
LOGICS FOR OO
INFORMATION SYSTEMS

a semantic study of object
orientation from a

categorial-substructural
perspective

ILLC Dissertation Series 2001-03

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206

e-mail: illc@wins.uva.nl
homepage: http://www.illc.uva.nl/

LOGICS FOR OO
INFORMATION SYSTEMS

a semantic study of object
orientation from a

categorial-substructural
perspective

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. J.J.M. Franse

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op woensdag 9 mei 2001, te 12.00 uur

door

Erik de Haas

geboren te Neuss, Duitsland.

Promotores: Prof.dr. P.W. Adriaans
Dr. P. van Emde Boas

Overige commissieleden: Prof.dr. J.F.A.K. van Benthem
Prof.dr. P. Klint
Prof.dr. G. Renardel de Lavalette

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam
Kruislaan 404
1098 SM Amsterdam

Copyright c© 2001 by Erik de Haas

Cover design and photography by Mariska van de Cappelle

ISBN: 90–5776–066–5

Schaatsenrijder

Over zijn strenge cirkels heengebogen
eigent hij zich de middelpunten toe.

Hun trots bezit staat in zijn harde ogen.
Hij wordt de mathematica niet moe,

waarmee elk nieuw uitvieren zich voltrekt
om elke nieuwe inkeer op te vangen.
Zie hem in rustige beslissingen hangen

boven het tijdloze, dat hij wekt

en kantelend in tegenkringen leidt
voor het een snelle, ronde dood zou vinden.

Hij heeft zich van de wereld al bevrijd;
enkel de smalle ijzers die hem binden

aan ’t evenbeeld. Een laatste trouw misschien?
Wat kan hij in de spiegel nog verwachten?

Of houdt een vrouwenschim, die wij niet zien,
hem vast binnen dit eenzaam veld van krachten?

IJskoude liefde, die niet sterven wil,
omdat de dode lelies onder water

haar eenmaal droegen in hun gouden harten,
waarmee de vijver vol lag, zwaar en stil.

Gerrit Achterberg, SPHINX

v

Contents

Acknowledgments xi

Preface xiii

I General Analysis of Object Oriented Technology 1

Introduction 3

1 The object oriented development practice 5
1.1 Labels, partial descriptions and

non-wellfoundedness . 7
1.2 Object Oriented Information Systems 8

1.2.1 An ontology of object oriented information systems 8
1.2.2 The Unified Modeling Language (UML) 11
1.2.3 Object oriented modeling languages, database languages,

and programming languages 15
1.3 Object Oriented Software Development 17

1.3.1 A very brief history of the OO software development process 17
1.3.2 An overview of the OO Software Development Process . . 18

1.4 Summary . 20

2 Concepts in object orientation 21
2.1 Concepts . 21

2.1.1 Object and object identifier 22
2.1.2 Complex value, type and class 27
2.1.3 ISA hierarchy, subtyping and inheritance 31
2.1.4 Methods and operations 36
2.1.5 Encapsulation . 38

vii

2.1.6 Declarativeness . 38
2.1.7 Rules and knowledge . 40
2.1.8 Graphical representation 40
2.1.9 Partial specifications, Identity, and the Extendibility principle 44

2.2 Summary . 45

II A Model for Object Oriented Technology 47

Introduction 49

3 A generalized language for object oriented information systems 51
3.1 A Case for Object Oriented Information Systems 52
3.2 The Syntactic Theory . 54

3.2.1 Edge Graphs . 54
3.2.2 Operations . 64
3.2.3 Types, Objects and Constraints 66
3.2.4 Categorial Graphs . 71
3.2.5 Imploding and Exploding of categorial graphs 74

3.3 Summary . 77

4 A semantics for object oriented information systems 79
4.1 Desiderata for meta language for categorial graphs 80
4.2 The meta language of categorial graphs 85
4.3 Calculus for the meta language of categorial graphs 87
4.4 The semantic domain for object oriented information systems . . 91
4.5 Summary . 101

III Logical Aspects 103

Introduction 105

5 Methodology: semantics, logic and applications 107
5.1 Formal Semantics . 108

5.1.1 Semantics in computer science 108
5.1.2 Semantics for categorial graphs 109

5.2 The roots of the logic of categories 111
5.2.1 The categorial graph logic as a modal logic 111
5.2.2 The categorial graph logic as a substructural logic 114
5.2.3 Related logics of information systems 116

5.3 Applications . 117
5.3.1 Applications in object oriented information system practice 117
5.3.2 New computational applications 117

viii

5.3.3 Logical and philosophical repercussions 118
5.4 Summary . 119

6 Logic of object oriented information 121
6.1 Models for object-oriented information systems 122

6.1.1 Intended models . 122
6.1.2 Abstract models . 124
6.1.3 Representation . 125

6.2 Modal languages . 126
6.2.1 Definition language and semantics 127
6.2.2 Adjacency logics . 129
6.2.3 Extendibility logics . 134
6.2.4 Aggregate logic . 136
6.2.5 The combined system . 142
6.2.6 Conclusion . 146

6.3 Other logical formalizations . 146
6.3.1 Translation . 146
6.3.2 First Order approach . 148
6.3.3 Resource approach . 148

6.4 Axioms and completeness . 150
6.4.1 The first-order case . 151
6.4.2 The modal case . 152
6.4.3 The resource case . 154
6.4.4 What does this mean for our object models? 156

6.5 Complexity . 157
6.5.1 Benchmark tasks . 157
6.5.2 Model checking . 157
6.5.3 Satisfiability . 159
6.5.4 Inference . 165

6.6 Extensions . 165
6.7 Further logical considerations . 166

6.7.1 ’Object’/’type’ duality . 166
6.7.2 Treating ’facts’ as first-class citizens 167

6.8 Summary . 171

IV Philosophical Backgrounds 173

Introduction 175

7 Four philosophical issues 177
7.1 Examples from 2500 years of modeling information systems 178
7.2 The philosophical issues in terms of categorial graphs 183

ix

7.3 Summary . 187

V Conclusion 189

8 Categories for Profit 191
8.1 The object oriented development practice 193
8.2 Concepts of object orientation . 193
8.3 A generalized language for object oriented information systems . . 194
8.4 A semantics for object oriented information systems 194
8.5 Methodology: semantics, logic and applications 195
8.6 Logic of object oriented information 195
8.7 Four philosophical issues . 195

Bibliography 197

Samenvatting 207

x

Acknowledgments

First I would like to thank my promotores Pieter Adriaans and Peter van Emde
Boas. I thank Peter for giving me the opportunity to do research in his group,
and for directing me to an interesting field of science. The extensive package of
themes he called my attention to, and his knowledge of the relevant literature
have been very valuable. A special thanks I owe Pieter, who provided the insight
to build solid ground under my raw intuitions and theories. I thank Pieter also for
his creative ideas, that, next to contributing to this thesis, also let me rediscover
the relevance and pleasure of scientific research.

Another special thanks I owe Johan van Benthem for giving a lot of sup-
port, and for his generous time and effort that helped me to complete the logical
analysis.

Then I would like to thank all the other persons that provided me with nu-
merous valuable suggestions. In this respect I would like to mention Paul Klint,
Gerard Renardel de Lavalette and Anne Troelstra, who have given nice and con-
structive comments on the almost-final version of my thesis. Moreover I would
like to thank Mark Ballantyne for taking the effort to thoroughly proofread my
thesis and providing me with numerous suggestions to improve my English lan-
guage. I also want to thank Mariska van de Cappelle for helping me with the
graphics in this thesis, and for designing the wonderful cover.

While writing this thesis I have been working both in a scientific and in a busi-
ness environment. In both environments people have given me a lot of support
and provided valuable input through many discussions about the topic of this
thesis. In particular I would like to thank my close colleagues at the university:
Karen Kwast, Ernest Rotterdam, Sophie Fisher, Marten Trautwein, Erik Aarts,
Wilco Quak, and Carlo de Boer. Also I want to thank my colleagues from the
Syllogic R&D department, who provided an environment with a scientific qual-
ity that is seldom seen in business: Erik Darwinkel, Marc-Paul van der Hulst,
Daniel van der Wallen, Otto Moerbeek, Chris Thieme, Michiel Greuter, Eelco
den Heijer, Arno Knobbe, Arjo Duineveld, Derk Bijmolt, Sander van Geloven,

xi

Bert Laverman, Ramesh Srinivasan, (again) Mart Trautwein, and (again) Ernest
Rotterdam.

Finally, I would like to thank some people from my personal world. I owe very
special thanks to Ingrid, who caringly supported me for many years. I also thank
Mariska for motivating me to launch a final sprint for finishing my thesis, and for
standing by me even when the sprint turned out to be a somewhat longer than
expected. I also want to thank my parents, Gedi and Ko, and my brother Marc,
because they always care warmly.

Amsterdam Erik de Haas
March, 2001.

xii

Preface

There is no formal transformation from the informal to the formal

(Anonymous)

Recent years have seen the convergence of many disciplines in information
systems facilitated by the concepts of Object Orientation. Not least has been the
convergence of the languages for Object Oriented analysis and design, manifested
in the definition of the industrial standard UML (Unified Modeling Language
[UML97], [UML99]) for such languages. Moreover the integration of information
design languages into integral software development tools, enabling automatic
database (persistent) model generation and code generation, indicate that these
kinds of languages and concepts have grown to a mature state.

The theme of this thesis is a semantical investigation in Object Oriented (OO)
modeling and database languages. The semantical investigation strives to give
a thorough mathematical description of the concepts used in OO design and
database languages. Such a mathematical description gives an insight into the
constructs used, and can be used to develop and refine automatic development
tools and query optimalization techniques for computing with OO information
objects. Fact is, most object oriented design languages, and especially UML,
have no clear mathematical foundation. Nevertheless a lot of ’formal’ tasks like
code generation and ’database modeling’ are performed in these languages. The
resulting systems therefore are suspect of ambiguities and inconsistencies, and
hence sometimes valid UML expressions cannot be processed. Research in the
mathematical foundations of OO concepts aims to aid the development of OO
language processing, by taking away the non-clarities and providing a formal and
consistent way of interpreting the language.

xiii

The semantical investigation in Object Oriented design languages is especially
interesting because the concepts of object orientation originate from practice and
were designed to help information analysts and designers to accurately describe
information models that reflect aspects of the real world. In this respect this
research touches on themes from philosophy, where it is an important goal to
accurately describe aspects of the real world.

In this thesis we will study the semantics of object oriented design and database
languages in detail. The thesis will provide a thorough description of the concepts
that can be expressed in UML and like languages We will cover all the main
concepts of object orientation such as identity, inheritance, encapsulation etc..
Moreover, we will study languages for specifying information systems from a
more general perspective and then identify the really basic concepts of talking
about information objects. In this exercise we will encounter serious philosophical
controversies that are inherent in talking about objects, but often ignored in the
information system practice. It turns out that in the practice of information
analysis, the information modeler runs into hard philosophical problems in his
attempt to accurately describe the aspects of the real world he wants to capture.

The major artifact we will present in this thesis is a language for modeling
information systems. This language contains all the main concepts of object ori-
entation. It is a generalization of the object modeling part of UML (a fragment
of the language constructs of UML, present in several diagramming techniques of
UML). The basic building block of the language is a so called category and con-
tains graphical and textual components. We will do the necessary mathematics
for this language in order to obtain a formal semantics for the object oriented
concepts. We will develop a formal syntactic theory for the language and provide
a rigid mathematical model in which we will interpret the language. In this set-
ting we can give a clear semantics for the basic language constructs of both object
oriented modeling and design languages and object oriented database and pro-
gramming languages. For the semantic study we will use the arsenal of modal and
substructural logic and categorial grammars. This branch of mathematics is used
heavily in the study of natural language and computation theories and the study
on the OO concepts contributes a nice application of the theory with promising
extensions for intelligent information systems and data mining. Moreover, we
can identify the potential philosophical controversies associated with describing
aspects of the real world in the information analysis practice. Such an identifica-
tion will enable the information modeler to choose a consistent interpretation of
the models he writes down.

Several parts of this thesis have already been communicated to the scientific
community in various papers. A first version of the language of categorial graphs

xiv

appeared in [Haas95] and [Haas94]. Extensions on this research in relation to
natural language learning and data mining were published in [HaasAdriaans99],
[AdriaansHaas99] and [AdriaansHaas00]. Preliminary research on object orien-
tation and information systems theory, which provided the inspiration to ex-
plore this interesting subject more thoroughly, appeared in [HaasEmdeBoas93],
[PomykalaHaas93], [PomykalaHaas94], [PomykalaHaas96].

This thesis is structured as follows:

• Part1: General analysis of Object Oriented technology. Part 1 contains a
general analysis of the concepts and intricacies of object orientation in infor-
mation systems. It is the conceptualization of the domain of our semantical
investigations.

– In Chapter 1 we will describe the information system analysis and de-
sign practice. We will focus specifically on the object oriented analysis
and design practice and the related object oriented database mod-
els. We will discuss the use of languages for analysis and design and
databases, and give an overview of the languages used in practice (es-
pecially the industry standard UML). We will see that this practice
imposes requirements on the language and its interpretation in the
research context.

– In the second chapter, we present in detail the family of notions and
concepts for which we will do the semantic research. Note that much
debate is possible on the exact interpretation of information system
notions that originate from actual use. We will discuss the notions for
object oriented (new generation) information systems in a critical way,
and provide a motivation for the interpretation we will use.

• Part 2: OO Modeling Proposal: Categorial Graphs. In this part we propose
a model in which we can research the object oriented analysis and design
practice.

– Chapter 3 will introduce a language for talking about information sys-
tems. This is the syntactic domain in which we can denote (graphically
and textually) the concepts discussed in part 1. This language is a gen-
eralization of the common OO information system design languages.
We will especially show its expressiveness by comparing it to UML.
In effect, the language presented will be a formal syntactic theory for
a generalized fragment of UML. The language is built from a syntac-
tic construct we call a categorial graph (borrowing the term ’category’
from Aristotle); and the language therefore is called the language of
categorial graphs.

xv

– Chapter 4 contains the semantics of the categorial graph language. We
will present an interpretation of the language that talks about object
oriented information systems. This interpretation will be a logic based
on the theory of modal and substructural logics.

• Part 3: Logical aspects. The chapters in this part present logical aspects of
the theory of object oriented information systems.

– In chapter 5 we will explain the benefits of formal semantics and de-
scribe the approach and attitude to tackle the semantics for informa-
tion systems taken in this thesis. We will explain the logical aspects
of doing semantics, and also position this research in the research field
of logic, as it touches some very interesting problems in current logic
research.

– In chapter 6 we will investigate the logic of categorial graphs. We
will discuss logical aspects, especially soundness, completeness and the
computational complexity of the logics for categorial graphs.

• Part 4: Philosophical backgrounds. In this part we discuss philosophical is-
sues involved in information system modeling and object oriented concepts.

– In Chapter 7 we take a little step back, and will formulate only the basic
concepts we like to have in our language that talks about information
systems. We will right away discover that this basic list of desiderata
already confronts us with hard problems that are (still) very actual in
philosophy.

• Part 4: Conclusion This part contains a wrap up of the themes we discussed
in this thesis.

– In chapter 8 we summarize what we have done and evaluate what we
have achieved.

xvi

Part I

General Analysis of Object
Oriented Technology

1

Introduction

The first part of this thesis contains a general analysis of the concepts and intri-
cacies of object orientation in information systems. It contains a description of
the practical use of object technology and an analysis of the concepts of object
orientation. The description of the practical context serves two purposes:

• To establish the context for which we will do semantical research. It will
explain for which languages and technologies this thesis aims to contribute
scientific analysis. These are in short the field of object oriented develop-
ment, and in particular UML (unified modeling language).

• To show that the use of the object oriented design and coding languages
imposes requirements on these languages and its interpretation. To be more
specific, the incremental nature of the development practice demands that
the languages cope with labels, partially or even non-wellfounded defined
objects, and partial descriptions of objects.

Moreover we discuss the concepts that are most emblematic for object technology.
More specifically we analyze:

• object identity and object identifier

• complex structure, abstract type and class

• ISA hierarchy, subtyping and inheritance

• operations and methods

• encapsulation

• declarativeness

• rules and knowledge

• graphical representation

3

Chapter 1

The object oriented development
practice

When it comes down to it, the real point of software development is
cutting code. Diagrams are, after all, just pretty pictures. No user is
going to thank you for pretty pictures; what a user wants is software
that executes.

Martin Fowler, UML Distilled; A brief guide to the Standard Object
Modeling Language ([FowlerScott00])

”Here at our company we are doing business in Wuzzels. Wuzzels have Wazzels
and this distinguishes them from the Buzzels.”. When, in practice, an informa-
tion modeler comes into a company to commence his task, he will need to capture
information on objects he possibly does not know anything about. Nothing about
the structure, the behavior, nor the interrelations between the objects. He will
more or less start with a growing collection of labels, that gradually gets more
structure and meaning. Moreover he will discover kinds of objects, relations be-
tween certain kinds of objects and constraints on the structure and relations of
objects. Nevertheless the information modeler will need to immediately start
writing down preliminary versions of the model of the world he is trying to cap-
ture. The preliminary model he writes down will be used to communicate with
the experts and users that play an important role in the piece of the world he is
modeling.

Languages that bear concepts from the object oriented methodology are used
in the information capturing process and in analysis and design. Such practice
imposes some requirements on the language in which information system models
are written down. For example the language must be able to elegantly denote
objects that have a partial nature or that have unknown structure and behavior,

5

6 Chapter 1. The object oriented development practice

and still we need to be able to interpret the language such that the expressions
really denote some part of the information model. Moreover because of the addi-
tive way of working the language must be such that we can easily extend existing
descriptions of the world, and that the interpretation of such an extended model
is an ’elaboration’ of the former model1.

Object oriented languages have already been used much longer in programming
and database practice. The most referred reason to use these kind of languages in
the semi-formal world of computer coding was that the object oriented languages
contain concepts that enable one to talk ’naturally’ about the information that
needs to be coded. This means that the idea is that the notions used in object
orientation are founded on a natural intuition to talk about information. This
also explains the popularity of object oriented languages in analysis and design.

In this chapter we will introduce the reader into the problem domain covered
and researched in this thesis. We will discuss three important concepts that, in the
general process of information capturing with object oriented languages, are im-
portant items in our analysis of the object oriented development practice. These
are labels, partial descriptions of objects and partially or even non-wellfounded
defined objects.

Moreover we will give a brief overview of the origins of the concepts of object
orientation in object oriented information systems. We will present in more detail
the Unified Modeling Language (UML), which is a standard in the object oriented
design and analysis practice. This language is the most influential reference for
the concepts of object oriented information systems. Consequently we will explain
the connection between a design language, like UML, and the conceptual ’lower
level’ coding languages for databases and programming constructs.

In this chapter we will also briefly describe the information development prac-
tice. This practice covers the whole trajectory from analysis and design to im-
plementation in programming and database coding languages. We do this for
two completely different reasons. First of all we want to identify a number of
requirements of the object oriented languages that are related to the use of these
languages (especially for analysis and design languages). Secondly we want to
make the reader acquainted with the field of application for which this research
is done: Object Oriented modeling, design and development.

The main focus of this chapter will be on conceptual aspects of object orien-
tation. These notions are most apparent in the analysis and design practice, but

1More precisely, it should not be the case that expressions that hold in the former model are
not satisfied by the elaborated model, unless this was explicitly stated in the additive modeling
step.

1.1. Labels, partial descriptions and non-wellfoundedness 7

are also relevant to the coding practice, because the conceptual strength of the
OO languages motivates its use in coding practice.

1.1 Labels, partial descriptions and

non-wellfoundedness

Notions that are key in this thesis are labels, partial descriptions and non-
wellfoundedness. In this section we will explain these notions in more detail.
Let us take a look again at the example from the beginning of this chapter:

”Here at our company we are doing business in Wuzzels. Wuzzels
have Wazzels and this distinguishes them from the Buzzels.”

Label. An information analyst who has never been introduced to the subject of
wuzzels, wazzels and buzzels will need to start his model, based on the information
from the above sentence, with a collection of labels. These labels here clearly
denote types of objects. But even though the information modeler does not
have a clue of what its interpretation should be, he can start to interpret that a
particular wuzzel is some kind of object. This object does not have anything but
a label.

Partial descriptions. An important piece of information in the above sentence
is that ’the fact of holding a wazzel’ is a discerning fact. This means the following:
To hold a wazzel can be a property of an object. And moreover, holding a wazzel
is a characterization of certain types of objects, among which are wazzels. Also
to hold a certain wazzel is a partial description of a wuzzel. To make the example
more concrete consider the following: To have a ’beard’ is a property of ’ancient
philosophers’. Having a ’beard’ is characteristic for ’ancient philosophers’. And
’he having that white beard’ is a partial description of Socrates.

Non-wellfoundedness. The information modeler is quite certain that he will
learn a lot more about the wuzzels, wazzels and buzzels. He will get to know
intrinsic properties and accidental properties of certain wuzzels, wazzels and
buzzels. But he will never know that he grasped all that can be said about
the wuzzels; even more drastically at certain stages in the iterative process he
will be certain that he did not grasp everything he needs of the wuzzels, wazzels,
and buzzels. This is part of the way he works. Every object can be extended by
discovering more and more properties (descriptions), and the properties in turn
(seen as objects themselves) can again be extended. The process of extending
can possibly never end (either by cycles or by infinite chains). But that means
that these objects will be not well founded. Moreover one never knows whether
the objects are totally described in terms of it properties.

8 Chapter 1. The object oriented development practice

The above notions are only briefly introduced in this section. They will be
elaborated in the semantic study later on in this thesis, and there the importance
will become evident.

1.2 Object Oriented Information Systems

The numerous developments in information systems from the last two decades,
both in practice and in theory, have contributed to the obtaining of proposals for
so called Next Generation Information Systems ([Comm.ACM91n10]). One of the
most influential developments is object orientation. The concepts of object ori-
entation are the subject of this chapter. Concepts from other conceptual worlds,
however, have also contributed significantly to the arsenal of technologies used in
current information systems. We will also briefly give attention to the relational
paradigm and the logical paradigm. The relational paradigm is well known from
the Entity Relationship design languages (ER) and the language for relational
databases (SQL). The logical paradigm is used in knowledge based rule systems,
deductive databases and logic programming.

1.2.1 An ontology of object oriented information systems

Among the recent developments in information systems, the most influential
developments are probably those following the principles of the object-oriented
(OO) programming paradigm. The OO programming paradigm has its origin
in the SIMULA programming language ([Pooley87]), which was proposed in the
late 1960s. The concepts underlying this paradigm became especially popular
in the 1980s with the introduction of the programming languages SMALLTALK
([Smith95]), EIFFEL ([RistTerwilliger95]), and later C++ ([Stroustrup91]) and
JAVA ([ArnoldEtAlii00]).

In the 1980s the paradigm of object orientation entered into the world of
databases. Together with other developments in databases, in particular com-
plex values and notions from semantic databases , this constituted the object
oriented database (OODB) paradigm ([AtkinsonEtAlii89])

The concepts of the OODB paradigm entered the world of databases in several
different disguises. Firstly, in OO programming there was a need for a persistent
store for the objects that were created by the executions of the (OO) programs.
In this context persistence means that the lifetime of the objects that occur in a
program is longer than the lifetime of the program run that created the objects;
this is in order to give other programs the opportunity to use these objects. In
this disguise, some primitive database notions were incorporated into the world
of OO programming languages. Another disguise of the concepts of the OODB
paradigm was created the other way around. The new concepts of the OODB

1.2. Object Oriented Information Systems 9

paradigm were incorporated into existing database models. This gave rise to
models such as the ’object relational database model’ and the ’deductive object
oriented database model’ ([Abiteboul90]).

It has to be noted that the OODB paradigm rose from implementation efforts,
and is not based on a precise formal model. Since its appearance, several models
of various degrees of formality have been developed. None of these models de-
veloped so far encompasses all the features that are associated with the OODB
paradigm, and also, a universally agreed upon model has not yet emerged. There
have been proposals for a standard model of OODB systems, of which the ODMG-
93 proposal ([Cattell94]) and its successors ODMG 2.0 ([Cattell97]) and ODMG
3.0 ([CattellEtAlii00]), from the ODMG group is the proposed standard. This
is the case, because a large number of influential providers of OODB systems
committed their efforts to the proposal. Unfortunately, the proposal suffers from
many conflicting compromises, and is very sloppy. It also completely lacks formal-
ity and rigor in the semantics2, and is much criticized. Another very influential
proposal for standardizing the OODB concept is the SQL-3 standard ([SQL3]).
Although this standard is historically based on the relational database model,
it has incorporated many of the popular concepts of object oriented information
systems, and in particular the OODB concepts. Much work is done comparing
and synthesizing the two above mentioned proposals. The efforts to clarify the
different views on the concepts of the OODB paradigm have initiated three man-
ifests ([AtkinsonEtAlii89], [StonebrakerEtAlii90] and [DarwenDate95]). These
manifests list in an informal manner the required features of OODB systems.

Whereas the first manifest concentrated solely on the concepts of the OODB
paradigm, the second and third manifest stressed the importance of incorpo-
rating the fruitful notions of more traditional database systems, especially of
the relational database systems. Contrary to OODB systems, relational systems
([Codd70], [Ullman88]) evolved from a precise formal model, equipped with a
high level declarative language. The advantages of the theoretical clearness, the
ad hoc query mechanism and the declarativeness of the language, inspired the
implementation efforts of the relational database model for use in practice. The
relational model, enriched with a lot of features and provided with a standard3

query and data definition language (SQL), is considered one of the most successful
theoretically impaired languages in information systems.

Another mathematical model that found its way into information systems is
that of logic programming. The resulting paradigm of deductive databases is com-
mended for is declarativity in combination with its computational power. Fur-
thermore it enables one to incorporate rules of knowledge into the database, i.e. it

2syntax of the languages in the ODMG proposal are formally defined in BNF, although the
BNF syntax conflicts sometimes with the informal presentation of the syntax

3Although not everybody is happy with SQL, it is the unchallenged standard.

10 Chapter 1. The object oriented development practice

gives the possibility to bring in concepts of the world of knowledge bases. Combin-
ing notions from deductive databases and OO databases has become an important
matter of research and controversy. The main problem here concerns the ques-
tion whether the notions of the OODB paradigm and the deductive database
paradigm are compatible; especially the matter of combining declarativeness and
the notion of an ’object’ from the OODB paradigm ([Ullman91]). Although influ-
ential database experts refuted the combination of the deductive database model
(declarativeness) with the OODB model, many others proved this combination
possible, with respect to their own interpretation of the concepts in question Es-
pecially worth mentioning in the context of combining database paradigms is the
language OORL [Rotterdam96] which combines in a declarative setting the rela-
tional model, notions from OODB systems and logical rules similar to the rules
in deductive databases.

In the same era as OODB, from a different but maybe even more influential
field of practice and research, notions relating to object technology originating
from analysis and designmade their advent in the conceptual world of information
systems. The languages of analysis and design are tailored to describe at a high
level of abstraction (conceptual level) the information structure of a system and
its surroundings. For the languages supporting the object oriented notions in
analysis and design in 1997 a standard language called UML has been accepted
in industry. Although not formal, the models and languages of analysis and
design contained appealing and well developed notions for information systems.
Moreover the notions from analysis and design fit in and enrich nicely the concepts
of the OO paradigms.

A very appealing feature of the languages of analysis and design is the abil-
ity to use sophisticated graphical schema techniques (UML, BOOCH, FUSION,
OOSE, RDD, SYNTROPY, OMT, NIAM, EER etc.). Many of these schema
techniques were gratefully adopted by implementation languages which included
some practical database languages4 and (with some limitations) and programming
environments5. Graphical syntax has also been introduced in scientific, and theo-
retically wellfounded database languages6. It is probably is impossible to imagine
next generation information systems without means of graphical representation.

4e.g. ’Gemstone’, and ’O2’ (pronounced ’O-deux’).
5strictly the graphics are not part of the programming languages, but are abbreviations

of programming language expressions in the integrated development environments (IDE’s).
Examples of such IDE’s are Visual Age (IBM), Visual Studio (Microsoft), Forte (SUN).

6e.g. IFO ([AbiteboulHull87]), GOOD and HQL ([AndriesEngels94]).

1.2. Object Oriented Information Systems 11

The most important ingredients of the Object Oriented paradigm include7 the
following concepts:

• object and object identifier,

• complex value, type and class,

• ISA hierarchy, subtyping and inheritance,

• operations and methods

• encapsulation.

Related concepts that are usually not mentioned under the object technology
label are:

• Declarativeness

• Graphical syntax

Concepts that are important for the use of the languages with object orienta-
tion are:

• partial specifications, identity and the extendibility principle

1.2.2 The Unified Modeling Language (UML)

The need for a uniform and consistent visual language in which to express the
results of rather numerous object oriented (design and analysis) methodologies
extent in the early 1990s became very evident. During that period the authors of
three influential object oriented methodologies began an effort to unify their meth-
ods, when they were ’recruited’ around 1995 by the Rational Software Company,
a company that had developed a number of software development tools and prac-
tices. These authors were Grady Booch (author of the Booch method [Booch94]),
Ivar Jacobson (initiator of the use case driven approach [JacobsonEtAlii92]), and
James Rumbaugh (principle developer of the Object Modeling Technique OMT
[RumbaughEtAlii91]). They released a first version (version 0.9) of the Unified
Modeling Language UML in 1996. The effort was expanded to include other
methodologists and a variety of companies including IBM, HP, and Microsoft,
each of which contributed to the evolving standard. The standardization pro-
cess resulted in the release of UML version 1.1 under the authority of the Object
Management Group (OMG) standard organization in November 1997. UML has

7We note here that many concepts of the object oriented database paradigm already existed
in earlier paradigms. We do not imply that the notions mentioned here originated in this
OODB way of looking at databases, but merely that they are present in and characteristic for
the OODB paradigm

12 Chapter 1. The object oriented development practice

now grown into the de facto visual language for writing down information system
models for most (if not all) methodologies and tools that use the concepts of ob-
ject technology (object orientation). Currently UML has evolved to version 1.3
(June 1999) with only minor revisions.

The Unified Modeling Language (UML) is a standard modeling language for
software. It is a language for visualizing, specifying, constructing and docu-
menting the artifacts of a software intensive system. Basically UML enables a
information system modeler to visualize its work in standardized diagrams. For
example the characteristic icon to write down an object is a layered rectangle with
an underlined name in the upper layer. Such an icon is just a graphical notation.
It is syntax. The icons of UML also have an intended meaning, a semantics.
Below we will list an overview of the syntax of UML and a brief description of
the informally defined meaning of graphical UML terms. For a thorough treat-
ment of the UML language and its semantics we refer to [FowlerScott00] and
[WarmerKleppe99]. There also exists the public documentation set of UML that
was delivered when UML was released as a standard by the Object Management
Group [UML99], but it is suited as a reference only. Note that the semantics of
UML as defined in the books and the standard consist of brief English (natural
language) sentences. It is not a formal semantics. In the evolving process of this
standard the definition has become more consistent, but still no formal seman-
tics is planned for future releases (UML 2.0 plans to contain a number of major
enhancements, again driven by practical use). The formal semantics of the core
concepts of UML is the subject of this thesis.

UML provides developers with a vocabulary that includes three meta cate-
gories: things, relationships, and diagrams. There are four kinds of things:

• structural things: these are building blocks that can specify structure of
the world. These are: class, active class, use case, interface, component,
collaboration and node, object8, attribute9 in vocabulary and operation10.

• Behavioral things: these are building blocks that specify behavior of the
world. These are: Interaction and state machine.

• Grouping things: These are containers that organize the world. These are:
package, model, subsystem, framework.

• Annotational thing: This is a construct for adding arbitrary information in
natural language. This is: note.

8not classified as such by the three UML founders [JacobsonEtAlii99]. They somehow only
mention ’object’ under the diagram meta category

9also not listed in [JacobsonEtAlii99]
10also not listed in [JacobsonEtAlii99] in vocabulary

1.2. Object Oriented Information Systems 13

The UML

Things

Structural

Use case
Class

Active class
Interface

Component
Collaboration

Node

Behavioral

Interaction
State machine

Grouping

Package
Model

Subsystem
Framework

Annotational

Note

Dependency
Association

Generalization

Use case
Class
Object

Sequence
Collaboration

Statechart
Activity

Component
Deployment

Relationships Diagrams

Figure 1.1: The vocabulary of UML in a tree form.

Within the second meta category, relationships we find three building blocks:

• a dependency denotes a dependency between things

• a association denotes an association (or relation) between things

• a generalization denotes an inheritance or isa relation between two things

In the last meta category diagrams we find 9 types of graphical containers:

• use case

• class

• object

• sequence

• collaboration

• state chart

• activity

• component

• deployment

The remaining figures in this section show an overview of the graphical nota-
tion of UML

14 Chapter 1. The object oriented development practice

Class

Class name

Class name

attribute:Type = initialValue

operation(arg list):return type

Generalization

Supertype

Subtype 1 Subtype 2

discriminator

Constraint

{description of constraint}

Stereotype

{stereotype name}

Note

some useful text

Object

Association

Multiplicities

Qualified Association

object name: Class Name

Class A Class B
role A

role B

Class
1

exactly one

Class* many (zero or more)

Class
m..n

numerically specified

Class
0..1

optional (zero or one)

Class aggregation

Class composition

Class composition
(ordered) *

Class qualifier

Navigability

Dependency

Class A Class B
role A

role name
Source Target

Association Class

Class Class

Association �
Class

Figure 1.2: The relevant graphical constructs of UML

1.2. Object Oriented Information Systems 15

1.2.3 Object oriented modeling languages, database lan-
guages, and programming languages

The Unified Modeling language (UML) has originally been defined for object
oriented modeling and design, and as such is the official standard language in
that field. A development process is more than analysis and design. In the
end we will also need programs and databases. Programs and databases still
require other languages. The important glue between these languages, the glue
that makes a straightforward transformation from specification from analysis and
design to implementation possible, are common concepts of object orientation.
This makes it possible to transform a design model in UML to database and
programming languages, writing down all the information in the detail level as
specified in the design model. In the implementation activity then implementation
specific coding needs to be added (more detail) in order to obtain an operational
system. In current development tools the uniformity of concepts is often good
enough to do some part of the transformation automatically. Moreover automatic
transformation for implementation back to design is also possible to some extent
in order to make the design model consistent with the implementation model in
the event that in an implementation language something has been changed that
is also prevalent on the design level. And this all without a rigorous semantics.

We will spend some time on two kinds of implementation languages: object ori-
ented programming languages and object oriented database languages. In practice
the most commonly used object oriented programming languages are Smalltalk,
C++ and Java. Especially Java, chronologically the latest developed from the
three, uses concepts very similarly used as UML (probably because these lan-
guages were defined at the same time). This has an advantage that the transitions
are relatively smooth. Therefore there are quite some tools that do automated
code generation from UML to Java, and vice versa re-engineering code to UML
diagrams11. For the object oriented programming languages it holds that they
are well accepted in practice.

Object oriented database languages also exist in many flavors, but in this
field standardization attempts are also being made. The leading standard is the
already mentioned ODMG standard ([CattellEtAlii00]). Although the value of
the use of object oriented database languages12 is recognized, they are hardly
used. Even in the context of object oriented software development, the main
stream database systems are based on a different, namely relational information

11An example is the roundtrip tool for the Rational Rose UML modeling and design suite and
IBM Visual Age for Java. A note to make here is that the translation is performed based on an
intermediate ’meta language’ for storing object design information called XMI. This language
is based on the XML standard and is a proposed standard for interchanging object meta data.

12i.e. database systems that support object oriented database languages, and thus provide
the possibility to handle their content as objects in the sense of object technology

16 Chapter 1. The object oriented development practice

model. Even though the relational model is a very elegant one, the transition from
concept to implementation we mentioned above needs to leap over a completely
different way of looking at information. This leap is normally bridged by an
object to relational mapping. Even though such a mapping works out well in
many cases, it is not based on a formal semantics of the object world (while the
relational world has a more or less formal semantics). Such a formal model could
be a good vehicle to define such a mapping.

There are some things to be said about some object oriented concepts that play
an important role in the transformation. The object oriented concepts on static
models has matured to an extent that the structure is common to most object
oriented languages. Things get complicated when constraints start to play a role.
Nevertheless constraints are getting more important in recent trends in software
development with the focus on so-called ’business objects’. From the technological
perspective business objects are persistent objects that can be shared by all the
information systems in an enterprise or organization. Business objects model
core information entities for the business of an enterprise or organization. Such
business objects can have complicated structure and behavior, but particularly
they have complex constraints in the form of business rules defined on them.
These rules should be expressed by the modeling and design languages and should
be forced upon the objects by the realizing database and programming languages.

In the modeling language UML there is a constraint language, called OCL
([WarmerKleppe99]), to express constraints, which enables a declarative way to
write down constraints on objects. In the various object oriented databases there
are constraint languages but there is not a constraint language in the proposed
standard for object database languages by the ODMG. In the standard, con-
straints are to be forced by the operations on the objects, exactly like it is done
in a programming language. This means that there is not a general mechanism
that enforces the constraints, but every operation on the objects should make sure,
in the end, that the constraints are satisfied. This practice imposes quite a gap
between the design, in which we can declare the constraints, and the implemen-
tation, in which we need to enforce them. Most of the time custom mechanisms
need to be defined to enforce the constraints. Alternatively, some constraints
may be forced by the relational database system through an object to relational
mapping. We see an important role in this area for a formal model for object
orientation. The large complexity of the matter needs a thorough formalism for
(better understanding of) the object oriented concepts in order to capture the
constraints and perform the transformation. A lot can be gained if one could
provide a general mechanism for solving this problem.

1.3. Object Oriented Software Development 17

1.3 Object Oriented Software Development

A software development process defines who is doing what, when, and how to reach
the goal of building or enhancing a software product. A very important tool in
such a process is the language that formulates the accomplishments during the
development process. This language is used in the descriptions of requirements,
documents containing analysis of the universe of discourse for which one builds
IT support, design models of the system to be built, and even the actual source
code of the programs that denote in detail the working of parts of the system.

1.3.1 A very brief history of the OO software development
process

In the late 1960s when software products became more and more complex, the
need to present software architecture by means similar to engineering blueprints
became apparent, in order to be able to communicate the content of the soft-
ware and to guide the development of the software product to a successful end
([Jacobson85]). A significant milestone in the streamlining of software develop-
ment processes was the issuance in 1976 by CCITT, the international body for
standardization in the telecommunications field, of the Specification and Descrip-
tion Language (SDL) for the functional behavior of telecommunication systems.
SDL was the first specialized object modeling language. Periodically updated
it is still in use by a large number of developers. In the same context many
other (non-specifically object technology based) languages with their compan-
ion methodologies were developed, of which the most influential is the language
SA (Structured Analysis) with its methodology SADT (Structured Analysis and
Design Technology) ([Ross77], [Ross85]).

Where the SA technology kept evolving in a steady way, the object tech-
nology inspired methodologies and accompanying languages became a real hype
when object orientation became very popular (and more mature) in the late
1980s. Many object oriented development methodologies and design languages
were introduced. Well known examples are the Booch method ([Booch94]),
OOA/OOD (Object Oriented Analysis/Object Oriented Design) by Coad and
Yourdan [CoadYourdan91a] [CoadYourdan91b], OMT (Object Modeling Tech-
nique) by Rumbaugh et alii ([RumbaughEtAlii91]), OL (Object Lifecycles) by
Shlaer and Mellor ([ShlaerMellor88]), OOAD (Object Oriented Analysis and
Design) by Martin and Odell ([MartinOdell92]), FUSION by Coleman et al.
([ColemanEtAlii94]), OOSE (Object Oriented Software Engineering) by Jacob-
son et al. ([JacobsonEtAlii92]), OOSD (Object Oriented System Development)
by de Champeaux et al. ([deChampaeuxEtAlii93]), and MOSES by Henderson-
Sellers and Edwards ([HendersonEdwards90]). The enormous amount of design
languages provided a problem in communication of designs and automation of
the development process. This fact initiated a considerable reduction in object

18 Chapter 1. The object oriented development practice

oriented design languages by the standardization effort of the leading forces in
object oriented software development, resulting in a standard language for de-
noting information using concepts from object orientation. This language is the
already mentioned the unified modeling language.

Now the industry has a standard object design language for use in object ori-
ented software development, the trend to get to a unified process is also ongoing.
This process is (of course) called the unified software development process, often
abbreviated with ’UP’ ([JacobsonEtAlii99]). We will use UP as a reference to give
an overview on the object oriented software development process in the following
section.

1.3.2 An overview of the OO Software Development Pro-
cess

The aim of software development is to build a software system. A software de-
velopment process is the set of activities needed to transform a user’s need or
requirement into a software system. The need or requirement that is to be trans-
formed into a software system can vary from a simple processing demand of well
understood entities to a request for sophisticated computations on various kinds
of complex information to serve unintelligible processes. The sprouted software
system, in the end, will have some purpose in the (more or less abstract) world in
which the requirements make sense. In order to achieve this result an understand-
ing of the world is needed, as well as an accurate description of the information
that is processed. In order to get to this understanding and description (and
eventually program code) a development process defines workflows and steps to
gradually build the understanding (a model of the world). In this process lan-
guages are needed to write down the gained knowledge of the world. Here we get
to the object technology in the object oriented development process. We will use
languages that bear concepts of object orientation to write down the achievements
in several stages of the process. These notions are important in the process be-
cause they are developed based on an intuition to talk about the worlds for which
we build the software systems. The concepts are described in detail in the next
chapter. The process itself also imposes some requirements on the languages as
we shall see.

The general activities in software management are usually categorized by the
following terms: requirements, analysis, design, implementation and test. Each of
these activities (called core workflows in UP) are comprised of several tasks and
have several deliverables. We give a short description the core workflows here:

• Requirements. The here goal is to find out what the purpose or the
need of the users for the system is. A result of this activity is a list of
requirements.

1.3. Object Oriented Software Development 19

• Analysis. Here we gain a conceptual understanding of the world in which
the system shall live, and what its function shall be. We make a conceptual
model of the system

• Design. Here the conceptual model of the analysis phase is transformed to a
technical description in terms that relate closer to what can be implemented
with the current information technology. We expect from this activity a
technical model and a systems architecture description

• Implementation. Here we build the system with actual information tech-
nology. We code programs to be compiled and executed on operating sys-
tems and middleware platforms, and code database schemas and procedures
for storage of information on database platforms. The result should be a
fully operating information system.

• Test. Here the operational system is tested. We verify that its performance
satisfies the requirements set, assess that it serves its purpose in its world
and make sure that it does not malfunction technically. This activity will
result in a number of defect descriptions and additional requirements for
the software system.

In a software development process these activities are organized in phases and
steps. Traditional software development processes like the waterfall process for
software development typically organize these activities in a strict sequence, where
at the end of each activity one aims to have a completely finished deliverable for
the whole system. Deficiencies in either of the deliverables force one to step back
to the activity in which this deliverable was constructed, aiming again to fully
complete the deliverable This process has some drawbacks13, because in order
to fully deliver the requirements or the conceptual model, one already needs full
understanding of the world. In practice this is hardly ever the case.

The notions of object orientation enable an object oriented software develop-
ment process to organize the activities differently. In an object oriented develop-
ment processes the basic language constructs to build the deliverables are objects.
These objects have a ’generality’ that enables one to talk about the objects on
an arbitrary abstract level. Objects can be referred to as meaningless labels, or
as complex structures with sophisticated behavior. This feature enables one to
let the objects that make up the deliverables evolve from an abstract indefinite
version to a version that carries enough meat to realize the software system. Tak-
ing advantage of this the software development process organizes the activities in
iterations. In an iteration artifacts of requirements, analysis, design, implementa-
tion and test evolve in parallel. In the early iterations most of the emphasis will

13Because we want to emphasize the notion introduced by OO software development we only
mention this drawback, and do not go further into other fruits or drawbacks of the waterfall
process.

20 Chapter 1. The object oriented development practice

be on requirements and analysis activities and only little on design, implemen-
tation and testing. In later iterations the most of the effort will go into design,
implementation and testing, and less in requirements and analysis. In order to
steer the software development process these iterations are organized in phases.
For UP (but similar for the other OO development processes) these phases are:

• Inception. The primary goal of this phase is to establish the business case.
After this phase one needs to be able to judge feasibility of the software
system and validate its purpose.

• Elaboration. This phase focuses on do-ability. Here we need to establish
the main part of the conceptual model and a basis for the architecture.

• Construction. Here we refine the conceptual and technical artifacts and
do most of the building. This phase should deliver an initial system that
operates and has all the main functions.

• Transition. Here the system and the artifacts are finalized and we validate
its integral correctness.

1.4 Summary

In this chapter we described the practical context which is subject to scientific
analysis and formalization in the coming chapters. The results presented in this
thesis have their applications in precisely this context, and strive to contribute to
the scientific fundaments of the domains of ’information processing’ and ’software
development’.

Chapter 2

Concepts in object orientation

”Object-oriented programming is a wonderful example of how fruitful
things don’t happen very precisely”

(Robin Milner)

One conjecture of this thesis states that the concepts which are actually used in
the practice of object oriented information systems are not similar to the concepts
that are common in contemporary mathematics. In contrast, the concepts of
information systems evolved from the need and ”way of looking at things” in
practice. This entails that these concepts do not have a rigorous mathematical
definition. There exists, however (and fortunately) quite some level of consensus
on the meaning of those concepts (although hardly mathematically defined).

In this chapter we analyze and exemplify the concepts and notions for which
we will construct a thorough mathematical theory in the succeeding chapters. We
believe that the concepts we captured mathematically are amongst the most pro-
nounced and widely used (and interesting) concepts that have become important
in the field of object oriented information systems. Our attempt is to capture at
least the common part of the conceptual world of object technology.

In this chapter we start to give an account on the sources from which we
deduced the concepts mentioned. Thereafter we will present our interpretation
of the concepts we strongly believe to be the most basic and interesting.

2.1 Concepts

The notions of object oriented information systems are defined in many different
ways. Not only do the definitions differ in the level of formality, the definitions
also differ in the level of conceptuality; i.e. in some presentations the notions

21

22 Chapter 2. Concepts in object orientation

are explained using low level concepts of implementation (directions on how to
implement the notions), and at other places the same notions are explained at
a high conceptual level in terms of their desired behavior (abstracting totally on
implementation). For example the use of an OID (object identifier) is more an
implementation ’trick’ to obtain the ability to distinguish two objects that have
the same values, rather than a philosophically justifiable property of an object.
Nevertheless it is a property that is used many times to describe the properties
of an object. We do recognize the importance to have both the high (conceptual)
level and the low (implementation oriented) level descriptions, because both kinds
are actually used. Below we strive to strictly separate the low level and high level
descriptions. We believe this results in a more clear picture of the concepts we
will describe. In this section we informally describe and analyze the concepts of
interest in this thesis.

2.1.1 Object and object identifier

In informal terms, an object in an information system represents some ’actual’
entity, whether this entity is, for example, a person, or a scalar value. The most
important property of an object is that it has an identity . The notion of iden-
tity is, although very common in use, quite difficult to understand ([Leeuwen93]).
Many philosophers quarreled with this seemingly unproblematic notion, and, for-
tunately solved many paradoxes involving the use of identity (e.g. [Frege1892]).
In information systems where object identity is important, there is also some
quarrelling ([EmdeBoas96]). This quarrelling, though, hardly takes into account
the research (in philosophy) on the notion of identity that has already been done.

To avoid many paradoxes when talking about identity, one can make (as in
philosophy) a distinction between ’language’ and ’meta language’. The meta
language contains expressions that reflect directly things in the real world. In the
’language’ one can talk about the real world, and expressions in this language are
interpreted via this meta language.

In the object oriented information system practice both ’language’ and ’meta
language’ is developed when building a model of the real world. For example
rows in a database form pieces of the ’meta language vocabulary’, while in some
input screen one can type in ’language’ expressions to specify a query. However
in the object oriented practice no distinction is made between ’language’ and
’meta-language’ when talking about the real world. Although this is not really
harmful, it requires a lot of accurate administration to avoid running into non-
clarities and paradoxes. Especially because the concept ’object’ and ’identity’ is
such an important ingredient of the paradigm. Below we sketch out some of the
problems.

In (more) formal definitions of objects in information systems, an object iden-
tifier (OID) is usually associated with an object. Frequently an OID is some

2.1. Concepts 23

unrelated value, which is used to distinguish objects for which we may have the
same data in our information system, but which are known to be different1; and
also for identifying an object of which some of its data is changed in the course
of time. Furthermore an OID often serves as a handle to refer to an object, or
in other words it acts as a name or reference for the object of which it is the
identifier.

2.1.1. Example. Imagine we have a bag with three marbles, one white marble
and two black marbles. We can model this information as follows:

marbles OID COLOUR
x123 black
x456 white
x789 black

bags OID CONTAINS
b789 x123, x456, x789

Note that we used the OIDs of the marbles to denote which marbles are in the
bag.

Question: Suppose we pick blindfolded a marble from the bag and
this marble happens to be black. Which marble did we pick, x123 or
x789? If the marbles ’look’ exactly the same, does it matter which
marble we picked? And what after someone told you that one of the
black marbles is cursed?

N

The ’trick’ of using OIDs to solve the matters of identity usually works out fine.
Sometimes, though, it does not. For example, if we want to be able to reason
with an infinite set of objects, like the natural numbers, we have to assign an OID
to all the natural numbers. As this is generally not possible we get the unnatural
situation that some natural numbers -the ones we have stored somewhere in the
information system- have an OID, and most others, -the ones we have not used
yet- do not. To solve this situation most of the systems apply another trick:
among the objects they distinguish so called literals, which are ’objects without
an OID that are identified by their value’ (e.g. [Cattell94]). Although this solves
the problem of infinite sets of OIDs, the resulting non-uniformity of the collection
of all objects is very inelegant and on a conceptual level, even incorrect2. In

1Using this trick, an attempt is made to satisfy Leibniz principle that states that no two
individuals can be the same in all properties, without actually being the same. However the
property that is introduced to accomplish this (the OID) is without any independent meaning.

2’all objects have identity, but some objects have more identity than other objects’

24 Chapter 2. Concepts in object orientation

our opinion using OIDs is a way to solve the matter of implementing the matter
of object identity, but it should not be confused with concepts that handle the
notion of identity semantically.

The notion of OID becomes really problematic if we consider incomplete in-
formation on the identity of objects or information that possibly contains wrong
identifications. In some cases we may not know whether two objects are the same
or not. The requirement of associating an OID to an object will usually assign
different OIDs to these two objects. But if we discover in due time (by additional
information) that these two objects are actually the same, we will have to identify
the two objects. How to do this with OIDs is unclear: do we keep both OIDs,
or only one of them, do we assign a new OID. Again we argue that the OIDs
may implement the notion of identity correctly, but as long as we cannot actually
identify two different persons (in reality) this notion is vague, sloppy, and incor-
rect from a philosophical point of view3. There is an alternative way to do it:
come up with a philosophically sound ’trick’ to handle identity, which is strictly
separated from the tricks used to implement this notion. This gives a clear view
on the matter of identity of objects, and enables one to reason about identity of
objects without encountering disturbing paradoxes or inconsistencies.

We propose the following approach to handle objects and their identity4. In
the languages we use to talk about the objects in an information system, we
have names for the objects. A name is simply a word in the language used,
and is interpreted to refer to the actual object it denotes5. The most important
difference with an OID is that a denotation is not a property of an object. We
must take care that different objects have different names. In contrast with the
OID approach we do allow one object to have several different names. In order
to keep track of the identities of the objects we denote, we maintain an identity
relation (≈) between the names and/or a difference relation (6≈). Thus if we know
that two names a and b denote the same actual object, we will put a ≈ b. If we
know that they denote different objects we put a 6≈ b.

2.1.2. Example. Consider again the bag of marbles of example 2.1.1. We will
use names, instead of OIDs to refer to an object.

bags
b denotes the bag containing m1,m2 and m3

3Assuming that the identity is an immutable property of an object. Note however this
assumption is not totally unquestioned (even outside ’science fiction’).

4We also do not want to reinvent the fruits of 2000 years of philosophy, we simply take a Frege
style approach ([Frege1892]) to handle the matter of identity. It is not the switch of philosopher
(from Leibnitz to Frege) that bears fruit here, but the fact that we apply the principle of Frege
in a semantically correct manner, instead of forcing the Leibniz principle with philosophically
doubtful tricks.

5It is, roughly, the way mathematicians deal in a language with the identity of the mathe-
matical objects.

2.1. Concepts 25

b

m

m

m

1

2

3

b

blackm

blackm
out

in

justanothermarble

Figure 2.1: Denoting marbles

marbles
name1 denotes black marble m1

name2 denotes white marble m2

name3 denotes black marble m3

inequality (Take symmetric closure of the below)
name1 6≈ name2
name1 6≈ name3
name2 6≈ name3

Note that for simply modeling the structure this approach hardly differs from the
one taken in example 2.1.1. The difference in approach becomes apparent if we
want to determine identities6.

Let us now pick a black marble from the bag. From its appearance we cannot
determine whether we took out the marble we denoted with name1 or the marble
we denoted by name3. We can only say that we now have a black marble out of

6”merely to know that a name has as its referent an object with which we are confronted, or
which is presented to us in some way, at a particular time, is not yet to know what object the
name stands for: we do not know this until we know, in Frege’s terminology, ’how to recognize
the object as the same again’, that is, how to determine, when we are later confronted with
an object or one is presented to us, whether or not it should be taken to be the same object”
[Dummett73]

26 Chapter 2. Concepts in object orientation

the back (in the picture denoted by blackmout), and a black marble in the bag
(denoted by blackmin), and that they are different (i.e. blackmin 6≈ blackmout).
Using fixed identifiers would cause problems here. N

This approach solves the problems with OIDs we mentioned above. If we want
to talk about literals -objects that are nothing more than an immutable value-
for example natural numbers, we simply take the token of that value as the name
of the object. For example, for the immutable object ’the natural number 1’, we
take the name ’1’ or ’one’, and for ’the natural number 2’ we can take the name
’2’ or ’two’ or ’b10’. This avoids the administration of superfluous OIDs. Also it
solves the asymmetry of having object with or without OIDs, because all objects
have their names, both non-literals and literals. When an object is changing
some of its properties dynamically, its name still remains a valid reference to the
object. When in course of time we discover that two names, a and b actually
denote the same object, we only have one unambiguous action to take: add the
equality a ≈ b to our equality relation.

When we analyze this phenomenon, especially the fact that we introduce an
explicit (non) identity relation to handle the identity matter, we tend to conclude
that this matter reveals a very strong intuition about objects that is neglected
when making things precise. Drawing the three marbles from our example (or
writing them down) as is done in the object oriented way of looking at things,
we implicitly mean to give a lot more information than just labeling objects and
giving them a color. Not only do we say that we refer to three objects wich are
marbles, and of which one is white and two are black; i.e. in logical notation:

∃x, y, z(marble(x) ∧marble(y) ∧marble(z) ∧ black(x) ∧ white(y) ∧ black(z))

but implicitly we also mean that these objects are different and that we really
have exactly three objects in this bag and also that being white disqualifies being
black; i.e.

∃x, y, z(marble(x) ∧marble(y) ∧marble(z) ∧ black(x) ∧ white(y) ∧ black(z)
∧x 6≈ y ∧ x 6≈ z ∧ y 6≈ z
∧∀u[marble(u)→ u ≈ x ∨ u ≈ y ∨ u ≈ z]
∧∀u[black(u)→ ¬white(u)]
∧∀u[white(u)→ ¬black(u)])

To strengthen our case, we remark that when we pick a black marble, we really
cannot infer from the logical rules which one we picked, while if we had picked
the white one, we could really infer from the logical rules that we picked the y
marble (in the scope of that quantor) and from that we could indeed determine
its name; i.e.

∀x, ymarble(x) ∧marble(y) ∧ white(x) ∧ white(y)→ x ≈ y

2.1. Concepts 27

A modern practical language for analysis and design like UML, which oper-
ates on a conceptual level, has circumvented this problem quite wisely by only
requiring the existence of a notion of identity that is strong enough to distinguish
different objects, leaving it to the implementer of the system how to realize it (in
the extensions of the information specification). It also circumvented the mathe-
matical obligation to ’realize’ the identity of the objects on a high level in a model,
because this language has no formal semantics. This omission, however, can from
a practical point of view be justified, because the realizations of UML will not
be formal either and moreover will probably use tricks like the OID (depending
on the programming/database language used), so the axiom of identity normally
suffices to be clear enough about this matter. The challenge is more that the
realizations must be such that the problems that occur by using the tricks like
the OID are to be solved. A formal model that realized this matter elegantly may
provide a good example of how to realize it properly7.

2.1.2 Complex value, type and class

Objects can be classified according to their type. Informally a type can be seen as a
collection of all objects that have a certain property8 in common; e.g. the property
of being a person or the property of being able to jump, which includes a horse, a
flea, and even a person. A common way to classify objects in information systems
is to distinguish objects according to their signature. A signature describes what
type of basic building blocks an object of this signature should at least9 posses and
which abilities it should at least have and to which other objects it is associated.
Given a set of so called basic types, one can build complex types or signatures
using several type construtors; e.g.

2.1.3. Example. The signature of the type Book

type Book

signature

attr title : string

attr author(s) : SET OF(person)
attr ISBN : N× N× N× N
attr publisher : company OR institute

attr year : year > 1450

N

In the above example we used a couple of common type constructors. Firstly
the title part of a book (hence forward called an attribute of book) should be of

7for example using a relation administering identity like the Frege style of dealing with
identity [Leeuwen93]

8or collection of properties
9We will consider type requirements to be existential

28 Chapter 2. Concepts in object orientation

type string. This type is considered a common ’basic’ and ’predefined’ type in
most information systems. Other basic types are integer, bool, float and blob10.
Most object oriented languages offer, next to the common predefined types, the
ability to introduce new basic types, by defining the extension of that basic type.
For example,

2.1.4. Example.

primary-colors := {red, yellow, blue}
N := 0|S(N)

N

Another common type constructor is the SET OF type constructor. In the above
example a book has a set of authors, which models the event that a book can
have an arbitrary number (including zero) of authors.

A well known type construction in mathematics is taking the Cartesian prod-
uct (×) of existing types. In the example, an ISBN number consists of a row
of 4 natural numbers; e.g. 90-351-1372-111. We remark that the constructions
of taking objects together like the Cartesian product and the ’is attribute of’
constructor are not unproblematic from a ’design’ point of view. For example we
could have chosen to model the object of type Book to be the Cartesian product12

of a title, a set of persons, an ISBN, a publisher and a year object. On the other
hand we could have chosen to model an ISBN number to be a complex object with
4 attributes of type N. Although for the Book object and for the ISBN object
these are quite clearly not the intuitive ways to model them, for other object types
this may be less clear a matter. The distinction that is generally made is that
an aggregation operator for taking things together (like the Cartesian product)
represents an ’IS A’ relation between the object and the whole of the aggregation
expression; or in other words a member of the aggregation IS part of the whole
object. The attribute construction on the other hand models a ’HAS A’ relation
between the object and each of its attributes. In the example this means the a
Book ’HAS A’ title and HAS An ISBN number etc. etc.; while the ISBN number
IS An (ordered) aggregation of four natural numbers.

To illustrate that this is a realistic problem we point to the practical pro-
gramming language C++. Most C++ books (e.g. [Stroustrup91]) explain the
attribute constructor (member in C++) as a modeling a ’HAS A’ relation to
distinguish it from an inheritance relation between classes. For example, if an
ISBN number IS An aggregation of four numbers, it should be a subclass of the
type N × N × N × N, inheriting its properties. A Book on the other hand HAS

10blob is an abbreviation of ’binary large object’, a type that is much used in multi-media
information systems.

11We realize that the ISBN number encodes some information. For the sake of the example
we only consider it as a sequence of numbers.

12we will call such a construction an aggregation.

2.1. Concepts 29

wheel saddle

1..2

bicycle
bicycle

wheel saddle
1..2

Lifetime dependencyNO lifetime dependency

wheels(2): Wheel
saddle"Saddle

Bicycle

Figure 2.2: example of a HAS A and IS A aggregation in UML

A title, meaning that title should be a member of a Book. The new generation
information system language UML also acknowledges complexity of the modeling
choices that have to be made in this case and proposes next to attribute (HAS
A) construction an aggregation operation in two flavors (to provide a ’middle
course’). UML has two types of aggregations, relating these types of aggregation
to a notion of ’life time dependency’. Between two objects with a lifetime depen-
dency there exists an ’IS PART OF’ relation (i.e. between the ’aggregation of
all these parts’ and the ’object’ there exists an IS A relation), while between two
objects that have no lifetime dependency there is a HAS A relation. A typical
example of this phenomenon is the following: IS a bicycle a frame together with
a saddle and wheels and a steer, or HAS a bicycle a saddle, a frame wheels and a
steer (see figure 2.2). In the first view the bicycle is not the same anymore from
an identity perspective when you replace its front wheel, because the parts that
make up the definition of the bicycle changed. In the second view you can replace
all its parts (all the parts that are modeled) and still have the same bicycle from
an identity perspective.

The ’OR’ type constructor in the above Book example is yet another type con-
structor which is generally known as the union type constructor. In the example,
a book can be published by a company (e.g. North Holland publ. company) or
an institute (e.g. the Institute of Logic Language and Computation (ILLC)).

It can be the case that for some reason one wants to constrain the set of objects
of an existing type to some subset of this set. For example one wants to consider
only printed books, and book printing was invented in 1450, so one considers
books that were published after 1450. The ability to constrain a type is also a type
construction. Although in type theory there is not much difference in defining a
type by giving its signature or by formulating constraints, in information systems

30 Chapter 2. Concepts in object orientation

these two activities are often separated, and often totally different languages are
used to perform these two ways of defining types. For example the design language
UML has many kinds of graphical schema techniques to write down the signature
with limited ability to add some constraints. To write down constraints with
full expressive capacity, UML has defined a (textual) constraint language OCL
([WarmerKleppe99]).

The concept of a class coincides largely with the concept of type. A class is
also used to classify objects according to several properties. Next to properties
and constraints, a class also epmhesizes abilities (which for simplicity we also
consider to be properties of an object) by separately listing the operations that are
associated with the type of objects in the class. Additionally, a class also contains
the implementations of the functions (i.e. we can talk about methods) and the
manner in which the objects are actually represented in the implementation. In
other words a class consists of:

1. type

2. operations

3. body of implementation containing:

• actual representation of the type of objects

• implementations of the operations

2.1.5. Example. In this example we see the specification (coding) of a banking
account type and its behavior.

class Account {

// the signature of Account

int account;

string owner;

float balance;

public:

// the methods of Account

Account(int accountnr, string owner, float balance);

float get_balance();

void incr_balance(float amount);

void decr_balance(float amount);

private:

// some things needed for implementation

float my_percent; // the interest percentage

date prev_mutation_date; // date of previous mutation

2.1. Concepts 31

float build_interest; // to keep track of the interest

};

// The body with the implementation of the constructor of the class

// and the implementations of the methods.

Account::Account(int accountnr, string owner, float balance)

{

my_percent := NORMAL_PERCENT;

prev_mutation_date := current_date;

build_interest := 0.0;

};

float Account::get_balance()

{

return balance;

};

void Account::incr_balance(float amount)

{

float add_interest;

float add_percent;

add_percent := my_percent * (CURR_DATE-prev_mutation_date)/ONE_YEAR;

add_interest := balance * add_percent;

balance := balance + amount;

build_interest := build_interest + add_interest;

prev_mutation_date := CURR_DATE;

};

void Account::decr_balance(float amount)

{

float add_interest;

float add_percent;

add_percent := my_percent * (CURR_DATE-prev_mutation_date)/ONE_YEAR;

add_interest := balance * add_percent;

balance := balance - amount;

build_interest := build_interest + add_interest;

prev_mutation_date := CURR_DATE;

};

N

2.1.3 ISA hierarchy, subtyping and inheritance

Types can be ordered in a type hierarchy or ISA hierarchy. For example consider
the two types student and person and suppose one would like to assert that a

32 Chapter 2. Concepts in object orientation

student is a (ISA) person, or in other words, one would like to assert that student
is a subtype of person. This means that the set of all objects of type student

should be contained in the set of all objects of type person. Usually a subtype
relation like the one above is defined by adding phrases to the information system
that formulate the subtype relation; e.g.

student ISA person

From a collection of these phrases, other unstated subtype relationships can be
inferred. For example, if we also add the phrase graduate-student ISA student,
we should be able to infer graduate student ISA person. Usually there is a formal
system with inference rules that take care of these things. An influential paper
on this subject is from Cardelli ([Cardelli84]). A system for subtyping usually
contains, next to rules for reflexivity and transitivity of the ISA relation, the
following rule (*):

If type A contains at least all the attributes that type B has, then A
is a subtype of B13

For example:

2.1.6. Example. Look at the following three type definitions.

type vehicle = (age : integer, speed : integer)
type machine = (age : integer, fuel : string)
type car = (age : integer, speed : integer, fuel : string)

According to the rule (*) we can derive the following relations:

car ISA vehicle

car ISA machine

N

In some cases though this inference rule can result in undesired subtype relation-
ships; for example:

2.1.7. Example. Consider the following type definition:

type fuelcontainer = (age : integer, fuel : string, size : measure-of-volume)

13The rule I am aiming at is even more general then that stated above. The above rule,
though, already suffices for the argument. Usually the rule looks as follows:

If A = [c1 : C1, . . . , cm : Cm, . . . , cn : Cn] and B = [d1 : D1, . . . , dm : Dm] and also
C1 ISA D1 · · ·Cm ISA Dm and ci = di(1 ≤ i ≤ m) then A ISA B

2.1. Concepts 33

Using the rule (*) we can unfortunately derive fuelcontainer ISA machine.
Even more treacherous is the application of rule (*) in the following exam-

ple. Consider the following two type definitions for a polygon and a polyline
respectively,

type polygon

signature

attr pointlist : LIST OF point

and
type polyline

signature

attr pointlist : LIST OF point

It is usual to represent both a polyline and a polygon by a sequence of points.
But neither is a polyline a polygon nor vice versa. i.e. polyline IS NOT A polygon

and polygon IS NOT A polyline N

In our model, which we present in the chapters to come, we have chosen to omit
the mentioned subtyping inference rule (*). This will give the typing system more
freedom. We will discuss this matter when addressing the notion of ’knowledge
rules’. It is feasible to regain the possibility to accomplish the subtyping inference
from example 2.1.7 when it is desired, by putting things just a little differently;
e.g.

2.1.8. Example. Consider the type definitions of example 2.1.6. We can define
the types for machine, car, and fuel-container with the following phrases:

If an object is a machine then it has an age attribute and a fuel at-
tribute; i.e.

machine→ attr(age) ∧ attr(fuel)

If an object is a car then it has an age attribute and a speed attribute
and a fuel attribute; i.e.

car→ attr(age) ∧ attr(speed) ∧ attr(fuel)

If we want to be able to derive that a car ISA machine we will have to
add the phrase

If an object is a car then it is a machine; i.e.

car→ machine

If we want the effect of the (*) rule we should formulate the properties of a type
a little different; namely:

34 Chapter 2. Concepts in object orientation

Every object that has a speed attribute and an age attribute is a vehicle;
i.e.

attr(age) ∧ attr(speed)→ vehicle

Now we can derive that a car ISA vehicle without explicitly stating the ISA rule
(i.e. we do not derive it from simple rules of reflexivity and transitivity of the
ISA relation). N

Classes can be ordered in a class hierarchy, similar to the way types are ordered
in a type hierarchy. The ordering among classes is given by a so called inheritance
relation. In many cases the notion of inheritance largely coincides (in effect)
with the notion of subtyping. But again, with inheritance there are matters of
implementation that significantly determine the ordering of the classes, where this
is not the case with types and subtyping. If we state that a class B inherits the
properties of a class A, we will say that B is a subclass of A. Also, here the objects
of class B have all the important properties such that we can view them as objects
of its superclass A. Some of the properties that are inherited (i.e. properties
that determine the inheritance relation) are related to the implementation of the
classes, which include the methods and their code and the attributes with their
representations. A precise definition of inheritance is hard to give. An elaborate
taxonomy article on inheritance results 7 different ways inheritance is used in the
literature (see [Tailvalsaari96]).

In most Object Oriented programming languages there is a subtle difference
between the use of subclasses versus subtypes. In C++, an instance of a subclass
is not seen as an instance of the superclass, while an instance of a subtype is
always an instance of the supertype. For example, in C++ if a class circle is
a subclass of a class shape, then an instance of circle is not also an instance of
shape. In this case it is said that an instance of class circle can play the role of
an instance of class shape. The reason for this is related to the interpretation of
properties of the whole class like the number of instances of a class.

Furthermore, some implementation matters play a role, like problems of choos-
ing which implementations of methods have to be executed for an instance when
one does not know how much further down in the class hierarchy the object may
be specified. Object oriented design languages (e.g. UML) explicitly leave room
for both the subtype and the subclass interpretations. The user then may choose
the interpretation based on the language he will use to realize his designed system.

Even though in effect the concept subclass coincides largely with the concept
subtype the main drive for subclassing seems to be based on code sharing . The
code of class A is used to implement a large part of its subclass B. This is, of
course, a typical scenario when B is a subtype of A; i.e. when a B-object is also
an A-object. Not all the code of A is always inherited though. In practice it
became clear that the most strict notion of inheritance, which proscribes that all

2.1. Concepts 35

the code of a superclass should be inherited, is not flexible enough to obtain both
a high amount of code sharing and nice looking hierarchies. For that reason, in a
subclass it is allowed to re-implement a method that is inherited from a superclass
(i.e. not inherit the code of that method). This notion is known under the name
overriding . The ability to override code from an inherited method necessitates
another, purely implementation oriented phenomenon, which is that of dynamic
binding . Traditionally, in the compilation of a program, a function (method)
name is uniquely bound to a piece of code, which has to be executed when the
function is called by its name. With methods in a class hierarchy this is not
possible, because the implementation of a method can be overwritten at some
point in the class hierarchy (while the typing of the method stays the same!).
E.g.:

2.1.9. Example. Consider the class definition of example 2.1.5. A subclass of
the class Account should be a Savings-account, which is an account that gives
more interest relative to the amount that is on the account but which forbids a
negative balance and has a limit of how much money you may draw from your
account in one withdrawal14.

class Sav_account: superclass Account {

float my_decr_limit;

public:

Sav_account(int accountnr, string owner, float balance, float my_decr_limit);

};

// The body with the implementation of the constructor of the class

// and the implementations of the methods. This class inherits the methods

// show_balance and incr_balance, but has a constructor of itself and overrides

// the decr_balance method of its superclass.

Sav_account::Sav_account(int accountnr, string owner, float balance)

{

my_percent := HIGHER_PERCENT;

prev_mutation_date := current_date;

build_interest := 0.0;

};

void Sav_account::decr_balance(float amount)

{

float add_interest;

float add_percent;

if (amount <= MAX_WITHDRAW && balance - amount >= 0.0)

{

14Note again that, for clarity and non-C++ speakers, we do not use pure C++ syntax but a
pidgeon OO programming language to declare some class to be a subclass

36 Chapter 2. Concepts in object orientation

add_percent := my_percent * (CURR_DATE-prev_mutation_date)/ONE_YEAR;

add_interest := balance * add_percent;

balance := balance - amount;

build_interest := build_interest + add_interest;

prev_mutation_date := CURR_DATE;

}; //fi

};

N

For this reason, the code of a method can only be bound to its name when the
method is actually called by an object. Only then, from the (sub)class member-
ship of the object that calls the method, one can deduce which code to execute.
This event is called dynamic binding.

2.1.4 Methods and operations

An important ingredient in current information systems is the ability to add dy-
namics to the objects in the system. This is done by adding operations to the
information system. These operations alter the information in the information
system and/or produce side effects that exhibit the desired behavior of the in-
formation system. In traditional OO systems these operations are exclusively
associated with a type or class. For example:

2.1.10. Example. For specifying a bank account consider the following type:

type Account

signature account-number
owner
balance

With the type Account we can typically associate the following operations:

operations

get-balance
increase-balance(amount)
decrease-balance(amount)

N

For operations that take more then one argument the strict connection between
a type and a operation often amounts to problems of symmetry, also known as
the problem of the cow and the milk-can. Suppose you have an operation M
that models the event of milking a cow resulting in a filled milk-can15. The

15i.e. The value of the milk attribute of the cow decreases with the minimum of the amount
of milk that the cow passes and the amount of milk that fits in the milk-can, while the milk
attribute of the milk-can increases by the same amount

2.1. Concepts 37

problem now arises in determining which type we have to associate the milking
operation M , the cow, or the milk-can, or something else. In other words, do we
say to the cow: ”Put your milk in the milk-can”; or do we say to the milk-can:
”Extract the milk from the cow”; or alternatively, do we create a farmer and say
to him: ”Extract the milk from the cow and put it in the milk-can”. The first
two possibilities simply point to the asymmetry of the operation call, which arises
when an operation with more then one argument is associated to one type only16.
The last possibility of introducing a farmer solves the asymmetry but introduces
dummy objects of dummy classes, i.e. objects that only exists to ensure the
symmetry of the operation calls, but do not carry any necessary information17.
In mathematical type theory the above case is not considered a problem. The
milking operation M is simply associated to the Cartesian product of the types
for the cow and the milk-can, i.e. to type cow × milk-can. Unfortunately in most
database systems that carry the object notion combined with dynamics, this type
constructor is not readily available for combining complex types. The constructor
is very common in the traditional relational database model, but here we have no
object notion and no dynamics. We will consider the ability to combine arbitrary
types as an important and basic constructor for types. This way we can simply
associate operations with the types of the objects they process.

In summary, an operation in an information system will be associated with a
type, and is assumed to (possibly) change the content of the information system
performing some combination of the following:

1. Altering the attributes of existing18 objects,

2. deleting existing objects,

3. creating new objects,

4. perform side effects that do not alter the content of the information system.

In OO programming languages and database languages operations are, next to
a name and a type, also associated with a specific implementation. Taking the
name and the type together with the implementation we obtain what is usually
called a method (although in a fairly new language like UML both items are
separated; a signature there is called an operation while its implementation is
called a method).

2.1.11. Example. Consider the type and methods of example 2.1.10. Note that
the ’get-balance’ method is actually a one-argument function, taking an account
and returning a balance. The methods ’increase-balance’ and ’decrease-balance’

16This also is the case if both the cow and the milk-can have their own milking operations
17they only have identity and nothing else
18i.e. present in the considered information system

38 Chapter 2. Concepts in object orientation

are actually two-argument functions, taking an Account and an amount, and
returning an Account. i.e.

get-balance : Account 7→ balance
increase-balance : Account ∗ amount 7→ Account

decrease-balance : Account ∗ amount 7→ Account

The main restriction in the last two functions (and in all functions that are
methods that update the object they are a method from) is that the identity of
the Account in the domain and the co-domain is the same. So, in a general setting,
the first method can be better viewed as a function of the following signature:

get-balance : Account 7→ Account ∗ amount

Instances of these methods can be viewed as ’Curry-ed’ versions ([Barendrecht84])
of the general function taking an Account from the domain into the function. N

2.1.5 Encapsulation

Consider an information system for which there exists a nice categorization of the
objects in classes. It is necessary to force a programmer that makes an application
with this information system to really use this categorization. So instead of
giving this programmer access to the representation of the objects, we only allow
(her/him) the use of the methods of a class to operate on the objects of this
class. From the point of view of the mentioned programmer, the representation
of the objects is hidden, and only the method names are visible. This is called
encapsulation. Encapsulation is a mechanism that enables the concept of a ’class’
to be a real categorization, it makes sure that the category specified by the class
is really used as such an informal category or type. In a sense the mechanism of
encapsulation enables one to force a behavior of the ’classes’ to be abstract (very
similar to the behavior of ’types’), because it makes certain that a class is more
than a collection of code that can be inherited.

2.1.6 Declarativeness

One of the main advantages of relational databases and deductive databases is
their declarativeness. Declarative languages have some clear benefits over proce-
dural languages, which are common in most OO databases. In order to query a
database with a declarative query language one has to specify what information
one wants to obtain from the database, and not how to obtain it.

Not only for a query language, but also for an object data definition language,
declarativeness is a desirable, because then one only has to state what the type of
data (signature) should be and which constraints the data should satisfy, instead
of actually specifying how the data should be represented and how the constraints
should be enforced.

2.1. Concepts 39

2.1.12. Example. In this example, we specify an electrical circuit with resis-
tances. Instead of telling how the different objects are stored in our information
system and telling how the different physical quantities can be obtained from the
representation of the objects, we list all the attributes and the physical laws that
relate the physical attribute to each other. This means we have the following
types (expressed in a semi-logical language):

circuit → attr(v) ∧ attr(i) ∧ attr(r)
serial → attr1(circuit)× attr2(circuit)
parallel → attr1(circuit)× attr2(circuit)

The first type definition says that a circuit has three attributes: a voltage (v), a
current (i) and a resistance (r). The second type signature definition says that a
serial circuit has two (serially connected) circuits, and similarly the third definition
says that a parallel circuit has two (connected in parallel) circuits. The following
constraint says that a circuit is either a resistance or a pair of parallel connected
circuits or a pair of serial connected circuits. Note that this specification covers
all possible simple circuits of parallel and serial resistances.

circuit → serial ∨ parallel ∨ resistance

We now declaratively specify the physical rules for these simple electrical circuits,
i.e. Ohm’s law (v = i ∗ r) and the rule for current in parallel circuits19 and for
resistance in a serial circuit20:

circuit → equal(attr(v), attr(i) · attr(r))
circuit ∧ parallel → equal(attr(i), sum(attr1(attr(i)), atttr2(attr(i)))
circuit ∧ serial → equal(attr(r), sum(attr1(attr(r)), attr2(attr(r))),

Now it is possible to store (or have for insert or update) the information on a
specific circuit in many different ways that is not complete, while (by inference)
one can compute all defined quantities of the circuit. Given a proper constraint
solver one does not have to specify how the values have to be computed for every
case. For example a constraint solver like RL [Denneheuvel90] could infer from
the above rules that for parallel circuits, 1 divided by the resistance of the circuit
equals the sum of 1 divided by the resistance of its parts; i.e.

1
rtot

=
1
r1

+ · · ·+
1
rn

N

19The current in a parallel circuit equals the sum of the currents in its parts.
20The resistance in a serial circuit equals the sum of the resistances of its parts.

40 Chapter 2. Concepts in object orientation

Declarativeness is in our opinion an important key to nice and user friendly
information systems. So next generation information systems should support
declarative languages for defining and querying data.

Most declarative languages have nicely and mathematically defined relations
as the basic structure of the database they talk about. Being a little ahead of
events, we remark that in the coming chapters we will build a mathematical
structure for complex objects for which we provide a declarative language for
both defining and querying an object database21. For defining databases, this
language will enable us to state many things that are common in non-declarative
OODB languages. The only difference is that those statements are logical (they
state what has to be the case) and are not directions towards the implementation
or representation.

2.1.7 Rules and knowledge

In the preceding chapters we have seen some rules that define constraints on the
types of an information system. We mentioned subtyping statements as described
in section 2.1.3, like: ’A car is a vehicle’. We have also seen a phrase stating the
following constraint: ’Every printed book should have appeared after the year
1450’. We mentioned constraints in section 2.1.2 where we discussed signatures
of types. But using a general language, many more complex statements are
possible. We could introduce negation and disjunction etc.. For example: ’If a
vehicle is older then 100 years, or if it has a propeller, then it is not a car’. Or
more complex: all laws of quantum mechanics. What we are aiming at is that in
using a language which talks about information systems, it is desirable that this
language is expressive enough to state phrases as the one above. This enables one
to utilize the information system as a knowledge base. We will be able to check or
enforce or even prove complex statements that bear the knowledge of experts in
the field in which we use the information system. All of this, of course, depends
on the expressiveness of the language in which one can express the constraints
and rules.

2.1.8 Graphical representation

In the field of analysis and design there exist many graphical techniques to model
information systems. The models, written using these graphical techniques, are
usually translated to database and programming languages that in turn imple-
ment the modeled information system. Some of the graphical techniques from
analysis connect closely to certain programming database languages. The most
apparent example is the close connection between the (E)ER22 model and the

21Remember that this is what this thesis will deliver
22(Extended) Entity Relationship model

2.1. Concepts 41

languages of the relational model23

2.1.13. Example. An example of the tight connection between an ER model
and a specification of the ER model in the relational database schema.

PILOT

ROSTER

name

adress

qualifications

TASK

start

end

type

has a

1

1

contains
1 n

roster-id

employeeno

taskno

The ER schema above relates to the following relational database schema24:

PILOT
employeeno integer
name string
address string
qualifications list-of-airplane-types
roster-id integer
key: employeeno

23e.g. Relational Algebra, QUEL, SQL, QBF, etc. etc..
24There are a number of ways to turn an ER schema into a relational schema. This one is a

common transformation taking into account the cardinality of the associations. For a discussion
about such transformations one can look in standard relational database textbooks (for example
in [Ullman88]).

42 Chapter 2. Concepts in object orientation

TASK
taskno integer
start time*date
end time*date
type string
key: taskno

ROSTER-TASKS
roster-id integer
taskno integer
foreign key: rosterid, taskno

N

The tight connection between the (E)ER syntax and the language of the rela-
tion databases initiated actually incorporating the (E)ER graphics in a database
definition and query language for relational databases (e.g. look at the language
HQL [AndriesEngels94]). The reason for the existence of a seamless transition
from the (E)ER language to a language for relational databases lies in the fact that
both languages talk about the same basic and mathematically defined structure:
the relation. In other words, both the (E)ER model and the relational database
model have a clear and rigorously defined mathematical semantics, based on the
same mathematical structure called relation.

With the connection between graphical object-oriented or object-based anal-
ysis and design languages, and object-oriented or object-based database models
the situation is completely different. Not only do these models lack a rigorous
mathematical semantics, which alone makes the task of establishing the con-
nection difficult, but there also exists a difference in the level of conceptuality
between the notions of analysis and design versus the notions of object oriented
or object based databases. Although the notions in both domains are similar,
the definitions of these notions in analysis and design are more abstract and ori-
ented towards reasoning (debating) about the information system. The similar
notions in object-oriented databases are often oriented towards implementing the
structures which formulate the notions.

On the other hand, the languages of object-oriented analysis and design use
the notions of new generation information systems and are much more liberal in
mixing graphical syntax with textual syntax, thereby improving the usability.

2.1.14. Example. The following UML class diagram with OCL (object con-
straint language) phrases denotes a slightly more informative model for the pilot
roster example in the (E)ER diagram of 2.1.13.

2.1. Concepts 43

Pilot
Roster

Task

employeeno

name

address

qualifications

roster-id
start

end

type

tasknofrom
11

has
*

{ordered}

partof
contains

Roster
self.contains→collect(type) INCLUDED IN self.from.qualifications→asSet

A note on the notation: The underlined header denotes the context of the OCL
rule; with the dots (.) one can walk along the associations; and the arrow (→)
denotes the reference to a method. In the above rule the expression self.contains
in the context of Roster denotes the ordered list of task objects that can be
reached from a Roster object. The expression self.contains→collect(type) in turn,
denotes the invocation of the collect method of the ordered list objects where the
recipient of the method is the ordered list of tasks objects that is reachable from
a particular Roster object and the argument is type (an attribute name; i.e. a
string object). This method returns the set of types as an ordered list of tasks.
The self.from.qualifications→asSet expression denotes the invocation of the asSet
method on the qualification object that is reachable from a roster object via the
pilot object. The rule says that that for all the tasks (in a roster) the pilot (of
that roster) should have the necessary qualifications. N

In this thesis we aim to provide a mathematical foundation of the basic con-
cepts of the object oriented and object based databases and analysis and design
methodologies. The foundation will play the same role as the basic concept of
relation in the (E)ER model and the relational database model. We will use
this foundation both for interpreting the graphical syntax25 like that which ex-
ists in analysis and design, and the non-graphical syntax which is common in
the languages of databases. As a matter of fact, in some cases we even prefer
the graphical syntax over the non-graphical because it shows more clearly the
structure of the entity it denotes. We will also incorporate the graphics into the
database languages.

25We need to be more formal about the term ’graphical syntax’, because for a real ’syntax’
one needs a formal ’syntactic theory’. We will explain our view on graphical syntax in chapter
4 when we do the theory, because this matter really is theory.

44 Chapter 2. Concepts in object orientation

2.1.9 Partial specifications, Identity, and the Extendibil-
ity principle

The concepts of class and type hierarchy of the object oriented information sys-
tems both give, in effect, a way of manipulating entities for which one only needs a
partial specification. For example, one can specify rules or actions for a machine

without knowing whether this is a car or a generator or whatever machine. In
other words, we are able to talk about objects taking into account only a part of
its information. In order to talk about a (structural) part of an object we need to
distinguish partial descriptions of the specification of an object. In most OO lan-
guages one has the ability to write down (talk about) the individual connections
between an object and its attribute. These connections are the building blocks
for describing structure of an object. For example, if we want to talk about a
car or a generator as if it is a machine, we look only at the connections between
the object we consider and the objects that describe the machine part of that
object26. These connections (later on we will name them links) make up part of
the specification of the car or generator we generalized to a machine.

Analysing this feature that enables one to look at only a part of the specifica-
tion, one can generalize its intent and assume that objects have (potentially) only
a partial specification. This enables one to consider objects in an information sys-
tem, for which we, at a certain point in time, or at some level of abstraction, have
only partial knowledge, and for which this knowledge can be augmented in course
of time or when we de-generalize. The fact that in our models the objects have
an identity, and therefore are not identified by their structural and behavioral
specification, enables one quite naturally to handle the objects like they have
only a partial specification. Furthermore it is very relevant in practice, where
often at some point in time there is no complete knowledge about all objects in
the information system.

We argue that this incompleteness of the specification is tightly connected
to the concept of identity in information systems. The fact alone that we can
distinguish an object by its identity without knowing its complete specification
gives a lot more strength to the concept of identity. In fact it is the concept
that makes the Object Oriented paradigm work. The ability to make powerful
generalizations (i.e. consider superclasses) makes the languages that support
object orientation very expressive. And furthermore, being able to dynamically
discover more specific information about an object, and to classify an object at a
finer granularity (by considering the subclass), makes the system very flexible. If
we would need a complete specification, like for example in the relational database
model, the identity would be nothing more then a label to distinguish it from other
objects with the same specification. The concept of identity in a system that
allows partial specifications and generalizations enables one to talk about object

26i.e. the part of the structure of the object that makes this object a machine.

2.2. Summary 45

at all levels of granularity without coming into problems with generalizations and
de-generalizations.

The assumed partialness of the specification of an object has an important
consequence for the models of information systems, though: in such a model,
the composition of all the parts of the object does not result in the object itself,
because one never knows whether the specification is complete. We will, in the
system we present in the next chapters, introduce the concept of extendibility,
and say that a partial specification can extend to the whole object it is part of.

2.2 Summary

In this chapter we analyzed the most advertised concepts of object orientation. In
the subsequent chapters we will present a mathematical formalization of a large
part of these concepts. We will see a mathematical model for object oriented
information that could play a role in clarifying and enhancing object oriented
information processing, similar as the relational model does for relational infor-
mation.

Part II

A Model for Object Oriented
Technology

47

Introduction

In this part we propose a model in which we can do theoretical research in object
oriented technology. We will introduce two artifacts for this model:

• a language for expressing information in the object oriented way

• an interpretation of this language in a mathematical model; i.e. semantics

The language we present has a formal syntactic theory that has both textual
and graphical components. The graphical components are called edge graphs.
From these constructs we build so called categorial graphs to denote types and
information models, and object graphs to denote actual information27. The lan-
guages of categorial graphs and object graphs are generalizations of the language
constructs in object oriented languages. The constructs connect closely to the
high level languages for object oriented analysis and design, like UML.

The semantics consists of a mathematical model in which we have objects and
partial descriptions. If an information modeler constructs a categorial description
of an information system, all the instances of information content he envisages to
be possible are actual models of the description.

So how do these models relate to the practical situation of an operational
information system? A particular situation in an operational information system
coincides with a particular semantic model that satisfies a description written
down by the information system designer (written down in the language of cat-
egorial graphs). One can write down parts of actual or possible models using

27In other words we use the categorial graphs to write specifications of objects, and object
graphs to denote the actual objects categorized by the categorial graphs, just like a data model
denotes specifications of information objects in a relational database, and records the actual
information objects in a database.

49

50 Introduction

the object graphs, just like one can write down diagrams in UML that exemplify
actual or possible situations in an information system.

And how do these models relate to the practical object oriented languages? In
analysis, design and implementation languages, one writes down (possibly graph-
ical) symbols. These symbols have a meaning, i.e. we interpret these symbols to
be something they stand for. In order to give a precise meaning, one needs to give
that meaning in the form of a mathematical construction in which information
objects live and behave as one has specified in the language. Such a mathematical
construction will be presented in this part of the thesis.

We will start this part with a presentation of the language for object oriented
information systems; the syntactical theory in chapter 3. The semantic domain,
the mathematics in which we interpret the language of object oriented information
systems will be presented in chapter 4.

Chapter 3

A generalized language for object
oriented information systems

”Again we face most basic questions like what is the right logic and
even what are the right structures”

Yuri Gurevich ([Gurevich88])

The large popularity and numerous occurrences of modeling and database
languages using graphical syntax and object notions suggest that it underlies an
important intuition on how to model parts of the (real) world . We will present
a language that bears these notions. In [Adriaans92] Pieter Adriaans proposed
graphical structures called ’categorial graphs’ that in a very general way describe
most of the structures used when modeling for analysis and design1. We will, in
this thesis, take the notion of ’categorial graph’ as a starting point for our theory
on modeling with object oriented information systems. We will ’mathematize’
(i.e. turn into mathematics) the notion of ’categorial graph’ to obtain a model
for object oriented information systems.

In this chapter we present a language, called categorial graph language, that
combines both graphical and textual phrases and is tailored to define information
systems. The categorial graph language is modeled after the real life practical
languages of modeling and design, and bears the features of object orientation we
described in the previous chapters. We also present a language of object graphs
that enables us to write down particular models of object oriented information
systems that satisfy the categorial description in the categorial graph language.

In the framework of categorial graphs we will make a distinction between the
way in which we write down matters of signature, and matters of constraints. The
matters of signature are denoted graphically, while for the constraints we assume

1There also exists a modeling tool for these graphs (see [Adriaans92]).

51

52 Chapter 3. A generalized language for object oriented information systems

the presence of a constraint language in which we write down the restrictions.
From a type-theoretic viewpoint this distinction may seem artificial, but in the
eyes of an information system designer, it is the way it is traditionally done. Our
aim is to stay as close as possible to the practitioners intuition as possible.

In the next section we will start with an example to illustrate the language
and notions for object oriented information systems in an informal presentation
of a case. This example will emphasize important features for object oriented
information system languages. We will use this example in the whole chapter to
solidify the abstract definitions of the syntactical theory.

In the subsequent section we will display the syntax of a class of languages,
called the categorial graph languages. These languages contain a graphical and
a textual part. The graphical part is built from so called edge graphs. The edge
graphs form the core of the class of languages. The textual part is a language
that is used to write down constraints. Next to presenting the syntactical building
blocks of the language we will discuss syntactic matters like writing down schemas
and (typed) instances for information systems. Furthermore we will tackle a
common problem of writing down large schemas for information systems using a
good way of imploding and exploding the syntactic structure (the edge graphs),
without losing means to interpret the syntax in a proper way.

3.1 A Case for Object Oriented Information Sys-

tems

In the example below we will speak about objects with a complex signature:
the have attributes and aggregations. We write down both the schema and an
instance of an information system. Furthermore we extend the schema by adding
constraints to the signature.

3.1.1. Example. Consider a working roster of an aviation pilot. As a simple
example, his roster will look like a sequence of flights, time-offs, and possibly
some obligatory training courses. His roster then could be modeled like an aggre-
gation of objects that model flights, time-offs and courses. These flight, time-off
and course objects then, would typically have attributes (adjacents) like start-
date-and-time, end-date-and-time. A flight also would have as an attribute the
departure airport, and the arrival airport. In a picture:

3.1. A Case for Object Oriented Information Systems 53

pilot

name

empno

qualif

...........

task
*

start

end

task_description

The picture also contains cardinality constraints. The ’*’ denotes the adjacency
of zero or more tasks to the pilot. It would be convenient to have the ability to
denote that we have an object of type roster that is an arbitrary long aggregation
of edges of some other type (i.e. task). The roster is an aggregated object, and
can be addressed (as a whole) just like any other object.

• A roster ISA aggregation of zero or more tasks

Furthermore we add a constraint that touches inheritance. For a clear division
between object-structure and object-constraints we do not denote it graphically
like in most OO design languages (this will become clear later on in this chapter).

• A pilot ISA person

An instance of the above schema could look as follows:

...........

...........

L.Visser
96511

B474

KL819
AMS
SIN

960613−
1200

960614
0045

REST
SIN

960614
0045

960616
0935

KL820
SIN
AMS

960616
0935

960616
2210

REST
AMS

960616
2210

960617
1000

TRAIN
SAFETY

960617
1000

960617
1800

LEAVE

960617
1800

960703
1415

54 Chapter 3. A generalized language for object oriented information systems

For the safety of the passengers, the rosters of pilots should respect certain rules.
In this example we state two rules:

• A flying duty should be rostered to a pilot and not to some other type of person

• A flying duty should be preceded by a rest of at least 11 hours

N

3.2 The Syntactic Theory

The language of categorial graphs combines both graphical and textual phrases.
For a proper presentation of this language we need a nice syntactic theory like the
theory of formal languages (in a sense we are leaving the good developed theory
of words as described in [Davis58], [HopcroftUllman79], [LewisPapadimitriou81]).
Note that it is not problematic to consider graphical structures in the syntax, as
long as there exists a well defined mathematical formulation for these syntactic
structures. One should provide a simple syntactic theory for the graphical struc-
tures in the same style as done for conventional textual structures. Observe that
graphical structures like graphs are simple mathematical entities, just as strings,
words and sentences are.

The language of categorial graphs is tailored to defining and writing down
information models and database schemas. It consists of a graphical part, in
which one can specify the signatorial matters, and a textual part in which one can
state constraints on the specified signature. This is exactly as most information
system languages, especially those in analysis and design, are structured. The
most commonly known are UML, NIAM and (E)ER.

The syntax for the graphical part of the language of categorial graphs is built
from edge graphs, which are presented below. The edge graphs define a signature
for an information system like a theory of categorial grammars Using a sufficiently
rich language, one can put (additional) constraints on these categories (types).

3.2.1 Edge Graphs

When we draw pictures of the objects we are modeling, we in a way ’talk’ about
these objects in terms of boxes and lines and other graphical constructs. Defining
the graphical syntax more formally we could say we talk about the objects in
terms of edges and vertexes. In our language we want to talk about objects as
if they were structured entities. We could, of course, encode the structure of an
object using vertexes and edges. However, when one starts modeling some part
of the world, the structure and complexity of the objects are not known in their
full extent. One will not know ’a priori’ which possible attributes of an object

3.2. The Syntactic Theory 55

to take into the model or which relations to other objects exist. In order to talk
about the objects one would then need a way to address the objects without
being specific right away (or to a full extent) about the structure of an object.
Moreover, it would be very natural if one did not need to change the structure
of all the sentences when in the process of modeling the world one needs to add
parts of an object to the model. This is only possible if one has a direct way of
denoting complex objects and furthermore that the interpretation of these objects
are incomplete or even non-wellfounded in the sense that parts of the object can
be left ’unspecified’ and filled in later.

A direct way to represent a structured object can be achieved by having it
denoted by a structured graphical entity which is a basic building block of the
graphical syntax. Moreover, we need a special ’structured object’ that is empty,
so we will have ways to extend the complex structure of the objects in our syntax
without having to change all of the syntax.

The structured entity we will use as a basic building block is mathematically
equivalent to a hyper edge. An edge has a structure, namely it has adjacents.
We will talk about structured objects using these edges. This is a powerful
generalization of using graphical entities for describing objects. We will be able
to denote all objects, whether simple or complex, using a mathematical structure
that is formally an edge. This way, all objects, both simple and complex, can
be treated uniformly, because they are all denoted by an edge. We will also
introduce an ’empty edge’ that marks the end of the structure of an object2.
This way additions in the structure of an object will only affect the denotation
of the object itself, not of its context.

An edge graph is a simple generalization of an ordinary graph. Consider a
collection of nodes. In between these nodes we can draw edges. Such an edge has
as its source and as its target a node. Having drawn edges, we can imagine we
can draw edges between edges; i.e. we can draw an edge which has an edge as
its source and an edge as its target. The same way we can draw edges between a
node and an edge, or between an edge and a node. Let us now assume that we
can imagine a node to be an edge as well. We define node as being an edge with
as its source and as its target some distinguished abstract edge, called the empty
edge, denoted by 1. The structure we then obtain contains edges only. We will
call such a structure an ’edge graph’.

3.2.1. Example. Look at figure 3.1. Here we have drawn two edges a and b
that both have the empty edge as their source and as their target. These edges
are in a sense basic edges (or nodes) because their source and target are ’empty’.
Note that in the figure we ’copied’ the empty edge 1 a couple of times for drawing
purposes. Edge c is a complex edge, having two other edges as its source and as

2e.g. An object will always have an empty adjacent

56 Chapter 3. A generalized language for object oriented information systems

1 1

1 1 1a

b

c d

Figure 3.1: an example of a binary edge graph

its target. We can also make very weird edges like edge d, which has the empty
edge as its source and itself as its target. N

We can generalize the above concept of edge graph to a concept of hyper edge
graph, in the same manner as graphs are generalized to hyper graphs. Instead of
letting an edge have exactly two adjacents, its source and its target, we can allow
an edge to have an arbitrary number of adjacents. Such an edge is called a hyper
edge. From hyper edges we can build hyper edge graphs.

When modeling part of the real world, there are several ways to talk about the
structure of an object. One can be interested solely in the fact that an object
has a certain attribute or adjacent, i.e. in graphical denotation we are interested
whether there is or is not a line between one object and another. For example,
if we are interested whether an object of type man has an arm adjacent. In this
case the adjacency structure can be described by a set. An object has a set of
adjacents, and membership to that set determines whether an object is adjacent
to another object.

One could also be interested in counting the adjacents of an object. For
example, one can be interested in how many adjacents of a certain type an object
has. In this case the adjacency structure of an object is resource conscious, and
can be described by a bag or multiset . In this case we may draw more then one
line between two objects. E.g. one can then express that an object of type man

has two arm adjacents.
One could even more specifically be interested in the fact that the first or

second adjacent of an object is of a certain kind. As another example one could
want to say that a certain adjacent of an object is the the adjacent labeled by
’child’ and another adjacent is labeled by ’parent’. To be able to express these
things the adjacency structure needs to be ordered. This can be expressed using
an ordered list for describing the adjacency structure of an object. For example

3.2. The Syntactic Theory 57

one could say of an object of type man that it has an arm adjacent labeled by
’left’ and an arm adjacent labeled by ’right’.

It is important to observe that if we want to have some specific abilities to
talk about the objects one is modeling, this has direct consequences for the theory
on it. Not only does the language need a way to denote the things one wants to
say, moreover the semantic domain in which this language is interpreted needs to
model the desired behavior. In other words if, we want to talk resource consciously
about objects, we need a syntactic graphical entity that can denote a multiset
structure, and moreover, one needs to be able to count the adjacents of an object
in the semantic domain in which we interpret the syntactic constructions.

In order to be able to talk about objects in the different ways indicated above,
the syntactic entity of a hyper edge comes in different flavors. Starting with the
most expressive one, there are the so called ’directed ’ hyper edges. For these hyper
edges the order of the adjacents is important. For a directed hyper edge we have a
first adjacent, a second adjacent, a third adjacent and so forth. The adjacents of a
directed hyper edge form an ordered list . We will also consider ’undirected ’ hyper
edges. For these edges the order of their adjacents is irrelevant. The adjacents
of an undirected hyper edge constitutes a multiset. The most abstract flavor of
hyper edges we will consider are the so called ’set’ hyper edges. With a set hyper
edge we abstract over the multiplicity of its adjacents. The adjacency structure
of such an edge can be given by an ordinary set3.

3.2.2. Definition. (universes of edges and the empty edge) We will consider
three universes of edges, one for set hyper edges denoted by Edgeset, one for
undirected hyper edges denoted by Edgeundirectedand one for directed hyper edges
denoted by Edgedirected. All three universes contain a designated edge called the
empty edge which is respectively denoted by 1set, 1undirected and 1directed.

On the edges of the three universes, so called adjacency functions will be
defined that map these edges to their adjacents. For edges in Edgeset these
adjacency functions map edges to a set of edges, for edges in Edgeundirected to a
multiset of edges and for edges in Edgedirected to a list of edges.

We also introduce the empty edge for the hyper edge case. Even though it is
not necessary to have the empty edge in the hyper edge case, because we have
genuine empty sets, empty bags and empty lists in the definition of a hyper edge
(this was not the case with the binary edges). We introduce it here because it
enables us later on, in an algebraic setting, to conveniently talk about (being or
having) an empty structure. To ensure that 1set, 1undirected and 1directed really
behave like the empty edge, we will require the following:

For all adjacency functions Adj we put

3Note that we do not demand the adjacency structure (list, multiset or set) to be finite,
although in almost all practical cases it will be finite.

58 Chapter 3. A generalized language for object oriented information systems

• Adj(1set) = ∅ (empty set)

• Adj(1undirected) = ∅̈ (empty multiset)

• Adj(1directed) = [] (empty list)

To enforce the neutral behavior of the empty edge (1) we will identify (in the
interpretation) the adjacency-sets {a, b, c} ∪ {1set} and {a, b, c}. In other words,

{1set} will behave like the empty set. Similarly {̈1undirected}̈ will behave like the
empty multiset and [1directed] will behave like the empty list4. M

Note that the presentation of an edge graph relates to the second most popular
presentation5 of conventional graphs, where a graph is given by a set of nodes V
and a set of edges E together with two functions source : E → V and target :
E → V mapping the edges respectively to their source and their target.

3.2.3. Definition. (set edge graph) A set edge graph is given by a pair (G,Adjset)
where

• G ⊆ Edgeset is a set of objects called set hyper edges,

• Adjset : G→ P(G) is an adjacency function mapping the edges of G to their
adjacents (which form a set).

We will usually identify a set edge graph with its set of edges, and assume the
adjacency function exists and is called Adjset or even plainly Adj, provided this
does not lead to confusion. M

The definitions for undirected edge graph and directed edge graph are similar
to the definition of the set edge graphs. For the sake of completeness we will give
these definitions anyway.

3.2.4. Definition. (undirected edge graph) An undirected edge graph is given
by a pair (G,Adjundirected) where

• G ⊆ Edgeundirected is a set of objects called undirected hyper edges,

• Adjundirected : G → P̈(G) is an adjacency function mapping the edges of G
to their adjacents (which form a multiset)6.

4Admittedly these identifications look a little peculiar in this set-theoretic presentation. Note
however that in algebraic formalisms we have no problems at all with these kind of neutral
elements.

5The most popular presentation, of course, consists of two sets V and E where E ⊆ V × V .
6The notation P̈(G) denotes the set of all possible multisets constructed with elements from

G, similar to the powerset set construction for ordinary sets.

3.2. The Syntactic Theory 59

We will usually identify a set edge graph with its set of edges, and assume the
adjacency function exists and is called Adjundirected or even plainly Adj, provided
this does not lead to confusion. M

3.2.5. Definition. (directed edge graph) A set edge graph is given by a pair
(G,Adjdirected) where

• G ⊆ Edgedirected is a set of objects called directed hyper edges,

• Adjdirected : G→ list(G) is an adjacency function mapping the edges of G to
their adjacents (which form a list)7.

We will usually identify a set edge graph with its set of edges, and assume the
adjacency function exists and is called Adjdirected or even plainly Adj, if this does
not lead to confusion. M

3.2.6. Example. Below we have drawn 3 edge graphs, one of each flavor. The
first one is a set edge graph, the second an undirected edge graph, and the third
a directed edge graph. We have denoted the graphs graphically and have given
their mathematical description.

7The notation list(G) denotes the set of all possible lists constructed with elements from G,
similar to the powerset set construction for ordinary sets.

60 Chapter 3. A generalized language for object oriented information systems

A

B C

D

SET edge graph

A

B C

G={A,B,C}

UNDIRECTED edge graph

A

B C

1 23

DIRECTED edge graph

G={A,B,C,D}
Adj={ (A,{B,C})

(B,{})
(C,{B,D})
(D,{}) }

Adj={ (A,{B,B,C})

(B,{ })

(C,{ })

G={A,B,C}

Adj={ (A,<BCB>)
(B,<>)
(C,<>) }

}

N

Note that in theory it is possible that an edge has itself as its source or its
target. It is even possible that an edge has itself as the target of the source of its
target. We will call this kind of edge ’cyclic edges ’, and graphs containing such
edges ’cyclic edge graphs ’.

We can also imagine that it is possible that a given edge has the property
that one can infinitely many times ’descent’ to its adjacents (source or target).
Note that, among others, a cyclic edge has this property. If an edge has this
property, we will call it an unfounded edge. On the other hand we will say that
an edge is ’founded ’ if there is no infinite chain in its adjacency structure. This
means that at a certain point in descending along the adjacencies, one should
encounter an edge that has an empty adjacency structure. For this purpose we

3.2. The Syntactic Theory 61

introduced the empty edge, denoted by 1, which behaves similar to the empty
word in standard formal language theory. The empty edge enables us to denote
the fact that an edge has no source or target, by saying that the source or target
is the empty edge. Of course the empty edge itself also has no source or target,
meaning the same as saying that it has only itself as its source and target8. We
will call an edge graph that contains, apart from the empty edge, only founded
edges a ’founded edge graph’.

3.2.7. Definition. (founded edge graphs) A set edge graph G is called founded
if

1. 1 ∈ G (G contains the empty edge) 9,

2. all edges are ’founded on one’ (FOO) where

FOO(a)⇔ a = 1 or (Adj(a) = A and ∀b ∈ A[FOO(b)])

3. acyclism10

4. nothing else but implied by 1,2,3 and 4.

M

The definitions for founded undirected and founded directed edge graphs are
very similar. We leave these definitions as an exercise for the reader11.

As an aside, we note that we can encode an edge graph with a normal (conven-
tional) directed graph with nodes and binary edges. In the representation using
a conventional graph, an edge graph is simply a graph in which the nodes denote
the names of the ’edges’ of the edge graph and the directed edges of the conven-
tional graph point to the nodes that denote the names of the adjacent ’edges’ of
the edge graph.

3.2.8. Example. Consider the following (set) edge graph G:

G = {a, b, c, 1}
Adj = {(a, {1}), (b, {1}), (c, {a, b}), (1, 1)}

This graph is drawn in figure 3.2 in three ways, the upper two different edge graph
notations for graph G, and below these two, a conventional graph G′ is drawn

8This infinity in the possible denotation of the empty edge motivated us to use the term
founded instead of wellfounded, because the latter term in set theory surely forbids the empty
edge

9Redundant.
10implied by 2
11Hint: Only one symbol in the second clause needs to be changed!

62 Chapter 3. A generalized language for object oriented information systems

1

a

c

b

(c,b)(c,a)

(a,1) (b,1)

a b

c

1

c

a

b

(1,1)

Figure 3.2: An edge graph represented by a conventional graph

encoding the edge graph G. The mathematical description of the conventional
graph is as follows:

G′ = (V,E) where
V = {a, b, c, 1}
E = {(a, 1), (b, 1), (c, a), (c, b), (1, 1)}

N

In such a representation, a founded edge graph is nothing more than a directed
acyclic graph (with a sink12 if we have the empty arrow having itself as its only
adjacent). We note however that the nodes and edges in the conventional graph

12the empty arrow 1 is the sink, i.e. has a loop.

3.2. The Syntactic Theory 63

model will not correspond directly to a (semantic) concept in which we commonly
reason about information systems; In particular they do not directly denote a type
or object in a traditional object oriented diagram. This flaw will make it necessary
to use concepts in the semantics, corresponding to these nodes and directed edges,
which are not common in information systems. The nice thing about the edge
graphs, is that the syntactic primitives here (complex edges) do have a natural
semantic interpretation in terms of common concepts of information systems13.
We will take advantage of this phenomenon in the following chapters.

As an aside we want to remark that for the syntax of the categorial graph
language we have no problems with different graphical representations of the
same graph, because we have taken the mathematical notion of edge graph as a
syntactic entity. In fact we choose the mathematical structure of an edge graph
as a syntactic entity with the intention that we then will not have to worry about
trivial identity; i.e. when in many other computer languages one has language
expressions that very clearly denote the same thing, in the edge graph language
one has actually either the same syntactic expression, or else there are important
structural differences in the expressions, and these differences are not trivially
amounting to the same thing. By considering the mathematical structure of the
edge

< a, {(a, b1), (a, b2)} >

we avoided the problem of identifying this syntactic structure with the structure

< a, {(a, b2), (a, b1)} >

where the order of the symbols differs, or even

13Using the terminology of information systems: The complex edges are first class citizens of
the system.

64 Chapter 3. A generalized language for object oriented information systems

a

b
1

b
2

b
1

b
2

a

AND

which have different geometric properties. These denotations are all the same
syntactic structure in our language, so we do not have to worry whether or not
they are interpreted (semantics!) as the same object.

3.2.2 Operations

Above we defined edge graphs, the basic syntactic entities of the language(s) of
categorial graphs. As in most syntactic theories there are some basic operations
or constructions defined on the syntactic entities. For example the most basic
and common of these operations in textual languages is the concatenating of two
strings, forming a new string. In traditional programming languages even much
more complex operations are common, for example in procedural programming
languages there normally exists an ’if- then-else-operator’ that takes a Boolean
expression14 and two statements15 and returns a statement. Complexity of these
formalisms can reach even to undecidable systems like the two level grammars of
ALGOL 68 ([WijngaardenEtAlii76]). The point we want to make with the above
examples is that a syntactic theory can be quite complex, and that the operations
we will introduce below for the syntactic entities of the categorial graph language
are quite modest with respect to their complexity.

We already saw one operation for edges: the forming of an edge graph (see
definitions 3.2.3, 3.2.4 and 3.2.5). Given a token and a set (multiset) [list] of edge
denotations, it produces an edge.

14A Boolean expression is a syntactic category.
15A statement is a syntactic category.

3.2. The Syntactic Theory 65

One important operation used in modeling the world is taking objects together .
Such an operation is used to tie objects together and to look at the tied-up
objects as one player in the model. Both in syntax and in semantics we will
present an aggregation operation that can be used for this purpose. For example
one can think of a ’Pilot’ object, having ’a number of tasks’ as its roster (see
example 3.1.1).

3.2.9. Definition. (Aggregation) Consider a universe of edges Edge. Given
two edges a and b then a · b denote the aggregation of a and b. Given two sets of
edges A, B, then A ·B denotes all the products a · b where a ∈ A and b ∈ B.

Now let Edge∗ denote the set of all products of edges and products of products
of edges etc. etc. (strings over Edge); i.e.

Edge∗ = Edge ∪ Edge · Edge∗

Now we will define all products in Edge∗ being edges as follows:

set edges: Adj(a · b) := Adj(a) ∪ Adj(b)
undirected edges: Adj(a · b) := Adj(a)∪̈Adj(b)
directed edges: Adj(a · b) := append(Adj(a),Adj(b))

Note that ∪ is the set-union (for set edges), and ∪̈ is multiset-union (for undirected
edges), while append is list-union (for directed edges).

For the edges in Edge∗ we will have to make some non-trivial identifications:

• concatenation for set edges must obey the axioms of set union;

• concatenation for undirected edges must obey the axioms of multiset union15;

• concatenation for directed edges must obey the axioms of list union15.

M

3.2.10. Example. In the running example the roster of a pilot is modeled as an
aggregation of tasks. The roster is an ordered sequence of tasks:

TASK TASK TASK TASK

An other example of aggregation would be the model a finite set. Suppose you
have an object ’cabin-crew’ that is an attribute of a object ’flight’ and models a
set of stewards or stewardesses (let’s say they are modeled by ’cabin-personnel’
objects having attributes like name, age etc.). Then this object ’cabin crew’ is
an aggregation of a couple of ’cabin-personnel’ objects. In a picture:

66 Chapter 3. A generalized language for object oriented information systems

Flight

Start

End

FlightNoCrew

AttendantAttendant Attendant Attendant Purser

The attributes of the aggregated objects like ’roster’ or ’cabin-crew’ will be the
attributes of the individual parts of the aggregation. For example a roster will
have several arrival station attributes, each belonging to another flight. Also a
cabin-crew would have several name-attributes, one for each cabin personnel in
the aggregation, and similarly, several ’age’ attributes. One could think of having
operation on these attributes like SUM, AVERAGE and COUNT resulting in
attributes of the aggregation object (’roster’ or ’cabin-crew’). These well known
operations are called aggregates in relational database languages like SQL. N

To avoid confusion we note that in this section we talk about static operations,
in the sense that we talk about operations on the structures that we will inter-
pret in a static semantic model. Objects may have both attributes and abilities.
Although abilities have a dynamic content, dynamics itself is not covered in this
thesis. The model represents an information system instance, without a past or a
future. In the paper [Haas01] we embryonically discuss dynamics of information
systems based on the language presented here. There we look at models that
have, in a formal sense, a past and a future. The subject matter of dynamic
operation is orthogonal on the matter of static operations as discussed above.

3.2.3 Types, Objects and Constraints

We will us edge graphs to denote a signature that specifies a type16. For example
we can denote with an edge graph that an object of the type MARRIAGE involves

16We will give a precise definition of the notion of type when we present the semantics of our
language. Here it will remain a ’vague’, but well known semantic concept that will enable us to
talk about the language without having to stay totally abstract

3.2. The Syntactic Theory 67

two objects of the type PERSON and one object of the type DATE; i.e.

MARRIAGE

PERSON

PERSON

DATE

In object oriented modeling and database languages we most often talk about
types of objects; i.e. the most commonly used modeling documents are database
class diagrams. However we also need to talk about instances. For example the
modeling language UML has a syntax for describing instances which are used
in several diagramming techniques such as sequence diagrams and collaboration
diagrams ([FowlerScott00] note that these diagrams also cover operational aspects
that are not covered by the syntax described here). The language to talk about
instances is very strong related to the language that talks about objects. Even
more strictly, one can not talk meaningfully about instances if one does not have
a notion of the types of these instances, because we need to know what kind of
objects we are talking about (described by the types) before we can interpret the
denoted instance.

For example, an object or instance of the type MARRIAGE should typically be
of the same ’structure’ as the edge for the type MARRIAGE itself; i.e. in math-
ematical terms there should exist a homomorphism between the object and the
edge denoting the MARRIAGE type. We can fairly write down the structure of
such an object using, again, an edge graph17; i.e.

AL

Peg

marriage act no. 978364896

aug. 21

1967

The homomorphism between the edge graph of objects (from now onwards
called object graph) and the edge graph denoting types (from now onwards called
type graph) will be called a typing functor; i.e. it assigns a type in the type graph
to the edges in the object graph. In the above example the typing homomorphism
assigns the upper PERSON edge to the AL edge, the other PERSON edge to the
PEG edge, the MARRIAGE edge to an actual marriage act, and finally the DATE
edge to August 21 1967. We will consider an edge graph with a typing functor

17Note that this is not uncommon, see for example IFO of Abiteboul [AbiteboulHull87]

68 Chapter 3. A generalized language for object oriented information systems

as a basic building block of the information in an information system; i.e. basic
entities of an instance of an information system are typed complex objects. We
can also use the typing functor to validate a typed object graph. If the typing
functor is not a homomorphism to a given type graph, then we will say that the
typed object graph is syntactically not valid with respect to that type graph.

Note that the restriction we put on the typing functor (i.e. being a homomor-
phism, or in other words structure preserving) is a syntactical restriction on the
denotation of an instance of an information system. The purpose of this restric-
tion is that if we have a schema and a typed instance, we are certain that all the
things we wrote down in our instance can be talked about using the definitions
in our schema18.

As an aside we note that this typing homomorphism is in a sense an extension to
traditional syntactic systems, that do not have complex objects but only atomic
ones and aggregates. For example suppose you have a type graph modeling an
English sentence as follows:

NOUN ·VERB

Then ”John · walks” would be a syntactic proper instance of the graph modeling
a sentence if the typing functor would map ”John” to the type ”NOUN” and
”walks” to the type ”VERB”. On the other hand the sentence ”John · loves
· Mary” does not have a sensible typing function to the above type graph. In
order to construct a homomorphic typing function we have several possibilities:

1. We can map ”John” to ”NOUN” and ”loves ·Mary” to ”VERB”,

2. or alternatively ”John · loves” to ”NOUN” and ”Mary” to ”VERB”

3. or even map ”John · loves · Mary” to ”NOUN” and the empty word
”” to ”VERB”,

18In other words this means that if we type an object in some instance we should assign to it
the initial (most specific) type, because only then can we speak about all the information of the
object we wrote down in the instance. If we would have typed an object with a less specific type
(i.e. a supertype of the specific type), we will have no means to talk about the object in the
way we wrote it down (i.e. as being of a more specific subtype of the type assigned to it). The
object then would have adjacents we cannot classify being of that object. If an object is typed
properly, then when we interpret the object (semantics!) we can, of course, infer the object
being of this less specific type. But this is on the semantic level. On the syntactic level we are
only interested in writing things down properly such that when we interpret the things written
down, we get a proper meaning for the things written down. In other words the syntactic rules
should prevent us writing down things we cannot give a proper meaning to. Chomski said:
Colorless green dreams sleep furiously.

3.2. The Syntactic Theory 69

4. or map the empty word ”” to ”NOUN” and ”John · loves · Mary” to
”VERB”.

5. More peculiarly we can map ”John” to ”NOUN” and ”loves” to ”VERB”
and ”Mary” to the empty type ”1”

None of these alternatives are sensible typing functions for the object graph
”John · loves · Mary”. The first 4 examples clearly give undesirable types
to the objects (it is especially undesirable that an empty word is a NOUN or a
VERB). The last example, though, needs some more attention. The last example
shows the strength of the empty edge as a type. In the last example the objects
”John” and ”loves” have a proper type and object ”Mary” is postulated to be of
the empty type. In a sense this means that we ignore the object ”Mary” in our
analysis, using the ’datamodel’ NOUN ·VERB. The empty type enables one to
write syntactically correct type graphs and object graphs without the necessity
to be fully specific in our analysis. In other words we give the data analyst a
chance to (syntactically correct) write down data models and instances during
the process of his modeling task, when he does not know the full complexity of
the object in the universe of discourse he is modeling. To continue with the above
example, only when the analyst has gained the insight that an English sentence
could alternatively be of type NOUN · VERB · NOUN, he can fully specific
type the instance ”John · loves · Mary”.

Note that for graphs with complex objects, the empty object plays the same
role as the empty or ’unspecified’ type. A trivial example for this is a type graph
consisting of one atomic edge A and an object graph with an object a and an
adjacent b that in turn has an adjacent c; this object graph can be typed as
follows: a : A, b : 1, c : 1.

Let us consider two disjoint universes, T and O; and let us reserve Edge(T)
for denoting edge graphs for types and Edge(O) for denoting edge graphs for
information objects. An edge graph G over T (i.e. a type graph), determines a
set containing all typed edge graphs over O (i.e. object graphs) H for which the
typing functor is a homomorphism from H to G. These typed object graphs are
members of this set because they have the signature defined by the type graph
G. In information systems we often want to classify objects, not only by their
signature, but also by some other properties concerning the whole graph. In in-
formation systems these properties are usually called constraints. Examples of
constraints in information systems are constraints that are common in relational
databases like functional dependencies, join dependencies, inclusion dependen-
cies, primary keys, foreign keys, or constraints that are common in object ori-
ented databases like subtyping constraints, etc.. We want in our language for
information systems the ability to express a restriction on a set of object graphs
that have the ’proper’ signature, that is satisfied by those object graphs of this

70 Chapter 3. A generalized language for object oriented information systems

signature that also satisfy some additional constraints19. The language of cate-
gorial graphs we present in the next section will be able to talk about objects
by drawing a type edge graph and adding textual constraints. These categorial
graphs will denote data or information models. Instances of these data models
can be denoted by object edge graphs.

3.2.11. Example. Let us again take the example of a roster of a pilot (see
example 3.1.1). All the entries in the ’roster’ object20, i.e. the flights, the time-
offs, and the courses, will certainly have things in common, because they are all
entries in a roster. Suppose we want to model that by saying that these three
kinds of objects are things we call ’tasks’. The attributes of a task are typically
the attributes that flights, time-offs and courses have in common, for example
start-date-and-time and end-date-and-time. Furthermore, we can say now that
a roster is an aggregation of tasks, and that the types ’flight’, ’time-off’ and
’course’ are subtypes of the type ’task’. Moreover, we can force that all tasks in a
roster do not overlap in date-and-time. To assert that some type is a subtype of
another type, e.g. ’flight’ is a subtype of ’task’, amounts to putting a constraint
on the models that have objects of these types. It says that all objects of type
’flight’ should also be objects of type ’task’21. And, obviously, saying that tasks
in a roster should not overlap is evidently a constraint on the models that have
objects of type ’roster’. N

Note that in many formalisms, among which UML is one, the subtype con-
straint is drawn graphically with an arrow. As subtyping is a matter of con-
straint and not a matter of signature (structure) we choose to keep it a textual
constraint in this formal presentation of the language of categorial graphs, so it
will not cause any confusion with the edges that denote matters of signature.

We can draw categorial graphs in many ways. In fact, because we take a very
abstract point of view, there are many existing formalisms that might be seen
as a drawing of categorial graphs. We want the categorial graphs to be general
enough to capture most object oriented information system formalisms. Because
the categorial graph language will be given a proper semantics, it provides a
vehicle to give a proper semantics to these formalisms

19Note that we are talking about static constraints; i.e. properties that should be satisfied
regardless of the past or future of the models (if you let a model be dynamic of course). We
will consider dynamic constraints when we look at dynamic models of categorial graphs.

20i.e. an object of type ’roster’.
21Note that for the syntax it suffices for a typing function to map an edge that will be

interpreted as an object to only one other edge that will be interpreted as a type. In the
semantics however an object of type ’flight’ should be both of type ’flight’ and type ’task’.

3.2. The Syntactic Theory 71

3.2.4 Categorial Graphs

A categorial graph will be the syntactic vehicle to define a database schema. A
categorial graph consists of en edge graph and a set of phrases. Each edge in
categorial graph will represent a type22. The structure of the edge will determine
the signature of the type it represents. The phrases will define constraints on the
types.

3.2.12. Example. Consider figure 3.3. It contains an edge graph G. The fig-
ure shows that G consists of the basic edges23 HUSBAND, WIFE, NAME, SEX and
YEAR, four complex edges: one edge MARRIAGE with adjacents HUSBAND,WIFE

and DATE, one complex edge BIRTH with adjacents MARRIAGE DATE and PER-

SON, one complex edge PERSON with adjacents NAME and SEX, and finally one
complex edge DATE with adjacent YEAR. Note that we have also written down
some constraints:

• a HUSBAND ISA PERSON

• a WIFE ISA PERSON

• the year in the DATE of a MARRIAGE should be after 1848

• the date of a MARRIAGE that is accounted in a BIRTH should be before the
DATE of a BIRTH

It is easy to see that the typed object edge graph H of figure 3.3 is an instance24

of G. N

3.2.13. Definition. (constraint phrases) Given a universe of edges Edge(T)
and an edge graph G over this universe; let Prop be the set of propositional vari-
ables ranging over Edge(T), and let Prop(G) ⊆ Prop be the set of propositional
variables ranging over the edges in G. Let Con be a set of constants. Furthermore
let Opi be a finite set of operators of arity i. Let also Fun be a countable set of
function symbols. Then the language L of constraint phrases is defined as follows:

L =

P | (propositional variables)
Con| (constants)
Op1(L)|LOp2L|Op3(L,L, L)| . . . (operations)
Fun0|Fun1(L)|Fun2(L,L, L)| . . . (funstions)

The set phrasesL(G) will be defined as the set of all phrases of the form L⇒ L for
which all propositional variables occur in G. The intended meaning for a phrase
A⇒ B is ”all objects satisfying A should satisfy B”. M

22Semantics will be given in the next section
23We consider an edge to be simple (opposed to complex), if it has only the empty arrow 1

as adjacent. We abbreviate its denotation by omitting its adjacents because {1} = ∅
24In the picture of H we wrote the types after the denotation of the object, e.g. we wrote

i:marriage for an object i that is typed to be a marriage

72 Chapter 3. A generalized language for object oriented information systems

A type graph with constraints

marriage birth

husband wife date person

name

sex
year

mariage.date.year>1848 birth.marriage.date < birth.date

wife personhusband person

marriage birth

and an instance

a:husband b:wife c:date d:wife

e:date

f:husband

f:marriage g:birth

al:name

M:sex

peg:name

F:sex

kelly:name

F:sex

michael:name

M:sex

h:date

i:marriage

1997:year

1974:year

1975:year

Figure 3.3: Example of a categorial graph: Married with children

3.2. The Syntactic Theory 73

We defined very generically the syntax of the phrases (i.e. the constraint lan-
guage), because there are many possibilities, flavors, operators, constants, func-
tions etc. to choose from. For each different feature one wants to be able to talk
about, one needs a hook in the language that enables one to talk about it. Below
we will introduce a number of basic constants and operators that are important
for expressing constraints.

3.2.14. Definition. (constraint operators) Constants for talking about struc-
ture:

1 (representing the empty edge)

Unary operators for talking about structure

♦ (for talking about adjacency; ♦A means
”having an adjacent of type A”)

Binary operators for talking about structure:

∗ (for aggregation; A ∗B means ”being an aggregate
of two objects, one of type A and one of type B”)

Constants for reasoning:

⊥ (representing falsehood)
> (representing truth)

Unary operators for reasoning:

¬ (for negation: ¬A means ”being not of type A”)

Binary operators for reasoning:

u (for conjunction: A uB means ”being both of
type A and of type B”)

t (for disjunction: A tB means ”being either of
type A or of type B”)

Constants to talk about identity

self (representing the object itself; i.e. to talk
about the object in whose scope we write down the constraint)

M

We also have function symbols in the constraint language. The function sym-
bols enable one to constrain objects within the domain of the type of the object.
The most common examples of such functions are arithmetic functions for ob-
jects that are natural numbers, or for objects that are strings one can have string
operations like alphabetic-ordering or pattern-matching25.

25comparable with the SQL operator ’like ¡pattern¿’

74 Chapter 3. A generalized language for object oriented information systems

3.2.15. Definition. (categorial graph) Given a universe of edges Edge and a
language L as above. A categorial graph is a pair (G,S) where

• G is an edge graph over Edge,

• S ⊂ phrasesL(G) is a set of phrases over the tokens of G

M

3.2.16. Example. Consider again the type graph with constraints of figure 3.3
above. The constraints ornamenting the graph can be formulated as follows in
the constraint language:

husband⇒ person

wife⇒ person

marriage⇒ (♦date u ♦f>1848(year))
birth⇒ fbefore-in-time(fget-date(fget-marriage(self)) , fget-date(self))

N

3.2.5 Imploding and Exploding of categorial graphs

Categorial graphs are structures that have both a graphical and a textual part.
The edge graphs are mathematical structures that can be classified as graphical,
because they can be represented conveniently with ’pictures’ (graphs). We men-
tioned this before. The advantages of graphical representation of information is
stressed a lot of times in many fields of science, especially in the field of artificial
intelligence (psychology and graphical knowledge representation) ([Dastani98]).
To (bluntly) summarize these advantages it has often been stressed that a pic-
ture says more than a thousand words. There exists a limit, though, in using
pictures: if the amount of graphical elements in the picture becomes very large,
the meaning of the picture becomes incomprehensible26. This phenomenon is
thoroughly observed and studied ([Adriaans90]). From a practical point of view
it forces graphical syntaxes to provide some mechanism for reducing the number
of graphical objects in a picture. In this area also there are some proposals. Most
of these proposals, however, are very ad hoc, and imprecise in defining the mean-
ing of the syntactic elements of a reduced picture. Evidently this is problematic.
For example, suppose you have a graphical language in which the basic syntac-
tic elements are nodes and edges27. Let us assume that reducing the number
of syntactic elements in a picture (text) amounts to imploding a subgraph into
a new node. The problem now arises to define a proper meaning for this new
node of the imploded graph. This is not trivial, even though we already have a

26A picture with a thousand objects says totally nothing.
27i.e. conventional graphs.

3.2. The Syntactic Theory 75

proper meaning for normal nodes and edges. These new nodes that represent an
(imploded) subgraph can hide very complex structure, which becomes apparent
only if we explode them. For example the connectivity to the context is lost in
the following implosion of a traditional graph:

implosion

Is this still a node
in the graphical language?

Do we get this edge
after implosion?

In edge graphs this matter is solved in a natural manner. Instead of coding
the complex structure of an object in atomic graphical elements, each graphical
element in an edge graph (i.e. each edge) can be of arbitrary complexity. This
means that if we draw an edge like this:

¤

it can be the picture of a very simple edge (for example the empty edge 1) or a very
complex one. The denotation of an edge contains its whole complex structure.

76 Chapter 3. A generalized language for object oriented information systems

We may draw it as one simple edge and still interpret it as the complex edge it
is. The reason is that we do not encode a complex structure using atomic ones,
but give a complex edge the same status as a simple one. They are both edges.
We may also choose to reveal something of its complexity by drawing some of its
structure, i.e.

All in all we can implode an edge as one syntactic element, and explode it again
revealing all of its structure, without running into problems of interpretation.
Actually the reason for this freedom is inherent in the difference between the
mathematical nature of an edge graph (which we view as syntax) and a drawing
of it in a two dimensional space (a denotation we see with our eyes). Just like you
can draw a conventional graph in arbitrary many ways, you can vary the drawing
of an edge graph. The holistic nature of an edge28 then enables one to abbreviate
the drawing of an edge. In the following picture the effect of the implosion is
perfectly clear (objects just hide their structure); i.e.

28An edge contains its own structure.

3.3. Summary 77

edge a

edge a
(imploded)

A little more realistically, recall the pilot example of example 3.1.1. For in-
stance, if one would display the full roster of a pilot, and take along all its details
like the flight concerned with the task, the plane that will be flown in this flight,
the cabin crew that will be on the particular flight together with their hobbies
etc. (note that in reality a task in a roster carries a lot of complex objects as
adjacents), the view of the roster would be seriously obscured. Note that in the
’real’ world the information of complex objects like a roster is enormous. For ex-
ample the roster information of the cabin crew of a real airline is typically stored
in more then 40 different tables.

3.3 Summary

In this chapter we presented a language for object oriented information systems.
This language has both graphical and textual ingredients and a formal syntactic

78 Chapter 3. A generalized language for object oriented information systems

theory. In the next chapter we will give a proper mathematical semantics to this
language. This semantics will reveal the meaning of the constructs in a conceptual
object oriented world.

Chapter 4

A semantics for object oriented
information systems

Semantics is a strange kind of applied mathematics; it seeks profound
definitions rather than difficult theorems. The mathematical concepts
which are relevant are immediately relevant. Without any long chains
of reasoning, the application of such concepts directly reveals regularity
in linguistic behavior, and strengthens and objectifies our intuitions of
simplicity and uniformity.

(J.C. Reynolds [Reynolds80])

The categorial graph language is a language for object oriented information
systems for which we claim that the concepts it expresses are those concepts
used in practical languages for object oriented information systems. The the-
ory for the language of categorial graphs aims to show that these concepts are
materialisable (in mathematics), and are furthermore so in a direct manner (i.e.
without encoding). In this chapter we will present the semantics of the family of
categorial-graph languages. The semantics will be constructed in the following
manner:

We will translate a language of categorial graphs into a logical meta language.
This meta language will itself have (again) a semantics and an inference system
to reason about the semantic domain. The semantic domain consists of instances
of object oriented information systems. These instances contain complex objects
and partial descriptions of objects. The three ingredients: the meta language,
the inference system, and the semantics, form a logic.

To interpret a categorial graph, the graph and the constraint phrases will be
translated into a collection of phrases in the logical meta language. These phrases
will constitute a theory in the given logic. Valid models in this theory will be
models of valid information system instances of the given categorial graph.

79

80 Chapter 4. A semantics for object oriented information systems

In order to make this scheme work properly, we provide a meta language that
inhabits language constructs that are (we are using another vague term here)
’very close’ to the language constructs we want to interpret. This means that we
provide a meta language that contains high level constructs that reflect directly
the primitive structures in the categorial graph language. This way, we have a
semantics in which the concepts that are expressed with the categorial graph are
interpreted using primitive constructs of the semantics, and not by encoding in
low level mathematical concepts.

Note that the distinction between signature and constraints becomes more
vague if we turn to the meta language. If we translate the graphical (signatorial)
syntax and the textual (constraint language) syntax to the logical language, we
have only one textual logical language. Still we pursue the proposed distinction
between signature and constraints by designing the logical language in such a
way that the graphical ingredients of the object language are intrinsic features
of the meta-language. We achieve this by the ’direct’ translation of the graphical
constructs in its logical constructs.

Summarizing, our semantics for categorial graphs looks as follows: We will pro-
vide a meta language in the form of a logical language to interpret the categorial
graphs. A categorial graph, then, will be interpreted by a set of logical sentences
in the meta language. All models of the theory of these logical sentences are
object oriented information systems that satisfy the description of the categorial
graph. In a picture:

Database Schema

Categorial Graph

Set of Logical Sentences

Database Instance

Object Graph

Discourse Model

4.1 Desiderata for meta language for categorial

graphs

The definition of the family categorial graphs languages presents us with a list of
concepts that we need to be able to express in the meta language in order to be
able to translate a categorial graph into the meta language. These concepts are
coded in the graphical constructs of the categorial graph language, and we now
need to make them explicit to mould them into a logical form.

4.1. Desiderata for meta language for categorial graphs 81

In the view of the categorial graph language information is present in the
form of objects. In principle everything you model is an object. An object has
an identity, essential properties -i.e. an object is of some type- and an object
has some aspects -i.e. an object has some properties-. Objects and aspects of an
object can appear with structure. For example one can say ’an object has two
aspects of a certain type’. Moreover one can take objects together. For example
one can say ’this object is the aggregation of two objects of some type’. Finally
one can express complex constraints on the structure or content of an object.

In the categorial graph language we talk about the objects with graphical enti-
ties -edges- that denote types. As we saw in the previous chapter, a type denotes
an essential property of an object that is assigned to that type by the typing
functor (or inherits from that type because it is assigned to a specialization of
that type).

Recall that aspects of an object are denoted by the adjacents of a category. An
adjacent of a category types a property of an object of that category. In the object
model (the instance) the adjacent object is a property of the object itself. The
adjacents form a structure. If one wants to talk solely of ’having a certain kind of
adjacent’, a set structure is suited to express the adjacents of a category. If one
wants to talk about a certain number of adjacents of some kind, the adjacency
structure needs to be able to count. A multiset structure can denote this. If one
wants to talk about the first adjacent and the second adjacent, one needs a list
adjacency structure to express such structure.

The language of categorial graphs also provides an operation to take categories
together. Aggregation of two categories delivers a category that is uniquely de-
termined by its components.

Complex constraints can be formulated in a constraint language. This con-
straint language could, for example, enable one to use Boolean constructs to
logically combine properties, formulating a complex constraint.

Below we list the desirables for what we want to be able to say about complex
objects.

1. talk about essential properties of objects

2. talk about aspects of objects, which are in the OO philosophy information
objects in their own right

3. talk about complex constraints on the objects using Boolean connectives
like conjunction (u), disjunction (t), negation (¬) and implication (→)

82 Chapter 4. A semantics for object oriented information systems

4. talk about aggregations of objects (structurally and resource consciously)

5. talk structurally and resource consciously about aspects of objects

We will use the elaborated arsenal of modern formal logic to express the con-
cepts listed in the desiderata. The first desiderata means that we need to be
able to state (at least) propositions on whole objects. The second states that we
need to be able to assert propositions about the adjacents of an object. Propo-
sitions about aspects are expressed with modal propositions (♦P where P is a
proposition). The third desiderata -complex constraints- introduces the need for
Boolean connectives in order to make complex assertions about objects and their
aspects1. The 4th item -aggregation- introduces the need for a connective that
is interpreted as taking together objects. This will be the ∗ (we use the same
symbol as the related resource conscious conjunction of linear logic). The last
item in our list requires an aggregation operation in a modal context. Although
the items by them selves seem to introduce clear ingredients to the language, the
combination of all the desiderata will appear to be problematic when we want to
build a logic for the language with all the desired ingredients.

Note that when we look at the discussion in the previous chapters, we have
even more desiderata. These are things we want to be able to express, but are
not bound to language constructs. The most important of these are : labels, non-
wellfoundedness and incomplete specification of objects (i.e. not all aspects known
and/or the aspect structure not known). These are not desiderata that influence
the language constructs, but are inherent to the interpretation of the logical
connectives we use. This will become clear when we present the interpretation of
the meta language.

In talking about the adjacency structure, we add the following remark. The lan-
guages we will define will have an interpretation in a semantic domain populated
by complex objects. When issues like structural properties become important
(due to items 4 and 5), the complex objects in the semantic domain need to have
structural properties as well. This means that when we can say things about
objects taken together, such aggregation needs to be defined on the objects in
the semantic domain. We note that there are several variants on the result of
taking objects together, which can all be accounted for in the structural rules
for the logic that talks about the variant in focus. This will be elaborated when
we present the logical calculus and the interpretation of the logic for categorial
graphs below.

1Note that we omitted the self operator here. Although very powerful, and important in the
broad OO context, the self operator is not an intrinsic part of the core system. We will see that
we can add it nicely to the core system in a logical context. We will spend some words on that
when discussing the logical aspects of our system.

4.1. Desiderata for meta language for categorial graphs 83

Recall the enumeration of desiderata (1-5). We summarize the possibilities2 we
will consider in the table below.

1 2 3 4 5 comments

(i) X atomic typing of essential properties only

(ii) X atomic typing of aspects only

(iii) X X atomic typing of essential properties and aspects

(iv) X X Propositional logic for essential properties

(v) X X Propositional logic for aspects

(vi) X X

atomic typing of essential properties only and
possibility to say something about aggregate
whole objects (structure)

(vii) X X

atomic typing of aspects only and possibility to
say something about aggregated whole objects
(structure)

(viii) X X
atomic typing of aspects only and possibility to
say something about the adjacency structure

(ix) X X X

atomic typing of essential properties and aspects
and possibility to say something about aggre-
gated whole objects (structure)

(x) X X X
atomic typing of essential properties and aspects
and possibility to say something about the ad-
jacency structure

(xi) X X X
propositional modal logic for essential properties
and aspects

(xii) X X X
propositional logic with structural (aggregation
,product) connective

(xiii) X X X
propositional logic for aspects with structural
connective (aggregation ,product)

(xiv) X X X X

Propositional modal logic for essential proper-
ties and aspects combined with a structural (ag-
gregation, product) connective for taking to-
gether essential properties

(xv) X X X X

Propositional modal logic for essential proper-
ties and aspects combined with a structural
(aggregation, product) connective for specifying
structure of the aspects of an object

(xvi) X X X X X

Propositional modal logic for essential proper-
ties and aspects combined with a structural (ag-
gregation, product) connective for taking to-
gether essential properties and a structural (ag-
gregation, product) connective for specifying
structure of the aspects of an object

The languages without logical connectives (without 3) are actually simple type
systems, for which there are hardly any rules (we only type data with it). Nev-

2Note that some combinations make no sense, like combining propositions on whole objects
(essentials) with a product for adjacents (and nothing else).

84 Chapter 4. A semantics for object oriented information systems

ertheless they are widely used as subsets of the modeling languages. Many Data
models are written with only the typing language. The calculus for these lan-
guages is nearly trivial, because we only need to have rules for the aggregation or
product connectives, in order to let them behave as the aggregation does in the
model. For example, if in the model we cannot count then the ’type’ A will be
the same as A ∗ A. We will go formally into these matters after we have defined
the models.

For the languages with connectives things get complicated right away. Es-
pecially if we want to combine with these connectives the things we say about
essential properties of objects with things we say about aspects of objects. More-
over we have the classical problem of using negation in an information model,
where the description specified by ¬A is satisfied by information we may not
have in our information model.

In summary the meta language of categories has the following features:

• Expresses propositions on the complex structure of an object using a modality
for adjacency. i.e. a proposition about the structure of an object that says
that an object has some kind of adjacent is expressed with a modality. The
modality will have an existential character, and will be denoted by the ♦.
This means we can express that an object has some structural properties
without knowing its structure totally. For example the complex objects3 p,
r and s will all be of type ♦A.

p

q:A

r

s t:A

u:A

If we want to talk about a directed adjacency structure, i.e. about the
first adjacent, the second adjacent, etc. etc., we need to label the modal

3A note on the informal notation for an object: the structure of a complex object is denoted
by a box using a circle as placeholder for an adjacent object and a line from the placeholder
to the box that denotes the adjacent. This line is called a link . The label for the object will
be a lower case letter (a, b, c, . . .), and the type of an object will be denoted by a capital letter
(A,B,C, . . .). The label a : A will mean ’object a of type A’.

4.2. The meta language of categorial graphs 85

adjacency operator: ♦1,♦2,♦role, etc.. Note that we may use symbolic
names as labels, if we want.

• Has a linear aggregation operation. This means that we can express the
’taking together’ of two objects resulting in a new complex object. For
example if we have two objects p and r, and r has two adjacents s and t, p
has an adjacent q, then their aggregation p · r will have three adjacents, q,
s and t. In a picture:

p r

sq t

sq t

p r

4.2 The meta language of categorial graphs

4.2.1. Definition. (The meta language of categorial graphs)
Let Scat be a set of operators containing one unary modal operator ♦, together
with the modal constant 1. We define the language Lcat to be the pair (Scat, Qcat),
where Qcat is a set of propositional variables. The set Φ(Lcat) of formulas in
Lcat is defined as usual, using, next to the modal operators, the connectives
∗ , u , t , ¬ M

The ♦ modality will talk about the adjacency relation R, and 1 models the
empty (or unknown) objects. Furthermore, the * denotes aggregation, or in other
words, the multiplicative or resource conscious conjunction. The connectives u
and t are respectively additive (non resource conscious) conjunction and additive
disjunction. Finally the ¬ denotes (non resource conscious) negation.

86 Chapter 4. A semantics for object oriented information systems

Let us give some informal interpretation of the connectives before getting for-
mal. The ∗ (multiplicative conjunction) is the resource conscious ’and’ connective.
Informally, an object of type A∗B will be an object that is an aggregation of two
objects, one of type A and one of type B. The u (additive conjunction) is the
traditional ’and’ (∧) connective. If an object is of type AuB it informally means
that the one object itself is both of type A and of type B. The t (additive dis-
junction) is similar to the disjunction (∨) of classical logic. Informally, an object
is of type A tB if it is either of type A or of type B. The ¬ (negation) is a non
constructive and non-resource-conscious negation. An object is of type ¬A if it
is not of type A. The ♦ will model adjacency. An object of type ♦A is an object
that has an adjacent of type A. Finally 1 will be the type of the empty object.
We will make sure the type A ∗ 1 will have the same interpretation as the type
A; in other words an object composed from an object of type A and the empty
object will be of type A, simply because composing (aggregating) with the empty
object will be the identity operation.

We can extend the language by adding the following modalities that are induced
by the adjacency relation:

1. the ♦+ modality, which talks about the transitive closure of R.

2. the ♦−1 modality, which talks about the inverse of R.

These modalities need axioms to be formally defined in the calculus.

4.2.2. Example. Recall the running example of chapter 3 (example 3.1.1). We
can express the graph expressions in the meta language of categorial graphs as
follows:

pilot⇒ ♦name ∗ ♦empno ∗ ♦qualif
pilot⇒ ♦roster

roster⇒ ♦(1 t task) (for set flavoured this suffices)
roster⇒ ♦(1 t task t (task ∗ task) t . . . t (task ∗ · · · ∗ task))
(roster⇒ ♦(!task) when we introduce the bang (!))
task⇒ ♦task desciption

task⇒ ♦start

task⇒ ♦end

pilot⇒ person

task u ♦(task description u flying duty)⇒ ♦−1(person→ pilot)
when we introduce self and the functions we can tackle the other constraint:
start u ♦−1((task u ¬♦self) ∗ (task u ♦(task descrtipion u flying duty) u ♦self))⇒
♦−1((task u ♦f>11(start, self)) ∗ (task u ♦self))

N

4.3. Calculus for the meta language of categorial graphs 87

4.3 Calculus for the meta language of categorial

graphs

In this section we present a variety of rules and axioms for the meta language of
categorial graphs. This language, together with the calculus, constitutes a logic
we call the logic of categories. Several rules and axioms directly correspond to
the structural issues we presented in the previous sections. With this we mean
that, in a multiset structure for example, we have rules that respect that we can
count aspects.

The rules and axioms for our logic are based on the calculus for linear logic
([Girard87], [Troelstra92]). The ’resource consciousness’ paradigm of Girard’s
linear logic ([Girard87]) triggered the use of such a logic for categorial graphs.
Logics such as linear logic emerged from a broader landscape of logics, which is
the framework of substructural logics. In a Gentzen-style sequent formulation,
a substructural logic distinguishes itself by the absence of some structural rules
that are common in the Gentzen-style formulation of the most common logics
like classical or intuitionistic logic. Well known substructural logics are ’rele-
vance logic’ ([Dunn86]), categorial logic ([Lambek58], [Benthem91]) and ’BCK
logic’ ([OnoKomori85]). Linear logic differs from these substructural logics by al-
lowing some limited or controlled use of the structural rules using logical (modal4)
operators.

The axioms and rules for the logic of categories will be presented in Gentzen-
style sequent calculus with the restriction that the sequents have, exactly, one
formula on the right. A sequent thus will have the following format:

Γ⇒ A

where Γ is a sequence of formulas A1, . . . An. The sequence of formulas can
intuitively be interpreted as a comma separated list of resources. The ⇒ is
interpreted as provability:

if Γ⇒ B then from Γ we can prove B

For basic connectives ∗, t, u, 1, ⊥, and >, we present the usual axioms and
rules. We also have modalities in the linear language that are different from the
ones that are usually studied in the field of linear logic and modal logic (see e.g.
[Bucalo94]). The fundamental difference lies in the fact the accessibility relations
we consider are not only set-based, but are also multiset-based, or list-based.

4In order to avoid misunderstanding we note that for regulated use of the structural rules
we, of course, use other modal operators than the modal operator for adjacency. In fact when
we introduce a modal operator for regulated use of the structural rules, we get a multi modal
logic

88 Chapter 4. A semantics for object oriented information systems

4.3.1. Definition. (The basic rules for categories)
Rules and axioms for the non-modal part of the calculus:

(AX) A ⇒ A

(CUT)
Γ⇒ A Γ′, A ⇒ B

Γ,Γ′ ⇒ B

(Lu)
Γ, A ⇒ C

Γ, A u B ⇒ C

Γ, B ⇒ C

Γ, A u B ⇒ C

(L∗)
Γ, A, B ⇒ C

Γ, A ∗ B ⇒ C

(Lt)
Γ, A ⇒ C Γ, B ⇒ C

Γ, A t B ⇒ C

(L1)
Γ⇒ A

Γ,1 ⇒ A

(no L>)
(L⊥) Γ,⊥ ⇒ A

(L¬)
Γ⇒ A t∆
Γ u ¬A ⇒ ∆

(Ru)
Γ⇒ A Γ⇒ B

Γ⇒ A u B

(R∗)
Γ⇒ A Γ′ ⇒ B

Γ,Γ′ ⇒ A ∗ B

(Rt)
Γ⇒ A

Γ⇒ A t B

Γ⇒ B

Γ⇒ A t B

(R1) ⇒ 1

(R>) Γ⇒ >
(no R⊥)

(R¬)
Γ u A ⇒ ∆

Γ⇒ ¬A t∆

For the adjacency modality we add the following:

(♦I)
A ⇒ B

♦A ⇒ ♦B

(♦EXISTENTIAL)
Γ⇒ ♦A ∗ ♦B

Γ⇒ ♦A

M

The basic set of axioms and rules axiomatizes a language that can talk about
essential properties of objects (i.e. whole objects) and about aspects of objects
(i.e. partial description of objects). Expressions on aspects of objects can be done
using the ♦ modality. The existential character of the ♦ modality is axiomatized
by the ’♦EXISTENTIAL’ rule. This rules says (informally) that when an object
of type Γ has an A and a B adjacent, then we may conclude that an object of
type Γ has an A adjacent.

In the presentation of the models of discourse spaces we stated that the adja-
cency relation either consist of list, multiset, or set adjacency structures. Note
that this basic set of rules can only be sound and complete for an interpretation
that involves edges with a list adjacency relation because we cannot show with
this basic collection of rules the behavior of a multiset adjacency relation,

♦A ∗ ♦B ⇒ ♦B ∗ ♦A ,

4.3. Calculus for the meta language of categorial graphs 89

nor behavior of a set adjacency relation,

♦A ∗ ♦A⇒ ♦A .

For axiomatizing this kind of behavior we need structural rules. In the list below
we will introduce rules that enable or disable certain expessivity of the language
and behavior of the models.

• rules for adjacency structure

1. Adjacency structure is undirected; i.e. there is no order in the adja-
cents of an object.

(♦EXCHANGE)
Γ,♦A,♦B,Γ′ ⇒ C
Γ,♦B,♦A,Γ′ ⇒ C

2. Adjacency structure is non-resource-conscious; i.e. there is no notion
of counting adjacents (only existence of a type of adjacent matters)

(♦CONTRACTION)
Γ,♦A,♦A⇒ ∆
Γ,♦A⇒ ∆

(♦WEAKENING)
Γ,♦A⇒ ∆

Γ,♦A,♦A⇒ ∆

• Rules for whole object structures

1. Aggregate structure is undirected; i.e. there is no order in the aggre-
gates of an object.

(RESTRICTED-EXCHANGE)
Γ, A,B,Γ′ ⇒ C
Γ, B,A,Γ′ ⇒ C

provided that A is
not of the form ♦G

2. Aggregation of whole objects is non-resource-conscious; i.e. there is no
notion of counting aggregates.

(RESTRICTED-CONTRACTION)
Γ, A,A⇒ ∆
Γ, A⇒ ∆

provided that A is
not of the form ♦G

(RESTRICTED-WEAKENING)
Γ, A⇒ ∆

Γ, A,A⇒ ∆
provided that A is
not of the form ♦G

• General rules

1. All structure is undirected (i.e. there is no order in the aggregates and
neither in the adjacents of an object)

(EXCHANGE)
Γ, A,B,Γ′ ⇒ C
Γ, B,A,Γ′ ⇒ C

90 Chapter 4. A semantics for object oriented information systems

2. All structure is non-resource-conscious; i.e. there is no notion of count-
ing whole objects, neither is there a notion of counting adjacents (only
existence of a type of adjacent matters)

(CONTRACTION)
Γ, A,A⇒ ∆
Γ, A⇒ ∆

(WEAKENING)
Γ, A⇒ ∆

Γ, A,A⇒ ∆

In order to illustrate the effect, the rules from above enable the following
identifications in the categorial graphs language (specifying types):

(♦EXCHANGE)

A

B C

A

C B

(♦CONTRACTION)

A

B

A

B B

(♦WEAKENING)

A

B

A

B B

(RESTRICTED-EXCHANGE)
B AA B

(RESTRICTED-CONTRACTION)
A AA

(RESTRICTED-WEAKENING)
A AA

4.4. The semantic domain for object oriented information systems 91

(EXCHANGE)

A

B C

A

C B

D D

(CONTRACTION)

A

B

A

B B

A

(WEAKENING)

A

B

A

B B

A

The rules from above have serious implications on the semantics of the lan-
guage of categorial graphs. For example, by introducing ♦EXCHANGE the the-
ory can not distinguish between objects with different order of adjacents. This
means that the semantics of the language can not contain any reference to the
order of the adjacents. In other words, the two expressions ♦A∗♦B and ♦B ∗♦A
will have the same meaning, just like the two graphs above at the ♦EXCHANGE
label. We will typically interpret the language with the ♦EXCHANGE in a se-
mantic domain with objects with an adjacency structure which has no order.

4.4 The semantic domain for object oriented in-

formation systems

The meta language of categories has an interpretation in a semantic domain. We
can construct a landscape of semantic domains for which we can present different
sets of axioms and rules that are sound with respect to the proposed semantics
by adding or omitting these particular rules5. The semantic domains will (all)
have the following features:

• Both ’whole objects’ and ’partial description of objects’ are members of the
semantic domain. This means that in our semantics we can point at an

5very much like the landscape of substructural logics is given its variety by adding and
omitting structural rules

92 Chapter 4. A semantics for object oriented information systems

object a, but also at an aspect b of an object a6.

• An adjacency structure models the complex structure of an object. The
adjacency structure of an object contains the adjacents of an object, and
this structure is as rich as the rules of the calculus describe. In effect this
means that the adjacency structure of an object is either a set, a multiset
or a list. For example in the multiset case this means that if some object
a has three adjacents: b, c and again c, then7 {̈(a, b), (a, c), (a, c)}̈∈̈RAdj,
where RAdj denotes the adjacency multiset relation.

• A monoid structure over the object domain interprets aggregation. This
means that there is an operation ’·’ on complex objects that interprets
aggregation, and that aggregated objects are members of the domain of
objects.

• Identity. For handling the notion of identity properly we may not ’a priori’
identify an object by its structure. In a world with an object notion there
can be two different objects with the same adjacents (contrary to the rela-
tional world, which requires semantically meaningless attributes as key to
force that two objects that in some knowledge state cannot be distinguished
by there properties, but may turn out to be two different objects anyhow).
This means that characterizations of objects by describing their structure
are, in general, partial.

• Links and partial descriptions. In order to interpret formulas with an exis-
tential character, like ”an A object is an object that has at least two adja-
cents, one B-adjacent and one C-adjacent”8, we will calculate in our mod-
els with partial descriptions of objects. These partial descriptions, called
aspects or links, will be the witnesses of one particular object being the ad-
jacent of another particular object. If we graphically write down an object,
a link can be seen as the line between the object and its adjacent. In our
semantics we denote an aspect or link by an ordered pair (a, b) meaning the
aspect witnessing that9 b is adjacent to a.

We interpret the connectives and operators of the meta language Lcat of cate-
gorial graphs in the semantic domain. The construction of this semantic domain
is a variation on a Kripke style semantic domain. The domain will be generated
by a set of atomic objects EAt and a function fR (e.g. the characteristic function

6For example both the whole object named Socrates and its partial description the white
color of Socrates can be members of the semantic domain

7A remark on notation: We use two dots to distinguish the multiset symbols and operations
from their normal set variants

8in our language that is denoted by ♦A ∗ ♦B
9or more concrete: the aspect witnessing that Sorcrates is white

4.4. The semantic domain for object oriented information systems 93

of a relation R) that describes the adjacency structure of the objects. The math-
ematical items EAt and fR together generate a hybrid structure which is called
a discourse frame with two dimensions of so called ’structures’ (or monoidals) of
mathematical elements:

1. one dimension is a ’structure’ with mathematical elements behaving like
whole objects (and aggregations of whole objects) which can interpret the
propositions on whole objects; this structure will be called ’space of wholes’.

2. the other dimension contains for every (aggregation of) whole object(s) a
lattice in the ’structure’ of mathematical elements behaving like information-
pieces (called ’aspects’ or ’links’ or ’infons’) which can interpret the propo-
sitions on aspects or partial descriptions of whole objects; these structures
will be called ’adjacency spaces’.

This discourse frame, together with a valuation (interpretation), form the so called
discourse models that interpret the language of categorial graphs.

4.4.1. Definition. (structure domain)
A structure domain is a triple < C, ·, 1 > where

• C is a collection of elements (structures)

• · : C × C → C is a product

• 1 ∈ C is the unit element for ’·’

In the course of this section we distinguish 4 types of structure domains based on
two properties:

1. commutativity: e1 · e2 = e2 · e1

2. idem-consuming/cloning: e · e = e

The 4 variants of the structures are now:

1. non-commutative and non-idem-consuming/cloning (i.e. lists)

2. commutative and non-idem-consuming/cloning (i.e. multisets)

3. non-commutative and idem-consuming/cloning (i.e. lists with no identicals
right after another)

4. commutative and idem-consuming/cloning (sets)

94 Chapter 4. A semantics for object oriented information systems

Within a structure we have an ordering ≤ called a substructure ordering that
satisfies the following condition:

a ≤ b implies a · c ≤ b · c and c · a ≤ c · b

a ≤ b if

a = 1
a = b
a = a1 · . . . · an&b = b1 · . . . · bn&ai ≤ bi(1 ≤ i ≤ n)
(where = means equivalence in the structure domain)

M

Both dimensions of the model, the space of wholes and all the adjacency spaces
will be structures.

4.4.2. Definition. (’space of wholes’)
Given a set EAt of objects called ”atomic objects”, a space of wholes E is a
structure domain < E, ·, 1 > freely generated from EAt. (The ordering in the
space of wholes is simply the substructure ordering, which we do not need in the
definitions further on) M

The unit element 1 of the space of wholes will interpret the empty type 1 (i.e.
the empty type is interpreted by the empty object). If the space contains objects
a1, a2 and a3, then it also contains aggregates a1 · a2, and also a1 · a2 · a3. But
also a1 · a1 · a2 · a3 · a2 etc. etc. etc. . The multiplication operation is defined on
objects. We will also define the multiplication on sets of objects (denoted by the
same token (’·’)) as usual: X · Y := {x · y | x ∈ X, y ∈ Y }.

Objects have adjacents. The adjacency structure of objects will be modeled by
an adjacency function. This function maps a whole object to its (full) adjacency
structure element, which is the structure element that models the complex struc-
ture of the object. Such a structure element is called an ’infon’ and is an element
of a structure with the ’information pieces’ or ’links’ as atomic elements. Such an
atomic link is a witness to the fact that ’one object b is in the adjacency structure
of another object a’, and will be denoted by an ordered pair (a, b). The math-
ematical behavior of the infons (structure elements) will be determined by the
rules that hold in the adjacency structure. For example if the adjacency structure
is commutative, the behavior of the infons (structure elements) (a, b) · (a, c) and
(a, c) · (a, b) containing both the two atomic links (a, b) and (a, c) will be identi-
cal. In effect an infon (structure element) representing the (whole or part of the)
adjacency structure will be either a set (when both commutativity and idem-
consumption hold), multiset (when only commutativity holds), or a list (when
neither of the rules hold) of pairs. The function that maps an object to its adja-
cency structure element will interpret the ♦-modality. The proposition ♦A will
be interpreted as ’has an A-type adjacent’. In other words the adjacency operator
talks about aspects (links or infons) of an object; i.e. partial descriptions.

4.4. The semantic domain for object oriented information systems 95

4.4.3. Definition. (links)
Let E =< E, ·, 1 > be a space of wholes and e1, e2 ∈ E. Then a link of object
e1 is a pair (e1, e2). This pair witnesses the fact that e2 is an adjacent of e1. The
pair (e1, e2) is an information piece that partially describes object e1. It is an
individual aspect of object e1. M

4.4.4. Definition. (’Adjacency spaces’)
Let E be a space of wholes. Then for each element in e ∈ E we define a structure
domainAe freely generated from all possible links of e. i.e. let AAt

e = {e}×E ⊆ Ae

be the set of all links of e; then

Ae =< Ae, ·e, (e, 1),≤e>

is the structure domain freely generated by AAt
e . Ae is called the adjacency space

of e, and the elements of Ae are called partial descriptions or infons of e. M

4.4.5. Definition. (adjacency (structure) mapping) An adjacency structure map-
ping is a function fR : E 7→

⋃

e∈E Ae that maps each atomic object to a structure
element in its adjacency space. This structure element describes the full adjacency
structure of the whole object. i.e.

fR(e) ∈ Ae

The domain of fR can be extended to range over all objects including aggregates
(E) by putting (regularity):

fR(a · b) = (a · b, c1) ·a·b . . . ·a·b (a · b, cn) ·a·b (a · b, d1) ·a·b . . . ·a·b (a · b, dn)
iff

fR(a) = (a, c1) ·a . . . ·a (a, cn)
and

fR(b) = (b, d1) ·b . . . ·b (b, dn)

M

4.4.6. Definition. (adjacency (structure) relation)
Given a space of wholes E as above, we define an adjacency (structure) relation
R : E ×

⋃

e∈E Ae by the adjacency structure mapping as follows:

eRa iff fR(e) = a′&a ≤e a
′

In other words, R relates an object to a partial description (element from an
adjacency space) iff the partial description is a substructure of the partial de-
scription that is the adjacency structure element of that object. i.e. the whole
adjacency structure is related to its object, together with all the infons that are
a substructure of that (total) adjacency structure element. M

96 Chapter 4. A semantics for object oriented information systems

To clarify the definition of adjacency structure relations we list the ’special
cases’ where the structure is respectively a set, a multiset, and a list.

Case set: fR maps an object to a set of partial desciptions. The
adjacency structure of an object is a set. R is a set of pairs; pairs
have only ’presence’ as feature in R. The adjacency space will have
as elements sets of pairs with set inclusion as ordering.

Case multiset: fR maps an object to a multiset of partial descrip-
tions. The adjacency structure of an object is a multiset. R is a
multiset of pairs; pairs will have ’presence’ and ’arity’ as feature in
R (that is asserting arity=0 means ’not present’, we could say they
only have ’arity’ as feature in R). The adjacency lattice (defined be-
low) will have as elements multisets of pairs with multiset inclusion
as ordering.

Case list: fR maps an object to a list of partial descriptions. The
adjacency structure of an object is a list. R consists of lists of pairs;
pairs will have ’presence’, ’arity’, and ’positions’ (one position for
each occurrence) as feature in R. The adjacency lattice will have as
elements lists of pairs with list inclusion as ordering.

In this informal formulation the generic structure is formulated as follows:

Generic case structure: fR maps an object to a structure of partial
descriptions. The adjacency structure of an object is a structure. R
consists of structures of pairs (a generalization of the relation concept,
from which a traditional relation, a multiset relation and a relation
consisting of lists are special cases). The structures of pairs will behave
according to the rules of the structure. The adjacency lattice will have
as elements structures of pairs with structure inclusion as ordering.

An adjacency lattice contains (unordered) sequences of pairs (e1, e2), where e1
is an object and e2 is one of its adjacent objects. We will treat the elements of
the adjacency lattices, i.e. the infons, as objects with a special property: they
are ’extendible’ to all elements that are more informative than themselves, with
in the limit the ’whole’ that they are a partial description of10. For example
the infon (e1, e2) is interpreted to be extendable to the ’whole’ e1. As an other
example the aggregation of the infons (e1 · e3, e2) · (e1 · e3, e2) will be extendible to
e1 ·e3. Whole objects will be extendible to themselves only, because they describe
exactly one individual, and there is no description more informative or precise
than the individual itself.

10In a sense an infon has an existential character: ’There exists an edge object that I am a
partial description of’.

4.4. The semantic domain for object oriented information systems 97

We will now combine the two worlds, the world of infons (partial descriptions)
and the world of whole objects. The combined structure is a hybrid structure
containing as elements both the infons and the whole objects. This hybrid space
will be called discourse space. The structure has two dimensions, one dimension
playing at the level of the individual adjacency lattices (i.e. within the description
of one whole object), and the other dimension playing at the level of (aggregation
of) whole objects. Furthermore the interaction between these dimensions needs
to be controlled. This means the following:

• The aggregation of infons from one individual adjacency lattice for an object
e is the product in this lattice obeying the rules for taking together partial
descriptions, and

• The aggregation of two whole objects is the product within the space of
wholes, obeying the rules for taking together propositions about whole ob-
jects.

• the aggregation outside an individual adjacency lattice or involving both
whole objects and infons is a product operation regulating the traffic be-
tween the two worlds.

The first two products are already defined. The product between elements of
different worlds (i.e. between two infons of different adjacency lattices or between
an infon and a whole object), called a hybrid product, needs some more discussion.
In general the product operation is modeling the aggregation operation that is
taking together two pieces of information. This taking together of two pieces of
information can behave in different ways, it can for example be resource conscious
or sensitive for the order in which the information is taken together. For a product
on uniform behaving elements in our model, e.g. the product of two whole objects
or the product of two infons of one object, this product can simply obey the rules
in the specific subspace11. For the product of two differently behaving elements
we need to take a little more care. The behavior of taking together elements
in the different subspaces should be conservative w.r.t. the taking together of
elements in the different subspaces, in the sense that it should not be possible to
obtain equivalences in the separate subspaces by using the hybrid product which
one can not obtain using soley the product in the different subspaces.

In effect this means that the product of two elements of different worlds will
be a term that will have structural properties (like commutativity, associativity,
idem-consumption, and cloning) only if the products in the other two worlds both
have these properties.

4.4.7. Definition. (hybrid product)
Let E be a space of wholes and let Ae(for all e ∈ E) be a collection of adjacency

11The space of wholes and the separate adjacency lattices are all spaces with a product.

98 Chapter 4. A semantics for object oriented information systems

spaces generated from a collection of objects EAt and an adjacency relation R.
Let o1, o2 ∈ E ∪

⋃

e∈E Ae, then

o1 · o2 =

o1 ·Ae
o2 if o1, o2, o1 ·Ae

o2 ∈ Ae

o1 ·E o2 if o1, o2 ∈ E
o1 ·H o2 otherwise

M

Now we formalize our notion of extendibility relating the separate worlds of
infons to the world of whole objects. An infon will be extendable to the infons
that are more informative than itself but still a partial description of the whole
object, and to the (aggregation of) whole object(s) of which it is the witness of
one or more aspects. Whole objects will be extendable to themselves only.

4.4.8. Definition. (extendibility)
Let E be a space of wholes and let Ae(e ∈ E) be a collection of adjacency spaces
generated from a collection of objects EAt and an adjacency relation R. For
o ∈ E ∪

⋃

e∈E Ae, we define

Ext(o) =

{o} if e ∈ E
{a| o ∈ Ae o ≤ a&a ≤ fR(o)} ∪ {e| o ∈ Ae} if a ∈

⋃

e∈E Ae

∅ otherwise

(Note that the Ext operations filters out all undefined products) M

4.4.9. Example. Look at the following objects EAt = {a, b1, b2, c, d} with the

adjacency multiset relation R = {̈(a, b1), (a, b2), (c, d)}̈. The following then are
examples of adjacency lattices (in the case of a multiset adjacency structure, i.e.
associative and commutative space for the adjacents):

Aa = {(a, b1), (a, b2), (a, b1) · (a, b2}
where (a, b1) ≤ (a, b1) · (a, b2) and (a, b2) ≤ (a, b1) · (a, b2)
Ac = {(c, d)}
Aa·c = {(a · c, b1), (a · c, b2), (a · c, d), (a · c, b1) · (a · c, b2),
(a · c, b1) · (a · c, d), (a · c, b2) · (a · c, d), (a · c, b1) · (a · c, b2) · (a · c, d)}
where (a · c, b1), (a · c, b2) ≤ (a · c, b1 · (a · c, b2)
and (a · b1), (a · c, d) ≤ (a · c, b1) · (a · c, d)
and (a · c, b2), (a · c, d) ≤ (a · c, b2) · (a · c, d)
and (a · c, b1) · (a · c, b2), (a · c, b1) · (a · c, d), (a · c, b2) · (a · c, d) ≤

(a · c, b1) · (a · c, b2) · (a · c, d)

4.4. The semantic domain for object oriented information systems 99

and the following are examples of products and extensions:

Ext(a) = {a}
Ext(b1) = {b1}
Ext((a, b1)) = {(a, b1), (a, b1) · (a, b2), a}
Ext((a, b1) · (a, b2)) = {(a, b1) · (a, b2), a)}
Ext((a, b1) · (c, d)) = ∅
Ext((a, b1) · (a, b1)) = ∅

N

4.4.10. Definition. (discourse space)
Let E =< E, ·, 1E > be a space of wholes and let Ae =< Ae, ·, 1e,≤> for all
e ∈ E be adjacency lattices generated from a set of atomic objects EAt and a
structure adjacency relation R on EA. Now define < O, ·O > to be the associative
and commutative monoid freely generated from EAt ∪

⋃

e∈E Ae where

a ·O b =

a ·E b if a, b ∈ E
a ·Ae

b if a, b ∈ Ae for any e ∈ E
a ·H b otherwise

where ·E is the product of the space of wholes and ·Ae
is the product of the

adjacency lattice of e and ·H is the product for the hybrid terms;
We will say that OE,R is the discourse space generated by EAt and R. The

rules for ·E determine the product between whole objects, and the rules for · in
Ae determine the behavior of the product between infons of one world (built of
links) and the rules for ·H for the interaction between the different worlds. Again
we are talking about behavior in terms of commutativity and idem-consumption
and cloning. M

Given a collection of atomic objects and an adjacency relation over these, we can
determine uniquely a discourse space. In a Kripke style model this combination
is called a frame. A collection of objects together with an adjacency relation
constitutes what we will call a discourse frame. We will use the spaces generated
from this frame to define models.

4.4.11. Definition. (discourse frames)
Given a collection EAt and an adjacency structure relation R over EAt; we will
say that F = (EAt, R) is a discourse frame. Note that EAt and R determine a
space of wholes , the adjacency lattices for all objects in the space of wholes and
a discourse space. M

4.4.12. Definition. (Valuations)
Let F = (EAt, R) be a discourse frame and OE,R =< O, · > be the discourse space

100 Chapter 4. A semantics for object oriented information systems

determined by F . A pre-valuation ν : QUE 7→ P(E) is a function that assigns to
each propositional variable of LUE a set of (whole) objects. We extend ν to take
arbitrary formulas of LUE and extend its range to OE,R (links and objects) by:

ν(P tQ) = Ext(ν(P) ∪ ν(Q))
ν(P uQ) = Ext(ν(P) ∩ ν(Q))
ν(P ∗Q) = Ext(ν(P) · ν(Q))
ν(¬P) = Ext[E − Ext(ν(P))]
ν(♦P) = Ext({(q, p)|(q, p) ∈ R, p ∈ ν(P)})
ν(>) = O
ν(⊥) = ∅
ν(1) = {1E}

A valuation V : QUE 7→ P(E) is defined as:

V (P) = ν(P) ∩ E

M

4.4.13. Definition. (Models for categorial graphs)
A pair (F , V) consisting of a discourse frame F and a valuation V is called a
discourse model. The notions of truth and validity given a (collection of) model(s)
are defined as usual:

LetM = (F , V) be a discourse model, where F = (E , R) is a discourse frame,
E =< E, ·, 1 > is a space of wholes and a ∈ E is an object. A formula φ ∈ Φ(MUE)
is true at object a in model M, notation M, a |= φ if a ∈ V (φ). M

To end this section we will write down a very simple example of a model
for the categorial graph language. This example illustrates the whole process of
obtaining semantics for a categorial graph.

4.4.14. Example. Look at the very simple categorial graph G of figure 4.1, and
its instance (object graph) O. For G we get:

A⇒ ♦B

For O we have the following model:

space of wholes < {a, b, 1}, ·E, 1 >
links {(a, b)}

adjacency spaces

{

< {(a, b), (a, 1)}, ·a, (a, 1) >
< {(b, 1)}, ·b, (b, 1) >

adjacency structure mapping

{

fR(a) = (a, b)(= (a, b) · (a, 1) · (a, 1))
FR(b) = (b, 1)

adjacency structure relation R = {(a, (a, b)), (a, (a, 1)), (b, (b, 1))}
discourse space < {a, b, 1, (a, b), (a, 1), (b, 1)}, ·O >

pre-valuation

{

ν(A) = {a}
ν(B) = {b}

N

4.5. Summary 101

A

B

a:A

b:B

Categorial Graph
G

Object Graph
O

Figure 4.1: A very simple example of a categorial graph and a model

4.5 Summary

In this chapter we presented the semantics for the language of categorial graphs.
The language together with its semantics provides a ’direct’ formalization of ex-
pressions and concepts from the practical world of object oriented information
systems. This system will be subject to further theoretical (logical) analysis in
the subsequent chapters.

Part III

Logical Aspects

103

Introduction

The chapters in this part present logical aspects of the theory of object oriented
information systems.

• In chapter 5 we discuss the approach to semantics we have taken in this
thesis which is based on logic. We will relate the semantics of object oriented
information systems to research on semantics in computer science. Moreover
we will place the major artifact from our semantical research -the logic of
categorial graphs- in its logical context.

• In chapter 6 we will discuss some important logic-theoretic aspects of the
logic of categorial graphs. We will talk about soundness and completeness,
and will take a look at the computational complexity of the logic that
catches the object oriented concepts.

105

Chapter 5

Methodology: semantics, logic and
applications

Computer science is not only a study of basic theory, and it is not
just the business of making things happen. It’s actually a study of
how things happen.

Robin Milner

What is the semantics of object oriented information systems good for? In
this chapter we describe the methodology of semantic research underlying the
investigations on object orientation in this thesis. Formal semantics is a curious
form of mathematics but provides important insights when done properly. The
formal semantics also form a valuable basis to research applications of object
oriented information models. In this chapter we validate our research on its
methodology and point to some gains of the research done so far.

The formal semantic studies on object orientation in this thesis delivers one
major artifact: the logic of categorial graphs. We use the arsenal of modern
logic to provide a proper semantics for the concepts studied. We will place the
logic of categorial graphs in its logical context. We give its roots and its logical
motivation, and will discuss matters that are important for this kind of logic,
focusing on its use in semantical studies.

The theory we developed in this thesis for object oriented information models,
of course, gives more then insight only. It provides a basis for research in vari-
ous application domains that use object oriented information models. One nice
application that is a direct application of this research, is the use of the logic for
categorial graphs for data mining algorithm analysis ([HaasAdriaans99]). We will
elaborate on this application and other possible applications in the second half of
this chapter.

107

108 Chapter 5. Methodology: semantics, logic and applications

5.1 Formal Semantics

It can not be stressed enough that designers, developers and serious users of mod-
eling, database or programming languages need a complete and accurate under-
standing of the semantics (or intended meaning) of those languages. A rigorous
mathematical theory of semantics of a language is needed to support correct de-
scription and implementation of its meaning. Furthermore it is indispensable for
verification and systematic development of programs written in the language. Of
course semantics can be constructed in many different ways. Below we give an
overview and describe the approach to semantics for object oriented information
systems we have taken in this thesis.

5.1.1 Semantics in computer science

A formal semantics1 for a language is a mapping from that language to some
mathematical structure that models the universe of discourse. In this setting the
considered language is called ”object language”. The mathematical structure is
the ”semantic domain” and should capture the meaning of the constructs and
concepts we want to express in the object language. The elements of the seman-
tic domain have mathematical properties, which exploit the behavior of these
elements. In order to do mathematics with the semantic domain we also need a
”meta language” with which we can reason about the semantic domain.

In computer science ’semantics’ became an issue when the controversy and
confusion over how to interpret the definition of ALGOL-60 started to become
embarrassing. Some means had to be found of identifying the meaning of a
programming language in a precise and unambiguous way. The, now classical,
solution of Scott and Strachey ([ScottStrachey71]) was to associate a mathemat-
ical denotation to each phrase of the object language. They discovered Church’s
λ-notation suitable for this task and constructed a mapping from ALGOL-60
phrases to a λ-language. In this λ-language, the meta-language, one could specify
the meaning of the object-language, ALGOL-60. But for precise comprehension
this meta-language also needed a semantic definition, which Scott and Strachey
provided for in the shape of reflexive domains. Semantics constructed in this
manner are generally called denotational semantics.

The similarity between the notion of (denotational) semantics in the program-
ming linguistics as described above, and the notion of semantics in mathematical
logic has led to a strong influence of the latter in the field of computer science

1The definition of the concept ”semantics” given here is tailored for computer science. We
are very well aware that this concept if often used in a much broader setting or in different
fields of science.

5.1. Formal Semantics 109

semantics. In mathematical logic a semantic domain together with a homomor-
phism from some syntax to that domain is called an ’interpretation’. Given a
notion of ’truth’ in the domain, an interpretation is a ’model’ of a logic if all of
the axioms of the logic theory are true in the interpretation and all the inference
rules preserve truth. In the case of programming languages we can think of the
(denotational) semantics as a model of the language its execution on some (ab-
stract) machine (Floyd-Hoare theory). We only need to explicify some notion of
truth in the semantic domain to obtain a proper logic from the interpretation. For
example in the case of λ-calculus models we might use realizability as our notion
of truth, in which case all that really needs to be checked is that the conversion
rules are valid.

From the above it should be clear that in doing semantics by following the tech-
niques of Scott and Strachey one is concerned with giving mathematical models
for programming languages. This is in contrast to the axiomatic approach of other
major frameworks of semantics such as Hoare Logic [Cousot90] and Structured
Operational Semantics [Milner90] in which the execution behavior of programs
is formalized by inventing axioms and rules for the basic programming language
primitives. In this way one obtains a ’syntactic’ system in which one can deduce
programming expressions to be equivalent. Nevertheless one is -in a roundabout
way- giving (via the axioms and rules) the linguistic primitives behavior that the
interpreting objects should have when we would build a model for the execution2.
It should be clear that the connection between the two kinds of semantics can be
tight.

5.1.2 Semantics for categorial graphs

In this thesis we designed a ’concrete’ discourse model for categorial graphs. This
model is abstract enough to have different ’realizations’, keeping its core notions
intact. By realizations we mean that we can translate the discourse models to
actual UML object schemas, real database incarnations, or runs of a program
coded in an object oriented programming language.

Because of the appealing abstractness of the semantics domains in the field of
logic we constructed the semantics for object oriented information systems in a
logical setting. Moreover the logic and the semantics are specifically tailored for
the domain of object orientation, and did not choose to code the semantics in a
universal language like first order logic with is standard relational semantics. In
this regard we take a route that witnesses a relatively new development in logic
and theoretical computer science. Universal languages like first order or second
order logic become less popular and there is a trend to construct different specific
logics for different applications. Let us, for example (or for intimidation), cite

2and would have a ’direct’ interpretation function

110 Chapter 5. Methodology: semantics, logic and applications

the famous logician Yuri Gurevich from his manifest of ’logic and the challenge
of Computer Science’ ([Gurevich88]):

[...]
But the new applications call, we believe, for new developments in logic
proper. First order predicate calculus and its usual generalizations are
not sufficient to support the new applications.
[...]
It seems that we (the logicians) were somewhat hypnotized by the suc-
cess of classical systems. We used first-order logic where it fits and
where it fits not so well. We went on working on computability with-
out paying adequate attention to feasibility. One seemingly obvious
but nevertheless important lesson is that different applications may
require formalizations of different kinds. It is necessary to ”listen” to
the subject in order to come up with the right formalization.
[...]

So to formalize a specific collection of notions, specific logics are used. Many
exotic systems like Horn clause logic, temporal logic, second order polymorphic
lambda calculus, dynamic logic, order sorted logic, modal logic, infinitary logic,
intuitionistic higher order type theory, continuous algebra, intensional logic and
linear logic have been proposed to handle notions of concurrency, time, overload-
ing, exceptions, non-termination, program construction and even natural lan-
guage. As examples of new application specific logics include various variants of
’linear logic’, let us cite some of its ideology ([Girard87]):

[...]
For logic, computer science is the first real field of application since
the applications to general mathematics have been too isolated. The
applications have a feedback to the domain of pure logic by stressing
neglected points, shedding new light on subjects that one could think
of as frozen into desperate staticism, as classical sequent calculus or
Heyting’s semantics of proofs.

An example in the tradition of modal logic of application specific modal logics is
’arrow logic’ of van Benthem ([Benthem93], [Venema94]) This logic is designed
to deal with transitions, and therefore transitions (arrows) are intrinsic objects
in the logic. Let us quote some of its motivation([Benthem93]):

The current interest in logic and information flow has found its tech-
nical expression in various systems of what may be called ’dynamic
logic’ in some broad sense. But unfortunately, existing dynamic logics
based on binary transition relations between computational states have
high complexity. Therefore, it is worthwhile rethinking the choice of

5.2. The roots of the logic of categories 111

a relatively simple dynamic base system forming the ’computational
core’ that we need, without getting entangled in the complexity engen-
dered by the additional ’mathematics of ordered pairs’.
[...]
This may be seen by developing an alternative, namely a modal logic
of ’arrows’, which takes transitions seriously as dynamic objects in
their own right.

Of course there are enormous differences between these logics mentioned above.
The only similarity lies in the fact that these logics are designed to talk ’conve-
niently’ about a specific set of notions, by incorporating these notions on a high
level in the formal system.

5.2 The roots of the logic of categories

The logic of categorial graphs that is designed to provide a semantics for object
oriented information system languages has been built using the tools of modern
mathematical logic. The logic has a very archetypical modal operator in the
adjacency operator, but also the aggregation and the empty type could be seen as
modal operators. On the other hand the aggregation or composition operator is
very well known from substructural logics. Below we take a look at these roots
of the logic of categorial graphs.

5.2.1 The categorial graph logic as a modal logic

Intuitively the adjacency modality has its roots in modal logic. The adjacency
operator has a property in common with the archetypical modal operators: the
adjacency operator gets a meaning only when we know in which world (object)
in the model a formula with the adjacency operator is evaluated. To get an idea,
we list some basic characteristics of modal logic.

The language of modal logic can be seen as the language of propositional logic
to which some operators have been added. Modal languages are interpreted in
so called relational structures. Modal logic has been very successful in providing
expressive languages and reasoning calculi for various application domains that
could be modeled in relational structures. The abstractness (and therefore gen-
eral) of relational structures makes them very suited for such a task. A relational
structure is a nonempty set of items on which a number of relations has been de-
fined. With a modal language one can speak about such relational structures by
interpreting the modal operators by the relations. To make things more concrete
we give the definitions.

112 Chapter 5. Methodology: semantics, logic and applications

5.2.1. Definition. (relational structure) A relational structure is a tuple F,
whose first component is a non-empty set U we call universe or domain of F, and
whose remaining components are relations on U . M

For example a set of objects U together with a relation R that relates two
objects when one object is the adjacent of the other, is a relational structure.

5.2.2. Definition. (modal language) Let O be a nonempty set of operators ♦,
where each operator has arity ρ(♦) (the pair (O, ρ) is called a similarity type), and
let Prop be a set of proposition letters, then the modal language L for (O, ρ,Prop)
is defined as follows:

L := Prop|L u L|L t L|¬L|♦(L1, . . . , Lρ(♦))

Where ♦ ranges over the modal operators in O and Li is an L formula (with an
index). For non-nullary modal operators ♦ we define its dual ¤ as follows: Let
A1, . . . , Aρ(∆) be formulas in L then

¤(A1, . . . , Aρ(♦) := ¬♦(¬A1, . . . ,¬Aρ(♦))

M

The archetypical modal language is the language with one unary modal op-
erator ♦. An example of a modal formula in this archetypical language is ♦P1 t
♦(P1 u ♦P3) (where Pi ∈ Prop).

5.2.3. Definition. (model) Let L be a modal language An L-frame is a rela-
tional structure F with the following ingredients:

1. a non-empty universe U ,

2. for each modal operator ♦ of arity ρ(♦) in L, a ρ(♦) + 1-ary relation R♦.

Given a pre-valuation V : Prop 7→ 2U mapping proposition letters to a set of
elements in U , we can define an L-model as a L-frame with a pre-valuation:

M = (F , V)

In the model we say that P is true in x (or x satisfies P) when x ∈ V (P). M

The model for the archetypical modal language with one unary model operator
♦ will contain a universe U , a binary relation R♦ on U and a valuation mapping
proposition letters of the modal language to sets of elements in U . The relational
structure with objects and a relation that relates adjacent objects, together with
a valuation would be an appropriate model for this archetypical language.

5.2. The roots of the logic of categories 113

5.2.4. Definition. (semantics) Let L be a modal language and let M be an
L-model as above. Then we define the notion of a formula A being satisfied in
model M in element x ∈ U (notation M, x |= A) as follows:

M, x |= P iff x ∈ V (P)
M, x |= ⊥ never
M, x |= ¬A iff not M, x |= A

M, x |= A uB iff M, x |= A and M, x |= B
M, x |= A tB iff M, x |= A or M, x |= B

M, x |= ♦(A1, . . . , An) iff for some y1, . . . , yn ∈ U with xR♦y1 . . . yn
we have M, yi |= Ai (1 ≤ i ≤ n)
(for all modalities ♦ of L)

Now we say that the interpretation of a formula A in model M is the set
{x|M, x |= A}. M

Modal logics have axiomatics. The axioms and rules for the modal operators
that are interpreted in relations structures all have a small number of axioms
and rules in common. For unary modalities these are the axioms and rules for
the minimal normal modal logic K. For the modalities with arity greater then 1
similar minimal systems exist.

5.2.5. Definition. (Axiomatics for the minimal modal logic K)

• all axioms and rules of propositional logic for the logic with u, t and ¬

• rules for the modalities in the minimal modal logic

(♦Distribution) ♦(A tB)→ (♦A t ♦B)

(♦Necessation)
¬A
¬♦A

There is also a well known alternative formulation of the rules for K based on the
¤ (the dual modality of ♦) which we sometimes will use.

• rules for the modalities in the minimal modal logic based on ¤

(¤Distribution) ¤(A→ B)→ (¤A→ ¤B)

(¤Necessation)
A
¤A

M

114 Chapter 5. Methodology: semantics, logic and applications

Modal logics that are complete for relational structures in which the struc-
tures have some specific behavior have addition axiomatics that correspond to the
behavior. The behavior of the relations (and the interactions between different
relations in a relational structure) is normally defined by constraints. These con-
straints on the relations have corresponding axioms and rules in the axiomatics3.

There are numerous examples of logics that talk about complex structures using
a modal operator. The tree logic ([BlackburnEtAlii93]) talks about complex tree
structures, and arrow logic ([Benthem93]) talks about transition systems.

In the next chapter we will do logical analysis of the categorial graph logic in
a pure modal setting. This analysis will both give more insight into the categorial
graphs, as well as deliver interesting languages and domains for logical research.

5.2.2 The categorial graph logic as a substructural logic

In the categorial graph logic of chapter 4 we have seen an aggregation operator
’∗’. The structural behavior of the domain in which this operator is interpreted
is justified in the calculus with which we can reason about the domain by the
presence and absence of structural rules for this operator.

In Gentzen style sequential formalisms a substructural logic shows itself by the
absence of (some of) the so-called structural rules. Examples of such logics are
relevance logic [Dunn86], linear logic [Girard87] and BCK logic [OnoKomori85].
Notable is the substructural behavior of categorial logic4, which in its proto-
type form is the Lambek calculus. Categorial logics are motivated by its use as
grammar for natural languages. The absence of the structural rules changes the
abstraction of sets in the semantic domain to structures, where elements in an
aggregation can have position and arity, while in a set they do not.

In figure 5.1 we list the axiomatics of the first order propositional sequent cal-
culus5, with the axioms , the cut rule, rules for the connectives and the structural
rules for exchange, weakening and contraction.

5.2.6. Example. In a domain of sets the following ’expressions’ are equivalent,
while they are not necessarily so in the domain of stuctures:

a, a, b, a ≈ a, b, b

In a calculus with all the structural rules the features ’position’ and ’arity’ are
irrelevant in the semantic domain, because aggregates that differ in these features

3It is not necessarily so that each constraint corresponds to an axiom or rule. It is more
the case that a collection of constraints correspond to a collection of axioms and rules that
characterize the set of constraints.

4See here the inspiration for the name of our basic language building blocks!
5Note that in the variant we use here we have a special case of the R∧ rule.

5.2. The roots of the logic of categories 115

(Ax) A⇒ A (Cut)
Γ⇒ A,∆ Γ′, A,⇒ ∆

Γ′,Γ⇒ ∆′,∆

(L∧)
Γ, A,B ⇒ ∆
Γ, A ∧B ⇒ ∆

(R∧)
Γ⇒ A,∆ Γ′ ⇒ B,∆
Γ,Γ′ ⇒ A ∧B,∆

(L∨)
Γ, A⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒ ∆
(R∨)

Γ⇒ A,∆ Γ⇒ B,∆
Γ⇒ A ∨B,∆ Γ⇒ A ∨B,∆

(Ex)
Γ, A ∧B,Γ′ ⇒ ∆
Γ, B ∧ A,Γ′ ⇒ ∆

(Weak)
Γ⇒ ∆

Γ, A⇒ ∆

(Contr)
Γ, A,A⇒ ∆
Γ, A⇒ ∆

Figure 5.1: First order propositional sequent calculus

can be proved equivalent with the structural rules. To see this, observe that the
left side of the above equation can be transformed to the right side by performing
the following operation:

a, a, b, a
contract a, a in first two positions
to a

a, b, a
exchange b, a in last to positions to
a, b

a, a, b
contract again a, a in first two
positions to a

a, b
weaken expression b in last position
to b, b

a, b, b

In the logical analysis in the next chapter we will also analyze the categorial
graph logic from a purely substructural logic point of view. This will give the
logic of categorial graph a ’more explored’ foundation, and will enable us to list
some interesting characteristics of fragments of the categorial graph logic. We
will also see that there is a natural transition from the modal way of looking at
categorial graphs and the substructural way. This will become clear in chapter 6.

116 Chapter 5. Methodology: semantics, logic and applications

5.2.3 Related logics of information systems

The logic of categorial graphs is not the only approach to formalize the world
of object oriented information systems using logic. Two influential proposals are
’O-Logic’ of Maier ([Maier86], extended in [KiferWu93]) and ’F-Logic’ of Kifer
and Lausen ([KiferLausen89]). In these proposals the notions of object orienta-
tion are embedded in first order (predicate!) logic (O-Logic ’contains’ first order
predicate logic), and even higher order logic (F-Logic). The strong languages
enables one to express all possible features easily and elegantly, and can be used
to reason in these strong systems about the features expressed. However, because
of the wealth of expressive power, these systems are less suited for logical anal-
ysis of the features themselves. Moreover the reasoning task is computationally
undecidable, because the systems of first order predicate logic and higher order
logic are computationally undecidable.

There are also related systems of Information logics, that were inspired from
a more general (not particularly object oriented) conception of information and
knowledge. Examples of these logics are ’description logics’ ([Baader96], [Areces00]),
’feature logics’ ([Rounds97]), logic of Information flow ([BarwiseSeligman97]).

The approach we take to object oriented information system logics distinguishes
itself from the other proposals by the fact that we use thoroughly the achieve-
ments of modal and substructural logic. This enables us to analyze the notions
from a perspective that is ’lower’ in generality than most other approaches to
object orientation, that are first order and higher order theories. Our approach
enables us to analyze the notions of object orientation without carrying the bur-
den of the generality of first order logic, which includes over-expressiveness (one
can say much more in an over-expressive language than actually needed to capture
the notions) and computational intractability (first order theories are in general
undecidable). In our approach we can analyze the notions more directly (in a
language tailored very closely to the notions) and we use theories with computa-
tionally nicer behavior. We will see some nice achievements from this approach
in the next chapter.

In a logical sense our approach relates more closely to the mentioned infor-
mation logics. These logics are tailored to reason about information (although
not necessarily object oriented). It is therefore an interesting exercise to map the
features we came up with to the frameworks of these information logics. This
exercise is subject to future work.

5.3. Applications 117

5.3 Applications

Next to applications in the practice of object oriented information systems and
logic, there are interesting applications for the logic of categorial graphs in fields
that need a good understanding about the structure of object oriented informa-
tion. One such field that really needs insight in information structures and that
has both practical and theoretic involvement is data mining.

5.3.1 Applications in object oriented information system
practice

The most direct applications can be found in the field of model checking of the
large and complex information models that information system designers con-
struct in practice. Modern software development methodologies (e.g. UP, see
chapter 1) invite designers to specify parts of the systems in small pieces (com-
ponents) from many different views (in different use cases, and in different level
of abstractness -requirements, analysis, design and implementation). The scat-
tered model should be checked on consistency and validity (for example in the
sense that it should be satisfiable). Automatic support for this task is still very
rudimentary and far from complete for object oriented models. A system like
the logic of categorial graphs give a theory to handle the checking of the more
involved constraints that are formulated for the information models.

5.3.2 New computational applications

The ’tailored’ logical approach to object oriented information taken here suggests
new ways of looking at other tasks that use object oriented information structures
and benefit from logical systems. An example of a new task is the use of inductive
logic for data mining purposes. In data mining one processes complex structured
data (often modeled in OO languages like UML) and benefits from inductive
reasoning models; i.e. from logic.

In [HaasAdriaans99] we proposed a framework for data mining algorithms
based on the logic of categorial graphs. The research was initiated by observing
interesting connections between data mining, inductive logic programming and
grammar induction ([AdriaansHaas99]). The logic of categorial graphs facilitates
the design of efficient Data mining algorithms using techniques from the field of
inductive logic programming. This framework is based on the following idea:

The processing of more complex structured data calls for new algorithms.
The inductive algorithms used for data mining on tabular (relational) structures
are theoretically impaired with the computational complexity of full first order
predicate logic. This is a problematic issue if one designs algorithms for induction
on more complex structures than flat relations. This observation suggests that we
need to found the structures on which we do data mining on a system with much

118 Chapter 5. Methodology: semantics, logic and applications

better computational properties. This complies with the broader trend in logic in
computer science that suggests that one needs to find logics tailored more closely
to the application domain than a general language as full first order predicate
logic.

Complex data in modern information technology practice is often written
down in the industry standard language UML. A logic that effectively bears the
main features of object oriented languages like UML seems ideal for the task to
support the design of inductive algorithms for finding patterns, because it has
both

1. the ability to express complex patterns in complex data structures,

2. and a calculus that enables one to perform correct induction steps on dis-
covered patterns.

A strongly related6 new task that could benefit from our approach is the task
of learning from a logical perspective. There is a strong relationship between a
learning strategy, its formal learning framework and its logical representational
theory. This relationship enables one to translate learnability results from one
theory to another. Moreover if we go from a classical logic theory to a more
specialized logic like the logic of categorial graphs or a substructural logic theory,
we can transform learnability results of logical concepts to results for information
models or string languages. In [AdriaansHaas00] we demonstrated such a trans-
lation by transforming the Valiant learnability result for Boolean concepts to a
learnability result for a class of string pattern languages.

5.3.3 Logical and philosophical repercussions

In the light of the logical context the system for categorial graphs also puts
forward some interesting questions for logical research. These questions will be
asked in the next chapter. Furthermore the clear-cut analysis of the domain,
involving ’objects’ and ’partial descriptions’, have surprisingly tight connections
to issues in philosophy. When one realizes that information system modeling is
a task of accurately and precisely modeling a part of reality, using basic notions
like ’object’, ’property’ and ’description’, applications in philosophy are certainly
possible. A formal theory of information can provide a way to explicify issues
in philosophical considerations or debate. We will show such an application in
chapter 7.

6Data mining is learning patterns from data.

5.4. Summary 119

Figure 5.2: Research context where SL = substructural logic, ML = modal logic,
SML = substructural modal logic, ISLP = inductive substructural logic pro-
gramming, IMLP = inductive model logic programming, ISMLP = inductive
substructural modal logic programming.

5.4 Summary

In this chapter we sketched the research domains that we are touching in the
analysis of object orientation. We have mentioned research on computer systems
semantics and mathematical logic. In the following chapter we will analyze the
logic of categorial graphs exploiting the logical roots that were pointed out here.

Chapter 6

Logic of object oriented information

1.1 Die Welt ist die Gesamtheit der Tatsachen, nicht der Dinge.
2.034 Die Struktur der Tatsache besteht aus den Strukturen der

Sachverhalte
2.04 Die Gesamtheit der bestehenden Sachverhalte ist die Welt

(Ludwig Wittgenstein, Tractatus logico-philosophicus)

The informal practice of object-oriented information systems has been ana-
lyzed in depth in Chapters 3 and 4. This culminated in our eventual proposal
for precise mathematical ’discourse models’. These came with two languages
streamlining the usual object-oriented discourse: a mixed graphical-symbolic one
of categorial graphs and its more traditional ’meta-language’, both reflecting the
key features of adjacency, parts and products. Moreover, we gave a substructural
calculus of resource-conscious proof rules that fits informal reasoning about speci-
fied constraints on objects and their properties. This package of formal languages,
semantic structures, and proof calculi may be viewed on its own as our proposal
for a ’precisified practice’ in the area. But also, in Chapter 5, we pointed out how
such a model can serve as a basis for new tasks, not yet studied systematically in
the literature, such as *learning* resource-sensitive object-oriented structures. In
this sixth chapter, however, we want to use our model in another mode, namely,
for analyzing the logical properties of object oriented programming practice. In
particular, we will show how the framework that we have developed fits with
a number of independent developments in categorial and modal logic. For this
purpose, we develop a new modal ’streamlined version’ of the earlier systems
which facilitates the comparison. This correspondence allows us to draw some
precise conclusions about expressiveness, axiomatization, and complexity of the
object-oriented paradigm. But also conversely, the resulting system presents some
interesting challenges to modal and categorial logicians, as we shall point out in
due course.

121

122 Chapter 6. Logic of object oriented information

As usual, any logical analysis involves two mathematical decisions, which we
repeat at the outset:

1. Which structures do we use to capture the items from the real world that
are at stake?

2. Which languages do we use to talk about these items?

The following two sections state our answers, being a recapitulation of what
we did in the preceding chapters, but with some new twists.

6.1 Models for object-oriented information sys-

tems

Chapters 3 and 4 gave a semi-formal, but rigorous, description of practically
plausible object-oriented models and their basic structure. We now sharpen this
up in two ways:

• define an intended model, which is a fixation of the exact structure we would
like to study; the archetype of the concrete models of chapter 4.

• define abstract models, which are abstract versions of the former, providing
greater generality and easier access for logical theorizing.

6.1.1 Intended models

The ’discourse models’ of chapter 4 were meant to directly describe the semantic
intuitions behind object oriented information systems. Now we give a concrete
definition for logical working purposes.

6.1.1. Definition. (Intended model) There are two components:

1. One domain with a set of ’whole objects’ E , and products of whole objects
(’aggregates’) in set, multiset, and list flavors.

2. Another family of domains {Ae|e ∈ E}, consisting of ’partial descriptions’
and their products.

These two domains are related as follows:

1. a ’structure adjacency relation’ fR relates whole objects to their partial
descriptions1

1In the concrete model, the partial descriptions are precisely the substructures of the total
adjacency structure.

6.1. Models for object-oriented information systems 123

2. the ’extension relation’ ext relates a partial description to other ’more in-
formative’ partial descriptions, and whole objects.

More precisely, an intended model gives us the following:

1. Whole objects: Atomic objects EAt and all the sets, multisets, and lists of
atomic objects (seen as various sorts of aggregate objects) together with
the appropriate ’aggregation’ operations ∗ (set union2, multiset union and
list concatenation), and the ’substructure’ relations ≤ (subset3, submultiset,
sublist) for the different flavors. Thus we allow all three options at the same
time, in one multi-sorted domain of objects with partially defined product
operations. This domain of whole objects is denoted by E.

2. Partial descriptions: For each e ∈ E, we have a domain of partial descrip-
tions Ae = e× E (the ’labeled object domain’), again with its aggregation
operations4 ∗e and substructure relations5 ≤e.

3. Adjacency mapping: A function fR : E 7→
⋃

e∈E Ae such that fR(e) ∈ Ae,
which maps each whole object to its largest partial description.

4. Extendibility relation: Ext : E∪
⋃

e∈E Ae 7→ P(E∪
⋃

e∈E Ae) where Ext(e) =
{e} for all e ∈ E and Ext(a) = {b|a ≤e b ≤e fR(e)} ∪ {e} for all a ∈ Ae

where a ≤e fR(e).

M

An attentive reader may have noted that we left out the empty object ’1’
and the empty descriptions ’(e, 1)’ that were present in the models for categorial
graphs in the original analysis in chapter 4. These empty entities were introduced
in the algebraic semantics for categorial graphs for convenience. It enabled us to
take monoids as basic structures, and therfore we were able to elegantly express
the algebraic properties. As we mentioned at its introduction in chapter 3, the
empty edge is not a necessary artifact, even though we could give it a proper
meaning. The models in this chapter have a more minimal nature, to enable the
analysis of the object oriented structures. We could introduce the empty edge
here without a problem, but then we will need some additonal rules and axioms
to enforce its behavior, while we actually are not very interested in this artifact
for the study of object orientation. An artifact that is convenient in one setting
(the algebraic) may prove to be a nuisance in another setting (the logical).

2In our notation, set union will be ∗set, multiset union ∗multiset and list concatenation ∗list.
Using the ∗ by itself, we abstract over the choice of structure type.

3As notation then, subset will be ≤set, submultiset ≤multiset and sublist ≤list. By using ≤
we abstract over the choice of structure type.

4Again, we actually have several: ∗sete , ∗multisete , ∗liste .
5And once more, we have several: ≤set

e , ≤multisete , ≤liste .

124 Chapter 6. Logic of object oriented information

sets

multisets

lists

sets

multisets

lists

sets

multisets

lists sets

multisets

lists

OBJECTS

DESCRIPTIONS

DESCRIPTIONS

a b.c

(a,d) (b.c,e)

fR

fR fR

DESCRIPTIONS

Figure 6.1: Topology of the intended model

6.1.2 Abstract models

Next, we take a more abstract viewpoint, highlighting what we see as the essential
features of the preceding models. In particular, these are: the use of two kinds
of entities: whole objects and partial descriptions, each with their own product
operations, but living in harmony through suitable ’connection relations’. Getting
a bit ahead of things, what follows are typical relational models for modal logic,
satisfying some suitable constraint:

6.1.2. Definition. (Abstract model)

1. First, we have a domain U

2. Then there are two families of ternary relations QE,QA, where each family
consists of three relations QsetX , QmultisetX , QlistX . When we abstract over
the precise choice of QX , we sometimes write QstructX .

3. Finally, we have binary relations R1, R2, and S.

In compact form an abstract model M is written as follows:

M :=< U,QsetE, QsetA, QmultisetE, QmultisetA, QlistE, QlistA, R1, R2, S >

M

6.1. Models for object-oriented information systems 125

ENTITIES

R1 R2

S Q

Figure 6.2: Topology of the abstract model

The motivating interpretation for this similarity type is the following. We have
objects and descriptions living together in the total domain, each with ternary
’composition relations’ of the form ’aQbc’ : a is a composition (of one of our vari-
ous sorts) of b and c, in that order. This ternary style makes sure that the product
operations are not necessarily total (relieving us of the duty to interpret every
weird ’hybrid product’) while also remaining uncommitted on the issue of whether
forming aggregates is a single-valued partial function, rather than a multi-valued
one. Moreover, ’communication’ is arranged as follows. Objects are related to
their descriptions by the relation R1, while in the opposite direction, R2 takes
descriptions back to the objects figuring in them, either as the ’leading object’ or
as another one involved in the relevant property of the former. Finally, S is the
extension relation, which is characteristic for (after all) partial descriptions, but
allowing ’culmination’ in the ’main object’ of the given description.

As usual, the move toward abstract models is not just a trick to make the
theoretician’s life easier. The above format may also suggest new applications,
and new ways of looking at ’object oriented information systems’. In this chapter,
we gain two things by working this way:

1. a clear view of the semantics for categorial graphs,

2. transfer of results from (and to) established modal logic.

6.1.3 Representation

What is needed to represent an abstract model as a concrete one? On these ab-
stract models we will formulate constraints such that the abstract models have
(much of) the same characteristics as a concrete model. In the abstract models
the elements and relations are abstract, but ’secretly’ we imagine them to have
some intended meaning. The domain U contains, in our intended meaning, both

126 Chapter 6. Logic of object oriented information

OBJECTS

DESCRIPTIONS

R1 R2

QE

QA

S

S
S

Figure 6.3: Target topology of the abstract model when constraints and charac-
terizing formulas are defined

the whole objects and the partial descriptions. When enough structure is given
in the abstract model we will be able to distinguish whole objects from partial
descriptions. In the abstract view, when no characterizations are given, we just
say our abstract domain contains elements. At the start of our analysis all the re-
lations are also without any restrictions, but we will further on constrain relations
in QE to model the aggregation (product) on whole objects (separate relations for
sets, multisets, and lists) and the relations in QA to model aggregation on partial
descriptions (also separate relations for sets, multisets, and lists). Furthermore
R1 will model adjacency relating whole objects to its partial descriptions; R2 will
model the relation between a partial object and the whole object that takes part
in the adjacency. Finally S will model extendibility. In the coming sections we
will encounter the constraints that make all this happen.

6.2 Modal languages

To talk about the objects, the partial descriptions, and their interactions, we start
with a modal language. The modal language is a slight extension to the meta
language of categorial graphs in three ways:

• the adjacency modality is split up in two modalities, the first relating an ob-
ject to its partial description, and the second relating the partial description
to the actual adjacent object

• the aggregation modality will be accompanied by two additional modalities
that look at the aggregation from the two other possible perspectives. More-

6.2. Modal languages 127

over we will have separate aggregation modalities for the different structures
’lists’, ’multisets’, and ’sets’ and the different entities ’objects’ and ’partial
descriptions’.

• The notion of extendibility in the model will get a modality in the language
to enable us to talk about it.

In the modal language we will omit the constant 1 for the empty object, for the
reason we explained above.

The relations of the abstract model from above are now interpreted by the
following modalities:

− unary ♦1,♦
∪
1 ,♦2,♦

∪
2 modalities for the adjacency relations

− unary ◦, ◦∪ modalities for the extendibility relation
− binary modalities ∗listE1 , ∗multisetE1 , ∗setE1 , ∗listE2 , ∗multisetE2 , ∗setE2

, ∗listE3 , ∗multisetE3 , ∗setE3 for the aggregations (products) on whole objects
(for all types of structures three for the ’triple view’ of a ternary relation)

− binary modalities ∗listA1 , ∗multisetA1 , ∗setA1 , ∗listA2 , ∗multisetA2 , ∗setA2

, ∗listA3 , ∗multisetA3 , ∗setA3 for the aggregations (products) on partial descriptions
(for all types of structures three for the ’triple view’ of a ternary relation)

The modalities will be interpreted by the relations in the abstract model. The
modalities embedded in a modal language will enable us to talk about complex
objects, precisely like we did with the meta language for categorial graphs.

6.2.1 Definition language and semantics

6.2.1. Definition. (Modal language of categorial graphs) Let Prop be a set of
propositional variables. Then we define the modal language of categorial graphs
L as follows:

• Boolean: L = Prop|L u L|L t L|¬L

• Adjacency: ♦1L|♦
∪
1L|¤1L|¤

∪
1L|♦2L|♦

∪
2L|¤2L|¤

∪
2L

• Extension: ◦L| ◦∪ L

• Aggregate on objects: L = L∗structE1 L|L∗structE2 L|L∗structE3 L where struct ∈
{set,multiset, list}

• Aggregate on partial descriptions: L = L ∗structA1 L|L ∗structA2 L|L ∗structA3 L
where struct ∈ {set,multiset, list}

M

The modal language of categorial graphs is interpreted in the abstract model
as follows

128 Chapter 6. Logic of object oriented information

6.2.2. Definition. (Semantics) Let V : Prop 7→ 2U be a valuation that assigns
subsets of U to atomic symbols. Let P ∈ Prop and A,B ∈ L. Furthermore let
s, t, u ∈ U . Then abstract model M interprets L as follows:

• Boolean (standard as in section 5.2, but given here for completeness):

M, s |= P iff s ∈ V (P)
M, s |= A uB iff M, s |= A and M, s |= B
M, s |= A tB iff M, s |= A or M, s |= B
M, s |= ¬A iff M, s 6|= A

• Adjacency (interpreted by R1 and R2):

M, s |= ♦1A iff ∃t(sR1t and M, t |= A)
M, s |= ♦∪

1A iff ∃t(tR1s and M, t |= A)
M, s |= ¤1A iff M, s |= ¬♦1¬A
M, s |= ¤∪

1A iff M, s |= ¬♦∪
1¬A

M, s |= ♦2A iff ∃t(sR2t and M, t |= A)
M, s |= ♦∪

2A iff ∃t(tR2s and M, t |= A)
M, s |= ¤2A iff M, s |= ¬♦2¬A
M, s |= ¤∪

2A iff M, s |= ¬♦∪
2¬A

• Extension (interpreted by S):

M, s |= ◦A iff ∃t(sSt and M, t |= A)
M, s |= ◦∪A iff ∃t(tSs and M, t |= A)

• Aggregate on objects (interpreted by the relations in QE):

M, s |= A ∗structE1 B iff ∃tu(sQstructEtu and M, t |= A and M, u |= B)
M, s |= A ∗structE2 B iff ∃tu(tQstructEsu and M, t |= A and M, u |= B)
M, s |= A ∗structE3 B iff ∃tu(tQstructEus and M, t |= A and M, u |= B)

• Aggregate on partial descriptions (interpreted by the relations in QA):

M, s |= A ∗structA1 B iff ∃tu(sQstructAtu and M, t |= A and M, u |= B)
M, s |= A ∗structA2 B iff ∃tu(tQstructAsu and M, t |= A and M, u |= B)
M, s |= A ∗structA3 B iff ∃tu(tQstructAus and M, t |= A and M, u |= B)

M

6.2.3. Example. Recall the running example of chapter 3 (example 3.1.1) and
its formulation in the meta language for categorial graphs of example 4.2.2. As
a brief illustration, we show how to express the basic graph expressions in the
modal logic for categorial:

pilot⇒ ♦1♦2name ∗1 ♦1♦2empno ∗1 ♦1♦2qualif

pilot⇒ ♦1♦2roster

6.2. Modal languages 129

In the sections below we will first define a logic that handles adjacency, a
logic that handles extendibility, and a logic that handles aggregates, before we
present a combined system that can talk about the combination of all those things.
Such a logic consists of a language (a fragment of the language from above), a
model (a part of the abstract model from above), an interpretation of the logical
connectives and modalities, and a collection of axioms and rules that characterize
certain constraints on the relations of the abstract model.

6.2.2 Adjacency logics

In the logic of adjacents we focus on a very important feature of a language for
object oriented information systems: the ability to construct complex objects
using the adjacency operation. In the logic of adjacents we analyze two types of
interactions between whole objects and partial descriptions. Firstly we will be
able to say things about having adjacents; i.e. we need to relate an object to the
partial description that witnesses that this object has some other object as an
adjacent. Secondly we need means to say that an object is an adjacent of some
other object; i.e. when an object takes part in a partial description.

The two matters of adjacency are expressed using two unary modalities ♦1

and ♦2, and are interpreted by the relations R1 and R2 in the abstract model. The
R1 relation here relates a whole object to the partial descriptions that describe
the fact of having some adjacents. The R2 relation relates a partial description
to the object that is the adjacent. In other words, R2 intends to express that a
partial description involves some object. This is a direct concept of the object
oriented paradigm we have already seen in chapters 3 and 4 that says that all the
entities can be looked at as objects in their own right.

Note that here we directly look at the interpretation of an adjacent to its partial
description, and do not model the adjacency via an adjacency relation that relates
whole objects to whole objects. The need for considering partial descriptions was
discovered when formulating the concrete models in chapter 4.

For example, consider object a and partial description of a called b that is the
witness of a having as adjacent object c. Then aR1b relates the a object to its b
partial description and bR2c relates partial description b to the object c that is
the content of the partial description of a.

There is also another possible view on the adjacency relations, the inverse of
the relations R1 and R2. This view also provides some nice means of expression.
One could say interesting things about the partial descriptions; for example ’the
partial description b partially describes object a’.

130 Chapter 6. Logic of object oriented information

Note that we cannot choose R1 and R2 arbitrarily. The relation modeling
adjacency should satisfy some constraints to comply with the intended meaning6.
These constraints are as follows:

1. An object can have a partial description, but a partial description in turn,
does not have a partial description anymore

2. A partial description is a witness to an object being an adjacent. An object
itself, however cannot be such a witness

3. Sets of objects and partial descriptions are disjoint

4. The universe contains no other entities then partial descriptions and objects
with partial descriptions

5. A partial description is always a partial description of an object

In other words the relations, R1 and R2 are at a maximum one step deep; the
collections of partial descriptions and objects are disjoint and exhaustive, and all
partial descriptions must be related to whole objects by both R1 and R2; i.e.

6.2.4. Definition. (Constraints for the adjacency logic)

1. ∀a(∃b aR1b → not ∃c bR1c)
2. ∀a(∃b aR2b → not ∃c bR2c)
3. ∀a 6 ∃b, c (aR1b and aR2c)
4. ∀a ∃b, c (aR1b or aR2c)
5. ∀a(∃b aR2b → ∃c cR1a)

M

Note that having an adjacent (i.e. being the left side of an R1 relation) is
characteristic for a whole object, and being a witness of an adjacent (i.e. being
the left side of an R2 relation) is characteristic for a description. Constraint 4
says that all objects have adjacents (remember the possibility for introducing an
empty description!) and that all descriptions are witnesses to an object being an
adjacent (remember the possibility for introducing empty object!).

The language for the adjacency logic becomes the following:

6Note that if we would construct a model with a domain with only whole objects and a
relation that relates whole object to the whole objects that take part in the partial description.
Then we would not have any necessary constraint on the single adjacency relation R and
would come up with the modal logic K. We could, though, optionally put some constraints like
irreflexivity or acyclicity or foundedness on R, with their well known rules in the logic. We
would however not be able to express things involving the partial descriptions like the structure
of the adjacency.

6.2. Modal languages 131

R1 R2

a c

b

Figure 6.4: object a with partial description b witnessing that object c is actually
adjacent to a.

6.2.5. Definition. (Language for the adjacency logic)

LI := Prop|LI u LI |¬LI |♦1LI |♦2LI |♦
∪
1LI |♦

∪
2 |¤1LI |¤2LI |¤

∪
1LI |¤

∪
2LI

M

We can now interpret the adjacency modalities, their inverse modalities and
all their dual modalities in the abstract model as indicated:

6.2.6. Definition. (Semantics for the adjacency logic)

M, s |= ♦1A iff ∃t(sR1t&M, t |= A)
M, s |= ♦2A iff ∃t(sR2t&M, t |= A)
M, s |= ♦∪

1A iff ∃t(tR1s&M, t |= A)
M, s |= ♦∪

2A iff ∃t(tR2s&M, t |= A)

As in standard modal logic, we introduce the dual operator of the ♦x
i by setting

¤x
i := ¬♦x

i¬. M

The modal logic for adjacency will contain at least the axioms and rules of the
minimal modal logic K added with the principles that are needed to force the
inverse modalities to be interpreted by the inverse relation. The most interesting
principles come from the constraints we put on the relations R1 and R2 in the
abstract model to force behavior that is similar to that of the concrete models.

6.2.7. Definition. (Axiomatics for the adjacency logic) First we construct the
axioms and rules for the minimal logic for the adjacency modalities:

• all axioms and rules of propositional logic for the logic with u, t and ¬

132 Chapter 6. Logic of object oriented information

• rules for the modalities in the minimal modal logic

(♦1Distribution) ♦1(A tB)→ (♦1A t ♦1B)
(♦2Distribution) ♦2(A tB)→ (♦2A t ♦2B)
(♦∪

1Distribution) ♦∪
1 (A tB)→ (♦∪

1A t ♦
∪
1B)

(♦∪
2Distribution) ♦∪

2 (A tB)→ (♦∪
2A t ♦

∪
2B)

(♦1Necessation)
¬A
¬♦1A

(♦2Necessation)
¬A
¬♦2A

(♦∪
1Necessation)

¬A

¬♦∪
1A

(♦∪
2Necessation)

¬A

¬♦∪
2A

• then we need to add the rules to relate the modalities to their inverse
modalities:

(♦1Inverse) A→ ¤1♦
∪
1A

(♦2Inverse) A→ ¤2♦
∪
2A

• finally we need to add rules and axioms that reflect constraints on the
adjacency relations. In the adjacency logic this amounts to the following
principles:

(♦1Step) ¤1¤1⊥
(♦2Step) ¤2¤2⊥
(Disjoint) ¬(♦1> u ♦2>)
(Exhaustive) ♦1> t ♦2>
(Description Requires Object) ♦2> → ♦∪

1⊥

M

The adjacency logic enables us to say things about the domain that have to do
with adjacency. Now we have appropriate means to express whether an object is
a whole object, or whether an object is a partial description:

I an entity x is a whole object iff x satisfies ¤2⊥
I an entity x is a whole object iff x satisfies ♦1>
I an entity x is a partial description iff x satisfies ¤1⊥
I an entity x is a partial description iff x satisfies ♦2>
I an entity x is a partial description iff x satisfies ♦∪

1>
I an entity x is a partial description of an A− object iff x satisfies ♦∪

1A

6.2. Modal languages 133

Note that when we want to connect an object to another object that takes
part in its adjacency structure, like in the original definition of the categorial
graph meta language, we can simply traverse via a partial description. Suppose
we want to say that an object x has an A-adjacent object. We expressed this in
original language by ♦A. In this more refined setting we will say ♦1♦2A. If we
want to express constraints directly on the object adjacency relation (i.e. treat
it as a normal relation) we can formulate the corresponding principles using the
composed ♦1♦2 modality.

There are also some nice things to say from a modal logic perspective about
the axiomatics of the adjacency logic. There are nice principles deducible from
the system. For example: it is necessary for an object to have an adjacent object
via a partial description:

¤1¤1⊥ (♦1Step)

♦1> t ♦2> (Exhaustive)

¤1(♦1> t ♦2>)
(¤1Necessation)

¤1(¬♦1> → ♦2>)

¤1¬♦1> → ¤1♦2>
(¤1Distribution)

¤1¤1⊥ → ¤1♦2>

¤1♦2>
(modus ponens)

Another observation is that there is only one principle that introduces an asym-
metry between the objects and the partial descriptions. This principle is the De-
scription Requires Object axiom. This axiom requires that each complete chain of
objects and partial descriptions connected alternatively by R1 and R2 relations
always start with an object. I.e.:

◦ →1 ◦ →2 ◦ →1 ◦ →2 · · ·

is an admissible structure in a model for an adjacency structure, but the following
is not:

◦ →2 ◦ →1 ◦ →2 ◦ →1 · · ·

An other interesting observation is that we have taken a positive existence
property in axioms ’Disjoint’ and ’Exhaustive’ to characterize that some entity in
the model is an object or a description; namely respectively ♦1> and ♦2>. An
interesting alternative is to take the negative existence properties ¤2⊥ and ¤1⊥.
The axioms then become:

(Disjoint) ¬(¤2⊥ u¤1⊥)
(Exhaustive) ¤2⊥ t¤1⊥

In the negative formulation we allow entities in the model that are not connected
through R1 or R2. Such entities can be either an object or partial description
(it actually does not matter which). A hybrid formulation is also a plausible

134 Chapter 6. Logic of object oriented information

alternative; for example ¤2⊥ to characterize objects and ♦2> to characterize
descriptions. In a more general setting this matter will be touched in the section
on ’further logical considerations’ below.

6.2.3 Extendibility logics

In the extendibility logic we isolated the extendibility operation that can talk
about extending partial descriptions and objects to more (or equal) informative
descriptions or (in the limit) the object itself.

With the categorial graphs of chapter 3 we defined a language that enables one
to talk about object oriented information systems from the perspective objects.
The analysis for the interpretation in chapter 4 motivated us to introduce partial
descriptions and the extendibility relation. The reason that the extendibility
found its way in the concrete model is because it models a natural intuition7.
Coming to the conclusion that these are important features of models for object
oriented information systems, it is only fair that we provide constructs for talking
from the perspective of partial descriptions as well.

The extendibility logic should capture the constraints we want to put on the
relation S in the abstract model to enforce extendibility behavior. As we saw
in chapter 4, the extendibility relation is reflexive, and transitive, as it related a
description or object to itself and all the descriptions that are more informative,
with in the limit the whole object itself. Reflexivity and transitivity are well
known constraints in modal logic, and the minimal modal logic of S4 describes
such a system. In the isolated case (where we have no adjacency and aggregation)
the only intriguing constraint we put on S is that it has a top element when we
look at each element in the relation. This top element is the whole object that,
in the limit, a proper partial description (and the object itself) can be extended
to. i.e.

• A partial description a is extendable to all partial descriptions that partially
describe the whole object that a partially describes, and a is also extendable
to the most informative description of this object, the object itself.

This means that each element in the S relation relates to itself and to all objects
in the S-chain above, and that each element relates eventually to a unique local
top element; i.e. then:

7Note In fact we could have made up the concrete model with the adjacency alone. But
then we would have lost that intuition.

6.2. Modal languages 135

a

bc

d

Figure 6.5: The constraints for extendibility logic

6.2.8. Definition. (Constraints for the extendibility logic)

(reflexivity) ∀a aSa
(transitivity) ∀a, b, c(aSb & bSc → aSc)
(top) ∀a∃b (aSb&∀c (aSc → cSb))
(unique) ∀a, b, c[(aSb&aSc) → ∃d(bSd&cSd)]

M

The language for the extendibility logic becomes:

6.2.9. Definition. (Language for the extendibility logic)

LII := Prop|LII u LII |¬LII | ◦ LII | ◦
∪ LII

M

We will abbreviate M:= ¬ ◦ ¬ to have convenient notation for the dual of ◦.
The interpretation is:

6.2.10. Definition. (Semantics for the extendibility logic)

M, s |= ◦A iff ∃t(sSt&M, t |= A)

M, s |= ◦∪A iff ∃t(tSs&M, t |= A)

M

The ’top’ constraint we have formulated for S is exactly expressed by the
so-called McKinsey axiom, while the ’unique’ constraint is the constraint that en-
forces the well known Church-Rosser property. The accompanying logic for both
constraints (together with the reflexivity and transitivity) are respectively the
S4.1 and the S4.2 modal logics ([HughesCresswell68]). The logic for extendibility
will therefore be an S4.1+2 system.

136 Chapter 6. Logic of object oriented information

6.2.11. Definition. (Axiomatics for the extendibility logic)

• all axioms and rules of propositional logic for the logic with u, t and ¬

• rules for the modalities in the minimal modal logic

(◦Distribution) ◦(A tB)→ (◦A t ◦B)
(◦∪Distribution) ◦∪(A tB)→ (◦∪A t ◦∪B)

(◦Necessation)
¬A
¬ ◦ A

(◦∪Necessation)
¬A
¬ ◦∪ A

• then we need to add the rules to relate the modalities to their inverse
modalities:

(◦Inverse)A→ ¬ ◦ ¬ ◦∪ A

• finally we need to add the axioms that reflect constraints on the extendibility
relation (reflexivity, transitivity and McKinsey axiom).

(T) A→ ◦A
(4) ◦ ◦ A→ ◦A
(M) M ◦A→ ◦ M A
(C) ◦ M A→M ◦A

M

It is common knowledge in the field of modal logic that when we introduce the
axioms for reflexivity (T) and transitivity (4) for the modality ◦, then transitivity
and reflexivity can be deduced for its inverse modality ◦∪. Thus we do not need
to repeat the axioms T and 4 for ◦∪. The extendibility modality enables one to
say important things about partial descriptions and objects; e.g.

I an entity x is a description of an existing object (or an object itself) iff
x satisfies ◦ >

I an entity x is a description of an A object (or an A object itself) iff
x satisfies ◦ A

6.2.4 Aggregate logic

We have seen in the presentation of the language for categorial graphs that it
is a core language element to talk about taking things together. This is called
aggregation. In the aggregate logic we will shape the domain such that one can
talk about aggregates. In other words we will be able to say things about things
taken together. The structures of things taken together can be a number of things,
among which are sets, multisets, and lists.

6.2. Modal languages 137

In our abstract model, the Q relations model the aggregation. We do not
constrain the behavior of the Q relations yet. Curiously, this is not necessary
because most things we want to say with a ∗ operation about taking things
together do correctly coincide with the minimal intuition we could have about
such a ∗ operation interpreted by a relation Q. Things will get more complicated
when we start to require behavior of the different structures that are the result
of the aggregation: sets, multisets, and lists. Then we need constraints that force
associativity, multiplicity and order when the language enables us to say things
about these matters. In the analysis these constraints on the abstract model will
be optional.

For the aggregation we have different relations to interpret the different ag-
gregation operations. We have separate families of relations for aggregations of
objects (QE) and aggregations of partial descriptions (QA); and then for each
type of structure, set, multiset and list again separate relations within each fam-
ily (QsetE, QmultisetE, and QlistE for QE and QsetA, QmultisetA, and QlistA for QA)

6.2.12. Definition. (Optional constraints for the aggregate logic) Let Q be an
arbitrary aggregation relation, then we can formulate the following constraint on
Q forcing associativity:

(associativity) ∀x (∃y(xQyc & yQab)↔ ∃y′ (xQay′ & y′Qbc))

Furthermore, we have constraints that are specific for certain structures, the sets,
multisets, or lists. We already saw these constraints in the concrete models in
chapter 4.

(idem-consumption/cloning) ∀a aQaa
(commutativity) ∀abc(aQbc→ aQcb)

The Q-relations for sets (QsetE and QsetA) need to satisfy (at least) both idem-
consumption/cloning and commutativity. TheQ-relations for multisets (QmultisetE

and QmultisetA) need to satisfy (at least) commutativity and the negation8 of idem-
consumption/cloning. Finally the Q-relations for lists (QlistE and QlistA) need
to satisfy (at least) both the negations of idem-consumption/cloning and the
negation9 of commutativity. M

8Note, however, that it is not always necessary to require the negation of idem-
consumption/cloning. Not requiring idem-consumption/cloning is enough to worry about mul-
tiplicity. Only when one strictly needs multisets, the negation of idem-consumption/cloning
should be included. Cf. trace theory where there is a concept of partial commutativity.

9Note, however, that it is not always necessary to require the negation of commutativity.
Not requiring commutativity is enough to worry about order. Only when one strictly needs
lists, the negation of commutativity should be included.

138 Chapter 6. Logic of object oriented information

c

a b
Q

cQ1ab
aQ2cb
bQ3ca

Figure 6.6: A category is the aggregation of two other categories.

Although there are a lot more constraints needed to force the behavior of
sets (such that aggregation is set-union), or multisets (such that aggregation
is multiset-union), or lists (such that aggregation is list concatenation), the con-
straints from above are powerful enough to analyze logical systems for object
oriented information systems that have the ability to express things about arity
(counting) and order; two abilities we consider basic for a language for information
systems in our analysis.

Let us now turn to the language for the aggregation logic. We introduce
(dyadic) modal operators to talk about the (ternary) aggregation relations. In
general there are three10 ways to talk about one ternary relation with a dyadic
modal operator. We list the three cases for the aggregation relations:

1. you want to express that an object is the aggregation of two objects of a
certain kind

2. you want to express that an object is the left part of an aggregation

3. you want to express that an object is the right part of an aggregation

The three modalities that express just these things form a ’versatile triple’ and
are studied in [Venema91] and [Benthem2000a]. A view like this is very relevant
in the context of a graphical modeling language like the language of categorial
graphs. When we depict a type (category) to be the aggregation of two other
types (categories) we can visually ’see’ all three ways to express a property for an
aggregation (see figure 6.6). So it is only fair that we give the ability to express
these different ways in the logic that is the meta language in which we are able
to express all the things from the graphical language.

The language for adjacency logic now will look as follows:

10Compare this with the two ways to talk about a binary relation with a monadic modal
operator: the modality that traverses the relation from left to right, and its inverse, that
traverses a relation from right to left.

6.2. Modal languages 139

6.2.13. Definition. (Language for the aggregate logic)

LIII := Prop|LIII u LIII |LIII t LIII |¬LIII |
LIII ∗

structX
1 LIII |LIII ∗

structX
2 LIII |LIII ∗

structX
3 LIII

struct := set|multiset|list
X := E|A

M

The interpretation for the three modalities for the product then are interpreted
as follows:

6.2.14. Definition. (Semantics for the adjacency logic)

M, s |= A ∗structX
1 B iff ∃t, u(sQstructXtu & M, t |= A & M,u |= B

M, s |= A ∗structX
2 B iff ∃t, u(tQstructXsu & M, t |= A & M,u |= B

M, s |= A ∗structX
3 B iff ∃t, u(tQstructXus & M, t |= A & M,u |= B

M

For a reader that is familiar with the Lambek calculus, it may be enlightening
to remark that there is a tight connection between the operations here and the
operations of the Lambek calculus ([Lambek58]). In the Lambek calculus we also
have three dyadic operations: one ’∗’ is the normal aggregation (i.e. like ∗1), and
two operations ’\’ and ’/’ that are respectively ’left and right searching’. The
latter A/B expresses the fact that if an entity gets aggregated to the right side
with an entity of some type B they together (as an aggregate) form an object
of some type B. It is even true that we can define the Lambek slashes with the
operations of the versatile triple and vice versa. E.g.

A/B := ¬(¬A ∗2 B)

(i.e. it is not the case that I am aggregated to the right with a B entity and
together we form an entity that is not of type A)

A ∗2 B := ¬(¬A/B)

(i.e. it is not the case that I am an entity that when concatenated to the right
with a B entity, we form an entity that is not of type A)

For the axiomatics of the aggregate logic we need a minimal modal logic for
all the dyadic operators, together with the principles that connects the triples
of related modalities. Moreover, we need to find the rules for the constraints
mentioned at the beginning of this section.

6.2.15. Definition. (Axiomatics for the aggregate logic)

140 Chapter 6. Logic of object oriented information

• all axioms and rules of propositional logic for the logic with u, t and ¬

• rules for the dyadic modalities in the minimal dyadic modal logic (for all
struct ∈ {set,multiset, list}, X ∈ {E,A}, i ∈ {1, 2, 3})

(∗structX
i LeftDistribution) (A tB) ∗structX

i C ↔ A ∗structX
i C tB ∗structX

i C
(∗structX

i RightDistribution) (A ∗structX
i (B t C ↔ A ∗structX

i B t A ∗structX
i C

(∗structX
i LeftNormal) ¬(⊥ ∗structX

i A)
(∗structX

i RightNormal) ¬(A ∗structX
i ⊥)

(∗structX
i LeftNecessation)

¬A

¬(A ∗structX
i B

(∗structX
i RightNecessation)

¬B

¬(A ∗structX
i B

• then we need to add the rules to relate the modalities of each versatile
triple. These are the axioms to ensure that the three modalities can be
interpreted by one Q relation from the different views. i.e. for all struct ∈
{set,multiset, list}, X ∈ {E,A}:

(∗structX
1 ∗structX

2 coherence) A u (B ∗structX
1 C) → (B u (A ∗structX

2 C)) ∗structX
1 C

(∗structX
1 ∗structX

3 coherence) A u (B ∗structX
1 C) → B ∗structX

1 (C u (A ∗structX
3 B))

(∗structX
2 ∗structX

1 coherence) B u (A ∗structX
2 C) → (A u (B ∗structX

1 C)) ∗structX
2 C

(∗structX
2 ∗structX

3 coherence) B u (A ∗structX
2 C) → A ∗structX

2 (C u (A ∗structX
3 B

(∗structX
3 ∗structX

1 coherence) C u (A ∗structX
3 B) → (A u (B ∗structX

1 C)) ∗structX
3 B

(∗structX
3 ∗structX

2 coherence) C u (A ∗structX
3 B) → A ∗structX

3 (B u (A ∗structX
2 C

This first coherence axiom relating ∗1 to ∗2 says that:

– when an entity is of type A and also (u) is an aggregation (∗1) of a
B-entity and a C-entity, then this entity is an aggregation (∗1) of two
entities:

∗ one entity that is both a B-entity and (u) an entity that is the left-
hand part of an aggregation (∗2) of A-entity that has a C-entity
as the right-hand part

∗ and another entity that is a C-entity

The other axioms relating the modalities of the versatile triple can be ex-
plained similarly.

• finally we formulate the axioms that reflect the optional constraints on the
aggregation relations.

(∗structX
1 associativity) A ∗structX

1 (B ∗structX
1 C) ↔ (A ∗structX

1 B) ∗structX
1 C

(∗structX
1 cloning) A→ A ∗structX

1 A
(∗structX

1 idem-consumption) A ∗structX
1 A→ A

(∗structX
1 commutativity) A ∗structX

i B → B ∗structX
1 A

6.2. Modal languages 141

These constraints clearly correspond to the constraints we listed above. For
example the (∗structX

1 commutativity) axiom says that when an object is an
aggregation (∗1) of an A-entity and a B-entity then this object is also an
aggregation (∗1) of a B-entity and an A-entity.

M

The language of the aggregate logic enables us to state a lot of powerful things
about entities in our models. For example:

I atomicity: x is atomic iff x satisfies ¬(> ∗structX
1 >)

(actually the conjunction of this formula for all the different types of
aggregation; i.e. ¬(> ∗setE1 >) u ¬(> ∗multisetE1 >) u
¬(> ∗list E1 >) u ¬(> ∗setA1 >) u ¬(> ∗multisetA1 >) u ¬(> ∗list A1 >))

I membership: x is a member of a struct structure iff x satisfies
> ∗structX

2 > t> ∗structX
3 >

I x is a member of an A− type struct structure iff x satisfies
A ∗structX

2 > t A ∗structX
3 >

I x is a member of a structure with an A−member iff x satisfies
> ∗structX

2 A t > ∗structX
3 A

When we have exchange for the structures then it suffices to say for the membership:

I x is a member of a (multi)set iff x satisfies > ∗
(multi)setX
2 >

I x is a member of an A− (multi)set iff x satisfies A ∗
(multi)setX
2 >

I x is a member of a structure with an A−member iff x satisfies

> ∗
(multi)setX
2 A

The above examples show that we can express some interesting local properties
of entities in our model. The logic is even strong enough to express ’global
properties’.

I existential: > ∗structX
2 A holds when A holds somewhere

(Actually the disjunction of this formula for all the different types of
aggregation; i.e. (> ∗setE2 A) t (> ∗multisetE2 A) t (> ∗list E2 A)
t (> ∗setA2 A) t (> ∗multisetA2 A) t (> ∗list A2 A))

I universal: ¬(>∗structX
2)¬A holds when A holds everywhere

(Again actually the disjunction of all the different types of aggregation)

Note that the logic of aggregation is surprisingly expressive when we realize
that once we have these global expressions we can express the powerful principle
of induction ([Benthem2000a]). We have the possibility to talk about atomicity
and do existential and universal statements. Now let us denote ’atomicity’ by At

142 Chapter 6. Logic of object oriented information

(At := ¬(>∗structX
1 >), ’Existential’ by Ex (Ex := >∗structX

2) and ’Universal’ by Un

(Un := ¬Ex¬), then we can express induction as follows:

[Un(At→ A) u Un(A ∗structX
1 A→ A)]→ UnA

The universal and existential modalities are well known from modal logic and
we get them here for free (i.e. without axiomatizing them, but expressing them
using the aggregation modalities). An interesting exercise for instance would be
to deduce the S5 axioms for the defined existential and universal modalities from
the earlier axioms for aggregation.

6.2.5 The combined system

In this system we combine all the features of the above logics. This means that
the language contains all the operators mentioned above, and that the abstract
model will inhabit all the constraints that the relations had in their isolated anal-
ysis. In the combined system we need to add the constraints and accompanying
principles that regulate the interaction between the different subsystems. This
means to regulate interaction between aggregation and adjacency, extendibility
and aggregate and extendibility and adjacency.

Between aggregation and adjacency there are two important constraints that
we also saw in chapter 4: regularity and extentiality.

Regularity says that the result object of taking two objects together should be
consistent with the adjacents of the objects taken together. In a stronger version
this constraint says that whenever we have objects a and b that have partial
descriptions involving respectively objects c and d, then the aggregation of a and
b, say e should have partial descriptions that also involve objects c and d.

Extentiality says that whenever an object has a partial description that is an
aggregation of two other partial descriptions, then this object also has the two
partial descriptions separately as partial descriptions.

6.2.16. Definition. (Constraints on the combined system for aggregation and
adjacency)

(weak regularity) aR1f & fR2c & bR1g & gR2d & eQstructEab →
∃h, i(eR1h & hR2c & eR1i &iR2d)

(strong regularity) aR1f & fR2c & bR1g & gR2d & eQstructEab →
∃h, i, j(jQstructAhi & eR1j & hR2c & iR2d)

(extentiality) eR1j & jQstructAhi → eR1h & eR1i

M

6.2. Modal languages 143

a

b

c

d

e

f

g

h

i

j

eQab (e=a.b)

jQhi (j=h.i)

Figure 6.7: The constraints for aggregation and adjacency

The weak regularity just states the existence of the appropriate partial de-
scriptions when objects are taken together. The strong regularity also states that
these partial descriptions should be aggregated, and by that relating the product
of objects to the product of partial descriptions via the adjacency. This strong
version is needed when we deal with resource conscious structures like multi-
sets and sets, because then we need to ensure that the multiplicity is handled
appropriately by the partial descriptions as well. Moreover we observe that the
constraints ’strong regularity’ and ’extistentiality’ clearly imply ’weak regularity’,
making it a redundant constraint (but it most directly translates to the textual
-intuitively stated- regularity constraint).

Between the aggregation (product) of partial descriptions and the extendibility
there is also some interaction. If an aggregation of two partial descriptions extends
to some object, then it is a more informative description of the object than
the partial descriptions it is an aggregation of. In general extendibility relates
proper11 descriptions to more (or equal) informative proper descriptions or the
object itself. This means that if a partial description a is an aggregation (product)
of two partial descriptions b and c; and a extends to an entity (object or partial
description) d, then also the partial descriptions b and c extend to d

6.2.17. Definition. (Constraints on the combined system for aggregation and
extendability)

(more informative extendibility) aQstructAbc & aSd → bSd &cSd
11Proper means that the description is really a description of an object, i.e. it is a substructure

of the adjacency structure of the object or it is the object itself; and thus not some aggregation
of partial descriptions that is overstating the properties of the object it intends to describe.

144 Chapter 6. Logic of object oriented information

a

bc

d

aQbc (a=b.c)

Figure 6.8: a, b, c, and d (itself) all extend to d

M

Between Extendibility and adjacency there is the well expected constraint that
says that if b is a partial description of a via the adjacency relation R1, then b is
extendable to a.

6.2.18. Definition. (Constraints on the combined system for adjacency and
extendibility)

(extendable adjacents) aR1b→ bSa

M

The language of the combined system includes the full set of modalities as we
defined them in the beginning of this section (see definition 6.2.1). And also their
interpretation is the one we started off with (see definition 6.2.2). The interesting
question now is what are the axioms and rules relating to the combination of the
various features.

6.2.19. Definition. (Axiomatics of the combined system)

• axioms and rules of the adjacency logic

• axioms and rules of the extendibility logic

• axioms and rules of the aggregate logic

• axioms and rules for combining adjacency and aggregation:

(weak regularity) A u ♦1(F u ♦2C)∗structE
1

B u ♦1(G u ♦2D)→ ♦1♦2C u ♦1♦2D
(strong regularity) A u ♦1(F u ♦2C)∗structE

1

B u ♦1(G u ♦2D)→ ♦1(♦2C ∗
structA
1 ♦2D)

(♦1extentiality) ♦1(F ∗
structA
1 G→ ♦1F u ♦1G

6.2. Modal languages 145

• axioms and rules for combining aggregation and extendibility:

(∗structA
2 extendibility) > ∗structA

2 ◦A→ ◦A
(∗structA

3 extendibility) > ∗structA
3 ◦A→ ◦A

To explain the correspondence between the axioms and the constraints,
look again at figure 6.7 illustrating the constraints between aggregation
and adjacency. For convenience, we formulated the axiom such that we can
read the picture in such that object a in the picture is of type A, and object
b in the picture of type B etc.. The ’weak regularity’ axiom now says: ” if
I have an object that is the aggregation (∗E

1) of two objects

– one object that is of type A and (u) that is an object that has a partial
description (♦1) that is both of type F and (u) is an adjacency witness
(♦2) for an object of type C

– another object that is of type B and (u) that is an object that has a
partial description (♦1) that is both of type G and (u) is an adjacency
witness (♦2) for an object of type D

then this object has a C-object as adjacent (♦1♦2) and (u) has a D-object
as adjacent (♦1♦2)”. The other correspondences can be explained similarly.

• axioms and rules for combining extendibility and adjacency:

(♦1 ◦ overlap) ♦∪
1A→ ◦A

M

From this system we can deduce non trivial principles for the categorial graphs.
For example ”partial descriptions of an A object extend to an A object”:

A→ ¤1♦
∪
1A (♦1Inverse)

♦∪
1A→ A (♦1 ◦Overlap)

¤1(♦
∪
1A→ A)

(¤1Necessation)

¤1♦
∪
1A→ ¤1 ◦ A

(¤1Distribution)

A→ ¤1 ◦ A
(cut)

The combined system gives us the full power of the categorial graph meta
language of chapter 4, and even a little more, because we introduced additional
operators that take a look at things from another perspective. These are:

• We added extendibility also in the language

• split the adjacency in two steps

• added inverse modalities for the unary modalities of adjacency and ex-
tendibility

146 Chapter 6. Logic of object oriented information

description meta language modal language

conjunction u u
disjunction t t
negation ¬ ¬
adjacency ♦ ♦1♦2

aggregation ∗
split into collections of operations

{∗struct
1 |struct ∈ {set,multiset, list}, X ∈ {E,A} }

reflection self ...

Figure 6.9: Correspondence between the categorial graph meta language and the
combined modal language

• we introduced the modalities for the dyadic aggregation that look at the
aggregation from a different perspective (versatile triple).

Correspondence between the categorial graph meta language of chapter 4 and
the pure modal language are summarized in the figure 6.9.

6.2.6 Conclusion

We are now in the business of modal logics, and can import all kinds of tech-
niques: decidability, axiomatization, frame correspondence, bisimulation. We say
that the natural constraints on the abstract model correspond nicely with modal
formulas. This enables one to study frames corresponding to interesting princi-
ples like ¤1¤1⊥, or ¤1> ↔ ♦2⊥. This way we give something back to the modal
logic community: the motivation to study certain principles based on the very
practical case of object modeling.

6.3 Other logical formalizations

Starting from the modal logic developed in this chapter we can traverse to other
logical formulations. The modal logic community has seen several nice corre-
spondences with more general and more specialized logics. In this section we will
explore such paths.

6.3.1 Translation

Modal languages are part of first order logic (speaking generally; we could however
add some higher operations involving fixed-points). The language constructs
of modal logic can be translated into general first order logic using a standard
translation. This translation will show that all the principles we defined for the
modal logic for categorial graphs are first order definable. The modal language
of categorial graphs can be translated to the following first order language:

6.3. Other logical formalizations 147

6.3.1. Definition. (First order language for categorial graphs) Recall the def-
inition of the modal language in definition 6.2.1. the first order language for
categorial graphs LFO contains the following:

• For all propositional variables in the modal language L, P ∈ Prop, we have
a unary predicate P FO in LFO

• For all modalities m of arity i we define precicates Tm of arity i+1 in LFO;
i.e.

T♦1
of arity 2 for ♦1

T♦2
of arity 2 for ♦2

T♦∪
1

of arity 2 for ♦∪
1

T♦∪
2

of arity 2 for ♦∪
2

T◦ of arity 2 for ◦
T◦∪ of arity 2 for ◦∪

T∗struct
i

of arity 3 for ∗struct
i

(struct ∈ {set,multiset, list}, i ∈ {1, 2, 3})

• all other standard things to complete first order language including vari-
ables, ∧, ∨, and ¬

M

The (standard) translation for this language now looks as follows:

6.3.2. Definition. (standard translation) Let x, y, y1, y2 be individual variables
in the first order language LFO. The standard translation STx taking formulas
from L into LFO is defined as follows:

STx(P) = Px
STx(⊥) = x 6= x
STx(>) = x = x

STx(¬A) = ¬STx(A)
STx(A uB) = STx(A) ∧ STx(B)
STx(A tB) = STx(A) ∨ STx(B)
STx(♦1(A)) = ∃y(T♦1

xy ∧ STy(A))
STx(♦2(A)) = ∃y(T♦2

xy ∧ STy(A))
STx(♦

∪
1 (A)) = ∃y(T♦∪

1
xy ∧ STy(A))

STx(♦
∪
2 (A)) = ∃y(T♦∪

2
xy ∧ STy(A))

STx(◦(A)) = ∃y(Tcircxy ∧ STy(A))
STx(◦

∪(A)) = ∃y(T◦∪xy ∧ STy(A))
STx(A ∗

structX
i B) = ∃y1, y2(T∗structX

i
xy1y2 ∧ STy1(A) ∧ STy2(B))

(where y1, y2 are fresh variables)

M

148 Chapter 6. Logic of object oriented information

As an example look at the following modal formulas and their translations

STx(♦
∪
1 p→ ◦p) = (∃y(T♦∪

1
xy ∧ Py))→ (∃y(T◦xy ∧ Py))

STx(¤1¤1⊥) = ∀y1(T♦1
xy1 → ∀y2(T♦1

y1y2 → y2 6= y2))

We can optimize the translation from above by translating related modalities
like ♦1 and ♦∪

1 or a versatile triple ∗setE1 , ∗setE2 , ∗setE3 to the same predicate with
different order in the variables. i.e.

STx(♦1(A)) = ∃y(T♦1
xy ∧ STy(A))

STx(♦
∪
1 (A)) = ∃y(T♦1

yx ∧ STy(A))
STx(A ∗

structE
1 B) = ∃y1, y2(T∗structE

1

xy1y2 ∧ STy1(A) ∧ STy2(B))

STx(A ∗
structE
2 B) = ∃y1, y2(T∗structE

1

y1xy2 ∧ STy1(A) ∧ STy2(B))

STx(A ∗
structE
3 B) = ∃y1, y2(T∗structE

1

y1y2x ∧ STy1(A) ∧ STy2(B))

6.3.2 First Order approach

In this setting we can go *up* in terms of generality to the first order level. This
means that we can do simple first order logic by translating our modal formula’s
into first order formulas using the translation from above, and then interpret
these first order formulas in standard Tarski models for first order logic. If we
translate all the principles from the modal logic into the first order logic, we have
a proper first order logic for categorial graphs. In order to make the Tarski models
more concrete we can introduce sorts, a sort for objects, and a sort for partial
descriptions. Then we can study the first order properties in a well known type of
models: two sorted Tarski models. We will use this fact to say something about
the completeness and complexity in future sections.

6.3.3 Resource approach

Probably more relevant is going *down* in terms of generality. We will gain in
specificness by considering calculi in which we can talk directly about resources.
For this we will use sequent calculi and leave out (or diversify on) the structural
rules. In other words we will use a substructural calculus. When, in the abstract
case, we leave in all the operations we actually gain in expressiveness, and there-
fore in complexity as well. We will look, instead, at tractable fragments of modal
logics found in categorial or linear logic using the extra expressiveness. We will
specifically look at a minimal language that has product and conjunction and
adjacency.

6.3.3. Definition. (Substructural Adjacency language) Let LSA be the lan-
guage called substructural adjacency language that talks about structures and
adjacency; i.e. about aggregating (taking things together) objects and partial
descriptions in a resource conscious manner.

LSA = Prop|LSA ∗ LSA|LSA u LSA|♦1LSA|♦2LSA

6.3. Other logical formalizations 149

M

The calculus is a simple substructural one. The language of structures consists of
formula’s. In a sequence calculus, like the one below, we deal with terms, which
are comma separated lists (possibly empty) of formulas.

6.3.4. Definition. (Calculus for the substructural adjacency logic)

(AX) A⇒ A

(CUT)
Γ⇒ A Γ′, A⇒ B

Γ,Γ′ ⇒ B

(Lu)
Γ, A⇒ C

Γ, A uB ⇒ C
Γ, B ⇒ C

Γ, A uB ⇒ C

(L∗)
Γ, A,B ⇒ C
Γ, A ∗B ⇒ C

(Ru)
Γ⇒ A Γ⇒ B

Γ⇒ A uB

(R∗)
Γ⇒ A Γ′ ⇒ B
Γ,Γ′ ⇒ A ∗B

For the modalities we add the following:

(♦1I)
A⇒ B

♦1A⇒ ♦1B
(♦2I)

A⇒ B

♦2A⇒ ♦2B

M

We could now say things resource consciously:

I In Model M an A object has (at least) two partial descriptions, a B and a C one
M |= A⇒ ♦1B ∗ ♦1C

I In Model M an A object has (at least) two adjacents, a B and a C one
M |= A⇒ ♦1♦2B ∗ ♦1♦2C

More specifically about structures one can say:

I in model M the structures are order unconscious for A items
M |= A ∗ > ⇒ > ∗ A

I in model M the structures are order unconscious for A and B items
M |= A ∗B ⇒ B ∗ A

I in model M the structures could sometimes be counting conscious for A items
M 6|= A⇒ A ∗ A

150 Chapter 6. Logic of object oriented information

We could take it a step further and introduce more reasoning connectives plus
the remaining modalities: negation, disjunction and extendibility. To be complete
(and very similar to the calculus of the concrete model of chapter 4) we list the
remaining language items and rules.

6.3.5. Definition. Let LFCA be the language called full substructural categorial
language

LFCA = LSA|LFCA t LFCA|¬LFCA| ◦ LFCA

M

6.3.6. Definition. (Calculus for the full substructural adjacent language)

The rules of the substructural adjacency language plus the following:

(Lt)
Γ, A⇒ C Γ, B ⇒ C

Γ, A tB ⇒ C

(L¬)
Γ⇒ A,∆
Γ,¬A⇒ ∆

(Rt)
Γ⇒ A

Γ⇒ A tB
Γ⇒ B

Γ⇒ A tB

(R¬)
Γ, A⇒ ∆
Γ⇒ ¬A,∆

For the modalities we add the following:

(◦I)
A⇒ B
◦A⇒ ◦B

(♦1Distribution) ♦1(A tB)⇒ ♦1A t ♦1B
(♦2Distribution) ♦2(A tB)⇒ ♦2A t ♦2B
(◦Distribution) ◦(A tB)⇒ ◦A t ◦B

M

The logics in these examples capture quite a bit of the expressive power we
want to have for talking about objects. Such fragments therefore are valuable
for doing specific reasoning in a computationally more tractable setting then the
more general approaches. We will talk about reasoning and complexity matters
in a moment.

6.4 Axioms and completeness

Here we will investigate the completeness of the axiomatics with respect to the
abstract models and the intended models that are presented above. Why would
we bother to investigate completeness? In other words what does completeness
mean for our languages and our models?

6.4. Axioms and completeness 151

If we have a semantically specified logic, then completeness w.r.t. some calcu-
lus means that we have found a calculus that syntactically (and exactly) charac-
terizes this logic. Also if we have a syntactically specified, then logic completeness
w.r.t. a semantics means that we have found a semantic characterization of this
logic.

6.4.1 The first-order case

For the first order logic for categorial graphs (the logic we get after translation)
we can derive some results from the general framework of first order logic when
it comes to matters of axiomatization and completeness.

For the abstract models we know that all the logics we presented above are
effectively axiomatizable, because the constraints we put on the relations of the
abstract models are all first order definable (we gave these definitions above).
Completeness then is trivial. On the other side we also know that the logic
system will most likely be undecidable, unless we are really so lucky that the
set of constraints mitigated the undecidability of first order logic in the general
(unconstrained) case. We do not believe that this is the case, and are of the
opinion that a lot more can be gained in this matter when we look *down* to less
general frameworks.

For the intended models we have bad news in the first order case right away.
The logics of categorial graphs will be at least as complex as ’True Arithmetic’
when we have the aggregations in our model as a structure domain (product
structure). This follows directly from a result of Quine ([Quine46], [Benthem91])
that states that the first order theory of simple syntax12 is equivalent to True
Arithmetic. To be precise quote the result:

6.4.1. Theorem. (Quine) Consider the model M{a, b} containing a binary op-
eration of concatenation13 and all finite strings from the two-symbol alphabet
{a, b}. The first order theory of M{a, b} is equivalent to ’True Arithmetic’
(Ω(N,+, ·)).

True Arithmetic is known to be undecidable, non-axiomatizable and of very
high complexity by Gödel’s and Tarski’s classical theorems. The reason for such
absurdly high complexity is that we have already too much structure when we
have a structure domain (or simple syntax for that matter) when we allow the
full first order language to talk about it. This structure can be ’abused’ (with
the expressive power of first order language) to code numbers and do arithmetic
in it. We say ’abused’, because the structures were not meant to code arithmetic
but only complex information structures.

12Syntax that can be concatenated to form syntax again; i.e. what we have in a structure
domain.

13or for that matter, a ternary relation of concatenation

152 Chapter 6. Logic of object oriented information

6.4.2 The modal case

In the presentation of the different logics we were quite easy about the corre-
spondence between the constraints and the accompanying axioms. This has a
reason, because from the field of modal logic we know that such correspondences
are generally valid when the modal axioms have a suited syntactical form; namely
the Sahlqvist form ([BlackburnRijkeVenema01]).

6.4.2. Definition. (Very Simple Sahlqvist Formula14)

• An occurrence of a proposition letter P is a positive occurrence if it is in
the scope of an even number of negation signs. A modal formula is positive
if all occurrences of its proposition letters are positive.

• A very simple Sahlqvist antecedent in a modal language is a formula built up
from >, ⊥, and proposition letters, using only u, and existential modalities
(e.g. the ♦ but not its dual ¤).

• A very simple Sahlqvist formula is an implication A→ B where A is a very
simple Sahlqvist antecedent and B is a positive formula.

M

For example it is easy to see that that the (∗structX
1 ∗structX

2 coherence) axiom is
a very simple Sahlqvist formula. When we look at

A u (B ∗structX
1 C) → (B u (A ∗structX

2 C)) ∗structX
1 C

we see that the antecedent is built from proposition letters A, B, and C, and the
connective u and the existential dyadic modality ∗structX

1 , hence it is a very simple
Sahlqvist antecedent. Moreover all occurences of A, B and C in the conclusion
are positive.

6.4.3. Theorem. (Sahlqvist correspondence theorem) Let A be a Sahlqvist for-
mula for a modal language L. Then A corresponds to a first order condition cA
on the models of L. Moreover cA is effectively computable from A.

General modal logic provides an even stronger result. In the light of axiomatics
and completeness these Sahlqvist formulas have the following property.

6.4.4. Theorem. (Salhqvist completeness theorem) Given a set of Sahlqvist ax-
ioms Σ, the minimal normal modal logic K extended by the axioms of Σ is com-
plete with respect to the models that satisfy all the corresponding first order con-
ditions.

14Actually a broader syntactically characterized collection of formulas, the Sahlqvist formulas,
will have the same desirable properties as mentioned in the succeeding theorems as these very
simple ones. The ’very simple’ subset suffices for our purposes.

6.4. Axioms and completeness 153

For all but one of the axioms for the logics of categorial graphs from above
we can easily establish that they are Sahlqvist formulas. Thus for the logics
restricted to those axioms and corresponding conditions we have that

• the axioms correspond to the accompanying first order constraints

• the axiomatization is complete with respect to the abstract model

All the constraints that we encountered for the categorial graph logic corre-
spond to Sahlqvist formulas, except one: the McKinssey axiom

(M)¬ ◦ ¬ ◦ A→ ◦¬ ◦ ¬A

corresponding to the local top condition

(top) ∀a∃b (aSb&(∀c aSc → cSb))

A normal modal logic with the McKinsey axiom added (i.e. the modal system
S4.1) , however, is a complete axiomatization with respect to a relational struc-
ture with the ’top’ condition. For proving completeness for the combined systems
now the question remains whether or not adding Sahlqvist formulas to the system
with the McKinsey axiom (S4.1) frustrates the completeness (note that adding
Sahlqvist formulas to complete normal logics that already contain Sahlqvist for-
mulas does leave completeness intact). To our knowledge this question has not
been answered yet, meaning that we cannot solve this concrete matter with stan-
dard results of modal logic. Therefore it remains an open question here, of which
we strongly believe in the positive answer.

For the intended models the situation is more complex (and we can far less
rely on the known results in modal logic). Similarly, as in the first order case,
the danger of too much structure resulting in an inherently incomplete system is
possible. The structure of the domain is as complex as in the first order case. The
modal language, on the contrary, is normally less expressive as the full first order
language, so there is still a chance to get completeness here. Nevertheless there
are a lot of very powerful things that one can say in the modal language about
the mathematical structure of the intended model (for a thorough investigation
in these matters see [Benthem2000a]). An example that we have seen in the
presentation of the aggregation logic is that we can express the induction principle.
This indicates that the completeness issue could be a very tricky one, because we
can express very complicated mathematical structures using induction.

So how are the chances for interesting completeness theorems here? This is
not known yet and could be an interesting open question for logicians.

154 Chapter 6. Logic of object oriented information

6.4.3 The resource case

The previous analysis points out that our models can give rise to completeness
proofs that are more complex than in traditional modal logic. But it can be the
other way around: completeness proofs for our models can also turn out to be a
lot simpler then what we normally see in modal logic. We will demonstrate this
by the results for the resource fragments of the logics for categorial graphs. Now
we again take a step further *down* in generality and see what we can say about
completeness for the substructural fragments we have seen above.

For the abstract models we can, in relation to the resource language and se-
quent calculus that is present in the resource case, prove completeness using the
’minimalistic’ strategy of proving completeness for resource logics that is inves-
tigated by Kurtonina ([Kurtonina95]), Buzkowski ([Buszkowski86]), and Dosen
([Dosen88], [Dosen89]). We will prove completeness for the calculus of the sub-
structural adjacency language LSA with the adjacency modalities (♦1,♦2), con-
junction (u) and aggregation (∗).

6.4.5. Theorem. The calculus of LSA is complete with respect to the abstract
models M =< U,Q,R1,R2, V >

Proof: To prove completeness we construct a canonical model as follows:

1. Universe U = {A|A is a formula of LSA}

2. Product relation Q is defined as

AQCD iff ∀E,F (C ⇒ E&D ⇒ F then A⇒ E ∗ F)

3. Adjacency relations R1 and R2 are defined as

AR1C iff ∀D(` C ⇒ D then ` A⇒ ♦1D)
AR2C iff ∀D(` C ⇒ D then ` A⇒ ♦2D)

4. Valuation V is defined as V (P){A|A→ P} for propositions P ∈ LSA

For the canonical model M we prove the truth lemma:

M, A |= B iff ` A⇒ B

• CASE B = P for a proposition P : directly from the definition of valuation
V

• CASE B = C uD:

` A⇒ C uD iff ` A⇒ C and ` A⇒ D
iff (by induction) M, A |= C and M, A |= D
iff M, A |= C uD

6.4. Axioms and completeness 155

• CASE B = ♦1C:

` A⇒ ♦1C then AR1C because ∀D if ` C ⇒ D then

A⇒ ♦1C
C ⇒ D

♦1C ⇒ ♦1D
♦1Necessation

A⇒ ♦1D
CUT

then M, A |= ♦1C (by definition semantics)

M, A |= ♦1C then ∃DAR1D and M, D |= C
then ∀E[` D ⇒ E then ` A⇒ ♦1E] (by definition R1 and AX)

and ` D ⇒ C (by induction)
thus ` A⇒ ♦1C

• CASE B = ♦2C: Similar to the previous case

• CASE B = C ∗D:

` A⇒ C ∗D then AQBC because ∀E,F if ` C ⇒ E,` D ⇒ F

A⇒ C ∗D
C ⇒ E D ⇒ F
C ∗D ⇒ E ∗ F

L∗ and R∗

A⇒ E ∗ F
CUT

then M, A |= C ∗D (by definition semantics)

M, A |= C ∗D then ∃E,F [AQEF &M, E |= C &M, F |= D
then ` A⇒ E ∗ F (by definition Q and AX)

and ` E ⇒ C and ` F ⇒ D (by induction
then ` A⇒ C ∗D (by L∗, R∗ and CUT)

Hence we have completeness ¤

If we add more connectives (i.e. disjunction and negation) this simple con-
struction will not work as it stands, and the canonical model will become more
complex. We could then, for example, use the The Dosen strategy ([Dosen89])
which introduces an additional relation ≤ over the aggregation structure to han-
dle the aggregation in relation to the disjunction15. This relation is a technical
one, which we can not really give a proper meaning, because in the abstract
model it enables us to characterize objects that are of indefinite type16. We could
extend our ternary relation Q that models the aggregation such that it covers
this ≤ to handle indefinite objects as well. This is realized by letting Q model
a · b ≤ c instead of a · b = c as before. Note however that with this technicality we
drift further away from our intended model, because there we do not have these
indefinite objects.

15if we aggregate something of type A t B with something else, we cannot just look at the
cases where we either have an A object or a B object in the aggregation.

16i.e. we need an object x that is of type AtB in order to canonically interpret (AtB) ∗C

, but in the canonical model x is neither of type A or of type B (it is indefinite).

156 Chapter 6. Logic of object oriented information

Let us now look at the intended models. In the literature there is only one
result, to our knowledge, that proves completeness in a resource logic (i.e. prod-
ucts) w.r.t. a concrete model. This is the famous completeness proof of Pen-
tus ([Pentus93]) for the (multiplicative) Lambek calculus. Completeness for a
concrete model of strings for the rules of the Lambek calculus follows from the
following:

6.4.6. Theorem. (Pentus) The recognizing power of the (multiplicative) Lambek
calculus is precisely the class of all context free languages.

Pentus proves this by showing that for every given Lambek grammar (i.e. a col-
lection of formulas recognizing all the formulas we can infer from them, seen as
strings) we can effectively construct a coinciding categorial grammar and vice
versa. This means that the Lambek calculus is complete for a model of strings.
This proof is very involved, even though the Lambek calculus itself it quite lim-
ited. And thus it seems, at this time, extremely hard to establish a similar result
for the concrete and more involved models for categorial graphs. Pentus’s re-
sult however, implies that the basic logic of aggregation is complete for intended
sequence models, so a completeness result for a richer language is a serious pos-
sibility. We hope that the challenge to find it will be taken up by the logic
community17.

6.4.4 What does this mean for our object models?

We have seen a number of calculi for our languages for categorial graphs, and
nice completeness results for these calculi with respect to the abstract models.
These abstract models properly show the behavior we are interested in when
talking about information objects. In this respect we have ’good’ calculi for rea-
soning about these interesting matters. There is, however, still a gap between
the abstract models and the intended models, and this gap is not bridged by a
completeness proof of a calculus with respect to the intended models. Judging by
the literature the completeness issue for intended (rich) structures is a very hard
one and has only a few positive results (we already mentioned the completeness
proof of Pentus for the Lambek calculus with respect to languages). The com-
pleteness issue for object models raised here is yet another interesting challenge
to logicians who like to think about a real structure of current interest.

17Even better would be a Sahlqvist-like result for resource logics. Then we would have a
similarly strong tool for solving completeness and defninability questions as for normal modal
logic. We have seen above that the Sahlqvist theorems for normal modal logic were very helpful
for logical engineering of object oriented intuitions.

6.5. Complexity 157

6.5 Complexity

In this part we analyze the complexity of the logics for categorial graphs. The
complexity gives a measure for the ’hardness’ of computational tasks using the
expressive power of the systems presented here for object orientation.

6.5.1 Benchmark tasks

There are several ’benchmark’ tasks for which computational analysis is done
on logics. These tasks are the basis of most of the important algorithmic solu-
tions for computing with the logics analyzed, and thus by assuming generality of
these logics, they are indicative for many nontrivial computational tasks of the
application domain the logic talks about. These tasks are:

• Model checking. Given a model M, and an entity x ∈ M, and a formula
A in the logical language L, then the task of model checking consists of
checking whether M, x |= A. This task is measured in the amount of
computational steps in terms of the size of M plus the size of A.

• Satisfiability (SAT). Given a formula A in L, does there exist a model M
and an entity x ∈ M such that M,x |= A? The complexity of this task is
measured in terms of the size of A.

• Inference. Given formulas A,B in L, can we proof A ` B from the calculus
of L? This task is measured terms of the size of A plus the size of B.

We will analyze these tasks for the logics of categorial graphs below. In our case
the complexity of these benchmark tasks are indicative for many of the non-trivial
computational tasks in object oriented models.

6.5.2 Model checking

Model checking is a common task in working with information systems. It is the
question whether an expression (say constraint) is satisfied in some part of the
information system.

The complexity of this task is easily proven to be in P (class of polynomial
time computable tasks) for all the abstract modal logics of categorial graphs we
presented here. For model checking we need to verify that a formula A is satisfied
in a given entity x of our model M. This involves (worst case)

1. when A is a proposition letter a check of the valuation in x which is bound
by the size of M

2. when A is BuC the check forM, x |= B followed by the check forM, x |= C
which by induction on the structure of the formula are polynomial time
computable in the size of M plus the size of A

158 Chapter 6. Logic of object oriented information

3. when A is ¬B the check for M, x |= B followed by the inverse conclusion,
which by induction on the formula structure is polynomial time computable
in the size of M plus the size of A

4. when A is ♦B (where ♦ is any of the monadic modalities) then ∀y(xRy)
(where R is the relation interpreting the modality ♦) we need to check
M, y |= B. The individual checks are, again by induction on the structure
of the formula, polynomial time computable. The number of checks (i.e.
number of y’s) is bound by the size of M (number of accessible worlds).
Hence we are again polynomial time computable in the size of M plus the
size of A.

5. when A is B ∗C (where ∗ is any of the dyadic modalities) then ∀y, z(xQyz)
(where Q is the relation interpreting ∗) we need to check M, y |= B and
M, y |= C. The individual checks are by induction on the structure of the
formula, polynomial time computable. The number of checks is bound by
the square of the size of M (all possible pairs of accessible worlds of M).
Hence we have again polynomial time computability in the size of M plus
the size of A for model checking.

For the intended models and the resource models we need to take some extra
care in analyzing the complexity of model checking. These models are of infinite
size, because they contain free product structures (the domain structures). For
example we have objects x · . . . · x of arbitrary length in our models. This com-
plicates the complexity analysis as we defined it (and as it is commonly defined)
for model checking, because we measure complexity in the size of the model. The
solution to analyze these infinite systems is to measure their complexity in the
size of a finite generator of the models. The infinite product structures (for aggre-
gation) are generated from a finite set of atomic entities, and also the condition
of regularity enforces that this base of atomic entities really completely generates
the model. We discussed the generator of the intended models already in chapter
4. The generator consists of the atomic objects of the model together with the
relations that specify the adjacency structure. Summarizing, we will measure the
complexity of model checking in the size of the formula |A| plus the size of the
generator |gen(M)| of the modelM and the size of the entity x ofM in which we
do the model checking (we need to add x here because unlike in the former case
x (in general) is not part of gen(M) and therefore can obfuscate the complexity
analysis when it is taken very large).

The complexity for model checking for the intended models and the resource
models is harder then P-time. We will prove that it is NP-hard. The reason for
this increase is that an object can be split into parts in a number of ways that is
exponential to the size of the object.

6.5. Complexity 159

6.5.1. Theorem. Model checking for the resource logic for categorial graphs
(LFCA) is NP-hard

Proof: We will proof NP-hardness by a reduction from the ’exact cover’ prob-
lem to model checking for the resource logic. The ’exact cover’ problem is well
known to be NP-complete ([GareyJohnson79]). The ’exact cover’ problem is the
following:

Given a set X with x elements and subsets A1, . . . , An of X, is there
a collection of k subsets Ai1 , . . . , Aik that exactly covers X (i.e. the
union of the Ai’s contain all elements of X precisely once)?

We can reformulate this problem in terms of model checking for the resource logic
as follows:

1. We express that a set X has elements p1, . . . , px by the formula P1 ∗1 P2 ∗
· · ·∗Px. Let us abbreviate this formula by X. To make this scheme work we
need to require that in our model all Pi are satisfied in different entities18

2. Similarly we can express that a subset Ai contains certain elements; i.e.
Ai := Pi1 ∗ · · · ∗ Piji

.

3. Now we can express the set X is exactly covered by the k subsets Ai by
stating

X u [(Ai1 t · · · t Ain) ∗ · · · ∗ (Ai1 t · · · t Ain)]
x. . . k times . . .y

Let us now choose a model M with an element X that is the aggregate of all
its x members of atomic objects, and let us choose n subsets characterized by
A1, . . . An. Now it is the case that X has an exact cover of k subsets Ai1 , . . . Aik

if and only if

M, X |= X u [(Ai1 t · · · t Ain) ∗ · · · ∗ (Ai1 t · · · t Ain)]
x. . . k times . . .y

¤

6.5.3 Satisfiability

In the context of information systems using the theory of categorial graphs, sat-
isfiability answers questions for the situation where one wants to know whether a
modeling activity (resulting in a theory with additional constraints on all kinds

18We can also force it in the formula by stating Piu¬P1u· · ·u¬Pi
−1
u¬Pi+1

· · ·uPx for ever
Pi(1 ≤ i ≤ x). This is not necessary to proof the reduction though, because we may without
loss of correctness require satisfiable constraints on the models.

160 Chapter 6. Logic of object oriented information

of information objects) is consistent. i.e. whether there are models (i.e. instances
of information systems) that can satisfy all the constraints that were formulated
during the modeling activity. This is a basic task for information processing.

Satisfiability for propositional logic is the archetypical case of satisfiability
that is well known to be NP-complete. This means that for a formula A it takes
’exactly’19 a non-deterministic algorithm a polynomial number of steps (in terms
of the length of A) to compute whether there is a model M and an entity x in
the model that satisfies A.

This fact constrains the results of the analysis of the complexity of the logics
of categorial graphs, because all of these logics20 contain propositional logic. This
means that satisfiability for these logics for categorial graphs will at least have
an NP-hard satisfiability task.

For the modal logics in general it is the case that most modal satisfaction
tasks are not solvable in NP, but are at least PSPACE-hard. These tasks are
solvable by a computational algorithm using only polynomial space. For example
the minimal normal modal logic K and the modal logic S4 are PSPACE-complete.
One way to get below PSPACE is when we can prove that the model that we need
to construct to satisfy A is at most polynomial in size of A. This polynomial
size model property can be proved for models in which the constraints ensure
that the model is compact21. Most models, however, can be used to simulate
binary trees (i.e. exponential branching) and then this polynomial size model
property fails and, moreover, proves PSPACE-hardness for the satisfiability task
(cf. PSPACE-hardness criteria in [Spaan93]).

The situation sketched above implies some clear results for the individual
logics for categorial graphs.

6.5.2. Theorem. The satisfiability task for the fragments of the adjacency logics
where we have only one type of modality, either type 1 (♦1,♦

∪
1) or type 2 (♦2,♦

∪
2)

are in NP.

Proof: This is directly implied by the constraint that the individual adjacency
relations are at most only one step deep (forced by ♦♦⊥). This means that we

19’exactly’ now means that is not easier than this; i.e. every task to which satisfiability of
propositional formulas can be translated needs at least such an algorithm, and cannot be solved
by an algorithm that is of lower computational complexity.

20Actuall all save one: when we take out the Boolean connectives, like in the example LS we
could get lower complexity.

21When we have a polynomial size model property, we can let a non-deterministic algorithm
guess a polynomial size model M and entity x. Now we need to do model checking for a
polynomial number of times to verify that M really is a model that satisfies the constraints
that are put on the system (these constraints correspond to formula for our logics) and then do
one other time model checking for A in M, x. Model checking is P in M + |A|, and thus also
polynomial in |A|. Hence we have an NP algorithm.

6.5. Complexity 161

can branch over the individual Ri relations only once, so we need at most 2× |A|
entities to cover all the entities that A can say something about. ¤

6.5.3. Theorem. Satisfiability for the full adjacency modal logic is PSPACE-hard

Proof: (Sketch) We can code the trees in two steps: a node is an R1 source, an
edge is an R2 source, similar to where we presented the edge graphs formulation
of a normal graph in chapter 3. ¤

6.5.4. Theorem. Satisfiability for the extendibility logic is PSPACE-hard

Proof (Sketch): The extendibility logic is, in its isolated shape, the logic S4.1
combined with the logic S4.2. The logic S4 is known to be PSPACE-hard, and this
is proved by showing that its models can simulate trees22. The restriction of a
local top of the McKinsey axiom (M) clearly does not frustrate this tree structure
(we are certain to have a beautiful tree with one top). ¤

An interesting corollary of the above result that requires a less sketchy proof,
and exemplifies the fruits of the expressiveness of the logics for categorial graphs
is the following: When we take a step further towards the combined logic add the
♦1 modality to the extendibility logic, we have a system in which we can define
the ’tops’ of the extendibility relations by ♦1> (tops are the objects!). Now an
S4 formula A is satisfiable if and only if A relativized23 to ¬♦1> is satisfiable in
the extendibility logic with the ♦1 modality. Hence the extendibility logic plus
the ♦1 modality is PSPACE-hard.

The above results dash every hope to get the combined modal system in to
NP, which coincides with the intuition that reasoning about complex objects is
strictly more complex than simple propositional reasoning. On the other hand we
have seen in the previous section that we do not have the burden of undecidability,
that some models (like the standard associative models as we indicated above)
have; and this implies that the satisfiability problem for the combined logic and
its abstract models is also decidable. This shows the intriguing and surprising
balance of languages and model classes. We gained the interesting insight here
that reasoning about complex objects does not require full computational power
of first order logic (i.e. undecidable). This is rather intuitive, but we note that
in practice most reasoning algorithms are based on heuristics for full first order
(undecidable) languages. Using the logics of categorial graphs as a basis would
most likely give better results, because we then would build on a theory with
better computational characteristics.

22and therefore can do the well known PSPACE-complete Quantified Boolean Formula’s task.
23we say that a formula A is relativized to a formula ¬♦1> when all modal subformula’s ◦B

of A are replaced by ◦(¬♦1> → B). This enables one to ’place’ a top on the S4 model, such
that it becomes a model for the extendibility logic plus the ♦1.

162 Chapter 6. Logic of object oriented information

For the abstract resource models and substructural languages for categorial
graphs we have a good case for the substructure adjacency fragment LSA. These
models have the finite model property for the substructural languages. The reason
is the following: we can only talk resource consciously about the objects and
their partial descriptions (which are entities in the model!), and thus all the
specifications in the formula only have one entity in the model. Moreover, because
this fragment does not contain negation, we do not need any combinatorics to
construct a satisfying model. We can simply construct a satisfying model by
introducing an entity for every building block of the formula: an atomic object
for each propositional variable, an aggregate for each A ∗ B subformula, and a
union of (sub) models for every conjunction A u B. Then we only need to check
this one constructed model, because when it fails, then the formula cannot be
satisfied by any model. This is evident by the lack of conflicting combinations in
the valuation (only the relations may or may not satisfy the constraints of the
logic, but the relations are fixed by the formula that we need to satisfy). We state
the result without proof.

6.5.5. Theorem. The substrcutural language LSA with respect to the abstract
resource models have a P-time satisfiability task.

The complexity most likely becomes less tractable when we do take into account
the negation. The fragment with24 ♦1,♦2, ∗,¬ will still have the finite model
property (hence NP satisfiability), but the fragment including ♦1,♦2,u,¬ will not
have the finite model property (hence PSPACE-hard satisfiability). The reason
lies in whether or not the fragments are able to encode a binary tree shaped
model.

6.5.6. Theorem. 1. The satisfiability task of the fragment of substructural
LFCA with ♦1,♦2, ∗,¬ is NP

2. The satisfiability task of the fragment of substructural LFCA with ♦1,♦2,u,¬
is PSPACE-hard.

Proof: The first statement is proven by showing that every formula A in the
fragment can be satisfied by a model of maximal polynomial size in the length of
A. We prove this by induction on the structure of A. It suffices to prove it for the
∗,¬, and ♦ := ♦1♦2, because only chains of alternating ♦1♦2 can be arbitrarily
nested (remember the ¤i¤i⊥ principle forcing each individual modality to be one
step deep only). Let M, a |= A, and M =< U,Q,R1, R2, V > with universe U ,
relations Q,R1, R2 and valuation V as usual.

• suppose A = P (where P a proposition): takeM =< {a}, ∅, ∅, ∅, V > with
V (P) = {a}, and V P ′ = ∅ for all propositions P ′ other then P .

24This fragment is obtained from LSA by adding negation but removing conjunction.

6.5. Complexity 163

• Suppose A = B1∗B2: by induction we have polynomial size modelsM1,M2

such that M1, b1 |= B1 and M2, b2 |= B2. Now construct M by taking the
union25 of (wlog supposed disjoint) models M1,M2 and extend Q, V in
M such that aQb1b2. We have now by definition of the interpretation that
M, a |= A and size is simply |M1|+ |M2|+ 1.

• suppose A = ♦B. By induction we have a polynomial size model M′ such
thatM′, b |= B. We extendM′ toM by adding an object a to the universe
ofM′ and setting aR1R2b. We have now by definition of the interpretation
that M, a |= A and size is simply augmented by a constant.

• suppose A = ¬B: By induction we have a polynomial size model M′ such
that M′, b |= B. We can transform M′ =< U,Q,R1, R2, V

′ > to M =<
U,Q,R1, R2, V > by altering the valuation as follows: For every entity e in
the universe ofM′ we invert the valuation with respect to the propositional
variables that occur in B. This means that in M for all P that occur in
B we put V (P) = U − V ′(P). It is clear that the size stays the same.
We need to show that this (relatively cheap) construction works to ensure
that M, a |= A. This is seen by the following observation: For a model
constructed in the process of this proof it holds that every subformula is
local to one entity in the model. i.e. every modal subformula is satisfied
by an atomic entity in M that has one R1R2 adjacent only (we do not
have a conjunction to hold in the same entity, we only have aggregation
that is satisfied by two independent entities). Spelling it out: Let a refer
to an object in the inverted modelM while a refers to the object in model
M′. Now flipping the valuation to satisfy negation works for an object a
satisfing P , because P will not hold in a anymore. For B1 ∗ B2 that is
satisfied in an aggregation object a where aQb1b2, we also have that it does
not hold in a anymore, because B1 and B2 do not hold anymore in their
inverted subobjects b1, b2, and we are not allowed to misuse b2 to satisfy
B2 or misuse b1 to satisfy B1, because we do not have exchange in the
substructural calculus. Finally when ♦B holds in a because B holds in b,
where aR1R2b, then it will not hold anymore in a, because there is only one
R1R2 adjacent to a, which is b, and there B is not satisfied.

We prove the second statement of the theorem by showing that we can force
the model to have a tree shape, using a formula that is logarithmic in the size of
the tree using the techniques developed by Hemaspaandra ([Spaan93]).

Let q0, . . . , qm and p1, . . . , pm be propositional variables. We will use the qi
variables to encode the level in the tree26, and pi,¬pi to force the branching. We

25Union of the universes and the relations.
26Note we use objects as nodes in the tree and partial descriptions as edges. Thus we need

to state ♦1♦2pi to force that pi holds one level deeper in the tree. The conditions ¤1¤1⊥ and

164 Chapter 6. Logic of object oriented information

object

descriptions

objects

B0,q0

q1,p1 q1, p1

R1R1

R2R2

Figure 6.10: A model satisfying the branching formula B0

abbreviate a branch formula Bi as follows
27:

Bi := qi → (♦1♦2(qi+1 u pi+1) u ♦1♦2(qi+1 u ¬pi+1))

Now we force branching28,by:

¤1¤2Bi

Now we need a formula that sends the truth values assigned to pi and its
negation one level down in the tree. This way we get the situation that once Bi

has forced a branching in the model by creating a pi and ¬pi its truth values are
sent down in the tree.

S(pi,¬pi) := (pi → ¤1¤2pi) u (¬pi → ¤1¤2¬pi)

to force a send we again use a necessation:

¤1¤2S(pi,¬pi)

To force a tree of m levels we need to force m branchings; i.e. B0 u¤1¤2B1 u
¤1¤2¤1¤2B2 u · · · u (¤1¤2)

m−1 and to force down the truth values all levels m
we need the conjunction of m2 formulas (¤1¤2)

j(S(pi,¬pi) (i.e. for all the m
S(pi,¬pi) we need then on on each level j).

Now we have a formula of size that is polynomial in the numbers of level of
the tree it enforces; i.e. the formula forces a model that has exponential size with
respect to its length. Hence we need at least PSPACE to compute satisfiability.
¤

For the concrete models we have the danger of the not-completely-axiomatizable
system due to the richness of structure. Remember the undecidability result for
the associative string calculus. In such case the satisfiability task is undecidable.

¤2¤2⊥ are essential to force that we cannot encode a tree with partial and whole descriptions
playing the same role in the tree. When we can do that, we could use the standard encoding of
trees in the model, where edges are not objects in the model but simply encoded in the relations

27Standard branching formula is :Bi := qi → (♦(qi+1 u pi+1) ∗ ♦(qi+1 u ¬pi+1)).
28In the standard encoding this is ¤B1

6.6. Extensions 165

6.5.4 Inference

Inference answers another, strongly related, question. It will compute whether a
system of constraints from a modeling activity infers some other constraint. This
task is the basis for verifying certain properties that are not explicitly forced by
a system, but should follow from the theory and constraints that are actually
implemented in a system.

For languages that have a (classical) negation connective and that have a com-
plete calculus (w.r.t. their interpreting domain) the complexity results of the
inference task and the satisfiability task are exactly the same. This is a conse-
quence of the following statement:

` A if and only if ¬A is not provable

For characteristics of the inference task for the resource calculi we need to do
some work. We have no negation in LSA, so we cannot use the results from the
satisfiability task. Nevertheless the inference task is also expected to be P-time
like the satisfiability task, due to the limited reasoning one can do in the language.

6.6 Extensions

In chapters 3 and 4 we briefly mentioned two extensions for the language of
categorial graphs: the self and the ! (bang). These extensions are not part of
the ’core’ object intuition, but interesting extensions that enhance the ability to
express constraints. In this section we will briefly discuss these extensions of the
logic of categorial graphs.

In the object oriented paradigm, a statement (e.g. a constraint) is formulated
from the point of view of an object. Formulating such a statement, it can be
valuable to be able to refer to the object itself, i.e. to refer to the ’here and
now’ from the point of view where the statement is formulated. This can be
accomplished by a modal constant self, which is interpreted to be true only in the
evaluation point of the whole formula. One could then, for example, express that
an object has itself as an adjacent:

♦1♦2self

The self modality is not completely new. It is already studied in modern modal
logic in the context of so-called hybrid languages ([BlackburnSeligman95]). The
self modality fits into a nice extension of modal logic, where one has next to
variables also so-called nominals. These nominals interpreted such that they are

166 Chapter 6. Logic of object oriented information

true in exactly one object. The self modality is a special case. For this exten-
sion there exists a sound and complete axiomatization with respect to abstract
relational semantics. Moreover, the complexity of the system is like most other
modal systems: the satisfiability task is PSPACE-complete. We will not recite
the axiomatics here. We argue that fruitful extensions from modal logic can be
added29 to the core modal system of categorial graphs.

In the field of resource logics there is a well known modality that enables
one to introduce the structural rules in a controlled manner: The ’ !’ (bang).
The weakening, contraction, and exchange rules are introduced only for formulas
labeled with the bang; e.g.

!CONTRACTION
Γ, !A, !A⇒ ∆
Γ, !A⇒ ∆

The bang enables one to explicitly type an object that is an arbitrary long
aggregation of objects of some kind. Structures like sets, multisets and lists are
such kind of objects. In a setting like this (i.e. with the necessary bang-rules) an
object that (itself) is a set of A-type objects can be typed as !A. In linear logic the
bang is well studied. However, introducing the bang has quite some influence on
the complexity of the system. The full propositional system (i.e. with ∗,u,t,¬)
with the bang for all the structural rules (together this is full propositional linear
logic) is undecidable. From the computational point of view this modality should
be introduced with care.

6.7 Further logical considerations

The main line of this chapter is a modal-substructural elaboration of our object-
oriented information models. Its main ideas of adjacency and object-description
duality also suggest other logical directions, however, even closer to classical first-
order logic.

6.7.1 ’Object’/’type’ duality

One example is the ’object’/’type’ duality found throughout standard logic. E.g.,
the information structures of Barwise & Seligman ([BarwiseSeligman97]) consist
of sets of objects which can ’satisfy’ or ’belong to’ types, which one can think of
as propositions, or sets in the extensional case. This is like our valuation V . The
main logical structure imposed by these authors is the following:

T ≤type T
′ if every object satisfying T also satisfies T ′

29Another nice, but less object-oriented flavored extensions worth looking at is the modal
logic of inequality.

6.7. Further logical considerations 167

This is the usual implication ordering, and one may, or may not, require
closure of the types under the Boolean operations. Dually, there is also an object
inclusion:

o ≤object o
′ if every type T that holds of o also holds of o′

This is like the ’specialization ordering’ among points in topological spaces.
Another close analogy is ’Chu Spaces’, as studied extensively by Vaughan Pratt
([Benthem2000b]).

It is of some interest to compare this inclusion structure with our orderings:
neither inclusion ≤ is *exactly* what we had, though we could certainly define
these additional relations.

T ≤type T
′ if ♦∪

1T → ♦∪
1T

′

Note that we have a richer domain and need to take into account descriptions
and objects, so simple implication ordering does not suffice. We need extendibility
to make sure that descriptions that do not follow from each other, but accidentally
describe the same (of a subset of each others) objects, are properly ordered. In
information technology terms one could think about descriptions of the same
objects from another perspective; e.g. the descriptions ’morning star’ and ’evening
star’ do not ’include’ each other but do describe the same object ’Venus’.

o ≤object o
′ if every description d of o there is a description d′ of o′ that is a

witness of the same type of adjacent; i.e.
∀d oR1d∃d

′ o′R1d
′(∃a, a′ dR2a&d

′R2a
′&a |= T iff a′ |= T)

Although this theory differs from ours, we can prove properties of it in our
logics. Moreover our approach assumes that the objects themselves come with
some prior structure, namely, the product construction. This richer structure,
not found with Barwise & Seligman, then interacts with the inclusions: e.g.,
are products inclusion-monotone w.r.t. their components? This extension seems
worth exploring.

6.7.2 Treating ’facts’ as first-class citizens

But perhaps a still closer analogy to our view of information models lies right
inside first-order predicate logic. The duality between objects and descriptions
amounts to treating *facts* as first-class citizens in their own right, in the spirit
of our discussion in Chapter 5. Our approach shows how one might do this in
Tarski semantics. In addition to the ordinary universe of objects, take a second
domain of ’descriptions’, consisting of all the positive atomic facts that are true
in the model. Facts can be of any arity, assigning properties to objects.

Normally the fact that, say, P holds between o and o′ is modeled by putting the
ordered pair < o, o′ > in the set of pairs that forms the interpretation of P . But

168 Chapter 6. Logic of object oriented information

this ’reduction’ is not necessary: we can say that o, o′ ’participate’ in the fact in
some more abstract -and yet more intuitive- way. Then it seems reasonable to say
that our earlier relation R1 holds between those objects and the fact ”Poo′”. And
R2 is just its converse, linking a fact to the objects participating in it. Thus, our
earlier analysis may be viewed as an analysis of the mutual ties between objects
and facts, yielding an alternative ontology for predicate logic, and another locus
for ’logical structure’: R1, R2 are now basic *logical* items.

Now this would make R2 just the converse of the relation R1. This choice
is natural. E.g., the composition R1;R2 will hold between any two objects that
occur together in at least one positive fact of the model. This is the so-called
’Gaifman order’ of a first-order model, which has various model-theoretic uses.
Moreover, the idea of co-occurrence in a fact is precisely the main idea of the
guarded fragment of predicate logic, an avant-garde development in modern
modal logic ([AndrekaBenthemNemeti96], [RijkeVenema95]). Restricting quan-
tification to guarded tuples of objects makes quantification ’local’, and leads to
decidability of the language.

On the other hand, our original intuition about object orientation was still a
bit different. We were thinking of facts *about certain objects* as protagonists,
with the others involved as auxiliary characters in the fact. This is why R1 and
R2 are not inverses. This showed in our ’tagging’ of facts to object: one atomic
statement ”Poo′” could be two facts: one about o : viz. < o, Poo′ > and one
about o′, viz. < o′, Poo′ >. This is another take on the same semantic setting -
but we leave it to the logicians, or philosophers, to decide whether this additional
’aboutness’ of facts is part of their essential structure.

Finally, *if* one reorganizes predicate-logical semantics in this way, then it
makes sense to rethink the language as well. Should we not dualize everything,
and allow quantification over facts? Our point with the present excursion is more
modest, however. Far from being an exotic structure, object-description models
in our sense might also be an interesting style of modeling basic logical structures,
and one can think of our various logical systems then as axiomatizations for the
’mechanisms’ that drive these new models.

To add some flesh to the considerations we describe three modal logic versions
of the above idea:

• version A: We take a domain of objects O and a domain of facts about
adjacency between objects RAdj. Between these two domains we have two
relations π1, π2 that relate an adjacency fact to, respectively, the object and
its adjacent

• version B: We generalize the domain of facts and allow arbitrary facts
T (a), U(a, b), V (a, b, c) . . . about the objects in O. We have a relation π
between the facts an the objects, relating a fact to and object when the
object occurs in the fact.

6.7. Further logical considerations 169

OBJECTS

FACTS

OBJECTS

FACTS

SETS OF
OBJECTS

SETS OF
FACTS

π1 π2

R(a,b)

a b

T(a) U(a,b)

a b

R R R

{T(a),U(a,b)}

{b,c} {a}

A B C

Figure 6.11: Version A,B and C of the object/fact models

• version C: one domain of entities consists now of sets of basic objects that
occur in facts; and similarly we take the domain with sets of facts (hey, we
are taking things together like in the object oriented calculus!). A set of
facts Y relates to a set of objects X when at least one of the objects in X
occurs in at least one of the facts in Y .

Version A is actually the adjacency logic where R1 is the converse of π1 and
R2 coincides with π2. The axiomatization therefore could be similar. However,
from this point of view a symmetric set of axioms for modalities for π1 and π2
seems more natural. Let < π1 >,< π2 > be the modalities interpreted by π1, π2
respectively, and let [π1], [π2] be their dual modalities and < π1 >

∪, < π2 >
∪ their

inverses. To force proper behavior of the πi relations in the light of objects and
adjacency facts we then typically get (next to the normal modal principles) the
following principles in the logic for adjacency facts:

(Disjoint) ¬((< π1 > >u < π2 > >) u (< π∪
1 > >t < π2 >

∪ >))
(Exhaustive) (< π1 > >u < π2 > >) t (< π∪

1>t < π2 >
∪ >))

(π1 − is a function) < π1 > A→ [π1]A
(π2 − is a function) < π2 > A→ [π2]A
(First Order) [π1][π1]⊥ u [π2][π2]⊥

Note that we cannot express that when two facts have their projections to the
same objects we actually are talking about the same fact; i.e. if

fπ1o1&fπ2o2&f
′π1o1&f

′π2o2

then f = f ′. Although this uniqueness is an important property of facts, we can
ignore the matter using this logic for analyzing these facts, because all general
models for our logic of adjacency facts are bi-similar to a special model that does
have this uniqueness property.

170 Chapter 6. Logic of object oriented information

Version B reveals interesting principles for a full predicate model with facts as
first-class citizens in modal terms. Let R be the relation between objects and
facts where oRf if object o occurs in fact f (e.g. f = T (o)). Let ♦↓ be the modal
operator that is interpreted by R with its dual ¤↓, its inverse ♦↑, and its inverses
dual ¤↑ . The logic for the first-class-facts typically looks as follows30:

(Disjoint) ¬(♦↓> u ♦↑>)
(Exhaustive) ♦↓> t ♦↑>
(First order) ¤↓¤↓⊥

This system forces every object to play a role in a fact (i.e. there are no unin-
teresting objects where we know nothing of). An alternative that loosens this
constraint (and introduces some asymmety between facts and objects) has the
following alternative rules:

(Disjoint′) ¬(♦↑⊥ u ♦↑>)
(Exhaustive′) ♦↑⊥ t ♦↑>

Version C translates our intuition on aggregating descriptions and objects to
an intuition on aggregating facts and objects. Let R be the relation between sets
of objects and sets of facts where ORF if some object o ∈ O occurs in some fact
f ∈ F . Let ♦¸ be the modal operator that is interpreted by R with its dual
¤¸, its inverse ♦·, and its inverses dual ¤·. Also let ∪1,∪2,∪3 be the versatile
triple that models an abstract relation31 for union U; i.e. ZUXY relates Z to
X and Y when Z is the union of X and Y . Now we can say some things about
monotonicity of the relation between sets of objects and sets of facts. The logic
for the sets of first class facts typically has next to the normal modal principles
for unary and dyadic modal operators the following principles:

(Disjoint) ¬(♦¸> u ♦·>)
(Exhaustive) ♦¸> t ♦·>
(First order) ¤¸¤¸⊥
(Downward monotonicity) (X u ♦¸F1) ∪1 Y → ♦¸F1
(Upward monotonicity) (F1 u ♦·X) ∪1 F2 → ♦·X

In the combined system of categorial graphs we have seen more complex mono-
tonicity principles: the regularity principles. For these principles we had stronger
versions too. The stronger equivalents in this logic relate ’aggregating’ sets of
objects to ’aggregating’ sets of facts (cf. the regularity axioms for the combined
system for categorial graphs in definition 6.2.19):

(Downward regularity) (X u ♦¸F1) ∪1 (Y u ♦¸F2) → ♦¸(F1 ∪1 F2)
(Upward regularity) (F1 u ♦·X) ∪1 (F2 u ♦·Y) → ♦·(X ∪1 Y)

30Note that we can leave out the principle for requiring a source and targets for the facts
31We can not force all the axioms of set theory by modal principles for the set-union relation.

6.8. Summary 171

X Y
Z

F1 F2

F3

OBJECTS

FACTS

F3=F1UF2

Z=XUY

Figure 6.12: Monotonicity for version C (logic of sets of first class facts)

What we have seen here is that intuitions on how to talk about object oriented
structures can be mapped on the setting of relational structures that were invented
to interpret first order predicate logic. This seems promising for the intuition for
the categorial graphs when we realize that the language of categorial graphs was
intended to talk about the real world (modeled in object oriented structures)
while first order predicate logic in turn is a language that intends to talk about
phenomena in the real world (and is interpreted in relational structures).

Moreover, it shows that our intuitions on object orientation could possibly
have consequences for standard logic, because it introduces a new view on objects
and facts. This view could be beneficial to the field of logic itself.

6.8 Summary

In this chapter we analyzed the concepts of the system of categorial graphs of
the previous chapters from a perspective of modern logic. We have disclosed
logical properties of the individual core notions and have given account of their
axiomatics and complexity, using results from the field of modal and substructural
logic. The results provided us with a clear view on the core concepts of object
orientation. On the other hand we provided the logicians with a concrete system
that bears some interesting logical questions. Moreover, we proposed a different
view on logic itself, using an intuition from object oriented practice. We strongly
belief this scientific cross-fertilization bears even more fruits that are be beneficial
for both the computer modeling field and logic. Here lies a challenge to be taken
on in further research.

Part IV

Philosophical Backgrounds

173

Introduction

The modern languages for information systems talk about complex objects. These
objects have identity and can have a complex signature, and can be subject to
complex constraints. In order reach the expressiveness needed to specify the
behavior of an object, we need to be able to talk about the whole object and
about partial descriptions of a complex object. Preferably we should be able to
talk about objects taken together and also have the ability to count objects.

Although it seems quite natural to combine sentences that say things about
an aspect of an object and sentences that say things about the whole object,
this combination raises some difficult questions. The questions involve the way
we interpret the language constructors that combine propositions on the whole
object and propositions on its aspects. We will argue that these questions arise
from problems involved with dealing with the notion of identity when speaking
about parts of the world. These problems are well known in philosophy and have
proven to be far from trivial. Therefore it is only natural we encounter these
problems when formalizing the languages of information systems that talk about
parts of the world.

In this part of the thesis we discuss philosophical issues of modeling information
systems and the object oriented concepts. If effect we take a step back from the
conceptual world we sketched out in the previous chapters and concentrate sepa-
rately on some core notions that are important in the field of modern information
systems modeling. In the coming chapter we will discuss four philosophical issues
in modeling parts of the real world and we will discuss these issues in the light
of the semantical study of the language of categorial graphs. We will show how
these issues appear in the context of the categorial graph language. We do not
propose a solution for the philosophical problems raised, but show that we can
deal with several interpretations of the problematic issues in a clear way.

175

Chapter 7

Four philosophical issues

As we already observed in our analysis on object orientation, the large popularity
and numerous occurrences of object notions in modeling, database and program-
ming languages suggest that it underlies an important intuition on how to model
parts of the (real) world . In essence the modeling activity consists of stating
sentences1 about objects in a world. These sentences represent knowledge about
these objects. Even though there surely exits a natural intuition on how to model
parts of the world, it is, by far, not unproblematic to give a rigid description of
the modeling concepts and tools (language). This phenomenon has been subject
to intensive study in philosophy in the last 2500 years.

In this chapter we will take four problematic issues in dealing with complex
objects from the history of philosophy, and show their relation to concepts of in-
formation system modeling. We will see that these problems arise naturally when
constructing and formalizing modeling languages using complex object notions.
In most practical languages, like UML, these problems are hardly recognized,
because these languages often have not been subject to formal semantical inves-
tigation. We think it is important to recognize these problematic issues, when
dealing with a modeling language. Especially because these problematic issues,
how natural they may be, really matter when one, as an information analyst,
models parts of the world building an information system2.

1These sentences are in the context of the logic of categorial graphs technically propositions
and rules.

2We note that there has been done some work that connects object oriented information
system languages to philosophical languages. An example of this is a paper that connects
the concepts of object orientation to Aristotelian logic ([RaysideCampbell00]). Actually this
paper shows an effort to clarify the notions from object orientation, like we did (in a completely
different manner) in the previous chapters by providing a formal semantics. The paper does not
try to uncover problematic issues that can occur while doing modeling, which is the intention
of this chapter exemplified by four philosophical issues.

177

178 Chapter 7. Four philosophical issues

We will discuss the four philosophical issues in the light of the semantical study
of the language of categorial graphs. We will show that the semantical investi-
gations can provide us with a clear view on the philosophical issues raised, and
sheds light on how to solve some nasty ambiguities in the information modeling
practice. We, of course, do not claim we have a solution for the philosophical
problems, nor do we suggest that we provide a thorough list of philosophical is-
sues that touch the field of information systems modeling. We merely present
four examples from philosophy -two from ancient philosophy and two from the
beginning of modern philosophy- and show a way to handle different approaches
to the issues at stake in the context of our semantic study in information systems
modeling. The different approaches to the philosophical issues are still subject to
their philosophical criticisms.

7.1 Examples from 2500 years of modeling in-

formation systems

I. In western philosophy Plato started to use ’logical rules’ to specify knowl-
edge, and his pupil Aristotle continued this in even a more rigid way in his essay
’The Categories’3. In this essay Aristotle starts with a modest list of notions used
to model things from the world, among which the ability to talk about a whole
object and about part(s) of an object4 and about aggregates5. In an attempt to
clarify the concepts in his list Aristotle rigidly analyses the precise semantics of
the concepts and discovers a lot of deep and far from trivial matters that need to
be solved to fully understand the concepts. The same kind of problematic matters
come up when we start from a shopping list of concepts needed in a modeling
and database language. An important observation made by Aristotle is that sen-

3For more extensive philosophic considerations about the notion of categories from Aristotle
in relation to information engineering we gladly refer to [Adriaans92] citing from it that ”we
still cannot think of a better introduction to the problems of knowledge engineering and theory
of knowledge then this small essay [’The Categories’] of Aristotle”.

4Categories(1a20) Of things there are:(a) some are said of a subject but are not in any
subject. For example, man is said of a subject, the individual man, but is not in any subject.
(b) Some are in a subject but are not said of any subject. (By ’in a subject’ I mean what is
in something, not as a part, and cannot exist separately from what it is in.) For example, the
individual knowledge-of-grammar is in a subject, the soul, but it is not said of any subject; and
the individual white is in a subject, the body (for all color is in a body), but is not said of any
subject. (c) Some are both said of a subject and in a subject. For example knowledge is in a
subject, knowledge-of-grammar. (d) Some are neither in a subject nor said of a subject, for
example the individual man or individual horse-for nothing of this sort is either in a subject or
said of a subject. Things that are individual and numerically one are, without exception, not
said of any subject, but there is nothing to prevent some of them from being in a subject-the
individual knowledge-of-grammar is one of the things in a subject [Ackrill63]

5Categories(1a16) Of things that are said, some involve combination while others are said
without combination [Ackrill63]

7.1. Examples from 2500 years of modeling information systems 179

tences that talk about partial descriptions of objects are treated fundamentally
different from sentences that talk about the whole object. For example the sen-
tence Socrates is a man says something about the whole object (we reference to
by the name) Socrates, while the sentence Socrates is white is a sentence about
an aspect (partial description) of Socrates (his color) The sentence on a whole
object can vary from very general to very specific. For example, one could say
of Socrates that he is a substance, or more specifically he is a body, even more
specific he is an animate body, which in turn is implied by the sentence that he
is an animal, which is made even more specific by proposing that he is a man,
etc.. When talking about aspects, one can get more specific also, but the intent is
very different, because one only gives partial descriptions of the whole object. For
example one can say Socrates is white, which is less specific then Socrates is white
and has a beard, or Socrates is white, has a beard and is married to Xantippe. If
one would consider an ordering in information content there will be a switching
point in information content when one exactly characterizes the whole object.
From a sentence that exactly characterizes the whole individual object one can
further talk about the whole object in more general terms (less specific, with less
information content). And also from a complete description of the whole object
one can talk about less and less ’aspects’ of the object describing only partially
the object. In a picture:

SOCRATES

MAN

ANIMAL

ANIMATE BODY

BODY

SUBSTANCE

WHITE & HAS BEARD & MARRIED TO XANTIPPE

WHITE & HAS BEARD

WHITE

specificness

II. In his essay ’De Interpretatione’ ([Ackrill63]) Aristotle makes very clear that
combining predicates of different kinds is not a trivial matter. Combining pred-
icates that say something about the whole object and predicates that say some-

180 Chapter 7. Four philosophical issues

thing on aspects (partial descriptions) of the object cannot be done uniformly6.
For example consider the following predicates on partial descriptions of an ob-
ject: ’white’ (on some objects color) and ’musical’ (on some objects ability); and
consider the following predicates on a whole object: ’man’ and ’animal’. Look
now at the following combinations:

1. a man is white

2. white is a man

3. white is musical

4. musical is white

5. a man is an animal

6. an animal is a man

A predicate on a whole object and a predicate on a partial description of an
object can be naturally combined in a sentence when the ’evaluation point’ of
the sentence is the whole object (see 1), while it becomes problematic when the
’evaluation point’ is that of the partial description (see 2). For a combination of
the predicates on partial descriptions the naive way of combination is problematic
(see 3 and 4). Note however that in the combinations 3 and 4 above the ’evaluation
point’ is not a whole object, but in both cases an ’aspect’. A combination of two
predicates that talk about a whole object (see 5 and 6) appears to have a clear
interpretation7.

Concluding we can say that from Aristotle’s analyses it follows that we can
distinguish (at least) two kinds of predicates: predicates that talk about the
whole object, and predicates that talk about a partial description (or aspect) of
an object. These two types of predicates turn out to have fundamentally different
behavior.

6Aristotle makes a more subtle distinction then we propose here. He talks about qualities
that are accidental (we call them ’predicates on aspects of the object’) and qualities that are
not accidental but essential (we call them ’predicates on the whole object’) (De Interpretatione,
21a7):”Of things predicated, and things they get predicated of, those which are said accidentally,
either of the same thing or of one another, will not be one. For example, a man is white and
musical, but ’white’ and ’musical’ are not one, because they are both accidental to the same
thing. And even if it is true to say that the white is musical, ’musical white’ will still not be
one thing; for it is accidentally that the musical is white, and so ’white musical will not be one.
Nor, consequently, will the clobber who is (without qualification) good, though an animal which
is two-footed will (since this is not accidental). [Ackrill63]

7However Aristotle had some doubts about the meaningfulness of a combination of a predi-
cate of a whole object and a generalization of this predicate, because in his view of semantics
such a combination is either false or superfluous (De Interpretatione 21a7)

7.1. Examples from 2500 years of modeling information systems 181

III. An other valuable notion in modeling is the ability to count. There has
been a lot of analysis on the meaning of numerical statements, when talking about
objects. An interesting quarrel on this subject is one between Husserl and Frege.
In his ’Philosophie der Arithmetik’ [Husserl70] Husserl argues that numerical
statements8 on objects taken together can be expressed quite adequately by means
of the conjunction ’and’. A numerical statement thus would be of the form ”A
and B and C and · · · and Q is n”. E.g. Berlin and Dresden and Munich are
3. Frege9 objects to this point of view by arguing that the conjunction is used
in numerical statements only in the context of identity statements and not for
indicating complex numerical structures. In the context of identity statements
only the numbers 1 and 2 are meaningful: 1 to indicate existence, and 2 to indicate
that two objects are different. For example Frege says that the statement Berlin
and Dresden and Munich are 3 is meaningless without an implicit statement on
the identity of the objects in the statement, because it gives no information. It
does not say whether Berlin is different from Dresden nor whether Berlin exits.
Frege claims that in everyday speech however the numbers 1 and 2 are used
with implicit statements on the identity of the objects10. Then the statement
Berlin and Dresden are 2 would express that Berlin is different from Dresden,
and Berlin is 1 would express that Berlin exists. Although Husserl admitted that
Frege’s criticism on his concept of numerical statements was founded, it remains a
natural intuition that a statement like ’In this village we have a baker, a butcher
and a grocer’ has some numerical content. But do we know about how many
people we are talking? Of course one can object that the statements that express
difference with a numerical are incomplete, and that the statement Berlin and
Dresden are 2 should be rephrased to Berlin and Dresden are 2 and Berlin is

8For accurateness we need to mention that in his philosophical studies Husserl talks about
’judgments’ and not about ’sentences’ like we do in our (logic) semantics. This means that
the truth bearer of Husserl (judgment) is philosophically different from ours (sentence). Frege
on the other hand does talk about sentences. This probably is one underlying reason for the
difference of opinion on this matter. Moreover it is a reason to defend the position of Husserl
that judgments on numerics are connected to the ’act’ of counting (taking together), while
Frege his point of view only takes an objective truth value (the sentence is true or false, no
justification needed) into account and therefore rejects an ’act’ as the source of the numerics.
This discussion is a deep philosophical one and far out of our scope. Whatever the philosophical
differences are, they do no harm the case we want to make here, because we merely exemplify
different approaches and relate them to our semantics of information systems. It is actually very
interesting that we can reflect these total different approaches in the semantics of information
systems.

9in his review of Husserl’s Philosophie der Arithmetic (C.E.M. Pfeffer, Leipzig 1891) in
Zeitschrift für Philosophie und phil. Kritik, vol. 103 (1894),pp.313-332); translated in
[GeachBlack52])

10In ([GeachBlack52]) (translation of ’on numerical statements’) Frege claims: ”I find that it
is really used only in two cases: first, with the numerical ’two,’ to express difference (’Rübsen
und Raps sind zwei’-rape-seed and rape are two (different things)’); secondly, with the numerical
’one,’ to express identity-’I and the Father are one.’

182 Chapter 7. Four philosophical issues

different from Dresden.

IV. In his essay Über Sinn und Bedeuting [Frege1892] Frege analyses further and
encounters an even more problematic matter in modeling objects with identity.
Frege has taken on the following problematic matter. Suppose you talk about two
objects; you talk about one object stating it is the morning star, and about one
object stating it is the evening star. As both the ’morning star’ and the ’evening
star’ are the planet Venus, the sentences have the same meaning according to
Frege. The predicates ’morning star’ and ’evening star’ differ, according to Frege,
not in their meaning but in their sense. Frege distinguished three levels of being
different11:

1. two sentences about an object only describe a different idea on the same
object (the same object plays a different role in the different sentences),

2. two sentences differ in their sense, but not in their meaning (two objects
with different intention only happen to be the same)

3. two sentences have really a different meaning (the two objects are really
different).

This matter raises difficult questions when one wants to interpret the sentences
in a formal model for information systems. For example do we need to be able
to distinguish somehow in our system between sentences with the same meaning
but with a different sense? Moreover if we talk about the morning star ’and’ the
evening star, do we interpret it as one object, two times the same object, or two
different objects.

This subject has also quite recently been the subject of intensive philosophical
research ([Linsky71]. For example assume you give always the same meaning to
sentences that happen to have the same meaning but have a different sense (are
different like in 2 above). Then the sentences The morning star is visible in the
morning, The evening star is visible in the morning and Venus is visible in the
morning all should mean exactly the same. This attitude becomes even more
problematic when one is allowed to use modalities in a modeling language. E.g.
the following sentences should then have the same meaning: Raphael believes that
the morning star is different from the evening star and Raphael believes that the
morning star is different from the morning star and even Raphael believes that
Venus is different from Venus. While the first sentence may be true in a model,
the second and third one very likely are not.

11[Frege1892], p 30: Wir können nun drei Stufen der Verschiedenheit von Wörtern,
Ausdrücken und ganzen Sätzen erkennen. Entweder betrifft der Unterschied höchstens die
Vorstellung, oder den Sinn, aber nicht die Bedeutung, oder endlich auch die Bedeutung

7.2. The philosophical issues in terms of categorial graphs 183

The matters above all give rise to different ways of giving semantics to (combi-
nations of) sentences on objects, all of which can be subject to some philosophical
criticism. In the next section we will formulate the above four issues in the cate-
gorial graph meta language we developed in the previous chapters to talk about
information using the concepts from object orientation. We illustrate a range of
possible interpretations one can give to the issues raised above. In practical infor-
mation system modeling languages one can very quickly be victim to unclearness
in the describing situations involving matters from above. The semantics devel-
oped in this thesis, however, can give an analyst or developer of an information
system more insight into the interpretation of the sentences in the modeling lan-
guage that touch these problematic issues. We have no intention whatsoever to
solve the philosophical problems we mentioned above. We simply aim to show its
implications for interpreting a language for modeling information systems.

7.2 The philosophical issues in terms of catego-

rial graphs

Below we give a short list relating properties of the semantic domain of the
categorial graph languages to the philosophical dilemmas described above.

I. in and of a substance. Suppose there is a specific name that refers to a
particular object. Then there are sentences that talk about the whole object in
more general terms, and sentences that talk about aspects of the object. In our
language we have the ability to talk about whole objects, which is simply stating a
proposition or a formula, but we can also talk about parts of an object, using the
adjacency modality described above. Suppose the name Socrates refers to some
object in our model12. Then we can talk about Socrates by stating more general
predications on the object like man. On the other hand we can talk about things
in our object. For example that the object has a beard: ♦beard. It becomes more
interesting if we want to state that Socrates is white. We have two possibilities:
either we predicate white or we predicate ♦white.

12Note that in the analysis of Aristotle Socrates is called a ’substance’ and not a predicate.
In a logical theory you have only predicates, of which some can be so special that there is only
one object in the model that can interpret it.

184 Chapter 7. Four philosophical issues

SOCRATES

MAN

WHITE

WHITEBEARD

Aristotle states in his ’categories’13 that in this case we are talking about some-
thing that is in a subject, and that ♦white would be the most appropriate. This
would actually also be the way which most complies with the Object Oriented
modeling paradigm, in which an object is of some (most specific in the modeled
type system) class, and all properties are modeled via attributes. In our meta
language this would be stated as Socrates → ♦white14. The alternative would
be choosing to have a type (class) white of which the class Socrates is a subtype
(i.e. class Socrates inherits from class white) from; i.e. in our meta language
Socrates→ white.

II. Evaluation points in whole objects. The adjacency operator enables one to
talk about aspects of objects. This adjacency operator really is a modal operator,
because, as all modal operators, it gets a meaning (describing an ’aspect’) only
when we know in which object in the model a formula with the modal operator
is evaluated. For example the formula stating ♦beard (’having a beard’) can be
interpreted as an ’aspect’ only when we have a whole object with a beard in
our model. This way of modeling, again, complies with the paradigm of object
orientation, in which we model the world relating our knowledge on the world to
objects only. A more interesting example is the following: we can talk about the
object white of type white, which in a modeling language is nothing more than a
value (but in a pure object oriented dogma, even a value is an object), and we
can talk about an object having the white-object of type white as an aspect or
partial description15: ♦white. The distinction made by Aristotle on things that
are not said of a subject but are in a subject on one hand and things that are
said of a subject but not in a subject, is now not dependent on what is said (e.g.
white or man), but on how it is said: ♦white, or white. With that ability in the
language, it is the task of the information system designer to find out ’what’ are
the objects in his model and ’what’ are the aspects.

13see [Ackrill63] Categories 1a20
14this has of course the intuitive graphical representation in the categorial graph language
15i.e. to partially describe the whole object

7.2. The philosophical issues in terms of categorial graphs 185

III. Counting with resource conscious connectives: wholes ’and’ wholes, partial
descriptions ’and’ partial descriptions, wholes ’and’ partial descriptions. Due to
the fact that predicates on wholes and predicates on partial descriptions have
different semantical behavior when they take part in a complex formula, we need
different rules for combining these kinds of predications16 in a formula. We need
rules that specify the combining of predicates on wholes and partial descriptions.
A very important, and very non-trivial way of combining these predicates is in a
context of resource conscious conjunction (’and’).

When one talks resource-consciously about a man and a man (man ∗ man),
one most likely talks about ’2 man’. This ’2 man’ is in our model an aggregation
of two objects, each being a man. Alternatively one could say that the above
sentence can be interpreted by one man: either twice the same man or (if one
rejects the ability to count whole objects with a conjunction) just one man.

When one talks resource-consciously about something having a beard and being
white (♦beard ∗ ♦white), one could talk about several things: first one could talk
about one object that has both a beard and is white colored. On the other hand
one could also be talking about an aggregate of two objects, one having a beard,
and one being white colored; or even about an aggregate of 10 objects among
which at least one object has a beard and one object is white colored.

When one talks resource-consciously about something being a man and having
a beard (man ∗ ♦beard), we again have several choices. One could talk about one
man having a beard, about a man aggregated with something that has a beard,
or about a man aggregated with a number of objects of which at least one has a
beard.

In most cases one does not want to have all the choices from above. Espe-
cially because some of them run into philosophical debate. One can formulate
rules for the logic of the categorial language, and corresponding rules for the ob-
ject structure interpreting this language that will enable or forbid some of the
interpretations from above. These rules can enable or disable the strict counting
for parts and wholes, and regulate the way we combine resource-consciously the
predicates on wholes and parts. One can think of many different configurations.
We could for example construct a world in which we can count the parts of an ob-
ject, but not the whole objects, and not combinations of whole objects and parts.
This would entail that ♦beard ∗ ♦beard (having at least two beards) would mean
something different than ♦beard (having at least one beard), while beard ∗ beard
would mean the same as beard (being a beard). And man ∗ ♦beard would not
necessarily be two objects (one being man and one having a beard).

IV. Roles, purpose and meaning. In modern modeling languages it is very

16Note that in our modal context setting the predications are technically propositions that are
or are not satisfied in a object (world). In philosophical terms they are nevertheless predicates
because they are stating qualities of an object.

186 Chapter 7. Four philosophical issues

common to draw objects taking part in a relation in a certain role. This means, for
example, that some object Socrates can relate to some object Xantippe in the role
labeled by husband, while it relates to the object Plato in the role labeled by friend.
This means that in the different relations one has a different view on the object.
In the language of categories this can be achieved by using labeled adjacency
modalities. The labeled modalities require an interpretation in a domain in which
objects have an ordered adjacency structure, so we can distinguish between the
different roles an adjacent plays in its relation to that object.

For objects having a different sense the story is much more difficult. Although
the matter on Sinn und Bedeutung remains difficult, we can express matters
on this problem quite clearly in our language. Suppose we have the predicates
evening-star, morning-star and venus. One could either say that evening-star and
morning-star are predicates about the ’whole’ object or about ’aspects’ of the ob-
ject (compare to the matter on white from above). In other words either evening-
star and morning-star say something about a whole object like the predicate man
does about a particular person, or evening-star and morning-star say something
about an aspect of an object i.e. about its appearance17. Suppose now that we
have an object that is precisely characterized (as a whole) by the name venus, we
can illustrate that choice with the following picture18:

VENUS

MORNING_STAR EVENING_STAR

MORNING_STAR EVENING_STAR

The different styles of modeling the fact of being a morning or evening star, i.e.
as aspect or as whole, imply different behavior of these predicates (propositions
in a modal logic setting) when giving meaning to it. For example in a model in
which one can count the the formula

morning-star ∗ evening-star

will be interpreted as the aggregation of two objects, one being the morning star,
and one being the evening star. These objects, however, need not be different, in
which case the interpretation would be two times the object referenced by venus.
In the same model, i.e. when one can count, the formula

♦morning-star ∗ ♦evening-star
17We would assume the latter choice is the most preferred one if we take the Aristotelian

view on talking about objects
18One should read the arrows in the picture as implications.

7.3. Summary 187

can be interpreted by one object, having (at least) two aspects, being one ap-
pearance as morning star and one appearance as evening star. In this case the
interpretation may be one time the object referenced by venus19.

In the modal case the Sinn of the formula ♦morning-star is the possibility to
appear as the morning star. The interpretation (meaning) of such a formula is
just dependent on the model; i.e. if there is an object, say venus, in our model
that has as an aspect the appearance as a morning-star, then venus is a possible
interpretation of this formula. More elaborate: if there is one object that has
both aspects morning-star and evening-star, then the propositions ♦morning-star
and ♦evening-star and ♦morning-star∗♦evening-star are all true in this same object.
Moreover the aspects themselves (i.e. both kind of appearances) will appear in
the model as different objects, both being adjacent to the venus.

In the non-modal case, the ’whole’ object is characterized (more or less spe-
cific) by the predicate morning-star. This means that morning-star is a charac-
terization of the whole object, just like man is a characterization of the object
Socrates. The Sinn of such a formula is being a morning star. The interpretation
of such a formula can only include an object being ’morning star’. This could, in
a model, possibly be the same object as that being the ’evening star’.

Both ways of modeling the evening and morning star in our language can
validate a model with one object (venus) being the interpretation of both. Note
however that the way in which the interpretation of the expressions is ’computed’
is fundamentally different. In the modal case (♦) structural properties (aspects)
of the object in the model are checked, while in the non-modal case only intrinsic
properties of the whole object (type assertions) can be checked.

7.3 Summary

In this chapter we touched four philosophical issues that arise naturally when
modeling information. We showed that these issues really can be problematic in
general. We also showed that we can quite clearly form sentences involving the
problematic matters in the logic of categorial graphs. The general nature of the
logic of categorial graphs and the fact that it is a formal system enabled us to
deal with the problematic issues in a clear way, avoiding nasty ambiguities.

19or, for the sake of completeness, this one object venus aggregated with some other objects,
as the aggregation of venus with something else still has the two mentioned parts.

Part V

Conclusion

189

Chapter 8

Categories for Profit

Free advice is seldom cheap.

Rule #59 from the Ferengi rules of acquisition ([Behr95])

Let us assume that the best thing that has happened to the field of informa-
tion systems is the remarkable insight which Edgar F. Codd had in the summer
of 1969, when he wrote a research report for his employer IBM, in which he sug-
gested that database technology should have a formal mathematical foundation.
The resulting data-model, the relational model, has become very well developed,
assumingly because of its clear and rigorous mathematical foundation. It is true,
however, that when one asks the users of relational information systems which
advantage of the relational information systems they think is the most prominent,
hardly anyone mentions its mathematical foundation. Even among developers,
we know, the importance of the rigorous foundation is underestimated. We still
conjecture that this foundation is the most important factor in developing the re-
lational database to the maturity it has now. Similarly important is a mathemat-
ical foundation for object oriented information systems. However, the situation
for object oriented information systems differs considerably from the situation
for relational information systems. While the concepts of relational systems were
based on the mathematical notion of ’relation’, the notions of object oriented in-
formation systems evolved from practical use. This situation provides a challenge
that is not unfamiliar to theoreticians: trying to capture notions from practice
in such a manner that it provides a rigorous and precise understanding of the
notions1.

So why is it only a few value the mathematics as very important?. The reason
probably lies in the supposition that for understanding and working with an

1Consider, for example, research on formal linguistics, capturing notions of natural languages

191

192 Chapter 8. Categories for Profit

artificial language it is not necessary to know the full rigorous mathematical
semantics, but only some simpler informal easy-to-deal-with intuition. We agree
with this statement. But this does not imply that the mathematical semantics
is not important, nor that it is the most important. We need some hard ground
on which to built the ’easy-to-deal-with’ intuition. We will give an analogy2 to
explain this claim.

When one asks a mathematician what complex numbers are, (s)he will explain
that they are constructed from ordered pairs of downward closed sets of rational
numbers (Dedekind cuts), i.e. the hard thing. When one asks an engineer, (s)he
will explain to you the geometric intuition which can be conveyed about the
complex plane; the simple thing. This is a robust intuition for which there is
an elegant calculus and a nice axiomatization. Dedekind cuts are studied for
foundational concerns, i.e. to confirm the correctness of the logic. For working
with complex numbers Dedekind cuts are not necessary.

Although one can do many things with an intuition that is not totally rigorous,
in the mathematical sense, one still needs it to verify or even build this intuition.
Furthermore the (possibly less formal) intuition should in some sense be robust
and have features like a calculus for reasoning or even a (not necessarily complete,
but at least sound) axiomatization for proving some properties. For designing
semantics it is necessary to construct a high level system that forms the basis
for the intuition. This system should not be very involved, i.e. by not using
many esoteric mathematical constructions, but by giving a direct account of the
concepts that are to be understood for using the considered language. For building
this system one may use as much heavy mathematical artillery as one wishes.

This chapter we summarize what has been researched in this thesis. We will
discuss the analysis and the mathematical foundation we propose for object ori-
entation. Moreover, we will answer the question: what did we gain from all of
this? In other words: what is the value of the artifacts from this thesis for the in-
formation system analyst, what is the value of these artifacts for the theoretician,
and which problems did we solve?

In this thesis we have performed seven tasks:

1. We analyzed the practical context in which notions of object orientation are
used.

2. We analyzed object oriented concepts themselves.

3. We constructed a general and formal language for object oriented informa-
tion systems.

2This analogy is borrowed from Dana Scott, explaining the value of his work in semantics.

8.1. The object oriented development practice 193

4. We defined a formal model (semantics) for this formal language of object
orientation.

5. We introduced themes from theoretical computer science and logic for anal-
ysis of the formal language and its accompanying model.

6. We analyzed logical properties of our formalization of the concepts from
object orientation.

7. We analyzed four philosophical issues using the constructed formal (and
therefore precise) language and model for object oriented information.

These seven tasks are summed up in the sections below.

8.1 The object oriented development practice

The analysis of the practical context in chapter 1 provides us with a number of
important insights into how object oriented languages are used in software devel-
opment practice. A software analyst starts with labels that have no meaning, and
evolves to a model with objects and types that carry structure and meaning, but
the objects may be partially, or even non-wellfoundedly, specified. This insight
has a large impact on the way we should interpret the object oriented languages
that the analyst uses.

For the practicing software analyst this analysis is nothing more than an inter-
esting view on his daily work. For a theoretician, on the other hand, this analysis
provides important requirements on the model for object orientation he wants to
construct. We have seen the influence of this insight in the mathematization of
the object oriented concepts in this thesis. Notable mathematical concepts that
relate to these insights are the notion of a ’link’ (or ’aspect’ or ’infon’), and the
’extendibility’ notion.

8.2 Concepts of object orientation

The analysis of object oriented concepts in chapter 2 gives an overview of the
main concepts used in object oriented technology. Because these concepts arose
from use in practice, they can be interpreted in several ways, and sometimes
are not very precise. We have pointed to potential problems with some of the
concepts, and provided an interpretation that is the basis for the formal model
of object orientation in this thesis.

For the software analyst this overview provides a thorough view on the notions
he uses in practice, and can make him aware of potential problems. For the
theoretician this overview can form a basis for his model, as it did for our model.

194 Chapter 8. Categories for Profit

8.3 A generalized language for object oriented

information systems

The major artifact of this thesis is the general language for object oriented infor-
mation we defined in chapter 3: the language of categorial graphs. This language
has both graphical and textual elements, and has a formal syntax. The formal
syntax enables one to precisely define semantics for the language constructs and
the notions expressed in this language. Moreover we solved the non-trivial prob-
lem of ’exploding’ and ’imploding’ in a graphical language.

A formal language is a necessary artifact for a theoretician to do formal anal-
ysis. In practice, the language of categorial graphs gives a designer of an object
oriented language3 the possibility to map his language to a formal one which is
suited for formal analysis. Moreover, an information analyst can translate the
expression he writes down in his OO modeling language to expressions in the cat-
egorial graph language in order to compute mathematical properties of his model.
He can, for example, then compute ’satisfiability’ of the model he defined with
his expressions.

8.4 A semantics for object oriented information

systems

In chapter 4 we built a model for object oriented information systems; more
specifically, we built a semantics for the language of categorial graphs. This
model captures the behavior of entities in object oriented information systems,
and thereby ’makes concrete’ the notions of object orientation. It is the realization
of our analysis. Important new mathematical concepts are the notions of ’object’,
’infon’ and ’extendibility’. These notions, for example, realize a driving slogan of
object orientation: ’every property of an object is an object in its own right’.

A formal semantics is the target artifact of the OO theoretician. It is the
construction that rigorously captures his intuition and enables deeper analysis
of the notions involved. The model gives the practitioner the possibility to do
formal (and thus automated) model checking, using the formal interpretation of
the language of categorial graphs. Moreover it enables one to infer properties
of a constructed model using the sound syntactic calculus that accompanies the
model.

3Note that even the standard language UML is evolving. UML version 2.0 is bound to be
released!

8.5. Methodology: semantics, logic and applications 195

8.5 Methodology: semantics, logic and applica-

tions

Chapter 5 displays an overview of the scientific context in which the research that
has resulted in this thesis took place. Here we have introduced for the reader the
scientific tools we used for formal analysis; these are ’computer science semantics’,
’modal logic’ and ’substructural logic’. Moreover we discussed related research
and pointed to applications of the theory that has been developed in this thesis.

Such introductions and references are good practice in science.

8.6 Logic of object oriented information

The analysis of the formal language and model of object oriented information
systems took place in chapter 6. This analysis has built the hard ground under
our intuitions on object oriented concepts. It gives insight into the axiomatics and
complexity of notions from object orientation. Moreover we propose an interesting
view on how to do logic, using the intuition of object orientation for a general
logic.

For the logician these logics provide insight into the logical properties of an
interesting domain with practical relevance. Moreover, these logics have purely
logical relevance as well. For the software analyst this is the theory that validates
his intuition.

8.7 Four philosophical issues

In chapter 7 we analyzed four philosophical issues in the light of the object ori-
ented language for specifying information developed in this thesis. A long history
in philosophy has shown that describing parts of the real world is very complex
and subject to serious issues. Because the aim of object oriented modeling is
also capturing parts of the real world; it is therefore only natural that in ob-
ject oriented modeling we encounter the same issues. Four of these issues were
elaborated.

Most practitioners of object oriented modeling probably do not realize that
such issues lie in wait for their models. It is very valuable, however, to realize
they do, because these issues really pose problems of consistency on their models.
We show that the formal system of categorial graphs gives a clear insight into
these problematic issues, which enables one to avoid misinterpretations. Hereby
we show its value for analyzing complex matters of describing information in an
object oriented manner.

Bibliography

[Abiteboul90] S. Abiteboul, Towards a deductive object-oriented
database language, Data & Knowledge Engineering,
vol.5, 1990, pp. 263-287

[AbiteboulHull87] S. Abiteboul & R. Hull, IFO: A Formal Semantic
Database Model, ACM ToDS, vol. 12, no. 4, 1987, pp.
525-565

[Ackrill63] J.L. Ackrill, Aristotle: ’Categories’ and ’De Interpreta-
tione’, Clarendon Press, Oxford, 1963

[Adriaans90] Pieter Adriaans, Categoriale modellen voor kennissyste-
men, Informatie, pp.118-126, 1990.

[Adriaans92] Pieter Adriaans, Language Learning from a Categorial
Perspective, Academisch proefschrift, Universiteit van
Amsterdam, 1992.

[AdriaansHaas99] Pieter Adriaans & Erik de Haas, Grammar Induction as
Substructural Inductive Logic Programming, Proceedings
of the workshop on Learning Language in Logic (LLL99),
Bled, Slovenia, June 1999, pp. 117-126 (to appear in
Springer LNAI series)

[AdriaansHaas00] Pieter Adriaans & Erik de Haas, Learning from a sub-
structural perspective, Proceedings of the 4th conference
on Computational Natural Language Learning and of
the 2nd Learning Language in Logic (LLL) workshop,
September 13th-14th 2000, Lisbon, Portugal, pp. 176-
183, September 2000.

197

198 Bibliography

[AndrekaBenthemNemeti96] Hajnal Andreka, Johan van Benthem & Istvan
Nemeti, Modal Languages and Bounded Fragments of
Predicate Logic, Journal of Philosophical Logic, 27(3),
pp. 217-274, 1998

[AndriesEngels94] Marc Andries & Gregor Engels, Syntax and Semantics
of Hybrid Database Languages, in H.J. Schneider & H.
Ehrig (eds.), Graph transformations in Computer Sci-
ence, Springer LNCS 776, 1994, pp. 19-36

[Areces00] Carlos Areces, Logical Engineering: The Case of De-
scription and Hybrid Logics, Dissertation, Institute of
Logic, Language and COmputation (ILLC), University
of Amsterdam, 2000

[ArnoldEtAlii00] Ken Arnold, James Gosling, David Holmes, The JAVA
Programming Language, third edition, Addison-Wesley,
2000

[AtkinsonEtAlii89] M. Atkinson, F. Bancilhon, D. DeWitt, D. Maier,
K.Dittrich, S.Zdonik, The Object-Oriented Database
System Manifesto, Proc, of the First Int. Conf. on De-
dictive and Object-Oriented Databases (DOOD 1989),
Kyoto, 1989, pp. 223-240

[Baader96] F. Baader, A formal definition for the expressive power
of terminological knowledge representation languages,
Journal of Logic and Computation, No.6, 1996, pp. 33-54

[Barendrecht84] H.P. Barendrecht, The Lambda Calculus: its syntax and
semantics, revised edition, North-Holland, Amsterdam,
1984

[BarwiseSeligman97] Jon Barwise & Jerry Seligman, Information flow: the
logic of distributes systems, Cambridge Tracts in The-
oretical Computer Science 44, Cambridge University
Press, 1997

[Behr95] By Quark as told to Ira Steven Behr, The Ferengi Rules
of Acquisition, Kangaroo pocket books, 1995.

[Benthem91] Johan van Benthem, Language in Action: Categories,
lambdas and Dynamic Logic, North-Holland, 1991

[Benthem93] Johan van Benthem, A Note on Dynamic Arrow Logic, in
J. van Eijck (ed.), Logic and Information Flow, Kluwer
1993

Bibliography 199

[Benthem2000a] Johan van Benthem, Categorial Grammar and Modal
Logic, draft paper for the Workshop on Computational
Linguistics and Logic, UiL OTS, University of Utrecht,
Sept. 6 2000

[Benthem2000b] Johan van Benthem, Information Transfer Across Chu
Spaces, Logic Journal of the IGPL, vol. 8, no. 6, Nov
2000, pp. 719-731

[BlackburnEtAlii93] P. Blackburn, C. Gardent, W. Meyer-Viol, Talking about
Trees, in: Proceedings of the 6th Conference of the Euro-
pean Chapter of the Association for Compuational Lin-
guistics, Utrecht, 1993, pp. 21-29

[BlackburnRijkeVenema01] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic,
Cambridge Tracts in Theoretical Computer Science. vol.
53, Cambridge University Press, 2001.

[BlackburnSeligman95] P. Blackburn & J. Seligman, Hybrid Languages, Journal
of Logic Language and Information, vol. 4, 1995, pp.
251-272

[Booch94] Grady Booch, Object-Oriented Analysis and Design with
Applications, Redwood City BA, Benjamin/Cummings,
1994

[Bucalo94] Anna Bucalo, Modalities in Linear Logic Weaker than
the Exponential ”of Course”: Algebraic and Relational
Semantics, Journal of Logic, Language, and Information,
No. 3, 1994, pp. 211-232

[Buszkowski86] W. Buszkowski, Completeness results for Lambek syn-
tactic calculus, Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, No. 32, 1986, pp. 13-28

[Cardelli84] Luca Cardelli, A Semantics of Multiple Inheritance, in:
G. Kahn, D.B. MacQueen, G. Plotkin (eds.), Semantics
of data types, Springer LNCS 173, 1984, pp. 51-67

[CardelliWegner85] Luca Cardelli, On Understanding Types, Data Abstrac-
tion, and Polymorphism, Computing Surveys, vol. 17,
n0o. 4, December 1985, pp. 471-522

[Cattell94] R.G.G. Cattell, The Object Database Standard:
ODMG-93, Release 1.1, Morgan Kaufmann Publ., 1994

200 Bibliography

[Cattell97] R.G.G. Cattell, The Object Database Standard: ODMG
2.0, Morgan Kaufmann Publ., 1997

[CattellEtAlii00] R.G.G. Cattell & D.G. Barry, The Object Data Stan-
dard: ODMG 3.0, Morgan Kaufmann Publ., 2000

[CoadYourdan91a] P. Coad & E. Yourdan, Object Oriented Analysis, Your-
dan Press, Englewood, 1991

[CoadYourdan91b] P. Coad & E. Yourdan, Object Oriented Design, Yourdan
Press, Englewood, 1991

[Codd70] E.F. Codd, A relational model of data for large shared
data banks, Communications of the ACM, no. 13, 1970,
pp. 377-387

[ColemanEtAlii94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H.
Gilchrist, F. Hayes, P. Jeremaes, Object Oriented De-
velopment: The Fusion Method, Prentice Hall, 1994

[Comm.ACM91n10] Communications of the ACM, no. 10, 1991

[Cousot90] P. Cousot, Methods and logics for proving programs, in:
J. van Leeuwen (ed.), Handbook of theoretical computer
science, Vol. B, North-Holland, 1990, pp. 841-993

[DarwenDate95] H. Darwen & C.J. Date, The third Manifesto, ACM SIG-
MOD Record no.3 1995.

[Dastani98] Mehdi Dastani, Languages of Perception, Dissertation,
Institute of Logic Language and Computation (ILLC),
University of Amsterdam, 1998

[Davis58] M. Davis, Computability and Unsolvability, McGraw-
Hill, 1958

[deChampaeuxEtAlii93] D. deChampeaux, D. Lea, P. Faure, Object-Oriented
System Development, Addison-Wesley, 1993

[Denneheuvel90] Sieger van Denneheuvel & Peter van Emde Boas, The
rule language RL/1, in: A.M. Tjoa & R. Wagner (eds.),
Proc. of the Int. Conf. on Database and Expert Systems
Applications (DEXA’90), Vienna, Austria, Springer,
1990, pp. 381-387

[Dosen88] Kosta Dosen, Sequent-Systems and Groupoid Models I.,
Studia Logica, vol. 47,No. 4, 1988, pp. 352-386

Bibliography 201

[Dosen89] Kosta Dosen, Sequent-Systems and Groupoid Models II.,
Studia Logica, vol. 48, No. 1 1989, pp. 41-65

[Dummett73] Michael Dummet, Frege’s Philosophy of language, Duck-
worth, 1973, pp. 545

[Dunn86] J. Dunn, Relevance Logic and Entailment, in¿ D. Gabbay
& F. Günther (eds.), Handbook of Philosophical Logic
III, D. Reidel, 1986, pp. 117-224

[EmdeBoas96] Peter van Emde Boas, Computerspelen en de identifi-
catie van objecten, in: Kwartaalschrift van de Univer-
siteit van Amsterdam, nummer 8, December 1996

[EmdeBoas98] Peter van Emde Boas, Formalizing UML; Mission Im-
possible?, (Position paper at OOPSLA’98 workshop #9;
Formalyzing UML; Why?; How?), X-1998-03, Institute
of Logic Language and Computation (ILLC), 1998

[FowlerScott00] Martin Fowler & Kendall Scott, UML Distilled second
edition, a brief guide to the standard object modeling lan-
guage, Addison-Wesley, 2000

[Frege1892] G. Frege, Über Sinn und Bedeutung, Zeitschr. f. Philos.
u. philos. Kritik, NF 100, 1892, pp 25-50

[GanterWille99] Bernard Ganter & Rudolf Wille, Formal Concept Anal-
ysis: Mathematical Foundations, Springer, 1999

[GareyJohnson79] M. Garey & D.S. Johnson, Computers and Intractibility;
A guide to the theory of NP-completeness, W.H. Freeman
and Co., San Francisco, 1979

[GeachBlack52] Peter Geach & Max Black (eds.), Translations from the
philosophical writings of Gottlob Frege, Basil Blackwell
Publisher, 1952

[Girard87] J.-Y Girard, Linear Logic, Theoretical Computer Sci-
ence, No. 50, pp. 1-102

[Gurevich88] Yuri Gurevich, Logic and the Challenge of COmputer
Science, in: Egon Börger (ed.), Trends in Theoretical
Computer Science, Computer Science Press, 1988, pp.
1-57

202 Bibliography

[Haas91] Erik de Haas, Object Oriented Application Structuring
and its Semantics, Master Thesis, FWI, Universiteit van
Amsterdam, October 1991

[HaasEmdeBoas93] Erik de Haas & Peter van Emde Boas, Object Ori-
ented Flow Graphs and their Semantics, in : Andrzej
M. Borzyszkowski, Stefan Sokolowski (Eds.), Mathemat-
ical Foundations of Computer Science 1993, 18th Inter-
national Symposium, MFCS’93, Springer, Lecture Notes
in Computer Science 711, 1993, pp. 485-494

[Haas94] Erik de Haas, Categorial Graphs: The Logic, in: Arthur
Nieuwendijk (Ed.), Accolade ’94, Dutch Graduate School
on Logic (Onderzoekschool Logica, OzsL), 1994, pp. 103-
119

[Haas95] Erik de Haas, Categorial Graphs, in: Horst Reichel
(Ed.), Fundamentals of Computation Theory, 10th in-
ternational conference, FCT’95, Springer, Lecture Notes
in Computer Science 965, 1995, pp. 263-272

[HaasAdriaans99] Erik de Haas & Pieter Adriaans, Substructural Logic: A
framework for second generation data mining algorithms,
in Paul Dekker (ed.) Proceedings of the twelfth Ams-
terdam Colloquium (AC99), University of Amsterdam ,
December 18-21 1999, pp. 121-126

[Haas01] Erik de Haas, Adding dynamics to categorial graphs,
Manuscript, 2001

[HendersonEdwards90] B. Henderson-Sellers, J.M. Edwards, The Object Ori-
ented Systems Life Cycle, Communications of the ACM,
vol. 33, no. 9, 1990, pp. 142-159

[HopcroftUllman79] J.E. Hopcroft & J.D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison-Wesley,
1979

[HughesCresswell68] G.E. Hughes & M.J. Cresswell, An Introduction to Modal
Logic, Methuen and Co Ltd, 1968

[Husserl70] Edmund Husserl, Philosophie der Artithmetik, (Heraus-
gegeben von Lothar Eley), Martinus Nijhof, Den Haag,
1970

Bibliography 203

[Jacobson85] Ivar Jacobson, Concepts for modeling large real time sys-
tems, Dissertation, Department of Computer Systems,
The Royal Institute of Technology, Stockholm, Sept.
1985

[JacobsonEtAlii92] I. Jacobson, M. Christerson, P. Jonsson, P. Övergaard,
Object Oriented Software Engineering, Addison-Wesley,
1992

[JacobsonEtAlii99] Ivar Jacobson & Grady Booch & James Rumbaugh, The
Unified Software Development Process, Addison-Wesley,
1999

[KiferLausen89] M. Kifer & G. Lausen, F-Logic: A Higher-order language
for reasoning about objects, inheritance, and scheme, in:
Proc. of the ACM SIGMOD, 1989, pp. 134-146

[KiferWu93] M. Kifer & J. Wu, A Logic for Programming with Com-
plex Objects, Journal of Computer and System Sciences,
No. 47, 1993, pp. 77-120

[Kurtonina95] Natasha Kurtonina, Frames and Labels. A Modal Anal-
ysis of Categorial Inference, Dissertation, Institute of
Logic Language and Computation (ILLC), University of
Amsterdam, 1995

[Lambek58] J. Lambek, The mathematics of sentence structure, The
American Mathematical Monthly, No. 65, 1958, pp. 154-
170

[Leeuwen93] Jacques van Leeuwen, Identity: Quarrelling with an un-
problematic notion, LP-93-04, Institute of Logic Lan-
guage and Computation (ILLC), Amsterdam, 1993

[LewisPapadimitriou81] Harry R. Lewis & Christos H. Papdimitriou, Elements
of the theory of computation, Prentice-Hall, 1981

[Linsky71] Leonard Linski (ed.), Reference and Modality, Oxford
University Press, 1971

[Maier86] D. Maier, A Logic for Objects, in: Proc. Workshop
on Foundations of Deductive Databases and Logic Pro-
gramming, Washington D.C., 1986, pp. 6-26

[Marshall00] Chris Marchall, Enterprise modeling with UML, de-
signing successful software through business analysis,
Addison-Wesley 2000.

204 Bibliography

[MartinOdell92] J. Martin, J. Odell, Object Oriented Analysis and De-
sign, Draft manuscript, 1992.

[Milner90] J. Milner, Operational and algebraic semantics of con-
current processes, in: J. van Leeuwen (ed.), Handbook
of theoretical computer science, Vol. B, North-Holland,
1990, pp. 1201-1242

[OnoKomori85] H, Ono, Y. Komori, Logics without contraction rule, The
Journal of Symbolic Logic, No. 50, 1985, pp. 169-201

[Pentus93] Mati Pentus, Lambek grammars are context free, Proc.
of the 8th Ann. Symp. on Logic in Computer Science,
1993, pp. 429-433.

[PomykalaHaas93] Janusz A. Pomykala & Erik de Haas, A Note on Cate-
gories of Information Systems, in: Wojchiech P. Ziarko,
Rough Sets, Fuzzy Sets and Knowledge Discovery, pro-
ceedings of the international workshop on rough sets and
knowledge discovery (RSKD’93), Springer, Workshops
in Computing, 1993, pp. 149-156

[PomykalaHaas94] Janusz A. Pomykala & Erik de Haas, A Note on Cat-
egories of Information Systems, Demonstratio Mathe-
matica, vol. XXVII, No. 3-4, 1994, pp. 641-650

[PomykalaHaas96] Janusz A. Pomykala & Erik de Haas, A Note on Cate-
gories of Information Systems, Fundamenta Informati-
cae vol. 2, No. 2/3, 1996, pp. 221-227

[Pooley87] R. Pooley, Introduction to programming in Simula, Al-
fred Waller ltd., 1987

[Quine46] Willard V. Quine, Concatenation as a basis for arith-
metic, Journal of Symbolic Logic, 11(4), pp. 105-114,
1946

[RaysideCampbell00] Derek Rayside & Gerard T. Campbell, An Aris-
totelian Understanding of Object-Oriented Program-
ming, in Proc. of the Conf. on Object-Oriented Program-
ming Systems, Languages, and Applications, OOPSLA
2000, ACM Sigplan Notices, Vol. 35, No. 10, October
2000, pp. 337-353

[Reynolds80] J.C. Reynolds, Mathematical Semantics, in: B.W. Ar-
den, What can be Automated? The Computer Science

Bibliography 205

and Engineering Research Study, MIT Press, 1980, pp.
261-188

[RijkeVenema95] Maarten de Rijke & Yde Venema, Sahlqvist’s theorem
for Boolean algebras with operations, Studia Logica, no.
95, pp. 61-78, 1995

[RistTerwilliger95] Robert Rist & Robert Terwilliger, Object Oriented pro-
gramming in Eiffel, Prentice Hall, 1995

[Ross77] D. Ross, Structured Analysis (SA): A Language for com-
municating idea’s, IEEE Transactions on Software Engi-
neering, vol. 3, no. 1, pp. 16-34, January 1977

[Ross85] D. Ross, Applications and Extensions of SADT, IEEE
Computer, vol. 18, no. 1, pp. 25-34, April 1985

[Rotterdam96] Ernest Rotterdam, OORL, Manuscript, Institute of
Logic, Language and Computation, University of Am-
sterdam, 1996.

[Rounds97] W. Rounds, Feature Logics, in: J. van Benthem, A. ter
Meulen (eds.), Handbook of Logic and Language, North-
Holland, 1997, pp. 475-533

[RumbaughEtAlii91] J. Runbaugh, M. Blaha, W. Premerlani, F. Eddy,
W. Lorensen, Object Oriented Modeling and Design,
Prentice-Hall, 1991

[ScottStrachey71] D.S. Scott and C. Strachey, Toward a mathematical se-
mantics for computer languages, in: J. Fox (ed.), Proc.
Symposion on Computers and Automata, Polytech In-
stitute of New York, 1971, pp. 19-46

[ShlaerMellor88] S. Shlaerm S.J. Mellor, Object-Oriented Systems Analy-
sis: Modeling the World in Data, Yourdan Press, 1988

[Smith95] David N. Smith, IBM Smalltalk: The language, Ben-
jamin/Cummings Publishing Co., 1995

[Spaan93] Edith Spaan, Complexity of Modal Logics, Disserta-
tion, Department of Mathematics and Computer Sci-
ence, University of Amsterdam, 1993

[SQL3] SQL-3, ISO-ANSI working draft, X3H2-93-359 and
MUN-003, 1993

206 Bibliography

[Stroustrup91] Bjarne Stroustrup, The C++ Programming Language,
second edition, Addison-Wesley, 1991

[StonebrakerEtAlii90] M. Stonebraker et alii, Third generation Database Sys-
tems Manifesto, ACM SIGMOD Record 19,3, September
1990

[Tailvalsaari96] Antero Taivalsaari, On the notion of Inheritance, ACM
Computing Surveys, Vol. 28, No. 3, September 1996, pp.
438-479

[Troelstra92] Anne S. Troelstra, Lecture Notes on Linear Logic, CSLI
Lecture Notes No. 29, 1992

[Ullman88] J.D. Ullman, Principles of database and knowledge-base
systems, Computer Science Press, 1988

[Ullman91] J.D. Ullman, A Comparison between Deductive and
Object-Oriented Database Systems, Proc. of the Conf. on
Deductive and Object-Oriented Databases (DOOD’91),
1991, pp.263-276

[UML97] UML 1.1 Specification, OMG documents ad970802-
ad970809, www.omg.org 1997.

[UML99] UML 1.3 Specification, OMG documents ad990606-
ad990609, www.omg.org 1999.

[Venema91] Yde Venema, Many-Dimensional Modal Logic, Disser-
tation, Department of Mathematics and Computer Sci-
ence, University of Amsterdam, 1991

[Venema94] Yde Venema, A crash course in arrow logic, Logic Group
preprint series 107, Department of Philosophy, Utrecht
University, 1994

[WarmerKleppe99] Jos Warmer & Anneke Kleppe, The Object Constraint
Language, Precise Modeling with UML, Addison-Wesley,
1999

[WijngaardenEtAlii76] A. van Wijngaarden et alii, Revised Report on the Algo-
rithmic Language Algol 68, Springer, 1976

Samenvatting

Dit proefschrift bevat een onderzoek naar formele aspecten van object oriëntatie.
Het bevat een semantische beschrijving van een generieke taal voor modelleren
en specificeren van object geörienteerde informatiesystemen. Deze semantische
beschrijving geeft inzicht in de constructies die gebruikt worden bij het object
geörienteerd modelleren. Dit inzicht kan voor een aantal doeleinden worden
gebruikt, bijvoorbeeld voor het ontwikkelen en verfijnen van geautomatiseerde
object geörienteerde software ontwikkelsystemen of voor het ontwikkelen van op-
timalisatie technieken voor algoritmen die object geörienteerde data verwerken.

In de praktijk van object geörienteerd modelleren en object geörienteerde
databases hebben de gebruikte talen meestal geen formeel wiskundig fundament.
Belangrijke voorbeelden van zulke talen zijn UML (de industriële standaard taal
voor object geörienteerd modelleren) en ODMG (een voorgestelde standaard voor
object geörienteerde database talen). Ondanks dat deze talen geen formele basis
hebben word er toch een aantal ’semi-formele’ taken mee uitgevoerd. Voor UML
bestaan er zogenaamde ’code-generatie’ algoritmen, die UML expressies vertalen
naar expressies in object geörienteerde programmeertalen. Ook bestaan er algorit-
men voor query optimalisatie op object geörienteerde database modellen, die zijn
opgeschreven in UML of ODMG. Omdat deze talen geen formele basis hebben,
zijn deze systemen verdacht voor inconsistenties en ambigüiteiten. Daarom kun-
nen bijvoorbeeld sommige UML expressies niet worden vertaald. Onderzoek naar
de mathematische fundamenten van zulk soort talen beoogt de ontwikkeling van
systemen die object geörienteerde talen gebruiken te ondersteunen, door het weg-
nemen van onduidelijkheden en het voorzien in een consistente interpretatie van
deze talen.

Het onderzoek naar semantische aspecten van object oriëntatie is ook inter-
essant vanuit een ander oogpunt. De concepten die belangrijk zijn in object
oriëntatie komen uit de praktijk, en zijn daar ontwikkeld om informatie analisten
en software ontwikkelaars te helpen op een nette en precieze wijze hun informatie
modellen op te schrijven. Deze informatie modellen zijn afspiegelingen van een

207

208 Samenvatting

werkelijke situatie. In deze zin raakt dit onderzoek thema’s uit de filosofie. In de
filosofie is het immers een belangrijk doel om op precieze wijze aspecten van de
werkelijkheid te beschrijven.

In dit proefschrift worden de volgende zeven onderwerpen behandeld:

1. In hoofdstuk 1 is een analyse gemaakt van de praktijk context waarin object
geörienteerde talen worden gebruikt. Deze analyse is belangrijk, omdat
deze voorwaarden stelt aan de (mathematische) interpretatie van de talen.
Een informatie analist begint normalerwijze aan zijn modelleertaak met het
benoemen van objecten. Dit benoemen resulteert in eerste instantie alleen
in ’labels’, omdat er aan het begin van de analyse nog geen kennis zal zijn
van de structuur en het gedrag van de objecten (daar moet de analist juist
achter zien te komen). Toch zal de analist reeds in het begin delen van
zijn model moeten opschrijven om hierover te kunnen communiceren. In de
loop van zijn analyse zullen de objecten meer betekenis en structuur gaan
krijgen, maar op elk moment zal het zo kunnen zijn dat objecten slechts
partiëel, of zelfs ’ongefundeerd’ beschreven zijn. De taal en de interpretatie
daarvan zal met deze ’partialiteit’ en ’ongefundeerdheid’ om moeten kunnen
gaan.

2. Hoofdstuk 2 bestaat uit een analyse van de concepten die over het algemeen
als belangrijk voor het object geörienteerde paradigma worden bestempeld.
Omdat deze concepten uit de praktijk, zonder formele basis, zijn geboren,
bestaan er vaak meerdere invullingen van de concepten. In de analyse wijzen
wij op mogelijke problemen met het interpreteren van de concepten en doen
wij een voorstel voor het (informeel) interpreteren van deze concepten. Deze
analyse vormt de basis van de formalisatie in de opvolgende hoofdstukken.

3. In hoofdstuk 3 introduceren wij de formele taal die wij ontwikkeld hebben
voor de mathematisering van object geörienteerde talen. Deze taal heeft
zowel grafische als tekstuele componenten en wordt aangeduid met: ”de taal
der categoriale grafen”. Deze taal is een generieke taal waarop de meeste
basiscomponenten en constructoren uit de object geörienteerde modelleer
en database talen kunnen worden afgebeeld. In dit hoofdstuk worden syn-
tactische eigenschappen van deze taal behandeld, en wordt er een probleem
opgelost dat te maken heeft met het imploderen en exploderen van grafische
taalcomponenten.

4. Het formele model voor object geörienteerde informatiesystemen wordt ge-
definiëerd in hoofdstuk 4. Dit model vormt het semantisch model voor
de taal der categoriale grafen. Daarnaast definiëren wij een formele inter-
pretatie van deze formele object geörienteerde taal in dit model, en een

Samenvatting 209

syntactische calculus voor de taal. In andere woorden: wij definiëren een
logica voor object oriëntatie.

5. In hoofdstuk 5 schetsen wij de wetenschappelijke context van de logica voor
object oriëntatie die wij zojuist hebben geconstrueerd. Hierin behandelen
wij de notie van formele semantiek in de informatica, en de logica theo-
rieën die ten grondslag liggen aan onze logica voor object oriëntatie. Dit
zijn modale logica en substructurele logica. Verder laten wij een aantal aan
onze logica gerelateerde systemen de revue passeren. Aan het eind van dit
hoofdstuk wijzen wij nog op een tweetal toepassingen van onze logica: op
het gebied van object geörienteerd software ontwikkelen, en op het gebied
van ’data mining’ op object geörienteerde data.

6. In hoofdstuk 6 vindt de logische analyse plaats van onze logica voor ob-
ject geörienteerde informatiesystemen. In dit hoofdstuk worden de con-
cepten ontleed in opzichzelfstaande logica’s en de thema’s ’axiomatisering’,
’compleetheid’ en ’computationele complexiteit’ behandeld. Hierbij geeft
de logica inzicht in de concepten die een rol spelen bij object geörienteerde
systemen. Daarnaast doen wij ook iets terug voor de logica: wij doen een
voorstel om op een bepaalde manier logica te bedrijven, die gebaseerd is op
intuities voor object oriëntatie.

7. Hoofdstuk 7 bevat de analyse van vier filosofische vraagstukken, waarbij
wij gebruik maken van de formele taal die in dit hoofdstuk ontwikkeld is.
In de filosofie is het bekend dat reeds beschrijvingen van basale concepten
uit de werkelijkheid tot lastige vraagstukken kunnen leiden. Aangezien
object geörienteerd modeleren tot doel heeft zaken uit de werkelijkheid te
beschrijven, is het niet meer dan natuurlijk dat wij daar dezelfde lastige
vraagstukken tegen kunnen komen. In de praktijk wordt echter meestal
over deze lastige problemen heengestapt, omdat de informele talen uit de
praktijk vaak geen heldere interpretatie geven. Dat gebeurt terwijl deze
vraagstukken toch voor inconsistenties kunnen zorgen en daardoor tot fouten
kunnen leiden, omdat de expressies in de informele taal steeds voor verschil-
lende interpretaties vatbaar zijn. Wij laten met behulp van vier voorbeelden
zien dat je door gebruik te maken van onze formele taal deze problemen
helder kunt krijgen. Zodoende kun je een bewuste keuze maken in het inter-
preteren van expressies waarin lastige filosofische vraagstellingen schuilgaan.
Hiermee tonen wij aan dat onze logica voor object oriëntatie behulpzaam is
voor het analyseren van complexe object geörienteerde informatiesystemen.

Titles in the ILLC Dissertation Series:

ILLC DS-1996-01: Lex Hendriks
Computations in Propositional Logic

ILLC DS-1996-02: Angelo Montanari
Metric and Layered Temporal Logic for Time Granularity

ILLC DS-1996-03: Martin H. van den Berg
Some Aspects of the Internal Structure of Discourse: the Dynamics of Nomi-
nal Anaphora

ILLC DS-1996-04: Jeroen Bruggeman
Formalizing Organizational Ecology

ILLC DS-1997-01: Ronald Cramer
Modular Design of Secure yet Practical Cryptographic Protocols

ILLC DS-1997-02: Natas̆a Rakić
Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk
On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera
Seeking Explanations: Abduction in Logic, Philosophy of Science and Artifi-
cial Intelligence

ILLC DS-1997-05: Harry Stein
The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-
Following and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld - de Smet
On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s.

ILLC DS-1998-01: Sebastiaan A. Terwijn
Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart
Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald
The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino
Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation,
Interpolation

ILLC DS-1998-05: Mehdi Dastani
Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy
Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima’an
Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat
Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leib-
niz

ILLC DS-1999-04: Barbara Terhal
Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wasserman
Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps
A Logical Approach to Computational Theory Building (with applications to
sociology)

ILLC DS-2000-03: Marco Vervoort
Games, Walks and Grammars: Problems I’ve Worked On

ILLC DS-2000-04: Paul van Ulsen
E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces
Logic Engineering. The Case of Description and Hybrid Logics

ILLC DS-2000-06: Hans van Ditmarsch
Knowledge Games

ILLC DS-2000-07: Egbert L.J. Fortuin
Polysemy or monosemy: Interpretation of the imperative and the dative-
infinitive construction in Russian

ILLC DS-2001-01: Maria Aloni
Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch
Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-
ropharmacology.

ILLC DS-2001-03: Erik de Haas
Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff
Provability Logic and Admissible Rules

