
. --- .. _

Giovanna Cepparello
. --:.

Studies in Dynamic

Logic

EDIZIONI ETS

) ' . . ' ' ·- .

Studies in Dynamic

Logic

~lll~~l llllllllllll1~1~f i~lill~l~lll1lll~lll
3 0054 00053 6053

ILLC Dissertation Series 1995-10

institute f<N logic. language*"' compuuuion

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Plantage Muidergracht 24
1018 TV Amsterdam

phone: +31-20-5256090
fax: +31-20-5255101

e-mail: illc@wins.uva.nl

Studies in Dynamic

Logic

Tesi di Perfezionamento in Filosofia

Scuola Normale Superiore
Classe di Lettere e Filosofia

di

Giovanna Cepparello

Relatori: Prof. J. van Benthem
Prof. M.L. Dalla Chiara
Prof. J. van Eijck
Prof. E. Moriconi

Copyright© 1995 by Giovanna Cepparello

Printed and bound by ETS, Pisa.

ISBN: 90 - 74795 - 30 - 7

al mio babbo

Acknowledgments

1 Introduction
1.1 From Truth to Action
1.2 Dynamic Logic . .
1.3 Our themes

1.3.1 The format . .
1.3.2 Dynamization .
1.3.3 Kinds of programs: the issue of combination
1.3.4 Intermezzo
1.3.5 Kinds of dynamic operators
1.3.6 Philosophical repercussions

2 Semantic Variations
2.1 The idea
2.2 First-order Variations . . .

2.2.1 General description.
2.2.2 Linguistic and Philosophical Motivations.
2.2.3 A system of Tarskian Variations . . .

2.3 Variations for Knowledge-updating
2.3.1 The question of Knowledge-updating .
2.3.2 Kripkean Variations

2.4 Logical themes
2.4.1 The choice of models 1: closure constraints
2.4.2 The choice of models 2: correspondence . .
2.4.3 The choice of States: kinds of Assignments

vii

Contents

xi

1
1
4
6
6
7
7
9

10
11

13
13
14
15
16
18
21
21
22
24
25
26
26

2.4.4
2.4.5

The choice of programs 1: Local vs Global Variations ..
The choice of programs 2: 'up' and 'down' Variations of
the Domain

2.4.6 The choice of operators

3 Combining Variations
3.1 The problem

3.1.1 Many things dynamized ..
3.1.2 Our case study: DPL + UL
3.1.3 Constraints on the combination .

3.2 Dynamic Modal Predicate Logic
3.2.1 General features
3.2.2 Technical outline
3.2.3 Pros and Cons

3.3 An alternative: the system GSV
3.3.1 General features
3.3.2 Technical outline . . .
3.3.3 Pros and cons

3.4 Tarskian Kripkean Variations
3.4.1 General discussion
3.4.2 Technical outline
3.4.3 Pros and cons .

4 The procedural kit
4.1 Invariance criteria

4.1.1 Permutation invariance
4.1.2 Tightening the logical space: Bisimulation Safety
4.1.3 A link

4.2 Denotational Constraints
4.3 Case study: the dynamic negation

4.3.l Constraints
4.3.2 Inverse logic for UL negation
4.3.3 Inverse logic for DPL negation I
4.3.4 Inverse logic for DPL Negation TI .
4.3.5 Discussion of the previous results .

4.4 Common patterns across different systems
4.4.1 Local truth
4.4.2 Technical discussion

5 Philosophical Repercussions
5.1 Dynamic Logic for the Dynamic shift .
5.2 Individuals and Modality .

5.2.1 The main problems .

viii

27

28
28

29
29
29
30
31
34
34
34
36
38
38
40
41
44
44
45
46

49
49
50
51
53
54
56
56
57
59
60
62
65
65
66

69
69
72
72

5.2.2 A few solutions to the question of 'quantifying in'
5.2.3 Possible worlds semantics .

5.3 Dynamic Individuals and :Modality
5.3.1 What is on the market"~ ..
5.3.2 Waiting for a dynamic cut .

A More on Dynamic Modal Predicate Logic
A.l Semantics for DMPL
A.2 Some Simple Examples
A.3 Quantified Dynamic Modal Logic
A.4 A Calculus for QDML
A.5 Calculating Meanings

B Outline of a completeness proof for TKVL
B.l The question of dynamic completeness
B.2 The system TKVL
B.3 Localization
B.4 Axiomatization
B.5 From TKVL to TKVL*
B.6 The proof

C Back to Classical Logic

Bibliography

ix

74
75
77
77
79

81
81
84
87
90
92

95
95
96
97
98

100
101

103

105

Acknowledgments

First, I want to thank the persons who made my Ph.D. experience so enjoyable
and rich.

On the dutch side, Johan van Benthem was always surprising. Surprising
for his deep competence in Logic and in Philosophy, for the enthusiasm to­
wards intellectual work he can communicate. Working under his guidance was
extremely instructive, and it was also fun.

Jan v-an Eijck also played a key role inside my Ph.D. project. He helped me
to overcome my fear for paper-writing; moreover, he always contributed to the
advancement of my work with witty criticisms and useful hints.

In Pisa, I was supported by Mauro Mariani and Enrico Moriconi. A con­
versation with Mauro is always worthwile, since his sound knowledge of many
cultural areas, including Philosopy and Logic, gives unsuspected depth to the
simplest idea.

Enrico helped me a lot. He always read my manuscripts and gave me good
suggestions. Besides, and this is a very important contribute, he constantly
recalled me in many ways that there is more to Logic than the small part of it
I was busy with.

Finally, last but not least, I want to thank prof. Maria Luisa Dalla Chiara.
She was extremely cooperative, and I am really grateful to her for accepting to
be one of my promotors.

Many other people from the academic world gave me their 'moral' and prac­
tical support in the last period, showing a great kindness. I sincerely thank
them all.

The Scuola Normale Superiore provided me with many intellectual stimuli
and with a pleasant cultural and 'social' environment; its financial support was
always generous.

xi

I also want to express my gratitude to the Centre for Mathematics and

Computer Science in Amsterdam. It was always an ideal refuge where I could

get new ideas, interact with many clever guys and work hard. Concerning my

staying in Holland, there is a group of friends - inside and outside my work

environment - that made them incredibly pleasant and useful. I want to say

thank you to all of them.
Finally, I owe quite a lot of more personal thanks. To my good friends;

to my wonderful family; and, most of all, to my mother and to my husband.

Thanks!

Pisa Giovanna Cepparello

July, 1995.

xii

Chapter 1

Introduction

This introductory chapter has two tasks. First, we want to explain the general
motivations that underlie the present work. Sections 1 and 2 will cover this.
Second, we will give a brief summary of the contents of the thesis, while also
sketching the basic technical concepts and relative notations that we will use
on the way. This will be done in section 3.

1.1 From Truth to A ction

In this section we will try to highlight a general tendency that has emerged
in the last forty years (and more dramatically in the last decade) through a.
budget of disciplines that are concerned with the study of (human) intelligent
skills, like reasoning, speaking, commmunicating etc ...

Before discussing the single cases, let us sketch the core of this growing tend­
ency: intelligent skills can be better understood (or codified) by using dynamic
concepts as basic units of analysis. What do we mean by dynamic concepts
here? We do not want to give a precise definition, rather we point at a. number
of dynamic concepts, opposed to some static notions; this will hopefully light the
right intuition, which will get shaped up within the course of the dissertation.
Therefore, cognition (= acquisition of knowledge) is dynamic, in contrast with
actual knowledge. In the same way, actions, procedures, rules, transitions have
a dynamic character, while truth, declarations, assertions, states descriptions
are clearly static.

To sum up our first claim: we want to argue that many ideas that we can
classify as 'dynamic' pervade a range of disciplines that study Human Intelli­
gence in its various forms, where 'study' can mean represent, formalise or more
generally analyse. In doing this, we hope we will underline a cultural trend

1

2 Chapter 1. Introduction

that constitutes the grounds of our work. We will start with pointing a.t some
far-off, archaic traces of this dynamic trend, coming from Artificial Intelligence
and Psychology. Afterwards we will focus on some more concrete examples,
some of them very up-to-date, from Linguistics and Philosophy of Language.

Let us sta.rt with Artificial Intelligence. Computers are surely one of the
hallmarks of this century, and Artificial Intelligence is maybe the mainspring
of this general dynamic cultural shift: developing algorithms for solving intel­
ligent problems inevitably demonstrates how efficiently these problems can be
represented in terms of rules, instructions, in one word actions, rather than as
sequences of plain truth conditional inferences. This matches with the general
idea underlying this research area (and already springing up since the dawning
of AI): the human reasoning or, in a more informatic fashion, the 'human in­
formation processing' can be seen as a more complex and sophisticated version
of the automatic information processing. Minds and computers have something
in common, and (fragments of) minds' activities can be represented in form of
computers' algorithms, namely in dynamic terms.

Concerning Psychology, and in particular that branch of Psychology that
deals with acquisition and elaboration of knowledge, we must immediately stress
that the influence of AI on it was very strong since the sixties, and it actually
contributed to the birth of so-called Cognitive Psychology (see for a survey of
its main ideas (61]), which still constitutes the 'mainstream' in the area. Until
the end of the fifties, the behaviourist trend was in fact prevailing; according
to the behaviourist doctrine (cf. (74]), the task of psychology would consist
in measuring, so to speak, human answers to stimuli. In other words, analys­
ing, e.g., a given process of problem solving, should amount to measuring its
manifest 'extension' at the behavioural level (the problem will be eventually
decomposed in a set of stimuli, and the solution, possibly in several steps, will
provide the answers). Against this method, the cognitive approach suggests to
investigate precisely what happens between a stimulus and an answer. Around
the end of the fifties , psychologists started to take seriously the above metaphor
mind/computer, and consequently to study how human beings do acquire and
elaborate knowledge in terms of computational models: between a stimulus and
an answer there are stages of the processing, and successive instructions to per­
form different operations. In other words, between a stimulus and an answer a
sort of program is performed by the human processor. A good example of prim­
itive Cognitive Psychology is the famous unit TOTE (Test - Operate - Test -
Ex'it), suggested in [59] as a suitable tool for codifying intelligent processes (the
informatic flavour of this notion should be immediately detectable).

We have thus roughly sketched some of the dynamic ideas pervading both
AI and Cognitive Psychology. We should say however that these disciplines
are totally outside the scope of the present dissertation; rather, we will often

1.1. From Tt-uth to Action 3

refer in the following chapters to both Linguistics and Philosophy of Language,
since they constitute in a sense the cultural environment in which many of the
dynamic notions quoted so far are at the moment playing a major role and
acquiring more sharp contours. Therefore, let us now outline some relevant
dynamic ideas coming from Philosophy of Language.

First, we want to mention Wittgenstein's language games, where the actional
character of language comes to the fore, together with the fundamental link
meaning-use (cf. [76]). Moreover, as remarqued in [29], there is David Lewis
idea that the process underlying Natural Language understanding is somehow
similar to the process of score keeping during a game, where the score board
keeps track of the many possible changes in the context (cf. (58)).

· Related in some way to these influential philosophical conceptions, there is
a point of view emerging in recent Philosophical Linguistics (maybe the new
Philosophy of Language), which we shall refer to as 'the dynamic conception of
meaning'. According to this conception, the meaning of a linguistical expression
is no longer - phenomenologically - what determines its truth-conditions, but
rather it lies 'in the way it changes the (representation of) the information of
the interpreter' (cf. [43J). In other words, the meaning of a linguistic bit is now
measured in terms of the effects it produces on the intended receptor. If this
is so, then linguistic bits are to be read accordingly as rules to change some
information stage, or as 'cognitive actions' for moving on the elaboration of
knowledge. A well known concrete example of this trend is the interpretation of
linguistic anaphora it suggests: expressions containing anaphora mean - among
other things - a change in the instantiation of some variables, that is kept along
the discourse (cf. the system of 'Dynamic Predicate Logic' presented in [43],
and also [54], [47)). Similarly, the dynamic conception of meaning has affected
the more recent literature on presupposition (see e.g. (3), (29), (31)} , on temporal
reference (see e.g. [24)), on preferences (see e.g. (15)) etc ...

As we said, this conception of meaning is now becoming very popular, and
it will be often referred to in what follows. Here we want to stress how one
can find in it some of the chief ideas that were dominating both in the earliest
AI and in Cognitive Psychology; in particular, viewing Natural Language as a
set of instructions fits with the above metaphor computer programs/intelligent
processes1 .

Therefore, across such different fields as AI, Cognitive Psychology, Philo­
sophy of Language and Linguistics, a common idea has emerged in different
forms: Human Intelligence can be fruitfully represented along a dynamic model
of some sort. Or, to give a pictorial intuition, human intelligent processes (from

1 Note that one of the research projects that by no mean fall in within this 'dynamic
conception of meaning', run in the last few years, was called 'Structural and Semantic Parallels
between Natural Language and Programming Languages'

4 Chapter 1. Introduction

chess playing to knowledge acquisition to linguistic competence) fall in within
some framework of the following form:

,_ ____ _____ __ _ ..,.
State of program New state of

the machine the machine

1.2 D ynamic Logic

We can now make a further step toward the specific topic of the present disser­
tation. We have argued that a cultural shift 'from truth to action' is detectable
across many disciplines. In fact, none of these disciplines will constitute our
favourite standpoint, so to speak, although we will often refer to both Philo­
sophy of Language and Philosophical Linguistics. Generally speaking, our main
concern will consist in discussing, testing and enriching a possible mathematical
model for giving a formal account of this dynamic tendency. More specifically,
among various possible formal implementations of the dynamic ideas above we
will choose the one offered by Dynamic Logic, and do what we said, namely:
discuss its potentialities, test it against specific technical problems, and possibly
enrich its paradigm when necessary. As we have already implicitly said, other
choices would be just as well possible (cf. [13] for an exhaustive discussion);
yet, we should stress that our choice is not accidental: Dynamic Logic is now
having its 'golden age', and precisely in connection with this general cultural
trend.

Therefore, we have two aims in this section. First we want to demon­
strate the reasons why Dynamic Logic looks such suitable a choice as a formal
paradigm of the dynamic trend, while also giving the reader a rough intuitive
notion of how Dynamic Logic looks like. Second, we want to start sketching
the line of analysis that we will pursue. As we have already said, a more de­
tailed description of the content of this dissertation will be provided in the next
section.

We have seen how influential was the informatic metaphor on the dynamic
trend as described in section 1. The idea that knowledge is processed and elabor­
ated following instructions of some sort and along states of some sort, clearly has
a computational flavour, and it represents in a sense the dynamic core shared
by some doctrines in AI, Cognitive Psychology, Linguistics and Philosophy of
Language. And, because of this computational flavour pervading the dynamic
trend, Dynamic Logic represents a very natural choice when searching for a
mathematical paradigm. For Dynamic Logic (cf. [64]) was originally designed

I. :2. Dynarruc Logic 5

as the Logic for 'founding ' computer programs: more precisely. the original task
of Dynamic Logic was talking and proving properties of computer programs.
The intended models that the dynamic-logical synta.x was supposed to describe
were just a computational instantiation of the picture above:

------------ -
Mental cognitive action New mental

state state

Next section will provide a more precise technical definition; for the moment,
it is enough to stress that Dynamic Logic is meant to describe the 'flow of
information' that a program produces when run. Thus, there will be formulas
describing the 'states of the machine', and programs describing the transitions
among them. But there is more to it than that. Since the very moment of
its birth, it was immediately clear that the potentialities of Dynamic Logic
could go well beyond its literal original task: if the intended model was the
computational one, Dynamic Logic was also acknowledged more generally as 'a
system of reasoning about action', where the 'action' can be carried out by a
computer running a program but also by a human processor. 'Reasoning about
action' can mean representing and modeling a wide range of activities, from the
automatic to the human intelligent ones. And this generality enforces the thesis
that Dynamic Logic is the right mathematical model for the 'dynamic trend' ,
which takes so many different forms.

Summing up, our task was to find a suitable formal paradigm for what we
have called the 'dynamic trend', and we opted for Dynamic Logic, the reasons
being as follows. The metaphor of programs run on a computer constitutes
one of the common grounds in the 'dynamic trend'. And Dynamic Logic has
been created just as a logical paradigm - natural development of the dominating
Hoare Calculus (cf. [49]) - for reasoning about computer programs. Moreover,
the dynamic-logical framework can go beyond the computational boundaries,
and fit the different instantiations that the informatic metaphor has taken within
the 'dynamic trend'.

We now want to conclude with saying a few words on the general line of this
work. Although since its beginning it was clear that Dynamic Logic could be
more than the 'logic of computer programs', its original design as well as most
of the further development heavily reflects its informatic-oriented origin. More
precisely, the 'programs' in a standard presentation of Dynamic Logic mostly
come from some regular programming language, or, which is the same, from a
Hoare Calculus of some sort. But, given the current revival of Dynamic Logic
outside Computer Science, a question naturally arises on the possibility of al-

6 Chapter 1. Introduction

ternative choices in creating actual dynamic systems. If Dynamic Logic has to
be the paradigm of a general cultural trend, then the issue of proving meta­
properties of actual computer programs becomes marginal. Rather, given the
'core' of Dynamic Logic (a two typed-syntax, including formulas and programs,
with a matching states-transitions semantics), the art is now implementing on
this frame logics for talking about different actions. Our work lies then in this
'new deal' of Dynamic Logic, that aims to build a broad, many-aimed family of
Dynamic Logics along a layered and disciplined strategy.

1.3 Our themes

In this section we want to briefly explain the 'geography' of the whole disser­
tation (namely which topics we will consider in which chapters). In doing this,
we will also introduce - in an intuitive fashion - the very basic technical notions
that we will be using on the way while also hinting at some of the concrete
problems that we will face.

1.3.1 The format

First, let us single out clearly the general conception of Dynamic Logic that
we assume (not a new conception, only a general one extrapolated from the
literature!).

1.3.1. D EFINITION. (Dynamic Language] A Dynamic Language is a language
with two types of expressions: formulas (properties of states, of the type (state,
truth-value)), and programs (relations among states, of the type (state, (state,
truth-value))).

1.3 .2. D EFINITION. (Dynamic Model] A Dynamic Model is a set S of States s
with an interpretation function [) : Programs --+ S x S assigning relations
to the programs, and another one [] : Formulas --+ S assigning states to the
formulas.

A matter of notation. The interpretation of programs will be expressed
alternatively in the following - obviously equivalent - manners:

1. [7r] = {(s, s'} I ... }

2. (11]s = {s' I ... }
We should remark that the 'states' in the definition can be static models

of any kind; this thesis will be mainly concerned with first-order models or
possible worlds models -states, but other options would be conceivable. Note
that intensional states (i.e. possible worlds models) have a different granularity
with respect to first-order states, involving a set of states in their tum.

1.3. Our themes 7

Figure 1.1: The interface static/ dynamic

modes "9---- -- - - ----? 1/X µ 0

...., v projections
,__ ___ __, - - - - - _(_}_ - - - - -. u:

The last point we want to make in this 'basic tour of dynamics' is of a meth­
odological kind. We have defined a dynamic language as a language including
two types of expressions: formulas and programs. Often within the course of
this dissertation we will focus on the programs-fragment of our systems, and
lea:ve out the formulas. This we will do only for the sake of simplicity. Yet we
reckon that the interface static-level/ dynamic-level is very important, and we
will make a heavy use of it for proving our completeness theorems (see Appen­
dices A and B.l). This interface, with its 'switching' mechanisms between the
two modes, does pervade the best tradition of Dynamic Logic (cf. for instance
[9] and [64]), and thinking in terms of static counterpart of a dynamic program
(cf. for instance the notion of pre- and post-condition) can throw light on the
'meaning' of it.

After outlining the general format of Dynamic Logic that we shall take as the
basis of our work, we can now briefly hint at the issues that we shall successively
take into account in the next chapters.

1.3.2 Dynamization

As we have seen in 1.2, there is a strong need to enlarge the dynamic-logical
framework outside the boundaries of Computer Science, in order to meet a
general cultural demand. Therefore, one of the issues we will tackle within the
present dissertation will concern the possibility of creating interesting programs
that do not come necessarily from some programming language. One of the
policies we will suggest will consist in fact in elaborating a strategy for building
dynamic programs out of static systems such as First-order Logic and Modal
Logic (cf. Chapter 2).

1.3.3 Kinds o f programs: the issu e of combination

We now want to make a point that will play a fundamental role in the present
work. Namely: interesting distinctions among classes of programs can be made
by looking at their behaviour. We will now shortly discuss a few properties
of programs that codify their behaviour; we will run into many others in the
following chapters, with two main purposes:

8 Chapter 1. Introduction

1. the intuitive interpretation of them - mainly along the analogy programs
= instructions for carrying on the information processing - will help us
finding and testing the applications of programs to the analysis of cogni­
tion;

2. at a more technical level, codifying the behaviour of programs will be a
way of checking their mathematical legitimacy, so to speak, with respect
to certain fixed criteria.

Let us then start seeing two simple properties of programs.
First, note that static formulas could be interpreted along programs: the

interpretation function [] applied to a formula will assign to it nothing but
a subset of the Identity function. This gives us the opportunity of giving the
following straightforward definitions:
1.3.3. DEFINITION. (Proper programs] A program 7r is proper if it is not the
case that for all dynamic models M of its language, [7r]M s; Id, where Id is the
Identity function.

1.3.4. DEFINITION. [Test programs] A program 7r is a test if for all dynamic
models M of its language, [7r]M s; Id, where Id is the Identity function.

Test programs amount in fact to formulas.

Let us now spell out two more important properties of dynamic programs.
1.3.5. DEFINITION. [Eliminative programs] A program 7r is eliminative if for
all dynamic models M of its language, for all states s of M, [1r]M (s) s; s.
1.3.6. DEFINITION. [Continuous programs) A program 7r is continuous if for
all dynamic models M of its language, for all states s of M , [rr]M U;e/ s; =
UieI(7r)MSi.

Interestingly, it is possible to prove that (see [6]):
1.3. 7. PROPOSITION. If a program 7r is eliminative and continuous, then for
all dynamic models M of its language and all states s of M , (ir)Ms is just snP
for some fixed 'information set ' P.

We now want to make our general point: if so many distinctions can be made
among classes of programs, a natural question arises on the possibility of hand­
ling different kinds of programs within the same formal system. For instance,
combining tests with proper programs will amount in fact to allow the interface
static/dynamic advocated above; on the other hand, combining non-eliminative
programs with non-continuous programs will turn out to be much more prob­
lematic, since, as we will see, these two kinds of programs represent two radically
different modes of processing the information. Chapter 3 will be in fact devoted
to this question. A detailed analysis of the issue will be provided, together with
three possible solutions recently proposed, and with a comparison among them.

1.3. Our themes 9

1.3.4 Intermezzo

We now want to briefly discuss how the properties above can be used to 'meas­
ure' the distance of a certain dynamic system from a static counterpart.

First, we have seen how eliminative and continuous programs have a totally
'extensional' character. Therefore, the following opposition is commonly accep­
ted

Eliminative and Continuous Programs = Classical Programs

vs

Non-eliminative or Non-continuous Programs= Dynamic Programs

Instead of this opposition, that certainly has its sound rationale, we prefer to
distinguish among 'Static' programs vs 'Dynamic Programs', as follows:

Test Programs = Static Programs

vs

Proper Programs = Dynamic Programs

And, transverse to this antithesis, we suggest this other, among 'Extensional'
and 'In tensional' programs:

Continuous Programs = Extensional Programs

vs

Non-continuous Programs = Intensional Programs

The reason why we suggest this shift of perspective is basically that we think
it can be a bit misleading to see the 'dynamicity' of a program as the disjunction
of non-eliminativity and non-continuity. Modal Logic is static, still the inter­
pretation of its formulas is not continuous with respect to arbitrary unions of
possible-worlds models. In a slogan: one thing is the difference between Clas­
sical Logic and Modal Logic, another matter is the difference between Static
Logic and Dynamic Logic. This means that there can be, e.g., static-intensional
programs. On the other hand, the notion of Eliminativity tends to overlook the
granularity of the states in a dynamic model. U one runs a program 7f from a
states (that can be a propositional or a first-order model, a set of propositional
or first-order models or a model of any kind), the first question in order to check
the 'potential' of the program is whether it does bring the processor 'somewhere'
else (namely to a states' f:. s, regardless its set-theoretic relations with s). No
need to say that Eliminativity is most certainly a very useful notion; only, there
are others too. This slight change of standpoint will actually play a role at some
points in our set-up.

10 Chapter 1. Introduction

1.3.5 Kinds of dynamic operators
We now want to say a few words on the basic 'procedural kit' we will use,
where by 'procedural kit' we mean the set of operators to manipulate programs.
Starting from this basis, that we choose for reasons that will become clear later,
we will define some possible strategies for safely defining other possible program
connectives. This will be the topic at stake in Chapter 4.

Basically, the basic repertoire includes the following operators:
1. sequential composition (notation: ;)

2. program negation (notation -i)

3. boolean choice (notation LJ)
The sequential composition is a binary program connective that, applied

to programs ('11'1,71'2} (notation: 71'1;'11'2) tells us to execute first 71'1 and then
71'2. Intuitively, this is a harmless operator, but there are some subtleties when
giving a precise semantic clause for it. More explicitly, one obvious semantic
clause for the sequential composition would be:

['11'1; 'll'2)s = ['11'2](['11'1]s)

that reads sequential composition simply as the functional composition. But this will not always be a possible choice, mainly due to the granularity of the
states in the model. We will discuss this issue thoroughly in the following
chapters.

On the other hand, the negation is much more problematic. It's not clear
what 'negating a program' should mean. In first approximation, it will some­
times mean: 'go to a state where you cannot execute the program 71''; altern­
atively, if 71' is a bit of information, its negation will be interpreted as a bit of
information as well Uust 'it's not the case that the information conveyed by 7r is true'). The discussion of this questions will take a big part of Chapter 4.

Finally, the boolean choice. The program 7r1 U 7r2 simply tells the processor
to execute alternatively 7r1 or 7r2 • In most cases, then, U will be interpreted as
set-theoretic union.

One last remark; the following trivial facts support the notions introduced in paragraph 1.3.3:

1.3.8 . FACT. Tests are closed under ;, .., and u.
1.3.9 . FACT. Proper programs are closed under ;, .., and U.

1.3.10. FACT. Eliminative programs are closed under ;, ..., and u.
1.3.11. FACT. Continuous programs are closed under;,..., and u.

1.3. Our themes 11

1.3.6 Philosophical repercussions
In Chapter 5 we will briefly discuss some of the philosophical repercussions of
the general dynamic set-up we propose and investigate. In particular, we will
move along two directions:

1. first, we will take a philological end, and try to detect if some of the
ideas that we have suggested are already detectable in the past 'analytic'
literature, e.g. on game-theoretical interpretations of Natural Language;

2. afterwards, we will pursue the 'Russelian' way (= test the potential of a
theory against concrete puzzles), and check if and where the dynamic turn
can positively contribute to the solution of some relevant riddles in that
philosophical area investigating the question of Reference and Modality.

Chapter 2

Semantic Variations

In this chapter we will display a general method for building dynamic programs
out of static systems. Moreover, motivations from other disciplines such as Lin­
guistics or Philosophy of Language will be given for carrying out this strategy.

2.1 The idea

We have seen in the introductory chapter the formulas/programs-states/ trans­
itions structure of the dynamic set-up. What we are after now is designing a
simple policy to create programs or, which is the same, to define instructions to
move from one state to another. In a sense, the strategy we a.re going to suggest
is the simplest one can think of just by looking at the very general definition
of Dynamic Logic and its semantics. In that definition, a state is a stage of an
information processing of some sort (i.e., it can be seen either as an information
state, a picture of the world, or as a state of the memory of a computer,).
Technically, this means that a state is where formulas (= statements about
the world) are interpreted. Or, which is the same, a state is a model of some
sort. Thus, we search for instructions to switch from one model to another. As
we said, within the course of the present dissertation the states-models we will
take into account will basically be either first-order models or possible-worlds
models. This is a reasonable choice: we want to keep the static fragment of our
dynamic systems within the safe boundaries of either first-order or modal logic.
Moreover, first-order models and possible-worlds models represent certainly the
most standard choices as formal descriptions of one's partial or total image of
the world (which fits with our favourite interpretation of Dynamic Logic as a
formalism to talk about the human information processing). Therefore, we are
trying to define a kit of instructions to be interpreted as transitions over first

13

14 Chapter 2. Semantic Variations

order models or over modal models.

A first-order model is a state of affairs codified in such a way as to make
it possible the interpretation of first-order formulas. Thus, it includes a 'sub­
stratum' of blank objects without qualities (the Domain) that get shaped up
via an Interpretation function plus a provisional mapping of the variables to the
objects (Assignment function). More concretely, here is a standard first-order
model:

M = (D,I,A)

where D stands for Domain, I for Interpretation, and A is the Assignment
function.

On the other hand, a propositional1 possible-worlds model is meant to rep­
resent intensional knowledge (where intensionality can be of the epistemic kind,
or generally modal, or deontic, or temporal ...). Thus, it will include a set W
of indexes (meant as possibilities, or temporal points etc ..), one (ore more)
accessibility relation(s) Rand a valuation V for the proposition letters:

M= (W,R,V)

Given that, here is our straightforward 'recipe' for creating our basic kit of
programs (cf. (9]): they will just modify, one at a time, the semantic para­
meters either of first-order models or of possible-worlds models. In a slogan: if
states are models of some kind and programs are instructions to modify them,
then a first obvious constraint on the possible range of instructions consists in
'parametrizing' them along the states semantic parameters. We will see in the
next sections that some relevant dynamic systems on the market fall within
this paradigm of Semantic Variations, including Dynamic Predicate Logic (cf.
Introduction) with its dynamic treatment of existential quantification.

We will call the variations of the semantic parameters of first-order models
'Tarskian Variations', while variations of the possible-worlds parameters will be
referred to as 'Kripkean Variations'. Next section will be devoted to Tarskian
Variations (while Kripkean Variations will be the issue of section 2.3).

2.2 First-order Variations

In this section we will present the idea of Semantic Variations for the case of first­
order models. The first paragraph will give a general description of Tarskian
Variations, without going into technical details. In paragraph 2.2.2 we will
illustrate the extra-logical motivations that support this policy, while paragraph
2.2.3 will be devoted to designing a formal system for Tarskian Variations.

1Variations of first-order possible-worlds models are much more complex; we will tackle
this issue in chapter 3.

2.£. First-order· Variations 15

2.2. l General description

As we said, the semantic parameters involved in a first-order model are basically
the Domain D, the Interpretation I and the Assignment A. Thus, we are now
after defining instructions that change these parameters.

Let us start with the Assignment. We will use the conventional notation 17
(historically coming from 148]) to designate the assignment-changing program.
Intuitively, its semantic clause will look as follows (the reader must wait until
paragraph 2.2.3 for a more formal presentation):

(77x)M = { all the models that differs from M at most in the
Assignment to the variable x}

It's easy to see that this is nothing but the most orthodox atomic program of
standard Dynamic Logic, coming from the informatic tradition: the so-called
(random) assignment, which is in fact an instruction that changes the semantic
parameter of Assignment (of objects to the variables).

A brief remark: what one often finds in the literature is rather a quantifier­
like treatment of the 77, which is then called to set the scope for a formula to be
processed. Typically:

[17xPx)M = {all the models that differ from Mat most in the
Assignment to x and that validate Px}

Now, in this simple case it is easy to guess that:

(17xPx] = (17x; Px]

(for the moment we will use the sequential composition counting only on the
intuitive definition of it that we have given in the Introduction. The reader will
find a precise definition of sequential composition for this 'tarskian variations' in
paragraph 2.2.3). Nevertheless, there are other quantifier-like treatments of 17 in
which this equivalence fails (cf. Chapter 3 for an example). Anyway, thorough
the whole dissertation we will consider 17 as an autonomous program and not
primarily as a quantifier. The reasons for this choice will become clear later.

Summing up, starting from a state M = (D, I, A}, 17 tells the processor to
go to a certain 'storage location' of the memory - say x - and change its content
according to the availabilities in the Domain.

Next, let us consider variation of the semantic parameter Interpretation. As
for the notation, we will use the greek letter µ to indicate the program that
changes the Interpretation of a given language; the semantic clause for µ will
intuitively amount to what follows:

[µJM = { all the models that differs from M at most in the
Interpretation of the signature}

16 Chapter 2. Semantic Variations

Therefore, µ changes 'properties' of individuals.

Finally, let us consider the variation of the semantic parameter Dornain, for
which we will use the notation: 8. Here is the intuitive semantic clause:

(CJ == M = { all the models that differs from M at most in the
Domain}

8 modifies then the 'context' for the interpretation of formulas.

2.2.2 Linguistic and Philosophical Motivations

Let us now say a few words on the utilisation of this ta.rskian variations in the
formal representation of Natural Language, within the new trend of the dynamic
conception of meaning. Recall that our initial claim was that the broadening
of Dynamic Logic outside the informatic influence makes sense in as much as it
copes with a general cultural demand. It's now time to begin demonstrating it.

We will start again with the random assignment. It has mainly two - linked
- applications.

First, it is a suitable tool for formalising indefinite descriptions like 'a wo­
man'. One of the traditional ways of representing such a description would be
by using Hilbert's e terms: ex : womanx is in fact a way of designating an
arbitrary woman within the domain (if there is such a thing). The big dis­
advantage of this approach, however, is that it doesn't work when two equal
indefinite descriptions, referring to two different objects, come out within the
discourse, like in 'a woman is watching you; another woman is listening to you'.
Without going into details, we simply remark that the typical semantics of e
terms would give us the same object for the two different women (cf. [27] for
an ample discussion). While if we read indefinite descriptions as processes of
pinpointing an arbitrary something - according to the dynamic ideology-, then
the random assignment can be used to represent the process. 'A woman' would
then be formalised with this two steps program:

1}X; woman x

This amounts to the following instruction to the processor: open an 'address'
within your memory, scan your universe and select the objects-women you find.
And no problem for the 'another woman': the processor is then supposed to
open a different address.

This very same feature of 1}, namely that it allows us to give addresses to the
thing we pick up in the Domain, plays a crucial role in the second application
of it to Natural Language. As we have already hinted in the introductory
chapter, 1} can be in fact successfully used for formalising in a compositional way
natural language texts containing anaphoras (including the so-called donkey-

2.2. First-order Variations 17

sentences)2 • Historically, this was one of the first applications of Dynamic Logic
to a dynamic analysis of meaning {cf. 143]). A trivial example:

A woman walks in. She is blonde

would have the following first-order translation:

3x (woman x /\ walks-in x /\ blonde x)

which is typically non-compositional, in that the translation of the first sentence
of the text above ('a woman walks in') is not a subformula of it, and the same
holds for the second sentence 'she is blonde'. On the other hand, using the
11 assignment and formalising the discourse in point as an instruction to be
processed, we get the following - compositional - translation:

11x; woman x; walks-in x; blonde x

As it is well-remarked in (43], compositionality is first and foremost a method­
ological principle. Yet, we agree with the prevailing ideology and acknowledge
its theoretical importance within a formal analysis of Natural Language. In­
terestingly, this principle is also playing an important role in the more recent
philosophical discussions, in as much as it contrasts another fashionable tend­
ency, namely so-called 'holism of meaning'; cf. for an ample discussion on this
issue (22].

Concerning the variation of parameter 'Interpretation', its application to the
formalization of Natural Language or, more generally, of pieces of the human
information processing, is even more natural and straightforward than in the
case of 17. The parameter Interpretation assigns properties to objects. Thus,
changing the Interpretation will amount to changing the properties of objects;
and it is very plausible and intuitive that something like this must happen within
the human elaboration of knowledge, or at least that something in the human
elaboration of knowledge can be understood or represented in terms of it. This
looks easier to digest than the commitment that human reasoning functions by
means of 'storage locations addresses' (= variables) and successive changes of
their content3 . By remarking this we simply want to stress that there is a great
difference among the two 'variations' we have been considering up to now: 1J
mainly models the use of our reference instruments, giving an account of how
we perform certain skills in speaking of things; on the other hand, µ directly
embodies a 'real change' in the way we picture the world.

More concretely let us make a few examples of the applications of µ. Gen­
erally speaking, a program that changes the parameter Interpretation can be

2 Roughly speaking, the principle of compositionolity says that the meaning of a complex
expression is a function of the meanings of its pans (cf. {38)).

3But note that using the informatic random assignment to represent some human intelligent
processes does not imply per se any commitment on the real nature of human mind and
cognition.

18 Chapter 2. Semantic Variations

useful for formalizing all the 'cognitive moves' that produce or are produced by
some metamorphosis of the current state of the world (or of the current picture of the world).

So, for instance, µ can be successfully employed for representing the imper­ative mode of Natural Language, where the processor is supposed to carry out
a modification of some sort. The command 'put the block on the table' can be codified as an instruction that leads the processor to a new state where (at
least) the interpretation of the predicate 'being on the table' has been changed. But as we said, µ. can also be used to account for transitions that are caused
by a change in the processor's picture of the world. As an example, we can think of the case when the processor is asked to incorporate into its picture of the world the answer to a question like 'who has the property P? Again, this cognitive instruction can be performed by changing the interpretation of the
queried predicate according to the answer to the question. Finally, the dynamic variation of the Interpretation could make it possible to formalize in a composi­tional manner natural language texts containing 'VP-ellipsis' (like 'Giulia reads Dante; Alessandro does it too'), which involve reference to changing predicates, similarly to individual anaphora.

Let us now consider the variation of the parameter Domain. It is quite easy to imagine that thP. Domain of reference can cho.nge a.long an information pro­cessing. As an example, we recall the 'context sets' for quantifiers as suggested in [75], that give an account of how different quantifiers in a linguis tic expression can range over contextually changing domains.

2.2.3 A system of Tarskian Variations
Let us now give a precise description of a dynamic system including the semantic
variations we have seen so far (cf. [14]).

The system for Tarskian Variations, TV from now on, will use a two-level language, producing a multimodal system in the usual style (cf. [46] and [42]). Thus, it will include a set of programs (7r1 , 7r2 .•.) and a set of (first-order) formulas {ip,1/J ...) , given some standard first-order similarity type. As for the procedural repertoire, we will have the standard boolean connectives for for­mulas and regular operations for programs, plus two 'switching operators' (one
'test mode' from atomic formulas to programs and one 'modal projection' from programs to formulas).
More precisely, we have:

TV Formulas :: = Pt1 - . . tn I -.cp I <p /\ 1/J I {7r}<p
TV Programs::= (cp)? I TJX I µ, I o I 7r1i7r2 I 7r1 U7r2 I ...,7r

This particular choice of operators will be discussed at great length in chapter 3.

2.2. First-order Variations 19

As one would expect, the semantics will match the formulas/programs fea...
ture of the syntax with a states/transitions structure:

2.2.1 . DEFINITION. [TV model] A TV model W consists of a family of models
or 'states' (D, I, A), where A is an assignment from variables into the domain D
and I is an interpretation function from predicate letters into denotations over
the domain. Notation for states: w, v, u, These models carry the following
'shift relations':

1. w =., v : w differs from v at most in its A-value for x
2. w = 1 v : w differs from v at most in its values for I
3. w =D v : w differs from v at most in its domain D

"In t his definition, we are only using standard tarskian models. We could
also allow more general domain shifts, however, which would give us the effects
of quantification over 'non-existent objects'.

T he truth clauses must be given by a simultaneous induction on programs
and formulas. Obviously, programs will be interpreted as sets of state trans­
itions over the set W (by means of an interpretation function [) as in 1.3.1),
while formulas will be evaluated at single states (by means of an interpretation
function [] as in 1.3.1).

2 .2 .2. DEFINITION. [Interpretation of TV programs] A TV program 1T is in­
terpreted on a TV model W as a binary relation on W, whose graph is as
follows:

1. [cp?)w = { (w, v) I w = v and v E [<p]w}
2. [17x)w = {(w,v) I w =., v}

3. (µ)w = {(w,v) I w =1 v}

4. (O]w={(w,v) l w=Dv}
5. (-i7r]w = { (w, v) I w = v and -du e W : (w, u.) e [7r]w}
6. [7r1j?r2]w = {(w,v} I 3u: (w,u.) e [7r1]w and (u,v) e (7r2]w}
7. [7r1 U 7r2]w = [7ri]w U [7r2]w

The reader should note how these clauses represent a precise technical instanti­
ation of the intuitive description of Tarskian Variations in the previous sections.
In particular, we want to draw the attention on the clause for negation, which
as we said will be discussed at great length in chapter 4: the DPL negation of
a program 1T takes the states from which 1T would fail if run. For this reason it
is called 'counterdomain' negation.

These clauses are recursively intertwined with the following ones for TV
formulas:

20 Chapter 2. Semantic Variations

2.2.3. DEFINITION. [Interpretation of TV formulas] A TV formula <p is inter­
preted on a TV model W as a subset of W according to the following clauses:

1. (Px1 ••• xn]w = {w = (D, I, A) E W I (A(x1) ... A(xn)) E I(P)}
2. (-it,o]w = { w E W I not w F 'P}
3. [t,oV'lf;]w = {w E WI w Ftp or w F ,P}
4. [(7r)t,o]w = {w E W I there is a v E W such that (w, v) E [7r]w and v E

[t,o]w}
The clauses 1-3 are totally standard (from ordinary 'static' first-order logic).
The clause 4 is very important, since the formula '{7r)cp' establishes a link
between the properly dynamic level of programs and the static level of for­
mulas. It should be clear that {7r) is here interpreted as an existential modality
'labelled' by the program 11': (7r)cp is true at a certain state w if running 7r from
w would produce at least a state v where cp holds.

A notion of Validity for TV formulas can be easily defined as follows:
2.2.4. DEFINITION. [Validity for TV formulas] A TV formula tp is valid if for
all TV models W it holds that [t,o]w = W.

Before switching to the next topic, we would like to give a few exa.xnples of
what one can express within this TV system. Therefore, we now list a number
of interesting formulas, not necessarily valid, that show the 'expressive' power
of the TV syntax. We will get back to some of this formulas in section 2.4, and
see if and when they are valid.

First of all, it would seem natural to have a principle e..'<pressing the relation
of the TV 11 with the static existential quantifier. Here is such a principle:

(TJX)cp H 3xcp

Concretely, this principle expresses the fact that ordinary first-order logic can
be embedded into our TV system. But, as we will see in paragraph 2.4.1,
this simple formula is not valid on TV models, but rather it calls for a strong
constraint on them.

Similarly, it would make sense to ask ourselves what would it be the static
counterpart of such modalities as (µ) or (~) (this would actually require second­
order logic).

Furthermore, one can look at purely modal principles, where the interaction
of different modalities is at stake:

(TJX)(TJy)cp H (TJY){TJX)cp
(µ){TJX)tp H (TJ:t)(µ)cp

(17x){TJx)cp H (TJx)cp

All these principles have an intrinsic interest, since they talk about relations
between first-order models. Thus, it also makes sense to check - again - under
which conditions they are valid, which we will do in paragraph 2.4.2.

2.3. Variations for Knowledge-updating 21

Finally, there are many trivial principles inspired by the standard 'static'
tradition that become intriguing in this dynamic context. For instance, it will
turn out that the TV negation does not quite behave as a static negation: in
chapter 4 we will see that, e.g., it is not the case that:

[-.7rj 7r] ...L

as one could expect.

2.3 Variations for Know ledge-updating

We will now demonstrate how to apply the policy of Semantic Variations to
Propositional Modal Logic. In the first paragraph we will give the background
motivations for doing this, while paragraph 2.3.2 will be devoted to the concrete
description of a system of Kripkean Variations.

2.3.1 T he question of Knowledge-updating

An important question for linguists and in general for knowledge representat­
ors is giving a semantic account of the updating of knowledge by a (human)
processor. Namely: how to model the fact that the processor learns new facts
about the world, and consequently updates or revises its mental picture of it.

Obviously, the dynamic framework in its cognitive interpretation (states =
mental states and transitions = epistemic inputs), where the word 'cognition'
is taken in its proper meaning of 'acquisition of knowledge' , is very appropriate
for coping with this question.

In fact, also the Tarskian Variations of the paragraphs above have some po­
tentialities for representing knowledge-updating, even though this was not their
original motivation. In particular, the programµ, changing the semantic para­
meter Interpretation, can express a process of this sort: the tarskian model is a
picture of the world at a certain stage of the information processing, and µ up­
dates it by changing the properties of its objects. This representation perfectly
fits within the 'constructive' tradition for modeling the knowledge-updating:
from a picture of the world - eventually incomplete but 'certain' at that stage
- to a different one, that the processor actually builds as a consequence of get­
ting new epistemic inputs. Examples from the literature include the Discourse
Representation Theory, that changes its 'discourse representation structures'
with new data (cf. [54]), the recent Dynamics of Theory Extension, updating
deductively closed theories with new formulas (cf. (28]), and in general systems
of databases updating.

An alternative, though based in a sense on the same conception ofknowledge­
updating, is to represent the flow of information via transitions between inform­
ation states in Kripke models for intuitionistic or similar constructive logics,
eventually using analogies from Dynamic Logic (cf. for example [66] and [10]).

22 Chapter 2. Semantic Variations

We will not pursue this approach here. Rather, we will focus on yet another
tradition, based on a radically different notion of knowledge-updating. Accord­
ing to this tradition, the process of knowledge-updating is primarily a process
of decreasing one's degree of uncertainty. Therefore, updating a stage of the
information processing amount to eliminating possibilities - that, due to lack of
information, are still open - from an epistemic horizon. This alternative to the
constructive approach is clearly exemplified - in a dynamic style - by the Update
Logic (cf. (70]) that we will examine in the next paragraph as an example of
Kripkean Variations.

A brief remark before going into an explanation of what we shall call the
'eliminative' approach to knowledge-updating; we think that both the construct­
ive and the eliminative viewpoints are singly insufficient to model the process
of knowledge-updating, since they cope with different aspects of it. Changing
one's image of the world is not the same as loosing a bit of uncertainty on it
(cf. [52] for an ample discussion of this point) . We will see in Chapter 3 how it
is actually feasible to intertwine the two perspectives within a single dynamic
system.

2 .3.2 Kripkean Variations

In section 2.2 we have explained the idea of semantic variations for the case of
first-order models. But, as we have said, the same idea is applicable in principle
to all truth definitions one can think of. Thus, we now take into account the
case of possible worlds models; dynamic variations on them will make it possible
to face the question of knowledge- updating.

Consider a possible worlds model for propositional 85. The relevant para­
meters in the truth definition for a formula cp include a set of possible worlds
W, an accessibility relation Rand a valuation 1/ for the proposition letters:

W,R, V f= cp

All these parameters can certainly be varied with appropriate .instructions. We
keep Rand V fixed and we modify W, reading 'classical' propositional formulas
as instructions for updating the universe of possibilities. This will be just the
Update Logic mentioned above.

Its language consists of the following programs, starting from a set of pro­
positional variables p E P:

UL Programs :: = p I rr1 ; rr2 I 7r1 U 7r2 I •rr I Orr

This language is evaluated in the following models:

2.3.1. DEFINITION. [UL model] A standard UL model U, given a set of pro­
positional variables P, is a set of possible worlds ~ p(P) (ordered by the total
accessibility relation).

2.3. Variations for Knowledge-updating 23

Following the general definition of dynamic models that we have given in
the introductory chapter, one should define a UL model as a subset of the set
of all the possible worlds models over P , namely as the set p(p(P)), carrying
the transitions as defined by the semantic clauses in what follows. We opt for
the definition above, substantially equivalent, only for the sake of simplicity.

Over the above models, programs will be interpreted as 'updating functions'
(epistemic inputs that make the processor go from one state/possible-worlds­
model to another):

2.3 .2. DEFINITION. [Interpretation of UL programs] A UL program rr is inter­
preted on a model U as a function from p(U) --+ p(U) satisfying:

1. (p]u(U)={wEUlpEw}

2. (-.rr]u(U) = U - ((7r)u(U))

3. (Orr)u(U)

= { ~ if [rr]u(U) =fi 0
otherwise.

4. [rr1; 7r2]u(U) = [rr2]uff1r1]u(U))

5. [rr1 U 7T2)u(U) = [rri]u(U) U [rr2]u(U)
From now on, we will mostly omit the index U. The idea of this definition is

clear: 'classical information' varies the semantic parameter 'W'; in doing so, it
discards possibilities, decreasing the degree of ignorance of the processor. On the
other hand, the modality 0 is an epistemic test of the current horizon. A close
connection with modal S5 may already be seen from the 'monadic translation'
first given in [6]. Thus, the general picture of information processing arising
here is that of factual updates interleaved with transient tests on successive
states of this process.

Note that in the system UL the 'static' part missing: UL syntax does not
have formulas. We have taken t his option only because it is the most common.
And it is easy to see that the language for describing UL states would be just
the language of ordinary Propositional Modal Logic, interpreted in the standard
way (we have alre.ady pointed out that UL states are just S5 modal models). In
other words, UL formulas would simply mimic UL programs.

This gives rises to a natural question: is it possible to define a notion of
validity for this 'mutilated' dynamic syntax? Namely: does the notion of 'valid
program' make sense? T he answer is yes, and we will now give one possible
definition of UL validity, in terms of 'fixed points':

2.3.3 . DEFINITION. (Validity for UL programs) A program 7r of UL is said to
be valid if, for all UL models U, and for all states of U in U, the following holds:

(rr]u(U) = U

24 Chapter 2. Semantic Variations

Thus, valid programs are the closest dynamic equivalent of static tautologies:
their peculiarity lies in that th.ey do not carry any new informational content.

Before concluding the present section, we would like to show the UL system
'at work', by demonstrating a few interesting things one can express in it.

Herewith, we will use another notion of validity, defined at a meta-level. The
reason why we want to do this is that the principles we want now to discuss are
identities, and the set of programs above do not contain propositions identities.

Therefore, we will say that a given identity (say, 1T1 = 7r2) is 'valid' if, in all
models, the graph of ?T1 is equal to the graph of 7r2 (namely: two programs are
equal if they have the same extension).

Thus, the following two validities support UL as a good candidate for mod­
eling knowledge-updating:

07T; ...,11" :/; 0

...,1T ; 07T = 0

Suppose 1T conveys an informational content of some sort (e.g. it stands for 'it
rains'), and the plausibility of these principles will become immediately clear!

On the other hand, the behaviour of UL negation can look surprising at first
sight. The following two principles are both invalid:

...,1T ; 1T = 0

1T ; ...,1T = 0

We will discuss these principles in Chapter 4.

2.4 Logical themes

We now want to list a number of possibly interesting technical facts and ques­
tions on both tarskian and kripkean variations (although we will ma.inly focus
on tarskian variations). In particular, the present section has two aims, that we
will pursue in parallel:

1. on the one hand, we will briefly hint at some possible research tracks one
can follow along the lines of standard first-order or modal logic;

2. more specifically, we will try to make clear that there are many 'degr ees
of freedom' in the Semantic Variations policy. In other words, there is no
unquestionable choice when changing a semantic parameter, and we -will
briefly show some alternative options.

We will use the principles that we have mentioned in paragraphs 2.2.3 and 2.3.2
as a guideline for th.is general discussion.

2.4. Logical themes 25

2.4.1 The choice of models 1: closure constraints

We will now examine one first degree of freedom when designing a TV model.
In doing this, we'll take our cue from one of the formula cited in 2.2.3, telling
us that first-order logic is embeddable into TV:

(*) (TJX)t.p ~ 3xt.p

We have already hinted at the fact that this principle is not universally TV valid.
The reason is that in the definition of TV models no special assumption is made
on the set of states; in particular, nothing is said about its being closed under
the relation =A, which means that, given a model Wand a state w = (D, I, A),
there can be x-variants of w (namely w' such that w' =Aw) that do not belong
to W. Therefore, in order to make (*) valid, a constraint has to be imposed on
TV models. They must have enough states (this definition comes from [42]):

2.4.1. DEFINITION. [TV models with enough states) A TV model W is said to
have enough states if it is closed under the relation =A.

Interestingly, one can find in the literature a static counterpart of TV models
without enough states (and, consequently, of the dynamic quantifier 17 inter­
preted on TV models): in [62), Nemeti proposes what we shall call 'generalized
first-order models', in which another semantic parameter come.Cl into play; a
generalized first-order model is in fact a quadruple (Ass,D,I,A), where D , I ,A
are the standard first-order parameters, while Ass is the set of 'available as­
signments', that has a crucial role in the semantic clause for the existential
quantifier:

Ass, D, I , A I== 3xt.p iff there is a A' E Ass such that A' differs
from A at most in the object it assigns to x and Ass,D,l,A' F= cp.

This same idea of reading the existential quantifier can be adapted to the TV
set-up, where 3xcp could be interpreted according to the following clause:

[3x<p)w = {w E WI 3w' E W: w =Aw' and w' F= r,o}

Note that the principle (*) would obviously be true for this particular reading
of existential quantification.

Nemeti actually proved that the set of formulas valid in these 'generalized
first-order models' is in fact decidable.

The same line of thinking also applies to UL models: in our definition (cf.
paragraph 2.3.2) a model for UL was defined, given a set of propositional vari­
ables P, as a subset of the set of possible worlds p(P) (ordered by the total
accessibility relation). Thus, an obvious closure constraint would require for a
UL model to te the set of possible worlds p(P). Interestingly, this would not
change the set of (fixed-point) validities (cf. Definition 2.3.3).

26 Chapter 2. Semantic Variations

2.4.2 The choice of models 2: correspondence

In this paragraph we want to briefly hint at the possibility of building a whole
'Correspondence Theory' for this Semantic Variations perspective, following the
lines of Correspondence Theory for standard Modal Logic ([4]). More specific­
ally we want to show how TV formulas can impose interest ing assumptions on
the 'information structure', i.e. on the structure of TV models. We will only
give a few examples, taking our clue once more from paragraph 2.2.3:

TJX; 1JX = 1JX This principle, calling into play only one modality, is already en­
coded in modal logic correspondence; it expresses in fact the usual 84
principles of Density (from right to left):

'v'A,A': (R.,(A,A')) ~ 3A"(R.,(A,A") A R.,(A", A'))

and 'Iransitivity (from left to right):

'v'A,A',A"(R.,(A,A')AR..,(A' , A")) ~ (R.,(A,A"))

TJX; 1JY = 1)y; 1JX This is a multimodal principle, expressing the following form
of 'confluence':

'v'A, A',A"(R.,(A,A') A Rv(A',A")) ~ 3A111(Ry(A,A111
) A

Ro, (A111
, A"))

1JX; µP = µP; 7JX Analogous to the principle above; notably, it demonstrates
the 'independence' of variable and predicate shifts.

1J = (U.,evar11x)" This principle, which we have already encountered in our
discussion, expresses the fact that global shifts must be decomposable
into finite sequences of local shifts.

Note that among these ' correspondences', some are universally valid on TV
models (like, for instance, Reflexivity and Transitivity of the R: relation), while
those involving existential quantifiers call for specific constraints. For a general
theory of 'multimodal correspondence' see for instance [67] and [71].

2.4.3 The choice of S tates: kinds of Assignments

Here we want to focus on yet another range of open options when designing
TV models. this time concerning the parameter Assignment. In our definition
of TV models the Assignment was just the standard one from first-order logic:
a function Var ~D. But the current literature already offers us some other
kinds of dynamic models, that could be easily adapted to the TV set-up, where
the Assignments have some P'eculiarities. We will make two relevant examples.

First, one can follow, e.g., Groenendijk, Stokhof and Veltman (cf. [45])
and opt for partial Assignments. We will see in more details what are the key

£ .. { Logical themes 27

consequences of this option (cf. Chapter 3). For the moment, we only want
to hint at the fact that partial assignments possibly provide us with a further
'direction' in which the information can grow: getting new information about
the world can force the processor to 'light' a new variable which had not been
assigned yet.

A second possibility can be found in a recent work by Hollenberg and Ver­
meulen (see (73)). There, a dynamic system is defined (called DPLE for Dynamic
Predicate Logic with Exit Operators), whose syntax corresponds to Dynamic
Predicate Logic except for the way it expresses existential quantification. This
syntax is interpreted on a particular class of models, that we shall call Stacks
models. Roughly speaking, given a Domain D and an Interpretation I, a Stacks
model will be a set of 'stacks' assignments over D, where a stacks assignment
is a function assigning to each variable a stack, namely a sequence d1 •.• d,,. of
objects in D. For a stacks= d1 ... dn, the element dn will be called the top of
s. Intuitively, existential quantification over a first order form•1la <p corresponds
there to the following instruction, starting from a stack s: add an arbitrary
object at the top of s, check if <p holds of this object., and in this case throw
the object away getting back to the original s; fail otherwise. Note that, as the
authors remark, ordinary assignments (being them total or partial) are just a
special case of stacks assignments. The important point, that shows bow the
dynamic set-up possibly allows a. more fine-grained reading of classical notions,
is the following: the formal instantiation of the instruction above makes it pos­
sible to de-compose the existential quantifier (which now reads: [.,ip].,, where [:r:
stands for 'add an arbitrary object at the top of the stack assigned to x', and
dually]., stands for 'throw away the object at the top of the stack assigned to
x'). This decompositions allows the authors to reduce the number of variables
used for performing a program with respect to more standard formalisms (the
moral being: the number of necessary variables depends a lot on the choose of
programs constructs).

2 .4.4 The choice of programs 1: Local vs Global Vari­
ations

Herewith we want to demonstrate a further degree of freedom in the design of
Semantic Variations, this time concerning the very kit of variational programs.

It's easy to see that there is a striking difference between 1JX and µ.: the
random assignment modifies the parameter Assignment only in the variable x,
while µ changes the parameter Interpretation entirely. This suggests us the
possibility of making a finer distinction, between 'global' and 'local' semantic
variations. Along this distinction, it makes sense to conceive a global variation
of the parameter Assignment, that modifies all 'storage locations' at once. This
global variation of the Assignment occurs in logic with the so-called 'universal '
or 'existential closure' of complete formulas, affecting all free variables in them.

28 Chapter 2. Semantic Variations

Natural Language provides us with other interesting examples where a similar
process goes on (cf. the 'unselective binding' of Lewis (57]). Analogously, one
can vary the semantic parameter Interpretation locally, up to a certain predic­
ate. This is very plausible for many representational tasks, including the above
example of questions (what has the property P? o nly needs to take into account
P-variations of the current picture of the world).

It should be noticed that global variations of a semantic parameter can
be decomposed into local variations. Using the Kleene star (that intuitively
tells the processor to iterate a process) we get the following equivalence for the
Assignment variation:

TJ = (Uzev AR 1JX)

Notably, the same local/global distinction could be applied to the Kripkean
Variations set-up as well; in particular, epistemic tests could be restricted to a
single predicate P (in which case they should search for open possibilities only
within the ?-variants of a certain reference point) .

2.4.5 T he choice of progra m s 2: 'up' and 'down' Vari-
ations of t he Domain

Another degree of freedom comES out in the variation of the parameter Domain.
The instruction 'change the Domain of Interpretation' can naturally be split in
two sub-instructions, along with the logical relations of 'being a submodel' and
'being a model extension'. Therefore we get:

• [.J.o] = {(w,v} I w 2 v}

• [t oJ = { (w, v} I w ~ v}

this would allow us to perform a more subtle 'dynamics of contexts', and make
the set-up more expressive for talking about individuals.

Interestingly, this specification of the o operator would also make the set of
validities grow. In the Modal Logic for the relation '.j. o', for instance, both S4.l
and S4.2 would become valid, since the submodel with domain { w} would be
an endpoint.

2.4.6 T h e ch oice of op erators

\Ve have seen how many options are available when designing TV models as well
as TV basic programs. Here we only want to point out that even more options
are a~lable when choosing the procedural repertoire, namely the dynamic
connectives. We do no want to go into details, since this issue will be pursued
at great length in chapter 4.

Chapter 3

Combining Variations

In this chapter we will tackle the question of combining different dynamic sys­
tems. First, we will defend the legitimacy, so to speak, of such a question.
Afterwards, we will take as our case study the - truly controversial - question
of blending within one single system two instantiations respectively of Tarskian
Variations and of Kripkean Variations, namely Dynamic Predicate Logic and
Update Logic. A few possible approaches to this problem will be discussed.

3.1 The problem

3 .1.1 Many things dynamized

In this paragraph we want to defend the legitimacy of the general issue of com­
bining (radically) different dynamic systems. Our point is articulated as follows:
many of the dynamic systems that has been recently designed within the 'new
deal' of Dynamic Logic (cf. Chapter 1) have specific linguistic (or knowledge­
representational) motivations. Often, they were born to model one of the many
(virtually infinite) aspects of the 'human information processing'. As we have
pointed out in our introductory chapter, this is the key motive that support the
current revival of Dynamic Logic. But then, trying to merge different formal­
isms for tackling different representational problems is a very natural task, just
a complementary step to gain a better understanding of cognition: different
aspects of the human information processing are bound to interact, bringing to
the fore new features and new questions.

Before examining our case study, we want to briefly point out some actual
issues - mainly from Linguistics - that have been approached by dynamists
(some of these examples we have already met):

29

30 Chapter 9. Combining Variations

representation of anaphora - we have already seen how the system Dynamic
Predicate Logic ([43]) makes it possible to give a compositional represent­
ation of anaphoric bindings;

representation of epistemic modalities - Update Logic (cf. [70]) accounts
for the non-monotonicity of epistemic modalities in Natural Language;

representation of change of epistemic preferences - the change of epi­
stemic preferences has been accounted for in terms of change of certain
accessibility relations (note that this is a form of Kripkean Variations),
which produces a 'preferential updating' (cf. [15]);

representation of change of 'focus' - the change of the interpretation of
pronouns has been formalized in dynamic terms by using dynamic models
where states are 'contexts' in which account is given for many factors that
play a role in the process of pronouns instantiations - in particular, the
attention of focus of the processor (cf. [53]).

3.1.2 Our case study: DPL + UL

We have seen how many dynamic systems on the market account for how many
relevant aspects of the human information processing. As a consequence, we
have argued that the general issue of combining dynamic systems constitutes
an important step toward a possible more efficient formal paradigm of human
intelligent skills. We will now focus on a case study that well fits with the general
architecture of the present work: we will discuss at great length the issue of
blending a fragment of Tarskian Variations (DPL) with a fragment of Kripkean
Variations (UL). The present paragraph will be devoted to demonstrating the
particular motivations that underlie this fusion. In doing this, we will also try
to defend a slight shift with respect to the most commonly accepted standpoint.

In [45], that represents one of the more sophisticated approaches to this
blending operation, the authors sort out a distinction between two kinds of
information. First, they reckon, there is information about the world, namely
information on how the world is like. Second, there is discourse information,
namely information on how to use our 'linguistic resources', so to speak, like
anaphoric bindings. Thus, given the fact that there are (at least) two important
types of information, the question of fusing DPL and UL becomes crucial in as
much as, according to the authors of [45] , while random assignment of DPL
accounts for an important kind of discourse information (namely, as we have
seen, information on how to handle anaphoric links), UL models the updating
of information about the world. Thus, combining the two systems would be a
way of blending these two fundamental kinds of information within the same
formal set-up.

3.1. The problem 31

As we said, the point of view we are trying to suggest is slightly different. We
certainly acknowledge the distinction between world and discourse information,
as well as the fact that they play a central role respectively in DPL and UL. But
besides this, we should like to stress that this distinction is transverse to the
distinction between tarskian and kripkean variations. In particular, there seems
to be a tacit assumption pervading the common opinion on this matter that
there is a strict relation between non-eliminativity and discourse information
from one hand and non-continuity and information about the world from the
other. We do not think this is true; take for instance the tarskian program
µ, changing the parameter 'Interpretation': we believe that the informational
content it conveys is not of the 'discourse' kind, for it tells the processor to
update (yes, update) the description of the (current) world. On the other hand,
we will see how it makes sense to have tests on the 'active' assignments within
an epistemic horizon, which do not check information about the world, but
discourse information.

Our claim is that the two perspectives (namely the tarskian one and the
kripkean one) should be intertwined just because they account for two import­
ant modes of processing the information (of both kinds), namely the extensional
mode (tarskian variations) and the intensional mode {kripkean variations). A
great deal of classical philosophical literature supports the desirability of the
interface cxtcnsional/intensional when coping with knowledge-representation
problems, therefore we will not defend it any further.

3.1 .3 Constraints on the combination
We now want to make more clear what 'combining' DPL and UL should mean.
More concretely, we want to single out which constraints are called to 'discipline'
the combination. There are basically three kinds of constraints:

1. first, a possible requirement concerns the design of the new system, that
should look as much as possible as the 'sum' of DPL and UL; in other
words, according to this constraint, the system DPL + UL should truly
fuse the architectures of its ingredients;

2. second, several requirements may be imposed on which features of the two
components the resulting system should inherit; it is commonly accepted
that DPL +UL should inherit both the DPL reading of existential quan­
tification (so as to allow a compositional treatment of anaphora) and the
UL 'non-monotonic' account of epistemic modalities. More concretely, the
resulting system should keep the DPL semantic clause for T/ while also in­
terpreting the 0 in such a way as to maintain the following UL validities
(cf. paragraph 2.3.2):

Orr; -.71" "# 0

32 Chapter S. Combining Variations

•7r ; 07T = 0

3. furthermore, other constraints can be imposed on which should be the
idiosyncratic features of the blended system; for instance, since DPL +UL
expresses both quantification and modality, it should maybe say something
interesting on the vexata quaestio of individuals and modality.

Among these constraints, only the second one is generally considered to be
inescapable1 , so to speak, while the others depend much about one's taste.
We can now examine the technical reasons that make this blending (for the
moment only constrained by requirement 2) quite difficult to be carried out.

The syntax of the system DPL + UL will be the syntax of DPL enriched
with the UL operator 0. Problems arise when trying to define suitable semantic
clauses for the well-formed programs of this language (where 'suitable' means
conform to the intended meaning of atomic programs and of operators as it
emerges from DPL and UL). The standard explanation of these problems (as
presented for instance in [44]) is that they are due to the fact that DPL is
non-eliminative and continuous while UL is non-continuous and eliminative. In
other words, they are dynamic in two different senses. It is easy to check that
this is true: the 17 of DPL is clearly non-eliminative, while the intensional 0 of
UL gives rise to non-continuous programs.

Alternatively, and according to the shift of perspective we have suggested in
paragraph 1.3.4, one can put the matter in the following terms; the problem with
DPL + UL consists in that their intended models have a different granularity:
while DPL programs perform transitions over first-order models, UL programs
must be interpreted over sets of models of any kind (of first-order models in
this case). From this point of view, UL is non-eliminative just like DPL, in
as much as it is a dynamic system; namely, if we consider the states of a UL
model as intensional states, or more concretely as possible-worlds models, then
processing a UL program p (propositional variable) from any UL state s will
lead us to another possible-worlds state s', different from s just like a state t of
a model for tarskian variations may differ from t' if (t, t') E [17x] M. Even so,
there is no doubt that UL is 'set-theoretically' eliminative, since its programs
transform the states of its models into subsets of them; and this feature plays
an important part in the formulation of the semantic clauses for UL programs.

We will stick to the latter perspective and see how this mismatch of granu­
larity can be handled. The problem here is to clarify in which kind of models
the programs of UL + DPL can be interpreted. Intuitively, the system we get
by fusing UL and DPL should be a (dynamic version of) Modal Predicate Logic.

1 Nevertheless, it must be noticed tha.t it ma.kes perfect sense, for instance, to design a.
dynamic version of Modal Predicate Logic tha.t does not read existential quantifiers as random
~ignments; as an example, think of a quantified version of Update Logic, where the syntax
is JUSt the syntax of Modal Predicate Logic, and formulas a.re rea.d as updates of successive
epistemic states ... (cf. {30)).

9.1. The problem 33

Thus, the reason would call for an interpretation of the programs of this new
system as transitions over first-order possible worlds models. In other words,
'lowering' the granularity of UL models goes against the intensional nature of
the 0 operator. The correct policy seems to consist in 'lifting' the granularity
of DPL models, making their states intensional. Unfortunately, this task is not
trivial at all. Many expressive complications occur, since some DPL semantic
clauses are formulated by looking at the 'pointwise' behaviour of programs.
Thus, for instance, it becomes impossible to treat the semantic clause for neg­
ation (cf. [14]), and at the same time giving a definition of logical entailment
gets problematical (this was in fact the first obstacle in the enterprise to be
pointed out in [44]). We will see in chapter 4 that all these troubles depend
upon a same basilar point. For the moment, we will give the reader a flavour
of the issue by taking into account the question of negation.

Just for the sake of clarity, we stress once more that the models for DP L + UL we are thinking of are sets of first-order possible-worlds models (namely
sets of models for Predicate Modal Logic), and we want to interpret programs
of DPL + UL as transitions over them.

Let us first of all try to adapt the DPL semantic clause for negation to this
new set up. We would get something like this, for M a model for DPL + UL
and W a state of M (i.e. a first-order possible-world model):

[-.1T]MW = {w E WI [7r]{w} = 0}

Obviously this semantic clause .is purely extensional, in as much as it looks
at the 'pointwise' behaviour of programs; in other words, this clause cannot
work when intensional operators like the UL 0 are involved (its inadequacy is
highlighted by the fact that -.07r would collapse according to it on -.1T).

Let us then t ry with the UL clause for negation, formulat.ed in terms of
set-theoretic complement, and see if it fits this enlarged frame:

It's easy to guess that this is not appropriate either, since it heavily uses the
'set-theoretic eliminativity' of UL programs, that fails in the DPL case. An
example of an incongruity that we would get by exporting this clause in DPL
+UL is:

[-.(77x; Px); (71x; Px)]M W "# 0

that does not seem to be acceptable.
Summing up, it seems clear that more structure is needed in the models

for this Dynamic Modal P redicate Logic. Next section will be devoted to the
examination of two possible solutions that have been recently proposed.

34 Chapter 3. Combining Variations

3.2 Dynamic Modal Predicate Logic

3.2.1 General features

Let us start with a brief discussion of the ground motives that support this
particular solution to the question of merging DPL and UL.

Clearly, combining DPL and UL amounts in a sense to giving a dynamic
semantics for a system of Modal Predicate Logic, generally conceived for the
moment as a first-order logic with a modal operator. It is well-known that
already the classical semantics for Modal Predicate Logic is at least problem­
atic. More precisely, the design of such a semantics is not uniquely determined,
for quite a few alternatives are available (for a detailed presentation of these
alternatives cf. for instance [40] and [20)). In particular, one has to choose if
the Domain of interpretation must be the same in all possible worlds, and if
the Assignment function must behave in the same way in all possible worlds.
This latter choice has many interesting consequences; roughly speaking, a fixed
Assignment function will treat the variables of a language as 'rigid designators',
and as a consequence, the modal operators as de re operators, while a non-fixed
one (or, as we shall say, a world-relative one) will account for the so-called de
dicto intensional attribution. This as far as 'static' Modal Predicate Logic is
concerned. Now, when delineating a dynamic semantics for MPL, one has to
face in a sense with the same dilemmas: if programs are transitions over sets of
states = first-order possible worlds models, how are the Domains in this states?
and how does the Assignment function behave? Concerning the Domain, it is
usually taken to be fixed, mainly for the sake of simplicity. The option on the
Assignment remains open. The system we are going to present, DMPL, takes
a clear position on this option: its modality will be a 'de re' modality, since it
will range over fixed Assignments. Thus, the UL 0 will range in DMPL over
alternative states of affairs - alternative Interpretations -, given a fixed Assign­
ment of objects to the variables. On the other hand, the DPL ri will modify
Assignments, according to its original interpretation.

3.2.2 Technical outline

We will give a sketched description of the system DMPL (for Dynamic Modal
Predicate Logic), as presented in [35] (see Appendix A for a detailed presenta­
tion).

The information states of a model for DMPL should be seen as sets of first­
order models, all sharing the same Domain, and when a modal program is
processed it will look at the equivalence classes in this sets modulo the semantic
parameter Assignment. But let us give a brief description of the system.

First, here is the syntax of DMPL2 :

2for the sake of simplicity, we do not consider the 'static' part of the system; yet, an

:J.2. Dynamic Modal Prcdacutc Logic

DMPL Programs :: = Pl1 ... t,. I 7/J" I 7r1; 7r2 I 7r1 U 7r~ I
-.71' I 07r

Hert• is a definition of a DMPL mod(•!:

35

3.2.1. DEFINITION. IDMPL model] A DMPL model M consistsofasctoffirst­
order po&iible-worlds models iv owr a given Domain D (sirH'e the domain is
fix<'li, we will sometimes indicate the possible worlds as couples (s, J), where s
is an Assignment over D and I is an Interpretation). Over this models, DMPL
programs will be interpreted as transitions over the Ws, namely as subsets of
MxM.
As we have explained, the modal operator <> will test altE>rnative Interpreta­
tions for a fixed Assignment, and, consequently, classical first-order formulas
will eliminate possibilities, i.e. change the set of active Interpretations for a
fixed Assignment. On the other hand, the 11 will vary Assignments. Thus, the
processing of a DMPL program 7r from a state 1V should act pointwise on the
equivalence classes modulo Assignment in lV (that constitute the appropriate
context for reading the modality), and transform them into other sets of first.­
order models. In other words, it should transform the single (U, s), where U is a
set of Interpretations and s is an Assignment, into other sets of possible worlds.

To solve the expressive difficulties that this raises, we first define a function
that, given a couple of Assignments (s, u), takes as its argument a sPt of In­
terpretations and transforms it into another one. This is a way to show how
the two dimensions of variations (variation on sets of Interpretations and on
Assignments) are active at the same time. The proper interpretation function
for DMPL programs will be easily retrieved from this function.
3.2.2. DEFINITION. [Ass/Int function]

1. (Rt1 · · · tn)~(I) = {i E J 1 s = u and M, it=. Rt1 · · · tn}·
2. [7r1; 7r2]~(I) = standard
3. [7r1 u 7r2]~ (I) = standard
4. [-,7r]~ (I) = { i E J 1 s = u and there is no r with i E (7r):(J)}.
5. (77x)~(I) = {i EI I u = s(xld) for some d EM}

= { ~ if u = s(xld) for some d E M,
otherwise.

6. (07r)~(I) = {i EI Is= u and there is an r with (7r]:(J) ::/; 0}

= { ~ ifs= u and there is an r with [7T];(I) ::/; 0,
otherwise.

extension to a Dynamic Logic in tile standard sense as suggested in paragraph l.3.1 can be trivially performed.

36 Chapter 9. Combining Variations

A program rr is then assigned the following transition relation over a DMPL
model M:

3.2.3. DEFINITION. [Interpretation of DMPL programs] Given a DMPL model
Mand a DMPL program rr, the following holds, for any W, W' EM:

(W, W') E (rr]M iff W' = {(s',J') I 3(s,I) E W : [rr]!, (I)= J'}

Let us briefly comment on. Given an Assignment s, the interpretation of first­
order statements Rt1 • · · tn simply eliminates Interpretations I (or, in other
words, possible worlds (s, I)). Thus, providing the processor with new inform­
ation about how the world is like, it eliminates wrong possibilities, changing in
this way the context for the further knowledge elaboration.

Concerning the sequential composition and the negation, we first remark
that they both truly intermix the features of their matches in DPL and in UL.
Concretely, the DMPL clause for sequential composition blends the 'functional'
character of the UL clause (ta1ung sets of Interpretations as basic entities, and
being in this way just function composition as far as Interpretations are con­
cerned) with the 'relational' character of the DPL one (looking at the pointwise
behaviour of Assignments, and therefore amounting to relational composition).
On the other hand, DMPL negation performs as boolean complement (in the
UL style) along the dimension of the parameter Interpretation, once more acting
on sets of Interpretations, while it looks at the Assignments pointwise.

The clause for "fJ is at heart the same as in DPL: it makes the whole machinery
(which is now more structured than in DPL, but which still contains as its atoms
plain first-order models with plain Assignments to be varied) change the value
of a certain register.

The clause for O checks open possibilities in the submodels of an information
state (possible worlds model) with fixed Assignments. Thus, again, it is in a
sense the same as in UL, since it performs a test on an epistemic space, that is
in this case a set of alternative Interpretations.

3.2 .3 Pros and Cons

Let us now discuss advantages and disadvantages of DMPL, starting from the
advantages.

First, we should stress the very essential feature of DMPL, namely that it is
a clear combination of two different systems (representing two different styles of
dynamization) that intertwines their respectives hallmarks. In fact, the original
motivation of Dynamic Modal Predicate Logic was first and foremost a technical
one, since at that time it was not clear if and how a blending of 'eliminative'
updates with 'constructive' programs meeting the second constraint above was
formally possible. From this point of view, DMPL gives a positive answer, by
performing this blending in such a way that the two ingredients remain well
visible and yet are mixed together. How effectively this blending works can be

S.£. Dynamic Modal Predicate Logic 37

measured by looking at the notion of entailment for DMPL, that was originally
marked (cf. (44]) as one of the more thorny points in the performance of the
fusion. The common schema of the definitions of entailment in UL, DPL and
DMPL is as follows:

7r1 entails 7r2 if for all states W n2 is satisfied by (n1)W

where the notion of 'satisfaction' is the variable that gets a different instantiation
in every set-up. Our claim is that the DMPL satisfaction clearly combines its
counterparts in UL and DPL. Concretely:

3.2.4. DEFINITION. [Satisfaction in UL] A UL program n is satisfied by the
state W if it holds that:

if w E W then w E (n)W

In other words, since UL is eliminative, W satisfies n if (n]W = W. On the
other hand:

3.2.5. DEFINITION. [Satisfaction in DPL] A DPL program 1T is satisfied by a
state w if it holds that:

3v: v E (7r]w

Finally, here is the DMPL definition, that follows the UL format concerning the
parameter Interpretation, while conforming to DPL as far as the Assignments
are concerned:

3.2.6. DEFINITION. [Satisfaction in DMPL] A DMPL program n is satisfied by
a state W if it holds that:

if (s, I) E W and i E I, then 3u: i E (n]~I

The second advantage of DMPL comes in a sense from static Modal Pre­
dicate Logic, in that it lies in the intrinsic interest of 'de re' modalities. Yet
we must say that 'de re' modalities possibly acquire a peculiar flavour within
the dynamic framework. In particular, the interpr.etation of dynamic programs
as epistemic inputs (where by 'epistemic' we mean conveying information of
any sort, being it about the language or about the worlli) gives the dynamic de
re modality of DMPL its idiosyncrasy, so to speak. For those who know the
old querelle on quantified modalities (cf., for instance, [65]), it will be easy to
guess that this peculiarity of the DMPL <> will be also the reason of the main
disadvantages of this system. But we will deal with this point in a little while,
and get back now to the possibly positive features of DMPL. Concretely, we
will give an example of how its modality can be used in the representation of
human information processing.

As we have seen, the modality of DMPL tests open possibilities (= open
alternative Interpretations), given a fixed Assignment. Thus, let us suppose
that the variable x has been 'lighted' for talking about a woman: 11x; woman x.

38 Chapter 3. Combining Variations

More precisely, let us suppose our processor is trying to guess who this woman
is, by getting hints from another speaker. A typical hint could be 'she is blond',
that, in our dynamic representation, would be sequentially processed as follows:

T/ x; woman x; ... ; blond x; ...

But one can also imagine a hint like: 'she cannot be angry' (since she is ex­
tremely well-tempered), that typically represents a 'de re' modality applied to
an indefinite individual. In symbols:

11 x; woman x; ... ; blond x; -iOangry x

In this sense, de re modalities are properties of 'individual concepts', and do
convey an informational content, being more than simple epistemic tests.

The disadvantages of DMPL we can think of are all linked to this de re
nature of its modality. Thus, again, they are not proper of the dynamic con­
text, but rather they come from static Modal Predicate Logic. First of all, the
'de re' modality has the disadvantage of being philosophically controversial (we
trust that even our above trivial example on the 'essentially' peaceful woman
would drive many philosophers mad ..). We will not pursue this issue here (but
see Chapter 5 for an ample discussion). Second, also for those who acknowledge
their role within Natural Language, 'de re' modalities are certainly more mar­
ginal (i.e. statistically less used) than their 'de dicto' counterpart. In particular,
as it is well known, fixed assignments do not allow us to cope with identities
(since they make the statement <>s = t collapse on its dual Ds = t).

3.3 An alternative: t he system GSV

We will now present an alternative recipe for combining DPL and UL: the system
recently designed by Groenendijk, Stokhof and Veltman (cf. for instance [45]),
which we shall call for short GSV.

3.3.1 General features

The system GSV is more than a simple 'addition' of the UL modality to the
set-up of Dynamic Predicate Logic. Rather, it should be seen as a dynamic
version of Modal Predicate Logic, that does keep the basic motivations of DPL
and UL, but is radically different in its technical structure (in other words, the
first of the constraints in paragraph 3.1.3 is not fulfilled here).

The first fundamental feature of GSV that we want to stress is that it makes
a different choice concerning the interpretation of its modality, which does range
over alternative Assignments too. Therefore, we would be tempted to say that
the GSV modality is a 'de dicto' modality; yet, this would be quite imprecise,
since the very peculiarity of the system is that it is fine-grained enough to cope

.'J.S. An alternative: the system GSV 39

both with a 'de dicto' and with a 'de re' reading of the<>. Thus, before describ­
ing GSV, we will say a. few words on how this double reading is possible, trying
to make it clear that the reason does not have much to do with the dynamic
character of the semantics. More concretely, we will first briefly describe a static
system, that we shall call 'static GSY' , that already brings to the fore the fea­
ture of (dynamic) GSV that allows a very powerful formalization of epistemic
modalities.

The synta.x of static GSV is simply the syntax of Modal Predicate Logic.
The models of static GSV are the models of Modal Predicate Logic, with fixed
Domain and World-relative Assignments (i.e. a model W is a set of first order
models wall sharing the same Domain D, but not the same Assignment). The
semantic clauses for well-formed formulas of GSV are standard. The peculiarity
of the system, linked to the fact that it is interpreted over World-relative As­
signments, lies in the clause for the existential quantifier, that reads as follows:

W, w I= 3xcp iff there exists ad E D such that Wlx/dJ, w[x/dj I=
cp(x)

where w[x/d], for w = (D, I, A), is equal to w except for the fact that its
Assignment (say, A[x/d]) assigns the object d to the variable x, and W[x] is
just {w[x/d] I w E W}. ·

Obviously, this semantic clause does not differ from the usual one - usual at
least when Assignments are fixed - in which the W[x/ d] does not show up, if the
formula cp in the scope of the quantifier does not contain modal operators. On
the other hand, if the formula is a modal one, then the difference becomes clear.
In order to show the advocated advantages of this difference when applying
the formalism to the analysis of Natural Language, we will just summarize an
example from [45}. Consider the following discourses:

1. There is someone hiding in the closet who might have done it.

2. There is someone hiding in the closet. He might have done it.

Intuitively, they can mean something different3 . Shortly, the first discourse
seems to call into play a 'de re' modality (saying that a particular individual
that has the property of 'hiding in the closet' has also the property of 'possibly
having done it'), while the 'might' in the second has a 'de dicto' flavour.

Here are the corresponding standard formalizations:

1. 3x(Qx A OPx)

2. 3xQx A <> Px

It is easy to see that these two formulas would be equivalent in a standard
Modal Predicate Logic set-up with Fixed Assignments models (since the second
formula would collapse on the first). On the other hand, the interpretation of

3 a!tbougb maybe the difference is not as self-evident as the authors claim in [45).

40 Chapter 8. Combining Variations

the existential quantifier as in static GSV makes the logical equivalence between
1 and 2 fail· the reason of this 'success' is that the modality gets a 'de re' reading
when insid~ the scope of an existential quantifier (since the existential quantifier
'resets' the relevant registers, say the xs in all possible worlds, on the same
value) , and a 'de dicto' reading when outside, according to the free assignments
of the model. From another perspective, we can say that static GSV, because of
its models with World-relative Assignments, interpretes the terms as individual
concepts when outside the scope of a quantifier, and as individuals when inside.

3.3.2 Technical outlin e

Let us now examine the system GSV, that as we said, can be seen intuitively
as a dynamic counterpart of the static GSV above4

•

The syntax of GSV is basically the same as the syntax of DMPL, except for
the fact that it does not allow boolean choice (the reason of this will be soon
clear):

GSV Programs:: = Pt1 ... tn I T/X I n1; rr2 I • 7r I Orr

The semantics is more structured than the DMPL semantics. The Domain
of a GSV model, again, is fixed. But the atomic states (that will compose
proper intensional states) are here partial, including an Interpretation over D
(the Domain) and a partial Assignments of objects in D to the variables. Since
the GSV O is supposed to have a wider range than its DMPL companion, the
expressive difficulties of the blending cannot be solved by distinguishing the
level of Interpretation and the level of Assignment. Rather, the GSV stratagem
consists in defining an extension ordering on atomic states, that allows one to
keep track of the effect of programs on them (cf. the notion of 'local truth' in
Chapter 4). Let us see how this stratagem is performed. The basic idea here
comes from [72].

3.3.1. DEFINITION. [Referent system] A 1·eferent system is a pair (n, r} where
n is a natural number and r is a partial injective function from Variables into
n.

According to [45], given a referent system (n, r}, we will refer to the natural
numbers smaller than n as the pegs of it.

3.3.2. DEFlNITION. [atomic state, state, model] Given a Domain D, an atomic
states is a quadruple (n, r, A, I}, where (n, r) is a referent system, A is a function
from n to D and I is an interpretation over D. A state - or alternatively
'information state' - S is a set of atomic states sharing the same referent system.
A model .M is a set of information states.

4 the relation between static GSV and GSV could be made precise by using static GSV for
expressing pre- and post-conditions of GSV. We will not pursue this topic here.

3.3. An alternative: the system GSV 41

The use of referent systems permits to define the following extension ordering on
atomic states (as the authors point out in [45], this ordering would be difficult
to define without using pegs, unless one accepts to give up the possibility of
re-using a quantifier).

3 .3 .3. DEFINITION. [Extension ordering] Given two atomic states s = (n, r,
A , I) and s' = (n', r', A', I') , s' is an extension of s (in symbols s :5 s') if the
following conditions hold:

1. n :5 n'

2. Dom(r) ~ Dom(r')

3. \:/x E Dom(r)(r(x) :5 r' (x))

~- \:/n E Dom(A)(A(n) = A(n'))

5 . I= I '

Notation: ifs= (n,r, A,I), s[x/d] is the atomic state (n + l,r' , A',1) where
r ' (y) = r(y) for all y #- x , r' (x) = n , A' = AU { (n, d) } . Similarly, S[x/d] =
{s[x/d] I s ES}. Given that, here are the relevant semantic clauses:

3 .3.4. DEFINITION. [GSV semantics] A GSV program 7r is interpreted on a
GSV model M as a function from M to M, satisfying the following clauses:

1. [P(ti ... t,..)]S = {s ES I (A(r(t1)) . .. A(r(t1))) E I(P)}

2. [rr1 ; ?T2]S = [7r2] ([7r1]S)

3. [ryx: 7r]S = Udev[Pt1 .. . P,..]S[x/d]

{
s if[7rDS #- 0 4· [On]S = 0 otherwise.

5. [-.?r]S = { s E S I -.3s' : s :5 s' and s' E [7r]S}

3 .3 .3 Pros and cons

As in the case of DMPL, let us now comment on the pros and the cons of this
system, starting once more from the pros.

Actually, the reader can guess the merit of GSV, since it already showed
up in the 'static GSV': the peculiar interpretation of the existential quantifier
makes it possible to merge a. 'de re' reading of the modal operator (when ex­
istentially bound variables are involved), with a 'de dicto' account. Concretely,
the example above on the guy hiding in the closet that might have done it,
can be formalized here in two fashions , accordingly to the modality we want to
express:

1. TJX(Qx; OPx)

2. 'f}xQx; O Px

42 Chapter 3. Combining Variations

where in 1 OP is an individual property ('de re' reading), while in 2 the 0 refers
to the 'dictum' Px. Similarly, modalizing identities produces now something
more intriguing than in a totally 'de dicta' (or in a totally 'de re') context;
consider for instance these two elaborations of the discourses above:

1. Someone has done it. There is someone hiding in the closet who might be
the one who has done it.

2. Someone has done it. There is someone hiding in the closet. He might be
the one who has done it.

GSV allows us to formalize them as follows:

1. 'f/XDx; T/Y(Qy; Oy = x)

2. 'f/XDx; T/YQY; Oy = x

Note that in 1 the 0 is 'de re' only with respect toy, since the modality shows
up within the scope of T/Y· (i.e. y has the property of being possibly equal to
x. This is why Oy = x does not collapse on Dy= x). On the other hand, the
reading in 2 is totally 'de dicto'.

Summing up, GSV constitutes an original approach to the standard puzzles
on quantified modalities, so as to propose 'a dynamic cut on their solution'
(cf. [16]) . Actually, we prefer to see this advocated cut as non essentially
linked to the dynamic bent of GSV, in as far as we think it rests on the peculiar
interpretation of existential quantification, that can be mimicked in static terms
(see Chapter 5 for an ample discussion of this theme).

Since we have talked about the features of the GSV 71 , we should make a
short remark on the reason why T/X : Pt1 . •. tn cannot be read as a sequential
composition. As we have seen, the interpretation of T/ is 'piecemeal' in the sense
of processing the 'shift' to x object by object. Take then the program:

'fJX: 07r

Its output is supposed to give all possible values of x which are possibly rr, and
not all the possible values of x if x can be instantiated with an object which is
7r. In other words, in GSV the following continuity property is lost:

UdeD((x/d]; rr) = UdeD([x/d]); rr

(where by [x/d] we mean the program: AS. S[x/d]) and, consequently:

[T/X: rr] = UdeD([x/d];7r)-:/; [T/x;rr] = (UdeD[x/d]);rr

Note that this continuity holds in DMPL, because its modality ranges over
alternative Interpretations only, leaving the system distributive as far as the
assignment-dimension is concerned.

Let us now discuss the disadvantages of the system GSV.

9.9. An alternative: the system GSV 43

Our main criticism to GSV is of a methodological kind. We have seen how
in GSV the reading of the modality depends on its being inside or outside the
scope of a quantifier. For it is the quantifier that limits the range of the <> so
as to make it a 'de re' operator. This can look elegant from a logical point
of view: we recall that the Fixed Assignments semantics for Modal Predicate
Logic would make the formulas 1 and 2 of paragraph 3.3.l equivalent, which
surely is !imitating. But we wonder if it is really the case that 'de re' modalities
only show up as referred to bound variables. More explicitly, here is our main
concern: is it always the case that the modal intention of a speaker (meaning by
'modal intention' the intention towards the reading of modalities) is so strictly
linked to the binding structure of the discourse? This would imply for instance
that when someone utters a discourse like 'there is someone hiding in the closet.
He .might be the killer' can never mean the same as uttering 'there is someone
hiding in the closet who might be the killer'. But suppose you saw who is
hiding in the closet, and you don't know him but he looks a very unreliable
guy ... Then by saying 'there is someone hiding in the closet. He looks scaring
He might be the killer' you are not using a 'de dicta' modality, but you are
rigidly referring to the man you saw, and looking at him in alJ the worlds of
your epistemic horizon. Still, it could be reasonable to look for a compositional
formulation of that discourse ... Moreover, we have seen above that in a formula
like:

• ryxDx; ey(Qy; <>y = x)

the reason why <>y = x does not collapse on Dy == x is that x can be assigned
different objects. But take the following formula, where a is a constant (for
Alessandro) which is assigned the same object all over the model:

(*) 17x(Qx; <>x =a)

This is the formalization of:

There is someone hiding in the closet who might be Alessandro.

According to (45], this utterance would make sense in case you know something
about the guy who is hiding in the closet - for instance you know how his voice
looks like - and attribute to him a modal property. But unfortunately, in case
you know who Alessandro is (as we said, a has the same interpretation in all
states), from (*) you are a!Jowed to infer:

(*) 17x(Qx; Ox= a)

Another qualm with GSV, of a totally different sort, is that boolean choice
cannot be defined in this set-up. The reason is that it would produce atomic
states with different carrying referent systems within the same state, which
would make the clause for negation fail, for instance, for atomic first-order
formulas.

44 Chapter 3. Combining Variations

3.4 Tarskian Kripkean Variations

3.4.l General discussion

In this section we want to design a general combination of Tarskian Variations
with the epistemic modalities (cf. [14]). Namely, we will enrich the syntax of
DPL +UL with the variations of the others tarskian parameters (and with the
matching modalities); this enrichment will actually have intriguing consequences
on the expressive potentialities of the combined system. Note that the formal
strategy we are going to suggest welJ applies to the original problem of fusing
DPL and UL.

The basic philosophy underlying this attempt is as follows. We have seen
how DMPL succeeds in computing, so to speak, the 'addition' of DPL and UL
(following the first and the second constraints of paragraph 3.1.3); but, this
addition is performed there by enforcing a distinction of levels in the semantics
(level of Interpretations vs level of Assignments), and consequently by confining
the modality to a total 'de re ' reading, certainly insufficient when applied to
Natural Language.

On the other hand, GSV manages to account within the same set-up both
for a 'de re' and for a 'de dicto' use of its Might (0) (meeting in this way
constraint 3 of paragraph 3.1.3, together with 2). It does this by means of a
particular interpretation of the existential quantifier, that controls the reading
of modalities within its scope. Therefore, it basically links the meaning of modal
operators to the quantificational structure of discourse.

Thus, taking our clue respectively from DMPL and GSV (in the sense of
trying to fulfil both constraint I and 3 of paragraph 3.1.3, we will build a
dynamic system where:

I. the two 'ingredients' (tarskian updates and kripkean updates) remains
well discernible, and keep as much as possible their original mould;

2. account is given for the manifold use of modalities within the human
information processing, without making any commitme~t on the link in­
tensional knowledge/quantificational discourse structure.

Accordingly, our strategy will consist in the following steps, for coping respect­
ively with points 1 and 2 above:

I. taking a hint from GSV, we will define a 'pointwise' ordering on atomic
states, which will make it possible to deal with the 'double granularity' of
the blended system without requiring a distinction of levels as in DMPL;

2. in the spirit of the 'semantic variations' of Chapter 2, we will 'parametrize'
the epistemic modality (to single semantic parameters), hopefully provid­
ing a very fine-grained intensional formalism, without calling into play its
relation with quantification.

S.4. Tarskian Kripkean Variations 45

3.4.2 Technical outline

Let us define the syntax of this system, that we shall call TKV (for Tarskian
Kripkean Variations):

TKV Programs:: = Pt1 ... t,. I --.JT I 7T1; rr2 I 7T1 U7T2 I 17 I 11x I
µ I l'p I 0'1rr I 0'7Z7T I o,,7T I o,,,,rr I 01'Jr I 01•Prr I o,,rr I Oµp7T

In this syntax, the reader will recognize the programs of 'generalized' tarskian
variations (i.e. both in their local aud global version - cf. paragraph 2.4.4
-). The programs that modify the semantic parameter Domain are left out
here, partly for the sake of simplicity, partly because the issue of updating the
domain of reference is somewhat marginal in the current debate on combining
different kinds of updates. The modal operators of TKV a.re new. Intuitively,
given an atomic state w, 0 11 will check open possibilities within the worlds that
difjer from w at most as far as the paran1eter Assignment is concerned (or,
using the notation of Chapter 2, the worlds v such that w =A v) . Analogously
for 0'7"', 0", and 0"P. Dually, given an atomic state w, OIJ will check open
possibilities within the worlds v that coincide with w at least as far as the
parameter Assignment is concerned (we will write in this case w ,=A v). And
similarly for OIJ:i:, o,,, and O,,p.

TKV models will be just like TV models, with an obvious extension of the
'shift relations' (cf. definition 2.2.1), according to the local/global character of
the parametrization and to the coming into play of such modalities as OIJ:

3.4.1. DEFINITION. [TVK model] A TVK model consists of a family of states
(D,J, A), where A is ana assignment from variables into the domain D and
I is an interpretation function from predicate letters into denotations over the
domain. Notation for states: w, v, u., These models carry the following 'shift
relations':

1. w =A v : w differs from vat most in its A-values

2. analogously for =z, =1, =p

3. w ;6A v : w coincides with vat least in its A-values

4. analogously for :/; :c, y6 1 , ;6 p

On these models, programs will be interpreted as updating functions. But in
order to give the semantic clauses (that must account for the double granularity
of the system), we need to introduce a program-dependent ordering on single
states, encoding the core behaviour of distributive programs:

3.4.2. D EFINITION. [Pointwise ordering]

1. for 1T = P(x1 ... Xn), w >-,, w' iff w = w' and w' I= P(x1 .. . Xn)

2. for 1T = ryx, w >-,. w' iff w' =., w

46 Chapter 3. Combining Variations

3. similarly for 17,µ,µP with their corresponding relations =A, =1, =p

4. for 7r = 7r1; 7r2, w >-,,. w' iff there is a w" such that w >-1f, w" and
w" >-,,.2 w'

5. for -;r = ?r1 U ?r2, w >-1f w' iff w >-1f1 w' or w >-1f2 w'.

6. for all other programs ?r, in particular modal tests, >-,,. is the identity
relation.

This pointwise ordering, that basically mimics our earlier TV evaluation, allows
us to trace the behaviour of programs on atomic states (similarly to the 'exten­
sion ordering' of GSV), and to define our lifted semantic clauses. We shall use
two notational conventions:

lwlA,W = {v E W I v =Aw}

lw lA,W = {v E WI v ::/:Aw}
which similarly applies to the other (local and global) tarskian parameters.

3.4.3. DEFINITION. [Interpretation of TKV Programs] A TKV program ?r is
interpreted on a TKV Model W as a function from p(W) to go(W), satisfying
the following clauses:

1. [Pti···tn]W = {w I 3w' E W: w >-Pt1 ... tn w'} = {w E WI w I=
P(x1 ... Xn)}

2. (17x)W = {w I 3w' E W: w' >-,,., w}
(Note that this amounts to the image of W under the relation >-17!l:)

3. Similarly for 1}, µetcetera

4. (0 71?r] W = {w I 3v E lwlA,W (3u(v >-,,. u /\ u E (7r]W))}

5. Similarly for the other parameters

6. (O,,?r)W = {w I 3v E lwlA,W (3u(v h· u /\ u E [7r]W))}

7. Similarly for the other parameters

8. [-.?r]W = { w I -dv (w >-.,,. v /\ v E [7r]W)}

9. [7r1; 7r2]W = [7r2]w ([7ri)w)

10. (tr1 U tr2)W = [?ri}w U (7r2)w

3.4.3 Pros and cons

The comment we want to do concerning TKV discloses at the same time its
main pro and its main con: the syntax of this system is very fine-grained, which
means that it is very 'ugly', while also extremely powerful for the representation
of quantified modalities (we leave it to the reader to check how the examples of
previous sections can be easily treated within this set-up). In other words, the
abundance of possible readings of modal operators in Natural Language is here

9.4. Tarskian Kripkean Variations 47

dealt with by means of a complex language; of this language we are able to give a
uniform semantic treatment, also relatively simple. No commitments are made
on the link quantification/reading of modalities. This is an advantage in a sense
(for it allows us, e.g., to give a compositional treatment of ' de re' modalities,
which, we recall, was not possible in GSV), though we want to stress once
more that the way GSV managed to build that link was certainly intriguing.
In a slogan, TKV is theoretically weaker than GSV, in that it mimics at the
level of the syntax the complexity of Natural Language; on the contrary, GSV
positively suggests a 'lowering' of that complexity by means of a commitment on
the 'internal grammar' of Natural Language. GSV is stronger, and consequently
more 'falsifiable'.

As a passing remark, we should stress how the semantic clause for boolean
choice becomes here unproblematic.

Moreover, there are no obvious problems for the negation clause. In partic­
ular,

• [Op; .. op]W = 0 for every TKV modality

• [-i(?Jx; Px); (?Jx; Px)]W = 0
Finally, this interpretation of TKV respects some peculiarities of the UL mod­
ality. For instance, [-in; On]W = 0 is valid, whereas [On; -.n]W = 0 is not.

Chapter 4

The procedural kit

What we were after up to now was defining a large set of instructions for Dy­
namic Logic(s), that, according to our propositive introductory chapter, do
not necessarily lie within the boundaries of programming languages. We ac­
complished this task by means of a 'variational' policy that, we should say,
is totally in line with the dynamic tradition, in as much as it extends to
other semantic parameters the fundamental idea underlyine; the 'ra.nnom assign­
ment'. Moreover, the strategy of tarskian/kripkean variations simply codifies
the atomic moves from a state (say a mental-epistemic state) according to the
parameters we have been used in order to describe it. And this, again, fits with
the general cognitivist motivation of actual dynamics. In one word, Semantic
Variations look a legitimate and harmless 'source' of programs, in line with the
current dynamic trend.

Therefore, given this sound set of (atomic) dynamic programs, we want to
carry on our possible 'enlargement' of Dynamic Logic at the procedural level,
i.e. at the level of program connectives. Here, we will not define a uniform set of
dynamic connectives; rather, we aim to give a number of criteria that hopefully
will draw up a bit the abundance of conceivable operators to handle programs.

4.1 Invariance criteria

Invariance criteria. have a sound mathematical tradition. Intuitively, the idea
underlying these criteria is the following: given an operation on a structure of
some sort, one can check if this operation would behave in the same way on
suitably transformed versions of the same structure; namely, invariance criteria
check if and to which extent a mathematical operation is linked to particular
features of the base structure.

49

50 Chapter 4. The procedural kit

4.1.1 Permutation invariance

The first criterion we want to examine is a very broad one (in that it puts up
with many possible connectives): logicality (see e.g. [10]). Let us first expound
the intuitive meaning of logicality. Basically, a 'logical ' connective of a language
must be free from any content, and aimed to confer complex expressions their
formal structure. This intuition is typically implemented in a very well-know
technical notion, namely permutation invariance. More precisely, an expression
is said to be 'logical' if it is preserved under permutations of individuals in the
underlying domains.

Before giving a precise definition of 'logical dynamic connectives', let us see
how logicality applies to set-theoretic operations. Dynamic logicality will be
seen afterwards as a lifting of its set-theoretic counterpart.

4.1.1. DEFINITION. [Logical set-theoretic operations) An n-ary operation 0 on
sets is permutation invariant if, given any n-tuple S1 ... Sn of sets, and any
permutation a of the universe, the following holds:

O(aS1 ... aSn) = a(O(S1 ... Sn))

The import of this feature shows up, for instance, in the following simple fact
(but see the examples in (7)):

4.1.2. PROPOSITION. An n-ary set-thenretir. operation 0 is permutation invari­
ant iff it can be defined, for each n-tuple, by some combination of the 'Boolean
zones' in the Venn diagram formed by all sets in the n-tuple.

~~~m • 
As the logicality of set operations is defined in terms of set permutations, 

the logicality of program operations will call into play program permutations. 
Therefore, here is our definition of permutation of a program (cf. [14)), that 
truly amounts to the permutation of its graph: 

4 .1 .3. DEFINITION. [Program permutation) Given a permutation a of the set 
of states, the permutation of a program 7r induced by a, in symbols a(7r), is a 
program defined as follows: 

[a(7r)] = { (aW, aW') I (W, W') E [7r]} 

Note that graph permutation can be also described in the following, equivalent, 
way: 

[a(7r)}W = 
(a(7r)]aa-1 W = 

a(7ro- 1 W) = 

(a-1 ; 7ri a)W 

By means of this 'program permutation' we can finally define an appropriate 
notion of logicality for program operations @: 



4.1. Invariance criteria 51 

4.1.4. DEFINITION. [Permutation invariance] An n-ary program operation @ 

is permutation invariant if, for all programs 7T1 ... rr,. and permutations a, the 
following holds: 

(@(a(7ri) ... o{irn))] = ((a(@(7r1 ... 7rn)))) 

or, in other words, if, for all 7T1 ... ?Tn and all o: 

(a-1; @(7T1 ... 7Tn); o) = (@((0-1; 7r1; o) ... (a-1; rrn ; o})) 

Interestingly, it turns out that a certain format of definition already is enough 
to guarantee logicality (and this demonstrates how broad is this criterion): 

4 .1.5. THEOREM. If the n-ary program operator @ is defined as follows: 

(@(7r1 . .. 7Tn)] =AW. {w I <p(rr1,. . .,7Tn, W,w)} 

where <p is a set-theoretic defining condition, then @ is permutation invariant. 

P roof: Take an n-tuple of progran1s rr1 ••. 'lfn and a program permutation o. 
We have that: 

(a- 1 ;@(7r1, .. - 7Tn)i a] = 
.>.W. a((@(7r1, ... 7Tn}](a-1(W)) = 
.>.W. {a(w) I <P(7r1 , ... 7Tn,o-1(W) ,w)} = 
by invariance of set-theoretic statements for permutations of individual do-

mains 
.>.W. {a(w) I <p(a(7r1), ... ,a(7rn),ao- 1(W),a(w))} = 
by general properties of permutations 
.>.W. {w I cp(a(?Ti), .. .,a(?Tn.), W,w)} = 
.>.W. {w I cp(a- 1 ;7r1;a, ... ,a-1;7Tnia, W,w)} = 
[@((c:i:-1 ; 11"1; a), ... , (a-1; 1T' ni a))]. • 
There are also partial converses of this result: under favourable circum­

stances, all invariant operators over a given universe of states are definable in 
some suitable logical formalism (cf. [10], [7]). 

4 .1.2 Tightening t h e logical space: B isimulation Safety 

Now, after mapping out such a general logical space as that of permutation 
invariant program operators, let us tighten it and characterize the standard 
procedural kit that bas been used, e.g., in our systems for Semantic Variations. 
Following [12], we are going to demonstrate a stronger criterion for 'logicality', 
known as bisimulation safety and based on a crucial notion of process equival­
ence from computer science. 

We will define such a criterjon so as to make it clear how it truly represents 
a generalization of the idea of permutation invariance. 

4.1.6. DEFINITION. [Bisimulation] A relation f between (W, 7r1 ... rrn) and 
(W', ?T~ . . . 7r~} is a bisimulation if, whenever w fw', the following conditions 
hold: 



Chapter 4. The procedural kit 

Figure 4.1: morphisms preser,·ation 
w 

t 
u av 

• w and w' verify the same 'static' atomic formulas 

• if (w,u) e [7ri]w, then there exists a v' e W' such that (w',v') E [7rHw• 
and v f v', and vice versa. 

A bisimulation f between {W, 1r1 ... rr n) and {W', 7r~ . •. 11~) will be also called 
'bisimulation for 1T1 ••• 7rn'· 

.t.1.7. DEFINITION. [Bisimulation Safety] An operation @(n1 ... 7rn) on pro­
grams is safe for bisimulatio~ if every bisimulation f between (W, 7r1 ... 7rn) 
and (Hl' ,7r~ ... rr~) is .also a· bisimulation between (W,@(rr1 ... 11"n)) and (W', 
(]( ir; ... ii'~)}. 

Now. instead of full set theory, consider just the obvious first-order formalism 
for defining operations over binary relations. Here, we can see what makes our 
earlier repertoire uniquely distinguished, at least over all multi-modal models 
of the TV kind (cf. [12]): 

-i.1.8. THEOREM. A first-order program operation @TI-1 ... «n is safe for bisim­
ulation iff it can be defined from ;r1 ... 7r n using atomic tests ? as well as only 
the three operations u, ; , • . 

Proof: cf. (12] • 
As we have said, this criterion can be seen as a generalization of the permuta­

tion invariance above. In fact, they both ask that dynamic connectives inherit, 
so to speak, certain morphisms among the graphs of their arguments. In order 
to make this point more clear, we can easily see how permutation invariance is 
in fact only a particular case of the following 'isomorphism safety': 

4.1.9. DEFINITION. [Isomorphism) A relation a between (W, r.1 ... 11"n) and (W', 
rr; ... rr~) is a isomorphism if the following conditions hold: 

• a: is a bijection 

• (w, v) E [7ri)w iff (aw, av} E [7ri]w• 

It is easy to see that by imposing the further condition that W = W', a 
would become a permutation of the base set of states, and 7T1 ... Tr~ would be 
the permutation of Tr1 ... 7rn induced by a (namely, W' = avV and ;r~ = 0:11";, 
for 1 5 in'i. 

1 



4.1. Invariance criteria 53 

4.1.10. DEFINITION. (Isomorphism safety] An operation @(?T1 .•• 7Tn) on pro­
grams is said isomorphism safe if every isomorphism a between (W, 7r1 ... 7r n) 
and (W', 7r~ ... 7r~) is also an isomorphism between (W,@(7r1 ... 7rn)) and (W' , 
@(7r~ ... 7T~)). 

Note how weaker is isomorphism safety (and consequently permutation invari­
ance) with respect to bisimulation safety: as weaker as 'isomorphism' is stronger 
than 'bisimulation'. 

4.1.3 A link 

Finally, we want to point to a further notion of 'logicality', that generalizes the 
previous permutation invariance (and is even broader than that). This notion 
will bring to the fore a link between permutation invariance and bisimulation 
invariance. 

4.1.11. DEFINITION. [Permutation for 7r) A relation a between (W, 7T1 ... 7Tn) 
a.nd {W', 7T~ ... 7r~) is a permutation for 1ri if the following conditions hold: 

• a is a permutation 

In other words, a permutation a of the states set W is a permutation for n if it 
holds that ?TW = cmW. Note that in case 1T is 'functional' (i.e. it has unique 
values for each input), a permutation a which preserves the static formulas is 
a permutation for 7T iff it is a bisimulation for 7T from the base domain of states 
to itself. 

Thus, here is our last notion of 'logicality': 

4.1.12. DEFINITION. [Permutation safety] An operation @(7r1 ... 7Tn) on pro­
grams is permutation safe if every permutation a for 7T1 . . . 1T n is also a per­
mutation for @(7r1 ... 7rn)· 

Therefore, we have the following connection: 

4 .1.13. THEOREM. An operation @(7r1 ... 7Tn.) on programs is permutation in­
variant only if it is permutation safe. 

Proof: Take any sequence 7T1 ••• 7Tn· Suppose that a; 1ri = 7Ti; a, for 1 $ i $ n; 
i.e., 1ri = a - 1 ; 1ri; a = a(7ri) . By the permutation invariance of@, we have: 

a(@(7r1 ... 7rn)) = @(a(7r1) ... a(rrn)) = @(a(7r1 · · -7rn) 
Moreover: 

a(@(7r1 ... 7rn)) = a - 1;@(7r1···7rn)i a 
Combining these two facts, we get: 

@(7r1 ... 7Tn.); a= a; @(7r1 ... 7rn) • 



54 Chapter 4. The procedural kit 

4 .2 Denotat ional Constraints 

As the reader may have noticed, the style of analysis that we are pursuing in 
this chapter is inspired, to some extent, by the theory of Generalized Quantifiers 
(cf. (5) and (75]). At least, we are following one of the common strategies in the 
Generalized Quantifiers 'foundation' of grammatical types: we are constraining 
the space of the dynamic operations type by imposing conditions 'from the 
outside', so to speak (but see next section for an approach 'from the inside') . 
What we want to do now is following this analogy with GQ theory more closely, 
and applying the same kind of criteria. that are used there to dynamic operators 
(cf. (141). 

Let us then start with recalling some basic notions from GQ theory. Quan­
tifiers a.re here seen as functions Q which, to any universe E, assign a binary 
relation Qs on p(E). Notation: 

QEAB. 

Given this very general type of semantic object, one now searches for constraint s, 
going from generally plausible intuitions to special-purpose mathematical con ­
ditions. Well-known examples from this tradition are: 

• Extension EXT (context independence): if A, B ~ E ~ E', then Q E AB 
iff Qe·AB. 

• Conservativity CONS: QsAB iff QEA(B n A). 

• Variety VAR: if A~ Eis non-empty, then there exist B,B' such that 
QsAB and not QsAB'-

• Quantity QUANT (permutation invariance): if a is a bijection between 
E and E' and A,B ~ E, then QEAB iff QE•et(A)a(B). 

Moreover, here are some other important special properties, which are not gen­
erally valid for all quantifiers: 

• Upward-Monotonicity MONt: if QeAB and B ~ B' then QeAB' . 

• Downward-Monotonicity MON..t.: if Q EAB and B' ~ B then Q eAB'. 

• Upward-Persistence PER.St: if QeAB and A~ A' then QsA'B. 

• Downward-Persistence PERS.).: if Q sAB and A' ~ A then Q sA' B. 

As an example of how these properties can characterize subclasses of quantifiers 
here is a typical result: ' 

4.2.1. THEOREM. A generalized quantifier satisfies EXT, CONS, VAR, QUANT 
and PERS if! it is in the Square of Opposition (namely iff it is one of the fol­
lowing: all, some, no and not all). 



~.2. Denotational Constraints 55 

Pro of: cf. (5]. • 
Here, we want to demonstrate how this style of analysis also applies to 

dynamic operators. In particular, we will briefly sketl'h a possible strat<'gy for 
developing a GQ-style approach to CL St'mantks. This we will do by isolating 
a subclass of UL operators that ca.11 be t.reatt>d just as gclll•ralized quantifins. 

In order to isolate this GQ-type subclass of dynamic operators, we need to 

further analyse their format . As we have already seE>11. a dynamic opt'rator @ 
will usually be defined by a set-theoretic condition of the following form: 

lf'(W, W, 1rt · • • 7rn) 

Examples of such formulas If' are: 

..., w E W /\ w ~ 1rW 
V w E 7r1 WV w E 7r2W 

w E 7r2(7r1 W) 
<> 3u E 7r W /\ w E W 
6 u E W V u E 7r(l) 

where • 6' is a revision modality ('unless 7r') proposed in [6), which updates the 
current state with the result of processing 7r from the initial information state 
('l '). 
The type of these conditions r.p is still rather complex: they need to take into 
account a set of functions (the programs), an input set W and a 'reference' 
point w. It turns out that two type-lowerings are possible, by confining our at­
tention to two special, but rather natural, classes of program operators, meeting 
respectively the following conditions: 

• Extensionality: if 7r;(W) = 7ri(W) for 1 $ i $ n, then @(7r1 ..• 7rn) 
(W) = @(7r~ ... 7r~)(W). 

• Test Property: no reference point occurs in the defining condition (whence 
it has the following form: lf'(W, 7r1 .. . 7r n)). 

Intuitively, a n-ary program operator is extensional if its defining condition only 
uses the sets 1ri(W), with W the input state and 1 $ i $ n . Non-examples are 
the above sequential composition (it refers to 7r1(7r2 (W))) and 6 (it refers to 
7r(l)). This property allows us to re-type defining conditions for extensional 
operators. They will have the form: 

lf'(t.u, W, A1 . .. An) 

where A1 .• . An are not functions but sets (7r1 (W) ... 7rn(W)). 
Concerning the test property, note that it is really the same property we 

have stated in definition 1.3.4: a program operator @ has the test property 
if, for all programs 7r and all input states W, the output of @7r(W) is either 
W itself or the empty set. It should be clear that this test property makes it 
possible one more type-lowering: from If'( tu, W, 7r1 ..• 7rn) to: 



56 Chapter 4. The procedural kit 

cp(W, ii'1 ••• 1T,.) 
Therefore, extensional program operators with the test property will have the 
following reduced type: 

'iO(W, .41 ... An) 

or, more explicitly: 

@(W, A.1 ... An) 

Summing up, extensional test dynamic operators have the type of a. relation 
among sets. But this is just the standard type for generalized quantifiers, with 
the parameter E for the total universe now read as our 'initial information 
state', or 'total model' (which played a role, e.g., in our previous .6). Thus, an 
extensional test operators ranging on a set of states will have as its den otation 
a set of sets of states. 

The nice consequence of this type-lowering is that GQT results now apply 
without further ado to extensional program operator~ which a.re tests. Thus, 
the earlier 'square of oppositions' for quantifiers fits with dynamic existential 
and universal modalities (D, -.o, <>, -.<>): 

4 .2.2 . THEOREM. An extensional logical dynamic test has a defining condition 
in the Square of Opposition iff its associated quantifier satisfies EXT, CONS, 
VAR and PERS 

It should be noticed how some of these constraints acquire a different meaning 
in the dynamic set-up; for instance: 

• CONS (= @W, A iff @W, An W) establishes a form of 'eliminativity', in 
that the input state already 'sets the stage' for the denotation of the @; 

4 .3 C ase study: the dynamic negation 

Let us now focus on a single dynamic operators, namely negation. Instead of 
imposing constraints 'from the outside' and designing dynamic negations ac­
cordingly, we will take into account actual semantic clauses for negation (con­
cretely, the DPL and the UL clause for negation), and try to draw out their 
essential features by checking them against suitable conditions. In other words, 
following again the analogy with GQ theory, what we are after now is designing 
an inverse logic for dynamic negation. 

4.3.1 Constr aints 

We will start our 'inverse logic' analysis of DPL and UL negation by referring 
to a couple of principles we have already encountered in the previous chapters 
(see paragraphs 2.2.3 and 2.3.2}. They suggest us this basic intuition: running 



4 . .'J. Case study: the dynamic negation 57 

a negated program -.7T from any stage of the information processing should lead 
us to a (new) stage where the program ir would fail if run . 

• (1) (7r; """11f] = 0 

• (2) [ -. ir; 7r) = 0 

The meaning of (1) and (2) is that once the processor ha..-; accf'pted the know­
ledge conveyed by a given program (or once he has performe<l the instruction 
expressed by a certain program), he can no longer change his mind. 

Again, as we have already hinted, it turns out that these principles are too 
strong for the two cases we are considering, i.e. for the DPL and for the UL 
negation. 1 fails in fact in DPL, as it is shown by the following counterexample: 

((Px; ryx; -.Px); -.(Px; 71x; -iPx)J :{; 0 

On the other hand, both (1) and (2) fail in UL. The following counterexample 
to (1) transforms into a counterexample to (2) by means of double negation 
(valid in UL): 

[(07r; -.rr); -.(07r; -.7T)) :{; 0 

Here is a pictorial summary of the situation: 

UL DPL 
(1) - -

(2) - + 
Given this, our next move within this inverse logic analysis will consist in trying 
to isolate the 'normal' fragment of UL and of DPL with respect to (1) and (2). 
This will be the issue at stake in the next two paragraphs. 

4.3.2 Inverse logic for UL negation 

We have seen how the negation clause in UL does not validate the above anti­
revisionist principles. Still, it makes sense to isolate special subclasses of pro­
grams that make these principles valid. In this way, we are taking as variables 
of our 'inverse logic' policy dynamic programs: given a constraint, we are asking 
ourselves which programs do meet it. 

4 .3.1. PROPOSITION. UL negation validates (1) for· just those programs ir that 
are idempotent, i. e. such that, for any in/ ormation state W: 

(rr]((rr)W) = (7r]W 

Proof: [-.7r]([7r]W) = ([rr)W) - ([7r){[7r]W)) = ((ir)W) - ((rr)lV) = 0 • 

On the other hand: 

4.3.2. P ROPOSITION . UL negation validates (2) for just those programs 7r that 
are progressive, i.e. such that, for any information state W: 



58 Chapter 4. The p1·ocedural kit 

(7r)(W - [7r]W) = 0 

Pro of: [7r){[-.7r)W) = [7r](W - [7r]W) = 0 • 
Note that, as it is easily seen , a program 7r is progressive if and only if its 

negation is idempotent. 
The art is now finding out the idempotent and the progressive fragments of 

UL. This will possibly bring to the fore interesting peculia rities of the update 
set-up. In order to do this, we need to prove the following simple facts ( cf. 
definition 1.3.4 for the notion of test): 

4.3.3. PROPOSITION. For all UL programs 7r1, 7r2, if 7r1 is idempotent and 7r2 
is a test, then the program 7r1 ; rr2 is idempotent. 

P r oof: Given an information state W, we want to show that: 
(7r1; 7r2) ([7r1; 7rz)W) = [7r1; 7r2]W 
Now, since ?Tz is a test, there are only two possible cases: 
Case 1: [7r2J([r.i]W) = [7ri)W. 
Then: [7r1 ; 7r2] ([7!"1; 7r2]W) = [7r1; 7r2]{(7l"i]W) = 
[7r2]([7ri)([7r1]W)) = [7r1; 7r2]W, since 7T1 is idempotent. 
Case 2: (7r2]([7ri)W) = 0. 
Then: [7r1;7r2l([rr1;7r2]W) = [7r1;7r2]0 = 0 = [rr1;7r2)W. • 
4 .3.4. PROPOSITION. For all UL programs 1T1 , 7Tz, if 7r1 is progressive and 7r2 
is a test, then the program 1T1; rr2 is progressive. 

P roof: Given an information st ate W, we want to show that: 
[-.(7r1; rr2); (7r1; 7r2)]W = (7r2]([7ri](W - [rr2i([7ri)W))) = 0. 
Now, since 7r2 is a test, there are only two possible cases: 
Case 1: [7r2]{['1ri]W) = 0. 
Then: [7r2)((7ri)(W - [7r2]([7ri)W))) = [rr2]([7ri]W) = 0. 
Case 2: [7r2]([rrdlV) = [7r1]W. Then: [7r2]([7r1](W- [7r2)([7rdW))) = [7r2]([7ri] 
(W - [rri)W)) = (7r2}0 = 0, since rr1 is progressive. • 

Moreover, it's easy to prove that tests and continuous programs (cf. defini­
tion 1.3.6) are both idempotent and progressive: 

4 .3.5. PROPOSITION. For all UL programs 7r, if rr is a test then it is idempotent . 

P r o of: straightforward. • 
4.3 .6. PROPOSITION. For all UL programs 7T, if 7r is a test then it is progressive. 

Proof: Given a state W, there are only two possibilities, given the fact that 
7r is a test. Suppose [7r]W = 0. Then [rrj (W - [7r]W) = [rr]W = 0. Next, 
suppose [rr]W == W. Then [7r](W - [7r]W) = [rr]0 = 0. • 



4.3. Case study: the dynamic negation 59 

4.3. 7. PROPOSITION. For all UL programs 7T, if 7T is continuous then it is idem­
potent. 

Proof: If 7T is state-continuous, then, given a state W, [7r]W = W n P, where 
P is the 'characteristic' set for 7r. Thus, ['ir) ([7r]W) = (W n P) n P) • 

4.3.8. PROPOSITION. For all UL programs 1T, if rr is continuous then it is pro­
gressive. 

Proof: If 7r is continuous, then [7r](W - [rr]W) = (W - (W n P)) n P = 0. • 

Using facts 1.3.8 and 1.3.11 we are now able to demonstrate the following 
corollaries of propositions 4.3.3 and 4.3.4: 

4.3.9. COROLLARY. The ;-free fragment of UL is idempotent and progressive. 

Proof: Obvious, from facts 1.3.8, 1.3.11, and facts 4.3.5-4.3.8. • 

4.3.10. COROLLARY. lf1T has the form: rr1; ... ;7Tn;7rn+1; ... ;7Tm, where 1ri is 
continuous for 1 :S i :Sn and 1ri is a test for n < i :Sm, then: 

1. 7T is idempotent 

2. 7T is progressive 

Proof: Immediate from propositions 4.3.3 and 4.3.4 a.nd facts l.3.8 and 1.3.ll . 

• 
We have thus isolated a 'normal' fragment of UL with respect to the 'you 

can't change your mind' principles above. Next, we will consider the case of 
Dynamic Predicate Logic. 

4.3.3 Inverse logic for DPL negation I 

In this paragraph we will pursue the same task of isolating a 'normal' fragment 
for the case of DPL. We have already hinted to the fact that the principle (2) 
above is universally valid in DPL, as one can see just by looking at the definition 
of DPL negation. On the other hand, it is easy to prove that: 

4.3.11. PROPOSITION. DPL negation makes the principle (1) valid for just 
those programs 7T that meet the 'weak update property', namely such that: 

Vw,w'(w' E [7r]w -+ [7r]{w'} =I- 0) 

We need one more definition: 

4 .3.12. DEFINITION. [Reflexive programs] A DPL program is said to be reflex­
ive if for all states w the following holds: 

wE[7r]{w} 
Note that only random assignments are in general reflexive. 
Armed with this definition, we can now prove this fact: 



60 Chapter 4. The procedural kit 

4.3.13. PROPOSITION. If 1Ti is reflexive and 11"2 has the weak update property, 
then 11"1; 7r2 has the weak update property. 
Proof: We want to prove that, given two states w and w', if w E [1r1 ; 7r2]w' 
then [7r1 ; 7r2]{ w} ::j; 0. Thus, suppose w E [7r2){[7ri]w'). From this it follows 
that (7r2){ w} ::j; 0, because of the fact that 11"2 has the weak update property. 
But then we can immediately conclude that [7r2]([7ri)w) ::j; 0, simply because 
11"1 is reflexive and therefore w E [7r1]w. • 

We now need a bunch of facts along the line of the preceding paragraph: 
4.3.14. FACT. Random assignments are reflexive. 

4.3.15. FACT. Eliminative programs have the weak update property. 

4.3.16. FACT. Reflexive programs are closed under ;. 

Using the fact 1.3.10 we are now able to prove the following proposition, 
that gives us the aimed DPL normal fragment: 

4 .3.17. PROPOSITION. If a DPL program 7r has the form: 7r1; •.• ; 1Tn; .•. ; 1Tm, 
where rr; is an assignment for 1 :'.S i $ n and an eliminative program for n < 
i $ m, then 7r has the weak update property. 
Proof: Straightforward from 4.3.13 and the facts above. • 
4.3.4 Inverse logic for DPL Negation II 
In this section, we will pursue another 'inverse logic' strategy applied to the 
DPL negation. This time, the ' variables' will be the semantic clauses: starting 
from a set of desiderata, we ask ourselves which actual clause for negation meet 
them. We use the relational algebra set-up, and prove the following (cf. [14]): 

4.3.18. THEOREM. DPL negation is the only permutation invariant operator 
in Relational Algebra satisfying the following conditions: 

1. -. 0 = Id 

2. -.(U;rr;) = rl;-.rr; 

9. -.-.Tr 5 r.; I 

4. -.rr; 1T = 0 

Proof: We start with an auxiliary observation. 

4.3.19. LEMMA. 2 implies that ....,1T' s Id. 

Proof: We know (from Relational Algebra) that rr = rrUO. From this (again by 
RA) it follows that -.Tr = -.(rr u 0) = -.Tr n -.O (by 2), whence ....,11" $ -.O =Id . 

• 



4.S. Case study: the dynamic negation 61 

Now, here is the main argument. Given any relation 1T, the relation -.1T 
can be retrieved from the values -.({(x,y)}), for (x,y) E 1T. This is because 
1r = Un11{ (x, y)}. Using 2 then, -.rr = n".q1-. ( { (x, y)} ). 

Now, we have seen that ..,rr :5 Id. Hence, by the permutation invariance of 
-., -.( { (x,y)}) = { (z, z) I <p(x, y, z)} can only refer to the 'Venn zones' consisting 
of { x}, {y} and their Boolean combinations. The argument is then case by case. 

Case 1: x = y. Here are the options for z : 

• z = 1 - {x}. This is what we want. 

• z = 0. Here we need to distinguish two further cases. If the domain 
contains one object only, then this is our previous case, and we are done. If 
the domain contains more than one object, then we obtain a contradiction 
as follows. Suppose that -i( { (x, x)}) = 0 and that the domain contains 
some y =/: x. From -.( { (x, x)}) = 0 it follows, by l, that ...,...,( { (x, x)}) = 
Id. But by 3, -.-.({(x,x)}) :5({(x,x)});1, and hence Id :5 ({(x,x)});1. 
But this cannot be true, because the domain of Id is larger than { x}). 

• z = { x}. This is in conflict with 4, as we would have: 

-i{(x, x)}; { (x, x)} =/: 0. 

• z = 1. This is again in conflict with 4: for the same reason. 

Case 2: x =/: y. Here are the options for z: 

• z = l - { x} is our intended choice. 

• z = { x}. This is in conflict with 4. 

• z = 0. This can be disposed of by the same argument as above. 

• z = {y }. If x, y are the only objects, then this outcome falls under 
the previous case. Otherwise, we know, by (4), that x cannot occur in 
the outcome set. Now, suppose that -i({(x,y)}) = ({(y,y)}). Then, 
-.-.({(x,y)}) = -.({(y,y)}) = 1- {y} (cf. case 1). Dy 3, then, 1- {y} :5 
( { (x, y)} ); 1, which is not possible, since the domain contains at least one 
z =/: x,y. 

• z = l - {x,y}. If x,y are the only objects, then this outcome falls 
under the case z = O. Otherwise, our case amounts to assuming that 
-i( { (x, y)}) =Id -( {(x, x), (y, y)} ). Then, -.( { (x, y)}) = U,;tz,11 ( { (z, z)} ). 
Hence, by (2), -.-i({(x,y)}) =..., Uz;tz,11 ({(z,z}}) = n#:r,11-i({(z,z)}) 
which equals { (x, x), (y, y)} . But this is again in conflict with 3. 

• 
This result appears to be the best possible, in that all conditions stated 

are necessary. For instance, without imposing (4), we could satisfy all other 
conditions simultaneously via a 'non-standard negation', namely 'Id -1T' . 



62 Chapter 4. The procedural kit 

Unique definability results do not necessarily supply complete axiomatiza­
tions. Nevertheless, it makes sense to t ry and derive other important properties 
of.., from the above set. 

4 .3.20. FACT. 2 and 3 imply that ..,7T n 7T = 0. 

P roof: By lemma 4.3.19 -i7T ~ Id. From this we have, using valid principles 
from Relational Algebra: ..,7T n 7T = ..,1T n 7T n Id = ( -i?T n Id) n ( 1T n I d) = ( -.7Tn 
Id); (7r n Id) $ -,?Ti 7r = O. • 

In fact, one may observe that all non-validities for negation that we find in 
relational algebra seem to be refutable even within the special domain of DPL. 
Interestingly, there are other places where the parallel with relational algebra 
is intriguing; for instance, as it is remarked in [13], one of the key features 
of DPL, namely the rightward extension of the scope of 1J across sequential 
composition (as in ryx; ip; 'if>) is just an instantiation of the law for composition, 
namely Associativity: 

(7r1;(7r2j1f3)) = ((7r1j1f2)j'1T3) 

These and other similar facts, motivate the following more general conjec­
ture: 

4 .3.21. CONJECTURE. Universal validity in DPL is complete with respect to all 
validities in Relational Set Algebra. 

4 .3.5 Discussion of t he previous r esults 
This paragraph will be devoted to showing how our 'foundational' analysis on 
dynamic connectives can raise interesting questions and disclose new points of 
view both on the linguistico-philosophical interpretation of Dynamic Logic and 
on its technical structure. In particular, we will try here to discuss and evaluate 
the eventual impact of 'inverse logic for dynamic negation' on the dynamic 
ideology. 

Let us first briefly recall the nutshell of one of the inverse logic strategies we 
have proposed. In order to get a better insight on dynamic negation, we have 
asked ourselves if and when this connective behaves according to the two 'you 
can't change your mind' principles. It turned out that both the two principles 
are not universally valid in UL and that only one ( ... ) is valid in DPL. The 
next move then consisted in finding out under which conditions the requested 
principles hold in UL and in DPL. What we are after now is clarifying the 
intuitive relation between the two principles and their validating conditions. In 
order to do this, we need to get back to a general distinction. 

As we have said at various points, there are two main linguistic philosophical 
interpretations of dynamic programs (taking for granted the analogy states of 
a dynamic model = mental or informational states): they can be seen either as 



~.S. Case study: the dynamic negation 63 

proper information bits, in a knowledge-updating perspective, or as cognitive 

instructions, carrying 'information about the language'. 

Now, it seems very plausible that the two principles on negation should hold 

for those programs that are to convey 'information about the world', unless a 

revision mechanism is available; take for instance the case of UL. UL typically 

represents a non-revisionist set-up where programs are read as pieces of inform­

ation or as tests on the open possibilities. Thus, a UL update informing the 

processor that p is supposed to eliminate from the current epistemic horizon the 

worlds where p does not hold. And there is no way of getting these worlds back: 

this is the UL anti-revisionism. But DPL also is anti-revisionist, even if the 

point is here more subtle. Random assignment allows us in principle to retrieve 

worlds that have been previously eliminated, at least if the re-use of a variable 

is permitted. Still, it should be clear that this does not account for any kind of 

revision: the retrieving of lost worlds can only happen in a formula of the form 

'17x; ... ; 17x; •.. ', where the only revision that is going on concerns the know­

ledge about the language1 . Given that, our question becomes now more precise: 

if UL and DPL represent knowledge-updating (where by knowledge we mean 

proper knowledge or knowledge about the world) in a non-revisionist style, then 

how comes that their negations do not meet the obvious 'you can't change your 

mind' requirements? This could be seen as a symptom of something wrong in 

the semantic clauses for DPL and for UL negation, something that do not agree 
with the intended interpretation of these set-ups. Fortunately, the analysis of 

the previous section allows us to make an encouraging diagnosis. Let us start 

with the case of Update Logic. 
First of all, recall that both '7r; -.7r' and '-.?T; ?T' are UL valid if 7r is sequential 

composition-free. Therefore, the current interpretation of UL programs as pieces 

of informations that progressively restrict the epistemic space of the processor, 

without any possibility of revision, looks unproblematic as far as ;-free programs 

are concerned. But we know more: we know that also idempotent/progressive 

programs (i.e. idempotent program whose negation is also idempotent) respect 

the anti-revisionist principles of paragraph 4.3.1. And this gives us the key 

for our optimistic diagnosis. If the principles in point do not always hold for 

UL programs, the reason is that non all UL programs can be seen as pieces of 

information. In other words, non all ;-sequences of UL programs are 'packages' 

of information. 'Maybe it's raining ; no, it is not raining' cannot be considered 

as a whole a piece of information. Rather, it represents a process, and it makes 

sense that negating a process does not respect the obvious laws for negating 

a piece of knowledge about the world in a non-revisionist set-up. Moreover, 

it makes sense that the negation is 'non-revisionist' for idempotent programs, 

1 processing the discourse: 'A ma.n walks in ; he is tall; a man walks in ; he is not tall' 

does not amount to revise our knowledge of the world. The only thing that gets revised is our 

knowledge about the language, in as much as we first use the description 'a man' to speak of 

some tall guy and afterwards to pick up a short guy 



64 Chapter 4. The procedural kit 

since idempotence is in a sense the hallmark of information: if a program 1!' is 
a package of information, then processing it twice will produce the same e~ect 
as processing it once (namely the answer of the processor at the second time 
will be 'I know'). Therefore: if a program is an information chip then it is 
idempotent, and if it is idempotent then it respects the 'you can't change your 
mind' principles. 

Or, in other words: UL negation is designed on the idea that programs are 
knowledge-updates, i.e. knowledge bits; and it works in the intended way when 
applied to knowledge bits. 

Concerning DPL, we think the same intuition applies here. We have seen 
in fact how DPL fails to respect principle (1) of paragraph 4 .3.l for programs 
that do not meet the weak update property. We now briefly show that this 
principle amount in a sense to idempotence, and therefore we have once more 
that negation behaves in the intended manner when applied to idempotent 
programs = information bits. We have in fact that: 

4.3.22. PROPOSITION. In the regular fragment of DPL, a program 7r has the 
weak update property only if it is idempotent (where by 'regular' fragment we 
mean the fragment where: if7r=7r1 ; ... ;7r,..;77x; ... ;7rm then x does not occur 
in 1!"1; ••• ; 1rn}· 

Proof: It is enough to prove that: if v E (7r]{ w} then either [7rj{v} = 0 or 
(7r]{v} = [7r]{w}. This we prove by induction on 7f. 

1f = atom trivial from the eliminativity of atoms 

1f = ....,7f1 trivial from the eliminativity of negated programs 

7r = 71x trivial from the semantic clause for 77 
1f = 7r1; 7r2 in two steps: 

1) if 7r1 has the requested property and 7r2 is a test, then ?T1 ; 1!'2 has the requested 
property. Suppose that v E [7r2]([7ri)w). Therefore, since n 2 is a test, v E 
[7ri)w. But since 7T1 has the requested property, there are two· possibilities: 

*) [7ri]v = [7ri)w, which implies that (7r2]([7r1]v) = [7r2]([7r1]w); 
**) [rri]v = 0, from which it follows that [7r2]((7ri]v) = 0. 
2) if 7r1 has the requested property and 7r2 is an assignment, then 7r1 ; 7r2 has the 
requested property. Suppose that v E [77x]{(7ri)w). Then there must be a state 
u E [7r1]w such that v == u. But, since we are in the regular fragment of DPL 
and 7r1 has the requested property, there are only two possibilities: 

*) [7r1]v = ([7rl]w)/x, where ([7r1]w)/x =., [7ri)w; from which it follows that: 
[77x]((rri)v) = [r,ix]([7ri)w). 

**) [7r1)v = 0, and therefore [11xH[7rl]v) = 0 • 



4.4. Common patterns across different systems 65 

4.4 Common patterns across different systems 

We hope to have shown that the notion of dynamic negation is quite contro­
versial. In particular, we have seen how difficult it is to give a technical instan­
tiation to an intuitive idea of 'negating a program', mainly because different 
programs within the same syntax do have different meanings and different be­
haviours ( cf. the previous distinction between programs=information chips and 
programs= processes). Therefore, we now want to give a few general directions 
for defining semantic clauses for dynamic negations, that emerge from the ac­
tual clauses we have taken into account up to now. This will bring to the fore 
an intriguing common pattern that shows up at several points across different 
dynamic systems. 

4.4.1 Local truth 

All the dynamic systems we have mentioned so far (namely DPL, UL, TV, GSV, 
DMPL, TKV) follow in a sense the same strategy when interpreting ...,7r: they 
basically curtail the input state, and eliminate a part of it that we shall call 
'local truth of 7r'. The common intuition is in fact that a program ...,7T should 
transform the initial state into a state from which 7T would fail if run. Thus, 
we define the operation 'T', as the dynamic connective that, given a program 
7T, picks from an input state the local truth of 7r. The negation clauses of the 
systems above can be defined according to the following common form: 

[--i7r]W = W - [T7r] W 

Accordingly, it is possible to retrieve the semantic clauses for T in the systems 
examined so far, just by looking at their clauses for negation: 

TV 
UL 
DMPL 
GSV 
TKV 

(T7r]W = {w E W I [7rHw}-:/:. 0} 
(T7r)W = (7r]W 
(T7r]:,W = {w E W I s = u and 3r with w E [7r]~W} 
(T7r)W = {w E WI 3w': w $ w' and w' E [7r]W} 
[T7r]W = {w E WI 3w': w >-,,. w' and w' E [7r]W} 

Interestingly, there are other points in the above where the same operator 
is implicitly at work. For instance, all dynamic modalities so far boil down to 
the following 2 : 

[07r]W = {~ if there is a w' E W such that w' E [T7r)W, 
otherwise. 

Moreover, the notion also comes up in certain kinds of dynamic inference ( cf. 
(43), (70]), in particular: 

'Process all premises successively, then see if the conclusion can run 
from the resulting state', 

2which gets parametrized in TVK 



66 Chapter 4. The procedural kit 

which amounts in practice to the following: 

7r1 F= 7r2 iff, for all states W, [T7r2]([7ri)W) = [7ri) W. 

And obviously, T plays a role in defining dynamic implication. Thus, it becomes 
of interest to pursue some characteristic semantic properties of the local truth 
opera.tor T by itself. 

4.4.2 Technical discussion 

Let us now sketch a brief technical analysis of this new dynamic operator. 

4.4.1. DEFINITION. [Normaiity) The operator T is normal iff for all programs 
7r, for all information states W, the following conditions hold: 

• (7r]((T7r]W) = [7r]W 

• (7r](W - [T7r]W) = 0 
• [T7r]W = n{W' ~W I (7r]W' = [7r]S and [7r](W - W') = 0}. 

More concretely, if T is normal and '0-preserving' (see definition below) , 
then it defines a complement-like negation on the class of 'localized' programs, 
at least for a large class of programs, which we will call '0-continuous' (see 
definition below). 

4.4.2. DEFINITION. (0-preservation] T is 0-preserving if for all states W and 
programs 7r: 

if [7r)W = 0 then [T7r)W = 0. 

4.4.3. DEFINITION. [0-continuity) 7r is 0-continuous if for all W, W': 

if [7r]W = 0 /\ (7r)W' = 0 then [7r] (W u W') = 0. 
4.4.4. PROPOSITION. If T is 0-preserving and normal, then the following holds 
about the matching negation (defined by the clause (-i7r]W = W - [T7r]W ) , for 
all 0-continuous programs 7r and all information states W: 

[T-i7r]W = W - [T7r]W = [-i7r]W. 

Proof: Suppose T is normal and 0-preserving. We show that, for all 7r and 
all information states W: [T•7r]W = W - [T7r)W. Let [T 7r)W = W'. 
Obviously: 
[-.7r]W' = W' - [T7r)W'. But T is Idempotent (this follows from normality 
plus 0-continuity). Hence we have: 
(T7r]W' = W' and [-.7r]W' = 0. 
Moreover, (-.7r]W - W' = (W - W')-[T 7r] (W -W'). But [Trr](W -W') = 0, 
because [7r](W - W') = 0 and T is 0-preserving. Then: [-.7r](W - W') = 
(W - W') namely [-.7r](W - [T7r]W) = W - [T7r]W = [-i7r]W 
From which it follows that W - [T7r)W = (T-.7r]W. • 

The following facts confirm, in a sense, how ;-free fragments of the systems 
above stay close to classical negation: 



4.4. Common patterns across different systems 

4 .4.5. PROPOSITION. The ;-free fragment of TV is normal. 

Proof: Easy induction on ;-free formulas. 

4.4.6. P ROPOSITION. The ;-free fragment of UL is normal. 

Proof: Easy induction on ;-free formulas. 

67 

• 

• 
Investigating properties of T may also produce new points of view on nega­

tion. For example, it is easy to prove that: 

4.4.7. P ROPOSITlON. If T is normal and !-preserving, then its matching ..., 
satisfies: 

(7r; -.7r]W = (...,7r; 7r)W = 0 if! (T 7r)((7r)W) = (ir)W. 

-Finally we shortly discuss a uniform strategy for 'safely' constructing dy­
namic systems. Here is the simple idea. A normal ' local truth' opera.tor is 
logical (i..e. permutation invariant). This is so because a normal T gives, for 
an input set W, the intersection of all the subsets of W which behave in the 
required way; in other words, a normal T has a set-theoretic definition, which 
is enough in order to guarantee its logicality (cf. 4.1.5). 

4 .4.8. P ROPOSITION. If T is normal then it is permutation invariant. 

P r oof: By a simple calculation, using the fact that T has a set-theoretic defin­
ition. • 

Then, from a logical 'local truth' operator we can obtain a logical negation 
and logical modalities: 

4.4.9. P ROPOSITION. If T is permutation invariant then the matching ..., is 
permutation invariant. 

Proof: Suppose T is permutation invariant. Then, for any program ir and state 
W : 
(T(a; 7r; a-1 )]W = (a; T7r; a- 1JW. The argument runs as follows: 
[...,(a; 7r; a-1 )]W = 
(a- 1)([-.7r] ((a)W)) = 
[a- 1 )([a)W - (T7r)([a)W)) = 
W - [a; T7r; a-11w = 
W - (T(a; 7ri a - 1 ))W = 
(...,(a; 7r; 0 - 1 )JW • 
4 .4.10. P ROPOSITION. If T is permutation invariant then the matching mod­
ality is permutation invariant. 

Proof: Analogous. • 
The general reason here is as follows: operations which are set-theoretically 
definable from logical ones are themselves logical. 



Chapter 5 

Philosophical R eper cussions 

This chapter is meant a.s a 'philosophical agenda'. We do not develop a full 

dynamic investigation of a specific logico-philosophical problem. Rath<'r. con­

necting up with the philosophical themes that have emcrg<.>d throughout the 

dissertation, we suggest a few possible dynamic stratcgil'S to be developed -

hopefully - in future work. Besides this programmatic character. the following 
philosophical remarks are alsu llll'<u1t as a cuuclusivc moral of the wholc story. 

The story started with a list of extra-logical questions that eventually support 

our approach to Dynamic Logic, in that, as W<' claimed, they can be faced within 
an enlarged dynamic set-up. Now, we want to end the story by getting back to 

a few (philosophical) items in that list: W<' will briefly show (or in some cases 

recall) how the dynamic framework that emerges from the present dissertation 

can say something about them. 

5 .1 Dynamic Logic for the Dynamic shift 

Reading back the opening section of Chapter I ('From truth to action') the 

first philosophical theme we encounter is the metaphor mind/computer. As we 
said, this intriguing metaphor was not originally born in a purely philosophical 
environment. Rather, this parallel was inspired by the basic principles of Arti­

ficial Intelligence and consequently by th<.' so-called informational approach in 

Psychology. Still, since what we are interested here is a general cultural trend 
(including these disciplines ), we will consider this metaphor at a more general 

level, namely in its philosophical import. 
A little further within the same section, the wittgensteinian language games 

come into play, witnessing once more the feasibility of a dynamic approach; t hen 

the Lewis 'score board' metaphor, and finally the so-called 'dynamic conception 

69 



70 Chapter 5. Philosophical Repercussions 

of meaning', in turn the newest and most actual ground of dynamics. 

As the reader will remind, Dynamic Logic is then advocated (cf. section 1.2) 
as a suitable formal tool for modelling and representing this cultural dynamic 
shift, as it shows up in the different (philosophical) contexts above. In the 
course of the whole dissertation, we have tried never to forget these - deep, at 
least according to our point of view - motives for enlarging the boundaries of 
traditional informatic-oriented Dynamic Logic. Still, it is now time to make 
the point of the situation. Now that the reader has seen how the 'generalized' 
Dynamic Logic we wanted to build (or to sketch) looks like, we can fairly test 
to which extent this formal apparatus can model the phenomena above. 

Let us start then with the parallel mind/computer. The idea of comparing 
human minds with microchips is certainly a challenge for philosophers, in that 
it brings to the fore new questions and possibly new insights on the way we 
think, understand, learn etc. We do not dare giving an historical reconstruction 
of the whole debate; rather, we will focus on one specific issue that we find 
particularly relevant to our purposes. 

When a computer receives a.n input of some sort, it will start processing it 
according to the instructions of the programmer, and finally provide the user 
with the requested output. The process between the input and the output will 
be often ignored by the user, that will keep track instead of the flux inputs­
outputs. This set-up, we think, suggests one of the most deep guiding allegories 
of contemporary studies on human intelligence: that we are like users of our 
minds, that process information according to unknown programs, without being 
conscious of what happens between the sensorial input and the emotional or be­
havioural or whatever output. Note that, as we said, this is in a sense the proper 
subject of Cognitive Psychology: what happens between the stimulus and the 
answer, no matter the misleading image our conscience suggests us. The influ­
ence of this allegory in the recent debate in the philosophy of mind community 
is testified for instance by the influential book by Hofstadter and Dennet [50], 
in which the question is tackled if this perspective on human minds allows us 
to maintain the conviction (so important for our western culture) that we do 
have a soul and a conscience. Now, what are the repercussions of the dynamic­
logical framework on this point of view, suggesting that mysterious processes 
goes on in our brains while we talk, listen, understand etc.? As a formal tool, 
(extended) Dynamic Logic can precisely represent the mental processes that run 
between the stages of the elaboration of knowledge, by means of its many-aimed 
programs, that do not necessarily mimic the way actual computers function. In 
the variational perspective we have been suggesting, for instance, the process of 
selecting and labelling objects is formalized by means of the program 'f/, being 
this (presumably unconscious) process the basis of the competent use of pro­
nouns. Besides, thanks to its two typed syntax and semantics, it can account 
for the interface between static inputs/outputs and dynamic processes. An im-



5.1. Dynamic Logic for the Dynamic shift 71 

portant proviso has to be made here: Dynamic Logic per se does not impose any 
commitment on how these processes are actually structured and work. It only 
provides with a suitable formal language to describe them, or, to be precise, to 
describe the various theories about them. 

Concerning Wittgenstein's language games, we do not dare saying that Dy­
namic Logic would constitute a formal paradigm of them. We do not even 
think that the pure wittgensteinian word would admit the legitimacy of form­
alizing linguistic phenomena! What we want to stress here is rather a sort of 
deep general intuition about how language works that, according to our view, 
emerges from both the Philosophische Untersuchungen ([76)) and the new dy­
namic approach in logic and in philosophical logic. According to this intuition, 
language is not something traced after reality, so to speak; rather, it emerges in 
its manifold variety out of a number of cognitive processes, out of use, out of a 
communitary practice. Language games are a beautiful philosophical tool, and 
they emphasize the virtual infinite complexity of this dense intertwine of life, 
mental activities and language. On the other hand, Dynamic Logic is a formal 
set-up, and it confines itself to the more modest analysis of small fragments of 
that complex intertwine. Still, it carries this analysis by putting the accent on 
the cognitive activities that are 'behind' the external linguistic expression. For 
instance, the use of modalities is accounted for in dynamic terms in such a way 
as to bring to the fore the process of testing/updating that underlies them. 

Let us now take into account the 'score board' metaphor by David Lewis, 
as described in [58]. As it is shown in [29], this metaphor well encapsulates the 
spirit of Dynamic Logic in its application to the study of Natura.I Language. 
According to this metaphor, the process of understanding Natural Language is 
somewhat similar to the process of updating a score board within the course 
of a game (with answers to questions like 'who has thrown the dice?', 'who is 
winning?' and so on). They are both aimed at accounting for the eventual 
changes that occur in the context. Accordingly, Dynamic Logic represents the 
successive process of updating one's picture of the world (the context of the 
game), on the basis, again, of the changes that occur. Remember for instance 
the semantic variation of the parameter Interpretation, that can well model the 
acceptance of an answer to a question like 'who has the property P?'. A se­
quence of programs of Dynamic Logic can be seen as a sequence of instructions 
for updating a score board, where the game can consist in understanding a situ­
ation, or in forecasting how the situation will develop, or simply in competently 
using linguistic resources. 

Concerning the dynamic conception of meaning, we hope to have shown 
what it a.mounts to a.long all the previous chapters. Now, we will focus on a 
special theme, very up-to-date in the 'dynamic community', and consider it as 
a case study for expounding once more this new approach to meaning. 



72 Clwpter 5. Philosophical Repercussions 

5.2 Individuals and Modality 

In this section we w;uit to fo('llS on an issue that we have already encountered at 
\·arious points within the prc\·ious chaptPrs. Namely, we will now discuss at some 
l<'ngth if and how the dynamic apparatus (in the format we have investigated) 
can be fruitfully used for solving some thorny problems that arise when making 
modal statements about individuals. ?\fore precisely, we will check if and to 
which extent a dynamic interpretation can clear up some deep doubts concerning 
Quantifit><l Modal Logic (QML for short). The present section will be devoted 
to drawing a rough map of the problems in QML, while also sketching the main 
'static' solutions that have been advocated in the literature. Section 5.3 will 
consider the possible dynamic 'impact.' on this controversial area. 

5.2.1 The main problems 

The question of making modal statements about individuals raised an extensive 
and 'hot' debate within the course of the current century. Given that, we do not 
aim at an all-embracing historical reconstruction. Rather, we will try to spell 
out the most fundamental problems and objections that have often threatened 
the legitimacy of QML. 

The first problem we want to face is very dramatic, and directly brings 
us to the work of W.O. Quine, that certainly has been the most inexorable 
censor of QML. His main technical contribute to the (attempted) liquidation of 
QML consisted in bringing to the fore the so called question of 'quantifying in'. 
Before going into details, we resume Quine's fundamental claim: quantifying 
into modal (more generally, referentially opaque) contexts is not technically 
correct, and leads us to a puzzling dilemma. Let us see the argument step by 
step. 

First, a matter of fact: there are contexts where the apparently obvious 
Jaw of substitutivity of identical fails. These context are called, by definition, 
referentially opaque. Among them, there are modal contexts (together with 
belief contexts, quotation contexts, and so on. We assume the readers has a 
certain familiarity with this very well-known typization). An easy example. 
The following statement seems out of discussion: 

9 is necessarily greater than 7 

Moreover: 

9 = number of planets 

But - here the failure of the 'Leibniz law' shows up - it is false that: 

The number of planets is necessarily greater than 7 

Therefore. the context 'it is necessary that ... ' (or, in symbols, 'D ... ) is refer­
entially opaque, since within it the Leibniz laws does not hold. In other words, 



5.2. Individuals and Modality 73 

t~e singular terms that occur within such a context are not purely referential, 
since not only what they denote matters, but also how they denote it. 

Second step: since the ultimate mean of reference in a theory are the vari­
ables of quantification, the failure of the substitutivity of identicals must have an 
effect of some sort at the very level of quantification. Quine takes into account 
the rule of existential generalization, and checks what happens when it is ap­
plied to referentially opaque contexts. Following up with the previous example, 
take the sentence: 

9 is necessarily greater than 7 

By applying the rule in question, we get: 

3x(x is necessarily greater than 7) 

But, is Quine's qualm, what is the number that has the property of being 
necessarily greater than 7? 9? or the number of planets? A clear quotation: 'In 
a word, to be necessarily greater than 7 is not a trait of a number, but depends 
on the manner of referring to the number'. 

Third step, i.e. the moral: the application of a quantifier to a variable 
within a referentially opaque context produces 'unintended sense or nonsense'. 
Namely, quantifying into referentially opaque contexts is not formally sound. 

The second technical difficulty with QML is of a totally different nature. 
While the question of 'quantifying in' concerns the very rightfulness of QML, 
this second point we are going to discuss takes it for granted, so to speak, and 
involves an 'inner' feature of QML systems. This point we have encountered 
at many stages in the course of the present work: how is it possible to express 
both de re and de dicto modalities within one single logical system? As we shall 
see in what follows, this becomes a relevant issue also in connection with the 
problem of 'quantifying in', that can be possibly clarified if not solved, by a 
fine-grained formalization that accounts for both interpretations of modalities 
(cf. paragraph 5.2.2). Another, maybe more important, motive for facing this 
question concerns the application of QML to the analysis of Natural Language. 
It is quite uncontroversial that both the de re and the de dicto reading of inten­
sional operators are 'at work' , so to speak, in common linguistic practice. By 
the way, this is already a good reason for justifying the philosophically dubious1 

de re modalities. As it is properly remarked in (39], it is not methodologically 
correct to let a philosophical objection of any kind to influence our analysis of 
Natural Language: 'we want descriptions of how we speak, not of how we would 
have to speak in order to earn the approval of philosophers' (cf. (39), p. 47). 

lHerewith we have only ta.ken into account the technical criticisn; by Quine to QML. Still, 
the quinean problem is more complex, since he refutes - in most cases - de re modalities 
because they commit one to essentialism. We will not pursue this issue here, for we consider 
it somehow less actual tba.n the 'concrete' technical questions a.bout QML. 



74 Chapter 5. Philosophical Repercussions 

Finally, we want to stress a last question concerning the theme 'Individuals 
and Modality'. This question is in a sense marginal in the literature, but we 
think it is quite relevant from the point of view of Philosophy of Language and, 
again, of Linguistics. The question, that we have already implicitly mentioned 
in Chapter 3, looks as follows: which part is to be played by the choice of 
models and which by the syntactical distribution of modal operators in order 
to determine their intended reading? 

5.2.2 A few solutions to the question of 'quantifying in' 

In this paragraph we will briefly recall (some of) the solutions that have been 
advocated to the first problem above. Although the question of 'quantifying in' 
won't be directly involved in our dynamic analysis, we think it can be useful to 
outline the main strategies, in that they connect up with the key problem we 
will face 'dynamically', namely the twofold reading of modal operators. 

The solutions to this dilemma, if by solutions we mean the attempts to 
license QML, are all aimed to show that Quine's argument against quantification 
within opaque contexts has a gap of some sort. 

We now outline a list of what we consider the more significant strategies in 
finding out this advocated gap: 

Kaplan in [55] provides a quasi-formal reconstruction of Quine's argument 
against the quantifying in; in this reconstruction, he finds a wrong step, 
caused by a hidden confusion between non-referential occurrences and 
non-referential contexts; this is an interesting point, since, as we have 
already hinted in Chapter 3, it is not clear how the intended reading of 
a modal sentence should depend on its structure (i.e. on the context) or 
on the intension towards terms (i.e. on the interpretation of occurrences). 
We will get back to this issue in paragraph 5.3.L 

Fine in {37] claims that Quine's criterion for non-referentiality (i.e. the failure 
of Leibniz law) is too narrow, in as much as it rules out referential terms 
too. Example: take 'The man behind Fred saw him leave'. Suppose 'the 
man behind Fred== the man before Bill'. Although 'the man behind Fred' 
in the first sentence looks certainly referential, substitution with 'the man 
before Bill' does not preserve the truth: 'The man before Bill saw him 
leave' is false. 

P lantinga in (63] demonstrates that the various cases where the Leibniz law 
fails all display a certain confusion between the de re reading and the de 
dicto reading. For instance, in the example of the number of planets, the 
conclusion ('the number of planets is necessarily odd') is surely false if 
read de dicto, but it becomes unquestionably true if read de re. 



5.2. Individuals and Modality 75 

This last strategy rises a relevant point, in as much as it connects up with the 
second problem of paragraph 5.2.l. If it is true that the distinction de re/de 
dicto can contribute clearing Quine's quandaries, then the question of finding a 
way for representing both the two readings of modalities becomes more urgent! 

5.2.3 Possible worlds semantics 

As we have already said at various stages (cf. in particular Chapter 3) , there 
are manifold 'degrees of freedom' when designing a possible worlds model of 
Quantified Modal Logic, and different choices at the semantic level correspond 
to different interpretations of modal operators, to different 'ontological' assump­
tions, and to different technical traits. We do not want to go through the whole 
range of possibilities here. Rather, we will focus on the choices that are more 
relevant with respect to our favourite philosophical point, concerning the dis­
tinction de re/de dicto. There are two main ways: 

Rigid Terms As the reader will know, a possible worlds model with Rigid 
Terms will assign to any term of the language2 the same object through 
all possible worlds. Thus, terms are treated as proper names, with no 
intensions. From another point of view: the peculiarity of possible worlds 
models with Rigid Terms lies in that they interpret terms as individuals. 

World-relative Terms All terms, including variables, possibly become 'non 
purely referential' (cf. above). In other words, it may be said that terms 
are interpreted here as individual concepts. This definition comes from 
Carnap [19], but the common intuition behind individual concepts is not 
faithful to the carnapian word: an individual concept is often pictured 
as a sort of story (temporal, if possible worlds are interpreted as points 
in time, or 'metaphysical', in case they are mere possibilities) of an in­
dividual. Interestingly, an individual concept can also be pictured as a 
definite description in its 'attributive' reading (for the distinction between 
'attributive' and 'referential' use of definite descriptions see (25]): ' the 
killer', namely the person who has committed the murder, no matter who 
he actually is (he may have different instantiations in different possible 
worlds). 

Let us see now what these alternatives can tell us concerning the two readings 
of modalities. 

If one interpretes a QML system over a possible worlds model with Rigid 
Terms, the true advantage is that the Leibniz law above holds without restric­
tions (given the fact that identities are all necessary!), and de re modalities are 

2 0bviously, semantics are available where only variables or only constants are fixed .. "".e 
will not pursue this distinction here, since we think that the reading of modal operators w1thm 
a logical system, linked for many aspects to the interpretation of terms, is basically transverse 



76 Chapter 5. Philosophical Repercussions 

properly expressed within this context. On the other hand, problems arise con­
cerning de dicto modalities. In the case of properties of singular terms, like in 
the sentence 'the killer is bad', one can make it de dicto necessary by performing 
a syntactical manoeuvre: 

D (Kx -+ Bx) 

opposite to the de re counterpart: 

(Kx -+ D Bx) 

This is standard. But we want to stress that a pretty strong assumption is 
implicit here: namely that the intended reading of modal operators is a func­
tion of their syntactic distribution. This is at least controversial if we take 
the instance of representing Natural Language seriously: the phenomenological 
evidence supporting this claim is not strong enough. 

The situation becomes even worst when trying to represent modal identit­
ies: as we said, rigid terms make all identities necessary. Which means that 
two relevant modes in Natural Language are ruled out: first, totally de dkto 
identities, that may be contingent (it is not necessary that the US Postmaster 
being the same individual as the inventor of bifocals). Second, mixed modal 
identities, that say about a certain individual, labelled as x, that he could have 
the property of being the same as y; more clearly, suppose we want to say about 
the individual who happened Lo be th~ po~tman (about him - de re intention), 
that he could be the killer. In this case, we want to keep track of our postman 
through all possible worlds, and check if somewhere this individual happen to 
have the property of being equal toy, the killer (de dicto intention). 

We can now consider the case of models with World-relative Terms. In 
fact, we have already seen what happens with dropping the assumption that 
terms are rigid: the system that we have called static GSV was nothing but a 
system of Predicate Modal Logic interpreted over possible worlds models with 
World-relative Assignments. We recall that the advantage of that system is 
that both a de re and a de dicto reading of modal operators is accounted for. 
But we already know that the price for achieving this is quite high. First, in 
connection with the last question of paragraph 5.2.1, we have already stressed 
that the common interpretation of quantification within a World-relative Terms 
semantics commits to a strong assumption: that the reading of modalities is a 
function of their syntactical distribution. Or, in other words, the fact that 
terms are not rigid implies that they are interpreted as individuals when they 
are within the scope of a quantifier, and as individual concepts when they are 
outside the scope of quantifiers. This is certainly a way for coping with both 
individuals/de re intensions from one hand and individual concepts/de dicto 
intentions from the other; but, once more, we doubt that this really catches 
what goes on in Natural Language. Finally, we want to mention a typical 
technical problem of models with World-relative Terms: classical principles of 



5.3. Dynamic Individuals and Modality 

instantiation become here invalid. An example: 

'V X<pX -/+ r.pt 

77 

As remarked in [40], this clearly shows that in World-relative Terms models 
quantification acts on rigid terms, while terms in general are non rigid. ' 

Summing up, we don't know of any uncontroversial representational tool 
here. Multimodal logic can be of some help, in as much as it can blend the 
different possible models for QML within the same semantics. Still, the solution 
is not uniform. We have seen as systems with Worlds-relative Terms, like static 
GSV, can model both readings at the same time. But even there, we hope to 
have shown that a questionable assumption has to be made assuming a link 
between the interpretation of intensional operators and the binding structure 
of the discourse. 

5.3 Dynamic Individuals and Modality 

5.3.1 What is on the market? 

We have seen basically three kinds of dynamic systems that seems to be good 
candidates for saying something about the old querelle on individuals and mod­
ality. Let us briefly sum up their main contributions. 

The system DMPL, opting for Fixed Assignments, is not fine-grained enough 
as to give a satisfactory account of the double reading of modal operators. In 
particular, DMPL validates the following principle: 

Os = t-+Ds = t 

From this point of view, DMPL does not differ from any static system of Modal 
Predicate Logic interpreted over Fixed Assignments models. Still, DMPL, in­
spired by (43] and by [44j, adds an important question, if not a solution, to the 
debate on individuals and modality: how to cope with the standard puzzles of 
the literature when pronouns are involved? In DMPL it becomes possible to 
make de re modal statements about pronouns without violating the principle of 
compositionality; but further system (cf. what follows) give further contributes 
to this point. 

The system GSV represents the distinction de re/de dicto by adopting a 
semantics with World-relative Assignments. This leads to a different reading 
of the existential quantifier, that searches for its witnesses by setting the whole 
logical universe (namely all the possible worlds) on a value at a time. To sum 
up our general claim, this option presupposes a controversial assumption on 
the structure of Natural Language: according to the GVS interpretation of 
existential quantification, a modality is to be read de re when inside the scope 
of an existential quantifier, de dicto when outside. Since existential quantifiers 



78 Chapter 5. Philosophical Repercussions 

are more or less explicitly at work in many places in Natural Language, this 
is also a commitment on the syntactic linguistic occurrence of de re and de 
dicto modalities. More generally, GSV assumes that terms are interpreted as 
individual concepts, except in case they are inside the scope of a quantifier. 
Again, we don't find any uncontrovertible linguistic evidence fo this. Moreover, 
we want to stress that this particular solution to the problem of quantified 
modality is not, once again, dynamic at all, since, as we have shown in Chapter 
3, the same reading of existential quantifiers can be adopted for a static system. 

Still, the system GSV adds an important contribution to the question of 
modalities applied to pronouns. As we hinted, this question is by now the most 
original contribute of the dynamic approach to the querelle on individuals and 
modality. Thanks to the World-relative Assignments, GSV manages to give a 
very fine-grained treatment of identities involving pronouns; we recall here (but 
see Chapter 3 for a more detailed explanation) the following two discourses: 

1. Someone has done it. There is someone hiding in the closet who might be 
the one who has done it. 

2. Someone has done it. There is someone hiding in the closet. He might be 
the one who has done it. 

that get the following formalization in GSV: 

1. T/XDX;T/y(Qy; Oy = x) 

2. 17xDx; ryyQy; Oy = x 

Interestingly, the 0 in the first formula is 'de re' only with respect to y, since 
it is inside the scope of 'T/Y· (i.e. y has the property of being possibly equal to 
x. Thus Oy = x does not imply Dy = x). Rather, the o in 2 is totally 'de 
dicta'. Unfortunately, as we have shown in Chapter 3, GSV does not allow a 
convincing formalization of a discourse like: 

There is someone hiding in the closet who might be Alessandro 

where Alessandro is given a fixed instantiation in all possible worlds. 

Finally, the system TKV manages to account for both the de re and the 
de dicto reading of modal operators, via a refinement of both the syntax and 
the semantics: the first one explicitly distinguishes among different modalities, 
while at the level of models this corresponds to different kinds of accessibility 
relations. In one word, this multimodal dynamic system uses the standard 
idea of coping with the different readings of modalities by means of different 
constraints within the same model, with corresponding modal operators. Again, 
its peculiarity lies in its being multimodal, and not quite in its being dynamic. 
Still, the treatment of modal puzzles involving pronouns is quite satisfactory, 
since it combines the advantages of the T/ (allowing a compositional treatment 
of intersentential bindings) with the advantages of an extremely fine-grained kit 
of modalities. 



5.3. Dynamic Individuals and Modality 79 

5 .3.2 Waiting for a dynamic cut 

In this section, we want to suggest a possible purely dynamic approach to the 
problems we have been considering. This is not a structured proposal, rather 
we aim to hint at a feasible direct application of the dynamic apparatus to the 
problem of individuals and modality. Recall that the dynamic contributions to 
this issue we have see so far are rather of an heuristic kind, in that they suggest 
new questions and points of view instea-0 of positively proposing new solutions. 

We take our cue from the last 'static' strategy that we have mentioned in the 
previous paragraph. More specifically, we assume that the puzzles concerning 
the Leibniz law and consequently the quantification within opaque contexts, 
depends on a subtle back and forth shift between de re reading and de dicto 
reading. 

9 is necessarily odd 

seems to Quine above discussion. We are tempted to say that he gives a de re 
reading of it. He would probably reply that no , it is a de dicto reading. In fact, 
under the assumption that the name '9' is a rigid designator, the distinction 
vanishes. But this is controversial. In other worlds, '9' could name something 
else. On the other hand: 

the number of planets is necessarily odd 

is false according to Quine. We have already said that it is de dicto false. De 
re it would be true. Moreover, the identity: 

9 = number of planets 

is modally unspecified, since it is read de re (in the sense that both '9' and 'the 
number of planets' are purely referential). But it would become contingent if 
read de dicto (requiring then an explicit modal specification). 

The moral we want to infer is that Quine seems to give to any modal state­
ment a sort of preferred reading, independent from the syntactical structure. 
This makes a typical question for the dynarnist arise: how does the mechanism 
for picking out the intended reading of a modal operator work? We can make 
some examples in order to show how this question makes sense. 

Suppose someone has been murdered. Suppose you have seen the killer. In 
some sense, you know him. You talk about him, i.e. about the individual you 
have seen. You could say something like 'he is surely very scared', because you 
saw he was trembling. This epistemic modality 'surely' is surely de re: you talk 
about an individual, not about a description. 

On the other hand, take the same situation. Suppose you don't know the 
killer, in any sense. You only know there is a killer. And you are investigating. 
Since the homicide was very cruel, you utter the following: 'he is surely very 
violent'. But in this case, you are talking about a description, about 'the killer' , 
and the 'surely' is surely de dicto. 



80 Chapter 5. Philosophical Reper·cussions 

This example shows m1 interf'sting feature of the distinct.ion de re/de dicto. 
It shows that the syntactic distribution of modal operators is not the only 
relevant fact in order to determine their reading. Sometimes, it is a matter of 
cognitive focus! 

Other interesting examples can be done about identities. We can take the 
case of the guy hiding in the closet who might have done it: 

Someone has done it. Someone is hiding in the closet. He might be 
the one who has done it 

In (45], the authors make an interesting claim. In case you know a little 
something about that someone (in particular: it is not your elder son, since you 
heard a subtle voice from the closet, and you elder has already a rough voice), 
then you are inclined to make de re modal assertions about that someone. In 
other words, knowing something makes your focus pass from a mere description 
to a (partial) individual. Thus. when saying 'he might be the one who has done 
it' you are meaning to read the might de re with respect to 'he' (namely with 
respect to the hiding guy), while presumably de dicto with respect to 'the one 
who has done it' (in other words: you are using the pronoun 'he' to pick a 
partial individual, while 'the one who has done' is just a description). On the 
other hand, if you don't know absolutely anything about the guy who is hiding, 
then you are lead to stay at the de dicto level. 'He might have done it' becomes 
then totally de dicto. 

If all these examples make some sense, than this is a good dynamic ques­
tion: how does the mechanism of 'cognitive focus', guiding the interpretation of 
modalities, work? 

It should be clear that we are already in the middle of the second tech­
nical problem of paragraph 5.2.1. In fact, bringing to the fore the process of 
selecting the intensions of modalities would answer - in dynamic terms - the 
representational question also. What we want to shortly remark here is the fol­
lowing: as we have already claimed in Chapter 3, the approach to the problem 
of representing de re and de dicto modalities as offered in (45] is not dynamic. 
We have shown that a static version of GSV can be designed that provides us 
with the same approach to this representational question. That solution is still 
bound to the view that the reading of modalities depends on their syntactical 
distribution. The dynamic cut we advocate suggests a different perspective: the 
reading of modalities depends on a cognitive process of some sort, that is just 
to be unveiled. We hope that the system TKV, presented in Chapter 3 can 
represent a first step in this (complex) research program. 



Appendix A 

More on Dynamic Modal Predicate 
Logic 

In this Appendix we will give a detailed description of the system Dl\1PL (cf. 
Chapter 3), while also providing a complete axiomatization and a large set of 
e..xamples of its application to Natural Language analysis. 

A.1 Semantics for DMPL 
The syntax of DMPL is like the synta," of DPL, but with a construction for 
epistemic 'might' added: 

DMPL 7r := Rt ... t I t = t I v :=? I 7rj 7r I •7r I 07r. 

We evaluate with respect to sets of first order models over the same universe 
M, i,e., we consider a DMPL model Mas a pair (M, W) where W is a set of 
first order interpretations over M. Variable assignments for M are elements of 
Mv. Index sets for M are subsets of W. 

We give a functional semantics that maps triples consisting of an index set, 
an input assignment and an output assignment to a new index set. Intuitively, 
~ [7r)~ = J means that given input assignment s and output assignment u for 
M, 7r maps index set I to index set J. Suppressing the parameter M for ease 
of reading, we can express the same as [7r]~(I) = J. The advantage of this 
functional formulation is that it clearly shows the two dimensions of parametric 
variation, the dimension of assignments and the dimension of index sets, with 
their interplay. 

The index set W pictures the case of complete ignorance. Of course, even in 
this case one has to make up his mind about what the pronouns (free variables) 
are supposed to refer to, both at the start and at the end of the processing; 

81 



82 Appendix A. More on Dynamic Modal Predicate Logic 

namely, one has to fix an input and an output assignment function to be able 
to compute an output index set. If the discourse produces new information, 
the index set that results from the semantic processing will be a proper subset 
of the initial index set. On the other hand, a state of maximal information is 
given by an index set { i}, indicating that i is the only state of affairs compatible 
with one's information. Finally, the index set 0 pictures the case of inconsistent 
information: no state of affairs at all is compatible with what one knows or 
believes. 

A.1.1. DEFINITION. [Semantics of DMPL] 

1. [Rt1 · · · t,.]:,(J) = {i E I I s = u and M, i l=a Rt1 · · · t,.}. 

2. (t1 = t,.]~(J) = {i EI Is= u and M,i F=8 t1 = h}. 

3. (7r1; 7r2]~(J) = {i EI I there is an r with i E [7r2]~([7r1]~(J))}. 

4. (-.7r]~(J) = {i EI Is= u and there is nor with i E [7r]~(J)}. 

5. (v :=?)~(I) 

{i e I I u = s(vld) for some d EM} 

= { ~ 
6. (07r)~(J) 

if u = s(vld) for some d EM, 
otherwise. 

= {i e I I s= u and there is an r with (7r]:(I) :f. 0} 

= { ~ ifs= u and there is an r with [7r]:(I) :f. 0, 
otherwise. 

T he clauses for basic relations Rti · · · tn and identities t 1 = t2 say that atomic 
predicates serve to weed out the set of indices, given what the assignment func­
tion tells us about the referents of the variables. For every input index set, 
the output inde.x set simply consists of those items from the input index set 
that satisfy the predicate, given the assignment function, which itself remains 
unchanged. Note that identity is a logical relation which behaves the same in 
every world. 

T he clause for program concatenation says that the members of the output 
index set of the concatenated program are the output index set of the second 
program, when applied on the output index set of the first program for the 
original input index set, provided that some intermediate assignment function 
establishes the link between the input and the output assignment. Thus, along 
the index set dimension we have composition of update functions, as in UL, 
while along the assignment dimension we have relational composition, as in 
DPL. 



A.1. Semantics for DMPL 83 

Similarly, negation is boolean complement along the index set dimension, but 
computed in terms of possible assignment continuations along the assignment 
dimension. 

As in DPL, dynamic implication 7r1 => 7T2, is defined as -....(7T1; -....7T2). The 
DMPL semantics gives rise to the following clause for=>: 

[7T1 => 7r2]~(J) = {i EI I s= u and 

for all r with i E (7Td~(J) there is a p with i E [7r2]~([7Ti):(J))}. 

Thus, dynamic implication weeds out those indices that for some intermediate 
assignment function r satisfy the antecedent program but do not have an output 
assignment for which they also satisfy the consequent program. 

The clause for random assignment to v checks whether the output assign­
ment function is a v variant of the input assignment and returns the input index 
set if it does, the empty set if not. 

Finally, the clause for <> checks whether the output assignment equals the 
input assignment and whether it is consistent with 71'. 

As in UL, we have an elimination lemma: 

A.1.2. LEMMA. For all programs 1T of DMPL, all models M, all index sets I 
and assignments s, u: 
(7r]~ (I) ~ I. 

Also, it is easy to semantically characterize the test programs. Test programs 
are the programs for which (7T)~(J) =/; 0 implies that s = u. 

Acceptability and acceptance are defined in the spirit of UL. 

A.1.3. DEFINITION. A program rr is acceptable (in model M) for input index 
set I and input assignment s if there is an u for which [rr]~ (/) =ft 0. 
Intuitively, if the information conveyed by program rr is accepted by index set 
I then it does not weed out any of the current epistemic alternatives: 

A.1.4. DEFINITION. A program 1T is accepted (in model M) by index set J, 
given input assignments, if there is an u for which (rr)~(J) =I. 

Validity is defined in terms of acceptance, as follows. 

A.1.5. DEFINITION. A program 1T is valid if for all models M, for all I,s for 
M, 1T is accepted by/, given s. 

Notation: write .l. [rr)•(J) for {i EI I there is some u with i E [7r):_.(J)}. 

A.1.6. DEFINITION. 7T1 dynamically entails 1T2, notation rr1 F= rr2, if for all 
models M all index sets I and assignments s, u. for M, 



84 Appendix A. More on Dynamic Modal Predicate Logic 

We leave it to the reader to check that this definition combines the features of 
DPL entailment and UL entailment, both in the appropriate dimensions. 

To see that DMPL is a conservative extension of Update Logic, consider the 
restriction of DMPL to the update fragment, i.e., the fragment which only has 
0-ary predicates and no quantification. It is easily seen that the assignment 
parameters in the semantics become redundant, and the definition of DMPL 
entailment reduces to the Update Logic definition. 

If, on the other hand, we consider the DPL fragment of DMPL (all formulas 
without occurrences of the <> operator), then we may replace evaluation at an 
index set by evaluation at a single world, and we are back at the semantics of 
DPL. In this case the index set parameter becomes redundant and the definition 
of DMPL entailment reduces to the DPL definition. 

A.2 Some Simple Examples 

In order to gain insight in the semantics of DMPL it is useful to look at some 
very simple examples. Let us assume a model M with a set of worlds W 
consisting of three worlds over a universe { d, d'}, where a one place predicate 
P is defined as follows. 

Fw-i(P) = {d}. 

Fw3 (P) = 0. 

Now suppose also we only have one variable x in the language. Then Mv 
consists of just two assignment functions , x H d and x H d', which we will 
refer to as s and u respectively. Here are the results of evaluating some very 



A I Some Samplr Ezam11lt'.'I 

{P.r}~ ( \\ ") = iw1} 

(P.r}~ (l\ "l = (f'.r)~' ( l\" l = ~ 

[-.P.cJ:(ln = {u'.i} 

(17.r. : Px)~(W l = {ttt1 }. 

(11.c: Px)~ ( U" ) = {u·1 }. 

(<>P:r)!(H") = W. 

(<>Px)~(H') = W 

(<>Px)~(W) = (<>Pxt'(W) = 0. 

The first litmus test of the system is whether it can deal with the contrast 
between 'He may be present . .. He isn't present.' aud 'He isn't present ... • He 
may be present.', no matter what the referent of 'he' happens to be. We illus­
trate with the example interpretation that the semantics of Dl\1PL make the 
translation of the first acceptable, but that of the second unacceptable: 

[<>P.r; -,P.r)!( W ) = [-.Px)!([<>PJ]! (ff) ) 

= (-.Px)!(W) 

= {w3}. 



86 Appendix A. More on Dynamic Modal Predicate Logic 

[OPx; -.Px]::!(W) 

[-.Px; OPx]:(W) 

[-.Px; OPx]:'.:(W) 

[-.Px]~([OPx]~(W)) 

= [-.Px]~(W) 

= {w2,w3}. 

[OPx]!([--iPx]!(W)) 

= iOPx]!({w3}) 

= 0. 

[<>Px]~([-iPx]~(W)) 

= [OPx]~({w2,w3}) 

= 0. 

Secondly, the maybe operator should not eliminate any of the current epistem­
ica.lly possible worlds. A litmus test for this is that a sentence like He may be 
present, but he may just as well not be present should come out true in the 
situation of complete ignorance, and leave us in a state of complete ignorance. 
And this is precisely what we find, regardless of how the reference for 'he' gets 
fixed: 

[<>Px; o-.Px]!(W) [0-iPx]!([OPx)!(W)) 

[O-.Px]!(W) 

= w. 

[OPx; 0 --iPx]!!(W) = [O-.Px]~((OPx]~(W)) 

= [O-.Px]~(W) 

= w. 
We want to argue that if may in the following examples is taken in its epistemic 
sense, then (A.l) should turn out to be acceptable, but (A.2) should not. 

Everyone may have escaped from the fire... (A.l) 

Oh dear! Someone hasn't made it. 

Someone hasn't escaped from the fire. 
•Everyone may have escaped. 

(A.2) 

One can easily imagine a fire fighter uttering discourse (A.l) as a comment to 
a colleague during an inspection round. But (A.2) would sound very weird in 
those same circumstances. 



A .3. Quantified Dynamic Modal Logic 87 

It is clear, however, that may or might has more senses than the purely 
epistemic sense that we are focusing on here. Note, for instance, that the 
following discourse is intuitively acceptable. 

Someone hasn't escaped from the fire. 

Everyone might have escaped. 
(A.3) 

The acceptability of (A.3) means that might in this example does not express 
a purely epistemic modality. The second sentence of the discourse does not 
express that a state of affairs where everyone has escaped is in accordance 
with one's epistemic state (it is not, witness the information contained in the 
first sentence). The second sentence expresses something quite different: things 
might have turned out different from how they in fact turned out. To account 
for· this kind of example, we would have to introduce a new operator for alethic 
modality, which looks at all indices, irrespective of whether they are still 'in 
the game' as epistemic alternatives. This would boil down to evaluation in yet 
another dimension. We will not pursue this issue here. 

A.3 Quantified Dynamic Modal Logic 

To gain further insight in DMPL, our next goal is to provide an axiomatization. 
For this we take our cue from two existing axiomatizations for DPL and Update 
Logic, respectively. Van Eijck and De Vries [32] use Hoare logic to axiomatize 
DPL, and in Van Eijck and De Vries [33] they apply the same methods to 
Update Logic. The extension of DPL with the epistemic operator suggests the 
use of modal predicate logic as assertion language in a Hoare style calculus for 
DMPL programs. 

Rather than confining ourselves to Hoare style implications we want to be 
able to use the full range of logical connections between static assertions from 
modal predicate logic and programs from DMPL. We will therefore define a 
version of quantified dynamic modal logic that gives us the expressive power we 
need. This logic is inspired by Pratt (64]. See also Goldblatt (42) for a general 
survey of dynamic logics, Van Eijck (26) for a reformulation of the Hoare style 
calculus of Van Eijck and De Vries (32) in quantified dynamic logic, and Van 
Eijck and De Vries [34] for a reformulation of the Hoare style calculus for Update 
Logic in 85 propositional dynamic logic. 

QDML programs n :=Rt··· t It= t Iv :=? I n; 7f I -i7f I 07r. 

QDML formulas c.p ::=Rt··· t I t = t I -.c.p I c.p /\ c.p I 3vc.p I <>c.p I (-rr)c.p. 

The programs of QDL are the DMPL programs, the formulas are the formulas 
of modal predicate logic, with an extra modality for DMPL programs added. 



88 Appendix A. More on Dynamic Modal Predicate Logic 

We use T as an abbreviation of\t'x(x = x) and J. as an abbreviation of-.T . 
As is customary, we abbreviate -.(-.cp/\ -.'ljJ) as (cpV 'l/J). Also, we write -.(cp/\ -.'tfJ) 
as (cp -+ 't/J), -.O-.cp as Dcp, (-i ( rr1; -irr2))cp as (rr1 => rr2)cp, -. (rr)-.cp as [rr]cp 
and -.3x-.ip as 'rlxcp. Also, we omit outermost parentheses for readability. 

We consider index sets I as pointers to universal Kripke models consisting 
of those worlds which are the current epistemic alternatives, with accessibility 
relation I x I. Recall from the literature that the modal logic determined by 
the class of finite universal frames is S5. Moreover, for any universal model M 
(a universal frame with first order valuat ions in some domain M assigned to all 
of its worlds) there is a submodel M' where all worlds have different valuations, 
and such that M' validates the same formulas. M' can be got by throwing 
away the extra copies of the worlds with identical valuations: because of the 
universal accessibility this makes no difference to validity. 

We define the notion of truth in a model M , with respect to an index set I, 
an index i E I, and an assignment s for M. 

A .3.1. DEFINITION. [Truth in M for index set I, index i, ass s] 

L M,I,i,s I= Rt1 · · · t,. iff M,i 1=$ Rt1 · · ·t,. . 

2. M,I,i,s I= t1 = tz iff M,i l=s t1 = tz . 

3. M , T,i,s I= -.cp iffit is not. the c;ise that. M , T,i,s I= cp. 

4. M,l,i,s I= cp/\'t/J iff M , l , i,s I= cp and M , l ,i , s I= 't/J . 

5. M ,l,i,s I= 3vip ifffor some d EM, M,I,i , s(vld) I= cp. 

6. M, I, i , s I= Oip iff there is some j EI with M,I , j, s I= cp. 

7. M,I,i,s I= (n)cp iff ther·e is an assignment u for which i E [7r]!(l) and 
.M, (7r]!(J) , i ,u I= cp. 

More global notions of truth are now defined by universally quantifying over 
the various parameters, as usual: 

A .3.2. D EFINITION. [Truth for I and i, Trut h for I, Truth, Validity] 

• M , I, i I= cp if for all assignments s for M: M, I , i, s I= ip. 

• M , I I= cp if for all i E J: M , I , i I= ip. 

• M I= cp if for all I~ W: M, I I= cp. 

• I= cp if for all .M: .M I= cp. 

T he consequence relation for QDML is defined as follows: 

A .3.3. DF;FINITION. [Consequence for QDMLJ r I= cp if for all triples M ,I, i 
the following holds: if there is an assignment s for M with M, I, i, s I= 'Y for all 
'YE r, then M , I, i, s I= cp. 

It is convenient to define the following operation on index sets. 



A.S. Quantified Dynamic Modal Logic 

A .3 .4 . DEFINITION. [Pruning of index set I by c,o, given s] 
I~ 1£f {i EI I M,l,i,s I= ip}. 

Note that.!. (7r]8 (J) = 1(7r)T . 

89 

If <p, 'ljJ are formulas of QDML, then c,o.!:1/!, the localisation of <p to 1b, is defined 
as follows. 

A .3.5. DEFINITION. [Localised QDML formulas c,oJ..tfa] 

Rt 1 · · · tn .!.1/J = Rt1 · · · tn /\ 1/J 
t1 = tz.l.1/J t1 = t2 /\ 1/J 
(<pi /\ <.p2).J.1/J (<p1.J.1/J) /\ (c,o2.l.1/J) 
( • cp).l-1/J = 'l/; /\ •( ip.l.1/J) 
(3v<p).l.1/J = 3w(i,o[w/v].l.1/J) (w a new variable) 

( <>cp).l-1/J = 1/J /\ <> ( i,o.J.1/J) 
( (Rt1 · · · t,..)ip).l.1/J = (Rt1 · · · tn /\ cp).l.1/J 
( (t 1 = t 2)<p).l.1/J = (t1 = t2 /\ i,o).l.1/> 
((7r1 ; 7r2)<p}.l.'l/! ( (7r1){7r2)c,o).l.t/! 
((-i7r )<p ).J.1/J = (cp.l.[7r]l.).l.t/! 
((v := ?)c,o).l-1f> (3vc,o }.J.t/J 
(( 07!')<p ).J.'l/J = (i,o /\ 0(7r)T).J.tfi. 

The localisation operator will play an important role in the axioms to be presen­
ted in Section A.4. The following lemma makes clear what localisation accom­
plishes. 

A.3.6 . LEMMA . For all M = (M, W), all I~ W , and all assignments s for 
M· 1a _ (P)a 

. 'P.l...P - "' cp · 

Pro of: What we have to prove is that M,l,i , s I= cp.l.t,b iff M,I,i,s I- '!/! and 
M, 1$, i , s I- cp. T he proof uses induction on the structure of <.p; we merely give 
some example clauses. 

For atomic formulas Rf we have: M,l,i,s I= Rl.l.1/! iff M,I ,i, s I= Rt/\1/J iff 
both M ,I, i, s I= 1/J and M,I~, i, s I= Rl. 

The case of existential quantification: 

iff 
iff 
iff (ind hyp) 
iff ( w fresh) 
iff 

M, l ,i,s I= (3vi,o).J..,P 
M,l,i,s I= 3w(i,o[w/v].J.'I/!), with w new 
there is some d EM with M,l,i,s(wld) I= cp[w/v].l.1/J 
M , I , i, s(wld) I= 1/J and M,l~(wld), i, s(wld) I= ip[w/v] 
M, I, i, s I= 7/.J and M,1$, i, s(wld) I= c,o[w/v] 
M,I,i,s I= 'l/J and M,1$ ,i,s I= 3vc,o. 



90 Appendix A . More on Dynamic Modal Predicate Logic 

The modal operator case: 

M,I,i,s f= (O<p).j:1/; 
iff M, I, i, s f= 1jJ /\ O ( <p4:1/;) 
iff M, I, i, s F= 1jJ and there is a j E I such that 

M, I, j, s f= <p.j:1/; 
iff (ind hyp) M, I, i, s F= 'l/J and there is a j E I such that 

M,I,j,s F= 'I/; and M,I~,j,s I= <p 
iff M,I, i, s I= 'l/J and M,I~, i, sf= O<p. 

The definition of localisations for formulas starting with a program modality 
decomposes this operator, so in the program modality case all we have to do is 
check that the decomposition agrees with the semantic clause for the program 
construct and apply the induction hypothesis. This completes the induction 
argument and the proof. • 

A.4 A Calculus for QDML 

The calculus for QDML to be presented in this section provides the explicit 
link between static meaning and dynamic meaning for DMPL. The calculus has 
five sets of axiom schemata: (i) propositional and quantificational schemata, 
(ii) S5 schemata for the epistemic modality o , (iii) K-schemata for the program 
modalities, (iv) atomic test schemata and an assignment schema for the atomic 
program modalities, and ( v) program composition schemata. 

Propositional and Quantificational Schemata We start by taking the 
axiom schemata of propositional logic and first order quantification: 

1. A. cp-+ (1/J-+ <p) . 

2. A. (<p-+ ('I/;-+ x))-+ ((cp-+ 'I/;)-+ (cp-+ x)). 

3. A. (-.cp-+ -.'If;)-+ ('I/;-+ cp). 

4. A. Vvcp -+ [t/v]cp, provided t is free for v in <p. 

5. A. <p -+ Vv<p, provided v has no free occurrences in cp. 

6. A. Vv(i.p-+ 'I/;)-+ (Vvcp-+ "<:/v'l/;). 

7. A. v = v. 

8. A. v = w-+ (cp-+ cp'), where <p' results from replacing some v-occurrence(s) 
in <p by w. 

See e.g. Enderton [36] for discussion and motivation. 



A.4. A Calculus for QDML 91 

T h e 85 Schema ta for D 

9. A. D(cp-+ 'lfJ) -+ (D<,0-+ 07/J) . 

10. A. Dcp-+ <p. 

11. A. Dcp-+ OO<p. 

12. A. OD<p -+ <p. 

These are the propositional 85 modalities. The next axiom gives the Barcan 
Schema, which takes care of the interaction of quantifiers and the 85 modal 
operator. 

1 3 . A. Vv<>cp -+ <>Vvcp. 

T h e K -schema for t h e program modalit ies 

14 . A. [7rJ(cp-+ 'If;)-+ ([7r]<,0 -+ [7r]'tfi). 

Atom ic Test Schemata 

15. A. (R ti . .. tn)<p f-t <p.J,.Rt1 ... tn. 

16. A. (t1 = t2)<,0 t-t <,0.J..t1 = t2. 

A ssign m e nt S chema 

17. A. (v :=?)<p t-t 3v<p. 

Program Comp osit ion Sch emata The schemata for complex programs. 

18 . A. (7r1; 7r2)cp tt (7r1)(7r2)<,0. 

19. A. (-.7r)<p tt cp.J,.[7r]J.. 

20. A. (07r)<p tt <p /\ 0(7r)T. 

R ules of infer e nce The rules of inference of the calculus are Universal Gen­
eralization (conclude from I- cp to I- Vv<,0), Necessitation for D (conclude from 
I- <p to I- D<,0) and Modus Ponens (conclude from I- <,0 -+ 'lf1 and I- <,0 to I- 1/J). 
It turns out that necessitation for program modality can be derived (Proposi­
tion A.4.1). The notions of theoremhood (I- <p) and derivability from a set of 
premisses (r I- <p) in the calculus are defined in the standard way. 

A .4.1. PROPOSITION. 
If I- <,0, then I- [7r]<p. 

Proof: Induction on the complexity of 1r. 

A.4.2. THEOREM. If r I- <p then r F <p. 
• 



92 Appendix A. More on Dynamic Modal Predicate Logic 

Proof: Checking of axioms and rules, in the usual manner. • 
Completeness of the calculus is also straightforward, as is to be expected from 
the fact that there arc no difficult iterative phenomena (no Kleene star among 
the program operators). 

A.4.3. THEOREM. If r F <p then r f- <p. 

Proof: First observe that the following translation function • from QDML to 
85 modal predicate logic preserves truth for index set, index and assignment. 

(Rt1 · · · tn)* = Rt1 · · · tn 
(t1 = t2)° = t1 = t2 
(cp /\'Ip)* = IP• A 'I/;* 
('IP)" = -i<p* 
(3mp)* = 3vlP* 
( (Rt1 · · · tn)'P)* = <p" .!-Rti · · · tn 
((ti = t2)1P)" = <p* .l-t1 = t2 
((-rr1; 7l'2)ip)* ( ( 7!'1) ( rr2)<p) • 
( ( •-rr) IP )9 <p* -1-((11']1-)* 
((v :=?)<p)" = (3v1P)* 
((0-rr)cp)* = r.p* /\ 0({7r)T)* 

Thus, it follows from r I= <p that r I= IP*. Next, use the completeness of 85 
modal predicate logic to conclude from r I= <p* that r f- <p*. Finally, note that 
the translation steps and their inverses in the definition of· a.re licenced by the 
atomic test schemata and the program composition schemata of the calculus. 
This allows us to conclude from I' f- cp* that r f- <p. • 

A.5 C a lculating Meanings 

The translation function • from Theorem A.4.3 derives more or less directly 
from our calculus. We will now demonstrate that it can be used for calculating 
the meanings of DMPL programs as formulas of 85 modal predicate logic. 

Please note that in this paper we are not concerned with giving a translation 
algorithm from natural language to our representation language, although it is 
clear that this can be done using standard techniques from Montague grammar; 
see, e.g. , Bouchez, Van Eijck and Istace [17] or Muskens (60]. All that we 
want to establish here is that DMPL is a reasonable representation language for 
those aspects of natural language meaning that involve epistemic modalities and 
anaphoric linking, by showing that the translation function • that is implied by 
our calculus can be used to derive truth conditions for natural language texts 
in 85 modal predicate logic. 



A.5. Calculating Meanings 93 

The demonstration will proceed by analyzing some example natural language 
texts. 

A man walked out. Maybe he was angry. (A.4) 

A reasonable DMPL translation is the following (note that we ignore tense). 

17x : man x; walk-out x; Oangry x. (A.5) 

We want to find a specification of the conditions under which this DMPL pro­
gram succeeds, for these are the truth conditions of the natural language ex­
ample (in the intended reading, as specified by the DMPL translation). In other 
words, we want the truth conditions of the following QDML formula. 

(TJX: man x; walk-out x; Oangry x)T. (A.6) 

We apply the translation function. 

((17x: man x; walk-out x; Oangry x)T)*. (A.7) 

What we get is: 

((TJX: man x; walk-out x; Oangry x)T)* = 
((TJX: man x)(walk-out x)(Oangry x)T)* 
3x((man x)(walk-out x){Oangry x)T)* = 
3x( ( (walk-out x) ( 0 angry x) T)* .I-man x) = 
3x(man x /\((walk-out x)(Oangry x)T)*) = 
3x(man x /\ ((Oangry x)T)* .I-walk-out x) = 
3x(man x /\walk-out x /\ ((Oangry x)T)*) = 
3x(man x /\walk-out x /\ O((angry x)T)*) = 
3x(man x /\walk-out x /\ O(T ..I.angry x)) = 
3x(man x /\walk-out x /\ Oangry x). 

Before we proceed to the next example, it is useful to list some derived trans­
lation instructions. 

([Rti · · · tn]<p)* ·- Rt1 · · · tn -t (ip* .J_Rt1 · · · tn) 
([t1 = t2)ip)• = t1 = tz -t (ip* ..l.t1 = t2) 
ffrr1; 7r2)ip)* = ( [ 7r1)[7r2)<p). 
([-i7r)ip)* = [7r)..L -t cp* .1-([7!')..L)* 
((7r1 => 7r2)cp)* cp* ..!.( [7r1] ( 7r2) T) * 
([7r1 => 7r2]cp )* = ([7r1](,.2)T)* -t <p* .l-([7r1)(rr2)T)* 
([17v : "]ip)* = Vv([,.Ji,ot 
([07r)cp)* = 0((1l)T)* -t <p* 

We can now tackle next example. 

If a man walks out, then maybe he is angry. (A.8) 



94 Appendix A. More on Dynamic Modal Predicate Logic 

A reasonable DMPL translation: 

(TJX : man x; walk-out x) => Oangry x. (A.9) 

We have to calculate the truth conditions of the following QDML sentence. 

((17x: man x; walk-out x) => Oangry x)T. (A.10) 

Again the • function allows us to translate this into S5 modal predicate logic. 

( (( 71x : man x; walk-out x) => 0 angry x) T)* = 
T.j..([17x: man x; walk-out x]{Oangry x)T)* = 
([11x : man x; walk-out x]{Oangry x)T)* = 
([17x: man x][walk-out x](<>angry x)T)* = 
Vx([man x][walk-out x ] (<>angry x)T)" = 
Vx(man x-+ ([walk-out x](<>angry x)T)*) = 
Vx(man x-+ (walk-out x-+ (Oangry x)T)*) = 
Vx(man x-+ (walk-out x-+ Oangry x)). 



Appendix B 

Outline of a completeness proof for 
TKVL 

In this appendix we will sketch a completeness proof for (a fragment of) of the 
TKVL system (for a detailed proof see [21]). The system TKVL is just the 
system TKV (cf. Chapter 3) enriched with a 'static' part, which will basically 
be a version of Modal Predicate Logic and with the 'switching' operator ( ). 
See next section for a precise defini tion. 

B.1 The question of dynamic completeness 

The question of proving the completeness of TKVL is just an instantiation of 
the well-researcli.ed issue of proving the completeness of dynamic systems. In 
fact, we will basically use standard techniques from the literature. In particular, 
we will take our clue from the strategy proposed in [26] (partly based on the 
classical metatheory of Dynamic Logic - cf. for instance [42]) and also used in 
(35] (cf. the previous Appendix). 

Concretely, we will get our completeness theorem in three steps: 

• first, we will give an axiomatization of TKVL; 

• second, using the previous axiomatization, we will translate (via a function 
*) the system TKVL into a multi.modal static system TKVL*, which will 
be in fact a subsystem of TKVL; 

• finally, we will prove the completeness of TKVL* {its axioms being the 
'static' axioms for TKVL, and its models being just TKVL models), by 
building its canonical model; this will automatically give us the complete­
ness of TKVL, because of the following two facts: 

95 



96 Appendix B. Outline of a completeness proof for TKVL 

1. the function * preserves validity of TKVL formulas (i.e., if F= cp then 
F= <i'*); 

2. if a formula <p* is derivable in TKVL*, then <p will be derivable in 
TKVL. 

We should stress that the peculiarity of the problem we are now going to cope 
with lies in the fact that the system TKVL is quite complex, both in its syntax 
and in its semantics. Concretely, TKVL has a great amount of different mod­
alities, that call for a different semantic interpretation. Since, as we have said, 
we will prove our completeness result at a 'static' level, many of the classical 
problems in the completeness theory for Modal Predicate Logic will come up 
here. The art will consist then in merging a number of techniques from the 
literature in order to solve these problems. 

B.2 T he system TKVL 

Let us start with the first step: defining a 'dynamic logic' in Pratt style for 
talking about Tarskian Kripkean Variations. For the sake of simplicity, we will 
not take into account the whole range of TKV programs, but rather confine our 
attention to the following kit, in which all semantic parameters are represented: 

T KVL Programs :: = Pt1 . .. t,. I ....,7T I 7T1; 7r2 I 'T/ I µ I o I 
O"?r I 0P.7T I oo'ff 

On the basis of this repertoire of programs, let us now define a Dynamic Logic for 
Tarskian Kripkean Variations, a la Pratt. Recall that this will be a multimodal 
system, where programs will only occur as 'labels' for modalities. 

TKVL formulas: Pti .. . tn I t1 = t2 I -.cp I <p /\ 'I/; I 3x<p I 
OP.cp I O"cp I 0 6<p I {7r)cp 

As for the semantic, here is an obvious adaptation of TV models: 

B.2.1. DEFINITION. [TVKL model] A TVKL model W consists of a family 
of models or 'states' {D,I,A), where A is an assignment from variables into 
the domain D and I is an interpretation function from predicate letters into 
denotations over the domain . Notation for states: w, v, u, .. .. These models 
carry the following 'shift relations': 

1. w =A v : w differs from v at most in its A-value 

2. w =1 v : w differs from v at most in its values for I 

3. w =o v : w differs from vat most in its domain D 

Let us see the semantic clauses for TVKL formulas on these models. 

B .2.2. DEFINITION. (TKVL truth in W,w] 



B.$. Localization 97 

1. W, W F Pti ... tn iff W I= Pti ... tn 

2. w, w I= ti = t2 iff w I= tll. = t2 

3. W, w I= -.rp iff not W, w I= <p 

4. W, w I= <p /\ 1/J iff W, w I= <p and W, w I= 1/J 
5. W, w I= 3x<p iff there is a d E nw such that W, w(xld) I= <p where w(xld) 

is like w except for the fact that it assigns to x the element d 

6. W, w I= O'"'<p iff there is a v such that w =1 v and W, v I= <p 

7. W, w I= 0'7<p iff there is a v such that w =A v and W, v I= <p 

8. W, w I= 0° <p iff there is a v such that w = D v and W, v I= <p 

9. W, w I= (-rr)rp iff there is a v such that w >-,.. v and v E [7r]W and W, v I= 'P 

Truth in a model and validity can be defined as follows: 

B.2.3. DEFINITION. [Truth in a model W] <p is true in W, notation WI= rp, if 
for all w E W: W, w I= t.p. 

B.2.4. DEFINITION. [Validity) t.p is TKVL valid, notation I= r.p, if for all TKVL 
models W: WI= t.p. 

B .3 Localization 

We will now define the notion of 'localization' (cf. also Appendix A), which 
will play an important role in the a.xiomatization of next section. Intuitively, 
the localization of a formula <p to a formula 'l/J (notation: Loc"'ip) restricts the 
range for cp to be evaluated to the extension of 1/J. Concretely, if <p contains 
existential modalities, then its localization to "ljJ will keep the search for the 
witnesses within the bounds of the extension of 1/J. 

This becomes clear in the following lemma: 

B.3.1. LEMMA. For all TKVL models W and all worlds w the following hold: 

W, w I= Loc"'rp iff w,,,, w I= <p 

where W,p = {w E WI W,w I= 1/J}. 

Proof: by induction on the definition of Loe (cf. Definition B.3.2). • 

Let us then see the definition of this non-commutative operation Loe: 

B.3.2. DEFINITION. [Localization of <p to 1/1] 

1. Loe"'(Pti ... tn) = Pti ... tn 

2. Loe"'(t1 = t2) = t1 = t2 

3. Loc"'(-.rp) = -iLoe"'(rp) 

4. Loc"'('P1 /\ cp2) = (Loe"1(rp1) /\ (Loe"1(cp2)) 



98 Appendix B. Outline of a completeness proof for TKVL 

5. Loc"1(3xcp) = 3xLoc.P(cp) 

6. LoctJl(Oµcp) = Oµ(Loc"'(r.p) /\'if;) 

7. £octP(O..,<p) = ori(Loc"'(r.p) /\ 1/J) 

8. Loc.P(06 t.p) = 0 6 (Loc"'(r.p) /\ 1/J) 

9. Loc.P((Pt1 ... tn)cp) = Loc"'(Pt1 . . . tn /\ cp) 

10. Loc"'((t1 = tn)cp) = Loc.P(t1 = tn /\ cp) 

ll. Loc"'((rr1; 7r2)cp) =Loe"'( (7r1)(7r2}c,o) 

12. Loc"'((-.7r)cp) = Loc"'(Loclwl.L(cp)) 

13. Loc"'((0,.7r)cp) = Loc"'(r.p /\ 0"(7r)T) 

14. £ oc.P((OTJ7r}cp) = Loc.P(c,o /\ ori(7r}T) 

15. Loc"'((067r)cp) = Loc"'(cp /\ <>0(7r}T) 

16. Loc"'((rJ,.: 7r}cp) = Loc"1(cl0,.(7r)cp) 

17. Loc"'((rJ..,: 7r}cp) = Loc"'(d<>..,(7r)cp) 

18. Loc"'((116 : 7r}cp) = Loc"'(d<>0 (7r)cp) 

Note that the notion of Localization is vecy closed to well-known relativization 
of modal formulas. For a detailed discussion on this connection, see (34) . 

Using the operation Loe, we are now able to define the connective .j., with 
the following semantic clause: 

W, w F <p J.1/J iff W, w F 1/J and W, w F Loe.Pep 

Armed with this J., let us now give our set of axioms for TKVL. 

B.4 Axiomatization 

We have seven sets of axiom schemata: 

l. Propositional and quantificational axioms: 

2. S5 axioms for all the modalities. 

3. K schema for program modalities. 

4. Tarskian schemata: 

• Barcan formula for: <>µ, <>". 

• OP.(x = y)-+ (x = y) and (x = y)-+ 01'(x = y) 

and similarly for <>6 and its dual. 

• x =a-+ D6 (x = o.) where x is a variable and a is a constant 



B.4. Ax1omatization 99 

• i,o(a) ~ o"i,o(a) 

and similarly for o 5. 

5. Atomic test schemata 

• (Pti · · · tn)'P f-t 'P .1. Pti ... tn 

• (t1 = tn)'P +-+ 'P .1. t1 = tn 

6. Assignments schemata 

• (1J)cp +-+ 0"cp 

• (µ)ip f-t 01Jr.p 

• (o)r.p +-+ o5r.p 

7. Complex programs schemata 

• (7r1; ?r2)ip +-+ (7r1 )(7r2)<,0 

• (-i7r)<,O f-t cp .t. [7r]..l 

• (0"'7r)cpHip/\0"(7r)T 

• (0"7r)cp +-+ <.p /\ 0"(7r)T 

• (067r)cp +-+ <.p /\ 0 6(7r) T 

Let us now give some brief comments on this axiomatization. The first 3 sets 
of axioms should be quite perspicuous by themselves. Concerning the 'tarsk.ian 
schemata', their role is to 'capture' the peculiarities of the different modalities. 
Therefore, we have t he Barcan Formula only for 0 11 and for 0"', whose cor­
respondent accessibility relation only connects worlds with the same Domain. 
Similarly, only 01' and 0 6 can validate the schema for rigid variables, while 0 6 

also validates the schema for rigid terms. Finally, the rigidity of interpretation 
only holds for O" and 0 6 . As for the Atomic test schemata, the Assignments 
schemata and the Complex programs schemata, we only remark that they in­
ductively cut down the dynamic potential of TKVL, so to speak, in that they 
make it possible to translate all the formulas with program modalities into 
formulas without program modalities. This particular feature of this axioms 
system will play a crucial role within our strategy for proving the completeness 
ofTKVL. 

Here are the standard inference rules: 

1. Modus Ponens 

2. Necessitation for all the modalities 



100 Appendix B. Outline of a completeness proof for TKVL 

where x is not free in t.p 

where x is not free in t.p 

The soundness of this axioms system can be trivially proved by first showing 
that all axioms are valid '3.nd then that the inference rules preserves validity. 

B.5 From TKVL to TKVL* 

We must now define the translation that embeds TKVL into its static subsystem 
TKVL*. 

B.5.1. DEFINITION . [Translation*] 

1. (t.p)* = cp if <p does not contain program modalities; 

2. ( (Pt1 ... tn)t.p)* = <p .J. Pt1 . •. tn 

3. ((t1 = t,..)t.p)* ;:::::: cp ! ti = t,.. 
4. ((ry}<p)* = O"lt.p 

5. ((µ)<p) * = 0"t.p 

6. ((<5)<p)* = <>0<p 

7. ((7r1;7r2)<p)* = (7r1)(7r2)<p 

8. ((-i?r)t.p)* = <p .i. [7r]..l 

9. ((01-'?r)<p)* = t.p /\ 0"(7r)T 

10. ((0.,,?r)<p)* = t.p /\ 0'1(1T)T 

11. ((0°1T)cp)* = <p /\ 0 6 (1T) T 

It's important to remark that the translation * truly amounts to a plain ap­
plication of the groups of axioms 5, 6 and 7. From this we can immediately 
deduce the two facts that we need in order to transfer the completeness result 
for TKVL* to TKVL (see paragraph B.l), namely: 

1. the function * preserves validity of TKVL formulas (i.e., if F= t.p then 
F'P*); 

2. if a formula <p* is derivable in TKVL*, then <p will be derivable in TKVL. 



B. 6. The proof 101 

B.6 The proof 

Therefore, we now need to prove that the system TKVL* is complete. TKVL* is 
a multirnodal quantified system, and its key feature is that its three modalities 
blend within the same set-up the two crucial problems in the completeness 
theory for Modal Predicate Logic. Concretely, we have that: 

1. Domains are not in general fixed, and the modality <>6 essentially ranges 
over the non-fixed Domains submodels of TKVL* models; thus, as we 
have already seen, the Barcan Formula does not hold for <>0; 

2. on the other hand, terms are not in general rigid, since<>" ranges over al­
ternative 'extensions' of the variables, while <>µ aUows for a world-relative 
interpretation of the constants. 

Our strategy for coping with these problems will be as follows: 

1. we will follow Thomason ([69]) and Garson ([40]) in defining an ad hoe 
notion of saturation (recall that when BF is not available, it becomes 
difficult to define a canonical model where the worlds have the V property 
and provide the suitable witnesses for the existential modalities in their 
predecessors - see for instance [51]); 

2. as for non-rigid terms, we will follow Goldblatt ((42]) and take a set of 
rigid designators as witnesses for the V property. 

We can now sketch the structure of the completeness proof. 

Let us start with defining the notion of saturation. 

B .6.1. DEFINITION. [Saturation for TKVL*J A set r of TKVL* formulas is 
saturated if the following conditions hold: 

1. r is TKVL* consistent; 

2. r is negation closed (namely, for every formula <p, one of the following 
holds: or <p E r or -it.p E r; 

3. r has the ¥-property, in the following, general, form: if (x&6 ..• &0 3x'l/J) E 
r, then (x&0 ••. &0 (3z(z = y) /\ 'l/JY jx)) E r for a variable y, where cp&0'1/J 

stands for 0 6 ( <p /\ 'l/;)1 ; 

4. r has the witness property in the following, general, form: if (x&" ... & 11 

T) Er, then for every term t there is a x E V such that (x&'l ... &'l(x = 
t)) E r. 

We want to remark the following - predictable - facts, that highlights the 
rationale of the requirements 3 and 4: 

lNote that the 'bag' of 'antecedents' x&8 ..• could be empty. In this case, this is the 
standard notion of 'It-property. 



102 Appendix B. Outline of a completeness proof for TKVL 

• if f has the standard 'if-property (i.e.: if 3xcp E f then 3z(z = y A({)Y /x) E 
r for a variable y), then r automatically meets the general \I-property as 
in 3 above for &'1 and for &JJ. . 

• if r has the standard witness property (i.e. : if for every term t there is 
a variable x E V such that x = t E r), t hen r automatically meets the 
general witness property as in 4 for &6 and &JJ.. 

Second, we now tackle the question of non-rigid terms modalities. In con­
crete, we expand the language ofTKVL* with a set U = { ui,u2 , •. . } of variables 
foreign to it. Armed with this kit of fresh variables, it is possible to prove that 
a saturated extension can be built from any consistent set r of formulas of 
TKVL* UU. 

B .6.2. LEMMA. Given a consistent set r of formulas of TKVL * uu' r has a 
saturated extension. 

P roof: see [21] • 
The next lemma is crucial: 

B.6.3. LEMMA. Ifr is saturated and W is the closure of {r} under the relation 
R (defined as follows: !:::..Rt::..' if] o- !:::.. = { cp I Dcp E !:::.. } ~ !:::..'), then for all 
!:::.. E W , if Ocp E !:::.. then there exists a!:::..' E W such that !:::..Rt::..' and cp EI:::..'. 

~~~~. . 
The canonical model can be now easily built:

B.6.4. DEFINITION. [Canonical model for TKVL* UU] The canonical model
CM for TKVL* UU is as follows:

CM = (W, { Rp AR I PAR is a tarskian parameter}, De M, Ac M ,Jc M)

where:

• W is the set of all saturated sets of formulas of TKVL* UU;

• DcM is the set U = {u1, u2 ... }

• wRPARW1 iff oPAR- (w) ~ w'

• A0M(x) = u iff x = u E w

• (t1 ... tn) E ICJM(Pn) iff pn(t1 ... tn) E w

• lcM(a) = u iff a= u E w

The completeness proof is standard (it uses the fundamental lemma saying
that for all w E CM, it holds that: W, w I= cp iff cp E w).

Appendix C

Back to Classical Logic

In this appendix, we will show how the 'inverse logic' methods of Section 4.3 can
be applied also to more complex cases. Therefore, we will take into account one
more type of dynamic operator, being projections taking dynamic propositions
to classical ones. One such operator was the DPL local truth T, assigning to
each program 7r its 'domain':

11' ~ {wl11'({w});i':0}

We now move to eliminative update programs 7r, where a corresponding opera­
tion T* would be:

11' ~ • {w I 7r({w}) = {w}}

First note the following:

C.0.5. FACT. T* is permutat ion invariant.

(This follows from its set-theoretic definition; cf. Theorem 4.1.5). Consider
now the Boolean algebra of all eliminative dynamic propositions, given a set of
states S. Note that this is not the full function space ga(S)i:>CS), but a relativized
space obtained by taking only all functions 11' ~Id (e.g., -.71' in UL is "Id-11'").
Then, the following key behaviour may be seen by some simple calculation:

C.0.6. FACT. T* is a boolean homomorphism from eliminative updates to clas­
sical propositions:

• T*(-.7r) = - T*(7r)

• T*(Ui11'i) =UiT*(7ri)

Thus, T" is a logical projection respecting Boolean structure. Our main result
is that, conversely, only two functions have this behaviour:

103

104 Appendix C. Back to Classical Logic

C.0.7. THEOREM. There are only two logical Boolean homomorphisms from
eliminative dynamic propositions to classical ones.

Proof: Suppose that Fis such a logical Boolean homomorphism. The action of
F is completely determined by its values on the Boolean atoms in the 'update
algebra', being all functions 'aw,w ', with w E W, such that:

• aw,w(X) = if X= W
otherwise

This is so because F(7r) = u0~.,,.F(a), for all rr and all atoms a (by the second
homomorphism clause). We now need a subclaim:

C.0.8. PROPOSITION. The values F(a) for all atoms form a complete partition
of S

Proof: Distinct atoms have a 1 /\az = 0, whence F(o:1 /\az) = F(a1) /\F(a2) =
0, so they are disjoint. Moreover, Vi Q; = 1, whence F(l) = w = u.F(ai)· •

Now, define a map p• from S to such atoms, by setting F* (s) as the unique
atom o: such that s E F(a). Note that F(a) = p•- 1({a}). Moreover, we can
show that:

C.0.9 . FACT. F * is logical.

Now, our classification problem is easier. It is enough to prove the following:

C.0.10. PROPOSITION. There are only two logical maps p• sending states to
atoms in the update algebra.

Proof: We have s 4 o:w,w, with w E U. If p• is logical, then the familiar
reasoning about permutations tells us that w can only be s itself; while U could
be in principle one of the four sets {s}, W - {s},0, W. But the requirement
'w E U' rules out two possibilities, and we only have:

Ft(s) =a{•},•

F{(s) = as,s

•
Now we can calculate backwards, and see which maps Fare ·induced by these
two functions:

• F1 (7r) = { w I 3o: :5 7r : w E F1 (Q)} =
{w I 3W,w: a= aw,w /\ w E rr(W) /\a = Cl{w},w} =

{w I rr{w} = {w}}

• F2(rr) = {w I w E 7r(S)} = rrS

Conversely, it is easy to check that both of these are indeed logical Boolean
homomorphisms. •

Bibliography

[1] J .C.M. Baeten and W. P. Weijland (1990), Process Algebra, Cambridge
Tracts in Theoretical Computer Science 18, Cambridge University Press,
Cambridge.

[2) J . Barwise and J. Perry {1983), Situations and Attitudes, Bradford Books,
MIT Press, Cambridge, Massachussets.

[3] D. Beaver {1993), What comes first in Dynamic Logic, manuscript, Uni­
versity of Edimburgh.

[4] J. van Benthem (1982), Modal Logic and Classical Logic, Bibliopolis, Na­
poli.

(5] J . van Benthem {1986), Essays in Logical Semantics, Reidel, Dordrecth.

[6] J . van Benthem {1989), Semantic Parallels in Natural Languages and Com­
putation, in: H-D. Ebbinghaus et al. (eds.), Logic Colloquium. Granada
1987, North-Holland, Amsterdam.

[7) J. van Benthem {1989), Logical Constants across Varying Types, in: Notre
Dame Journal of Formal Logic, 3.

[8] J. van Benthem {1991), Logic and the Flow of Information, in: D. Prawitz,
B. Skyrms and D. Westerst!hl (eds.), Proceedings of the 9th International
Conference of Logic, Methodology and Philosophy of Science, Uppsala 1991,

Elsevier Science Publishers, Dordrecht.

[9] J . van Benthem (1991), General Dynamics, in: Theoretical Linguistics, 17
{special issue on 'Complexity in Natural Language').

105

106 Bibliography

[10] J. van Benthem (1991), Language in Action, Elsevier Science Publishers,
Amsterdam.

[11] J. van Benthem {1993), Modal State Semantics, manuscript, ILLC, Ams­
terdam.

[12] J. van Benthem (1993), Program Constructions that Are Safe for Bisimu­
lation, Report CSLI-93-179 of the Centre for the Study of Language and
Information, Stanford.

[13] J. van Benthem (1995), Logic and the flow of information, forthcoming.

[14] J. van Benthem and G. Cepparello (1994), Tarskian Variations. Dynamic
Parameters in Classical Semantics, Report CS-R9419 of the Centre for
Mathematics and Computer Science (CWI), Amsterdam.

[15] J. van Benthem, J. van Eijck and A. Frolova (1993), Changing Preferences,
Report CS-R9310 of the Centre for Mathematics and Computer Science
(CWI), Amsterdam.

(16] J. van Benthem, R. Muskens and A. Visser (1993), Dynamics, to appear
in: J. van Benthem and A. Ter Meulen (eds.), Handbook of Logic and
Language, Elsevier Science Publishers, Amsterdam.

[17] 0. Bouchez, J. van Eijck and 0. Istace (1993), A strategy for dynamic
interpretation: a fragment and an implementation, in: S. Krauwer, M.
Moortgat and Louis des Tombe (eds.), Proceedings of the Sixth Conference
of the European Chapter of the Association for Computational Linguistics,
ACL.

(18] C. Boutilier and M. Goldszmidt (1993), Revision by Conditional Beliefs,
in: Proceedings 11th National Conference on Artificial Intelligence, Wash­
ington D.C.

(19] R. Carnap {1947), Meaning and Necessity, The University of Chicago Press,
Chicago.

(20] G. Cepparello (1991), What are individuals? New Semantics for Predicate
Modal Logic, Master's Thesis, Dipartimento di Filosofia, Universita degli
Studi di Pisa.

[21] G. Cepparello (1993), Tarskian Variations, a complete system, manuscript,
Scuola Normale Superiore, Pisa.

(22] G. Cepparello and R. Presilla (1995), Why can't Moderate Holism be good?,
to appear in: Proceedings of the 10th International Congress of Logic,
Methodology and Philosophy of Science. Florence 1995.

Bibliography 107

[23] P. Dekker (1993), Existential Disclosure, in: Linguistics and Philosophy,
16.

[24] P. Dekker (1994), Transsentential meditations. Ups and Downs in Dynamic
Semantics, ILLC Dissertation Series, Amsterdam.

[25] K. Donnellan (1966), Reference and Definite Descriptions, in: The Philo­
sophical Review, 75.

[26] J. van Eijck (1992), Axiomatizing Dynamic Predicate Logic with Quantified
Dynamic Logic, to appear in: J. van Eijck and A. Visser (eds.), Logic and
Information Flow, MIT Press, Cambridge Massachussets.

[27] J. van Eijck (1993), The Dynamics of Descriptions, in: The Journal of
Semantics, 10.

(28] J. van Eijck (1993), The Dynamics of Theory Extension, to appear in:
P. Dekker and M. Stokhof (eds.), Proceedings of the gth Amsterdam Col­
loquium, ILLC, Amsterdam.

[29] J. van Eijck (1994), Presupposition failure. A comedy of errors, in: Formal
Aspects of Computing, 6A.

[30] J. van Eijck (1994), Presuppositions and Dynamic Logic, Report CSLI-94-
186 of the CSLI, Stanford.

[31] J. van Eijck (1995), Presuppositions and Information Updating, to appear
in: M. Kanazawa, C .. J . Pinon and H. de Swart (eds.), Quantifiers, Deduc­
tion, and Context, CSLI, Stanford.

[32] J. van Eijck and F. de Vries (1992), Dynamic Interpretation and Hoare
Deduction, in: Journal of Logic, Language and Information, 1.

(33] J .. van Eijck anf F. de Vries (1992), A Sound and Complete Calculus for
Update Logic, in: P. Dekker and M. Stokhof (eds.), Proceedings of the 8th
Amsterdam Colloquium, ILLC, Amsterdam.

(34) J. van Eijck and F. de Vries (1993), Reasoning about Update Logic, in:
Journal of Philosophical Logic, 24.

[35] J. van Eijck and G. Cepparello (1994), Dynamic Modal Predicate Logic, in:
M. Kanazawa and C.J. Pinon (eds.), Dynamics, Polarity and Quantifica­
tion, CSLI, Stanford.

[36) H.B. Enderton (1972), A Mathematical Introduction to Logic, Academic
Press.

[37] K. Fine (1984), Reference, Essence and Identity, unpublished manuscript.

108 Bibliography

[38] G. Frege (1892), Uber Sinn und Bedeutung, in: Zeitschrift fiir Philosophie
und Philosophische Kritik, 100.

[39] L.T.F. Gamut (1991), Logic, Language and Meaning, vol II, The University
of Chicago Press, Chicago.

[40] J.W. Garson (1984), Quantification in Modal Logic, in: D. Gabbay and F.
Guenthner (eds.), Handbook of Philosophical Logic, vol II, Reidel Publish­
ing Company, Dordrecht.

[41) P. Gardenfors (1988), Knowledge in flux. modeling the Dynamics of Epi­
stemic States, Bradford Books, MIT Press, Cambridge, Massachussets.

[42] R.. Goldblatt (1987), Logics of Time and Computation, CSL! Lecture Notes,
7, Stanford.

[43) J. Groenendijk and M. Stokhof (1991), Dynamic Predicate Logic, in: Lin­
guistics and Philosophy, 14.

[44] J . Groenendijk and M. Stokhof (1991), Two theories of Dynamic Se­
mantics, in: J. van Eijck (ed.) , Logics in AI, Proceedings of the European
Workshop JELIA 90, Springer-Verlag.

[45) J . Groenendijk, M. Stokhof and F. Veltman (1994), Coreference and Mod­
ality, handout for the 'Third CSL! Workshop on Language, Logic and Com­
putation', June 1994, Stanford.

[46] D. Harel (1994), Dynamic Logic, in: D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic vol Il, Reidel, Dordrecht.

[47] I. Heim (1982), The Semantics of Definite and Indefinite Noun Phrases,
Department of Linguistics, University of Massachussets, Amherst.

[48] D. Hilbert and P. Bernays (1939), Grundlagen der Mathematik, Berlin.

[49) C.A.R. Hoare (1969), An axiomatic basis for computer programming, in:
Communications of the ACM, 12.

(50) D. Hofstadter and D. Dennet (1981), The minds I. Fantasies and reflections
on se.lf and soul, Basic Books.

[51] G.E. Hughes and M.J. Cresswell (1984), A Companion to Modal Logic,
Methuen and Co., London.

(52) J . Jaspars (1994), Calculi for Constructive Communication, ILLC Disser­
tation Series, Amsterdam.

Bibliography 109

[53] M. Kameyama (1994), Indefeasible semantics and defeasible pragmatics,
Report CS-R9441 of the Centre for Mathematics and Computer Science
(CWI), Amsterdam.

[54] H. Kamp (1984), A Theory of Truth and Semantic Representation, in: J.
Groenendijk et al. (eds.), Truth, Interpretation and Information, Foris,
Dordrecht.

[55] D. Kaplan (1986) , Opacity, in: L.E. Hahn and P.A. Schilpp (eds.), The
Philosophy of W. V. Quine, Open Court, La Salle.

[56] S. Kripke (1972), Naming and Necessity, in: Harman and Davidson (eds.),
Semantics of Natural Language, Reidel, Dordrecht.

[57] D. Lewis (1975) , Adverbs of Quantification, in: E. Keenan (ed.) , Formal
Semantics, Cambridge University Press.

(58] D. Lewis (1979), Score keeping in a language game, in: Journal of Philo­
sophical Logic, 8.

[59] G. Miller, E. Galanter and K. Pribram (1960), Plans and the structure of
behaviour, Holt, Rinehard and Winston, New York.

[60] R. Muskens (1991), Anaphora and the Logic of Change, in: J. van Eijck
(ed.), Logics in Al, Proceedings of the European Workshop JELIA 90,
Springer-Verlag.

[61] U. Neisser (1967), Cognitive Psychology, Appleton-Century-Crofts, New
York.

[62] I. Nemeti (1992), Decidability of weakened versions of first order logic, in:
Proceedings of the Applied Logic Conference 'Logic at Work ', Amsterdam.

(63] A. Plantinga (1974) , The Nature of Necessity, Oxford University Press,
Oxford.

(64] V. Pratt (1976), Semantical Considerations on Floyd-Hoare Logic, in: Pro­
ceedings of the 17th IEEE Symposium on Foundations of Computer Science.

[65] W.O. Quine (1963), Reference and Modality, in: W.O. Quine, From a
Logical Point of View, Harvard University Press, Cambridge.

(66] M. de R.ijke (1992) , A System of Dynamic Modal Logic, Report LP-92-
08 of the Institute for Logic, Language and Information, University of
Amsterdam.

(67] M. de R.ijke (1993) , Extended Modal Logic, Dissertation, Institute for Lan­
guage, Logic and Computation, Amsterdam.

110 Bibliography

[68] Stalnaker (1972), Pragmatics, in: D. Davidson and G. Harman (eds.), Se­
mantics of Natural Language, Reidel, Dordrecht.

[69] R.H. Thoma.son (1970), Some completeness results for Modal Predicate
Calculi, in: K. Lambert (ed.), Philosophical Problems in Logic, Reidel,
Dordrecht.

[70] F. Veltman (1989), Defaults in Update Semantics, in: H. Kamp (ed.), Con­
ditionals Defaults and Belief Revision, Edinburgh.

[71) Y. Venema (1992), Many-dimensional Modal Logic, Dissertation, Institute
for Language, Logic and Information, Amsterdam.

[72) K. Vermeulen (1993), Merging without Mystery, to appear in: Journal of
Philosophical Logic.

[73] K. Vermeulen and M. Hollenberg (1995), Counting Variables in a Dynamic
Setting, Report IR-373 of the Department of Computer Science, Free Uni­
versity, Amsterdam.

[74) J.B. Watson (1924), Behaviourism, Norton, New York.

[75] D. Westersta.hl (1989), Quantifiers in Formal and Natural Languages, in:
D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic vol
IV, Reidel, Dordrecht.

[76] L. Wittgenstein (1953), Philosophische Untersuchungen, Basil Blackwell,
Oxford.

[77) E. Zalta (1993), A Philosophical Conception of Propositional Modal Logic,
to appear in: C. Hill (ed.), Philosophical Topics.

Titles in the ILLC Dissertation Sem·s:

ILLC DS-94-01: Harold Schellinx
The Noble Art of Linear Decomtmg

ILLC DS-94-02: Jan Willem Cornclis Koorn
Generating Uniform User-fott'rfarcs for fotemct1t•f' Prngmmmmg E1111mm·

ments

ILLC DS-94-03: Nicoline Johanna Drost
Process Theory and Equation Solving

ILLC DS-94-04: Jan Jaspars
Calculi for Constructive Commumcation. a Study of the Dy11armcs of Partial
States

ILLC DS-94-05: Arie van Deurscn
Executable Language Definitions, Crue Studies and Ongm Tracking Trch­
mques

ILLC DS-94-06: Domenico Zambella
Chapters on Bounded Arithmetic f? 011 Provability Logic

ILLC DS-94-07: V . Yu. Shavrukov
Adventures in Diagonalizable Algebras

ILLC DS-94-08: Makoto Kanazawa
Learnable Classes of Categorial Grammm·s

ILLC DS-94-09: Wan Fokkink
Clocks, Trees and Stars in Process Theory

ILLC DS-94-10: Zhisheng Huang
Logics for Agents with Bounded Ratioriality

ILLC DS-95-01: Jacob Brunekreef
On Modular Algebraic Protocol Specificatwn

ILLC DS-95-02: Andreja Prijatelj
Investigating Bounded Contraction

ILLC DS-95-03: Maarten Marx
Algebraic Relativization and Arrow Logic

ILLC DS-95-04: D ejuan Wang
Study on the Formal Semantics of Pictures

lLLC DS-95-05: Frank Tip
Generation of Program Analysis Tools

ILLC DS-95-06: Jos van Wamel
Verification Techniques for Elementary Data Types and Retransmission Pro­
tocols

ILLC DS-95-07: Sandro Etalle
Transformation and Analysis of {Constraint) Logic Programs

ILLC DS-95-08: Natasha Kurtonina
Frames and Labels. A Modal Analysis of Categorial Inference

ILLC DS-95-09: G.J. Veltink
Tools for PSF

ILLC DS-95-10: Giovanna Cepparello
Studies in Dynamic Logic

ILLC DS-95-11: W.P.M. Meyer Viol
lnstantial Logic. An Investigation into Reasoning with Instances

ILLC DS-95-12: Szabolcs Mikula.s
Taming Logics

ILLC DS-95-13: Marianne Kalsbeek
Meta-Logics for Logic Programming

ILLC DS-95-14: Rens Bod
Enriching Linguistics with Statistics: Performance Models of Natural Lan­
guage

ILLC DS-95-15: Marten Trautwein
Computational Pitfalls in Tractable Grammatical Formalisms

ILLC DS-95-16: Sophie Fischer
The Solution Sets of Local Search Problems

ILLC DS-95-17: Michiel Leezenberg
Contexts of Metaphor

ILLC DS-95-18: Willem Groeneveld
Logical Investigations into Dynamic Semantics

ILLC DS-95-19: Erik Aarts
Investigations in Logic, Language and Computation

ILLC DS-95-20: Natasha Alechina
Modal Quantifiers

ILLC DS-96-01: Lex Hendriks
Computations in Propositional Logic

ILLC DS-96-02: Erik de Haas
Categories for Profit

ILLC DS-96-03: Martin H . van den Berg
Some Aspects of the lrltenrnl Structure of D1scourst': th1· Dyrrnmics of Nom­
inal Anaphora

Finiro di srampare nel giugno 1996
in Pisa dalle

EDIZIONI ETS

