
Expressive Power of Weighted Propositional Formulas for
Cardinal Preference Modelling

Yann Chevaleyre
LAMSADE, Université Paris-Dauphine
Place du Maréchal de Lattre de Tassigny

75775 Paris Cedex 16, France
chevaley@lamsade.dauphine.fr

Ulle Endriss
ILLC, University of Amsterdam

Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

ulle@illc.uva.nl

Jérôme Lang
IRIT, Université Paul Sabatier

118 Route de Narbonne
31062 Toulouse Cedex 04, France

lang@irit.fr

Abstract

As proposed in various places, a set of propositional formu-
las, each associated with a numerical weight, can be used to
model the preferences of an agent in combinatorial domains.
If the range of possible choices can be represented by the set
of possible assignments of propositional symbols to truth val-
ues, then the utility of an assignment is given by the sum of
the weights of the formulas it satisfies. Our aim in this paper
is twofold: (1) to establish correspondences between certain
types of weighted formulas and well-known classes of util-
ity functions (such as monotonic, concave ork-additive func-
tions); and (2) to obtain results on the comparative succinct-
ness of different types of weighted formulas for representing
the same class of utility functions.

Introduction
Many individual or multiagent decision making problems
have in their input the preferences of the agent(s) over a
set of possible alternatives. These preferences can be either
ordinal (i.e. preference relations, typically weak orders) or
cardinal (i.e. utility functions). We make use of the generic
word preference structurefor either a preference relation
or a utility function. Such problems include decision mak-
ing and planning under uncertainty, multi-criteria decision
making and decision support systems, automated group de-
cision making (including auctions, fair division, vote), and
distributed decision making (including negotiation).

Saying that the input of a problem contains the preference
structure of the agent(s) over the set of alternatives does not
imply anything about how these structures arespecifiedin
the input. Clearly, if the set of alternatives is small, this
question is not relevant, since the size of the explicit repre-
sentation of the preference structure is small as well. This
is no longer the case when the set of alternatives is a com-
binatorial domain: in this case, the set of alternatives is the
set of all assignments of each of a given finite set of vari-
ables to a value of the corresponding finite domain.1 Exam-
ples are numerous: in combinatorial auctions and negotia-
tion over resources (Cramton, Shoham, & Steinberg 2006;

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Another situation where preference representation is non-
trivial is when the set of alternatives is continuous. We leave this
issue aside and focus on finite domains only.

Chevaleyreet al. 2006), an alternative is an assignment of
each good to an agent; in multiple issue referenda (Brams,
Kilgour, & Zwicker 1998), an alternative consists of a truth
value (yes or no) for each issue.

For this purpose, many languages have been developed so
as to express preference structures as succinctly as possible.
These languages differ significantly, depending on whether
the preference structure to be expressed is ordinal or car-
dinal. Languages for the succinct representation of ordi-
nal preferences include languages ofceteris paribusstate-
ments, which range from very expressive languages (Doyle
& Wellman 1991) to syntactical restrictions such as CP-
nets (Boutilieret al. 1999), where a weaker expressivity
is compensated for by the availability of efficient elicitation
and optimisation techniques. They also include languages
based on conditional logics, prioritised logics, and priori-
tised constraint satisfaction problems (see e.g. Lang (2004)
for an overview). Languages for the succinct represen-
tation of utility functions include graphical models (Bac-
chus& Grove 1996; La Mura & Shoham 1999; Boutilier,
Bacchus, & Brafman 2001; Gonzales & Perny 2004), deci-
sion trees (Boutilier, Dearden, & Goldszmidt 1995), valued
constraint satisfaction problems (Bistarelliet al. 1999), and
bidding languages for combinatorial auctions (Nisan 2006;
Boutilier & Hoos 2001; Sandholm 2002).

Many different issues concerning preference representa-
tion languages are worth investigating:

• Elicitation: design algorithms to elicit preferences from
an agent so as to get an output expressed in a given lan-
guage.

• Cognitive relevance:assess the cognitive relevance of a
language by measuring its proximity to the way human
agents “know” their preferences and express them in nat-
ural language.

• Expressive power:identify the set of preference structures
that can be expressed in a given language.

• Complexity: for a given language, determine the com-
putational complexity of tasks such as finding a non-
dominated alternative, checking whether an alternative is
preferred to another one, whether an alternative is non-
dominated, or whether all non-dominated alternatives sat-
isfy a given property.

• Comparative succinctness:given two languagesL and
L′, determine whether every preference structure that can
be expressed inL can also be expressed inL′ without a
significant (that is, supra-polynomial) increase in size (in
which caseL′ is said to be at least as succinct asL).

Elicitation and complexity have been the subject of much
previous work that we will not recall here. Cognitive rele-
vance is somewhat harder to assess, due to its non-technical
nature, and to our knowledge it has been rarely studied (see
Nisan (2006) for a short discussion). Expressive power
and comparative succinctness, have been investigated to a
lesser extent. Coste-Marquiset al. (2004) give a systematic
analysis of both issues forordinal preferences, while sev-
eral other authors (Boutilier & Hoos 2001; Sandholm 2002;
Chevaleyreet al. 2004; Nisan 2006) investigate these issues
for bidding languages for auctions and negotiation (which
express valuation functions for bundles of goods). In this pa-
per we investigate expressive power and succinctness for one
of the simplest languages for utility representation, where
goals are specified aspropositional logic formulas, and each
goal is associated with a numerical weight. The utility of an
alternative is then obtained by summing up the weights of
the goals it satisfies. This language has been considered in
many places, as have several of its variations (Pinkas 1991;
Haddawy & Hanks 1992; Dupin de Saint-Cyr, Lang, &
Schiex 1994; Lafage & Lang 2000).

After covering some preliminaries and introducing the
problems addressed in this paper in more formal detail in
the next section, we first investigate expressivity issues.We
focus on a number of possible restrictions on both formulas
and weights, and identify the corresponding classes of util-
ity functions. While the results are obvious in extreme cases
(if no restriction is imposed, all utility functions can be ex-
pressed, with maximal succinctness; if only atomic formu-
las are allowed then only linear functions can be expressed),
there appear to be many cases for which they are non-trivial
and particularly interesting, because they correspond to in-
termediate classes which may realise a good trade-off be-
tween simplicity and efficiency. We then present, in less de-
tail, initial results concerning the comparative succinctness
of different preference languages. In the final section, we
discuss related work and further research directions. In par-
ticular, we point out interesting directions for future work re-
garding the computational complexity of working with dif-
ferent languages based on weighted propositional formulas.

Modelling Preferences
In this section we introduce two approaches to modelling
cardinal preferences: by means of classical utility functions
and by means of weighted propositional formulas.

We first fix some basic notation. LetPS be a finite set
of propositional symbols and letn = |PS |. LPS is the
propositional language built fromPS using the operations
of negation, conjunction and disjunction. For any formula
ϕ ∈ LPS , Var(ϕ) denotes the set of propositional sym-
bols occurring inϕ. PS (k) is the set of all subsets ofPS
with at mostk elements (in particular,PS (1) andPS (n)
are isomorphic toPS and2PS , respectively). ElementsM

of 2PS could be bundles of indivisible goods, agreements
in the context of multi-criteria decision making, coalitions
of agents in the context of cooperative games or, more gen-
erally, propositional worlds (assigningtrue to every symbol
appearing inM andfalseto all other symbols).

Utility Functions
We now introduce the concept of autility function over
propositional worlds and recall the definitions of several
well-known classes of utility functions.

Definition 1 (Utility functions) A utility function is a map-
pingu : 2PS → R.

• u is normalised iffu({ }) = 0.
• u is non-negative iffu(X) ≥ 0 for all X .
• u is monotonic iffu(X) ≤ u(Y) wheneverX ⊆ Y .
• u is modular iffu(X ∪ Y) = u(X) + u(Y) − u(X ∩ Y)

for all X andY .
• u is subadditive iffu(X∪Y) ≤ u(X)+u(Y)−u(X∩Y)

for all X andY .
• u is superadditive iffu(X∪Y) ≥ u(X)+u(Y)−u(X∩Y)

for all X andY .
• u is concave iffu(X ∪ Y) − u(Y) ≤ u(X ∪ Z) − u(Z)

for all X wheneverY ⊇ Z.
• u is convex iffu(X ∪Y)−u(Y) ≥ u(X ∪Z)−u(Z) for

all X wheneverY ⊇ Z.
• u is k-additive iff there exists a mappingm : PS(k) → R

such that (for allX):

u(X) =
∑

{m(Y) | Y ⊆ X andY ∈ PS (k)}

Intuitively, concavity means that marginal utility (of obtain-
ing X) decreases as we move to a better starting position
(namely fromZ to Y). Observe thatu is convex iff−u is
concave and, similarly,u is superadditive iff−u is subad-
ditive. All concave functions are also subadditive and all
convex functions are superadditive (setZ = X ∩ Y). The
class of modular functions is the intersection of the classes
of subadditive and superadditive functions. Utility functions
that are both monotonic and normalised are also known as
capacities.

The class ofk-additive functions, the definition of which
is inspired by work in fuzzy measure theory (see e.g. (Gra-
bisch 1997)) and which recently also have found applica-
tion in combinatorial auctions (Conitzer, Sandholm, & Santi
2005) and distributed negotiation (Chevaleyreet al. 2004),
is probably less well-known than the other classes of func-
tions mentioned in Definition 1. This class is useful in
domains where synergies between different items are re-
stricted to bundles of at mostk elements. We recall the
well-known fact that fork = n, any utility function is k-
additive:m({ }) = u({ }) andm(X) can be defined recur-
sively asu(X) −

∑

Y ⊂X m(Y) for all X 6= { }. Moreover,
the functionm such thatu(X) =

∑

{m(Y) | Y ⊆ X}
is uniquelydetermined; the mappingu 7→ m is known as
the Möbius inversion((Rota 1964); see also (Shafer 1976;
Gilboa & Schmeidler 1992)). Also, the class of modular
functions coincides with the class of 1-additive functions.

This may be seen as follows. LetX be any non-empty set in
2PS and letx ∈ X . Then the equation characterising mod-
ularity impliesu(X) = u(X \ {x}) + [u({x})− u({ })]. If
we apply this step recursively for every element ofX , then
we end up with the following equation:

u(X) = u({ }) +
∑

x∈X

[u({x}) − u({ })]

Choosingm({ }) = u({ }) andm({x}) = u({x})−u({ }),
this shows that modularity implies 1-additivity. The con-
verse is easily seen to hold as well.

Weighted Formulas
An alternative approach to representing preferences uses
weighted propositional formulas. A weighted formula is a
pair (ϕ, α), whereϕ is a propositional formula in the lan-
guageLPS andα is a numerical weight representing the
relative importance of that formula. Intuitively, the degree
of satisfaction derived from a particular propositional world
(bundle of goods, agreement, coalition) is the sum of the
weights of the formulas satisfied by that world.

Definition 2 (Goal bases)A goal base is a setG =
{(ϕi, αi)}i of pairs, each consisting of a satisfiable formula
ϕi ∈ LPS and a real numberαi. The utility functionuG

generated byG is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G andM |= ϕi}

for all M ∈ 2PS . G is called the generator ofuG.

Summing up the individual weights is particularly suited for
modelling utility functions, but other aggregation functions
have been investigated as well (Lafage & Lang 2000). In this
paper we are going to be interested in the following question:

Are there simple restrictions on goal bases such that the
utility functions they generate enjoy simple structural
properties?

Interesting candidates for restrictions on formulas include
restrictions on the length of formulas as well as the range
of propositional connectives appearing in a formula. The
most obvious restriction on weights would be to allow only
positive numbers.

Definition 3 (Restrictions) LetH ⊆ LPS be a restriction
on the set of propositional formulas and letH ′ ⊆ R be a re-
striction on the set of weights allowed in the specification of
goals. For formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of¬;
a strictly positive formula is a positive formula that is not
a tautology.

• A clause is a (possibly empty) disjunction of literals; a
k-clause is a clause of length≤ k.

• A cube is a (possibly empty) conjunction of literals; ak-
cube is a cube of length≤ k.

• A k-formula is a formulaϕ with |Var(ϕ)| ≤ k.

As for weights, we consider only the restriction to the posi-
tive reals. Given two restrictionsH andH ′, letU(H,H’) be
the class of utility functions that can be generated from goal
bases conforming to the restrictionsH andH ′.

Restrictions on formulas can also be combined (e.g. posi-
tive clauses are disjunctions of positive literals). We write
“all” in case no specific restriction applies. For example,
U(positivek-cubes, all) is the class of utility functions gen-
erated by goal bases made up from positivek-cubes and
where weights are not subject to any restrictions. We are also
going to consider restrictions to both atoms (propositional
symbols) and literals (atoms and their negations). Note that
> is a cube (of length0), but not a clause (nor is it a literal).
The empty clause is equivalent to⊥, i.e. it is not of interest
here, because goals are required to be satisfiable.

Two goal basesG andG′ are said to beequivalent(writ-
tenG ≡ G′) iff they generate the same utility functions,
i.e. iff uG = uG′ . The following lemma introduces two
equivalence-preserving transformations on goal bases. It
shows how to eliminate both negations and disjunctions
from inside a conjunction.

Lemma 1 The following equivalences hold for all goal
basesG, formulasϕ, ψ, χ ∈ LPS and weightsα ∈ R:

(i) G ∪ {(ϕ ∧ ¬ψ, α)} ≡ G ∪ {(ϕ, α), (ϕ ∧ ψ,−α)}

(ii) G ∪ {(ϕ ∧ (ψ ∨ χ), α) ≡
G ∪ {(ϕ ∧ ψ, α), (ϕ ∧ χ, α), (ϕ ∧ ψ ∧ χ,−α)}}

Proof. The claims are easily verified by considering all
(eight) possible ways of assigning truth values to the
formulasϕ, ψ andχ. 2

A special case of part(i) shows how to eliminate a nega-
tion from the outside of a formula:{(¬ψ, α)} can be rewrit-
ten as{(>, α), (ψ,−α)}. Similarly, settingϕ = > in part
(ii) provides us with a way of transforming a disjunction
into a set of conjunctions:{(ψ ∨ χ, α)} can be replaced by
{(ψ, α), (χ, α), (ψ ∧ χ,−α)}.

Correspondence Results
This section gives a range of answers to our earlier question
regarding the existence of restrictions on goal bases gener-
ating utility functions with simple structural properties.

Basic Results
It turns out that the notion ofk-additivity plays a central role
in characterising the classes of utility functions correspond-
ing to certain types of goal bases. This connection is at its
most apparent in the case of positivek-cubes.

Proposition 1 U(positivek-cubes, all) is equal to the class
of k-additive utility functions.

Proof. A k-additive function can be represented by a map-
pingm : PS (k) → R (see Definition 1). We can define a
bijective functionf from such mappingsm onto goal bases
G with only positivek-cubes:

f : m 7→ {(p1 ∧ · · · ∧ pk, α) | m({p1, . . . , pk}) = α}

Clearly, the utility functions generated bym and the goal
basef(m) are identical. 2

Observe thatnegativek-cubes (i.e. conjunctions of nega-
tive literals of length≤ k) also generate the set of all

k-additive functions. This may be seen as follows. Let
B(u) be defined byB(u)(M) = u(M) for all M . If
u is generated byG, thenB(u) is generated byG ob-
tained by replacing every literal in every formula ofG by
its negation, which shows thatU(negativek-cubes, all) =
B(U(positivek-cubes, all)), which is equal to the set of all
k-additive utility functions (since the latter is closed under
B). In fact, for several of our correspondence results on pos-
itive formulas below, there exist similar results for formulas
where all literals are negative, even though we are not going
to specifically report these here.

Proposition 2 The following sets are also all equal to the
class ofk-additive utility functions:

• U(k-cubes, all) andU(k-clauses, all);
• U(positivek-formulas, all) andU(k-formulas, all).

Proof. Any positivek-cube(p1∧· · ·∧pk, α) can be rewritten
as a set ofk-clauses (using an arbitrary additional proposi-
tional symbolp):

{(¬p1 ∨ · · · ∨ ¬pk,−α), (p, α), (¬p, α)}

Hence, U(positivek-cubes, all) ⊆ U(k-clauses, all).
Clearly, U(positivek-cubes, all) is also included in both
U(k-cubes, all) andU(positivek-formulas, all), and all of
the classes mentioned are included inU(k-formulas, all).

Using Lemma 1, we can transform any goal base consist-
ing of k-formulas into a goal base of positivek-cubes,i.e.
we also getU(k-formulas, all) ⊆ U(positivek-cubes, all).
Hence, all of the sets of utility functions mentioned earlier
are equivalent. The claim then follows immediately from
Proposition 1. 2

The positivek-clauses donot generate the full set ofk-
additive utility functions, because (due to the fact that> is
not a clause) positivek-clauses do not allow us to assign a
non-zero utility to{ }. We therefore obtain the following
weaker result:

Proposition 3 U(positivek-clauses, all) is equal to the
class of normalisedk-additive utility functions.

Proof. First observe that positivek-clauses augmented
with > can generate allk-additive utility functions. This
immediately follows from case(ii) of Lemma 1 and
Proposition 1. Without lack of generality, we may assume
that any goal baseG of positivek-clauses augmented with
> includes exactly one weighted goal of the form(>, α). It
then remains to be shown thatuG is normalised iffα = 0.
This is clearly so, becauseuG({ }) = α holds due to the
fact that{ } falsifies all positive clauses. 2

Next we list a number of further basic results, all of which
are simple consequences of the results onk-additive utility
functions for the special cases ofk = n andk = 1.

Proposition 4 The following sets are all equal to the class
of all utility functions:

• U(positive cubes, all) andU(positive, all);
• U(cubes, all), U(clauses, all) andU(all, all).

Proof. Recall thatany utility function is k-additive for a
sufficiently high value ofk. The claim then follows from
Propositions 1 and 2. 2

U(positive cubes, all) corresponds to themarginal contribu-
tion netsof Ieong and Shoham (2005), who also point out
that this language is fully expressive.

Proposition 5 U(positive clauses, all) is equal to the class
of normalised utility functions.

Proof. This is a corollary to Proposition 3. 2

Proposition 6 U(strictly positive, all) is also equal to the
class of normalised utility functions.

Proof. As any positive clause is a strictly positive formula,
by Proposition 5, any normalised function must belong to
U(strictly positive, all). Vice versa, ifG is a set of strictly
positive formulas thenuG({ }) = 0, because{ } falsifies all
strictly positive formulas. 2

Proposition 7 U(literals, all) is equal to the class of modu-
lar utility functions.

Proof. First recall that the class of modular functions is equal
to the class of 1-additive functions. Therefore, by Proposi-
tion 2,U(1-cubes, all) is equal to the class of modular func-
tions. The set of 1-cubes is the set of literals together with
>. The claim then follows from the fact that we can rewrite
{(>, α)} as{(p, α), (¬p, α)} using any propositional sym-
bol p. 2

Proposition 8 U(atoms, all) is equal to the class of nor-
malised modular utility functions.

Proof. Atoms are strictly positive literals,i.e. the claim fol-
lows from Propositions 6 and 7. 2

Non-negative Functions
Next we study the classes of utility functions generated by
positively weighted formulas. Unsurprisingly, such func-
tions will be non-negative.

Proposition 9 U(all, positive) and U(cubes, positive) are
both equal to the class of non-negative utility functions.

Proof. It is obvious thatU(all, positive), and a fortiori
U(cubes, positive), are contained in the set of all non-
negative utility functions. For the converse inclusion, it
is enough to show that any non-negative utility function
can be generated by positively weighted cubes. So sup-
poseu is such a non-negative utility function and define
G = {(form(M), u(M)) |M ∈ 2PS}, where:

form(M) =
∧

{x | x ∈M} ∧
∧

{¬x | x ∈ PS \M}

We haveu = uG, i.e.u is in U(cubes, positive)). 2

Again, clauses are less expressive than cubes:2

2But observe that the restrictions on the functions that can still
be expressed are different than for Proposition 5. While positive
clauses with general weights generate all normalised functions,
general clauses with positive weights do not onlynot generate
all normalised (non-negative) utility functions, but alsosome non-
normalised functions.

Proposition 10 U(clauses, positive) is a proper subset of
the class of non-negative utility functions.

Proof. Inclusion ofU(clauses, positive) in the set of non-
negative functions follows from Proposition 9. To show that
the inclusion is strict, consider the following non-negative
utility function:

u({p, q}) = 1; u({p}) = 0; u({q}) = 0; u({ }) = 0

Suppose there exists a generatorG of u using only posi-
tively weighted clauses. Letwc be the weight associated
with clausec. We obtain the following list of constraints:

(1) wp + wq + wp∨q + w¬p∨q + wp∨¬q + w> = 1
(2) wp + w¬q + wp∨q + wp∨¬q + w¬p∨¬q + w> = 0
(3) w¬p + wq + wp∨q + w¬p∨q + w¬p∨¬q + w> = 0
(4) w¬p + w¬q + w¬p∨q + wp∨¬q + w¬p∨¬q + w> = 0
(5) wc ≥ 0 for all clausesc

Constraints (2), (3), (4) and (5) givewc = 0 for any clause
c, which is inconsistent with (1). 2

Likewise, U(k-clauses, positive) is a proper subset of the
class of non-negativek-additive utility functions.

Monotonic Functions
The next result characterises the class of normalised mono-
tonic utility functions, also known ascapacities.

Proposition 11 U(strictly positive, positive) is equal to the
class of normalised monotonic utility functions.

Proof. Clearly, any utility function generated by posi-
tive formulas with positive weights must be monotonic;
and by Proposition 6, any function generated by strictly
positive formulas is normalised. Hence, everyu ∈
U(strictly positive, positive) must be a capacity. For the con-
verse, we sketch how to construct a goal base of positively
weighted strictly positive formulas for any given capacityu.
Consider the utility functionsuk (for k = 1, . . . , n) defined
as follows:

uk(X) = max{u(X ′) | X ′ ⊆ X and|X ′| ≤ k}

For instance,u1(X) = maxx∈X u({x}) andun = u (be-
cause of monotonicity). We are going to show how to con-
struct generators foru1, u2 − u1, u3 − u2 and so forth; the
union of these will then be a generator for the utility function
un, and hence foru.

(Step 1) To construct a generatorG1 for u1, order the ele-
mentspi of PS such thatu({p1}) ≤ · · · ≤ u({pn}).

G1 = { (p1 ∨ · · · ,∨pn, u({p1})),
(p2 ∨ · · · ∨ pn, u({p2}) − u({p1})), . . . ,
(pn, u({pn}) − u({pn−1}) }

Clearly,G1 is a generator foru1.

(Step 2) To construct a generator foru2−1 = u2 − u1, let
{X1, . . . , X(n

2
)} be the set of all 2-ary subsets ofPS , or-

dered in such a way thatu2−1(Xi) ≤ u2−1(Xj) whenever

i < j. Observe thatu2−1(Xi) is non-negative (due to the
monotonicity ofu). Now define:

G2 = { (
V

X1 ∨ · · · ∨
V

X(n

2
), u

2−1(X1)),

(
V

X2 ∨ · · · ∨
V

X(n

2
), u

2−1(X2) − u2−1(X1)), . . . ,

(
V

X(n

2
), u

2−1(X(n

2
)) − u2−1(X(n

2
)−1

)) }

G2 is a generator foru2 − u1. If we continue using the
same method, we can construct generatorsG3, . . . , Gn for
u3−u2 up toun−un−1. The union ofG1, . . . , Gn will then
be a generator for the sum ofu1, u2 − u1, . . . , un − un−1;
that is, it will be a generator foru = un. 2

To exemplify our construction, consider the capacityu with
u({p1}) = 2, u({p2}) = 5 andu({p1, p2}) = 6:

(Step 1) Ordering the elements of{p1, p2} givesu({p1}) <
u({p2}, therefore,G1 = {(p1 ∨ p2, 2), (p2, 3)}. G1 is
a generator foru1, whereu1({}) = 0, u1({p1}) = 2,
u1({p2}) = 5, u1({p1, p2}) = 5.

(Step 2) Since{p1, p2} is the only 2-ary subset of{p1, p2},
G2 = {(p1∧p2, u

2−1({p1, p2}))}. Now,u2−1({p1, p2}) =
u2({p1, p2})−u

1({p1, p2}) = u({p1, p2})−5 = 1. There-
fore, we obtain the following goal base:

G = G1 ∪G2 = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}

Also observe that we can model the full set of mono-
tonic utility functions by allowing a single goal(>, α) with
weightα (which could be negative) in a goal base that oth-
erwise consists only of strictly positive formulas with posi-
tive weights. Furthermore,U(positive, positive) is the set of
non-negative monotonic utility functions.

Concave Functions
As a final correspondence result, we establish a connection
between restrictions on goal bases and concave utilities.

Proposition 12 U(positive clauses, positive) is a subset of
the class of normalised concave monotonic utility functions.

Proof. The fact that any utility function from the set
U(positive clauses, positive) is a capacity follows from
Proposition 11. So the interesting part is to show that pos-
itive clauses with positive weights generate concave utility
functions. Letu be generated by a goal baseG of positive
clauses with positive weights and letX , Y andZ be propo-
sitional worlds such thatY ⊇ Z. For positive clausesϕ,
X ∪ Y |= ϕ together withY 6|= ϕ impliesX |= ϕ, and
M |= ϕ impliesM ′ |= ϕ wheneverM ⊆M ′. Hence:

{(ϕ, α) ∈ G | X ∪ Y |= ϕ andY 6|= ϕ} ⊆

{(ϕ, α) ∈ G | X ∪ Z |= ϕ andZ 6|= ϕ}

Because all weightsα are positive, we immediately obtain
the required inequation characterising concavity, namely
u(X ∪ Y) − u(Y) ≤ u(X ∪ Z) − u(Z). 2

We do not know whether the converse inclusion holds as
well. Note that Proposition 12 implies thatpositive clauses
with negative weightsgenerate onlyconvexutility functions
(albeit only negative ones).

Comparative Succinctness
Different restrictions on goal bases constitute differentlan-
guagesfor describing utility functions. In this section, we
make a first step towards analysing the comparativesuc-
cinctnessof such languages.

Defining Succinctness
A languageL′ for expressing utility functions is said to be
at least as succinctas another languageL iff there exists a
polysize reduction for any utility function expressed inL to
the same utility function expressed inL′ (see also (Cadoli
et al. 1996; Coste-Marquiset al. 2004)). In our case, lan-
guages are restrictionsU(H,H’) or, more generally, sets of
goal bases.

Definition 4 (Succinctness)Let L and L′ be two sets of
goal bases. We say thatL′ is at least as succinct asL, de-
noted byL � L′, iff there exist a mappingf : L → L′ and
a polynomial functionp such that:

• G ≡ f(G) for all G ∈ L; and
• size(f(G)) ≤ p(size(G)) for all G ∈ L.

Here thesizeof a goal base is the sum of the lengths of the
formulas in that goal base.

If L � L′ andL′ � L, thenL andL′ are as succinct as
each other: they express the same sets of utilities in the same
order of size. It may also be the case that two languages are
incomparable, that is, neitherL � L′ norL′ � L holds. The
strict order associated with� is denoted by≺ (i.e.L ≺ L′

iff L � L′ but notL′ � L).
We are interested in comparing the succinctness of differ-

ent languages that have the same expressive power (i.e. that
can generate the same class of utility functions). Note that,
if H,H ′ ⊆ LPS andH ′′ ⊆ R with U(H,H”) ≡ U(H’ ,H”),
thenH ⊆ H ′ impliesU(H,H”) � U(H’ ,H”). In this case
the polysize reduction is simply the identity function.

An Incomparability Result
The most basic way of representing a utility function would
be to explicitly list all propositional worlds with a non-zero
utility. We call this theexplicit form. This directly cor-
responds to goal bases consisting solely of cubes, each of
which contains eitherp or¬p as a conjunct for every propo-
sitional symbolp ∈ PS (let us refer to such cubes asn-
cubes). Clearly,U(n-cubes, all) is equal to the class of all
utility functions.

As discussed earlier, the concept ofk-additivity gives rise
to a different representation, which we call thek-additive
form. The k-additive form directly corresponds to goal
bases consisting only of positive cubes (see proof of Propo-
sition 1). As shown elsewhere (Chevaleyreet al. 2004), the
explicit form and thek-additive form of representing util-
ity functions areincomparablewith respect to succinctness.
This means thatU(n-cubes, all) andU(positive cubes, all)
are also incomparable. The following two utility functions
can be used to prove the mutual lack of a polysize reduction
(details may be found in (Chevaleyreet al. 2004)):3

3In that paper (Chevaleyreet al. 2004), cardinality rather than

• The functionu1(M) = |M | can be generated by a goal
base of justn positive cubes of length1, but we require
2n − 1 n-cubes to generateu1.

• The functionu2, with u2(M) = 1 for |M | = 1 and
u2(M) = 0 otherwise, can be generated by a goal base
of n n-cubes, but we require2n−1 positive cubes to gen-
erateu2.

The Efficiency of Negation
Recall that bothU(positive cubes, all) andU(cubes, all) are
equal to the class of all utility functions (Proposition 4).
However, as the next proposition states, the representation
of utility functions based on cubes is strictly more succinct
than the representation based on positive cubes alone:4

Proposition 13 U(positive cubes, all) ≺ U(cubes, all).

Proof. Clearly, U(positive cube, all) � U(cubes, all), be-
cause every positive cube is also a cube (i.e. the polysize
reduction here is identity). To show that the representation
based on general cubes isstrictly more succinct, we con-
sider the family of utility functionsun, for n ≥ 1, where
un : 2{p1,...,pn} → R is defined byun({ }) = 1 and
un(M) = 0 for all M 6= { }. un is generated by the goal
baseG = {(¬p1 ∧ · · · ∧ ¬pn, 1)}. That is, using general
cubes,un can be generated from a goal base with a single
weighted formula of lengthn.

Now, consider the following goal base using positive
cubes alone:

G′ = {(
∧

X, (−1)|X|) | X ⊆ PS}

That is, every cube of lengthk gets the weight(−1)k. Ob-
serve thatG′ generatesun, i.e.un = uG′:

uG′(M) =
∑

X⊆M

(−1)|X| =

|M|
∑

k=0

(

|M |

k

)

(−1)k = 0|M|

Next, the Möbius inversion shows that the goal base gener-
atingun is in factuniquelydetermined if only positive cubes
are available:5 Indeed, the only positive cube satisfied by{ }
is >. Hence, we must have(>, 1) ∈ G′. But then we must
have(p,−1) ∈ G′ for every propositional symbolp ∈ PS
to ensureu({p}) = 0. This in turn fully determines the
weights of cubes with two conjuncts, and so forth.

Thus, because the size ofG′ is exponentialin the number
of propositional symbols inPS and because no other goal
base using positive cubes can generateun, the language
based on cubes is indeed strictly more succinct than the
language based on positive cubes. 2

This result shows that the inclusion of negation into a rep-
resentation language for cardinal preferences can make that
language strictly more succinct.

size is used as a measure for succinctness. Note, however, that
comparative succinctness results coincide for the two approaches
as long as only formulas of polynomial length occur (as is thecase
for cubes of any kind).

4This has also been observed by Ieong and Shoham (2005).
5Without loss of generality, we assume that no goal base con-

tains two or more logically equivalent formulas.

Formulas Weights Utility Functions Reference
cubes/clauses/all general = all Prop. 4
positive cubes/formulas general = all Prop. 4
positive clauses general = normalised Prop. 5
strictly positive formulas general = normalised Prop. 6
k-cubes/clauses/formulas general= k-additive Prop. 2
positivek-cubes/formulas general = k-additive Prop. 1 & 2
positivek-clauses general = normalisedk-additive Prop. 3
literals general = modular Prop. 7
atoms general = normalised modular Prop. 8
cubes/formulas positive = non-negative Prop. 9
clauses positive ⊂ non-negative Prop. 10
strictly positive formulas positive = normalised monotonic Prop. 11
positive clauses positive ⊆ normalised concave monotonic Prop. 12

Table 1: Summary of Correspondence Results

Conclusion
We have further analysed the language of weighted proposi-
tional formulas previously studied by several authors. Most
of our results concern theexpressive powerof this language;
we have established several correspondences between cer-
tain types of weighted formulas and well-known classes
of utility functions. Our correspondence results are sum-
marised in Table 1. We have then made initial steps towards
analysing thecomparative succinctnessof languages based
on different types of weighted formulas that can represent
the same class of utility functions. In particular, we have
seen that the language of weighted cubes, while not more
expressive, is strictly more succinct than the language based
on positive cubes.

In this paper, we have focussed exclusively on the additive
interpretation of weighted propositional formulas. Otherag-
gregation functions can be considered, such as maximum
(Dubois, Lang, & Prade 1994) or more general functions
(see, for instance, the work of Bistarelliet al. (1999) in the
CSP framework). Weighted formulas together with maxi-
mum as the aggregation function have been considered in
various places, including for instance the so-called XOR lan-
guage for combinatorial auctions (Sandholm 2002), which
furthermore restricts formulas to positive cubes. Comparing
the simple (but yet expressive) framework of weighted goals
with the various languages designed for combinatorial auc-
tions (a synthesis of which is given by Nisan (2006)) is an
issue for further research.

While this paper establishes a number of interesting re-
sults on the expressive power and comparative succinctness
of weighted formulas for cardinal preference modelling, it
also raises a multitude of open questions. As concerns ex-
pressive power, further correspondence results are needed
to fully understand the relationship between restrictionson
goal bases and different classes of utility functions. For in-
stance, it would be very interesting to obtain precise charac-
terisations of the classes ofsuperadditiveand subadditive
functions in terms of goal bases. As concerns succinct-
ness, our observation that the inclusion of negation into a
language significantly improves succinctness in the case of

cubes immediately raises the question whether this remains
true for more general formulas: IsU(all, all) strictly more
succinct thanU(positive, all)? We conjecture: yes. An-
other interesting question would be whetherU(all, all) is
strictly more succinct thanU(cubes, all). Again, we con-
jecture: yes.

A further important area for future research concerns the
complexityof working with different languages of weighted
formulas. For instance, let MAX -UTILITY (H,H’) be the
following decision problem: given a goal baseG ∈
U(H,H’) and an integerK, check whether there exists a
worldM ∈ 2PS such thatuG(M) ≥ K. Obviously, MAX -
UTILITY is in NP for the full language of weighted formu-
las, sinceuG(M) ≥ K can be checked in polynomial time.
Clearly as well, the general problem is NP-complete, due
to its straightforward reduction from SAT (Garey & John-
son 1979). More interestingly, for sublanguages such as
U(k-clauses, positive), MAX -UTILITY is also NP-complete,
even fork = 2. This can be shown via a reduction from
MAX 2SAT (Garey & Johnson 1979).

Simpler languages such asU(literals, all), on the other
hand, give rise to polynomial decision problems: as-
suming thatG contains every literal exactly once (pos-
sibly with weight 0), making a propositional symbol
p true iff the weight of p is greater than the weight
of ¬p results in an alternative with maximal utility.
MAX -UTILITY (positive,positive) is also in P, because
makingall propositional symbols true will result in maxi-
mal utility. We shall leave a full analysis of these issues toa
future occasion.

Acknowledgements. We would like to thank the anony-
mous reviewers for their insightful comments and for point-
ing us into the direction of some of the relevant literature.

References
Bacchus, F., and Grove, A. J. 1996. Utility indepen-
dence in a qualitative decision theory. InProc. 5th In-
ternational Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR-1996). Morgan Kaufmann
Publishers.
Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1999. Semiring-based CSPs and val-
ued CSPs: Frameworks, properties and comparison.Con-
straints4(3):199–240.
Boutilier, C., and Hoos, H. 2001. Bidding languages for
combinatorial auctions. InProc. 17th International Joint
Conference on Artificial Intelligence (IJCAI-2001). Mor-
gan Kaufmann Publishers.
Boutilier, C.; Bacchus, F.; and Brafman, R. 2001. UCP-
networks: A directed graphical representation of condi-
tional utilities. In Proc. 17th Conference on Uncertainty
in Artificial Intelligence (UAI-2001). Morgan Kaufmann
Publishers.
Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D.
1999. Reasoning with conditionalceteris paribusprefer-
ence statements. InProc. 15th Conference on Uncertainty
in Artificial Intelligence (UAI-1999). Morgan Kaufmann
Publishers.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. InProc. 14th
International Joint Conference on Artificial Intelligence
(IJCAI-1995). Morgan Kaufmann Publishers.
Brams, S. J.; Kilgour, D. M.; and Zwicker, W. S. 1998. The
paradox of multiple elections.Social Choice and Welfare
15(2):211–236.
Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M.
1996. Comparing space efficiency of propositional knowl-
edge representation formalisms. InProc. 5th International
Conference on Principles of Knowledge Representation
and Reasoning (KR-1996). Morgan Kaufmann Publishers.
Chevaleyre, Y.; Endriss, U.; Estivie, S.; and Maudet, N.
2004. Multiagent resource allocation withk-additive util-
ity functions. InProc. DIMACS-LAMSADE Workshop on
Computer Science and Decision Theory, Annales du LAM-
SADE 3.
Chevaleyre, Y.; Dunne, P. E.; Endriss, U.; Lang, J.;
Lemaı̂tre, M.; Maudet, N.; Padget, J.; Phelps, S.;
Rodrı́guez-Aguilar, J. A.; and Sousa, P. 2006. Issues in
multiagent resource allocation.Informatica30:3–31.
Conitzer, V.; Sandholm, T. W.; and Santi, P. 2005. Com-
binatorial auctions withk-wise dependent valuations. In
Proc. 20th National Conference on Artificial Intelligence
(AAAI-05). AAAI Press.
Coste-Marquis, S.; Lang, J.; Liberatore, P.; and Marquis, P.
2004. Expressive power and succinctness of propositional
languages for preference representation. InProc. 9th In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-2004). AAAI Press.
Cramton, P.; Shoham, Y.; and Steinberg, R., eds. 2006.
Combinatorial Auctions. MIT Press.
Doyle, J., and Wellman, M. P. 1991. Preferential semantics
for goals. InProc. 9th National Conference on Artificial
Intelligence (AAAI-1991). AAAI Press.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Gabbay, D. M., et al., eds.,Handbook of Logic in

Artificial Intelligence and Logic Programming, volume 3.
Oxford University Press. 439–513.
Dupin de Saint-Cyr, F.; Lang, J.; and Schiex, T. 1994.
Penalty logic and its link with Dempster-Shafer theory. In
Proc. 10th Conference on Uncertainty in Artificial Intelli-
gence (UAI-1994). Morgan Kaufmann Publishers.
Garey, M. R., and Johnson, D. S. 1979.Computers and
Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman and Co.
Gilboa, I., and Schmeidler, D. 1992. Canonical repre-
sentation of set functions. Technical report, Northwestern
University Kellogg Graduate School of Management. Dis-
cussion Paper No. 986.
Gonzales, C., and Perny, P. 2004. GAI networks for utility
elicitation. InProc. 9th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR-
2004). AAAI Press.
Grabisch, M. 1997.k-order additive discrete fuzzy mea-
sures and their representation.Fuzzy Sets and Systems
92:167–189.
Haddawy, P., and Hanks, S. 1992. Representations for
decision-theoretic planning: Utility functions for deadline
goals. InProc. 4th International Conference on Principles
of Knowledge Representation and Reasoning (KR-1994).
Morgan Kaufmann Publishers.
Ieong, S., and Shoham, Y. 2005. Marginal contribu-
tion nets: A compact representation scheme for coalitional
games. InProc. 6th ACM Conference on Electronic Com-
merce (EC-2005). ACM Press.
La Mura, P., and Shoham, Y. 1999. Expected utility net-
works. InProc. 15th Conference on Uncertainty in Artifi-
cial Intelligence (UAI-1999). Morgan Kaufmann Publish-
ers.
Lafage, C., and Lang, J. 2000. Logical representation of
preferences for group decision making. InProc. 7th In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-2000). Morgan Kaufmann
Publishers.
Lang, J. 2004. Logical preference representation and com-
binatorial vote.Annals of Mathematics and Artificial Intel-
ligence42(1–3):37–71.
Nisan, N. 2006. Bidding languages for combinatorial auc-
tions. In Cramton, P.; Shoham, Y.; and Steinberg, R., eds.,
Combinatorial Auctions. MIT Press.
Pinkas, G. 1991. Propositional nonmonotonic reasoning
and inconsistency in symmetric neural networks. InProc.
12th International Joint Conference on Artificial Intelli-
gence (IJCAI-1991). Morgan-Kaufmann Publishers.
Rota, G.-C. 1964. On the foundations of combinato-
rial theory I: Theory of Möbius functions. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete
2(4):340–368.
Sandholm, T. W. 2002. Algorithm for optimal winner
determination in combinatorial auctions.Artificial Intel-
ligence135:1–54.
Shafer, G. 1976. A mathematical theory of evidence.
Princeton University Press.

