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Part I   Introduction

What is the rational use of theory and experiment in the process of scientific
discovery, in theory and in practice? In this thesis I address this problem in
three parts. I start with a general introduction (part I). Then I discuss three
different theoretical models of the process of scientific discovery (part II). I
finish this thesis with a discussion of a case study and model of discovery in
the practice of neuropharmacology (part III).

In this first part I provide an introduction and overview of this thesis. I start
with a specification of the problem (Chapter 1). Then as an introduction to
part two I discuss some issues and views in the study of scientific rationality
(Chapter 2). I finish this part with an introduction and overview of discovery
in neuropharmacology (Chapter 3).
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Chapter 1 

Problem

1.1 Introduction

In this chapter I introduce the research problems about rationality in the process of
scientific discovery that I faced in the years during my Ph.D. project and that are ad-
dressed in this thesis. To understand these subjects I studied different disciplines such
as philosophy of science, cognitive psychology and artificial intelligence. An impor-
tant problem for those disciplines is to understand what it means to be rational in the
use and development of knowledge about the world.

It turns out that it is difficult to understand how we use common sense knowledge
in everyday problems. I imagined that it would be less difficult to understand how
scientific knowledge is used and developed. Common sense knowledge is almost by
definition implicit, and therefore hard to understand. So, my idea was: why not con-
centrate on analyzing rationality in knowledge development that is supposed to be
explicit, i.e. science?

So, I investigated different theories about rationality in discovery and the practice
of discovery in neuropharmacology as a case study. This thesis presents the results of
that investigation. I had to learn that while the product of scientific discovery is made
explicit, the process of reasoning in the practice of discovery is often as implicit as
common sense reasoning. So, I set myself the task to make it explicit, to understand
rationality in discovery.

1.2 Goal

The specific goal of this thesis is to understand rationality in scientific discovery.
Discovery is the act or process of making something known. Some scientific discov-
eries are made by accident, as a result of serendipity. But a goal of science is to make
new discoveries by making use of theories and experiments to make things known.
Theories are elaborate hypothetical assumptions, and experiments involve making
specific observations of, and interventions in, natural phenomena. So, the method of
scientific discovery is to make something known about the world with the use of the-
ory and experiment.
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To describe and understand the rationality in the process of scientific discovery I
delve into the question of how acts in that process are suggested by reason. If an act
is suggested by reason then there are arguments for doing something in that particular
way, to achieve a particular goal. In sum, to understand rationality in scientific dis-
covery I need to ask what it means to rationally use theory and experiment in the pro-
cess of discovery in science.

1.3 Problem

To understand rationality in scientific discovery I analyzed different theories about
the rational use of theory and experiment in science, and the practice of drug research
for Parkinson’s disease as a case study. An answer to the following specific problem
is pursued:

Problem What is the rational use of theory and experiment in the process of scien-
tific discovery, in theory and in the practice of drug research for Parkinson’s disease?

An answer to this problem should provide an answer to the following specific ques-
tions about empirical science in general and neuropharmacology in particular:

Question 1 What is the structure of a scientific theory? Generally this question
treats properties of scientific laws, theories and concepts. I will pursue this question
in general and particularly for the dopamine theory of Parkinson’s disease and related
biological theories and concepts.

Question 2 What is the process of scientific reasoning? Traditionally, this ques-
tion is about inference in the explanation and prediction of phenomena. I will also
treat reasoning in the formation and revision of hypotheses.

Question 3 What is the route between theory and experiment? This question is
relevant for understanding discovery in empirical science in general and drug re-
search in particular. Not only do I investigate how the results of experiments influ-
ence theory, but also how theory and known (drug) interventions direct the sugges-
tion for experiments.

1.4 Method

To pursue the problem of this thesis I undertook the following tasks:

• A survey of contributions to the study of scientific rationality (Chapter 2)

• A conceptual study of models of discovery in science as proposed in studies of
logic, cognition and computation (Chapters 4, 5, 6)
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• A review of the literature on the brain dopamine theory of Parkinson’s disease
(Chapter 7).

• A case study of the practice of experimental drug and brain research at the Phar-
macy Department of the Groningen University (Chapter 8)

• Modeling the dopamine theory and the studied practice of discovery (Chapter 9)

• Summarizing the results of the case study of neuropharmacology (Chapter 3)

1.5 Background

The structure of theories and processes of scientific reasoning are investigated nor-
matively in logic and artificial intelli gence, and descriptively in cognitive psychol-
ogy. In studies of logic scientific reasoning is mainly explicated as valid deduction of
consequences. Studies of both artificial intelli gence and cognitive psychology under-
stand the process of scientific discovery as a kind of human problem solving. In that
view it is held that human beings can solve scientific problems because they can
(learn to) manipulate symbols.

The work of Newell  and Simon (1972) sees the process of problem solving essen-
tially as a search process, based on the manipulation of symbols. They defend the
idea that for a problem it is possible to define a space of possible solutions that can
be searched. This search is done by heuristic rules that, given the problem (the start
condition), test whether the solution (goal condition) is being approached, and adjust
the search accordingly.

In both artificial intelli gence and cognitive psychology this process is investigated
and modeled computationally. In order to do so it is necessary that the structure of the
problem and the required knowledge is made explicit in a symbolic representation.
Based on that representation, heuristic search rules must be able to effectively test if
the goal state is being approached and if it is rational to pursue a particular direction
of search.

John Anderson (1993) proposed a unified theory of learning and problem solving
to explain rational behavior. This theory contains assumptions about the nature of
explicit symbolic processes of reasoning, together with assumptions about implicit
statistical processes of learning.

In another discipline, that of machine learning, one approach takes effective
learning as searching the shortest computer program that can describe and predict
patterns in observations (Li & Vitanyi, 1994).

In the third part of this thesis I shall i nvestigate how the rational use of theory and
experiment in drug research can be seen in terms of the role a theory plays in direct-
ing the search for an experimental drug intervention. A theory can be seen as a con-
straint in the search space of conceptually possible interventions. The main goal of
drug research is to find an intervention that satisfies given conditions best. Testing a
theoretically suggested intervention experimentally can either lead to a new drug or a
new theory.
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To compare theories about discovery, as set out in Part II, to scientific practice I
will analyze the structure of problems in neuropharmacology in Part III, modeling the
process of reasoning in rational search tasks with different kinds of goals.

The discussed models of problems in neuropharmacology will be based on the
work of Benjamin Kuipers, Peter Karp, Theo Kuipers and Rein Vos. Benjamin
Kuipers (1994) investigated how to represent qualitative knowledge about dynamical
systems as qualitative differential equations, and how to reason with them correctly.
Peter Karp (1992) made a computational analysis of the structure of molecular bio-
logical knowledge and the process of hypothesis formation in biological research.
Theo Kuipers (2000) investigates logical structures and heuristic patterns in scientific
research and Rein Vos (1991) investigates the logic of development in drug research.
They explicated the development of drugs theoretically as a systematic attempt to
bring together the properties of available materials and wishes for functional proper-
ties. In discussing neuropharmacology I will describe how biological theory can be
used to infer those desired properties, to infer the best intervention.

1.6 Overview

This section gives a short overview of the subjects and problems that are discussed
and the particular questions that are answered in the other chapters of this thesis.

Part I Introduction
The general problem of this thesis is: what is the rational use of theory and experi-
ment in the process of scientific discovery, in theory and in practice? Part I discusses:
issues in the study of rationality (Chapter 2), as an introduction to Part II; and my
case study of neuropharmacology (Chapter 3), as an introduction to Part III.

Chapter 2 Rationality
This chapter provides an introduction to the discussion of discovery in Part II of this
thesis. In that part I delve into ideas from cognitive psychology to look at issues
about rationality in science that are traditionally part of the problems of the philoso-
phy of science. The particular question that is answered in this chapter is: how can
cognitive psychology contribute to the discussion about the rationality of science in
the philosophy of science?

I argue that ideas from cognitive psychology in general can make a sensible con-
tribution to debates about the rationality of science in philosophy. I make this point
clear by explicating some relations between assumptions in cognitive psychology and
issues in the philosophy of science.

Chapter 3 Neuropharmacology
This chapter is an introduction to my case study of neuropharmacology in Part III of
this thesis. The particular question that is answered is: what is the rational use of the-
ory and experiment in neuropharmacology?

This question is answered more extensively in Part III. I argue how the rational use
of neurophysiological models can be modeled as goal directed reasoning about



1.6. Overview 7

qualitative differential equations. To understand reasoning in neuropharmacology I
distinguish inference to the best intervention from inference to the best explanation. I
further briefly discuss how qualitative reasoning about neurophysiological models as
part of a computer supported discovery system could aid in using, understanding, and
testing models about large biological systems.

Part II Discovery
The specific problem of Part II (Discovery) is: what is the rational use of theory and
experiment in the process of scientific discovery, in theory? This part discusses mod-
els of scientific discovery according to studies of: logic (Chapter 4); cognition
(Chapter 5); and computation (Chapter 6).

Chapter 4 Logic
What is rationality in discovery, according to the study of logic? Traditional philoso-
phers of science are usually interested in what scientific discovery ought to be, and
how reasoning in that process can be valid or justified. I discuss how rationality in
discovery is logically understood as valid reasoning, part of a circular process of ob-
serving, describing, explaining, predicting and intervening in natural phenomena. The
particular questions that are answered in this chapter are: what is a scientific theory
and what is scientific reasoning, according to the study of logic?

To address these questions I discuss an illustrative example of an explanation that
contains a series of inferences that can be marked as fallacies from the viewpoint of
logic. Yet, I argue that these inferences are common in science and part of abductive
inference as defined by C.S. Peirce. I further make a categorical distinction between
semantic abduction and material abduction. I argue how material abduction, together
with other types of inductive inference, constitutes a part of semantic abduction. I
conclude by answering the three specific questions (from section 1.3) of this thesis,
from a logical point of view.

Chapter 5 Cognition
What is rationality in discovery, according to the psychological study of cognition? In
cognitive psychology, rationality in scientific discovery is being studied as an inter-
esting cognitive phenomenon, to be studied empirically. ACT-R is the name of a uni-
fied computational theory of cognition that aims to explain the data from studies of
cognition. The particular question that is answered in this chapter is: how to under-
stand and model scientific discovery with ACT-R?

 I show and argue how the ACT-R model can learn by analogy the processes of
two other cognitive models of discovery, called BACON and PI. I further discuss the
nature of theory and method in the different cognitive models, and the difference
between the logical and psychological views on explanation and prediction. I discuss
how human performance on the Wason card selection task (an often performed psy-
chological experiment where subjects test a hypothesis) seems irrational from a logi-
cal point of view. I propose a statistical model that can demonstrate the opposite. I
conclude by answering the three specific questions of this thesis, according to the
psychological study of cognition.
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Chapter 6 Computation
Both the logical and the cognitive models of scientific discovery I discussed in the
former chapters include a condition to prefer simple explanations. Yet these models
do not show why it is rational to prefer simplicity. In Chapter 5 I discussed how the
ACT-R model of cognition prefers simplicity as a consequence of a mechanism that
prefers high probabilit y. In this chapter I investigate the relation between probabilit y
and simplicity in the computational description, explanation and prediction of em-
pirical data. The particular questions that are answered in this chapter are: how can
simplicity most generally be defined and why should a simpler theory be prefered
above a more complex one?

I discuss how the Minimum Description Length principle subsumes other defini-
tions of simplicity and how the simplicity of a hypothesis can be related to the prob-
abilit y of its predictions. I conclude by answering the three specific questions of this
thesis, according to the study of computation.

Part III Neuropharmacology
The specific problem of Part III is: what is the rational use of theory and experiment
in the process of scientific discovery, in practice? This part discusses and models my
case study of drug research for Parkinson’s disease, i.e. I investigate: how Parkin-
son’s disease and the effect of known drugs are explained by the dopamine theory
(Chapter 7); the use of theory and experiments in a practice (Chapter 8); and a com-
putational model of both the dopamine theory and the studied practice of discovery
(Chapter 9)

Chapter 7 Theory
How are theory and experiments used in the practice of drug research for Parkinson’s
disease? To be able to address this problem I first survey the literature on the dopa-
mine theory of Parkinson’s disease. The particular question that is answered in this
chapter is: how are Parkinson’s disease and the effect of known drugs explained by
theory?

I first provide a general introduction to Parkinson’s disease. I then go into the ba-
sics of the dopaminergic nerve cell and the basal ganglia, which is the neural struc-
ture in the brain that partly controls voluntary movement, and how a defect in it
causes Parkinsonian symptoms. I end this survey with a short overview and explana-
tion of a selection of therapeutic drug interventions for Parkinson’s disease.

Chapter 8 Practice
How are theory and experiment used in the practice of drug research for Parkinson’s
disease? In this chapter I report on my interviews with researchers at the Pharmacy
Department of the Groningen University. These interviews where partly conducted
while witnessing their work in the laboratory.

Several techniques are being used to search for new drugs and explore the activity
of the basal ganglia. The particular questions that are answered in this chapter in-
clude: how are new drugs investigated and how are experiments being used to ex-
plore and test both new drugs and assumptions about the mechanisms of the brain?
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Chapter 9 Discovery
In this final chapter I aim to explicate rationality in the process of discovery in neuro-
pharmacology by describing both the theory and the studied practice, using the con-
cepts from my theoretical discussion of discovery in Part II . The particular question
that is answered in this chapter is: what is rationality in discovery in the case of neu-
ropharmacology? First I discuss the use of models to describe theories about dynami-
cal systems. Next I describe the structure of the dopamine theory of Parkinson’s dis-
ease based on those models. By analyzing the reports about the practice of neuro-
pharmacology I explicate a number of different routes between theory and experi-
ment. I continue with a discussion of computational models of reasoning and discov-
ery in biology. I conclude this chapter by summarizing my answers to the three spe-
cific questions of this thesis in the case of neuropharmacology. I then conclude this
thesis by arguing that an answer to these questions can contribute to understanding
rationality in discovery, as well as contribute to the process of scientific discovery
itself.

*
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Chapter 2 

Rationality

2.1 Introduction

What is the rational use of theory and experiment in scientific discovery, in theory?
In pursuing an answer to this problem in this thesis I use ideas from cognitive psy-
chology to look at issues about the rationality of science that are traditionally part of
the problems of the philosophy of science. As an introduction to that approach I will
argue in this chapter how ideas from cognitive psychology can make a sensible con-
tribution to debates about rationality in philosophy of science. I will make this point
clear by explicating some relations between assumptions in cognitive psychology and
issues in the philosophy of science. Hence, the particular question in this chapter is:
how can cognitive psychology contribute to the discussion about the rationality of
science in the philosophy of science? As an introduction to this chapter I first want to
tell a parable about an intriguing family.

Prelude
This tale begins in the seventeenth century, in the days of the first great achievements
of an ambitious young child of Mother Philosophy. In his time this aspiring infant
developed a successful new style of understanding the world by tampering with it. He
and his family became known as Experimental Philosophy.

Eventually he left the skirts of proud Mother Philosophy as an independent ado-
lescent named Science. He set out to find answers to millennia old questions of the
Philosophy family in a way that proved successful: with the method of empirical ex-
periment and with the aid of the rigidity of his other parent, Father Mathematics. Sci-
ence had an older brother who was fascinated by his younger brother’s doings. When
Science left Mother Philosophy his older brother stayed safely with his mother. To-
day the family of this son is called: Philosophy of Science.

At the end of the nineteenth century Mother Philosophy gave birth to a startling
bright son from Father Mathematics. He was nurtured and raised by his brothers
Philosophy of Mind and Philosophy of Language. With a few growing pains it
reached maturity very quickly. The career of this son looked really promising. He be-
got the name Modern Logic. The Philosophy of Science family was very impressed
by the capacity of this new sibling. Especially Positivism, a relatively young member
of the Philosophy of Science family, was delighted.
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At a certain moment in the beginning of the twentieth century, Positivism with the
aid of Modern Logic declared it was time to completely break with one of Mother
Philosophy’s traditions. He thought that his admired brother Science had proved that
the ideas of Mother Philosophy that where not empirical were irrelevant for answer-
ing Science’s questions. All questions worth considering should be questions only
Science could answer. And all theories of Science should be certain. Positivism
would try to achieve this through the interpretation of the language of Science with
the tools of his brilli ant young brother Modern Logic. No wonder, he became known
as Logical Positivism.

First this offspring of Philosophy of Science was warmly welcomed and embraced
by old brother Science. It looked as if he opened up the possibilit y that the activities
of Science would finally provide certainty, without being bothered by the problems
and questions of Mother Philosophy that could not be solved empirically. Determined
Logical Positivism would give Science a totally empirical and mathematical guide-
line and justification for his actions, in the true spirit of Science himself.

Yet the claims of Logical Positivism did not last very long without reaction of his
brothers. Rationalism, another smart protégé of Philosophy of Science, showed, also
with the help of his brother Modern Logic, that Logical Positivism’s method of justi-
fication of the actions of Science was logically incorrect and he replaced it with an
alternative. With this other method of Modern Logic as his standard he enforced the
claims of the family of Realism, another son of Philosophy of Science. Logical Posi-
tivism felt defeated and eventually retreated from his too optimistic ideas.

Meanwhile, Science himself did not leave it with that. He took the discussion to
his own domain to study the problems further. Science set out to empirically investi-
gate his own activities and successes, those of that day and those of the glorious past.
By empirically studying their own behavior, a member of the family of Science, So-
cial Science, examined how the Sciences had actually behaved and tried to find out
why they had done it in that way.

An astonishing conclusion seemed that a fully rational justification and explana-
tion of Science’s action and success seemed not possible. It appeared that beliefs of
the members of the Science family were not rationally determined but socially. It
seemed to have nothing to do with truth, the hallmark of Mother Philosophy as well
as that of old Science. But, ironically enough, the truth of that conclusion implied
that that conclusion could not be justified as true either. This was honey for the taste
of a black sheep of the Philosophy of Science family: Relativism. According to him
truth was impossible to achieve by Philosophy as well as by Science.

But the noble children of Philosophy of Science soon recovered from the apparent
blow dealt to them by this relativistic conclusion. They put forward competing theo-
ries of rational justification of the activity of Science and tried to li ve up to Science’s
empirical standards.

Realism refined his ideas and, with the help of Modern Logic, delivered a rational
justification of the data of Social Science, interpreted as steps toward the truth.
Pragmatism, another member of the Philosophy of Science family, sought a way in
the middle. He put forward a justification of the behavior of Science as rational, with
not truth but just the solving of problems as his goal.

Looking in perspective to the quarrel among the Philosophy of Science family
about the career of their successful brother Science we see so far the following: Logi-
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cal Positivism tried to provide a justification of the results of Science’s activities with
the help of the formal language of Modern Logic, in which the Science family could
represent their theories rigidly. Realism agitated against this by rejecting Logical
Positivism’s ideas about method and justification and put forward another method
and way of justification, based also on Modern Logic, in its place. With the help of
an empirical investigation of Science, Relativism reacted to Realism by showing that
Science did not and never had acted according to Realism’s rational method based on
Modern Logic. From this it would follow that the doings of Science could not be ex-
plained rationally in this way. Realism refined his rational theory of justification
showing that it could fit in with Science’s empirical data. Next to that, Pragmatism
developed another justification of Science’s deeds by characterizing rationality as
practical problem solving instead of looking for truth.

In the meantime, before Social Science studied the behavior of the members of his
family as a group, other members of the Science family had not relinquished their
attention to the subjects of behavior and rationality. Illuminated by the views of
Logical Positivism, Behaviorism, a pretentious newborn of Science, studied behavior
according to Positivism’s methods and tried to keep rationality out of his theories.
But Behaviorism disappeared to the back stage shortly after the rationalistic defeat of
Logical Positivism. In his place came Cognitive Psychology, a new protégé of Sci-
ence, who set out to explain behavior as a result of rationality. He did this with the
help of new developments of Modern Logic and with the use of empirical methods.
This ambitious child of Modern Logic and Science gave rise to a new style of thought
for Philosophy of Mind. His family got the name Cognitive Science.

Until fairly recently the development of the family of Cognitive Science is looked
at by Philosophy of Science as mainly another Science to be considered true, relative,
practical or just nonsense according to some style of justification. Yet, Cognitive Sci-
ence had the ambition of explaining the whole notion of belief and reasoning by his
empirical examination of thought, rationality, the brain and behavior. Among other
studies he did so by the exploration of Science’s presumed mental processes during
the process of discovery. He got precious help from Uncle Technology together with
the ideas of the daughters and sons of noble Modern Logic and Science: Computer
Science. Today Cognitive Science is supported with its work by a great part of the
Science family.

I now come close to the moral of this introductory story. When we return to the
entanglements of the Philosophy of Science family we noticed that at one point the
relation between today’s Science and Philosophy of Science turned around. Scientific
results justified the claims of a Philosophy of Science instead of, in the traditional
way, the other way around.

So, I ask: why shouldn’ t Cognitive Science contribute to Philosophy of Science’s
family discussions about rationality, reality and truth just as well as Social Science
does? For the family of Science as well as for the family of Philosophy of Science it
is probably insightful and productive if both directions are explored, possibly to re-
sult in a better relationship of understanding between the families…
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Overview
In this chapter I discuss how ideas from cognitive psychology could be relevant in the
domain of philosophy of science and where they would clash. After that I look the
other way around, showing that cognitive psychology addresses topics relevant for
philosophy of science that are usually not addressed in the mainstream.

In Section 2.2 I sketch some main issues in the philosophy of science, briefly re-
hearsing the ideas of several philosophers who made influential contributions to the
field: Carnap, Popper, Kuhn, Lakatos, Laudan and Hacking, followed, in Section 2.3
by Jerry Fodor’s thesis about the language of thought, a paradigmatic theory in cog-
nitive science.

Then, in Section 2.4 I will consider the appropriateness and possibilit y of a contri-
bution from the viewpoint of Fodor’s cognitive psychology to the issues of rational
justification, theory development, representation and the explanation of behavior. I
will argue that if Fodor’s thesis is accepted, no relevant form of relativism is tenable.
His thesis provides a rich framework for considering theories about reasoning in a
scientific context.

Following that, in Section 2.5, I shall argue that cognitive psychology can do more
than that. It also makes possible a theory about discovery and it shows a relation with
discovery as problem solving and the justification of theories. As a result of that, I
will argue that the framework of cognitive psychology is rich enough to provide an
adequate explanation of the development of scientific theories. In Section 2.6 I con-
clude this chapter with an evaluation of this chapter’s claim, that accepting a theory
about science is accepting a theory about the mind and vice versa.

2.2 Philosophy

There are many ways to look at science from a philosophical stance. There are proba-
bly just as many ways to describe existing philosophies of science. For that reason, as
a guideline for this section I use the ideas of some of the important contributors to the
field that is called philosophy of science. I follow four general issues in the work of
these philosophers: theories about the justification of theories; the development of
theories; what theories represent; and finally the actual practice of scientists. This line
of description probably does not do complete justice to the initial intentions of these
philosophers but is still useful for a short overview in the light of the goal of this
chapter.

Carnap
After the sudden flourishing of theories in logic at the end of the last century, phi-
losophy of science became focused on theories about language. Fast developments in
logic provided formal languages with the aim to interpret propositions non-
ambiguously. If it would be possible to interpret all theories of science in a formal
language then the meaning of those theories would be reduced to the relation of the
formal language and the world. This assumption gave rise logical positivism.
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The main question became: what should or does language represent? Rudolf Car-
nap (Carnap, 1967) defended the following idea: all that a scientific theory should
represent were terms and propositions whereof the truth could be confirmed in real-
ity. The meaning of a proposition should be its way of verification.

Theory development should be a process of putting theories forward and con-
firming them. When universal statements were constantly confirmed they were justi-
fied by induction: justification of the general by the special. All scientific questions
should be answered in this way to have any meaning at all . Questions which could
only have answers that could not be confirmed should be dispelled from the domain
of science. Theoretical terms of theories should be translatable into observational
terms to be allowed in a scientific theory. Causes, unobservable entities, untestable
hypotheses were all considered to belong to metaphysics and should have no place in
a decent philosophy of science.

Popper
A philosopher who agitated most strongly against the logical positivism of Rudolf
Carnap was Karl Popper. In his famous book ‘The Logic of Scientific Discovery’
(Popper, 1959, first published as ‘Logic der Forschung’ in 1934), he reacted with a
logical critique against Carnap’s ideas about representation, theory development and
justification. He argued that confirmation as justification of universal statements is
not tenable. A theory could be confirmed many times and still be false. For a theory
to have any value it should be possible to refute it deductively.

Popper defended this notion as a way to demarcate true science from pseudo-
science: a rational criterion of demarcation. The more sorts of experiment a theory
allows to test it with, the more empirical content it has. The more falsifying tests it
survives the more it is corroborated. A theory can never be accepted as true but only
be found false as one accepts a refuting singular statement or otherwise be highly cor-
roborated as one has come to accept many singular statements that support it.

The method of doing science should be to put theories forward and then to try to
falsify them. When a theory is falsified it should not be repaired with ad hoc hypothe-
ses. Only in this way, which became known as criti cal rationalism, could science
produce justified knowledge about the world.

Just as the logical positivists, Popper thought that the discovery of theories was
not a matter of logic. For understanding the logic of science it did not matter how a
theory or law was discovered. That should be the concern of psychology. It did matter
whether a theory could be tested and evaluated. That was purely a matter of logic,
certainly not of psychology.

The only logic to discovery is that it can be validly discovered that a theory is false
if a prediction of that theory is found to be false. So Popper’s book could just as well
been titled ‘The Logic of Scientific Evaluation’ because as far as Popper is concerned
in his book, there is no logic of scientific discovery.

Kuhn
Thomas Kuhn looks at science from another perspective (Kuhn, 1970). Instead of
thinking about what scientific theories should look like and how they should be de-
veloped, he empirically and historically investigated what the actual practice of Sci-
ence did look like and had looked like.
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What became clear to Kuhn was that scientists do not throw away their theories
when they encounter a refuting counterinstance. They stick to them as long as possi-
ble. He noticed that science knows periods of normal science, in which puzzles are
solved within the borders of a theoretical paradigm, next to periods of revolution.
During a revolution the old theoretical paradigm is substituted by a new paradigm
with different theoretical presumptions.

These historical and sociological facts looked nothing like Popper’s story about
the rational criti cism of falsification. Most theories are born refuted and nevertheless
function as the theoretical assumptions within paradigms. And when a new paradigm
is accepted it looks as if there is no rational ground for it that has anything to do with
the truth of the theories in the paradigms. So, real scientific practice seemed nothing
like a rational affair in Popper’s sense.

According to this fact it was argued that the meaning of the terms of a theory
changed radically even if the same names were used in the new paradigm. That made
‘ truth’ relative to a paradigm, what implied that there is no progress in science but
merely succession. For, how can a paradigm say anything truthfully about the world
when it is a matter of time for it to be rejected and succeeded by a radically new one?

So in sum, from empirical research in sociology and historical analysis of scien-
tific development it follows that if ‘ truth’ is regarded as a feature of a theory which is
not falsified, and ‘scientific rationality’ amounts to rejecting a theory as soon as a fal-
sification occurs, then science has nothing to do with truth and scientific practice has
nothing to do with rationality. It was thought that beliefs are socially determined, not
rationally, dependent on scientists’ authority and social influences.

Lakatos
Imre Lakatos was strongly opposed to this irrational and relativistic picture of science
(Lakatos, 1978). He built on Popper’s ideas trying to show that they could be made
consistent with the empirical data of the historical and social studies. He elucidated
the activity of science not as the project of trying to refute one theory but as investi-
gating empirical phenomena within the theoretical frame of a research program.

A research program consists of a theoretical core which is protected by a belt of
auxili ary hypotheses. When a seemingly refuting instance is encountered an auxili ary
hypothesis should be reconsidered, not the theoretical hard core of the research pro-
gram. So in this way it can be explained why a theory does not get abandoned after
falsification: one diverts the falsification to a protective auxili ary hypothesis. A
revolution is explained as a change in the theoretical hard core.

What makes Lakatos’ research programs really different from Kuhn’s paradigms
is that there is a rational way of determining when to give up on a particular theory.
Lakatos evaluates progression in theory development on the basis of the increase of
empirical content. The empirical content of a theory contains the possible models of a
domain that are excluded by that theory: the higher the content, the more tests are
possible to refute the theory. When a theory stops incorporating new facts, the pro-
gram can be considered as degenerating. It then can be abandoned for any theory that
does succeed in explaining those facts. So with this account it is possible to defend a
notion of truth next to a rational justification of scientific theories and practice.
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Laudan
In contrast to Lakatos’ realism and research programs stands Larry Laudan’s prag-
matism and notion of research traditions (Laudan, 1978). A relevant difference with
Lakatos’ research programs is that, not the empirical content but a research tradi-
tion’s abilit y to solve problems is central for the tradition’s progress.

A theory is not considered as good at solving problems when it is progressive but
the other way around: it is progressive when it is good at solving problems. Those
problems range from logical inconsistencies and empirical problems to conceptual
differences in the worldviews of scientists.

The rational choice between two theories in this way is for the theory which solves
most problems. A notion of truth is not considered as relevant to judge scientific ac-
tivity as rational. In this way scientific theories, and especially terms about non-
observable entities within them, do not have to say anything about reality at all to be
successful.

Hacking
Ian Hacking takes a different approach in the debate about truth (Hacking, 1983). He
emphasizes the relevance of the practice of experiments in science. He argues that the
philosophy of science is too much concerned with theory.

He accepts the reality of some theoretical entities but without accepting that a the-
ory that explains a phenomenon must be true. You could establish the existence of,
for example, electrons by doing intervening experiments, which result should be seen
apart from the question whether the theory you test about electrons says anything true
about reality. But from a rationalist viewpoint you can see the abilit y of intervention
as just a disguised form of rational justification: accept a theoretical entity when it
explains phenomena during intervening experiments.

Summary
You could frame the above theories about science as consisting of an opinion about:
the behavior of scientists, their organization and their acts of adhering to or working
on the basis of some scientific theory; what a theory represents, in other words its re-
lation with reality; how a theory develops; and finally, how a theory is justified. So I
can give the following summary.

In Carnap’s view, a theory about science is first of all a theory about representa-
tion. All possible theories of science should exist of terms which refer to the observ-
able world. Theories that are repeatedly confirmed are justified by induction. For
Popper not all terms of a theory have to be observational. A theory that explains a
phenomenon must be falsifiable through an experimental result that is implied by the
theory. You can justify a theory rationally if it is not (yet) falsified. Kuhn stresses the
presence of paradigms and revolutionary changes in science, implying that a theory
never represents anything truthfully about the world that can be defended by Popper’s
criti cal rationalism. Lakatos tries to save truth by seeing theory development as re-
search programs with an inviolable theoretical core that is protected by a belt of aux-
ili ary hypotheses. A research program can rationally be abandoned when it stops ex-
plaining new facts while another research program can. Laudan’s research traditions
are considered progressive when they solve many and new problems, which is their
goal and not the pursuit of truth. Finally, Hacking sees the truth of theories as a ques-
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tion other then that of the existence of theoretical entities, the latter can be estab-
lished by explaining phenomena during intervening experiments by their most likely
cause.

What all philosophers in this tradition have in common is that they do not attempt
a further clarification of the role of processes of the mind of persons involved in sci-
ence. Popper rejects psychologism, yet a form of psychologism that is based on psy-
chological behaviorism. Kuhn embraces a psychology that implies multi -rationality
but does not explain how it does so. Lakatos argues about why and when psychology
could or should not interfere with the explanation of science, but he judges rationality
irrelevant for it. For Laudan, science is problem solving. But he does not tell how that
process comes about. Hacking also does not address the role of the mind in science
(at least, not in the literature I reviewed).

In the following section I will explicate a general idea about cognitive psychology
of Jerry Fodor’s. It provides a framework for explaining and empirically investigating
rationality in cognitive process. In Sections 2.4 and 2.5, the relevance of such a
framework for the above ideas about science will be discussed.

2.3 Psychology

In this section I describe the general frame of assumptions Fodor’s about cognitive
psychology which is representative of the symbolic approaches in cognitive science.
Fodor is a philosopher who contemplated that fundamental assumptions of cognitive
psychology. In chapter 5 I will discuss work of the psychologist John Anderson, who
aims to provide explanations for empirical data from psychological experiments.

One could characterize the program of cognitive psychology as looking for an ex-
planation of intentional human behavior. The program grew out of the failure of be-
haviorism to explain the total scope of behavior, humans as well as animals, as a
function of the environment. Cognitive psychology postulated again beliefs and de-
sires in the organism in order to explain behavior that was judged intentional. The
notions of logic and computation became recognized as a new way to accurately
study language and thought. The mind of human beings was to be understood as a
symbol manipulation system that governed all aspects that had made humans ra-
tional. Empirical data about complex behavior, thought and language could all be ex-
plained as the result of a process of symbolic computation that somehow should take
place within the brain. .

What is now generally assumed in the program of cognitive science, is that cogni-
tive processes of higher organisms should be seen as computational. Cognitive (or, as
it is also called: computational) psychology made it possible to study language and
the processes of thought with mathematical precision.

First of all , cognitive psychology is a research program to explain intentional be-
havior. Behavior patterns are explained as directed to a certain goal, governed by
propositional attitudes: beliefs and desires. An action is caused by a desire to reach a
goal together with a belief of the organism that the goal could be reached by produc-
ing that action, the relation between attitudes and action being rational and inten-
tional. One thought of these relations as being matched by unconscious computa-
tional relations between symbols in the mind/brain.
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In this light the process of reasoning could be looked upon – and empirically
studied – as a process of problem solving: searching through a space of possible so-
lutions. It turned out that this search process could be successfully analyzed as a se-
ries of computational operations on the organism’s beliefs, resulting in a process of
accepting and rejecting different beliefs.

Fodor
In 1975, Jerry Fodor’s book ‘The Language of Thought’ (Fodor, 1975) marked a ba-
sis for the research program of cognitive psychology. The main idea was that the pro-
cesses of the mind should be seen as computational processes. However, computation
presupposes a representational system. A controversial thesis of Fodor claimed that
every human being is born with a representational system that is basically the same
for every human being. This system should be seen as a descriptive language. Within
this representational system computational operations preserve properties of beliefs
such as truth and reference.

Fodor put forward three empirical arguments to support this claim. The first
pointed out that there is a semantic parallel between thoughts and sentences. The
meaning of words can be compared with the meaning of mental concepts and sen-
tences can be compared with thoughts. The second argument stressed the syntactic
parallel between language and thought. Thoughts as well as sentences are productive
and systematic. There are indefinitely many and complex types of possible sentences
based on a lexicon and a syntax. The same holts for thought with a conceptual lexi-
con and mental rules.

The third and most important argument is the processing argument. Fodor argued
that the learning of concepts is only conceivable as a process of inductive extrapola-
tion: the formation and confirmation of hypotheses. So the learner must have a repre-
sentational system that is capable of expressing the hypothesis before learning. And
once concepts are learned the representational system is needed to consider and judge
possibiliti es when it comes to a rational choice. Fodor further argues that perception
is only possible if several hypotheses are considered to identify what is seen, because
recognition of objects in the world is underdetermined by the raw data received by
the senses.

These arguments led Fodor to the controversial conclusion that the only conceiv-
able way of learning and using language was by already having some representational
system or knowing some language: the language of thought. By further analysis of
linguistic and psychological data, Fodor tried to show that the language of thought is
at least as rich as any natural language. That implied that seemingly all basic concepts
are hardwired in the brain. During youth we would learn to translate them into a cul-
turally induced natural language. So, by studying language and its use empirically, we
could find out the structure and operations of the language of thought.

Summary
To summarize Fodor’s thesis: a part of human behavior is considered as intentional.
Cognitive psychology provides an explanation of intentional behavior as governed by
propositional attitudes, i.e. beliefs and desires. Part of the beliefs are reached by the
process of reasoning. Reasoning is explained as a computational process in a repre-
sentational system. All human beings are born with the same basic representational
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system: the language of thought. Learning is a process of forming hypotheses and
confirmation within that representational system. Rationality in thinking and behav-
ior can be seen as problem solving: a heuristically guided search through a space of
possible solutions.

Today, in cognitive science, Fodor’s overall thesis is criti cized as well as cher-
ished. While knowing that Fodor’s ideas are open to and under criti cism that I have
not mentioned, I still t hink that they show that theories in cognitive science have im-
plications for theories in the philosophy of science. In the succeeding section I will
show that the framework of cognitive psychology is rich enough to incorporate issues
of philosophy of science, as set out in section 2.2. In section 2.5, I will argue that the
framework is even richer.

2.4 Interaction

In section 2.2, I interpreted the theories of some important philosophers of science as
being primarily concerned with justification of scientific theories and activities. In
later discussions in philosophy of science the actual practice and behavior of scien-
tists is considered as well . It is sociologically and historically studied what theories
were accepted and developed and for what reasons. This empirical work resulted in
data that were not consistent with the earlier logical notions of rationality.

Later philosophers tried to show how theories about rationality could still be con-
sistent with sociological and historical data. As a consequence, they put forward dif-
ferent ideas about how science develops and what the resulting theories represent, if
they represent anything at all , and if or how they should be justified.

Many philosophers of science who take science as a rational business take psy-
chology as incompetent to say anything about it. Psychologically explanations of be-
havior should have nothing to say about how to do science rationally. But cognitive
psychology not only allows rationality as an explanation of behavior, it also explicitl y
studies it. It even has the potential to explain notions of rationality that are normally
considered the concern of modern logic.

Yet, it could be argued that what philosophy of science should contemplate about
is how to reason according to modern logic, not how people actually reason. How-
ever, since Kuhn, philosophy of science cannot leave out science’s practice without
inviting the argument that philosophy of science, in that case, has nothing to do with
real science.

In this section I will explore how or if cognitive psychology, as set out in Section
2.3, clashes with the theories of Carnap, Popper, Lakatos, Laudan and Hacking as set
out in Section 2.2. I will t ry to show that cognitive psychology can be a worthy oppo-
nent in issues of philosophy of science.

Carnap
Fodor’s cognitive psychology is maybe closest to the logical positivism of Carnap,
but at the same time totally different. Fodor’s internal basic representational system
shares many of its logical properties with Carnap’s ideal formal language, with the
main difference that the latter is an artificial logical language and the former is sup-
posed to be a phenomenon that can be empirically investigated.
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The justification of the propositions of scientific theories by confirmation seems to
resemble the non-demonstrative learning process of concepts in Fodor’s representa-
tional framework. Computational steps and their results in a cognitive process do not
need a metaphysics for their explanation, just as the logical implications of scientific
theories in Carnap’s doctrine do not need such an explanation. And if, in an internal
representational system, concepts are learned by hypothesis formation and confirma-
tion, then the justification of them is induction, which was enough for the logical
positivists.

Another important difference is that logical positivism did not take into account
actual scientific practice. It is indifferent to any explanations of the behavior and
practice of scientists; these were, in that time, governed by behaviorism. Thus one is
led to the biggest difference: the terms in Carnap’s language had to be purely obser-
vational, while the terms of the language of thought are theoretical. They provide an
explanation for certain observable cognitive phenomena: language and intelli gent be-
havior. But if Fodor’s thesis about cognitive psychology is assumed then a form of
logical positivism could be compatible with it, because an internal basic representa-
tional system implies the possibilit y of an ideal formal language that can provide
certainty within it.

Popper
Being compatible with a part of logical positivism does not, for cognitive psychol-
ogy, imply being totally incompatible with the criti cal rationalism of Popper. The re-
alization that induction does not guarantee absolute certainty is a logical truth that
can be justified in the frame of cognitive psychology.

To start with, there is a difference between the learning of a natural language and
the justification of scientific hypotheses within a language. Concepts are a kind of
theories about what to expect about instances of that concept. But concepts in natural
language are not learned that strictly. Natural language is full of ‘f alsified’ concepts
that are entertained anyway. For example, a penguin is a falsification of the concept
bird in English, because you expect a bird to fly. But doing science is another proc-
ess: it can be seen as striving to justified knowledge within the conceptual frame of a
language.

Again, first you need a language to state your hypotheses in, before you can test
them. Popper argues that one should accept only singular statements, which falsify or
corroborate a hypothesis, but this can only be possible within an already known lan-
guage frame. The goal of developing logically justified hypotheses can only be justi-
fied within the logic of a language, and so within the language of thought. Because
logic is a characteristic of the language of thought. What can be said of a science is
that it develops its own language that tries to be as logically correct as possible, but
again, only within a shared mental framework.

The thing that is in conflict with Popper’s ideas is that the language of thought in-
troduces the possibilit y for a true logic of discovery. The operations of justification
by corroboration and falsification can be seen as general operations in a process of
problem solving. Finding a theory or law that governs the accepted empirical singular
statements about a phenomenon can be explained as solving a problem within the
frame of a language.
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It still l eaves room for sudden insights. But because they have to be justified
within the terms of the (scientific) language, sudden insights can be seen as suddenly
finding a solution within that linguistic frame. In studies of in cognitive psychology it
is found out that the process of f inding a solution to a problem is not a mere process
of trial and error. It can be seen as a heuristically guided search through possible so-
lutions.

Yet, while many scientific discoveries occur within a frame work of a given sci-
entific language, many revolutionary discoveries are accompanied by a change in the
conceptual framework of a scientific language. This will only clash with Fodor’s the-
sis if one accepts that every basic term in the language of thought is also a basic term
in the frame of a scientific language. However one could argue that one should un-
derstand the basic terms, that according to Fodor are needed to explain the whole
process of learning a language, are present on a different level of abstraction. In a
similar case, the psychologist David Marr argued that we need to assume that the
projection of cylinder forms on perceptual data is hard wired in the brain to under-
stand the process of object recognition (Marr, 1982).

Kuhn
One can summarize Kuhn’s view of science and his reaction to Popper by stating that
there can be no logic but only psychology of discovery. But it is incorrect to conclude
that therefore science is not rational or can not be understood as a rational enterprise.
With Fodor’s thesis about cognitive psychology one can provide an explanation of
rationality in science.

Entertaining the concept of the language of thought implies a common logical ba-
sis for all possible paradigms of science because theory development and justification
is done by human beings who share a common basic conceptual system. Thus, sup-
ported by empirical data of cognitive psychology, the acceptance of the language of
thought makes incommensurabilit y and the implied relativism unjustified concepts.

Kuhn is still right in rejecting an early form of falsificationism for explaining sci-
ence, but wrong in rejecting the possibilit y of a justified form of rationality by just
asserting that it is a matter of psychology, because then he clearly underestimates the
reach of cognitive psychology. It explains the behavior of individuals as well as their
behavior in the context of a paradigm without resorting to social forces only. Of
course, it still remains a point of discussion whether it provides a proper explanation.

Lakatos
As an heir of Popper, Lakatos shares his objections against psychology, but again,
also without recognizing that rationality can be justified within cognitive psychology.
So his refinement of Popper’s falsificationism, by allowing an irrefutable theoretical
core and letting auxili ary hypotheses take all the refuting blows, can be compre-
hended in a cognitive psychological frame just as well .

What is incompatible with this frame, is that Lakatos’ refinement might allow
changing protecting hypotheses forever. But, if the core assumption of a research
program is incorrect in respect to the world and the language of thought, changing
auxili ary hypotheses would eventually turn out to be empirically unjustified or would
otherwise lead to a change in the relation between the language of thought and the
scientific language in which the theory is put.
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The correctness of a theoretical core can result in unmasking presupposed hy-
potheses. But if protecting hypotheses would be continuously changed to save the
core then all hypotheses eventually lose their meaning (and thus the possibilit y of
comprehension within the language they are put in is lost as well ), because they lose
their initial relation with the language of thought. Without that relation the theory
would not make any sense for anyone knowing the initial scientific language.

Laudan
As for the comparison with Laudan’s ideas, cognitive psychology incorporates an ex-
planation of the notion and usefulness of problem solving in science. It entertains
these as a basic feature of human cognition that can be rationally guided.

An explanation of why one theory solves some problems better than another can
be that, given a scientific language, the one is more truth-like then the other: it is a
better possible solution then the other within the space of all possible solutions,
within a learned instantiation of the representational frame of the language of
thought.

So, successes or progression with problem solving can be explained by presup-
posing a cognitive process that is, for having success, governed by truth in a repre-
sentational system.

Hacking
When we see Hacking as accepting only parts of theories, their theoretical terms
when they can be manipulated during experiments, we see that this is again a point of
view that can be incorporated in a psychological frame, as all other philosophies re-
viewed so far. One just has to regard the possibilit y of intervention as a form of ra-
tional justification of the reference of terms within a language. From there to, how
language relates to the language of thought, it is the same story as above.

Summary
I put forward Table 2.1 as a synopsis of the stances regarding issues in the philosophy
of science with Fodor as a participant. I regard the different philosophers as having a
philosophical and/or empirical theory about science consisting of: a theory about the
scientific practice or behavior of scientists; a theory about what theories represent; a
theory about when and how theories develop; and finally a theory why scientific
theories are justified or accepted.

Practice Representation Development Justification
Carnap - Empiricism Confirmation Induction
Popper - Realism Corroboration No falsification
Kuhn Paradigms Relativism Normal/revolution Puzzle solving
Lakatos Research program Realism Progression Empirical content
Laudan Research tradition Pragmatism Progression Problem solving
Hacking - Entity realism - Intervention
Fodor Prop. attitudes Internal realism Confirmation Problem solving

Table 2.1: Different views on science
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Carnap and Popper did not consider scientific practice because they mainly pur-
sued a normative philosophy of science. Kuhn introduced paradigms into the picture
and showed how the ideas and behavior of scientists depends sociologically on the
scientific paradigm they work in and on. Lakatos adjusted Kuhn’s paradigms and ex-
plicated the organization of scientists around the theoretical core of a research pro-
gram. What a scientist accepts depends on the program he is working in. Laudan
further extended research programs to research traditions and included, among other
things, the conceptual world view of scientists that also determined their adherence
and work in a certain tradition. Hacking speaks about scientific practice but he does
not pretend to explain it. If we regard Fodor then we should not look only at a socio-
logical level: we can also explain the behavior of the individual scientists on a psy-
chological level, in terms of their propositional attitudes.

What scientists do, should do, or can do is dependent on what their theories repre-
sent. Carnap and Popper both thought that theories represent the world with the main
difference that Carnap’s logical positivism, also called empirism, only allowed theo-
ries that represented, or could be redescribed to represent, things that can be ob-
served. Popper’s realism had less problems with theories representing unobservables.
The relativism of Kuhn on the other hand does not regard theoretical terms or even
observational terms as representing anything in the world, because when a theory is
developed further the meaning of its terms change as well . Lakatos is as much a real-
ist as Popper was. Laudan, on the other hand, regards theories as useful but does not
allow representation. Hacking does allow the reality of ‘ theoretical’ entities if it can
be shown that they cause something in experiments. Concerning representation, Fo-
dor allows a realism that is justified with the internal representational system of the
language of thought. The terms of theories represent the world in respect to human
perception, the language of thought and the particular language a scientist employs.
The language of thought thesis incorporates the idea that perception is theory laden, it
deals with underdetermination and undermines incommensurabilit y.

A further important philosophical problem is the question when, how and if sci-
ence develops. According to Carnap we have learned something about the world if a
new hypothesis is confirmed. Popper speaks of the corroboration of hypothesis which
stood up to criti cal tests. In both views progression is the result. But when Kuhn
looked at history he only saw normal science and revolutionary leaps between in-
commensurable paradigms in the development of science. Lakatos, however, expli-
cated that when a research program develops the empirical content of the theories
should increase. For Laudan there is just progression when a tradition does not run
into unsolvable problems. As far as I know, Hacking did not propose his own theory
about how science develops. For Fodor, a person learns truths about the world, as
well as a natural language, when hypotheses are confirmed in his internal representa-
tional system.

The last philosophical problem taken into account concerns the justification of
scientific theories. Carnap justifies confirmed hypotheses by induction. But Popper is
only willi ng to pursue a theory when it is not falsified. For Kuhn a theory is still
worthy if puzzles can be solved with it during a period of normal science. Lakatos
admits theories as long as the research program keeps on increasing its empirical
content and does not degenerate. For Laudan problem solving is the goal of science,
not truth. Hacking justifies the acceptance of theoretical entities when we can explain
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the result of our intervention with nature in terms of them. And finally, Fodor’s cog-
nitive psychology admits the acceptance of theories partly by induction but mostly by
problem solving. The descriptive and explanatory nature of the language of thought
does however allow a normative bent: human problem solving can be analyzed and
improved.

This section tried to show that issues and research problems of cognitive psychol-
ogy can be considered as part of the problems and issues of the philosophy of sci-
ence. The ideas about the issues clash, but in the same way as the theories within
philosophy of science clash with each other. In the next section I will regard how
philosophy of science can fall within the frame of cognitive psychology instead of the
other way around.

2.5 Integration

Up till now, I argued for a place for cognitive psychology within the philosophy of
science. But you can also look at issues of philosophy of science as constituting a part
of the issues of cognitive psychology.

As we saw in Section 2.3, Fodor’s cognitive psychology is concerned with the ex-
planation of intentional behavior and cognitive processes that result into language
and rationality. This is accompanied by an explanation of understanding and compre-
hension of symbols and the world. Consequently, within the frame of cognitive psy-
chology, scientific theories, as all other symbols, should be processed by a person’s
mind to have any meaning. Their reference is determined by the person’s representa-
tional system. That makes truth a feature of the cognitive processes of the mind.
Hence, cognitive psychology can in fact be seen as a scientific epistemology.

 Theories in the philosophy of science, in that way, can be interpreted as theories
about cognitive processes within a representational system that can be empirically
investigated within the frame of cognitive psychology. The study of the relations
between theories on different levels of explanation would be a study of the processes
of thought within the mind and of the mind’s representational system. In this way,
epistemology can be seen as a science about how human beings know the world, and
can learn to know it better. The foundation of knowledge would not lie exclusively in
perception of the world, neither would it li e in language, it would lie in how human
beings can know about and act in the world on the basis of their representational
system: it would lie in the language of thought.

The framework of cognitive psychology is even richer than its capabilit y to ex-
plain theory justification, it can explain theory discovery as well . It gives the possi-
bilit y to study justification and discovery within the same framework. One way of
doing so is understanding discovery as the result of an heuristically guided search
through a space of possible solutions of a given problem. That problem could, for
instance, be: what formulas explain the given empirical data. Investigating the proc-
ess of discovery would then be investigating how scientists learn heuristics that can
find solutions for a problem in a given representational system. In that way it can be
seen that justification is also an operation in the process of search on the level of dis-
covery and not just a judgement after discovery.
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It is not the case that cognitive psychology does not allow “ the spark of brilli ance”
or any other notion that is related with serendipitous discovery and creativity. There
can be more ways of f inding a solution in a space of possible solutions than only
through a methodological search that is heuristically guided. But the hypothesis of
the language of thought implies that: if a solution to a problem can be found seren-
dipitously in a given finite problem space then it can also be found by method.

Finally, the program of cognitive psychology was originally set up to explain indi-
vidual behavior of human beings, so it may allow us to give an adequate reconstruc-
tion of the behavior and ideas of scientists. It is very likely to meet the challenge to
justify historical and social data, regardless whether the goal of a scientist is power or
truth.

Fodor’s thesis in cognitive psychology provides a theoretical frame for processes
of cognition that can explain features of language, thought, and behavior. Those pro-
cesses are seen as computations in an internal basic representational system. From
this viewpoint, theory discovery, development, and justification next as well as in-
tentional behavior of scientists are all governed by computational processes in a rep-
resentational system which can be empirically investigated. So, cognitive psychology
implies a stance within the philosophy of science because the assumptions of the
philosophy of science are a part of the assumptions of cognitive psychology.

Hence, we can consider issues of the philosophy of science as part of the issues
and research problems of cognitive psychology. Theories of science can be inter-
preted as theories about certain cognitive processes and their desired results. In the
next section I will close this chapter with a general conclusion.

2.6 Conclusion

Should someone accept the theories of a science because he accepts the ideas of a
philosophy of science that justify that science? Or should one accept a philosophy of
science because it is justified by the science that is accepted?

I tried to make clear in this chapter that, if you accept some idea in the philosophy
of science, you implicitl y accept some psychology or philosophy of mind, and if you
accept some psychology or philosophy of mind you also accept some philosophy of
science. They are both about human knowledge and reasoning. If you state how a
theory can be justified, you presuppose how a human being can represent theories as
well as where they are about. If you state how human beings can have knowledge,
and how it influences their behavior, you presuppose how human beings can justify
their knowledge. For making this claim, I used the assumptions about cognitive psy-
chology by Fodor and related them to issues in the philosophies of Carnap, Popper,
Kuhn, Lakatos, Laudan and Hacking, showing that Fodor and these philosophers of
science share a number of issues and assumptions.

What is important for this claim is that it does not matter whether you accept Fo-
dor’s cognitive psychology or not, it holds for every scientific theory about language,
thought, behavior, and the brain. If you do not accept a non-physical theory of psy-
chology, but only consider neuro(physio)logical information processing, you still pre-
suppose some account of justification of theories. But if you regard the processes of
the mind and brain as computational then you should see a scientific theory as a
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computational recipe in a representational system, i.e. as a kind of computer program.
Looking to theories from that perspective opens up a whole world of new ways to
study and understand science with the aid of theories about representation, computa-
tion, learning, rationality and behavior within cognitive science.

As a conclusion, I will repeat the claim I argued for in this chapter: cognitive sci-
ence in general can make sensible contributions to debates, ideas and developments
in the philosophy of science because accepting a theory about science is accepting a
theory about the mind/brain and vice versa, philosophically as well as scientifically.
How psychology can contribute to the debate about the rationality of science is a
main topic of the rest of this thesis.

Postlude
Philosophy of Science realized what his young nephew Cognitive Science had in
stock. Now they both had to convince their own families about their combined po-
tential. The best way to achieve that was getting to work together and let it be
shown…

*  *
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Chapter 3 

Neuropharmacology

3.1 Introduction

What is the rational use of theory and experiment in drug research for Parkinson’s
disease? In this Chapter I discuss this problem from a bird’s eye perspective, provid-
ing an introduction to the more detailed analysis of discovery in neuropharmacology
in Part III of this thesis.

The approach of this thesis is that the best way to understand the process of dis-
covery in empirical science is to see it at work. This opinion is endorsed by both psy-
chologists, studying how people actually make discoveries in scientific practice (e.g.
Dunbar, 1995), and computer scientists, who want to make programs that aid discov-
ery, no matter how people actually make discoveries (e.g. Valdés-pérez, 1998).

I took a similar approach, in conducting my case study of drug research for Park-
inson’s disease at the Groningen University Center for Pharmacy. It turned out that
fundamental research into the biological mechanisms of the brain and new drug ex-
periments go hand in hand in the search for new drugs. Theories and models of bio-
chemical and neurophysiological mechanisms guide the search for a new drug and
drug treatment, and newly designed highly selective drugs are used to empirically test
those models and further explore those mechanisms in the laboratories.

This chapter globally surveys my analysis of the reasoning involved in using theo-
retical diagram models in neuropharmaceutical research. These describe relations
between variables of a biological system. The use of such diagram models has some
limitations in practice, due to their complexity. A formal way to understand these
models is to represent a model as a qualitative differential equation. An explication
of the reasoning task can help to understand the search for drugs led by suggestions
originating from such models, and possibly aid that task by computational tech-
niques.

The next section briefly describes the field of neuropharmacology and the case of
Parkinson’s disease. In section 3.3, I will compare the reasoning in the search for an
explanation with reasoning in the search of a drug treatment. In section 3.4 I outline a
method of making predictions from knowledge in neurobiology by using qualitative
differential equations. Section 3.5 defines and discusses the process of rational drug
discovery. This chapter ends with some general conclusions.
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3.2 Description

In this section I globally describe the field of neuropharmacology. One aim of drug
research in neuropharmacology is to find a way to intervene in neurophysiological
and neurochemical processes such that pathological properties or symptoms are sup-
pressed, or desired properties are induced, (Vos 1991). Those unwanted properties
are determined and discovered in numerous ways. The history of pharmacology and
medicine is rich with serendipitous cases where a patient with a particular disease
comes into contact with a compound that enhances his condition, hence providing a
clue about the disease mechanism. A systematic study involves comparison of prop-
erties of pathological processes of patients with those of control subjects. In some
cases, such as in Parkinson’s disease, a cause of disease symptoms can be traced back
to different concentrations of a single neurotransmitter compound.

Neural disorders have their origin in shifts in delicate balances of neurochemicals,
which can be caused by e.g. cell damage or degeneration. The plasticity of the brain
is large enough to restore imbalances, e.g. by increasing the sensitivity for a particu-
lar neurotransmitter. But when it fails, e.g. when a substance is depleted almost com-
pletely as in the case of Parkinson’s disease, a severe neurological disorder results.

The aim of a therapeutic strategy is to find or design chemicals that selectively in-
fluence neurotransmission. The goal is to restore balances by administering those
chemicals, to nudge derailed processes back on the track. This kind of research has a
top-down and bottom-up strategy. In the latter case, one tries to discover and under-
stand structures and processes in the brain by influencing them selectively, and seeing
what happens. This is done both locally and globally. How does a new drug influence
local neurological processes, and how does it influence behavior? In the top-down
case, one uses all knowledge available about the pathology of a disease to discover
new therapeutic targets, leading to a so-called drug lead. This is a description of the
functional properties a potential drug should have to influence that target. In practice,
top-down and bottom-up go often hand-in-hand.

Using knowledge to build models of neurochemical structures and processes to
guide drug research is dubbed rational drug design. Computational models of com-
plex receptor structures are made to infer what chemicals might interact with them.
Yet, in contrast to such rational methods, currently a very successful strategy is to
generate chemicals massively and to test them in vitro on their potency for influenc-
ing receptors. This strategy will end up with a nice set of chemicals to influence the
biological machinery in a highly selective way. On the other hand, it is not always
obvious how to employ those chemical tools optimally. For example, it may turn out
that a particular combination of drugs is needed to properly influence several mecha-
nisms involved in a disease. This can be discovered by first rationally understanding
those mechanisms.

Hence, fundamental research into the workings of the mechanisms of the brain is
also pursued in neuropharmacology. One research tool employed is building models
of neurochemical and neurophysiological processes that aim to fit data acquired by
lab-studies on animal models. This is conducted in the Pharmacy Department of the
Groningen University by employing electrophysiological methods and microdialysis
to track nerve signals.
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A nerve propagates a signal by conducting an electric pulse called an action po-
tential. This signal initiates the release of transmitter chemicals at the terminals of the
cell , that affect receptors of nearby nerve cells that may further propagate a signal.
Placing an electrode in the brain can monitor the electrical activity. The release of
transmitter is measurable by means of a microdialysis probe. This probe can also be
used to release chemicals locally and measure the effect in vivo. At the Pharmacy
Department of the Groningen University the function of neurophysiological pathways
is studied by using these two techniques.

Specific studies of the functional relation between several variables together con-
tribute to understanding the function of a brain area, or cell groups called nuclei. To
describe these neural circuits, box and arrow models are drawn showing positive and
negative influence relations (Timmerman, 1992). These models are further tested for
their correctness and used to explain and predict the functioning of the system. Newly
developed drug compounds play a bootstrap role in this research: they are used to re-
vise and refine the model and experiments conducted, while on its turn the model is
used to understand their effect. A drug that works very selectively for one particular
type of pathway can be used to further explore the function of that pathway. The ac-
quired data may then serve to refine the model, so that the effects of the new drug can
be explained and predicted.

A group of subcortical nuclei called the basal ganglia are studied in Groningen
(Timmerman et al., 1998). These nuclei play an important role in the control of vol-
untary behavior. In the case of Parkinson’s disease a part of them, called the substan-
tia nigra pars compacta (SNC), decays due to an unknown cause. The SNC is a sup-
plier of an important neurotransmitter called dopamine, which is postulated to serve a
modulating function. It is thought to maintain a delicate balance in influencing sig-
nals from the cortex. To understand this balance a schematic model is used to repre-
sent neural activity in the basal ganglia in Parkinson’s disease, see Figure 3.1.

Figure 3.1 presents a schematic representation of neural activity in the basal gan-
glia in Parkinson’s disease, as postulated in studies by Timmerman (1992, p. 18). An
arrow in the diagram is a neural pathway, consisting of a bundle of individual nerve
cells. A box is a nucleus, or clustering of nerve cells. Increased inhibition induced by
receptors sensitive to the transmitter GABA of the external segment of the globus
pallidus (GPe) leads e.g. to disinhibition of the subthalamic nucleus (STN). In turn,
this provides increased excitatory drive to the internal segment of the globus palli dus
(GPi) and substantia nigra reticulata (SNR), therefore leading to increased thalamic
inhibition. This is reinforced by reduced inhibitory input to the SNR/GPi. These ef-
fects are postulated to result in a strong inhibition of brainstem neurons. D1 and D2
are two different types of receptors, postulated to react excitatory and inhibitory, re-
spectively, to dopamine (DA). (This model is explained in more detail i n part III )

In the model dopamine has a dual function. It enforces the direct path from the
striatum to the SNR/GPi while it inhibits the indirect path, via the GPe and STN.
This balance maintains an inhibition of both the brainstem and the thalamus. Yet
when dopamine is nearly depleted, the balance becomes disrupted, resulting in a
strong increase of the activation of an area called the SNR/GPi, see Figure 3.1. This
hyper-activation causes strong inhibition of brainstem neurons and is correlated with
some of the major symptoms of Parkinson’s disease.
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Figure 3.1: Diagram model of the basal ganglia

Most of the traditional research on Parkinson’s disease is focused on restoring levels
of dopamine. This compound cannot be administered as a drug that can be swallowed
because it does not pass the so-called blood-brain barrier. Yet it was discovered that
L-dopa, which metabolizes in the brain to dopamine, can pass this barrier. Adminis-
tering doses of L-dopa regularly is to date the most successful therapy to deal with
Parkinson symptoms.

Yet administering L-dopa also causes dopamine levels in other parts of the body to
increase. This higher concentration of dopamine in the blood causes nausea as a side
effect due to stimulation of dopamine-receptors elsewhere in the body. And after
three to five years of use the therapeutic effect wears off drastically. Further research
investigates the use of highly selective dopamine receptor agonists, compounds that
interact only with particular dopamine receptors. The dopamine receptors on the di-
rect route from the striatum to the SNR/GPi were discovered to be mainly of another
type (D1) than that of the indirect route (D2) via the GPe. Both receptors can be
stimulated by dopamine, but with different effects. D1-receptor stimulation with do-
pamine has an excitating effect on a cell , while stimulation of the D2-receptor with
dopamine inhibites the cell . Clinical studies are conducted to investigate the thera-
peutic effects of using different compounds that differ in selectivity to both the D1
and D2-receptor. These studies show that using only a selective D1-agonist, a com-
pound that stimulates D1 but not D2-receptors, is not successful.
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The model in Figure 3.1 is used to understand the effect of selective compounds.
However, in the literature opinions about these kinds of models are rather diverse.
Some people use them to understand and theorize about physiological phenomena
extensively, while others are wary of using them because they are too simple, not re-
specting the subtlety of the data, and therefore not realistic. In a recent article in the
movement disorder literature it is said:

"On the one hand, efficient models have to be simple, but simple models can
provide only part of the reality and are thus bound to be wrong (for example,
current basal ganglia model) ... On the other hand, an elaborated model that
would embody all the complexities of a given reality ... is doomed to be
useless" (Parent and Cicchetti, 1998)

The practical problem of the diagram model is that it is informally represented. Its
consequences are inferred by tracking the boxes and arrows. The general basal gan-
glia model is already fairly elaborate. A more realistic picture would have to be sub-
stantially larger, including more transmitters, peptides, small interactions and feed-
back loops. Including these would cloud the overview, drowning it in the complexity
of all the consequences of the model.

The following sections generally describe a part of the reasoning involved with
such models, introducing the use of qualitative differential equations to represent
them. These allow for systematic and computational exploration of their conse-
quences and have the potential to aid with both the understanding and the testing of
the models, but also to explore them for new drug lead suggestions. But first we will
look at the kind of reasoning that is involved.

3.3 Explanation

In the literature on scientific discovery, a lot of attention is paid to understanding and
explicating the process of explaining surprising or anomalous observations. The gen-
eration of potential explanations is often dubbed abduction after the work of C. S.
Peirce, whereas their evaluation is known as inference to the best explanation. The
starting point in those analyses is in most cases a new phenomenon or observation
that comes as a surprise, because it cannot be explained by current knowledge, or be-
cause a contradictory outcome was predicted. From then on, new explanations are
sought, evaluated, and incorporated in the known theories and background (Th.
Kuipers, 1999). How an anomalous or surprising observation comes about is often
the result of casual observation, serendipity, or devised laboratory experiments that
aim to test explanations on their correctness.

In pharmacology, the research aims have a strong pragmatic component. The goal
in rational drug design research is to understand a particular biological structure or
mechanism and to use this knowledge to devise chemicals to influence it. A research
problem aiming at a new drug treatment for a particular disease starts with phenom-
ena or symptoms that do occur but that we do not want to happen, or with properties
or symptoms that do not occur, but that we do want to see. Now the goal is to find a
drug inducible condition that causes the wanted properties to occur and the unwanted
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symptoms to disappear. Superficially this reasoning task does not differ in structure
from abduction and inference to the best explanation. Only the status of the initial
condition and the observation is different. In the explanation task, the observation to
be explained occurs, needing an as yet unknown initial condition or theory to explain
it. In the other case, the wanted property does not occur, needing an as yet absent ini-
tial condition that can cause it to occur.

The search involved is structurally similar to that of abduction and inference to the
best explanation, but it has a different goal. Instead of f inding a simple explanation of
an observed effect, the task is to infer a simple (drug) intervention that causes a de-
sired effect. So we could call this reasoning task: inference to the best intervention.
Note that this task differs from diagnostic reasoning. Inferring what causes a disease
symptom is not the same as to infer how to remedy it. That may often be as simple as
removing the found cause, e.g. by killi ng a germ. But, as the case of Parkinson’s dis-
ease shows, that is not always possible.

3.4 Prediction

To understand inference to the best intervention based on the schematic diagrams
about the dynamics of the brain we employ the formalisms of qualitative reasoning to
deduce predictions from those diagrams (cf. B. Kuipers, 1994). In qualitative rea-
soning research, the structure of a dynamical system is described by a qualitative dif-
ferential equation (QDE), that defines the relations between the variables of the sys-
tem. The exact nature of a relation may not be known, as is the case in many investi-
gated relations in the model in Figure 3.1. Yet it may be known what the sign of the
relation is. It may be known that a function describing the relation between two or
more variables, that change in time, belongs to the class of monotonically increasing
(M+), or decreasing (M−) functions.

Furthermore, any variable can be ascribed a qualitative landmark value such as
high, low, or normal, and a direction of change over time: increasing, steady, or de-
creasing. Several variables can influence one other variables such that the differen-
tials of all variables together determine the resulting value. There is a calculus de-
fined to determine these values. For example, if the value of variable p1 is a differen-
tial function over time of p2 plus p3 and the function belongs to the class of mono-
tonically increasing functions, then the value of p1 will i ncrease if both p2 and p3 in-
crease, but remains unknown if p2 increases and p3 decreases. The lack of knowledge
in the last case is a necessary consequence of the qualitative and incomplete character
of a QDE.

A qualitative state of a system described by a QDE is an attribution of variable
values to all variables of the system, consistent with the constraints in the QDE.
Given a QDE and a set of known initial variable values, a set of all consistent system
states can be deduced, together with their possible transitions. When a calculated
value is unknown, all possible states are included in the set. This set is complete, but
is proved to be not always correct since spurious states may be included as well .
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Figure 3.2: QDE fragment of the basal ganglia

Figure 3.2 displays a QDE fragment including a part of the basal ganglia model in
Figure 1, and the metabolism of dopamine. It relates variables such as the firing rate
(f) of nuclei and neural pathways, and amounts (a) of neurotransmitters in nuclei. For
example, the increase of the firing rate of the SNC causes an increase in the amount
of dopamine in the striatum, while this latter increase causes a decrease in activation
of the neural pathway that signals to the GPe, etc.

3.5 Intervention

In medical practice, a disease is characterized by a profile, which is a set of charac-
teristics with certain qualitative values. Given a profile, it is a goal in neuropharma-
cology to discover a drug lead, which is a set of wished-for functional drug charac-
teristics (Vos, 1991). This search can be based on qualitative knowledge if the pro-
files include comparative values of variables of a normal and a pathological state of a
system. This is the case when values of variables are known to be higher or lower in a
pathological condition, compared to controls.

The search goal is to find those variables by which one can intervene in the profile
in such a way that the pathological values of the variables associated with a disease
are reversed. The goal set is defined to consist of the variables of the disease profile
with an inverted direction of change, i.e. if a variable value is lower in the pathologi-
cal profile, it is included in the goal to increase that variable value. We can now de-
fine the ideal goal of this search task: find a minimal set of variables such that a ma-
nipulation of the variable values propagates a change in direction of the values of the
variables in the goal set.
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However, there may not exist a set of variable influences that causes all desired
changes of values of the goal set. So we have to moderate our goal to find that set of
variables for which an influence causes the largest number of desired goal variable
values, while minimally affecting the other variables of the system. This intuition can
be explicated by an approximation criterion analogous to a criterion used in expli-
cating design research and truth-approximation, (T. Kuipers, 1999; Van den Bosch,
1997, 1998, see part III ).

The defined task can now be carried out as a search in a solution space of con-
ceptually possible interventions. We start with a QDE model and known initial val-
ues of its variables. A goal of desired variable values is set. Reasoning backward
from the goal values one can explore possible manipulations of the variables. The
approximation criterion is used to measure the difference between the goal values
and the values caused by a particular manipulation, implementing a means-end analy-
sis.

In Parkinson’s disease, the goal set includes a lower activation frequency of the
SNR/GPi than in the pathological case, cf. Figure 3.1. A search through possible ma-
nipulations will not only find an increase of the amount of L-dopa in the striatum. It
will also find that a decrease of the firing rate of the indirect pathway between the
striatum and the GPe results in a decrease of the firing rate of the SNR/GPi. Admin-
istering a selective D2 agonist can cause such a decrease, with a lesser effect on other
dopaminergic pathways than dopamine.

This reconstruction tells us nothing new about what to do about Parkinson’s dis-
ease. Yet by making the knowledge and reasoning explicit (by describing it formally)
it is possible to increase the complexity of the basal ganglia model without rendering
such a model useless in the manner that was argued in the movement disorder litera-
ture. Via a computer program as a modeling tool it i s still possible to keep track of,
and further investigate, all the consequences of such a model.

However, because of the incompleteness of the data, numerous and possibly spu-
rious suggestions will be made. So, drug lead suggestions can best be seen as propos-
als for experiments. A manipulation derived from current knowledge is an excellent
basis for a new experiment design serving both a practical and epistemic goal: testing
a manipulation for its therapeutic appropriateness and testing the models used to de-
rive the manipulation for their correctness.

If a large enough domain of data is included, it also has the benefit of connecting
results, in the way the ARROWSMITH program does, based on text analysis of titles
in the MEDLINE-abstract database (Swanson and Smalheiser, 1997).
ARROWSMITH discovers the missing link between literature that describes rela-
tions between subjects, compounds or functions A and B and literature that did the
same for B and C, but in ignorance of each other. In this way the relation between
magnesium deficiency and migraine was discovered, via eleven intermediate effects
linking them together. In principle, inference to the best intervention can do the same,
given qualitative models of results in MEDLINE. Initiatives to collect results in biol-
ogy in qualitative formalisms on a grand scale are already undertaken; see, for in-
stance, the EcoCyc and MetaCyc projects on the web by Karp and Riley (1993).
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3.6 Conclusion

The rational use of neurophysiological models can be modeled as goal directed rea-
soning about qualitative differential equations. Applying effective search techniques
to such models could potentially aid drug lead discovery for complex biological sys-
tems with a large set of variables and constraints. However, this is a claim only war-
ranted by theoretical considerations. Whether novel results can thus be produced still
has to be seen, because there are problems as well. When a large-scale QDE model is
compiled it can be severely inconsistent because the empirical results are not always
mutually consistent. Yet by using the best intervention suggestions to devise new ex-
periments, qualitative reasoning about neurophysiological models as part of a com-
puter supported discovery system could still aid in using, understanding and testing
models about larger biological systems.

This also concludes the introduction part of this thesis. Part II will go further into
rationality in discovery in more detail, while Part III will, in detail, further address
discovery in neuropharmacology.

*  *  *
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Part II   Discovery

What is the rational use of theory and experiment in the process of scientific
discovery, in theory? In this part I discuss three different approaches to the
study of the rational use of theory and experiment in the process of scientific
discovery. I start with a discussion of the study of logic (Chapter 4). Then I
discuss an account that stems from the psychological study of cognition
(Chapter 5). I finish this part with the discussion of a model of discovery that
is grounded in the study of computation (Chapter 6).
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Chapter 4 

Logic

4.1 Introduction

In this thesis we set the general problem: what is rationality in scientific discovery?
This question receives attention from several academic disciplines. Traditional phi-
losophers of science are usually interested in what scientific discovery ought to be,
and how reasoning in that process can be valid or justified. Empirical scientists are
usually more interested in describing rationality in scientific discovery as a social or
psychological phenomenon, to be studied empirically.

In this chapter we will address a normative approach that stems from studies in
logic. In the next chapter we will address a psychological theory about the rationality
of reasoning and problem solving. This part will end with a chapter on a general
computational model of discovery. In discussing all models I will look for answers to
the specific questions from section 1.3, i.e. those about: (1) the structure of a theory,
(2) the process of scientific reasoning and (3) the route between theory and experi-
ment.

In this chapter we start with a discussion of logic, the traditional study of valid
reasoning. The question is: what is the rational use of theory and experiment in the
process of scientific discovery, as proposed in the study of logic? We start by asking:
what is a scientific theory and what is scientific reasoning?

To address these questions I discuss an illustrated example of explanation. In an
episode of the life and times of cartoon character Calvin and his tiger Hobbes he
watches a sunset with his father, see Figure 4.1. His father explains the setting of the
sun to Calvin. Now, why would we not accept his explanation as scientific? Is this
because his hypothesis is not scientific? Is this because his reasoning is not valid? Let
us look at the validity of his inferences from the perspective of logical argumentation
theory, and reconstruct his reasoning.
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Figure 4.1: Calvin and Hobbes © 1988 Bill Watterson. Reprinted by permission of
Universal Press Syndicate. All rights reserved.

4.2 Deduction

Calvin’s question is: why does the sun set? This question asks for an explanation of
his observation. He wants to know what causes the sun to set. If Calvin accepts only
a logically valid answer, he can only accept as explanation a deduction of his obser-
vation from what is known. Let us examine his inferences one at a time and comment
on their validity.

In modern logic the validity of an inference is independent of the truth of the
premises. Yet when an inference kind is valid the conclusion is true when the prem-
ises are true. To represent kinds of inference schemes in the discussion I will use a
two or three letter abbreviation (TLA) that is italicized if it represents a logically
valid inference. In an inference scheme I will mark a proposition with a star (* ) to
indicate that we do not know whether that proposition is true.

Calvin’s father manages to infer his answer in several possibly implicit steps. First
he presupposes two propositional premises as initial assumptions which Calvin
should accept off-hand, without further argumentation:

P1 Hot air rises Hot(air) ⇒ Rises(air)
P2 In the middle of the day the sun is hot Hot(sun)

Presumably he further assumes that the air is hot, and that the sun causes it:

P3 If the sun is hot then the air is hot Hot(sun) ⇒ Hot(air)

These premises seem unproblematic. Based on them he can validly infer by modus
ponens (MP) that the air is hot:

P2 In the middle of the day the sun is hot Hot(sun)
P3 If the sun is hot then the air is hot Hot(sun) ⇒ Hot(air)

 MP
P4 In the middle of the day the air is hot. Hot(air)
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By transitivity (TRN) he can infer validly that if the sun is hot the air rises:

P1 Hot air rises Hot(air) ⇒ Rises(air)
P3 If the sun is hot then the air is hot Hot(sun) ⇒ Hot(air)

 TRN
P5 If the sun is hot then the air rises. Hot(sun) ⇒ Rises(air)

From the premises he then infers in two steps why the sun rises. To be explained first
is the observation:

P6 In the middle of the day the sun rises Rises(sun)

This should be a conclusion from our premises and valid intermediate conclusions.
For the first step three different inferences are possible. The first could be:

P5 If the sun is hot then the air rises. Hot(sun) ⇒ Rises(air)
GEN

P7 If the sun is hot, anything rises * for all x Hot(sun) ⇒ Rises(x) *

Logically this is a fallacy, a hasty generalization (GEN) called a secundum quid.
Seeing one type of object with a property does not imply that all have the same prop-
erty. So this inference is invalid. However, we can not say that, logically, his conclu-
sion is false either. The inferred proposition could well be true, but its truth does not
follow deductively from the truth of the premise.

Alternatively, Calvin’s father could have assumed that the sun is part of the air
and a property of air is also a property of the sun. Since hot air rises, a hot sun rises as
well:

P1 Hot air rises Hot(air) ⇒ Rises(air)
P8 The sun is part of the air sun part of air

 DVS
P9 If the air is hot the sun rises * Hot(air) ⇒ Rises(sun) *

This is known as a fallacy of division (DVS), where a property of the whole is also
ascribed to a part. All the parts together could well not have the same property as the
whole (e.g. the parts are light, but the whole is heavy). Yet again, it is also possible
that the whole does have the same property as the parts, and vice versa (e.g. the
whole is light, therefore each part is light).

A third possible interpretation of the explanation of Calvin’s father is a causal ar-
gumentation (CAU):

P4 In the middle of the day the air is hot. Hot(air)
P6 In the middle of the day the sun rises Rises(sun)

 CAU
P9 If the air is hot the sun rises * Hot(air) ⇒ Rises(sun) *
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In this case a cause-effect relation is inferred from the mere observation that two
events take place together. The air is hot and the sun rises, hence if air is hot the sun
will rise. This is again a logical fallacy. The causal relation could just as well be the
other way around, or not existent. The occurrence of events one after another could
just as well be an incident. This fallacy is called post hoc ergo propter hoc.

We now saw three ways to infer P9 in a first step. To explain P6, the rising of the
sun, he further infers in the second step:

P9 If the air is hot the sun rises * Hot(air) ⇒ Rises(sun) *
P4 In the middle of the day the air is hot. Hot(air)

AA
P6 In the middle of the day the sun rises * Rises(sun) *

In this inference the second premise aff irms the antecedent (AA) of the first premise.
This inference is called modus ponens. It is a valid inference that guarantees the truth
of the conclusion if the premises are both true. But in this case the conclusion may be
false because the first premise may not be true. So P6 follows validly from P4 and P9,
but not from our initial premises P1 to P4, because P9 does not follow from them.

But Calvin’s question was why the sun sets. To explain this, his father first im-
plies in a third step that when the sun is not rising the air is also not hot.

P9  If the air is hot the sun rises * Hot(air) ⇒ Rises(sun) *
P10 In the evening the sun sets. not Rises(sun)

DC
P11 In the evening the air cools down. * not Hot(air) *

The second premise denies the consequent (DC) of the first. This inference is called
modus tollens. Just like in an aff irmation of the antecedent, the conclusion of the in-
ference is true if the premises are true. We cannot say that for the first premise, so the
conclusion may not be true.

To conclude the explanation his father further treats a possibly suff icient condition
as a necessary condition. From the assumption that the sun rises when the air is hot
he infers that when it is not hot, the sun also does not rise, thereby Denying the Ante-
cedent (DA) of the first premise. This is also called an inverted modus tollens. This
inference is invalid. Hence, the conclusion may be false even when the premises are
all true.

P9  If the air is hot the sun rises * Hot(air) ⇒ Rises(sun) *
P11 In the evening the air cools down. not Hot(air)

DA
P10 In the evening the sun sets * not Rises(sun) *

Assuming he translates not hot air (P11) with cool air (P13) and a not rising sun (P10)
with a setting sun (P14), he rephrases this conclusion (invalidly) in the statement with
P13 and P14 as premises: if the air cools down the sun sets (P12), which given that the
air cools would validly imply that the sun sets if the statement were true:
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P12 If the air cools down the sun sets * Cools(air) ⇒ Sets(sun) *
P13 In the evening the air cools down. Cools(air)

AA
P14 In the evening the sun sets * Sets(sun) *

We can also interpret his whole explanation in yet another way. He could have as-
sumed that the premise: if the sun rises the air is hot, stated that the rising sun is a
necessary condition for hot air and hence infer that if the sun sets the air cools, via
contraposition. But then he Aff irms the Consequent (AC) of this proposition, also
called an inverted modus ponens, to infer that if the air cools, the sun sets:

P15 If the sun sets the air cools down * Sets(sun) ⇒ Cools(air) *
P13 In the evening the air cools down Cools(air)

AC
P14 In the evening the sun sets * Sets(sun) *

By no great surprise this is invalid since the antecedent is not a necessary condition
but a suff icient condition. In that case when the consequent of the first premise is
known to be true the antecedent could be true, but could possibly be false just as
well .

What can we conclude from this? Today, Calvin’s father’s explanation is gathered
to be wrong. But is this because his hypothesis is unscientific, or because many of his
inferences are fallacies? If we look at the beginning of modern science, three centu-
ries ago, then what would we expect?

The Inquisition
In the seventeenth century Galil eo Galil ei defended the Copernican heliocentric the-
ory. This theory put the sun at the center of the solar system, and explained that the
sun sets because the earth turns on it own axis and revolves around the sun. It also
explained the phases of Venus that Galil eo first observed with his self made tele-
scope.

Venus waxes and wanes as viewed from the earth, similar to the moon’s phases.
When Venus is full , we cannot see it because the sun is in the way. As Venus wanes
from the full phase, it also gets bigger because it is approaching us. When it is closest
to us, we cannot see it because no light is reflected towards us. This could be ex-
plained if it was assumed that both Venus and the Earth rotate around the sun. If you
put the earth in the center then you could only explain it when you assumed Venus to
rotate around the sun while Venus and the sun both rotate around the earth.

In 1616 Galil eo was formally warned by the church to stop this defense. The rea-
son for this censure was not that the claim was considered wrong, or that teaching so
undermined the Church. Rather, it was claimed that Galil eo’s proof for the theory
was not logically valid. Galil eo’s main argument depended on the fact that the theory
explained why the planet Venus shows phases. Yet, he could not prove this deduc-
tively. The argument ran as follows:
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If the planetary system is heliocentric, then Venus will show phases.
Venus shows phases.

Hence, the planetary system is heliocentric

So the argument was based on an aff irmation of the consequent, a fallacy well known
by the Aristotelian clergy. While Venus does indeed show phases, the planetary sys-
tem being heliocentric may not be the only condition under which that is true. The
clergy pointed out the flaw and Galil eo was ordered not to put forth this idea as
proved.

Pope Urban VIII , who just as Galil eo was a member of the Academy of Lynxes, a
scientific society formed in 1603, informally li fted these orders in 1633. There is evi-
dence that the Pope gave Galil eo the opportunity to neutrally compare the heliocen-
tric theory with the geocentric system of Ptolemy, and come up with a deductive
proof.

But in the book he then wrote he patronized the Pope, who was greatly offended.
As a result Galil eo was accused of disobeying the order of 1616 to stop his defense of
the Copernican system. Even though Galil eo could produce a letter that showed he
was merely warned instead of ordered, he was threatened by the Inquisition, shown
the “instruments” (of torture), and sentenced to house arrest for the rest of his li fe.
Hence, it was disobeying orders to stop using a fallacy that got him convicted by the
Inquisition, and not committing heresy, since technically the Copernican system was
never declared heretical (Gingerich, 1992). However, today science accepts Galil eo’s
explanation. But is this because his reasoning is scientific?

4.3 Induction

A typical scientific explanation can never deductively follow from what we already
know or have observed, because most scientific hypotheses include assumptions and
predictions about future or other not observed situations. It is logically always possi-
ble that those situations will be different.

In his defense of the Copernican system Galil eo not only needed to defend a sci-
entific theory, but also a manner of reasoning. Galil eo employed an inductive infer-
ence. The conclusion of an inductive inference can contain more or other information
than its premises, hence it is not deductively valid. Deductive inference preserves the
truth of its premises so as to encompass its conclusion, while an inductive inference
expands beyond them.

However, scientific reasoning is not void of deductive reasoning. Logicians con-
sider a sound explanation to be a deductive conclusion from a number of true hy-
potheses. The problem with scientific hypotheses is that you can never know for sure
whether they are true. The philosopher Karl Popper stressed that what you validly can
know about a hypothesis is that it is false. If a hypothesis claims that all particulars of
a type have a property, then only one particular of the type without that property will
validly imply that the hypothesis is incorrect.

At the beginning of this century, the philosopher Charles Sanders Peirce coined
the term ‘abductive inference’ to distinguish Galil eo’s inference from other kinds of
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inductive inference like generalization (GEN). With generalization you infer that if a
number of particulars of a type have a property, then all particulars of that type have
that property. So for example:

The fact that a number of particulars of type A have property C is observed;

Hence, there is a reason to suspect that all A have property C

According to Peirce the function of abduction is ampliative, to introduce new
ideas. A hypothesis suggested by abduction should contain predictions about other
properties or other types of particulars as well . In his later work Peirce (1958, 5.188)
put forward the following often quoted definition of abductive inference:

“The surprising fact, C, is observed;
But if A were true, C would be a matter of course.

Hence, there is a reason to suspect that A is true.”

Abductive inference is actually part and parcel of everyday common sense reasoning.
But it seems that it can lead to the wildest of explanations, as Calvin can attest. But
even though his father commits enough deductive fallacies to experience more of the
“ instruments” then just their sight, had he lived three centuries ago, his explanation is
not problematic just because of its inductive nature. Both Galil eo and Calvin’s father
seem to follow the same inference. But then what makes Galil eo’s inference differ
from that of Calvin’s father’s?

4.4 Abduction

How does Peirce’s definition of abduction compare to other kinds of inductive infer-
ences? Let us take a closer look at Peirce’s inference scheme and our examples. We
will address the similarities and differences. The examples are summarized in Table
4.1. The properties Hot and Rises are abbreviated to H and R respectively.

Inference Premise 1
(Observed C)

Premise 2
(If A where true C follows, if)

Conclusion
(A)

GEN H(sun) ⇒ R(air) ∅ ∀x H(sun)⇒R(x) *
DVS H(air) ⇒ R(air) sun part of air H(air) ⇒ R(sun) *
CAU R(sun) H(air) H(air) ⇒ R(sun) *
AA H(air) H(air) ⇒ R(sun) * R(sun) *
DC Not R(sun) H(air) ⇒ R(sun) * Not H(air) *
DA Not H(air) H(air) ⇒ R(sun) * Not R(sun) *
AC Cools(air) Sets(sun) ⇒ Cools(air) * Sets(sun) *
AC Phases(Venus) Center(sun)⇒ Phases(Venus) Center(sun) *

Table 4.1: Summary of examples of the discussed inference types
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For an inference to fit Peirce’s definition of abduction, Premise 1 should follow as
a matter of course if Premise 2 and the Conclusion are both assumed to be true. If we
compare the example inferences with this definition we notice that generalization
(GEN), division (DVS) and causality (CAU) fit the definition well . If the conclusion
and Premise 2 are true, then premise 1 is also true. If a generalization is true, then the
truth of a particular follows as a matter of course. In the division example Premise 1
follows based on premise 2 and the assumption in the conclusion that the property of
a whole is also a property of its parts. If the causal implication in a conclusion and
premise 2 would be true, premise 1 would follow by modus ponens. In sum, the in-
ferences GEN, CMP and CAU can be seen as special kinds of abduction, according
to Peirce’s definition.

The next two types in Table 4.1 do not fit the definition. Not remarkably these are
the deductively valid inferences aff irmation of the antecedent (AA) and denial of the
consequent (DC). These will of course not fit a definition of an abductive inference.
In abduction the conclusion is an explanation, in deduction the premises are. How-
ever, in the example Calvin’s father used these inference kinds incorrectly, because
he wrongly assumed the premises were true, to conclude the truth of the conclusion.
Denial of the antecedent (DA) fits the definition well . The implication in Premise 2:
if H(air) then R(sun) is logically equivalent to: if not R(sun) then not H(air). Not sur-
prisingly the aff irmation of the consequence (AC) most resembles the definition of
abduction. The observed fact C aff irms the consequent of A ⇒ C, where A is the
conclusion. Both the explanation of the sun set and the phases of Venus follow that
inference.

However, there is an important difference between the two. Premise 2, the impli-
cation if A then C, is true in the case of Galil eo but uncertain in the case of Calvin’s
father. The implications are actually of a different nature. One is itself a hypothesis
and the other a logical consequence. The former consists of a so called material im-
plication and the latter of a logical or semantic implication. Let us take a closer look
at the nature of implication and its role in Peirce’s definition.

Implications
A material implication is a conditional statement that connects two independent
statements. These statements may be either true or false depending on other condi-
tions. The material implication asserts that when the antecedent is true, the conse-
quent will also be true. Because of this property of the conditional statement it is ar-
gued that the material implication can represent a causal relation between two events
described by the antecedent and the consequent. However, the truth of the conditional
statement can already be settled by the status of only one of its constituents. The ma-
terial implication is by definition already true when the antecedent is false or the con-
sequent is true. Let us look at Table 4.2 to follow this.

Antecedent Consequent A → C
True True True
False False True
False True True
True False False

Table 4.2: Truth table of the material implication
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In Table 4.2 I summarize all possible truth value combinations of a material implica-
tion. The material implication is false only if the antecedent is true and the conse-
quent is false. The statement "if the air cools down the sun sets" is such a statement.
It states that it will not happen that the sun does not set while the air does cool down
(row 4). It still allows for the possibilit y that the sun sets even though the air does not
cool down (row 3).

Now let us look at Galil eo’s statement. If the planetary system is heliocentric, then
Venus will show phases. This implication differs in nature. The antecedent statement
logically implies the consequent statement, and many others. For instance it will also
imply under what conditions the sun will set. When you say that the antecedent is
true, you say that all it s consequences are true, by implication. Formally we say that
all models that make the propositions true that make up the antecedent of a semantic
implication, will also make the consequent true. The models of the antecedent con-
stitute a subset of the models of the consequent. As a notation we will , following tra-
dition, use A |= C for semantic implication, and A → C will denote material implica-
tion. For the language of predicate logic it has been proved that if C is semantically
implied by A, it can also be deduced from A, written as A |− C, and vice versa.

Another important difference between material and semantic implication is shown
by the set of the inferences that each allows. Given that C is true, it can be inferred
that A → C is true, but you cannot infer the truth of A. Yet given that C is true, it
cannot be inferred that A |= C is true, but you can say that A is confirmed. However,
this is only the case if A |= C is true. Even if you assume that A → C is true, but A |=
C is not, then C does not confirm A. If it is known that A |= C is true, you can (non
deductively) infer the truth of A if all it s consequences are confirmed.

Let us return to the definition of abduction. Apparently Peirce meant "if A were
true then C would be a matter of course" to be a semantic implication. Abduction
based on a semantic implication will i ntroduce a hypothesis that may have many
other implications. Hence the use of the term abduction: it forces alien statements
into the explanation.

A generalized material implication, such as ∀xy(A(x) → C(y)), may also entail
new predictions, but they are usually about the same properties, A and C, and the
same kind of objects, all x and y such that A(x) → C(y). The antecedent of a semantic
implication, such as A |= C may entail predictions about different properties and ob-
jects as well .

Galil eo’s inference was based on a semantic implication and Calvin’s father as-
sumed a material implication. But are abductions based on material implications un-
scientific? If that where so then we could not use laws to explain phenomena. The
material implication "if the atmosphere pressure drops the air will cool down" could
then not be used to explain why the weather cools down. Even Galil eo’s explanation
of the phases of Venus would run into trouble. His hypothesis entails many material
implications as possible consequences, e.g. (using abbreviations):

C: {position i of the sun and Earth → phase j of Venus}
A: { Center(sun)} |= C: {position i of the sun and Earth → phase j of Venus}

A: { Center(sun) *}
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To explain a particular phase of Venus an abduction could infer a particular position
of planets. That would not necessarily need a semantic implication to be scientifically
acceptable. A law could be formulated that relates the position of the sun and Earth to
the phases of Venus, that could explain a particular phase on the basis of a particular
position:

{C: phase i of Venus}
{A: position x of the sun and Earth → C: phase y of Venus}

{A: position j of the sun and Earth *}

In many scientific areas not much more is known than material laws. So it may be
desirable for Peirce to infer a rich logical hypothesis, but a material implication is not
unscientific by its nature.

Definitions
The main difference between affirming the consequence of a material implication and
affirming the consequence of a semantic implication is a difference in category. The
former is part of the latter. Let us call the former kind material abduction and the
latter kind semantic abduction:

C C
A → C A |= C
             material abduction             semantic abduction
A A

To avoid confusion between the two I will adopt the following notation. I will use the
propositions C, A → C, and A, etc. to talk about statements that a semantic abduction
reasons about. The premises and conclusion of a semantic abduction are sets that
contain these statements. The first will be a set called P, containing a proposition
about the world; the second premise a set H containing the hypothesis statement(s)
that together with background assumptions B implies P. I can now define the differ-
ent kinds of abduction as follows:

Definition 1 Semantic abduction. A semantic abduction is an inference that affirms
the consequent of a semantic implication (ACS). Given the antecedent B ∪ H that
semantically implies P, the affirmation of the consequent P infers hypothesis H:

Proposition P
Background B ∪ Hypothesis H |= Proposition P

ACS
Hypothesis H: {*}

In this scheme the set containing only a star {*} denotes a set of propositions with
unknown truth value. A semantic abduction can encompass different kinds of induc-
tive inferences. Affirming the consequent of a material implication is just one special
case.



4.5. Formation 51

Definition 2 Material abduction. A material abduction is an inference that aff irms
the consequent of a material implication (AC), as a special case of a semantic abduc-
tion.

Proposition P: { C} 
Background B: { A → C} ∪ Hypothesis H: { A} |= P: { C}

ACS: { AC}
Hypothesis H: { A*}

The material implication A → C could either be part of the hypothesis or belong to
the established background assumptions B which should then be part of the antece-
dent of the semantic implication. Aff irming the consequent of a material implication
(AC) is the typical example of a semantic abduction. But the other discussed induc-
tive inferences can be an instance as well , i.e.: denial of the antecedent (DA); divi-
sion, attributing properties of wholes to parts (CMP); inferring causality between co-
occurring events (CAU); and generalization from particulars to groups (GEN); see
Table 4.3.

Explanation
(ACS)

Proposition
P

Background
B

Hypothesis
H

AC C(y) A(x) → C(y) A(x) *
DA Not A(x) A(x) → C(y) Not C(y) *
DVS A(p) → C(p) p part of w A(p) → C(w) *
CAU C(y) A(x) A(x) → C(y) *
GEN A(i2) → C(i2) A(i1) → C(i1) ∀x A(x) → C(x) *

Table 4.3: Some examples of explanation as semantic abduction (ACS):
given B ∪ H |= P, proposition P aff irms the consequent to infer H.

But if inferences with material and semantic implications are part and parcel of ab-
ductive reasoning then we do not have an reason why the hypotheses of Calvin’s fa-
ther and Galil eo differ. When is an abductive inference a scientific explanation?

4.5 Formation

There are in fact two very distinct ways to understand the terms "abductive inference"
and "scientific explanation". In the first way the term is a verb and in the second way
it is a noun. In the former sense it refers to the process of inferring and explaining. In
the latter sense it refers to the product of that process. Abductive inference as defined
by Peirce is first of all a process of inference. You assume two premises, and the con-
clusion of the inference is an explanation that could be correct.

But how do you know what specific hypothesis to infer? You could logically infer
many different possible hypotheses that all would imply a surprising observation.
(Why does the furnace not work? Is the switch broken? Is the gas pipe fractured? Oh
wait a minute, did I pay my bill ?) And on the other hand, coming up with only a sin-
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gle explanation that would non-trivially imply all our observations is no trivial exer-
cise. Peirce’s abductive inference scheme tells us nothing about what specific hy-
pothesis to infer. He said: "The abductive suggestion comes to us as a flash" (1958,
5.181). His scheme only tells us under what condition to infer a statement as a hy-
pothesis.

In the 1930’s the philosopher Hans Reichenbach (1938) suggested that logicians
should only address the problem of the nature of scientific theories and of their
evaluation. The search and formation of new theories was taken to be an erratic and
non-rational process that was not open nor relevant for a logical inquiry of knowl-
edge. He suggested a distinction between a context of discovery and a context of jus-
tification in the study of scientific knowledge. This served as a demarcation of the
problems relevant for epistemology. The study of the formation and discovery of hy-
potheses should be a problem for psychology. So according to Reichenbach’s claim,
logic should be able to evaluate a scientific explanation, regardless of how a hypothe-
sis was inductively inferred or conceived. A good scientific explanation should sat-
isfy certain logical conditions. One of those we already encountered: an explanation
should logically imply the surprising observation. By its definition we already are
sure that an abductive conclusion satisfies that condition. But both the explanation
given by Galil eo and that given by Calvin’s father do so. So the question remains:
what other conditions make an explanation scientific?

4.6 Explanation

Philosophers of science have long thought about the nature of a good scientific hy-
pothesis. They set up certain conditions that would mark a valid and potentially suc-
cessful explanation. We saw that any proper explanation should deduce a proposition
from the explaining assumption. This is, by definition, possible if H combined with
background assumptions B semantically implies P.

The set P may contain particular propositions, such as the proposition that certain
objects have certain properties at a certain time. It can also contain general proposi-
tions, such as the proposition that all objects of a certain kind have a certain property,
or that some object will have a certain property at a certain time. The background set
B and hypothesis set H may also contain both particular and general propositions.
General propositions in H and B can imply another general proposition in P. To-
gether with an assumption about a particular they can imply particular propositions in
P. In empirical sciences explanations are sought for particular or general facts about
the world that are observed or assumed to be true. We will use the set O to refer to
propositions about the world that are regarded to be certain because they are ob-
served, given some criterion of proper observation.

In philosophy of science several conditions for a proper scientific explanation are
proposed (cf. Aliseda-LLera, 1997, Flach, 1995). We will i ntroduce some of them.
There are both conditions for the explaining hypothesis and for the explained propo-
sition. Given background assumptions B, proposition P, observations O; hypothesis
H properly explains P if:
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Conditions for the explaining hypothesis H:

HC1. Implication: B ∪ H |= P
HC2. Consistency: H is compatible with B
HC3. Non-triviality: H |≠ P
HC4. Simplicity: H is minimal among the H’s

were B ∪ H’ |= P

Conditions for a proposition P that needs to be explained:

PC1. Observation: P is assumed to be true
PC2. Novelty: B |≠ P
PC3. Anomaly: B |= not P
PC4. Indifference: B |≠ P and B |≠  not P

If PC1 and any of the conditions PC2 to PC4 hold for a proposition, a hypothesis is
required for which all conditions HC1 to HC4 hold. These are considered to be ideal
conditions, proposed and defended by different logicians. Let us go through them and
at the same time see whether the heliocentric hypothesis of Galil eo and the hot air
hypothesis of Calvin’s father satisfy them:

Heliocentric hypothesis:  H: { center(sun)} |= {phases(Venus)}
Hot air hypothesis:  H: { air cools → sun sets}

We already encountered the first condition HC1. It dictates that an explanation of P
consists in a deductive inference of P from B and hypothesis H. The philosopher Carl
Hempel (1965) calls this hypothetical-deductive inference. By this condition an ex-
planation consists of either a denial of the consequent of a hypothesis (DCH) or an
aff irmation of the antecedent of a hypothesis (AAH):

Background B: { A} Background B: { not C}
Hypothesis H: { A → C} Hypothesis H: { A → C}

 AAH  DCH
Proposition P: { C} Proposition P: {not A}

In this way if B and H are true then they explain P. If P is true then it confirms H as-
suming B. Both the heliocentric and the hot air hypotheses comply as we saw earlier
in our discussion in Section 4.4.

The second condition (HC2) dictates that implications of B ∪ H should not con-
tradict each other. That means that in case of contradiction either H or B should be
substituted by a different set of propositions. The implication of the hot air hypothe-
sis appears consistent with our other assumptions. However, the Heliocentric hy-
pothesis contradicts the assumptions of Ptolemy, which were part of the background
knowledge that, in Galil eo’s time, was assumed to be true. Condition HC3 is meant to
prevent the use of ad hoc hypotheses. It dictates that an observed proposition should
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not solely follow from the hypothesis. It should at least depend on some other as-
sumptions that are not purely hypothetical. Both hypotheses comply. The fourth con-
dition makes some requirements about the complexity of the hypothesis, given some
interpretation of “minimal” . Both hypotheses do not seem unnecessarily complex.

In the next part of this thesis when we look at scientific practice, we will see that
usually no employed hypothesis complies with all four conditions. It is usually ar-
gued that this fact does not mean that those hypotheses are unscientific or that the
conditions are wrong. It is rather argued that the conditions define an ideal to be ap-
proached by science, given some justification for the conditions.

Now let us turn to the conditions for the explained proposition. Condition PC1

states the assumption that a hypothesis in empirical science explains observations. If
a consequence of a hypothesis is not observed, or on some other grounds certain to be
true, then there is nothing to explain. While the four conditions for a hypothesis are
each of them desirable, conditions PC2, PC3 and PC4 are disjunctive; only one needs
to apply. PC2 states that a proposition only needs an explanation by a hypothesis H if
it is not implied by what we already assume. PC3 states that the observed proposition
is in contradiction with the implications of our earlier assumptions. Or the back-
ground could be totally indifferent about it, as stated by PC4.

The phases of Venus were a real anomaly (PC3) for the assumption of Ptolemy. So
by these conditions it required an explanation, which was properly provided by the
heliocentric hypothesis. Yet, together with the assumption that the earth evolves
around its axis, the rising of the sun is already explained by that hypothesis. It did not
need another explanation. But logically there are always more explanations possible.
So again, what makes the former a better explanation than the latter?

4.7 Prediction

Karl Popper contended that an explanation is no scientific explanation if it cannot be
tested. He maintained that, before anything else, scientific reasoning is the systematic
search for errors in our assumptions. Peirce also argued that therefore a proper expla-
nation should at least predict propositions that are either novel, anomalous, or indif-
ferent with respect to current (theoretical) assumptions. It should predict a P that sat-
isfies conditions PC2, PC3, or PC4, but not PC1. Many wrong hypotheses may explain
given observations, but true hypotheses will always correctly predict a new unob-
served fact.

Logically a prediction of a proposition can be considered to be the same as an ex-
planation, it should deductively follow from the hypothesis and background assump-
tions. But just as in the case of the definition of abduction we can make a distinction
between aff irming the antecedent of a material implication (AAH) or of a semantic
implication (AAS). The former can again be part of the latter:

Definition 3 Semantic prediction. A semantic prediction is an inference that aff irms
the antecedent of a semantic implication (AAS). Given the antecedent B ∪ H that
semantically implies P, the aff irmation of the antecedent infers prediction P. Aff irm-
ing the antecedent of an hypothetical material implication (AAH) is the prototypical
example:
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Background B: {A}
Hypothesis H: {A → C}
B: {A} ∪ H: {A → C} |= P: {C}

 AAS: {AAH}
Proposition P: {C}

We can consider the affirmation of the antecedent of a semantic implication as the
general definition of prediction. Affirming the antecedent of a hypothetical material
implication (AAH) is the prototypical AAS that provides the best bait for catching
the truth value of an hypotheses by testing its prediction in the pond of nature. It is
the ace of hypothesis testing. But others can be possible as well. A complete typology
would be:

AAH: affirming the antecedent of a hypothesis
DCH: denying the consequent of a hypothesis
DAH: denying the antecedent of a hypothesis
ACH: affirming the consequent of a hypothesis

HAA: hypothetically affirming the antecedent of a background assumption
HDC: hypothetically denying the consequent of a background assumption
HDA: hypothetically denying the antecedent of a background assumption
HAC: hypothetically affirming the consequent of a background assumption

The value of a prediction for a hypothesis can be measured by the information we
gain if we find out that the prediction comes true. We can call this its strength. In
case of AAH a background assumption affirms the antecedent of a hypothetical im-
plication. One infers the strongest prediction, its truth value either confirms or refutes
a hypothesis. It is also possible to hypothetically affirm the antecedent of a hypothesis
in the background assumptions (HAA). This is weaker because if the prediction P is
observed it will not inform you about the truth of the hypothesis. But if not P is true it
will refute the hypothesis, see Table 4.4 for all types.

Prediction
(AAS)

Background
B

Hypothesis
H

Prediction
P

If P is true
then H is?

If P is false
then H is?

AAH A A → C C Confirmed Refuted
ACH C A → C A * Confirmed Confirmed
DCH Not C A → C Not A Confirmed ! Refuted
DAH Not A A → C Not C * Confirmed ! Confirmed

HAA A → C A C ? Refuted
HAC A → C C A * Confirmed ?
HDC A → C Not C Not A ? Refuted
HDA A → C Not A Not C * Confirmed ?

Table 4.4: Types of prediction (AAS) of different strength: Given B ∪ H |= P, back-
ground B affirms the antecedent of hypothesis H to infer prediction P.
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So the route from theory to experiment is determined logically by an informative pre-
diction that can be tested. The strongest test, the one that provides the most informa-
tion, is always preferable. But there can be pragmatic problems to test it. The first
problem is whether it is possible to observe the predicted property of a phenomenon.
If not, the prediction is useless as an empirical test for the hypothesis. Most effort in
the defense of the heliocentric hypothesis for Galil eo was put in constructing a strong
enough telescope to observe the predicted phases of Venus.

Some predictions state a possibilit y that will not naturally occur. But can you cre-
ate an intervention such that the initial conditions for the possibilit y are forced? This
is not always possible. The latest technology often makes observations and interven-
tions possible that lay beyond our reach or sight without it. This makes technology an
epistemological factor. Other predictions can easily be observed but will never occur
according to the hypothesis. If they do not, how will you know they never will ? Here
lies the main problem of the hot air hypothesis.

P9  If the air is hot the sun rises * Hot(air) ⇒ Rises(sun) *

This hypothesis logically implies that either:

P16 The air cools and the sun sets Cools(air) & Sets(sun)
P17 The air is hot and the sun rises Hot(air) & Rises(sun)
P18 The air cools and the sun rises Cools(air) & Rises(sun)

This is consistent with all our observations. But it also implies that it will never be so
that the antecedent is true and the consequent is false, i.e.:

P19 The air is hot and the sun sets Hot(air) & Sets(sun)

This is its only test opportunity, that is unobserved so far. So, the only way to test the
hypothesis is to create a situation where the air is kept hot by an intervention, and
wait for the sun not to set. But how can we do that? The hypothesis is testable in the-
ory, but not in practice. But does that make it an unscientific hypothesis?

4.8 Comparison

According to Theo Kuipers (Kuipers 2000) the question about the rationality of sci-
entific reasoning is not only what it means to have a good scientific explanation, but
also what it takes to have a better one. In this approach it is evaluated how one expla-
nation compares to another. The best hypothesis would imply all true propositions
about a domain. But acknowledging that this is the ideal goal, the value of an hy-
pothesis is measured by how far it might be away from that goal in comparison with
another hypothesis. A hypothesis that includes more true propositions then a com-
petitor and has less counterexamples might be closer to the truth. This intuition is
formalized in a rule of success. This inference rule is not deductive in nature, but ab-
ductive. If the more successful theory would be closer to the truth that would explain
why it is more successful. In this light Calvin’s father’s explanation is not so much
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unscientific, but just not as good as Galil eo’s, because next to explaining the phases
of Venus, it also explains other phenomena such as stellar parallax. Yet there are
more conditions formulated that characterize a good scientific explanation. In Chap-
ter 6 I discuss how one of them, the simplicity of a theory, is related to the probabilit y
of its predictions.

4.9 Conclusion

In this chapter I asked the general question: what is the rational use of theory and ex-
periment in the process of scientific discovery, as proposed in the study of logic?
More specifically I looked at logical prescriptions for scientific theories and scientific
reasoning. To address these topics I discussed an ill ustrated example that contains a
series of inferences that are marked as fallacies from the viewpoint of logic and ar-
gumentation. Yet I argued that these inferences are common in science and part of
abductive inference as defined by C.S. Peirce. I further made a category distinction
between semantic abduction and material abduction. I argued that the latter, as well
as other types of inductive inference, constitute a special type of the former under this
definition.

I first discussed the validity of deduction, induction, and more specifically abduc-
tion in scientific reasoning. Scientific reasoning includes inferences about hypotheses
of which we do not or cannot know whether they are true. What logic tells us most
importantly is what a valid inference looks like. It defines under what conditions we
can safely accept the conclusion of an argument. In the case of deduction we know
that the conclusion is true when the premises are true. In the case of abduction or ex-
planation we can know that the premises are true, but we have no guarantee for the
conclusion. What valid reasoning can do is check whether the conclusion of an infer-
ence satisfies certain conditions. For explanation it can check whether a hypothesis is
e.g. successful, non-trivial or consistent. But these are ideal conditions that still do
not determine its truth. Yet they may be functional for establishing its similarity to
the truth. I argued that prediction is not just deduction. A good prediction with the
aim to test a hypothesis should satisfy other conditions as well .

In sum, what is rationality in scientific discovery? According to logic scientific
discovery is a process of observing, describing, explaining, predicting and interven-
ing in natural phenomena. A phenomenon is empirically discovered by observing it
in the world. An explanation of that phenomenon may predict the existence of other
phenomena that could be observed or created by a specific intervention in an experi-
ment to test that prediction. As an answer the specific questions of this thesis from
Section 1.3, we may not that according to studies in logic the following holds:

Question 1 What is the structure of a scientific theory? Theories are logically repre-
sented as a set of hypothetical propositions H that together with propositions de-
scribing background assumptions B semantically imply the propositional facts P they
explain, i.e. B ∪ H |= P.

Question 2 What is the process of scientific reasoning? The process of reasoning is
different for the explanation and prediction of facts, see Table 4.5.
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Problem Premise Background Inference Conclusion Properties
Explanation P B Abduction H: {*} B ∪ H: {*} |= P

H is minimal
Prediction H B Deduction P: {*} B ∪ H |= P: {*}

P is informative

Table 4.5: Short overview of the inference types discussed in this chapter

Explanation of a phenomenon involves the abduction of a simple hypothesis from
which the properties of an observed instance of that phenomenon can de deduced.
Induction, as conceived as the generalization from the property of one instance of a
category to all instances, is in this sense a special kind of abduction. Prediction in-
volves the deduction of informative consequences from a given hypothesis.

Question 3 What is the route between theory and experiment? The route between
theory and experiment typically involves six steps (explanation follows):

1. Observation of a phenomenon P: observe pm and pn

2. Description of P: P: {A(pm) → C(pn)}
3. Explanation of p by a new hypothesis: B ∪ H: {*} |= P
4. Prediction by a hypothesis: B ∪ H |= P: {A(pi) → C(pj) *}
5. Intervention in an experiment: create A(pi)
6. Observation in an experiment: observe pj

An observation of a phenomenon p in step 1. consists in observing natural objects
such as e.g. pm and pn. The description of p in step 2. consist in categorizing the
properties of the phenomenon, e.g. in A and C, and making a statement about those
properties, e.g. A → C. After finding an explanation, in step 3., that implies that
statement, a prediction could be deduced in step 4. This prediction can include that if
an object pi has property A, then object pj will have property C. In step 5. the situa-
tion A(pi) can be forced by an intervening experiment. The last step, observing the
consequence of the intervention, closes the circle by being of the same kind as the
first step. The experimental discovery of the truth value of the prediction either re-
futes or confirms the hypothesis (or a background assumption). A more advanced
logical approach can evaluate an hypothesis by comparing its success with that of
competing hypotheses.

In the next chapter I will discuss rationality in the process of scientific discovery
in terms of the study of cognition. In this approach rationality can be understood as
part of learning to solve problems heuristically.

*  *  *  *



59

Chapter 5 

Cognition

5.1 Introduction

In cognitive science, rationality in scientific discovery itself is being studied as an
interesting cognitive phenomenon. One popular view is taking scientific discovery as
just a form of human problem solving (Langley et al. 1987). One of the most success-
ful theories about human problem solving is developed by John R. Anderson (Ander-
son 1993, Anderson & Lebiere 1998). It is called ACT-R, meaning Adaptive Control
of Thought – Rational. The ACT-R theory deals with the cognitive mechanisms of
learning and rational behavior. It aims to explain how people make an assumption or
take an action to observe or change something in the world, in such a way that the
probabilit y to achieve a specific goal is high and the cost of time to achieve it is low.
ACT-R is implemented in a computer program to test the performance of specific
models of problem solving strategies.

The general question of this chapter is: what is rationality in scientific discovery,
according to the psychological study of cognition? As a general model of human
cognitive abiliti es, ACT-R should also be able to model specific cognitive processes
involved in scientific problem solving. In this chapter I investigate how it could do
that. The particular question that is answered in this chapter is: how can one under-
stand and model scientific discovery with ACT-R?

I will first, in section 5.2, introduce a distinction between primary and secondary
epistemology. Analogously to these types I make a distinction between primary (or
native) and secondary (or acquired) processes of cognition. I will use this distinction
to discuss how beliefs, goals and search methods are created, selected and evaluated
according to the ACT-R theory in section 5.3 to 5.5. In section 5.6, I discuss how sci-
entific discovery, as modeled in Simon and Langley’s BACON.1 (Langley et al 1987)
and Thagard’s PI (Thagard 1988) can both be modeled in ACT-R as similar forms of
abductive inference. I demonstrate and discuss how ACT-R’s primary mechanisms
nicely subsume PI’s hypothesis evaluation process. Then, I discuss BACON.1’s
search methods and how they can be learned by analogy from examples. In section
5.7 I discuss the nature of theory and method in the different models. 5.8 discusses
the difference between the logical and psychological views on explanation and pre-
diction. I end this chapter in section 5.9 with a discussion and general conclusion,
answering the specific questions from section 1.3.
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5.2 Primary and secondary

The claim that philosophy of science can learn something from cognitive psychology
is endorsed by the philosopher Alvin Goldman. He argues that epistemology, the
study of justified belief, should take explicit account of empirical studies of cognitive
processes (Goldman 1986). Among the many factors that influence the forming of
belief he distinguishes basic cognitive processes from acquired belief forming meth-
ods.

The first category, basic processes, include processes of perception, memory, at-
tention, concept formation, problem solving, learning and reasoning. Goldman argues
that these natural or native processes are suitable objects for normative epistemic
evaluation, and comprise the domain of primary epistemology. Secondary epistemol-
ogy comprises the normative evaluation of acquired belief forming methods li ke al-
gorithms, techniques or procedures. A method can either be a general, topic neutral,
or a task specific procedure for arriving at beliefs.

In forming a belief, basic processes and methods are intrinsically intertwined.
When someone needs to solve a problem and several methods are available, the basic
processes determine which method is applied, and also which new methods are cre-
ated or added. So evaluating a resulting new belief depends on the reliabilit y of both
the basic processes and the specific applied method.

So in short, primary epistemology is concerned with the evaluation of basic, i.e.
native or natural, cognitive processes, and secondary epistemology is concerned with
the correctness of acquired belief forming methods. To explain how such processes
and methods are explicated in the ACT-R theory, I will first use Goldman’s distinc-
tion to differentiate between two general types of cognition, i.e. primary and secon-
dary cognition.

By primary cognition I mean native or basic cognitive processes and structures,
whereas by secondary cognition I mean acquired cognitive processes and structures.
In this way we can also distinguish acquired structures, li ke beliefs and goals, from
basic structures, li ke the memory activation values used by basic or primary cognitive
processes in ACT-R.

5.3 Declarations and procedures

Anderson’s ACT-R explains human (problem solving) behavior as the result of act-
ing according to two types of knowledge: declarative and procedural knowledge (An-
derson 1993). Declarative knowledge consists of declarations of beliefs and goals,
and resides in a person’s declarative memory. Procedural knowledge consists of pro-
cedures that can create and modify a persons beliefs and goals. It contains our cogni-
tive skill s, or our know how. In ACT-R declarative knowledge is represented as a
collection of memory structures called chunks. A chunk is an abstract representation
of a belief or goal structure. Its basic elements consists of a li st with slots and slot
values. For example:
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(Johannes_Kepler
ISA person
BORN "27 December 1571"
PROFESSION scholar
ACHIEVED "discovery laws of planetary motion"
FEARED-MOST "invasion by the Turks"
ETC ...)

The ISA (‘ is a’) slot value represents the type of the chunk, and can be seen as a con-
cept type name. Every concept type has the same slot-names, or concept attributes.
So in our example, a person is something with a date of birth, a profession, etc. A slot
value can in its turn also be a chunk. In this way declarative knowledge is structured
in a network of memory chunks. In our example:

(scholar
ISA profession
ACTIVITY research
ETC ...)

Procedural knowledge, or know how, is represented by production rules, or produc-
tions for short. Such a rule consists of a set of conditions and actions. The conditions,
or left hand side (LHS), of a production can match with memory chunks which sat-
isfy given constraints. When a matching succeeds, certain actions can be performed
which are specified in the action, or right hand side (RHS), of a production. For ex-
ample:

(SUBTRACT
=goal>

ISA subtract
VAR1 =x
VAR2 =y
ANSWER nil

=addition-fact>
ISA addition-fact
ADDEND1 =y
ADDEND2 =z
SUM =x

==>
=goal>

ANSWER =z)

This production uses declarative knowledge of an addition fact to find the answer for
a subtraction problem. A string with an ‘=’ sign is a variable that is bound to a value
by matching a chunk. The LHS, before the arrow, matches against any goal of which
no answer is known and a fact (an addition fact in the example) that satisfies the val-
ues =x and =y of the goal slots. In the RHS, after the arrow, the found value =z of the
addition fact is added to the ANSWER slot of the subtract goal.

In summary, this is what ACT-R poses that human problem solving is all about:
matching productions (skill s) to memory chunks (beliefs and desires). We can say
that the chunks and productions themselves, constitute secondary cognition. A mem-
ory chunk is an acquired structure, a production is an acquired process. However, the
processes that ACT-R really is about are the (native) mechanisms about how and
what memory chunks and productions are used in problem solving.
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In human problem solving often several (possibly mutually inconsistent) belief
chunks can match a production’s LHS. And for a given problem goal more than one
production may apply. The ways the cognitive mechanism eff iciently evaluate alter-
native chunks and productions constitute the main aspects of primary cognition.

5.4 Structures and processes

In Table 5.1, I summarize the main cognitive mechanisms according to the ACT-R
theory, explicating their primary processes and structures. In the process of problem
solving, (secondary) knowledge, containing of chunks and productions, is created,
selected and evaluated by (primary) learning mechanisms. (This section discusses the
ACT-R architecture up to version 3, primarily based on Anderson (1993).)

Cognitive mechanisms Primary processes Primary structures
Creation of chunks by:
Concept-formation (Specifying chunk types) (Basic types?)
Perception Specifying (new) chunks (Constraints?)
Productions (RHS) Specifying RHS chunks -
Selection of chunks by:
Productions (LHS) Matching LHS chunks -
Goal focus Goal stack control -
Activation Preferring high Ai=Bi+SjWjSji Value Ai

Base-level activation Computing & learning Bi Value Bi
Salience strength of j to I Computing & learning Sji Value Sji
Association of i with j Computing Wj Value Wj

Evaluation of chunks by:
Activation Preferring highest Ai Value Ai
Creation of productions by:
Analogy Generalizing example chunks Special slots
Selection of productions by:
Goal focus Matching LHS to goal focus -
Chunks Matching LHS to chunks -
Matching time (latency) Preferring low Tp = Sie– (Ai+ Sp) Value Tp

LHS chunks activation Computing & learning Ai Value Ai
Strength of production Computing & learning Sp Value Sp

Eval. of productions by:
Expected gain Preferring high value E = PG – C Value E
Probabilit y of success Computing P = qr Value P

Prob. of intended effect Computing & learning q Value q
Prob. of suc. after firing Computing & learning r Value r

Value of the goal Specifying value G Value G
Cost of production Computing C = a + b Value C
Cost of f iring production Computing & learning a Value a
Cost of actions after firing Computing & learning b Value b

Table 5.1: Primary aspects of ACT-R’s cognitive mechanisms
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Table 5.1 summarizes the primary aspects of ACT-R’s cognitive mechanisms (ver-
sion 2.0). In the first column I li st different kinds of primary cognitive mechanisms.
These essentially control the creation, modification, selection and evaluation of sec-
ondary cognitive structures (memory chunks) and processes (productions). The pri-
mary cognitive mechanisms consist of primary processes (column 2), guided by, and
modifying primary structures (column 3). I will discuss them briefly in the following
subsections.

Creation
In the ACT-R theory, memory is ordered by types of memory chunks. A concept like
‘person’ in the example above, is supposed to have a given template of attributes.
Every instantiation of a concept shares the same attribute slot names, but differs in
their values. If you want to add something to memory, a concept type is necessary.
But how do concepts come about in ACT-R?

In any cognitive creation or modification process we can make a distinction be-
tween the process that actually makes the creation or modification and that what is
created or modified. In connectionist theories of cognition we often see that both are
the same, that the concept creation process ‘decides’ on the concept types ‘on the
run’ . In ACT-R there is no primary process specified that creates types, and the the-
ory is silent about what types there should be. The modeler has to define them up
front. Chunk types can also not be created or changed by learned productions, while
chunk type instantiations can. So it is not clear whether we can consider concept
types as primary or secondary structures, and if there are any basic constraints, or
even basic or native types (li ke Jerry Fodor suggests).

The process of perception can add new chunks to memory. Again we can say that
in ACT-R the process of adding them is a primary process. Yet how perception is
constrained by concept types, or guided by problem solving is not defined in ACT-R,
but in the perceptual/motor extension of the theory ACT-R/PM. I will not go into this
extension here (see Anderson & Lebiere 1998).

Finally productions can add and modify memory chunks. That is what ACT-R is
(mostly) all about, how and which productions modify and add chunks to memory.
Once a chunk is added it will never be deleted. Its worst fate is never to be recalled.
How, and what chunks are recalled is governed by processes of chunk selection. Pro-
ductions themselves, as representations of learned skill s, can only be created and
added by a primary process of analogy. To connect actions to conditions, ACT-R
starts out with a declaration of a problem example and its solution. When another
problem of the same type is encountered, analogy will generalize a solution strategy
from the known example. How that process works is discussed in the next section.

Selection
In a process of problem solving the selection of relevant chunks and productions is
constrained in several ways. The main guiding mechanism of problem solving in
ACT-R is goal focus. Goal focus is a kind of pointer to a chunk saying, “ this chunk
represents the goal I want to achieve”, which in ACT-R means “ that is the chunk a
production should match with” . ACT-R does not say how goal focus is initially
specified. How a person is motivated to desire the accomplishment of a goal, how-
ever, is determined rationally in ACT-R. After setting the first goal, several primary
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and secondary processes influence how to achieve that particular goal by specifying
and focusing on subgoals. The action, or right hand side (RHS) of a production can
shift focus to another goal, which is implemented by a push of a new goal on stack.
When a production has achieved the new goal, it can pop it from the stack, thereby
changing focus to the next goal below it on the stack.
When an initial goal is set, ACT-R first selects a set of potential productions that can
match with it. For a production to match, the given goal must be the first part of the
production’s condition or left hand side (LHS). An LHS usually contains other
chunks which should match as well , given specified constraints, and need to be re-
trieved from memory.

ACT-R also models latency, which is the time it takes to match a production to
memory and perform the action. How long that takes depends on the activation of the
chunks needed. The latencies in the model should reflect the latencies in reaction
time of subjects, measured in psychological experiments.

Activation is a basic property of every chunk. A chunk’s activation value is the re-
sult of its prior base level activation plus the contribution of chunks that are part of
the current goal context. This value increases with use. A primary learning process
increases the association between two chunks every time they are both needed to
solve a problem. According to Anderson, a chunk’s activation denotes its posterior
(logarithmic) odds that it will be needed in a given context, and the learning process
is supposed to give the best estimate of that chance. When a chunk is not used its ac-
tivation decays logarithmically. When it drops below a certain threshold, it can no
longer be retrieved in the current context. Another context might however contain the
right cues to boost the activation above the threshold again, re-enabling retrieval.
Next to chunk activation, a production’s strength also controls production selection.
A production’s strength increases after use, and is learned accordingly. Again its
strength denotes its (logarithmic) odds of being needed.

So in sum, when focus is set to a goal, primary processes in ACT-R start to select
productions that can match with it. A set of alternatives is gradually selected, de-
pending on the activation of chunks in the productions’ LHS, and the strength of the
productions.

Evaluation
When several chunks can match a production’s LHS, the chunks with the highest ac-
tivation will be used. However, that is not the case for productions. Next to the time
it takes to retrieve relevant productions, other primary evaluation processes contrib-
ute to determine what production will determine the next action.

During selection, potential productions are evaluated simultaneously by a primary
process of rational analysis. This process diagnoses whether a given production is
worth it to be fired. In order to do so it takes three estimations into account: the prob-
abilit y the production will be successful (P = qr); the value of the goal that is desired
(G); and the cost of f iring that production (C = a + b). A production’s probabilit y of
success is a product of the probabilit y of its intended effect (q) and the probabilit y of
achieving the goal after having achieved intended effort (r). The cost of a production
is the result of adding the cost of the cognitive effort to fire the production (a) with
the cost of actions needed to reach the goal after firing the production (b).
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For example, if your goal is to lessen your thirst, and you are in front of a coffee
machine, a production may be evaluated that urges to throw a coin in the machine to
get a cup of coffee. Now q is the estimation that the machine will i ndeed return a cup,
and r is the chance that only one cup will quench your thirst. The quantity a denotes
the effort of putting in a coin, while b stands for the effort of emptying the cup. The
quantities q and a can be estimated by repeated applications of the production. For
example, if the machine is old and failed a number of times in the past, q will be low.

The quantities b and r are more diff icult to estimate because they may refer to yet
unknown actions. Anderson’s solution is to base their estimates on how much the
state achieved by the production differs from the desired goal. If the action of putting
in a coin fails to provide you with a coffee, it is less likely that you will quench your
thirst (r’ ) and more effort will be needed to get a drink (b’ ). And in general the more
effort already spent, the less likely you will achieve your goal at all , so the lower the
probabilit y (r’ ).

The production with the highest estimated gain E (= PG-C) of the selected pro-
ductions is generally preferred. In this way when the value of a goal or the probabilit y
of its success is high, the cost of a production plays a less important role. When you
know the coffee machine often fails and is situated on another floor of the building,
the cost of walking to it may not be worth one’s while. But when you are really
thirsty the cost loses out to the value of the goal. The best production rule given its
PG-C is not always selected, but it has the highest chance of being fired.

When a production finally fires, its RHS or action side will be executed, changing
beliefs or goals, or initiating hand an eye movement, li ke looking for the slit on the
coffee machine and putting a coin in it. After firing, a new (sub)goal may be set by
the production or from the goal stack, and the process of selecting, evaluating and
firing a production starts all over. ACT-R stops when the initial goal is achieved and
popped from the goal stack.

5.5 BACON and PI

In this section I discuss two computational models of scientific discovery, and how
the structures and processes of these models can be modeled in ACT-R. Typical sci-
entific problems are searching and evaluating descriptions and explanations for inter-
esting observations. Herbert Simon and Paul Thagard proposed different explanations
about how scientists (could) solve those tasks. They both modeled their theory in
computer programs, respectively called BACON and PI.

The first of the BACON programs models the search for simple quantitative laws
that describe the numerical data of observations, li ke Kepler’s third law of planetary
motion and Boyle’s gas law. PI searches and evaluates qualitative explanations, li ke
the explanation of the propagation of sound from its being a wave.

In PI, new hypotheses are searched and evaluated through a primary process of
abduction and inference to the best explanation (IBE). In this section I will argue that
abduction is better thought of as a secondary acquired process in ACT-R, generalized
from examples by analogy, while IBE is subsumed by ACT-R’s primary processes. I
will further demonstrate that the heuristic search method for laws as implemented in
BACON.1 can also be learned from examples.
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Simple abduction in PI
Paul Thagard’s theory of cognitive inductive processes, modeled in PI (processes of
induction), includes several forms of abduction. I will consider its simplest form.
Abduction, as discussed in Chapter 4, is a form of inductive inference. It is inductive
in the sense that the truth of the conclusion of the abductive inference does not follow
from the truth of the premises. As stated in Chapter 4, Peirce defined abduction as
follows:

(P1) “The surprising fact, C, is observed;
(P2) But if A were true, C would be a matter of course.

(C) Hence, there is a reason to suspect that A is true.”

In Peirce’s original definition the selection and evaluation of explanation A is all part
and parcel of the same inference. But usually not only the truth of A would make C a
matter of course. Say B could also lead to the truth of C. So clearly Peirce’s defini-
tion is not enough for an inference to the best explanation. Thagard made a clear dis-
tinction between the inference of possible explanations for surprising facts, and their
evaluation. Peirce’s original definition of abduction is a clear form of inferring from
P2 a possible explanation for P1. But before jumping to conclusion C, other known
premises like P2 should be considered first.

Thagard defined a separate process to evaluate the resulting set of possible expla-
nations, and called that process inference to the best explanation (IBE). Thagard de-
fined IBE as an inference to a known explanation which explains the highest number
of other known facts, needing the lowest number of auxili ary hypotheses as back-
ground assumptions. An explanation’s value can be calculated by subtracting the
number of auxili ary hypotheses from the number of explained facts. In that way,
adding an explained fact ad hoc by an auxili ary hypothesis makes no difference for
an explanation’s value.

In PI, abduction and IBE are modeled as a process of problem solving. An expla-
nation problem is represented by a basic memory structure, including the slot START
containing context facts, and the slot GOAL, containing the explananda, the facts to be
explained. Theories are represented as (secondary) processes called rules, with slots
CONDITION, which contain premises and ACTION, containing conclusions. When a
problem is set, a primary process of spreading activation activates rules linked to the
problem slots. Only active rules are used to infer possible explanations for the slot
value of GOAL. IBE decides which explanation is the most favorable. For example, we
have three possible explanations of an observation E, represented in three rules. Acti-
vation from E activates the rules, which generate possible explanations by abduction.
IBE selects the best as a conclusion of solving the explanation problem, see Table
5.2.

In PI, rules, problems and concepts all have basic structure types. Among the basic
slots are ACTIVATION, STRENGTH, and OLD-MATCHES. The processes of activation, ab-
duction and IBE are all primary. Only instances of concepts, rules and problems are
secondary. IBE in PI is a process specially used for making evaluations of abduc-
tions, which only occur during explanation problems.
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Explanation Structure Process Example

Premise
EXPLANATION
  START  F  (is known to be true)
  GOAL  E (is to be explained)

Background RULE-1  CONDITION H1    ACTION E

RULE-2  CONDITION H2 H3 ACTION E

RULE-3  CONDITION H4    ACTION E F

Inference Activation (E activates rules 1 to 3)
Abduction H1, H2&H3, H4 (possible explanations)
IBE H4 (explains the most facts with the least

auxiliary hypotheses)

Conclusion H4 (is the best explanation)

Table 5.2: Explanation as modeled in the PI program

Abduction IBE

Activate: rules/concepts (PI);
productions/chunks (ACT-R)

Problem (PI)
Goal (ACT-R)

Match: rules (PI);
productions (ACT-R)

Problem solved?Try analogy
(PI & ACT-R)

PI:

Store solution (PI)
Next goal (ACT-R)

yes

no

Fire best: rule (PI);
production (ACT-R)

Selection

Evaluation

Figure 5.1: Problem solving in PI and ACT-R

Problem solving in ACT-R is similar to that of PI (see Figure 5.1), but with a few
important differences. In both PI and ACT-R memory structures match with rules,
which can add to memory and influence problem solving control. Yet productions in
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ACT-R are of a different type than PI’s rules. They represent a skill , and not an ex-
planatory relation. And, more important for modeling explanation, ACT-R lacks a
primary abduction mechanism. Because of the nature of the ACT-R theory such a
primary mechanism is not appropriate. Productions in ACT-R are steps of practiced
problem solving, generalized from example problem solutions by analogy (PI can
also employ analogy to suggest rules, but I will not go into that here). So if a cogni-
tive model in ACT-R needs to employ abduction in problem solving, then the abduc-
tion inference rule has to be learned first. And that turns out to be no problem at all .

Learning abduction by example - part 1
The ACT-R theory assumes that part of the process of solving a particular problem, is
trying to recall an example of a problem that was solved earlier and had a goal similar
to the current problem. When such an example problem is retrieved from memory,
the structure of that example problem, and the solution of that example problem, is
mapped to the current problem. When the solution of the example problem can be
used to solve the current problem, a production rule is proposed, as a generalization
of a strategy for solving problems that share the particular goal. It is currently as-
sumed that all procedural skill s, represented by production rules, are learned by this
process of generalization from declarative examples.

The discussion and models in this section are based on the analogy mechanism of
ACT-R, release 3.0. The details of implementing the mechanism of analogy have
been changed in the 4.0 version that was introduced after I wrote this chapter.
Learning by examples in ACT-R is studied extensively by Niels Taatgen (1999).

In this subsection I model an example of Paul Thagard’s from his (Thagard 1988).
He tells about his encounter with a group of outrageously dressed persons at the air-
port. He wonders why theses people are dressed up that way. Maybe they are rock
musicians, he thinks, because rock musicians usually dress outrageously. ACT-R has
to know only this example to generate, by analogy, a production that can make simi-
lar abductive inferences in the future.

As a similar explanation problem I use another example from (Thagard 1988). In
this simple historical example the goal is to explain why sound propagates. It is
known that waves propagate, so maybe sound is a wave. I started out with the fol-
lowing memory chunks:

(Example-Problem
ISA               explanation-problem
GOAL              Dressed-Outrageously)

(Example-Rule
ISA               pi-rule
CONDITION         Rock-Musician
ACTION            Dressed-Outrageously)

(Example-Solution
ISA               explanation-solution
EXPLANATION       Rock-Musician)

(Example-Dependency
ISA               dependency
GOAL              Example-Problem
SUBGOALS          Example-Solution
CONSTRAINTS       (Example-rule))
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 (Problem-1
ISA               explanation-problem
START             sound

 GOAL              Propagates)
 (Rule-1

ISA               pi-rule
CONDITION         wave
ACTION            Propagates)

The example-dependency chunk is used (In AC-R 3.0) to represent the link between a
problem chunk and the chunk that represents the solution to that problem. The con-
straint slot is used to represent that additional chunks that where involved in solving
the problem.

The slot values Rock-Musician, Dressed-outrageously, Propagates, and Wave
are also added as memory chunks of type concept. This chunk type also has a slot
INSTANCES, which is filled with Sound for concept Propagates. The goal focus is set
on Problem-1, which represents the problem to explain why sound propagates.

When ACT-R is started it first tries to match the goal Problem-1 with available
productions. After failing to do so (there are none defined) ACT-R searches for an
analogous problem and finds Example-Problem. The special dependency chunk is
used to find its solution. ACT-R uses the Example-Rule to map the solution to the
problem, and uses it to make a new production. It then tests whether the new produc-
tion will match the focused goal. Only if that succeeds will the new production be
added to production memory. In my example ACT-R produces the following produc-
tion:

(EXPLANATION-PROBLEM-PRODUCTION0
  =Example-Problem-Variable>
    ISA                     explanation-problem
    GOAL                    =dressed-outrageously-variable
  =Example-Rule-Variable>
    ISA                     rule
    CONDITION               =rock-musician-variable
    ACTION                  =dressed-outrageously-variable
==>
  =Example-Solution-Variable>
    ISA                     explanation-solution
    EXPLANATION             =rock-musician-variable
  !focus-on! =Example-Solution-Variable)

The first condition chunk matches with Problem-1 and the second with Rule-1.
As a result the production creates a solution and changes focus of attention to it. This
rule now serves as a secondary simple abduction process, generating hypothetical ex-
planations, given explanation problems and rules that may explain it. The resulting
explanation for the example is:

(**Example-Solution-Variable$1>
    ISA                     explanation-solution
    EXPLANATION             Wave)

This example has only one rule to abduce from. Usually several rules can be used to
generate an explanation. Thagard employed IBE in PI to evaluate possible explana-
tions before jumping to a best conclusion.
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It can be argued that the general idea of Thagard’s IBE is subsumed by ACT-R’s
primary, processes that subsymbolically select and decide which chunks and produc-
tions to match. Thagard’s IBE favors the hypothesis that explains most known facts
with the least number of auxili ary hypotheses. So there is a constraint on explanatory
success and hypothesis simplicity. The simplicity constraint is met by ACT-R’s pri-
mary process of latency, which is related to the probabili stic evaluation whether a
chunk is relevant in a particular context. A more complex rule will contain more
chunks in the condition, which will t ake longer to match. So more simple hypotheses
will be considered first. Yet a very successful rule will have a higher activation be-
cause it is associated with more active facts in memory. So the constraint on ex-
planatory success, is met by the process of preferring high activation.

One could compare the effect of the activation of chunks as a result of their prob-
abili stic association with other chunks in ACT-R, with the effect of the activation of
propositions as a result of their explanatory relation with other propositions in
ECHO, Thagard’s refined explanation evaluation model (Thagard, 1992).

Yet, several other factors, such as the production’s expected gain (PG-C) value,
play a role in the final decision to fire a rule. Hence ACT-R might not always come
to similar conclusions as PI. Whether ACT-R’s conclusions are more plausible is an-
other question altogether, belonging to primary epistemology. However, because of
the fact that ACT-R is a more sophisticated model of primary cognition than PI is,
ACT-R is li kelier to make abductive inferences that are closer to actual human prob-
lem solving. Whether that is relevant for epistemology is discussed in section 5.8.

Heuristic search as abduction in BACON
The BACON models (Langley et al, 1987) constitute a set of productions that try to
find algebraic laws that describe given numerical observations. Several versions of
BACON were originally implemented as a set of productions in the problem solving
architecture PRISM, an old cousin of ACT-R (they both have ACTE as an ancestor).
Hence it was relatively easy to model BACON.1 in ACT-R. Yet, a distinguishing
claim of the ACT-R theory is that productions are not learned passively by e.g. read-
ing, but by analogy during problem solving, by doing. Therefore I tried to model
learning BACON’s main productions by analogy. Doing so made apparent that in fact
BACON’s heuristic search method makes use of abductive inference in a way similar
to PI’s method.

The first of the BACON series searches for simple algebraic laws, which are all of
the form XkYl=aXmYn+b. It tries to find appropriate values for k, l, m, n, a and b
given a set of different observed values for X and Y. Laws that fit this template are,
for example, Kepler’s third law of planetary motion D3P2=k, Boyle’s gas law PV=c,
Galil ei’s law of acceleration D/T2=g, and Ohm’s law IL=-rI+v.

BACON.1’s search starts out with two observational terms X and Y, together with
a set of values. For example, X is (1 2 4) and Y is (1 0,5 0,25), meaning that when X
is 1 Y is 1, etc. The next step is to combine two terms as a product or a ratio and
evaluate the resulting set of values, e.g. X*Y is (1 1 1). When the values of a term are
found to be constant, a law is inferred. In the example X*Y=c. The same happens
when two terms are related linearly. If the new term does not turn out to have con-
stant values, or to be linearly related with other terms, then it can be used to make a
next new term by combining it with the other available terms, e.g. (X*Y)*Y.
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The BACON productions do not produce new terms at random, but heuristically.
A heuristic method does not guarantee that a solution will be found, but often a solu-
tion can be found without evaluating every possible solution by brute force search.
BACON.1’s heuristic term generation is implemented in productions called Increas-
ing and Decreasing. These productions determine what new term to consider as a
possible law. Given that the absolute values of two terms both increase Increasing
suggests to consider their ratio as a new term. Decreasing suggests to consider the
product of two term when the absolute values of one terms decrease while the abso-
lute values of the other increase.

These productions, together with the main productions that implement the search
process are listed in Table 5.3. The search process itself is depicted in Figure 5.2, and
summarized in Table 5.4. As an example, I li sted the terms used and defined in the
process of f inding Kepler’s third law of planetary motion in Table 5.5, based on
Borelli ’s observations of the moons of Jupiter that were discovered by Galil eo.

Production Conditions (LHS) Actions (RHS)
Find-Laws Goal = describe data

Law not already defined?
New goal = find-laws

Increasing Goal = find-laws New goal = consider-ratio
Term-1 increasing values?
Term-2 increasing values?

Decreasing Goal = find-laws New goal = consider-product
Term-1 increasing values?
Term-2 decreasing values?

Constant Goal = find-laws New goal = define-new-law
Term constant values?

Linear Goal = find-laws New goal = define-new-law
Term values linear related?

Define-Ratio-
or-Product

Goal = consider-ratio/product New goal = define-new-term

Term not already defined?

Table 5.3: Overview of the main productions of BACON.1

ACT-R can learn the productions Increasing and Decreasing from given examples.
The examples I used constituted algebraic rules that can be used abductively by ACT-
R’s process of analogy. For example it is true for the function X/Y=c, that if the ab-
solute values of X increase, the absolute values of Y increase as well . On the other
hand it is true for the function X*Y=c, that if the absolute values of X increase, the
absolute values of Y decrease (see Figure 5.3).
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find-laws

consider-product consider-ratio

define-new-law define-new-law

define-new-term

Increasing

Decreasing

Linear Constant

Define-Ratio-
or-Product

Find-Laws

Figure 5.2: BACON.1’s search for a law with constant or linearly related values

Description Structure Process Example
Premise X 1 4 9

Y 1 8 27
Goal Describe X and Y

Background Production-1 Find-Laws
Production-2 Increasing
Production-3 Decreasing
Production-4 Constant
Production-5 Linear
Production-6 Define-Ratio-or-Product

Inference Repeated matching
of production rules

Conclusion Law X Y  X3/Y2=1

Table 5.4: Inferring a description in BACON.1
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 |Y| 

|X| 

X/Y=c X*Y=c 

|Y| 

|X| 

Example used for Increasing  Example used for Decreasing 

Figure 5.3: Example functions used for creating the main BACON productions

The other way does not always hold. For example, when both values of an X and Y
increase, the relation may just as well be an exponential function. Hence BACON.1’s
productions actually infer by abduction that X and Y are related as a product or ratio.
Increasing employs actually the following abductive inference:

The absolute values of X and Y both increase (C)
But if X/Y = c (A) then the absolute values of X and Y would increase (C)

Hence there is a reason to suspect that X/Y = c (A)

If the inferred new term is not evaluated to be a law, li ke e.g. D/P in the Kepler ex-
ample, then values of the term can be treated as part of the background in a new ab-
ductive inference. The same compositional process is used in PI, see for example Ta-
ble 5.6.

Explanation Structure Process Example

Premise
PROBLEM
  START A (is known to be true)
  GOAL C (is to be explained)

Background RULE-1  CONDITION B ACTION C

RULE-2  CONDITION A ACTION B

Inference Activation (C activates RULE-1)
Abduction B (possible explanation)
Activation (B activates RULE-2)
Abduction A  (possible explanation)
IBE A

Conclusion EXPLANATION A (is the best explanation)

Table 5.6: Example of compositional abduction in PI
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Learning abduction by example - part 2
To learn ACT-R BACON’s heuristics I provide the functions of Figure 5.2. as solu-
tions to a BACON search problem. The example for Decreasing was given as fol-
lows:

(X1>
  ISA                            term
  PATTERN                        Increasing
  EXP                            Example-Experiment)

(Y1>
  ISA                            term
  PATTERN                        Decreasing
  EXP                            Example-Experiment)

(Example-Problem1>
  ISA                            find-laws
  EXP                            Example-Exp
  ACHIEVED-BY                    Consider1)

(Example-Solution1>
  ISA                            consider
  OP                             Product
  TERM-1                         X1
  TERM-2                         Y1
  CONSTRAINTS                    (Decreasing Increasing))

(X1*Y1>
  ISA                            term
  VALUES                         nil
  OP                             Product
  TERM-2                         Y1
  TERM-1                         X1
  PATTERN                        Constant)

When the product of X and Y is constant, the values of X increase while the values of
Y decrease. So if you want to find a law for the terms of an experiment Example-
Exp, which are X1 and Y1, then by abduction BACON should consider their product.
The production Consider-Ratio-or-Product would then define the term X1*Y1. To
trigger ACT-R’s analogy mechanism I set the following problem:

(Pressure>
  ISA                            term
  PATTERN                        Increasing
  EXP                            Boyle-Exp)

(Volume>
  ISA                            term
  PATTERN                        Decreasing
  EXP                            Boyle-Exp)

(**Boyle>
  ISA                            find-laws
  ACHIEVED-BY                    nil
  EXP                            Boyle-Exp)

By analogy with Example-Problem-1, using chunk example-experiment to map
the solution to the problem, ACT-R composes a new production to solve the Boyle
problem:
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(FIND-LAWS-PRODUCTION1
  =Example-Problem-Variable>
    ISA                            find-laws
    EXP                            =example-exp-variable
  =Y1-Variable>
    ISA                            term
    EXP                            =example-exp-variable
    PATTERN                        decreasing
  =X1-Variable>
    ISA                            term
    EXP                            =example-exp-variable
    PATTERN                        increasing
==>
  =Example-Solution-Variable>
    ISA                            consider
    OP                             product
    TERM-1                         =X1-Variable
    TERM-2                         =Y1-Variable
  !focus-on! =Example-Solution-Variable)

(**Example-Solution$1>
    ISA                            consider
    OP                             product
    TERM-2                         Volume
    TERM-1                         Pressure)

The analogy mechanism of ACT-R (3.0) would overgeneralize the example problem
without further constraints. The resulting production would match any two terms and
consider their product. Yet with constraints, the inferred rule is functionally equiva-
lent with BACON’s original Decreasing production, and can hence be employed to
find more complex laws.

In sum, the computer programs BACON and PI model cognitive mechanisms of
scientists that work on particular scientific problems. In this section I argued and
showed how those same mechanisms can be learned and explained, by modeling that
learning process in the unified cognitive theory ACT-R. Yet between the different
cognitive architectures there remains a difference in approach to understanding the
nature of scientific theory and reasoning. This is treated in the next section.

5.6 Theory and method

In this section I go further into the specific questions about the structure of theory and
process of reasoning as implied by the different cognitive models BACON, PI, and
ACT-R. Thagard’s model PI maintains a procedural explanation of the nature of a
theory. In the logical approach a theory is a set of atomic and conditional proposi-
tions, accompanied by a set of relatively independent inference rules that are used to
infer valid consequences from them.

In Thagard’s model a theory consists of rules and concepts that more or less repre-
sent conditional propositions and predicates, respectively. Which inference rule to
apply to determine a consequence of a theory is arbitrary in logic, but controlled by a
mechanism of spreading activation in PI. Superficially, this difference only has con-
sequences in the performance of the process of generating an explanation or predic-
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tion. In principle the same consequences could be inferred from the different repre-
sentations of a theory in both the cognitive and the logical model.

Even in the process of inferring an explanation the main difference between the
cognitive model PI and the logical model li es in their performance and the specific
extra conditions. Thagard selects the best explanation on the equally decisive criteria
of explanatory breath and simplicity, while the logic approach puts the priority on
explanatory breath and consistency.

One important difference is that PI maintains different theories simultaneously,
basing the use of any of the rules in prediction or explanation on its success in solv-
ing problems earlier. This allows PI’s predictions to be inconsistent due to the firing
of competing rules.

The nature of the heuristic rules of BACON differ in type from those of PI. The
BACON heuristics represent a very specific kind of abduction. PI’s primary abduc-
tive mechanism reasons from all kinds of conditional assumptions represented in the
PI rules. The BACON heuristics incorporate an abductive suggestion based on a con-
ditional proposition, e.g. the proposition that if the quotient of two variables is con-
stant, then the values increase together. Any term proposed by those heuristics
(INCREASING/DECREASING) is tested on the available data terms by other heu-
ristic rules (LINEAR/CONSTANT) that propose it as a law or ignore it i f it does not
fit the data.

The BACON production rules implement a particular heuristic method, and not a
part of a theory as in PI. The rule representation of either a theory or heuristic is sub-
tle. For the predictive nature of a theory it is not important whether you represent a
theory as a set of conditional statements or as a set of production rules, as long as the
specific production rules, or the conditional statement together with general inference
rules produce or define the same consequences.

It is possible to understand a theory both declaratively and procedurally in ACT-R.
The structure of a theory can start out as a declaration in memory chunks. What con-
sequences will follow from it depend on the production rules that can make an infer-
ence about it. It is possible to represent both the axioms of a theory and general infer-
ence rules declaratively, and a method to infer deductive consequences from them
can be represented by a set of productions.

I summarize the different uses of the rule concept in explanation models in Table
5.6. Rules can be considered to be secondary processes in all the cognitive models.
But in PI they are part of theory, while in BACON.1 they are part of method. In
ACT-R a production can be understood as both part of theory and/or heuristic
method.

In ACT-R a production, seen as an inference procedure, takes as premises a goal
and an assumption, and produces a new goal as conclusion. This goal can be either to
make a new assumption, to observe or to intervene within something in the world. If
the premise of a specific production includes declarative assumptions of concept
types A and A → C and the goal is to produce a valid consequence, then the produc-
tion represents the application of modus ponens if its new goal is to assume C.
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Explanation Logic PI BACON.1 ACT-R
Background
   Structures B: { A→C} (if X/Y=c then inc) Chunk: (rule A C)

   Processes (If A then C)
Rule = the-
ory

(If inc then ratio)
Rule = method

(If (rule A C) goal C
then A) Rule =
method & theory

Premise P: { C} (START C) (goal) (X …) (Y…) (goal C)

Inference Abduction Activation Rule matching Creation (Analogy)
Conditions Abduction Selection (Activation)

IBE Evaluation (PG-C)

Conclusion H*: { A} (EXPL. A) ( XnYm=c) (A)

Table 5.6: Different uses of the rule concept in explanation

But how to understand the generation of specific explanations? As we saw in the
earlier sections, in ACT-R this question is not so much about what productions can
find an explanation, but how productions that can find explanations are created and
evaluated themselves. This is a process in ACT-R that starts with an example of a
specific explanation and a similar example solution to another problem. The example
is mapped to the new problem, resulting in new productions. These productions can
become either applicable to very specific cases or very general cases, for which the
inferred explanation has a very high or low probabilit y of being correct. By solving
many explanation and prediction problems, use and experience will determine their
success. The resulting productions can be associated with the typology of strong and
weak heuristics, see Table 5.7.

The term heuristic comes from the Greek heuriskein meaning “ to discover” . (Heu-
riskein is also at the origin of eureka, derived from Archimedes’ reputed exclama-
tion, heurika (for “ I have found”), uttered when he had discovered a method for de-
termining the purity of gold by taking a bath) In artificial intelli gence it is generally
used to describe a process of learning by trying. It is often contrasted by the term al-
gorithm, which is a derivation of the name of the Arab mathematician, Al-
Khowarizmi (±825 AD). Both an algorithm and a heuristic are procedures for solving
a problem.

The main difference between them is that an algorithm is meant to effectively
solve a particular type of problem, often at high cost in time depending on the com-
plexity of the problem. A heuristic is a tradeoff between time and optimality, it may
solve a problem, usually at lower cost in time, but then it may not provide the best
solution. Another difference is that the effectivity of an algorithmic procedure can
usually be established analytically by mathematical proof, while the effect of a heu-
ristic procedure is often established empirically, by experience of use.
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Productions High cost Low cost (eff icient)
High probabilit y
(effective)

Strong heuristic
Specific method/theory

…

Low probabilit y … Weak heuristic
General method/theory

Table 5.7: Typology of productions in the light of expected gain (E = PG – C)

The heuristic procedure in ACT-R differs from the static heuristic procedure in
BACON in such a way that the estimation of the cost and chance of success of a cer-
tain production (the estimated gain PG – C) is constantly evaluated and adjusted. So
if we want to explain the process of discovering a theory or law it is not enough to
point to a set of heuristics as the cause of that discovery. The heuristics are usually
part of the product of that discovery. For Kepler to discover his law he first had to
discover that he could compare Borelli ’s data with a particular kind of example func-
tions.

Now if we understand the nature of a theory as being partly procedural we can also
better understand how to see Kuhn’s picture of science as a practice that reasons on
the basis of paradigms as shared examples. In normal science a set of successful ex-
amples of explanations leads to a strong heuristic that can successfully solve highly
specific problems within a domain. At a given time these heuristics, that incorporate
part of the theory of that domain, may not be able to handle novel problems. A revo-
lution is needed to start off a different approach, where only weak heuristics may be
of some help. More specific and stronger heuristics will be learned once some suc-
cess is booked.

So, to understand a theory and use it rationally is to learn a skill of a specific prac-
tice. You can tell a lay person that E=mc2, but without a general skill i n mathematics
and a specific skill of how to apply those variables to a domain of phenomena, that
person will not be able to predict or explain specific facts with that statement.

In Kepler’s and Galil eo’s time science had become successful by applying simple
and general mathematical functions to empirical phenomena en testing the predic-
tions of those functions in experiments. But the practice of empirical science consist
of the use of many, highly specific, constantly adjusted rules to explain and predict
phenomena. A reflection of those rules can be declaratively represented and commu-
nicated, that is what this thesis is all about. Their use cannot be learned otherwise
then by taking part in that practice. But is the way scientists actually use method and
theory a criterion for what is rational, from an epistemological point of view?

5.7 Descriptive and normative

I argued how the ACT-R theory can provide an explanation of the rational behavior
of scientists. But what does that tell us about what is rational? It is argued in episte-
mology that explaining the beliefs and methods of scientists by pointing to the cogni-
tive process that creates and evaluates them is not suff icient for epistemically justi-
fying those beliefs and methods.



5.7. Descriptive and normative 79

People, scientists not excluded, make mistakes in their reasoning, as psychological
experiments prove. It should be the role of epistemology to point out those errors, so
that human reasoning can improve. So let us look at the rationality of human predic-
tion and explanation.

Prediction
Human performance in logical reasoning has been a much studied subject in cogni-
tive psychology (Anderson, 1995). In experiments by e.g. (Marcus & Rips, 1977)
subjects were asked to evaluate the correctness of hypothetical syllogisms, repre-
sented as relatively neutral arguments such as:

If the ball rolls left, the lamp will switch on.
The ball rolls left
Therefore, the lamp will switch on.

It was asked if a conclusion is always, sometimes, or never correct. It was shown that
in 100 percent of the cases subjects have no problems with judging the conclusion of
modus ponens (aff irming the antecedent) to be always correct, but that in only some
80 percent of the cases subjects judged the conclusion of denial of the antecedent and
aff irming the consequent to be merely sometimes correct. Still worse, in only 60 per-
cent of the cases subjects thought that modus tollens (denying the consequent) is al-
ways correct. This performance was initially explained by the assumption that sub-
jects interpret “ if A then C as a biconditional instead of a conditional statement.
Subjects were thought to understand the antecedent to be a necessary condition for
the consequent, explaining why in some cases it was thought that the conclusion of
denial of the antecedent or aff irming the consequent is always correct. However, this
does not explain the poor performance on judging the validity of modus tollens.

It is remarkable to see that the inference that is the hallmark of valid reasoning in
science according to Popper is so often misjudged in common sense reasoning. It also
testifies to the unpopularity of Popper’s method of falsification as noted by Kuhn and
many others. But it would be too swift a conclusion to mark the disregard of modus
tollens in the practice of both common sense and scientific reasoning as irrational. It
becomes more clear if this practice is seen as based on a probabilit y assessment. I
will demonstrate this by discussing another much studied task, called the Wason se-
lection task.

Understanding the performance of subjects on the selection task is relevant for un-
derstanding how scientists evaluate potential hypothesis in the process of scientific
discovery. This task is argued to demonstrate the failure of applying modus tollens.
However, I will argue how this task shows how subjects make a perfectly rational
probabili stic assessment.

In the selection task subjects are shown four cards with the following symbols:

E K 4 7

They are told that every card contains a number on one side and a letter on the other.
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The task is to test the validity of the following rule for these four cards:

If there is a vowel on one side, then there is an even number on the other side.

Subjects were asked to turn over only those cards that need to be turned over to test
the rule. On average (Anderson, 1995) 89 percent chose to turn the E, aff irming the
antecedent of the rule. Logically this is an informative choice because the outcome of
the experiment either falsifies or confirms the rule. However, 62 percent chose to
also turn over the 4, aff irming the consequent. Logically this provides no information
because the outcome confirms the rule either way. The same goes for turning over the
K denying the antecedent, which was done by 16 percent. Only 25 percent chose to
turn the 7, denying the consequent, which logically also can confirm or refute the
rule.

Oaksford and Chater (1996) argued that what subjects do is make a choice of the
most informative cards in a statistical sense. They presupposed a probabili stic model
of the rule A → C, see Table 5.8. It provides the probabiliti es for the four possible
states of the world where A and C are either true or false. Given this probabili stic
model for the rule A → C and a null rule, i.e. a rule which does not have any prob-
abili stic contingency between A and C, the interpretation of the conditional prob-
abiliti es of A and C can be calculated, see Table 5.9a, see also Table 4.4 prediction.

Given the probabili stic interpretation both the AA and DC predictions are prob-
able, while AC and DA are less probable. Yet subjects prefer AC much more than
DC. To explain this, Oaksford an Chater argued that a card would be informative if
the expectation of its outcome would differ from the expectation based on a null rule
that assumes no relation between the antecedent and the consequent. However, in
their model they need to set the conditional probabilit y of the consequent C, given the
antecedent A and vice versa to be 40% instead of a neutral 50% to explain the prefer-
ence order of subjects.

Antecedent A Consequent C A → C A → C null A → C * null *
True True True .40 .16 .50 .25
False True True .20 .24 .23 .25
False False True .30 .24 .18 .25
True False False .10 .36 .09 .25

Table 5.8: The logical, and two possible probabili stic models of A → C and null

I think that there are three problems with the explanation of Oaksford and Chater.
First, the particular probabilit y distribution of the conditional statement is not prop-
erly defended. Secondly, a proper 50/50 null rule defeats their ordering. Thirdly and
most importantly, the probabilit y of a rule’s prediction does not reflect the rule’s
probabilit y given the outcome of the experiment.

It may well be possible that for subjects the probabilit y of a rule A → C depends
on the assumed model of the rule, not on the probabilit y of a rule’s prediction. In this
interpretation the value of an experiment is the difference between the probabiliti es
of a rule given the possible outcomes of that experiment. Given this interpretation the
second problem becomes obsolete by addressing the first problem.
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What is a proper model for a general conditional statement? One could argue that
the preference of subjects in the card selection task actually reflects an average model
for a conditional rule. If we redistribute the preferences of subject over 100% and
take that as a value estimate, then we come to an average model that is approximated
in Table 5.8 for rule A → C *. In this estimate subjects tend to regard the average
probabilit y of a rule slightly higher when only C is observed (.23), compared to when
A nor C is observed (.18), see Table 5.9 b. It can be assumed that these numbers at
best reflect a base rate probabilit y that is different and adjusted for every particular
conditional assumption that is maintained in memory.

B H P p(P|B&H) p(P|B & null ) Difference Subj. pref.
a.
AAH A A → C C .80 .40 .40 89%  E
ACH C A → C A .67 .40 .27 62%  4
DCH Not C A → C Not A .75 .60 .15 25%  7
DAH Not A A → C Not C .60 .60 .00 16%  K

b. p(P|B & null *)
AAH A A → C * C .84 .50 .34 89%  (47%)
ACH C A → C * A .68 .50 .18 62%  (32%)
DCH Not C A → C * Not A .67 .50 .17 25%  (13%)
DAH Not A A → C * Not C .56 .50 .06 16%  (8%)

         (100%)
c. p(H|B&P) p(H|B & ¬P)
AAH A A → C * C .50  (C) .09  (R) .41 47%
ACH C A → C * A .50  (C) .23  (C) .27 (-.14) 32% (-15)
DCH Not C A → C * Not A .18  (C) .09  (R) .09 (-.18) 13% (-19)
DAH Not A A → C * Not C .23  (C) .18  (C) .05 (-.04) 8%   (-5)

d.
HAA A → C * A C .68  (?) .33  (R) .35
HAC A → C * C A .84  (C) .44  (?) .40
HDC A → C * Not C Not A .56  (?) .16  (R) .40
HDA A → C * Not A Not C .67  (C) .32  (?) .35

Table 5.9: Different kinds and models of probabili stic prediction

So given the above model the value of AA is the highest because that model as-
sumes the rule is the most probable if A and C are true (.50) and the least probable if
A is true and C is false (.09). The value for DA is the lowest because either outcome
says about the same (.18/.23) about the probabilit y of the rule, given the model. The
reason that AC is more preferable than DC is that the difference between the out-
comes for the former experiment is much higher (.50 – .23) than that of the second
(.18 – .09). The outcome of DC may logically be able to either defeat or confirm the
rule given the logical model of the rule, but with a probabili stic model either outcome
of a DC experiment will result in a low probabilit y.

To make the comparison with the logical model complete I also listed the kind of
predictions where the rule is assumed and the antecedent or consequent is hypotheti-
cally aff irmed or denied. A probabili stic interpretation now provides an assessment
where the logical approach could not give an answer about the probabilit y of the hy-
pothesis, see Table 5.9d.
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From this viewpoint subjects predictions and experiments do not seem to be all
that irrational, as long as hypotheses are interpreted to be more or less probable in-
stead of just true or false. In a game like situation, where the rules are strict and
given, it is rational to follow the logical model of a rule. But in an empirical situation
where rules are not known to be true and almost all rules have exceptions acting on a
probabili stic assessment is more rational. Yet Popper would probably argue that the
question remains how probabilit y assignments to hypotheses can be rational. This
question will be addressed in the Chapter 6.

5.8 Explanation and evaluation

According to Langley et al (1987, p.47) in discovering a hypothesis “ rationality for a
scientist consists in using the best heuristics available for narrowing the search down
to manageable proportions. A normative theory of creativity and scientific discovery
is concerned with this kind of rationality.” So instead of focussing on the validity or
probabilit y of hypotheses found by heuristics, they emphasize the eff iciency part of
rationality. They assume you know what you are looking for. For Bechtel (1988) to
normatively evaluate a heuristic is to identify its failure. He assumes you know when
a heuristic fails. But how to know what you are looking for and how to know you
failed to find it?

In epistemology it is a much debated question whether the identification of the
failure or success of assumptions is an analytical or empirical matter. This holds for
both theoretical and methodological assumptions. In a psychological explanation of
scientific practice the identification of epistemic success or failure seems foremost an
empirical matter. Productions and chunks are created and evaluated by their success
in use, whether they are part of theory or of method. But the success of productions
can only be measured by given conditions for success. And testing if a proposed so-
lution satisfies those conditions is an analytical matter.

According to logic the best theory should be: consistent, internally and with re-
spect to background knowledge; complete and correct with respect to the phenomena
it explains; non-trivial; informative, and it should be simple. So different methods are
suggested that prefer theories with regard to their competitors by their consistency,
correctness and completeness, non-triviality, empirical content, and simplicity. Dif-
ferent philosophers prefer one condition above another on the basis of different ar-
guments.

Scientists usually also entertain other preferences such as analogy, beauty or sym-
metry in a theory. Finding a theory that satisfies those conditions means success. But
the most important condition of any theory is that it should remain successful in the
future. So the questions with respect to the probabilit y part of the rationality of rea-
soning are: 1. which conditions are conductive to empirical success, 2. why are they
conductive to success, and 3. how to pursue them?

First there should be made a distinction between conditions that are part of the
main goal of science, and those that may be conductive to it. I gather that conditions
such as:
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C1. Correctness C2. Consistency C3. Completeness

are part of the main goal of science. This is what we want to achieve: a theory that
has no anomalies, covers the domain, and is not trivial by allowing everything. These
conditions are not conductive to empirical success, they define it. But how to pursue
them? The satisfaction of the first two conditions can never be validly established in
an empirical domain. The future can always bring a situation that is not allowed or
included in the theory. The best we can do is to analytically check for internal con-
sistency and to check for correctness and completeness with respect to all available
observations. However: in principle, infinitely many theories can be entertained that
satisfy all three conditions; in practice, however, it is hard to find even one theory
that comes close to that goal.

Scientists build theories incrementally, constantly proposing and revising hypothe-
ses, often within the conceptual boundaries of a research program. The question is
whether it is rational to pursue correctness and completeness by preferring to pursue
only a proposal that is closest to the goal. At any given time that goal seems clear.
There is a set of current observations and the problem is to find that theory that cov-
ers most of them.

So, is it rational to entertain and pursue a consistent theory that explains most data
and has the fewest number of counterexamples? By definition that theory is closest to
the goal of science, assuming that all other possible theories are known to be worse.
Yet in practice we do not know the merits of all possible other theories since we do
not know them all . It may turn out that amending a theory that was further from the
goal proves more successful than working on the best one available. Given a con-
ceptual space of all possible theories and a set of all observations, the theory that best
satisfies the goal at any moment of development may be stuck in a so-called local
maximum. Pursuing predictions and revisions of a theory that is further from the goal
may reveal a better approximation. In cognitive psychology and AI the first approach
is know as hill -climbing. Going straight for the top may bring you to the top of the
hill , but may miss the mountain. A scientist that chooses to stay with a successful
theory that lacks progression is as rational as a chicken that gets stuck in a fence
when running toward the corn in view, not able to back up to go around the open gate
door.

In practice it does not always work that way. Scientists do not only pursue correct-
ness, completeness and consistency. They also entertain conditions such as e.g.:

C4. Simplicity C5. Analogy  C6. Symmetry

In logic these conditions are meta-epistemical, they do not inform us about the truth
of a theory. However, in scientific practice these conditions often prevail above cor-
rectness, completeness and consistency. (We will see an example of this in the case
study in the next part of the thesis.)

Thagard incorporated these conditions in his theory of explanatory coherence,
which meant to explain scientists’ preferences. The program ECHO implements a
model of a neural network that can evaluate how close a theory is to all conditions, as
compared with a competitor (Thagard, 1992). Yet this theory fails to explain why it is
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sometimes rational to prefer conditions C4-C6 above C1-C3. How can these condi-
tions, or methods based on them be conductive to the empirical success of a theory?

A naturalistic way out to this question is to explain why scientists have certain
preferences by bringing in evolution, both biologically and socially. Primary mecha-
nisms in our brain have preferences for certain assumptions and methods given expe-
rience. Survival depends on being able to make methodological decisions and re-
trieve memories of experiences that are relevant to the current situation or problem.
An organism that is not able to make decisions or assumptions successfully is less
likely to survive. In the development of our species nature favors particular primary
cognitive mechanisms in the face of lions and gathering food; in the development of
science nature favors particular theories, methods and scientists, in the face of peers
and trying to get tenured positions.

To return to Goldman’s distinction (Section 5.2): we have gone through an expo-
sition of some (secondary) methods and theories and how they are generated and
evaluated by some (primary) mechanisms of the brain during scientific discovery. I
argued how these mechanisms tell us something about rationality. They inform us
what rationality is, for a scientist.

However, these primary mechanisms still do not inform us why it is epistemically
rational to maintain certain theories and methodologies. These mechanisms prefer a
theory or method if it proves successful in solving problems, in reaching certain
goals, satisfying certain conditions. But why are some conditions more rational to
pursue than others, why are they more successful? A naturalistic stance would be
happy with just the observation that certain conditions, methods, hypotheses and
theories are more successful than others, as an inductively assumed fact of the world.
Yet, in the next chapter I will pursue an explanation of one of those facts, why one of
those conditions, simplicity, is conductive to attaining the goal of science.

Epistemologists reason to study reason is to be able to improve it. In this chapter
we have come to understand reasoning as a process of inferring conclusions that sat-
isfy certain conditions, given a certain problem. So to understand and evaluate the
reasoning in a specific discovery process normatively it is first of all important to un-
derstand the details of a specific problem, i.e.:

• starting situation
• background assumptions
• process to reach the goal
• goal properties
• end results

In practice none of the above stay constant in the process. The starting situation
changes, new background assumptions and concepts are added or withdrawn, end
results are different from the goal, the goal conditions shift, and new methods to
reach the goal are introduced. All under influence of primary cognitive mechanisms
and social interaction. How this process goes about in the practice of neuropharma-
cology will be discussed in the next part of this thesis.
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5.9 Conclusion

The particular question of this chapter was: how to understand and model scientific
discovery, in ACT-R? I will answer this question by going through the answers for
the specific questions of this thesis from Section 1.3:

Question 1 What is the structure of a scientific theory? In ACT-R theories can be
understood as a collection of statements containing laws, examples and solutions to
earlier explanation and prediction problems, represented declaratively in memory
chunks, and specific and general procedures, represented in production rules.
Chunks, represented as sets of slots and values of a certain type, are assumed to be
the results of perception and solutions to solved problems. Production rules are repre-
sented as condition-action pairs: given a goal and an assumption chunk a new goal is
set which can lead to either a new assumption or doing a particular observation or
intervention in the world. Productions can be part of both theory and method.

Question 2 What is the process of scientific reasoning? The process of scientific
reasoning in ACT-R contains of learning heuristic problem solving skill s in searching
and evaluating explanations and predictions of phenomena, see Table 5.10.

Problem Start Background Process Goal Goal properties
Explanation Goal = explain

observation P
H’ explains P’
Productions

Creation
Selection
Evaluation

H* H* explains P
Analogy
Probabilit y

Prediction Goal = predict
hypothesis H

H’ predicts P’
Productions

Creation
Selection
Evaluation

P* H explains P*
Analogy
Probabilit y

Table 5.10: Short overview of reasoning problems discussed in this chapter

The process of both explanation and prediction starts with a goal chunk together with
examples and productions in memory in the background. A solution to the problem is
either selected from memory by productions or created based upon examples by
analogy, and evaluated probabili stically.

Question 3 What is the route between theory and experiment? The assumed route
between theory and experiment walked by a scientist starts with a goal and assump-
tions in memory that determine new assumptions and actions, based on learned pro-
ductions. Failure to achieve a goal decreases the potential to recall an assumption and
the chance that the used productions will be employed in the future.

This can explain how scientists go through the ideal six steps introduced in the last
chapter. In a scientific study of scientists doing their work you would get the follow-
ing scheme, where lowercase p denotes a phenomenon and uppercase P a proposition
about that phenomenon:
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1. Observe phenomenon p: see pm,…,pn (activities of scientist x at work)
2. Describe p: Pm → Pn (problem solving behavior)

P1: { x observes phenomenon p: x sees pm}
P1 → P2: { x describes p: Pm → Pn}
P2 → P3: { x explains p: x finds B ∪ H* |= Pm → Pn}
P3 → P4: { x predicts p: x finds B ∪ H |= Pi* → Pj*}
P4 → P5: { x intervenes p: x creates Pi*}
P5 → P6: { x observes p: x sees Pj*}

3. Explain p: B ∪ H* |= Pm → Pn

H*: { ACT-R cognitive mechanisms} |= Pm → Pn

4. Predict p: B ∪ H |= Pi* → Pj*
B: { specific chunks and productions of BACON}
P2* : { x describes p: P1 : { D = 〈1, 4, 9〉} → P2: { P = 〈1, 8, 27〉}}
P2* → P3* : { x explains p: x finds H: { D3/P2 = c} |= P1 → P2}

5. Intervene in p: create pi*
6. Observe p: observe pj* ?

In this way a step in the process of scientific problem solving is described as a condi-
tional statement. In step 1. the activities of a scientist are observed as a phenomenon.
In step 2. these activities are described. One can observe a scientist making observa-
tions (P1) and describing them (P2). Logically one can describe the link between those
activities by a conditional statement (P1 → P2). The antecedent of the conditional
statement represents the start situation, the consequent represents a goal situation. In
step 2. of describing the activities of a scientist, one can further describe how a sci-
entist explains (P3) predicts (P4) intervenes in (P5) and again observes (P6) a phe-
nomenon. In step 3. of our cognitive research of scientific activities an hypothesis is
searched to explain the process of those scientific activities, in this example cognitive
models in the ACT-R architecture are proposed. In step 4. we make a prediction
about how our scientist under study can find a law (P3* ) that can imply data that de-
scribes a phenomenon (P2* ). This prediction can be tested in step 5. and 6.

It can be a task for cognitive psychology to explain and predict how scientists
search for a solution of scientific problems. For naturalistic epistemology it is the
task to find an intervention in step 5. such that scientists can observe, describe, ex-
plain, predict and intervene the phenomena they are interested in more effectively and
eff iciently, and to explain why they do so. Why some explanations might be more
effective than others will be the topic of the next chapter.

*  *  *  *  *
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Chapter 6 

Computation

6.1 Introduction

In the last two chapters we saw that both the logical and the cognitive models of sci-
entific discovery include a condition to prefer simple or minimal explanations. None
of the models further suggest why it is rational to prefer simplicity. I argued how the
ACT-R model of cognition implicitl y prefers simplicity as a consequence of a
mechanism that prefers high probabilit y in section 5.6 (page 67).

In this chapter I investigate the relation between probabilit y and simplicity in the
computational description, explanation and prediction of empirical data. I discuss the
use of Kolmogorov complexity and Bayes’ theorem in Solomonoff ’s inductive
method to explicate a general concept of simplicity that is used for a distribution of
probabiliti es of possible hypotheses. This makes it possible to understand how the
search for simple, i.e., short, descriptions of empirical data leads to the discovery of
patterns in the data, and hence more probable predictions. I show how the simplicity
bias of Langley’s BACON.2 and Thagard’s PI is subsumed by Rissanen’s Minimum
Description Length principle, which is a computable approximation of Solomonoff’ s
uncomputable inductive method. A more lengthy discussion, including several other
approaches to simplicity, can be found in (van den Bosch 1994).

In this chapter I pursue an answer to two particular questions: 1) How can sim-
plicity most generally be defined? 2) Why should we prefer a simpler theory to a
more complex one? I discuss simplicity definitions that stem from research in cogni-
tive science and machine learning. In those approaches simplicity plays an important
role in the process of scientific discovery, as implemented in Langley and Simon’s
computer model BACON, in inference to the best explanation, as implemented in
Thagard’s computer model PI, and in the probabilit y of predictions, as explicated by
Solomonoff .

Langley and Simon claim that the BACON programs search for simple consistent
laws without making explicit what is meant by ‘simple’ laws and why we should pur-
sue simplicity (Langley et al 1987). Thagard proposed an explicit definition of sim-
plicity and employs it in his model PI, without providing a satisfying reason for it
(Thagard 1988). However, Solomonoff  proposed an explication of induction which
makes use of a concept that can be used to understand simplicity and to provide a
satisfying justification for its preference.
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According to Solomonoff  we should trust the theory yielding implications that can
be generated by the shortest computer program that can generate a description of our
known observational data. It is argued that a shorter computer program provides
more probable predictions because it uses more patterns from that data. It is proved
that this simplicity measure is reasonably independent of the computer language that
is used. However, this measure has one drawback, it is uncomputable. Yet it is
claimed that computable approaches to induction in machine learning constitute ap-
proximations of Solomonoff’ s method (Li and Vitányi 1994).

In this chapter I demonstrate how Solomonoff ’s approach can elegantly be used to
make a universal prior probabilit y distribution for Bayes’ theorem. First it is shown
that Rissanen’s Minimum Description Length principle (MDL) can be derived from
Solomonoff’ s approach. And from thereon I show that simplicity in Langley’s
BACON.2, and simplicity in Thagard’s PI are nicely subsumed by MDL. I conclude
this chapter by answering the three specific questions of this thesis, according to the
study of computational description.

6.2 Turing machines

In 1964 an article by Solomonoff  was published that contained a proposal for a gen-
eral theory of induction. The objective was the extrapolation of a long sequence of
symbols by finding the probabilit y that a sequence is followed by one of a number of
given symbols. It was Solomonoff’ s conviction that all forms of induction could be
expressed in this form.

He argued that any method of extrapolation can only work if the sequence is very
long and that all the information for an extrapolation is in the sequence. Solomonoff
proposed a general solution that involved Bayes’ theorem. This theorem requires that
a prior probabilit y of a hypothesis is known to determine the posterior probabilit y
making use of the known data. Solomonoff’ s solution is to provide for a universal
distribution of prior probabiliti es, making use of a formal definition of computation.

It is widely believed that the notion of computation is fundamentally captured by
the operation of a Turing machine, an idealized conceptual machine introduced by
the mathematician Alan Turing. A Turing machine is thought of as consisting of a
long tape and a finite automaton which controls a ‘head’ that can read, delete and
print symbols on the tape. To compute the value of a function y = f(x), write a pro-
gram for f(x) on the tape, together with a symbolic representation of x and start the
Turing machine. The program is completed when the Turing-machine halts and the
value of y is left on the tape as output. Turing proved that there is a universal Turing-
machine that can compute every function that can be computed by any Turing ma-
chine. The famous Church-Turing thesis claims that every function that can be com-
puted, can be computed by a Turing machine.

What Solomonoff  did was to correlate all possible sequences of symbols with pro-
grams for a universal Turing machine that has a program as input and the sequence as
output. He assigned a high prior probabilit y to a sequence that can be computed with
short and/or numerous programs. Sequences that need long programs and can only be
compared by few programs, receive a low prior probabilit y. For Solomonoff the va-
lidity of giving sequences calculated by a shorter program a higher prior probabilit y
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is suggested by a conceptual interpretation of Ockham’s razor. But it is justified be-
cause a shorter program utili zes more patterns in the sequence to make the program
shorter. So, if we trust the data as being representative of things to come, then the
shorter program provides the more probable predictions.

If we, e.g., have a sequence that has x as a prefix and x = 1234123412341234123,
then we could write a program that describes x as dαααα123, where d is a definition
of 1234 as α. If we want to predict the following letter we can entertain the hypothe-
sis H1: dααααα, or still shorter H1: d5α. Another option is H2: d4α1231. The first
hypothesis predicts a 4 and the second a 1. Both hypotheses are compatible with the
known data x. Now Solomonoff  argues that the prediction of H1 is more probable
because it requires a shorter program to generate a continuation of x than H2 (Solo-
monoff 1964, p.10).

That a sequence with many programs gets a high prior probabilit y is suggested by
the idea that if an occurrence has many possible causes, then it is more likely. The
principle of indifference is integrated by attributing sequences that are generated by
programs of the same length the same prior probabilit y.

Unfortunately this approach has as an important problem. It is not determinable
whether a given program is the shortest program that computes a sequence. If that
were determinable then there would exist a Turing machine that could determine for
every possible program whether it would generate a given sequence. However, most
of the possible Turing machine programs will never halt. Due to this halting problem
we cannot know for every program whether the program computes a given sequence.
But before I go into that problem I want to make Solomonoff ’s theory more specific
by first discussing Kolmogorov complexity and its application in probabilit y theory.

6.3 Kolmogorov complexity

The Kolmogorov complexity of a sequence or string is actually a measure of ran-
domness or, when inverted, the regularity of the patterns in that string. We can use a
Turing machine to measure that regularity with the length of the shortest program for
that Turing machine that has the sequence as output. We can call such a program a
description of the sequence. This description is relative to the Turing machine that
has the description as input.

So when we have a sequence x and a description program p and a Turing machine
T we can define the descriptional complexity of x, relative to T as follows (cf. Li and
P.M.B. Vitányi 1993, pp.352):

Definition 1 Descriptional complexity. The descriptional complexity CT of x, rela-
tive to Turing machine T is defined by:

CT(x) = min{ l(p): p ∈ {0,1}*, T(p) = x }

or CT(x) = ∞ if no such p exists.

We consider T to be a Turing machine that takes as input program a binary string of
zeros and ones, so the program is an element of the set {0,1}*, which is the set of all
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finite binary strings. We use binary strings because everything that can be decoded,
like e.g., scientific data, can be coded by a string of zeros and ones. The length of the
program, l(p), is the number of zeros and ones. So the definition takes as the com-
plexity of a string x the length of the program p that consists of the least number of
bits and that will generate x when given to T. If no such program exists then the
complexity is considered to be infinite.

When x is a finite string then there is always a program that will describe it. Just
take a program that will merely print the number literally. This program will be larger
than the string. However, if x is infinite and no finite program exists, then x is un-
computable by definition.

This complexity measure is relative to but surprisingly largely independent of the
Turing machine in question, as long as it is a universal Turing machine. There exists
a universal Turing machine that computes the same or a lower complexity than the
complexity computed by any other Turing machine plus some constant dependent on
that other Turing machine. For instance, when I have a string and two programs in
different computer languages that compute that string, the difference in length be-
tween those programs cannot be more than a constant, independent of the string. This
claim is called the invariance theorem (cf. Li and Vitányi 1993, pp.353).

In the literature Kolmogorov complexity K(x) is defined as a variant of descrip-
tional complexity C(x), which makes use of a slightly different kind of Turing ma-
chines. In the definition of descriptional complexity a Turing machine was used with
one infinite tape that can move in two directions and that starts with an input program
on it and halts with a string on the tape as output. For the definition of Kolmogorov
complexity a prefix machine is used. This kind of Turing machine uses three tapes,
an input tape and an output tape which both move in only one direction, and a work-
ing tape that moves in two directions. The prefix Turing machine reads program p
from the input tape, and writes string x on the output tape.

Kolmogorov complexity will render a similar measure of complexity as descrip-
tional complexity, where C(x) and K(x) differ by at most 2 log K(x). This difference
is important, because of its use in Bayes’ f ormula. (Without it the sum of the prob-
abiliti es of all possible hypotheses will not converge to one.) The invariance theorem
for K(x) is similar to that of C(x). Now how can this measure be useful in extrapo-
lating a sequence? First we will t ake a brief look at how Bayes’ f ormula requires a
prior probabilit y.

6.4 Bayesian inference

We will start with a hypothesis space that consists of a countable set of hypotheses
which are mutually exclusive, i.e., only one can be right, and exhaustive, i.e., at least
one is right. Each hypothesis must have an associated prior probabilit y P(Hn) such
that the sum of the probabiliti es of all hypotheses is one. If we want the probabilit y of
a hypothesis Hn given some known data D then we can compute that probabilit y with
Bayes’ f ormula:

P(Hn | D) = P(D | Hn) P(Hn) / P(D)
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where P(D) = ∑n P(D | Hn)P(Hn). This formula determines the a posteriori probabilit y
P(Hn | D) of a hypothesis given the data, i.e., the probabilit y of Hn modified from the
prior probabilit y P(Hn) after seeing the data D. The conditional probabilit y P(D | Hn)
of seeing D when Hn is true is forced by Hn, i.e., P(D | Hn) = 1 if Hn can generate D,
and P(D | Hn) = 0 if Hn is inconsistent with D. So when we consider only hypotheses
that are consistent with the data the prior probabilit y becomes crucial. Because for all
Hn where P(D | Hn) = 1 the posterior probabilit y of Hn will become:

P(Hn | D) = P(Hn) / P(D)

Now let us see what happens when we apply Bayes’ f ormula to an example of Solo-
monoff ’s inductive inference. In this example we only consider a discrete sample
space, i.e., the set of all finite binary sequences {0,1}*.

What we want to do is, given a finite prefix of a sequence, assign probabiliti es to
possible continuation of that sequence. What we do is, given the known data, make a
probabilit y distribution of all hypotheses that are consistent with the data. So if we
have a sequence x of bits, we want to know what is the probabilit y that x is continued
by y. So in Bayes’ f ormula:

P(xy | x) = P(x | xy)P(xy) / P(x)

We can take P(x | xy) = 1 no matter what we take for y, so we can say that:

P(xy | x) = P(xy) / P(x)

Hence if we want to determine the probabilit y that sequence x is continued by y we
only need the prior probabilit y distribution for P(xy). Solomonoff ’s approach is in-
genious because he first identifies x with the computer programs that can generate a
continuation of x by a string y. In this way the a priori most probable continuation y
can be determined in two ways: y is the next element that is predicted, i.e., generated,
by the smallest Turing machine program that can generate x; or the string y is pre-
dicted that is generated by most of the programs that can generate x.

So we can define the prior probabilit y of a hypothesis in two different ways. We
can give the shortest program the highest prior probabilit y and define the probabilit y
of xy as:

PK(xy) := 2-K(xy)

i.e., the length of the shortest program that computes xy as the negative power of two
(Li and Vitányi 1990, pp.216). Or we can define PU(xy) as the sum of 2-l(p) for every
program p (so not only the shortest) that generates xy on a reference universal prefix
machine (Li and Vitányi 1993, pp.356). The latter is known as the Solomonoff -Levin
distribution. Both have the quality that the sum of prior probabiliti es is equal to or
less than one, i.e.,

∑x PK(x) ≤ 1 and ∑x PU(x) < 1
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However, it can be shown that if there are many ‘ long’ programs that generate x and
predict the same y, then a smaller program must exist that does the same. And it is
proved that both prior probabilit y measures coincide up to an independent fixed mul-
tiplicative constant (Li and Vitányi 1993, pp.357).

So we can take the Kolmogorov complexity of a sequence as the widest possible
notion of shortness of description of that sequence. And if we interpret shortness of
description, defined by Kolmogorov complexity, as a measure for parsimony, then
the Solomonoff -Levin distribution presents a formal representation of the conceptual
variant of Ockham’s razor, since the predictions of a simple, i.e., short, description of
a phenomenon are more probable than the predictions of a more complex, i.e., longer,
description.

6.5 Description length

While both the Kolmogorov and Solomonoff -Levin measure are not computable,
there are computable approximations of them. It is demonstrated that several inde-
pendently developed inductive methods actually yield computable approximations of
Solomonoff’ s method. I will first demonstrate this for Rissanen’s minimum descrip-
tion principle (MDL), cf. Li and Vitányi (1993).

Rissanen made an effort to develop an inductive method that could be used in
practice. Inspired by the ideas of Solomonoff  he eventually proposed the minimum
description length principle. This principle states that the best theory given some data
is the one which minimizes the sum of the length of the binary encoded theory plus
the length of the data, encoded with the help of the theory. The space of possible
theories does not have to consist of all possible Turing machine programs, but can
just as well be restricted to polynomials, finite automata, Boolean formulas, or any
other practical class of computable functions.

To derive Rissanen’s principle I first need to introduce a definition of the com-
plexity of a string given some extra information, which is known as conditional
Kolmogorov complexity:

Definition 2 Conditional Kolmogorov complexity. The conditional Kolmogorov
complexity KT of x, relative to some universal prefix Turing machine T(p, y) with
program p and additional information y is defined by:

KT(x | y) = min{ l(p) : p ∈ {0,1}*, T(p, y) = x}

Or KT(x | y) = ∞ if such p does not exist.

This definition subsumes the definition of (unconditional) Kolmogorov complexity
when we take y to be empty. Now, Rissanen’s principle can elegantly be derived
from Solomonoff ’s method. We start with Bayes’ theorem:

P(H | D) = P(D | H) P(H) / P(D)
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The hypothesis H can be any computable description of some given data D. Our goal
is to find an H that will maximize P(H | D). Now first we take the negative logarithm
of all probabiliti es in Bayes equation. The negative logarithm is taken because prob-
abiliti es are smaller or equal to one and we want to ensure positive quantities. This
results in:

– log P(H | D) = – log P(D | H) – log P(H) + log P(D)

When we consider P(D) to be a constant then maximizing P(H | D) is equivalent to
minimizing its negative logarithm. Therefore we should minimize:

– log P(D | H) – log P(H)

This will result in the Minimum Description Length principle if we consider that the
probabilit y of H is approximated by the probabilit y for the shortest program for H,
i.e.,

P(H) = 2 –K(H)

Therefore the negative logarithm of the probabilit y of H is exactly matched by the
length of the shortest program for H, i.e., the Kolmogorov complexity K(H). The
same goes for P(D | H) and hence we should minimize:

K(D | H) + K(H)

This amounts to MDL principle, i.e., minimizing the description or program length of
the data, given the hypothesis, plus the description length of the hypothesis (Li and
Vitányi 1990, pp.218). To make this principle practical all that remains is formulat-
ing a space of computable hypotheses that together have a prior probabilit y smaller or
equal to one, and searching this space effectively. It has been shown in several appli-
cations that this approach is an effective way of learning (Li & Vitányi 1993, p.371).

6.6 Cognitive models

Let us look at the simplicity bias of BACON.2 (BACON.2 is not representative for
the other BACON programs. I discuss the simplicity bias of the other BACON’s in
(van den Bosch, 1994). BACON.2 will always construct the simplest consistent law
in its range of search. The method it uses is called the differencing method. With this
method BACON.2 is able to find polynomial and exponential (polynomial) laws that
summarize given numeral data (Langley et al. 1987). One could define the simplicity
bias of BACON.2 as follows:

Definition 3 Simplicity bias in BACON.2 The simplicity of a polynomial decreases
with the increase of the polynomial’s highest power. A variable power is gathered to
be a simpler polynomial than a polynomial with a high constant degree.
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Langley et al. give no epistemical reason for preferring simplicity. However, after
discussing simplicity in Thagard’s PI I will argue that the simplicity bias of
BACON.2, as defined above, is justified.

Thagard’s account of the simplicity of a hypothesis does not depend on the sim-
plicity of the hypothesis itself, but on the number of auxili ary hypotheses that the hy-
pothesis needs to explain a given number of facts (Thagard, 1988). In PI, Thagard’s
cognitive model of scientific problem solving, discovery and evaluation are closely
related. Simplicity plays an important role in both.

PI defines two hypotheses to be co-hypotheses if they were formed together for an
explanation by abduction. From the number of co-hypotheses and the number of facts
explained by a hypothesis its simplicity is calculated according to the following defi-
nition:

Definition 4 Simplicity in PI. The simplicity of hypothesis H, with the number of c
co-hypotheses and with the number of f facts explained by H, is calculated in PI as

simplicity(H) = (f – c)/f , or zero if f ≤ c.

To determine the best explanation PI considers both consili ence (i.e., explanatory
success, or in PI; number of facts explained) and simplicity. This is no diff icult deci-
sion if in one of the dimensions the value of one of the explanations is superior to
that of the others while the values in the other dimension are more or less equal. If
both explanations explain the same number of facts but one is simpler than the other,
or if they are both equally simple, but one explains more facts than the other, then
there is no diff icult choice. But when e.g., the first theory explains most facts while
the second is the simplest, that conflict seems to make the choice more diff icult. In
that case PI computes a value for both hypotheses according to the following defini-
tion:

Definition 5 Explanatory value in PI. The explanatory value of hypothesis H for
IBE is calculated in PI as

value(H) = simplicity(H) × consili ence(H).

In this way PI can pick out explanations that do not explain as much as their com-
petitors but have a higher simplicity or explain more important facts. It also renders
ad hoc hypotheses useless because if we add an extra hypothesis for every explana-
tion then the simplicity of that theory will decrease at the same rate as its consili ence
increases.

One feature of IBE in PI is that its valuation formula admits of a much simpler
definition which easily follows from the definitions of simplicity and the value of a
hypothesis as given above.

Theorem 1 For IBE the explanatory value of a hypothesis H, with the number of c
co-hypotheses and f facts explained, can be calculated in PI as

value(H) = f – c, or zero if f ≤ c.
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Thagard does not satisfactorily argue why we should prefer this kind of simple hy-
potheses. In its defense he only demonstrates that several famous scientists used it.
But he did not show that simplicity promotes the goals of inference to the best expla-
nation, li ke truth, explanation and prediction.

6.7 Computable approximation

I will now compare Rissanen’s minimum description length principle (MDL) with
BACON.2, and with inference to the best explanation (IBE) as implemented by Tha-
gard in PI. For BACON.2 Rissanen’s principle suggests an improvement because in
the case of noisy data, BACON.2 would probably come up with a polynomial as long
as that data, while it could construct a much simpler one when it employs and en-
codes deviations from the polynomial as well .

An important difference between Rissanen’s principle and BACON is that the
former requires to search the whole problem space, while the latter searches it heu-
ristically. But BACON’s search is guided by the same patterns that eventually will be
described by a law. However, a heuristic search, li ke BACON’s, can be aided by Ris-
sanen’s principle. Actually BACON does search for a minimal description, but it
does not try to minimize it, i.e., if BACON finds a description, it halts, and will not
search for a shorter one.

BACON.2 determines the shortest polynomial that can describe a given sequence.
No Turing machine can be constructed that needs a shorter description for a more
complex polynomial. It can be demonstrated that a polynomial formula with an ex-
ponential term has a shorter description than a polynomial formula without an expo-
nential term that describes the same sequence. BACON.2’s method always finds the
simplest polynomial that exactly fits the data. So I will make the following claim:

Claim 1 The polynomial constructed by BACON.2 with the differencing method,
based on a given sequence x is the polynomial with the shortest description that ex-
actly describes x, if x can be described at all with a polynomial.

The validity of this claim can be derived from the differencing method. Every prefer-
ence of BACON.2 between two polynomials that are compatible with the data is in
agreement with the minimum description length principle. However, MDL can seri-
ously improve BACON.2 by including a valuation of a description of the sequence,
given a possible polynomial. A shorter description of the sequence may result when
deviations from a possible polynomial are encoded as well .

In Thagard’s explication of inference to the best explanation in PI, the simplicity
of a hypothesis is determined by the number of additional assumptions or co-
hypotheses that the hypothesis needs for its explanations. Rissanen’s MDL accounts
for the importance of auxili ary hypotheses as well . MDL requires that we minimize
the sum of the description of an explaining hypotheses K(H) and the description of
the data with the aid of the hypothesis K(D | H).
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If an hypothesis can explain something right away the description of the data is
minimal, while if the hypothesis requires additional assumptions, then the description
of the data will be longer. So, Thagard’s simplicity satisfies at least one of the re-
quirements of MDL. Hence I want to make the following claim and argue for its
plausibilit y.

Claim 1 In a case of equal consili ence, the explanation that will be selected by IBE
in PI will provide a shorter description of the facts, given the explanation, or at least
no longer description with respect to the available alternatives.

This claim follows easily from the theorem stating that PI’s IBE values hypotheses by
subtracting the number of co-hypotheses c from the number of f explained facts, i.e.,
f minus c. Two hypotheses that are of equal consili ence explain the same number of
facts, in which case the hypothesis with the least number of co-hypotheses is pre-
ferred. Hence, assuming that every such extra assumption is of about equal length,
the simpler hypothesis will provide a shorter description of the facts given the hy-
pothesis. However, if both have the same number of co-hypotheses, then PI can not
make a choice, because both will provide a description of reasonably similar length.

6.8 Best hypothesis

One question may now come to mind: will t he Solomonoff  approach yield a unique
preference when several simple hypotheses are compatible with the data? It seems
possible that more than one theory or program, consistent with given data, can be of
the same length. So in that case we cannot make a decision based on a simplicity
consideration, because all alternatives are of equal simplicity.

To answer that criti cism we first have to distinguish between the next symbol y
that is predicted given a sequence x and the different programs p that can generate a
prediction. Our goal can be a correct prediction y, given x, or a correct explanation of
x. In the case that we want a correct prediction, if two programs are of the same
length it may turn out that both predict something else. However, Solomonoff ’s
method supplies two ways to solve this dilemma.

The first is the universal Solomonoff -Levin distribution with which probabiliti es
can be assigned to different continuations of a sequence. A given prediction y not
only receives a higher probabilit y if it is predicted by a short program, but also if nu-
merous programs make the same prediction. So if there is more than one shortest
program, the prediction of the program that predicts the same as numerous other
longer programs is preferred.

The second way out of the dilemma is in the situation when the given amount of
data x is very long. It can be proved that in the limit all reasonable short programs
will converge to the same prediction, so you can pick any of them. This feature of the
Solomonoff  approach is nice for practical and computable approximations. Because
you can make reasonably good predictions with a given short program that may not
be the shortest one.

However, if you value the best explanation of a given amount of observations,
then you will not be satisfied by a grab bag of possible hypotheses that may not even
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make the same predictions. Scientists that want to understand the world usually look
for one best explanation. In this situation a case could be made for the simplest hy-
pothesis as the best explanation. But with such an aim the Solomonoff approach
seems troublesome. Because you can never know whether a given short program that
computes x is also the shortest program possible. Because the only effective way to
do so is to test all possible Turing machines one by one to see if they generate x. But
any of those possible Turing machines may never halt and there is no way to find out
whether it ever will. You may put a limit to the time you allow the machine to run
before you test the following one. But a shorter program can always be just one sec-
ond further away.

The philosopher Ernst Mach once made the claim that the best thing that science
could do is to make predictions about phenomena, without explaining the success of
such predictions by the (ontological) assumptions of the possible hypotheses. How-
ever, the best explanation, and hence possibly the simplest program, can be seen as
the ultimate goal of science. And a nice property of the present kind of simplicity is
that we can measure our progress. We may not have an effective, i.e., computable,
method to establish whether a hypothesis is the simplest but given a large amount of
data we can establish the relative simplicity of any two hypotheses that yield the data.

6.9 Conclusion

I will try to state my conclusion in one sentence, but nevertheless it is probably not
the shortest description of that conclusion: in scientific discovery it is rational to pre-
fer those hypotheses, that, given discovered alternative hypotheses, amount to the
shortest computational description of known data, because they provide more prob-
able predictions. This approach to learning and discovery generalizes the rational
pretension of the logical and cognitive models of discovery that prefer minimal or
simple explanations. So to answer the specific questions of this thesis, we have:

Question 1 What is the structure of a scientific theory? In the computational ap-
proach a theory consists of a universal Turing machine, together with a program for
that machine. The data that is explained by the theory is the result of a description of
that data that can be generated by a particular program that can make predictions. So,
a string P describing data and predictions is the output of a computation of a com-
puter TM and program H, i.e. TM(H) = P. Both the logical and the cognitive models
can be subsumed within this general scheme.

Question 2 What is the process of scientific reasoning? The process of reasoning
in machine learning is summarized in Table 6.1. A string P describes given data of a
phenomenon p, given a way of representation. The task of explanation is to find a
short program H* that can generate that string, given a computer T. This task is un-
computable, in the sense that there is no algorithm that can guarantee to find that
program. Yet it can be approximated heuristically. The shortest program has the
highest a priori probability. Given a Turing machine TM, a program H and earlier
data P a prediction P* and posterior probability can be computed.
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Problem Start Background Process Goal Goal properties
Explanation String P TM Approximation H* TM(H*) = P

Prior probability
Prediction Program H TM, String P Computation P* TM(H, P) = P*

Posterior probability

Table 6.1: Short overview of inferences discussed in this chapter

Question 3 What is the route between theory and experiment? The theoretical
route between theory and experiment can in this approach also be summarized in six
steps. (For comparison, I added the logical version of this process between brackets)

1. Observe phenomenon p: pm,…, pn

2. Describe p: (Pm → Pn)
Pm, n: = string

3. Explain p: (H* |= Pm → Pn)
TM(H*) = Pm, n

4. Predict p: (H |= Pi* → Pj* )
TM(H, Pi* ) = Pj*

5. Intervene p: do pi*
6. Observe p: see pj*?

In step 1. a phenomenon is observed. This phenomenon is described by a string that
represents the observation, given a manner of representation. An hypothesis H* is
searched in step 3. in the form of a short program for a Turing machine, such that the
program can generate the string and possible continuations of that string. Based on
the given manner of representation, the program for H* and the string representing
the observed data, the Turing machine can make a prediction by generating a con-
tinuation of the string, in step 4. Based on prediction an intervention and observation
close the circle. The observation of new data does not necessitate a new hypothesis as
long as the description of the new data plus the old hypothesis is still t he shortest
available description. New data do change the a posteriori probabilit y of predictions.

In the next part of this thesis I will analyze a scientific practice to find out how
that practice compares with the epistemological theories addressed in this part.

*  *  *  *
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Part III   Neuropharmacology

What is the rational use of theory and experiment in the process of scientific
discovery, in practice? In this part I discuss a case study and model of the ra-
tional use of theory and experiment in the practice of drug research for Park-
inson’s disease, as introduced in Chapter 3, in more detail . First I survey how
the effects of drugs for Parkinson’s disease are explained by the dopamine
theory (Chapter 7). Then I report on the use of theory and experiment in
practice (Chapter 8). I finish this thesis by discussing a model of both the do-
pamine theory and the studied practice of discovery (Chapter 9).
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Chapter 7 

Theory

7.1 Introduction   

A short description of a theory and a practice in neuropharmacology, was introduced
in Chapter 3 of this thesis. This third part provides a more detailed description and
analysis of that same theory and practice of discovery.

The specific question for this part is: How are theory and experiments used in the
practice of drug research for Parkinson’s disease? To answer this question I will first
survey the literature on the dopamine theory of Parkinson’s disease in more detail .
The particular question of this chapter is: how are Parkinson’s disease and the effect
of known drugs explained by theory?

Parkinson’s disease is believed to be mainly caused by a deficiency of dopamine.
Dopamine is a neurotransmitter, a chemical messenger between nerve cells in the
mammalian brain. In this chapter I explore how dopamine is exactly related to Park-
inson’s disease, and how theory about that relation is used to understand the function
of drug interventions for Parkinson’s disease. Before discussing pharmaceutical in-
terventions I will first discuss the dopaminergic cell and the basal ganglia in some
detail to understand the rationale of these treatments.

In section 7.2 I start with a general introduction to Parkinson’s disease. I go into
the basics of the dopaminergic nerve cell i n section 7.3. Then, in section 7.4, I go into
the basal ganglia, the neural circuitry that partly controls voluntary movement, and
how a defect in it causes parkinsonian symptoms. I end this survey of Parkinson’s
disease literature with a short overview of a selection of therapeutic drug interven-
tions in section 7.5.

7.2 Parkinson’s disease

People with Parkinson’s Disease suffer from a motor behavior impairment, usually at
an older age. The primary symptoms include: muscular rigidity, resting tremor, diff i-
culty with movement initiation (bradykinesia), slowness of voluntary movement, dif-
ficulty with balance, and diff iculty with walking. This disease was named after the
English MD. James Parkinson, who in 1817 was the first person to describe these
symptoms as ‘ the shaking palsy’ . (Bernstein, 1995; Wichmann & DeLong, 1993)
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Dopamine deficiency
More than a century later, one believes that the cause of the disease is a dopamine
deficiency in the basal ganglia of the brain. Dopamine (DA) is a neurotransmitter, a
chemical messenger in the nervous system, see Figure 7.1. In Parkinson’s disease the
neural cells which produce dopamine, the dopaminergic cells, deteriorate. When
these neurons start to disappear, the normal rate of dopamine production decreases. It
was discovered that when the degeneration of dopaminergic cells is more than 70-
80%, Parkinson’s symptoms start to appear. Next to Parkinson’s disease’s primary
symptoms mentioned above, a patient may also start to suffer from secondary symp-
toms which include: depression, senilit y, postural deformity, and diff iculty in speak-
ing.

 NH 2 

H O 

H O 

Figure 7.1: Structure diagram of dopamine

Diagnosis with L-dopa
It is diff icult to diagnose Parkinson’s disease in an early stage. The earliest symptoms
may be non-specific, such as weakness, tiredness, and fatigue. So the disease may be
unrecognized for some time. Today there are no conclusive tests for Parkinson’s dis-
ease, yet there are several methods for evaluating its possible presence.

A first diagnosis is based on an evaluation of the presence and severity of the pri-
mary symptoms. If this test is significant, a trial test of anti parkinsonian drugs may
be used to further diagnose the presence of Parkinson’s disease. This test is usually
performed with L-dopa. L-dopa is a precursor in the biosynthesis of dopamine in
nerve cells, and causes the remaining dopaminergic cells to increase the production
of dopamine. If the patient fails to benefit from L-dopa, the diagnosis of Parkinson’s
disease is questionable.

Parkinsonism
Computed tomography (CT) or magnetic resonance imaging (MRI) scans of the brain
may be helpful in ruling out other diseases whose symptoms resemble Parkinson’s
disease. These diseases may include other neurological disorders leading to parkinso-
nian symptoms. Such symptoms can be caused by a brain tumor, repeated head
trauma, or prolonged use of certain drugs. Such a condition is referred to as Parkin-
son’s syndrome, or atypical Parkinson’s. These kinds of parkinsonisms should not be
confused with Parkinson’s disease proper.

MPTP model
The cause of Parkinson’s disease is still unknown. There is one known viral infection
that damages the extra pyramidal nervous system and causes Parkinson’s disease in-
directly. However, the majority of sufferers were young people with different symp-
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toms than we usually see in Parkinson’s disease. Most of these cases resulted from an
epidemic in the 1920’s. More recently it was discovered that several young people
who developed parkinsonian symptoms had used an ill egal synthetic drug that was
contaminated with the compound MPTP. It was found out that this compound is me-
tabolized in the brain to a toxin that damages the extra pyramidal nervous system,
causing a rapid decay of dopaminergic cells. Consequently it was hypothesized that
Parkinson’s disease is caused by an environmental toxic agent like MPTP. Yet, no
toxin that has this effect other than MPTP is found in Parkinson patients. MPTP is
now used in animal studies to understand how it causes these symptoms, which might
lead to a better understanding of Parkinson’s disease.

7.3 Dopaminergic cells

Research on Parkinson’s disease focuses on the function of dopamine. This neuro-
transmitter is synthesized in the presynaptic terminal of a dopaminergic nerve cell by
several metabolic pathways (see Figure 7.2 and Cooper, Bloom & Roth, 1996, pp.
293-351). First tyrosine in the cell i s converted to L-dopa with the help of the enzyme
tyrosine hydroxylase (TH). L-dopa in turn is converted into dopamine by the enzyme
aromatic amino acid decarboxylase (AADC). The synthesized dopamine molecules in
the presynaptic terminal are then taken up by synaptic vesicles. After the dopamine is
released from the vesicles into the synaptic cleft, the remaining molecules are taken
back into the synaptic terminal by transporters in the membrane. There they are
transported back into vesicles or broken down to DOPAC by the enzyme monoamine
amine oxidase type B (MAO-B) (Vermeulen, 1994).
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Figure 7.2: Prototypic dopaminergic terminal with cycle of synthesis, storage, release
and removal of dopamine.
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The signal to open or close ion-pumps is not determined by the chemical properties
of a transmitter alone. The same transmitter chemical, e.g. dopamine, can both inhibit
and excite other neurons, depending on the properties of the receptor it stimulates.
Stimulated neurotransmitter receptors influence the membrane potential of a neuron
directly or indirectly by various different mechanisms. There are ion channels with
special receptor areas that directly bind with a transmitter. When bound to a trans-
mitter these channels undergo a change that opens the channel immediately. The sec-
ond type of receptors gate ion channels indirectly with a second messenger system. A
transmitter bound to such a receptor causes in several steps the release of regulatory
proteins within the cell membrane, that act on a family of ion channels.

7.4 Basal ganglia

Post mortem examinations of patients with Parkinson’s disease revealed that parts of
their brain were pathologically changed. This led to the believe that this part, called
the basal ganglia, plays an important role in controlli ng voluntary movement. It was
shown that signals from the cortex are led through the basal ganglia, to the thalamus,
which influences motor control centers in the brain. (Côté & Crutcher, 1991)

Extrapyramidal system
The basal ganglia became known as a component of the so-called extrapyramidal
motor system, which was first presumed to operate independently of the pyramidal or
corticospinal system. However, today it is known that both systems are intercon-
nected, and cooperate. Furthermore, other parts of the brain are shown to play a part
in voluntary behavior as well , and the basal ganglia also have a role in cognitive
functioning.

The basal ganglia themselves are a conglomeration of f ive distinguishable inter-
connected nuclei. They are called the:

• globus palli dus, internal (GPi) and external segment (GPe)
• subthalamic nucleus (STN)
• substantia nigra, pars compacta (SNC) and reticalata (SNR)
• striatum, consisting of caudate nucleus and putamen

From the cortex there is a direct and an indirect signal pathway through this con-
glomeration, maintained by circuits that use different neurotransmitters, such as
GABA, glutamate, enkaphalin and substance P. There is a delicate balance between
these two pathways that is partly maintained by dopamine release from the substantia
nigra to the striatum. Dopamine release inhibits the indirect pathway by stimulating
dopamine D2-receptors, and excites the direct pathway by stimulating the dopamine
D1-receptor (see Figure 7.3A, Timmerman 1991, Vermeulen, 1994). The thickness of
the arrows represents the strength of the signal. In the case of Parkinson’s disease the
indirected path is less inhibited, so becomes stronger. The direct path will l ack ampli-
fication and will become weaker.
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Figure 7.3: Major neural pathways in normal and Parkinsonian basal ganglia

Substantia nigra
In postmortem studies it was discovered that the substantia nigra (meaning "black
substance"), had lost its pigment in Parkinson patients. Subsequent studies showed
that dopamine levels in the striatum were drastically reduced. Because the basal gan-
glia contains most of the dopaminergic neurons of the brain, these observations sug-
gested that the dopaminergic pathway between the striatum and substantia nigra is
degenerated in Parkinson’s disease patients. It was theorized that the depletion of do-
pamine disbalances the direct and indirect pathways from the striatum, which causes
the thalamus to be overstimulated. As a result the frontal cortex is less activated,
which would contribute to the Parkinsonian symptoms (see Figure 3B).

7.5 Drug treatments

L-dopa
Given the observations in the basal ganglia in the early1960’s Birkmayer and Horny-
kiewics reasoned that it would possibly help Parkinson patients if the level of dopa-
mine was restored to normal levels. It is not possible to administer dopamine itself as
a drug because it will not pass the blood-brain barrier between the blood vessels and
neurons. However, L-dopa, the precursor in the synthesis of dopamine will . So they
reasoned they could boost the dopamine production up to higher levels by providing
the few remaining healthy dopaminergic neurons with large amounts of extra L-dopa.
(Côté & Crutcher, 1991; Vermeulen, 1994)
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The first tests led to a successful initial remission of the symptoms. Yet this posi-
tive effect was countered by serious side effects such as nausea, vomiting, blood
pressure changes, and collapse. This could be explained by the fact that the enzyme
AADC, which converts L-dopa to dopamine, is also present in the liver, kidney and
many other places in the body. So while the dopamine levels in the striatum became
more normal, the extra dopamine production disturbed chemical balances elsewhere
in the body.

AADC inhibition
After further studies it was demonstrated that the effect of the L-dopa treatment was
enhanced when the dose of L-dopa is increased more gradually. So the focus of re-
search became the reduction of the side effects. In the early 1970’s the first AADC
inhibitors that could not pass the blood-brain barrier were introduced. This made it
possible to increase dopamine levels in the brain only, because the conversion of the
extra L-dopa in the peripheral organs could be inhibited selectively.

MAO-B inhibition
Another way to increase dopamine levels is to block the enzyme MAO-B that is con-
verting dopamine to DOPAC. It is demonstrated by studies that the administration of
MAO-B inhibitors slows down the progression of Parkinson’s disease, and increases
the li fe expectancy.

It is argued that this slow down can also be explained by the hypothesis that
Parkinson’s disease is caused by a toxin similar to MPTP. It was shown that MPTP
needs to be converted to MPP+ by the enzyme MAO-B to have its destructive effect.
So if some toxin like MPTP causes the cell death in the basal ganglia of Parkinson’s
disease patients, the inhibition of MAO-B would slow down this process.

Yet it is also argued that the positive effect of MAO-B inhibition can be (solely)
attributed to the effect that it inhibits the break down of dopamine, and hence in-
creases the dopamine level.

L-dopa treatment only symptomatic
While L-dopa is the best available remedy to ease the lives of Parkinson patients, it is
not even near a cure. Treatment that aims to increase dopamine levels turns out not to
stop the further deterioration of dopaminergic cells, and hence does not work well i n
the long term. Long-term use of L-dopa frequently results in fading of the therapeutic
effect and the development of serious side-effects, such as further motor impairment
and psychiatric complications. Furthermore, while the lack of dopamine causes most
of the Parkinson symptoms, Parkinson’s disease patients also suffer a loss of
noradrenergic and serotonergic neurons, which contributes to the disease as well .

Dopamine receptor agonists
To bypass the problem of the side effects of L-dopa treatment, research was initiated
to synthesize compounds that would directly act on the dopamine receptors. These
compounds, called receptor agonists, would take over the role of dopamine, so no
administration of L-dopa would be needed. And hence the side effects induced by
large amounts of L-dopa would be countered.
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To date this ideal has not yet been reached. While long-term treatment with the
available dopamine receptor agonists results in less dyskinesias, the therapeutic effect
is less than that of L-dopa. And increasing the dose only leads to other serious side
effects such as psychotic reactions. Better effects result from a combination of a low
doses of L-dopa with an agonist.

There are also others reason for research into dopamine receptor agonists. It has
also been put forward that long term treatment with L-dopa accelerates the degenera-
tion of dopaminergic cells. This could be caused by the enhanced generation of toxic
free OH-radicals through dopamine auto-oxidation (Vermeulen, 1994). The higher
the amount of dopamine in the cell through extra L-dopa, or MAO-B inhibition, the
higher the risk of toxication. If this claim is true, it is preferable to use receptor ago-
nists.

Furthermore, synthetic agonists have the advantage that they can be made highly
selective for a particular receptor. There are now five known types of dopamine re-
ceptors, and further knowledge of how they are integrated in neural circuits that
regulate motor behavior may result in an agonist with less (but also different) side
effects.

7.6 Conclusion

In this chapter I asked: How are theory and experiments used in drug research for
Parkinson’s disease, according to the literature? Theories about the neurophysiology
and biochemistry of the brain are used to explain the pathology of Parkinson’s dis-
ease, and the function of known drug interventions. In neuropharmacology theory
serves to guide the search for new and better drugs. In this chapter I surveyed the do-
pamine theory of Parkinson’s disease, and how theories about dopamine’s metabo-
lism and function imply suggestions for treatment. In the next chapter I survey part of
a practice of research on Parkinson’s disease.

*  *  *
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Chapter 8 

Practice

8.1 Introduction

How are theory and experiments used in the practice of drug research on Parkinson’s
disease? Several techniques are being used to search for new drugs and explore the
activity of the basal ganglia. In this chapter I report on how new drugs are investi-
gated and how experiments are being used to explore and test new drugs and the
mechanisms of the brain at the Pharmacy Department of the Groningen University.

For my case-study I interviewed researchers Dr. B. Westerink and Dr. W. Tim-
merman. In the following sections I will report on their views and experimental work.
Section 8.2 presents an overview of my interview with Dr. B. Westerink. Sections 8.3
to 8.5 report my more extensive interviews with Dr. W. Timmerman which I partly
conducted while witnessing her work in the laboratory.

The numbered paragraphs in these sections are translations of a selection of the
verbatim responses to my questions, which were reviewed and approved by the inter-
viewees. They aim to present an objective picture of the researchers’ views on their
work. Off course, all errors of translation and interpretation remain my responsibilit y.
The next chapter of this thesis will present a detailed analysis of the practice that is
portrayed in this chapter. The paragraphs are numbered for ease of reference.

8.2 Investigating new drugs

Dr. B. Westerink is a senior researcher, conducting his work at the Pharmacy De-
partment of the Groningen University. The following text reports his views in re-
sponse to my questions about drug discovery in the context of drug research for
Parkinson in general, and more specifically at his department. The interview was
conducted in December 1996.

 1 Drug experiments can serve to investigate how and why a drug has a particular
effect, whereas that effect is often discovered by accident. In 1960 the mechanism
of neurotransmission became better understood. In 1965 it was discovered that al-
ready known kinds of compounds had a neurotransmitter function. Carlson dis-
covered that in Parkinson’s disease dopamine was deficient.



110 Chapter 8. Practice

 2 By an accidental observation it was discovered that chlorpromazine, while it
was being administered for a different reason, improves schizophrenia. By focused
experiments on rats it turned out that that this drug had an effect on the amount of
dopamine. The hypothesis was proposed that chlorpromazine blocks the dopa-
mine-receptor, which would cause the brain to compensate by increasing the syn-
thesis of dopamine. This hypothesis is accepted today.
 3 Often you see that an effect of a drug is discovered by accident, by a secondary
observation. This will t hen initiate further research to understand the specific
function of a drug. Later it was discovered that chlorpromazine causes parkinson-
ism as a side effect. This suggested a relation between DA and Parkinson’s dis-
ease. This hypothesis [as discussed in the former chapter] is a result of further ex-
perimental investigations. This hypothesis pointed to rational strategies for therapy
and novel drug design.
 4 One direction that is explored in Groningen is the development of selective
DA-agonists. These are chemical variants of the structure of dopamine. Those
variants are experimentally tested in vivo (on live animals) and in vitro (on sam-
ples of tissue in a test tube) for their biological activity on a receptor. As a reaction
to an agonist a receptor can make Cyclic-AMP. The concentration can be meas-
ured and compared with the concentration that is released after contact with do-
pamine.
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Figure 8.1: The chemical structure of dopamine and its variant ADTN

 5 In 1977 a variant of DA was conceived by Prof. Horn (former professor at the
Groningen University), called ADTN (Figure 8.1). This structure was the basis for
further variants that were experimentally tested on four criteria:

1. The activity on the DA-receptor
2. Lipophili city, the abilit y to cross the blood/brain barrier
3. Metabolism, its decomposition by enzymes
4. Selectivity, its aff inity for D1 and D2 receptors

 6 Suggestions for variants are based on experience and fingerspitzengefühl. It is
hard to exactly predict what a receptor and enzymes will do with a compound. Yet
the design of an antagonist is somewhat less diff icult because it only has to ob-
struct a receptor, while an agonist has to fit and activate the receptor, li ke a key.
 7 The NH2-group of the best variant of ADTN was extended with two propyl-
groups. This increased its lipophili city so dramatically that it could even be ad-
ministered by a band-aid on the skin. Removing a hydroxyl-group decreased its
metabolism.
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 8 The experimental search also evolves the other way around. When a new re-
ceptor is discovered, its genetic expression can be used to clone it. These clones
are then used by pharmaceutical companies to test all their created compounds for
activity on that receptor. If one of the often more than 100.000 compounds is
found to be active it can be the basis for a new drug lead.
 9 Another strategy is using techniques from combinatorial chemistry to create
thousands of variants of a compound at the same time and test them by rapid
screening techniques. If activity is observed the compound that caused it is re-
trieved and will be studied to discover its structure.
 10 A computational approach builds 3D models of receptors. These are used to
aid the understanding of drug docking mechanisms [how a drug interacts with a
receptor] by simulating and visualizing that process. Such simulations make pre-
dictions possible about how a protein folds and deforms.
 11 If a new drug passes the criteria of the lab it will t hen be extensively tested.
This is a process in three phases. The first phase tests for toxicity. It is adminis-
tered to animals and later to volunteers. In the second phase the drug is given to
volunteering patients to test its therapeutic strength. When it passes this barrier it
goes into double blind testing and will be used in hospital trials. This is an expen-
sive process, and yet the drug can still make victims, even when it passes all three
stages. Genetically heterogeneous human beings are not the same as homogeneous
mice. It is always possible that a slight genetic mutation will make a compound
highly toxic for a particular group. Sometimes serious side-effects occur within
isolated groups, e.g. in Finland or in Jewish families.
 12 Newly created or discovered drugs are also used to explore biochemical
mechanisms in the brain, both in normal as well as pathological conditions. This is
another area of neuropharmacology. For Parkinson’s disease the basal ganglia are
of great interest.

8.3 Exploring the basal ganglia

In Groningen the nuclei called the basal ganglia were being studied by Dr. W. Tim-
merman and her students. The following text reports her responses to my questions
about Parkinson’s disease in general, and her experimental work on the basal ganglia
in particular. I conducted these interviews in January and February 1997, and in
September 1998.

In this section Dr. Timmerman talks about how the basal ganglia are involved in
Parkinson’s disease, how they are explored experimentally, and how knowledge
about them can be used to treat Parkinson’s disease. In Section 8.4 Dr. Timmerman
talks about a specific experiment that was conducted during the interview. Section
8.5 reports her thoughts on interpreting data from experiments in general, and the
conclusion of her experiments on the role of dopamine in the basal ganglia in par-
ticular.

 13 The basal ganglia present the nuclei in the brain where the neural activity is
abnormal in Parkinson’s disease. When activity changes in the basal ganglia, all
kinds of adjustments take place. Via the substantia nigra information is processed
to other structures, to the thalamus, and then back to the pre-motor cortex. But we
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do not know how, precisely. We also do not know exactly how information is
processed from the basal ganglia to the periphery.
 14 We know that the striatum processes information via a direct and indirect
pathway to the SNR. From the nigra connections go further to the brain stem, and
from there to the spinal cord. This can constitute a direct control of certain mus-
cles. But there are also pathways going back via the thalamus to the cortex. So it is
also possible that for example a change in activity of the corticospinal pathway is
necessary for the deviation in behavior and motor control. I think it is a combined
action. It is not just the basal ganglia and neocortex. The thalamus is involved, just
like the cerebellum, which in turn also projects to the thalamus and the spinal
cord. If the activity changes in the thalamus and the neocortex by input from the
basal ganglia, then these changes can spread through the brain, making adjust-
ments elsewhere.
 15 Much is known about the anatomy of the basal ganglia. It is much more re-
fined than is depicted in the model [see, Figures 3.1 and 7.3]. For example, it now
seems that there are also dopaminergic neurons projecting to the Globus Pallidus
(GP) [see Figure 8.2]. It also seems that the direct pathway has branches to the GP
[see dotted lines in Figure 7.1].
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Figure 8.2: Schematic illustration of the basal ganglia by W. Timmerman

 16 These pathways are discovered by means of tracing methods, e.g. by color
coding and mRNA detection. Even so, it was discovered that the striatum is not a
homogeneous structure. It is now known that it contains limbic patches in a matrix
[see circles in Figure 8.2]. These areas specifically receive information from lim-
bic areas in the cortex. From those patches specific information is processed onto
the dopaminergic cells in the SNC. This is just the anatomy. These patches are
chemically different, but not electrophysiologically.
 17 In my study of the basal ganglia I specifically look at postsynaptic processes. I
ignore anything that happens in the dopaminergic cell. I apply dopamine-agonists
locally. In doing so I overrule the dopaminergic cell by activating post synaptic re-
ceptors, the receptors on e.g. the GABA-ergic and cholinergic cells. It is not my
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problem how the endogenous dopamine is released by the cell , or how it originates
from L-dopa or is broken down by MAO-B. Other people look at those specific
processes. That is a research preference. Of course in the end it all has to fit to-
gether.
 18 Anatomically you can look at one cell , one synapse, and you can identify pro-
jections and pathways. But for function you can learn from behavioral studies.
These are often used as a measure for activity in the striatum. By local infusion of
GABA-like and dopaminergic compounds in a certain part of the basal ganglia
you can induce prototypical motor behaviors. By increasing and decreasing these
compounds in different parts you can develop a concept of the role of GABA and
DA on this level.
 19 If you want to know what dopamine does in the brain then you can for instance
give amphetamine, a compound that will i nduce the release of dopamine. If you
administer it to a rat, it will show stereotypical behavior. It is a simple test that
shows that dopamine is related to behavior.
 20 But the question is: where is this dopaminergic effect mediated? Dopamine is
not located in just one brain area. There is the nigro-striatal dopaminergic path-
way, but there are also dopaminergic pathways that lead to the cortex and the ac-
cumbens. So you can specifically inject amphetamine in the cortex, striatum or ac-
cumbens. You will only see that specific stereotypic behavior if you inject am-
phetamine in the striatum. If you apply it in the accumbens you will mainly see lo-
comotor activity, not stereotypical but an increase in locomotor behavior.
 21 Behavior is a very accessible measure in experimental research. You have a
cage, you have a rat, and you can start your research. So I start with that. In this
way you can get new ideas about what a certain transmitter or pathway does in the
brain, even though you are doing very littl e in the animal. You just look at simple
behavior, is it running, is it stereotypical or not? You can also do very complicated
experiments with learning models, then you explore different pathways.
 22 In behavioral experiments you look at the end product of your injection. An-
other way is to measure the response directly in the brain in specific areas by in-
serting a microdialysis probe into the brain. In that way we can measure the direct
effect of amphetamine, it releases an enormous amount of dopamine. The expla-
nation for that effect is that the vesicles that contain dopamine fuse with the cell
membrane, resulting in the release of dopamine in the synaptic cleft.
 23 The research that I am doing aims to bridge the gap between our knowledge
about the anatomy of the basal ganglia and pharmacology/physiology. From the
anatomy we know that there is a connection between dopaminergic pathways and
the striatum. But what is the effect of a dopamine transmitter on the striatal cells?
That is still not entirely clear. It is an essential question.
 24 In Parkinson’s disease dopamine depletes in the striatum. That appears to be a
major problem. To solve that problem you can administer L-dopa or dopaminergic
agonists. But these turn out not to be ideal therapeutics because after a while side
effects appear and they gradually loose their therapeutic effect. What you rather
want to know is the function of dopamine in the striatum. If you have a better idea
of its function it may be possible to use other, more specific compounds. So, it is
essential to know what dopamine does in the striatum.
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 25 We have learned that there are two main subtypes of dopamine receptors in the
basal ganglia, D1 and D2. So I work with compounds that are specific for those
subtypes. But what is the function of those subtypes? In the literature this question
has been asked many times. Should we just use a compound specific for D2 or one
that acts on both types, such as e.g. apomorphine? This compound has not been
used for a while because of its many side effects. But it now seems to be a reason-
able alternative.
 26 Also L-dopa has D1/D2 aff inity, simply because it results in more dopamine
that acts on both subtypes. It is an ongoing discussion, what is ideal? You want to
replace dopamine, you cannot use dopamine itself, so what do you need? Do you
need to activate only one subtype so that you restore function, but not induce side
effects? Is activation of D2 receptors enough, or do you need a littl e bit of D1 re-
ceptor activation too, and what is the ratio?

Searching a treatment
 27 The problem of all dopamine-agonists is that they also have side effects in the
periphery, in other places of the body like the heart and veins. You can counteract
that by administering peripheral dopamine antagonists, li ke domperidome, to-
gether with a dopamine agonist. That will relieve side effects li ke nausea, but has
its own side effects.
 28 Another diff iculty is that you have to find a proper dose that may differ per
person. Too much DA-stimulation will l ead to an over-activation that can induce
e.g. spontaneous dystonias. [Dystonias are movement disorders in which sustained
muscle contractions cause twisting and repetiti ve movements or abnormal pos-
tures.] Usually after about five years patients will be increasingly in an off-period.
In an on-period a patient reacts positively to medicine. In an off period the reac-
tions are either poor or hyper.
 29 In theory you try to maintain a level of dopamine receptor stimulation by ad-
ministering dopamine agonists. But when you apply a compound the sensitivity of
the receptors changes. In Parkinson patients the dopamine receptors become hy-
persensitive as result of the dopamine depletion. By a process of up-regulation the
number of receptors on cells increases. This changes, for instance, also the uptake
of dopamine. There are all kinds of mechanisms that act as soon as something
changes, to compensate for the change.
 30 By administering an agonist you try to reestablish the situation that was normal
before the degeneration of the dopaminergic cells. But you do not know what that
situation was. In the clinical practice, different doses are tried until the patient’s
motor behavior returns to normal. But that dose might not be comparable to the
amount of dopamine that was normally released before the degeneration. When
you start medication the receptors are still hypersensitive. But that will change,
and the induced effect will eventually decrease, so the dose should be adjusted.
 31 There are methods to establish sensitivity. But there are also all kinds of com-
pensation mechanisms on other levels than the dopamine system. Changes in do-
pamine induces changes in acetylcholine in the striatum, and also changes in
GABA and glutamate. So, how to solve that problem, how to chart that system
and how to restore it to normal?
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 32 The clinical studies are a kind of trial and error. The therapy is thought to be
adequate when the patient responds well . Parkinson patients respond well to do-
paminergic agonists, but also to cholinergic antagonists. There has been long dis-
cussion about an explanation for that effect. It is thought that there is a DA-
acetylcholine balance in the striatum. When dopamine increases, acetylcholine de-
crease, and vice versa. That would explain why dopamine agonists and acetylcho-
line antagonists have a similar effect.
 33 By doing basic experimental work it now appears that stimulation of D2 re-
ceptors on cholinergic neurons does indeed inhibit the cell , explaining the balance.
But, via D1 receptors and via the cortex dopamine can also stimulate acetylcho-
line. So there is a delicate balance between an inhibitory and excitatory effect of
DA on acetylcholine functioning. It can only be discovered by basic experimental
research. How to incorporate such specific knowledge into the practice of treating
Parkinson’s disease is another problem.
 34 Another approach is to study the effect of using NMDA antagonists. NMDA is
a glutamate receptor subtype. Maybe we should use such a compound in combi-
nation with a dopaminergic therapeutic to create the optimal effect. However, the
problem is that glutamatergic activation will i nfluence the whole brain. You im-
mediately interact with all kinds of other areas, so that will not be my best bet. Yet
if you would understand how glutamate interacts with dopamine then you could
judge this better. But given our current knowledge it is still a long way to go be-
fore we can easily infer what to do.
 35 For my own research I want to know what the effects are of D1 and D2 receptor
stimulation in a healthy situation. If you got a good idea of that, you can look at a
lesioned model to verify if the effect is the same in the pathological situation. Is
the interaction between glutamate and dopamine and dopamine receptor subtypes
still t raceable in the same way? If that is not the case then you must better estab-
lish what kind of compensation is involved after a dopamine cell l esion.

Using the model
 36 At the moment the role of dopamine in the striatum is still a matter of debate.
We have a model which claims that there are excitatory D1 receptors on the direct
pathway, being separated from the inhibitory D2 receptors on the indirect pathway.
But if you look at the literature, all kinds of gaps emerge in this story. It is pleas-
antly simple, but it completely lacks nuance.
 37 For example, it is dubious whether D1 receptors are located only on the direct
path and D2 receptors only on the indirect pathway. This claim alone is subject of
enormous debate. There is a group of well known anatomists that claim that there
is a division, based on studies of rats and monkeys with a dopaminergic cell -
lesion. A way to discover the presence of receptors in pathways is by looking at
messenger RNA. But with the same methods another group claims that D1 and D2

receptors are present on both pathways, with no absolute segregation.
 38 My own data also do not fit the model. The model explains many findings but
also leaves a lot of questions. But in the literature many authors appear to just treat
the model as given, apparently without questioning it. This is something that in-
trigues me. Even though it does not fit the data well , it has gained enormous
popularity. Why? I think that it is because the model fits the way you think that it
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will work. It provides a prediction that you can easily understand. It is simple and
it is beautiful to work with. That is why I think so many people just take it for
granted without questioning it.
 39 The reason that it is beautiful is the following. Upon activation of the cortex
you get a glutamate activation in the striatum. Now if glutamate acts in a similar
manner on both the direct and indirect pathway, you get a net reciprocal effect in
the SNR, they counteract each other. The model shows that dopamine acts syner-
gistically with glutamate stimulation via the D1 receptor to increase the amount of
GABA in the SNR, inducing an inhibition of the nigral activity. At the same time
dopamine inhibits the indirect path that would increase nigral activity via the D2

receptors, therefore diminishing the excitation of the nigral cells. So, dopamine let
the activities of both pathways point in the same direction. It stimulates the direct
pathway and inhibits the inhibition via the indirect pathway. The net result is a de-
crease of activation of the SNR. This is associated with behavioral activation. It
increases the activation of the thalamus and brainstem, which coincides with all
kinds of activity.
 40 That is why it is beautiful, dopamine is a compound that facilitates activation.
For example, with amphetamine you see stereotypical locomotion activity. You
can understand that behavior using the model that says that an increase of dopa-
mine results in SNR inhibition, which enables behavior activity.

8.4 Testing the model

In this section I report on how Dr. Timmerman used the basal ganglia model to con-
duct her own experiments in the laboratory. Part of the interview was conducted in
the laboratory.

 41 The model is subjected to heavy criticism. The first thing I did was to check
whether a change in activity of striatal cells caused a change in the SNR. I infused
glutamate agonists of several receptor subtypes and an immediate decrease of ac-
tivity could be observed in the SNR. That means that apparently the direct route is
stronger than the indirect route, as otherwise activation of the latter pathway
would induce an increase in activity, given the model. So I tried several glutamate
agonists to confirm the model.
 42 After that we did a test with a D1-agonist. The result was a very slight de-
crease. Although the effect was very limited, it would be in accordance with the
model. However, application of a D2-agonist induced a gradual but again very mi-
nor increase. If any, it does not fit the model. So is there a real segregation be-
tween the two pathways? The effects are hardly noticeable.
 43 But is activation of the D1 receptor always stimulating? In vitro studies never
show a stimulation by D1 receptor activation. If you prepare slices of the striatum
and you apply a D1 agonist you will not see a stimulation but an inhibition. That
does not fit the model. So for me it is more like a model you work with, knowing
that there is a lot more nuance to it. Also people that perform those in vitro studies
never talk about this model. It does not fit their data, so why would they accept it.
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 44 What we know from other electrophysiological studies is that GABA-ergic
neurons in the striatum are hardly active, under basal conditions. You can easily
activate them with glutamate. We assume that dopamine modulates the glutamate-
GABA interaction in the striatum. But if there is very limited activity in the stria-
tum, a modulator will hardly be effective. So I thought, let’s give a slight activa-
tion of the striatum by glutamate, and then let’s see if we can make the modulating
role of D1 and D2 agonists more apparent. The literature also implies that the role
of dopamine depends on the influence of glutamate.
 45 My presumption is, D1 probably excitates, D2 probably inhibits, possibly on
different pathways. Can I confirm this, or cannot I? Well , I cannot confirm every-
thing. Under basal conditions, without activation by glutamate, you can not speak
of dopamine as a modulator, because there is nothing to modulate. That was my
former study. Having finished that, I am now searching for a better start situation.
That means I have to induce a slight glutamatergic activation locally in the stria-
tum. I tried that, but it was diff icult. You cannot have a nice constant activation
because all kinds of other systems immediately try to compensate the increase in
activity.
 46 What I tried together with a student of mine, is to stimulate at the level of the
cortex with a glutamate agonist, and look if this activation is noticeable in the
SNR. You expect that the activation of the cortex will release glutamate in the
striatum, that will consequently result in activation of GABA-ergic neurons. De-
pending on what pathway is the strongest, this should decrease or increase the ac-
tivation of the SNR. So first we want to know which pathway dominates upon ac-
tivation, but only to search a situation to again test the role of dopamine in the
striatum.
 47 After performing these studies it seemed that the cortex is not the best place to
start the activation. So now we try to start with activating the thalamus. The
thalamus projects both via the cortex and directly on to the striatum. That would
create a general activation in the striatum. We have seen that if you infuse a glu-
tamate agonist in the thalamus, just for ten minutes, then you will see a slight re-
action. Yet we could not confirm this in later studies.
 48 The suggestions to change experimental conditions are based on both the
model and our former experiences. According to the model glutamate with D1 re-
ceptor activation will i ncrease the activation of the SNR, they ampli fy each other.
 49 The test we are running now [Feb. 26, 1997] is to first infuse a D1 agonist into
the striatum. Secondly we will give a glutamatergic stimulation of the striatum to
find out if D1 cooperates with glutamate to induce an increase of GABA and hence
an inhibition of the SNR. We want to find out if the presence of a D1 agonist
makes a difference. We have done this D1 agonist infusion three times already. We
have seen some reaction, but very littl e.

Performing microdialysis
 50 In the laboratory we use brain dialysis probes. Such probes consists of a small
glass tube with at the bottom a semi permeable membrane and at the top two ex-
tensions, an inlet and an outlet. If a fluid is infused via the inlet, diffusion into the
surrounding tissue at the tip of the probe occurs. You can infuse compounds in
this way, but you can also sample from this area. Depending on where the area of
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interest is located in the brain, and what the dimensions are of this brain area you
can make longer or shorter dialysis probes.
 51 You can implant the probe in the brain in such a way that the tip is at a specific
location. For our experiments we use Wistar rats. You can find a location in its
brain using the atlas of the rat brain. Ours is falling apart because of its extensive
use. The atlas portrays the whole brain from back to front in slices. We want to put
our probe in the striatum. This area is relatively large, and both rats and human
beings have two striata. It is a stretched out area that runs through a large part of
the brain. To put in a probe you look at the coordinates of the map. These are
standardized for a Wistar rat of 300 gram, and you look for particular blood ves-
sels. The bregma at the center on top of the skull is a reference point. All brain
slices portrayed in the map have a known distance from the bregma. For the stria-
tum you look at the map that is just behind the bregma, the probe should be lo-
cated 3.5 mm to the side, and 7 mm deep.

Figure 8.3: Example slice from the rat brain atlas

 52 We place an anesthetized rat in a stereotactic apparatus, that clamps its scull
by the ears and at the nose. Using this apparatus you can exactly determine a given
location, using the bregma as a reference. When we find the given location and
drill a small hole in the scull of the rat. After that we slowly lower a probe inside.
We seal the probe with a screw and some cement. You prepare a rat a day in ad-
vance. When we add an electrode, to measure electrical activity, we always do this
just before the actual experiment starts.
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 53 The inlet of the dialysis probe is connected to an infusion pump. Very slowly
an ionic fluid is infused through the brain area, and it leaves the brain via the out-
let tube. The fluid that comes out reflects the compounds that are present in that
location at that moment. That fluid is guided through a system that analyzes a
sample every given time-interval. That system can be set up to measure particular
compounds, such as amino acids, dopamine, noradrenaline, etc. The compounds
are separated in a column from where they are guided to a detector. For example,
for amino acids we use a fluorimeter that registers the degree of fluorescence that
is detected and plots those values against time.
 54 In the case of our current experiment we have put in two microdialyis probes,
one in the thalamus and one in the striatum. Additionally, in the SNR we place an
electrode, which is an isolated wire with a small uncovered tip. This tip can meas-
ure electric activity outside the cell, it is still to large to measure intracellularly. In
this way we can make an extracellular recording of action potentials. You pick up
those signals from one or two nearby cells. You can determine what kind of cell
you are measuring by looking at characteristics of the action potential. When we
lower the electrode we actually try to find a particular cell type by looking at the
kinds of signals, given descriptions in the literature. The SNR neurons are de-
scribed as being tonically active, displaying a high firing frequency, and exhibiting
a nice thin action potential. We have to find the correct type since other cell types
may also be present in the same area. In this experiment it is easy because the
SNR mostly contains the same type of cells.
 55 To diagnose the cell signal type we use a computer program that records tem-
plates of signals we are interested in. You record an example of a signal and tell
the program to start looking out for those types. It distills the signals from the
noise. We know that an SNR action-potential lasts about 0.7 milliseconds. Any
signal that takes longer will be ignored. Depending on the location of a cell and its
connections, it displays a particular electrical activity. The activity depends on in-
coming signals from other cells or it can fire spontaneously. In our experiment we
know that the cell fires about 20 to 40 times a second. An extra condition for this
experiment is that the firing frequency remains stable in time. If the activity we
monitor deviates from those conditions we start looking for another cell by mov-
ing the electrode again. To find good cell activity one has to learn; it will take
time, patience and frustration.
 56 When all conditions are met we start the experiment. We need a good base
line, a good firing frequency, the activity needs to be tonic, the rat should be well
anesthetized. All conditions should remain stable for half an hour. Then we record
a base line of the activation for ten minutes, and start the fluid infusion. That is all
still part of the preparation. When all goes well up to that point we decide to start
the actual experiment or wait or look for another cell. If everything looks good we
do not touch the rat anymore and start the experiment. The only thing that remains
is to change the syringe from the one containing an isotonic fluid to the one that
contains the isotonic fluid with the drug to be applied and start the drug infusion.
The compound will enter the brain and now all we need to do is see what will
happen.
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 57 We have done a test with a D1 agonist. After half an hour stabilit y we started
the infusion. From that moment we knew that the compound was inside the rat’s
brain and an effect can appear, and than you gradually see an effect. Most of the
times we hardly saw anything, but a few times we saw a slight decrease. So the D1

agonist has littl e effect, it hardly deviates from the start condition, but you have
the feeling that it has a slight inhibiting effect. Under these conditions ampheta-
mine has a similar slight effect. You also have the feeling that it suppresses, but
only very littl e. So if any, it seems to work in the same way as a D1-agonist.
 58 By trying a D2-agonist we saw that it did something different, it gave a gradual
increase of activity. Therefore D1 and D2 agonists seem to act differently. But the
effects are hardly noticeable. That is why we induced a situation where the stria-
tum was activated. If you infuse a glutamate agonist in the striatum, you see an
immediate and very strong effect, that only lasts for a limited amount of time.
Hence, what I then looked for was a relatively low dose to create a more stable
activation to use as an activated condition.
 59 When the experiment is finished we apply a small amount of current on the
electrode to burn a littl e hole, which will mark the location. Then we sacrifice the
rat, and remove its brain. You end up with a whole series of jars with brains in
them. Then you plan a day when you will slice up all those brains. With the help
of the brain atlas and the marked position of the electrode tip you determine the
exact location of your measurements.

8.5 Interpreting the data

In this final section I report on my questions to Dr. W. Timmerman about the inter-
pretation of laboratory data in general, and the published conclusion about her inves-
tigation in particular.

 60 Sometimes the data you obtain deviates from what you expected, or the out-
come of one experiment is very different from the rest. In the latter case it is pos-
sible that the probe location was wrong. This would give you a reason to remove
these results from your sample. However, if that is not the case you will have an
anomaly.
 61 If I find an anomaly I check the experiments just before and after in the same
series to see if something can be traced from that. Also the experiment has to feel
right. For instance, sometimes a signal is hardly noticeable in the noise, and then it
already casts some doubt.
 62 But if the template was good, the stabilit y was in order, and you still see a de-
viating response, and it was one deviation in e.g. five others, then I just mention it
in the results section of an article. One rat was an exception for an unknown rea-
son, so be it. As an average we always repeat an experiment five to six times. You
cannot base anything on one observation. Sometimes we follow one experiment,
but often it turns out that it is still different. You cannot publish anything based on
one experiment.
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 63 Another influence on your data is the anesthetic. For instance, ketamine is an
anesthetic that acts on the glutamate receptor. You do not want that. There are all
kinds of arguments to use anesthetic. It is less stressful for the animal. You have
more stabile activity compared to animals that are awake. But because the striatum
is involved in motor behavior you never can be sure that it does not influence your
data. You do not know until you also check it with awake animals.
 64 Yet another factor is that in Parkinson research animal models are used that
are lesioned with for instance MPTP [see Section 7.2], but that may not reflect the
entire or precise pathological situation. So conclusions about the model may not
be true for the disease.
 65 Another issue is that many effects in experiments with systemic dopaminergic
injections are ascribed to the striatum. This is indeed one of the areas where ef-
fects can be mediated. But an effect can also be directly induced in the accumbens
or the SNR. You could be wrong by claiming that it was the striatum. DA released
from dendrites can also be involved. That is another complication. So it is not all
that easy to establish the functional role of dopamine.
 66 For the manipulations in our research we focused on glutamate and dopamine
interactions. But in the back of your mind you know that there are also dopamine-
acetylcholine interactions, and all kinds of peptides, and the influence of GABA-
ergic neurons. So you leave out a great many to keep a grasp on what you are do-
ing. So if you find things that you can not easily understand, there are many expla-
nations possible. You know you cannot explain everything by just measuring do-
pamine, glutamate and GABA, there is much more to it.

This concludes my interviews with Dr. Timmerman about her work and experiments
up to February 1997. In later tests Dr. Timmerman further experimented with differ-
ent setups, such as beginning with a glutamate agonist infusion, followed with a glu-
tamate agonist infusion in combination with DA-agonist. About this work she and
her coworkers published the following conclusion:

 67 “To gain insight into the role of striatal dopamine in basal ganglia functioning,
dopaminergic drugs alone, and in combination with the glutamate receptor agonist
kainic acid were infused in the lateral striatum via a microdialysis probe, while
single-unit recordings of substantia nigra reticulata neurons were made in chloral
hydrate-anaesthetized rats. Striatal infusion of dopaminergic drugs did not signifi-
cantly affect the firing rate of substantia nigra reticulata neurons, which was re-
lated to the low activity of striatal cells under basal conditions, ill ustrated by the
lack of effect of striatal infusion of TTX on substantia nigra reticulata activity.
Under glutamate-stimulated conditions, striatal infusion of d-amphetamine poten-
tiated the inhibition of substantia nigra reticulata neurons induced by striatal kai-
nic acid. Thus, under stimulated but not basal conditions, the modulatory role of
dopamine in the striatum could be demonstrated. Dopamine potentiated the in-
hibitory effect of striatal kainic acid on the firing rate of the basal ganglia output
neurons.” (W. Timmerman, F. Westerhof, T. van der Wal and B. Westerink, 1998)
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8.6 Conclusion

The specific question for this chapter was: how are theory and experiments used in
drug research for Parkinson’s disease, in practice? I tried to present an image of a
practice in neuropharmacology by interviewing two scientists about their specific
work in investigating new drugs, exploring the functions of part of the brain, testing a
model of those functions and interpreting the data.

Overall , neuropharmacologic research can be characterized as searching, under-
standing and testing a way to make the characteristics of a pathological systems re-
semble a healthy situation. Experiments are used to chart both situations, and to try to
bring one situation closer to the other by drug manipulations. In the next chapter I
will analyze the specific problems addressed in the practice, as described in this
chapter, in detail .

*  *
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Chapter 9 

Discovery

9.1 Introduction

In Chapter 8 I reported on my own epistemological experiment, where I observed and
inquired about a scientific practice, the process of discovery in neuropharmacology.
Chapter 7 reported on a part of the theory that is used and developed in that practice.
In this final chapter I analyze both the theory and practice, using the concepts from
my theoretical discussion of discovery in Part II. The particular question that is an-
swered in this chapter is: what is the rational use of theory and experiment in neuro-
pharmacology? For my description of discovery in neuropharmacology I will pursue
answers to the three specific questions of this thesis, i.e. 1) what is the structure of a
scientific theory?; 2) what is the process of scientific reasoning?; and 3) what is the
route between theory and experiment?

In answering these questions in this chapter I combine the theoretical approaches
of logic as introduced in Chapter 4, and cognitive science, as discussed in Chapter 5.
My main goal is to describe the practice of neuropharmacology. I will use the prob-
lem solving concepts from cognitive psychology to describe steps in the process of
discovery, while I use the concepts of the logical approach to describe the products of
that process. My aim is not to explain the particular directions of the search process
that is described, by extracting and representing implicit knowledge as production
rules. Those rules are dependent on the personal experiences of researchers and
learned in a particular practice, as argued in Sections 5.7 and 5.8.

To analyze the structure of the DA theory I will first, in section 9.2, introduce a
logical approach to represent the structure of theories in general, and dynamical sys-
tems in particular. Then, in section 9.3, I formally represent the theory of the basal
ganglia as a qualitative differential equation, to answer the first question of this thesis
for the case study. Before going into the second question, the third question is ad-
dressed in section 9.4, where I describe the route between theory and experiment in
the problems faced in the practice of neuropharmacology. In section 9.5 I go into the
process of reasoning in explanation, prediction and design. I will also discuss how a
description of that process could be applied in that practice. Finally, in section 9.6 I
end with a general conclusion, discussing the consequences of my observations and
analysis of the case for the theory about discovery as discussed in Part II.
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9.2 Models

The first question I will address is, how to understand the structure of the DA theory
of Parkinson’s disease. And secondly, how does it explain the effect of known treat-
ments. In this section I will i ntroduce a model theoretic approach to the structure of
theories.

The structuralist approach in the philosophy of science characterizes a theory by
its models, conceived as structures. (Th.A.F. Kuipers, 2000). A structure, in this
context, is usually represented as an ordered set of variables, functions and constants.
A structure is called a model of a theory if the theory, seen as a proposition about that
structure, is true.

The core of a theory consists of a set of models M which is a subset of all con-
ceptually possible models MP given the vocabulary of the theory. The difference be-
tween MP and M are all models that the theory excludes and is called the empirical
content of a theory. It contains all the potential falsifiers of the theory. Given a do-
main D of application of the theory it is assumed that there is a subset of MP that are
the empirically possible models of that domain. A weak empirical claim states that all
empirically possible models are models of the theory, a strong claim also asserts that
they are equal.

For my exposition I will characterize a theory by its vocabulary of variables, the
quantity spaces of those variables (a quantity space of a variable defines the range
and type of values of a variable), and constraints on the values of those variables,
given that they represent together the set of possible models and models of the the-
ory. I will further make a distinction between a theory T, which is basically a set of
definitions, and a hypothesis H which is a statement that asserts that the properties of
phenomena in domain D can be characterized by the vocabulary V and by the models
of theory T.

Definition 1 Theory. The ordered set 〈V, Q, C〉 of variables V, quantity spaces Q
and constraints C represents a theory. The theory determines an ordered set 〈MP, MT〉
that contains the conceptually possible models MP, given V and Q, and the models of
the theory MT, given the constraints C on V.

Definition 2 Hypothesis. The ordered set 〈V, Q, C, D〉 represents a hypothesis
where a theory is applied to a domain D. The hypothesis determines the ordered set
〈MP, MT, ME〉, that contains the conceptually possible models MP of a domain D
given possible descriptions by variables V and quantity spaces Q; the models MT of
the theory of the domain given constraints C on V; and the empirically possible mod-
els ME of the phenomena of domain D. The hypothesis asserts that the set of empiri-
cally possible models ME is a subset of, or equal to, the set of models MT of the the-
ory.

A model of a phenomenon in a domain is a structure that represents certain aspects of
that phenomenon in terms of a set of interpreted variables with particular quantities.
The structures that are possible according to the constraints C from a theory are
called the models MT of that theory. The conceptually possible models MP is the set
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of all the models that are possible if you combine all possible variables from V with
all their possible quantities from Q.

The relation between the conceptually possible models MP, the models of the do-
main ME and the models MT of a theory in a hypothesis can be graphically repre-
sented as in Figure 9.1. The different intersections represent subsets of structures that
constitute either a success, an anomaly or a problem for the theory. The goal of ex-
planation is to find a hypothesis, such that a better hypothesis has less problems (sub-
set 1) or anomalies (subset 3) then a competitor (Th. Kuipers, 1992, p.303).
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Figure 9.1: Models MT of a hypothesis and empirically possible models ME of the
phenomena of a domain, both part of the conceptually possible models MP

Subset MT ME

1 1 0 Explanatory problem
2 1 1 Explanatory success, confirming instance
3 0 1 Empirical anomaly, counter example
4 0 0 Explanatory success

Table 9.1: Subsets of conceptually possible models MP of a domain

To understand the theory of Parkinson’s disease we can understand it to be a hy-
pothesis about the dynamical behavior of the brain. The theory asserts what kind of
states and behaviors are possible. The set V and Q describe the known structural
properties of the brain, and the constraints in C describe the assumed functional rela-
tions between those properties. A variable x of a structure is related to variable y if
there is a functional constraint in C, such that y = f(x).

Disease and intervention
To understand the research problems in pharmacology we need to extend our vo-
cabulary. Pharmaceutical research is not only interested in how to explain observa-
tions of a pathological biological system. It also aims to know how to treat it, and
why a treatment works. For this we can introduce two extra subsets of MP, the mod-
els of a biological system that is influenced by a (drug) intervention, M I, and the
models of phenomena that we wish to cause, the set MW, see Figure 7.3.

Given a set of conceptually possible models of the behavior of a biological system
a set of drug interventions can be assumed to cause behaviors represented by the set
M I, while the set MW represents the set of wished for behaviors. Let ME represent the
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empirically possible behaviors of a living organism with a given biological structure.
Hence if the assumptions are correct MI should be a subset of ME.

In Figure 9.2 subset 1 denotes an undesired behavior that is not treated by known
interventions. Subset 2 contains unsuccessfully treated system behavior and un-
wanted side effects of a partially successful drug treatment, while subset 3 denotes
behavior that is successfully treated. Subset 4 may be equal to health, given that W
denotes health. Subset 5 can contain a behavior that is not possible given the biologi-
cal structure of the organism, but can still be desired. Subset 6 equals the periphery of
both possibility and interest.
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Figure 9.2: Empirically possible models ME of a biological system, wished for mod-
els MW, and models MI of a system that is influenced by an intervention, all part of

conceptually possible models MP of a biological system

Subset ME MI MW

1 1 0 0 Disease, untreated by known interventions
2 1 1 0 Disease, treated with side effects
3 1 1 1 Successfully treated
4 1 0 1 Health
5 0 0 1 Desired, but not empirically possible
6 0 0 0 periphery of interest and possibility

Table 9.2: Subsets of conceptually possible models MP of a biological system

These three sets define the main goals of neuropharmacology. It is a goal to de-
scribe and explain ME, what kinds of values of variables describing the brain and be-
havior of the organism are empirically possible, and why? It is also a goal to deter-
mine what kinds of states and behaviors MW constitute health, or are desired for other
reasons. And finally what kind of drug or other medical interventions cause those de-
sired behaviors.

Dynamical systems
In neurobiology the function of the brain is described and explained as a complex dy-
namical system. In physics, the most powerful tool to model a dynamical system is by
making use of differential equations. Variables represent properties of the system
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whose values can change over time. By defining the specific relations between those
variables those values can be predicted, given an initial state of the system.

Empirical studies of both the brain and behavior in Parkinson research results in
many quantitative data, correlating variables of the activation frequency of nuclei and
neural pathways and local concentrations of different kinds of neurotransmitters. Yet
those relations are not suff iciently known to define them as a quantitative equation.
The relation is only known qualitatively. Many results of empirical studies of the
brain amount to conclusions such as e.g. if the value of this variable changes in this
direction, the change of the value of that variable in that direction is statistically sig-
nificant. In this way the theory that explains Parkinson’s disease can explain why the
activation of the thalamus decreases, when the concentration of DA in the striatum
significantly decreases.

While these results are insuff icient to define a model with the aid of an ordinary
differential equation, they can be represented by a more abstract qualitative differen-
tial equation (QDE), cf. (B. Kuipers, 1994). A QDE can be defined as follows:

Definition 3 Qualitative differential equation. A Qualitative differential equation
(QDE) represented by the ordered set 〈V, Q, C〉 is an abstraction of an ordinary dif-
ferential equation (ODE):

dV/dt = C(V)

where V is a set of variables each of which is a reasonable function over time, whose
values are described in a finite set of qualitative landmark values belonging to Q, and
C is a set of constraints between those variables.

Definition 4 Reasonable function v ∈ V. Given an interval of the set of real num-
bers extended with ∞ and -∞, [a,b] ⊆ ℜ*, the function v: [a, b] → ℜ* is a reasonable
function over [a, b] if

1. v is continuous over [a, b]
2. v is continuously differentiable over (a, b)
3. v has only finitely many criti cal points in any bounded interval,
4. the one-sided limits lim t → a v’( t) and lim t → b v’( t) exist in ℜ* and are defined

as to be equal to v’(a) and v’(b), respectively.

Definition 5 Quantity space q ∈ Q. A quantity space q is a finite, totally ordered set
of landmark symbols such as -∞ < l1 < ...< 0 <...< lk < ∞ that describe qualitatively
important distinctions for a variable.

Important distinctions described by landmarks are values of variables that change in
time and become steady or start to increase or decrease at a certain time-point. The
qualitative value of a variable v at time-point t is expressed by a landmark from its
quantity space and a direction of change.
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Definition 6 Qualitative value at a time-point. The qualitative value QV(v, t) of a
variable v(t) with respect to a quantity space q = 〈l1, ...ln〉 is defined by the tuple
〈qmag, qdir〉 where,

qmag = l i if v(t) = l i,
(l i, l i+1) if v(t) ∈ (l i, l i+1)

qdir = inc if v’( t) > 0
std if v’( t) = 0
dec if v’( t) < 0

In a QDE the possible values of the variables in V are constrained by constraints in
C. The constraints in C can consist of constraints corresponding to additions, multi-
plications, negations, derivatives, and incompletely known functions specified only
as being part of a monotonicity class.

The last category is relevant for our case. We can know about a function f between
two variables v1(t) and v2(t), v1(t) = f(v2(t)), that it belongs to either M+, the class of
monotonically increasing functions, or M–, the class of monotonically decreasing
functions. That is, for every f ∈ M+, f’> 0, and for every f ∈ M–, f’< 0 over the do-
main of the function. These classes can be generalized to multivariate functions so
that e.g. M+ – is the class of functions v1(t) = f(v2(t), v3(t)), such that ∂f/∂v2 > 0 and
∂f/∂v3 < 0.

The constraints C in a QDE define which qualitative states and behaviors are pos-
sible. So C amounts to a theory about a system. We can define the qualitative state of
a dynamical system at a distinguished time-point, or on an interval between two dis-
tinguished time-points.

Definition 7 Qualitative state. The qualitative state of a dynamical system de-
scribed by m variables V at time-point ti is an ordered set of individual qualitative
values at a certain time-point or time interval from ti, to ti+1:

QS(V, ti) = 〈QV(v1, ti), ..., QV(vm, ti)〉
QS(V, ti, ti+1) = 〈QV(v1, ti, ti+1), ..., QV(vm, ti, ti+1)〉

The qualitative behavior of a dynamical system can now be defined as an ordered set
of qualitative states:

Definition 8 Qualitative behavior. The qualitative behavior of a dynamical system
with variables V on time interval [t0 < … < tn] is a sequence of qualitative states:

QB(V) = 〈QS(V, t0), QS(V, t0, t1), QS(V, t1), ... , QS(V, tn)〉

The possible states and behaviors of a system can be seen as models of the differen-
tial equation. Benjamin Kuipers developed a computer program called QSIM that can
generate those models. It takes as input a QDE and an initial qualitative state de-
scription and produces a tree of possible state sequences. This can be seen as:
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QSIM(〈V,Q,C〉, QS(t0)) = M

such that M is an ordered set 〈S, B〉, where S is a set of all possible qualitative states
and B is a set of all possible qualitative behaviors, i.e. totally ordered sets of qualita-
tive states, consistent with C (cf. Schultz and B. Kuipers, 1994).

It can be proved that given an ordinary differential equation (ODE) and its QDE
abstraction, all abstractions of genuine behaviors of the ODE are generated by QSIM,
but also some behaviors that are not an abstraction of a genuine ODE behavior. It can
predict spurious behaviors, not predicted by a numerical solution of the ODE. It re-
mains an open research problem whether qualitative solutions can be made complete
or are inherently incomplete. But to put this problem in perspective, numeric algo-
rithms also may produce non-sensical solutions due to round-off errors and careless
simulation around singular points (De Jong, 1998).

In the next section I will use the QDE representation to explicate the structure of
the dopamine theory of Parkinson’s disease, and how it explains the function of
known treatments.

9.3 Theory

Neurobiologists study the processes of the brain, e.g. by recording values of activa-
tion frequencies and concentrations of neurotransmitters in different locations of the
brains of guinea pigs, Wistar rats, or monkeys. When the values of two variables v1

and v2 are consistent with a monotonic function in all trials of an experiment, a cor-
relation could be proposed.

This is a simple style of descriptive induction, they are monotonically related in
the sample, so they are monotonically related in all brains, of the sample organism or
even in the human brain. It becomes an explanation if it is hypothesized what proc-
esses make it so that the variables act in that way.

In Parkinson research it is observed that the increase of symptoms is correlated
with a substantial decrease of the availabilit y of the neurotransmitter DA, which is
due to a decay of the substantia nigra pars compacta (SNC). The model of the basal
ganglia aims to explain why the decrease of DA can lead to these symptoms, by ex-
plaining why the activation of the SNR increases as a result of this decrease.

I will formally reconstruct this explanation by first representing the model of the
basal ganglia as a qualitative differential equation. This equation serves as a hypothe-
sis from which it can be deduced that given a decrease of DA, an increase of the SNR
activation is a consequence.

I will also show how the activity of known treatments can be explained as well .
This elaborate reconstruction will serve my analysis in section 9.4 about how the ba-
sal ganglia hypothesis itself is tested experimentally. The process of drug design will
be discussed in section 9.5, where I will argue how such explicit models can be used
to infer possible new interventions.
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Theory of the basal ganglia
The basal ganglia theory is a qualitative theory about a dynamical system, so we can
represent it as a QDE. We defined a QDE as a tuple 〈V, Q, C〉, where V is a set of
variables which are reasonable functions over time, Q is a set of quantity spaces for
those variables, and C is a set of constraints. In the basal ganglia theory there are two
basic variables describing firing rate (f) of nerve cells in a cell group, nuclei or path-
way, and the amount (a) of a particular neurotransmitter released in the vicinity of a
cell group, nuclei or neural pathway. The relation d/dt y = M+ x is used to state that
the change of values of y over time is monotonically related to the change of value of
x. It is a matter of debate whether this relation represents a causal direction from x to
y, for discussion see Iwasaki & Simon (1994).

I will represent the model of the basal ganglia as depicted in Figure 3.1, which was
used by dr. Timmerman (1992). While this model could be further extended to in-
clude other influences, such as those of substance P and enkephalin, as depicted in
Figure 7.4, the simpler model suffices for my analysis of the observed practice. The
notation x-to-y in the cell groups denotes the neural pathway from cell group x to cell
group y. I further abbreviate SNR/Gpi to SNR. So, we can define the basal ganglia
theory as follows:

Definition 9 Basal ganglia theory. TBG : 〈V, Q, C〉 is a QDE such that:

1. Variables in V

• Cell groups G, containing nuclei and neural pathways

G: {striatum, GPe, STN, SNR, thalamus, brainstem, cortex-to-striatum, SNC-
to-striatum, striatum-D1-to-SNR, striatum-D2-to-GPe, GPe-to-SNR, GPe-to-
STN, STN-to-SNR, SNR-to-thalamus, SNR-to-brainstem}

• Set of neurotransmitters N: {Glu, DA, GABA}

• The firing rate f(g) of cell group g is a value of quantity space F

f: G → F

• Amount a(n, g) of neurotransmitter n in cell group g is a value of A

a: N × G → A

2. Quantity spaces in Q

• Boundaries of firing rates F: {0, MAX}

• Boundaries of amounts A: {0, MAX}
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3. Constraints in C

• Firing rate of nuclei in the basal ganglia

C.1  d/dt f(striatum) = M+ a(Glu, striatum)
C.2  d/dt f(GPe) = M– a(GABA, GPe)
C.3  d/dt f(STN) = M– a(GABA, STN)
C.4  d/dt f(SNR) = M– +(a(GABA, SNR), a(Glu, SNR))
C.5  d/dt f(thalamus) = M– a(GABA, thalamus)
C.6  d/dt f(brainstem) = M– a(GABA, brainstem)

• Firing rate of neural pathways between nuclei

C.7  d/dt f(cortex-to-striatum) = M+ f(cortex)
C.8  d/dt f(SNC-to-striatum) = M+ f(SNC)
C.9  d/dt f(striatum-D1-to-SNR/GPi) = M+ +(f(striatum), a(DA, striatum))
C.10  d/dt f(striatum-D2-to-GPe) = M+ – (f(striatum), a(DA, striatum))
C.11  d/dt f(GPe-to-SNR) = M+ f(GPe)
C.12  d/dt f(GPe -to-STN) = M+ f(GPe)
C.13  d/dt f(STN-to-SNR) = M+ f(STN)
C.14  d/dt f(SNR-to-thalamus) = M+ f(SNR)
C.15  d/dt f(SNR-to-brainstem) = M+ f(SNR)

• Amount of released neurotransmitters in nuclei

C.16  d/dt a(DA, striatum) = M+ f(SNC-to-striatum)
C.17  d/dt a(Glu, striatum) = M+ f(cortex-to-striatum)
C.18  d/dt a(GABA, GPe) = M+ f(striatum-D2-to-GPe )
C.19  d/dt a(GABA, STN) = M+ f(GPE-to-STN)
C.20  d/dt a(GABA, SNR) = M+ +(f(striatum-D1-to-SNR), f(GPe-to-SNR))
C.21  d/dt a(Glu, SNR) = M+ f(STN-to-SNR)
C.22  d/dt a(GABA, thalamus) = M+ f(SNR-to-thalamus)
C.23  d/dt a(GABA, brainstem) = M+ f(SNR-to-brainstem)

• Metabolism of dopamine

C.24  d/dt a(DA, x) = a(L-dopa, x) × Enzyme-ratio
C.25  Enzyme-ratio = a(AADC, x) / a(MAO-B, x)

For brevity I include the assumptions about the metabolism of dopamine as part of
the theory of the basal ganglia. The availabilit y of dopamine outside the dopaminer-
gic cell terminal is dependent on the activation of the cell by the neural pathway from
the SNC. But DA can only be released by the vesicles of the terminal i f the precursor
L-dopa and the enzyme AADC is available. The enzyme MAO-B breaks down the
excess of dopamine to DOPAC, see Figure 7.3.
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Explanation of Parkinson’s Disease
The theory of the basal ganglia can be applied to explain observations in Parkinson’s
disease research. The hypothesis of the basal ganglia states that the empirically possi-
ble states E of the basal ganglia, given the empirical study of the basal ganglia D, are
part of the theoretically possible states M.

Definition 10 Basal ganglia hypothesis. HBG : 〈V, Q, C, D〉 represents a hypothesis
about the basal ganglia brain structure where V, Q, C are part of the TBG and D is the
set of instances of the basal ganglia, the domain of application of the theory.

We saw that the symptoms of Parkinson’s disease are assumed to be caused by an
increase of activation of the SNR, which on its turn is explained by a steep decrease
of DA in the striatum due to the decay of dopaminergic nerve cells. One question in
this chain, how the observed decrease of DA causes the assumed increase of SNR
activation, is explained by the theory about the basal ganglia. I will show how this
proposition can be deduced from the basal ganglia theory by programs like QSIM. In
this proposition and proof I will reduce the values of the variables to just their quali-
tative direction, abstracting from time and qualitative magnitude.

From d/dt y = f(x) where f ∈ M+ we know that x and y both increase or decrease
together, while if f ∈ M–, y increases when x decreases, and vice versa. If dz/dt = f(x,
y) and f ∈ M++, the direction of change of z is unknown if x increases and y de-
creases, since we do not now their magnitude, cf. Table 9.3. This is similar for f ∈
M+ –, when both variables increase or decrease in value

y \ x inc std dec
inc inc inc ?
std inc std dec
dec ? dec dec

Table 9.3: Derivative values for z if dz/dt = f(x,y) and f ∈ M + +

As background assumptions we assume that the amount of dopamine in the stria-
tum decreases and the firing rate of the striatum is steady. I will use the notation v =
qdir as shorthand for ∃y∃t QV(v, t) = 〈y, qdir〉.

Theorem 1 HBG ∪ B: { a(DA, striatum) = dec, f(striatum) = std} |−
P: { f(SNR) = inc}

Proof: As a proof I deduce the conclusion P from the premises B by applying the
constraints C from the basal ganglia hypothesis HBG.

a(DA, striatum) = dec ∧ f(striatum) = std
⇒ f(striatum-D1-to-SNR) = dec ∧ f(striatum-D2-to-GPe) = inc (C.9, C.10)

f(striatum-D2-to-GPe) = inc
⇒ a(GABA, GPe) = inc (C.18)
⇒ f(GPe) = dec (C.2)
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⇒ f(GPe-to-SNR) = dec ∧ f(GPe -to-STN) = dec (C.11, C.12)

f(GPe -to-STN) = dec
⇒ a(GABA, STN) = dec (C.19)
⇒ f(STN) = inc (C.3)
⇒ f(STN-to-SNR) = inc (C.13)
⇒ a(Glu, SNR) = inc (C.21)

f(GPe -to-SNR) = dec ∧ f(striatum-D1-to-SNR) = dec
⇒ a(GABA, SNR) = dec (C.20)

a(Glu, SNR) = inc ∧ a(GABA, SNR) = dec
⇒ f(SNR) = inc (C.4) (Q.E.D)

Explanation of known treatments
I will first introduce a new set in my terminology. Next to a hypothesis H, back-
ground assumptions B, and propositions P that are explained or need to be explained,
we also have a set of interventions I. This set contains propositions that describe a
property of the world, usually a value of a particular variable, that can be set by a
manipulation. All consequences of that manipulation hold for all the structures in the
set M I.

A theory can explain why a particular intervention has a particular consequence.
With HBG we have a hypothesis that explains the symptoms of Parkinson’s disease by
linking them to the observed decrease of DA. The hypothesis also explains the func-
tion of metabolites like L-dopa, MAO-B and AADC. These metabolites can serve as
an artificial intervention by changing their amount with the aid of a drug. Parkinson
drugs all serve to increase the amount of dopamine, which according to the theory
would decrease the overactivation of the SNR, reducing the behavioral symptoms. In
the theorems below I demonstrate how the basal ganglia hypothesis explains the ac-
tivity of known drug interventions for Parkinson’s disease. All these drugs aim to in-
fluence the amount of dopamine, so I first pose the following theorem:

Theorem 2 HBG ∪ B: { f(striatum) = std} |−
P: { a(DA, striatum) = inc → f(SNR) = dec}

From HBG it can be deduced in theorem 2 that an increase of DA implies a decrease
of the firing rate of the SNR output nuclei of the basal ganglia. The proof follows
similar lines as the proof of theorem 1.

Theorem 3 states that an increase of L-dopa in the striatum will i ncrease DA in the
striatum, which is a consequence of C.24, and given that the enzyme ratio does not
increase.

Theorem 3 HBG ∪ I: { a(L-dopa, striatum) = inc} |− P: { a(DA, striatum) = inc}

But to increase L-dopa by a drug intervention, which is taken up in the bloodstream,
means that L-dopa is increased in the whole body, causing side effects. A decrease of
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the amount of AADC in the periphery by also administering an inhibitor that can not
cross the blood brain barrier, will cause DA to increase in the brain, but to be rela-
tively steady in the periphery. This theorem (4) is a consequence of C.24 and C.25,
given the assumption that the amount of MAO-B does not increase in the periphery.

Theorem 4 HBG ∪ I: {a(L-dopa, body) = inc, a(AADC, periphery) = dec} |−
P: {a(DA, striatum) = inc, a(DA, periphery) = ?}

By C.25 and C. 25 one can also prove theorem 5, which states that decreasing the en-
zyme that breaks up DA will increase he amount of DA, assuming that both the
amount of AADC and L-dopa in the striatum do not increase:

Theorem 5 HBG ∪ I: {a(MAO-B, striatum) = dec} |− P: {a(DA, striatum) = inc}

The function and activity of these treatments can be explained by the theory of the
basal ganglia, but another question is if the hypothesis is true. That is, are all the
states that are empirically possible also states allowed by the theory?

In Section 8.4 we saw how experiments showed that the background assumption
in theorem 2 about the activation of the striatum turned out to be incorrect, by testing
the predicted effect of selective dopamine receptor agonists. In the next section I will
go into that problem.

9.4 Practice

In the second part of this thesis I discussed several ways of understanding rationality
in the process of scientific discovery. In this discussion it was assumed that the main
goal of scientific discovery is to gain knowledge about natural phenomena. In order
to do so I made a distinction between five basic types of tasks as problems with dif-
ferent sub-goals: observation, description, explanation, prediction and intervention.
These tasks, repeatedly executed in that order, could lead to an increasingly better
knowledge of the natural world.

In this section I extensively analyze the actual problems and tasks that are tackled
in the practice of neuropharmacology that I observed. To describe a problem I will
make use of the distinctions made in Chapter 5. That is, pursuing a problem is char-
acterized by the following constituents:

Problem
Start: propositions about the initial situation
Goal: the conditions for a problem to be solved
Result: the propositions describing the result
Process: the kind of action that is used to pursue the goal.

To abstractly distinguish different contents of propositions I will make use of differ-
ent sets of propositions that describe:
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Propositions
O: observations
I: interventions
H: hypotheses
W: wished for properties
P: predictions

A question-mark after the name of a set, e.g. H?, will designate the set or property
that is the goal of the problem. A star after the name of a set, e.g. H*, or a star in a
set, e.g. H: {*}, will mean that the set contains propositions, for which the truth-
value is unknown, that describe new information relative to the initial situation. Pro-
cesses that can lead to achieving a goal are distinguished as:

Processes
Intervention: manipulating a property of a natural process
Observation: observing a property of a natural process
Description: describing a property of a natural process
Explanation: finding an explanation for the initial situation
Prediction: deducing a consequence of a initial situation
Design: creating a property given a specification

Design as a process is added because it is needed to describe some problems of
neuropharmacology involving wished for properties of a drug or a treatment. I will
make a further distinction between a focused and broad kind of process, meaning that
the activity is directed to a small or large set of properties.

In Chapter 5 these terms where used to designate particular problems and proc-
esses with a particular initial and goal situation, see table 5.10. I will now use them to
describe (parts of) larger scale problems. In the next section I will go deeper into the
process of reasoning and compare the theoretical archetypes with my observations.

In describing a problem I will first model the observed examples from the prac-
tice. I will loosely follow the order of the report of my interviews in Chapter 8. A
problem never comes by itself, so I will describe different situations where the result
of a particular problem leads to new problems that are addressed in that situation.

In Chapter 8 I reported on several situations that lead to different kinds of discov-
eries: new functions of known drugs are discovered in the clinic and further investi-
gated in the lab; it is investigated what a desired function of a new drug should be;
given that wished for function new drugs are designed, searched, predicted, created
and tested; new drugs are tested and investigated in the clinic; they are also used to
explore biological systems in the lab; given that exploration, new treatments are de-
signed and tested; and the function of a drug is explored and explained. Below I ana-
lyze the structure of those problems. The specific problem of exploring and explain-
ing the function of DA is analyzed in detail. I summarize and generalize the examples
in Table 9.4 at the end of this section.
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Discovering a new drug effect in the clinic
In Section 8.2 It is reported that chlorpromazine was specifically administered to treat
particular diseases in the clinic (cf. Sec. 8.2, Par. 2). It was noted that another aspect
than the one that was to be treated was influenced as well . This was followed by lab
investigations that aimed to first observe and to explain the drug effect on another
level. So we can distinguish a sequence of three kinds of problems: clinical drug
treatment; lab investigation of the observed drug effect; explanation of the observed
drug effect. This practice can be described as follows (cf. Table 9.1a):

Clinical drug treatment
Start: O: {particular disease}
Goal: Clinic I: { chlorpromazine} → W: { treatment}
Result: I → Clinic O*: { parkinsonism}
Process: Focused intervention, broad observation

Lab investigation of observed drug effect

Start: Clinic I: { chlorpromazine } → O
Goal: Lab I: { chlorpromazine} → O?
Result: Lab O*: { amount of DA release}
Process: Focused intervention, focused observation

Explanation of observed drug effect

Goal: H? |= I: { chlorpromazine} → O* : { amount of DA}
Result: H: { chlorpromazine = DA-antagonist,

DA is related to Parkinson’ disease}
Process: Focused explanation

Searching a desired drug effect
In the above situation a potential treatment for a disease was discovered while it was
initially not the goal of the activity that led to the discovery to study the function of
that drug for that disease. Given that a desired effect was observed it was further in-
vestigated what the specific effect was on a lower biological level (cf. Sec. 8.2,
Par.2).

When it was discovered that dopamine was related to Parkinson’s disease it was
investigated what the specific effect of dopamine is, to determine what a drug that
should act as dopamine should do. So part of the result of the investigation is a pro-
file for a new drug. The activity of a new drug such as a specific DA receptor agonist
can then be compared to the desired activity of dopamine. The problem goes as fol-
lows (cf. Table 9.1b):

Lab exploration of wished drug effects
Start: I: { in vivo/ vitro DA}
Goal: I → O?: { receptor activity?}
Result: I → W*: { amount of C-Amp release}
Process: Focused intervention, focused observation
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Lab testing for wished drug effect
Start: I: {in vivo/ vitro, specific DA-agonists}
Goal: I → W?: {receptor activity?}
Result: I → O*: {amount of C-Amp release}
Process: Focused intervention, focused observation

Designing a new drug
In Groningen professor Horn aimed to design a variant of dopamine that had a simi-
lar activity and metabolism as dopamine itself, but had also effects that made it more
useful as a drug, such as specific receptor selectivity and lipophilicity (cf. Sec. 8.2,
Par. 4-5). The suggestion for variants that Prof. Horn considered where based on his
experience and knowledge of the field (Par. 6). While that knowledge may not always
be explicit, it could still imply the suggestions. Success of a suggestion is hard to
predict given the partly uncertain and incomplete nature of knowledge at a scientific
frontier.

Professor Horn used his knowledge to design variants of ADTN. He could explain
how a propyl and hydroxy group could respectively aid the lipophilicity and metabo-
lism of the variant. So we can describe the process as designing, testing and explain-
ing a new drug (cf. Table 9.1c):

Rational drug design
Start: I: {ADTN}
Goal: H |= I? → W: {activity, lipophilicity, metabolism, selectivity}
Result: I*: {ADTN-variant}
Process: Focused design

Lab testing for wished drug effect
Start: I: {ADTN-variant}
Goal: I → W?: {activity?, lipophilicity?, metabolism?, selectivity?}
Result: I → O*
Process: Focused intervention, focused observation

Explanation of drug effect

Start: I: {ADTN-variant} → O: {lipophilicity, metabolism}
Goal: H? |= I → O
Result: H: {propyl group → lipophilicity, hydroxy group → metabolism }
Process: Focused explanation

Searching a new drug effect in a drug library
For a pharmaceutical company the results of the process designing new drugs leads to
a library of novel compounds that are created with a specific goal, a given set of crite-
ria (cf. Sec. 8.2, Par. 8). Often these criteria include the selectivity for a particular
known receptor. A new drug treatment can be discovered by testing those drugs on
other receptors by trial and error. In this process the drugs are given, and only mas-
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sively tested on one criterion. A compound that is found to be active can be the lead
for a new drug to target the new receptor, (cf. Table 9.1d).

Lab testing for wished drug effect
Start: I: {in vitro, all compounds of company on new receptor}
Goal: I → W?: {receptor activity?}
Result: I → O*: {amount of C-Amp release}
Process: Broad intervention, focused observation

Searching a new drug by combinatorial chemistry
A still broader approach is taken when a drug lead is not specifically varied, based on
fingerspizengefühl and personal experience, but by techniques from combinatorial
chemistry (cf. Sec. 8.2, Par. 9). In this approach many variants are created at once. In
this process the combinations are made and massively tested for activity. If activity is
measured, the responsible variant is retrieved and further explored for its structure,
(cf. Table 9.1e):

Combinatorial drug design
Start: I: {drug lead}
Goal: I? → W
Result: I*: {many variants by combinatorial chemistry}
Process: Broad design

Lab testing for wished drug effect
Start: I: {in vitro, all variants on a receptor}
Goal: I → W?: {receptor activity?}
Result: I → O*: {C-Amp release}
Process: Broad intervention, focused observation

Lab exploration of drug effect

Start: I: {retrieved drug}→ O: {high receptor activity}
Goal: O?
Result: O*: {chemical structure}
Process: Focused intervention, focused observation

Searching a new drug by computational modeling
While the trial and error approach in combinatorial chemistry is very expensive, the
cheaper knowledge based approach by computer modeling is less successful. In this
approach one starts with a computer model of the structure of a receptor and a drug
(cf. Sec. 8.2, Par. 10). The goal is to predict by a simulation how a drug will dock
(interact with a receptor), or how the receptor will fold, (cf. Table 9.1f).

Computational drug design
Start: I, H
Goal: H |= I? → W
Result: H |= I* → P*: {drug docking, protein folding}
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Testing a new drug
When a promising new drug or drug function is found and explored in the lab, it will
leave the lab for further tests. As reported there are three different test phases (cf. Sec.
8.2, Par. 11). In the first phase the drug is tested for its possibly toxic effects on a
specifically selected group of animals and volunteers. In phase two the focus of inter-
vention changes to selected patients, where therapeutic effects are tested. In phase
three this group is further extended, and the drug is used in hospitals and will un-
dergo double blind tests, (cf. Table 9.1g).

Clinical testing Phase I
Start: I: {new drug}
Goal: I: {drug on animals, volunteers} → O?: { toxicity?}
Result: I → O*
Process: Focused intervention, broad observation

Clinical testing Phase II

Goal: I: {volunteer patients} → W?: { therapeutic effect?}
Process: Focused intervention, focused observation

Clinical testing Phase III

Goal: I: {double blind, hospitals} → W?: { therapeutic effect?}
Process: Broad intervention, focused observation

Exploring a biological system
Highly selective drugs are also being used to explore and chart biological systems
and to find out the function of specific drugs (cf. Sec. 8.2, Par. 12). The goal of Dr.
Timmerman is to chart a system like the basal ganglia, using a broad range of selec-
tive interventions the explore it (cf. Sec. 8.3, Par. 17-18, 20).

Lab exploration of a biological system
Start: I: {different selective agonists, antagonists}
Goal: I → O?: {behavior?, local transmitter response?, electric activity?}
Result: I → O* : { stereotypical beh., amounts of transm., firing frequency}
Process: Broad intervention, broad observation

This is achieved by focusing on the effects of particular drugs. This exploration is
also undertaken in the case of a pathological system. For Parkinson’s disease the
function of dopamine in the basal ganglia is being studied (cf. Sec. 8.3, Par. 19).
(This case will be analyzed in detail further below). The pathological situation is
studied in rats whose dopamine cells are lesioned (cf. Sec. 8.3, Par. 35).

Lab exploration of a drug effect
Start: I: {normal rat/lesioned rat, local infusion of selective drug}
Goal: I → O?: {behavior?, local transmitter response?, electric activity?}
Result: I → O* : { stereotypical beh., amounts of transm., firing frequency}
Process: Focused intervention, broad observation
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Information about the observed difference between a healthy and pathological system
can then be used to understand compensation mechanisms and in the design of new
treatments (cf. Table 9.1h).

Designing a drug treatment
When an observed difference between a healthy and pathological system is explained
on a biochemical level, as in the case of Parkinson’s disease, this difference can be
used to rationally design a treatment. The goal is to intervene in such a way that the
difference is minimized. In Parkinson’s disease the goal is to restore the function of
dopamine to normal (cf. Sec. 8.3, Par. 24-26, 34-35).

Rational drug treatment design

Start: H |= O: {depletion of DA → Parkinson' s disease symptoms}
Goal: H |= I? → W: { restored DA function, best effect on symptoms }
Result: I* : { DA-agonists?, selective D1? and/or D2?, NMDA-antagonists?}

In the case of Parkinson’s disease it is not clear how best to restore the function of
dopamine. Different interventions are designed and tested on their effect on disease
symptoms. But all give rise to different (side) effects (cf. Sec. 8.3, Par. 27-30).

Clinical testing of a drug treatment
Start: I
Goal: I → W?: { effect on symptoms?}
Result: O: {hyper or poor response, effects in brain periphery, loss of effect}

It is also a problem to know what it means to restore a function to normal. One
way to tackle this problems is to vary a dose by trial and error to search for a desired
response. Yet targeting the dopamine receptor via the bloodstream also induces nau-
sea via the extra stimulation of DA-receptors in the periphery. Hence part of design-
ing a treatment of disease symptoms is designing treatment for the side effects of that
treatment (cf. Table 9.1i).

Design of a treatment of side effects

Start: H |= I: { DA-agonists in bloodstream} → O: {hyper or poor response}
Goal: H |= I? → W: {desired response}
Result: I* : {v ary doses DA-agonists by trial & error}

Design of a treatment of side effects

Start: H |= I: { DA-agonists in blood stream} → O: {nausea}
Goal: H |= I? → W: { DA not in periphery}
Result: I* : {peripheral DA blockers}



9.4. Practice 141

Exploring a drug effect
It was discovered that acetylcholine also has an effect on Parkinson symptoms. As an
explanation of this effect it was proposed that there might exist a brain mechanism
that maintains a balance between acetylcholine and dopamine. This explanation was
later confirmed by experimental research that discovered that acetylcholine cells re-
spond to D2-agonists (cf. Sec. 8.3, Par. 31-33).

Explanation of a drug effect

Start: I: { acetylcholine antagonist} →
O: { effect on Parkinson's disease symptoms}

Goal: H? |= I → O
Result: H: { acetylcholine-dopamine balance}

Lab exploration of drug effect
Start: I: { D2-agonist, acetylcholine cell }
Goal: I → O?: { activity?}
Result: I → O* : { inhibition acetylcholine cell }

Dopamine is assumed to be related to the activity of the substantia nigra retaculata
(SNR) in the basal ganglia (cf. Sec. 8.3, Par. 13-16). The model of the basal ganglia
implies that dopamine would act as a modulator of GABA activity, inhibiting the ac-
tivity of the SNR (cf. Sec 9.3).

Explanation of a drug effect

Start: I: { low amount of DA} → O: {high SNR activity}
Goal: H? |= I → O?
Result: HBG: { DA is modulator of GABA activity in SNR}

To test this claim the interaction between dopamine and the SNR was further ex-
plored in Groningen by Dr. Timmerman. She set the problem to investigate the ef-
fects of dopamine specifically in the striatum (cf. Sec. 8.3, Par. 36). I analyze her ap-
proach to this problem in detail , following my report of her experiments, and making
use of the QDE formalism of Section 9.3. The problems are summarized in Table
9.4j. The general problem goes as follows:

Exploration of a drug effect

Start: HBG |= I → P
Goal: I: {dopamine in striatum} → O?
Result: I → O
Process: Focused prediction, focused observation
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The model of the basal ganglia HBG predicts that D1-agonists will excitate the direct
pathway to the SNR, while D2-agonists will inhibit the indirect pathway (cf. Sec. 8.3,
Par. 37-40).

Prediction of a drug effect

Start: HBG: {DA is modulator of GABA activity in SNR} |= I → O
Goal: HBG |= I: {D1-agonist, D2-agonist}→ P?
Result: P*: {D1 excitation of direct pathway,

D2 inhibition of indirect pathway}

The problem is now to test whether the implications of the model are correct. First
Dr. Timmerman explored three different predicted effects. She locally intervened the
amounts of glutamate, a D1-agonist and a D2-agonist in the striatum under basal
conditions, and observed the activity of the SNR (cf. Sec. 8.4, Par. 41-42). The pre-
dicted effects can be deduced from the axioms of HBG in section 9.3.

Lab testing of a predicted drug effect (in vivo)

Start: B: {f(striatum) = 〈0, std〉}
Goal: I → O?
Process: Focused intervention of glutamate, D1 and D2 receptors respectively

Focused observation of SNR activity

Start: B ∪ HBG |= I: {a(glutamate, striatum) = inc} → P: {f(SNR) = dec}
Result: I → O*: {f(SNR) = dec}

Start: B ∪ HBG |= I: {a(D1-agonist, striatum) = inc} → P: {f(SNR) = dec}
Result: I → O*: {f(SNR) = dec, slight}

Start: B ∪ HBG |= I: {a(D2-agonist, striatum) = inc} → P: {f(SNR) = dec}
Result: I → O*: {f(SNR) = inc, slight}

Glutamate produced the predicted effect. The intervention with the D1-agonist only
produced a very slight effect in the predicted direction, and the D2-agonist produced
a slight effect against the predicted direction, but both where not significant. When
the D1-agonist is tested in vitro a different effect than the one predicted is observed
as well (cf. Sec. 8.4, Par. 43).

Lab testing of a predicted drug effect (in vitro)

Start: B ∪ HBG |= I: {a(D1-agonist, striatum) = inc} →
P: {f(striatum-D1-to-SNR) = dec}

Goal: I: {a(D1, slices striatum) = inc} → O?
Result: I → O*: {a(striatum-D1-to-SNR) = inc}
Process: Focused intervention, focused observation
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The explanation that was proposed to account for the observation of the slight ef-
fect of the selective dopamine agonists was that under basal conditions, there is no
GABA activity to modulate (cf. Sec. 8.4, Par. 44). So a starting condition with a
higher activation of the striatum should show an effect of a dopamine-agonist infu-
sion.

Prediction of a drug effect

Start: B: {f(striatum) = 〈0, std〉}, HBG

Goal: B ∪ HBG |= I: {f(striatum) = 〈+, std〉, a(DA, striatum) = inc} → P*?
Result: P*: {f(SNR) = inc}

The problem now for exploring the effect of the dopamine agonist is that it is impor-
tant to maintain a steady activity of the striatum. If two variables vary then it is diffi-
cult to explain the effect on a third variable by pointing to only one of those two. So
the goal is first to find an intervention that causes a desired effect that is needed as an
initial condition for the experiment that tests another intervention (cf. Sec. 8.4, Par.
45-47).

Rational design of an experimental condition

Start: B: {f(striatum) = 〈0, std〉}, HBG

Goal: B ∪ HBG |= I? → W: {f(striatum) = 〈+, std〉}
Result: I*
Process: Focused design

Lab exploration of a predicted drug effect

Start: B: {f(striatum) = 〈0, std〉} ∪ HBG |= I → P
Goal: I → O?
Process: Focused intervention, focused observation

For instance:

Start: B ∪ HBG |= I : {a(glu, striatum) = 〈+, std〉} → P: {f(striatum) = std}
Result: I → O*: {f(striatum) ≠ std}

Start: B ∪ HBG |= I: {a(glu, cortex) = 〈+, std〉} → P: {f(striatum) = std}
Result: I → O*: {f(striatum) ≠ std }

Start: B ∪ HBG |= I: {a(glu, thalamus) = 〈+, std〉} → P: {f(striatum) = std}
Result: I → O*: {f(striatum) ≠ std}

Given the model it is predicted that the striatum can be activated directly with
glutamate in the striatum, or indirectly with glutamate in the cortex or thalamus (cf.
Sec. 8.4, Par. 48). However, when tested it turns out that it is difficult to maintain a
steady activation. This can be attributed to incorrect assumptions of the model but
also to compensation mechanisms that are not included in it.
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Dr. Timmerman solved the problem when she realized that a steady amount of
DA-agonist is less difficult to maintain. So she started with the DA-agonist and var-
ied the amount of glutamate in the striatum directly (cf. Sec. 8.4, Par. 49). In this case
the predicted amplification could be observed.

Lab testing of predicted drug effect

Start: B: {a(DA-agonist, striatum) = 〈+, std〉} ∪ HBG |=
I: {a(glutamate-agonist, striatum) = inc} → P: {f(SNR) = dec}

Goal: I: {a(glutamate-agonist, striatum) = inc} → O?
Result: I → O*: {f(SNR) = dec}

In coming to conclusions about the intervention and observations the data have to be
interpreted, described and explained. Conflicts in results are scrutinized when they do
not fit expectations (cf. Sec. 8.5, Par. 60-66).

Data interpretation

Start: B ∪ H |≠ I→ O
Goal: B ∪ H |= I → O
Result: B*, I*, O*

I* Wrong probe location?
Influence of anesthetic?

O* Good signal/noise ratio?
Different cell type with same characteristic?

B* Difference model rat and disease?
Effect by other mechanisms?

The problem is to diagnose the cause of a possible anomaly, A revision of an as-
sumption in I or O is dependent on the type and execution of the particular experi-
ment (cf. Sec. 8.4, Par. 50-59). The assumptions in H are the last to go. It is protected
by the acknowledgement that it ignores important aspects that might be responsible
for anomalous observations.

A lot of simplifications are maintained to conceive experiments and make sense of
the data. The problem of finding a relation includes decisions about which properties
to manipulate, which to observe, and which to ignore. The phenomenon is made by
choosing those properties. So it seems that the assumptions in H are most importantly
preserved as a guide for further explorations. This is an important part of the use of
theory in experimental research.

When the results of this research where published the problem and its result where
reduced in the conclusion to just the goal and the main observed results (cf. Sec. 8.5,
Par. 67). The consequences for the model of the basal ganglia where reserved for the
discussion section. So in summary:
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Exploration of drug effect
Start: HBG

Goal: I: {a(DA, striatum} → O?
Results: B: {f(striatum) = std) ∪ HBG |≠

I: {a(D1, striatum) = inc} → O: {f(SNR) = std}
I: {a(D2, striatum) = inc} → O: {f(SNR) = std}

B: {a(DA-agonist, striatum) = inc} ∪ HBG |=
I: {a(glutamate-agonist, striatum) = inc} → O: {f(SNR) = dec}

Summary
In the last subsections I extensively analyzed the structure of example problems in
the process of discovery neuropharmacological research. In Table 9.5 I summarize
and generalize these examples. This practice shows that testing a new prediction of a
hypothesis that explains an earlier observation is only one of many ways of making a
discovery. All the different problems I discussed lead to different empirical and con-
ceptual discoveries. In the next section I will go deeper into the process of reasoning
in explanation and design.

Problem Start Goal Result Process
a. Discovering a new drug effect in the clinic

Clinical drug treatment O :
{pathologic}

I → W :
{normal}

I → O* :
{side effects}

Focused intervention
Broad observation

Lab exploration of an
observed drug effect

I → O :
{side effects}

I → O? :
{biochemistry}

I → O* :
{mechanism}

Focused intervention
Focused observation

Explanation of an ob-
served drug effect

I → O H? |= I → O H* |= I → O Focused explanation

b. Searching a desired drug effect
Lab exploration of
wished drug function

I :
{transmitter}

I → O? :
{effect}

I → W* :
 {effect}

Focused intervention
Focused observation

Lab testing for wished
drug function

I :
{drug}

I → W? :
{effect?}

I → O* :
{effect}

Focused intervention
Focused observation

c. Designing a new drug
Rational drug design I :

{drug lead}
H |= I? → W :
{effect}

I* :
{variant}

Focused design

Lab testing for wished
drug effect

I :
{drug}

I → W? :
{effect?}

I → O* :
{effect}

Focused intervention
Focused observation

Explanation of
drug function

I → O H? |= I → O H* |= I → O Focused explanation

d. Searching a new drug effect in a drug library
Lab testing for wished
drug effect

I :
{given drugs}

I → W? :
{effect?}

I → O* :
{effect}

Broad intervention
Focused observation

e. Searching a new drug by combinatorial chemistry
Combinatorial drug
design

I :
{drug lead}

I? → W :
{effect}

I* :
{variants}

Broad design
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Lab testing for wished
drug effect

I :
{variants}

I → W? :
{effect?}

I → O* :
{effect}

Broad intervention
Focused observation

Lab exploration of drug
structure

I → O :
{effect}

I → O? :
{structure?}

I → O* :
{structure}

Focused intervention
Focused observation

f. Searching a new drug by computational modeling
Computational drug
design

I, H H |= I? → W H |= I* → P* Focused prediction
Focused design

g. Testing a new drug
Clinical drug testing,
phase I

I I → O? I → O* Focused intervention
Broad observation

Clinical drug testing,
phase II

I I → W? I → O* Focused intervention
Focused observation

Clinical drug testing,
phase III

I I → W? I → O* Focused intervention
Broad observation

h. Exploring a biological system

Lab exploration of a
biological system

I I → O? I → O* :
{path., normal}

Broad intervention
Broad observation

Lab exploration of a
drug effect

I I → O? : I → O* :
{path., normal}

Focused intervention
Broad observation

i. Designing a drug treatment
Rational drug treatment
design

H |= O :
{pathologic}

 H |= I? → W :
{normal}

I* Focused design

Clinical drug testing I I → W? I → O* :
{side effects}

Focused intervention
Broad observation

Design of a treatment of
side effect

H |= I → O :
{side effects}

H |= I? → W I* Focused design

j. Exploring a drug effect
Explanation of
a drug effect

I → O H? |= I → O H* |= I → O Focused explanation

Exploration of
a drug effect

H |= I → P  I → O? I → O Focused prediction
Focused observation

Prediction of
a drug effect

H |= I → O H |= I → P? H |= I → P* Focused prediction

Rational design of an
experiment condition

H |= I → P H |= I? → W I* Focused design

Lab testing of
a predicted drug effect

H |= I → P :
{pred. effect}

I → O? :
{pred. effect?}

I → O* Focused intervention
Focused observation

Data interpretation B∪H |≠ I→ O B ∪ H |=  I → O B*, I*, O* Focused description

Table 9.4: Overview of the structure of discussed problems in drug research.
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9.5 Reasoning

In the last section I described the structure of problems in neuropharmacology. We
saw that different research activities lead to different kinds of discoveries. Interven-
tion and observation can lead to new empirical discoveries about the natural world.
We also saw that reasons to do a particular intervention or observation in a particular
way or in a particular location are often suggested by conceptual discoveries that are
the result of explanation, prediction and design.

I will now take a closer look at these three kinds of reasoning processes in neuro-
pharmacology. I will discuss logical and computational models of those processes in
problem solving that do not specifically aim to explain the cognitive processes that
are involved when humans solve these problems, such as is aimed at with ACT-R
models. That is a modeling task that requires a different approach. However both de-
scriptive and normative models can share the initial assumptions (start), the goal
condition and sometimes the result. In science, these can ideally all be described
symbolically. Yet a psychological model will usually differ, compared to a normative
computational model, in its modeling of the process of solving a problem. The de-
scription of the discovery cases in the last section could be a basis for both a psycho-
logical ACT-R model, as well as a problem solving model with other constraints.

In this section I will discuss several models of the reasoning processes in scientific
problem solving, with a normative pretension. I will argue how these computational
models of qualitative explanation, prediction and design could be used to aid the
problems in the domain of neuropharmacology, by discussing examples based on the
case study.

Explanation and prediction in biology
To formally describe the process of reasoning in explanation and prediction in neuro-
pharmacology I first discuss two computer models of Peter Karp’s that model those
processes. Karp investigated the development of knowledge about the biological pro-
cess of attenuation (Karp, 1992; Karp, 1993).

He encoded intermediate states of knowledge about biological objects and proc-
esses so that his genetic simulator program GENSIM could use it to simulate experi-
ments and compute predictions. The HYPGENE program takes these predictions as
input and compares it with given observations made during an experiment. If there is
a discrepancy, HYPGENE modifies assumptions about the initial objects or the proc-
esses to explain the difference between GENSIM’s prediction and the observation.

Karp considers the process of hypothesis formation as employed by HYPGENE to
be a design problem. In this way a hypothesis is an artifact to be synthesized and is
subject to design constraints, such as among others consistency with the data, predic-
tive success and simplicity. HYPGENE modifies a theory to satisfy constraints by
implementing design rules. Karp derived these from his historical study of knowl-
edge about attenuation, which on its turn provided a test bed for the development of
HYPGENE and GENSIM.

Peter Karp’s research goal was to model the competence of biologists, not their
performance, by identifying reasoning mechanisms that are suff icient to solve hy-
pothesis formation problems in biology, regardless whether they are valid psycho-
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logically (Karp, 1992). To implement GENSIM and HYPGENE, he made use of ef-
fective tools for search control and an assumption based truth maintenance system.

The program GENSIM can make qualitative predictions about biochemical proc-
esses. Types of chemical objects are represented in a taxonomic hierarchy in a frame
based Class Knowledge Base (C). Theories about biological processes like chemical
reactions are represented as production rules in a Process Knowledge Base (T). The
process rules define what classes of objects participate in a reaction and what condi-
tions must be true for the reaction to occur. Process rules further specify what new
objects are created if the rule’s conditions are met.

GENSIM can predict the outcome of an experiment by applying the process rules
to the given specified objects at the start. It is assumed that no objects are entirely
consumed during a reaction, and therefore GENSIM only adds new objects mono-
tonically to the initial ones. In this way GENSIM can predict what objects should re-
sult i f the assumptions about initial conditions and the processes are correct. Because
GENSIM implements a qualitative chemistry it does not make predictions concerning
concentrations or reaction rates. Yet, it can predict increasing and decreasing quanti-
ties of chemical compounds.

The HYPGENE program can make qualitative explanations to account for the dif-
ference between predictions from GENSIM and observations. As input HYPGENE
takes GENSIM’s initial conditions Ia, i.e. the set of statements about objects that are
assumed to be initially present in an experiment that is named “a” , the predicted out-
come Pa, i.e. the set of statements about the objects after the experiment, plus de-
pendency information that records how Pa was computed from Ia, the prediction error
Errora, i.e. the difference between the prediction and the observation, and also access
to all elements in the class knowledge base C and the process knowledge base T. In
short, the input contains all elements from the tuple 〈Ia, Pa, Errora, T, C〉. Pa is en-
tailed by the initial conditions Ia and the processes in T:

Ia ∪ T |= Pa

An experiment is anomalous when Oa, i.e. the set of statements about observation
made in an empirical experiment, is not equal to the predicted observation Pa. The
prediction error Errora is by definition Pa ∆ Oa, i.e. the symmetric difference between
prediction Pa and observation Oa (see also Figure 9.3):

Pa ∆ Oa : = (Pa − Oa) ∪ (Oa − Pa)

The main goal of HYPGENE is to eliminate Errora. To achieve that goal HYPGENE
reasons backwards from the difference between Pa and Oa. Its sub-goals become to
remove statements about objects from Pa not in Oa, to modify assumptions about
properties of objects in Pa, to modify assumptions about the quantity of objects in Pa,
and to add assumptions about objects from Oa that where not in Pa. To achieve these
sub-goals two main types of design operator are employed, those that redesign state-
ments in Ia to Ia*, and those that modify statements in T to T* in such a way that:

Ia* ∪ T* |= Pa* and Pa* = Oa
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 Pa 
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* 

Figure 9.3: The symmetric difference between Pa, the set of statements about objects
as predicted, and Oa, the set of statements about the observed objects.

HYPGENE examines the outstanding goals one by one, choosing operators that may
satisfy it. For example regard the following simpli fied GENSIM prediction. For short
a statement such as “x” means that there are objects of kind x present in the set-up of
experiment a. Furthermore we have the following sets: Ia: { x, y}, Pa: { x, y, z} and Oa:
{ x, y, v}. Say we have process rules r1, r2, r3 as part of T such that:

r1: = x & y → z
r2: = x & z → v
r3: = x & w → v

For example, to remove the assumption about object z from Pa which is not in Oa a
design rule can disable process R1 that causes the metabolism to an object of kind z
by modifying its input, assuming that e.g. y was actually not an element of Ia and
therefore also not in Oa. To explain that a statement about the observation of object v
was present in Oa a design rule can modify process rule r2 assuming that object kind z
is not necessary to cause v, or another operator can assume that w was also an ele-
ment of Ia. So the problem becomes as follows:

GENSIM prediction
Start: Ia: { x, y}, T: { r1, r2, r3}
Goal: Ia ∪ T |= Pa?
Result: Pa: { x, y, z, v}

HYPGENE explanation

Start: Ia: { x, y} ∪ T |= Pa: { x, y, z}, Oa: { x, v}
Goal: Ia? ∪ T? |= Oa

Result: Ia* : { x} ∪ T* : { r1, r2* : = x → v, r3} |= Oa

The representations of objects in C, and the conditions and actions of the proc-
esses in T, are much more complex. For the details of the hierarchy of different de-
sign rules see (Karp, 1992). There are also operators that modify assumptions about
quantity and about the structure of classes C.
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It may seem odd to change Ia, but Ia only represents assumptions about what ob-
jects are present during an experiment. In biological practice knowledge of initial
conditions is often uncertain because of the complexity of objects under study and the
sometimes unpredictable effects of laboratory techniques. Karp found that it is nor-
mal practice in biology to first take a closer look at the assumed initial conditions,
before changing hard earned theories. This practice was confirmed in the case of
testing the basal ganglia model. Yet it is possible to slightly revise the model to ex-
plain the observed effect of dopamine agonists.

Explanation of a drug effect
The HYPGENE and GENSIM programs model qualitative reasoning in biochemistry
So, they are able to model the process of explanation and prediction about transmitter
metabolism in the brain. Yet, reasoning in neuropharmacology is also about increas-
ing and decreasing values of variables. Reasoning about these aspects is better mod-
eled by the QSIM program.

As we saw in section 9.3, given a qualitative differential equation, QSIM can
make qualitative predictions about the behavior of a dynamical system. Richards et al
(1994) devised a program that does the opposite. Given a qualitative description of
the behavior of a system the program MISQ infers a qualitative differential equation
that implies that behavior. I shall apply the techniques of this program to an example
of the Parkinson case.

In the detailed discussion of the exploration of the effect of dopamine we saw that
the basal ganglia model predicted an inhibitory effect in the SNR after a dopamine-
agonists intervention in the striatum.

QSIM prediction

Start: B: { f(striatum) = 〈0, std〉}, HBG

Goal? B ∪ HBG |= I: { a(DA-agonist, striatum) = inc} → P?
Result: P: { f(SNR) = dec}

Yet under basal activation of the striatum the effect was not significant. The predic-
tion error can be traced to constraints C.9 and C.10 of HBG..

C.9  d/dt f(striatum-D1-to-SNR) = M+ + (f(striatum), a(DA, striatum))
C.10 d/dt f(striatum-D2-to-GPe) = M+ – (f(striatum), a(DA, striatum))

In C.9 the activity of the direct pathway f(striatum-D1-to-SNR) is positively de-
pendent on the activity of the striatum f(striatum) and the amount of dopamine a(DA,
striatum) that can act on the D1-receptor. So an increase of dopamine will cause the
same amount of increase of activation of the direct pathway, regardless of the activa-
tion of the striatum. The same goes for the inhibition of the indirect pathway as de-
fined in C.9. A program like MISQ is able to suggest different constraints that imply
the observed values. The observed effects can be accounted for with a revision of C.9
and C.10 to C.9* and C.10*:
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MISQ explanation

Start: B: {f(striatum) = 〈0, std〉}, HBG

I: {a(DA-agonist, striatum) = inc} → O: {f(SNR) = std}
Goal: HBG? |= I → O
Result: {C.9*, C.10*} ∈ HBG*

C.9*  d/dt f(striatum-D1-to-SNR) = f(striatum) × a(DA, striatum)
C.10* d/dt f(striatum-D2-to-GPe) = f(striatum) / a(DA, striatum)

Now if there is only low basal activity of the striatum then DA will have a lot less
effect then when the activity of the striatum is higher. Based on the revised hypothe-
sis a new prediction can be deduced. An increase of activation of the striatum to-
gether with an increase of dopamine agonists now implies a stronger effect.

Prediction of a drug effect
A formal description of qualitative theories such as the basal ganglia model can also
be useful in the research practice itself. The problem of the basal ganglia model, as
noted in Chapter 3, is that it is too simple to be real and becomes too complex to
work with when it would be extended to incorporate details.

The advantage of a formal description is that you can add more kinds of details,
while you can still easily explore predictions by making use of a computer program
like QSIM that easily computes the consequences for the variables you are interested
in. As an example I list a number of computable predictions of different effects on
the SNR after intervening in the direct and indirect pathways of the basal ganglia
with selective dopaminergic agonists. Comparing these kinds of predictions with lab
observations can result into more detailed and accurate models of biological struc-
tures such as of the basal ganglia.

QSIM prediction

Start: B: {f(striatum) = 〈+, std〉}, HBG, I
Goal: HBG |= I → P?

D1- agonists
Start: I: {f(striatum-D1-to-SNR) = inc, f(striatum-D2-to-GPe) = inc}
Result: P: {a(GABA, SNR) = ?, a(Glu, SNR) = inc, f(SNR)) = inc?}

Start: I: {f(striatum-D1-to-SNR) = std, f(striatum-D2-to-GPe) = inc}
Result: P: {a(GABA, SNR) = dec, a(Glu, SNR) = inc, f(SNR)) = inc}

D2-agonists
Start: I: {f(striatum-D1-to-SNR) = dec, f(striatum-D2-to-GPe) = dec}
Result: P: {a(GABA, SNR) = ?, a(Glu, SNR) = dec, f(SNR)) = ?dec}

Start: I: {f(striatum-D1-to-SNR) = dec, f(striatum-D2-to-GPe) = std}
Result: P: {a(GABA, SNR) = dec, a(Glu, SNR) = std, f(SNR)) = inc}
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Ratios of D1 and D2 agonists:
Start: I: {f(striatum-D1-to-SNR) = std, f(striatum-D2-to-GPe) = dec}
Result: P: {a(GABA, SNR) = dec, a(Glu, SNR) = dec, f(SNR)) = ?}

Start: I: {f(striatum-D1-to-SNR) = inc, f(striatum-D2-to-GPe) = std}
Result: P: {a(GABA, SNR) = inc, a(Glu, SNR) = std, f(SNR)) = dec}

Rational drug design
Another process that is an important part of pharmacology is design. Vos and
Kuipers (1992) proposed that the development of design research in general can best
be described as a more or less systematic attempt to bring together the properties of
available materials and the demands derived from intended applications. They pro-
posed a set-theoretic model of this process. In this model there is a set RP of all rele-
vant properties for a product to be developed. A subset W of RP includes the wished-
for properties of the intended product, so RP-W is the set of unwanted properties. For
each possible prototype x that is created there is an operational profile, consisting of a
set of operational properties O(x) that are part of RP, see Figure 9.4.

 
O(x) 

W RP 

* 

* 

Figure 9.4: The symmetric difference between operational properties O(x) of proto-
type x, and the set of wished-for properties W, both part of relevant properties RP for

the object to be developed.

A problem-state during development can now be described as the symmetric dif-
ference W ∆ O(x), defined by the set of unrealized wanted properties together with
the set of realized properties that are not wanted, i.e.:

W ∆ O(x) := (W − O(x)) ∪ (O(x) − W)

W ∆ O(x) denotes the set of problems, i.e. the qualitative deviation of O(x) from W.
The number of problems to be solved is defined as |W ∆ O(x)|, indicating the quanti-
tative deviation.

The goal of design research is to develop a better product x* such that ideally
O(x*) is closer to W. Kuipers & Vos propose a descriptive model of the transitions of
problem states. This model defines a proper assessment criterion for the improvement
of problem state transitions. Prototype x* is an improvement of x in view of W iff:

O(x*) ∆ W is a proper subset of O(x) ∆ W
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So a new prototype is an improvement only if it has at least one wished-for property
more or at least one unwished-for property less.

For most design research it is possible to divide the set of relevant properties into
two complementary sets of structural and functional properties S and F. Often first a
functional profile WF is determined of what the product is supposed to do. The next
question is how this can be realized. Yet a product is not uniquely determined by WF,
often functional equivalents are possible, so the set of looked for structural properties
is called an appropriate structural profile AS for WF if it causally implies the desired
functional properties WF.

In drug research the determination of the desired functionality WF is normally
guided by known characteristics of a disease. These can be explicated as part of the
set of conceivable characteristics of potential applications C(A) of a drug, see Figure
9.5. We can say that for a given disease y its profile C(y) uniquely determines the de-
sired functional profile WF, while the reverse is not the case. A drug for a given
characteristic can be useful for each disease containing that characteristic. An im-
provement of a drug’s structure and functionality can be defined analogous to the
definition above.

For example, in the case of Parkinson’s disease, the characteristics of the patho-
logical condition C(Parkinson’s disease) includes a degeneration of dopaminergic
neurons in the substantia nigra, and a subsequent depletion of the neurotransmitter
dopamine in that area. For symptomatic treatment it is suggested that a drug is found
that replaces the function of dopamine in that area (WF). This should be an effect
caused by a drug with an appropriate structure (AS). How the properties AS of a drug
might by suggested by WF is extensively discussed in Vos (1991).

In the next subsection I will discuss how the functional properties WF for a drug
intervention can be rationally inferred given characteristics of a disease C(y) and (a
formal description of) an available biological theory.

 

F 

OS(x
) 

AS 

OF(x) 

WF 

S C(A) 

C(y) 

Figure 9.5: A problem state in the S/FA model of drug design research. The disease
characteristics C(y) determine the wished-for biochemical effect WF that is caused by
a looked for drug with appropriate structure AS. OS(x) and OF(x) are the operational

structural and functional profile of prototype drug x.
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Rational drug treatment design
In section 9.4 we saw that in the rational design of a drug treatment knowledge of
biological processes is used to infer the effect of a drug intervention. The suggested
intervention can either contain a description of the desired local influence of a drug
on the system, or a description of a drug that is known to have the needed functional
properties. These desired properties of the drug should cause a decrease in disease
symptoms, and are called a drug lead (Vos, 1991). The rational search for a drug lead
can be understood as a problem of qualitative reasoning. Knowledge of qualitative
relations between variables describing properties of a pathological biological system
can be suff icient to find variables that can influence that system.

The search involved is structurally similar to that of explanatory reasoning, but has
a different search goal. Instead of f inding a simple hypothesis that explains an ob-
served behavior, the task is to find a minimal intervention that has a desired effect on
properties such as the behavior of the system, with minimal side effects. So, analo-
gously to inference to the best explanation, this process can be called “ inference to
the best intervention” .

The object of drug treatment design does not initially concern the properties of a
compound as in drug design, but the properties of a biological system, an organism.
In the latter the goal is to create a drug so that it has given desired properties, in the
former the goal is to create the behavior of a biological system so that it has given
desired properties. These properties can also be divided in structural and functional
properties. A disease is a set of unwanted properties of a biological system. These can
be compared with wished for properties of a system. So we can define the character-
istics of a disease as follows.

Definition 11 Disease characteristics. Given the operational properties O(x) of a
pathological system x and the wished for properties W, the characteristics C(y) of a
disease y can be defined as the symmetric difference between O(x) and W:

C(y) : = W ∆ O(x)

The set O(x) contains all the considered properties of a system x, not only the patho-
logical properties. So the set W ∩ O(x) is not empty. The goal of drug treatment is to
change the properties O(x) of system x to O*(x) such that both O*(x) – W and W –
O*(x) are minimized

Rational drug treatment design involves finding a drug treatment for a given
pathological condition of a system by maximally employing known theories and
knowledge about biological processes. A proper theory about a disease should be
able to explain the pathological properties.

So, let a set H of theories about biological processes be given as well as back-
ground assumptions B(x) involved in the explanation of the observed properties
among the properties O(x) of a pathological system x. The problem of the design of a
drug treatment of the pathological properties O(x) ∆ W is to cause only wished for
properties from W by a drug intervention I(x) of the system, i.e. H ∪ B(x) |= I(x) →
W. If we can explain the pathological condition, then we can use that knowledge to
infer a suitable intervention.
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Rational drug treatment design

Start : H ∪ B(x) |= O(x)
Goal : H ∪ B(x) |= I? → W
Result : I* (x)

The search goal is to find, by reasoning about processes in H, a proper drug interven-
tion that influences processes that cause the desired properties W, but not those from
O(x) – W. That is, the goal is to eliminate the difference between W and O(x). The
result of the search is the suggestion of a manipulation of a local biochemical prop-
erty that can be affected by a drug. A drug that has this wished for functional effect
(WF) can be searched for in the set of known drugs, or pose a new problem for ra-
tional drug design.

Of course it would be ideal, given the known H and the nature of the disease, to
infer a suggestion for a drug intervention I that only causes W. A drug usually also
causes side effects, often creating undesired effects that are not part of the disease
that is targeted. Therefore we need a gradual evaluation criterion for the improvement
of suggestions (cf. T.A.F. Kuipers, Vos en Sie 1992). Let us say that the moderated
design goal is to find the suggestion I such that its (predicted) consequence for a sys-
tem H ∪ B(x) |= I(x) → P(x) resembles the desired condition W more than the
pathological condition O(x), i.e. that:

P(x) ∆ W is a proper subset of O(x) ∆ W

That is, roughly, the drug should not have more unwanted consequences than accom-
plished desired consequences, cf. Figure 9.6.

 

 P(x) W 

 

O(x) 

RP 

Figure 9.6: Problem state in searching an intervention with effect P(x) that most re-
sembles desired properties W in treating a pathological system x with operational

properties O(x).

The evaluation of improvement of more than one drug suggestion can follow the
same lines. A drug intervention I* of x is better than an intervention I if the properties
of consequence P* resemble W more than those of P:

P*(x) ∆ W is a proper subset of P(x) ∆ W
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However, this is only an evaluation of properties that is neutral to the different kinds
of undesired properties. In this way an intervention could be inferred that treats most
of the symptoms, but causes a symptom that is worse than the disease that is treated.
This could be remedied by a ordering of the undesired properties, together with a
quantitative measure of deviation.

The resulting suggestion for a drug intervention can on its turn be used to test the
theories used to find the suggestion. Given an inferred drug intervention I(x), an ex-
periment can be done and its resulting observation of the altered operational proper-
ties O(x) of x can be compared with the predicted properties P(x). A discrepancy can
be used to redesign H, or the assumptions about B(x) or I(x).

Testing of predicted drug effect

Start: H ∪ B(x) |= I(x) → P(x)
Goal: I → O?
Result: I → O*

The same kind of design and testing is found in designing experimental conditions
for focused testing of hypotheses, as we saw at the end of section 9.4.

Rational design of an experimental condition

Start : H ∪ B |= I → P
Goal : H ∪ B |= I? → W
Result : I*

Computational drug lead discovery
Next to rational drug design in the lab, we also saw in section 9.4 that there is a sub-
discipline in pharmacology called computational drug design. This discipline is con-
cerned with the rational design and exploration of drug structures and drug function,
making use of computational models of those structures. This is usually a quantita-
tive approach, making massive computations in quantum mechanics to predict e.g.
the folding of the protein structure of a receptor in reaction to a drug structure.

To search for a drug treatment there are many kinds of computer programs that
can help to diagnose a particular disease and suggest a drug treatment. These pro-
grams make use of explicitl y known established assumptions about pathology and
medicine. These kinds of tools are less known in the practice of basic research.

An exception is the ARROWSMITH program of Swanson and Smallheimer
(1997). This program searches for unknown relations between research findings in
the literature. One research group the members of which know each other’s writings
may establish that there is a connection between biological properties A and B, while
another group in a slightly different field could have established a link between B and
C, but may be unaware of the other group’s results. If C is related to a pathological
property then A might be a lead candidate for drug treatment. The ARROWSMITH
program searches for these implicit li nks in the published texts that describe results,
making use of different statistical techniques.

A search by ARROWSMITH discovered a link between fish oil (A) and
Reynaud’s disease (C). Both are related to properties of blood viscosity, platelet ag-
gregation, and vascular reactivity (B). The program also discovered a relation be-
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tween magnesium and migraine, they share 11 related properties. Weeber et al
(2000b) develop techniques for the same kind of problems in order to find out
whether published side effects of drugs may be beneficial for the treatment of other
diseases.

Textual drug lead discovery

Start: …, A → B, …, B → C, …
Goal: ? → C
Result: A*

This search for a novel treatment is conducted in the enormous amount of pub-
lished results, represented by the dots in the above scheme A discovered relation is a
discovery of an implicit conceptual relation in explicitl y known results. These results
contain explicit descriptions of interventions, observations, explanations and predic-
tions. Such searches are fruitful, but they can not find implicit consequences of pro-
posed explanations and theories. This is a hard problem because a description of a
theory in natural or informal language, as is common in medicine, is diff icult to ana-
lyze semantically. It is possible to cluster words that are related in meaning, but with
current techniques it is not possible to computationally infer logical consequences
from sentences in natural language. These techniques can assist in the discovery of
textual relations, but they still have to be interpreted by a knowledgeable scientist.

A more formal description of both qualitative and quantitative results can result in
computational discoveries of new interesting consequences, for both basic research
and treatment.

Logical drug lead discovery

Start: H |= C
Goal: H |= ? → C
Result: H |= A* → C

For example the formal description of the basal ganglia, incorporating more re-
search details can be used to computationally explore interesting predictions, as we
saw in this section, and to search interventions with desired properties in detail . The
desired state W that should be caused by an intervention aimed to combat Parkin-
son’s disease includes { f(SNR) = dec}. A search program can infer that this can be
caused by an increase of GABA or a decrease of glutamate: { a(GABA, SNR) = inc,
a(Glu, SNR) = dec}. These variables can on their turn be influenced by different in-
terventions with selective dopamine agonist. The effects of those where predicted
earlier in this section. We already saw in section 9.3 how the model implied the tra-
ditional treatment of targeting the metabolism of dopamine.

Computational drug lead discovery
Start: HBG

Goal: QSIM(H, I?) = W
Result: I*
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In this search not only one looks for which variables are related, but also one tries
to find out how the values of these variables influence each other. It is one thing to
know that dopamine and Parkinson symptoms are related, but it is a more specific
hypothesis that the decrease of the amount of dopamine is related to the increase of
symptoms. With this knowledge available in QDEs one may better evaluate possible
interventions in a system. If an intervention causes a variable to be steady while you
wished that it would increase, then that result is not as bad as when it would decrease,
cf. Table 9.5. This evaluation can be extended with specific weights for particular
properties, depending on the disease and the importance of particular properties.

P \W dec std inc
dec 1 0 -1
std 0 1 0
inc -1 0 1

Table 9.5: Quantitative evaluation of a predicted qualitative value of a variable from
the set of predicted properties P, compared with the desired value of the same vari-

able in the set of wished-for properties W.

In this way all variables under consideration can be evaluated to find the best inter-
vention, for which the sum of the evaluations of all value comparisons should be
maximal. This evaluation can also be applied to the other structurally similar rational
design problems I discussed.

9.6 Conclusion

So, what is the rational use of theory and experiment in the process of scientific dis-
covery in the practice of drug research for Parkinson’s disease, compared to theory as
discussed in part II? In Part II we saw that in the theoretical conception of scientific
discovery the rational use of a theory in scientific discovery is to explain observations
with simple additional hypotheses that can predict properties of phenomena. The ra-
tional use of experiment is to test predictions of those explanations. This use of the-
ory and experiment is considered to be what makes the process of scientific discovery
rational.

After analyzing a practice of scientific discovery in detail it i s apparent that both
theory and experiments are used for many more reasons, with different goals and re-
sults, all l eading to different kinds of scientific discoveries, as summarized in Table
9.4. Theories are used to explain observations, and to make predictions that test the
theory. But they are also used to rationally design experimental conditions and treat-
ments, and to explore phenomena. Experiments are used to test theories by observing
and intervening in properties of phenomena that are predicted by that theory. But they
are also used in treatment and in many different kinds of exploration, often interven-
ing in ways and having one look in to directions that are not suggested by theory, but
just by curiosity. In this case the rational to use experiment to explore those areas is
that there is no theory or expectation about it, giving ample room for new empirical
discoveries.
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Yet devising and testing theory remains an important part of science, both in the-
ory and in practice. The use and nature of theories in scientific practice is grounded in
primary and secondary cognitive mechanisms as explicated in Chapter 5. Natural
language and informal diagrams are the vehicles of choice to represent assumptions
in the scientific discipline I analyzed. Yet in this way it is not always possible to fully
oversee the consequences of known theories and results. To better understand these,
epistemologists devise formal theories about theories. These can be used to represent
a theory more explicitly. In the case study, I showed how this can be done for the
theoretical model of the basal ganglia.

So, it is now time to answer the specific questions of this thesis for my case study:

Question 1 The theory of the basal ganglia consists of qualitative relations be-
tween variables of chemical and electrical neural activity in nuclei. The structure of
this theory can be represented as a qualitative differential equation. In a structuralist
approach the theory can be defined by its models, given a set of constraints on con-
ceptually possible models defined by a set of variables and possible values.

Question 2 When a drug intervention is observed together with a certain change in
a property of a biological system, a conditional dependency can be inferred. Clusters
of observed or assumed relations between variables that describe the domain can to-
gether become a theory that explains other relations. A goal in neuropharmacology is
to infer a hypothesis H that best explains how observed properties O of a biological
system are conditionally dependent on an intervention I, i.e. to infer the best explana-
tion (IBE). This hypothesis can be used to rationally design a drug treatment or a
condition for an experiment, to cause wanted properties W, i.e. to infer the best inter-
vention (IBI). Given a hypothesis and an intervention new consequences P can be
predicted. If the goal is to test the theory, the goal of the reasoning process is to infer
the best prediction (IBP), see Table 9.6.

Problem Start Background Process Goal Goal properties
Explanation I → O B, V, Q, D IBE H* B ∪ H* |= I → O
Design W B, H: 〈V, Q, C, D〉 IBI I* B ∪ H |= I* → W
Prediction I B, H: 〈V, Q, C, D〉 IBP P* B ∪ H |= I → P*

Table 9.6: Main processes of reasoning discussed in this part.

Finding a hypothesis H*, an intervention I* or a prediction P* that is optimal
given the assumed conditions, can be called a conceptual discovery and is often no
trivial problem. It may require an exhaustive search in a problem space that is defined
out of known concepts in V and Q. Within that problem space a hypothesis H may be
found that is denoted by the set of constraints C on all the possible models of a do-
main, as determined by V, Q and D. An intervention and prediction are rationally
searched for within the models allowed by the constraints of the hypothesis. Finding
a proper hypothesis for a domain may also require a conceptual revision of the prob-
lem space, by revising the variables in V and quantity spaces in Q. In contrast to a
conceptual discovery, making an experimental intervention and observation can lead
to an empirical discovery, when new properties or phenomena are actually created or
observed.
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Question 3 In this chapter I have discussed many different routes between theory
and experiment. Particular interventions and observations can lead to new empirical
discoveries when the observed properties are not expected, or prove an expectation to
be wrong. Such an empirical discovery is able to logically refute a theory, but in
practice it will not be deserted. A false theory can remain a fruitful pointer to direc-
tions for new interventions and observations that can lead to new empirical discov-
eries. In biological practice explanations are revised to fit observations, looking first
at the assumptions about the interventions and observations and in the background.

In contrast to the discussed diversity in the discovery process in the practice of
neuropharmacology, I end my discussion of the questions of this thesis with a formal
summary of the textbook example of the process of discovery in drug research for
Parkinson’s disease:

1. Observe phenomenon p: pi,…,pj (parts of the basal ganglia)
2. Describe p: I → O

I: { a(DA, striatum) = dec}
I → O: { f(SNR) = inc}

3. Explain p: B ∪ H? |= I → P
HBG* : 〈V, Q, C, D〉

4. Predict p: B ∪ HBG |= I → P?
I: { a(DA, striatum) = inc} → P* : { f(SNR) = dec}

Design p: B ∪ HBG |= I? → W
I* : { a(D1/2-agonist, striatum) = inc} → W: { f(SNR) = dec }

5. Intervene p: do I
6. Observe p: see P?

In step 1. processes and properties of the basal ganglia are observed. It is described
how a decrease of dopamine in the striatum by an intervention results into an increase
of activity of the SNR. A model of the basal ganglia is proposed that implies the ob-
servation in step 3. In step 4. this model is used to predict that an increase of dopa-
mine in the striatum will cause a decrease of activation of the SNR. Given the de-
crease of SNR activation as a wished-for property, the model also implies other pos-
sible interventions, such as agonists for a receptor-subtype. These suggestion can be
experimentally tested in steps 5. and 6.

This process can be aided in both theory and practice with the use of computer
modeling tools that can assist in finding descriptions, explanations, predictions, and
new designs. However, the bigger problem to make these tools useful is the avail-
abilit y of biological theory in a formal representation. It would be ideal i f scientists in
biology would publish their results both in natural language and in a formal format.
To this end, Peter Karp started an internet database that invites biologists to add their
results in a provided formal format. This database is used to test new methods that
can aid the process of discovery in science, aiding on its turn the process of under-
standing rationality in discovery.

*
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Summary

Part I Introduction
The specific problem adressed in this thesis is: what is the rational use of theory and
experiment in the process of scientific discovery, in theory and in the practice of drug
research for Parkinson’s disease? The thesis aims to answer the following specific
questions: what is: 1) the structure of a theory?; 2) the process of scientific
reasoning?; 3) the route between theory and experiment? In the first part I further
discuss issues about rationality in science as introduction to part II , and I present an
overview of my case-study of neuropharmacology, for which I interviewed
researchers from the Groningen Pharmacy Department, as an introduction to part III .

Part II Discovery
In this part I discuss three theoretical models of scientific discovery according to
studies in the fields of Logic, Cognition, and Computation. In those fields the
structure of a theory is respectively explicated as: a set of sentences; a set of
associated memory chunks; and as a computer program that can generate the
observed data. Rationality in discovery is characterized by: finding axioms that imply
observation sentences; heuristic search for a hypothesis, as part of problem solving,
by applying memory chunks and production rules that represent skill; and finding the
shortest program that generates the data, respectively. I further argue that reasoning in
discovery includes logical fallacies, which are neccesary to introduce new
hypotheses. I also argue that, while human subjects often make errors in hypothesis
evaluation tasks from a logical perspective, these evaluations are rational given a
probabili stic interpretation.

Part III Neuropharmacology
In this last part I discusses my case-study and a model of discovery in a practice of
drug research for Parkinson’s disease. I discuss the dopamine theory of Parkinson’s
disease and model its structure as a qualitative differential equation. Then I discuss
the use and reasons for particular experiments to both test a drug and explore the
function of the brain. I describe different kinds of problems in drug research leading
to a discovery. Based on that description I distinguish three kinds of reasoning tasks
in discovery, inference to: the best explanation, the best prediction and the best inter-
vention. I further demonstrate how a part of reasoning in neuropharmacology can be
computationally modeled as qualitative reasoning, and aided by a computer sup-
ported discovery system
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Propositions

1. Problem
Before one can stand on the shoulders of giants, one first has to climb them.

2. Rationality
Assumptions about processes of scientific discovery imply assumptions about psy-
chological processes, and vice versa.

3. Neuropharmacology
A part of reasoning in neuropharmacology can be modeled as reasoning about quali-
tative differential equations, and can be assisted by a computer.

4. Logic
Reasoning in scientific discovery includes logical fallacies, which are necessary  to
introduce new hypotheses by abduction.

5. Cognition
To understand the rationality of (secondary) cognitive processes of symbolic problem
solving in science, one also needs to understand how these processes are controlled
by (primary) cognitive processes of  probabilistic learning.

6. Computation
One has learned something when one can compute part of the same output with less
input.

7. Theory
Rationality in discovery, in theory, includes inferring hypotheses that best explain
observations, and inferring predictions that can experimentally test those hypotheses
best.

8. Practice
Rationality in discovery, in practice, also includes inferring the best interventions in
designing drugs, treatments, and experimental conditions to explore phenomena.

9. Discovery
Interdisciplinary scientists build bridges that other scientists are not eager to cross.
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Samenvatting

Deel I Introductie
Het probleem dat dit proefschrift behandeld is: wat is het rationeel gebruik van theo-
rie en experiment in het proces van wetenschappelij k ontdekken, zowel in theorie als
in de praktijk van geneesmiddelenonderzoek voor de ziekte van Parkinson? Een ant-
woord wordt gegeven op de volgende specifieke vragen, wat is: 1) de structuur van
een theorie; 2) het proces van wetenschappelij k redeneren; en 3) de route tussen theo-
rie en experiment? In deel I behandel ik verder, als introductie voor deel II en III , de-
batten over rationaliteit in wetenschap, en presenteer ik een overzicht van mijn case-
studie van de neurofarmacologie, waarvoor ik enkele onderzoekers van het Univer-
sitair Centrum voor Farmacie van de Rijksuniversiteit Groningen interviewde.

Deel II Ontdekken
In dit deel behandel ik drie modellen van ontdekken, volgens de logica, de cognitieve
psychologie, en de computerwetenschap. In deze velden wordt een theorie respectie-
velij k gezien als: een verzameling zinnen; een verzameling geassocieerde geheugen-
partjes; en, een computerprogramma. Rationaliteit in ontdekken is gekarakteriseerd
als respectievelij k: het vinden van axioma’s waaruit observatiezinnen afgeleid kun-
nen worden; het heuristisch zoeken naar een verklaring voor observaties waarbij ge-
heugenpartjes en regels, die vaardigheden representeren, worden toegepast; en, het
vinden van het kortste computerprogramma die de observatiedata kan genereren. Ik
beargumenteer dat redeneringen die nieuwe hypothesen introduceren de vorm hebben
van een drogreden. Verder beargumenteer ik dat, terwijl proefpersonen vaak incor-
recte evaluaties van hypothesen maken vanuit een logisch perspectief, deze evaluaties
rationeel zijn vanuit een probabili stische interpretatie.

Deel III Neurofarmacologie
In dit laatste deel behandel ik mijn casestudie van ontdekken in een praktijk van ge-
neesmiddelenonderzoek voor de ziekte van Parkinson. Ik bespreek de dopamine theo-
rie van de ziekte van Parkinson en modelleer de structuur. Daarna behandel ik het
gebruik van experimenten om zowel een medicijn te testen als om functies van de
hersenen te verkennen. Ik beschrij f daarbij verschill ende soorten problemen in ge-
neesmiddelenonderzoek die leiden tot een ontdekking. Gebaseerd op deze beschrij-
ving maak ik een onderscheid tussen drie soorten redeneertaken in wetenschappelij k
ontdekken, het afleiden van: de beste verklaring, de beste voorspelli ng, en de beste
interventie. Ik demonstreer verder hoe een deel van het redeneren in de neurofarma-
cologie kan worden gemodelleerd als kwalitatief redeneren, en kan worden onder-
steund door de computer.
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Stellingen

1. Probleem
Voordat men kan staan op de schouders van reuzen, moet men deze eerst beklimmen.

2. Rationaliteit
Aannames over processen van wetenschappelijk ontdekken impliceren aannames
over psychologische processen, en vice versa.

3. Neurofarmacologie
Een deel van het redeneren in de neurofarmacologie kan worden gemodelleerd als
redeneren over kwalitatieve differentiaalvergelijkingen, en kan worden geassisteerd
door een computer.

4. Logica
Drogredenen zijn een deel van het redeneren in wetenschappelijk ontdekken, dit is
noodzakelijk voor het introduceren van nieuwe hypothesen door abductie.

5. Cognitie
Om de rationaliteit van (secundaire) cognitieve processen in het oplossen van sym-
bolische wetenschappelijke  problemen te begrijpen, is het ook nodig om te begrijpen
hoe deze processen worden gestuurd door (primaire) cognitieve processen van proba-
bilistisch leren.

6. Computatie
Je hebt iets geleerd als je een deel van dezelfde output kunt berekenen met minder
input.

7. Theorie
Rationaliteit in ontdekken, in theorie, omvat het  afleiden van hypothesen die het best
observaties verklaren, en het afleiden van experimenten die deze hypothesen het best
testen.

8. Praktijk
Rationaliteit in ontdekken, in de praktijk, omvat tevens het afleiden van de beste in-
terventies in het ontwerpen van medicijnen, behandelingen, en experimentele condi-
ties om fenomenen te verkennen.

9. Ontdekken
Interdisciplinaire wetenschappers bouwen bruggen die ander wetenschappers niet
graag oversteken.
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