
The complexity of Scotland Yard

Merlijn Sevenster
sevenstr@science.uva.nl

ILLC, University of Amsterdam

March 8, 2006

Abstract

This paper discusses a case study of the board game of Scotland
Yard from a computational perspective. Interestingly, Scotland Yard
is a genuine “playgame” with imperfect information. For reasons not
completely clear to me, games with imperfect information have es-
caped the interest of researchers in Algorithmic combinatorial game-
theory. I show by means of a powerset argument, that Scotland Yard
can also be considered a game of perfect information, that is sur-
prisingly similar to the original game – up to isomorphism, that is.
Using the powerset analysis, I show that Scotland Yard has PSPACE-
complete complexity be it with or without imperfect information. In
fact, imperfect information may even simplify matters: if the cops
are supposed to be consequently ignorant of Mr. X’s whereabouts
throughout the game the complexity is ‘but’ NP-complete.

1 Introduction

The discipline of Algorithmic Combinatorial Game Theory (ACGT) deals
with zero-sum games with perfect information. Although the existence of
game with imperfect information is acknowledged in one of ACGT’s seminal
publications [1, pg. 16-7], as yet only a marginal amount of literature ap-
peared on games with imperfect information. On the other hand, the number
of publications on games with perfect information is abundant and offers a
robust picture of the computational behavior of games: One-person games or

1

puzzles are usually solvable in NP and many of them turn out to be complete
for this class.1 Famous examples include the game of Minesweeper [13] and
Clickomania [2]. Alternation kicks in at considerable computational cost:
many natural games have PSPACE-hard complexity, such as Go [15] and
the semantic evaluation game of quantified boolean formulae [21, 20]. Some
even have EXPTIME-complete complexity. Typical examples in this respect
are the games of Chess [9] and Checkers [8]. By and large, the games with
EXPTIME-complete complexity are of a loopy nature, that is, configurations
of the game may occur over and over again. In real-life, loopy games may
not be that much fun to play, as they allow for annoyingly long runs in which
neither player makes any ‘progress’. Loopy runs are banned from Chess by
imposing that no configuration of the game occurs more than three times,
roughly speaking.

Amusingly, putting an upper-bound on the duration of the game not
only avoids loopy – and boring – sequences of play, but also has considerable
computational impact. Papadimitriou [17, pg. 460-2] argues that every game
that meets the following requirements is solvable in PSPACE:

• the length of any legal sequence of moves is bounded by a polynomial
in the size of the input;

• given a ‘board position’ of the game there is a polynomial-space algo-
rithm that constructs all possible next actions and board positions; or,
if there is none, decides whether the board position is a win for either
player.

Note that Papadimitriou does not even mention the fact that this result
concerns games of perfect information. The result goes through due to the
fact that the backwards induction algorithm can be run on the game’s game
tree in PSPACE, given that it meets the above requirements.

As for games of imperfect information some studies have been performed
and their reports are basically a bad news show. In slogan one may put
that imperfect information increases the computational complexity of games.
Convincing results are reported in [14], in which the authors show that de-
ciding whether either player has a winning strategy in a finite, two-player
game of perfect information can be done in polynomial time in the size of

1To solve a game, means to determine for an instance of the game whether a designated
player has a winning strategy.

2

the game tree. On a positive note they show that there is a P-algorithm that
solves the same problem for games of imperfect information with perfect re-
call. However, if one of the players (or both) suffers from imperfect recall the
problem of deciding whether this player has a winning strategy is NP-hard
in the size of the game tree.

In [19, 18] the authors consider computation trees as game trees. This
view on computation trees is adopted from [6], in which Turing machines
are considered that have existential and universal states, so-called alternat-
ing Turing machines. The aspect of alternation is reflected in the compu-
tation tree by regarding it a game tree of a two-player game. The nodes
corresponding to existential (universal) states belong to the existential (uni-
versal) player. So this makes these game two-player games with perfect
information. From this viewpoint, non-deterministic Turing machines give
rise to one-player game trees. In [19, 18] this idea is extended towards games
of imperfect information. The authors define, amongst other devices, pri-
vate alternating Turing machines, that give rise to computation trees that
may be regarded two-player game trees in which the existential player suffers
from imperfect information. It is shown that the space complexity of f(n) of
these machines is characterized in terms of the complexity of alternating Tur-
ing machines with space bound exponential in f(n). Moreover, it is shown
that private alternating Turing machines with three players – two of them
are factually teaming up – can recognize undecidable problems in constant
space.

Dramatic as these results may be, being general studies they cannot tell
us what is the computational impact of the imperfect information found
in actual games. That is, games developed to be played rather than to
be analyzed.2 It may well turn out that the imperfect information in these
games have little computational impact and that the games themselves match
the robust intuitions we have about the computational nature of perfect
information games. As I pointed out before, there is but a small number
of results games of imperfect information, let alone computational studies
of real games. For this reason, I will consider the game of Scotland Yard
that has amused game players ever since 1983.3 The reader familiar with

2Fraenkel makes the distinction between “PlayGames” and “MathGames”. The former
being the games that “are challenging to the point that people will purchase them and
play them”, whereas the latter games “are challenging to a mathematician [. . .] to play
with or ponder about”; cited from [7, pg. 476].

3Scotland Yard is produced by Ravensburger/Milton Bradley and was prestigiously

3

Figure 1: The box of Scotland Yard and its items, amongst which the game
board, Mr. X’s move board, and the players’ pawns. This picture is repro-
duced with permission of Ravensburger.

Scotland Yard will acknowledge that it is the imperfect information that
makes the game an enjoyable waste of time and enthusiastic accounts of
players’ experiences with Scotland Yard are easily found on the Internet, for
instance [3].

Scotland Yard is played on a game board, that contains approximately
200 numbered intersections of colored lines denoting available means of trans-
portation: yellow for taxis, green for buses, and pink for underground. A
game is played by two to six people, one of them being Mr. X, the others
teaming up and thusly forming Scotland Yard. They have a shared goal:
capturing Mr. X. Initially, every player gets assigned a pawn and an inter-
section on the game board on which his or her pawn is positioned. Before
the game starts every player gets a fixed number of tickets for every means
of transportation. Mr. X and the cops move alternatingly and Mr. X com-
mences.

declared Spiel des Jahres in 1983.

4

During every stage of the game, each player – be it Mr. X or his ad-
versaries – takes an intersection in mind connected from his or her current
intersection, subject to him or her owning at least one ticket of the appro-
priate kind. For instance, if a player would want to use the metro from
Buckingham Palace, she would have to hand in her metro ticket. If either
player is out of tickets for a certain mode of transportation, he cannot travel
along the related lines. The set of tickets of every player is publicly known
to all players at every stage of the game.

If a cop has made up her mind on moving to an intersection, this is
indicated by her moving the pawn under her control to the intersection at
hand. However, if Mr. X made up his mind he secretely writes the number
of the intersection at stake at the designated entry of the move board and
covers it with the ticket used. Effectively, the cops know what means of
transportation Mr. X has been using, but do not know his position. After
round 3, 8, 13, 18, and 24, however, Mr. X is forced to show his whereabouts
by putting his pawn on his current hideout.

The game lasts for 24 rounds during which Mr. X and the cops make
their actions. If at any stage of the game, any of the cops is at the same
intersection as Mr. X then the cops win. If Mr. X remains uncaught until
after the last round, he wins the game. Cops who have a suspicious nature
may want to check whether Mr. X’s secret moves were made consistently
with the lines on the game board, when the game is over. To this end, they
would match the numbers on the move board with the returned tickets. If it
turns out that Mr. X’s cheated halfway, he loses no matter what the outcome
of the game actually was.

In view of these game descriptions, the generalization of the Scotland
Yard game in Definition 1 should be easy to swallow. The reader will observe
that I reduced the number of means of transportation to one and that the
game board is modelled by a directed graph. All results in this chapter can
be generalized to hold for several means of transportation and undirected
graphs, though.

Definition 1 Let G = 〈V,E〉 be a finite, connected, directed graph with
out-degree ≥ 1. Let u, v1, . . . , vn ∈ V . Let f : {1, . . . , k} → {show , hide}
be the information function, for some integer 2 < k < |V |. Then, let
〈G, 〈u, v1, . . . , vn〉, f〉 be a (Scotland Yard) instance. Most of the time it will
be convenient to abbreviate a string of vertices v1, . . . , vn by ~v. Conversely,
~v(i) shall denote the ith element in ~v. {~v} denotes the set of vertices in ~v.

5

If U ⊆ V , then let {u′ ∈ V | E(u, u′), for some u ∈ U} be denoted by
E(U). If ~v,~v′ ∈ V n, then write E(~v,~v′) to denote that for every 1 ≤ i ≤ n,
E(~v(i), ~v′(i)).

The information function f controls the imperfect information throughout
the game. If round i has property f(i) = hide, Mr. X hides himself. As
we will see the information function gives an intuitive sense to ‘adding or
removing’ imperfect information from a Scotland Yard game. For instance,
if one restricts oneself to information functions with range {show}, Mr. X
shows his whereabouts after every move and one is considering a game of
perfect information. Under the latter restriction, one has arrived at so-called
Pursuit or Cops and robbers games. For a exposition of the literature on
these games, consult [10].

The aims of this chapter are twofold. Firstly, pinpointing the computa-
tional complexity of a real game of imperfect information. Secondly, I go
through a reasonable amount of effort to spell out the relation between the
Scotland Yard game and a game of perfect information that is highly similar
to the former game. More precisely, I show that the games’ game trees are
isomorphic, from a natural point of view, and that a winning strategy in the
one game is a winning strategy in the other and vice versa. These similarity
result may convince the reader that in some cases the wall between perfect
and imperfect information is not as impenetrable as one might induce from
the scarce literature on complexity of imperfect information games.

In Section 2, I define the extensive game form of the Scotland Yard game
to which an instance gives rise. Next I introduce another game, related to
Scotland Yard, that is of perfect information: Scotland Yard-PI.

In Section 3, I show that the justly introduced games admit for a bijection
between the imperfect information game’s information partitions (actually,
an extension thereof) and the histories in Scotland Yard-PI. In this game,
Mr. X exchanges the power of hiding for the power of moving sets of vertices.

In Section 4, the computational results are presented. In accordance with
many polynomially bounded two-player games, Scotland Yard is complete for
PSPACE, despite its imperfect information. That is, the computational com-
plexity of Scotland Yard does not change when one only considers information
functions with range {show}.

In fact, if one would add more imperfect information to the extent that the
information flow function has range {hide}, the resulting decision problem is
easier: NP-complete. This is shown in Section 5.

6

2 Two Scotland Yard games

Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance as in Definition 1.
Before I define the extensive game form of the Scotland Yard game to which
sy gives rise, let me recap the game rules tailor-made to suit sy ’s particulars.

The digraph G is the board on which the actual playing finds place. In
the initial situation of the game, we find n + 1 pawns, named ∀,∃1, . . . ,∃n,
positioned on the respective vertices u∗, ~v∗(1), . . . , ~v∗(n) in the digraph. The
game is played by the two players ∃ and ∀ over k rounds, and with every round
1 ≤ i ≤ k in the game there is associated the property f(i) ∈ {show , hide}.
Note that I converted the n-player game of Scotland Yard, where 2 ≤ n ≤ 6
into a two-player game in which one player controls all pawns ∃1, . . . ,∃n.
Furthermore, for reasons of succinctness I adopt the symbol ∀ to refer to Mr.
X and ∃ to refer to the player controlling Scotland Yard. Somewhat sloppily,
sometimes I will not make a strict distinction between a player and (one of
his or her) pawns.

First fix i = 1, u = u∗, and ~v = ~v∗; now, round i of Scotland Yard goes
as follows:

1. If for some 1 ≤ j ≤ n, the pawns ∀ and ∃j share the same vertex, i.e.,
u = ~v(j) we say that ∀ was captured (by ∃j). If ∀ is captured the game
stops and ∃ wins. If ∀ is not captured and i > k the game also stops
but ∃ loses.

2. ∀ chooses a vertex u′, such that E(u, u′). If f(i) = show , he physically
puts his pawn on u′. If f(i) = hide, he secretly writes u′ on his move
board making sure that it cannot be seen by his opponent. Set u = u′.

3. Player ∃ chooses a vector ~v′ ∈ V n, such that E(~v,~v′), and for every
1 ≤ j ≤ n, moves pawn ∃j to ~v

′(j). Set ~v = ~v′.

4. Set i = i+ 1.

Note that these game rules do not consider the possibility of either player
getting stuck, as in not being able to move a pawn under his or her control
moving along an edge. This goes without loss of generality, as the digraphs
at stake are supposes to have out-degree ≥ 1.

Further, it should be borne in mind, that for ∀ it is not a guaranteed loss
to move to a vertex occupied by one of ∃’s pawns. The game only terminates

7

after ∃ has moved and one of her pawns captures ∀, unlike the game rules
for the board game of Scotland Yard.

Scotland Yard is modelled as an extensive game with imperfect informa-
tion in Definition 2. The upcoming definition and Definition 4 are notation-
ally akin to the definitions from [16].

Definition 2 Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance. Then,
let the extensive Scotland Yard game constituted by sy be defined as the tuple
SY (sy) = 〈N,H, P,∼, U〉, where

• N = {∃,∀} is the set of players.

• H is the set of histories, that is, the smallest set containing 〈u∗〉, 〈u∗, ~v∗〉
and is closed under actions taken by ∀ and ∃:

· If h〈u,~v〉 ∈ H, `(h〈u,~v〉) < k, u /∈ {~v}, and E(u, u′), then
h〈u,~v〉〈u′〉 ∈ H.

· If h〈u,~v〉〈u′〉 ∈ H and E(~v,~v′), then h〈u,~v〉〈u′, ~v′〉 ∈ H.

If h ∈ H, let `(h) denote the number of rounds in h, that is the number
of tuples not equal 〈u∗, ~v∗〉. Define `(〈u∗, ~v∗〉) = 0. Somewhat unlike
custom usage in game-theory, the length `(h) of history h does not
coincide with the number of plies in the game. This notation reflects my
game rule saying that a history my only terminate after ∃ has moved.

Let Â be the immediate successor relation on H. That is, the smallest
relation closed under the following conditions:

· If h, h〈u〉 ∈ H, then h Â h〈u〉.

· If h〈u〉, h〈u,~v〉 ∈ H, then h〈u〉 Â h〈u,~v〉.

A history that has no immediate successor we call a terminal history.
Let Z ⊆ H be the set of terminal histories in H.

• P : H − Z → {∃,∀} is the player function that decides who is to
move in a non-terminal history. Due to the notational convention, the
value of P is easily determined by the history’s form, in the sense that
P (h〈u〉) = ∃ and P (h〈u,~v〉) = ∀.

8

• ∼ is the indistinguishability relation that formalizes the imperfect in-
formation in the game. It is defined such that for any pair of histories
h, h′ ∈ H, where

h = 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈ui〉 and h′ = 〈u∗, ~v∗〉〈u
′
1, ~v

′
1〉 . . . 〈u

′
i〉 (1)

it is the case that h ∼ h′, if

(a) ~vj = ~v′j, for every 1 ≤ j ≤ i− 1

(b) uj = u′j, for every 1 ≤ j ≤ i such that f(j) = show.

The previous condition, considering histories as in (1), defines ∼ only
as a relation between histories h in which ∃ has to move: P (h) = ∃.
This reflects the fact that it is ∃ who experiences the imperfect informa-
tion while playing the game. Somewhat unusual, I extend ∼ to histories
in which ∀ has to move. The reader is urged to take this extension as a
technicality, and not to start looking for deeper explanations (after read-
ing Theorem 19). I put as follows: for any pair of histories h, h′ ∈ H,
where

h = 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈ui, ~vi〉 and h′ = 〈u∗, ~v∗〉〈u
′
1, ~v

′
1〉 . . . 〈u

′
i, ~v

′
i〉

it is the case that h ∼ h′, if

(a) ~vj = ~v′j, for every 1 ≤ j ≤ i

(b) uj = u′j, for every 1 ≤ j ≤ i such that f(j) = show.

• U : Z → {win, lose} is the function that decides whether a terminal
history h〈u,~v〉 is won or lost for ∃. Formally,

U(h〈u,~v〉) =

{
win if u ∈ {~v}
lose if u /∈ {~v}.

Usually, one has a utility function per player, but as the game is win-
loss one had just as well stick to one function.

Since ∼ is reflexive, symmetric, and transitive it defines an equivalence
relation onH. Let us writeH ⊆ ℘(H) for the set of equivalence classes, or in-
formation cells, in which H is partitioned by ∼. That is, H = {C1, . . . , Cm},
where C1 ∪ . . . ∪ Cm = H and for every 1 ≤ i ≤ m, if h ∈ Ci and h ∼ h′,

9

then h′ ∈ Ci. A standard inductive argument suffices to see that for every
Ci ∈ H and pair of histories h, h′ ∈ Ci, the length of h and h′ coincides and
P (h) = P (h′).

I lift the relation Â to H, using the same symbol: For any pair C,C ′ ∈ H,
I write C Â C ′ if there exists histories h ∈ C and h′ ∈ C ′ such that h Â h′.
It is easy to see that if h, h′ are histories in a cell C ∈ H, then P (h) = P (h′).
Thus, the player function is meaningfully lifted as follows: if C ∈ H and h
is a history in C, then P (C) = P (h). Call a cell C ∈ H terminal if all its
histories h ∈ C are terminal.

Since I study an extension of ∼, the set H partitions all histories in H.
As I pointed out in the definition of ∼, if histories h and h′ stand in the ∼
relation and belong to ∀, this should not be taken to reflect any conceptual
consideration about ∃’s experiences, as it is merely a technicality. Yet, if
h and h′ belong to ∃, to write h ∼ h′ reflects genuine indistinguishability
for player ∃ between the two histories h and h′. In this manner, we see
that a subset of H is an object familiar from game-theory. Consider the set
H∃ = {C ∈ H | P (C) = ∃}, that partitions the set of histories that belong
to ∃. I claim that H∃ is an information set. To prove this claim it suffices
to show that for every information cell C ∈ H∃ no two histories h, h′ ∈ C
can be distinguished on the basis of the actions that ∃ can take at h and h′.
Formally, for every C ∈ H and every pair of histories h, h′ ∈ C it is the case
that A(h) = A(h′).

To this end, let

A(h〈u,~v〉〈u′〉) = {~v′ ∈ V n | h〈u,~v〉〈u′〉 Â h〈u,~v〉〈u′, ~v′〉} = {~v′ ∈ V n | E(~v,~v′)}

define the actions available to ∃ after h〈u,~v〉〈u′〉. Let h and h′ be histories as
in (1) sitting in the same cell C ∈ H. Then, by (a) ~vi−1 = ~v′i−1 and therefore
A(h) = A(h′). Hence, H∃ is an information set. (Note that information cells
in H∃ are usually called information partitions.) Thus, by modelling the
imperfect information in SY (sy) by the extended ∼ relation an object is ob-
tained that is still highly similar to the customary object 〈N,H, P, 〈Ii〉i∈N , U〉
modelling the game of Scotland Yard induced by sy .

For future reference, lay down the following Proposition:

Proposition 3 Let SY (sy) = 〈N,H, P,∼, U〉 be the Scotland Yard game
constituted by sy. Then, the following statements hold:

10

1. If h1〈u1〉 ∼ h2〈u2〉 and f(`(h1〈u1〉)) = hide, then h1 ∼ h2.

2. If h1〈u1〉 ∼ h2〈u2〉 and f(`(h1〈u1〉)) = show, then h1 ∼ h2 and u1 = u2.

3. If h1〈u1, ~v1〉 ∼ h2〈u2, ~v2〉, then h1〈u1〉 ∼ h2〈u2〉 and ~v1 = ~v2.

4. If h1 6∼ h2 and h1〈u1〉, h2〈u2〉 ∈ H, then h1〈u1〉 6∼ h2〈u2〉.

Proof. Readily observed from the definition of ∼ in Definition 2. 2

As an illustration of modelling a Scotland Yard instance as an exten-
sive game with imperfect information, consider the digraph G× = 〈V ×, E×〉,
where

V × = {u∗, v∗, a, b, A,B, 1, 2, 3}

E× = {〈u∗, a〉, 〈u∗, b〉, 〈a, 1〉, 〈b, 2〉, 〈b, 3〉,

〈v∗, A〉, 〈v∗, B〉, 〈A, 1〉, 〈B, 2〉, 〈B, 3〉}.

For a depiction of G×, see Figure 2. Let f× be a function such that f×(1) =
hide and f×(2) = show . Let us conclude the construction of the Scotland
Yard instance sy×, by putting u∗ and v∗ as the initial vertices of ∀ and ∃,
respectively. In SY (sy×), the set of historiesH contains exactly the following
histories:

〈u∗, v∗〉
〈u∗, v∗〉〈a〉 〈u∗, v∗〉〈a,B〉〈1〉 〈u∗, v∗〉〈a,B〉〈1, 3〉
〈u∗, v∗〉〈b〉 〈u∗, v∗〉〈b, A〉〈2〉 〈u∗, v∗〉〈b, A〉〈2, 1〉
〈u∗, v∗〉〈a,A〉 〈u∗, v∗〉〈b, A〉〈3〉 〈u∗, v∗〉〈b, A〉〈3, 1〉
〈u∗, v∗〉〈a,B〉 〈u∗, v∗〉〈b, B〉〈2〉 〈u∗, v∗〉〈b, B〉〈2, 2〉 !
〈u∗, v∗〉〈b, A〉 〈u∗, v∗〉〈b, B〉〈3〉 〈u∗, v∗〉〈b, B〉〈2, 3〉
〈u∗, v∗〉〈b, B〉 〈u∗, v∗〉〈a,A〉〈1, 1〉 ! 〈u∗, v∗〉〈b, B〉〈3, 2〉
〈u∗, v∗〉〈a,A〉〈1〉 〈u∗, v∗〉〈a,B〉〈1, 2〉 〈u∗, v∗〉〈b, B〉〈3, 3〉 !

The terminal histories marked with an exclamation mark are winning his-
tories for ∃. Because f×(1) = hide, the game that we are dealing with
is a genuine game of imperfect information. This fact is reflected in the
set of information cells H, containing the following three non-singletons:
{〈u∗, v∗〉〈a〉, 〈u∗, v∗〉〈b〉}, {〈u∗, v∗〉〈a,A〉, 〈u∗, v∗〉〈b, A〉}, and finally there is
{〈u∗, v∗〉〈a,B〉, 〈u∗, v∗〉〈b, B〉}. (Note that under the customary definition
of ∼, one would not have the latter two information cells, as they belong

11

∀

A

B

∃

1

2

3

a

b

u∗ v∗

Figure 2: The digraph G×, allowing for a two-round Scotland Yard game.

to ∀.) Game-theorists often find it convenient to present extensive games as
trees, see Figure 3.

I observed that Scotland Yard is a game with imperfect information and
in Definition 2 I modelled it as an extensive game with imperfect information.
This model one may find Scotland Yard’s canonical means of analysis, for
admittedly, it gives a natural account of the imperfect information that makes
Scotland Yard such a fun game to play. Canonical or not, this does not
imply, of course, that Scotland Yard can only be analyzed as an imperfect
information game. In the remainder of this section I will show how a Scotland
Yard instance may also give rise to a game of perfect information. The
underlying idea is that during rounds in which ∀ hides his whereabouts, he
picks up a set of vertices that contain all vertices where he can possibly be.
In case ∀ has to show himself, he selects one vertex from the current set of
vertices and announces this vertex as his new location.

Formally, ∀’s powers are lifted from the level of picking up vertices to the
level of picking up sets of vertices. ∃’s power remain unaltered, as compared
to the game with imperfect information that was explicated above.

Modelling imperfect information by means of a powerset construction – as
I am about to do – is by no means new. For instance, the reader may find this
idea occurring in the computational analyzes of games with imperfect infor-
mation [19, 18]. In logic, the idea of evaluating a formula from Independence
friendly logic with respect to a set of assignments underlies Hodges’ trump
semantics [11], a variant of which appeared in [4]. An Ehrenfeucht-Fräıssé
game for IF logic with perfect information was defined in [22]. In automata

12

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

���
���
���
���

��
��
��
��

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

 �
 �
 �
 �

!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"

#�#�#
#�#�#
#�#�#
#�#�#

$�$
$�$
$�$
$�$

%�%�%
%�%�%
%�%�%
%�%�%

&�&
&�&
&�&
&�&

'�'
'�'
'�'
'�'

(�(
(�(
(�(
(�(

)�)
)�)
)�)
)�)

�
�
�
�

+�+
+�+
+�+
+�+

,�,
,�,
,�,
,�,

BABA

u∗

win lose lose lose lose win winlose lose

1 3 2 2 312 1 3

1 1 2 3 2 3

a b

Figure 3: A graphical representation of the Scotland Yard game played on
the game board constituted by the digraph G× from Figure 2. A path from
the root to any of its nodes represents a history in the game. For instance,
the path u∗, b, A, 2 corresponds with the history 〈u∗, v∗〉〈b, A〉〈2〉. The infor-
mation cells are indicated by the shaded areas.

13

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

	�	
	�	
	�	
	�	

�

�

�

�

���
���
���
���

���
���
���
���

�
�
�
�

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����
�����

 �
 �
 �
 �

!�!�!
!�!�!
!�!�!
!�!�!

"�"
"�"
"�"
"�"

#�#
#�#
#�#
#�#

$�$
$�$
$�$
$�$

%�%�%
%�%�%
%�%�%
%�%�%

&�&
&�&
&�&
&�&

win lose lose lose lose win winlose lose

A B

{a, b}

u∗

1 1 1 2 3 2 3 2 3

{1} {2} {3} {1} {2} {3}

Figure 4: A graphical representation of the Scotland Yard-PI game played on
the game board constituted by the digraph G× from Figure 2. A path from
the root to any of its nodes represents a history in the game. For instance, the
path u∗, {a, b}, A, {2} corresponds with the history 〈{u∗}, v∗〉〈{a, b}, A〉〈{2}〉.

14

theory, the move to powersets is made when converting a non-deterministic
finite automaton to a deterministic one, see [12].

In all three disciplines, however, observe that the phenomenon that was
analyzed through powersets is substantially more powerful than the original
phenomenon. For instance, in [18] it was shown that three-player games
with imperfect information can be undecidable. In the realm of IF logic it
was proven [5] that no compositional semantics can be given based on single
assignments only. And it is well-known that in the worst case converting
a non-deterministic finite automaton makes the number of states increase
exponentially.

In view of these results it is striking that one can define a Scotland Yard
game with perfect information using a powerset argument, that is highly
similar to the same Scotland Yard game with imperfect information. What
is meant by ‘highly similar’ is made precise in Section 3. First let me pos-
tulate the game rules for the Scotland Yard game with perfect information
and define its extensive game form in Definition 4.

Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance as in Definition 1.
The initial position of the Scotland Yard-PI game constituted by sy is similar
to the initial position of the Scotland Yard game that sy constitutes. That
is, a ∀ pawn is positioned on u∗ and for every 1 ≤ j ≤ n, the ∃j pawn is
positioned on ~v(j). In Scotland Yard-PI, ∀ doesn’t have one pawn at his
disposal but as many as there are vertices in G. First fix i = 1, U = {u∗},
and ~v = ~v∗; round i of Scotland Yard-PI goes as follows:

1-PI. If U − {~v} = ∅, then the game stops and ∃ wins. If U − {~v} 6= ∅ and
i > k the game also stops but ∃ loses.

2-PI. Let U ′ = E(U − {~v}). If f(i) = hide, then set U = U ′ and ∀ positions
a ∀ pawn on every vertex v in U . If f(i) = show , then ∀ picks a vertex
u′ ∈ U ′, removes all his pawns from the board, and puts one pawn on
u′. Set U = {u′}.

3-PI. Player ∃ chooses a vector ~v′ ∈ V n, such that E(~v,~v′), and for every
1 ≤ j ≤ n, moves pawn ∃j to ~v

′(j). Set ~v = ~v′.

4-PI. Set i = i+ 1.

Clearly, for arbitrary sy , the Scotland Yard-PI game constituted by sy is

15

a game of perfect information. For this reason a natural means of analysis is
to model it as an extensive game.

Definition 4 Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance. Then,
let the extensive Scotland Yard-PI game constituted by sy be defined as the
tuple SY -PI(sy) = 〈NPI, HPI, PPI, UPI〉, where

• NPI = {∃,∀} is the set of players.

• HPI is the set of histories, that is, the smallest set containing the strings
〈{u∗}〉, 〈{u∗}, ~v∗〉, that furthermore is closed under taking actions for ∃
and ∀:

· If h〈U,~v〉 ∈ HPI, `(h〈U,~v〉) ≤ k, f(`(h〈U,~v〉) + 1) = hide, and
U − {~v} 6= ∅, then h〈U,~v〉〈E(U − {~v})〉 ∈ HPI.

· If h〈U,~v〉 ∈ HPI, `(h〈U,~v〉) ≤ k, and f(`(h〈U,~v〉) + 1) = show,
then {h〈U,~v〉〈{u′}〉 | u′ ∈ E(U − {~v})} ⊆ HPI.

· If h〈U,~v〉〈U ′〉 ∈ HPI and E(~v,~v′), then h〈U,~v〉〈U ′, ~v′〉 ∈ HPI.

Let ÂPI be the immediate successor relation on HPI. That is, the small-
est relation closed under the following conditions:

· If h, h〈U〉 ∈ HPI, then h ÂPI h〈U〉.

· If h〈U〉, h〈U,~v〉 ∈ HPI, then h〈U〉 ÂPI h〈U,~v〉.

A history that has no immediate successor we call a terminal history.
Let ZPI ⊆ HPI be the set of terminal histories in HPI.

• PPI : HPI − ZPI → {∃,∀} is the player function that decides who is
to move in a non-terminal history. Due to the notational convention,
the value of P is determined by the history’s form, in the sense that
P (h〈U〉) = ∃ and P (h〈U,~v〉) = ∀.

• UPI : ZPI → {win, lose} is the function that decides whether a terminal
history h〈U,~v〉 is won or lost for ∃. Formally,

U(h〈U,~v〉) =

{
win if U − {~v} = ∅
lose if U − {~v} 6= ∅.

16

These definitions may be best appreciated by checking SY -PI(sy×), where
sy× = 〈G×, 〈u∗, ~v∗〉, f

×〉 and G× is the digraph depicted in Figure 2. I skip
writing down all histories in this particular game, leaving the reader with a
graphical representation of its game tree in Figure 4.

3 An effective equivalence

In this section, the similarity between Scotland Yard, the game with imper-
fect information, and its perfect information variant is established. Making
use of this similarity, I prove that for any instance sy , ∃ has a winning strat-
egy in SY (sy) iff she has one in SY -PI(sy), cf. Theorem 19. In order to prove
this result, I go about as follows: Firstly, it will be shown in Lemma 10 that
the structures 〈H,Â〉 and 〈HPI,ÂPI〉 are isomorphic. Secondly, I formally
introduce the notion of a winning strategy and the backwards induction al-
gorithms for SY (sy) and SY -PI(sy). This algorithm typically labels every
history with win or lose, starting with the terminal histories. Crucially, I
show that the backwards induction algorithms correctly compute whether ∃
has a winning strategy in the respective game. Finally, I show that for every
history h in SY (sy), the label assigned to it by the backwards induction
algorithm for Scotland Yard corresponds with the label assigned to it by the
backwards induction algorithm for Scotland Yard-PI. The claim then follows,
as the initial histories 〈u∗, ~v∗〉 and 〈{u∗}, ~v∗〉 carry the same label.

3.1 Scotland Yard and Scotland Yard-PI are isomor-
phic

Main result of this subsection resides in Lemma 10, saying that the structures
〈H,Â〉 and 〈HPI,ÂPI〉 are isomorphic. The witness of this isomorphism is
the bijection β, defined in Definition 5 below. As some of the intermediate
results that bring us to the bijection lemma are not very insightful, I defer
them to Appendix A.

17

Definition 5 Let SY (sy) and SY -PI(sy) be games constituted by sy. Define
the function β : HPI → ℘(H) inductively as follows:

β(〈{u∗}〉) = {〈u∗〉}

β(〈{u∗}, ~v∗〉) = {〈u∗, ~v∗〉}

β(h〈U〉) = {g〈u〉 ∈ H | g ∈ β(h), u ∈ U}

β(h〈U,~v〉) = {g〈u,~v〉 ∈ H | g〈u〉 ∈ β(h〈U〉)}.

The function β is (partially) depicted in Figure 5 mapping the histories from
SY -PI(sy×) to sets of histories from SY (sy×). The reader may find it useful
to return to this figure to strengthen his or her intuitions.

Proposition 6 states that if in a history h ∈ HPI a pawn (owned by either
player) is positioned on a vertex, then also in β(h) there exists a history in
which this vertex is occupied by a pawn.

Proposition 6 For every history h′ ∈ HPI, the following hold:

1. If h′ = h〈U〉 and f(`(h〈U〉)) = hide, then it is the case that U =
{u | g〈u〉 ∈ H, for some g ∈ β(h)}.

2. If P (h′) = ∀ and f(`(h′)+ 1) = show, then it is the case that {u | h′ Â
h′〈{u}〉, for some h′〈{u}〉 ∈ HPI} = {u | g〈u〉 ∈ H, for some g ∈
β(h′)}.

3. If h′ = h〈U〉 ∈ HPI and u ∈ U , then there exists a history g ∈ β(h)
such that g〈u〉 ∈ H.

4. If h′ = h〈U,~v〉 ∈ HPI, then it is the case that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈
β(h〈U〉)}.

Proposition 7 is the converse of the previous Proposition, as it links up
histories in H with histories in HPI.

Proposition 7 For every g′ ∈ H, the following hold:

1. If g′ = g〈u〉 ∈ H, then there exists a h〈U〉 ∈ HPI such that g ∈ β(h)
and u ∈ U .

2. If g′ = g〈u,~v〉 ∈ H, then there exists a h〈U,~v′〉 ∈ HPI such that g〈u〉 ∈
β(h〈U〉) and ~v = ~v′.

18

� �� �� �� �� �� �� �� �
� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� � � �� �� �� �	 		 		 		 	

� �� �� �� �� �� �� �� � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
� � � � � �� �� �� �� �� �� �� � ! !! !! !! !" "" "" "" "# ## ## ## #

$ $$ $$ $$ $% %% %% %% %

& && && && &' '' '' '' '
(((((((())))))))

* ** ** ** *+ ++ ++ ++ +

, ,, ,, ,, ,- -- -- -- -

./ // // // /

0 00 00 00 01 11 11 11 1 2 22 22 22 23 33 33 33 34 4 44 4 44 4 44 4 45 55 55 55 5

6 66 66 66 67 77 77 77 78 88 88 88 89 99 99 99 9: :: :: :: :; ;; ;; ;; ;< < << < << < << < <= == == == = > >> >> >> >? ?? ?? ?? ?@ @@ @@ @@ @A AA AA AA AB BB BB BB BC CC CC CC C D DD DD DD DE EE EE EE E

F FF FF FF FG GG GG GG G H HH HH HH HI II II II I

J J JJ J JJ J JJ J JK KK KK KK K
L LL LL LL LM MM MM MM M

N NN NN NN NO OO OO OO O

P PP PP PP PQ QQ QQ QQ Q

BABAA B

{a, b}

u∗

1 1 1 2 3 2 3 2 3

{1} {2} {3} {1} {2} {3}

u∗

1 3 2 2 312 1 3

1 1 2 3 2 3

a b

F
igu

re
5:

A
p
artial

d
ep

iction
of

th
e
b
ijection

β
from

h
istories

in
S
Y
-P

I(sy
×
)

to
sets

of
h
istories

from
S
Y
(sy

×
).
β
is
d
isp

layed
u
sin

g
several

k
in
d
s
of

arrow
s

to
en

h
an

ce
read

ab
ility.

N
ote

th
at

th
ese

d
iff
eren

t
arrow

s
d
o
n
ot

refl
ect

an
y

con
cep

tu
al

d
iff
eren

ce.
S
ets

of
h
istories

in
th
e
ran

ge
of
β
(fou

n
d
in

th
e
righ

t-
h
an

d
stru

ctu
re)

tu
rn

ou
t
to

b
e
in
form

ation
cells,

cf.
L
em

m
a
9.

19

For β to be bijection between HPI and H, it ought to be the case that β
has range H rather than ℘(H). I lay down the following result.

Lemma 8 β is a function of type HPI → H.

The latter lemma is strengthened in the following lemma.

Lemma 9 β is a bijection between HPI and H.

The isomorphism result follows from tying together the previous state-
ments.

Lemma 10 The structures 〈HPI,ÂPI〉 and 〈H,Â〉 are isomorphic.

Proof. Lemma 9 showed that β is a bijection between HPI and H. It
remains to be shown that β preserves structure, that is, for every pair of
histories h, h′ ∈ HPI, it is the case that h ÂPI h

′ iff β(h) Â β(h′). Recall
that for C ′ ∈ H to be the immediate successor of C ∈ H, there must exists
two histories g, g′ from C,C ′, respectively, such that g Â g′. The claim is
proved by a straightforward inductive argument on the length of the histories
in HPI. I shall omit spelling out the details of the proof, only mentioning the
Propositions on which it relies:

From left to right. Follows from Proposition 6.3 and Proposition 6.4.
From right to left. Follows from Propositions 7.1 and 7.2. 2

The claim that Scotland Yard and its perfect information variant are
highly similar is justified by pointing at the structures (game trees) that the
games give rise to and the latter lemma, saying that they are isomorphic.

3.2 Backwards induction algorithms

The structures 〈HPI,ÂPI〉 and 〈H,Â〉 are not only isomorphic, they also pre-
serve the property of being winnable for the cops. Traditionally it is back-
wards induction algorithms that compute whether the cops win, but such
algorithms are only defined on games with perfect information. As a conse-
quence, the backwards induction algorithm applies readily to the game tree
of any perfect information SY -PI(sy). Matters are not so straightforward in
case of SY (sy). But as I shall prove, a backwards induction algorithm can be
developed in this case as well. To this end, I define the notion of a winning

20

strategy for games with imperfect information, and introduce a backwards
induction algorithm that computes whether a structure allows for a winning
strategy, for the Scotland Yard game with imperfect information.

I claim that the way of modelling a Scotland Yard game with imperfect
information – be it the standard way using information sets 〈Ii〉i∈N or as in
Definition 2 – is immaterial, when it comes to ∃ having a winning strategy.

Definition 11 Let SY (sy) = 〈N,H, P,∼, U〉 be a Scotland Yard game con-
stituted by sy. Then, we call the structure 〈S,Â′〉 a plan of action for ∃ in
SY (sy), if

• S ⊆ H

• {〈u∗, ~v∗〉} ∈ S

• Â′ = Â ∩ (S × S)

• for every C ∈ S such that P (C) = ∃, there exists exactly one C ′ ∈ S
such that C Â′ C ′

• for every C ∈ S such that P (C) = ∀ and every C ′ ∈ H such that
C Â C ′, it is the case that C ′ ∈ S.

Call 〈S,Â′〉 a winning plan of action for ∃ in SY (sy), if 〈S,Â′〉 is a plan
of action and every terminal cell C ∈ S only contains histories h such that
U(h) = win.

Before I show that the backwards induction algorithm applied to SY (sy)
gives the same result as the standard one applied to SY -PI(sy), for every sy ,
it needs to be shown that the way of modelling SY (sy) using the extended
notion of ∼, does not have an influence. That is, had I modelled the Scot-
land Yard game for instance sy as a customary 〈N,H, P, 〈Ii〉i∈N , U〉 then it
would allow for a winning strategy for the cops if, and only if, my backwards
inductions algorithm accepts the input SY (sy) = 〈N,H, P,∼, U〉.

First let me recite the necessary vocabulary in the notation used in this
chapter for Scotland Yard games modelled in the customary way. A strategy
in 〈N,H, P, 〈Ii〉i∈N , U〉 is defined, cf. [16], as a function S mapping every
information partition I ∈ I∃ to an action A(h), for some h ∈ C.4 Let S be a

4Recall that for every pair of histories h and h′ belonging to ∃, if h and h′ sit in the
same information partition I, then A(h) = A(h′).

21

strategy in 〈N,H, P, 〈Ii〉i∈N , U〉 and let h = 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈ui, ~vi〉 ∈ H be
a history, then call h in accordance with S, if for every 1 ≤ j ≤ i, S(Ij) = ~vj,
where Ij is the information partition in I∃ containing 〈u∗, ~v∗〉〈u1, ~v1〉 . . . 〈uj〉.
A strategy S in 〈N,H, P, 〈Ii〉i∈N , U〉 is called winning for ∃ if every terminal
history h in H that is in accordance with S is won for ∃: U(h) = win.

Proposition 12 Let sy be a Scotland Yard instance and let G(sy) equal the
tuple 〈N,H, P, 〈Ii〉i∈N , U〉 be the extensive game with imperfect information
modelling the Scotland Yard game constituted by sy in the customary way.
Then, ∃ has a winning plan of action in SY (sy) iff she has a winning strategy
in G(sy).

Proof. It is not so hard to see that every winning strategy S in the
extensive game 〈N,H, P, 〈Ii〉i∈N , U〉 can be transformed into a winning plan
of action 〈S,Â′〉 in SY (sy) and vice versa.

From left to right. Suppose S is a winning strategy in the extensive
game G(sy) = 〈N,H, P, 〈Ii〉i∈N , U〉. Let HS be all histories in H that are
in accordance with S. Let HS be the partition of HS, such that for any two
histories h, h′ ∈ HS, if h ∼ h′, then there is a cell D ∈ HS containing both h
and h′. I claim that T = 〈HS,Â ∩(HS ×HS)〉 is a winning plan of action in
SY (sy). To this end, it needs proof that (i) HS ⊆ H, that (ii) T is a winning
plan of action.

To prove (i), one needs to show that HS is a set of information cells. To
this end, it suffices to show that HS is closed under ∼: if h ∈ HS and h ∼ h′,
then h′ ∈ HS. I do so by means of an inductive argument. The base case is
trivial. Suppose that h ∈ HS and that h′ is a history such that h ∼ h′, where

h = h0〈u0, ~v0〉〈u1, ~v1〉 and h′ = h′0〈u
′
0, ~v

′
0〉〈u

′
1, ~v

′
1〉.

The other case is trivial and therefore omitted. It needs to be shown that h′ is
in accordance with S as well, that is, h′ ∈ HS. Since h is in accordance with
S, S(I) = ~v1, where I ∈ I∃ is the information partition holding h. Derive
from Proposition 3.3 that ~v1 = ~v′1 and that h0〈u0, ~v0〉〈u1〉 ∼ h′0〈u

′
0, ~v

′
0〉〈u

′
1〉.

Since h is in accordance with S, so is h0〈u0, ~v0〉〈u1〉. Applying the inductive
hypothesis yields that h′0〈u

′
0, ~v

′
0〉〈u

′
1〉 is in accordance with S. Hence, S(I) =

~v1 = ~v′1, implying that h′ is in accordance with S.
As for (ii), it needs to be shown that T is closed under taking actions and

preserves winning. But this follows easily from S’s being a winning strategy.

22

From right to left. Suppose 〈S,Â′〉 is a winning plan of action in SY (sy).
Then, for every C ∈ S belonging to ∃ there is one C ′ such that C Â C ′. Es-
sentially similar to Proposition 6.4 one proves that C ′ = {h〈u,~vC〉 | h〈u〉 ∈
C}, for some ~vC ∈ V n. Put S(C) = ~vC and for every information partition
C not present in S, put S(C) = ~v for an arbitrary vector of vertices ~v that
properly extends every history in C. It is readily observes that S is a winning
strategy in 〈N,H, P, 〈Ii〉i∈N , U〉. 2

Definition 13 Let SY (sy) = 〈N,H, P,∼, U〉 be a Scotland Yard game con-
stituted by sy. The algorithm B-Ind effectively labels every cell C ∈ H with
B-Ind(C) ∈ {win, lose} and proceeds as follows:

• every h ∈ Z is painted color(h) ∈ {white, limegreen} in such a way
that color(h) = white iff U(h) = win

• every terminal information cell C ∈ H is given the label B-Ind(C) =
win iff color(h) = white, for every h ∈ C

• until every cell has been labelled, apply the following routine to every
cell C ∈ H that has no label, but all of whose successors have:

· If P (C) = ∃ and there exists a successor C ′ of C that has been
labelled B-Ind(C ′) = win, then C gets the label B-Ind(C) = win;
otherwise, C gets the label B-Ind(C) = lose.

· If P (C) = ∀ and there exists a successor h′ of C that has been
labelled B-Ind(C ′) = lose, then C gets the label B-Ind(C) = lose;
otherwise, C gets the label B-Ind(C) = win.

Write B-Ind(sy) to denote B-Ind(〈u∗, ~v∗〉).

Proposition 14 Let SY (sy) be a Scotland Yard game constituted by sy.
Then, ∃ has a winning strategy in SY (sy) iff B-Ind(sy) = win.

Proof. Trivial. 2

The analogous definitions and proposition for Scotland Yard-PI follow
below.

23

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

 � �
 � �
 � �
 � �

!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"

#�#
#�#
#�#
#�#

$�$
$�$
$�$
$�$

%�%
%�%
%�%
%�%

&�&
&�&
&�&
&�&

'�'
'�'
'�'
'�'

(�(
(�(
(�(
(�(

)�)�)
)�)�)
)�)�)
)�)�)

��*
��*
��*
��*

+�+
+�+
+�+
+�+

,�,
,�,
,�,
,�,

BABA

w
in

lose

lose

lose

lose

w
in

lose

lose

w
in

lose

lose

lose

lose

w
in

lose

lose

win winlose

a b

1 2 3 1 1 3 2 3

u∗

1 1 2 3

2

2 3

(a)

-�-�-
-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.
.�.�.

/�/�/
/�/�/
/�/�/
/�/�/

0�0�0
0�0�0
0�0�0
0�0�0

1�1
1�1
1�1
1�1

2�2
2�2
2�2
2�2

3�3�3
3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4
4�4�4

5�5�5
5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6
6�6�6

7�7�7
7�7�7
7�7�7
7�7�7

8�8�8
8�8�8
8�8�8
8�8�8

9�9
9�9
9�9
9�9

:�:
:�:
:�:
:�:

;�;
;�;
;�;
;�;

<�<
<�<
<�<
<�<

=�=
=�=
=�=
=�=

>�>
>�>
>�>
>�>

?�?
?�?
?�?
?�?

@�@
@�@
@�@
@�@

A�A�A
A�A�A
A�A�A
A�A�A

B�B�B
B�B�B
B�B�B
B�B�B

C�C�C
C�C�C
C�C�C
C�C�C

D�D�D
D�D�D
D�D�D
D�D�D

E�E
E�E
E�E
E�E

F�F
F�F
F�F
F�F

G�G�G
G�G�G
G�G�G
G�G�G

H�H�H
H�H�H
H�H�H
H�H�H

I�I�I
I�I�I
I�I�I
I�I�I

J�J�J
J�J�J
J�J�J
J�J�J

K�K�K
K�K�K
K�K�K
K�K�K

L�L�L
L�L�L
L�L�L
L�L�L

M�M�M
M�M�M
M�M�M
M�M�M

N�N�N
N�N�N
N�N�N
N�N�N

O�O
O�O
O�O
O�O

P�P
P�P
P�P
P�P

Q�Q
Q�Q
Q�Q
Q�Q

R�R
R�R
R�R
R�R

lose

lose

lose

lose

lose

lose

w
in

w
in

w
in

lose

lose

lose

lose

lose win winw
in

lose

w
in

A B

{a, b}

u∗

1 1 1 2 3 2 3 2 3

{1} {2} {3}{3}{2}{1}

(b)

Figure 6: The histories in SY (sy×) and SY -PI(sy×) labelled by the back-
wards induction algorithm B -Ind and B -IndPI depicted in (a) and (b), re-
spectively.

24

Definition 15 Let SY -PI(sy) = 〈NPI, HPI, PPI, UPI〉 be a Scotland Yard-PI
game constituted by sy. Then, we call the structure 〈SPI,Â

′
PI〉 a plan of

action for ∃ in SY -PI(sy), if

• SPI ⊆ HPI

• 〈u∗, ~v∗〉 ∈ SPI

• Â′
PI = ÂPI ∩ (SPI × SPI)

• for every h ∈ SPI such that PPI(h) = ∃, there exists exactly one h
′ ∈ SPI

such that h Â′
PI h

′

• for every h ∈ SPI such that PPI(h) = ∀ and every h′ ∈ HPI such that
h ÂPI h

′, it is the case that h′ ∈ SPI.

Call 〈SPI,Â
′
PI〉 a winning plan of action for ∃ in SY -PI(sy), if 〈SPI,Â

′
PI〉 is

a strategy and every terminal history h ∈ SPI has it that UPI(h) = win.

Definition 16 Let SY -PI(sy) = 〈NPI, HPI, PPI, UPI〉 be a Scotland Yard-PI
game constituted by sy. The algorithm B-IndPI effectively labels every history
h in HPI with B-IndPI(h) ∈ {win, lose}, proceeding as follows:

• Every h ∈ ZPI is labelled B-IndPI(h) = UPI(h).

• Until every history has been labelled, apply the following routine to every
history h ∈ HPI that has no label, but all whose successors have:

· If P (h) = ∃ and there exists a successor h′ of h that has been
labelled B-IndPI(h

′) = win, then h gets the label B-IndPI(h) =
win; otherwise, h gets the label B-IndPI(h) = lose.

· If P (h) = ∀ and there exists a successor h′ of h that has been
labelled B-IndPI(h

′) = lose, then h gets the label B-IndPI(h) =
lose; otherwise, h gets the label B-IndPI(h) = win.

Write B-IndPI(sy) to denote B-IndPI(〈u∗, ~v∗〉).

It is easy to see that every winning strategy constitutes a winning plan
of action. Conversely, it is an easy exercise to show that every winning plan
of action gives rise to a winning strategy, simply by extending it so as to
apply to every information partition. What action is prescribed precisely is
immaterial.

25

Proposition 17 Let SY -PI(sy) be a Scotland Yard-PI game constituted by
sy. Then, ∃ has a winning strategy in SY -PI(sy) iff B-IndPI(sy) = win.

Proof. Trivial. 2

For an example of the two backwards induction algorithms at work, see
Figure 6.

The upcoming Lemma states that β is a bijection respecting the labels
of the respective objects.

Lemma 18 For every h ∈ HPI, B-IndPI(h) = B-Ind(β(h)).

Proof. I prove by induction on the histories h ∈ HPI. The most interesting
case is the base step.

Suppose h〈U,~v〉 ∈ ZPI. Suppose B -IndPI(h〈U,~v〉) = win. By definition
of B -IndPI applied to terminal histories it follows that (U − {~v}) = ∅. Put
differently, every u ∈ U is an element of {~v}. Now consider an arbitrary
history g〈u′, ~v′〉 from β(h〈U,~v〉). By definition of β, it follows that u′ ∈ U
and that ~v′ = ~v. But then, u′ ∈ {~v′} and consequently U(g〈u′, ~v′〉) = win.
Thus the backwards induction for Scotland Yard paints g〈u′, ~v′〉 with the color
white. Since g〈u′, ~v′〉 was chosen arbitrarily, conclude that every history in
β(h〈U,~v〉) is painted white, whence B -Ind(β(h〈U,~v〉)) = win.

Conversely, suppose B -IndPI(h〈U,~v〉) = lose. By definition of B -IndPI

applied to terminal histories it follows that (U − {~v}) contains at least one
object, call it u. By Proposition 6.3 derive that there exists a history g〈u〉 ∈
β(h〈U〉). From Proposition 6.4 it follows that g〈u,~v〉 is a successor of g〈u〉,
since h〈U〉 is a successor of h〈U,~v〉. Furthermore, g〈u,~v〉 is an element of
β(h〈U,~v〉). Since u does not sit in {~v} the history g〈u,~v〉 is painted limegreen,
by the backwards induction algorithm of Scotland Yard. Since one of its
elements is painted limegreen, it is the case that B -Ind(β(h〈U,~v〉)) = lose.

Suppose h〈U〉 is non-terminal. Suppose that B -IndPI(h〈U〉) = win,
therefore, h〈U〉 has a successor h〈U,~v〉, such that B -IndPI(h〈U,~v〉) = win.
Applying the inductive hypothesis to h〈U,~v〉 yields that B -Ind(β(h〈U,~v〉)) =
win. Lemma 10 established that β is a order preserving bijection. Hence,
β(h〈U〉) Â β(h〈U,~v〉) and therefore we may conclude that B -Ind(β(h〈U〉)) =
win. The converse case runs along the same line.

Suppose h〈U,~v〉 is non-terminal. Analogous to the previous case. 2

Tying together these results brings us to the desired conclusion:

26

Theorem 19 Let sy be a Scotland Yard instance. Then, ∃ has a winning
strategy in SY (sy) iff she has a winning strategy in SY -PI(sy).

Proof. Follows immediately from Propositions 14 and 17 and Lemma 18,
since ∃ has a winning strategy in SY (sy) iff B -Ind(sy) = win iff B -IndPI(sy) =
win iff ∃ has a winning strategy in SY -PI(sy). 2

4 Scotland Yard is PSPACE-complete

Let Scotland Yard be the set of all Scotland Yard instances sy such that
∃ has a winning strategy in SY (sy). As a special case let the set of Scotland
Yard instances Scotland Yard♣ equal

{〈G, 〈u∗, ~v∗〉, f〉 ∈ Scotland Yard | f has range {♣}},

where ♣ ∈ {show , hide}.
Scotland Yard and Scotland Yardshow both have PSPACE-complete

complexity, as I show in this section. From this one may conclude that the
imperfect information in Scotland Yard does not have a computational im-
pact. Surprisingly, if ∃ cannot see the whereabouts of ∀ at any stage of
the game, the decidability problem ends up being NP-complete. That is,
Scotland Yardhide is complete for NP. The latter claim is treated in Sec-
tion 5.

Lemma 20 Scotland Yard ∈ PSPACE.

Proof. Required is a PSPACE algorithm that for arbitrary Scotland Yard
instances sy decides whether ∃ has a winning strategy in SY (sy). By Theo-
rem 19, it is sufficient to provide a PSPACE algorithm that decides the same
problem with respect to SY -PI(sy). This equivalence comes in useful, be-
cause SY -PI(sy) is a game of perfect information and can for this reason be
dealt with by means of the traditional machinery. In fact, the very same ma-
chinery provided to us by Papadimitriou cited in Section 1. Papadimitriou,
namely, observed that deciding the value of a game with perfect information
can be done in PSPACE if the following requirements are met:

• the length of any legal sequence of moves is bounded by a polynomial
in the size of the input;

27

• given a ‘board position’ of the game there is a polynomial-space algo-
rithm that constructs all possible next actions and board positions; or,
if there is none, decides whether the board position is a win for either
player.

It is easy to show that SY -PI(sy) meets those conditions. As to the first
one, namely, the length of the description of any history is polynomially
bounded in the number of rounds k of the game. By assumption k ≤
‖V ‖ ≤ ‖sy‖, whence the description of every history is polynomial in the
size of the input. As to (2), if h〈U,~v〉 is a non-terminal history, then its
successors are either (depending on f) only h〈U,~v〉〈{w1, . . . , wm}〉 or all of
h〈U,~v〉〈{w1}〉, . . . , h〈U,~v〉〈{wm}〉, where E(U −{~v}) = {w1, . . . , wm}. These
can clearly be constructed in PSPACE.

In the worst case, for an arbitrary history h〈U,~v〉〈U ′〉 in which ∃ is to
move there are ‖V ‖n many vectors ~v′ such that E(~v,~v′), where n is the num-
ber of ∃’s pawns on the game board. This number is clearly exponential in
the size of the input. Nevertheless, every vector ~v′ in V n = {v1, . . . , v‖V ‖}

n

can be constructed in polynomial space, simply by writing down the vector
〈v1, . . . , v1〉 ∈ V n that comes first in the lexicographical ordering and suc-
cessively constructing the remaining vectors that follow it up in the same
ordering. 2

Hardness is shown by reduction from QBF. To introduce the problem
properly, let me introduce some standard terminology from propositional
logic. A literal is a propositional variable or a negated propositional variable.
A clause is a disjunction of literals. A boolean formula is in conjunctive
normal form (CNF), if it is a conjunction of clauses. A boolean formula is said
to be in 3-CNF, if it is in CNF and all its clauses contain exactly three literals.
The problem of QBF has quantified boolean formulas ∀x1∃y1 . . . ∀xn∃yn φ as
instances, in which φ is a boolean formula in 3-CNF. QBF questions whether
it is the case that for every truth value for x1, there is a truth value for y1,
. . ., such that the boolean formula φ(~x, ~y) is satisfied by the resulting truth
assignment. Put formally, QBF is the set such that

ψ ∈ QBF iff {true, false} |= ψ,

where ψ is a QBF instance.

Lemma 21 Scotland Yardshow is PSPACE-hard.

28

Proof. Given a QBF instance ψ = ∀x1∃y1 . . . ∀xn∃yn φ, where φ = C1 ∧
. . .∧Cm is a boolean formula in 3-CNF, it suffices to construct a Scotland Yard
instance syψ, such that ψ ∈ QBF if and only if syψ ∈ Scotland Yardshow .
To this end, let me construct the initial position of the game constituted by
syψ. The formal specification of syψ follows from this construction directly.

Set i = 0. For i ≤ n+ 1, do as follows:

• If i = 0, lay down the opening-gadget, that is schematically depicted in
Figure 7.a. Moreover, distribute the pawns from

{∃x1
, . . . ,∃xn

,∃y1 , . . . ,∃yn
∃d,∀}

over the vertices of the opening-gadget as indicated in its depiction.

• If 1 ≤ i ≤ n, first put the xi-gadget at the bottom of the already
constructed game board. Next, put the yi-gadget below the justly
introduced xi-gadget. Figures 7.b and 7.c give a schematic account
of the xi-gadget and yi-gadget, respectively. (Note that as a result of
these actions, every vertex in the board game is connected to at least
one other vertex, except for the ones on the top row of the opening-
gadget and the ones on the bottom row of the yi-gadget.)

• If i = n + 1, put the clause-gadget (see Figure 7.d) at the bottom
of the already constructed board game. This gadget requires a little
tinkering before the construction terminates, in order to encode the
boolean formula φ by adding edges to the clause-gadgets (not present
in the depiction), as follows:

· For every variable z ∈ {~x, ~y} and clause C in φ: If z occurs as
a literal in C, then join the vertices named “+z” and “C” by an
edge. If ¬z occurs as a literal in C, then join the vertices named
“−z” and “C” by an edge.

• Set i = i+ 1.

Note that the board game can be considered layered, indicate by the hor-
izontal, dotted lines. These layers are numbered −2,−1, . . . , 4n+5, enabling
us to refer to these layers when we describe strategies. Note that the division
in layers is not complete: in between the 4(i − 1) + 3rd and 4(i − 1) + 4th
layer of the xi-gadget we find two vertices, not laying on any layer.

29

As I pointed out, the above construction procedure yields a game board,
rather than a Scotland Yard instance. But syψ is easily derived from the
board game, in the sense that the graph is completely spelt out and so
are the initial positions of the pawns. Therefore, syψ is fully specified af-
ter putting f : {1, . . . , 4n + 5} → show . Hence, syψ is an instance of
Scotland Yardshow .

It remains to be shown that ψ ∈ QBF iff syψ ∈ Scotland Yardshow .

From left to right. Suppose that {true, false} |= ψ, then there is a way
of picking truth values for the existentially quantified variables that renders
ψ’s boolean part φ true, no matter what truth values were assigned to the
universally quantified variables. ∃’s winning strategy in SY (syψ) (being wit-
ness of the fact that syψ ∈ Scotland Yardshow) can be read off from the
aforementioned way of picking. We do so by interpreting moves in SY (syψ)
as assigning truth values to variables and vice versa: Actions performed by ∀
from layer 4(i− 1) + 1 to layer 4(i− 1) + 2 will be interpreted as assigning a
truth value to the universally quantified variable xi. In particular, a move by
∀ to the vertex named “+xi” (“−xi”) will be interpreted as assigning to xi
the value true (false). Conversely, if ∃’s way of picking prescribes assigning
true (false) to yi this will be reflected in SY (syψ) by moving ∃yi

to the vertex
named “+yi” (“−yi”) on layer 4(i− 1) + 5.

Roughly speaking, ∃ goes about as follows: when she is to chose between
moving ∃yi

to the vertex named “+yi” or “−yi” she interprets ∀’s previous
moves as a truth assignment and observes which truth value is prescribed
by the way of picking. Next, she interprets this truth value as a move in
SY (syψ) as above and moves ∃yi

to the according vertex. This intuition
underlies the full specification of ∃’s strategy, described below:

For 0 ≤ i ≤ n+ 1 let ∃’s strategy be as follows:

• Above all: If any pawn can capture ∀, do so!

• For every pawn that stands on a vertex on layer j that is connected to
exactly one vertex on layer j+1, move it to this vertex. If the pawn at
stake is actually ∃xi

standing on a vertex on layer 4(i−1)+3, it cannot
move to the vertex on layer 4(i− 1) + 4, because there is a vertex v in
between. In this case, move ∃xi

to v and in the subsequent round of
the game move it downwards to layer 4(i− 1) + 4.

30

1

0

−1

−2

∃x1
∃xi

∃xn

∃yn
∃yi

∃y2∃y1 ∀

∃d

(a) Opening-gadget

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4
︸ ︷︷ ︸

i−1

︸ ︷︷ ︸

i−1

+xi −xi

(b) xi-gadget

4(i− 1) + 4

4(i− 1) + 5
︸ ︷︷ ︸

n

︸ ︷︷ ︸

i

+yi−yi

(c) yi-gadget

C2

4n+ 4

4n+ 5

+y1−y1+y2−y2 +yi−yi +yn−yn +x1 −x1+xi −xi+xn −xn

CmC1

(d) Clause-gadget

Figure 7: The gadgets that make up the initial position of the board game
constituted by SY (syψ). The dotted lines are merely ‘decoration’ of the game
board, to enhance readability. The horizontal, dotted lines are referred to as
‘layers’.

31

• If ∃xi
stands on a vertex on layer 4(i − 1) + 2, then move it to the

vertex on layer 4(i− 1) + 3 that is connected to the vertex where ∀ is
positioned.

• If ∃yi
stands on a vertex on layer 4(i − 1) + 4, and the way of picking

prescribes assigning true (false) to yi, then move it to the vertex on
layer 4(i− 1) + 5 that is named “+yi” (“−yi”).

• If ∃d stands on a vertex on layer j that has two successors on layer
j + 1, then move it along the left-hand (right-hand) edge, if j is even
(odd).

• If ∃z (for z ∈ {~x, ~y}) stands on a vertex on layer 4n+4 and this vertex
is not connected to a vertex on which ∀ is positioned, move it along an
arbitrary edge (possibly upwards).

As to ∀’s behavior I claim without rigorous proof that after 4n+4 rounds
of the game (that is, without being captured at an earlier stage of the game)
he has traversed a path leading through exactly one of the vertices named
“+xi” and “−xi”, for every xi ∈ {~x}, ending up in a vertex named “C”, for
some clause C in φ. To see that this must be the case: moving ∀ upwards at
any stage of the game results in an immediate capturing by ∃d. (In fact, ∃d’s
sole purpose in life is capturing ∀, when he moves upward.) If ∀ is moved to
one of the reflexive vertices on layer 4(i − 1) + 3 he is captured by ∃xi

who
moves along the reflexive edge.

Suppose the 4n + 4th round of the game is over and ∃ played the entire
game according to the above strategy, then she the above strategy prescribes
a move that makes her win. Concludingly, ∃’s strategy is in fact a winning
strategy.

Upon arriving at layer 4n + 4, pawn ∃z (for z ∈ {~x, ~y}) stands on a
vertex named “+z” or “−z”, reflecting that z was assigned true or false,
respectively. By assumption on the successfulness of the way of picking, that
guided ∃ through SY (syψ), we have that the truth assignment that is associ-
ated with the positions of the pawns ∃x1

, . . . ,∃xn
,∃y1 , . . . ,∃yn

makes φ true.
That is, under that truth assignment, for every clause C in φ there is a literal
L that is made true. Now, if L = z, then ∃z stands on the vertex named
“+z” and this vertex and the vertex named “C” are joined by an edge; and
if L = ¬z, then ∃z stands on the vertex named “−z” and this vertex and the
vertex named “C” are joined by an edge. So no matter to which vertex named

32

“C” pawn ∀ moves during his 4n + 5th move, for at least one z ∈ {~x, ~y} it
is the case that ∃z can move to this vertex named “C” and capture him there.

From right to left. Suppose that {true, false} 6|= ψ, then there is a way of
picking truth values for the universally quantified variables that renders the
boolean part false, no matter what truth values were subsequently assigned
to the existentially quantified variables. I leave out the argumentation that
this way of picking constitutes a winning strategy for ∀ in SY (syψ), as it
is similar to the argumentation in the converse direction. But let us note
one crucial property of ∀’s winning strategy: it moves pawn ∀ downwards,
during every round in the game. Therefore, the only round in which it can
be captured is the last one: on a vertex on layer 4n+ 5.

We need to pay close attention, though, to ∃’s behavior. that is, to see
that ∃ cannot change her sad destiny (losing) by deviating from the behavior
specified in the rules below. The gist of this behavior is that it results in pawn
∃xi

‘remembering’ ∀’s moves on layer 4(i−1)+1 and that after 4n+4 rounds
the pawns ∃x1

, . . . ,∃xn
,∃y1 , . . . ,∃yn

all stand on a vertex on layer 4n+4. The
gist is that just as above the positions of these pawns on vertices on layer
4n+ 4 reflect a truth assignment, that falsify the boolean part.

The rules are as follows:

(1) If ∃xi
stands on a vertex on layer 4(i − 1) + 2, then move it to the

vertex on layer 4(i− 1) + 3 that is connected to the vertex where ∀ is
positioned.

(2) If ∃d stands on a vertex on layer j that is connected to two vertices
below, then move it along the left-hand (right-hand) edge, if j is even
(odd).

(3) For every pawn that stands on a vertex on layer j that is connected
to exactly one vertex on layer j + 1, move it to this vertex. (With the
same exception as before with regard to ∃xi

standing on a vertex on
layer 4(i− 1) + 3.)

Now, I argue that not behaving in correspondence with (1)-(3) will also result
in a loss for ∃:

(1) Suppose ∃xi
stands on the vertex on layer 4(i − 1) + 2, having two

options: u and v. Let u be the vertex on layer 4(i − 1) + 3 that is

33

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4

+xi −xi

∀

∃d

∃xi

u v

(a)

+xi −xi

∃xi
∀

∃d

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4

(b)

Figure 8: Positions on the game board that may occur if ∃ does not play
according to rule (1) and (2), depicted in (a) and (b), respectively.

34

connected to the vertex where ∀ is positioned (see Figure 8.a). For the
sake of the argument let us suppose that ∃xi

is moved to v. In that case,
∀ may safely move to u. If ∀ continues the game by moving its pawn
downwards it wins automatically, since after the final round (round
4n + 5) its pawn stands on a vertex on layer 4n + 4, due to the extra
vertex sitting in between layers 4(i − 1) + 3 and 4(i − 1) + 4, without
there being any opportunity for ∃ to capture him. As such, the pawn
∃xi

is forced to remember what vertex ∀ visited on layer 4(i − 1) + 2:
the one named “+xi” or “−xi”?

(2) Suppose ∃d stands on a vertex on layer 4(i − 1) + 1 and from there
moves along the right-hand edge twice (see Figure 8.b). ∀ can exploit
this move by moving as he would do normally, except for round 4n+5,
during which he moves upwards. This behavior results in a guaranteed
win for ∀, since none of ∃’s pawns is pursuing ∀ closely enough to
capture it, after moving upwards.

(3) Suppose any pawn controlled by ∃ moves upwards instead of down-
wards. We see that this can never result in a win for ∃, because ∀
(behaving as he does) can only be captured in the last round of the
game, on a vertex on layer 4n + 5. In particular, any pawn ∃z, for
z ∈ {~x, ~y}, the shortest path to a vertex on layer 4n + 5 is of length
4n+ 5. Now, if ∃z is moved upwards, it cannot (during the last round
of the game) capture ∀.

This concludes the proof. 2

The previous two lemmata are sufficient arguments to settle completeness.

Theorem 22 Scotland Yard and Scotland Yardshow are PSPACE-
complete.

Proof. Lemma 20 proved that Scotland Yard is solvable in PSPACE.
To check whether an instance sy has a function f with range {show} is trivial,
therefore, also Scotland Yardshow is solvable in PSPACE.

PSPACE-hardness was proven for Scotland Yardshow in Lemma 21.
Since the latter problem is a specialization of Scotland Yard, it follows
immediately that Scotland Yard is PSPACE-hard as well.

Hence, both problems are complete for PSPACE. 2

35

5 Ignorance is (computational) bless

Intuitively, adding imperfect information makes a game harder. However,
if one restricts oneself to Scotland Yard instances in which ∀’s whereabouts
are only known at the beginning of the game, then deciding whether ∃ has
a winning strategy is NP-complete, cf. Theorem 25. After the proof of this
theorem, I show that from a quantitative point of view it is indeed harder
for ∃ to win an arbitrary Scotland Yard game.

Lemma 23 Scotland Yardhide ∈ NP.

Proof. I make use of the equivalence between the Scotland Yard game and
its perfect information counterpart Scotland Yard-PI. It suffices to give an
NP algorithm that decides whether ∃ has a winning strategy in an arbitrary
SY -PI(sy), where sy ’s information function has range {hide}. That is, for
every integer i on which f is properly defined, we have that f(i) = hide. Let
me now repeat the game rule from page 15 that regulates ∀’s behavior in the
game of Scotland Yard-PI:

2-PI. Let U ′ = E(U − {~v}). If f(i) = hide, then set U = U ′ and ∀
positions a ∀ pawn on every vertex v iff v ∈ U . If f(i) = show ,
then ∀ picks a vertex u′ ∈ U ′, removes all his pawns from the
board, and puts one pawn on u′. Set U = {u′}.

Since f(i) never equals show , by assumption, we can harmlessly replace it
by the following rule:

2-PI′. Set U ′ = E(U − {~v}) and ∀ positions a ∀ pawn on every vertex v
iff v ∈ U .

But doing so yields a game in which ∀ plays no active rôle anymore, in the
sense that the set U at any round of the game is completely determined
by ∃’s past moves. Put differently, any game constituted by an instance
of Scotland Yardhide essentially is a one-player game! Having obtained
this insight, it is easy to see that the following algorithm decides in non-
deterministic polynomial time whether ∃ has a winning strategy in the k-
round SY -PI(sy):

• Non-deterministically guess a k number of n-dimensional vectors of
vertices ~v1, . . . , ~vk ∈ V

n.

36

• Set U = {u∗}, ~v = ~v∗, and i = 1; then for i ≤ k proceed as follows:

· If E(~v,~vi), then set ~v = ~vi; else, reject.

· If (U − {~v}) = ∅, then accept; else, set U = (U − {~v}).

· Set i = i+ 1.

• If after k rounds there are still ∀ pawns present on the game board,
reject.

This algorithm is obviously correct: ∃ has a winning strategy in SY -PI(sy)
iff it accepts sy . Hence, Scotland Yardhide is in NP. 2

To prove hardness, I reduce from 3-Sat, that takes boolean formulae φ
as instance that are in 3-CNF. φ is in 3-Sat iff it is satisfiable, that is, there
exists a truth assignment of its variables that makes φ true. Henceforth, I
make the assumption that no clause in a 3-Sat instance contains two copies
of one propositional variable. This goes obviously without loss of generality.

Lemma 24 Scotland Yardhide is NP-hard.

Proof. To reduce from 3-Sat, let φ = C1 ∧ . . . ∧ Cm be an instance
of 3-Sat over the variables x1, . . . , xn. On the basis of φ we will construe
a Scotland Yard instance syφ such that φ is satisfiable iff ∃ has a winning
strategy in SY -PI(syφ). In fact, syφ will be read off from the initial game
board that is put together as follows.

Set i = 0; for i ≤ n proceed as follows:

• If i = 0, lay down the clause-gadget from Figure 9.a. The sub-graphs
Hi are fully connected graphs with four elements, whose vertices are
connected with the vertices wi.

• If 1 ≤ i ≤ n, put the xi-gadget to the right of the already constructed
game board, see Figure 9.b. It will be convenient to refer to the vertex
qi by means of −i

m+1 and +i
m+1.

For every 0 ≤ j ≤ m, do as follows:

· if xi occurs as a literal in Cj, add the edges 〈+i
j, wj〉 and 〈wj,+

i
j+1〉

· if ¬xi occurs as a literal in Cj, add the edges 〈−i
j, wj〉 and 〈wj,−

i
j+1〉

· add the edges 〈vj,−
i
j+1〉 and 〈vj,+

i
j+1〉.

37

Note that C0 refers to no clause, and that −i
m+1 = +i

m+1 = qi.

• Set i = i+ 1.

The Scotland Yard instance syφ is derived from the board game: the di-
graph is completely spelt out and the initial positions are as indicated in the
gadgets. Therefore, syφ is fully specified after putting f : {1, . . . , 2m+2} →
{hide}. Hence, syφ is an instance of Scotland Yardhide .

It remains to be shown that φ ∈ 3-Sat iff syφ ∈ Scotland Yardhide .

By Theorem 19, it is sufficient to show that φ ∈ 3-Sat iff ∃ has a winning
strategy in SY -PI(syφ).

From left to right. Suppose φ is satisfiable, then there exists a truth
assignment t : {~x} → {true, false} such that for every clause Cj in φ, there
exists at least one literal that is true under t. Let us describe a strategy for
∃ that is based on t and argue that it is in fact a winning strategy for her in
SY -PI(syφ):

• If ∃i stands on the vertex on layer 0 and t(xi) = true (false), then move
it to +i

1 (−i
1) on layer 1.

• If ∃i stands on −i
j (+i

j) and −i
j (+i

j) happens to be connected to wj,
then move it to wj. If ∃i stands on−

i
j (+

i
j) and−

i
j (+

i
j) is not connected

with wj, then move it to dij.

• If ∃i stands on wj, move it to ±i
j+1, where ± ∈ {+,−}. Note that this

move is deterministic, since there is an edge from wj to +i
j+1 only if

xi occurs as a literal in Cj. By assumption of φ being an instance of
3-Sat, it cannot be the case that also ¬xi occurs as a literal in Cj.
Hence, there is no edge from wj to −

i
j+1.

• If ∃i stands on d
i
j (e

i
j) then move it to −i

j+1 (+i
j+1). If ∃i stands on d

i
m

or eim then move it to qi.

• If ∃i stands on q
i, then move it to si if t(xi) = true and to ti if t(xi) =

false.

Observe that if ∃ plays according to the above strategy, every pawn ∃i will
eventually traverse either all vertices −i

1, . . . ,−
i
m or all vertices +i

1, . . . ,+
i
m,

given that t(xi) = false or t(xi) = true, respectively.

38

������������������������������

���������������

���������������

������������������������������

������������������������������

	�	�	�	�	�	�	�	
�
�
�
�
�
�
�

∀

Hm

H2

H1

u1

v1

u2

v2

u3

vm

w1

w2

wm

v0

um

0

1

2

3

4

2m+ 2

2m− 1

2m

2m+ 1

5

(a) Clause-gadget

��

�
�
�
�

���
���
���
���

��

���������������������������

��

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��

��

∃i

−i
1 +i

1

f i1ei1di1ci1

ai2 −i
2 +i

2 bi2

f i2ei2di2ci2

aim −i
m +i

m bim

dim eim f im

qi
ri

tisi

pi

ai3 −i
3 +i

3 bi3

cim

(b) xi-gadget

Figure 9: The gadgets that make up the initial position of SY -PI(syφ). The
sub-graph Hj is a fully connected graph with 4 elements, all of whose vertices
are connected with the vertex wj.

39

To show that this strategy is indeed winning against any of ∀’s strategies,
consider the sets of vertices U i

j that ∀ occupies on the clause-gadget and the
xi-gadget, after round 1 ≤ j ≤ 2m + 2 of the game in which ∃ moved as
described above. Initially, ∀ has one pawn on v0; thus, U

i
0 = {v0}. Let us

suppose without loss of generality that t(xi) = true. Then, U i
1 = {u1,−

i
1} as

the ∀ pawn put on +i
1 is captured by ∃i moving thereto in accordance with

the strategy ∃ plays. I leave it to the reader to check that for 1 ≤ j ≤ m− 1,
it is the case that

U i
2j = {vj, c

i
j, d

i
j}

U i
2j+1 = {uj+1, a

i
j+1,−

i
j+1}.

The crucial insight being that the ∀ pawn put on wj can be captured iff there
exists at least one literal in Cj that is made true by t. Since t was assumed to
be a satisfying assignment, there must be at least one ∃ pawn that captures
the universal pawn on wj. It is prescribed by the above strategy that ∃i is
moved to any wj-vertex, if possible. Furthermore, it is required to return to
the xi-gadget in the next round of the game, capturing the ∀ pawn that was
positioned on +i

j, from vj.
After round 2m − 1, ∀ cannot continue safely walking on v0, u1, . . . , vm;

indeed, he only has pawns on the xi-gadgets: U
i
2m = {cim, d

i
m}. The pawn

put on q is captured by ∃, so we get that U i
2m+1 = {pi}. Following the strat-

egy above, ∃ moves ∃i from q to s, whence U i
2m+2 = ∅. Since i was chosen

arbitrarily, we have that ∀ has not pawns left on any xi-gadget and therefore
has lost after exactly 2m+ 2 rounds of playing.

From right to left. Suppose φ is not satisfiable, then for every truth
assignment t to the variables in φ, there exists a clause Cj in φ, that is made
false. In the converse direction of this proof, we saw that every ∃i traverses
one of the paths −i

1, . . . ,−
i
m, q

i and +i
1, . . . ,+

i
m, q

i, depending on t(xi). This
behavior I call in accordance with the truth value t(xi) assigned to xi; if this
behavior is displayed with respect to every 1 ≤ i ≤ n, then I say that it is in
accordance with the truth assignment t.

For now, assume that ∃ plays in accordance with some truth assignment
t. Since φ is not satisfiable, it is not satisfied by t either. Therefore, there
is a clause Cj that is not satisfied by t. This is reflected during the playing
of the game by the fact that after round 2j there is a ∀ pawn positioned on
wj that cannot be captured by any ∃i. This state of affairs will result in a

40

win for ∀, as he moves pawns to every vertex in Hj during round 2j + 1.
By construction, Hj is a connected graph on which he can keep on putting
pawns indefinitely.

Remains to be shown that ∃ cannot avoid losing by deviating from playing
in accordance with some truth assignment. I make the following claims: (A)
If after round 1 ≤ 2j − 1 ≤ 2m + 1 there is an i such that no ∃ pawn is
positioned on −i

j or +
i
j, then ∃ loses. (B) If after round 2 ≤ 2j ≤ 2m there is

an ∃ pawn positioned on cij or f
i
j , then ∃ loses. I prove by induction. While

proving these claims, I take the easily derived fact for granted that during
round 2j − 1 of the game ∀ has a pawn on uj and that during round 2j of
the game ∀ has a pawn on vj.

Base step. (A) Suppose after round 2m+1 no ∃ pawn is on qi (recall that
−i
m+1 = +i

m+1 = qi). Then, there is a ∀ pawn on qi, since by construction of
the game board, um is connected to qi. During the next round, ∀ has pawns
on both si and ti, none of which can be captured by ∃, as she has no pawns
on the xi-gadget.

(B) Suppose after round 2m there is an ∃ pawn positioned on cim, say.
Let us make case a distinction here regarding the state of affairs after round
2m+1: (i) there is an ∃ pawn on qi. Obviously, this pawn cannot be the one
we had on cim after round 2m, since cim and qi are not connected. Therefore
there are two of ∃’s pawns on the xi-gadget. As there are exactly n pawns
at ∃’s disposal, during round 2m + 1 there is a xh-gadget avoid of ∃ pawns.
In particular, there is no ∃ pawn on qh. Applying clause (A) proved, yields
that ∃ cannot win from this position. (ii) there is no ∃ pawn on qi. Then,
there is a ∀ pawn on qi after round 2m+1, coming from um. Therefore, after
round 2m + 2 there is a ∀ pawn on ti; coming from cim, ∃ can only capture
∀’s pawn at si.

Induction step. (A) Suppose after round 1 ≤ 2j − 1 ≤ 2m− 1 there is an
i such that no ∃ pawn is positioned on −i

j or +
i
j. Since ∀ has a pawn on vj−1

after round 2j − 2, he has pawns on both −i
j and +i

j after round 2j − 1. If
after the next round ∀ occupies the vertices cij, d

i
j, e

i
j or d

i
j, e

i
j, f

i
j this implies

that one of ∃’s pawns is on cij or f
i
j , respectively. But then she loses in virtue

of the inductive hypothesis of (B). So, suppose that after round 2j ∀ occupies
all the vertices cij, d

i
j, e

i
j, f

i
j . Then, for the xi-gadget to be cleansed of ∀ pawns

it is required that during some later round of the game there are at least two
∃ pawns on this gadget. But then during this round the inductive hypothesis
of (A) kicks in, yielding that ∃ loses.

41

(B) Suppose after round 2 ≤ 2j ≤ 2m− 2 there is an ∃ pawn positioned
on cij, say. Then, after round 2j + 2 the same pawn is positioned on cij+1.
Applying the inductive hypothesis of (B) teaches that ∃ loses.

I leave it to the reader to check that if ∃ plays in such a way that the
premises of (A) and (B) do not apply, during any of the rounds of the game,
then she plays in accordance with some truth assignment. However, playing
according to any truth assignment is bound to be a losing way of playing, as
I argued earlier. This concludes the proof. 2

Tying together the latter two theorems yields NP-completeness for the
specialization of Scotland Yard in which ∀ does not give any information.

Theorem 25 Scotland Yardhide is NP-complete.

Proof. Immediate from Lemmata 23 and 24. 2

We saw that from a computational point of view, it is easier to solve the
decision problem Scotland Yard, when ∀ does not reveal himself during
the game. Yet, in a quantitative sense it becomes harder for ∃ to play this
game, in that there are games in which ∃ has no winning strategy if ∀ does
not reveal himself at all, but she would have had a winning strategy if ∀ was
to reveal himself once. To make this claim precise fix two functions g and h,
where

g : {1, . . . , k} → {hide} and h : {1, . . . , k} → {hide, show}

such that h(j) = show , for some j. Then, for every digraph G and initial
positions 〈u∗, ~v∗〉 on this digraph it is the case that if ∃ has a winning strategy
in SY (G, 〈u∗, ~v∗〉, g) then she has one in SY (G, 〈u∗, ~v∗〉, h). The converse does
not hold, however. Consider the graph F = 〈Vj, Ej〉, such that

Vj = {−2,−1, . . . , j − 3, j − 2} ∪ {it | j − 1 ≤ i ≤ k − 1 and t ∈ {0, 1}}

Ej = the symmetric closure of E ′
j, where

E ′
j = {〈−2,−1〉, . . . , 〈j − 3, j − 2〉, 〈j − 2, (j − 1)0〉, 〈j − 2, (j − 1)1〉} ∪

{〈it, (i+ 1)t〉 | j − 1 ≤ i ≤ k − 2 and t ∈ {0, 1}}.

F can be depicted as a fork. Furthermore, let ∃ have one pawn that is
initially positioned on node −2 and let ∀’s pawn be initially positioned on

42

∀∃

−2 −1 0 1

j1

j0(j−1)0 (j+1)0 (k−2)0

(k−1)1(k−2)1(j+1)1(j−1)1

(k−1)0

j−1 j−2

Figure 10: The forked graph F . ∃ has a winning strategy iff she knows ∀’s
position during round j.

node 0. Thus, u∗ = −2 and v∗ = 0. For a graphical representation of the
initial position of the game board constituted by F , see Figure 10.

I claim that ∃ has a winning strategy in SY (G, 〈u∗, v∗〉, h). This fact
is most easily established by observing the perfect information variant game
SY -PI(G, 〈u∗, v∗〉, h). Let ∃’s winning strategy consist of moving to the right,
in case she has only one vertex to her right. If she is to move from vertex
j−2 (in round j), she moves to (j−1)t, depending on the vertex jt on which
∀ is at. This t is unique, since by assumption h(j) = show .

It is easy to see that after the jth round of the game, ∀ has only one
pawn on one of the fork’s blades. In particular, at the beginning of round k,
∀ has one pawn on node (k − 1)t and ∃ is at (k − 3)t. The only successor of
(k−1)t is (k−2)t, the vertex on which ∃ arrives during the last round of the
game. Therefore, the above description constitutes a winning strategy for ∃
in SY -PI(G, 〈u∗, v∗〉, h).

Obviously, ∃ does not have a winning strategy in SY -PI(G, 〈u∗, v∗〉, g),
as ∀ splits his troops among the two blades of the fork. In k round ∃ can
only capture the ∀ pawns on one of the blades and loses.

6 Acknowledgements

I wish to thank the organizers of the seventh August de Morgan workshop
for inviting me to present my research. I gratefully acknowledge Peter van
Emde Boas for carefully proofreading an earlier version, and Ulle Endriss for
his remarks that lead to Section 5 in this writing.

Finally, let me acknowledge Victor de Boer, Berend ter Borg, and Sicco
Kuijper with whom I played many games of Scotland Yard on Sunday after-
noons, already ten years ago.

43

A The boring bits of Section 2

Proposition 6 For every history h′ ∈ HPI, the following hold:

1. If h′ = h〈U〉 and f(`(h〈U〉)) = hide, then it is the case that U =
{u | g〈u〉 ∈ H, for some g ∈ β(h)}.

2. If P (h′) = ∀ and f(`(h′) + 1) = show , then it is the case that {u | h′ Â
h′〈{u}〉, for some h′〈{u}〉 ∈ HPI} = {u | g〈u〉 ∈ H, for some g ∈
β(h′)}.

3. If h′ = h〈U〉 ∈ HPI and u ∈ U , then there exists a history g ∈ β(h)
such that g〈u〉 ∈ H.

4. If h′ = h〈U,~v〉 ∈ HPI, then it is the case that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈
β(h〈U〉)}.

Proof. The proof hinges on one big inductive argument on the length of
the histories. I warn the reader that the proof of the one item may use the
inductive hypothesis of the other item.

The base case in which `(h) = 0 is trivial and therefore omitted.

1. Fix h〈U,~v〉〈U ′〉 ∈ HPI such that f(`(h〈U,~v〉〈U ′〉)) = hide.

From left to right. Suppose u′ ∈ U ′, then it suffices to show that there
exists a history g〈u,~v〉〈u′〉 ∈ H, such that g〈u,~v〉 ∈ β(h〈U,~v〉). To this
end, we first observe that U−{~v} 6= ∅ and that for some u ∈ (U−{~v})
it is the case that E(u, u′). Apply the inductive hypothesis of item 3
of this proposition to h〈U〉, yielding that there exists a history g〈u〉 ∈
β(h〈U〉), since u ∈ U . By the inductive hypothesis of item 4 of this
proposition we get that g〈u,~v〉 ∈ β(h〈U,~v〉). Since u ∈ (U − {~v}), it
certainly does not sit in {~v}. Hence, g〈u,~v〉〈u′〉 is a history in H, as
E(u, u′) and U − {~v} 6= ∅.

From right to left. Suppose g〈u,~v〉〈u′〉 ∈ H, where g〈u,~v〉 ∈ β(h〈U,~v〉),
then it suffices to show that u′ ∈ U ′. By definition of β it is the case
that g〈u〉 ∈ β(h〈U〉) and that u ∈ U . Since g〈u,~v〉〈u′〉 is a history,
g〈u,~v〉 cannot be a terminal history, whence u /∈ {~v} and E(u, u′).
Consequently, u′ ∈ U ′, as required.

44

2. Fix h〈U,~v〉 ∈ HPI such that P (h) = ∀ and f(`(h〈U,~v〉) + 1) = show .

From left to right. Suppose h〈U,~v〉 Â h〈U,~v〉〈{u′}〉, then it suffices to
show that there exists a history g〈u,~v〉〈u′〉 ∈ H, such that g〈u,~v〉 ∈
β(h〈U,~v〉). To this end, firstly observe that for some u ∈ (U − {~v}) it
must be the case that E(u, u′). We apply the inductive hypothesis of
item 3 of this proposition to h〈U〉, yielding that there exists a history
g〈u〉 ∈ β(h〈U〉), since u ∈ U . By the inductive hypothesis of item 4 of
this proposition we get that g〈u,~v〉 ∈ β(h〈U,~v〉). Since u ∈ (U − {~v}),
it certainly does not sit in {~v}. Hence, g〈u,~v〉〈u′〉 is a history in H, as
E(u, u′).

From right to left. Suppose g〈u,~v〉〈u′〉 ∈ H, where g〈u,~v〉 ∈ β(h〈U,~v〉),
then it suffices to show that h〈U,~v〉 Â h〈U,~v〉〈{u′}〉. By definition of
β it is the case that g〈u〉 ∈ β(h〈U〉) and that u ∈ U . Since g〈u,~v〉〈u′〉
is a history, g〈u,~v〉 cannot be a terminal history, whence u /∈ {~v} and
E(u, u′). Hence, h〈U,~v〉〈{u′}〉 is a history in HPI succeeding h〈U,~v〉.

3. Follows immediately from items 1 and 2 of this proposition.

4. From left to right. Follows from the definition.

From right to left. Fix h〈U,~v〉〈U ′, ~v′〉 ∈ HPI. It suffices to show that
if g〈u,~v〉〈u′〉 ∈ β(h〈U,~v〉〈U ′〉), then g〈u,~v〉〈u′, ~v′〉 is a history. By the
inductive hypothesis of this proposition, β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈
β(h〈U〉)}. It is readily observed from the definition of β that for every
history g〈u, ~w〉〈u′〉 ∈ β(h〈U,~v〉〈U ′〉) it is the case that ~v = ~w. By defini-
tion of H, it follows that every history g〈u, ~w〉〈u′〉 ∈ β(h〈U,~v〉〈U ′〉) has
g〈u, ~w〉〈u′, ~v′〉 as a successor history, since E(~v,~v′). Hence, the claim
follows.

This concludes the proof. 2

Proposition 7 is the converse of the previous Proposition, as it links up
histories in H with histories in HPI.

Proposition 7 For every g′ ∈ H, the following hold:

1. If g′ = g〈u〉 ∈ H, then there exists a h〈U〉 ∈ HPI such that g ∈ β(h)
and u ∈ U .

45

2. If g′ = g〈u,~v〉 ∈ H, then there exists a h〈U,~v′〉 ∈ HPI such that
g〈u〉 ∈ β(h〈U〉) and ~v = ~v′.

Proof. Again, the proof is one big inductive argument on the length of
the histories.

The base case in which `(h) = 0 is trivial and therefore omitted.

1. Fix g〈u,~v〉〈u′〉 ∈ H. Clearly, g〈u,~v〉 is no terminal history and there-
fore u /∈ {~v} and E(u, u′). By the inductive hypothesis of item 2 of
this proposition, it follows that there exists a h〈U,~v〉 ∈ HPI, such that
g〈u〉 ∈ β(h〈U〉). By definition of β, we derive that u ∈ U . Conse-
quently, U − {~v} contains at least one object, namely u. This implies
that h〈U,~v〉 is not a terminal history. Since E(u, u′), there must exist
a history h〈U,~v〉〈U ′〉 such that u′ ∈ U ′.

2. Fix g〈u,~v〉〈u′, ~v′〉 ∈ H. Clearly, g〈u,~v〉 is no terminal history, whence
u /∈ {~v} and furthermore E(~v,~v′). By the inductive hypothesis of item
1 of this proposition, it follows that g〈u,~v〉 ∈ β(h〈U,~v〉), for some
h〈U,~v〉 ∈ HPI such that u ∈ U . Since u /∈ {~v}, U − {~v} is not empty.
Consequently, the history h〈U,~v〉〈E(U −{~v})〉 exists and by definition
of β, g〈u,~v〉〈u′〉 ∈ β(h〈U,~v〉〈E(U − {~v})〉). Since E(~v,~v′), it follows
that h〈U,~v〉〈E(U − {~v}), ~v′〉 is a history in HPI as well.

This concludes the proof. 2

Lemma 8 β is a function of type HPI → H.

Proof. I prove by induction on the structure of histories h′ ∈ HPI. I omit
the base step.

Suppose h′ = h〈U〉. By definition β(h〈U〉) = {g〈u〉 ∈ H | g ∈ β(h) and u ∈
U}. It is easily derived from Proposition 6.3 that β(h〈U〉) is non-empty. By
the inductive hypothesis, we have that β(h) = {g1, . . . , gm} ∈ H, whence
g1 ∼ . . . ∼ gm. I show that for every g〈u〉, g′〈u′〉 ∈ β(h〈U〉), g〈u〉 ∼ g′〈u′〉.
To this end I make a case distinction:

Suppose f(`(h〈U〉)) = hide. This case follows directly from the definition
of ∼, since g Â g〈u〉 and g′ Â g′〈u′〉.

Suppose f(`(h〈U〉)) = show. Since ∀ has to reveal his position, U = {v}
is a singleton. But then, if g〈u〉, g′〈u′〉 are both histories in β(h〈{v}〉), then

46

u = u′ = v. Consequently, it follows from the definition of ∼ that g〈u〉 ∼
g′〈u′〉.

Remains to be shown that there exists no superset of β(h〈U〉) that is
closed under ∼ as well. For the sake of contradiction, let g+〈u+〉 be such
that g+〈u+〉 ∼ g〈u〉, for every g〈u〉 ∈ β(h〈U〉), but g+〈u+〉 /∈ β(h〈U〉). From
the latter we derive that either (A) g+ /∈ β(h) or (B) u+ /∈ U . For the sake
of contradiction assume (A), that is, g+ /∈ β(h). Therefore, g+ 6∼ g, for any
g ∈ β(h). From Proposition 3.4 it follows immediately that g+〈u+〉 6∼ g1〈u1〉,
since g1〈u1〉 ∈ β(h〈U〉). This contradicts the assumption and therefore g+ ∈
β(h). To derive that (B) cannot hold as well, observe that it follows from
Proposition 3.2 that u+ = u1, since g+〈u+〉 ∼ g1〈u1〉 and f(`(g〈u〉)) =
f(`(h〈U〉)) = show . Since g1〈u1〉 ∈ β(h〈U〉), u+ = u1 ∈ U . Hence, (B) is
not true.

Therefore, β(h〈U〉 is a greatest subset of H closed under ∼ and as such
sits in H.

Suppose h′ = h〈U,~v〉. From the inductive hypothesis it follows that
β(h〈U〉) ∈ H. Put β(h〈U〉) = {g1〈u1〉, . . . , gm〈um〉}. It is easily derived
from Proposition 6.3 that β(h〈U〉) is non-empty (m > 0) and that any two
histories from β(h〈U〉) are ∼-related. It follows from Proposition 6.4 that
β(h〈U,~v〉) = {g1〈u1, ~v〉, . . . , gm〈um, ~v〉}. Furthermore, it follows directly from
the definition of ∼, that any two histories from β(h〈U,~v〉) are ∼-related.

Remains to be shown that there exists no superset of β(h〈U,~v〉) that
is also closed under ∼. For the sake of contradiction, let us suppose there
exists a history g+〈u+, ~v+〉, such that g+〈u+, ~v+〉 ∼ g〈u,~v〉, for every g〈u,~v〉 ∈
β(h〈U,~v〉), but g+〈u+, ~v+〉 /∈ β(h〈U,~v〉). From the latter and the definition
of β we derive that either (A) ~v+ 6= ~v or (B) g+〈u+〉 /∈ β(h〈U〉). But actually
both (A) and (B) lead to a contradiction: For both (A) and (B) contradict
the assumption that g+〈u+, ~v+〉 ∼ g〈u,~v〉, for every g〈u,~v〉 ∈ β(h〈U,~v〉), in
virtue of Propositions 3.3 and 3.4, respectively.

Therefore, β(h〈U,~v〉) is a greatest subset of H closed under ∼ and as
such sits in H. 2

Lemma 9 β is a bijection between HPI and H.

Proof. It suffices to show that β is surjective and injective.

47

Surjection. We need to prove that for every C ′ ∈ H, there exists a history
h ∈ HPI, such that C ′ = β(h). I do so by induction on the structure of the
histories in C ′ ∈ H.

Suppose C ′ = {g1〈u1, ~v1〉, . . . , gm〈um, ~vm〉}. Since C ′ ∈ H, it is closed
under ∼, that is, g1〈u1, ~v1〉 ∼ . . . ∼ gm〈um, ~vm〉. I derive from Proposition
3.3 that ~v1 = . . . = ~vm = ~v and also that g1〈u1〉 ∼ . . . ∼ gm〈um〉. Therefore,
there must be one cell C ∈ H that contains g1〈u1〉 ∼ . . . ∼ gm〈um〉. By the
inductive hypothesis, we know that there exists a history h〈U〉 ∈ HPI, such
that β(h〈U〉) = C. By Proposition 7.2 we get that h〈U,~v〉 ∈ HPI and by
Proposition 6.4 we have that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈ β(h〈U〉) and u ∈
U} = C ′.

Suppose C ′ = {g1〈u1〉, . . . , gm〈um〉} and f(`(g1〈u1〉)) = show. Since C ′ ∈
H, it is closed under ∼, that is, g1〈u1〉 ∼ . . . ∼ gm〈um〉. I derive from
Proposition 3.2 that u1 = . . . = um = u and also that g1 ∼ . . . ∼ gm.
Therefore, there must be one cell C ∈ H that contains g1, . . . , gm. By the
inductive hypothesis, we know that there exists a history h ∈ HPI, such that
β(h) = C.

By Proposition 7.1 we derive that there is a set U containing u such that
h〈U〉 is a successor of h, since g1〈u〉 is a successor of g1 and g1 ∈ β(h). Since
f(`(g1〈u1〉)) = show , U must in fact be a singleton, whence U = {u}. By
definition of β we have that β(h〈{u}〉) = {g1〈u〉, . . . , gm〈u〉}, which is simply
C ′.

Suppose C ′ = {g1〈u1〉, . . . , gm〈um〉} and f(`(g1〈u1〉)) = hide. Since C ′ ∈
H, it is closed under ∼, that is, g1〈u1〉 ∼ . . . ∼ gm〈um〉. I derive from
Proposition 3.1 that g1 ∼ . . . ∼ gm. Therefore, there must be one cell C ∈ H
that contains g1, . . . , gm. By the inductive hypothesis, we know that there
exists a history h ∈ HPI, such that β(h) = C.

By Proposition 6.1 we derive that h〈U〉 is a successor of h, where U =
{u | g〈u〉 ∈ H, for some g ∈ β(h)}. Since g1 ∈ C = β(h), it follows that
u1 ∈ U . By definition of β it is immediate that g1〈u1〉 ∈ β(h〈U〉). In conse-
quence, all of g1〈u1〉, . . . , gm〈um〉 sit in β(h〈U〉), since they are all ∼-related.
Hence, C ′ = β(h〈U〉).

Injection. We need to prove that for any pair of histories h, h′ ∈ HPI, if
h 6= h′ then β(h) 6= β(h′). We do so by induction on the structure of the
histories in H.

Suppose h〈U〉 6= h′〈U ′〉. I distinguish two cases. (i) h 6= h′. h and h′

give rise to β(h) and β(h′) which are present in H, by Lemma 8. By the

48

inductive hypothesis β(h) 6= β(h′). Since β(h), β(h′) ∈ H, we derive that
β(h)∩β(h′) = ∅. From Proposition 6.3 it follows that for every u ∈ U there
exists a g ∈ β(h) such that g〈u〉 ∈ β(h〈U〉) and that for every u′ ∈ U ′ there
exists a g′ ∈ β(h′) such that g′〈u′〉 ∈ β(h′〈U ′〉). Since the intersection of
β(h) and β(h′) is empty, it is the case that g 6= g′. Hence, g〈u〉 6= g′〈u′〉
and therefore β(h〈u〉) 6= β(h′〈u′〉). (ii) h = h′ and U 6= U ′. Obviously
(without loss of generality), there exists a u ∈ U that does not sit in U ′.
From Proposition 6.3 it follows that there exists a g ∈ β(h) such that g〈u〉 ∈
β(h〈U〉). By definition of β and the fact that u /∈ U ′, g〈u〉 is not an element
of β(h′〈U ′〉) and therefore β(h〈U〉) 6= β(h′〈U ′〉).

Suppose h〈U,~v〉 6= h′〈U ′, ~v′〉. I distinguish two cases. (i) h〈U〉 6= h′〈U〉.
By the inductive hypothesis, it follows that β(h〈U〉) 6= β(h′〈U ′〉). Proposition
6.4 has it that β(h〈U,~v〉) = {g〈u,~v〉 | g〈u〉 ∈ β(h〈U〉)} and β(h〈U ′, ~v′〉) =
{g′〈u′, ~v′〉 | g′〈u′〉 ∈ β(h′〈U ′〉)}. Hence, β(h〈U,~v〉) 6= β(h′〈U ′, ~v′〉). (ii)
h〈U〉 = h′〈U〉 and ~v 6= ~v′. This case follows trivially from Proposition 6.4. 2

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning ways. Aca-
demic Press, London, 1982.

[2] T. C. Biedl, E. D. Demaine, M. L. Demaine, R. Fleischer, L. Jacobsen,
and J. I. Munro. The complexity of clickomania. In R. J. Nowakowski,
editor,More games of no chance, volume 42 ofMSRI Publications, pages
389–404. Cambridge University Press, 2002.

[3] E. Binz-Blanke. Game review – Scotland Yard.
http://www.io.com/∼beckerdo/games/reviews/ScotlandYard-
Review.html, 2006.

[4] X. Caicedo and M. Krynicki. Quantifiers for reasoning with imperfect
information and Σ1

1-logic. In Walter A. Carnielli and Itala M.L. Otta-
viano, editors, Contemporary Mathematics, volume 235, pages 17–31.
American Mathematical Society, 1999.

[5] P. J. Cameron and W. Hodges. Some combinatorics of imperfect infor-
mation. Journal of Symbolic Logic, 66(2):673–684, 2001.

49

[6] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal
of the Association for Computing Machinery, 28:114–133, 1981.

[7] A. S. Fraenkel. Combinatorial games: selected bibliography with a suc-
cinct gourmet introduction. In R. J. Nowakowski, editor, More games of
no chance, volume 42 of MSRI Publications, pages 475–535. Cambridge
University Press, 2002.

[8] A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schäfer, and Y. Yesha.
The complexity of checkers on an N × N board – preliminary report.
In Proceedings of the 19th Annual Symposium on the foundations of
Computer Science, pages 55–64. IEEE Computer Society, 1978.

[9] A. S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for
n × n chess requires time exponential in n. Journal of Combinatorial
Theory, Series A 31:199–214, 1981.

[10] A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a
graph. Theoretical computer science, 143:93–112, 1995.

[11] W. Hodges. Compositional semantics for a language of imperfect infor-
mation. Logic Journal of the IGPL, 5(4):539–563, 1997.

[12] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[13] R. Kaye. Minesweeper is NP-complete. Mathematical Intelligencer,
22(2):9–15, 2000.

[14] D. Koller and N. Megiddo. The complexity of two-person zero-sum
games in extensive form. Games and economic behavior, 4:528–552,
1992.

[15] D. Lichtenstein and M. Sipser. GO is polynomial-space hard. Journal
of the Association for Computing Machinery, 27:393–401, 1980.

[16] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, 1994.

[17] C. H. Papadimitriou. Computational complexity. Addison-Wesley, Read-
ing, Massachusetts, 1994.

50

[18] G. Peterson, S. Azhar, and J. H. Reif. Lower bounds for multiplayer
noncooperative games of incomplete information. Computers and Math-
ematics with Applications, 41:957–992, 2001.

[19] J. H. Reif. The complexity of two-player games of incomplete informa-
tion. Journal of Computer and System Science, 29:274–301, 1984.

[20] T. J. Schäfer. Complexity of some two-person perfect-information
games. Journal of Computer and System Sciences, 16:185–225, 1978.

[21] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponen-
tial time. In Proceedings of the 5th ACM Symposium on the Theory of
Computing (STOCS 73), pages 1–9, 1973.

[22] J. Väänänen. On the semantics of informational independence. Logic
Journal of the Interest Group in Pure and Applied Logics, 10(3):337–350,
2002.

51

