabilities P(K) are large as well, and we can discard simulations
for these values since the probability that single-peaked equilibria exist is very
small. The same argument holds for the profile ‘ED-...140’, where b τm

2
c = 3.

For the profile ‘ED-...160’ the red values in Table 5.1 pose a problem, since
the running time is large while the probability P(K) is not sufficiently large
to discard this mean-standard deviation combination. We therefore exclude all
means and standard deviations with large running times based on the the large
probability that single-peaked equilibria do not exist. The parameters chosen
are as follows:

• ED-...05: 100 runs for µ ∈ {1.75, 2.0, 2.5} and σ ∈ {0.25, 0.5}, and µ = 1.5
with σ = 0.25

• ED-...96: 100 runs for µ ∈ {1.75, 2.0, 2.5} and σ ∈ {0.25, 0.5}

• ED-...140: 100 runs for µ ∈ {3.0, 3.5, 4.0, 5.0} and σ ∈ {0.25, 0.5}
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• ED-...160: 100 runs for µ ∈ {3.0, 3.5, 4.0, 5.0} and σ ∈ {0.25, 0.5}, and
µ ∈ {3.5, 4.0, 5.0} with σ = 1.0

5.2.4 Hypotheses
We expect that the delegation threshold of b τm

2
c materializes as an important

value once again. Since in this chapter the delegation thresholds are subject to
randomness, we first formulate a probabilistic variant of previous results. Like
before, in a delegation structure 〈G,P ,ρ〉 denote by p the probability that a
voter i is open-minded, i.e. ρi ≥ τm

2
, according to ρi ∼ N (µ, σ2).

Hypothesis 5.1. As p increases, the number of single-peaked equilibria, as well
as the probability that single-peaked equilibria exist, increases.

The following two hypothesis concern the role of the mean and the standard
deviation.

Hypothesis 5.2. If µ ≤ b τm
2
c, the likelihood that single-peaked equilibria exist

is small.

For the case where µ > b τm
2
c, we expect the standard deviation to play an im-

portant role. As an elucidating example, suppose µ = b τm
2
c+1. If the standard

deviation is very small, most of the probability mass ofN (µ, σ2) lies above b τm
2
c,

and we expect that single-peaked equilibria exist. However, if σ is large, a sub-
stantial part of the probability mass is located below b τm

2
c, resulting in a lower

likelihood for the existence of single-peaked equilibria. It will be interesting to
see if we can quantify an upper bound for σ based on µ.

Hypothesis 5.3. If µ > b τm
2
c, the likelihood that single-peaked equilibria exist

depends on σ.

• If σ is small, the likelihood that single-peaked equilibria exist is large.

• If σ is large, likelihood that single-peaked equilibria exist is small.

Finally, we return to the question of the cardinality of single-peaked equilibria.
We expect analogous results to Chapter 4. In line with the conjecture that
for delegation structures with thresholds larger than b τm

2
c, the cardinality of

single-peaked equilibria is bounded from above by two (Conjecture 1), our final
hypothesis is as follows.

Hypothesis 5.4. If µ ≥ b τm
2
c, the cardinality of single-peaked equilibria is

bounded from above by two.
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(a) Number of single-peaked equilibria

(b) Existence probability for single-peaked equilibria

Figure 5.1: Mean (top row) and existence probability (bottom row) for pro-
files ‘ED-00004-...005’ (left), ‘ED-00004-...160’ (middle), and ‘ED-00009-...002’
(right).

5.3 Results
Hypothesis 5.1

The hypothesis that an increase in the probability that an individual voter has a
delegation thresholds larger than b τm

2
c is positively correlated to (i) the number

of and (ii) existence probability for single-peaked equilibria can only be partially
confirmed. As can be seen in Figure 5.1, such a trend exists. However, only
two of the graphs are monotonically increasing (top left and bottom middle
of Figure 5.1). Especially for the profile ‘ED-00009-...002’ containing seven
alternatives, many ‘jumps’ can be observed. The probability p seems to be an
important but not decisive factor.

Hypothesis 5.2 & 5.3

Hypothesis 5.2 stated that the likelihood for single-peaked equilibria is low if
the mean is smaller than b τm

2
c. For the profiles containing three and four al-
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(a) ‘ED-00004-...005’ (b) ‘ED-00004-...160’

(c) ‘ED-00009-...001’ (d) ‘ED-00009-...002’

Figure 5.2: Each cell represents a combination of the mean µ and standard
deviation σ. The colour of the cells depicts the probability that a single-peaked
equilibrium exists. The two white cells in the top row have not been calculated,
and do not contain values.

ternatives, we did not run the Monte Carlo simulation for µ < b τm
2
c. However,

as we can see in Figure 5.2.b the probability is zero for µ = b τm
2
c = 3. To-

gether with the probabilistic argument in Section 5.2.3 the evidence confirms
the hypothesis for three and four alternatives. Note that b τm

2
c = 18 for profile

‘ED-00009-...001’, and b τm
2
c = 10 for ‘ED-00009-...002’. In Figure 5.2 it can be

seen that µ = 18, and µ = 10 respectively, mark crucial thresholds for the exis-
tence of single-peaked equilibria. For values smaller than these, the probability
is very low. We consider Hypothesis 5.2 therefore to be confirmed.
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Hypothesis 5.3 can also be confirmed by Figure 5.2. Consider especially
subfigures (c) and (d). If µ > b τm

2
c, the standard deviation plays a crucial

role. For values of µ close to the threshold b τm
2
c, a large standard deviation σ

impacts the probability negatively. This impact decreases as µ increases. For
large µ, it is almost always certain that single-peaked equilibria exist. This is
unsurprising, since we have seen that single-peaked equilibria exist if all voters
have a delegation threshold larger than b τm

2
c.

Hypothesis 5.4

We cannot confirm Hypothesis 5.4 as the cardinality of single-peaked kernels is
not bounded from above by two as we can see in Figure 5.3. Rather unsurpris-
ingly, the profiles containing three or four alternatives do not admit singletons
as single-peaked equilibria. As these profiles contain all possible strict linear
orders (complete domain), this would require delegation thresholds close to the
maximal threshold τm for many voters. As the likelihood is small for this to hap-
pen, no single-peaked equilibria of size one exist. The opposite is the cases for
the profiles containing seven and nine alternatives. The vast majority of single-
peaked equilibria are singletons (note the logarithmic scale in Figure 5.3). Since
these profiles only contain a small number of preferences with respect to the
total number of possible preferences (incomplete domain), and the maximal dis-
tance between any two preferences is with 27 and 15 respectively significantly
smaller than the maximal possible Kendall tau distance (36 and 21 respectively),
the property of independence between more than one or two voters is more eas-
ily violated. For these profiles, the maximal size of single-peaked equilibria is
indeed two, as claimed in the hypothesis.

However, this maximal size does not hold up for the profiles with three and
four alternatives (left and middle of Figure 5.3). As we draw the delegation
thresholds randomly, the possibility that voters are associated with thresholds
smaller than b τm

2
c remains. We checked the delegation thresholds of the voters

of all single-peaked equilibria larger than two, and found that at most one
voter has a delegation thresholds larger than b τm

2
c. While we cannot confirm

Hypothesis 5.3, Conjecture 1 is not affected.
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Figure 5.3: Size of single-peaked equilibria for profiles ‘ED-00004-...005’, ‘ED-
00004-...140’, ‘ED-00009-...001’ (top row), and ‘ED-00004-...096’, ‘ED-00004-
...160’, ‘ED-00009-...002’ (top row). The profiles underneath each other are
comparable (either same size, or similar structure).

5.4 Discussion
We have investigated the effect of heterogeneous thresholds on profiles with a
complete domain, and on profiles with relatively small domains. For all pro-
files we can establish b τm

2
c as an important mark for heterogeneous delegation

thresholds. The Monte Carlo simulation was based on the normal distribution,
and we found that the likelihood that single-peaked equilibria exist is strongly
dependent on the mean µ. Interestingly, neither the mean alone nor the proba-
bility p that an individual threshold is larger than b τm

2
c, are fine-grained enough

to capture the existence of single-peaked equilibria. If the probability p were
fine-grained enough, we could—arguably—extend the results to any distribu-
tion. But we have seen that the standard deviation σ plays a decisive role which
cannot be captured by p alone. With the following example we propose that
the likelihood that voters with particularly small delegation thresholds exist is
a critical notion.

Example 10. For the profile ‘ED-00009-...002’, the probability p equals 0.75 for

80



both ρ ∼ N (11, 1.52) and ρ ∼ N (13, 4.52) (colored in blue and red respectively
in the graph below). However, the likelihood that a single-peaked equilibrium
exists, is with 0.54 significantly larger for the former distribution than for the
latter, for which no single-equilibria have been observed.

Our explanation for this difference is the area colored in yellow in the graph. The
likelihood that a delegation threshold is significantly smaller than b τm

2
c = 10,

is larger for the distribution with a larger standard deviation. These voters are
more likely to not delegate to anyone, and consequently prevent the existence
of single-peaked equilibria. 4

In conclusion, the delegation threshold b τm
2
c is important but on its own not

decisive. The binary distinction between opinionated and open-minded voters is
not sufficiently fine-grained for heterogeneous thresholds as Example 10 showed.
A further distinction within the category of opinionated voters seems to be
necessary, in order to provide a full account for the existence of single-peaked
equilibria in delegation structures with heterogenous thresholds. One may want
to introduce the notion of stubborn voters which have a very small delegation
threshold. A more precise definition, and experiments concerning the necessity
of this notion remain future work.2

2The hypothesis that stubborn voters are critical could be investigated through a Monte
Carlo simulation on multimodal distributions. Such a distribution, for example, could have
one peak within the—to be defined—range of stubborn voters, and another within the range
of open-minded voters.
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Chapter 6

Conclusions

In this thesis we investigated under which conditions liquid democracy guar-
antees the existence of single-peaked electorates. Liquid democracy provides
voters with the opportunity to delegate votes. Consequently, not every voter
submits their ballot—this would be direct democracy—but only a subset of vot-
ers, those which choose not delegate their vote (the electorate). Single-peaked
electorates are particularly interesting since they guarantee problem-free ag-
gregation of individual preferences into a collective choice. In particular, the
aggregation problem (Condorcet’s paradox, and the threat of dictatorship and
manipulation) is avoided if the electorate is single-peaked. We identified con-
ditions under which liquid democracy generates single-peaked electorates out
of a non-single-peaked society, thus guaranteeing problem-free aggregation of
preferences.

To the framework of Escoffier et al. (2020) which analyzes stable electorates—
called equilibria—we added the condition of single-peakedness, and investigated
delegations induced by the Kendall tau distance. Besides a preference, each
voter is associated with a delegation threshold. Each agent is willing to delegate
to anyone closer, and not willing to delegate to anyone with a distance larger
than this threshold. Throughout the thesis one delegation threshold manifested
itself as a crucial condition for the existence of single-peaked equilibria: half of
the maximal Kendall tau distance. We called voters with a smaller threshold
opinionated, and with a larger threshold open-minded.

In Chapter 3 we formally introduced the concept of delegation structures
〈G,P ,ρ〉, and proved under the assumptions of completeness of the social net-
work G, completeness of the preference domain D(P ), and homogeneity of the
delegation thresholds ρ, that voters ought to be open-minded for single-peaked
equilibria to exist. In other words, if voters are opinionated liquid democ-
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racy never generates single-peaked equilibria under these assumptions. Unfor-
tunately, an open-minded society is a strong requirement, at least depending
on the setting and topic. In the political sphere we can readily label this re-
quirement as impossible. In more private settings, choosing a restaurant for
example, this requirement is possibly more realistic. However, not only the
open-mindedness of voters, but also the three assumptions on the delegation
structure are strong. In Chapter 4 we relaxed the complete domain assump-
tion, and established that the distinction between open-minded and opinionated
voters upholds even in small profiles. Computationally validated for profiles of
ballot size up to five, we argue that the results extend to larger ballot sizes.
Leaving the synthetic scenery of Chapters 3 and 4, we performed a Monte Carlo
simulation on real life data. To make the simulation as realistic as possible, we
dropped the assumption of the homogeneity of the delegation thresholds, and
assumed that delegation thresholds are normally distributed. In this setting the
distinction between open-minded and opionated voters once again draws the line
between the existence and non-existence of single-peaked equilibria. We have
seen, however, that this threshold is not decisive on its own, and the general
structure of the distribution plays an important role (standard deviation, pos-
sible multiple peaks).

All in all, can liquid democracy guarantee problem-free aggregation by bring-
ing about single-peaked (stable) electorates? While the following conclusion
does not hold with absolute certainty, this work essentially provides a ‘charac-
terization’ for the existence of single-peaked, stable electorates:

Conclusion. For a delegation structure 〈G,P ,ρ〉, if the social network G is
complete, liquid democracy guarantees single-peaked, stable electorates if and
only if the society is (relatively) open-minded.

An open-minded society is generally a rather strong requirement, or at least
topic sensitive. The importance of topic sensitivity is exemplified in the ex-
ample of strangers discussing politic, where open-minded voters seem unlikely,
compared to friends agreeing on a restaurant, assuming the friend group is more
willing to compromise.

Besides the—arguably unrealistic—requirement of an open-minded society,
our work undermines a further point of what liquid democracy set out to do.
If liquid democracy is motivated by increasing democratic participation, the
aggregation of all voting power into the hands of only a few voters has the
contrary effect. In all chapters we have seen that an electorate size of larger
than two is either unlikely, or impossible. This underpins doubts raised against
liquid democracy by Gölz et al. (2018), and empirically confirmed by Kling
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et al. (2015). This work furthermore undermines hopes that liquid democracy
increases the willingness to compromise. Not only does a single-peaked equi-
librium only contain at most two voters (in most cases), these two voters have
drastically different if not completely opposite preferences. Instead of deliber-
ating effects, liquid democracy thus seems to have polarizing effects.

There is a final remark to be made, which we did not touch on before. The
distinction between open-minded and opinionated voters only makes sense in
a society where at least some voters have different opinions. If the maximal
distance between any two voters is at most b τm

2
c, the distinction looses its

meaning, since an open-minded voter would be willing to delegate to any other
voter. We purposely selected the real life data in Chapter 5 to exclude this
case, however were not concerned with this in Chapter 4. A further point
of investigation would thus include the distinction between homogeneous and
heterogeneous opinions within the society.

Future Work

The most natural continuation of this work considers a generalization on the so-
cial network of a delegation structure 〈G,P ,ρ〉. In Chapter 3 we made assump-
tions on all three constituents of a delegation structure, dropped the assumption
on the profiles P in Chapter 4, and finally dropped the assumption on delega-
tion thresholds ρ in Chapter 5. Since we assumed the social network G to be
complete in all chapters, it is natural to analyze the impact of different graph
structures of the social network. If Gρ is the delegation acceptability graph
constructed under the complete social network, and G is some restriction of
the social network, the final delegation acceptability digraph to be investigated
for single-peaked equilibria is G ∩Gρ. There are multiple ways for an analysis.
Firstly, one can look for analytical results for trees, stars, and various other
common graph structures. If this turns out to be an unfruitful investigation,
a Monte Carlo simulation once again is of help. In line with the proceeding in
Chapter 4, one could delete edges between voters, instead of vertices. The dele-
tion of an edge thus restricts the range of admissible delegations for individual
voters.

In this work we made an assumption that poses some conceptual problems:
Each voter is associated with a strict linear order. If everyone knows their
preferences, and the preferences are complete, the question arises why anyone
would delegate. Delegations are more likely to happen if voters are uncertain
about their own preferences. One way to model this scenario would be via
incomplete preferences. A voter might know that they prefer alternative a over
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b, but does not have an opinion on alternatives c.
Furthermore, the Kendall tau distance is by far not the only distance mea-

sure. The Cayley distance (Diaconis, 1988), for example, is given by the min-
imum number of (not necessarily adjacent) transpositions of any pair of alter-
natives. The Hamming (Diaconis, 1988) and Duddy–Piggins distances (Duddy
and Piggins, 2011) are further examples. More creative distance measures can
be introduced. The notion of a distance measure could be furthermore extended
by sociological factors like trust. Two voters with drastically different prefer-
ences might be willing to delegate to each other since they trust each other.
This could be mathematically cashed out by introducing a factor by which, for
example, the Kendall tau distance between two voters i, j is multiplied.

dist(i, j) = trust(i, j) · τ(�i,�j)

Finally, it is worthwhile to note that single-peakedness is not the only domain
restriction that avoids the aggregation problem. While we conclude this work
with rather negative results for liquid democracy concerning single-peaked elec-
torates, different properties are possibly generated through the same delegation
mechanisms.
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Appendix A

Graphs

A.1 Chapter 4: Robustness of Data
Figure A.1 depicts the boxplot (left) and selected distribution of number of
single-peaked kernels (right) for m = 4. Note that in subfigures (b), and (c) the
minimal and maximal values (whiskers) are spread farther apart as well as more
‘outliers’ can be noted than in subfigure (a).1 This can be explained through
through the fact that there are significantly more distinct deletion sequences
if we delete 12 or 15 voters compared to 5 voters. For 12 deletions there are(
24
12

)
= 2, 704, 156, for 15 there are

(
24
12

)
= 1, 307, 504, and for 5 there are merely(

24
5

)
= 42, 504 distinct deletion sequences. Since distinct deletion sequences

lead to distinct profiles, it is not surprising that the larger variety in profiles
leads to a larger variety in the maximum and minimum number of single-peaked
kernels. Interestingly, the interquartile range (the ‘box’), i.e. the range between
first and third quartile, does not increase significantly. We take these boxplots
to be evidence for the robustness of the data.

In subfigures (b), (d), and (f) we additionally plotted the number of single-
peaked kernels against their occurrences. In particular, the subfigure (b) is a
closer analysis for parameter ‘Rho3’ (red box) in subfigure (a). In all subfigures
we can see that the single-peaked kernels are roughly normally distributed. We
suggest that this is further evidence for the representativeness of the data.

1For more details about the function that generates the ‘outliers’ we refer the reader
to the Python package ‘Seaborn’ with which the boxplot was created. In particular see
https://seaborn.pydata.org/generated/seaborn.boxplot.html#seaborn.boxplot
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(a) 5 deletions (b) 5 deletions, Rho=3

(c) 12 deletions (d) 5 deletions, Rho=3

(e) 15 deletions (f) 5 deletions, Rho=4

Figure A.1: Mean and standard deviation (left) and selected distribution of
number of single-peaked kernels (right), for m = 4.
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A.2 Chapter 5: Results
This section presents graphs we omitted in the main text for the sake of read-
ability. Figure A.2 presents the mean and existence probability of single-peaked
equilibria depending on the probability p that a voter is open-minded for profiles
‘ED-00004-...096’, ‘ED-00004-...140’, and ‘ED-00009-...001’. Figure A.3 depicts
the existence probability of single-peaked equilibria depending on the mean and
standard deviation of a normal distribution from which the delegation thresh-
olds of voters were drawn for profiles ‘ED-00004-...096’ and ‘ED-00004-...140’.

(a) Number of single-peaked equilibria

(b) Existence Probability for single-peaked equilibria

Figure A.2: Mean (top row) and existence probability (bottom row) for pro-
files ‘ED-00004-...096’ (left), ‘ED-00004-...140’ (middle), and ‘ED-00009-...001’
(right).
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(a) ‘ED-00004-...0096’ (b) ‘ED-00004-...140’

Figure A.3: Each cell represents a combination of the mean µ and standard
deviation σ. The colour of the cells depicts the probability that a single-peaked
equilibrium exists. The white cells in the top row have not been calculated, and
do not contain values.
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