
Logic for Social Software

Marc Pauly

Logic for Social Software

ILLC Dissertation Series 2001-10

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206

e-mail: illc@wins.uva.nl
homepage: http://www.illc.uva.nl/

Logic for Social Software

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. J.J.M. Franse

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op donderdag 13 december 2001, te 10.00 uur

door

Marc Pauly

geboren te Mönchengladbach, Duitsland.

Promotores: Prof.dr. J. van Benthem
Prof.dr. J. van Eijck

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam

The research for this thesis was carried out at the Center for Mathematics and
Computer Science (CWI) in Amsterdam as part of the Spinoza project Logic in
Action.

Copyright c© 2001 by Marc Pauly

Cover and bookmark design by Barbara Düsselberg
based on an art work by Agnes Pauly.

ISBN: 90–6196–510–1

Contents

Acknowledgments ix

Abstract xi

Samenvatting xiii

1 Let the Games Begin 1

1.1 Logic and Games . 1
1.2 Linking Two Fields of Research 3

1.2.1 Logic in Computer Science 3
1.2.2 Game Theory and Social Choice 5
1.2.3 Dijkstra meets von Neumann 7
1.2.4 Praise of FoLLI . 9

1.3 Objectives . 10
1.3.1 Logics for Social Software 10
1.3.2 Programs vs. Games . 11
1.3.3 Individuals vs. Coalitions 12

1.4 Overview . 13

2 Multi-Agent Models of Power 15

2.1 Types of Interaction . 16
2.1.1 Strategic Games . 16
2.1.2 Dictatorships . 17
2.1.3 Empty Games . 18

2.2 A Static Model of Individual Ability 19
2.2.1 Individual Ability in Empty Games 20
2.2.2 Individual Ability in Strategic Games 20
2.2.3 Individual Ability in Dictatorships 23

2.3 A Static Model of Group Ability 24

v

2.3.1 Group Ability in Empty Games 26
2.3.2 Group Ability in Strategic Games 27
2.3.3 Group Ability in Dictatorships 30
2.3.4 Individual vs. Group Ability 31

2.4 Dynamic Models of Ability . 32
2.4.1 Dynamic Effectivity Frames 32
2.4.2 The Internal View: Coalition Frames 34
2.4.3 The External View: Game Frames 37

2.5 Identity Politics . 39
2.6 Summary . 41
2.7 Bibliographic Notes . 42

3 Coalition Logic 45

3.1 Syntax and Semantics . 46
3.2 Bisimulation Invariance . 48
3.3 Complexity I: Model Checking . 49

3.3.1 Representation of Coalition Models 50
3.3.2 Time Complexity of Model Checking 52

3.4 Axiomatization . 52
3.4.1 General Coalition Frames 53
3.4.2 Extensive Games with Simultaneous Moves 54
3.4.3 Extensive Games without Simultaneous Moves 56

3.5 Modal Logic as Coalition Logic 58
3.5.1 One-Player Games: Normal Modal Logic 58
3.5.2 Two-Player Games: Non-Normal Modal Logic 59

3.6 Complexity II: Satisfiability . 60
3.6.1 General Ability . 61
3.6.2 Extensive Games with Simultaneous Moves 63
3.6.3 Extensive Games without Simultaneous Moves 66

3.7 The Individual Fragment of Coalition Logic 68
3.7.1 Expressiveness . 68
3.7.2 Complexity . 69

3.8 Discussion . 71
3.8.1 Modal Logic and Complexity 71
3.8.2 Programs vs. Games . 73
3.8.3 Individuals vs. Coalitions 74
3.8.4 Epistemic Logic vs. Coalition Logic 75

3.9 Bibliographic Notes . 75

4 Extended Coalition Logic 77

4.1 Ability in the Long Run . 77
4.2 Syntax & Semantics . 80
4.3 Some Meta-Theory . 83

vi

4.3.1 Local vs. Global Properties of Ability 83
4.3.2 Model checking . 85
4.3.3 Expressiveness . 86

4.4 Alternating Temporal Logic . 88
4.5 Distributed Artificial Intelligence 91
4.6 Summary . 92
4.7 Bibliographic Notes . 93

5 Applications of Coalition Logic 95

5.1 Fashion Rights . 96
5.2 Telephone Democracy . 98
5.3 Eternal Voting . 101
5.4 Bonn vs. Berlin . 103
5.5 Bibliographic Notes . 107

6 Game Logic 109

6.1 Syntax & Semantics . 110
6.2 Bisimulation Again . 112
6.3 Axiomatization . 113
6.4 Alternations . 115

6.4.1 The Generalized µ-Calculus 115
6.4.2 Embedding Game Logic into the µ-Calculus 117

6.5 Complexity of Model Checking 120
6.6 Complexity of the Satisfiability Problem 124
6.7 Discussion . 126

6.7.1 Simulating Game Models by Kripke Models 126
6.7.2 Programs vs. Games . 127

6.8 Bibliographic Notes . 128

7 Game Logic over Kripke Models 129

7.1 Semantics: GL, PDL, and the µ-Calculus 129
7.2 Expressiveness . 131

7.2.1 GL vs. PDL . 131
7.2.2 GL vs. µ-Calculus . 132

7.3 Axiomatization and Induction . 133
7.3.1 Axiomatization . 133
7.3.2 The Induction Axiom . 134

7.4 Varieties of Iteration . 136
7.5 Complexity . 137
7.6 Characterizing Game Operations 138

7.6.1 First-Order Games . 139
7.6.2 Beyond First-Order Games 143

7.7 Discussion . 144

vii

7.8 Bibliographic Notes . 145

8 Game Over 147

8.1 Bringing it All Together . 147
8.2 Summary of Theoretical Results 150
8.3 The Future of Social Software . 154

A Fixpoint Facts 157

Bibliography 159

Index 169

List of Symbols 173

viii

Acknowledgments

My mother would like to thank Johan van Benthem for bringing me to the Nether-
lands, which reduced the travel distance to my parents’ house from 10 hours by
plane to 2 hours by train. My father would like to thank Jan van Eijck for orga-
nizing OzsL school weeks, which introduced me to Italian culture. I would like to
thank both Johan and Jan for their advice regarding this thesis and their general
support during the past four years.

For comments on earlier drafts of this thesis I am especially grateful to Dietmar
Berwanger, Hans van Ditmarsch, Peter van Emde Boas, Valentin Goranko, Rohit
Parikh, Ben Rodenhäuser and Yde Venema. Erich Grädel, Martin van Hees and
Ronald de Wolf have provided much appreciated further suggestions regarding,
respectively, the µ-calculus, social choice theory and Sperner’s theorem. Also, I
thank all members of the logic and games gang in and around Amsterdam for the
many discussions we have had.

Eva Hoogland has done her best trying to shorten the length of my sentences,
but I’m afraid that since she only read the Dutch abstract, the rest of this thesis
may still be viewed by some as an example of German philosophical prose at its
worst, with sentences which go on and on until finally at the very end they reveal
what one would have liked to know at the beginning, the verb.

The Centrum voor Wiskunde en Informatica (CWI) and the Institute for
Logic, Language and Computation (ILLC) have provided intellectually stimulat-
ing environments to work in. Furthermore, short research visits to places outside
the Netherlands have convinced me that universities are like travel agencies and
airline companies, they allow their employees to travel the world at almost no
cost. Besides, already behind their desks at home, scientists are just tourists of
knowledge after all, as a colleague once remarked. (In fact, he made this remark
before going on vacation, in order to console those who had to stay at home
learning for exams.) But before starting to give an account of the 4 years of
this purely intellectual tourism, I will briefly recapitulate some of the cases where
inner and outer travel coincided, also wishing to thank those who made these

ix

travels possible.
In February of 1999, Gabriel Sandu invited me to Helsinki together with Theo

Janssen, resulting in a visit which furthered not only my interest in Independence-
Friendly logic but also my knowledge of extreme climate experiences with a few
days of −20◦ Celsius. We only survived these due to the sauna of the university
guest house. Part of spring 2000 I spent in New York, visiting Rohit Parikh.
There, my study of Coalition Logic got an unintended practical bend: The first
night at my apartment I was welcomed by an overflowing toilet. While this was
probably not the best way of introducing myself to the neighbors, we ended up
with a coalitional strategy for taking care of the mess. Later in that year, I
visited Erich Grädel and his group in Aachen for a week in October. Together
with Dietmar Berwanger, we had a rather intense week trying to figure out the
exact relationship between Game Logic and the µ-calculus. In particular sections
6.4 and 7.2.2 have benefitted from these discussions. January 2001 gave me
another opportunity to dip into the German university culture when Hugo Volger
invited me to Passau. This trip conclusively established that I was turning into a
real Dutchman: German formalities triggered some amusement when I was asked
for my academic title, to be printed in the lecture announcement. My answer
“preferably none” was unable to prevent the announcement of Herr M.Sc. Marc
Pauly, Amsterdam. The talk (held in German) went well, and I was particularly
happy to be congratulated with my German which, after all, contained only a
minor Dutch accent. This experience yielded the final impetus for finishing this
thesis before it was too late . . .

x

Abstract

The term social software refers to the project of analyzing social procedures and
processes using the formal methods of computer science. Examples of the social
procedures we have in mind are cake-cutting algorithms and voting procedures.
What distinguishes these procedures is that there are a number of agents who
interact strategically in a well-defined manner. We are interested in developing
logical tools for proving the correctness and efficiency of such social software.
For a cake-cutting algorithm, this may mean showing that the algorithm can
guarantee a fair piece to everyone with only a few cuts. For a voting procedure,
we would want a fair distribution of political power while reducing the number
of votes which need to be taken to a minimum.

Two logics will be developed and studied for that purpose. Coalition Logic,
introduced in chapter 3, allows one to reason about the power of coalitions in
various kinds of extensive games. The formula [C]ϕ expresses that at the present
state of the game/process, the group of agents C has a joint strategy for bring-
ing about a next state where ϕ holds. We provide complete axiomatizations of
this logic for extensive games with and without simultaneous moves, as well as
complexity results for model checking and the satisfiability problem. Chapter
4 extends Coalition Logic with an extra modality, adding formula [C ∗]ϕ which
expresses that the group of agents C has a joint strategy for bringing about ϕ at
some time in the future.

The metatheoretic results obtained for Coalition Logic also allow us to com-
pare reasoning about individuals to reasoning about groups: For certain classes
of social processes, reasoning about individuals is less complex than reasoning
about groups, assuming that NP 6= PSPACE. Similarly, we can compare different
classes of processes in terms of their complexity, asking, e.g., whether reasoning
about situations where agents can act simultaneously is more or less complex
than reasoning about situations where agents can only act one after the other.

Chapter 5 provides some examples of how Coalition Logic can be applied in
the analysis and synthesis of social processes. Most of the examples are essen-

xi

tially voting procedures, including also the Bonn vs. Berlin debate of the German
parliament. The verification of properties of a social process can be done via
model checking in Coalition Logic. Generating a process which satisfies a certain
specification on the other hand can be formulated as a satisfiability problem.

Game Logic is the second logic for social software we study (chapters 6 and
7). In contrast to Coalition Logic, here the social process is an explicit part
of the logical language, where the formula 〈γ〉ϕ expresses that player 1 has a
strategy in process/game γ for achieving an outcome which satisfies ϕ. The
language of Game Logic allows one to reason about determined 2-player games.
It also contains game operations such as sequential composition, choice, and role
interchange for constructing complex games which have internal structure.

We compare Game Logic to a number of well-known logics which have been
proposed for reasoning about programs (i.e., 1-player games). By looking at the
complexity and expressive power of the different logics, we are able to compare
how reasoning about programs differs from reasoning about games. As may be
expected, games can be more complex than programs, and more generally, veri-
fying properties of a game becomes more complex the more players alternate in
taking turns.

This thesis tries to build a bridge between computer science on the one hand
and game theory and social choice theory on the other hand. The logics discussed
in this thesis are extensions of modal logics used in computer science for reasoning
about computational processes. More precisely, Coalition Logic is closely related
to Alternating Temporal Logic whereas Game Logic is a cousin of Propositional
Dynamic Logic and the modal µ-calculus. On the other hand, we make use of
notions and results from game theory and the theory of social choice, in particular
in chapter 2 which develops a general semantic model underlying both Coalition
Logic and Game Logic. At the core of this model lies the notion of an effectivity
function which has been studied extensively in social choice theory.

xii

Samenvatting

De term sociale software verwijst naar het projekt, dat probeert om met behulp
van formele methoden uit de informatica, sociale procedures en processen te anal-
yseren. Voorbeelden van zulke processen zijn algoritmen voor het verdelen van
een koek en verkiezingsprocedures. Kenmerkend voor dit soort procedures is dat
een aantal agenten betrokken zijn in een wel-gedefinieerde strategische interac-
tie. Wij zijn gëınteresseerd in het ontwikkelen van logische hulpmiddelen om de
correctheid en efficiëntie van zulke sociale software te kunnen bewijzen. Voor het
koek-verdeel algoritme betekent dit aan te tonen dat iedere persoon met zo min
mogelijk sneden een voldoende groot stuk krijgt. Voor een verkiezingsprocedure
zouden wij willen aantonen dat de politieke macht op een juiste manier is verdeeld
en dat het aantal stemmingen tot een minimum wordt beperkt.

Wij behandelen twee logica’s voor deze taak. Coalition Logic, gëıntroduceerd
in hoofdstuk 3, is geschikt voor het redeneren over de macht van coalities in ver-
schillende soorten extensieve spelen. De formule [C]ϕ beweert dat op dit moment
van het spel de groep C een gemeenschappelijke strategie heeft om in één stap
een situatie te bereiken die aan ϕ voldoet. Wij geven volledige axiomatiseringen
van deze logica voor extensieve spelen met en zonder simultane zetten, en geven
verder resultaten over de complexiteit van model checking en het vervulbaarheid-
sprobleem. Hoofdstuk 4 breidt Coalition Logic uit met een extra modaliteit. De
nieuwe formule [C∗]ϕ beweert dat groep C een gemeenschappelijke strategie heeft
om ϕ in een willekeurig aantal stappen te bereiken.

De metatheoretische resultaten voor Coalition Logic staan ons ook toe een
vergelijking te maken tussen het redeneren over individuen en het redeneren over
groepen: Voor sommige klassen van sociale processen is redeneren over individuen
makkelijker dan redeneren over groepen, verondersteld dat NP 6= PSPACE. Op
dezelfde manier vergelijken wij de complexiteit van verschillende soorten pro-
cessen, bijv. door te vragen of het redeneren over situaties waar agenten simul-
taan handelingen verrichten minder of meer complex is dan het redeneren over
situaties waar agenten alleen achter elkaar acties kunnen uitvoeren.

xiii

Hoofdstuk 5 geeft voorbeelden die laten zien hoe Coalition Logic kan wor-
den gebruikt in de analyse en synthese van sociale processen. De meeste voor-
beelden zijn in essentie verkiezingsprocedures zoals het debat over het Bonn-
Berlijn vraagstuk in de Duitse Bondsdag. De verificatie van eigenschappen van
een sociaal proces gebeurt via model checking in Coalition Logic. De generatie
van een sociaal proces dat voldoet aan een bepaalde specificatie aan de andere
kant wordt beschreven in termen van een vervulbaarheidsprobleem.

Game Logic is de tweede logica voor sociale software die wij bestuderen (hoofd-
stukken 6 en 7). In tegenstelling tot Coalition Logic is het sociale proces in
Game Logic een expliciet onderdeel van de logische taal, waarbij de formule 〈γ〉ϕ
weergeeft dat speler 1 in spel γ een strategie heeft voor het bereiken van een
situatie die aan ϕ voldoet. De taal van Game Logic is geschikt om te redeneren
over gedetermineerde spelen voor 2 spelers. In deze taal kunnen ook speloperaties
uitgedrukt worden zoals sequentiele compositie, keuze en rolverwisseling.

Wij vergelijken Game Logic met een aantal bekende logica’s voor het redeneren
over programma’s (i.e., spelen voor 1 speler) door te kijken naar de complexiteit
en de uitdrukkingskracht van de verschillende logica’s. Op die manier kunnen
wij redeneren over programma’s vergelijken met redeneren over spelen. Zoals
te verwachten is, zijn spelen vaak complexer dan programma’s, en algemener
geldt dat het verifiëren van eigenschappen in spelen complexer wordt naarmate
de beurten van de spelers vaker alterneren.

Dit proefschrift probeert een brug te slaan tussen informatica aan de ene kant
en speltheorie en sociale keuze theorie aan de andere kant. De logica’s die in dit
proefschrift worden besproken zijn uitbreidingen van de modale logica’s die in de
informatica worden gebruikt om over computationele processen te redeneren. Zo
is Coalition Logic nauw gerelateerd aan Alternating Temporal Logic en Game
Logic heeft veel verbanden met Propositional Dynamic Logic en de modale µ-
calculus. Aan de andere kant maken wij nogal wat gebruik van noties en resultaten
uit de speltheorie en de sociale keuze theorie, met name in hoofdstuk 2 waar wij
een algemeen semantisch model ontwikkelen voor zowel Coalition Logic als ook
Game Logic. Het model is gebaseerd op de notie van een effectiviteitsfunctie, een
notie waar veel onderzoek naar is gedaan in de sociale keuze theorie.

xiv

Chapter 1

Let the Games Begin

It is an old idea that thinking to the bottom of our knowledge, all
human activity seems merely play. Those who are willing to content
themselves with a metaphysical conclusion of this kind should not
read this book.

Johan Huizinga

1.1 Logic and Games

Logicians like to play games. In fact, not only logicians like to play games, for
homo sapiens seems to be quite a close relative of homo ludens [69]. For the logi-
cian, however, playing games can be very useful besides being entertaining. As a
consequence, the professional logician comes close to fulfilling one of his childhood
dreams: getting paid to play games. In this respect then, he can be compared
to professional tennis players, which explains the occasional complaint of a logi-
cian about being underpaid. One may even argue that such a complaint gains
additional weight by the fact that the logician often manages to come up with
winning strategies (i.e., strategies which will be successful against any opponent),
something that even the best tennis players can only dream of.

Games have been useful in logic in a variety of ways, some of the most promi-
nent ones being the following (see [12] for a more extensive survey):

Game-Theoretic Semantics: For First-Order Logic, truth in a model can be
defined using game-theoretic semantics (see, e.g., [66]). A game-theoretically
natural extension of this semantics has led to Independence-Friendly Logic
[65, 109]. Likewise, game-theoretic semantics have been proposed for Linear
Logic [21, 2].

Dialogue Games: The relation of logical consequence has been viewed as a
dialogue game in [83], where the precise rules of the game determine whether

1

2 Chapter 1. Let the Games Begin

one obtains intuitionistic or classical logical consequence. Extensions of this
work have yielded dialogue games for various modal logics and Linear Logic
[110, 111].

Model-Comparison Games: In recent expositions of model theory (see, e.g.,
[41, 67]), Ehrenfeucht-Fräıssé games “operationalize” elementary equiva-
lence between models. The number of pebbles used in these games corre-
sponds to the number of variables needed to express a particular property.

Like logic, theoretical computer science also had its share of playfulness, on the
most fundamental level through models of computation which are essentially 2-
player games [31]. We will have more to say on this issue in section 1.2.

Instead of using games for the purposes of logic, a second line of investigation
tries to use logic for the purposes of game theory. And although it seems natural
that the study of games and how players should behave in games takes into
account players’ reasoning and rationality (the domain of logic, it would seem),
formal logical approaches to games are of a rather recent origin. The work in this
area can be categorized as follows:

Epistemic Logic: Solution concepts such as the Nash equilibrium or the sub-
game-perfect equilibrium can be investigated concerning their epistemic pre-
suppositions, asking, e.g., which assumptions about rationality and play-
ers’ belief/knowledge of rationality are necessary to guarantee a Nash-
equilibrium outcome. Modal logics have been used to obtain formal epis-
temic axiomatizations of various solution concepts, both on the proposi-
tional [123, 34, 30] and on the first-order level [74].

Dynamic Epistemic Logic: Epistemic logics have also been extended with ac-
tion modalities in order to express knowledge and belief change. These
dynamic epistemic logics can not only express statements like “player 2
knows that player 1 holds the queen of hearts” but also statements like
“player 1 knows that after showing his card to player 3, player 2 will know
that player 1 holds the queen of hearts” [9, 22]. This approach has been
used to formally model the board game Clue or Cluedo in [40].

Others: Besides epistemic logic, temporal logic has been extended with a pre-
diction relation which captures the backward induction solution of a game
[23], and similarly an extension of dynamic logic can be used to axioma-
tize backward induction [62]. Maybe surprisingly, even simple propositional
logic can be used as a description language for extensive games of perfect
information which also allows one to formulate axioms of rationality [24].
The role of language in economic decision making has been investigated in
[112] using formal logical languages. The work in this thesis also falls into
the non-epistemic category.

1.2. Linking Two Fields of Research 3

Note that the above classification does take a rather narrow view of logic.
On a less restricted interpretation, all of the discussion in game theory which
relates to the epistemic aspects of games falls into the scope of logic, and indeed
the modal/epistemic logician recognizes quite a number of the technical notions
discussed in the game theory literature [10]. On the other hand, we choose to
define the use of logic in game theory more narrowly as the use of formal logical
languages. Among other things, using formal languages allows one to ask a num-
ber of interesting meta-theoretic questions, examples of which shall be given in
this thesis.

1.2 Linking Two Fields of Research

Below we discuss more concretely how logic and game theory come together in
this thesis. Additionally, we comment on the general virtues of interdisciplinary
research.

1.2.1 Logic in Computer Science

Computers do not always work the way they should (some people would use
the more radical scoping: computers always do not work the way they should).
Since there may be applications, however, where it is extremely important that
computers do work as intended (think, e.g., of air traffic control and other safety-
critical tasks), it would be useful to be able to prove that a program works as
intended by the programmer, or at least that the program satisfies some crucial
properties. Formal logics are used in various branches of computer science as
tools for reasoning about programs and software systems more generally. We
shall briefly discuss two of these branches below.

The theory of program correctness as it has been understood traditionally
[82, 73, 91] is concerned with verifying the correctness of software written in im-
perative programming languages such as PASCAL, C, and so on. As an example,
consider the following program γ1 which is known as Euclid’s algorithm:

x, y :Nat

while x 6= y do

if x > y then x := x − y
else y := y − x

end

The program is written in a commonly used pseudo-code which is almost self-
explanatory: Two variables x and y with the value of natural numbers are com-
pared. If they are equal, the program ends. Otherwise, if x is greater than y, y
is subtracted from x, and if y is greater than x, x is subtracted from y. This test
and action are repeated until x = y.

4 Chapter 1. Let the Games Begin

It is by no means obvious that this program γ1 in fact calculates the greatest
common divisor (gcd) of two natural numbers a and b. If initially x = a and
y = b, then the program will terminate with x = y = gcd(a, b). Proving the
correctness of this program thus would entail a proof of the following statement:

If γ1 is started in a state where x = a and y = b, then γ1 will terminate
and upon termination x = y = gcd(a, b).

One natural way to represent programs semantically is by way of a state
transformer, i.e., a relation Rγ ⊆ S × S over the set of states S. We interpret
sRγt as “starting at state s, there is an execution of program γ which terminates
in state t”. Our program γ1 has the further property of being deterministic, for
every state s there is at most one state t such that sRγ1

t holds. In general, we
allow for programs being nondeterministic. In the case at hand, we can think of
S as the set of variable assignments for x and y, that is S = {s|s : {x, y} → N}.
Proving the above claim then would amount to showing that sRγ1

t holds if and
only if t(x) = t(y) = gcd(s(x), s(y)).

A second way to think about programs is in terms of a predicate transformer
Fγ : P(S) → P(S) which maps a set of states X to the set of states Fγ(X) at
which some execution of program γ will terminate in a state in X. (Usually one
wants all executions to terminate in a state in X, but for our present purposes
the existential reading is more natural, and for γ1 the two coincide anyhow.)
This approach to program semantics advocated by Dijkstra in [38, 39] is very
well-suited for the kind of backward-reasoning one often does when studying the
correctness of a program: If the program should bring about a particular state
of affairs after termination, which initial condition has to be satisfied for the
program to succeed in doing that? To give an example, assume that we want
our program γ1 to end in a state where the value of both x and y equals 3,
then under what condition will the program succeed in doing that? Let t be the
state where t(x) = t(y) = 3. Then Fγ1

({t}) = {s ∈ S|gcd(s(x), s(y)) = 3}, i.e.,
initially the greatest common divisor of x and y must be 3. A general proof of
correctness would then amount to showing that if we start in a state where x = a
and y = b, the program is guaranteed to end in a state where both variables are
set to the greatest common divisor of a and b. Formally, for all states t with
t(x) = t(y) = gcd(a, b) we have

{s ∈ S|s(x) = a and s(y) = b} ⊆ Fγ1
({t}).

While our exposition of predicate transformers was semantic, reasoning about
the correctness of programs will usually be done syntactically using axioms and
inference rules. Propositional Dynamic Logic [59, 77] can serve as a very simple
formalism which links the syntactic and the semantic perspective on predicate
transformers on the propositional level. The formula 〈γ〉ϕ expresses that there
is an execution of program γ which terminates in a state satisfying ϕ. Thus,

1.2. Linking Two Fields of Research 5

the modality 〈γ〉 is the syntactic analogue of the predicate transformer Fγ. Log-
ical axioms and rules then syntactically describe the behavior of the predicate
transformers, for instance the inference rule

ϕ → 〈γ1〉ψ ¬ϕ → 〈γ2〉ψ
〈 if ϕ then γ1 else γ2〉ψ

says that if the truth of ϕ implies a terminating γ1-execution satisfying ψ and
the falsity of ϕ implies a terminating γ2-execution satisfying ψ, then there is a
terminating execution of if ϕ then γ1 else γ2 which satisfies ψ.

The two main disadvantages of the traditional approach to program verifica-
tion are its restricted domain of application and its infeasibility in practice. On
the one hand, the kinds of systems which can be analyzed using Dijkstra’s ap-
proach are programs which can be specified compositionally by means of a fixed
number of programming constructs. Furthermore, when started in some initial
state, these programs are supposed to terminate in some final state whose prop-
erties are then examined. This means that software systems which are intended
to run without ever terminating (such as operating systems) as well as systems
which have not arisen from a compositional specification cannot be analyzed and
verified using a Dijkstra-style approach. On the other hand, even for systems
which are amenable to this approach, real-life systems usually turn out to be
too complicated to make automatic verification feasible, since such a verification
entails theorem proving in a very complex logical formalism.

Because of these drawbacks, another approach to software verification has
been investigated more recently which makes use of temporal logics [43, 70]. Here,
programs are not part of the logical language but rather the semantic models
over which expressions of temporal logic are evaluated. More specifically, process
algebras [8, 49] and other tools can be used to describe and generate a process
graph which serves as the semantic model of the software system. Temporal logics
such as CTL can then express safety and liveness properties of the system which
are verified via model checking. This approach allows for the verification of non-
terminating systems, and verification is generally more feasible, since it is based
on model checking rather than theorem proving. We shall have more to say about
the relative merits of the two approaches in section 8.1.

1.2.2 Game Theory and Social Choice

Computer programs of the kind we discussed represent processes of a very special
kind: They are formally specified and they do not contain any interaction. Social
processes on the other hand are usually much harder to analyze because they are
interactive by nature and because it is often extremely difficult to model them
mathematically. The latter problem can be simplified by abstraction and by
studying those social processes which are more regulated to begin with, examples

6 Chapter 1. Let the Games Begin

being elections, auctions, and the process of obtaining a doctorate degree. Social
choice theory [75, 86] studies collective decision making: given the preferences
of the individuals of some society, how should the society as a whole choose
between the different options? To these considerations game theory [19, 93] adds a
strategic component, asking, e.g., how such methods of collective decision making
can be manipulated by individuals or groups of individuals.

To model the ability of a group of individuals N , social choice theory has
developed the notion of an effectivity function [86, 1]. Given a set of alternatives
S between which the individuals must choose, an effectivity function E : P(N) →
P(P(S)) maps groups of individuals to a collection of subsets of alternatives. We
interpret X ∈ E(C) as “coalition C is effective for X”, or as “coalition C is able to
achieve an outcome in X”. This interpretation is deliberately noncommittal about
how exactly “effectivity” is to be interpreted. In this thesis, we will interpret it
as having a strategy which is successful no matter what. Hence, X ∈ E(C) holds
iff coalition C has a joint strategy to achieve an outcome in X no matter what
the other players do.

Consider the following example from [52]: Angelina has to decide whether she
wants to marry Edwin, the (male) judge, or stay single. Edwin and the judge
each can similarly decide whether they want to stay single or marry Angelina. If
we assume that the three individuals live in a society where nobody can be forced
to marry against his/her will, this situation can be modeled using effectivity
functions as follows: The set of players is N = {a, e, j} and the set of alternatives
is S = {ss, se, sj}, where ss denotes the situation where Angelina remains single,
se where she marries Edwin, and sj where she marries the judge. Angelina (a) has
the right to remain single, so {ss} ∈ E({a}), whereas Edwin can only guarantee
that he does not marry Angelina; whether she marries the judge or remains single
is not up to him. Consequently, we have {ss, sj} ∈ E({e}) and there is no proper
subset X of {ss, sj} such that X ∈ E({e}). Analogously for the judge, we have
{ss, se} ∈ E({j}). Angelina and Edwin together can achieve any situation except
the one where Angelina marries the judge (since this alternative would require
the judge’s consent), and hence {ss}, {se} ∈ E({a, e}). Again, the situation is
similar for the judge: {ss}, {sj} ∈ E({a, j}).

Another way to think about this marriage constellation is in terms of games.
We already suggested that Angelina has three strategies, she can decide to remain
single, or go for either the judge or Edwin. (Note that we ignore the tempo-
ral/dynamic character of more realistic strategies, where Angelina might propose
to the judge and, if he does not accept within 3 days, go for Edwin.) The two men
on the other hand only have two options each, either to decide to remain single
or to go for marriage. The strategic game below pictures this situation: Angelina
chooses one of the three tables, Edwin chooses the upper or lower row, and the
judge chooses the left or right column. For each such strategy triple we have
given the resulting alternative. As an example, consider the soap opera situation
where Angelina wants to marry Edwin (middle table), Edwin wants to remain

1.2. Linking Two Fields of Research 7

single (upper row), but the judge wants to marry Angelina (right column). The
result is that everyone remains single (alternative ss).

s m
s ss ss

m ss ss

s m
s ss ss

m se se

s m
s ss sj

m ss sj

Depending on the kind of social process under consideration, the effectivity
function will satisfy certain properties. Note, e.g., that the effectivity function of
the example is monotonic, i.e., if a group of individuals is effective for a set X
then it is also effective for any superset of X. Another important property which
is satisfied is the property of superadditivity: If X1 ∈ E(C1) and X2 ∈ E(C2) then
X1 ∩ X2 ∈ E(C1 ∪ C2), provided C1 ∩ C2 = ∅. Intuitively, if one group of players
is able to achieve an outcome in X1 and another disjoint group is able to achieve
an outcome in X2, then they can join their strategies to achieve an outcome in
X1 ∩ X2. This and other properties of effectivity functions have been studied in
the literature to characterize certain classes of social processes, and we shall see
examples of this in chapter 2.

In this thesis, we shall have nothing to say about the preferences which players
might have over the set of alternatives. In other words, we only concern ourselves
with what players can do, not with what they should or will do. If one does
consider players’ preferences, various solution concepts can be investigated. For
effectivity functions, a prominent solution concept is the core, the set of all un-
dominated alternatives. An alternative s is dominated by a set of alternatives X
if there is some coalition C which is effective for X and every member of C prefers
every alternative in X to s. It is reasonable to assume that such an alternative s
will never be realized, since coalition C will see to it that X is realized instead.
An effectivity function is called stable in case its core is nonempty no matter what
preferences the players have. Conditions under which an effectivity function is
stable have been investigated extensively, and it has been shown in [85] that the
problem of checking stability of an effectivity function is NP-complete.

1.2.3 Dijkstra meets von Neumann

Programs can be viewed as 1-player games. If the program is deterministic like
the gcd-algorithm above, the game is of a particularly boring sort since it does not
involve any choice points where the player can choose between two or more dif-
ferent possible actions. Nondeterministic programs, however, do involve choices,
as the program γ2 below illustrates:

x, y :Nat

case x ≥ y −→ y := y + 1
y ≥ x −→ x := x + 1

end

8 Chapter 1. Let the Games Begin

In case x > y, 1 is added to y, and in case y > x, 1 is added to x, but in case
x = y, a nondeterministic choice is made between the two increments. In case
we have a state s with s(x) = s(y) = 0, we thus have sRγ2

t1 and sRγ2
t2, where

t1(x) = t2(y) = 0 and t1(y) = t2(x) = 1.

x = 0, y = 0

x = 1, y = 0 x = 0, y = 1

In words, there is an execution of γ2 which starts in a state with x = y = 0
and ends in a state with x = 0, but not all executions have that property. This
program thus presents a more interesting 1-player game, in the sense that the
player (which we usually assume to be Nature) can choose which transition to
make in case x = y.

Predicate transformers can thus be given a game-theoretic interpretation: s ∈
Fγ2

(X) holds in case at state s, Nature has a strategy in program/game γ2 for
achieving a state in X. Note that this interpretation is in no way dependent
on the fact that γ2 was a 1-player game, for the notion of “strategy” applies to
games generally, independent of the number of players. This move from programs
to games has also been carried out in the area of temporal logic [3], and we shall
have more to say about this in section 4.4.

The two traditions outlined in the previous section apply a similar mathe-
matical model to capture similar ideas. For an effectivity function E, X ∈ E(C)
provided that coalition C has a joint strategy to achieve an outcome in X. For
a predicate transformer F and a state s, s ∈ F (X) provided that Nature has
a strategy to achieve an outcome in X. Given this similarity, it may not be
surprising that one can discover analogies in the issues investigated in both tra-
ditions: The characterization result of social choice theory which isolates the
effectivity functions which correspond to strategic games (theorem 2.27) is the
multi-agent coalitional analogue of the computer science result which character-
izes the predicate transformers which correspond to state transformers (theorem
2.16). Similarly, questions of mechanism design can be related to questions of
program synthesis (see chapter 5).

The first difference between the notions of an effectivity function and a pred-
icate transformer is that predicate transformers only capture the abilities of a
single player (Nature) whereas effectivity functions model the abilities of many
agents and even of groups of agents. The second difference is that effectivity func-
tions are static while predicate transformers are dynamic. An effectivity function
describes the social process as a simple one-shot event, the players’ abilities do
not depend on the current state. Predicate transformers on the other hand link
the player’s powers to the current state, and these powers may change as the
state itself changes. We shall try to take the best from both traditions, the multi-
agent perspective of effectivity functions and the dynamic approach of predicate

1.2. Linking Two Fields of Research 9

transformers. The result will be a new dynamic multi-agent model of power for
which we will develop logical formalisms which can express properties of this type
of model.

1.2.4 Praise of FoLLI

The question of why the two traditions mentioned should be brought together
can also be viewed as an instance of the more general question regarding the
motivation of interdisciplinary research. In the list below, we discuss some general
qualities of interdisciplinary study, also referring to some specific results in this
thesis which can serve as examples for the case of logic and game theory at hand.

(1.) Answering Old Questions: Probably the most immediate hope one might
have is that an open question in one field can be solved using techniques or results
from the other field. This hope is also verbalized when the game theorist asks the
logician how the logician’s research on logic and games will contribute to solving
game-theoretic problems. The logician in turn will be tempted to quote John F.
Kennedy’s “ask not what your country can do for you, ask what you can do for
your country.”

A concrete example of a result from social choice theory which has been used
to solve an open problem in logic will be discussed in section 4.4: Using a char-
acterization result (theorem 2.27) which extends a similar result from the social
choice theory literature, we are able to obtain an axiomatization (theorem 3.14)
which has been used in [56] to provide a complete axiomatization of Alternating
Temporal Logic [3].

(2.) Raising New Questions: More than answering old questions, interdisci-
plinary research will generate new questions (and answers) in both fields involved.
One of the two main topics of this thesis, comparing reasoning about individual
ability to reasoning about coalitional ability in various kinds of social processes,
seems to exemplify a new type of investigation which could be relevant to social
choice theory. Logic has a number of tools and techniques which allow one to
carry out such a comparison in terms of expressiveness, complexity, and so on.

An example of a new question for logic will be discussed in section 7.2.2: It
turns out that Game Logic can be translated into the propositional modal µ-
calculus [76]. This translation has a particular syntactic property, for it uses at
most two set variables. This raises the question whether there is a strict finite-
variable hierarchy for the µ-calculus, i.e., whether one can show that formulas with
n variables can express less than formulas with n+1 variables. For the alternation
hierarchy, it has been shown that the hierarchy does not collapse [25, 81], whereas
the finite-variable hierarchy apparently has not been investigated so far.

(3.) Unification: Obtaining a general framework which describes a wide vari-
ety of situations arising in different disciplines is desirable even if no old questions
can be answered and no new questions arise. Unification creates links between
phenomena and notions which had not been connected before, reducing the num-

10 Chapter 1. Let the Games Begin

ber of basic notions or axioms needed to understand (at least a small part of)
the world, increasing order in the mind and creating a pleasant feeling in the
stomach.

The coalition models introduced in chapter 2 are general enough to capture
ability in extensive games with and without simultaneous moves as well as Kripke
models. Interpreting the modality 3ϕ as the existence of a strategy in a game
leads to a general coalition logic of which both normal and non-normal modal
logics are particular instances (section 3.5).

(4.) Diversification: As the dual of unification, where, e.g., two notions are
unified into one, diversification refers to the opposite process, providing new per-
spectives on old friends. While physics seems to strive for the theory of everything
[57], finding such a theory may only be the beginning of discovering different
“equivalent” theories of everything or different interpretations of the theory. In
computer science, the various equivalent formalizations of the most central notion,
computation, are a paradigm example (see, e.g., [72]).

In the field of logic, modal logic provides an example of a formal system
which is open to a wealth of interpretations, and this diversity also testifies to
the importance of modal logic. In section 3.5 we shall add yet another view to
these multiple perspectives, characterizing normal modal logic as the logic of 1-
player games (theorem 3.22) and monotonic non-normal modal logic as the logic
of determined 2-player games (theorem 3.24).

1.3 Objectives

Linking the two fields of research discussed above is a natural project to consider,
given that the conceptual and mathematical notions involved are very similar.
More importantly, however, it will allow us to construct logics which can be used
to reason about social software, and to investigate how reasoning about social
software differs from reasoning about standard computer software.

1.3.1 Logics for Social Software

In [95], Parikh introduced the term “social software” to refer to the project of
analyzing social procedures and processes using the formal methods of computer
science. One of his example concerns the well-known problem of dividing a cake
fairly among a number of people. For two people, the algorithm “I cut, you
choose” is a well-known method to ensure that both people can guarantee them-
selves at least half of the cake according to their own perception. For more than
2 people, there are extensions of this cut-and-choose algorithm which can yield
fair solutions for all the participants [27]. An algorithm which does offer every-
one a strategy to guarantee himself a fair share of the cake can be considered

1.3. Objectives 11

correct, and Parikh calls for the development of logical tools to be able to prove
the correctness and efficiency of such an algorithm.

A further example of a social process amenable to formal analysis are voting
procedures as studied in social choice theory [84]. The number of alternatives,
the order of voting and the different electoral bodies involved can all influence the
final outcome. Proving the correctness of a voting procedure would mean to show
that it satisfies certain desirable properties (e.g., that there is no dictator, i.e., no
individual has the power to determine the outcome by himself), and establishing
that it is efficient would entail a proof that there is no simpler procedure with
the same properties.

The first thesis of this study is that the logics developed and studied here,
Coalition Logic and Game Logic, provide the means to analyze social processes
like the ones given. Chapter 5 will provide arguments for this claim by applying
Coalition Logic to a number of examples. Since these examples lie well in the
domain of game theory (and social choice theory), the question arises how the
perspective of social software differs from the perspective of game theory. On
the one hand, the social software approach strives for a formal axiomatic theory
of social processes which is very explicit. As a consequence, arguments can be
formulated in a logical language which lends itself to automated verification, the
advantage being a greater degree of confidence in as well as the possible automa-
tion of game-theoretic argumentation. On the other hand, the social software
perspective provides new theoretical questions and insights about social processes
which broaden the scope of game theory. These questions can be grouped into
two comparisons which we shall discuss subsequently.

1.3.2 Programs vs. Games

The first comparison we shall engage in relates programs to games. As we have
seen, programs can be viewed as 1-player games, so the question arises in what
respect reasoning about 1-player games differs from reasoning about 2-player
games. Does the addition of a second player make an essential difference, and if
so, in what respect? To use a marginally related example from a different domain,
it appears that the addition of a second character complicates the automatic
generation of humorous film sequences significantly [88].

One way in which we will investigate this question is using Game Logic. This
logic uses the formula 〈γ〉ϕ to express that Player 1 has a strategy to achieve ϕ
in game γ. The game γ here is an expression denoting a complex game which is
constructed by means of a number of operations, like the programming operation
if...then...else... we have seen earlier. As an example, consider γ1 =
(a ∪ b); (c ∩ d), denoting the game where first player 1 chooses between doing
a or b and then player 2 chooses between doing c or d. To compare games
to programs, we compare Game Logic with its program fragment, the formulas
containing only those modalities 〈γ〉ϕ where γ is a 1-player game, i.e., where

12 Chapter 1. Let the Games Begin

player 1 makes all the choices. The game γ1 is not in the program fragment,
but, e.g., γ2 = (a ∪ b); (c ∪ d) is, where the second choice is also made by player
1. The program fragment can then be compared to full Game Logic in terms
of expressive power (are there properties which cannot be expressed using only
programs?), axiomatization (what are the basic principles of reasoning about
games and programs?) and complexity (is reasoning about games more complex
than reasoning about programs?).

Besides this syntactic component of the comparison between programs and
games, there is also a semantic component having to do with the basic building
blocks from which complex games like γ1 are constructed. Two cases can be
investigated: First, one can assume that all interaction is introduced through the
game operations, and that the atomic games are simple 1-player games where the
same player makes all the choices (chapter 7). Second, one can allow interaction
in the atomic games as well, yielding a more general system which is studied first
in chapter 6.

1.3.3 Individuals vs. Coalitions

Once we have moved from programs to games with 2 or more players, we can
reason about what the different players can achieve in the game. But there is still
another issue here, namely how reasoning about these individual agents may differ
from reasoning about groups of agents. It may seem for instance that reasoning
about what single agents can bring about in a complex multi-agent process should
be simpler than reasoning about what groups of agents can bring about.

In chapters 3 and 4 we will look at this issue using the semantic models devel-
oped in chapter 2. The coalition models developed there will allow us to capture
various kinds of multi-agent processes or games (including 1-player games), and
for each of these games we will investigate the differences between reasoning about
individuals and reasoning about coalitions. We will do this first using Coalition
Logic (chapter 3), a logical language which contains expressions of the form [C]ϕ
where C is a group of agents. The formula expresses that coalition C is able to
achieve ϕ in one move, i.e., C has a strategy for ϕ. To compare individuals to
coalitions, we compare the full language of Coalition Logic with its individual frag-
ment, the restricted language which can only talk about single-agent coalitions,
i.e., which only contains formulas [i]ϕ expressing that agent i has a ϕ-strategy.

While basic Coalition Logic only contains modalities to talk about what groups
of agents can achieve in one move of the game, chapter 4 introduces Extended
Coalition Logic which can also express long-term ability. The formula [C ∗]ϕ
expresses that coalition C has a strategy to bring about ϕ at some point in the
future. As with basic Coalition Logic, one can compare individuals to coalitions
in this richer language.

1.4. Overview 13

1.4 Overview

In section 1.2.1, we briefly discussed 2 approaches to program verification, an
internal approach based on temporal logic and an external approach based on
programming logics like PDL. Both of these approaches shall be lifted from pro-
grams to games, and hence this thesis naturally falls into two parts, chapters 3 to
5 which focus on the internal approach using the logical framework of Coalition
Logic, and chapters 6 and 7 which deal with the external approach using the
framework of Game Logic. Chapter 2 will introduce a semantic framework which
unifies both the internal and the external approach. We shall now proceed to
describe the content of the different chapters in some more detail.

Chapter 2 develops a very general dynamic ability model based on the notion
of an effectivity function. This model serves to capture group ability in programs
and extensive games with and without simultaneous moves among 2 or more
players. Quite some time will be spent on characterizing the precise class of
ability models which corresponds to each of these processes. We illustrate how
these ability models are open to two different interpretations, either as internal
descriptions of a single game or as external descriptions of a collection of games.
We also consider models of individual ability, asking again which conditions on
individual ability characterize ability in various classes of games, and in which
situations individual ability completely determines group ability. Finally, we
extend the notion of bisimulation to serve as an equivalence notion for the ability
models defined.

Chapter 3 introduces Coalition Logic, a modal logic which contains formulas
[C]ϕ expressing that the group of agents C is able to achieve in one move an
outcome where ϕ is true. The formulas are evaluated over the ability models
defined in chapter 2 and interpreted as an internal description of a social process.
To compare reasoning about individuals to reasoning about coalitions, we isolate
the individual fragment of Coalition Logic and compare some of its properties
(complexity and expressiveness) to those of full Coalition Logic. Finally, we show
how normal and non-normal modal logics can be viewed as instances of this more
general Coalition Logic.

Chapter 4 extends basic coalition logic with an additional modality [C ∗]ϕ as-
serting that coalition C can achieve ϕ at some point in the future. This additional
modality opens the door to a variety of different applications of Coalition Logic
in the analysis of social processes. We also consider two meta-theoretic questions
concerning the complexity of Extended Coalition Logic and its expressive power.
Related formalisms such as Alternating Temporal Logic and the multi-agent logics
developed in distributed artificial intelligence are compared to (extended) Coali-
tion Logic.

Chapter 5 applies Coalition Logic and Extended Coalition Logic to problems
mainly from the area of social choice theory. Put succinctly, we show how Coali-
tion Logic can be used to guarantee personal liberties, avoid excessive or obscure

14 Chapter 1. Let the Games Begin

legislative procedures and reduce telephone costs.
Chapter 6 changes from the internal to the external view of games. Ability

models are viewed as a collection of interlinked games and the formal language of
Game Logic is used to describe what players can bring about in complex games.
Here, the modal expression 〈γ〉ϕ states the existence of a strategy for player 1
in game γ which achieves ϕ. We define a generalized version of the µ-calculus
of which Game Logic is a fragment. This perspective allows us to locate an
interesting difference between programs and games which will lead to different
complexity results for model checking. Finally, we also consider the complexity
of the satisfiability problem.

Chapter 7 continues the study of Game Logic, now focusing on Game Logic
when interpreted over the restricted class of Kripke models. Over these mod-
els, Game Logic can be compared to Propositional Dynamic Logic (PDL) on the
one hand and the standard modal µ-calculus on the other hand in terms of ex-
pressiveness and complexity. In particular the comparison with PDL will yield
some interesting differences between programs and games, one of them being
that games allow for two different kinds of iteration. Using bisimulation, we also
obtain a characterization of the set of game operations needed to construct all
first-order definable games. This result can then be compared to an analogous
result obtained for programs.

Chapter 8 summarizes the main results of this thesis, addressing again the
relationship between Game Logic and Coalition Logic, and also discussing the
algebraic counterpart of Game Logic and its application in the development of
social software.

Since chapters 4 and 6 make use of fixpoint constructions to define long-
term ability and iteration, we have summarized some (mostly well-known) results
concerning fixpoints in appendix A which will be appealed to in these chapters.

Chapter 2

Multi-Agent Models of Power

We introduce the notion of an individual effectivity function to model what in-
dividual agents can bring about in a situation of interaction. Such an individual
effectivity function maps each agent to the sets of outcomes which he is able to
achieve. We show that this model is general enough to cover ability in various
kinds of games as well as programs: Results are proved which characterize the
classes of effectivity functions which correspond to ability in strategic games and
1-player games.

After emphasizing individual ability in section 2.2, groups and their ability
are the focus of the third section, where individual effectivity functions are gen-
eralized to coalitional effectivity functions. Analogous to the previous section,
we look for conditions on group effectivity which can guarantee that it represents
group effectivity in various kinds of games. Furthermore, we ask under what
circumstances knowledge of a group’s ability is more informative than knowledge
of the ability of its individual members. In other words, for the different classes
of effectivity functions introduced, we investigate whether individual ability com-
pletely determines group ability.

In the fourth section, we switch from the static model of effectivity functions
to the dynamic model of effectivity frames. These contain a set of possible worlds
each of which is associated with a coalitional or individual effectivity function
where the outcomes are states of the world again. Suitable restrictions of these
effectivity frames will form the basis of both Coalition Logic and Game Logic, to
be discussed in chapters 3 and 6, respectively.

In section 2.5 finally, we introduce the notion of bisimulation for dynamic
effectivity models. Bisimulation is an equivalence notion for models which will
play an important role in later chapters of this thesis.

15

16 Chapter 2. Multi-Agent Models of Power

2.1 Types of Interaction

The dynamic models of interaction which we shall define in section 2.4 will asso-
ciate particular types of interaction to each state. One of the most general types of
interaction is a strategic game where all players simultaneously decide on a strat-
egy, and the strategies chosen together determine the new state of the system.
The system as a whole then corresponds to an extensive game with simultaneous
moves [93], or an extensive game of almost perfect information [113].

Alternatively, each state knows a particular player, the local dictator, who
decides the new state. If the local dictator is the same at every state, we are
dealing with a 1-player extensive game, otherwise with a multi-player extensive
game of perfect information.

Finally, we will discuss empty games where no interaction happens but instead
the players are labeled as winners and losers. In the dynamic models to be defined
in section 2.4, these empty games will be used to model terminal states of an
extensive game.

2.1.1 Strategic Games

Depending on the situation in which different agents interact, their abilities will
be related in a particular way. One of the most general models for situations
of strategic interaction is that of a strategic game. Because of its generality,
strategic games form the standard model in game theory. In a strategic game,
the different players choose one of their available alternative actions/strategies,
and taken together, these actions determine the outcome of the game.

I Definition 2.1 (Strategic Game). A strategic game G = (N, {Σi|i ∈ N},
o, S) consists of a nonempty finite set of agents N , a nonempty set of strategies or
actions Σi for every player i ∈ N , the nonempty set of states S and an outcome
function o : Πi∈NΣi → S which associates with every tuple of strategies of the
players (strategy profile) an outcome state in S.

In game theory, strategic games also come equipped with a preference relation
ºi⊆ S×S for every player i ∈ N which indicates which outcomes a player prefers.
Strictly speaking, our strategic games are only game forms which can be turned
into a game by adding these preference relations.

For notational convenience, let σC := (σi)i∈C denote the strategy tuple for
coalition C ⊆ N which consists of player i choosing strategy σi ∈ Σi. Then given
two strategy tuples σC and σC (where C := N \C), o(σC , σC) denotes the outcome
state associated with the strategy profile induced by σC and σC . We shall also
write −i for N \ {i}.

Figure 2.1 below provides an example of strategic game among three players
in the usual matrix depiction. Unless noted otherwise, we will assume that player

2.1. Types of Interaction 17

1 chooses the row, player 2 the column, and the third player chooses between the
left and the right table.

l m r
l s1 s2 s1

r s2 s1 s3

l m r
l s3 s2 s1

r s2 s3 s3

Figure 2.1: A strategic game for three players.

In this game, for every joint strategy of players 1 and 3, player 2 has a strat-
egy which yields outcome s2. Note, however, that this strategy depends on the
strategies chosen by players 1 and 3, i.e., player 2 has no strategy which will guar-
antee outcome s2 independent of the strategies of players 1 and 3. The coalition
consisting of players 1 and 2 on the other hand does have a joint strategy (r, l)
which guarantees s2 independent of player 3’s strategy. In section 2.2, we shall
introduce terminology to distinguish these different kinds of effectivity.

2.1.2 Dictatorships

On the one hand, it seems that not much needs to be said about 1-player games:
If the set of players N is a singleton, the strategic games will only contain choices
for this one player who can freely choose an outcome. On the other hand, there
may also be multi-player games which are essentially 1-player games. Consider,
e.g., the following 2-player game:

l r
l s s

m s t
r t t

Clearly, it is player 1 (the row player) who has complete freedom in choosing the
outcome of the game, and hence, although formally a 2-player game, this game
is in essence a 1-player game. The notion of dictatorship makes precise what we
mean by “in essence”.

I Definition 2.2 (Dictatorship). A strategic game G = (N, {Σi|i ∈ N}, o, S)
is a d-dictatorship iff ∀s ∈ ran(o)∃σd ∀σ−d o(σ) = s.

In such a dictatorship, there is an individual d (the dictator) whose choices com-
pletely determine the outcome, independent of what the others do. Note that
in case there is more than one dictator, the outcome function is constant (i.e.,
∃s∀σ o(σ) = s) and hence every player is a dictator. Furthermore, every 1-player
strategic game is trivially a dictatorship. More generally, note that any strategic

18 Chapter 2. Multi-Agent Models of Power

game can also be viewed as a dictatorship of the masses: for every outcome state,
the set of all players has a strategy to achieve it.

For our purposes, we lose nothing by modeling a dictatorship by a 1-player 1-
move game where the dictator d ∈ N can choose the successor state independent
of what actions the other players choose to take. The example above would thus
be modeled as follows:

1

s t

In such a game, 1 is effective for any possible outcome, whereas all other players
cannot guarantee anything more than the set of all outcomes among which 1
chooses. Note, however, that it is not the case that the dictator can necessarily
achieve any outcome from S, for it may be the case that ran(o) 6= S. Hence there
may be states of the world which even a dictator cannot achieve.

2.1.3 Empty Games

Later in this chapter we shall combine static models of ability in order to obtain
a dynamic model. For this we need the following notion.

I Definition 2.3 (Empty Game). An empty strategic game is any G (N ,
i.e., any subset of players other than N itself.

Depending on the context, we shall also refer to an empty strategic game as
an empty dictatorship. Note that, formally speaking, an empty strategic game is
not a strategic game, but the terminology chosen will simplify the formulation of
some results later.

Game-theoretically, an empty strategic game simply models a payoff vector
where we interpret G as the set of players who win the game and, e.g., obtain
payoff 1 whereas the others obtain payoff -1. In the extensive games we shall
discuss in section 2.4, empty games shall model endpoints of the game, where,
for example, an endpoint

{1, 4, 5}

in a 5-player extensive game will denote the payoff vector (1,−1,−1, 1, 1).
To use a different metaphor, an empty strategic game can be viewed as an in-

teraction failure. Depending on the situation, there may be many reasons for such
a failure: Two agents may attempt to communicate by simultaneously perform-
ing send(a) and read(b) resulting in deadlock and a failure of communication
(process algebra), not yielding any new state.

A further interpretation can be given in terms of contracts (as is done in [7]):
The rules of a game formalize the contractual obligations of the players. One or

2.2. A Static Model of Individual Ability 19

more agents may violate these rules, thereby resulting in an immediate loss for
them and a win for the other players. For example, an agent may commit himself
to the truth of a certain formula which fails to be true after all, in which case
he has violated his contractual obligation resulting in an immediate loss for that
player (see the test game in Game Logic, chapter 6).

Note that we assume that someone has to lose, i.e., there are no empty games
where all players win. This rather pessimistic restriction carries some intuitive
appeal: If all players play according to the rules, the result will be a particular
outcome state rather than a win for all of them. As shown in [98], for the purposes
of basic Coalition Logic we can easily do without empty games, and except for
section 3.5, the results of chapter 3 do not depend on having empty games. But
while the presence of empty games makes the proofs of some results a bit more
complicated, they are needed in order to provide a unified semantic model for
both the internal (Coalition Logic) and the external (Game Logic) approach to
games.

2.2 A Static Model of Individual Ability

Throughout this thesis, we assume that a nonempty finite set N of agents or
players is given, as well as a nonempty set of states S.

I Definition 2.4 (Individual Effectivity Function). An individual effec-
tivity function is any function E : N → P(P(S)) which is (outcome-)monotonic:
For every individual i ∈ N , X ∈ E(i) implies Y ∈ E(i) whenever X ⊆ Y ⊆ S.

The function E associates to every player the sets of outcomes for which he is
effective. In most situations we will consider, “effectivity” can be interpreted as
follows: For a player i ∈ N , X ∈ E(i) will hold iff player i has a strategy for bring-
ing about an outcome in X. Given this interpretation, outcome-monotonicity is
a natural requirement: if a player has a strategy to bring about an outcome in
X, that strategy will also bring about an outcome in any superset of X.

In most circumstances, we will want to impose certain additional restrictions
on individual effectivity functions besides monotonicity. For instance, if N =
{1, 2} and X ∈ E(1) we would want X 6∈ E(2) to be the case, for otherwise player
1 would have a strategy to achieve an outcome in X and player 2 would have a
strategy to achieve an outcome in X, so if both of them utilize their strategies,
the resulting outcome would have to be both in X and not in X. We will consider
various conditions on effectivity functions below. The precise conditions which
one wants to assume will depend on the nature of the interaction one wants to
study.

20 Chapter 2. Multi-Agent Models of Power

2.2.1 Individual Ability in Empty Games

Recall that we interpreted an empty strategic game G (N as the set of players
who win the game. In this situation, we will stipulate that a player who loses will
not be effective for anything, not even for the set of all states. If he is a winner
on the other hand, we stipulate that he can bring about any set of states, even
the empty set. Recall that in a regular strategic game, every player can bring
about something (e.g., the set of all states) but not everything (e.g., the empty
set). Thus, it makes sense to use the two extreme cases to identify empty games,
one for winners and the other for losers.

I Definition 2.5 (α-Effectivity in Empty Games). Given an empty game
G (N , its individual α-effectivity function Eα

G : N → P(P(S)) is defined as fol-
lows: X ∈ Eα

G(i) iff i ∈ G.

In words, a player is effective for everything if he is a winner; otherwise, he is
effective for nothing. Hence, in empty games we can simply talk about effective
and ineffective players.

We say that an individual effectivity function E : N → P(P(S)) α-corresponds
to an empty strategic game G iff E = Eα

G. If we are given some effectivity function
E, we may want to know under what conditions E is the α-effectivity function of
some empty game. The following result characterizes the properties of individual
effectivity in empty strategic games.

I Theorem 2.6. An individual effectivity function E α-corresponds to an empty
strategic game iff (1) ∀i ∀X,Y : X∈E(i) ⇒ Y ∈E(i), and (2) ∃i ∀X : X 6∈E(i).

Proof. For any empty strategic game G, Eα
G satisfies the two conditions; con-

versely, if E satisfies the two conditions then for G = {i ∈ N |∃X : X ∈ E(i)} we
have E = Eα

G. ¥

2.2.2 Individual Ability in Strategic Games

Given a game G, a player i ∈ N will be α-effective for a set X ⊆ S iff he has
a strategy which will result in an outcome in X no matter what strategies the
other players choose.

I Definition 2.7 (α-Effectivity in Strategic Games). For a nonempty
strategic game G, its individual α-effectivity function Eα

G : N → P(P(S)) is
defined as follows: X ∈ Eα

G(i) iff ∃σi∀σ−i o(σi, σ−i) ∈ X.

A related weaker notion of effectivity is β-effectivity. For a given game G,
the β-effectivity function is defined as X ∈ Eβ

G(i) iff ∀σ−i∃σi o(σi, σ−i) ∈ X.
Clearly, β-effectivity is weaker than α-effectivity, as the example of figure 2.1

2.2. A Static Model of Individual Ability 21

has illustrated, for in that game player 2 is β-effective for {s2} without being
α-effective for it.

As for empty strategic games, we say that an individual effectivity function
E : N → P(P(S)) α-corresponds to a nonempty strategic game G iff E = Eα

G.
The question to be examined now is which effectivity functions α-correspond
to some strategic game. An answer to this question will provide a complete
characterization of the properties of individual ability in strategic games. Note
that the following result is limited to situations where there are at least 2 players;
we shall consider the case where |N | = 1 later.

I Definition 2.8 (Strong Amusement). An individual effectivity function
E : N → P(P(S)) is strongly amusing iff (1)

⋂
i∈N Xi 6= ∅ whenever ∀i ∈ N :

Xi ∈ E(i), and (2) ∀i ∈ N : E(i) 6= ∅.

I Theorem 2.9. If |N | > 1, an individual effectivity function E α-corresponds
to a nonempty strategic game iff E is strongly amusing.

Proof. One can easily check that the α-effectivity function of any strategic
game is strongly amusing. As for the other direction, let E be a strongly amusing
effectivity function. We shall construct a game G such that E = Eα

G. To simplify
our definitions, assume that N = {1, . . . , n}.

Let H = {h : P(S)\{∅} → S | h(X) ∈ X} contain all functions which pick an
element from a nonempty set. We then define the strategic game G = (N, {Σi|i ∈
N}, o, S) as follows: Let

Σi = E(i) × N × H and o(σN) = hi0(
⋂

i∈N

ei),

where σN = (ei, ti, hi)i∈N is a strategy profile and i0 = ((t1 + · · ·+ tn) mod n)+1.
The idea here is that a strategy specifies the set a player chooses to force (ei)
and a function which chooses an outcome from every possible nonempty set (hi).
Given a strategy profile, the outcome of the game will be in the intersection of
the sets forced, and the precise outcome which is forced is then determined by i0
which indicates the player who has the power to determine the outcome. Note
that the condition we put on E guarantees that o(σN) is well-defined.

To check that Eα
G = E, suppose that X ∈ E(i). Then player i can play a

strategy (ei, ti, hi) with ei = X which will guarantee the outcome to lie in X, and
hence X ∈ Eα

G(i). Conversely, suppose that X 6∈ E(i) and consider any strategy
(ei, ti, hi) of player i, where there is some c ∈ ei∩X. Since |N | > 1, for all players
j 6= i we can define (ej, tj, hj) so that ej = S, hj(ei) = c and the tj are chosen so
that ((t1 + · · · + tn) mod n) + 1 6= i. Then o(σN) = c, and hence X 6∈ Eα

G(i). ¥

If we also want to allow for empty games, we get a corollary to the preceding
result using the notion of weak amusement.

22 Chapter 2. Multi-Agent Models of Power

I Definition 2.10 (Weak Amusement). An individual effectivity function E :
N → P(P(S)) is weakly amusing iff (1)

⋂
i∈N Xi 6= ∅ whenever ∀i ∈ N : Xi ∈

E(i), and (2) if there is some j ∈ N such that E(j) = ∅, then for all i ∈ N , if
X ∈ E(i) and Y ⊆ X then Y ∈ E(i).

Note that if E α-corresponds to an empty game, condition (1) of the definition
is vacuous since by theorem 2.6 it cannot be the case that ∀i ∈ N : Xi ∈ E(i).

I Corollary 2.11. If |N | > 1, an individual effectivity function E α-corresponds
to a possibly empty strategic game iff it is weakly amusing.

Proof. In case there is some j ∈ N such that E(j) = ∅, let G be the empty
strategic game defined as G = {i ∈ N |S ∈ E(i)}. One can easily check that for
all i ∈ N , E(i) = Eα

G(i). ¥

A special case which shall become important later are determined 2-player
games. The notion can be defined uniformly for empty as well as nonempty
strategic games. We call a possibly empty 2-player game G determined iff for
all X, X 6∈ Eα

G(1) implies X ∈ Eα
G(2), where we assume N = {1, 2}. Note that

in case G is empty, determinacy ensures that there is exactly one winner. As it
turns out, possibly empty determined 2-player games allow for a rather elegant
characterization result:

I Theorem 2.12. For N = {1, 2}, an individual effectivity function E α-corres-
ponds to a possibly empty determined strategic game iff for all X, X ∈ E(1) iff
X 6∈ E(2).

Proof. In case E(1) = ∅, G is the empty game where player 1 loses, i.e., G =
{2}. In case ∅ ∈ E(1), player 1 wins, i.e., G = {1}. Otherwise, we define
G = ({1, 2}, {Σ1, Σ2}, o, S) as follows: Σ1 = {X ⊆ S|X ∈ E(1)}, Σ2 = {f : Σ1 →
S|f(X) ∈ X} and o(X, f) = f(X). In words, player 1 chooses any set he is
able to force whereas player 2 chooses a function selecting an element from every
nonempty subset of S. it is easily checked that Eα

G = E.
Note that G is in fact the strategic normal form of the following extensive

game form: First, player 1 chooses a set X ∈ E(1), and after that, player 2
chooses an element x ∈ X. The x chosen will be the outcome state of the game.

1

X1 X2 · · ·
2 2

x1
1 x1

2 · · ·

¥

2.2. A Static Model of Individual Ability 23

Note that the proof of the theorem demonstrates that for N = {1, 2}, any
individual effectivity function satisfying X ∈ E(1) iff X 6∈ E(2) α-corresponds to
a determined strategic game of special kind, namely to the strategic normal form
of a a 2-move extensive game of perfect information.

As a consequence of this theorem, individual effectivity in a determined 2-
player game can simply be modeled by a superset-closed set E ⊆ P(S) which we
interpret as the ability of player 1. As the theorem states, every such E can be
linked to a possibly empty determined strategic game.

I Corollary 2.13. Every individual effectivity function E1 : {1} → P(P(S))
can be extended to an individual effectivity function E2 : {1, 2} → P(P(S))
which α-corresponds to a possibly empty determined strategic game.

2.2.3 Individual Ability in Dictatorships

As with strategic games, we would like to characterize the class of individual
effectivity functions which α-correspond to a dictatorship. The crucial property
needed here is a distribution property:

I Definition 2.14 (Disjunctivity). A set E ⊆ P(S) is disjunctive iff for all
V ⊆ P(S) we have

⋃
X∈V X ∈ E iff there is some X ∈ V such that X ∈ E. (In

case V = ∅, we define
⋃

X∈V X to be ∅.)

Note that disjunctivity implies monotonicity, and that if E is disjunctive then
∅ 6∈ E.

I Theorem 2.15. An individual effectivity function E α-corresponds to a pos-
sibly empty d-dictatorship iff E(d) is disjunctive and for all i 6= d, X ∈ E(i) iff
X 6∈ E(d).

Proof. In case E(d) = ∅, we define G to be the empty strategic game where
player d loses and everyone else wins. Otherwise, define G = (N, {Σi|i ∈ N}, o, S)
where Σd = {s ∈ S|{s} ∈ E(d)}, and for all i 6= d, Σi is a singleton. The outcome
of the game is defined by setting o(σ) = σd. Then for all i ∈ N , E(i) = Eα

G(i).
Consider first the case where i = d. Clearly, Eα

G(d) ⊆ E(d) by monotonicity.
For the opposite inclusion, we make use of disjunctivity: If X ∈ E(d) we know
that X 6= ∅ and that X =

⋃
s∈X{s}. Then for some s ∈ X we have {s} ∈ E(d)

and hence the player can choose outcome s in G and hence also bring about X.
In case i 6= d,

X ∈ E(i) iff X 6∈ E(d) iff X 6∈ Eα
G(d) iff X ∈ Eα

G(i).

¥

24 Chapter 2. Multi-Agent Models of Power

Note that in case |N | = 1, every strategic game is automatically a dictatorship,
and hence as a corollary to the previous theorem, we obtain the missing case of
theorem 2.11. The following result has been well-known in the literature on
program semantics, stating that the condition of disjunctivity is sufficient for a
predicate transformer to correspond to a state transformer [5, 99].

I Corollary 2.16. If N = {1}, an individual effectivity function E α-corres-
ponds to a possibly empty strategic game (= dictatorship) iff E(1) is disjunctive.

2.3 A Static Model of Group Ability

I Definition 2.17 (Coalitional Effectivity Function). A coalitional ef-
fectivity function is any function E : P(N) → P(P(S)) which is monotonic: For
every coalition C ⊆ N , X ∈ E(C) implies Y ∈ E(C) whenever X ⊆ Y ⊆ S.

The function E associates to every group of players the sets of outcomes for which
the group is effective; as before, we usually interpret X ∈ E(C) as “the players
in C have a joint strategy for bringing about an outcome in X”. Whenever we
shall speak of effectivity functions in the future, it shall be clear from the context
whether we refer to individual or coalitional effectivity functions.

As with individual effectivity functions, in most situations we will want coali-
tional effectivity functions to satisfy some additional properties besides mono-
tonicity. The following ones will play a central role later on:

Coalition-Monotonicity: In many circumstances one will want to assume that
a group which becomes larger has possibly more power but certainly not less.
In that case, E is coalition-monotonic, i.e., for C ⊆ C ′ ⊆ N , E(C) ⊆ E(C ′).

Regularity: As a basic consistency requirement, we usually want to exclude
cases where complementary coalitions are effective for complementary things,
for in that case, both coalitions could use their power and end up in an in-
consistent situation. The notion of regularity captures this concern: E is
C-regular if for all X, if X ∈ E(C) then X 6∈ E(C). E is regular iff for all
coalitions C it is C-regular.

Maximality: As a converse to regularity, call E C-maximal if for all X, if X 6∈
E(C) then X ∈ E(C). E is maximal iff for all coalitions C it is C-maximal.

Superadditivity: The most interesting principle governs the formation of coali-
tions. It states that coalitions can combine their strategies to (possibly)
achieve more: E is superadditive if for all X1, X2, C1, C2 such that C1∩C2 =
∅, X1 ∈ E(C1) and X2 ∈ E(C2) imply that X1 ∩ X2 ∈ E(C1 ∪ C2).

2.3. A Static Model of Group Ability 25

As natural as these conditions may seem, one can imagine situations in which
they are violated. For an example violating coalition-monotonicity, think of
RoboCup, where a team of robots playing soccer may lose its ability to win if the
team is joined by a completely malfunctioning robot which always blocks the goal
of the opposing team. We have seen earlier that in the case of 2-player games,
maximality expresses some kind of determinacy condition which is violated by
many games, for example the well-known matching pennies game where player 1
wins in case both pennies come up with the same face, and player 2 wins in case
the faces of the two pennies differ.

H T
H win1 win2

T win2 win1

Neither of the two players has a winning strategy, for player 1 is not effective for
win1 and player 2 is not effective for win2, and hence maximality is violated. As a
counterpart to maximality, regularity expresses that a game is strictly competitive
(zero-sum): If player 1 has a winning strategy (she is effective for win1) then
player 2 cannot have a winning strategy as well (2 is not effective for win2).
For an example violating both regularity and superadditivity, we refer the reader
to section 5.1. Note, however, that while the examples given are prima facie
violations of the respective conditions, a different modeling of the example may
very well avoid the violation.

I Definition 2.18 (Dual Effectivity Function). Given a coalitional ef-
fectivity function E : P(N) → P(P(S)), its dual effectivity function Ẽ is defined
as follows: X ∈ Ẽ(C) iff X 6∈ E(C).

Using the notion of duality, we can elegantly rephrase regularity and maximality
as:

E(C) ⊆ Ẽ(C) (regularity)

Ẽ(C) ⊆ E(C) (maximality)

In some of the definitions used in the completeness and complexity arguments
of the following chapters, we will define effectivity functions E with two separate
clauses, one for all coalitions C 6= N , and another one for C = N . Verifying that
an effectivity function defined in such a way is superadditive is facilitated by the
following lemma which is extremely simple yet often useful.

I Lemma 2.19. An effectivity function which is regular, N -maximal and super-
additive for C1 ∪ C2 6= N is superadditive.

Proof. Assume X1 ∈ E(C1) and X2 ∈ E(C2) where C1 ∩ C2 = ∅, C1 ∪ C2 = N
and hence C1 = C2. We assume w.l.o.g. that C2 6= N . Assume by reductio that
X1∩X2 6∈ E(C1∪C2). By N -maximality, X1 ∩ X2 ∈ E(∅) and by superadditivity
(since ∅ ∪ C2 6= N), X1 ∩ X2 ∈ E(C2). By monotonicity, X1 ∈ E(C2) and by
regularity, X1 6∈ E(C1), a contradiction. ¥

26 Chapter 2. Multi-Agent Models of Power

2.3.1 Group Ability in Empty Games

In extending α-effectivity from individuals to coalitions, we will call a coalition
α-effective for some set if all of its members are winners.

I Definition 2.20 (α-Effectivity in Empty Games). For an empty game
G (N , its coalitional α-effectivity function Eα

G : N → P(P(S)) is defined as
follows: X ∈ Eα

G(C) iff C ⊆ G.

The notion of α-correspondence can easily be extended to the coalitional case:
We say that a coalitional effectivity function E : P(N) → P(P(S)) α-corresponds
to an empty strategic game G iff E = Eα

G.

I Definition 2.21 (Terminal Effectivity Function). An effectivity func-
tion E : P(N) → P(P(S)) is terminal iff (1) it is superadditive, (2) C ⊆ D implies
E(D) ⊆ E(C), (3) ∀X,Y : X ∈ E(C) implies Y ∈ E(C), (4) ∅ 6∈ E(N), and (5)
S ∈ E(∅).

I Theorem 2.22. A coalitional effectivity function E α-corresponds to an empty
strategic game iff E is terminal.

Proof. The 5 terminality conditions are easily verified for α-effectivity functions
of empty games. Conversely, if E is a terminal effectivity function, let G = {i ∈
N |∅ ∈ E({i})}. Note that G 6= N , for otherwise we would have ∅ ∈ E(N) by
superadditivity. To show that E = Eα

G, one shows that X ∈ E(C) iff C ⊆ G.
From left to right, if X ∈ E(C) then for all i ∈ C we have X ∈ E({i}) and hence
∅ ∈ E({i}), so C ⊆ G. Conversely, if C ⊆ G, ∀i ∈ C we have ∅ ∈ E({i}). In
case C = ∅, the conclusion easily follows. Otherwise, superadditivity gives us
∅ ∈ E(C) and hence by monotonicity X ∈ E(C). ¥

Note that terminal effectivity functions are downward monotonic when it
comes to coalitions, i.e., any subset of an effective coalition is also effective. An
alternative would have been to call a coalition effective in case at least one of its
members is a winner, yielding upwards coalition-monotonicity. The problem with
this alternative definition is on the one hand that it does not match our proposed
interpretation as well: a coalition can only be effective in case none of its mem-
bers has violated the rules of the game, the fact that some of its members have
played according to the rules is not sufficient. On the other hand, the alternative
definition would not allow us to establish the link with modal logic so easily (see
section 3.5): in order to establish this link, the coalition of all players must be
ineffective in empty games and the empty coalition must be effective.

2.3. A Static Model of Group Ability 27

2.3.2 Group Ability in Strategic Games

The notion of α-effectivity which we defined for individual effectivity functions
can easily be generalized to coalitional effectivity functions. In fact, the study of
effectivity functions has concentrated on this coalitional setting. Given a game
G, a coalition C ⊆ N will be α-effective for a set X ⊆ S iff the coalition has a
joint strategy which will result in an outcome in X no matter what strategies the
other players choose.

I Definition 2.23 (α-Effectivity in Strategic Games). For a nonempty
strategic game G, its coalitional α-effectivity function Eα

G : P(N) → P(P(S)) is
defined as follows: X ∈ Eα

G(C) iff ∃σC∀σC o(σC , σC) ∈ X.

We say that a coalitional effectivity function E : P(N) → P(P(S)) α-corresponds
to a nonempty strategic game G iff E = Eα

G.
Also, in the coalitional case, we can define the β-effectivity function as

X ∈ Eβ
G(C) iff ∀σC∃σC o(σC , σC) ∈ X.

Recall that in figure 2.1, player 2 was β-effective for {s2} without being α-effective
for it. The coalition consisting of players 1 and 2 on the other hand is α-effective
for {s2}.

For 2-player games, we have already defined the notion of determinacy in
section 2.2.2. Using coalitional α-effectivity, we can now generalize this definition
to n-player games: Note that an empty strategic game is determined iff |G| =
|N | − 1, i.e., iff there is exactly one loser.

I Definition 2.24 (Determinacy). We call a possibly empty game G deter-
mined iff Eα

G is maximal.

As we characterized the class of individual effectivity functions which α-
correspond to a strategic game in theorem 2.9, below we obtain an analogous
characterization result for coalitional effectivity functions.

I Definition 2.25 (Strong Playability). A coalitional effectivity function
E : P(N) → P(P(S)) is strongly playable if it satisfies the following four condi-
tions: (1) ∀C ⊆ N : ∅ 6∈ E(C), (2) ∀C ⊆ N : S ∈ E(C), (3) E is N -maximal,
and (4) E is superadditive.

I Lemma 2.26. Every strongly playable effectivity function is regular and also
coalition-monotonic.

Proof. For regularity, let X ∈ E(C) and assume by reductio that X ∈ E(C).
By superadditivity, ∅ ∈ E(N), contradicting condition (1) of strong playability.

For coalition monotonicity, let X ∈ E(C) and C ⊆ C ′. For C ′′ := C ′ \ C,
condition (2) of strong playability give us S ∈ E(C ′′) and so by superadditivity,
X ∈ E(C ∪ C ′′) = E(C ′). ¥

28 Chapter 2. Multi-Agent Models of Power

The proof of the next result follows the same general pattern as the proof of
theorem 2.9.

I Theorem 2.27. A coalitional effectivity function E α-corresponds to a non-
empty strategic game iff E is strongly playable.

Proof. One can easily check that the α-effectivity function of any strategic game
satisfies the four properties of strong playability. As for the other direction, let E
be an effectivity function satisfying the four properties. We shall construct a game
G such that E = Eα

G. To simplify our definitions, assume that N = {1, . . . , n}.
To guide the reader through the following technical proof, we first provide

a more informal sketch of the main argument: Given the playable effectivity
function E, we construct a strategic game G = (N, {Σi|i ∈ N}, o, S). A strategy
σi for player i will be a triple (fi, ti, hi): For every coalition Ci of which i is a
member, the function fi picks a set which Ci can force, and for every nonempty
set X, the function hi picks an element of X. Thus, if player i ends up as a
member of coalition Ci, he will force fi(Ci), and if the choice is up to her, she
will pick the outcome using hi. Since all players will force certain sets as part of
their strategy σi, we use the tis to determine which player will get the power to
determine the outcome state. The outcome of the game will be determined by
the outcome function o roughly as follows: Given (f1, . . . , fn), N is partitioned
into coalitions (as big as possible) such that all members of a coalition choose
to force the same set. The outcome set will then be the result of each coalition
forcing its set, i.e., the intersection of all the sets forced. The player who chooses
which state in this set will be realized is then determined by adding up (modulo
n) all the indices chosen as ti. The effectivity function of this game is just E.

Formally, for i ∈ N , let Ci = {C ⊆ N |i ∈ C} be the set of coalitions of which
i is a member. Let

Fi = {fi : Ci → P(S) | ∀C : fi(C) ∈ E(C)},

so Fi consist of all functions fi which associate to every coalition C in which i
participates a set of outcomes for which C is effective. Note that since for all
coalitions C, S ∈ E(C), Fi will be nonempty for every player i.

Given f ∈ Πi∈NFi = FN and a coalition C, let P (f, C) be the coarsest parti-
tion 〈C1, . . . , Cm〉 of C such that

∀l ≤ m∀i, j ∈ Cl : fi(C) = fj(C).

Then given f , let

P0(f) = 〈N〉
P1(f) = P (f,N) = 〈C1

1 , . . . , C
1
k1
〉

P2(f) = 〈P (f, C1
1), . . . , P (f, C1

k1
)〉 = 〈C2

1 , . . . , C
2
k2
〉

...
Pr(f) = 〈Cr

1 , . . . , C
r
kr
〉.

2.3. A Static Model of Group Ability 29

Since there are only finitely many players, this partitioning process will eventually
stop at some state r where Pr(f) = Pr+1(f), and we let P∞(f) = Pr(f) =
〈C1, . . . , Ck〉. Since for all l ≤ k and i, j ∈ Cl we have fi(Cl) = fj(Cl) we will
simply write f(Cl) for it. Now let

G(f) =
k⋂

l=1

f(Cl).

Claim: G(f) 6= ∅. Proof: Since Cl is effective for f(Cl), i.e., f(Cl) ∈ E(Cl)
for all l ≤ k,

⋂k
l=1 f(Cl) = G(f) ∈ E(N) by superadditivity, and hence since

∅ 6∈ E(N), G(f) cannot be empty.
Now we can define the strategic game G = (N, {Σi|i ∈ N}, o, S) as follows:

Let H = {h : P(S) \{∅} → S | h(X) ∈ X}. Then we define

Σi = Fi × N × H and o(σN) = hi0(G(f)),

where σN = (fi, ti, hi)i∈N is a strategy profile and i0 = ((t1 + · · ·+ tn) mod n) + 1
indicates the player who has the power to determine the outcome. It remains to
show that for all C ⊆ N , E(C) = Eα

G(C).
For the inclusion from left to right, assume that X ∈ E(C). Choose any

C-strategy σC = (fi, ti, hi)i∈C such that for all i ∈ C and for all C ′ ⊇ C we
have fi(C

′) = X. By coalition-monotonicity, such fi exist. Take any C-strategy
σC = (fi, ti, hi)i∈C . We need to show that o(σC , σC) ∈ X. To see this, note that
C must be a subset of one of the partitions Cl in P∞(f). Hence,

o(σN) = o(σC , σC) = hi0(G(f)) ∈ G(f) ⊆ f(Cl) = X.

For the inclusion from right to left, assume that X 6∈ E(C). Suppose first
that C = N . Then by N -maximality, X ∈ E(∅), and by the previous part of the
proof, X ∈ Eα

G(∅). Since Eα
G is strongly playable, it is regular (by the previous

lemma) and so X 6∈ Eα
G(N), and we established the result.

So assume from now on that C 6= N , and let j0 ∈ N \ C. Let σC be any
strategy for coalition C. We must show that there is a strategy σC such that
o(σC , σC) 6∈ X. Define σC = (fi, ti, hi)i∈C such that for all C ′ ⊇ C and for all i ∈ C
we have fi(C

′) = S. Then choose a tj0 such that ((t1 + · · ·+ tn) mod n) + 1 = j0.
Note that C must be a subset of one of the partitions Cl in P∞(f). For

the other partitions, superadditivity implies that there is some C0 ⊆ C such
that G(f) ∈ E(C0), and hence by coalition-monotonicity, G(f) ∈ E(C). Since
X 6∈ E(C), G(f) 6⊆ X by outcome-monotonicity, so there is some s0 ∈ G(f)∩X.
Now we define hj0(G(f)) = s0. Then

o(σC , σC) = hj0(G(f)) = s0 6∈ X.

¥

30 Chapter 2. Multi-Agent Models of Power

The following theorem extends the previous result to possibly empty strate-
gic games. The collection of properties needed to characterize possibly empty
strategic games is called weak playability:

I Definition 2.28 (Weak Playability). A coalitional effectivity function E :
P(N) → P(P(S)) is weakly playable if it satisfies the following five conditions:
(1) ∅ 6∈ E(N), (2) if ∅ ∈ E(C) and C ′ ⊆ C then ∅ ∈ E(C ′), (3) if ∅ 6∈ E(∅) then
S ∈ E(C) for all C ⊆ N , (4) E is N -maximal, and (5) E is superadditive.

It is easy to check that the terminology is justified in the sense that strong playa-
bility implies weak playability but not vice versa. The following result shows that
terminality distinguishes weak from strong playability.

I Theorem 2.29. A coalitional effectivity function is weakly playable iff it is
strongly playable or terminal.

Proof. Strongly playable as well as terminal effectivity functions are easily seen
to be weakly playable. For the converse, assume that E is weakly playable and
not strongly playable. Then there are two possible cases:

(i) There is some C such that S 6∈ E(C). Then ∅ ∈ E(∅), and whenever
X ∈ E(D), using superadditivity we have ∅ ∈ E(D) and so using monotonicity
we also have Y ∈ E(D) for every Y ⊆ S and X ∈ E(D′) for every D′ ⊆ D.

(ii) There is some C such that ∅ ∈ E(C). Then again we have ∅ ∈ E(∅) and
we can proceed as before. ¥

I Corollary 2.30. A coalitional effectivity function E α-corresponds to a pos-
sibly empty strategic game iff E is weakly playable.

Proof. An easy consequence of theorems 2.22, 2.27 and 2.29. ¥

2.3.3 Group Ability in Dictatorships

I Definition 2.31 (Individualism). A coalitional effectivity function E is
strongly (weakly) individualistic iff it is strongly (weakly) playable and E(N) ⊆⋃

i∈N E({i}).

The condition ensures that everything which can be forced at all can be forced
already by some individual. Since every strongly playable effectivity function is
coalition-monotonic by lemma 2.26, the converse inclusion

⋃
i∈N E({i}) ⊆ E(N)

holds for all strongly playable effectivity functions.
The following result shows that individualism is an extremely strong assump-

tion: While it seems to say only that the whole is equal to the sum of its parts,
due to superadditivity, it actually says that the whole is equal to one particular
part.

2.3. A Static Model of Group Ability 31

I Theorem 2.32. A coalitional effectivity function E α-corresponds to a non-
empty dictatorship iff E is strongly individualistic.

Proof. First, if E is the effectivity function of a dictatorship with dictator d, E
is easily seen to be strongly individualistic since E(N) ⊆ E({d}).

Second, assume E is strongly individualistic, and so there is a strategic game
G such that E = Eα

G. We can assume that G has at least two distinct outcomes
t1 and t2, for otherwise G is trivially a dictatorship. For every outcome ti we
know that {ti} ∈ Eα

G(N) = E(N), and hence we know that some individual
must be able to guarantee that outcome. Suppose by reductio that there are two
individuals i 6= j ∈ N such that {t1} ∈ E({i}) and {t2} ∈ E({j}). Then by
superadditivity, ∅ ∈ E({i, j}), a contradiction. Hence, there is a player who can
force any outcome, so G is a dictatorship. ¥

Put positively, unless we have a dictatorship, coalitions of agents can sometimes
achieve more than their members individually, cooperation is thus advantageous.

I Corollary 2.33. A coalitional effectivity function E α-corresponds to a pos-
sibly empty dictatorship iff E is weakly individualistic.

Proof. The result follows from theorems 2.22, 2.29 and 2.32. ¥

2.3.4 Individual vs. Group Ability

Clearly, the ability of coalitions is to some extent determined by the ability of its
members. To take the simplest example, we know that in any coalition-monotonic
effectivity function, a 2-player coalition can achieve at least as much as its two
members individually. However, the 2-player coalition may be able to achieve
more than we can determine from the individual powers of its members.

We say that a coalitional effectivity function E : P(N) → P(P(S)) extends an
individual effectivity function E ′ : N → P(P(S)) iff for all i ∈ N , E({i}) = E ′(i).
In the most general case, an individual effectivity function can be extended in
an arbitrary way to a coalitional effectivity function as long as monotonicity is
satisfied. In the case where we want to extend an individual effectivity function
to a coalitional α-effectivity function of a strategic game, it seems that there
will be less flexibility, however, and one might even wonder whether in that case
individual effectivity completely determines group effectivity.

I Definition 2.34 (Individually Determined). A class of coalitional effec-
tivity functions K is individually determined if for any two effectivity functions
E1, E2 ∈ K, if E1({i}) = E2({i}) for all agents i ∈ N , then E1 = E2.

The class of coalitional effectivity functions which α-correspond to an empty
strategic game are easily seen to be individually determined: If Eα

G1
and Eα

G2

agree on singleton coalitions, G1 = G2. Since empty games only formalize the
individual payoffs, they contain no further coalitional information.

32 Chapter 2. Multi-Agent Models of Power

I Theorem 2.35. For |N | > 1, individualistic effectivity functions are individu-
ally determined, playable effectivity functions are not.

Proof. For N = {1, 2} and S = {s, t}, consider the coalitional α-effectivity
functions associated with the two strategic games of figure 2.2, where El corre-
sponds to the left game and Er to the right one.

l r
l s s
r s t

l r
l s s
r s s

Figure 2.2: Two strategic games which differ only in coalitional ability.

One can easily verify that El({1}) = Er({1}) and El({2}) = Er({2}), while
El({1, 2}) 6= Er({1, 2}). As a consequence, both strongly and weakly playable
effectivity functions are not individually determined.

As for strongly individualistic effectivity functions and dictatorships, coali-
tions do not add anything to individual agents. If E is strongly individualis-
tic, E(C) =

⋃
i∈C E({i}) for every nonempty coalition C. Since X ∈ E(∅) iff

X 6∈ E(N), E is individually determined. Due to the fact that empty strategic
games are individually determined as well, both strongly and weakly individual-
istic effectivity functions are individually determined. ¥

It follows from the theorem that no class of effectivity functions which includes
the strongly playable ones is individually determined. Note also that the strategic
games which were given as examples in the proof are in fact determined, thereby
demonstrating the stronger claim that even the class of maximal strongly playable
effectivity functions is not individually determined.

While these results are neither surprising nor difficult to prove, they are
nonetheless important to keep in mind for two reasons: First, when we consider
dynamic models of ability with rich languages for describing them, it will turn
out that even in models based on individualistic effectivity functions, long-term
ability of groups need not be individually determined (see section 4.3.3). Second,
the fact that even determined 2-player games are not individually determined
shows that ignoring coalitional ability even in such simple games does mean a
loss of information.

2.4 Dynamic Models of Ability

2.4.1 Dynamic Effectivity Frames

I Definition 2.36 (Dynamic Effectivity Frame). Given the set of agents
N and a set of atomic games Γ0, a dynamic effectivity frame F = (S, {EC,g|C ⊆

2.4. Dynamic Models of Ability 33

N and g ∈ Γ0}) consists of a nonempty set of states S and monotonic functions
EC,g : S → P(P(S)) , i.e., X ∈ EC,g(s) and X ⊆ Y imply Y ∈ EC,g(s).

Intuitively, EC,g associates to every state s ∈ S the sets of states for which
coalition C is effective in game g. We assume that at every state there are
a number of possible interactions or games Γ0 which can occur. In each such
interaction, different coalitions may be effective for different sets of states at
which new interactions may happen. We assume that for every g ∈ Γ0 and state
s ∈ S, the function Eg,s : P(N) → P(P(S)) defined by Eg,s(C) = EC,g(s) is an
effectivity function (i.e., it is monotonic). For easier readability, we shall often
write sEC,gX instead of X ∈ EC,g(s), and we let EC,g(X) = {s ∈ S|sEC,gX}.

Conceptually, dynamic effectivity frames can be interpreted in two different
ways. In case Γ0 is a singleton, every state is associated with only one game
(at most), and we can view the whole model itself as a complex game where the
states of the world are associated to game positions. The interaction which may
take place at each state is then a move in the game (where possibly players move
simultaneously). We call this view the internal view, since the model describes
the internal structure of a certain type of game. According to the external view,
a dynamic effectivity frame describes interactions from the outside. The model
itself is not viewed as a game, rather, the interactions which can take place at
each state are complex games themselves, and we are interested in how one can
move through this state space by combining different interactions by means of
certain game operations. We will have more to say about these two views in
sections 2.4.2 and 2.4.3. For now it is sufficient to realize that these two views are
two conceptual sides of the same (technical) coin, for both views can be captured
using the dynamic effectivity frames just defined. The situation is thus parallel
to the situation with processes, where Kripke frames can also be used both as a
model of the internal structure of a single process and as a model of the external
structure of multiple processes.

Call a dynamic effectivity frame uniformly finitary iff there are a finite number
of finite sets X1, . . . , Xk ⊆ S such that if sEC,gX then there exists some i ≤ k
such that sEC,gXi and Xi ⊆ X. Clearly, all frames where S is finite will be
uniformly finitary.

All of the properties of effectivity functions which we introduced previously
can be lifted to dynamic effectivity frames: A dynamic effectivity frame F =
(S, {EC,g|C ⊆ N and g ∈ Γ0}) has a given property (e.g. maximality) iff for
every state s ∈ S and every game g ∈ Γ0, Eg,s has the property. Similarly, the
notion of α-correspondence can be lifted to frames in this way.

I Definition 2.37 (Kripke Frame). Given the set of atomic games Γ0, a
Kripke frame K = (S, {Rg|g ∈ Γ0}) consists of a nonempty set of states S and
relations Rg ⊆ S × S.

34 Chapter 2. Multi-Agent Models of Power

In many cases |Γ0| = 1, so that a Kripke frame can simply be written as K =
(S,R).

While frames provide information about how different states are linked among
each other by way of coalitional effectivity, they do not contain any information
about the properties of those states themselves. In order to add this type of
information, we assume a set Φ0 of atomic propositions which can describe prop-
erties of states. Elements of Φ0 are typically denoted by p, q, r, . . ., and given the
set of states S, a valuation function V : Φ0 → P(S) assigns to every proposition
p ∈ Φ0 the set of states where p is true. Adding a valuation function to a dynamic
effectivity frame F , we obtain a dynamic effectivity model M = (F , V).

The subsequent chapters will deal with restricted kinds of dynamic effectivity
frames, coalition frames and game frames. These restricted frames are simpler
and more suitable to investigate the differences between individual and coali-
tional effectivity on the one hand, and programs and games on the other hand.
Nonetheless, the generality of dynamic effectivity frames is sometimes useful, for
it allows us to formulate notions such as bisimulation (see section 2.5) in a fully
general setting.

2.4.2 The Internal View: Coalition Frames

Chapters 3 and 4 will use coalition frames which ignore the possibility of multiple
interactions and assume that at every state there is only one possible interaction
which can occur.

I Definition 2.38 (Coalition Frame). A coalition frame is a pair F = (S,
{EC |C ⊆ N}) where EC : S → P(P(S)) is monotonic, i.e., X ∈ EC(s) and
X ⊆ Y imply Y ∈ EC(s).

Call a state s ∈ S terminal in case E(s) is a terminal effectivity function.
Terminal states thus mark the end of an interaction and assign payoffs to the
players.

Certain coalition frames represent the ability of agents in well-known forms
of strategic interaction:

Playable Frames: Extensive Games of Almost Perfect Information

Weakly playable coalition frames α-correspond to extensive games with simulta-
neous moves, i.e., extensive games of almost perfect information. Every state of
the frame is either linked to a strategic game (i.e., a simultaneous move by all
players) or to a payoff vector represented by an empty strategic game. The only
difference with the standard notion of an extensive game is that the payoffs we
associate to terminal states are of a restricted form: Players either win or lose
(i.e., the payoffs are either 1 or −1) and at least one player must lose. This re-
striction, however, is not intrinsic to our framework but is mainly caused by the

2.4. Dynamic Models of Ability 35

link we want to establish with modal logic in section 3.5. Note also that weakly
playable coalition frames allow for infinite runs/plays as well as cycles.

The following example of an extensive 2-player game with simultaneous moves
contains two states s0 and s2 where the associated strategic games are dictator-
ships with different local dictators. At states s1 and s5, non-dictatorial strategic
games are played. Finally, states s3 and s4 are terminal states which are linked to
empty strategic games. Both players lose at state s4 whereas only player 1 loses
at state s3.

s0

1

s1 s2

2

s3 s4 s5

{2} ∅

l r
l s2 s5

r s0 s2

l r
l s4 s3

r s1 s2

Because of the correspondence between weakly playable coalition frames and
extensive games of almost perfect information we shall usually not be very careful
to distinguish them. Note also that by disregarding the effectivity information at
terminal states of weakly playable coalition frames, these frames can be used to
model effectivity in extensive game forms which do not contain any information
about the players’ payoffs.

Individualistic Frames: Extensive Games of Perfect Information

Weakly individualistic coalition frames α-correspond to extensive games without
simultaneous moves, i.e., extensive games of perfect information. Every state is
either a dictatorship, the dictator being the player whose turn it is at that state,
or it is an empty strategic game and hence a payoff vector. The following game
tree gives a visual example.

s0

1

s1 s2

1 2

s3 s4 s5

∅ {2} {1}

36 Chapter 2. Multi-Agent Models of Power

At state s0, player 1 is the local dictator who has the local power to decide
between states s1 and s2. Similarly at state s2, player 2 has the power to decide
between states s4 and s5, whereas at state s1, player 1 can only choose state s3.
The states s3, s4 and s5 are states linked to an empty strategic game which only
consists of the sets of players who win, e.g., player 1 at state s5.

Individualistic 1-Player Frames: Extensive 1-Player Games

Weakly individualistic/playable 1-player coalition frames α-correspond to exten-
sive 1-player games, i.e., programs. Either player 1 can choose a successor state
or she loses. We will see later how Coalition Logic over this class of frames is
nothing but normal modal logic.

As the following example demonstrates, weakly playable 1-player frames are
similar to weakly individualistic frames, except that the dictator is the same at
every state and that payoffs are only given to one player. Since the same player
chooses at every state, we do not need to label states with players anymore.

s0

s1 s2

s3 s4 s5

Note also that an empty game associated to a state must be a loss for the player
which is why we leave the terminal states unmarked; they are all losses for the
player.

In case |N | = 1, every weakly playable coalition frame F = (S, {E{1}, E∅})
α-corresponds to a Kripke frame K = (S,R), where

sE{1}X iff ∃t ∈ X : sRt. (2.1)

Note that this essentially instantiates the definition of α-effectivity for 1-player
strategic games. As a consequence, sRt holds iff sE{1}{t}. R denotes the strategic
game as an accessibility relation: At state s ∈ S, the strategic game associated
with s lets player 1 choose among all states t such that sRt. Consequently, we
associate the empty strategic game with s if there is no t ∈ S such that sRt.

Coalition Models

A coalitional model M = ((S,E), V) consists of a coalition frame (S,E) and a
valuation function V : Φ0 → P(S). The restricted classes of frames we have
considered can then easily be lifted to models, so that we can talk, e.g., about
the class of weakly playable coalition models, referring to coalition models with a
weakly playable effectivity frame. We will investigate a number of specific classes

2.4. Dynamic Models of Ability 37

of coalition models in the following chapter, where the following notation will be
used:

Mon all coalition models
Play weakly playable coalition models

MaxPlay maximal weakly playable coalition models
Ind weakly individualistic coalition models

n−X coalition models of class X for |N | = n

Thanks to the characterization results of section 2.3, the classes Play and Ind

capture precisely the ability structures which α-correspond to extensive games
with and without simultaneous moves. 1−Play captures the ability associated
with processes, and besides being interesting as a limiting case, it will be used
together with 2−MaxPlay when making the connection with standard modal logic.
Note that since every 1-player strategic game is automatically a dictatorship,
1−Play = 1−Ind.

2.4.3 The External View: Game Frames

Where coalition frames are dynamic effectivity frames which allow for only one
interaction per state, game frames allow for multiple interactions but only model
the ability of a single player.

I Definition 2.39 (Game Frame). A game frame is a pair F = (S, {Eg|g ∈
Γ0}) where Eg : S → P(P(S)) is monotonic, i.e., X ∈ Eg(s) and X ⊆ Y imply
Y ∈ Eg(s).

Intuitively, Eg : S → P(P(S)) models the ability of player 1 in game g. As has
been shown in corollary 2.13, such an Eg(s) always corresponds to the ability of
a player in a determined 2-player strategic game. Note that game frames do not
contain any information about coalitional ability such as the effectivity of both
players together. It follows from theorem 2.35 that this coalitional effectivity
information cannot be recovered from the individual effectivity information. A
game model M = ((S,E), V) consists of a game frame (S,E) and a valuation
function V : Φ0 → P(S).

Using theorem 2.16, we can isolate the class of game frames which α-correspond
to Kripke frames. Call an operation F : P(S) → P(S) disjunctive iff for all
V ⊆ P(S) we have

F (
⋃

X∈V

X) =
⋃

X∈V

F (X).

Note that disjunctivity implies monotonicity and that F (∅) = ∅. Recall that
in section 2.2.3 we already defined what it means for a set E ⊆ P(S) to be
disjunctive. Making use of this earlier definition, we can also say that an operation

38 Chapter 2. Multi-Agent Models of Power

F is disjunctive iff for all s ∈ S, the set {X ⊆ S|s ∈ F (X)} is disjunctive. By
theorem 2.16, every disjunctive game frame F = (S, {Eg|g ∈ Γ0}) α-corresponds
to a Kripke frame K = (S, {Rg|g ∈ Γ0}), where

sEgX iff ∃t ∈ X : sRgt. (2.2)

When we considered coalition frames, we assumed the internal view of frames,
interpreting, e.g., a playable coalition frame as an extensive game with simultane-
ous moves, each state of the frame being associated with a strategic game. Thus,
the frame as a whole represented a game of some sort and the local effectivity
function modeled the kind of move which could be taken at that particular game
position by one or many players.

Game frames on the other hand are most naturally interpreted as external
models of many games. Each state is associated to a number of complex deter-
mined 2-player games. By corollary 2.13, the ability of the two players in such a
game can be modeled by a collection of subsets of S, all the sets of states which
player 1 can bring about. Hence every state allows for a number of different
possible interactions in which the players can engage in. The result of such an
interaction will again be a new state where further interactions may be possible.
The interactions are not modeled in any detail, but only in terms of what the
players can bring about at the end of the interaction.

As an example of how the internal and external view can be related, consider
the following extensive game form of perfect information Gext on the left:

s0

1

s1 s2

1 2

s3 s5 s4 s5

l r
ll s3 s3

lr s5 s5

rl s4 s5

rr s4 s5

As discussed earlier, this extensive game form can be modeled by a weakly in-
dividualistic coalition model. Furthermore, we can consider the strategic normal
form Gsnf of this game which is depicted to the right of the extensive game Gext.
Every complex strategy of player 1 in the extensive game (such as ll where player
1 chooses the left move at both choice points) is a strategy in the normal form,
and similarly for player 2. Note that the strategic game Gsnf is determined.

Gext can be modeled by a coalition frame where at state s0 player 1 is effective
for {s1}, i.e., s0E{1}{s1} holds. When Gext is condensed to its strategic normal
form Gsnf , it can be associated to a state in a game frame, in which case player
1 would be effective for {s3}, i.e., s0EGsnf

{s3} since he has a global strategy in
Gext which brings about state s3.

2.5. Identity Politics 39

In case Gext is a game rather than a game form, the terminal states s3, s4 and
s5 will be marked either as a win for player 1 or as a win for player 2 (they cannot
both lose since we are dealing with determined games only). Consequently, one
of the two players i will have a winning strategy in Gext by Zermelo’s theorem
[127, 19], and the strategic game Gsnf which captures this information will simply
be the empty strategic game G = {i}.

In terms of programs, the relationship between an extensive game and its
strategic normal form is analogous to the relationship between the tree of execu-
tion sequences of a terminating nondeterministic program and its input-output
relation. As the example below demonstrates, a Kripke frame can be used to
model both of these perspectives: if the left Kripke frame models the execu-
tion sequences of a nondeterministic program, the right Kripke frame shows its
input-output relation for input state s0.

s0

s1 s2

s3 s4 s5

s0

s3 s4 s5

2.5 Identity Politics

When are two dynamic effectivity models the same? We consider isomorphism
too strong, since we are primarily interested in the observable properties (as,
e.g., specified by the valuation function) which a given state has. The notion
of bisimulation expresses that two states s and s′ are equivalent if they do not
differ in the atomic properties which they have, and if whenever some agent or
group is able to achieve X from s, then there should be some set Y such that
that agent/group can achieve Y from s′, and for every outcome in Y there is
an equivalent outcome in X. Loosely speaking, if a group of agents can achieve
something from one state, they can achieve at least as much from the other state,
and vice versa. We first present the concept of bisimulation in its most general
form, namely in its formulation for dynamic effectivity models.

I Definition 2.40 (Bisimulation). Let M = ((S, {EC,g|C ⊆ N and g ∈ Γ0}),
V) and M′ = ((S ′, {E ′

C,g|C ⊆ N and g ∈ Γ0}), V
′) be two dynamic effectivity

models . Then ↔⊆ S×S ′ is a bisimulation between M and M′ iff for any s ↔ s′

we have

1. s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ Φ0.

2. For all C ⊆ N , g ∈ Γ0 and X ⊆ S: If sEC,gX then ∃X ′ ⊆ S ′ such that
s′E ′

C,gX
′ and ∀x′ ∈ X ′ ∃x ∈ X : x ↔ x′.

40 Chapter 2. Multi-Agent Models of Power

3. For all C ⊆ N , g ∈ Γ0 and X ′ ⊆ S ′: If s′E ′
C,gX

′ then ∃X ⊆ S such that
sEC,gX and ∀x ∈ X ∃x′ ∈ X ′ : x ↔ x′.

Two states are bisimilar iff there is a bisimulation ↔ such that s ↔ s′. If we want
to make the underlying models explicit, we also write M, s ↔ M′, s′ instead of
s ↔ s′.

It is easy to see how bisimulation can be instantiated for coalition models
and game models, by leaving out the game component in the first case and the
coalition component in the second case. Note that depending on whether one
assumes the internal or the external view of a model, the interpretation of a
bisimulation will be different. On the internal view of, e.g., an individualistic
coalition model, a bisimulation establishes local similarity: If two positions of
an extensive game without simultaneous moves are bisimilar, it means that at
the present position and every future position of the game, the players have the
same powers to force the game into a new position. On the external view of,
e.g., a game model, bisimilarity establishes global similarity: A state may be
linked to multiple complex games represented by their effectivity function, and
whatever a player can achieve through playing a particular game at one state,
she can achieve through playing the same game at the other state. Thus, what
bisimilarity means will depend on the concrete interpretation of the model one
has in mind. Note also that for terminal states, bisimilarity guarantees that the
set of winning players is the same at both states.

One special instance of bisimulation is worth a few more remarks. Consider
dynamic effectivity models which are weakly playable and where N contains only
one player, say N = {1}. As pointed out before, such models α-correspond to
Kripke models, and it turns out that for Kripke models, bisimulation reduces to
the standard notion of bisimulation:

I Definition 2.41 (Kripke-Bisimulation). Let MK = ((S, {Rg|g ∈ Γ0}), V)
and M′

K = ((S ′, {R′
g|g ∈ Γ0}), V

′) be two Kripke models. Then ↔⊆ S × S ′ is a
Kripke-bisimulation between MK and M′

K iff for any s ↔ s′ we have

1. s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ Φ0.

2. For all g ∈ Γ0: If sRgt, then there is a t′ ∈ S ′ such that s′R′
gt

′ and t ↔ t′.

3. For all g ∈ Γ0: If s′R′
gt

′, then there is a t ∈ S such that sRgt and t ↔ t′.

I Theorem 2.42. For Kripke models, every bisimulation is a Kripke-bisimulation
and vice versa. More precisely: Kripke models are Kripke-bisimilar iff their α-
corresponding game/coalition models are bisimilar.

2.6. Summary 41

Proof. The result follows rather directly from equivalences (2.1) and (2.2) which
link Kripke models to their corresponding coalition/game models. The following
argument is formulated for coalition models.

Suppose a relation ↔ is a Kripke-bisimulation, and assume that s ↔ s′ and
sE{1}X, i.e., for some state t ∈ X we have sRt. Hence there is some t′ such that
s′R′t′ and t ↔ t′. But then s′E ′

{1}{t
′}, so ↔ is also a bisimulation. As for the

other coalition, if sE∅X, then X ⊇ {t|sRt}. We know that s′E ′
∅{t

′|s′R′t′}, and
hence it is sufficient to show that for all t′ ∈ S ′, if s′R′t′ then there is some t ∈ S
such that sRt and t ↔ t′, which follows from Kripke-bisimulation.

Conversely, suppose a relation ↔ is a bisimulation, and assume that s ↔ s′

and sRt. Then sE{1}{t} and so there is some X ′ such that s′E ′
{1}X

′ and ∀x′ ∈
X ′ : t ↔ x′. Hence, there is some t′ ∈ X ′ such that s′R′t′ and thus t ↔ t′. ¥

Like Kripke models, extensive games without simultaneous moves allow for a
simple reformulation of bisimulation. Suppose we are given two extensive games
without simultaneous moves G and G′. In order for two states s and s′ to be
bisimilar, they have to agree on the propositional atoms. Similarly, if one state is
terminal then the other one is as well, and the states have the same set of winning
players. If both states are non-terminal, we distinguish two situations: (1) In case
the same player has to move at both states, we apply the standard bisimulation
clauses: For every successor of s, s′ has to have a bisimilar successor, and vice
versa. (2) In case different players move at the two states, every successor of s
has to be bisimilar to every successor of s′. It can be checked that the conditions
given are indeed necessary and sufficient for bisimulation in the case of extensive
games of perfect information.

2.6 Summary

The main concern of this chapter has been to characterize individual and group
ability in strategic and extensive games. To give one example, on the static
level, we characterized the coalitional effectivity functions which α-correspond to
strategic games as the strongly playable ones. Similar results have been obtained
for individual effectivity functions as well as for dictatorships. Figure 2.3 sum-
marizes the results. Note that (with one exception) we have shown these results
in two versions, depending on whether we allow for empty games or not.
These results thus provide a complete characterization of individual and group
ability in strategic games and dictatorships. Dynamically, they yield a full char-
acterization of local ability in extensive games with and without simultaneous
moves.

In one particular case (theorem 2.12), the result obtained yielded a particu-
larly interesting characterization, showing not only that an effectivity function of
a certain kind α-corresponds to a determined strategic game, but also that this

42 Chapter 2. Multi-Agent Models of Power

static/dynamic game individual ability coalitional ability
strategic game/extensive game

with amusing playable
simultaneous moves

dictatorship/extensive game
without disjunctive individualistic

simultaneous moves

Figure 2.3: A summary of the characterization results.

strategic game is in fact the strategic normal form of an extensive game of perfect
information where every player moves exactly once. This suggests a direction in
which the results obtained may be extended: characterizing the effectivity func-
tions which α-correspond to the normal form of an extensive game of a particular
form, or in other words, characterizing the global effectivity functions of various
classes of extensive games.

As theorem 2.35 has shown, if we want a model of group ability in exten-
sive games with simultaneous moves, we need to employ coalitional effectivity
functions. In extensive games without simultaneous moves on the other hand,
all information about (local) group ability can be recovered from the individual
effectivity function, the whole (ability of a group) being simply the sum of its
parts (abilities of its members).

Finally, the generalized version of bisimulation introduced in section 2.5 is
an extremely general notion of game equivalences. Besides generalizing Kripke-
bisimulation, it also has a particularly simple instantiation for extensive games
of perfect information. Furthermore, we shall see in chapters 3 and 6 that it is
an appropriate equivalence notion for Coalition Logic and Game Logic.

2.7 Bibliographic Notes

Some of the characterization results of section 2.3 have originally been published
in [98], more specifically theorems 2.27 and 2.32. Theorem 2.27 extends charac-
terization results obtained in [86, 105, 94]. The result differs from the literature
in that the outcome function of a strategic game is not assumed to be surjective,
a central property for dynamic effectivity frames.

For textbooks on game theory, see [93, 19, 113]. Coalitional effectivity func-
tions and the notion of α-effectivity (for nonempty strategic games) have been
studied in [87, 86, 1, 105].

While we consider any outcome-monotonic function E : P(N) → P(P(S))
to be an effectivity function, most of the literature has taken a more restrictive
view, requiring E to satisfy various basic properties (e.g., coalition-monotonicity).

2.7. Bibliographic Notes 43

The choice of these basic properties, however, is somewhat arbitrary, and this
opinion is supported by the fact that authors differ in which basic properties they
require. Here, we decided to be as general as possible regarding the notion of an
effectivity function, applying restrictions only when these are actually needed to
characterize a certain kind of ability or when technically unavoidable (as in the
case of outcome-monotonicity).

For processes, a large variety of different equivalence notions has been studied,
see, e.g., [53, 16]. For games this question has received relatively little attention
[29, 13, 93]. In [17], the notion of bisimulation proposed in section 2.5 has been
considered as an equivalence notion for concurrent processes in CPDL.

Chapter 3

Coalition Logic

In this chapter we introduce Coalition Logic (CL), a very general modal logic to
reason about the coalition frames studied in the previous chapter. After defining
the syntax and semantics of Coalition Logic, we first show that bisimilar coalition
models cannot be distinguished by Coalition Logic formulas, and that over finite
models, the converse holds as well. The rest of this chapter then consists of
addressing a number of technical questions, namely the complexity of the model-
checking problem, axiomatization and the complexity of the satisfiability problem.

As there are many different modal logics depending on the frame conditions
which are imposed, there are different Coalition Logics depending on which class
of frames is considered. We shall consider essentially three different classes of
coalition frames, all of which have been introduced in the previous chapter: the
class of all coalition frames and the classes of frames corresponding to extensive
games with and without simultaneous moves. We investigate the technical ques-
tions just mentioned for all these frame classes, yielding a comparative analysis of
how, e.g., extensive games with simultaneous moves differ from extensive games
without simultaneous moves.

Besides comparing different classes of coalition frames, we also compare the
language of full Coalition Logic to its fragment which can only express the abil-
ity of individuals. We examine for which classes of frames coalitional formulas
add expressive power, and whether there is any difference in complexity between
reasoning about coalitions and reasoning about individuals.

Finally, as one upshot of all this work, we present a coalitional game-theoretic
view of modal logic. Normal modal logic, the logic of Kripke frames, is identical
to Coalition Logic for one player when interpreted over extensive games. Non-
normal modal logic on the other hand corresponds to the individual fragment of
Coalition Logic over determined 2-player games. Hence, normal and non-normal
modal logics are fragments of Coalition Logic, and viewing them as such we can
gain new insights into some properties of these logics such as their complexity.

45

46 Chapter 3. Coalition Logic

3.1 Syntax and Semantics

I Definition 3.1 (Coalition Logic Syntax). Given a finite nonempty set
of agents/players N and a set of atomic propositions Φ0, formulas ϕ of Coalition
Logic can have the following syntactic form:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ

where p ∈ Φ0 and C ⊆ N .

As usual, we define > := ¬⊥, ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ and
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ) as abbreviations. In case C = {i}, we write
[i]ϕ instead of [{i}]ϕ, and we use [C]k to denote a sequence of k [C]-modalities:
inductively, [C]0ϕ = ϕ and [C]k+1ϕ = [C][C]kϕ.

A further important shorthand notation concerns [⊥] which shall abbreviate∨
i∈N ¬[i]> and which will be true in playable coalition models at terminal states.
Recall from the previous chapter that a coalition model is a pair M = (F , V)

where F is a coalition frame (S, {EC |C ⊆ N}) and V : Φ0 → P(S) is the usual
valuation function for the propositional letters.

I Definition 3.2 (Coalition Logic Semantics). Given a coalition model
M = ((S, {EC |C ⊆ N}), V), the truth of a formula ϕ in a model M at a state s,
denoted as M, s |= ϕ, is defined as follows:

M, s 6|= ⊥
M, s |= p iff p ∈ Φ0 and s ∈ V (p)
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
M, s |= [C]ϕ iff sECϕM

where ϕM = {s ∈ S|M, s |= ϕ}.

Hence, a formula [C]ϕ holds at a state s iff coalition C is effective for ϕM at s.
The notions of validity, satisfiability and logical consequence can be defined in
the standard way: A formula ϕ is valid in a model M with universe S, denoted
as M |= ϕ, iff ϕM = S, and ϕ is valid in a class of models K (denoted as |=K ϕ,
or |= ϕ if K is the class of all models Mon) iff for all models M ∈ K we have
M |= ϕ. Formula ϕ is satisfiable in a model M iff ϕM 6= ∅, and ϕ is satisfiable
in a class of models K iff there is some model M ∈ K in which ϕ is satisfiable.

We write Σ |=K ϕ (or again Σ |= ϕ in case K includes all models) to denote
that ϕ is a (local) logical consequence of Σ: For all models M ∈ K and every state
s of the universe of M, if M, s |= Σ (i.e., all formulas of Σ are true at s) then
M, s |= ϕ. We will also on a few occasions make use of the global consequence
relation: Σ |=g ϕ denotes that ϕ is a global logical consequence of Σ: For all

3.1. Syntax and Semantics 47

models M (of a given class K of models), if M |= Σ then M |= ϕ. For global
consequence, the relevant class K is not part of the mathematical notation but
will be clear from the context.

While we shall usually assume that the set of agents N is a fixed parameter,
it is worth considering what role this parameter plays for the satisfiability of a
formula. Considering a formula ϕ of Coalition Logic, let N(ϕ) be the set of agents
which occur in ϕ in some coalition, e.g. N([2]p∨ [{3, 5}]q) = {2, 3, 5}. Any model
satisfying ϕ will have to be for a set of agents N which at least includes N(ϕ). But
is it possible that ϕ is satisfiable for N = N(ϕ) but not satisfiable for some strict
superset of N(ϕ)? Similarly, can a formula ϕ which is not satisfiable for N(ϕ)
become satisfiable by adding a new agent which does not occur in ϕ? At least
the latter question has a (possibly) surprising answer: Over playable coalition
models, the formula ¬[1]p ∧ ¬[1]q ∧ [1](p ∨ q) is not satisfiable for N = {1} while
it is satisfiable, e.g., for N = {1, 2}. The following result captures how adding
agents can influence satisfiability.

I Theorem 3.3. (1) For every class of models K ∈ {Mon, Play, MaxPlay, Ind}
and any formula ϕ: If ϕ is K-satisfiable for N = N(ϕ), then it is K-satisfiable
for every N ⊇ N(ϕ). (2) For any formula ϕ: If ϕ is not Mon-satisfiable for
N = N(ϕ), then it is not Mon-satisfiable for any N ⊇ N(ϕ). (3) For every class
of models K ∈ {Play, MaxPlay, Ind} and any formula ϕ: If ϕ is not K-satisfiable for
N = N(ϕ) and for some N) N(ϕ), then it is not K-satisfiable for any N ⊇ N(ϕ).

Proof. (1) For Mon, it is easy to extend a model satisfying ϕ by one agent so
that monotonicity holds. Note also that for empty games, adding an additional
player will not cause a problem, no matter whether we add the additional player
to the set of winners or not. For Play, consider a model for agents N(ϕ) satisfying
ϕ. We already saw that terminal states can easily be extended by an additional
player. For non-terminal states, a nonempty |N(ϕ)|-player strategic game G can
be extended by an additional player who only has a single strategy yielding a
game G′, thus leaving the effectivity of the other players unchanged. In case we
are dealing with a determined game G, G′ will also be determined and the same
holds for empty games if we add the new player to the set of winners. Finally for
Ind, adding a new player causes no problem at all, the individualistic coalition
frame can even formally remain unchanged.

(2) For Mon, if ϕ is satisfiable for N) N(ϕ), then the restriction of this
satisfying model to agents N(ϕ) will be monotonic and also satisfy ϕ.

(3) Assume that ϕ is neither K-satisfiable for N(ϕ) nor for M) N(ϕ). Assume
by reductio that ϕ is K-satisfiable for some N) N(ϕ). Note that since the names
of the new players added to N(ϕ) do not matter (they do not occur in ϕ), we can
assume that M (N , for otherwise N (M which would contradict (1). Hence,
we have N(ϕ) (M (N .

48 Chapter 3. Coalition Logic

Consider first the case of Ind. Assume that i ∈ M ∩ N(ϕ). Then given
a model MN for N which satisfies ϕ, at every non-terminal state with local
dictator d 6∈ N(ϕ), we can replace d by i. At a terminal state s with set of
winners G(s) (N , we define the new empty strategic game G′(s) = G(s) ∩ M
in case G(s) 6= M , otherwise we let G′(s) = M \ {i}. This definition guarantees
that G′(s) 6= M . As a consequence, we obtain an extensive game for players M
which leaves the effectivity of the players in N(ϕ) in tact and hence satisfies ϕ.

Consider next the case of Play, where we assume w.l.o.g. that N(ϕ) = {1},
M = {1, 2} and N = {1, 2, 3, 4}. Let MN be the model satisfying ϕ, and con-
sider an arbitrary state s and its associated strategic game G(s) = (N, {Σi|i ∈
N}, o, S). We construct a model MM for agents M by associating to state s
game G′(s) = (M, {Σ′

i|i ∈ M}, o′, S) as follows: Σ′
1 = Σ1 and Σ′

2 = Σ2 × Σ3 × Σ4

and o′(σ1, (σ2, σ3, σ4)) = o(σ1, σ2, σ3, σ4). Note that the α-effectivity of player 1
is the same in both games, since we only collapsed three of his opponents into
one with the same abilities. We deal with terminal states as in the case of Ind.
The model MM defined in this way is playable and will satisfy ϕ since the ef-
fectivity of players N(ϕ) has not been changed, a contradiction. Furthermore, if
MN is maximal, MM will be maximal as well, which takes care of the claim for
MaxPlay. ¥

For Mon, adding agents does not influence satisfiability. As a consequence, if
we want to know whether ϕ is satisfiable for some set of agents, it is sufficient to
check satisfiability for N = N(ϕ). For Play, MaxPlay and Ind on the other hand,
if we want to know whether ϕ is satisfiable for some set of agents, we need to
check for satisfiability twice, once for N = N(ϕ) and once for some N) N(ϕ).

3.2 Bisimulation Invariance

Once we have defined a logical language for describing certain mathematical struc-
tures, we automatically obtain an equivalence notion based upon that language.
In the case of Coalition Logic, we say that two states s and s′ are CL-equivalent
iff they satisfy the same Coalition Logic formulas. Since we have come across
another equivalence notion before, it is worth-while considering how these two
equivalence notions relate. A formula whose truth-value does not differ at bisim-
ilar states is called bisimulation invariant. The following result shows that all
CL-formulas are bisimulation invariant.

I Theorem 3.4. Bisimilarity implies CL-equivalence.

Proof. The proof is by induction on CL-formulas. Assume that M, s ↔ M′, s′.
For the only non-trivial case, assume that M, s |= [C]ϕ, i.e., sECϕM. By bisimi-
larity, there is some X ′ such that s′E ′

CX ′ and for all x′ ∈ X ′ there is some t such
that M, t |= ϕ and t ↔ x′. By induction hypothesis, X ′ ⊆ ϕM′

, and hence by
monotonicity, s′E ′

CϕM′
. ¥

3.3. Complexity I: Model Checking 49

The converse of this result does not hold in all cases: Since normal modal
logic forms a fragment of Coalition Logic, the Kripke models below which are
modally equivalent but not bisimilar at the root (see, e.g., [20]) also form a
counterexample to the converse of theorem 3.4. Both models contain branches of
every finite length, but the right Kripke model also contains an infinite branch.

·

· · · · · ·

· ·

·

·

· · · · · · ·

· · ·

· ·

...

But as in the case of modal logic where image-finiteness is sufficient to establish
the converse, for Coalition Logic, the converse holds for uniformly finitary models.

I Theorem 3.5. For uniformly finitary coalition models, CL-equivalence implies
bisimilarity.

Proof. Consider two coalition models M and M′ with respective universes S
and S ′. Let ≡ ⊆ S × S ′ be defined as the set of pairs of states which are CL-
equivalent. We show that ≡ is a bisimulation.

Assume that sECX and since M is uniformly finitary, there is some finite
X0 ⊆ X such that sECX0. Suppose by reductio that for all X ′ such that s′E ′

CX ′

there is some x′ ∈ X ′ such that for all x ∈ X0: x 6≡ x′. Since the models are
uniformly finitary, there are X ′

1, . . . , X
′
k ⊆ S ′ such that whenever s′E ′

CX ′, there is
some X ′

i ⊆ X ′ such that s′E ′
CX ′

i. Hence whenever s′E ′
CX ′

i there is some x′ ∈ X ′
i

such that for all x ∈ X0: x 6≡ x′. Let the finite set of these x′ be denoted by ∆.
So given some X ′

i, there is some state x′ ∈ X ′
i and some formula ϕx′ =∨

x∈X0
ψx such that ψx is true at x but false at x′. Consequently, ϕx′ is false at

x′ and true at all x ∈ X0.
Now note that M, s |= [C]

∧
x′∈∆ ϕx′ since any state in X0 makes

∧
x′∈∆ ϕx′

true. On the other hand, M′, s′ 6|= [C]
∧

x′∈∆ ϕx′ , a contradiction. ¥

3.3 Complexity I: Model Checking

The complexity of a logic can be measured in terms of two main decision problems,
satisfiability and model checking. The complexity of the satisfiability problem will
be discussed in section 3.6. The global model-checking problem is to find the set
of states at which a given formula is true in a given finite model.

50 Chapter 3. Coalition Logic

Model checking can be used to answer various questions of a game-theoretic
nature using Coalition Logic. To give one example (further examples will be
given in chapter 5), for any extensive game with simultaneous moves, finding out
whether a player or a group of players has a winning strategy in the game (i.e., a
strategy leading to an empty game where the player(s) win) can be formulated as
a model checking problem in Coalition Logic. We simply represent the extensive
game as a weakly playable coalition model where the terminal states are linked
to payoffs via empty games. If the extensive game has length n (i.e., at most n
moves can be made before reaching a terminal state), coalition C has a winning
strategy iff the formula [C]n+1⊥ is true at the initial state of the coalition model.
The formula is true in case coalition C has a strategy to reach an empty game
where C wins after at most n moves. Consequently, a model-checking algorithm
also provides us with an algorithm to determine who has a winning strategy in
an extensive game. Furthermore, an analysis of the complexity of the model-
checking algorithm will yield an upper bound for the complexity of determining
whether a player has a winning strategy. In order to analyze model checking,
however, we first need to agree on how to measure the size of a formula and the
representation and size of a model.

3.3.1 Representation of Coalition Models

Since we assume our coalition models to satisfy outcome-monotonicity, a lot of
the information they contain is in fact redundant since it follows automatically by
monotonicity. A consequence for the representation of a model is that coalition
models can be represented more succinctly than by giving the full effectivity
functions: We simply encode only the effectivity information which is not implied
by monotonicity. As it turns out, however, the gain in succinctness may not be
very big. To see this, consider a coalition model M = ((S,E), V). For every
state s ∈ S and coalition C ⊆ N , we know that |{X ⊆ S|sECX}| ≤ 2|S|.
Suppose now we represent E by its non-monotonic core Ec, where sEc

CX holds
iff sECX and there is no X0 ⊆ X such that sECX0. By Sperner’s theorem
[114], |{X ⊆ S|sEc

CX}| ≤
(

|S|
[|S|/2]

)
, since this binomial coefficient gives the size

of the greatest antichain of subsets of a set S. This bound is the best possible
since one can define sECX iff |X| ≥ [|S|/2] for which sEc

CX iff |X| = [|S|/2].
Unfortunately,

(
|S|

[|S|/2]

)
is still exponential, so in general, representing a coalition

model by its non-monotonic core does not essentially reduce the representation
size.

As it turns out, however, there is at least one important class of coalition
models where Ec is exponentially more succinct than E. As a consequence, we
shall define the size of a coalition model in terms of its non-monotonic core.

I Definition 3.6 (Model Size). The size |M| of a finite coalition model M =

3.3. Complexity I: Model Checking 51

((S,E), V) is defined as

|M| = |S| +
∑

{s|s∈S}

∑

{C|C⊆N}

∑

{X|sEc
C

X}

|X|.

In words, we add to the number of states the cardinality of X for every state s
and every coalition C such that sEc

CX holds. Note that the size of the model
is independent of its valuation, hence we can equally well speak of the size of a
frame.

As can easily be seen, |M| can be very big, exponential in the number of states.
For some classes of coalition models, however, the additional structure put upon
the effectivity functions can yield a substantially smaller representation. The
most important case is the class of coalition models which correspond to Kripke
models. To see this, we compare the size of a coalition model to the size of its
corresponding Kripke model. Consider a particular state s0 of a Kripke model
with successors s1, . . . , sk.

s0

s1 s2 . . . sk−1 sk

In general, the size of a Kripke model |MK | is defined to be the number of states
plus the size of its accessibility relation, i.e., |MK | = |S| + |{(s, t)|sRt}|. Since
the set of states is the same in a Kripke model and its corresponding coalition
model, it is sufficient to compare for the given state s0 the number of successors
k with ∑

s0Ec
{1}

X

|X| +
∑

s0Ec
∅
X

|X| = k + k = 2k.

This illustrates that the representation of a Kripke model is about half the size
of the corresponding coalition model core due to the complete redundancy of E∅

when given E{1}.
For games with more than one player, the redundancy in representation will

usually be somewhat greater for coalition models, since, for example, even the
non-monotonic core of a coalition model does allow for redundancy regarding
coalition-monotonicity. Still, in many cases the simple structure of the effectivity
function will allow for a representation which is much more succinct than the
worst-case exponential upper bound suggested by |M|. Furthermore, the gener-
ality of coalition models is a great conceptual asset, for it allows for a uniform
treatment of effectivity in very different kinds of models. The algorithm provided
in the next subsection will provide a uniform method for checking the truth
of a formula in all these different models, and while there might be algorithms
tailor-made for a particular model class which work with somewhat more efficient
representations, the arguments presented suggest that such a gain in space effi-
ciency will often not be dramatic enough to justify switching to a more restrictive
model of ability.

52 Chapter 3. Coalition Logic

3.3.2 Time Complexity of Model Checking

Let the size or length of a formula ϕ be the number of its subformulas, i.e., we
define |ϕ| = |sf(ϕ)|. As in normal modal logic, verifying the truth of a formula at a
given state of a model can be done very efficiently, essentially in time linear in the
size of the model times the size of the formula. Furthermore, as in normal modal
logic, the algorithm is uniform for all models, i.e., the complexity is independent
of the model class.

I Theorem 3.7. Given a Coalition Logic formula ϕ and a coalition model M,
there is an algorithm for calculating ϕM which runs in time O(|M| × |ϕ|).

Proof. Let M = ((S,E), V) and let ϕ1, . . . , ϕn be the subformulas of ϕ ordered
according to length where ϕn = ϕ. So if ϕi is a subformula of ϕj we have i < j.
We show by induction on k ≤ n that we can determine all ϕM

i for i ≤ k in
time O(k × |M|). For k = 1, ϕ must be an atom and ϕM is already part of the
description of the model. For k + 1, we proceed by cases based on the structure
of ϕk+1. The case for ϕk+1 = ¬ψ is immediate, so consider ϕk+1 = α ∨ β where
we assume w.l.o.g. that α = ϕk−1 and β = ϕk. Then the truth values of both α
and β can be determined globally in time O(k × |M|) and hence the truth value
of α∨β can be determined in time O(|S|+ k×|M|). In case ϕk+1 = [C]ϕk, after
determining all the ϕM

i for i ≤ k in time O(k × |M|), we check for every sEc
CX

whether X ⊆ ϕM
k which can be done in O(|M|). ¥

Note that contrary to what is suggested by the definition of |M|, the time-
complexity of model checking does not depend on the number of players in N .
While adding an additional player will usually greatly increase |M| given that all
subsets of players are considered, for model-checking we only need to investigate
one subset per modality, not all of them. In other words, rather then considering
all coalitions, it is sufficient to consider the worst-case coalition. This is analogous
to Kripke models and standard normal modal logic: In case there are multiple
accessibility relations for different agents, the time-complexity of model checking
depends only on the worst-case accessibility relation.

3.4 Axiomatization

In this section, we shall axiomatize the validities of all the model classes intro-
duced previously. Axiomatizations can be obtained by translating the appropriate
effectivity function conditions into the language of Coalition Logic.

I Definition 3.8 (Coalition Logic Axiomatics). Given the set of players
N , a coalition logic for N is a set of formulas Λ which contains all propositional
tautologies and which is closed under the rules of Modus Ponens and Monotonicity
shown in figure 3.1 below.

3.4. Axiomatization 53

ϕ ϕ → ψ ϕ → ψ
ψ [C]ϕ → [C]ψ

Figure 3.1: The two inference rules of Coalition Logic: Modus Ponens and Mono-
tonicity

Which additional axioms need to be adopted will depend on the class of models
under consideration. Given a coalition logic Λ, we write `Λ ϕ for ϕ ∈ Λ and
Σ `Λ ϕ if there exist σ1, . . . , σn ∈ Σ such that (σ1 ∧ . . . ∧ σn) → ϕ ∈ Λ. When
the subscript Λ is omitted and we talk about ` ϕ and Σ ` ϕ, we take Λ to be the
smallest coalition logic. Finally, a set of formulas Σ is Λ-inconsistent iff Σ `Λ ⊥.

Call a coalition logic Λ sound with respect to a class of coalition models K if
Σ `Λ ϕ implies Σ |=K ϕ, and complete if the converse holds.

Let Λ be any coalition logic. Via the standard argument of Lindenbaum’s
lemma (see e.g. [20]), every Λ-consistent set of formulas Σ can be extended to
a maximally Λ-consistent set Σ′ ⊇ Σ with the usual properties: (1) for every
formula ϕ, ϕ ∈ Σ′ or ¬ϕ ∈ Σ′, (2) ϕ ∨ ψ ∈ Σ′ iff ϕ ∈ Σ′ or ψ ∈ Σ′, and (3) if
Σ′ `Λ ϕ then ϕ ∈ Σ′.

3.4.1 General Coalition Frames

As might be expected, ability in general coalition frames needs only the axioms of
propositional logic. Let Λ be any coalition logic, let SΛ be the set of all maximally
Λ-consistent sets of formulas, and let ϕ̂ := {s ∈ SΛ|ϕ ∈ s}. Define the canonical
Λ-model CΛ = ((SΛ, EΛ), V Λ) as follows:

s ∈ V Λ(p) iff p ∈ s
sEΛ

CX iff ∃ϕ̂ ⊆ X : [C]ϕ ∈ s

To see that EΛ is well-defined, note first that EΛ is outcome-monotonic. Further-
more, if ϕ̂1 = ϕ̂2, `Λ ϕ1 ↔ ϕ2 and so `Λ [C]ϕ1 ↔ [C]ϕ2 which implies that for
all s ∈ SΛ, [C]ϕ1 ∈ s iff [C]ϕ2 ∈ s. From our definition, one can easily prove the
following truth lemma by induction.

I Lemma 3.9. For any maximally Λ-consistent set s ∈ SΛ and any formula ϕ:
CΛ, s |= ϕ iff ϕ ∈ s. Equivalently, ϕCΛ

= ϕ̂.

Proof. For atomic formulas and for the boolean inductive steps, the argument
is standard. For [C]ϕ, suppose s ∈ ([C]ϕ)C

Λ

, i.e., there is some ϕ̂0 ⊆ ϕCΛ

such
that [C]ϕ0 ∈ s. Since by induction hypothesis ϕCΛ

= ϕ̂, `Λ ϕo → ϕ and so using
the monotonicity rule, [C]ϕ ∈ s as well.

54 Chapter 3. Coalition Logic

Conversely, if [C]ϕ ∈ s, given that ϕCΛ

= ϕ̂ by induction hypothesis, the result
follows immediately. ¥

Then using the following canonical model theorem, we obtain axiomatic com-
pleteness as a corollary.

I Theorem 3.10. Every coalition logic Λ is sound and complete with respect to
its canonical model CΛ.

Proof. Let Λ be any coalition logic. If Σ 6|={CΛ} ϕ, there is some maximally
Λ-consistent set Σ′ ∈ SΛ such that CΛ, Σ′ |=

∧
Σ ∧ ¬ϕ. By the truth lemma,

Σ ⊆ Σ′ and ϕ 6∈ Σ′. Consequently, Σ′ 6`Λ ϕ and hence also Σ 6`Λ ϕ. For
the converse, suppose Σ 6`Λ ϕ, so Σ ∪ {¬ϕ} is Λ-consistent, and so there is a
maximally Λ-consistent set Σ′ ∈ SΛ with Σ ∪ {¬ϕ} ⊆ Σ′ such that CΛ, Σ′ |=

∧
Σ

while CΛ, Σ′ 6|= ϕ, showing that Σ 6|={CΛ} ϕ. ¥

I Corollary 3.11. Σ |= ϕ iff Σ ` ϕ.

3.4.2 Extensive Games with Simultaneous Moves

I Definition 3.12 (Play). Play is the smallest coalition logic which contains
all instances of the axioms shown in figure 3.2 below.

(N⊥) ¬[N]⊥
(>) ¬[∅]⊥ → [C]>
(⊥) [C]⊥ → [C ′]⊥ where C ′ ⊆ C
(N) ¬[∅]¬ϕ → [N]ϕ
(S) ([C1]ϕ1 ∧ [C2]ϕ2) → [C1 ∪ C2](ϕ1 ∧ ϕ2),

where C1 ∩ C2 = ∅

Figure 3.2: The axiom schemas for weak playability.

Notice that the axioms are direct translations of the weak playability conditions
into the modal language.

Now let Λ ⊇ Play and let SΛ be the set of all maximally Λ-consistent sets of
formulas. Define the canonical Λ-model CΛ = ((SΛ, EΛ), V Λ) as follows:

s ∈ V Λ(p) iff p ∈ s

sEΛ
CX iff

{
∃ϕ̂ ⊆ X : [C]ϕ ∈ s for C 6= N
∀ϕ̂ ⊆ X : [∅]ϕ 6∈ s for C = N

Note that again EΛ is outcome-monotonic by definition.

I Lemma 3.13. (SΛ, EΛ) is weakly playable.

3.4. Axiomatization 55

Proof. Straightforward. Consider, e.g., superadditivity. By lemma 2.19, we can
assume that C1 ∪ C2 6= N . For C1 ∩ C2 = ∅, assume that [C1]ϕ1, [C2]ϕ2 ∈ s for
ϕ̂1 ⊆ X1 and ϕ̂2 ⊆ X2. By the superadditivity axiom, [C1 ∪C2](ϕ1 ∧ϕ2) ∈ s, and
since ϕ̂1 ∧ ϕ2 ⊆ X1 ∩ X2, we have sEΛ

C1∪C2
(X1 ∩ X2). ¥

I Theorem 3.14. Play is sound and complete with respect to the class of all
weakly playable coalition models: Σ |=Play ϕ iff Σ `Play ϕ.

Proof. As before, we can prove the following truth lemma: For any maximally
Λ-consistent set s ∈ SΛ and any formula ϕ: CΛ, s |= ϕ iff ϕ ∈ s. Equivalently,
ϕCΛ

= ϕ̂. For the modality, it is sufficient to consider the case where C 6= N ,
since sEΛ

NX iff not sEΛ
∅ X and `Play [N]ϕ ↔ ¬[∅]¬ϕ. For C 6= N , the proof is as

in lemma 3.9. Next, one can show that every coalition logic Λ ⊇ Play is sound
and complete with respect to its canonical model CΛ. Since by lemma 3.13 the
canonical model CΛ is weakly playable, we obtain completeness as a corollary. ¥

The previous line of argumentation can also be modified to yield a complete-
ness result for MaxPlay, the smallest coalition logic containing Play and the
following maximality axiom Max:

¬[C]¬ϕ → [C]ϕ

I Theorem 3.15. MaxPlay is sound and complete with respect to the class of
all maximal weakly playable coalition models: Σ |=MaxPlay ϕ iff Σ `MaxPlay ϕ.

Proof. Let P ⊆ P(N) be such that it includes all C ⊆ N such that |C| < 1
2
|N |

and in case |N | is even also randomly picked C with |C| = 1
2
|N | such that C ∈ P

iff C 6∈ P . Then P is closed under subsets and for all C ⊆ N , C ∈ P iff C 6∈ P .
Define the canonical model CΛ as before, except that

sEΛ
CX iff

{
∃ϕ̂ ⊆ X : [C]ϕ ∈ s for C ∈ P
∀ϕ̂ ⊆ X : [C]ϕ 6∈ s for C /∈ P

Then CΛ is maximal and weakly playable. We show the proof of the most difficult
playability conditions:

(1) Not sEΛ
∅ ∅ implies sEΛ

CSΛ.

If not sEΛ
∅ ∅, then [∅]⊥ 6∈ s and by the axiom (>), [C]> ∈ s. In case C ∈ P , we

are done. Otherwise, assume by reductio that [C]⊥ ∈ s. Then by superadditivity,
[N]⊥ ∈ s, a contradiction.

(2) sEΛ
C∅ and D ⊆ C imply sEΛ

D∅.

56 Chapter 3. Coalition Logic

Four cases can be distinguished: (i) C,D ∈ P , the simple case.
(ii) C,D 6∈ P . Suppose by reductio that ∃ϕ̂ ⊆ SΛ such that [D]ϕ ∈ s and

furthermore [C]> 6∈ s. By the maximality axiom, [C]⊥ ∈ s and so by axiom (⊥),
[D]⊥ ∈ s. By superadditivity then, [N]⊥ ∈ s, a contradiction.

(iii) C ∈ P , D 6∈ P . Then [C]⊥ ∈ s and so by axiom (⊥) also [D]⊥ ∈ s.
Now suppose by reductio that there is some ϕ̂ such that [D]ϕ ∈ s. Then by
superadditivity, [N]⊥ ∈ s, a contradiction.

(iv) D ∈ P , C 6∈ P . Then for all ϕ̂ we have [C]ϕ 6∈ s, and in particular,
[C]> 6∈ s. By maximality, [C]⊥ ∈ s and hence also [D]⊥ ∈ s.

(3) Superadditivity: sEΛ
C1

X1 and sEΛ
C2

X2 imply sEΛ
C1∪C2

(X1 ∩ X2),
provided C1 ∩ C2 = ∅.

As the following table shows, in principle there are 8 possible cases, but only cases
(1) and (4) need to be proved.

C1 C2 C1 ∪ C2 comments
(1) P P P
(2) P P P implied by (1)
(3) P P P impossible
(4) P P P
(5) P P P impossible
(6) P P P same as (4)
(7) P P P impossible
(8) P P P impossible

Due to the construction of P , three cases are impossible, for if one coalition is
not in P , the union cannot be in P either. Similarly, it is impossible that both
coalitions fail to be in P , for in that case they cannot be disjoint. Case (2) on
the other hand is implied by (1) and the fact that ∃ϕ̂ ⊆ X : [C]ϕ ∈ s implies
∀ϕ̂ ⊆ X : [C]ϕ 6∈ s (using axioms S and N⊥).

Since case (1) is simple to take care of, consider case (4): ∃ϕ̂1 ⊆ X1 : [C1]ϕ1 ∈ s
and using maximality, ∀ϕ̂2 ⊆ X2 : [C2]¬ϕ2 ∈ s. If we assume by reductio that

∃δ̂ ⊆ X1 ∩ X2 such that [C1 ∪ C2]δ ∈ s, then since δ̂ ∧ ϕ1 ⊆ X2, [C2]¬(δ∧ϕ1) ∈ s.
By two applications of the superadditivity axiom, [C1 ∪ C2](ϕ1 ∧ ¬δ) ∈ s and so
[N]⊥ ∈ s so that s would be inconsistent. ¥

3.4.3 Extensive Games without Simultaneous Moves

I Definition 3.16 (Ind). Ind is the smallest coalition logic which includes Play
and the following axiom (D)

[N]ϕ →
∨

i∈N

[i]ϕ.

3.4. Axiomatization 57

Let Λ ⊇ Ind. We again consider the set of maximally Λ-consistent sets of
formulas SΛ. The axiom states that whenever something is possible at all, there
must be some individual who can bring it about. Note that in case |N | = 1, the
axiom is a tautology, and hence also axiomatically, Ind = Play. As it turns out,
a more general version of axiom (D) holds:

I Lemma 3.17. For all C 6= ∅, `Ind [C]ϕ →
∨

i∈C [i]ϕ.

Proof. We show that every s ∈ SΛ contains the formula, call it δ. If [∅]⊥ ∈ s,
δ ∈ s by axiom (⊥), so assume that [∅]⊥ 6∈ s.

Claim 1: For all D ⊆ N , [D]ϕ → ¬[D]¬ϕ ∈ s. This follows from the
superadditivity axiom (S).

Claim 2: For all D ⊆ N , ¬[D]¬ϕ → [D]ϕ ∈ s. Assume by reductio that
¬[D]¬ϕ,¬[D]ϕ ∈ s. Using coalition monotonicity and N -maximality, we have
[N]ϕ, [N]¬ϕ ∈ s. By axiom (D), [i]ϕ, [i]¬ϕ ∈ s. Note that the same player here
has to be able to force both ϕ and ¬ϕ, for two distinct players would be able to
force ⊥ using superadditivity. Now in case i ∈ D, coalition monotonicity gives us
[D]ϕ ∈ s, otherwise we get [D]¬ϕ ∈ s, hence both cases lead to a contradiction.

To see that δ ∈ s, assume by reductio that [C]ϕ ∈ s and there is some i 6∈ C
such that [i]ϕ ∈ s whereas for all j ∈ C we have ¬[j]ϕ ∈ s. By claim 2, for all
j ∈ C we have [N−{j}]¬ϕ ∈ s and hence also [N]¬ϕ ∈ s. Using axiom (D), there
must be some j ∈ N such that [j]¬ϕ ∈ s. Since [i]ϕ ∈ s, we must have i = j, for
otherwise the superadditivity axiom would allow us to derive [{i, j}]⊥ ∈ s. Now
since i 6∈ C, by coalition-monotonicity we have [C]¬ϕ ∈ s, and finally by claim
1, [C]ϕ 6∈ s, a contradiction. ¥

The crucial lemma needed for the completeness proof is that every nonterminal
s ∈ SΛ has a local dictator.

I Lemma 3.18. For any s ∈ SΛ such that ¬[∅]⊥ ∈ s, there is some ds ∈ N such
that for all formulas ϕ, if [N]ϕ ∈ s then [ds]ϕ ∈ s.

Proof. Let ¬[∅]⊥ ∈ s ∈ SΛ. Assume by reductio that for every i ∈ N =
{1, . . . , n} there is some formula ϕi such that [N]ϕi ∈ s and [i]ϕi 6∈ s. By axiom
(D), for every i ∈ N we have [f(i)]ϕi ∈ s, where f : N → N such that f(i) 6= i.
Let fk(m) denote k applications of f to m. When considering the sequence
1, f(1), f 2(1), . . ., there must be a smallest cycle of length k such that for some
m, m = fk(m) and no element in the sequence m, f(m), . . . , f k−1(m) occurs
more than once. So if C = {m, f(m), . . . , f k−1(m)}, we have [f(m)]ϕm, . . . ,
[fk(m)]ϕfk−1(m) ∈ s and by superadditivity [C](ϕm ∧ . . . ∧ ϕfk−1(m)) ∈ s. By the
previous lemma, there must be some i ∈ C such that [i](ϕm ∧ . . .∧ϕfk−1(m)) ∈ s.
However we cannot have i = m, since [m]ϕm 6∈ s, and similarly i cannot be f r(m)
for some r < k, since [f r(m)]ϕfr(m) 6∈ s. Thus we obtained our contradiction. ¥

58 Chapter 3. Coalition Logic

The presence of a (local) dictator essentially turns coalition models into Kripke
models. The completeness proof below should be seen as a translation of the
completeness proof for normal modal logic into the coalitional setup. The same
holds for the following existence lemma:

I Lemma 3.19. For all s ∈ SΛ with ¬[∅]⊥, [C]ϕ ∈ s and ds ∈ C, there is some
x ∈ ϕ̂ such that for all δ ∈ x, [C]δ ∈ s.

Proof. Let x0 = {ϕ}∪{δ|[C]δ ∈ s}. Assume by reductio that x0 is inconsistent,
i.e., `Λ

∧
∆ → ⊥ where w.l.o.g. ∆ = {ϕ, δ1, . . . , δn}. This would mean that

[C]ϕ, [C]δ1, . . . , [C]δn ∈ s, and hence using the previous lemma, we have [∅]δi ∈ s
for 1 ≤ i ≤ n. Using the superadditivity axiom, we then obtain [C](ϕ∧ δ1 ∧ . . .∧
δn) ∈ s. Since

∧
∆ implies ⊥ this means that [C]⊥ ∈ s which contradicts our

assumption that [∅]⊥ 6∈ s. This shows that x0 is indeed consistent.
Consequently, x0 can be extended to a maximally Λ-consistent set x ⊇ x0

which satisfies the condition: take any δ ∈ x and assume by reductio that [C]δ 6∈ s.
Then [C]¬δ ∈ s and hence ¬δ ∈ x0 ⊆ x, contradicting the consistency of x. ¥

I Theorem 3.20. Ind is sound and complete with respect to the class of all
weakly individualistic coalition models: Σ `Ind ϕ iff Σ |=Ind ϕ.

Proof. For any coalition logic Λ ⊇ Ind, we again consider the set of maximally
Λ-consistent sets of formulas SΛ, and we link to every state s ∈ SΛ a strategic
game G(s). If [∅]⊥ ∈ s, G(s) will be an empty game with G(s) = {i ∈ N |[i]⊥ ∈
s}. If [∅]⊥ 6∈ s, G(s) will be a dictatorship with dictator ds (provided by the
previous lemma). The dictatorship will be captured by the accessibility relation
RΛ ⊆ S × S where ds can choose from all the states t such that sRΛt. We define
sRΛt iff for all ϕ, ϕ ∈ t implies [N]ϕ ∈ s. In order for this dictatorship to be
well-defined, we need to check that there is some t such that sRΛt which follows
from the existence lemma.

Now we can construct the canonical model CΛ = ((SΛ, {EΛ
C |C ⊆ N}), V Λ) as

usual, with sEΛ
CX iff coalition C is α-effective for X in G(s). Using the existence

lemma, the truth lemma can then be established, and the completeness proof
continues as before. ¥

3.5 Modal Logic as Coalition Logic

3.5.1 One-Player Games: Normal Modal Logic

In case the set of players N is a singleton, coalition models α-correspond to
Kripke models: The strategic game associated with each state will trivially be a
(possibly empty) dictatorship and hence the extensive game without simultaneous
moves to which the coalition frame α-corresponds is a Kripke model, the local

3.5. Modal Logic as Coalition Logic 59

dictator being the same at every state. In terms of modalities, 2ϕ in modal
logic corresponds to [∅]ϕ in coalition logic, and 3ϕ corresponds to [N]ϕ. Using
this identification, the validities of Kripke models are precisely the validities of
1−Play. This is also the point where it should become clear why in our definition
of an empty strategic game we have insisted that some player must lose, for if we
had allowed all players to win, there would have been terminal states where 3⊥
is true, contrary to the semantics of modal logic. This correspondence for which
we argued semantically can also be established axiomatically.

I Definition 3.21 (Modal Logic K). K is the smallest set of formulas which
includes all propositional tautologies and the axioms of figure 3.3, and which is
closed under the rules of Modus Ponens and Monotonicity (for 2 only).

(1) 3ϕ ↔ ¬2¬ϕ (2) (2ϕ ∧ 2ψ) → 2(ϕ ∧ ψ) (3) 2>

Figure 3.3: Axioms of K

The logic K is sound and complete with respect to the class of all Kripke models
[32]. The complexity of the satisfiability problem over the class of all Kripke
models is PSPACE-complete [20].

I Theorem 3.22. K = 1−Play

Proof. By induction on the length of a derivation, it can easily be shown that
K = 1−Play whose axioms we have given below, writing [∅]ϕ as 2ϕ and [N]ϕ as
3ϕ, and omitting those axioms which are consequences of the ones presented.

¬3⊥ ¬2¬ϕ → 3ϕ
2ϕ ∧ 2ψ → 2(ϕ ∧ ψ) 3ϕ ∧ 2ψ → 3(ϕ ∧ ψ)

¥

3.5.2 Two-Player Games: Non-Normal Modal Logic

Moving from 1-player games to 2-player games corresponds to moving from nor-
mal to non-normal modal logic. Non-normal modal logics describe neighborhood
models M = ((S,N), V) which are almost like coalition models except that they
contain only a single effectivity function, i.e., N : S → P(P(S)). We assume here
that for all s ∈ S, N(s) is monotonic: X ∈ N(s) implies X ′ ∈ N(s) provided
that X ⊆ X ′. 2ϕ will be true at s if there is a neighborhood of s such that every
state in that neighborhood makes ϕ true:

M, s |= 2ϕ iff {t ∈ S|M, t |= ϕ} ∈ N(s) (3.1)

It can be shown that for these monotonic neighborhood models, the set of valid
formulas is axiomatized by the following logic M:

60 Chapter 3. Coalition Logic

I Definition 3.23 (Modal Logic M). M is the smallest set of formulas which
contains all propositional tautologies and the Box-Diamond duality axiom 3ϕ ↔
¬2¬ϕ, and which is closed under the rules of Modus Ponens and Monotonicity
(for 2 only).

The complexity of the satisfiability problem over the class of all monotonic neigh-
borhood models is NP-complete [120].

Consider now the coalition logic 2−MaxPlay. The following theorem shows
that the logic M is nothing but the individual fragment of 2 − MaxPlay. We will
have more to say about individual fragments in general in section 3.7.

I Theorem 3.24. Identifying [1]ϕ with 3ϕ and [2]ϕ with 2ϕ, we have M =
2−MaxPlay ∩ {ϕ|if C occurs in ϕ then |C| = 1}.

Proof. M ⊆ 2−MaxPlay: The only non-obvious case is showing that [1]ϕ →
¬[2]¬ϕ ∈ 2−MaxPlay which follows from superadditivity. Conversely, for every
formula ϕ containing only the two singleton coalitions, ϕ ∈ 2−MaxPlay implies
ϕ ∈ M. Given a neighborhood model M = ((S,N), V) satisfying ¬ϕ, construct a
maximal weakly playable coalition model M′ = ((S,E), V) such that sE{2}X iff
X ∈ N(s) and sE{1}X iff X 6∈ N(s). By corollary 2.13 of the previous chapter,
this can be done, and hence M′ satisfies ¬ϕ, showing that ϕ 6∈ 2−MaxPlay. ¥

3.6 Complexity II: Satisfiability

Probably the most important decision problem associated with modal logics is the
satisfiability problem: Given a set of agents N and a modal formula ϕ, how much
time or space does it take to find out whether or not the formula is satisfiable? We
will look at the complexity of the satisfiability problem for the various coalition
logics discussed.

The game-theoretic question associated with the satisfiability problem is the
following: Given a certain specification of requirements as to what various groups
of players can achieve after some moves, is there a game of a particular kind which
satisfies this specification? Thus, whereas the model-checking problem captures
game analysis, the satisfiability problem captures game synthesis. Questions of
game synthesis play a role in implementation theory, where, e.g., one wants to
know whether a particular set of rights can be decentralized into some game form.
We will have more to say about this issue in chapter 5.

A few remarks concerning the size of the set of agents N and the role it
plays in the following results. We are interested in satisfiability of a formula ϕ in
a given model class K for a fixed set of agents N , which we shall abbreviate as
Sat(ϕ, K, N). The results below are ordered according to the various model classes
under investigation, and the results are uniform for all N , i.e., the results hold for
all N . This does not mean, however, that the complexity of checking satisfiability

3.6. Complexity II: Satisfiability 61

is independent of the number of players. It only means that different sizes of N
do not yield different complexity classes. Still, the degree of some polynomial
which describes the running time will usually depend on |N |, as an inspection of
the proofs of the results shows.

A different satisfiability question is the following: Given a class of mod-
els K and a formula ϕ, is there some N ⊇ N(ϕ) for which ϕ is K-satisfiable
(Sat(ϕ, K))? In contrast to the earlier problem, N is not a fixed input parame-
ter in this case. Using theorem 3.3, however, Sat(ϕ, K) can easily be reduced to
Sat(ϕ, K, N). For Mon, we have Sat(ϕ, Mon) iff Sat(ϕ, Mon, N(ϕ)), so we only
need to check satisfiability for one particular N , the set of players which con-
tains precisely the agents mentioned in ϕ. For K ∈ {Play, MaxPlay, Ind}, we have
Sat(ϕ, K) iff Sat(ϕ, K, N(ϕ)) or Sat(ϕ, K, N(ϕ)∪{i}) for some i 6∈ N(ϕ). Hence,
we need to check at most two different N to find out whether there is any N
such that Sat(ϕ, K, N). Consequently, the two decision problems Sat(ϕ, K, N)
and Sat(ϕ, K) are of the same order of complexity.

3.6.1 General Ability

General coalition models are multi-modal generalizations of neighborhood models.
Since there is no coalitional interaction at all, none of the typical coalitional
principles such as superadditivity is valid, and the complexity of the satisfiability
problem is the same as in the case of non-normal modal logics. The result that
classical modal systems have an NP-complete satisfiability problem can easily be
lifted to its multi-modal generalization of Coalition Logic.

The heart of the algorithm relies on lemma 3.25 which reduces the satisfiability
of ϕ to the satisfiability of certain combinations of subformulas of ϕ which have
smaller modal depth.

Let sf(ϕ) be the set of subformulas of ϕ, and let Cl(ϕ) = sf(ϕ) ∪ {¬δ|δ ∈
sf(ϕ)}. Note that Cl(ϕ) is finite and that it is still closed under subformulas and
their negations. A semi-valuation for ϕ is a function v : Cl(ϕ) → {0, 1} such that
(1) v(ψ) = 1 iff v(¬ψ) = 0, (2) v(ψ1 ∨ ψ2) = 1 iff v(ψ1) = 1 or v(ψ2) = 1, (3)
v(⊥) = 0, and (4) v(ϕ) = 1.

The following lemma provides the crucial link between satisfiability of a for-
mula and satisfiability of its subformulas. The condition of the lemma captures
outcome-monotonicity in terms of semi-valuations.

I Lemma 3.25. A formula ϕ is satisfiable iff there exists a semi-valuation v for ϕ
such that if [C]ψ1, [C]ψ2 ∈ Cl(ϕ), v([C]ψ1) = 1 and v([C]ψ2) = 0 then ψ1 ∧ ¬ψ2

is satisfiable.

Proof. From left to right, suppose ϕ is satisfiable in a coalition model M =
((S,E), V) at state s ∈ S. Then v defined by v(ψ) = 1 iff M, s |= ψ is a
semi-valuation for ϕ, and it will satisfy the condition in virtue of E(s) being
outcome-monotonic.

62 Chapter 3. Coalition Logic

From right to left, suppose we have a semi-valuation v satisfying the condition.
This means that for every [C]ψ1, [C]ψ2 ∈ Cl(ϕ) which meet the condition, there is
a model M and a state s such that M, s |= ψ1∧¬ψ2. Thus, we have a sequence of
models M1, . . . ,Mn and a sequence of states s1, . . . , sn which serve as witnesses
to the condition. We can assume w.l.o.g. that the universes of these models are
pairwise disjoint, i.e., for all Mi = ((Si, Ei), Vi) and Mj = ((Sj, Ej), Vj) with
i 6= j we have Si ∩ Sj = ∅. To simplify notation, we shall also use Vi(ψ) for ψMi

when ψ is not atomic.
We will now construct a model M = ((S,E), V) satisfying ϕ which is roughly

the union of the Mi models. For a new state s0 which shall correspond to v,
let S = {s0} ∪

⋃
i>0 Si. Let V0 : Cl(ϕ) → P({s0}) be defined as V0(ψ) = {s0}

if v(ψ) = 1 and ∅ otherwise. Let J : Cl(ϕ) → P(S) be defined by J(ψ) =⋃
i≥0 Vi(ψ). By construction, J(¬ψ) = S \ J(ψ) and J(ψ1 ∨ψ2) = J(ψ1)∪ J(ψ2).
To complete the definition of our newly constructed model, let V (p) = J(p)

for p ∈ Φ0, and for sa 6= s0, let E(sa) be defined as follows:

saECX iff ∃[C]ψ ∈ Cl(ϕ) : J(ψ) ⊆ X and Ma, sa |= [C]ψ

For s0, we use an analogous definition in terms of the semi-valuation v: E(s0)
is defined as above, except that we replace the last conjunct by v([C]ψ) = 1.
Clearly, M is outcome-monotonic.

Claim 1: If [C]ψ ∈ Cl(ϕ), and saECJ(ψ) for a > 0, then Ma, sa |= [C]ψ. The
proof uses the monotonicity of Ma.

Claim 2: If [C]ψ ∈ Cl(ϕ) and s0ECJ(ψ), then v([C]ψ) = 1. The proof uses
the main condition of the lemma.

To show that M, s0 |= ϕ, we show that for all ψ ∈ Cl(ϕ), V (ψ) = J(ψ).
The proof is by induction on ψ, and base case and boolean cases are immediate.
Let sa ∈ J([C]ψ). Depending on a, this either means that Ma, sa |= [C]ψ or
that v([C]ψ) = 1. In both cases, saECJ(ψ) holds and by induction hypothesis,
saECV (ψ) and hence sa ∈ V ([C]ψ). Similarly for the converse direction, using
claim 1 and 2. ¥

I Theorem 3.26. The satisfiability problem for Mon is NP-complete.

Proof. As for the lower bound, since Coalition Logic includes propositional
logic, it must be NP-hard. As for the upper bound, we can write a nondeter-
ministic algorithm which guesses a semi-valuation and checks for satisfiability
recursively. If |sf(ϕ)| = n, the size of Cl(ϕ) is 2n and hence at most 4n2 formulas
of the form ψ1 ∧ ¬ψ2 need to be checked recursively. Note that it is sufficient to
construct the closure CL(ϕ) once for ϕ only, since Cl(ψ1 ∧¬ψ2) does not contain
any coalitional formulas [C]δ beyond those already present in Cl(ϕ). The sat-
isfiability of all these formulas ψ1 ∧ ¬ψ2 can be checked according to increasing
modal depth using dynamic programming techniques [35]. Hence the algorithm
runs in nondeterministic polynomial time. ¥

3.6. Complexity II: Satisfiability 63

3.6.2 Extensive Games with Simultaneous Moves

As in the previous case, the lower bound is the easy direction.

I Theorem 3.27. The satisfiability problem for Play is PSPACE-hard.

Proof. First, recall that we have shown in section 3.5 that the normal modal
logic K = 1−Play. Second, if N is any nonempty set of players, for every formula
ϕ of 1−Play, ϕ ∈ 1−Play iff ϕ◦ ∈ Play, where ϕ◦ is the same as ϕ except that
coalition N is substituted for coalition {1}. Inspecting the axioms, one sees that
ϕ ∈ 1−Play implies that ϕ◦ ∈ Play. For the other direction, if ϕ 6∈ 1−Play,
there is a coalition model M1 satisfying ¬ϕ. M1 α-corresponds to a Kripke model
MK , where player 1 makes the choices at every state. MK can also be viewed as
an N -player game in which the ability of coalition N coincides with the ability
of player 1. As a consequence, the coalition model for N which α-corresponds to
MK will satisfy ¬ϕ◦.

As a result, there is a polynomial time translation from ϕ into a formula ϕ◦

such that ϕ ∈ K iff ϕ◦ ∈ Play, where the length of ϕ◦ is polynomial in the length
of ϕ. Hence the satisfiability problem of K is polynomial time reducible to the
satisfiability problem of Coalition Logic over Play. Since by Ladner’s theorem
[79], the satisfiability problem for K is PSPACE-hard, the satisfiability problem
of Coalition Logic over weakly playable models is PSPACE-hard as well. ¥

For the upper bound, as with general coalition models, we make use of a central
lemma which allows us to tackle the satisfiability problem recursively. The only
difference is that the conditions of the lemma are more complex since they need
to capture playability rather than simply monotonicity. Also, subformulas are
not enough anymore for the closure: Let

Xϕ = sf(ϕ)∪{[N]¬δ|[∅]δ ∈ sf(ϕ)}∪{[∅]¬δ|[N]δ ∈ sf(ϕ)}∪{[C]>, [C]⊥|C ⊆ N}

and set Cl(ϕ) = {⊥,>} ∪ Xϕ ∪ {¬δ|δ ∈ Xϕ}. Note that Cl(ϕ) is still finite and
closed under subformulas and their negations. Since the following lemma is quite
technical, we present it in some detail even though the structure of the proof
follows that of lemma 3.25.

I Lemma 3.28. A formula ϕ is satisfiable in a weakly playable coalition model
iff there exists a semi-valuation v for ϕ such that the following five conditions
hold:

1. v([N]⊥) = 0.

2. If v([C]⊥) = 1 and C ′ ⊆ C then v([C ′]⊥) = 1.

3. If [∅]ψ1, [C]ψ2 ∈ Cl(ϕ) and v([∅]ψ1) = v([C]ψ2) = 0, then ψ1 ∨ ¬ψ2 is
satisfiable.

64 Chapter 3. Coalition Logic

4. If [∅]ψ1, [N]ψ2 ∈ Cl(ϕ) and v([∅]ψ1) = v([N]ψ2) = 0, then ¬ψ1 ∧ ¬ψ2 is
satisfiable.

5. If [C]ψ, [C1]ψ1, . . . , [Ck]ψk ∈ Cl(ϕ), ∀i 6= j : Ci ∩ Cj = ∅, C =
⋃

i Ci,
v([C]ψ) = 0 and ∀i : v([Ci]ψi) = 1, then ¬ψ ∧

∧
i ψi is satisfiable.

Proof. From left to right, suppose ϕ is satisfiable in a weakly playable coalition
model M = ((S,E), V) at state s ∈ S. Then v defined by v(ψ) = 1 iff M, s |= ψ
is a semi-valuation for ϕ, and it will satisfy the five conditions in virtue of E(s)
being weakly playable. Suppose, e.g., that v([∅]ψ1) = v([N]ψ2) = 0, i.e., M, s |=
¬[∅]ψ1 ∧¬[N]ψ2. By N -maximality, M, s |= [N]¬ψ1 and hence ¬ψM

1 6⊆ ψM
2 , i.e.,

¬ψ1 ∧ ¬ψ2 must be satisfiable. Similarly for the other conditions.

From right to left, suppose we have a semi-valuation v satisfying the five
conditions. This means that we have a sequence of models M1, . . . ,Mn and a
sequence of states s1, . . . , sn which serve as witnesses to the five conditions. To
simplify notation, we shall also use Vi(ψ) for ψMi when ψ is not atomic.

We will now construct a model M = ((S,E), V) satisfying ϕ which is roughly
the union of the Mi models. For a new state s0 which shall correspond to v,
let S = {s0} ∪

⋃
i>0 Si. Let V0 : Cl(ϕ) → P({s0}) be defined as V0(ψ) = {s0}

if v(ψ) = 1 and ∅ otherwise. Let J : Cl(ϕ) → P(S) be defined by J(ψ) =⋃
i≥0 Vi(ψ).
To complete the definition of our newly constructed model, let V (p) = J(p)

for p ∈ Φ0. For sa 6= s0 and C 6= N , let E(sa) be defined as follows:

saECX iff ∃[C1]ψ1, . . . , [Ck]ψk ∈ Cl(ϕ) :
(1) C =

⋃
i Ci, (2) ∀i 6= j : Ci ∩ Cj = ∅,

(3)
⋂

i J(ψi) ⊆ X, and (4) Ma, sa |=
∧

i[Ci]ψi

Note that in the above, k may be 1, in which case the right hand side reduces
to ∃[C]ψ ∈ Cl(ϕ) such that J(ψ) ⊆ X and Ma, sa |= [C]ψ. For the set of all
players, we define saENX iff not saE∅X.

For s0, we use an analogous definition in terms of the semi-valuation v: For
C 6= N , E(s0) is defined as above, except that we replace condition (4) by ∀i :
v([Ci]ψi) = 1. Again, we define s0ENX iff not s0E∅X.

M is weakly playable at every state sa. For sa 6= s0, the playability conditions
either hold by definition or they are essentially inherited from Ma. For s0, the
first three conditions of the lemma are used.

Claim 1: If C 6= N , [C]ψ ∈ Cl(ϕ), and saECJ(ψ) for a > 0, then Ma, sa |=
[C]ψ. The proof uses superadditivity and monotonicity of Ma.

Claim 2: If C 6= N , [C]ψ ∈ Cl(ϕ), and s0ECJ(ψ), then v([C]ψ) = 1. Suppose
that ∃[C1]ψ1, . . . , [Ck]ψk ∈ Cl(ϕ) such that

⋂
i J(ψi) ⊆ J(ψ), and assume by

reductio that v([C]ψ) = 0 while ∀i : v([Ci]ψi) = 1. Then using condition 5 of
the lemma, ¬ψ ∧

∧
i ψi is satisfiable, and so for some a we must have Ma, sa |=

¬ψ ∧
∧

i ψi, contradicting the fact that
⋂

i J(ψi) ⊆ J(ψ).

3.6. Complexity II: Satisfiability 65

To show that M, s0 |= ϕ, we show that for all ψ ∈ Cl(ϕ), V (ψ) = J(ψ). For
C 6= N , the argument is as before. For C = N , condition 4 of the lemma is used.
Suppose sa ∈ V ([N]ψ), i.e., sa 6∈ V ([∅]¬ψ), and hence by the previous argument
sa 6∈ J([∅]¬ψ). In the case that sa 6= s0, Ma, sa 6|= [∅]¬ψ, and N -maximality
gives sa ∈ J([N]ψ). In case sa = s0, v([∅]¬ψ) = 0. Now if we assume by reductio
that v([N]ψ) = 0, condition 4 of the lemma would make ψ ∧ ¬ψ satisfiable, a
contradiction, and so v([N]ψ) = 1, establishing s0 ∈ J([N]ψ). The other direction
makes use of conditions 1 and 5. ¥

I Theorem 3.29. The satisfiability problem for Play is in PSPACE.

Proof. Consider the following description of the satisfiability game/algorithm
for formula ϕ:

Game Sat(ϕ)
1) construct Cl(ϕ)
2) ∃-player: choose an appropriate semi-valuation v for ϕ
3) if ϕ contains no modalities, ∃-player wins; otherwise:
4) ∀-player: choose a condition (3-5);
5) if condition = 3 then

5.1) ∀-player: chooses [∅]ψ1, [C]ψ2 ∈ Cl(ϕ)
such that v([∅]ψ1) = v([C]ψ2) = 0

5.2) continue playing Sat(ψ1 ∨ ¬ψ2)
6) if condition = 4 then

6.1) ∀-player: chooses [∅]ψ1, [N]ψ2 ∈ Cl(ϕ)
such that v([∅]ψ1) = v([N]ψ2) = 0

6.2) continue playing Sat(¬ψ1 ∧ ¬ψ2)
7) if condition = 5 then

7.1) ∀-player: choose a subset [C]ψ, [C1]ψ1, . . . , [Ck]ψk ∈ Cl(ϕ)
such that the coalitions Ci are pairwise disjoint, C =

⋃
i Ci,

and for all i: v([Ci]ψi) = 1 and v([C]ψ) = 0
7.2) continue playing Sat(¬ψ ∧

∧
i ψi)

Assuming that a player who cannot choose as instructed loses (e.g., ∃-player
loses in step 2 if there is no semi-valuation for ϕ), we have defined a 2-player
game. Note that step 2 involves the choice of an appropriate semi-valuation, i.e.,
a semi-valuation satisfying conditions (1) and (2) of lemma 3.28. By lemma 3.28,
∃-player has a winning strategy in this game iff ϕ is satisfiable. To analyze the
time it takes to play the game, i.e., the maximal length of a play, let n = |Cl(ϕ)|.
Note that the size of Cl(ϕ) will be linear in |sf(ϕ)|, hence we can indeed analyze
the complexity of the algorithm in terms of n. For the purposes of this algorithm,
we allow for generalized conjunctions

∧
i ψi where sf(

∧
i ψi) = {

∧
i ψi}∪

⋃
i sf(ψi).

66 Chapter 3. Coalition Logic

The construction of Cl(ϕ) and checking whether v is a semi-valuation takes
time linear in n. At step 7.1, a maximum of n formulas [Ci]ψi are chosen from
Cl(ϕ) so that checking all v([Ci]ψi) takes time O(n2). Finally, the game is con-
tinued with ¬ψ ∧

∧
i ψi, where |Cl(¬ψ ∧

∧
i ψi)| ≤ |Cl(ϕ)| = n. Note that this

recursive call reduces the modal depth of the formula by 1 until eventually ϕ
contains no more modalities, hence the number of recursive calls is at most n.

Thus, at most n rounds of Sat are played, each round taking time polynomial
in n. Since the size of each game configuration is also polynomial in n, doing
backward induction on the game tree can be done in PSPACE by a depth-first
search algorithm. In other words, since Sat(ϕ) contains a high-level description of
an Alternating Turing Machine (see [31]) there is an alternating polynomial time
algorithm for satisfiability checking, and given that APTIME = PSPACE, this
means that there is a deterministic polynomial space algorithm for satisfiability.

¥

Before turning to extensive games without simultaneous moves, we shall ex-
tend the previous complexity result to weakly playable models which are maximal.

I Theorem 3.30. The satisfiability problem for MaxPlay is PSPACE-complete.

Proof. For the lower bound, we can use the same argument used for Play,
making use of the fact that the normal modal logic K is also a fragment of MaxPlay.

For the upper bound, we modify the argument for weakly playable models as
follows: We let Xϕ = sf(ϕ) ∪ {[C]¬δ|[C]δ ∈ sf(ϕ)} ∪ {[C]>, [C]⊥|C ⊆ N} in
order to include the dual of every statement, not just for the extreme coalitions.
Condition 4 of lemma 3.28 is then replaced by the following:

4. If [C]ψ1, [C]ψ2 ∈ Cl(ϕ) and v([C]ψ1) = v([C]ψ2) = 0, then ¬ψ1 ∧ ¬ψ2 is
satisfiable.

In the proof of the lemma, like in the completeness proof for MaxPlay, we partition
N by taking a subset P ⊆ P(N) such that C ∈ P iff C 6∈ P and P is closed
under subsets. Arguments for C 6= N become arguments for C ∈ P , similarly
C = N is turned into C 6∈ P . Finally the alternating algorithm will contain a
slight modification due to the modified condition 4 of lemma 3.28. ¥

3.6.3 Extensive Games without Simultaneous Moves

When dealing with extensive games without simultaneous moves, it proves advan-
tageous to work directly with extensive games rather than with their associated
coalition frames: Instead of constructing an individualistic coalition model which
satisfies a formula, we will construct an extensive game without simultaneous
moves.

3.6. Complexity II: Satisfiability 67

Let Xϕ = sf(ϕ) ∪ {[C]¬δ|[C]δ ∈ sf(ϕ)} ∪ {[∅]⊥} and set Cl(ϕ) = {⊥,>} ∪
Xϕ ∪ {¬δ|δ ∈ Xϕ}. Semi-valuations are defined a bit differently for the present
case: In case v([∅]⊥) = 0, the semi-valuation v also provides us with a player,
namely the player who is to move at the given state. We shall denote this player
by vp ∈ N . In case v([∅]⊥) = 1, we are dealing with a terminal state and the
semi-valuation provides us with the set of players who win the game. This set
shall be denoted by vW (N .

I Lemma 3.31. A formula ϕ is satisfiable in Ind iff there exists a semi-valuation
v for ϕ such that either (1) v([∅]⊥) = 1 and v([C]ψ) = 1 iff C ⊆ vW , or
(2) v([∅]⊥) = 0 and for every [C]ψ ∈ E, ψ ∧

∧
F is satisfiable, where E =

{[C]ψ|v([C]ψ) = 1 and vp ∈ C} ∪ {[C]¬ψ|v([C]ψ) = 0 and vp /∈ C} and F =
{ψ|v([C]ψ) = 1 and vp /∈ C} ∪ {¬ψ|v([C]ψ) = 0 and vp ∈ C}.

Proof. If ϕ is satisfiable in an extensive game without simultaneous moves M at
state s then the valuation at that state provides the appropriate semi-valuation.

For the converse, if v([∅]⊥) = 1, we associate it with the empty strategic
game where vW is the set of winners. The extensive game will then consist of
nothing else but this one empty strategic game, the valuation being given by v.
If v([∅]⊥) = 0, assume that the semi-valuation v satisfies the stated conditions,
and for every [Ci]ψi ∈ E, assume that model Mi and state si are such that
Mi, si |= ψi ∧

∧
F . Then the extensive game M which satisfies ϕ can be defined

in the obvious way: It is the union of all the Mi plus an additional state s, the
starting state of the game which will satisfy ϕ. The player who is to move at
state s is vp and the successors she can choose from are all the si. The valuation
at s is defined according to v for the atomic propositions, and it can be shown by
induction that the valuations of all ψ ∈ Cl(ϕ) at s conform to v. ¥

I Theorem 3.32. The satisfiability problem for Ind is PSPACE-complete.

Proof. For the upper bound, it remains to show that this lemma gives us a
PSPACE-algorithm; again, as in the case of extensive games with simultaneous
moves, we present a game which corresponds to an alternating Turing machine
running in polynomial time. As before, let n = |Cl(ϕ)|. The ∃-player chooses a
semi-valuation and provided v([∅]⊥) = 0, the ∀-player chooses a [C]ψ ∈ E. The
game then continues with the formula ψ ∧

∧
F which has smaller modal depth

and size less than or equal to n. Hence, at most n rounds are played with each
round taking time polynomial in n, thus we again have a PSPACE-algorithm.

As for PSPACE-hardness, observe that as in the previous subsection, K =
1−Play essentially forms a fragment of Ind via the translation procedure of theo-
rem 3.27, and hence the theorem extends to extensive games without simultaneous
moves as well. ¥

68 Chapter 3. Coalition Logic

3.7 The Individual Fragment of Coalition Logic

One of the general theses of this thesis is that reasoning about multi-agent systems
is markedly different from reasoning about individual agents. In fact, we claim
that this holds true already in the simple framework of coalition models which
are intended to model nothing more than the agents’ ability to change the world.
One of the ways in which we shall give formal content to this claim is in terms of
expressiveness.

The logical language just introduced contains a modality [C]ϕ for every coali-
tion C ⊆ N . In order to study the difference between reasoning about individuals
and reasoning about groups, we shall distinguish the full language of Coalition
Logic from its individual fragment:

I Definition 3.33 (Individual Fragment). The individual fragment of Coali-
tion Logic is the set of formulas in which only singleton coalitions occur.

Showing differences between full Coalition Logic and its individual fragment is
thus one way to learn how coalitional reasoning differs from individual reasoning.

3.7.1 Expressiveness

I Definition 3.34 (Expressiveness). Given two logical languages L1 and L2

whose semantics are defined with respect to the same class of models, L1 is at
least as expressive as L2 over the class of models K iff for every formula ϕ2 ∈ L2

there is some K-equivalent formula ϕ1 ∈ L1, i.e., the truth values of ϕ1 and ϕ2

agree at every state of every model in K.

The notions of expressive equivalence and strictly greater expressive power are
then defined in the obvious way. Using this terminology, we can show that Coali-
tion Logic is strictly more expressive than its individual fragment on all the model
classes discussed except the class of extensive games without simultaneous moves.
This result is the logical analogue of theorem 2.35 of the previous chapter which
implied that only in the case of extensive games without simultaneous moves is
coalitional effectivity determined by individual effectivity.

I Theorem 3.35. Over Mon, Play and MaxPlay, Coalition Logic is more expres-
sive than its individual fragment, provided that |N | > 1. Over Ind, the individual
fragment is equally expressive.

Proof. First we prove that full coalition logic is strictly more expressive than
its individual fragment over maximal weakly playable coalition models. From
this the other results for Mon and Play follow immediately. For N = {1, 2}, let
M = (({s, t}, E), V) and M′ = (({s, t}, E ′), V) where V (p) = {t}. In M, we
associate the left strategic game G1 of figure 2.2 to s and let E(s) = Eα

G1
. In

3.7. The Individual Fragment of Coalition Logic 69

M′, we associate the right strategic game G2 to s and let E ′(s) = Eα
G2

. Recall
that both of these games are maximal. It is an easy proof by induction that for
every formula ϕ of the individual fragment ϕM = ϕM′

. This is as it should be,
for at state s, the power of the two individuals is the same, they can force all
supersets of {s}. Coalition {1, 2} on the other hand can force more, in particular
M, s |= [{1, 2}]p while M′, s |= ¬[{1, 2}]p.

As for extensive games without simultaneous moves, coalitional modalities do
not add any expressive power to individual modalities. We can define a translation
function ◦ which maps formulas of Coalition Logic into the individual fragment,
mapping boolean formulas simply componentwise (e.g., (ϕ ∨ ψ)◦ = ϕ◦ ∨ ψ◦) and
([C]ϕ)◦ for C 6= ∅ into

([⊥] →
∧

i∈C

[i]⊥) ∧ (¬[⊥] →
∨

i∈C

[i]ϕ◦).

Intuitively, in case we are at a terminal state, all members of C must be winners,
in case we are at a non-terminal state, there must be some member of C which
can force ϕ. In case C = ∅, ([C]ϕ)◦ is equivalent to [⊥] ∨ ¬

∨
i∈N [i]¬ϕ◦, stating

that either we are at a terminal state or none of the players can force ¬ϕ◦. ¥

3.7.2 Complexity

Given the increased expressive power of coalitional formulas at least over Mon,
one might guess that reasoning about coalitions will also be more complex than
reasoning about individuals. We will consider the complexity of the satisfiability
problem for each of the relevant model classes in turn.

Regarding Mon, it is clear that no complexity difference between Coalition
Logic and its individual fragment will emerge, since individuals are not any dif-
ferent from coalitions due to the lack of extra assumptions on coalitional effec-
tivity. Formally, the satisfiability problem cannot be less complex than NP since
propositional logic is still part of the individual fragment. Hence, the complexity
of the satisfiability problem for the individual fragment over Mon is NP-complete.

For Play, the situation is markedly different. The PSPACE lower bound was
established by noticing that the normal modal logic K was a fragment of Play.
Since the translations of the 2 and 3 modalities was in terms of [∅] and [N],
however, this argument cannot be utilized anymore to establish a PSPACE lower
bound for the individual fragment. In fact, one can show that the satisfiability
problem can be solved in NP:

I Theorem 3.36. The satisfiability problem for the individual fragment over
Play is NP-complete in case |N | > 1.

Proof. Since NP-hardness is obvious, we only need to provide an algorithm
which runs in nondeterministic polynomial time. As before, the algorithm relies

70 Chapter 3. Coalition Logic

on a recursive satisfiability lemma which is based on theorem 2.11 of the previous
chapter and hence must be limited to cases where |N | > 1.

As before, let sf(ϕ) be the set of subformulas of ϕ, and let

Xϕ = sf(ϕ) ∪ {[i]>, [i]⊥|i ∈ N} and CL(ϕ) = Xϕ ∪ {>,⊥} ∪ {¬δ|δ ∈ Xϕ}.

Again, a semi-valuation for ϕ is a function v : Cl(ϕ) → {0, 1} such that (1)
v(ψ) = 1 iff v(¬ψ) = 0, (2) v(ψ1 ∨ ψ2) = 1 iff v(ψ1) = 1 or v(ψ2) = 1, (3)
v(⊥) = 0, and (4) v(ϕ) = 1.

Now via the same construction that was used in previous arguments, we can
show that a formula ϕ is satisfiable iff there exists a semi-valuation v for ϕ such
that

1. If [i]ψ1, [i]ψ2 ∈ Cl(ϕ), v([i]ψ1) = 1 and v([i]ψ2) = 0 then ψ1 ∧ ¬ψ2 is
satisfiable.

2. If there is some j ∈ N such that v([j]>) = 0, then for all i ∈ N , if
[i]ψ1, [i]ψ2 ∈ Cl(ϕ), v([i]ψ1) = 1 and v([i]ψ2) = 0 then ¬ψ1∧ψ2 is satisfiable.

3. If N = {1, . . . , n} and [1]ψ1, . . . , [n]ψn ∈ CL(ϕ) such that for all i ∈ N ,
v([i]ψi) = 1, then

∧
i ψi is satisfiable.

The first condition expresses monotonicity and the other two conditions corre-
spond to conditions (2) and (1) of definition 2.10 of the previous chapter. Again,
we can utilize this lemma to write a nondeterministic algorithm which guesses a
semi-valuation and checks for satisfiability recursively, as in the case of Mon. If
the size of |Cl(ϕ)| is n, we need to check at most n2 formulas of the form ψ1∧¬ψ2

and at most n|N | formulas of the form
∧

i∈N ψi recursively, in order of increasing
modal depth. Hence, we again, have an algorithm running in nondeterministic
polynomial time, the only difference with the case of Mon being that the polyno-
mial will be of a much higher degree if |N | is big. ¥

We have considered MaxPlay for the case where |N | = 2 already when we
considered modal logic in section 3.5 (the complexity was also NP-complete),
and so we turn to the class of weakly individualistic models Ind. Note first that
we know from the previous subsection that coalitions do not add any expressive
power over individualistic models. This does not imply, however, that there will
be no complexity difference between the full Coalition Logic and its individual
fragment. Rather, as a consequence of this result, any such complexity difference
would have to be attributed to a difference in notational succinctness, not to
increased expressive power. Analyzing the translation from Coalition Logic into
its individual fragment shows, however, that the improvement in conciseness is
only marginal.

I Theorem 3.37. The satisfiability problem for the individual fragment over Ind

is PSPACE-complete.

3.8. Discussion 71

Proof. (We only need to show PSPACE-hardness.) Theorem 3.35 provided us
with a translation function ◦ from Coalition Logic into its individual fragment
such that ϕ and ϕ◦ are equivalent over individualistic models. While the length
of ϕ◦ in symbols may be exponentially longer than the length of ϕ, this is not the
case when comparing |sf(ϕ)| to |sf(ϕ◦)|. Consider, e.g., the coalitional formula
[{1, 2}][{1, 2}]p. Its translation ([{1, 2}][{1, 2}]p)◦ is identical to

([⊥] → ([1]⊥ ∧ [2]⊥)) ∧ (¬[⊥] → ([1]([{1, 2}]p)◦ ∨ [2]([{1, 2}]p)◦)).

Note that while ([{1, 2}]p)◦ is indeed duplicated in ([{1, 2}][{1, 2}]p)◦, we are
dealing with two occurrences of the same subformula which means that in terms
of subformulas we do not obtain an exponential blow-up. More generally, looking
at the structure of the formula ([C]ψ)◦, we can see that |sf(([C]ψ)◦)| = cC +
|sf(ψ◦)| where cC depends only on |C| and hence we know |sf(([C]ψ)◦)| ≤ cN +
|sf(ψ◦)|. Hence, the size of sf(ϕ◦) will be polynomial in the size of sf(ϕ), and
consequently the satisfiability problem for full Coalition Logic over Ind can be
effectively reduced to the satisfiability problem of the individual fragment. ¥

3.8 Discussion

Throughout this chapter we have focused our attention on 4 different classes of
coalition models which are ordered by inclusion as follows:

Mon ⊃ Play ⊃ MaxPlay ⊃ Ind

By the characterization results obtained, these classes represent effectivity in
respectively general monotonic coalition models, extensive games with simulta-
neous moves, determined extensive games with simultaneous moves and extensive
games without simultaneous moves. Programs or 1-player games are represented
by 1−Play = 1−Ind. This chapter has mainly investigated questions of complex-
ity, expressiveness, and axiomatization. A metatheoretic question we did not pose
concerns the finite model property (fmp). We conjecture that via filtration one
can show that all the model classes mentioned have the fmp. A related question
concerns the poly-size or small model property (smp), stating that every formula
ϕ which is K-satisfiable is also K-satisfiable in a model of size polynomial in |ϕ|.
Note that since Ind, Play, and MaxPlay all contain the normal modal logic K as
a fragment, the associated model classes cannot have the small model property.
For Mon on the other hand, the question is still open.

3.8.1 Modal Logic and Complexity

Comparing normal and non-normal modal logic yields a precise description of the
difference between individual ability in programs and games. If we look at K and

72 Chapter 3. Coalition Logic

M purely from the perspective of player 1, we formulate all axioms in terms of 3,
then the axioms

3(ϕ ∨ ψ) → (3ϕ ∨ 3ψ) and ¬3⊥

provide a complete description of the difference between programs (where these
axioms hold) and determined 2-player games (where the axioms do not hold).
Note that the second axiom shows that it is not true that player 1 always has
more power in a solitaire game than in a 2-player game (as suggested by the first
axiom), since 2-player games allow for terminal positions where player 1 wins,
whereas all terminal positions of solitaire games are losses for player 1.

To summarize the coalitional view of modal logic, normal and non-normal
modal logic differ in two respects: First, regarding the underlying semantic struc-
tures which are described: normal modal logic describes one-player games whereas
non-normal modal logic describes determined 2-player games. Second, regard-
ing the expressive power of the language used: non-normal modal logic is non-
coalitional in that it allows one to talk about the ability of individual agents (i.e.,
singleton coalitions) only. As a result, the fact that the complexity of the satis-
fiability problem for M is NP-complete fits perfectly well into the general picture
summarized in figure 3.5. Normal modal logic on the other hand is a bit of a
hybrid case, since it can express the ability of the empty coalition, yet the ability
of the empty coalition is completely determined by the ability of the one player.
Still, such simple coalitional content is sufficient to yield a satisfiability problem
which is PSPACE-complete.

Taking another look at the proof of lemma 3.25, we can get some intuition
for the complexity difference between K and M. Since Coalition Logic over all
coalition models is nothing but multi-modal M, the analogue of lemma 3.25 for
the modal logic M is as follows:

A formula ϕ is satisfiable iff there exists a semi-valuation v for ϕ such
that if 2ψ1,2ψ2 ∈ sf(ϕ), v(2ψ1) = 1 and v(2ψ2) = 0 then ψ1 ∧ ¬ψ2

is satisfiable.

As mentioned, this lemma gives us a decision procedure in NP: If |sf(ϕ)| = n,
at most O(n2) formulas of the form ψ1 ∧ ¬ψ2 need to be checked, and this can
be done according to modal depth so that we end up with a nondeterministic
algorithm which runs in polynomial time. Let us compare this to the situation
with K. The analogous recursive satisfiability lemma for K is the following:

A formula ϕ is satisfiable iff there exists a semi-valuation v for ϕ
such that if 2ψ1, . . . ,2ψk,2δ ∈ sf(ϕ), for all i: v(2ψi) = 1, and
v(2δ) = 0, then ¬δ ∧

∧
i ψi is satisfiable.

If we want to apply the same technique we used for M, we would have to check
according to increasing modal depth all formulas of the form ¬δ∧

∧
i ψi, but since

i can vary, there are essentially 2n such formulas, since every subset of sf(ϕ) gives

3.8. Discussion 73

rise to one formula. As a consequence, the nondeterministic algorithm does not
run in polynomial but in exponential time.

For the coalition logic Play, the superadditivity axiom gives rise to a simi-
lar sequence of formulas [C]ψ, [C1]ψ1, . . . , [Ck]ψk ∈ Cl(ϕ) in lemma 3.28 which
prevents an NP-algorithm. For its individual fragment on the other hand, in
case |N | > 1, the sequence of modalities [1]ψ1, . . . , [n]ψk ∈ CL(ϕ) is bounded by
k = |N |, thus yielding at most n|N | formulas of the form

∧
i ψi which need to be

checked.

3.8.2 Programs vs. Games

Questions of axiomatization and complexity were raised and answered for all the
4 classes mentioned. Has this investigation yielded any insights into differences
between these various semantic classes and, as a possible consequence, between
programs and games? In all cases, a complete axiomatization was obtained by
a straightforward translation of the model-theoretic conditions into formulas of
coalition logic. Note that the axioms of figure 3.2 provide a uniform axiomatiza-
tion for programs and games with simultaneous moves, i.e., the only difference
in axiomatization is the number of players for which these axiom schemes are
instantiated. For extensive games without simultaneous moves (with more than
1 player), an additional axiom needs to be added, however.

In terms of complexity, note that model checking can be done in time lin-
ear in the size of the model and the size of the formula for both programs and
games. Note, however, that for certain complex extensive games with simulta-
neous moves, the representation size will be much larger than for programs, and
hence the results are not immediately comparable.

Regarding the complexity of the satisfiability problem, a number of interesting
conclusions can be drawn. The relevant results are summarized in figure 3.4.

Play Ind

|N | = 1 PSPACE PSPACE
|N | > 1 NP PSPACE

Figure 3.4: Complexity results for the satisfiability problem: the individual frag-
ment of Coalition Logic for different numbers of players and different classes of
games. (Note that for |N | = 1, Play = Ind.)

Suppose that we are given some behavioral specification ϕ formulated in the
individual fragment of Coalition Logic. If ϕ only contains the singleton coali-
tion {i}, i.e., if ϕ only specifies the ability of the single player i, we can ask
whether there is a program/process which satisfies this specification. This is the
satisfiability problem for 1−Play which we have seen to be PSPACE-complete.

74 Chapter 3. Coalition Logic

Similarly, finding out whether there is a 2-player extensive game without simul-
taneous moves satisfying ϕ will be PSPACE-complete. On the other hand, finding
a satisfying extensive game with simultaneous moves is NP-complete. Thus, if NP
6= PSPACE then game synthesis can actually be easier than program synthesis,
depending on the type of game. Put differently, what is important is not so
much the number of players but the presence or absence of simultaneous moves.
Put differently, the issue is whether we are working in an environment of perfect
information or not.

To get an intuitive understanding of these results, note that 1-player games
are structurally almost identical to extensive games without simultaneous moves
with more than 1 player. The only difference lies in the player assigned to each
position. Extensive games with simultaneous moves on the other hand allow for
more freedom in satisfying a given specification. At every state, we need to find
a strategic game satisfying certain properties. This strategic game may be a dic-
tatorship, but much more options are available. Put differently, a local effectivity
function satisfying the specification demands needs to fulfill fewer requirements
in order to be legal, i.e., α-corresponding to a strategic game.

3.8.3 Individuals vs. Coalitions

In the previous section we have introduced the individual fragment of Coalition
Logic in order to compare reasoning about individuals to reasoning about coali-
tions. The expressiveness result shows that in extensive games without simul-
taneous moves, reasoning about coalitions is no different from reasoning about
individuals except for allowing a more concise notation. In games with simultane-
ous moves and general coalition models, however, the full coalitional language has
an increased expressive power. As to the complexity of the satisfiability problem,
we have seen that Coalition Logic and its individual fragment differ only over the
class of weakly playable models. The table of figure 3.5 summarizes these results:

Mon Play Ind

Complexity of full Coalition Logic NP PSPACE PSPACE
Complexity of individual fragment NP NP PSPACE

Is individual fragment less expressive? yes yes no

Figure 3.5: Comparison between Coalition Logic and its individual fragment:
expressiveness and complexity of the satisfiability problem (we assume that |N | >
1).

One conclusion to draw from these results is that among the classes of models
considered, Play is the essential class from a coalitional perspective, for it is the
only class where the difference in expressivity which nontrivial coalitional formulas

3.9. Bibliographic Notes 75

can make also manifests itself in terms of complexity. In other words, over the
class of weakly playable models, Coalition Logic is really different from a logic
which only talks about the ability of individual agents. Note, however, that Play

is not the only class with this property, since, e.g., the results for 2−MaxPlay are
in fact the same as those for Play.

3.8.4 Epistemic Logic vs. Coalition Logic

As a final remark, it is worth mentioning an epistemic analogue of coalition forma-
tion. When investigating various non-normal epistemic logics in [120], the author
observes a complexity difference which hinges on the presence of the formula

Kϕ ∧ Kψ → K(ϕ ∧ ψ) (3.2)

where Kϕ should be read as “the agent knows that ϕ”. Among the various epis-
temic systems investigated, logics which do not contain this principles have their
satisfiability problem in NP, whereas those containing (3.2) are in PSPACE. While
in the latter case, no lower bound is proved, it is conjectured that this principle
which formalizes an agent’s ability to epistemically combine facts, i.e., to reason
about the world, causes the (conjectured) complexity increase. As can be seen
from the form that the superadditivity axiom takes in 1−Play, superadditivity
is the game-theoretic analogue of the epistemic principle (3.2): While the direct
analogue of principle 3.2 would be [C]ϕ∧[C]ψ → [C](ϕ∧ψ) which is characteristi-
cally not valid in Coalition Logic, superadditivity [C1]ϕ∧[C2]ψ → [C1∪C2](ϕ∧ψ)
is. In a multi-agent setting in which we want to express group knowledge, su-
peradditivity would allow groups of agents to join their knowledge, formalized
by the epistemic version of superadditivity K1ϕ ∧ K2ψ → K{1,2}(ϕ ∧ ψ). Thus,
K{1,2}ϕ expresses that agents 1 and 2 together have implicit knowledge of ϕ, the
knowledge of ϕ is distributed among the agents and can be made explicit, e.g.,
through communication within the group [58].

Instead of expressing the ability of an agent or a group of agents to combine
facts, superadditivity expresses the ability of agents to combine their strategies
when forming a coalition. And in the case of Coalition Logic, it is possible to
locate a complexity increase precisely in this ability to combine strategies, since
one can show that for Coalition Logic without superadditivity, the satisfiability
problem is NP-complete.

3.9 Bibliographic Notes

Parts of the material in this chapter has been published in [98, 104]. The classes of
strongly playable and strongly individualistic coalition models were axiomatized
already in [98], whereas the present chapter has focused on weak playability and

76 Chapter 3. Coalition Logic

weak individualism. For strongly playable coalition models, the complexity of the
satisfiability problem was also first investigated in [98].

For a textbook on normal modal logic, see [20] which also contains results on
the complexity of the satisfiability problem for various normal modal systems.
A book which also treats non-normal modal systems is [32]. Coalition Logic in
its most general form is the multi-modal equivalent of non-normal monotonic
modal logic (terminology from [32]). For the class of general coalition models,
axiomatic completeness essentially follows already from the results in [32], where it
is proved that the non-normal modal logic M is complete for the class of monotonic
neighborhood models.

The complexity results of section 3.6 follow the general approach of [120],
where the complexity of various non-normal epistemic logics is studied. The
result on the complexity of model checking in Coalition Logic (theorem 3.7) is an
adaptation of the analogous result for normal modal logic in [121].

Chapter 4

Extended Coalition Logic

When Coalition Logic is used to reason about coalitional ability in extensive
games, for instance, the formula [C]ϕ holds in case coalition C can bring about ϕ
in one move. Thus, Coalition Logic is a logic for reasoning about local coalitional
ability in games. Naturally, many essential properties of such games cannot
be expressed in terms of local effectivity alone, most notably the property of
a coalition having a winning strategy in the extensive game as a whole. For
this reason, the present chapter extends the language of Coalition Logic with
an additional modality to talk about ability in the long run, i.e., about what
coalitions can bring about eventually.

We will start by discussing various kinds of effectivity in the long run and
their interrelationship. In most cases, Extended Coalition Logic, formally defined
in section 4.2, will be able to express all of these different notions through one
single modality. The complexity of the model checking problem and the expres-
sive power of the richer language of Extended Coalition Logic will be investigated
in section 4.3. Furthermore, we will discuss the relationship between Extended
Coalition Logic and Alternating Temporal Logic (section 4.4) and work in dis-
tributed artificial intelligence (section 4.5).

4.1 Ability in the Long Run

Given a coalition frame F = (S, {EC |C ⊆ N}) which contains information about
effectivity at every state, we can also investigate effectiveness in the long run.
The two basic notions of long-term effectivity we shall use are goal maintenance
and (eventual) goal achievement. A coalition C can eventually achieve a set of
states X provided that it has a strategy which establishes X after some finite
number of moves which does not need to be fixed before the game starts. Using a
fixpoint construction (see appendix A for background material on fixpoints), we
can formally define eventual goal achievement.

77

78 Chapter 4. Extended Coalition Logic

I Definition 4.1 (Eventual Goal Achievement). Given a coalition frame
F = (S, {EC |C ⊆ N}), the eventual goal achievement effectivity function E∗ is
defined as

E∗
C(X) = µY.X ∪ (E∅(∅) ∩ EC(Y)).

Note that we give fixpoint operators lowest precedence, so that the scope of a
fixpoint operator extends as far to the right as possible.

Intuitively, sE∗
CX holds precisely when at state s coalition C can bring about

X in the long run. The term E∅(∅) guarantees that states will not be included
simply because they are terminal states where all members of C win. As a
consequence of this definition of E∗, EC(X) 6⊆ E∗

C(X), for at a terminal state
s 6∈ X where C wins, sECX but not sE∗

CX. What we do have is EC(X)∩E∅(∅) ⊆
E∗

C(X) and EC(X) ⊆ E∗
C(X ∪ EC(∅)).

Turning now toward goal maintenance, coalition C can maintain a set of states
X provided that it has a strategy which will guarantee that every future position
of the game play will be in X.

I Definition 4.2 (Goal Maintenance). Given a coalition frame F = (S,
{EC |C ⊆ N}), the goal maintenance effectivity function E× is defined as

E×
C (X) = νY.X ∩ (E∅(∅) ∪ EC(Y)).

Intuitively, sE×
C X holds precisely when at state s coalition C can maintain X

indefinitely. Now the additional union with E∅(∅) is necessary to guarantee that
states will not be excluded simply because they are terminal states where some
members of C lose.

The definitions of effectivity in the long run are general in that they do not
presuppose the coalition frame to satisfy any additional properties such as weak
playability. On the other hand, the example given to motivate certain aspects of
the definition assumed an application to extensive games, and this is in fact the
class of models we shall look at when dealing with some applications in chapter
5.

Recall from section 2.4.2 that coalition frames can be used to model extensive
games as well as game forms. For extensive game forms, sE∗

CX will hold in
case coalition C can eventually achieve X, no matter how the empty games at
terminal states are defined (thanks to the E∅(∅) term in the definition of E∗).
For extensive games (with significant payoff information), we can additionally
consider whether coalition C has a winning strategy, expressed by E∗

C(EC(∅)), or
whether it can achieve a win or X, expressed by E∗

C(X ∪EC(∅)). Note, however,
that due to the possibility of infinite runs, having a winning strategy can be
interpreted in two ways: In the (for C) best case, coalition C has a strategy
which guarantees that game play will terminate in a state which is a win for all
members of C. This is the interpretation corresponding to E∗

C(EC(∅)). If C is
somewhat less fortunate, however, it may only have a strategy which guarantees

4.1. Ability in the Long Run 79

that if game play terminates, then all members of C win. As the example of a
game where all plays are infinite illustrates, the two kinds of strategies are not
equivalent. This distinction between strong and weak winning strategies is not
usually made in game theory, where it is assumed that also infinite runs generate
payoffs to the players [93]. Note also that in order to distinguish strong from
weak winning strategies, it is crucial that our semantic model allows for terminal
states (compare this with Alternating Temporal Logic, discussed in section 4.4).

Total vs. Partial Terminal Effectivity

We shall formalize the distinction between strong and weak strategies as the
difference between total and partial terminal effectivity. While the notion of
eventual goal achievement formalizes what it means to bring about a goal at
some point in the future, we are often more interested in what terminal outcomes
or outcome states a coalition can achieve. If we are dealing with an extensive
game, this question asks for whether a coalition has a strategy which will yield a
win for all its members. For an extensive game form on the other hand, we want
to know which sets of terminal states can be achieved.

Given a coalition frame F = (S, {EC |C ⊆ N}), we define total terminal
effectivity as

Et
C(X) = E∗

C(E∅(∅) ∩ X) = µY.(E∅(∅) ∩ X) ∪ (E∅(∅) ∩ EC(Y)).

The set Et
C(X) includes the set E∅(∅)∩X which denotes the set of terminal states

which are in X. Furthermore, it includes the nonterminal states from which C
can achieve one of those terminal states in X, and so on. The weaker version of
total terminal effectivity is partial terminal effectivity defined as

Ep
C(X) = E×

C (E∅(∅) ∪ X) = νY.(E∅(∅) ∪ X) ∩ (E∅(∅) ∪ EC(Y)).

The goal to be maintained here is that “if the present state is terminal then it
is in X”. If we are dealing with an extensive game which has infinite runs, we
can then distinguish a strong winning strategy E t

C(EC(∅)) from a weak winning
strategy Ep

C(EC(∅)).
For extensive games and game forms, the four possible instantiations of the

scheme “some/all plays of the game are finite/infinite” are of particular interest.
All of them can be defined in terms of the notions just introduced. For weakly
playable frames F = (S, {EC |C ⊆ N}), we have

Et
∅(S) = µY.E∅(Y) holds iff all plays of the game are finite.

Et
N(S) = µY.E∅(∅) ∪ EN(Y) holds iff at least one play of the game is finite.

and their negations for the other two instantiations of the scheme.

80 Chapter 4. Extended Coalition Logic

I Theorem 4.3. For every C-regular and C-maximal coalition frame, eventual
goal achievement and goal maintenance are duals, as are total and partial terminal
effectivity. Formally, E∗

C(X) = E×
C
(X) and Et

C(X) = Ep

C
(X).

Proof. For the first duality,

E×
C
(X) = νY.X ∩ (E∅(∅) ∪ EC(Y)) = ¬µY.X ∪ (E∅(∅) ∩ EC(Y)) = E∗

C(X)

by C-maximality and C-regularity. The second claim is then an easy corollary. ¥

The relationship between partial and total terminal effectivity is further described
by the following result which should be seen as a generalization of Dijkstra’s work,
establishing links between partial and total program correctness.

I Theorem 4.4. For every coalition frame, total implies partial terminal effec-
tivity, i.e., Et

C(X) ⊆ Ep
C(X). For superadditive coalition frames, at states where

no infinite play is possible, the converse also holds, i.e., E t
∅(S)∩Ep

C(X) ⊆ Et
C(X).

Proof. Let F = (S, {EC |C ⊆ N}) be any coalition frame.
(1) Given Y ⊆ S, let Ft(Y) = (E∅(∅) ∩ X) ∪ (E∅(∅) ∩ EC(Y)) and Fp(Y) =

(E∅(∅) ∪ X) ∩ (E∅(∅) ∪ EC(Y)). We show by transfinite induction that for all
ordinals κ, F ↑κ

t ⊆ F ↓κ
p . For the inductive step,

F ↑κ+1
t = (E∅(∅)∩X)∪(E∅(∅)∩EC(F ↑κ

t)) ⊆ (E∅(∅)∪X)∩(E∅(∅)∪EC(F ↓κ
p)) = F ↓κ+1

p

using the induction hypothesis and monotonicity. For limit ordinals, the inductive
step follows from the fact that for all κ0 ≤ κ, F ↑κ0 ⊆ F ↑κ and F ↓κ ⊆ F ↓κ0 . Now
to prove the first claim, if s ∈ Et

C(X), there is some closure ordinal α such that
for all β ≥ α, s ∈ F ↑β

t and hence s ∈ F ↓β
p . Thus, for all ordinals γ, s ∈ F ↓γ

p , in
particular for the closure ordinal γ0 for which F ↓γ0

p = Fp(F
↓γ0
p) = Ep

C(X).
(2) Given Y ⊆ S, let Ff (Y) = E∅(Y), and assume that F is superadditive.

We show by induction that for all ordinals κ, F ↑κ
f ∩F ↓κ

p ⊆ F ↑κ
t . For the inductive

step κ + 1, we must show that

E∅(F
↑κ
f) ∩ (E∅(∅) ∪ X) ∩ (E∅(∅) ∪ EC(F ↓κ

p)) ⊆ (E∅(∅) ∩ X) ∪ (E∅(∅) ∩ EC(F ↑κ
t))

which follows from superadditivity and the induction hypothesis. The rest of the
proof is analogous to the proof of (1). ¥

4.2 Syntax & Semantics

As the name suggests, Extended Coalition Logic (ECL) extends Coalition Logic
with an extra modality for expressing effectivity in the long run. As we have seen
in the previous section, all of the notions discussed can be expressed in terms of
eventual goal achievement E∗ and goal maintenance E×.

4.2. Syntax & Semantics 81

I Definition 4.5 (Extended Coalition Logic Syntax). Given a finite non-
empty set of agents/players N , and a set of atomic propositions Φ0, formulas ϕ
of Extended Coalition Logic can have the following syntactic form:

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | [C]ϕ | [C∗]ϕ | [C×]ϕ

where p ∈ Φ0 and C ⊆ N .

As before, the other boolean connectives are defined in the standard way. Like
in basic Coalition Logic, ECL formulas are interpreted over coalition models M =
((S, {EC |C ⊆ N}), V) just as before, the only difference being the additional
modalities:

I Definition 4.6 (Extended Coalition Logic Semantics). Given a coali-
tion model M = ((S, {EC |C ⊆ N}), V), the truth of a formula ϕ in a model M
at a state s is defined as follows:

M, s 6|= ⊥
M, s |= p iff p ∈ Φ0 and s ∈ V (p)
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
M, s |= [C]ϕ iff sECϕM

M, s |= [C∗]ϕ iff sE∗
CϕM

M, s |= [C×]ϕ iff sE×
C ϕM

By theorem 4.3, we know that for all C-regular and C-maximal coalition

models, [C∗]ϕ ↔ ¬[C
×
]¬ϕ is valid. In fact, the proof of theorem 4.3 shows that

it is sufficient that M is C-maximal and C-regular at all non-terminal states, i.e.,
at all states not in E∅(∅). Finally, to simplify notation even more, we introduce
natural abbreviations for total and partial terminal effectivity, writing [C ∗]([∅]⊥∧
ϕ) as [Ct]ϕ and [C×]([∅]⊥ → ϕ) as [Cp]ϕ.

Theorem 3.4 which showed that formulas of Coalition Logic are invariant for
bisimulation can be generalized to Extended Coalition Logic.

I Theorem 4.7. Bisimilarity implies ECL-equivalence.

Proof. Two additional cases need to be added to the proof of theorem 3.4. Let
M = ((S, {EC |C ⊆ N}), V) and M′ = ((S ′, {FC |C ⊆ N}), V ′) be two coalition
models such that s ↔ s′. We show that if M, s |= [C∗]ϕ then M′, s′ |= [C∗]ϕ.
The case for [C×]ϕ is dealt with analogously.

Let X = ϕM, X ′ := {x′ ∈ S ′|∃x ∈ X : x ↔ x′} and

Z := {z ∈ S|∀z′ : z ↔ z′ ⇒ z′F ∗
CX ′)}.

82 Chapter 4. Extended Coalition Logic

Now it is sufficient to show that E∗
C(X) ⊆ Z, and given the definition of E∗

C(X)
as a least fixpoint, it suffices to show that Z is a fixpoint, i.e. that

X ∪ (E∅(∅) ∩ EC(Z)) ⊆ Z.

Supposing that x ∈ X and for some x′ we have x ↔ x′, we have x′ ∈ X ′ ⊆ F ∗
C(X ′).

On the other hand, suppose that x ∈ (E∅(∅) ∩ EC(Z)) and x ↔ x′. Then by
bisimulation, there is some Z ′ such that x′ ∈ (F∅(∅) ∩ FC(Z ′)) and for all z′ ∈ Z ′

there is some z ∈ Z such that z ↔ z′. But then Z ′ ⊆ F ∗
C(X ′), and so by

monotonicity, x′ ∈ F∅(∅) ∩ FC(F ∗
C(X ′)) ⊆ F ∗

C(X ′). ¥

Axiomatically, we can define extensions of the coalition logics defined in sec-
tion 3.4. For each of the 2 new modalities, one axiom and one inference rule needs
to be added.

I Definition 4.8 (Extended Coalition Logic Axiomatics). Given the set
of players N , an extended coalition logic for N is a set of ECL-formulas Λ which
is a coalition logic and which additionally is closed under the inference rules of
figure 4.1 below.

Axioms: (ϕ ∨ (¬[∅]⊥ ∧ [C][C∗]ϕ)) → [C∗]ϕ

[C×]ϕ → (ϕ ∧ ([∅]⊥ ∨ [C][C×]ϕ))

Inference Rules: (ϕ ∨ (¬[∅]⊥ ∧ [C]ψ)) → ψ
[C∗]ϕ → ψ

ψ → (ϕ ∧ ([∅]⊥ ∨ [C]ψ))
ψ → [C×]ϕ

Figure 4.1: Inference rules for Extended Coalition Logic.

Intuitively, the axiom for ∗ states that [C∗]ϕ is a fixpoint of the operation ϕ ∨
(¬[∅]⊥ ∧ [C]X) and the fixpoint rule states that [C∗]ϕ is the least such fixpoint.
Similarly for × and the greatest fixpoint.

Let Play∗, MaxPlay∗, and Ind∗ be the extended coalition logics with the addi-
tional axioms for playability, maximal playability and individualism, respectively.
We conjecture that these logics are complete with respect to Play, MaxPlay, and
Ind, respectively, but at present we only have the following:

I Theorem 4.9. Play∗, MaxPlay∗, and Ind∗ are sound with respect to Play,
MaxPlay, and Ind, respectively.

4.3. Some Meta-Theory 83

4.3 Some Meta-Theory

The additional modalities of Extended Coalition Logic do not only allow for a
range of applications, they also pose some interesting meta-theoretic questions,
some of which we will not be able to answer in the present section. The most
notable opportunities for future work concern axiomatization and the complexity
of the satisfiability problem, even though chapter 6 will shed some light on the
difficulties involved here since eventual goal achievement is in fact very similar to
iteration in Game Logic.

We start by considering the relationship between local and global properties.
Given that certain conditions such as playability are imposed on the local effec-
tivity function E, will these conditions be preserved on the global level by E t?
For playability, we shall answer this question affirmatively, also pointing out the
link to the game-theoretic concept of strategic normal form.

As might be expected, the additional modalities of Extended Coalition Logic
will increase the complexity of the model checking problem, and below we will
give a precise upper bound which should be compared to the upper bound ob-
tained for basic Coalition Logic. Furthermore, we take up the issue of coalitional
expressiveness: We saw in section 3.7.1 that in extensive games without simul-
taneous moves, coalitions did not add any expressive power beyond individuals.
We will see in section 4.3.3 that when we also consider effectivity in the long run,
coalitions do add expressive power even for these games.

4.3.1 Local vs. Global Properties of Ability

The different kinds of coalition frames associated, e.g., with extensive games
have been defined in terms of local requirements, i.e., properties such as weak
playability which the local effectivity functions have to satisfy. Some of these
properties will be maintained globally or terminally. An important case is weak
playability: One can show that for games without infinite plays, the total (=
partial) terminal effectivity function is playable.

I Theorem 4.10. If F = (S, {EC |C ⊆ N}) is a weakly playable coalition frame
such that sEt

∅S, then Et(s) is strongly playable.

Proof. The strong playability conditions can be checked one by one: For the
first condition, one can check that E t

C(∅) = ∅. For the second condition, E t
∅(S) ⊆

Et
C(S) since E(s) is coalition monotonic in case s 6∈ E∅(∅). For N -maximality, if

s 6∈ Et
∅(X), since s ∈ Et

∅(S), we have s 6∈ Ep
∅(X) by theorem 4.4 and hence sEt

NX
by theorem 4.3.

For superadditivity, we show generally that for all C1 ∩ C2 = ∅ we have
Et

C1
(X1)∩Et

C2
(X2) ⊆ Et

C1∪C2
(X1∩X2); we proceed again by transfinite induction,

84 Chapter 4. Extended Coalition Logic

as in the proof of theorem 4.4. Let

F1(Y) = (E∅(∅) ∩ X1) ∪ (E∅(∅) ∩ EC1
(Y))

F2(Y) = (E∅(∅) ∩ X2) ∪ (E∅(∅) ∩ EC2
(Y))

F3(Y) = (E∅(∅) ∩ X1 ∩ X2) ∪ (E∅(∅) ∩ EC1∪C2
(Y))

We show that F ↑κ
1 ∩ F ↑κ

2 ⊆ F ↑κ
3 . The heart of the proof is the inductive step for

κ + 1, where one can check that

((E∅(∅) ∩ X1) ∪ (E∅(∅) ∩ EC1
(F ↑κ

1))) ∩ ((E∅(∅) ∩ X2) ∪ (E∅(∅) ∩ EC2
(F ↑κ

2)))

is a subset of
(E∅(∅) ∩ X1 ∩ X2) ∪ (E∅(∅) ∩ EC1∪C2

(F ↑κ
3)).

The only two cases possible are s ∈ E∅(∅)∩X1 ∩X2 and s ∈ E∅(∅)∩EC1
(F ↑κ

1)∩
EC2

(F ↑κ
2). The latter case makes use of the superadditivity of E. ¥

Consequently, for every extensive game G without infinite plays, there is a nonempty
strategic game G′ such that the total terminal effectivity function of G is the
α-effectivity function of G′. In fact, one such strategic game G′ is simply the
strategic normal form of G. As for the logical analogue of theorem 4.10, the
preservation of local properties on the global level, observe that the four strong
playability conditions for Et can be translated into the logical language:

(1) ¬[Ct]⊥
(2) [Ct]>
(3) ¬[∅t]¬ϕ → [N t]ϕ
(4) ([Ct

1]ϕ1 ∧ [Ct
2]ϕ2) → [(C1 ∪ C2)

t](ϕ1 ∧ ϕ2) where C1 ∩ C2 = ∅

Theorem 4.10 thus shows that all four axiom schemas are valid for extensive
games without infinite plays.

As another example, consider majority voting which we will discuss in more
detail in the next chapter. If the game linked to a particular state is a voting
game where all of the players can choose between a number of alternatives, we
might want to demand that every majority of players can completely determine
the outcome. This property can be captured in terms of effectivity: Call an
effectivity function E : P(N) → P(P(S)) majorative iff for every coalition C
with |C| > 1

2
|N | we have E(N) ⊆ E(C).

The notion of majorativity is a local notion which guarantees that at every
stage of a voting process, voting is democratic. As one would hope, this property
holds for the voting procedure as a whole as well: If E is majorative at every
state of an coalition frame, then so is E t, so a democratic procedure will main-
tain democracy overall. That the converse is not true can be gathered from the
extensive game in figure 4.2, where at the initial state, E t is majorative while E
is not.

4.3. Some Meta-Theory 85

1

2 3

a b c a b c

Figure 4.2: A game which is majorative overall without being locally majorative

4.3.2 Model checking

As may be expected, the presence of modalities for eventual goal achievement and
goal maintenance leads to a more complex model checking problem. Since these
modalities are defined by fixpoint constructions, a model checking algorithm and
its complexity will resemble algorithms used for model checking of the modal
µ-calculus. For the µ-calculus, the best known upper bound is NP ∩ co-NP,
while for bounded alternation depth, the problem can be solved in deterministic
polynomial time. Since Extended Coalition Logic does not allow for nestings of
fixpoint operators which could yield formulas of the form µX.νY [C]X∧[D]Y , one
can expect model checking to be solvable in polynomial time where the polynomial
is of very low degree. This should be compared to the analysis of the model
checking problem for Game Logic in section 6.5.

I Theorem 4.11. Given a formula ϕ of Extended Coalition Logic and a coalition
model M, there is an algorithm for calculating ϕM which runs in time O(|M|2 ×
|ϕ|).

Proof. The proof extends the argument used for basic Coalition Logic by two
additional cases, eventual goal achievement and goal maintenance: In case ϕk+1 =
[C∗]ϕk, after determining all the ϕM

i for i ≤ k in time O(k× |M|2), we now need
to calculate

E∗
C(ϕM

k) = µX.ϕM
k ∪ (E∅(∅) ∩ EC(X)) =

⋃

0≤i≤|S|

F ↑i

where F (X) = ϕM
k ∪(E∅(∅)∩EC(X)). We can assume that at the very beginning

we have marked all states s according to whether or not sE∅∅ holds. Initially, we
then label all states satisfying ϕk with [C∗]ϕk. Next, for every state t 6∈ E∅(∅) we
check whether there is a set X with tEc

CX such that all states in X are labeled
with [C∗]ϕk, and if so, we label t with [C∗]ϕk as well. We repeat this step at
most |S| times, and since each step can be done in O(|M|) time, E∗

CϕM
k can be

calculated in O(|M|2), yielding a O((k + 1) × |M|2) bound for calculating ϕk+1.

In case ϕk+1 = [C×]ϕk, after determining all the ϕM
i for i ≤ k in time O(k ×

86 Chapter 4. Extended Coalition Logic

|M|2), we need to calculate

E×
C (ϕM

k) = νX.ϕM
k ∩ (E∅(∅) ∪ EC(X)) =

⋂

0≤i≤|S|

F ↓i

where F (X) = ϕM
k ∩ (E∅(∅) ∪ EC(X)).

Initially, we label all states satisfying ϕk with [C×]ϕk. Next, for every state
t 6∈ E∅(∅) labeled with [C×]ϕk, we check whether there is a set X with tEc

CX such
that all states in X are labeled with [C×]ϕk, and if not, we remove the [C×]ϕk

label from t. Again, this yields an O((k+1)×|M|2) bound for calculating ϕk+1. ¥

Roughly speaking, while model checking for basic Coalition Logic is linear
time, model checking for Extended Coalition Logic is quadratic. Note again that
as with basic Coalition Logic, this is a rather rough estimate: Inspecting the
proof carefully, the real calculation time is actually O(|S| × |M| × |ϕ|) where S
is the universe of M. Since |S| is usually much smaller than |M|, we consider
the result as an argument for the feasibility of doing model checking in practice,
also for Extended Coalition Logic.

4.3.3 Expressiveness

In theorem 3.35 of the previous chapter, we have compared the expressiveness of
full Coalition Logic to the expressiveness of its individual fragment. The result
stated that while over Mon, Play and MaxPlay full Coalition Logic is more ex-
pressive than its individual fragment, this is not the case for Ind. In other words,
for extensive games without simultaneous moves, group modalities do not add
anything to individual modalities in terms of expressive power. For Extended
Coalition Logic, it turns out that even for extensive games without simultaneous
moves, coalitional modalities do add expressive power to individual modalities.

I Theorem 4.12. Over Mon, Play, MaxPlay and Ind, Extended Coalition Logic
is more expressive than its individual fragment, provided that |N | > 1.

Proof. For Mon, Play and MaxPlay, the proof of theorem 3.35 for basic Coalition
Logic easily extends to Extended Coalition Logic. For Ind, consider the weakly
individualistic coalition model M = ((S, {EC |C ⊆ N}), V) with S = {si, ti|i ≥
0}, Φ0 = ∅ and N = {1, 2}, which α-corresponds to the extensive game below:

Win2 s0 s1 s2 s3 s4 · · ·

Win1 t0 t1 t2 t3 t4 · · ·
1 2 1 2

4.3. Some Meta-Theory 87

Every state si has only a single successor state so that it is irrelevant whose turn
it is at si. At ti for i > 0 on the other hand, player 1 moves if i is odd, player 2
moves if i is even. As the game indicates, player 1 wins at state t0 whereas player
2 wins at state s0, so the empty games associated with these states are {1} and
{2}, respectively. Given these empty games, note that M is C-maximal for all
coalitions C at every state.

We will use this model to show that the formula [N ∗][1]⊥ cannot be expressed
in the individual fragment of Extended Coalition Logic. The formula states that
the players together have a strategy to achieve a win for player 1. Note that
[N∗][1]⊥ is true at all ti and false at all si. This means that the denotation of
[N∗][1]⊥ in M is neither finite nor co-finite since it is true at an infinite number
of states and also false at an infinite number of states. To establish our result,
we shall show by induction that the denotation of all formulas of the individual
fragment of ECL are either finite or co-finite.

The base case and the boolean cases are easy to check, so we only consider the
modalities for player 1. For [1]ϕ, if ϕM is finite, the denotation of [1]ϕ must also
be finite, simply because EC(X) is finite provided that X is, with the proviso
that there is only a finite number of terminal states. If (¬ϕ)M is finite, then
(¬[1]ϕ)M = ([2]¬ϕ)M using maximality and the latter set must again be finite.

Consider now [1∗]ϕ and assume that ϕM is finite. We can also assume that
ϕM 6= ∅, for otherwise [1∗]ϕ will be false everywhere and hence of finite denota-
tion. We consider two different cases: (1) Suppose first that there is some state
sc such that M, sc |= ϕ. As a result, [1∗]ϕ will hold at all states to the right
of sc+1, i.e., for all d > c + 1 we have M, sd |= [1∗]ϕ and M, td |= [1∗]ϕ, the
strategy for player 1 being to choose a state in the top row as soon as possible.
Consequently, [1∗]ϕ can fail to hold only to the left of sc+1 (top or bottom row),
hence (¬[1∗]ϕ)M is finite. In the second case (2), there is no state sc such that
M, sc |= ϕ. Let tc be the rightmost state at which M, tc |= ϕ (since ϕM is
finite such a largest c exists). Then for all d > c + 1 we have M, sd 6|= [1∗]ϕ and
M, td 6|= [1∗]ϕ since player 2 can simply choose a state in the top row as soon
as possible. Consequently, [1∗]ϕ can hold only to the left of tc+1 (top or bottom
row), hence ([1∗]ϕ)M is finite.

The final situation to consider is when ϕM is co-finite. Then by theorem 4.3,
(¬[1∗]ϕ)M = ([2×]¬ϕ)M, and since E×

C (X) must be finite in case X is, ([1∗]ϕ)M

is co-finite. ¥

The proof of this expressiveness result actually establishes a difference in ex-
pressive power in a very strong form: It would have been sufficient to show that
there is an ECL-formula which is not equivalent to any formula of the individual
fragment of ECL over all coalition models. The proof of theorem 4.12 on the
other hand establishes something stronger, namely that there is an ECL-formula
and a model such that no formula of the individual fragment is equivalent to that
formula in that model. So in a very strong sense, long-term coalitional effectivity

88 Chapter 4. Extended Coalition Logic

cannot be reduced to individual effectivity.
Note also that the model used in the proof had to be infinite, i.e., for every fi-

nite model M, every coalitional ECL-formula ϕ is equivalent (on M) to a formula
of the individual fragment of ECL. The reason is that since M is finite, ϕ can be
rewritten into a CL formula ϕ′ which is true at exactly the same states, simply by
expanding the fixpoint definition at most n times, where n is the number of states
in the model. Formula ϕ′ can in turn be rewritten into an equivalent formula ϕ′′

of the individual fragment of CL. Note, however, that this argument does not
show that over finite individualistic models, the individual fragment of ECL is
equally expressive as full ECL, for ϕ′′ will only be equivalent to ϕ in M, not in
all models. In fact, we conjecture that also over finite individualistic models, full
ECL will be more expressive than its individual fragment.

4.4 Alternating Temporal Logic

As shown in [56] on which the following discussion is based, Extended Coalition
Logic is closely related to Alternating Temporal Logic (ATL) [3], a generalization
of temporal logic for reasoning about open systems. Traditional linear-time and
branching-time temporal logics such as LTL and CTL describe closed systems,
i.e., systems whose behavior is completely determined by the present state of
the system. In open systems on the other hand, the system interacts with the
environment and hence the behavior of the system depends on the present state
and the behavior of the environment. The picture can be generalized to multi-
agent systems where the different agents may represent different components of
the system and the environment. An open system is modeled as an alternating
transition system:

I Definition 4.13 (Alternating Transition System). For agents N and
a set of atomic propositions Φ0, an alternating transition system (ATS) is a triple
M = (S, V, δ) where S is a nonempty set of states, V : Φ0 → P(S) is the valuation
function, and δ : S × N → P(P(S)) models the effectivity of a player at a state.
The function δ must satisfy the following intersection property: Assume that
N = {1, . . . , n}. Then for every state s ∈ S and all sets X1, . . . , Xn such that
Xi ∈ δ(s, i) for all i ∈ N , we have |

⋂
i∈N Xi| = 1.

Thus, δ essentially associates an individual effectivity function with each state.
The only requirement on δ is that every set of choices which the agents make
determines precisely one resulting state, the new state of the system.

There is a tight connection between alternating transition systems and strongly
playable coalition models. Recall that strongly playable coalition models associate
a strategic game form with every state. Given an alternating transition system,
one can easily define a corresponding strongly playable coalition model: For every
state s ∈ S, associate a strategic game form with s such that the strategies Σi of

4.4. Alternating Temporal Logic 89

player i are all the sets for which she is effective, i.e., G(s) = (N, {Σi|i ∈ N}, o, S)
where Σi = {Xi ⊆ S|Xi ∈ δ(s, i)} and o(X1, . . . , Xn) =

⋂
i∈N Xi. The two models

correspond in the sense that at every state, the coalitional effectivity is the same
in both models: Extending the individual effectivity δ of ATSs to coalitions by
defining X ∈ δ(s, C) iff X ⊇

⋂
i∈C Xi and for all i ∈ C, Xi ∈ δ(s, i), one can show

that X ∈ δ(s, C) holds in an ATS iff sECX holds in its corresponding coalition
model.

Conversely, it is not the case that every strongly playable coalition model
corresponds to an alternating transition system. Consider the following 2-player
strategic game form:

m e
m win loss
e loss win

The game form models, e.g., the coordinated attack problem where two generals
have to decide independently when to attack a common enemy. If both attack in
the morning (m) they will win, and similarly if both attack in the evening (e).
If they attack at different times however (i.e., they fail to coordinate), they will
lose. While this strategic game can be associated to a state in a strongly playable
coalition model (where win and loss are states), there is no individual effectivity
map δ which correctly captures the individual effectivity in this game and which
satisfies the intersection property. For note that in this game player 1 is α-effective
for {win, loss} and so is player 2, and there are no smaller sets for which they
are α-effective. Since the intersection of {win, loss} with itself is not a singleton,
there can be no map δ which correctly captures this game. Consequently, there
are strongly playable coalition models which do not correspond to an ATS. (The
class of game forms which can be correctly captured by an individual effectivity
map δ satisfying the intersection property is the class of rectangular game forms.)

Various types of ATSs are discussed in [3]: In a turn-based synchronous ATS,
there is a single agent at every state which determines the next state of the
system. Since the agent may be different at every state, turn-based synchronous
ATSs thus correspond to strongly individualistic coalition models where each
state knows a local dictator. In a lock-step synchronous ATS, each state of the
system is divided into local states for each agent, and at every state, each agent
can determine its next local state, possibly dependent on the current local states
of the other agents, but independent of the actions of the other agents. In a turn-
based asynchronous ATS finally, there is a designated agent called the scheduler
who chooses at every state an agent who gets to determine the next state. Usually
the scheduling policy will be subject to various fairness constraints, prohibiting,
e.g., that the scheduler assigns the same agent to every state.

The central feature of the language of ATL are its three modalities 〈C〉Xϕ
(next), 〈C〉Gϕ (always) and 〈C〉ϕUψ (until). The formula 〈C〉Xϕ is true at a
state in case coalition C is locally effective for ϕ, i.e., it corresponds to the Coali-

90 Chapter 4. Extended Coalition Logic

tion Logic formula 〈C〉ϕ. The formula 〈C〉Gϕ is true at a state in case coalition
C has a joint long-term strategy which maintains ϕ in the future. Consequently,
〈C〉Gϕ is the temporal analogue of the Extended Coalition Logic formula [C×]ϕ.
Finally, 〈C〉ϕUψ expresses that coalition C has a joint long-term strategy which
will guarantee ψ at some point in the future and maintain ϕ until that point.

Coalition Logic and Extended Coalition Logic over strongly playable coalition
models form a fragment of ATL. We have seen that the language of (E)CL forms
a sublanguage of ATL. Furthermore, while not every strongly playable coalition
model corresponds to an ATS, for every strongly playable coalition model there is
an ATS satisfying the same formulas of (E)CL. The reason can easily be demon-
strated using the earlier coordinated attack game: While that game cannot be
modeled by an ATS, the following game can easily be modeled by an ATS:

m e
m win1 loss1

e loss2 win2

If we see to it that the states win1 and win2 on the one hand and loss1 and loss2

on the other hand are identical in terms of observable properties, the game cannot
be distinguished from the original coordinated attack game by any formula of the
language of CL or ATL. Hence, the axiomatization we gave in section 3.4 can be
mapped into an axiomatization for a fragment of ATL. In [56], this axiomatization
has been extended to full ATL as well. Note, however, that the coordinated
attack example shows that a satisfying ATS may be much larger than a satisfying
coalition model, so complexity results regarding the satisfiability problem do not
immediately transfer from one logic to the other.

Coalition Logic has a number of advantages over ATL: First, since coalition
models allow for terminal states, we can model endpoints of a process explic-
itly. In an ATS, such terminal states would have to be represented via terminal
loops, where all transitions lead to the same state again. The problem with
this solution is that it does not allow us to distinguish partial from terminal ef-
fectivity anymore, since all runs will be infinite. Second, we saw that coalition
models can associate arbitrary strategic games to states while ATSs can only cap-
ture rectangular games. In fact, coalition models can even capture interactions
which cannot be modeled by strategic games at all, for example situations where
coalition monotonicity is violated. Third, while the expressive power of basic
and Extended Coalition Logic is weaker than that of ATL, Coalition Logic will
be computationally less complex. This means that satisfiability problems which
may be intractable for ATL may still be feasible for Coalition Logic. This will
certainly be the case for basic Coalition Logic, and as chapter 5 will show, many
applications will not require more.

4.5. Distributed Artificial Intelligence 91

4.5 Distributed Artificial Intelligence

The research area of distributed artificial intelligence has developed various logics
for reasoning about multi-agent systems, formalizing not only the ability of an
agent but also its beliefs, desires, intentions, and so on. Hence, it is useful to point
out some similarities and differences between Coalition Logic and the approach
taken in the artificial intelligence literature.

The semantics used here to formalize multi-agent ability is based on minimal
models with a neighborhood relation for each agent. For the single agent case,
such models have been used in [28] to study the logic of ability. This logic of ability
is a very weak modal logic since properties such as 3(A∨B) → (3A∨3B) fail.
The example given to illustrate the failure of this principle refers to a deck of
cards turned face down. Since the colors (red or black) are concealed, the agent
is not able to draw a red card nor a black card, while he is able to draw a card
which is either black or red. From our perspective, we interpret the situation as
a game against nature, i.e., as a 2-player game where Nature chooses which card
to give to the agent. The advantage of this approach is that it makes the roles
of the players explicit, and hence one can point out that if the situation were in
fact a 1-player game, the modal distribution principle would hold after all.

The approach taken here to formalize the ability of groups of agents differs
somewhat from the existing literature on multi-agent ability. Among the earliest
works, Tennenholtz and Moses in [119] conceive of an agent as a set of finite
state machines whose transitions model the agent’s actions. As in an extensive
game with simultaneous moves, the joint actions of the agents determine the new
configuration of the system. Of central concern is the cooperative goal achievement
(CGA) problem: Is there a run of the system in which all agents achieve their goal?
It is argued that this problem is PSPACE-complete, which seems to correspond
nicely to the complexity of the satisfiability problem of basic Coalition Logic, but
the decision problems are quite different. Note also that our logical approach is
more general in that it is not specifically tailored to the CGA problem alone, but
also allows to ask, for example, whether an infinite run can be forced by some
group of agents.

While the work of Werner in [125] is more directly related in its logical ap-
proach, his framework includes much more than just ability, covering also time,
intentions, actions and knowledge. Given the more complex aims, his semantics
is much more complicated than what is proposed here, and some of the funda-
mental issues which arise purely on the level of abilities are not investigated, e.g.,
the relationship between local and global ability, basic cooperative axioms such
as superadditivity, and so on.

Related to Werner’s work, Wooldridge and Fisher in [126] also take a logi-
cal approach to multi-agent interaction which includes communication between
agents. Their notion of goal achievement essentially corresponds to α-effectivity.
Their logic is very expressive (including “at least” first-order logic) and hence also

92 Chapter 4. Extended Coalition Logic

much more complex then the rather simple system presented here. Some of their
axioms, however, have direct analogues in Coalition Logic. As an example, one of
their axioms states that bigger groups cannot achieve less (coalition-monotonicity)
which they write as ∀x∀y((Can(x, ϕ)∧ x ⊆ y) → Can(y, ϕ)) where x and y refer
to groups of agents.

Note that our general approach is different from the works cited and from the
approach taken in multi-agent systems more generally: Our aim is to provide a
formal logical theory of ability in a multi-agent setting, without adding any other
notions such as beliefs, intentions, etc. which would complicate the picture. What
is more important, we want a general model of ability, and this is what effectivity
functions allow us to do. Effectivity in game-like situations (which is taken as
basic in the other approaches) is only a special case which can be characterized
by certain axioms, precisely the properties of group ability which characterize
strategic games. This approach still allows us to model situations which would
be beyond the scope, e.g., of [126] because they violate the coalition-monotonicity
mentioned. Even our relatively simple model, however, is sufficient to ask many
of the questions raised in the literature such as the CGA problem.

4.6 Summary

Extended Coalition Logic is a sufficiently expressive yet computationally simple
extension of basic Coalition Logic. In this sense, ECL is similar to temporal logics
like CTL which are simple and expressive fragments of the highly complex modal
µ-calculus. Theorem 4.11 has shown that the complexity of model checking is still
relatively low, in particular when compared to Game Logic whose complexity we
shall discuss in section 6.5. On the other hand, ECL can express the existence
of a winning strategy in an extensive game, one of the central properties we will
want to express in applications. Further evidence of the expressive power of ECL
is given by theorem 4.12 which shows that even over extensive games of perfect
information, the existence of a coalitional winning strategy cannot be reduced
to individual strategies. Consequently, there can be no logic for reasoning about
individual ability only which is as expressive as ECL.

Of the various long-term ability notions we have considered, we saw that
at least for determined extensive games, all can be reduced to eventual goal
achievement (theorem 4.3). For reasoning about undetermined games, we also
need the other primitive modality [C×] defined in terms of goal maintenance E×.

Finally, the generality of coalition models has allowed us to obtain a gener-
alization of Dijkstra’s relations between partial and total program correctness.
These relations state that for programs, total correctness implies partial correct-
ness and that for programs without infinite runs, the converse implication holds
as well. Formulated in our framework, these relations amount to the following

4.7. Bibliographic Notes 93

two claims:
Et

∅(X) ⊆ Ep
∅(X) and Et

∅(S) ∩ Ep
∅(X) ⊆ Et

∅(X)

holds for the class of models 1−Play. Theorem 4.4 has generalized this result from
programs to games with/without simultaneous moves, formally, from 1−Play to
Play and from the empty coalition ∅ to general coalitions C.

4.7 Bibliographic Notes

Parts of the material in this chapter has been published in [103, 102].
For books on Dijkstra’s theory of partial and total program correctness, see

[38, 39, 73, 7]. For an overview of temporal logic, see [43].
All the results concerning the relation between Coalition Logic and Alternat-

ing Temporal Logic are from [56]. ATL has been extended and modified in various
ways (also in [3]), yielding ATL∗ (which mirrors the step from CTL to CTL∗),
the alternating-time µ-calculus, and ATL over ATSs with incomplete informa-
tion, where agents have only partial knowledge of the current state of the system.
Alternating refinement relations for ATSs and their computational complexity
have been studied in [4] which also contains a notion of alternating bisimulation
similar to what was proposed in section 2.5.

Chapter 5

Applications of Coalition Logic

Two things you never want to see made are sausages and laws.
Otto von Bismarck

Having focused on a theoretical analysis of Coalition Logic in the previous
chapters, we now turn towards its applications in the analysis of social software.
Conceptually, the applications can be divided into two categories, model-checking
problems and satisfiability problems.

In the first case of model-checking problems, we have some social process such
as a voting procedure whose properties we want to investigate. Is the procedure
strategy-proof? Can every majority of voters determine the final outcome? Are
certain groups of voters more powerful than others? Formally, we have some
formulas of Coalition Logic (the properties to be verified) whose truth value is
calculated at some state of a coalition model (the voting procedure). In the second
case of satisfiability problems, we want to find a social process which satisfies a
given specification. To give an example, we may want to find a voting agenda
which is democratic and has certain additional structural properties. Formally,
we check whether a given set of CL-axioms can be satisfied by a coalition model
of a particular kind. If the answer is positive, the satisfying model will then give
us a voting procedure which meets the requirements.

We shall discuss these applications using four examples, most of which are es-
sentially voting problems. As an example of social software, voting processes have
the advantage of being important and non-trivial, yet sufficiently well-defined to
allow for formalization relatively easily. Basic Coalition Logic will be sufficient
as a specification language in most cases. This basic logic can then be enriched
as the application at hand requires, e.g., by extending the language with long-
term modalities (section 5.3) or by adding an additional inference rule for Nash-
consistent implementation (section 5.1). In any case, the applications will show
that Coalition Logic can serve as the basis for a formal framework for the analysis
and synthesis of social software.

95

96 Chapter 5. Applications of Coalition Logic

5.1 Fashion Rights

When commenting on the interpretation of effectivity functions in sections 2.2
and 2.3, we said that X ∈ E(C) was supposed to be interpreted as “the group
of agents C can bring about (a state in) X”. In other words, bringing about X
constitutes an alethic possibility for group C. Similarly, effectivity functions have
also been used as a model of deontic possibility, interpreting X ∈ E(C) as “the
group of agents C has the right to bring about (a state in) X”. Under this deontic
reading then, effectivity functions are viewed as rights-systems or constitutions.

In chapter 2, we have discussed a number of properties of effectivity functions
and we have characterized, e.g., the α-effectivity functions of strategic games.
While these characterization results are of course in no way dependent on the
interpretation of the effectivity functions, the reasonableness of the properties
selected was based on the alethic interpretation. When interpreted deontically,
different properties may be considered. To start with, regularity may fail: If
two people Alice and Bob enter a room which contains an empty chair, both of
them may have the right to sit on that chair or to remain standing. Denoting
the three different states by s0 (both remain standing), sA (Alice sits down)
and sB (Bob sits down), we have {sA} ∈ E({Alice}) and {sB, s0} ∈ E({Bob})
which contradicts regularity. What this failure of regularity in fact shows is that
not both individuals are able to simultaneously exercise their right to sit down.
An example of a deontically acceptable principle is the following condition of
minimal libertarianism [50]: For every i ∈ N there is some X (S such that
X ∈ E({i}). This condition can be read as saying that all individuals have the
right to determine certain decisions by themselves.

Given that certain conditions such as regularity which are implied by playabil-
ity may fail to hold deontically, rights-systems cannot necessarily be represented
by game forms (theorem 2.27). In spite of this, some of the literature has iden-
tified deontic with alethic possibility. The advantage of such an identification is
that it allows one to consider the decentralization of a constitution as a simple
game-theoretic problem: Given a constitution which specifies the rights which
individuals and groups of individuals are supposed to have, is there a strategic
game form which guarantees these rights? A further desirable criterion which
such a game form should satisfy is Nash-consistency: No matter what preferences
the players have over the possible outcomes of the game, the game should have
a Nash equilibrium. Such a Nash-consistent decentralization of a constitution
will guarantee some kind of stability in the strategies the players take, since once
a/the Nash equilibrium is reached there is no incentive to change strategies.

As a simple illustration of the decentralization of a constitution, consider the
following example: Abelard and Eloise each have a white and a blue shirt, and
they have to decide which shirt to wear. Each person has the right to determine
the color of his/her own shirt. Using basic Coalition Logic, we can model this
situation by letting N = {a, e} and using two atomic proposition pa and pe, where

5.1. Fashion Rights 97

pa should be read as “Abelard wears white” and pe as “Eloise wears white”. The
rights of Abelard and Eloise can then be captured by the following formula ρ+ of
Coalition Logic:

[a]pa ∧ [a]¬pa ∧ [e]pe ∧ [e]¬pe

Furthermore, we assume that these are the only rights which we want to give to
them, formalized by formula ρ−:

∧

i∈{a,e}

¬[i]((pa ∧ pe) ∨ (¬pa ∧ ¬pe)) ∧
∧

i∈{a,e}

¬[i]((pa ∧ ¬pe) ∨ (¬pa ∧ pe))

To ask whether this constitution can be decentralized by a strategic game means
checking whether ρ = ρ+ ∧ ρ− is satisfiable by a weakly playable coalition model.
The following coalition model M = (S, {EC |C ⊆ N}, V) with S = {s0, (w,w),
(w, b), (b, w), (b, b)} satisfies ρ at state s0: V (pa) = {(w,w), (w, b)}, V (pe) =
{(w,w), (b, w)}, and E(s0) is the α-effectivity function associated with the fol-
lowing strategic game:

w b
w (w,w) (w, b)
b (b, w) (b, b)

For states other than s0, E can be defined arbitrarily. At state s0, each player
can choose which shirt to wear, and the resulting state reflects Abelard’s choice
in the first component and Eloise’s choice in the second.

As it turns out, however, this game form is not Nash-consistent. Consider the
situation of the so-called Gibbard paradox where Abelard is primarily conformist,
preferring to wear the same color as Eloise, and besides that he prefers white to
blue. Eloise on the other hand has the same color preference, but she primarily is
a non-conformist, wanting to avoid the same color. The following game captures
these preferences:

w b
w (4, 2) (2, 3)
b (1, 4) (3, 1)

As can easily be checked, the game has no Nash equilibrium. Even worse, it
can be shown that the constitution given has no Nash-consistent representation
[106]. Peleg et al. provide an additional condition on effectivity functions which
guarantees a Nash-consistent implementation. Their condition gives rise to the
following inference rule which can be added to the coalition logic Play:

∨
i∈N ϕi∨

i∈N [N \ {i}]ϕi

Based on the characterization by Peleg et al. we conjecture that the addition
of this inference rule yields a complete axiomatization of weakly playable Nash-
consistent coalition models. For the example at hand, one can show that in a

98 Chapter 5. Applications of Coalition Logic

system Λ ⊇ Play which includes this inference rule, ρ is inconsistent: Since

((pa ∧ pe) ∨ (¬pa ∧ ¬pe)) ∨ ((pa ∧ ¬pe) ∨ (¬pa ∧ pe))

is a propositional tautology, we can use the new inference rule to derive

[a]((pa ∧ pe) ∨ (¬pa ∧ ¬pe)) ∨ [e]((pa ∧ ¬pe) ∨ (¬pa ∧ pe))

which contradicts ρ−.
To sum up, we have seen a very simple example of how a system of rights, rep-

resented by an effectivity function, can be decentralized in a strategic game. For-
malizing the rights as coalition logic formulas, this decentralization problem can
be turned into a satisfiability problem, and this approach can be extended to cover
Nash-consistent decentralization. The logical reformulation of constitutional de-
centralization has the advantage that it can easily handle partial specifications of
rights. In the example of the two shirts, we have assumed that the players’ rights
were completely specified. This forced us to add a conjunct ρ− which specified
what the players were unable to bring about. In order to avoid such an additional
conjunct, we would have to make use of some kind of non-monotonic reasoning
mechanism which would allow us to conclude that the rights specified are all the
rights the players are supposed to have. On the other hand, we may also treat
ρ+ as a partial specification, where we want to ensure that the players have the
rights specified in ρ+ but do not care about whether players also obtain additional
rights. Checking satisfiability of ρ+ thus corresponds to decentralizing a partially
defined effectivity function, a problem which does not seem to have received much
attention in the social choice theory literature.

5.2 Telephone Democracy

The example discussed in the previous section was simple because it involved very
little dynamics: players rights were implemented by a single strategic game, so
that the resulting social process consisted only of a single move by every player.
The following example requires a more sophisticated implementation.

A father of three daughters has decided that time has come to broaden his
mind a bit by reading a controversial book about the relationship between the
sexes. He wants to ask his three daughters which of two books they recommend,
the options being Simone de Beauvoir’s “Le deuxième sexe” or Susan Faludi’s
“Backlash”. Wanting to be impartial, he decides that the majority opinion among
the daughters will determine the book he will buy. For N = {1, 2, 3}, if we let p
refer to “Simone de Beauvoir’s book is chosen” and q to “Susan Faludi’s book is
chosen”, we can write down this system of rights as

ρ =
∧

{C⊆N : |C|>1}

([C]p ∧ [C]q) ∧ [∅]¬(p ∧ q).

5.2. Telephone Democracy 99

The last conjunct states that the father is not allowed to buy both books. It is
easy to see that the following coalition model M1 = ((S, {EC |C ⊆ N}), V) with
S = {s0, b, f} satisfies ρ at state s0, where V (p) = b, V (q) = f and E(s0) is the
α-effectivity function associated with the following majority voting game

B F
B b b
F b f

B F
B b f
F f f

where daughter 3 decides between the left and the right table. Note that compared
to the satisfiability problem considered in the preceding section, checking the
satisfiability of ρ is more complex, for while we are still considering satisfiability
over weakly playable coalition models, we are not dealing with a formula of the
individual fragment anymore. We have thus moved from an NP-complete problem
to a PSPACE-complete problem.

To consider a slightly different situation, suppose that the three daughters
have already moved out from the parents’ house and live abroad in different
countries. The father then decides to call his daughters in order to solicit their
opinions. Since he wants to spend as little money as possible, he wonders how
many phone calls he will have to make, guaranteeing that any two of his daughters
can determine the book he will buy. As a consequence, the implementation M1 is
not practicable since he can only call each daughter individually to get her vote.
We thus have to check for satisfiability in weakly individualistic coalition models
which enforce sequential decision making.

Formally, consider the formula

ρk =
∧

{C⊆N : |C|>1}

([C]kp ∧ [C]kq) ∧
∧

1≤i≤k

[∅]i¬(p ∧ q)

for k ≥ 1. As will become clear, this formula expresses that all majorities are
able to determine the outcome after at most k moves. While we have already
seen that ρ1 = ρ is satisfiable in the class of weakly playable coalition models,
it is not satisfiable in the class of weakly individualistic coalition models, for
`Ind ρ → ⊥: From [{1, 2}]p and axiom D we can derive w.l.o.g. [1]p. But since we
also have [{2, 3}]q, axiom D again gives us e.g. [2]q, and hence by superadditivity
[{1, 2}](p∧ q). Together with [∅]¬(p∧ q), superadditivity again gives us [{1, 2}]⊥,
a contradiction. Hence, ρ1 is not satisfiable in weakly individualistic coalition
models, showing that the father needs to make more than 1 phone call.

Maybe somewhat surprisingly, it turns out that ρ2 is satisfiable already. The
satisfying model is described by the following extensive game of perfect informa-
tion M2:

100 Chapter 5. Applications of Coalition Logic

s0

1

s1 s2

2 3

b f b f

As in M1, p is true at b only and q is true only at f . The effectivity at the terminal
states does not matter. According to this model, the father first calls his daughter
1. He explains the situation to her, that he has to choose between two books,
and asks her which of her two sisters he should call next. This second daughter
chosen will then be able to determine by herself which book the father will buy.
This procedure still gives any majority of daughters a strategy to determine the
book the father will buy.

Thus, the father manages to solve his problem by calling only 2 of his 3
daughters. Hence, the procedure described by M2 is more efficient (i.e., less
costly to the father) then the naive procedure M3 below of calling daughters in
some order until the majority is clear.

s0

1

s1 s2

2 2

b s3 s4 f
3 3

b f b f

At each position of the game, making the left move corresponds to voting for
Beauvoir and making the right move to voting for Faludi. In the worst case, the
first two daughters called will have different views and hence the father needs
to call all of his daughters. Consequently, M3 does not satisfy ρ2 at s0, it only
satisfies ρ3, provided in M3 we let V (p) = {b} and V (q) = {f} as before. Fur-
thermore, we need to assume that at states b and f we have terminal loops, i.e.,
there is a 1-player dictatorship associated with these states whose only possible
successor is the state itself. It is because of these terminal loops that ρ3 indeed
holds at s0, since it allows us to avoid complications with branches which are
shorter than 3 moves.

While game M2 is more efficient, it puts some additional burden on the sisters.
To start with, when called by the father, daughter 1 may not know her sisters’

5.3. Eternal Voting 101

preferences, so before being able to suggest a sister to her father, she may have
to call her sisters to find out their views. If one of her sisters agrees with her,
daughter 1 can call her father back and suggest that sister, yielding a strategy for
these two sisters to achieve the book of their choice. Two things should be noted
here: First, while the father’s telephone costs go down, his daughters telephone
costs may increase. Second, even if 1 has found a sister (say 2) who agrees with
her preference, sister 2 may, when called by the father, vote for the other book
nonetheless. In other words, daughter 1 has no means to enforce an agreement
she made with her sister.

Finally, note that if the father does not care about money, we can express the
problem more naturally in Extended Coalition Logic. Instead of asking for each
k whether ρk is satisfiable, we can simply check the satisfiability of

[∅]×¬(p ∧ q) ∧
∧

{C⊆N : |C|>1}

([C]tp ∧ [C]tq)

over weakly individualistic coalition models. The first conjunct ensures that p
and q are never true simultaneously, and the second conjunct makes sure that
each majority of sisters is able to achieve each alternative at the end. Hence both
M2 and M3 satisfy this formula, and in fact any telephone procedure which is
democratic overall will satisfy it, no matter how inefficient it is.

5.3 Eternal Voting

Because the examples given so far were finite games, the language of basic Coali-
tion Logic sufficed as a description language. But once we turn to social pro-
cedures which may not reach any final terminal state, the increased expressive
power of Extended Coalition Logic is needed, as the following example will il-
lustrate. Using a voting agenda which may lead to infinite voting, we shall also
demonstrate the difference between partial and total terminal effectivity which
can serve as a basis to order different groups of agents according to their power.

Consider a political body N = {1, 2, 3, 4, 5, 6} which has to decide on passing
a new law. First, a subcommittee D = {2, 3, 4} has to decide (by majority)
which precise version of the law is to be presented to the full political body.
Subsequently, the whole political body decides whether the law is passed or not.
Again, the majority of the votes decides, and in case of a draw, the vote of the
chairman 1 is decisive. If the law (as proposed by committee D) is not passed,
the initiative is returned to committee D which has to make a new proposal for
the law, and the process repeats itself.

We assume for simplicity that there are only two versions of the law which
are under discussion, version 1 and version 2. If the body N rejects the proposal
of committee D, the committee can either decide to propose the other version of
the law, or it can resubmit its original proposal, possibly resulting in a stalemate

102 Chapter 5. Applications of Coalition Logic

which may turn into an infinite loop. (Some might claim that this model is
sufficiently realistic to capture the essentials of the legislative process in some
countries.) Figure 5.1 depicts the situation as a graph.

s0 by majority of D

t u by majority of N

s1 s2

Figure 5.1: An example of binary majority voting with subcommittees.

One can think of the situation described in terms of coalitional effectivity:
s0ECX holds iff at state s0, coalition C can force the local voting outcome to lie
in set X, i.e., iff one of the following two conditions is met: (1) {t, u} ∩ X 6= ∅
and |C ∩D| > 1, or (2) {t, u} ⊆ X. Analogous definitions can be given for tECX
and uECX, incorporating the special role of the chairman. Since we are here
not interested in winning and losing per se, the empty games associated with the
terminal states s1 and s2 can be defined in an arbitrary way.

Let M = ((S, {EC |C ⊆ N}), V) be the model which captures the procedure
depicted in figure 5.1, where Φ0 = {law1, law2, dlock} and V (lawi) = {si}, and
V (dlock) = {s0, t, u}. Note that M is maximal and regular for all coalitions
(at least at nonterminal states), so that we can make use of the duality stated in
theorem 4.3. Furthermore, M is also weakly playable since the democratic voting
process at every state is a strategic game among the 6 players.

As the designer of a voting procedure such as figure 5.1, we may want to know
whether it can be manipulated in ways we consider undesirable, i.e., whether an
agent or a group of agents has a strategy to achieve an outcome which it considers
desirable but which we as the designer of the procedure would consider undesirable
in terms of the social welfare of all agents. For example, a certain group of agents
may have an incentive to delay passing a new law as long as possible, preferably
indefinitely. As the designer, we may want our voting procedure to prevent any
group of agents from steering the voting process into an infinite loop. As is easily
seen, the voting procedure of figure 5.1 is not strategy-proof in this respect:
Both {1, 2, 3} and {1, 4, 5} can globally maintain {s0, t, u}, i.e., they have the
power to keep the process going forever, never reaching any decision. In the
ECL formalization, checking for strategy-proofness becomes a question of model
checking, verifying, e.g., that M, s0 |= [{1, 2, 3}×]dlock ∧ [{1, 4, 5}×]dlock.

More generally, we can also use this example to illustrate goal maintenance,
partial and total terminal effectivity. Figure 5.2 displays some interesting ex-
amples which demonstrate the unequal powers of four 3-player coalitions at the
initial state s0: Total terminal effectivity (t) refers to cases where a coalition C
is able to eventually achieve a set of terminal states X, formally s0E

t
CX. Goal

5.4. Bonn vs. Berlin 103

maintenance (m) refers to the ability to maintain a property throughout the whole
game, i.e., s0E

×
C X. Finally partial terminal effectivity describes the ability of a

coalition to guarantee a state in X or an infinite play of the game, s0E
p
CX.

coalition\states {s1} {s1, s2} {s0, t, u}
{1, 2, 3} t t m
{2, 3, 4} p p −
{1, 4, 5} − t m
{4, 5, 6} − − −

Figure 5.2: Goal maintenance (m), total (t) and partial (p) terminal effectivity
in the voting example of figure 5.1 at state s0.

At the initial state, M, s0 |= [{1, 2, 3}t]law1 ∧ [{1, 2, 3}t]law2 ∧ [{1, 2, 3}×]dlock,
i.e., the coalition {1, 2, 3} can achieve any possible outcome as well as a stale-
mate, whereas the coalition {1, 4, 5} is weaker, M, s0 |= [{1, 4, 5}t](law1 ∨ law2)
but on the other hand M, s0 6|= [{1, 4, 5}t]law1 ∨ [{1, 4, 5}t]law2. Furthermore,
M, s0 |= [{1, 4, 5}×]dlock, so this coalition can block any law from getting passed.
Even weaker, coalition {4, 5, 6} has virtually no power, since its counter-coalition
{1, 2, 3} is all-powerful. Thus, these facts about truth in a given model are the
logical analogue of figure 5.2.

Based on the different global, partial and terminal abilities of the various
coalitions, one can obtain an ordering of groups of agents with respect to their
abilities. Inspecting figure 5.2, the following partial ability order of these four
3-player coalitions emerges:

{4, 5, 6} ≺ {2, 3, 4}, {1, 4, 5} ≺ {1, 2, 3}

Note that the coalitions {2, 3, 4} and {1, 4, 5} are incomparable: On the one
hand, coalition {2, 3, 4} is more powerful since it is able to pass any law provided
that the procedure terminates eventually. On the other hand, coalition {1, 4, 5}
can force the procedure to terminate or keep it going forever, something which
coalition {2, 3, 4} cannot do.

5.4 Bonn vs. Berlin

After the “German Question” had been solved, on June 20th, 1991, the German
parliament was faced with the Berlin question: Should the German parliament
and the seat of government move to Berlin or stay in Bonn? In this historic
debate, the parliament was very divided and this division ran through all parties.
About 100 speeches were made while another 100 speeches were placed on record.
We present this debate here as a real-life example of the importance of agenda

104 Chapter 5. Applications of Coalition Logic

choice, and to see how far Coalition Logic goes in helping in the analysis of such
real-life examples.

In its debate, the German parliament considered 5 different motions, the 3
central ones being:

p1 Parliament and government move to Berlin.

p2 The parliament moves to Berlin but the seat of government remains in Bonn.

p3 Both parliament and government remain in Bonn.

The two other motions did not play an essential role concerning the final decision,
and we shall simplify our discussion by not considering them.

Since there were more than 2 motions up for vote, the parliamentary council
of elders first had to decide on a voting procedure. Let us put ourselves into the
shoes of the designers of the voting agenda, assuming that we have at our disposal
an automatic agenda generator (i.e., a satisfiability checker for Coalition Logic).
We can think of a voting procedure as an agenda tree which is an extensive game
where each game position is associated to the set of alternatives which have not
been eliminated yet.

Formally, we start at a position where p1 ∧ p2 ∧ p3 holds. Each move in the
voting game will then eliminate some alternative(s) until only a single alternative
remains. The first requirement we impose is that alternatives which have been
eliminated at some stage remain eliminated:

¬p → [∅]¬p for all atomic p. (5.1)

Second, bearing in mind the eternal voting example of the previous section, we
want to prevent a voting procedure where no progress is made, demanding that
at every stage at least one alternative has to be eliminated. We can formalize
this requirement by stating that every move has to change the situation. Let
Sit = {l1 ∧ l2 ∧ l3|li = pi or li = ¬pi} denote the set of possible situations, all
possible combinations of atomic facts. Then we can write our second axiom as

∧

δ∈Sit

(δ → [∅]¬δ). (5.2)

Third, we want each vote of the voting procedure to be a democratic majority
vote, formalized by

[N]ϕ → [C]ϕ for every C with |C| > 1
2
|N | (5.3)

where (to simplify the discussion) we assume that |N | is odd. As a final fourth
requirement, we want each vote to be between two alternatives only. This will
allow us to exclude the problematic situation where a vote is taken between three

5.4. Bonn vs. Berlin 105

alternatives none of which gets a majority. The axiom which ensures this binary
decision making is

[N]ϕ ∧ [N](¬ϕ ∧ ψ) → [∅](ϕ ∨ ψ). (5.4)

The axiom ensures that if a state has two successors which can be distinguished
by ϕ such that one successor satisfies ϕ and the other ψ, then all successor states
have to verify ϕ or ψ.

Being the agenda designers, we would like to know whether the formula p1 ∧
p2∧p3 is satisfiable in a weakly playable coalition model in which the four axioms
(5.1) to (5.4) are valid. Giving these axioms to our automatic agenda generator,
we receive a positive answer and the following satisfying model M1:

s0(p1, p2, p3)

s1(p2) s2(p1, p3)

s3(p1) s4(p3)

The propositional variables true at each state can be seen in the figure. At states
s0 and s2, the decision between the left and the right move is made by majority.
To the terminal states we can associate arbitrary empty games. It is easy to see
that the four axioms are valid in M1. Intuitively, according to this procedure the
parliament first votes whether its seat and the government offices should be in the
same city. If so, the decision is made where the parliament and the government
offices should be located.

Procedure M1 is the one actually adopted by the council of elders, and using
this procedure the parliament ended up deciding for alternative p1. It does,
however, have a structural property which one might consider undesirable, namely
that not all 3 alternatives are treated equally. In the first vote of M1, alternative
p2 has to compete against two other alternatives, p1 and p3 together. There
may be a reason for making life difficult for alternative p2, e.g., one might argue
that separating the seat of parliament from the seat of government causes logistic
problems which should only be accepted if a majority prefers this option to the
other two together. If on the other hand we feel that all alternatives should be
treated equally, we will not want to adopt M1, and instead are led to accept a
fifth axiom which allows at most one alternative to be excluded in every vote (an
agenda which has this property is called complete):

p ∧ q → [∅](p ∨ q) for all atomic p 6= q. (5.5)

Note that this axiom is not valid in M1 since it fails at s0 for p1 ∧ p3. Together
with axiom (5.2), the new axiom ensures that at every vote exactly one alternative
is excluded. Thus, if we happen to be unhappy with the first model presented to
us by the agenda generator, we can add this additional axiom and again ask for

106 Chapter 5. Applications of Coalition Logic

a voting procedure satisfying the new specification, yielding, e.g., the following
model M2:

s0(p1, p2, p3)

s1(p1, p3) s2(p2, p3)

s3(p1) s4(p3) s5(p2) s4(p3)

Agenda M2 satisfies all the axioms. First, a decision is made between p1 and
p2, the winner of the first vote is then put up against p3. Note also that an
additional structural property distinguishes M2 from M1: While the number of
votes taken in M1 depends on how earlier votes turn out, in M2 the number of
votes is fixed, the agenda is uniform. Axiomatically, an agenda is uniform if it
satisfies the following axiom

[N]k[⊥] → [∅]k[⊥] (5.6)

for all k > 0.

To conclude, we hope to have shown that Coalition Logic can be a useful
tool in the design of voting procedures. Even basic Coalition Logic is expressive
enough to formalize structural properties of agendas which have been studied in
the theory of voting. The importance of such structural properties can be seen
in the Bonn vs. Berlin case: As discussed in [115], one can construct a preference
profile for the members of parliament which yields the actual voting outcome
p1 under agenda M1, but outcome p3 under agenda M2. While it is argued in
[80] that both voting agendas would have led to the same result p1, it suffices to
illustrate that the outcome of political decision making can be highly sensitive to
the agenda structure. It is disconcerting to think that possibly not the German
parliament decided to move to Berlin but rather its council of elders, when it
chose agenda M1 over agenda M2.

(As noted in [80], the actual voting agenda with its 5 motions exhibits a
further peculiar logical feature. The fourth motion under consideration by the
German parliament stated that in order to preserve the functioning of parlia-
mentary democracy, the seat of parliament and the seat of government should
not be geographically separated. After having voted whether or not to accept
motion p2, the parliament voted on this fourth motion p4. In the actual course
of events, motion p2 was rejected (i.e., no separation of government and parlia-
ment) while motion p4 was subsequently also rejected, seemingly adopting the
proposition ¬A∧¬¬A. Thus, a closer look at the Bonn-Berlin debate shows that
classical 2-valued logic seems insufficient to capture political discourse, at least
in Germany, possibly due to its rich history in philosophical dialectics.)

5.5. Bibliographic Notes 107

5.5 Bibliographic Notes

The example and discussion of section 5.3 is based on [103, 102], but the formal-
ization here is somewhat different.

As deontic models of constitutions, effectivity functions have been used in
[50, 105, 106, 64]. The characterization of effectivity functions which correspond
to Nash-consistent strategic games is from [106]. The example of section 5.1
concerning the colored shirts is from [52], where the colors refer to wallpaper.

Miller in [84] gives a survey of agenda issues in committee voting, covering
agenda trees and their properties such as completeness and uniformity.

Chapter 6

Game Logic

As we have seen in section 2.4, effectivity functions can be used to model local as
well as global ability of players in a game. For Coalition Logic, we have assumed
that a (coalition) model represents a complex game whose local effectivity struc-
ture is described by the [C]-modality. We are now switching from this internal
game view to an external view in which we only represent games by what play-
ers can achieve in them in the end. The game models underlying this external
view associate multiple determined 2-player games to every state. The logic used
to reason about these models is Game Logic, introduced in [97], which includes
game expressions explicitly in its logical language. Where in Coalition Logic [C]ϕ
expressed that coalition C had a strategy for bringing about ϕ in one move in
the game which is the underlying model, the Game Logic formula 〈γ〉ϕ expresses
that player 1 has a strategy to bring about ϕ in game γ.

We formally introduce the syntax and semantics of Game Logic in section 6.1.
In section 6.2, we show that all the operations of Game Logic preserve bisimulation
so that (as with Coalition Logic) all formulas of Game Logic are invariant for
bisimulation. The rest of this chapter again concerns questions of axiomatization
and complexity. Unfortunately, the results are somewhat incomplete and leave
many open questions: A completeness result for the natural axiom system for full
Game Logic is still wanting, as is a proof of the conjectured lower bound for the
complexity of the satisfiability problem.

For studying the complexity of Game Logic, it is useful to relate Game Logic
to another well-known calculus for reasoning about program behavior, the µ-
calculus. Although formulas of the µ-calculus have traditionally been interpreted
over Kripke models, this restriction is in no way necessary. Section 6.4 introduces
the µ-calculus over general game models.

The chapter closes with some brief remarks on our second theme, programs
vs. games. While most of this discussion is postponed until the end of the next
chapter, we comment on some first differences and similarities between full Game
Logic and its program fragment.

109

110 Chapter 6. Game Logic

6.1 Syntax & Semantics

Game Logic (GL) is a logic to reason about individual ability in determined 2-
player games; it extends the individual fragment of 2− MaxPlay in two ways:
First, multiple effectivity functions are associated with each state, one for every
game in Γ0, and second, game operations are added to talk not only about atomic
games but also about complex ones. To add some metaphysical significance to
these 2-player games and to adopt established terminology from the literature
on the refinement calculus [7], player 1 will often be called Angel and player 2
Demon. The language of GL consists of two sorts, games and propositions.

I Definition 6.1 (Game Logic Syntax). Given a set of atomic games Γ0

and a set of atomic propositions Φ0, games γ and propositions ϕ can have the
following syntactic forms, yielding the set of GL-games Γ and the set of GL-
propositions/formulas Φ:

γ := g | ϕ? | γ; γ | γ ∪ γ | γ∗ | γd

ϕ := ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ

where p ∈ Φ0 and g ∈ Γ0.

Furthermore, we define [γ]ϕ := ¬〈γ〉¬ϕ and the demonic analogues of angelic
choice and iteration: Demonic choice between γ1 and γ2 is denoted as γ1 ∩ γ2

which abbreviates (γd
1 ∪ γd

2)
d. Demonic iteration of γ is denoted as γ× which

abbreviates ((γd)∗)d.
On certain occasions, it is useful to treat demonic choice and iteration as

primitive, for it allows us to consider Game Logic formulas and games in dual
normal form:

I Definition 6.2 (Dual Normal Form). A GL-formula (GL-game) is in dual
normal form iff the duality operator occurs only as demonic iteration, demonic
choice, or in front of atomic games or tests.

Using the following game-theoretic versions of the de Morgan laws, every Game
Logic formula can be rewritten into an equivalent dual normal form:

(α ∪ β)d ; αd ∩ βd (α; β)d ; αd; βd α∗d
; αd×

(α ∩ β)d ; αd ∪ βd α×d
; αd∗

I Definition 6.3 (Program Fragment). A game which does not contain
the duality-operation at all (i.e., also not hidden in a demonic operation) is a
program. The set of GL-formulas which only contain games which are programs
is the program fragment of Game Logic.

6.1. Syntax & Semantics 111

The formula 〈γ〉ϕ expresses that Angel has a ϕ-strategy in game γ, and [γ]ϕ ex-
presses that Angel does not have a ¬ϕ-strategy, which by determinacy is equiv-
alent to saying that Demon has a ϕ-strategy. To provide some first intuition
regarding the game operations, γ1 ∪ γ2 denotes the game where Angel chooses
which of the two subgames to continue playing, and the sequential composition
γ1; γ2 of two games consists of first playing γ1 and then γ2. In the iterated game
γ∗, Angel can choose how often to play γ (possibly not at all); each time she has
played γ, she can decide whether to play it again or not. Playing the dual game
γd is the same as playing γ with the players’ roles reversed, i.e., any choice made
by Angel in γ will be made by Demon in γd and vice versa. Hence, γ1 ∩ γ2 will
refer to the game where Demon chooses which subgame to play, leaving the roles
of the players in γ1 and γ2 intact. The test game ϕ? consists of checking whether
a proposition ϕ holds at that position. This construction can be used to define
conditional games such as (p?; γ1) ∪ (¬p?; γ2): If p holds at the present state of
the game, γ1 is played, and otherwise γ2.

Recall from chapter 2 that a game model M = ((S, {Eg|g ∈ Γ0}), V), consists
of a set of states S, a valuation V : Φ0 → P(S) for the propositional letters and
a collection of functions Eg : S → P(P(S)) which are monotonic, i.e. X ∈ Eg(s)
and X ⊆ X ′ imply X ′ ∈ Eg(s). The idea is that sEgX (i.e., X ∈ Eg(s)) holds
whenever Angel has a strategy in game g to achieve X, i.e., Eg represents the
effectivity of player 1 at every state. By the proof of theorem 2.12 and corollary
2.13 of chapter 2 we know that we can think of every state as being associated
either with a number of determined strategic games (internal view), or with a
number of extensive games of perfect information (external view).

By simultaneous induction, we define truth in a game model on the one hand
and the effectivity functions for non-atomic games on the other hand.

I Definition 6.4 (Game Logic Semantics). The truth of a formula ϕ in a
model M at a state s (denoted as M, s |= ϕ) is defined as follows:

M, s 6|= ⊥
M, s |= p iff p ∈ Φ0 and s ∈ V (p)
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ
M, s |= 〈γ〉ϕ iff sEγϕ

M

The function Eγ : S → P(P(S)) is defined inductively for non-atomic games γ.
Let Eγ(Y) := {s ∈ S|sEγY }. Then

Eα;β(Y) := Eα(Eβ(Y))
Eα∪β(Y) := Eα(Y) ∪ Eβ(Y)
Eϕ?(Y) := ϕM ∩ Y

Eαd(Y) := Ẽα(Y) = Eα(Y)
Eα∗(Y) := µX.Y ∪ Eα(X)

112 Chapter 6. Game Logic

It can be shown that monotonicity of the Eg-functions is preserved under the
game operations, so the fixpoint µX.Y ∪Eα(X) always exists. We also define the
notions of validity and logical consequence in the standard way (see section 3.1).

6.2 Bisimulation Again

As an equivalence notion, bisimulation applies to game models as it does to
coalition models. We have seen in a previous chapter that all formulas of Coalition
Logic were bisimulation invariant. To show that also Game Logic formulas are
invariant for bisimulation, one needs to show that clauses 2 and 3 of the definition
of bisimulation can be generalized from atomic games to complex games.

I Theorem 6.5. Let M = ((S, {Eg|g ∈ Γ0}), V) and M′ = ((S ′, {E ′
g|g ∈

Γ0}), V
′) be two game models such that s ↔ s′. Then

1. For all ϕ ∈ Φ: M, s |= ϕ iff M′, s′ |= ϕ

2. For all γ ∈ Γ: If sEγX then ∃X ′ ⊆ S ′ such that s′E ′
γX

′ and ∀x′ ∈ X ′ ∃x ∈
X : x ↔ x′.

3. For all γ ∈ Γ: If s′E ′
γX

′ then ∃X ⊆ S such that sEγX and ∀x ∈ X ∃x′ ∈
X ′ : x ↔ x′.

Proof. For atomic games and formulas, the claims hold by bisimilarity. For
non-atomic formulas, the boolean cases are immediate and we shall only show
one direction of (1.) for 〈γ〉ϕ. If M, s |= 〈γ〉ϕ, sEγϕ

M and so (by induction
hypothesis (2.) for γ) there is some X ′ such that s′E ′

γX
′ and for all x′ ∈ X ′

there is some x ∈ ϕM such that x ↔ x′. By induction hypothesis (1.) for ϕ, this
means that X ′ ⊆ ϕM′

, and so by monotonicity, s′E ′
γϕ

M′
, which establishes that

M′, s′ |= 〈γ〉ϕ.

As for proving that the game constructions of GL are safe for bisimulation,
we shall prove (2.) for non-atomic games. Consider first the case of test ϕ?: If
sEϕ?X = ϕM ∩ X, let X ′ := {x′|∃x ∈ X : x ↔ x′}. Then s′E ′

ϕ?X
′ by induction

hypothesis (1.) for ϕ, and for all x′ ∈ X ′ there is some x ∈ X such that x ↔ x′,
simply by definition of X ′.

For union, if sEα∪βX we can assume w.l.o.g. that sEαX and apply the in-
duction hypothesis, i.e. for some X ′, we have s′E ′

αX ′ and hence also s′E ′
α∪βX ′.

For composition, suppose that s ∈ Eα(Eβ(X)). Using the induction hypothe-
sis for α, there is some Y ′ such that s′E ′

αY ′ and for all y′ ∈ Y ′ there is a u ∈ Eβ(X)
such that u ↔ y′. Now let X ′ := {x′|∃x ∈ X : x ↔ x′}. We must show that
s′E ′

α(E ′
β(X ′)). For this, it suffices by monotonicity to show that Y ′ ⊆ E ′

β(X ′).
So suppose that y′ ∈ Y ′, i.e., for some u ∈ Eβ(X) we have u ↔ y′. Using the
induction hypothesis for β, there is some V ′ such that y′E ′

βV ′ and for all v′ ∈ V ′

6.3. Axiomatization 113

there is some x ∈ X such that x ↔ v′. Hence V ′ ⊆ X ′ and so by monotonicity,
y′E ′

βX ′.

Dual: Suppose sEαdX, i.e. not sEαX and let X ′ be as before. It is sufficient
to show that s′E ′

αX ′ does not hold. Suppose by reductio the contrary. Then there
is some Z with sEαZ and for all z ∈ Z there is some x′ 6∈ X ′ such that z ↔ x′.
From this it follows that Z ⊆ X, so by monotonicity sEαX, a contradiction.

Iteration: Let X ′ be as before and let Z be

{z|∀z′ : z ↔ z′ ⇒ z′E ′
α∗X ′)}.

Now it is sufficient to show that Eα∗(X) ⊆ Z, and given the definition of Eα∗(X)
as a least fixpoint, it suffices to show that Z is a fixpoint, i.e. that

X ∪ Eα(Z) ⊆ Z.

Supposing that x ∈ X and for some x′ we have x ↔ x′, we have x′ ∈ X ′ ⊆
E ′

α∗(X ′). On the other hand, suppose that x ∈ Eα(Z) and x ↔ x′. Then by
induction hypothesis, there is some Z ′ such that x′ ∈ E ′

α(Z ′) and for all z′ ∈ Z ′

there is some z ∈ Z such that z ↔ z′. But then Z ′ ⊆ E ′
α∗(X ′), and so by

monotonicity x′ ∈ E ′
α(E ′

α∗(X ′)) ⊆ E ′
α∗(X ′) which completes the proof. ¥

6.3 Axiomatization

I Definition 6.6 (Game Logic Axiomatics). A game logic is a set of for-
mulas Λ which contains all propositional tautologies together with all instances
of the axiom schemas of figure 6.1, and which is closed under the rules of Modus
Ponens, Monotonicity and a new Fixpoint Rule. Let GL denote the smallest game
logic.

Intuitively, the axiom for iteration states that 〈γ∗〉ϕ is a fixpoint of the operation
ϕ ∨ 〈γ〉X and the fixpoint rule states that 〈γ∗〉ϕ is the least such fixpoint.

I Theorem 6.7. GL is sound with respect to the class of all game models.

Together with Parikh, we conjecture that GL is complete with respect to the
class of all game models, but proving this conjecture is one of the main open
technical problems in Game Logic. Some weaker results exist, however. If sq is a
sequence of operators of Game Logic such as d or d, ∗, let GL−sq denote Game Logic
without the operators of sq, i.e., restricted to formulas without these operators
and without the axioms involving them.

I Theorem 6.8 (Parikh [97]). Dual-free Game Logic GL−d is sound and com-
plete with respect to the class of all game models.

114 Chapter 6. Game Logic

Axioms: 〈α ∪ β〉ϕ ↔ 〈α〉ϕ ∨ 〈β〉ϕ
〈α; β〉ϕ ↔ 〈α〉〈β〉ϕ
〈δ?〉ϕ ↔ (δ ∧ ϕ)
〈γd〉ϕ ↔ ¬〈γ〉¬ϕ

(ϕ ∨ 〈γ〉〈γ∗〉ϕ) → 〈γ∗〉ϕ

Inference Rules:

ϕ ϕ → ψ ϕ → ψ (ϕ ∨ 〈γ〉ψ) → ψ
ψ 〈C〉ϕ → 〈C〉ψ 〈γ∗〉ϕ → ψ

Figure 6.1: The axioms and inference rules (Modus Ponens, Monotonicity and
the Fixpoint Rule) of Game Logic.

The rest of this section is devoted to showing that GL−∗, i.e., Game Logic with
dual but without iteration (and hence without the Mix axiom (ϕ ∨ 〈γ〉〈γ∗〉ϕ) →
〈γ∗〉ϕ and the fixpoint rule) is complete with respect to the class of all game
models. As before, the proof is via a canonical model construction.

Let Λ be any game logic and let S be the set of all maximally Λ-consistent sets
of formulas. Define the canonical Λ-model C = ((S, {Eg|g ∈ Γ0}), V) as before in
the case of Coalition Logic:

s ∈ V (p) iff p ∈ s
sEgX iff ∃ϕ̂ ⊆ X : 〈g〉ϕ ∈ s

I Lemma 6.9. For any maximally Λ-consistent set s ∈ S and any formula ϕ:
C, s |= ϕ iff ϕ ∈ s. Equivalently, ϕC = ϕ̂.

Proof. We shall prove the following two claims by simultaneous induction on ϕ
and γ:

(1) ϕC = ϕ̂ and (2) ∀ψ : Eγ(ψ̂) = 〈̂γ〉ψ

The base case of both claims holds by definition. For the boolean inductive steps
of (1), the argument is standard. For 〈γ〉ϕ, suppose s ∈ (〈γ〉ϕ)C where ϕC = ϕ̂
by induction hypothesis. Then the claim follows from (2). What remains is to
show (2) for complex games γ making use of the axioms. Some sample cases:

If sEϕ?ψ̂ then s ∈ ϕC ∩ ψ̂. By induction hypothesis claim (1), s ∈ ϕ̂ and so
ϕ ∧ ψ ∈ s, hence by the test axiom, 〈ϕ?〉ψ ∈ s. Similarly for the converse.

If sEαEβ(ψ̂), then by induction hypothesis, Eβ(ψ̂) = 〈̂β〉ψ, and again by
induction hypothesis, 〈α〉〈β〉ψ ∈ s. Analogously for the converse and the other
cases. ¥

6.4. Alternations 115

The previous truth lemma then allows us to prove the canonical model the-
orem, from which completeness follows as a corollary. To conclude, we have ax-
iomatic completeness for GL−d as well as GL−∗, but iteration together with duality
remains a problem.

I Theorem 6.10. GL−∗ is complete with respect to the class of all game models.

6.4 Alternations

6.4.1 The Generalized µ-Calculus

The modal µ-calculus is a very expressive logic which subsumes most program
logics (e.g., PDL) and temporal logics (e.g., CTL, CTL∗). In its original formula-
tion, the µ-calculus consists of a modal language with special operations denoting
least and greatest fixpoints, interpreted over Kripke models. In this section we
shall introduce the language of the µ-calculus and generalize its semantics from
Kripke models to game models. We can then translate formulas of Game Logic
into formulas of the µ-calculus, and this translation will subsequently be appealed
to when discussing expressiveness and complexity in this chapter and the next.

The language of the propositional modal µ-calculus consists of the language of
modal logic together with least and greatest fixpoint operations which make use
of variables X,Y, . . . ∈ V ar. Note that in contrast to GL, modalities are always
atomic in the µ-calculus.

I Definition 6.11 (µ-Calculus Syntax). The set of µ-calculus formulas is
defined inductively as

ϕ := ⊥ | p | X | ¬ϕ | ϕ ∨ ϕ | 〈g〉ϕ | µX.ϕ

where p ∈ Φ0, g ∈ Γ0, X ∈ V ar and in µX.ϕ, X occurs strictly positively in ϕ,
i.e., every free occurrence of X in ϕ occurs under an even number of negations.

The language is interpreted over game models M = ((S, {Eg|g ∈ Γ}), V), but
a variable assignment v : V ar → P(S) is needed to interpret the variables.

I Definition 6.12 (µ-Calculus Semantics). The truth of a formula ϕ in a
model M at a state s (denoted as M, s |= ϕ) is defined as follows:

M, v, s 6|= ⊥
M, v, s |= p iff p ∈ Φ0 and s ∈ V (p)
M, v, s |= X iff X ∈ V ar and s ∈ v(X)
M, v, s |= ¬ϕ iff M, v, s 6|= ϕ
M, v, s |= ϕ ∨ ψ iff M, v, s |= ϕ or M, v, s |= ψ
M, v, s |= 〈g〉ϕ iff sEg{t ∈ S|M, v, t |= ϕ}
M, v, s |= µX.ϕ iff s ∈

⋂
{T ⊆ S|{t ∈ S|M, vX:=T , t |= ϕ} ⊆ T}

where vX:=T (Y) = v(Y) for all Y 6= X and vX:=T (X) = T .

116 Chapter 6. Game Logic

Since ϕ was assumed to be strictly positive in X, monotonicity is guaranteed and
hence by theorem A.1, µX.ϕ indeed denotes the least fixpoint of the operation
associated with ϕ(X). Note that the scope of the fixpoint operator extends as
far as possible to the right. We define the greatest fixpoint νX.ϕ(X) as the
abbreviation of ¬µX.¬ϕ(¬X).

I Definition 6.13 (Positive Normal Form). Formula ϕ is said to be in pos-
itive normal form if no variable is quantified (i.e., bound by µ or ν) twice and all
negations occurring in ϕ apply to atomic propositions only.

Using the de Morgan laws for the boolean connectives, the box-diamond duality
and the greatest fixpoint, every µ-calculus formula can be rewritten into positive
normal form.

When we will discuss model-checking algorithms in the next chapter, fixpoint
nestings will play a crucial role. The simplest kind of nesting is exhibited by the
following formula

µX.p ∨ (X ∧ µY.q ∨ 〈g〉Y).

Since the variable X does not occur inside the µY fixpoint, the latter can be
calculated first, independently of the µX fixpoint. We shall consider nestings
of this kind to be vacuous nestings. A non-vacuous nesting is exhibited by the
formula

µX.p ∨ (q ∧ µY.X ∨ 〈g〉Y),

where the calculation of the inner fixpoint depends on the current value of X. We
define the fixpoint depth d(ϕ) of a µ-calculus formula ϕ as the maximal number of
such nestings, ignoring vacuous nestings (we shall give a formal definition shortly).
Finally, it will turn out that even nestings of the kind we just saw are not that
bad after all, since the two fixpoints which are nested are both least fixpoints.
The formula

µX.p ∨ (q ∧ νY.X ∧ 〈g〉Y)

on the other hand nests a greatest fixpoint inside a smallest fixpoint. This kind
of nesting is formally captured by the notion of alternation depth [44].

I Definition 6.14 (Alternation Depth). If a µ-calculus formula ϕ is in pos-
itive normal form, we define its alternation depth ad(ϕ) by induction on ϕ as
follows:

ad(X) = ad(p) = 0 for p ∈ Φ0, X ∈ V ar
ad(ϕ ∨ ψ) = ad(ϕ ∧ ψ) = max(ad(ϕ), ad(ψ))

ad(¬ϕ) = ad(ϕ)
ad(〈g〉ϕ) = ad([g]ϕ) = ad(ϕ)

ad(µX.ϕ) = max(1, ad(ϕ), 1 + ad(νY1.ψ1), . . . , 1 + ad(νYn.ψn))
where νYi.ψi ∈ sf(ϕ) and X occurs free in ψi

ad(νX.ϕ) = max(1, ad(ϕ), 1 + ad(µY1.ψ1), . . . , 1 + ad(µYn.ψn))
where µYi.ψi ∈ sf(ϕ) and X occurs free in ψi

6.4. Alternations 117

Thus for any µ-calculus formula ϕ, we can define its alternation depth by first
rewriting it into positive normal form. The difference between fixpoint depth d(ϕ)
and alternation depth ad(ϕ) lies in the last two clauses of the preceding definition:
For d(µX.ϕ) as well as d(νX.ϕ), we add 1 to the maximal fixpoint depth of both
µ- and ν-subformulas of ϕ which contain X free. Denote the set of µ-calculus
formulas as Lµ, and let Lµk

⊆ Lµ denote the set of those formulas which (when
put into positive normal form) are of alternation depth at most k. Let Lk

µ ⊆ Lµ

denote the set of formulas which contain at most k distinct set variables.

6.4.2 Embedding Game Logic into the µ-Calculus

The following function ◦ : GL → L2
µ maps every Game Logic formula ϕ to a µ-

calculus formula ϕ◦, using two auxiliary translation functions on games, x and y.

gx = 〈g〉X gy = 〈g〉Y
(α ∪ β)x = αx ∨ βx (α ∪ β)y = αy ∨ βy

(α; β)x = αx[X := βx] (α; β)y = αy[Y := βy]
(ϕ?)x = ϕ◦ ∧ X (ϕ?)y = ϕ◦ ∧ Y
(αd)x = ¬αx[X := ¬X] (αd)y = ¬αy[Y := ¬Y]
(α∗)x = µY.X ∨ αy (α∗)y = µX.Y ∨ αx

p◦ = p
(¬ϕ)◦ = ¬ϕ◦

(ϕ ∨ ψ)◦ = ϕ◦ ∨ ψ◦

(〈α〉ϕ)◦ = αx[X := ϕ◦]

The expression ϕ[X := ψ] refers to the result of substituting ψ for every occur-
rence of X. Note that ϕ◦ will have no free variables so that we can simply write
M, s |= ϕ◦ instead of M, v, s |= ϕ◦. The correctness of the translation can easily
be proved by induction.

I Theorem 6.15. There is a translation function ◦ : GL → L2
µ such that for all

game models M we have M, s |= ϕ iff M, s |= ϕ◦.

While this translation from Game Logic into the µ-calculus allows us to talk
about the alternation depth of a Game Logic formula, it is useful to define the
notion of alternation depth for Game Logic directly.

I Definition 6.16 (Alternation depth). The alternation depth of a Game
Logic formula ϕ which is in dual normal form is inductively defined as follows:

118 Chapter 6. Game Logic

ad(p) = 0 for p ∈ Φ0

ad(ϕ ∨ ψ) = max(ad(ϕ), ad(ψ))
ad(¬ϕ) = ad(ϕ)

ad(〈γ〉ϕ) = max(ad(γ), ad(ϕ))
ad(g) = 0 for g ∈ Γ0

ad(ϕ?) = ad(ϕ)
ad(γd) = ad(γ)

ad(α ∪ β) = ad(α ∩ β) = max(ad(α), ad(β))
ad(α; β) = max(ad(α), ad(β))

ad(γ∗) = max(1, ad(γ), 1 + ad(α×
1), . . . , 1 + ad(α×

n))
where α×

i is a subgame of γ not in the scope of ?
ad(γ×) = max(1, ad(γ), 1 + ad(α∗

1), . . . , 1 + ad(α∗
n))

where α∗
i is a subgame of γ not in the scope of ?

In this definition, maximization in ad(γ∗) needs to be restricted to subgames of γ
not in the scope of a test operator. This restriction is the Game Logic equivalent to
the µ-calculus restriction to subformulas which contain the fixpoint variable free.
As an example, consider the Game Logic formula 〈(〈g×〉q?)∗〉p which corresponds
to the µ-calculus formula µX.p ∨ (X ∧ νY.q ∧ 〈g〉Y) and has alternation depth 1
rather than 2. In general, while (ϕ?)x = ϕ◦ ∧X has a free variable, that variable
will never be in the scope of any fixpoint operator resulting from translating ϕ.

The following theorem shows that using the above definition of alternation
depth for Game Logic, the translation function preserves alternation depth.

I Theorem 6.17. For every Game Logic formula ϕ, ad(ϕ) = ad(ϕ◦).

Proof. We show by simultaneous induction that for all Game Logic formulas
ϕ and games γ, ad(ϕ) = ad(ϕ◦) and ad(γ) = ad(γx). We will assume here for
simplicity that ϕ and γ are in dual normal form, and that the translation function
x also contains the following clauses for the demonic game operations:

(α ∩ β)x = αx ∧ βx and (α×)x = νY.X ∧ αy

We shall briefly consider the most difficult inductive steps for sequential com-
position and iteration. Since (α; β)x = αx[X := βx], we need to show that
max(ad(αx), ad(βx)) = ad(αx[X := βx]). To see that this is indeed the case,
note that the substitution of βx for X can only lead to an increase in alterna-
tion depth in case a free variable will become bound by an outer fixpoint op-
erator. But this cannot happen since X is the only free variable in βx which
will still be free in αx[X := βx]. An analogous argument is used to show that
max(ad(γx), ad(ϕ◦)) = ad(γx[X := ϕ◦]).

For iteration, we need to show that ad(γ∗) = ad(µY.X∨γy), where γy contains
Y free. Inspecting the definitions of ad, it suffices to show two claims:

6.4. Alternations 119

(1) For every subformula νZ.ψ of γy in which Y occurs free, there
is a subformula α× of γ which is not in the scope of a test whose
translation is νZ.ψ.

On the one hand, every subformula νZ.ψ of γy must be the translation of a
subformula α× of γ. On the other hand, if Y occurs free in ψ then α× cannot be
in the scope of a test.

(2) For every subformula α× of γ which does not occur in the scope
of a test and for which ad(α×) = ad(γ), its translation νZ.ψ will be a
subformula of γy which contains Y free.

Note that we can also assume that α× does not occur in the scope of another
×-iteration, i.e., there is no subformula β× of γ such that α× is a subformula of β.
For if that were the case, ad(β×) ≥ ad(α×) and it suffices to consider β× instead
of α×.

To see that νZ.ψ must indeed contain Y free, note that the free variable Y
in γy is passed on through the game operations with the exception of test and
iteration. In other words, the only way in which Y could not be free in νZ.ψ is
if this formula occurs within the scope of another (translated) iteration, for we
assumed it is not within the scope of a test. As mentioned, we can assume that
νZ.ψ occurs within the scope of a least fixpoint, i.e., it is a subformula of µZ ′.δ.
But then we would have

ad(γ) ≥ ad(µZ ′.δ) > ad(νZ.ψ) = ad(α×)

which contradicts our assumption that ad(α×) = ad(γ). ¥

Thus, while two variables suffice to translate Game Logic into the µ-calculus,
iteration and duality allow one to create formulas of arbitrary alternation depth:
there is no k such that for all Game Logic formulas ϕ, ad(ϕ) ≤ k. If we define
g1 = g, and for n > 0 we let g2n = g∗

2n−1 and g2n+1 = g×
2n, then 〈gn〉⊥ will be

a formula of alternation depth n − 1. Note, however, that this result is only
syntactic: It may very well be that there is some k such that for all GL formulas
ϕ, ϕ◦ is equivalent to a formula of alternation depth at most k. We will have
more to say on this matter in the next chapter (section 7.2). All that we know
so far is that such a k would have to be greater than 1:

I Theorem 6.18. There is a GL formula ϕ which is not equivalent to any µ-
calculus formula of alternation depth less than 2.

Proof. Consider the µ-calculus formula

δ := νX.µY.〈g〉((p ∧ X) ∨ Y).

120 Chapter 6. Game Logic

On Kripke models with accessibility relation g, it expresses that “on some g-path
p occurs infinitely often” (EGFp in CTL∗ notation). This formula has alternation
depth 2 and it has been shown that there is no µ-calculus formula δ ′ of alternation
depth 1 or less such that δ is equivalent to δ ′ over Kripke models (see, e.g., [44]).
Consequently, the same holds when considering equivalence over all game models.
On the other hand, δ is equivalent to the translation of

[((g∗; g; p?)d)∗]>,

thus showing that it cannot be the case that all GL formulas are equivalent to
µ-calculus formulas of alternation depth less than 2. ¥

While the translation function does not yield µ-calculus formulas of bounded
alternation depth, and while we know certain properties expressible with Game
Logic require alternation depth at least 2, it is easy to see that for Game Logic
formulas within the program fragment, alternation depth 1 is all we need.

I Theorem 6.19. If ϕ lies in the program fragment of Game Logic, ad(ϕ) = 1.
Consequently, Game Logic is more expressive than its program fragment.

6.5 Complexity of Model Checking

As may be expected, the presence of iteration makes model checking for Game
Logic more complex than model checking for Coalition Logic. Instead of pro-
viding a model-checking algorithm for Game Logic directly, we shall consider an
algorithm for the generalized µ-calculus. For the µ-calculus over Kripke models,
the best known upper bound on complexity is NP ∩ co-NP, while for bounded
alternation depth, the problem can be solved in deterministic polynomial time.
As it turns out, the situation is similar for game models.

As for the representation of a game model and the definition of its size, the
same considerations apply as for coalition models. Consequently, we can easily
transfer the definition of section 3.3 to game models:

I Definition 6.20 (Model Size). Given a game model M = ((S, {Eg|g ∈
Γ0}), V), we define its size |M| as

|M| = |S| +
∑

{s|s∈S}

∑

{g|g∈Γ0}

∑

{X|sEc
gX}

|X|,

where Ec
g is the non-monotonic core of Eg.

Recall also that for Coalition Logic we defined the length of a formula ϕ as the
number of its subformulas. For Game Logic, this approach will not work since
we also have to account for the complexity of the games a formula contains. For

6.5. Complexity of Model Checking 121

PDL, one gets around this problem by using the Fischer-Ladner closure FL(ϕ)
of the formula rather than its subformula closure. This Fischer-Ladner closure
can easily be extended to include the duality operator, so that we could define
|ϕ| = |FL(ϕ)|. Usually, it is sufficient however to think of |ϕ| as the syntactic
length of ϕ. We shall draw the reader’s attention to the precise definition of |ϕ|
on the few occasions when this will be necessary.

Given a µ-calculus formula ϕ, a game model M, and a variable valuation
v, there is an algorithm for calculating {s|M, v, s |= ϕ} which runs in time
O(|M|r+1×|ϕ|), where r = d(ϕ), the depth of (non-vacuous) fixpoint nestings. To
see this, suppose that ϕ = µX.ψ, where d(ψ) < d(ϕ). Then we need to calculate⋃

0≤i≤|S| F
↑i where S is the universe of M and F (T) = {t ∈ S|M, vX:=T , t |= ψ}.

We thus need to calculate the extension of ψ under at most |S| different valuations
vX:=T , so calculating the extension of ϕ requires time at most |S| times the time
it takes to determine the extension of ψ.

There is one respect, however, in which the previous bound can be improved
dramatically, and this improvement will also turn out to be relevant conceptually
when discussing differences between programs and games. Consider, e.g., the for-
mula µX.µY.ϕ(X,Y), where ϕ contains no additional fixpoints. For sufficiently
complex ϕ, the result obtained would suggest the model checking problem to re-
quire time roughly quadratic in the size of the state space of the model under
consideration. As it turns out, however, the formula can be evaluated in lin-
ear time, due to lack of alternation and the generalized Knaster-Tarski fixpoint
theorem.

Consider again how we can evaluate µX.µY.ϕ(X,Y). Given model M =
((S, {Eg|g ∈ Γ0}), V), valuation v and sets A,B ⊆ S, let ϕ(A,B) = {s ∈
S|M, s, vX:=A,Y :=B |= ϕ}. Then the algorithm suggested in theorem A.1 pro-
ceeds by calculating

F0 = ∅, F1 = µY.ϕ(F0, Y), F2 = µY.ϕ(F1, Y), . . .

until for some m ≤ |S|, Fm = Fm+1. To calculate Fi for i > 0, we need to
calculate

f0 = ∅, f1 = ϕ(Fi−1, f0), f2 = ϕ(Fi−1, f1), . . .

until for some n ≤ |S|, fn = fn+1. As a result, we require at most |S| · |S|
calculations of ϕ(X,Y).

Fortunately, we can do better than that. Suppose we have calculated Fi =
µY.ϕ(Fi−1, Y). Since Fi−1 ⊆ Fi and ϕ is monotonic in both arguments,

Fi = µY.ϕ(Fi−1, Y) ⊆ µY.ϕ(Fi, Y) = Fi+1 and Fi = ϕ(Fi−1, Fi) ⊆ ϕ(Fi, Fi)

and hence by the generalized Knaster-Tarski theorem A.2,

Fi+1 = µY.ϕ(Fi, Y) = ϕ(Fi, Fi) ∪ ϕ(Fi, ϕ(Fi, Fi)) ∪ · · · ,

122 Chapter 6. Game Logic

i.e., we can start the fixpoint approximation at Fi instead of ∅. As a conse-
quence, the state space has to be traversed only once, i.e., we require at most |S|
calculations of ϕ(X,Y).

The previous argument can be generalized to arbitrary finite sequences of
nested µ-operators as long as no ν-operator intervenes, and an analogous argu-
ment applies to sequences of nested ν-operators without intervening µ-operators.
As a result, we obtain a complexity bound formulated not in terms of fixpoint
depth but in terms of alternation depth.

I Theorem 6.21. Given a µ-calculus formula ϕ, a game model M and a variable
valuation v, there is an algorithm for calculating {s|M, v, s |= ϕ} which runs in
time O(|M|ad(ϕ)+1 × |ϕ|).

Proof. Consider a game model M = ((S, {Eg|g ∈ Γ0}), V) and a valuation v
in which we want to determine the extension of a µ-calculus formula ϕ. First,
we rewrite ϕ to positive normal form. Next, we initialize all µ-variables to ∅
and all ν-variables to S. We have a boolean array done that keeps track of
which subsentences have been evaluated already. Initially, done[ψ] = false for
all subsentences of ϕ. Lastly, the array value[ψ] will store the set of states where
ψ is true. The work is done by the following recursive function which initially is
called with argument ϕ.

Evaluate(ϕ):

If ϕ is a sentence and done[ϕ] = true then return value[ϕ];
Case ϕ of the form

X (variable): R := v(X)
p (atom): R := V (p)
¬ψ: R := S \ Evaluate(ψ)
α ∨ β: R := Evaluate(α) ∪ Evaluate(β)
α ∧ β: R := Evaluate(α) ∩ Evaluate(β)
〈g〉ψ: R := {s ∈ S|∃X ⊆ S : sEc

gX and X ⊆ Evaluate(ψ)}
[g]ψ: R := {s ∈ S|∀X ⊆ S : sEc

gX ⇒ X ∩ Evaluate(ψ) = ∅}
µX.ψ: If the surrounding fixpoint formula is a greatest fixpoint,

then v(X) := ∅;
For each open ψ-subformula µY.δ such that there
is no ψ-subformula νZ.χ containing it, set v(Y) := ∅.

Repeat: R := v(X); v(X) := Evaluate(ψ) Until R = v(X).
νX.ψ: If the surrounding fixpoint formula is a least fixpoint,

then v(X) := S;
For each open ψ-subformula νY.δ such that there
is no ψ-subformula µZ.χ containing it, set v(Y) := S.

Repeat: R := v(X); v(X) := Evaluate(ψ) Until R = v(X).
If ϕ is a sentence then

6.5. Complexity of Model Checking 123

done[ϕ] := true;
value[ϕ] := R;

Return R

Note that we assume that the test in the conditional for the µ-formulas succeeds
only if there is a surrounding fixpoint formula. To verify that the running time
of the algorithm is indeed in O(|M|ad(ϕ)+1 × |ϕ|), one shows by induction on ϕ
that Evaluate(ϕ) runs in time O(|ϕ| × |M| × |S|ad(ϕ)).

If ϕ is a variable X or some atomic proposition p, the extension of ϕ is already
part of the description of the model/valuation and the function call terminates
immediately. Skipping the boolean cases, suppose that ϕ = 〈g〉ψ. After deter-
mining Evaluate(ψ) in O(|ψ| × |M|× |S|ad(ψ)), we check for every sEc

gX whether
X ⊆ Evaluate(ψ) which can be done in O(|M|). Hence, we end up with a time
bound of O(|ϕ| × |M| × |S|ad(ψ)).

In case ϕ = µX.ψ consider first the case where ad(ϕ) = ad(ψ)+1. In the worst
case, the surrounding fixpoint formula is a greatest fixpoint, so that X is reset to
∅ before we calculate

⋃
0≤i≤|S| F

↑i where F (T) = {t ∈ S|M, vX:=T , t |= ψ}. As a

result, we calculate Evaluate(ψ) at most |S| times for different valuations, each
calculation requiring O(|ψ| × |M| × |S|ad(ψ)) time, yielding a total of O(|ψ| ×
|M| × |S|ad(ϕ)).

For the case where ad(ϕ) = ad(ψ), the approximations of µX will be absorbed
by Evaluate(ψ): If (1) there is another least-fixpoint subformula µY.δ of the
same alternation depth, the algorithm will refrain from resetting Y to ∅ for new
assignments to X. If (2) there is some greatest-fixpoint subformula νY.δ of the
same alternation depth, then X cannot occur in δ, and so νY.δ only needs to be
evaluated once. ¥

Note that the time bound provided is a rather rough estimate: As the proof
shows, the real calculation time is more accurately described by O(|S|ad(ϕ)×|M|×
|ϕ|) where S is the universe of M. Since |S| is usually much smaller than |M|,
model checking is often somewhat more feasible than suggested by the bound
given in the theorem. Since we are, however, not interested in producing an
efficient implementation but only in obtaining a rough idea of the complexity of
the model checking problem, the bound stated in the theorem will do.

While theorem 6.21 provides a polynomial time model checking procedure for
bounded alternation depth, for unbounded alternation depth, we conjecture that,
similar to the case of Kripke models, the model-checking problem is in NP ∩
co-NP.

What are the consequences of theorem 6.21 for Game Logic? Using the trans-
lation from Game Logic into the µ-calculus, we can get an upper bound for the
complexity of Game Logic model checking as well.

I Corollary 6.22. Given a Game Logic formula ϕ and a finite game model M,

124 Chapter 6. Game Logic

model checking can be done in time O(|M|ad(ϕ)+1 × |ϕ|). Consequently, if ϕ lies
in the program fragment, model-checking can be done in time O(|M|2 × |ϕ|).

Proof. Since by theorem 6.17 ad(ϕ) = ad(ϕ◦), we only need to check that the
translation from Game Logic into the µ-calculus is efficient, for then the result
follows by theorems 6.21 and 6.19.

Inspecting the definition of ◦, the only problematic clause is (α ∪ β)x, for
〈g1∪g2〉ϕ will be translated as 〈g1〉ϕ

◦∨〈g2〉ϕ
◦, duplicating ϕ◦ and hence resulting

in an exponential increase in length. As pointed out in [46], however, this does
not really create a problem, since a clever representation of subformulas can be
chosen which consolidates common subformulas. ¥

6.6 Complexity of the Satisfiability Problem

The appendix of [97] contains an argument which demonstrates that the satis-
fiability problem for Game Logic is decidable. The argument uses a translation
of Game Logic formulas into modal µ-calculus formulas, reducing Game Logic
satisfiability to µ-calculus satisfiability. The translation used, however, is not
the one presented in section 6.4.2, for the aim in this case is a translation into
the µ-calculus interpreted over Kripke models rather than game models. Hence,
since Game Logic and the standard modal µ-calculus are interpreted over different
models, the models have to be translated as well. As for the formula translation,
however, it turns out that the length of a formula can grow exponentially in the
translation process, thereby seemingly making the reduction inefficient. A closer
look, however, reveals that this exponential blow-up can easily be circumvented,
as in the case of corollary 6.22. We now present the argument which establishes
an exponential-time upper bound for the satisfiability problem.

Formulas as well as models of Game Logic can be translated into formulas
and models of the µ-calculus as follows: Given a game model M = ((S, {Eg|g ∈
Γ0}), V), we construct its Kripke-version by introducing new states for every
subset of S, i.e., we let MK = ((S ′, Re, {Rg|g ∈ Γ0}), V

′) where S ′ = S∪{sX |X ⊆
S}, sxRet iff t ∈ X and tRgsX iff tEgX. In other words, the new set includes all
the old states (individual-states) plus all subsets of old states (set-states), and we
have two sorts of accessibility relations. Relation Rg relates individual-states to
set-states just as Eg did in the game model, and Re is nothing but the converse
of the element-of relation, relating set-states to individual-states. Finally, we
also introduce another propositional atom pe which holds at a state iff it is an
individual-state, so we let V ′(p) = V (p) for p 6= pe, and V ′(pe) = S. We can then
translate Game Logic formulas over atomic games Γ0 into µ-calculus formulas
over Γ0 ∪ {e} (where e 6∈ Γ0) as follows:

6.6. Complexity of the Satisfiability Problem 125

gx = 〈g〉[e](pe ∧ X) (ϕ?)x = ϕ◦ ∧ pe ∧ X
(α ∪ β)x = αx ∨ βx (α; β)x = αx[X := βx]

(αd)x = pe ∧ ¬αx[X := pe ∧ ¬X] (α∗)x = µY.pe ∧ (X ∨ αx[X := Y])

p◦ = p
(¬ϕ)◦ = pe ∧ ¬ϕ◦

(ϕ ∨ ψ)◦ = ϕ◦ ∨ ψ◦

(〈α〉ϕ)◦ = αx[X := ϕ◦]

Note that this translation function is different from the one previously used in
section 6.4 to translate from Game Logic into the generalized µ-calculus, the
reason being that now we need a translation which links Kripke models to game
models.

I Lemma 6.23. For all Game Logic formulas ϕ, ϕ is satisfiable in a game model
iff ϕ◦ ∧ pe is satisfiable in a Kripke model.

Proof. It is easy to check that if ϕ is satisfiable in M, ϕ◦ ∧ pe is satisfiable in
MK as constructed before.

For the converse, assume MK = ((S, {Re, Rg|g ∈ Γ0}), V) satisfies ϕ◦ ∧ pe

at state s ∈ S. Let M = ((S ′, {Eg|g ∈ Γ0}), V
′) be such that S ′ = V (pe),

V ′(p) = V (p)|S ′ for all atoms p 6= pe, and finally

sEgU iff ∃t ∈ S : sRgt and ∀u ∈ S : tReu ⇒ u ∈ U

where s ∈ S ′ and U ⊆ S ′. We claim that for all Game Logic formulas χ and games
γ, (1) For all s ∈ S ′: MK , s |= χ◦ iff M, s |= χ, and (2) For all s ∈ S ′, T ⊆ S:
MK , s, T |= γx iff sEγ(T ∩S ′). As should be evident, the notation MK , s, T |= γx

refers to γx being true at s in MK when the free variable X has denotation T .
The proof is by simultaneous induction on ϕ and γ, and the different inductive
steps involve no major difficulties. We shall only show the case of iteration:

To show that MK , s, T |= (γ∗)x iff sEγ∗(T ∩S ′) for all s ∈ S ′, T ⊆ S, it suffices
to show that for all T ⊆ S,

µU.S ′ ∩ (T ∪ {s ∈ S|MK , s, U |= γx}) = µU.(T ∩ S ′) ∪ Eγ(U).

That these two fixpoints coincide can most easily be seen if we consider the
approximation stages for calculating them: If we let F (U) = S ′ ∩ (T ∪ {s ∈
S|MK , s, U |= γx}) and G(U) = (T ∩ S ′)∪Eγ(U), it is easily seen that for every
ordinal κ we have F ↑κ = G↑κ ⊆ S ′. For the inductive step for κ + 1, one must
show that

S ′ ∩ (T ∪ {s ∈ S|MK , s, F ↑κ |= γx}) = (T ∩ S ′) ∪ Eγ(G
↑κ) ⊆ S ′

which follows by the induction hypotheses for κ and γ. ¥

126 Chapter 6. Game Logic

I Theorem 6.24. The satisfiability problem for Game Logic is in EXPTIME.

Proof. By lemma 6.23, we have reduced the satisfiability problem for Game
Logic to the satisfiability problem for the modal µ-calculus over Kripke models.
As a consequence of [45, 117], the satisfiability problem for the µ-calculus is
EXPTIME-complete, so all we need to check is that the translation from ϕ to
ϕ◦ ∧ pe is effective.

As in the case of theorem 6.22, one can see that the problematic case is
program/game union which causes the translation not to be efficient. Again,
this problem can be avoided if common subformulas are represented only once.
Inspecting the proof of the complexity result for the modal µ-calculus in [117]
reveals that what is important is not the syntactic length of a µ-calculus formula
ϕ but rather the size of its Fischer-Ladner closure FL(ϕ) (an extension of the
subformula closure). Since |FL(ϕ◦)| is O(|ϕ|), the translation function ◦ does
indeed provide an efficient reduction. ¥

It is reasonable to conjecture that the satisfiability problem is EXPTIME-
complete, though we have no proof of this conjecture yet.

6.7 Discussion

6.7.1 Simulating Game Models by Kripke Models

The proof of theorem 6.24 concerning the complexity of the satisfiability problem
relied on translating formulas of Game Logic into the µ-calculus and simulating
game models by Kripke models. In fact, this technique of treating game models
as Kripke models also could have been used to analyze the complexity of model
checking. More generally, the simulation technique is not only applicable to the
specific case of Game Logic, but to non-normal modal logics more generally. As
shown in [51], a modal formula ϕ can be translated into a multi-modal formula
ϕ◦ such that ϕ is satisfiable in neighborhood models iff ϕ◦ is satisfiable in Kripke
models. Similar translations are given which link, for example, satisfiability in
monotonic neighborhood models to satisfiability in Kripke models. Consequently,
theorem proving in non-normal modal logics can be reduced to theorem proving
in normal modal logics. This line of investigation is carried further in [78] where it
is shown that one can obtain translations into uni-modal formulas which preserve
satisfiability and also a number of other properties.

In spite of this reduction to normal modal logic, we think that in general,
working with Game Logic or Coalition Logic is easier than working with their
normal modal simulations. While we have seen that simulating neighborhood
models (game models, coalition models) by Kripke models can be useful to ob-
tain certain results, there is no free lunch here. These simulations do not yield
immediate results, for example, concerning the completeness and complexity of

6.7. Discussion 127

the coalition logics studied in chapter 3 (with the exception of Mon). The reason
is that the neighborhood relations EC are not simply required to be monotonic,
they have to be interrelated in a certain way. The normal modal logic simulat-
ing, for example, Play will be complex enough to prevent any quick conclusions
about its complexity. Even for Game Logic we needed a significant extension of
the results in [51, 78] to deal with the program/game operations.

6.7.2 Programs vs. Games

In order to compare game operations to program operations, this chapter has fo-
cused on game models which are extremely simple compared to the structures we
have investigated for Coalition Logic. However, even for these simple structures
which only describe determined 2-player games, we have seen some interesting
differences between Game Logic and its program fragment, summarized in figure
6.2.

Game Logic GL program fragment GL−d

complete axiomatization not yet yes
maximal alternation depth none 1

expressive power >
complexity model checking O(|M|ad(ϕ)+1 × |ϕ|) O(|M|2 × |ϕ|)

complexity satisfiability in EXPTIME in EXPTIME

Figure 6.2: Differences between Game Logic and its program fragment over gen-
eral game models.

In terms of expressive power, we have seen that the program fragment is less
expressive than full Game Logic. By theorems 6.18 and 6.19, there is a Game
Logic formula which is not equivalent to any formula of the program fragment.
In fact, there is even a formula of alternation depth 1 which cannot be expressed
within the program fragment (see theorem 7.2 of the following chapter). Put
differently, while the program fragment can be translated into Lµ1

, there are also
formulas in Lµ1

which are not equivalent to any formula of the program fragment.
Syntactically, we have seen that Game Logic formulas can have arbitrary

alternation depth whereas programs only have alternation depth 1. As shown
in [18], this alternation hierarchy for Game Logic does not collapse semantically,
i.e., there are Game Logic formulas of arbitrary alternation depth which are not
equivalent to formulas of lower alternation depth.

Due to the difference in alternation depth, we have seen that model checking
for programs seems easier than model checking for games. Naturally, this differ-
ence is rather tentative, for it might be that better algorithms will be found for
the modal µ-calculus which run in polynomial time independent of the alterna-
tion depth. At the current state of knowledge, however, the maximal number of

128 Chapter 6. Game Logic

subsequent role-changes which are linked to iteration determines the complexity
of model checking. If it is indeed the case that also model checking for the gen-
eralized µ-calculus is in NP ∩ co-NP, the question whether model checking for
programs is simpler than for games is linked to one of the basic open issues of
complexity theory, namely, the relationship between NP ∩ co-NP and P.

The existence of a complete axiomatization constitutes a final difference be-
tween Game Logic and its program fragment. Again, this difference is only a
rather weak difference due to our insufficient knowledge. Still, it also should not
be dismissed too easily. Take, e.g., the modal µ-calculus (interpreted over Kripke
models): The decade it took from the creation of the modal µ-calculus and its
proposed axiomatization in [76] to a completeness proof in [124] bears witness to
the fact that the conceptual complexity of this logic far exceeds that of Propo-
sitional Dynamic Logic, even though, e.g., the complexity of the satisfiability
problem is EXPTIME-complete in both cases.

6.8 Bibliographic Notes

Game Logic was first introduced in [96, 97], a further introductory reference is
[101]. The completeness result for Game Logic without dual is from [97], as is the
decidability of full Game Logic. Our argument in section 6.6 essentially follows
[97], except that we used a different translation function which eliminates the need
for an additional conjunct which forces the Kripke model to be of a particular
shape. As a result, the proof of lemma 6.23 is simplified.

Concurrent Propositional Dynamic Logic (CPDL, [108]) is a system closely
related to Game Logic. Where Game Logic talks about games, CPDL talks about
concurrent programs. Due to this different interpretation, CPDL is not exactly a
sublogic of Game Logic since the Eγ functions are not assumed to be monotonic.
CPDL contains two disjunctions, corresponding to demonic and angelic choice,
but no dual operator. Axiomatic completeness is established in [54].

The standard modal µ-calculus interpreted over Kripke models was originally
proposed in [76]. The notion of alternation depth as well as the model checking
algorithm which we extended from Kripke models to game models in section 6.5
go back to [46]. The axiomatization proposed in [76] was proved complete in
[124]. See also [6] for a recent book on the µ-calculus.

The generalized µ-calculus as defined in section 6.4 is closely related to the Al-
ternating µ-calculus (AMC) proposed in [3] which is an extension of Alternating
Temporal Logic (ATL) discussed in section 4.4. Like ATL, AMC is interpreted
over alternating transition systems which are essentially a subclass of coalition
models. The model-checking complexity for AMC is also dependent on the al-
ternation depth of the formula, i.e., there is an analogue of theorem 6.21 for
AMC.

Chapter 7

Game Logic over Kripke Models

Having considered Game Logic over general game models in the previous chapter,
this chapter focuses on Game Logic over Kripke models. In order to illuminate
further the difference between programs and games, considering Kripke models
allows one to investigate the difference between program operations and game
operations when applied to programs as the basic building blocks. In other words,
if we start with 1-player games at the atomic level, how do complex structured
programs compare to complex structured games? As before, the comparison will
focus on a number of technical questions.

Having recalled the semantics of Game Logic over Kripke models, we discuss
how the expressive power of Game Logic compares to PDL on the one hand and
to the modal µ-calculus on the other hand. Turning then toward axiomatization,
we can observe that even over Kripke models the induction axiom is not valid for
games whereas it is valid for programs. As for general Game Logic, we provide an
axiomatization which we conjecture to be complete. Regarding the complexity
of the satisfiability problem, we are able to give a precise characterization due to
results for Propositional Dynamic Logic and the modal µ-calculus.

Sections 7.4 and 7.6 take a closer look at the operations of Game Logic. While
iteration seems to be a conceptually unambiguous notion for programs, it turns
out that for games at least two different candidate interpretations suggest them-
selves. In section 7.6, we consider the question of whether there might be oper-
ations other than the ones provided by Game Logic by which to construct new
games. Using the notion of bisimulation-safety, we are able to partially answer
this question in the negative.

7.1 Semantics: GL, PDL, and the µ-Calculus

When Game Logic is interpreted over Kripke models, the idea is that the basic
atomic games are assumed to be 1-player games, i.e., programs. All choices within

129

130 Chapter 7. Game Logic over Kripke Models

an atomic game are made by the first player, and all interaction is introduced
only by the game constructions, more specifically by the dual operator. Thus,
even over Kripke models, the games which can be constructed by the operations
of Game Logic allow one to construct “real” games, but all interaction can be
located at the non-atomic and hence syntactic level.

Formally, the previous chapter was concerned with arbitrary game models
M = ((S, {Eg|g ∈ Γ0}), V) which by corollary 2.13 we can think of as a collection
of states which are linked to determined 2-player games. In the present chapter,
we restrict ourselves to game models where for every g ∈ Γ0, Eg is disjunctive. As
discussed in section 2.4.3, corollary 2.16 allows us to think of M as a collection
of states linked to a 1-player game. As a consequence, we mentioned that M
α-corresponds to a Kripke model MK = ((S, {Rg|g ∈ Γ0}), V) such that sEgX
holds iff there is some t ∈ X such that sRgt, equivalence (2.2).

Given a Kripke model MK = ((S, {Rg|g ∈ Γ0}), V), we can thus restate the
semantics of Game Logic as follows: We define truth of a formula at a state
MK , s |= ϕ as before, also leaving the inductive definition of Eγ unchanged. The
only difference lies in the definition of Eg for atomic games g ∈ Γ0. For game
models, Eg was provided by the model, whereas for Kripke models, we naturally
define

Eg(X) = {s ∈ S|∃t ∈ X : sRgt}. (7.1)

Note that this gives us a semantic definition of 〈g〉ϕ standard in modal logic:
MK , s |= 〈g〉ϕ holds iff there is some t ∈ S such that sRgt and MK , t |= ϕ.
Such a definition, however, is only possible for atomic games since non-atomic
games will generally not be 1-player games anymore, unless we restrict ourselves
to dual-free games. An easy induction on γ shows that disjunctivity is preserved
by the program operations.

I Theorem 7.1. For all dual-free games γ, Eγ is disjunctive.

As a consequence, by corollary 2.16, all dual-free non-atomic games are essen-
tially 1-player games as well, i.e., for every dual-free game γ there is an accessi-
bility relation Rγ such that Eγ(X) = {s ∈ S|∃t ∈ X : sRγt}. In fact, Rγ can be
constructed inductively as well:

sRα;βt iff ∃u : sRαu and uRβt
sRα∪βt iff sRαt or sRβt
sRϕ?t iff s = t and MK , s |= ϕ
sRα∗t iff ∃n ≥ 0 : ∃s0 . . . sn∀i : siRαsi+1 and s = s0 and t = sn

One can show that using these definitions and defining

MK , s |= 〈γ〉ϕ iff ∃t ∈ S : sRγt and MK , t |= ϕ, (7.2)

equation (7.1) holds for all dual-free games γ.

7.2. Expressiveness 131

Dual-free Game Logic over Kripke models is nothing but Propositional Dy-
namic Logic (PDL). PDL is usually defined by way of accessibility relations Rγ

rather than effectivity functions Eγ, but we shall switch back and forth between
these two perspectives.

As discussed in the previous chapter, GL forms a fragment of the generalized
µ-calculus. Over Kripke models, we are back on well-known terrain since the
generalized µ-calculus over Kripke models is just the standard modal µ-calculus.
Hence, using the translation function of theorem 6.15, Game Logic over Kripke
models can be embedded in the modal µ-calculus, and one can again ask how
expressive the GL-fragment of the µ-calculus actually is.

7.2 Expressiveness

As mentioned, Game Logic is very closely related to PDL on the one hand and
to the µ-calculus on the other hand. Since all three logics can be interpreted over
Kripke models, we can compare them in expressive power.

7.2.1 GL vs. PDL

As a consequence of theorems 6.18 and 6.19 of the previous chapter, GL is more
expressive than PDL, as the following theorem states. The proof given here,
however, makes use of a formula of alternation depth 1 which cannot be expressed
by PDL.

I Theorem 7.2. GL (over Kripke models) is more expressive than PDL. With-
out iteration, they are equally expressive.

Proof. It has been shown in [116, 76] that the µ-calculus formula µX.[g]X
which expresses the absence of an infinite g-branch is not equivalent to any PDL
formula. Since the formula is equivalent to the GL-formula 〈(gd)∗〉⊥, GL is more
expressive than PDL.

Without iteration, every GL-formula is equivalent to a purely modal formula
(i.e., a formula where all modalities are indexed by atomic games/programs only),
using the axioms of figure 6.1 as rewrite rules from left to right. ¥

Note that expressiveness here is measured in terms of the propositions which a
given language can express. Taking into account also the games which a language
can express, it is clear that GL is more expressive than PDL even without itera-
tion: the game gd cannot be expressed without dual, simply because all dual-free
games are disjunctive whereas one can easily construct a model where gd is not.
Hence, there cannot be any dual-free game γ such that Eγ = Egd for all models.

As it turns out, even if the formula used in the proof of theorem 7.2 is added
to PDL, GL remains more expressive. Consider RPDL, PDL with an added

132 Chapter 7. Game Logic over Kripke Models

predicate repeat(γ) which holds at states where γ can be executed infinitely
often. In other words, repeat(γ) expresses that γ is not conversely well-founded.
Formally, given a Kripke model MK = ((S, {Rg|g ∈ Γ0}), V), we define

MK , s0 |= repeat(γ) iff ∃s1, s2, . . . ∀i ≥ 0 : siRγsi+1.

In µ-calculus terms, repeat(γ) is equivalent to ¬µX.[γ]X, since µX.[γ]X expresses
the well-foundedness of γ. The previous result has thus shown that RPDL is more
expressive than PDL. GL on the other hand is even more expressive than RPDL.

I Theorem 7.3. GL (over Kripke models) is more expressive than RPDL.

Proof. To see that GL is at least as expressive as RPDL, note that repeat(γ)
is equivalent to [(γd)∗]>. For a GL formula which cannot be expressed in RPDL,
Niwinski showed in [92] that νX.〈a〉X ∧ 〈b〉X = [(ad ∪ bd)∗]> is not expressible
in RPDL. ¥

7.2.2 GL vs. µ-Calculus

As shown in theorem 6.15 of the last chapter, GL can be translated into the 2-
variable fragment of the µ-calculus, and hence we know that GL is a fragment of
L2

µ also over Kripke models. While we conjecture that GL is a proper fragment
of Lµ, this question is open so far. Two ways to answer this question suggest
themselves.

First, one may try to prove that the alternation hierarchy for either L2
µ or

GL collapses. More precisely: Bradfield [25] and Lenzi [81] have shown that the
alternation hierarchy of the µ-calculus is strict, i.e., for any natural number k
there are µ-calculus formulas of alternation depth k which are not equivalent
to formulas of smaller alternation depth. If one could show that either for L2

µ

or for GL there is some k such that all formulas are equivalent to a formula of
alternation depth less than k, Game Logic (both over general game models and
over Kripke models) would be less expressive than the µ-calculus. Furthermore,
it would also mean that model-checking for Game Logic is simpler than for the
full µ-calculus, given that the efficiency of model-checking seems to depend on
the alternation depth (as we saw in the previous chapter). Work of [18], however,
suggests that the alternation hierarchy does not collapse, neither for L2

µ nor for
GL, so this approach does not seem to succeed.

A second approach could focus on the finite variable fragments of Lµ. What
is needed is a µ-calculus formula ϕ which makes use of 3 variables and which is
not equivalent to any µ-calculus formula with less than three variables. Examples
could be complex fairness properties such as the following one from [26]

νX.µY.νZ.[a]X ∧ (〈a〉> → [b]Y) ∧ [b]Z

7.3. Axiomatization and Induction 133

which expresses that there is no path on which action a is enabled infinitely often
but occurs only finitely often (we assume here that the only two available actions
are a and b). In general, it would seem that via pebble games for the µ-calculus
one could prove that a formula like the one given cannot be expressed with fewer
variables, but it seems that finite variable fragments of the µ-calculus have not
been investigated yet.

7.3 Axiomatization and Induction

7.3.1 Axiomatization

Like for general Game Logic, duality together with iteration presents a problem
for axiomatization. Hence we will mainly focus our attention on GLK

−∗ and GLK
−d.

I Definition 7.4 (Kripke Game Logic Axiomatics). A Kripke game logic
is any game logic which contains the additional axioms of figure 7.1. Let GLK
denote the smallest Kripke game logic.

〈g〉(ϕ ∨ ψ) → 〈g〉ϕ ∨ 〈g〉ψ ¬〈g〉⊥

Figure 7.1: The additional axiom schemas of GLK, where g ∈ Γ0 is atomic.

I Theorem 7.5. GLK is sound with respect to the class of all Kripke models.

One can show by induction that 〈γ〉(ϕ ∨ ψ) → 〈γ〉ϕ ∨ 〈γ〉ψ and ¬〈γ〉⊥ hold
for all dual-free games γ. As a consequence, GLK

−d = PDL, the standard Segerberg
axiomatization of PDL. The main difference between the axiomatic systems is
that where GLK

−d uses the Fixpoint Rule, PDL uses the induction axiom (to be
discussed later). The interderivability of these principles is shown, e.g., in [77].
Hence, the completeness result for GLK

−d follows from the completeness result for
PDL.

I Theorem 7.6. GLK
−d is complete with respect to the class of all Kripke models.

As an analogue to the previous chapter, we shall also show that GLK
−∗ is

complete w.r.t. the class of all Kripke models. As in the previous chapter, the
proof is via a canonical model construction, the difference being that now the
canonical model we construct is a Kripke model.

Let Λ be any Kripke game logic and let S be the set of all maximally Λ-
consistent sets of formulas. Define the canonical Λ-model C = ((S, {Rg|g ∈
Γ0}), V) as follows:

s ∈ V (p) iff p ∈ s
sRgt iff {〈g〉ϕ|ϕ ∈ t} ⊆ s

134 Chapter 7. Game Logic over Kripke Models

Before proceeding to prove completeness, we need an auxiliary existence lemma
which was already appealed to in section 3.4.3 when proving the completeness of
Coalition Logic over individualistic coalition models.

I Lemma 7.7. For any maximally Λ-consistent set s and any formula 〈g〉ϕ ∈ s,
there is some maximally Λ-consistent set t such that ϕ ∈ t and for all ψ ∈ t,
〈g〉ψ ∈ s.

Proof. Let t0 = {ϕ} ∪ {δ|[g]δ ∈ s}. Assume by reductio that t0 is inconsistent,
i.e., `Λ

∧
∆ → ⊥ where w.l.o.g. ∆ = {ϕ, δ1, . . . , δn}. This would mean that

〈g〉ϕ, [g]δ1, . . . , [g]δn ∈ s and hence using the distribution axiom of figure 7.1
〈g〉(ϕ ∧ δ1 ∧ . . . ∧ δn) ∈ s. Since

∧
∆ implies ⊥ this means that 〈g〉⊥ ∈ s which

contradicts the other axiom of figure 7.1. This shows that t0 is indeed consistent.
Consequently, t0 can be extended to a maximally Λ-consistent set t ⊇ t0 which

satisfies the condition: take any δ ∈ t and assume by reductio that 〈g〉δ 6∈ s. Then
[g]¬δ ∈ s and hence ¬δ ∈ t0 ⊆ t, contradicting the consistency of t. ¥

I Theorem 7.8. GLK
−∗ is complete with respect to the class of all Kripke models.

Proof. As in the proof of theorem 6.10 for Game Logic over general game mod-
els, we first establish the following truth lemma: For any maximally Λ-consistent
set s ∈ S and any formula ϕ: C, s |= ϕ iff ϕ ∈ s. The proof is the same as
before, except that the atomic case showing that sEgϕ

C holds iff 〈g〉ϕ ∈ s does
not immediately follow from the definition of the canonical model. Still, it can
be proved easily using the previous existence lemma.

Using this truth lemma, the canonical model theorem can be established:
Every Kripke game logic Λ is complete with respect to its canonical model C.
Completeness w.r.t. the class of all Kripke models then follows as a corollary. ¥

7.3.2 The Induction Axiom

As mentioned, in the standard axiomatization of PDL the following induction
axiom IndAx

〈α∗〉ϕ → (ϕ ∨ 〈α∗〉(¬ϕ ∧ 〈α〉ϕ))

replaces the Fixpoint Rule. The induction axiom formalizes what might be called
a sudden miracle principle. If ϕ does not hold at present but Angel has a strategy
for achieving it after playing α∗, then she must be able to do this by means of a
sudden miracle: She must have a strategy for playing α∗ which lets her achieve
a state where ϕ is false but from where she can achieve ϕ through one play of α.
The induction axiom is usually better known in its dualized version

(ϕ ∧ [α∗](ϕ → [α]ϕ)) → [α∗]ϕ.

It is an easy exercise to check that the induction axiom is a sound principle
provided dual is not present. In a world without demons, all miracles are sudden.

7.3. Axiomatization and Induction 135

I Theorem 7.9. GLK
−d ` IndAx.

Proof. It is shown in [77] that the Fixpoint Rule and the induction axiom are
interderivable in PDL. Below we shall give a semantic argument showing that
the induction axiom is valid in dual-free Game Logic over Kripke models. By
theorem 7.6, this argument is sufficient.

Semantically, we need to show that for every dual-free game α,

Eα∗(Z) ⊆ Z ∪ Eα∗(Z ∩ Eα(Z)).

Without dual, theorem 7.1 guarantees all effectivity functions to be disjunctive.
By theorem A.3, this means that fixpoints can be finitely approximated and hence

Eα∗(Z) = µX.Z ∪ Eα(X) =
⋃

i<ω

F ↑i

where F (X) = Z ∪ Eα(X). Thus it suffices to show by induction that for all i
we have F ↑i ⊆ Z ∪G↑i, where G(X) = (Z ∩Eα(Z))∪Eα(X). The inductive step
consists of proving the following inclusion

Z ∪ Eα(F ↑i) ⊆ Z ∪ (Z ∩ Eα(Z)) ∪ Eα(G↑i)

which follows from the induction hypothesis, monotonicity and disjunctivity of
Eα. ¥

Axiomatically, finite atomic disjunctivity is guaranteed by the two axioms of
figure 7.1. Once dual is present, however, disjunctivity and consequently also the
induction axiom can fail to hold for non-atomic games.

I Theorem 7.10. GLK 6` IndAx.

Proof. The Kripke model of figure 7.2 falsifies the induction axiom for the game
(a ∩ b)∗.

s0 ¬p

s1 ¬p s2 p

s3 p s4 p

Figure 7.2: A Kripke model with two accessibility relations Ra (solid arrows) and
Rb (dashed arrows) which falsifies the induction axiom.

The Kripke model MK consists of 5 states where MK , s0 |= 〈(a ∩ b)∗〉p, for
Angel has a strategy for achieving p after playing two rounds of (a ∩ b). On the

136 Chapter 7. Game Logic over Kripke Models

other hand, MK , s0 6|= p and similarly MK , s0 6|= 〈(a∩ b)∗〉(¬p∧〈a∩ b〉p) because
at state s2 the formula p holds. Formally,

E(a∩b)∗({s2, s3, s4}) = {s2, s3, s4} ∪ Ea∩b({s2, s3, s4}) ∪ . . .
= {s1, s2, s3, s4} ∪ Ea∩b({s1, s2, s3, s4}) ∪ . . .
= {s0, s1, s2, s3, s4} ∪ Ea∩b({s0, s1, s2, s3, s4}) ∪ . . .
= {s0, s1, s2, s3, s4}

whereas (¬p ∧ 〈a ∩ b〉p)MK = {s1} and E(a∩b)∗({s1}) = {s1} ∪ Ea∩b({s1}) ∪ . . . =
{s1}. ¥

7.4 Varieties of Iteration

When explaining the semantics of iteration in the previous chapter, we said that
for γ∗, Angel is allowed to choose how often to play game γ, with the possibility
not to play γ at all. More precisely, game γ is played repeatedly, and after each
play of γ, Angel can decide whether or not to continue. Alternatively, we can
think of a second kind of iteration where Angel immediately has to decide on how
often she wants to play γ. The second kind of iteration is formally defined as
follows:

I Definition 7.11 (Alternative Iteration). The alternative iteration of a
game γ is denoted as γ>. Given game model M = ((S, {Eg|g ∈ Γ0}), V), define
Eγ> (X) =

⋃
i<ω Ei

γ(X).

From the informal semantics we have given it should be clear that a winning
strategy for Angel in γ> will also provide her with a winning strategy in γ∗

whereas the converse does not hold, since the number of times Angel has to play
γ may depend on the strategy chosen by Demon during the play of the game.

I Theorem 7.12. 〈γ>〉ϕ → 〈γ∗〉ϕ is valid whereas 〈γ∗〉ϕ → 〈γ>〉ϕ is not.

Proof. Using the fixpoint results of the previous chapter, induction on i shows
that

Ei
γ(X) ⊆ µY.X ∪ Eγ(X)

which establishes the validity. For a counterexample to the validity of the converse
implication, consider the model of figure 7.2 modified by making p false at state
s4. In the resulting model, 〈(a ∩ b)∗〉p will be true at s0 whereas 〈(a ∩ b)>〉p will
be false. ¥

With respect to the induction axiom, the two types of iteration behave the
same: (ϕ ∧ [α>](ϕ → [α]ϕ)) → [α>]ϕ is not valid, either. For a counterexample,
one can use the model of figure 7.2 which was used to show that induction for
∗ fails. Analogous to the case of ∗, induction does hold for > in dual-free game
logic, the reason being that in that case both kinds of iteration coincide.

7.5. Complexity 137

I Theorem 7.13. For disjunctive Eγ, Eγ∗ = Eγ> , and hence for dual-free γ,
〈γ∗〉ϕ ↔ 〈γ>〉ϕ is valid.

Proof. An easy corollary of theorems A.1 and A.3. ¥

In other words, for programs, there is no distinction between the two kinds of
iteration. Intuitively, if Angel makes all the choices in game γ, there can be no
way in which the number of times she needs to play γ can depend on the choices
Demon makes.

The difference between γ∗ and γ> might remind programmers of the difference
between while-loops while ϕ do γ and for-loops for i:=1 to n do γ, where
we assume that the value of the variable i is not modified in the body of the
for-loop. Under this assumption, for-loops seem weaker than while-loops since
the number of iterations is fixed at the beginning. In case the body of the loop
γ involves interaction with the user (e.g., letting the user specify the value of a
particular variable), the number of γ-iterations cannot be determined in advance,
and hence the two loops do not have the same expressive power. If on the other
hand γ contains no user-interaction, at run time, the number of iterations of the
while-loop can be calculated before the loop is entered, and hence n can be chosen
accordingly.

7.5 Complexity

As for model checking, recall that since Kripke models are game models, the
model-checking algorithm of the previous chapter can be used for Kripke models
as well. As mentioned when discussing the complexity of model checking for
Coalition Logic, special purpose model checkers for Kripke models may very well
perform better in practice, still the complexity should not differ essentially from
the complexity of model checking for general game models. In particular, a crucial
feature which determines the complexity will be the alternation depth of the
formula.

For satisfiability, we have a precise characterization of the complexity of the
decision problem.

I Theorem 7.14. The satisfiability problem for Game Logic over Kripke models
is EXPTIME-complete.

Proof. For the lower bound, since GLK includes all of PDL which is known to
be EXPTIME-complete (see, e.g., [77, 60]), GLK is EXPTIME-hard. For the
upper bound, GLK is a fragment of the modal µ-calculus (theorem 6.15) whose
satisfiability problem is decidable in EXPTIME (see, e.g., [26]). We have already
remarked in the proof of theorem 6.22 that the embedding is efficient. ¥

138 Chapter 7. Game Logic over Kripke Models

Finally, it would be interesting to take a closer look at a more direct proof of
EXPTIME-hardness. In particular, one way to prove the EXPTIME-hardness of
PDL is via a reduction of the 2-person corridor tiling game to PDL-satisfiability
[33, 42]. It would seem that GL would be a much more natural logic to encode
these games since it has the direct means for expressing 2-player games.

7.6 Characterizing Game Operations

The set of game operations of Game Logic, sequential composition, union, iter-
ation, test and dual, has intuitive appeal since it seems to be a natural minimal
extension of the set of programming constructs of PDL. On the other hand, we
have seen in section 7.4 that an alternative form of iteration can be defined which
has a perfectly intuitive interpretation as well. Thus the question arises how the
game operations of Game Logic can be characterized. What distinguishes the set
of game operations of GL? Is there still a sense in which the game operations of
GL are complete or maximal? For program operations, a partial answer to this
question has been obtained, and in this section we show how this answer can be
extended from programs to games, the crucial notions needed being bisimulation
invariance and bisimulation safety.

Recall that the general notion of bisimulation defined in section 2.5 corre-
sponds to standard bisimulation over Kripke models. We have come across the
notion of bisimulation invariance before.

I Definition 7.15 (Invariance & Safety). A GL-formula ϕ is invariant for
bisimulation if for all game models M and M′, s ↔ s′ implies M, s |= ϕ ⇔
M′, s′ |= ϕ. A GL-game γ is safe for bisimulation if for all models M and
M′, s ↔ s′ implies (1) if sEγX then ∃X ′ ⊆ S ′ such that s′E ′

γX
′ and ∀x′ ∈

X ′ ∃x ∈ X : x ↔ x′, and (2) if s′E ′
γX

′ then ∃X ⊆ S such that sEγX and
∀x ∈ X ∃x′ ∈ X ′ : x ↔ x′.

While bisimulation invariance should be seen as a generalization of the first bisim-
ulation condition to non-atomic propositions, bisimulation safety generalizes the
other two conditions to non-atomic games. Bisimulation safety requires that if
Angel can guarantee ϕ in game γ in one model, she must be able to guarantee
something at least as strong in the other model. If this were not the case, the two
models could be distinguished by playing γ, since Angel can achieve more in one
model than in the other. Theorem 6.5 of the previous chapter thus states that all
GL-formulas are invariant for bisimulation and all GL-games are safe for bisim-
ulation. More informally, GL is sound for bisimulation equivalence, i.e., not too
expressive: Bisimilar states cannot be distinguished by formulas of the language
(invariance), and the game constructions provided do not produce games which
can distinguish bisimilar states either (safety).

7.6. Characterizing Game Operations 139

From the perspective of modal logic, there is a tight correspondence between
bisimilar states of a process (Kripke model) and states which make the same
modal formulas true: Bisimilar states satisfy the same modal formulas, and for
certain classes of Kripke models (e.g. finite models), the converse holds as well.
We saw in chapter 3 that such results can be extended to more general models and
to more general modal languages such as Coalition Logic (theorems 3.4 and 3.5).
Bisimulation-invariance results of this kind make bisimulation an attractive notion
of equivalence between models, since it matches the expressive power of the modal
language rather well. Furthermore, bisimulation has provided a characterization
of the modal fragment of first-order logic (FOL). Modal formulas can be translated
into formulas of FOL, and it turns out (see theorem 7.17) that the modal fragment
of FOL is precisely its bisimulation-invariant fragment.

This line of investigation can be extended from modal logic to Propositional
Dynamic Logic: As a corollary to theorem 6.5, PDL-formulas are bisimulation-
invariant. Secondly, iteration-free PDL-programs can be translated into FOL as
well, raising the question how to characterize the FOL-fragment which (transla-
tions of) PDL-programs define. In [15], such a result has been obtained: The
program fragment of FOL can be characterized as its bisimulation-safe fragment.
This result shows that if we take bisimulation as our notion of process equivalence
and FOL as our language, the program operations provided by PDL are complete,
i.e., no additional program operations will allow us to construct new programs.
In this section, we present results which carry the investigation one step further,
moving from nondeterministic programs (i.e., 1-player games) to 2-player games,
more specifically from PDL to GL.

7.6.1 First-Order Games

It is well-known that modal logic and PDL without iteration can be translated
into FOL. In spite of the second-order appearance of Game Logic, a translation
into FOL is possible here as well: The signature contains a unary relation symbol
Cp for every propositional letter p ∈ Φ0, and a binary relation symbol Cg for
every atomic game g ∈ Γ0. Furthermore, we allow for second-order variables
X,Y, . . . as well. Thus, the unary relation symbols now comprise constants as
well as variables. As will become clear later, we will not quantify over these
variables but only use them as a matter of convenience to serve as placeholders
for substitution; hence, we can still consider the language to be first-order. We
define the translation function ◦ which maps a GL-formula ϕ to a FOL-formula
with one free variable x, and an iteration-free GL-game γ to a FOL-formula with
two free variables x and Y .

140 Chapter 7. Game Logic over Kripke Models

p◦ = Cpx for p ∈ Φ0 g◦ = ∃z(xCgz ∧ Y z) for g ∈ Γ0

(¬ϕ)◦ = ¬ϕ◦ (ϕ?)◦ = ϕ◦ ∧ Y x
(ϕ ∨ ψ)◦ = ϕ◦ ∨ ψ◦ (α ∪ β)◦ = α◦ ∨ β◦

(〈γ〉ϕ)◦ = γ◦[Y := ϕ◦] (α; β)◦ = α◦[Y := β◦]
(αd)◦ = ¬α◦[Y := ¬Y x]

In this definition, substitution for second-order variables is used as follows:
Given two FOL-formulas δ and ξ where ξ contains exactly one free first-order
variable, say x, δ[Y := ξ] denotes the result of replacing every occurrence Y t in δ
by ξ[x := t]. As an example, ∃z(xCgz ∧ Y z)[Y := ¬Y x] yields ∃z(xCgz ∧ ¬Y z).
Some more remarks on notation: ϕ(x1, . . . , xm, X1, . . . , Xn) refers to a formula
ϕ whose free first-order variables are among x1, . . . , xm and whose second-order
variables are among X1, . . . , Xn. When a formula has been introduced in this way,
ϕ(t1, . . . , tm, T1, . . . , Tn) denotes ϕ[x1 := t1, . . . , xm := tm, X1 := T1, . . . , Xn :=
Tn], i.e. the simultaneous substitution of ti for xi and Tj for Xj in ϕ.

Regarding the semantics, we can interpret a Kripke model M = ((S, {Rg|g ∈
Γ0}), V) as a first-order model in the obvious way, taking Rg as the interpretation
of Cg, and interpreting Cp as V (p). For a unary predicate symbol Cp and T ⊆ S,
let Mp:=T be the model which is the same as M except that V (p) = T . Given a
model M, states s1, . . . , sm ∈ S, sets of states S1, . . . , Sn ⊆ S and a FOL-formula
ϕ(x1, . . . , xm, X1, . . . , Xn), we write M |= ϕ[s1, . . . , sm, S1, . . . , Sn] to denote that
ϕ is true in M according to the standard FOL semantics when xi is assigned the
value si and Xi the value Si.

The following result states the semantic correctness of the translation function.

I Lemma 7.16. For all GL-formulas ϕ, games γ and Kripke models M: M, s |=
ϕ iff M |= ϕ◦[s] and sEγT iff M |= γ◦[s, T].

As with the safety result for program constructions, the safety result for game
constructions makes use of the characterization of the modal fragment of FOL as
its bisimulation-invariant fragment. The definition of invariance and safety which
was phrased for GL has its natural first-order analogue: A FOL-formula ϕ(x)
is invariant for bisimulation if for all models M and M′, s ↔ s′ implies that
M |= ϕ[s] iff M′ |= ϕ[s′]. A first-order formula ϕ(x, Y) is safe for bisimulation if
for all models M and M′, s ↔ s′ implies (1) if M |= ϕ[s, T] then there is some
T ′ such that M′ |= ϕ[s′, T ′] and for all t′ ∈ T ′ there is some t ∈ T such that
t ↔ t′, and (2) if M′ |= ϕ[s′, T ′] then there is some T such that M |= ϕ[s, T] and
for all t ∈ T there is some t′ ∈ T ′ such that t ↔ t′.

By a modal formula we mean a GL-formula which only contains atomic games
(i.e., also no tests). The classic result can now be stated as follows:

I Theorem 7.17 (van Benthem [14]). A FOL-formula ϕ(x) is invariant for
bisimulation iff it is equivalent to the translation of a modal formula.

7.6. Characterizing Game Operations 141

For the rest of this section, we will assume that games are iteration-free. In a
given model M with domain S, a FOL-formula ϕ(x, Y) gives rise to a function
EM

ϕ : P(S) → P(S) by defining EM
ϕ (T) := {s ∈ S|M |= ϕ[s, T]}. Call ϕ

monotonic (disjunctive) iff for any M, EM
ϕ is monotonic (disjunctive). Similarly,

a modal formula ϕ and a proposition letter p ∈ Φ0 give rise to such a function EM
ϕ,p

by defining EM
ϕ,p(T) := {s ∈ S|Mp:=T , s |= ϕ}, and we say that ϕ is monotonic

(disjunctive) in p iff EM
ϕ,p is for any M.

Lastly, let Pos(ϕ) (Neg(ϕ)) be the set of atomic propositions which occur
positively (negatively) in ϕ, i.e., under an even (odd) number of negations. Thus,
formula ϕ is strictly positive (negative) in p iff p 6∈ Neg(ϕ) (p 6∈ Pos(ϕ)).

The following lemma relates the syntactic notion of positivity to the semantic
notion of monotonicity. It makes use of a Lyndon-interpolation theorem for modal
logic and the global deduction theorem, where |=g refers to global consequence over
Kripke models.

I Theorem 7.18 (Fitting [47]). If |= α → β for modal formulas α, β, then
there exists a modal formula δ such that (1) |= α → δ, (2) |= δ → β, (3)
Pos(δ) ⊆ Pos(α) ∩ Pos(β), and (4) Neg(δ) ⊆ Neg(α) ∩ Neg(β).

I Theorem 7.19 (Fitting [48]). For modal formulas α and β, α |=g β iff there
is some n > 0 such that |= (21α ∧ . . . ∧ 2nα) → β, where each 2i represents
a possibly empty sequence of universal modalities labeled by (possibly different)
atomic games.

I Lemma 7.20. A modal formula ϕ is monotonic in p iff it is equivalent to a
modal formula strictly positive in p.

Proof. One can easily check by induction that strictly positive modal formulas
are monotonic, so we shall only prove the other direction. If ϕ(p) is monotonic
in p, then taking a proposition letter q not occurring in ϕ, we have p → q |=g

ϕ(p) → ϕ(q). By theorem 7.19, we know that

(21(p → q) ∧ . . . ∧ 2
n(p → q)) → (ϕ(p) → ϕ(q))

is valid, and as a consequence,

ϕ(p) → ((21(p → q) ∧ . . . ∧ 2
n(p → q)) → ϕ(q))

is also valid. By theorem 7.18, this implies that

ϕ(p) → δ and δ → ((21(p → q) ∧ . . . ∧ 2
n(p → q)) → ϕ(q))

are valid, for some modal formula δ which does not contain q and which is strictly
positive in p. The second conjunct implies that δ → ϕ(p) is valid: For suppose
M, s |= δ and T = {t|M, t |= p}. Then since δ does not contain q, Mq:=T , s |= δ.
From this it follows that Mq:=T , s |= ϕ(q) and hence M, s |= ϕ(p). Thus, ϕ is
equivalent to δ, a modal formula strictly positive in p. ¥

142 Chapter 7. Game Logic over Kripke Models

The main lemma we need for our safety result relates monotonic modal for-
mulas to GL-formulas of a special kind.

I Lemma 7.21. Every modal formula ϕ which is monotonic (disjunctive) in p is
equivalent to a GL-formula 〈γ〉p, where γ is a game (program) which does not
contain p.

Proof. The claim about programs and disjunctivity is proved in [68]. As for
games and monotonicity, we prove by induction that every modal formula ϕ which
is strictly positive (negative) in p is equivalent to a GL-formula 〈γ〉p (¬〈γ〉p),
where γ does not contain p. Then the result follows by lemma 7.20. The following
table provides the equivalent GL-formulas for every modal formula ϕ depending
on whether ϕ is strictly positive or strictly negative in p.

modal formula str. pos/neg GL-formula ind. hyp.
p pos 〈>?〉p −

q 6= p pos 〈q?;⊥?d〉p −
q 6= p neg ¬〈q?d;⊥?〉p −
¬ϕ pos 〈γ〉p |= ϕ ↔ ¬〈γ〉p
¬ϕ neg ¬〈γ〉p |= ϕ ↔ 〈γ〉p

ϕ1 ∨ ϕ2 pos 〈γ1 ∪ γ2〉p |= ϕi ↔ 〈γi〉p
ϕ1 ∨ ϕ2 neg ¬〈γ1 ∩ γ2〉p |= ϕi ↔ ¬〈γi〉p
〈g〉ϕ pos 〈g; γ〉p |= ϕ ↔ 〈γ〉p
〈g〉ϕ neg ¬〈gd; γ〉p |= ϕ ↔ ¬〈γ〉p

¥

I Theorem 7.22. A FOL-formula ϕ(x, Y) is equivalent to the translation of an
iteration-free GL-game iff it is safe for bisimulation and monotonic in Y . A FOL-
formula ϕ(x, Y) is equivalent to the translation of an iteration-free GL-program
iff it is safe for bisimulation and disjunctive in Y .

Proof. If ϕ(x, Y) is equivalent to the translation of a GL-game γ, then using
lemma 7.16, ϕ will be monotonic in Y (because Eγ is monotonic) and safe for
bisimulation (by theorem 6.5).

For the converse, assume that ϕ(x, Y) is monotonic and safe for bisimulation.
Taking a new predicate symbol Cp which does not occur in ϕ, ϕ(x,Cp) will be
invariant for bisimulation. By theorem 7.17, ϕ(x,Cp) is equivalent to the trans-
lation of a modal formula δ, i.e. |= ϕ(x,Cp) ↔ δ◦. Since ϕ(x, Y) was monotonic,
δ will be monotonic in p and by lemma 7.21, |= δ ↔ 〈γ〉p where γ is a GL-game
which does not contain p, and so |= ϕ(x,Cp) ↔ (〈γ〉p)◦. It can now be checked
that |= ϕ(x, Y) ↔ γ◦: If M |= ϕ[s, T] then given that Cp does not occur in ϕ,
Mp:=T |= ϕ(x,Cp)[s] and so Mp:=T |= (〈γ〉p)◦[s]. Since p does not occur in γ,
this implies that M |= γ◦[s, T]. The converse is proved along the same lines, and
the proof for programs is completely analogous. ¥

7.6. Characterizing Game Operations 143

On the one hand, proposition 7.22 provides a characterization result for the
iteration-free games which can be constructed in Game Logic: GL-games are the
monotonic bisimulation-safe formulas ϕ(x,Cp) of first-order logic (we can simply
replace the variable Y by a designated unary predicate constant Cp). In other
words, the game-fragment of FOL is precisely the monotonic bisimulation-safe
fragment. On the other hand, looking at the set of operations on games which
GL provides, one may ask whether one could not add other natural operations to
create new games (e.g., playing games in parallel), thus increasing the expressive
power of the language. Proposition 7.22 demonstrates that if the new game
operation is (1) first-order definable, (2) monotonic and (3) safe for bisimulation,
then it is expressible in GL already. As argued before, requirements (2) and
(3) are natural desiderata for games, i.e., they are minimal requirements for any
alleged game operation, and so the operations of test, union, composition and
dual are sufficient to construct all first-order definable games.

The above result concerning bisimulation-safe programs is different from the
result presented in [15, 68]. As discussed in section 7.1, disjunctivity allows one
to model programs as relations on states. The program operations of PDL then
create complex relations Rπ ⊆ S × S which can be translated into FOL-formulas
ϕ(x, y). The second part of theorem 7.22 will then read as follows:

A FOL-formula ϕ(x, y) is safe for bisimulation iff it is equivalent to
(the translation of) an iteration-free PDL-program.

While this formulation can do without additional conditions such as monotonicity
or disjunctivity, it does not allow for a comparison between programs and games
since games cannot be modeled as relations on states. Theorem 7.22 above on
the other hand shows that the dual operator makes all the difference between
programs and games; without dual, we obtain all first-order definable programs,
with dual, all first-order definable games.

7.6.2 Beyond First-Order Games

The last theorem was concerned with Kripke models rather than game models in
general. The reason for this restriction is that game models are rather unorthodox
structures. We do not know of any logical languages besides non-normal modal
logics and Game Logic which have been proposed for these structures. Conse-
quently, this prevents an easy extension of the definability result of proposition
7.22 to GL over general game models.

Even for Kripke models, the translation into FOL carried out in the previous
section relied on the restriction to iteration-free games. For programs, a stronger
definability result covering iteration has been obtained in [68] which characterizes
the class of monadic-second-order definable programs which are safe for bisimu-
lation. The proof makes use of the fact that the bisimulation-invariant fragment
of monadic second-order logic is the µ-calculus [71]. An extension of proposition

144 Chapter 7. Game Logic over Kripke Models

7.22 along these lines, however, would require a better understanding of how ex-
actly GL relates to the µ-calculus. As for the µ-calculus itself, many fundamental
properties were established only recently, such as completeness [124], the non-
collapse of the alternation-hierarchy [25, 81] and uniform interpolation [36], and
others such as Lyndon interpolation are still open.

To summarize, the restriction of the scope of proposition 7.22 to FOL is due to
the fact that FOL is one of the logics we know most about and is able to express
the most fundamental game operations. When moving to stronger languages,
different options are available, always depending on the game constructions one
is interested in.

7.7 Discussion

To sum up our investigation of Game Logic, chapters 6 and 7 have considered four
logics which we shall identify by their (conjectured) axiomatic versions: Game
Logic over general game models GL, Game Logic over Kripke models GLK, and their
respective program fragments GL−d and PDL. The previous chapter focused on a
comparison between GL and GL−d, making use of the generalized modal µ-calculus
to obtain complexity and expressiveness results.

The present chapter has yielded a number of differences between PDL and
GLK. We can interpret these as differences between program operations and game
operations in the case where all (if any) interaction is introduced by these oper-
ations, i.e., the atomic level only consists of 1-player games. The differences and
similarities are summarized in figure 7.3:

Game Logic GLK program fragment PDL
complete axiomatization not yet yes

induction axiom valid no yes
expressive power >

complexity satisfiability EXPTIME-complete EXPTIME-complete
FOL-definable operations ∪ ; ? d ∪ ; ?

Figure 7.3: Differences between Game Logic and its program fragment over Kripke
models.

The last entry of the table shows that games are programs plus role switch.
Under bisimulation equivalence, the operations of choice, sequential composition
and test suffice to obtain all first-order definable programs; choice, sequential
composition, test and duality suffice to obtain all first-order definable games.
A further result not covered by the table is that games allow for two kinds of
iteration which coincide for programs.

7.8. Bibliographic Notes 145

As was to be expected, a number of open questions remain, most notably a
proof of axiomatic completeness and a generalization of the bisimulation-safety
result to include iteration. What is more interesting, the translation of Game
Logic into the modal µ-calculus has brought up questions which so far have not
been considered in the literature on the subject: What are examples of µ-calculus
formulas which can be expressed with n variables but not with less than n? How
expressive are these finite variable fragments? An answer to these questions will
also provide a better characterization of the precise expressive power of Game
Logic.

In spite of theorem 7.22, the investigation of other game operations, in par-
ticular parallelism, also constitutes a promising line for future research. Seman-
tically, a strategic game can be viewed as the parallel composition of the ac-
tions/strategies of the players, so in a sense strategic games already involve par-
allelism. Still, Game Logic in its current form has no operation for playing two
games in parallel. In general, such an operation should be an extension of paral-
lelism as defined for programs, as is done, e.g., in Concurrent Dynamic Logic or
in Process Algebra. Alternatively, inspirations can be taken from Linear Logic,
where infinite concurrent plays have been used in the semantics for the multiplica-
tive operators. As an example, A⊗B denotes the 2-player game where A and B
are played concurrently and player 2 (Opponent) is allowed to switch back and
forth between the component games. Some first attempts to define parallelism
for Game Logic have been made in [89, 90].

7.8 Bibliographic Notes

The results of section 7.6 were first published in [100]. Theorem 7.14 has been
stated in [45], but one should be careful to note that the “known lower bound
due to PDL” only holds for Game Logic over Kripke models.

For Propositional Dynamic Logic, see [59, 77] for comprehensive survey articles
and [60] for a recent textbook. A further reference which treats also other logics
used in computer science is [54]. RPDL (which is also known as ∆PDL) and
a closely related system LPDL (PDL + loop) are studied in [61]. Concurrent
Propositional Dynamic Logic was introduced in [108] and followed up by [107].

For textbooks on Process Algebra, see [49, 8]. Game semantics for Linear
Logic is discussed in [21, 2].

Chapter 8

Game Over

In this final chapter, we take another look at the relationship between Game
Logic and Coalition Logic, showing that they embody two different approaches
to reasoning about multi-agent systems. As shall be explained, the difference
between these two approaches is in fact well-known in computer science. In
section 8.2, we then take stock of the theoretical results obtained in this thesis,
on the one hand regarding the relationship between programs and games and
on the other hand regarding the differences between reasoning about individuals
and reasoning about coalitions. Finally, section 8.3 addresses the question how
far Game Logic and Coalition Logic go on the way to a logic of social software.

8.1 Bringing it All Together

As shown in chapter 2, both Coalition Logic and Game Logic make use of essen-
tially the same underlying semantics, interpreted either as an internal model of
a single game or as an external model of multiple games. In fact, the difference
between the two logics and their uses is analogous to the difference between PDL
and temporal logic (TL), as summarized by the following equation:

CL

GL
=

TL

PDL

As logics for reasoning about software, temporal logics such as CTL, CTL∗, etc.
differ in a number of ways from program logics such as PDL and its extensions
(see e.g. [70] for a more detailed comparison): In the terminology of [77], PDL
is an exogenous logic since programs are an explicit part of the logical language.
In contrast, temporal logic is endogenous: The model itself is the fixed program
over which expressions are interpreted. The difference between endogenous and
exogenous logics thus corresponds to the difference between the internal and the
external view of games, explained in section 2.4. This central difference has far

147

148 Chapter 8. Game Over

reaching technical consequences. First, program verification takes a different form
in the two approaches: In the endogenous approach, program verification takes
the form of model checking, in the exogenous approach it takes the form of the-
orem proving or satisfiability checking. Second, the endogenous approach can be
used only to reason about systems with a finite number of states. This restriction
comes from the use of model checking for verification: If there are infinitely many
states, the denotation of a formula may not be computable. The exogenous ap-
proach on the other hand is not limited to such finite-state systems. Third and
finally, the class of programs one can reason about in the exogenous approach is
limited to compositional systems, where complex programs are constructed using
a limited number of program constructions for which inductive proof rules exist.
The endogenous approach on the other hand can also deal with non-compositional
systems and is thus more general in this respect.

The differences between TL and PDL on the right software side of the equation
equally apply on the left social software side between GL and CL. Naturally, there
are some more differences on the social software side: In contrast to GL, CL can
describe games with more than two players and it can express the effectivity of
non-singleton coalitions, differences which have no analogue on the right software
side of the equation. Still, it is easy to see how GL could be extended to games
with more than 2 players, in fact [97] already contains such a proposal.

In terms of applications to social software, chapter 5 has illustrated some ap-
plications of Coalition Logic. The examples have illustrated not only verification
(via model checking) but also synthesis (via satisfiability tests) of social software.
As for applications of Game Logic in the verification of social software, Parikh
in [97] provides an example of how Game Logic can be used to verify the fair-
ness of a cake-cutting algorithm, suggesting that even propositional Game Logic
can be useful to verify properties of simple multi-agent algorithms. Not being
completely convinced by this application, however, we think that stronger logical
frameworks such as the refinement calculus [7] (see also section 8.3) are needed to
treat interesting examples. There is, however, another way in which Game Logic
could indirectly turn out to be very useful for social software verification, namely
as game algebra.

Game Algebra

The operations of Game Logic have also be studied from an algebraic perspective
[55, 122]. Recall that a complex game expression γ of Game Logic denotes a
predicate transformer Eγ : P(S) → P(S). Hence it is natural to call two game
expressions γ1 and γ2 equivalent provided that Eγ1

= Eγ2
holds for all game

models. Put differently, γ1 and γ2 are equivalent if 〈γ1〉p ↔ 〈γ2〉p is valid for a p
which occurs neither in γ1 nor in γ2. When γ1 and γ2 are equivalent, we say that
γ1 = γ2 is a valid game identity.

Basic game algebra studies the game operations of sequential composition,

8.1. Bringing it All Together 149

choice (demonic and angelic) and duality. The test-operator is excluded since it
would take us out of the purely algebraic framework; iteration on the other hand
could be added but has not been investigated so far. The central problem of basic
game algebra is to axiomatize the set of valid game identities. The conjectured
axiomatization of [12] has been proved complete in [55], and an alternative alge-
braic proof has been given in [122]. Consider the following game identities (taken
from [122]), where we write duality as −, angelic choice as ∨ and demonic choice
as ∧:

x ∨ x = x x ∧ x = x (G1)
x ∨ y = y ∨ x x ∧ y = y ∧ x (G2)

x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∧ (y ∧ z) = (x ∧ y) ∧ z (G3)
x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x (G4)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (G5)
−− x = x (G6)

−(x ∨ y) = −x ∧ −y −(x ∧ y) = −x ∨ −y (G7)
x; (y; z) = (x; y); z (G8)

(x ∨ y); z = x; z ∨ y; z (x ∧ y); z = x; z ∧ y; z (G9)
−(x; y) = −x;−y (G10)

x; y ∨ x; (y ∨ z) = x; (y ∨ z) (G11)

Axioms G1-7 are well known axioms of boolean algebra, where angelic choice
corresponds to disjunction or join, demonic choice to conjunction or meet, and
dual to negation. Axiom G9 is a principle which is already present in process
algebra [49, 8]: If a choice of player i between x and y is followed by game z in
any case, then player i might as well choose between x; z and y; z directly. Note
that the right-distributive law x; (y ∨ z) = x; y ∨ x; z on the other hand is not
valid. In the first game, player 1 can postpone her choice until after game x has
been played. She may have a winning strategy which depends on how x is played,
and hence such a strategy will not necessarily be winning in the second game,
where she has to choose before x is played. Axiom G11 may be easier to read as
x; y ≤ x; (y ∨ z) or as the quasi-equation

y ≤ z → x; y ≤ x; z,

where a ≤ b abbreviates a ∨ b = b. The axiom states the right-monotonicity of
sequential composition, based on the monotonicity of the predicate transformers
Eγ which interpret the game terms.

Soundness of these axioms can easily be verified. Furthermore, one can show
that any valid game identity can be derived from these axioms using equational
logic. So far, this result has not been extended to a version of game algebra which
includes iteration. As shown in [11], game algebra also provides an interesting
perspective on the semantic evaluation games of first-order logic.

Moving from theory to practice, how can Game Algebra be useful for the
analysis of social software? It can serve as the basis for an algebraic description

150 Chapter 8. Game Over

language for multi-agent systems. In the same way in which Process Algebra can
be used as a language for describing concurrent systems, the language of Game
Algebra can be used to describe 2-player games. The laws of Game Algebra can
then be used to simplify or more generally transform the games described pre-
serving semantic equivalence. Finally, Coalition Logic (or Alternating Temporal
Logic) can then serve as a specification language, i.e., formulas of Coalition Logic
can be used to specify properties which are verified by model checking in the
model generated from the Game Algebra expression. Succinctly, we obtain the
following equation relating Coalition Logic and Game Algebra (GA) to temporal
logic and Process Algebra (PA):

CL

GA
=

TL

PA

Needless to say, Game Algebra in its current form can only be the first step in the
direction sketched, comparable to basic Process Algebra (BPA) which serves as
a basis for a wealth of different extensions including concurrency and communica-
tion. Furthermore, the equation suggests that the semantic notion of equivalence
employed in Game Algebra may actually not be the appropriate one. If a Game
Algebra expression denotes a complex game whose properties are to be verified
using Coalition Logic, equivalence defined in terms of simple overall effectivity
will be too crude. Instead, generalized bisimulation as introduced in section 2.5
should be much more suitable. Investigating the axiomatic differences between
Game Algebra as defined above and its relative which is based on bisimulation
equivalence is an interesting open question for further research.

8.2 Summary of Theoretical Results

As we have seen, reasoning about programs can be compared to reasoning about
games using endogenous as well as exogenous logics. In each case, the technical
results obtained for games can be compared to the results we have for programs.
Below we put these theoretical insights into a number of slogans and show how
standard meta-theoretic results about axiomatization, complexity, bisimulation
and expressiveness can yield insights not only about differences between programs
and games but also about differences between reasoning about individuals vs.
coalitions. Furthermore, we remark on the role which iteration plays in these
results, and we point out the relevance of the results for the practice of social
software design and analysis.

The External View: Game Logic vs. Program Logic

Semantically, disjunctivity and induction distinguish programs from
games.

8.2. Summary of Theoretical Results 151

Semantically, any individual effectivity function E models ability in a determined
2-player game (corollary 2.13). If E is disjunctive, it models ability in a 1-player
game (theorem 2.16), so disjunctivity makes all the difference between programs
and determined 2-player games. As a consequence of disjunctivity, the induction
axiom is valid for programs but not for games (theorems 7.9 and 7.10).

Syntactically, program operations + duality = game operations.

Comparing the program operations of Propositional Dynamic Logic to the game
operations of Game Logic, duality is the only difference. Theorem 7.22 suggests
that this is no coincidence: The operations of test, sequential composition and
choice suffice to obtain all first-order definable programs. Adding duality to these
operations yields all first-order definable games.

In the end, games have more expressive power than programs.

Using duality, Game Logic can express properties of models which cannot be ex-
pressed in Propositional Dynamic Logic (theorem 7.2). The expressive difference
relies on the presence of iteration which allows one to express the existence of a
strategy to achieve something in the long run. Without iteration, duality does
not increase expressive power, and hence programs are as expressive as games.

Verifying properties of programs is easier than verifying properties of
games.

At the time of writing, model checking is more complex for games than for pro-
grams (theorem 6.22). This claim is only tentative since better polynomial-time
algorithms may be found for µ-calculus model checking. Hence one should say
more accurately that verifying properties of games is equally complex as verifying
properties of programs if (and only if [18]) model checking for the µ-calculus can
be done in polynomial time.

The Internal View: Coalition Logic vs. Temporal Logic

The comparison between Temporal Logic and Coalition Logic is unfortunately
more difficult than the comparison between PDL and GL. The reason is that
there is a bunch of systems to choose from: On the one hand we have basic
Coalition Logic and Extended Coalition Logic, on the other hand we have simple
modal/temporal logic, CTL, CTL∗, and so on. Furthermore, the models over
which these logics are interpreted differ, and interpreting Coalition Logic over
Kripke models for purposes of comparison will rob it of all its characteristic fea-
tures (in contrast to Game Logic).

On the most basic level, we would want to compare basic Coalition Logic
with normal modal logic. The complexity of model checking is linear time for

152 Chapter 8. Game Over

both modal logic and Coalition Logic, although the model size will be different.
We saw that the complexity of the satisfiability problem for Coalition Logic is
usually PSPACE-complete, as for modal logic. Similarly, there are cases where the
complexity of the satisfiability problem turns out to be NP-complete, for strong
normal modal logics such as S5 as well as for formulas of the individual fragment of
Coalition Logic, when interpreted over extensive games with simultaneous moves.
As remarked in section 3.8.2, these complexity results do give rise to an interesting
difference between programs and games. If it turns out that NP 6= PSPACE
(which we shall assume at least for these slogans):

Game synthesis is easier than program synthesis, provided we allow
for simultaneous moves.

That is, given an individual specification for a single player, formulated in basic
Coalition Logic, finding a satisfying extensive game with simultaneous moves
is an NP-complete problem whereas finding a satisfying program/process or a
satisfying extensive game without simultaneous moves is PSPACE-complete.

Given the close relationship between Extended Coalition Logic and Alternat-
ing Temporal Logic (ATL), one can also compare ATL with its standard temporal
counterpart CTL to get a better idea of how closed systems (programs) differ from
open systems (games). For the complexity of model checking, such a comparison
has been carried out in [3].

Instead of comparing Coalition Logic to temporal or modal logic, below we
will compare Coalition Logic to its individual fragment. Putting our results in
this light will yield some interesting differences between coalitional and individual
reasoning.

Game synthesis is easier for individual than for coalitional specifica-
tions, provided we allow for simultaneous moves.

For extensive games with simultaneous moves, the satisfiability problem for Coali-
tion Logic is PSPACE-complete (theorems 3.27 and 3.29) while the satisfiability
problem of its individual fragment is NP-complete (theorem 3.36). Generating
such a game from a specification formulated in the individual fragment of basic
Coalition Logic is thus simpler than generating it from a coalitional specification,
provided that NP Ã PSPACE. In other words, NP = PSPACE if and only if multi-
agent synthesis for individual specifications is equally complex as for coalitional
specifications.

Game synthesis is easier for extensive games with than for extensive
games without simultaneous moves, given individual specifications.

For individual specifications, the satisfiability problem is NP-complete (theorem
3.36) over extensive games with simultaneous moves but PSPACE-complete (the-
orem 3.37) over extensive games without simultaneous moves. So again, NP

8.2. Summary of Theoretical Results 153

= PSPACE if and only if multi-agent synthesis for individual specifications is
equally complex in extensive games with and without simultaneous moves. As-
suming NP 6= PSPACE, we can also read this result as demonstrating a difference
between environments of perfect and imperfect information: It is simpler to gener-
ate multi-agent environments satisfying certain specifications in case we can hide
information from the agents. Developing an environment which gives agents cer-
tain powers is easier if we have the means to prevent agents from being perfectly
informed about the others’ actions.

In the end, coalitions have more expressive power than individuals.

For extensive games with simultaneous moves, a gain in expressiveness can already
be observed on the local level (theorem 3.35): a language which can express local
coalitional ability is more expressive than a language which can only express local
individual ability. For extensive games without simultaneous moves, coalitions
only add expressiveness in the end, i.e., when the language is enriched to express
what can be achieved at some point in the future (theorem 4.12).

Modal logics are game logics.

Normal modal logics describe 1-player games (i.e., Kripke models), in particular
the basic normal modal logic K coincides with basic 1-player Coalition Logic over
weakly playable coalition models (theorem 3.22). Non-normal monotonic modal
logics describe determined 2-player games (i.e., neighborhood models), the basic
monotonic modal logic M coincides with the individual fragment of basic 2-player
Coalition Logic over weakly playable maximal coalition models (theorem 3.24).
While normal modal logic is coalitional (it can express the ability of the empty
coalition), non-normal modal logic is not (it can only express the ability of the two
players individually), thus providing one explanation of the complexity difference
in the satisfiability problem (see above).

The Role of Iteration

Both on the internal and on the external view, increased expressive power can be
seen to depend on the presence of some form of iteration. In the case of extensive
games without simultaneous moves, coalitions only add expressive power when
long-term ability can be expressed. On the other hand, game operations only
lead to more expressiveness in case iteration is present.

Iteration is also responsible for the observed complexity differences. But while
on the internal view a difference between individuals and coalitions can only
be observed with the satisfiability problem, on the external view the difference
between programs and games emerges in model checking only: In case the atomic
games are actually programs, the satisfiability problems for Game Logic and
for Propositional Dynamic Logic are both EXPTIME-complete (theorem 7.14);

154 Chapter 8. Game Over

in case no restriction is placed on the atomic games, we only know that the
satisfiability problem for Game Logic is in EXPTIME (theorem 6.24), but we
conjecture that EXPTIME-hardness also holds, for games as well as programs.

Implications for Social Software

Besides being interesting on a theoretical level, the technical results obtained are
all of practical importance for the development and analysis of social software.
This is most easily seen for the axiomatization and complexity results: Based on a
complete axiomatization, (semi-)automatic theorem provers can verify properties
of social procedures or deduce that a particular specification of a voting procedure
is inconsistent. In order to verify properties of social software or synthesize social
procedures which meet certain specifications, we also need algorithms for model
checking and satisfiability testing. Furthermore, it is important to know how
complex these algorithms are. Similarly, studying the expressiveness of the logics
involved will allow us to pick the right logical language for the task at hand. If a
specification can be formulated in the individual fragment of basic Coalition Logic,
we can generate an implementation much more efficiently than if a specification
expresses something about the long-term ability of groups of agents, something
for which full Extended Coalition Logic is needed. Bisimulation-invariance and
-safety results become important once we have generated, e.g., a voting procedure
and want to simplify it in various ways. As long as this simplification results in a
bisimilar voting procedure, we are guaranteed that its properties will not change,
provided these properties are expressible in Coalition Logic.

Note that the kinds of results established in this thesis are certainly not the
only ones which could be of relevance for the formal study of social software.
To give one example, analogous to the case of temporal logic, it would be useful
to have preservation theorems which link a class of model transformations (such
as adding/deleting states, etc.) to the class of CL-formulas whose truth values
remain unchanged by these transformations.

8.3 The Future of Social Software

As discussed in the previous sections, Game Logic and Coalition Logic represent
two very different approaches to reasoning about social software, one being ex-
ogenous and the other endogenous. In giving examples of applications, we have
focused on Coalition Logic because we think that in contrast to Game Logic,
Coalition Logic can be applied to the analysis of social software as it is, analo-
gous to how Temporal Logic is applied to the analysis of, e.g., concurrent systems.
The insufficiency of Game Logic does not mean, however, that it cannot be ex-
tended to a logical framework for reasoning about multi-agent algorithms. In
fact, the refinement calculus can be viewed as one such extension.

8.3. The Future of Social Software 155

The aim of the refinement calculus [7] is to analyze “real” programs like the
gcd-program discussed in the introduction. For this aim, a simple propositional
logic like Game Logic is not sufficient for formalization; instead, higher-order logic
is used in [7]. What makes the refinement calculus relevant to the study of pro-
grams and games is that it also provides a general framework which can be used
to reason about programs as well as games. This is not so surprising after all since
the basic semantic notion of the refinement calculus is the predicate transformer,
and we have seen that predicate transformers can model programs as well as de-
termined 2-player games. The extended programming language of the refinement
calculus is very similar to the language of Game Logic. While the operation of
duality is also discussed, its role is less central in the refinement calculus. Pref-
erence is given to using demonic and angelic versions of the basic programming
operations such as nondeterministic choice. In this enriched programming lan-
guage, programs are viewed as contracts which define the rights and obligations of
the parties involved. Contracts are essentially what we have been calling games
all along. The advantage of the contract metaphor is that it allows for a natural
interpretation of empty games: under the contract interpretation, this is simply
the case where one of the agents has breached the contract. 2-player zero-sum
games such as Nim can be programmed using the language of the refinement cal-
culus. The result is a game expression γ such that (in Game Logic terms) 〈γ〉⊥
holds precisely when Angel has a winning strategy in the game. Besides formally
proving the existence of such a winning strategy, the refinement calculus can also
be used to extract a concrete winning strategy: Starting with the original game
γ, the choices of angel are restricted step by step until all the choices left are
demonic in the final program γ ′. If we ensure that each step in this refinement is
semantically sound, we can guarantee that γ ′ is indeed a winning strategy for γ.

Returning to the topic of social software, how far do Coalition Logic, Game
Algebra and (extensions of) Game Logic go in providing formal tools for the
analysis and synthesis of social software? First, which kinds of examples of social
software can we handle? As argued in chapter 5, the main requirement is that
the social process to be analyzed is itself well-defined, allowing us e.g. to identify
the set of agents involved in the process and the relevant properties of the states
of the process.

Many of the social software examples presented were essentially voting prob-
lems since these problems meet the requirement of well-definedness. More gener-
ally, there is a practical argument for focusing on social software from the domain
of social choice theory (broadly conceived), namely that a lot of research has been
done in social choice theory which can be usefully applied, so that social choice
theory and logic can meet half way. An example is the rich temporal logic of rights
developed in [63, 64] which distinguishes alethic from deontic possibility. The lan-
guage of this Deontic Logic of Action contains formulas of the form CanDoi(tk, ϕ)
(agent i can act at time tk so as to bring about ϕ), MayDoi(tk, ϕ) (agent i has

156 Chapter 8. Game Over

the right at time tk to act in a way which brings about ϕ) and others. Preferences
are also added to the model so that various paradoxes involving liberalism and
constitutional decision making can be discussed and formalized.

Having suggested problems of social choice theory as the kind of social software
to which the logics presented can usefully be applied, what kinds of questions do
these logics allow us to address? Chapter 5 has given examples of verification and
synthesis of social procedures. Furthermore, the example of telephone democracy
even suggests that the efficiency of such procedures can be analyzed using basic
Coalition Logic. Note, however, that the logics discussed cannot express anything
about the preferences of the agents involved, nor about how their actions will be
influenced by their preferences. For this reason, we cannot capture any strategic
considerations, e.g., in the telephone democracy example. In spite of this limita-
tion, the examples have shown that an interesting analysis of social software can
be done even without considering the agents’ preferences. Before asking what
people want to do in a social process, we should make sure that the process gives
them the rights and duties they should have.

Comparing social software to computer software in terms of its complexity, one
might be tempted to think that social processes must be far more complex than
computational processes. On the other hand, we conjecture that even the most
complex voting system used in any human society will be much less complex
than the operating system used on most computers. Consequently, problems
which may be intractable for computer software may well turn out to be tractable
for social software. As shown in chapter 5, in the case of voting procedures the
synthesis of social software reduces to satisfiability testing in basic Coalition Logic.
The results of chapter 3 show that this problem is certainly feasible, since it is no
harder than theorem proving in standard modal logic.

To conclude, we hope to have convinced the reader that one can treat social
processes as social software by developing logics as analytical tools as is done
in computer science. Exogenous program logics and in particular endogenous
temporal logics can both be extended to yield logics for reasoning about social
processes. We do not think that we will arrive at one general framework which
is adequate to analyze all or even most social processes. Rather, we expect to
see a variety of logics developed for different purposes, varying in complexity and
expressive power like the different logics used in computer science. And if the
theoretical results obtained and the examples provided still do not manage to
convince the reader, we will have to close with a quote by Vince Lombardi, an
American football coach:

We didn’t lose the game; we just ran out of time.

Appendix A

Fixpoint Facts

Chapters 4 and 6 make use of fixpoint constructions to define long-term abil-
ity and iteration, respectively. This appendix recalls some standard results about
fixpoints, namely, the Knaster-Tarski fixpoint theorem and the upward and down-
ward hierarchies for fixpoint approximation. The material is standard, with the
possible exception of theorem A.2, a generalization of the Knaster-Tarski fixpoint
theorem.

Consider any monotonic operation on the nonempty set of states S, i.e., any
function F : P(S) → P(S) such that X ⊆ Y implies F (X) ⊆ F (Y). We say that
a set Z ⊆ S is a fixpoint of F iff F (Z) = Z. Z is a least (greatest) fixpoint of F iff
(1) Z is a fixpoint and (2) Z is a subset (superset) of every fixpoint of F . Note
that least and greatest fixpoints are unique. We denote the least fixpoint of F as
µX.F (X) (the smallest set X such that F (X) = X) and the greatest fixpoint of
F as νX.F (X) (the greatest set X such that F (X) = X).

For repeated application of the operation F , we define the following downward
and upward hierarchies by ordinal induction:

F ↑0(X) = X F ↓0(X) = X
F ↑κ+1(X) = F (F ↑κ(X)) F ↓κ+1(X) = F (F ↓κ(X))
F ↑λ(X) =

⋃
κ<λ F ↑κ(X) F ↓λ(X) =

⋂
κ<λ F ↓κ(X)

where κ and λ are ordinals and λ is a limit ordinal. In most cases, the upward
hierarchy will be used for X = ∅ and the downward hierarchy for X = S, and for
ease of notation, we use F ↑κ for F ↑κ(∅) and F ↓κ for F ↓κ(S). A central result on
fixpoints is the well-known Knaster-Tarski fixpoint theorem:

I Theorem A.1 (Tarski [118]). If F : P(S) → P(S) is any monotonic oper-
ation, then

1. µX.F (X) =
⋂
{Y ⊆ S|F (Y) = Y } =

⋂
{Y ⊆ S|F (Y) ⊆ Y } =

⋃
κ F ↑κ,

where κ ranges over all ordinals of cardinality at most |S| and F ↑0 ⊆ F ↑1 ⊆
F ↑2

157

158 Appendix A. Fixpoint Facts

2. νX.F (X) =
⋃
{Y ⊆ S|F (Y) = Y } =

⋃
{Y ⊆ S|F (Y) ⊇ Y } =

⋂
κ F ↓κ,

where κ ranges over all ordinals of cardinality at most |S| and F ↓0 ⊇ F ↓1 ⊇
F ↓2

In section 6.5, a less well-known generalization of this theorem will allow us to
reduce the complexity of a model-checking algorithm substantially. It is an easy
consequence of the previous result.

I Corollary A.2 (Emerson & Lei [46]). If F : P(S) → P(S) is any mono-
tonic operation, then

1. µX.F (X) =
⋃

κ F ↑κ(X0) for any X0 ⊆ F (X0) ∩ µX.F (X), where κ ranges
over all ordinals of cardinality at most |S| and F ↑0(X0) ⊆ F ↑1(X0) ⊆
F ↑2(X0)

2. νX.F (X) =
⋂

κ F ↓κ(X0) for any X0 ⊇ F (X0) ∪ νX.F (X), where κ ranges
over all ordinals of cardinality at most |S| and F ↓0(X0) ⊇ F ↓1(X0) ⊇
F ↓2(X0)

Finally, there are cases in which the fixpoint approximation provided by the
upward and downward hierarchies is guaranteed to reach the fixpoint after at most
ω stages. A well-known sufficient condition for such a closure at ω is disjunctivity.
As defined in section 2.4.3, an operation F : P(S) → P(S) is disjunctive iff for
all V ⊆ P(S) we have F (

⋃
X∈V X) =

⋃
X∈V F (X). Recall that disjunctivity

implies monotonicity and that F (∅) = ∅. As an analogue to disjunctivity, call
F conjunctive iff for all V ⊆ P(S) we have F (

⋂
X∈V X) =

⋂
X∈V F (X). Also

conjunctivity implies monotonicity and furthermore that F (S) = S.
The following result shows that indeed disjunctivity (conjunctivity) is a suffi-

cient condition for approximating the fixpoint after at most ω steps. Note that
there are weaker conditions such as continuity which are also sufficient (see, e.g.,
[37, 91]), but for our purposes the following result is exactly what we need.

I Theorem A.3. If F is disjunctive then µX.F (X) = F ↑ω, and if F is conjunc-
tive then νX.F (X) = F ↓ω.

Proof. Disjunctivity immediately implies that
⋃

i<ω F ↑i is a fixpoint of F , and
given any fixpoint Z of F one can show by induction on i that F ↑i ⊆ Z and
consequently

⋃
i<ω F ↑i ⊆ Z. ¥

Bibliography

[1] J. Abdou and H. Keiding. Effectivity Functions in Social Choice. Kluwer,
1991.

[2] S. Abramsky and R. Jagadeesan. Games and full completeness for multi-
plicative linear logic. Journal of Symbolic Logic, 59:543–574, 1994.

[3] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic.
In Compositionality: The Significant Difference, LNCS 1536, pages 23–60.
Springer, 1998.

[4] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement
relations. In Proceedings of CONCUR ’98, LNCS 1466, pages 163–178.
Springer, 1998.

[5] K.R. Apt and G.D. Plotkin. Countable nondeterminism and random as-
signment. Journal of the ACM, 33:724–767, 1986.

[6] A. Arnold and D. Niwinski. Rudiments of µ-calculus. Elsevier, 2001.

[7] R.-J. Back and J. von Wright. Refinement Calculus - A systematic intro-
duction. Springer, 1998.

[8] J. Baeten and W. Weijland. Process Algebra. Cambridge University Press,
1990.

[9] A. Baltag. A logic for suspicious players: epistemic actions and belief-
updates in games. Technical Report SEN-R0044, Centrum voor Wiskunde
en Informatica (CWI), 2000.

[10] P. Battigalli and G. Bonanno. Recent results on belief, knowledge and the
epistemic foundations of game theory. Research in Economics, 53:149–225,
1999.

159

160 Bibliography

[11] J. van Benthem. Basic game algebra inside predicate logic. Unpublished
manuscript.

[12] J. van Benthem. Logic in Games. Lecture notes, unpublished.

[13] J. van Benthem. When are two games the same? Unpublished manuscript.

[14] J. van Benthem. Modal Correspondence Theory. PhD thesis, University of
Amsterdam, 1976.

[15] J. van Benthem. Program constructions that are safe for bisimulation.
Studia Logica, 60(2):311–330, 1998.

[16] J. van Benthem and J. Bergstra. Logic of transition systems. ILLC Pre-
publication Series CT-93-03, University of Amsterdam, 1993.

[17] J. van Benthem, J. van Eijck, and V. Stebletsova. Modal logic, transition
systems and processes. Journal of Logic and Computation, 4(5):811–855,
1994.

[18] D. Berwanger. Game logic is strong enough for parity games. In M. Pauly
and G. Sandu, editors, Proceedings of the ESSLLI Workshop on Logic and
Games, 2001.

[19] K. Binmore. Fun and Games – A Text on Game Theory. Heath, 1992.

[20] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[21] A. Blass. A game semantics for linear logic. Annals of Pure and Applied
Logic, 56:183–220, 1992.

[22] A. Bleeker and J. van Eijck. Epistemic action and change. In G. Bonanno,
E. Colombatto, and W. van der Hoek, editors, Proceedings of the Fourth
Conference on Logic and the Foundations of Game and Decision Theory
(LOFT4), 2000.

[23] G. Bonanno. Branching time logic, perfect information games and backward
induction. Unpublished manuscript.

[24] G. Bonanno. The logic of rational play in games of perfect information.
Economics and Philosophy, 7:37–65, 1991.

[25] J. Bradfield. The modal mu-calculus alternation hierarchy is strict. In
U. Montanari and V. Sassone, editors, Proceedings of CONCUR ’96, LNCS
1119, pages 233–246. Springer, 1996.

Bibliography 161

[26] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduc-
tion. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra. Elsevier, 2001.

[27] S. Brams and A. Taylor. Fair Division: From Cake-cutting to Dispute
Resolution. Cambridge University Press, 1996.

[28] A. Brown, S. Mantha, and T. Wakayama. Exploiting the normative aspect
of preference: a deontic logic without actions. Annals of Mathematics and
Artificial Intelligence, 9:167–203, 1993.

[29] B. de Bruin. Game transformations and game equivalence. Technical Report
X-1999-01, University of Amsterdam, ILLC, 1999.

[30] B. de Bruin. Modeling knowledge in games - topology and logic. Master’s
thesis, University of Amsterdam, 2000.

[31] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

[32] B. Chellas. Modal Logic - An Introduction. Cambridge University Press,
1980.

[33] B. Chlebus. Domino-tiling games. Journal of Computer and System Sci-
ences, 32:374–392, 1986.

[34] T. Clausing. Behavioural vs. habitual rationality and backward induction.
In H. de Swart, editor, Logic, Game Theory and Social Choice, pages 46–56.
Tilburg University Press, 1999.

[35] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[36] G. D’Agostino. Modal Logic and non-well-founded Set Theory: translation,
bisimulation, interpolation. PhD thesis, University of Amsterdam, 1998.

[37] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1992.

[38] E. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[39] E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics.
Springer, 1990.

[40] H. van Ditmarsch. Knowledge Games. PhD thesis, University of Groningen,
2000.

[41] K. Doets. Basic Model Theory. CSLI, 1996.

162 Bibliography

[42] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Com-
plexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied
Mathematics 187, pages 331–363. Dekker, 1997.

[43] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 995–1072. MIT
Press, 1990.

[44] E. A. Emerson. Model checking and the mu-calculus. In N. Immerman and
P. Kolaitis, editors, Descriptive Complexity and Finite Models, DIMACS
31. American Mathematical Society, 1997.

[45] E. A. Emerson and C. S. Jutla. On simultaneously determinizing and com-
plementing ω-automata. In Proceedings of the 4th IEEE Symposium on
Logic in Computer Science (LICS), pages 333–342, 1989.

[46] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the 1st IEEE Symposium on
Logic in Computer Science (LICS), pages 267–278, 1986.

[47] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, 1983.

[48] M. Fitting. Basic modal logic. In D. Gabbay, C. Hogger, and J. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 1, pages 365–448. Oxford University Press, 1993.

[49] W. Fokkink. Introduction to Process Algebra. Springer, 2000.

[50] P. Gärdenfors. Rights, games and social choice. Noûs, 15:341–356, 1981.

[51] O. Gasquet and A. Herzig. From classical to normal modal logics. In
H. Wansing, editor, Proof Theory of Modal Logic. Kluwer, 1996.

[52] A. Gibbard. A pareto-consistent libertarian claim. Journal of Economic
Theory, 7(4):388–410, 1974.

[53] R. van Glabbeek. Comparative Concurrency Semantics and Refinement of
Actions. PhD thesis, Free University of Amsterdam, 1990.

[54] R. Goldblatt. Logics of Time and Computation. CSLI, second edition, 1992.

[55] V. Goranko. The basic algebra of game equivalences. In M. Pauly and
G. Sandu, editors, Proceedings of the ESSLLI Workshop on Logic and
Games, 2001.

Bibliography 163

[56] V. Goranko. Coalition games and alternating temporal logics. In J. van
Benthem, editor, Proceedings of the 8th conference on Theoretical Aspects
of Rationality and Knowledge (TARK VIII), pages 259–272. Morgan Kauf-
mann, 2001.

[57] B. Greene. The Elegant Universe: Superstrings, Hidden Dimensions, and
the Quest for the Ultimate Theory. Vintage Books, 2000.

[58] J. Halpern and Y. Moses. A guide to the modal logics of knowledge and
belief. In A. Joshi, editor, Proceedings of the Ninth International Joint
Conference on Artificial Intelligence (IJCAI-85), pages 480–490. Morgan
Kaufmann, 1985.

[59] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, volume II. Kluwer, 1984.

[60] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[61] D. Harel and R. Sherman. Looping vs. repeating in dynamic logic. Infor-
mation and Control, 55:175–192, 1982.

[62] P. Harrenstein, W. van der Hoek, and J.-J. Meyer. A modal interpretation of
Nash-equilibria and some related concepts. In G. Bonanno, E. Colombatto,
and W. van der Hoek, editors, Proceedings of the Fourth Conference on
Logic and the Foundations of Game and Decision Theory (LOFT4), 2000.

[63] M. van Hees. Rights, Liberalism and Social Choice. PhD thesis, University
of Nijmegen, 1994.

[64] M. van Hees. Rights and Decisions. Formal Models of Law and Liberalism.
Kluwer, 1995.

[65] J. Hintikka and G. Sandu. Game-theoretical semantics. In J. van Benthem
and A. ter Meulen, editors, Handbook of Logic and Language, pages 361–
410. Elsevier, 1993.

[66] W. Hodges. Elementary predicate logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume I. Kluwer, 1984.

[67] W. Hodges. Model Theory. Cambridge University Press, 1993.

[68] M. Hollenberg. Logic and Bisimulation. PhD thesis, University of Utrecht,
1998.

[69] J. Huizinga. Homo ludens: proeve eener bepaling van het spel-element der
cultuur. Tjeenk Willink, 1938.

164 Bibliography

[70] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reason-
ing about Systems. Cambridge University Press, 2000.

[71] D. Janin and I. Walukiewicz. On the expressive completeness of the propo-
sitional mu-calculus with respect to monadic second order logic. In Pro-
ceedings of CONCUR ’96, LNCS 1119, pages 263–277. Springer, 1996.

[72] N. D. Jones. Computability and Complexity - From a Programming Per-
spective. MIT Press, 1997.

[73] A. Kaldewaij. Programming: the derivation of algorithms. Prentice Hall,
1990.

[74] M. Kaneko and T. Nagashima. Game logic and its applications I. Studia
Logica, 57:325–354, 1996.

[75] J. Kelly. Social Choice Theory: An Introduction. Springer, 1988.

[76] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[77] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B. MIT Press, 1990.

[78] M. Kracht and F. Wolter. Normal monomodal logics can simulate all others.
Journal of Symbolic Logic, 64(1):99–138, 1999.

[79] R. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal of Computing, 6(3):467–480, 1977.

[80] W. Leininger. The fatal vote: Berlin versus Bonn. Finanzarchiv, 50:1–20,
1993.

[81] G. Lenzi. The MU-calculus and the Hierarchy Problem. PhD thesis, Uni-
versity of Pisa, 1997.

[82] J. Loeckx and K. Sieber. The Foundations of Program Verification. Wiley-
Teubner, second edition, 1987.

[83] P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche Buchge-
sellschaft, 1978.

[84] N. Miller. Committees, Agendas, and Voting. Harwood Academic Publish-
ers, 1995.

[85] M. Mizutani, Y. Hiraide, and H. Nishino. Computational complexity to
verify the unstability of effectivity function. International Journal of Game
Theory, 22:225–239, 1993.

Bibliography 165

[86] H. Moulin. The Strategy of Social Choice. North-Holland, 1983.

[87] H. Moulin and B. Peleg. Cores of effectivity functions and implementation
theory. Journal of Mathematical Economics, 10(1):115–145, 1982.

[88] F. Nack. AUTEUR: The Application of Video Semantics and Theme Rep-
resentation for Automated Film Editing. PhD thesis, Lancaster University,
1996.

[89] I. Netchitailov. An extension of game logic with parallel operators. Master’s
thesis, Institute for Logic, Language and Computation, Amsterdam, 2000.

[90] I. Netchitailov. Principles of alternating game logic. Master’s thesis, St.
Petersburg State University, St. Petersburg, 2001.

[91] H. R. Nielson and F. Nielson. Semantics with Applications. Wiley, 1992.

[92] D. Niwinski. The propositional µ-calculus is more expressive than the
propositional dynamic logic of looping. Unpublished manuscript, 1984.

[93] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,
1994.

[94] G.-J. Otten, P. Borm, T. Storcken, and S. Tijs. Effectivity functions and
associated claim game correspondences. Games and Economic Behavior,
9:172–190, 1995.

[95] R. Parikh. Social software. Synthese. To appear.

[96] R. Parikh. Propositional logics of programs: New directions. In M. Karpin-
ski, editor, Foundations of Computation Theory, LNCS 158, pages 347–359.
Springer, 1983.

[97] R. Parikh. The logic of games and its applications. In M. Karpinski and
J. van Leeuwen, editors, Topics in the Theory of Computation, Annals of
Discrete Mathematics 24. Elsevier, 1985.

[98] M. Pauly. A modal logic for coalitional power in games. Journal of Logic
and Computation. To appear.

[99] M. Pauly. Transforming predicates or updating states - total correctness in
dynamic logic and structured programming. Master’s thesis, Institute for
Logic, Language and Computation, Amsterdam, 1997.

[100] M. Pauly. From programs to games: Invariance and safety for bisimulation.
In P. Clote and H. Schwichtenberg, editors, Computer Science Logic, LNCS
1862. Springer, 2000.

166 Bibliography

[101] M. Pauly. An introduction to game logic. In M. Faller, S. Kaufmann, and
M. Pauly, editors, Formalizing the Dynamics of Information. CSLI, 2000.

[102] M. Pauly. Coalitional ability in multi-agent systems: A logical approach.
Technical Report SS-01-03, American Association for Artificial Intelligence,
2001. Papers from the 2001 AAAI Spring Symposium.

[103] M. Pauly. A logical framework for coalitional effectivity in dynamic proce-
dures. Bulletin of Economic Research, 53(4):305–324, 2001.

[104] M. Pauly. On the complexity of coalitional reasoning. In E. Yanovskaya,
editor, Proceedings of the 2nd International Conference on Logic, Game
Theory and Social Choice. St. Petersburg State University, 2001.

[105] B. Peleg. Effectivity functions, game forms, games and rights. Social Choice
and Welfare, 15:67–80, 1998.

[106] B. Peleg, H. Peters, and T. Storcken. Nash consistent representation of con-
stitutions: A reaction to the Gibbard paradox. Technical Report METEOR
Research Memorandum RM/00/023, University of Maastricht, 2000.

[107] D. Peleg. Communication in concurrent dynamic logic. Journal of Computer
and System Sciences, 35:23–58, 1987.

[108] D. Peleg. Concurrent dynamic logic. Journal of the ACM, 34(2):450–479,
1987.

[109] A. Pietarinen. Games Logic Plays: Informational Independence in Game-
Theoretic Semantics. PhD thesis, University of Sussex, 2000.

[110] S. Rahman and H. Rückert. Dialogische Modallogik (für T,B,S4 und S5).
Logique et Analyse. To appear.

[111] S. Rahman and H. Rückert. Eine neue dialogische Semantik für lineare
Logik. Unpublished manuscript.

[112] A. Rubinstein. Economics and Language. Cambridge University Press,
2000.

[113] M. Shubik. Game Theory in the Social Sciences. MIT Press, 1982.

[114] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathema-
tische Zeitschrift, 27:544–548, 1928.

[115] A. Storcken and H. de Swart. Verkiezingen, Agenda’s en Manipulatie. Ep-
silon Uitgaven, 1992.

Bibliography 167

[116] R. Streett. Propositional temporal logic of looping and converse is elemen-
tarily decidable. Information and Control, 54:121–141, 1982.

[117] R. Streett and E. A. Emerson. An automata theoretic decision procedure for
the propositional mu-calculus. Information and Computation, 81:249–264,
1989.

[118] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[119] M. Tennenholtz and Y. Moses. On cooperation in a multi-entity model
(preliminary report). In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence (IJCAI-89), pages 918–923, 1989.

[120] M. Vardi. On the complexity of epistemic reasoning. In Proceedings of
the 4th annual Symposium on Logic in Computer Science (LICS), pages
243–252, 1989.

[121] M. Vardi. Why is modal logic so robustly decidable? In N. Immerman and
P. Kolaitis, editors, Descriptive Complexity and Finite Models, DIMACS
31. American Mathematical Society, 1997.

[122] Y. Venema. Representing game algebras. In M. Pauly and G. Sandu,
editors, Proceedings of the ESSLLI Workshop on Logic and Games, 2001.

[123] A. Vilks. A logic for changing beliefs with applications to reasoning about
choice and games. In H. de Swart, editor, Logic, Game Theory and Social
Choice, pages 68–76. Tilburg University Press, 1999.

[124] I. Walukiewicz. A note on the completeness of Kozen’s axiomatisation of
the propositional µ-calculus. Bulletin of Symbolic Logic, 2(3):349–366, 1996.

[125] E. Werner. What can agents do together? In Proceedings of the European
Conference on Artificial Intelligence (ECAI-90), pages 694–701, 1990.

[126] M. Wooldridge and M. Fisher. A first-order branching time logic of multi-
agent systems. In B. Neumann, editor, Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI-92), pages 234–238, 1992.

[127] E. Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels. In E. Hobson and A. Love, editors, Proceedings of the 5th
Intl. Congress of Mathematicians, volume II, pages 501–504. Cambridge
University Press, 1913.

Index

α-correspondence, 20, 21, 26, 27

agenda
complete, 105
uniform, 106

alternating temporal logic, 88
alternating transition system, 88

lock-step synchronous, 89
turn-based asynchronous, 89
turn-based synchronous, 89

alternation depth, 116, 117
amusement

strong, 21
weak, 22

bisimulation, 39
invariance, 48, 138, 140
Kripke-, 40
safety, 138, 140

CL-equivalent, 48
closed system, 88
coalition logic, 52

basic, 46
extended, 81, 82

completeness, 53
conjunctivity, 158
constitution, 96
continuity, 158

determinacy, 22, 27

determinism, 4
dictatorship, 17

empty, 18
disjunctivity

of a formula, 141
of a set, 23
of an operation, 37, 158

dual normal form, 110

effectivity function, 6
α, 20, 26, 27
β, 20, 27
coalitional, 24
core, 7
dual, 25
individual, 19
non-monotonic core, 50
stable, 7
terminal, 26

empty game, 18
endogenous logic, 147
epistemic logic, 75
eventual goal achievement, 78
existence lemma, 58, 134
exogenous logic, 147
expressiveness, 68
extension, 31
extensive game

of almost perfect information, 34

169

170 Index

of perfect information, 35
with simultaneous moves, 34
without simultaneous moves, 35

external view, 33, 37

finite model property, 71
Fischer-Ladner closure, 121, 126
fixpoint, 157
fixpoint depth, 116
frame

coalition, 34
dynamic effectivity, 32
game, 37
Kripke, 33

game algebra, 148
game form, 16
game logic, 113

Kripke, 133
game model, 111
Gibbard paradox, 97
goal achievement, 78
goal maintenance, 78

individual fragment, 68
individualism, 30
individually determined, 31
induction axiom, 134
internal view, 33, 34

logical consequence
global, 46
local, 46

loop
for, 137
while, 137

majorative, 84
maximality, 24
modal formula, 140
modal fragment, 139
modal logic

non-normal, 59
normal, 58

model
coalition, 36
dynamic effectivity, 34
game, 37
neighborhood, 59
size, 50, 120

model checking, 49
monotonicity

coalition, 24
of a formula, 141
outcome, 19, 24

open system, 88

partial terminal effectivity, 79
playability

strong, 27
weak, 30

poly-size model property, 71
positive normal form, 116
possibility

alethic, 96
deontic, 96

predicate transformer, 4
process algebra, 149
program, 110
program fragment, 110, 139

refinement calculus, 148, 155
regularity, 24
rights-system, 96

satisfiability, 46, 60
semi-valuation, 61, 67, 70
small model property, 71
soundness, 53
state transformer, 4
stomach, 10
strategic game, 16
strategic normal form, 22, 38
strategy profile, 16
strategy-proof, 102
strictly positive, 115
sudden miracle principle, 134

Index 171

superadditivity, 7, 24

temporal logic, 147
alternating, 88, 152
of rights, 155

terminal state, 34
total terminal effectivity, 79

uniformly finitary frame, 33

vacuous nesting, 116
valid, 46
valuation function, 34

zero-sum, 25

List of symbols

↔ 39
|= 46
|=g 46
`Λ 53
` 53

|ϕ| 52, 121
ϕM 46
ϕ̂ 53
N(ϕ) 47
FL(δ) 121, 126
d(ϕ) 116
ad(ϕ) 116

[⊥] 46
[C]kϕ 46
[C∗]ϕ 81
[C×]ϕ 81
[Cp]ϕ 81
[Ct]ϕ 81
γ∗ 110
γ× 110
γ> 136

E 19, 24
Ec 50
EC,g 33
EC 34
Eg 37

Eα
G 20, 20, 26, 27

Eβ
G 20, 27

Ẽ 25
E∗

C 78
E×

C 78
Et

C 79
Ep

C 79

F 33, 34, 37
K 33
|K| 51
M 34, 36, 37
|M| 50, 120

Ind 37
MaxPlay 37
Mon 37
Play 37

GL 113
GLK 133
Ind 56
Ind∗ 82
K 59
M 60
MaxPlay 55
MaxPlay∗ 82
PDL 133
Play 54
Play∗ 82

173

Titles in the ILLC Dissertation Series:

ILLC DS-1996-01: Lex Hendriks

Computations in Propositional Logic

ILLC DS-1996-02: Angelo Montanari

Metric and Layered Temporal Logic for Time Granularity

ILLC DS-1996-03: Martin H. van den Berg

Some Aspects of the Internal Structure of Discourse: the Dynamics of Nomi-
nal Anaphora

ILLC DS-1996-04: Jeroen Bruggeman

Formalizing Organizational Ecology

ILLC DS-1997-01: Ronald Cramer

Modular Design of Secure yet Practical Cryptographic Protocols

ILLC DS-1997-02: Natas̆a Rakić

Common Sense Time and Special Relativity

ILLC DS-1997-03: Arthur Nieuwendijk

On Logic. Inquiries into the Justification of Deduction

ILLC DS-1997-04: Atocha Aliseda-LLera

Seeking Explanations: Abduction in Logic, Philosophy of Science and Artifi-
cial Intelligence

ILLC DS-1997-05: Harry Stein

The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-
Following and Linguistic Normativity

ILLC DS-1997-06: Leonie Bosveld - de Smet

On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s

ILLC DS-1998-01: Sebastiaan A. Terwijn

Computability and Measure

ILLC DS-1998-02: Sjoerd D. Zwart

Approach to the Truth: Verisimilitude and Truthlikeness

ILLC DS-1998-03: Peter Grunwald

The Minimum Description Length Principle and Reasoning under Uncertainty

ILLC DS-1998-04: Giovanna d’Agostino

Modal Logic and Non-Well-Founded Set Theory: Translation, Bisimulation,
Interpolation

ILLC DS-1998-05: Mehdi Dastani

Languages of Perception

ILLC DS-1999-01: Jelle Gerbrandy

Bisimulations on Planet Kripke

ILLC DS-1999-02: Khalil Sima’an

Learning efficient disambiguation

ILLC DS-1999-03: Jaap Maat

Philosophical Languages in the Seventeenth Century: Dalgarno, Wilkins, Leib-
niz

ILLC DS-1999-04: Barbara Terhal

Quantum Algorithms and Quantum Entanglement

ILLC DS-2000-01: Renata Wassermann

Resource Bounded Belief Revision

ILLC DS-2000-02: Jaap Kamps

A Logical Approach to Computational Theory Building (with applications to
sociology)

ILLC DS-2000-03: Marco Vervoort

Games, Walks and Grammars: Problems I’ve Worked On

ILLC DS-2000-04: Paul van Ulsen

E.W. Beth als logicus

ILLC DS-2000-05: Carlos Areces

Logic Engineering. The Case of Description and Hybrid Logics

ILLC DS-2000-06: Hans van Ditmarsch

Knowledge Games

ILLC DS-2000-07: Egbert L.J. Fortuin

Polysemy or monosemy: Interpretation of the imperative and the dative-
infinitive construction in Russian

ILLC DS-2001-01: Maria Aloni

Quantification under Conceptual Covers

ILLC DS-2001-02: Alexander van den Bosch

Rationality in Discovery - a study of Logic, Cognition, Computation and Neu-
ropharmacology

ILLC DS-2001-03: Erik de Haas

Logics For OO Information Systems: a Semantic Study of Object Orientation
from a Categorial Substructural Perspective

ILLC DS-2001-04: Rosalie Iemhoff

Provability Logic and Admissible Rules

ILLC DS-2001-05: Eva Hoogland

Definability and Interpolation: Model-theoretic investigations

ILLC DS-2001-06: Ronald de Wolf

Quantum Computing and Communication Complexity

ILLC DS-2001-07: Katsumi Sasaki

Logics and Provability

ILLC DS-2001-08: Allard Tamminga

Belief Dynamics. (Epistemo)logical Investigations

ILLC DS-2001-09: Gwen Kerdiles

Saying It with Pictures: a Logical Landscape of Conceptual Graphs

ILLC DS-2001-10: Marc Pauly

Logic for Social Software

