
A GAME FOR THE BOREL FUNCTIONS

BRIAN SEMMES

Abstract. We present an infinite game that characterizes the
Borel functions on Baire Space.

1. Introduction

Our base theory is ZF + ACω(R). We use ωω to denote the Baire
Space, which is the set of infinite sequences of natural numbers together
with the topology generated by the basic open sets {[s] : s ∈ <ωω}. As
usual, a function f : ωω → ωω is continuous if the preimage of every
open set is open. The Borel sets are the smallest class containing
the open sets and closed under complements and countable unions (so
also countable intersections), and a function f : ωω → ωω is a Borel

function if the preimage of every Borel set is Borel. By a theorem
of Lebesgue and Hausdorff, the Borel functions are the smallest class
containing the continuous functions and closed under pointwise limits
of countable sequences of functions. For further information about the
Baire Space and Borel functions, the reader may consult [5] or [6].

In this paper, it will be convenient to define Λm,n := {f : f−1[Y ] ∈
Σ0

n for every Y ∈ Σ0
m}. For example, Λ1,1 denotes the continuous

functions and Λ1,2 denotes the Baire Class 1 functions. (Baire Class
1 functions are pointwise limits of countable sequences of continuous
functions and are precisely those functions for which the preimage of a
Σ0

1 set is Σ0
2).

The Wadge game was developed by William Wadge in his PhD thesis
[10] to characterize the notion of continuous reduction. Given two sets
of reals A, B ⊆ ωω, A is Wadge reducible to B (A ≤W B) if there
is a continuous function f such that f−1[B] = A. The Wadge game
GW(A, B) consists of two players and is defined in such a way that
Player II has a winning strategy if and only if A ≤W B. The relation
≤W is reflexive and transitive, so if we define A ≡W B :⇔ A ≤W

B ∧ B ≤W A, then ≡W is an equivalence relation. The equivalence
classes of ≡W are known as Wadge degrees and have been studied in
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detail by descriptive set theorists. In particular, the Wadge game was
very useful in determining the structure of these degrees.

The Backtrack game Gbt(A, B), a generalization of the Wadge game,
was developed by Robert van Wesep [9]. Using a theorem of John Jayne
and Ambrose Rogers, Alessandro Andretta showed that the Backtrack
Game characterizes the notion of Λ2,2 reduction. (We say that A is
Λm,n reducible to B if there is a Λm,n function f such that f−1[B] =
A.) As in the Wadge case, one can define degrees with this notion
of reducibility. The structure of these degrees was investigated in [1],
and it was shown, among other things, that the determinacy of all
Wadge games is equivalent to the determinacy of all Backtrack games.
Interestingly, although Wadge determinacy follows easily from AD, it
is unknown whether the converse holds.

Further progress was made by Jacques Duparc with the development
of the Eraser game, which characterizes the Baire Class 1 functions.
Intuitively, as the Baire Class 1 functions are countable point-wise lim-
its of continuous functions, we see the Eraser game as expressing the
notion of “taking limits.” This intuitive idea was extended to develop
the new game presented in this paper.

2. The Wadge Game

We begin by reviewing the Wadge game. For our purposes, it will
be convenient to drop the A’s and B’s and define a two-player game
GW(f) in which Player II has a winning strategy if and only if f is
continuous. Let f : ωω → ωω. In the game GW(f), Player I and Player
II alternate moves for ω rounds. Player I plays elements xi ∈ ω and
Player II plays elements yi ∈ ω ∪ {P}. The token P is interpreted to
mean “pass.”

I: x0 x1 x2 x = 〈xn : n ∈ ω〉
. . .

II: y0 y1 y2 y = 〈yn : n ∈ ω〉

After ω rounds, Player I has produced a sequence x ∈ ωω and Player
II has produced a sequence y ∈ ω(ω ∪ {P}). Informally, if we take the
sequence y with the P’s removed, then Player II wins the game if and
only if this sequence is infinite and equal to f(x).

Formally, define θ : <ω(ω ∪ {P}) → <ωω by θ(∅) := ∅ and

θ(sa〈z〉) :=

{

θ(s) if z = P

θ(s)a〈z〉 otherwise.
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If x ∈ ωω is the play of Player I and y ∈ ω(ω ∪ {P}) is the play of
Player II, then Player II wins the game if

⋃

s⊂y θ(s) = f(x). (Note that

in order to have a chance, Player II must play infinitely often in ω.)
A Wadge strategy for Player II is a function τ : <ωω → <ω(ω∪{P})

such that lh(τ(s)) = lh(s) and s ⊆ t ⇒ τ(s) ⊆ τ(t). The argument to
τ is a finite sequence of moves by Player I and the value of τ is a finite
sequence of moves by Player II. With respect to the diagram, if Player
II follows τ then τ(〈x0, . . . , xk〉) = 〈y0, . . . , yk〉 and y =

⋃

s⊂x τ(s).
A Wadge strategy τ for Player II is winning if Player II wins the

game by following τ , regardless of what Player I plays. In other words,
τ is winning if

⋃

s⊂x θ(τ(s)) = f(x) for all x ∈ ωω.

Theorem 1. (Wadge) A function f : ωω → ωω is continuous ⇔ Player
II has a winning strategy in the game GW(f).

Proof.

⇐: Suppose τ is the winning strategy. To show that f is continuous,
it suffices to show that the preimage of a basic open set is open. Let
t ∈ <ωω and let X :=

⋃

{[ s ] : θ(τ(s)) = t}. Then X is open and
f−1[ [ t ] ] = X.
⇒: Define τ by

τ(sa〈m〉) :=

{

τ(s)a〈n〉 if f [ [ sa〈m〉 ] ] ⊆ [ θ(τ(s))a〈n〉 ]
τ(s)a〈P〉 otherwise.

It is not difficult to check that τ is well-defined and winning for Player
II in GW(f).

�

3. The Backtrack Game

As in the Wadge case, it will be convenient to drop the A’s and B’s
and define a two-player game GB(f) in which Player II has a winning
strategy if and only if f is Λ2,2. The Backtrack game is like the Wadge
game, except that Player II is given the additional option of erasing
his entire output finitely many times. (The rules for Player I remain
the same.) Formally, Player II plays elements of ω ∪ {P, B} with the
token P interpreted to mean “pass” and the token B interpreted to
mean “backtrack.”

Let θ be defined as in the Wadge game, we define the interpretation
function ιB : ω(ω ∪ {P, B}) → ≤ωω,

ιB(y) :=

{

∅ if ∀i ∃j ≥ i y(j) = B
⋃

{θ(s) : (y � i)as ⊂ y} if i is least such that ∀j ≥ i y(j) 6= B
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If x ∈ ωω is the play of Player I and y ∈ ω(ω ∪ {P, B}) is the play of
Player II, then Player II wins the game if ιB(y) = f(x). (Note that in
order to have a chance, Player II cannot backtrack infinitely often and
must play infinitely often in ω.)

The notion of strategy is defined analogously to the Wadge case: a
Backtrack strategy for Player II is a function τ : <ωω → <ω(ω ∪
{P, B}) such that lh(τ(s)) = lh(s) and s ⊆ t ⇒ τ(s) ⊆ τ(t). A
Backtrack strategy τ for Player II is winning if ιB(

⋃

s⊂x τ(s)) = f(x)
for all x ∈ ωω.

Theorem 2. (Andretta). A function f : ωω → ωω is Λ2,2 ⇔ Player II
has a winning strategy in the game GB(f).

The proof uses a theorem of Jayne and Rogers that the Λ2,2 functions
are precisely those functions f admitting a Π0

1 partition 〈An : n ∈ ω〉
such that f � An is continuous. Then, using the fact that the same
property characterizes the Backtrack functions (functions for which
Player II has a winning strategy in GB(f)), the result follows. We will
not provide the details here, they may be found in [1] and [4]. An
alternative proof of the Jayne-Rogers theorem may be found in [8].

4. The Eraser Game

In the Eraser game GE(f), Player II plays elements of ω ∪ {E}, with
the token E interpreted to mean “erase.” This option allows Player
II to erase his most recent move in ω. We may think of this option
as working like the “Delete” key on a keyboard. In contrast with the
backtrack option, it is possible for Player II to erase infinitely many
times and still play an infinite sequence.

Formally, define η : <ω(ω ∪ {E}) → <ωω by η(∅) := ∅ and

η(sa〈z〉) :=







η(s)a〈z〉 if z ∈ ω

η(s) � (lh(η(s)) − 1) if z = E and lh(η(s)) > 0
∅ otherwise.

We may then define ιE : ω(ω ∪ {E}) → ≤ωω as

ιE(y)(n) := m if ∃i ∀j ≥ i η(y � j)(n) is defined and equal to m.

If x ∈ ωω is the play of Player I and y ∈ ω(ω∪{E}) is the play of Player
II, then Player II wins the game if ιE(y) = f(x). As before, we define
an Eraser strategy for Player II as a function τ : <ωω → <ω(ω∪{E})
such that lh(τ(s)) = lh(s) and s ⊆ t ⇒ τ(s) ⊆ τ(t). An Eraser strategy
τ for Player II is winning if ιE(

⋃

s⊂x τ(s)) = f(x) for all x ∈ ωω.

Theorem 3. (Duparc). A function f : ωω → ωω is Λ1,2 ⇔ Player II
has a winning strategy in the game GE(f).
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A proof will be given in Section 6.

5. The Tree Game

Let f : ωω → ωω, we present the Tree game G(f). As in our other
games, Players I and II alternative moves for ω rounds and Player
I plays elements of ω. In the Tree game, however, Player II plays
elements of <ωω × <ωω. In the limit, Player II is required to produce
a partial function φ : <ωω → <ωω such that φ is monotone and length-
preserving and dom(φ) is a tree with a unique infinite branch. The
output of Player II is then the infinite sequence (in ωω) of values along
this branch. Player II wins the game if and only if this sequence is
equal to f(x), where x ∈ ωω is the play of Player I.

More formally, define ι : P(<ωω × <ωω) → ωω ∪ {∅} as follows. Let
φ ⊆ <ωω × <ωω. If φ is not a monotone, length-preserving function,
or dom(φ) is not a tree with a unique infinite branch, let ι(φ) := ∅.
Otherwise, let z ∈ ωω be the unique infinite branch of dom(φ) and
define ι(φ) :=

⋃

s⊂z φ(s). If x ∈ ωω is the play of Player I and y ∈
ω(<ωω × <ωω) is the play of Player II, then Player II wins the game if
and only if ι(

⋃

n∈ω y(n)) = f(x).
We define a Tree strategy as simply a function τ : <ωω → <ωω ×

<ωω and say that τ is winning if ι(
⋃

s⊂x τ(s)) = f(x) for all x ∈ ωω.
Note that if τ is winning, for every x ∈ ωω, τ must produce a monotone,
length-preserving function φ : <ωω → <ωω such that dom(φ) is a tree.
Therefore, if τ plays 〈s, v〉 at some stage of the game, we may assume
that τ has already played 〈s � n, v � n〉 for every n ≤ lh(s) = lh(v).

Theorem 4. A function f : ωω → ωω is Borel ⇔ Player II has a
winning strategy in the game G(f).

Proof. The main part of the proof is to show that F := {f : Player II
has a winning strategy in G(f)} is closed under countable sequences of
pointwise limits. Then, since F contains the continuous functions, this
will show every Borel function is in F . For the reverse direction, to
show that every function in F is Borel, a simple complexity argument
will suffice.

We begin by showing the closure property, namely that for any se-
quence fn ∈ F , if f(x) = limn→∞ fn(x) for all x ∈ ωω, then f ∈ F .
Let fn and f be given, and let τn be a winning strategy for Player
II in the game G(fn). The idea is to amalgamate (or “squash”) the
strategies τn into a single strategy τ for f . There are two difficulties.
Firstly, we do not know ahead of time the unique infinite branches
that each τn will produce. Secondly, we do not know at what rate
the fn’s will converge. By rate of convergence, we mean the unique
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non-decreasing sequence r ∈ ωω where r(n) is least such that for all
m ≥ r(n), fm(x) � n = fr(n)(x) � n. The idea is that if we knew the
infinite branches zn and the rate of convergence r, we would know what
to do. So, we will associate to each finite sequence a finite number of
guesses about what will happen with the zn and r. Then, under this
association, an infinite sequence will correspond to a unique set of zn

and r (and vice versa), and from this we will be able to construct the
amalgamated strategy τ .

To each element of s of <ωω we will associate a natural number m

and a sequence 〈s0, . . . , sk〉 satisfying si ∈ <ωω, lh(si) = lh(s), and
k = max(lh(s), m). The natural number m represents the guess that
r(lh(s)) = m and the sequence 〈s0, . . . , sk〉 represents guesses that si ⊂
zi.

We define this association as a function ρ : <ωω → ω and a function
σ : <ωω → <ω(<ωω). Let ρ(∅) := 0, σ(∅) := 〈∅〉, and suppose that
ρ(s) = m and σ(s) := 〈s0, . . . , sk〉 have been defined. For each m′ ≥ m,
let k′(m′) = max(m′, lh(s) + 1) and let

G(m′) := {〈t0, . . . , tk′(m′)〉 : lh(ti) = lh(s)+1 and ∀i 0 ≤ i ≤ k ⇒ si ⊂ ti}.

Let
G =

⋃

m′≥m
t̄∈G(m′)

〈m′, t̄ 〉

and let β : ω → G be an enumeration (without repetition) of G. For
each j, if β(j) = 〈m′, t̄ 〉, define ρ(sa〈j〉) = m′ and σ(sa〈j〉) := t̄.

Intuitively, we want the guesses we make on a successor of s to consis-
tently extend the guesses we made on s. Hence the m′ ≥ m condition:
if we’ve already guessed that r(lh(s)) = m then it is inconsistent to
guess that r(lh(s) + 1) < m. Similarly, if we’ve already guessed that
si ⊂ zi, then it is inconsistent to guess that ti ⊂ zi if si and ti are
incompatible (hence the si ⊂ ti condition).

We proceed with the definition of τ . At each round of the game,
we consider certain sequences s ∈ <ωω to be activated. Informally, s

is activated if it looks like the guesses σ(s) might be correct (given
the behavior of the τi) and are consistent with the guesses we have
made along s about the rate of convergence. More formally, if σ(s) =
〈s0, . . . , sk〉 then we say that s is activated if

• ∀i 0 ≤ i ≤ k ⇒ τi has played 〈si, vi〉,
• ∀n ≤ lh(s) ρ(s � n) > 0 ⇒ vρ(s�n) � n 6= vρ(s�n)−1 � n, and
• ∀n ≤ lh(s) ∀i ρ(s � n) ≤ i ≤ k ⇒ vρ(s�n) � n = vi � n.

Note that the vi’s are unique (since τi must produce a function) and
lh(vi) = lh(si) = lh(s). To understand the first condition, recall that si
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represents the guess that si ⊂ zi where zi is the infinite branch produced
by τi. Intuitively, if τi hasn’t played si yet, we are not yet interested
in this guess. For the second condition, recall that ρ(s � n) = m is the
guess that r(n) = m. In words, this is the guess that the sequence of
functions converges on the first n digits precisely at the mth function.
If our guess for the mth function and our guess for the (m − 1)th
function agree on the first n digits, then the guess m is too big, given
our other guesses. Similarly, for any n ≤ lh(s), the guess ρ(s � n) = m

is too small if, for some i > m, our guess for the mth function and the
ith function disagree on the first n digits.

Note that once a sequence is activated, it will remain so. Since we
can assume that τi has played 〈si, vi〉 means that τi has already played
〈si � n, vi � n〉 for all n ≤ lh(s), it follows that once s is activated, all
s′ ⊆ s are activated as well.

The strategy τ proceeds as follows. For an activated sequence s

as above, τ resolves s by playing 〈s, vρ(s)〉. By cycling through the
sequences in <ωω in the appropriate way, τ can ensure that, in the
limit, every sequence that is activated is resolved. These will be the
only moves that τ plays, so this completes the definition of τ .

It remains to show that τ is winning in the game G(f). It is not diffi-
cult to check that τ produces a monotone, length-preserving function φ

such that dom(φ) is a tree, so it remains to be shown that τ produces a
unique infinite branch along which the value is f(x). On input x, let r

be the rate of convergence and let zi be the infinite branches produced
by τi. It is clear that there is a unique z ∈ ωω such that for all s ⊂ z,
ρ(s) = r(lh(s)) and σ(s) = 〈s0, . . . , sk〉 with si ⊂ zi. In other words,
z is the unique infinite sequence along which every guess is correct. It
is not difficult to see that every s ⊂ z will be activated at some stage,
and moreover, τ will resolve every such s by playing 〈s, f(x) � lh(s)〉.

It remains to be shown that z is the only infinite branch produced
by τ . Let z′ 6= z, it will be shown that there is an initial segment of z′

that is never activated. Let z′
i be the infinite branches encoded by z′.

If z′i 6= zi for some i, then there is an s ⊂ z′
i such that τi will never play

〈s, v〉 for any v. (Otherwise, τi would produce two infinite branches, a
contradiction.) Therefore, s will never be activated.

Assume z′i = zi for all i, so it must be the case that ρ(s) 6= r(lh(s))
for some s ⊂ z′i. If ρ(s) > r(lh(s)), then s will never be activated since
the guess ρ(s) is too big. If ρ(s) < r(lh(s)), then there is an i such that
i > ρ(s) and fρ(s)(x) � lh(s) 6= fi(x) � lh(s). Pick t with s ⊆ t ⊂ z′ such
that σ(t) = 〈t0, . . . , tk〉 with i ≤ k. Then t is never activated, since ti

witnesses that the guess ρ(s) was too small.
This completes the proof of the closure property.
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For the reverse direction, that every function in F is Borel, let f ∈ F
and let τ be a winning Tree strategy for Player II in the game G(f).
It suffices to show that the preimage of a basic open set [u] is Σ1

1:

∃z ∈ ωω ∃i τ(x � i) = 〈z � lh(u), u〉 ∧

∀n ∃i τ(x � i) = 〈z � n, v〉.

�

6. The Eraser Revisited

If we consider the Tree game and add additional requirements for
Player II, we may obtain games that are equivalent to the Wadge,
Backtrack, and Eraser games. For the Wadge case, we require Player
II to produce a function φ : <ωω → <ωω such that dom(φ) is linear, e.g.
for all s, t ∈ dom(φ), s ⊆ t or t ⊆ s. It is immediate that this linear
Tree game is equivalent to the Wadge game and vice versa. (For one
direction, to simulate the passing option, Player II may simply play
the pair 〈∅, ∅〉.)

Moreover, if we require dom(φ) to be finitely branching, e.g. that
the set {s ∈ dom(φ) : lh(s) = n} is finite for every n, the resulting
game is equivalent to the Eraser game. We argue as follows: let τ be
a finitely branching Tree strategy that is winning for some f . We may
assume that the only duplicate moves played by τ are 〈∅, ∅〉. The
following Eraser strategy is winning in GE(f): “When τ plays a pair
〈s, v〉 of non-empty sequences, put v on the output tape, erasing only
when necessary.” For the other direction, simply note that if an Eraser
strategy τE produces an infinite sequence (which it must do in order to
be winning), at any finite depth it can only use the eraser finitely many
times. Thus, it is easy to construct a finitely branching Tree strategy
that is equivalent to τE.

Following a suggestion of Benedikt Löwe, we may prove Theorem 3
by simply inspecting the proof of Theorem 4.

Proof of Theorem 3. Suppose f ∈ Λ1,2, it must be shown that there
is a finitely branching Tree strategy τ that is winning in G(f). Since
f is Baire Class 1, it is the pointwise limit of a countable sequence
of continuous functions 〈fn : n ∈ ω〉. For each n, let τn be a linear
Tree strategy that wins G(fn) and let τ as in the proof of Theorem
4. We already know from the proof that τ is winning in G(f), it just
needs to be shown that τ is finitely branching. It suffices to show, for
any activated sequence s, only finitely many successors t = sa〈j〉 of s

can be activated. Let s ∈ <ωω be activated and let zi be the infinite
branches produced by τi. Since each τi is linear, we need only concern
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ourselves with those successors t of s such that σ(t) = 〈t0, . . . , tk〉 with
ti ⊂ zi. If ρ(t) > r(lh(t)) then t will never be activated. Therefore, we
only need to consider those successors t such that the guesses σ(t) are
correct and the guess ρ(t) is either correct or too small... but there are
only finitely many of these.

For the other direction, suppose τ is a finitely branching Tree strat-
egy that wins G(f). Again, we assume that the only duplicate moves
played by τ are 〈∅, ∅〉. To show that f ∈ Λ1,2 it suffices to show that
the preimage of a basic open set [u] is Σ0

2:

∃s ∈ <ωω ∃i τ(x � i) = 〈s, u〉

∃j ∀k ≥ j τ(x � k) = 〈∅, ∅〉 ∨ (τ(x � k) = 〈t, v〉 ∧ s ⊆ t).

�

Thus, we have shown that the finitely branching Tree game charac-
terizes the Λ1,2 functions. Following the suggestion of Löwe once more,
we may continue this process and obtain a game for the Λ1,3 functions.
We require Player II to produce a function φ with the following prop-
erty: for each s, {t ∈ dom(φ) : s ⊂ t} is infinite ⇒ s ⊂ z, where z is
the infinite branch of dom(φ). In other words, if Player II extends a
sequence s infinitely often (not counting duplicates), then s is an initial
segment of the infinite branch. If τ is a Tree strategy for Player II that
meets this requirement, we call τ a Λ1,3 strategy.

Theorem 5. A function f : ωω → ωω is Λ1,3 ⇔ Player II has a
winning Λ1,3 strategy in the game G(f).

Proof. For the ⇒ direction, since f is Λ1,3 it is the pointwise limit
of a countable sequence of Λ1,2 functions 〈fn : n ∈ ω〉. For each n, let
τn be a finitely branching Tree strategy that is winning in the game
G(fn). As before, we let τ as in the proof of Theorem 4, except that a
stricter definition of activation is required. We say that s is activated if
(1) s is activated in the original sense and (2) if σ(s) = 〈s0, . . . , sk〉 and
ρ(s) = m, then τi has extended si m times for all i, 0 ≤ i ≤ k. In other
words, the second condition says that {t ⊇ si : τi has played 〈t, v〉 for
some v} has at least m elements. It is clear that the proof of Theorem
4 works with this stronger version of activation, so let τ be given by the
(new) proof. We know from the proof that τ is winning in the game
G(f), so we only need to show that τ satisfies the Λ1,3 requirement.
It suffices to show that for any activated sequence s, if s encodes an
incorrect guess then only finitely many successors of s are activated.
(Then the tree {t ∈ dom(φ) : t ⊆ s ∨ s ⊆ t} is finitely branching,
so s is not extended infinitely many times by τ .) Let s ∈ <ωω be
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an activated sequence that encodes an incorrect guess. Let zi be the
infinite branches produced by τi and let r be the rate of convergence.
Since s encodes an incorrect guess, there are two cases to consider: (1)
σ(s) = 〈s0, . . . sk〉 with si 6⊂ zi for some i, (2) ρ(s′) < r(lh(s′)) for
some s′ ⊆ s. (Since s is activated, if we assume (1) doesn’t hold then
ρ(s′) > r(lh(s′)) is impossible.)

If we are in the first case, then let i be such that si 6⊂ zi. Since
τi is finitely branching, there are finitely many tj such that si ⊂ tj,
lh(tj) = lh(s) + 1, and τi plays 〈tj, v〉 for some v. Since each tj 6⊂ zi, it
may be extended only finitely many times by τi. Let m ≥ i be strictly
greater than the number of times any tj is extended, it follows that a
successor t of s cannot be activated if ρ(t) ≥ m. Thus we need only
consider those t such that ρ(t) < m, but only finitely many of these
may be activated since the τi are finitely branching.

In the second case, we assume that the guesses σ(s) = 〈s0, . . . , sk〉
are correct. Let s′ ⊆ s such that ρ(s′) < r(lh(s′)). Since the guess
ρ(s′) is too small, there is a k′ > ρ(s′) such that fk′(x) � lh(s′) 6=
fρ(s′)(x) � lh(s′). (Note that k′ > k since s is activated.) Since τk′ is
finitely branching, there are finitely many tj of length lh(s) + 1 such
that τk′ plays 〈tj, v〉 for some v. Let j ′ be unique such that tj′ ⊂ zk′.
So, if j 6= j ′, then tj is extended only finitely many times by τk′. Let
m ≥ k′ be strictly greater that the number of times any tj is extended
for j 6= j ′. Then a successor t of s can never be activated if ρ(t) ≥ m.
Namely, if σ(t)(k′) = tj with j 6= j ′, then σ(t) can never be activated
by the choice of m. If σ(t)(k′) = tj′, in other words if the guess σ(t)(k′)
is correct, then t can not be activated by choice of k′.

For the other direction, suppose τ is a Λ1,3 strategy that wins G(f).
Again, we assume that the only duplicate moves played by τ are 〈∅, ∅〉.
To show that f ∈ Λ1,3 it suffices to show that the preimage of a basic
open set [u] is Σ0

3:

∃s ∈ <ωω ∃i τ(x � i) = 〈s, u〉

∀j ∃k ≥ j (τ(x � k) = 〈t, v〉 ∧ s ⊆ t).

�

7. Future Directions

The original goal of the author was to find a game that characterizes
the Λ3,3 functions. Interestingly, to characterize these functions seems
to be a more difficult problem than to characterize the Borel functions.
The following picture is useful:
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Λ1,3

⊂

Λ2,3

⊂ ⊂

Λ1,2 Λ3,3

⊂ ⊂
Λ2,2

⊂
Λ1,1

In the previous section, we presented games characterizing the Λ1,1,
Λ1,2, and Λ1,3 functions. We also mentioned that there is a Tree game
that is equivalent to the Backtrack game. For this, we require Player
II to produce a function φ : <ωω → <ωω with the property that there
is an n ∈ ω such that for all s, t ∈ dom(φ), lh(s), lh(t) ≥ n ⇒ s ⊆ t or
t ⊆ s. In other words, we require that the tree produced by Player II is
linear (the Λ1,1 requirement) after some finite depth. It is not difficult
to prove that this game is equivalent to the Backtrack game. Thus, by
Theorem 2, this game characterizes the Λ2,2 functions.

Future work will be directed towards extending these results to the
Λ3,3 case. In particular, we would like to find a Tree game charac-
terizing Λ3,3 and determine whether the analogous partition property
holds. Namely, we would like to know if a function f is Λ3,3 if and only
if there is a Π0

2 partition 〈An : n ∈ ω〉 such that f � An is continuous.
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