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Abstract. Artemov introduced the Logic of Proofs (LP) as a logic of explicit
proofs. We can also offer an epistemic reading of this formula: “t is a possible
justification of φ”. Motivated, in part, by this epistemic reading, Fitting intro-
duced a Kripke style semantics for LP in [8]. In this note, we prove soundness
and completeness of some axiom systems which are not covered in [8].

1 Introduction

The Logic of Proofs (LP), developed by Artemov [1, 2], is a modal logic of explicit
proofs. The original motivation was to answer a long standing question about the
provability semantics for S4 via an interpretation into Peano Arithmetic. The basic
idea is to replace statements of the form “there is a proof of φ” (�φ) with “t is a
proof a φ” (t : φ). Recently, Fitting [9], Artemov and Nogina [3] and Artemov [4]
have suggested an epistemic interpretation of LP. Under an epistemic reading, t :φ
is interpreted as “t is possible reason that an agent knows φ” or “t is a possible
justification of φ”. The suggestion for a logic of explicit knowledge was first made by
van Benthem [6] and is explored in [9]. In this note, we will use both terms “proof”
and “reason” interchangeably. Motivated, in part, by this epistemic interpretation,
Fitting developed a Kripke style semantics for LP in [8]. These models, which we
will call Fitting models, are essentially a combination of Kripke structures with a
semantics for LP developed by Mkrtychev [11]. A next natural step is to consider a
combined language containing both implicit modalities (�φ) and explicit modalities
(t :φ). This line of reasoning is explored in [3, 4].

In this note, I will look at completeness with respect to Fitting models for some
axiom systems not covered in [8]. In particular, we introduce semantic conditions
which are needed to prove completeness for explicit modal logics that contain the
explicit version of the 5 axiom (¬�φ→ �¬�φ). We then obtain completeness results
for the explicit version of the axiom systems K5, KD,KD45 and S5.

2 Syntax and Semantics

Proof polynomials are built from a set of axiom constants C, a set of variables X
and closed under the operations binary operation + and · and the unary operation
!. Let PLP be the set of LP proof polynomials. Proof polynomials are constructed
according to the following grammar

t := c | x | t+ t | t · t | !t
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where c ∈ C and x ∈ X . Let PLP denote the set of proof polynomials. We quickly
discuss the intended interpretations of the above operations. For a in-depth discus-
sion of the intended interpretation the reader is referred to [1]. Proof constants are
intended to represent reasons which we do not further analyze, i.e., proofs of log-
ical truths. Proof variables can be understood as implicitly universally quantifying
over proof polynomials. The · operator is intended to represent an application of the
modus ponens rule. That is, if s is a reason for φ → ψ and t is a reason for φ, then
s · t is a reason for ψ. The ! operator is a proof checker, i.e., !t is a verification of the
proof t. Finally, + is a sort of concatenation of proofs. That is, s + t is a proof for
everything that follow from either s or t.

It turns out that in order to deal with the modal logics that contain the 5 axiom,
we must introduce a new proof operator. Following, [5], we add a unary operator “?”,
called a negative proof checker, to PLP . Define P∗

LP (extended proof polynomials)
to be PLP closed under the unary operation ?. We will say more about this operation
below.

Let At be a countable set of propositional variables. A formula in L will have the
following syntactic form

φ := p | ¬φ | φ ∧ ψ | t :φ

where p ∈ At and t ∈ PLP . Let L∗ be the language which is just like L except each
proof polynomial is from P∗

LP . Again, the intended interpretation of t : φ is “t is a
proof of φ” or “t is a justification of φ”.

We now quickly describe the Kripke style of semantics as discussed in [8]. The
reader is referred to [8] for motivation and proofs. Suppose that W is a set of states,
R is a binary relations on W . A frame is a tuple 〈W,R〉. A model is a tuple M =
〈W,R, E , V 〉, called a Fitting model, where V : At → 2W is a valuation function
and E is an evidence function. Formally, an evidence function is any function
E : W × PLP → 2L (E : W × P∗

LP → L∗). We first define truth in a model:

– For p ∈ At, M, w |= p iff w ∈ V (p)
– M, w |= ¬φ iff M, w 6|= φ
– M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
– M, w |= t :φ iff φ ∈ E(w, t) and for every v, if wRv then M, v |= φ

We say that φ is valid in M if M, w |= φ for every state w, and φ valid in a frame
F = 〈W,R〉 if φ is valid in all models based on F . The following properties of E were
discussed in [11, 8].

Monotonicity For all w, v ∈ W , if wRv then for all proof polynomials t, E(w, t) ⊆
E(v, t).

Application For all proof polynomials s, t and for each w ∈W , if φ→ ψ ∈ E(w, s)
and φ ∈ E(w, t) then ψ ∈ E(w, s · t)

Proof Checker For all proof polynomials t and for each w ∈W , if φ ∈ E(w, t) then
t :φ ∈ E(w, !t).

Sum For all proof polynomials s, t and for each w ∈W , E(w, s)∪E(w, t) ⊆ E(w, s+t).

Various classes of models are discussed in [8]. We describe a few of these classes below.



3

– M is an LP(K) model if E satisfies the Application and Sum properties (no
conditions on R).

– M is an LP(K4) model if it is a LP(K) model, R is transitive, and in addition
to Application and Sum E satisfies Monotonicity and Proof Checker.

– M is an LP, or LP(S4) model if M is a LP(K) model, R is reflexive and
transitive, and in addition to Application and Sum, E satisfies Proof Checker and
Monotonicity.

A constant specification is a function CS : C → 2L (CS : C → 2L
∗
) where

φ ∈ CS(c) means that φ is assigned constant c. Following [8], it is required that any
formula assigned to a proof constant with respect to CS must be true at every possible
world of every weak LP model, i.e., φ must be valid. We say a model M meets a
constant specification CS provided the following constant condition is satisfied.

Constant Condition For each formula φ, with φ ∈ CS(c), φ ∈ E(w, c) for each
w ∈W

We say that a formula φ is CS−LP satisfiable if there is a weak LP model that meets
CS in which φ is true at some state. Similarly for CS-valid. Actually, Fitting considers
two versions of his semantics (weak models and strong models). The semantics we
have defined in this section corresponds to weak models in [8]. However, in the interest
of space we will not discuss this distinction. And in fact, given the assumption we
will make about the constant specifications in the next section, it turns out that the
two versions of the semantics are equivalent. The reader is referred to [8] for more
information.

3 Some Logics

Fix a constant specification CS for this section. The following is a list of the axiom
schemes and rules which will be discussed in this note. These axioms and rules are
easily seen to be explicit versions of some well-know modal axiom schemes. Appendix
A lists the relevant modal logics.

EK s : (φ→ ψ) → (t :φ→ s · t :ψ)
ET t :φ→ φ
E4 t :φ→!t : t :φ
E5 ¬t :φ→?t :¬t :φ
ED t :⊥ → ⊥
Sum s :φ→ (s+ t) :φ and s :φ→ (t+ s) :φ
AS Infer c :φ, where c is an axiom constant,

and φ ∈ CS(c)

The Logic of Proofs (LP) contains the axiom schemes PC, EK, ET , E4, Sum and
the rule AS. We say φ is CS-derivable, or there is a CS-LP proof, if φ there is a
derivation in LP using axiom specification CS. An axiom specification CS is called
axiomatically appropriate if it is exactly instances of axiom schemes which are
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assigned proof constants. In this note, we will restrict attention to constant speci-
fications which are axiomatically appropriate. Axiom E5 was introduced in [5] and
will be discussed below. Axiom ED was introduced by Breznhev [7] is easily seen to
be the explicit version of the D axiom (�⊥ → ⊥). This axiom says that t is never a
reason for a contradiction. We will use the following notation, if Λ is a modal logic,
then LP(Λ) is the explicit version of Λ. So, the logic LP can be written as LP(S4).
This notation suggests a the modal logic S4 and its explicit version LP are somehow
related. In [1, 2], Artemov shows that there is, in fact, an important connection be-
tween LP and S4. There are two directions to this connection. The first is that the
“forgetful projection” of LP is S4. That is, define a map ·◦ that is the identity on
propositional variables, commutes with propositional connectives and for any proof
polynomial t, (t :φ)◦ = �φ◦. Then it is not too difficult to see that if φ is derivable
in LP, then φ◦ is derivable in S4. One of the most interesting facts about LP is
that Artemov showed the converse. That is, there is a “realization” algorithm that
will turn any theorem of S4 into a theorem of LP where all negative occurrences
of boxes are replaced by proof variables. In [7] proves a realization theorem for the
logics K,KD,KD4 and T. Artemov, Kazakov and Shapiro [5] provide a realization
theorem for S5. The explicit version of these logics are given below. For the logics
without the 4 axiom scheme, the AS rule must be replaced by the following rule.

AS∗ Infer c :φ, where c is an axiom constant,
and φ ∈ CS(c) or inferable using AS∗.

The following are the axiom systems are discussed in this note.

– LP(K) contains PC, EK, Sum and AS∗

– LP(KD) contains all axiom schemes and rules of LP(K) plus the axiom scheme
t :⊥ → ⊥.

– LP(KD4) contains EK, Sum, E4 and AS.
– LP(K5) contains EK, Sum, E5 and AS∗.
– LP(KD45) is LP(KD4) together with the E5 axiom scheme.
– LP(S5) contains all the axiom schemes and rules of LP(S4) plus the axiom

scheme E5.

One more fact about the above axiom systems is needed for the completeness proofs.
Notice that the CS-AS axiom is essentially the explicit version of a restricted form
of the necessitation rule. That is, necessitation can only be applied to instances of
axiom schemes1. In fact, Artemov showed that there is an explicit version of full
necessitation in LP [1], called explicit necessitation. That is φ is CS-derivable
in LP, then there is a proof polynomial t (which does not contain variables), such
that t :φ is CS-derivable in LP. It was shown in [7] and [5] that each axiom system
presented in this section all satisfy explicit necessitation.

1 Actually, this follows because we are assuming that are constant specifications are ax-
iomatically appropriate.
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4 The E5 Axiom

Moving on to the E5 axiom. The motivation for this operation can be found in
[5]. The difficulty in coming up with an appropriate explicit version of the 5 axiom
(¬�φ→ �¬�φ) is that the antecedent contains negative information about a reason,
or proof. The approach taken in [5] is to use an alternative axiomatization of S5,
which gives an explicit version of S5 admitting an arithmetical interpretation. The
approach taken in this paper is to assume the existence of an operation on proofs such
that given a proof t, ?t is a proof of each formula that t does not prove. In particular,
we must assume that ?t is an infinite conclusion proof. The exact connection between
the approach of this paper and Artemov et al. is a topic for further study.

The E5 axiom says that if t is not a reason for φ, then ?t is a reason for this fact.
The following two conditions are needed for logics containing this axiom scheme.

Anti-monotonicity If φ 6∈ E(w, t) and wRv, then φ 6∈ E(v, t)
Negative Proof Checker If there is a v such that wRv and M, v |= ¬φ or φ 6∈

E(w, t), then ¬t :φ ∈ E(w, ?t)

Anti-monotonicity says that if t is not a reason for φ in w, then it will not be a reason
for φ in any accessible world. Of course, both Monotonicity and Anti-monotonicity
together imply that if wRv, then E(w, t) = E(v, t). We now show that these two
conditions (together with assuming that R is Euclidean) are exactly what is needed
to prove the validity of the E5 axiom.

Lemma 1. If M = 〈W,R, E , V 〉 is a Fitting model where E satisfies anti-monotonicity
and negative proof checker and R is Euclidean, then ¬t :φ→?t :¬t :φ is valid in M.

Proof. Suppose that M = 〈W,R, E , V 〉, E satisfies anti-monotonicity and negative
proof checker and R is Euclidean. Suppose thatM, w |= ¬t :φ. Then either φ 6∈ E(w, t)
or there exists a v with wRv and M, v |= ¬φ. By the negative proof checker, we
have that ¬t : φ ∈ E(w, ?t). Thus we need only show that for all v if wRv, then
M, v |= ¬t : φ. Suppose that φ 6∈ E(w, t) and let v be an arbitrary state with wRv.
By negative proof checker, φ 6∈ E(v, t). Hence, M, v |= ¬t :φ. Alternatively, suppose
that v0 is a state such that wRv0 and M, v0 |= ¬φ. Then if v is any state with wRv,
since R is Euclidean, vRv0. Hence, M, v |= ¬t :φ. ut

We say that M is a model for LP(K5) if E satisfies anti-monotonicity and negative
proof checker and R is Euclidean. Models for the other logics such as LP(S5) or
LP(KD45) are defined as expected. For example, M is a LP(S5) model if R is
an equivalence relation and E satisfies Sum, Application, Proof Checker, Negative
Proof Checker, Monotonicity and Anti-monotonicity (and hence E is constant on an
equivalence class of states).

5 Completeness

Fitting showed in [8] that LP is sound and complete with respect to the class of LP
models. In this section we describe Fitting’s completeness proof and show how to
adapt it in order to prove completeness of LP(KD) and LP(K5).
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Let Λ be a logic, we will construct a canonical model M = 〈W,R, E , V 〉 based on Λ
as follows. LetW = {Γ | Γ is a Λ-maximally consistent set} and Γ# = {φ | t :φ ∈ Γ}.
Then we say ΓR∆ iff Γ# ⊆ ∆. The evidence function is defined as E(Γ, t) = {φ | t :
φ ∈ Γ}. We define the valuation function as usual, p ∈ V (Γ ) iff p ∈ Γ . Now we have
the following facts.

Theorem 1 (Truth Lemma). For any formula φ ∈ L,

M, Γ |= φ iff φ ∈ Γ

Proof. The proof is by induction on φ. For the propositional variables, the result
holds by definition. The boolean connectives are obvious. Suppose that M, Γ |= t :φ,
then φ ∈ E(Γ, t). Hence by construction of E , t : φ ∈ Γ . Suppose t : φ ∈ Γ . Then
φ ∈ Γ# and so φ ∈ ∆ for each ∆ with ΓR∆. Thus by the induction hypothesis, if
ΓR∆, then M,∆ |= φ. Furthermore, φ ∈ E(Γ, t). Hence, M, Γ |= t :φ. ut

Given the above truth lemma, proving completeness of a logic Λ is reduced to showing
that the canonical model for Λ is in fact a model for Λ. In particular, the above lemma
immediately gives us a completeness proof for LP(K).

Theorem 2. If φ is CS-derivable in LP(K), then φ is CS-LP(K) valid.

The proofs of the following Lemmas can be found in Appendix B.

Lemma 2. If Λ contains the axiom scheme ED, then in any canonical model based
on Λ R is serial.

Lemma 3. If Λ contains the axiom scheme E5, in any canonical model based on Λ,
R is Euclidean and E satisfies both anti-monotonicity and negative proof checker.

The above Lemmas together with the Truth Lemma can be used to show the two
main soundness and completeness theorems of this paper. The proofs are standard
and so will be omitted.

Theorem 3. Let CS be an axiomatically appropriate constant specification, then φ
has a LP(KD) axiomatic proof using CS if and only if φ is valid in any LP(KD)
model.

Theorem 4. Let CS be an axiomatically appropriate constant specification, then φ
has a LP(K5) axiomatic proof using CS if and only if φ is valid in any LP(K5)
model.

These proofs can easily be adapted to show completeness for LP(KD5), LP(KD45)
and LP(S5).
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6 Conclusions and Further Work

In this short note, we proved soundness and completeness for some axiom systems
not covered by Fitting in [8]. In [3], Artemov and Nogina consider systems with both
implicit modalities (�) and explicit modalities (t :φ). The proofs in this section can
easily be adapted to work in this setting. We briefly discuss some future work.

– Develop and tableau system for LP(S5). An tableau system for LP was intro-
duced by Renee in [12] and is discussed in [8].

– In [8], Fitting proves the realization theorem first proved by Artemov [1, 2] by
a semantical argument. We hope to find a similar proof with respect to S5 (a
proof-theoretic argument is offered in [5]).

– In [10], Fitting introduces a quantified version of LP. It should not be too difficult
to adapt the results from this note to the semantics presented in [10].
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A Some Modal Logics

We remind the reader of a number of well-known modal axiom systems.
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PC An appropriate axiomatization of propositional calculus
K �(φ→ ψ) → (�φ→ �ψ)
T �φ→ φ
4 �φ→ ��φ
5 ¬�φ→ �¬�φ
D �φ→ ♦φ
N From φ infer �φ
MP From φ and φ→ ψ infer ψ

The modal logic K contains the axiom schemes PC and K and the rules N and MP ,
K5 is K together with the 5 axiom, KD is K with the axiom scheme D, KD45 is
KD with the axiom schemes 4 and 5, and S5 is K with the axiom schemes T , 4 and
5.

B Proofs

Lemma 4. If Λ contains the axiom scheme ED, then in any canonical model based
on Λ R is serial.

Proof. Let Γ ∈ W be a maximally consistent set. We will show that the set {φ | t :
φ ∈ Γ} is a consistent set. Suppose not. That is there are φ1, . . . , φn with proof
polynomials t1, . . . , tn such that for each i = 1, . . . , n, ti : φi ∈ Γ where (φ1 ∧ · · · ∧
φn) → ⊥. Then using explicit necessitation there is a proof polynomial t such that
t : (φ1 ∧ · · · ∧ φn) → ⊥ is provable. Using standard LP reasoning, there is a proof
polynomial f(t, t1, . . . , tn) such that (t1 : φ1 ∧ · · · tn : φn) → f(t, t1, . . . , tn) : ⊥ is
provable. Hence f(t, t1, . . . , tn) :⊥ ∈ Γ , and so ⊥ ∈ Γ using ED. Contradiction. ut

Lemma 5. If Λ contains the axiom scheme E5, in any canonical model based on Λ,
R is Euclidean and E satisfies both anti-monotonicity and negative proof checker.

Proof. Suppose Λ contains the E5 axiom scheme.

– We must show E is anti-monotonic. Suppose that φ 6∈ E(Γ, t), Γ# ⊆ ∆ and
φ ∈ E(∆, t). Then t :φ 6∈ Γ but t :φ ∈ ∆. Since Γ is maximal, ¬t :φ ∈ Γ and so
using axiom 5, ?t :¬t :φ ∈ Γ . Therefore, ¬t :φ ∈ ∆, which is a contradiction. So,
E is anti-monotonic.

– We must show E satisfies negative proof checker. First suppose that φ 6∈ E(Γ, t).
Then, t :φ 6∈ Γ , so ¬t :φ ∈ Γ . Hence using the E5 axiom, ?t :¬t :φ ∈ Γ . Hence
¬t :φ ∈ E(Γ, ?t). Suppose that there is a∆ such that ΓR∆ andM,∆ |= ¬φ. Using
the truth lemma, ¬φ ∈ ∆. Suppose that ¬t : φ 6∈ E(Γ, ?t). Then ?t : ¬t : φ 6∈ Γ .
Therefore t : φ ∈ Γ . Hence φ ∈ Γ# ⊆ ∆. Contradiction. So, E satisfies negative
proof checker.

– To show R is Euclidean, suppose that Γ,∆,∆′ ∈ W and ΓR∆ and ΓR∆′. We
must show that ∆# ⊆ ∆′. Let φ ∈ ∆#. Suppose that φ 6∈ ∆. Then φ 6∈ Γ#.
Hence for each proof polynomial, t : φ 6∈ Γ and so for each proof polynomial t,
¬t :φ ∈ Γ . Now we have t0 :φ ∈ ∆ for some proof polynomial t0 (since φ ∈ ∆#).
We have ¬t0 : φ ∈ Γ . Therefore using E5, ?t : ¬t0 : φ ∈ Γ . And so, ¬t0 : φ ∈ ∆.
Contradiction, so φ ∈ ∆′. ut


