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Prologue

As the title says, this PhD thesis is on the interface between logic, language and
computation. The main perspective of this thesis is that of complexity theory. The
merit of applying complexity theory to certain problems is that complexity analyses
provide different kinds of information. Complexity analysis does not only show how
difficult a problem is, but also why it is difficult, and possibly how we can change the
problem such that it becomes less difficult.

The thesis is about the complexity of two grammar formalisms and a program-
ming language. The grammar formalisms are categorial grammar based on Lambek
calculi and a restricted form of the context-sensitive rewrite grammars: the acyclic
context-sensitive grammars. The programming language is Prolog. Complexity the-
ory distinguishes two types of complexity: time complexity and space complexity.
Time complexity is defined as the number of steps that some machine needs to solve
a problem. Space complexity is the amount of memory the machine needs. For an
introduction in complexity theory see Garey and Johnson (1979). The problems we
are going to analyze (i.e. estimating how much space and time it costs to solve these
problems) are the following.

For the grammar formalisms we have some generator G that generates sentences.
In categorial grammar, the generator consists of a lexicon of words associated with
types, and some (Lambek based) calculus. In acyclic context-sensitive grammars, the
generator consists of a context-sensitive grammar. Besides the generator we also have
an input sentence. The problem we try to solve is the following: “Is the input sentence
generated by the generator?”.

A Prolog program consists of a number of facts and rules. The rules say how we
can derive new conclusions from the given facts. The problem we will discuss in this
thesis is: “Given a program with rules and facts, is conclusion C derivable?”.

At first sight there seems to be no relation between the recognition problem for
grammar formalisms and the derivability problem in Prolog. But there are similari-
ties. The Prolog rules can be seen as a representation of infinitely many context-free
rewrite rules. Every substitution for the variables gives another rewrite rule. The facts
can be seen as infinitely many so-called epsilon-rules, i.e. they rewrite to the empty

9



10 Prologue

string. Suppose we want to know whether a conclusion C is derivable from a program.
We transform the program to an “infinite context-free grammar” with start symbol C.
Then the derivability problem is equivalent to the question whether the empty string
is grammatical. We have reduced the derivability problem to a recognition problem.

The fact that the grammar is infinite makes that we can not simply use parsing
theory for Prolog theorem provers. But we can use elements of parsing theory to
obtain theorem provers. The relationship between Prolog and grammars has been
worked out in (Deransart and Maluszynski 1993). They show that Prolog programs
are equivalent to W-grammars.

Organization of the thesis

The thesis consists of two parts that can be read separately: “Grammar Formalisms”,
and “Programming in Logic”. Part I consists of the following chapters:

� Chapter 1 Introduction
� Chapter 2 Non-associative Lambek calculus NL
� Chapter 3 The second order fragment of Lambek calculus
� Chapter 4 Acyclic Context-Sensitive Grammars

Part II consists of the following chapters

� Chapter 5 Complexity of Prolog programs
� Chapter 6 Proof of the time complexity result
� Chapter 7 The link between the first part and the second part. It shows how we

can use the method from chapter 5 for proving that membership for fragments of
L can be computed in polynomial time.

Appendix A contains an implementation in Prolog of the efficient meta-interpreter
described in chapter 6. Appendix B contains a reduction from 3SAT to ACSG.



Part I

Grammar Formalisms
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Chapter 1

Introduction

This part of the thesis is about the definition of sets of strings and about algorithms that
decide for such a set whether some sentence is in the set or not. The goal is to describe
the syntax of natural languages (e.g. English). A natural language can be seen as an
infinite set of sentences. The number of words in the language is finite. Systems that
are developed to describe such languages are called grammar formalisms.

In the late 50’s two formalisms were developed at the same time. Both formalisms
try to define the set of syntactically well-formed sentences of some natural language.
The first formalism is the rewrite grammar introduced by Chomsky (1959). The second
is the Lambek calculus, introduced by Lambek (1958). The first method is a rewriting
system, whereas Lambek’s system is a logical system. The latter has a syntactic and
a semantic part: the proof theory and the model theory. With some oversimplification
the two methods can be explained as follows. Suppose we have the following sentences:

1. John walks.
2. The man walks.
3. The dog walks.

We see that “John”, “the man” and “the dog” can occur in the same position in
sentences. Chomsky formalized this as follows. He introduced auxiliary symbols, (in
fact auxiliary words), e.g. the symbols S and NP, and semi-sentences, like “NP walks”.
To generate semi-sentences, there are rules that allow replacement of symbols by other
symbols. E.g., the sentence symbol S can be replaced by “NP walks”. The auxiliary
symbol NP can be replaced by “John”, “the man” or “the dog”.

Lambek (1958) took another approach. He saw the set of words that can fill the
open position in : : :walks as just another language. We have to define a lot of lan-
guages instead of one. Therefore operations on languages are introduced: they can be
“multiplied” and “divided”. If a sentence is in the language X we say that the sentence
has type X. E.g. we can say that John, the man and the dog have type np and that
the three sentences have type s. Then we can “divide s by np”, i.e., the sub-sentence
walks has the type npns (an s missing an np on the lefthand side). We can repeat this:
if walks has type npns and John walks has type s, then John has the type s=(npns).

13



14 Chapter 1. Introduction

We can repeat this infinitely many times. Therefore John has infinitely many types.
Lambek has shown that we can define all types of all sentences with a lexicon and a
calculus. The lexicon assigns types to the words of the language. With the calculus we
can infer the types of all sentences. Such a pair of a lexicon and a calculus is called a
categorial grammar. This description is purely syntactic. The semantics of categorial
logics is not described here. A second oversimplification is that we look at the weak
generative power only. But it is also very important what structures are defined by
the grammar. This point, the strong generative power, is neglected here. The main
reason is that membership in a language can be very easily stated in complexity the-
ory. Even stronger, in complexity theory only membership problems are used. It is
much harder to deal with strong generative power and complexity than with weak
generative capacity and complexity.

Once we have a definition of a language, either as a rewrite system or as a categorial
grammar, we are going to use the definition. For some sentence, we want to decide
whether the sentence is in a language or not. This problem is called the recognition
problem. We are interested in the time complexity of this problem.

A lot of research has been done in the area of the complexity of the recognition
problem for rewrite systems. A lot of results about classes of rewrite systems have
been found. In this thesis we will consider a very specific kind of rewrite system:
the acyclic context-sensitive grammars. These are grammars where we can replace
a number of auxiliary symbols in one step by a number of other symbols. The most
important advantage of this class is the possibilty of describing structure trees with
crossing branches. This will be explained in detail later.

Compared to the rewrite systems, the complexity of categorial grammars based on
Lambek’s calculus has remained largely unexplored up till now. The results in this
thesis are among the first results in a new field.

In order to put this thesis in context, I will sketch in this introduction a brief history
of research in the field of Lambek based categorial grammar as well as of research in
context-sensitive grammars.

1.1 Categorial Grammars

Lambek (1958) introduced the idea that we can define languages with a lexicon and an
inference system called a calculus. Immediately after his proposal the question about
the relation with Chomsky’s work came up. People conjectured that Lambek’s system
could describe the same languages as Chomsky’s context-free languages. This was
proved in 1967 by Cohen (Cohen 1967). In 1978 it was shown by Zielonka (Zielonka
1978) that this proof contained a gap. Buszkowski (1986) showed that two fragments
have context-free generative power: the nonassociative and the second order fragment.
The problem for the general calculus was open for many years until it was solved
recently by Pentus. He showed that Lambek’s calculus and the context-free grammars
indeed have the same generative power (Pentus 1993).

The progress in linguistic applications of Lambek’s theory was minimal until the
80’s. One of the reasons is given in the previous paragraph. It was generally felt in
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the 60’s and 70’s that context-free power was not enough for the description of natural
languages and that the system of Lambek was insufficient. Montague (1973) used
some form of categorial grammar, but his work was focused on semantics rather than
on syntax. Moortgat (1988) and Buszkowski, Marciszewski and van Benthem (1988)
were the first steps that led to an increased interest of linguists in Lambek systems.

The growing popularity had two sources. First, Gazdar, Klein, Pullum and Sag
(1985) showed that a lot of constructions in sentences that were regarded as “beyond
context-free” were in fact expressable with a context-free grammar. The constructions
that are used nowadays to prove that natural language is not context-free are pretty
rare. On the other hand there has been a strong effort to extend the basic system
of Lambek in order to get more power. The extension of the system was influenced
by modal logic and by linear logic. Linear logic was introduced in 1987 by Girard.
Although there had been earlier efforts to increase the generative power of Lambek-
like calculi, the development of linear logic stimulated these attempts. Because of
the clear correspondence between Linear Logic and Lambek’s systems the extensions
needed became obvious more or less. One can simply add new rules to the calculus
of Lambek. With these new rules we get various new systems. These systems can be
seen as inhabitants of a landscape of categorial systems. This landscape is in fact a
categorial hierarchy, just like the Chomsky hierarchy for rewrite systems.

The inhabitants in this landscape can be identified as follows. The system orig-
inally introduced by Lambek is called the system L. If we add the structural rule
of permutation (a standard rule in Linear Logic) we get the system LP. If we define
systems by adding rules, then the base system should not be L but the nonassocia-
tive calculus NL (introduced by Lambek in 1961). If we add the structural rule of
associativity to this system we obtain L. Another rule which can be added is the rule
of dependency. Varying the presence of the associativity, the permutation and the
dependency rule gives us 8 possible Lambek systems. A good traveller’s guide to the
categorial landscape is Moortgat (1995).

The complexity of the recognition problem for various systems in the categorial
landscape has not been established yet. It has been shown (Kanovich 1991) that for
LP the problem is NP-complete. The problem is still open for L. From the fact that the
generative power of L is context-free we can deduce that the recognition problem is
polynomial in the size of the input. But nothing is known about the uniform recognition
problem, where the grammar is part of the input as well. In this thesis we solve the
problem for two fragments, the nonassociative and the second order fragment. For
these two fragments, we can prove that the recognition problem is in polynomial time.
These results are new. Buszkowski (1986) proved that the non-associative Lambek
categorial grammar is equivalent with context-free grammar. But the grammar that
he obtains has exponential size and can not be used to show that the problem can
be solved in polynomial time. Exponential time algorithms were found by (Janssen
1991, Trautwein 1991).
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1.2 Context-sensitive Grammars

The context of the research in categorial grammar has been sketched. In this section
we will sketch the history of research in the field of context-sensitive rewrite grammars.

The rewrite grammars introduced in (Chomsky 1959) were classified by him in
the so-called Chomsky hierarchy. Grammars are of type 3 (regular), type 2 (context-
free), type 1 (context-sensitive) or of type 0 (unrestricted). For context-free grammars
input strings can be recognized in a time that is polynomial in the length of the
input string as well as in the length of the grammar. Earley (1970) has shown a
bound of O(jGj2n3) where jGj is the size of the grammar and n the length of the input
string. In fact there is a better upperbound: O(jGjn3) (Sippu and Soisalon-Soininen
1988). Recognition for context-sensitive grammars is harder: it is PSPACE-complete,
even for some fixed grammars (Kuroda 1964) and (Karp 1972). Recognition of type 0
languages is undecidable (see e.g. (Lewis and Papadimitriou 1981)).

In this thesis we will introduce a formalism that can describe trees with crossing
branches without immediately jumping to the full class of context-sensitive grammars.
This formalism is called acyclic context-sensitive grammar and it is in between the
context-free grammars and the context-sensitive grammars. Other formalisms that
are in between these two classes are growing context-sensitive grammars and Tree
Adjoining Grammars.

Growing CSG’s are CSG’s where the right-hand side of every rule is strictly longer
than the left-hand side. Dahlhaus and Warmuth (1986) have shown that recognition
for growing context-sensitive grammars is polynomial time for every fixed grammar.
The question whether the uniform recognition problem (where the grammar is part of
the input for the problem) is in P was posed by Dahlhaus and Warmuth (1986). It has
been proved three times (independently) that this problem is NP-complete (Buntrock
and Loryś 1992). The recognizing power of growing CSG’s is beyond context-free. Two
typical examples of growing CS languages that are not context-free are fanb2ncn j n � 1g

and fanbncn j n � 1g.
A formalism which is quite popular in computational linguistics is Tree Adjoining

Grammar (TAG), proposed by (Joshi, Levy and Takahashi 1975). While rewrite gram-
mars rewrite strings, TAG’s rewrite trees. If only rewriting of the root and the leaves
of a tree are allowed tree rewriting is equivalent to (context free) string rewriting. But
in TAG’s rewriting can also take place in the middle of a tree. This is called adjunction.

TAG’s generate all context free languages and various non-contextfree languages,
amongst them anbncn and fww j w 2 f0; 1g�g (Joshi, Vijay-Shanker and Weir 1991, p.
40). The class of languages that can be generated by TAG’s is called the class of Tree
Adjoining Languages TAL’s. Recognition is polynomial both in the size of the grammar
and in the size of the input string (Schabes and Joshi 1988, p. 267).

The languages generated by growing CSG’s and TAG’s are incomparable. The TAL’s
have the constant growth property. This means that if the strings of the language
are put in increasing order of length, then two consecutive lengths do not differ by
arbitrarily large amounts. The language fanb2ncn j n � 1g is a growing CSL and does
not have this property. Therefore the growing CSL’s are not included in the TAL’s.
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The inclusion does not hold the other way either. The language fww j w 2 f0; 1g�g is in
TAL (Joshi et al. 1991, p. 40) but can (probably) not be generated by a growing CSG.

It has been shown (Joshi et al. 1991) that TAG’s are equivalent with three other
grammar formalisms: Linear Indexed Grammars, Head Grammars and Combinatory
Categorial Grammar. We can summarize this section in the following table:

Model Recogn. Power Complexity of uni- Complexity of re-
form recognition cognition for any

fixed grammar
General CSG’s CSL PSPACE-complete PSPACE-complete
Growing CSG’s more than CFL’s NP-complete P
TAG, CCG, LIG etc. TAL’s P P

We will show in chapter 4 how the acyclic context-sensitive grammars fit in this picture.





Chapter 2

The Non-associative Fragment of L

In this chapter1 we present algorithms for the recognition of sentences generated by
non-associative and second order Lambek based categorial grammars. First we will
define categorial grammars. These grammars consist of a lexicon defining a type
assignment to words, and a calculus defining the well-formed sequences of types. We
will start with the non-associative grammar and switch to the second order grammar
later. We present a new axiomatization of NL. This axiomatization enables us to give
a polynomial translation into context-free grammars. After the translation we can use
any context-free recognition algorithm to recognize a sentence generated by the NL
based categorial grammar in polynomial time.

2.1 Categorial Grammars

A categorial grammar G is defined by a lexicon Lex and a calculus C. A (finite) set of
primitive types Pr is given. Tp is the set of types. Types are constructed from primitive
types by two type-forming operators: = and n, i.e., Tp is the smallest set including Pr

such that if x; y 2 Tp, then xny; x=y 2 Tp. One member s of Pr is singled out as the
distinguished type.

A lexicon Lex is a finite relation between an alphabet � and Tp (Lex � �� Tp;

� \ Tp = ;). If a lexicon Lex relates a 2 � with A 2 Tp(ha; Ai 2 Lex), we say Lex
assigns A to a.

STp is the set of strings of types. Furthermore, we define the set BSTp, of bracketed
strings of types as the smallest set including Tp such that if X; Y 2 BSTp, then
(X; Y ) 2 BSTp. The yield of a bracketed string X is the string we get when we erase
the brackets. Yields are elements of STp.

Now L(G) is defined to be the set of strings w 2 ��, w = a1 : : : an such that for some
bracketed string of types X, yield(X) = A1; : : : ; An, hai; Aii 2 Lex (1 � i � n) and X ! s

is derivable in the calculus C.
1I want to thank Mathematical Logic Quarterly for their permission to use Aarts and Trautwein

(1996).
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We use NL as the calculus C. There is a number of possible axiomatizations for
this calculus. We choose one given in Kandulski (1988) as our starting point. This
calculus is called NLG0 and can be found in Figure 2.1.

[A1] x! x ; for x 2 Tp

(X; y)! x

X ! x=y
[R10]

(y;X)! x

X ! ynx
[R100]

X ! y Y [x]! z

Y [(x=y;X)]! z
[R20]

X ! y Y [x]! z

Y [(X; ynx)]! z
[R200]

for X; Y 2 BSTp and x; y; z 2 Tp.

Figure 2.1: NLG0

The notation Y [x] (resp. Y [X]) is used to indicate the bracketed string of types Y ,
in which, on a certain place, type x (resp. bracketed string of types X) occurs.

Before we show that sentences can be recognized in polynomial time we first intro-
duce two auxiliary calculi: NLG�0 and NLG��0 . The calculus NLG�0 differs from NLG0 in
that the X ’s in the R10 and R100 rules are restricted: they must be in Tp instead of in
BSTp. The calculus NLG��0 differs from NLG�0 in that the X ’s in the R20 and R200 rules
must be in Tp instead of in BSTp.

The calculus NLG��0 can be written down as follows (compared to NLG0, X has been
replaced by w):

[A1] x! x ; for x 2 Tp

(w; y)! x

w! x=y
[R10]

(y; w)! x

w! ynx
[R100]

w! y Y [x]! z

Y [(x=y; w)]! z
[R20]

w! y Y [x]! z

Y [(w; ynx)]! z
[R200]

for Y 2 BSTp and w; x; y; z 2 Tp.

Figure 2.2: NLG��0

In the sequel, we are going to prove that NLG0, NLG�0 and NLG��0 are equivalent.
We prove the following inclusions:

� NLG0 � NLG�0 (Theorem 2.1.1)
� NLG�0 � NLG��0 (Theorem 2.1.2)
� NLG��0 � NLG0 (Theorem 2.1.3)
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2.1.1. THEOREM. For all k, if some sequent �! A containing k slashes is derivable in
NLG0, then it is also derivable in NLG�0.

Proof: We prove this theorem with strong induction on the number of slashes (=; n)
in a sequent. The base case is k = 0. The sequent must be an axiom. No R10 or
R100 rules are used so Theorem 2.1.1 holds for k = 0. Now we assume the induction
hypothesis:

IH(k): For all i < k, if some sequent � ! B containing i slashes is derivable in
NLG0, then �! B is also derivable in NLG�0.

We have to prove that if some sequent � ! C containing k slashes is derivable in
NLG0, then it is also derivable in NLG�0.

Assume � ! C is derivable in NLG0. Then there is a proof � of � ! C. We will
show that � ! C is also derivable in NLG�0. We consider various possibilities for the
last step in the proof of �. We assume that proofs are constructed from top to bottom,
i.e., from the axioms we try to reach the conclusion. The last step in a proof is the step
that proves the final conclusion.

Case 1: � is an axiom. Then it is derivable in NLG�0 too.
Case 2: The last step in � is an R2 rule or an R1 rule with X 2 Tp. The proof is

easy. The premises of the last step contain fewer slashes than �! C. The induction
hypothesis tells that the premises are derivable in NLG�0. Use the NLG�0 proofs of the
premises and the last rule of � to construct a proof of �! C in NLG�0.

Case 3: The last step in � is some R1 rule (e.g. R10, the other case is symmetric)
with X 2 BSTp, but X 62 Tp.

....
(X; b)! a

X ! a=b
[R10]

The induction hypothesis tells that (X; b) ! a is derivable in NLG�0. Consider the
proof in NLG�0 of (X; b) ! a. The last step in this proof is not an R1 rule because
(X; b) 62 Tp. If (X; b) ! a has been derived with an R2 rule, then we have various
possibilities.

: : :
(X; b)! a

[R2]

X ! a=b
[R10]

The type b is involved in the rule R2, i.e., b = x=y or b = ynx or b = w (case 3b), or it
is not involved (case 3a).

Case 3a: If b is not involved, then R2 can be R20 or R200. The proof is similar for
both cases. In the first case, the proof is of the form:
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....
X 0 ! y

....
(Z[c]; b)! a

(Z[(c=y;X 0)]; b)! a
[R20]

Z[(c=y;X 0)]! a=b
[R10]

We can transform this proof into the following proof:

....
X 0 ! y

....
(Z[c]; b)! a

Z[c]! a=b
[R10]

Z[(c=y;X 0)]! a=b
[R20]

The sequents Z[c] ! a=b and X0 ! y have fewer slashes than Z[(c=y;X0)] ! a=b.
The induction hypothesis tells that the two smaller sequents are provable in NLG�0.
Therefore, Z[(c=y;X 0)]! a=b is also provable in NLG�0.

Case 3b: If b is involved in the R2 rule it must be the functor. X cannot be the
functor because X 62 Tp. Type b is of the form dnc.

....
X ! d

....
c! a

(X; dnc)! a
[R20]

X ! a=(dnc)
[R10]

The induction hypothesis says that X ! d is derivable in NLG�0. Consider the proof
of X ! d in NLG�0. The last step in this proof must be an R2 step because X 62 Tp. The
proof is of the following form:

....
X 0 ! y

....
Z[e]! d

Z[(e=y;X 0)]! d
[R20]

....
c! a

(Z[(e=y;X 0)]; dnc)! a
[R200]

Z[(e=y;X 0)]! a=(dnc)
[R10]

We can transform this into:

....
X 0 ! y

....
Z[e]! d

....
c! a

(Z[e]; dnc)! a
[R200]

Z[e]! a=(dnc)
[R10]

Z[(e=y;X 0)]! a=(dnc)
[R20]

The induction hypothesis says that X0 ! y and Z[e]! a=(dnc) have proofs in NLG�0.
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Therefore Z[(e=y;X 0)] ! a=(dnc) has a proof in NLG�0. This completes the proof of
Theorem 2.1.1. 2

2.1.2. THEOREM. For all k, if some sequent �! A containing k slashes is derivable in
NLG�0, then it is also derivable in NLG��0 .

Proof: Proof with strong induction on the number of slashes k. The base case k = 0

is trivial. Now we assume the induction hypothesis:

IH(k): For all i < k, if some sequent � ! B containing i slashes is derivable in
NLG�0, then �! B is also derivable in NLG��0 .

We have to prove that if some sequent � ! C containing k slashes is derivable in
NLG�0, then it is also derivable in NLG��0 .

Assume � ! C is derivable in NLG�0. Then there is a proof � of � ! C in NLG�0.
We will show that �! C is also derivable in NLG��0 . We consider various possibilities
for the last step in the proof of �.

Case 1: � is an axiom. Then it is derivable in NLG��0 too.
Case 2: The last step in � is an R1 rule or an R2 rule with X 2 Tp. The premises

of the last step contain fewer slashes than �! C. The induction hypothesis tells that
the premises are derivable in NLG��0 . Use the NLG��0 proofs of the premises and the
last rule of � to construct a proof of �! C in NLG��0 .

Case 3: The last step in the proof is an R2 rule with X 2 BSTp, but X 62 Tp.

....
X ! y

....
Y [x]! z

Y [(x=y;X)]! z
[R20]

The induction hypothesis says that X ! y has a proof in NLG��0 . The last rule
applied in the proof of this sequent cannot be an R1 rule, because X 62 Tp. So the last
rule in the proof of X ! y is an R2 rule, say R20 (the R200 case is similar). We have the
following proof:

....
W ! v

....
Z[d]! y

Z[(d=v;W )]! y
[R20]

....
Y [x]! z

Y [(x=y; Z[(d=v;W )])]! z
[R20]

where W is in Tp. We can transform it as follows:
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....
W ! v

....
Z[d]! y

....
Y [x]! z

Y [(x=y; Z[d])]! z
[R20]

Y [(x=y; Z[(d=v;W )])]! z
[R20]

The sequents W ! v and Y [(x=y; Z[d])] ! z have proofs in NLG��0 (induction hy-
pothesis) and therefore Y [(x=y; Z[(d=v;W )])]! z has a proof in NLG��0 too. End of proof
of Theorem 2.1.2. 2

2.1.3. THEOREM. Anything derivable in NLG��0 is also derivable in NLG0.

Proof: This is trivial, any proof in NLG��0 is also a proof in NLG0. 2
From Theorems 2.1.1, 2.1.2 and 2.1.3 we know that NLG0 = NLG�0 = NLG��0 . We

introduce another calculus now, called A1–R2–R3–R4. This calculus is defined as
follows:

[A1] x! x ; for x 2 Tp

w ! y z ! x

w! x=(ynz)
[R3’]

w! y z ! x

w ! (z=y)nx
[R3”]

w ! y z ! x

w=x! y=z
[R4’]

w! y z ! x

xnw! zny
[R4”]

w! y Y [x]! z

Y [(x=y; w)]! z
[R20]

w! y Y [x]! z

Y [(w; ynx)]! z
[R200]

for Y 2 BSTp and w; x; y; z 2 Tp.

Figure 2.3: A1–R2–R3–R4

2.1.4. THEOREM. A1–R2–R3–R4 = NLG��0

Proof: Let us repeat the calculus NLG��0 here.
The last step in the proof of the premise of an R1 rule must be an R2 rule. Therefore

we can replace R10 and R100 by the following rules:

w! y z ! x

w! x=(ynz)
[R3’ = R200 + R10]

w! y z ! x

w! (z=y)nx
[R3” = R20 + R100]

w! y z ! x

w=x! y=z
[R4’ = R20 + R10]

w! y z ! x

xnw! zny
[R4” = R200 + R100]

This proves Theorem 2.1.4. 2
Observe that the antecedent of the conclusion of an R2 rule is not in Tp. On the

other hand, the antecedents of the premises and the conclusions of R3 and R4 rules
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[A1] x! x ; for x 2 Tp

(w; y)! x

w! x=y
[R10]

(y; w)! x

w! ynx
[R100]

w! y Y [x]! z

Y [(x=y; w)]! z
[R20]

w! y Y [x]! z

Y [(w; ynx)]! z
[R200]

for Y 2 BSTp and w; x; y; z 2 Tp.

Figure 2.4: NLG��0

are in Tp. Hence, a proof in A1–R2–R3–R4 of a sequent with an antecedent in Tp

contains R3 and R4 rules only.

2.2 Recognition for Categorial Grammars Based on
NL

We have come to a point now where we can remove the brackets from our calculi. We
define the bracket-free calculus NLG1. The rules of NLG1 are:

[A1] x! x ; for x 2 Tp

w! y z ! x

w! x=(ynz)
[R3’]

w! y z ! x

w! (z=y)nx
[R3”]

w! y z ! x

w=x! y=z
[R4’]

w! y z ! x

xnw ! zny
[R4”]

x! y �; w;�0 ! z

�; w=y; x;�0 ! z
[R50]

x! y �; w;�0 ! z

�; x; ynw;�0! z
[R500]

for �;�0 2 STp and w; x; y; z 2 Tp.

Figure 2.5: NLG1

This calculus differs from A1–R2–R3–R4 because the brackets in the rules R20 and
R200 are erased. This results in two new rules R50 and R500.

There is a one-to-one correspondence between proofs in A1–R2–R3–R4 and NLG1.
We can prove the following lemma’s:

2.2.1. LEMMA. If a bracketed sequent X ! z is derivable in A1–R2–R3–R4, then
yield(X)! z is derivable in NLG1.
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Proof: A proof in A1–R2–R3–R4 has the following shape:

.... R3-R4
x1 ! w1

.... R3-R4
x2 ! w2

.... R3-R4
x3 ! w3

....
Y3 ! z

Y2 ! z
[R2]

Y1 ! z
[R2]

Y0 ! z
[R2]

The Yi ! z premises are the only premises containing brackets. When we leave
out those brackets, we immediately obtain an NLG1 proof. 2

2.2.2. LEMMA. If a sequent Y ! z is derivable in NLG1, then there is an X such that
yield(X) = Y and X ! z is derivable in A1–R2–R3–R4.

Proof: If we have an NLG1 proof it has the following shape:

.... R3-R4
x1 ! w1

.... R3-R4
x2 ! w2

.... R3-R4
x3 ! w3

....
Y3 ! z

Y2 ! z
[R5]

Y1 ! z
[R5]

Y0 ! z
[R5]

It is easy to add brackets to the Yi such that we obtain an A1–R2–R3–R4 proof. 2
Lemma’s 2.2.1 and 2.2.2 enable us to remove the brackets in the definition of

grammaticality as well.
L(G) has been defined as the set of strings w 2 ��, w = a1 : : : an such that for some

bracketed string of types X, yield(X) = A1; : : : ; An, hai; Aii 2 Lex (1 � i � n) and X ! s

is derivable in NLG0.
But the language can be defined bracket-free now: L0(G) is the set of strings w 2 ��,

w = a1 : : : an such that for some string of types A1; : : : ; An, hai; Aii 2 Lex

(1 � i � n) and A1; : : : ; An ! s in NLG1.

2.2.3. LEMMA. For every lexicon G, L0(G) = L(G).

Proof: Follows from Lemma’s 2.2.1 and 2.2.2, Theorem 2.1.4 and the fact that NLG0

= NLG��0 . 2

2.2.4. LEMMA. For all x; y 2 Tp, we can check in time O((jxj + jyj)2) whether x ! y is
provable in NLG1.

Proof: The antecedents of the premises and of the conclusions of the R3 and R4
rules have length one. The antecedent of the conclusion of an R5 rule has length
bigger than one. Therefore, the proof of x ! y consists of R3 and R4 rules only. The
subformula property holds for the “R3–R4 calculus”. Let n be the number of slashes
in x plus the number of slashes in y. n is linear in jxj + jyj. We have to compute at
most O(n2) times whether some a! b is derivable (because a and b are subformulas of
x and y). We memoize (Cormen, Leiserson and Rivest 1990, pp. 312–314) the results
of the attempts to prove something: the first time we have to compute a! b the result
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of the computation is stored in a table. If we have to compute it again later we look
up the answer in the table. The search space is a graph with nodes labeled x ! y.
As said, there are O(n2) nodes. Every node has at most four outgoing arcs: at most
two rules of R3–R4 are applicable, so we have to prove at most 4 premises. Therefore,
the number of arcs is O(4n2) = O(n2). The algorithm is a depth first traversal of the
graph. Because of memoization, every arc is traversed only once. The algorithm takes
time O(n2) at most. 2

2.2.5. THEOREM. The recognition problem for NL based categorial grammar can be
reduced to context-free grammar recognition in polynomial time.

Proof: We take the new definition of categorial languages: L0(G) is the set of strings
w 2 ��, w = a1 : : : an such that for some string of types A1; : : : ; An,
hai; Aii 2 Lex (1 � i � n) and A1; : : : ; An ! s in NLG1. The symbol s is the distin-
guished type of the grammar (s 2 Pr). Proofs in NLG1 look like:

.... R3-R4
x1 ! w1

.... R3-R4
x2 ! w2

.... R3-R4
x3 ! w3

xn ! wn s! s
[R5]....

Y3 ! s

Y2 ! s
[R5]

Y1 ! s
[R5]

Y0 ! s
[R5]

The sequence s; : : : ; Y3; Y2; Y1; Y0 can be seen as a derivation in a context-free gram-
mar. Given a lexicon, we construct a context-free grammar that generates the same
language as the categorial grammar. The context-free grammar consists of binary and
unary grammar rules. The start symbol is s. The binary rules simulate rewriting the
symbols s; : : : ; Y3; Y2; Y1; Y0. The unary rules simulate the lexical type assignment.

The binary rules are of the form w ) w=y; x and w ) x; ynw. Let the variables x;

w=y; and ynw range over all possible subtypes in the lexicon. The rule w ) w=y; x (or
w ) x; ynw) is added to the grammar when the sequent x ! y is derivable in NLG1.
The unary rules (for lexical type assignment) are of the form A) a with ha; Ai 2 Lex.

The number of subtypes in the lexicon is linear in the size of the lexicon. The
number of binary rules is quadratic in the number of subtypes. Therefore, the size
of the grammar is quadratic in the size of the lexicon. Construction of the grammar
takes polynomial time because we can compute x! y in polynomial time. 2

The time complexity of context-free grammar recognition is O(jGjn3) where jGj is
the size of the grammar and n the length of the input sentence (Sippu and Soisalon-
Soininen 1988, p. 147). Via construction of the context-free grammar, we have a
polynomial time algorithm for recognition in the NL based categorial grammar. After
construction of the grammar, the time complexity of recognition is cubic in the length
of the string and quadratic in the size of the lexicon.

A polynomial time algorithm for deciding provability in NLG1 can be given too.
Because we do not have a lexicon anymore, the number of possible types is infinite.
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We cannot use a context-free grammar in the style described here because it would
have infinitely many rules. But instead of computing the grammar in advance we can
compute grammar rules “on the fly”. We try to combine adjacent types according to
the schemes w ) w=y; x and w ) x; ynw and compute whether x ! y is derivable in
R3–R4.

Later in this thesis (section 7.1) we will give an alternative proof of the main
theorem. We will give an implementation in Prolog of an algorithm that recognizes
sentences of the NL based categorial grammar. We prove that this implementation
needs polynomial time to decide on grammaticality.



Chapter 3

The Second Order Fragment of L

In this chapter1 we show that when we restrict ourselves to the second order fragment
of L, we can give a recognition algorithm that runs in polynomial time. The structure
of the section is as follows. First, we define the second order fragment of L. This
fragment is a fragment with limited depth of nesting of the types. It has nothing to do
with second order logic or polymorphism. These are extensions, not fragments, of the
basic calculus. We prove that the second order fragment is equivalent with another
calculus called ApplComp. ApplComp stands for Application and Composition. In
order to show the equivalence we introduce a new notation for types, and an auxiliary
calculus called Aux. Once we have the calculus ApplComp we can give a polynomial
time recognition algorithm. This will be done in the last section.

3.1 Categorial Grammars

For convenience we repeat the definitions given earlier. Because we are in an associa-
tive fragment now we can simplify things a little. Instead of bracketed strings of types
we use ordinary strings now. A Categorial grammar G is defined by a lexicon Lex and
a calculus C. A lexicon Lex is a finite relation between � and Tp (Lex � � � Tp). Tp
is the set of types. A (finite) set of primitive types Pr is given. Types are constructed
from primitive types by two type-forming operators: = and n, i.e., Tp is the smallest
set containing Pr such that if A;B 2 Tp, then AnB;B=A 2 Tp. One member s of Pr
is singled out as the distinguished type. If a lexicon Lex relates a 2 � with A 2 Tp

(ha; Ai 2 Lex), we say Lex assigns A to a.
Besides the lexicon, we need some calculus C. C consists of axioms and rules. We

say that a finite sequence of types A1; : : : ; An cancels to a type An+1 if the expression
A1; : : : ; An ! An+1 is derivable in the calculus. Now L(G) is defined to be the set of
strings s = a1 : : : an such that for some types A1; : : : ; An; hai; Aii 2 Lex(1 � i � n) and
A1; : : : ; An cancels to s in C. The calculus we take as our starting point is L:

1This chapter is based on Aarts (1994b) and Aarts (1994a).
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A! A

Left rules Right rules

�! A �;B;�0 ! C

�;B=A;�;�0 ! C
[=L]

�;A! B

�! B=A
[=R]

�! A �;B;�0 ! C

�;�;AnB;�0 ! C
[nL]

A;�! B

�! AnB
[nR]

Figure 3.1: L

(� and � stand for finite sequences of types). An example lexicon Lex is:

fheveryone; pni; heveryone; s=(npns)i; hloves; (npns)=npi; hsomebody; pni; hsomebody; (s=np)nsig

We can write this lexicon also as:

everyone pn

s=(npns)

loves (npns)=np

somebody pn

(s=np)ns

The string “everyone loves somebody” is grammatical:
heveryone; s=(npns)i; hloves; (npns)=npi; hsomebody; (s=np)nsi are in Lex, and the sequent
“s=(npns); (npns)=np(s=np)ns! s” is derivable in L:

np! np

np! np s! s

np; npns! s
[nL]

np; (npns)=np; np! s
[=L]

np; (npns)=np! s=np
[=R]

s! s

np; (npns)=np; (s=np)ns! s
[nL]

(npns)=np; (s=np)ns! npns
[nR]

s! s

s=(npns); (npns)=np; (s=np)ns! s
[=L]

We define the order of a type:

order(A) = 0 if A is a primitive type
order(A=B) = max(order(A); order(B) + 1)

order(BnA) = max(order(A); order(B) + 1)

The order of a sequent is defined as the order of the highest order type occurring in
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it. We restrict ourselves to grammars in which words have types of order at most 2.
This is called the second order fragment. We will write it as L2.

3.2 The System Aux

We introduce a new notation that makes types flatter. Instead of nesting the argu-
ments with slashes we introduce lists of arguments. Slash types can be translated into
list types. An example is: an(bn((c=d)=e)) ; (a; b ) c ( d; e). The result type in the
middle must be primitive. This notation can also be found in Buszkowski (1990) al-
though the order in the argument lists here is the reverse of the order in Buszkowski’s
notation. An example of a derivable sequent is:

b; a; (a; b) c( d; e); e; d! c:

The example lexicon in the new notation:

everyone pn

(s( (np) s))

loves (np) s( np)

somebody pn

((s( np)) s)

We can define L2 in this new notation as follows (([ ]) a( [ ]) equals a):

A! A (A primitive)

�! A �; (L) B( T);�0 ! C

�; (L) B( T;A);�;�0 ! C
[=L]

�;A! (L) B( T)

�! (L) B( T;A)
[=R]

�! A �; (T) B( L);�0 ! C

�;�; (A;T) B( L);�0 ! C
[nL]

A;�! (T) B( L)

�! (A;T) B( L)
[nR]

A and B types, �;�;�0; L and T (possibly empty) lists of types.

Figure 3.2: L2 in sub-categorization list notation

The system is equivalent to L because L is associative. The auxiliary system Aux

can be defined as follows. The left rules [nL], [=L] and the axioms remain as they are.
The right rules of Aux are:

�; (V) C(W)! (L) B( T)

�; (V) C( W;A)! (L) B( T;A)
[=R�]

(V) C(W);�! (T) B( L)

(A;V) C(W);�! (A;T) B( L)
[nR�]

Again, A and B types, �, V, W, L and T lists of types.
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3.2.1. THEOREM. L2 = Aux, i.e. a sequent is derivable in L2 iff it is derivable in Aux.

Before we prove this theorem we prove a lemma:

3.2.2. LEMMA. If �; B ! E with B atomic is provable in Aux then

� � is empty and E = B or
� There are C1; : : : ;Cm and �1; : : : ;�m such that � is of the form �; (�0 ) D (

�00;B;Cm; : : : ;C1);�1; : : : ;�m and the following sequents are provable:

– �; (�0 ) D( �00)! E
– for all i, 1 � i � m, �i ! Ci

Proof: We prove this with strong induction on the size of a sequent (where we can
define the size as the number of characters needed to write down the sequent). Lemma
3.2.2 obviously holds for axioms.

There are three possibilities for the last rule used in the proof of �; B ! E. It can
be [nL], [=L] or [nR�].

� [nL] This is easy. B is in the right premise. Lemma 3.2.2 holds for the right
premise, and therefore is of the form:
�; (�0 ) D ( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! E

Suppose the left premise is of the form � ! A. Then the conclusion �; B ! E is
of the form:

– �;�; (A;�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! E

– �; (�0 ) D( �00;B;Cm; : : : ;C1;A);�;�1; : : : ;�m;B! E

– �; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�i�1;�
0

i;�i+1; : : :�m;B! E

– �000; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! E

In all three cases the lemma holds for the conclusion.
� [=L] B can be in the right premise or in the left premise.

– B in the right premise: Lemma 3.2.2 holds for the right premise, and there-
fore is of the form:
�; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! E

Suppose the left premise is of the form �! A. Then the conclusion �; B ! E

is of the form:
� �; (�0 ) D ( �00;B;Cm; : : : ;C2;A);�;�2; : : : ;�m;B! E

� �; (�0 ) D ( �00;B;Cm; : : : ;C1);�1; : : : ;�i�1;�
0

i;�i+1; : : :�m;B! E

� �000; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! E

In all four cases the lemma holds for the conclusion.
– B in the left premise. We have the following situation:

�;B! A �; (�0 ) D( �00)! F

�; (�0 ) D ( �00;A);�;B! F
=L

The lemma holds for �;B! A. We know that the last step in the proof is:

�; (�0 ) D ( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! A �; (�0 ) D( �00)! F

�; (�0 ) D ( �00;A);�; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! F
[=L]
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The lemma holds for the conclusion.
� [nR�]

(V) C(W);�;B! (T) D( L)

(A;V) C(W);�;B! (A;T) D( L)
[nR�]

The lemma holds for the premise, therefore the last step is of the form:

(V) C(W);�; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! (T) D( L)

(A;V) C(W);�; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! (A;T) D( L)
[nR�]

or
(V) C( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! (T) D( L)

(A;V) C( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! (A;T) D( L)
[nR�]

In both cases, the lemma holds for the conclusion.

End of proof of Lemma 3.2.2.
Proof of theorem 3.2.1 This proof consists of two parts: Aux � L2 and L2 � Aux. It

is easy to see that Aux � L2. In any Aux proof we can replace applications of [nR�] by:

(V) C(W);�! (T) B( L)

A; (A;V ) C( W);�! (T) B( L)
[nL]

(A;V) C(W);�! (A;T) B( L)
[nR]

and we obtain a L2 proof.
The proof of L2 � Aux.
L2 contains the following rule:

�; B ` (L) A( R)

� ` (L) A( R;B)
[=R]

We have to prove now that if we have an Aux-proof of the premise, we also have an
Aux-proof of the conclusion.

We know B is atomic (we are in the second order fragment). Lemma 3.2.2 holds.
Therefore either �;B! (L) A( R) is an axiom or it equals
�; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m;B! (L) A( R)

In the second case, apply [=L�]m times on the�i ! C
i
. This gives you the conclusion.

�1 ! C1

�2 ! C2

�; (�0 ) D( �00)! (L) A( R)

�; (�0 ) D( �00;B)! (L) A( R;B)
[=R�]

....
�; (�0 ) D( �00;B;Cm; : : : ;C3);�3; : : : ;�m ! (L) A( R;B)

�; (�0 ) D( �00;B;Cm; : : : ;C2);�2; : : : ;�m ! (L) A( R;B)
[=L�]

�; (�0 ) D( �00;B;Cm; : : : ;C1);�1; : : : ;�m ! (L) A( R;B)
[=L�]

For [nR] the proof is similar. We can prove the mirror image of Lemma 3.2.2 and
use this to prove L2 � Aux in case the last step in the L2 proof is [nR].

End of proof of Theorem 3.2.1.
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3.3 Cut Elimination in Aux

In this section we prove that the Cut rule is an admissible rule in Aux, i.e., Aux with
Cut is equivalent with Cut. Aux has been defined as follows:

Axioms

A! A (A primitive)

�! A �; (L) B( T);�0 ! C

�; (L) B( T;A);�;�0 ! C
[=L]

�; (V) C(W)! (L) B( T)

�; (V) C(W;A)! (L) B( T;A)
[=R�]

�! A �; (T) B( L);�0 ! C

�;�; (A;T) B( L);�0 ! C
[nL]

(V) C(W);�! (T) B( L)

(A;V) C(W);�! (A;T) B( L)
[nR�]

Figure 3.3: The system Aux

The types (A;T ) B ( L) and (L ) B ( T;A) in the conclusions of the inference
rules are called the principal types.

The Cut rule is:
�! A �;A;�0 ! B

�;�;�0 ! B
[Cut]

3.3.1. THEOREM. Aux + [Cut] = Aux.

Proof: The proof is based on the standard Cut elimination proof for Lambek calcu-
lus, e.g., Hendriks (1993, p. 194 ff.).

The structure of the cut elimination proof is as follows. Cut rules in proofs are
“pushed upwards”. We keep pushing the Cut rule upward until one of the premises
of the Cut is an axiom. Then the Cut can be removed. First, a degree of a Cut is
defined. In order to push the cut upwards we consider the last step in the proofs of
both premises of the Cut rule. Depending on these last steps we transform the proof.
The Cut rule is replaced by another Cut rule of a lower degree. Repeating this, we will
get a proof in which one of the premises of the Cut rule is an axiom.

The degree of a sequent d(� ! A) is defined as the number of connectives in the
types. The degree d(�) of a Cut inference �

�! A �;A;�0 ! B

�;�;�0 ! B
[Cut]

equals d(�) + d(�) + d(�0) + d(A) + d(B).
If the last rule applied in the proof of � ! A is a left rule we can simply permute

the left rule and the Cut rule. If the last rule in the proof of �;A;�0 ! B is a left rule
and A is not the principal type in the left rule we can also permute the left rule and
the Cut rule. An example of this is:
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�! A

�! D (: : :) C( : : :);�0;A;�00 ! C

�; (D; : : :) C( : : :);�0;A;�00 ! C
[nL]

�; (D; : : :) C( : : :);�0;�;�00 ! C
[Cut]

is transformed into

�! D

�! A (: : :) C( : : :);�0;A;�00 ! C

(: : :) C( : : :);�0;�;�00 ! C
[Cut]

�; (D; : : :) C( : : :);�0;�;�00 ! C
[nL]

Two hard cases are left:

� the last step in the proof of �! A is a right rule and the last step in the proof of
�;A;�0 ! B is a left rule and the cut formula A is the principal type (case 1)
� the last step in the proof of �! A is a right rule and the last step in the proof of
�;A;�0 ! B is a right rule (case 2)

Case 1a: The R� rule and the L rule have the same direction.

�; (S) D( U)! (L0 ) B
0 ( T

0)

�; (S) D( U;A)! (L0 ) B
0 ( T

0;A)
[=R�]

�00 ! A �; (L0 ) B
0 ( T

0);�0 ! B

�; (L0 ) B
0 ( T

0;A);�00;�0 ! B
[=L]

�;�; (S) D( U;A);�00;�0 ! B
[Cut]

transform this into:

�00 ! A

�; (S) D( U)! (L0 ) B
0 ( T

0) �; (L0 ) B
0 ( T

0);�0 ! B

�;�; (S) D( U);�0 ! B
[Cut]

�;�; (S) D( U;A);�00;�0 ! B
[=L]

Case 1b: The R� rule and the L rule do not have the same direction.

�; (S) D( U)! (C; L0 ) B
0 ( T

0)

�; (S) D( U;A)! (C; L0 ) B
0 ( T

0;A)
[=R�]

�00 ! C �; (L0 ) B
0 ( T

0;A);�0 ! B

�;�00; (C; L0 ) B
0 ( T

0;A);�0 ! B
[nL]

�;�00;�; (S) D( U;A);�0 ! B
[Cut]

We rearrange the steps in the proof of �; (S) D( U;A)! (C; L0 ) B
0 ( T

0;A) such
that the last step is either a left rule or a [nR�] rule. Consider the last step in the
proof of �; (S) D( U)! (C; L0 ) B

0 ( T
0). It can not be an axiom because axioms are

atomic. If it is a left rule, then we permute the left rule and the right rule. If it is a
[nR�] rule then we permute the two [R�] rules. If it is a [/R�] rule then we rearrange the
steps in this sub-proof in the same way (the last step is a left rule or a [nR�] rule). There
must be a [nR�] rule. You can rearrange the proof of �; (S) D( U)! (C; L0 ) B

0 ( T
0)

such that the last step is either a left rule or a [nR�]. The second case is treated in 1a.
Case 2a: The two R� rules have the same direction. Let’s repeat the cut rule:

�! A �;A;�0 ! B

�;�;�0 ! B
[Cut]
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There are two subcases: �0 is empty or �0 is not empty. When �0 is not empty, you
can just permute the right rule and the cut rule.

: : :
�0 ! A

[=R�]
�;A;�00; (L0 ) B

0
( T

0)! (L) B( T)

�;A;�00; (L0 ) B
0 ( T

0;C)! (L) B( T;C)
[=R�]

�;�0;�00; (L0 ) B
0 ( T

0;C)! (L) B( T;C)
[Cut]

Transform this into:

�0 ! A �;A;�00(L0 ) B
0 ( T

0)! (L) B( T)

�;�0;�00; (L0 ) B
0 ( T

0)! (L) B( T)
[Cut]

�;�0;�00; (L0 ) B
0 ( T

0;C)! (L) B( T;C)
[=R�]

When �0 in the cut rule is empty the proof looks like:

�0; (S) D( U)! (L0 ) B
0 ( T

0)

�0; (S) D( U;A)! (L0 ) B
0 ( T

0;A)
[=R�]

�; (L0 ) B
0 ( T

0)! (L) B( T)

�; (L0 ) B
0 ( T

0;A)! (L) B( T;A)
[=R�]

�;�0; (S) D( U;A)! (L) B( T;A)
[Cut]

Transform this into:

�0; (S) D( U)! (L0 ) B
0 ( T

0) �; (L0 ) B
0 ( T

0)! (L) B( T)

�;�0; (S) D( U)! (L) B( T)
[Cut]

�;�0; (S) D( U;A)! (L) B( T;A)
[=R�]

Case 2b: The two R� rules do not have the same direction.
Like in 2a we can distinguish two cases: �0 in the cut rule is empty or not. If it is

not empty we can perform the same transformation as in case 2a. If �0 is empty the
proof has the following form:

�0 ! (L0 ) B
0 ( T

0;A)

�0 ! (C; L0 ) B
0 ( T

0;A)
[nR�]

�; (C; L0 ) B
0 ( T

0)! (L) B( T)

�; (C; L0 ) B
0 ( T

0;A)! (L) B( T;A)
[=R�]

�;�0 ! (L) B( T;A)
[Cut]

Like in case 1b, we can change the proof of �0 ! (C; L0 ) B
0 ( T

0;A) such that the
last step applied is a left rule or a [/R�] rule. The second case is treated in 2a. It
is left to the reader to check that the degree of the Cut rule decreases in all proof
transformations given here.

This finishes the proof of cut elimination for Aux.

3.4 The System ApplComp

Now we can introduce the calculus that is used in the recognition algorithm for second
order Lambek based Categorial Grammar. The calculus is called ApplComp (short for
Application and Composition). It has the following rules:
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A! A

�; (U;T) B( S);�0 ! C

�; (U;V) A(W); ((V) A( W);T) B( S);�0 ! C
[COMPn]

�; (T) B( S;U);�0 ! C

�; (T) B( S; (V) A(W)); (V) A( W;U);�0 ! C
[COMP/]

Again, A, B and C are types, �, �0, S, T, U, V and W are (possibly empty) lists of types.

3.4.1. THEOREM. ApplComp = Aux.

We know that Aux+[Cut] = Aux. We are going to prove that ApplComp � Aux+[Cut]
and that Aux � ApplComp.

� ApplComp � Aux+ [Cut]
The following is a valid proof in Aux:
(V) A( W)! (V) A( W) (T) B( S)! (T) B( S)

(V) A(W); ((V) A( W);T) B( S)! (T) B( S)
[nL]

: : :! : : : [nR�]
: : :! : : : [nR�]
: : :! : : : [nR�]

(U;V) A(W); ((V) A( W);T) B( S)! (U;T) B( S)
[nR�]

In order to save space we call this conclusion Q. We can use Q in the following
proof:

Q �; (U;T) B( S);�0 ! C

�; (U;V) A(W); ((V) A( W);T) B( S);�0 ! C
[Cut]

We have a proof of the [Compn] rule in Aux+ [Cut].
� Aux � ApplComp

– Suppose the last step is a left rule, e.g., [/L]. The rules of ApplComp have
exactly one premise. Therefore, the ApplComp proof of the left premise of
the [/L] rule of Aux looks like

A! A....
�! A

We can transform this into:

�; (L) B ( T;A); A;�0 ! C....
�; (L) B ( T;A);�;�0 ! C

and in

�; (L) B ( T );�0 ! C

�; (L) B ( T;A); A;�0 ! C
[COMP/]

....
�; (L) B ( T;A);�;�0 ! C
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– Suppose the last step is a right rule, e.g., [/R�] The ApplComp proof of the
premise of the [/R�] rule looks like:

(L) B ( T )! (L) B ( T )....
�; (V ) C ( W )! (L) B ( T )

This can be changed into:

(L) B ( T;A)! (L) B ( T;A)....
�; (V ) C ( W;A)! (L) B ( T;A)

We conclude that the systems ApplComp, Aux and 2nd order Lambek calculus (L2)
generate the same set of sequents.

3.5 The Algorithm

The algorithm we present here is based on the calculus ApplComp. It decides whether
a sequent is derivable in ApplComp. When it is derivable, the algorithm finds all
proofs in ApplComp of the sequent. The algorithm first constructs an initial graph
called a chart. After the initialization, �-arcs are added (� is the empty word). These
�-arcs short-circuit paths in the graph. The set of vertices does not change after the
initialization phase.

Beside the primitive types Pr and the types Tp we introduce the arrow-types ATp.

3.5.1. DEFINITION. If A is in Pr, then
"

A is in ATp. If A is in Tp,
then

 

A and
!

A are in ATp.

With Tp� and ATp� we mean sequences of types and arrow types respectively. We
define a mapping f :

3.5.2. DEFINITION. f: Tp! ATp�, the unfolding function, is defined as follows:

f((T1; : : : ;Tm ) B ( L1; : : : ; Ln)) =
 

T1; : : :
 

Tm;
"

B;
!

L1; : : :
!

Ln (m;n � 0). We extend
the definition to f : Tp� ! ATp� by applying f pointwise and concatenating the result.

We construct the initial chart as follows. Given the input sentence we look up the
types assigned to the words in the lexicon. For every type X we put a path f(X) in the
chart. The chart contains two types of vertices. The first type, drawn as a little square,
separates the words in the sentence. The second type, drawn as a dot, separates the
elements of f(X). The edges are the subtypes of the types of the words in the sentence.

Lexical ambiguities cause multiple paths between square vertices. This can be
seen in Figure 3.5.

Observe that complex arguments appear in the chart as arcs. They are not de-
composed into smaller parts. In this respect the unfolding differs from the proofnet
unfolding found in e.g. (Roorda 1991). We construct a rewrite grammar with the
following two types of rules:
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T1

 

T2

 

Tm
"

B
!

L1
!

L2

!

Ln

Figure 3.4: Unfolding.

�!
!

(T
1
; : : : ;Tm ) B( L

1
; : : : ; Ln);

 

T1; : : :
 

Tm;
"

B;
!

L1; : : :
!

Ln (m;n � 0)

�!
 

T1; : : :
 

Tm;
"

B;
!

L1; : : :
!

Ln;
 

(T
1
; : : : ;Tm ) B( L

1
; : : : ; Ln)

where the type (T
1
; : : : ;Tm ) B( L

1
; : : : ; Ln) ranges over all argument types in the

lexicon. All Ti and Li are primitive. � is a special symbol denoting the empty word.
The size of the grammar is linear in the size of the lexicon. When we add �-arcs in the
chart, (sub-)types cancel each other out, and we shortcircuit paths.

The algorithm does the following: find bottom-up all �-arcs. We follow the standard
bottom up algorithms for context free grammar recognition (Winograd 1983). Inter-
mediate results are stored in so-called pending edges of the form

�! i
 

T1; : : :
 

Tm;
"

B j ;
!

L1; : : :
!

Ln;
 

(T1; : : : ;Tm ) B( L1; : : : ; Ln)

The superscripts i and j indicate labels of vertices. The position of j is the position
of the “dot” well-known from chart parsing (do not confuse with dot vertices in the

chart!). In this example there is a path
 

T1; : : :
 

Tm;
"

B between the vertices i and j.
There are two possibilities to move the dot.

1. When we find an � from j to k we add the pending edge:

�! i
 

T1; : : :
 

Tm;
"

B k ;
!

L1; : : :
!

Ln;
 

(T1; : : : ;Tm ) B( L1; : : : ; Ln)

2. When we find an
!

L1 from j to k we add the pending edge:

�! i
 

T1; : : :
 

Tm;
"

B;
!

L1 k ; : : :
!

Ln;
 

(T1; : : : ;Tm ) B( L1; : : : ; Ln)

The algorithm proceeds from left to right. All dot vertices between two square
vertices are considered before the algorithm proceeds to the next word. The algorithm
terminates when it has reached the final vertex, behind the last word. Only when
there is a path �; : : : ; �; S; �; : : : ; � spanning the whole input sentence, the sentence is
correct.

We will now give an example. Suppose our lexicon is the example lexicon of page
30 and that the input sentence is “everyone loves somebody”.
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everyone pn

(s( (np) s))

loves (np) s( np)

somebody pn

((s( np)) s)

Two important grammar rules are:

�!
!

(np) s);
 

np;
"

s

�!
"

s;
!

np;
 

(s( np)

The initial chart is in Figure 3.5.

"

pn
"

pn

everyone loves somebody

!

np) s"

s  

np

"

s
 

s( np "

s!

np

Figure 3.5: Initial chart.

Figure 3.6 shows which �-arcs are added when the grammar rules are applied.

"

pn
"

pn

everyone loves somebody

!

np) s"

s  

np

"

s
 

s( np "

s!

np

� �

� �

Figure 3.6: Final chart.

We see that the algorithm finds two paths labeled s from the begin vertex to the end

vertex. One path is
"

s �, the other �
"

s. These two paths correspond to the two readings
we should obtain.
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3.6 Proof of Correctness of the Algorithm

Define LexTypes as the set of all subtypes in lexicon:
Lextypes = fLtij9w; t((w; t) 2 Lex ^ f(t) = : : : ; Lti; : : :)g We will use the abbreviation

 

p

for f
 

A j
 

A2 Lextypesg,
"

p for f
"

A j
"

A2 Lextypesg and
!

p for f
!

A j
!

A2 Lextypesg. With a
path through the chart we mean a path from left to right with the �-arcs left out.

3.6.1. LEMMA. Any path through the chart from begin vertex to end vertex is a member
of the regular language:

((
 

p)�
"

p (
!

p)�)�

Proof: The Lemma obviously holds for the paths in the initial chart. Application of
a rule adds an �-arc in the chart. The grammar rules look like:

�!
!

p (
 

p)�
"

p (
!

p)�

�! (
 

p)�
"

p (
!

p)�
 

p

If the lemma holds before application of a rule it will still hold afterwards. 2

3.6.2. DEFINITION. Define derivability V between two lists of types X and Y as follows
(s is the distinguished type of the categorial grammar):

X V Y iff

X ! s
Y ! s

[COMP/]

or

X ! s
Y ! s

[COMPn]

The transitive reflexive closure of V is V�

Any path from the begin vertex to the end vertex through the chart can be translated
in a list of types X by simply applying f�1. (see also lemma 3.6.1).

The invariant that is maintained in the algorithm is the following. For all the X
that are the result of applying f�1 to some path from begin vertex to end vertex in the
chart, if the input sentence is a1 : : : an then there are some types A1; : : : ; An; hai; Aii 2

Lex(1 � i � n) such that X V� A1; : : : ; An.
If the start symbol s is among these X’s then the input sentence is grammatical.
Addition of an � arc in the chart corresponds exactly with application of the compo-

sition rule of ApplComp. The �-rule is:

�!
 

V1; : : :
 

Vm;
"

A;
!

W1; : : :
!

Wn;
 

(V
1
; : : : ;Vm ) A( W

1
; : : : ;Wn)



42 Chapter 3. The Second Order Fragment of L

The composition rule is:

�; (U;T) B( S);�0 ! C

�; (U;V) A(W); ((V) A( W);T) B( S);�0 ! C
[COMPn]

For any path

�
 

U �
 

V �
"

A �
!

W
 

(V ) A(W ) �
 

T �
"

B �
!

S �0

a new path

�
 

U � � �
 

T �
"

B �
!

S �0

is added. The invariant is maintained and the algorithm finds all X’s with the desired
property.

The algorithm is polynomial time because there is a polynomial number of vertices
and therefore a polynomial number of arcs, labeled �, and a polynomial number of
pending edges is added.

Section 7.2 gives an alternative algorithm that is polynomial time too. It is based
on a method to estimate time complexity which is described in chapter 5.

3.7 Discussion

We first show that the method presented here does not work in higher order fragments
(> 2). The type (((c) c)) b)) b) has order 3. Consider the sequent:

(c) b); ((c) b)) b); (((c) c)) b)) b)! b

This sequent is derivable in the Lambek calculus. But it is not derivable in ApplComp.
There are only arrows to the right so the only applicable rule is the following simplified
ApplComp rule:

�; (U;T) B);�0 ! C

�; (U;V) A); ((V) A);T) B);�0 ! C
[COMPn simple]

It is clear that the sequent is not derivable.
The second order fragment has been studied earlier, not only by Buszkowski (1990)

but also by Hepple (1991) and Barry (1992). They use natural deduction style proofs
instead of Gentzen style proofs. In natural deduction, the second order restriction is
equivalent to the restriction that hypotheses in the proof are atomic.

We can define the notion virtual second order as follows. A lexicon is virtual
second order if it can be made into a real second order lexicon under some renaming
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of subtypes. All the results presented in this paper are valid for virtual second order
Lambek based categorial grammar.

In natural deduction, virtual second order means that assumptions in proofs are
arguments and not functors. The system D of Barry (1992) is defined like this: hy-
potheses must be arguments. Therefore, virtual second order is precisely D2.

Furthermore the second order Lambek calculus seems, at first sight, to be equiv-
alent with the Lambek derivable fragment of Steedman’s Combinatory Categorial
Grammar. In CCG, only application and composition are allowed. However, CCG
has no associativity rules. Composition of wny; yn(x=z) into wn(x=z) is possible but
composition of wny; (ynx)=z into wn(x=z) is not. If we allow for lifting as an operation
in the lexicon we can get an equivalent system.

2There is a small problem with associativity: x=((bna)=c); bn(a=c) ! x is not derivable in D. It is
derivable in virtual second order Lambek calculus when we use the “flat” notation. Hepple (1991)
argues that associativity should be added to D.





Chapter 4

Acyclic Context-sensitive Grammars

In this chapter1 we propose a new type of context-sensitive grammars, the acyclic
context-sensitive grammars (ACSG’s). Acyclic context-sensitive grammars are context-
sensitive grammars with rules that have a “real rewrite part”, which must be context-
free and acyclic, and a “context part”. The context is present on both sides of a rule.
The motivation for the introduction of ACSG’s is that we want a formalism which

� allows parse trees with crossing branches
� is computationally tractable
� has a simple definition.

We enrich context-free rewrite rules with context and this leads to a simple def-
inition of a formalism that generates parse trees with crossing branches. In order
to gain efficiency, we add a restriction: the context-free rewrite part of the gram-
mar must be acyclic. Without this restriction, the complexity would be the same as
for unrestricted CSG’s (PSPACE-complete). With the acyclicity restriction we get the
same results as for growing CSG’s (Dahlhaus and Warmuth 1986, Buntrock 1993), i.e.,
NP-completeness for uniform recognition and polynomial time for fixed grammars.

Possible applications are in the field of computational linguistics. In natural lan-
guage one often finds sentences with so-called discontinuous constituents (constituents
separated by other material). ACSG’s can be used to describe such constructions. Most
similar attempts (Pereira 1981, Johnson 1985, Bunt 1988, Abramson and Dahl 1989)
allow an arbitrary distance between two parts of a discontinuous constituent. This
is not allowed in ACSG’s. For unbounded dependencies like wh-movement we either
have to extend the formalism (allow arbitrary context) or introduce the slash-feature.

The acyclicity of the grammar does not seem to form a problem for the generative
capacity necessary to describe natural language. Acyclicity is closely related to the off-
line parsability constraint (Johnson 1988). Constituent structures satisfy the off-line
parsability constraint iff

� they do not include a non-branching dominance chain in which the same category
appears twice, and
� the empty string � does not appear as the righthand side of any rule.
1The NP-completeness proof in this chapter was published in Aarts (1992).

45



46 Chapter 4. Acyclic Context-sensitive Grammars

The off-line parsability constraint has been motivated both computationally and from
the linguistic perspective. Kaplan and Bresnan (1982) say that “vacuously repetitive
structures are without intuitive or empirical motivation” (Johnson 1988). ACSG’s
satisfy the off-line parsability constraint: they have no cycles and no �-rules.

The goal of designing a formalism that is computationally tractable is only achieved
partially. We show that the uniform recognition problem is NP-complete. For any
fixed grammar, however, the recognition problem is polynomial (in the length of the
sentence).

The definition of ACSG is simple because it is a standard rewrite grammar. Deriv-
ability is defined by successive string replacement. This definition is, e.g., simpler
than the definition of Discontinuous Phrase Structure Grammar (Bunt 1988). The
main difference between DPSG and ACSG is that in ACSG constituents are “moved”
when a context-sensitive rule is applied. In DPSG trees with crossing branches are
described “staticly”: the shape of a tree is described by node admissibility constraints.

The structure of this chapter is as follows. First we define acyclic CSG’s, growing
CSG’s and quasi-growing CSG’s formally. Then we present some results on the gener-
ative power of these classes of grammars and on their time complexity. We end with
a discussion on the uniform recognition problem vs. the recognition problem for fixed
grammars.

4.1 Definitions

4.1.1 Context-sensitive Grammars

4.1.1. DEFINITION. A grammar is a quadruple hV;�; S; P i, where V is a finite set of
symbols and � � V is the set of terminal symbols. � is also called the alphabet. The
symbols in V n� are called the nonterminal symbols. S 2 V n� is a start symbol and P

is a set of production rules of the form �! �, with �; � 2 V �, where � contains at least
one nonterminal symbol.

4.1.2. DEFINITION. A grammar is context-free if each rule is of the form Z !  where
Z 2 V n� ;  2 V �. A cycle in a context-free grammar is a set of symbols a1; : : : ; an with
ai ! ai+1 2 P for all 1 � i < n and a1 = an.

4.1.3. DEFINITION. A grammar is context-sensitive if all rules are of the form � ! �,
with j�j � j�j.

4.1.4. DEFINITION. Derivability ()) between strings is defined as follows: u�v ) u�v

(u; v; �; � 2 V �) iff (�; �) 2 P . The transitive closure of) is denoted by +
). The reflexive

transitive closure of) is denoted by �
).

4.1.5. DEFINITION. The language generated byG is defined asL(G) = fw 2 �� j S
�
) wg.

4.1.6. DEFINITION. A derivation of a string � is a sequence of strings x1; x2; : : : ; xn with
x1 = S, for all i (1 � i < n) xi ) xi+1 and xn = �.
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4.1.2 Labeled Context-sensitive Grammars

Context-sensitive grammars have just been described as grammars with rules of the
form � ! � for which j�j � j�j. There is an alternative definition where context is
used. In this definition, rules are of the form �Z� ! �� (Z 2 V; �; �;  2 V �). In this
format, � and � are context, and Z !  is called the context-free backbone. It is known
that the two formats are weakly equivalent (Salomaa 1973, pp. 15,82). We introduce
here a third form, which is a kind of a mix between the other two. Instead of having
context on the outside of the rule, we can also have context inside. Suppose we have
the rule “A rewrites to B C in the context D”. In a standard context-sensitive grammar,
this can only be expressed as D A! D B C or as A D! B C D. We are going to allow
that the D is in between the B and the C. A possible rule is D A! B D C. In the rules
of the form �Z� ! �� it is not always clear which symbols are the context and which
symbols form the context-free backbone. E.g., in the grammar rule A A! A B A it is
not clear what the context is. We are going to indicate the context with brackets. The
rule A A! A B A can be written as [A] A! [A] B A or as A [A]! A B [A] (the context
is between brackets). In the new form, where the context can be “scattered”, brackets
are not enough. Therefore we introduce labels for the context symbols. The labels left
and right of the arrow must be the same of course. The rule [A] A! [A] B A is written
now as A1 A! A1 B A and A [A]! A B [A] is written as A A1 ! A B A1. The rule D A
! B D C can be written as D1 A! B D1 C.

This can be formalized as follows.

4.1.7. DEFINITION. An acyclic context-sensitive grammar G is a quadruple hV;�; S; P i,
where V and � are, again, sets of symbols and terminal symbols. Vl and �l (labeled
symbols and terminals) denote fha; ki j a 2 V; 1 � k � Kg and fha; ki j a 2 �; 1 �

k � Kg respectively, where K depends on the particular grammar under consideration.
S 2 V n � is a start symbol and P is a set of production rules of the form � ! �, with
� 2 V �l V V

�

l ; � 2 (V [ Vl)
�. The left hand side contains exactly one unlabeled symbol,

the right hand side at least one. For all production rules it holds that j�j � j�j. The
labeled symbols in a rule are called the context.

There are three conditions:

� If we leave out all members of Vl (the context) from the production rules we obtain
a context-free grammar. This is the context-free backbone.
� If we leave out all members of V (the backbone) from the production rules we

obtain a grammar that has permutations only. This is the context part. All
context symbols in the rules should have different labels.
� If we remove all labels in the rules, i.e., we replace all symbols ha; bi by a, we get

an ordinary context-sensitive grammar G0. We define that L(G) = L(G0).

4.1.3 Acyclic Context-sensitive Grammars

Acyclic context-sensitive grammars, or ACSG’s, are context-free grammars with an
“acyclic contextfree backbone”. This is formalized as follows.
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4.1.8. DEFINITION. An acyclic context-sensitive grammar is a labeled context-sensitive
grammar that fullfills the following condition:

� If we leave out all members of Vl from the production rules we must obtain a
finitely ambiguous context-free grammar, i.e. a grammar for which j�j = 1 and
j�j � 1 and that contains no cycles.

An example of a rule of an acyclic CSG is (pairs of hN;Li are written as NL):

A1 B2 M C3 D4 ! C3 K B2 A1 L M D4

The context-free backbone is M! K L M. The context part is A1 B2 C3 D4 ! C3 B2

A1 D4. The rule without labels is A B M C D ! C K B A L M D. Another example is
given after the definition of growing context-sensitive grammars.

4.1.4 Growing Context-sensitive Grammars

The definition of growing CSG’s (GCSG’s) is pretty simple: the lefthand side of a rule
must be shorter than the righthand side. For the precise definition we follow Buntrock
(1993):

4.1.9. DEFINITION. A context-sensitive grammar G = hV;�; S; P i is growing if

1. 8(�! �) 2 P : � 6= S ) j�j < j�j, and
2. S does not appear on the right hand side of any rule.

We also define grammars which are growing with respect to a weight function.
These were introduced in (Buntrock 1993).

4.1.10. DEFINITION. We call a function f : �� ! IN a weight function if 8a 2 � : f(a) >

0 and 8w; v 2 �� : f(w) + f(v) = f(wv).

Now we can define quasi-growing grammars:

4.1.11. DEFINITION. Let G = hV;�; S; P i be a grammar and f : V � ! IN a weight
function. We call G quasi-growing if f(�) < f(�) for all productions (�! �) 2 P .

Quasi-growing context-sensitive grammars (QGCSG’s) are grammars that are both
quasi-growing and context-sensitive.

4.2 An Example

This section contains an example based on natural language of how ACSG’s work. It
is taken from Bunt (1988). Assume we have the following grammar. It has one rule
that is not context-free.

Suppose we have the sentence: “Wake your friend up”. This is a VP:
VP) V NP) vs NP part) vs det n part)� wake your friend up
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VP ! V NP
V NP1 ! vs NP1 part
NP ! det n

vs ! wake
det ! your
n ! friend
part ! up

Table 4.1: An example grammar

The corresponding parse tree is:

VP

V NP

vs det n part

upfriendyourwake

We see that we have a context-free backbone which allows us to draw parse trees
(or structure trees) and that the scattered context causes branches in the trees to cross.

4.3 Properties of Acyclic Context-sensitive Grammars

4.3.1 Generative Power of Acyclic CSG’s

In this section we discuss the relation between ACSG’s and GCSG’s and we sketch
their position in the Chomsky hierarchy.

4.3.1. THEOREM. �-free CFL � ACSL

Proof: if the cfl is generated by an acyclic cfg without empty productions we do not
have to do anything. This cfg is an acyclic csg. If the cfg contains cycles we can remove
them. A cycle can be removed by the introduction of a new symbol. This symbol
rewrites to any member of the cycle. Any cfg with empty productions can be changed
into a cfg without empty productions that generates the same language. There’s
one exception here: languages containing the empty string can not be generated.
Therefore acyclic context-sensitive grammars generate all cfl’s that do not contain the
empty word. 2

4.3.2. THEOREM. ACSL 6= CFL

Proof: ACSG’s are able to generate languages that are not context-free. One exam-
ple is the language fanb2ncn j n � 1g. This language is generated by the grammar:

A derivation of “ a a b b b b c c ” is:
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S ! A B B C
B X1 ! X1 B B
B C1 ! X B B C C1

A1 X B2 ! A1 A B2

A ! a
B ! b
C ! c

Table 4.2: Grammar for fanb2ncn j n � 1g

S) A B B C) A B X B B C C) A X B B B B C C) A A B B B B C C
�
) a a b b b b c c.

We see that together with an A an X is generated. This X is sent through the
sequence of B’s in the middle. When the X meets the C’s on the right-hand side it is
changed into a C. While the X travels through the B’s, the number of B’s is doubled.
This is different from an ordinary CSG. In an ordinary CSG it is possible to have a
travelling X that does not double the material it passes (with a rule like
X B! B X). 2

4.3.3. LEMMA. ACSL � QGCSL

Suppose we have an acyclic context-sensitive grammar G = (hV;�; S; P i). We
construct a QGCSG G0 = (hV;�; S; P 0i) with weight function g that generates the same
language as the ACSG as follows. P 0 is obtained by removing all labels from P . G and
G0 generate the same language by definition (the weight function is irrelevant for the
generative capacity).

It remains to show that we can construct a function g such that 8�! � 2 P 0 : g(�) < g(�).
First we construct a graph as follows. For every unlabeled symbol in the ACSG there
is a vertex in the graph. There is an arc from vertex T to vertex U iff the unary
rule T ! U is in the context-free backbone of the grammar. With jV j we denote the
cardinality of a set V . The maximal number of vertices in the graph is jV j.

We introduce a counter i that is initialized to jV j + 1. Assign the weight i to all
vertices that are not connected to any other vertex and remove them. Now search the
graph for a vertex without incoming edges. The weight of this symbol is i. Remove
the vertex. Increment i by 1 and search for the next vertex without incoming edges.
Repeat this until the graph is empty. The algorithm is guaranteed to stop with an
empty graph because the graph is acyclic. Observe that 8x 2 V : jV j < g(x) � 2jV j.

We have to prove now that 8�! � 2 P 0 : g(�) < g(�). We consider two cases:

� j�j = j�j. In this case the context-free backbone of the ACSG rule is unary. The
weight of the context symbols is irrelevant because they occur both in � and in
�. The context-free backbone is of the form A ! B. We know that g(A) < g(B)

because A was removed earlier from the graph than B and therefore has a lower
weight.
� j�j < j�j. Again, the weight of the context symbols is irrelevant because they

are equal both left and right of the arrow. The context-free backbone is of the
form Z ! , with jj > 1. We know that g(Z) � 2jV j and that g() > 2jV j, hence
g(Z) < g(). 2
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4.3.4. LEMMA. QGCSL � GCSL

The proof is in Buntrock and Loryś (1992) and is repeated here. For any QGCSG
G we construct a GCSG G0 and a homomorphism h such that L(G0) = h(L(G)). Then
we introduce a GCSG G00 with L(G00) = L(G). We cite Buntrock and Loryś (1992):

LetL be generated by a quasi-growing grammarG = hV;�; S; P iwith weight
function f . Without loss of generality we can assume that S does not appear
on the right hand side of any production and that f(S) = 1. Let c 62 V and
let h be a homomorphism such that h(a) = acf(a)�1 for each a 2 V . Then
G0 = hV [fcg;�; S; P 0i, where P 0 = fh(�)! h(�) : (�! �) 2 Pg is a growing
context-sensitive grammar and L(G0) = h(L(G)).

GCSL’s are closed under inverse homomorphism (Buntrock and Loryś 1992). There-
fore there exists a GCSG G00 that recognizes L(G). 2

4.3.5. THEOREM. ACSL � GCSL

Follows immediately from Lemma’s 4.3.3 and 4.3.4.

It is not known whether GCSL � ACSL. Buntrock and Loryś (1992) show that
GCSL 6= CSL. We get the following dependencies:

CFL � ACSL � GCSL � CSL

4.3.2 Complexity of Acyclic CSG’s

We formally introduce the following problems:

UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE
GRAMMAR
INSTANCE: An acyclic context-sensitive grammar G = (V;�; S; P ) and a stringw 2 ��.
QUESTION: Is w in the language generated by G ?

UNIFORM RECOGNITION FOR GROWING CONTEXT-SENSITIVE
GRAMMAR
INSTANCE: A growing context-sensitive grammarG = (V;�; S; P ) and a string w 2 ��.
QUESTION: Is w in the language generated by G ?

RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE GRAMMAR G
INSTANCE: A string w 2 ��.
QUESTION: Is w in the language generated by G ?

RECOGNITION FOR GROWING CONTEXT-SENSITIVE GRAMMAR G
INSTANCE: A string w 2 ��.
QUESTION: Is w in the language generated by G ?
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We can prove two theorems:

4.3.6. THEOREM. There is a polynomial time reduction from UNIFORM RECOGNI-
TION FOR ACYCLIC CONTEXT-SENSITIVE GRAMMAR to UNIFORM RECOGNI-
TION FOR GROWING CONTEXT-SENSITIVE GRAMMAR

4.3.7. THEOREM. For every G there is a G0, such that RECOGNITION FOR ACYCLIC
CONTEXT-SENSITIVE GRAMMAR G is polynomial time reducible to RECOGNI-
TION FOR GROWING CONTEXT-SENSITIVE GRAMMAR G0

Proof of both theorems. Consider the proofs of Lemma’s 4.3.3 and 4.3.4. These
proofs show how we can find for every ACSG G a GCSG G0 and a homomorphism h

such that L(G0) = h(L(G)). We know that w 2 L(G) iff h(w) 2 L(G0). The reduction
is polynomial time. This can be seen as follows. Computing a weight function for
an ACSG costs kwadratic time. The weights are linear in jGj. Computation of h and
G0 from the weight function is linear. The total reduction is quadratic. Observe that
the reduction from QGCSG to GCSG is not polynomial in general. We can represent
the values of the weight function with a number of bits that is logarithmic in the
value. The number of special symbols c added equals the value of the weight function,
therefore the GCSG is exponential in the size of the QGCSG plus the weight function.
But in the reduction here, the value of the weight function is linear in the size of the
grammar, which makes the reduction polynomial.2

4.3.8. THEOREM. The problem RECOGNITION FOR ACYCLIC CONTEXT-SENSITIVE
GRAMMAR G is in P for all G.

Dahlhaus and Warmuth (1986) proved that RECOGNITION FOR GROWING
CONTEXT-SENSITIVE GRAMMAR G0 is in P for all G0. The theorem follows from
their proof and from Theorem 4.3.7. Aarts (1991) conjectured that the fixed grammar
recognition problem was in P. An algorithm was given there without an estimate of
the time complexity.

4.3.9. THEOREM. The problem UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-
SENSITIVE GRAMMAR is NP-complete.

This is proved in the next section.

4.3.10. THEOREM. The problem UNIFORM RECOGNITION FOR GROWING CONTEXT-
SENSITIVE GRAMMAR is NP-complete.

From Theorems 4.3.6 and 4.3.9 it follows that the uniform recognition problem for
GCSG is NP-hard. The problem is also in NP because we can guess derivations in
GCSG and derivations in GCSG are very short (their length is smaller than the size
of the input). 2

This result is not new, however. The problem was put forward in an article from
Dahlhaus and Warmuth (1986) and has been solved three times (Buntrock and Lorýs
1992).
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4.4 Uniform Recognition for ACSG is NP-complete

In this section we prove that the uniform recognition problem is NP-complete. First
we prove that the class of acyclic csg’s is a subset of the class of linear time csg’s,
i.e., we prove that derivations are short. This implies that the uniform recognition
problem for ACSG is in NP. Furthermore we give a reduction from 3-SAT to uniform
ACSG recognition which completes the proof of NP-completeness of the problem.

For an introduction to the problem “3-SAT” the reader is referred to (Garey and
Johnson 1979). Before we prove that UNIFORM RECOGNITION FOR ACYCLIC
CONTEXT-SENSITIVE GRAMMAR is NP-complete, we first prove some theorems
and lemmas.

Suppose G0 = (V 0;�0; S 0; P 0) is an acyclic context-free grammar. The function
ld(G00; n) is the length (number of steps) of the longest derivation from any input
word with length n (n � 1) using grammar G00.

4.4.1. LEMMA. ld(G0; n) � (2jP 0j+ 1)n

Proof: With induction to n.

Basic step: n = 1. In the worst case we can apply all rules once. The length of this
derivation is jP 0j. So ld(G0; 1) = jP 0j.

Induction step.
Suppose ld(G0; m) � (2jP 0j + 1)m for all m < n (n > 1). Suppose we have a deriva-

tion of a string of length n. This derivation has the form
s )� a1 : : : aizai+1 : : : an�j ) a1 : : : aiz1 : : : zjai+1 : : : an�j )

� b1 : : : bn (j � 2), where z !

z1 : : : zj is the last growing rule. Afterwards only unary rules are applied. We can
permute applications of some unary rules with application of the rule z ! z1 : : : zj now,
such that we get a derivation of the form
s)� b1 : : : bizbi+j+1 : : : bn ) b1 : : : biz1 : : : zjbi+j+1 : : : bn )

� b1 : : : bn

The length of this derivation is exactly the same as the length of the old derivation
because the same rules are applied, but in a different order.

The length of the string b1 : : : bizbi+j+1 : : : bn is n � j + 1. Applying the induction
hypothesis we know now that the length of the derivation s )� b1 : : : bizbi+j+1 : : : bn is
at most (2jP 0j+ 1)� ((n� j) + 1).

The length of the derivation b1 : : : biz1 : : : zjbi+j+1 : : : bn )
� b1 : : : bn is maximally jjP 0j.

ld(G0; n) �

((2jP 0j+ 1)((n� j) + 1)) + 1 + jjP 0j =

(2jP 0j+ 1)n� 2jjP 0j � j + (2jP 0j+ 1) + 1 + jjP 0j =

(2jP 0j+ 1)n+ 2jP 0j+ 2� jjP 0j � j =

(2jP 0j+ 1)n+ (2� j)(jP 0j+ 1)
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because j � 2, also ld(G0; n) � (2jP 0j+ 1)n 2.

Take an arbitrary acyclic context-sensitive grammar.

4.4.2. LEMMA. ld(G; n) � (2jP j+ 1)n.

Proof: Every derivation in an acyclic context-sensitive grammar is a derivation in
the context-free backbone. The number of rules in the context-free backbone is at most
the number of rules in the acyclic context-sensitive grammar. Two context-sensitive
rules can have the same context-free backbone. But if jP0j < jP j and ld(G; n) �

(2jP 0j+ 1)n then also ld(G; n) � (2jP j+ 1)n. 2

4.4.3. THEOREM. The problem UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-
SENSITIVE GRAMMAR is in NP.

Proof: A nondeterministic algorithm can guess every (bottom-up) replacement of
some substring until the startsymbol has been found. This process will not take more
steps than the length of the longest derivation. The longest derivation in an acyclic
context-sensitive grammar has linear length. Therefore, this nondeterministic algo-
rithm runs in linear time and it recognizes exactly L(G). 2

4.4.4. THEOREM. There is a transformation f of 3-SAT to UNIFORM RECOGNITION
FOR ACYCLIC CONTEXT-SENSITIVE GRAMMAR.

Proof: First we transform the instances of 3-SAT to those of UNIFORM RECOGNI-
TION FOR ACYCLIC CONTEXT-SENSITIVE GRAMMAR. An example of this trans-
formation is:

(: u3 _ u2 _ : u1) ^ (u3 _ : u2 _ u1) , a 3-SAT instance, is transformed into
“ini : u3 u2 : u1 u3 : u2 u1”.

The transformation should be done as follows.
The symbols “_”, “^” and the brackets “(” and “)” are left out of the new formula in

order to keep the grammar smaller. An extra symbol is added in front of the formula.
This symbol has to initialize all variables. We use the symbol “ini” for it and we call it
the ini-symbol.

In Appendix B.1 the grammars for all different m (the number of variables in the
formula) can be found. The rules of the form A! [B]C should be read as B1A! B1C

(the B is the context). The terminal symbols are: � = fini;:;uig (1 � i � m). The
startsymbol S is “s”. The number of rules of the grammar is cubic in m. We can show
how this grammar recognizes a satisfiable formula of 3-SAT by applying the grammar
rules bottom-up.

All ui are initialized as true or false and their values are sent through the formula
from left to right. Most nonterminal symbols have three subparts: the original ter-
minal symbol, some variable and the value of that variable (true or false). E.g. the
symbol “u3u2t” has been derived (bottom-up) from the terminal symbol u3 and con-
tains the information that u2 has been made true.When the value of ui crosses ui, ui
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is turned into true or false (t or f). When e.g. u3 “hears” from its left neighbour that u3

has been initialized as false, “u3u2t” will be replaced by “fu3f ”2.
We end up with the ini-symbol followed by a sequence of t’s and f ’s. These sequences

together form an “s” when none of the clusters of truthvalues contains three f ’s. The
values of the ui can only be sent in a fixed order: first u1, then u2 etc. When not all
values are sent, the u’s are not changed into t or f. For every variable we can send only
one value. Hence only satisfiable formula’s can form an “s”. The grammar generates
exactly all satisfiable formulas.2
Appendix B.2 contains an example of a derivation of the formula “ini u2 : u3 u1”
(where m = 3).

4.4.5. THEOREM. f is polynomially computable.

Proof: The transformation of instances is polynomial. The number of grammar
rules is cubic in m, the number of variables. 2

4.4.6. THEOREM. The problem UNIFORM RECOGNITION FOR ACYCLIC CONTEXT-
SENSITIVE GRAMMAR is NP-complete.

Proof: Follows from Theorems 4.4.3, 4.4.4 and 4.4.5. 2

4.5 Discussion

In the introduction we said that we wanted to introduce a formalism that allows parse
trees with crossing branches, which has a simple definition, and which is computation-
ally tractable. The last goal has been achieved only partially. The uniform recognition
problem is NP-complete. If the grammar is fixed, then the recognition problem is in P.
An aside here: the complexity is O(nk) where k depends on the grammar. There is no
fixed k.

An interesting question is which of the two problems is more relevant: the uniform
recognition problem or the fixed grammar recognition problem. Barton Jr., Berwick
and Ristad (1987) argue that the fixed grammar problem is not interesting because it is
about languages, and not about grammars. The definitions they use are the following.
The universal recognition problem is:

Given a grammar G (in some grammatical framework) and a string x, is x
in the language generated by G?

This problem is contrasted with the fixed language recognition problem:

Given a string x, is x in some independently specified set of strings L?

2“:u3f u3u2t” will be replaced by “tu3f”: : u3 must get the value true when u3 is initialized as false.
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If we use the notation of Garey and Johnson (1979), we see that there are in fact
not two but three different ways to specify recognition problems. Suppose we have a
definition of context-sensitive grammars and the languages they generate. Then we
can define the universal or uniform recognition problem as follows.

UNIFORM RECOGNITION FOR CONTEXT-SENSITIVE GRAMMARS
INSTANCE: A context-sensitive grammar G = (V;�; S; P ) and a string w 2 ��.
QUESTION: Is w in the language generated by G ?

There are two forms of the fixed language problem. Suppose we have a grammar
ABCGRAM that generates the language fanbncnjn � 1g. The following two problems
can be defined.

RECOGNITION FOR CONTEXT-SENSITIVE GRAMMAR ABCGRAM
INSTANCE: A string w 2 ��.
QUESTION: Is w in the language generated by G ?

MEMBERSHIP IN fanbncnjn � 1g

INSTANCE: A string w 2 ��.
QUESTION: Is w in fanbncnjn � 1g ?

The complexity of RECOGNITION FOR CONTEXT-SENSITIVE GRAMMAR ABC-
GRAM is identical to the complexity of MEMBERSHIP IN fanbncnjn � 1g because any
algorithm that solves the first problem solves the second too and vice versa. The differ-
ence lies in the way the problems are specified. Barton Jr. et al. (1987) only consider
the type of problems where languages are specified in some other way than by giving
a grammar that generates the language. They argue that this type of problems is
not interesting because the grammar has disappeared from the problem, and that it
is more interesting to talk about families of languages/grammars than about just one
language. However, we see that the grammar does not necessarily disappear in the
fixed language recognition problem. If the grammar is part of the specification, we
can talk about the fixed language problem in the context of families of grammars. We
do this by abstracting over the fixed grammar. E.g., we can try to prove that for every
G, RECOGNITION FOR CONTEXT-SENSITIVE GRAMMAR G is PSPACE-complete.
Abstracting from the grammar is different from putting the grammar as input on the
tape of a Turing machine, as is done in the uniform recognition problem.

If we want to answer the question which of the two problems is more relevant for
us, we first have to answer the question: “Relevant for what?”. Complexity analysis
of grammatical formalisms serves at least two purposes. First, it helps us to design
algorithms that can deal with natural language efficiently. Secondly, it can judge
grammar formalisms on their psychological relevance.

It is hard to say whether the uniform problem or the fixed grammar problem is
more relevant to efficient sentence processing. An argument in favor of the uniform
recognition problem is the following. Usually, grammars are very big, bigger than
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the sentence length. They have a strong influence on the runtime of an algorithm
in practice. Therefore we can not simply forget the grammar size as is done in the
fixed language recognition problem. On the other hand, we can argue in favor of the
fixed language problem as follows. In many practical applications the task that an
algorithm has to fullfill is the processing of sentences of some given language (e.g.
a spelling checker for English). Practical algorithms have to decide over and over
whether strings are in the language generated by some fixed grammar. Only in the
development phase of the application the grammar changes. This argues for the
relevance of the fixed grammar problem. It is not clear which of the two problems is
more relevant in the design of efficient algorithms.

The psychological relevance is a very hard subject (shortly discussed in Barton
Jr. et al. (1987, pp. 29,74)). Humans can process natural language utterances fast
(linear in the length of the sentence). It seems that we have to compare this with
the complexity of the fixed language problem. We follow the same line of reasoning
more or less that was used in the previous paragraph. The problem that is solved
by humans is the problem of understanding sentences of one particular language (or
two, or three). People can not change their “built-in grammar” at will. Barton Jr.
et al. (1987) remark that natural languages must be acquired, and that in language
acquisition the grammar changes over time. This change is a very slow change,
however, compared to the time needed for sentence processing.

Our conclusion is that both the uniform and the fixed language problem are inter-
esting. Which of the two is more important depends on what perspective one takes.
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Chapter 5

Complexity of Prolog Programs

5.1 Introduction

This chapter is about the complexity of Prolog programs. The worst case time complex-
ity of programs written in an imperative language (like Pascal or C) can be estimated
by straightforward means. These programs are deterministic so we can follow the ex-
ecution step by step. The number of steps is counted by estimating the cost of smaller
procedures, e.g. multiplying the number of times that a “while” loop is executed with
the number of steps needed in the loop. A disadvantage is that the code of larger
programs gets incomprehensible very soon. This is solved by presenting pseudo-code.
Howver, in pseudo-code the reader has to guess the details. In fields like computa-
tional linguistics and artificial intelligence we often see algorithms explained by “real”
Prolog code. This can be done because real Prolog code is easier to read than, e.g.,
C or Pascal code. An algorithm presented this way, has no open-ended details. For
Prolog programs, however, the complexity analysis is not so easy. The main problem
is that Prolog programs are intended to be non-deterministic. Computers are deter-
ministic machines, however. Therefore any Prolog interpreter has to deal with the
non-determinism in some deterministic way. Standard interpreters perform a depth-
first search through the search space. In case of a choice point the interpreter takes
a decision. If that decision appears to be wrong later, the interpreter reverses the
decision and tries another possibility. This mechanism is called backtracking. Back-
tracking is what makes the analysis of Prolog programs so hard. The only attempt
to estimate the runtime of Prolog programs in the context of standard interpreters is
from Lin (1993). This method is discussed in the next section.

This chapter does not solve the problem of estimating the runtime for standard
interpreters. However, we can estimate the time complexity easier than in Lin (1993)
if we use an interpreter called the Earley interpreter. The Earley interpreter does not
backtrack, but it keeps an administration of what goals have been tried and what the
result was. It differs in two ways from the standard interpreter:
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� Improved proof search. Prolog programs have a very clear meaning from a logical
point of view. Standard interpreters do not behave properly however. They do not
always find a proof although there exists one, because they end up in an infinite
loop. One can “program around” this but then we leave the path of declarative
programming. The Earley interpreter does what it should do. It can only get in a
loop if terms can grow arbitrarily long. The method presented in this chapter is
meant to be used for problems with a finite search space, i.e., decidable problems.
� Longer runtime. Because the interpreter has to do a lot of bookkeeping the

runtime will be longer in general. This is the major disadvantage of the method
presented here: in order to estimate the runtime we use an interpreter that
increases the runtime. Lin (1993) does not have this disadvantage. There are
two arguments in favor of our method. First, there are cases in which the
bookkeeping can speed up algorithms as well. It can even speed up an exponential
time algorithm to a polynomial time algorithm. Second, the overhead is small.
The overhead is linear in the size of the terms during execution of the Prolog
program. When the size of the terms does not grow exponentially but remains
polynomial, we stay in the same complexity class (for classes that are insensitive
for the degree of the polynomial, like P). The method presented in this chapter
is suited especially to prove that some problem is in P.

The main reason to switch from the standard interpreter to the Earley interpreter
is the possibility to prove runtime bounds for Earley interpreters in a pretty straight-
forward way. We will describe a simple method to deduce the runtime of an algorithm
from two sources: the number of possible instantiations of the variables in the program
and the length of the instantiations. If a Prolog programmer knows how the variables
in his program behave, he can deduce the runtime in a simple manner.

The main idea behind our approach is the following. The Earley interpreter stores
all attempts to prove some goal (i.e. it stores all “procedure” calls). Furthermore it
stores all solutions (and all partial solutions). Because of this we can be sure that every
procedure is executed only once for every call. When the procedure is called a second
time the answer can be looked up and this costs only very little time. This is called
memoization, tabulation or tabling. The search strategy is called Earley Deduction (or
OLDT resolution). The Earley Deduction proof procedure is due to Warren (1975). It
was first published in Pereira and Warren (1983). A good introduction is Pereira and
Shieber (1987, pp. 196-210). Similar ideas can be found in Warren (1992), Tamaki
and Sato (1986) (OLDT resolution), Vieille (1989) (SLD-AL resolution) and van Noord
(1993).

The fact that all problems are solved only once makes it much easier to estimate
the time complexity: we only have to count the number of procedure calls multiplied
with the amount of time spent in the procedure for each call.

The structure of this chapter will be as follows. First we describe what other re-
search has been done on this topic. Then we give a short introduction to Prolog. We
describe the language and show its logical (or declarative) semantics. After that, we
describe a non-deterministic interpreter that does exactly what should be done accord-
ing to the declarative meaning. Then we show two methods to make the interpreters
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deterministic. The first one leads to the standard interpreter. The second method
leads to the Earley interpreter.

When it is clear how the Earley interpreter works we start our complexity analysis.
The result of the counting will be a complexity formula in which one has to fill in the
length and the number of all possible instantiations for the variables. The estimate we
obtain is rather pessimistic. In the next chapter a more efficient Earley interpreter is
presented. With this interpreter we obtain much better complexity formulas. In this
chapter we present these formulas (and we postpone the way how they are obtained).
After this we give some examples. We will sketch some ideas about further research.
Finally we will say something about existing implementations of Prolog interpreters
which are able to follow the search strategy we describe here.

5.2 Other Research

The complexity of Prolog programs has remained largely unexplored up till now. The
PhD thesis of Lin (1993) and the article of Debray and Lin (n.d.) are the only treat-
ments of the problem of complexity of Prolog programs. Lin (1993) describes some
related work. In this section we will explain the ideas behind the approach of Lin and
Debray and compare it to our approach.

Lin (1993) starts from the work that has been done on functional programming.
Contrary to logic programs, functional programs are deterministic. The functional
programming approach has been extended in order to deal with non-determinism.
The second starting point is that the analysis is done (semi-)automatically. A system
called CASLOG (Complexity Analysis System for LOGic) has been implemented. This
system takes as input an annotated Prolog program and produces formulas which are
estimates for the time and space complexity.

These formulas are computed by looking at size differences. In imperative pro-
gramming languages iteration is implemented with while statements. Examination
of the guard of the while statement tells how many times the loop is executed. In
functional and logic programming, iteration is implemented by recursion. The depth
of a recursion can not be estimated as easily as the number of iterations in a while
statement. The depth of a recursion can be estimated by looking at the size differences
of the terms in the procedure call. Suppose we call a procedure with a list of length
n. Within this procedure, there is a recursive call with a list of length n� 1. Then we
can conclude that the depth of the recursion is n. This description is only a clue for
the method that CASLOG uses. We refer to Lin (1993) for more details.

Our approach differs from Lin’s as follows. Basically, our method is by hand and
Lin’s is automatically. The method of Lin is fairly complex. When the system computes
some estimate it is hard to see why the estimate is correct. In our approach it is
clear how the estimates are obtained (because the analysis is done by hand). A
second difference is that Lin’s approach does not always work well. Take for example
a program that computes the transitive closure of a graph. The difference in the
procedure calls is not in the size of the arguments, the arguments are just vertices.
The advantage of doing the analysis by hand is that we can apply the method to
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problems where the size difference is not important. The third difference is that
Lin uses the standard proof search (depth-first with backtracking) whereas we use
OLDT-resolution (or Earley Deduction). The standard proof search is much more
common, OLDT resolution is hardly used in practice as yet. For experienced Prolog
programmers, the main drawback of OLDT resolution is that it is slower than standard
search in general. The advantage is that it has a better semantics, i.e., there is no gap
between procedural and declarative semantics.

A similarity between the two approaches is that both methods are restricted to well-
moded programs.With modes we express whether an argument of a predicate behaves
as input or as output. Well-modedness is a syntactic restriction on occurrences of
variables. (this is explained further in section 5.6). It would be an interesting project
to see which elements of the approach by Lin can be incorporated in our approach.

5.3 Prolog

5.3.1 Introduction

Prolog stands for programming in logic. The logic that is used is the Horn fragment of
first order logic. A good introduction is Lloyd (1987). Logic has a syntactic component;
the proof theory, and a semantic component; the model theory. In this thesis we
will focus on the proof-theoretic side. Lloyd introduces logic programming from both
perspectives.

Conventional programming languages are procedurally oriented. Prolog introduces
a declarative view on programming. One has to give a description of the problem one
wants to solve. Once this description has been provided an interpreter will solve the
problem. Ideally, the programmer should not bother about the way the interpreter
solves the problem. This is the procedural part of the problem and it should be
“hidden”. However, in real life it is not always possible to separate the description of
the problem and the search for solutions.

The reason for this is that that the declarative meaning and the procedural meaning
of Prolog programs often differ. A Prolog program consists of a set of axioms (or unit
clauses) and a set of rules. The declarative meaning is defined as follows. Some
expression is true if it can be derived from the axioms via the rules. When the
expression is not derivable it is false. The declarative meaning is what the interpreter
should do. The procedural meaning is what the interpreter in fact does. That is, some
goal is true if the interpreter can find a derivation, and it is false if it can not find a
derivation (and terminates).

If we want to implement an Earley interpreter we face two choices. We have to
decide whether we want to follow a breadth-first strategy or a depth-first strategy.
Furthermore, we can choose between an exhaustive search, that generates all solu-
tions, or a non-exhaustive search, which generates only one solution. Any interpreter
that performs a breadth-first non-exhaustive search is complete, i.e., it will find a proof
if there is one.

The Earley interpreter has more advantages than the improved proof search. It
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is much easier to give estimates for the complexity of problems. The solution of a
problem is given by a declarative description plus some interpreter that finds proofs.
The complexity of the problem is the number of steps that the interpreter takes in
finding proofs (or in finding out that there are no proofs).

5.3.2 Definitions

In this section we will give definitions of the syntax and the declarative (non-procedural)
meaning of programs. In the second half of the section we will define the procedural
meaning.

Syntax. The language has a countable infinite set of variables, and countable sets of
function and predicate symbols. Each function symbol f and each predicate symbol p
is associated with a natural number n, the arity of the symbol. A function symbol with
arity 0 is referred to as a constant. A term in the language is a variable, a constant, or
a compound term f(t1; : : : ; tn), where f is a function symbol with arity n, and t1 through
tn are terms. A term is ground if it does not contain a variable.

We use the convention that Prolog variables are written with an uppercase letter.
Constants, predicate and function symbols in Prolog start with a lowercase letter.
Terms represent complex data structures. For instance, the date “May 1 1993” can be
represented as the term date(1,may,1993) . Any date in that same month can be
represented as the term date(Day,may,1993) .

An atom p(t1; : : : ; tn) consists of an n-ary predicate symbol p and n terms ti as the
arguments of p. An atom is ground if all its arguments are ground terms. There are
three types of Horn clauses: facts, rules, and queries.

� Rules declare atoms that are true depending on some conditions. They are
written as ’p :- q1; : : : ; qn.’, where p; qi are atoms. Read this as: p holds if q1 and
: : :and qn. The atom p is called the head, and the sequence of atoms q1; : : : ; qn is
the body.
� Facts declare atoms that are unconditionally true, i.e. they are rules with an

empty body. They are written as ’p:’, where p is an atom.
� By means of queries the program can be asked what atoms are true. A query is

of the form ’?- q1; : : : ; qn.’, where all qi are atoms.

A definite clause (or program clause, or just clause) is a rule or a fact. A predicate
definition consists of a finite number of definite clauses, all with the same predicate
symbol in the head. A logic program (or program) consists of a finite number of
predicate definitions.

When we try to prove an atom, we sometimes say that we try to prove a goal. A
function symbol is also called a functor. A substitution is a mapping from variables to
terms that is the identity mapping at all but finitely many points. With V ar(X) we
denote the set of variables occurring in X.

Declarative meaning. With a definition of facts and rules we can define truth
values for queries. This is called the declarative meaning of Prolog programs.
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5.3.1. DEFINITION. A query ?- Q1; Q2; : : : ; Qn is true if and only if there is a substitution
� such that the atoms �(Q1) and : : :and �(Qn) are true.

An atom G is true if and only if there is a clause C :- B1; B2; : : : ; Bn in the program
(B1; : : : ; Bn can be empty, then C is a fact) and a substitution � such that �(C) is
identical to G and the atoms �(B1) and : : :and �(Bn) are true.

If one of the �(Qi) is not ground, then the amount of solutions is infinite immedi-
ately. Every solution where the variable in �(Qi) is replaced by some other term, also
makes the query true. These substitutions are less interesting because they can all be
represented by one single, more general, substitution. Therefore, we are interested in
the most general substitutions. A substitution �1 is more general than a substitution
�2 if there is a substitution �3, not the identity, such that �2 = �3 � �1, where � is the
function composition operator. A substitution � is a most general substitution for a
query if the substitution makes the query true and there is no more general substitu-
tion that makes the query true. There may be more most general substitutions (even
infinitely many).

Procedural meaning. If we want to build an interpreter, Definition 5.3.1 is not
very helpfull. We have to guess substitutions and program clauses in order to find a
proof. Guessing the substitutions can be eleminated by using most general unifiers.

We say that a term Z is a unifier for the terms X and Y if there is a substitution �

such that Z = �(X) and Z = �(Y ). We say that term X is more general than term Y if
there is a substitution �0 such that Y = �0(X) and Y 6= X. A term Z is the most general
unifier of X and Y if it is a unifier of X and Y and there is no unifier that is more
general. The most general unifier is unique modulo variable renaming. We assume
that V ar(mgu(A;B))\V ar(A) = ; and V ar(mgu(A;B))\ V ar(B) = ; for all A;B (every
most general unifier contains fresh variables) (we standardize the variables apart).
Two terms T1 and T2 are alphabetic variants, if there are substitutions �1 and �2 such
that T1 = �1(T2) and T2 = �2(T1). All these notions can be defined on atoms instead of
terms in the same way. There exist unification algorithms that are linear in the size
of the terms (Paterson and Wegman 1978).

A non-deterministic interpreter, that can prove queries w.r.t. the semantics in
Definition 5.3.1, is in Figure 5.1. The semantics is the same as the semantics in Lloyd
(1987) (SLD-refutations under the left-most selection rule). The interpreter generates
the most general substitutions only (often called the computed answer substitutions).

The only non-determinism left is the guessing of a clause. In standard interpreters
this non-determinism is eliminated by performing a depth-first search. Every time the
interpreter has to guess a clause it takes the first available. If it turns out later that
this choice was wrong, i.e. that no proof can be found, we try the second possibility
and so on.

This strategy often leads to problems. Consider the program PATH. It computes the
reflexive transitive closure of a graph.
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Prove list of goals:

Given a list of goals Q1; : : : ; Qn(n > 1), prove Q1. The result will be a
substitution �1 such that �1(Q1) is derivable. Then prove the list of goals
�1(Q2); : : : ; �1(Qn). The result of proving �1(Q2); :::; �1(Qn) is a substitution
�n � : : : � �2. The result of proving Q1; : : : ; Qn is �n � : : : � �2 � �1.

Prove goal:

Given a goal G, guess a clause H :- B1; B2; : : : ; Bn in the program and
compute mgu(G;H). Suppose mgu(G;H) = f(H) = g(G). Prove the list of
goals f(B1); f(B2); : : : f(Bn). The result is the substitution h. The result of
proving goal G is the substitution h � g.

Figure 5.1: Non-deterministic interpreter

% Sample program PATH

path(X,Z) :-
path(X,Y),
edge(Y,Z).

path(X,X).

edge(a,b).
edge(b,c).
edge(c,a).
edge(c,d).

Suppose we have a query ?- path(a,d) . A depth-first searching Prolog inter-
preter tries to prove the following goals: path(a,d) , path(a,Var1) , path(a,Var2) ,
path(a,Var3) , etc. The interpreter never gets out of this loop.

We now introduce the Earley interpreter. It is defined as follows. We define a meta-
interpreter, an interpreter written in Prolog. The meta-interpreter is almost determin-
istic (with the if-then-else constructor we could make it deterministic). The interpreter
in Figure 5.1 (with some extensions for the impure parts of the meta-interpreter) can
be used to interpret the code of the meta-interpreter. We introduce the infix predicate
symbol ::- . Clauses of the program are written as Head ::- Body . This prevents
that the meta-interpreter executes its own code. The basic datastructure we use is
called the item. Items have the same form as clauses: they are pairs of heads and
bodies. The head of the item is the head of some clause after some substitution. The
body of the item is a (possibly empty) remainder of the same clause after the same sub-
stitution. Items are used to store partial results. This is done as follows. Consider the
interpreter in Figure 5.1. We have to prove some goal, and therefore we take an arbi-
trary clause from the program. After computing themgu of the goal and the head of the
clause, we obtain the item hf(C); [f(B1); f(B2); : : : ; f(Bn)]i. Now we try to prove f(B1).
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This gives us the substitution �1 and the new item h�1(f(C)); [�1(f(B2)); : : : ; �1(f(Bn))]i.
We prove �1(f(B2)), find �2, and obtain h�2(�1(f(C))); [�2(�1(f(B3))); : : : ; �2(�1(f(Bn)))]i.
In every step the body becomes shorter. Finally, the body is empty. The final item
h�n(: : : (�1(f(C)))); [ ]i is a solution for the goal we tried to prove.

The data structure the Earley interpreter uses has been described now. The control
structure is as follows. We keep an agenda of items that wait to be processed and a
table of items that have been processed. We make sure that all items in the table
are alphabetically different. Two items that are alphabetic variants are considered
as being equal. Processing an item from the agenda is done as follows. We first look
whether the item (or an alphabetic variant) occurs in the table. If it does, we can
simply discard it because it has been processed earlier. If it does not occur in the table
(there is no alphabetic variant in the table) there are two possibilities.

� The body is empty. That means that the item is a solution. We combine the
solution with the items in the table that are waiting for that solution. This gives
us new items which are placed on the agenda again. This operation is called
completion.
� The body is not empty. Two operations are executed:

– prediction. The first element of the body is unified with heads of clauses in
the program. New items are put on the agenda again.

– completion. The first element of the body is combined with solutions in the
table.

We will implement two interpreters: one that generates all solutions and one that
stops after it has found the first solution. If we want to generate all solutions, then we
stop when the agenda is empty. When we want only one solution, we can stop when
the first solution of the (top) query appears in the agenda.

The algorithms sketched above can be implemented in Prolog as follows. The main
predicate for the one-solution interpreter is prove one . It is called with the goal
we want to prove as argument. For the all-solutions interpreter the main predicate
is prove all . This predicate is called with the goal and with a variable that will
be instantiated to the list of all solutions. We can change between depth-first and
breadth-first behaviour simply by swapping two arguments in some append predicate.

The program clauses are of the form Goal ::- Body , where Body is a (possibly
empty) list of atoms, in order to separate them from the clauses of the interpreter. The
program is given as a whole first and in little parts with comment later.
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% Earley interpreter.
% needs: findall, member, append, numbervars.

?- op(1150,xfx,::-).

prove_all(Goal,Solutions) :-
findall(item(Goal,Goals),(Goal ::- Goals),Agenda),
extend_items_all(Agenda,[],Table),
findall(Goal,member(item(Goal,[]),Table),Solutions).

extend_items_all([],Table,Table).
extend_items_all([Item|Agenda1],Table1,Table2) :-

memberv(Item,Table1),
extend_items_all(Agenda1,Table1,Table2).

extend_items_all([Item|Agenda1],Table1,Table3) :-
\+ memberv(Item,Table1),
Table2 = [Item|Table1],
new_items(Item,Table1,Items),
append(Items,Agenda1,Agenda2), % depth-first search

% append(Agenda1,Items,Agenda2), % breadth-first search
extend_items_all(Agenda2,Table2,Table3).

prove_one(Goal,YN) :-
findall(item(Goal,Goals),(Goal ::- Goals),Agenda),
extend_items_one(Agenda,[],Goal,YN).

extend_items_one(Agenda,Table,Goal,yes) :-
member(item(Goal,[]),Agenda).

extend_items_one([],Table,Goal,no) :-
\+ member(item(Goal,[]),Table).

extend_items_one([Item|Agenda1],Table,Goal,YN) :-
\+ member(item(Goal,[]),Table),
memberv(Item,Table),
extend_items_one(Agenda1,Table,Goal,YN).

extend_items_one([Item|Agenda1],Table1,Goal,YN) :-
\+ member(item(Goal,[]),Table1),
\+ memberv(Item,Table1),
Table2 = [Item|Table1],
new_items(Item,Table1,Items),

% append(Items,Agenda1,Agenda2), % depth-first search
append(Agenda1,Items,Agenda2), % breadth-first search
extend_items_one(Agenda2,Table2,Goal,YN).
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new_items(item(Goal1,[]),Table,Items) :-
findall(item(Goal2,Goals),

member(item(Goal2,[Goal1|Goals]),Table),
Items).

new_items(item(Goal1,[Goal2|Goals1]),Table,Items) :-
findall(item(Goal2,Goals2),(Goal2 ::- Goals2),Items1),
findall(item(Goal1,Goals1),

member(item(Goal2,[]),Table),
Items2),

append(Items1,Items2,Items).

memberv(Item,Table) :-
member(Item2,Table),
variant(Item,Item2).

variant(X,Y) :-
\+ (\+ (numbervars(X,0,_),numbervars(Y,0,_),X == Y)).

The definition of the predicates append, member, n+ (not), findall and number-
vars follows the standard conventions. The predicate append is a predicate for the
concatenation of two lists. The predicate member is a predicate for membership of a
list. When findall(X,condition(X),Solutions) has been proved, Solutions
= fX j condition(X)g. The predicate numbervars replaces all variables in a term by
special constants. This operation makes two terms identical when they are alphabetic
variants.

A sample program is (facts are represented as rules with an empty body):

% Sample program PATH

path(X,Z) ::-
[path(X,Y),

edge(Y,Z)].
path(X,X) ::- [].

edge(a,b) ::- [].
edge(b,c) ::- [].
edge(c,a) ::- [].
edge(c,d) ::- [].

The predicates just given are repeated here with a little comment.

prove_all(Goal,Solutions) :-
findall(item(Goal,Goals),(Goal ::- Goals),Agenda),
extend_items_all(Agenda,[],Table),
findall(Goal,member(item(Goal,[]),Table),Solutions).

The query (Goal ) is used to predict items. These items are put in the agenda. The
interpreter is started with extend items all . When extend items all is finished
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we search in the table for all solutions.

extend_items_all([],Table,Table).

If the agenda is empty we are finished.

extend_items_all([Item|Agenda1],Table1,Table2) :-
memberv(Item,Table1),
extend_items_all(Agenda1,Table1,Table2).

If an item from the agenda is in the table, it can be discarded. Observe that we test
whether there is an alphabetic variant. This is crucial. If we did not do this and would
consider all goals that are alphabetic variants as being different, the interpreter would
loop on the PATH program just like the depth-first interpreter.

extend_items_all([Item|Agenda1],Table1,Table3) :-
\+ memberv(Item,Table1),
Table2 = [Item|Table1],
new_items(Item,Table1,Items),
append(Items,Agenda1,Agenda2), % depth-first

% append(Agenda1,Items,Agenda2), % breadth-first
extend_items_all(Agenda2,Table2,Table3).

If an item is not in the table as yet, it is added and new items are generated. These
new items are put in front or at the back of the agenda, corresponding with depth-first
and breadth-first behaviour respectively.

new_items(item(Goal1,[]),Table,Items) :-
findall(item(Goal2,Goals),

member(item(Goal2,[Goal1|Goals]),Table),
Items).

item(Goal1,[]) is a solution. It is combined with items in the table that wait for
that solution: item(Goal2,[Goal1|Goals]) . Because Goal1 has been proved we
create the item item(Goal2,Goals) . This is called completion.

new_items(item(Goal1,[Goal2|Goals1]),Table,Items) :-
findall(item(Goal2,Goals2),(Goal2 ::- Goals2),Items1),
findall(item(Goal1,Goals1),

member(item(Goal2,[]),Table),
Items2),

append(Items1,Items2,Items).

The item we have to process item(Goal1,[Goal2|Goals1]) is not a solution, but
it is waiting for a proof of Goal2 . The first findall is the prediction step: Goal2
is unified with heads of clauses in the program (if an item with Goal2 as the first
element in the body has been processed earlier, then we will predict items that are
already in the table). The second findall searches the table for solutions. This is
the “mirror image” of the completion step in the previous clause.
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memberv(Item,Table) :-
member(Item2,Table),
variant(Item,Item2).

variant(X,Y) :-
\+ (\+ (numbervars(X,0,_),numbervars(Y,0,_),X == Y)).

Here we check whether there is an alphabetic variant in the table. The predicate
findall is defined in such a way that two items never share any variables. Variables
are only shared within an item.

The one-solution interpreter only differs from the all-solutions interpreter in the
fact that the first stops when the first solution is found, whereas the latter goes on
until the agenda is empty.

The one-solution interpreter has two advantages over the standard Prolog inter-
preter with a depth first strategy. The first is that the declarative meaning and the
procedural meaning coincide: the interpreter answers “yes” to a query if and only if
the query is indeed derivable from the facts. Standard interpreters get in an infinite
loop in our example program PATH. The second advantage is that “a problem is never
solved twice”. The reuse of results of subcomputations in Prolog interpreters is called
memoing or tabling. The technique is also known in general as dynamic program-
ming. It can be seen that solutions are never computed twice as follows. Suppose we
have two items (Head1,[Goal|Tail1]) and (Head2,[Goal|Tail2]) . The predic-
tor will generate the same set of items (of the form (Goal,Body) ) for both items. The
first set of items will be processed normally. The elements of the second set will all be
discarded when we try to move them from the agenda to the table because there are
already duplicates in the table. The result is that the goal Goal is proved only once.

Memoing can save us a lot of time. Consider the program in Figure 5.2. It can be
made arbitrarily long by adding x4 , x5 , etc.

s :- x1a,c.
s :- x1b.
x1a :- x2a.
x1a :- x2b.
x1b :- x2a.
x1b :- x2b.
x2a :- x3a.
x2a :- x3b.
x2b :- x3a.
x2b :- x3b.
x3a.
x3b.

Figure 5.2: Exponential versus quadratic.

When we use standard proof search the time needed to detect that there is no proof
is exponential in the size of the program. When we use Earley Deduction the time
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needed is linear in the length of the program (this follows from the complexity estimate
that will be shown later).

5.4 Space Complexity

Because it is much easier to reason about space complexity than about time complexity
of the interpreter that we gave in the previous section, we start with a space complex-
ity analysis. This analysis is also a good stepping stone towards the time complexity
analysis in the next section. We will define two ways to look at decidability problems
in Prolog theorem proving. The first is:

PROLOG THEOREM PROVING
INSTANCE: A query Q and a program P .
QUESTION: Is there a substitution � such that �(Q) follows from P ?

This problem is undecidable in general. E.g., in (Shapiro 1984) it is described how a
Prolog program can simulate a Turing Machine. The problem is semi-decidable: if the
answer is yes we can give an algorithm that finds a proof in finitely many steps. An
algorithm with this property is the one-solution interpreter. This interpreter searches
its proofs under a breadth-first regime and is therefore guaranteed to stop if there
exists a proof.

In this thesis we will define classes of programs as follows. We define predicates
to be fixed or free. All programs in a class must have identical clauses for the fixed
predicates, but differ in the clauses for the free predicates. In this thesis all free
predicates are defined with ground facts only. When there are no free predicates, the
class contains only one program. The set of clauses for the fixed predicates in some
class is called the core program.

PROLOG THEOREM PROVING FOR CORE PROGRAM P
INSTANCE: A query Q and a set of clauses R.
QUESTION: Is there a substitution � such that �(Q) follows from P [R?

P defines the fixed predicates, and R the free predicates. We define PROLOG
THEOREM PROVING FOR PROGRAM P as a special case of PROLOG THEOREM
PROVING FOR A CORE PROGRAM P, namely, when R = ;. In the rest of this thesis
we will only consider programs for which these problems are decidable, because we
have nothing interesting to say about undecidable cases. The path program, that we
presented earlier, consists of two predicates: path and edge . We can define the path
predicate as fixed and the edge predicate as free. This enables us to give upperbounds
for various graphs and not just for one graph (because we can vary the edges).

The space complexity of PROLOG THEOREM PROVING FOR CORE PROGRAM
P is the size of the table when the computation of the one-solution interpreter has
finished.

This is only true if all items in the agenda and the table are always different. We
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modify the interpreter such that only items which neither occur in the agenda nor in
the table are put on the agenda. This guarantees that, at any point in the computation,
the size of the agenda plus the size of the table is smaller than the size of the final
table. This modification can be implemented in Prolog as follows (for a breadth-first
behaviour the new items must be appended at the back of the agenda):

extend_items_all([],Table,Table).
extend_items_all([Item|Agenda1],Table1,Table3) :-

Table2 = [Item|Table1],
new_items(Item,Table1,Items),
add_items_df(Items,Agenda1,Table2,Agenda2),
extend_items_all(Agenda2,Table2,Table3).

add_items_df([],Ag,_,Ag).
add_items_df([H|T],Ag,Table,Ag2) :-

memberv(H,Ag),
add_items_df(T,Ag,Table,Ag2).

add_items_df([H|T],Ag,Table,Ag2) :-
memberv(H,Table),
add_items_df(T,Ag,Table,Ag2).

add_items_df([H|T],Ag,Table,Ag2) :-
\+ memberv(H,Ag),
\+ memberv(H,Table),
add_items_df(T,[H|Ag],Table,Ag2).

Because we can not predict when the first solution is found by the one-solution
interpreter, we will assume the worst scenario, where the computation ends because
the agenda is empty. In fact we estimate the complexity of the one-solution interpreter
and the all-solutions interpreters simultaneously.

In order to estimate the size of the final table we have to count

� the number of items in the final table, and
� the length of these items.

We will index our clauses from now on. The function l(i) denotes the number of
atoms in the body of clause i. For every clause Ci :- Bi1; Bi2; : : : ; Bin (i is the index, if i is
fixed, we write n as a shorthand for l(i)), the items in the table are of the following form:

hf(Ci); [f(Bi1); f(Bi2); : : : ; f(Bin)]i.
h�1(f(Ci)); [�1(f(Bi2)); : : : ; �1(f(Bin))]i.
h�2(�1(f(Ci))); [�2(�1(f(Bi3))); : : : ; �2(�1(f(Bin)))]i.
...
h�n(: : : (�1(f(Ci))); [ ]i

If we want to count the number of items, we have to estimate the number of possible
substitutions f , �1 � f , �2 � �1 � f , : : : , �n � : : : � f , for every clause i in the program.
In general the number of substitutions is infinite but we count here the number of
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substitutions with a given query and program that occur when the proof procedure
specified in the one-solution and all-solutions interpreters is executed. We count just
the number of “alphabetically different” substitutions. We introduce a notation for the
number of possible substitutions for a set of variables.

5.4.1. DEFINITION. The function #i(S; j) (where S is a set of variables occurring in
clause i of a program, 0 � j � l(i)) returns the number of possible substitutions of the
variables in S after proving Bi1 through Bij, i.e. the number of possible �j � : : : ��1 � f
(we only count the substitutions for the variables in S) in the interpreter in Figure 5.1
for clause i. For j = 0, #i(S; 0) is the number of substitutions f .

The j in the function denotes a position in the body between two atoms. The posi-
tions in the body and the various Bij are related as follows:

0
� Bi1

1
� : : : : : : Bij

j
� Bi(j+1)

j+1
� : : : : : : Bi(l(i))

l(i)
�

The following example might clarify the definition of #i.

r :-
p(D,E,F),
q(D,E,F).

p(A,2,C).
p(1,B,C).
q(1,2,3).
q(1,2,4).

�1 = fD=D;E=2; F=Fg �2 � �1 = fD=1; E=2; F=3g

�2 = fD=1; F=3g �02 � �1 = fD=1; E=2; F=4g

�02 = fD=1; F=4g �002 � �
0

1 = fD=1; E=2; F=3g

�01 = fD=1; E=E; F=Fg �0002 � �
0

1 = fD=1; E=2; F=4g

�002 = fE=2; F=3g

�0002 = fE=2; F=4g

f is the identity substitution. The clause index of the first clause is 0. Now:
#0(fD;E; Fg; 1) = 2: fD=D;E=2; F=Fg and fD=1; E=E; F=Fg
#0(fD;E; Fg; 2) = 2: fD=1; E=2; F=3g and fD=1; E=2; F=4g
#0(fFg; 1) = 1: fF=Fg
#0(fFg; 2) = 2: fF=3g and fF=4g

When we are going to count the number of items, we first have to see which variables
occur in the substitutions (i.e., for which variables the substitution is not the identity
mapping). We will call these variables the relevant variables. Suppose we want to
count the items of the following form:

h�j(: : : �1(f(Ci))); [�j(: : : �1(f(Bi(j+1)))); : : : ; �j(: : : �1(f(Bin)))]i:

Then the following variables are not relevant:
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� Variables that occur in Bi1; : : : ; Bij, but neither in Bi(j+1); : : : ; Bin nor in Ci. These
variables are not relevant, simply because they do not occur in the item.
� Variables that occur in Bi(j+1); : : : ; Bin, but neither in Bi1; : : : ; Bij nor in Ci. These

variables are not relevant, because they are uninstantiated.

The other variables are relevant. These can be divided in two groups:

� The variables in Ci. These are called the head variables HV (i). HV (i) = V ar(Ci)

� Variables that occur both in Bi1; : : : ; Bij and in Bi(j+1); : : : ; Bin but not in Ci. These
variables are called the relevant body variables RV (i; j). RV (i; j) = (V ar(Bi1) [

: : : [ V ar(Bij)) \ (V ar(Bi(j+1)) [ : : : [ V ar(Bin)).

If we count the number of items in the final table, we obtain the following upper-
bound:

kX

i=1

l(i)X

j=0

#i(HV (i) [ RV (i; j); j)

We apply this formula in the example program PATH.

% Sample program PATH

path(X,Z) ::-
[path(X,Y),

edge(Y,Z)].
path(W,W) ::- [].

edge(a,b) ::- [].
edge(b,c) ::- [].
edge(c,a) ::- [].
edge(c,d) ::- [].

The number of items is:

#0(fX;Zg [ ;; 0) + #0(fX;Zg [ fY g; 1) + #0(fX;Zg [ ;; 2)+

#1(fWg [ ;; 0)+

#2(; [ ;; 0)+

#3(; [ ;; 0)+

#4(; [ ;; 0)+

#5(; [ ;; 0)

We know that the variables in this programs can only be substituted by a vertex in
the graph (a, b, c or d). We denote the number of vertices in the graph as jV j and
the number of edges as jEj, and fill in the formula:

jV j2 + jV j3 + jV j2 + jV j+ 1 + : : :+ 1

Because jEj � jV j2, the number of items in the final table is O(jV j3).
The space complexity does not depend on the number of items only, but also on the

length of the items. We introduce the function ##i that does not count the number of
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substitutions, but the number of symbols needed to write down all substitutions. The
number of instantiations and the length of the instantiations behave different if they
are estimated for a set of variables. Suppose we have two variables, A and B. The
number of possible substitutions for A is n1. The number of possible substitutions for
B is n2. The average length of the substitutions for A and B is l1 and l2 respectively.
Then the number of possible substitutions for #i(fA;Bg; j) is n1 � n2 (if A and B are
independent from each other). The average length of all substitutions is l1 + l2, and
##i(fA;Bg; j) is (n1� n2)� (l1 + l2). We have to multiply the possibilities and add the
lengths. Because variables are often dependent it will in general not be the case that
#i(fA;Bg; j) = #i(A; j)�#i(B; j). We are not interested in constant factors, therefore
we define that #i(X; j) = O(#i(X; j)) and ##i(X; j) = O(##i(X; j)).

We assume that the length of clauses in the program is bounded by a constant.
The space complexity of PROLOG THEOREM PROVING FOR CORE PROGRAM P
is now:

kX

i=1

l(i)X

j=0

##i(HV (i) [RV (i; j); j)

In the example, we assume that the number of symbols needed to write down a
vertex is bounded by a constant. In that case, the space complexity of the problem is
O(jV j3).

5.5 Time Complexity

In the previous section we saw how the space complexity of a problem can be esti-
mated. In this section we will consider the time complexity. Observe that the Earley
interpreter is deterministic. Therefore it can be converted to a program in an imper-
ative language in a straightforward way. We will assume that this has been done.
We will describe the time complexity of PROLOG THEOREM PROVING FOR CORE
PROGRAM P in terms of this imperative interpreter. We count the number of steps
of the all-solutions interpreter because we can not predict when the first solution of a
problem has been found. Therefore we assume that the algorithm terminates when
the agenda is empty.

We know that all items in the table and the agenda are different. Therefore the
procedure extend items all will be executed as many times as there are items in the
final table:

Pk
i=1

Pl(i)
j=0#i(HV (i)[RV (i; j); j). Within this procedure, we have to execute

the procedures new items and add items df . Within the procedure new items we
perform prediction and completion. We can divide the table in two parts. First,
we have items of the form item(Goal1,[Goal2|Goals]) . The number of items of
this form is

Pk
i=1

Pl(i)�1
j=0 #i(HV (i) [ RV (i; j); j). Secondly, we have items of the form

item(Goal,[]) . There are
Pk

i=1#i(HV (i); l(i)) such items in the final table (observe
that RV (i; l(i)) = ;). If we sum all completion steps, we see that every item of the form
item(Goal1,[Goal2|Goals]) is compared exactly once with every item of the form
item(Goal,[]) to check whether the second is a solution for the first. Therefore the
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total number of completion steps is

kX

i=1

l(i)�1X

j=0

#i(HV (i) [ RV (i; j); j)�
kX

i=1

#i(HV (i); l(i))

In a completion step, we have to unify two atoms. The time needed is the sum of the
length of the two atoms. If the length of the atoms in the program is bounded by a
constant, then the total time needed for all completion steps is (## is the sum of the
length of all possible substitutions):

(
kX

i=1

l(i)�1X

j=0

##i(HV (i) [ RV (i; j); j)�
kX

i=1

#i(HV (i); l(i))) +

(
kX

i=1

l(i)�1X

j=0

#i(HV (i) [RV (i; j); j)�
kX

i=1

##i(HV (i); l(i)))

The number of prediction steps is estimated as follows. We do a prediction step
once for every item of the form item(Goal1,[Goal2|Goals]) , thus
Pk

i=1

Pl(i)�1
j=0 #i(HV (i)[RV (i; j); j) times. We have to compare Goal2 with every clause

in the program. Say the number of free clauses in the program is jRj. Then we have
to execute

Pk
i=1

Pl(i)�1
j=0 #i(HV (i)[RV (i; j); j)� jRj unifications. Under the assumption

that the length of the atoms in the program is bounded by a constant, the total time
needed in the prediction steps amounts to

Pk
i=1

Pl(i)�1
j=0 ##i(HV (i) [ RV (i; j); j)� jRj.

Remains to be counted the number of steps in add items df . Suppose we try to
add new items immediately after every completion and prediction step. We organize
our agenda and table in such a way that the time needed to look up and insert in
the agenda and in the table is linear in the size of the item we want to insert. The
length of the term that results after unification of two terms is at most the sum of the
length of those two terms. After every completion step, which costs time proportional
to the sum of the length of two items, we have to do a lookup and an insert which
are also proportional in the sum of the length. Thus, we only have to multiply the
number of completion steps by two. The same holds for the prediction steps. Efficient
organisation of the agenda and the table implies that the movement from the agenda
to the table gets a liitle more complicated. The time complexity of moving all items
from the agenda to the table equals precisely the space complexity that we saw in the
previous section. The total time needed for all operations together is:

kX

i=1

l(i)�1X

j=0

##i(HV (i) [ RV (i; j); j)�
kX

i=1

#i(HV (i); l(i)) +

kX

i=1

l(i)�1X

j=0

#i(HV (i) [ RV (i; j); j)�
kX

i=1

##i(HV (i); l(i)) +

kX

i=1

l(i)�1X

j=0

##i(HV (i) [ RV (i; j); j)� jRj +
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kX

i=1

l(i)X

j=0

##i(HV (i) [RV (i; j); j)

This can be simplified to:

(
kX

i=1

l(i)�1X

j=0

##i(HV (i) [ RV (i; j); j)� (
kX

i=1

#i(HV (i); l(i)) + jRj)) +

(
kX

i=1

l(i)�1X

j=0

#i(HV (i) [RV (i; j); j)�
kX

i=1

##i(HV (i); l(i)))

We can use this formula to estimate the time complexity of the sample program
PATH in the previous section:
Pk

i=1

Pl(i)�1
j=0 ##i(HV (i) [ RV (i; j); j) =

Pk
i=1

Pl(i)�1
j=0 #i(HV (i) [RV (i; j); j) = O(jV j3)

Pk
i=1##i(HV (i); l(i)) =

Pk
i=1#i(HV (i); l(i)) = O(jV j2 + jEj)

jRj, the number of free clauses in the program, is jEj.
The time complexity is O(jV j3 � (jV j2 + jEj)) = O(jV j5), because jEj � jV j2.
This bound is a very high one. One would expect that the bound would not be higher

than O(jV j2). One of the reasons is that the meta-interpreter we have described is
not very efficient. Later we will define a more efficient interpreter. Before we do this
we first define two classes of programs: the well-moded and nicely moded programs.
The reason to do this is to make the formulas and the proofs easier. Theoretically, the
restriction to nicely moded programs is not necessary. Without it, however, things get
nasty and complicated. The main point of this chapter is that the methods presented
are interesting. The exact details are less important. Therefore, we try to keep things
simple.

5.6 Well-moded and Nicely Moded Programs

This section is an adapted version of Apt and Pellegrini (1994). We introduce modes.
Modes indicate how the arguments of a relation behave.

5.6.1. DEFINITION. Consider an n-ary relation symbol p. By a mode for p we mean a
function mp from 1,: : : ,n to the set f+;�; ?g. If mp(i) = 0+0 we call i an input position
of p. If mp(i) = 0�0 we call i an output position of p and if mp(i) = 0?0 we call i
a throughput position of p. By a moding we mean a collection of modes, each for a
different predicate symbol.

We write mp as p(mp(1); : : : ; mp(n)). For example, append(-,?,+) denotes a
ternary predicate append with the first position moded as output, the second posi-
tion as throughput and the third as input. The definition of moding assumes one mode
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per predicate in a program. Multiple modes can be obtained by simply renaming the
predicates. We will assume that this has been done and that every predicate has a
fixed mode associated with it.

Intuitively, the modes indicate how the arguments of a predicate should be used.
The given, known, arguments should be put in the input positions and the variables
whose value must be computed are in the ouput positions. The throughput positions
have an input part and an output part, the arguments are partially instantiated.

This can be illustrated with an example. Consider the predicate append(-,?,+) :

append([],T,T).
append([A|R],L,[A|T]) :-

append(R,L,T).

and the query append(P,[3|Q],[1,2,3,4,5]) . In this query, the third argument
is the input. The first argument, P is clearly output. The second argument is input
and output. The query will only succeed when “3” is a member of the input list. So “3”
is the input part. The value of Qis computed and is output ([4,5] ). Therefore we call
the second argument a throughput position.

To simplify the notation, we write all atoms as p(in; o; t), where in is a sequence
of terms filling the input positions of p, o is a sequence of terms filling the output
positions, and t is a sequence of terms filling the throughput positions.

� A query p1(in1; o1; t1); : : : ; pn(inn; on; tn) is called well-moded if for j 2 [1; n]

V ar(inj) �
j�1[

k=1

V ar(ok) [ V ar(tk)

� A clause
p0(in0; o0; t0) p1(in1; o1; t1); : : : ; pn(inn; on; tn)

is called well-moded if for j 2 [1; n]

V ar(inj) � (V ar(in0) [
j�1[

k=1

(V ar(ok) [ V ar(tk))) ^

(V ar(o0) [ V ar(t0)) � (V ar(in0) [
n[

k=1

(V ar(ok) [ V ar(tk)))

� A program is called well-moded if every clause of it is.

Thus, a query is well-moded if

� in1 is ground, and every variable occurring in an input position of an atom (j 2
[2; n]) occurs in an output or a throughput position of an earlier (k 2 [1; j � 1])
atom.

And a clause is well-moded if
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� Every variable occurring in an input position of a body atom (j 2 [1; n]) occurs
either in an input position of the head (in0) or in an output or a throughput
position of an earlier (k 2 [1; j � 1]) body atom,
� Every variable occurring in an output or a throughput position of the head occurs

either in an input position of the head, or in an output or a throughput position
of a body atom.

Observe that no difference is made between output and throughput positions as yet.
This difference is important in the definition of nice modedness.

� A query
p1(in1; o1; t1); : : : ; pn(inn; on; tn)

is called nicely moded if it is well-moded and for all j 2 [1; n], oj is a sequence of
variables, i.e. all output positions are filled with variables and

V ar(oj) \ (
j�1[

k=1

(V ar(ink) [ V ar(ok) [ V ar(tk))) = ;

� A clause
p0(in0; o0; t0) p1(in1; o1; t1); : : : ; pn(inn; on; tn)

is called nicely moded if it is well-moded and for all j 2 [1; n], oj is a sequence of
variables, i.e., all output positions are filled with variables and

V ar(oj) \ (
j�1[

k=0

(V ar(ink) [ V ar(tk)) [
j�1[

k=1

V ar(ok)) = ;

� A program is called nicely moded if every clause of it is.

Thus, a query is nicely moded if

� it is well-moded and the output positions are occupied by single “fresh” variables.

And a clause is nicely moded if

� it is well-moded and in all body atoms, the output positions are occupied by single
variables that are either “fresh” or occur in the output position of the head.

We go back to the predicate append(-,?,+) . We have two clauses:

append([],T,T).
append([A|R],L,[A|T]) :-

append(R,L,T).

and suppose the query is append(P,[3|Q],[1,2,3,4,5]) . The program and the
query are nicely moded. Observe that they are also nicely moded under the moding
append(?,?,+) . Saying that a position is output gives more information than saying
it is throughput. If we mode our programs, our aim is to have as many output positions
as possible.

The definition of nice-modedness differs from the one in Apt and Pellegrini (1994)
in a few respects. In their definition there are no throughput variables, and the
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restriction that the arguments are filled with single variables is omitted. In Apt and
Pellegrini (1994) the input and output variables oi and ini must be disjoint and nice-
modedness is not a stronger version of well-modedness, it is just a separate notion.
In our definition, every nicely-moded program is also well-moded. Because we want
to define the same concept, (fresh variables) as Apt and Pellegrini (1994), we use the
same term (nice-modedness) although this could lead to confusion.

We can prove the following results if we have nicely moded queries and programs:

� All computed answer substitutions are ground (Apt and Pellegrini 1994)
� All subgoals in the proof procedure have ground input arguments (follows from

the previous result and from the definitions).
� All subgoals in the proof procedure have uninstantiated output arguments (fol-

lows from the definitions).

5.7 A Lower Estimate

The upper bound on the time complexity we gave on page 79 was very high, merely
because we used a very simple interpreter. It is possible to write an interpreter that
is much more efficient. This will be done in the next chapter. One of the main
improvements is that we eliminate the unification in the completer step. This can be
done as follows. Every item with a non-empty body is associated with two keys. The
first key tells how the clause was “called”. When we have proved the rest of the body,
this key can be used to find all items that are waiting for this solution. The second key
tells what items can be a solution for the first atom in the body. The keys are computed
in the prediction step. With this usage of keys we can immediately see whether a given
solution “fits” a waiting item. A disadvantage is that the number of items grows a
little bit: we not only store the substitutions for the head variables after some part of
the body has been proven, but we also store the substitutions when nothing has been
proved yet (the “call”).

We assume that our programs and queries are nicely moded. Suppose clauses are
of the form Ci :- Bi1; : : : Bin. Instead of HV and RV we now define the following sets
of variables:

5.7.1. DEFINITION. HV in(i) is the set of variables occurring in an input position of Ci.
HV out(i) is the set of variables occurring in an output position of Ci.
HV through(i) is the set of variables occurring in a throughput position of Ci.

W (i; j) = ((V ar(Bi1) [ : : : [ V ar(Bij)) nHV in(i)) \

(V ar(Bi(j+1)) [ : : : [ V ar(Bin) [HV out(i) [HV through(i))

W is the set of variables that have been instantiated. It consists of the relevant body
variables and the instantiated out- and throughput variables in the head (they occur
in the first part of the body). The input variables in the head are excluded.

V (i; j) = V ar(Bi(j+1)) n (V ar(Bi1) [ : : : [ V ar(Bij) [HV in(i))

V is the set of uninstantiated variables that will be instantiated in the next step.
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We introduced the functions #i(S; j) and ##i(S; j). There we counted the number
of different �n � : : : � �1 � f . Two substitutions were regarded as different when they
differed in their substitutions for the variables in S. Now we are going to extend the
definition of ##i(S; j), we are going to allow lists of pairs of variable sets and indices.
We define #i([hX1; j1i; : : : ; hXn; jni]). First we determine the highest index in j1 : : : jn.
Let’s say the highest index is k. Then we are going to count the number of different
�k � : : :��1 �f . But instead of applying �k � : : :��1�f to the variables in S, we now apply
�j1 � : : : � �1 � f on the variables in X1, �j2 � : : : � �1 � f on the variables in X2 etcetera.
We count the number of possible outcomes for all these substitutions together.

The following formula is an upperbound for the time complexity of the program
(this is shown on page 100):

kX

i=1

l(i)�1X

j=0

nc(i; j)�##i([hHV in(i) [HV through(i); 0i; hW (i; j); ji; hV (i; j); j + 1i])

We define a simplified notation here where we drop the j from the function. For
a variable X, #i(X) = #i(X; 0) if X 2 HV in(i). If X is not in HV in(i), then #i(X) =

#i(X; j) with X 2 V ar(Bij) but not X 2 V ar(Bi1) [ : : : [ V ar(Bi(j�1)) (j is the position
of the first occurrence of X). It is always the case that #i(X; j) � #i(X).

In the short notation the complexity formula is:

kX

i=1

l(i)�1X

j=0

nc(i; j)�##i([hHV through(i); 0i; hHV in(i) [W (i; j) [ V (i; j)i])

where nc(i; j) is the number of clauses whose head has the same predicate name as Bij

has. When all free predicates are ground facts and have no throughput variables, we
can leave out nc(i; j). This is discussed on page 100. The correctness of the formula
will be proved in the next chapter.

5.8 A Small Recapitulation

We repeat here all assumptions and results. We give a method to estimate the time
complexity of PROLOG THEOREM PROVING FOR CORE PROGRAM P (introduced
on page 73). We make the following assumptions:

� we consider pure Prolog, i.e., there are no extra-logical predicates.
� the program is nicely moded (see section 5.6).

The time complexity of PROLOG THEOREM PROVING FOR CORE PROGRAM
P is

kX

i=1

l(i)�1X

j=0

nc(i; j)�##i([hHV through(i); 0i; hHV in(i) [W (i; j) [ V (i; j)i])

where nc(i; j) is the number of clauses whose head has the same predicate name as
Bij has.
The following remarks can be made:
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� the sets HV through(i), HV in(i), W (i; j) and V (i; j) are defined on page 82
� we count the number of substitutions for variables in the items generated by the

meta-interpreters from page 69
� all substitutions are “alphabetically different”
� if the sum is infinite, the search space is infinite. We can not predict whether the

program will terminate or not in this case.
� the length of the clauses in the program is bounded by a constant.
� if Bij is a fixed predicate nc(i; j) is a constant. If Bij is free, we have to count the

number of clauses for the predicate.
� when the clauses of Bij are ground facts and have no throughput variables, we

can leave out nc(i; j) from the formula.

5.9 Two Examples

We repeat the sample program PATH here with a moding that makes it nicely moded.

% Sample program PATH

mode(path(+,-)).
path(X,Z) ::-

[path(X,Y),
edge(Y,Z)].

path(W,W) ::- [].

mode(edge(+,-)).
edge(a,b) ::- [].
edge(b,c) ::- [].
edge(c,a) ::- [].
edge(c,d) ::- [].

?- path(a,X).

There are no throughput positions, therefore we estimate

kX

i=1

l(i)�1X

j=0

nc(i; j)�##i([hHV in(i) [W (i; j) [ V (i; j)i])

Application to the program gives
##0(fX; Y g) + nc(0; 1)�##0(fX; Y; Zg)

because
HV in(0) = fXg; W (0; 0) = ;; V (0; 0) = fY g; W (0; 1) = fY g; V (0; 1) = fZg

Observe that the complexity formula is not conscious of facts, it only considers
rules. The only place where facts are counted is in nc(i; j).
jV j and jEj are the number of vertices and edges (the length of these is constant).

#0(fXg) = 1 because X always equals the first argument in the query.
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#0(fY g) = #0(fZg) = jV j. The time complexity is

O(jV j) +O(jEj � jV j2) = O(jEj � jV j2)

Because there must always be an edge between Y and Z, #0(fY; Zg) = jEj. We can
reduce the complexity to O(jV j+ jEj2).

Because the clauses for edge are ground and the predicate has no throughput
variables we can leave out nc(i; j). This gives a time complexity of O(jV j + jEj).
Because jEj > jV j (every vertex Y must have an incoming edge), we can further reduce
to O(jEj), which is a lot better than the complexity we obtained with the inefficient
meta-interpreter (O(jV j5)).

A second example is the following. Suppose we have the Prolog program in Figure
5.3 (two-column style) and a query
?- s([a,woman,saw,a,man,with,a,telescope],X).
For the moment, we want to express the complexity in the length of the input string
only and consider the grammar and the lexicon as fixed. Therefore, nc(i; j) is O(1) for
all i and j.

s(A,C) :- pp(A,C) :-
np(A,B), prep(A,B),
vp(B,C). np(B,C).

s(A,E) :- v(A,B) :-
det(A,B), lex(v,A,B).
n(B,C), det(A,B) :-
v(C,D), lex(det,A,B).
np(D,E). n(A,B) :-

vp(A,C) :- lex(n,A,B).
v(A,B), prep(A,B) :-
np(B,C). lex(prep,A,B).

np(A,C) :- lex(v,[saw|A],A).
np(A,B), lex(det,[a|A],A).
pp(B,C). lex(n,[woman|A],A).

np(A,C) :- lex(n,[man|A],A).
det(A,B), lex(n,[telescope|A],A).
n(B,C). lex(prep,[with|A],A).

mode(pred/2, [+,-]). for all pred/2
mode(lex/3, [+,+,-]).

Figure 5.3: DCG I

We consider the clause with the longest body, the complexity of other clauses is less
than the complexity of this clause.

s(A,E) :-
det(A,B),
n(B,C),
v(C,D),
np(D,E).
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The complexity is:
##(fA;Bg) + ##(fA;B;Cg) + ##(fA;C;Dg) + ##(fA;D;Eg)

This equals: O(n3) +O(n4) +O(n4) +O(n4).

For the clause:

det(A,B) :-
lex(det,A,B).

The complexity is
##(fA;Bg) = O(n3)

The total complexity is O(n4).
A “trick” to get a more efficient algorithm is a replacement of the basic datastruc-

ture, the list, by indices that represent positions in the list. This is illustrated in the
Prolog program in Figure 5.4. Suppose our query is ?- s(0,8). .

s(A,C) :- lex(det,A,B) :-
np(A,B), input(a,A,B)
vp(B,C). lex(n,A,B) :-

vp(A,C) :- input(man,A,B).
v(A,B), lex(n,A,B) :-
np(B,C). input(woman,A,B).

np(A,C) :- lex(n,A,B) :-
np(A,B), input(telescope,A,B).
pp(B,C). lex(v,A,B) :-

np(A,C) :- input(saw,A,B).
det(A,B), lex(prep,A,B) :-
n(B,C). input(with,A,B).

pp(A,C) :- input(a,0,1).
prep(A,B), input(woman,1,2).
np(B,C). input(saw,2,3).

v(A,B) :- input(a,3,4).
lex(v,A,B). input(man,4,5).

det(A,B) :- input(with,5,6).
lex(det,A,B). input(a,6,7).

n(A,B) :- input(telescope,7,8).
lex(n,A,B).

prep(A,B) :-
lex(prep,A,B).

Figure 5.4: DCG II

If we assume that it takes constant time to compare two numbers, then the com-
plexity of this example is not O(n4) but O(n3). The number of possible substitutions
is the same, but the length has decreased because we do not use lists but numbers.
If we assume that the length of the substitutions is a constant we get O(n3) for the
complexity of the program. Chapter 7 contains two big examples. One finds there
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implementations of recognizers for the fragments of the Lambek calculus described in
section 1.2.

5.10 Meta-logical Predicates

Everything that has been said up till now applies to pure Prolog only. But what if
we want to add meta-logical predicates like negation, cut, assert and retract? These
things are needed in practice.

Adding negation to the language is not trivial when one uses Earley deduction.
The Earley interpreter deals with positive information only. If there is a goal that
has to be proven we generate active items which will, if possible, result in solutions.
It is not possible, however, to decide that there will be no more solutions for a given
goal. But this is precisely what we need for negation. We want to know whether we
can expect a solution in the future or not. When we are sure that there will be no
solution for the negated goal, we can move the dot over the negated goal. There are
two solutions for allowing negation in tabled deduction. The first is that we allow only
stratified programs. A stratified program has only recursions that are “negation-free”.
In stratified programs it is impossible that we have to prove G in order to prove not
G.

The standard example of a program that is not stratified is in Figure 5.5.

win(X) :-
move(X,Y),
not(win(Y)).

move(a,a).
move(a,b).
move(b,c).

Figure 5.5: Example program win

This is a two-player game. A player wins if the other player can not move. Position
b is a winning position: you can move to c and your enemy is stuck. But what about
position a? This is neither a winning nor a losing position because both players will
stay in a forever.

This program looks reasonable at first sight. The strange thing about it, however,
is that if we fill in move(a,a) in the win rule we get “not win(a) implies win(a)”. From
a logical point of view this is a very strange rule. Therefore it is not a bad idea to
forbid non-stratified programs.

When we forbid non-stratified programs, we can create a new agenda when a
negated goal is called. We add and delete items from this new agenda until it is empty
(we use the same table in the meanwhile). When the agenda is empty we look in the
table whether the goal has been proved. If it has not been proved, the negation of the
goal is true and we carry on with the old agenda.
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If we want to allow non-stratified programs we can introduce a third truth value,
the value undefined. This approach is followed in (Warren 1991) and is not discussed
further here.

The second meta-logical predicate we discuss here is the cut (!). The cut is a means
to direct the proof search in standard interpreters with backtracking. The effect of a
cut is two-fold:

� the interpreter does not backtrack in the part of the body before the cut and
� the interpreter does not try other rules in the program.

In the Earley interpreter only the first effect makes sense. In order to avoid
confusion it is better to replace the cut by a predicate called solve once . Suppose we
have a list and we want to remove all occurences of two arbitrary members. Instead
of the program in Figure 5.6

delete2(Inlist,Outlist) :-
member(A,Inlist),!,
delete(A,Inlist,List),
member(B,List),!,
delete(B,List,Outlist).

Figure 5.6: Example program delete I

we could write the program in Figure 5.7.

delete2(Inlist,Outlist) :-
solve_once(member(A,Inlist)),
delete(A,Inlist,List),
solve_once(member(B,List)),
delete(B,List,Outlist).

Figure 5.7: Example program delete II

The predicate solve once can be implemented by (arbitrarily) throwing away all
active items but one for some position of the dot. The second effect, not trying other
rules, does not make sense in Earley Deduction. This will be clear from the following
example. In standard Prolog one can write the program not as in Figure 5.8.

not(X) :-
call(X),!,fail.

not(X).

Figure 5.8: Example program not

When this program is executed by the Earley interpreter, it will simply succeed for
every X because of the fact not(X) .
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The meta-logical predicates assert and retract are dangerous. They can change
the truth value of a goal. The storage of all proof attempts presupposes that the truth
values can not change. It does not seem very attractive to add these two meta-logical
predicates. On the other hand we can use assert and retract to get a more efficient
implementation. If we want to implement an efficient DCG we can write (Figure 5.9):

recognize(X) :-
retractall(input(_,_,_)),
assertall(X,0,End),
s(0,End).

assertall([],End,End).
assertall([H|T],I,End) :-

J is I + 1,
assert(input(H,I,J)),
assertall(T,J,End).

Figure 5.9: Example program assert

This is a trick that makes the program in Figure 5.4 suited for arbitrary input.

5.11 Further Research

As said in the introduction, the approach taken in this chapter is modest. We have
proven an upper bound for the time complexity of Prolog programs in a pretty straight-
forward way. The bad thing is that the bound is often higher than one would desire.
Pereira (1993, p. 547) states:

“it was felt that the cost of a procedure call in a reasonable programming
language should not depend on the sizes of the actual parameters”

In the previous we saw that the complexity does depend on the size of the parame-
ters. There are two sources for this. First, we perform the occur check (the quote from
Pereira is from an argument against the occur check). Secondly, we make copies of the
parameters when we store them in the tables and we have to compare parameters all
the time. This comparison is often not necessary. E.g. if we have a DCG as mentioned
in Figure 5.3 there will be many copies of tails of the input sentence. Instead of copying
this list we would like to copy pointers to positions in this list. If we want to compare
two terms in this case, we only have to see whether two pointers point to the same
address. And we do not have to compare the two lists. In a practical system we could
do the following. We first look whether two pointers point to the same address. If they
do, then we are sure they are identical and we don’t have to compare or copy anything.
If they point to different addresses we have to compare them. It is still possible that
they are the same.
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firstpart([a,b]).
firstpart([a]).
secondpart([c]).
secondpart([b,c]).
pred1 :-

firstpart(X),
secondpart(Y),
append(X,Y,Z),
pred2(Z).

We have to compute twice whether pred2([a,b,c]) , but the two terms [a,b,c]
will be represented internally in a different way. Theoretically the “trick” does not
help us much, but in practice it can be an improvement. In practice the size of the
parameters will often be eliminated.

5.12 Existing Implementations of Earley Interpreters

Currently there are (at least) three implementations of the Earley interpreter. The
first is a very experimental implementation by the author. This implementation can
be found at "http://www.fwi.uva.nl/˜aarts/prolog.html" . The interpreter
has been written in Prolog and runs under Quintus, Sicstus and SWI Prolog. A nice
feature is high-level tracing, where we can inspect proof trees after the execution of
the program. The high-level tracer stimulates a declarative programming style. The
second implementation is SLG. This is also a meta-interpreter in Prolog. It supports
the third truth value for non-stratified programs. It has been developed by W. Chen
and D.S. Warren. The third implementation is XSB. XSB has been developed at
the University of New York at Stony Brook by D.S. Warren et al. This interpreter
allows both Earley and standard deduction. The idea is that one can use the standard
interpreter for simple, deterministic, predicates where tabling is a useless overhead.
Complex non-deterministic predicates can be tabled. XSB has been written in C and
is a fast Prolog interpreter. The home page of the XSB Group (where XSB and SLG
can be found) is: "http://www.cs.sunysb.edu/˜sbprolog/" .
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Proof of the Time Complexity Result

6.1 A More Efficient Earley Interpreter

In this chapter we describe in detail a more efficient Earley interpreter. Furthermore
we prove an estimate for the time complexity of this interpreter. This estimate has
been presented without proof in the previous chapter.

The datastructure used in the one-solution and all-solutions interpreters in the
previous chapter, was the item, that consisted of a clause with a remainder of the body.
We will use two integers that represent the clause number and the current position in
the body. We assume, in analogy with the Earley algorithm, that a dot indicates our
progress in the body. Furthermore, we add a substitution for two kinds of variables:

� variables that occur in the head, the head variables, and
� variables that occur in the body before and after the dot, but not in the head: the

relevant body variables.

Variables that occur only before the dot are irrelevant because they have no influ-
ence on the proof of the rest of the body. The variables occurring after the dot only are
simply not instantiated yet, there is no substitution. These are precisely the variable
sets HV and RV defined on page 76. The substitutions for the head variables and the
relevant body variables are stored in two lists.

We assume that we have a preprocessor that builds two program tables called
“head” and “body” in advance. Table entries in the “head” table contain

� a clause number (integer)
� the length of the body (integer)
� the head of the clause (atom)
� the head variables (list of variable names)

Table entries in the “body” table contain

� a clause number (integer)
� the position of the dot in the body (integer)
� the length of the body (integer)

91
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� the head variables (list of variable names)
� the member of the body right after the dot, say Bi (an atom)
� the relevant body variables before Bi , i.e. a list of variables occurring in

B1,...,B(i-1) and in Bi,...,Bn in some fixed order (list of variable names)
� the relevant body variables after Bi , i.e. a list of variables occurring in B1,...,Bi

and in B(i+1),...,Bn in some fixed order (list of variable names)

In order to keep things simple we use two “tricks” in the program table. The first
is that we add a rule for the query. Suppose our query is Q1,...,Qn . Then we add
to the program the rule success :- Q1,...,Qn . Our new query is now success .
This trick reduces the number of initialization steps in the interpreter. The second
trick is that facts are represented as rules with the body true . This also simplifies
the interpreter.

In the interpreter we create three kinds of objects: active items, inactive items and
extended active items. These objects are stored in three tables. There is also a table
containing the goals that are “called” together with a key for faster lookup in other
tables. The contents of the tables are described precisely below.

Active items replace the objects called items in the variable-free Earley interpreter.
Active items are six-tuples of

� a clause number (integer)
� the position of the dot in the body (integer)
� the length of the body (integer)
� a key representing the head as it was instantiated before any members of the

body were proved, as represented by f(C) in Figure 5.1 (integer)
� a list of substitutions for the head variables (list of terms)
� a list of substitutions for the relevant (body) variables (list of terms)

Inactive items are active items whose dot is at the end of the body, i.e. they are
finished. Inactive items are triples. They look like active items but without the body
position, body length and the substitution for the relevant variables:

� a clause number (integer)
� a key like in the 4th slot of the active items (integer)
� an instantiated head of the clause, the solution (an atom)

Extended active items are active items with one more slot. From an active item
we can compute the next member of the body that has to be proved. This goal has to
match some clause in the program. Through unification with the head of this clause,
the goal is instantiated further. After unification, the goal is looked up in the call
table. If the table contains the goal (or an alphabetic variant) we read the key from
the table. If the table does not contain the goal, we add it to the table and generate
a new key. Now we have a key and we put it in the extra slot in the extended active
item.

Therefore, extended active items consist of

� key representing the body member to be proven (integer)
� clause number (integer)
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� the position of the dot in the body (integer)
� the length of the body (integer)
� a key representing the head as it was instantiated before any members of the

body were proved (integer)
� a list of substitutions for the head variables (list of terms)
� a list of substitutions for the relevant variables (list of terms)

The call table contains:

� clause number (integer)
� a substitutions for the head variables (list of terms)
� a key (integer)

Besides the tables just mentioned, we have an agenda of unprocessed active items.
The algorithm is described in two ways. In the text that follows we give an imple-

mentation in an imperative Pascal-like language. We will present some pseudo code
and will do a complexity analysis based on this pseudo code. In Appendix A one finds
Prolog code that does exactly the same. Readers familiar with Prolog can look there.
The code in the appendix is no pseudo code but real code.

In our imperative language we define a program called main. This program ini-
tializes the agenda and then takes active items from this agenda repeatedly. For each
active item one of the three following procedures is executed.

� When the body position equals the body length (lines 14-29 in the main program),
the active item is in fact an inactive item. We remove the body length, body
position and the (empty) list of relevant variables. From the instantiations for the
head variables and the table entry in the head table we compute the instantiated
head, the solution. Then we put the solution together with the key and the
clause number in the table of inactive items. The completer is started. The
completer searches in the table of extended active items for an item whose key in
the first slot equals the key of the inactive item. If the keys are equal, then the
inactive item is a solution for the extended active item. The dot is moved and a
new substitution for the relevant variables is looked up in the body table. The
completer generates new active items which are put on the agenda of unprocessed
active items. (This procedure is the first clause of predict or complete in the
appendix).
� Prolog facts are represented as clauses with the body true . When the active

item’s clause number points to such a clause, we increment the body position with
one and put the active item back on the agenda (lines 31-33 in program main).
One step later the procedure described in the previous item will take care of the
active item. (This procedure is the second clause of predict or complete in
the appendix).
� In other cases (the procedure predict) we look twice in the program table. First

we look what goal has to be proved next. Then we try to unify that goal with the
head of some clause. When that is possible we look in the call table whether the
goal has been “called” earlier. There are two cases:
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– the goal has been called earlier. We read the key from the table, add the
key to the active item and get an extended active item. We try to add the
item to the table of extended active items. If that is possible, then it has
not been processed earlier. The completer will try to combine the extended
active item with inactive items, leading to new active items.

– the goal has not been called earlier. What follows can be seen as a predictor
step. We create a new entry in the call table and generate a new key. We
add to the extended active items table a new entry, the active item extended
with the key. Furthermore we add an active item with body position 0 to the
agenda.

One of these two things will be done for all clauses whose head unifies with the
given goal. This procedure is the third clause of predict or complete in the
appendix.

When the agenda is empty we are finished.
We present here some pseudo code that does what has just been described. We

assume we have the following primitives.

push(Item,Agenda). Push an item on the agenda and put it in the table of active
items.

push init(Item,Agenda). If the item is not in the table of active items, add it and
push it on the agenda. (init = If Not In Table).

pop(Item,Agenda). Pop an item from the agenda.

For operations on tables we have three routines.

insert(table name(Var1,Var2,....,Varn)). Insert something in a table.
for all <Vari,Var(i+1),....,Varni such that

table name(Var1,Var2,....,Varn) begin end. For all table entries for which some
condition holds do something.

get <Vari,Var(i+1),....,Varni from table name(Var1,Var2,....,Varn). Search for the
table entry table name(Var1,Var2,....,Varn), the first variables are instantiated,
the latter are not and should be returned.

There are three kinds of boolean expressions referring to the content of the tables:

in table(table name(Var1,Var2,....,Varn)) is true if there exists a table item that is
an alphabetic variant.

there is <Vari,Var(i+1),....,Varni such that
table name(Var1,Var2,....,Varn). The solution must be unique. This is the “de-
terministic” variant of for all : : : such that.

If we don’t need access to the variables we have a shorter notation we replace the
variables that "don’t care" by an underscore ( ).

Elementary procedures and boolean expressions that have nothing to do with the
agenda or with the tables are:
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assign(A,B). Assigns a value.
unify(A,B).
unifiable(A,B). Both after unify and after unifiable A and B are instantiated to their

most general unifier. Unify is a statement, unifiable is a test.
freeze term(A,B). freeze term makes a copy of term A, replaces the free variables

by special symbols and assigns the frozen term to B. This is used to test whether
two terms are alphabetic variants. Two terms are alphabetic variants if they are
identical after freezing.

The pseudocode of the interpreter follows here. The procedure predict and the
program main have been defined as follows:

procedure predict(Agenda,Cn,J0,N,Key,HV,RV,LastKey);

Jp := J0 + 1 ;
get <HVu,Bi,RVu,RV new> from body(Cn,Jp,N,HVu,Bi,RVu,RV new) ;

5 assign(HVu,HV) ;
assign(RVu,RV) ; % now we know Bi
for all <Cn son,M,Head1,HV son> such that
head(Cn son,M,Head1,HV son) and unifiable(Head1,Bi)
begin

10 freeze term(HV son,HV son nv) ;
if there is <Key son> such that called(Cn son,HV son nv,Key son)
then

if not in table(ext act item(Key son,Cn,J0,N,Key,HV,RV))
then

15 begin
insert(ext act item(Key son,Cn,J0,N,Key,HV,RV));
for all <Solution> such that
inactive item(Cn son,Key son,Solution)
begin

20 unify(Solution,Bi) ;
push init(active item(Cn,Jp,N,Key,HV,RV new),Agenda)

end
end

else
25 LastKey := Lastkey + 1 ;

Key son := Lastkey ;
insert(called(Cn son,HV son nv,Key son)) ;
insert(ext act item(Key son,Cn,J0,N,Key,HV,RV));
push(active item(Cn son,0,M,Key son,HV son,[ ]),Agenda)

30 end
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program main ;

Agenda := nil ;
get <N> from body(0, ,N, , , , ) ;

5 insert(called(0,success,0)) ;
LastKey := 0 ;
push(active item(0,0,N,0,[ ],[ ]),Agenda) ;

while Agenda not nil do
10 begin

pop(active item(Cn,J0,N,Key,HV,RV),Agenda) ;
if J0 = N
then
begin

15 get <Head,HVu> from head(Cn,N,Head,HVu)
assign(HVu,HV), % now we know Head (the solution)
insert(inactive item(Cn,Key,Head)) ;
for all <Cn mom,J1,M,Key mom,HV mom,RV mom> such that
ext act item(Key,Cn mom,J1,M,Key mom,HV mom,RV mom)

20 begin
Jp := J1 + 1 ;
get <HV momu,Bi,RV momu,RV mom new> from
body(Cn mom,Jp,M,HV momu,Bi,RV momu,RV mom new);
assign(HV momu,HV mom) ;

25 assign(RV momu,RV mom) ; % now we know Bi
unify(Head,Bi); % changes HV mom and RV mom new
push init(active item(Cn mom,Jp,M,Key mom,HV mom,

RV mom new),Agenda)
end

end
30 else fJ0 6= Ng

if J0 = 0 and N = 1 and body(Cn,1,1, ,true,[ ],[ ])
then

push init(active item(Cn,1,1,Key,HV,[ ]),Agenda)
else fitem not finished and not a factg

35 predict(Agenda,Cn,J0,N,Key,HV,RV,Lastkey)
end
if in table(inactive item(0, 0, success))
then write(’yes’) else write(’no’)
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If we replace the guard

while Agenda not nil do

by

while Agenda not nil and not in table(inactive item(0, 0, success)) do

the interpreter stops after finding the first solution.

6.2 Complexity of the Earley interpreter

In this section we are going to count the number of steps that the algorithm in the
previous section takes.

The complexity of our primitive operations is as follows.

push(Item,Agenda) O(jItemj)

push init(Item,Agenda) O(jItemj)

pop(Item,Agenda) O(1)

insert(table name(Var1,Var2,....,Varn)) O(jV ar1j+ : : :+ jV arnj)

get hVari,Var(i+1),....,Varni from ta-
ble name(Var1,Var2,....,Varn)

O(jV ar1j+ : : :+ jV arnj)

in table(table name(Var1,Var2,....,Varn)) O(jV ar1j+ : : :+ jV arnj)

there is hVari,Var(i+1),....,Varni such that
table name(Var1,Var2,....,Varn)

O(jV ar1j+ : : :+ jV arnj)

unify(A,B) O(jAj+ jBj)

freeze term(A,B) O(jAj)

unifiable(A,B) O(jAj+ jBj)

The number of steps of the program main is counted as follows. Suppose our Prolog
program is of the following form:

H1 :- ...
..
Hi :-

Bi1,
Bi2,
...
Bin.

..
Hk :- ...

#i and ##i are defined as usual. We also define the average length ji(X; i)j.
##i(X; i) = #i(X; i)� ji(X; i)j.

Remember that the head variables are HV in(i) [ HV out(i) [ HV through(i). Rele-
vant body variables are ((V ar(Bi1) [ : : : [ V ar(Bij)) \ (V ar(Bi(j+1)) [ : : : [ V ar(Bin))) n

(HV in(i) [HV out(i) [HV through(i)).
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We assume that the length of the clauses in the body of the Prolog rules is bounded
by a constant.

We will only consider lines 9-36 in program main. The other lines have a lower
complexity. The number of active items is

kX

i=1

l(i)X

j=0

#i([hHV through(i) [HV in(i); 0i; hW (i; j)i])

#i([hHV through(i) [HV in(i); 0i]) is the number of possible Key ’s,
#i([h((V ar(Bi1)[: : :[V ar(Bij))nHV in(i))\(HV out(i)[HV through(i)); ji]) is the number
of possible substitutions for HVfor that key,
#i([h((V ar(Bi1) [ : : : [ V ar(Bij)) n HV in(i)) \ (V ar(Bi(j+1)) [ : : : [ V ar(Bin)); ji]) is the
number of possible substitutions for RV. The while loop in lines 10-36 is executed that
many times.

The amount of work that has to be done in the while loop can be counted as
follows. We first look at the procedure predict. We will show later that the other two
alternatives are cheaper.

So we look now at the amount of time spent for a given active item in the procedure
predict.

� 4 get hHVu,Bi,RVu,RV newi from body(Cn,Jp,N,HVu,Bi,RVu,RV new) ;
This costs constant time (under the assumption that the length of Bi is constant).

� 7 for all hCn son,M,Head1,HV soni such that
head(Cn son,M,Head1,HV son) and unifiable(Head1,Bi)

Here the next thing to be proved is matched with all clauses whose head has the
same predicate name. With nc(i; j) (Number of Clauses) we will denote the num-
ber of clauses with this predicate name, i.e. the number of clauses whose head
has the same predicate name as Bi(j + 1). In the worst case, all clauses unify,
and the rest of procedure predict will be executed nc(i; j) times. The unification
costs the length of Bi : ji(V ar(Bi(j+1)); j)j because we assume that the length of
the terms in the head of program clauses is a constant.

� 10 freeze term(HV son,HV son nv) ; Cost depends on the length of HV son . This
length is less than ji(V ar(Bi(j+1)); j)j

� 11 if there is hKey soni such that called(Cn son,HV son nv,Key son)
Cost depends on the length of HV son nv . The same cost as in the previous step:
ji(V ar(Bi(j+1)); j)j. We will assume that this test succeeds and count the steps in
the “then” branch. We will count later the steps in the “else” branch.

� 13 if not in table(ext act item(Key son,Cn,J0,N,Key,HV,RV))
The variables in V (i; j) can have changed through the unification with the head
of the clause numbered Cn son . I.e. they can be larger than ji(V (i; j); j)j. But
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under the assumption that program clause heads have constant length this dif-
ference is a constant. The cost depends on the length of HVand RV. This equals
ji(W (i; j) [HV in(i) [ (HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j

� 16 insert(ext act item(Key son,Cn,J0,N,Key,HV,RV)); See the previous item.
ji(W (i; j) [HV in(i) [ (HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j

� 17 for all hSolutioni such that inactive item(Cn son,Key son,Solution)
The number of Solutions is #i(V (i; j); j + 1). The rest has to be executed that
many times.

� 20 unify(Solution,Bi) ;
Costs at most ji(V ar(Bi(j+1)); j + 1)j because the length of both Solution and Bi
is smaller than ji(V ar(Bi(j+1)); j + 1)j.

� 21 push init(active item(Cn,Jp,N,Key,HV,RV new),Agenda)
Costs ji(V ar(Bi(j+1)); j + 1)j+

ji(W (i; j) [HV in(i) [ (HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j

The total amount (for the “then” branch, lines 13-23) is

#i([hHV through(i); 0i; hHV in(i) [W (i; j)i])� nc(i; j)�

(ji(V ar(Bi(j+1)); j)j+ji(W (i; j)[HV in(i)[(HV through(i)n(V ar(Bi1)[: : :[V ar(Bij)))); j)j+

(#i(V (i; j); j + 1)�

(ji(V ar(Bi(j+1)); j+1)j+ji(W (i; j)[HV in(i)[(HV through(i)n(V ar(Bi1)[: : :[V ar(Bij)))); j)j)))

because fji(V ar(Bi(j+1)); j)j < ji(V ar(Bi(j+1)); j + 1)jg

� #i([hHV through(i); 0i; hHV in(i) [W (i; j)i])� nc(i; j)�

(#i(V (i; j); j+1)�(ji(V ar(Bi(j+1)); j+1)j+ji(W (i; j)[HV in(i)[(HV through(i)n(V ar(Bi1)[

: : : [ V ar(Bij)))); j)j))

� #i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)�

(ji(V ar(Bi(j+1)); j + 1)j+

ji(W (i; j) [HV in(i) [ (HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j)

� #i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)�

(ji(V (i; j) [ (V ar(Bi(j+1)) \ (V ar(Bi1) [ : : : [ V ar(Bij) [HV in(i))); j + 1)j+

ji(W (i; j) [HV in(i) [ (HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j)

� #i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)�

(ji(W (i; j) [HV in(i); j)j+ ji(V (i; j); j + 1)j+

ji(V ar(Bi(j+1)) \ (V ar(Bi1) [ : : : [ V ar(Bij) [HV in(i))); j + 1)j+

ji(HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j)
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� #i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)�

(ji(W (i; j) [HV in(i); j)j+ ji(V (i; j); j + 1)j+

ji(V ar(Bi(j+1)) \ (V ar(Bi1) [ : : : [ V ar(Bij) [HV in(i))); j)j+

ji(HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j)

f(V ar(Bi(j+1)) \ (V ar(Bi1) [ : : : [ V ar(Bij) [HV in(i))) � (HV in(i) [W (i; j))g

� #i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)�

(ji(W (i; j) [HV in(i); j)j+ ji(V (i; j); j + 1)j+

ji(HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j)

fji(HV through(i) n (V ar(Bi1) [ : : : [ V ar(Bij)))); j)j < ji(HV through(i); 0)jg

� #i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)�

(ji(W (i; j) [HV in(i); j)j+ ji(V (i; j); j + 1)j+ ji(HV through(i); 0)j)

� ##i([hHV through(i); 0i; hHV in(i) [W (i; j); ji; hV (i; j); j + 1i])� nc(i; j)

The time needed in the “else” branch (lines 25-29) is obviously less.
The total complexity in predict is

kX

i=1

l(i)�1X

j=0

nc(i; j)�##i([hHV in(i) [HV through(i); 0i; hW (i; j); ji; hV (i; j); j + 1i])

We have counted here all possible combinations of an extended active item and a
complete item. If the inactive item is found before the active item the completer steps
are performed in the procedure predict. On the other hand, if the active item is found
first the completion is done in lines 14-28 of program main. Because we have counted
all completion steps we do not have to consider lines 14-28 of program main anymore.

Sometimes we can leave out nc(i; j) from the formula. This happens when all free
predicates

� are ground facts, and
� have no throughput variables.

In this case no unification takes place in lines 7 and 8 of the program. We can
look up all the answers. The time needed for this is linear in the number of solutions
#i([hV (i; j); j + 1i]). Without further proof we claim here that we can leave out nc(i; j)
under these circumstances.

6.3 Improved Earley Deduction

When we look at the examples in the previous section an improvement on our inter-
preter is obvious. Suppose we have a clause
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s(A,E) :- det(A,B), n(B,C), v(C,D), np(D,E).
with mode mode(s(+,+)) . A simple observation is that the value of the variable E is
unimportant until we have to prove np(D,E). If we have two goals, say s(0,3) and
s(0,6) , a lot of work will be done twice. Therefore we introduce the notion relevant
head variable. Relevant head variables are variables occurring both in the head and
before the point we have reached in the body. In the example, only A is relevant (and E
is a body clause variable). We will not describe in detail how this can be implemented
in the interpreter. The main idea, however, is as follows. In the procedure predict we
look whether a goal has been proved earlier or not. Remember the program line:

11 if there is hKey soni such that called(Cn son,HV son nv,Key son)

The head variables are stored in the “called” table in some standard order, e.g.
the order of appearance in the head of a rule. We are going to change the order.
Head variables are now ordered in their order of occurrence in the body. Formerly we
knew that a call had been made earlier when the substitution for the head variables
was identical (under alphabetic variants). Now we loosen this. We try to match as
much variables as possible from left to right. When we can match some variables,
but not all we have a “similar query”. We can reuse active items from a call that
is similar with the current goal. With the rule s(A,E) :- det(A,B), n(B,C),
v(C,D), np(D,E). and the goals s(0,3) and s(0,6) we perform the usual steps
for s(0,3) . When we try to prove s(0,6) we look in the “called” table and find the
entry called( : : : ,[0,3], : : : ) . We see that the value of A (0) matches and the value
of E (6) does not, and that the goals are similar. Now we can copy the active items
generated by the similar call s(0,3) between v(C,D) and np(D,E) . This saves us
the completer steps before v(C,D) . It can be even the case that a head variable is not
relevant at all in the body. E.g. the predicate apply(A/B,C,A) on page 104. If we
have two calls that only differ in A we can just compute the result once and copy the
result. In general, completer steps are performed only once for every substitution of
the relevant head variables.

The result of this improvement is that we only count the relevant head variables
and not all head variables, i.e., HV in(i) can be reduced to HV in(i) \ (Bi1 [ : : : [ Bij).
We do not go into details here about this improvement.





Chapter 7

Fragments of L in Prolog

In this chapter we give algorithms for the fragments of the Lambek calculus described
in chapter 1.2. These algorithms are given in Earley Prolog. In order to estimate the
time complexity of the algorithms we use the method of chapter 5.

7.1 Non-associative Lambek Grammar

The implementation given here is a very compact and simple one. One of the reasons
is that we can represent the rules of the calculus very natural in Prolog (the ==>
predicate).

7.1.1 Implementation

An example lexicon and query are:

mode(lex/2, [+,-]).
lex(marie,np).
lex(slaat,np\(s/np)).
lex(de,np/n).
lex(vervelende,n/(pp/(n\pp))).
lex(jongen,n).

?- combine([marie,slaat,de,vervelende,jongen],S).

The recognizer is implemented as follows:

103
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?-op(230,xfx,’/’). /* Right division */
?-op(230,xfx,’\’). /* Left division */
?-op(250,xfx,’==>’). /* R3 - R4 Derivability */

mode(combine/2, [+,-]).
combine([D1],S) :-

lex(D1,S).
combine(List,S) :-

append(Begin,End,List),
combine(Begin,D1),
combine(End,D2),
apply(D1,D2,S).

mode(apply/3, [+,+,-]).
apply(A/B,C,A) :-

C ==> B.
apply(C,B\A,A) :-

C ==> B.

mode(==>/2, [+,+]).
A ==> A.
W ==> X/(Y\Z) :-

W ==> Y,
Z ==> X.

W ==> (Z/Y)\X :-
W ==> Y,
Z ==> X.

W/X ==> Y/Z :-
W ==> Y,
Z ==> X.

X\W ==> Z\Y :-
W ==> Y,
Z ==> X.

mode(append/3, [-,-,+]).
append([],K,K).
append([H|T],K,[H|L]) :-

append(T,K,L).

Observe that this program does not work in standard Prolog although it is seman-
tically correct. In order to make it work we have to replace the variables Begin and
End by [B|Begin] and [E|End] .

7.1.2 Complexity Analysis

Let’s repeat the time complexity for Prolog programs from page 100.

kX

i=1

l(i)�1X

j=0

nc(i; j)�##i([hHV through(i); 0i; hHV in(i) [W (i; j) [ V (i; j)i])
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The program is nicely moded. The length of the clauses is bounded by a constant.
We want to express the time complexity in

� the length of the query: n.
� the number of clauses of the free predicate lex(...) : jLexj. The length of the

lexical items is considered as a constant!

We apply the formula on the program.

mode(combine/2, [+,-]).
combine([D1],S) :-

lex(D1,S).

jLexj �##(fD1; Sg)

The first argument in combine is always a sublist of the list in the first argument
of the query. Because the sublist has length 1, there are n possibilities, and every
possibility needs constant space. The second argument in combine is always a sub-
type of some type in the lexicon. The number of subtypes is jLexj. There are jLexj
substitutions for D1 of constant length. We have to multiply with jLexj, so we get
jLexj2. Complexity here is O(jLexj2 � n).

combine(List,S) :-
append(Begin,End,List),
combine(Begin,D1),
combine(End,D2),
apply(D1,D2,S).

##(fList; Begin; Endg) + ##(fList; Begin; End;D1g) +

##(fList; End;D1; D2g) + ##(fList;D1; D2; Sg)

The number of sublists (substitutions for List ) is n2. The list can be split at n
points. When D1 and D2 are known, S is fixed.
O(n4) +O(jLexj � n4) +O(jLexj2 � n4) +O(jLexj2 � n3) =

O(jLexj2 � n4)

mode(apply/3, [+,+,-]).
apply(A/B,C,A) :-

C==>B.

apply(C,B\A,A) :-
C==>B.

Complexity for both clauses:
##(fA;B;Cg)

We can freely choose two subtypes. Complexity is O(jLexj2).
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mode(==> /2, [+,+]).
W==>X/(Y\Z) :-

W==>Y,
Z==>X.

W==>(Z/Y)\X :-
W==>Y,
Z==>X.

W/X==>Y/Z :-
W==>Y,
Z==>X.

X\W==>Z\Y :-
W==>Y,
Z==>X.

Complexity for all clauses:
##(fW;X; Y; Zg) +

##(fW;X; Y; Zg)

We can freely choose two subtypes. Complexity is O(jLexj2).

mode(append/3, [-,-,+]).
append([H|T],K,[H|L]) :-

append(T,K,L).

##(fH;L; T;Kg)

The arguments are sublists in the query. Complexity is O(n4).
The complexity of the whole program is O(jLexj2 � n4).

7.2 Second Order Lambek Grammar

7.2.1 Implementation

Let’s repeat the definition of unfolding here.

7.2.1. DEFINITION. f: Tp! ATp�, the unfolding function, is defined as follows:

f((T1; : : : ;Tm ) B ( L1; : : : ; Ln)) =
 

T1; : : :
 

Tm;
"

B;
!

L1; : : :
!

Ln (m;n � 0). We extend
the definition to f : Tp� ! ATp� by applying f pointwise and concatenating the result.

The words are looked up in the lexicon and the types are unfolded. The arguments,
with left and right arrows can be complex. But the arguments of the arguments are
primitive because we are in the second order fragment.
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The rules that should be applied are:

�!
!

(T
1
; : : : ;Tm ) B( L

1
; : : : ; Ln);

 

T1; : : :
 

Tm;
"

B;
!

L1; : : :
!

Ln (m;n � 0)

�!
 

T1; : : :
 

Tm;
"

B;
!

L1; : : :
!

Ln;
 

(T
1
; : : : ;Tm ) B( L

1
; : : : ; Ln)

All Ti and Li are primitive. With these definitions in mind we give the following
Prolog implementation.

% recognize(StringOfWords)
mode(recognize/1, [+]).
recognize(L) :-

appendp([[]|L],[[]],K),
match([(up,s)],K).

% match(Top,Bottom)

% Top = ((
 
p )�

"
p (
!
p )�) [ (

!
p )�

% Bottom = [[PathCircleToBox],PathBoxToBox,[PathBoxToCircle]]

% ((
 
p )�

"
p (
!
p )�) [ (

!
p )� ,List of Words,((

 
p )�

"
p (
!
p )�) [ (

 
p )�

mode(match/2, [+,+]).
match([],L) :-

epsilon(L).
match([H|T1],[[H|T2]|T3]) :-

match(T1,[T2|T3]).
match([H|T1],[[],[H|T2]]) :- % PathBoxToBox = []

match(T1,[[],T2]).
match([H|T1],L) :-

break(L,M,H,N,K), % break(Bottom,Bottom1,Bottom2)
% splits PathBoxToBox

epsilon(M),
match(T1,[N|K]).

% epsilon([[PathCircleToBox],PathBoxToBox,[PathBoxToCircle]])

Succeeds only if

% ((
!
p )� ,List of Words,((

 
p )�

"
p (
!
p )�) [ (

 
p )� or

% ((
 
p )�

"
p (
!
p )�) [ (

!
p )� ,List of Words,((

 
p )�

mode(epsilon/1, [+]).
epsilon([[],[]]).
epsilon([[(right,Arg)|ArrowList]|Rest]) :-

unfold(Arg,ArgList),
match(ArgList,[ArrowList|Rest]).

epsilon(List) :- % reverse of previous clause
appends(Rest,[Last],List), % Last = [PathBoxToCircle]
appends(Arrowlist,[(left,Arg)],Last),
appendp(Rest,[Arrowlist],NewList),
unfold(Arg,ArgList),
match(ArgList,NewList).
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mode(break/5, [+,-,+,-,-]).
break(Whole,First,H,N,[H2|T2]) :-

appends([H1|T1],[Word,H2|T2],Whole),
lex(Word,Type),
unfold(Type,Arrows),
appends(ArrowList1,[H|N],Arrows),
appendp([H1|T1],[ArrowList1],First).

mode(unfold/2, [+,-]).
unfold(F,[(up,F)]) :-

atomic(F).
mode(atomic/1, [+]).
unfold((L,F,R),List) :-

add_arrows(L,Lplus,left),
add_arrows(R,Rplus,right),
appendp(Lplus,[(up,F)|Rplus],List).

mode(add_arrows/3, [+,-,+]).
add_arrows([],[],_).
add_arrows([H1|T1],[(LorR,H1)|T2],LorR) :-

add_arrows(T1,T2,LorR).

mode(appendp/3, [+,+,-]).
appendp([],K,K).
appendp([H|T],K,[H|L]) :-

appendp(T,K,L).
mode(appends/3, [-,?,+]).
appends([],K,K).
appends([H|T],K,[H|L]) :-

appends(T,K,L).

An example lexicon and query are:

mode(lex/2, [+,-]).
lex(marie,np).
lex(slaat,([np],s,[np])).
lex(loves,([np],s,[np])).
lex(de,([],np,[n])).
lex(vervelende,([],n,[([],pp,[([n],pp,[])])])).
lex(jongen,n).
lex(everyone,([],s,[([np],s,[])])).
lex(somebody,([([],s,[np])],s,[])).

?- recognize([everyone,loves,somebody]).

This is not a bottom-up algorithm as described in section 3.5, but a top-down one.
In the predicate match we try to match a string of the form

((
 

p)�
"

p (
!

p)�) [ (
!

p)�, the top, with a bottom of the form
[[PathCircleToBox],PathBoxToBox,[PathBoxToCircle]] , i.e.,

((
 

p)�
"

p (
!

p)�) [ (
!

p)� ,List of Words,((
 

p)�
"

p (
!

p)�) [ (
 

p)�
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The bottom is a complicated way to represent two points in the chart. First we try
to match the first element of the top with the first element of the body. If that’s not
possible we try to split the bottom in two parts and match the first element of the top
with the first element of the second part of the bottom. In this case it must be possible
to build an epsilon arc over the first element of the body. This is checked with the
predicate epsilon . If we found a match for the first element of the top, we try to find
a match for the rest.

The rest of the program should be clear.

7.2.2 Complexity Analysis

We apply the same method as in the previous analysis. The number of lexical items is
jLexj and the length of the input is n. The length of the lexical items is constant.

mode(recognize/1, [+]).
recognize(L) :-

append([[]|L],[[]],K),
match([(up,s)],K).

##(fL;Kg) + ##(fL;Kg)

K and L are unique and of length n. Complexity is O(n)

mode(match/2, [+,+]).
match([],L) :-

epsilon(L).

##(fLg)

The second argument of match is of the form

((
 

p)�
"

p (
!

p)�) [ (
!

p)� ,List of Words,((
 

p)�
"

p (
!

p)�) [ (
 

p)�.

The number of possible substitutions for ((
 

p)�
"

p (
!

p)�) [ (
!

p)� is O(jLexj). The number

of possible substitutions for ((
 

p)�
"

p (
!

p)�) [ (
 

p)� is also O(jLexj).
Hence, #(fLg) = O(jLexj2 � n2), ##(fLg) = O(jLexj2 � n3).

match([H|T1],[[H|T2]|T3]) :-
match(T1,[T2|T3]).

##(fH; T1; T2; T3g)

The first argument of match is of the form ((
 

p)�
"

p (
!

p)�) [ (
!

p)�. The number of
possible substitutions for this argument is O(jLexj). Hence, #(fH; T1; T2; T3g) =

O(jLexj � jLexj2 � n2) and ##(fH; T1; T2; T3g) = O(jLexj3 � n3).
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match([H|T1],[[],[H|T2]]) :-
match(T1,[[],T2]).

##(fH; T1; T2g)

O(jLexj2)

match([H|T1],L) :-
break(L,M,H,N,K),
epsilon(M),
match(T1,[N|K]).

##(fH; T1; L;M;N;Kg) +

##(fH; T1; L;M;N;Kg) +

##(fH; T1; L;N;Kg)

Again, #([L]) = O(jLexj2�n2) and #([H; T1]) = O(jLexj). We have n�jLexj splitting
points. Resulting complexity is:
O(jLexj4 � n4) +O(jLexj4 � n4) +O(jLexj4 � n4) = O(jLexj4 � n4)

This is the most complex match clause. Therefore the complexity of all the match
clauses is O(jLexj4 � n4).

mode(epsilon/1, [+]).
epsilon([[(right,Arg)|ArrowList]|Rest]) :-

unfold(Arg,ArgList),
match(ArgList,[ArrowList|Rest]).

##(fArg; ArrowList; Rest; ArgListg) +

##(fArg; ArrowList; Rest; ArgListg)

The argument of epsilon is of the form

((
 

p)�
"

p (
!

p)�) [ (
!

p)� ,List of Words,((
 

p)�
"

p (
!

p)�) [ (
 

p)�.
The number of possible substitutions for this argument is O(jLexj2 � n2). Every sub-
stitution for the argument uniquely determines the four variables in the rest of the
clause, therefore #(fArg; ArrowList; Rest; ArgListg) = O(jLexj2 � n2) and
##(fArg; ArrowList; Rest; ArgListg) = O(jLexj2 � n3)

epsilon(List) :-
appends(Rest,[Last],List),
appends(Arrowlist,[(left,Arg)],Last),
appendp(Rest,[Arrowlist],NewList),
unfold(Arg,ArgList),
match(ArgList,NewList).

##(fList; Rest; Lastg) +

##(fList; Rest; Last; Arrowlist; Argg) +
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##(fList; Rest; Arrowlist; Arg;NewListg) +

##(fList; Arg;NewList; ArgListg) +

##(fList; NewList; ArgListg)

The same holds as for the previous clause. Every substitution for List uniquely
determines the substitution for the other variables in the clause (the clause is deter-
ministic). The complexity of this clause is also O(jLexj2 � n3).

mode(break/5, [+,-,+,-,-]).
break(Whole,First,H,N,[H2|T2]) :-

appends([H1|T1],[Word,H2|T2],Whole),
lex(Word,Type),
unfold(Type,Arrows),
appends(ArrowList1,[H|N],Arrows),
appendp([H1|T1],[ArrowList1],First).

##(fWhole;H;H1; T1;Word;H2; T2g) +

##(fWhole;H;H1; T1;Word;H2; T2; T ypeg) +

##(fWhole;H;H1; T1; H2; T2; T ype; Arrowsg) +

##(fWhole;H;H1; T1; H2; T2; Arrows; ArrowList1; Ng) +

##(fWhole;H;H1; T1; H2; T2; ArrowList1; N; F irstg)

#(fWhole;Hg) = O(jLexj3�n2). We first split Whole at some point (n possibilities).
There are jLexj possibilities for Type.
#(fWhole;H;H1; T1;Word;H2; T2; T ypeg) is O(jLexj4 � n3). If we split the arrow list,
we have a constant amount of splitting points. Therefore,
#(fWhole;H;H1; T1; H2; T2; Arrows; ArrowList1; Ng) = O(jLexj4�n3). Resulting com-
plexity is O(jLexj4 � n4)

mode(unfold/2, [+,-]).
unfold(F,[(up,F)]) :-

atomic(F).

##(fFg). atomic is a (built-in) predicate that we will not analyse. We assume it
takes constant time. Complexity is O(jLexj).

unfold((L,F,R),List) :-
add_arrows(L,Lplus,left),
add_arrows(R,Rplus,right),
append(Lplus,[(up,F)|Rplus],List).

##(fL; F;R; Lplusg) +

##(fL; F;R; Lplus; Rplusg) +

##(fL; F;R; Lplus; Rplus; Listg)



112 Chapter 7. Fragments of L in Prolog

Complexity is O(jLexj).

mode(add_arrows/3, [+,-,+]).
add_arrows([H1|T1],[(LorR,H1)|T2],LorR) :-

add_arrows(T1,T2,LorR).

##(fH1; T1; LorR; T2g)

Complexity is O(jLexj).

mode(appendp/3, [+,+,-]).
appendp([H|T],K,[H|L]) :-

appendp(T,K,L).

##(fH; T;K; Lg). The complexity is lower than the complexity of the other clauses.

mode(appends/3, [-,?,+]).
appends([H|T],K,[H|L]) :-

appends(T,K,L).

##([hfKg; 0i; hfH;L; T;Kgi])

Here we see a throughput variable for the first time. appends is called par-
tially instantiated in break . The call is appends(ArrowList1,[H2|N],Arrows) .
Arrows and H2 are instantiated, ArrowList1 and N are not. ##(fH;Lg) = jLexj.
##([hfKg; 0i]) = jLexj. ##([hfKg; 0i; hfH;L; T;Kgi]) = jLexj2

For the other calls to appends , the complexity is lower than the complexity of the
clause where they are called.
Summing the complexity of all the clauses gives us a bound of O(jLexj4 � n4).



Appendix A

An Implementation of the Earley Interpreter
in Prolog

This appendix contains an implementation of the interpreter described in 6.1. An
implementation in a pseudo imperative language has been given on page 96. Here we
give in implementation in standard Prolog. The predicate prove replaces the pseudo
program main. The first clause of predict or complete is the equivalent of lines 14-29
in program main. The second clause is the equivalent of 31-35. The third clause is
the equivalent of the procedure predict. Because the stuff does not fit on one page
we have split the program. Observe that we have explicitly stated where unification
takes place by using the predicate unify . “Assignments” are marked by “=”, i.e. “=”
is no real unification.

:- dynamic ext_act_item/7, inactive_item/3, active_item/6,
last_key/1, called/3.

prove :-
clean,
body(0,_,N,_,_,_,_),
assert(called(0,success,0)),
assert(active_item(0,0,N,0,[],[])),
predict_or_complete(active_item(0,0,N,0,[],[])).

prove :-
inactive_item(0, 0, success).

Figure A.1: Earley interpreter with explicit unification I
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predict_or_complete(active_item(Cn,N,N,Key,HV,[])) :-
head(Cn,N,Head,HVu),
HVu = HV,
assert(inactive_item(Cn,Key,Head)),
ext_act_item(Key,Cn_mom,J1,M,Key_mom,HV_mom,RV_mom),
Jp is J1 + 1,
body(Cn_mom,Jp,M,HV_momu,Bi,RV_momu,RV_mom_new),
HV_momu = HV_mom,
RV_momu = RV_mom,
unify(Head,Bi),
assert_if(active_item(Cn_mom,Jp,M,Key_mom,HV_mom,RV_mom_new)),
push(active_item(Cn_mom,Jp,M,Key_mom,HV_mom,RV_mom_new)),
fail.

predict_or_complete(active_item(Cn,0,1,Key,HV,[])) :-
body(Cn,1,1,_,true,[],[]),
assert_if(active_item(Cn,1,1,Key,HV,[])),
push(active_item(Cn,1,1,Key,HV,[])),fail.

predict_or_complete(active_item(Cn,J0,N,Key,HV,RV)) :-
J0 < N,
Jp is J0 + 1,
body(Cn,Jp,N,HVu,Bi,RVu,RV_new),
Bi \== true,
HV = HVu,
RV = RVu,
head(Cn_son,M,Head1,HV_son),
unify(Head1,Bi),
freeze_term(HV_son,HV_son_nv),
(called(Cn_son,HV_son_nv,Key_son) ->

(assert_if(ext_act_item(Key_son,Cn,J0,N,Key,HV,RV)),
inactive_item(Cn_son,Key_son,Solution),
unify(Solution,Bi),
assert_if(active_item(Cn,Jp,N,Key,HV,RV_new)),
push(active_item(Cn,Jp,N,Key,HV,RV_new)));

(add_called(Cn_son,HV_son_nv,Key_son),
assert(ext_act_item(Key_son,Cn,J0,N,Key,HV,RV)),
assert(active_item(Cn_son,0,M,Key_son,HV_son,[])),
push(active_item(Cn_son,0,M,Key_son,HV_son,[])))),

fail.

predict_or_complete(active_item(_,_,_,_,_,_)) :-
stack(active_item(A,B,C,D,E,F)),
retract(stack(active_item(A,B,C,D,E,F))),!,
predict_or_complete(active_item(A,B,C,D,E,F)).

Figure A.2: Earley interpreter with explicit unification II
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We have four database manipulation predicates. The first predicate adds something
to a database if there is no alphabetic variant present as yet. If there is a variant, the
predicate fails! The second predicate adds substitutions for the head variables to the
called table. It assigns keys to all different table entries for faster lookup. The third
predicate removes all tables. The fourth pushes item on the stack.

freeze term and variant are auxiliary predicates.

assert_if(ext_act_item(Key_son,Cn,J,N,Key_mom,HV0,RV0)) :-
\+ (ext_act_item(Key_son,Cn,J,N,Key_mom,HV1,RV1),

variant((HV0,RV0),(HV1,RV1))),
assert(ext_act_item(Key_son,Cn,J,N,Key_mom,HV0,RV0)).

assert_if(active_item(Cn,J,N,Key,HV0,RV0)) :-
\+ (active_item(Cn,J,N,Key,HV1,RV1),

variant((HV0,RV0),(HV1,RV1))),
assert(active_item(Cn,J,N,Key,HV0,RV0)).

add_called(Cn,HV_son_nv,Y) :-
last_key(X),
Y is X + 1,
retract(last_key(X)),
assert(last_key(Y)),
assert(called(Cn,HV_son_nv,Y)).

clean :-
retractall(called(_,_,_)),
retractall(last_key(_)),
assert(last_key(0)),
retractall(ext_act_item(_,_,_,_,_,_,_,_)),
retractall(active_item(_,_,_,_,_,_)),
retractall(inactive_item(_,_,_)),
retractall(stack(_)).

push(A) :-
asserta(stack(A)).

freeze_term(Term,Copy) :-
copy_term(Term,Copy),
numbervars(Copy,26,_).

variant(X,Y) :-
\+ (\+ (numbervars(X,0,_),numbervars(Y,0,_),X == Y)).

Figure A.3: Auxiliary predicates for Earley interpreter

We can turn this interpreter into a breadth-first one that stops after finding the
first solution by changing the last clause of predict or complete and the predicate
push :

The breadth-first non-exhaustive interpreter is complete. It is often faster than
the exhaustive search algorithm because it can stop earlier. If there is no solution it
is slower because it checks (without success) very oftten whether there is a solution in
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predict_or_complete(active_item(_,_,_,_,_,_)) :-
\+ inactive_item(0, 0, success), % stop after first solution
stack(active_item(A,B,C,D,E,F)),
retract(stack(active_item(A,B,C,D,E,F))),!,
predict_or_complete(active_item(A,B,C,D,E,F)).

push(A) :-
assertz(stack(A)). % breadth-first search

Figure A.4: Breadth-first non-exhaustive Earley interpreter

the table. The depth-first exhaustive interpreter is not able to find a proof when the
search space is infinite. This occurs e.g in the following programs.

p(X) ::-
[p((X,X))].

p(0) ::- [].

?- p(0).

pathplus(X,X,[X]) ::- [].
pathplus(X,Z,[X|Path]) ::-

[edge(X,Y),
pathplus(Y,Z,Path)].

edge(a,b) ::- [].
edge(b,c) ::- [].
edge(c,a) ::- [].
edge(c,d) ::- [].

?- pathplus(a,d,Path).

Figure A.5: Infinite search space

The first program is a trivial example. The second program is the path program
with an extra argument. This argument should be instantiated to the path from a
to d when the query ?- pathplus(a,d,Path). has been proved. The depth-first
exhaustive interpreter will get into an infinite loop. The breadth-first engine will find
that the query is true. The method we presented only works when the search space
(and the estimated time complexity) is finite. If the search space and estimated time
complexity are infinite we cannot predict whether the prover will stop or not (this was
already stated on page 73).

We mentioned on page 91 that there is a preprocessor that changes Prolog code
into some internal format. The preprocessor is not given here. But it is not hard
to imagine how it works. It “freezes” the variables and extracts the head variables
and the relevant body variables. Then the variables are “melted” again. We proceed
here with giving two example programs. We will show the original program and the
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program in the internal format. The first program is an example of a DCG with left
recursion. The second example illustrates that an occur check is sometimes necessary.

Program:

p([p|A],A).
p(B,C) :-

p(B,A),
q(A,C).

q([q|A],A).

Query:

?- p([p,q,q,q],[]).

(add imaginary clause 0: success :- p([p,q,q,q],[]). )
Translated into:

body(0, 1, 1, [], p([p,q,q,q],[]), [], []).
body(1, 1, 1, [A], true, [], []).
body(2, 1, 2, [B,C], p(B,A), [], [A]).
body(2, 2, 2, [B,C], q(A,C), [A], []).
body(3, 1, 1, [A], true, [], []).
head(0,1,success,[]).
head(1,1,p([p|A],A),[A]).
head(2,2,p(B,C),[B,C]).
head(3,1,q([q|A],A),[A]).

Figure A.6: Example program DCG

Program:

p(A,A).

Query:

?- p((Y,1),Y).

(add imaginary clause 0: success :- p((Y,1),Y). )
Translated into:

body(0, 1, 1, [], p((Y,1),Y), [], []).
body(1, 1, 1, [A], true, [], []).
head(0,1,success,[]).
head(1,1,p(A,A),[A]).

Figure A.7: Example program occur check





Appendix B

A Reduction of 3-SAT to ACSG Recognition

B.1 The Reduction

This appendix belongs to the reduction given on page 54. m is the number of variables
in the 3-SAT formula. The variables i; j; k; l are necessary to define the grammar.
ui; uj; uk; ul range over the variables in the 3-SAT formula. The rules of the form
A! [B]C should be read as B1A! B1C (the B is the context). i; j 2 f1; : : : ; m� 1g and
k; l 2 f1; : : : ; mg

In order to save space boolean variables are introduced.
tv; tv0; tv00; tv000 2 ft; fg
~tv is the negated value of tv and is 2 ft; fg

A. First initialize u1:

ini–u1tv ! ini

B. Pass the value of u1 through the whole string:

:u1tv ! [ini–u1tv] :
:u1tv ! [ui+1u1tv] :
:u1tv ! [tv0u1tv] :

ui+1u1tv ! [ini–u1tv] ui+1

ui+1u1tv ! [uj+1u1tv] ui+1

ui+1u1tv ! [tv0u1tv] ui+1

ui+1u1tv ! [:u1tv] ui+1

C. u1’s are turned into true or false when its value is passed:

119



120 Appendix B. A Reduction of 3-SAT to ACSG Recognition

tvu1tv ! [ini–u1tv] u1

tvu1tv ! [uj+1u1tv] u1

tvu1tv ! [tv0u1tv] u1

D. :’s disappear when the variables behind them are made true or false:

~tvu1tv ! :u1tv u1

E. Initialize the next variable ui+1:

ini–ui+1tv ! ini–uitv
0

F. Pass the value through the formula across :’s:

:uj+1tv ! [ini–uj+1tv] :ujtv
0

:uj+1tv ! [ukuj+1tv] :ujtv
0 (j < k � 1)

:uj+1tv ! [tv00uj+1tv] :ujtv
0

G. Pass the value through the formula across t’s and f ’s:

tv00uj+1tv ! [ini–uj+1tv] tv00ujtv
0

tv00uj+1tv ! [ukuj+1tv] tv00ujtv
0 (j < k � 1)

tv00uj+1tv ! [tv000uj+1tv] tv00ujtv
0

H. Across u’s which should not be made true or false:

uluj+1tv ! [ini–uj+1tv] ulujtv
0 (j < l � 1)

uluj+1tv ! [ukuj+1tv] ulujtv
0 (j < l � 1, j < k � 1)

uluj+1tv ! [tv00uj+1tv] ulujtv
0 (j < l � 1)

uluj+1tv ! [:uj+1tv] ulujtv
0 (j < l � 1)

I. These u’s must be made true or false because the information about their initial-
ization has arrived:

tvui+1tv ! [ini–ui+1tv] ui+1uitv
0

tvui+1tv ! [ukui+1tv] ui+1uitv
0 (i < k � 1)

tvui+1tv ! [tv00ui+1tv] ui+1uitv
0

J. :’s disappear again:

~tvui+1tv ! :ui+1tv ui+1uitv
0

K. All values of u’s have been passed now, start building an S:
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tv ! tvumtv
0

s! ini–umtv

s! s t t t
s! s t t f
s! s t f t
s! s f t t
s! s f f t
s! s f t f
s! s t f f

B.2 A Derivation

A possible derivation for the 3-SAT formula (u2 _ : u3 _ u1). u1 and u2 are initialized
as true. u3 is initialized as false. The formula is changed into a cluster of three t’s.
Behind the string is indicated which rule is applied. The characters A, B, : : : show
from which group of rules the rule is taken.

ini u2 : u3 u1 A ini–u1t! ini
ini–u1t u2 : u3 u1 B u2u1t! [ini–u1t] u2

ini–u1t u2u1t : u3 u1 E ini–u2t! ini–u1t
ini–u2t u2u1t : u3 u1 B :u1t! [u2u1t] :
ini–u2t u2u1t :u1t u3 u1 I tu2t! [ini–u2t] u2u1t
ini–u2t tu2t :u1t u3 u1 E ini–u3f! ini–u2t
ini–u3f tu2t :u1t u3 u1 B u3u1t! [:u1t] u3

ini–u3f tu2t :u1t u3u1t u1 F :u2t! [tu2t] :u1t
ini–u3f tu2t :u2t u3u1t u1 G tu3f! [ini–u3f] tu2t
ini–u3f tu3f :u2t u3u1t u1 C tu1t! [u3u1t] u1

ini–u3f tu3f :u2t u3u1t tu1t H u3u2t! [:u2t] u3u1t
ini–u3f tu3f :u2t u3u2t tu1t F :u3f! [tu3f] :u2t
ini–u3f tu3f :u3f u3u2t tu1t G tu2t! [u3u2t] tu1t
ini–u3f tu3f :u3f u3u2t tu2t J tu3f! :u3f u3u2t
ini–u3f tu3f tu3f tu2t G tu3f! [tu3f] tu2t
ini–u3f tu3f tu3f tu3f K t! tu3f
ini–u3f t tu3f tu3f K t! tu3f
ini–u3f t t tu3f K t! tu3f
ini–u3f t t t K s! ini–u3f
s t t t K s! s t t t

s
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Samenvatting

In dit proefschrift wordt de tijdscomplexiteit van drie problemen bekeken. De tijds-
complexiteit van een probleem is de relatie tussen de benodigde rekentijd om een
probleem op een computer op te lossen en de omvang van het probleem. In deze relatie
laten we constante factoren weg. Stel dat we een object en een ongesorteerde lijst
hebben, en dat we willen weten of het object voorkomt in de lijst. De omvang van het
probleem is de lengte van de lijst. Die noemen we n. Als we de lijst langslopen en elk
object in de lijst vergelijken met het object dat we zoeken is de benodigde rekentijd in
het slechtste geval O(n) (orde n). Als de relatie tussen rekentijd en omvang van een
probleem een polynomiale functie is (O(nk) met k vast), zeggen we dat het probleem
in P (Polynomiale tijd) zit.
Vaak is een probleem moeilijk op te lossen, maar is het controleren van de oplos-
sing eenvoudig. Stel we hebben een groot getal dat het product is van twee grote
priemgetallen en dat het probleem is: “vind de twee priemfactoren”. Een zeer een-
voudig algoritme is het volgende: probeer alle kleinere getallen als deler van het getal
dat ontbonden moet worden. Als het getal n cijfers heeft, moeten we O(10n) getallen
proberen als priemfactor. Dit is duidelijk niet polynomiale tijd, maar exponentïele.
Er zijn overigens veel betere algoritmes bekend, maar die werken ook in exponentïele
tijd. Het controleren van een oplossing kan wel in polynomiale tijd: als we twee
getallen hebben hoeven we alleen maar te vermenigvuldigen om te zien of het product
inderdaad het getal is dat ontbonden moest worden. De klasse van problemen met de
eigenschap dat oplossingen gemakkelijk gecontroleerd kunnen worden heet NP (non-
deterministische polynomiale tijd). Problemen in NP waarvan vermoed wordt dat ze
niet in P zitten heten NP-compleet. Ontbinden in priemfactoren is NP-compleet.
Het eerste deel van dit proefschrift beschrijft de tijdscomplexiteit van problemen in
twee gebieden: de categoriale grammatica’s en de acyclische context-gevoelige gram-
matica’s. Categoriale grammatica’s bestaan uit een lexicon waarin types worden
toegekend aan lexicale elementen en uit een sequenten calculus waarin geredeneerd
kan worden over afleidbaarheid van types. Een type A is afleidbaar uit een rijtje typen
� als de sequent �! A afleidbaar is in de sequenten calculus. We kunnen een catego-
riale taal definiëren als die verzameling strings waarvoor geldt dat ze via het lexicon
op een rijtje types afgebeeld kunnen worden en dat uit dit rijtje het type s (of een ander
“starttype”) afleidbaar is in de sequenten calculus. Het probleem dat we bekijken is
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dat we van een bepaalde string willen weten of die in de categoriale taal zit. Het is
niet bekend of dit probleem, bij gebruik van de standaard Lambek calculus, in P zit
of juist NP-compleet is. Dit proefschrift laat zien dat voor bepaalde fragmenten het
probleem in P zit. Die fragmenten zijn de grammatica’s waarbij de niet-associatieve
Lambek calculus en de tweede orde Lambek calculus worden gebruikt (met tweede
orde wordt bedoeld dat de nestingsdiepte van types hooguit twee is).
Acyclische context-gevoelige grammatica’s zijn herschrijf grammatica’s die boomstruc-
turen met kruisende takken kunnen genereren. Dit gebeurt door indices toe te ken-
nen aan de context elementen in de herschrijfregel. We hebben gekeken naar het
probleem of een bepaalde string in de gegenereerde taal zit. Als we gewone context-
gevoelige grammatica’s gebruiken is dit een heel moeilijk probleem, moeilijker dan de
NP-complete problemen. Daarom eisen we dat de grammatica acyclisch is. We laten
zien dat het probleem in P zit als we alleen de invoerzinnen varïeren en de grammatica
vast houden. Als de grammatica ook mag variëren (en dus een rol speelt in “de omvang
van het probleem”), dan wordt het probleem NP-compleet.
Het tweede deel van dit proefschrift gaat over Prolog programma’s. Prolog is een zeer
eenvoudige, krachtige programmeertaal. Het grootste verschil met andere program-
meertalen is dat het mogelijk is om niet-deterministische programma’s te coderen.
Omdat computers deterministische machines zijn moeten Prolog programma’s op een
bepaalde manier omgezet worden naar deterministische programma’s. De standaard
manier om dit te doen is eerst-in-de-diepte (depth-first) met terugkrabbelen (back-
tracking). Als er een keuze gemaakt moet worden, wordt de eerste optie genomen. Als
blijkt dat deze keuze op geen enkele manier tot resultaat leidt wordt de volgende optie
geprobeerd, enzovoort. In dit proefschrift wordt naar een alternatieve zoekstrategie
(OLDT resolutie) gekeken. In deze strategie wordt bijgehouden welke alternatieven
geprobeerd zijn en met welk resultaat. Deze strategie voorkomt dat een bepaalde deel-
berekening twee keer wordt uitgevoerd. In de standaard methode kan de zoekruimte
als een boom gerepresenteerd worden. Twee knopen in de boom kunnen best het-
zelfde deelprobleem representeren. Bij OLDT resolutie representeren alle knopen in
de zoekruimte per definitie verschillende deelproblemen; de zoekruimte is dan ook
geen boom meer maar een graaf. Het idee dat in dit proefschrift uitgewerkt is, is
dat de omvang van de zoekruimte een maat is voor de rekentijd die door een Prolog
programma wordt gebruikt, daar elke tak in de zoekruimte maar één keer bewandeld
wordt. In het tweede deel van het proefschrift wordt een methode gegeven om van
een Prolog programma de benodigde rekentijd te schatten onder de assumptie dat
OLDT-resolutie wordt gebruikt bij de executie van het programma.
Tenslotte worden de delen 1 en 2 gecombineerd. We geven Prolog programma’s die
uitrekenen of een string in een categoriale taal zit (voor de beide fragmenten). Ver-
volgens laten we zien dat de rekentijd, die die Prolog programma’s nodig hebben,
polynomiaal is in de lengte van de zin en in de lengte van het lexicon.



Summary

In this dissertation the time complexity of three problems is considered. The time
complexity of a problem is the relation between the time a computer needs to solve a
problem and the size of that problem. In this relation, we leave out constant factors.
Suppose we have an object and an unsorted list, and that we want to know whether
the object occurs in the list or not. The size of the problem is the length of the list. We
call this length n. When we walk through the list and compare each object in the list
with the object that we are looking for, the time needed is O(n) (order n) in the worst
case. When the relation between the computing time and the size of the problem is a
polynomial function (O(nk) with k fixed), we say that the problem is in P (Polynomial
time).
Often a problem is hard to solve, but checking a solution is simple. Suppose we have
a big number which is the product of two big prime numbers and that we are asked
to find the two prime factors. A very simple algorithm is the following: try all smaller
numbers as a divisor of the number we have to factor. If the number has n digits, we
have to try O(10n) numbers as a prime factor. Apparently, this is not polynomial time,
but exponential. By the way, there are much better algorithms, but these algorithms
are not polynomial time either. Checking a solution can be done in polynomial time,
however, if we have two numbers, we only have to multiply them in order to see
whether the product is indeed the number we had to factor. The class of problems
with the property that solutions can be checked easily, is called NP (Nondeterministic
Polynomial time). Problems in NP that are conjectured to be not in P are called
NP-complete. Factoring a number in prime numbers is NP-complete.
The first part of this thesis describes the time complexity of problems in two fields:
categorial grammar and acyclic context-sensitive grammar. Categorial grammars
consist of a lexicon, in which types are assigned to lexical elements, and a sequent
calculus in which we can reason about derivability of types. A type A is derivable from
a sequence of types � if the sequent �! A is derivable in the sequent calculus. We can
define a categorial language as the set of strings which can be mapped, via the lexicon,
onto a sequence of types, for which it holds that the start type s is derivable from the
sequence. The problem that we consider is the following: for a given string, we want
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to know whether it is in the categorial language or not. It is not known whether this
problem, when the standard Lambek calculus is used, is in P or NP-complete. This
dissertation shows that for certain fragments the problem is in P. Those fragments
are the grammars that use the non-associative Lambek calculus and the second order
calculus (with second order we mean that the nesting depth is limited to two).
Acyclic context-sensitive grammars are rewrite grammars that generate tree struc-
tures with crossing branches. We assign indices to context elements in the rewrite
rule. We look at the problem whether a certain string is in the language generated.
When we use normal context-sensitive grammars, this is a very hard problem, harder
than NP-complete problems. Therefore we use acyclic grammars. We show that the
problem, for these grammars, is in P if we vary the sentences only, and keep the gram-
mar fixed. If the grammar may change as well, (and plays a role in the “size of the
problem”), then the problem becomes NP-complete.
The second part of this dissertation is about Prolog programs. Prolog is a very simple,
powerful programming language. The big difference with other programming lan-
guages is that it is possible to code non-deterministic programs. But computers are
deterministic machines, so the Prolog program must be converted to a deterministic
program in some way. The standard way to do this is depth-first with backtracking.
If a choice must be made, the first option is taken. When it turns out that this option
does not lead to any result, the next option is tried, and so on. In this dissertation
we consider an alternative search strategy (OLDT resolution). In this strategy, one
memoes which alternatives are tried and what the result was. This strategy prevents
that some subcomputation is done twice. In the standard search, the search space can
be represented as a tree. It is very well possible that two nodes in the search space
represent the same subproblem. In OLDT resolution, all nodes represent different
subproblems by definition; the search space is not a tree anymore, but a graph. The
idea that has been elaborated in this dissertation is that the size of the search space is
an estimate for the time a Prolog program needs, because every branch in the search
space is visited only once. In the second part of this dissertation a method is given to
estimate the time a Prolog program needs under the assumption that OLDT resolution
is used in the execution of the program.
Finally we combine parts 1 and 2. We give Prolog programs, that compute whether
some string is in a categorial language (for both fragments). Then we show that the
time that those Prolog programs need, is polynomial in the length of the sentence and
in the length of the lexicon.
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