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Preface

Linear logic (Girard,1987) sprouts from the remarkable observation that 
a certain semantical decomposition of intuitionistic type constructors 
corresponds on a syntactical level to the banning of structural rules of 
weakening and contraction from the formulation of intuitionistic'logic as 
a sequent calculus, followed by their resurrection in modalized form. It 
then is a small, but important, step to apply this latter, purely formal, 
manipulation to sequent calculi also for classical logic, and marvel at 
the consequences.

Soon following its introduction, linear logic became the topic of a 
quickly growing number of research- and survey-papers, and inspired 
workers in proof theory, category theory, complexity theory, theoretical 
and not-so-theoretical computer science, all eager to explore the pos
sible, impossible, the more, as well as the less, probable, implications 
and applications. As a result, in much less than a decade, the field has 
become so extensive, that, in the present context, we will not even try 
to give a comprehensive overview.

A lot of the excitement originated from the fact that an infer
ence system which marks the multiple use of premisses is, somehow, 
‘resource-conscious’, thus establishing an obvious intuitive link with 
the practice of programming. More high expectations sprang from the 
motivation and ‘explanation’ of linear connectives in terms of different 
ways to process information, which suggested rather immediate appli
cations, for example to both theory and practice of parallel computing.

W hat we would like to underline, however, is a different, in a sense 
more ideological, and maybe less glamorous, aspect: the conviction 
that, though, undoubtedly, ‘logics’ are interesting to logicians, it is 
‘logic’ they should be after. And, that it is not so much a (logical) the



2 P r e f a c e

orem, as the way in which it can be established, that is of importance: 
if there is a ‘heart of logic’ to be unveiled, it will lie in its proofs. It is in 
the bearing of these credos that we think linear logic finds its deepest 
appeal.

The optic of this thesis, then, is a fairly modest one: linear sequent 
calculus appears as a refinement of the known calculi for both intu- 
itionistic and classical logic. It therefore can be considered a tool to 
investigate, as if through a microscope, behaviour and properties of 
intuitionistic and classical sequent derivations.

It is on a such proof theoretical study that we will embark.

Ars-en-Re 
August, 1993
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Guide

Take some derivation 7r in sequent calculus for classical or intuitionistic 
logic. Can we transform it into a sequent derivation in linear logic in a 
way that essentially preserves its structure, i.e. can we define a linear 
decoration of the original proof? And if ‘yes', then is there an optimal 
way to do this?

The bulk of the considerations in this thesis originated in attempts 
to give some kind of an answer to this, natural, question. It describes 
our work on the subject, major parts of it done in close cooperation 
with Vincent Danos and Jean-Baptiste Joinet, under the agreeable lee 
of the Universite Paris VII’s ‘Equipe de Logique’, between spring 1992 
and fall 1993.

Our main concern will be with mappings: from formulas to linear 
formulas, from classical and intuitionistic proofs to linear proofs, from 
classical (intuitionistic) proofs to classical (intuitionistic) proofs, and 
from linear proofs to linear proofs, mappings that in most cases will 
preserve, at least, what we call the skeleton of the original, in the 
case ‘linear to linear’ moreover its dynamics (i.e. behaviour under cut 
elimination).

FROM FORMULAS TO LINEAR FORMULAS

We define (chapter 2) modal translations of formulas into linear for
mulas, which are obtained by replacing each connective by one of its 
linear analogues, and prefixing each subformula by a modality, i.e. a 
(possibly empty) string of linear exponentials. Girard’s original em
bedding of intuitionistic into linear logic is an example.

When turning our attention to classical logic, we find there exists 
no unique minimal choice for a modal translation. Instead we are con
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fronted with two embeddings (Q and T), corresponding to distinct, one 
might say dual, linear decompositions of classical implication.

FROM CLASSICAL AND INTUITIONISTIC PROOFS TO LINEAR PROOFS 

Though the minimal modal embeddings of chapter 2 in general do 
not automatically extend to derivations, there are (less economical) 
modal translations whose inductive application to sequent proofs de
fines a structure-preserving mapping of intuitionistic and classical to 
linear derivations. The existence of such inductive decoration strategies 
(chapter 3) provides a positive answer to the first part of our original 
question. Moreover we show that in the classical case there exist essen
tially two distinct modal translations whose inductive application to a 
proof preserves the skeleton. We call them q (which is closely related 
to the embedding Q of chapter 2) and t (related to the T-embedding). 
For certain fragments, most notably the one containing the rules for 
implication, universal first order quantification and universal second 
order (propositional) quantification, this ‘linear decorating’ of a classi
cal proof is deterministic, and unambiguously defines a procedure for 
eliminating its cuts as a ‘reflection’ of the procedure for its linear image. 
It is e.g. immediate from the strong normalization theorem for linear 
logic that these reductions for (the given fragment of) classical sequent 
calculus enjoy strong normalization.

As it is essentially the absence of exponentials that provides us with 
information on the dynamics of a proof (section 4.4), we would like also 
to find optimal decorations, which, intuitively, should be obtainable by 
tracing the effects of occurrences of structural rules throughout a given 
proof. This is carried out in detail for intuitionistic implicational logic 
in chapter 4. In the case of derivations in classical sequent calculus, 
though, such a procedure cannot be defined unequivocally, and opti
mality results can only be relative to prior choices, e.g. by optimizing 
the results of the inductive application of the modal translations of 
chapter 3.

FROM CLASSICAL PROOFS TO CLASSICAL PROOFS, AND 
FROM INTUITIONISTIC PROOFS TO INTUITIONISTIC PROOFS 

The economic, non-decorating, embeddings of chapter 2 suggest re
strictions on the form of rules, both in intuitionistic and classical se



G u id e 9

quent calculus. These restrictions can be built into alternative formu
lations of these calculi, that remain complete for provability, and for 
which the economic embeddings become decorating. We thus obtain the 
calculus IL U  for intuitionistic logic, corresponding to Girard’s embed
ding of intuitionistic into linear logic, and the calculi L K T  and LK Q  
for classical logic, corresponding to the T-, resp. the Q-embedding of 
classical into linear logic. We characterize these calculi (chapter 3) as 
proper fragments of linear logic: they inherit linear logic’s computa
tional properties.

When inductively applying the economic embeddings to IL-, resp. 
CL-derivations, at several points we have to apply cuts, in order for 
the conclusion to remain within the scope of the embedding. We refer 
to these cuts as correction cuts. They are of a specific form: in all 
cases one cuts with the linear decoration of a derivation of an identity 
A =$■ A. We show (chapter 6) that elimination of these cuts realizes the 
restrictions imposed by the embeddings on the form of the rules, whence 
we refer to them as ‘constrictive morphisms’: after elimination of the 
correction cuts from the derivation obtained by inductively applying 
Girard’s translation to an IL-derivation, the skeleton of the result is 
an ILU-proof. Similarly when applying the Q- or T-translation to 
a CL-derivation tt, elimination of the corresponding correction cuts 
transforms tx into an LK Q -, resp. LKT-proof.

FROM LINEAR PROOFS TO LINEAR PROOFS

In chapter 5 we construct the exponential graph of a linear proof n, 
an artefact that displays the interdependencies of exponentials. Using 
this graph we characterize exponentials that are superfluous. Removing 
(‘stripping’) them determines a lattice of linear derivations with top n 
and as bottom a unique normal form 71̂ , having essentially the same 
set of reductions. When applying this removal to the linear derivation 
obtained by inductively applying a decorating modal translation to an 
intuitionistic derivation 7r, the result obtained is essentially equivalent 
to the linear derivation d(n) constructed in chapter 4 by tracing the 
effects of occurrences of structural rules throughout 7r, whence d(ir) is 
shown to be the optimal linear decoration of it.

We similarly may apply stripping to the result of the inductive ap
plication of decorating modal translations to classical derivations, in
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which case we obtain optimal decorations relative to the chosen initial 
decoration (i.e. relative to the choice of a normalization protocol for 
the original proof).

‘Stripping’ in fact is a basic example of dilatation (chapter 8) of 
linear derivations, i.e. the replacement of exponentiated formulas by 
non-exponentiated ones in such a way that the reductions of the original 
can be simulated by reductions of the image. We show that a (fully 
expanded) linear derivation tt is, in some strong sense, dilatable if and 
only if its exponential graph is acyclic.



1

Linear logic

Almost sixty years ago, in 1935, Gerhard Gentzen introduced the calcu
lus of sequents for classical logic and, as a corollary to his celebrated cut 
elimination theorem (often referred to as ‘the Hauptsatz’), showed that 
the Hilbertean ideal of ‘purity of methods’, because of Godel’s incom
pleteness theorem known to be in general unattainable in formalized 
mathematics, can be fulfilled for theorems of the predicate calculus: if 
<j> is a valid first order formula, then <j> is derivable in the sequent cal
culus using formulas occurring in the set of 0 ’s s«6formulas only. This 
is known as the ‘subformula property’ for first order logic.

The inference rules of the sequent calculus on the one hand cor
respond very closely to the semantical definition of classical truth1, 
but also have a strong operational quality: they ‘explain’ the logical 
connectives by showing us how they are used. However, though the 
semantical interpretation of the connectives is quite insensitive to the 
precise formulation of the rules, this can hardly be said of the oper
ational interpretation (which, in a way, is nothing but precisely this 
formulation!).

Gentzen originally conceived of a sequent T =>■ A as consisting in 
finite lists of formulas T =  Gl t . .. ,G n and A =  D lt . . . ,  Dm, and cor
responding to the formula (C?i A . . .  A Gn) -> {D\ V . . .  V Dm). Given 
the logical equivalence with (Ga(i) A . . .  A G>(n)) -> (-Dr(i) V . . .  V Dr(m)) 
for permutations a  of { 1 , . . . ,  n }  and r  of { 1 , . . . ,  m} ,  other authors

1This is particularly clear in the formulation of sequent derivations as ‘semantical 
tableaux’, due to Beth(1955). It was observed by Prawitz(1975) that in a certain 
sense Gentzen’s sequent calculus can be seen as the natural system for generating 
logical truths.
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interpreted r , A as multisets (i.e. lists modulo the order of the entries), 
thus rendering obsolete the structural rule of exchange. From there 
we might go even further and use the equivalence of a formula with 
both its n-fold conjunction and disjunction, for any n >  1, to interpret 
T and A as sets of formulas, thus rendering the notion of contraction 
superfluous.

For each of these interpretations of T, A one constructs Gentzen cal
culi that are complete with respect to provability and enjoy cut elim
ination. The specific form of the inference rules, however, will differ. 
Historically, they come in two main guises: the additive, and the mul
tiplicative one (see appendix c). Though both can be made sense of in 
either interpretation, the additive versions of the ‘two-premiss’ logical 
rules (i.e. L —>, LV and RA) are the obvious ones to use when thinking of 
the contexts as sets while their multiplicative variants appear more nat
urally when thinking of lists or multisets. In the multiset-interpretation, 
the structural rules of weakening and contraction enable us to switch 
back and forth between the two.

The first step towards linear logic is discarding the use of these 
structural rules from sequent derivations in which the contexts are in
terpreted as either multisets in the commutative, or lists in the non- 
commutative case.2 Consequently it will no longer be possible to derive 
the additive rules from the multiplicative ones (as we lack weakening), 
nor vice versa to get the multiplicative rules from the additive ones (for 
want of contraction), and we axe confronted with genuine alternatives. 
One might like to choose the one, or the other. Or, as does linear 
logic, one might opt for both. However, in this last case, in order to 
keep eliminability of cut, it is necessary to clearly distinguish the addi
tive from the multiplicative occurrences (see e.g. Schellinx(1991)). It is 
thus that we obtain the ‘linear’ splitting of the classical connectives and 
constants, which is summarized in figure 1.1. The provability relations 
between the linear constants are indicated in figure 1.2.

The multiplicative conjunction is called ‘tensor’ or ‘times’, the ad
ditive one ‘and’; the additive conjunction is pronounced ‘plus’, while *8 
is known as ‘par’. The multiplicative implication is referred to as ‘lin
ear implication’. (The additive implication usually is disregarded, as it

2 We will consider here only commutative linear logic.



Intro 13

multiplicative

additive T

1
±

1

0

Figure 1.1: The splitting of connectives and constants

lacks some of the very basic properties one would like logical ‘arrows’ 
to have (note that A A is not derivable). Therefore it goes without 
a name.)

The identity axiom and the cut rule together with the axioms and 
rules for the above constants and connectives form the propositional 
part of linear logic, also known as M A L L  (for ‘Multiplicative Additive 
Linear Logic’).

W hat is usually called just plainly linear logic arises from a re- 
introduction of structural rules, be it for a set of marked formulas: 
structural manipulation to the left of the entailment sign is allowed only 
for those formulas that start with the symbol “!” , which in the literature 
appears under the names ‘storage’, ‘of course’, ‘bang’, ‘shriek’ as well 
as the more prosaic ‘exclamation mark’, while structural manipulation 
to the right is limited to formulas starting with a “?” , referred to as 
‘costorage’, ‘why not’ or simply ‘question mark’. Our construction ends 
by adding the rules L?, R?, L! and R!, in order to allow the introduction 
of (the exponentials) “!” and “?” (other than by means of weakening 
or an instance of an axiom) in the course of a derivation.

Extending the system thus obtained with (the usual) rules for the 
first order quantifiers gives ‘first order Classical Linear Logic’ (C LL, 
appendix b; a sequent T => A in this calculus consists in finite multisets 
r  =  and A =  D i , . . . ,  D m, and corresponds to the formula

T

0

Figure 1.2: The linear constants
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(Gi <S>. . .  <S> G„) -o ( D t f  ■ ■ •’S’ Dm)).
Via the involutive linear negation, (-)1 , which is defined by A L :=  

A -o _L (or, equivalently, A «  fl; but not A -o 0, which acts like an 
intuitionistic linear negation), linear logic exhibits wonderful symme
tries, witnessed e.g. by the ‘De Morgan’-dualities, and the fact that the 
additive connectives and constants are definable in terms of and 0, 
the multiplicatives in terms of -<> and _L, just like their non-linear peers:

A*$B = ( A ^ > ± ) ^ > B
A ® B = ( A ^ ( B ^ ± ) )

1 =  I h . 1
A(&B = (A 0) B
A&B =  (A~+(B  0)) -

T =  0 0

The multiplicatives constitute the core of linear sequent calculus 
(recall that the entailment sign naturally corresponds to linear implica
tion, the comma on the left to multiplicative conjunction, that on the 
right to multiplicative disjunction). The additives axe linked to this 
multiplicative core by the exponentials, the leading characters in what 
follows:3

\A®\B «= »  l(A&B)  
?A*$?B ?(A © B)
IA -o  IB ?(A B)

A (possibly empty) sequence of exponentials is called a modality. 
Observe that for all modalities fi both \A =? fiA and fiA =>?A are 
derivable: starting from an axiom A =4> A and an application of !L, 
we can without restriction apply R? and R! to obtain fiA in the first, 
and by the unrestricted possibility of using L! and L? starting from an

3Note the analogy with 2°-2,J =  2a+fc, which accounts for the name ‘exponentials’.
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Figure 1.3: The lattice of linear modalities

axiom followed by an application of R? in the second case. Otherwise 
said, in the partial ordering on modalities induced by linear derivability 
(p  ^  v iff C L L  b pA  => vA for any A), “!” is minimal, “?” is maximal.

If we consider the equivalence relation induced by this ordering, we 
find seven equivalence classes: calling •,?,! , !?,?!, !?!  and ?!? (where 
stands for the void modality) basic modalities, one easily shows (e.g. 
using the idempotenc-y of these basic modalities) that for any modality 
p there is a unique basic po such that C L L b pA  ■<=> /.toA for all 
A. So, modulo provable linear equivalence, there are precisely seven 
modalities in linear logic. Basic modalities axe related as in figure 1.3, 
where an arrow from p t o v  indicates that p  -< v (see Joinet(1993)).

As an easy corollary we then find that all modalities are idempotent: 
C L L  b pA ■$=$■ ppA  for all p, A.

1 Theme

The following is a crucial technical result.4

1.1. T heorem. (Cut elimination) A sequent T =3- A is derivable in 
C L L  if and only if it is derivable without the use of cut. B

Stating it this way, however, is but telling the story less than half. 
Elimination of cuts from proofs means explicitating their content by

4Cf. the notes at the end of this chapter, page 27.
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exhibiting normal forms. In this sense a cut-elimination procedure cor
responds to a computation mechanism. It is the procedure which, po
tentially, provides a computational interpretation of a sequent calculus.

Thus Gentzen’s Hauptsatz and its proof tell us that in theory we 
can eliminate the cuts from CL-proofs. In practice, however, it seems 
that we do not really know how. The ‘classical’ examples are proofs of 
a sequent T, T' =» A, A' obtained by a cut between proofs of sequents 
r  =>- A, A and Y',A  =4- A', which both end with an application of a 
structural rule, e.g. as follows.

7Ti 2̂

T=>A,A,A  r ,A ,A = > A '
t =>a , a r ,A=>A'  

r,r => a , a'

In order to eliminate the cut, we have to duplicate either 7Ti or 7t2, 
but clearly need a coin or a similar oracle to tell us which.5 Deciding for 
the one or the other will in general have non-trivial consequences, as it 
is bound to lead us to unreconciliably distinct normal forms. Moreover, 
as was observed by Lafont (see e.g. Girard et al.(1988)), if we consider 
a cut between derivations of T =4> A, A and T, A =4- A obtained by 
weakenening from distinct proofs of T =4 A, it is immediate that an 
equivalence ~  between proofs satisfying that n ~  id if n normalizes 
to id is doomed to be degenerated, in the sense that we are forced to 
declare all proofs of a sequent T =4 A equivalent. This in turn prohibits 
any reasonable semantics of proofs (cf. Girard(1991)).

The example suggests that we should blame the structural rules. 
And indeed, this is confirmed by the intuitionistic calculus IL, where 
the use of structural rules is restricted to one, the left hand, side of 
sequents. Also in linear logic the problem is resolved through the asym
metric handling of structural rules: there simply can not be a cut be
tween a derivation with conclusion F =4 ?A, A and one with conclusion

sThe problem in fact is not due to a specific formulation of the calculus. It can 
not be resolved by, for example, chosing an additive rather than a multiplicative 
formulation of rules and treating contraction implicitly.



1.1. T heme 17

T', \A => A'. In both cases it is the existence of a non trivial semantics 
of proofs (a denotational semantics) and the semantical soundness of 
the cut elimination procedure (i.e. if tx reduces to n', then the inter
pretation of 7r is equal to that of 7r') which guarantees that remaining 
traces of non-determinism can be deemed more or less innocent.

Girard( 1987a) introduces the systems P N l ,  of proofnets for propo- 
sitional/exponential linear logic, and PN 2,  of proofnets for proposi- 
tional/exponential linear logic extended with second order proposi
tional quantification, and proves strong normalization as well as seman
tical soundness with respect to the interpretation in coherence spaces. 
A purely combinatorial proof of strong normalization for the multi- 
plicative/exponential fragment of P N l  can be found in Joinet(1993). 
For that fragment, as well as for its second-order extension, moreover 
the Church-Rosser property holds, cf. Danos(1990). Proofnets abstract 
from inessential distinctions due to the sequentiality of sequent deriva
tions, and it is there that cut elimination in linear logic finds its most 
powerful expression.

So apparently we found a formal system that combines the (con
structive) characteristics typical to intuitionistic logic (including a se
mantics of proofs) with the symmetries (including an involutive nega
tion) of classical logic.

But what does it mean?
Well, linear implication -© can be seen as representing a causal form 

of entailment. Under this reading a b will represent an action that 
uses an object of type a in order to obtain an object of type 6. Pushing 
this idea somewhat further, one might characterize the multiplicative 
fragment as ‘a calculus of actions closed under composition’, and inter
pret the additive rules in terms of 1 sharing of resources (premisses)'. 
We’ll be the first, though, to agree with all those objecting that this 
‘interpretation’ is far from convincing. At the moment we will and can 
not do much better.

Linear logic is very much a ‘proof theorist’s’ logic, and the appropri
ate answer when asked for the meaning of an ‘expression’ seems to be: 
exhibit its proof(s). And these do have a rather obvious interpretation.

If we collapse a linear derivation 7T, i.e. replace all symbols <g>, & by 
A, all symbols ’S’, © by V, and each of by —>■, and moreover erase
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the modalities, delete resulting repetitions of sequents, then what we 
get is a derivation in classical, maybe even intuitionistic, logic, which 
we will refer to as 7r’s skeleton sk(7r).

Notwithstanding its triviality, the above observation is essential. It 
suggests the use of linear logic as a proof theoretical tool, as we may 
interpret derivations in linear sequent calculus as annotated classical or 
intuitionistic proofs.

Moreover, it has a converse.

1.2.  T heorem. The skeleton sk(7r) of a linear derivation n is a deriva
tion in classical or intuitionistic sequent calculus; conversely each classi
cal or intuitionistic sequent derivation occurs as the skeleton of a linear 
derivation.
PROOF: The first part of the claim is obvious; the second part is an 
immediate corollary to the existence of skeleton-preserving translations 
of both classical and intuitionistic sequent calculus proofs into linear 
logic. These will be the subject of chapters 3 and 4. E3

Observe that this is a strong argument in favour of linear logic’s 
claim to being a refinement of intuitionistic and classical logic. We 
may for example use it to obtain cut elimination for both classical and 
intuitionistic sequent calculus as a corollary to the linear cut elimination 
theorem.

1 .3 . T heorem. A linear derivation fixes a normalization protocol for 
its skeleton.
PROOF: Let n be an intuitionistic or classical derivation and suppose 
r  is a linear derivation such that sk(r) =  n. Let JJ be a terminating 
reduction sequence leading from r  to a cut free proof t ' . The reflection 
of /Z, obtained using sk, determines a reduction sequence leading from 
7T to a cut free derivation 7r', see figure 1.4. B

As the elimination procedure for (multiplicative) C L L, contrary to 
that for C L, is essentially deterministic, this means that a linear deriva
tion 7r will force a choice among several possible CL-normalizations of 
its skeleton. Of course, given some classical or intuitionistic derivation 
7r, the set of linear derivations r  such that sk(r) =  n will always be 
infinite, and distinct elements of this set in general will correspond to
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I

sk r

sk

7T

sk

sk

Figure 1.4: Normalization of n

different ways to normalize n. We will encounter a concrete example of 
this phenomenon later on, in section 4.4.

In view of the above, one might suspect that conversely it will be 
possible to obtain any possible normalization sequence for a classi
cal derivation by a suitable choice of a linear derivation r  such that 
sk(r) =  7r. We refer to this as Joinet’s conjecture. Note that a proof of 
this claim would depend crucially on what one takes to be the collec
tion of all normalization sequences starting from a given CL-derivation. 
Experience shows that indeed it does hold for large collections of such 
normalizations. Reductions that make use of Gentzen’s highly symmet
ric ‘cross-cuts’ procedure, however, appear to be extremely resistant to 
simulation by means of linear decorations.

2 Weakening and contraction

Due to the absence of the structural rules of weakening and contraction 
in linear logic we can, given a derivable sequent T =4> A and a linear 
formula A, in general not conclude that either of the sequents T, A  =>• 
A or T => A, A is derivable; similarly, from derivability of a sequent 
r ,  A, A =$> A or T A, A, A we can conclude neither the derivability 
of T, A  =>- A, nor that of T => A, A.
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2 .1 . D e fin it io n . We introduce the following sets of linear formulas:

V = {A T iu t £ W
-'

u = {A 1- A
Wi =  {A VT, A :: if l - r A then \-T,A =*■ A }

Wr = {A VT, A :: if l - r A then b T = } - 4 , A }

Cl = {A Vr,A :: if h r , A =► A then I- T ,A  => A }

Cr =  {A VT,A :: if b r A,.Ay A then b r  => A, A}.

(Derivability here is understood to mean derivability in C L L. If we 
want to consider any of the above sets relative to a different fragment of 
linear logic, we indicate this by means of a superscript. E.g., W/LL :=  
{ A  | Vr, A : if IL L  b T =► A then IL L  b T, A =► A}.)

V, the set of formulas of positive polarity, contains 0 ,1  and is closed 
under !,<g>,©,3. Dually, A/*, the set of formulas of negative polarity, 
contains _L, T and is closed under ?, 1?, &, V.6 For any pair of formulas 
P  6 V ,N  6  Af we have that \f N  =>■ P , as a cut free derivation of a 
sequent of the form IX  =>■ \Y is impossible. It follows that V  fl Af =  0.

Note that V  C Wi fl Cj, and Af C Wr fl Cr: both weakening and 
contraction on the left are admissible for positive formulas, while struc
tural manipulations on the right are admissible for negative formulas. 
It also is straightforward to show the following.

2 .2 . LEMMA. Let A be a linear formula. Then:

A € Wi iff b A = ^ l
A € W r iff b l = > A

A e C i iff b A => A <g> A
A € Cr iff b A ’S1 A =» A. IE)

Thus we can characterize linear formulas having full structural per
mission to the left or to the right.

®The terminology (positive, negative (polarity)) is as in Girard(1993), and is 
not to be confused with the standard notion of positive, negative occurrence of 
(sub)formula.
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2.3. P roposition. For all linear formulas A:

A G f"l Ci iff b A ■$=$■ 1 & (A <8> -A)
A G WP fl Cr iff b A <=► -L © (A 'S’ A). B

As 1/ _L => 1, we have Wi fl Wr =  0. Note that the intersection of 
Cr and Ci, however, is non-empty. In fact Cr fl C; is precisely the union 
of the anti-theorems in C/ and the theorems in Cr. So for example 
(p -*  p) ?(p -o p) e c r n Ci.

Wi fl Ci, like V, is closed under ®, ©, 3, and Wr fl Cr, like Af, is 
closed under >$?, &, V. Using the following lemma (and its obvious dual) 
the reader will have no difficulties in showing that in fact all formulas 
in W, n Ci are linearly equivalent to a formula of positive polarity or to 
a formula with main connective <g>, ® or 3, and all formulas in W r fl Cr 
to a formula of negative polarity or to a formula with main connective 
>S>, & or V.

2.4. Lemma. Let o G {&, and suppose \f Ai o Ai, I/  Vx A. Then
(i) A\ o A-x G Wi fl Ci iff 3i(Ai E Wi fl Cj and h Ai •$=>• A± o A i)
(ii) Vx A  G Wi fl Ci iff 3t(A[t/x] G Wi flCj and b A[t/x] Vx A). B

Let us call a linear formula modality-free if it does not contain any 
occurrence of the symbols !, ?. The next proposition characterizes the 
modality-free formulas in W/ fl Ci and Wr fl Cr.

2.5. P roposition. Suppose A is modality-free. Then A G W/ fl Ci 
iff b A 0 or b A 1. Dually, A G Wr fl Cr iff b A  <*=> ±  or 
b A < = >  T.
PROOF: We will only prove the first claim, as the second one follows by 
duality. The right-to-left direction is clear. So let A be a modality-free 
linear first order formula, and suppose A G Wi fl C/. We define A’s 
complexity, ||A||, inductively: put ||A|| =  1 for atomic A, ||A o B\\ =  
||A|| -1- ||P|| +  1 for o G {^>, <8», *3,& , ® }, and ||Qx.A|| =  ||A|| +  1 for 
Q G {V, 3 }. Extend || • || to finite multisets in the obvious way, i.e.
urn =  x ;  ugh.

G£T
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Let A €  Wi fl Ci. Then b A =>■ A  ® A and A =>■ 1; hence, if b A, 
then b A •<=>- 1. So let’s moreover suppose that I/  A. We show by 
induction on ||TU A | |  that whenever b T => A ,  A (8) A, also b F => A , 0 .  

It follows that in particular b A =4> 0, and we are done.

Say we proved the claim for all T ,  A  with | | T  U A | |  < n. Let us 
then show it holds as well for derivable sequents T => A ,  A <8> A with 
||T U A|| =  n, by considering the possible cut free derivations in the 
non-exponential fragment of C LL:

- if the derivation is an axiom, observe that w.l.o.g. we may assume 
that our derivations have only atomic versions of the identity axioms. 
Therefore our derivation is an instance of RT or L0. But then so is

A , 0 ;

- in all cases where the derivation ends with a rule in which A <g> A 
is not the main formula, we can apply the induction hypothesis to the 
premiss(es);

- in case A <8> A is main formula, we have in the premisses derivable
sequents T; =$• A j ,  A with | | T j  U A ;| |  < n(i =  1,2). (Note that here we 
use that A is not a theorem.) As b A => A ®  A we get b T; => A j ,  A ® A 
(by an application of cut). We apply the induction hypothesis to these 
derivable sequents and finish by a cut with 0 ® 0 =*► 0. C3

Proposition 2.5 tells us that indeed the banning of ‘full structural 
permissions’ (weakening plus contraction) in the non-exponential frag
ment of C L L has been successful: both left- (resp. right-)weakening and 
contraction are admissible for a modality-free formula if and only if that 
formula is linearly equivalent to either the constant 0 (resp. J.) or the 
constant 1 (resp. T). (Observe that on the other hand left-weakening 
is admissible for all formulas of the form 1 & A, left-contraction is ad
missible for all linear theorems, etcetera.)

In view of the above, and the fact that in C L L  full structural per
mission is restricted to modalized formulas, it is tempting to claim that 
V  =  W; fl Ci, and, dually, Af  =  Wr fl CT. Though it is hard to imag
ine the shape of a possible counter-example, proper evidence for this 
conjecture is lacking.
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Figure 1.5: Section 2, summary

3 Deconstructing intuitionistic logic

Linear logic found its origin in a semantical decomposition of intuition
istic connectives, or, to be precise, in a semantical decomposition of 
type constructors corresponding (in the sense of the ‘Curry-Howard-de 
Bruijn isomorphism’ (Howard(1980))) to these connectives: the con
structions of sum- and function-types appear as compound operations. 
E.g. in (the category CO% of) coherence spaces the interpretation of 
the sum-type A V B  is of the form \A* © !£?*, where © is the direct sum, 
and ! : CO% -*  COfi  maps a coherence space X*  to a coherence space 
\X* with \ \X*\= {a e  X* \ a finite}. Similarly (A B )* becomes 
\A* -o B* (see Girard et al.(1988) for more details).

So, historically, linear logic emerged as a refinement of intuitionistic 
logic. This origin survives in what is known as intuitionistic linear 
logic or ILL. In retrospect, we obtain ILL  by imposing the ‘usual’ 
intuitionistic restriction on C L L (let’s say minus the rules for our weird 
additive arrow -*): we allow as succedents only multisets that contain 
precisely one formula.

Doing so, the right rules for par and the exponential “?” are no 
longer applicable. Keeping only a left rule for ‘1?’ obviously is not very 
interesting. Also, we would no longer be able to expand identity axioms 
of the form A*gB => A ^ B . As to the exponential ‘? ’, this would never 
be involved in a structural rule: we took away its ‘raison d’etre’, whence 
it becomes superfluous (cf. chapter 5).

Therefore we ‘loose’ this connective and exponential. Moreover, we 
drop the neutral element for par, the constant _L. Consequently IL L  is
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precisely the fragment containing the identity axiom, cut, and axioms, 
rules for T, 0, &, ©, V, 3,! ,  all restricted to singleton succedents.

Because of (essentially) the properties of the constant 0, provability 
in IL L  is a more limited notion than provability in the corresponding 
fragment of C LL.

3.1.  P roposition. Fragments of C L L  in the language of IL L  are 
conservative over IL L  if and only if they do not include the constant 
0, or do not include linear implication -o.
PROOF. From right to left, let us suppose the fragment does not include 
the constant 0. Let 7r be a cut free derivation of T => A. If there is in 
7r a sequent with multiple succedents then there is an instance of L -o 
in which the right premiss has an empty succedent set. We can then 
follow upwards a branch in the proof tree consisting solely of sequents 
with empty succedent set. Such a branch has to end in an instance of 
an axiom, but that is impossible in a fragment without 0.

Suppose the fragment does not include linear implication -o, and 
again let n be a cut free derivation of T =» A. It is now straightforward 
by induction on the length of cut free derivations that all sequents in n 
have precisely one succedent. Therefore, in both cases, n is in fact an 
ILL-derivation.

From left to right, consider the following derivation in {0 , —o}:

0 =» D,B
=> 0 —o D, B A => A 

C => C {0 ^  D) ^  A=> B,A  
C, C -o  ((0 -o D) -o A) B, A 

C —o ((0 —o D ) —o A ) = > C —oB,A  0 =>
C -» ((0 -o D) -o A), (C -o B) -o 0 => A

One easily checks that the final sequent is not cut free derivable in 
ILL . Therefore it is not derivable in ILL. B

The semantical decomposition of the intuitionistic type constructors 
in coherence spaces in turn gives rise to the following embedding of 
intuitionistic into linear logic:
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3.2.  Definition. ( Girard’s translation) Define a mapping (•)* of for
mulas to linear formulas as follows: 

for atomic p  let p* :=  p  ; then put

_L* =  0
(A A B)* = a *&b *
(A y  B)* =  L4*©!£*

(A -* B)* = \A*^>B*
(VxA)* = VxA*
(BxA)* = 3x\A*.

We will refer to the fragment of intuitionistic linear logic correspond
ing to this embedding (i.e. the fragment {0 , &, ®, V, 3 , ! } )  as decon
structed intuitionistic logic (D IL).

3.3.  P roposition. IL  b T =*■ A if and only if  D IL b !r* =$■ A*.
P roof: The left-to-right direction (correctness) is obtained by induc
tion on the length of derivations in the sequent calculus for IL , where 
we take (as is suggested by the choice of & and © in the definition of 
the embedding) the additive formulation of the rules for A, V. In the 
proof one uses derivability of

'.(A&B) =* \A & \B
!(!A -o B) \A —o \B

!VxA v*w .

The right-to-left direction (faithfulness) is obtained, simply by ob
serving that the skeleton of a DIL-derivation of T* =>- A* is an IL- 
derivation of F =>■ A. B

D IL has the following property.

3.4. P roposition. p DIL = W,DIL n C,DIL.
P roof: First observe that C  E W/LL flC/LL if and only if IL L  b C  •<=>■ 
1 & ( C ® C )  if and only if IL L  b C  =M(D -  D )& (C  -  (C -  D))  -« D,  
for all ILL-formulas D.
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Let C  be an ILL-formula, B  a DIL-formula (i.e. B  is tensor-free), 
such that IL L  I/  C,  IL L  b B  =>■ C<S>C, and moreover IL L  b C, C  =>- C. 
One shows by a straightforward induction on the complexity of B  that 
IL L  b B  =»!C.

Now take A E W,/DILflC;DIL. If A is a theorem, then D IL b 1 <=> A. 
So we suppose that D IL I/  A. Because A E WjDIL fl C;DIL we have 
that D IL b A =M(p -o p) 8i (A -o (A -o p)) -o p for some atomic 
proposition p (not occurring in A). But then in IL L  we can, for all D, 
derive A =>\(D -o D )& (A  -» (A -  D)) -o D. So A G W/LL 0 C/LL, and 
therefore, by the observation above, IL L  b A => !A. By the subformula 
property for ILL-derivations we find D IL b A => !A. H

In fact something even stronger holds: if A G C;DIL and A is not a 
DIL-theorem, then A G 7?DIL. Note that this does not hold in ILL : 
e.g. p<g>!p G CfLL, and IL L  I/  p®\p\ but clearly p<S>\p £  P ILL.

It might be useful to observe that Girard’s translation provides a 
minimal modal translation7 of intuitionistic logic into intuitionistic lin
ear logic, in the sense that any mapping (-)<: obtained from it by delet
ing one or more of the exponentials occurring in definition 3.2, will 
no longer be correct: e.g., if we remove the exponential for the impli
cation, we can no longer derive the translation of p —» (p —> p). (It 
might amuse the reader to look for examples forcing the exponentials in 
the translation of disjunction and existential quantifier.) On the other 
hand, all mappings (•)> obtained by adding exponentials, will be correct 
translations: again a sequent T A will be derivable in intuitionistic 
logic if and only if D IL proves IF '” => A > (one easily shows that for all 
mappings (•)> and for all formulas A: D IL b!A* <*=> !A>).

One final remark: Girard’s embedding of intuitionistic logic maps 
the intuitionistic conjunction to the linear ‘and’ (&). It therefore fits 
most naturally the formulation of IL  having additively formulated rules 
for conjunction. However, it is easy to define a translation that maps 
intuitionistic conjunction to tensor. This translation, say (■)*', suggests 
itself automatically if one considers IL  with multiplicatively formulated

7 The concept modal translation will be given a precise meaning in the introduc
tion to the next chapter.
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rules for A, and tries to prove soundness by induction on the length of 
derivations. It maps A A B  to !̂ 4* ® IB*'.

Notes

- The terminology th at we use with respect to (derivations in) sequent 
calculi is more or less standard. The reader who is new to this subject will 
in m ost cases find the explanation of unfamiliar term s in appendix a.

- Some of the observations in this chapter, notably proposition 3.1, are 
taken from Schellinx(1991).

For an inspired discussion of H ilbert’s program  and the ideal of ‘purity  
of m ethods’ see G irard(1987b).

A thorough technical introduction to syntax and sem antics of linear logic 
is given in T roelstra’s “Lectures on Linear Logic” . Those who prefer to 
draw directly from the source should consult G irard(1987a), as well as the 
intriguing “Towards a Geom etry of Interaction” (G irard(1989)) for some of 
the earlier m otivations and ideology.

- The cut elimination theorem  1.1 is essentially part of Girard (1987a), 
though a first detailed verification for the formulation of CLL as a two- 
sided sequent calculus was carried out early 1989 by R oorda (to be found in 
R oo rd a(1991), also in T roelstra(1992)). A proof of cut elimination for the 
one-sided version of CLL is given as Appendix A of Lincoln et al.(1992).

Throughout this thesis we will always eliminate cuts from sequent deriva
tions as in the corresponding proof nets. For those familiar with proof nets 
and their reductions (G irard(1987a), D anos(1990)), the procedure to follow 
will be evident. Otherwise any of the above references can be taken as a  
guide. However, it might be useful to keep in mind th at in case the cutfor- 
mula is exponentiated while not being main formula, neither in the last rule 
of the left, nor in the last rule of the right premiss of the cut, we will by 
convention eliminate it by permuting upwards in the (unique) premiss where 
the occurrences of the cutformula can not possibly have been subjected to  
structural rules, and is introduced either in an axiom, or by a box rule: we 
‘look for the b ox’.
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- An excellent account of proofs of the cut elimination theorem s for CL 
and IL, the subtle and somewhat problematic relation between cut elimina
tion in the intuitionistic sequent calculus and normalization in a correspond
ing term  calculus, as well as a useful overview of several possible variations 
in the formulation of the calculi, can be found in G allier(1993).

- The system  ILL of intuitionistic linear logic defined in section 3 is the 
one originally presented in Girard and Lafont(1987). A conservative exten
sion is obtained by adding the axiom and (the intuitionistically restricted  
version of) the rule for _L an d /or the intuitionistic rules for negation. The re
sulting system is called ILZ in Troelstra(1992). It is shown in D osen(1992c) 
th at the non-exponential fragment of CLL formulated in the restricted lan
guage {<g>, ©, (•)-*-, 3 ,1 , _L, T, 0 } is included in ILZ.

- Some authors consider a system of intuitionistic linear logic in which 
the rule R! is replaced by the ternary rule

A = > B  A => 1 A =4>- A (8> A

A=>\B ’

which originally appeared disguised as a term -calculus rule in L afont(1988). 
Let us call this variant on the (intuitionistic) linear sequent calculus ILL*. 
It might be possible to prove cut elimination for this calculus, but observe 
th at cut free derivations will in general not have the subformula property. 
Also note th at axioms of the form \A => \A can not be expanded.

One easily shows that all sequents provable in ILL are provable in ILL*. 
The converse, however, will hold if and only if V llL =  W /IL fl CjlL.

- Another, but less well known, restriction th a t, when applied to the
sequent calculus for classical logic, results in a calculus sound and com 
plete for intuitionistic logic, is limitation to singleton succedents only for 
the rules R -»  (and RV in the first order case). We call the resulting system  
multi-succedent IL, or IL > (appendix e). Though IL > is closed under cut, 
the system  lacks a ‘decent’ normalization procedure. On the other hand, 
e.g. the restriction on R —» appears naturally under an operational read
ing of implication, determining so-called deductive (as opposed to semantic) 
tableaux (see B eth (1969)). We obtain intuitionistic logic because Peirce’s 
law { ( (A  -»  jB) A) A) is no longer derivable.

The formal system obtained by imposing the equivalent restriction on 
CLL would have both © and  >£, unlike ILL. However, as we argued in 
Schellinx(1991), the obvious candidate for such a system  of multisuccedent 
intuitionistic linear logic fails to be closed under cut. Inspired by observa
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tions in the category theoretical semantics of (intuitionistic) linear logic, the 
challenge of this negative result was taken up by Hyland and de P aiva(199x), 
who propose a more refined formulation (using a term  assignment system  
providing additional information) th at does satisfy cut elimination.



Embeddings

2

As the considerations in the previous chapter indicate, linear logic 
might be considered a ‘symmetric completion’ of a decomposition of 
intuitionistic logic. Moreover, because a CLL-derivation is (possibly 
among other things) the linear annotation of a derivation in C L , it 
seems reasonable to assume that we will be able also to recover classi
cal logic.

In fact there are many possible embeddings, both of intuitionistic 
and of classical logic, into linear logic. In the early seventies Grishin 
defined an embedding of classical logic into a system of classical logic 
without contraction, in fact into what in our terminology would be 
called the non-exponential fragment of C L L extended with weakening. 
It was observed by Ono(1990) that one easily modifies this embedding 
to suit the system without weakening. And the fact that decidability 
of provability in M A L L  as well as in intuitionistic propositional logic 
is PSPACE-complete led Lincoln et al.(1993) to the construction of an 
embedding of intuitionistic implicational logic into the multiplicative 
additive fragment of linear logic, i.e. not using the exponential “!” .

Here we will turn however our attention more specifically to those 
translations that do use the exponentials. Eventually, in the chapters 
to come, these will allow us not only to faithfully embed theorems, 
but also their proofs. We will speak of modal translations. Girard’s 
embedding is a typical example.

D e f i n i t i o n . By a(n) (inductive) modal translation we mean a map
ping (•)'// of formulas to linear formulas satisfying =  pop for atomic
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p , and

j / =  piC, with either C =  0 or C =  _L

t ' =  P2C, with either C =  T  or C =  1

(A -*• B)^ =  p${piA^ 0  psB^), with 0  e {^ > ,~ *}

{A A B)^ =  p6(p7A'/' 0  ^ 8B ^ ) ,w ith  0  e { ® ,& }

(A V B )y =  pgipioA^ o /i llJB 'C ,w ith  0  e  { ’S’,© }

(Va:A)/ =  Pn{Vx.pi3A ^ )

(B zA )7 = Pui^x.pisA ),

for modalities //;(0 < i <  15). B

Further on we are going to consider second-order extensions, in 
which case one needs the additional clauses

(VXA)7  = p ^ X . p n A ' )

(3 X A /  =  M18(3X.Mi9A/ ),

for modalities pi(16 <  i < 19).
A modal translation (•)'/' into second-order linear logic is said to be 

compatible with substitution just in case, for all formulas A, B , it holds 
that {A[B/X\)^  and A ^[B ^/X \  are identical.

LEMMA. A modal translation is compatible with substitution if  and 
only if it is the identity on atomic formulas (i.e. if and only if po is the 
empty modality). 12

1 Embedding IL into CLL

Girard’s translation (definition 1.3.2) of course defines not just an em
bedding of IL  into intuitionistic, but a fortiori also into classical, linear 
logic, and one might wonder whether proposition 1.3.3 continues to 
hold if we replace D IL by C LL. Well, clearly the embedding will re
main correct. But what about faithfulness? Given proposition 1.3.1, 
this no longer is obvious. We will show, by analyzing the properties of
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possible CLL-derivations of sequents IP* => A *, that it nevertheless is 
true.

First of all, given the fact that, at least for the moment, we are 
merely interested in provability, by eliminability of cut (or, more pre
cisely, the subformula property that it entails) we may restrict our atten
tion to derivations in the fragment {0 , &, ©, -<>, V, 3 ,! } .  We inductively 
define a measure p on cut free derivations tx in this fragment as follows:

1. If 7r is an instance of an axiom, then p(ir) = 0;
2. If 7r' is obtained from 7r by means of a  unary rule other than R -o , RV, 

then p(ir') =  p(n) +  1;
3. If 7r is obtained from 7Ti, 7T2 by means of one of the rules L ® , L  —° then  

p t f)  = p(*i) + p fa )  + l;
4. If 7rr is obtained from 7r by means of one of the rules R ^ ,R V , then  

p(n’) = p(ir);
5. If n ' is obtained from 7Ti,7T2 by means of the rule R & , then p ( tt') = 

pircx) + p(tt2).

(Note that p(n) just counts the number of applications of rules in 
7T different from RV, R^>, R&.)

Now let Hn denote “cut free derivable from atomic instances of ax
ioms p =t> p with p(ir) < n .”. Then the following is easily checked by 
induction on the length of derivations.

1 .1 . LEMMA. (Inversion Lemma)1 We have: 
hn r  =>■ A —o B, A iff hn r, A =$■ B , A 
bn r  => A & B , A iff l~n r  =>■ A, A and hn T => B, A
\-n T=*V xA ,A  iff \-n T ^ A ,A

(in the last case of course with the usual precautions regarding vari
ables.) B

Lemma 1.1 tells us that we may assume that a cut free derivation 
7r of a sequent T =>■ A in our fragment ends with a (possibly empty) 
series of applications of R^>, R&, RV, starting from a collection of 
derivations 7q of sequents => A;, where each formula in A; is atomic
or is of one of the forms A ® B , 3xA  or \A. Moreover p(7T;) < p(7r):

'In fact this is but part of a general inversion lemma for CLL-derivations, see 
e.g. Troelstra(1992)
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1̂ 2̂ ..........  TTn

r\ ^  Ai r 2 a 2 r n =» An

r  => a

Let us call a translated intuitionistic formula C* primitive if either it 
is atomic, or has one of the forms !A*©!2?* or 3x!A*.Then the following 
hold:

1 .2 . LEMMA. Suppose there is a derivation of
(a) !r*,n*=M A* or
(b) !!?*, IP =*!A*, B* , with B* primitive.

Then we may assume the derivation to be such that all sequents with 
more than one succedent have one of the forms (i) or (ii) :

(i) !E*, A* =>!©*, A*, with |@| > 1  and A* primitive;
(ii) !S*,A * =H0*, with 10 1 > 2 .

PROOF: By induction on p(n), for cut free derivations 7r of (a), (b).
If p (tt) =  0, then the cut free derivation n of (a) or (b) is necessarily 

an axiom and there is nothing to prove.
A sequent of the form (a) can be derived by means of a right rule in 

the given fragment only if that rule is R! and moreover II =  0, | A | =  1:

!r* D*
!P* =► \D*'

Because of (the remarks following) lemma 1.1 we may assume that 
!r* => D* is obtained solely through applications of R-o, R&, RV start
ing from derivations 7r,• of sequents !r* => D*, with D* -primitive. To 
these derivations we may apply the induction hypothesis for (b).

A sequent of the form (b) can be derived by means of a right rule 
only if that rule is either R© or R3. In all these cases we can apply 
the induction hypothesis for (a) to the premiss of the rule.
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Finally, if (a) or (b) was obtained by applying a left rule (including 
W!, C!) the result follows directly by induction hypothesis. B

1 .3 . L em m a . If the sequent !F* =s A* is derivable in C L L , we can 
assume the derivation to be cut free and such that all applications of 
R-o, RV only use sequents with precisely one succedent.

P r o o f : In view of (the remark following) lemma 1.1 we may as
sume that we have obtained !T* =4> A* by a number of applications 
of R^>, R&, RV starting from a collection of sequents !T* =s> A* with 
A* primitive. By lemma 1.2 we know that also we may assume the 
derivations of the sequents !T* =>■ A* to be such that all occurrences 
of sequents with more than one succedent have either the form (i) or 
(ii). Would there be, in any one of these derivations, an application of 
R^>, RV involving a sequent having more than one succedent, then we 
obtain a sequent of the form (i) or (ii) as a conclusion in an application 
of R^>, RV. Obviously this is not possible. C3

Now we are ready to prove that a formula A is an intuitionistic 
theorem if and only A* is a linear theorem.

1 .4 . THEOREM. Girard’s translation faithfully embeds intuitionistic 
logic into classical linear logic.

P r o o f : If a sequent T* => A* is derivable in C L L , we know by lemma 
1.3 that there is a cut free derivation 7r in which all applications of 
R-o, RV involve only sequents with precisely one succedent. Therefore 
the skeleton of n is an IL >-derivation, so T =>- A is intuitionistically 
provable. H

2 Modal logic

Modal statements axe about what might and what must be the case. 
Their study is the subject of modal logic, which in its simplest guise is 
ordinary classical logic extended with rules and axioms for the unary 
modality □ of ‘necessity’

A sequent calculus formulation of what is known as the modal logic 
S4 is obtained by adding to the sequent calculus for classical first-order
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logic the following two introduction rules for □:

t , a  =» a  p r  =» a  
r ,  DA => A  n r  =► DA

(By defining a dual operator (the modality 0 of ‘possibility’), by 0B  :=  
- iP - iB , we get the four modal introduction rules of appendix c (page 
180)).

The similarity between the calculus thus obtained and classical lin
ear logic is obvious2, and in fact the only formal difference between 
(this formulation of) S4 and C L L  is the restriction of the use of struc
tural rules to modalized formulas in the latter one. As a consequence, 
the additive and multiplicative formulations of the logical rules remain 
interderivable in S4. Therefore distinctions like <8>/& and ’S’/®  are not 
apparent at the level of provability.

Let us (ab)use the formal similarity and, ignoring historical priori
ties, write “!” for the S4-modality P .

In the early thirties Godel in a short note ( “Eine Interpretation 
des intuitionistischen Aussagenkalkiils” , 1933f in Godel(1986)) observes 
that (propositional) intuitionistic logic can be interpreted “by means of 
the notions of the ordinary propositional calculus and the (informal) 
notion ‘p is provable’ He defines the following translation:

for atomic p  (including _L) let :=  p; then put

(A A B ) *  :=  A *  A B *

( A V B ) # :=  !A# V !J5#

{A -»• B )*  :=  \A* -*• \B*

Godel states that this interpretation is correct, and conjectures faith
fulness. The first proof of this fact seems to be due to McKinsey and 
Tarski (1948).

There are quite a few variants of (the extension to the first order 
calculus) of this embedding of intuitionistic logic into S4. Let us define 
Godel’s translation to be the following (which seems to be more or less 
standard):

2Observe that one also finds the same ‘modality lattice’, see e.g. Chellas(1990).
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for atomic p  ^  _L let p° :=  !p; then put

_L° =  1
(4  A B ) ° =  A 0 A B °

(A  V B ) ° =  A°  V J3°
(A  -> B f =  1(4° -»• B ° )

(Vx4)° = !Va:4°
(3a: .4)° ::= 3 x 4 ° .

The following theorem is a ‘classic’.

2 .1 . THEOREM. Godel’s translation is correct and faithful, in the 
sense that IL  h T =*> A iff S4 h T° 4 °.

P r o o f : This can be shown by means of elegant semantical arguments. 
E.g. for the propositional case one uses completeness of IL  with respect 
to the class of all Heyting algebras, completeness of S4 with respect to 
the class of Boolean algebras with a modality !, and the following facts:

- the lattice ! B := { ! 6 | 6 e H } i s a  Heyting algebra;
- for every Heyting algebra % there exists a Boolean algebra B with 

modality ! such that % =  \B.
These form the core of the proof in McKinsey and Tarski(1948), 

which is easily extended to include first order quantifiers (see Rasiowa 
and Sikorski(1963)). H

Observe that Girard’s translation (definition 1.3.2), though simi
lar to Godel’s, is not quite the same. But we could of course try its 
equivalent for S4:

for atomic p (including _L) let p* :=  p  ; then put

(4  A B)* =  4*  A B*
( 4  V BY = !4*V !R*

(4  -*  B)* =  !4* B
(VxA)* = VxA*
(3x4)* = 3x!4*.
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On the level of proofs there are non-trivial distinctions between these 
translations (cf. section 3.1), but with respect to mere provability noth
ing is gained or lost: the (•)#-, (-)°-, (•)‘ -translations are equivalent, in 
the sense that, by a simple induction on the complexity of IL- formulas, 
one shows that S4 proves A0 \A* and A0 <==> \A*. Consequently 
also the (-^-embedding of intuitionistic logic into S4 is correct and 
faithful:

I L h T = ^  iff S4 M r  *=>A*.

But the fragment {0 , & ,® ,-° ,V , 3 , ! }  of linear logic considered in 
section 1 is a proper fragment of S4 (to be precise, of the formulation 
with multiplicative rules for implication and additive rules for conjunc
tion and disjunction): only structural rules for non-modalized formulas 
are missing. The above thus gives an indirect, alternative proof of 
theorem 1.4 and we find

CLL h !r* =*• A* iff IL h r  =>• A iff S4 h !r* => A*.

Hence we established the following fact: with respect to the prov
ability of (e.g. (•)* -)translated intuitionistic formulas restricting the use 
of structural rules in S4 to the left and to ( ‘! ’-)exponentiated formulas 
only, is conservative.

3 Embedding system T

Godels translation and the proof of its sound- and faithfulness have 
been extended to e.g. first-order arithmetic, type theory and set theory 
(see e.g. Goodman(1984), Flagg(1985), Scedrov(1985)).

Flagg and Friedman(1986) give a syntactic formulation of the se
mantical argument sketched in the proof of theorem 2.1, which provides 
a uniform method to obtain these ‘conservative extension’-results. We 
will here sketch their method for the extension of propositional intu
itionistic logic by quantification over propositions (I^L, which via a 
Curry-Howard-de Bruijn isomorphism corresponds to Girard’s system 
T  of variable types (Girard(1971))).
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Godels translation now becomes:

('ip A)0 := WpA° 
(3pA)° := 3PA°.

One easily verifies that the resulting embedding of l£L into the 
extension of (the propositional fragment of) S4 with quantification over 
propositions (Sj;4) is correct: if I^L h F => A, then S^4 b T° =4> A 0. 
(In the proof one uses S^4 b (A[T/p])° ■<=>■ A°[T°/p].)

In order to show faithfulness, we adapt the interpretation given 
by Flagg and Friedman(1986) of S4 in IL  to second order quantified 
formulas, in the obvious way:

3 .1 . D e f i n i t i o n . Write -<e A for A  —> E . Let T be a finite set of 
IpL-formulas, and let E  €  I\ Then, for each Sp4-formula A we define
an IpL-formula A ^  as follows: for atomic A let A ^  :=  ~ie ~ie A] then 
put

(A A B ){E) =  4 e > a b <e >

(A V B )  P =  ~'E~’e (A ^  V  B\
(A =  A f > ^ B  <E>

(ipA){E)

£ii

( 3 pA){rE) =  -’E-'E^pAj?'*

= ->E~'E A  '
cer

One shows that, for all provable Sp4-formulas B, we have that IpL b
BpE\ for any set T of IpL-formulas, and any E  e  T. Then define 
inductively for IpL-formulas F  the set Sub(F) by

Sub(p) := {p},for atomic p;
Sub(A o B) := Sub(A) U Sub(J3) U { A o  B }, for binary connectives o; 

Sub(Qp.A) := Sub(.A) U {Q p.A },for quantifiers Q.
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By induction on the complexity of A  we find the following.

3 .2 . L e m m a . Let A be an I2L-formula, and suppose A D Sub(A).

Then IpL b A <=A /\ A^c ) . El
C€A

3 .3 . T h e o r e m . For all TjJj-formulas A: I2L  h i  iff Sp4 b A0. 

P r o o f : Suppose S*4 b A°. Let T =  Sub(A). Then I2pL  b /\ A ° f ].
C<E A

So IpL b A  by the lemma. H

This of course extends directly to sequents:

IpL b T =» A iff Sp4 b T° => A0.

We get what we might call Girard’s variant of this embedding 
by adding to the propositional clauses in the definition of the (•)*- 
translation of the previous section:

(ip A)* := ip  A*
(3pA)* := 3p\A*.

But Sp4 proves A° ■£=*►! A*, so we also find:

IpL b T ^ - i  iff Sp4 b i r  A*.

As the propositional/exponential fragment of linear logic extended 
with quantification over propositions (C^LL) can be seen as a fragment 
°f Sp4, we obtain faithfulness of the linear analogue of this embedding.

3 .4 . COROLLARY. Girard’s translation is a correct and faithful em
bedding of second order propositional intuitionistic into linear logic:

IpL b r  =» A iff CpLL b T* =» A*. B

It is more or less obvious that adding first order quantifiers will be 
unproblematic. We refrain from verifying the details.
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4 Decomposing classical logic

Like Girard’s embedding of intuitionistic into linear logic, which, as we 
saw, is based upon a linear decomposition of intuitionistic connectives 
(most notably of intuitionistic implication A —> B  as \A -© B ), we can 
construct modal embeddings of classical into linear logic. These then in 
turn provide us with linear decompositions of the classical connectives. 
Unlike in the intuitionistic case, however, there is no unique optimal 
choice.

One might be tempted to try and interpret classical implication 
A —> B  as \A - ° !B .  However, the modal translation thus obtained fails 
to define a correct embedding of classical (even of intuitionistic) logic: 
if we put pi :=  p for atomic p, and (A —> B )t :=  !A* 1B\  there are
intuitionistic theorems <j> whose translation <ff is not provable in linear 
logic. An example of such a </> is ((a -> b) —> a) -» ((a -> b) -> b). (One 
shows3 that C L L  l/!(!(!a  -o lb) -o ?a), !(!a -© lb) =>- lb, from which one 
obtains that C L L  I/  <f>', using the fact that t/4 €  M  (i.e. t/,t 1 ^ )  
for all non-atomic if>.

Further reflection leads us to two candidates for an embedding of 
classical logic. One, the T -translation, is based upon a linear decompo
sition of A —> B  as \1A IB , the other, the Q-translation, interprets 
A B  as \A -o 1\B.4

They are defined inductively by the following clauses.5
In case of the Q-translation we put p® :=  p  for atoms p (including 

the constants T, _L) and, according to whether we want to use the 
additive or multiplicative version of the logical connectives, take the 
corresponding clause of the Q-part of table 2.1.

In case of the T-translation, again put pT :=  p for atoms p (including 
the constants T, _L) and, according to whether one wants to use the 
additive or multiplicative version of the logical connectives, take the 
corresponding clause of the T-part of table 2.1.

3 This makes an interesting exercise in linear non-derivability.
4Here “T" stands for tete, “Q" for queue. See section 4 of the next chapter.
5We will from now on mostly concentrate on the second order propositional 

fragments of our logics. The reader who wishes to do so, will easily find the clauses 
necessary to include also first order quantification.
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Q multiplicative additive

(A -* B )* !A^ -o  ? !B q l\A  ̂ ! B q

( A A B ) Q ! A Q < 8 > ! B q

{A y  B)^ ? ! A q > 9 ? ! J 5 q

V p ? ! A ^ Vp?!AQ

(3p )Q 3p\A^ 3p\A^

T multiplicative additive

{A -*• B )t !?At -o ?S T ?a t \?b t

{A A B )t !?A t <S»!?Bt ?a t &?b t

{A V J3)t ?At >9?Bt !?A t ®!?JBt

(Vp)T Vp?a t Vp?a t

(3p)T 3p!?A T 3p!?A T

Table 2.1: The Q- and the T-translation

4 .1 . THEOREM. Both the T- and Q-mapping are sound and faithful 
embeddings of classical into linear logic:

C L L  h !r Q =► ?!Aq iff C L  h r  =► A iff C L L  h !?rT => ?a t

PROOF: As the skeleton of any linear proof of a modal translation of a 
formula A is a correct proof in classical logic, the faithfulness of both 
mappings is trivial.

In order to prove correctness one shows by induction on the length 
of CpL-derivations (with multiplicatively formulated logical rules in 
case of the multiplicative, and additively formulated rules in case of 
the additive version) that derivability of a sequent T => A implies 
derivability in C *LL of (1) W* ^ ? !A ^  and (2) !?rT ^ ? A T. One 
uses in both cases the fact that our mappings are compatible with 
substitution. Moreover, for (1) we use derivability of

! ( !A -o ? !B )  =*• ?\A -o  1\B
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?L4 V.B ?!(?!A -  \B)
MAA&V.B =* 1\(\A <8> \B)

V.Ai =* ?!(!A i© \A2)
3pl\A V3p\A,

for (2) that of

!?(!?A -o  I B ) !?A MB

MA MB =* 1(1 A  MB)

!?(?A ’S’ I B ) =* !?A >9 1MB

!?(?Ai&  ?A2) =* MAi

!?Vp?A 'ipMA. h

Consequently a formula A is a classical theorem if and only if ?!A^ 
and ?.4T are linear theorems.

When working out the details of the proof of theorem 4.1 the reader 
will find that instead of the derivable sequents

!?!A<g>?!£ =► ?!(!A ® !B)
!?(?A >9 IB) =*■ !?A >9 1MB,

(s)he could as well use derivability of

?!A(S»!?!S =» ? !(L i® !B )
! ?(?A ’? ? B )  =► ?l?A>9l?B,

or, said otherwise, there two ways to derive !?!A<8> !?!B =>■ ?!(!A <%> \B), 
and two ways to derive !?(?A ’ff IB ) => ?!?A ’S’ V.1B (cut free, that 
is). We encounter, within a procedure that otherwise is completely 
unambiguous, precisely at these points the necessity to choose. We will 
come back to this (important!) fact, notably in chapters 3 and 6.

Observe that in case of the additive definition of the Q-conjunction 
there still exists a quite drastic optimization: due to derivability of 
\(A&.B) =>- !A& \B and ?!(?!A&?!i?) =>- 1\(A&B) we might in fact take
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(A A B)® :=  Dually, for the additive definition of the T-
disjunction we might opt for (A V B )T :=  AT ® B T. We will try to 
motivate our choice later, cf. sections 3.5, 6.2.

Notes

- The first section appeared, in slightly different form, in Schellinx(1991). 
Section 4, like much of the m aterial in the chapters to come, is based upon  
joint work with Vincent Danos and Jean-B aptiste Joinet.

- Interesting facts on the history of Godel’s and related modal transla
tions can be found in T roelstra’s “Introductory note to 1933f” in Volume I 
of Godel’s Collected Works (G odel(1986)) and in several of K osta Dosen’s 
papers, e.g. D osen(1992a). The observation in section 2 th at faithfulness of 
the well-known embedding of intuitionistic logic into S 4  implies faithfulness 
of G irard’s embedding of intuitionistic logic into C L L  is more or less im
plicit in Dosen’s ‘Modal translations in substructural logics’ (D osen(1992b), 
proposition 14).

- Intuitionistic negation A —» _L under G irard’s embedding becomes 
\A* —o 0 , which is not provably equivalent to !A *’s linear negation (IA *)1- 
(i.e. !A* -o  _L. Would one prefer to map intuitionistic to linear negation, one 
might use a translation mapping atom s p  to p  © _L, and _L to _L (Prijatelj 
and Schellinx(1991)). Note however th at this is not a ‘modal translation’ in 
our, strict, sense.

Classical negation A  -»  _L is mapped by the Q-translation to !A^ —o?!_L, 
by the T-translation to !?A T ?_L. As, for all modalities //, we have that 
_L <=>  ?/i_L, these are linearly equivalent to (lA ^ )1 , respectively (!?A T)-L.

- The embeddings of classical into linear logic of section 4 are, a fortiori, 
embeddings of classical logic into S 4 . Given the observations of section 3 it 
will not come as too big a surprise th at these are closely related to modal 
embeddings of classical logic into S 4  as previously studied by Fittin g(1970) 
and C zerm ak(1974).
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Decorations

We recall our main theme: the skeleton (the object obtained by delet
ing all exponentials, replacing the linear connectives by their non-linear 
counterparts and eliminating possible repetitions of sequents) of what
ever derivation in linear logic is a derivation in a sequent calculus for 
classical (or intuitionistic) logic. So we may interpret a linear deriva
tion as a ‘dressed up’ classical or intuitionistic proof. In the present 
chapter we will verify that the taking of the skeleton of a linear proof 
indeed has a converse: given a classical or intuitionistic derivation 7r, 
one can always ‘dress n up’ in such a way that the result is a linear 
proof £(tt), with it as its skeleton.

DEFINITION. A decoration of a (classical, intuitionistic) derivation n is 
a linear derivation S(n) such that sk(<5(7r)) =  n; by a decoration strategy 
for a given (sequent)calculus we mean a uniform procedure (algorithm) 
that outputs a decoration for any given derivation in the calculus. B

Just as for derivations, we will also refer to the obvious classi- 
cal/intuitionistic formula that underlies a linear formula A, as its skele
ton sk(A). Conversely we will speak of decorations of formulas: (5(A) is a 
linear decoration of A if it is obtained by replacing classical/intuitionistic 
connectives by linear ones, and by prefixing subformulas of A  with 
strings of !, ?. So e.g. both !?!!A <8> B  and A & IB  are linear decora
tions of A A B] note that a modal translation ( )'/' will always satisfy 
sk(A^) =  A.

Also for linear formulas A we will refer to a formula S(A) that is ob
tained by prefixing subformulas of A with strings of !, ? as a decoration
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of A. Obviously the number of distinct decorations of a given formula 
is infinite. Though, by the observations made at the end of the intro
duction to chapter 1, modulo provable linear equivalence this number 
will be finite, the manifold of literally distinct decorations does play a 
role as soon as we are no longer merely interested in mere provability, 
but also in the dynamics of proofs, cf. section 1.1, section 4.4.

1 Plethoric translations I

In order to produce linear decorations of intuitionistic and classical 
proofs, a possible approach is to try to transform a given derivation tv 
into a linear derivation <5(7t) , by inductively applying a modal transla
tion to the sequents occurring in tv.

1 .1 . DEFINITION. Let a modal translation (-)^  and modalities fi, v 
be given. We say that the triple ,[i,v )  determines an inductive 
decoration strategy for a sequent calculus S  if

1 / for all <S-axioms I? => A it holds that jiT^ => v is /  is a C L L- 
axiom or obtainable from such solely by means of zero or more appli
cations of exponential contextual and/or dereliction rules;

2 /  for all <S-rules with conclusion T =4> A and premiss(es) => A,- 
we can derive => v /s /  in linear logic from /xTf => v A f  by one 
application of the corresponding CLL-rule preceded and/or followed by 
zero or more applications of exponential contextual and/or dereliction 
rules. B

Obviously, by definition, if ((•)'^, //, v) is an inductive decoration 
strategy for a calculus S , then, given an <!>-derivation tv of a sequent 
r  => A, we cam inductively apply the translation (-)'*' to tv and derive 
(j,T^ => vA ^  by means of a linear derivation tv̂  which is a decoration 
of the original one.

As the proofs of theorems 1.3.3 and 2.4.1 show, neither Girard’s 
translation of intuitionistic logic, nor the Q- and T-translation of clas
sical logic define proper translations of sequent-calculus derivations, in 
the sense that none of ((•)*,!,•), ((-)Q, !,?!), ((-)T, !? ,? } define an in
ductive decoration strategy for IL, CL. Using these translations, the
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inductive transformation of proofs in general will introduce cuts at sev
eral points. Consequently the skeleton of the linear derivation obtained 
will not be the intuitionistic or classical derivation we started from. In 
fact this is true in a strong sense: also after elimination of the cuts intro
duced (the ‘ correction cuts'1) what we obtain is likely to be a derivation 
having a skeleton that is different from the original one. An example 
in the intuitionistic case is provided by the following derivation:

A => A
C = > C  B ,A = > A  
C ,C  -> B ,A = >  A

Applying Girard’s translation and introducing the necessary ‘cor
rection cut’ for the implication-left rule, we get

!C=>!C B => B 
!C, \C -*  B  =► B 

!C, !(!C —o B) => B 
\C,\(\C -o B) =>\B 

\(\C -o B) =>\C -*\B

C => C A=> A
!C=» C \A=>A
!C=>!C \B,\A=>A 
!C, \C —o \B, IA => A

\C,l(\C —o B),\A A

which reduces to

A => A 
I A ^  A 

1C,\A^f A
!C ,\{\C —o B),\A =$■ A

Though the translation does not give us a decoration-strategy for 
IL-derivations, the example shows that after having eliminated the cor
rection cut we obtain as skeleton an IL-derivation of the same sequent 
for which the inductive application of Girard’s translation does result 
in a decoration. In fact this is not by accident, but (modulo precise 
formulation) a general property. (See section 6.3.)

The embeddings of chapter 2 fail to be inductive decoration strate
gies because of their economy in the use of exponentials. When one is
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willing to ‘bang’ less economically, it is mostly not too difficult, given 
any of the standard sequent calculi for classical or intuitionistic logic, 
to define a decoration via a sound and faithful translation into linear 
logic.

Let us consider second order intuitionistic propositional logic I^L, 
with additively formulated rules for conjunction and disjunction. Define 
a mapping (•)* of formulas to linear formulas by: 

for p  atomic let p® : =  p  ; then put

1® := 0
(A A B)® := \A®&\B®
(.A V B )® := \A® © !£®

{A -4 B)® :=  \A® -o  \B®
(ip A)® :=  \/p\A®
(3pA)® :=  3p\A®.

Then T =>■ A is derivable in I^L if and only if T® => A® is lin
early derivable (observe e.g. that b !A® •<=£■ !A*). Moreover one easily 
checks that ((•)*,!,•) is an inductive decoration strategy for the chosen 
calculus1: we replace all sequents T =$■ A  in a derivation n by T® => A®, 
and apply R! just before each rule in which the succedent formula is 
active, e.g. before R-> and before applications of L-> and cut (in the 
left premiss).

We call the resulting linear derivation tv® the f(ull)-decoration of n, 
which, by construction has the down-property, each main formula in an 
application of R! is active in the rule below.

In general the number of shrieks thus introduced is somewhat over
abundant, to put it mildly: the potential use of structural rules is an
ticipated by ‘banging’ each and every (sub)formula occurring in the 
antecedents of 7r®-sequents; but, on the other hand, it is the possibility

1(-)® is the translation (*)'^ that naturally suggests itself when we inductively 
transfer IL-derivations to linear logic, replacing sequents T => A by => A'*' 
and not using correction cuts: e.g. the rule R—t forces that \A^ —o , and the 
rule L - 4  that A ^  —o\B^ is a subdecoration of (A  -4  B ) ^ . Whence (A -4  B ) ^  
\a/  —o !B ^  is the ‘natural’ candidate.
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of this ‘modal anticipation’ of non-linearity that enables our defining 
uniform translations inducing decoration strategies. In fact, the (•)*- 
translation is the most economical decorating uniform translation of 
intuitionistic logic that is compatible with substitution {(A[Xlp\)® =  
A®[X®/p\, for all A,X)\ mappings obtained by dropping exponentials 
in (-)®’s definition will no longer be decorating. If we add exponentials, 
we loose the substitution-property and/or introduce multiple shrieks.

2 ILU and (sub)Girardian decorations

Related to the observation that Girard’s translation is not an inductive 
decoration-strategy is the fact that no strategy can lead to decora
tions of IL-derivations that axe always subGirardian, i.e. do not shriek 
(sub)formulas that are not banged in the (-)*-translation. If we consider 
again the example of the previous section, then clearly each decoration 
will contain the following minimal decoration:

A =» A
C=>C \B,A=t-A 
C,C-o\B,A  => A

The exclamation mark appearing in front of B  is forced by the 
use of the structural rule of weakening. Deleting it results in a non
linear derivation. The ‘root of all evil’2 apparently is that intuitionistic 
sequent calculus allows applications of the rules L—>■, LV2, LA in case the 
active formula in the (right) premiss has been subjected to structural 
manipulation. We here find once more3 illustrated how linear logic 
reveals the possibility of restrictions on derivations in its underlying 
calculi, restrictions leading to subsets of the collection of these proofs 
that nevertheless are complete. Namely, the correctness of the (•)*- 
translation shows that we can do without applications of those rules in 
the aforementioned cases: the collection of derivations that do not use 
them is complete for intuitionistic logic. Indeed, this is an immediate

2See Heesterbeek et al.(1992)
3 A first example is provided by our observation concluding section 2 of the 

previous chapter.
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Identity axiom: 

A\ A 

Logical rules:

T -,T=>A B ;T '  => C  „  . U , T , A ^ B
w  fl;r,r => c ^ n ;r=>A->5

Rules for the second order quantifier (q not free in T, El):

LV2
A \ X / p ] ; T ^ B  

VpA;T=*- B RV2
H ;T ^ A [ q / p }  
I I ;r  => Vp A

Structural rules:

LW
n;r=> a  

n - ,r ,B  =► a
T r  U ; T ,B , B  A  _  B ,T  => A

n ;r,B=>A  ; s ,r= > A

Table 3.1: IL U , the cut-free fragment.

corollary to the subformula property and the fact that the skeleton of a 
cut free intuitionistic linear derivation of T* => A* is an IL-derivation.

This suggests a formulation of intuitionistic sequent calculus in 
which the use of these rules on such, non-linear, formulas is forbidden, 
and which as a consequence we should expect to allow (sub)Girardian 
decorations.

Such a formulation cam be found by a rather straightforward ab
straction of the structure of linear derivations of sequents of the form 
!r* =>- A* (let us restrict ourselves to the formulation of the fragment 
with implication and universal second order propositional quantifica
tion, i.e. the fragment corresponding to Girard’s system T ) 4 (table 3.1).

In a sequent II; T => A the symbol II denotes a multiset containing 
at most one (the /lead-(formula whose occurrence in a sequent is distin
guished by means of the . In the linear interpretation it corresponds

4 Observe that the instances of rules that we will get rid of have no obvious 
equivalent in the natural deduction formulation of IpL. Therefore this modified 
sequent calculus will be closer to natural deduction and the simply typed A-calculus 
than the standard formulation. (The reader will find that the ‘obvious’ way to 
interpret a natural deduction derivation in sequent calculus is as a derivation in our 
modified calculus!)
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to a formula that is not (yet) shrieked. The structural rule D is the 
equivalent of L!, the linear dereliction rule.

Included we find the (cut free) neutral fragment of intuitionistic 
implicational logic as it appears in Girard’s system of Unified Logic 
(LU , Girard(1993)). We therefore refer to the above calculus as ILU .

We will show (theorem 2.3) that II; T =$■ A is derivable in IL U  if 
and only if II*, !r* => A* is derivable in the {!, -©, V^-fragment of linear 
logic, where Vj indicates abstraction limited to formulas of the form 
X *. Moreover, by construction, ((•)*,•,!,•) determines an inductive 
decoration strategy (in the sense of definition 1.1, adapted to ILU - 
sequents in the obvious5 way) for ILU-derivations 7r, resulting in linear 
derivations 7r* (the g(irard)-decorations) with the down-property.

Cuts between g-decorated ILU-derivations come in two distinct 
forms.

(1) If 7r* is a g-decorated ILU-derivation with conclusion II*, IT* => 
A* and r* is a g-decorated ILU-derivation with conclusion A*, !A* =>■ 
B*, we can form

n*,T*=>A* A*,!A*=>5* 
n *,!r* ,!A * =► B*

(2) If 7r* is a g-decorated ILU-derivation with conclusion !F* => A* 
and r* is a g-decorated ILU-derivation with conclusion II*, lA*, !A* =>■ 
B *, we can form

w*
T *

T* =» A* :
!r* =>IA* n*, !A*, (!A‘ )n => B* 

n *,ir*,!A * => b *

5See the remark in the notes at the end of this chapter, page 77.



3.2. ILU and (sub)Girardian decorations 51

We then can apply elementary reduction steps of the cut elimination 
procedure for linear logic in such a way that the resulting reduct is either 
a g-decorated ILU-derivation, or contains only linear cuts of type (1), 
(2).

Strong normalization for these reductions in linear logic implies that 
the collection of g-decorated ILU-derivations is closed under linear cuts 
of the above form.

Hence as a corollary we get that ILU  is closed under the
C u t rules:

head
n -, ri=>A  4̂.; r  2 => -s

II;Ti,T2 B

m id
; r  1 =̂ - 4̂ IIjA, r2 => C

n ; r i , r 2 =m ?

By the above observations we obtain an intrinsically definable, de
terministic cut elimination procedure a  for ILU-derivations it, which 
corresponds to the linear cut elimination procedure a n  applied to 7r’s 
g-decoration ir*. Observe however, that the correspondence between 
the two procedures is not step-by-step. Due to the fact that in IL U  
the exponential rule R! is ‘invisible’, in certain cases an elementary re
duction step in IL U  will correspond to two consecutive steps in the 
linear equivalent. Conversely, an elementary reduction step applied to 
7r* will always correspond to either an empty step (an instance of the 
‘repetition rule’) in ILU , or an elementary ILU-reduction step, as il
lustrated in figure 3.1. We will see ILU-reductions in detail in section 
6.2.

We express the fact that the g-decorations tt* of ILU-derivations 7r 
simulate the reductions of 7r, by saying that they are strong decorations 
with respect to a.

2 .1 . D EFIN ITIO N . Let L be a sequent calculus and a  a procedure for 
cut elimination in L. A decoration strategy 5 for L  is said to be strong 
(with respect to a )  if and only if any elementary normalisation step in 
a ,  transforming a derivation 7r in L into tt' , can be simulated by one
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Figure 3.1: “...an empty, or an elementary step..”

or more elementary steps in the standard procedure for linear sequent 
calculus, leading from S(7r) to S(tt'). B

In other words, <5 is a strong decoration strategy if for all L-derivations 
7r and for all elementary reduction steps jJ in a  there exists an LL- 
reduction Ji such that the following diagram commutes:

S
7T----------

<5

Note that for whatever decoration strategy 5 for L there exists a 
normalization procedure, say oi, such that 5 is strong with respect to 
eq: it suffices to define ai as the reflection of cut elimination in linear 
logic (cf. section 1.1). But often it will not be possible to formulate the 
corresponding procedure eq directly, and independently of S(n), i.e. <7/ is 
not intrinsically definable. This will for example be the case whenever 
the decoration strategy in question is non-deterministic. Cf. section 3.

Sound- and completeness of IL U  with respect to provability in (the 
corresponding fragment of) intuitionistic logic should be more or less 
evident from the correctness of Girard’s translation of intuitionistic into 
linear logic. It is in any case an immediate corollary to our forthcoming 
theorem 2.3. Still, let us first give here an instructive direct argument 
using closure of IL U  under cut:

-<5(tt) 

! VLL
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2 .2 . P roposition . If  IL U  I- II; T => A, then l£L h II, T =$■ A. 
Conversely, if  I^L h T =>■ A, then IL U  h; T =>■ A.
P r o o f : Note that only the second claim is worth of our attention. 
Here we proceed by induction on the length of IpL-deri vat ions. We 
encounter a problem in case the last rule applied has been L —> or LV2. 
In the first case, by inductive hypothesis we have ILU-derivations of 
; T =>- A and ; A, B  => C, and we would like to get a derivation of 
; T, A, A  —> B  =>■ C. As B  is not a head-formula, we cannot use the 
ILU-rule directly. However, it is easy to derive ; A, A  —> B  =$■ B  in 
ILU . So using mid-cuts we construct

;T=>i4 ; A, A —> B => B •
;T,A->B=$>B ;A,B=$>C

, T , A , A - > B = >  C

and we are done by closure of ILU  under cut. In case of LV2 we use 
derivability in IL U  of ; VpA => A. B

The following theorem shows that a {!, V2}-derivation in which 
each formula occurring is a subformula of a formula of the form A* in 
fact is an ILU-derivation.

2 .3 . T h eo rem . If it is a derivation in { !, -o , Vj} of n*, T* =^!S*, A* in 
which all cutformulas are of the form A* or \A*, and all identity axioms 
of the form A* => A*, then sk(7r) is an ILU-derivation of n ; T =>■ S U A. 
PROOF: By induction on the length of 7r, proving simultaneously that 
always | n  U E | <  1 and | E U A | =  1.

For the basis of the induction we consider the axioms A* =*> A*, 
which obviously satisfy these conditions, and whose skeletons are the 
ILU-axioms A; =>■ A. For the induction step let us consider just some 
typical cases.

- If 7r ends by an application of L-°, the situation will be as follows:

7Ti *2

n i ,!n  =>!A*,!Ei,Ai B*,n$,!rs =*!E$,A 
!A* —o 5 * , !n ,!r 2* =>!Ei,!E5,A ;,A 5

*
2



54 D ec o r a tio n s

Applying the induction hypothesis to 7q, we find that II* =  S , =  
Ai =  0 and | A2 | =  1, from which the desired conclusions follow.

- In case 7r ends by an application of L! we have

n*,A*,!r* =»!E*,A* 
n*,!A*,!r* => !E*, A*

By induction hypothesis II =  S =  0 and |A| =  1. So sk(7r') derives 
A; T =>- A. We can continue in IL U  by an application of D, giving 
;A ,T ^ A .

- In case of an application of R! the premiss has to be of the form 
!T* =>- A*, and the conclusion is IT* =>• \A*. By induction hypothesis we 
have an ILU-derivation of ; T =>■ A, and we continue by an application 
of the repetition rule (i.e., don’t do a thing). B

There is a subtle point to notice here: we do not claim that if 7r 
is a derivation, as in the theorem, of a sequent II*, IT* =>!S*, A*, then 
(sk(7r))* =  7r. In general this will not be the case.

3 Plethoric translations II

Let us try to define a uniform translation (-)^ of classical logic that, 
like the (^-translation for intuitionistic logic, can be extended to an 
inductive decoration strategy for CL. In order to do so, we have to 
interpret sequents T =*> A as jiT^ => vA ^ , where /i, v are modalities. 
Then observe that in order to satisfy condition 2 of definition 1.1

1. in case of the structural rules we need that fi =  !//  and v =  
for modalities / / ,  v'\

2. in case of an application of cut, we need to be able to ‘unify’ the 
decorations /j,A^ and vA^ of the cut formula by some series of 
applications of dereliction- and/or promotion-rules. Clearly this
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can be done if and only if either p is a suffix of v or v is a suffix 
of p.6

We will call a pair of modalities (p, v) satisfying these two conditions 
adequate.

3 .1 . T H E O R E M . Let (p, v) be a pair of modalities. There exists a 
modal translation (•)^ such that ((-)^ ,p , v) is an inductive decoration 
strategy for C L  if and only if  (p, v) is adequate.
P R O O F : That adequacy is a necessary condition has already been 
shown. It is also sufficient: given an adequate pair (p, v) define p® :=  p 
for p atomic; then take _L® :=  0, T® :=  T, and

multiplicative additive

(A  -¥  B )® m ax(fi ,  v)A® —o m a x ( ii ,v )B ® m a x (fi1 u)A® m a x(fi ,i / )B ®

{A  A B )®
j  \vA® <8> \ v B if v >  fi 

1 fiA® <8> p B ® ,  otherwise
m a x (fiyi/)A® & m a x ( i i ,v )B ®

{A  V J3)®
j  7 f iA ® ^ ? f iB ® ,  if \ i > v  

| vA® >$? v B ® , otherwise
max{(i^u)A®  ® m a x ( / i ,v )B ®

('ip A)® Vp. max(fj,,i/)A® Vp. m a x (p , v)A®

(3pA)® 3p. max(fj,,i/)A® 3p. m a x ( f iyi/)A®

It is straightforward to verify that ((-)®,p, v) is an inductive dec
oration strategy for CL. In particular C L b T A if and only if 
C L L  h pr® =» uA®. H

Note that we obtain a similar result for IL  if we take p, u to be 
modalities consisting of 0 or more occurrences of T  (and of course drop 
the condition that v be of the for ?z/ from the definition of adequacy).

We will separately state the modal translations corresponding (as in 
the proof of theorem 3.1) to the two, simplest possible, adequate pairs, 
namely (!, ?!) and (!?, ?), to which we refer as the q-, respectively the

6 We will write p, < v in case the modality p  is a proper suffix of v. E .g . !!?! < ?!!!? !. 
If p  < v or v < p, then m ax(p, i/) indicates the largest of these two modalities with 
respect to this relation.
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q multiplicative additive

(A -* B )q ?!A q ? !s q ?!A q — ? !B q

{A A R )q !?!Aq<g>!?!.Bq ?!A q& ?!B q

{A V B ) q ?!A q>9?!Rq ?!A q© ?!J3q

(Vp)q Vp?!Aq Vp?!Aq

(3p )q 3p?!A q 3p?!A q

t multiplicative additive

(A - *  B f I7A* -o  !?B t \?At — !? B*

{ A A B f !?J4t <S>!?jBt ! ?At&\?Bt

(A V B)x ?!?A t>S>? !? R t !?A t © !? R t

(Vp)1 Vp'.lA1 VptfA4

(3p)* Bp\?At 3p!?A l

Table 3.2: The q- and the t-translation

t-translation. (As we will see in section 5.5, q and t are, in a way, the 
unique inductive decoration strategies for CL.)

Recall the modal translations Q, T of classical logic, introduced in 
section 4 of the previous chapter. The q-translation suggests itself when 
one tries inductively to transform CL-derivations into linear derivations, 
replacing sequents T =>- A by !TQ => ?!AQ, the t-translation when 
replacing sequents T =>■ A by !?rT =>- ?AT, without using the correction 
cuts of (the proof of) theorem 2.4.1. The translation (-)® in theorem 3.1 
is completely determined by the fact that sequents T A are to be 
interpreted as pT® => vA®, cf. the footnote on page 47.

So the q-translation is related to the Q-translation, and the t-transla
tion to the T-translation, as is the (-)®-translation to Girard’s embed
ding (•)* in the intuitionistic case.

The q-translation is given by:
put pq :=  p for atoms p\ next take J_q :=  0, T q :=  T and, according 

to whether we use the logical rules in their additive or multiplicative 
formulation, take the corresponding clause of the q-part of table 3.2.
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The t-translation is given by:
put pt :=  p  for atoms p; again take A.1 :=  0, T* :=  T and, depending 

on the use of either additive or multiplicative versions of the logical 
connectives, take the corresponding clause of the t-part of table 3.2.

The inductive decoration strategies determined by q and t are almost 
free of ambiguity: in all but two cases there is only one possible way 
to continue. E.g., there is only one way to derive !Aq => V.A  ̂ from 
A q =>- /Lq by means of exponential contextual and dereliction rules; 
and given derivations of !?r* => ?.4t , ?A* and I?!?1, !?r| =^?A£ there is 
but one way to derive !?r*, !?r| ,!?At - o \?Bt =A ?A*, ?Aj in accordance 
with definition 1.1.

The exceptions are the case of (multiplicative) LA for q, and (dually) 
that of (multiplicative) RV for t. To take one of the two as an example, 
if we start from a derivation 7r of !? r t => ?At, ?B l , ?A* we can continue 
in two different ways:

!? !*  =» ?A*, ?Bl , ?At i?!1* => ?At , ?£*, ?A*

!?!* =» !?A*, ?£*, ?A* ITI* => r>.At , YtB*, ?Al
!?pt v j v ^ t  or, symmetrically, i?pt ? ?^t

ITT1 =*• ?!7A*, !?£*, ?Al !?rl =*> 17A1, 7!?#1, 7A4
i?pt ?!?^t^ ? ^ t i?pt 7??^^ ?^ t

Neither of these has an obvious reason to be preferable above the 
other, and if the CL-derivation n contains n instances of RV, we have 
to choose among 2n distinct candidates for nt. It is at this level, as 
soon as modalities of length > 2 are involved, that we encounter non
determinism in mapping a classical derivation to the subcollection of 
the collection of its linear decorations containing only decorations that 
are based upon a fixed modal translation. One should compare this to 
similar observations in Girard(1991). Cf. also sections 2.4 and 6.2.

Observe that the triple modalities in e.g. the t-decoration, will play a 
role only in the reductions of logical cuts. The two different decorations 
correspond to the two ways in which, in a CL-derivation 7r, we can 
reduce a cut of the form
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*1 *2

r=>A, £ , A Ti,A=>Ai T2,B A2
r = >  a v  a  r i , r 2 , A v ^ = > A i ,  A 2 

r , r i , r 2 => a , A i ,  a 2

Applying the first variant of the decoration (71**) corresponds to first 
apply a cut to 7r and 7Ti, and next to the result and 7r2 (let us note
this as — ; the second variant (7ijj) will correspond to — . Choosing

7T2 7Ti
the one, rather than the other, will in general lead to distinct results. 
But in C L the two cuts commute: —  reduces to — and vice versa. In

*2

7T2 TTl

the linear decorations, however, they don’t commute: 7ij reduces to
7rr

7r.t >

7\ T\ T\ n
and 7Tjj  to -4 . But -4  does not reduce to -4 , neither —I to

7Ti 7To 7Ti 7rJ
7TT
7T.f

This indicates, maybe not too surprisingly, that we still need some 
additional information. (The decorations suggest that a possible way 
out is the use of directed connectives. We could e.g. distinguish between 
A V  B , A V  B , and translate

{A y  B f  :=  rM*®?!?#1 

{A y  B ) 1 :=  ?!?A t ® !?J5t .

For obvious7 reasons here we will here not follow this train of thought 
any further.)

Note, however, that for some fragments, most notably { —>, V}, both 
the q- and the t-decoration are entirely deterministic. As a result each 
of them determines, unequivocally, a procedure to eliminate cuts from 
the original proof as the ‘reflection’ of linear cut elimination applied to 
the decoration. (The t- and q-decorations are strong with respect to 
these procedures.)

7Time, space, aesthetics.
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For example, in the case of t, the left premiss, 7^, of a cut is, in the 
decoration, a box:

!?r} ^ taJ.ta* .
!?rj =*> TAJ,!?A1 !? A l , !?r| => ?Aj

!?rt,!?rt^ ?A t,?A t

So we start by permuting the cut upwards in the right premiss 7r2 , 

meanwhile duplicating and erasing 7Ti, until we reach the introduction 
of the cutformula by (in the decoration: a dereliction immediately pre
ceded by promotion (box!) and) a logical rule or an axiom. In case of 
an axiom we reduce; otherwise we found the following configuration

(»!)'

:
: tA*, ITS1 => Til1

!?rj => ?Aj, ?At ITA*, ITS1 => tii1 
!?r^, ITS1 => TA^TII*

and permute the the box (w )̂' upwards in (the copy of) 7Ti, again maybe 
duplicating and/or erasing, until we reach the introduction of (?)A ^  
by an axiom or (a dereliction immediately preceded by) a logical rule. 
Now reduce in both cases, either the axiom cut, or the resulting logical 
(linear) cut.

It follows from the strong normalization theorem for linear logic, 
that this procedure of cut elimination for the fragment of classical se
quent calculus under consideration enjoys strong normalization. What 
is more, we have confluence modulo permutations allowed in C LL: the 
t-decorations of the resulting normal forms will all correspond to one 
and the same proofhet.
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4 LKT and LKQ

As we have seen in section 2, the fact that Girard’s translation of in- 
tuitionistic logic does not give rise to an inductive decoration strategy 
for IL-derivations shows us that some of the rules in the calculus are 
more liberal than necessary. Moreover, by having a close look at the 
structure of linear derivations of g-decorated sequents, we were able to 
formulate a sequent calculus that incorporates precisely the restrictions 
suggested by Girard’s translation.

In the case of classical sequent calculus we can proceed in a similar 
way, and construct calculi that incorporate restrictions suggested by 
the Q- and T-translations (section 2.4). Observe that formulations will 
difFer according to whether one choses the additive or multiplicative 
formulation of a given logical rule. The principle of finding appropri
ate rules however is in all cases the same, and the reader might try 
her or his hand at finding Q-rules for e.g. multiplicative conjunction 
etcetera. Complete formulations of a Q-calculus with multiplicative 
implication and conjunction, additive disjunction and of a T-calculus 
with multiplicative implication and disjunction, additive conjunction, 
are given in Joinet(1993). As for IL U  here we will restrict ourselves to 
the formulation of fragments with implication and universal second or
der propositional quantification. (Note however that e.g. the extension 
of these fragments to include the first order universal quantifier is com
pletely straightforward, and all results stated in what follows hold for 
these extensions as well. In proofs and definitions the case of the first 
order quantifier is treated completely analogous to that of the second 
order one.)

We will base the rules of a sequent calculus derived from the Q- 
translation upon the structure of linear derivations of sequents of the 
form T Q =>■ ?!A Q, !A°*. We start by observing the following.

4 .1 . L em m a . If in {!, ?, -o , V ?} we can derive a sequent of the form 
r ? , ! r ? , ? ! l f  =>- ?!A3 ,!A 2 ,A j (eventually using cuts on formulas of 
type A^, !Aq or V.A^), then | Ti U T3 U A21 <  1.
PROOF: By induction on the length of derivations. 13
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Identity axiom:

Logical rules:

!r=>?!A,L4 ?!5,!r' => ?!A' !I\!A => ?!5,?!A
L~° !(!A -o  ?!B ), T , IF  =► ?!A, ?!A' \T => ?!A, !(!A -o  V.B)

Rules for the second order quantifier (q not free in T, A):

?!A[*Q/p],!r=>?!A !r => ?!A, V.A[q/p]
2 !Vp ?! A, T  =► ?! A 2 T  => ?! A, !Vp ?! A

Exponential structural rules:

W!
r  => a

r, !A  ̂ => A w ?
r => a

T=> ?!A ^,A
,, r ,  !A, !A =» A r  =»?A, ?A, A
• r ,!A = > A  r = > ? A ,A

Exponential contextual and dereliction rule:

\T,\A =>?!A 
!I\?L4 =» ?!A

!r => ?!A, !A 
!r =»?!A,?L4

Table 3.3: Auxiliary calculus LLQ

In order to be able to continue in a given derivation with the main 
formula after the introduction of its main connective -o, or the quanti
fier V2, the Q-translation obliges us to bang, or bang and question, that 
formula: we have to apply an exponential contextual rule. Now, apply
ing R-o to a sequent \A  ̂ => ?!A^, (J), in order to derive
jpQ =£. ?!A^,!A^ V.B^, S^, we are somewhat stuck in case S ^  0,
as the only rules that can be applied afterwards to give us sequents 
of the right form are R-o and RV2, until A =  0, and our derivation 
necessarily ends. But the occurrence of sequents like (t) is not at all 
excluded (cf. lemma 4.1). In order to avoid them, we will apply R! 
immediately following R-o or RV2, forcing S =  0. This is incorporated 
in the auxiliary calculus LLQ  of table 3.3.

Obviously LLQ  is a fragment of {? , ! ,  V2 } ,  as there all of its rules 
are derivable. The specific formulation is in each case motivated either 
by contextual constraints, or the cardinality properties expressed in
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lemma 4.1. It is immediate that all formulas occurring in a derivation 
in LLQ  are of one of the forms !AQ or ?!AQ, and at most one formula 
of the form !AQ can occur in the succedent of an LLQ-sequent. Also 
one can show the following using an argument similar to that for g- 
decorated ILU-derivations in section 2 (page 50).

4 .2 . LEMMA. L L Q  is closed under cut. B

Consequently LLQ  is a proper fragment of linear logic, and we ex
tract the sequent calculus LK Q  (table 3.4) directly from this linear 
fragment. It has sequents T => A; II, where, as in IL U , the symbol II 
denotes a multi-set containing at most one (the ‘queue’ or tad-)formula 
whose occurrence in the succedent of a sequent is distinguished by 
means of the symbol In the linear interpretation it corresponds 
to a formula that has not (yet) been questioned.

The relation with LLQ  is evident.

4 .3 . L em m a . LLQ  h \T* =► ?!A^, HI* iff LK Q  b Y =* A; II.

P R O O F : By construction the skeleton of an LLQ-derivation of a se
quent i r Q => TIA^JII^ is an LKQ-derivation of T =>- A; II. Con
versely, ((-)^ ,!,? !,!)  determines an inductive decoration strategy for 
LKQ-derivations tt, which gives rise to linear derivations 7r̂  that in 
fact are LLQ-derivations: applications of L-o always are followed by 
applications of L! on the main formula, etcetera. 12

As for IL U  we find an intrinsically definable cut elimination pro
cedure for LKQ-derivations n that corresponds to the linear cut elim
ination procedure applied to 7r’s Q-decoration 7r ,̂ i.e. ((-)Q, !, ? !,!) is a 
strong decoration strategy with respect to this procedure. Hence LK Q  
inherits the computational properties of LL.

In order to show that derivability of T => A; II in LK Q  corresponds 
to linear derivability of =>?!A^, 11  ̂we need one more lemma, show
ing that in fact LLQ  is complete for derivability of sequents of the form
jpQ =>?!Aq, inQ.
4 .4 . L e m m a . A sequent ! r Q =>?!A^,!IIQ is derivable in { ? , ! , - « ,  V2 }  
if  and only if  it is derivable in LLQ .
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Identity axiom: 

A => ; A 

Logical rules:

. T =$> A ; A B,r'=> A'; r,A^A,B;
W  r,r',A->B=> A, A'; r= >  A;A->B

Rules for the second order quantifier (g not free in T, A):

T,A[X/p] Â-, 
LV2 r.V pA ^A ; RV2 r = »  A tA[q/p]; 

T=> A;VpA

Structural rules:

T => A; 
r= >  A, A:

LW
r=> A;n 

r,A=!> A;n RW r=> A; n 
r=> A,A; n

LC
r,A,A=> A;n 

r,A=> A;n RC
r  => A, A, A;II

r=> A,A;n

Cut rules:

tail
r=>A;A A,r'=t- A';n 

r , r  => A,A';n mid :
A, A; II A,r' =>A'; 

r , r  => a , A'; n

Table 3.4: The calculus LK Q

PR O O F: Of course we only consider the left-to-right implication, and 
proceed by induction on the length of cut free derivations in the given 
fragment, with only atomic instances of the identity axiom. We need 
a variation on the inversion lemma of section 2.1: if in our fragment 
under the given conditions we have a derivation of length n of a sequent 
r ^ A - o B , A o r r = ^  Vp.4, A, then there are derivations of length 
< n of the sequents T, A => B , A  and F =4> A, A (taking the usual care 
with respect to naming variables).

If the last rule applied was a structural rule, we are done by induc
tion hypothesis.

If our derivation ends with an application of R!, then the premiss of 
this rule is the conclusion of a derivation of a sequent !T^ => ?!A^, A^.
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7r'

=> ?!A^

?!5Q,T^ => ?!A^

structural rules

?!5Q ,!r? => ?!A?

Vp?!SQ,T? => ?!A?

structural rules

VpTLB^Ilf =» ?!A?

!V p ?!B Q ,!lf =>?!A^

Figure 3.2: “

Now use the inversion lemma and apply the induction hypothesis.
If the last rule applied was R? we know by lemma 4.1 that the 

premiss of this rule is the conclusion of a derivation of !TQ ?!A^, 
to which we may apply the induction hypothesis.

Last but not least we need to consider the case that the final rule 
is L!. Once more using lemma 4.1 we know that the premiss in that 
case necessarily is the conclusion of a derivation of a sequent A^, !F^ => 
?!A Q. Also, by the same lemma, this conclusion can be separated from 
an application of a logical rule having A^ as main formula only by a 
certain number of applications of structural rules. Thus we find that 
our derivation ends in one of two possible ways, as depicted in figure 3.2.

We reach the desired conclusion by induction hypothesis and an 
easy permutation of rules. B

4 .5 . P roposition . ! r Q =>?!AQ,n Q is derivable in {? , ! ,  \/5?}  if and
only ifT  => A; II is derivable in LK Q .

7Tl 7T2

irft ?!Cc2,!lf2 =>?!A?2

\BQ ^>?!cQ,!rp ^  ?!A^

structural rules 

!#Q _ o  ?!Cq, irQ => ?!A^
!(!BQ - o ?!C^), !r°i =» ?! A^

...in one of two possible ways...”
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PROOF: As !r^  =>?!A^, 11°* is derivable if and only if !r°* =^?!A^, 111̂  
is derivable this is immediate by lemmas 4.3 and 4.4. H

In fact also ((•)c*, !,?!,•) determines an inductive decoration strat
egy for LKQ-derivations 7r, resulting in linear derivations 7r̂  . It is 
again not difficult to verify that, in the same sense as for IL U , LLQ , 
the collection of Q'-decorated LKQ-derivations is closed under linear 
cut, which gives us an alternative intrinsically definable cut elimina
tion procedure cr®' for LKQ-derivations. In general application of a® 
will result in normal forms that axe different from those obtained using 
procedure a^. (We can in fact indicate precisely in what respect a® 
differs from <rQ\ Further on we will encounter a similar dichotomy in 
the case of the T-translation, for which we will describe the difference 
in detail.)

LK Q  lacks the stronger property characterizing IL U  (theorem 2.3). 
The skeleton of a linear derivation of the Q-translation of a sequent 
derivable in LK Q  will not necessarily be an LKQ-derivation. The 
reader will easily find an example.8

This ‘strong conservativity’ however does hold for the calculus L K T  
(table 3.5) based upon the T-translation, which is the classical analogue 
of ILU . (Note that when we delete all occurrences of *?’ in the T- 
translation, what we get is Girard’s translation (•)*; for Q what we find 
is (•)*.) Here we find sequents n; T =>- A, with n  containing at most 
one distinguished formula, the ‘fete’ or head-formula.. As in IL U , it 
corresponds to a formula that has not yet been subjected to non-linear 
manipulations on the left. Moreover, IL U  is obtainable from L K T  
by the usual intuitionistic restriction of the succedents of sequents to 
singletons.

Included we find the negative fragment of classical implicational 
logic as it appears in L U  (Girard(1993)).

As the next theorem, the ‘classical version’ of theorem 2.3, shows, 
derivability of n ;T  => A in L K T  corresponds in a strong sense to 
linear derivability of IIT, !?TT =^?AT in the {! ,? ,-o ,V 2 }-fragment of 
linear logic, where indicates abstraction restricted to formulas of 
the form X T.

8Hint: try the Q-translation => ?!(!p —o ?!g), V.p of => p -4 q,p; .
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Identity axiom: 

A; => A 

Logical rules:

r , J ^ A , A  B-,T '=>A'  „  . H , T ,A = > A ,B
A -»  B-,T,T' => A, A' n ; r  => A, A -► B

Rules for the second order quantifier (q not free in II, T, A):

LV2
A\Xlp]-V
vPA;r  =

:> A 
A r v 2 n ; r= >  A,A[g/p] 

n ; r  =► a ,'ip  a

Structural rules:

A;T=>  
A ,r  =>

LW
n ; r= >  a  

n ; r ,  a  => a

LC
n ; r ,A ,A = >  a

II; T, A => A

RW n ; r= >  a

II; r  => A, A

RC
n ; r  =» a , a , a  

II; r  => A, A

Cut rules:

head
I I ;r = > A ,A  A jF  =>A' 

n ; r , r '  =► a , a (
mid ;T  =» A, A

n ; r , r
n  ; A , r
■ A, A'

A'

Table 3.5: The calculus L K T

4 .6 . T H E O R E M . If ir is a derivation in { !, ?, — Vj }  of a sequent

r ? ,  ? r J , ! ? r J ^ !? A ^  ?a J , a t

and a11 occurrences of cutformulas are of the form AT, ?AT or !?AT, all 
axioms of the form AT => ALT, then sk(7r) is an LKT-derivation of

Ti u r 2-,r3 =» a 3, a 2, A i .

P R O O F : Similar to that of theorem 2.3. One proceeds by induction on 
the length of it, now showing simultaneously that the sequents consid
ered always satisfy 11\ U I?2 U A3 1 <  1. B
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As in the case for LK Q  we find two inductive decoration strategies9 
for LKT-derivations tv.

(1) We have the T-decoration ((-)T, ? ,!? ,? ) , resulting in linear deriva
tions 7rT and

(2) there is the T-decoration ((-)T, •,!?, ?), resulting in linear deriva
tions 7TT .

Consequently, also for L K T  we find two procedures (aT and crT') 
for eliminating cuts from an LKT-derivation 7r, corresponding to the 
reflection in L K T  of linear cut elimination in 7rT, respectively in 7rT .

Let us have a closer look at the difference. Consider a mid-cut in 
an LKT-derivation 7r.

7T2

;ri=>A i,A  II;A,r2=>A2
n ; r 1} r 2 => A lt a 2

The resulting cut in 7rT is of the following form:

!?r7 =>?Aj',?AT
7TT

2

!? r ?  => TA?, !?AT ?n T, !?At , ! ? r j ?AJ
?n T,!? r ? ' , ! ? r J  => ?a ?\?a J

In nT> we find:

9 Observe that both are free from ambiguities: starting from axioms AT => AT , 
respectively ?.4T => ?AT the decorations x T and 7rT’ are uniquely determined. A 
similar remark applies to the decorations 7T̂  and n 1̂ ' of an LKQ-derivation n.
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!?r7 =>?a J',?j4t .

!? r?  =» ?a?, !?at nT, !?AT, ! ? r j  =» ?a?
nT,i?rT !?rT=>?AT ?aJ

Hence, in both cases, in its linear interpretation the left premiss 
of an LKT-mid-cut is a box. Eliminating the cut means permuting 
the box upwards, meanwhile possibly duplicating and/or erasing it, 
while searching for the introductions by means of dereliction of the 
exclamation mark prefixing ?AT. Having found (one of) these, the 
mid-cut becomes a head-cut:

TTl *2

n ;T i^  A1?A j4;r2 =>A2
H;Ti,r2 => Ai, a2

which in nT is of the form

7rT
2

?nT, !?r̂  =» ?aJ\ ?at ?at , !?rj ?AJ
?nT, !?r?\ i?rT => ?a?\ ?aJ

while in ttt ' we find

rT'

7rT'
2

At ,!?

nT, i?!^ =► ?a J\ ?at ?at , !?rf => ?a 
nT,!?rT !?rT=>?AT ?a *

T
2
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Only in nT' the right premiss is necessarily a box. It is this difference 
which accounts precisely for the distinction between aT and aT : when 
eliminating a head-cut in 7rT, we are going to ‘look for the box’, i.e. 
we permute n j  upwards in 7rJ, until we reach the introduction of the 
question mark prefixing AT. This is either an axiom (in which case 
we are done), or a promotion-rule, immediately preceded by a logical 
rule introducing the main connective of AT. In this last case we ‘found 
the box’, which we then permute upwards in 7^, meanwhile possibly 
duplicating and/or erasing it, while searching for the introductions by 
means of dereliction of the question mark prefixing AT.

On the other hand, eliminating a head-cut in nT means permuting 
the box 7rJ( upwards in 7r̂  , meanwhile possibly duplicating and/or 
erasing it, while searching for the introductions by means of dereliction 
of the question mark prefixing AT. Having found (one of) these, it is 
necessarily preceded directly by a logical rule introducing AT’s main 
connective, or an axiom. In the latter case we are done; in the former 
one we permute the corresponding subderivation upwards in 7rJ until 
we reach an axiom or the logical rule introducing AT’s main connective.

So the difference between aT and aT is essentially in the size of 
the subderivations being erased and/or duplicated during elimination 
of head-cuts, this size being maximal in aT , and minimal in erT.

5 Constructive classical logic

Recently there has been a lot of interest in the extraction of a com
putational meaning from proofs in classical logic, more specifically, in 
the extension of the programming-with-proofs paradigm, as known from 
intuitionistic10, to classical (second order) logic (see e.g. Parigot(1993a)). 
As is well known, by a result dating back to Kreisel (see Friedman(1978), 
Leivant(1985)), the interest can not lie in the access to new repre
sentable functions, as all functions representable, in, say, classical sec
ond order predicate calculus, are already so in the intuitionistic second 
order system. No, the main goal is new algorithms: one will have access 
to other proofs of theorems of the form Vx(N (x) -> N ( f (x ))) .

^Independently due to Jean-Louis Krivine and Daniel Leivant. See e.g. Krivine 
and Parigot(1990).
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A sine qua non for this aim to be realizable, is a proof system for 
(a suitable fragment of) classical logic, having formulas to represent 
integers, lists, etcetera (‘datatypes’), and with a ‘reasonable’ normal
ization or cut elimination procedure: it should be strongly normalizing 
and confluent (at least with respect to proofs of these datatypes).

As we saw in the previous section, L K T  inherits the computational 
properties of linear logic. It is a proof system for classical logic that cor
responds to a proper fragment of C L L 2, and e.g. strong normalization 
of both aT and aT is an immediate corollary to the strong normaliza
tion theorem for reductions in linear logic. A similar remark of course 
can be made with respect to LK Q . Moreover, confluence holds in both 
cases (that is (at least) for the representation of the derivations as 
proofnets). Hence both systems present themselves as potential partic
ipants in the ‘programming-with-classical-logic^’-quest. But they are by 
no means the only ones.

By the results of section 3, also e.g. the { —>, V, V2}-fragment of C L  
in its usual formulation satisfies the criteria of ‘strong normalizability’ 
and (with a little care, cf. the end of section 3.3) ‘confluence’, provided 
we choose the adequate reduction. Either that defined as the reflection 
of the t-decoration (L K 1) , or that defined by means of the q-decoration 
(L K q) will do. And this is not yet the end of the story. Our technique 
of ‘decorating’ and ‘pulling back’ the linear elimination procedure to 
the skeleton of the proof provides us with a whole range of ‘construc- 
tivizations of classical, through linear, logic’. One might for example 
define ‘mixed’ decorations of a proof. First arbitrarily assign ‘types’ 
t, q to occurrences of formulas in the proof, with the only restriction 
that the assignment should respect ‘identity-classes’11. The multisets 
in a sequent T =>• A then, both in the succedent and the antecedent, 
are partitioned in formulas of type q and of type t, so the sequent has 
the form Tq, Tt => A t,A q. In the mixed decoration this will become 
!r q, !?r* =>■ ?A j, ?!A^, where (•)<t> now is a translation that will depend 
on the types of the components of the formula to be translated. If, given 
such a translation, the resulting inductive decoration strategy for the 
typed proof is deterministic, we again find a strongly normalizing and

n I.e. corresponding occurrences of the same formula get the same type. This 
notion will be introduced more formally in section 5.1.
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‘confluent’ reduction as a reflection of the linear elimination procedure 
of the decorated proof. This reduction now will depend on the type of 
the cutformula.

i----------- 1 i----------- 1

If the cutformula is of type t, then the left premiss is a box (in the 
decoration); is it of type q, then the right premiss is a box. We now 
eliminate the box as in LK* in the first, as in L K q in the second case.

But what is the translation (•)'*'? As always, it will be the identity 
on atoms, and if both components of a binary formula are of type t(q) 
we simply take the t(q)-translation. So we need only determine (•)<t> in 
case the components are of distinct type. Let us, as an example, look 
at A  —» B  in case the rules are multiplicatively formulated.

- If A  is of type t, and B  of type q, then, inductively applying the 
(•^-translation we find by induction hypothesis in the premiss of the 
unary rule \?A* => ?!B * , in the premisses of the binary rule =>- and 
\B* => . This suggests taking (A -» B)*  :=  !?A'tl -o ?!2?*, which indeed 
is easily shown to be correct: for the unary rule, we apply R  -o, for the 
binary rule we are done by a promotion in the right and a promotion 
in the left premiss, followed by an application of L

- If conversely A  is of type q, and B  of type t, then, inductively ap
plying (•)'*’, we find by induction hypothesis in the premiss of the unary 
rule \A* =>?B<t>, in the premisses of the binary rule =^?!A't’ and !?B* =>. 
Here we are forced to use triple modalities, and we stumble once more 
upon the nondeterminism we encountered earlier in the q-translation of 
the conjunction, and in the t-translation of the disjunction, and which 
(cf. section 3) is closely related to the order in which the two cuts, re
sulting from a logical cut where the main connective of the cutformula 
is the ‘problematic’ one, are performed. The diffluence in the case of 
Aq -> Bt is illustrated in figure 3.3. Each of the two possible triple
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Figure 3.3: The q/t diffluence

decorations will lead to exactly one of these configurations. The reader 
will find that in the other three cases (t/t , q/q and t/q ), where the 
decoration is deterministic, the order is irrelevant.

We leave the determination of the mixed translation for the other 
two binary connectives to the reader, and merely observe that for these 
we do not encounter any non-determinism.

Combining these observations with those of section 3, we find the 
following table:

A B A V

t t i

q t i

t q

q q i

A “j ” indicates that when decorating derivations that use multi
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plicatively formulated rules for these connectives, we need triple modal
ities, whence the decoration of all instances of the unary rule in question 
will be non-deterministic. It is here that the fundamental resistance of 
cut elimination in the classical sequent calculus to a computational in
terpretation resides. But it is also immediate that there are several 
ways out.

• A dubious one is to go additive: recall that the additive fragment 
of linear logic is far less well behaved than the multiplicative one, 
as confluence fails (though we do have a semantical invariance).

• One can opt for oriented connectives, as indicated in section 3. 
We leave this possibility open to further inquiries.

• We can ask for linearity of the active formulas in the (binary) rule 
dual to the problematic unary one, which will suppress diffluences 
like those of figure 3.3. This, as a matter of fact, is the solution 
in (the extension to the other connectives of) L K T  and LKQ  
(see Joinet(1993)). The embeddings Q and T of section 2.4 tell 
us that imposing this restriction on proofs is conservative over 
provability in classical logic!

• Also we can take the ‘additive way out’ in a more subtle manner, 
by asking additivity only for the problematic unary rules.12

This diagnosis is not new, and neither are the cures. (The simple 
analysis and localization of the problem in terms of determinism or non
determinism of the linear decoration of classical sequent derivations, 
however, is (we think) surprising!). Similar observations can be found 
e.g. in Parigot(1991), who responded by constructing his system of ‘Free 
Deduction’ (FD ), a fully symmetric system with an ‘internal’ notion of 
cut (as in natural deduction) in which, besides the identity axiom and 
(im- or explicitly) the usual structural rules, one has only elimination 
rules. Here are the FD-rules for implication:

12The attentive reader will object that in view of our interpretation in C L L  
this is problematic, as a cut between an additively and a multiplicatively translated  
formula will not be correct. She is right. It is however possible to use a multiplicative 
translation that enables us to simulate the reduction we are after. For lack of time 
and space we can not go into details, and have to leave these to forthcoming reports 
on this work.
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T , A - * B = > A  n , A = * E  T , A ^ B ^ A  I I = > B , E

r , n = > A , s  r , n = > A , E

r = > A - > f l , A  n = j . A , E  W , B  =*• E '  

r , n , n '  = * , a , e , e '

Note that the first two are rules of an additive kind, while the third 
is in multiplicative formulation. In this system Parigot(1991) defines 
notions of logical and structural cut and their elimination, which in the 
logical case depends on a choice of typing (either, in his terminology, 
‘input left' (1) or ‘input right’ (r)) of the formulas involved. He shows 
that for every choice of ‘inputs’ (arbitrary, but, as above, respecting 
identity-classes) one obtains a deterministic computation mechanism 
satisfying confluence and strong normalization.

As he observes, one might replace the two additive rules given above 
by one multiplicative one. Then, however, non-determinism re-enters 
the ring.

There is a simple way to interpret an F D ir-proof (i.e. a ‘typed’ 
FD-proof): read q for r, and t for 1, and transform each FD-rule 
by the corresponding instance of the cut-rule. E.g., using an additive 
(‘irrelevant’) implication right-rule, we replace

iti *2

r ,  (Ai  - 4  B r )i => A  n ,  At => E  

r , n  => a , s

b y

*2
Xi

• n,At => e
r ,  ( At - 4  5 q ) t  => A  n  => ( A t - 4  5 q ) t , E

r , n = >  a , e
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The result is, of course, an L K tc,-derivation. What is more, we 
can interpret the notion of FD -cut in this interpretation, and simulate 
FD-reductions by t/q-reductions. So given the fact that we can in turn 
simulate these t/q-reductions in linear logic, we find as a corollary that 
FD-reductions are strongly normalizing.

A particular subsystem of FD  with all inputs fixed to the left (and, 
as a matter of fact, with multiplicative rules for implication), is that 
of classical natural deduction (CN D , see Parigot(1992)), a simple ex
tension of intuitionistic natural deduction allowing the occurrence of 
multiple conclusions. Such a system is not new by its shape. The 
novelty of Parigot’s approach is the ‘Curry-Howard-De Bruijn corre
spondence’ that he obtains in this classical case via an extension of 
lambda calculus, his so-called Ap-calculus.

C N D  corresponds to L K T , and the CND-reductions can be sim
ulated in L K T  by the reduction procedure <rT. This is worked out in 
detail in Danos et al. (1993b). Again, as a corollary we find strong nor
malization for CND-reductions, and thus can provide an alternative 
for the argument in Parigot(1993b).

This discussion of constructivizations of classical logic would not 
be complete without mentioning Girard’s ‘Logique Classique ’ (LC , Gi- 
rard(1991)), which combines several of the features discussed above. 
As in F D , we find a ‘typing’ of formulas: in L C  one distinguishes be
tween formulas of positive and those of negative polarity (cf. section 
1.2). However, here the typing is not an arbitrary assignment of signs 
to identity classes in a given proof. Instead it is built into the system.

Each atomic formula occurs in two types, and the polarity of a 
compound formula is determined by the polarity of its components as 
in the following polarity-table.

A B A V

+ + + + -

- + + - +

+ - + - -

- - - - -
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The remarkable thing about this table is that it is unique, in the 
sense that it can be shown to be, among all possibilities, the one that 
allows for an optimal number of isomorphisms in Girard’s denotational 
semantics for LC .

A second feature of LC  is the combination of additive and mul
tiplicative formulations of rules. And thirdly, at several places the 
linearity restraint is introduced for a distinguished formula.

LC-derivations can be decorated in a straightforward way. One 
interprets positive formulas P  as !P (, negative formulas N  as IN1, by 
putting p:=\pl for positive atoms, n := !n ; for negative ones, and using 
the following translation-table.13

A B A V

P Q !P'<g>!Q' !P'©!Q' !P ; -o V.Q>

N Q IN 1 !Q'

P M !P'<g>!?M' ?! P»tf?Af} !P' -o ?M;

N M !?iV' -o? M;

For quantified formulas, polarities and translations are as follows.

A WxA 3 xA

P ~ Vz?! Pl + 3x!P'

N ~ Vx?lV' + 3x!?JV?

Note that indeed, whenever a formula F  has a certain sign accor- 
daing to the polarity-table, then F 1 will be positive or negative in the 
sense of definition 1.2.1. Observe also that, when reconsidering the Q- 
and T-embedding of section 2.4, all entries of table 2.2.1 have a well- 
defined polarity which is independent of its constituents. E.g., when 
taken multiplicatively, (A —> P ) Q will always be negative; and, when 
taken additively, (A —> B )T will always be positive. This property is 
lost when taking the even more economic translation A^&B® for the 
Q-conjunction, AT ® B T for the T-disjunction.

13Girard(1991) formulates L C  as a one-sided calculus. Our table in fact refers to  
a two-sided version, e.g. like the corresponding fragment of L U  (G irard(1993)).
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The Q-embedding and LK Q  are clearly related to the +  / +-part of 
L C , while the T-embedding and L K T  relate to the —/ — part. These 
observations however are not yet sufficient to ‘explain’ LC .

We hope to come back to this question in later work.

Notes

- The m aterial in this chapter is based upon corresponding m aterial in 
Danos et a l.(1993a), Danos et al.(1993b) and Danos et a l.(1993c).

- The idea of sequents with com partm ents distinguishing linear and non
linear behaviour of formulas is due to Girard, who introduced it in his calculi 
L C  (G irard(1991)) and L U  (G irard(1993)). In theory of course there is no 
limit a t all to the number of areas in a sequent th at one might distinguish. It 
would e.g. be possible to formalize precisely the behaviour of linear deriva
tions of sequents of the form r 7 , ? r j , ! ? r j  => ! ? A j , ? A j ,  A ^  by means of 
a calculus containing sequents of the form r i ; r 2 ; T 3 => A 3 ; A 2 ; A i where 
the three com partm ents at each side of the entailment sign contain formu
las modalized by one of the modalities •,? and !?. The notion of inductive 
decoration strategy for such calculi should be generalized accordingly: for a  
calculus built from sequents

P i; r 2; . . . ;  Tm => Ai ;  A 2; . . . ;  A n,

a modal translation ( ) ^  and modalities / xi , . . . ,  /im, i q , . . . ,  vn the n +  ra +  1 - 
tuple ( ( - ) ^,  / / i , . . . ,  /im, i q , . . . ,  vn) defines such a strategy for the calculus 
in question if the conditions of definition 1 . 1  are fulfilled when replacing 
sequents IY, T2; . . . ;  T„ =* Ai ;  A 2; . . . ;  A n by

1; /x2r2;...; /imrm u\ A]/, z/2 A2;...; vn An.
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- Note th at not containing applications of L -» , LV2 on non-linear for
mulas, though obviously necessary , is not a sufficient condition for an in
tuit ionistic derivation in order to be (interpretable as) an ILU -derivation. 
Satisfying th at restraint limits moreover the order in which rules can be 
applied to derive a certain sequent. Consider e.g. the following example:

B ^ B  C ^ C  
A=> A B , B  C => C 
A, B- > C , A - > B = >  C

- The ‘strong conservativity’ results of section 4 do not autom atically  
extend to versions of the calculi with other connectives. For exam ple, theo
rem  4.6 does no longer hold if we include <g>.
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4

There’s another option that suggests itself when trying to transform a 
given intuitionistic or classical derivation into a linear one: start from 
a structural source (i.e. a weakened or contracted formula), trace it 
through the proof, and prefix its successive occurrences with a shriek 
(if the structural rule was to the left) or with a question mark (if it 
was to the right of the entailment sign). In the present chapter we 
will study this process in detail in a basic case, that of derivations in 
intuitionistic implicational logic (or, losely spoken, terms in the simply 
typed lambda calculus).

It is reasonable to expect that such a procedure, when properly 
applied, will result in decorations which in some sense are minimal, as 
opposed to those obtained by means of the inductive applications of 
plethoric modal translations described in the previous chapter.

Notice that for cut free proofs our task will be almost trivial: any 
source occurring will lead us straight to the conclusion, and the only 
small problem that we encounter resides in the possibility that we might 
pass a contraction ‘on our way down’. If our derivation contains cuts, 
however, we may also enter a cut formula, which forces us to ‘travel up’ 
again in the subderivation determined by the other premiss. In that 
case, the formula we are tracing will emerge in this subderivation as 
succedent of some sequent. Banging it means introducing an instance 
of the promotion-mle, or of an axiom in which the succedent formula 
is shrieked. In both cases the linear derivation we are constructing can 
become correct only if all the formulas in the antecedent are banged as 
well. These formulas then in turn will act as sources, and we have to 
trace all of them, and shriek them throughout the proof. Thus each
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structural source will cause a ‘cascade of shrieks’ to cover the original 
derivation.

1 The lower decoration strategy I

It is clear how to proceed, though the formal description is somewhat 
tedious. In Joinet(1993) a notion of path is defined, somewhat simi
lar to the identity-classes that we will encounter in the next chapter. 
Throughout this chapter we will assume that all identity axioms are 
atomic (we speak of ‘fully expanded’ derivations), and define for for
mulas F  occurring in a derivation tx in the calculus the track TV(F )  of F  
in 7T, being (almost) a subtree of tx with nodes labelled by a symbol <r(F) 
denoting (among other things) the sign of F  (i.e. <r(F) =  “+ ” , “* ”or“v” 
if F  occurs positively, cr(F) =  “ — ” if F  occurs negatively in the se
quent r  =4> A (i.e. in the formula A F  -» V A)),  or either o or • (in 
case a (sub)formula “disappears” in a cut). Using the terminology of 
Regnier(1992), we will call a formula in tx terminal if it either is a cut- 
formula in tx or a formula in the conclusion. Then, to be precise, we 
define T^(F) for (sub)formulas F  of terminal formulas in tx\ in case F  is 
a cutformula we put Tt (F )  :=  TW/(F) ,  where tx' denotes the subderiva
tion of tx having the cut on F  as a last rule. The occurrence of F  in 
the terminal formula is called the root of TW(.F).

Let us then state a formal inductive definition of TV(F )  for the (mul
tiplicative) sequent calculus formulation of intuitionistic implicational 
logic (appendix d).

1. if tx is an axiom F  =$■ F ,  then, for the left occurrence of F ,  TW( F )  is 
the one-node tree labelled by “ — for the right occurrence labelled 
by “V”;

2. if tx has been obtained from tx' by means of rule R —>, then for all 
subformulas F  of TU { A }  U { B } ,  except B ,  we obtain Tn ( F )  by adding 
a new node labelled by the appropriate sign of occurrence; we obtain  
TW(J5) by adding a  new node * ; TV(A —> B )  is the one-node tree, 
labelled “ +

3. if tx has been obtained from tx\ and TX2 by means of rule L — then for 
all subformulas F  of Ti U {.A }, except A,  we obtain TV( F )  from TWl (F ) 
by adding a  new node labelled by the appropriate sign of occurrence
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(i.e. “+ ” or u — ” ); we obtain Tn (A)  by adding a new node labelled 
for all subformulas F  of I?2  U { jB} U { C }  we obtain Tn ( F )  from TW2 (F )  
by adding a new node labelled by the appropriate sign of occurrence, 
and TW(A  -»  B )  is the one-node tree labelled by “ — ” (so a node 
labelled in Tn ( F )  indicates that it is the immediate successor of a  
node corresponding to the lowest occurrence in n  of F  as a succedent 
(i.e. in a sequent T  => F ) ) ;

4. if 7r has been obtained from 7r' by means of a weakening with formula 
A, then for all subformulas F  of A, Tn ( F )  is the one-node tree labelled 
by the appropriate sign of occurrence; for all other F  we get Tn ( F )  
from Tn>(F) by adding a node labelled by the appropriate sign of 
occurrence;

5. if 7r has been obtained from n f by means of exchange (see the rem ark in 
appendix a), then we get TW( F )  from Tnt (F )  by adding a node labelled 
by the appropriate sign of occurrence;

6. if 7r has been obtained from 7r' by means of a contraction on a formulas 
A, then for all subformulas A  of F  we obtain TW( F )  by joining the 
trees T ^ t { F and T ^ (F ^ )  (where and F ^  denote the two 
distinct occurrences of F )  to a node labelled by the appropriate sign 
of occurrence; for all other F  we get TW( F )  from Tni ( F )  by adding a 
new node, again labelled by the appropriate sign of occurrence;

7. if 7r has been obtained from 7Ti and 7T2 by means of application of cut 
on a formula A , then for all subformulas F  of Ti we obtain Tn ( F )  
from T*i ( F )  by adding a new node labelled by the appropriate sign of 
occurrence, for all subformulas F  of I?2 U { jB} we obtain Tn ( F )  from  
Tn2 ( F )  by adding a new node, again labelled by the appropriate sign 
of occurrence; for proper subformulas F  of A, T ^ (F )  is the tree ob
tained by joining Tni ( F )  and Tn2 ( F )  through a bottom -node labelled 
o. TW(A)  is obtained by joining Tni (A)  and Tn2 (A) through a bottom - 
node labelled “ • ” (so a node labelled “ • ” in Tn ( F )  indicates (th at 
F  is a cutform ula and) th at it is the immediate successor of a node 
corresponding to the lowest occurrence in 7r of F  as a succedent).

The idea is easily grasped by looking at some examples (see below).

1.1. P roposition. For each terminal formula F y Tn(F ) is either a 
finite tree with all nodes labelled ±  “ o ” ( “ • ” ), or a finite tree with 
bottom-node “ o ” ( “ • ”). Moreover, if all nodes are labelled ^  “ o ” ( “•”) , 
then either all nodes are labelled “+ ” ( ,  uv” ),orall nodes are labelled
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“ — ” . If the bottom-node is labelled “ o ” ( “ • ”), then the labels in the 
subtrees defined by the two predecessors of “ o ” ( “ • ”) are all equal to 
“ — ” in one of the two, all unequal to “ — ” in the other. B

Clearly each occurrence of a (sub)formula F  in a given derivation n 
corresponds to a unique node i in 7^(F).

We define for a negative occurrence of a formula N (i) the N (i)- 
decoration of Tn(N) as the labelled tree obtained from % (N )  by the 
following instructions:

[1] replace the label at node z, as well as the labels “ — ” at all successors 
of z, by

[2] if the bottom -node is not labelled “ o ” or ( “ • ” ), then we are done;
[3] if it is “ • ” then change the label of its positive predecessor by “+ ! ’\ 

and we are done;
[4] if it is “ o ” , then for all branches of the ‘positive ’ subtree:

(a) if the branch contains a starred node, take the starred node’s 
predecessor and add “!” to its label, as well as to the ‘non-zero’-labels of all 
its successive successor-nodes;

(b) if the branch does not contain a starred node, then add “!” to the 
‘non-zero’-labels of all its nodes.

E.g. the decoration induced by the occurrence of AA  (being an 
abbreviation of A —► A) introduced by weakening, respectively the 
decoration induced by the negative occurrence of A in the right-most 
axiom in the derivation

A => A 
A,A=> A 
A => AA A => A 

A, [AA)A  => A 

(AA)A,A  => A

A => A (AA)A => AA A => A
A ,A A  => A (AA)A,(AA)A=> A
A => (AA)A (AA)A  => A

A=> A

are
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An Ar(z)-decoration induces in the obvious way a distribution of 
shrieks in the original derivation tx: we ‘bang’ the occurrences of N  
that correspond to nodes of the A’(i)-decoration whose label contain a 
“!” . (We will refer to the result as a ‘pre-decoration’ of 7r.)

So, for the AA- and A-decoration given above we find the pre
decorations

A =» A 
A ,A  =t> A
A =M(AA) A=> A 

A,\{AA)A => A 

\(AA)A,A => A 

\(AA)A =>!(AA) A => A 
A, ! ( AA) =>A \(AA)A,\(AA)A => A

A =>!(AA)A ](AA)A  => A
_ _

and

A =t> A 
A ,A = $ A  
A => AA A => A 

A, (AA)A  => A 

(AA )A ,A  => A

A => A (AA)A  => AA \A =>• A
A ,A A ^ \ A  (AA)A, (AA)\A => A

A => (AA)1A (AA)\A => A
A => A
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So this is what we should do: given a derivation we look at the col
lection of instances of weakening and contraction that have been used; 
we then start ‘banging’ the main formula, say N (i), in the conclusion of 
such a rule (N (i) is a ‘primary source1), and trace the formula through 
the derivation. This is done by means of the 7V(z)-decoration defined 
above. (Note that we made one choice: we stop putting shrieks as soon 
as we reach a lowest occurrence of the formula as succedent in a sequent. 
We will therefore speak of the (lower decoration strategy clearly there 
are other possibilities: one might stop only at the highest occurrences, 
or anywhere in between.)

The last shriek we put might be the conclusion of a sequent having 
G\, . . . ,  Gn as premisses. In order to obtain a derivation that is cor
rect in linear logic we have no choice but to bang these; consequently 
G\, . . . ,  Gn will be ‘secondary sources’, and the process continues until 
there is nothing left to be done.

To put this formally, starting with N ( i ) we define a finite tree of 
decorations as follows:

[1] top node is the N (i)-decoration;
[2] let a node a  be given, i.e. some M ( j ) -decoration;

(a) if a  has a bottom -node labeled —!, then a  has no successors;
(b) if a  has bottom -node labeled o or •, then look at the highest nodes 

labeled ! in the positive subtree. If these are v! or predecessors of ★ !- nodes, 
then they correspond to sequents Ti => M ( j ) , . . . , Y n => M ( j )  in 7r. The  
successors of a then are the Gm(i)-decorations, for all Gm(i) G Ti U . . .  U T n 
th at so far have not yet appeared in the tree.

(Observe that finiteness is clear, as there are but finitely many for
mulas in a given derivation.)

We thus obtain a finite tree of 7V-decorations for each primary source 
in the derivation. The linearly decorated derivation then is the original 
derivation with shrieks added in accordance with the superposition of 
all the corresponding pre-decorations.

It will suffice to look carefully at the following example to convince 
one-self that this is a completely self-evident process1, though admit
tedly somewhat cumbersome to describe formally.

1 As to the complexity of the procedure, this is easily seen to be linear in the size 
of (i.e. the number of subformulas appearing in) the original derivation.



4.1. T he lower decoration strategy I 85

1 .2 . E x a m p l e .

A=j> A A => A
A , AA => A A => A

A , AA, AA  => A 
A ,A A  => A 
A => (AA)A

A => A 
A, A => A 
A => AA A => A 

A, (AA)A  =$> A 

(AA )A ,A  =$> A 
(AA)A  => AA A => A 

(AA)A, (AA)A  => A 

(AA)A  =$> A
A => A

In this derivation of A => A there are three primary sources, namely 
the contracted occurrence of (AA) A, the contracted occurrence of AA in 
the left subtree and the weakened occurrence of A in the right subtree. 

The induced pre-decorations are the following:

A => A 
A, A => A 
A => AA A => A

A = > A  A => A A, (AA)A  =» A
A, AA  => A A => A (AA)A, A => A

A, AA, AA =>~A (AA)A  => AA A =$ A
A ,A A  => A {AA)A, (AA)A=> A

A 1 $ !((A yl)A ) \((AA)A) =i> A
A => A

A => A A=> A 
A, AA  => A A => A 

A, AA, AA  => A 

A, '.(AA) => A 
A =t>'.(AA)A

A=» A 
A, A => A

A2 $ ! (A A )  A = > A  

A,\{AA)A=s> A 

\{AA)A,A=> A 

[!(A A)A]1 A =► A
\(AA)A,\(AA)A => A 

\{AA)A => A
A => A
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A4 $ !A  A => A 
A3,\IAA]1 £ ' .A  A = > A  

A,!AA,!AA => A 
A,\AA => A 
A => (\AA)A

A => A 
A,\A => A 
A =>\AA A=> A

A, (\AA)A =» A 
{\AA)A,A =>• A 

(!AA)A => AA A => A 

(!AA)A, (AA)A => A 

(!AA)A => A
A => A

We used =$• to indicate where we get secondary sources, and marked 
those by means of superscripts: there are six of them, giving rise to the 
respectively the following pre-decorations:

A => A
A => A A, A => A

A, A => A A => A !A => AA A => A

A => A A => A
A, AA =t> A A => A

A ,( A A )A = > A  
(A A )A ,A  => A

A4 =?!A A => A ! A, (A A )A  =» A 
(A A )A ,!A  =» AA^, [JAA]1 $ ! A  A =>• A

A, AA,AA  => A 
A, AA => A 

\A =» (AA)A

(AA )A  => AA A=> A 
(A A )A ,(A A )A  => A 

(AA )A  => A

A, !AA, !AA =» A 
A, !AA => A 
A => (IAA)A

(A A )A  =»!AA A => A 
(A A )A ,(!A A )A  =» A 

(!A A )A  => A
IA => A A => A

A => A A => A
A, A => A 
A => AA A => A

A, A => A 
A =» AA A => A

A => A A => A
A ,A A  => A A => A

A ,(A A )A  => A A => A A => A A, (AA )A  =» A
(A A )A ,A  => A !A ,A A  => A A => A (A A )A , A => A

A ,A A ,A A  => A
A, AA => A

A $ ! ( (A A )A )

!((A A )A ) => AA A => A !A, AA, AA => A (AA )A  => AA A => A
!((A A )A ),(A A )A  => A 

!((A A )A ) =» A
!A, AA => A 
!A => (AA)A

(A A )A , ( AA) A => A 
(AA )A  =>• A

A => A !A => A

A => A
A => A A, A =>• A

A, A =» A 
A => AA A => A

A2 S f ( A A )  A => A
A , ! (AA)A => A 
!(A A )A , A =» AIA => A A => A A ,(A A )A  =» A A => A A => A

!A, AA => A A => A (A A )A ,A  => A A ,!(A A )= > A  A =» A

!A, AA, AA =» A (AA )A  => AA A => A A ,!(A A ),A A  =» A [!(A A )A ]2 =>!(AA) A =» A
!A, AA => A 
\A => (AA )A

(A A )A ,(A A )A  => A 
(AA )A  =» A

A, !(A A) =» A 
A =>!( AA) A

!(A A )A ,!(A A )A  =» A 
!(A A )A  => A

IA => A A => A

As there are now no new secondary sources that have to be con
sidered, our job ends by superposing all the pre-decorations obtained, 
thus giving us the decoration of our derivation:
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\A =»!A A  => A 
\A,\{\AA) =>L4 A = > A  

\A,\$AA),\AA => A 
L4,!(L4A) => A 
!A =*!(!(L4A)A)

A,L4 => A
!A =>!(L4A) A=>A 

!A,!(!AA)A => A 

!(!AA)A,!A=> A 

!(!(!AA)A) =M(!AA) A =» A 
!(!(L4A)A),!(L4A)A=> A 

!(!(!AA)A) => A
!A =» A

But then, did we, by applying the decoration strategy, in the end 
obtain a correct derivation in linear logic?

There are some deviations. E.g. we encounter instances of

T ,C ^ B  
T  =>\{CB)

These, however, can be interpreted as being abbreviations for

r ,C = > £
T=> CB

!r=i>CB 
!r  =>\(CB)

More serious seems that in the decorated derivation we get con
tractions on formulas that, though having the same skeleton, are not 
identical as linear formulas. This is illustrated by the example.
In general, in a decorated derivation we will encounter instances of 
contraction of the form

r  , s1(A ),s2( A ) ^ b  
m  r,<*3( A ) ^ B  ’

where 5i(A) denotes a decoration of a formula A  and all <5*(A) are not 
necessarily identical.

We can however observe the following.



88 Decorating intuitionistic derivations

1 .3 . LEMMA. If  (t) is an instance of a contraction rule in a decorated 
derivation it, then 5i and <52 differ at most in the decoration of positive 
subformulas. Moreover S3(A) =  (5i U52)(A) or S3 =!(<5i U52)(A) (where 
U stands for superposition of decorations).

P R O O F : It is sufficient to show that the decoration induced by each 
node of each finite tree belonging to the primary sources in n has the 
property.

Now for the decoration induced by A we have <5x(A) =  S2(A) =  A 
and 53(A) =  \A. Otherwise we have a decoration induced by a subfor
mula of A occurring as a primary or secondary source somewhere else 
in 7r. If it is a negative subformula N , the source is in a subtree of n 
ending in a premiss of an instance of cut on a formula having A as a 
subformula, the other premiss being the conclusion of a subderivation 
of 7r containing (f). The instance of contraction corresponds to a split
ting in the positive subtree of the track of N , and in fact we can take 
% (N )  to be of the form

\ /  
+

0

as neither the bottom-node of the splitting, nor any of its successors can 
be labelled But then, by definition of JV-decoration all three nodes 
of the splitting will be shrieked. So the induced decoration satisfies 
5i(A) =  (A) =  ^ (A ).

If the subformula is positive, the source is in the subderivation of it 
ending with (f). Then only one of both occurrences of A in the premiss 
of (f) is decorated, but obviously it is a positive subformula that is 
shrieked. £3

If a linear formula A+ has been obtained from a linear formula A by 
prefixing “!” to some number of positive subformulas of A, we call A+ a 
positive !-decoration of A (note that A itself is not necessarily without 
modalities). One easily shows that A+ => A always is derivable in
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linear logic2, and has a canonical derivation which is a decoration of 
the canonical derivation of the axiom A =>- A (see also section 6.1).

So the instances (f) of contraction in our decorated derivation have 
the property that S3(A) is a positive !-decoration of both <$i(.4) and 
S2(A).

Let <f>+ be any positive [-decoration of </>, <j)~any negative [-decoration. 
By r  we denote the canonical derivation of <j>+ =$> <j) or <j> =>■ <j>~. Now 
consider a linear derivation n of a sequent T, cp => B , or of a sequent 
T =4> <j>. We can use n and r  to construct a linear derivation 9 as follows:

T 7T 7T T

: or :
=> <j> r , 4> => b  r  =$> <j> <j> =$> cf)~
T,4>+ => B T => <p-

We then have the following property.

1.4 . P roposition . We can eliminate the cut from 0 in such a way 
that for the resulting reduct ff it holds that sk(#') = sk(7r).
P R O O F : By induction on the complexity of <f>: if <f> =  p  for some atom 
p , then (j>~ =  <j), so tx =  Q'\ <j)+ either is p  or !p, so n =  ff or we obtain 9' 
from 7r by a linear dereliction (L!), which does not change the skeleton.

Let (j) =  \ij). Then (f>+ =  \ip+, and <f>~ =  \ip~ ■ For the first case, we 
will prove the slightly stronger claim that in a derivation 9 of the form

\j)+ => ip n
\ip+ => -0 :
!0+ =>!0 T,(!0)n =>S

r , ( ! 0+ ) n => b

(where (0 )n stands for n >  1 occurrences of the formula (j>) we can 
eliminate the (derivable) rule of “semi-multicut” in such a way that

2 One might also look this up in the chapter on elementary syntactical results in 
Troelstra(1992).
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for the reduct 9' we have that sk(#') =  sk(7r). For this we proceed by 
induction on the length of 7r. We need the stronger hypothesis for the 
case where the last rule applied is a contraction on !xji, which in the 
present form is trivially handled by inductive hypothesis, as are most 
other cases. The crucial one is the one where the last rule of n is a 
dereliction on xj). Then 9 has the form

=£• rp I
4 +  =>t/> => B
4 +  =>!</> I\(!t/>)n => B

r ,  (4 + )n =► B

If n > 1 we transform this into

T 7T

: 4 + =>!V> r , { 4 ) n~\xf> => B
tp+ => tp r ,  (\tp+ )n~1 => b

T,{'4+)n-\iP+ => B
r ,  {4 + )n => b

and we get the result by our inductive hypotheses. 
For <f>~ we have 9 of the form

T

7T t/j =>
• lip => /lp~

r

and we apply induction on the length of 7r.
Finally we consider the case that <f> =  xj) Then <f>+ =  \{xp~

X+) or (xp~ -« X+) and cf>~ =  (xp+ X~)- Without loss of generality 
we may assume that <f>+ =  xj)~ -o x +, and 9 has the form
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n  t 2

xp => xp x+ => X n
i>~ X+, ’4> => X :

V>~ -o x+ =» V> x r,^-<>x=»B
r,v>~ -o x+ b

We proceed rather straightforwardly by induction on the length of 
7T. Similarly for 0 - . 13

By the above proposition (which, by the way, is an instance of a 
more general property, see section 6.1) we can replace any formula <f> 
in the antecedents of sequents in a derivation in intuitionistic linear 
implicational sequent calculus by any of its positive [-decorations (j>+:

r,<p=>c
r ,< />+ =*. c

is a derivable rule in a strong sense, i.e. when we justify it by means 
of a cut with <p+ 4> then we cam eliminate that cut and obtain a
derivation ir+ of T,<f>+ =» C  such that sk(7r+) =  sk(7r). So elimination 
merely ‘injects’ a number of applications of exponential rules to ‘adjust’ 
the derivation.

(Note that this is in sharp contrast with the observations in section 
3.1: also

r,\<p-* up => c
r, !(!<£-« VO =><?

is a derivable rule, but in this case elimination of the justifying cut may 
very well change the skeleton.)

We can apply this to our decorated intuitionistic derivations: (f) 
not only is derivable in linear logic, it is completely ‘harmless’, as, if we 
would wish so, we could apply cuts with <$3(.4) => 5i(A), eliminate these, 
and obtain a linear derivation in which all contractions are literally 
correct, with the same skeleton as our decoration.
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!A =»!A A => A 
!A,!(!AA)=>!A A=>A 

!A,!(!AA),!AA=> A 
!A,!(!AA),!(!AA)=> A 

\A,\(\AA) =► A 
!A =>!(!(!AA)A)

A =» A 
A,!A=> A

\A =>!(!AA) A => A 
!A, !(!AA)A => A 
!(!AA)A,!A => A 

!(!(!AA)A) =>!(!AA) A => A 
!(!(!AA)A),!(!AA)A=> A 

!(!(!AA)A), !(!(!AA)A) => A 
!(!(!AA)A) => A

!A => A

Figure 4.1: d(7r)

1 .5 . DEFINITION. Let 7T be a derivation in intuitionistic implicational 
logic. We denote by <9(7r) the linear derivation obtained after correction 
of the instances of contraction in the result of the lower decoration- 
strategy applied to n. IS

So for the derivation n of example 1.2 we find d(n) as in figure 4.1.
Clearly d(n) is a minimal decoration, in the sense that each shriek 

occurring in it has at least one structural justification. As, by construc
tion, it moreover has the down-property, also the following is immedi
ate:

1 .6 . PROPOSITION. d(ir) is a  subdecoration of the f-decoration n® of 
7r, i.e. if an occurrence A of a formula is shrieked in d(n), then so is the 
corresponding occurrence in n®. IS

The converse, of course, in general will not hold.

2 Decorating ILU

If we forget the semicolon, an ILU-derivation is just an ‘ordinary’ 
derivation in intuitionistic logic, and we can apply the lower decoration-
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strategy defined in the previous section. Recall that by definition this 
strategy stops shrieking a formula F  at its lowest appearance in a se
quent T ^  F .  For ILU-derivations this gives rise to the following 
property.

2 .1 . P r o p o s i t i o n . Let F  be a negative non-head formula in an IL U - 
derivation tt. Application of the lower strategy implies that the F -  
decoration never induces the shrieking of head-formulas.

P R O O F : If % (F )  has bottom-node this is trivial. Therefore,
let % (F )  have bottom-node o or •. We need to consider two cases, 
distinguishing between whether the cut at hand is mid or head.

Let us start with an instance of a mid-cut:

*1  7T2

;Ti =>A II; r 2, .<4 => B
n ;r 1;r 2 => b

F  is a subformula of the cutformula A. If F  ‘originates’ in 7Ti (i.e. 
is negative in 7Ti), then A necessarily contains a subformula F  —> X  
which is introduced in 7Ti by a right implication rule. So if F  -> X  is 
introduced in n2 by a logical rule, then it is by a left implication rule. 
Therefore lowest appearances of F  in 7r2 to the right of the entailment 
sign occur only in sequents without head-formula, and application of 
the lower strategy can not induce shrieking of head-formulas.

If F  ‘originates’ in 7r2 (i.e. is negative in 7r2), then either F  =  A 
or there is a subformula F  -» X  of A introduced in 7r2 by a right 
implication rule. In the first case the lowest appearance of F  in 7Ti 
to the right of the entailment-sign is in the left premiss of the cut, 
which has no head-formula. In the second case we reason as before. 
Therefore also in this case application of the lower strategy can not 
induce shrieking of head-formulas.

In case of a head-cut
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tti x2

II;ri => A A ;r2 => B
n;r ltr2=>.fl

the argument is similar: just notice that when F  originates in 7r2 it will 
now not be possible for F  to be identical to A. E3

As d(ir) has the down-property we get the following.

2 .2 . CO R O LLA RY. Let tt be an IL U -derivation. Then d(n) is a sub
decoration of the g-decoration it* of 7r (which in turn is a subdecoration 
of the f-decoration tt® of -it, considered as an IL -proof). £3

3 Decoration and normalization

When normalizing derivations in sequent calculus (i.e. eliminating the 
cuts) we come across counterparts of the structural rules of weakening 
and contraction: because in the derivation by means of an application 
of weakening a formula may suddenly appear as if out of thin air, there 
are elementary reduction steps in which complete subderivations are 
erased; and similarly, because in the derivation distinct occurrences 
of a formula can be contracted into a single one, we get elementary 
reduction steps in which subderivations are duplicated.

For any derivation in intuitionistic implicational logic we showed 
how to trace the linear consequences of occurrences of weakening and 
contraction in order to obtain a minimally decorated linear equivalent. 
Each ‘shriek’ occurring in such a decorated derivation has at least one 
structural cause. In this section we will look into the converse, namely 
whether a minimal decoration d(7r) of a derivation n can provide us 
with information as to the behaviour of 7r under reduction.3

Whereas weakening and contraction are about formulas, the no
tions of erasure and duplication are about (sub) derivations. However,

3Throughout this section we assume our derivations to be in IL U , but the reader 
will observe that our claims and arguments apply in fact to derivations in (the 
implicational fragment of intuitionistic) linear logic.
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there are obvious candidates for the title of ‘marked subderivation’ in 
a decorated derivation, namely those subderivations that end with an 
application of R!. As before, in analogy with the similar notion in 
proofnets, we speak of boxes.

3.1. Definition. A subderivation 71*1 of a derivation n (written as 
71*1 -< 7r) is said to be boxed (or is said to be a box) in 7r iff it is a 
subderivation of a sequent T =$> A that is externally decorated in d(7r) 
(i.e. all formulas in r u { A }  start with a bang). A subderivation 7rs -< n 
is said to be a pseudo-box (or source) in 7r if its last rule is an instance of 
weakening or contraction. (Note that a pseudo-box might be a box.)B

With each box 71*1 we can uniquely associate a terminal formula in 
71*. If this is the cutformula in an instance c; of the cut rule in tt, we 
call ci is the reflecting cut for ir±. As an example, let us decorate (an 
ILU-version of) the derivation of page 82:

A; A

A;\A 4  A 
A,=>\AA

■M h(\A A ) 4̂;=> 4̂ 
1(IAA)A;\A=> A 
\(\AA)A;=>IAA

;!(!(L4j4)A) h{\ A A ) A\*> A 
\(\AA)A;\('.(\AA)A) => A 
;\(IAA)A,\(\(IAA)A) ^  A

;!(!(!AA)A) 4  A
;1A => A

We see that we have three boxes tti, and 7r3 (indicated above 
by 1, 2 and 3) and three sources 7ra, 7rb and txc (indicated by a, b and 
c) corresponding to the three primary sources in n: weakening of A, 
weakening of AA  and contraction on (AA)A. (None of the pseudo-boxes 
is in fact a box.)

If we take the tree of decorations associated with a primary source 
N  in 7r, then each (initial segment of a) branch of this tree determines a

A;=> A

A;!(!AA) A 
;A,!(!AA)=i> A

;!A^!(!(!AA)A)
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chain 2  consisting in a source followed by zero (a trivial chain) or more 
boxes in 7r. In the example we find the trivial chain 7ra (the weakening 
on A has no consequences), the chain 7ib —> 7Ti, the chain —> 7r3
and the chain 7rc -> 1:3.

3.2. Definition. A box 7ii in n is said to be contained in a box 7Tj
(and 7Tj is said to contain 7Ti) if ix̂  —< 7Tj. A chain 2  =  7rs —> 7r2 —> 
. . .  —> 7rn is called linear if ir± -< 7Tj for no i j .  We say that 7Ti —> 7Ti+i 
is a linear link in 2  if 7Ti,7Ti+i neither are contained in, nor contain, 
other boxes from 2 . 3

In our example the two-element chains are linear (as are all two- 
element chains), but the three-element chain is not (as 7Tb -< 7T3).

Observe that a chain defines, in the obvious way, a path through the 
derivation 7r.4

3.3. Definition. A non-trivial chain 2  =  tts -> 7Ti —> . . .  —> 7rn is 
called strong if all its reflecting cuts are distinct. It is called adequate 
if its induced path passes an instance of contraction always either by a 
side formula or by the same active formula. 13

Clearly, all two-element chains are strong. They are the only strong 
chains in our example. It is not true that all linear chains are strong.

Also it is quite obvious that strong chains always are adequate, while 
the converse is false. We will see in what follows that adequate chains 
(and therefore also strong chains) always axe linear.

If we apply an elementary reduction step (of the procedure of cut 
elimination) to a derivation ir and it turns out that in performing this 
step 7r' -< 7r is erased or duplicated, then n' is (a subderivation of) a 
box in 7T. This is clear, as then 7r either has the form

7Tj 7Ti

• EE; A => B  or : II; A, A, A => B
; r  =>A n ; A ,A = >  B  n ; A ,A = >  B

i i ; r ,  a  => i? n ; r , A  => b

4The concepts of ‘chain’ and ‘path’ are similar to that of ‘trace ’, which plays an 
important role in the study of proofnets, cf. Regnier(1992).
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(with 7Ti boxed) and reduces to respectively

Vl
7Tl • •

: ;T=»A II; A,A,A =*> B
;r=>A n;r,A,A=>s 

n;r,r,A=>g

n;r,A=>s

If 7Ti —< 7T is boxed and moreover element of an adequate chain S in 
7r, then we can show the converse, i.e. there exists a series of reductions 
(a reduction strategy) starting from 7r, that eventually either will erase 
or duplicate (a copy of) 7Ti. An important step towards a proof of this 
is the following

3 .4 . P r o p o s i t i o n . Let S be an adequate chain in tx starting from a 
source s (so S =  7rs —>■ 7Ti —> 712 7rn for some n >  1). Suppose
TXi —> 7Ti+i is a linear link in S. Then we can eliminate the reflecting cut 
ci and decorate the reduct n' in such a way that we obtain an adequate 
chain S ' =  7rs -»• . . .  -¥ 7Ti_i -> n* -> 7Ti+2 7rn. I f  =  ns,
then 7Ti will be erased or duplicated, depending on whether the source 
is a weakening or a contraction.

P R O O F : T o establish these claims one performs a long induction, con
sidering all the possible configurations in which c; can appear in tx as in 
a proof of cut elimination. We will skip most of the details, and merely 
consider some important cases, indicating where the assumptions of 
linearity and adequacy are used.

• If 7Ti =  7rs, as basic cases we encounter precisely the two instances 
of e ra s u r e / duplication given above: the adequate chain 7rs —> 

} . . .  —}■ 7rn becomes the adequate chain 7rs/ -> 7r2 7rn,
where s' is a weakening or contraction (of/on a formula in T), 
depending on whether s is a weakening or a contraction. (By 
linearity no boxes in S are contained in 7Ti.)

II; A => B  a n d

n;r,A =► B
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• 1 . Consider the following situation:

*i

1
;A UA=>C D ,A 2 => B

; r=> a C -> D;A,A=> B

C - » D ;r , A ^ B

We reduce the reflecting cut as follows:

;T=> A ; Aj,A => C

;r,Ax =» C D\ A2 => B

C -> £>;I\A=> B

so 7Ti and 7ii+i are ‘merged’, resulting in one box 7r*.

2. Similarly, performing the reduction, we get a ‘merge’ in the 
following situation:

Ki+1
; a ,, A => C n; A 2,C =>• B

■,T=>A n;A,A=> B

n;r,A=> B

as one may readily check.
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• In all other cases one can perform the reduction without effecting 
the adequate chain. However, one has to be careful, and both 
linearity of the link and adequacy of the chain are used.

In case of a duplication of a box in the chain due to a reduction 
of a cut on a contracted formula, we find, due to adequacy, a 
copy of the box via which the chain can pass uneffected, and 
still adequate. But there axe other ‘traps’: let us consider two 
important cases in detail.

1. Consider the situation:

fl'i+i

; r
A -> B ;T ,  Ai, A2 => D

If the link is not linear, it might be the case that the sub
derivation of 7T with conclusion ; C, Ai =>- A is a box 7ij in 
S, while at the same time we have no choice but to reduce 
the reflecting cut of 7Ti as follows:

A -» B ;T ,  Ax, A2 => D
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Decoration now gives us a box 7ij/, with conclusion ; T, Ai =>■ 
A. Clearly 7Tj ^  7Tj/. Our assumption avoids this difficulty.

2. Another possible configuration is:

; A ^  A ------------► II; T, A  => D

II; A, T => D

If S is not adequate, then we might have ci =  ci+i and 
an induced path 7  that passes from the source via the right 
occurrence of A, but then continues from 7ri+i to 717+2 via 
the left occurrence of A. After reduction, however, we get a 
derivation n' in which we can only pass via the right occur
rence of A, and 712 simply ceases to be a box:

77<+l

n ;r ,A,A=>D
1
1
1

n ; r ,A  => d

; A ^  A_______ II; T, A, A =» D

—  n ;I\ A ,A = > D

12
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3 .5 . LEMMA. Let . . . -*• 7Ti —> 7Ti+i 7Ti+2 —y . . .  be a subchain of 
three (consecutive) boxes in an adequate chain. Then neither of the 
three contains nor is contained in any of the others.
P r o o f : This is evident if Ci+i ^  c,-. So let c ;+i =  c,-. Suppose 
has conclusion , T , B  =>■ A (with B  as secondary source), while 7Ti+i 
has conclusion ; A, C  => B  (with C  as secondary source). Let 4>{B) 
denote a formula (j) having B  as a subformula. Then by adequacy, for 
some <j>, C -o <fi(B) has to be a subformula of the cutformula, and 
C  emerges in the derivation of the other premiss of the reflecting cut 
as the succedent of the conclusion of a subderivation which is the left 
premiss of an application of L —» with C  and <t>{B) as main formulas; 
then has to be contained in the subderivation of the right premiss. H

3 .6 . P r o po sit io n . Adequate chains are linear.
PROOF: Suppose S =  ns -y -y 7r2 - y . . . - y  7rn is an adequate 
non-linear chain. Then there is a smallest k such that 7rk is contained 
in or contains a box 7Ti for some i < k. Consider

S == 7rs —y .. .  —y 7r ̂  —y .. .  —y 7r̂ .

By lemma 3.5 we have that k —i >  2. Therefore there is a linear link 
between 7Ti and ir*. By proposition 3.4 we can eliminate its reflecting 
cut, and obtain an adequate chain with one box less between 7Ti and 
71*. Iterating this eventually will contradict lemma 3.5. C3

We now have found sufficiently many properties of decorated ILU - 
derivations to prove the following

3 .7 . THEOREM. Let S be an adequate chain in n starting from a 
source s, so S =  7rs -> 7Ti —y 7T2 -> . . . —»• 7rn for some n >  1. If  
the source is a weakening, then there is a reduction strategy o that 
will erase each of 7Ti, 712, . . . » 7rn (precisely in that order); if the source 
is a contraction then there is a a that will duplicate each of 7Ti,. . . ,  7rn 
(precisely in that order).
P r o o f : Let Cj be the reflecting cut for 7r;. The strategy will consist in 
eliminating c i , . . . ,  cn precisely in that order. All the work in fact has 
been done in the proofs of propositions 3.6 and 3.4. IE1
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In the example on page 95, if we apply an elementary reduction step 
to the ILU-skeleton and then decorate the reduct 7r', the result is:

A;=> A

A;'.('.AA) X  A 
\A,\{\AA) =» A

\\A J>!(!(!AA)A) * So

A; => A

A; \A 4  A 
A; =>IAA

A] => A

A\\{\AA) I- A 
;A,!(!AA)=> A 
\A=>\(\AA)A

\a A\{\a a ) A=>A
){)AA)A\ L4 => A 
l()AA)A;=>\AA

;!(!(!AA)A) X\(\AA) A;=> A 
\{\AA)A;\(\('.AA)A) =i> A

; A , A A ) A )  => A
;'.A ,A ^ A

;\A => A

The duplication of 7r3 in fact duplicates the pseudo-box 7rb, and we 
see that our original chain 7rb —► 7Ti can be found in the reduct as chain 
7rb/ -> 7Ti. The remaining non-trivial chain, 7rb -> 7T2 ^3, is still there.
Note that all non-trivial chains in 7r' are strong, so by 3.7 we have, for 
each of the boxes in 7r' (and a fortiori for each of the boxes in 71*) a 
reduction strategy that eventually will erase or duplicate it. However, 
this is not a general property: the problematic situations indicated in 
our sketch of the proof of proposition 3.4 can be built into concrete ex
amples of derivations with boxed subderivations, that, whatever strategy 
of reduction applied, neither are erased nor duplicated, but e.g . simply 
are cun-boxed\

So we have to conclude that even when ‘logically necessary’, ex
ponentials can be ‘computationally superfluous’, and (maybe not too 
unexpectedly) our (static) logical linearity analysis can provide us with 
but an approximation of the dynamics of a given proof.

This is due to (the identification of formulas in) contractions: the 
problematic situations do not occur in contraction-free derivations, i.e. 
in affine implicational logic. As trivially in contraction-free derivations 
all chains are adequate we find the following as a corollary to 3.7.
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3 .8 . P r o po sit io n . Let n be a contraction-free derivation, and sup
pose S is a chain 7rs -> 7Ti 7rn, with n >  1 . Then there is a
reduction strategy that will erase each of n i , . . .  ,irn (precisely in that 
order). B

4 Decorating classical derivations

Given the facts (i) that a linear derivation fixes a normalization protocol 
for its skeleton, and (ii) that the normalization procedure for a C L- 
derivation is essentially non-deterministic (cf. section 1 of chapter 1 ), 
when trying to apply the techniques introduced earlier in this chapter 
to classical derivations, one should expect to founder on the necessity 
to choose between non-equivalent possibilities.

It is most instructive to illustrate this by means of an example, a 
derivation that is an instance of the problematic situation discussed on 
page 16:

A => A A =» A A => A A =» A 
AvA=>A, A A, A=>Aa A

A V A ^  A______ A =» A A A
AV A => AAA

When searching for a minimal decoration by tracing the effects of 
the two structural rules throughout the derivation, the choice we have 
to make is that between prefixing the cutformula with the modality 
‘?P and prefixing it with *!?’. Thus one finds decorations depicted in 
figure 4.2.

Whereas the original derivation does not give us any clue whatso
ever on the elimination procedure to follow, in the linear decorations 
the protocol is fixed: in the first case we have to duplicate the right 
subderivation, while in the second case we are going to duplicate the 
left one. Note that the choice is in fact that between a q- and a t-type 
decoration of the cutformula.

The situation changes when we consider not a CL-derivation, but 
one in L K T  or LK Q . The corresponding uniform decoration strategies
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!A => !A \A =» IA 
lA ^ V .A  \A =» ?!A 

!A>S>!A=;>?!A,?!A 
!A>S>!A =» ?!A

! A = > A  ! A = » A  
!A, !A => A ® A 

IA =» A (8) A 
!A=>?(A<g>A) 

?!A =» ?(A (8) A)

!A>S>!A =» ?(A<g> A)

A = > ? A  A = > ? A  
A>S>A=>?A,?A 

A ^ A  ?A 
!(A>S>A) =» ?A 

!(A>S>A) =» !?A

?A => ?A ?A => ?A 
!?A =» ?A !?A =» ?A 

!?A,!?A =>?A<g>?A 

!?A =» ?A®?A

!(A>S>A) =» ?A®?A

Figure 4.2: Two minimal decorations

limit the collection of possible reductions beforehand, and the problem 
of constructing, as in the case of IL U  described in section 2, a minimal 
decoration under the proviso that the result will be a subdecoration 
of the uniform one, allows an unambiguous solution using techniques 
similar to those that apply in the intuitionistic case. A full description 
for the case of L K T  can be found in chapter 6 of Joinet(1993).

Returning to our example, it’s immediately clear that this deriva
tion allows for many different possible reduction sequences, among them 
even infinite ones. Correspondingly, there exist many distinct decora
tion, e.g. as in figure 4.3.

We leave it to the reader to find the corresponding normal form.

4.1. Remark. This last decoration, and many more like them, are 
obtained, one might say, ‘by hand’: one chooses a decoration of the 
cutformula, and completes the proof in linear logic by ‘working ones 
way up’. The number of essentially distinct decorations thus obtained 
is far larger than that of those within reach of the ‘inductive decoration 
strategies’ of the previous chapter, as we will see in section 5.5.
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A=>?i4 A=>1A
AtfA => ?A, ?A 

! (A’SA)^>?A,'!A 
\(A>8A) => ?A,!?A 
!(J4’S’J4) ?>1, ?!?A
!(A>?A) =>!?A,?!?A 
!(j4’S’j4) => ?!?A, ?!?A 

!(A>SA) => ?!?A

?A=>?A ?A=*?A
!?A => ?A !?yl => ?A

!?A,!?A => !(?A®?A)  
!?A =► !(?A®?J4) 

?!?A => !(?A®?A)
!(AtfA) => !(?A®?A)

Figure 4.3: A less minimal decoration

Notes

- The m aterial in this chapter, with the exception of section 4, is taken  
from Danos et al.(1993c).

- The lam bda-term  corresponding to the derivation in example 1.2 is 
(F )A , where F  =  \ f . ( f ) \ x . ( f ) \ y . x  is the right and A  =  A r.(r)(r )n  is the 
left premiss. Variations on this derivation occur in examples at several places 
in this and other chapters of this thesis. As a m atter of fact, the term  F  
originally is a counterexam ple of D.P. Kierstead in the order 3 - case to an 
attem p t of Kleene to construct a theory of higher order computability using 
oracles. See K leene(1980).
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The exponential graph

In the previous chapter we saw how, by tracing the effects of occur
rences of structural rules, one may associate with any derivation in 
intuitionistic (implicational) logic a derivation in linear logic that has 
the same skeleton, and which moreover seems to be optimal.

The proofs obtained are subdecorations of those one gets using the 
modal translation (•)* (in case of IL ), (•)* (in case of IL U ), and in 
this chapter we will make the relation between the decoration tx® (resp. 
7r*) and the decoration d(rx) obtained by applying the lower decoration 
strategy to an IL(U)-derivation 7r more precise.

Recall that, by the results of the previous chapter, it is essentially 
the absence of modalities that gives us information on the dynamics 
of a proof: if a subderivation is not ‘boxed’ we can be sure that at no 
point during normalization it will endure non-linear manipulations. We 
therefore have an interest, given a linear derivation tx and an occurrence 
of an exponential, to find out why it occurs at that given spot.

We will find that each exponential “!”, “?” that is not, directly or 
indirectly, caused by an instance of a structural rule is superfluous : we 
can remove it and obtain a proof that (1 ) is still correct, and (2) has 
the same dynamics as the original one.

Our object of study is the full system of second-order classical lin
ear logic. To be precise, we are going to consider derivations in the 
two-sided sequent calculus of appendix b, extended with the rules for 
second-order quantifiers (C L L 2).
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1 Identity classes

Besides the two constraints originating in the modal condition imposed 
on formulas in the structural and contextual exponential rules of the 
linear sequent calculus (in the sequel we will refer to the structural 
and the contextual constraint), there is, as in any sequent calculus, 
another, fairly obvious, one: in writing down rules and derivations we 
implicitly demand the identity of some of the (sub)formulas occurring 
in the sequents appearing in it. In the sequel we will refer to the identity 
constraint. E.g. the occurrences of the contextual formulas !r  and ?A 
in the premiss and conclusion of a promotion rule are occurrences of 
identical formulas. This implicit identity relation is made explicit in 
the following

1 .1 .  D e f in it io n . We call occurrences of (sub)formulas in a proof 
identified whenever they are the corresponding occurrences of the same1 
(sub)formula in

- the two formulas in an axiom;
- the cut formulas in a cut;
- the abstracted formulas in a second-order rule;
- an active formula and the corresponding subformula of the main 

formula in a logical or exponential rule (in the case of LV2 and R 32 rules 
a strict subformula of an abstracted occurrence, has no “correspondent” 
in the conclusion sequent of the rule);

- the up and down occurrences of passive or side-active formulas
in a rule (this includes the implicit contextual contraction in additive 
binary rules). B

Let us denote by the reflexive, symmetric and transitive closure 
of the identification relation. Note once more that all elements of a 
^-equivalence class (or: identity class) are occurrences of the same 
(sub)formula (up to substitution).2 In the sequel we will only deal with 
classes containing at least one formula whose main connective is an 
exponential We denote the set of such classes in a proof ir by r).

1 E xactly  the same or, in case of quantifier rules, the same up to substitution.
2In general the converse does not hold, of course.
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1.2.  E x a m p l e . Let N  be some linear theorem. Then the following is 
a C L L 2-derivation:

N=> N  
\N => N
\N =» \N \

=»!JV -o \N => IN !AT => IN 
=> \(\N -o \N) IN -o \N =► !N 
\{'.N -o \N) -o (\N -o \N) => \N 
VX !(V —o X) —o (X X) =i- \N

The reader will easily verify that all occurrences of \N are in the 
same identity-class, and !(!iV -o \N) ~  !(X  -o X ).

If in the last step of the derivation we would have abstracted not 
on \N, but on IN \N (resulting in VX !X  X  =4> \N as the final 
sequent), the left and right occurrences of \N in \N -o \N had not been 
in the same identity-class.

2 Stripping derivations

Let E  be a subset of S (ir). The domain of E  is the union of the classes it 
contains. By a strip we mean the operation of simultaneous deletion in 
7r of all external exponentials in the domain of E . The resulting pseudo
proof (which need in general not be a proof) is denoted by n — E . The 
corresponding instance of a rule r in n — E  is written as r — E .

Each formula B  in 7r ‘re-appears’ in n — E ,  though maybe slightly 
modified. To be precise it is modified if and only if some formula \A or 
?A in one of the classes in E  is a subformula of B  in n. If we want to 
specify the changes we will write B  — E , though mostly we will continue 
to denote this, possibly modified, formula by B.

Take some box rule r in 7r, with its main occurrence in some class e 
and a side-active occurrence in some class e': we say that e binds e' (via 
r) and write this as e rvi e'. The transitive closure of the relation rvx 
will also be called binding, and is denoted by rv. (Par abus de langage 
we will sometimes write s rvj s' and s rx s' also for proper subsets of 
classes.)
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This defines a directed graph, the exponential graph G(n) of n, with 
as vertices the classes in £ ( tt), and an arrow from e to e' if and only 
if e a i  e'. If an occurrence of an element of a class e is main formula 
in a structural rule in 7r, then we label the corresponding vertex of 
the exponential graph by “w” (for ‘weakening’), “c” (for ‘contraction’), 
or “w+c” (for ‘weakening & contraction’), according to the kind of 
structural rule in which elements of e occur as main formula.

2.1.  D e f i n i t i o n . A set E  c £{n)  is called saturated (or said to
satisfy the saturation condition), in case for all e' G E , if e rv e' for 
some e G £ (n ), then also e G E . If no class in E  is labeled then we 
will say that E  verifies the no sources condition. If E  satisfies both the 
saturation and the no sources condition, we say that it is not relevantly 
exponentiated (abbreviated by nre) in 7r. A redex is any non-empty set 
E  that is nre and minimal, i.e. no proper subset of E  is nre. £3

The exponentials prefixing elements of the classes in an nre set E  
of n are, one might say, superfluous:

2 .2 .  P r o p o s i t i o n . (Stripping preserves correctness) Let tx be a proof, 
r  a rule in n, and E  nre in n; r — E  is still a correct rule, and hence 
7T — E  is a proof. More precisely, either r — E  and r are instances of 
the same rule, or r — E  is a repetition rule.

PROOF: First observe that, whatever rule r, because only classes are 
stripped, all identity constraints are obviously still satisfied by r — E . 
Now, if r is a box rule, by the saturation condition, the (eventual) 
contextual constraint for r — E  will also be satisfied. And finally, if r 
is a structural rule, by the no sources condition, so is the structural 
constraint for r — E . (Clearly r — E  is a repetition rule only when r 
introduces an exponential that is stripped, i.e. when r is an exponential 
rule whose main formula is in the domain of E .)  IS

2 .3 . REM ARK. We will in the sequel adopt the convention that all 
occurrences of the repetition rule in 7t — E  are eliminated. So possible 
repetitions of sequents are identified.

2 .4 .  L e m m a . I f  E u E 2 are nre, then so are E i fl E 2, E i U E 2. E3
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So S(7r) contains a largest m e  subset, which we denote by ■E'max(7r)- 
It is the largest saturated subset of £(n )  that contains no labeled ver
tices.

2 .5 . LEMMA. Let E  be nre. Then £ (x  — E ) =  £ (x )\ E , and the 
exponential graph of it — E  is a full subgraph of that of n.
PROOF: For the first claim, observe that any class not in E  remains a 
class in 7r — E , while all classes in n — E  are classes in n. For the second 
claim, note that for e ',e  in £(n )\ E  we have that e' rvx e in n — E  if 
and only if e' rv! e in 7r. C3

2 .6 . LEMMA. I f  E , E ' are nre in n, and E ' is a subset of E , then E\ E ' 
is nre in it  — E ' .

PROOF: As no class in E  is labeled, the same holds for E \ E '. As E  
is nre in 7r and E ' C E , the only possible elements of £(n )  that bind 
elements of E \ E ' are in E '. So E \E ' is saturated in 5 (7r — E '). B

2 .7 . LEMMA. Suppose E\ is nre in 7r. Then E 2 is nre in 7r — E\ if  and 
only if  E i U E 2 is nre in ir.
PROOF: (=>) As E x and E 2 are nre, none of their elements is labeled. 
Let e' G 5 (7r) bind an element of E\. Then e' in E i  by saturation. 
If it binds an element of E 2, and it is not an element of E i, then 
e' G 5 (7r — E i), so e' G E 2, by saturation of E 2.

(-£=) By lemma 2.6. B

2 .8 .  PROPOSITION. Let i?i, R2 be distinct redexes in n. Then R2 is a 
redex in x  — Ri.
PROOF: Observe that, by lemma 2.4, Ri fl R2 =  0, from which the 
claim easily follows, using lemma 2.5. B

2 .9 .  COROLLARY. Let Ri, R2 be distinct redexes. Then (x — R i) — R2
is a correct linear derivation which is equal to (ir — R2) — R\ . H

Now define a reduction t> on linear derivations by 7r > 7r — R, for R 
a redex in 7r. Given some derivation 7r, clearly the number of potential 
redexes in n is finite. So all >-reduction-sequences are finite, ending in 
a t>-normal form. As by the above > is locally (1-1) confluent, in fact 
for each 7r we obtain a unique t>-normal form, which we will denote
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by 71̂ . Thus t> defines a complete lattice of linear derivations with top 
7T, bottom 7r*, and 7T; >  7rj if and only if there is a (possibly empty) 
I>-reduction-sequence leading from 7q to ttj. We will refer to the lattice 

obtained as the “ > -lattice of 7r”.

2 .10 . LEMMA. I f  E  is nre in 7r, then ir t> ir — E  and E m {̂TX — E ) =  
E msx(n)\E.

P r o o f : The first claim is shown by induction on the size of E , the 
second claim using lemma’s 2.6, 2.7. B

2.11.  T h e o r e m , 7r* =  n — Emax(ir); the exponential graph of 71** is 
precisely the union of all directed paths in the graph of n starting from 
a labeled vertex.

P r o o f : By lemma 2.10, n >  n -  £ m ax( tt) ,  so  n -  E max(n) >  tt*. But 
as £^max(7r -®'max( )̂) — 0 in fact 7r — ■E'max(̂ ) =  The second claim 
is immediate by 2.5 and the fact that we obtain the exponential graph 
of 71** by removing all saturated subgraphs of the graph of 7r that do 
not contain a labeled vertex. S

Consequently we have shown:

a class e remains in 7r* if and only if the corresponding class 
in 7r has a structural cause.

5.3. T h e  ‘m ono- s t a b l e ’ fr a g m e n t  o f  CLL2

2.12.  E x a m p l e . In figure 5.1 we give an example of a derivation 7r 
and its exponential graph. We use indexed exponentials to distinguish 
the 1-identity-classes. The places where binding occurs are indicated by 
=£. 7r* is obtained by deletion of all exponentials •.

3 The ‘mono-stable’ fragment of CLL2

Let us call derivations 7r in linear logic ‘mono’ if the only modalities 
prefixing the skeleton of each formula appearing in 7r are among *!’, 
‘? ’, “!?’ and *?!’. Observe that'the collection of all first-order ‘mono’- 
derivations is closed under cut-elimination. To get the same property 
in the second-order case, abstraction on externally modalized formulas
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Figure 5.1: A derivation and its exponential graph
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should be prohibited. This defines a proper fragment of second-order 
linear logic: the mono-stable fragment. For ‘mono’-derivations we are 
able to strengthen proposition 2.2, in the sense that we now also have 
the converse:

3 .1 . T h e o r e m . Let it be ‘mono’, and E  C £(ir). Then it — E  is a 
correct linear derivation if  and only if E  is nre.

P r o o f : (=$>) If E  is not nre and tt is ‘mono’, then the strip defined by E  
will result in a derivation tt — E  in which there is either an application of 
a structural rule on a non-exponentiated (not properly exponentiated) 
formula, or an application of an exponential contextual rule where the 
context contains (a) non-exponentiated (not properly exponentiated) 
formula(s). So tt — E  can not possibly be correct. B

In general we can not be sure of the left-to-right direction: ‘good’ 
exponentials may be hidden (more or less directly) behind the ‘stripped’ 
ones, e.g. in case we strip in ‘!!’ or ‘!?????? !’.

Theorem 3.1 tells us that the minimum tt> of the >-lattice of a 
‘mono’-derivation it is a minimum in a very strong sense: for no E  C 
£ ( 71**) the strip defined by E  can possibly result in a derivation that is 
linearly correct.

This does not mean that for a ‘mono’-derivation tt, it is impossible to 
remove any more exponentials in n what can’t be done is remove one 
or more entire classes, but one still has the possibility to lower as much 
as possible the L! and R? rules that are left, in order to introduce them  
just before they are needed. If we apply this lowering of dereliction 
rules to 7r* we obtain derivations (7rI>)'. Clearly all of them have the 
same exponential graph. As a m atter of fact, they will be identified in 
their proofnet representation and hence are denotationally equal: they 
have the same interpretation in coherence space. In other words, the 
difference between them is negligible.

4 Strips and normalization

Let c be a cut rule in a proof 7r. We will denote by [c] the particular 
kind of elementary normalization or reduction step to be performed in 
order to eliminate the cut.
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If a derivation -rr' can be obtained by the consecutive application of 
zero or more elementary reduction steps, starting from a derivation tv, 
we say that 7r reduces to n' (notation: n -» n').

Observe that the nature of [c] is completely determined by:
- the rules rg and r<* surmounting c (in the left, respectively the 

right premiss);
- the status in rg and r<j (main, passive, side-active) of the cutfor- 

mula.

Accordingly we distinguish four kinds of elementary normalization 
steps: permutation steps, logical steps, structured steps, axiom steps.

We recall steps that in the sequel ask for a non trivial treatment, 
namely those where rg or is a box rule whose main formula is the cut- 
formula; also we display the configuration where rg and r<* are second- 
order rules introducing the cutformula. (For each we will show only 
one among the possible cases.)

- If the cutformula is side-active in an exponential contextual rule 
surmounting c, we denote the associated reduction step by [cc] (‘com
mutative cut’) being of the following form:

1̂ *2
*1

n2

lIWTAj.A !A,!r2 =>5,?A2 
T i =>?Ai,!A !A,!r2 =>!S,?A 2 

T u )T2 =>'.B,?A1,? A 2

[cc]

T j ^ A j JA  !A,T2 => fl,?A2
!r!, ir2 => b , ? A i , ? a 2

! r l5!r2 =>!5,?A!,?A2

- If the cutformula is main in a dereliction rule, we denote the 
associated reduction step by [de] which is of the following form:

*1 *2

ilh =>?A!,A a , t 2 => a 2 
ir, =>?A !,l4 !A,r2 => a 2 

!r,,r2 =>?Ai, a 2

[de]

TTl *2

iri =>?Ai, a  A ,r 2 a 2 
i r i , r 2 =»?Ai, a 2

- If the cutformula is main in an instance of a contraction rule, we 
denote the associated reduction step by [co] which is of the following 
form:
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1̂
7Ti . 7T2

7T! 7T2
: Ti =>?Al5A :

: = [co] Ti =>?Aj,A Sr, =»?Alt!i4 !A,!A,T2 =► A2
!r ! =>?Ai,A  !A,L4,r2 => A2^  !r< ^ .?Al \a !A ,!r!,r2 =»?a 1(a 2
T i =>?Ai ,!A !A,T2 =>A2 =>?A1,?A1,A 2

! r , , r 2 =>?a 1;a 2 ---------------------------------

!r„ r2 =>?Ai, a2

- If the cutformula is main in an instance of a weakening rule, we 
denote the associated reduction step by [it;] which is of the following 
form:

• • [H
ir^TAj, a t2 =>a2 ^  r 2 => a 2

ir^TAiJA !A,ra=>Aa :
!ri ,r 2 =>?Aj ,A2 T i,r 2 =>?AltA2

- If the cutformulas are main in VVrules, we denote the associated 
reduction step by [V2], which is of the following form:

ni *2
*1 PYX]

[v,]
Ti=> A U A[X\ A[T/X],  r 2 =* A 2 ^

r t =» A !,V X A [X ] \fXA[X],T2 =» a2
r i , r 2 => Aj , a 2

* i ,A[T/X]  A [T /X } ,T 2 => A2 
r i ,r 2 => Ai, a2

Let n  be an elementary normalization step. Any occurrence of a 
(sub)formula F  (resp. any instance of a rule r) in p{7r) comes, in the 
obvious way, from a unique occurrence of a (sub)formula (resp. a rule) 
in 7r. Let us denote by this lifting application.

4 .1 . LEMMA. (Lifting of classes) For any elementary normalization 
step p in a proof n, p* respects classes. I.e., if F ,  G are occurrences of 
subformulas in p(n) and F  G, then p*(F )  /x*(G). 13
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Hence each class e in p{rx) is mapped by to a class e' of tx (so 
p+(e) C e'). Note however, that this mapping is neither one-to-one, nor 
onto, in general.

4 .2 .  L e m m a . (Lifting of binding) For any elementary normalization 
step p in a proof tx, p+ respects binding. I.e., if  e, e' are classes in p(n) 
and e rx e' in p (tx), then /x*(e) rv p+(e').

P r o o f : (Recall that rx is but the transitive closure of rx lt ) Suppose 
p  is [cc], and e rvi e' via the box rule permuted by p  with the cut rule. 
Either p+(e) rvi p+(e') or there is in tx a class e" (namely the class of 
the cutformulas) such that p*(e) rvx e" and e" rvx p+(e'). In all other 
cases /x*(e) rvx ^*(e') (in particular, note that for T  =  \T' or IT ' in [V2], 
there will be no binding involving T  in txi\T/X]). 18

Let E  be a set of classes in a proof tx, and suppose p  is an elementary 
normalization step of tx. Let us denote by p(E )  the set of classes in 
p (tt) mapped by p* to a class in E . This makes sense, precisely because 
p+ respects classes.

4 .3 . LEM M A . Let tx be a proof, p an elementary normalization step 
in 7r, and E  a subset of £ ( tx). If E  is saturated, then so is p (E ).

P R O O F : Take a class e in p (E )  such that e' rx e for some class e' 
in £ (p (7r)). By lemma 4.2, p*{e') rx ^*(e). Because e G p {E ), by 
definition p*(e) is contained in a class of E . Hence, by saturation of E , 
the same holds for p*(e'), and, again by definition, e' E p (E ). 18

4 .4 .  L e m m a . Let tx be a proof, p an elementary normalization step 
in tx, and E  a subset of £ ( n). If E  is nre, then so is p (E ).

P r o o f : By lemma 4.3, p (E )  is saturated. Now suppose there is a 
labeled class e in p (E ). If an occurrence of a formula F  is main in 
a contraction (resp. weakening) rule in p(tx), observe that either this 
already is the case for p*(F) in tx, or p  is [co] (resp. [«;]), and p+(F) 
is side-active in the box rule to be duplicated (resp. erased). So either 
pA e) is also labeled, or there is in £  (tx) a class e' labeled such that 
e' rx\ e, contradicting the hypothesis that E  satisfies the no sources 
condition. 8



5.4. Strips and normalization 117

4 .5 .  D EFIN ITIO N . Let tv be a proof, E  an nre set of classes in tv, p  an 
elementary normalization step performable in tv. The equivalent of p  

in 7T — E ,  denoted by p , is defined as follows:
-  p  =  [id\ (the empty operation) if p  is either [de\ with active formu

las in the domain of E , or a permutation step where the cut is permuted 
upwards from the conclusion to the premiss of an exponential rule with 
main formula in the domain of E .3

- p  =  p  in all other cases. 8

Let r be a rule in a proof 7r, and p  an elementary normalization step 
of 7T. We denote by p ( r ) the set of instances of rules in p ( n ) mapped 
by /i* to r.

4 .6 .  T h e o r e m . (Stripping preserves normalization). Let p be an
elementary normalization step in a proof n, and E  nre in tv. Then 
p can be applied to n if and only if ft can be applied to tv — E , and 
p(n — E )  =  p(n) — p (E ) . B

At this point a detailed proof of theorem 4.6 would consist in a 
case-by-case inspection of all possible appearances of an instance of the 
cut rule in tv. We will however encounter an alternative argument in 
chapter 7.

4.7. C o r o l l a r y . Let tv be a proof, E  nre in n, and p an elementary 
normalization step in tv. Then p{rv) >  fi(n — E ).

PROOF: By theorem 4.6 and lemma 2.10 18

Note that F  C £ ( p (tv)) might very well be nre, while p*(F )  C £{rv) 
is not (i.e., the converse of lemma 4.4 does not hold).

A typical example is the class of a main formula in a box rule to be 
duplicated by [co], which might become nre after duplication.

4 .8 . THEOREM. Let //fc... P i  be a  reduction-sequence in tv. Then

pk . . .  /ii(7r>) t> (pk ■ ■ ■ ■

3 Note that this clause includes [cc]!
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P r o o f : By iteration of corollary 4 .7  we find /x* . . .  t>/t*.. . .  /ti(7r>).
We conclude that pk • ■ • P i{^ )  is in the t>-lattice of Mfc • • • Mi l71-)) where 
(jik ■ ■. Mi(7r))‘> is the bottom-element. 13

We established an important property of the >-lattice of a deriva
tion 7r that intuitively can be expressed as follows:

derivations in the > -lattice of it have, essentially, the same 
set of reductions.

Writing r to denote a reduction sequence in 7r, the content of the 
above can be visualised in the following diagram:

7T j ^ >  7T*

<■(*■) O  r K )

A  />

We observed that if n is not ‘mono’, it may be possible to strip sets 
of classes in 7r that are not nre, and still get a derivation that is linearly 
correct. However, the result of such a strip is likely to have a behaviour 
under reduction quite different from that of tv, and in general 4.6 will 
no longer hold.

5 Plethoric translations III

In this section we will apply stripping to linear decorations of C L- 
derivations 7T obtained by the inductive application of the plethoric 
translations defined in section 3.3. We show that, whatever adequate 
pair of modalities one chooses, the result in fact always is essentially 
the same as either or 7rt .
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5.1.  THEOREM. ((•)q, ! ,?! )  and ((•)*,!?,!) are, essentially, the unique 
inductive decoration strategies for CL.

P r o o f : Let n be a CL-derivation, and suppose we have obtained 7r® 
by inductively decorating ir via ((-)®, //, v), as in theorem 3.3.1. As 
(fi, v) is adequate, either (1 ) \x =  \a?(3 and v =  ?(3, or (2) fi =  \(3 and 
v =  ?a\f3, for modalities a, (3.

We will show that in 7r® exponentials in the classes induced by a 
and (3 are always superfluous, and can be stripped. In case (1) we will 
find (7r®)I> =  nt, in case (2) (n®)'> =  7rq. The claim of the theorem then 
is immediate by the results of the previous sections.

We proceed by induction on the structure of 7r, and limit ourselves 
to case (2), that of (1) being completely similar. Let us just treat some 
of the steps.

- If 7r is an axiom A =$■ A, then 7r® is

\(3A® => \(3A®

1/3A® => ?a!/M®

Clearly the exponentials a,/3 are superfluous and can be stripped. 
Moreover, we can replace A® by Aq, thus obtaining 7rq.

- Suppose 7T ends with an application of R —K Then 7r® is

(*r

\f3T®, \(3A® => ?a'.0B®, ?a'./3A®

\0T®, ?a!/3A® => ?a\/3B®, ?a!/?A® 
!/?r® => ?a!/3A® -o  ?a\/3B®, ?a!/3A®

!/?r® => ?a!/?(?a!/3A® ?a!/?S®), ?a!/?A®

By induction hypothesis we can strip (7r')@, and we obtain
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(7r')q

!rq,!Aq =>?!5q,?!Aq

!rq,?a!Aq => ?LBq,?!Aq
;rq =» ?a!Aq >̂?!gq,?!Aq

ir4* => ?a!/3(?a!AtI -o ?LBq),?!Aq

The exponentials in a, (3 here all induce new classes, that are mini
mal in the exponential graph, and contain no sources. Therefore they 
can be stripped, and we get 7rq .

- In case 7r ends with an application of LA we have e.g.

(*r

\f3T®,'.(3A®,)pB® => ?a'./3A®

I0r®, !?a!0A®,!0B® =» ?a!/?A®

!fir®, !?a!j3A®,!?a!j3B® =» ?a!/3A® 
!/3r®,!?a!/L4®<8> \1a\pB® => ?a!/3A®

!/?r®,!/3(!?a!/M®0 !?a!/3S®) => ?a!/3A®

By induction hypothesis we can strip (7r')@, to find
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(*')q

irV A V flq =>?!Aq

!rcl,!?a!A(1,!5(l =i> ?!A<1

!r(l,!?a!A(l,!?a!5tl => ?!A<1 
!?a!Bq => ?! A0!

!rcl,!/3(!?a!Atl(gi ITalB1!) =► V.A<*

As in the previous case, the exponentials in a,f3 all induce new 
classes that are minimal and contain no source. Stripping them results 
in 7r .̂ (Of course, here we might also strip the other exponentials 
introduced; but that’s beside the point.)

- In case tv ends with an application of LC, we have

( * r

!/?r®, '.(3 A®, \0A® => ?<*!/? A® 
\f3T®, \pA® => ?a!/?A®

The result now is of course immediate by induction hypothesis.
- Let us finally consider the case that tv ends with an application of 

cut:

7T®
2

\/3A®, \pTf => ?a!/3Af

\/3rf => ?a!/3Af, ?a!/3A® ?a!/3A®, \/3Tf =» ?a!/3A® 
!/3rf,!/?r® =>?a!/3Af,?a!/3A®
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The result in fact is immediate by the induction hypotheses for 7rf 
and 7r®. 3

6 The lower decoration strategy II

Let us continue to apply the results on stripping and take another 
look at the linear derivation d(ir) obtained from a derivation 7r in intu- 
itionistic implicational logic by applying the lower decoration strategy. 
Because of the assumption that 7r is fully expanded (i.e. all instances of 
the identity axiom are atomic), the exponential classes in tv are precisely 
the tracks4 of exponentiated formulas.

6 .1 .  LEMMA. Let \A be a subformula of a terminal formula in d(n) . 
Then there is a directed path 7  in G(d(ir)) from a labeled vertex to the 
vertex T„(!A).
PRO O F: This is immediate from the construction of d(v). Formally 
we proceed by induction on the length of a branch in a finite tree of 
decorations starting from a primary bang-source: if TV{\A) contains 
that source, our claim evidently holds; otherwise we have a sequent 
\T,\A => IB being the conclusion of an instance of R! in d(ir). By 
induction hypothesis there is a directed path in Q(d(ir)) from a labeled 
vertex to TV(\B). But as T„(\B) binds T„(\A), there is a directed path 
from the labeled vertex to TV(\A). 13

As d(n) is a subdecoration of 7r®, we can, in the obvious way consider 
G(d(n))  as a subgraph of G(n®). More so:

6 .2 . L e m m a . G(d(x)) is a full subgraph of G(ir®): if T*(\A),T„(\B)
axe exponential classes in d(n), and there is an arrow between the 
corresponding vertices in G(ir®), then that arrow exists also in G(d(n j). 
PRO O F: The arrow is there because of the conclusion of an instance 
of R! in 7r®. As both n® and d(n) have the down-property, the corre
sponding sequent in d(ir) is also the conclusion of R!, q.e.d. 3

Let us, for a vertex labeled “s” , write cx(s) to denote the union of 
all directed paths in Q(tv) starting from that vertex. We thus obtain:

4Cf. the notion of ‘track’ introduced in the previous chapter.
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6 .3 . T h e o r e m . Q(d(7r)) =  |J cx(s).
s€e(7r®)

P r o o f : By lemma’s 6.1 and 6.2. B

Now US€£,(T®) cx(s) is precisely (theorem 2.11), so, by the
results of the previous sections, d(n) is an optimal linearization of n, 
which is essentially equal to (71®)'”, though in general not identical to 
it, the difference being that in general applications of L! in d(n) are 
‘postponed’. (Cf. the remark at the end of section 3.)

We can make analogous observations regarding the derivation d(n) 
obtained by applying the lower decoration strategy to an ILU-derivation 
7r (section 4.2): now G(d(rc)) is a (full) subgraph of G(n*), as well as of 
G(7r®), and we find the following.

6 .4 . THEOREM. Let n be an ILU-derivation. Then

U c*(s) = ̂ (0(7r)) = U c*(s)- 13
S € 5 (w * )  S6£?(ir®)

Again we find that Usea(w*) cx(s) is precisely G((n*Y).

The minimality of the linearizations thus obtained are optimal, as 
both the f- and the g-decoration are what we might call ‘mono’ deco
rations.

6 .5 . DEFINITION. Let <5 be a decoration strategy for calculus L. We 
will call 6 a ‘mono’ decoration if <5(7t) is a ‘mono’-derivation for any 
proof 7r in L. B

Therefore, by theorem 3.1 and the remarks at the end of section 
3, we may consider d(n) as the optimal linearization of an IL(U )- 
derivation 7r. In case of an ILU-derivation, recall that derivations in 
IL U  are, in a way, derivations in linear logic: the g-decoration is strong 
(definition 3.2.1). We can apply the following.
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6 . 6 .  T h e o r e m . I f  8 is a strong ‘mono’ decoration strategy for calculus 
L, then 8(7r)> is an optimal linear version of ir which simulates ir ’s 
behaviour under reduction.

P R O O F : Optimality follows from the fact that 8 is ‘mono’. By the 
results of section 4 we know that (i(7r)I> has essentially the same set of 
reductions as <5(7t). As 8 is strong, it simulates the reduction of ir. E3

We have of course analogous results for decorations of derivations in 
sequent calculi for (fragments of) classical logic. E.g. the linear deriva
tion d(n) obtained by applying the decoration strategy of chapter 6 of 
Joinet(1993) to an LKT-derivation n will be an optimal linearization of 
n that is essentially equal to (7rT)t>. As the T-decoration is both ‘mono’ 
and strong, also in this case we may speak of the optimal linearization, 
and apply theorem 6.6.

As we mentioned before, (the implicational fragment of) IL U  cor
responds to the neutral fragment of intuitionistic implicational logic 
in Girard’s system of unified logic L U  (Girard(1993)), and (fragments 
of) L K T  correspond to the negative fragment of Girard’s classical logic 
L C  (Girard(1991)). Indeed our methods are not limited to merely these 
fragments. If in an LU-derivation 7r we decorate negative atoms N  as 
?JV, positive atoms P  as !P , and follow the linear definitions of the 
classical and intuitionistic connectives, what we get is a strong ‘mono’ 
decoration (cf. section 3.5). As a result theorem 6.6 will apply to all 
of non-linear L U , including LC .

Notes

- The first four sections and parts of section 5 of this chapter appeared, 
in condensed and slightly different form, as sections 2, 3 and 4 of Danos 
et al.(1993d). O ther parts of section 5 are from Danos et al.(1993c).
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- Observe the similarity between the notion of ‘identity class’ and th at 
of ‘logical flowgraph’ as introduced for classical logic in B u ss(1991). An 
identity class in fact is an undirected flowgraph. A similar concept of course 

is implicit in proofnets.



Constrictive morphisms

6

Recall the proofs of the correctness of Girard’s embedding (•)* of IL  
into C L L  (proposition 1.3.3), of the Q- and T-embedding of C L into 
C L L  (theorem 2.4.1). In each of these cases we inductively apply the 
translation to a given sequent calculus proof. At some points, however, 
applying the necessary logical rule to the translated sequents of the pre
miss does not result in the ‘right’ translation of the main formula, but to 
a formula that appears to have the (external) shape of its f-translation 
(in the intuitionistic case), or its q-, respectively t-translation (in the 
classical case).

We continue by using a correction cut: we cut with a small deriva
tion of a sequent that brings the deviating main formula ‘back into 
track’. The example one finds on page 46 is typical.

Correction cuts are derivations of a special kind: they are decora
tions of derivations of identities A => A. What is more, in all cases 
mentioned above, they are nothing but decorations of expansions of 
instances of an identity axiom (in the aforementioned example, a deco
ration of an expansion of 1C -» B  =>\C B ). In the present chapter we
will look in some detail at linear derivations of this type, and ask what 
happens were we to eliminate these cuts. In fact, what we will show is 
that elimination of g-correction cuts transforms an IL-derivation into 
an ILU-derivation. Similarly, eliminating T-correction cuts maps C L  
to L K T , and eliminating correction cuts for the Q-translation will map 
a CL-proof to LKQ .

In this sense the economic, non-decorating, embeddings of intu
itionistic and classical into linear logic find a natural interpretation as 
transformations of derivations.
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1 Decorating the identity

In the obvious inductive way we define the full expansion txa of the 
axiom A => A:

if A  is an atom p, then np is just p => p. For non-atomic A we have 
e.g. KC-«D,'Kyx.A,'K'>A-

7TC 7TD * A [ Y / X ]

C  => C D => D A [Y /X } => A [Y /X ] A => A
C ^ > D ,C = >  D VX.A => A[Y/X) A = > ?A

C  —o D C  —°  D VX.A  => \/X.A ?A=t>?A

All other cases are similar.

Let 7r' be a derivation of A =$> A, and suppose Pi =>■ P i , . . . ,  P„ =>■ P„ 
are the identity axioms occurring in re*. We say that 7r' is an expansion 
of the axiom A =$■ A iff the proof obtained by replacing each axiom 
Pi => Pi in 7r' by its full expansion npi is precisely the full expansion 
7Ta of A =>■ A.

1.1 . DEFINITION. Let id be an expansion of A =>■ A, and let some 
derivation 7r of T, A =$> A or T =>- A, A be given. We say that n1 is not 
further expanded with respect to A than 7r (notation: 7r' 7r) if for
each occurrence in 7r of an identity axiom for a formula in the ~-class 
of an occurrence of a subformula F  in A, the corresponding occurrence 
of F  in 7r' stems from1 an identity axiom for a formula G such that 
F  ~  F 1 for some subformula F ' of G. E3

In the following example the left premiss of the cut (an expansion 
o fV Z (X  -o Z) =>■ V Z (X  -o Z)) is not further expanded (with respect 
to V Z (X  -o Z)) than the right premiss:

X - o  Y => X  -*> Y X  => X  C  - ° C  => C  ^ > C  
V Z (X  Z)=t> X  ^ > Y  X , X - ° { C - ° C ) ^ C  - o C

VZ(X -O Z) => S Z {X  -o Z) X X Z ( X ^ > Z ) = > C - ° C  

X ,V Z (X  -o Z) c c

'W e will not bother to make this notion more precise.
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(C  -o C  corresponds to the subformula Z  of V Z (X  -o Z) which in 
the left premiss stems from the axiom for X  Y , and Z ~  Y .)

Note that if it a If\a tt, then tt' -<a 71 for all expansions tt' of .4 => A. 
We have tta tt e.g. in case all instances of identity axioms in 7r are 
atomic.

1 .2 . L e m m a . Let 7r be a derivation of T, A =>- A or T =>- A, A ; let x'
be an expansion of A => A, and suppose n' -<A 77■ Let n the derivation 
obtained by a cut between 7r and tt' . Then there is a reduction from n 
to 7T. B

In case 7r' -£a tt, 77 will reduce to an ^-expansion of n, i.e. the result 
is 7r with one or more identity-axioms replaced by expansions.

1 .3 . REM ARK. The property expressed by this lemma, the existence of 
a reduction, is usually somewhat stronger in the case of linear logic than 
it is in case of intuitionistic or classical sequent calculus. To illustrate 
this consider the following example.

*1
772

A B = > B  T! =» Ax 
>B,A =>B  ITj => A, Aj TiyB => A2  

A —̂ B ^  A —̂ B  Ti, r 2, A —̂ B  A ], A2

r i , r 2,A Aj, a 2

We reduce to

Ti =» A! A=> A B => B
Aj A —i B ,A ^ B  •

f i , A -» B  =»■ Ai ,B ______r 2,fl => A2
r i , r 2,A -¥ B => Aj, A2

and then might continue to permute the derivation of Ti => A, Aj up 
to the identity axiom A => A; but also we could directly reduce the cut 
on A, and obtain
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Ti=> A!
Ti, A ->• B  => Ai 
, A —̂ B  Aj

7T2

r2, .b ^  a2
ri>r2, A -► B  => Aj ,A2

Obviously it is the first alternative that is in accordance with the 
claim of the lemma. Note that in the linear sequent calculus we have no 
choice and only the first reduction is possible in a comparable situation, 
like

*2

?A => 1A IB  =» IB  Ti =» At :
?A^>£,?A=>?£ Tj ^TA.Aj r 2,?£ =► A2 

?A -o IB  =» ?A -o  ?B  r 1;r 2,?A^>?5=> A !,A 2 
r ! , r 2,?A  - o ? 5  => A j ,A 2

However we can force the second reduction by cutting with a dec
oration of an expansion o f A - o l B ^ A - v l B ,  as the reader should 
verify:

A ^ A  ? £= »? £  ni
A - o lB ,A ^ ? B  : *2

!(A —° IB ),  A =» ?B  pj =► Aj |
!(A ?B),?A => ?S ri=»?i4,Ai r 2,?S=>A2

!(A —° IB )  => ?A —° ?B  r 1;r 2, ? A ^ . ? S = >  A j ,A 2

r 1;r 2, ! ( A ^ ? 5 ) = >  a , , a 2

In fact, this observation might be judged the heart of coming sec
tions’ matter. B

Let 7r' be an expansion of A => A, and suppose e i , . . .  ,e n are pre
cisely the exponentiated subformulas of A. Write Ei for the set of
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elements of S(x ')  induced by the left and right occurrence of e; in the 
conclusion (note that Ei is either a singleton, or has two elements). By 
a simple induction on the complexity of A we then find that 7r' — Ei 
is an expansion of A — Ei =$■ A — Ei. As a corollary we obtain the 
following

1.4. Lemma. Let 8(A) be a decoration of a formula A, and let x' be 
an expansion of 8(A) => 8(A). Then it' is a decoration of an expansion 
of A => A.
PROOF: Let { e i , . . . ,  e*.} be the exponentiated subformulas of 5(A) 
that are not exponentiated subformulas of A. Iterating the observation 
above we find that n' — E i — . . .  — Ek is an expansion of 5(A) — E i —
. . .  — E k , which is just A. B

1.5. D e f i n i t i o n . Let (n 1) be a decoration of an expansion of A => A.
(I.e., (ir') derives 5(A) =>- 5'(A), where 5(A), 8'(A) are decorations of 
A.) We say that (ir') is an invisible morphism for a given derivation 7r 
of T, 8'(A) A or T =>- 5(A), A if we can eliminate the final cut from
the derivation ir, being

(*■') 7T 7T (*■'}

: : resp. : :
<5(A)=>5'(A) I\5'(A)=>A r=>5(A),A 5(A) =► 6'(A)

r,5(A)=> A r=> 5'(A),A
in such a way that for the resulting reduct r(ir) it holds that sk(r(if)) =  
sk(7r). In case sk(r(ir)) is always necessarily different from sk(7r) we call 
(7r') constrictive for 7r.

As suggested by our terminology, we consider a decoration (it') of 
an expansion 7r' of an identity axiom A => A as a morphism that can be 
applied to a given derivation 7r, and that (via cut-elimination) maps 7r to 
a derivation r(7r). The morphism is said to be invisible if its application 
to the linear derivation ir does not affect the underlying classical (or 
intuitionistic) skeleton.

The decoration of the expansion o f A - o ? P = > A - o ? P a t  the end 
of remark 1.3 is not invisible for the derivation to which it is applied, 
and therefore is an example of a constrictive morphism.
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We can use the ‘exponential removal’-theory of chapter 5 to identify 
invisible morphisms. The idea is to try to ‘strip’ {tt') down to an ex
pansion of an identity axiom, which, under the condition of lemma 1.2, 
is trivially invisible.

By definition of decoration, for (it') on its own, this of course can 
always be done. When ( 7r ' )  is applied to a derivation t t , this may no 
longer be possible. The following proposition, however, gives a sufficient 
condition for invisibility.

1.6. PRO PO SITIO N . Let TT be as in definition 1.5, and suppose that in 
jr the set E  of elements of £(n) determined by £ { { tt'))\ £(it') is nre. If 
(tt'} — E  -<a- e tt — E , then {tt') is invisible for tt.
P R O O F : Suppose the exponential classes e i , . . . , e n of tt' coincide in 
tt with elements of £ ( ( 7 r ' ) ) \ £ ( 7 r ' ) .  Let A' :=  A — E\ — . . .  — E n (so 
A' =  A — E ). By lemma 1.4, tt' is a decoration of an expansion tt" of 
A' =>■ A', and {tt') — E  =  tt" .

Now tt — E  is the derivation obtained by a cut between tt and tt — E . 
As, by hypothesis, n" -<a' tt — E , by lemma 1.2 tt — E  -»  tt — E . And 
as E  is nre, by theorem 5.4.6, ir reduces to a derivation r(7r) such that 
r(7r) t> 7r — E . So sk(r(7r)) =  sk(7r — E )  =  sk(7r). El

Note that in fact this proposition gives ‘invisibility’ in an even 
stronger sense, as, by the results of chapter 5, r(ir) will also have the 
same behaviour under reduction as tt.

As an application let us use the above to give another proof of (a 
generalization of) proposition 1.4.

In analogy to the terminology used in section 4.1 we call a linear 
formula </>+ that has been obtained from a formula (j) by prefixing “!” 
to a number of positive, “?” to a number of negative subformulas, a 
positive decoration (of (j)).2 Negative decoration is defined in the obvious 
dual way. Clearly (/>+=></) and </>=$> (/>~ are always derivable, with 
derivations (71-$) that are decorations of the full expansion of (j) => (j). 
In fact, one obtains (n^) by merely adding a certain number of instances

2To be precise: <j> is a positive decoration of 0; if <f)+ is a positive decoration of 
<j) and t/) is a positive (negative) subformula of <j>+, then </>+[!̂ /?/>] (</>+[??/>/?/>]) is a 
positive decoration of <f>.
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6 3

\a \ a ^ b =>b  a ^ a  \b ^ \ b  c ^ c

\a \ ^ A ^ B ) ^ B  \a =>a  \b ^ c ,\b * c

| a , | ( ! a ^ » .b )=»  1b  \a ^ [ a  \(\b  ^  c ),[b  => c  

|(|a -« B) =» \a  [b  [a >̂ \b , \a , j(jfl C) =» c  

1(1  ̂-  B), [a , ](js  -  C) => C

Figure 6.1: The decoration of the expansion of lA -o B  =>- \A - o  B  is 
not invisible; the set consisting of the exponential classes 2 and 3 is not 
nre.

of dereliction to 7r̂ . Now let 7r be a derivation of a sequent T,4> => A  
or T => <f>, A, using only atomic instances of the identity axiom.

It is immediate that the set E  of exponential classes determined by 
£ ((7I>))\ £(7I>) *s nre- And, as (j> — E  =  <f>, we have that (71̂ ) — E  =  
1*4, it =  tt — E . So, by proposition 1.6, (7̂ ) is invisible for 7r. 
(Proposition 1.4 claimed this in the special case of intuitionistic linear 
implicational logic only.)

With a little more effort we are able to draw the same conclusion 
in case 7r derives T, (j>~ =>■ A or T =$> A ,<f>+ (again using only atomic 
instances of the identity axiom). Indeed, if e is an exponential class 
in 7r determined by an exponential in <j>+\<p or <j>~\<j>, then e contains 
no source: the exponential determining e occurs positively (in case it is 
“!”), negatively (in case it is “?”), in the conclusion; were e to contain
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a source, it should coincide with the class induced by an exponential 
occurring with the opposite sign somewhere in 7T and as 7r has only 
atomic instances of the identity-axiom, this cannot be the case; more
over e is always minimal in G(n), so {e }  is saturated. From these facts 
it is readily seen that once more the conditions of proposition 1.6 are 
satisfied.

2 Correction cuts

As observed in the introduction to this chapter, the essential exam
ples of decorated axiom-expansions are the correction cuts introduced 
in order to prove correctness of economic non-decorating embeddings 
of intuitionistic and classical, into linear logic. Let us here list some 
of these morphisms, and briefly indicate why in general they will be 
constrictive.

In proving the correctness of Girard’s translation by induction on 
the length of IL-derivations, in the case of L—> one cuts with

\A* => '.A* B* => B* 
\A* -o B*,\A* =► B* 
!(L4* -oB*),\A* => B* 
!(!A* -o B*),\A* => \B* 

!(L4* -o B*) => \A* —o \B*

This decoration of (an expansion of) \A* B* => \A* -o  B* in 
general will be constrictive: if B  in the original derivation has been 
subjected to structural manipulation, the ‘nre’-condition of proposi
tion 1.6 can not be fulfilled.

Similar observations hold for the Q- and T-implication, being deco
rations of respectively !A°* -o  V.B^ => !A^ -o  IIB® and !?AT -o  ?B T => 
!?At - o ?B t :
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!a Q =>■ !aQ v.b  ̂ => v.b  ̂
!j4Q ^>?!£Q,!.4Q =► V . B Q  

i(!^Q ?l b Q), u Q => ?!^Q 

!(UQ  _« ?!BQ),?!4Q => ?!BQ 

!(L4Q ?!5Q) =*. ?uQ ?isQ

!?At  =» !?At  ? g T => ?Bt 
!?>1t - o ?^t , !?At => ?JeT 

?(!?j4t - o ?5 t ), !?4t => ?5 t 
!?(!?4t - o ?£ t ), !?At =$• ?5 t 
!?(!?j4t -*  ?5 t ), !?At =► !?Bt 

!?(!?At -*  ?ST) => !?At - o !?5t

Note that as decorations of the axiom expansions, the above deriva
tions are uniquely determined. The same holds true for the correction 
cuts involving quantifiers, as we leave for the reader to verify.

This however is no longer true in case of the (multiplicative) Q- 
conjunction, neither in that of the (multiplicative) T-disjunction. As 
already mentioned in section 2.4 we are confronted, for each of these, 
with two symmetric possibilities to decorate in the required way an 
expansion of =>- !A^<g»!^ and ?AT<8>?i?T ?AT<8>?i?T.

To take the multiplicative T-disjunction as an example, we might 
take either

?a t  =>• ?a t  w t ^ ? b t ?AT =>?AT ?St =>?5t

?4t>S’?5 t => "!AT, ?5 t ?At>S’?5 t =» 1At , ?Bt

?(?Ar >s,?flT) => ?At , ?Bt ?(?4t ’S’?St ) => ?At , ?5 t

!?(?j4t >S’?5 t ) => ?4t , ?St or !?(?j4t ’S,?Bt ) =» ?At , ?5 t

!?(?Ar ’S'?5T) => !?j4t , ?£ t !?(?AT>ff?BT) => ?At , !?5t

!?(?j4Ttf?£T) => ?!?4t , ?St !?(?At >S’?5 t ) => ?4t , ?!?St

!?(?At >S’?5 t ) => ?!?j4t , !?Bt !?(?At 'S,?5 t ) =► !?j4t , ?!?5t

!?(?ATtf?£T) =» ?!?4t ’S> !?5t !?(?z!t>S’?5 t ) =» \?At >S ?!?5t

To see the effect of this choice, let us suppose that in the original 
derivation both formula A and formula B  were introduced (to simplify 
matters say immediately before the application of LV) by weakening. 
The correction cut ‘tells’ us to replace these weakenings by a weakening 
directly on A V B. In order to realize this replacement we have to chose 
one of the premisses of the LV-rule and continue from there. Using the 
left rather than the right, or the right rather than the left correction 
cut, in fact is equivalent to making that choice. (Cf. section 3.3.)
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These derivations of decorations of identities provide us with valu
able information on the possibility of re-arranging the ‘management’ of 
structural rules in (the skeleton of) a linear derivation. They indicate 
e.g. that the application of structural rules to a formula A o B  (where o 
is some binary connective) in deriving a sequent T A can be replaced 
by structural rules on A and/or B  separately, and vice versa. In a more 
general sense this holds of course not only for decorations of expansions 
of an axiom A A, but also of other types of derivations of A  =4> A.3 
Consider the following. We observed at the end of section 2.4 that in 
case of the Q-translation we left unused the possibility of a drastic op
timization in the additive translation of the conjunction, as we might 
have chosen {A A B )^ :=  A^&B^ instead of (A A B )Q :—?\A 
due to derivability of \(A&B) => \A& \B and ?!(?!A&?!i?) =>- V.(A&B). 
The first of these is derivable by means of a decoration of an expansion 
of A& B  => A& B, as the reader will easily verify.

The second, on the other hand, is not the decoration of an expansion 
of the identity. It is derived e.g. as follows:

A => A B => B
IA =» A '.B ^ B

IA, \B=t> A \A, \B => B 
\A,\B => A&B 

\A,\B =>!(A&S)
\A,\B ^  V.{A&B)
\A,V.B =>?!(A&S) 

\A,V.A&V.B =>?!(A&5) 
L4,!(?L4&?!B) => ?!(A&5) 
?!A,!(?L4&?!B) =>?!(A&fl) 

?!A&?!B, !(?!A&?!B) => ?!(A&B) 
!(?!A&?!B),!(?!A&?!B) => ?>(A&B) 

>(?'.A&?'.B) => ?'.(A&B) 
V.(?\A&V.B) => V.(A&B)

3In th is broader sense for exam ple also the standard derivations o f \A® \B  => 
!(A & S ) and o f !(A & A ) => !A ® !B  can be seen as ‘constrictive m orphism s’.
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3 Mapping IL to ILU ...

Take some derivation 7r of a sequent T => A  in the { —>, V2}-fragment 
of IL, and apply inductively Girard’s translation (•)*. Identity axioms 
A  =*► A become

A* =» A*
\A* =>■ A* ’

and when encountering a right rule, one continues by applying the 
corresponding rule in linear logic. Something more interesting happens 
as soon as we stumble upon an application of L-> or LV2.

T ^ A  T2, B ^ C  T ,A [T/p]=>B
Ti,r 2,A - > B ^ C  r ,M p .A ^ B

It is at this point that, in order to ensure that the conclusion is the 
(•)*-translation of the conclusion in the original derivation, we have to 
introduce a correction cut. In case of L—> we obtain the configuration

\A* => \A* B* => B* 1
\A*,\A* -oB* => B* :

!A*,!(!j4* - o B*) => B* =► A* \
\A*, !(!j4* -*> B*) => \B* irj =► \A* W$,\B* => C*

!(L4* -o  B*) =» \A* -o  !fl* !r;,!r;,L4* -o \B* => C* 
!ri,!rj,!(!A* -o B*) => C*

which we will denote by 0\. For LV2 we get 02, being

A*[T*/p\ => A*[T*/p) 

VpA* =* A *[T */P] 

N pA *  =*• A*[T*/p] 

WpA* => \A*[T*/p]

N pA * =► Vp.lA*

(n'Y

T \\A * [T * /p )  => s*  
!r*,Vp.L4* =► B*

!Vp.,4*,!r* => B*
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ILU
IL

Figure 6.2: From IL to ILU

Thus we continue, introducing the appropriate cut at each occur
rence of a left logical rule. The result is a linear derivation, say 7rG, of 
the sequent !T* => A*.

We will show the following.

3 .1 . THEOREM . I f  we eliminate the correction cuts introduced in 
7rG we obtain a linear derivation k , the skeleton of which is an ILU - 
derivation of ; T =» A. Moreover, we may assume that k  — (sk(/c))*.
P r o o f : The first half of the claim of course is an immediate corollary 
to theorem 3.2.3: after elimination of the correction cuts we have a 
derivation of T* A* in which all identity axioms are of the form 
A* A*, and all remaining cutformulas are of the form A* or \A*, so 
its skeleton then is an ILU-derivation of ; T =$> A.

For the second half we need an additional argument (which will 
inspire an occasional lengthy aside).

Let us first reflect briefly upon the meaning of the claim: if our 
original IL-derivation is cut-free, then after elimination of all correction 
cuts we end up with a cut-free ILU-derivation. So application of the 
constrictive morphisms realizes the restrictions on sequent derivations 
demanded by the correctness of Girard’s translation, and e.g. all shrieks 
immediately following a linear implication are rendered superfluous (cf.
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section 3.2, the note on page 78, and the example of figure 6.1).
Consider some highest occurrence of a correction cut in 7rG, say for 

an application of L—K Obviously the derivations 7r* of the premisses 
of the rule are g-decorations of ILU-derivations 7r;, and reducing the 
correction cut we obtain the configuration 0[ , being

!r* =» A*
T* =»!A* B* =» B *
!r*,L4* ^>B* =» B*

T*,!(L4*-<>B*) => B* :
!r*,!(!A* -o  B*)  =>!B* n*, !A*, !B‘ =» C* 

n*,T*,!A*,!(!A‘ -o  B*) => C*

In case this highest occurrence is for an application of LV2, we find 
#2, which is of the form

A*[T*/p] =» A*[T*/p]
Vp.A* => A*[T*/p] 7r*

Wp.A* => A*[T*/p] :
Np.A* =>\A*[T*/p] I P ,T *,\A*[T*/p]=> B*

n ‘ ,!vP.A‘ ,!r *  => b *

Observe that already at this point the skeletons of the derivations 
under consideration are in IL U , as obviously

sk(7rj)

) 1  J-f ̂ —r' J-J
A ^ B - , r = n r  :
; A -4  B,r => B n;A,B=>C*

II;j4 -4 B,T, A => C

is an ILU-derivation (because both sk(7r*) and sk(-7r|) are). 
Similarly
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A [T /p \;*  A[T/p] SK̂  >

Vp.A; => A[T/p\ :
;VP.A => A[T/p] H ;T,A [T/P] ^ B

n ; r,Vp.A^> b

is an ILU-derivation (because sk(7r*) is).
The first of these tells us that the rule

; t ^ a  n ; r , s = > c

is admissible, yes, derivable in ILU . The second shows the same for the 
rule

n ; r , A = > £
n ; r ,Vp.A=^B'

(One should compare this to the proof of proposition 3.2.2!)
So the second claim of the theorem clearly holds, as we can eliminate 

the correction cuts as if eliminating the corresponding cuts in ILU ! Let 
us do it this once in some detail, thus exhibiting the relation between cut 
elimination in IL U , and the elimination of cuts in its linear equivalent 
(section 3.2). To be precise, what we will do is the following.

Given the g-decoration 7r* of an ILU-proof txi with conclusion ; T => 
A and the g-decoration of an ILU-proof 7r2 with conclusion IT; A, B n =>-
C  (where B n denotes n > 1 occurrences of the formula B ) , we construct, 
using the derivable rule of multicut, the derivation (0")':

•K*1

T *  => A*
T *  =>L4* B* =» B*
I T * , \ A * B *  => B*

T *,!(L4* -» B *)  => B* :
!r* , !(!A* —o B*) =>IB* IF , !A ‘ , ( !S *)n => C* 

II* ,!r* ,!A * ,!(!A * -o  B*)  => C*
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Similarly, given the g-decoration n* of an ILU-proof 7r with conclu
sion U;T, (A[T/p])n ^  B  we construct the linear derivation (0”)'•

A*[T*/p] => A*[T*/p]
Vp.A* =► A*[T*/p] 7r*
Wp.A* =► j4*[T*/p] :
IVp.yl* => !A*[T*/p] IP, !r*, (!A*[T*/p])n => 5* 

n*, svp.A*, sr* => b *

We then show that given a linear derivation of the form (#”)' we ob
tain, by reducing only the shown instance of the multicut and its descen
dants, a reduct r(Of)' which is the g-decoration of an ILU-derivation 
k with conclusion II; F, A, .4 —> B => C  in case i =  1, and conclusion 
II; T,Vp.A =$> B  in case i =  2

We only treat the case of (9”)', as that of (0%)' is completely similar, 
and proceed by induction on the length of 7^.

If the last rule applied in 7Tj is C!, RV2 or R -° we permute the 
left branch of the derivation upwards and get the result by induction 
hypothesis, in the last two cases followed by the corresponding ILU - 
rule.

If the last rule is a dereliction L! on a formula in A*, then II =  0 (as 
7T2 is an ILU-derivation). We permute and get the result by induction 
hypothesis and L!, which corresponds to D in the ILU-derivation. Sim
ilarly, in case of LV2 we permute and are done by induction hypothesis 
and LV2.

If the last rule is a dereliction on a B*, then again II =  0. The 
situation now is the following:

7T*1

•X -T-V:. 1*2 J
IT* =>\A* B* => B*

!r*,!(L4* -«  B *) => B* =» C*

T —o B*)  =»\B* !A * ,( !£ * )n =» C*

!r*,!A*,!(L4* —o B*) =$> C*
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If n >  1 we transform this into

;r* =» a *
n* !r* =i>'.A* B* => B * (*2 Y

!y*^A* !r*,!(!A‘ -o  B*) =>\B* !A‘ , =► C*
T * =>'.A* B*,  !T*, !A*, !(!A* -o B*) =*■ C*

\A* -o B*, !(L4‘ -o B*),\T*, T * ,! A*
!(!A* -*  B*), !(!A* B*), T*, !r\  !A*

!(L4* -o  B*),  T ‘ ,!A ‘ => C*

and the result follows by induction hypothesis, the left rule for impli
cation and contraction in ILU.

If n =  1 we get directly

.  to ) '

T * =» A* :
T ‘ =>!A* B*,  !A* => C*
\A* —o 5*,!r*,!A* => C*

which is the decoration of an ILU-derivation because 7r* and n*2 are.
If the last rule applied was L-», we know (because is the deco

ration of an ILU-derivation) that (#")' has the following form:

*21

: *2 2

!r*,!(!A*

!AJ, ( !5 * ) " 1 => E*

: !A!,(LB*)ni =>IE* F * ,  !AJ, (!S*)ns => C*
\E* F*,\&*,(\B*)n =>C*

\E* -o  F * ,  !r*, !A‘ , !(L4‘ -o  B*)  =► C*
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If neither «i nor n2 equals 0 we transform the derivation into

; . Wj*2
!r*,!(!A* —o B*) !AJ, (!B*)ni =>• F* : :

!r* ,!A J,!(!A * - o  B*) =*• E* !r*,!(!A * - o  B *) =MB* F * , !AJ, (!B *)n> =>• C*
!r* ,!A J,!(!A * - o  B *) =>!B* F * ,T * ,!A J,!(!A *  - o  B *) => C*

!F* F*,!r*,!r*,!A*,!(!A* -o B*),!(!A* -o B*) => C*

!F* F*,!r\!A*,!(!A* B*) =*• C*

which gives us the desired result by induction hypothesis. If either «i 
or n2 equals 0 we are done even more directly.

If the last rule applied has been a weakening on a formula in A* 
or on an occurrence of B* while n >  1, we are done by a permutation 
upwards and our induction hypothesis. Otherwise the situation is

( * 2 )
/

: n *,!A * => C*

!T*, !(!j4* —o B*) =>\B* => C*”
n * ,!r* ,!A * ,!(!A *  -«  B*)  => C*

and we eliminate the cut by transforming to

( * 2 ) '

II‘ ,!A ‘ => C*
II\!r*,!A\!(!A* -o B*) => C*

which gives the desired result.
Finally we have to deal with the case that the last applied rule in 7r2 

is a cut-rule. As 7r2 is an ILU-derivation we have two possible situations, 
depending on whether the underlying cut is head or mid. Both cases 
are similar and are handled more or less as for L-«. We will show the 
case of a mid-cut. Then (#”)' has the form
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: * 2 2

!AJ, (!B *)ni => D* :

: !AJ, ( !5 * )ni =>!£>* n*,!D*,!A;, ( !£ * ) " ’ => C*
T ‘ , !(L4* -o  B*)  =>LB* IP , !A*, (!B*)n => C*

IP , !r* , !A*, !(!A* —o B*) => C*

which for ni and n2 both not equal to 0 is transformed into

*21

!r*,!(!A* —o B*) =>!B* ! A J , £>* j |
!r* ,!A J,!(!A * B*) =*• £>* !r*,!(!A * —o B *) =>!B* n*, W ,  !AJ, (!B *)n’ =>•
!r* ,!A J,!(!A * -*> B”) =>!£>* II*,!£>*,T*,!AJ,!(!A* -o B-) =*• C*

n * ,!r* ,!r* ,!A * ,!( !A *  - o  B*),!(!A * - o  B*) => C*

n*,!r*,!A *,!(!A * - o  B*) =*• C*

Again, the case for ni or n2 equal to 0 is even simpler to handle.

It now is routine to finish the proof. £3

4 ... and CL to LKT, LKQ

It will not come as too big a surprise that we can apply the procedure 
described in the previous section also to classical logic, by replacing 
Girard’s translation either by T of Q, and using the corresponding cor
rection cuts.

The pattern underlying this use of a non-decorating embedding into 
linear logic as a transformation of derivations in the original calculus is 
depicted in figure 6.3.

If the sequent calculus we start from is IL, the mapping x  sends 
a derivation ir to the linear derivation x(-7r) obtained by inductively 
applying (•)* and adding correction cuts in order to stay within the 
collection of (-^-translated formulas. When starting from C L , the 
mapping x  sends 7r to the linear proof x (tt) obtained by a similar use of
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Figure 6.3: Proof transformation via constrictive morphisms

the embedding (-)T or (-)^.4 One then eliminates the correction cuts. In 
the intuitionistic case the skeleton of the reduct is an ILU-derivation, 
in the classical case we find an LK Q -, resp. an LKT-proof.

4 .1 . PROPOSITION. If, in the transformation above, the derivation 
we start from is (interpretable as) an IL U /L K T  (Q)-derivation, then 
sk o morphisms o x  =  id.

PROOF: Indeed, if this is the case, then the exponentials that we re
move by means of correction cuts, in fact are superfluous, whence the 
claim follows by a straightforward induction on the number of these 
cuts, using proposition 1.6: the correction cuts are invisible for these 
derivations. 13

The first half of the equivalent of theorem 3.1 for L K T  of course 
is immediate from theorem 3.4.6, and the second half follows by an 
argument identical to the one given for IL U , i.e. one eliminates the cuts 
as if in L K T . Note that, lacking a characterization similar to that of

4In case of the extension of LK Q  with multiplicative conjunction rules, or that 
of L K T  with multiplicative disjunction rules, x  is n° t  uniquely determined. Cf. 
section 2, and section 3.4.
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theorem 3.4.6 for LK Q , the proof of the LKQ-analogue of theorem 3.1 
will boil down to directly establishing the second claim, by eliminating 
the cuts as if in LK Q .

We feel that the main point has already been amply illustrated in 
the previous section, and therefore will skip the proofs for the classical 
case. (Annexe B of Joinet(1993) contains a detailed proof of the cut 
free derivability of ‘mid’-logical rules in LK Q , which is (essentially) 
equivalent to the analogue of theorem 3.1 for LK Q  (cf. the derivable 
ILU-rules of page 138, and the leftmost vertical arrow in figure 6.3.))
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linear logic

7

It is well known (and easy to see) that the logical connectives are de
termined by their introduction rules in the sequent calculus, in the 
following sense: were we to introduce a connective * with the same 
rules as e.g. the tensor 0 ,  then in the thus extended calculus we can 
derive A *  B  •<=>■ A ® B ,  for all formulas A, B. The status of the expo
nentials, on the other hand, is quite different: if we introduce a unary 
connective i, with the same introduction rules as for example the shriek 
T , then neither \A => iA, nor iA =?\A will be derivable. This of course 
is due to the contextual constraint imposed in the R!- and L?-rule.

The difference can be expressed in another way. Take some linear 
derivation 7r, and let T ( 7 r )  be the collection of all identity classes of for
mulas whose main connective is a tensor. We now use a ‘fresh’ tensor 
for each element of T (7r), or, otherwise said, give distinct colours to the 
main connective of different elements of T(n).  The coloured version of 
7r will be a correct derivation in the extension of linear logic with a pair 
of tensor introduction rules for (at least) all the colours that have been 
used. However, if we take a different colour for the exponentials in dis
tinct elements of the collection of exponential classes £ (tt) , the coloured 
version of 7r in general will not be a correct derivation in the correspond
ing extension of C LL. In fact, the coloured derivation will be correct 
only modulo some relation between the coloured exponentials, telling 
us, for the contextual rules, in the company of which other colours a 
given exponential can be introduced in a promotion rule. Indeed, the 
colouring of n will correspond precisely to the use of a different colour 
for each vertex in the exponential graph of 7r, and the relation we are
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looking will be none other than the binding relation.1
These observations suggest that we put things the other way round, 

and define extensions of linear logic with a set of distinct exponentials, 
the interdependencies of which are given beforehand, by some graph.

1 R-CLL

Extend the language of non-exponential linear logic with a set of in
dexed exponentials !, ?, and let R be some binary relation on the set 
of indices. Then define the sequent calculus R-CLL by adding to the 
non-exponential fragment of C LL:

1. for all indexed exponentials !, ? the usual dereliction rules, i.e.

L!
r, a  =*> a  
r,U=» a* a

R?
A, A
?A,A ’
a '

2. structural permissions restricted to specified sets of indices W r  

and C r : if a € H ;r ( C r ) ,  then weakening (contraction) on the left 
is allowed for a formula [A  and weakening (contraction) on the 
right is allowed for a formula ?A;

3. a rule for the introduction of indexed shrieks on the right, namely

! ■ Gn => A, - £>i,. . . ,  : DmĴ J *1 ’ xn 71_____’ Vi ’ Vm m
! Gn =► U ,  . . ,  ? D„

* 1  ’ * n  71 2 ‘ y \  1  ’ V m  71

provided that zRx{, zRyj for all X{, yj, and, under the same con
dition, a rule for the introduction of indexed whynots on the left:

L?
!D i , .V\ 1 ’ , • Dr,’ Vm 71

!G i , . . . ,  !G„,?A=> ?£>i , . . . ,  ? DEl ■LJ 7 Xn z  Vi 7 7 Vm

1In fact we already used ‘colouring’ of exponentials (by means of indices) as a no- 
tational device in the previous two chapters, in examples related to the exponential 
graph of derivations.
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Note that we do not ask anything special of the binary relation R. 
However, of course some basic properties of the calculus will depend 
upon properties of the relation. It is, for example, easy to verify the 
following.

1.1.  PROPOSITION. R is reflexive if  and only if for each index a all
identity axioms [A  =>■ [A and \A => JA have non-trivial expansions in 
R-CLL. B

It is an obvious, but nevertheless important, observation that if we 
forget about all the indices, what we find is nothing more nor less than a 
derivation in C LL. And forgetting about the indices is essentially what 
we do when eliminating cuts in R-CLL-derivations. But of course then 
we have to assure ourselves that all the usual elementary reduction 
steps remain correct when performed in R-CLL.

1.2.  P r o po sitio n . R-CLL allows cut elimination if and only if
(1) R is transitive, and
(2)  W r  and C r  are upwardly closed.2

PROOF: Prom left to right observe that (1) implies correctness of [cc], 
(2) correctness of [to] and [co].

For the other implication, suppose aRb and bRc. Then the following 
is a derivation in R-CLL:

P= > P  P= > P
i i
c P= > P  j P = > P
| ! I |
■p=>jp jp = > j p

Ip =>Ip

But obviously there is no cut free proof of [p => [p  if (a, c) 0  R. 
Similarly we obtain contradicitions if i G W r , iRj  and j  £  W r  or 

i G C#,iRj  and j  0  C r , e.g. using the following derivations:

2I.e., if i €  W r (C r ) and iRj, then j  G W r (C p )
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P => P •jP=>p ;p =>p 
I t .o .
ip, i p =>p ®p'jP=>P q=>q

■p=>'iP ip,q=><i

iP,q =► ? jp =» p®p

We get the standard calculus by talking for R the reflexive rela
tion 1 on a one element index set. So C L L  =  1-C LL. This reflects 
the fact that in C L L  all exponentiated formulas obtain full structural 
permissions.

The characterization in chapter 5 of superfluous exponentials by 
means of the exponential graph of a linear derivation n boils down to 
the identification of those modalized formulas in the proof for which 
there is purely logical evidence that at no point (during normalization) 
they will use the ‘talents bestowed upon them’. In view of the above, 
we can reformulate their removal as the interpretation of the proof as 
a 2-CLL-proof, where 2 denotes the reflexive closure of the relation 
0 -> •, distinguishing the usual expontials !,?  from the ‘no-permission’

t o
exponentials •, j, which correspond to the superfluous exponentials in n. 
Stripping a derivation then means defining an optimal two-colouring, 
i.e. replacing as many exponentials as possible by ‘no permission’ ones.

Observe that an 0-exponentiated formula during reduction will never 
be cutformula in a [w] or [co] reduction-step; moreover a derivation 7r 
and its interpretation 2(ir) have exactly the same set of reductions, 
which proves theorem 5.4.6.

It is an obvious subsequent step to consider 4, being the reflexive 
transitive closure of the relation

0



150 M u ltic o lo u r  l in ea r  lo g ic

In 4 -C L L  we distinguish four types of exponentials corresponding to 
the four possible kinds of structural permission that occur in a linear 
logic proof: no permission, weakening only, contraction only, and both 
weakening and contraction.

It is easy to define an optimal four-colouring of a given linear deriva
tion 7r by propagating source-labels (‘colours’) in G(ir): a vertex e will 
become w-coloured if and only if there is a directed path from a vertex 
labeled w to e, it becomes c-coloured if and only if there is a directed 
path from a vertex labeled c to e, and (w +  c)-coloured precisely in 
case there axe directed paths both from a vertex labeled w and from 
a vertex labeled c to e. E.g. an optimal four-colouring of the example 
on page 112 is obtained by replacing • by • and • by the usual ‘full 
permission’ shriek, and both ] and • by L

2 A prelude to dilatation

Recall that in linear logic we can simulate weakening using the multi
plicative constants and the additive connectives, as weakening to the 
left is derivable for all formulas of the form l&A, weakening to the right 
for all formulas of the form _L © A.

This indicates the possible existence of a natural extension of the 
stripping of superfluous exponentials: once the no-permission expo
nentials have been removed, we can continue and try, given a 4 -C L L  
interpretation of 7r, to replace all occurrences of |A by l&A, of \A 
by _L © A. In order for this replacement to result in a correct linear 
derivation, of course we have to do a bit more than mere replacing. We 
define inductively a re-writing of n as 7T*, in which all occurrences of L 
have been replaced by 1&-. It consists in replacing all occurrences of 
rules for j ,?  by small chunks of derivations. Thus we rewrite e.g.

7T.<37T

as A<r => a
r 3, !  => A"3

rv & A * => A"3

For the promotion rule, observe that all side-active formulas will be
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prefixed either by j ,  ?, or !, ?. We then replace e.g.

7T

t 1, I t 2, a =>'?a 1, I a 2

? a 2

by

± =>

irj, i&r£, i  => ?a j , ±  ® a | ;rj, l&r^, => ?a j , ±  ® a |
TJ, l&r|, ± ® A <=> ?A?, 1  ® Â

Hence we proved the following.

2 .1 . PROPOSITION. Given a linear derivation n, we can transform n 
into a linear derivation 7r° (=  (tt̂ )”3), in which all superfluous expo
nentials have been removed, all w-exponentials are replaced by 1&-. 
Exponentials that remain in 7r° are caused by contractions. B

At first sight the transformation n x* seems to be of a far more 
drastic nature than that of stripping. This impression, however, upon 
closer analysis turns out to be deceptive. We can once more turn things 
the other way round and define the modality [  as 1&-. Similarly we 
can define the modality b by putting \A :=  A. The rules for -A in 2- 
or 4 -C L L  then are nothing but repetition rules, and the rules for ]A  
in 4 -C L L  (by the above observations) are derivable in C LL. What is 
more, it is not difficult to verify that the exponential reduction steps 
for l  in a (4-CLL-)proof tx can be simulated by reductions of 7r° (cf. 
theorem 8.1.4).

Thus stripping and w-replacement in fact are transformations of a 
quite similar nature. They are the basic instances of what we will call 
dilatation, the replacement in a linear derivation 7r of exponentiated for
mulas by modality-free approximations, while preserving the essential 
(dynamic) properties of 7r.
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The results of chapter 5 and the observations above show that dilata
tion is always possible when one considers superfluous or w-exponentials. 
One of course expects such a replacement to be, in general, impossible 
as soon as the exponentials under consideration also have contraction 
permission.

Notes

- This chapter is a modified and extended version of section 5 of Danos 
et al. (1993d). The possibility to interpret a linear proof via its exponential 
graph as a derivation in linear logic extended with a collection of exponentials 
ordered by the binding relation, was pointed out to us by Jean-Yves G irard, 
who also observed the potential interest of considering linear derivations 
whose exponential graph is acyclic, and the link with problems related to  
bounded system s of linear logic. These observations form the basis for the 
next and final chapter.
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Dilatations

In this last chapter we define dilatations, which, like the strippings of 
chapter 5 and the transformation 7r h* n* of section 7.2, map C L L(2)- 
derivations to sequent derivations in the exponential-free fragment of 
linear logic, conserving both the (linear) skeleton and the dynamics.

The guiding intuition is that a shrieked formula can be thought of 
as a (potentially) infinite tensor, a questioned one as a (potentially) 
infinite par. This idea finds its earliest expression in the approximation 
theorem (Girard(1987a)), showing that, at least in (fully expanded) cut 
free first order linear derivations, we can always replace the exponentials 
by n-ary tensors and n-ary pars. It is also this approximation that is the 
driving force behind the system B L L  of bounded linear logic studied 
in Girard et al.(1992).

Indeed, dilatations map linear sequent derivations to derivations in 
a system of bounded linear logic, and we will see that the existence of 
such a map can be related to the presence or absence of cycles in the 
exponential graph.

1 Dilated linear logic

Let <S> ( l&A) be the n-fold tensor (l&A) <g> (l&A) <8>. . .  ® (l&A), and
' ------------------------------------ v------------------------------------- 'n

>8 (-L ® A) the n-fold par (_L © A) 8 (-L © A) 8  . . .  ’S’ (±  © A).
v -v" 1 y

n

1.1.  D e f i n i t i o n . For all n G IN we define n-dilated or pseudo expo
nentials, written as [n] and (n), by
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[n]A =
A , if n =  0
n
<g) (1 & A ), otherwise

{n )A
A, if n — 0
n
*8 (_L © A ), otherwise

IE)

Pseudo exponentials can be seen as approximating exponentials, in 
the sense that \A =*> [n]A and (n)A => ?A are derivable, for all n. 
Given a linear derivation 7r, we say that an exponential class in 7r is 
dilatable, if we can replace each occurrence of one of its elements \A (?A) 
in 7r by a dilated exponential [n]A ( (n)A)1, and keep a correct linear 
derivation, in which certain instances of exponential rules are replaced 
by instances of (derivable) rules for dilated exponentials. It is easy 
to determine these rules, say, in order to simplify matters somewhat, 
within the one-sided sequent calculus for linear logic. They are given 
in table 8.1

The rules are such that, when we replace each (n) by ‘? ’, and each 
[m] by T  the result is correct as a CLL-derivation. Moreover they 
verify the following.

1.2. P r o p o s i t i o n . (Dilatation preserves correctness) The rules of 
table 8.1 for dilated exponentials are derivable in linear logic. IE)

We will refer to the calculus that combines these rules with the usual 
exponential rules of linear logic as D C LL. The calculus that uses only 
pure pseudo exponential rules (i.e. without the occurrences of ‘? ’ in the 
contextual rules) will be called D LL, for dilated linear logic. Observe 
that D LL is but a small variation on the ‘primitive’ system of bounded 
linear logic which initiated the work described in Girard et al.(1992).

We call the CLL-derivation underlying a D LL- or DCLL-derivation 
7r as its linear skeleton lsk(7r). This leads naturally to the notion of be
ing dilatable.

*Note that n is not supposed to be necessarily equal for all elements in the class!
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Exponential dereliction rule:

( } r ,(n )A

Exponential structural rules:

(W ’ ) r _T \ 4 n ^ °v y r, (n)A  v 7 r, (m + n)A ^
Exponential contextual rules:

(t)

(t)

?r, {m i)G u (m 2)G2,. . . ,  (mj)Gj, A
?I\ (m2)G2, . . . ,  [0]A

? r >(m1)Gi,(m2)G2, . . . >(mj )Gj>A ft
?r, (x • m i)G i, (a; • m 2)G 2, . . .  ,(x  • m j)G j , [zjA ’ 1 ^

Table 8.1: Rules for dilated exponentials

1 .3 . D e fin it io n . A CLL-derivation 7r is dilatable if there exists a 
DLL-derivation 7r' such that lsk(7r') =  n. Given an exponential class e 
in 7r, we call the pseudo exponentials [n], (m) that have been assigned to 
elements !A, ?A of e their dilation coefficients, which are said to be posi
tive in case of a [•], and negative in case of a (•). The dilation coefficients 
corresponding to introduction (by means of dereliction, weakening, in a 
unary additive rule or in an axiom) of elements ?A in lsk(7r) are called 
initial B

Note that the superfluous exponentials of chapter 5 here appear as 
exponential classes that can be uniformly ‘O’-dilated, the w-exponentials 
of the previous chapter correspond to those classes that permit a uni
form ‘l ’-dilatation. As we already observed in these special cases, an 
important point is the following.

1.4 . T h e o r e m . (Dilatation preserves normalization) A D LL-proof n 
simulates the reductions of its linear skeleton tt, i.e. for each elementary 
reduction step p, leading from n to 7r' there exists a reduction of n such 
that the following diagram commutes:
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Isk
/rr/(

1

7r' —
Isk

t
T

7r'

P r o o f : Consider e.g. a cut between [n +  m\A which has just been 
introduced by means of a pseudo promotion, and (n +  m )A x which 
comes from pseudo contracting (n )A x and (m )A L :

7Tj

______ (ki}Gj,A______  (n)A-1-, (m)A.-1-, T
((n + m)ki)Gi, [n + m]A (n + m)Ax ,T 

((n + m)fcj)Gj,r

We simulate the [co]-reduction step of C L L  by transforming the 
proof into

TTl
7Ti : *2

: (ki)G j,A  i
(kj)Gj, A (nkj)Gj, [n] A (n)Ax , (m) A x , T

(mki)Gi, [m)A (nki)Git (m )A ± , T
((n +  m )k i)G i,r

All other simulations are similar. B

It will be clear that one cannot expect each and every CLL-derivation 
to be dilatable. This would make usual linear logic equivalent to 
bounded linear logic, which evidently is not the case. Indeed it is easy 
to give an example of a derivation that is not dilatable. Consider the 
following.
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A-1, A A-1, A

A-1, A \a l ,a  J a -Sa

•a x , a l A ±> \A l A±> \A AX,A

\a \  \a •a -s Ja ® J a x ,Ja  |a x , a

W ,  [A •a \ ' a ® -a ^ ' a ® -a x , a

Ja \  [a I a x , J (Ja  ® J a -1-), }a  ® |a x , a

W * \ a Ia^1(|a ® Ia^),I(|a ® Ia^),a

l iW v lA ) Iax,|(Sa ® |ax),a

W ,A

Let yi,y2 be the initial dilation coefficients for j, respectively cor
responding to the introduction by dereliction and by weakening. Let 
x be the dilation coefficient of ]. Then the coefficients corresponding 
to j, j in the cutformulas will be xyi +  y2, those corresponding to J, • 
will be x . Suppose the left most initial dilation coefficient for \ to be 
z. Due to the introduction by promotion of \A with JA  side-active, we 
will have to satisfy x =  z(xyi +  y2). The reader will readily verify that 
the possible (trivial) solutions to this equation are excluded as dilation 
coefficients.

In a DLL-derivation the negative dilation coefficients depend poly- 
nomially on the positive ones, and deciding whether a given linear proof 
7r is dilatable boils down to solving a set of equations between polyno
mials. Solvability of the equations in turn seems to be closely related to 
the presence or absence of cycles from the exponential graph of 7r. (Ob
serve that in the example above we have a cycle 1 -*  2 -*  1.) However, 
this appears to be too coarse a criterion: the absence of cycles from its 
exponential graph is neither necessary, nor sufficient for a derivation to 
be dilatable.

Indeed, the derivation in the example above remains non-dilatable 
if we ‘cut off’ the three expansions of the identity axiom \ A, lA^, which 
collapses the three exponential classes 1,2 and 4. The resulting expo



158 D ilatations

nential graph however is acyclic.2

And, in figure 8.1 one finds an example of a derivation n that is 
dilatable, though its exponential graph contains cycles.

If we consider the example more closely, an easy calculation shows 
that most of the initial dilation coefficients are fixed. Indeed, let us 
suppose the initial dilation coefficient for class 2 corresponding to the 
occurrence (the right most one) of JA L introduced by weakening to be 
£i, and the coefficient corresponding to the occurrence introduced by 
dereliction x2. Say the left most intitial dilation coefficient for class 
3 is x3. Then, if the dilation coefficient for • is k, due to the highest 
introduction of this shriek by promotion, the coefficient for the terminal 
occurrence of J becomes kxx. Hence the terminal occurrence of • will 
have kx\ as dilation coefficient. Due to the right most introduction of 
] by promotion, the coefficient of the terminal occurrence of J becomes 
kx i £3, which in turn is the dilation coefficient of the terminal occurrence 
of •. So, when introducing • by promotion in the derivation of the right 
premiss of the cut, we have to satisfy kx 1 =  /c£1£3£ 2, which forces 
£ 2  =  x3 =  1.

In fact, augmenting these (or most of the other) initial values, ‘ac
tivates’ the cycle and the derivation ‘explodes’.

This motivates the following.

1.5. DEFINITION. An exponential class e in a DCLL-derivation n is 
said to be l +-dilatable if there exists a DCLL-derivation ix' such that 
lsk(7r) =  lsk (7r') and all (or, equivalently, all initial) dilation coefficients 
for elements of e in ix' are bigger than 1.

A CLL-derivation 7r then is called l +-dilatable if there exists a 
dilatation in which all coefficients are bigger than 1. 18

As figure 8.1 shows, there exist dilatable derivations that are not 
l +-dilatable.

2Though one might say that it contains a ‘hidden cycle’, as the logical flowgraph 
(in the sense of Buss(1991)) of the collapsed class is cyclic.
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A ,A X

A ,W
W,[A

A,AX A,AX Ia±,Ia,Ia± a , a x

A, ; Ax A, ?Ax A,Ax Ja1- a Ĵa1-

\a, W  1a ,? a x a , ? a x !(Id X)S’ ]a ), J a x ]a J a x

;A x ,-A(8i J a x ,] a ]a , J a x 1̂ ) ® ^4x d A±<

j Ax , - A <8> J a x , -A <8> J a x,\a l ( l i l A-L’S -A) <8> IAx ), J a x >S' -A A, AX

?a x , I ( !a ® I a x ),1a I d d ^ t f  jA) ® J a x ), •dA-1-’?  1a ) A j d x

? a x , I ( !a ® 1 a x ) ^ ! a i d d ^ *  1^) ® Id x )d ( ld ^ x ’s> 1^) ® J a x ) ,a

I a ±-!(I(Ij4 ® 1a 'l)’s,! a ) I ( ld ^ X>S' 1̂ 4) ® Jd x ), A

U \A

i.A1 A,A-1

A, A-1 
a,(i)ax

(2)AX,[2]4
(2)AJ-,[2]At<l)A-L

Af (l).AX A, (l).AX A, A-1 (2)AJ-̂ [2]A, (l)A-1- A, (1)AX
[2]A,(2>AJ- [2]A,(2)A± A'MA-1 [2]((2)AJ-̂ [2]A)t (2)A± [2]A, (2)A±
(2>AJ-,[2]A® (2)A±t[2]A [2]A,(2)A± [2](<2)A± [̂2]A)® <2)A-L,<2)A-L,[2]A
(2) A-1, [2] A® (2)A±,[2]A ® (2)A±,[2]A <1>([2](<2>>1X'S>[2]j4) ® (2)j4X), (2>AJ-S[2]4 A, A1

<2)AX, <2)([2]v4 ® (2>-AX),[2].A (2>([2]((2> AX<?[2].4) ® (2)4X). [2]«2)4X«[2]yl) A, (2)AJ-
<2>AJ-t <2>([2]A ® {2)AA-)̂ [2]A <2>([2](<2>j4X|̂ [2]A) ® (2>4X), (l)([2]«2)2lX-y[2]A) ® (2) AX), A

(6>i4X, [3]((2>([2]A ® (2>AJ_)>S,[2]i4) <3)([2]«2).lXS[2]yl)® <2MX).2l
<6)AX,A

Figure 8.1: A dilatable, but not l +-dilatable, derivation
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+

xO x

\ /
\

r,F[L4] F ^ A 1], A
r ,A

cut

Figure 8.2: Track of an exponential class

2 A characterization of l +-dilatable derivations

If we limit ourselves to fully expanded CLL-derivations, i.e. derivations 
having only atomic instances of the identity axiom, the information 
provided by the exponential graph becomes far more decisive. In fact, 
as we will show, for this class of derivations acyclicity of the exponential 
graph is equivalent to l +-dilatability. The crucial step is provided by 
the following.

2 .1 . PRO PO SITIO N . Let n be a fully expanded DCLL-derivation, and 
e an exponential class that is minimal in G(7r). Then e is ( l +-)dilatable.

P r o o f : Due to the minimality of e, no element \A, 1AL of the class 
is side-active in a ‘real’ promotion rule. Therefore we can construct a 
correct DCLL-derivation by only dilating positive (!A) and negative 
(?i4x ) occurrences of elements of e. Moreover, as tx is fully expanded, 
e in fact is a tree (namely, the track of \A,1A^-, similar to the tracks 
defined in chapter 4). It will in general have the shape pictured in 
figure 8.2.

All leaves in the positive subtree correspond to instances of weak
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ening (with a superformula of !A), a unary additive rule, or ‘real’ pro
motion; all leaves in the negative subtree correspond to instances of 
weakening, dereliction or the unary additive rule. We can calculate a 
value for n on the negative subtree, by successively calculating dila
tion coefficients for the binary nodes, which correspond to instances of 
contraction or the binary additive rule.

We start from one of the leaves corresponding to some highest binary 
node, with dilation coefficient (x'i). Going downwards, in order to 
remain correct as a DCLL-derivation, we eventually have to change 
the coefficient when passing an instance of a (pseudo-)promotion rule 
for a l +-dilated pseudo-shriek. If we pass k instances of such rules, say 
with coefficients [«i], [n2] , . . . ,  [«*.], we arrive at the binary node with 
coefficient (nj ■ n2 •...  • n*. • x i). We repeat this procedure for the other 
corresponding leave, resulting in coefficient, say, (mi • m2 •... • m y  • x2). 
If the binary rule then is an additive logical rule or a contraction on a 
superformula of 7A1 , the coefficients have to be equal in order for the 
derivation so fax to be correct. I.e. Xi and x 2 should satisfy

• n2 •... • n* • Xi = mi • m 2 •... • m y  • x2.

If the binary rule is a contraction on ?AX, we take (writing ai for the 
product of the n̂ , a2 for the product of the mj) the sum (ai • Xi +  a2 • 
x2) as coefficient, and continue towards the next binary node, in fact 
towards the first occurrence of a node corresponding to a contraction 
on a superformula or an additive rule. There we will have to satisfy an 
equation

k\ &2

ai * Xi =  * yj *
2 =  1 j = 1

Continuing in this way, eventually the dilation coefficient for the ter
minal occurrence will be any strictly positive solution (x;, . . . ,  Zi)
of

k\ &2 kn

^ a>i ‘ X{ ^ \ bi ’ Vi —  • • • —  ^ 1Q  • Zj,
i=l i= 1 i=1

where the X i , a r e  (pairwise distinct) variables representing the 
dilation coefficients at the leaves, and n — 1 is the number of binary
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nodes in the negative subtree corresponding to contractions on super
formulas and binary additive rules. Obviously there is a solution where 
all initial coefficients are strictly bigger than 1. IS

2 . 2 .  C o r o l l a r y . Suppose it is a fully expanded DCLL-derivation. 
If  Q (7T) is acyclic, then n is (1+ — ) dilatable.

P R O O F : By induction on the number of vertices of G (7r). Clearly, if n  
contains no real exponentials, then it is dilatable. Otherwise, as G{n) is 
acyclic, we can take a minimal exponential class e. By proposition 2.1 
e is ( l +-)dilatable, and dilatation gives us a DCLL-proof 7r', whose 
exponential graph is precisely that of tt, minus the vertex e. Therefore 
7r' is dilatable by induction hypothesis. £3

2.3.  LEM M A . Suppose n is a fully expanded CLL-derivation. Then 
the binding relation on £ ( tt) is ir reflexive, i.e. Q(ir) contains no auto
cycles.

P r o o f : Suppose there is an auto-cycle. Then there is an instance of 
the promotion rule having the form

?r, 1 A ^ - , A  

?r, ?ax, \a ,

where \A and 7A1 are in the same identity class. But that is absurd in 
a fully expanded derivation, as identity classes are trees, and positive 
and negative elements of the class occur in distinct subtrees. B

Now we are ready to prove:

2 .4 . T H E O R E M . Let n be a fully expanded CLL-derivation. Then tt 
is 1+-dilatable if and only if G{ir) is acyclic.

P r o o f : Suppose 7r is l +-dilatable. Because of lemma 2.3 a cycle in the 
exponential graph would necessarily be induced by a series of bindings 
of the form
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1Tu 1Bu Bq ?r2,?B2,Bi ?rfc+1,?B0>g t

Now consider a l +-dilatation of tt. Writing n f , nf for the positive, 
respectively the negative dilation coefficient of class i in the shown 
instances of promotion, m f , m f  for the values of these coefficients in 
the cut-formulas, we need to satisfy

n+ <n~1 < rrii =  nt <  n 2 <  • • • <  = nk <  no ^  mo = no •

But that is impossible.
The converse is immediate from corollary 2.2, as obviously the col

lection of fully expanded DCLL-derivation properly includes the col
lection of fully expanded CLL-derivations. E3

The approximation theorem of Girard(1987a) for fully expanded 
normal (first order) CLL-derivations of course is a corollary to theo
rem 2.4.

2 .5 . COROLLARY. (Approximation theorem) If n is a fully expanded 
cut free CLh-derivation, then tt is dilatable.
PROOF: If TT is fully expanded and cut free, then (lemma 2.3) G(tt) is 
acyclic, hence, by theorem 2.4, tt is dilatable. B

2 .6 . R e m a r k . Like the non-identity axiom and like the cut-rule, the 
second order rule of extraction (32) has the power to ‘identify’ positive 
and negative occurrences of a formula in a proof. It acts, one might 
say, as an n-ary version of the cut-rule, where n depends on the number 
of identifications being made. Consequently, in the above, we can treat 
it just like the cut-rule, and theorem 2.4 continues to hold for fully 
expanded second order derivations.

However, the approximation theorem fails in the second order case, 
as it is no longer true that the exponential graph of the full expansion
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of a normal derivation is acyclic. It will in general also fail to hold as 
soon as we consider derivations that are not fully expanded. We leave 
it to the reader to construct appropriate examples.

Hence in all case in which elements of an exponential class appear 
both negatively and positively in a proof 7r (due to axioms, cuts or 
extractions), dilatability of 7r can not be guaranteed.

3 Acyclic linear logic

Linear derivations with an exponential graph that is acyclic, correspond 
to derivations in a ‘multicolour’ system R-CLL where R is transitive 
and non-reflexive, i.e. an order. If U is a universal order3, then any 
derivation with an acyclic exponential graph can be interpreted as a 
derivation in U-C LL. By the results of the previous section, we know 
that a fully expanded linear derivation 7r will be (interpretable as) a 
U, -CLL-derivation if and only if it is l +-dilatable.

A small variation on ZY-CLL is what we call A LL (for acyclic linear 
logic), obtained by adding to the non-exponential part of (the one-sided 
version of) the sequent calculus for linear logic the rules of table 8.2.

Each A LL derivation 7r determines, by the relations forced between 
the indices occurring in it, an order Rv. We say that R* realizes skl(7r) 
in A LL.

Of course, again, when forgetting about the indices in an A LL- 
derivation 7r, what we find is a CLL-derivation, to which, as in D LL, 
we will refer as 7r’s  linear skeleton lsk(7r).

In fact A LL is obtained as an abstraction from D LL: we replace 
the concrete order induced by the dilation coefficients by an abstract 
one. It is, however, not equivalent to D LL. There exist (normal) A LL- 
derivations n such that lsk(7r) is not dilatable. And, if we restrict our
selves once again to fully expanded derivations, we have, due to the 
strictness of the order, the following.

3I.e. U is a countable order into which any finite order X  can be embedded, 
and having the property that for each such embedding <p of X , and for each finite 
extension Y  of X , there exists an embedding ip o i Y  whose restriction to X  equals 
4>.
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weakening
t , J a

dereliction r ,a
r , U

contraction « a t l , t2 < t

promotion
?Gx, . . . , ? G n,A
? ? I

Gu  . . .  , Gn,
* 1  *n  j

j,ik  < ik

Table 8.2: Acyclic linear logic: the exponential rules.

3 .1 . PROPOSITION. Let n be fully expanded. Then n is interpretable 
as an ALL-derivation if and only if  it is 1+-dilatable.
PROOF: Suppose a is a l +-dilatation of 7T. Take the dilation coefficients 
occurring in x  as indices. Then the set of indices together with the usual 
‘smaller than’ order on the integers realizes tx as an ALL-derivation.

Conversely, as in the proof of theorem 2.4, if 7r is realizable as an 
ALL-derivation, then G{ix) contains no ‘real’ cycles. As 7r is fully ex
panded, moreover it contains no auto-cycles (lemma 2.3). Hence G(n) 
is acyclic, and tx is l +-dilatable by theorem 2.4. B

The interest of a system like A LL is that it might be the key to 
a system of bounded linear logic without explicit reference to resource 
polynomials, thus removing an obvious weakness from the result of Gi
rard et al.(1992). As the above indicates, A LL as it stands nevertheless 
is too coarse for this purpose.
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a
Terminological conventions

Let us summarize and explain some of the terminology that we fre
quently use with respect to our main objects of study, derivations in 
sequent calculi.

Sequents are denoted by T =>■ A, where =$■ is the entailment sign 
of the calculus, and T, A are finite multisets of formulas, i.e. sets with 
multiplicities, or (equivalently) lists modulo the order in which the en
tries axe given. In particular exchange mostly is implicit: {A , A, G, D }  
and {C , A, D, A } are identical as multisets. (In examples we sometimes 
explicitly indicate the use of exchange because this makes it easier to 
follow a specific occurrence of a formula in a derivation without having 
to add indices. It is used however merely as a notational device.) In a 
sequent T =4> A we call T the antecedent, A is the succedent. We denote 
the number of elements in a multiset T by | T |. E.g., | {G, A, D , A} \=  4.

If ip indicates an operation that maps formulas to formulas then, if 
T =  { G i , . . . ,  Gn},  we write g>T for the multiset {ipG\,. . . ,  ipGn}. So !T 
stands for { ! G i , . . . ,  !Gn}, T* for {G£,. . . ,  G*}, etcetera.

Derivability of a sequent T => A in the sequent calculus C is written 
as C h T => A. We write b A -£=>■ B  as an abbreviation for ‘both 
A => B  and B  =>■ A are derivable’. (In case C is (some fragment of) 
linear logic we will say that A and B  are ‘linearly equivalent’.)

In diagrams we will use

7T

r => a

as abbreviation for a derivation 7r with T =» A as conclusion.
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We will speak of L-formulas, being formulas that contain only con
nectives for which there are rules in L. An L-formula B  is called an 
L -theorem iff L  b =>■ B. So a linear, intuitionistic, classical theorem 
will mean a formula derivable in linear, intuitionistic, classical logic. 
We usually write L b B  instead of L b ^  B. An L-formula A such 
that L b  A =$■ is said to be an anti-theorem.

To a fragment of a sequent calculus L we will often refer by listing 
the connectives under consideration. E.g. the fragment {!,<8>,&,V} of 
C L L  is the fragment containing the identity axioms and all the rules 
for !, <g>, & and V.

The following conventions are used in distinguishing between the 
occurrences of formulas in a given rule, e.g. L-o in C L L (appendix b):

Ti => Ai, A B ,T 2 => A2
Ti,r2, A -o B  =>■ Ai, A2

The formula A -o B  is called the main formula of the rule with main 
connective -<>; the occurrences A and B  in the premisses will be referred 
to as the active formulas; all other occurrences are said to be passive,and 
we distinguish in the obvious way between an up and a down occurrence 
of a given passive formula. The multisets I\, A* are referred to as the 
context.

In the case of second-order rules, e.g. LV2 and RV2

A[T] ,T=>A  r ^ A , A [ T ]
VXA[X] , r  =► A r  => A ,\/XA[X]

the active occurrences are A[T],A[Y]. We refer to T , Y  as the ab
stracted formulas.

We may encounter derivations that contain repetitions of sequents. 
We will in such cases sometimes speak of an application of the repetition 
rule, where all occurrences of formulas are said to be passive.

The rules for the exponentials have our special interest. We recall 
the exponential contextual or promotion rules L? and R! (in analogy 
with the proofnet formulation of linear logic also referred to as the box 
rules):

!I\C=b?A
!r,?C=>?A

T  =► C, ?A 
T  =>!(?, ?A'

find
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Observe that in these rules the formulas in the context do play an 
important role, in the sense that applicability of the rules depends 
crucially on their being ‘exponentiated’. We therefore call them side- 
active.

An occurrence of a formula A in some sequent o is called linear if 
no element of A’s identity class1, restricted to the subderivation id with 
conclusion a, is main formula in a structural rule in id.

1See section 1 of chapter 5.



b
Classical linear logic (CLL)

Identity axiom and cut rule:

(Ax) A=>A (cut) Ti => Ax, A A,r2 =» A 2

r i , r 2 => A i, a 2

Rules and axioms fo r  the constants:

(Ll)
r  =► a

r , i = >  a

(no LT) 

(LX) X =»

(LO) T , 0 = > A

(Rl) =*• 1

(RT)

(RX)

r  =» t , a  
r= »  a

r  => a , _l

(no RO)

Multiplicative logical rules:

(L—°) 

(L *)  

(R®)

Ti => A \ , A  B ,T 2 => A 2
r i , r 2, i i  -o  b  =» A i, a 2 

T u A ^ A !  r 2, B = » A 2 
r i , r 2>i4«9B A i, a 2

r i  =»• a , A i____ r 2 = » .e , a 2
T i , r 2 =» A ® B ,  a x, a 2

( R - )

(Btf)

r ,  A  JB, A
T => A  -o  B , A  

T ^ A , B , A  
T =► A * g B ,A

(L<8>)
r , A , B  =» A 

r ,  A ®  B  => A
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(R~0

(R©)

T , A

Additive logical rules:

r b , a

(L&)

r ^ A *  B , A 
A , A

r => A ® B , A  

t , a =>a

r = ^ 4 - t B , A
t =>b , a  

r => 4̂®B,A 
r,B a

( L - )

(L©)

(R&)r , j 4 &B=> A r , A & B = > A  

Rules fo r  the first-order quantifiers (y not free in T, A ) :  

T,A[t/x\ => A  rov/\ ^  ^  A\y/x],  A

r=»A , a  b , r=>A
r, A ~~* B  =>■ A 

t , a ^ a  t , b =»a
r , A @ B  => A

t ^ a , a  t ^ b , a
A & B ,  A

(LV)

(L3)
A

r , A[ y/ x ]  =»• A
(RV)

(R3)

r =► V* A,  A  

r => A\t/x\, A

(W!) 

(C!)

r,3a:.A=̂ A p=>-3xA, A
Exponential structural rules:

T ' __». A "P __V A

(W? )

(C?)

r , \ a  =► a
r, \A,\A =► A

r =» ?a, a 
r=>?A,?.4,A

r , ! i ^ A  v“ -/ t ^ ? a , a

Exponential contextual rules:

(L?) ! r , A ^ ? A (R!) !r =► A , ?A
!r,?A= ?̂A v" v !r=> !A,?A 
Exponential dereliction rules:

(R?) A, A (L!) r , A = >  a

r ^ ? A , A  v“vr,!A=>A

The second-order calculus CLL2 is obtained by adding: 

Rules fo r  the second-order quantifiers (Y  not free in  F , A ) :  

T , A [ T / X ]  =» A r=» A , A [ Y / X ](LV2)

(L 3 2)

r,vx^i =*• a
T , A [ Y / X \  =*• A  
r,3XA =*• A

(RV2)

(R 3 2)

a ,v x î

A ,  A[ T/ X\  
T  => A, 3 X  A
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Linear negation is defined by A 1  :=  A  -o  J_, and the following are 
provable:

A ® B  (A± ’S B 1 ) l

A( &B  *==» ( A ^ & B 1 )1 
3xA  -£==>- (VxA1 )1 

3 X A  *==► (VXA-1) 1 

\A (7A1 )1

The rules and axioms for 1 ,0 ,  <g>, ©, 3 , 32, ! are ‘De Morgan’-derivable 
from those for _L, T, *8,&, V, V2, ?.

This duality is fully exploited in the one-sided version of the calcu
lus, which is formulated as follows:

Identity axiom and cut rule:

(A x) A , A 1- (cut) T ' A  r  AA ,A ±

Rules and axioms fo r  the constants:

(©)

( i )  i

r
(-L)

CO r ,T

(no rules for 0)
i\-l

Multiplicative logical rules:

(?)
T , A , B

(®)
T , A  A  , B

t,a*8B v r, a , a  ® b

Additive logical rules:

T ,A T ,B
r ,a ®b  r ,a©b (&)

T ,A
T , A &

r , b

B
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Rules for the first-order quantifiers (y not free in T) :

(V)
r  , A[ y/ x ]

(3 )
r  , A[ t / x]

T,\/x A  v ' T ,3 a :A

Rules fo r  the second-order quantifiers (Y  not free in  F ) :

(V2)
T , A [ Y / X ]

(3 2)
T , A [ T / X ]

r , v x , 4  v t , b x a

Exponential structural rules:

(W  ) (C)
T,?A,?A

r ,?a  v ' r,?A
Exponential contextual rule:

?r ,A 
?r, ia

Exponential dereliction rule:

r  , a
r ,? x



c
Classical logic (CL)

Identity axiom and cut rule:

(A x) A = >  A (cut)
Ti => Ai ,A 2 => A2

^1 ^ 2  => Ai, A2
Axiom s fo r  the constants:

(f) r,x=>A (t) r=*T,A
Multiplicative logical rules:

(L -0

(LV)

(RA)

Tx ^ Ax,j4 R,r2 ^ A2 
r i , r 2, j4 -* B = »  Ai , a 2 

rx, a  => Ax r 2,R=4>-A2 
r x , r 2, i 4 v B = »  AxA2 

rx=^A,Ax r 2 =»R,A 2

(R -> )

(RV)

r x , r 2 =► 4 a b ,A i , a 2

Additive logical rules: 

T ^ B , A

(R -^ )

(RV)

(LA)

(LA)

t , a  =► a
T=> A - > B , A  

T ^ A , A  
r ^ i v B . A  

r,A =*• a

r ^ A  —̂ B, A 
r = ^ R , A  

r=» A V  B ,  A  

r , B  => a

r,AAB=> A r,AAB=>-A

( L - i )

(LV)

(RA)

r , A ^ B , A  
r ^ A - + B , A  
T=> A, B,  A 

r^AvB,A  
r , A , B = >  A 

T , A A B = ^ A

t ^ a , a  b , r = > A
B =*■ A

r, J3 => a
T , A -

r , A = > A
T , A  V B  =» A

r = > A ,A  t =»b , a  
r =!>a a b , a
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Rules for the first-order quantifiers (y not free in F, A ):

(LV)
r ,  A\t/x\ =£■ A 
T, Va: A => A

(L3) F , A[ y/ x]  =>■ A 
r ,  3a: A  => A

(RV)
r  => A[y/ x] ,  A 

Va:A,A

(R3) r  => A \t/x], A 
r  =► 3a: A, A

Structural rules:

(LW)

(LC)

r,A=> a  
r ,A ,A = »  A

r , A

(RW)
r  => a  

r= »  a , a

(RC) T A, A, A
r  => a , a

We get the second-order calculus C L 2 by adding

Rules fo r  the second-order quantifiers (Y  not free in  F , A ) :

(LV2) r.A p y jr] => a  
r , v x A  =» A

(L32)
Y , A \ Y / X ]  =$■ A  

r , 3 i i ^ A

(RV2)
r  =► A  , A[ Y / X \  

r=> a , v x a

(R32) r = *  A , A [ T / X ]  
A ,3 X A

Negation is defined by -• A :=  A _L.
The multiplicative and additive versions of the logical rules are in- 

terderivable (using the structural rules).
The modal logic S4 is obtained by adding to (the first order frag

ment of CL) the introduction-rules

Modal contextual rules:

□ r ,A  =» QA p r  =» A, QA
□ r ,  0A =>0A p r  =$■ PA, 0A

Modal dereliction rules:

R0 r  => a , a  
r => 0A, A LP r ,A  =► a  

r ,  p a  => a
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Intuitionistic logic (IL)

Identity axiom and cut rule:

(Ax) A => A (cut)
Ti=>A A,T2 => B

TUT2 =*B

Falsum axiom:

(f) r , x ^

Multiplicative logical rules:

B,Y2 =>C . I\ A= >J 5

(RA)

( R - i )

r =$■ a  —y b

T,A,B=>C
TUT2, A - > B = * C  

Ti => A V2 => B 
T i , T 2 = > A A B  v ; T , A  A B => C

Additive logical rules:

(R->)

(LA)

r ^ B

(RV)

(LA)

T=> A - > J 3  

Y ^ A  r=> B
Y =$■ AV B Y => AV B 

Y,B=>C

( L - i )

(LV)

T=> A B,Y => C 
Y , A - + B ^ C  

Y , A ^ C  Y , B ^ C

r , . 4 A R ^ C  Y,A A B => C (RA)

Y,AV B => C 
Y=>A Y ^ B  

Y ^ A A B
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Rules for the first-order quantifiers (y not free in Y ,C ) :

fT\/1 r< A[t /x]  => C  
(LV) Y ^ x A ^ C

T , A [ y / x ] ^ C
(Ld) Y , 3 x A ^ C

(RV)

m

T =» A[y/x} 
r = *  ' ixA 
r => A[t /x]

Structural rules:

(W)
Y ^ C

Y , A = >  C
(C)

Y , A , A = > C
Y , A = > C

We obtain the second-order system IL2 by adding:

Rules fo r  the second-order quantifiers (Y  not free in  T, C ) :

(LV2)
Y , A [ T / X ]  = > C

y , v x  a  =$■ c

(L32)
Y , A [ Y / X } ^ C  

T ,3 X  A =$> c

(rv2)
r A [ Y / X } 
r => vx a

(R32)
r A [ T / X ]

Negation is defined by -iA  :=  A  -> _L.
The multiplicative and additive versions of the logical rules are in- 

terderivable (using the structural rules).

REM ARK. Note that we do not have ‘natural’ multiplicative versions of the rules 
for V. The best we can come up with is the ‘hybrid’ set of rules

(RV)
r=> a

Y=>AvB
t =*b

(LV)
r ,A=*C Y',B=>C

r,r',Av5=!- c

REM ARK. One can also formalize intuitionistic logic as a sequent calculus IL ', 
having sequents T => A with | A | <  1, and a rule RW of the form

r =>
Y=> A'

One easily verifies:

i l ' h r => iff i l  h r => j_
iL'hr^A iff iLi-r=>A.
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Taxonomical divertissement
If we skip one or more of the structural rules, we can ‘com pose’ fragments of 
intuitionistic logic by chosing either an additive or a multiplicative version of 
a rule for a connective. In general different choices will give rise to different, 
proper, fragm ents of IL.

To illustrate this (without any claim of exhaustiveness), let us construct 
some fragm ents of intuitionistic implicational logic (I IL ).

Each  of the fragments will contain (i) the identity axiom A x and (ii) the 
rule R —». We will vary the presence of the structural rules (W ,C ) and the 
nature of the rule (additive (a) or multiplicative (m )).

We then find the following possibilities:
(1) a ( = a  + C);
(2) m {linear implicational logic);
(3) m -f C {relev a n t !mplicational logic);
(4) m -f W  {affine implicational logic);
(5) a +  W ;
(6) IIL.
The following figure indicates the relations of proper containment that  

hold between these fragments:

For a proof one uses e.g. the following sequent (writing X Y  for X  —> Y ) :

BA,A{{{BC)D)D)j {{{BC)D)D)C, {{{BC)D)D)C => C,

which is linearly derivable (i.e. in m). The sequent that is obtained by con
tracting the two occurrences of {{{BC)D)D)C, however, can not be derived 
in a +  W .



e

Multi-succedent IL (IL>)

Identity axiom and cut rule:

(A x) A = > A (cut)
Ti =» Ai, A A , r 2 => A2

T i,r2  => Ai, a 2

Falsum axiom:

(f) r , i ^  a

Multiplicative logical rules:

(L v r i =»Ai , A B , r 2 =»A2 
1 > r 1, r 2)A->J5=^A1,A2
fr Vi r 2,B  =» a 2
1 ' r ltT2, A V B = >  a u a 2

m Ax r i  =» a ,A i r 2 =» b , a 2 
1 ’ t 1, t 2 ^ a a b , a 1, a 2

(R->)
T , A = >  B  

T ^ A ^ B

(RV)
T = >  A ,B ,A  

r  => A  V B , A

(LA)
T , A , B  =► A  

r , A  A B  =► A

(R -t) r=> a - > b

(RV)
r  => a , a

r ^ i V B . A

Additive logical rules:

I\A=»

t =>b , a
f ^ A V B . A

(L-+)
F  => A , A B ,T  => A  

I\ A -> B  =► A

(LV)
r ,  a  => a  r ,  b  =>• a

r ,  A V B  => A

(RA)
t =>a , a  r  => b , a

r  A A B , A
(LA)

r , a  a

r ,  A A B => A
r,B =» a

r ,  A A B  => A
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Rules for the first-order quantifiers (y not free in T, A ) :

(LV)

(L3)

T, A[t /x]  =» A
r,V*i4=>-A

T, A [ y / x ]  =>■ A 
r,3srj4=» A

(RV) T =>■ A[y/x]
T ^ V x A

(R 3)
r  =>■ A\t/x\, A 
r =► 3* A , A

Structural rules:

(LW)

(LC)
r,̂ i =► a

T , A , A ^  A
T , A

(RW) r => a
r = >  a , a

(RC) T = > A , A , A
T = > A , A

Negation is defined by -iA A  —>• _L.
The multiplicative and additive versions of the logical rules are in- 

terderivable (using the structural rules).

REM ARK. With respect to provability this sequent calculus is equivalent to the 
calculus IL of appendix d, in the sense that IL"* b T => A if and only if IL h F => 
V A, where \J A denotes the disjunction of all formulas in A (which by convention 
is _L if A =  0). See also Schellinx(1991)

The equivalent second-order calculus is obtained by adding:

Rules fo r  the second-order quantifiers (Y  not free in F. A):

(LV2) r , A [ T / X ]  => A 
r , V X A  =► A

(L32)
r, A[ Y/ X\  =► A 

T , 3 X A  =► A

(RV2) r =► A [ Y / X ]  
r=> ' iXA

(R32) r^A,4[T/I]
A ,  3 X  A
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Beknopte weergave

Lineaire logica (Girard, 1987) is een verfijning van de formulering van 
klassieke logica als sequenten calculus (Gentzen, 1935). De ‘ingreep’ is 
eenvoudig: in de ‘klassieke’ formulering mag een formule, eenmaal als 
hypothese in een afleiding aanwezig, een in principe onbeperkt aantal 
keren als zodanig opgevoerd worden; bovendien kan iedere willekeurige 
formule als hypothese ge'introduceerd worden, ook als er nooit daad- 
werkelijk gebruik van wordt gemaakt. Verder geldt het een aantal keren 
afleiden van een bepaald theorema als equivalent met dat precies een 
keer doen, en mag aan een eenmaal bereikte conclusie X  naar willekeur 
een conclusie Y  (in de geest van lX  of Y ’) toegevoegd worden.

In de ‘lineaire’ formulering wordt aan dat soort praktijken paal en 
perk gesteld. Contractie (meervoudig gebruik) van en verzwakking 
(‘we konden er ook zonder’) met een hypothese kan enkel onder de 
voorwaarde dat de betreffende formule, zeg A, met een uitroepteken 
(!A) gemerkt wordt: “Natuurlijk, A !”. Contractie (het samenrapen) 
van (identieke) conclusies of verzwakking met een willekeurige extra 
slotsom, mag enkel als we de betreffende kandidaat, zeg B, van een 
vraagteken {IB ) voorzien: “Waarom niet B  ?”}  Dit blijkt een ingreep 
met verstrekkende gevolgen.

Het schrappen van ongelimiteerde contractie en verzwakking als 
regels in de sequenten calculus leidt in de eerste plaats tot een split
sing van de bekende logische connectieven in elk twee varianten, een 
additieve en een multiplicatieve2. Door het opnieuw toevoegen van de

! De symbolen !, ? worden de ‘exponenten’ of ‘modaliteiten’ genoemd.
2We gebruiken conjunctie bijvoorbeeld in de omgangstaal in de multiplicatieve 

zin, als we implicatie (‘als ... dan’) hanteren om een actie aan te duiden die middels 
gebruik van het antecedent tot het succedent leidt: “Als ik tienduizend gulden heb,
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structurele regels, maax nu enkel voor gemodaliseerde (‘gemerkte’) for- 
mules, is bovendien de expressieve kracht van het systeem niet min
der dan dat van intuitionistische of klassieke logica. De belangrijk- 
ste consequentie echter is dat de resulterende logica, met name in 
haar ‘bewijsnet’-formulering, in hoge mate constructieve eigenschap- 
pen bezit: zo is de snede-eliminatie procedure sterk normalizerend (re- 
ducties (i.e. berekeningen) zijn altijd eindig) en, voor belangrijke frag- 
menten, confluent (i.e. het resultaat is uniek). Bovendien is er een niet- 
triviale semantiek (coherentie-ruimten) voor bewijzen, invariant onder 
reductie.

Als we de lineaire typering ‘vergeten’, dan is een afleiding in lineaire 
logica niets anders dan een afleiding in klassieke, of misschien zelfs 
wel in intuitionistische logica. We laten in dit proefschrift o.a. zien 
dat omgekeerd elk klassiek, en elk intuitionistisch, bewijs voorkomt als 
‘skelet’ van (in principe oneindig veel) lineaire bewijzen. Dit vormt het 
uitgangspunt voor ons werk, dat tweeledig van aard is: we bekijken 
afleidingen in de lineaire sequenten calculus an sich, en gebruiken line
aire logica als een bewijstheoretisch instrument voor het bestuderen 
van intuitionistische en klassieke bewijzen.* 3

In hoofdstuk 5 introduceren we de exponenten graaf van een aflei
ding in klassieke (tweede orde) lineaire logica, een artefact hetwelk de 
onderlinge relatie tussen exponenten in een bewijs weergeeft. Met be- 
hulp van die graaf karakteriseren we exponenten die geen (directe of 
indirecte) structurele oorzaak hebben. Deze kunnen verwijderd wor- 
den, en het resultaat is een afleiding die (1) nog steeds correct is, en 
(2) dezelfde dynamiek (i.e. gedrag onder reductie) heeft als het origi- 
neel. Onder bepaalde voorwaarden is de zo verkregen afleiding boven-

dan koop ik tweedehands een zwarte BM W  ” , en “Als ik tienduizend gulden heb, 
dan koop ik een eerste druk van De Avonden”. Samenstelling van beide acties door 
middel van de ‘gewone’ conjunctie (die ‘idempotent’ is, dus o.a. contractie toelaat) 
maakt mij niet alleen de bink, m aar, en voor hetzelfde geld, ’n (De Avonden’ rijker. 
We weten natuurlijk beter. Ook in de lineaire logica, welke soms tot, vaak op 
soortgelijk flauwe voorbeelden gebaseerde, ongerechtvaardigd hoge verwachtingen 
met betrekking tot toepasbaarheid in ‘praktische’ aangelegenheden aanleiding blijkt 
te geven.

3 “... denn nicht das brechen des Strahls, sondern der Strahl selbst, wodurch die 
Wahrheit uns beriihrt, ist das Erkennen ...” (G .W .F . Hegel. Phanomenologie des 
Geistes. Bamberg und Wurzburg, 1807)
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dien de minimaal gemodaliseerde met deze eigenschappen. Ook stelt 
de exponenten graaf ons in staat die afleidingen in lineaire logica te 
karakteriseren welke dilateerbaar zijn, dat wil zeggen, waarin we alle 
gemodaliseerde formules kunnen vervangen door niet-modale formules. 
Weer (dit is ons ‘sine qua non’) zonder structuur en dynamiek van het 
origineel essentieel te veranderen. Het belangrijkste resultaat hier is 
dat een volledig geexpandeerde lineaire afleiding dilateerbaar is dan en 
slechts dan als haar exponenten graaf acyclisch is (hoofdstuk 8).

We bestuderen de intuitionistische en klassieke sequenten calculus 
door middel van het inductief toepassen van modale vertalingen (hoofd- 
stukken 2 en 3). We laten zien dat er in het ‘klassieke’ geval in essentie 
twee modale vertalingen zijn welke de structuur van de oorspronkelijke 
afleiding ongewijzigd laten. Voor bepaalde belangrijke fragmenten, bij- 
voorbeeld dat bestaande uit de regels voor implicatie, universele eerste 
orde quantificatie en universele tweede orde (propositionele) quantifi- 
catie, is dit procede van ‘lineair decoreren’ volledig deterministisch (i.e. 
de wijze van modalizeren is eenduidig bepaald). Een gevolg is dat deze 
decoraties ondubbelzinnig een normalizatie procedure voor het betref- 
fende fragment definieren, zijnde de reflectie van de lineaire procedure 
toegepast op de decoratie. Het is daarom direct duidelijk dat deze 
procedure sterk normalizerend is.

In hoofdstuk 6 introduceren we het begrip constrictief morfisme, 
met behulp waarvan we de genoemde modale vertalingen kunnen op- 
timalizeren. Dit leidt tot welgedefinieerde restricties op regels van de 
sequenten calculus, die volledigheid met betrekking tot bewijsbaarheid 
behouden. Bovendien kunnen deze restricties in een gegeven afleiding 
gerealiseerd worden door ‘toepassing van het morfisme’, i.e. door elimi- 
natie van de snede die het introduceert. Zo krijgen we ‘alternatieve’ 
sequentencalculi voor intuitionistische en klassieke logica voor welke de 
optimale modale vertalingen decorerend zijn. Ze heten ILU , L K T  en 
LK Q .
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Het gebouw van de Faculteit Wiskunde aan de Plantage Muidergracht 
huisvestte vroeger een farmaceutisch laboratorium. Laten we daarom 
spreken van “de Brouwerij”.

IV.

V.

Stelling voor zesenzestig (66) kompakt plaatjes. Eigen ontwerp.

VI.

Onze wiskunde is uniek dan en alleen dan als onze wereld volledig is.
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m m +

------ - n < k < ------
m + 1 m +

m + 1 1
------ « • n > =m +  2 J

mod(n,m +  2) +
n

_ 7TI -{- 2 _
m + 1

H .A .J .M . Schellinx & J .A .P .  Heesterbeek, On sums of re
mainders and almost perfect numbers. In: T W  in Beeld, M athe- 
matisch Centrum, Amsterdam 1988; propositie 3a.
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Een afvalemmer voorzien van een deksel met enkele fikse gaten, een 
welker aan het oog onttrokken door een trapachtige constructie lei- 
dend tot een middels een metalen veertje in onbelaste toestand gesloten 
luikje, teneinde rondscharrelend ongedierte, dat bij het verkennen van 
de onbedekte gaten “Ha, daar trap ik niet in!” dient te piepen, te ver- 
leiden de treden te bestijgen om bij aankomst op het beweeglijke platje 
in de diepte te duikelen, getuigt eerder van literaire kwaliteiten dan van 
een bijzonder inzicht in de psychologie van de huismuis.

Jochem Hartz, “Een hoogst effectieve muizeval”. Persoonlijke 
mededeling.

VIII.

IX.

Ieder machtig object in een zwak cartesisch gesloten categorie definieert 
een A-algebra. En elke A-algebra kan men via zo’n object verkrijgen.

Raymond Hoofman &: Harold Schellinx, Models of the un
typed \-calculus in semi cartesian closed categories. ILLC Prepub
lication Series for M athem atical Logic and Foundations M L-93-05, 
Amsterdam 1993.

X.

i f  -  t >  0

Heesterbeek, van Neerven &: Schellinx, Das Fegefeuer- 
Theorem (De Purgatorio). Verlag Die Libelle, Bottighofen am  
Bodensee 1992; theorema 6.6.4.

XI.

Muziek is de wereld zoals ik die hoorde.
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XIII.

Zijn R >  0 en r > 1 natuurlijke getallen. Definieer, voor n G IN:

n — R,
mod(n — R ,r ) ,

als n <  R 
cinders.

Als we /?+[/?, -]r samenstellen met de gebruikelijke optelling, dan maakt 
dit { 0 , 1 , +  r — 1} tot een commutatieve monoi'de met eenheid 0. 
Deze komt mooi van pas bij het modelleren van geknotte structurele 
regels.

Hori, Ono &: Schellinx, Extending intuitionistic linear logic 
with knotted structural rules. Manuscript, Hiroshima 1993.

XIV.

Irreflexiviteit van de ouderschapsrelatie tussen individuen blijkt niet 
noodzakelijk voor een rigoreuze definitie vein het begrip ‘soort’. Nog 
is alle hoop op verzoening van moderne biologie met christelijke dog- 
matiek dus niet vervlogen.

D .J . Kornet & J .A .J .  M etz, Intemodons as Equivalence 
Classes in the Genealogical Network: Building-Blocks fo r  a Rig
orous Species Concept. Manuscript, Leiden 1993.

XV.

Uw logica is niet de mijne.

XVI.

IL U  L K T------  r s j  --------
A2 A /I
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Uitbreiding van de standaard quantumlogische formalismen met rela- 
tivistische tijdsoperatoren blijft voorlopig een vrome wens.

Harold Schellinx, Measurement and the logic o f relativistic 
time. Manuscript, Paris 1994.

XVII.

XVIII.

Een aanzienlijk deel van het werk in dit proefschrift beschreven is van 
wezenlijk semantische aard.

XIX.

Het Plotkin-Scott graafmodel Vu> kent enkel het triviale automorfisme. 
Men kan evenwel voor een ieder willekeurig direct product Q =  n ~ i  Gi, 
waarin elke factor isomorf is, hetzij met een symmetrische groep Sn, 
hetzij met S (IN), een een-eenduidige afbeelding pg van IN x IN naar IN 
aangeven, zodanig dat Q juist de groep der automorfismen van het door 
pg gei'nduceerde graafmodel is.

Harold Schellinx, Isomorphisms and nonisomorphisms o f 
graph models. Journal of Symbolic Logic, 56-1, 227-249.
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