Knowledge games

Hans P. van Ditmarsch

ILLC Dissertation Series DS-2000-06

nza
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam
phone: +31-20-525 6051
fax: 4+31-20-525 5206
e-mail: i1lc@wins.uva.nl
homepage: http://www.illc.uva.nl/

Copyright (©) 2000 by Hans P. van Ditmarsch
Printed by Grafimedia Groningen University
ISBN: 90-367-1296-3

RIJKSUNIVERSITEIT GRONINGEN

Knowledge games

Proefschrift
ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen
op gezag van de
Rector Magnificus, dr. D.F.J. Bosscher,
in het openbaar te verdedigen op
maandag 20 november 2000
om 14.15 uur
door
Hans Pieter van Ditmarsch
geboren op 21 mei 1959

te Eindhoven

Promotores: Prof.dr. G.R. Renardel de Lavalette
Prof.dr. J.F.A.K. van Benthem

Beoordelingscommissie: Prof.dr. J.-J.Ch. Meyer
Prof.dr. E.C.W. Krabbe
Prof.dr. L.S. Moss

ISBN-nummer: 90-367-1296-3

Contents

Preface

1 Cluedo
1.1 Actions
1.2 Strategy
1.3 Simplificationso L
1.4 Historicalnote

2 Knowledge games

2.1
2.2
2.3

24

2.5

2.6
2.7

Three players and three cards
Dealofcards
State of the game Lo
2.3.1 [Initial state of a knowledge game
2.3.2 State of a knowledge game Lo
Game actiono
24.1 Publicity
24.2 Exampleso
2.4.3 Game actions in knowledge games
2.4.4 Questions can always be answered
Computing the next state of the game
Playing knowledge games L Lo
Conclusion

3 Descriptions of game states

3.1

3.2

3.3
3.4
3.5
3.6

Description of hexa Lo
3.1.1 Derived characteristicsof hexa
Description of initial game states
3.2.1 Derived characteristics of initial knowledge game states . .
Description of the pre-initial state
Modal fixed pointso
Further observations
Conclusion

vii

0 g O W

10
11
14
14
16
17
19
20
21
22
24
26
28

36

4 Update by local interpretation 49

4.1 Knowledge actions o oL 51
4.2 Local interpretationo Lo 55
4.3 Action type properties 64
4.4 Further observations 68
4.5 Conclusion 69

5 Descriptions of game actions 71
5.1 Product interpretation 73
5.2 Game actions and knowledge actions 80
5.3 Complexity 84
5.4 Conclusions e 86

6 Examples 87
6.1 Nightclub or lecture. 87
6.2 Everything on three players and three cards 89
6.2.1 Other actions for three players and three cards 92

6.2.2 Unsuccessful updates 94

6.3 Choosing between cards 95
6.4 Cluedo e 97
6.5 Suspicion e e 98
6.6 Spreading gossipo oo 99
6.7 Conclusions 102

7 Update, suspicion, and hypercubes 103
7.1 Gerbrandy: Dynamic Epistemic Logic 105
7.1.1 Dynamic epistemic semantics 108

7.1.2 Relation between KA U KT and DEL programs 111

7.2 Baltag: Logic of Epistemic Actions 113
7.2.1 Public and truthful announcements 114

7.2.2 The logic of epistemic actions 115

7.2.3 Relation between KA U KT and Act(@) 117

7.3 Lomuscio: Hypercubes 119

8 Conclusions 123
A Epistemic logic, models 127
Bibliography 135
Samenvatting 139

vi

Preface

Acknowledgements

I thank my supervisors Gerard Renardel de Lavalette and Johan van Benthem,
the reading committee consisting of John-Jules Meyer, Erik Krabbe and Larry
Moss, my colleagues, my friends, and my family, for their help. Without that I
would not have completed this thesis.

Including and apart from them, I thank the following persons for their contribu-
tions to the completion of my thesis, in alphabetical order: Alexandru Baltag,
Pietro Cenciarelli, Roy Dyckhoff, Jelle Gerbrandy, Rob van Glabbeek, Rix Groen-
boom, Wim Hesselink, Wiebe van der Hoek, Barteld Kooi, Josje Lodder, Alessio
Lomuscio, Fred Mulder, Marc Pauly, Ariel Rubinstein, Marleen Sint, Keith Sten-
ning, Yde Venema, Rineke Verbrugge, Evert van de Vrie, Ferjan de Vries. I thank
many students asking many questions during many lectures.

For their financial contributions I thank the IWI Research Institute from Gronin-
gen University, the Studeerbaarheidsfonds, the Cognitive Science and Engineer-
ing Program from Groningen University, the Dutch Graduate School in Logic,
the Netherlands Organization for Scientific Research, and my parents. For the
hospitality offered during extended stays I thank the Human Communication Re-
search Centre (HCRC), Edinburgh University, and the Center for the Study of
Language and Information (CSLI), Stanford University.

In chapter 1, figures 1.1 and 1.2 have been reprinted with permission by Hasbro.

Overview of contents

The interaction between logic and game theory is currently of interest to the
scientific community. One issue of interest in this area are games where the
information contained in a game state and the information change due to a game
action may be rather complex. As a concrete example of such games we define
knowledge games: card games where a number of cards is distributed over a
number of players, and where moves consist of information exchange, such as

vii

showing cards to other players. We characterize knowledge game states, and we
define a general language for dynamic epistemics in which we can describe game
actions.

Chapter 1 is a playful introduction to this thesis. It contains an analysis of
the murder detection board game Cluedo. Chapter 2 provides a more technical
introduction to this thesis. In that chapter, we define knowledge games, deals
of cards, game states, game actions and game action execution. In chapter 3 we
describe game states. In chapter 4 we introduce a language and a semantics for
dynamic epistemics. Fundamental is the notion of local interpretation of actions:
interpretation for a subgroup of agents only. In chapter 5 we describe game
actions by means of the logical language introduced in chapter 4. In chapter 6
we give examples and applications. In chapter 7 we compare our work to that of
other researchers.

viil

Chapter 1

Cluedo

Imagine a country mansion with a couple of partying guests. Suddenly the host
is discovered, lying in the basement, and murdered. The guests decide to find out
among themselves who committed the murder.

The body is discovered by the butler, under suspicious circumstances that
indicate that the location is not the actual murder room. In order to solve the
murder it is required to find out who the murderer is, what the murder weapon
was, and in which room the murder was committed. The butler is exonerated, the
six guests are therefore the suspects. The guests are: Colonel Mustard (colour
yellow), Professor Plum (colour pink), the Reverend Green, Mrs. Peacock (colour
blue), Ms. Scarlett (colour red, i.e. ‘scarlet’), and Mrs. White. There are six
possible murder weapons: candlestick, rope, leaden pipe, wrench, gun, knife.
The house consists of nine different rooms: hall, kitchen, dining room, study,
sitting room, patio, ballroom, library, pool room.

The game consists of a board with a picture of the house, with the nine rooms
in it and ‘paths’ leading in a certain number of steps from one room to another.
Also there are six suspect cards, six weapon cards, nine room cards. A pair of
dice, six pawns for the (six) players, in colours matching the guests’ names, and
six weapon tokens complete the picture.

There are six players. The three types of cards are shuffled separately. One
suspect card, one weapon card and one room card are blindly drawn and put
apart. These ‘murder cards’ represent the actual murderer, the murder weapon
and the murder room. All remaining cards are shuffled together. They are then
dealt to the players. Every player gets three cards. Some player starts the game,
which is determined by throwing dice, or by the general rule that the player with
the red pawn starts. That player then makes a move. A move consists of the
following:

e throwing the dice
e trying to reach a room by walking your pawn over the game board

e if a room is reached voicing a suspicion about it, i.e. about a suspect, a
weapon and that particular room

2 Chapter 1. Cluedo

Figure 1.1: Keychain with miniature Cluedo game board

e gathering responses to that suspicion from the other players

e optional: making an accusation about a suspect, a weapon and a room

The number of steps on the board may not exceed the outcome of the throw
of dice. As a consequence of the suspicion, the pawn with the same colour as
that of the suspected player is moved to the suspected room. The other players
are supposed to respond to the suspicion in clockwise fashion: the first player
that holds at least one of the three cards mentioned in the suspicion, must show
exactly one of those to the requesting player, and to him only. This ends the move.
Whoever is next in turn is again determined clockwise. Just like a suspicion, also
an accusation is the combination of a suspect, a weapon and a room card. Each
player can make an accusation only once in the game. It is not voiced but written
down. The accusing player then checks the three murder cards, without showing
them to others. If the accusation is false, that player has lost and the game
continues. The first player who correctly guesses the murder cards, wins the
game. Note that, although pawns are identied with guests, you don’t even know
whether you have committed the murder ‘yourself’.

The suspicion one makes is naturally supposed to elicit as much information
as possible. It is based on knowledge of one’s own cards and on knowledge of
other players’ cards. In order to justify preferring one suspicion over another,
we have to determine what knowledge is gained from the possible answers to a
suspicion.

1.1. Actions 3

BALLROOM CANDLESTICK REVEREND GREEN

‘The servants reported One of a pair, given An austere man, who
that this room was to Dr Black by Mrs came to the village
always locked when it Peacock. Usually to two years ago. He
‘wasn’t in use. However, i [be found in the was invited for the
upon inspection, the g lounge, both ‘weckend at the
detectives found that it : candlesticks were request of
was open, Inside the present on the dining Mrs White, who is
room the curtains were room table at the very close (o this
still drawn and very time of the evening reserved Reverend.
litle light shone meal: The maids Although he is not

through. At the back of don't remember if fond of parties, he
the ballroom there is an they cleared both accepted the

old piano. The lid was up and there was sheet music candlesticks away after dinner. Only one was invitation only because he knew his old friend

in the stand! The only member of the party that is at on the table in the dining room after the crime, Mrs White would be in attendance. The

all musical is Professor Plum! the other was found behind the curtains. village church coffers are reported to be low

on funds and could suggest another reason for
the Reverend’s interest.

(The facts contained in this article are merely (The facts contained in this article are merely (The facts contained in this article are merely

assumptions. It is for you to ascertain what is the real assumptions. It is for you to ascertain what is assumptions. It is for you to ascertain what is

evidence!) the real evidence!) the real evidence!)

WoouT1vE NIAuD aNIUIAAZA

Figure 1.2: Examples of a guest, a weapon and a room card

1.1 Actions

We first discuss some examples of moves in Cluedo.

Example 1

Assume that one of the cards of player 3 is the candlestick card and that two of
the cards of player 4 are the green card and the ballroom card, see figure 1.2.
Assume that player 1 starts the game. In his first move, player 1 reaches the
ballroom. Now the following happens, see also figure 1.3:

e suspect Player 1 says ‘I think Reverend Green has committed the murder
with a candlestick in the ballroom’;

e noshow Player 2 says that he does not have any of the requested cards;
e show Player 3 shows the candlestick card to player 1;

e nowin Player 1 ends his move.

Players 4, 5 and 6 never get to respond to the suspicion by player 1. If 4 had
been asked to, he could have chosen between two cards to show to player 1.

What is the effect of these four actions on the players’ knowledge? Note that,
as this is the first move in the game, the players only know their own cards.

suspect Any combination of a room, weapon and guest card can be asked,
provided one occupies that room. Also, it is permitted to ask for one or more of
one’s own cards (so that one knows the suspicion to be false). Therefore, nothing
can be deduced from the suspicion.

noshow After player 2 has said that he does not have any of the requested cards,
this is commonly known to all players: player 1 knows that player 2 doesn’t have

4 Chapter 1. Cluedo

player 4
green
candlestick ! player 3 * ballroom

[]
player 5

player 2

green
ballroom ?
candlestick

®
player 1 player 6

Figure 1.3: Green has done it with a candlestick in the ballroom

them, but also player 5 knows that player 1 knows that, etc. What can further
be deduced from that information depends on the players’ own cards. E.g. player
5 now knows that player 2 does not have 6 particular cards from the total of 21
cards: the three cards asked for by 1, and the three (different) cards that 5 holds
himself.

show Player 3 has the candlestick card and shows this card to player 1. He
shows the card to player 1 only, by handing the card face down to player 1. Player
1 then looks at the card, and returns the card the same way. The other players
therefore only see that a card has been shown, and know that the others have
seen that, etc.

Player 1 now knows that player 3 holds the candlestick card. Player 1 doesn’t
know whether player 3 holds one, two or all three of the requested cards. That
he just holds candlestick, is only known by player 4, by deduction. Curiously
enough, player 1 doesn’t know that player 4 knows that. Nor does player 3.
Common knowledge among the 6 players is only, that player 3 holds at least one
of the three requested cards. From this, e.g., everybody can deduce that 3 does
not hold the cards white, scarlett, and conservatory.

nowin Player 1 ends his move. This is an implicit action, only inferred because
1 does not make an accusation. A successful accusation corresponds to publicly
announcing knowledge of the murder cards. Not accusing therefore corresponds
to a public announcement that you are ignorant of the murder cards. In this
example, it is unclear how that announcement changes the knowledge of other
players. We therefore present a different example in which it is obvious:

Example 2

Suppose that player 1 had moved to the kitchen instead of to the ballroom, and
that the murder cards are ‘kitchen, scarlett, knife’. Player 1, by mere incredible
luck, chooses to voice the suspicion ‘I think that Scarlett has committed the

1.1. Actions)

murder in the kitchen with a knife’. The player playing red moves his pawn to
the kitchen. None of the other players can show a card. Player 1 writes down the
accusation ‘kitchen, scarlett, knife’, checks it, and announces that he has won.

Example 3

Now compare the previous example with the state of the game where, instead,
the cards ‘kitchen, scarlett, knife’ are not on the table but are held by player 1.
Again, 1 voices the suspicion ‘I think that Scarlett has committed the murder in
the kitchen with a knife’. Obviously, again none of the other players can show a
card. However: player 1 now ends his move. The other players now deduce that
player 1 holds at least one of the requested cards! Observe that they do not know
that he holds all three of them: it could have been the case that, instead, player 1
only holds ‘kitchen’ and that the murder cards are ‘conservatory, scarlett, knife’.
Once more, nobody would have shown a card to 1.

Apart from the actions apparent in example 1, three other sorts of action may
occur in Cluedo: accuse, check and announce.

accuse At any moment during his move, a player may guess what the murder
cards are, i.e. he may write down a final accusation, that will then be checked by
him. Any combination of a room, weapon and guest card is permitted. One does
not have to occupy the room of the accusation, as was required for a suspicion.
Note that the content of the accusation is hidden to other players. An accusation
does not effect the knowledge of the players.

check After a player has checked his accusation and has told the other players
that he has indeed won, it is public knowledge (common knowledge to all) that he
knows the cards on the table. However, as the game is over, it serves no purpose
to describe these changes. If he told them that he lost, the game continues.
Now the other players haven’t learnt anything at all, because the content of the
accusation was hidden to them.

announce What makes a real play of the Cluedo game even more interesting,
is that players allow themselves slips of the tongue such as: ‘Ha! I now know
who the murderer is’, or: ‘Arrrgh, I still don’t know the murder room!. Such
announcements often result in interesting updates.

On perfect logicians We assume that the players are perfectly logical. In
actual plays of Cluedo, this assumption is dangerous. You may have all the
knowledge required to deduce the cards on the table, but not make the deduction.
Also, you may have forgotten earlier moves. Therefore, ending your own move
does not imply that you cannot win. The next player to move, who is reasoning
from the incorrect assumption that you do not know the murder cards, may
now incorrectly deduce what these cards are, make that accusation, and lose.

6 Chapter 1. Cluedo

Although it is illegal not to show a card if you hold it, it is perfectly legal not to
win even though you can.

1.2 Strategy

Some actions affect the knowledge of the players, such as show. Other actions
don’t, such as accuse. However, actions also may effect the beliefs of the play-
ers. Such beliefs determine preferences among their strategies: what suspicion
to make, which card to show, make an accusation now or later? E.g., one can
ask for a combination of three cards from which one holds either none, one, two
or three oneself. From what type of suspicion can we expect to gain the most
information? We discuss this topic by way of examples.

Example 4

It is your turn. You may go to either the billiard room or to the conservatory.
You know that player 2, the first to answer your suspicion, has the billiard room
card or the scarlett card or the rope card. You don’t know whether 2 has the
conservatory card. Should you prefer a suspicion about the card that he is more
likely to have, billiard room? Or about the card that he is less likely to have,
conservatory? If you ask for the conservatory card, and if 2 does not hold that
card, the next player after 2 will still have to answer your request, so you can
gather yet more information in your move. On the other hand, now everybody
will know that that 2 does not hold the conservatory card, which may not be to
your advantage.

Example 5

You are being asked to show one of the cards scarlett, gun, and kitchen. You hold
the cards scarlett, gun and conservatory. Is it better to show scarlett or gun? If
you have previously shown scarlett to the requesting player, it is better to show
scarlett again.

Example 6

You have just been shown a card, and have to decide whether to pass your move
to the next player. You know the murder room and the murder weapon, and you
know that the murderer is scarlett or green. Should you make an accusation or
should you wait another round? This may never come to pass, as one of your
opponents may win before. Now imagine that you also know that one of your
opponents must already have gained full knowledge of the murder cards because
of your move. Now, clearly, you must guess the murder cards and make an
accusation.

Example 7
It seems not smart to ask for three cards that you all hold yourself, because you
will not gain any information from the other players that way. However, you may

1.3. Simplifications 7

successfully mislead your opponents that way. By tricking an opponent into mak-
ing a false accusation, based on the incorrect assumption that you have not asked
for your own cards, you may get another turn and a chance to win. Otherwise,
that opponent may have won instead, by preferring a different accusation (from
the false one that he actually made), that turns out to be correct.

Example 8

Apart from the issue what suspicion should be preferred, actual Cluedo players do
prefer some suspicions over others. It is claimed to be a good strategy to try to
prevent opponents from reaching a specific room. Suppose you want to prevent
player 2, who plays white, to reach the kitchen. You can try to prevent that by
suspecting white to have committed the murder in the ballroom, in your turn.
Also, actual Cluedo players often follow the tactic of asking for a combination of
cards from which they hold one or two cards themselves. If we take (a compu-
tational model of) limited processing capability and limited short-term memory
into account, this behaviour may be quite justified, although not rational. See,
for a different application, [Taa99].

1.3 Simplifications

Before we model Cluedo game states and describe Cluedo game actions, we make
some simplifications: We disregard the role of the board, dice and pawns. We only
model actions that affect the knowledge of the players. We ignore that there are
different types of cards. As we are only interested in the dynamics of knowledge,
the second simplification is obvious. As concerns the first and third, we will argue
that the difference with the real game is less than one may think.

Board, dice and pawns Board, dice, and pawns determine which suspicions
players can make. The outcome of the throw of dice determines which rooms
you can reach with your pawn, and therefore about which rooms you can utter
a suspicion. Also, when voicing a suspicion, the pawn for that guest is moved to
the room of the suspicion. Therefore the player with that pawn has to start his
next move from that room. Again, that determines what room that player can
reach later.

Disregarding board, dice and pawns is less of a simplification than one might
think, because one can generally reach a room, and because it is totally unclear
why some suspicions should be preferred over others.

For each player, the first move in the game starts from his initial pawn position.
For Peacock, the closest room is reached from that position in 7 steps, for the
other pawns this is 8 steps. Therefore, the player playing with the pawn Peacock
will reach a room with probability 2. For the other players the probability is 3o

Other moves typically start from a room. From any room on the board, the
number of steps needed to reach the closest room is at most 4. (From a corner

8 Chapter 1. Cluedo

room one can reach the opposite corner with any throw.) The average outcome
of a throw of — two — dice is 7. Therefore, the probability to reach some other
room in one’s move is at least %. Also, one may ask a different question about
the room one already occupies.

Actions that do not change knowledge Some sorts of action do not effect
the knowledge of players: suspect, and accuse. Although a suspect action has
no epistemic effects, it raises the issue to which noshow and show actions are
the answer. We will model the combination of a suspicion, i.e. a question, with
an answer to it as a game action in the more technical meaning of the word.
Similarly, an accuse action raises an issue, although not publicly. If an accusation
is confirmed by a check action, that combination has epistemic effects. However,
as the game is over, we are not interested in those effects. If the accusation is
falsified by the check action, the players are just being told that it is unsuccessful.
In that case there are no epistemic effects. An announce action is not strictly a
move according to the rules of Cluedo, also it is always to your disadvantage.
Therefore, we will only model the actions noshow, show and nowin.

Types of cards Not just any suspicion can be made but only a suspicion
consisting of a card of each type. This restricts the strategies for gathering infor-
mation. Also, not just any three cards lie on the table but one of each type. This
restricts the number of different deals of cards that players have to consider. In
the initial state of the game there are 6 X 6 x 9 = 324 possible combinations of
cards on the table. Without this restriction, there would have been (231) = 1330
to consider.

The epistemic consequences of a show action are independent of the type of
card that is shown. Also, the issue of strategic preference seems complicated
enough when all cards are of the same type. Therefore, we have abstracted from
that information too.

1.4 Historical note

Cluedo was invented by Anthony E. Pratt, a solicitor’s clerk, in 1944. He said
to have invented it when he was temporarily laid off because of World War II
and instead doing a, mostly boring, fire brigade duty. Cluedo was first marketed
by Waddington’s Games, England, in 1949. In the USA, the game is called Clue
instead of Cluedo. Anthony Pratt died in 1994, in obscurity. His death only
became generally known in 1996, after a public appeal by Waddington’s (he had
already sold his rights to the game in the fifties). His tombstone reads ‘inventor
of Cluedo’.

Chapter 2

Knowledge games

The interaction between logic and game theory is currently of interest to the
scientific community. Well-known are game theoretical foundations for logical
semantics, and other applications of game theory in logic. For applications of
logic in game theory, we may mention the formalization in logical theories of game
theoretical notions such as game trees, plays of a game, and equilibria. One issue
of interest in this area are games where the information contained in a game state
and the information change due to a game action may be rather complex, and
therefore become objects of study in themselves. Cluedo is a concrete example of
such a game.

Given some simplifications, the game of Cluedo is nothing but a game where
a finite number of cards (in this case 21) are dealt over a finite number of players
(in this case 7: six ‘real’ players and the table), and where actions consist of either
questions and answers about cards, or are announcements about (not) winning.
A deal of cards is a function from cards to players. We will show that game states,
game actions, and the transitions resulting from their execution can, amazingly,
all be defined by operations on the function space of deals of a given finite number
of cards to a given finite number of players.

We call Cluedo and similar games knowledge games. A knowledge game is
defined by a deal of cards over players, a set of possible game actions (or moves),
an order protocol to determine who is to move next, and a procedure to determine
who wins. Cards do not change hands during a play of the game, although they
may be shown. Players know their own cards and know how many cards all players
have. The state of the game is fully determined by the deal of cards and by the
game action sequence, initially empty. Although cards do not change hands,
knowledge about cards does change during the game, and only that: therefore we
have named these games knowledge games.

In section 2.1 we give an example of a very simple knowledge game, played
by three players each with one card. In section 2.2 we discuss deals of cards. In
section 2.3 we define the state of a game, as a pointed multiagent S5 model. In
chapter 3 we will continue the treatment of this topic on a logical level: initial
knowledge game states can be described in a standard multiagent epistemic log-
ical language. In section 2.4 we define game actions. In section 2.5 we define
the execution of a game action in a knowledge game state. In chapter 4 we will

10 Chapter 2. Knowledge games

continue the treatment of this topic on a logical level: game actions can be de-
scribed as knowledge actions in a multiagent epistemic logical language that also
contains dynamic modal operators for these knowledge actions.

2.1 Three players and three cards

Even when reduced to a knowledge game, the game of Cluedo is rather complex.
We start by giving an example of a simpler knowledge game. The game for three
players each holding a card, is the simplest kind of knowledge game that still
contains most of the features that we consider interesting.

Example 9 (The hexa game)

Consider the following game. There are three players. They are called 1, 2 and
3. There are three cards. The cards are called red, white and blue, or r,w,b
(the colours of the Dutch flag). Every player is holding one card. Players can
only see their own cards. A player can ask a question to another player. The
question should always be answered. Also, after the question has been answered,
the requesting player may announce that he knows what the deal of cards is. The
first player to do so, wins the game. Players never lie, are perfect reasoners, know
the kind of game they are playing, etc. We call this game the hexa game.

Only some kinds of question are permitted. A player can ask another player
for one particular card, or for one of two cards, or for for one of three (one of all)
cards. A question for one of three cards is a question for ‘his card’. It is a rule of
the game, for how many cards one can ask. In other words: you cannot choose
between asking for one card or for two cards, depending on how informative you
expect an answer to be.

Suppose the actual deal of cards is: 1 holds red, 2 holds white, and 3 holds
blue. We call that deal: rwb. Suppose player 2 asks player 1 “do you have the
red or the blue card?”. Given that the actual deal of cards is rwb, we can imagine
player 1 to respond by saying “yes” (i), by privately showing player 2 the red card
(ii), by only showing player 2 the red card (iii), or by publicly (face up) showing
player 2 the red card (iv). In (ii), by ‘privately’ we mean that player 3 is not
aware of (and does not suspect) the question being answered. In the resulting
state player 3 would incorrectly still ‘know’ that 2 does not know that 1 holds red.
Therefore, answer (ii) does not make sense in a game. In (iii), by ‘only’ we mean
that player 3 is seeing that a card is being shown, and that 1 and 2 know that
he is seeing it, etc., but that 3 cannot see that it is the red card. In knowledge
games we permit only answer (iii). Answer (iv) is also equivalent to saying “yes,
namely the red card”.

Apart from showing a card, there is one other type of answer to a card request.
If, given deal rwb, player 2 asks player 1: “do you have the blue card”, player 1

[43

says: “no”. Thus we allow two types of answer to a request: showing a requested

2.2. Deal of cards 11

card to the requesting player, and to him only; or saying that you do not have
any of the requested cards. The combination of a request with an answer is a
game action.

We now play an entire game. The deal of cards is rwb. The questions must
be for one of three cards (a card). Player 2 starts. Player 2 asks player 1 for his
card. Player 1 shows player 2 the red card. Player 2 says that he knows the deal
of cards. Player 2 has won. Player 2 cannot lose this game.

We play again. The questions must be for one of two cards. Player 2 starts.
Player 2 asks player 1 for the red or the white card. Player 1 shows player 2 the
red card. Player 2 says that he knows the deal of cards. Player 2 has won. Player
2 cannot lose this game.

We play again. The questions must be for one card. Player 2 starts. Player
2 asks player 1 for the red card. Player 1 shows player 2 the red card. Player 2
says that he knows the deal of cards. Player 2 has won. Player 2 could have lost
this game by playing differently: Player 2 starts. Player 2 asks player 1 for the
white card.! Player 1 answers ‘no, I don’t have it’. Player 2 ends his move. It is
now the turn of player 3. Player 3 says that he knows the deal of cards. Player
3 has won.

2.2 Deal of cards

We continue by introducing relevant concepts for knowledge games.

Definition 1 (Deal of cards)
A deal is a function d : C — A from a finite set C of cards to a finite set A of
players or agents.

We can think of each player a holding the cards ¢ € d !(a). Observe that some
players may hold zero cards. We generally name the players A = {1,2,...,n},
and the cards C with lower case letters. We sometimes distinguish a nonactive
player, the cards on the table so to speak. In that case we assume 0 € A and
take player 0 to be the ‘table’.

We assume that deals are total functions, i.e. that all cards have been dealt.
This is without loss of generality: suppose a deal d were partial, so that some
cards are not dealt to any player, and, so to speak, remain in the stack of cards.
We assume these ‘remaining cards’ to be ‘on the table’; i.e. they are held by the
imaginary player 0.

! Although players are perfectly logical, we do not require them to be perfectly rational:
they know all the deductive consequences of answers to their questions, but they cannot justify
preferences among questions.

12 Chapter 2. Knowledge games

Notation Let d be the deal of three cards over three players such that 1 holds
red, 2 holds white, and 3 holds blue; thus d(r) = 1, d(w) = 2, d(b) = 3. We
introduce a shorthand notations for deals. We leave the players implicit and list
only the cards they hold, assuming the numerical order of players, (possibly)
separated by vertical bars. In this case we get r|w|b, or simply rwb, as above. If
a player doesn’t hold any cards, write ¢. If player 3 holds a fourth, yellow (y)
card as well, we get r|w|by (or rwby). If, instead, player 2 holds no card at all,
we get 7|e|b (or reb).?

We assume that players see their own cards, and see how many cards every
other player holds. This induces an equivalence relation on A€,

Definition 2 (Accessibility between deals of cards)
Let a € A, let d,e € A®. Then:

d~sesd(a)=e'(a)andVa € A : |e *(a)| = |d (a)|

Let a € A,B C A. We write ~p:= (U,cp ~a)* and ~up:= U,cp ~a (see
also appendix A).

Definition 3 (Size of a deal of cards)
Let d € AC. Write |A| = n. The size of deal d, notation f#d, lists for each player
the number of cards he holds:

Deals where all players hold the same number of cards are said to be of
the same size. Unless confusion results, we delete the vertical bars and write
d7*(1)...d7'(n). Thus f(r|w|b) = 1|1]1 (or 111), §(r|w|by) = 1|1]2 (or 112), etc.

Definition 4 (Set of deals of the same size)
Given a deal d € A€, Dy, is the set of deals of the same size as d (the set of deals
where all players hold the same number of cards as in d):

Dy = fe € A® | §d = fe}

Given a deal d, another deal e is relevant for the players in (that state of)
the game, if all players have the same number of cards in e as in d, and if e is
~ a-accessible from d, i.e. if e is it not publicly known to be ‘irrelevant’; in the
common meaning of that word.

2A alternative shorthand notation is the one where we leave the cards implicit and list only
the players that hold them, assuming a fixed order of cards. ILe., the sequence i1...7/c| stands
for the deal where the m-th card is held by player i,,. Instead of rwb we get 123. This notation,
although more economic than its alternative, appears to confuse logicians.

2.2. Deal of cards 13

Definition 5 (Set of relevant deals)
Let d € AC. Then

Dy = [d]NA

is the set of relevant deals given deal d.

Instead of d' € D; we say that d' is relevant. This means that a player has
to take d' in consideration when reasoning about an initial state of the game for
deal d (see section 2.3, next). If there are more than two players, all deals in Dyy
are relevant at the beginning of a knowledge game for an actual deal d. In the
proof of this proposition, we use the following notion of transposition of a deal:
let d € AC, then dc,] is the deal such that d[c, ¢'|(c) = d(c'), dle, c](¢') = d(c),
and for all other cards ¢ € C, d[c, c'|(¢") = d(c¢"). Note that fd[c, ¢] = td.

Proposition 1
If |A| > 2, then for all d € AC, Dy = Dy,.

Proof We may assume C # () (otherwise, both Dy and Dy, are undefined). If
there is one card only, all players know the deal of cards, because they can see
who holds that card, and Dg = Dyq = {d}. Now suppose there is more than one
card. Let e € Dyy. Let a; € A. Let n be the number of cards that a; holds in d
but doesn’t hold in e, in other words: the number of differences between d and e.
We now prove by induction on n that d ~4 e.

If n = 0 then d7'(a;) = e !(a1) (a; holds the same cards in d and e), thus
d ~g, € and thus d ~4 e.

Suppose d !(a;) and e !(a;) differ in n+1 cards for player a;. As there is more
than one card, there are ¢, ¢’ € C such that d(c) = ay, e(c) # a1, e(c') = a1, and
d(c') = ag # ay. As there are more than two players, there is a player as # a1, as.
It holds that d ~g, d[c,c']. As d]c, (] differs in n cards from e for player a;, by
the induction hypothesis we can assume d[c,c'| ~5 e. From d ~,, d[c,c] and
d[e, '] ~a e follows d ~4 e. [

A different way to express proposition 1 is to say that the equivalence relation
~a is the universal relation on Dys: ~a = Dy X Dyg. One can even prove?
that the maximum length of a path to link two arbitrary deals is at most three:
(~ua)® = Dya X Dy4. As (Dyq, (~a)aca) is nothing but a multiagent S5 frame,
this property may help in characterizing it. We have not pursued that topic
further. For the characterization of a different type of multiagent frame, see
[Lom99, LvdMR00, LR98a].

3Proof suggested by Gerard Renardel and by Josje Lodder. Let d € A€. Let d; # d € Dyg.
Let a1 # a2 # as € A. Let k = |d (a3)|- If k = 0, then d; ~,, d2. Otherwise, choose k cards
'y ...,cf from C\ (dy'(a1) Udy ' (az)). Let da be of size #d such that ds(c) = a; < di(c) = a1
and such that d3(c') = ... = d3(c*) = a3. Let d4 be of size fid such that ds(c) = a2 < da(c) = a2
and such that dy(c!) = ... = da(c*) = a3. Then dy ~,, d3 ~ay ds ~qa, do- [|

14 Chapter 2. Knowledge games

If there is only one player, he must necessarily hold all cards. If there are two
players, each of them knows that the other player holds all other cards. Therefore,
both players have full knowledge of the deal of cards. Only the actual deal of
cards is relevant to them:

Fact 1
If there are only one or two players, ~ is the identity on Dyy.

2.3 State of the game

A model for the state of a knowledge game should contain all the information
that the players have about the cards and about each other. Any game state is
represented by a pointed multiagent S5 model. In the initial state of the game,
players only know their own cards. In other game states, they may know more
than that. We give some examples.

2.3.1 Initial state of a knowledge game

To represent the initial state of the game for the actual deal of cards d € AC,
we propose a pointed S5 model. Its worlds are deals, its domain is the set Dyq
of deals of the size of d, its point is the actual deal. We write it in sans serif
font, in order to distinguish the actual deal from other relevant deals. For each
agent a € A, the accessibility relation between worlds is the equivalence relation
~, as defined in definition 2. Two worlds/deals are indistinguishable from each
other for a, if they agree on his cards, and if in both deals all players hold the
same number of cards. Before we can define a valuation on the worlds, we have
to introduce atomic propositions: P is the set of |C|-|A| atomic propositions ¢,
corresponding to player a € A holding card ¢ € C. For any deal e € AC, V, is
the valuation such that V,(c,) =1 < e(c) = a. We now define a global valuation
V : Dy — P — {0,1} that maps a deal e to such a (local) valuation V, (with its
argument, the deal e, as subscript). We sum it up in the following definition:

Definition 6 (Initial state of a knowledge game)
Let d € A€, then the initial state of a game for actual deal of cards d is:

(<Dﬂda (Na)CLEAa V>7 d)
where:
VaEA:le,dz EDﬂd : di ~g dy & dfl(a):dgl(a)
Ve € Dyg:Vea € P: Ve(cy) =1 & elc)=a

Notation The model underlying an initial knowledge game state for actual deal
d is written Iy (I for imitial model), and thus the state itself is written (I4,d).
Instead of (Iy,d) we also write siq (si for state and dnitial).

2.8. State of the game 15

___3—wnes
nwes o,
27 g ensw
rwb—1—rbw ewn{ """"""""" 1 37 \
/ \ 78, g_—nesw
3 9 o - wens
/ \ S snew
bw wbh wrb —1—wbr swne ",
\ A\ \ 20 2
2 3 2 3 1 \ / .
\ / \ / 3 Cosenw -
brw—1— bwr \ nstw
wsne 3 - 5
25\~
esnw
(Tpw, bw) (hexa, rwb) (tetra, nesw)

Figure 2.1: Examples of initial knowledge game states

Figure 2.1 presents three initial knowledge game states. See also chapter 6. In
the figures, we assume reflexive access for all worlds for all agents, as the relations
~, are equivalence relations.

Example 10 (Letter)

The left picture in figure 2.1 represents the initial state (I, bw) = sip, for the
knowledge game for two players 1,2 and two cards b, w (black and white) with
actual deal of cards blw (or bw). The point bw is in sans serif roman font. Note
that the other deal w|b is not relevant given actual deal bjw.

Example 11 (Hexa)

The middle picture in figure 2.1 represents the initial state sy, for the knowledge
game for three players 1,2, 3 and three cards r, w, b with actual deal of cards r|w|b
(or rwbd). The point rwb is in sans serif roman font. We call the underlying model
hexa. There are six different initial states of that game, corresponding to choosing
a different deal as point in hexa. As the figure has the shape of a hexagon, it will
now be clear why we call the corresponding game the hexa game.

Example 12 (Tetra)

The right picture in figure 2.1 represents the initial state Sineqy for the knowledge
game for three players 1,2, 3 and four cards n, e, s, w (north, east, south and west)
with actual deal of cards n|e|sw (or nesw). The point nesw is in sans serif roman
font. Access for agent 1 is only given in some typical cases. We call the underlying
model tetra, because the figure has the shape of a semi-regular polyhedron called
a truncated tetrahedron.

16 Chapter 2. Knowledge games

2.3.2 State of a knowledge game

After the cards have been dealt and everybody has seen his cards, players can
learn about the cards of other players by means of game actions. Also other
knowledge game states can be represented by pointed multiagent S5 models. We
only require that agents at least know their own cards. In the next section, 2.4,
we then define a game action; the execution of a game action induces a binary
relation between such states.

Definition 7 (Knowledge game state)
A knowledge game state for deal of cards d is a pointed S5 model

(W, (~a)aea, V), v)
where v € W, and V4 =V, and:
Vwe W :3d' € Dy : Vo = Vg
and for all @ € A : Vwi,wy € W :Vdy,dy € Dyq :
(w1 ~g w2, Vayy = Vay, Va, = Viy) = dyH(a) = dy ' (a)

Notation Unless confusion arises, we prefer to name worlds by the deals that
atomically characterize them. So, worlds that are named by the same deal only
differ in their access to other worlds. We then can continue to write d for the
point of a state, instead of v. We often write s, or sq4, for a knowledge state for
dealing d with point v.

As the game progresses, more and more deals of cards become irrelevant, in
the sense that all players are known not to consider them any longer. This is
captured by the following definition.

Definition 8
Let s = ((W, (~a)aea, V),v) be a knowledge game state for d € A€, then:

D,={d €Dy |3weW: :w~pvandV,="Vy}

Even though it is now clear what kind of mathematical objects knowledge
game states are, this does not clarify what agents actually know in such a state
of the game. In chapter 3 we characterize the knowledge of the agents in initial
knowledge game states, by describing these states in a multiagent epistemic logic
with common knowledge operators. Because knowledge game states are finite
models, their description can be computed with standard modal techniques, see
[vB98, BM96]. The description of the model underlying the initial state of a
knowledge game for deal d € A€ is equivalent to (the S5, axioms plus) \/ D, O
and Ayca Agep,(Kalg <> Mody). Here, d is the atomic description of world
(deal) d', and §% is the part of that description about agent a (i.e. the conjunction
of atoms ¢, or their negations that describe the cards of a).

2.4. Game action 17

2.4 Game action

Given a knowledge game state, we now define game actions for that state. First
we give an example of a game action and the knowledge state that we expect
to result from its execution. Then, we speculate on a desirable format for game
actions. Only after that, we present the definition of game actions. We conclude
with applying the definition to the example action and with an overview of game
actions in knowledge games.

Example 13 (1 shows red to 2)

In the initial state (hexa,rwb) of the hexa game, player 2 asks player 1 “please
show me your card”. The question is public: 3 hears it too. Player 1 answers
this request (as in response (iii) related to example 9 on page 10) by handing his
red card face down to player 2. Player 2 then looks at that card, after which he
returns the card face down to player 1.

;wb—l—rb% ;wb—l—rbw
3 2 3
/ 1 shows red to 2 /
wr{ N 1 —ybr = wrb —1— wbr
2 3 2 3 3 3
N/ N/ / /
brw—1—bwr brw—1— bwr

Figure 2.2: Player 1 shows (only) player 2 his red card

The resulting state of the game is pictured on the right in figure 2.2. In the
resulting game state, player 2 knows that player 1 has the red card. As 2 also
knows his own card, and he knows that there are three cards, he therefore also
knows that player 3 holds the blue card. In other words: 2 knows the actual deal
of cards. Players 1 and 3 don’t, but compared to the initial game state, they still
have learnt something. Now they know, e.g., that player 2 knows the actual deal
of cards.

Before we can compute game states resulting from game actions, we have to
define what an action ‘is’. In chapter 4 we define a logical language to describe
such actions. Here, we will investigate game actions from a purely semantical
point of view: juggling with sets of deals, so to speak. So what is happening
here? Player 2 knows that player 1 holds a card. In other words, 2 is aware of
the partition of hexa induced by the equivalence relation ~;. By asking player
1 for his card, player 2 is presenting to player 1 the three different equivalence
classes of ~q, for 1 to choose from: {rwbd,rbw}, {wrb,wbr}, and {brw,bwr}.
Player 1 hasn’t much to choose, in this case, and has to answer by affirming that

18 Chapter 2. Knowledge games

his information state (i.e. the set of worlds that he considers to be possible, see
appendix A) is {rwb, rbw}, which corresponds to 1 holding the red card. Player
3 does not receive the answer in the detail in which player 2 gets it. E.g. 3 cannot
distinguish the answer red from the answer white.

A game action is a question with an answer to it We suggest that, just as
in the action of example 13 where 1 shows red to 2, all game actions in knowledge
games are the combination of a question with an answer to it. Another parameter
of crucial importance is what other players perceive of the answer to the question,
just as in the action where 1 shows red to 2. We call that the publicity of the
game action.

Definition 9 (Game action)
Let s = ((W,(~a)aca,V),d) be a knowledge game state. A game action p for
state s is a quintuple

p={(q,Q,r, R, pub)

where ¢, € A, @) is a covering of W that is coarser than ~,, R € @), and pub is
a function from agents a € A to equivalence relations pub, on @), and pub, is the
identity ‘=" on Q.

For ‘coarse’ and ‘covering’, see appendix A. In definition 9, g is the requesting
player, @ is the Question, r is the respondent, R is the answer or Response, and
pub is the ‘publicity’: how and what the respondent r makes public to other
players of his answer to g. We can think of the elements Ry, ..., Rjg of Q as
‘possible answers’ or ‘alternative answers’. Obviously, r is informed about his
own behaviour: the respondent can distinguish all possible answers from each
other. In other words, the equivalence relation pub, on the set of alternatives

Q@ is the identity ‘=’. We do not assume that the requesting player ¢ is also
fully informed, corresponding to pub, = ‘=’, although this is often a reasonable
assumption.

Player 0 (the table), if there is one, cannot ask questions. Also it is only
allowed to respond in certain reactive ways, and not proactively. What ways is
determined by pub. You can draw a card from a stack on the table, and let the
table respond to the request “show me one of your cards” in that way. You cannot
ask the table “do you have the red or white card” and get “no” as an answer, or
have it ‘decide’ which one of these two cards to show you.

Definition 10 (Executable game action)
Let s = ((W, (~a)aca, V), w) and u = {(q,Q,r, R, pub). Game action u is ezxe-
cutable in knowledge game state s if the answer R contains actual world w:

u is executable in s & w € R

2.4. Game action 19

In simpler words: a game action is executable if the respondent r answers the
question truthfully; we may also say: if r’s information state, i.e. [w].,, is con-
tained in the answer. In section 2.4.2, definitions 9 and 10 will be applied to
example 13.

2.4.1 Publicity

Because the concept of ‘publicity’ is central to our approach, we give some moti-
vations for it.

Knowledge games are all about getting information. The way to obtain in-
formation is to ask questions, with the expectation of getting certain answers,
or to observe others asking and responding. We are only interested in (perfect)
information: what other players know, what cards they hold; and not in strategic
information: how likely it is they will ask a certain question, etc. Given this
restriction, we can state that obtaining information (from questions and answers)
is learning about the information state of the respondent. This ‘learning’ is not
just individual but on the level of subgroups that gain common knowledge about
the information state of the respondent.

There is a smallest nonempty subgroup Br C A — the broadcast unit so to
speak — that receives the answer R to ¢.* Obviously r € Br. Often, ¢ € Br. If
the broadcast unit Br = A, then the response R is publicly learnt. Otherwise,
the broadcast unit Br is contained in at least one larger subgroup B’ C A. For
the players in B’ that are not in Br, that group Br learns answer R might be just
one of several alternatives. For all they know, Br learns an alternative R’ € @
that differs from response R. Or instead of Br learning R, a different subgroup
B" C B’ learns R. Even then, r € B”, because the respondent r controls the
publicity. Every such subgroup B’ that is smaller than A, is again contained in a
larger one for which analogous restrictions hold. At some stage the entire group
of agents A learn something: every action must have a public part.

If an action would not have a public part, some agents would learn nothing
and would therefore think that nothing happened. In that case they have false
knowledge of the state of the game: they ‘know’ that nothing happened, they
‘know’ that the broadcast unit Br has not learnt R, etc. As they do not consider
the actual state of the game to be possible, the resulting pointed multiagent modal
model is not reflexive and therefore not an S5 state, so certainly not a knowledge
game state.

We only require that learning subgroups contain the respondent r, at whatever
level of the transmission. We might additionally have required that subgroups

4Strictly speaking, we mix up syntax and semantics here: one doesn’t learn R but one learns
a proposition pr with interpretation R. As our models are finite we can safely assume that
such a proposition exists. We postpone introducing the logic to chapters 3 and 4.

20 Chapter 2. Knowledge games

also contain ¢, the requesting player. We haven’t done that, because we also
want to model actions such as: ‘the respondent r showed a card to the requesting
player ¢ and his other card to player a’.

This may seem rather complex, but the very simple way to fulfill these con-
straints is to define for each agent a an equivalence relation pub, on the set of
alternative answers of a game action, as in definition 9. Having done that, for
each subgroup B € A we can, if so desired, compute pubg (i.e.: (|J,cppPub,)?)-
The equivalence class of ~g that contains the answer @Q stands for what subgroup
B learns in that game action.

2.4.2 Examples

Example 14 (1 shows red to 2, continued)
In example 13 we described the game action of 1 showing red to 2. This corre-
sponds to the following game action:

(2, {{rwd, rbw}, {wrb, wbr}, {brw, bwr}}, 1, {rwb, rbw}, show)

Player 2 asks the question. The question is {{rwb, rbw}, {wrb, wbr}, {brw, bwr}},
i.e. the three equivalence classes of ~;. Player 1 answers the question. The answer
is {rwb, rbw}. This corresponds to 1 showing the red card. The publicity show
is defined as follows: show; and shows, are the identity ‘=" on the question, and
shows is the universal relation U on the question.

According to definition 10, the actual deal of cards rwb should be contained
in the given answer {rwb, rbw}. This is indeed the case. Therefore this game
action is executable in initial state (hexa, rwb).

For player 3, the action where 1 shows red is indistinguishable from the action
where 1 shows white. Because 3 holds blue himself, he does not consider that 1
actually shows blue, so that the action where 1 shows blue can be distinghuished
by player 3 from the action where 1 shows red. However, because 1 doesn’t know
that 3 holds blue, 1 can imagine that 3 can imagine that 1 shows blue, or in
other words: at some point or other, all three action alternatives have to be
taken into account: 3 is not publicly known to be able to distinguish between the
alternatives.

The observations on publicity in subsection 2.4.1 are mirrored by the com-
putations we can do on publicity show in example 14. Using the equivalences
show; = showy; = ‘=" and show; = U, we can compute for every subgroup of the
public {1,2,3} what that subgroup has learnt. E.g. show;s is also the identity,
whereas show;3 is, again, the universal relation: 1 and 3 do not ‘share’ that the
action of showing blue can be eliminated, as pointed out in the previous para-
graph. Also, show;ss is the universal relation: it is not publicly known which

action has been taking place.

2.4. Game action 21

The next example illustrates why the alternatives are only required to cover
the domain, and not to partition it. If the alternatives overlap, the responding
player may choose from the alternatives that contain his information state:

Example 15

Assume initial knowledge game state (hexa, rwb). Consider the following action:
Player 2 (publicly) asks player 1 “please tell me a card that you do not hold”.
As a response player 1 whispers in 2’s ear “I do not hold white”. Player 3
cannot hear the answer, although he knows that an answer has been given. This
game action is described as follows; abbreviate {wrb, wbr, brw,bwr} as Rnotred,
{rwb, rbw, brw, bwr} as Ruotwhite, and {rwb, rbw, wrb, wbr} as Ruotbise:

<2a {Rnotreda Rnotwhitea Rnotblue}a 1’ Rnotwhitea 5h°W>

Again, show; and shows are the identity and shows; is the universal relation on
the question. The alternative answers indeed cover the domain. E.g., R stwhite =
{rwb, rbw, brw,bwr} is the union of the two classes {wrb, wbr} and {brw,bwr}
of ~;. The alternatives also overlap, e.g. Rjowwhite a0d Ryotbive: in the given state,
player 1 could also have answered that he doesn’t have blue.

In a knowledge game state where a player holds more than one card, he can
choose between cards to show, given a request:

Example 16

Consider the state on the right in figure 2.1 on page 15, where player 3 holds the
south and the west card. If player 2 asks player 3 for a card, player 3 may choose
between showing south and showing west.

In chapter 4, we introduce a multiagent dynamic epistemic language for de-
scribing game actions. For example, the game action of 1 showing red to 2 is
described by the knowledge action Lis3(! L1271 U L1a?w; U L127b,). Informally, we
can read this expression as follows: 1 and 2 learn that 1 holds red, and 1, 2 and 3
learn that either 1 and 2 learn that 1 holds red, or that 1 and 2 learn that 1 holds
white, or that 1 and 2 learn that 1 holds blue. In chapter 6, the game action
examples from this section are described as knowledge actions and are treated in
more detail.

2.4.3 Game actions in knowledge games

Only the following sorts of action occur in knowledge games: showing a card, not
showing a card, winning, and not winning:

Definition 11 (Legal game actions in knowledge games)
Let s = ((W, (~a)aca, V), v) be a knowledge game state for a deal of cards d €
AC. The sorts of action show, noshow, win and nowin are defined as follows; the

22 Chapter 2. Knowledge games

middle column presents the abbreviated notations that we often use for them:

sort name definition

show showg”gl’“"ct} = (¢, {Ra,..., R, Comp},r, R, show)
noshow noshowg’{cl"“’ct} (¢, {Rc1, -, Ret, Comp}, r, Comp, show)
win win? = {(q,{Win,W \ Win}, q, Win,id)
nowin nowin? = (q,{Win, W \ Win},q, W \ Win,id)

We use the following abbreviations in the definition: R, stands for the union of
equivalence classes of ~, where a holds card ¢! € C; Comp stands for WA\U_ R,
the complement of the union of all alternatives that correspond to r showing card
¢'; Win stands for U!_, R;, the union of all equivalence classes R; of ~, where ¢
can win. Publicity id maps each agent a € A to the identity on the question, i.e.
id, = ‘=". Publicity show is defined as follows: show, and show, are the identity
on the question, and for all other agents a, show, is: universal on the question
minus Comp, and the identity on that complement: show,(Comp, Comp).

I

show and noshow In a show action player g asks player r to show him one
of t cards c',...,c', and r responds by showing (only) ¢ that card. In a noshow
action player g asks player » to show him one of ¢ cards ¢!, ..., ¢!, and » responds
by saying “no, I don’t have any of those”. Given some current state of the game,
it can be that one or more of the R, are empty. Also, if ¢ = |C|, the set Comp
is empty. In that case, we assume that they do not occur in the question: the
question may contain only nonempty alternatives.

win and nowin The actions of winning and not winning are public announce-
ments. In our game action format an announcement is a (public) question to
oneself that is publicly answered. If winning is knowing the actual deal of cards,
Win is the union of all equivalence classes of ~, that are characterized by a sin-
gle deal of cards. If there are none, Win = () and we assume that the question
consists of W only: the question may contain only nonempty alternatives. Of
course, W \ Win corresponds to the union of all the equivalence classes where g
cannot win.

The publicity functions show and id are the only common publicity functions
that we have encountered.

2.4.4 Questions can always be answered
To illustrate how general the game action format is, we give two more examples.

Example 17 (What you don’t know, is trivial)
Consider the state (hexa, rwb). Suppose player 2 asks player 1 “which card do I
have?”. Player 1 now answers “I don’t know”.

2.4. Game action 23

This appears to be a question that cannot be answered and therefore doesn’t
fit our game action format. It turns out that we can rephrase it to fit the format:

A question covers the domain of the game state, and is coarser than the
partition induced on it by the equivalence relation for the responding player, in
this case player 1. How does the question “which card do I have?” cover the
domain of hexa? The informative answers to “which card do I have” are “red”,
“white” and “blue”. Such an answer should contain the information state of 1,
or, in other words, 1 should know that 2 holds that card. We first investigate
the alternative corresponding to the answer “red”. In no equivalence class of ~,
or union of classes, does 1 know that 2 holds red. Therefore, to this alternative
corresponds the empty set (). Same for “white” and “blue”. To these ‘alternatives’
we add the complement of their union, in this case the entire domain of hexa:
D(hexa). The answer “I don’t know” corresponds to choosing that complement.
Therefore this game action is represented by:

= (2,{D(hexa)}, 1, D(hexa),id)

This is a trivial game action, where player 1 asserts that his information state is
contained in the domain of the state of the game. This was already known to all
players, so that there is nothing to be gained from executing this game action:
the resulting game state is, again, (hexa, rwb). In the initial state of the game it
is senseless to ask others about your own cards, and everybody knows that.

A question is commonly considered ‘trivial’, if the person asking knows in
advance the answer to his question. We suggest that a game action is trivial in a
technical sense, if that is the case for all players.

Definition 12 (Trivial action / question)
A game action (g, Q, r, R, pub) for state s,, is trivial, when for alla € A: [d]., C R
and VR #Re€ @ :w¢R.

Without the constraint expressing that w is only in R, the responding player
might have chosen a possibly informative (and therefore non-trivial) answer R’ #
R. Example 17 was an illustration of this definition.

We have thought of several other sorts of game action, apart from the five
introduced in this and in the previous subsection, but we do not pursue this topic
further.

We have modelled questions and answers in games. The logical modelling of
questions and answers is studied more generally by Jeroen Groenendijk in [Gro99],
‘The Logic of Interrogation’. In his approach, a question induces a partition on
a part of the domain of a state. In our approach, questions induce a covering of
the entire domain. Because questions are not partial on the domain, they can

24 Chapter 2. Knowledge games

always be answered. Because possible answers can overlap, the respondent may
choose between alternative answers to a question. Also because of that, the model
resulting from execution of a game action, i.e. a question/answer combination,
may be more complex than the model in which the question was posed. First, we
have to define the construction of that resulting model.

2.5 Computing the next state of the game

We know what knowledge game states are and how to model game actions. We
still have to define what game state results from executing a game action. We do
not need all the parameters of a game action for that: who asked the question
and who responded to it, is irrelevant for computing the information changes.
Stripped from these two parameters, what remains is a multiagent S5 frame that
we call a game action frame.

Definition 13 (Game action frame)
Let u = (¢, Q, r, R, pub) be a game action. To this game action corresponds the
pointed multiagent S5 frame:

poo= ((Qa pUb>’ R)

Note that the frame may consist of disconnected parts, both when the publicity
of the action is id as when it is show.

We can now define how to compute the next state of a game from a given
knowledge game state and a game action. A knowledge game state is represented
by a pointed S5 model. A game action is represented by a pointed S5 frame. The
computation of the next game state from the current state and an action, or in
other words the execution of that action in that state, can be seen as multiplying
the pointed S5 model for that state with the pointed S5 frame for that action: it
resembles the computation of a direct product (see appendix A).

Definition 14 (Executing a game action in a knowledge game state)
Let s = ({(W, (~a)aca, V), v) be a knowledge game state for actual deal d and let
u={(q,Q,r, R, pub) be a game action executable in s. The knowledge game state
s ® u resulting from executing p in s is defined as follows:

s® p = (W', (~)aca, V'), (v, R))

where:
W = {(w,R)eWxQ|weR'}
and Va € A :Vw,w' e W:VR , R"€Q:
(w,R) ~ (v, R") & w~,w and pub,(R', R")
Vwry = Vu

2.5. Computing the next state of the game 25

The general idea of this construction is, that the next state of the game consists
of all pairs (w, R') such that R' ‘could also have been’ the given answer and w
‘could also have been’ the (point of the) current state, plus access appropriately
defined. The computation of s ® u does not depend on the roles of the player
asking the question and the player responding to it. Therefore, instead of s ® u
we may also write s ® u~, where p~ is the pointed frame corresponding to game
action p. We still have to prove that the resulting model s ® p is a knowledge
game state. This is indeed the case:

Proposition 2 (s ® u is a knowledge game state)

Let s = ((W, (~4)aca, V), v) be a knowledge game state for deal d, and let p =
(g, @, r, R, pub) be a game action executable in s. Then s® i is a knowledge game
state for deal d.

Proof We check the requirements from definition 7:

* Vior = Va
This follows from V('v,R) =V,and V, = Vj.

e every world in W’ is characterized by a(n) (initially) relevant deal:
This follows from Vi, pny = Vi = Vi for some d' € D, C Dq.

e for all a € A, ~/ is an equivalence relation, which is obvious, such that:

e if players cannot distinguish between two worlds, they hold the same cards
in (the deals that characterize) those worlds:
If (w,R") ~! (w',R"), then w ~, w', so a holds the same cards in w and w'
and therefore also in (w, R') and (w', R"). [|

In general, it does not hold that the product of two connected structures is
connected. However, when executing game actions in game states, this property
is preserved:

Proposition 3 (Preservation of connectedness)
Let s = ({(W,(~a)aca,V),v) be a knowledge game state for deal d, let u =
(q,Q,r, R,pub) be a game action executable in s. Write s ® u as above.

If [v]., = W and [R]pu, = @, then [(v,Q)]., = W'".

Proof Let (w,R'),(w',R") € W'. From w,w' € W follows w ~5 w'. From

R R" € @ follows pub, (R, R"). Because w ~a w' there is a finite chain w ~y,

. ~g, W. Also, because for all a € A, pub, is an equivalence relation and
therefore reflexive, we have (writing infix) R' pub,, ... pub, R'; therefore, using
the definition of ~": (w, R) ~, .. ~, (w',R'), and thus (w,R') ~} (v, R').

Similarly for (w', R') ~, (w', R"). We now have (w, R') ~y (w',R') ~y (w', R"),
and therefore, as ~/, is an equivalence relation, (w, R') ~', (v, R"). [

26 Chapter 2. Knowledge games

Example 18 (Executing show%:;)

We apply definition 14 to the knowledge game state (hexa,rwb) and the game
action (2, {{rwb, rbw}, {wrd, wbr}, {brw,bwr}}, 1, {rwb, rbw},show) also abbre-
viated as showf:,,_ . Indeed the computations then result in the knowledge game
state on the right in figure 2.2 on page 17. In figure 2.3 we visualize the con-
struction. In the figure, we abbreviate {rwb,rbw} as r, {wrb,wbr} as w, and
{brw,bwr} as b. E.g. in the middle figure we have that (rbw,r) ~3 (brw,b) be-
cause rbw ~3 brw and shows(r,b). In the figure on the extreme right, we follow
the convention that we name worlds by the deals that atomically characterize
them.

rwb —1—rbw

/ \
3 2
4 1
wr —1—wbr
\ N
2 3 2 3
\ / \ / (rwb, r)-1-(rbw,r) rwb —1— rbw
brw—1—bwr / /
3 3
/ /
X = (wrbw) —1—(wbr,w) = wrb —1—wbr
3 / 3
r—3—w 3 3
\ / / / / /
3 . /3 (brw,b)-1- (bwr,b) brw—1— bwr
b

Figure 2.3: Executing action showf:; in state (hexa, rwb)

These matters are discussed in greater detail in chapters 4 and 5. We already
mentioned in subsection 2.4.2 that the knowledge action Ljs3(!Lis?7; U Lig?wq U
L157by) corresponds to the game action showf:;. We can now explain what that
correspondence is: the knowledge action Lio3(!L1277r U Lis?w; U L137hy) is in-
terpreted as a state transformer, i.e. as a relation between states. The pointed
frame for the game action show%;r_ is a semantic object. However, its execution
induces exactly the same relation between knowledge states, as that of the ‘cor-
responding’ knowledge action. The notion of an action as a semantic object is
similar to that in [Bal99]. See chapter 7.

2.6 Playing knowledge games

In the previous sections we have defined what a state of the game is, what an
action in the game is, and how to compute the next state of the game. We have
not actually played knowledge games. It will be clear that only with all this

2.6. Playing knowledge games 27

groundwork covered we can start to think about optimal strategies for playing
knowledge games. To investigate this is relevant for game theory, because playing
knowledge games is nothing but proceduralized information exchange in groups of
competitors, where the value of questions and answers depends on their content
and on the group members that receive that information.

First, we have to define the rules of the game. Then, we can describe strategies.
Only then, we can compute optimal strategies. In this section, we will touch upon
these different topics. Beyond this section, we will, regrettably, not pursue them
further in our research.

Rules for playing knowledge games The game actions that occur in knowl-
edge games are of the sort: show, noshow, win and nowin. A player can ask another
player for one of some cards, after which the other player replies by saying that
he doesn’t have them, or by showing to the requesting player one of the requested
cards. And a player can declare to have won the game, or, by finishing his move,
‘declare’ that he cannot win yet.

The order protocol restricts the order of actions in a game. These restrictions
are computed from the history of requesting players, i.e. from the first argument
of game actions. A play of the game consists of an alternating sequence of either
show or noshow actions followed by nowin actions, where the last of the show or
noshow actions is followed by a win action, the final action in the play. This
means that, after a show or noshow action, we always allow the requesting player
to announce that he has won. We could have chosen a different protocol, where
he also is allowed to guess, see below.

It is randomly determined who starts the game, i.e. who asks the first question.
The table is, naturally, not allowed to ask a question. Drawing a card from the
table is not permitted as an action.

Guessing We only allow players to announce that they know the deal of cards
(or to announce knowledge of another winning condition). Instead, we may allow
players to guess the deal of cards. This is just as in the real Cluedo game. A
player may only guess once during the game; if his guess is wrong, he lost. We
can define a new kind of knowledge game: a player may either ask for a card, in
which case a show or noshow action results, or he may guess the deal of cards, in
which case a win or nowin action results.” He may not do both during his turn,
as we allowed before. Therefore it is no longer the case, that after a show or
noshow action, a player performs a nowin action, unless he wins: now a player
may know, but he is only allowed to announce that knowledge in his next turn. In
the ‘guessing game’ a show or noshow action is always preceded by a nowin action,
instead of almost always followed by it. This suggests that we can redefine the
game actions show and noshow by adding an extra constraint on the question.

5Suggested by Ariel Rubinstein, personal communication

28 Chapter 2. Knowledge games

Winning the game In the example of three players and three cards, winning
was publicly announcing knowledge of the deal of cards. We can define weaker
criteria for knowledge required to win, e.g. knowledge of the cards of one particular
player. An example is knowledge of the cards on the table, as in Cluedo.

Game theory Knowledge games are competitive games of imperfect informa-
tion, where the only final outcomes are that players can win or lose. (See e.g.
[OR94, Bin92| for a general introduction.) The value of such a game is the prob-
ability for the starting player to win, given that players follow optimal strategies.
These are mixed strategies. For very simple knowledge games we can draw the
entire game tree and by backwards induction compute the value of the game. It
will be obvious that the value of a hexa game is 1: the beginner can always win in
the first move. A slightly more complex knowledge game is that for two players
and five cards, where each player holds two cards and one card is lying on the
table. Winning is announcing knowledge of the card lying on the table. Assume
that players are not allowed to ask the same question twice, so that the game tree
is finite. Both when a player is only allowed to ask for one card, and when a player
is only allowed to ask for one of two cards, the value of the game is g. Does the
first player always have the highest probability to win a knowledge game? What
is the value of Cluedo? In general, we have not answered these questions. The
individual preference relation for a player on the different questions that he can
ask, depends on the answers that he expects, on the probability distribution of
these answers, and on how they refine the partitions for all players. This is quite
hard to compute, if possible at all, see [Koo00].

2.7 Conclusion

We have defined the concepts of knowledge game, deal of cards, knowledge game
state, game action, and action execution. Questions and answers in games can
be modelled as game actions. We now can describe in mathematical detail actual
card games and card requests and responses in those games. Only given this
precise definition of game states and game actions, can we start to think about
optimal strategies for playing such games. Our results are relevant to the analysis
of communication in groups.

Chapter 3

Descriptions of game states

In chapter 2 we have defined knowledge games as a concrete example of games
where information change may be rather complex and its description therefore
of interest both to logicians and game theorists. From a given knowledge game
state and a game action that is executable in that state we can compute the next
game state. Therefore, we can compute any game state from an initial knowledge
game state and a game action sequence. This illustrates the need for a logical
description of initial game states. Although it seems to be rather clear what
the players know in an initial game state, their ignorance is less transparent, as
one easily overlooks game features. In this chapter we provide descriptions of
initial knowledge game states. The descriptive language is multiagent epistemic
logic. We assume a working knowledge of epistemic logic, see appendix A for
an overview, or [MvdH95, FHMV95, BARV00, HC84] for a general introduction.
We generally use notation as in [MvdH95]. The description of game actions
will be postponed to chapter 6. First we need to define a language for dynamic
epistemics, in chapter 4.

Why does a model not suffice but do we need its characterization, i.e. its
logical description? The model hexa models three players each holding a card.!
Many have never seen this model and may not even know how to interpret such
a relational structure, but can probably play a hexa game perfectly well. They
will even consider the game trivial: just ask about any card that you don’t know
and you will win. The model hexa encodes what players know about their cards
and about each other. But when they play, i.e. when they reason about their
knowledge, players do not use hexa but use a description of hexa. The description
lists properties of hexa such as ‘player 1 holds (at least) one card’: ry V wq V by.
That players use descriptions of models is even more obvious when we consider a
non-trivial knowledge game as Cluedo.

In section 3.1 we present the theory 33 that describes hexa. We prove that
indeed 33 describes hexa: all S53 models of 33 are bisimilar to hexa. From 33
follow various other formulas, that describe properties of the players’ knowledge.

In section 3.2 we continue with the general case: the knowledge game for a deal
d € A€ of |C| cards over |A| = n players. The S5, model Iy models its initial

1See figure 3.1 on page 30, or chapter 2

29

30 Chapter 8. Descriptions of game states

game state. We present the theory kgames for parameter d that describes Ig:
all §5, models of kgames are bisimilar to I4. From kgames follow various other
descriptions of the players’ knowledge, in particular, different ways to express
ignorance, and different ways to express knowledge of your own cards.

In section 3.3 we discuss the game state where the cards have been dealt but
where players haven’t picked up and looked into their own cards. It has a simpler
intended model prely and a simpler description prekgames. Again, we prove that
prely is unique. The model Iy results from prely by executing the action look of
‘turning cards’, thus providing an indirect proof that kgames describes I;. Details
are given in chapter 6.

In section 3.4, we compute the descriptions of Iy and prely by a fixed point
construction for finite models as in [vB98, BM96|, and we show how the results
relate to kgames and prekgames, respectively.

3.1 Description of hexa

In this section, we present the theory 33, that describes the S5; model hexa. The
knowledge state (hexa,rwb) has been introduced in chapter 2. It is the initial
state of the knowledge game for three players each holding a card, where 1 holds
red, 2 holds white, and 3 holds blue. Figure 3.1 pictures the model hexa.

rwb—1—rbw
/ \
3 2

/ \
wrb \— 1— }ubr

2 3 2 3
N/ \/

brw—1— bwr

Figure 3.1: The model hexa for three players each holding a card

What information do the players have in this model, regardless of the actual
deal of cards? They know how many cards there are, namely three. They know
that the cards are all different, namely one red, one white and one blue. They
know that each of them holds one card. Beyond that, if they hold a card, they
know it, and if they don’t hold a card, they also know that they do not hold it.
All this is publicly known. They don’t know anything else, and there seem to
be two sides of that ignorance. First, a player doesn’t know that another player
holds a specific card. Second, with the exception of his own card, a player can
imagine any card to be in possession of another player. All these constraints are
satisfied by the theory 33 (which can be regarded as either a set of formulas or
as the conjunction of these formulas).

3.1. Description of hexa 31

Definition 15 (33)
Theory 33 consists of the following three formulas:

see33 = /\a€{172,3} /\ce{r’w’b}(ca — K,cg)
deals33 := 6rwb \% 5rb’w \ 5’wrb V 5wbr V 5brw V 5bwr
dOﬂtknOWthat33 = Aa#a’€{1,2,3} /\CE{T,’w,b} _‘Kacal

See33 expresses that every agent can see his own card. Deals33 expresses that
there are only six deals of size 1|1|1. For dg4pc, read a; A—by A —cy A—ag Aby A—ca A
—ag A —b3 A c3. This is the (atomic) description of (world) deal abc. The concept
‘description of a deal’ will be introduced for the more general case in definition
18 in section 3.2. Dontknowthat33 expresses that players do not know the cards
of other players. In section 3.1.1 we discuss various properties of agent knowledge
in hexa that can be derived from the concise formulation in 33.

When we say that 33 describes hexa, we have implicitly quantified over all its
worlds. This has to be made explicit when we describe one of its states. Any state
(hexa, d) is described by the conjunction of its atomic description and common
knowledge of the theory 33. For example, 6., A C12333 describes the initial state
of the game where 1 holds red, 2 holds white and 3 holds blue.

Fact 2
hexa = 33

Proof Obvious. [|

We cannot substantially weaken the theory (by deleting formulas), because it
then would model structures of different game states. We now show that we do
not need to strengthen the theory, because in a technical sense hexa already is its
only model (33 defines the bisimulation class of hexa). This shows that we have
chosen the right model, and the right description, for the game state of three
players each holding a card.

Proposition 4
Let M = (W, {~1,~a,~3},V) be an S53 model of 33, i.e. M =33 . Then M is

bisimilar to hexa.

Proof Write hexa = (Wh {~8 ~B ~BY VA where Wh = {rwb, rbw, brw,
bwr, wrb, wbr}, ~% = {{rwb, rbw}, {brw, bwr}, {wrb, wbr}}, ~# = {{rwd, bwr},
{rbw, wbr}, {wrd, brw}}, ~% = {{rwb, wrb}, {wbr, bwr}, {rbw, brw}}, Vi = Vis
such that: V;]k(ll) = V;]k(jg) = ‘/;Jk<k3) =1 and V,;]k(p) = 0 for all other (SiX)
atomic propositions p.

First an observation on valuations of worlds in M. Because M, w |= deals33,
and because each one of the six exclusive alternatives in deals33 correspond to a
valuation, any world w € M has one of six different valuations Vyue, Vesw, Verw,

V;)’UM‘) Vwbr) V’wrb-

32 Chapter 8. Descriptions of game states

Now define relation R C (W x Wh) (R C (D(M) x D(hexa))) as follows:
Vw € M : Vu" € hexa : R(w,w") & V,, = VI
We prove that R is a bisimulation between M and hexa.

Forth: Let w,w' € M, let w" € hexa. Suppose w ~; w' and R(w, w"). We find
an R-image of w' for every valuation V,, on w. First suppose V,, = V,up. From
R(w, w") follows V', = Vi, = Viup. Therefore w" = rwb.

As M is a model of 33, M = see33. From M, w = see33 follows M, w = r; —
Kiry. From V(1) = Vews(r1) = 1 and M, w =y — Kir; follows M, w = Kir;.
From M,w = Kir; and w ~; w' follows M,w' = r;. Therefore V,r = Vi or
Vr = Vepw. I Vg = Vi, choose rwb as the RR-image of w' in hexa: obviously
rwb ~* rwb and also R(w', rwd). If Vy = Vypy, choose rbw as the R-image of w'’
in hexa: we now have rwb ~" rbw and R(w', rbw).

Similarly for the five other valuations V,, on w. Similarly for ¢ = 2 and ¢ = 3.

Back: Let w" w? € hexa, let w € M. Suppose w" ~} w! and R(w,w"). We
find an R-original of w” for every valuation szfh on w”. First suppose Vu’}h = Viws-
Obviously w" = rwb.

From rwb ~% wh follows w? = rwb or w* = rbw. If w? = rwb choose w itself
as the required fR-original of w®. As M is an S5 model, w ~; w, and we already
assumed R(w, rwb). Otherwise w? = rbw. We derive a contradiction from the
assumption that there is no w’' € M such that w ~; w' and Vi = V.

Suppose so. In other words: for all w' € M : w ~; w' = Vi # Vi
Suppose w ~7 w'. As before, from see33 follows M,w = Kjr; and from that
and w ~; w' follows M,w' |= r; and therefore Vi = Vi or Vi = Vypy. From
that and the assumption follows V,; = Vi, thus M, w' | w,, and thus, as w'
is an arbitrary l-accessible world from w € M, M,w E K;w,. However, also
M = dontknowthat33, thus M, w = —K;w,. Contradiction.

Therefore there is a w' € M such that w ~; w' and V,y = V,4,. By definition
we have R(w', rbw). So we have found the required 2R-original of rbw.

Similarly for the five other valuations VJ)‘h on w". Similarly for i = 2 and
1=3. |

We also present a more general version of this proposition, namely for any number
of players and cards (proposition 5 in section 3.2). Compared to that proof, the
proof for hexa is more explicit in what part of the description of hexa is (only)
needed in what direction of the bisimulation: see33 is essential in the forth part
of the proof, dontknowthat33 is essential in the back part of the proof. We present
both proofs, because this distinction cannot be made in the proof of proposition
5, as see33 and dontknowthat33 are combined into one formula for the general
case.

3.1. Description of hexa 33

3.1.1 Derived characteristics of hexa

One can define various other characteristics of hexa. We list a few:

Definition 16 (Other properties of agents’ knowledge)

players only see their own cards

dontsee33 := /\06{172,3} /\ce{r,w,b}(_‘ca — Kyc,)
there is at most one card of each colour
atmost33 = A,Luc 125y Neepruwpy 7(Ca /A)
there is at least one card per player
atleast33 := /\06{1’2,3} (ra Vwg Vb,)
there is exactly one card per player
exactly33 = A cr 23 (7a Vwa V ba)
players can imagine that others hold other cards
dontknownot33 = A, _cr1231 Accirwp (7¢a = 7Kamch)
players do not know that others hold other cards
dontknowother33 = A__ ;01931 Accrwpsy (7€ = 7KaCs)

In exactly33, Vv is ‘exclusive or’. All of these hold in 33. If property ¢ holds
in hexa, then C19333 E=gspc, Ciazp.? Because the three constituents of 33 and
the derived characteristics hold in all worlds of hexa, there is an implicit common
knowledge operator C}s3, that we have to make explicit for logical entailment.

Definition 17 (Equally strong)

Let ¥ be a set of LE formulas (given a set A of n agents). Then ‘¢ is equally strong
as ¥ in X’ (or ‘just as strong as’), notation ¢ <5 ¥, if both Ca(X—v+¢) Essrc,
Ca? and CA(E —p+ ’Qb)):SSEC’,I Chap.

We can show that:

atmost33 A atleast33 <33 deals33
exactly33 <33 deals33
see33 <33 dontsee33
dontknowthat33 <33 dontknowother33
dontknowthat33 <33 dontknownot33

Although the proofs need some combinatorial juggling, they are rather basic
and have been omitted. The proof of proposition 6 in section 3.2 gives an example.

2By ¢ =m 9 we mean that all models in class M that satisfy ¢ also satisfy 1; SSECs is
the class of S53 models plus access computed on these models for general (E) and common (C')
knowledge operators. See appendix A or [MvdH95].

34 Chapter 8. Descriptions of game states

3.2 Description of initial game states

In the previous section we have described hexa. In this section we generalize our
results for any number of players and cards. Let d € A€ be an actual deal of a set
C of cards over a set A of n players. The state of the game where these cards have
been dealt and where everybody has (only) looked in his cards is modelled by
the pointed S5, model (I4,d) = ((Dyd, (~a)aca, V), d), where (for all a,c,d', d")
d' ~g d" = d " (a) = d"'(a) and Vu(c,) = 1 < d'(c) = a. The set Dy is the set,
of all deals of size d. See also chapter 2. In this section we describe the underlying
model Iy. First, we introduce the concept of description of a deal.

Definition 18 (Description of a deal of cards)
Let d € A€. P is the set of all atoms c,, for a € A and ¢ € C. Define, for all
cq € P: signg(cy) := ¢q if d(c) = a and signg(c,) := —cq if d(c) # a. Then:

60 = N,,cp signa(ca)
53 = AceCSignd(ca)

Formula 44 is called the description of deal of cards d. Formula 63 is called the
description of the cards of player a. In a model where a world w is characterized
by a deal d, 4 is the atomic description of the world w. The following useful
equivalences hold:

5d & /\aEA 53
0 < Vao,q0a

We now present the theory kgames:

Definition 19 (kgames)
The theory kgames for deal d € AC consists of the two formulas:

deals := \/d,eD“ddd,
seedontknow := /\aeA/\d,eDud(Kada,HMaéd:)

Deals expresses that every world is atomically characterized by a deal of size
fd. Seedontknow expresses that agents only consider deals that correspond to
what they know of (the description of) their own cards. Similarly as for hexa,
an initial state (I4,d) is described by 64 A Cakgames. Because we have that
K03 — 83 (S5), seedontknow is equivalent to the conjunction of the two formulas
seedeal := A ., /\deD‘id (0§ — K,63) and dontknow := A ., /\deng(éflL — Mybq).
In a way, seedeal expresses the private knowledge of a player, dontknow expresses
his private ignorance, and deals expresses his public knowledge. In section 3.2.1
we discuss these and various other characterizations of the players’ knowledge in
I4, and in what respect they are generalizations of constituents of 33. We allow
ourselves the abus de language to call both seedeal and dontknow also constituents
of kgames, so that we can speak of other formulas as being equally strong as seedeal
or dontknow in kgames.

3.2. Description of initial game states 35

Fact 3
I4 is a model of kgames.
Proof Obvious. |

Just as for the case of three persons and three cards, we cannot substantially
weaken the theory. We now show that we also do not need to strengthen the
theory, because Iy is its only model. Together, this shows that we have chosen
the right model and the right description for the game state where a finite number
of cards are dealt over a finite number of players.

Proposition 5
Let M be an 55, model of theory kgames for deal d. Then M is bisimilar to Iy.

Proof Write M = (WM (~M), o, VM), We have that M = kgames. Write
I4 = (Dyd, (~a)aca, V), for the intended initial model I4. Observe that, because
M = deals, each world w € M has a valuation V,, = V; for some d € Dyy. Define

relation R C (WM x Dy) as follows:
Yw e M :Vd € Dy : R(w,d) = V,, = V4
We prove that fR is a bisimulation between M and I4.

Forth: Let w,w' € M, let d € Dy. Suppose that R(w,d) and that, for an
arbitrary a € A: w ~, w’. We find an R-image of w', in Dy, as follows:

Observe that Iy,d = 04. As V,, = Vg, also M,w = §4. Therefore M,w =
M,64. From that and M, w = seedontknow follows M, w = K,05. From that and
w ~F w' follows M, w' |= 63, 1.e. M,w' |F 4. 404 Therefore there is a d’ ~, d
such that M,w' = é4. That d' is the required R-image of w': note that d ~, d',
and that VM = Vj, because also, obviously, Iy,d’ = é4.

Back: Let d,d € Iy, let w € M. Suppose that R(w, d) and that, for an arbitrary
a€ A, d~,d. We find an R-original of d’, in M, as follows:

M, w |= (Sd

= reflexivity
M, w |= Ma5d

& from seedontknow
M,w = K,

=

V" ~g w: M, w" = 6%

iS4

V" ~g w: M,w" = Vg, g 0ar

=

Vw" ~gw:3d" ~p d: M, w" = bgn

36 Chapter 8. Descriptions of game states

& as d ~g d
V" ~gw:3d" ~g d' s My w" | dgn

=

V" ~g w: M,w" =V g, g ar

<~

V" ~g w: M,w" = 8%

=

M,w = K,d5

& from seedontknow
M, w)= Maédl

=

' ~pw: Myw' | g

Any w' satisfying the last statement is an R-original of d', as M, w' |= §4 says
that le = le.

Note that in the ‘forth’ part of the proof, we have only essentially used that, for
any agent a and deal d', M,04 — K,0%, whereas in the ‘back’ part of the proof,
we have also essentially used the reverse: K,05 — M,ds. Further, note that, in
the proof, we only use reflexivity of models; the proposition therefore holds for
all T,, (merely reflexive) models. [

Instead of this direct proof, there is also an indirect proof. The indirect proof
uses that the model I can be constructed by executing an action in a simpler
model for card games. See section 3.3.

3.2.1 Derived characteristics of initial knowledge game
states

We already mentioned that in S5, seedontknow is equivalent to the conjunction of
seedeal and dontknow. We discuss various other derived characteristics. We list
six formulas describing what players ‘see’, that are all equally strong in kgames.

Let d € AC a,b € A. We write fla for |d(a)|, f—a for |C| — |[d"%(a)|, and

(to be used later) f—ab for |C| — |[d !(a)| — |d~*(b)|. As fid is the size of deal d,
that lists the number of cards per player, we have that (fd)a = fa.

3.2. Description of initial game states 37

Definition 20 (Seeing cards)

see = NAuca Aecc(Ca = Kaca)
dontsee := A, a Acc(—Ca = Kamca)
seeall = A,ca Ac1¢...¢cﬁaec(Aga:1 ch = Ko N2,)
dontseeall := /\aeA /\cl;é...;écﬁ““EC(/\g;‘; —ct, — K, /\E:L —cl)
seedeal = A, A /\dEDﬁd (05 — K,0%)
dontseedeal := Acp Adep,, (703 = Kam07)

See is the straightforward generalization of see33, and dontsee of dontsee33:
for every agent and for every single card, if a player holds it, he knows that, and
if he doesn’t hold it, he knows that too. Instead, seeall and dontseeall express
that, if a player holds his given number of cards, he knows them all, and that if
he does not hold any other card, he knows that too. Seedeal (for parameter deal
d) expresses that, if a player holds his given number of cards and does not hold
any other card, he knows that. This is another way of saying that he knows his
local state: for a given player a, every atom c, or —¢, in 3§ corresponds to the
value of a ‘local state variable for that player’. Dontseedeal expresses that, if a
player is not in a given local state, he knows that too. Somewhat surprisingly, all
six forms of seeing are equally strong in kgames. The proofs are simple and use
deals. See is the most straightforward of all six, but does not combine nicely with
dontknow into dontknowdeal, the actual constituent of kgames.

Similarly to the case for hexa, there are different ways to express how many
cards players hold:

Definition 21 (How many cards)

all cards are different

atmost = A__;ca Acec(caAcp)
each player has (at least) a known number of cards
— # i
atleast = A ca Vs, setacc Nicr G
each player has exactly a known number of cards
exaCtIy = /\aeA VClyé...;éc“GEC /\ga:1 cfz

As in section 3.1, we have that deals is just as strong in kgames as atmost and
atleast together, and is just as strong as exactly.

Ignorance What you know in the initial state of a knowledge game is rather
straightforward: in hexa you know your own card, in the general case you know
your own cards. What you don’t know in the initial state of the game, in the
general case, is much less clear. We start with two examples.

38 Chapter 8. Descriptions of game states

Example 19

Consider the initial game state for the game for three players 1,2, 3 each holding
two cards, with actual deal kl|mn|op. How ignorant is player 1 in this state of
the game? Clearly, it is not strong enough that 1 does not know that 2 holds
a specific combination of two cards: for all ¢ # ¢/, = K;(ca A ¢,). Player 1 also
does not know that 2 holds any single card, which is stronger: for all ¢, ~Kjcs.
However, even that is not strong enough:

Suppose 2 has told the others that he holds one of m and n. After that, it
still holds that 1 doesn’t know any of 2’s cards: —=Kims and =K n,. However,
1 is less ignorant than before, because he now knows that 2 holds one of two
cards: Ki(ms V ny). Initially, he didn’t know that, indeed: for all ¢ # ¢ € C:
—Ki(ca V chy).

It appears that this is exactly the limit of his ignorance, because for some
combinations of three cards he does know that 2 holds one of them, e.g. K;(myV
ns V 02). Suppose not, then M;(—mg A —ny A —03), or in other words: it would
be conceivable for player 1 that player 2 did not have any of these three cards
m,n, 0. Because player 1 holds two other cards himself, k, [, there would then be
only one card left for player 2 to hold: card p. That player 2 holds only one card,
contradicts deals.

The ignorance in example 19 is generally described in a formula dontknowthat.
There are also two other interesting ways to express ignorance in the initial state
of a knowledge game:

Definition 22 (Ignorance)

dontknowthat := /\a#eA /\Cl?é___#cﬂw,,ec M, /\L‘i e
. o i o 4
dontknownot = A _yca Az zavec(Nizi 7ca = Ma NiZy)
dontknow :=

/\aeA /\d’eDud (53' A Maad’)

First, we explain what kind of ignorance the formulas express, by generalizing
on the ignorance in hexa.

Dontknowthat In hexa it holds that —K,cs, for all cards ¢ and players a # b.
Each player only had one card. In order to generalize this to more than one card,
we have to demand that —K,(c; V...V c}), for some r > 1. What is r, or, in other
words: how large is a’s ignorance? The extent of player a’s ignorance is, that he
doesn’t know that another player b has one from any of |C| — |d~!(a)| — |d~*(b)]
cards: A, spea Aoz so-avec 7 Ka \/g;‘;b ci. This formula is obviously equivalent

to dontknowthat.

Dontknownot In hexa, dontknownot33, expressing that a player can imagine
others to hold other cards, was just as strong as dontknowthat33. In the general
case, ¢, — M,cp for all cards ¢ and players a # b, is not strong enough: we

3.2. Description of initial game states 39

cannot derive that a can imagine b to hold a combination of two cards, e.g. What
is the largest conjunction of other cards that still must be conceivable? In other
words: for which 7 do we have to require that (—ci A... A=ch) — My(cg A...Acj)?
Obviously, we cannot imagine a player b to hold more than #b cards. Indeed,
r = #b is the required maximum.

Dontknow Dontknownot and dontknowthat are unsatisfactory, because they are
defined too much in terms of relations between players. In dontknow we directly
refer to the actual deal of cards: a player considers a deal of cards if, and only
if, it corresponds to his own cards. Put in different terms: a player can imagine
a global state if, and only if, it corresponds to his local state (cf. seedeal, in
definition 20). The following explanation may help to make it appear plausible:
Imagine the state of the game where the cards have been dealt but are still lying
face down on the table, so that the players do not know their own cards yet. In
that state, all players can imagine all deals in Dyq: A,ca Age Dy M_yé4. Looking
at cards corresponds to revising that maximum ignorance by conditionalizing on
your own cards: A\ ca /\dED“d((Sg < M,04). This is dontknow. See also section
3.3.

If there are only two players or there is just one card, all players have full
knowledge of the deal of cards and there is no ignorance (the ignorance formulas
have become trivial, or have disappeared). Therefore, we assume that there are
at least two players and more than one card. It turns out that the three ways
to describe ignorance are not equally strong (in kgames), but that dontknow is
strongest. The following example® clearly shows that. Further, dontknowthat
and dontknownot are equally strong (in {deals,see}, i.e. in kgames \ dontknow).
This is surprising, because dontknownot and dontknowthat appear to describe
complementary kinds of ignorance.

Example 20

Consider the initial game state for the game for four players 1, 2, 3,4 each holding
one card, with actual deal k|l|m|n (klmn). Suppose an outsider tells player 1
that kmln is not the actual deal of cards, so that K1—0gmin, i.6. "M1dgmin- Deal
kmlin is consistent with the local state, k, of player 1 in actual deal klmn, so that
M10gmin, should follow from dontknow: a contradiction. However, dontknowthat
holds: for any two cards, 1 can imagine that 2 does not have both. (Similarly,
dontknownot holds.)

3Suggested by Erik Krabbe.

40 Chapter 8. Descriptions of game states

Proposition 6 (Ignorance)
Let d € AC. Then:

dontknow =(geais;see; dontknownot
dontknownot =-(geaissee} dontknowthat
dontknowthat =(gealssee} dontknownot

dontknow =>{geais seey dontknownot:

Proof Suppose player a doesn’t have any of the cards c!, ..., c%: /\gil
Instead, a has cards c®*! ... cft#e Let d* be a deal of cards where a has those
cards and such that b has all the cards c', ..., cf®, thus /\zﬂi1 ci. Formula ¢t A ... A
cf+e is the subformula of 6% consisting of all positive atoms. Therefore, from
LA LA cfbtia and deals follows 6%.. From that and dontknow follows M, .
Because /\ b | ¢ is a subformula of the conjunction 04+, and because from <p — 7,b
follows Oy — <>7,b, it follows that M, /\z L 6. Therefore /\fb —ct — M, /\Z LG
As the cards ¢!, ..., c!® were arbitrary, we have shown that dontknownot.

dontknownot = geals see} dontknowthat:

Proof Suppose not. Then there are players a, b and cards c?, ..., ¢! such that
K, Vfﬁ?b ct. Regardless of whether a holds some of the cards c', ..., ¢t himself,
there must be at least fb other cards that a doesn’t hold, suppose: cal, ..., ca®.
In other words, we have that —cal A ... A —caf®. Applying dontknownot we get

/\ 1 cab Formula M, /\ ~, cal means that a can imagine that b holds the
#b cards cal,...,ca*®. From K,\/i,ci it follows that a knows that b holds at
least one more card, namely one of the (other!) cards c',...,¢™. Therefore, a can
imagine that b holds more than #b cards. From deals (that is known by a) follows
that b holds exactly #b cards. Contradiction.

dontknowthat =>(4eais seey dontknownot:

Proof Leta #b, c' # ..# c € C, and /\gil —ct. Further, suppose ca' #
.. # ca* € C and /\2; cal (so that all ¢’ and ca’ are different too). Note that
there are f—ab other cards left. If b does not hold all these other cards, and
given that a holds ca® # ... # ca®®, b must necessarily hold the cards ¢!, ..., c*.
From that, and because @ can imagine b not to hold these other cards (which
follows from dontknowthat), and because a knows his own cards (Which follows
from see) a can imagine b to hold the cards ¢!, ...,cf: M, /\Z 1 Cp- Therefore

b
/\3 _‘C _>M/\z lcb u

3.83. Description of the pre-initial state 41

3.3 Description of the pre-initial state

We have described the initial state of a knowledge game, where the cards have
been dealt and where players have looked at their cards. Now imagine that the
cards have been dealt but that the players have not looked at their cards yet.
Assume that everybody can see how many cards lie face down in front of each
player. Then players know the size (fd) of the actual deal: for each player they
know how many cards he has. They do not know anything else: they consider
every deal of that size a possibility. We call this state the pre-initial state. (Note
that it is not a knowledge game state, because it does not fullfil the requirement
that players know their own cards, see chapter 2.)

Definition 23 (Pre-initial state)
In the state (prely,d), all deals of size fid are possible for all players, i.e. each
player’s access on Dyq is the universal relation:

preId = <Dﬂd7 (Na)aEAa V>
where

Va € A :Vd",d € Dy : d" ~, d
vd' € Dﬂd : Vca eP: le(Ca) =1iff dl(C) =a

The theory prekgames for deal d describes the model prely:

Definition 24 (Theory prekgames for parameter deal d)
Let d € AC be a deal of cards. The theory prekgames (for deal d) consists of the
following formulas:

deals := Vd,ED“d O
dontknowany := A,ca /\d’eDud Mba
Fact 4
prely is a model of prekgames.
Proof Obvious. |

First we prove that the theory describes this model: all other models of prekgames
are bisimilar to prely. Then we show that the model Iy, describing the initial state
of a knowledge game, can be constructed from prely by executing a knowledge
action type (as defined in chapter 4) in prely. Using that, we can prove in an
indirect way that I4 is uniquely described by kgames.

Proposition 7
Let d € AC be a deal of cards. Let M be a model of prekgames for parameter d.
Then M is bisimilar to prely.

42 Chapter 8. Descriptions of game states

Proof Let M be a model of prekgames for parameter d. Write M = (WM,
(~M)oea, VM), We remind the reader that prely = (Dyg, (~a)aca, V). First
observe that, because M [= deals, each world w € M has a valuation V,, = V; for
some d € Dyy. Define relation R C (M x prely) as follows:

Vw € M :Vd € Dy : R(w,d) <V, =V
We prove that R is a bisimulation between M and prely.

Forth: Let w,w' € M. Let d € Dyy. Suppose that R(w, d) and that, for an
arbitrary agent a € A, w ~M w'. From our observation on valuations in M, it
follows that there is a deal d' € Dy such that V,y, = V. This deal d' is our
required R-image in Dyq: because ~, is universal on Dyq it trivially holds that
d ~4 d', and because V,,y = Vy we have that R(w', d').

Back: Let d,d’ € Dyy. Let w € M. Suppose that 9(w,d) and that, for an
arbitrary agent a € A, d ~, d'.

Suppose there is no w’' € M such that V., = Vy. In other words: there is
no w' € M such that M,w' | 4. Then, in particular there is no w' € M such
that w ~¥ w' and M, w' |= 64, thus M, w = M,64, thus M, w % dontknowany.
Contradiction.

Therefore there is such a w' € M, and, as we have shown, there is even a w'
that is ~M-related to w. This world w’ is our required SR-original in M: we have
that w ~M w' and because V., = Vy we have that R(w’, d'). []

Turning the cards In chapter 4, see also [vD99], we present a dynamic epis-
temic language with dynamic modal operators 7] for knowledge actions 7 € KA
and knowledge action types m € KT. KT action types and KA actions have an
interpretation [-], that is a relation between S5 models. If the relation is func-
tional, we can use [-] as a postfix unary operator. The action of all players looking
at (turning) their cards is described by the knowledge action type looka (that
will be defined in chapter 6) that has a functional interpretation. We now have
that prely[looka] = I4 (i.e.: the model resulting from executing lookya in prely is
identical, disregarding some trivial renaming of worlds, to I4). This presents us
with an ‘indirect’ proof of proposition 5, on page 35, that I is the unique model
of kgames:

Indirect proof of proposition 5 Let M be a model of kgames. For every agent
a, add access for a between all worlds in M that are not a-related. The resulting
model M' is a model of prekgames. It holds that M'[looka] = M. Because M’
is bisimilar to prely, and because bisimilarity is preserved under execution of
action types with a functional interpretation (as shown in chapter 4), M'[looka |
is bisimilar to prely[looka]. From that and prely[looka] = I4 follows that M is
bisimilar to Iy. |

3.4. Modal fized points 43

We suggest that this indirect proof method may be of more general interest,
e.g. in cases where the bisimulation needed to establish a direct proof for the
uniqueness of some model M is more complex than the bisimulation needed for
a much simpler model from which M can be constructed by an action sequence.
Note that the proof of proposition 7 is shorter than the proof of proposition 5,
which illustrates our point.

3.4 Modal fixed points

We have described some finite S5,, models and their states by way of proving that
a suggested description (33, kgames, prekgames) indeed defines the bisimulation
class of these models. These descriptions were ‘merely’ the most intelligible out-
come of a gradual process of generalizing properties of players’ knowledge. The
description (or ‘characteristic formula’, or ‘descriptive formula’) of finite modal
models and states can also be directly computed, by a fixed point construction.
See [vB98], relating to [BM96]. We apply the construction in [vB98|, chapter 5
(‘Modal Fixed Points and Bisimulation’), to the initial state (I4,d) of a knowl-
edge game for deal d (and also, at the end of the section, to the pre-initial state
(prely,d)). A description operator E for modal models is defined. For the fixed-
point description E(I4), we can compute a solution, because Iy is finite. We
compute a specific solution E°(Iy) (where & stands for ‘choose atomic descrip-
tions’). State (I4,d) is then described by 64 A Ca E°(I4). We compare this to our
own description. Now in more detail:

A fixed-point construction defines a template description for a given model
M:

E(M) = /\ E(M,w) = /\ (Pw = (0w A /\ Opy AU \/pv))

weM weM Rwv Rwv

Here 0, is the atomic description of world w, and all p,, are fresh atoms. The
idea behind the construction is the following: we give each world w in the model
a fixed reference p,, and then sum up for all worlds what is actually the case
there, conditionalizing on this reference p,: that w is atomically characterized
by 0., that anything in a world accessible from w is possibly the case, and that
anything shared by all worlds that are accessible from w must necessarily be the
case.

If M is finite, we can replace the atomic variables p, by a unique modal
definition A, of w in M. Initial (and pre-initial) states (Iy,d) of knowledge
games are finite. In the initial model, different worlds are different deals of cards,
i.e. they have a different atomic description. So d4 serves as a unique modal
definition Ay of worlds d' € Iy. We compute a solution of E(I4) by replacing all
Pw by 0y (i-e. par by da). Use a multiagent epistemic language:

44 Chapter 8. Descriptions of game states

E(Id)[/\d’EDud(pd' = 5dl)] = E‘S(Id) =
/\d’eId /\aeA(‘sd’ - (5d’ N /\d’Nad” Madar N Kq Vd’rvad” 5d”))

As 0% < \/, .. 04, and as 0y in the consequent is superfluous, we get:
d d ~gd! Yd" d)

E(I)= N\ NGas— ()\ Mbar A Eo63))

d'elyacA d'~gd!

The implicit quantification over all worlds of I in the formula E%(I4), is made
explicit with a common knowledge operator in the description (characteristic
formula) of state (Iy,d):

8¢ A CaE°(I4)
This is an alternative description to the one in section 3.2:
04 N\ C'akgames
Obviously, as they describe the same state, the two descriptions are equivalent.*

Example 21

The state (hexa, rwb) is described by 6,5 A C123E°(hexa). E.g. conjunct E°(hexa,
rwb) of E%(hexa) is equivalent to 8,y — (Mi6ppw A MaOpwr A Msbups A K17y A
Kyws A K3bs). Note that in the consequent of that formula, we have deleted
subformulas expressing reflexivity, such as M;d,p.

In section 3.1 we have shown that (hexa, rwb) is also described by 0,5 AC12333.
Note that in hexa any two worlds can linked by a {1, 2, 3}-path (U;c(1 55y ~i-Path)
of at most length 2. A still ‘shorter’ description is therefore 0,5\ E193 E123 E° (hexa)
— where FEjo3 is the general knowledge operator.

Even though 84 A CaAE%(I4) < &4 A Cpkgames, it does not hold that that
E°(I4) < kgames: note that £°(I4) does not imply g for some d’ € Iy. Therefore,
the constituent deals = \/, Dya 04 of kgames does not follow from it.

In the description dq A C’AE‘S(Id), because d4 holds in a state, and because
E°(14), some 64 must hold in all worlds that are A-accessible from the point of
that state, so that deals holds there too; d4 starts the ball rolling, so to speak.

Indeed, deals is just what we are short to establish a correspondence:

Proposition 8 (Comparison of descriptions)
In kgames, E°(Iy) is equally strong as seedontknow:

/\eEId /\aEA(66 — (/\ewad’ Ma(sd’) A Kadg)
<:)>kgames
/\eGId AaGA(Ka5g e Ma(se)

“Incidentally, as we have shown in chapter 2 that any two worlds in the initial game state
can be linked by a path of length 3, even ‘shorter’ descriptions would be — where Ea is the
‘general knowledge’ operator — 4 A E3 E°(I4) and 04 A E3 kgames.

3.5. Further observations 45

Proof

= Let a € A,e € Dy. First, we prove that K,0¢ — M,d.: Assume K,07. Then
(85) 6¢. From that and deals follows \/, _ , da. Let d' ~, e be an arbitrary deal
such that dy. From that and E°(I4) follows Narn,a Madar. Because e ~, d' it
now follows that M,d.. Therefore K,07 — M,0,.

Next, we prove that M,0, — K,62. Assume M,y6.. Either §. or —6.. If 6.,
then apply E°(I4) and K,0¢ follows. If —d,, then from deals it follows that &g
for some d” # e. Again with E°(Iy), follows K,0%. We can have either d" ~, e
or d’ g e. If d" ~, e then 63, <+ 62 and from that and K,05, follows K,0¢. If
d" o4 e, then:

53[!

=4
Vd*wad” Ogr
& because deals is an exclusive disjunction

- Vd* Had" 5d*
4

/\d*oéad" —0ar
=
=0,

Therefore, using that deals is commonly known, from K,é3, follows K,—d., which
is equivalent to —M,d.: contradiction with our assumption M,d.. Therefore
My — K, 08.

< Suppose .. Then M,6.. From that and seedontknow follows K,4¢. From that,
and because for all d' ~, e: 63 > 62, follows that for all d' ~, e: K,05. Using
seedontknow for all d' ~, e, we get: for all d' ~, e: Myéy. Thus A, , Mada.
[|

Prekgames Similarly as for Iy, we can compute the solution E°(prely) for a
fixed point description of the pre-initial model prely. The solution E’(prely) is
equivalent to dontknowany.

3.5 Further observations

Describing other game states We have described only the initial state of a
knowledge game, and the pre-initial state. Similarly, we may describe other game
states, resulting from the execution of game actions in the initial game state. We
can then expect that subgroup common knowledge operators will occur in these
descriptions. E.g. in hexa, Cisr; is a postcondition of the show action where 1
shows red to 2.

46 Chapter 8. Descriptions of game states

Knowledge revision Computing the description of each resulting game state all
over again after execution of every single game action, seems a rather roundabout
way to proceed.’ A process of knowledge revision, where we directly ‘update’ or
revise the theories describing the models underlying these states instead, is more
direct and therefore preferable. First, an example of what we mean by knowledge
revision:

Example 22 (Revising ignorance)
Formula

dontknowany = /\ /\ Moy

acA dlEDﬂd

describes that all deals are relevant when the cards have been dealt but not
turned. In the transition from prely to Iy, players turn and look at their cards.
As a consequence, we have to revise the ignorance as expressed in dontknowany:
some deals are no longer conceivable to some players. We can revise ignorance by
conditionalizing on conceivable deals: after execution of the action looka, a deal
is conceivable, and only conceivable, if your known ‘local state’ corresponds to it:

seedontknow = /\ /\ (Kobg <> Moda)

acA d' EDﬂd

This revision should be a function of the action look,. We imagine seedont-
know being computed from something like dontknowany|looky |, where ¢|a] stands
for: ‘the revision of ¢ as a consequence of the execution of action a’. The process
of revising the theory prekgames would then be:

prekgames,[looka] = (deals A dontknowany)[looka |
= deals[looka | A dontknowany[looka, |
= deals A seedontknow

This kind of knowledge revision is treated in [vB0Ob], where the process is called
syntactic relativization. A procedure is given for the special case of actions that
are public announcements. The action looka is not a public announcement. We
have not pursued this fascinating topic further.

Describing other multiagent states The topic of characterizing multia-
gent S5 models has also been fruitfully pursued for hypercubes, that represent
interpreted systems. See [Lom99, LvdMRO00, LR98a]. This will be summarily
discussed in chapter 7.

5The indirect proof of proposition 5 illustrates that point: even though a unique model M
results from executing looka in M', we have to show that this is a model of kgames. In the
proof we guaranteed that by assuming that M is a model of kgames and by constructing M’
from M.

3.6. Conclusion 47

3.6 Conclusion

We have described two different states for card games. We showed that the model
hexa for the initial knowledge game state of three players each holding a card is
described by the theory 33. Given a deal d € AC, the model Iy underlying
an initial game state for |C| cards over |A| players, is described by the theory
kgames. In particular we have described various equally strong formulas that
express that a player knows the cards that he holds, and we have presented three
different expressions of ignorance. Prior to the state where players have picked
up their cards from the table, is the state (prely,d) where cards have been dealt
over players but where they haven’t yet turned their cards. The model prely is
described by the theory prekgames. Our results correspond to those of fixed point
computations of the description of modal models. Descriptions of other game
states may be fruitfully pursued from a viewpoint of knowledge revision.

Chapter 4

Update by local interpretation

The area of dynamic epistemics, how to update models for reasoning about knowl-
edge, has come to the full attention of the research community by the treatment
of public announcements in the famous ‘Muddy Children Problem’ [FHMV95].
An integrated approach including announcements to subgroups has been put for-
ward in [GG97]. Gerbrandy’s thesis, [Ger99], presents this dynamic epistemics
in more generality. Gerbrandy’s approach is based on non-well-founded set the-
ory, a non-standard semantics. Based on a standard semantics, [BMS99] treats
announcements. This is currently being extended to an entire framework for epis-
temic dynamics [Bal99]. Our research should probably be seen as a special case of
the more general framework as presented by Gerbrandy and under development
by Baltag. Part of its interest lies in the detailed description of new sorts of
epistemic action, namely actions in games. We restrict ourselves to S5 models
and states. We base ourselves on standard Kripke semantics. Our contribution
is to interpret programs for updates by a process of — what we call — local in-
terpretation, by which we can elegantly describe and interpret combined updates
for different subgroups. Apart from the usual programming constructs: test, se-
quential execution, and nondeterministic choice [Har84, Gol92|, we introduce as
well: learning and local choice. Learning is related to truthful (factive) updating
in [Ger99]. Local choice is needed to describe actions where different subgroups
learn different things. We start with some examples to illustrate the need for
such an operation.

The following actions can be executed in the S5 state (hexa,rwb), that models
three players (1, 2, 3) each holding one card (red, white, blue), see chapter 2:

Example 23 (tell)
Player 1 puts the red card (face up) on the table.

Example 24 (show)
Player 1 shows (only) player 2 the red card. Player 3 cannot see the face of the
shown card, but notices that a card is being shown.

Example 25 (whisper)
Player 2 asks player 1 to tell him a card that he (1) doesn’t have. Player 1
whispers in 2’s ear “I don’t have white”. Player 3 notices that the question is

49

50 Chapter 4. Update by local interpretation

rwb—1—rbw

hexa

;wb—l—rba % ;wb—l—rb'w

3 2 3

/ \ show /
wr{ \— 1 —7br wrb —1—wbr

2 3 2 3 3 3
N/ \/
brw—1— bwr brw—1—bwr

N\hisper

// 3/
/

rwb=— 1 —rbw

\
\ /w’rb7l_’wbr
/3//\3
wrb 1—7br b /6 1 2\b
2 3 __—bru—1=bur

Figure 4.1: The results from three actions in a state where 1 holds red, 2 holds white
and 3 holds blue. The points of the states are in sans serif. Worlds are named by the
deals that (atomically) characterize them. Assume reflexivity and transitivity of access.
More explanations are given throughout the text.

answered, but cannot hear the answer.

We assume that only the truth is told. Therefore tell has the same effect as
when 1 tells the others that he has red. In show and whisper, we assume that
it is publicly known what 3 can and cannot see or hear. Figure 4.1 pictures
the states that result from updating the current game state (hexa, rwb) with the
information contained in the three actions. In tell it suffices to eliminate some
worlds: after 1’s action, the four deals of cards where 1 does not hold red are
eliminated. It is publicly known that they are no longer accessible. This update
is a public announcement. In show we cannot eliminate any world. After this
action, e.g., 1 can imagine that 3 can imagine that 1 has shown red, but also that
1 has shown white, or blue. However, some links between worlds have now been
severed: whatever the actual deal of cards, 2 cannot imagine any alternatives after
execution of show. In whisper player 1 can choose whether to say “not white” or

4.1. Knowledge actions 51

“not blue”, and the resulting game state has twice as many worlds as the current
state, because for each deal of cards this choice can be imagined to have been
made.

We can paraphrase some more of the structure of the actions. In tell, all three
players learn that player 1 holds the red card. In show, 1 and 2 learn that 1 holds
red, whereas the group consisting of 1, 2 and 3 learns that 1 and 2 learn which
card 1 holds, or, in other words: that either 1 and 2 learn that 1 holds red, or
that 1 and 2 learn that 1 holds white, or that 1 and 2 learn that 1 holds blue. The
choice made by subgroup {1,2} from the three alternatives is local, i.e. known
to them only, because it is hidden from player 3. Local interpretation of 1 and 2
learning that 1 holds red, is indeed made without any reference to 3. Here, ‘local’
means ‘not public’ — ‘for a subgroup of the public’ — and does not mean ‘private’
— ‘for one agent only’. The ‘action’ of player 1 showing player 2 his card is called
the type of the action show where player 1 shows player 2 the red card. There are
two other actions of that type: showing white and showing blue. Similarly, there
are three actions of the type of whisper, corresponding to the answers “not red”,
“not white”, and “not blue” to the question.

In section 4.1 we define the logical language L5, the knowledge action types
KT and the knowledge actions KA. In section 4.2 we define local interpretation. In
section 4.3 we present some theoretical results. In section 4.4 we discuss possible
extensions of L3

4.1 Knowledge actions

To a standard multiagent epistemic language £, (as in [MvdH95, FHMV95], or
see appendix A) we add dynamic model operators for programs that describe
actions.

Definition 25 (Language of dynamic epistemic logic)
Given are a set of atomic propositions P and a set of agents A, where |A| = n.
L5 is the smallest set closed under:

pell) if peP

—pe Ll if pell
pAYeLl, if pel]
Kupe Ll if acAandge/ll
Cppe L) if BCAandypecLl
[rlp € LY if 7€ KTUKA and ¢ € LY

KT is the set of knowledge action types (for P and A). KA is the set of knowl-
edge actions (for P and A). ‘Program’ is the generic term that we use for both
types and actions. The parameter set of agents A is called the public. We intro-
duce the usual abbreviations (let p € P): oV := =(=pA—)), ¢ — 1 := =V,

52 Chapter 4. Update by local interpretation

o= (p 2> Y)A[W = @), Epp = Noyep Kap, T :=pV —p, L:=pA-p.
Next, we define the class of knowledge action types:

Definition 26 (Knowledge action types — KT)
Given a set of agents A and a set of atoms P, KT is the smallest set closed under:

20 € KT if pe Ll
Lgr € KT if 7€KT andla(r) C B
7,7 €eKT if 7,7 €KT
TUT eKT if 7,7 €KT

Lp is the ‘learn’ operator. Lg7 stands for ‘group B learn that 7’. Instead of
L1,y write Ly ;. In la(t) C B, operator la stands for ‘learning agents’. These
are the agents occurring in the learning operators of 7. Without this constraint,
it would be possible that an agent a learns something about an agent b, without
b being aware of that: after that, b may have false beliefs about a’s knowledge,
so that the resulting state is not S5. We restrict ourselves to S5.

Definition 27 (Learning agents)

The (set of) learning agents of a knowledge action type is defined by inductive
cases: la(?p) =0, la(LpT) = BUla(7), la(T ; 7') = la(7) Ula(r"), la(r UT') =
la(T) Ula(').

Naturally, £, KT and la are supposed to be simultaneously defined. We now
give some examples of action types, related to the model hexa:

Example 26 (Knowledge action type for tell)
Player 1 puts the red card on the table:

L3 7y

Example 27 (Knowledge action type for show)
Player 1 shows (only) player 2 his card:

L123(L12?7'1 U L12?’I.U1 U le?bl)

To understand the description, greater precision is needed: ‘player 1 shows (only)
player 2 his card’ is the same as ‘players 1, 2 and 3 learn that player 1 shows
player 2 his card’, which is the same as ‘players 1, 2 and 3 learn that 1 shows the
red card to 2, or the white card, or the blue card’ which is the same as ‘players
1, 2 and 3 learn (that 1 and 2 learn that 1 holds red, or that 1 and 2 learn
that 1 holds white, or that 1 and 2 learn that 1 holds blue)’. The action type is
nondeterministic. Note that it does not describe the action show where the red
card was shown. It is the type of that action. The action type can be executed
in a game state where 1 holds blue, the action show can not be executed in that
game state. Assume associativity for the operator U (see proposition 10, later).

4.1. Knowledge actions 53

Example 28 (Knowledge action type for whisper)
Player 1 whispers in 2’s ear a card that he (1) doesn’t have:

L123(L157—7r1 U L1s?—wy U L127-b1)

The three options are not having a card, instead of having a card. This action
type does not describe the action whisper, that is just one of three actions of that

type.

Knowledge actions We continue by defining knowledge actions. We extend
our language with the operation of ‘local choice’, to make that possible. In
‘nondeterministic choice’ choice means ‘making a choice possible’; in local choice
it means ‘actually choosing’. We can only ‘actually choose’ after a choice has
been made possible. Because actual choice is local, a new program is created.

A knowledge action can be formed from an action type 7 by a mapping oper-
ation !;7, where !; determines local choice in 7. Index I is a bundle: (an abstrac-
tion of) a subtree in the structural tree of action type 7. The bundle determines
where the local choice is made, the choice itself is indicated by an exclamation
mark ‘. In that way we can describe the action show as the knowledge action
L123(1L157r1 U L1o?wy U L137hy), given the type Liag(Lia?r1 U Lig?wy U Lip?hy)
(‘showing your card’) of that action.

Definition 28 (Bundle)

The labelled structure ls(T) of a knowledge action type 7 is inductively defined as
follows: Is(?¢) = (), Is(LpT) = (Is(7)), ls(tUT") = z(Is(7),s(7")) for some fresh
variable z, Is(7 ; 7') = (Is(7),ls(7")). Let fu(ls(r)) be the set of variables in
15(7). Let val be a valuation in {0, 1}/*(¢*(") Extend val to apply to Is(7) in the
obvious way. Define an equivalence relation =, on the set val(ls(7)) of evaluated
labelled structures by inductive cases: =g, is ‘=" except for 0(1, J) =4, 0(K, L) &
I =y, K, and 1(I,J) =p, 1(K,L) < J =4, L. The set bu(7) of bundles of 7 is
defined as:

bu(r) :={[I],, | I € val(ls(7)),val € {0, l}f”(ls(T))}

Now choose representants of the =;, equivalence classes, and write, par abus de
langage, I = J for [I|_, = [J]-,,-

A bundle defines a rooted subtree of the labelled structure of a knowledge
action type.! Value 0 selects the ‘left’ arc of the current subtree, whereas 1
selects the ‘right’ arc. The subtree that is generated by the node that is reached
by the arc that is not chosen, is pruned. The effect of =, is that all choices are
identified that are made further down in a pruned subtree.

Tt can be seen as ‘a couple of branches’ (a branch is a path from a root to the leaf of the
tree), hence its name. We copy the similar use of the term ‘bundle’ in modal sequent calculus.

54 Chapter 4. Update by local interpretation

Given a knowledge action 7 € KT and a bundle I € bu(r), !;7 defines a
knowledge action: a specific action of type 7. Every bundle corresponds to an
action. The set {!;7 | I € bu(r)} is the set of actions of type 7. KA is the class of
all syntactic objects thus formed. We write o for an arbitrary knowledge action
in KA.

Definition 29 (Knowledge actions — KA)
Let A be a set of agents, let P be a set of atoms.

KA={l;7 | 7€ KT and I € bu(r)}

The notation with bundles prefixed to action types is a bit hard to read. We
therefore define a notational equivalent for knowledge actions:

Definition 30 (Notational equivalent for knowledge actions)
By inductive cases:

'()(?QD) = '7(/)
!(I)(LBT) = 'LB !]7’
ban(tut) = Lrur
han(tut) = U l;r
Yany(T5 7)) = i Ly

The notational equivalent is not the primitive notation, because the interpre-
tation of an action (see definition 34, later) would then not be compositional.

If there is nothing to choose, we can delete exclamation marks in the notational
equivalent. Their only meaningful position is in constructs 7'U !7 and !7 U 7': if
m = Lpn"; this means that only the agents in B know that they have selected
7' for execution and not the alternatives expressed in 7’. See also the examples,
below. We change their usual order:

Example 29 (Knowledge action for show)

The type of the action show is Lya3(L127r1 U L1a?w; U L157b;). We must be more
precise and choose it to be: Lya3((L127r1 U Lis?wq) U L157b1). The bundle in the
labelled structure of this action type that corresponds to choosing red, is:

(0(0(()), (O, (ON)
The knowledge action
L0000 Lr2s((L12771 U LizTwi) U Lo 7hy)
is written in the notational equivalent as

!L123((!L12!?r1 U L12?w1) U le?bl)

4.2. Local interpretation 55

and can be simplified, also assuming associativity again, to
L123(!L12?T‘1 U le?wl U L12?b1)

We now have described the action ‘player 1 shows (only) player 2 the red card’.
The other two actions of this type are Lyo3(L127r1U Lis?wy U L137by) (1 shows
white to 2) and Lja3(L1a7r1 U L1s?w;U 1L157b1) (1 shows blue to 2). Note that
the bundle for the choice ‘blue’ corresponds to an equivalence class consisting of
two valued labelled structures: (1(0((()),(())), (()))) is the same (‘=4,’) bundle
as (1(1((()), (0)),(0)))); once we have chosen the right subtree, we can ignore
choices further down in the pruned left subtree.

Example 30 (Knowledge action for whisper)
It will be clear that the KA action describing whisper is

L123 (L12?_")°1U !le?_"wl U le?_'bl)

Example 31 (Knowledge action for tell)
There is no choice involved. The only bundle of tell is (()). Lia3?rq, strictly
L1377, is the only knowledge action of type L123771.

The class of actions KA is not closed under action type constructing operations.
E.g., L123(!L12?T1 U L12?w1 U le?bl) U L123(L12?T1U !le?wl U le?bl) is neither
an action, nor an action type. In particular, it is not an action of the same type
as Ly93(L1277m1 U L1p7w,), showing either red or white.

4.2 Local interpretation

One is used to the set of agents of a model as a background parameter that is
fixed throughout one’s manipulations with a logic, and that therefore does not
need a name. However, because the local interpretation of an action type may
relate models and states for different sets of agents, we have to be very explicit
about it. The ‘group’ ¢gr(Y) of a semantic object Y (model, state, frame) is the
set of agents for which access is defined, i.e. the set of agents ‘occurring in it’.
Similarly, the group gr(X) of an expression X (program, formula) is the set of
agents occurring in modal operators K,, Cp and [r] in that expression.

Definition 31 (Group)

Let M be an S5 model. The group of M = (W, (~g)aca, V) is A: gr(M) = A.
Similarly for states and frames. The group of a syntactic expression is defined
by inductive cases for formulas and for knowledge action types, and directly
for knowledge actions: gr(p) = 0, gr(—¢) = gr(p), gr(e A¥) = gr(e) U gr(y),
gr(Kap) = gr(p)U{a}, gr(Cre) = gr(p)UB, gr([t]e) = gr(p)Ugr(r); gr(?e) =
gr(¢), gr(Lgt) = BUgr(r), gr(t; 7') = gr(t)Ugr(r'), gr(rUt’) = gr(r)Ugr(r’);
gr(ur) = gr(7).

56 Chapter 4. Update by local interpretation

If gr(M) = A, we say that M is an A model, or that M is a model for group
A. Similarly, if gr(7) = A, we say that « is an A program. Similarly for other
semantic and syntactic objects.

Definition 32 (Semantics of LL)

Given are a set of (n) agents A and a set of atoms P. Let M = (W, (~4)4ea, V)
be an S5, model. Let w € M, let ¢ € LY. The interpretation of ¢ in M, w is
defined by inductive cases; let p € P, a € A, BC A, 7 € KT UKA.

MwkEp iff V,(p) =1

MwE -y iff M,w ¢

MwEeNYy iff MwkEeand M,w =y

MuwEKyp iff VweM:w ~,w=Mu =y

MwECgp iff VweM:w ~pgw= Muw Ep

M,wkE[rlp iff VM'e Shep:Vu' e M': (M,w)[r](M',w') = M v'=¢

A program 7 can be either an action type 7 € KT or an action a € KA.
For the local interpretation [r] of action types, see definition 33. For the local
interpretation [a] of actions, see definition 34. Both for actions and types, the
interpretation [r] is a state transformer and can be seen as a binary relation
between S5 states. If (M, w)[r](M’', w'), the group (gr) of M' is contained in
the group of M. This will be explained in definition 33. Therefore, we write
M' € S5-, in that clause of the interpretation: M’ may be an S5, model for any
m < n.

Local interpretation of a knowledge action type To interpret a B action
type 7 in an A model ‘locally’, you ‘forget’ about the agents in A \ B (contrary
to [Ger99], where it is assumed that agents not in B have learnt nothing from 7).
How 7 affects these other agents may be interpreted ‘later’;, namely when 7 is a
subprogram of another action type.

The local interpretation of an action type 7 on an S5 model M is a relation [7]
between S5 models and between their worlds (states). We ‘overload’ the notation
[-] by using it both between models and between between states.

Notation In the definition below, we use the following notations for infix binary
relations R such as [-]: [aR] := {b | aRb}, as in clause 33.b.2, and aRbRc :=
(aRb and bRc), as in clause 33.c.3. In the clauses under (e), write M" = (W",
(~2)acgr(mmy, V") for an arbitrary M" € [M[r]]; in 33.e.2 and 33.e.4 we thus
refer to access and valuation in M"”. In 33.e.3 we use the following shorthand,
given a context of two models: — ! (w) := w.(M,v)[r](M",w). In other words,
—-1 (w) is the unique world in M that is the —-origin of world w in M". (As
proven in proposition 9, on page 65.)

4.2. Local interpretation 57

Definition 33 (Local interpretation of a knowledge action type)

Given are a set of agents A and a set of atoms P. Let (M, w) be an S5, state,
where M = (W, (~g)aca, V). Let (M',w') be an S5, state. Let 7 € KT. The
local interpretation [-] of 7 in M is s1mu1taneously defined as a relation between
S5 models and between their worlds, by inductive cases:

33.a.1 (M,w)[r](M',w") if M[r]M' and w —, w'

33.6.1 M[e]M' iff M = (W', 0, VIW')
where W ={weW | M,w = ¢}
33.b.2 M[Lpr"|M' if M' = @gz[M][r"]] as defined below
33.0.3 M M i IMT MMM
33.b.4 M[r" UM i MM or M[r'|M’
33.c.1 w =, w M w=w
33.c.2 w =gy w' iff AM" e [M[7"]] : Fw" € M":
w' = (M",w") and w —,» w"
33.c.3 w = w' M AM" MM [TM, Fw" € M
W —>pn w” — W
33.c.4 w—ue w ff w—w orw —p W
33.d.1 DM = W', (~)een, V'), where:
33.e.1 W' = {(M",w") | w" e M" e [M][7"]]}
33.e.2 Va € B:VY(M",v),(M",v'") e W':
(M",v) ~L (M7, 0") iff v~
33.e.3 Va € B :V(M",v),(M*,v) € W' :

a¢gr(M")U gr(M*)
(M",U) Niz (M*’U,) lﬁ _>7-”1() a_> " (I)

334 V(M w)eW': Vi, =V

Ad (33.a) To interpret an action type 7 in a state (M, w), one has to inter-
pret 7 in the model M and one has to determine the images of w under that
interpretation. The operator —, determines these images.

Ad (33.b) In part (b) of definition 33, the interpretation of action types on
models is defined. In clause 33.b.1, the group of the resulting model M’ must be
empty: nobody is aware of a test being executed. Also in 33.b.1, it is implicit that
W' # 0: an S5 model has a nonempty domain. In clause 33.b.2, in the resulting
model M’ all in B are aware of (know) the alternatives resulting from interpreting
7, but they cannot (necessarily) distinguish between them. Further, note that in
33.b the group of a resulting model M’ is always (equal to or strictly) contained
in the group of M, and that the group of a program to be interpreted is always

58 Chapter 4. Update by local interpretation

contained in the group of M. The last is implicit in the assumptions of definition
33: they are given relative to P and A, so that 7 can be at most an A knowledge
type, from which follows that gr(7) C gr(M). This implies, in clause 33.5.3, that
the interpretation of a sequence 7" ; 7' is undefined if gr(7") C gr(7').

Ad (33.c) In part (c) of definition 33, the interpretation of action types on
states is defined. Clause 33.c.2 states that world w' is an image of world w for
type Lpt, if w' is a state (M",w") that results from interpreting 7 on (M, w).

Ad (33.d) and (33.e) In parts (d) and (e) of definition 33, we define the model
@Dz M][r]], the result of interpreting an action type Lg7. The model @@ z[M[7]]
is the direct sum @[M[r]] plus for any two models in that set, access added
for agents b € B that do not occur in these models. (So that, indeed, B is just
the parameter that we need.) Note that clause 33.e.2 has an implicit condition
a € gr(M"). Another issue: without the constraint la(7) C B for types LpT in
definition 26 of KT, the model @ z[M[7]] could still be constructed, but would
be incorrect; the knowledge resulting from our intuitive interpretation of such an
‘action’ does not correspond to the knowledge encoded in the constructed model.

Direct sum To construct the direct sum @ M of a set M of models (see
appendix A), we cannot just take the union of their domains: if we do that, we
may incorrectly identify worlds with the same name. We have to pair a world
w € M; € M to some index ¢ in order to determine the model M; it originates
from. The pair (w, 7) is then a world in the sum model. In our case, it suffices to
take the model stself as index.? Thus we get: (w, M;). Because we may as well
write (M;, w), this amounts to taking states for models from M as worlds in the
direct sum € M.

Unless confusion results, in the examples we still simply take the union of the
domains of models in @z[M[7]]. In the examples we name worlds by card deals,
that correspond to the atomic descriptions of those worlds. Even when different
worlds have the same name, we can distinguish them by the different access they
have to other worlds.

Notation If there is a unique model M’ such that M[r]|M', we may write M|[7]
for that model. If there is a unique state (M’ w') such that (M, w)[r](M', w'),
we may write (M, w)[r] for that state.

We illustrate definition 33 by computing the interpretation of the knowledge
action types of tell, show and whisper on the model hexa. For more examples of

2In general, this does not do, because two models may have the same name. In our case,
the set [M[7]] does not contain multiple occurrences of models, see also clause 33.b.4: they are
not being produced anyway.

4.2. Local interpretation 59

hexa hexa[?r;] hexa[L12377r1]
rwb—1—rbw rwb rbw rwb—1—rbw
/ \
3 2
/ \
wrb —1—wbr| = =
\ \ / ?7‘1 L123?’f'1
2 3 2 3
N/ N/
brw—1— bwr

Figure 4.2: Computing hexa[L2377]

action types in hexa, see chapter 6.

Example 32 (Local interpretation of the type of tell)
Player 1 puts the red card on the table: Liy377;.

We apply definition 33 stepwise:

hexa [[L123 ?Tl]]M

= definition 33.b.2
M = @, 3[hexal?r1]]

hexa[?r] M’

& definition 33.5.1

M' = ({rwb, rbw}, 0, V|{rwd, rbw})

Because M’ is unique, we may write M’ = hexa[?r;] and we have that [hexa[?r;]]
= {hexa[?r1]}. We still have to compute the relations between worlds in hexa
and worlds in hexa[?r;]. According to clause 33.c.1: rwb —,, rwb and rbw —s,,
rbw. We now compute M = hexa[Li23771]. Write M = (WM {~M M M}
VM), According to clause 33.e.1, WM = {(hexa[?r1], rwb), (hexa[?ri], rbw)}. As
gr(?ry) = 0, clause 33.e.2 doesn’t compute any access. For the other agents, i.e.
for all agents 1,2 and 3, we continue as follows. An example:

(hexa[?r1], rwb) ~M (hexa[?r], rbw)

& definition 33.e.3
—>?’Tll (rwb) ~q —>?’r11 (rbw)
& definition 33.5.1 and 33.c.1

rwb ~; rbw

The six reflexive links in hexa[L12377;] are similarly computed, i.e. for 1, 2, and 3,
and for both (hexa[?r], rwb) and (hexa[?r;], rbw). Further, clause 33.e.4 states
that the valuation V™ on (hexa[?r,], rwb) and (hexa[?r], rbw) is the same as V

60 Chapter 4. Update by local interpretation

hexa[[?r] hexa[L1277]
rwb rbw rwb—1— rbw
=
hexa / hexa I[?’LUI]I hexa |IL12 7’[1)1]] hexa |IL123 (le?’l‘l @] ng?’wl U L12?b1)]]
rwb—1—rbw rwb—1—rbw
/ \
3 2 3
/
\—1—be = |wrb whr| = |wrb——— 1—wbr| = |wrb —1—wbr
2 3 2 3
N/ \/
brw—1— bwr brw—1— bwr
\ hexa[?b] hexa[L127b1] /
—
brw bwr brw—1— bwr

Figure 4.3: Computing hexa|[L123 (L12?T’1 U L12?w1 U L12?bl)]l

on rwb and rbw, respectively. We simplify the notation of domain W of model
hexa[L123771], as suggested in the remarks on constructing the direct sum, and
write rwb for (hexa[?r;], rwb) and rbw for (hexa|?ri], rbw). Figure 4.2 gives an
overview of our computations.

Example 33 (Local interpretation of the type of show)
Player 1 shows his card (only) to player 2: Liss(L12?r1 U Lis?wy U L157b1).

We apply definition 33 stepwise, see also figure 4.3:

hexa [[L123 (ng?rl U le?wl U le?bl)]]Ml
& definition 33.5.2
MI = @123[hexaﬂL12?T1 U L12?w1 U le?bl]”

hexa [[ng?’l“l U le?wl U le?bl]]M”
& definition 33.5.4
hexa[L12?r1 [M" or hexa[Lis?wi|M" or hexa[Lq57b; | M"

Assume that U is associative (see proposition 10). There are three different models
M". We compute the first one.

4.2. Local interpretation 61

hexa [[L12?T1]IM”
= definition 33.b.2
M" = ,,[hexa[?r1]]

Similarly to the computation in example 32, we get M" = hexa[L57r] =
({(hexa[?r1], rwd), (hexa[?r], rbw)}, {~M", ~M"} M)
Apart from reflexive access for both 1 and 2 in both worlds, we have
(hexa[?r], rwb) ~M" (hexa[?r,], rbw)

Access for player 3 is not computed. The resulting {1,2} model pictures the
result of 1 and 2 learning that 1 holds red, without any assumptions on what 3
has learnt about that. Similarly we compute hexa[L;2?w;] and hexa[L;37b;]. We
finish the computation by determining

M, = hexa |[L123 (L12?7'1 U L127w1 U L12?b1)]l
= @123 hexa [[le?’f'l U le?wl U LlZ?bl]]
= hexa I[le?’)"l]l @123 hexa |[L12?’U)1]l @123 hexa|[L12?bl]]

The domain W' of M’ is the set

W' = {(hexa[Li2?r], (hexa[?ry], rwd)),
(hexa[L12771], (hexa[?r:], rbw)),
(hexa[L15 7w], (hexa[?w:], wrb)),
(hexa[L15 7w], (hexa[?w:], wbr)),
(hexa[L1571], (hexa[?b:], bwr)),
(hexa[L127b:], (hexa[?b,], brw))}

Again, for convenience we simplify it to W' = {rwb, rbw, wrb, wbr, bwr, brw}.
Access for 1 and 2 remains as it is, using definition 33.e.2. Similarly to the
computations for access in example 32, we add reflexive access for player 3 to all
worlds. Apart from that we can compute in M’ that rwb ~3 wrb, rbw ~3 brw,
and bwr ~3 wbr. Figure 4.3 visualizes the resulting model, and how we have
constructed it. Note that in any world of the resulting model, player 2 knows the
deal of cards. Player 1 doesn’t know the cards of 2 and 3, although he knows
that 2 knows it. Player 3 knows that 2 knows the deal of cards.

Example 34 (Local interpretation of the type of whisper)
Player 1 whispers in 2’s ear a card that he (1) doesn’t have: Lja3(L12?7—ry U
L127—|w1 U le?_'bl).

This is a case of true nondeterminism: in any state of hexa, 1 can choose what
to whisper. The model resulting from the execution of this action type is more
complex than hexa. We do not perform the computations in detail. Figure 4.1 on

62 Chapter 4. Update by local interpretation

page 50 pictures hexa[L1a3(L12?—71 U L1a?—wy U L137—by)]. We assume access to
be transitive. Just as before, we have kept the worlds’ original names. Otherwise,
e.g., the world wrb ‘in front’ would be named

(hexa[L157—r1], (hexa[?—r1], wrd))
and the world wrb ‘at the back’ would be named
(hexa|[L12?—|bl]], (hexa|[?—|bl]], ’lUT'b))

Note that we can still distinguish the two worlds named wrb from each other,
because player 2 is less informed in front, than at the back.

After a test on your knowledge, it is no longer there! That a type
7 can only be interpreted in a model M if gr(r) C gr(M), see the remark ad
clause 33.0.3 of definition 33, has consequences that we better make as explicit
as possible. E.g. [7K;r1|Kir; can not be interpreted on hexa. We have that
hexa, rwb = [7K1r|Kir1 < hexa[?Kir],rwb = Kir;. The model hexa[?K; 7]
consists of the worlds rwb and rbw without access defined for any agent: it is an
() model. Obviously we cannot interpret the formula K;r; on that model. So in
general, the interpretation of [?K,¢|K,¢ is undefined. But this is exactly what
must be! After an action in which it is not specified what 1 has learnt, of course
it must be the case that we cannot evaluate propositions about 1’s knowledge.
This is different from the approach in [Ger99|, where it is assumed that 1 learns
nothing, so that 1 therefore still knows that he holds red after that test on his
knowledge. To conclude: never have your knowledge tested — ?7K;¢p — without
your consent, either do it yourself — L; 7 K; ¢, or at least suspect it — Ly (7 K10U?T).
The topic of suspicion will be discussed in chapter 6.

Local interpretation of knowledge actions We have defined the local in-
terpretation of a knowledge action type, we now define the local interpretation of
a knowledge action of that type. To interpret a knowledge action o = !;7 on an
S5 state (M, w) we first determine the interpretation of 7 on M. From the set
[M[7]] we then select one model M’ and in that model M’ one world w'. Both
are truly selections, as [M[7]] can contain more than one model, and M’ can
contain more than one 7-image of w. What M’ and w' are, is determined by the
bundle I. The world w' is the !;7 image of w, to be defined below as a relation
1,7, and M’ is simply the model that contains w’. (M',w’) is then the required
S5 state.

Definition 34 (Local interpretation of a knowledge action)

Given are a set of agents A and a set of atoms P. Let (M, w) be an S5, state.
Let (M',w') be an S5, state. Let 7 € KT be an action type. Let I € bu(r).
The local interpretation [-] of !;7 in M is a functional relation between S5 states,

4.2. Local interpretation 63

defined by inductive cases:
34.a.1 (M,w)[l;7](M',w") iff M[r]M' and w ~—,, @'

34.0.1 W 70 w iff w=u
34.b.2 Wi wo i IM" € [Mr']]: Fw" € M
w' = (M",w") and w >, w"
34.5b.3 w |—>!(I’J)(T” ;1) wl iff IM" - le/ c M- M[[T”]]MHIITI]IMI
and w =1 w" =1y w'
34.b.4 w H!O(I’J)(T”Ur’) w iff w = w'

34.b.5 w |_>!1(I’J)(T”UT’) ’U)’ if w i—)gJTl U)I

Notation Because the local interpretation of an action is a functional relation,
instead of (M, w)[!/7](M', w'") we write (M',w') = (M, w)[!r7]. If there is only
one M’ such that M[r]M’, so that M' = M|[r], and if we keep the names that
worlds have in M, we can simply write (M[7], w). Here, w is actually the -
image w' of w € M. We have chosen the — symbol for its functional connotation:
in definition 33.c the expression w —, w' relates w to one of its T-images, whereas
in definition 34.b the expression w +y,, w' relates w to its unique !;7-image.?

Example 35 (Local interpretation of action show)
We illustrate definition 34 by computing the interpretation of action show in state
(hexa, rwb).

(hexa, ’/"LUb)I[L123(!L12?T1 U L12?w1 U le?bl)]l(M’, w’)

& definition 34.a.1
hexa[L123(L127r1 U Lis?wy U L157b1)] M’ and

TWD = [155(1L127r1 UL 12 2w1UL 12 701) W

The model M’ has been computed in example 33 (see figure 4.3). The image of
rwb in that model is ‘computed’ as follows.

rwb = rwb

= definition 34.5.1
rwb 9., TwWh

& definition 34.5.2

rwb 7, (hexa[?r], rwb)

3We considered two alternative although equivalent forms of definition 34. First, clause 34.a.1
could have been: (M, w)[!;7](M', ") iff (M, w)[r](M',w') and w —,, w'. We preferred a form
similar to that of definition 33. Second, the bundle I already contains sufficient information to
select the !;7-image, so we can write — instead —1,, — plus some changes in the conditions
34.b.2 and 34.b.3. As we generally use the notational equivalent for actions, as in example 35,
this would have been impractical. Also, our use of the preferred notation +,, is similar to
that of —, in definition 33.

64 Chapter 4. Update by local interpretation

& definition 34.b.4, twice
wa '_>!L12?1'1UL12?'w1UL12?b1 (hexa II?T]-]]’ wa)
& definition 34.5.2

rwb F= L123(1L127r1UL127w1UL12 b1) (hexal[LH?Tl]la (hexaﬂ?rl]]’ wa))

See also figure 4.1 on page 50. Instead of (hexa[L127r], (hexa[?r], rwb)) we write
rwb.

Compositionality Of course, the semantics of knowledge actions is composi-
tional: the interpretation of an action !;7 is a function of I and 7. However, it ap-
pears to be not compositional when applied to the notational equivalent (definition
30). For example, the interpretation of !Li5?r; in Lyag(1L1277r1 U Lis?wy U L157by)
is not a function of the interpretation of ‘" and L;57r; (whatever the first is sup-
posed to mean, anyway). Instead, it a function of the interpretation of Li57r; =7
and that of the context Lissz(m U L1a?w; U L1537y) in which it appears.

4.3 Action type properties

We define and prove some properties of interpretations of knowledge actions and
knowledge action types.

Definition 35 (Executable)

An action type 7 is executable in an S5 model M, if the local interpretation of 7
on M is defined and is not the empty relation. An action type 7 is executable in
an S5 state (M, w), if the local interpretation of 7 in (M, w) is defined and is not
the empty relation: i.e. if it is executable in M and if w has a 7-image under that
interpretation. A knowledge action !;7 is ezecutable in an S5 state (M, w), if the
local interpretation of !;7 in (M, w) is defined and is not the empty relation.

That an action type is executable in a model, does not imply that every action
of that type is executable in a state of that model. An example: the action type
Ly3(Ly1p7r1U 7.1) is executable in hexa, but the action Ljp3(Lip7rU 17L) of that
type is not executable in any state (hexa, w).

Definition 36 (Equivalence)
Let 7, 7' € KT UKA. Program 7 is equivalent to program 7', notation = = 7', if
they have the same local interpretation:

T=7 < [r] = [7]

Definition 37 (Public interpretation)

Let M be an S5 model, 7 € KT. If 7 is executable in M and if gr(7) = gr(M) =
gr(M') for all M’ such that M[r]M’, then [7] is the public interpretation of T in
M. We also say that 7 can be publicly interpreted in M. An action !;7 can be

4.8. Action type properties 65

publicly interpreted in a state (M, w) (where [!;7] is the public interpretation),
if I;7 is executable in (M, w) and if 7 can be publicly interpreted in M.

An action (type) can be publicly interpreted, if in its informal description the
roles of all the agents are fully specified and are not ambiguous. The interpre-
tations of the actions tell, show and whisper in hexa, and of their types, are all
public. The interpretation of the action Li5?r; in hexa is not public, i.e. it is
‘local’ in the stricter meaning of ‘not public’: only for the subgroup consisting
of 1 and 2, and not for the public {1,2,3} of that model. What 3 learns in this
action is (entirely unknown and therefore) ambiguous.

Proposition 9 (Every world image has a unique origin)
Let M be an S5 model. Let 7 € KT. Then:

VM': M[r]M' = Vw' € M': Iw* € M : (M, w*)[r](M', ")

Proof Induction on 7. E.g. case Lg7: Suppose M[Lg7|M'. Let w' € M'. As
M' = @gz[M]r]], it holds that w' = (M",w") for some (exactly one) w" €
M" € [M]r]]. By induction there must be exactly one w € M such that
(M, w)[r](M",w"). From definition 33.a.1 follows w —, w”. From that and
from definition 33.c.2 follows w — . W', i.e. w =, (M, w"). [|

Therefore, we can write —-' (w') for the unique origin of a world w’, as in clause
e.3 of definition 33.

Proposition 10 (Associativity)
Let 7,7',7* € KT. Then:

(@) (rUur)UT* = TU((FUTY)
®) (r;7);7m = 7557

Proof (a) Suppose M[(rU7')U7*|M'. Then, by definition 33.b.4, either
M[r UM or M[r*|M'. If M[r U r'|M’', then, again by definition 33.b.4, either
M[r]M'" or M[r'|M'. From M[r'|M' or M[r*]M' follows M|’ U r*]M'. From
M[r]M'" or M| U m*|M' follows M7 U (7' UT*)|M'. [

(b) Similar to (a), by decomposing and recomposing according to definition
33.b.3. |

We have not further investigated algebraic properties of action type operators.

Fact 5 (S5 preservation)
The class of S5 models is closed under execution of knowledge action types and
execution of knowledge actions.

Obvious. It follows immediately from the constructions of agent access in
clauses 33.b.1, 33.e.2, and 33.e.3 of definition 33. [|

66 Chapter 4. Update by local interpretation

Proposition 11.a states that the interpretation of an action is indeed contained
in the interpretation of its type. Given how we defined local interpretation for
types and for actions, this is not trivial. Proposition 11.b states that, if 7 is
executable on M, there is a bundle I € bu(7), and a world w € M, such that !;7
is executable in state (M, w):

Proposition 11 (Relation between actions and action types)
Let (M, w), (M',w") be S5 models, let ! ;7 € KA. Then:

(a) (M, w)[lyr](M',w") = (M, w)[r](M', w')
() (M,w)[r](M',w") = 3I € bu(r) : (M, w)[!;7](M', w')

Proof (a) Induction. For each case, we have to prove that w +,, w' =
w —, w'. It then follows that: (M,w)[l;7](M',w') & M[r]M' and w .
w' = M[r]M" and w —, w' & (M, w)[r](M',w"). We do two cases. Case 7¢:
W 70 e w=w & w—,w. Case!)LpT:

!

W = yLgr W

=

AM" € [M[r]] : Iw" e M" : w' = (M",;w") and w +,, w"
=

AM" € [M[r]] : w" e M" : w' = (M",w") and w —, w"
=

W =Ly W [

(b) Instead of (b) we prove: (M,w)[r](M',w') = 3I € bu(r) : w +,, W', by
induction on 7; (b) then follows immediately, from definition 34. We construct
a bundle for 7 using definition 34.b. A typical case: Let (M, w)[r U r'|(M', w").
Then either (M, w)[r](M', w") or (M, w)[r'](M',w"). Suppose (M, w)[r](M', w").
By induction 3I € bu(7) such that w +,, w'. For any J € bu(r"), bundle 0(Z, J)
is the required bundle, as w >, ; rur w & w =y w [|

We may expect that bisimilarity of models is preserved under execution of actions
and types. This is indeed the case:

Proposition 12 (Preservation of bisimilarity)
Let M, M’ be S5 models, and let 7 € KT. For every S5 model M* there is an S5
model M* such that:

M & M' and M[r]M* = M'[t]M* and M* + M*

We prove something stronger, from which proposition 12 follows immediately:

4.8. Action type properties 67

Lemma for proposition 12: Let M, M’ be S5 models, and let 7 € KT. For
every S5 model M* there is an S5 model M*® such that:

VR : IR -
R: Mo M and M[r]M* = M'[r]M*® and R™ : M* < M*
and (7) and (i7)
where (7) is :
Yw* € M* :Vw* € M*:
R (w*,w*) = R(=7" (w), =7 (w*))

and where (4) is :
Ywe M :Vuw' € M':Vw* € M*: Jw®* € M*:

R(w,vw') and w —, w* = w —,; w* and R"(w*, w*)

Proof: The proof is by induction on the structure of action types, and consists
of constructing a proper bisimulation R™ from a given bisimulation R, for each
inductive case. It can be easily checked that conditions (i) and (ii) are satisfied
for all inductive cases. We will therefore skip these parts in the proof. However,
they are essentially needed as inductive assumptions in the case Lg7 of the proof.

Case 7¢: Suppose R : M < M' and M[?¢]M*. Type 7¢ is also executable on
M’ because if R(w,w’) then M ,w = ¢ & M' w' = ¢. Let M* be that model
M'[?¢]. Define for all worlds w € M* and v € M'[?¢]: R (w,v) & R(w,v).
Relation R’¢ is a bisimulation between M[?¢] and M'[?¢], because both M[?¢]
and M'[?¢] are) models (models without access) and because R’?(w, v) implies
that R (w, v), which implies that V,, = V,,.

Case Lg7: Suppose R: M < M' and M[LpT|M*. From definition 33 follows
that M* = @z[M|[7]]. We show that the (unique) model M* = @ z[M'[7]] is
the required model. By induction, for each M; € [M[r]] we have an M] € [M'[7]]
such that M; < M]; suppose R; : M; & M. We show that M* = @z[M'[7]]
is the required model. For all w € M; € [M[r]], w' € M} € [M'[r]], define
RO (M, w), (M}, w")) < Ri(w,w'). Obviously, R® : P[M[r]] & P[M'[r]].
We show that also R® : @z[M[7]] & Pz[M'[7]], so that R® is the required
bisimulation RLBT,

We do forth, back is similar: Suppose that v,v"” € @gz[M][r]], where v =
(My,v,) such that vy € My € [M][r]] and v" = (M, vy) such that vy € M, €
[M[7]], and that w € @gz[M'[7]], where w = (M|, w;) such that w; € M €
[M'[7]], and that R®(v,w), and that v ~; v"”. We have to find a w” with
R®(v", w") and w ~p w". Distinguish case M; = M, from case M; # M.

If My = Ms, then (by definition 33): v ~p 0" < (M, v1) ~p (M1, v) < vy ~p
vy. As Ri(vi,w;), by induction there is a w) € M, such that PR,(vj,w)) and
wy ~p why. Therefore RP((My,vh), (M, wh)) and (M;,w;) ~p (M],w}), in other
words: w” = (M],w}) is the required world.

68 Chapter 4. Update by local interpretation

If My # M,, then (by definition 33) v ~, v" can only be the case if b #
gr(M;) U gr(M,), and we have that v ~y v" & (My,v1) ~p (Ma,v5) & —7*
(Ul) ~b _>7T1 (’Ug) Further, m@(v’w) And meB((Mlavl)a(M{awl)) And %1(’01)101)‘
Applying (i) for 7, by induction, from R, (vq,w;) follows R(—1 (vy), =1 (wy)).
From —; ! (v) ~p =71 (v)) and R(—;* (v1), =7 (wy)) follows that there is an
z € M’ such that — 1 (w;) ~; = and R(—=;! (v)),z). From R(—! (v)), z),
—- 1 (vl)) —, v} and (ii) (for case 7) follows that there must be a wj € M, such
that * —, wj and Ry (vy, ws). Let w” := (M, wh). We now have that w ~, w”,
because again by definition 33 it holds that w ~, w” < (M], wy) ~p (M, wh) <
= (wy) ~p =7t (wh), and we have that R®(v”, w"), because Ra(vh, wh).

Case 7 ; 7': Suppose M < M' and M|[r ; 7']M*. By definition 33, there
must be an M; such that M[r|M; and M;[r'|M*. By induction, there is an M;
such that M'[7]M] and M; < M]. Because M; > M| and M;[r'|M*, again by
induction, there must be an M* such that M][r'|M* and M* & M"°.

Case 7 U 7"t Suppose M < M' and M[rU7'|M*. By definition 33.5.4:
M[r]M* or M[r'|M*. If M[r]M*, then by induction, there is an M?® such
that M'[t]M* and M* <> M*®. From M'[t]|M* follows, again by definition 33.b.4,
that M'[r U’ |M*. If M[r'|M*, then by induction, there is an M" such that
M[r'|M" and M* & M". From M'[r'|M" follows, again by definition 33.b.4,
that M'[T U r'|M". [

The following are direct consequences of proposition 12:

Proposition 13
(a) Let M, M' be S5 models, and 7 € KT. If [[M[r]]| = 1, then:
M < M'= M[1] & M'[7]
(b) Let (M,w),(M' w') be S5 states, and o € KA. If « is executable in (M, w),
then:

(M, w) = (M’ w') = (M, w)[a] & (M',w')[]

4.4 Further observations

Simultaneous execution The program class KT of action types might be
extended by adding the operation of simultaneous execution. We give an example:

Example 36

There are three players (1,2,3) and four cards north, east, south and west (n, e, s, w).
Player 1 holds north, player 2 east and player 3 south and west. Player 3 shows
his south card (only) to player 1, with his left hand, and (simultaneously) his
west card (only) to player 2, with his right hand.

4.5. Conclusion 69

We add a new action type construction operator: simultaneous execution N
(e.g. see [Gol92]). The action in example 36 can be described in more detail as:
“(1 and 3 learn that 3 holds south) and simultaneously (2 and 3 learn that 3
holds west) and (simultaneously) (1, 2 and 3 learn that (1 and 3 learn a card of
3) and simultaneously (2 and 3 learn the other card of 3))”. This is expressed by
the ‘knowledge action’:

L123(!(L13?S3 N L23?’U)3) U U (ng?ig N ng?jg))
i#4,(i,4)# (s,)

The incorporation of an operator for simultaneous execution would be a valuable
extension to our language. We haven’t further investigated this. Other epistemic
action languages ([Bal99]) contain such an operation.

History-related actions The interpretation of real actions in games may
require not just the current game state, but also the action history. We give an
example:

Example 37
Player 3 shows his south card (only) to player 1; next, player 2 asks player 3 to
show him his other card; player 3 shows his west card (only) to player 2

In every game state resulting from the first part of the action, the information
is lost which card has been shown, so that the reference in the second part of the
action cannot be deduced from this state. To describe that, would require a very
different action language. We also haven’t further investigated that.

Axiomatization We did not validate our semantics by an axiomatization of
the dynamic language LY for a given set of atoms P and agents A. We expect the
usual axioms for a dynamic logic and for the learning operator we expect axioms
such as [Lp7|p <+ p and [LpT]—¢ <+ =[Lp7|p. In chapter 7 we define embeddings
of subclasses of KAUKT into the languages of other researchers ([Ger99, Bal99]).
They have given axiomatizations. This may provide further clues.

4.5 Conclusion

We proposed a dynamic epistemic language £, that includes a language KT of
action types and a derived language KA of knowledge actions. Basic to our ap-
proach is the concept of local interpretation of an action type in a model: the
interpretation for a subgroup of agents only. We performed detailed computations
on some example knowledge actions, to illustrate the language and its interpreta-
tion. In chapter 7 we compare our approach to that of other researchers. Future
research should include an axiomatization to validate our approach. We also con-
sider extensions of the action language. We have not encountered the notion of

70 Chapter 4. Update by local interpretation

local interpretation in the literature and regard it as our contribution to epistemic
semantics.

Chapter 5

Descriptions of game actions

In chapter 2 we defined a format for game actions. In chapter 4 we defined a
programming language KA for knowledge actions. We now show that every game
action is described by a knowledge action.

A KA action is interpreted as a state transformer by local interpretation. Game
actions are themselves semantic objects. In order to relate knowledge actions to
game actions, in section 5.1 we define an alternative semantics for knowledge ac-
tions, called product interpretation (related to [Bal99], see also chapter 7). The
product interpretation uses a knowledge action frame, which is a semantic ob-
ject quite similar to a game action frame. We show that execution of knowledge
actions produces bisimilar states for both notions of interpretation. In section
5.2, we give the precise relation between game action frames and knowledge ac-
tion frames, and we define a procedure to construct from a given game action a
knowledge action that describes it. In section 5.3 we treat an entirely different
topic related to knowledge game states: A measure for the complexity of a finite
S5 state is the number of its (nonsimilar) worlds. As a result of action execution,
the complexity decreases in more cases than one may think at first sight.

We start with an example that illustrates the relation between knowledge actions
and game actions, see also figure 5.1. In the initial model (hexa, rwbd) of the hexa
game, the game action where player 2 asks player 1 for his card, and player 1
responds by showing his card, is:

showf:r_ = (2, {{rwb, rbw}, {wrb, wbr}, {brw,bwr}}, 1, {rwb, rbw}, show)

where show; and show, are the identity and shows is the universal relation on
the question. See chapter 2. If we abstract from its game parameters, this
game action is represented as the pointed frame (showf:r_) = ({{rwb, row},
{wrb, wbr}, {brw,bwr}}, show), {rwd,rbw}). The knowledge action expressing
the same as this game action is (see chapter 4):

o, = L123(!L12?7’1 U L12?w1 U L12?b1)

Knowledge action a, can be transformed into game action frame (show%:r_)
as follows: The set of actions of this type not only consists of a, but also of the
different actions a, and a; where instead 1 shows white or blue. Although 1

71

72 Chapter 5. Descriptions of game actions

L123(!L12?r1 U L12?W1 U le?bl)
| T3<
3 L123(L12?T’1U !L]_Q?U)l U L]_z?b]_)
| 37

L123(L12?7"1 U L127w1U !le?bl)

| L123(!L12?T1 U L12?w1 U le?bl) |
\ y
— ! w\

3
|3
by L3 (1 L12? Agrwprbwy U L1277 Agwbrwrsy U L127Afprw pwr})

{rwb, rbw} /

| T3<

3 {wbr, wrbd}

{brw, bwr} \

| (2, {{rwb, rbw}, {wrb, wbr}, {brw,bwr}}, 1, {rwb, rbw}, show) |

r

| >3

Figure 5.1: From knowledge actions to game actions, and vice versa

and 2 can tell all three actions apart, 3 cannot distinguish between them. This
defines access between these knowledge actions. Therefore, to o, corresponds a
pointed S5 frame on the set of actions of this type, with point «,. This is called
the knowledge action frame [a,]®. It provides us with an alternative notion
of interpretation: the product interpretation of action «, in state (hexa,rwb)
computes the model that consists of pairs of worlds (w,), with ¢ = r, w, b such
that the precondition of . is satisfied in (hexa,w), and two world-action pairs
are accessible for an agent if both the worlds and the actions are accessible for
that agent. An example: The precondition of a, is 71, which is satisfied in worlds
rwb and rbw of hexa. Therefore, both (rwb, o) and (rbw, o) are in the product
interpretation. Also, they are l-accessible to each other, because rwb ~; rbw
and o, ~; a,. If we replace the actions in [a,]® by their preconditions, and
these preconditions by their extensions in hexa, we get the game action frame
(showir_).

From the game action showf:; we can also construct a knowledge action that
describes it. Take as preconditions of actions the characterizations of possi-
ble answers, which is simply the disjunction of the state descriptions of the
worlds in that answer. E.g., given state descriptions A,,p := pwp A C12333
and Aypy 1= Oppw A C12333 for rwb and rbw, respectively, the possible answer
{rwb, rbw} is characterized by Agruprbw) := Arsw V Arpw. These preconditions

5.1. Product interpretation 73

are the test formulas in our programs. Access on the game action frame is matched
by operators for learning and choice, and the point of the frame by local choice.
We postpone illustrating that, to section 5.2.

We now continue with the general definitions.

5.1 Product interpretation

In this section we define the product interpretation of knowledge actions and types.
We show that it corresponds to local interpretation, as defined in chapter 4. First
we introduce some useful concepts. The product interpretation of a knowledge
action in a given state, results from applying a knowledge action frame to that
state. This frame is defined on the set of knowledge actions of the same type
as the particular action, based on a notion of accessibility between actions of the
same type; in order to determine access, we introduce the operation of actually
learning agent (ala).

Definition 38 (Set of actions of a given type)
Let 7 € KT be a knowledge action type. Then:

KA(T) :={ly7 | I € bu(7)}
is the set of knowledge actions of type 7.

Definition 39 (Actually learning agents)

The actually learning agents ala are defined on knowledge actions, by induc-
tive cases: ala(ln?¢) = 0, ala(l)LeT) = B, ala(lo,n (T U ') = ala(ly7),
ala(lyr,0)(TUT)) = ala(ly7"), ala(l,n (T 5 7)) = ala(ly7').

Compare this to the definition of the learning agents of a knowledge ac-
tion type, la(7), in chapter 4. Note that ala(!;7) C la(7); we have e.g. that
la(le?rl U ng?w2) = {1,2,3} whereas ala(!L127r1 U L23?U)2) = {1,2} and
ala(L12?r1U! Lag?ws) = {2,3}. The operation ala gives us just the finer struc-
ture needed to distinguish between actions of the same type:

Definition 40 (Accessibility between knowledge actions)
We define by inductive cases whether two actions are indistinguishable for a player
a:

"0 ~a 9?0 never
"oLeT ~a Y yLer iff 17 ~g 1y ora € B\ (ala(!y7) Uala(ly7))
lan (15 ') ~a Yy (T 7)) ME 7 g lgr and 17"~ 17
!i(I,J)(T U T') ~a !j(K,L)(T U 7'/) if 7=0and !;7 ~, g7 oOr
i=1and ;7" ~g 17

74 Chapter 5. Descriptions of game actions

Note that actions can only be the same for an agent a if he is learning some-
thing in them: if @ € la(7). Therefore even identical tests cannot be the same
for any agent: la(?p) = 0. However, two actions !y Lp7 and !(;)LgT may be the
same for an agent a € B, namely if he is not actually learmng anythmg in either
yrorlyrifad ala(!ﬂ) Uala(!y7").

We now define the frame corresponding to a knowledge action type as follows:

Definition 41 (Knowledge action type frame)
Let 7 € KT. The knowledge action type frame of T is:

[7]® = (KA(7), (~a)aea)
where for all a € A, ~, is access as in definition 40.

Definition 42 (Knowledge action frame)
Let ;7 € KA. The knowledge action frame of !;7 is the pointed frame:

[':71® = (I7]°, 7)

Frames for knowledge actions and knowledge action types may not be S5 (see
example 40). Because it is a semantical object, such frames may be called the
interpretation of the corresponding knowledge action (type). Therefore we write
[7]®. The notion [-]® is called product interpretation to distinguish it from the
notion [-] (no superscript) of local interpretation. We prefer to think of both
notions of interpretation as state transformers, in the case of [7]® this is induced
by definition 44, that we will now present. In that definition we need the concept
of precondition of an action:!

Definition 43 (Precondition of a knowledge action)
The precondition pre(a) of a knowledge action « is defined by inductive cases:

pre(lp?p) = ¢
pre(\nLpt) = pre(li7)
pre(lan(t; 7)) = pre(lit) Allir|pre(ls7')
pre(log,n(tut)) = pre(lsr)
pre(yan(rut)) = pre(ly7)

Definition 44 (Product interpretation of an action type)

Given are a set P of atoms and a set A of agents. Let M = (W, (~;)aca, V) be an
S5 model. Let 7 € KT and [7]® = (KA(7T), (~4)aeB)- The product interpretation
of 7 in M is the model:

M@ [r]® == (W', (~)aen, V')

1In [Bal99], the semantic object comparable to a knowledge action frame is not - just - defined
on alternative actions but on abstract ‘tokens’ that are characterized by the preconditions of
those actions.

5.1. Product interpretation 75

where
W' = {(w,!;7) € W x KA(7) | M,w = pre(!;7)}
and V(w, !;7), (w',!1;7) € M ® [7]® : Va € B:

(w, ;1) ~ (W' 1y7) & we~gw and 1~ 1T
! _
Wwa!IT) - Vw

Definition 45 (Product interpretation of a knowledge action)
The product interpretation of a knowledge action !;7 € KA in an S5 state (M, v)
is the state

(M, 0) ® [7]® = (M @ [7]®, (v, 7))

The product interpretation M ® [7]® is not necessarily an S5 model! It is
not an S5 model, if different actions of type 7 have different groups of actually
learning agents. See e.g. example 40. Still, in such a case the resulting model
consists of disconnected components of S5 models (S5<,, models, if M is an S5,
model).

The notions of local interpretation [-] and product interpretation [-]® are
almost the same. The differences are inessential: the resulting models will still
be bisimilar. First, we give an example where local and product interpretation
correspond: see example 38. Then we give two examples where they are different.
The differences are due to the fact that [-] is not functional but that [-]® is
functional. If 7 is executable on M, M ® [r]® may be the direct sum E[M[7]]
of all models in [M[r]], as in example 39. In that case, however, the resulting
models are still bisimilar. If [M[7]] consists of models for different groups of
agents (or, differently said, if the group of actually learning agents — ala(!;7) — is
not the same for all actions of that type 7), the resulting models are also not the
same, but, again, are bisimilar, as the connected components containing related
points correspond. See example 40.

Example 38

The product interpretation of Lyo3(Lq27r3 U Lis?w; U L127b1) on the model hexa
is pictured in figure 5.2. Write a,. for the action where card c is shown. It
is isomorphic to (local interpretation) hexa[Lio3(L12?7r1 U Lis?wy U L157b1)], see
chapter 4. We leave detailed computations to the reader but give one example:
note that (rwb, ;) ~1 (rbw, a,) because a, ~1 a, (the action of showing red is
‘indistinguishable from itself’ for all agents) and rwb ~1 rbw (1 holds red in both
rwb and rbw). See also the introductory part to this chapter.

Example 39
The product interpretation of the action type L;?ws U Li;?ws on hexa is the
model consisting of four worlds (rwb, L1 ?7ws U Ly Tws) and (bwr, Ly 7ws U Ly Tws),

76 Chapter 5. Descriptions of game actions

(rwb, a,) 1 (rbw, a)
/
3

(wrb, ayy) ——/—1—(wbr, ay,)

3 3/

/

(brw, ap) 1 (bwr, ap)

Figure 5.2: Product interpretation in hexa of 1 showing his card to 2

(rwbd, L1 ?7woU 'Ly 7ws) and (bwr, Ly ?wsU Ly 7ws), with only reflexive access for
player 1. However, the local interpretation of that action type consists of two
worlds only. These worlds are the two states of the (-model consisting of the
deals rwb and bwr: According to the definition of local interpretation, the action
1L17ws U L 7w, is identical to the action L;?w.U !L;7w,, because they define
the same relation between knowledge states: for all M, [M[!L, 7wy U Ly 7ws]] =

Example 40

The product interpretation of the action type L;?r; U Ly?ws on hexa is the (not
S5!) model consisting of four worlds (rwb, L1771 U Ly?w,), (rbw, Ly ?ry U Ly?ws),
(rwb, L17r1U Ly?ws), and (bwr, L1?7r1U Le?ws), with (rwb, 'Ly 7ry U La?ws) ~q
(rbw,!Ly7ry U Ly?ws) and (rwb, L1 71U Le?ws) ~o (bwr, Ly 71U 1Ly7w,). Note
that the knowledge action type frame for L;?r; U Ly?w; is the frame consisting of
the two actions !L;?r; U Ly?wq, accessible from itself for 1, and L;7r;U !Ly?w;,
accessible from itself for 2. Indeed, the local interpretation of L;7r; U Ly?ws on
hexa consists of a 1-model and a 2-model, both consisting of two worlds. These
are the two components of the product interpretation.

Before we present proposition 15 on the relation between local and product
interpretation, we need to prove a simple property relating local interpretation
to preconditions of actions:

Proposition 14 (Preconditions of executable actions)
A knowledge action is executable in a state, if and only if its precondition is
satisfied in that state. Let (M, w) be an S5 state, let !;7 € KA. Then:

M, w') - (M, w)[r] (M) & M,w = pre(l;7)

Proof By induction on 7, using the (inductive) definitions of pre and of local
interpretation [-]. For an example, two cases.

Case 7¢: We have that (M, w)[!o?](M',w') & M[?]M" and w 2, w' <
w=w"and M,w = ¢. Also: M,w = ¢ < M,w |= pre(!)?¢). Therefore, given
that we have such a M’ and w', it follows that M, w |= pre(!?¢); and given that
M,w = pre(!)?¢), choose w' = w and M' = M[?¢].

5.1. Product interpretation 7

Case 7 ; 7': We do just ‘=’ (‘«=’ is somewhat similar):

Let M', w' be such that (M, w)[!;.5)(7 ; 7")](M',w'). There must be M", w" such
that (M, w)[!;7](M",w") and (M", w")[!;7'|(M', w"). From (M, w)[!;7](M", w")
follows, using induction, that M,w = pre(!;7). As the interpretation of ac-
tions is functional, from (M", w")[!;7'](M’', w') follows that we also have that
for arbitrary (M*, w*), if (M, w)[!;7](M*, w*) then (M*, w*)[!;7'](M', w"). From
(M*, w*)[! ;7] (M', w') follows, using induction, that (M*, w*) | pre(!;7'). There-
fore (M, w) = ['rr]pre(!;7"). We continue by:

M,w = pre(l;r) and M, w = [I;7]pre(l;7)

=

M,w ’: p/re(!I’T) A [!]T]})’I‘B(!JT,)
=

M,w = pre(lgn(t; 7)) u

Notation Write w[!;7] for the unique w’ such that (M, w)[!;7](M' '), i.e.
such that w ~,, w'. (Instead of w[!;7] we could also have written —_(w).)

Proposition 15
Let M be an $5 model and 7 € KT be a knowledge action type executable in M,
then:

Pl e Me[r]®

Proof The following relation fR defines a bisimulation between @[M|[7]] and
M ® [7]®. For all w € M, for all I € bu(r) such that !;7 is executable in (M, w):

R(w[lrr], (w, 7))

Note that proposition 14 guarantees that w[!;7] is a meaningful expression in
the context of the definition: if (w,!;7) is in the domain of M ® [7]®, it holds
that (M, w) = pre(!;7) and therefore !;7 is executable in (M, w), so that we can
use the notation w[!;7] for its image under that execution. The relation R in-
duces a surjection but does not induce a bijection from M ® [7]® to @[M[r]],
because different actions w[!;7] and w[!;7] may define the same world in [M[r]],
see example 39. To establish that the relation is a bisimulation, note that
Voltir] = Vw = Viw,;) and that both ‘back’ and ‘forth’ immediately follow from
the following observation:

'w[[!ﬂ]] ~a ’wl[[!JT]l

& by lemma A below, that is proven by induction on 7
w~g w and 17 o~y 1T
& by definition 44

(w, ;1) ~g (W', 157)

78 Chapter 5. Descriptions of game actions

We now prove the following lemma ()):

Lemma)\ for proposition 15
Let M be an S5 model, 7 be a knowledge type, w,w’ € M, and I,J € bu(r).
Then w[!;7] ~q W'[ly7] © w ~, w' and 17 ~, 157

Proof: By induction on 7.
Case 7¢:

wlly?e] ~a w'l'y?¢]

& no access is defined on the (-model M[?¢]
false

=

w ~, w' and false

& o7 ~al()7¢ never holds, see definition 40
w ~g w' and '()?QO ~a '()?(p

Case Lgr: U)I['(I)LB’T]I ~a ’w,[[!(J)LBT]I W g w' and !(I)LBT ~a !(J)LBT
‘i’.
w1 LpT] ~a w'[!(5)LBT]
& worlds from M[LpT]| are states (b)
(M" w[lr]) ~a (M*,W'[1y7])
We distinghuish case M" = M* from case M" # M*. First, M" = M*:

(M" w[lr]) ~a (M",w'[!57])

& definition of local interpretation
w[lrr]) ~e w'[ls7])

o induction
w~g w and T ~g 1T

= definition 40

w ~q w and ! LpT ~g () LpT
Then, M" # M*:

(M" w[lr]) ~a (M*,W'[1y7])

& definition of local interpretation
w~, w and a & gr(M") U gr(M*)

=~

w ~, w' and a & ala(!;7) Uala(ly7)

& a € B, see definition 40

5.1. Product interpretation 79

w ~q w' and (LT ~g () LT

(¢).

Similar to ‘=’. However, we now have to proceed from cases ‘!;7 ~, !;7’ and
‘a ¢ ala(!;7) U ala(!y7)’. The second implies that different models in [M[r]]
are produced by local interpretation of !;7 and !;7 in M, respectively; the first
implies that they produce the same model.

Case 7 ; 7'

wll (75)] ~a W' hxn)(T;)]

& definition of local interpretation
wllr][ls7'] ~a W[k T] [7]

o induction
'w[[!ﬂ]] ~a ’wl[[!KT]] and !JTI ~a !LT,

p induction

w~g w and 17 ~g T and 17 ~g 17!

- definition 40
w~g w' and I p (75 ') ~a Yk, (T 5 T

Case 7 U 7't Suppose w[!i;,5)(7UT")] ~¢ w'[lix,0)(TUT')]. Suppose i =0
(7 = 0 proceeds similarly). In step (a) of the proof we use that, according to the
definition of local interpretation, w(!o,s (7 U T")] = w[l;7].

w(lo,n (T UT)] ~a w'lox,z) (7 U T)]

& (a)
'w[[!ﬂ]] ~a ’wl[[!KT]]

o induction
w~g w oand 7T ~g g7

A definition 40

w ~g ’w' and !O(I,J) (T U 7'/) ~Na !O(K,L) (T U T,)

This concludes the proof of lemma A. The proof of this lemma concludes the
proof of proposition 15. |

The relation between local and product interpretation has now been suffi-
ciently investigated to allow the description of game actions as knowledge actions.
Apart from that, it also seems to be worthy of further investigation.

80 Chapter 5. Descriptions of game actions

5.2 Game actions and knowledge actions

Let u = (g, Q, r, R, pub) be a game action for a state (M, v). Let !;7 be a knowl-
edge action. A world in the game action frame p~ is a set of worlds from M that
is a possible answer to the question of the game action, see chapter 2. A world in
the knowledge action frame [!;7]® is an action ;7 of type 7, see definition 42 on
page 74. The knowledge action !;7 describes the game action p, if the knowledge
action frame and the game action frame are ‘the same’, i.e. isomorphic, and if in
that way actions are matched to answers such that the precondition of an action
is satisfied by exactly those worlds in M that the answer consists of.

Definition 46 (Description of a game action by a knowledge action)
Knowledge action o € KT describes game action u for state (M,v) if p= = [a]®
and if, when Z is the isomorphism, Z(R,) and for all possible answers R’ in p,
and for all actions o' of the same type as a:

I(R,a") & VYw € R : M,w |= pre(a)

Example 41 (Show again)

The knowledge action o, = Lj3(!1L137r1 U Lig?wy U L137h;) describes the game
action showf:,,_. E.g., we have that Z({rwb, rbw}, a,), and pre(a,) = ri, and
indeed hexa, rwb = 7.

The constraints on a game action u = (g, @, r, R, pub), for an A state (M,v),
with |A| = n (see chapter 2), translate into the following constraints on a knowl-
edge action « that describes it:

e access for respondent r on frame [a]® is the identity

e all tests 71 occurring in the description in L of a game action are equivalent
in M to a disjunction of what the respondent knows:

J
31,05 € LI M =1 4 \/Kr<p,~

i=1
e [¢]® is an S5, frame (i.e. an A frame)

The second constraint is equivalent to saying that VR' € Q : Jipy, ..., ¢; € Y=
Vw e R : M,w = \/]_, K;¢; (every possible answer R’ is characterized in M by
a precondition v that occurs as a test 7¢ in the description). We will show below
that all game actions can be described by knowledge actions. However, not all
knowledge actions that are executable in a knowledge game state describe game
actions:

5.2. Game actions and knowledge actions 81

Example 42
All of the following knowledge actions are executable in state (hexa,rwb), but
none of them describe game actions:

[} L123?7"1U!L12?7“1
This is not a game action, because the frame for this knowledge action is
not an Sb53 frame. Point Li93771U!L1277r; of this frame is not reflexive for
agent 3.

[} L12?’r1
This is not a game action, because the group of this knowledge action is
strictly smaller than the group of hexa.

[] leg?(Kl’rl V K2’lU2)
This is not a game action, because the test is not on the knowledge of a
player (more precise: because the interpretation of the test formula is not
a union of ~, equivalence classes in hexa for some player a).

[} L123(!L23?K2’LU2 U L23?K3b3)
This is not a game action, because not all tests are on knowledge of the
same player.

[] L123(!L12(!L1?K2’WQ U Ll?K2b3) U L12(L2?K2w2 U L27K2b3))
This is not a game action, because there is apparently no respondent, that
should be contained in every group that learns.

The game action sorts show, noshow, win and nowin that we encounter in
knowledge games, are described by the following knowledge actions. We just give
the descriptions, and just for win and show, and leave the comparison with the
definitions in chapter 2 to the reader. Proposition win, describes that ¢ can win
(e.g. that he knows the deal of cards):

win? 1L ?wing U L ?—win,
1] . . .
show? s 0 1LA(1Lgp el U Ul oy Lyr?€i) U La? Ay el
We generally restrict the description to the publicly accessible alternatives. Thus
a show action is described by La (L4 7¢l U Uf#:l L,7¢.) and a win action by
LA?wing. See also chapter 6.

Procedure ‘describe’ Given a knowledge action and a game action, we can
test whether the knowledge action describes the game action. We can go one step
further: given a game action, we can construct a knowledge action that describes
it. From the possible answers, we can compute preconditions. Those will be the
test formulas in the knowledge actions. From the publicity, we can compute the
learning operators that must occur in the knowledge action.

82 Chapter 5. Descriptions of game actions

Preconditions Let s = (M,v) be a knowledge game state. As knowledge
game states are finite, every world w from s has a (unique) state description
A(mw) in LS, see chapter 3, or [BM96, vB98] for further references. Let W' be
a subset of M (of W = D(M)), then Ay := /v A(mw) is the description
of W'. We apply this to game actions: to every alternative R' € @ of the
question corresponds a formula Ag that characterizes it: in other words such
that w € R' < M,w = Agp. The Ag will be the test formulas in the knowledge
actions we are constructing.

From the publicity of the game action, i.e. from the access pub on the game
action frame, we compute a hierarchy of learning. This hierarchy determines the
learning operators that occur in the knowledge action describing the game action.
We give a general definition for frames with equivalence relations:

Definition 47 (Hierarchy of learning)
Let F' = (W,(~a)aca) be an S5 frame. The usual partial order < on binary

relations (see also appendix A) induces partial orders <z on P(A) and <y on a
subset of P(A):

VA,BC A : A<pB & ~y<~p
A= B & A<pBand B<p A
[A]:F <F [B]:F s A <g B
P(A)r = {ACA|VBCA:Be[A]_ = BCA)
VA,B € P(A)F : A<rB & [A]:F <F [B]:F
A<pB & A=<pBandB#A
A<LB & A<pBand -3C:A<pCand C <p B

Relation =p is an equivalence relation that induces a partition on P(A);
the equivalence class containing A is [A]_ . Every =p equivalence class has
a top element. We let every =y equivalence class be represented by its top
element. We then ‘downgrade’ relation < to the partial order <z on the set of
‘representatives’ of =g equivalence classes, and make it a strict order <r. Note
that A < B = A C B.2 The bottom of this order <z is . The top of this order
is A. We then derive a functional ‘successor relation’ <}.

The order <p precisely reflects what different groups learn in a knowledge
action type with F' as frame: for any meaningful® subprogram L 47 in that action
type, A is a ‘threshold of learning’: for any subprogram Lg7’ of that type that
contains L7, A <}, B. For any subprogram Lp7’ of that type that L 47 contains,
B <1 A. In other words: A <p B means ‘A learns more than B’, and A <} B
means ‘A are the first to learn more than B’.

We have that ~4 < ~p € (U,ca ~a) € (Usep ~a)* and that B is the largest group
defining ~p.
3We may define ‘meaningful’ as follows: if L4 is part of 7/, then [7'[La7 := 7]] # [7']

5.2. Game actions and knowledge actions 83

For game actions u, with F' the frame underlying pointed frame p~, we may
write <, for <p. The broadcast unit Br of the game action is the smallest
nonempty subset of A in the <, order: () %}L Br.

The procedure describe maps game actions to knowledge actions, and uses the
order <,:

Definition 48 (Procedure describe)
Let u = (¢, Q,r, R, pub) be a game action. Then:

VAA' <, A:VQ'CQ:VR € Q"

describe(A, Q',) = 'LA(UA/_<1A describe(A’, Q'I[R]pub,, 1)U
Uf{ TpiACQI LA(UA'-<1A describe(A’, Q'N[R']pub, > 1)
describe(D, @', 1) = ?Vpeo KrAr

describe(y) = describe(A, Q, i)

In the definition, by Uﬁ;fi iACQ’ we mean nondeterministic choice between
subprograms for all pub, equivalence classes that are different from each other,
different from [R],u,, and contained in Q'. If empty, that part of the description
is deleted. Concerning 7 \/p, co' K,.Ag, we remind the reader that every possible
answer corresponds to a union of equivalence classes of the respondent r to the
question. As we are in S5, we may as well write Ag instead of K,Ag. Further,

note that we do not need sequential execution at all to describe a game action.*

Fact 6
Let p be a game action for state (M, w). Then describe(u) € KA.

Obvious.

Example 43 (Computing a knowledge action for 1 showing red to 2)
We apply the procedure to the game action showf:r_ . For this show action, the
learning hierarchy is 0 < {1,2} <' {1,2,3}:

describe(showf:;)

describe({l 2,3}, {{rwb, rbw}, {wrb, wbr}, {brw, bwr}}, showf’r_)

L123(descr|be({1 2}, {{rwbd, rbw}, {wrb, wbr}, {brw, bwr}}, showlr)
the 3 poss1b1e answers are the showis equiv. classes
L123('L12(descr|be(0) {{rwd, rbw}},show?’,)) U

Lio(describe (0, { {wrb, wbr}}, show? Ur)) U Lyip(describe(, {brw, bwr}}, showir_)))

4But as we do not have an algebra of knowledge actions, we cannot generalize this remark.

84 Chapter 5. Descriptions of game actions

L123(!L12?A{rwb,rbw} U L12?A{wrb,wbr} U L12?A{brw,bwr})

We have that Agusrsw) is equivalent to (6rwp V Orsw) A C12333, and because
hexa = ((0pwp V Orpw) A C12333) <> 71. Similarly for the descriptions of the other
possible answers. Therefore knowledge action describe(show%:r_) has the same in-
terpretation as the familiar action Lis3(!L157r1 U L1a?w; U L137hy) on hexa, as is
to be expected.

We conjecture the following proposition, and suggest a proof by induction on
=u-

Proposition 16
Let u be a game action. Then describe(u) describes game action u.

5.3 Complexity

We can measure the size of an S5 state by the number of worlds of its underlying
model. Preferably, the model is minimal in the sense that it is not bisimilar to a
smaller one, but we do not demand that. By executing a knowledge action « in a
state s, we get a new state s[a]. What is the size of s[a]? Typical for knowledge
actions is that the size of s[a] can be larger than the size of s, namely when
agents have real choice in that action. An example in (hexa, rwb) is the action
where player 1 whispers in the ear of player 2 that he does not have the white
card (whisper). The resulting model consists of 12 worlds, see chapter 4.

In general, the size of s[a] is exponential in the length of the action «, as
measured by its operator depth.’ This suggests intractible computations. We do
not want to give an in-depth treatment of these computations here. But in fact,
instead of exponentially growing, states may shrink, even when choice is involved.

We were motivated to look into the complexity of action execution, because
we didn’t understand why it was possible at all to play Cluedo. As this game
consists of a long sequence of card showing actions, shouldn’t we expect the state
space to blow up? So why is it fun to play the game? Apart from other reasons,
this is also because Cluedo game states can actually get smaller, even though we
expect them to get larger because the players can choose. Why? In this section
we only answer that question. We continue with a definition.

Definition 49 (Size of models and states)
Let (M, w) be an S5 state, where M = (W, (~4)aea, V). Then:

size of model M M| = |D(M)|
size of state (M, w) (M,w)] = |M|
relevant size of state (M,w) ||[(M,w)|| = |[w]al

5We use that [2lese’ll — Islall | slasa’ll _ [sla]l . [(slaD[«'].

|s s| s[a s s[a]]

5.3. Complexity 85

The relevant size of a state is the number of worlds that are relevant (~a4-
accessible) to the players: the number of states that a player has to consider
in his reasoning.

We now compute the effect of game actions in initial knowledge games states.
By definition, initial knowledge game states are minimal (in the bisimulation
contraction sense). All actions where the publicitiy is the identity on the question,
result in a reduction of the size of the state they are executed in. They are
described by knowledge actions of the form !La7@UT. Because ||s[!La?¢ U T]|| =
||s[La?¢]||, these actions all correspond to public announcements. The public
announcement of ¢, restricts a state to the worlds that satisfy ¢. Therefore, game
actions win and nowin reduce the size of a state, as they are public announcements.
For knowledge games, the only candidates for combinatorial explosion are the
action sorts show and noshow. Because only the relevant size of a state is of
interest, the sort noshow also results in a reduction: no agent in A has alternatives
to this action of type !Lpo7p U 7.

We now compute the size of the initial state of a knowledge game, and the
change in size as a result of executing a show action.

Size of the initial state of a knowledge game Let d € AC. Let |A| =n
and |C| = m. Write i for |[d~!(¢)|. Except for boundary cases, the set Dy, where
all players hold the same number of cards as in d is the set of relevant card deals.
It is the domain of the initial state sig of a knowledge game for d (see chapter 2).
The total number of relevant card deals can be computed as follows: First player
1 has to draw {1 cards from the stack of m cards. There are (;’1’) ways to do that.
Then player 2 has to draw #2 cards from the stack of m — fi1 cards. There are
(m_ﬁl) ways to do that. And so on. So we have that:

#2
| e (m= Y m!
|sia = |Ia] = |Dg| = l_T (ti) I G

Show The game action of player r showing a card ¢* (one of ¢ cards) to player
q is described by the knowledge action La (1L, 7c: U U; 4i—1 Lgr?¢l). The size of
sia[La('Lgr?ci U iy Lor?cl)] is computed as follows:

‘SidIILA(!Lqr?C;{ U U§.7é1.:1 Lqr‘?cfn)]”

AU Lo?d)]

Z;:l | ZTa[Lqr ?¢l]]

86 Chapter 5. Descriptions of game actions

> [Tal?€]l

Y Hwe lo| Lnw = g}

t- I - &
|sig| - &

Therefore, if % < 1, then |sig[show]| < |siq4|: the size of the next game state
is smaller than the size of the initial game state. In Cluedo every player holds
three cards and a request is for one out of three cards (namely, for a combination
of a murder, a room and a weapon card). So if the first action in a Cluedo game is
a show action, the size of the next game state is only %th of the size of the initial
game state. We do not know whether |s[show]| < |s| for every Cluedo game state
s, but we conjecture that it keeps shrinking. We already mentioned that noshow,
win and nowin actions also result in a reduction of the size of the game state. This
explains why it is feasible to play Cluedo: there are less possibilities all the time!®
This concludes our short excursion into the complexity of executing knowledge
actions.

5.4 Conclusions

We introduced the notion of product interpretation. We have proven where prod-
uct interpretation and local interpretation are the same. By means of product
interpretation we defined when a knowledge action describes a game action. We
suggested a procedure to compute a knowledge action from a given game action.
The result of an initial show action in Cluedo results in a decrease of the size of
the game state.

6We do not know the reduction due to a nowin action. We also computed the size reduction
of the initial game state due to noshow: noshow is decribed by La? /\;:1 —¢l. We now have that
sta[La? Nj—y ~ci] = |sia[La? Nj—q ~ci]| = Ta[La? Ni—y =ci]l = [1a[? A}, —ci]|- The size of
ILi[? /\2.:1 —ci] is the number of worlds satisfying that test. The probability that a player does
not have any of the cards c, ..., ¢ is the probability that that player’s first card is not any of

. —t 'SR T . .1s . . . —1—¢
those ¢, i.e. ¥, multiplied with the probability that his second card isn’t, i.e. “——, and so

on until ==t Therefore the size reduction is
m—(fr—1)

Chapter 6

Examples

In chapters 2 and 4 we gave some examples of knowledge game states. We now
give many other examples. In section 6.1 we describe various actions in a language
for only two agents and one atom. The context is better known under the name
‘nightclub or lecture’. In section 6.2 we give an overview of all game actions and
all game states in the hexa game, and we discuss other knowledge actions in that
domain. We pay some attention to the topic of unsuccessful updates, because of
its relevance to the analysis of games. In section 6.3 we visualize the effect of a
player choosing between different cards to show. In section 6.4 we present the
knowledge actions that describe game actions in Cluedo. In section 6.5 we discuss
the concept of ‘suspicion’. In section 6.6 we describe the exchange of secrets over
a network, better known as ‘spreading gossip’.

6.1 Nightclub or lecture

Anne and Bert are sitting at a table, having coffee. A messenger comes in and
delivers an urgent message in an envelope, to Anne. The letter contains either
an invitation for a night out in Amsterdam, or an obligation to give a lecture
instead. Anne and Bert commonly know that these are the only alternatives.
This situation can be modelled as follows: There is one atom p, describing ‘the
letter contains an invitation for a night out in Amsterdam’, so that —p stands
for the lecture obligation. There are two agents 1 (Anne) and 2 (Bert). Letter is
the model ({w,w'}, {~1, ~2}, V) with both ~; and ~3 the universal relation on
{w,w'}, and with V,,(p) = 1, Vi (p) = 0. Below we list some types of action that
are executable in letter, one can imagine actions of those types being executed in
states of letter. Figure 6.1 pictures the models resulting from their execution. In
the figure we name the worlds w and w' by their atomic descriptions p and —p,
respectively.

e Anne is invited for a night out in Amsterdam and reads the letter aloud:
Lyi27p

e Bert is seeing that Anne reads the letter (and this is publicly known):
le(Ll?p U L17—|p)

87

88 Chapter 6. Ezamples

letter[L1o(L1?p U Ly ?7—p U Ly?p U Ly?—p)] cube
Ietter[[Ln (Ll?p U L1 ?7-pU p—2—p 5
?TULg?pULg?—'p)ﬂp p,ri’.’2 i |p
. CorT
p—2 /4 | 2 | 2
| | 2 | 2 |
2 2 p—1—p | -p-lfpp
1 .1
| | p= 1,2——|p
| | letter
1 1
| | \ —1,2—
p—1—p
p -p p—2—p :z|7—2—ﬂ|p
2 2
1'7—1,2——!;0
Ietter[[Lm?p]] IetterﬂLm (Ll?p U L17_|p)]] Ietter[[L12(L1?p U L17_|pU?T)H

Figure 6.1: Some models for two agents and one atom. Assume transitivity of access.

e Bert suspects that Anne has read the letter (and this is publicly known):

e An outsider tells Anne and Bert that one of them has read the letter:
le(Ll?p U Ll?ﬁp U Lz?p U L27_|p)

e An outsider tells Anne and Bert that one of them may have read the letter:

e An outsider tells the agents that some of them may have read the letter.

(By ‘some’ we mean 0, 1 or 2.) The resulting model is cube.

Two players each holding one card The model letter can also be seen as
the pre-initial state of a knowledge game for two players each holding one card.
Suppose the cards are white and black. There are two possible deals, bjw and w|b.!
The two deals b|w, w|b correspond to the two worlds w,w’, or, more figuratively,
the invitation for a night out in Amsterdam corresponds to the black card, and
the lecture obligation to the white card. There are four atomic propositions:
b1, wy, ba, we, where b; stands for ‘1 holds black’, etc., and we have that b; A ws
corresponds to p. Agent 1 reading the letter corresponds to agent 1 turning her

1plw is the deal d € {1,2}{%} with d(b) = 1 and d(w) = 1. See chapter 2.

6.2. FEverything on three players and three cards 89

card. Agent 1 reading the letter aloud corresponds to both players turning cards.
Letter[L127p], bottom left in figure 6.1, corresponds to the initial model for this
knowledge game.

How ignorant can one be? In letter ignorance is somehow public. Although
both players can imagine all deals of cards (i) (of that size, i.e. where they each
hold one card), both players know also that this holds as well for the other player
(7). From a game point of view, a player is worse off when (¢) holds but (i7) not.
In letter|Lio(L17p U L1 7—pU 7T U Ly ?p U Ly?—p)], top left in figure 6.1, they can
be worse off in that way. In either of the two middle worlds in that model, both
players do not know whether p, but they also do not know whether the other
player knows p: they even can imagine the other player to know either p or —p or
nothing: their uncertainty about the deals of cards (i.e. valuations) that are still
considered by the other player, is maximal.

In cube, this idea is carried to its full extent: in any world of cube it holds, that
whatever an agent knows of the atomic description of the world, he can imagine
the other agent to know anything more or less of it. We think this kind of model
merits further attention: we conjecture that any model constructed by executing
a KT action in letter is a restriction of cube, in other words: all knowledge actions
can also be interpreted as public announcements in cube. We have not further
investigated that. The model cube itself is not the result of executing a KT action
type in letter, for that, we would need an operation N of simultaneous execution,
see chapter 4.2.

6.2 Everything on three players and three cards

The hexa game has been a motivating example for every part of this research. The
knowledge state (hexa, rwb) = ({({rwb, rbw, wbr, wrb, brw,bwr}, {~1, ~2, ~3}, V),
rwb) represents the knowledge of three players each holding one card, for actual
deal of cards rwb. For all deals d, e in the domain of hexa: d ~, e < d !(a) =
e !(a), and Vy(c,) = 1 & d(c) = a. See the middle picture in figure 6.2. The
designated state rwb is indicated by a sans serif typeface. We give an overview
of game actions and corresponding knowledge actions for hexa games.

In chapter 2 we described four different sorts of legal game actions in knowl-
edge games: show, noshow, win and nowin. As in hexa a player can ask for
either 1, 2 or 3 cards, the following seven sorts of action can be executed in
hexa games. They are accompanied by the knowledge actions that describe them,
their meaning will be clear. As in hexa winning is knowing the deal of cards,

win, = VdeD(hexa) Kb

2Tts description would then be: Lia(Li?p U Li?7—pU?T U Ly?p U La?—p U (L1 ?7p N Ly?p) U
(Ll?_!p n Lg?ﬁp))

90 Chapter 6. Ezamples

’I‘U)blILm;g(!L]z?Tl @] L127w1 @] le?bl)]] ’I"U)bﬂleg(!ng?’f‘l @] le?wl)]] ’I"U)b|[L123(!L12?7"1 @] le?bl)]]

rwb—1—rbw rwb—1—rbw rwb—1—rbw
3 3
/ /
wrb —1—wbr wrhp—— 1 — wbr
3 3
brw—1— bwr brw—1—bwr

6.2.b \ 6.2.c A / 6.2.d
rwb (= (hexa, rwb))

rwb—1—rbw
/ \
3 2
4 —
wr — 1—wbr
\ \ /
2 3 2 3
N/ N/
brw—1— bwr
/ 6.2.a J}
’f"wb[[[qzs?’l‘l]] ’l‘U)blIle;g?_"wl]] 'rwb|[L123?ﬁw1; leg?ﬁwinz; L123?‘|b1]]
rwb—1—rbw rwb—1—rbw rwb
\
3 2
brw—1—bwr
6.2.e 6.2.f 6.2.g

Figure 6.2: Overview of all non-agent-similar game states for hexa games

a,—
show;’, L193(!'Lap?cy U Lap?cy U Lgp?cy)
a,{c,cl} /
ShOWb’C L123(!Lab?cb U Lab?cb)
show‘;,f Lis37cy
!
nOShOW;Jl’{c’C} L123?(—|Cb A —|C;,)
noshow; Li937—cy
win® L123?wina
nowin? L1237—win,

Agent-similarity = More interesting for a modal logician than this overview
of game actions, is an overview of S5 states that can be produced by action
sequences. Such an overview can be rather concise, if we only look at frame
properties of the models. An example: model rwb—2—bwr can be transformed
into model rwb—1—rbw by switching the roles of players 1 and 2, and by mapping
worlds properly; i.e.: by the permutation (213) of the sequence (1,2, 3) of players,

6.2. FEverything on three players and three cards 91

and a bijection Z on the set of deals {rwb,bwr} of that model: Z(rwb) = rwb
and Z(bwr) = rbw. The bijection Z is somewhat like a frame isomorphism (see
appendix A). Multiagent models / states are ‘agent-similar’ if they are the same
with respect to such a permutation and bijection:

Definition 50 (Agent-similar)

Let A be a set of agents, let C be a set of cards. Let P = C x A be the set of
atoms. Let M = (W, (~a)aca, V) and M' = (W' (~))aca, V') be two S5 models
for A and P. Then M and M' are agent-similar, notation M =, M’ iff there is
a permutation f of the set of agents A and a bijective relation Z between M and
M’ such that:

Vw,w" € W :w ~g w" & I(w) ~pa) I(w")

Two S5 states (M, w) and (M',w') are agent-similar, iff M and M’ are agent-
similar and w' is the image of w given the permutation establishing the similarity.

There are only seven not agent-similar states and six not agent-similar models
for hexa. Figure 6.2 pictures those states. Note that the models underlying 6.2.c
and 6.2.d are agent-similar, although these states aren’t, because different points
have been chosen in the model. It will be clear what questions by 2 that are
answered by 1 are described by the knowledge actions in the figure, except for
6.2.g (see below).

The state in figure 6.2.f, that is reached by game action noshow?™ and is
described by the knowledge action Lis37—w, is of further interest. This is because
of the continuation of this game: Player 2 cannot win in this state, as he cannot
distinguish actual deal rwb from deal bwr. By, therefore, passing his move to the
next player, player 2 implicity announces that he cannot win (yet). The result of
executing this action delivers the state (hexa,rwb)[Li23?—w1][L1237—Wins]. The
resulting state rwb—2—bwr is =;93-similar to figure 6.2.e.

If now player 1 or player 3 were to move, that player simply announces his
knowledge and wins, without the need for any further requests to the other
players. The announcement is described by the knowledge action Lis37win; or
Ly237wing, respectively. In neither case does the execution of the action change
the state of the game: after the announcement, 2 still cannot distinguish between
rwb and bwr.

Now suppose, instead of 1 and 3 winning, that 2 is allowed a second chance.
He asks 1 for the blue card; such that 1 again responds by saying ‘no’. This
interaction is described by the knowledge action Li337—b;. The resulting game
state is pictured in 6.2.g.

Figure 6.2.g models the singleton state rwb where there is public knowledge of
the deal of cards. This state can be reached from (hexa, rwb) by the game action
sequence (noshow>™ nowin?, noshow?>”), see the previous paragraph. It can only
be reached by such a clearly suboptimal action sequence. A direct way to produce

92 Chapter 6. Ezamples

it is by executing knowledge action Lis370,p, i.€. by a public announcement that
the deal of cards is rwb. This, however, is not a game action.

6.2.1 Other actions for three players and three cards

We continue with some other examples of knowledge states and knowledge actions
for three players each holding a card. The examples in the list below are pictured
in figure 6.3. In the figure, assume access to be transitive. The names of the
worlds are the deals that atomically characterize them, so that some worlds have
the same name. They can still be distinguished from each other because they
have different access to other worlds.

1. In the initial model hexa, player 1 whispers in 2’s ear a card that he (1)
doesn’t have: L123(L12?_'7'1 U L12?—|w1 U L12?_|b1)

2. Players 1,2, 3 play hexa knowledge games. There is a fourth player present,
who doesn’t hold a card or otherwise interact with the game. He gets
bored and leaves. When he returns, player 2 tells him that he has asked
player 1 for one of two cards and that player 1 has responded to his request:
L1234(L123(L12?w1 U L127b1) U L1ag (L1271 U L127b1) U Ligs (L1271 U L1p 7wy) U
L1377 U Lyag 7wy U Ly1237by)

3. The ‘pre-initial’ model where the three cards have been dealt, but nobody
has looked at his card.

4. In the pre-initial model, 1 looks at his card: Lia3(L17r1 U Ly?wy U Ly 7by)

5. In the pre-initial model, all players look at their cards: look;ss

The ‘whispering’ action executed in figure 6.3.1 has been presented in detail in
chapter 4. Note that the model of figure 6.3.2 consists of 18 nonsimilar worlds and
that, whatever the actual state of the game, player 4 can imagine nine different
actions to have taken place: Player 2 can have asked three different questions,
namely the three combinations of two cards out of three. To each question player 1
can have responded in three different ways: showing one card, showing the other
card, and saying that he doesn’t have either of the two cards. The pre-initial
model in figure 6.3.3 has been described in chapter 3. In general, the knowledge
action type looka, as look;es in figure 6.3.4, is defined as follows:

Suppose the actual deal of cards is d € AC. Let n = |A|. The action ‘player
a looks at his cards’ corresponds to the action ‘player a learns his atomic state’.
This is expressed by the action type look(a). We define:

look(a) = La(Ugep, La?63)
look((ay, ..., a,)) look(a;) ; ... ; look(a,)
looka = U, . 24.ca l00k((a1, ..., a5))

6.2. FEverything on three players and three cards 93

heXa[[ngg(ng?_'Tl U le?_"ll)]_ U le?_'bl)]]

rwb— 1 —=rbw
s— /37 \
3 2

wrb=™————— 1 —wbr
\ /o / N\
2 3 /brw—/l— bwr

\ _ 3—7 3

brw= 1 —bur

6.3.1

hexa[[L1234(L123 (ng?wl U ng?bl) U L123(L12?7’1 U ng?bl) U L123 (ng?’l’l U le?wl) U L123?7‘1 U L123?w1 U L123?b1)]]

rwb—1,4 —rbw
4

rwb—1,4—rbw

\
_— wrb———— 1,4 —wbr
! 3 4/ //
rwb=1,4—rbw ’ 4 4

wrb————Ld—wbr brw—1,4—bwr
4
wrb————— 1,4 — wbr 3,
3,4 brw—1,4 =bwr
brw—1,4—bwr
6.3.2
hexa0 hean[[Lug (L1?7“1 U Ll?wl U L17b1)ﬂ heX30|I|OOk123]] = hexa
rwb-1,2,3 - rbw rwb-1,2,3-rbw rwb—1—rbw
/ \ / \ / \
1,2,3 1,2,3 2,3 2,3 3 2
/ \ / \ / \
wrb————/—1,2,3 — wbr wrb————/—1,2,3 — wbr wrb——/— 1 — wbr
\ \ \ / \ \ /
1,2,3 1,2,3.,2,3 1,2,3 2,3 2,3 2,3 2,3 9 3 2 3
N/ \/ N/ \/ N/ N/
brw-1,2,3-bwr brw-1,2,3-bwr brw—1— bwr
6.3.3 6.3.4 6.3.5

Figure 6.3: Knowledge states for three agents and three cards

94 Chapter 6. Ezramples

It can be proven (omitted) that the interpretation of action type lookya is func-
tional on the model prel;. So we can write prelyflooka]. Also, it can be shown
that prelj[looka] = I4. In chapter 3, this provided us with an indirect proof of
the uniqueness of an initial model I, such as hexa.

6.2.2 TUnsuccessful updates

Consider again the two plays of the hexa game (noshow}™, nowin?, win') and

(noshow%’“’, nowin?, win®) (see figure 6.2.f). The point here is, that players 1 or
3 could win after player 2 told them he could not win. We are touching on a
topic described in the literature ([Ger99]) as the unsuccessful update. An unsuc-
cessful update is a KA knowledge action L47¢p, i.e. an announcement to group
A, for which there is a knowledge state (M, w) such that (M, w)[La?¢] F~ .
Formula ¢ is called the unsuccessful update formula.®? We give two examples,
and a conjecture of game theoretical interest:

Example 44 (Unsuccessful update)

A simple example: in the initial state of the game for three players and three
cards, with actual deal rwb, player 1 says to other players: “You don’t know
that I have the red card.”. We have to be more precise: player 1 is implicating
“I have the red card and both of you don’t know that.” The action executed is
L123?K1(7“1 A _|K2’f'1 N _'K37"1). We have that:

(hexa, rbw)): Kl(’l“l VAN ﬁI(g’f’l N _'Kg’l“l)
(hexa, TWb)I[L123?K1(T1 N _'Kg’l"l A _'K37"1)]l): 0123?’)“1
(hexa,rwb)ﬂngg?Kl(rl/\—|K27"1 /_|K3’f'1)]l b& Kl(T'l /_|K2’I"1 /_lKgT'l)

The resulting state rwb—1—rbw is that of figure 6.2.¢, i.e. (hexa, rwb)[Li2377].

Example 45 (Unsuccessful update)

In state (hexa, rwb)[Li237—w: |, pictured by figure 6.2.f, player 2, instead of pass-
ing his move to the next player, mumbles, “Gosh, somebody can already win
now”. Player 2 seems to be implicating the following: Another player can win.
Let us, for the sake of the example, be even more strict (though not conversa-
tionally implicated) and assume that he is actually saying: ‘One other player can

win’. The proposition describing it is
Kywinother := Ky((wing A =wing) V (wing A —winy))

When executing L5357 Kowinother, only the worlds survive where 2 knows that
either 1 or 3 can win; in worlds rwb and bwr 2 knows that 3 can win; 1 can-
not win in any of the four worlds. Therefore, the state resulting from executing

3 Actually, the form in [Ger99] generalizes to M[La?¢] [~ Cacp.

6.3. Choosing between cards 95

Ly23?7Kowinother in (hexa, rwb)[L1237—w:] is the same as that resulting from ex-
ecuting Lis37—win, (see example figure 6.2.f):

rwb—2—bwr
In the resulting state, both 1 and 3 know the deal of cards, and 2 knows that:
(hexa, rwb)[L1237 w1 |[L1237 Kawinother] = Ky(winy A wing)
and therefore
(hexa, rwb)[L1937 —w1 |[L1237 Kawinother] = Kywinother

If player 1 were now to move, he could win!

Is “nobody can win” an unsuccessful update? In example 45 player 1
can only win because player 2 announced that either 1 or 3 can win. Or, put
differently, because 2 announces that he cannot win, 1 can win. Now in this
example, 3 could have won anyway, even before 2’s announcement. Is there a
knowledge game state where no player can win, but after announcing that fact
some player can win? In other words, is there a game state (M, w) for a set A of
agents such that:

Ja € A (M, w)[La?(/\ —win,)] = wing

Now abbreviate nonewin := A ., —win,. We then have:
(M, w)[La?nonewin] = —nonewin

We do not know the answer to this question. An answer is of practical importance
for, e.g., building Cluedo-playing programs, because every show or noshow action
is followed by a nowin action. Does it pay to execute nowin, or is this a waste of
time and computation? Clearly, an answer is also of game theoretical interest.

6.3 Choosing between cards

Every show action in a hexa game is a forced show action: either you have one
of the requested cards, and you show it, or you don’t, and you can’t show any
of them. Forced show actions result in a restriction of the original model: less
worlds, or less access among worlds. The game for 3 players and 4 cards is the
most simple knowledge game where some player can choose which card to show.
Assume that player 3 holds 2 cards (i.e. the size of the deal is 1/1|2). The cards
are called north, east, south, and west; or n,e, s, w. The actual deal of cards is:
1 holds north, 2 holds east, and 3 holds south and west: n|e|sw or just nesw.

96 Chapter 6. Ezamples

nwes N
2 1 ensw
wnes ewnq 3
———nesw
nwes 3 AN 3&)ens/) |
2 ensw
et 1 e
e’wng 444444 3 \ 1 / |
\A"'3 ____9——neésw

senw
\ nsew 1 . ’
wsne -3 - 9 3 . seqpw— 1% /
20\
e‘s\m{ \3 3 et
wsne \. 2
PR ___1—esnw
esnw

Figure 6.4: On the left, a truncated tetrahedron representing the initial knowledge
state where 1 holds north, 2 holds south, and 3 holds east and west. Access for player
1 is only shown in a typical case. On the right, a truncated octahedron representing
the state of the game after 3 has shown 2 his south card, given a request for one of his
cards. Again, not all access for player 1 is shown.

The initial state (tetra,nesw) of this game is pictured on the left in figure 6.4.
Its shape is that of a truncated tetrahedron, one of the semiregular polyhedra
(Archimedean solids). Imagine the corners of the tetrahedron to represent the
card that player 2 holds. Truncating a corner creates a triangle. The corners of
that triangle represent the (three) different states where 2 holds a certain card.
Its edges therefore represent the accessibility relation for player 2. The facing
triangle in the figure represents the equivalence class where 2 holds east. At a
‘deeper’ level, the dotted-line triangle represents an equivalence class for player
1, namely where he holds east. The edges shared by different hexagons represent
3’s access.

In the initial state of the game, player 2 asks player 3 to show him one of his
cards, and 3 responds by showing the south card. This is the game action

showi;;
and the knowledge action that describes it is
L123(L23?’I’I,3 U L23?€3U !L23?83 U L23?w3)

The result of executing showgzs_ is visualized on the right in figure 6.4. It is a
truncated octahedron (another semiregular polyhedron). The edge of tetra that

6.4. Cluedo 97

is representing 3’s equivalence class where he holds south and west, nesw—3—
ensw, is blown up to a square, so to speak. This happens to all six edges (all
six equivalence classes of player 3). In that process, the four triangles of the
tetrahedron are simultaneously ‘blown up’ to four hexagons.

The designated world nesw in the figure on the right corresponds to the world
where player 3 has chosen to show the south card. It is different from the other
world labeled nesw, which corresponds to player 3 having chosen west. Note that
in the designated world nesw indeed player 2 can distinguish worlds where 3 holds
south from worlds where this is not the case, such as the right senw in the lower
edge of the facing hexagon of the picture. In the non-designated world nesw
instead, player 2 cannot make that distinction. These worlds nesw and nesw are
still connected by a 1-link, in other words: player 1 cannot distinguish the world
where 3 has shown south from the world where 3 has shown west instead.

6.4 Cluedo

Cluedo is a knowledge game for six players and a table, where every player holds
three cards, and where a question is for one out of three cards. We abstract from
the fact that there are different types of cards, which restricts the number of card
requests that can be made and the number of card combinations that can be on
the table. See chapters 1 and 2. Just as in other knowledge games, there are only
four different sorts of action, show, noshow, win and nowin. We give them in more
detail and include their descriptions:

e player a asks player b for one of three cards c,c’,¢” and b responds by
showing (only to a) card c:

a,{c,c',c"}
show,’,

L123456(!Lab?cb U Lab?cz U Lab?Cg)

e player a asks player b for one of three cards ¢, ¢, ¢ and b responds by saying
that he doesn’t have any of them:
a,{c,c',c"}
noshow,
Lio3as6? (—co A —ey A —cy)

e player a announces that he has won the game (that he knows the deal of
cards):
win®
Ly234567Win,

98 Chapter 6. Ezamples

e player a passes his move to the next player (and thus implicitly announces
that he cannot win the game yet):

nowin®
L1234567—Wing

In the initial state of Cluedo a show action reduces the complexity of the game
state, as measured in the number of nonsimilar worlds, see section 5. In the case
of Cluedo, winning the game is knowing the cards on the table. You can win, if
in all worlds that are accessible to you, the table ‘holds’ the same three cards,
or in other words: if your information state is contained in an equivalence class
of ~g. It is not known if a nowin action ever changes the information state in
nontrivial cases, in other words: if it can be an unsuccessful update, see section
6.2.2. In trivial cases, such as asking for the three cards that you hold yourself,
it is informative, see chapter 1.

6.5 Suspicion

Let M be a knowledge model, let 7 be an action type executable in that model.
Suppose gr(M) = A. A common occurrence is that agents outside gr(7) suspect
that 7 has been executed. We can describe this suspicion by the knowledge action
type:

LA(TU ?T)
If actually nothing happened, the action that has taken place is:

LA (TU '7—|—)

If, on the other hand, an action !;7 of type 7 has been executed, the action that
has taken place is:

LA(!ITU 7—|—)
For suspicion, see also [Bal99].

Example 46 (Has player 1 cheated?)

Consider the model hexa0, or prel,.;: three players have each been dealt one card
but haven’t turned their cards. The action type where the other players suspect
player 1 to have looked at his card, is described by:

L123(L1?’r1 U Ll?wl U L17b1U ?T)

The resulting model is pictured in figure 6.5. Schematic ~5 and ~3 access between
the two hexagons is to be interpreted as follows: worlds with the same name are
~o- and ~jz-related. (As a result all worlds are ~,- and ~jz-related.) Note that
the frame for this action type consists of four alternative actions as worlds, with
~9 and ~j3 the universal relation and ~; the identity on this domain.

6.6. Spreading gossip 99

rwb-1,2,3-rbw rwb-1,2,3-rbw
/ \ / \
1,2,3 1,2,3 2,3 2,3
/ \ e/
wrb <172,3—wbr ! wrb <1,2,3—wbr
\ / \ /
1,2,31,2,3,2,3 123 23 2323 23
\/ \ / \ / \ /
brw-1,2,3-bwr brw-1,2,3- bwr

Figure 6.5: hean[leg(Ll?rl U Ll?wl U L1‘7b1U ?T)]l

6.6 Spreading gossip

One of the multiple-choice questions in the 1999 edition of the nationwide Dutch
Science Quiz was the following:

“Siz friends each know a secret. They call each other. In each call they exchange
all the secrets that they currently know of. How many calls are needed to spread
all the news?™

The answer options were: 7, 8 and 9. The correct answer is: 8. In the af-
termath of the quiz, the more general question what the minimum would be
for any number of callers each having one secret, created a bit of a stir in the
media, see the website of the Netherlands Organization for Scientific Research,
http://www.nwo.nl/nwo/quiz/roddelen. It includes a procedure for communi-
cating n secrets (for n > 4) in 2n — 4 calls® and a proof ([Hur00]) that 2n — 4 is
minimal.

Optimal call sequence There are various way to communicate all secrets in 8
calls to all persons 1,2,..., 6, most of which start with ‘1 and 2 call each other’, ‘3
and 4 call each other’ en ‘5 en 6 call each other’. Here, ‘calling each other’ means
‘learning each other’s secrets’. Table 6.1 is an example. Call the sequence: six.

Prolonging the pleasures of gossip Instead of the minimum number, one
might wonder what the maximum number of calls is where each time something
new is learnt. For n secrets this is (g) For n = 6 the maximum can be reached
by the following sequence of calls: 1 learns from 2, 3,4, 5, 6; 2 learns from 3,4, 5, 6;

etc. Somewhat surprisingly, the maximum number of informative calls happens

“In Dutch: “Zes vriendinnen hebben ieder 'n roddel. Ze bellen elkaar. In elk gesprek wisselen
ze alle roddels uit die ze op dat moment kennen. Hoeveel gesprekken zijn er minimaal nodig om
iedereen op de hoogte te brengen van alle zes de roddels?”

5 Procedure suggested by Gerard Renardel, personal communication. Let 55 mean ‘i calls j
and they pass each other their secrets’. Proof: n = 4: 12,34,13,24; n = 4 + k: first make k calls
from person 1 to the persons over 4: 15,16,...,1(4 + k). Then let 1 to 4 make calls as in the
case of n = 4: 12,34,13,24. Now repeat the first part of the procedure: 15,16, ...,1(4 + k).

100 Chapter 6. Ezamples

call 1 2 3 4) 6
0 a b c d e f
1| 12 ab ab c d e f
2| 34 ab ab cd cd e f
3| 56 ab ab cd cd ef ef
4| 13 abed ab abcd cd ef ef
5| 45 abcd ab abcd cdef cdef ef
6| 16 abcdef ab abed cdef cdef abcdef
7| 24 abcdef abedef abced abedef cdef abcdef
8| 35 abcdef abcdef abcdef abedef abedef abedef

Table 6.1: Six, an optimal sequence for communicating six secrets

to be the maximum number of different calls between 2 from n persons. Not any
order of different calls postpones the moment of full information, and not every
optimal sequence of calls consists of all different ones.®

Multiagent systems Thus far we have described the communication from the
viewpoint of an observer that is registering all calls. The telephone company, so
to speak. If we describe it from the viewpoint of the callers themselves, i.e. as
a multi-agent system, it becomes more complex. What exactly is communicated
here? Are the secrets generally or publicly known after the communications? This
depends on some further assumptions about the communications protocol. If we
only assume all communication to be faultless and all secrets to be exchanged in a
call, but make no further assumptions, after an optimal call sequence the secrets
are generally known, i.e. known to all. However, persons do not know that they
know all secrets, nor do they know that the other persons know all secrets, they
do not even know that there are six persons as a matter of fact. If we assume that
it is public knowledge that there are six persons, that each person has one secret,
and that all secrets are different, then after the optimal call sequence everybody
knows all secrets. Unfortunately, you don’t know that the sequence has been
executed. You might be one of the first to know all secrets, e.g. person 1 after
the sixth call in six. You might also be one of the last, as 3 and 5 after the eighth
and last call in six. We need some further assumptions: We will assume that
everybody knows which calls have been made to whom, although the secrets that
have been exchanged in that call are unknown.

Getting to know each other This calls for a somewhat differently tuned

6In the optimal procedure mentioned in footnote 5, person 1 communicates twice with all
persons over 4. In six, see table 6.1, all calls are different.

6.6. Spreading gossip 101

example, where the assumptions are obvious. Assume that the six persons are
seated around a table, and that they each have a card with the secret written
on it. A ‘call’ now corresponds to two persons exchanging their cards, and both
writing their secrets on the other’s card, unless the secrets were already on it.
The other players obviously see cards being exchanged, but are not allowed to see
what is written on them.

Assume that the six secrets a,b,c,d,e, f in the example above are actually
the six persons’ names Anne, Bill, Cath, Dave, Erne and Faye. It seems that
we have described a protocol to get to know each other. Now do you know who
Anne is, after an optimal eight card exchanges? In the example above, apart
from Anne herself, only Bill knows that. The others only know that somebody is
called Anne. Apparently this is not the way to make yourself known.

What the six secrets are, is not only generally but also publicly known after six.
Who a secret originates with, is not even generally known after six! Depending
on the protocol, there is at most one player who knows the sources of all secrets.
This is never the case in an optimal sequence.

Describing the action of calling Communicating secrets can be described as
a KT knowledge action type in the language L5 (see chapter 4). The six persons
are called 1,2, 3,4, 5, 6. The six secrets are the values of six propositions py, ..., ps."
The action “¢ and j learn each others’ secrets” is a knowledge action type that is
the sequence of six programs of type “everybody learns that a and b learn whether
a knows the k-th secret, and everybody learns that a and b learn whether b knows
the k-th secret”:

callyy := ;% _,(Liosase(LijTKipr U Lij?7K;—py U Ly 7= (K;py, U K;—py,))

)

L1a3456(Lij T K;pr U Lij TK ;=g U Li;?7—(K;pr U K;—py))

)

It will be clear that the knowledge action type describing six, is:

Calllg ;ca||34 ;ca||56 ;ca||13 ;ca||45 ;ca||16 ;ca||24 ;ca||35

Example 47
The specific action where 5 learns that 2 knows that the value of the secret p, is
0, is the KA knowledge action:

L133456 (L5 ? KopalJ 1Los?Ko—ps U Las?—(Kops U Ky—ps))

It is a subprogram of an action of type callys. The exclamation mark points at
the choice by 2 and 5: what 2 and 5 have really learnt but what is unknown to
1,3,4 and 6, who only know the three alternatives for 2 and 5.

It is less convenient to call the secrets a,b,..., as the agents would have to extend their
language all the time, while uncovering them.

102 Chapter 6. Ezamples

6.7 Conclusions

We have presented various uses of the dynamic epistemic language £Z. We in-
troduced the concept of agent-similarity of multiagent models. We paid some
attention to the topic of unsuccessful updates. It is unclear whether not being
able to win can be an unsuccessful update. Further research should investigate
that.

Chapter 7

Update, suspicion, and hypercubes

Our research is on topics as diverse as the logic of questions and answers, the
description of finite models, the area of dynamic epistemics, and the modelling
of interpreted systems. In previous chapters we already paid attention to the
work of other researchers in these areas. In this chapter we discuss the work
of some researchers in more detail. A concise, recent, presentation of the logic
of questions and answers is [Gro99]. This was already discussed in chapter 2.
The description of game states was presented in chapter 3 and is a clear ap-
plication of the results presented in [vB98, BM96]. In chapter 3 we discussed
the relation in detail. In the present chapter we mainly discuss the area of dy-
namic epistemics. It has seen many publications over the last few years, e.g.,
[FHMV95, Vil99, vLvdHM95, K0099, Ren99, vB00a, vB00b, vdM97]. The area
initially came to the full attention of the research community by the treatment of
public announcements in the famous ‘Muddy Children Problem’, see [FHMV95].

The work of three researchers in particular is much related to ours. An in-
tegrated approach including announcements to subgroups, has been put forward
in [GG97]. Gerbrandy’s thesis, [Ger99], presents this dynamic epistemics DEL
in more generality. We present an embedding of a subclass of our programs into
Gerbrandy’s DEL programs and suggest a correspondence. Gerbrandy’s approach
is based on non-well-founded set theory, a non-standard semantics. More recently
Alexandru Baltag developed a logic of epistemic actions, based on a standard se-
mantics; [BMS99] treats announcements, and [Bal99] gives an entire framework
for epistemic dynamics.! We present an embedding of a subclass of our programs
into Baltag’s class of epistemic action expressions and suggest a correspondence.
Our research should probably be seen as a special case of the more general frame-
work as presented by Gerbrandy and by Baltag. Part of its interest lies in the
detailed description of new sorts of epistemic action, namely actions in games,
and the detailed description of new sorts of information state, namely knowledge
games states. That part of our research relates to the modelling with S5 models
of interpreted systems called hypercubes, as in [Lom99, LvdMRO00]. Card game
states and hypercubes are much alike.

T discuss the versions of these manuscripts that were available at the time of my research.
These are the 1999 versions.

103

104 Chapter 7. Update, suspicion, and hypercubes

a b C
T 1 ~ —~
;Wb 1 rb1< ;Wb 1—rbw 1.2 rwb—1—rbw 1,2
/ /
wrb — 1— wbr wrb —1—wbr
A\ /
9 3 2 3 3 3 3 3
N/ N/ (3 () / /
brw—1— bwr rwb rbw brw—1—bwr
| |
1,2 1,2 1,2 1,2
() ~I |~
rwb—1—rbw 1,2 rwb—1—rbw 1,2 rwb—1—rbw
3 3 3 3 3 3
J | | | | |
rwb—1—rbw rwb—1—rbw rwb—1—rbw rwb—1—rbw
/ \ / \ / \
3 2 3 2 3 2
4 — 4 — b 4 — b
wr — 1— wbr wr —1—wbr wr —1— wbr
\ A\ / \ / \
) 3 2 3) 3 2 3 2 3 2 3
N/ N/ N/ \/ N/ N/
brw—1— bwr brw—1— bwr brw—1— bwr
d e f g

Figure 7.1: Different ways of 1 showing 2 the red card

In section 7.1 we discuss Jelle Gerbrandy’s ‘Dynamic Epistemic Logic’ DEL.
In section 7.2 we discuss Alexandru Baltag’s ‘Logic of Epistemic Actions’. In
section 7.3 we discuss the work of Alessio Lomuscio on interpreted systems. We
introduce the work of both Gerbrandy and Baltag by means of an introductory
example:

The action that player 1 only shows player 2 his red card is described by
the action L123(!L12?r1 U L12?w1 U L12?b1). In ﬁgure 7.1.a and 7.1.b the game
state (hexa, rwb) and the game state resulting from executing this action are once
more shown. The action is publicly interpreted. The action that player 1 shows
player 2 his red card without any assumption on what player 3 learns from that
communication is described by Li377;. This action is not publicly interpretable:
the resulting model has no access defined for player 3. The resulting state is
shown in figure 7.1.c; unlike our general convention for S5 models, we have in
this case explicitly drawn reflexive access, i.e. for 1 and 2. This is to distinguish
that figure from figure 7.1.g, where, as usual, reflexive access is implicit, in that
case for 1, 2 and 3. Figure 7.1.g is the state resulting from 1 telling 2 that he
has red, so that this becomes public knowledge. This game action is described
by Li2377:.

What state results when 1 shows red to 2, but instead of not assuming anything
for 3, we assume that player 3 learns nothing at all from the communication

7.1. Gerbrandy: Dynamic Epistemic Logic 105

between 1 and 2?7 Figure 7.1.d pictures the state resulting from that action.
That state is no longer S5, because in the point rwb player 3 still ‘knows’ that
2 can imagine that 1 does not hold red, although this is not actually the case.?
This example is typical for both [Ger99] and for [BMS99]. In Gerbrandy’s DEL,
outsiders to a group learning something are always supposed to learn nothing.
In our approach we don’t make any assumptions about outsiders. In terms of
[BMS99], the action resulting in figure 7.1.d is a truthful announcement. Truthful
announcements have the form ‘group A learn proposition ¢’, just as here.

There are still other ways of 1 showing red to 2. We can make other assump-
tions about what 3 learns, apart from learning nothing. What if 3 learns more
than nothing, e.g. what if he is seeing that 1 shows 2 the red card, although 1 and
2 do not notice that? Now figure 7.1.e results: in the actual world 3 knows that 1
and 2 have common knowledge of 1’s red card. We can go on in this manner. The
current visualization of our models appears a bit awkward for that. DEL, based
on a non-well-founded set semantics, has a much more fitting representation in
infinite tree visualizations of models. See the next section.

Now assume that 3 only suspects that 1 has shown red to 2, and that this
is publicly known. In KA this is described by Lis3(!L12?mU ?T). Figure 7.1.f
results. Although in the actual world 1 and 2 share knowledge about 1’s red
card, 3 cannot distinguish this world from the world where this is not the case.
We have treated the topic of suspicion in chapter 6. A more general foundation
is given in [Bal99].3

Finally assume that 3 knows that 1 has shown red to 2, and that this is publicly
known. Again, figure 7.1.g results. This is described by KA action Lis3L1577q,
which is equal to Lia377;.

Altogether, we have now seen six of infinitely many ways of 1 showing red to 2!

7.1 Gerbrandy: Dynamic Epistemic Logic

We have always assumed that agents do no lie about facts and about their knowl-
edge. If that is the case, everything that is learnt is actually the case, or put more
generally: a program that is learnt can be actually executed. More general than
learning L is updating U, that does not require such truthful behaviour. The
action

le?rl

2The only world accessible to 3 from point rwb is the world rwb right below it. From that
world, world bwr is accessible to 2. In bwr 1 doesn’t hold red.
3The actions resulting in figures 7.1.b and 7.1.g can also be modelled in [Bal99].

106 Chapter 7. Update, suspicion, and hypercubes

where 1 and 2 learn that 1 holds red, can (almost) be described in more detail as
‘first test on 1 holding red, and only then update with that information’:

?r1 5 Up?ry

For the moment, ignore what happens to player 3. The order of the test and
the update is essential: imagine 1 telling 2 “I have red and you don’t know
that”. After updating with that information, it is no longer true that 2 doesn’t
know that, so the test will always fail after the update, even when it succeeds
before the update. This update operator U is the core of Gerbrandy’s language
DEL. On (hexa, rwb), the interpretation of Li2?r; does not correspond to that of
?ry ;5 Upe?ry: the last assumes that 3 learns nothing at all, so that figure 7.1.d
results, whereas the first doesn’t assume anything about 3.
Similarly to what we did with L1577, the action type

L123(L12?T1 U ng?wl U le?bl)
can be described by:

(?7‘1 3 U12?T'1) U (7w1 ’ Ulz?’wl) U (?bl 3 U12?b1))
Ulgg((?’l"l 3 Ulg?’l"l) U (7w1 3 Ulz?’wl) U (?bl 3 U12?bl))

The difference between a knowledge action and a knowledge action type, was that
some agents, in this case 1 and 2, know which choice is made from the alternatives,
whereas other agents, in this case 3, don’t know that. We therefore remove these
choices from the subprogram ‘outside the scope of the update operator U;o3’. This
may help to explain that the action

L153(' L1577 U Ly 7wy U Ly27by)
is described in update semantics as (g =):
(?r1 5 Ura?r1) 5 Unas((?r1 5 Ura?r1) U (Pwy 5 Unp?wi) U (71 5 Upa?h1))
In this case, the interpretations on (hexa, rwb) of both programs correspond!

States as infinite trees The logic DEL does not have a standard semantics but
a semantics based on non-well-founded set theory. Semantic objects now have an
infinitary character. To a state corresponds a semantic object that is called a
possibility. A possibility can be visualized as an infinite labeled tree, where the
root of the tree is the point of the state to which it corresponds.

The stages of interpretation of 7.4 are visualized in figure 7.2. In all pictures
in figure 7.2, nodes have been named by the deals that atomically characterize
them. The triangles denote infinite subtrees. Two of the subtrees at depth 1 of
the tree have been written out for depth 2. In all pictures, nodes characterized

7.1. Gerbrandy: Dynamic Epistemic Logic 107

7.2.a: Vrwb

//\\
A//\\\Ab i A///\\\

/\\ ///\\\

AAAAAA NERERR

7.2.b: wb|[U12 1]]

//\\

3\3

A///\\A A///\\\

/// ,/\,\\

KK A AA AAAAAA

7.2.c: v wb[[(?'rl ; U1277‘1 (U123((?’f‘1 ; U12?7"1) U (?w1 ; U12?w1) U (?bl ; Ulg?bl))]]

//\
A//\\HN A///\\

///

AAA AA KA AA

7.2.d: v wb|[U123 (7’/'1 ; U12?’f‘1) U (‘7w1 ; U127w1) (?bl ; U12?b1))]]

//\\

\
b

A///\\Ab 5 A///\\

/// ///
bbbbb

§ R R AA A A A AA

Figure 7.2: Infinite tree visualizations of possibilities

108 Chapter 7. Update, suspicion, and hypercubes

by all six different deals have now been reached. Nodes with the same name in
the same picture have identical subtrees, so they are bisimilar.

Interpreting a DEL program can be visualized as pruning such an infinite tree.
To compute a test in the tree of a possibility, check if the test formula holds at
the root; if so, the same tree results, if not, nothing results. For an update Uy
in a tree picturing a possibility w, look at all nodes v (i.e. possibilities) accessible
from the root w to agents from group A. If 7 cannot be executed there (e.g. if
the test formula doesn’t hold, when it is a test program), the subtree generated
by v is pruned from the tree. Otherwise, U7 is computed in v. We can also say
that in v we have computed 7 ; Uamw. Sequential execution and choice have the
obvious interpretation. As in our framework, we write v[r]w if w results from
interpreting 7 in v, and v[x] if the interpretation is functional.

The state (hexa, rwb) is pictured in figure 7.2.a. The possibility corresponding
to state (hexa,rwb) is called vyup. To interpret meq ON Upyp, first we interpret
?ry 5 Upa?ry. The test 7r; succeeds, and (only) all 2-accessible possibilities where
r1 does not hold, are pruned. The result is figure 7.2.b. It is bisimilar to 7.1.d.
Similarly, we interpret the public update part Uje3(...) of the program. The result
is figure 7.2.c. That figure is bisimilar to figure 7.1.b. Just interpreting that public
update is not enough: then figure 7.2.d would result.

7.1.1 Dynamic epistemic semantics

In this section we present a short overview of the semantics of Dynamic Epistemic
Logic DEL.

Definition 51 (Possibility, information state)

Given are a set of agents A and a set of atoms P. A possibility w is a function
that assigns to each atom p € P a value w(p) € {0,1} and to each agent a € A
an information state w(a). An information state is a set of possibilities. ([Ger99],
12)

Do not confuse the information state of an agent with a pointed Kripke model
that we also call a state (although Gerbrandy does not call that a state, under-
standably).

There is a precise correspondence between Kripke models and possibilities:

Definition 52 (Decoration, solution, picture)

A decoration of a state (M,w) is a function ¢ that assigns to each world v of
(M, w) a possibility §, that has the same valuation of atoms and such that the
information state 6,(a) of each agent a corresponds to the set of worlds accessible
to a in (M, w): ie. §,(a) = {0y | v —, v'}, where —, denotes the accessibility
relation for a. Possibility d,, is called the solution of the state (M, w), notation
sol(M,w). State (M, w) is called a picture of possibility &,. ([Ger99], 38)

7.1. Gerbrandy: Dynamic Epistemic Logic 109

So to a state (M, w) corresponds the possibility d,,. Generally, instead of d,,
one simply writes w as well, unless confusion would otherwise result. Calling a
state a picture of the corresponding possibility, makes it convenient to refer to
the visualization of that state as the same thing: namely a picture, whether this
is an infinite tree or a finite structure. The information state w(a) of an agent a
in a possibility w corresponds to the equivalence class [w]., for an agent a in a
state (M, w).

To define possibilities, one can use equations. We then write v(p) = 1 if the
value of p in v is 1, v(p) = 0 if the value of p in v is 0, and v(a) = o, if o
is the information state of a in v. Formally, the v in the equations is actually
an indeterminate, and the possibility v is the solution for v given this system of
equations. Generally, we can simply identify them. ([Ger99], 14)

Definition 53 (Language of DEL)

Given a set of agents A and a set of atoms P, the set of sentences of DEL is the
smallest set closed under p | o A | = | Ky | [7]e (a € A, p € P, o, € DEL),
where [7] is a dynamic modal operator for DEL program 7. The set of programs
of is the smallest set closed under 7@ | Ugm |7 ; n' | mUn' (0 € DEL,AC A, 7
and 7' programs). ([Ger99], 89, 90, 92)

Actually, Gerbrandy distinguishes single agent updates U, from group updates
Uas. As U, = U,, the distinction is not essential. The language does not have
common knowledge operators. This is because, although the semantics of such
an extended language is clear, Gerbrandy has only found an axiomatization and
corresponding completeness proof of the restricted language.

Definition 54 (Interpretation of formulas)
By inductive cases:

wiEp ff wp)=1
wEepANY ff wEgpandwEY
wkE-p iff whe
wkEKyp iff Yvew(a):vEp
wgkrle ff YWw:w[rlv=vEe ([Ger99], 38, 91)

In the following definition, w[A]v means that w differs from v at most in the
information states of the agents in group A. Further, we use the abbreviation:

u[r][7']v & Fw : u[r]w and w]7']v

110 Chapter 7. Update, suspicion, and hypercubes

Definition 55 (Interpretation of programs)
By inductive cases:

w[?e]v iff wEypandw=v
wlr ; ©'Jv iff there is a u such that wr]u[r']v
wlUar]v iff w[AJv and Va € A : v(a) = {v' | T’ € w(a) : w'[7][Uar]0'}
wlrUn'Jv iff either w[r]v or w[n']v ([Ger99], 90, 92)

Write v[r] for the unique w, if there is one, such that v[r]Jw. As updates
are total and functional we can use that notation for possibilities resulting from
updates.

Gerbrandy gives a sound and complete axiomatization of the set of all the-
orems (set of DEL sentences true in all possibilities), see [Ger99], 93-102. This
concludes our overview of DEL semantics.

We now present some examples:

Example 48 (System of equations)

The possibility vy, is the solution of state (hexa, rwbd). In figure 7.2.a we pictured
Urp aS an infinite tree, and in figure 7.1.a as a hexagon. All six possibilities cor-
responding to states of hexa are defined by the following system of equations. (As
already mentioned, the equations are actually in indeterminates, and possibilities
are the solutions for the equations, but we will simply identify them.) We have
omitted the six times nine equations for the boolean values of atoms, such as
Vrwp(T1) = 1, Upp(12) = 0, etc.

Urbw 2 {vrbwavwbr} Ubwr(2 {’Ubwravr'wb} Vwor 2) = {vwbravrbw}
Urpw 3) = {vrbwa Ubrw} Ubwr('?’) = {Ubwravwbr} Vwbr 3

Urwb(l) = {Urwba ’Urbw} ’Ubrw(l) = {Ubrwa Ubwr} ’Uwrb(l) = {Uwrba war}
Urwb(z) = {Urwba ’Ubwr} ’Ubrw(2) = {Ubrwa U'wrb} ’Uwrb(2) = {Uwrba Ubr'w}
Urwb('?’) = {Urwba ’Uwrb} ’Ubrw('?’) = {Ubrwa Urbw} ’Uwrb(g) = {Uwrba Ur'wb}
Urbw(l) = {vrwba Urbw} Ubwr(l) = {Ubwra Ubr'w} war(l) = {'U'wbra Uwrb}
(2) =) = (2)
((3)

= {U'wbra vb’wr}

The possibility resulting from execution of action 7yeq in vy is like the one above,
but with the information state of player 2 in any possibility v consisting of just
v. It is pictured by both figure 7.2.c and figure 7.1.b.

Example 49 (Example computation)
We illustrate the execution of action 7eq in v, by showing part of the compu-
tation for interpreting 7r; ; Uis?r; in that possibility:

Ve[771 5 Ur2?r1]v < 3 2 vpws[?r1]z and Uy ?r1]v

AS Uy = 71 We have that & = vp,. We continue:

7.1. Gerbrandy: Dynamic Epistemic Logic 111

Vpwp[Ur2771]
=
Vrwp[{1,2}]v and Va € {1,2} : v(a) = {v' | " € vppp(a) : V" [?7r1][Ura?r1]0"}

We can write v = v,[U12771], because updates are functional and total. By
definition, v.,p[U12771] differs from vy, only in the information state of 1 and of
2. Therefore, the information state of player 3 in v,,;[U12771] is the same as in

Upwb:
vrwb[[Um?rl]](?’) == {vrwba Uwrb}

We continue with the information state of 2: vpp[Ui2?r1](2) = {v' | F" €
Vrwp(2) 1 0" [?r1][Ur2?r1]v'}. We have that vpys(2) = {Vrws, Vbwr }- Test 771 suc-
ceeds On Upyp, thus vpyp[?r1] = Vrws, and the resulting vy.,5[Ui2771] is the one we
are computing right now. However, in possibility vy, in the information state of
player 2 the test ?r; fails, as 1 holds blue there. So:

UrwbﬂUlz?ﬁ]] (2) = {Urwb[[Ulz?Tl]]}

In case of the information state of 1, the test 7r; can be successfully executed in
both possibilities in vpyp(1), i.€. i Vpyp and vpp,. Therefore, we can compute that

vrwbHUm?Tl]] (1) = {UrwbIIUR?Tl]la Urbw I[U12?7'1]l}

We now continue by computing the information states of agents in vypy, [Ur2?71],
etc.

7.1.2 Relation between KA U KT and DEL programs

The interpretation of the KA action L157r; in S5 state (hexa, rwb) is different from
the interpretation of the DEL program 7r; ; Ujs?r; in the solution v, of that
state. However, the interpretation of the KA action Lyo3(! L1277 UL127w; UL 57hy)
in that state is the same as (corresponds to) the interpretation of the DEL program
Tred 10 that possibility. If we delete access for agent 3 from (hexa, rwb), and infor-
mation states for agent 3 from v, the interpretations of L1377y and 77y ; Uia7ry
are ‘the same’ again. The emerging pattern is, that publicly interpretable KT UKA
programs correspond to their DEL counterparts.

We define an embedding A : £ — DEL. The only crucial case is (Lpm)>. We
conjecture that the interpretation of a publicly interpretable KT U KA program 7w
corresponds to that of the DEL program 7%

Definition 56 (Embedding L' — DEL)
The operation A translates KT U KA programs (without common knowledge op-
erators in tests, as these operators do not occur in DEL) into DEL programs. By

112 Chapter 7. Update, suspicion, and hypercubes

inductive cases on formulas, knowledge action types, and actions:

p = p
(80(/\ @b;i = (pAA/\ ¢A
1 = -
(Ka(P)A = KaQOA
([r])2 = [12]p”
(?‘P)A = ?(pA
(Lam) o= wUan®
(m;a)> = o2 n
(rur)® = atun®
(p?0)> = (29)°
'(I)I/BT(')A = ('ITF)A 7UB7TA
(o (msm)? = (m)? ()2
(logn(mun))d = (4m)2
(!1(I,J) (71' U 71"))A = (!JW,)A

Example 50
We compute that (Lyas3(1L12?r1 U Lip?w; U L1s?h1))? = Myeq:

(L123(!L12?r1 U L12?w1 U le?bl))A
= see chapter 4
(Moot), (0,0 L1238 (L1271 U Lya?wy) U Lyp?hy)2

|

)
3
=
S
N

)
3
=

Clearly the A translation of a KT U KA program 7 is a DEL program. We
suggest that the interpretations of m and % correspond on restrictions of possi-
bilities, a concept that does not occur in [Ger99], but naturally comes up from the
viewpoint of local interpretation. Informally define the restriction of a possibility
to a subgroup of agents as follows: let v be a possibility for group A of agents,

7.2. Baltag: Logic of Epistemic Actions 113

let B C A, and let E be the system of equations such that v is a solution for
indeterminate x. Define E'[B as the system of equations where all equations for
information states of agents not in B have been deleted from E. Then v[B, the
restriction of v to B, is a solution for z in E[B. In a picture for the possibility
v[B all branches labelled by agents not in B have been pruned.

For restrictions of possibilities, the following appears to hold: Let m be a DEL
program such that all occurrences of modal or program operators are in A. Let
z,x' be possibilities. Then (not just implication, but equivalence):

z[r]z’ & z[A[r]z'TA

We conjecture that the embedding A is adequate in the following sense: Let
(M, w) be an S5 state. Let 7 € KP U KA (without common knowledge operators
in tests). Then for all (M’, w'):

(M, w)[r](M',w") < Fv,3B : sol(M,w)[r*]v and v|B = sol(M', w')

From the conjecture then immediately follows where KP U KA programs ‘are
the same’ as their A counterparts: Let (M, w) be an S5 state. Let m € KP U KA
be publicly interpretable on (M, w). Then for all (M', w'):

(M, w)[r](M',w") < sol(M,w)][r>]sol(M', w')

The class of fully introspective and reflexive possibilities PANNT (see [Ger99],
43) corresponds to the class of multiagent S5 states. Let knowledge be the class of
DEL programs such that PNN NT is closed under their application. Write (KTU
KA)%# for the class of DEL programs that are translations of knowledge actions
or types. From the conjectured adequacy of the embedding follows that (KT U
KA)® C knowledge. Jelle Gerbrandy has been looking in vain for a description of
knowledge (personal communication). We hope to have contributed to this quest.

One may also wonder whether (KT U KA)® = knowledge. This, however, is
not the case. A simple example: showing your card is a KT type, showing the
red card is a KA action. Both have been translated into DEL programs. However,
‘showing the red card or showing the blue card’ is described by a DEL program
that is in knowledge but that does not correspond (see chapter 4) to a KT or KA
program: KA actions are not closed under ‘choice’, but DEL programs are! These
matters clearly require further investigation.

This ends the discussion of Gerbrandy’s Dynamic Epistemic Logic DEL.

7.2 Baltag: Logic of Epistemic Actions

We now present Alexandru Baltag’s ‘Logic of Epistemic Actions’ [Bal99] and
its precursor ‘The Logic of Public Announcements and Common Knowledge’
[BMS99] that was written in collaboration with Moss and Solecki.

114 Chapter 7. Update, suspicion, and hypercubes

7.2.1 Public and truthful announcements

Gerbrandy’s DEL programs describe many types of agent interaction. However,
they are interpreted in a non-standard semantics. In [BMS99] a restricted class
of these programs, namely public announcements, are interpreted by means of a
standard Kripke semantics. Public announcements are updates on tests ¢ for a
subgroup B of the ‘public’ A (in DEL, they have the form [Ug?y|). Note that
our use of the word ‘public’ is different from that in [BMS99], as is clear from the
previous sentence. We use ‘public’ for ‘the entire group of agents’. Therefore we
call those updates just ‘announcements’. Modal operators for announcements are
written as [¢]p. In [BMS99], the following procedure is presented to interpret the
announcement of ¢ to a subgroup B in a model M: Take two copies of the domain
of the original model M ‘and redefine access on the result’. In the resulting model
M @98 M then holds M @92 M = ¢ < M = [¢]sy.

Definition 57 (Interpretation of announcements)

Let M = (W, (—4)aca, V). The model M @&¥P M is defined as follows. The worlds
of M @%B* M are the elements of the direct sum M + M. The left injection of
M in M + M is called new, the right injection old. Access for an agent a € A is
defined as follows (models are left implicit):

!

if wo,w,a€eBandw' =¢p
if w—,w anda¢ B

never
if w—,uw

new(w) —, new(w
new(w) —, old(w’
old(w) —4 new(w

(w

old(w) —, old

!

)
)
)
)

The valuation of atoms on old(w) and on new(w) is as on w.

Truthful announcement operators [¢|% are also defined. Their interpretation
is like that of announcement operators [¢]g, except that the new copy of M only
consists of worlds where ¢ holds. The resulting model is written M &#B M. We
have that [¢]5v9 <> @ Ap]py. The truthful announcement of ¢ to B corresponds
to the DEL program ?7¢ ; Ug?p. If B is the public A, it also corresponds to
L7y, otherwise it does not correspond to a KA action.

Example 51

The action type of 1 showing 2 his red card in the model hexa is the same as
the truthful announcement of r; to the group {1,2}. The state in figure 7.1.d
on page 104 pictures the result of this announcement in actual state (hexa, rwb).
It is therefore also a picture of (hexa @"+{1:2* hexa, rwb). We have to rename
the worlds: the top left world should be named new(rwb), the top right world
new(rbw); the worlds w in the hexagon should be renamed old(w).

Before we continue to present [Bal99], a useful analogy. The construction in
[BMS99] can be seen as ‘defining a successor function’ for interpreting updates

7.2. Baltag: Logic of Epistemic Actions 115

in standard Kripke semantics: adding one copy of a model to a given model.
In [vD99] we defined ‘addition’ for interpreting updates in standard semantics:
adding as many copies as you want, although restricted to game actions. In
chapter 4 we defined addition in general. In [Bal99] one finds ‘multiplication’,
and also in chapter 5.

7.2.2 The logic of epistemic actions

The impressive ‘A Logic of Epistemic Actions’, [Bal99], has not yet reached its
final form, and is continually undergoing revisions to further generalizations. The
discussion will therefore be restricted. We start with an example. In [Bal99] one
can e.g. model suspicions.

Suspicion The state (hexa @ri{L2ht hexa, rwbd) is no longer S5, as player 3
does not believe the actual state new(rwb) of the world to be possible (in the
figure: rwb in sansserif). This is because not only 3 does not know that 1 and 2
have learnt something, but 3 also does not even suspect it. With the epistemic
action language in [Bal99] one can model both absence and presence of such
‘suspicions’. The result of the announcement of 1 to 1 and 2, where 3 suspects
this (and this is publicly known), is the state pictured in figure 7.1.f on page 104.
In [Bal99] suspicion is a primitive operation that defines access between actions.*
We continue with a restricted presentation of the crucial definitions.

Act(0): a language for epistemic actions Baltag defines a language Act(0)
for action expressions. Assume a multiagent modal language with common knowl-
edge operators and with dynamic operators [a], for, as they are called, closed ac-
tion expressions o € Act((). Open action expressions in Act(Z) are constructed
by one of the following operations, for the sake of readability we use the same
notation for operators as in KT:

Yo | 2% [a(@)® | (@) N B(Z)* | (@) ; B(Z)* | py - aly, ©)*
Action expression a® means that agent a suspects action a being executed. It
does not mean that « is executed. The operator u in an action py . a(y, Z)* is

a fixed-point operator. It expresses self-reference. A closed action expression is
one where all variables Z are bound by u operators.®

Example 52
That 1 shows red to 2, given that these are all agents, is described by the action
expression uzx . (?r; N z! N z?). Tt describes the action x such that the test r; is

4In EE, the (commonly known) suspicion by all outsiders of an announcement of ¢ to B is
described by the KA action La (?TU !Lg?¢p), see chapter 6. The suspicion by one outsider a of
that announcement is described by Lpya}(?TU !Lp?yp).

5The current version of this action language also contains operators for factual change and
an IFTHENELSE operator, personal communication.

116 Chapter 7. Update, suspicion, and hypercubes

executed, and such that ‘this’ (‘z’: self-reference) is simultaneously suspected by
both 1 and 2.

Example 53

That 1 shows red to 2 without 3 suspecting it, is described by ux . (?r;Nz* Nz2N
(uy . (pNy*Ny?Ny?))3). Here, p is the trivial action where nothing happens, just
as for 7T € KT.® Player 3 only ‘suspects’ (considers) that it is publicly known
that nothing happens: uy . (o Ny Ny2Ny?).

That 1 shows red to 2 with 3 suspecting it, and the standard example that 1
shows red to 2 without 3 seeing which card, have a more complex description in
Act(D0). We come back to it later.

Act: models for epistemic actions From closed action expressions one
can construct actions. First we define the preconditions PRE(«) of an action
expression and for each agent a € A an accessibility relation between action
expressions. Preconditions are defined by induction on the structure of action
expressions: PRE(?yp) = {¢}, PRE(a®) =0, PRE(anB) = PRE(a)UPRE(f),
PRE(a; B) = PRE(a)U [a]PRE(B), PRE(uz . a(z)) = PRE(a(pz . a(z))).
Accessibility is also defined by induction on the structure of action expressions:
a® =, a, (a =2 yor B =, 7) = anf =, 7, (a 2, fand o —, F) =
a;o =, B0, a(pz.a(z)) —4 B = pz.a(z) —4 B. The set of alternatives
to a given action expression « is the set of —-accessible action expressions:
ALT(a) = {B | a —a B}. Together this defines a pointed structure ||a|| that is
called the ‘real’ action:

|| = ((ALT (@), (—a)aca, PRE(ALT (a))), a)

This can then be be ‘identified’ with a semantic object ((K, (—X),ca, PREX),
ko) that is defined on a domain of abstract ‘tokens’, instead of action alternatives.
The identification is by means of the access and the preconditions, that are the
same on both. The class of epistemic actions is called Act. We can now define
the interpretation of an epistemic action in a state, in Baltag’s terms: epistemic
update.

Definition 58 (Interpretation of epistemic actions)

Given a multiagent state s = ((W, (=%),ca, VW), wq) and an epistemic action
a= ((K,(=5)seca, PREX) k), the update s - a of s by a is defined as follows:
s-a=((W-K,(—a4)aea,V), (wo, ko)), where W - K = {(w,k) | w e W and k €
K and w = PRE¥(k)}, where (w,k) —, (v, k') & w =% w' and k =X k', and
where Viyx) = Va.

6 Actually Baltag writes 7 for the trivial action, but we prefer to avoid confusion with the
knowledge type variable 7.

7.2. Baltag: Logic of Epistemic Actions 117

Example 54

By applying definition 58 we can compute the epistemic actions for the action
expressions from examples 52 and 53. Action expression pz . (?r; N z! N 2?)
describes the epistemic action consisting of a single node / token k with k —; k
and k —9 k and with PRE(k) = {r1}. The update of (hexa, rwb) by this action
delivers figure 7.1.c on page 104; except that for world rwb in that figure, we have
to read (rwb, k) and for world rbw, (rbw, k). Action expression pz . (?r; Nz' N
220 (py . (pNy* Ny?2Ny?))?) describes the epistemic action consisting of two
nodes / tokens k, k' with k —1 k, k =2k, k =3 k', k' =1 k', k' =2 k', k' —5 F,
and with PRE(k) = {r1} and PRE(k') = {T} (or, #). The update of (hexa, rwb)
by this action delivers figure 7.1.d (just as in example 51): note that PRE(k)
is satisfied in only two worlds but PRE(k') is satisfied in all worlds. Again, we
have to do some renaming of worlds: all the ‘old’ worlds (deals) d are renamed
(d, k"), the new worlds are renamed (rwb, k) and (rbw, k), again.

7.2.3 Relation between KA U KT and Act(0)

Baltag’s notions of epistemic action and epistemic update are very similar to
the notions of knowledge action frame and product interpretation, respectively, in
chapter 5. Our framework can probably be seen as an application of [Bal99]. The
KA U KT programs are more restricted, because they only describe actions that
preserve the S5 character of states. However, they may be nondeterministic. The
relation should be properly investigated. In this section we suggest a translation
V of KA actions into Act(f)) action expressions. This may help to make the
comparison.

Definition 59 (Embedding KA — Act(())

The operation V translates KA actions into Act(f)) action expressions. The defi-
nition is by induction on the structure of formulas and of actions. In the clause
for Lgt, Cry:={a € B | ;7 ~, 17}

p' = p
(mp)” = —p”

(eAD)Y = " A

(Ka(P)v = Ka(pv

(Cpp)" = Cpy’

([a]e)” [a¥]p"

(Te)” = Ascpu(nl(rm)7]e”

118 Chapter 7. Update, suspicion, and hypercubes

(lop)” = 7
Canlr; 7)Y = ()75 (br')Y
(‘o (rut))” = (r)?
(han(ruth))? (1,77
(nLer)? = pz.((47)"N
ﬂbeBxbﬂ
Nsrevuiry Naecy, (y - ((L7)70
nb’eByblﬂ,
naIECI’J z¢

)"
)

The translation V embeds the class of knowledge actions into that of closed
action expressions. Knowledge types cannot be translated into action expressions,
as they may be nondeterministic. Because knowledge actions can contain tests
on formulas containing dynamic modal operators for knowledge types, we have
to get rid of those in the translation: this is done in the clause for ([7]p)".
Crucial in the translation is the role of local choice operator ‘!’. Note that the
clause (lo¢7,7y(7 U7'))" = (!z7)" in the translation, corresponds to the definition
pre(logr,ny (T UT")) = pre(!;7) of the precondition of an action, in chapter 5.

Action !(;)Lp7 can be paraphrased as the action where B learn 7 with local
choice according to (I). Its translation (!(;yLp7)" can be paraphrased as follows.
It is the action expression where (!;7)V is actually executed, and all in B suspect
that, and all alternatives (!;7)¥ to (!;7)" are suspected by those in B who cannot
distinguish between these actions (therefore Cr; = {a € B | ;7 ~4 !;7}). The
number of epistemic alternatives to an action (!;7)V is exactly the number of
(other) bundles in bu(7).

With this translation we can finally present the action expressions for ‘1 shows
red to 2, with 3 seeing that a card is being shown’, and for ‘1 shows red to 2,
with 3 (publicly) suspecting that’.

Example 55

The description of the KA action Li23(! L1277 U Lia?w; U L127b;) as an Act(0)
action expression is computed by the translation V as follows. We refrain from
details. The tests are in bold, to improve readability:

(L123(!L12?r1 U le?wl U le?bl))v

pr . (py. (ranytny?)n

('nz?nz®)n

(z . (pu . OwinurNu2)N(ztNz22nz3)na®)®n
(pw . (uv . (b Nl No?) N (w! Nw? Nwd)Na?)?)

7.83. Lomuscio: Hypercubes 119

The epistemic action that is described by this action expression consists of three
alternatives, with access as for the well-known game action show%:; : universal for
3, identity for 1 and for 2.

Example 56

The description of the KA action Lis3(?TU !L15771) as an Act(()) action expression
ispr . (Tronzt NNz n(uy . (pNy Ny Ny®Na®))?). Interpretation of the
corresponding epistemic action results in figure 7.1.f.

We conjecture the following relation between KA and Act: Let ‘=" be identity
for programs as defined in chapter 4: two programs are the same if their local
interpretation defines the same relation on the class of (models and / or) states
(modulo bisimilarity). Let o = !;7 € KA such that for all M where 7 is executable,
all models in [M[7]] are of the same group. Then:

a=a’
Using the notion of action bisimilarity proposed in [Bal99|, and the notion of
product interpretation from chapter 5, we may also say that:
[2]® < [la”]]
Also, the translations A and V may help to clarify the relation between [Ger99]
and [Bal99]. This concludes our discussion of research on dynamic epistemics.

7.3 Lomuscio: Hypercubes

In his recent PhD thesis [Lom99] and in various other publications ([LR98a,
LR98b, LvdMR00]) Alessio Lomuscio studies interpreted systems called hyper-
cubes. Hypercubes consist of global states for all combinations of local states of
all agents (more precise: the full cartesian product of local states). Hypercubes
for n agents can be modelled as S5, models. Lomuscio characterizes their frames
and proves a correspondence result. We will not present his results, but only
argue that knowledge game states may be seen as global states of an interpreted
system, and that further study of the characterization of game states may profit
from Lomuscio’s results.

Given are a set A of n agents and a set C of m cards, and a deal of cards
d € AC. We can also think of deal d as a global state

d= (% ..., 1718

of an interpreted system, where [is the local state of agent a € A and where

g is the state of the environment, which is meaningless in our context. The

120 Chapter 7. Update, suspicion, and hypercubes

o TN rwb—1—rbw
_ 1}wb | / / \
rrb—————17171 3 2
wbr /
wrb \— 1— wbr
wrb \ /
bbb— ~ bbr 2 3 2 3
P, ___buwr \ / \ /

brbZ— brw=—rbrr_ brw—1— buwr

Figure 7.3: On the left a S53 model for a 3-hypercube. On the right hexa.

interpreted system corresponds to the model I; for initial knowledge game state
sq = (I4,d). It consists of all deals of cards of size §d (i.e., deals where all players
hold the same number of cards as in d, see chapter 2), and where, as usual for
interpreted systems, global states / deals d and d' are indistinguishable from each
other for agent a if they agree on his local state: d ~, d' < I3 = 14. The local
state 1% of agent a can be identified with the set d *(a) of |d !(a)| = fa cards
that a holds. Indeed, deals cannot be distinghuished from each other by a player
if they agree on his own cards.

First assume that all players hold one card, i.e. m = n. Then every agent
has n local states : we may think of a card ¢ held by a player as his local
state. The S5, model M that represents that all players can have all local states
without restriction, corresponds to an n-hypercube in terms of [Lom99]. But of
course, there are restrictions: all local states must have a different ‘value’, so to
speak: a card can be dealt to one player only. The initial model I; is described
by, figuratively speaking, the intersection of an (n — 1)-dimensional ‘hyperplane’
with the model M for the hypercube. This hyperplane is defined by the equation
that the local states of the n agents ‘add up to the set of cards’. The hyperplane
represents the model (function space AC) of all deals of n cards over n players.

If player holds more than one card, we may think of a card c held by a player
as the value c of a local state variable. Every agent a has fla state variables. If a
player holds 2 cards, imagine him to have (;’;) local states, etc.

In figure 7.3 we illustrate the suggested relation between hypercubes and mod-
els for game states. The cube on the left is the S5; model for the 3-hypercube
for 3 agents each having three possible local states: r,w and b. It consists of 27
worlds. These are not all drawn in the figure. E.g. world bbr (or b|b|r) corresponds
to the global state where agent 1 and 2 have local state b and agent 3 has local
state r. The model hexa fits into the cube. It is the intersection of the cube with
the ‘plane’ consisting of the deals in {1,2,3}"**}: the set of all (incidentally,
also 27) deals of three different cards over three players. An example: the deal
rblwle, where 1 holds red and blue and 2 holds white and 3 nothing, is in the
plane, but neither in the cube, nor in the hexagon.

7.83. Lomuscio: Hypercubes 121

A comparison of hypercubes and game states may help to describe frame prop-
erties of game states. In chapter 2 we have shown that in an initial knowledge
game state all worlds are (~ 4)*-related. From one of the frame properties for hy-
percubes (directedness) follows that all worlds in hypercubes are (~y)*-related.

In a more recent publication, [LvdMRO0], apart from hypercubes also the
more general concept of full system is defined. In a full system, local states of
agents still do not depend upon each other, as they do in models for knowledge
game states, but there is interaction with the state of the environment. Indeed, in
an example of a full system that is not a hypercube, the environment is modelled
as a set of stacks of cards, from which a known number of cards is drawn for each
agent player! Maybe an even wider class of interpreted systems can be defined,
that includes both full systems and systems for knowledge games.

Chapter 8

Conclusions

In the board game Cluedo the players have to determine what the murder cards
on the table are, by reasoning about their own cards, and about what they get
to know of other players’ cards in game actions. Typical for Cluedo is that a
finite number of cards is dealt over a finite number of players, that the players
can only see their own cards, and that cards do not change hands. We call these
games knowledge games. A knowledge game that exemplifies most of the general
features that we want to study, is the game for three players each holding one
card. We describe game states, game actions, and their consequences.

A deal of cards is a function from cards to players. Two deals are indistinguishable
for a player if they agree on his cards. The set of relevant deals is the set of deals
that are publicly indistinguishable from the actual deal of cards. These are the
deals that players still have to consider while reasoning about card possession. In
the initial state of the game, the cards have been dealt but the players have not
acquired knowledge about other players’ cards. The initial state of the game is
represented by a pointed multiagent S5 model on the set of deals where all players
hold the same number of cards as in the actual deal. The point of the model is
the actual deal. Accessibility is indistinguishability of deals. Propositional atoms
describe that a player holds a card. Other knowledge game states are also S5,
but agents may know more.

The properties of the agents in the initial state of a knowledge game are described
by the theory kgames = {deals, seedontknow}. Deals is the disjunction of atomic
state descriptions dy of relevant deals d’. It expresses that exactly one of the
relevant card deals must be actually the case. Seedontknow expresses that a
player considers deals, if and only if they correspond to what he knows about
his own cards. Various agent properties follow from kgames, such as that every
player knows his own cards and that every player holds a fixed number of cards,
and different ways to describe ignorance. By a bisimulation proof we show that
kgames (uniquely) describes the model I; for the initial state of a knowledge
game. We also characterize the knowledge game state where the cards have been
dealt but where the players have not yet turned their cards. A theory prekgames
describes the model prely for that state. State descriptions that are computed
with standard methods for finite multiagent S5 models, are equivalent to our

123

124 Chapter 8. Conclusions

results.

Game actions in knowledge games consist of card requests and responses to those
requests, plus some other moves, such as announcing, or guessing, that you have
won. A typical game action is that of a player showing a card (only) to another
player. The remaining players see that a card is being shown, but cannot see
which card. Questions and answers are combined in one format for game actions:
a quintuple consisting of the requesting player, the question, the answering player,
the answer, and the ‘publicity’: what other players get to know about the answer.
The question is a set of possible answers. The actual answer is one of those.
Each possible answer is a set of worlds of the current game state. Not any set of
worlds: an answer must be the union of classes of the partition of that state for
the responding player. The question must cover the state: each world must be
contained in a possible answer. All desirable constraints on ‘publicity’, such as
that the answering player controls the response, can be realized by formalizing it
as a function from players to partitions of the question. The game action format
also describes other conceivable game actions, sometimes by the trick of having a
player respond to his own question. A game action is executable in a game state
if the answer contains the point of that state. A game action minus the roles of
the requesting and responding player corresponds to a pointed S5 frame on the
set of possible answers: a game action frame. The next game state is a restriction
of the direct product of the current game state and a game action frame.

This game action format is purely semantic: game actions are defined for a given
game state. We introduce a general action language to describe game actions, and
a corresponding notion of interpretation that we call local interpretation. The
language LY for dynamic epistemic logic contains dynamic modal operators for,
what we call, knowledge action types and knowledge actions. The basic program-
ming constructs in the action language are test, sequence, choice, learning and
local choice. The first four define the class of knowledge action types KT. From
an action type we construct a knowledge action of that type by the operation of
local choice. KA is the class of knowledge actions. In the knowledge game for
three players and three cards where player 1 holds red, player 2 holds white, and
player 3 holds blue, the game action of 1 showing his red card to 2 is described
by the knowledge action Li93(! L1277 U L1p?w; U L157h;). This stands for: 1 and
2 learn that 1 holds red, and 1, 2 and 3 learn that either 1 and 2 learn that 1
holds red, or that 1 and 2 learn that 1 holds white, or that 1 and 2 learn that 1
holds blue.

The local interpretation of a knowledge action type is a relation between mul-
tiagent S5 models and their worlds. The ‘learning’ operator is interpreted as
follows: given a set of models that is the result of executing knowledge action
type 7 in a given model M, the result of executing ‘group A of agents learn 7’ is
the direct sum of that set of models plus access added for the agents ‘only in A’:

125

an agent cannot distinguish worlds in two different models in the direct sum if
he does not occur in those models and if he could not distinguish their origins in
M under the interpretation of 7. The local interpretation of a knowledge action
in a state (M, w) is derived from the interpretation of that action’s type 7 by
choosing, determined by local choice, one model image in the interpretation of
7 in M and one world image for w in that model image. It can be seen as a
constraint on the state transformations induced by 7. Bisimilarity of models and
states is preserved after execution of knowledge types and actions.

Game actions are described by knowledge actions. To establish that correspon-
dence, we define another notion of interpretation, called product interpretation.
The knowledge action type frame of a knowledge action type is defined on the set
of actions of that type. Access on this frame is determined by the structure of ac-
tions. The frame of a knowledge action is a pointed knowledge action type frame.
The state transformation induced by that frame is the product interpretation of a
knowledge action in an S5 state. The notions of local interpretation and product
interpretation are the same, up to bisimilarity of states. They are not the same if
the local interpretation of a knowledge action type in a model consists of models
for different groups. A knowledge action describes a game action for a given game
state, if there is an isomorphism between the game action frame for that game
action and the knowledge action frame for that knowledge action. The isomor-
phism relates actions of the same type to possible answers to the question of the
game action, such that the precondition of an action is satisfied in the worlds that
the answer consists of. We suggest a procedure describe that constructs from a
game action a knowledge action that describes it.

Apart from game actions we can describe many other communicative acts in £},
We give examples. We describe suspicion, and we describe sequences of calls over
a network. We compare our research to other recent work in the area of dynamic
epistemics and multiagent systems.

We have shown that all game states and all game actions in knowledge games
can be formally described in a logical language. Given this formal description of
games, we can start to think about optimal strategies for winning them. There
are some formidable obstacles to overcome here. It is unclear what the individual
preferences of a player are among the different questions he can ask. This requires
a comparison of the partition refinements, i.e. the new game states, created by
the possible answers to those questions. It also requires a (recursive) analysis of
the questions that the next player can ask given those refinements. Even when we
have individual preferences for all players, it is unclear what the mixed strategy
equilibria are for such an imperfect information game. Finally someone may be
able to answer the question, what is the value of Cluedo?

Appendix A

Epistemic logic, models

Language of epistemic logic

Definition 60 (Language of multiagent epistemic logic)
Let P be a set of atomic propositions, let A be a set of n agents. The set £,, of
multiagent epistemic formulas (for A and P) is the smallest set closed under:

pel, if peP

—pe L, if peLl,
eNYeL, if oyveL,
Kiopel, if aecAandypel,

Definition 61 (Multiagent epistemic logic with common knowledge)
Let P be a set of atomic propositions, let A be a set of n agents. The set LS of
multiagent epistemic formulas (for A and P) is the smallest set closed under:

pe Ll if peP

—p € LS if peL’
oAy e Ll if ¢pe LS
Kipell if aceAandypecll
Cape LS if ACAandpecLl

Formula K,p means ‘a knows ¢’. Another epistemic interpretation is as ‘a
believes ¢’, but we never intend it to mean that. Formula C4¢ means ‘A com-
monly know ¢’; or (or ‘group A commonly knows ¢’ or ‘p is commonly known
by A’). If A = A we also say that ‘p is publicly known’, or that ‘p is public
knowledge’. Uppercase boldface A always denotes the public.

We introduce the usual abbreviations (let p € P,a € AJA C A): oV =
(e A=), o= Y=V, o= (o= Y)A () —), T :=pV -,
L=pA-p, Myp := K9, Egp := N\yeys Kap. Formula Mo means ‘a
can imagine that ¢’. Formula E4¢ means ‘A generally know ¢’, (or ‘group A
generally knows ¢’ or ‘p is generally known by A’). Another abbreviation:

Definition 62 (Exclusive disjunction)
Exclusive disjunction V is defined as an n-ary operation, for each n > 2:

Vit19i = (01 A =pa. A=pp) V (591 A @ae. A =pr) Voo V(51 A oo A y)
Instead of /7 ;¢; we also write @1 V ... V @,

127

128 Appendixz A. Epistemic logic, models

Semantics of epistemic logic

We only consider models where the accessibility relations R, are equivalence
relations, written as ~j,.

Definition 63 (S5, frame/model/state)
Given are a set A of (n) agents and a set P of atoms. An S5,, model is a triple

<VV, (Na)aEAa V>

where W is the (nonempty) domain, for each a € A, ~, C W x W is the acces-
sibility relation for agent a, which is an equivalence relation, and the valuation
V is a function from worlds to propositional valuations (functions from the set
of atoms to values 0 and 1): V : W — P — {0,1}.} The pair (W, (~g)aca) is
called an S5, frame. An S5, state is a pair (M, w) where M is an S5, model
and w € M.

Instead of S5, model (frame, state) we also say multiagent S5 model (frame,
state). In state (M, w), world w is the point or designated world of the model.
If M is a multiagent epistemic model, and s = (M, w) is a multiagent epistemic
state, we also say that s is a state for M, or that M is the model underlying s,
or that M is the model for s. Also, if F' = (W, (~4)aca) is an S5,, frame and
w € W, then (F,w) is a pointed frame with point (or designated world) w. If
M is a S5, model (frame, state) for group A, we also say that M is an A model
(frame, state) or that the group of M is A.

Let a € A, B C A. We introduce the abbreviations:

~8 = (Usen ~a)

~uB ‘= UaEB ~a

The first is also an equivalence relation, the second not. The notations are non-
standard, but they are very convenient and we will use them often: Relation ~p
is access for modal operator Eg. Relation ~pg is access for modal operator Cpg.
If an equivalence relation ~ is the identity on the domain, we write ‘=". If it is
the universal relation on the domain, we write U, or (given domain W) W x W.

Definition 64 (Information state)

Let ((W, (~4)aca, V), w) be an S5, state. The information state of agent a € A
in this state is the set of worlds that are a-accessible from w: [w].,. We also say
that [w]., is the equivalence class of ~, (actually) inhabited by a.

L Alternatively, we may define valuations as functions from atoms to subsets of the domain:
V : P — P(W). We then have, for an atom p € P, that V, C W. Such a subset V,, stands for
the set of worlds where the atom p holds.

129

Definition 65 (S5 (S5E€) model)
An S5¢ model (S52¢ model) is a multiagent S5, model with accessibility relations
~p (~yup and ~pg) added for all subgroups B C A.

Every S5, model can also be seen as an S5¢ model and also as an S5Z¢
model. The difference is of interest for the completeness theorems for the proof
systems of these logics. Purely seen as models, we can identify the notions. We

will therefore call also S5 and S52¢ models, S5, models.

Example 57 (Conventions in pictures of S5 models)
Consider the following S$53 model:

-p, q -p,q
u—1—v
/ \
3 2
D, q Z/ \w -p,q
1 3
\
y—1——z
p,q b,—q

As in this figure, we never label the arcs with accessibility relation ~, but
just with the agent a for which it is access. As in this picture, reflexivity and
transitivity are always assumed. Thus we have, e.g., that u ~q u,u ~2 u,z ~; 2.

Definition 66 (Semantics of epistemic logic)
Let M = (W, (~a)aca, V) be an S5, (S5Z¢) model. Let w be a world in M. Let
peEP,ac A, BCA.

M,w=p iff Vu(p) =1

M,wE - iff Miwlpe

MwEeAy it MwkEgeand M,wEY
M,wEKyp ff Y :w ~w= Muw =@
M,wECgp iff Yu:w' ~pw= Muw =g

130 Appendixz A. Epistemic logic, models

Proof theory of epistemic logic

Definition 67 (Proof system S5,,)
S5,, is the following proof system:

S5, F if is a tautology
S5, F K,(¢ —) = (Kap — K) distribution
S5, F =S5, F Kyp necessitation
(S5, F ¢ and S5, F ¢ — ¢) = S5, - ¢ modus ponens
S5, F Ky — ¢ veridicality
S5, F Kyp — K, K positive introspection
S5, F Ky — Ko~ Kyp negative introspection

There are no multiagent equivalences. A proof is a finite sequence of steps
1,..,m. Each proof step is either an axiom, or the result of an application of
modus ponens or necessitation. Instead of S5, F ¢ we also write g5, ¢ or, if
the context is clear, just - ¢. The S5, proof system is sound and complete with
respect to the class of S5, models. For details, see [HC84, MvdH95, FHMV95].

Definition 68 (Proof system S5EC)
S5EC is the proof system consisting of all S5,, axioms and derivation rules plus:

S5EC | Cyu(p —) — (Cap — Catb) distribution

S55C F ¢ = S5EC F Cyuyp necessitation
S5ECF Cap — ¢ veridicality
S55C - Cup = E4Cayp C = EC
S5EC - Cu(p — Eap) — (0 — Cap) induction

The induction axiom is easier to recognize in its equivalent form:
S5, F (9 A Ca(p = Eap)) = Cap)

Again, instead of S5E€ I ¢ we also write FssEc @ or, if the context is clear, just
F ¢. The S5EC proof system is sound and complete with respect to the class of
S5E¢ models. In the completeness proof, a given consistent formula ¢ is satisfied
by a world in the finite model that is the filtration of the canonical model for
S5EC through the set of subformulas (or negations of subformulas) of ¢. Again,
for details, see [HC84, MvdH95, FHMV95].

By F ¢ = F 1% we mean that there is an axiomatic proof of ¥ in S5, (or
S5EC) plus the axiom . By ¢ I 1 we mean - ¢ — 1: there is a proof of 1
from the assumption, not axiom, ¢. For an example, we have that p = [p, i.e.
F p = F Op, but that p I/ Op, because t/ p — Op. For proof theory, see [TS96].

131

Equivalence relations

An equivalence relation ~ C W x W is a binary relation that is reflexive,
symmetric and transitive. We write [w]. for the equivalence class of w € W:
[w]l. = {w' | w ~ w'}. Tt is often more convenient to think of an equivalence
relation as a partition of the domain into equivalence classes:

Definition 69 (Covering)
Let U be some domain of objects (the ‘universe’). Given a set X C U, a covering

of X is a nonempty set Y of subsets of U such that X is contained in their union:
X Cly.

If X = U we have that X = (JY, so that all sets in Y are subsets of X:
VZ €Y : Z C X. Unless the universe U is explicitly different from X, we assume
that U = X.

Definition 70 (Partition)
A partition of X is a covering Y of X such that the elements of Y are pairwise
disjoint: VZ,W €Y : Z#W = ZnNW = 0.

A partition Y of X induces an equivalence relation ~ on X as follows:
Ve, o' € X:(z~2' & 3Z €Y :z,2' € Z).

Relation ~ is indeed transitive, because the sets in Y are pairwise disjoint: If
z ~ x' and 2’ ~ 2", there are Z',Z" € Y such that z,2' € Z' and ', 2" € Z".
Because 2’ is both in Z' and Z” and all sets in Y are pairwise disjoint, Z' = Z".
Therefore x ~ z”.

A covering Y of X induces a reflexive and symmetrical relation R on X as
follows:

Ve, 2' € X : (R(z,2") & 3Z €Y :z,2' € Z)
Relation R is not necessarily transitive.

Definition 71 (Coarser, finer)
Let R, S be two binary relations. By ‘R is coarser than S’ we mean:

Vz,z' : S(z,2') = R(z,z'),
by ‘R is finer than S’, or ‘R is a refinement of S’ (R < S, R C §), the reverse.

Let Y be a partition of X, with induced equivalence relation ~. Let Y’ be
a covering of X, with induced binary relation R. If R is coarser than ~ (~ is a
refinement of R), then all members of Y’ are the union of some members of Y

VZ' eY': 3%, ZyeY Z' =] Z.
i=1

We also say that Y’ is coarser than Y.

132 Appendixz A. Epistemic logic, models

Example 58

The set X = {{1},{2},{3,4}} is a partition of the set {1,2,3,4}. The set
Y ={{1,3,4},{2,3,4}} is a covering of {1,2,3,4}. Covering Y is not a partition
of {1,2,3,4}, and it is coarser than partition X.

Let R be a infix binary relation. We write [xR] for the set {y | zRy}.

Models

We give versions for multiagent S5 models of some relevant model theoretic con-
cepts. For readability, we give S5, versions, the S5,, versions are obvious gener-
alizations.

Definition 72 (Direct sum)

Let M = {M"', ..., M™} be a set of S5; models for set of atoms P. Use the notation
M = (Wi, ~% V1) for an arbitrary model. The direct sum (or disjoint union) of
M, notation € M is defined as follows:

@ M = <W’ ~ V>
where:

W = {(w,i)|i€{l,..,m}and w e W}
(w,i) ~ (v',j) & i=jand w~"w'

‘/('w’i) = V’UzJ
Instead of @ M we also write M' & ... & M™.

Definition 73 (Direct product)

Let M = {M!,..,M™} be a set of S5; models for set of atoms P. Use the
notation M? = (W? ~% V*) for an arbitrary model. The direct product of M,
notation @ M, is defined as follows:

QM = (W,~,V)

where:
W = Wix.xWm
= {(w' .., w™) | w e W, . ,u™e W™}
(wh, ..., w™) ~ (v, ..., v™) & w' ~'v!and ... and w™ ~™ ™
Viwt,..wmy(®) =1 & Vi(p)=1and .. and Vju(p) =1

Again, instead of @M we also write M' ® ... ® M™. We can also define
the direct product of, e.g., a model and a frame (or even of two frames). In
that case, we relax the constraint on the valuation and require that, for a pair

133

(w,w') consisting of a world w from the model and a world w’ from the frame:
I/v('w,w’) (p) = Vw(p)

Definition 74 (Bisimulation)

Let M = (W,~,V) and M' = (W', ~', V') be S5; models (for a set of atoms P).
A bisimulation between M and M’ is a (nonempty) binary relation 8 C W x W'
such that:

Atoms Yw e M,ve M':
R(w,v) = V,=V,
Forth VYw,w' € M,Vve M':
R(w,v) and w ~w' = F' € M':v~"v and R(w', ')
Back VYw e M,Yv,v' € M':
R(w,v) and v ~' v = Fw' € M :w~w and R(w',v")

For ‘M is bisimilar to M" we write M <> M', or, if R is the bisimulation: R :
M < M'.

Definition 75 (Bisimulation (between states))

Let (M,w) and (M',v) be S5; states. If R: M < M’ and R(w,v) then we also
say that state (M, w) is bisimilar to state (M',v), and write (M, w) <> (M',v), or
R: (M, w) < (M v).

Definition 76 (Isomorphism)

Let M = (W,~,V) and M' = (W', ~', V') be S5; models (for a set of atoms P).
An isomorphism between M and M’ is a bijective function J : W — W’ such
that:

Vw e M : Vo = Vi
Vw,w e M: w~w' & J(w)~ I(w)

For ‘M is isomorphic to M" we write M = M', or J: M = M'.

We sometimes prefer relational notation for isomorphisms. We then write
J(w, w') instead of J(w) = w'. In that sense an isomorphism is a special sort of
bisimulation: a functional bisimulation whose converse is also functional and such
that all domain elements of M and M’ have, respectively, an image and an origin
under that bisimulation (in other words: the bisimulation is a zigzag connection
between M and M’ that is functional and conversely functional).

For frames we relax the constraints on valuation: two frames are isomorphic
if there is a bijection that preserves access only.

[Bal9g]
[BARV00]

[Bin92]
[BM96]

[BMS99]

[FHMV95]

[Ger99]

[GGYT]

[Gol92]

[Gro99|

[Har84]

[HCS84]

Bibliography

A. Baltag. A logic of epistemic actions. Manuscript, 1999.

P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. To appear,
2000.

K. Binmore. Fun and Games. D.C. Heath, Lexington MA | 1992.

J. Barwise and L.S. Moss. Vicious Circles. CSLI Publications,
Stanford CA, 1996.

A. Baltag, L.S. Moss, and S. Solecki. The logic of public announce-
ments and common knowledge. To appear in ‘Proceedings of TARK
98 conference’, 1999.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about
Knowledge. MIT Press, Cambridge MA, 1995.

J.D. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis, Uni-
versity of Amsterdam, Amsterdam, 1999. ILLC Dissertation Series
DS-1999-01.

J.D. Gerbrandy and W. Groeneveld. Reasoning about information
change. Journal of Logic, Language, and Information, 6:147-169,
1997.

R. Goldblatt. Logics of time and computation. CSLI Publications,
Stanford CA, 2 edition, 1992. CSLI Lecture Notes No. 7.

J. Groenendijk. The logic of interrogation. In T. Matthews and
D.L. Strolovitch, editors, Proceedings of the Ninth Conference on
Semantics and Linguistic Theory. CLC Publications, 1999.

D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, ed-
itors, Handbook of Philosophical Logic, volume II, pages 497-604,
Dordrecht, 1984. Kluwer Academic Publishers.

G.E. Hughes and M.J. Cresswell. A companion to modal logic.
Methuen, London, 1984.

135

136

[Hur00]

[K0099]

[Koo00]

[Lom99)

[LR98a)

[LRI8D)

[LvdMROO]

[MvdH95]

[ORY4]

[Ren99]

[Taa99]

[TS96]

[vB9g]

[vB00a]

Bibliography

C.A.J. Hurkens. Spreading gossip efficiently. Nieuw Archief voor
Wiskunde, 5/1-2:208-210, 2000.

B.P. Kooi. The monty hall dilemma. Master’s thesis, Groningen
University, Groningen, the Netherlands, 1999.

B.P. Kooi. Master(s)mind(s). Manuscript, 2000.

A R. Lomuscio. Knowledge Sharing among Ideal Agents. PhD the-
sis, University of Birmingham, Birmingham, UK, 1999.

A.R. Lomuscio and M. Ryan. Ideal agents sharing (some) knowl-
edge. In Henri Prade, editor, Proceedings of ECAI 98, 1998.

A.R. Lomuscio and M. Ryan. On the relation between inter-
preted systems and kripke models. In C. Zhang M. Pagnucco,
W.R. Wobcke, editor, Proceedings of the AI97 workshop on the the-
oretical and practical foundations of intelligent agents and agent-
oriented systems, pages 46-59. Springer Verlag, Berlin, 1998. Vol-
ume 1441, Lecture Notes in Artificial Intelligence.

A.R. Lomuscio, R. van der Meyden, and M. Ryan. Knowl-
edge in multiagent systems: Initial configurations and broadcast.
Manuscript, 2000.

J.-J.Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and
Computer Science. Cambridge Tracts in Theoretical Computer Sci-
ence 41. Cambridge University Press, Cambridge MA, 1995.

M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT
Press, Cambridge MA, 1994.

G.R. Renardel de Lavalette. Memories and knowledge games. In
J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema, editors,
JFAK. Essays Dedicated to Johan van Benthem on the Occasion of
his 50th Birthday, Amsterdam, 1999. Amsterdam University Press.

N.A. Taatgen. Learning without limits. PhD thesis, University of
Groningen, Groningen, 1999.

A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, Cambridge MA, 1996.

J.F.A K. van Benthem. Dynamic odds and ends. Technical report,
ILLC, University of Amsterdam, 1998. Report ML-1998-08.

J.F.A K. van Benthem. Hintikka self-applied. Manuscript, 2000.

Bibliography

[vBOOD]

[vD99]

[vdM97]

[Vil99)]

[vLvdHM95]

137

J.JF.AK. van Benthem. Information update as relativization.
Manuscript, 2000.

H.P. van Ditmarsch. The logic of knowledge games: showing a
card. In Eric Postma and Marc Gyssens, editors, Proceedings of the
Netherlands/Belgium Conference on Artificial Intelligence (BNAIC
99), pages 35-42, Maastricht University, 1999.

R. van der Meyden. Common knowledge and update in finite envi-
ronments. To appear in ‘Information and Computation’;, 1997.

A. Vilks. A logic for changing beliefs with applications to reasoning
about choice and games. In H. de Swart, editor, Proceedings of
‘Logic, Game Theory and Social Choice’ ’99, pages 6876, Tilburg,
1999. Tilburg University Press.

B. van Linder, W. van der Hoek, and J.-J.Ch. Meyer. Actions
that make you change your mind. In A. Laux and H. Wansing, edi-
tors, Knowledge and Belief in Philosophy and Artificial Intelligence,
pages 103-146, Berlin, 1995. Akademie Verlag.

Samenvatting

In het bordspel Cluedo houden alle spelers spelkaarten vast en moeten ze door
middel van vragen en antwoorden over elkaars kaarten bepalen wat de kaarten op
tafel zijn, de zogenaamde moordkaarten. Wie dit het eerst weet, heeft gewonnen.
Spelers kunnen alleen hun eigen kaarten zien, en kaarten veranderen niet van
eigenaar. Zulke spelen noemen we kennisspelen, in het Engels: knowledge games.
Een precieze beschrijving van spelsituaties en overgangen daartussen is complex,
omdat hierin niet alleen moet vastliggen welke kaarten de spelers vasthouden,
maar ook wat spelers van de kaarten van andere spelers weten, wat spelers weten
dat andere spelers van hun kaarten weten, enzovoort, en ook hoe deze kennis
verandert.

Een kaartverdeling is een functie van kaarten naar spelers. In de begintoestand,
of beginsituatie, van het spel zijn de kaarten verdeeld maar weten de spelers nog
niets over de kaarten van anderen. Twee kaartverdelingen zijn ‘hetzelfde’ voor
een speler als hij in beide dezelfde kaarten heeft. Dit induceert een equivalen-
tierelatie op de verzameling van kaartverdelingen waarin iedere speler hetzelfde
aantal kaarten heeft als in de werkelijke kaartverdeling. De werkelijke verdeling
is een speciale wereld in deze verzameling. Het resultaat is een zogenaamd ge-
punt multiagent model van de beginsituatie. Andere spelsituaties zijn ook zo te
modelleren, maar de spelers kunnen nu meer kennis hebben.

De eigenschappen van de spelers in de begintoestand van een kennisspel worden
beschreven door een logische theorie kgames. Met een bisimulatiebewijs tonen
we aan dat kgames het model I; voor de begintoestand van een kennisspel uniek
beschrijft. Het model prel; voor een spelsituatie waarin de kaarten al wel ver-
deeld zijn maar de spelers hun eigen kaarten nog niet hebben ingezien, wordt
uniek beschreven door de theorie prekgames. Logische toestandsbeschrijvingen
die worden berekend met standaardmethoden voor eindige multiagent modellen,
zijn equivalent aan onze resultaten.

Zetten in kennisspelen bestaan uit vragen en antwoorden op die vragen. Een

typerende zet is het op verzoek laten zien van een kaart aan een andere spe-
ler, waarbij de overige spelers wel zien dat er een kaart wordt getoond, maar

139

140 Samenuvatting

niet welke. Er zijn vijf parameters die de zet bepalen: de vrager, de vraag, de
antwoorder, het antwoord, en de ‘publiciteit’: wat andere spelers te weten ko-
men over het antwoord. De vraag is een verzameling mogelijke antwoorden. Het
werkelijke antwoord is daar één van. leder mogelijk antwoord is een (speciale)
verzameling werelden van de huidige spelsituatie. De publiciteit is een functie
van spelers naar partities van de vraag. Op grond van een gegeven spelsituatie en
een zet die uitvoerbaar is in die situatie is de volgende speltoestand te berekenen.

We introduceren nu een algemene taal voor het beschrijven van zetten, en een
corresponderende notie van interpretatie genaamd ‘locale interpretatie’. De taal
LY voor dynamische epistemische logica bevat dynamische modale operatoren
voor zogenaamde actietypen (in het Engels: knowledge action types) en kennis-
acties (in het Engels: knowledge actions). De basisprogrammeerconstructies in
deze actietaal zijn test, opvolging, keuze, leren en locale keuze. De eerste vier
definiéren de klasse van actietypen. Uit zo’n actietype kan een actie van dat type
geconstrueerd worden door de operatie ‘locale keuze’. In het kennisspel voor drie
spelers en drie kaarten waarin speler 1 de rode, speler 2 de witte, en speler 3 de
blauwe kaart vasthoudt, wordt de zet waarin 1 zijn rode kaart aan 2 laat zien
beschreven door de kennisactie Ljp3(!L157r; U Lip?w; U Ly127b1). Dit staat voor:
1 en 2 leren dat 1 rood heeft, en 1, 2 en 3 leren dat ofwel 1 en 2 leren dat 1 rood
heeft, ofwel 1 en 2 leren dat 1 wit heeft, ofwel 1 en 2 leren dat 1 blauw heeft (‘L’
staat voor leren, ‘U’ voor keuze, en ‘I’ voor locale keuze).

De locale interpretatie van een actietype is een relatie tussen multiagent S5
modellen en hun werelden. De locale interpretatie van een kennisactie in een
toestand (M, w) wordt afgeleid uit de interpretatie van het type 7 van die actie,
door één beeldmodel te kiezen in de interpretatie van 7 in M en één beeldwereld
voor w in dat beeldmodel, op basis van locale keuze. Bisimilariteit van modellen
en toestanden blijft behouden onder uitvoering van actietypen en kennisacties.

Om precies te maken wanneer een zet in een spel wordt beschreven door een
kennisactie, definiéren we nog een andere notie van interpretatie. Deze zoge-
naamde productinterpretatie maakt gebruik van een gepunt frame, het kennisactie-
frame (in het Engels: knowledge action frame). Net als voor zetten, is hier dus
sprake van een echt semantisch object, en niet van een relatie tussen modellen,
zoals voor locale interpretatie. Hiermee kan het verband worden gepreciseerd.

Pas gegeven deze formele beschrijving van kennisspelen, kunnen we ons gaan af-
vragen wat optimale strategieén zijn om ze te winnen, en, bijvoorbeeld, hoe groot
de kans is om Cluedo te winnen. Voorlopig is het resultaat van dit onderzoek, dat
we nu over een algemene taal L] beschikken om de dynamiek van communicatie
formeel te modelleren. We gaan uitvoerig in op voorbeelden van deze ruimere
toepasbaarheid, zoals het beschrijven van vermoedens (zoals bij valsspelen), en
van het verspreiden van informatie over een (telefoon)netwerk.

Titles in the ILLC Dissertation Series:

ILLC DS-1996-01: Lex Hendriks
Computations in Propositional Logic

ILLC DS-1996-02: Angelo Montanari
Metric and Layered Temporal Logic for Time Granularity

ILLC DS-1996-03: Martin H. van den Berg
Some Aspects of the Internal Structure of Discourse: the Dynamics of Nomi-
nal Anaphora

ILLC DS-1996-04: Jeroen Bruggeman
Formalizing Organizational Ecology

ILLC DS-1997-01: Ronald Cramer
Modular Design of Secure yet Practical Cryptographic Protocols

ILLC DS-1997-02: Natasa Rakié
Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk
On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera
Seeking Fxplanations: Abduction in Logic, Philosophy of Science and Artifi-
ctal Intelligence

ILLC DS-1997-05: Harry Stein
The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-
Following and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld - de Smet
On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s.

ILLC DS-1998-01: Sebastiaan A. Terwijn
Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart
Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald
The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino
Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation,
Interpolation

ILLC DS-1998-05: Mehdi Dastani
Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy
Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima’an
Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat
Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Lei-
bnaz

ILLC DS-1999-04: Barbara Terhal
Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wasserman
Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps
A Logical Approach to Computational Theory Building (with applications to
sociology)

ILLC DS-2000-03: Marco Vervoort
Games, Walks and Grammars: Problems I've Worked On

ILLC DS-2000-04: Paul van Ulsen
E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces
Logic Engineering. The Case of Description and Hybrid Logics

